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Resource-Efficient Task-Driven Co-Design of Perception and Decision
Making in Autonomous Robots

Dejan Milojevic1,2, Gioele Zardini3, Miriam Elser2, Andrea Censi1, Emilio Frazzoli1

Abstract—This paper discusses the integration challenges and
strategies for designing mobile robots, by focusing on the task-
driven, optimal selection of hardware and software to balance
safety, efficiency, and minimal usage of resources such as costs,
energy, computational requirements, and weight. We emphasize
the interplay between perception and motion planning in decision-
making, leveraging False Negative Rate (FNR) and False Positive
Rate (FPR) to evaluate sensor and algorithm performance under
various factors such as geometric relationships, object properties,
sensor resolution, and environmental conditions. We introduce
the concept of occupancy queries to quantify the perception
requirements for sampling-based motion planners, and propose
an Integer Linear Programming (ILP) approach for efficient sensor
and algorithm selection and placement. This forms the basis for
a co-design optimization that includes the robot body, motion
planner, perception pipeline, and computing unit. A case study
on developing an Autonomous Vehicle (AV) for urban scenarios
provides actionable information for designers, and shows that
complex tasks escalate resource demands, with task performance
affecting choices of the autonomy stack. The study demonstrates
that resource prioritization influences sensor choice: cameras are
preferred for cost-effective and lightweight designs, while lidar
sensors are chosen for better energy and computational efficiency.

Index Terms—Co-design, mobile robots, sensor selection.

I. INTRODUCTION

E mbodied intelligent systems hold great promise for
addressing critical societal challenges and enhancing our

daily lives. Whether revolutionizing mobility via autonomous
driving, or supply-chain via automated logistics, this technology
will impact the world we live in. However, realizing the full
potential of these advances depends on the efficient design and
safe operation of such systems. The complexity of developing
embodied intelligence lies in selecting the optimal mix of
interdependent hardware and software components. The final
design must ensure safety and efficient task performance while
minimizing the resources required for design and operation,
such as cost, power consumption, computation, and weight.

In the context of robot perception this involves the choice
and placement of sensors and the selection of algorithms
which process the sensor measurements. Clearly, hardware
and software choices are interdependent and influence each
other. Moreover, they are interconnected with other systems
such as the computing units, actuators, or decision making.
Indeed, a controller relies on the reference created by a motion
planner, which is based on state estimates from an estimator,
which in turn depends on sensor data and power supply. In
addition, the integration of perception software such as object
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Fig. 1. Graphical illustration of the informal problem definition for designing
an AV for urban driving tasks, based on a catalog of hardware and software
components with an emphasis on minimizing resources.

detection algorithms introduces uncertainties in the algorithm
output that must be carefully considered in the design.

To tackle these intricate issues, a comprehensive framework
which applies abstract reasoning across different areas, and
balances functional requirements with resource constraints
and trade-offs is needed. This work outlines our method for
addressing the complex task of robot co-design by tackling
such challenges.

Informal Problem Definition: The problem features the
definition of catalogs with both hardware and software compo-
nents necessary for the robot design. These include:

• Robot Bodies: a selection of mobile robot chassis, each
with its shape and actuators.

• Sensor Mounting Configurations: options for mounting
sensors on each robot body.

• Perception Pipeline: combinations of sensors and their
corresponding perception algorithms for processing data.

• Decision-Making Algorithms: software for determining
the robot’s motion and actions to complete the task.

• Computing Units: catalog of computing resources to
support the software’s operational needs.

Each component is linked to a certain resource, including
monetary cost (e.g., sensor prices), power consumption (e.g.,
computer energy requirements), computational resources (e.g.,
flops required by perception algorithms), and mass (e.g., sensor
weight). The problem is to co-design the robot with a particular
task by selecting from these components to minimize resource
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usage while ensuring feasibility. A graphical illustration of the
informal problem definition is shown in Fig. 1.

Assumptions: To address the robot co-design problem,
we make the following assumptions. First, we assume that
the robot software architecture is factorized into perception,
state estimation, planning, and control. Second, we assume that
there is an occupancy query-based interface between estimation
and planning. This is a fundamental assumption, given that
to choose the minimal sensors, we need to know exactly the
information the planner needs. Finally, we assume that object
detections of the perception layer are binary in nature: objects
are either detected or not, based on the detection received from
the perception pipelines.

Note that our methodology is adaptable to different software
architectures and motion planners, as long as one can acquire
the information needed by the robot to complete the task, which
must be provided by the perception pipeline. We illustrate how
such information can be obtained using sampling-based motion
planners through the concept of occupancy queries. We focus
on object detection as the perception task. The approach could
be extended to additional perception tasks such as localization.

Contribution: The contributions can be summarized
as follows. First, we explore the interconnections between
perception pipelines and sampling-based motion planners via
the concept of occupancy queries. Second, we show how
to formulate and solve the sensor selection and placement
problems for a robot, via set cover problems. Third, we develop
a robot co-design framework leveraging a monotone theory
of co-design optimization, promoting the robot task as a
functionality, and minimizing resource consumption in terms
of monetary costs, power and computational needs, and mass.
Finally, we illustrate the above contributions through a suite
of case studies on AVs design.

Organization of the paper: Sec. II reviews the related
work, and contextualizes the efforts proposed in this paper.
Sec. III presents in depth our system models, including the
robotic platform, tasks, decision-making, perception perfor-
mance, and requirements. We then present the system co-design
optimization problem, and its solution in Sec. IV, and showcase
various case studies in Sec. V. Finally, we conclude and provide
an outlook for future research in Sec. VI.

II. RELATED WORK

The challenges of design automation for embodied intelli-
gence are highlighted in several studies [1]–[4]. Such chal-
lenges primarily revolve around developing a framework which
can accommodate the complex nature of cyber-physical systems,
encompassing both software and hardware within dynamic
environments [1], [2]. Additionally, there is a significant need
for algorithms that can efficiently navigate the heterogeneous
design landscapes available [2]. The work presented in [4]
highlights the difficulty of integrating diverse components into
robotic systems, and determining the specific information needs
for a robot to fulfill a given task. In the following, we review the
literature in this field, mainly focusing on sensor selection and
its relevance to robotics, design space exploration, comparative
analysis of methods and trade-offs, benchmarks, and co-design
frameworks.

The challenge of selecting and positioning sensors within
a system is complex, and often lacks a closed-form solution.

For instance, [5] leveraged convex optimization techniques
with the objective of reducing the estimation error of certain
parameters. In [6], the authors introduce a stochastic algorithm
designed to optimize sensor scheduling and improve coverage.
A greedy method for sensor selection aimed at state estimation
in linear dynamical systems, utilizing Kalman filtering, is
described in [7]. Furthermore, [8] proposed a novel distributed
online greedy algorithm selecting sensors based on the real-
time feedback of their utility, targeting the maximization of
information richness and energy efficiency. One of the earliest
approaches to sensor selection in robotics was presented in [9],
which introduced a real-time method using stochastic dynamic
programming tailored to robotic systems. Erdmann proposed
a sensor selection strategy deeply integrated with a robot’s
task and planning requirements, based on the hypothetical
premise of an ideal sensor fulfilling all informational needs
for plan formulation [10]. Geometric considerations in sensor
selection are explored in [11], which employs Gaussian models
to approximate uncertainties in the sensor-environment inter-
action. Work proposed in [12] addresses an LQG control co-
design problem, simultaneously developing control and sensing
strategies with resource limitations. Furthermore, [13], [14]
present a sensor selection framework specifically designed for
localization and mapping, and [15], [16] focus on placement,
orientation, and architecture designs in the context of AVs.
Additionally, [16] presents a machine learning based frame-
work for generating perception architecture designs for AVs,
simultaneously optimizing sensor positions and orientations,
detection algorithms, and fusion algorithms for a given target
vehicle. Finally, a learning algorithm for sensor placement in
the context of soft robotics is presented in [17]. Despite the
presented advancements, current literature does not fully address
the integrated selection and placement of sensor hardware in
conjunction with the choice of perception algorithms. There is
a notable gap in discussions on optimizing sensor selection for
object detection tasks, with a particular focus on contemporary
deep learning techniques. Furthermore, the critical exploration
of sensing requirements for bridging decision-making and
perception is underrepresented. The analyzed studies also
overlook the necessity for methodologies that unlock seamless
integration with other design considerations, such as computer
and actuator selection, and tend to neglect the impact of sensor
uncertainties.

Design space exploration has gathered substantial interest
in robotics research, with significant contributions aiming to
delineate the boundaries of sensor and actuator requirements
for effective robotic planning. In this context, [18], [19]
examined the minimal necessary sensors or actuators by
assessing the consequences of their degradation on robotic
planning capabilities, and [20] proposed an innovative method
to identify sensors sufficient for resolving planning problems,
employing an upper cover concept to condense sensor data
and expedite the exploration process. Nardi introduced a
practical approach for navigating design spaces within multi-
objective optimization frameworks, specifically applied to
hardware design challenges [21]. Furthermore, comparative
analyses of robotic components have been advanced through
the works of O’Kane, Lavalle, and Censi [22]–[24], which
explore methodologies for assessing sensor performance and
establishing criteria for comparisons. The notion of sensor dom-
inance and the subsequent development of a sensor lattice [22],
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[23] provide a structure means to rank sensors according
to their task efficacy. Additionally, [24] conducts a power-
performance analysis, comparing different sensor families for
specific tasks. In a similar context, [25] introduces a benchmark
for evaluating SLAM algorithms in robotics, utilizing metrics
such as execution time and energy consumption. Trade-off
analysis in design choices is examined in contributions such
as [26]–[28]. In [26], a methodology is introduced for exploring
trade-offs between performance and resource utilization in the
design of mobile robots. On the other hand, [27] outlines design
principles aimed at enhancing energy efficiency in legged robots.
The trade-off between design complexity of a robot and plan
execution are explored in [28].

