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English summary 

Adequate representation of the soil organic carbon (SOC) cycle at the macroscale (km to global) is 

important in order to understand and predict the implications of SOC dynamics for the climate and our 

planet. Such adequate representation is challenging, because mechanistic knowledge about soils is 

derived from the much smaller mesoscale (mm to m). However, the dominant mechanisms and 

controls of the SOC cycle vary across scales. Therefore, specific information is needed about which 

mesoscale processes affect SOC dynamics at the macroscale. This thesis uses a geoclimatic gradient of 

temperate grassland soils to investigate whether three well established SOC cycle mechanisms at the 

mesoscale translate to the macroscale, and therefore require scaling. The mechanisms of interest are 

(1) stable microaggregates as an SOC reservoir, (2) competitive exclusion and substrate specialization 

as determinants of bacterial community composition, and (3) microbial community composition as a 

driver of biomass-specific carbon (C) metabolism.  

 

In Chapter 1, I first describe the role of SOC in the terrestrial C cycle and provide an overview of the 

three fundamental spatial scales at which the SOC cycle can be studied. I explain why the mechanisms 

that are relevant for the SOC cycle can differ across these scales and introduce the concept of “scaling” 

to bridge from meso- to macroscale. I then summarize the current consensus view of SOC dynamics at 

the macroscale and identify the knowledge gaps that this thesis will address. I provide a brief overview 

of methods which can be used to inform scaling and explain why gradient studies are particularly well 

suited for this purpose. Lastly, I introduce the geoclimatic gradient with which I worked and present 

the detailed research questions of this thesis. 

 

In Chapter 2, together with coauthors I investigated whether stable microaggregates – a mechanism of 

spatial organization within soil – constitute a quantitatively relevant SOC fraction at the macroscale. 

For this, we applied a fractionation scheme which separates SOC into particulate organic matter, silt- 

and clay-sized particles and stable microaggregates. We found that stable microaggregates contained 

a large fraction of SOC, with environmental drivers and chemical characteristics that were distinct from 

particulate organic matter and silt- and clay-sized fractions. We concluded that stable microaggregates 

merit scaling to the macroscale. 

 

In Chapter 3, we investigated whether competitive exclusion and bacterial substrate specialization –

mechanisms of microbial community assembly – provide scalable links between soil bacterial 

community composition and the quantity as well as qualitative characteristics of SOC. For this, we 

measured qualitative characteristics of SOC and characterized bacterial community composition with 
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sequencing of the 16S rRNA gene. We found patterns in line with the mechanism of competitive 

exclusion but could not conclusively rule out other potentially underlying mechanisms. In addition, we 

did not find evidence that bacterial substrate specialization translated directly to the macroscale as a 

mechanism of bacterial community assembly.  

 

In Chapter 4, we investigated how soil microbial traits and functions – which are products of microbial 

C metabolism – relate to the environment and to soil microbial community composition at the 

macroscale. For this, we measured microbial traits and functions important for the SOC cycle and 

characterized climatic and soil physicochemical conditions as well as bacterial and fungal community 

composition. We found that respiration and growth normalized for microbial biomass (i.e., biomass-

specific) were related to different features of microbial community composition, which resulted in 

strong effects on microbial C use efficiency. We concluded that biomass-specific C metabolism is a 

mechanism that merits scaling to the macroscale. 

 

In Chapter 5, I compare the SOC dynamics of two contrasting systems along the geoclimatic gradient 

of temperate grassland soils in order to summarize the findings of Chapters 2 to 4, and to highlight 

interdisciplinary links among them. I then discuss the general conclusions from each of these Chapters 

in the context of the current state of the art. I further elaborate the implications of the findings for the 

respective research fields and propose future research directions that build on the insights of this 

thesis. Following these perspectives, I briefly provide guidance on how to place the findings of this 

thesis in a global context. Lastly, I conclude with a general outlook about future research with this 

dataset. 
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German summary 

Um die Auswirkungen des organischen Kohlenstoffs im Boden (SOC) auf das Klima und unseren 

Planeten verstehen und vorhersagen zu können, ist es wichtig, den SOC-Kreislauf auf der Makroskala 

(km bis global) angemessen darzustellen. Eine solche Darstellung ist herausfordernd, da 

mechanistisches Wissen über Böden auf der viel kleineren Mesoskala (mm bis m) gewonnen wird. Die 

vorherrschenden Mechanismen und beeinflussenden Faktoren des SOC-Kreislaufs variieren jedoch je 

nach Maßstab. Daher werden Informationen darüber benötigt, welche Prozesse der Mesoskala die SOC 

Dynamik auf der Makroskala beeinflussen. In dieser Arbeit wird anhand eines geoklimatischen 

Gradienten temperater Graslandböden untersucht, ob drei auf der Mesoskala gut etablierte 

Mechanismen des SOC-Kreislaufs auf die Makroskala übertragbar sind. Die Mechanismen von Interesse 

sind (1) stabile Mikroaggregate als SOC-Reservoir, (2) Konkurrenz-Ausschluss und 

Nahrungsspezialisierung als Treiber der Zusammensetzung bakterieller Gemeinschaft und (3) die 

Zusammensetzung mikrobieller Gemeinschaft als Treiber für den biomassespezifischen Kohlenstoff(C)-

Stoffwechsel.  

 

In Kapitel 1 beschreibe ich zunächst die Rolle des SOC im terrestrischen C-Kreislauf und gebe einen 

Überblick über die drei grundlegenden räumlichen Skalen, auf denen der SOC-Kreislauf untersucht 

werden kann. Ich erkläre, warum sich die relevanten Mechanismen für den SOC-Kreislauf auf diesen 

Skalen unterscheiden können, und führe das Konzept der "Skalierung" ein, um eine Brücke von der 

Meso- zur Makroskala zu schlagen. Anschließend fasse ich den derzeitigen Konsens über die SOC-

Dynamik auf der Makroskala zusammen und zeige diejenigen Wissenslücken auf, die diese Arbeit 

schließen wird. Ich gebe einen kurzen Überblick über Methoden, die verwendet werden können, um 

die Notwendigkeit der Skalierung von Mechanismen zu beurteilen. Ausserdem erkläre ich, warum 

Gradientenstudien für diesen Zweck besonders gut geeignet sind. Abschließend stelle ich den dieser 

Arbeit zugrundeliegenden geoklimatischen Gradienten vor, und erläutere die detaillierten 

Forschungsfragen dieser Arbeit. 

 

In Kapitel 2 untersuchte ich gemeinsam mit Koautoren, ob stabile Mikroaggregate - ein Mechanismus 

der räumlichen Organisation im Boden - eine quantitativ relevante SOC Fraktion auf der Makroskala 

darstellen. Dazu verwendeten wir ein Fraktionierungsschema, das den SOC in grobes organisches 

Material, schluff- und tonartige Partikel sowie stabile Mikroaggregate aufteilt. Wir fanden heraus, dass 

stabile Mikroaggregate einen großen Anteil des C eines Bodens enthalten können. Dabei unterscheiden 

sie sich vom groben organischen Material und von schluff- und tonhaltigen Partikeln durch ihre 
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chemischen Eigenschaften und durch die beeinflussenden Umweltfaktoren. Wir kommen zu dem 

Schluss, dass stabile Mikroaggregate auf der Makroskala repräsentiert werden sollten. 

 

In Kapitel 3 untersuchten wir, ob bakterieller Konkurrenz-Ausschluss und Nahrungsspezialisierung 

skalierbare Verbindungen zwischen der Zusammensetzung der bakteriellen Bodengemeinschaft und 

der Menge und Qualität des SOC darstellen. Beide Mechanismen sind auf der Mesoskala wichtig für 

den Aufbau von Bakteriengemeinschaften. Zu diesem Zweck charakterisierten wir die qualitativen 

Merkmale des SOC sowie die Zusammensetzung der bakteriellen Gemeinschaft mittels Sequenzierung 

des 16S rRNA-Gens. Wir fanden Muster, die mit dem Mechanismus des Konkurrenz-Ausschusses 

übereinstimmen. Allerdings können wir nicht gänzlich ausschließen, dass andere Mechanismen für 

diese Muster verantwortlich sind. Wir fanden keine Hinweise darauf, dass sich die bakterielle 

Nahrungsspezialisierung als Mechanismus für den Aufbau von Bakteriengemeinschaften direkt auf die 

Makroskala übertragen lässt.  

 

In Kapitel 4 untersuchten wir, wie Eigenschaften und Funktionen der Bodenmikroben - Produkte des 

mikrobiellen C-Stoffwechsels - mit der Umwelt und der Zusammensetzung der mikrobiellen 

Bodengemeinschaft auf der Makroskala zusammenhängen. Dazu wurden mikrobielle Eigenschaften 

und Funktionen gemessen, die für den SOC-Kreislauf wichtig sind. Genauer wurden die klimatischen 

und bodenphysikochemischen Bedingungen sowie die Zusammensetzung der Bakterien- und 

Pilzgemeinschaft charakterisiert. Wir fanden heraus, dass Atmung und Wachstum, normiert auf die 

mikrobielle Biomasse (d. h. biomassespezifisch), mit verschiedenen Merkmalen der mikrobiellen 

Gemeinschaftszusammensetzung zusammenhängen. Das wirkt sich stark auf die mikrobielle C-

Nutzungseffizienz aus. Der biomassespezifische C-Stoffwechsel ist daher ein Mechanismus, der auf die 

Makroskala übertragen werden sollte. 

 

In Kapitel 5 vergleiche ich die SOC-Dynamik von zwei kontrastierenden Systemen entlang des 

geoklimatischen Gradienten, um die Ergebnisse der Kapitel 2 bis 4 zusammenzufassen und 

Verbindungen zwischen ihnen aufzuzeigen. Darüber hinaus diskutiere ich die allgemeinen 

Schlussfolgerungen aus jedem dieser Kapitel im Kontext des aktuellen Stands der Wissenschaft. Des 

Weiteren erläutere ich die Implikationen der Ergebnisse für die jeweiligen Forschungsbereiche und 

schlage zukünftige Fragestellungen vor, die auf den Erkenntnissen dieser Arbeit aufbauen können. Im 

Anschluss daran gebe ich einen kurzen Leitfaden, wie die Ergebnisse dieser Arbeit in einen globalen 

Kontext gestellt werden können. Abschließend gebe ich einen allgemeinen Ausblick auf zukünftige 

Forschungsmöglichkeiten mit diesem Datensatz. 
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1. Introduction 

The overall aim of this thesis is to contribute to an improved understanding of soil organic carbon (SOC) 

dynamics at the macroscale. In Chapter 1, I will introduce the reader to the general topic of this thesis, 

to the questions that motivated this work, and to the approaches that were used to address these 

questions. I will first describe the role of SOC in the terrestrial carbon (C) cycle and introduce the 

fundamental factors that regulate the SOC cycle (Chapter 1.1). Next, I will provide an overview of the 

three fundamental spatial scales at which the SOC cycle can be studied, namely the micro-, meso- and 

macroscale (Chapter 1.2). The mechanisms that are relevant for the SOC cycle differ between these 

scales, and I will highlight the causes of these discrepancies and introduce the concept of “scaling” to 

bridge scales (Chapter 1.3). After providing this context, I will summarize the current consensus view 

of SOC dynamics at the macroscale (Chapter 1.4) and identify the knowledge gaps that this thesis will 

address (Chapter 1.5). This thesis will focus on the question whether three mechanisms that are well 

established at the mesoscale translate to the macroscale, and thereby merit scaling. The mechanisms 

of interest are (1) stable microaggregates as an SOC reservoir, (2) competitive exclusion and substrate 

specialization as determinants of bacterial community composition, and (3) microbial community 

composition as a driver of biomass-specific C metabolism. In Chapter 1.6 I will provide a brief overview 

of methods which can be used to inform the scaling of mechanisms, and I will give a rationale why 

gradient studies are particularly well suited for this purpose. In Chapter 1.7 I will introduce the 

geoclimatic gradient with which I worked in this thesis. Lastly, I will present the detailed research 

questions and hypotheses that I addressed, together with an outline of the synthesis (Chapter 1.8). 

 

1.1 The role of soil organic carbon in the terrestrial carbon cycle 

Globally, soils contain 1700 Gt SOC in the first meter, which is more than the stocks of terrestrial 

vegetation and the atmosphere combined (450 and 885 Gt C, respectively; Canadell et al.,  2021). To 

most people, soil is just dirt, and gigatons are abstract numbers. An analogy might help to visualize the 

amount and tremendous value of global topsoil SOC. Only the upper 30 cm of the world’s soil contain 

as much SOC (680 Gt C, FAO-UNESCO, 2018) as a pure diamond cube with edges of 6 km length! But 

why should SOC be considered that valuable? Through photosynthesis, terrestrial ecosystems are 

estimated to remove 2 – 4 Gt C per year from the atmosphere by conversion into C (Friedlingstein et 

al., 2023). On the timescales of years to centuries, much of this plant organic C passes through the soil. 

In soil, this organic C can either be converted back into CO2 and return to the atmosphere, or it can 

become a more permanent part of the large SOC pool. Depending on a balance of intricate soil 

processes, soils can therefore either be a sink or a source of atmospheric CO2. As such, SOC has the 
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potential to affect climate change through slowing down or accelerating the increase of atmospheric 

CO2 concentrations. SOC is therefore a linchpin of the global C cycle, and the potential of soils to 

mitigate climate change has received much attention over the last years (e.g. Paustian et al., 2016, 

2019; Amelung et al., 2020). 

 

The specific processes and underlying mechanisms that regulate the fate of SOC depend on four 

fundamental factors: (1) the environmental setting, (2) the chemical characteristics of SOC, (3) the soil 

microbial community and (4) microbial functions. The environmental setting comprises the physical, 

chemical and biological context in which SOC is embedded, from the physicochemistry of a soil pore to 

the temperature regime of a climate zone. In addition to this environmental diversity, SOC can be 

present in soils at contents spanning two orders of magnitude, and with highly diverse physicochemical 

characteristics (Lehmann and Kleber, 2015). SOC is often investigated together with nitrogen (N) 

because biological cycling of C and N can be intertwined. When referring to properties that describe 

both C and N (for instance the C:N ratio), the term soil organic matter (SOM) is therefore used. To refer 

to the diverse physicochemical characteristics of SOC or SOM, the term “quality” is used. In part as a 

consequence of the tremendous breadth of environmental settings and SOM quality, soils are among 

the most biologically diverse ecosystems of the planet (Fierer, 2017). Soil microbial communities can 

therefore vary strongly in their functional composition and role (Don et al., 2017; Lehmann et al., 2020; 

Philippot et al., 2024). This is particularly central for SOC dynamics, because microbes carry out a large 

number of functions that are involved in SOC cycling. Subject to environmental and microbial controls, 

microbial functions are at the nexus between the environmental setting, SOM quality and the microbial 

community composition. The true key to understanding SOC dynamics – and thereby to harness the 

value of SOC in the global C cycle – is to understand how these four fundamental factors interact. These 

interactions are context-specific and depend on the scale. To better understand this scale-dependency, 

we first need to familiarize ourselves with the spatial scales of the SOC cycle. 

 

1.2 The spatial scales of the soil organic carbon cycle 

The SOC cycle can be described at three fundamentally different spatial scales (Figure 1-1) (Hinckley et 

al., 2014; O’Rourke et al., 2015; Wieder et al., 2015; Pachepsky and Hill, 2017; Blankinship et al., 2018). 

(1) The microscale, at which most biogeochemical processes take place. (2) The mesoscale, at which 

most processes in soil biogeochemistry are commonly measured. (3) The macroscale, at which large 

scale phenomena such as land use change or climate change are studied, and at which policy making 

needs to be informed. This spatial hierarchy typically covaries with temporal variability (Hinckley et al., 

2014; Pachepsky and Hill, 2017). Mechanisms at the microscale can occur within seconds to minutes, 
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whereas mesoscale studies typically investigate processes over days to months. SOC dynamics at the 

macroscale are ultimately integrated over timescales from seasons to years or are even the product of 

processes that play out over millennia. While I acknowledge this temporal variability, I will focus the 

framing of this thesis on the spatial scales. 

 

 

Figure 1-1. Schematic representation of the three fundamental spatial scales at which SOC cycling can 

be described: (1) The microscale, at which most biogeochemical processes take place. (2) The 

mesoscale, at which most SOC cycling processes are commonly measured. (3) The macroscale, at which 

the SOC cycle intersects with interdisciplinary aspects of global change and with policy making. SOC 

cycling takes place within diverse arrangements of the environmental setting (ENV), soil organic matter 

quantity and quality (SOM), microbial communities (MIC) and microbial functions (FUN). Grey arrows 

represent mechanisms that either operate within or across scales. 

 

The microscale ranges from nanometers to micrometers. At this scale, chemical interactions such as 

the formation of OM-mineral associations take place, and microbes grow, respire and interact. Soil 

physicochemical characteristics such as soil structure directly affect individual biogeochemical 

reactions. At this point, I briefly want to define the term “mechanism”: Mechanisms are systems of 

causally interacting processes that produce regular and therefore predictable changes. Processes in 

turn are the cumulative result of underlying biological, physical or chemical mechanisms. Having 

defined what mechanisms are, it becomes clear that most fundamental mechanisms take place at the 

microscale. For example, physical mechanisms govern the distribution and movement of water, which 

affects microbial activity at pore scale via dynamic changes of aeration, connectivity and the spatial 
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arrangement of reactants. Targeted intervention on soil functioning always requires fundamental 

mechanistic understanding (Blankinship et al., 2018; Baveye, 2023). The microscale is therefore the 

scale at which we strive to understand the fundamental mechanisms that underly the SOC cycle 

(Smercina et al., 2021). As a consequence, this scale is subject to intense mechanistic investigation, 

mostly with spatially resolved imaging methods (Vos et al., 2013; Baveye et al., 2018; Smercina et al., 

2021; Schweizer, 2022; Li et al., 2023) or microsensors and planar sensors (Pedersen et al., 2015). A 

large part of research at the microscale has been conducted within the confines of disciplines. However, 

interdisciplinary efforts increasingly manage to link soil physics, chemistry and biology, contributing to 

a holistic understanding of the microscale (Vos et al., 2013; Nunan, 2017; Tecon and Or, 2017; König et 

al., 2020). 

 

The mesoscale ranges from millimeters to meters. A large part of soil biogeochemical research takes 

place at this scale. For example, many common analytical procedures use milligrams to grams of soil 

material to characterize pools and fluxes of C and nutrients, or to characterize microbial communities. 

Also at the mesoscale, soil profiles provide information on local soil formation, and experimental 

manipulations to understand mechanisms in plant-soil systems are conducted at most in plots of 

several meters. As a result, most information that feeds into macroscale models is measured at the 

mesoscale (Jungkunst et al., 2022). Mesocale measurements have several advantages: On the one 

hand, the mesoscale is practical in terms of feasibility, and on the other hand it is relevant because it is 

the smallest scale at which soils are typically managed (O’Rourke et al., 2015). However, observations 

at the mesoscale neither capture individual biogeochemical reactions, nor the exact microscale 

conditions in which they take place. Rather, observations at the mesoscale integrate units of soil (e.g. 

defined by soil layer or horizon, or by proximity to plant roots) and describe processes and properties 

that are weighted averages of these units or that emerge from the sum of multiple individual reactions 

within these units.  

 

The macroscale ranges from kilometers to the global system. One major aim of studying the SOC cycle 

at the macroscale is to generate insights that can inform decision making. How should we manage soil 

systems? How will soil systems respond to global change? How do soil systems affect global change? It 

is evident why proper understanding of the SOC cycle at the macroscale is pressing and important. At 

the macroscale, information is usually extrapolated based on observations on the mesoscale. This can 

either be done through increasingly sophisticated machine-learning approaches (e.g. Hengl et al., 2017; 

Sanderman et al., 2021; Wang et al., 2024) or through numerical modelling (Jones, 2021). Machine-

learning approaches are limited to the data range on which they were trained, because they only 

represent observed correlative connections instead of mechanisms. Such models are therefore not 
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reliable tools to predict future scenarios (Wadoux et al., 2020; Grunwald, 2022; Meyer and Pebesma, 

2022; Baveye, 2023). For this, numerical models are necessary. Numerical models predict the behavior 

of systems based on the mathematical representation of processes and underlying mechanisms.  

 

In the soil system, we usually observe processes (or correlations as the results of processes) and make 

inferences about the underlying mechanisms, which we formulate as concepts or mathematical 

equations. This can either be in the form of general simple assumptions such as first-order reactions, 

in combination with biogeochemical principles (e.g. the Arrhenius equation for the temperature 

dependency of chemical reactions), or through explicit representation of mechanisms of varying 

complexity (Campbell and Paustian, 2015; Wieder et al., 2015; Chandel et al., 2023; Schimel, 2023). 

However, while such numerical models are typically applied at the macroscale, information about the 

mechanisms on which they are based are typically derived at the micro- and mesoscales. These 

mechanisms must therefore be transferred across scales, and often into other biogeochemical 

conditions than those from which they were derived empirically (Wieder et al., 2015). Next, we will 

explore why this is not always as simple and straight forward as it may seem. 

 

1.3 Scaling the key mechanisms of the soil organic carbon cycle 

The transfer of concepts and mechanisms across scales (typically from smaller to larger spatial scales, 

(Figure 1-1) is generally referred to as scaling (Pachepsky and Hill, 2017). Scaling represents a major 

challenge in soil science and related fields (Davidson et al., 2014; Hinckley et al., 2014; O’Rourke et al., 

2015; Wieder et al., 2015; Luo et al., 2016; Baveye et al., 2018; Blankinship et al., 2018; Getz et al., 

2018; Martín et al., 2021; Wan and Crowther, 2022). In the context of macroscale models, 

parameterization, calibration and validation can be difficult aspects of scaling, particularly because of 

gaps in empirical data (Luo et al., 2016; Cameron et al., 2018; Kögel-Knabner and Amelung, 2021; 

Jungkunst et al., 2022; Le Noë et al., 2023). However, an even more fundamental challenge is to decide 

which micro- and mesoscale mechanisms should be represented at the macroscale (i.e., model 

structure formulation, Luo et al., 2016; Abramoff et al., 2018). This is because the relevant mechanisms 

- and as a consequence the relevant controls - of the SOC cycle depend on the spatial scale (Ali et al., 

2018; González-Domínguez et al., 2019; Wiesmeier et al., 2019; Li et al., 2020; Nave et al., 2021; Tian 

et al., 2022). On the one hand, certain mechanisms and controls only emerge at larger scales. 

Mechanisms can emerge at larger scales when they result from the (complex) interaction of units at 

smaller scales. For example, leaching as a vertical SOC flux between soil horizons (Kindler et al., 2011; 

Nakhavali et al., 2021) only becomes evident at depth-explicit mesoscales, and ecological interactions 

of microbes may affect process rates at the mesoscale in ways that are currently difficult to predict 



18 
 

from the microscale (Kaiser et al., 2014; Falconer et al., 2015; Cordero and Datta, 2016; Buchkowski et 

al., 2017; Georgiou et al., 2017; E. K. Hall et al., 2018). On the other hand, not all mechanisms and 

controls translate from the micro- and mesoscale to macroscale. The reasons for this can be manifold. 

Spatial heterogeneity of conditions such as substrate availability or moisture may neutralize opposed 

processes or average variable process rates at larger scales (Nunan, 2017). As a consequence, the 

underlying mechanisms can mask and neutralize each other. Controls may also affect SOC cycling 

hierarchically across spatial scales, with variable effect sizes. For example, at a given level of water 

saturation, microscale heterogeneity within one soil can cause microsite-differences in respiration rates 

of several orders of magnitude due to local resource limitation or physiological stress (Yan et al., 2023). 

However, at the macroscale, climatic and pedogenic differences cause large differences in bulk soil 

microbial biomass, which – again at a given level of water saturation - can lead to differences in bulk 

soil respiration that are almost at the order of two magnitudes (Chapter 4). As a consequence, the 

variation of respiration rates may be determined by pore architecture at the microscale, and by the 

geoclimatic setting at the macroscale. 

 

While the scale-dependence of natural systems has been acknowledged for centuries (Pachepsky and 

Hill, 2017), scaling poses an ongoing challenge in the context of the SOC cycle. This is evident by the 

large structural diversity of SOC cycle models (Campbell and Paustian, 2015; Luo et al., 2016; Chandel 

et al., 2023; Garsia et al., 2023; Schimel, 2023), and even more by the weak consensus among model 

projections (Tian et al., 2015; Shi et al., 2018; Sulman et al., 2018; Wieder et al., 2019; Georgiou et al., 

2021, 2024; Hashimoto et al., 2023). One source of this problem is that relevant micro- and mesoscale 

mechanisms are missing in our conceptual understanding at the macroscale. As boiled down by Luo et 

al. (2016): “[…] the art […] is to determine what should be explicitly represented […] and what can be 

ignored.” In order to be able to identify such knowledge gaps, we next need to get an overview of how 

the SOC cycle is currently represented at the macroscale. 

 

1.4 The soil organic carbon cycle at the macroscale 

Given how complex soil systems are, a comprehensive and exhaustive review of macroscale SOC 

dynamics would probably require writing a book. This chapter therefore aims to provide a general 

overview of the current consensus representation of the SOC cycle at the macroscale. This overview 

was guided by the structures of numerical SOC models that were designed to represent SOC dynamics 

at the scale of ecosystems or in the context of earth system models (e.g. CENTURY, Parton et al., 1987; 

Roth-C, Jenkinson et al., 1990 ; RESOM, Tang and Riley, 2015; CORPSE, Sulman et al., 2014; MIMICS, 

Wieder et al., 2014; COMISSION, Ahrens et al., 2015; MEMS 2.0, Zhang et al., 2021; MEND, G. Wang et 



19 
 

al., 2022; Millennial v2, Abramoff et al., 2022). In several reservoirs of the SOC cycle it is common to 

consider C and N jointly, which is why the term SOM is occasionally used instead of SOC. This overview 

will focus on C dynamics alone, but the term SOM will be used where appropriate.  

 

C can enter and exit soil via various processes. The most important source for C input into soils are 

plants. Plants supply C to soils via aboveground litterfall, root turnover which results in belowground 

litter, rhizodeposition and through symbiotic relationships with mycorrhizal fungi (Jackson et al., 2017; 

Basile-Doelsch et al., 2020; Huang et al., 2021). A large part of C input comes from roots, and therefore 

roots can cause hotspots of microbial activity (Sokol et al., 2019; Smercina et al., 2021). For this reason, 

several conceptual frameworks consider the rhizosphere (i.e. soil close to roots) and “bulk soil” (i.e. soil 

distant from roots) to be functionally distinct zones (Sulman et al., 2014; Zhang et al., 2021). The main 

losses of C from soil systems are through respiration (Raich et al., 2002; Trumbore, 2006) (or 

methanogenesis in anaerobic conditions), erosion (Doetterl et al., 2016; Naipal et al., 2018) and 

leaching (Kindler et al., 2011; Nakhavali et al., 2021). Vertical SOC fluxes may also be an important 

source for C in subsoil systems (Sanderman and Amundson, 2008; Kaiser and Kalbitz, 2012), although 

this is debated (Sierra et al., 2024).  

 

SOC can have diverse physical and chemical characteristics. Molecules that contain C can for example 

have low or high molecular weight, they can have a low or a high degree of reduction, and they can be 

dissolved in soil solution, readily exchangeable from mineral surfaces or bound strongly to mineral 

surfaces over long timescales. As a consequence, not all SOC is equally likely to contribute to C storage 

and loss. To categorize this diversity, SOC is commonly classified into functionally distinct groups (Figure 

1-2, ①). Such groups of SOC can be called “pools” when they are assigned with a turnover rate, or 

“fractions” when they are isolated with physicochemical separation methods. However, some groups 

of SOC do not fit properly into either terminology (e.g. microbial biomass C, MBC), which is why I will 

use the more general term “reservoir” in this section. SOC reservoirs with distinct dynamics are the 

foundation of most macroscale SOC concepts ever since seminal first-order decay models such as 

CENTURY (Parton et al., 1987) and Roth-C (Jenkinson et al., 1990) demonstrated their utility. With the 

emergence of process-explicit models, there have been attempts to align these conceptual reservoirs 

with measurable SOC reservoirs. The reservoirs that are most commonly considered are microbially 

available organic matter (defined as dissolved OM or extractable OM, Kalbitz and Kaiser, 2008), MBC 

(Crowther et al., 2019), mineral-associated organic matter (MAOM) and particulate organic matter 

(POM) (Lavallee et al., 2020). The contributions of the individual reservoirs to total SOC vary widely, 

depending on the soil system and on the quantification methods.  
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C enters the mineral soil either directly in the form of low molecular weight (LMW, < 600 Da) dissolved 

OM compounds, or as coarse litter material (Kleber et al., 2015; Sokol et al., 2019) (Figure 1-2, ②). 

Decomposition through microbial activity (via extracellular enzymes) depolymerizes litter and produces 

available OM and POM (Grandy and Neff, 2008; Cotrufo et al., 2015) (Figure 1-2, ③). Available OM can 

either be taken up by microbes or form MAOM through sorption to mineral components (Liang et al., 

2017; Sokol et al., 2019, 2022b) (Figure 1-2, ④). POM and MAOM are conceptually considered and 

practically isolated as “counterparts” after dispersion of physical soil structures (Lavallee et al., 2020) 

(Figure 1-2, ⑤). Common definitions for separation are either size (e.g. POM > 63 μm > MAOM), by 

density (POM < 1.6 – 1.8 g cm3 < MAOM) or a combination thereof. POM consists of coarse plant-

derived organic material with a high (chemically inherent) activation energy and a high C:N ratio. 

MAOM primarily consists of LMW compounds of plant and microbial origin, with lower (chemically 

inherent) activation energies and low C:N ratio. While POM has no strong physical or chemical 

protection from microbial decomposition, MAOM is considered physically or chemically protected 

through association with clay minerals, Al and Fe oxy-hydroxides or cations (von Lützow et al., 2006; 

Rowley et al., 2018; Kleber et al., 2021). In general, C in POM is considered to cycle faster than C in 

MAOM (Trumbore, 2000; Heckman et al., 2022). There are further approaches to separate fast- and 

slow-cycling SOC pools which are independent of soil isolation into POM and MAOM. For example, data 

from RockEval thermal analysis has been used to predict SOC reservoirs with different turnover times 

(Cécillon et al., 2021). In practice, all reservoirs still contain a diversity of SOC compounds of variable 

microbial accessibility, activation energy and turnover. For example, despite the overall stable nature 

of MAOM (Heckman et al., 2022), parts of it can be labile (S. W. Stoner et al., 2023). As a consequence, 

numerical models usually represent sorption and desorption rates (e.g. Ahrens et al., 2015; Tang and 

Riley, 2015; Abramoff et al., 2022) or subdivide functional reservoirs further into variable pools (e.g. 

Sulman et al., 2014; Zhang et al., 2021). 

 

The soil microbial community is a very complex part of the SOC cycle that requires drastic simplification 

at the macroscale (Figure 1-2, ⑥). Trait-based concepts are a popular approach to reduce the 

complexity of microbial community composition. Such concepts aim to classify soil microbes into 

functional groups that affect SOC cycling differently (Fierer et al., 2007; Krause et al., 2014; Ho et al., 

2017; Malik et al., 2020; Wan and Crowther, 2022). In recent years, metagenomic methods and stable 

isotope probing have greatly accelerated this field (Li et al., 2019; Guo et al., 2020; Y. Chen et al., 2021; 

Stone et al., 2023). However, this avenue of research remains challenging because large parts of the 

microbial community are inactive at any given time (Blagodatskaya and Kuzyakov, 2013; Couradeau et 

al., 2019) due to adverse conditions at the microscale, and microbial functions are affected by diverse 

ecological interactions (Cordero and Datta, 2016; Buchkowski et al., 2017). The soil microbial 
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community receives much attention because it conducts several functions that cause important SOC 

transformations. Microbes exude extracellular enzymes, which depolymerize litter and POM in order 

to produce available OM, which serves as a substrate that is taken up by microbes (Sinsabaugh et al., 

2014; Zuccarini et al., 2023) (Figure 1-2, ③④). In microbial metabolism, this substrate can either 

undergo catabolism to be converted into energy, or it can undergo anabolism to build up microbial 

compounds (Russell and Cook, 1995; van Bodegom, 2007) (Figure 1-2, ⑦). Catabolism (in aerobic 

conditions) results in the production of CO2 through heterotrophic respiration. This process is a major 

route of C loss from soils and has therefore been a center of interest for decades (Bond-Lamberty et 

al., 2024). C that enters anabolism is invested into extracellular enzymes, extracellular polymeric 

substances (EPS) that protect and connect microbes and into growth (Manzoni et al., 2012a; Flemming, 

2016; Costa et al., 2018; Hagerty et al., 2018). Microbial growth and death (also conceptualized as 

microbial turnover) generate microbial necromass, which is a key source of MAOM (Kallenbach et al., 

2016; Wang et al., 2021; Sokol et al., 2022b) (Figure 1-2, ⑧).  

 

The environmental setting controls many processes of the SOC cycle. Climate acts mainly through 

precipitation and temperature. Precipitation and temperature affect different components of the SOC 

cycle over different timescales, all of which are important at the macroscale. At short timescales (days 

to months), soil moisture and temperature directly affect soil microbial process rates. Moisture is 

necessary to provide connectivity at the microscale, and absence of water additionally causes 

physiological drought stress for microbial cells (Tecon and Or, 2017; Schimel, 2018; Malik and Bouskill, 

2022). On the other hand, water saturation leads to anaerobic conditions, which require the microbial 

community to switch to less efficient types of metabolism (Keiluweit et al., 2016, 2017). As a 

consequence, moisture cycles reverberate from the micro- to the macroscale. Temperature directly 

affects microbial process rates because all biochemical and many physical processes in soil are 

positively temperature-dependent in the range of soil conditions (Lloyd and Taylor, 1994; Schipper et 

al., 2014). At intermediate timescales (season to years), climatic conditions affect the balance between 

plant inputs and microbial decomposition activity, which can lead to the accumulation of SOC, 

particularly in the POM reservoir (Wiesmeier et al., 2019; García-Palacios et al., 2021; Rocci et al., 

2021). Climate is also a key determinant for the type of vegetation that grows in an ecosystem, and 

the type of vegetation in turn determines the quantity and quality of C inputs (Jobbágy and Jackson, 

2000; Guo and Gifford, 2002; Meier and Bowman, 2008). C inputs in turn can also increase or decrease 

the mineralization of native SOC, an effect called priming. There are plenty of different mechanisms 

that can underly priming (Bernard et al., 2022). As a result of this complexity, observed priming patterns 

are variable (Bastida et al., 2019), the exact mechanisms at work often remain elusive (Liu et al., 2020) 

and the relevance for SOC cycling at longer timescales is not always clear (Schiedung et al., 2023b). At 
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long timescales (decades to millennia), climate co-determines which type of vegetation dominates a 

given ecosystem, and how rapidly soil parent material is transformed into secondary minerals through 

the process of weathering. In wet and warm conditions, chemical weathering proceeds faster than in 

dry and cold conditions (Jenny, 1941; Rasmussen et al., 2018; Slessarev et al., 2022). Climate is thereby 

a major driver of soil formation. As a consequence, soil mineralogy at the macroscale is mainly 

understood as the product of climate, parent material and soil age (Doetterl et al., 2018; Delgado-

Baquerizo et al., 2020; Slessarev et al., 2022). Soil formation alters soil physicochemical properties, and 

thereby the context of SOC dynamics. Soil physicochemical properties (e.g. texture, soil pH) and 

mineralogical properties (e.g. mineral reactivity, surface area) strongly affect the amount of stabilized 

SOC (Doetterl et al., 2015; Rasmussen et al., 2018; Georgiou et al., 2022; Heckman et al., 2022), the 

qualitative characteristics of stabilized SOC (Zhao et al., 2020; Mainka et al., 2022; Yu et al., 2022) and 

SOC fluxes (Tang and Riley, 2015; Xu et al., 2016; Finke et al., 2019). In addition, soil pH is well 

established as the most important macroscale driver of soil microbial community composition (Fierer, 

2017; Delgado-Baquerizo et al., 2018). 

 

 

Figure 1-2. General overview of the current consensus representation of the SOC cycle of mineral soils 

at the macroscale. Microbial functions are represented explicitly as mechanisms. For simplification, 
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effects of ENV, SOM and MIC on mechanisms are not described explicitly. ENV = environmental setting, 

SOM = soil organic matter, MIC = microbial community composition. Decomp. = decomposition, EE = 

extracellular enzymes, CUE = carbon use efficiency, MBC = microbial biomass carbon, EPS = extracellular 

polymeric substances. The numbers in red circles (points ① to ⑨) are a visual aid to guide readers of 

Chapters 1.4 and 1.5 through the figure. 

 

1.5 Knowledge gaps at the macroscale 

Due to different foci and for the sake of simplification, none of the reviewed numerical models features 

all of the SOC reservoirs, mechanisms and controls which were highlighted in Chapter 1.4. 

Nevertheless, the relevance of these reservoirs, mechanisms and controls at the macroscale is widely 

accepted, and the described outline sketches the current consensus on how to conceptualize the SOC 

cycle at the macroscale (Figure 1-2). However, the relevance of several mechanisms which are 

recognized to be important at the mesoscale is yet unresolved or understudied at the macroscale.  

 

Did we overlook scaling a relevant SOC reservoir? Stable microaggregates are soil structures which 

consist of diverse mineral and organic materials (including MAOM and POM), and which resist 

dispersion under natural conditions and are therefore bound together over long timescales (Tisdall and 

Oades, 1982; Totsche et al., 2018) (Figure 1-2, ⑨). There is considerable uncertainty regarding the 

potential role of stable microaggregates as an SOC reservoir at the macroscale. A conceptual framework 

that rapidly gained popularity in recent years promotes strong dispersal of physical structures before 

separation of SOC into MAOM and POM (Lavallee et al., 2020). The main rationales to disperse stable 

microaggregates between 63 and 250 μm size are to save labor, and to bypass the challenge of diverse 

fractionation schemes and difficult inter-study comparability. However, at the mesoscale it is well 

established that water-stable microaggregates constitute quantitatively important SOC fractions (Six et 

al., 2004; Totsche et al., 2018), and that SOC associated with aggregates follows distinct dynamics 

(Dungait et al., 2012; Schrumpf et al., 2013; Segoli et al., 2013; Laub et al., 2024). Moreover, distinct 

dynamics of stable microaggregates have also been shown at the macroscale (Poeplau and Don, 2013; 

Heckman et al., 2022; Edlinger et al., 2023). Nevertheless, few models and modelling approaches 

explicitly feature the mechanism of aggregate turnover or stable microaggregates as an SOC reservoir 

(Zimmermann et al., 2007; Abramoff et al., 2022). A systematic and methodically consistent 

investigation of the quantitative importance, qualitative characteristics and environmental controls at 

the macroscale is yet missing. 
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Is there a scalable link between quantity and qualitative characteristics of SOM and soil bacterial 

community composition? Soil bacterial alpha diversity (i.e. local diversity) and community composition 

are known to be strongly linked to soil pH and to the amount of SOC and N (jointly referred to as SOM) 

at the macroscale (Fierer, 2017). One proposed mechanism for this link is competitive exclusion, where 

taxa that are adapted to high substrate conditions (copiotrophic taxa) outcompete taxa that are 

adapted to low substrate conditions (oligotrophic taxa). This pattern commonly emerges at the 

mesoscale in response to substrate addition in experiments (e.g. Fierer et al., 2007; Geyer and Barrett, 

2019; Stone et al., 2023). In simplified micro- and mesoscale study systems, bacterial taxa have also 

been shown to vary in their use of substrate with different qualitative characteristics (e.g. oxidation 

state, C:N ratio) (Goldfarb et al., 2011; Baran et al., 2015; Dolan et al., 2017). Soil bacteria may be 

evolutionary adapted to the preferential use of different substrates, which provides the basis for the 

mechanism of bacterial substrate specialization (Johnson et al., 2012; Trivedi et al., 2013; Y. Wang et 

al., 2022). However, it remains largely unexplored whether this mechanism translates to the 

macroscale. A tundra ecosystem model (SCAMPS, Sistla et al., 2014) successfully implemented a 

microbial community with shifting community composition in response to resource stoichiometry, but 

whether SOM quality affects soil bacterial diversity and community composition consistently across 

the macroscale is unresolved (Figure 1-2, ⑥). 

 

Does biomass-specific microbial metabolism translate to the macroscale? The central role of soil 

microbes in the macroscale SOC cycle is well established. Microbial processes and properties (together 

referred to as microbial traits and functions) such as growth, respiration and extracellular enzymes 

mediate – or at least affect – almost all important SOC transformations (Figure 1-2, ⑦). Microbial traits 

and functions thereby actively drive the SOC cycle. However, there is considerable uncertainty how 

strongly the environmental setting, SOM quantity and quality and microbial community composition 

control these microbial traits and functions at the macroscale. Based on theoretical considerations of 

metabolic mechanisms, the rates of growth, respiration and extracellular enzyme activities normalized 

for MBC (i.e. biomass-specific) should at least partially depend on soil microbial community 

composition (van Bodegom, 2007; Roller and Schmidt, 2015; Hagerty et al., 2018; Malik et al., 2020). 

This is supported by experimental studies at the micro- and mesoscale (Domeignoz-Horta et al., 2020; 

Simon et al., 2020; T. P. Smith et al., 2021; Caro et al., 2023). However, to date it is unresolved to what 

degree microbial community composition affects microbial functions at the macroscale through 

metabolic mechanisms. 

 



25 
 

1.6 Gradient studies are a suitable tool to inform scaling 

In the previous chapters we have identified the challenge of scaling mechanisms from small scales to 

the macroscale. We have further obtained an overview of the SOC cycle at the macroscale, and we 

have identified several knowledge gaps in our current understanding of the macroscale SOC cycle. Next, 

we need to briefly discuss the approaches that are available to address these knowledge gaps and to 

inform scaling. In general, mechanisms that merit scaling can be identified with numerical modelling, 

experimental research and various types of gradient studies. I will briefly elaborate the advantages and 

disadvantages of these approaches and provide a rationale why I think that geoclimatic gradients are 

particularly well suited to inform scaling. 

 

Numerical models can be used as a tool to identify or test mechanisms that underlie complex systems 

(Campbell and Paustian, 2015; Marschmann et al., 2019; Le Noë et al., 2023). For this, hypothesized 

mechanisms are mathematically formalized, and comparison of model simulations with empirical 

observations can then be used to test them (Le Noë et al., 2023). However, the performance of 

numerical models is often hampered by the problem of equifinality (Marschmann et al., 2019; Schimel, 

2023). Equifinality describes the phenomenon when multiple model structures produce patterns that 

fit the data equally well, because parameter calibration has multiple possible solutions (Sierra et al., 

2015).  

 

Scientific experiments are the gold-standard to reject or confirm hypotheses. Carefully designed 

experiments can be used to infer causality of processes, and therefore mechanisms. An experiment 

ideally manipulates the variable(s) of interest, and controls for all other variables. Because the 

complexity of soil systems increases with scale, it becomes increasingly harder to control experiments 

adequately as they are scaled up (Beier et al., 2012; De Boeck et al., 2015). Another challenge to use 

experiments for scaling is that sample sizes are often limited due to practical reasons. In order to 

increase statistical power, effect size can be increased through strong manipulation. However, action 

of a mechanism upon overly strong manipulation must not automatically imply that this mechanism is 

relevant at the macroscale under natural conditions. Similarly, observations from isolated experiments 

in the absence of environmental heterogeneity do not necessarily imply that the tested mechanisms 

are relevant in the context of environmental heterogeneity. Several of these challenges can be 

overcome with networks of experimental sites (Torn et al., 2015; Weintraub et al., 2019). Another tool 

to evaluate the macroscale relevance of experimental insights are meta-analyses. Sophisticated 

statistical tools allow for the comparison of results across experimental studies, but it remains 

challenging to cope with inconsistent methods and experimental approaches (Eysenck, 1994; Greco et 



26 
 

al., 2013; Mengist et al., 2020). In addition, meta-analyses are limited to the range of existing data, 

which does not always cover the full and unbiased range of relevant conditions.  

 

Nested study approaches can help to link mesoscale proxies and mesoscale processes explicitly via the 

responsible mechanism at the microscale (e.g. Smercina et al., 2021; Mbé et al., 2022; Baveye, 2023; 

Ortega-Ramírez et al., 2023). One way to achieve this has been outlined in Baveye (2023): the soil 

microscale (e.g. the spatial organization) needs to be characterized on the exact same samples on 

which mesoscale processes of interest are measured. Next, microscale features which predict the 

mesoscale processes need to be identified. As a last step, other mesoscale features which can serve as 

proxies for the relevant microscale feature need to be found. This approach requires a high level of 

interdisciplinarity to combine sophisticated work at the micro- and mesoscale. In addition, it faces the 

same challenge as experiments: the effort required for such complex case studies practically obstructs 

the application across a large numbers of different soil systems.  

 

Lastly, gradient studies can be used to investigate whether the effects of hypothesized mechanisms are 

reflected at the macroscale. For this, environmental gradients that represent relevant macroscale 

heterogeneity are selected. Along these macroscale gradients, the processes or properties of interest 

are measured on the micro- or mesoscale. In combination with underlying mechanistic knowledge, this 

approach allows to evaluate whether micro- and mesoscale mechanisms cause relevant patterns at the 

macroscale, i.e. whether they therefore “translate” to the macroscale. In addition, correlation analyses, 

regression approaches and data assimilation methods can be used to explore links between the spatial 

variability of target variables and relevant aspects of the environment.  

