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A B S T R A C T

Electricity pricing can be used to shift the timing of electricity demand, but the choice of price signals is highly
constrained. Consumer rates are updated every few years and limited to simple daily profiles, yet must capture
the complex dynamics of a changing electricity system. Emission factors (EFs) were developed as an evaluation
tool, but are increasingly used as demand response (DR) signals. Given these constraints, can they be effective?
We evaluate the emissions impact of EF-based electricity rates with and without supply-side emissions pricing.
We study controlled electric vehicle (EV) charging in the Western U.S. up to 2037 by coupling an electricity
system dispatch model and a data-driven EV charging model. We compare average and short-run marginal
EFs with a new medium-run marginal EF that better matches the timeline of electricity rate updates. We find
that a stable supply-side signal makes DR more valuable: DR reduces emissions by up to 6% with supply-side
carbon pricing or just 2% without it. Medium-run marginal EFs yield the most consistent emission reductions,
but constraints on charging flexibility limit their impact. We recommend policymakers base rates for DR on
medium-run marginal emission factors and implement supply-side carbon pricing to facilitate greater emission
reductions.
. Introduction

Reducing emissions from the electricity sector is central to global
lans to tackle climate change (IPCC, 2023). Electricity generation
s undergoing a major transformation to reduce emissions, including
ransitioning from high-emitting sources like coal and gas to low-
mitting sources like wind and solar (IEA, 2022; Callaway et al., 2018).
upply-side interventions like carbon pricing can reduce generation
missions further (Levin et al., 2019). Demand-side interventions can
educe emissions by shifting consumption to times when it will be
et by lower-emitting generation sources (Xu et al., 2020). The imple-
entation of these demand-side interventions, however, is challenging,

specially for small-scale, distributed electricity customers.
Utilities often use prices to attain shifts in demand among small-

cale customers: low or high prices signal when or when not to consume
lectricity. While this can motivate small behavioural changes (Fischer
t al., 2016), a growing portion of distributed demand responds to price

∗ Corresponding author.
E-mail address: spowell@ethz.ch (S. Powell).

signals in an automated way. Electric vehicles (EVs) in particular are a
rapidly growing new load, as electrification is used to reduce emissions
from personal transportation (Bistline et al., 2022), and passenger EVs
represent a valuable source of automated, distributed demand response
(Muratori et al., 2021; Anwar et al., 2022). EVs typically remain
plugged in for longer than it takes to recharge (Sadeghianpourhamami
et al., 2018) and many individuals or charging aggregators leverage the
flexibility that this provides to shift their demand and minimise their
electricity bills (Kara et al., 2015).

The possibility of control raises the question: what electricity rates
could utilities use to shift EV demand in a way that reduces emissions?
In this work, we are not searching for the optimal pricing scheme but
instead will evaluate the merits of a few simple approaches suited to
the way rates are currently set.

An important assumption of our work is that we constrain ourselves
to current implementations and we do not consider dynamic pricing or
vailable online 3 May 2024
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centrally-managed control. Many previous studies have explored the
potential of centrally-managed control to reduce emissions from EV
charging (van Triel and Lipman, 2020; Tarroja et al., 2015; Bellocchi
et al., 2019; Hanemann et al., 2017). For example, different studies
found fully managed charging could reduce added CO2 emissions for
EV charging by up to 75% in California (Zhang et al., 2018) (Table IX)
and up to 67% in Europe (Xu et al., 2020) (Figure 6) compared with
uncontrolled. However, these results depended on idealised implemen-
tations with centralised, direct dispatch of EV demand. In this study,
we consider the highly constrained case faced by most utilities today:
decentralised, rate-based control, with charging flexibility limited by
low charger availability and stochastic charging behaviours.

In practice, the problem utilities face setting rates is highly con-
strained in terms of timing and complexity. Consumer-facing electricity
rates only undergo major updates every three to ten years (RAP, 2011),
but the grid itself is constantly changing. In the time between when
a rate is set and when it is next updated, there may be substantial
structural changes to the generation fleet. Are rates related to emissions
‘future proof’ to last until the next update? Further, consumer-facing
electricity rates are constrained to very simple forms.

Many utilities in the United States have rolled out EV-specific rates,
but most are time-of-use (TOU) rates with a small number of different
price periods per day, typically limited to a single weekday and week-
end schedule (Cappers et al., 2023). We recognise that TOU tariffs are
an imperfect reflection of the time-varying nature of wholesale energy
costs and may even lead to bunching of electricity consumption near
the start and end of off-peak periods (Muratori and Rizzoni, 2015).
Our study is not intended to advocate for TOU pricing but rather to
investigate the flexibility of EV charging in response to current financial
incentives.

Emission factors (EFs) are one tool used to test and reduce the
emissions from charging. Hourly EFs are calculations that condense the
complex dynamics of grid emissions into a simple signal. The three
relevant EFs are: Average Emission Factors (AEFs), the ratio between
total emissions and total demand (Elenes et al., 2022); Short-Run
Marginal Emission Factors (SR-MEFs), the immediate marginal change
in emissions caused by a marginal change in demand (Hawkes, 2010;
Siler-Evans et al., 2012); and Long-Run Marginal Emission Factors (LR-
MEFs), the marginal change in emissions caused by a persistent change
in demand or supply over a longer period of time (Hawkes, 2014). The
SR-MEF we use in this paper has also been called the Costliest Plant
MEF (Elenes et al., 2022): assuming that the last plant dispatched in
the generation merit order is the one to respond to a small increase in
demand, that plant’s emission rate sets the SR-MEF.

EFs were originally created—and are still most commonly used—as
a tool to evaluate the emissions impact of an intervention. The AEF and
SR-MEF are both based on snapshots of the system and describe short-
term emissions. Both the AEF and SR-MEF have been widely used to
assess the emissions from EV charging (e.g. AEF (Li and Jenn, 2022;
Lin, 2021; Linn and McConnell, 2019; McLaren et al., 2016), SR-MEF
(Zivin et al., 2014; Yuksel et al., 2016; Tong et al., 2021), or both AEF
and SR-MEF (Chen et al., 2022; Mehlig et al., 2022; Brinkel et al.,
2020; Jochem et al., 2015; Holland et al., 2022; Gagnon and Cole,
2022)). Elenes et al. showed that short-term changes can be evaluated
more accurately with SR-MEFs than AEFs, in most cases (Elenes et al.,
2022). The gap between evaluations made by AEFs or SR-MEFs has
been widening over the past decade in the U.S. (Holland et al., 2022).
As the AEF and SR-MEF capture only snapshots of the grid, the LR-MEF
was introduced to capture the long-term impacts of persistent changes
(Hawkes, 2014). Gagnon and Cole showed that the LR-MEF provides
better estimates of the long-run emissions impact of various demand
interventions than the AEF or SR-MEF when the impact of investment
in new generation capacity is considered (Gagnon and Cole, 2022).