From the point of view of holistic co-design frameworks,
significant advancements have been made in robot design
methodologies encompassing both software and hardware
elements, facilitated by high-level behavioral specifications.
Mehta introduced a novel approach utilizing linear temporal
logic to transform high-level design specifications into tangible
selections of robot components from an extensive library,
bridging the gap between abstract design requirements and
practical component choices, streamlining the design pro-
cess [29]. Furthermore, [30] develops a heuristic algorithm
specifically targeted at the creation of robotic devices tailored to
follow predefined motion trajectories accurately. The algorithm
navigates through the vast array of possible configurations of
modular components to pinpoint the ones which best match
the desired trajectories. In a similar vein, [31] explores the
optimization of robotic design by carefully selecting actuation
and sensing hardware to minimize design costs while ensuring
the robot’s ability to execute plans and accomplishing tasks.

The methods previously discussed do not focus on fully
automating the design process for an entire robotic system.
They overlook several critical co-design challenges that must
be addressed to achieve a comprehensive and automated design
process, as identified in [1]–[4], [32], such as a) formalizing
heterogeneous components across varxing levels of abstraction,
b) composition heterogeneous components to allow co-design
across the entire system, c) facilitating collaboration among
different systems as well as their domain experts, d) ensuring
computational tractability, which allows quantitative design
solutions, e) accommodating continuous systems that evolve
over time, and f) maintaining intellectual tractability for simple
usage and understanding.

Our research is based on the monotone theory of co-
design [33], [34] and builds on our series of previous works [35]–
[38], where we studied the co-design of autonomy in the
context of AVs and mobility. In the current work, we advance
our methodology by modeling each component separately and
fostering compositional interconnections, particularly between
the perception and the decision-making processes of a robot.

III. SYSTEM MODELING

A. Modeling the robotic platform

We consider a mobile robotR, defined by its physical body B
(which includes considerations of shape, actuators, and hardware
configurations) with configuration space Γ, and its software,
the agent, which we call A.

TABLE I
TABLE OF SYMBOLS

Symbol Meaning
A decision-making agent
appear ∈ AP class appearances
B robot’s body
C, C ∈ C object class, instance of an object class
q ∈ Q configuration space
γ ∈ Γ configuration space of the robot
c cost function
env ∈ E environment
mo ∈ MO mounting orientations (yaw and pitch) in R2

mp ∈ MP mounting position in R3

mpp ∈ MPP mounted perception pipeline
mppcc mounted perception pipeline class coverage
MPPC set of mounted perception pipeline class coverage
O object class distribution
pcp perceptual collision prediction map
pp ∈ PP perception pipeline
PR task perception requirements
P the object class configurations prior
ψ ∈ Ψ occupancy query space
R robot
S, S scenario, instance of a scenario
SH robot’s 3D shape
sh map which returns the footprint from a configuration
T robot’s task
tq map that generates task queries of an agent
q̄ ∈ Q̄ object class trajectories

Agent: We assume that the agent A consists of a modular
software architecture, comprising perception, state estimation,
motion planning, and control [39]. In particular, the control
function is predicated on a reference trajectory formulated by
a motion planner, which itself is based on state estimates from
an estimator. The estimator’s accuracy relies on the sensor data
gathered and processed by the perception system. In particular,
we want to choose the planner and the perception system for
the agent.

Body: The robot body B encompasses hardware compo-
nents, including its 3D shape and actuators. We define the
robot’s body as follows.

Definition 1 (Body). A robot body B is defined by a tuple

B := ⟨SH,Γ,U,dyn,HW⟩,
where SH ⊂ R3 represents the physical 3D shape of the robot,
Γ denotes the configuration space, U refers to the control space,
and the dynamics1 are expressed as ẋt := dyn(xt, ut), with ut
being the control input and xt the state at time t ∈ R≥0. The
state x ∈ X , where the state space is defined as X := Γ×H. All
additional hardware components and robot’s body appearance,
such as actuators, batteries, color, material, etc., are captured
in the hardware tuple HW.

The function shR : POW(Γ) → POW(R2) converts a robot
configuration into its footprint.

Remark 2. It is crucial to differentiate between the robot’s 3D
shape, SH ∈ R3, which includes its elevation, and the robot’s
footprint, shR(γ) ∈ R2 for a given configuration γ ∈ Γ. The
footprint is essentially a projection of the robot’s shape onto
the ground plane. This distinction becomes particularly relevant
in later discussions, as outlined in Sec. IV-B.

The examination of the robot’s structural framework B
involves assessing its mounting positions mp (with mp ∈ MP

1Without loss of generality, the dynamics can be stochastic.
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and MP ⊂ SH), as well as the selection of sensors. The sensor
hardware with the related perception algorithm is referred to as
a “perception pipeline” pp. In particular, our analysis focuses
on 3D object detection to demonstrate the perception pipeline’s
ability to detect objects in the environment. The collection of
all perception pipelines is denoted by PP. Furthermore, we
evaluate sensor mounting orientations mo ∈ MO, characterized
by sensor yaw and pitch angles, such that MO ⊆ R2. These
aspects together form the specification of the robot’s body.

Definition 3 (Robot). A robot R is a tuple consisting of an
agent A and body B: R := ⟨A,B⟩.

B. Modeling a task

Consider a robotR, operating within the workspaceW ⊂ R3.
The robot starts its mission from an initial configuration denoted
by γstart ∈ Γ and seeks to reach a goal area denoted as G.2

The environment may include both dynamic and static objects.
Dynamic objects encompass moving entities such as robots,
vehicles, and humans. On the other hand, static objects consist
of stationary elements such as trees or buildings.

Definition 4 (Object class). An object class C is a tuple

C := ⟨Q,U,dyn, fAP⟩,
where Q is the configuration space and U is the control space
for the class. The dynamics1 are defined by ẋt = dyn(xt, ut)
with ut ∈ U being the control input and xt ∈ X the
state at time t, where X := Q × H. The appearance of a
class is represented by a tuple comprising elements such as
shape, color, material, etc., denoted as appear. The set of all
possible appearances is represented by AP, with the appearance
distribution of a class given by AP ∼ fAP(appear).

An instance of a class Ci is defined as a tuple Ci =
⟨Qi,Ui,dyni, appeari⟩, where a particular appearance appeari
is drawn from fAP.

The function shi : POW(Qi) → POW(R2) maps a class
configuration into the footprint projecting the 3D shape of
the class’s appearance onto the ground plane.

In addition, the operational environment encompasses various
weather and light conditions. Such conditions are collectively
referred to as environmental conditions, denoted as env. For
simplicity, we use the term environmental conditions to encapsu-
late a range of possibilities, which include discrete values such
as day and night time or rain and sunny conditions. Without
loss of generality, this can also refer to continuous values
such as rain density or time of day. The entire set of possible
environmental conditions is denoted as E.

Definition 5 (Object Class Distribution). An object class
distribution O is defined as a tuple:

O := ⟨C,P,λ⟩,
where the class of the object is denoted by C, and P represents
the prior configurations, such that P ⊆ π3(C) = Q for a
particular class. This prior essentially outlines the allowed
configurations for objects of the specific class. The distribution

2We consider G ⊂ R2, but in general the goal G can manifest in various
forms, including a terminal configuration qend, a volume in R3 to be reached,
following another object, or the ability to move for a specified duration.

of objects follows a Poisson distribution, where λi represents
the expected number of objects for a given class.

Definition 6 (Scenario). A scenario is given by

S := ⟨W, fΓ , fR2 , fE, {Oi}i∈{1,...,N}⟩,

where Γ ∼ fΓ(γstart), R2 ∼ fR2(G) and E ∼ fE(env) are the
distributions governing the initial configuration of the robot,
the goal area of the robot, and the environmental conditions,
respectively. The scenario includes N object classes with a
corresponding object class distribution Oi.

A scenario instance S = ⟨W, γstart,G, env, {Ci}i∈{1,...,M}⟩
represents a concrete realization of a scenario S, where the
initial configuration, goal, and environment are drawn from their
respective distributions fΓ , fR2 , and fE. Moreover, M number
of object class instances are drawn from the corresponding
Poisson distributions. In this work, we define the task as a
set of scenario instances. In principle, however, a task could
also be defined as a distribution of scenarios, where a set of
scenarios can be sampled.

Definition 7 (Task). A task T is a set of scenario instances.

In the upcoming section, we detail the software architecture
previously introduced. Here, the primary focus is to elaborate
on the information required by the agent from the perception
system to successfully accomplish the robot’s task.