 

In soil science, various types of gradients are common. The choice of gradient depends on the research 

question. Several regional types of gradients can control for environmental aspects that are not of 

interest, while maximizing those aspects that are in the focus of a research question. Chronosequences 

are used to study the effect of system age and are often interpreted with a space-for-time rationale 

(e.g. Bernasconi et al., 2011; Doetterl et al., 2018; Delgado-Baquerizo et al., 2020). Topographic 

sequences (catenas) are used to study lateral soil transfer and to efficiently capture local to regional 

soil diversity (Sommer and Schlichting, 1997; Schaetzl, 2013). Altitudinal gradients are used to 

maximize climatic differences while controlling for parent material (e.g. Whitaker et al., 2014; 

Rasmussen et al., 2018; De Jonge et al., 2024). Spatially nested sampling allows for direct comparison 

of variation and co-variation across the meso- and macroscale, or across several levels of macroscales 

(Corstanje et al., 2008; Fromin et al., 2013; Bradford et al., 2017; Doetterl et al., 2021; Nave et al., 2021; 

von Fromm et al., 2021). However, nested sampling requires large sample sizes. In a wider sense, 
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databases such as ISRaD for 14C data (Lawrence et al., 2020), SRDB for soil respiration data (Jian et al., 

2021) or SoDaH to harmonize soil data across research networks (Wieder et al., 2021) also constitute 

gradients. Databases collect measured data from different studies, but unlike in meta-analyses, data 

must not necessarily stem from experiments. The use of databases can come with the same challenges 

as meta-analyses, namely inconsistent methodology and limited (potentially biased) data range. (Geo-

)climatic gradients combine several aspects of the approaches described above (Craine et al., 2010; 

Doetterl et al., 2015; Bradford et al., 2019; Hall et al., 2020; L. Chen et al., 2021; Yu et al., 2021). They 

are less spatially confined than regional gradients such as chronosequences, catenas or altitudinal 

gradients, but at the cost of higher environmental covariation. Networks of research sites (e.g. NEON 

United States, Weintraub et al., 2019; ICP Forests Europe, Schwaerzel et al., 2022) or soil monitoring 

networks (e.g. NABO Switzerland, Gubler et al., 2022; BZE Germany, Poeplau et al., 2020; LUCAS 

European Union, De Rosa et al., 2024) can also provide (geo-)climatic gradients, with the further 

benefits of available metainformation and research infrastructure. The main strength of (geo-)climatic 

gradients as a tool to inform scaling is that the variability of the variables of interest can be maximized. 

Depending on the research question, unbiased datasets that continuously range across natural 

variability can be sampled. Moreover, all types of gradient studies have the advantage that data 

collection can be planned a priori (in contrast to databases or meta-analyses). This allows to optimize 

the methods that are applied to address specific research questions, and it allows to apply consistent 

methodology. As an additional benefit, gradient studies thereby generate datasets that can be valuable 

for the parametrization and calibration of numerical models. 

 

1.7 A Chilean geoclimatic gradient 

In order to study SOC dynamics at the macroscale, we therefore developed a large geoclimatic soil 

gradient. Together with collaborators around Prof. Erick Zagal Venegas (Universidad de Concepción, 

Chile) we identified and selected a geoclimatic gradient of 35 sites along a 2300 km soil gradient. Site 

selection was aided by information from previous regional soil surveys by the Chilenean CIREN (Centro 

de Información de Recursos Naturales) (Figure 1-3). To constrain the gradient to a coherent type of 

ecosystem, sites had to be vegetated by extensive rangeland or natural grassland. With this choice, we 

controlled for consistent vegetation dynamics and a consistent type of OM input. In addition, sites were 

selected to be carbonate free (i.e. null HCl reaction) in order to ensure comparability across climatic 

conditions. Within this controlled type of system (grassland soils with neutral to acidic soil pH), sites 

were chosen to maximize climatic and soil physicochemical contrasts (see Tables S2-1 & S2-2). The wide 

span of geoclimatic settings that were considered resulted in a continuous range of SOC contents 

between 0.6 to 18.7 % SOC. This allows to evaluate the macroscale relevance of mechanisms involved 
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in SOC dynamics across almost the entire range of geoclimatic settings in which temperate grasslands 

occur (except for alkaline soil pH). The gradient features 30 sites located in the temperate Köppen-

Geiger climate zone, with cold and warm summers, and with or without dry season (Cfb, Cfc, Csb, Csc). 

In the north, the gradient is concluded by arid steppe (Bsk), and in the south it is concluded by polar 

tundra (ET). The large range of conditions that this gradient encompasses is also reflected in the 

diversity of soil types: The gradient includes 10 (out of 32) Major Soil Groups based on the classification 

of the World Reference Base for Soil Resources (WRB). Soil groups span soils with less pronounced 

pedogenic features (Leptosol, Arenosol, Cambisol), soils characterized by the influence of water 

(Gleysol, Planosol), humus-rich soils (Kastanozem, Chernozem) as well as soils characterized by low 

(Acrisol) and high (Andosol, Luvisol) mineral reactivity. Notably, this gradient features 18 sites from a 

previous study which demonstrated that the interaction of climate and soil geochemistry can drive bulk 

SOC dynamics (Doetterl et al., 2015). To extend the covered physicochemical and climatic conditions, 

17 new sites were added.  

 

 

Figure 1-3. Map of the 35 sampling sites, with photographs (by Manuel Casanova) of eight sites. Soil 

organic carbon content (SOC) is indicated by color. 

 

Overall, this geoclimatic gradient is very well suited to address the knowledge gaps that were identified 

in Chapter 1.5. The manageable number of samples allows for comprehensive in depth laboratory 
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analyses. At the same time, constraining the vegetation dynamics and the type of OM input permits a 

focus on soil-internal SOC transformation processes. While gradients per se do not offer spatially 

explicit insights, the breadth of conditions that this gradient covers allows for insights that are relevant 

at the macroscale. Some numbers help to illustrate the spatial relevance of this gradient. The global 

land cover of grasslands depends on the exact definition, but estimates range between 20 to 25 % of 

total land area (Suttie et al., 2005; Klein Goldewijk et al., 2017; FAO, 2021). The ten WRB soil groups 

that are covered by the gradient account for 59 % of the global land area (Encyclopaedia Britannica, 

2024) and hold 52 % of the SOC stock (0 – 30 cm depth; FAO-UNESCO, 2018). Overall, the broad 

pedoclimatic settings of grasslands that this Chilean gradient covers can be found globally (Figure 1-4).  

 

 

 

Figure 1-4. The global distribution of grasslands in the range of the pedoclimatic conditions that are 

covered by the Chilean gradient. The “X”s in the boxes of the legend indicate that grasslands cover ≥ 

10 % of the area of grid cells which were: (i) neither dominated by climate nor soil groups that were 

included in the gradient; dominated by (ii) the included climate range or (iii) the included soil groups; 

or which were dominated by (iv) included climate range and included soil groups. Please note that this 

map has a coarse resolution (5 arc minutes, i.e. 9.3 x 9.3 km at the Equator) and only serves for 

illustrative purposes. For more details see Appendix Chapter 1. 

 

1.8 Thesis outline  

This thesis focuses on three selected mechanisms that link different fundamental factors of the SOC 

cycle (Figure 1-5). The mechanisms of interest are (1) the role of stable microaggregates as an SOC 

reservoir, (2) the role of competitive exclusion and substrate specialization as a determinant of bacterial 

community composition and (3) the role of microbial community composition as a driver of biomass-
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specific C metabolism. The aim of this thesis is to investigate whether these mechanisms translate from 

the mesoscale to the macroscale. The insights into the relevance of the selected mechanisms at the 

macroscale will help to better inform the macroscale representation of the SOC cycle. Three sets of 

research questions will be addressed in three chapters. In the following, I will present the detailed 

research questions and hypotheses of Chapters 2 to 4.  

 

 

Figure 1-5. Conceptual summary of Chapters 2 to 4. The bottom of the figure shows the factors of the 

SOC cycle that will be linked in the respective chapters. ENV = environmental setting; SOM = soil organic 

matter quantity and quality; MIC = microbial community composition; FUN = microbial functions. 

 

In Chapter 2, we investigate whether stable microaggregates – which are a mechanism of spatial 

organization of soil – constitute a quantitatively relevant SOC fraction at the macroscale. For this, we 

apply the Zimmermann fractionation scheme which separates SOC into particulate organic matter 

(POM), silt- and clay-sized particles (S+C) and stable microaggregates. We further investigate whether 

stable microaggregates are predictable from environmental conditions, and therefore merit 

representation at the macroscale. We ask: Under which geoclimatic conditions do stable 

microaggregates constitute a relevant SOC fraction? What are the dominant geoclimatic drivers of 

the amount of SOC associated with stable microaggregates? How consistent are chemical 

characteristics of SOC in stable microaggregate across contrasting geoclimatic settings?  
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H1.1: Stable microaggregates constitute a major SOC fraction with geoclimatic patterns that are distinct 

from the POM and S+C fractions.  

H1.2: The quantitative role of stable microaggregates is more pronounced in chemically reactive soils 

and in soils in which OM accumulates.  

H1.3: The association of SOC with stable microaggregates is limited by the amount of OM (and the 

biological drivers thereof) in low-SOC soils, whereas it is limited by the amount of reactive minerals in 

high-SOC soils.  

H1.4: The OM associated with the stable microaggregate fraction is more decomposed in Andosols 

than in other soil types. 

 

In Chapter 3, we investigate whether there are scalable links between SOM quantity and quality and 

soil bacterial community composition at the macroscale. For this, we measure qualitative 

characteristics of SOM and characterize bacterial community composition with sequencing of the 16S 

rRNA gene. We ask: What role do SOM quantity and SOM quality play in shaping soil bacterial 

community composition at the large scale? Do competitive exclusion and bacterial substrate 

specialization translate to the macroscale as mechanisms of bacterial community assembly?  

H2.1: Bacterial alpha diversity is negatively linked to SOM quantity, because competitive exclusion is a 

dominant mechanism that shapes community composition along a continuum of SOM quantity.  

H2.2: Bacterial alpha diversity is higher in systems with a lower degree of bulk SOM decomposition, 

because decomposition lowers the qualitative diversity of SOM and soil bacteria exhibit substrate 

specialization. 

 

In Chapter 4, we investigate how soil microbial traits and functions that are relevant for the SOC cycle 

relate to the environmental setting, SOM and the soil microbial community composition at the 

macroscale. For this, we measure microbial growth and respiration rates, carbon use efficiency (CUE) 

and potential extracellular enzyme activities. We ask: Which aspects of soil microbial C metabolism 

are related to the environmental setting vs. microbial community composition? Do metabolic 

mechanisms allow for improved predictions of macroscale microbial traits and functions through 

knowledge about the microbial community composition? 

H3.1: Microbial biomass and absolute process rates are linked most directly to the environmental 

setting because the environment dictates the frame for microbial activity.  

H3.2: Biomass-specific process rates, CUE and microbial C:N ratio are linked to the microbial community 

composition, because they reflect microbial properties.  

H3.3: Biomass-specific growth and respiration rates are linked to different features of the microbial 

community composition because they are physiologically decoupled. 
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The work for Chapter 2 has been conducted in the laboratory of the soil resources group at ETH Zurich. 

Nuno Bischofsberger and Annina Maier assisted in the laboratory work. Microbial community 

characterization in Chapters 3 and 4 was done at the Swiss Federal Institute for Forest, Snow and 

Landscape Research (WSL) in Zurich in collaboration Aline Frossard and Xingguo Han. The isotopic 

method for quantification of microbial growth and carbon use efficiency was conducted at the Centre 

for Microbiology and Environmental Systems Science at the University of Vienna in collaboration with 

Joerg Schnecker. Cornelia Rottensteiner assisted in the laboratory work in Vienna. Chapters 2 to 4 are 

intended to be published in peer-reviewed journals. Chapter 2 is currently under revision, Chapter 3 is 

in preparation and Chapter 4 is ready for submission. All three chapters consist of a topic-specific 

introduction, material and methods section, result section, discussion and conclusion. 

 

In Chapter 5, I will provide a synthesis of the findings of all three chapters. For this, I will guide the 

reader through a comprehensive comparison of the SOC dynamics of two contrasting systems along 

the gradient. In addition, I will summarize and discuss the main findings of Chapters 2 to 4. I will place 

the main conclusions of each chapter in the context of the macroscale SOC cycle, and I will propose 

future research directions that build on my insights. Lastly, I will briefly discuss how the investigated 

gradient fits into the terrestrial SOC cycle. I will conclude with an outlook about future work along this 

gradient. 
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2. The role of climate, mineralogy and stable micro-

aggregates for soil carbon dynamics along a 

geoclimatic gradient 

 

 

 

 

 

 

 

 

 

 

This chapter has been submitted as: 

Wasner D, Abramoff R, Griepentrog M, Zagal Venegas E, Boeckx P, Doetterl S. The role of climate, 

mineralogy and stable micro-aggregates for soil carbon dynamics along a geoclimatic gradient. Under 

revision for Global Biogeochemical Cycles. 
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Abstract  

Organic matter accumulation in soil is understood as the result of the dynamics between mineral-

associated (often more decomposed, microbial derived) organic matter and free particulate (often less 

decomposed, plant derived) organic matter. However, on regional to global scales, the patterns and 

drivers behind main SOC fractions are not well understood and remain poorly linked to the pedogenetic 

variation across soil types. Here, we separated soil organic carbon (SOC) associated with silt- and clay-

sized particles (S+C), stable microaggregates (>63 µm, SA) and free particulate organic matter (POM) 

from a diverse range of grassland topsoils sampled along a geoclimatic gradient. The relative 

contribution of the two predominantly mineral-associated fractions (S+C & SA) differed significantly 

across the gradient while free POM was never the dominant SOC fraction. Stable microaggregates 

emerged as the major SOC fraction in carbon-rich soils. The degree of decomposition of carbon in stable 

microaggregates was consistently between that of the S+C and POM fractions and did not change along 

the investigated gradient. In contrast, the carbon associated with the S+C fraction was less microbially 

decomposed in carbon-rich soils than in carbon-poor soils. The amount of SOC in the S+C fraction was 

positively correlated to pedogenic oxide contents and finer texture, whereas the amount of SOC 

associated with stable microaggregates was positively correlated to pedogenic oxide contents and 

negatively to temperature. We present a conceptual summary of our findings, which integrates the role 

of stable microaggregates with other major SOC fractions and illustrates their changing importance 

across (soil) environmental gradients.  

 

2.1 Introduction  

Soil organic carbon (SOC) comprises the largest terrestrial carbon stock (Canadell, 2021). At regional to 

global scales, climate, land use and soil geochemistry have been identified as major controls on SOC 

dynamics since they can drive carbon input, stabilization as well as persistence in soil (Sebastian 

Doetterl et al., 2015; Rasmussen et al., 2018; Heckman et al., 2022; Slessarev et al., 2022). At such large 

scales, climate emerges as a dominant control of bulk SOC because it acts in two ways: on short 

timescales it affects biological processes such as organic matter input and decomposition, and SOC has 

been found to be most persistent in wet and cool systems (Heckman et al., 2022). On the long term, it 

shapes the reactivity of the soil mineral phase via weathering processes. The reactivity of the soil 

mineral phase is in turn not just a function of climate alone, but of soil development and the resistance 

of soil parent material to weathering. In dry and alkaline systems, calcium can play an important role 

in SOC stabilization (Rasmussen et al., 2018). In settings where parent material, age and humid climate 

allow for an abundance of poorly crystalline minerals, Al and Fe hydroxides play a pronounced role in 
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SOC stabilization (Doetterl et al., 2018; Rasmussen et al., 2018; Slessarev et al., 2022). As a consequence 

of this complexity, not all processes that govern bulk SOC act strictly linear across the entire spectrum 

of soils (Yu et al., 2021). For instance, the abrupt switch from alkaline to acidic soil pH along the global 

continuum of water balance (Slessarev et al., 2016) represents a threshold in the relationship between 

climate and soil development, that in turn causes abrupt thresholds in soil chemistry and SOC 

stabilization (Chadwick and Chorover, 2001; Rasmussen et al., 2018). Changes in the type of vegetation 

and land use can also cause thresholds in SOC dynamics between systems. Mechanisms of SOC 

stabilization can for example be affected by contrasting quality of litter input in a transition from 

grasslands to woody systems, or by disturbance regimes such as tillage (J Six et al., 2000; Heckman et 

al., 2022).  

Our understanding of SOC dynamics is further complicated by the fact that bulk SOC is not a 

homogeneous entity. Rather, bulk SOC consists of individual carbon compounds with a large variety of 

inherent chemical properties and different degrees and types of association with the soil mineral phase 

(von Lützow et al., 2008; Simpson and Simpson, 2012; Lehmann and Kleber, 2015). Consequently, not 

all organic carbon in a soil follows the same dynamics. This complexity is addressed by studying SOC in 

functionally distinct soil fractions, which can be isolated by physical and chemical fractionation 

schemes. There, the contrast between mineral-associated SOC vs. free particulate organic matter 

(POM) in soils has been recognized as an important distinction with respect to formation dynamics 

(Cotrufo et al., 2015; Sokol and Bradford, 2019; Lavallee et al., 2020), SOC turnover rates (Heckman et 

al., 2022) and SOC vulnerability to changing environmental conditions (Spycher et al., 1983; Viscarra 

Rossel et al., 2019; Luo et al., 2020; Lugato et al., 2021; Rocci et al., 2021). Broadly, POM has been 

characterized to consist of coarse plant derived organic material with a high activation energy and a 

high C:N ratio, whereas mineral-associated SOC primarily consists of low molecular weight compounds 

of plant and microbial origin, with lower activation energies and low C:N ratio (Lavallee et al., 2020). 

Experimentally, the processes of formation and accumulation of SOC in these two fractions have been 

mostly investigated for specific environmental settings (Cotrufo et al., 2015; Sokol and Bradford, 2019). 

However, patterns and controls of SOC fractions at large scales as well as the functional implications 

for SOC turnover have remained critically understudied for many soil types (Kögel-Knabner and 

Amelung, 2021). Recent studies and meta-analyses have started to close this knowledge gap by 

studying the links between the amount of SOC in these fractions and the corresponding drivers with 

large scale datasets (Cotrufo et al., 2019; Rocci et al., 2021; Heckman et al., 2022). The contrasting 

turnover of mineral-associated SOC vs. POM is now the basis for the implementation of SOC dynamics 

in models that represent soil-atmosphere C exchange (Zhang et al., 2021; Abramoff et al., 2022). This 

is a big improvement from representing SOC as one homogenous pool or as several conceptual - but 

unmeasurable - pools.  
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However, most state of the art conceptual models of SOC dynamics focus on the juxtaposition of 

mineral-associated fractions and particulate organic matter after a prior dispersion of physical 

structures such as stable microaggregates (Lavallee et al., 2020; Cotrufo et al., 2021; Zhang et al., 2021; 

Georgiou et al., 2022; Sokol et al., 2022b). This choice is often made because the importance of 

aggregates as a distinct stabilization mechanism, specifically through occlusion of SOC, remains unclear 

and is hard to determine. Therefore, stable microaggregates are often dismissed as distinct SOC 

fractions, and their relevance across larger scales remains understudied. However, several studies have 

demonstrated that stable microaggregates and the occluded light fraction play an important role for 

SOC dynamics across larger scales. Poeplau and Don (2013) showed that stable microaggregates 

reacted sensitively to land use change across Europe, Wiesmeier et al. (2016) successfully incorporated 

stable microaggregates into the RothC soil carbon model to project regional SOC dynamics, and 

Heckman et al. (2022) demonstrated in a global analysis that the occluded light fraction follows distinct 

environmental dynamics. 

Conceptually, stable microaggregates are soil structures which consist of diverse mineral and organic 

materials that are bound together over long timescales, and that resist dispersion under natural 

conditions (Tisdall and Oades, 1982; Totsche et al., 2018). When aggregates are dispersed, they release 

both mineral-associated SOC as well as POM, which has prompted the idea that they may not be 

important to consider as a distinct SOC fraction at larger scales (Lavallee et al., 2020). However, at a 

mechanistic level, the distinct microenvironments created by physical occlusion of mineral- and non-

mineral-associated organic matter in microaggregates may contribute to SOC protection (Dungait et al., 

2012; Abramoff et al., 2018; Totsche et al., 2018; Heckman et al., 2022) since they restrict or alter the 

access of microbial decomposers to potential food and energy sources. Ways by which microaggregates 

are thought to protect SOC are physical separation of OM from the decomposers by occlusion and 

hydrophobicity, reduction of the diffusion of extracellular enzymes to their substrate and creation of 

micro conditions unfavorable for decomposers, such as low oxygen levels (von Lützow et al., 2006; 

Totsche et al., 2018). In support of this idea, SOC in stable microaggregates has a slower turnover than 

free POM. This has been shown many times and with various approaches, mostly characterizing the 

occluded light fraction after aggregate disruption. The evidence encompasses observations that the 

disruption of aggregates resulted in higher mineralization rates (e.g. Mueller et al., 2012, 2014, 

references in von Lützow et al., 2006), as well as observations that the occluded light fraction had C:N 

ratios and 13C signatures similar to free POM but significantly older 14C ages (e.g. Heckman et al., 2022; 

Rasmussen et al., 2005; Schrumpf et al., 2013). Further, studies that used 13C signatures after shifts 

between C3 and C4 plant cultivation could demonstrate that SOC in stable microaggregates has a 

slower turnover (e.g. John et al., 2005).  
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A long-standing concept for the formation of stable microaggregates is the aggregate hierarchy model, 

of which there exist numerous small variations as reviewed in Six et al. (2004). Slightly modified from 

Oades (1984), Golchin et al. (1997) described the concept as follows: free POM gets colonized by 

microbial decomposers, and these decomposers transform POM into microbial decomposition 

products and mucilage. These microbial products function as a glue and lead to mineral coating, 

forming macroaggregates (typically defined as > 250 µm). When the core of these macroaggregates is 

decomposed, they collapse into smaller and more stable microaggregates (typically defined as 20 – 250 

µm). It has been shown that the stability of aggregates increases with smaller size (Dungait et al., 2012). 

However, the aggregate hierarchy model may not apply to the same extent to all types of soils. The 

dominance of an alternative process of stable microaggregate formation has in particular been 

proposed for soil types with high contents of Al and Fe oxy-hydroxides (such as Ultisols or Oxisols) or 

short-range order minerals (such as Andosols) (J. Six et al., 2000; Huygens et al., 2005; Matus et al., 

2014; Totsche et al., 2018). In such soils, coprecipitation and adsorption processes form 

microaggregates directly in a “bottom-up” order (Edwards and Bremner, 1967; Huygens et al., 2005; 

Lehmann et al., 2007; Hernandez-Soriano et al., 2018; Totsche et al., 2018), or smaller OM-metal 

composites act as a glue that attracts OM as well as denser mineral particles to form very stable 

microaggregates (Asano and Wagai, 2014; Wagai et al., 2020). In either case, it is undisputed that 

several components and processes can affect microaggregate formation: Mineral components, organic 

matter, biological activity and drying-wetting cycles (Six et al., 2004; Totsche et al., 2018). Al and Fe oxy-

hydroxides and clay minerals can act either as surface coating or as precipitation nuclei, POM can act 

as a formation nuclei and smaller microbially derived OM compounds such as decomposition products 

and mucilage can act as gluing agents.  

The formation process of stable microaggregates indicates that this fraction exhibits dynamics that are 

distinct from free POM and dispersed mineral-associated SOC. The exclusion of stable microaggregates 

as an SOC fraction from conceptual models might therefore represent a critical blind spot in our 

understanding of SOC dynamics. However, to our knowledge, there has been no systematic large-scale 

study with coherent methodology that evaluated intact stable microaggregates as an SOC fraction 

across soil types or geoclimatic gradients. This leaves a potentially crucial knowledge gap in our 

understanding of the distribution of stable microaggregates across large scales: Under which 

geoclimatic conditions do stable microaggregates constitute a relevant SOC fraction? What are the 

dominant geoclimatic drivers of the amount of SOC associated with stable microaggregates? And how 

consistent are chemical characteristics of stable microaggregate SOC across contrasting geoclimatic 

settings? To address these questions, we investigated the large-scale distribution of SOC among the soil 

fractions of 35 A-horizon topsoils, sampled across a 2300 km large geoclimatic gradient in Chile with a 

maximized range of climatic soil physicochemical properties (Figure 2-1, Table S2-1). We expected that 
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(1) stable microaggregates would constitute a major SOC fraction with geoclimatic patterns that are 

distinct from the POM and S+C fractions. Given the important role of OM and reactive minerals as 

ingredients of aggregate formation, we hypothesized that the quantitative role of stable 

microaggregates is more pronounced in chemically reactive soils and in soils in which OM accumulates. 

(2) We further expected a shift in the dominant controls of the amount of SOC in the stable 

microaggregate fraction. We hypothesized that the association of SOC with stable microaggregates 

should be limited by the amount of OM (and the biological drivers thereof) in low SOC soils, whereas 

it should be limited by the amount of reactive minerals in high SOC soils. (3) Lastly, we expected that 

the formation dynamics of the stable microaggregate fraction would vary across soil systems. We 

hypothesized that the OM associated with the SA fraction would be more decomposed in Andosols 

(“bottom-up” aggregate formation) than in other soil types (aggregate formation following the 

“aggregate hierarchy model”). 

  

 

Figure 2-1. Map of the 35 sampling sites. Bulk SOC% contents are indicated by color. Numbers refer to 

site IDs as used in Tables S1 and S2. In addition, photographs of 8 sites are shown with respective site 

IDs and site names. 
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2.2 Material & Methods 

2.2.1 Site selection and sampling 

A total of 35 A-horizon topsoils (0 - 10 cm) under extensively managed and natural grassland were 

sampled in the summer seasons of 2017 and 2018 across a geoclimatic gradient in Chile (Figure 2-1). 

The gradient was chosen due to the (i) large variability in climatic conditions that drive C input via 

biomass production and conditions for microbial decomposition of C, (ii) similar vegetation coverage 

(extensive grasslands) and (iii) the large variation in geochemical soil conditions that govern fertility 

and the mineral-associated SOC stabilization potential. To increase the identifiability of large scale geo-

climatic controls on SOC fractions, we constrained our analysis to a coherent type of organic matter 

(OM) input and land use - extensive rangeland and natural grassland - ranging from cold tundra to 

warm (semi-)arid steppe, while excluding climatic extremes (cold and hot desert environments). 

Further criteria for site selection were carbonate free soil conditions (null HCl reaction) at pHCaCl2 < 7.0. 

We sampled soils from 18 sites (Table S2-2) that overlapped with a previous study which demonstrated 

that the interaction of climate and soil geochemistry can drive bulk SOC dynamics ( Doetterl et al., 

2015). We added 17 new sites to expand the covered physicochemical and climatic conditions. This 

study was focused on topsoil, because geoclimatic contrasts are most strongly pronounced in topsoil. 

Topsoil is the part of soil where the majority of active C cycling happens in grasslands (i.e. where the 

majority of C input enters the soil system), where climate affects soil microbial decomposition most 

strongly and directly, and where biogeochemical alteration of the soil matrix is advanced furthest. 

Climate classification following Köppen-Geiger for all sites was done with the R-package ‘kgc‘ (Bryant 

et al., 2017). Mean annual temperature, precipitation and temperature seasonality (MAT, MAP & 

TempSeas) were taken from WorldClim Version 2 (Fick and Hijmans, 2017). Mean annual potential 

evapotranspiration (PET) was taken from Trabucco & Zomer (2018). Both datasets average monthly 

climate data from 1970 – 2000, at a resolution of 30 seconds. The gradient covers a MAT range from 

3.0 to 17.1 °C, a MAP range from 217 to 2440 mm, a PET range between 715 and 1852 mm and Köppen-

Geiger climate zones ranging from arid steppe (Bsk) in the north to polar tundra (ET) in the south. Most 

sites (30) are located in the temperate climate zone, representing climates with cold and warm 

summers, with or without dry season (Cfb, Cfc, Csb, Csc). Basic climatic site characteristics are 

summarized in Table S2-2. Dominant vegetation, landscape position and soil moisture regime were 

either characterized on site or supplemented from previous surveys (detailed information and 

references in Tables S1 and S2). Vegetation comprised in all cases species that dominate in natural 

grasslands and prairies, and landforms were mostly alluvial and marine terraces with flat topography 

(Table S2-1). Net primary productivity (NPP) estimates were obtained from a MODIS-based dataset at 
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500 m grid size, averaged from 2000 to 2018 (Running and Zhao, 2019). NPP ranged from 72 to 1764 g 

C m-2 yr-1. The analyzed gradient covers 10 WRB Reference soil groups (Table S2-1).  

The selection of sites was aided by information from previous soil surveys by CIREN (Centro de 

Información de Recursos Naturales). At each of the well-described sites, a polyvinyl chloride (PVC) tube 

(height: 35 cm; diameter: 90 mm diameter) was vertically inserted into soil in close vicinity to the 

original CIREN soil profiles. The tube was then extracted by excavation of the surrounding soil, and both 

ends of the tubes were sealed for transport to the University of Concepción. The original sampling 

design of the CIREN monitored sites is described in detail in Doetterl et al. (2015). All collected soil 

samples were then frozen at field moisture at -20°C and were stored and shipped in this condition. 

Upon arrival in the laboratory in Switzerland, samples were thawed, sieved to < 2 mm, and frozen again 

at -20°C until further analysis. The fine soil (< 2mm) was used for further in-depth analysis of 

relationships between geochemical and climatic variables to SOC storage and assessment of SOC 

stabilization mechanisms. 

 

2.2.2 Workflow summary 

We separated three distinct and conceptually relevant SOC fractions: Unprotected SOC associated with 

(plant-derived) free particulate organic matter (POM); SOC associated with silt- and clay-sized particles 

(S+C, <63 µm) and SOC associated with stable microaggregates > 63 µm (SA) (Figure 2-2a). In a second 

step, the qualitative composition of the OM of fractions was analyzed to assess the degree of 

decomposition within each fraction and thereby gain further insight into the qualitative and 

quantitative composition of SOC and fractions across soil types. For this, we quantified the degree of 

decomposition (decomposition index, DI) of the three separated fractions following a principal 

component analysis (PCA) of fraction-specific C:N ratios, δ13C and δ15N values and relative chemical 

composition by DRIFT spectroscopy (Figure 2-2b, Figure S2-1). In a third step, to investigate which soil 

geochemical and climatic factors control total SOC amounts in bulk soil and fractions, we measured 22 

climatic, pedogenic and physicochemical parameters that are known to affect long term soil SOC 

dynamics (Figure 2-2c, see selected variables in Table S2-3). Soils along the gradient were analyzed for 

those physicochemical properties (pH, texture, contents of pedogenic oxides and available base cations 

etc.) that relate to the geochemical variation in parent material and the degree of soil weathering that 

varies across soil types and soil development. Lastly, using rotated PCA, all explanatory variables were 

condensed into distinct environmental dimensions, each representing key aspects of geo-climatic 

controls on SOC. Then, we used regression analyses to assess the relationship of the rotated 

components (RCs) to the isolated SOC fractions’ quantity and associated OM quality along the soil 

gradient. We used the identified environmental RCs as predictors, and CTOT in the three isolated 
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fractions as well as bulk SOC% as dependent variables. Figure 2-2 shows a visual summary of the 

workflow.  

 

 

Figure 2-2. Schematic overview of quantitative and qualitative SOC characterization and data analysis. 

a) Isolation of three soil fractions; free particulate organic matter (POM), stable microaggregates > 63 

μm (SA) and silt- and clay-sized particles (S+C). Quantification of the total amount of SOC per unit soil 

(CTOT), fraction-specific C content (CABS) and relative contribution to bulk SOC (CREL). b) To quantify the 

degree of microbial transformation of OM, a decomposition index (DI) was derived from principal 

component analysis (PCA) with fraction-specific measurements of decomposition indicators. c) 

Regression analysis to investigate controls of SOC fractions. We first applied rotated PCA (rPCA) to 

reduce 22 environmental variables (listed in Table S2-3) to six rotated components (RCs) for regression 

analysis.  
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2.2.3 Soil fractionation 

We used a widely accepted protocol (Zimmermann et al., 2007) for combined size and density SOC 

fractionation, with a modified sodium polytungstate (SPT) density fractionation step (Griepentrog and 

Schmidt, 2013). We defined POM as particles > 63 µm and lighter than 1.6 g cm-3, S+C as particles of all 

densities < 63 µm, and SA as particles > 63 µm and denser than 1.6 g cm-3. Note that POM, as defined 

here, may also encompass organic matter fragments that are coated with mineral material, but are 

large enough to nevertheless maintain a density lower than 1.6 g cm-3 (Wagai et al., 2009). First, air 

dried soils were dispersed by ultrasonication (15 g dry weight in 100 ml nanopure water) with an energy 

input of 24 J ml-1 (50 Hz, 33.5 W), corresponding to an applied sonication energy of 160 J g-1 dry soil. 

The sonicated soil was then wet sieved with nanopure water over a 63 µm mesh size aperture sieve 

until the throughflow became clear. The isolated fraction < 63 µm (S+C) was subsequently dried at 50 

°C and stored for further analysis. Note that the S+C fraction is a mix of diverse free organo-mineral 

associations and stable silt- and clay-sized aggregates (Totsche et al., 2018; Lavallee et al., 2020; 

Schweizer, 2022), and that it can theoretically also contain remnants of fine organic matter (< 63 µm) 

that is not associated with mineral particles. The fraction > 63 µm was air dried (modified from 

Zimmermann et al., 2007), and a subsample of 8 g was further separated by density fractionation. For 

this, the subsample was first mixed in 40 ml of 1.6 g cm-3 SPT using a vortex for 10 seconds, and then 

centrifuged (Sigma 3-16 KL, 15 min, 3000 xg). The floating light POM fraction was decanted onto 0.7 

µm mesh size Whatman glass filters (grade GF/F), to first remove the SPT and then clean the fraction 

with 100 ml nanopure water with the suction of a vacuum pump, before finally being dried at 50 °C. 

The heavy fraction which remained as a residual after the decantation - referred to as SA (in original 

Zimmerman protocol referred to as “sand and stable aggregates”) - was washed five times by addition 

of 40 ml nanopure water, mixing on a Vortex, centrifugation (settings as above) and decantation, before 

being dried at 50 °C. For one selected soil sample of low, intermediate, and high clay content, 

fractionation was done in triplicate to evaluate the reproducibility of the procedure. The reproducibility 

of the method was satisfactory, with standard deviations of MassREL relative to respective means at 12.0 

% for POM, 4.4 % for S+C and 3.6 % for SA, averaged across the replicated soils (see Table S2-4). 

Standard deviation was highest in the low clay soil. The fractionation procedure resulted in an average 

recovery of 99.2 % soil mass (± 3.8 % S.D.), and an average total recovery of 99.1 % SOC (± 12.0 % S.D.). 

Detailed values for all samples are shown in Table S2-4. Note that the strength of the sonication 

treatment may affect absolute numbers such as the 4 % SOC threshold at which SATOT exceeds S+CTOT, 

while it should not affect the patterns of contribution of the C content in each fraction to bulk SOC 

(Poeplau and Don, 2014; Poeplau et al., 2018). 
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2.2.4 Organic matter characterization 

SOC contents and relative contribution of fractions to bulk soil 

To quantify bulk SOC% and absolute fraction-specific C contents (POMABS/S+CABS/SAABS), C (and N) of 

bulk soil and the three isolated fractions were quantified on an EA-IRMS (FlashSmart Elemental 

Analyzer coupled with a Finnigan DELTAplusXP, Thermo Fisher Scientific, Waltham, Massachusetts, 

USA).  

 

Total amounts of SOC in each fraction per unit bulk soil were calculated following equation (1). 

 

    𝐹𝑟𝑎𝑐𝑇𝑂𝑇 =
𝐹𝑟𝑎𝑐𝐴𝐵𝑆 ∗ 𝑀𝑎𝑠𝑠𝑅𝐸𝐿

10
      (1)   

 

with FracTOT representing the total amount of SOC in each fraction (POMTOT/S+CTOT/SATOT) [g C kg-1], 

FracABS representing fraction-specific C content [%] and MassREL representing the relative mass 

contribution of each fraction to bulk soil [%]. Note that the sand-sized fraction contains both stable 

microaggregates as well as sand-sized primary particles. Calculating a CABS value for the stable 

microaggregate fraction without accounting for the mass of primary particle sand content could thus 

lead to pronounced underestimation of SAABS. Values for SAABS were therefore corrected for primary 

particle sand content following equation (2).  

 

𝑆𝑎𝑛𝑑 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑 𝑆𝐴𝐴𝐵𝑆 =  
𝑆𝐴𝐴𝐵𝑆 ∗ 𝑀𝑎𝑠𝑠𝑅𝐸𝐿 𝑜𝑓 𝑆𝐴

𝑀𝑎𝑠𝑠𝑅𝐸𝐿 𝑜𝑓 𝑆𝐴 − 𝑀𝑎𝑠𝑠𝑆𝐴𝑁𝐷
       (2) 

 

with MassREL of SA being the relative mass contribution of the SA fraction to bulk soil, and MassSAND 

being the relative mass contribution of primary sand particles to bulk soil (see method section Soil 

physicochemistry). We acknowledge that the underlying assumption that stable microaggregates 

contain no sand particles at all is likely an oversimplification and might lead to an overestimation of 

SAABS values. However, since stable microaggregates are mainly composed of silt- and clay-sized 

particles, this error can be assumed to be small (Oades, 1984; Golchin et al., 1997). 

 

The contribution of the C content in each fraction to bulk SOC (POMREL/S+CREL/SAREL) was calculated 

based on the relative contribution of each fraction to bulk SOC content and expressed as a percentage. 
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Qualitative SOC characterization 

Our study system of grasslands features similar plant OM input quality ( Doetterl et al., 2015) along the 

gradient. The C:N ratios as well as and 13C/12C and 15N/14N stable isotope ratios of the three isolated 

fractions were measured using EA-IRMS (FlashSmart Elemental Analyzser coupled with a Finnigan 

DELTAplusXP, Thermo Fisher Scientific, Waltham, Massachusetts, USA) and interpreted as indicators of 

progressing microbial transformation of organic matter (OM) (Dijkstra et al., 2006; Lerch et al., 2011). 

C:N ratios of OM were calculated based on molar C and N contents, and stable isotope ratios of C and 

N are expressed relative to the Vienna Pee Dee Belemnite (VPDB) and to the atmospheric N2 standards, 

respectively.  

 

Assessing the degree of decomposition of SOC 

To obtain further proxies for the degree of decomposition of plant-derived OM towards more 

microbially-processed OM, two additional methods were applied: (i) An assessment of the relative 

chemical composition of OM by diffuse reflectance infrared fourier transform spectroscopy (DRIFTS) 

(Demyan et al., 2012), and (ii) an assessment of thermal stability by Rock-Eval pyrolysis (Sebag et al., 

2016) (Figure 2-2b). 

DRIFTS was performed on bulk soil (n = 35) as well as on the three isolated fractions. For six samples of 

the POM fraction, we did not have enough sample material to perform DRIFTS (thus n = 29 for POM). 

Absorbance values were obtained on milled subsamples (< 50 µm). Samples were scanned in duplicate 

in the mid-infrared region (7500 – 600 cm-1) at a resolution of 2 cm-1, using a Fourier transform IR (FT-

IR) spectrometer with a high-throughput screening extension (HTS-XT) (Bruker Optics, Vertex 70, 

Germany). Normalization of spectra against a gold background (Infragold NIR-MIR Reflectance Coating, 

Labsphere), as well as correction for atmospheric CO2 and H2O were done in OPUS spectrometer 

software (Bruker Optics, Germany) via averaging of 32 co-added scans per sample. All subsequent 

spectra processing was done using the R-packages ‘simplerspec‘ (Baumann, 2020) and ‘prospectr‘ 

(Stevens and Ramirez-Lopez, 2020). To correct for light scatter, spectra were resampled to a range of 

4000 – 600 cm-1 with duplicates averaged and normalized using the normal variate method available 

within the R packages. Then, based on published information (Parikh et al., 2014), the following six 

wavenumber ranges were assigned to three types of functional groups: aliphatic C-H (anti)symmetric 

stretches: 2950 – 2910 and 2866 – 2836 cm-1; aromatic C=C stretches: 1540 – 1524 and 1520 – 1510 

cm-1; carboxylic acid C=O stretch and carboxylate C-O asymmetric stretch: 1734 – 1718 and 1650 – 1636 

cm-1. Peak areas of the wavenumber ranges were integrated with a local baseline correction (Demyan 

et al., 2012). Following previous studies (Ryals et al., 2014; Fissore et al., 2017; Mainka et al., 2022), 

the assigned peak areas were interpreted as follows: aliphatic assignments as indicators of simple plant 
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derived OM (SIMP), aromatic assignments indicating complex plant derived OM (COMP) and carboxylic 

assignments - which are indicative of oxidized OM - as microbially transformed OM (MBIO). For each 

of the three functional groups, the peak area of a group was divided by the summed peak area of all 

groups to obtain its relative peak area (RPA) as a fraction of the total (RPASIMP, RPACOMP and RPAMBIO as 

% of total). As an indicator for the state of OM decomposition, we interpreted RPASIMP decreasing 

relative to other compounds with progressing decomposition (Ryals et al., 2014; Fissore et al., 2017; S. 

J. Hall et al., 2018).  

In parallel to the above, but on bulk soil only, Rock-Eval pyrolysis was performed to create a second and 

independent proxy for the degree of OM transformation related to its decomposition and stabilization 

(Sebag et al., 2016). For this, we used 0.1 g milled bulk soil samples, and conducted the following 

analyses on a pyrolyzer (Vinci Technologies, Rock-Eval 6, France). The applied protocol consisted of two 

phases: a pyrolysis in an inert N2 atmosphere starting at a temperature of 200 °C until 650 °C, and a 

pyrolysis in an oxidized atmosphere between 400 °C and 850 °C, both with a heating rate of 25 °C min-

1. Subsequently, the Rock-Eval I-Index for the degree of biological transformation of OM was calculated 

(Sebag et al., 2016). Briefly, areas under defined segments of the S2 curve (i.e., the hydrocarbons that 

form during thermal pyrolysis) were used following equation (3). 

 

𝐼𝑖𝑛𝑑  =  𝑙𝑜𝑔10 ( (𝐴1 +  𝐴2) / 𝐴3)   (3) 

 

with Iind being the I-Index, A1 being the segment between 200 - 340 °C (i.e., labile biopolymers, low 

intrinsic stability), A2 340 - 400 °C (resistant biopolymers, intermediate intrinsic stability) and A3 400 - 

460 °C (immature geopolymers, high intrinsic stability). 

For descriptive statistics summarizing all quantitative and qualitative SOC data of the fractions, see 

Table S2-5.  

 

2.2.5 Soil physicochemistry 

Soil physical characterization 

Soil texture was determined via laser diffraction using a particle size analyzer (PSA) (LS 13 320, Beckman 

Coulter, USA). We determined soil texture in two different ways: First, as soil primary texture, namely 

the textural composition of primary particles after breaking up all physical and chemical structures that 

can aggregate soil. Primary texture was used to calculate the sand correction of SAABS (see previous 

section). Second, as soil secondary texture, namely the textural composition of soil without 

disintegrating stable microaggregates and oxy-hydroxide concretions which are structural and stable 

components of natural soils (Totsche et al., 2018). Secondary texture was used to represent soil texture 
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effects in the explanatory models (see section 2.2.7 Statistical analysis). For the determination of soil 

primary texture, air dried soil was sonicated (100 J ml-1, 50 Hz, 65 W), shaken for 18 h with 10 % Na-

hexametaphosphate and treated for 96 h with 30 % H2O2 at 70 °C. Before and after H2O2 treatment, 

supernatant was removed by decanting after centrifugation (10 min 1700 x g). For the determination 

of soil secondary texture, fresh soil was shaken for 3 h with 10 % Na-hexametaphosphate to dissolve 

macroaggregates. Resulting primary and secondary particles were quantified with the PSA. Particle size 

contributions were calculated as percent of total particle volume, and size classification followed the 

WRB system (IUSS Working Group WRB, 2015): clay < 2 µm, 2 µm < silt < 63 µm, 63 µm < sand < 2000 

µm. For the sand correction of SAABS, the primary particles were wet sieved over a 63 µm mesh size 

aperture sieve until the throughflow became clear. Then, after oven drying at 50 °C the mass 

contribution of the primary particles > 63 µm (i.e., sand) to total soil mass was calculated as a 

percentage (MassSAND). For one selected soil sample of low, intermediate, and high secondary sand 

content, MassSAND was evaluated in triplicate. The reproducibility of the method was satisfactory, with 

a standard deviation of MassSAND relative to the mean at 2.8 %, averaged across the replicated soils. 

Standard deviation of MassSAND was highest in the soil with high secondary sand content. 

 

Soil chemical characterization 

As a measure of soil acidity and the potential effect it has on the mobility of elements, soil pH was 

determined in 0.01 M CaCl2 solution (soil:solution ratio of 1:5). After shaking for 10 min, the samples 

were left to rest for 24 h and shortly shaken before measurement in suspension using a pH meter (713 

pH Meter, Metrohm, Switzerland).  

Total element content of Al and Fe in bulk soil was assessed by digestion of 1 g aliquots with an aqua 

regia acid solution (HCl:HNO3:H2O, 3:1:1, v:v:v, 2.5 h at 120 °C). After filtration through Whatman 41 

filter papers Al and Fe were quantified using inductively coupled plasma optical emission spectrometry 

(5100 ICP-OES, Agilent Technologies, USA). As a measure of rock-derived base cation availability, 

exchangeable Ca, K and Mg were extracted with 0.1 M BaCl2 (soil:solution ratio of 1:6.5) for 2 h on a 

horizontal shaker, filtered through Whatman 42 filter papers and quantified with ICP-OES (Hendershot 

and Duquette, 1986).  