Recently EFs have been used for a new purpose: guiding an inter-
vention as the objective for demand optimisation. Researchers have
2

used both the AEF and SR-MEF as signals for optimised EV charging
(e.g. AEF (Mehlig et al., 2022; Cheng et al., 2022; Powell et al., 2022b;
Daneshzand et al., 2023), SR-MEF (Kang et al., 2023; Gai et al., 2019;
Hoehne and Chester, 2016), or both (Huber et al., 2021; Brinkel et al.,
2020)). Many report very positive results. For example, SR-MEF control
was reported to reduce emissions by 23.6% (Brinkel et al., 2020) or
over 18% (Kang et al., 2023) in California (different years and meth-
ods), and up to 31% in other U.S. regions (Hoehne and Chester, 2016).
Li and Jenn find that real-time pricing could yield better emission
reductions than static time-of-use prices in a system with high carbon
prices (Li and Jenn, 2022). However, these studies use the same EFs to
evaluate the impact on emissions as they do to guide the control, rather
than testing total emissions with a simulation. As a result, the signals’
success at reducing emissions remains unclear (Elenes et al., 2022).

To the best of our knowledge, the LR-MEF has not been used for
charging control. That may be because charging control is typically
considered a short-term problem, but in practice rates are fixed for
multiple years. The interpretation of the LR-MEF suggests it could be
a successful signal: when the LR-MEF is lowest, added demand causes
the smallest long-term increase in total emissions.

However, the time horizon of rate design for EV charging falls
between those of the SR-MEF and LR-MEF. The SR-MEF does not
capture structural changes in the grid that will occur in the five years
between rate updates, including planned additions and retirements
of power plants and the deployment of new renewable generation
(Gagnon and Cole, 2022). On the other hand, five years is much shorter
than the planning horizon for most new generation (WECC, 2022) and
the 20+ year timelines modelled by Hawkes (2014), and Gagnon and
Cole (2022).

Here we define a new EF, the Medium-Run Marginal Emission
Factor (MR-MEF), specific to the time horizon of rate design. The MR-
MEF calculates the 5-year change in emissions from a unit change in
demand. Planned and projected changes to the generation fleet in that
time are reflected in the simulation, but we assume that any additional
investments in new generation induced by the change in demand are
negligible. This assumption differs from the methods used by Hawkes,
and Gagnon and Cole. We believe the assumption is justified in this
use-case for three reasons: investments in new generation are typically
planned on longer time scales, the changes in demand from EV charging
control are relatively small, and the change in demand only persists for
5 years until the next rate change.

In this study, we compare the use of the AEF, SR-MEF, and MR-
MEF as control signals for EV demand to test which most reduces total
emissions, under which conditions. Our main contribution is the use of
a highly detailed, realistic model to offer a comprehensive evaluation of
these signals. While previous research has compared these control sig-
nals for snapshots in time, we are not aware of any that has evaluated
the use of fixed EF rates as the electricity system changes over time.
We analyse the resulting emissions reductions along three key axes to
draw a range of insights: different EFs, different levels of constraint
on EV charging demand, and different scenarios of supply-side carbon
pricing.

We compare the three signal types over three 5-year periods from
2023 to 2037 in two scenarios: with and without a supply-side carbon
price influencing the grid dispatch. We conduct a ‘‘what-if’’ analysis
using a model of future EV demand and electricity generation. Our
aim is not to provide forecasts, but to evaluate these signal designs
in a realistic setting with a changing electricity system. We focus on
the case of EV charging demand in the Western U.S. Interconnection
(WECC) and use an open-source, reduced-order model of dispatch
in WECC where each future year is modelled with planned changes
to the generation fleet and baseline electricity demand (Deetjen and
Azevedo, 2019b). We combine the grid model with an open-source,
data-driven model of EV charging behaviour and control (Powell et al.,
2022b); the model simulates charging for battery electric vehicles or
fully electric vehicles only, with a range of battery capacities, charging

behaviours, driving distances, and charging options. We compare the
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Fig. 1. Overview of modelling steps. We re-calculate the signals every five years: in 2023, 2028, and 2033.
fully constrained model of EV demand with a minimally constrained
counterpart to reveal the reduced flexibility imposed by realistic EV
modelling.

Our results reveal an important synergy between supply-side and
demand-side efforts to reduce emissions: adding a carbon price to the
electricity dispatch makes the EF signals more stable and the demand
response more successful. In the short-term we find the MR-MEF gives
the best signal and that AEF signals may increase emissions. In the
medium-term, the best signal is less clear. In the long-term, changes
to the electricity system make the AEF and MR-MEF converge, but
cause the SR-MEF to increase emissions. In the carbon price scenarios,
all signal types converge to similar shapes and impacts. Our results
offer critical insights to policymakers and utilities as they approach rate
design and set rates in the medium-term to reduce grid emissions.

The body of this paper is organised as follows: in Section 2 we
present the modelling framework and methods used; in Section 3 we
present the signals, demand profiles, and impacts on grid emissions;
in Section 4 we discuss limitations of this study; and in Section 5 we
summarise the conclusions and policy implications of our findings.

2. Methodology

The sequence of modelling steps is depicted in Fig. 1. The four
major steps in the analysis are: (1) run reference simulations for each
year without any added EV demand; (2) calculate signals; (3) simulate
uncontrolled and controlled EV demand; (4) re-run the grid simulation
with the added EV demand, and compare with the uncontrolled de-
mand results to assess whether control caused an increase or decrease
in emissions. The AEF and SR-MEF signals are calculated using one-
year snapshots in 2023, 2028, and 2033. The MR-MEF signals are
calculated using five year intervals: for example, the MR-MEF signal
in 2023 is calculated using the simulation results from 2023 through
2027. The grid dispatch model and the model of EV charging demand
are described in detail in the following subsections.