C. Modeling an agent

In a common agent’s architecture, including perception,
state estimation, motion planning, and control, the depen-
dency of motion planning on perception data underscores the
importance of defining the precise “information” necessary
for trajectory planning. Identifying the “minimum” required
sensors and perception algorithms for a robot, given a par-
ticular motion planner, necessitates this specificity. Motion
planning algorithms typically need a notion of the obstacle
free configuration space to compute a reference trajectory.
Combinatorial motion planning [39]–[43] and optimization-
based motion planning [39], [44]–[50] depend on mathematical
models for the free configuration space, represented through
geometric shapes or optimization constraints. The task of
pinpointing the critical information necessary for calculating a
reference trajectory is notably challenging in these frameworks,
mainly because they require knowledge of the entire state
space including all obstacles. In contrast, sampling-based
planners [39], [40], [44] offer a different strategy, sidestepping
the need for precise internal representations of obstacles. Such
planners generate a state hypothesis by posing a series of
questions, such as “Will there be a collision if I occupy a certain
configuration at a certain time?”. These questions are referred
to as occupancy queries or just queries and are represented
as elements of the configuration space Γ at a certain time t
with a certain environment env. Sampling-based planners thus
enable a reverse flow of information within the outlined agent
architecture, indicating a progression of data from the motion
planning phase back to the perception system. For the sake
of simplicity, the term agent throughout the remainder of this
paper denotes a sampling-based motion planner.
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Definition 8 (Query). A query is defined as ψ ∈ Ψ, where Ψ
is the product space of the configuration space Γ, the time
in R+ and the environment in E: Ψ := Γ × R+ × E.

Different motion planners produce different distributions
of queries. Planners such as RRT* converge to an optimal
solution. However, during the search for the optimal solution,
random configurations are sampled, leading to more information
requirements for the sensors. Lattice planners, on the other
hand, are not optimal, but by simply discretizing the search
space with motion primitives, less information is required from
the sensors compared to RRT*.

Example 9. Consider an AV paired with the employment of
an RRT* planner. Starting from the initial configuration, the
RRT* planner incrementally constructs a tree by randomly
sampling configurations from the search space. At each step,
a configuration is drawn and an attempt is made to establish a
connection between the drawn configuration and the nearest
configuration in the existing tree. If this connection proves to
be feasible, a new branch is added to the tree. The feasibility
assessment of a connection includes collision checking, which
considers the projection of the robot as well as of the obstacles
onto the workspace. Whenever a collision check is executed,
its configuration is saved as a query. The planning procedure
is illustrated in Fig. 2a.

Example 10. The same approach works in different contexts.
Considering a lattice planner, paired with motion primitives
and A* search, every state driven by the motion primitives for
which a collision check is done to build the lattice, will be
saved as a query, as shown in Fig. 2b.

Given an agent A and a task T , the goal is to obtain a
set of configurations which are generated by the agent’s state
inference process, motivated by the concept of deterministic
sampling-based motion planning in [51]. Technically, for an
agent A and a scenario instance S, the set of queries which are
generated by the agent’s state inference process in the scenario
is denoted by plan(A, S) ⊆ Ψ.

Definition 11 (Plan). The function plan maps an agent A and
a scenario instance S to a set of queries.

plan : A× T→ POW(Ψ),

⟨A, S⟩ 7→ ΨS ,

where A is the set of all possible agents, T is the set of all
possible scenario instances and ΨS ⊆ Ψ.

Definition 12 (Task Queries). Given a task T , the task queries
generated by an agent A are the union over all queries of all
the scenario instances in the task:

tq : POW(T)× A→ POW(Ψ),

⟨T ,A⟩ 7→
⋃
S∈T

plan(A, S), (1)

such that tq(A, T ) ⊆ Ψ.

Given the information required by the agent in the form
of queries, the next section presents a representation of
the perception pipeline aimed at providing such information.
Furthermore, we define the requirements for perception that
must be fulfilled to enable the agent to accomplish the task.

(a) Example of an RRT* planner.

(b) Example of a lattice planner, paired with motion primitives and A* search.

Fig. 2. An illustration of an AV navigating towards the yellow target area. The
figure showcases two motion planners: an RRT*-based planner and a lattice
planner. The red lines represent the tree of paths generated by each planner,
while the green line indicates the solution path identified by the planner.

D. Modeling perception performance and requirements

The next step is to evaluate the capabilities of a perception
pipeline, including sensor hardware and perception software,
to measure and provide the information needed by an agent.
The perception pipeline detection capabilities are denoted as
perception performance and are represented in terms of FPR
and FNR for a certain object class instance Ci with a certain
class configuration in Qi and appearance appeari. For each
perception pipeline ppj and each object class instance Ci, the
FNR and FPR functions are defined as:

fnr : Qi ×APi × PP× E→ POW(I),

⟨qi, appeari,ppj , env⟩ 7→ [a, b].
(2)

fpr : Qi ×APi × PP× E→ POW(I),

⟨qi, appeari,ppj , env⟩ 7→ [a, b].
(3)

The set I is the set of all intervals: [a, b] ⊆ R : 0 ≤ a ≤ b ≤ 1.
The obtained interval [a, b] represents the confidence interval
with a lower bound a and upper bound b of the perception
pipeline’s FNR and FPR. During our selection process, we use
the upper bound to conduct a worst-case analysis. With the
variables appear, pp and env we summarize other relevant
parameters for representing the FNR and FPR as for instance the
object size, object color, sensor resolution or weather condition.
The implementation of the FNR and FPR is not the focus of
this work. An illustration of the perception performance with
two distinct perception pipelines is shown in Fig. 3.
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Fig. 3. Comparison of the perception performance of two pipelines: Velodyne
HDL32E lidar with PointPillars detection model (top plots) [52] and Basler
acA1600-60gc camera with FCOS3D detection model (bottom plots) [53].
Left plots show FNRs and right plots FPRs, highlighting the upper bounds
of confidence intervals against radial distance r and relative orientation θ
between sensor and object class in polar coordinates. Data is from the nuScenes
dataset [54], using models from the MMDetection3D [55] library.

Example 13. Consider a perception pipeline consisting of
a Velodyne Alpha Prime lidar paired with a PointPillars 3D
object detection model [52]. The FNR and FPR for detecting
a pedestrian at the configuration qpedestrian = ⟨x, y, θ⟩ relative
to the sensor lie within [afnr, bfnr] and [afpr, bfpr], respectively.

Task queries constitute a subset of the robot’s configuration
space. On the other hand, perception performance relies on
the configuration of object classes. In order to establish an
interface between task queries and perception performance, the
former are converted into class configurations which need to be
detected by the perception pipelines. Such class configurations
are referred to as perception requirements.

The transition from queries to class configuration involves
determining which class configurations may collide with the
robot at a specific query. At a more abstract level, the objective
is to identify all class configurations for which the perception
pipelines must indicate a collision, when posed with the query.
It is important to emphasize that we are looking at agents
which can ask for some occupancy queries ψ = ⟨γ, t, env⟩ in
the future. It is not just a simple matter of checking which
class configurations could collide with the robot at a certain
configuration γ. All class configurations at time 0 that would
lead to a collision at time t are needed, given the dynamics
of the classes and the class prior Pi provided by the scenario.
Therefore, the objective is to derive the set of configurations
for all classes within the scenario at time 0, where there exist
control inputs that could lead the class to a collision with the
robot with configuration γ at time t. Such class configurations
are obtained by sampling the dynamics and going backwards
in time. In essence, all configurations generated through the
sampling are the ones that the perception layer needs to detect.

Example 14. Consider an AV approaching a four-way inter-
section. The motion planner has generated a query for the
intersection with a specific configuration γ at time t0. The
scenario prior specifies that cars drive only in the direction of

Fig. 4. This figure shows class configurations at time 0 leading to potential
collisions with a robot at a specific query ψ = ⟨γ, t, env⟩. The robot is
depicted as a small red AV on the left and the robot’s future configuration γ
from the query is the transparent AV in the intersection’s center. Surrounding
cars represent classes with trajectories that lead to a collision with the AV at
time t with configuration γ. Green lines show feasible trajectories based on
prior knowledge, and a red line shows an infeasible trajectory that violates
the prior. The perception requirements in this example are the depicted car
configurations with green trajectories.

the lane and can turn left, right, or drive straight. To identify all
car configurations resulting in a collision with the autonomous
vehicle at time t0 and configuration γ, we must compute all car
configurations at time 0 where feasible trajectories exist, which
would lead to such a collision. These trajectories encompass
various possibilities, including cars approaching from the left
or right. An illustration of the example is shown in Fig. 4.

The following definitions are used to define the perception
requirements of a certain task for a given agent.

Definition 15 (Collision). Collision is a mapping that generates
all possible class configurations in Qi that are in collision with
the robot at a certain configuration γ using their footprints
shR(γ) and shi(qi).

collision: Γ × C → POW(Q),
⟨γ, Ci⟩ 7→ Θi,

(4)

where C is the set of all class instances and Θi ⊆ Qi ⊆ Q.