 

2.2.6 Soil mineralogy and weathering 

To assess differences in Si contents due to weathering processes and intrinsic geochemical differences 

of soil parent material, total Si content of bulk soil was measured using energy dispersive X-ray 

fluorescence (ED-XRF) spectrometry. For this, milled soil was mixed with Licowax (Fluxana, Germany) 
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at a ratio of 4:1, and formed into pellets which were measured with a spectrometer (Spectro Analytical 

Instruments, Spectro XEPOS, Germany). Then, we calculated ratios of primary texture clay relative to Si 

(clayprim:Si) and total Fe relative to Si (FeAq.Reg:Si) as proxies for geochemical reactivity of the mineral 

matrix, based on the rationale that weathering processes can lead to enrichment of clay and Fe relative 

to Si (Amelung et al., 2018). To obtain the contents of metal phases that are relevant for mineral SOC 

stabilization in bulk soil, we conducted a sequential extraction of Al, Fe and Mn oxy-hydroxides using 

sodium-pyrophosphate (PP) to extract organo-metallic complexes (Bascomb, 1968, modified), and 

subsequently ammonium oxalate (OXA) to obtain poorly crystalline metal-oxides and short-range order 

minerals ((Courchesne and Turmel, 2007; Doetterl et al., 2015), modified). We acknowledge that PP- 

and OXA-soluble metals may also include Al- and Fe-organic complexes that are not necessarily metal 

oxy-hydroxides, but for simplicity we will refer to the sum of PP- and OXA-soluble metals as “pedogenic 

oxides”. In brief, we used 0.5 g of milled material of the S+C and SA fractions, and extracted the material 

for 16 h on a horizontal shaker with a sodium-pyrophosphate solution at pH 10 (consisting of 0.1 M 

Na4P2O7 x 10 H2O and 0.5 M Na2SO4), at a soil:solution ratio of 1:40. Subsequently, the vials were 

centrifuged (Sigma 3-16 KL, 10 min, 1700 xg), the supernatant was decanted, filtered through Whatman 

41 filter paper, diluted to 50 ml with nanopure water, and stored at 4° C until measurement. The 

remaining soil residue was extracted after shaking for 2 h on a horizontal shaker with a 0.2 M 

ammonium oxalate solution at pH 3 at a soil:solution ratio of 1:40 (consisting of 0.2 M (NH4)2C2O4 x H2O 

and 0.2 M C2H2O4 x 2 H2O, mixed at a ratio of 1.31:1), and in the dark to prevent photodegradation of 

the extractant. Subsequently, the solution was filtered, diluted and stored as in the previous step. In 

both extracted solutions (PP and OXA), Al, Fe and Mn were quantified using ICP-OES (5100 ICP-OES, 

Agilent Technologies, USA). Elemental contents of PP- and OXA-soluble metals for bulk soil were 

estimated by summing up the respective contents in S+C and SA, weighted by the mass contribution of 

each fraction to bulk. 

 

2.2.7 Statistical analysis 

All statistical analysis and creation of the map were performed in R-Studio using R version 4.1.1 

(RStudio Team, 2020), stepwise regression and random forest (RF) models were computed using the R-

package ‘caret‘ (Kuhn, 2008), Breusch-Pagan tests were done using the R-package ‘lmtest‘ (Zeileis and 

Hothorn, 2002). PCAs were performed with the R-package ‘psych‘ (Revelle, 2022), and Cochran’s C tests 

for outlying variance were performed using the package ‘outliers‘.  

 



48 
 

Patterns of SOC along the gradient 

Linear regression was used to test for relationships between all dependent variables (total amounts of 

SOC in each fraction per unit soil, contents and the relative contribution of SOC in each fraction to bulk 

SOC), as well as relationships between the degree of OM decomposition to bulk SOC and fractions. In 

order to check whether data needed to be log-transformed to meet the assumptions for linear 

regression, homoscedasticity (Breusch-Pagan test), normal distribution of residuals (Shapiro-Wilk test) 

and absence of residual patterns (visual check) were evaluated. In case of violation of either criterion, 

the dependent variables were log-transformed. If the intercepts were not significant, models for CTOT 

and CABS were forced through zero. Note that in the case of SATOT and S+CTOT, the assumption of 

homoscedasticity was violated to a minor degree at high bulk SOC% values (Table S2-7). However, we 

kept the untransformed models because transformation produced strongly skewed patterns in the 

residuals. Similarly, in the models for SAABS and S+CABS log-transformation would have introduced 

residual patterns and was thus rejected.  

 

Deriving the decomposition index (DI) 

To assess the degree of OM decomposition for the three fractions, we used a principal component 

analysis (PCA) approach. This approach links the three individual soil fractions with fraction-specific 

information on OM decomposition (Figure 2-2a, Figure S2-1). For this, we conducted an unrotated PCA, 

including scaled data on the relative contribution of simple, less decomposed plant derived OM 

(RPASIMP) to fraction OM, together with fraction specific information on C:N ratio, δ13C and δ15N which 

are generally strongly affected by OM decomposition (Fernandez et al., 2003; Dijkstra et al., 2006; Lerch 

et al., 2011; Fissore et al., 2017; Mainka et al., 2022). More specifically, the C:N ratio of OM narrows in 

the course of microbial OM decomposition, and δ13C and δ15N values become more positive, as the 

heavy isotopes become enriched. Following Cochran’s C test for outlying variance, two RPASIMP values 

of one S+C and one POM sample were excluded as outliers. The result of this analysis showed that the 

first principal component (PC1) explains 50 % of the variation and can be interpreted as an axis from 

lower towards higher levels of SOC decomposition within fractions (Figure S2-1). This PC1 is loaded 

with decreasing C:N ratio, decreasing RPASIMP, increasing enrichment of 15N, and, to a lesser extent, 

increasing enrichment of 13C. We subsequently used the scores of PC1 as a decomposition index (DI) 

and analyzed the pattern of fraction specific DIs as described in the previous section. We conducted 

one-way ANOVA with a subsequent Tukey HSD post-hoc test to test for significant differences in DI 

between the three fractions. 
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Explanatory modeling - Grouping and identifying predictors 

To investigate which soil geochemical and climatic factors control SOC stocks in bulk soil and fractions, 

we selected a set of soil parameters and qualitative SOC variables that are known to affect long term 

SOC dynamics, as well as a set of climatic parameters, in total 22 variables (see above for details, and 

find selected variables in Table S2-3). For a mechanistic interpretation of included variables, we 

performed dimension reduction using rotated principal component analysis (rPCA) with varimax 

rotation to reduce the set of these predictor variables (Haaf et al., 2021). Rotation of the PCA reduces 

the number of variables that correlate with individual rotated components (RCs) and thus facilitates 

the interpretability of the RCs, albeit at the cost of orthogonality (Figure S2-2). We only retained RCs 

that met two criteria: First, an Eigenvalue greater than 1, and second, adding more than 5 % of 

explained variance. This resulted in six retained RCs, which were interpreted based on their dominant 

loadings (loading ≥ 0.5) and were subsequently used as predictor variables in the regression analysis 

(see below). Correlations between bulk SOC% and CTOT in SA, S+C and POM with selected measured 

environmental variables are shown in Figure S2-3. 

 

Explanatory modeling - Model selection 

We performed stepwise regression with Monte Carlo cross validation to select the most important RCs 

for prediction of bulk SOC% and the total amounts of SOC per unit soil in the three isolated fractions (CTOT) 

(Extended S3). For this, independent variables were scaled, and the data was split 100 times into a 75 

% training set and a 25 % validation set. Model performance was assessed using RMSE, and a maximum 

of three (out of six potential) RC predictor variables were retained in order to constrain model 

complexity and avoid overfitting. Using the predictors that were selected by the best stepwise 

regression models, and to account for potential non-linearity and interactions of controls on the 

dependents, we consecutively built for each dependent a (i) simple linear regression model (SLM), a 

(ii) linear model allowing for pairwise interaction between all predictors (ILM), and a (iii) random forest 

model (RF) to allow for non-linearities (with 100 trees). We performed this step with log-transformed 

dependent variables only, as transformation generally improved residual distribution and RMSE. The 

variable importance (VI) of each significant predictor was quantified as the absolute value of the t-

statistic, which is calculated by dividing the coefficient of a predictor by its standard error (James et al., 

2013). In order to improve comparability of the contribution of predictor variables between different 

models, we normalized each VI relative to the VIs of all variables in the respective model. This relative 

variable importance (rVI) was calculated by dividing each individual VI by the sum of all VIs in the 

respective model. Homoscedasticity and normal distribution of the residuals were tested as described 
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above for SLM and ILMs. For RFs, we applied cross validation as in the stepwise regression, with 100 

trees in each iteration.  

Finally, we selected the best performing of the three model structures for each dependent variable 

based on RMSE, distribution of the residuals and the rationale of parsimony (Table S2-7). More 

specifically, when model performance was similar (RMSE in 10 % range), we favored and interpreted 

simpler model structures to avoid overinterpretation of our data. For example, if the RMSE of a SLM 

was in a range of 10 % of the respective ILM or RF, we interpreted the SLM. Since all models had log-

transformed dependent variables, we additionally calculated a back-transformed RMSE (btRMSE) and 

a relative RMSE (rRMSE) for an easier interpretation of the data. For calculation of the btRMSE, we 

computed residuals between the untransformed observations and back-transformed log-predictions, 

following equation (4). 

 

𝑏𝑡𝑅𝑀𝑆𝐸 =  √[𝛴 (𝑂𝑖 − 𝑒𝑃𝑖)2 / 𝑑𝑓]   (4) 

 

with Oi being the observed value for the ith observation, Pi being the predicted value for the ith 

observation, and df being the degrees of freedom of the respective model. The rRMSE was calculated 

as the percentage of the btRMSE relative to the untransformed range of observations, following 

equation (5). 

 

𝑟𝑅𝑀𝑆𝐸 =  (𝑏𝑡𝑅𝑀𝑆𝐸 / (𝑂𝑚𝑎𝑥  −  𝑂𝑚𝑖𝑛))  ∗  100   (5) 

 

with Omax and Omin being maximum and minimum of the respective untransformed dependent 

observation.  

 

2.3 Results 

2.3.1 Shifting importance of SOC fractions along soil gradients  

Across all sites, we observed a gradient of SOC in the bulk soil from 0.6 to 18.7 %(Figure 2-3, Table S2-

6). While all three investigated fractions contained more SOC in soils with high bulk SOC% than in soils 

with low bulk SOC%, the difference of total SOC contained in each fraction (measured as g C kg-1 soil) 

was largest for the SA fraction (SATOT) followed by S+CTOT and POMTOT. POMTOT ranged from 0.9 to 48.9 

g C kg-1, S+CTOT ranged from 2.0 to 57.7 g C kg-1 and SATOT from 1.9 to 159.9 g C kg-1.  

The fraction-specific C content (CABS) in POM showed no relationship with bulk SOC% but remained high 

(13.0 - 37.8 %) across all sites. In contrast, CABS of the mineral-associated fractions strongly increased 
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with bulk SOC%, from 1.5 to 24.6 % (S+CABS) and from 1.6 to 37.7 % (SAABS). SAABS changed more strongly 

with bulk SOC% than S+CABS (Figure 2-3b, Table S2-6) and the fraction-specific C content of the SA 

fraction became similar to the POM fraction in high bulk SOC% soils.  

The POM fraction never dominated bulk SOC, with the relative contribution of POM to bulk SOC 

(POMREL) ranging between 3.5 - 38.8 %. Variations of S+CREL and SAREL are much larger, ranging from low 

to high levels of bulk SOC% between 7.1 – 80.9 % and 15.3 – 97.0 % contribution to total SOC, 

respectively (Figure 2-3c, Table S2-5). Notably, the relative contribution of SA to SOC exceeded that of 

S+C in many soils of the gradient. In soils with low bulk SOC%, S+C was the quantitatively most important 

SOC fraction, and in high bulk SOC% soils (> 4 % bulk SOC%) stable microaggregates were the most 

important SOC fraction.  

 

 

Figure 2-3. The quantitative development of fractions SA, S+C and POM with bulk soil organic carbon 

(bulk SOC%). SA = stable microaggregates (>63 µm), S+C = silt- and clay-sized particles, POM = free 

particulate organic matter. a) Total amount of SOC (CTOT) in each of the three fractions. b) Fraction-

specific C content (CABS) in each fraction (for SA sand corrected). c) Quantitative importance (or relative 

contribution, CREL) of the fractions to bulk SOC%. Measured data points and fitted significant models 

with 95 % confidence intervals are shown. For model descriptions, see Table S2-6. 

 

2.3.2 The decomposition index (DI) of the OM in the SOC fractions 

The decomposition index (DI) is unitless and ranges from 3.32 to -2.55, where high values indicate a 

high degree of decomposition (relative to the dataset), and vice versa. DI values differed significantly 

between fractions (one-way ANOVA, F (2,93) = 39.07, p < 0.05; all Tukey HSD post-hoc pairwise 
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comparisons p < 0.05). POM was generally the least decomposed, SA was intermediate and S+C was 

the fraction with the most decomposed OM (Figure 2-4a). Of the three fractions, S+C had the most 

variable DI, decreasing significantly with higher bulk SOC% (Figure 2-4b, Table S2-7). The DI in the POM 

and SA fractions was less variable without a significant pattern along the bulk SOC% gradient (Figure 2-

4b, Table S2-7). Further, bulk OM was considerably more decomposed in soils with low SOC content 

than in soils with high SOC content (Figure S2-4).  

 

 

Figure 2-4. The decomposition index (DI) of the organic matter in fractions SA, S+C and POM. SA = 

stable microaggregates >63 µm), S+C = silt- and clay-sized particles, POM = free particulate organic 

matter. a) The DI (based on chemical characterization by DRIFT spectroscopy, C:N ratio and stable 

isotope ratios) of the three fractions (boxplots: center line, median; box limits, 25th and 75th 

percentiles; whiskers, 1.5x interquartile range; points, outliers). Letters indicate significant differences. 

b) Development of the DI with bulk SOC%. Measured data points and the fitted model with 95 % 

confidence intervals are shown. Only the pattern for S+C is significant at p < 0.05. For model 

descriptions, see Table S2-6. 

 

2.3.3 Soil geochemical and climatic drivers of SOC 

The gradient spans pHCaCl2 values from 4.1 to 6.7, clay and sand contents from 1 to 21 % and 16 to 93 

%, respectively, and pedogenic oxide contents varying up to 40-fold (Al from 0.5 to 26.5 g kg-1, and Fe 

from 0.7 to 20.1 g kg-1) (Table S2-3). Rotated PCA for dimension reduction yielded six rotated 

components (RCs, Table S2-8), which together accounted for 70 % of the variation in the dataset. 

‘Geochemistry‘ (RC1) is loaded with variables indicative of geochemical reactivity as a product of 
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bedrock chemistry and the degree of soil weathering (total Fe and Al, Fe:Si, Clay:Si). ‘OM 

Decomposition‘ (RC2) reflects the dimension along which bulk OM becomes increasingly transformed 

and decomposed and is an indicator for bulk soil OM quality (assessed with DRIFT spectroscopy and 

Rock-Eval pyrolysis). ‘Texture‘ (RC3) is an indicator for soil structure, positively loaded with “secondary” 

(see methods for explanation) silt and clay content, and negatively with secondary sand content. 

‘Pedogenic Oxides‘ (RC4) is an indicator for soil mineralogy, positively loaded with the sum of 

organically complexed and poorly crystalline Al- and Fe-oxides and incorporating the long term effects 

of climatic action via weathering. ‘Base cations‘ (RC5) is positively loaded with plant-available Ca and 

Mg and serves as a fertility indicator. Lastly, ‘Temperature‘ (RC6) is positively loaded with MAT and NPP 

and serves as a climate indicator. Note that the effects of important factors for SOC stabilization such 

as soil pH and the annual water balance (MAP - PET) are represented indirectly in the RCs OM 

decomposition (RC2), pedogenic oxides (RC4) and temperature (RC6), which they in parts shape and 

control (Table S2-8). 

All regression models performed well and were able to predict patterns of the SOC fractions along the 

gradient (R2 = 0.46 to 0.81, rRMSE = 12.5 to 17.9 %, Figure 2-5 & Table S2-6). Linear regression models 

always outperformed random forest models (Table S2-6), indicating the absence of major non-linear 

relationships (i.e. thresholds) in this dataset. Bulk SOC% was negatively correlated to temperature (RC6) 

and positively to pedogenic oxide contents (RC 4) (Figure 2-5). POMTOT was positively correlated with 

available base cations (RC5) and negatively correlated to temperature (RC6). The S+CTOT was positively 

correlated with pedogenic oxide contents (RC4) and with (finer) texture (RC3), and weakly with 

(decreasing) temperature (RC6). SATOT was positively correlated with pedogenic oxides (RC4) and 

negatively with temperature (RC6) and the degree of OM decomposition in bulk soil (RC2). Notably, 

geochemistry (RC1) does not feature in any of the explanatory models (Figure 2-5) as direct control, 

but acts as a secondary control, strongly correlated to several key predictors included in the models 

(RCs OM decomposition, texture, temperature, see Figure S2-2).  
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Figure 2-5. Links between climatic and soil physicochemical properties and total amount of SOC (CTOT) 

in the soil fractions. Significant predictors (sorted by Eigenvalue, Table S2-8) of CTOT in free particulate 

organic matter (POM), silt- and clay-sized particles (S+C) and stable microaggregates (SA)and bulk SOC%. 

Circle sizes indicate the relative variable importance (rVI). * = Negative interaction term base cations 

(RC5) x pedogenic oxides (RC4). OM Decomp. = Organic matter Decomposition; Ped. Oxides = 

Pedogenic Oxides. 

 

2.4 Discussion 

2.4.1 Stable microaggregates are a key SOC fraction 

Mineral-associated SOC fractions (S+C and SA) consistently dominated over POM and were key to 

explain the increase of SOC content along the investigated geoclimatic gradient (Figure 2-3). As 

hypothesized, stable microaggregates constituted an important SOC fraction and were the main SOC 

fraction in high-SOC soils. Importantly, SATOT reached up to 160 g C kg-1 soil, which was 2.5 and 3 times 

higher than the highest values for S+CTOT and POMTOT, respectively. Furthermore, SATOT was linked 

positively with pedogenic oxide contents (RC4) and negatively with temperature (RC6) and the degree 

of bulk OM decomposition (RC2) (Figure 2-5). This supports the hypothesis that the quantitative role 

of stable microaggregates is largest in chemically reactive soils and in soils in which OM accumulates 

(Figure 2-6a). We did not detect a universal upper limit of SOC content associated with the mineral 

fractions along this gradient, not withholding that such limit may exist. Instead of reaching an 

asymptote at a particular bulk SOC% value, fraction-specific C content (CABS) of the S+C and SA fractions 
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increased across the entire bulk SOC% range (Figure 2-3b). We explain this observation in two ways. 

First, we acknowledge that many soils (with andic properties and with generally high reactive surface 

area of the mineral phase) featured in the central region of this gradient have higher pedogenic oxide 

contents than other soil types and therefore represent conditions of extraordinarily high stabilization 

potential (Beare et al., 2014; Matus et al., 2014). Second, only a small fraction of SOC was present as 

free POM across the entire range of climatic and physicochemical conditions (Figure 2-3c). Instead, the 

majority of OM formed associations with the mineral matrix. This lack of accumulation of free POM is 

relevant because it indicates that even OM which accumulates due to climatic constraints on 

decomposition gets associated with the mineral matrix in the form of stable microaggregates.  

Note that due to differences in OM input and disturbance regimes, the dominant role of stable 

microaggregates in temperate grasslands can not necessarily be directly transferred to different 

systems. Stable microaggregates hold less SOC in arable soils as compared to grassland soils (Poeplau 

and Don, 2013; Wiesmeier et al., 2016; Antony et al., 2022). Similarly, stable microaggregates also 

contain a smaller fraction of total SOC in forest soils, where free POM plays a proportionally larger role 

(Poeplau and Don, 2013; Guidi et al., 2014; Antony et al., 2022). Lastly, the importance of stable 

microaggregates as an SOC fraction is known to decrease with soil depth, where the silt- and clay-sized 

fraction plays a proportionally larger role (Schrumpf et al., 2013; Poeplau et al., 2017; Antony et al., 

2022). Nevertheless, although stable microaggregates are not always as dominant as in grassland 

systems, they consistently constitute a considerable SOC fraction across various land uses. However, 

the current debate about carbon saturation thresholds in soils focuses mainly on the fraction of fully 

dispersed silt- and clay-sized particles (Cotrufo et al., 2019; Georgiou et al., 2022; Begill et al., 2023). 

Based on the importance of stable microaggregates as SOC fractions demonstrated in this study (Figure 

2-6a) and across literature, we argue that the potential role of microaggregates should not be ignored 

in the context of SOC stabilization.  

 

2.4.2 The amount of SOC in POM, S+C and SA follows distinct geoclimatic 

patterns 

In line with our second hypothesis, all three investigated SOC fractions were related to distinct sets of 

environmental predictors (Figure 2-5). Temperature (RC6) was related negatively to all SOC fractions, 

but to a varying extent: Direct climatic proxies were most important to explain POMTOT, less important 

for SATOT and of least importance for S+CTOT. We explain this discrepancy with the varying timescales at 

which climate can affect SOC.  
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At shorter timescales, climate affects biological processes. At low ambient temperature (measured 

range of MAT down to 3.0 °C), corresponding to high bulk SOC% environments along this gradient, 

microbial decomposition may be more temperature constrained than plant growth and NPP. In such 

conditions, carbon can still be sequestered by plants, but is not efficiently decomposed by soil microbial 

communities (Wiesmeier et al., 2019; García-Palacios et al., 2021; Rocci et al., 2021). The consequence 

is a build-up of bulk SOC with a generally lower degree of decomposition (Figure 2-3 & 6, Figure S2-4) 

in colder environments. This interpretation is in line with observations in other studies across different 

land-uses, which found that low MAT leads to higher amounts of SOC as POM (Wagai et al., 2008; Rocci 

et al., 2021; Heckman et al., 2022). In addition, water availability, which is partially included in the 

variable temperature (RC6) (through MAP-PET, Table S2-8) might also be limiting for biological activity 

in dry and warm climates (Manzoni et al., 2012a; La Pierre et al., 2016; Zhang and Xi, 2021). For a more 

detailed discussion on the controls of POMTOT, see Supplementary Text S2-1. 

At longer timescales, climate acts as a driver of pedogenesis. This was supported by the fact that water 

balance (calculated as MAP - PET) and NPP correlated positively with RC4 “Pedogenic oxides” (Table 

S2-8), indicating the role of moisture and organic inputs as drivers of mineral weathering (Rasmussen 

et al., 2018; Slessarev et al., 2022). Higher soil moisture can favor the formation of pedogenic oxides 

via increased weathering rates, and thus facilitates the formation of organo-mineral associations. We 

therefore argue that the long-term effects of climate on SOC dynamics were mainly encapsulated in 

the content of pedogenic oxides (RC4), while the short-term effects were mainly reflected by 

temperature (RC6). However, a complete separation of these mechanisms is difficult if not impossible 

in nature as they occur in parallel and in interaction with each other (Figure S2-2, Supplementary Text 

S2-2). 

While climate may affect OM turnover by microbes as well as pedogenesis, soil mineralogic properties 

were important proxies to predict the amount of SOC in mineral-associated SOC fractions. Pedogenic 

oxide content (RC4) was linked with the mineral-related fractions (Figure 2-5) and along with texture it 

was the dominant predictor of S+CTOT. Soils with more pedogenic oxides and finer texture 

(Supplementary Text S2-3) contained a larger amount of SOC in the fraction of silt- and clay-sized 

particles. The S+C fraction dominated bulk SOC% in low-SOC soils (Figure 2-3c), and this fraction was 

most directly linked to mineralogical properties (Figure 2-5); we therefore concluded that mineralogic 

properties were the dominant controls of bulk SOC in the low-SOC soils of this gradient that were 

unfavorable for aggregation (Figure 2-6a). In contrast to S+CTOT, SATOT was equally well explained by 

pedogenic oxide content (RC4) as well as temperature (RC4) and the degree of bulk OM decomposition 

(RC2). This highlights that aggregation is a consequence of mineralogical properties as well as of 

biological processes that are controlled by climate. The SA fraction dominated bulk SOC% in high-SOC 

soils (Figure 2-3c), and this fraction was linked to mineralogical properties as well as directly to climate 
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(Figure 2-5). Therefore, we found that climate drives bulk SOC content most strongly in high-SOC soils, 

where biological processes contributed to SOC accumulation (Figure 2-6a). 

 

2.4.3 Controls and drivers behind stable microaggregates 

We expected that the controls on the amount of SOC associated with stable microaggregates would 

shift along the gradient. Based on the expectation that aggregation would be limited by the amount of 

OM (and the biological drivers thereof) in low-SOC soils, we had hypothesized a higher importance of 

climatic conditions in low-SOC soils. In contrast, based on the expectation that reactive minerals would 

limit aggregation in high-SOC soils, we had expected a higher importance of mineralogical conditions 

in such systems.  

On the one hand, POM forms the nucleus of aggregate formation according to the hierarchy model of 

aggregate formation (Oades, 1984; Golchin et al., 1997). This is supported by our observation that the 

formation of microaggregates was partially driven by climate-controlled accumulation of POM (Figure 

2-5), which was in line with this theory and with previous findings (Regelink et al., 2015; Kopittke et al., 

2018; Poeplau et al., 2018; Totsche et al., 2018; Witzgall et al., 2021). The inclusion of water availability 

in RC6 (temperature) could represent the role that frequent wetting and drying cycles play for 

aggregate formation and stability (Six et al., 2004; Totsche et al., 2018; Edlinger et al., 2023). On the 

other hand, reactive soil minerals constitute surface coating in the initial steps of hierarchical aggregate 

formation (Oades, 1984; Golchin et al., 1997). It has been repeatedly observed that pedogenetic soil 

conditions - particularly the presence of pedogenic Al and Fe oxyhydroxides - promote the formation 

of microaggregates (Huygens et al., 2005; Virto et al., 2008; von Lützow et al., 2008; Regelink et al., 

2015; Rasmussen et al., 2018; Wagai et al., 2020).  

However, in contrast to our hypothesis of shifting controls on aggregation, statistical analyses indicated 

that no non-linear relationships between geoclimatic predictors and the amount of SOC in the SA 

fraction existed along the investigated gradient (Table S2-7). Rather, links between aggregation and the 

environment were consistently linear along the entire gradient without thresholds of controls, not 

withholding that such thresholds may exist in other environments that are not represented here. We 

explain this observation with the fact that many high SOC soils were soils with andic properties which 

contain large amounts of short-range order minerals that are highly reactive for aggregate formation 

(Garrido and Matus, 2012; Asano and Wagai, 2014; Matus et al., 2014; Rasmussen et al., 2018). 

However, Cambisols and Leptosols with high bulk SOC% of 5.5 to 11.8 % also followed the same pattern 

suggesting the general tendency of soils to promote aggregation as SOC builds up irrespective of soil 

mineralogy. This further indicates that the (bio)climatic and geochemical controls on the formation of 

stable microaggregates were not mutually exclusive, but rather reinforced each other. Independent of 
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what limits aggregation in the first place, once formed, microaggregates occlude OM, slow down or 

even inhibit decomposition (Grandy and Neff, 2008; Mueller et al., 2012a; Heckman et al., 2022) 

(Grandy & Neff, 2008; Heckman et al., 2022; Mueller, Schlund, et al., 2012) and thereby likely contribute 

to accumulate further SOC (Kleber et al., 2007; Mueller et al., 2012a; Vogel et al., 2014).  

 

2.4.4 Distinct OM quality in different SOC fractions  

The chemical characteristics of OM as well as the fraction-specific C content (CABS) of the stable 

microaggregate fraction were consistently between those of particulate organic matter and the silt- 

and clay-sized fraction (Figure 2-4a, Figure 2-3b). Aggregate formation as in the aggregate hierarchy 

theory requires the occlusion of POM as an aggregation nucleus, whereas “bottom-up” aggregation 

starts through coprecipitation and adsorption processes of small OM-metal composites, which are 

assumed to be microbially transformed (Edwards and Bremner, 1967; Totsche et al., 2018; Wagai et al., 

2020). As a consequence, we hypothesized that a prevalence of “bottom-up” aggregate formation 

would result in a larger degree of microbial transformation of OM (i.e. a higher decomposition index, 

DI) especially in the stable microaggregates of soils with high Al and Fe oxy-hydroxide contents. 

However, the DI of OM associated with the SA fraction did not change significantly along the 

investigated gradient (Figure 2-4b). In contrast, the DI of the S+C fraction decreased significantly with 

increasing bulk SOC% (Figure 2-4b). It is therefore likely that shifts of OM stabilization processes in the 

S+C fraction masked shifts in aggregate formation mechanisms, as we will elaborate in the following 

section. 

The S+C fraction is a mix of small silt- and clay-sized aggregates and diverse free associations of OM 

and minerals (Totsche et al., 2018; Lavallee et al., 2020; Schweizer, 2022). Importantly, minerals 

preferentially associate with decomposition products and microbially transformed OM (Kaiser et al., 

1997; Grandy and Neff, 2008; Sollins et al., 2009; Kallenbach et al., 2016; Heckman et al., 2022). This is 

generally in line with the observation that the OM in the S+C fraction was on average more microbially 

transformed (i.e. a higher DI) than the particulate OM fraction (POM) (Figure 2-4a). However, the 

decrease of the DI in the S+C fraction along the bulk SOC% gradient indicated a shift in the type of OM 

that associated with this fraction. In high-SOC soils with postulated “bottom-up” aggregate formation 

(e.g. Andosols), the OM in the S+C fraction was less microbially transformed than in low-SOC soils. We 

explain this with the fact that OM stabilization can follow different microbial pre-processing pathways, 

either in vivo or ex vivo (Liang et al., 2017). The in vivo pathway describes OM stabilization that follows 

full microbial transformation of the OM (i.e. microbial uptake of substrate, subsequent breakdown 

through microbial catabolism and reassembly into chemically different molecules by microbial 

anabolism). In contrast, the ex vivo pathway describes OM stabilization that bypasses microbial uptake 
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and therefore full microbial catabolism and anabolism. Examples of the ex vivo pathway are direct 

stabilization of soluble plant-derived OM or stabilization of structural plant-derived OM that was only 

modified by extracellular enzymes. The decrease of the DI in the S+C fraction along the bulk SOC% 

gradient could therefore indicate a shift from in vivo to ex vivo dominated OM stabilization (Grandy and 

Neff, 2008; Sanderman et al., 2014; Angst et al., 2017; Liang et al., 2017; Mikutta et al., 2019; Cotrufo 

et al., 2022). More specifically, the shift could stem from increased occlusion of small (< 63 μm) plant 

material in high SOC soils as compared to low SOC soils where microbial transformation of OM input is 

more advanced. Regardless of the underlying mechanism (see Supplementary Text S2-4 for a more 

detailed discussion), this shift from in vivo to ex vivo stabilization and the shift from aggregate formation 

as in the aggregate hierarchy theory to “bottom-up” aggregation in high SOC soils could have canceled 

each other out in terms of OM quality. In soils dominated by “bottom up” aggregation, the OM in the 

smaller building blocks was relatively undecomposed due to a prevalence of ex vivo stabilization (Figure 

2-6b). As a result, the DI of the stable microaggregate fraction remained unchanged along the entire 

gradient (Figure 2-6a). 

 

2.4.5 Reasons for less OM decomposition in stable microaggregates 

The overall lower DI (i.e. less decomposed OM) in the stable microaggregate fraction as compared to 

the S+C fraction (Figure 2-4a) could support the notion that microaggregates function as an efficient 

mechanism to protect OM from microbial decomposition (Dungait et al., 2012; Abramoff et al., 2018; 

Totsche et al., 2018; Heckman et al., 2022). This would be in line with findings of significantly older 14C 

ages in occluded OM as compared to free POM (e.g. Heckman et al., 2022; Rasmussen et al., 2005; 

Schrumpf et al., 2013). However, it is important to note that persistence of OM associated with stable 

microaggregates must not necessarily stem from physical occlusion. It has also been hypothesized that 

chemically recalcitrant carbon could preferentially initiate aggregation (Wagai et al., 2009). In three 

high-SOC soils, CABS in the SA fraction almost reached 30 % (Figure 2-3b). This suggests that the 

aggregate-associated OM in these soils may partially lack physical occlusion as the volume ratio of OM 

to mineral matrix reaches high values (Wagai et al., 2009). However, CABS values in this fraction were 

likely overestimated due to the applied procedure for sand correction (section Soil physical 

characterization). Regardless of which process ultimately caused the observed patterns of OM quality, 

this study shows that (1) stable microaggregates contain OM that is distinct from POM and the OM in 

the S+C fraction, and that (2) this pattern is largely consistent across very diverse soil systems (Figure 

2-6). 
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Figure 2-6. Conceptual summary of the controls and processes that drive bulk SOC% across geoclimatic 

conditions in temperate grasslands. a) Bulk SOC% increases with CTOT in free particulate organic matter 

(POM), silt- and clay-sized particles (S+C) and stable microaggregates (SA), where the area under the 

bold black arrow represents the amount of SOC in the fractions. In low-SOC soils, the S+C fraction 

dominates bulk SOC%, and in high-SOC soils the SA fraction dominates bulk SOC%. Low-SOC soils are 

present in warm climates (left y-axis), with limitations in mineral stabilization potential as direct control 

of bulk SOC% (lower left corner). High-SOC systems are present in cold climates, where climatic 

constraints on decomposition become increasingly important as direct control (upper right corner). b) 

In low-SOC systems, stable microaggregate formation seemed to follow the “aggregate hierarchy 

model” concept via macroaggregates, whereas “bottom-up” aggregation of smaller particles seemed 

to dominate in high-SOC systems. In low-SOC systems, the dominant pathway of organic matter 

association with the S+C fraction seemed to be in vivo, whereas in high-SOC systems it seemed to be 

ex vivo. c) The observed patterns are constrained to the investigated climatic range (right side) and 

grassland topsoils. 
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2.5 Conclusion 

The results of our study imply that stable microaggregates are an important piece in the puzzle to 

understand SOC dynamics at the global scale. Mineral-associated SOC constituted the majority of soil 

C across a wide range of grasslands, spanning a 30-fold variation in bulk SOC content. In particular, this 

study presents clear evidence that stable microaggregates are an important SOC fraction in mineral 

topsoils of grasslands with high SOC content. Moreover, stable microaggregates follow their own 

dynamics of formation and alteration, which are distinct from POM or non-aggregated mineral 

fractions. Soils form stable microaggregates when sufficient amounts of reactive minerals and OM input 

are present. In this study, the amount of SOC in the stable microaggregate fractions was linked to a 

distinct set of environmental variables, predictable across soil types and geo-climatic regions. Common 

geochemical and climatic proxy variables, namely extractable Al- and Fe- oxy-hydroxide contents and 

annual climatic means (MAT and water balance) were identified as suitable proxies for the two main 

ingredients (OM and reactive minerals) and processes of aggregate formation. In contrast, the amount 

of SOC in the free POM fraction was more strongly linked to climate, and the amount of SOC associated 

with silt- and clay- sized particles was mainly linked to soil mineralogical variables. Across the range of 

investigated soils, the OM in stable microaggregates was generally less decomposed than the OM 

associated with free silt- and clay-sized particles, despite potential mechanistic differences in aggregate 

formation between Andosols and soils without volcanic influence.  

We conclude that SOC does not just accumulate either as undecomposed free particulate organic 

matter or as decomposed mineral-associated organic matter. Rather, a substantial proportion of SOC in 

the investigated soils accumulated in the form of stable microaggregates. Given that the stable 

microaggregate fraction (1) varies in quantitative importance across (soil) environmental gradients, (2) 

follows distinct dynamics across soil physicochemical and climatic conditions and (3) constitutes a 

qualitatively - and likely functionally - distinct SOC fraction, there is an urgent need to better understand 

the functional implications of stable microaggregates at large scales. We argue that particularly the 

distinction between free POM and OM associated with stable microaggregates may have important 

implications. SOC stabilization may not be accurately represented without explicitly considering the 

role of stable microaggregates. The drivers of microaggregation are not yet fully resolved causally 

across soil types and large spatial gradients. For mechanistic insights into the formation of stable 

microaggregates, their potential to protect and stabilize SOC, and their vulnerability under changing 

climatic conditions, stable microaggregates need to be considered explicitly in more experimental 

studies across large scales.  

 



62 
 

2.6 Acknowledgements 

We thank Manuel Casanova for soil sampling and photographs of the sites, Katherine Rebolledo for 

sample shipment, Nuno Bischofsberger and Annina Maier for assistance with the laboratory work. We 

thank Rota Wagai and two anonymous reviewers for their constructive comments on the manuscript. 

Financial support in Chile was provided by Fondecyt 1121138 and 1161492, and in Switzerland by ETH 

Zurich. 

 

Data availability statement  

All data used in this study are available within the paper or in a permanent open access online 

repository of the ETH Zurich Research Collection under the following DOI: 

https://doi.org/10.3929/ethz-b-000649389  

 

Code availability 

The R code used and produced for statistical analysis in this study is deposited in a permanent open 

access online repository of the ETH Zurich Research Collection under the following DOI: 

https://doi.org/10.3929/ethz-b-000649389 

 

 

  



63 
 

3. Quantity over quality: the effects of soil organic 

matter on soil bacterial diversity along a 

geoclimatic gradient 
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Abstract 

To understand the controls over soil biogeochemical cycles along environmental gradients, it is 

necessary to enhance our understanding of the factors that determine soil bacterial community 

composition at larger scales. It is well established that the quantity of soil organic matter (SOM) is an 

important driver of soil bacterial community composition from the regional to global scale. In addition 

to SOM quantity, qualitative properties of SOM have been hypothesized to affect soil bacterial 

community composition through the mechanism of bacterial substrate specialization. However, up to 

date it remains unresolved to what extent SOM quality affects soil bacterial community composition at 

large scales. In this study, we investigated how SOM quantity and quality structure the soil bacterial 

communities along a biogeochemical gradient of grassland soils. We measured relative abundance 

patterns of soil bacteria using 16S rRNA barcoding and characterized SOM quantity and quality with a 

range of different methods. We could explain a large fraction of bacterial communities (up to 59.6 % of 

16S rRNA reads) in soils with high SOM quantity (along the continuum between 0.6 to 18.7 % SOC) and 

low soil pH (along the continuum between pH 4.1 to 6.7). Soils with high SOM quantity and low soil pH 

had a lower bacterial alpha diversity. SOM quality did not have a pronounced effect on soil bacterial 

community composition. This suggests that bacterial substrate specialization does not shape soil 

bacterial community composition at the investigated scale.  

 

3.1 Introduction 

Soil bacteria fulfill a wide range of crucial ecosystem functions and are known to differ greatly across 

climatic, ecological and pedological gradients (Fierer, 2017; Delgado-Baquerizo et al., 2018). It is 

therefore crucial to better understand the drivers of soil bacterial community composition to link 

environment and ecosystem functioning. One tool to study the distribution of soil bacteria across space 

are correlational studies along environmental gradients. Based on such studies, soil pH is understood 

to be the strongest driver of soil bacterial community composition at regional to global scales. Below 

neutral soil pH as well as in strongly alkaline soils, alpha diversity generally decreases with increasing 

acidity (Lauber et al., 2009; Rousk et al., 2010; Griffiths et al., 2011; Zhou et al., 2016; Bahram et al., 

2018). 

Soil organic matter (SOM) quantity is the second strongest determinant of soil bacterial community 

composition at regional to global scales (Delgado-Baquerizo et al., 2016; Bahram et al., 2018; Bastida 

et al., 2021). However, in contrast to soil pH, the effects of SOM quantity on soil bacterial community 

composition are biome-dependent. Maestre et al. (2015) and Delgado-Baquerizo et al. (2016) reported 

positive links between bacterial alpha diversity and SOM content for global dryland soils and soils of 
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the southern hemisphere, respectively. In contrast, a survey of high latitudinal soils (Siciliano et al., 

2014) and a regional study across Scotland (Delgado-Baquerizo et al., 2017) found decreased bacterial 

alpha diversity in conditions of higher substrate availability. Mechanistically, several processes could 

link bacterial community composition with SOM quantity. One proposed mechanism is competitive 

exclusion, where taxa that are adapted to high substrate conditions (copiotrophic taxa) outcompete 

taxa that are adapted to low substrate conditions (oligotrophic taxa). This mechanism is supported by 

observations of shifts from oligotrophic to copiotrophic bacteria in response to substrate addition in 

experiments (Fierer et al., 2007; Langenheder and Prosser, 2008; Ng et al., 2014; Bhatnagar et al., 2018; 

Geyer and Barrett, 2019; Stone et al., 2023). Conceptually and in experiments, adaptation to high 

substrate conditions – and consequently competitive exclusion of oligotrophic taxa by copiotrophic taxa 

- are often connected to the potential of organisms to grow fast (Fierer et al., 2007; Ho et al., 2017). 

Microbial adaptations for fast growth are for instance large numbers of low-affinity transporters for 

substrate uptake, trade-offs in the enzymatic toolbox and increased numbers of ribosomal RNA 

operons (Trivedi et al., 2013; Roller et al., 2016; Ho et al., 2017). The oligotrophic-copiotrophic 

continuum forms the backbone of several trait-based concepts to classify the functioning of soil 

bacteria (Ho et al., 2017; Malik et al., 2020). The stress gradient framework expands the idea of 

competitive exclusion and proposes that positive interactions could also play a role in the link between 

alpha diversity and substrate conditions. According to this concept, positive interaction (such as 

specialization and facilitation) takes place between taxa in substrate-limited soils, thereby increasing 

alpha diversity in such systems (Bastida et al., 2021). In addition, intermediary effects of SOM have 

been used to partially explain links between alpha diversity and temperature at the continental to 

global scale. For example, several studies have proposed that increased ecosystem productivity could 

drive higher alpha diversity in warmer systems (Delgado-Baquerizo et al., 2016b; Zhou et al., 2016).  

Importantly, bulk SOM is not a homogeneous entity. Rather, the physicochemical characteristics of SOM 

can vary across a range of qualitative properties. For instance, SOM quality can range from low to high 

oxidation state, from low to high C:N ratio, and from small to large molecules (von Lützow et al., 2008; 

Simpson and Simpson, 2012; Lehmann and Kleber, 2015). Continuously, a diverse range of OM 

compounds enters the soil (Sokol et al., 2019) and gets transformed through microbial decomposition 

(Grandy and Neff, 2008; Roth et al., 2019). Microbial turnover thereby converts plant-derived OM into 

microbial compounds, which are generally smaller and have a lower C:N ratio than plant material. 

Selective microbial turnover can enrich less palatable (i.e., more “recalcitrant”) compounds in the soil. 

Overall, the molecular diversity of OM decreases in the course of microbial transformation (Roth et al., 

2015; Hoffland et al., 2020; Davenport et al., 2023; Jones et al., 2023). The physicochemical 

characteristics of SOM in turn strongly affect its fate and turnover. Microbially transformed OM 

preferentially associates with soil minerals, where it can be physically and chemically protected from 
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further decomposition (Grandy and Neff, 2008; Sollins et al., 2009; Kallenbach et al., 2016; Totsche et 

al., 2018; Heckman et al., 2022).  

As a consequence of the complex mechanisms that are involved in SOM turnover and stabilization, 

climatic decomposition constraints and soil mineralogic properties can lead to a diverse range of SOM 

quality across soil horizons, soil types, and soil development stages (Mainka et al., 2022; S. Stoner et 

al., 2023; Wasner et al., 2023). SOM quality may in turn affect microbial community composition and 

nutrient acquisition strategies. Substrate specialization in bacteria has been shown among soil crust 

bacteria (Baran et al., 2015), and different taxa of soil bacteria varied significantly in the diversity of 

substrates they could use (Y. Wang et al., 2022). Further, it has been shown that more bacterial taxa 

are able to perform competitively well under excess of chemically labile substrates as compared to 

excess of chemically complex substrates (Goldfarb et al., 2011). In situ, soil bacterial communities 

degrade the litter native to their environment more efficiently than chemically different litter that 

stems from other systems (Wallenstein et al., 2013). Only a subset of bacteria possesses an enzymatic 

toolbox to degrade chemically more complex (structural) substrates (Trivedi et al., 2013; Berlemont 

and Martiny, 2015). Consequently, SOM quality has been proposed to be a main driver of soil bacterial 

community composition (Fierer et al., 2007). However, to the knowledge of the authors, the potential 

of SOM quality to shape community composition in the presence of confounding environmental factors 

such as climate or soil biogeochemical characteristics has only rarely been assessed. Even when this 

has been attempted, SOM quality was only approximated by bulk C:N ratio (Cederlund et al., 2014; 

Delgado-Baquerizo et al., 2016b, 2017; Bahram et al., 2018) or soil physicochemical fractionation 

(Szoboszlay et al., 2017). It is therefore an open question, how strongly SOM quantity versus SOM 

quality shape soil bacterial community composition across pedo-climatic gradients.  

In this study, we aimed to investigate the role of SOM quantity versus SOM quality in shaping soil 

bacterial community composition across a large spatial and environmentally contrasting gradient. We 

sampled a set of 35 grassland topsoils (0 – 10 cm) along a 2300 km north-south transect in Chile ranging 

from warm arid steppe to cold tundra climate, thereby covering almost the full climatic range in which 

natural grasslands occur. We expected that soil bacterial diversity and community composition would 

be linked to SOM quantity as well as SOM quality. Experimental and regional studies have found 

competitive exclusion to be a dominant mechanism to shape bacterial diversity in resource rich 

conditions. Based on this, we hypothesized (1) to find a negative link between SOM quantity and alpha 

diversity. Further, decomposition has been shown to lower the qualitative diversity of SOM, and soil 

bacteria are known to exhibit substrate specialization in experimental conditions. We therefore 

hypothesized (2) to find higher alpha diversity in systems with a lower degree of bulk SOM 

decomposition. In order to investigate links between abundance patterns of taxonomic units and 

biogeochemical variables, we conducted Illumina MiSeq barcoding of a region of the 16S rRNA. We 
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further measured relevant physicochemical properties of the soils, compiled climatic data of the sites 

and provided a detailed characterization of SOM quality. For this qualitative SOM characterization, we 

employed RockEval pyrolysis, isotopic measurements, diffuse reflectance infrared spectroscopy as well 

as UV-Vis spectroscopy.  

 

3.2 Material and Methods 

3.2.1 Soil sampling 

The A-horizons of 35 topsoils (0 - 10 cm) under extensive and natural grassland were sampled in the 

summer seasons of 2017 and 2018 across a large scale in Chile, covering 10 World Reference Base soil 

orders. The soils along this geoclimatic gradient span soil organic carbon (SOC) contents from 0.6 to 

18.7 % (Figure 3-1). The gradient was chosen because it represents a large variability in climatic and 

geochemical soil conditions as well as organic matter (OM) properties, while at the same time it allows 

to constrain the analysis to a coherent type of land cover systems (grassland-dominated biomes). A 

further criterion for site selection was a carbonate free soil condition (null HCl reaction), resulting in a 

pHCaCl2 from 4.1 to 6.7. After sampling, the samples were sieved to 2 mm, and kept frozen at -20 °C until 

further processing. 