To simulate the process of rate design, we update the rates in each
scenario every 5 years: the rates calculated in 2023 are used as control
signals from 2023 through 2027, the rates calculated in 2028 are used
as control signals from 2028 through 2032, and the rates calculated
in 2033 are used from 2033 on. Major rate changes are only possible
when a utility files a General Rate Case (GRC) with the regulator. Most
utilities file every two to five years, but in some states utilities have
waited up to 10 years between filings (RAP, 2011). The California
Public Utilities Commission, for example, requires utilities to file a GRC
every four years (Electric, 2023).

The time period from 2023 to 2037 was chosen to align with the
planning horizon for large-scale power systems in the U.S. 2019 was
3

used as a base year for all data to avoid including any short-term effects
caused by the COVID-19 pandemic in 2020 and 2021 or the global gas
crisis in 2022 driven by the Ukraine war. Gas prices have since returned
to pre-crisis levels (Ricker and Comstock, 2024), but more recent data
required for the model is not yet available. We test and discuss the
sensitivity to 2022’s extremely high natural gas prices in Section 3.4.

We use only open-source models; the code for this analysis has been
published open-source on Github (Powell et al., 2024).

2.1. Grid model

The grid model consists of four parts: demand, non-fossil fuel gen-
eration, fossil fuel or combustion-based generation, and storage.

First, we model the increase in baseline non-EV electricity demand
due to electrification in other sectors (Mai et al., 2018).

Second, we model the increase in renewable generation based on
planned, announced, and forecast installations. We obtain hourly gen-
eration totals for each resource, and we assume the timing of fluctua-
tions in solar and wind generation are the same as in the base year. We
assume the timing of hydro and nuclear generation are unchanged. We
assume all non-fossil fuel and non-combustion generation is dispatched
first; the remaining demand, referred to as net demand or residual
demand, is then adjusted by the use of storage. We assume planned
grid-scale storage is operated to smooth net demand. The smoothed net
demand is then dispatched to the fossil fuel generators.

We simulate the dispatch of fossil fuel and biomass generators using
an economic dispatch model (Deetjen and Azevedo, 2019b). The model
dispatches generators in order of lowest cost to serve the net demand
at each hour of the year, including both operating costs and costs
imposed by emission pricing. Costs and emission rates are calculated
from historical data reported for each generating unit. Generators are
removed from the fleet based on their announced retirement years
(WECC, 2022). To reflect generator additions (WECC, 2022), we du-
plicate existing generators matching as closely as possible by type and
capacity. We model the region with one node and do not represent
transmission or losses within the region.

In some hours of the year during peak evening demand, there
is insufficient generation capacity to cover demand even after the
operation of the storage planned above. We assume additional battery
storage will be added to cover those events. We calculate the smallest
4-hour storage that would be sufficient and we assume it is operated in
a simple way: it is discharged only to cover that excess demand and its
charging is spread evenly over other hours with available capacity.

The application of this model to our case study region is described
in detail in Section 2.4.1.
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2.2. Emission factors

We calculate the AEF and SR-MEF using the results of a reference
dispatch where the grid model is run without any added EV demand.

Let 𝑒𝑡 represent the total emissions produced at hour 𝑡 to serve the
total demand, 𝑑𝑡. Let 𝑒𝑡𝑚 represent the emission rate of the marginal
generator, i.e. the most expensive generator dispatched at time 𝑡. Then,
the AEF and SR-MEF are calculated as:

AEF𝑡 = 𝑒𝑡

𝑑𝑡
(1)

R-MEF𝑡 = 𝑒𝑡𝑚. (2)

e calculate this profile for each day in the year, then calculate the
eekday and weekend profiles as the mean over all weekdays and
eekend days, respectively. The AEF and SR-MEF are recalculated
very 5 years in 2023, 2028, and 2033.

We calculate the MR-MEF as a 24 h profile. To calculate the MR-
EF at hour, ℎ0 ∈ [0, 23], for starting year, 𝑦0, MR-MEFℎ0𝑦0 , we take the

ollowing steps:

1. We simulate a reference scenario with demand, 𝑑𝑡𝑦, where no EV
demand is added.

2. We calculate the reference scenario emissions, 𝑒𝑦(𝑑𝑡𝑦) for every
time in each of the five years from the starting year, 𝑦0 to 𝑦0+4.

3. We simulate a scenario where 𝛥 demand has been added to 𝑑𝑡𝑦 at
hour ℎ0 every weekday (or weekend). Where 𝑡 covers the whole
year from 1 to 8760, let ℎ(𝑡) return the hour of day for time 𝑡.

4. We calculate the emissions after this intervention, 𝑒𝑦(𝑑𝑡𝑦 +
𝛥1ℎ(𝑡)=ℎ0 ), for each of the same five years.

5. We calculate the MR-MEF from the difference between the delta
and reference scenario results.

he dispatch model, 𝑒𝑦(.), and the baseline demand, 𝑑𝑦, both change
ach year as described in the previous section. The final calculation is:

R-MEFℎ0𝑦0 =

∑𝑦0+4
𝑦=𝑦0

∑8760
𝑡=1 𝑒𝑦(𝑑𝑡𝑦 + 𝛥1ℎ(𝑡)=ℎ0 ) − 𝑒𝑦(𝑑𝑡𝑦)

∑𝑦0+4
𝑦=𝑦0

∑8760
𝑡=1 (𝑑𝑡𝑦 + 𝛥1ℎ(𝑡)=ℎ0 ) − 𝑑𝑡𝑦

(3)

We test cases with 𝛥 equal to 5 GW, 10 GW, and 20 GW. We choose
these values similar to the magnitude of EV demand to make the signal
more relevant to the problem.

This formula is most similar to the LR-MEF formula used by Gagnon
and Cole (2022), though for simplicity we do not discount future
emissions. The dispatch model we use to simulate emissions, 𝑒(.)𝑦, does
not model optimal investments in additional generation. The original
formula proposed by Hawkes also does not discount future emissions
(Hawkes, 2014). Where Hawkes calculated one LR-MEF for a multi-
hour intervention, we use the Gagnon and Cole method of hourly
demand changes to calculate an hourly profile. We call this the MR-MEF
to differentiate from the LR-MEF, which takes a longer time horizon and
includes the possibility that long-lasting changes in demand can induce
additional investments in new generation. The MR-MEF is defined to
match the timeline of electricity rate updates.