Definition 16 (Class Trajectory). A class trajectory is defined
as q̄i ∈ Q̄i, where Q̄i is the product space of the class
configuration spaceQi and its power set. Thereby, q̄i = ⟨qi,Θi⟩,
where qi is the start configuration of the trajectory such that
qi ∈ Θi, where Θi contains all the configurations of the
trajectory: Q̄i := Qi × POW(Qi).

Definition 17 (Perceptual Collision Prediction). For each query
ψ = ⟨γ, τ, env⟩ of an agent A, there exist class trajectories
in Q̄i that are the preimage of the class dynamics dyni.
These trajectories lead to one of the class configurations in
collision(γ, Ci) ⊆ Qi while starting at time −τ . This mapping
is termed perceptual collision prediction

pcp: POW(Ψ)× C → POW(Q̄),
⟨Ψ0, Ci⟩ 7→ Θ̄i,

(5)

where Ψ0 ⊆ Ψ and Θ̄i ⊆ Q̄i ⊆ Q̄.

Definition 18 (Prior check). The prior check is a map that
takes all start configurations qi of trajectories ⟨qi,Θi⟩ ∈ Q̄i,
which class configurations Θi are a subset of the prior Pi.
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priorcheck: POW(Q̄i)× POW(Qi)→ POW(Qi),

⟨Θ̄i,Pi⟩ 7→ Θi,
(6)

where Θ̄i ⊆ Q̄i and Θi ⊆ Qi.

Definition 19 (Task Perception Requirements). The perception
requirements for an agentA undertaking a task T are defined as
the mapping from task queries tq(A, T ) to all possible subsets
of class configurations for each environment env within the
task. This mapping is established by mapping the queries into
class trajectories with perceptual collision prediction pcp and
filtering the feasible start configurations from the trajectories
with priorcheck:

PR: A× POW(T)→
∏

env∈E

∏
k∈{1,...Kclass}

POW(Qk), (7)

where Kclass is the number of unique object class instances in
the task and E is the set of all environments in the task.

For a given object class instance Ci and environment env
within task perception requirement PR(A, T ), we express this
as PR(A, T , Ci, env), indicating that PR(A, T , Ci, env) ⊆
Qi.

IV. SOLVING THE ROBOT CO-DESIGN PROBLEM

In this chapter, we establish an optimization framework for
determining the optimal robot design tailored to a specific task,
leveraging a monotone theory of co-design [34], [56]. The
primary objective is the minimization of resource consumption,
which includes power consumption, robot body mass, cost and
computing resources. Sec. IV-A introduces the basic principles
of co-design. Subsequently, in Sects. IV-B and IV-C we address
task-oriented co-design of a complete mobile robot. Sects. IV-C
and IV-D addresses the sensor selection and placement problem,
which forms the core of the entire optimization, using the
formulations introduced in Sec. III.

A. Background on a monotone theory of co-design
The reader is assumed to be familiar with posets and basic

concepts of order theory (a good source is [57]).
a) Formulating co-design problems: The atom of the

theory is the notion of a monotone design problem with
implementation (MDPI), through which we will model different
components of the autonomy stack.

Definition 20. Given partially ordered sets (posets) F,R,
(mnemonics for functionalities and resources), we define a
MDPI as a tuple ⟨Id, prov, req⟩, where Id is the set of
implementations, and prov, req are maps from Id to F and R,
respectively:

F prov←−− Id req−−→ R.
We compactly denote the MDPI as d : F R. Furthermore,
to each MDPI we associate a monotone map d̄, given by:

d̄ : Fop ×R → ⟨P(Id),⊆⟩
⟨f∗, r⟩ 7→ {i ∈ Id : (prov(i) ⪰F f) ∧ (req(i) ⪯R r)},

where (·)op reverses the order of a poset. The expres-
sion d̄(f∗, r) returns the set of implementations (design
choices) S ⊆ Id for which functionalities f are feasible with

resources r. A MDPI is represented in diagrammatic form
as a block with green wires on the left for functionalities,
and dashed red ones on the right for resources, as visualized
in Fig. 5.

Remark 21 (Monotonicity). What does monotonicity mean in
this context? Consider a MDPI for which d̄(f∗, r) = S:

• One has: f ′ ⪯F f ⇒ d̄(f ′∗, r) = S′ ⊇ S. Intuitively,
decreasing the provided functionalities will not increase
the required resources;

• One has: r′ ⪰R r ⇒ d̄(f∗, r′) = S′′ ⊇ S. Intuitively,
increasing the available resources cannot decrease the
provided functionalities.

Remark 22 (Populating the models). The presented framework
is very flexible. In practice, one populates the MDPIs via
analytic relations (e.g., cost functions), numerical analysis of
closed-form relations (e.g., solving optimal control problems),
and in a data-driven, on-demand fashion (e.g., via POMDPs,
simulations, or by solving instances of optimization problems).
For detailed examples related to mobility and autonomy, please
refer to [32], [34]–[38].

One can compose individual MDPIs in several ways to form
a co-design problem (i.e., a multigraph of MDPIs, where nodes
are MDPIs, and edges their interconnections), which is again
a MDPI (i.e., closure). This makes the presented framework
practical to decompose a large problem into smaller ones, and
to interconnect them3 Series composition happens when the
functionality of a MDPI is required by another MDPI (e.g.,
information acquired by a sensor is processed by an estimator).
The symbol ⪯ is the posetal relation, representing a co-design
constraint: the resource a problem requires cannot exceed the
functionality another problem provides. Parallel composition,
instead, formalizes decoupled processes happening together.
Finally, loop composition describes feedback.

b) Solving co-design problems: Given a MDPI, we essen-
tially have two queries. First, given some desired functionalities,
find the optimal design solutions which minimize resources
(FixFunMinRes). Alternatively, given some available resources,
find the optimal design choices which maximize functionalities
(FixResMaxFun).

Definition 23. Given a MDPI d, one defines monotone maps
• hd : F → AR, mapping a functionality to the minimum

antichain of resources providing it;
• h′d : R → AF, mapping a resource to the maximum

antichain of functionalities provided by it.

Solving MDPIs requires finding such maps. If such maps
are Scott continuous, and posets are complete, one can rely on
Kleene’s fixed point theorem to design an algorithm solving
both queries (and returning the related optimal design choices).

Interestingly, the resulting algorithm is guaranteed to con-
verge to the set of optimal solutions, or to provide a certificate
of infeasibility. Furthermore, the complexity of solving such
problems is only linear in the number of options available
for each component (as opposed to combinatorial). For more
details, refer to [32], [34].

3A detailed list of compositions is provided in [32], [34]. Formally, their
specification makes the category of design problems a traced monoidal category,
with locally posetal structure.
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Fig. 5. The co-design diagram for the design of a mobile robot tailored to accomplish a task, including a collection of scenario instances and class instances,
aiming to achieve specified average speed and driving range. The class instances include class dynamics, class footprintop, class appearances, and class
configurations prior. The objective is to minimize the fix cost and operational cost.

B. Modeling from task to perception requirements

First, we describe the Planner MDPI in Fig. 6, representing
the choice of motion planner for the robot. It provides a set of
scenario instances representing the task T as a functionality
and the average speed in km/h the planner navigates the AV
across all scenario instances, indicating the task performance.
The Planner MDPI requires occupancy queries Ψ, compute and
the robot’s dynamics resources. The more scenario instances
are required, the more queries are needed by the planner, as
detailed in Lemma 24. The compute resource encompasses com-
putational capabilities, including CPU and GPU performance,
quantified by operations per second and available memory. An
increase in collision checks for occupancy queries leads to a
higher demand for compute resources. Robot’s dynamics are
characterized by parameters such as minimum turning radius,
maximum acceleration, and maximum deceleration. Higher ac-
celeration and deceleration expand the range of possible queries,
enabling faster achievement of goals in scenario instances.
A smaller minimum turning radius increases the diversity
of occupancy queries and the robot’s capability to navigate
through complex scenarios, such as tight passages that a large
turning radius would not permit. Consequently, we utilize the
opposite of a poset for minimum turning radius. Additionally,
greater acceleration necessitate more computational resources
to quickly process planning strategies. Extending the average
speed requires improved dynamics with quicker acceleration, or
a more efficient planner, which increases the need for compute
resources and occupancy queries.

Lemma 24. The task occupancy queries tq is monotone in
the task, as shown in Fig. 6.

Proof. Consider two tasks T1 ⊆ T2. We have

tq(A, T1) ⊆
(
tq(A, T1) ∪ tq(A, T2 \ T1)

)
= tq(A, T2).