 

3.2.2 Climate classification 

Climate classification of the sites was done following Köppen-Geiger with the R-package ‘kgc‘ (Bryant 

et al., 2017). Mean annual temperature (MAT) and precipitation (MAP) were taken from WorldClim 

Version 2 (Fick and Hijmans, 2017). Mean annual potential evapotranspiration (PET) was taken from 

(Trabucco and Zomer, 2018). Both datasets average monthly climate data from 1970 to 2000, at a 

spatial resolution of 30 arc seconds. Water balance was calculated monthly as MAP minus PET. The 

gradient covers a MAT range from 3.0 to 17.1 °C, a range in water balance from -1382 to 1704 mm and 

Köppen-Geiger climate zones ranging from arid steppe (Bsk) at lower latitudes in the Chilean north to 

polar tundra (ET) in the Chilean south. Most sites (30) are in the temperate climate zone, under climates 

with cold and warm summers, with or without dry season (Cfb, Cfc, Csb, Csc). Dominant vegetation, 

landscape position and soil moisture regime were either characterized on site or supplemented from 

previous surveys (detailed information in Chapter 2).  

 



68 
 

 

Figure 3-1. Map of the investigated sites (n = 35) across Chile. On the map, SOC contents are color-

coded. In addition, two climatic variables (mean annual temperature (MAT); water balance (MAP-PET)), 

two soil physicochemical variables (soil pH; Secondary and content (sand sec.) and two descriptors of 

organic matter quality (C:N ratio of bulk soil, relative peak area (RPA) of aliphatic groups based on 

infrared spectroscopy) are shown along the gradient. Points show measured values (x-axes) and the 

location (latitude) at the same scale as labeled on the map (y-axis). Lines are for visual aid only 

(representing fits of general additive models with k = 7, with standard error of the fits).  

 

3.2.3 Measurement of biogeochemical variables 

Soil pH and texture 

As a measure for soil acidity, an important criteria for soil biogeochemistry, soil pH was determined in 

0.01 M CaCl2 solution (fresh soil:solution ratio of 1:5). After 10 min of shaking, the samples were left to 

rest for 24 h and again shortly shaken before pH was measured in suspension using a pH meter (713 

pH Meter, Metrohm, Switzerland).  

Soil texture was determined via laser diffraction using a particle size analyzer (PSA) (LS 13 320, Beckman 

Coulter, USA). Importantly, in our study we determined soil texture as soil secondary texture, namely 

the textural composition of soil without disintegrating stable microaggregates and oxy-hydroxide 

concretions. These stable units are structural components of natural soils (Totsche et al., 2018), and 

therefore strongly influence the physicochemistry of the soil microbial environment. This is why further 

statistical analyses were focused on the sand fraction (as the fraction dominated by a mix of secondary 

concretions and stable aggregates + primary sand particles) versus the clay fraction. Briefly, fresh soil 
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was shaken for 3 h with 10 % Na-hexametaphosphate to dissolve macroaggregates, and the resulting 

particles were quantified with the PSA. Particle size contributions were calculated as percent of total 

particle volume, and size classification followed the WRB system (IUSS Working Group WRB, 2015): clay 

< 2 µm, 2 µm < silt < 63 µm, 63 µm < sand < 2000 µm. 

 

Quantity and quality of bulk SOM 

Soil organic carbon (SOC) and total soil nitrogen (TN) contents were quantified via total combustion 

using a CN analyzer (Vario MAX Cube, Elementar GmbH, Germany). Bulk C:N ratios were calculated 

using the molar ratio of SOC:TN. Four different approaches were used to characterize the degree of 

transformation and stabilization of bulk SOM: (i) RockEval pyrolysis, (ii) diffuse reflectance infrared 

Fourier transform spectroscopy (DRIFTS), (iii) the relative proportion of organic carbon (OC) in the 

particulate organic matter fraction (POM), and (iv) the shift in the 13C/12C isotope ratio between OC in 

POM and bulk SOC.  

(i) RockEval pyrolysis was done based on Sebag et al. (2016) to assess thermostability of SOM. Briefly, 

milled soil samples were pyrolyzed on a Rock-Eval 6 device (Vinci Technologies, France), first in an N2 

atmosphere between 200 to 650 °C, and second in an oxidized atmosphere between 400 and 850 °C, 

both with a heating rate of 25 °C min-1. Subsequently, the Rock-Eval I-Index for the degree of biological 

transformation of SOM was calculated exactly as introduced in Sebag et al. (2016). The higher the I-

index value, the less biologically transformed is the bulk SOM.  

(ii) DRIFTS was done to assess the relative dominance of functional groups in SOM. Briefly, milled 

material (< 50 µm) was scanned in duplicate in the mid-infrared region (7500 to 600 cm-1) at a 

resolution of 2 cm-1, using a Fourier transform IR (FT-IR) spectrometer with a high-throughput screening 

extension (HTS-XT) (Bruker Optics, Vertex 70, Germany). Spectra were normalized against a gold 

background (Infragold NIR-MIR Reflectance Coating, Labsphere) and corrected for atmospheric CO2 

and H2O in the OPUS spectrometer software (Bruker Optics, Germany), and 32 co-added scans per 

sample were averaged. All subsequent spectra processing was done using the R-packages 

“simplerspec” (Baumann, 2020) and “prospectr” (Stevens and Ramirez-Lopez, 2020). For correction of 

light scatter, spectra were resampled to a range of 4000 to 600 cm-1 with duplicates averaged and 

normalized using the normal variate method. Based on published information (Parikh et al., 2014), six 

wavenumber ranges were assigned to three types of functional groups: aliphatic C-H (anti)symmetric 

stretches: 2950 – 2910 and 2866 – 2836 cm-1; aromatic C=C stretches: 1540 – 1524 and 1520 – 1510 

cm-1; carboxylic acid C=O stretch and carboxylate C-O asymmetric stretch: 1734 – 1718 and 1650 – 1636 

cm-1. Peak areas of the wavenumber ranges were integrated with a local baseline correction and for 

each of the three functional groups, the peak area was divided by the summed peak area of all three 
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groups to obtain relative peak areas (RPA). Increasing RPA carboxylic and decreasing RPA aliphatic 

values indicate a progressing degree of SOM decomposition (Ryals et al., 2014; Mainka et al., 2022).  

(iii) To obtain the relative proportion of OC in the POM fraction as a measure for the amount of 

potentially labile accumulating SOM, soil physical fractionation was conducted, as described in detail 

in Chapter 2. Briefly, a combined size and density SOC fractionation was done based on Zimmermann 

et al. (2007). We defined POM as particles > 63 µm and lighter than 1.6 g cm-3. First, air dried soils were 

dispersed by ultrasonication (15 g dry weight in 100 ml nanopure water) with an energy input of 24 J 

ml-1 (50 Hz, 33.5 W). The sonicated soil was then wet sieved with nanopure water over a 63 µm mesh 

size aperture sieve until the throughflow became clear. The fraction > 63 µm was air-dried, and a 

subsample of 8 g was further separated by density fractionation. For this, the subsample was first mixed 

in 40 ml of 1.6 g cm-3 SPT using a vortex for 10 seconds, and then centrifuged (Sigma 3-16 KL, 15 min, 

3000 xg). The floating light POM fraction was decanted onto 0.45 µm mesh size Whatman glass filters 

(grade GF/F), to first remove the SPT and then clean the fraction with 100 ml nanopure water with the 

suction of a vacuum pump, before finally being oven-dried at 50 °C. The heavy fraction which remained 

as a residual after the decantation (stable microaggregates) was washed five times by addition of 40 ml 

nanopure water, mixing on a Vortex, centrifugation (settings as above) and decantation, before being 

oven-dried at 50 °C. Organic carbon content and 13C/12C isotope ratios of all fractions were quantified 

on an EA-IRMS (FlashSmart Elemental Analyzser coupled with a Finnigan DELTAplusXP, Thermo Fisher 

Scientific, USA), and the contribution of C in the POM fraction to bulk SOC was calculated based on the 

POM organic carbon content and the relative mass contribution of this fraction to bulk soil. This value 

is expressed as a percentage and referred to as “OC in POM fraction”. The higher this value, the more 

untransformed SOM has accumulated freely (and thus physically unprotected) in the soil.  

(iv) To quantify the shift in the 13C/12C isotope ratio between POM and bulk SOC, the 13C/12C isotope 

ratio of bulk soil was quantified using EA-IRMS as described above, and both 13C/12C isotope ratios were 

expressed as δ13C values relative to the Vienna Pee Dee Belemnite (VPDB). Subsequently, the shift 

(referred to as 13C shift) was calculated as the ratio of POM-δ13C over bulk-δ13C. The higher this value 

is, the more microbially transformed the bulk SOM relative to POM input, because microbial 

decomposition leads to an accumulation of 13C relative to 12C (Dijkstra et al., 2006; Lerch et al., 2011). 

 

Quantity and quality of extractable SOM 

We used KCl-extractable SOM as a proxy for microbially available SOM. For this, we extracted soils with 

1 M KCl (fresh soil:solution ratio of 1:15). After 1 h on a horizontal shaker, the extracts were filtered 

through Whatman 42 filter paper and concentrations of organic C (KCl-OC) and total N (KCl-N) were 

determined with a TOC-L Analyzer, coupled with a TNM-L unit (Shimadzu, Switzerland). Using a Tecan 

Infinite M200 microplate reader (Tecan GmbH, Austria) we then quantified nitrate (NO3
-) and ammonia 
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(NH4
+) in the KCl extracts colorimetrically, based on the VCl3/Griess reaction and the Berthelot reaction, 

respectively (Hood-Nowotny et al., 2010). We considered the sum of NO3
--N and NH4

+-N as inorganic N 

(KCl-Ni), and estimated the concentration of extractable organic N (KCl-No) by subtracting KCl-Ni from 

KCl-N. The C:N ratios of SOM in the extractable pool were subsequently calculated using the molar ratio 

of KCl-OC:KCl-No. To characterize the chemical properties of the extractable SOM, ultraviolet-visible 

(UV-Vis) spectroscopy was performed (Li and Hur, 2017). In brief, the pH of the extracts was adjusted 

to a value of 2, and the UV absorptivity between 200 to 600 nm was measured at a temperature of 20 

°C, using a Cary 60UV-Spectrophotometer (Varian, USA) with a cell length of 1 cm. All absorbances were 

blank corrected. The aromaticity of extractable SOM (KCl Aromaticity) was calculated as the molar 

absorptivity at 260 nm, based on the Beer-Lambert law and expressed as L mol-1 cm-1 (Dilling and Kaiser, 

2002). Higher values indicate that a higher proportion of the SOM has aromatic groups. The degree of 

humification of extractable SOM (KCl Humification) was estimated based on the ratio of absorbance 

values at 300 nm over 400 nm (Claret et al., 2003; Li and Hur, 2017), where higher values indicate lower 

degrees of humification. The molecular weight of extractable SOM (KCl Molecular weight) was 

estimated based on the ratio of absorbance values at 250 nm over 365 nm (Peuravuori and Pihlaja, 

1997; Li and Hur, 2017), where higher values are linked to lower SOM molecular weight. 

 

3.2.4 Bacterial abundance and community composition 

DNA extraction, target amplification and sequencing 

Total DNA was extracted from the bulk soil of the 35 sites in triplicates, resulting in 105 samples. The 

quantity of extracted soil was adjusted according to the SOC content, in order to maximize extraction 

efficiency: for soils with SOC < 3.0 %, each extraction was of 500 mg fresh soil , for soils with 3.0 % < 

SOC < 7.0 %, each extraction was of 300 mg, and for soils with SOC > 7 %, each extraction was of 250 

mg. DNA was extracted with the DNeasy® PowerSoil® Pro Kit (Quiagen, Germany), following the 

manufacturer manual. The DNA content of each aliquot was quantified with Nanodrop (Thermo Fisher 

Scientific, Germany), and the V3-V4 region of the prokaryotic (bacterial and archaeal) small-subunit 

(16S) rRNA gene was amplified with the primers 341F (CCT AYG GGD BGC WSC AG) and 806R (GGA CTA 

CNV GGG THT CTA AT) as described in Frey et al. (2016). Polymerase chain reaction (PCR) amplification 

with tailed primers was done on a Veriti™ 96-Well Fast Thermal Cycler (Applied Biosystems, USA) using 

20 ng DNA per reaction, following the protocol modified from Frey et al. (2016): an initial denaturation 

at 95 °C for 2 min, 36 cycles of denaturation at 94 °C for 40 s, annealing at 58 °C for 40 s and elongation 

at 72 °C for 1 min followed by a final elongation at 72 °C for 10 min. The amplicons were purified with 

Agencourt AMPure XP beads (Beckman Coulter, Berea, CA) and were quantified fluorometrically in 

microplates with the QuantiFluor® ONE dsDNA System (Promega, USA) following the manufacturer 
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manual, using a Tecan Infinite M200 microplate reader (Tecan GmbH, Austria). Purified amplicons were 

subsequently sent to the Genome Quebec Innovation Center (Montreal, Canada) for barcoding using 

the Fluidigm Access Array technology and 250 base pairs paired-end sequencing running for 518 cycles 

on the Illumina MiSeq v3 platform (Illumina Inc., USA). Raw sequences were deposited in the NCBI 

database under the accession number PRJNA1066703. 

 

Sequence processing with the dada2 pipeline 

Sequence processing was performed in R Studio (Version 2022.2.3.492) using the dada2 workflow 

(Callahan et al., 2016). Primers were trimmed off the left sides of the reads, and the right sides of the 

reads were truncated to 245 and 235 bases for forward and reverse reads, respectively, to improve 

matching quality while maintaining an overlapping region of 15 base pairs. PhiX genomes were 

removed. For sample inference, all samples were pseudo-pooled. Forward and reverse reads were 

merged with a minimum overlap of 12 base pairs, allowing for 1 mismatch. Chimeras were removed 

with default settings. Across all 105 samples, a total number of 3051949 reads were retained, on 

average 29066 per sample. A summary of the dada2 workflow is given in Table S3-1. Taxonomy was 

assigned by using the Silva nr99 v138.1 database (Quast et al., 2012) as a training set, and with a 

minimum bootstrap confidence for assigning a taxon set to 60 %. Subsequently 281 amplicon 

sequencing variants (ASVs) that were not bacteria were removed from the dataset.  

 

Rarefying of reads 

The minimum number of reads across all 105 samples was 17188. Rarefying was done by iterative 

random subsampling without replacement (100 iterations) to 17188 reads, implemented by the 

function “rrarefy” in the R-package “vegan” (Oksanen et al., 2022). All subsequent analysis was 

conducted on rarefied data. Rarefying is accepted for subsequent biodiversity analysis, (Cameron et al., 

2021; Schloss, 2023), but is not suitable for differential abundance analysis in experimental contexts, 

due to variance inflation (McMurdie and Holmes, 2014). To avoid confusion, we explicitly point out that 

the problem of variance inflation only affects group-wise regression analysis in the context of 

differential abundance analysis, but not correlation analysis as presented in this study (see section 

Taxa-specific distributions assessed with relative read abundance).  

 

Sequence processing of rarefied reads to derive taxonomic units 

The rarefied community data of all 105 samples was filtered to keep only reads that are desirable for 

subsequent linkage between taxon-specific abundance patterns and biogeochemical variables 
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(Supplementary Text S3-1). The applied workflow for sequence filtering and processing included four 

goals; (1) generate taxonomic units at the highest possible taxonomic resolution, while (2) excluding 

very rare (i.e. not ubiquitous) taxa from analysis, (3) removing redundant abundance information and 

(4) minimizing unnecessary loss of abundance information. To achieve these four goals, we applied a 

workflow in three steps (Figure S3-1). In step 1, we aggregated the reads of assigned ASVs at five levels 

of taxonomic resolution (in the order from low to high taxonomic resolution: Phylum, Class, Order, 

Family and Genus). At each level (plus at the ASV level), the aggregated data was filtered for ubiquitous 

taxa. We defined ubiquitous taxa as taxa that were present in more than half of the 105 samples. The 

remaining taxa (that were present in less than half of the 105 samples) were defined as rare taxa. With 

this filtering step, we removed the reads of rare taxa and retained all reads that belonged to taxa that 

were ubiquitous at the respective levels of taxonomic resolution. In step 2, we aggregated the reads of 

rare taxa within each lower-resolution taxon and removed the reads of the respective lower-resolution 

taxon from further analysis. This aggregation of rare taxa was done by subtracting the sum of reads of 

all ubiquitous taxa within a lower-resolution taxon from the reads of the respective lower-resolution 

taxon (Figure S3-1). The resulting aggregated units of rare taxa reads were then referred to as “ΣRare-

groups”. This procedure of aggregating rare taxa into ΣRare-groups allowed to test related rare taxa for 

coherent patterns at lower taxonomic resolution, where they jointly fulfilled the criterion of ubiquity. 

Taxa belonging to unassigned lower-resolution taxa (e.g. genera within an unassigned family) were 

excluded from this procedure, because they were not clearly relatable to specific lower-resolution taxa. 

Thus, taxonomic units were only retained at a taxonomic resolution lower than ASV, if either (i) they 

represented aggregated rare taxa (ΣRare-groups), if (ii) they were unassigned (and thus taxonomic 

“dead ends'' without clearly relatable higher-resolution taxa), or if (iii) they did not contain any 

ubiquitous taxa at a higher taxonomic resolution. This approach removes redundant read information 

and therefore prevents multiple testing in downstream analysis. In step 3, the newly aggregated groups 

of rare taxa (ΣRare-groups) were in turn filtered by the same criterion of ubiquity as described in step 

1. Through this processing, we obtained 347 taxonomic units that included the sum of the reads of all 

members of a taxonomic group, and 90 taxonomic units that included just the sum of the reads of the 

rare members of a taxonomic group (i.e., ΣRare-groups) ( 

Figure S3-2a). Taken together, the data was aggregated into 436 taxonomic units at the highest 

taxonomic resolution at which they were assigned and at which they fulfilled the criterion of ubiquity. 

Each taxonomic unit is unique in the dataset (i.e. no overlap of ASVs with other taxonomic units). For 

more detail on the sequence processing, please see Supplementary Text S3-1. We subsequently 

averaged the triplicate of each site by taking the mean abundance of each retained taxonomic unit, 

and all taxa abundances were expressed as relative abundance values (%).  
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3.2.5 Statistical analysis 

All statistical analyses were performed in R Studio (Version 2022.2.3.492). All correlation matrices were 

done with the R-package “corrplot” (Wei and Simko, 2021), and the figure of the taxonomic tree in the 

supplementary material was created with the R-package “collapsibleTree” (Khan, 2018). 

 

Simplification of biogeochemical variables 

Measured biogeochemical variables were tested for outliers with Rosner´s test, using the R-package 

“EnvStats” (Millard, 2013), and significant outliers which were obviously caused by laboratory artifacts 

were replaced with the mean value of the respective variable (excluding significant outliers). This was 

done to avoid outlier based biases in downstream regression and coefficient analysis. The rotated 

principal component analysis (rPCA) which was applied in subsequent analysis cannot process missing 

values, which is why simple removal of outliers insufficient and replacement was necessary. Ranges of 

the biogeochemical variables are shown in Table S3-2. The biogeochemical variables were in parts 

highly autocorrelated (Figure S3-3a). To reduce autocorrelation and improve interpretability of the 

downstream analysis, we therefore used the R-package “psych” (Revelle, 2022) to perform dimension 

reduction with rPCA, using varimax rotation on scaled and centered variables. Rotation of the PCA 

reduces the number of variables that correlate with individual rotated components (RCs) and thus 

facilitates the interpretability of the RCs. The 8 RCs with the largest Eigenvalues were retained, in order 

to keep 80 % of the variance of the dataset. The retained RCs were interpreted based on their dominant 

loadings (loading ≥ 0.5, see Table S3-3), minimizing autocorrelation (Figure S3-3b). These 8 RCs were 

subsequently used as predicting variables in the downstream regression and correlation analyses. 

 

Drivers of bacterial diversity  

To investigate links between the environment and bacterial diversity, we conducted linear regression 

analysis. Diversity calculations were done at the ASV level. ASV singletons were removed from the 

rarefied triplicates (by setting their counts to zero), and mean community composition for each site 

was calculated based on the remaining counts (which accounted for 96.4 to 99.1 % of relative read 

abundance). Zeros were considered as zeros for the calculation of means. For alpha diversity, we 

calculated bacterial richness (observed ASVs) and Shannon diversity index with the R-package “vegan” 

(Oksanen et al., 2022). A model to predict bacterial richness and Shannon indices was built using a 

cross-validated stepwise regression approach to select the most explanatory RCs, implemented in the 

R-package “caret” (Kuhn, 2008). Briefly, the independent variables were scaled, and the data was split 

100 times into a 75 % training set and a 25 % validation set. Model performance was assessed using 

RMSE, and a maximum of four (out of eight potential) RC predictor variables were retained to constrain 
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model complexity and avoid overfitting. The distribution of the residuals was assessed with the 

Shapiro-Wilk and the Breusch-Pagan tests, and the explanatory content of each variable (expressed as 

R2) was extracted with the R-package ”relaimpo” (Grömping, 2006). For beta diversity, permutational 

multivariate analysis of variance (PERMANOVA) was conducted using a Bray-Curtis dissimilarity matrix 

of the bacterial community data. The analysis was conducted with 1000 permutations and 

implemented with the adonis2 function of the R-package “vegan” (Oksanen et al., 2022).  

 

Taxa-specific distributions assessed with relative read abundance  

The relative read abundance of a taxonomic unit can change along a gradient either because absolute 

read abundance of this taxonomic unit changes (taxa-inherent trends), or because the absolute read 

abundances of other taxa change (Morton et al., 2017; Props et al., 2017; Alteio et al., 2021). We 

therefore considered relative read abundance as a measure for the dominance of the investigated 

taxonomic unit. This definition acknowledges that relative abundance trends do not necessarily stem 

from taxa-inherent properties alone, while it allows to interpret the valuable information that can be 

derived from relative abundance patterns. Different bacterial taxa can contain differing numbers of 16S 

operons (Bonk et al., 2018; Alteio et al., 2021), and therefore read counts do not directly translate into 

cell counts. For this study, we assume that 16S operon numbers are consistent within taxonomic units 

across the gradient. To the knowledge of the authors, this assumption is quietly inherent in all gradient 

studies of microbial communities. We therefore subsequently refer to relative read abundance as 

“relative abundance”.  

To investigate the covariation of taxonomic units and biogeochemical conditions along the gradient, we 

conducted taxa-specific correlation analysis. In brief, we conducted Pearson correlation analysis 

between relative abundance of each individual taxonomic unit that remained after filtering (see Figure 

S3-1 for detail) and the biogeochemical RCs. To reduce type I errors (false positives), we conducted a 

false discovery rate (FDR) correction on the correlation results. The FDR correction was implemented 

following an adjusted Benjamini-Hochberg correction (described as the “BL” approach in (Korthauer et 

al., 2019) across all 3496 (436 taxonomic units x 8 RCs) correlations. Specifically, p-values were 

corrected by the conservative Benjamini-Hochberg correction, before being multiplied by an estimate 

of the proportion of true null hypotheses (π0) based on the uncorrected p-values. Following (Korthauer 

et al., 2019), the π0 estimates were obtained with the R-package “swfdr” (Leek et al., 2022), using 

ubiquity (i.e. the percentage of sites at which taxa were present) as a covariate to adjust π0, rendering 

adjustment of taxa with more observations less conservative. Correlations with adjusted p-values ≤ 0.1 

were retained for discussion. This means that the retained correlations will contain less than 10 % false 

positives. Relative abundances of the correlated taxonomic units were summed up for each soil to 

obtain the percentage of explainable relative abundance in each soil. We conducted cross-validated 
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stepwise regression (as described in section Drivers of bacterial diversity) on this sum in order to 

describe in which soils much or little relative abundance was explainable with independent soil and 

environmental variables. We conducted a power analysis using the R-package “pwr” (Champely, 2020) 

to estimate the probability of overlooking existing links between biogeochemistry and patterns of 

taxonomic units in the correlation analysis. For a probability of type II errors (false negatives) of 0.2 

(i.e., a statistical power of 0.8) and a p-value of 0.1, the lowest reliably detectable Pearson correlation 

coefficient in a single test was 0.41. However, accounting for FDR correction (using the highest 

unadjusted p-value that remained after discarding all correlations with an adjusted p-value > 0.1, i.e. 

p-value 0.0067), the lowest reliably detectable Pearson correlation coefficient was 0.55. 

 

3.3 Results 

3.3.1 Simplification of biogeochemical variables 

Among the key soil and climatic variables selected with relevance for microbial processes, the gradient 

spans a variation of SOC from 6 to 187 g kg-1, soil pH values between 4.1 and 6.7, (secondary) particles 

in the sand size between 16 to 93 % and (secondary) clay-sized particles between 1 and 9 %. SOM 

quality variables ranged from 12.1 to 20.7 for the bulk C:N ratio, 4 to 39 % OC in POM, and 42 to 91 % 

aliphatic RPA. The simplification of the 19 measured biogeochemical variables by rotated principal 

component analysis (rPCA) resulted in eight rotated components (RCs) free of autocorrelation (Figure 

S3-3). The ranges of all 19 measured biogeochemical variables are shown in Table S3-2, and the 

loadings assigned with the 8 RCs are shown in Table S3-3. RC1 is primarily associated with SOM quantity 

representing total as well as available (i.e. KCl-extractable) organic carbon and nitrogen in the bulk soil. 

This dimension is also positively associated with the balance of precipitation and evapotranspiration 

(MAP-PET) (Table S3-3), because wetter systems along the gradient accumulate more SOM (Chapter 2). 

Five RCs (2, 4-8) represent different aspects of organic matter quality (“SOM quality A to E”) that were 

captured with different approaches to characterize SOM chemistry, namely UV-Vis spectroscopy (RC2), 

DRIFTS (RC5), the shift in the 13C/12C isotope ratio between POM and bulk SOC (RC6), and the bulk C:N 

ratio (RC7). RC4, referred to as “SOM quality B (POM)”, accounted for the majority of correlations 

between taxa-specific abundance patterns and SOM quality variables (see below). This RC was mainly 

loaded with the relative proportion of OC in the free POM fraction, and with the aromaticity in the KCl-

extractable pool. Notably, SOM quality B (POM) was also negatively correlated with the precipitation 

and evapotranspiration balance (MAP-PET) (Table S3-3). This is because in wet and cool soil systems, 

an increasing fraction of SOM is at least partially protected from microbial decomposition by 

association with stable microaggregates (Chapter 2). The variable SOM quality B (POM) consequently 



77 
 

reflected systems in which parts of SOM were present as free (unoccluded) coarse plant litter that is 

potentially available for decomposition. The main soil physicochemical dimensions are captured by two 

distinct RCs, in which RC3 represents soil texture and RC8 soil pH.  

 

3.3.2 Drivers of bacterial diversity 

Bacterial alpha diversity was lowest in the soils at the wet and cool extremes of the investigated 

gradient (northern Patagonia), and highest in the warmer and drier region of central Chile (Figure 3-2).  

 

 

Figure 3-2. Results of the microbial analysis along the Chilean gradient. The color code on the map 

shows for each site the percentage of relative abundance that can be explained with biogeochemical 

variables. In addition, alpha diversity (calculated as the Shannon index) and the relative abundance 

(RA) of rare amplicon sequencing variants (ASVs) are shown along the gradient. Rare ASVs are defined 

as ASVs that were present in less than half of the 105 samples. Points represent measured data points, 

and the y-axes represent latitude at the same scale as labeled on the map. Lines are for visual aid only 

(fits of general additive models with k = 7, with standard error of the fits).  
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Both bacterial richness (p < 0.001, d.f. = 32, adj. R2 = 0.38) as well as Shannon diversity (p < 0.05, d.f. = 

32, adj. R2 = 0.17) showed a negative link with SOM quantity. Richness showed a strong positive link 

with soil pH, and Shannon diversity a weaker negative link with SOM quality E (C:N ratio) (Figure 3-3). 

Beta diversity (investigated as Bray-Curtis dissimilarity) was weakly linked to six out of eight RCs, 

without a clearly dominant predictor emerging. Note that an analysis of patterns between soil mass 

and alpha diversity among the triplicates confirmed that the negative link between alpha diversity and 

SOM quantity is not an artifact of SOC-based soil mass adjustment in the DNA extraction step 

(Supplementary Text S3-2 and Figure S3-4). 

 

 

Figure 3-3. Significant predictors of alpha and beta diversity. Circle sizes indicate the proportion of 

variance explained by the individual predictors (unadjusted R2, ranging from 0.04 to 0.23). Light orange 

indicates a negative and dark blue a positive relationship. In the case of beta diversity, circles are open 

because for multivariate analysis of variance using distance matrices interpretable coefficients cannot 

be assigned. UV-Vis = ultraviolet-visible spectroscopy; POM = particulate organic matter; DRIFTS = 

diffuse reflectance infrared spectroscopy.  

 

3.3.3 Drivers of the relative abundance of bacterial taxonomic units along the 

gradient 

On average, the presence of every third read (29.7 % of average relative abundance) could be explained 

with the tested biogeochemical variables, with a range from 12.5 % to 59.6 % for specific soils (Figure 

3-2). Importantly, more relative abundance could be explained in soils with high SOM quantity and 

acidic soil pH (cross-validated stepwise regression, p < 0.001, d.f. = 28, adj. R2 = 0.54) than for soils with 

low SOM and neutral soil pH. Of the 436 taxonomic units tested, the relative abundances of 11.5 % (n 
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= 50) were correlated with soil pH, 5.5 % (n = 24) with SOM quantity and 6.0 % (n = 26) with different 

proxies of qualitative composition of SOM (Figure 3-4a). A summary of all correlation results is 

presented in Supplementary File S3-1. Averaged across the gradient, soil pH, SOM quantity and SOM 

quality could be linked with 14.4 %, 10.1 % and 4.6 % of relative abundance, respectively. The main 

SOM quality variable that correlated with abundance patterns was SOM quality B (POM). All 

correlations with this variable were positive (Supplementary File S3-1). Across all levels of taxonomic 

resolutions, a similar percentage of ΣRare-groups and coherent taxa showed correlations with 

biogeochemical variables (Figure S3-5). This shows that ΣRare-groups can form consistent functional 

entities to the same extent as coherent taxa. Aggregation of rare taxa into ΣRare-groups is therefore a 

worthwhile step in order to maximize the amount of relative abundance data that can be used for 

correlation analysis at the highest possible taxonomic resolution. Note that an analysis of patterns 

between soil mass and relative abundances of taxonomic units among site triplicates confirmed that 

the positive links between relative abundance and SOM quantity were not an artifact of SOC-based soil 

mass adjustment in the DNA extraction step (Supplementary Text S3-2 and Figure S3-6). 

 

 

Figure 3-4. a) Percentage of investigated taxonomic units with relative abundances that correlate with 

biogeochemical variables across the dataset. b) Mean relative abundance of taxonomic units that 

correlate with the biogeochemical variables across the dataset. Significance threshold for all 

correlations: FDR-adjusted p-value ≤ 0.1. FDR = false discovery rate; UV-Vis = ultraviolet-visible 

spectroscopy; POM = particulate organic matter; DRIFTS = diffuse reflectance infrared spectroscopy. 
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3.4 Discussion 

3.4.1 Soil biogeochemistry explains large parts of soil bacterial community 

composition  

The relatively high proportion of relative abundance explainable by biogeochemical variables 

underlines the important role of biogeochemistry in shaping soil bacterial community composition. We 

could explain the largest part of bacterial community composition (up to 59.6 % of relative abundance) 

in soils with high SOM quantity and lower soil pH, found in the wet central region of the gradient (Figure 

3-2). These soils were mostly Andosols, but also Cambisols and an Acrisol. In contrast, in the drier and 

more diverse soils towards the mediterranean climate of central Chile and towards the tundra systems 

of southern Patagonia, only a smaller fraction (as low as 12.5 % of relative abundance) of community 

composition could be explained with the investigated biogeochemical variables. Soils in which only a 

small fraction of explainable community composition was explainable encompassed a Gleysol, a Luvisol 

and Kastanozems as well as Mollisols, but also Cambisols and Andosols.  

 

3.4.2 Alpha diversity decreases with soil pH 

We found a positive relationship between richness and soil pH (Figure 3-3) in the investigated range of 

soil pH (moderately acidic, pH 4.1 to 6.7) which is consistent with previous findings (Lauber et al., 2009; 

Rousk et al., 2010; Griffiths et al., 2011; Zhou et al., 2016; Bahram et al., 2018). By removing 

autocorrelation between soil pH and SOM quantity through rotated component analysis (Figure S3-3 

and Table S3-3), we found a direct negative effect of low soil pH on alpha diversity. Low pH represents 

a major stress for (soil) bacteria, which have cell internal pH values close to neutral (Lauber et al., 2009; 

Krulwich et al., 2011). Consequently, prevailing under acidic conditions requires a suite of specialist 

adaptations (Krulwich et al., 2011; Guan and Liu, 2020; Lund et al., 2020; Ramoneda et al., 2023). Low 

soil pH, which we predominantly found in the Andosols and Cambisols of northern Patagonia, may 

select for adapted specialists. In contrast, a comparatively larger number of rare microbial taxa were 

found at near-neutral soil pH values, where alpha diversity increased.  

 

3.4.3 Alpha diversity is negatively linked to SOM quantity 

As hypothesized, both measures of alpha diversity (richness and Shannon index) had a strong negative 

link to SOM quantity along the gradient. Low-SOM soils (found across a diversity of soil groups such as 

an Arenosol, a Planosol, Kastanozems, a Gleysol and a Gleysol) had a higher richness of amplicon 

sequencing variants (ASVs) than high-SOM soils (mostly Andisols and Cambisols) (Figure 3-2). This is, 
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to our knowledge, the first time that this pattern has been found across a large geoclimatic gradient. 

Our finding is in line with previous experimental studies (Langenheder and Prosser, 2008; Geyer and 

Barrett, 2019) as well as a survey of high latitudinal soils (Siciliano et al., 2014) and a regional study 

(Delgado-Baquerizo et al., 2017), which all observed decreased soil bacterial alpha diversity in 

conditions of higher substrate availability. However, this pattern could potentially be explained by two 

contrasting mechanisms as follows.  

 

First, akin to macroecology, a possible underlying mechanism could be competitive exclusion. In 

systems with high substrate availability, taxa that are well-adapted to copiotrophic conditions could 

outcompete other taxa, and thus lead to lower alpha diversity. The observation of competitive 

exclusion across the studied gradient would have an interesting nuance - the long time scale (beyond 

short term substrate pulses) at which the mechanism would be required to act in order to drive 

bacterial community composition. The soils in this study constitute a gradient of SOM quantity in the 

sense of a long-term condition (and not a short-term flush of substrate). The native bacterial 

communities are therefore adapted to the substrate status that is measured as SOM quantity. The 

lower microbial diversity observed in the high-SOM Andosols and Cambisols in the central region of 

this gradient (Figure 3-2) would therefore imply that even in the long term, most soil bacteria are not 

capable of competitively coping with conditions of high substrate availability. This conclusion would be 

in line with the observation of limited growth-rate plasticity of taxa in response to environmental 

changes across ecosystems, as reported by Morrissey et al. (2019). A related mechanism that could 

lead to competitive exclusion in substrate rich systems are microbial interactions. The stress gradient 

framework suggests more positive interaction (such as specialization and facilitation) between species 

in substrate-limited soils (Bastida et al., 2021). Similarly, high substrate supply facilitated negative 

interactions which resulted in competitive exclusion in an artificial microcosm experiment (Ratzke et 

al., 2020). SOM quantity could further reflect effects of soil bacterial density (Schnecker et al., 2019). 

Soils with higher SOM quantity have higher microbial biomass. This could translate into increased 

proximity between bacterial cells (Raynaud and Nunan, 2014), perhaps leading to increased 

antagonistic interaction resulting in the exclusion of more taxa (Cordero and Datta, 2016).  

 

The second explanation that could describe the observed patterns of microbial diversity and richness 

equally well would be a positive correlation between richness and actual SOM turnover (not quantified 

in this study). At continental to global scales, positive links between alpha diversity and temperature 

have been established (Delgado-Baquerizo et al., 2016b; Zhou et al., 2016). These links were partially 

hypothesized to be driven by increased ecosystem productivity in warmer systems. These observations 

caution to consider the meaning of SOM quantity for microbial diversity carefully. Does a larger amount 
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of SOM automatically reflect a resource bonanza in which copiotrophic bacteria can outcompete 

others? Or could high SOM quantity on the contrary rather imply that SOM accumulates because 

microbial decomposition of SOM is limited by other factors, such as climatic constraints? Along the 

examined geoclimatic gradient, climatic conditions shape the build-up of SOM via exerting physiological 

constraints on biological processes to a varying degree for vegetation and microorganisms (Chapter 2). 

For example, at the wet and cool extremes of the investigated gradient (northern Patagonia), annual 

plant growth and NPP may be less temperature constrained than microbial decomposition, so that 

carbon can still be sequestered by plants, but not decomposed by soil microbial communities to the 

same extent (Wiesmeier et al., 2019; García-Palacios et al., 2021). Moreover, the Andosols of this region 

might be particularly efficient at accumulating and stabilizing SOM and protecting it from microbial 

decomposition. In contrast, in the Kastanozems and Chernozems of warmer and drier regions (central 

Chile), annual SOM input by plants may be matched by microbial decomposition (Figure 3-1). This 

means that in some regions of the gradient, factors such as climatic constraints - and not substrate 

limitation - might keep microbial activity in check. In consequence, systems with a relatively high 

turnover of SOM inputs (i.e. where microbial decomposition activity matches the SOM input) may have 

higher microbial activity that supports a higher alpha diversity but also results in a smaller build-up of 

SOM (e.g. the C input limited, drier and warmer soils of the Chilean north). In contrast, systems in which 

SOM turnover is hampered by climatic constraints of microbial activity rather than by plant inputs (the 

cold Chilean south) may be microbially less diverse, while accumulating more SOC. In such a scenario, 

there would be no causal link between SOM quantity and richness, but both system properties would 

be consequences of the balance between SOM input and decomposition. 

 

3.4.4 Alpha diversity dictates community composition along the gradient of 

SOM quantity 

The relative abundance of 5.5 % (n = 24) of taxonomic units (which accounted on average across the 

gradient for 10.1 % of relative abundance) followed a trend with SOM quantity (Figure 3-4). In 

agreement with our hypothesis, all observed correlations between SOM quantity and relative 

abundance patterns were positive (Supplementary File S3-1). This could imply that taxa with clear 

copiotrophic traits (as opposed to clear oligotrophic traits) dominated the microbial communities along 

the gradient. However, we could not identify SOM quantity-related relative abundance patterns in 

several phyla (e.g. Gamma-Proteobacteria, Actinobacteria; see Supplementary File S3-1) that have 

been reported to shift relative abundance in response to substrate addition (Cleveland et al., 2007; 

Eilers et al., 2010; Morrissey et al., 2016; Geyer and Barrett, 2019). We therefore conclude that 

oligotrophic vs. copiotrophic traits per se might not necessarily result in dominance in substrate-poor 
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vs. substrate-rich systems, respectively. Other conditions than immediate substrate availability could 

limit microbial growth and activity and prevent bacteria with copiotroph traits from becoming 

dominant in SOM-rich systems. We argue that the observed positive links between relative abundance 

and SOM quantity are rather linked to the negative relationship between SOM quantity and alpha 

diversity (Figure 3-3). When less taxa are present, the remaining taxa are automatically more dominant 

in relative terms. Consequently, the fraction of individual communities that can be explained with 

biogeochemical variables inversely mirrors alpha diversity along this gradient (Figure 3-2). In other 

words, we understand community composition better in soils with a smaller fraction of rare taxa (i.e. 

high-SOM soils), because the drivers of rare taxa are harder to pinpoint. 

 

3.4.5 Alpha diversity is only weakly linked to SOM quality 

Bulk C:N ratio was highest in some Andosols, Cambisols and Leptosols of Patagonia, which were also 

among the soils with the largest SOM quantities (Figure 3-1), indicating that these soils contain a large 

fraction of less decomposed SOM. Undecomposed SOM is chemically more diverse than microbially 

transformed SOM (Roth et al., 2015; Davenport et al., 2023; Jones et al., 2023). We had hypothesized 

higher alpha diversity in systems with a lower degree of bulk SOM decomposition, based on the 

expectation that substrate specialization would be a strong driver of bacterial community composition. 

However, alpha diversity was only weakly linked to SOM quality, and Shannon diversity was lower in 

soils with a higher bulk C:N ratio (SOM quality E (C:N ratio), Figure 3-3). This finding contradicted our 

hypothesis. An experimental long-term study by Cederlund et al. (2014) neither found strong links 

between SOM quality and bacterial phyla, and a regional study by (Delgado-Baquerizo et al., 2017) also 

found a negative relationship between bulk C:N ratio and Shannon diversity. These findings are in 

contrast to short-term experimental studies as well as genomic and metabolic analyses, which showed 

a potential for strong substrate preference among soil bacteria (Goldfarb et al., 2011; Trivedi et al., 

2013; Baran et al., 2015; Berlemont and Martiny, 2015; Y. Wang et al., 2022). This discrepancy indicates 

that bacterial substrate preference may primarily show in conditions of substrate saturation or 

otherwise ideal growth conditions. Substrate preference does not seem to play a major role in the 

assembly of in situ bacterial communities at the scale of bulk soil, where other environmental 

constraints act on bacterial physiology.  

 

3.4.6 SOM quantity matters more than SOM quality for community composition 

Nevertheless, certain measures of SOM quality could explain taxa-specific relative abundance patterns 

that SOM quantity could not explain. A similar number of taxonomic units was correlated with SOM 
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quality and with SOM quantity (Figure 3-4). However, the taxonomic units which correlated with SOM 

quality comprised only 4.6 % of average relative abundance. In contrast, the taxonomic units which 

correlated with SOM quantity comprised 10.1 % of average relative abundance. Therefore, SOM quality 

had a smaller effect on community composition than SOM quantity. Notably, the SOM quality variables 

jointly explained a similar amount of variability (unadjusted R2 = 0.15) in the PERMANOVA of beta 

diversity as did soil pH, SOM quantity and soil texture together (unadjusted R2 = 0.18) (Figure 3-3). Beta 

diversity was calculated on the ASV level without aggregation of rare ASVs, while correlation analysis 

was based on ubiquitous taxonomic units. Although an exact comparison of these two analyses is not 

possible, the strong observed contrast in explanatory content could nevertheless indicate that SOM 

quality affected the presence and absence of individual rare ASVs, while it related less to patterns of 

ubiquitous taxonomic units that were investigated in the correlation analysis. 

 

We found a group of ASVs in the family Micrococcaceae that was dominant in soils with a higher C:N 

ratio (SOM quality E). Soil-dwelling members of the Micrococcaceaea have been repeatedly found in 

hydrocarbon polluted soils (Dastager et al., 2014), and have been shown to be able to decompose 

complex (aromatic) substrates (Sims et al., 1986; Storey et al., 2018). Further, two groups in the order 

Streptosporangiales, two groups in the family Micromonosporaceae and two groups in the genus 

Mesorhizobium were positively correlated with SOM quality B (POM). SOM quality B (POM) reflects 

systems in which free coarse plant material, potentially available for decomposition, accumulates. In 

agreement with this interpretation, members of the Streptosporangiales have been found to be 

involved in primary decomposition of plant material in soils (Otoguro et al., 2014). 

Micromonosporaceae have been found to preferentially inhabit wet soils and peat (Trujillo et al., 2014). 

While the pattern in our data contrasts with the apparent moisture preference, it matches with the 

observation that members of this family have been found to prefer systems where free undecomposed 

plant material accumulates. Overall, the patterns of individual taxonomic units support the 

interpretation that the relative abundance of parts of the soil bacterial community was linked to SOM 

quality. However, we did not find that SOM quality was a strong determinant of bacterial diversity or 

bacterial community composition along the gradient.  

 

3.4.7 Limitations 

Three types of limitations need to be considered in the interpretation of this study. First, a power 

analysis showed that even at a comparatively high type I error rate (α-value of 0.1) only strong 

correlative trends (Pearson correlation coefficient > 0.55) could be detected with a reliable type II error 

rate (statistical power of 0.8). This means that the analysis might miss correlations due to limited 
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statistical power. Nevertheless, this approach was necessary in order to reveal relative abundance 

patterns of individual taxonomic units. In addition, Pearson correlation only captures monotonic linear 

relationships.  

Second, several environmental variables that might be relevant for soil bacterial community 

composition were not directly considered in this study. Such dimensions include plant diversity (Lange 

et al., 2015; Fierer, 2017), resource diversity (Dal Bello et al., 2021), stochasticity and dispersal 

limitations as well as environmental stressors (Tripathi et al., 2018; Richter-Heitmann et al., 2020).  

Third, a common challenge to the interpretation of soil bacterial community composition based on 

simple soil DNA extraction is that a large part of bacterial communities can be inactive (Carini et al., 

2016; Fierer, 2017; Couradeau et al., 2019; Camillone et al., preprint). However, we argue that this 

challenge is more pronounced in attempts to link community composition and microbial responses to 

short-term manipulation. In this study, the investigated biogeochemical variables describe the long-

term stage in which bacterial communities are embedded. Thus, the distinction between active and 

inactive bacteria is not so relevant, since the goal is to understand the physicochemical drivers of the 

entire native bacterial community (integrating also inactive cells that might be active at other times). 

Similarly, many processes of community assembly may act on the microscale rather than on the bulk 

soil scale. We nevertheless show that the presence of up to every second read can be explained with 

bulk soil characterization.  