2.3. EV model

To model uncontrolled charging we use SPEECh (Scalable Proba-
bilistic Estimates of EV Charging), a data-driven model of large-scale
EV demand (Powell et al., 2022c,b). The model takes a data-driven ap-
proach: it requires a large dataset of charging sessions across charging
segments for a diverse set of EV drivers.

First, agglomerative clustering with Ward’s method is applied to
cluster the drivers by their charging histories into 136 behaviour
groups. Each group has a different pattern of when, how often, and
for how long they charge at home, the workplace, or public charging
stations. For example, some behaviour groups with larger battery
4

capacity vehicles charge infrequently and prefer public charging, while
others with smaller battery capacities and access to workplace chargers
prefer to top-up every day.

We use a probabilistic graphical model to connect the drivers’ be-
haviour groups to: (1) their vehicle battery capacity, access to charging
options, household income, housing type, and annual mileage; and
(2) their daily charging decisions and load profiles. Daily charging
decisions and session parameters, including start time, session energy,
and end time, are fit with Gaussian Mixture Models. We calculate
the number of drivers from each behaviour group in a given county
based on the distribution of household income, housing type, and
annual mileage in that county, combined with survey data on access
to different charging options. Then, we use the probabilistic model of
decisions and sessions to simulate daily charging sessions for all drivers
in the county. The weekday and weekend profiles are concatenated to
create one year’s EV demand. The reader is referred to Powell et al.
(2022b) for more details and validation of the methodology.

We simulate only fully-electric EVs, also called battery electric
vehicles. We assume that charging patterns and constraints of plug-
in hybrid EVs can be represented by the data in our sample with
small vehicle battery capacities or with preferences for more frequent
charging. Plug-in hybrid EVs are a fraction of current plug-in EV
sales in the U.S. today (IEA, 2022) and recent policy support targets
all-electric models to align with long-term emission targets (Dawson,
2023). Conventional hybrid vehicles do not interact with the electricity
system.

In Sections 2.3.1 and 2.3.2, respectively, we explain the differ-
ence between the minimally constrained and fully constrained EV
control cases. The application of this model to our case study region
is described in detail in Section 2.4.2.

2.3.1. Minimally constrained
To separate the effect of the control signals from limitations related

to the driving profiles, we first implement a minimally-constrained
version of EV control.

Let 𝐶𝑤,𝑦 be the total daily EV electricity consumption on a week-
day/weekend 𝑤 in year 𝑦, measured in GWh. Let 𝑠𝑡 be the control
signal and 𝑑𝑡 be the demand at hour 𝑡. We implement the following
optimisation for one weekday and weekend day for each year:

min
𝑑

𝑠𝑇 𝑑

s.t.
24
∑

𝑡=1
𝑑𝑡 = 𝐶𝑤,𝑦

0 ≤ 𝑑 ≤ 20 GW.

(4)

We include the constraint limiting demand to less than 20 GW to
make it more similar to the EV demand profiles, but we do not include
any constraints related to timing.

2.3.2. Fully constrained
Real-world constraints on driver mobility, behaviour, and the avail-

ability of charging stations add important constraints to this control
problem.

We use three scenarios of future charging behaviour (Powell et al.,
2022b): Universal Home Access, where all drivers have access to home
charging either at their single family home (SFH) or multi-unit dwelling
(MUD); High Home Access, where 72% of drivers have access to
home charging; and Low Home High Work Access, where 27% of
drivers have access to home charging. These scenarios are derived from
the California Energy Commission’s 2022 survey on potential home
charger installation (Alexander, 2022). In all cases we simulate driver
behaviour using the SPEECh model; drivers with home or workplace
access are not forced to use those stations, and we observe that many
use a combination of two or more charging options (Powell et al.,
2022b).
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Based on large-scale implementations in the U.S. today, we assume
that charging control is only implemented within sessions at workplaces
and single-family homes in a distributed way. We only include auto-
mated control, we do not assume changes in behaviour, and we do not
include any shifting across locations.

Consider charging at a workplace where 𝑁 drivers will charge
throughout the day. Let 𝑎𝑖 and 𝑏𝑖 be the arrival and departure times
of vehicle 𝑖, and let 𝑐𝑖 be the total energy consumed with uncontrolled
harging for vehicle 𝑖. Let 𝑟𝑡𝑖 be the charging rate of vehicle 𝑖 at time
𝑡. Then the workplace aggregator executes the following optimisation
problem:

min
𝑟

∑

𝑡
𝑠𝑡
( 𝑁
∑

𝑖=1
𝑟𝑡𝑖

)

(5)

s.t.
∑

𝑡
𝑟𝑡𝑖 = 𝑐𝑖 ∀𝑖 ∈ {1,… , 𝑁} (6)

𝑟𝑡𝑖 = 0 ∀𝑖 ∈ {1,… , 𝑁}, ∀𝑡 < 𝑎𝑖 (7)

𝑟𝑡𝑖 = 0 ∀𝑖 ∈ {1,… , 𝑁}, ∀𝑡 ≥ 𝑏𝑖 (8)

0 ≤ 𝑟 ≤ 𝑟𝑚𝑎𝑥. (9)

The constraints can be read as: Eq. (6), each vehicle must receive
he same amount of energy as in the uncontrolled case; Eqs. (7) and (8),
he vehicle cannot charge before arrival or after departure; and Eq. (9),
he maximum charging rate for L2 charging of 6.6 kW is imposed and
here is no bi-directional charging allowed.

We implement this optimisation for aggregators of workplaces and
FH residential charging.

Each day is discretised into 1440 one-minute time steps in the model
f uncontrolled demand and aggregated into 15-minute intervals for the
ontrol calculation.