■

Planner

occupancy queries

compute

robot’s dynamics

task

average speed

Fig. 6. The planner MDPI which implements a motion planner for the robot to
accomplish scenario instances of a task and thereby providing average speed,
while requiring occupancy queries Ψ, compute and robot’s dynamics

The Perceptual Collision Prediction MDPI, visualized
in Fig. 7, describes the pcp function to determine all potential
feasible class trajectories Q̄ that could result in collisions with
the robot at the occupancy queries from the planner. This guides
the perception system to focus on critical areas based on the
occupancy queries and the class dynamics. Consequently, the
occupancy queries Ψ, class dynamics and class footprintop
serve as functionalities of this MDPI. The class dynamics,
including minimum turning radius, maximum acceleration, and
deceleration, are specified similarly to the robot’s dynamics.
Again, the minimum turning radius is treated the opposite of
a poset. The class footprintop is the planar shape of the class
in 2D, generated by the map sh. The resources include class
trajectories Q̄ and the robot’s footprint from shR. Lemma 25
illustrates the monotonic relationship between class trajectories
and occupancy queries, indicating that an increase in occupancy
queries leads to an equal or greater number of class trajectories.
This relationship also applies to class dynamics, altering
class dynamics results in new class trajectories. Specifically,
higher acceleration and deceleration and a smaller minimum
turning radius produce a broader range of class trajectories.
In Lemma 26, the monotonicity of the robot’s footprint with
occupancy queries is shown, implying a larger robot’s footprint
is required as queries increase, assuming a fixed set of class
trajectories. For example, if a robot’s footprint encompasses
R2, no class trajectory can collide with it, as the robot already
occupies all available space. Similarly, a larger class footprintop
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Perceptual Collision Prediction

class trajectories

robot’s footprint

occupancy queries

class dynamics

class footprintop

Fig. 7. The Perceptual Collision Prediction MDPI which implements the
function pcp. The functionalities are the occupancy queries for the planner,
the class dynamics and the class footprintop. The required resources are the
class trajectories and robot’s footprint.

indicates earlier collisions with the robot, thus generating fewer
class trajectories. This inverse relationship uses the opposite
of a poset for the class footprintop.

Lemma 25. The class trajectories from pcp are monotone
with respect to the occupancy queries as shown in Fig. 7.

Proof. Consider two query sets Ψ1 ⊆ Ψ2. We have

pcp(Ψ1, Ci) ⊆
(
pcp(Ψ1, Ci) ∪ pcp(Ψ2 \Ψ1, Ci)

)
= pcp(Ψ2, Ci).

■

Lemma 26. The robot’s footprint is monotone with respect to
the occupancy queries as shown in Fig. 7.

Proof. A larger robot’s footprint can exclude more class
trajectories, according to Def. 15 and Def. 17. ■

The Prior Check MDPI, illustrated in Fig. 8, describes
the priorcheck function as outlined in Def. 18. The func-
tion priorcheck takes all start configurations from the class
trajectories, which trajectory configurations are all in the prior P
of the class. Thus, the functionalities are the class configurations
prior, where classes can be in the scenario instance, and the class
trajectories Q̄ generated by pcp. The resources are the final
perception requirements PR. According to Lemma 27, priors
that encompass more class configurations tend to filter out fewer
configurations during priorcheck, resulting in more perception
requirements. Given the relations established in Lemma 24
and Lemma 25, where more complex tasks generate more
class trajectories, it follows, as demonstrated in Lemma 28,
that increased task complexity (more class trajectories) also
amplifies the perception requirements.

Lemma 27. The class configurations in the class trajectories
are monotone with respect to the class configurations prior as
shown in Fig. 8.

Proof. Consider two priors Pi,1 ⊆ Pi,2 and a class config-
uration set Θi. If Θi ⊆ Pi,1 then it holds also Θi ⊆ Pi,2.
If Θi ⊆ Pi,2 \ Pi,1, then Θi ⊆ Pi,2 but Θi ∩ Pi,1 = ∅. ■

Lemma 28. The perception requirements PR are monotone
in the task, respectively in the class trajectories (Fig. 8).

Proof. Consider two tasks T1 ⊆ T2. From Lemma 24 we
know that occupancy queries are monotone in the task and
from Lemma 25 we know that class trajectories are monotone
with the queries. We have

PR(A, T1) ⊆
(
PR(A, T1) ∪ PR(A, T2 \ T1)

)
= PR(A, T2).

■

Prior Check
perception requirements

class configurations prior

class trajectories

Fig. 8. The Prior Check MDPI, which implements priorcheck, provides
class configurations prior and class trajectories functionalities and requires
perception requirements.

Robot Body

fixed cost

operational cost

robot’s shape

mounting configurations

payload mass

auxiliary power

driving range

robot’s dynamics

robot’s footprint

Fig. 9. The Robot body MDPI which provides the dynamics dyn, the mounting
configurations for sensors each in SE(3), the body footprint shR, the payload
mass in kg, the auxilary power in W and the driving range in m, while requiring
robot’s shape SH, fixed cost in CHF and operational costs in CHF/m.

The Robot body MDPI in Fig. 9 encompasses the character-
istics of the robot body B, such as the robot’s dynamics, sensor
mounting configurations, the robot’s footprint, the maximum
payload mass capacity, the auxilary power capability, and
driving range. This MDPI provides the robot’s dynamics func-
tionality, parameterized as minimum turning radius (considered
opposite of a poset), maximum acceleration, and deceleration.
Additionally, it outlines mounting configurations for sensors
within SE(3), the robot’s footprint shR in R2, the maximum
payload mass in kg the robot can carry, its auxiliary power
capacity in W for powering hardware such as sensors and
computers, and the driving range in m representing the robot’s
driving range without recharge. Requirements for this MDPI
include the robot’s shape SH in R3, associated with fixed
costs in CHF and operational costs in CHF/m. Enhanced
robot’s dynamics, such as greater acceleration/deceleration and
a reduced turning radius, typically necessitate higher fixed
costs and operational costs. Similarly, increasing the payload
mass and auxiliary power capacity implies a need for a more
costly or larger robot’s shape. Boosting the driving range
involves augmenting the battery size, impacting both fixed and
operational costs. Additional sensor mounting configurations
may necessitate a larger robot’s shape to accommodate the setup.
As aforementioned, a larger robot’s footprint can potentially
reduce perception requirements by obstructing more class
trajectories. Achieving a larger robot’s footprint requires a
correspondingly larger robot’s shape. The Computing MDPI,
visualized in Fig. 10, implements the computing units necessary
for the robot’s software operations, including both motion
planning and perception. It provides computational capabilities
as a functionality in terms of CPU and GPU performance,
measured in memory capacity and operations per second. These
computational capabilities are encapsulated as compute. The
provision of compute is directly linked to associated cost in
CHF, mass in kg and power consumption in W. As the demand
for compute increases to accommodate more sophisticated
software algorithms or larger data volumes, the specifications
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Computing

cost

mass

power

compute

Fig. 10. The Computing MDPI which implements the computing units.
It provides compute and requires cost in CHF, the mass in kg and power
consumption in W.

Fig. 11. Overview of the sensor selection and placement process: starting with
a catalog of robot bodies, sensor positions, orientations, perception pipelines,
and motion planners, alongside with scenarios. The workflow splits into agent
activities (left) that transform task queries into perception requirements, and
perception activities (right) that determine class configurations detectable by
mounted perception pipelines. The process concludes with the selection of
optimal pipelines to minimize costs while satisfying perception requirements.

of the computing units must be scaled up accordingly. This,
in turn, impacts the overall cost of the computing hardware,
its mass, and its power consumption.

C. Sensor selection and placement problem

This section introduces a methodology to obtain the re-
lationship between perception pipelines and perception re-
quirements for a particular task, while accounting for resource
consumption (see Fig. 11). Employing a worst-case approach,
this study assumes the absence of filters that account for
historical detection data. This premise necessitates that for a
perception pipeline to accurately respond to occupancy queries,
its FNR and FPR must not exceed a predefined threshold ϵ.
Accordingly, this assumption ensures that the identification
of class configurations from perception requirements is not
influenced by temporal factors. Thus, all class configurations
for which the upper bound from the fnr and fpr functions

is dominated by the threshold ϵ are considered covered or
detectable by the perception pipeline ppj :

{qi ∈ Qi :up(fnr(qi, appeari,ppj , env)) ≤ ϵ
∧ up(fpr(qi, appeari,ppj , env)) ≤ ϵ},

where up takes the upper bound of an interval. This set of
class configurations which can be seen by a perception pipeline
depend on the mounting configuration on the robot body
as well as the robot body shape itself. The reason is that
different mounting configurations will have different relative
class configurations to the perception pipeline. Moreover,
depending on the mounting configuration on the robot, the
shape of the robot could block the sensor Field of View (FoV).

Example 29. Consider a lidar sensor positioned on the roof of a
vehicle. Due to its placement, some lidar beams are blocked by
the vehicle’s roof, preventing the lidar from measuring objects
in close proximity to the vehicle.

We call a perception pipeline with a mounting position on
a robot body and some yaw and pitch mounting orientation as
mounted perception pipeline.

Definition 30 (Mounted Perception Pipeline). Given a per-
ception pipeline pp, a robot body B, a mounting position of
a sensor mp on the body, and the yaw and pitch angle of
the sensor mounted on the robot mo, a mounted perception
pipeline is a tuple containing the perception pipeline, the robot
body, the mounting position and the mounting orientation:
mpp = ⟨pp,B,mp,mo⟩.

The following map is defined, which yields all the class
configurations visible to a mounted perception pipeline, con-
sidering a specified threshold.