 

3.5 Conclusions 

In this study, we investigated the role of SOM quantity and quality as drivers of bacterial community 

composition along a geoclimatic gradient of grassland soils. Bacterial alpha diversity was negatively 

correlated with SOM quantity. A major fraction (up to 59.6 % of 16S rRNA reads) of bacterial community 

composition could be explained with biogeochemical variables. This was particularly the case in soil 

systems with high SOM quantity (along the continuum between 0.6 to 18.7 % SOC) and low soil pH 

(along the continuum between pH 4.1 to 6.7), where microbial alpha diversity was lower. Such soils 

were located in wet and cool environments. In contrast, in drier soil systems with low SOM quantity 

and near-neutral soil pH, alpha diversity was higher and a smaller fraction of bacterial community 

composition could be explained (down to 12.5 % of 16S reads). However, the identification of the 

underlying mechanisms that link SOM quantity and diversity remain challenging. Experimental studies 

at the macroscale will be required to test whether or not alpha diversity is causally linked to SOM 

quantity via competitive exclusion or whether they are simply correlated, both resulting from climatic 

constraints. 
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Qualitative composition of SOM had a smaller effect on bacterial community composition than SOM 

quantity. This suggests that the mechanism of bacterial substrate specialization does not have a 

pronounced effect on soil bacterial community composition at large spatial scales. SOM quality mainly 

affected rare taxa. In order to detect such links more accurately, large datasets or high sequencing 

depth will be required, providing higher taxonomic resolution (such as family- or genus-level) to better 

understand soil bacterial distribution.  
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4. Environment and microbial community 

composition drive microbial traits and functions in 

the macroscale soil organic carbon cycle 
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Abstract 

Soil microbial traits and functions play a central role in soil organic carbon(SOC) dynamics. However, at 

large spatial scales it is unresolved whether specific environmental settings (e.g. climate, geology, soil 

types) (i) drive key microbial traits and functions directly, or rather indirectly through microbial 

community composition, and (ii) whether some microbial traits and functions are attributable to 

microbial community composition alone. To address this knowledge gap, we used 33 grassland topsoils 

(0 – 10 cm) from a north-south transect in Chile, which represents a wide range of geoclimatic 

conditions. First, we incubated the soils for one week in standardized conditions favorable for microbial 

activity and quantified a wide range of soil microbial traits and functions. For this, we measured soil 

microbial carbon and nitrogen, enzyme kinetics, microbial respiration and growth rates as well as 

carbon use efficiency (CUE). Second, we characterized climatic and physicochemical conditions as well 

as bacterial and fungal community composition of the soils. We then applied three different cross-

validated regression approaches to investigate how strongly the measured microbial traits and 

functions were linked with the environmental setting vs. the microbial actors. We show that 

environmental factors (predominantly the amount of soil organic matter) determined patterns of 

microbial biomass, which in turn explained microbial respiration and growth rates. However, 

respiration and growth normalized for microbial biomass (i.e. biomass-specific) were most strongly 

linked to the microbial community composition instead of the environmental setting. Notably, both 

biomass-specific respiration and growth followed distinct trends and were related to different features 

of microbial community composition, which resulted in strong effects on microbial CUE. We conclude 

that at the investigated scale, the drivers of CUE are decoupled aspects of microbial metabolism, which 

is partially determined by microbial community composition. The environmental setting and the 

microbial community composition affect different microbial traits and functions, and therefore both 

factors need to be considered in the context of large scale SOC dynamics.  

 

4.1 Introduction 

Soil microbial activity is central to understand soil organic carbon (SOC) dynamics. Soil microbes require 

carbon for energy, which results in the mineralization of carbon and its respiration as CO2 (in the case 

of aerobic metabolism). However, soil microbes also require carbon for the synthesis of biomass and 

extracellular products through anabolism. This carbon does not immediately leave the soil, and can 

potentially become stabilized over longer periods of time (decades to millennia) in the soil matrix 

(Cotrufo et al., 2015; Kallenbach et al., 2016; Sokol and Bradford, 2019). Unless microbial processing of 

SOC is hindered by direct physiological decomposition constraints (e.g. low temperatures, oxygen 

limitation or drought stress; Keiluweit et al., 2016; Schimel, 2018; García-Palacios et al., 2024) or 
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physicochemical inaccessibility (e.g. through strong organomineral associations or occlusion; Dungait 

et al., 2012; S. Stoner et al., 2023), all SOC ultimately undergoes microbial processing. As a 

consequence, microbial processes such as growth and respiration and microbial community properties 

such as microbial biomass carbon (MBC) and (biomass-)specific growth and respiration can be viewed 

as key microbial traits and functions that affect the SOC cycle.  

 

To date, several such microbial traits and functions form the backbone of numerical models that 

describe organic matter turnover (Wieder et al., 2015; Chandel et al., 2023; Schimel, 2023). MBC is 

often used as a quantitative proxy for microbial activity because it sets an upper limit for absolute 

microbial process rates (Crowther et al., 2019; Chandel et al., 2023). Rates of heterotrophic respiration 

and microbial growth are direct measures of globally relevant processes to estimate C turnover in 

terrestrial ecosystems (Bond-Lamberty et al., 2018; Hashimoto et al., 2023). For example, soil microbial 

growth rates are estimated to be in the same order of magnitude but with diverging patterns from net 

primary productivity and aboveground litterfall (Gao et al., 2024), and specific growth is used to 

estimate microbial community turnover, which can strongly vary across systems and respond to 

changes (Caro et al., 2023; Camillone et al., preprint). Growth and respiration can become decoupled 

due to disparate physiological constraints on the processes that underlie anabolism and catabolism 

(Manzoni et al., 2012b; Roller and Schmidt, 2015). To capture this decoupling, different measures of 

(mostly partial) anabolism relative to respiration are used to quantify microbial substrate use efficiency, 

microbial growth efficiency (MGE) or microbial carbon use efficiency (CUE) (Hagerty et al., 2018; Geyer 

et al., 2019; Schimel, 2023). Such measures can be useful; for example CUE was recently found more 

important to explain global patterns of SOC storage than several key terrestrial carbon fluxes such as 

carbon input or baseline decomposition (Tao et al., 2023). Common proxies for microbial strategies are 

the C:N ratio of the microbial biomass (MCN), which supposedly reflects the ratio of bacteria and fungi 

in soil, with various functional implications (Strickland and Rousk, 2010; Malik et al., 2016), and 

potential activities of extracellular enzymes (PEEAs) that are involved in SOC degradation (Malik et al., 

2019; Chen et al., 2020). 

 

Microbial traits and functions must ultimately be related to the composition of the microbial 

community, because they describe microbial processes or properties. In the most direct scenario, 

microbial traits and functions are aggregated products of the entire active communities; in such a case, 

SOC cycling could be estimated based on the composition of a microbial community (E. K. Hall et al., 

2018). However, the direct causality of this link depends on two factors: the environmental setting and 

scale in which microbial traits and functions are considered, and the type of the microbial trait and 

function. First, there are many ways by which the environmental setting, the scale and the complexity 
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of a soil system can affect and attenuate microbial physiology and the microbial functions that we 

measure (Nunan, 2017). For example, variations in microscale conditions such as substrate availability 

or moisture may counterbalance at bulk soil scale, and individual taxa may offset each other in terms 

of their traits (Pold et al., 2020; Metze et al., 2023). Direct constraints on microbial physiology such as 

substrate limitation may inhibit the realization of functional potential (Schimel, 2023) and ecological 

interactions may facilitate or inhibit microbial activity (Cordero and Datta, 2016). When such 

interferences take place, microbial community composition alone is not sufficient to estimate 

microbially mediated SOC cycling (E. K. Hall et al., 2018). In such cases, microbial traits and functions 

are emergent functions of the soil system. In some environmental settings, the explicit consideration 

and representation of microbial community composition may be obsolete to improve the description 

of SOC cycling, because the setting may dictate a narrow range of realized microbial activity. For 

example, in a soil with very little accessible substrate, respiration rates will always be low, no matter 

which microorganisms are present. As a consequence, it is exceedingly difficult to translate our 

understanding of microbial physiology from petri dishes and simple model systems into real-world soils. 

Second, it may also depend on the type of the microbial trait and function how closely it is linked to 

microbial community composition. A common distinction is made between narrow and broad microbial 

traits and functions (Graham et al., 2016; Osburn et al., 2021). Phylogenetically narrow traits and 

functions are evolutionarily constrained to few taxa, such as e.g. nitrification of methanogenesis (Rocca 

et al., 2015). In contrast, evolutionarily broad traits and functions like denitrification or heterotrophic 

respiration are widely distributed. Theory suggests that narrow traits and functions should be more 

strongly linked to community composition than broad functions; however, empirical evidence for this 

is mixed (Powell et al., 2015; Rocca et al., 2015; Graham et al., 2016; Osburn et al., 2021).  

 

As illustrated, it may strongly depend on scale and type of trait or function whether a microbial trait or 

function needs to be conceptualized as a consequence of microbial community composition or as a 

direct consequence of the environmental setting. The scale of choice for the measurement of microbial 

processes in SOC cycling is most often bulk soil. Microbial traits and functions that affect the SOC cycle 

at the scale of bulk soil have been shown to vary with land use, climatic regime and edaphic properties 

(Colman and Schimel, 2013; Serna-Chavez et al., 2013; Zheng et al., 2019a). However, surprisingly few 

studies have attempted to directly link microbial community composition and traits and functions at 

large (regional to global) scales to understand patterns across pedo-climatic regions and soil types (Bier 

et al., 2015). Such insights are often confined to a narrow selection of soil samples from well 

constrained and locally confined experimental field or laboratory setups (Delgado-Baquerizo et al., 

2016a; Li et al., 2019; Caro et al., 2023). Given the wide range of biogeochemical alterations that soils 

experience throughout their development, it is therefore unresolved whether the environmental 
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setting drives key microbial traits and functions at large spatial scales primarily directly, indirectly 

through microbial community composition, or whether some microbial traits and functions are even 

attributable to community composition alone.  

 

In this study, we aimed to disentangle environmental setting and microbial community composition as 

drivers of key microbial traits and functions involved in the SOC cycle, at the scale of a biome. We 

sampled 33 mineral topsoils along a 2300 km long geoclimatic gradient in Chile, in order to capture the 

full range of environmental settings within the biome of temperate grasslands. We quantified 11 key 

microbial traits and functions that affect SOC cycling at the resolution of bulk soil after removal of direct 

physiological limitation to microbial activity through temperature or moisture. Inspired by the 

approach of Graham et al. (2016), we then applied regression analysis to investigate whether the 

selected microbial traits and functions are more closely linked to the environmental setting (ENV), the 

microbial community composition (MIC), or through additive effects of both (ENV+MIC). We 

hypothesized that (1) at the investigated biome scale, MBC as well as the absolute process rates would 

be linked most directly to ENV because the environment dictates the frame for microbial activity. We 

further hypothesized that (2) specific process rates, CUE and MCN would be linked to MIC, because 

they reflect microbial properties. Lastly, we hypothesized that (3) specific growth and respiration rates 

would be linked to different features of MIC because they are physiologically decoupled. 

 

4.2 Material and Methods 

4.2.1 Soil Sampling 

A total of 33 A-horizon topsoils (0 - 10 cm) under grassland were sampled across a geoclimatic gradient 

in Chile in the summer seasons of 2017 and 2018. The gradient was constrained to a coherent type of 

land use and organic matter (OM) input - extensive rangeland and natural grassland - as well as 

carbonate free soil conditions (null HCl reaction) at pHCaCl2 < 7.0 in order to increase the identifiability 

of the controls on microbial traits and functions. The climate ranged from cold tundra to warm (semi-

)arid steppe, excluding climatic extremes (cold and hot desert environments). Within the range of 

temperate grasslands, climatic and soil physicochemical contrasts were maximized to include a wide 

diversity of soil environments. The gradient covers a range of water balance (MAP - PET) from 1704 to 

-1207 mm, and a MAT range from 3.0 to 17.1 °C. The covered Köppen-Geiger climate zones range from 

arid steppe (Bsk) in the north to polar tundra (ET) in the south. Most sites (28) are located in the 

temperate climate zone, representing climates with cold and warm summers, with or without dry 

season (Cfb, Cfc, Csb, Csc). Basic climatic site characteristics are summarized in Table S2-2 (Appendix 
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Chapter 2). The gradient features 10 World Reference Base (WRB) major soil groups. It spans soils with 

less pronounced pedogenetic features (Leptosol, Arenosol, Cambisol), soils characterized by the 

influence of water (Gleysol, Planosol), humus-rich soils (Kastanozem, Chernozem) as well as soils 

characterized by low (Acrisol) and high (Andosol, Luvisol) mineral reactivity (Table S2-1, Appendix 

Chapter 2). After collection, all soil samples were frozen at field moisture at -20°C and were stored and 

shipped in this condition. In the laboratory in Switzerland, samples were thawed, sieved to < 2 mm, 

and frozen again at -20°C until further analysis. 

 

4.2.2 Environmental variables 

Climate 

Mean annual temperature (MAT) and precipitation (MAP) were taken from WorldClim Version 2 (Fick 

and Hijmans, 2017). Mean annual potential evapotranspiration (PET) was taken from Trabucco and 

Zomer (2018). Both datasets have a resolution of 30 seconds and average monthly climate data from 

1970 – 2000. Climate classification following Köppen-Geiger was done with the R-package ‘kgc‘ (Bryant 

et al., 2017). Landscape position, soil moisture regime and dominant vegetation were either 

characterized on site or supplemented from previous surveys (detailed information and references in 

Tables S2-1 and S2-2). Landforms were mostly alluvial and marine terraces with flat topography, and 

vegetation comprised species that dominate in natural grasslands and prairies.  

 

Soil physicochemistry 

Soil pH was determined in 0.01 M CaCl2 solution (fresh soil:solution ratio of 1:5) using a pH meter (713 

pH Meter, Metrohm, Switzerland).  

 

Soil texture was determined as secondary soil texture (Totsche et al., 2018), via laser diffraction using 

a particle size analyzer (PSA) (LS 13 320, Beckman Coulter, USA). Fresh soil was shaken for 3 h with 10 

% Na-hexametaphosphate to dissolve macroaggregates, and the resulting particles were quantified 

with the PSA. Particle size contributions were calculated based on particle volume, following the WRB 

system (IUSS Working Group WRB, 2015): clay < 2 µm, 2 µm < silt < 63 µm, 63 µm < sand < 2000 µm. 

 

To assess weathering processes and intrinsic geochemical differences of soil parent material, total Si 

was measured using energy dispersive X-ray fluorescence (ED-XRF) spectrometry. Milled soil was mixed 

with Licowax (Fluxana, Germany) at a ratio of 4:1 and measured as pellets with a spectrometer (Spectro 

Analytical Instruments, Spectro XEPOS, Germany). Total content of Fe was assessed by digestion of 1 g 

soil aliquots with an aqua regia acid solution (HCl:HNO3:H2O, 3:1:1, v:v:v, 2.5 h at 120 °C). After filtration 
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through Whatman 41 filter papers Fe was quantified using inductively coupled plasma optical emission 

spectrometry (5100 ICP-OES, Agilent Technologies, USA). We calculated ratios of primary texture clay 

relative to Si (clayprim:Si) and total Fe relative to Si (Fe:Si) as proxies for geochemical reactivity of the 

mineral matrix (Amelung et al., 2018). 

 

Soil organic matter 

Soil organic carbon (SOC) and total soil nitrogen (TN) contents were quantified via total combustion 

using a CN analyzer (Vario MAX Cube, Elementar GmbH, Germany), and bulk C:N ratios were calculated 

using the molar ratio of SOC:TN.  

 

RockEval pyrolysis was done to assess thermostability of SOC as in Sebag et al. (2016). Milled soil 

samples were pyrolyzed on a Rock-Eval 6 device (Vinci Technologies, France), first in an N2 atmosphere 

between 200 to 650 °C, and second in an oxidized atmosphere between 400 and 850 °C, both with a 

heating rate of 25 °C min-1. Subsequently, the Rock-Eval I-Index was calculated exactly as in Sebag et al. 

(2016) to estimate the degree of biological transformation of SOC. The higher the I-index value, the less 

biologically transformed is the bulk SOC.  

 

DRIFTS was done to assess the relative dominance of functional groups in SOC. Milled material (< 50 

µm) was scanned in duplicate in the mid-infrared region (7500 to 600 cm-1, resolution 2 cm-1) using a 

Fourier transform IR (FT-IR) spectrometer with a high-throughput screening extension (HTS-XT) (Bruker 

Optics, Vertex 70, Germany). Spectra were normalized against gold (Infragold NIR-MIR Reflectance 

Coating, Labsphere) and corrected for atmospheric effects in the OPUS spectrometer software (Bruker 

Optics, Germany), and 32 co-added scans per sample were averaged. Spectra processing was done 

using the R-packages “simplerspec” (Baumann, 2020) and “prospectr” (Stevens and Ramirez-Lopez, 

2020). To correct for light scatter, spectra were resampled to a range of 4000 to 600 cm-1 with duplicates 

averaged and normalized using the normal variate method. Based on published information (Parikh et 

al., 2014), we assigned six wavenumber ranges to three types of functional groups: aliphatic C-H 

(anti)symmetric stretches: 2950 – 2910 and 2866 – 2836 cm-1; aromatic C=C stretches: 1540 – 1524 and 

1520 – 1510 cm-1; carboxylic acid C=O stretch and carboxylate C-O asymmetric stretch: 1734 – 1718 

and 1650 – 1636 cm-1. We integrated peak areas of the wavenumber ranges with a local baseline 

correction and for each of the three functional groups, the peak area was divided by the summed peak 

area of all three groups to obtain relative peak areas (RPA). Increasing RPA carboxylic and decreasing 

RPA aliphatic values indicate a progressing degree of SOC decomposition (Ryals et al., 2014; Mainka et 

al., 2022).  
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4.2.3 Microbial community composition 

DNA extraction, target amplification and sequencing 

Total DNA in bulk soil was extracted from each of the 33 sites from 400 mg fresh topsoil samples 

(equilibrated to 50 % of WHC for one week at 20 °C) using the FastDNATM SPIN Kit for Soil (MP 

Biomedicals), following manufacturer recommended procedures. The DNA content of each aliquot was 

quantified in microwell plates, using a PicoGreen assay (ThermoFisher Scientific, USA) and a microplate 

photometer (Tecan Infinite M200, Tecan GmbH, Austria). For bacterial 16S rRNA sequencing, the V3-

V4 region of the prokaryotic (bacterial and archaeal) small-subunit (16S) rRNA gene was amplified with 

the primers 341F (CCT AYG GGD BGC WSC AG) and 806R (GGA CTA CNV GGG THT CTA AT) as described 

in Frey et al. (2016). For fungal ITS2 region sequencing, the primers ITS3 (CAH CGA TGA AGA ACG YRG) 

and ITS4 (TCC TSC GCT TAT TGA TAT GC) were used as described in Tedersoo et al. (2014). Polymerase 

chain reaction (PCR) amplification was done with tailed primers on a Veriti™ 96-Well Fast Thermal 

Cycler (Applied Biosystems, USA) using 30 ng DNA per reaction, following the protocol modified from 

Frey et al. (2016): an initial denaturation at 95 °C for 2 min, followed by 36 or 38 cycles (for 16S rRNA 

and ITS, respectively) of denaturation at 94 °C for 40 s, annealing at 58 °C for 40 s and elongation at 72 

°C for 1 min followed by a final elongation at 72 °C for 10 min. The amplicons were purified with 

Agencourt AMPure XP beads (Beckman Coulter, Berea, CA) and subsequently quantified 

fluorometrically in microplates with the QuantiFluor® ONE dsDNA System (Promega, USA) using a 

microplate reader. The purified amplicons were subsequently sent to the Genome Quebec Innovation 

Center (Montreal, Canada) for barcoding using the Fluidigm Access Array technology and 300 base pairs 

paired-end sequencing on the Illumina MiSeq v3 platform (Illumina Inc., USA). 

 

Quantitative PCR 

In order to obtain an estimate of bacterial to fungi ratios, we quantified abundances of the bacterial 

16S rRNA gene and the fungal ITS2 region by real-time quantitative PCR (qPCR) with SYBR Green dye 

on a QuantStudio5 Real-Time PCR System (Thermo Fisher Scientific, Waltham, MA, USA), according to 

Han et al. (2023). We used the same primers as for the amplicon sequencing. The targeted genes were 

16S rRNA genes (bacteria) and ITS2 region (fungi). The qPCR reaction (10 μl) was composed of 5 μl 

GoTaq® qPCR Master Mix (Promega, Madison, WI, USA), 0.1 μl bovine serum albumin (BSA, 30 mg ml-

1), 1.9 μl molecular grade water, 0.5 μl of forward- and reverse-primers (10 μM), and 2 μl DNA template 

(2 ng μl-1). The thermocycling settings were as follows: initial denaturation at 95 °C for 2 min, 40 cycles 

of denaturation at 95 °C for 40 s, annealing at 58°C for 40 s and elongation at 72 °C for 1 min, before a 

final elongation step that consisted of 95 °C for 15 s, 60 °C for 15 s and 95 °C for 15 s. Synthetic DNA 
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fragments were used as qPCR standards, ranging from 101 to 108 copies per μL, according to Han et al. 

(2023). Both standards and soil DNA extracts were measured in triplicate.  

 

4.2.4 Microbial traits and functions relevant for SOC cycling 

All microbial community traits and functions were measured at 60 % water holding capacity (WHC) and 

at 20 °C. Through this approach, direct temperature and moisture limitation of microbial activity was 

eliminated. The measured microbial communities, traits and functions reflect potential states of the 

investigated soils, and not necessarily their in situ state. While absolute values may not necessarily 

translate directly to in situ conditions, the observed patterns nevertheless allow for mechanistic 

interpretation. For measurements of carbon use efficiency and all properties that where measured on 

the same aliquots (microbial biomass carbon, microbial C:N ratio, absolute and specific growth rates 

and specific respiration rates), soil moisture was first set to 50 % of the WHC for one week of 

preincubation, before additional 10 % of the WHC were added at the start of the 18O-H2O incubation 

for the CUE method. For measurements of absolute respiration rates as well as potential extracellular 

enzyme activities, soils were directly preincubated for one week at 60 % WHC. For one selected soil of 

low, intermediate, and high SOC content, measurements were done in triplicate to evaluate the 

reproducibility of the methods. 

 

Microbial biomass carbon (MBC) and microbial C:N ratio (MCN) 

We used the chloroform fumigation extraction (CFE) method to quantify soil microbial C and N 

(modified from Vance et al., 1987). Briefly, C and N were extracted from two aliquots of each soil with 

1 M KCl (fresh soil:solution ratio of 1:7.5) for 1 h on a shaker. Before extraction, one aliquot was exposed 

to an ethanol-free CHCl3 saturated atmosphere in a dark desiccator for 48 h in order to lyse microbial 

cells. After fumigation, the desiccator was repeatedly evacuated to remove potential residual CHCl3. 

After the extraction step, all samples were filtered through Whatman 40 filter paper and C and N 

concentrations of the KCl extracts were determined with a TOC/TN analyzer (TOC-L CPH/CPN, 

Shimadzu). Microbial C and N values were calculated by subtracting unfumigated from fumigated 

values. Values of microbial C and N as well as (unfumigated) KCl extractable C and N were converted to 

µg g-1 soil and are presented without the use of an extraction coefficient. Averaged across the replicated 

soils, the relative standard deviation of C content was 13.2 % for the unfumigated aliquots, and 3.9 % 

for the fumigated aliquots. Due to procedural issues, five microbial C:N values were unrealistically high 

(values of 53 to 353 µg C g-1 soil) and excluded from further analyses. In order to avoid skewed models, 

these values were imputed by k-nearest neighbors estimation across all 11 microbial trait and function 

variables, with k = 10. 
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Basal heterotrophic respiration rates (respiration) 

We used an infrared gas analyzer system to estimate basal heterotrophic respiration. In detail, we 

weighed 10 g of each soil into airtight glass vials of 441 ml volume. The CO2 concentration in the vials 

was measured directly after closing the vials. Measurements were done with a LI-840A infrared gas 

analyzer (Li-Cor Inc., Lincoln, United States) embedded into a continuous flow system that included the 

Flux Puppy app (v1.0.0) and was built according to (Carbone et al., 2019). Subsequently, respired CO2 

was allowed to build up in the vials for three consecutive intervals of 1.5 h in the dark at 20 °C. After 

each interval, we quantified the CO2 concentration in the flow system and in the vials. CO2 

concentrations in the vials were corrected for the concentrations in the flow system, and the corrected 

CO2 concentrations of the consecutive intervals of each sample were plotted against cumulative 

incubation time. After visual control for the absence of saturation effects, the regression slopes were 

taken as rates of CO2 accumulation, and values were converted to respiration rates per gram dry weight 

of soil (µg C g soil-1 h-1). A reproducibility analysis of the method resulted in a relative standard deviation 

of 10.9 % averaged across the replicated soils.  

 

Carbon use efficiency (CUE), microbial growth rates (growth) and specific growth and respiration 

An approach based on 18O-H2O incorporation into DNA was used (modified after Spohn et al., 2016; 

Zheng et al., 2019b; Schnecker et al., 2023) to measure microbial growth and carbon use efficiency 

(CUE). This method might underestimate growth rates and CUE (as discussed in Geyer et al., 2019) and 

does not consider any products of microbial anabolism that are not captured with the CFE-method for 

MBC quantification, e.g. extracellular polymeric substances or extracellular enzymes (Manzoni et al., 

2012b; Hagerty et al., 2018). “Microbial growth efficiency” might be a more appropriate term (Schimel 

et al., 2022), however we stuck with the established term CUE. We added either 18O-H2O (97 at%) or 

water at natural isotopic abundance to two aliquots of 400 mg soil. The added volumes ranged between 

20 – 50 µl to obtain an average soil moisture of 60 % of WHC (between 55 and 66 % of WHC). After 24 

h incubation at 20 °C in sealed headspace vials, we measured CO2 concentrations with an infrared gas 

analyzer (EGM4, PP Systems). Microbial respiration rates (referred to as “respiration”) were calculated 

over the course of the incubation based on the difference between CO2 concentrations of the 18O-H2O 

labeled aliquots and empty blank vials. They were converted into mass specific respiration rates 

(specific respiration, unit % of MBC d-1) by division through MBC. Microbial growth rates were 

determined based on the incorporation of the 18O into genomic DNA. For this, the DNA was extracted 

by a DNA extraction kit (FastDNA SPIN Kit for Soil, MP Biomedicals) as described above, and DNA 

concentrations of the extracts were determined fluorometrically with a Picogreen assay (Quant-iT 
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PicoGreen dsDNA Reagent, Life Technologies) following standard procedures. Subsequently, the O 

content and the 18O enrichment of the purified DNA extracts were measured with a thermochemical 

elemental analyzer (TC/EA, Thermo Fisher) which is coupled to an isotope ratio mass spectrometer 

(Delta V Advantage, Thermo Fisher) via a Conflo III open split system. The amount of new DNA 

produced over the course of the incubation (DNAnew) was calculated as: 

 

𝐷𝑁𝐴𝑛𝑒𝑤 = 𝑂𝐷𝑁𝐴 ∗ 
 18𝑂%𝐷𝑁𝐴−𝐿 − 18𝑂%𝐷𝑁𝐴−𝑛.𝑎. 

 18𝑂%𝑠𝑜𝑖𝑙 𝑤𝑎𝑡𝑒𝑟
∗  

100

31.21
 (1) 

 

 

where ODNA is the total amount of DNA extracted, 18O%DNA-L and 18O%DNA-n.a. are the 18O enrichments in 

the labeled and unlabeled aliquots respectively, and 18O%soil water is the 18O enrichment of the soil water 

in the labeled aliquot which was calculated based on soil water content and the volume of the added 

18O-H2O. The fraction term at the end of the equation encapsulates the average oxygen mass content 

of DNA (31.21 %). Assuming a constant soil-specific relationship between microbial C and the amount 

of DNA, the amount of microbial biomass produced over the course of the incubation was calculated. 

For this, we divided DNAnew through DNA in the sample and multiplied this value with MBC, which was 

beforehand calculated by dividing microbial C through an extraction efficiency factor of 0.45 (Wu et al., 

1990). The resulting absolute growth rates (referred to as “growth”) were converted into mass specific 

growth rates (specific growth, unit % of MBC d-1) by division through MBC. Finally, the microbial CUE 

(unitless) was calculated using the following equation (Manzoni et al., 2012b): 

 

𝐶𝑈𝐸 =  
𝐶𝐺𝑟𝑜𝑤𝑡ℎ

𝐶𝐺𝑟𝑜𝑤𝑡ℎ+𝐶𝑅𝑒𝑠𝑝𝑖𝑟𝑎𝑡𝑖𝑜𝑛
 (2) 

 

where CGrowth and CRespiration are the measured growth rates and respiration rates expressed as ng C g-1 

soil h-1. Averaged across the replicated soils, the relative standard deviation was 5.1 % for CUE, and 6.2 

% for specific growth. 

 

Absolute and specific potential extracellular enzyme activities 

We used a fluorometric assay to quantify maximum catalytic capacity (Vmax) for three groups of 

hydrolytic enzymes (ß-Glucosidase, BG (EC 3.2.1.21); cellobiosidase, CB (EC 3.2.1.91); N-acetyl-β-

glucosaminidase, NAG (EC 3.2.1.52)) that are involved in SOC degradation, targeting carbon. CB 

hydrolyses cellobiose from cellulose, BG releases glucose from cellobiose and other β-D-glucosides, 

and NAG releases glucosamine from β-1,4-linked glucosamine polymers such as chitin (Bairoch, 2000; 

Sinsabaugh et al., 2008). In addition, we assessed the potential activity of two extracellular oxidases 
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(phenoloxidase, POX; peroxidase, PEX) following Kaiser et al. (2010). In detail, we dissolved 1 g of soil 

in 90 ml of sodium acetate buffer (50 mM, pH 5.0) and ultrasonicated with an energy of 350 J. The 

resulting soil suspension was passed through a sieve of 0.3 mm mesh size and continuously stirred at 

20 °C.  

For each hydrolase assay, 48 replicates of 200 μl suspension were pipetted into black microplates. 50 

μl of a 1:2 dilution row of substrate labeled with 4-Methylumbelliferyl (MUF) (ranging from 1.56 - 100 

μM) and a blank of only sodium acetate buffer were added to sets of five aliquots of soil suspension. 

The MUF-labeled substrates used were MUF β-D-glucopyranoside (for BG), MUF β-D-cellobioside (for 

CB) and MUF N-acetyl-β-D-glucosaminide (for NAG). The remaining eight aliquots received 50 μl of a 

standard row of MUF (1:2 dilution row, top standard 200 μM). The microplates were incubated in the 

dark for 2.5 h at 20 °C and fluorescence was repeatedly measured (excitation 365 nm, emission 450 

nm, automatic gain) in intervals of 30 min with a microplate photometer (Tecan Infinite M200, Tecan 

Trading AG). Using the soil-specific standard rows, fluorescence measurements were converted to MUF 

concentrations. With simple linear regression models slopes were fitted and converted to nM MUF g-1 

soil h-1. Wells with an R2 < 0.6 were removed from further analysis, and for each set of five replicates 

we conducted Grubb’s outlier tests and excluded significant outliers. We averaged the replicates and 

following (Alves et al., 2021) we used the drc R-package “drc” (Ritz et al., 2015) to fit 2-parameter 

Michaelis Menten kinetic models to the substrate concentration rows of each soil. We retained 

estimates of Vmax (nM MUF g-1 soil h-1) that were fitted with a p-value < 0.05.  

For each oxidase assay, we mixed three aliquots of 1 ml soil slurry 1:1 with 20 mM L-3,4-

dihydroxyphenylalanine (DOPA) in sodium acetate buffer. The mixture was shaken for 10 min, 

centrifuged, and 250 ul were pipetted into transparent microplates. For PEX assays, 10 μl of 0.3 % H2O2 

were added. Absorbance was measured at 450 nm at the start of the incubation and after 20 h 

incubation at 20 °C in the dark. With an empirically determined molar extinction coefficient of 0.62 

(Kaiser et al., 2010) we converted absorbance values to DOPA concentrations and averaged the 

triplicates. Potential oxidase rates (nmol DOPA g-1 soil h-1) were calculated over time, and POX rates 

were subtracted from PEX rates to obtain final rates of PEX activity.  

 

The reproducibility analysis of the method revealed a relative standard deviation of 8.6 %, 9.1 % and 

11.1 % for Vmax of BG, CB and NAG respectively, and 11.2 % and 5.4 % for the potential activity rates 

of POX and PEX averaged across the replicated soils. Due to poor fit of the Michaelis Menten models 

(p-value > 0.05), four hydrolytic Vmax values were dismissed. These values were imputed by k-nearest 

neighbors estimation across all 11 microbial trait and function response variables, with k = 10. For the 

sake of clarity and brevity in the main text, and given the strong autocorrelation of Vmax of the three 

hydrolases and the potential rates of the two oxidases, respectively, we summed them up into two 
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composite variables (“hydrolases” for hydrolytic enzymes and “oxidases” for oxidative enzymes). In 

addition we normalized the absolute potential enzyme activity rates relative to MBC (“specific” 

hydrolases and “specific” oxidases). Note that the regression analysis described in section Regression 

analysis was also conducted for the absolute and specific enzyme activities of the five enzymes 

individually. Results of this analysis are not discussed in detail but are presented in the supplementary 

material. 

 

4.2.5 Analysis 

Processing of microbial community data 

Sequence processing was performed in R Studio (Version 2023.06.0.421) using the dada2 workflow 

(Callahan et al., 2016). For 16S rRNA sequences, primers were trimmed, and the right sides of the reads 

were truncated to 270 and 210 bases for forward and reverse reads. For ITS sequences, we used the 

package “cutadapt” (Martin, 2011) to remove sequenced primers from the DNA fragments, and the 

right sides of the reads were truncated to 250 and 220 bases for forward and reverse reads. For both 

types of sequences, PhiX genomes were removed, and all respective samples were pseudo-pooled for 

sample inference. Forward and reverse reads were merged with a minimum overlap of 12 base pairs 

for 16S rRNA and 20 base pairs for ITS, in both cases allowing for 1 mismatch. Chimeras were removed 

with default settings. Taxonomy of bacteria was assigned using the Silva nr99 v138.1 database (Quast 

et al., 2012) as a training set, and taxonomy of fungi was assigned using the UNITE general FASTA 

database (Abarenkov et al., 2022) as a training set. In both cases, the minimum bootstrap confidence 

for assigning a taxonomic level was set to 60 %. Finally, all amplicon sequencing variants (ASVs) that 

were not bacteria or fungi, respectively, were removed from the dataset. All samples reached a 

reasonable coverage at the minimum sequencing depth across samples (17821 reads for 16S rRNA and 

6923 reads for ITS). We therefore rarefied all samples by iterative random subsampling without 

replacement (100 iterations) to the respective minimum read numbers, implemented by the function 

rrarefy in the R-package “vegan” (Oksanen et al., 2022). Next, we aggregated amplicon sequencing 

variants (ASVs) at the genus level. To capture the main patterns of microbial community composition 

at the genus level while constraining data complexity, we filtered the most dominant genera of bacteria 

and fungi up to a cumulative relative read abundance of 50 % of the respective average communities. 

This resulted in the 12 most dominant bacterial genera, and the 14 most dominant fungal genera. We 

further estimated bacterial and fungal alpha diversity as ASV richness (without singletons), using the 

R-package “vegan” (Oksanen et al., 2022). The FUNGuild database was employed for annotating fungal 

trophic modes at the ASV level (Nguyen et al., 2016). Only confidence scores of 'probable' and 'highly 

probable' were considered in the analysis. 
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Assembly of statistical predictor sets 

Based on environmental data (ENV, Table S4-1) and soil microbial community data (MIC, Table S4-3), 

we assembled two sets of predictors. For both sets, we used the R-package “psych” (Revelle, 2022) 

applied principal component analysis (PCA) on the raw input variables in order to reduce dimensions 

and to solve autocorrelation between variables. All PCAs were conducted with centered and scaled raw 

input variables. Correlation matrices of variables were visualized with the R-package “corrplot” (Wei 

and Simko, 2021). 

For the 16 environmental variables of the ENV predictor set (Table S4-1, Figure S4-1a), we applied 

Rosner tests (R-package “EnvStats”, (Millard, 2013) to identify in total 20 significant outliers which were 

obvious laboratory artifacts among 528 observations across the 16 raw input variables. PCA on data 

with strong outliers can result in skewed and ultimately misleading principal components. However, 

PCA also cannot process missing values. Therefore, all significant outliers were imputed by the k-fold 

nearest neighbor method (k = 10, R-package “DMwR2”, (Torgo, 2016). After imputation, 4 of the 20 

values remained significant outliers. We subsequently conducted rotated PCA with varimax rotation, 

which reduces the number of variables that correlate with individual rotated components (RCs) and 

thus facilitates the interpretability of the RCs. Eight RCs (free of autocorrelation, Figure S4-1b) were 

retained in order to reach a cumulative explained variance of > 0.8 for the environmental dataset (Table 

S4-2). The retained RCs were interpreted based on their dominant loadings (loading ≥ 0.5) and were 

subsequently used as predictor variables in the regression analysis (as the ENV predictor set).  

 

For the MIC predictor set, we used 31 raw input variables: relative read abundances of the most 

dominant bacterial and fungal genera (12 and 14, respectively), relative read abundances of the sums 

of the remaining rare genera, bacterial and fungal richness as the Bact:Fungi ratio (Table S4-3, Figure 

S4-2a). For this set, we conducted unrotated PCA, because relative read abundance data is inherently 

autocorrelated in a way that is complex to resolve (Alteio et al., 2021) and unrotated PCA outperformed 

rotated PCA in terms of dimension reduction. 11 uncorrelated principal components (PCs) were 

retained in order to reach a cumulative explained variance of > 0.8 for the microbial community dataset 

(Table S4-4, Figure S4-2b). The retained PCs were used as predictor variables in the regression analysis 

(as the MIC predictor set).  

 

Regression analysis 

We conducted regression analysis to investigate whether microbial traits and functions that affect the 

SOC cycle would best link to the environmental setting (ENV), microbial community composition (MIC), 
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or an additive combination of both (ENV+MIC). We used three different regression approaches to 

ensure that the analysis was not subject to artifacts of model choice. In order of decreasing 

interpretability, we applied stepwise regression, L1 regularization (lasso) regression and nonlinear 

random forest regression. The three regression approaches differ in the underlying statistical 

approaches but have common metrics for model assessment. For each approach, cross validation is 

possible based on RMSE, goodness of fit can be evaluated based on R2 values, and measures for relative 

variable importance can be calculated. To avoid overfitting, model fits (for stepwise regression) and 

parameter optimization (for lasso and random forest regression) were performed with Monte Carlo 

cross validation. Stepwise regression builds linear regression models based on iterative automated 

variable selection, lasso regression uses penalties to constrain model complexity, and random forest 

regression allows for non-linear relationships between dependent and independent variables. For 

detailed descriptions of the regression approaches, please see Supplementary Text S4-1. Thus, we built 

three regression models (ENV, MIC and ENV+MIC) for each of the targeted 11 microbial traits and 

functions, resulting in 33 models per statistical regression approach, and a total of 99 models. All 

regression analysis was performed using the R-package “caret” (Kuhn, 2008) which wraps the packages 

“leaps” (Lumley, 2020) for stepwise regression, “glmnet” (Friedman et al., 2010) for lasso regression 

and “randomForest” (Liaw and Wiener, 2002) for random forest regression. For stepwise and lasso 

regression, homoscedasticity was evaluated with the R-package “lmtest” (Zeileis and Hothorn, 2002). 

 

We compared the goodness of fit of the three statistical regression approaches for each of the 33 

models per statistical approach based on pairwise comparison of R2 values (see Supplementary Text 

S4-1 for further details). We summarized the results of each of the three regression approaches for 

each targeted microbial trait or function by calculating the mean values and standard deviations of R2.  

 

For each model, variable importance (VI) was quantified as the absolute value of the t-statistic, which 

is calculated by dividing the coefficient of a predictor by its standard error (James et al., 2013). To 

improve comparability of the contribution of predictor variables between regression approaches, we 

scaled VI values (sVI) within each model between 0 and 100. For this, the absolute value of the lowest 

VI was assigned 0, and the absolute value of the highest VI was assigned 100. After scaling, signs of the 

coefficients were added to the sVI values, to facilitate interpretation. In cases where the models were 

not significant (p-value > 0.05), we did not consider them for further analysis. An absolute value of 100 

indicates that a variable is the most important variable of a model. In contrast, an sVI of 0 in the linear 

models means that a variable does not feature in the respective model, whereas in the random forest 

models it means that a variable is the least important. Positive and negative signs reflect the coefficient 

signs of the respective variables in the stepwise and lasso models. We calculated mean values and 
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standard deviations of absolute sVI values across the three regression approaches. This allowed 

integration and interpretation of the model compositions resulting from the three regression 

approaches for all models.  

 

4.3 Results 

4.3.1 Description of the predictor datasets 

The used predictor dataset representing the environmental setting (ENV) consisted of eight rotated 

components (RCs) (Table S4-2) which resulted from 16 edaphic and climatic variables (Table S4-1). Most 

importantly, ENV RC1 - “SOM quantity” (SOM being the abbreviation for soil organic matter) 

encapsulated total and extractable amounts of organic carbon and nitrogen, and ENV RC3 - “Texture” 

was positively associated with secondary sand content (Table S4-2). The predictor dataset representing 

the soil microbial community composition (MIC) consisted of 11 principal components (PCs) (Table S4-

4) which resulted from 31 variables that described community composition and diversity (Table S4-3). 

Bacterial and fungal richness as well as the bacteria:fungi ratio were positively correlated (Figure S4-

2a) and loaded onto MIC PC2 (Table S4-4). Notably, PC2 was also positively correlated with the relative 

abundance of saprotrophic fungi (Figure S4-9). The remaining components were associated with 

relative abundances of the dominant bacterial and fungal genera. However, autocorrelations of relative 

abundance data are impossible to resolve, and therefore the PCs of the MIC dataset are presented as 

PC1 to PC11 (instead of being named based on their dominant loadings, as the ENV RCs). Several 

variables were correlated between ENV and MIC (Figure S4-3). The strongest links were a positive 

correlation between MIC PC1 and ENV RC1 - “SOM quantity” and a negative correlation between MIC 

PC1 and ENV RC2 - “soil pH”, as well as a positive correlation between MIC PC3 and ENV “RC5 - MAT”. 

 

4.3.2 Microbial traits and functions and their correlative relationships 

The ranges of the 11 quantified soil microbial traits and functions are shown in Table 4-1, and values 

sorted by latitude are presented in Table S4-5. The correlative relationships between the 11 quantified 

traits and functions are shown in Figure 4-1. Microbial biomass carbon (MBC) varied 70-fold across the 

gradient, from 6.7 μg C g-1 soil in a low-SOC Gleysol to 463.6 μg C g-1 soil in a high-SOC Andosol (Table 

S4-5). Absolute respiration rates (respiration) varied almost 40-fold, from 0.2 μg C g-1 soil-1 h-1 in a 

Luvisol to 7.5 μg C g-1 soil h-1 in an Andosol. Absolute growth rates (growth) varied 25-fold, from 0.1 μg 

C g-1 soil in various soil types (Luvisol, Gleysol, Chernozem and Andosol) to 2.4 μg C g-1 soil in an Andosol. 

Both rates (respiration and growth) were positively correlated with each other and with MBC (Figure 

4-1), being lower in soils from the warmer and drier systems of central Chile, and higher in soils from 
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the cooler and wetter systems of southern Chile (Table S4-5), characterized by higher mineralogic 

reactivity (Chapter 2). Carbon use efficiency (CUE) ranged between 0.10 in an Andosol and 0.60 in an 

Arenosol, indicating large differences in the amount of carbon that is respired per unit growth. CUE was 

positively correlated with specific growth and negatively with specific respiration, both correlations 

having similar strength (Figure 4-1). Specific growth was lowest in a Luvisol (1.4 % of MBC d-1) and 

highest in a Kastanozem (10.9 % of MBC d-1). Specific respiration showed a larger variation, ranging 

from 2.5 % of MBC d-1 to 68.1 % of MBC d-1, both in Gleysols, with the maximum value being an outlier. 

Both specific rates were correlated with each other, but to a weaker extent than respiration and growth 

(Figure 4-1). The potential activities of extracellular hydrolases and oxidases were positively correlated 

with each other and with MBC. CUE, MCN and specific rates were not correlated with MBC or either of 

the absolute rates. 

 

Table 4-1. Ranges of quantified microbial traits and functions across the gradient (n = 33). Abbr. = 

Abbreviation, Min. = Minimum, Max. = Maximum, MUF = 4-Methylumbelliferyl, DOPA = L-3,4-

dihydroxyphenylalanine. 

 

Variable Abbr. Unit Min. Mean Median Max. 

Biomass and biomass-dependent rates:         

Microbial biomass C MBC μg C g-1 soil 6.7 146.6 124.6 463.6 

Growth - μg C g-1 soil h-1 0.1 0.7 0.5 2.4 

Respiration - μg C g-1 soil h-1 0.2 2.0 1.5 7.5 

Hydrolases - nmol MUF g-1 soil h-1 322.6 2152.6 1858.1 9514.8 

Oxidases - nmol DOPA g-1 soil h-1 1113.5 3700.7 3458.3 10332.9 

Dimensionless variables:         

Carbon use efficiency CUE  - 0.10 0.28 0.24 0.60 

Microbial C:N MCN  - 4.8 12.8 11.1 39.4 

Biomass-normalized rates:         

Specific growth - % of MBC d-1 1.4 4.9 4.6 10.9 

Specific respiration - % of MBC d-1 2.5 15.4 12.5 68.1 

Specific hydrolases - nmol MUF μg-1 MBC h-1 5.1 16.3 15.8 51.0 

Specific oxidases - nmol DOPA μg-1 MBC h-1 8.7 50.4 24.6 634.3 
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Figure 4-1. Correlation matrix showing significant Pearson correlations (p-value < 0.05) between the 11 

investigated microbial traits and functions. Circle size and color indicate the strength of the 

relationships (Pearson correlation coefficient). Shown are significant correlations (Pearson correlation, 

p < 0.05). MBC = Microbial biomass carbon, CUE = Carbon use efficiency, MCN = Microbial C:N. 