It is too computationally expensive to run the full optimisation
roblem for all vehicles in a large region, so we instead apply a
caling method (Powell et al., 2022a) to model the large-scale effect
f this control. The scaling method trains a machine learning model
f the mapping from uncontrolled to controlled site load shape. First,
e sample from the uncontrolled simulated sessions to create 100

ites with 200 vehicles in each. Second, we run the full optimisation
roblem for each site, for each signal being tested. This creates a set of
00 input–output profile pairs. Third, we split this data into training,
evelopment, and testing sets. We train a ridge regression model for
ach signal on the mapping from uncontrolled to controlled, using a
rid search over the alpha parameter and 5-fold cross validation using
he Python package scikit-learn (Pedregosa et al., 2011). The root-
ean-squared error of the test prediction ranged from 5.5% to 6.5% for
ome charging and from 2.9% to 3.3% for workplace charging across
he different control signals. Finally, the trained models were used to
stimate the aggregate controlled charging profiles.

.4. Case study details

We detail the application of this methodology to our case study
egion: the U.S.-portion of the Western Interconnection, or the Western
lectricity Coordinating Council (WECC).

.4.1. Case study grid model
To model the U.S. WECC grid, we use a baseline year of 2019

nd extend the model presented by Powell et al. (2022b). The model
ncludes four main components: changes in demand, non-fossil fuel
eneration, fossil fuel and combustion-based generation, and battery
torage.

WECC’s latest resource planning from 2022 lays out the planned
hanges to the WECC generation fleet to at least the year 2032 (WECC,
022). It includes lists of particular plant retirements and new projects
WECC, 2022) including plans up to 2037. This is a period of major
hange. Nearly 26 GW of resources, mostly coal and natural gas,
5
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ill be retired between 2022 and 2032, and nearly 80 GW of new
eneration and storage is planned (WECC, 2022). We use these plans
n our modelling unchanged and assume that short-term changes in EV
emand, a small portion of total load, will not cause large changes to
hese plans.

We model an increase in non-EV electricity consumption of 14%
rom 2019 to 2037 due to electrification in other sectors like heating
nd cooking (Mai et al., 2018).

The 2022 WECC resource document includes new utility-scale gen-
ration projects in all stages of the planning pipeline (WECC, 2022).
lanned total capacity for each non-fossil fuel resource follows an
pproximately linear trend until 2032; beyond 2032, few projects have
een announced yet. To project beyond 2032 to the end of our model
orizon, we fit a linear trend to total capacity for each technology.
e assume small variations year-to-year are random, given the many

ncertainties in the timeline of large new constructions (Gumber et al.,
024). Behind-the-meter rooftop solar is not included in the announced
rojects; we use available historical data on the growth of rooftop solar
apacity in WECC, which grew approximately linearly from 11 GW in
019 to 18 GW in 2022, and assume it continues to grow linearly
hrough our model time period (WECC, 2024). This results in 2037
apacity of 4.1 × 2019 for solar, 1.8 × 2019 for wind, and 1.07 × 2019
or hydro.

We use hourly data for non-fossil fuel generation from the U.S.
nergy Information Administration Electric System Operating Data
ebsite (EIA, 2019a). We implement the retirement of the Diablo
anyon nuclear plant after the year 2030 (CEC, 2023). We do not

nclude the two new advanced nuclear plants planned for 2028 and
029 due to high uncertainty around their operation and construction.

WECC has plans to install nearly 25 GW of battery storage by 2035,
ompared with just 200 MW in the region in 2020 (WECC, 2022).
s not all projects have been announced or included in the planning
ocuments, we fit a linear trend to the values of planned capacity to
stimate a total of 26.6 GW in 2037 at the end of our model horizon.
e implement this as 4-hour storage.
To simulate the dispatch of fossil fuel and biomass generators in

ECC we extend the open-source, reduced-order economic dispatch
odel presented by Deetjen and Azevedo (2019b). We use data from

he U.S. Environmental Protection Agency (EPA) Continuous Emissions
onitoring System (CEMS) and Emissions and Generation Integrated
esource database (eGRID), as well as the U.S. Energy Information
dministration (EIA) Form 923 (EPA, 2019a,b; EIA, 2019b). We obtain

he list of generators for retirements and additions from WECC resource
lanning documents (WECC, 2022). We do not include the two non-
mitting peaker plants planned for 2033 due to uncertainty around
heir operation and construction (WECC, 2022).

.4.2. Case study EV model
The SPEECh model of EV charging was trained on a large data set of

ver 2.8 million real battery EV charging sessions from 27.7 thousand
rivers in the Bay Area in California, U.S., in 2019. We use the model
o simulate the load profile for each county in the 11 main states in

ECC, totalling 48.6 million personal vehicles.
We assume a high electrification scenario where 50% of light-duty

ehicles in WECC are electrified by 2035; this is consistent with recent
lanning in California to meet timelines for the end of the sale of
nternal combustion engine vehicles (Fideldy, 2020; CEC, 2021). This is
n optimistic scenario as not all states in WECC have implemented the
ame policies as California. Recent support from the Inflation Reduction
ct and other policies will increase EV adoption (Bistline et al., 2022),
ut further policy support may be needed to achieve these targets
cross WECC (Woody et al., 2023). We assume the fraction of EVs
cales linearly to that level from the base year of 2019. We simulate
he demand profiles for 100% electrification in each county and scale
inearly to lower levels of EV penetration. Due to the model’s open-loop

tructure, the final load profiles vary slightly in terms of total energy.
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Fig. 2. Emission Factors (EFs) used as signals for demand optimisation: the Average Emission Factor (AEF), the Short-Run Marginal Emission Factor (SR-MEF), and the Medium-Run
Marginal Emission Factor (MR-MEF) for a 10 GW demand delta and five-year period.
Note: the SR-MEF and MR-MEF subplots have a different 𝑦-axis scale than the AEF subplots.
All emissions results are normalised and reported as kg CO2/MWh to
avoid confusion.

At 50% electrification in 2035, EVs consume 44 TWh of electricity
per year or approximately 5 GWh per hour if spread evenly throughout
the year. That represents 5.15% of total electricity consumption from
all sources.

3. Results

In Section 3, we discuss the shapes of the EF signals over the
simulation period, we analyse the impacts on emissions with both
minimally constrained and fully constrained EV control, and lastly we
examine the sensitivity of the model to extreme fossil fuel prices.

3.1. Signals

In all cases, the emission factors decrease in absolute terms from
2023 to 2037. As shown in Fig. 2, the EFs give different signals earlier
in the study period, but the AEF and MR-MEF converge to a similar
shape by 2033 with the lowest emission rate during the day.