Definition 31 (Mounted Perception Pipeline Class Coverage).
Consider a mounted perception pipeline mpp characterized by
its perception performance fnr and fpr, a target class instance
C, an environment env and a threshold ϵ. The set of class
configuration which can be detected by the mounted perception
pipeline are defined as

mppcc: C ×MPP× E× R[0,1] → POW(Q),
⟨Ci,mppj , env, ϵ⟩ 7→ Θi,

(8)

where MPP is the set of all mounted perception pipelines and
Θi is a subset of the class configuration set Qi.

Collections of mounted perception pipelines class coverage
for some given Kclass object class instances, Menv environments
and Lmpp mounted perception pipelines are given as

MPPC =

Kclass⋃
k=1

Lmpp⋃
l=1

Menv⋃
m=1

mppcc(Ck,mppl, envm, ϵ).

Definition 32 (Sensor selection and placement problem). Con-
sider a task T , an agent A, a body B with mounting positions
MP, perception pipelines PP, mounting orientations MO and a
detection threshold ϵ. The task involves Kclass unique number of
object class instances and Menv number of environments. From
the body, perception pipelines and mounting orientation, Lmpp
number of mounted perception pipelines mpp can be generated.
This leads to the task perception requirement PR(A, T ) and
a set MPPC of collections of mounted perception pipelines
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class coverage with mppcc(Ck,mppl, envm, ϵ) ⊆ Qk, and W
cost functions cw : mppl → R>0. The problem is to identify
MPP ⊆ {mppi}i∈{1,...,Lmpp} with the minimum total cost over
all cost functions. The subset MPP must cover each element in
PR(A, T ) with a matching mppcc(Ck,mpp, envm, ϵ), specific
to the same Ck and envm within PR(A, T , Ck, envm) ⊆ Qk.
Furthermore, each mpp ∈ MPP must occupy a unique mount-
ing position mp. The problem is outlined in Eq. (9), employing
a binary vector x composed of elements xi ∈ {0, 1}, each
denoting a decision variable. Here, xi = 1 signifies the selection
of the mounted perception pipeline mppi. An indicator function
emp is introduced to map a class configuration set to an empty
set whenever the associated binary variable xi = 0:

emp(Q, x) =
{
Q if x = 1

∅ if x = 0
.

Matrix F indicates which mounted perception pipelines share
the same mounting positions. In a given row of F , all entries
set to 1 signify mounted perception pipelines with identical
mounting positions.

min

Lmpp∑
i=1

W∑
j=1

wjcj(mppi) · xi

s.t. PR(A, T , Ck, envm) ⊆
Lmpp⋃
l=1

emp(mppcc(Ck,mppl, envm, ϵ), xl)

∀k ∈ {1, . . . ,Kclass},m ∈ {1, . . . ,Menv},
F · x ≤

[
1 . . . 1

]T
,

xi ≤ 1 ∀i ∈ {1, . . . ,Lmpp},
xi ∈ N0 ∀i ∈ {1, . . . ,Lmpp},
W∑
j=1

wj = 1, wj ≥ 0, j = 1, . . . ,W.

(9)

The union of all class configurations detectable by the
selected mounted perception pipelines, represented as MPP,
across all classes and environmental conditions is denoted as
perception coverage:

PR(A, T ) ⊆
Kclass⋃
k=1

⋃
mpp∈MPP

Menv⋃
m=1

mppcc(Ck,mpp, envm, ϵ).

Finally, we can formulate the Sensor Selection and Place-
ment MDPI, visualized in Fig. 15. It implements the sensor
selection and placement problem from Def. 32 and it is the
composition of the following MDPIs. The Coverage MDPI,
illustrated in Fig. 12, focuses on meeting the robot’s perception
requirements as a functionality by ensuring sufficient perception
coverage as a resource, which includes the ability to detect
necessary class configurations to accomplish the task. An
increase in perception requirements directly necessitates an
enhancement in perception coverage, which is demonstrated
in Lemma 33.

Lemma 33. The perception requirements PR are monotone
with perception coverage, as shown in Fig. 12.

Proof. Consider the first constraint in Eq. (9), representing the
sensor selection and placement optimization problem. Clearly,
if one increases the PR set, one needs to increase the union of
selected perception pipeline class coverage mppcc, representing
the perception coverage. ■

Coverage
perception coverageperception requirements

Fig. 12. The Coverage MDPI which provides perception requirements PR
and requires perception coverage as a set of mppcc.

The Mounted Perception Pipelines MDPI in Fig. 13
implements the selection and positioning of perception pipelines
on the robot to cover all perception requirements, thus ensuring
perception coverage, considering all class appearances appear
within the task, and accommodating the robot’s shape SH. This
MDPI requires a set of mounting configurations in SE(3), a
set of perception performance quantified by the upper limits
of fnr and fpr functions, and the robot’s footprint shR. The
perception performance considers the opposite order of fnr
and fpr upper limits, where a pipeline ppa dominates ppb
if it has lower upper bounds for fnr and fpr across all class
configurations qi, class appearances appeari and environments
env.

Adding a class configuration to the perception coverage
or new class appearances may necessitate a change to a
more capable perception pipeline with improved perception
performance to ensure coverage under the defined threshold
ϵ. Similarly, enhancing perception coverage with new class
configurations or class appearances might necessitate additional
mounting configurations.

A larger robot’s shape may introduce self-occlusion, impact-
ing the FoV and necessitating additional sensor placements for
coverage. While a larger robot’s footprint can reduce perception
requirements by obstructing potential class trajectories as shown
in Fig. 7, balancing between robot’s footprint and robot’s
shape becomes crucial. A theoretically ideal robot’s shape
would generate a vast robot’s footprint but have no elevation,
thereby minimizing self-occlusion and perception requirements.
Although this poses practical challenges in dynamics and
scenario feasibility, where a larger robot’s shape usually leads
to a larger turning radius.

Mounted Perception
Pipelines

mounting configurations

perception performance

robot’s footprint

perception coverage

class appearances

robot’s shape

Fig. 13. The Mounted Perception Pipelines MDPI which provides the
perception coverage, the set of all class appearances appear in the task
and the robot’s shape SH as functionalities. The required resources are the
set of mounting configurations in SE(3), the perception performance and the
robot’s footprint shR.

In Fig. 14, the Perception Pipelines MDPI outlines the
implementation of available perception pipelines, encompassing
both sensors and perception algorithms. It delivers perception
performance as its functionality, demanding cost in CHF, mass
in kg, power in W, and compute as resources. The monotonic
relationship indicates that enhancing perception performance,



12

aiming for lower FNR and FPR, requires the employment of
pricier, high-resolution sensors which generally consume more
power and are heavier. Alternatively, it might involve leveraging
more complex perception algorithms that demand substantial
computational power.

Perception Pipelines
perception performance

cost

mass

power

compute

Fig. 14. The Perception Pipelines MDPI which provides the perception
performance and requires cost in CHF, mass in kg, power in W and compute.

Sensor Selection
&

Placement

cost
mass
power
compute
mounting configurations
robot’s footprint

perception requirements

class appearances

robot’s shape

Fig. 15. The Sensor Selection and Placement MDPI which is the composition of
the Coverage, Mounted Perception Pipelines and Perception Pipelines MDPIs.

D. Solving the Sensor Selection and Placement Set Cover
Problem

The nature of Def. 32 closely resembles the weighted set
cover problem [58], since it also tries to cover a given set by
a collection of subsets while minimizing a cost function.

Definition 34 (Weighted set cover problem). Given a set U
of N elements (called universe), a collection of subsets of U ,
S = {S1, . . . , SK}, and a cost function c : Si → R>0, find a
minimum cost sub-collection of S that covers all elements of
U .

The weighted set cover problem is NP-complete. There exist
approximations, such as greedy algorithms or ILP. In addressing
Def. 32, we choose the ILP relaxation of the set cover problem,
as outlined in Eq. (10). In this ILP, each set Si is associated
with a variable xi ∈ {0, 1}, where xi = 1 if and only if set
Si is selected. The constraint mandates that for each element
e ∈ U , at least one of the sets containing it is chosen [58].

min

K∑
i=1

c(Si) · xi

s.t.
∑

i:e∈Si

xi ≥ 1 ∀e ∈ U,

xi ≤ 1 ∀i ∈ {1, . . . ,K},
xi ∈ N0 ∀i ∈ {1, . . . ,K}.

(10)

To formulate the Def. 32 as a weighted set cover problem,
we need to make certain approximations. This is necessary
because both the task perception requirements, denoted as
PR(A, T ), and the coverage of mounted perception pipelines
for different classes, denoted as MPPC, are infinite sets. In the
next paragraphs we show how we formulate the sensor selection
and placement problem as a weighted set cover problem.

Class configurations in SE(2): The first approximation
involves constraining all class configurations in both PR(A, T )
and MPPC to exist within SE(2). Specifically, each class
configuration is now defined as a tuple consisting of position
in Cartesian coordinates and the relative orientation θ with
respect to the robot frame, denoted as qi = ⟨x, y, θ⟩. As
these class configurations are now geometric in nature and
reside in SE(2), the problem closely resembles the polygon
covering problem [59], which is a specific case of the set
cover problem. In the weighted polygon covering problem,
the objective is to cover a target polygon using a set of
provided polygons, each associated with a specific cost. This
problem permits overlapping among the polygons. However,
the class configurations are represented in three-dimensional
space (SE(2)) and are essentially volumes rather than polygons.
Therefore, we need a method to reduce the dimensionality of
these configurations.