 

4.3.3 Predictors of microbial traits and functions 

Across all regression models, the proportion of explained variation (R2) varied from 0 to 0.85. On 

average, stepwise regression explained most variation (R2 = 0.43) followed by random forest regression 

(R2 = 0.31) and lasso regression (R2 = 0.27). The R2 of the different regression approaches correlated 

strongly (Figure S4-4), showing that all three approaches gave comparable results.  

 

The results of the regression analysis are summarized in Figure 4-2. Detailed model descriptions are 

provided in Table S4-6. ENV explained a larger proportion of variation than MIC for MBC and all 

absolute rates (respiration, growth, hydrolases, oxidases). In contrast, MIC explained a larger 

proportion of variation for CUE and several specific rates (specific respiration, specific growth, specific 

hydrolases). The variables that were best explained were the two measures of respiration (respiration: 

R2 = 0.75, specific respiration: R2 = 0.73), CUE (mean R2 = 0.65), growth (R2 = 0.54) and MBC (R2 = 0.48). 

The variables with the lowest proportion of explainable variation were MCN (R2 = 0.13) and the 

measures of enzyme activities (R2 = 0.19 to 0.29). Notably, of the individual enzyme activities, absolute 

activities of NAG and POX were markedly better predictable (R2 = 0.53 and 0.38, respectively) than the 

rest (Figure S4-5), and among specific enzyme activities NAG was best predictable (R2 = 0.35), with MIC 

(Figure S4-5). The combination of the datasets ENV+MIC did not improve explainability substantially 
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except for specific growth, indicating a clear distinction between which microbial traits and functions 

are explained by the environmental setting versus by microbial community composition. 

 

 

Figure 4-2. Proportion of the variation of 11 microbial traits and functions (x-axis) that can be explained 

with three different sets of predictors (y-axis). Shown are mean ± S.D. of R2 across three different 

regression approaches (stepwise, lasso, and random forest). ENV = Environmental data, MIC = Microbial 

community data, MBC = Microbial biomass carbon, CUE = Carbon use efficiency, MCN = Microbial C:N, 

Spec. = specific. 

 

SOM quantity was the strongest predictor (sVI = 92 to 100) for MBC and all absolute microbial functions 

(Figure 4-3a). In addition, growth and hydrolases (in particular the hydrolases CB and NAG, Figure S4-

6) shared a weaker positive relationship with coarser texture (sVI = 37 and 25), while oxidases (in 

particular the oxidase PEX, Figure S4-6) had an almost equally strong negative link to soil pH (sVI = 87). 

CUE was higher in neutral than in acidic soils (sVI = 99), higher in systems with higher MAT (sVI = 80) 

and lower in soils with a wider bulk C:N ratio (sVI = 87) (Figure 4-3a). However, the MIC dataset 

explained more variability of CUE (Figure 4-2) through a negative link with PC1 (sVI = 100) (Figure 4-

3b). Similarly, specific respiration and specific growth could both be linked to ENV variables, but were 

better explained with MIC variables (Figure 4-2). In regression with the ENV dataset, specific respiration 

was lower in neutral than in acidic soils (sVI = 99) and specific growth was higher in soils from warmer 

systems (sVI = 73). Moreover, both specific rates were higher in soils with coarser texture (sVI = 85 to 

100) (Figure 4-3a). However, in the better performing models with MIC, the two specific rates were 

linked to different variables: specific respiration was strongly positively linked to PC1, while specific 



106 
 

growth was strongly negatively linked to PC2 (Figure 4-3b). Overall model performances for specific 

potential enzyme activities and MCN were weak (Figure 4-2), which was also reflected in their model 

structures: While specific hydrolases were linked to various components of MIC, for specific oxidases 

and MCN no clear predictors emerged in either the ENV or the MIC models (highest sVI = 57 and 41, 

respectively) (Figure 4-3, and Figure S4-6 for individual enzymes). The sVI values for the ENV+MIC 

models are shown in Figure S4-7. 

 

 

Figure 4-3. Scaled variable importance (sVI) ≥ 25 in the prediction of 11 microbial traits and functions 

(y-axis). (a) Prediction with environmental data (ENV); (b) prediction with microbial community data 

(MIC). Shown are mean sVI values across three different regression approaches (corresponding S.D. 

values are shown in Figure S4-8). Colors indicate the signs of the coefficients (negative: orange; positive: 

blue). Note that variables which only featured in random forest models do not have signs. The best 

models for each microbial trait function are highlighted by bold font. SOM Qty. = SOM quantity, SOM 

Dec. = SOM Decomposition, MBC = Microbial biomass carbon, CUE = Carbon use efficiency, MCN = 

Microbial C:N, Spec. = specific, KCl = extractable with KCl, PC = principal component. 
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4.4 Discussion 

4.4.1 Potential extracellular enzyme activities and microbial C:N ratio remained 

poorly explained 

Absolute rates of potential extracellular enzyme activities (PEEAs) of hydrolases and oxidases involved 

in C degradation were strongly correlated with MBC (Figure 4-1), as observed previously in other 

studies across various scales (Delgado-Baquerizo et al., 2016a; Baker and Allison, 2017; Piton et al., 

2020; Osburn et al., 2021). However, along our study gradient the degree to which absolute and 

specific PEEAs could be explained with the available ENV and MIC predictors was low (Figure 4-2, Figure 

S4-6). This contradicted our hypotheses and was somewhat surprising, given that links of absolute and 

specific enzyme activities with community composition (Schnecker et al., 2015; Trivedi et al., 2016; 

Piton et al., 2020; Osburn et al., 2021) and with the environmental setting (Sinsabaugh et al., 2008; 

Schimel et al., 2017; Li et al., 2020; Sheng et al., 2022) have been described many times. In particular, 

increased investment into extracellular enzymes (i.e. higher activities of hydrolases and oxidases 

normalized for MBC, here referred to as “specific” activities) has been proposed to be a microbial 

resource acquisition trait (Malik et al., 2020) that is at a community-level trade-off with CUE (Hagerty 

et al., 2018; Malik et al., 2019; Zhang et al., 2023). The present study could not confirm this pattern 

across larger spatial scales and diverse soil types (Figure 4-1). We argue that several factors could blur 

patterns of PEEAs at the observed scale. (i) PEEA measurements integrate long time spans, because 

extracellular enzymes can stay active for a long time through sorption on minerals (Schimel et al., 2017; 

Sheng et al., 2022). (ii) PEEAs were measured at pH 5 and 20 °C, but pH optima and temperature 

responses of PEEAs vary across soils and enzyme groups, potentially skewing rate estimates along the 

investigated gradient (German et al., 2012; Baker and Allison, 2017; Puissant et al., 2019; Wade et al., 

2021). (iii) The three assessed hydrolytic enzyme groups (BG, CB and NAG) fulfill broad functions. These 

enzymes alone might therefore neither be strongly relatable to bulk SOM quality, nor to specific 

microbial taxa (Trivedi et al., 2013; Diamond et al., 2019). Notably, the cell-wall degrading enzyme NAG 

was best predictable among the individual enzymes (Figure S4-6). NAG has been proposed to be more 

involved in microbial recycling than the plant material degrading enzymes BG and CB (Schnecker et al., 

2019). (iv) Similarly, the assessed oxidative enzyme groups (POX, PEX) fulfill multiple functions; in 

addition to resource acquisition they can serve to degrade toxic phenols (Sinsabaugh, 2010). Ultimately, 

PEEAs translate between the environmental setting and the demands of the microbial community. 

Depending on the scale of observation, PEEAs - as measured most commonly - are therefore likely 

emergent functions of the interplay between environment and microbial communities, rather than 

aggregate functions of either environment or community alone (E. K. Hall et al., 2018). Similarly, MCN 

was neither linked to the environmental setting nor to microbial community composition (Figure 4-2), 
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although soil fungal biomass has a wider C:N ratio than soil bacterial biomass (Strickland and Rousk, 

2010). We attribute this lack of relationship to potential method uncertainties associated with 

measurements (Hargreaves et al., 2013; D. Wang et al., 2022). Overall, we found that PEEAs and MCN, 

as measured commonly, neither reflected the environmental setting, nor properties that could be 

related to microbial community composition. Regardless of whether this was caused by method 

inaccuracies or an emergent nature of these properties, we therefore urge caution in the interpretation 

of these variables at large scales. 

 

4.4.2 MBC, growth and respiration are driven by the environmental setting 

In support of the first hypothesis, that microbial biomass carbon as well as the absolute process rates 

would be linked most directly to environmental setting parameters, SOM quantity was the single most 

important driver of MBC along the investigated gradient (Figure 4-3a). This confirms earlier findings on 

the large-scale linkage between SOM quantity and MBC (Colman and Schimel, 2013; Crowther et al., 

2019; L. C. Smith et al., 2021; Gao et al., 2022). An underlying mechanism could be that soil microbes 

in temperate grasslands are generally limited by available carbon or nitrogen substrate, and more 

substrate availability can therefore sustain a higher microbial biomass (Soong et al., 2020; L. C. Smith 

et al., 2021). Along the investigated gradient, bulk SOM was associated to various degrees with 

functionally different SOM fractions (particulate organic matter, free silt- and clay-sized particles, stable 

microaggregates) (Chapter 2). However, bulk SOM and extractable SOM (the latter used as a proxy for 

bio-available SOM) were strongly correlated, as observed before (Wang et al., 2003; Delgado-Baquerizo 

et al., 2016a) (Table S4-2). This indicates that the variable composition of bulk SOM fractions did not 

affect microbially available SOM across grasslands. The strongest driver of SOM quantity was water 

balance (MAP – PET) (Table S4-2). The water balance can affect the balance between SOM input and 

decomposition (Manzoni et al., 2012a; Serna-Chavez et al., 2013; La Pierre et al., 2016; Zhang and Xi, 

2021), as well as the SOM stabilization potential through weathering in the course of pedogenesis 

(Slessarev et al., 2022). Note that only potential direct controls of microbial activity were considered in 

the present study, and thus the strong influence of soil mineralogy on SOM quantity does not become 

evident here (Chapter 2, Doetterl et al., 2015; Rasmussen et al., 2018; Heckman et al., 2022). However, 

the indirect importance of parent material and mineralogy is evident by the fact that the soils with 

highest SOC contents – and highest MBC – were Andosols, which have a high mineral reactivity (Chapter 

2, Beare et al., 2014; Matus et al., 2014) (Table S4-5). 

 

Previous studies found that information on microbial community composition explained variability of 

respiration was additive to explanatory power provided by data on the environmental setting (Graham 
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et al., 2016; Liu et al., 2018). In this study, the variability of respiration that MIC accounted for was 

redundant rather than additive to SOM quantity (Figure2, Figure S4-3). We explain this finding with the 

thought that additive effects of community composition and environmental setting may become more 

likely when communities are attributable to legacy effects or stochastic assembly processes rather than 

to deterministic assembly by present environmental conditions (Orland et al., 2019). Possibly, systems 

that undergo strong environmental fluctuations or disturbances may rather allow for additive 

explanatory power. However, along the investigated gradient a large part of soil bacterial community 

composition was attributable to patterns in soil pH and SOM quantity (Chapter 3). Respiration and 

growth were instead most strongly linked with SOM quantity (Figure 4-3a). Several studies reported 

direct links between SOM quantity and respiration, bypassing microbial biomass (Wang et al., 2003; 

Delgado-Baquerizo et al., 2016a; L. C. Smith et al., 2021). In these studies, the authors argued that 

substrate availability could limit the absolute activity of microbial communities independently of their 

biomass. However, in the present study the strong positive correlation between respiration, growth 

and MBC (Figure 4-1) suggests that SOM quantity affected respiration and growth indirectly via the 

amount of microbial biomass (Figure 4-4a). This relationship has been frequently observed for 

respiration across different spatial scales (Colman and Schimel, 2013; Delgado-Baquerizo et al., 2016a; 

Liu et al., 2018; Osburn et al., 2021). However, it is more surprising for growth, where the inverse 

relationship (faster growth in systems with lower MBC) was recently reported for three soils (Caro et 

al., 2023). This discrepancy is likely a matter of investigated scales and illustrates the context-

dependency of controls; For example, the present gradient of grassland soils encompassed a 70-fold 

variation in MBC (Table 4-1). Such a large difference in microbial biomass might readily override the 

effects that variable sizes of active fractions (i.e. percentage of microbes in a soil that are active) could 

have on growth. Overall, we conclude that MBC, respiration and growth at the biome scale are strongly 

tied to SOM quantity. 

 

4.4.3 The environmental setting partially determines specific growth and 

specific respiration 

Respiration and growth normalized for MBC (i.e. specific respiration and growth) were positively 

correlated (Figure 4-1), indicating that the size of the active fractions of soil microbial communities and 

C turnover through respiration generally co-varied along the investigated gradient. Both specific rates 

were higher in soils with coarser texture (Figure 4-3a), a link that was particularly pronounced in the 

cool and wet Andosols of central Patagonia (Table S4-5). In the case of specific growth, this effect was 

additive to microbial community composition (Figure S4-7, Figure S4-3). Contrary to our second 

hypothesis, that specific process rates, CUE and MCN would be linked to MIC variables mostly, texture 
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as a proxy seemed to represent mechanisms that influence specific activity independently of 

community composition. In our study, texture was quantified as secondary texture in which stable 

physical structures are preserved that can limit the access of microorganisms to SOC or influence soil 

pore structures (i.e. water- stable micro-aggregates). Possibly, soils rich in stable microaggregates and 

SOC (such as the Andosols of central Patagonia, Chapter 2) offered more viable or aerated microsites 

at the air-water interface, increased pore connectivity and larger probability for the contact between 

microbes and substrate (Don et al., 2013; Keiluweit et al., 2017; Schnecker et al., 2019; Nunan et al., 

2020). This could allow a larger fraction of the microbial communities to grow and respire, thereby 

decoupling specific respiration and growth from biomass (L. C. Smith et al., 2021; Camillone et al., 

preprint). In support of this idea, growth was also higher in soils with coarser texture (Figure 4-3a). 

Nevertheless, finer texture is often considered to promote microbial activity at intermediate moisture 

conditions (Wolf et al., 2013; Angst et al., 2021b), with few exceptions (Hassink, 1994; Franzluebbers 

et al., 1996; Nunan et al., 2020; Witzgall et al., 2021). Importantly, the lack of this connection in other 

studies could be related to the fact that usually primary texture is investigated and reported, or that 

texture gradients are often small and limited in spatially confined studies; potentially relevant effects 

of variable in-situ secondary texture (Six et al., 2004; Wilpiszeski et al., 2019) may therefore be 

frequently overlooked. 

 

In contrast to texture, links between specific rates and MAT, soil pH and bulk C:N ratio were not additive 

to microbial community composition and largely disappeared after consideration of the latter (Figure 

S4-3, Figure S4-7). The positive link between MAT and specific growth could potentially be explained 

with thermal adaptation of the communities. MAT of the sampling sites ranged from 3.0 to 17.1 °C 

(Table S4-1); as a consequence, soils from warm sites of central Chile were incubated at thermal 

conditions (20 °C) that more closely resembled their native conditions as compared to soils from cooler 

regions in southern Chile. According to the theory of thermal adaptation, microbial communities adjust 

to their native MAT in several ways, one of which may be selection of thermally adapted genotypes or 

taxa (Bradford, 2013; Bradford et al., 2019; Nottingham et al., 2019; Eng et al., 2023). Soil pH is an 

important environmental filter of microbial community composition (Lauber et al., 2009; Rousk et al., 

2010), also along the investigated gradient (Chapter 2). It is therefore conceivable that soil pH indirectly 

affected specific respiration (and as a consequence CUE, Figure 4-3a) through the microbial community 

composition (Malik et al., 2018, 2019). The link between bulk C:N ratio and specific respiration is in line 

with a theory of stoichiometric constraints: when the C:N ratio of the substrate exceeds the C:N ratio 

of microbial biomass, CUE may be lower due to a relative N limitation of growth or increased overflow 

respiration (Manzoni et al., 2012b; Sinsabaugh et al., 2016). However, the redundancy of bulk C:N ratio 

and the microbial community composition (Figure S4-3, Figure S4-7) indicate that bulk C:N rather 
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affected CUE through the community composition. Lastly, the classification of soils into WRB major soil 

groups did not help to structure the influence of the environmental setting on soil microbial traits and 

functions, because variations within soil groups were large (Table S4-5). 

 

4.4.4 Decoupled aspects of MIC drive specific respiration, specific growth and 

CUE 

In support of the second hypothesis, respiration and growth normalized for MBC (i.e. specific 

respiration and growth) were overall more strongly linked to microbial community composition than 

to the environmental setting (Figure 4-2). Furthermore, specific respiration and specific growth were 

linked to different components of MIC (Figure 4-3b), which was in line with the third hypothesis, that 

they would be physiologically decoupled. This decoupling between specific respiration and specific 

growth was particularly pronounced in soil types without andic properties, which had less secondary 

sand content as discussed in section 4.4.3 (Table S4-5). We argue that this missing biological coupling 

of specific respiration and specific growth as well as the link to microbial community composition are 

connected and can be understood in the light of microbial physiology. Cell-specific respiration rates are 

evolutionary constrained, as the energy requirement of a cell depends at least partially on hardwired 

cellular traits (van Bodegom, 2007; Roller and Schmidt, 2015). More specifically, the potential for 

copiotroph behavior is likely associated with higher cell-specific respiration rates (Roller and Schmidt, 

2015; Ho et al., 2017). As a consequence, specific respiration at the cell level may be a phylogenetically 

narrow (instead of broad) trait, rendering it a predictable aggregated trait (instead of an unpredictable 

emergent trait) at the bulk soil level. In the present study, seven bacterial genera were strongly 

correlated with PC1 (Table S4-4), which was the strongest predictor of specific respiration (Figure 4-2). 

Out of these, four genera dominant in soils with high specific respiration belonged to the phyla 

Alphaproteobacteria, Gammaproteobacteria and Actinobacteriota, which have the potential to behave 

copiotroph in response to substrate addition (Stone et al., 2023) (Table S4-4). In contrast to specific 

respiration, specific growth (or microbial turnover) is thought to be less directly driven by evolutionary 

hardwired obligate metabolism (Li et al., 2019; T. P. Smith et al., 2021; Stone et al., 2023). While the 

potential for fast growth may be evolutionarily conserved in some phyla (Stone et al., 2023), maximum 

growth rates are unlikely to be achieved in soil due to energy limitation (Manzoni et al., 2012b; Soong 

et al., 2020; Caro et al., 2023). This is supported by the observation that specific growth rates were less 

variable than specific respiration rates along the gradient (Table 4-1). As a consequence of hampered 

growth, specific growth should be decoupled from specific respiration, with a less direct link to 

community composition than specific respiration. This is supported by the observation that the MIC 

models on average explained 41 % (± 10 % S.D.) of variation for specific growth, but 73 % (± 7 % S.D.) 
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for specific respiration (Figure 4-2). Specific growth was most strongly linked with MIC PC2 (Figure 4-

3b). MIC PC2 was associated with bacterial and fungal ASV richness, as well as the bacteria:fungi ratio 

and prevalence of saprotrophic taxa (Table S4-4, Figure S4-9). Our analysis links higher specific growth 

with lower taxonomic richness of bacteria and fungi, and with a reduced dominance of bacteria over 

fungi (Figure 4-3, Table S4-4). This is surprising, because it has previously been suggested that bacteria 

grow faster than saprotrophic fungi in soil (Rousk and Bååth, 2011; Caro et al., 2023). Irrespective of 

the underlying mechanisms, links between specific growth and community composition, as well as 

growth rate differences among bacterial taxa at submaximal growth rates have been observed before 

in more local studies (Li et al., 2019; Zheng et al., 2019a; Y. Chen et al., 2021; Metze et al., 2024). We 

propose that improved accuracy in the description of the active fractions of microbial communities 

(e.g. via parallel labeling of active parts of the community, (Couradeau et al., 2019; Stone et al., 2023; 

Metze et al., 2024) and improved characterisation of energy limitation (Kellerman et al., 2015; 

Davenport et al., 2023; Jones et al., 2023) could increase the resolution on proposed mechanisms. In 

summary, the observation that specific respiration and growth were linked to different components of 

the microbial communities provides evidence that microbial respiration and growth can be 

physiologically decoupled in soils under conditions of energy limitation (Figure 4-4b).  

 

Interestingly, SOC substrate quality is expected to affect CUE (Gommers et al., 1988; Manzoni et al., 

2012b; Roller and Schmidt, 2015; Jones et al., 2018), but we did not find this link (Figure 4-3a). Perhaps 

the chemical nature of available (dissolved) SOC generally causes energy-limitation (Manzoni et al., 

2012b; Soong et al., 2020), irrespective of the degree of SOC decomposition at the bulk scale as 

measured in this study. Rather, microbial community composition was the best predictor of CUE (Figure 

4-2), in line with our second hypothesis. Previous studies found that CUE increased with bacterial 

richness (Domeignoz-Horta et al., 2020) and bacterial dominance over fungi (Soares and Rousk, 2019). 

However, CUE was most strongly linked to PC1 (Figure 4-3b) which was correlated with several genera 

of potential copiotrophs (Table S4-4) belonging to the phyla Alphaproteobacteria, 

Gammaproteobacteria and Actinobacteriota; (T. P. Smith et al., 2021; Stone et al., 2023). We explain 

the link between CUE and microbial community composition with the fact that microbial CUE can be 

related to phylogeny due to physiological trade-offs between maximum growth rates and general 

metabolic efficiency (Saifuddin et al., 2019; Muscarella et al., 2020; T. P. Smith et al., 2021). More 

specifically, the potential for copiotroph behavior is likely associated with inefficient substrate use (due 

to higher maintenance cost) at submaximal growth rates, resulting in lower CUE as compared to 

oligotrophs (Roller and Schmidt, 2015; Roller et al., 2016; Ho et al., 2017). Our observations suggest 

that at submaximal growth rates (due to energy limitation) CUE at the investigated scale seems to be 

mainly driven by specific respiration, which is largely a function of community composition (Figure 4-
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4). Theoretical considerations (Hagerty et al., 2018) and local case studies over soil depth (Zhang et al., 

2023) and season (Simon et al., 2020; Schnecker et al., 2023) identified the same fundamental 

mechanism: specific respiration and specific growth are uncoupled products of microbial metabolism, 

and CUE is their integrated product. This also helps to understand a recent finding where CUE 

decreased with carbon limitation across different land uses (He et al., 2023): In situations of carbon 

limitation, microbial communities can downregulate growth more than respiration, thereby lowering 

their CUE. At the same time, the positive link between specific growth and CUE (Figure 4-1) is consistent 

with a concept proposed by Lipson (2015); in regimes of carbon- (i.e. energy-) limitation, increased 

growth rates lead to an increase of CUE.  

 

 

Figure 4-4. Summary of the findings of this study. Panel a) shows absolute rates (respiration and 

growth), panel b) shows specific rates (specific respiration, specific growth, i.e. rates normalized for 

MBC). At the investigated scale, the environment (SOM quantity) drives microbial biomass (1), which 

in turn drives coupled absolute rates of growth and respiration (2), resulting in no strong effects on CUE 

(3). The environment also shapes the microbial community (4), which drives decoupled specific rates 

of growth and respiration (5), which result in strong effects on CUE (6). MBC = microbial biomass 

carbon, CUE = carbon use efficiency,  
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The dominant (and identifiable) controls on SOC dynamics depend on scale and context (Ali et al., 2018; 

González-Domínguez et al., 2019; Li et al., 2020; Tian et al., 2022). The present biome-scale gradient 

features a large variation of environmental setting and microbial traits and functions (Table S4-1, Table 

4-1) that allows insights on the controls of microbial functioning across pedo-climatic regions. At 

smaller scales, however, finer variation of microbial traits and functions may be of interest, which could 

be driven by other factors and processes that are masked at the large scale. In addition, the influence 

of stressors on microbial community functioning, such as moisture fluctuations, might complicate the 

picture by potentially overriding or amplifying the presented links (Schimel, 2023). However, we argue 

that the acknowledgement that physiological decoupling of specific respiration and specific growth - 

which takes place at cellular levels - translates to the biome-scale has the potential to strongly improve 

our understanding of CUE across scales. Currently, it is common practice to investigate CUE as just one 

variable. Based on this study, we however propose that CUE should be interpreted and represented in 

its components, regardless of the scale. 

 

4.5 Conclusion 

This study showed that the environmental setting and the microbial community composition drive 

different aspects of SOC cycling. Conceptualization of absolute rates as the product of microbial 

biomass and specific rates could help to reconcile the different roles that environmental setting and 

microbial community composition play in the SOC cycle. Ultimately, we conclude that disentangling 

microbial biomass, specific respiration rate and specific growth rate could be a promising step towards 

a better understanding of the SOC cycle at the large scale. At the scale of a biome (i.e. temperate 

grasslands), the environment (predominantly SOM quantity) was found to drive and dominate patterns 

of microbial biomass, which in turn drove growth and respiration. However, specific growth and specific 

respiration were most strongly linked to features of microbial community composition that followed 

varying trends, resulting in strong effects on CUE (Figure 4-4), and only to a limited extent to edaphic 

factors of the environmental setting.  

 

The fact that specific growth, specific respiration and consequently CUE are partially predictable but 

decoupled properties of the microbial community composition urges us to reconsider the conceptual 

representation of CUE as just one value. Along the lines of Hagerty et al. (2018), we provide evidence 

that CUE might be more comprehensible and more valuable when it is analyzed in its components. For 

conceptual and numerical models, a potential way forward could be to consider specific respiration 

rates and specific growth rates separately. On the one hand, specific respiration rates might be a 
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function of relative cellular maintenance costs and, therefore, genomic indicators for the potential for 

copiotroph behavior could help to predict specific respiration rates. On the other hand, energy 

limitation and the ratio of bacteria to fungi may directly control specific growth rates (or microbial 

turnover) in soil systems. Further research will be required to identify more accurate measurable 

proxies for these factors, but the increasing amount of data for soil microbial growth rates will 

ultimately facilitate parametrization and validation of growth in models.  
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5. Synthesis 

In this thesis, I used a geoclimatic soil gradient to evaluate whether physical stabilization and microbial 

mechanisms related to the SOC cycle translate from the mesoscale to the macroscale. The investigated 

mechanisms were (1) stable microaggregates as an SOC reservoir, (2) bacterial competitive exclusion 

and substrate specialization and (3) biomass-specific microbial C metabolism. In Chapters 2 to 4, I could 

show together with coauthors that stable microaggregates and biomass-specific C metabolism 

translate from the mesoscale to the macroscale, while we found that bacterial substrate specialization 

was not a relevant mechanism along the geoclimatic gradient (Figure 5-1). In the following synthesis, I 

will summarize the findings across all three chapters and highlight interdisciplinary links among them 

(Chapter 5.1). For this, I will use a comprehensive comparison of the SOC dynamics of two contrasting 

systems along the gradient. In addition, I will discuss the general conclusions that I have derived from 

each of the three chapters (Chapters 5.2 to 5.4). I will place these conclusions in the context of the 

current state of the art, discuss their implications for the respective research fields and propose future 

research directions that build on this thesis. Following these perspectives, I will briefly discuss how the 

investigated system aligns with the general terrestrial SOC cycle (Chapter 5.5). This will provide 

guidance to place the findings of this thesis in a global context. Lastly, I will conclude with a general 

outlook about future research with this dataset (Chapter 5.6). 
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Figure 5-1. Conceptual summary of Chapters 2 to 4, at the bottom simplified answers to the main 

question: Do the investigated mechanisms translate to the macroscale? 

 

5.1 Connecting the dots: soil organic carbon cycling along the gradient 

In the following section I will summarize the knowledge about SOC cycling that we have gained through 

this thesis across diverse geoclimatic settings. The broad and interdisciplinary range of biogeochemical 

measurements that was conducted along this gradient allows us to paint an exciting picture of unusual 

clarity of macroscale SOC dynamics across temperate grasslands. To integrate the key information from 

Chapters 2 to 4, I will highlight two sites with contrasting geoclimatic settings (Figure 5-2): a dry and 

warm Arenosol which has formed on marine terraces and stabilized dunes in the north of the gradient 

(Los Vilos), and a Patagonian Andosol in the wet and cool central region of the gradient, which has 

formed on holocenic volcanic ash (Chapo). I want to emphasize that the patterns that I describe in this 

summary are not merely based on the comparison of these two sites that have contrasting and extreme 

properties. Rather, they are based on continuous patterns that have emerged across 35 sites and that 

have been described in detail in the respective Chapters 2 to 4. I believe that it is the consistency of the 

described patterns across this large range of physicochemical conditions which renders this dataset 

extraordinarily valuable. In the following section, values in brackets always refer to the example sites 

Los Vilos and Chapo, but a summary of the entire ranges and patterns is provided in Figure 5-2. 

 

In the dry and warm soils in the north of the gradient (MAT 15.8°C, MAP-PET -1152), mineralogic 

reactivity was low (pedogenic oxides 1.5 g kg-1 soil), soil pH was near neutral (5.7), and sand content 

was high (91.8 %). In the cool and wet soils of Patagonia (MAT 10.0°C, MAP-PET 1295), mineralogic 

reactivity was high (pedogenic oxides 18.1 g kg-1 soil) and soil pH was more acidic (4.8). Most soils in 

Patagonia were per se less sandy (primary sand, 46.8 %), but considerable aggregation (17.1 %) caused 

sandy secondary textures (secondary sand, 63.9 %). These differences could partially stem from 

pedogenesis that might be further advanced in the wetter climate of central Patagonia. However, it is 

evident that climate and weathering are not the sole cause for the observed differences along the 

gradient. Los Vilos is an Arenosol which formed on sandy parent material; in contrast, central Patagonia 

is dominated by Andosols (such as Chapo) which feature highly reactive short range order minerals. 

Due to an autocorrelation between climatic and andic properties along the Chilean gradient, the effects 

of parent material and weathering were difficult the disentangle. However, it is safe to say that 

contrasting parent material and climate created a very strong gradient of soil physicochemical 

conditions. These soil physicochemical conditions caused consistent patterns of SOC dynamics.  
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Figure 5-2. Conceptual summary of SOC dynamics along the gradient, highlighted with data from two 

sites in contrasting geoclimatic settings. Photographs by Manuel Casanova. MAT = mean annual 

temperature, MAP-PET = annual water balance, Primary sand = sand content after full dispersion, S+C 

= silt- and clay-sized fraction, POM = particulate organic matter, Secondary sand = sand content without 

dispersion of stable microaggregates, MBC = microbial biomass carbon. 

 

The drier and warmer soils in the north with low mineralogical reactivity accumulated less SOC (5.9 g 

kg-1 soil) than the wetter and cooler Patagonian soils with higher mineralogical reactivity (110.7 g C kg-

1 soil). The dominant SOC fraction in soils such as Los Vilos were the silt- and clay-sized particles (37.4 

% of the SOC recovered in the fractionation), whereas SOC in soils such as Chapo was dominated by 

stable microaggregates (62.1 % of the SOC recovered in the fractionation). The amount of C associated 

with silt- and clay-sized particles was mainly driven by mineralogical reactivity, whereas the amount of 

C associated with stable microaggregates was driven by climatic as well as mineralogic properties. In 

soils like Los Vilos, the bulk C:N ratio was lower (Los Vilos: 15.6, Chapo: 17.1) and bulk SOM was more 

microbially transformed (Los Vilos: 0.4, Chapo: 0.1; index scaled between 1 and 0). Moreover, SOM 

associated with the silt- and clay-sized particles was more microbially transformed (Los Vilos: 0.6, 
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Chapo: 0.3; index scaled between 1 and 0). This indicates that in situ stabilization – where SOC passes 

through microbes – was more important in Los Vilos, whereas ex situ stabilization – where SOC 

bypasses microbial uptake – was more important in Chapo. Based on these findings, I argue that in soils 

like Los Vilos (warmer, drier, less reactive), the turnover of SOC relative to organic matter input is higher 

than in soils like Chapo (cooler, wetter, more reactive). In addition, I conclude that lower mineral 

reactivity (low content of pedogenic oxides and clay) limits the amount of SOC that can accumulate in 

Los Vilos. In low-SOC soils like Los Vilos, concentrations of extractable (and thus available) C were lower 

than in high-SOC soils like Chapo (68.7 and 262.7 mg kg-1 soil, respectively). Linked to the lower 

available C concentration in Los Vilos was a lower microbial biomass (60.0 vs. 161.6 μg MBC g-1 soil), 

which translated into lower absolute rates of microbial respiration (0.6 vs. 3.5 μg C g-1 soil h-1) and 

microbial growth (0.5 vs. 0.7 μg C g-1 soil h-1) at controlled temperature and moisture conditions (20 °C, 

50 % WHC). I argue that as a consequence of lower substrate availability, the bacterial communities in 

low-SOC soils were not dominated by copiotrophic taxa, which may have made them more diverse than 

high-SOC soils (Shannon diversity 7.2 vs. 6.1). Due to the prevalence of oligotrophic taxa in low-SOC 

soils, biomass-specific respiration was lower in low-SOC soils (Los Vilos: 5.9 % of MBC d-1) than in high-

SOC soils (Chapo: 19.4 % of MBC d-1). In high-SOC soils, copiotrophic taxa were more prevalent, which 

are likely to have a higher energy-demand for cell-maintenance. I argue that biomass-specific growth 

was less variable between the systems than specific respiration because energy limitation is likely a 

strong growth constraint across all soils. Nevertheless, biomass-specific growth was linked to the 

microbial community and to texture in such a way that it was highest in the northern soils of the 

gradient similar to Los Vilos (8.8 % of MBC d-1), and lower in soils like Chapo (4.9 % of MBC d-1). The link 

between texture and microbial activity suggests that aggregation may not just affect SOC availability, 

but perhaps also influence microbial activity through altering microscale conditions. As a consequence 

of the decoupled metabolic controls on biomass-specific respiration and growth, CUE tended to be 

highest in low-SOC soils (Los Vilos 0.60) and low in high-SOC soils (Chapo 0.2). However, this pattern 

was inconsistent, and microbial community composition directly was a better predictor of CUE than 

the environmental setting. 

 

The high resolution and interdisciplinary characterization of this large gradient allowed to link soil 

physicochemistry, SOC accumulation, microbial C fluxes and microbial metabolism across a biome 

(temperate grasslands). Thereby, this work could (rudimentarily) account for the complexity of soil 

systems. By doing so, this thesis portrayed numerous links between the environmental setting, SOC 

quantity and quality, soil microbial community composition and microbial traits and functions. Overall, 

the work presented here improves our understanding of how the entire SOC cycle is directly or 

indirectly affected by the environmental setting. Climate and soil physicochemistry are the ultimate 
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controls of SOC dynamics at the macroscale (Colman and Schimel, 2013; Sebastian Doetterl et al., 2015; 

Rasmussen et al., 2018; Yu et al., 2021; Heckman et al., 2022). However, microbial C metabolism was 

more directly linked to microbial community composition. I believe that this finding adds a new and 

important nuance to our understanding of macroscale SOC dynamics. Despite the overarching 

dominance of climatic and soil physicochemical controls, neither physicochemical properties nor 

microbial processes alone are sufficient to fully explain all aspects of the macroscale SOC cycle. Rather, 

they are complementary. I believe that the clarity with which the presented gradient work shows this 

complementarity helps to make sense of two well-articulated but somewhat opposed perspectives: 

scaling from the microbial view (Schimel, 2023) and scaling from the soil physicochemical view (Baveye, 

2023). More personally, this work has helped me to consolidate the microbial- and biology-focused 

“socialization” from my Master studies with a geographer`s physicochemical macroscale context. For 

me, the most important take-away from my doctoral thesis is that it opened my eyes to the importance 

and value of connecting perspectives and of thinking across disciplines. 

 

5.2 Stable microaggregates at the macroscale: potentials and challenges 

In Chapter 2, my coauthors and I investigated whether stable microaggregates constitute a relevant 

SOC reservoir. Are we overlooking microaggregates at the macroscale, despite knowing that 

aggregation is an important mechanism at the mesoscale? We could show that stable microaggregates 

(isolated with a density and particle size fractionation scheme, Zimmermann et al., 2007) constitute a 

major SOC reservoir, because they contained on average half of the SOC along the gradient. We further 

asked whether stable microaggregates are predictable with environmental conditions. We found that 

the amount of SOC in stable microaggregates was linked to climate as well as mineralogic soil 

properties. Stable microaggregates were quantitatively most important in wet and cool systems, and 

in soils with high mineralogic reactivity (particularly Andosols). Lastly, we used stable isotope analysis 

and DRIFT spectroscopy to investigate how consistent the chemical characteristics of stable 

microaggregate C were across contrasting geoclimatic settings. The degree of decomposition of C in 

stable microaggregates was significantly different from particulate organic matter and silt- and clay-

sized fractions and did not change along the gradient. In summary, Chapter 2 demonstrated that stable 

microaggregates constitute a quantitatively important SOC reservoir, with environmental drivers and 

chemical characteristics that were distinct from particulate organic matter and silt- and clay-sized 

fractions.  

I therefore conclude that the scaling of aggregate dynamics to the macroscale is a worthwhile endeavor. 

Our results and findings suggest that more macroscale models should feature aggregate turnover. One 

notable example of a model that already integrates aggregate dynamics is the Millennial v2 model 
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(Abramoff et al., 2022), which incorporates aggregate dynamics based on the AggModel by Segoli et 

al. (2013). In the AggModel, microaggregates form within macroaggregates, the rates of aggregate 

dynamics are linear, and microaggregates protect SOC (Segoli et al., 2013). Moreover, the fractionation 

method used in this thesis (Zimmermann et al., 2007) was initially proposed to be used for the 

initialization of the first-order rate model RothC. For example, Wiesmeier et al. (2016) successfully 

predicted SOC stocks in Bavaria (Germany) with a RothC model initialized with Zimmermann-fractions. 

Chapter 2 now provides powerful empirical evidence that stable microaggregates indeed constitute an 

SOC reservoir with consistent macroscale patterns that are coherent with mechanistic knowledge from 

the mesoscale. This finding therefore supports the representation of stable microaggregates at the 

macroscale, as implemented in Millennial v2, or more indirectly in model initialization based on the 

fractionation scheme described by Zimmermann et al. (2007).  

Contrary to what our findings suggest, the popular simplification of separating SOC into POM and 

MAOM disregards the potential role of aggregates as a relevant macroscale mechanism. The POM-

MAOM simplification is mostly achieved by (partial) dispersion of aggregates, followed by size 

fractionation, where MAOM < e.g. 63 μm < POM (Poeplau et al., 2018; Lavallee et al., 2020). The 

dispersion of aggregates in the POM-MAOM framework means that the aggregate-associated C ends 

up in the POM and MAOM fractions. The framework thereby combines free and occluded POM (which 

was liberated by aggregate dispersion) into one functional reservoir, as well as silt- and clay-sized 

particles together with remnants of dispersed aggregates that are < 63 μm. In strongly aggregated soils 

with high mineral reactivity (e.g. the soils in central Patagonia), this may skew the characteristics of 

POM and MAOM to a greater extent than in weakly aggregated soils. I am working to investigate this 

aspect further (see Chapter 5.6). However, the current fate of stable microaggregates at the macroscale 

is not solely a case of being “overlooked”, as I asked provokingly in this thesis. Rather, it is more accurate 

to state that stable microaggregates are disregarded knowingly from scaling. This is mainly for reasons 

of practicality (Lavallee et al., 2020). 

Two major challenges remain which in my opinion obstruct the development of an effective macroscale 

representation of stable microaggregates. In the following I want to briefly discuss these two 

challenges. (i) A universal and unanimously accepted operational definition of stable microaggregates 

is missing. Different fractionation schemes consider different operational definitions, and thus arrive at 

different aggregate fractions. And even with such a consensus, it will be challenging to apply a 

consistent dispersion treatment across different laboratories or soil types, or for that reason compare 

“aggregates” between different studies. The method of dispersion (von Lützow et al., 2007; Poeplau et 

al., 2018; Just et al., 2021), detailed specifics in the sonication step (if dispersal is achieved by 

sonication) such as power or intervals (Cerli et al., 2012; Kaiser and Berhe, 2014; Poeplau and Don, 

2014) and even aspects of sample mixing (Büks, 2023) can strongly affect the results of fractionation 



122 
 

procedures. Often, the description of fractionation procedures is not sufficient for exact reproduction 

(Poeplau and Don, 2014; Büks, 2023). This in turn creates additional uncertainties for the 

parameterization and calibration of models with aggregate data. Therefore, a consensus definition on 

a well reproducible isolation procedure for stable microaggregates – or a set of such procedures for 

different soil types – would greatly facilitate the scaling of aggregate dynamics. Such a method – or 

methods – further need to be tailored to capture the essential functions that aggregates play in the 

SOC cycle. This leads to the second major challenge. (ii) Although we could show that aggregates follow 

distinct environmental controls and have an SOC composition that is distinct from POM and the silt- 

and clay-sized fraction, it is still unresolved how well aggregates really protect SOC from decomposition. 

One might think instinctively: this is easy, 14C! However, resolving causality in the context of C age in 

aggregates remains a tough nut to crack. Does SOC in aggregates have a slower turnover because it is 

stabilized in aggregates, or does SOC that turns over slowly due to inherent chemical recalcitrancy 

preferentially promote aggregation (Wagai et al., 2009)? I propose that a way forward could be the use 

of compound-specific 14C dating (Ascough et al., 2009; van der Voort et al., 2017; Gies et al., 2021; 

Grant et al., 2022). Direct comparison of the 14C age of the same compounds with and without 

aggregate-association could circumvent uncertainties regarding the effect of inherent “recalcitrance” 

of compounds. In addition to the general aspect of stabilization, the relevance of scaling stable 

microaggregates also depends on whether C turnover in aggregates reacts consistently to 

environmental change, as has been shown for POM and MAOM (Rocci et al., 2021). Based on 

mechanistic knowledge about aggregate dynamics, it is reasonable to hypothesize that warming or 

altered moisture regimes will affect aggregate turnover (Six et al., 2004; Totsche et al., 2018; Poeplau 

et al., 2020b; Philippot et al., 2024). If this hypothesis can be confirmed, it might provide a strong 

reason to consider aggregate dynamics in macroscale simulations. To test this, a meta-analysis of 

aggregate dynamics in climate manipulation experiments will be necessary, similar to the approach of 

Rocci et al. (2021) for POM and MAOM. 

All things considered, Chapter 2 demonstrated that aggregates constitute a SOC reservoir which 

translates to the macroscale, and that there could be a considerable gain from representing aggregates 

as an independent SOC reservoir. Ultimately, we need to weigh the gain derived from scaling the 

mechanism of aggregate turnover versus the loss that comes from not scaling it. Until the challenges 

which I elaborated above have been addressed, it will be helpful to understand how the lack of 

aggregate representation affects models. For example Laub et al. (2024) recently showed that the 

absence of SOC protection through aggregates leads to lower SOC turnover estimates in other pools. 

Once the remaining questions have been addressed, stable microaggregates will be ready for scaling, 

and we will no longer need to “knowingly disregard” our mechanistic knowledge at the macroscale.  
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5.3 Linking carbon and bacterial communities: a need for more 

sophisticated tools 

In Chapter 3, we asked whether there are scalable links between SOM (including C and N) and soil 

bacterial community composition. To address this question, we investigated how soil bacterial 

community composition relates to the environment and to the quantity and qualitative characteristics 

of SOM. Please note that in this chapter, SOM quantity refers to a rotated component that represented 

the contents of total and extractable C and N. The quality of SOM was assessed based on chemical 

characteristics derived from spectroscopy, thermostability, stable isotope ratios and the prevalence of 

particulate organic matter. We found that soil pH and SOM quantity were the strongest drivers of soil 

bacterial community composition. More specifically, soils with high SOM quantity and low soil pH were 

less diverse (alpha diversity) than soils with low SOM quantity and high soil pH. However, the 

identification of the underlying mechanism that links SOM quantity and diversity remained challenging. 

With the available data, we could not evaluate whether the link between alpha diversity and SOM 

quantity was due to the mechanism of competitive exclusion, or due to a co-dependence of diversity 

and SOM quantity on SOM turnover rates. Lastly, we did not find evidence that the mechanism of 

bacterial substrate specialization had a pronounced effect on soil bacterial community composition. 

Instead, bacterial community composition only showed a weak link with the qualitative composition of 

SOM. Overall, these findings suggest that bacterial substrate specialization – which is a well-established 

mechanism at the mesoscale – does not play an important role at the macroscale which can be 

detected with standard methods that are used to describe qualitative properties of SOM. I therefore 

conclude that bacterial substrate specialization does not merit scaling as a mechanism that determines 

bacterial community composition. 

To my knowledge, the negative link between alpha diversity and SOM quantity was nevertheless a novel 

finding at the macroscale. Two potential underlying mechanisms are: (i) competitive exclusion, and (ii) 

co-dependence of diversity and SOM quantity on SOM turnover rates. Competitive exclusion would 

occur if bacteria that are adjusted to high substrate conditions outcompete other bacteria (Malik et al., 

2020). In contrast, a dependence of bacterial diversity on SOM turnover rates was proposed in other 

studies (Delgado-Baquerizo et al., 2016b; Zhou et al., 2016), although neither of these studies 

comprehensively elaborated or even identified potential underlying mechanisms. Nevertheless, in 

order to test this second hypothesis as was proposed by others, a measure of in situ SOM turnover 

would be necessary. Approaches to accurately quantify plant OM inputs into soil across gradients are 

complicated and very laborious. An impressive example by L. Chen et al. (2021) demonstrated that this 

requires empirical estimates of aboveground net primary productivity and root biomass, in 

combination with satellite-derived high resolution vegetation parameters. A simpler approach to get a 
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sense of potential in situ patterns of SOM turnover along the gradient could be the measurement of 

decomposition rates with the tea bag index (Keuskamp et al., 2013). SOM turnover estimation with this 

method would solely be based on mass losses (and not directly on C losses) and it would neglect input 

rates as well as the turnover of native SOM and labile SOM. However, it would be technically simple 

enough for application across this large gradient, although still requiring considerable logistical effort. 