The AEF and SR-MEF are calculated based on a snapshot reference
scenario with no EV demand. The MR-MEF at hour ℎ is calculated based
on the increase in emissions caused by adding the demand delta, here
10 GW, at that hour for a five year period. We compare results with and
without a carbon price affecting the dispatch of generators. We chose
a high carbon price of $100/tonne CO2 to isolate its effect and ensure
the resulting merit order is largely by emission rate.

With no CO2 price in the dispatch, the AEF is between 202 and
308 kg CO2/MWh in 2023 and between 126 and 248 kg CO2/MWh
in 2033. The AEF has a consistent shape throughout the study period:
lowest in the middle of the day during periods of high solar. The mid-
day trough would be lower if there were no battery storage; the battery
operates to shift demand from the evening to the middle of the day,
smoothing net demand, which reduces the spread in average emissions.

Adding a CO2 price to the dispatch does little to change the AEF
shape but decreases the AEF in absolute terms. With a CO2 price, the
AEF is between 145 and 228 kg CO2/MWh in 2023 and between 103
and 210 kg CO2/MWh in 2033. This is a reflection of how the CO2
6

rice re-orders the dispatch merit order, as shown in part (b) of Fig. 3
(Deetjen and Azevedo, 2019a). To meet the same level of demand,
lower emitting generators are used with the CO2 price than without,
reducing the average emissions intensity.

With no CO2 price in the dispatch, the highest SR-MEFs occur in the
evening in 2023 and 2028, and during the day in 2033. Notably, the
SR-MEF is very noisy in the earlier periods and does not give a strong
indication that short-run marginal emissions depend on the time of day.
This is caused by the disorder in the dispatch merit order, as shown in
part (a) of Fig. 3, where a small change in demand can easily put either
a coal or gas generator on the margin.

Adding a CO2 price to the dispatch, the SR-MEF gives a much clearer
signal: marginal emissions are highest in the evening, especially in
2023. This occurs because the order of generators in the dispatch better
aligns with their emission rates, as shown in part (b) of Fig. 3, so adding
demand during peak hours in the evening uses generators with higher
marginal emission rates from higher up the merit order.

With no CO2 price in the dispatch, the MR-MEF shape changes from
2023 to 2033. In 2023, there is no benefit to adding demand in the
middle of the day, principally because there is little to no excess solar
and there are many high-emitting coal plants operating during periods
of low net demand. By 2033, after the addition of large amounts of
solar, adding demand in the middle of the day can reduce emissions by
targeting curtailment. The retirement of many low-cost coal generators
also plays a key role and changes the emission dynamics of periods
with low net demand. With a CO2 price in the dispatch, the reordering
of generators has the same effect as for the SR-MEF: adding demand at
peak times uses generators with higher emissions.

The demand profiles for all types of charging scenario are shown
in Fig. 4 for the year 2028. Each row presents one of the charging
scenarios: (a) and (b) minimally constrained EV demand; (c) and (d)
Universal Home Access where all drivers have home charging; (e) and
(f) High Home Access similar to today’s home charging levels; and (g)
and (h) Low Home High Work Access where more drivers depend on
work and public charging. Each column presents one example control
signal: (i) Uncontrolled; (ii) the AEF signal from 2033; (iii) the SR-MEF
signal from 2033; and (iv) the MR-MEF signal from 2033 with 10 GW
delta demand. We consider only automated control occurring within
single family home and workplace sessions; no behaviour changes or
shifts between locations. The signals were calculated with (a, c, e, g)
and without (b, d, f, h) a carbon price in the dispatch.
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The minimally constrained case shows that, without charging con-
traints, the optimal charging strategy for the AEF and MR-MEF in
033 is to concentrate charging during the middle of the day, and
he optimal demand for the SR-MEF without a carbon price is to
oncentrate charging overnight (Fig. 4.a and 4.b).

Comparing Universal Home Access with Low Home High Work
ccess, the latter scenario has more flexibility to shift demand to the
ptimal charging hours in middle of the day because more drivers in
hat scenario have access to workplace charging, as seen in Figs. 4.c.iv
nd 4.g.iv. Lastly, while the Low Home High Work Access scenario
as significant daytime charging even in the uncontrolled case (i.e.
igs. 4.g.i and 4.h.i), its peak demand occurs earlier in the morning
han is optimal under these signals.

.2. Impact on emissions with minimally constrained demand

Fig. 5 shows the annual added emissions per unit of added de-
and from 2023 to 2037 (left), normalised by the value for flat or
ncontrolled demand (right) to compare the control signals. Each row
resents a different set of constraints on demand: (a) minimally con-
trained EV demand, (b) the Universal Home Access charging scenario,
c) the High Home Access charging scenario, and (d) the Low Home
igh Work Access charging scenario.

For the emissions results for the minimally constrained case we use
lat demand as a comparison point; more complex uncontrolled demand
rofiles are considered in the fully constrained EV scenarios.

In the minimally constrained case, the AEF performs poorly in the
irst half of the time horizon, actually causing a small increase in added
missions relative to uncontrolled. The MR-MEF performs best in this
eriod, particularly for the case with 20 GW test demand. The second
eriod is most challenging as many retirements occur, a very large
uclear plant retires in 2030, and storage is still scaling up. In 2031, the
irst year following the nuclear plant retirement, the MR-MEF signals
erform worse than the others. The 5 GW test-demand signal performs
orse than the 10 GW and 20 GW MR-MEF signals because it is farthest

rom the real value of added demand (see Fig. 4). The performance of
he 10 GW and 20 GW MR-MEF signals (overlapping in the 2031 result)
ikely represents a simple trade-off: the signal is calculated based on
otal added emissions from the full five-year period between 2028 and
7

s

032, so the optimal signal prioritises reductions in the first three years
t the cost of slight increases in the last two year years of the period.
e expect that increasing the frequency of the signal updates would

mprove these results.
By the final period, the AEF and MR-MEF are better aligned and

oth yield emission reductions, while the SR-MEF causes large in-
reases. The worst increase is caused by the SR-MEF signal in 2037:
ore than 5% above emissions from flat demand. The best decrease is

aused by the MR-MEF 20 GW signal in the early period, with 1.9%
elow emissions from flat demand in 2023, and by the AEF, MR-MEF
GW, MR-MEF 10 GW, and MR-MEF 20 GW signals at the end of the

eriod, with 2.1–2.2% below emissions from flat demand in 2037.
In a system with a supply-side carbon price of 100 $/tonne CO2,

bsolute emissions are lower. The lowest value occurs in 2030 for the
R-MEF signals with 444 kg CO2/MWh, just 89% of the value there
ithout the CO2 tax. There is again a small step increase in emissions
fter 2030 associated with the retirement of the large Diablo Canyon
uclear plant.