From class configurations to polygons: Given the ori-
entation constraint −π ≤ θ ≤ π, the class configurations
are sorted into θ-intervals, such as {[−π,−π + ∆θ), [−π +
∆θ,−π+2·∆θ) . . . [π−∆θ, π)}. The subsequent step involves
transforming the position coordinates of the class configuration
within each θ-interval into a set of polygons. Here, polygons
represent surfaces in R2 with location considerations. This set
of polygons is termed a multi-polygon, where the polygons in
the set are not necessarily contiguous. As a result, a set of multi-
polygons is generated, with each element corresponding to a
distinct θ-interval. Although various methods can be devised for
this transformation, we stick to a worst-case analysis approach
for consistency. The detailed description of this process is
beyond the scope of this paper. The resulting set of multi-
polygons is denoted as compressed class configurations.

Definition 35 (Compress). compress is a mapping that gener-
ates a set of multi-polygons µ from a set of class configurations
Qi and T number of class configurations θ-intervals.

compress : POW(Qi)→
∏

j∈{1,...,T}

POW(R2),

where T ∈ N+.

Applying compress to PR(A, T ) and MPPC results in
PR(A, T ) and MPPC, where all sets of class configurations
are now expressed as compressed class configurations. Specifi-
cally, when compress is applied for each environment in PR,
nested sets are obtained for each environment, object class, and
θ interval.

Discretization: To formulate the weighted set cover
problem with the obtained polygons, we need to discretize
PR(A, T ). A straightforward approach is to create a grid with
cells, which can be made uniform as shown in Fig. 16a, e.g.,
1 by 1 meters in size. We use a polar grid with logarithmic
scaling for radial distance as illustrated in Fig. 16b, providing
higher granularity for smaller distances and aligning more
with sensor perception dynamics which scan the environment
radially. This means for each multi-polygon in PR(A, T ),
which corresponds to a certain environment, a certain class
and a certain θ-interval, we obtain a discretized multi-polygon
which is again a multi-polygon. These discretized perception
requirements are represented as P̂R(A, T ). An example of
discretized perception requirements of an AV driving in an
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Fig. 16. The left image shows a uniform grid, while the right reports a
polar grid with logarithmically scaled radial distances. Red dots, representing
Gaussian synthetic class configurations, intersect with blue shaded cells.

urban environment, for a car class object for two different
orientations is shown in Fig. 17.
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(b) Car class for θ-interval
[−180◦,−170◦).

Fig. 17. Example of discretized and compressed perception requirements of a
car class (blue) for different orientations relative to the ego vehicle (grey car).
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Fig. 18. Examples of compressed mounted perception pipeline class coverage
mppcc corresponding to the setting in Fig. 17 with θ-interval [−100◦,−90◦).
Each plot corresponds to a unique mounted perception pipeline.

In Fig. 18, examples of compressed mppcc are depicted
for the class and robot specified in Fig. 17 with θ-interval
[−100◦,−90◦). These polygons aim to cover the upper polygon
shown in Fig. 17. Each polygon is associated with certain costs,
and the objective is to minimize the total cost.

With all the components in place, we can formulate the
problem in Def. 32 as an ILP using Eq. (10). Once again, we
use the binary vector x, where each element xi ∈ {0, 1} and
represents a decision variable. The variable xi = 1 if and only
if the mounted perception pipeline mppi is chosen.

Cost Functions: We extend the ILP from Eq. (10) to
a multi-weighted problem formulation by incorporating W
cost functions denoted as c. Each cost function cj associates a
mounted perception pipeline mpp with normalized costs, where
0 ≤ cj(mpp) ≤ 1. These costs may represent various factors
such as the price, mass, or power consumption of the sensor.
Additionally, each cost cj is scaled by a cost weightwj , ensuring
that the sum of all weights equals one, i.e.,

∑W
j=1 wj = 1. The

cost function weights are generated by the Halton sequence [60],
[61], a generalized form of the one-dimensional Van der Corput
sequence [40], [62], where we only take sampled points which
sum up to one. This process involves generating a series of
weights with low discrepancy and addressing the optimization
problem for each weight set. Through this incremental search,
we explore the Pareto front of the multi-objective optimization
problem with a linear weighted sum [63], [64].

Constraints: The initial constraint within the ILP ensures
the coverage of each element in P̂R(A, T ). This implies
that for every polygon within P̂R(A, T ), we must ascertain
which mpp is providing coverage. To achieve this, we extract
the corresponding multi-polygon from mpp that shares the
same object class, environment, and θ-interval. By “cover”
we mean that a multi-polygon µi covers another polygon µj

if µj ⊆ µi. Consequently, a binary matrix A is populated,
possessing dimensions N × Lmpp, where N represents the
number of polygons in P̂R(A, T ) and Lmpp denotes the number
of mounted perception pipelines. The entry in the n-th row
and l-th column of matrix A is denoted as anl, with anl = 1
indicating that polygon n is covered by mppl, and anl = 0
otherwise. Subsequently, another binary matrix, denoted as F ,
is constructed with dimensions D×Lmpp, where D corresponds
to the number of mounting positions. Matrix F indicates
which mounted perception pipelines share the same mounting
positions. In a given row of F , all entries set to 1 signify
mounted perception pipelines with identical mounting positions.
Finally we can find the mounted perception pipelines which
cover P̂R(A, T ), while minimizing certain cost cj by solving
the ILP in Eq. (11).

min

L∑
i=1

W∑
j=1

wjcj(mppi) · xi

s.t. A · x ≥
[
1 . . . 1

]T
,

F · x ≤
[
1 . . . 1

]T
,

xi ≤ 1 ∀i ∈ {1, . . . , L},
xi ∈ N0 ∀i ∈ {1, . . . , L},
W∑
j=1

wj = 1, wj ≥ 0, j = 1, . . . ,W.

(11)
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TABLE II
VARIABLES, OPTIONS AND SOURCES FOR THE AV CO-DESIGN PROBLEM.
Variable Option Source

Vehicle bodies Smart Fortwo, Chrysler Pacifica,
Mercedes-Benz C63 [65]

Lidars Velodyne: Alpha Prime, HDL 64,
HDL 32; OS2: 128, 64 [66], [67]

Cameras Basler: acA1600-gm, acA1500-um,
acA7-gm; FLIR: Point Grey [68], [69]

Object Detection
Models FCOS3D, Pointpillars [52], [53], [55]

Mounting Orien-
tation Yaw

−135.0◦, −90.0◦, −45.0◦, 0.0◦,
45.0◦, 90.0◦, 135.0◦, 180.0◦, [-]

Mounting Orien-
tation Pitch 0◦ [-]

Motion Planner Lattice panner with A*, RRT, RRT* [70], [71]

Computer
Jetson Nano, Orin Nano, Xavier NX,
Orin NX, AGX Orin 64GB, AGX
Orin 32GB, AGX Xavier 32GB

[72]

Fig. 19. Exemplary mounting positions for two different vehicles.

V. DESIGN OF EXPERIMENTS AND RESULTS

In this section, we report a case study on designing an AV
for an urban driving task. We outline the experimental design
in Sec. V-A, present the results in Sec. V-B, and conclude with
a discussion of the findings in Sec. V-C.

A. Design of experiments

Catalogs: The components available for design are
reported in the catalog in Tab. II. The 3D meshes of the
car bodies are sourced from TurboSquid [73]. Real sensor
measurements from the nuScenes open-source dataset [54],
along with state-of-the-art 3D object detection algorithms from
the MMDetection3D library [55], are used to determine the
FNRs and the FPRs for different object classes. The mounting
position options are visualized in Fig. 19. We utilize motion
planners from the OMPL [70] and CommonRoad [71] libraries,
including RRT, RRT*, and a lattice planner enhanced with
motion primitives and an A* search algorithm. Specifically, for
the RRT* planner from the OMPL library, which is classified
as a “geometric” planner, we employ Dubins paths [39], [74]
to connect sampled configurations considering the system’s
geometric and kinematic constraints. This approach enables the
computation of paths that can be tracked by low level controllers
as depicted in Fig. 2a. In contrast, the RRT planner corresponds
to “control-based” implementations in the OMPL library which
directly computes trajectories and control inputs, tailored for
systems subject to differential constraints and incorporating a
steering function. The three different motion planners operate
with 1 s and 2 s planning horizons, which define the time into
the future for which a planner calculates its trajectory.

Remark. We acknowledge that the catalog may not represent
the latest advances in motion planning and perception. The
designer is free to create their own catalog.