A similar but much more elaborate approach could be the in situ addition of isotopically labelled OM, 

as described by (Schiedung et al., 2023a). While this approach also just quantifies turnover of the added 

material, and in addition needs to account for vertical losses, it directly quantifies the dynamics of 

substrate-derived C (and N) and even allows to trace it into different fractions. Another approach to 

estimate SOM turnover is based on 14C measurements (Torn et al., 2009; Shi et al., 2020). However, 

different turnover rates of different carbon pools complicate this approach (Sierra et al., 2017; van der 

Voort et al., 2019; S. W. Stoner et al., 2023).  

We implicitly assumed a decreasing molecular diversity of SOM with increasing microbial 

transformation based on literature (Roth et al., 2015; Hoffland et al., 2020; Davenport et al., 2023; 

Jones et al., 2023). However, perhaps this assumption was flawed – molecular diversity within intact 

macromolecules of plant litter may not necessarily be of much help to soil bacteria in search of 

dissolved available substrate. I now think that higher SOM turnover could theoretically increase the 

molecular diversity of dissolved available SOM. Possibly, low-SOC soils could (1) have a lower diversity 

of total bulk SOM because less plant material (which is chemically diverse, but insoluble) accumulates, 

while at the same time (2) a relatively larger range of intermediate decomposition products are in 

solution and lead to a higher diversity of available substrate. For future work, a more precise 

characterization of available SOM would therefore be desirable. Possible methods to achieve this could 

be pyrolysis combined with gas chromatography and subsequent mass spectrometry (py-GC-MS, Jones 

et al., 2023), liquid chromatography combined with tandem mass spectrometry (LC-MS/MS, Davenport 

et al., 2023), fluorescence spectroscopy combined with parallel factor analysis modelling (Fellman et 

al., 2008), or fourier transform ion cyclotron resonance mass spectrometry (FT-ICR-MS, Kellerman et 

al., 2015). To my knowledge, all these methods are laborious and come with challenges and limitations 

in soils, but I think across strong environmental gradients they could provide an exciting avenue to 

further explore the link between substrate diversity and bacterial community composition. A first 

steppingstone could be solid-state 13C nuclear magnetic resonance analysis in order to better evaluate 

the chemical composition and diversity of bulk SOM (Hall et al., 2020; Castañeda-Gómez et al., 2023; 

Man et al., 2023). 

In Chapter 3, we found that SOM quality was mainly linked to rare bacterial taxa. However, the 

investigation of rare taxa was limited by sequencing depth and the size of the sequenced 16S rRNA 

gene fragments. Improved resolution of rare taxa abundances could therefore also provide improved 
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insights into the links between SOM quality and bacterial community composition. A higher sequencing 

depth would be achieved by pooling less samples together during the sequencing procedure, and 

longer gene fragments could be obtained with a different set of primers during gene amplification. 

In conclusion, we did not find strong scalable links between soil bacterial community composition and 

SOM composition. To safely discard the existence of scalable links between the SOM quality and 

communities, higher resolutions of community composition and SOM composition may be necessary. 

A more promising link was found between bacterial diversity and SOM content. However, further work 

will be necessary to understand the mechanism that underlies this pattern. Nevertheless, our findings 

in Chapter 4 - namely, that microbial community composition affects microbial traits and functions such 

as CUE and biomass-specific respiration – underline the importance to better understand the 

mechanisms that determine microbial community composition.  

 

5.4 Microbial metabolism: a promising avenue for scaling 

In Chapter 4, we asked whether biomass-specific microbial metabolism translates to the macroscale. 

For this, we investigated how soil microbial traits and functions that are relevant for the SOC cycle are 

influenced by differences in the environmental setting, SOM and the soil microbial community 

composition. We found that microbial biomass and absolute process rates (i.e. rates per unit soil mass) 

were most directly linked to the environmental setting because the environment sets the frame for 

microbial activity. In accordance with our hypothesis we found that biomass-specific process rates and 

CUE were linked to microbial community composition. Moreover, we found that biomass-specific 

growth and respiration rates were linked to different members of the microbial community, indicating 

that they were physiologically decoupled. Overall, this demonstrates that metabolic mechanisms – 

which play out at the microscale – allow for improved predictions of microbial traits and functions at 

the macroscale. 

Based on our findings, we can make suggestions for a refined representation of microbial traits and 

functions at the macroscale. We propose that genomic indicators for the potential of copiotrophic 

behavior could help to better predict specific respiration and CUE. A link between such genomic 

indicators (e.g. genome size, number of 16S operons per cell) and microbial traits has been shown 

repeatedly based on bacterial isolates (Saifuddin et al., 2019; Muscarella et al., 2020; T. P. Smith et al., 

2021). However, this potential has not yet been unlocked in soil systems at the macroscale. In Chapter 

5.6 I will briefly outline work that is underway to follow up on this idea. We further found that microbial 

community composition predicts specific growth only to a lesser extent. This finding is in line with 

previous work based on quantitative stable isotope probing (Li et al., 2019). The link between specific 

growth rates and microbial community composition may be weaker due to energy limitation in soil, 
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which constrains maximum growth rates (Soong et al., 2020; Caro et al., 2023; He et al., 2023). 

Therefore, a remaining challenge is to better characterize microbial energy limitation. A nested study 

approach (as described in Chapter 1.6) could provide a way forward. Based on chemical 

characterization of available SOC with py-GC-MS (Jones et al., 2023), LC-MS/MS (Davenport et al., 

2023), FT-ICR-MS (Kellerman et al., 2015) or a combination of capillary electrophoresis and high 

performance liquid chromatography as described by van Hees et al. (2008), it should be possible to 

estimate a weighted mean of the degree of reduction (Manzoni et al., 2012b) or the nominal oxidation 

state of available SOC (Kellerman et al., 2015). As a side note, such a characterization of available SOC 

would go hand in hand with the determination of substrate diversity which I proposed in Chapter 5.3. 

If such a metric for energy limitation could be linked with specific growth rates, a simpler proxy would 

be desirable, for example based on fourier transformed infrared (FTIR) spectroscopy of available SOC. 

Another simpler measure for carbon limitation could be the degree of lignin biotransformation, which 

was recently linked to microbial CUE in a local warming experiment (Zhang et al., 2023). 

But how can these insights be translated into models? The models reviewed in Chapter 1.4 represent 

microbial metabolism differently. COMISSION (Ahrens et al., 2015) uses a fixed value for CUE, and 

Millennial v2  (Abramoff et al., 2022) modulates CUE with temperature. MEMS (Zhang et al., 2021) and 

MIMICS (Wieder et al., 2014) treat CUE as a function of substrate quality. In MEMS, CUE is calculated 

dynamically as a function of the substrate C:N ratio. In MIMICS, different SOC pools have fixed CUE 

values, but functional groups of microbes differ in their diets (i.e. they consume different SOC pools, 

resulting in different CUEs for different groups of microbes). In MEND (Wang et al., 2022) and RESOM 

(Tang and Riley, 2014), microbial metabolism is modelled explicitly, and growth and respiration are 

decoupled. In both models carbon uptake, respiration, enzyme excretion and mortality are 

represented. In addition, MEND distinguishes between an active and an inactive pool of microbial 

biomass. If the link between microbial community composition, energy limitation and biomass-specific 

metabolism can be further refined (for instance with the approaches that I proposed above and outline 

in Chapter 5.6) these two models – MEND and RESOM – might offer the possibility to incorporate 

biomass-specific metabolism as a consequence of microbial community composition. Growth and 

respiration could be represented biomass-specific, informed by microbial community composition and 

possibly energy limitation; absolute rates could then be obtained by multiplication with microbial 

biomass, which is controlled by separate mechanisms that these models already feature. Overall, I 

believe that this is a promising avenue to improve representation of the SOC cycle at the macroscale. 
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5.5 Transferability of the gradient to other systems 

I argue that the general insights of this thesis are relevant for the entire terrestrial C cycle. The range 

of investigated geoclimatic conditions was very broad (see Chapters 1.7 and 5.1). Based on mechanistic 

knowledge, there is no reason to believe that the insights on aggregation and biomass-specific 

microbial C metabolism would not apply beyond the investigated range of conditions. However, it is 

important to keep the limits of the gradient in mind when trying to transfer the magnitude and relative 

importance of the investigated mechanisms to other ecosystems or climatic extremes. The relative 

importance of individual mechanisms for SOC cycling is not just scale-dependent but can also be 

system-specific. In different systems, different mechanisms may play a larger role. In the following, I 

want to briefly discuss the limits of the investigated gradient. Which general aspects of SOC cycling will 

change when we transition to different ecosystems, when we move to more extreme climatic or 

pedogenic conditions, or when we dig deeper into subsoil? Considering the limits of the investigated 

gradient and the particularities of “neighboring” systems will provide guidance on how to place the 

findings of this thesis in a global context. Please note that the aim of this overview is to briefly give 

examples for the types of differences between the SOC dynamics of the study system and its 

“neighboring” systems (Figure 5-3). A comprehensive review of SOC cycling across systems would be 

beyond the scope of this chapter. 

 

 

Figure 5-3. The “neighboring” systems of mineral topsoils in temperate grasslands. Icons were taken 

from thenounproject.com, detailed credits are listed in Appendix Chapter 5. 

 

Moving to different ecosystems or land use types, a main factor that changes are the dynamics of OM 

input. The balance of aboveground vs. belowground OM inputs (Jobbágy and Jackson, 2000; Guo and 
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Gifford, 2002; Ding et al., 2021; Huang et al., 2021), as well as the chemical composition and diversity 

of inputs (Meier and Bowman, 2008; Mori et al., 2020; Angst et al., 2021a) depend on the type of 

vegetation. The entrance point as well as chemical composition of OM can have consequences for the 

decomposition dynamics: For example, mineral-associated SOC is more efficiently formed from 

belowground inputs (Sokol and Bradford, 2019; Sokol et al., 2019). In Chapters 2 to 4 of this thesis, we 

did not explicitly investigate how vegetation and input dynamics affected the mechanisms of interest, 

because within a coherent type of system, the functional differences should be minor. However, in 

order to transfer our insights to systems beyond temperate grasslands, differences in the dynamics of 

OM input likely need to be considered. For example, in agricultural soils, carbon tends to deplete over 

time, partially due to a depletion of OM inputs through harvest (Guo and Gifford, 2002; Sanderman et 

al., 2017; Wiesmeier et al., 2019). In addition to altered OM inputs, common management practices in 

agricultural soils (e.g. use of heavy machinery and tillage) can also introduce structural disturbances 

such as soil compaction (Batey, 2009) and disruption of aggregate formation (Six et al., 2004), which 

might override patterns caused by the natural physicochemical variability of soils.  

 

In more extreme climates beyond temperate systems, direct climatic effects and system-specific 

mechanisms can override or modify patterns that are elsewhere continuous (Nave et al., 2021). For 

example, moving to very cold and wet systems beyond the gradient, or to topographic positions that 

accumulate water, microbial processes will become increasingly limited through metabolic constraints 

(Lloyd and Taylor, 1994; Freeman et al., 2001; Schipper et al., 2014). As a consequence, colder and/or 

wetter conditions will lead to reduced microbial decomposition, accumulation of litter and acidic soil 

pH. This can result in the formation of soils with thick organic layers (Histosols), soils with permanently 

frozen layers which can have high contents of undecomposed plant material (Cryosols) or permanently 

water-saturated systems where OM input exceeds decomposition (peatlands). In such systems, mineral 

stabilization plays a much smaller role than in the temperate mineral soils investigated in this thesis 

(García-Palacios et al., 2024; Hansen et al., 2024).  

 

Moving towards the opposite climatic extreme, draught and drying-wetting cycles can govern SOC 

turnover. Lack of water disrupts connectivity within soils (Tecon and Or, 2017) and alters microbial 

functioning in the short- and in the long term (Canarini et al., 2021; Metze et al., 2023). Drying-wetting 

cycles further exert osmotic stress on microorganisms (Schimel, 2018; Malik and Bouskill, 2022) which 

can lead to pulses of CO2 efflux from soils (Schimel, 2018; Manzoni et al., 2020). In dry systems, such 

pulses have been shown to govern SOC dynamics (Jarvis et al., 2007). Therefore, understanding the 

mechanisms that underly such particular events may be more informative than studying baseline soil 

functioning. 
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Old soils in (sub-)tropical regions can be deeply weathered, because long exposure to hot and wet 

climate leads to advanced chemical weathering (Amelung et al., 2018). Advanced weathering 

ultimately causes the depletion of reactive minerals, and such soils (Ferralsols, Lixisols, Acrisols) 

become infertile and have low carbon stabilization potential (Doetterl et al., 2018; Sayer et al., 2019; 

Georgiou et al., 2022; Reichenbach et al., 2023). As a consequence, a large part of biogeochemical 

cycling in tropical soil systems takes place in the litter layer (Sayer et al., 2024). In such systems, mineral 

soil as investigated in this thesis may contribute comparatively less to overall C dynamics as compared 

to temperate grasslands. In a way, the opposite extreme of the fast biological cycling of tropical litter 

layers is found when moving into the subsoil. In subsoil, mineral processes dominate over biological 

processes as the main control of SOC cycling (Hicks Pries et al., 2023). Subsoils are characterized by a 

large fraction of mineral-associated C, and low rates of C input as well as spatial constraints on the 

access to substrate limit microbial activity (Salomé et al., 2010; Button et al., 2022). 

 

Alkaline soils are predominantly found on calcareous parent material (Bolan et al., 2023) and in dry 

regions (Slessarev et al., 2016). The investigated gradient was constrained to a soil pH below neutral, 

and not all patterns that were observed in this thesis necessarily extend into alkaline soils. This is 

because several crucial aspects of SOC dynamics can differ between acidic and alkaline soils. For 

example, C stabilization mechanisms change due to different soil physicochemical mechanisms 

(Rasmussen et al., 2018; Rowley et al., 2018), and microbial diversity and metabolic efficiency have 

been shown to follow different patterns in acidic and alkaline soils (Lauber et al., 2009; Malik et al., 

2018; Jones et al., 2019).  

 

From these examples, it becomes obvious that the specific features of different soil systems mandate 

regional tailoring of SOC dynamics when scaling from the mesoscale to the macroscale (Rasmussen et 

al., 2018; Heckman et al., 2021; Jungkunst et al., 2022; Wang et al., 2024). The importance of 

mechanisms for overall SOC dynamics needs to be weighed for each type of soil system. Understanding 

such differences is primarily important for the structuring, parametrization and calibration of numerical 

models. For example, stable microaggregates may play a smaller role in subsoils than in topsoils 

(Schrumpf et al., 2013; Poeplau et al., 2017), or in arable soils than in grassland soils (Poeplau and Don, 

2013; Antony et al., 2022). However, while the relative importance of mechanisms may differ between 

systems, the fundamental mechanisms that are at work are transferrable. To stick with the example of 

aggregates, aggregates will probably form wherever the environmental setting allows for it, i.e. where 

organic matter accumulates in combination with sufficient mineral reactivity. Thus, system-

dependence of SOC dynamics does not undermine the relevance of scaling mechanisms. Rather, it is a 
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strong call for more gradient studies that cover different types of soil systems! In addition, resolving 

the system-dependency of mechanisms will require the comparative analysis of SOC dynamics across 

different systems. For this, the integration of different approaches such as gradient studies, meta-

analyses, databases and research networks will ultimately be imperative. 

 

5.6 Research outlook along (and beyond) this geoclimatic gradient 

Concluding this thesis, I want to give a brief outlook on further research that is underway along this 

gradient. An important aspect of this future perspective is data sharing. This gradient is now an 

extraordinarily well characterized study system. We plan to provide all measured data in the form of a 

documented dataset which can be shared with interested researchers, in order to foster further 

research. In combination with the metainformation provided by the regional soil surveys of CIREN (the 

Chilean Centro de Información de Recursos Naturales), the dataset can then also be used as a tool for 

researchers to inform targeted soil (and site) selection for experiments. As an additional side product 

of this thesis, this extensive gradient dataset might be useful for the parameterization, calibration and 

validation of numerical models. For example, Moritz Mainka (ETH Zurich, Switzerland) is currently using 

this dataset to do a sensitivity analysis of the COMISSION model (Ahrens et al., 2015), where he asks 

how the model reacts to variable numbers of input parameters. As another example, colleagues from 

Chile have already used samples from this gradient to investigate the potential of DRIFT spectroscopy 

to predict stable C isotopes as a proxy for SOC dynamics (Sepúlveda et al., 2021; Marcela et al., 2022). 

 

Currently, together with colleagues I pursue three lines of investigation that follow up directly on 

questions from this thesis.  

First, in Chapter 2 we could show that stable microaggregates have SOM characteristics (DRIFT 

spectroscopy data, stable isotope ratios, C:N ratio) that are distinct from particulate organic matter and 

silt- and clay-sized particles. However, we could not directly quantify to what extent the stable 

microaggregates consisted of particulate organic matter or smaller silt- and clay-sized particles. To this 

end, stronger physical dispersion of the isolated microaggregate fraction is in progress, coupled with 

SOM characterization. This will help to improve inferences about the mechanisms that underly 

aggregate formation along the gradient.  

Second, in Chapter 4 (as well as in a global modelling study with colleagues, Gao et al., 2024) we could 

show that microbial metabolism affects traits and functions of microbes at the macroscale. In order to 

continue this promising direction of research, we collaborate with Estelle Couradeau (Pennsylvania 

State University, USA). During a research stay in Estelles group, I could learn the method of 

bioorthogonal non-canonical amino acid tagging (BONCAT) coupled with cell enumeration by flow 
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cytometry. Estelle and her team are working to implement this method for soil systems, and I was 

invited to contribute to the method development (Camillone et al., preprint). BONCAT allows to 

quantify the fraction of cells that are actively synthesizing proteins over the course of an incubation. 

This method will provide an exciting tool to determine how strongly biomass-specific respiration and 

growth rates are linked to the fraction of active cells. In addition, enumeration of cells together with 

quantitative PCR of the 16S rRNA gene (with Xingguo Han and Aline Frossard, WSL, Switzerland) will 

allow to test whether average 16S operon number per cell is a suitable proxy for biomass-specific 

respiration. This dataset could be further complemented with an in-depth characterization of the 

energy status of available SOM in these soils (more detailed discussion in Chapter 5.4). In summary, I 

hope that this work will provide a clear set of tools to improve the representation of microbial 

metabolism in numerical models. 

Third, one important aspect of SOC dynamics that was not investigated in-depth in this thesis was the 

contribution of microbial necromass vs. plant material to mineral-associated SOC. In particular, a key 

question is: what controls at the macroscale how efficiently microbial turnover and plant inputs 

translate into mineral-associated SOC? While the decomposition indices in Chapter 2 (based on DRIFT 

spectroscopy data, stable isotope ratios, C:N ratio) provided a general insight into SOM characteristics 

of the SOC fractions, more sophisticated tools exist. In the master thesis of Annina Maier (ETH Zurich, 

Switzerland), we analyzed amino sugars in stable microaggregates and in the silt- and clay-sized 

fraction. However, in the course of this work, serious concerns about the accuracy of this state-of-the-

art method emerged, and Marijn Van de Broek (ETH Zurich, Switzerland) will prepare a publication on 

this issue. While the search for a solution to this challenge continues, solid-state 13C nuclear magnetic 

resonance analysis of the soils in collaboration with Myrna Simpson (University of Toronto, Canada) 

will provide better insights into the fate and dynamics of different SOM functional groups. 

 

Ultimately, I believe that this gradient provides a wealth of opportunities for future research. I hope 

that many more insights will be derived from this dataset, from the frozen soil material that is still left 

– and perhaps from future sampling campaigns along the gradient that may have different but 

complementary foci. The insights derived from this thesis and the ongoing work demonstrate that 

macroscale gradient studies have strong potential as tools to evaluate whether micro- and mesoscale 

mechanisms translate to the macroscale.  

 

Lastly, the work during my thesis has also sparked my interest in questions that lie beyond the capacity 

of this gradient. As introduced in Chapter 1.4, climate acts on SOC dynamics on variable temporal 

scales; short (days to months), intermediate (seasons to years) and long (decades to millennia). On 

each temporal scale, different mechanisms dominate. For my future work, I will be interested in turning 
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my attention to the integration of the temporal scales at which climate affects SOC cycling. I believe 

that a nested approach along altitudinal gradients could provide a potential way forward. Altitudinal 

gradients can control for differences in parent material and soil age, while maximizing contrasts in 

climate (or at least in temperature and the duration of seasons). I propose that in-depth 

characterization of pedogenesis in combination with detailed monitoring of microbial and vegetation 

dynamics along altitudinal gradients on contrasting parent material can help to better disentangle 

mechanisms that act in the long term via weathering vs. mechanisms that act in the intermediate term 

via biological dynamics. In addition, temperature and moisture manipulation experiments with soils 

from climatically contrasting ends of these gradients could help to embed short term microbial 

dynamics into such a temporally stratified picture of SOC dynamics. The resulting insights into the 

magnitude of SOC cycling mechanisms within one system but across temporal scales could potentially 

provide new answers to the question: which mechanisms do we need to scale – in the context of 

climate change? 
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7. Appendix 

7.1 Appendix Chapter 1 

Methods for Figure 1-4. The map of the global distribution of grasslands was based on the Hyde 3.2 

dataset of land use estimates (Klein Goldewijk et al., 2017), at a resolution o 5 arc-minutes (9.3 x 9.3 

km at the equator). All grids in which managed pastures and rangelands covered in sum ≥ 10 % area in 

the year 2005 were retained. Climatic data (MAT and MAP) was retrieved from WorldClim Version 2 

(Fick and Hijmans, 2017) at a resolution of 5 arc-minutes, and a raster file with the overlap of the range 

of studied values (MAT 3.0 to 17.1 °C; MAP 217 to 2440 mm) was created. The global distribution of 

the ten studied WRB major soil groups (Acrisol, Andosol, Arenosol, Cambisol, Chernozem, Gleysol, 

Kastanozem, Leptosol, Luvisol, Planosol) featured in this gradient were added (Hengl et al., 2017). The 

raster file of soil groups was aggregated to a resolution of 5 arc-minutes using a majority filter (model). 

Raster processing was done with the R-package ‘raster‘ (Hijmans, 2022), and the map was created with 

the R-package ‘tmap‘ (Tennekes, 2018). 
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7.2 Appendix Chapter 2 

Supplementary Text S2-1. The positive link between POMTOT and base cations (RC5) hints at a positive 

effect of plant available nutrients on plant productivity, and thus OM input to soil (Figure 2-3a). 

However, the plant debris derived POMTOT was also negatively correlated to temperature (RC6), which 

in turn was positively correlated to NPP (Table S2-8). This apparent contradiction points at multiple, in 

parts conflicting, environmental factors that can control the amount of plant derived, less decomposed 

OM in soils. First, aboveground NPP might be poorly linked to the actual input of OM into soils. Second, 

the fate of plant derived OM may be strongly affected by the type of input (Sokol and Bradford, 2019; 

Sokol et al., 2019; Cotrufo et al., 2022) (aboveground vs. belowground, soluble vs. structural). Third, 

the degree to which plant OM input and microbial decomposition are constrained by climate can differ 

across large climatic gradients, as discussed in the main text. However, base cation contents could also 

be a consequence of POM content, where greater POM contents could yield a greater cation exchange 

capacity. This interpretation is supported by the lack of a relationship between base cation contents 

and soil pH (Table S2-8). In this case, the direction of causality in the described relationship would be 

opposite, and RC6 “Temperature” would be the sole driver of POM: In cooler systems there is more 

POM.  

 

Supplementary Text S2-2. Despite varimax rotation maximizing differences in loading between 

components, annual water balance (calculated as MAP - PET) and NPP also correlate positively with 

RC4 “Pedogenic oxides”. Vice versa, the Rock-Eval I-index correlates also with RC6 “Temperature”. We 

argue that the mixed loading of these components is indicative of the role of moisture and organic 

inputs as drivers of mineral weathering (Rasmussen et al., 2018) and in explaining SOC decomposition. 

On the other hand, NPP likely follows an optimum curve with MAT, as plant productivity becomes 

increasingly water limited at higher temperatures (Knapp et al., 2014). The majority of soils in this 

dataset comes from temperate climate zones with most soils from humid soil moisture regimes (udic, 

n = 18), where no strong effects of water limitation or water logging on biological activity are expected 

(Table S2-2). Nevertheless, the gradient also features aridic (n =1), ustic (n = 3) and xeric (n = 6) soils, 

where low water availability could act limiting on plant growth, and perudic soils (n = 7) where water 

logging could occur seasonally. Note that the annual water balance (MAP-PET) is correlated negatively 

with temperature (RC6), and positively with pedogenic oxides (RC4) (Table S2-8). However, the annual 

water balance did not constitute a major independent axis of variation in the gradient (Table S2-8) and 

thus does not feature as a separate explanatory variable in our regression analysis and subsequently in 

our conceptual framework. It is rather an indirect feature in our framework as an implicit control on 

some of the effects on SOC stabilization seen through temperature and pedogenic oxides. For example, 
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potential drought effects can limit biological activity (Sokol et al., 2022a) towards hot conditions, and 

temporary water logging in moist cold conditions on the temperature axis. Second, higher soil moisture 

can favor the formation of pedogenic oxides via increased weathering rates (Slessarev et al., 2022), and 

thus affects the formation of organo-mineral associations. Further, higher moisture can aid the 

formation of stable microaggregates, which is influenced by changing redoximorphic conditions and 

drying-wetting cycles (Six et al., 2004; Totsche et al., 2018). Unsurprisingly, geochemical reactivity (RC1) 

is positively correlated with finer texture (RC3) and to a lesser extent with warmer temperatures (RC6) 

(Figure S2-2). The degree of organic matter decomposition in the bulk soil (RC2) is strongly positively 

correlated with finer texture (RC3) and higher temperature (RC6), and to a lesser extent positively with 

geochemical reactivity (RC1) and negatively with pedogenic oxide contents (RC4). The link with 

temperature suggests that OM decomposition in the bulk soil (RC2) may also contain variation of the 

temperature dimension in the dataset (RC6), where in cooler (and wetter) systems bulk OM is less 

decomposed. The positive link between geochemical reactivity (RC1) and the degree of OM 

decomposition at the bulk level (RC2) has been observed before for a weathering chronosequence 

(Mainka et al., 2022). We further observed a negative link between pedogenic oxides (RC4) and 

temperature (RC6), which might be a masked effect of moisture. The cooler systems in Patagonia are 

wetter than the warmer and drier systems of central Chile (Table S2-8), and humic climate enhances 

mineral weathering (Slessarev et al., 2022). We also observed a negative interaction between 

pedogenic oxides (RC4) and base cations (RC5) in the predictive model for bulk SOC% (Figure 2-5). We 

relate this to the fact that in soil systems where base cations are abundant, they have more explanatory 

content for bulk SOC% than in systems where they are not abundant, coupled with the generally higher 

abundance of base cations in soil parent material that is also rich in iron, aluminum and manganese. 

This becomes evident by the results of a simple linear model (SLM) for predicting bulk SOC%, where 

base cations feature as a weak positive predictor (rVIPedogenic oxides = 0.50, rVITemperature = 0.29, 

rVIBase cations = 0.22, model description see Table S7). Thus, if base cations play a role in driving bulk 

SOC%, this could stem either from their role as plant nutrients (see Supplementary Text S2-1), or more 

directly from an involvement in SOC stabilization via cation-bridging at the higher end of the pH-range 

(Rasmussen et al., 2018; Rowley et al., 2018). However, please note that base cation contents could 

also simply be a consequence of POM content: greater POM contents yield a greater cation exchange 

capacity. This interpretation is supported by the lack of a relationship between base cation contents 

and pH (Table S2-8). Ultimately, we could not resolve the direction of causality regarding the role of 

base cations, and this example urges for caution when drawing causal inferences from a correlative 

analysis. Despite its important role for many biological and weathering related processes (Amelung et 

al., 2018), soil pH did not constitute a main loading on any RC as it can vary due to contrasting climatic, 

biological and soil geochemical ecosystem properties (Rasmussen et al., 2018). The strongest 
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association of pH is with organic matter decomposition (RC2), where soils with a lower degree of 

decomposition are more acidic (Table S2-8). 

 

Supplementary Text S2-3. Other studies identified silt and clay content as a main predictor of SOC 

contents, usually after full dispersion of stable microaggregates (Matus, 2021). We also observed a 

positive relationship between S+CTOT and secondary texture (RC2) since in soils with more silt- and clay-

sized particles, more SOC was accumulated in the respective fraction. Note that we did not find a direct 

effect of texture on bulk SOC%. However, our findings do not question this general relationship; as 

aggregation likely occludes S+C particles, this relationship may be masked in our data because for the 

regression analysis we used secondary texture that does not disrupt chemically and physically stable 

(micro)aggregates.  

Given that we can show that soil mineralogy is a main driver of SATOT, we caution against oversimplified 

classification of incompletely dispersed size fractions as POM, without at least including a density 

separation step. Related to this point, the S+C fraction likely also contains small microaggregates and 

concretions < 63 µm (Virto et al., 2008). However, since we found average organic matter in S+C and 

SA to be significantly different in terms of decomposition state (Figure 2-3a), we argue that both 

fractions on average capture functionally different pools. 

We observed an increasing dominance of S+CTOT relative to POMTOT in soils with higher silt and clay 

content (Figure 2-3a). This was likely caused by more than one mechanism. First, high surface area in 

finer textured soils is often the result of weathering processes which increase mineral reactivity. This 

leads to improved conditions for OM stabilization with minerals, thus facilitating a transfer of OM from 

POM to S+C. Second, the clay fraction can harbor high concentrations of soil microbial biomass (Ranjard 

and Richaume, 2001; Wei et al., 2014), which could translate into higher activity of microbial SOC 

decomposition, driving the transformation of POM into forms which can readily get stabilized with 

minerals. Higher microbial carbon use efficiency as observed in fine textured compared to coarse 

textured soils (Angst et al., 2021b) could further accelerate this transformation. 

 

Supplementary Text S2-4. Carbon stabilization following full microbial transformation of OM (i.e. 

microbial uptake of substrate, subsequent breakdown through microbial catabolism and reassembly 

into chemically different molecules by microbial anabolism) can be referred to as the in vivo pathway 

(Liang et al., 2017). In contrast, SOC stabilization that for various reasons bypasses microbial uptake - 

and subsequently full microbial catabolism and anabolism -, can be referred to as the ex vivo pathway 

(Liang et al., 2017). Examples for the ex vivo pathway are direct stabilization of soluble plant-derived 

OM, or stabilization of structural plant-derived OM that only got modified by extracellular enzymes. In 

our dataset, a higher decomposition index (DI) corresponds to a higher proportion of microbially 
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transformed OM in the respective reservoir, as the patterns of the variables on which the DI is based 

(fraction specific C:N ratio, relative peak area of RPASIMP, δ13C and δ15N) show (Figure S2-1). This implies 

that in soils with a high DI a larger proportion of the OM was stabilized via the in vivo pathway (in 

contrast to the ex vivo pathway). We therefore argue that with increasing bulk SOC% we see an 

increasing importance of the ex vivo pathway relative to the in vivo pathway for SOC stabilization 

associated with the S+C fraction. Theoretically, a large variety of mechanisms could underlie such a 

shift: (1) Changes in the composition of the clay mineral phase and its sorptive affinity could influence 

the stabilization of chemically distinct types of OM in S+C (Kaiser et al., 1997; Sollins et al., 2009; Kramer 

et al., 2012; Creamer et al., 2019; Sokol et al., 2019). (2) Lower decomposition rates caused by lower 

temperatures could lead to the relative accumulation of less-decomposed OM. Related to this, at low 

OM content, it could be for microbes to recycle the available substrate, which could lead to a 

stabilization of more processed OM in the S+C fraction. (3) Increasing SOC contents could facilitate 

increasing OM – OM interactions (Possinger et al., 2020; Schweizer, 2022) on mineral surfaces, which 

may be less selective in terms of OM chemistry. (4) It has previously been suggested that more leaching 

in wetter environments may favor the ex vivo pathway over the in vivo pathway (Sokol et al., 2019), 

which would also result in the pattern that we observe. (5) In soils with more aggregation (i.e., soils 

with higher bulk SOC%), it is reasonable to assume a larger contribution of small stable aggregates in 

the silt- and clay-sized fraction (relative to free organo-mineral associations). These small stable 

aggregates could in turn occlude more poorly transformed OM, and thus shift the DI of the S+C fraction. 

Similarly, small microaggregates of the silt- and clay-sized fractions are particularly stable in Andosols 

as compared to other soil types (Asano and Wagai, 2014), which could cause that in Andosols more 

stable microaggregates might resist dispersion. (6) Macroaggregation may be higher in SOC rich soils 

and thus smaller (S+C-sized) particles may have been occluded in macroaggregates before 

fractionation. Within macroaggregates, the organic matter associated with these S+C-particles may be 

protected from decomposition by a certain degree of physical occlusion in addition to chemical 

stabilization mechanisms. However, it remains unclear if and to what extent occlusion in 

macroaggregates can protect OM from decomposition on short to intermediate time scales. In 

conclusion, while our data does not reveal which mechanism(s) may cause the patterns in this dataset, 

plenty of observed and proposed mechanisms render our observation and interpretation plausible, 

that the OM in the silt- and clay-sized fraction is on average less microbially transformed in high-SOC 

soils than in low-SOC soils. 
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Figure S2-1. Results of a PCA based on fraction specific C:N ratio, relative peak area of RPASIMP, δ13C and 

δ15N. n = 96 (nSA = 35, nS+C = 34, nPOM = 28). PC1 explains 50 % of variation in the input variables and can 

be interpreted as a decomposition index (DI) as described in the methods section. The Eigenvectors of 

the input variables are shown as arrows: C:N ratio and RPASIMP increase towards the SA fraction, while 

δ15N and δ13C values increase towards the S+C fraction.  

 

 

 

Figure S2-2. Correlation matrix of the six RCs retained after rPCA. Shown are significant correlations 

(Pearson correlation, p < 0.05). Circle size and color indicate the strength of the relationships (Pearson 

correlation coefficient). 
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Figure S2-3. Correlations between bulk SOC% and CTOT in SA, S+C and POM as well as POMTOT/SOC with 

measured environmental variables. Shown are relationships with a) MAT, b) water balance (MAP – PET), 

c) pH value, d) the sum of Fe and Al sequentially extracted with pyrophosphate ammonium oxalate, e) 
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primary clay content and f) the sum of primary clay and silt content. Dots indicate datapoints of SOC 

amounts, triangles datapoints of POMTOT/SOC ratio, lines indicate slopes of significant (p-values < 0.05) 

Pearson correlations. All correlations of SOC amounts performed with log-transformed SOC quantities. 

Only in the case of pedogenic oxides (panel d) transformation led to small decreases in the strength of 

relationship for bulk SOC% and SATOT. 

 

 

Figure S2-4. The degree of bulk organic matter decomposition decreases with bulk SOC content. As a 

measure for the degree of bulk organic matter decomposition, the rotated component RC2 “OM 

Decomposition” was used (decomposition index (DI) cannot be calculated for bulk soil), which strongly 

correlates with a decrease of aliphatic compounds (RPASIMP) relative to other compounds, and with a 

decrease of the Rock-Eval derived I-index (see Table S2-8). Log-transformed data points and fitted 

model with 95 % confidence intervals are shown. Because the rotated component had negative values 

(min. -4.69), log-transformation was done after adding + 5 to all data points. RMSE = 3.53, adj. R2 = 

0.55, p-value < 0.05, n = 35, df = 33. 
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Table S2-1. Geomorphology and soil information of sampling sites. Site IDs refer to the numbers as 

used in Figure 2-1. Literature used for metadata is indexed with numbers from 1 – 11: 1 = Aburto F., 

Hernández C., Pfeiffer M., Casanova M., Luzio W. (2008). Soil: a work of art of nature. Northern field 

guide between 30S° and 33S° In: Casanova M., Luzio W. (Eds.) The international conference and field 

workshops on soil classification. University of Chile, Santiago-Ovalle, Chile; 2 = CIREN (1997). Soil 

survey, region V of Chile. Natural Resources Information Centre, Publication N° 116 Santiago (in 

Spanish); 3 = CIREN (1996). Soil survey of the Metropolitan region of Chile. Natural Resources 

Information Centre, Publication N° 115 Santiago (in Spanish); 4 = CIREN (1996). Soil survey, region VI of 

Chile. Natural Resources Information Centre, Publication N° 114 Santiago (in Spanish); 5 = CIREN (1997). 

Soil survey of the VII region of Chile. Natural Resources Information Centre, Publication N° 121 Santiago 

(in Spanish); 6 = CIREN (1999). Soil survey, region VIII of Chile. Natural Resources Information Centre, 

Publication N° 117 Santiago (in Spanish); 7 = CIREN (2002). Soil survey, region IX of Chile. Natural 

Resources Information Centre, Publication N° 122 Santiago (in Spanish); 8 = CIREN (2003). Soil survey, 

region X of Chile. Natural Resources Information Centre, Publication N° 123 Santiago (in Spanish); 9 = 

CIREN (2005). Soil survey, region XI of Chile. Natural Resources Information Centre, Publication N° 130 

Santiago (in Spanish); 10 = INIA (2014). Taxonomic characterization of soils from valleys with 

agricultural interest from Aysen Region (Patagonia Occidental-Chile.). In: Stolpe N.,  Hepp C. (Eds.). 

Bulletin INIA (Instituto de Investigaciones Agropecuarias) N° 299. Coyhaique, Chile. (in Spanish); 11 = 

CNR (1997). Comprehensive study of irrigation and drainage of Magellan, XII Region, vol 2 (in Spanish). 
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Table S2-1 cont. 
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Table S2-2. General site information. Site IDs refer to the numbers as used in Figure 2-1. 
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Table S2-3. Soil physicochemical and climatic variation along the gradient. Ranges of all soil 

physicochemical and climatic variables that were used for the rPCA for dimension reduction.  
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Table S2-4. Mass-balance accounting of the fractionation procedure for all samples. MassREL gives the 

mass percentage of each fraction relative to the mass of the fractionated bulk soil sample. The balance 

of the mass gives the sum of MassREL of the three fractions relative to the mass of the fractionated bulk 

soil sample, expressed as percentage. The balance of CTOT gives the sum of the amount of SOC in the 

three fractions relative to the amount of SOC in bulk soil, expressed as percentage. For three samples, 

the fractionation was done in triplicates.  
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Table S2-5. Summary of quantitative and qualitative SOC data of the three isolated fractions. Shown 

without outliers, which were removed based on Cochran’s C test. Thus, DRIFTS-values (RPASIMP, RPACOMP 

and RPAMBIO) are nSA = 35, nS+C = 34, nPOM = 28, nbulk = 34; all other values are n = 35. 
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Table S2-6. Comparison of performances of the simple linear model (SLM), linear model allowing for 

interactions (ILM) and non-linear random forest model for each predicted SOC variable. The model with 

the best performance is highlighted in yellow. Transf. = transformation of the dependent variable; BP = 

p-value of Breusch-Pagan test for homoscedasticity of model residuals; SW = p-value of Shapiro-Wilk 

test for homoscedasticity of model residuals. 

 

 

 

Table S2-7. Regression analysis of SOC quantities and qualities in the fractions with bulk SOC%. * BP-

test not possible in models that have zero-intercept; **CTOT of POM is forced through zero and has one 

outlier. Transf. = transformation of the dependent variable; BP = p-value of Breusch-Pagan test for 

homoscedasticity of model residuals; SW = p-value of Shapiro-Wilk test for homoscedasticity of model 

residuals. 
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Table S2-8. Results of the rPCA for dimension reduction. The six retained rotated components (RCs) 

with Eigenvalue > 1 that resulted from this rPCA. The top shows Eigenvalues and individual as well as 

cumulative variability explained by the RCs. Loadings are shown for all 22 input variables. Interpretation 

and naming of the RCs was based on variables with loadings ≥ 0.5 (highlighted), and the assigned names 

for the RCs are given at the top. OM Decomp. = OM Decomposition; Ped. Oxides = Pedogenic Oxides. 
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7.3 Appendix Chapter 3 

 

File S3-1. This file summarizes the results of the correlation analyses for all taxonomic units. Each row 

corresponds to one taxonomic unit. Listed are the taxonomic classifications from phylum to ASV, the 

actual taxonomic resolution of the taxonomic unit (column “Level”), as well as the taxonomic 

classification of the taxonomic unit at its respective taxonomic resolution (column “Name”). The 

column “Mean RA” gives the mean relative abundance of the taxonomic unit across all 35 sites. The 

following columns give the correlation coefficients (r) of significant correlations (FDR corrected, at a 

significance threshold p < 0.1) for each predictor variable with relative abundance. For visual aid, 

negative correlations are highlighted in red, and positive correlations are highlighted in blue. As 

provided, the taxonomic units are hierarchically sorted in alphabetic order by Phylum, Class, Order, 

Family, Genus, ASV. For this thesis, the file is provided as a table. 
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File S3-1 cont. 
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File S3-1 cont. 
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File S3-1 cont. 
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Supplementary Text S3-1. Reasons for the chosen approach of sequence processing. In recent years, 

studies have shown that higher taxonomic resolution is required to link environment and soil bacterial 

community composition (Cruz-Martínez et al., 2012; Martiny et al., 2015; Morrissey et al., 2016; Stone 

et al., 2023). However, the majority of large scale correlative studies known to the authors only 

investigated potential links at the level of taxonomic resolution of phyla to orders (Fierer et al., 2007; 

Lauber et al., 2009; Rousk et al., 2010; Delgado-Baquerizo et al., 2016b; Bahram et al., 2018), or after 

clustering of taxa into functional groups (Labouyrie et al., 2023). The reason for this is that the 

investigation of higher taxonomic resolution comes with several challenges. First, at a higher taxonomic 

resolution (or a more narrow definition of operational taxonomic units (OTUs), or a finer clustering of 

zero-radius OTUs), a larger fraction of soil bacterial communities becomes too rare to be reliably used 

in correlation analysis, because of the strongly asymmetric abundance distribution of soil bacteria 

(Lynch and Neufeld, 2015). In the present dataset, 75 % of the 85 692 ASVs were only present at one 

site, and only 0.1 % of ASVs were present in more than half of the 105 samples (Figure S3-7a). 

Moreover, rare taxa have high uncertainties relative to their range of observed abundances across the 

gradient, which means that analysis of such taxa is not sensitive for detection of real abundance 

patterns (shown based on the data of this study, Figure S3-7b,c). It would be problematic to just 

aggregate taxa at several different levels of taxonomic resolution and test at all levels. This would result 

in redundant testing, as the abundances of higher-resolution taxa in sum constitute the abundances of 

lower-resolution taxa. However, simply discarding all rare amplicon sequence variants (ASVs) or OTUs 

and correlating only the remaining ubiquitous ASVs/OTUs results in a large waste of information. For 

instance, filtering for ubiquitous ASVs that are present in at least half of the samples of this study would 

lead to an average loss of 73.4 % of reads. The sum of rare taxa could however still contain information 

if a trait or adaptation is conserved at a level of lower taxonomic resolution. The sum of rare taxa could 

however still contain information if a trait or adaptation is conserved at a level of lower taxonomic 

resolution. Due to these unresolved methodological challenges, potential links between 

biogeochemical variables and abundance patterns at levels of higher taxonomic resolution have 

remained largely unexplored at broader scales. A workflow of the approach of sequence processing is 

shown in Figure S3-1. In the following, we provide a brief summary of the results of the sequence 

processing. Across all levels of taxonomic resolution, on average across soils 68 % of relative abundance 

was retained in coherent taxa, and 30 % was aggregated into ΣRare-groups (Figure S3-2a). Across all 

samples, 44.1 % of average relative abundance was retained at the ASV level, 24.9 % at genus level, 

18.8 % at family level and less than 10 % at levels of lower taxonomic resolution (Figure S3-2b). At all 

levels of taxonomic resolution, there were more coherent taxa than ΣRare-groups (Figure S3-2), and on 
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average coherent taxa contained a larger fraction of relative abundance than the ΣRare-groups, except 

at the ASV level (Figure S3-2b).  

 

Supplementary Text S3-2. Different soil masses at DNA extraction did not bias the analysis. Adjustment 

of soil mass for DNA extraction could theoretically lead to an artifact in alpha diversity estimates. 

Greater soil mass (in the case of this study used for soils with lower TOC) and consequently greater soil 

volume could contain a larger number of rare ASVs. This could theoretically result in a bias towards 

higher richness in soils of lower TOC. Since we found a negative relationship between alpha diversity 

and SOM Quantity, we wanted to rule out that this observation was due to such bias. To that end, we 

took the exact weights of the three replicates of each site and calculated the mass difference relative 

to the lightest replicate (ΔDW). We further calculated the richness difference relative to the lightest 

replicate (ΔRichness). If there was a pronounced bias that was stronger than other spatial 

heterogeneity and noise, we would expect i) consistent increases of richness with mass among the 

triplicates, and if such bias was subject to saturation with increasing soil volume, we would expect ii) 

the increases (slopes of relationship ΔRichness ~ ΔDW) to decrease with increasing soil mass that was 

extracted. Results of this analysis show that there is no such bias (Figure S3-4). The same concern 

applied for relative abundance estimates: A larger number of rare ASVs could theoretically result in a 

bias towards lower relative abundance of other taxa in soils of lower TOC. Similar to the analysis for 

richness (described above), we therefore calculated the relative abundance difference relative to the 

lightest replicate (ΔCounts) for four different taxa which showed positive relative abundance 

correlations with SOM Quantity. If there was a pronounced bias that was stronger than other spatial 

heterogeneity and noise, we would expect i) consistent decreases of counts with increasing mass 

among the triplicates, and if such bias was subject to saturation with increasing soil volume, we would 

expect ii) the decreases (slopes of relationship ΔCounts ~ ΔDW) to get smaller with increasing soil mass 

that was extracted. Results of this analysis show that there is no such bias (Figure S3-6). 