The control performs notably better in the carbon price case, espe-
ially in the later periods. By 2037, all four signals achieve a reduction
f 5.8–5.9%. This reflects the benefit of a simpler supply-side: with
arbon pricing, shifting demand away from peak hours will consistently
hift away from higher emitting generators.

These small improvements show the challenge of reducing emissions
n such a highly constrained set-up. There are two ways to reduce
missions: use less fossil fuel generation by reducing curtailment or use
leaner fossil fuel generators. Unfortunately there is little curtailment
o target in this system. There is no curtailment (defined as unused non-
ossil fuel generation) until 2033, then a small amount increasing to 0.5
Wh in 2037 without EV demand. 0.5 TWh is only 1.1% of annual EV
lectricity consumption, and it is completely used until 2035 in all of
he EV scenarios. Nearly all of the emission reductions are achieved
hrough the second option, despite the noisiness of the signals and
ystem.

There is sufficient capacity to meet demand at all hours in the AEF,
R-MEF 5 GW, and MR-MEF 10 GW minimally constrained cases. In

he SR-MEF case, extra storage is needed from 2033 onward, with a
aximum value of 13.7 GW in 2037. In the minimally constrained

cenarios with a supply-side carbon price, no extra storage is needed.
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Fig. 4. Electric vehicle charging demand is illustrated for the year 2033. SFH stands for single family home; MUD stands for multi-unit dwelling; L2 stands for Level 2 charging
at 6.6 kW; and L3 stands for Level 3 charging at 150 kW.
3.3. Impact on emissions with fully constrained demand

Fig. 5 parts (b–d) show the emissions results for the fully con-
strained charging scenarios. The Low Home High Work Access scenario
has the lowest absolute emissions but is affected very little by the
control. In this scenario, most demand is constrained to occur during
the day: this increases emissions in all cases in the near-term, relative
to flat demand, and decreases emissions in all cases in the long term.
With supply-side carbon pricing there is some benefit from AEF and
MR-MEF control, but only up to 0.7%.

The Universal Home Access scenario has the highest emissions and
sees larger benefits from control: without supply-side carbon pricing,
the maximum reduction is 1.0–1.2% relative to uncontrolled demand,
with the SR-MEF in the early period, with the AEF in the later period,
8

and with the MR-MEF signals in both. With supply-side carbon pricing,
control can decrease emissions by 2.3–2.8% relative to uncontrolled
and the AEF is the most consistent signal.

The results for the High Home Access scenario fall between the other
two: reductions of up to 0.9% without and 1.8% with carbon pricing.

Relative to flat demand, these reductions across EV scenarios of up
to 1.8% without and 4.1% with carbon pricing are smaller than the
2.2% and 5.9% possible with the minimally constrained demand.

The additional constraints from realistic EV modelling include con-
straints on charging infrastructure availability, where charging is con-
trollable, and when vehicles are plugged-in. Our results show that
these constraints reduce the flexibility of EV demand and can reduce
emissions-savings potential completely in some cases.
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Fig. 5. Added emissions in each control scenario. Vertical lines at the years 2023, 2028, and 2033 indicate when the control signals were updated. Scenarios are shown with
(dashed lines) and without (solid lines) the carbon price in the grid dispatch.
Starting in 2036, there is insufficient capacity to meet peak demand
in the uncontrolled Universal Home EV cases: up to 4.8 GW of extra
storage is needed by 2037 to cover a small set of hours. The SR-MEF
control increases the need for storage to 6.2 GW in 2037; the MR-
MEF controls reduce the need for storage to 0.9 and 0.05 GW in 2037;
and the AEF control avoids the need for extra storage completely. No
storage is required in any of the other EV cases.

3.4. Sensitivity to extreme prices

Finally, we assess how extreme prices from the recent energy system
crisis affect these signals and results. We test only the minimally
9

constrained case; based on the results in Section 3.3, we expect the
fully constrained EV scenarios would show similar but muted results.

We emphasise that this scenario is separate from the current sit-
uation for WECC, as gas prices have already returned to pre-crisis
levels, but the comparison to 2022 can offer interesting insights into
the dynamics of the merit order and emission reductions.

In 2022, natural gas prices spiked in many countries around the
world, including the Western U.S. Fig. 6 parts (a–b) illustrate the impact
of 2022 prices on the dispatch of generators: in 2022, the merit order
was reordered by high gas prices, visible also when comparing the 𝑦-
axis of generation costs between 2019 and 2022. The three columns
correspond to the merit order under three price scenarios: (left) in 2022
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Fig. 6. Sensitivity of results to extreme gas prices. The merit order is shown for a summer week in 2023 using (i) 2022 base fuel prices, (ii) 2019 base fuel prices, and (iii) 2019
base fuel prices with the carbon tax. Emissions impacts are shown for only the case of minimally constrained demand.
coal was consistently the least expensive resource; (middle) in 2019
the order of gas and coal generators was mixed; and (right) under a
$100 per tonne carbon price and 2019 fuel prices scenario, coal is
consistently the most expensive resource. This reordering also affected
the SR-MEF and MR-MEF signals, shown in Fig. 6 part (c). The AEF was
not affected.

The two extreme scenarios on the left and right have opposite
system dynamics: when coal is less expensive than gas, as in 2022,
charging added in periods of low net demand has higher emissions;
when gas is less expensive than coal (carbon price case), charging
added in periods of low net demand has lower emissions. In the later
periods, low net demand aligns with peak solar hours.

As a result, the MR-MEF in 2033 has opposite shapes in the 2022
price and 2019 price cases: in the 2022 price case, the MR-MEF is
10

highest during the day; in the 2019 carbon-price case, the MR-MEF is
lowest during the day. The non-crisis, no-carbon-price case falls in the
middle.

In absolute terms, the SR-MEFs are lower in the 2022 case, as lower-
emitting gas is almost always on the margin. The MR-MEFs and the
added emissions are also lower in the 2022 case, as added demand is
also mostly met with gas.

In the early period in the 2022 case, the MR-MEF is most effective
at reducing emissions relative to flat demand. In the middle and later
periods, the 10 GW and 20 GW MR-MEF signals diverge: in this
scenario, it is important that the MR-MEF signal is calculated using a
test demand value that aligns well with the final added demand.

The performance over time of the AEF and SR-MEF is consistent
across the scenarios: in the first period, the SR-MEF decreases emissions
while the AEF increases emissions; in the last period, vice versa. This
reflects the timeline of increasing renewable generation. The best signal

choice depends whether the generation mix is dominated by fossil
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fuels or renewables. In all cases, the MR-MEF signals yield the best or
near-best reductions.

As gas prices have since returned to pre-crisis levels, the 2022 case
does not inform future operations in the Western U.S. However, this
sensitivity analysis offers an important conclusion for transfer to other
regions, as understanding real generation costs and dispatch conditions
is critical to choosing the right signal for EV charging to achieve
emission reductions.

4. Discussion of model limitations

Limitations related to the model and case may affect the results
of this study. Specifically, we make assumptions about EV driver be-
haviour in the future and transmission congestion in the grid, and we
recognise that the effects of EF-based rates shown in this paper are
tested only on the WECC region.

We use a data-driven model to avoid reliance on modeller assump-
tions when representing EV charging behaviour. We make adjustments
to increase or decrease the weight of driver behaviours to match
the future population of drivers, but we must assume that all future
behaviours are represented by at least a sub-sample of today’s drivers.
We also assume that charging patterns of future plug-in hybrid EV
drivers can be represented by the charging patterns of today’s small-
battery EV drivers. Large changes to behaviour are not represented. For
example, our results would change if autonomous or shared mobility
were to see widespread adoption during the study period.

We also assume there is no change in individual behaviour due to
changes in electricity pricing; all control occurs within existing charg-
ing sessions. In the future, if drivers were to become more responsive
to price signals and more aware of their charging patterns, that could
increase the flexibility of their charging demand. We use the minimally
constrained case in our analysis to estimate the best case of controllable
demand.

We assume a base scenario of high vehicle electrification. With a
range of state and federal goals and policy supports, there is debate over
when the passenger vehicle fleet will reach 50% EVs. We do not expect
this assumption to affect the trends and conclusions in our results, and
we have reported all normalised emission impacts to reduce sensitivity
to the level of demand.

We focus on the dispatch of generators and do not represent con-
straints introduced by transmission or the distribution system. Con-
gestion and local limits on peak demand could influence our results.
Future work should extend this analysis using models of transmission
and distribution constraints to understand the full impact of EF-based
rates.

Finally, our results may change for another system with different
characteristics than the Western U.S. We use the WECC model to
provide realistic conditions for our ‘‘what-if’’ analysis of signals, not
to develop forecasts of future WECC operation, but features specific
to the WECC system may affect the results. The large amount of solar
generation planned in WECC plays an important role in emissions and
EFs, especially in the later periods of our study. In another system more
dependent on hydro or wind, for example, intra-day demand response
may play an even smaller role. Further, as our model of the WECC
merit order depends on reported operating cost data, another system
with more difference between coal and gas operating costs may have
smoother signals and more valuable demand response.

5. Conclusion and policy implications

Our findings reveal an important synergy between these two
demand-side and supply-side interventions: controlling EV charging to
reduce emissions and adding a carbon price to the generator dispatch.
The signal is much clearer in the system with a carbon price, and this
can make the demand response more valuable by a factor of 3× in
11

037. Further, all three EF types take similar shapes and signal similar
responses in the system with a carbon price, making the choice between
them less important.

Without a carbon price, there is limited room for improvement.
Between 2023 and 2028, the MR-MEF and SR-MEF signals decrease
emissions; after 2033, the MR-MEF and AEF signals decrease emis-
sions; and in the transition, the best signal is less clear. Notably, we
also observe emission increases caused by control when the signals
misrepresent the impact of added demand.

These dynamics over time follow changes in the generation portfo-
lio. For example, we observe a step increase in added emissions after
2030 following the retirement of large nuclear plants in California. The
system also benefits from the retirement of low-cost coal generators,
making the cost-based merit order align better with the ordering of
generators by emissions rate, which causes the AEF and MR-MEF to
align in the later period as the best signals.

In terms of absolute emission reductions, our results are smaller
than many others published in recent research. Without a supply-side
carbon price, the maximum emission reduction relative to flat demand
was just 2.2%. Previous studies have found much higher potential
reductions in the range of 70% using centralised control, or in the range
of 20%–30% using EF-based control without testing the results with a
dispatch model. Our much smaller reduction reflects the limitations of
a simpler rate- or tariff-based implementation.

Finally, our model of EV charging demand revealed the limitations
caused by driving patterns and charging infrastructure availability. The
emissions reductions relative to flat demand were smaller when all EV
constraints were considered, compared with the minimally constrained
EV test. Reductions relative to uncontrolled EV demand were slightly
greater in some cases, reflecting the poor timing of uncontrolled charg-
ing with respect to grid emissions. The scenario with more daytime
charging options and less dependence on home charging had lower
absolute emissions, which confirms earlier results that daytime charg-
ing should be pursued to reduce emissions in the Western U.S. (Powell
et al., 2022b).

We recommend that research on rates for EV charging reflect con-
straints on charging infrastructure and the availability of vehicles for
control. Critically, we recommend careful implementation of rate-based
control models to reflect the simplicity of signals and multi-year periods
between rate updates. Our findings show this has a large impact on
results, and simplifying these constraints on signal implementation may
lead to overestimation of possible emission reductions. We also advise
that the AEF and SR-MEF be used with great caution. Our results
revealed that AEF and SR-MEF-based electricity rates can inadvertently
increase emissions, especially in a complex system without curtailment
and with large amounts of coal and gas. We recommend using the
MR-MEF to best capture multi-year, near-term emission dynamics.

Finally, we recommend that policymakers use supply-side interven-
tions to make demand-side changes easier and more valuable. Adding
a carbon price on the supply-side affects the order by which generators
are dispatched: then, avoiding times of high demand consistently avoids
the use of higher emitting generators, making the design of simple
electricity rates for emissions reduction much easier.
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