 

Supplementary Text S3-3. Clusters of taxonomic units with biogeochemically-related patterns of 

relative abundance. A detailed summary of the results of the correlation analyses can be found in 

Supplementary File S3-1. In the following, we discuss observed patterns in the context of previous 

findings, in more depth than the main text allowed. Soil pH: We found clusters of negative (in the class 

Acidobacteriae) and positive (in the class Blastocatellia) associations with pH within the phylum of 

Acidobacteriata, which is consistent with to previous studies (Rousk et al., 2010; Griffiths et al., 2011). 

In our study, the taxonomic groups with negative pH associations were quantitatively more dominant, 

which perhaps helps explain why other studies found the entire phylum to be negatively linked with 

pH (Lauber et al., 2009; Delgado-Baquerizo et al., 2016b). In the Chloroflexi phylum, for which opposing 
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pH associations have been reported (negative, Bahram et al. (2018); positive, Delgado-Baquerizo et al. 

(2016)), we also found a negative cluster (in the class Ktedonobacteria) and a positive cluster (in the 

class Chloroflexia). We could not identify any consistent patterns within the phyla Bacteroidetes and 

Actinobacteriota, which have been linked to pH in contrasting ways (Bacteriodetes: negative, (Bahram 

et al., 2018); positive, (Lauber et al., 2009; Rousk et al., 2010); Actinobacteriota: negative, (Bahram et 

al., 2018); neutral, (Rousk et al., 2010); positive, (Lauber et al., 2009; Delgado-Baquerizo et al., 2016b)).  

SOM Quantity: We found two clusters of dominance that were linked with OM quantity in the phylum 

Firmicutes, namely in the families of Planococcaceae and Peptostreptococcaceae. Experimental studies 

have linked the phylum Firmicutes with copiotrophic traits (Cleveland et al., 2007; Pepe-Ranney et al., 

2016; Stone et al., 2023), and representatives of Firmicutes possess a large number of transporters that 

could support fast growth (Trivedi et al., 2013). In contrast, previous regional to global studies found 

no conclusive patterns for Firmicutes (Fierer et al., 2007) or linked the phylum negatively with TOC 

(Delgado-Baquerizo et al., 2016b), and a study on dryland restoration interpreted Firmicutes to behave 

oligotrophic (Bastida et al., 2015). We identified another cluster in the family Xanthobacteraceae, 

which belongs to the order of Rhizobiales in the class of Alpha-Proteobacteria. At high taxonomic 

resolutions, contrasting patterns have been found for (Alpha-)Proteobacteria. Positive (Delgado-

Baquerizo et al., 2016b) as well as negative (Fierer et al., 2007; Bahram et al., 2018) correlations with 

TOC have been observed. However, at the order-level, both an experimental study (Geyer and Barrett, 

2019) as well as a study on dryland restoration (Bastida et al., 2015) found Rhizobiales to behave 

copiotroph. The family Xanthobacteraceae features nitrogen (N) fixers, thus their increased dominance 

in C-rich systems could stem from an advantage in conditions of N limitation. However, in this study, 

available C and N strongly correlated with the rotated component OM Quantity (Table S4). If the C:N 

ratio of substrate was the main driver for the dominance pattern of the Xanthobacteraceae, we would 

rather expect a correlation with the rotate[WD2] d compo[WD3] nent OM Quality E (C:N ratio). We could 

not find any patterns within subgroups of other phyla that repeatedly (but not exclusively) showed 

copiotroph behavior in substrate addition experiments such as Beta-Proteobacteria (Fierer et al., 2007; 

Eilers et al., 2010; Morrissey et al., 2016) or Gamma-Proteobacteria (Cleveland et al., 2007; Eilers et al., 

2010; Morrissey et al., 2016). Similarly, we found no clusters in the phylum Actinobacteria, which has 

been reported to become more dominant upon substrate addition (Eilers et al., 2010; Geyer and 

Barrett, 2019), while also having been associated with oligotroph behavior in other studies (Bastian et 

al., 2009; Trivedi et al., 2013; Delgado-Baquerizo et al., 2016b). 

SOM Quality: Specifically, we found a cluster of ASVs in the family Micrococcaceae that was dominant 

in soils with a higher C:N ratio (SOM quality E). Soil-dwelling members of the Micrococcaceaea have 

been repeatedly found in hydrocarbon polluted soils (Dastager et al., 2014), and have been shown to 

be able to decompose complex (aromatic) substrates (Sims et al., 1986; Storey et al., 2018). Further, 



197 
 

two groups in the order Streptosporangiales, two groups in the family Micromonosporaceae and two 

groups in the genus Mesorhizobium were positively correlated with SOM quality B (POM). We interpret 

this RC to reflect systems in which free coarse plant litter, potentially available for decomposition, 

accumulates. In agreement with this interpretation, members of the Streptosporangiales have been 

found to be involved in primary decomposition of plant material in soils (Otoguro et al., 2014). 

Micromonosporaceae have been found to be inhabit wet soils, peat, roots and plant material (such as 

nitrogen-fixing nodules) (Trujillo et al., 2014). While the pattern in our data contrasts with the apparent 

moisture preference, it matches with the observation that members of this family have been found to 

prefer systems where free undecomposed plant material accumulates. Lastly, the genus 

Mesorhizobium correlated with SOM quality B (POM). This genus belongs to the rhizobia, which can 

either leave freely in soils, or form a symbiosis as N-fixers in the nodules of legume plants (Tatsukami 

et al., 2013). Theoretically, the dominance of rhizobia could vary with plant species composition (i.e. 

the dominance of symbiotic legume plants). Further it has been shown that low temperature can 

physiologically hamper the formation of root nodules (discussed in (Duan et al., 2022)). However, 

neither does MAT load onto the variable SOM quality B (POM), nor is the relative abundance of 

Mesorhizobia high enough (maximum value 0.6 %) to suggest that legume nodules played a large role 

to shape bacterial communities along this gradient. 

 

 

Figure S3-1. Summary of the workflow for sequence processing with a schematic example. In step 1, 

taxa were filtered for ubiquity at each level of taxonomic resolution. In step 2, rare (i.e. not ubiquitous) 

taxa were aggregated into ΣRare-groups, and redundant information across levels of taxonomic 

resolution was removed. In step 3, the newly aggregated groups of rare taxa (ΣRare-groups) were 
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filtered for ubiquity. Taxa and ΣRare-groups that were retained after step 3 were jointly referred to as 

“taxonomic units” and were used for downstream analysis. In the schematic example, taxa/groups that 

get removed in a step are shown in light gray with dashed outlines. Aggregated groups of rare taxa are 

shown in dark blue. Unchanged taxa are shown in light blue. All calculation steps were based on relative 

abundance data. 
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Figure S3-2. Summary of the results of sequence processing. Panel a) After the workflow, 436 

taxonomic units were retained across all levels of taxonomic resolution. “Taxa” are coherent taxonomic 

units, while “ΣRare-groups” are aggregated groups of rare taxa at the given level of taxonomic 

resolution. Panel b) Amount of relative abundance across levels of taxonomic resolutions and groups 

(i.e. taxa vs. ΣRare-groups). Points show values for individual samples (n = 105), boxplots show median 

(center line), 25th and 75th percentiles (box limits), 1.5x interquartile range (whiskers) and outliers 

(points).  

 

 

Figure S3-3. Panel a) Pearson correlation matrix of the measured biogeochemical variables (with 

significant outliers following Rosner’s test replaced by mean values). Shown are significant correlations 

(p-value < 0.05). Circle size and color indicate the strength of the relationships (Pearson correlation 

coefficient). RCs are listed in the order of their Eigenvalues. Light orange to dark blue represents a 

gradient from negative to positive correlation coefficients. MAT = mean annual temperature; TOC = 

total organic carbon; TN = total nitrogen; KCl-OC = KCl-extractable organic carbon; KCl-N = KCl-

extractable nitrogen; RPA = relative peak area; POM = particulate organic matter; DRIFTS = diffuse 

reflectance infrared spectroscopy; UV-Vis = ultraviolet-visible spectroscopy. Panel b) Pearson 

correlation matrix of the rotated components (RCs) obtained after rotated principal component 



200 
 

analysis. Note that no correlations between the RCs were found at p-value < 0.05, therefore confirming 

a very low degree of autocorrelation between the remaining RCs. 

 

Figure S3-4. Variable soil mass for DNA extraction does not lead to an artifact in alpha diversity. Panel 

a) shows that among triplicates with variable soil mass (x-axis) there is no consistent pattern of increase 

of richness (y-axis). Dots are data points, lines for visual aid. Panel b) shows that rarely any within-

triplicate-trends are consistent, that there are decreasing as well as increasing patterns, and that there 

is no shift in patterns with the mean DW of triplicates. Thus, we are confident that adjustment of soil 

mass to TOC at the DNA extraction step does not lead to a systematic bias in our alpha diversity analysis. 

 

 

Figure S3-5. The percentages of taxonomic units that were significantly correlated with biogeochemical 

variables across all levels of taxonomic resolution. Numbers on top of the bars indicate the numbers of 

groups tested. 
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Figure S3-6. Variable soil mass for DNA extraction does not lead to an artifact in relative abundance. 

Panel a) shows that among triplicates with variable soil mass (x-axis) there is no consistent pattern of 

decrease of relative abundance (y-axis). Dots are data points, lines for visual aid. Panel b) shows that 

rarely any within-triplicate-trends are consistent, that there are decreasing as well as increasing 

patterns, and that there is no shift in patterns with the mean DW of triplicates. Thus, we are confident 

that adjustment of soil mass to TOC at the DNA extraction step does not lead to a systematic bias in 

our relative abundance analysis. Note that counts directly translate to relative abundance, since all 

samples were rarefied to 17188 reads (thus 1 count = 0.0058 % relative abundance).  
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Figure S3-7. Panel a) Distribution of taxa sorted by the number of soils in which they were present. The 

dashed red line indicates presence at more than half of the sites. Different colors indicate aggregation 

of taxa at different levels of taxonomic resolution. For example, ~ 75 % of ASVs were only present at 

one site. Panel b) The uncertainty of relative abundances of reads (expressed as the standard deviation 

(SD) of each triplicate) relative to the observed range of the respective taxa (y-axis) at the ASV level. 

Light orange shows the entire (unfiltered) dataset, while dark blue shows the data points retained after 

filtering and processing (i.e. 436 taxonomic units). Observations with low relative abundance (x-axis) 

tend to have higher uncertainties. Lines are smoothed fits using a general additive models with k = 10, 

(solid = All ASVs, dashed = Filtered & processed taxa). nAll ASVs = 165 019 (each ASV x site combination in 

the data set), nRetained taxonomic units = 15 260. Note that some data points with very low mean relative 

abundance (and SD) are not shown for the Filtered & processed data. Panel c) The density distributions 

of uncertainties associated with the data. The high number of values between 0.50 and 0.58 in panel 

a) stems from the following: If two of the triplicates have identical relative abundances, and the range 

across the data set is the same as in the triplicate, the result is a value of 0.58. If one triplicate has a 

value of zero, one triplicate has a value as large as the range across the data set, and one triplicate has 

a value half of that, the result is a value of 0.50. 
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Figure S3-8. Panels a) to e) show the ten taxa with highest mean relative read abundance of reads 

across the gradient (n = 35), resolved at five different levels of taxonomic resolution. a) Phyla, b) Classes, 

c) Orders, d) Families, e) Genera. Panel f) shows the relative read abundance of reads belonging to 

unassigned ASVs at the five levels of taxonomic resolution. Panel g) shows how the ten dominant taxa 

of each level are taxonomically related. Circle sizes show the mean relative read abundance of reads 

across the gradient. This way of illustration emphasizes that the dominance of some taxa at low levels 

of taxonomic resolution  is due to very dominant taxonomic units at higher  levels of taxonomic 

resolution  (e.g. the dominance of the phylum Verrucomicrobiata is mostly driven by the high relative 

read abundance of Candidatus Udaeobacter). 
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Table S3-1. Summary of the dada2 pipeline. Listed are the numbers of reads for each processing step 

and each sample (n = 105), as well as the recovery of reads in percent. Colors indicate recoveries 

relative to all other samples (green = high recovery, red = low recovery). 
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Table S3-2. Ranges of measured biogeochemical variables across all sites (outlier corrected). TOC = total 

organic carbon; TN = total nitrogen; RPA = relative peak area. 

 

  

Variable Unit Minimum Mean Median Maximum

pH  - 4.1 5.0 5.0 6.7

Sand % 15.6 59.1 62.6 93.4

Clay % 0.8 3.0 2.5 8.7

MAT °C 3.0 10.9 10.7 17.1

Water balance (MAP-PET) mm -1382 207 81 1704

TOC g kg-1 5.9 68.1 57.4 187.4

TN g kg
-1

0.5 5.4 4.1 15.0

KCl-OC mg kg
-1

40.7 244.9 214.2 632.8

KCl-N mg kg-1 3.6 122.2 107.9 402.9

RockEval I-Index  - -0.09 0.18 0.15 0.41

RPA aliphatic % 41.9 75.1 77.7 90.5

RPA carboxylic % 5.4 11.1 10.8 23.2

Bulk C:N  - 12.1 15.4 15.2 20.7

13C shift  - 0.96 1.02 1.02 1.07

OC in POM fraction % 3.5 12.6 8.2 38.8

KCl Humification  - 1.2 2.2 2.0 3.9

KCl Molecular weight  - 1.3 2.6 2.6 4.3

KCl Aromaticity L mol
-1

 cm
-1

38 206 158 471

KCl C:N  - 2.8 6.1 5.3 13.4
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Table S3-3. Results of the rPCA for dimension reduction. The 8 retained rotated components (RCs) with 

cumulative variance of 80 % that resulted from this rPCA. The top shows Eigenvalues and individual as 

well as cumulative variability explained by the RCs. Loadings are shown for all 19 input variables. 

Interpretation and naming of the RCs was based on variables with loadings ≥ 0.5 (highlighted), and the 

assigned names for the RCs are given at the top. POM = particulate organic matter; DRIFTS = diffuse 

reflectance infrared Fourier transform spectroscopy; TOC = total organic carbon; TN = total nitrogen; 

RPA = relative peak area. 

 

 

RC1 RC2 RC3 RC4 RC5 RC6 RC7 RC8

SOM quality A SOM quality B SOM quality C SOM quality D SOM quality E

(UV-Vis) (POM) (DRIFTS) (
13

C) (C:N ratio)

Eigenvalue 7.41 3.09 2.09 1.32 1.1 1.06 0.76 0.61

Proportion var. 0.23 0.11 0.09 0.09 0.07 0.07 0.07 0.06

Cumulative var. 0.23 0.34 0.44 0.52 0.60 0.67 0.73 0.80

pH -0.28 -0.07 0.05 0.33 -0.16 0.08 -0.16 0.86

Sand 0.10 0.10 0.81 0.28 0.21 0.31 0.08 0.04

Clay -0.39 -0.08 -0.88 0.09 -0.12 0.17 -0.11 0.01

MAT -0.26 0.09 -0.22 0.06 -0.14 0.24 -0.34 0.08

Water balance (MAP-PET) 0.56 0.00 0.20 -0.49 0.21 -0.09 0.23 -0.36

TOC 0.90 0.15 0.13 -0.13 0.15 -0.01 0.21 -0.07

TN 0.93 0.13 0.14 -0.15 0.12 -0.02 0.02 -0.08

KCl-OC 0.81 0.15 0.17 -0.07 0.08 -0.04 -0.01 -0.33

KCl-N 0.87 0.18 0.14 -0.19 0.10 0.05 -0.03 -0.07

RockEval I-Index 0.29 0.12 0.21 0.06 0.19 0.15 0.06 -0.09

RPA aliphatic 0.49 0.19 0.04 0.05 0.61 -0.03 0.13 -0.16

RPA carboxylic -0.23 0.10 -0.28 -0.05 -0.85 -0.17 -0.23 0.12

Bulk C:N 0.10 -0.10 0.11 0.11 0.19 0.05 0.94 -0.12

13C shift 0.00 -0.02 -0.03 -0.12 -0.09 -0.98 -0.04 -0.06

OC in POM fraction -0.26 -0.13 0.13 0.90 0.06 0.11 0.15 0.21

KCl Humification 0.19 0.96 0.05 -0.06 -0.02 0.01 -0.06 0.03

KCl Molecular weight 0.16 0.96 0.07 -0.09 0.00 0.01 -0.05 -0.11

KCl Aromaticity -0.35 -0.22 -0.03 0.54 0.18 0.34 0.02 0.31

KCl C:N -0.19 -0.13 -0.13 -0.03 0.03 0.04 -0.08 0.06

SOM quantity Texture pH
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7.4 Appendix Chapter 4 

 

Supplementary Text S4-1. 

Stepwise regression is an approach to build linear regression models based on iterative automated 

variable selection. Due to the resulting constrained complexity, the models are simple to interpret. 

However, because of multiple comparisons during model fitting, p-values can be biased too low. We 

performed stepwise regression with Monte Carlo cross validation to select the most important 

predictor variables for prediction of the 11 microbial traits and functions. For this, independent 

variables were scaled, and the data was split 100 times into a 75 % training set and a 25 % validation 

set. Model performance was assessed using the RMSE relative to the validation set, and a maximum of 

five predictor variables (out of 8, 11 and 19 potential predictors for ENV, MIC and ENV+MIC, 

respectively) were retained in order to constrain model complexity and avoid overfitting. For every 

model, homoscedasticity (Breusch-Pagan test, R-package “lmtest”, Zeileis & Hothorn (2002)) and 

normal distribution of residuals (Shapiro-Wilk test) were tested, and in case of violation of either 

assumption, the target variables were log-transformed. Scaled variable importance (sVI) was quantified 

for each significant predictor (p-value ≤ 0.05). 

Least absolute shrinkage and selection operator (lasso) regression, also known as L1 regularization 

regression, uses penalties to constrain model complexity. In this regression approach, coefficients of 

independent variables can be shrunk to zero if their explanatory value is outweighed by their addition 

to model complexity. The strength of this penalty is controlled by the model parameter λ. We 

determined the optimum value for λ for each model with Monte Carlo cross validation, as described in 

above. Tested λ values ranged from 0 to 5 at intervals of 0.1, from 5 to 10 at intervals of 0.5, and from 

10 to 100 at intervals of 1. The best model was chosen based on RMSE relative to the validation set, 

and in case of violation of normal distribution and homoscedasticity of residuals, the target variables 

were log-transformed. For each retained predictor, sVI was calculated as described above. The standard 

errors of the predictors, which are required for sVI calculation, are not saved by the caret-

implementation of the glmnet package. We therefore estimated them based on 100-fold bootstrapping 

of lasso models using the optimum λ value. In cases where all predictor variables were shrunk to zero 

and only an intercept was retained, we did not consider the resulting models for further analysis. 

In addition to the two linear regression approaches, we also conducted random forest regression in 

order to allow for non-linear relationships between microbial traits and functions and predictor 

variables. As a trade-off, random forest models can be difficult to interpret, as they retain all predictor 

variables, and do not give coefficients. We conducted Monte Carlo Cross validation as described above, 

in order to tune the models for the number of trees (100 or 1000), node size (2, 7, 15) and the number 
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of variables to randomly sample as candidates at each split (mtry, from 1 to the number of predictors, 

in steps of 1). Model evaluation was based on RMSE. For each variable, models were built for 

untransformed and log-transformed target variables, and the model with better goodness of fit (R2) 

was retained. The sVI values for the random forest models were obtained with the function varImp() 

from the caret package. 

 

Adjusted R2 vs. unadjusted R2: While in simple linear regression approaches such as stepwise 

regression, R2 is generally adjusted to account for the number of predictors, this is not readily possible 

for lasso regression or random forest regression. We therefore used the unadjusted R2 to compare the 

regreesion approaches, while cautioning the reader that in the case of stepwise regression, a larger 

number of retained predictors artificially inflates unadjusted R2 values.  

 

Coefficient signs of model predictors: Notably, a large number of (less important) predictors only 

featured in the random forest models due to the gradient of model complexity from stepwise 

regression to random forest. In contrast to the non-linear random forest models, stepwise models and 

lasso models feature coefficient signs (i.e. + and -). For predictor variables that featured in 

corresponding stepwise models as well as lasso models, we verified that coefficient signs were 

consistent for predictor variables. Subsequently, for predictor variables that featured in one or both of 

the linear models, we assigned the signs to the respective mean sVI values. Mean sVI values of 

predictor variables that only featured in random forest models could not be assigned with signs. 

 

 

Figure S4-1. Correlation matrix showing significant Pearson correlations (p-value < 0.05) between the 

(a) raw environmental variables and (b) the eight retained rotated components of the ENV dataset. 

Circle size and color indicate the strength of the relationships (Pearson correlation coefficient). Shown 
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are significant correlations (Pearson correlation, p < 0.05). SOM Qty. = SOM quantity, SOM Dec. = SOM 

Decomposition. 

 

 

Figure S4-2. Correlation matrix showing significant Pearson correlations (p-value < 0.05) between the 

(a) raw microbial community variables and (b) the 11 retained principal components of the MIC 

dataset. Circle size and color indicate the strength of the relationships (Pearson correlation coefficient). 

Shown are significant correlations (Pearson correlation, p < 0.05). B = Bacteria, F = Fungi, BactFungi = 

Bacteria:Fungi ratio, PC = principal component. 

 

 

Figure S4-3. Correlation matrix showing significant Pearson correlations (p-value < 0.05) between the 

eight rotated components of the ENV dataset and the 11 principal components of the MIC dataset. 

Circle size and color indicate the strength of the relationships (Pearson correlation coefficient). Shown 
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are significant correlations (Pearson correlation, p < 0.05). SOM Qty. = SOM quantity, SOM Dec. = SOM 

Decomposition, PC = Principal component. 

 

 

 

Figure S4-4. Pairwise combinations of R2 values of the models. The linear relationships with slopes close 

to 1 show that all models result in comparable patterns of goodness of fit. The dashed black indicates 

the 1:1 line, points show data points, solid lines show linear regression fits with 95 % confidence 

intervals. RF = Random Forest. n = 33. 

 

 

Figure S4-5. Proportion of the variation of 10 potential extracellular enzyme activities (x-axis) that can 

be explained with three different sets of predictors (y-axis). Shown are mean ± S.D. of R2 across three 

different regression approaches (stepwise, lasso, and random forest). ENV = Environmental data, MIC 

= Microbial community data, BG = ß-Glucosidase, CB = cellobiosidase, NAG = N-acetyl-β-

glucosaminidase, POX = phenoloxidase, PEX = peroxidase, Spec. = specific. 
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Figure S4-6. Scaled variable importance (sVI) ≥ 25 in the prediction of 10 potential extracellular enzyme 

activities (y-axis). (a) Prediction with environmental data (ENV); (b) prediction with microbial 

community data (MIC); (c) Prediction with both datasets (ENV+MIC). Shown are mean sVI values across 

three different regression approaches. Colors indicate the signs of the coefficients (negative: orange; 

positive: blue). Note that variables which only featured in random forest models do not have signs. The 

best models for each microbial trait or function are highlighted by bold font. SOM Qty. = SOM quantity, 

SOM Dec. = SOM Decomposition, PC = Principal component, BG = ß-Glucosidase, CB = cellobiosidase, 

NAG = N-acetyl-β-glucosaminidase, POX = phenoloxidase, PEX = peroxidase, Spec. = specific. 
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Figure S4-7. Scaled variable importance (sVI) ≥ 25 in the prediction of 11 microbial traits and functions 

(y-axis). Prediction with environmental data and microbial community data (ENV+MIC). Shown are 

mean sVI values across three different regression approaches (corresponding S.D. values are shown in 

Figure S4-8). Colors indicate the signs of the coefficients (negative: orange; positive: blue). Note that 

variables which only featured in random forest models do not have signs. The best models for each 

microbial trait or function are highlighted by bold font. SOM Qty. = SOM quantity, SOM Dec. = SOM 

Decomposition, MBC = Microbial biomass carbon, CUE = Carbon use efficiency, MCN = Microbial C:N, 

Spec. = specific, KCl = extractable with KCl, PC = principal component. 

 

 



214 
 

 

Figure S4-8. Standard deviations (S.D.) of the scaled variable importances (sVI) across three different 

regression approaches (stepwise, lasso, and random forest) (y-axis). (a) Prediction with environmental 

data (ENV); (b) prediction with microbial community data (MIC); (c) Prediction with both datasets 

(ENV+MIC). Shown are mean sVI values across three different regression approaches. Lighter red 

indicates a lower S.D., and thus a higher consensus among the models regarding the respective sVI. 

SOM Qty. = SOM quantity, SOM Dec. = SOM Decomposition, MBC = Microbial biomass carbon, CUE = 

Carbon use efficiency, MCN = Microbial C:N, Spec. = specific, KCl = extractable with KCl, PC = principal 

component. 
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Figure S4-9. Correlation between the relative abundance of FUNGuild assigned fungal trophic modes 

and principal components of the MCI dataset. Points show data points, solid lines show linear 

regression fits with 95 % confidence intervals, RA = relative abundance, PC = principal component. 

 

Table S4-1. Soil physicochemical and climatic variation along the gradient. Ranges of all soil 

physicochemical and climatic variables that were used for the rPCA for dimension reduction of the ENV 

data set. 

 

  

Variable Unit Min. Mean Median Max.

SOC g kg
-1 5.9 68.3 57.4 187.4

TN g kg-1 0.5 5.4 3.9 15.0

OC KCl-extractable mg kg
-1 40.7 249.1 214.2 632.8

TN KCl-extractable mg kg-1 3.6 131.6 109.9 402.9

pHCaCl2  - 4.1 5.0 4.9 6.7

Sand % 15.6 59.3 62.6 93.4

Clay % 0.8 3.0 2.4 8.7

Clayprim:Si ratio  - 0.01 0.04 0.04 0.08

Fe:Si ratio  - 0.06 0.22 0.23 0.45

MAT °C 3.0 10.9 10.7 17.1

MAP - PET mm -1207 261 133 1704

RPA aliphatic % 41.9 75.0 77.8 90.5

RPA carboxylic % 5.4 11.0 10.6 23.2

RockEval I-Index  - -0.09 0.17 0.15 0.40

C:N ratio bulk  - 12.1 15.4 15.2 20.7

C:N ratio KCl-extractable  - 2.8 6.1 5.2 13.4
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Table S4-2. Results of the rPCA for dimension reduction of the ENV dataset. The top shows Eigenvalues 

and individual as well as cumulative variability explained by the RCs. Loadings are shown for all input 

variables. Interpretation and naming of the RCs was based on variables with loadings ≥ 0.5 

(highlighted), and the assigned names for the RCs are given at the top. SOM Decomp. = SOM 

Decomposition. 

 

  

RC1 RC2 RC3 RC4 RC5 RC6 RC7 RC8

SOM Quantity Soil pH Texture SOM Decomp. MAT C:N KCl C:N bulk Clay:Si

Eigenvalue 7.05 2.16 1.49 1.30 0.81 0.75 0.72 0.48

Proportion var. 0.28 0.08 0.08 0.07 0.07 0.07 0.07 0.07

Cumulative var. 0.28 0.36 0.44 0.51 0.58 0.65 0.72 0.79

SOC 0.90 -0.11 0.10 -0.14 -0.08 -0.09 0.18 -0.18

TN 0.94 -0.12 0.09 -0.10 -0.10 -0.06 0.01 -0.08

OC KCl-extractable 0.83 -0.29 0.05 -0.09 -0.19 -0.04 -0.03 -0.03

TN KCl-extractable 0.91 -0.13 0.09 -0.08 -0.07 -0.14 -0.04 0.06

pHCaCl2 -0.29 0.92 0.10 0.08 0.08 0.09 -0.11 0.07

Sand 0.13 0.10 0.91 -0.16 -0.07 -0.17 0.11 0.11

Clay -0.46 0.01 -0.47 0.12 0.24 0.14 -0.09 -0.15

Clayprim:Si ratio 0.10 -0.06 -0.11 0.09 -0.05 -0.06 0.12 -0.95

Fe:Si ratio 0.33 -0.08 -0.09 0.03 -0.08 -0.20 0.04 -0.23

MAT -0.23 0.13 -0.10 0.10 0.87 0.12 -0.24 0.06

MAP - PET 0.58 -0.50 0.00 -0.16 -0.27 -0.08 0.15 0.00

RPA aliphatic 0.48 -0.17 0.16 -0.36 -0.20 -0.26 0.13 -0.09

RPA carboxylic -0.21 0.10 -0.17 0.90 0.09 -0.07 -0.21 -0.11

RockEval I-Index 0.34 -0.13 0.24 -0.16 -0.26 0.05 0.04 0.06

C:N ratio bulk 0.04 -0.11 0.11 -0.20 -0.20 -0.09 0.93 -0.13

C:N ratio KCl-extractable -0.15 0.09 -0.16 -0.05 0.10 0.94 -0.09 0.06
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Table S4-3. Variation of microbial community composition along the gradient. Ranges of all microbial 

community composition variables that were used for the PCA for dimension reduction of the MIC data 

set. Variables with “B_” are relative abundances (expressed as %) of bacterial genera, variables with 

“F_” are relative abundances (expressed as %) of fungal genera. “B_Richness” and “F_Richness” are 

numbers of different bacterial and fungal amplicon sequencing variants, respectively. “BactFungi” is 

the ratio of 16S rRNA gene counts over ITS2 region counts. 

 

  

Variable Min. Mean Median Max.

B_Pseudarthrobacter 0.27 9.38 5.97 28.06

B_Massilia 0.26 8.31 4.12 65.21

B_Afipia 0.17 1.43 1.21 4.26

B_TM7a 0.01 2.37 0.38 42.85

B_Sphingomonas 0.27 3.67 1.23 22.80

B_Bradyrhizobium 0.00 1.47 1.11 4.30

B_Candidatus.Udaeobacter 0.06 8.78 6.08 33.51

B_UnassignedMember_Micrococcaceae 0.03 1.87 0.73 8.97

B_UnassignedMember_WD2101.soil.group 0.07 6.69 5.96 23.59

B_UnassignedMember_Xanthobacteraceae 0.11 1.78 1.61 4.50

B_HSB.OF53.F07 0.00 3.20 0.17 28.46

B_UnassignedMember_Vicinamibacterales 0.00 1.51 1.19 4.85

B_SumRare 13.88 49.94 49.45 78.80

F_Pseudogymnoascus 0.00 5.70 0.02 87.07

F_Alternaria 0.00 5.93 0.08 44.98

F_Cryptococcus 0.00 5.60 0.78 59.65

F_Naganishia 0.00 3.99 0.27 46.17

F_Cladosporium 0.00 2.53 0.52 22.11

F_Penicillium 0.00 4.27 2.69 23.98

F_Solicoccozyma 0.21 3.10 1.86 11.89

F_Pseudeurotium 0.00 1.92 0.16 29.33

F_Humicola 0.00 2.94 0.28 34.78

F_Leohumicola 0.00 3.08 0.95 20.09

F_UnassignedMember_Ascomycota 0.00 4.06 0.77 38.42

F_UnassignedMember_Didymellaceae 0.00 2.15 0.15 35.45

F_Coniochaeta 0.00 2.35 0.61 22.98

F_Fusarium 0.00 3.45 0.76 25.03

F_SumRare 8.73 49.27 49.02 87.98

B_Richness 287 778 811 1342

F_Richness 67 130 117 206

BactFungi 1.4 88.6 53.4 310.3
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Table S4-4. Results of the rPCA for dimension reduction of the ENV dataset. The top shows Eigenvalues 

and individual as well as cumulative variability explained by the RCs. Loadings are shown for all input 

variables. 

 

 

 

 

 

 

 

 

 

 

PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8 PC9 PC10 PC11

Eigenvalue 6.14 4.96 2.73 2.33 1.94 1.48 1.39 1.28 1.13 1.04 0.96

Proportion var. 0.20 0.16 0.09 0.08 0.06 0.05 0.04 0.04 0.04 0.03 0.03

Cumulative var. 0.20 0.36 0.45 0.52 0.58 0.63 0.68 0.72 0.75 0.79 0.82

B_Pseudarthrobacter 0.58 0.40 0.24 -0.29 0.19 -0.28 0.06 0.26 -0.12 0.08 0.19

B_Massilia 0.56 -0.51 -0.23 -0.24 0.11 0.18 0.15 -0.15 -0.03 0.01 -0.04

B_Afipia -0.06 0.36 -0.38 0.72 0.14 -0.02 0.13 0.12 0.13 0.01 0.06

B_TM7a 0.25 -0.41 -0.32 -0.17 -0.03 -0.33 0.00 0.47 -0.32 0.17 -0.17

B_Sphingomonas -0.74 -0.30 0.29 -0.09 0.21 0.09 0.07 -0.03 -0.07 0.08 -0.04

B_Bradyrhizobium 0.59 0.37 0.34 0.34 -0.06 0.13 -0.19 0.19 0.11 0.01 0.05

B_Candidatus.Udaeobacter -0.16 0.57 -0.63 0.08 -0.07 0.03 -0.08 -0.15 -0.05 -0.14 0.17

B_UnassignedMember_Micrococcaceae 0.45 0.05 0.42 0.43 -0.36 -0.25 0.26 -0.10 0.01 -0.17 0.17

B_UnassignedMember_WD2101.soil.group -0.73 0.17 0.11 0.17 0.24 0.09 -0.22 0.05 -0.10 0.00 0.22

B_UnassignedMember_Xanthobacteraceae 0.53 0.61 0.17 0.14 0.06 0.20 -0.22 -0.08 -0.05 0.19 0.00

B_HSB.OF53.F07 0.60 -0.35 0.11 0.14 0.04 0.38 -0.04 -0.12 0.36 -0.10 0.05

B_UnassignedMember_Vicinamibacterales -0.34 0.65 -0.35 -0.24 -0.23 0.02 -0.08 0.10 0.15 0.12 -0.09

B_SumRare -0.74 0.12 0.38 0.19 -0.25 -0.05 -0.07 -0.13 0.17 -0.04 -0.20

F_Pseudogymnoascus -0.12 0.10 -0.55 0.57 0.28 -0.33 -0.10 -0.01 -0.03 0.07 -0.11

F_Alternaria -0.67 -0.29 0.35 -0.03 0.27 -0.01 0.09 0.12 -0.05 -0.25 -0.09

F_Cryptococcus 0.40 -0.55 -0.03 0.19 -0.22 0.08 -0.10 0.30 0.06 -0.03 -0.13

F_Naganishia 0.50 -0.55 -0.17 0.02 -0.02 0.28 -0.01 0.17 0.22 0.00 0.05

F_Cladosporium -0.33 0.23 -0.10 -0.17 -0.48 -0.03 0.44 0.27 0.30 -0.01 -0.21

F_Penicillium -0.45 0.05 0.06 0.02 0.02 0.39 0.16 0.38 0.01 -0.12 0.51

F_Solicoccozyma 0.27 -0.16 -0.42 -0.10 0.43 0.09 0.27 -0.47 0.14 0.07 -0.05

F_Pseudeurotium 0.21 0.16 0.39 -0.04 0.06 -0.36 -0.39 -0.07 0.24 0.38 0.07

F_Humicola -0.11 0.00 0.09 0.28 -0.70 -0.05 0.24 -0.40 -0.24 0.08 0.05

F_Leohumicola 0.52 0.42 0.40 0.20 0.10 0.14 0.17 0.11 -0.09 0.01 -0.26

F_UnassignedMember_Ascomycota 0.33 0.37 0.16 -0.03 0.09 0.29 0.08 -0.11 -0.65 -0.11 -0.10

F_UnassignedMember_Didymellaceae -0.32 -0.08 0.03 -0.03 -0.05 0.23 0.32 -0.02 -0.04 0.74 0.26

F_Coniochaeta 0.08 -0.01 0.36 -0.16 0.40 -0.49 0.46 -0.11 0.18 -0.10 0.18

F_Fusarium -0.62 -0.13 0.20 -0.21 -0.02 0.17 -0.22 -0.09 0.04 0.08 -0.23

F_SumRare 0.21 0.43 0.00 -0.60 -0.16 -0.04 -0.30 -0.19 0.10 -0.19 0.16

B_Richness -0.41 0.63 0.05 0.19 0.37 0.10 0.12 0.06 0.09 -0.07 -0.14

F_Richness 0.28 0.68 0.17 -0.15 0.19 0.22 0.25 0.05 0.13 0.13 -0.31

BactFungi 0.10 0.72 -0.30 -0.39 -0.15 -0.01 0.15 0.10 0.04 -0.12 0.06
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Table S4-5. Measured microbial traits and functions along the gradient, sorted by latitude. For visual 

aid, all variables are colored light (low values) to dark (high values). MBC = microbial biomass carbon, 

CUE = carbon use efficiency, MCN = microbial C:N ratio, Spec. = specific, resp. = respiration, MUF = 4-

Methylumbelliferyl, DOPA = L-3,4-dihydroxyphenylalanine. 
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Table S4-5 cont. 
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Table S4-6. Detailed model description of all 99 models, sorted by dependent variable and predictor 

sets. MBC = microbial biomass carbon, CUE = carbon use efficiency, MCN = microbial C:N ratio, Spec. = 

specific, ENV = environmental dataset, MIC = microbial community dataset, ENVxMIC = environmental 

and microbial community datasets combined, SW = stepwise regression, LA = lasso regression, RF = 

random forest, Transf. = log-transformed, D.f. = degrees of freedom, SW = p-value of Shapiro-Wilk test, 

BP = p-value of Breusch-Pagan test. 
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Lasso

Variable Predictor Set Model Transf. R2
RMSE adj. R2

D.f. p-value SW BP lambda mtry ntree nodesize

MBC ENV SW yes 0.52 91.92 0.49 30 0.00 0.32 0.09

MBC ENV LA yes 0.52 0.67 0.51 30 0.00 0.01 0.22 0.3

MBC ENV RF no 0.41 85.1 8 100 15

MBC MIC SW yes 0.24 106.59 0.19 30 0.02 0.37 0.05

MBC MIC LA 30 0.00 100

MBC MIC RF no 0.07 105.85 1 100 15

MBC ENVxMIC SW yes 0.68 82.53 0.63 28 0.00 0.34 0.91

MBC ENVxMIC LA yes 0.5 0.67 0.49 30 0.00 0.01 0.22 0.3

MBC ENVxMIC RF no 0.34 90.74 19 1000 7

Growth ENV SW yes 0.58 0.42 0.55 30 0.00 0.97 0.01

Growth ENV LA yes 0.49 0.57 0.39 30 0.00 0.72 0.05 0.1

Growth ENV RF no 0.56 0.41 8 100 15

Growth MIC SW yes 0.2 0.59 0.15 30 0.03 0.78 0.64

Growth MIC LA 30 0.00 100

Growth MIC RF yes 0.07 0.92 1 100 2

Growth ENVxMIC SW no 0.65 0.34 0.63 30 0.00 0.20 0.10

Growth ENVxMIC LA yes 0.48 0.52 0.36 30 0.00 0.55 0.09 0.1

Growth ENVxMIC RF no 0.44 0.47 19 1000 2

Respiration ENV SW no 0.85 0.77 0.83 28 0.00 0.35 0.19

Respiration ENV LA yes 0.67 0.49 0.61 30 0.00 0.27 0.25 0.1

Respiration ENV RF no 0.73 1.01 8 1000 2

Respiration MIC SW yes 0.67 1.6 0.62 28 0.00 0.62 0.49

Respiration MIC LA yes 0.48 0.6 0.4 30 0.00 0.91 0.49 0.1

Respiration MIC RF yes 0.42 0.8 9 100 15

Respiration ENVxMIC SW no 0.82 0.83 0.81 30 0.00 0.45 0.68

Respiration ENVxMIC LA no 0.76 0.78 0.67 30 0.00 0.91 0.10 0.2

Respiration ENVxMIC RF no 0.67 1.17 18 100 2

Hydrolases ENV SW yes 0.34 1712.27 0.3 30 0.00 0.83 0.24

Hydrolases ENV LA yes 0.26 0.7 0.18 30 0.00 0.39 0.14 0.2

Hydrolases ENV RF yes 0.26 0.69 2 100 7

Hydrolases MIC SW yes 0.22 1774.61 0.17 30 0.02 0.97 0.87

Hydrolases MIC LA 30 0.06 100

Hydrolases MIC RF yes 0.1 0.78 2 100 2

Hydrolases ENVxMIC SW yes 0.35 1716.49 0.31 30 0.00 0.81 0.49

Hydrolases ENVxMIC LA yes 0.24 0.74 0.22 30 0.00 0.16 0.28 0.3

Hydrolases ENVxMIC RF yes 0.17 0.72 3 100 15

Oxidases ENV SW no 0.36 1455.76 0.32 30 0.00 0.46 0.08

Oxidases ENV LA no 0.17 1403.5 -0.02 30 0.02 0.53 0.18 100

Oxidases ENV RF no 0.13 1882.72 1 100 15

Oxidases MIC SW no 0.28 1547.52 0.23 30 0.01 0.09 0.16

Oxidases MIC LA yes 0.23 0.44 0.18 30 0.01 0.88 0.91 0.1

Oxidases MIC RF no 0.07 1969.32 1 100 7

Oxidases ENVxMIC SW no 0.36 1455.76 0.32 30 0.00 0.46 0.08

Oxidases ENVxMIC LA no 0.14 1301.24 -0.46 30 0.13 0.56 0.66 100

Oxidases ENVxMIC RF no 0.09 1938.73 2 100 2

CUE ENV SW yes 0.48 0.11 0.43 29 0.00 0.61 0.67

CUE ENV LA yes 0.33 0.36 0.26 30 0.00 0.27 0.67 0.1

CUE ENV RF yes 0.33 0.4 1 1000 2

CUE MIC SW no 0.7 0.07 0.68 30 0.00 0.32 0.12

CUE MIC LA no 0.46 0.06 0.18 30 0.00 0.68 0.58 0

CUE MIC RF no 0.67 0.08 10 1000 15

CUE ENVxMIC SW no 0.7 0.07 0.68 30 0.00 0.32 0.12

CUE ENVxMIC LA yes 0.58 0.28 0.55 30 0.00 0.38 0.82 0.1

CUE ENVxMIC RF no 0.66 0.08 19 100 15

MCN ENV SW yes 0.31 7.05 0.24 29 0.01 0.96 0.01

MCN ENV LA 30 0.00 100

MCN ENV RF no 0.09 7.8 1 100 2

MCN MIC SW yes 0.16 7.92 0.11 30 0.07 0.13 0.84

MCN MIC LA 30 0.00 100

MCN MIC RF yes 0.09 0.49 1 100 15

MCN ENVxMIC SW yes 0.22 7.75 0.17 30 0.02 0.20 0.05

MCN ENVxMIC LA 30 0.00 100

MCN ENVxMIC RF yes 0.08 0.49 1 100 7

Spec. growth ENV SW yes 0.37 2.05 0.33 30 0.00 0.07 0.50

Spec. growth ENV LA yes 0.26 0.38 0.18 30 0.00 0.95 0.30 0.1

Spec. growth ENV RF yes 0.24 0.41 1 100 7

Spec. growth MIC SW no 0.48 1.62 0.44 30 0.00 0.71 0.48

Spec. growth MIC LA yes 0.29 0.37 0.16 30 0.00 0.83 0.04 0.1

Spec. growth MIC RF yes 0.45 0.35 9 100 7

Spec. growth ENVxMIC SW yes 0.55 1.77 0.52 30 0.00 0.41 0.62

Spec. growth ENVxMIC LA yes 0.4 0.32 0.29 30 0.00 0.74 0.33 0.1

Spec. growth ENVxMIC RF yes 0.47 0.35 16 100 2

Spec. respiration ENV SW yes 0.37 12.23 0.27 28 0.01 0.03 0.07

Spec. respiration ENV LA yes 0.23 0.51 0.12 30 0.00 0.33 0.16 0.1

Spec. respiration ENV RF yes 0.37 0.57 4 1000 7

Spec. respiration MIC SW yes 0.82 5.51 0.78 27 0.00 0.05 0.28

Spec. respiration MIC LA yes 0.69 0.36 0.63 30 0.00 0.00 0.28 0.1

Spec. respiration MIC RF yes 0.69 0.41 9 1000 2

Spec. respiration ENVxMIC SW yes 0.68 9.69 0.66 30 0.00 0.08 0.39

Spec. respiration ENVxMIC LA yes 0.67 0.34 0.57 30 0.00 0.01 0.63 0.1

Spec. respiration ENVxMIC RF yes 0.67 0.43 18 100 2

Spec. hydrolases ENV SW yes 0.14 8.17 0.09 30 0.10 0.23 0.18

Spec. hydrolases ENV LA 30 0.00 100

Spec. hydrolases ENV RF no 0.14 9.23 1 1000 15

Spec. hydrolases MIC SW yes 0.33 7.43 0.29 30 0.00 0.02 0.08

Spec. hydrolases MIC LA yes 0.22 0.42 0.13 30 0.00 0.22 0.30 0.1

Spec. hydrolases MIC RF no 0.07 8.89 1 1000 15

Spec. hydrolases ENVxMIC SW yes 0.33 7.43 0.29 30 0.00 0.02 0.08

Spec. hydrolases ENVxMIC LA 30 0.00 100

Spec. hydrolases ENVxMIC RF no 0.16 8.99 1 1000 15

Spec. oxidases ENV SW yes 0.27 104.01 0.22 30 0.01 0.12 0.01

Spec. oxidases ENV LA 30 0.00 100

Spec. oxidases ENV RF no 0.29 90.49 1 1000 2

Spec. oxidases MIC SW yes 0.26 101.17 0.21 30 0.01 0.02 0.26

Spec. oxidases MIC LA 30 0.00 100

Spec. oxidases MIC RF yes 0.11 0.85 1 100 2

Spec. oxidases ENVxMIC SW yes 0.32 99.37 0.27 30 0.00 0.62 0.03

Spec. oxidases ENVxMIC LA 30 0.00 100

Spec. oxidases ENVxMIC RF no 0.22 90.19 1 100 2

Random ForestStepwise & LassoAll
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7.5 Appendix Chapter 5 

 

Credits for Figure 5-3. Several icons in Figure 5-3 were taken from thenounproject.com. The following 

artists have created these icons: grass: Hero Arts; forest: ida ratnaningrum; plowing: Symbolon; 

snowflake: Jordy Madueño; ripples: cindy clegane; heat: Adrien Coquet; hourglass: yusuf kara. 
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