Task: The urban driving task contains 205 driving
scenarios from the CommonRoad library [75], featuring five
different vehicle classes. Each vehicle’s configuration is defined
by q ∈ SE(3) and the vehicle dynamics are based on
the bicycle model, with the control space for cars specified
as Ucar = [amin, amax]× [δmin, δmax]. The car prior configura-
tion, Pcar, accounts for all possible car positions on the road,
aligning with the driving direction. The objective, G, is for the
autonomous vehicle to reach a designated area. We analyze
scenarios with two nominal speeds: 30 km/h and50 km/h, under
dry and rainy weather conditions during daylight and night.
We performed experiments with fewer scenarios to examine
how task complexity affects the AV design. Additionally,
the experiments varied the task prior assuming no cars can
approach the AV from left and rear. We solved the ILP for the
sensor selection and placement problem in Eq. (11) using the
Gurobi [76] solver. Our ILP comprised 667 decision variables
representing the mounted perception pipelines, with around
250,000 constraints. We optimized with 4 different costs, which
are the price, mass and power consumption of the sensor and the
computing in flops of the object detection algorithms. Solving
the problem took 75 s on a 2.3 GHz Intel Core i7 processor
with 16 GB of RAM. Through the sampling sequence, around
3000 weight sets were generated to populate the Pareto front,
resulting in 3000 individual optimization problems solved for
each robot body, agent, and task combination.

B. Results

We solve the presented co-design problem by fixing selected
scenarios, and showing the corresponding Pareto fronts of
minimal resources, as illustrated in Figs. 20, 21 and 22. The
figures show that more resources are required for more complex
tasks. Each task’s complexity is represented by the number of
scenarios, with simpler tasks as subsets of more complex ones.
The upper figures compare price (CHF) on the x-axis against
power consumption (W) in Fig. 20, mass (kg) in Fig. 21, and
computation (Gflops) in Fig. 22 on the y-axis. Red dots indicate
optimal solutions within each task, with the surrounding red
area highlighting the feasible resource range (i.e., the upper
sets of resources). Annotations with capital letters point to the
implementations, detailed in the lower sub-figures. We show
the top view of the selected vehicle, with cameras marked
with dots and lidars with squares to illustrate their mounting
positions. Camera orientations are further highlighted by small
triangles indicating the initial FoV and yaw direction, providing
an indication of their potential coverage area. Each perception
pipeline is color-coded. In addition, the graphics show the
selected motion planner and computing unit.

The impact of more resource requirements for the AV design
by increasing the nominal speed from 30 km/h to 50 km/h
within identical task scenarios is visualized in Figs. 23, 24
and 25, where we again show the Pareto fronts as well as the
corresponding implementations for the different resources.
Figs. 26, 27 and 28 demonstrate how restricting car config-
urations prior within identical task scenarios leads to lower
resource requirements, where the Pareto fronts, along with
implementations are illustrated.

In Fig. 29 we show the influence of higher planning horizon
leading to higher resource requirements on the selected sensors
and perception algorithms by fixing the motion planner and
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Fig. 20. Pareto front of price and power across tasks, where tasks with more
scenarios demand more resources and encompass those with fewer scenarios.
Implementations for point A, B, and C are visualized vertically. B and C indicate
the least power usage for the most and least complex tasks, respectively, while
A shows the minimum price for the most complex task.
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the vehicle body. The figure compares the resources required
- power, mass, price, and computation - for different tasks
for planning horizons of one and two seconds. Each point
represents the minimum resource solution for a given task
and time horizon. In Fig. 30, we keep the vehicle body and
planning horizon constant, but compare the resource trade-offs
of using RRT* versus a lattice planner. This comparison aims
to visualize the resource differences between motion planners,
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as expected from Fig. 2, and to highlight the impact of the
planning strategy on the sensor selection and placement process.

In Figs. 22, 25 and 28, we display the implementations for
the minimal computation solutions. The NVIDIA Jetson Orin
Nano was chosen alongside the lattice motion planner using
A* search for all cases. Notably, a camera sensor was never
chosen for these solutions. The implementations aiming for
minimal mass are shown in Figs. 21, 24 and 27, where there is
a notable preference for cameras, predominantly coupled with
the most powerful computing unit, the NVIDIA Jetson AGX
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Fig. 25. Pareto front of price and computation across task velocities,
where higher velocities for the same set of scenarios require more resources.
Implementations for marked point A are visualized vertically. A indicate lowest
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Orin 64. In Figs. 20, 23 and 26 we present the implementations
for the AV design with minimal power needs. Similarly as for
the minimal computation, only one or two lidars are chosen.

Moreover, we present implementations tailored for the most
cost-effective AV design in Figs. 20, 22, 24 and 28. Every
implementation features at least one lidar sensor. Except for
the cases highlighted in Figs. 20 and 28, corresponding to
the most complex task and the task with restricted prior, all
configurations additionally incorporate camera sensors. For
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Fig. 26. Pareto front of price and power usage across priors, where priors
with more class configurations require more resources. Implementations for
points A and B are visualized vertically. A and B indicate the lowest power
usage for the least and most restricted prior, respectively.
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Fig. 27. Pareto front of price and mass across priors, where priors with more
class configurations require more resources. Implementations for points A and
B are visualized vertically. A and B indicate the lowest mass for the least and
most restricted prior, respectively.

the most complex task containing the most scenarios, highest
nominal speed and no prior restriction, each implementation
includes at least one lidar sensor.

Throughout the minimal resource solutions for various tasks,
we queried for the least resources by setting the average speed
functionality requirement to just above zero. Thereby, the
RRT* motion planner was consistently not selected. Conversely,
when examining tasks by requiring higher average speeds (e.g.,
24 km/h), as illustrated in Figs. 31, 32 and 33 for power, mass,
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Fig. 28. Pareto front of price and computation across priors, where priors
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most restricted prior.
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Fig. 29. Higher planning horizons for the same planner and vehicle body
require more resources for different tasks. Here we show the lattice planner
with A* search and a hatchback vehicle body.

and computation impacts, it becomes evident that the resource
demands increase for higher average speeds, such as 24 km/h
(with nominal speed of 30 km/h). In every solution where
minimal power, mass, computation, and cost were evaluated, the
RRT* planner, coupled with the sedan vehicle, emerged as the
selected choice. This pattern underscores the RRT* planner’s
superior efficiency within this case study, further highlighted
by the sedan vehicle’s highest acceleration capabilities and
highest price.

C. Discussion
Our results show that increased task complexity, manifested

by more scenarios, higher speeds, or broader prior knowledge,
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Fig. 30. Resource comparison between RRT* planner and lattice planner with
A* search for the same vehicle body (hatchback) and tasks.
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Fig. 31. Pareto front of price and power consumption across different average
speeds, where planners providing higher average speed across all scenarios
(30 km/h nominal speed) demand more resources. Implementations plots for
points A and B are visualized vertically. A and B indicate the lowest price
and lowest power for the highest average speed, respectively.

requires more resources for AV design. Each additional scenario
may introduce new occupancy queries and prior knowledge,
expanding the perception requirements. Higher speeds require
sensor pipelines to detect objects at greater distances to account
for the faster movement of the AV and the faster dynamics of
the surrounding objects. In addition, a wider range of possible
class configurations based on prior knowledge increases the
perception requirements, calling for more advanced sensor
pipelines that consume additional resources.

Motion planners that generate broader occupancy query
distributions require enhanced sensing capabilities, thereby
increasing the resource allocation to sensor pipelines to
provide the required information. The broader occupancy query



18

40000 60000 80000 100000 120000
Price (CHF)

1.00

1.25

1.50

1.75

2.00

2.25

2.50

2.75

3.00

M
as

s
(K

g)

B

A

minimum speed
14.0 km/h
24.0 km/h

Planner: RRTstar
Computer: nvidiaJetsonAGXOrin64
Mass: 1.83 Kg
Cost: 105734.0 CHF

Sensor: Pointgreyfl12, Algorithm: fcos3d
Sensor: Ace13gmfl12, Algorithm: fcos3d
Sensor: OS2128, Algorithm: pointpillars

A

Planner: RRTstar
Computer: nvidiaJetsonAGXOrin64
Mass: 1.7 Kg
Cost: 109404.0 CHF

Sensor: Pointgreyfl12, Algorithm: fcos3d
Sensor: Ace15umfl12, Algorithm: fcos3d
Sensor: OS2128, Algorithm: pointpillars

B

Fig. 32. Pareto front of price and mass across different average speeds,
where planners providing higher average speed across all scenarios (30 km/h
nominal speed) demand more resources. Implementations for points A and B
are visualized vertically. A and B indicate the lowest price and mass for the
highest average speed, respectively.
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Fig. 33. Pareto front of price and computation across different average speeds,
where planners providing higher average speed across all scenarios (30 km/h
nominal speed) demand more resources. Implementations for points A and
B are visualized vertically. A and B indicate the lowest price and lowest
computation for the highest average speed, respectively.

distributions result from either extended planning horizons, as
illustrated in Fig. 29, or the inherent strategy of the motion
planner, as illustrated in Fig. 2 and Fig. 30. In the optimization
process for minimal resource solutions at the lowest average
speeds, the RRT* planner was consistently not selected. How-
ever, when the requirement shifted towards achieving the highest
average speeds, the RRT* planner became the exclusive choice,
paired with the vehicle body with the highest acceleration.

This pattern suggests that while the RRT* planner demands
more resources, it stands out as the most efficient option for
optimizing average speed in the task. Our analysis further
confirms that to minimize computational requirements in AV
design, lidar sensors emerge as the preferred choice due to their
perception algorithms requiring fewer operations per second.
Conversely, to reduce mass or cost, camera sensors are preferred
due to their lighter weight and lower price compared to lidars.
However, designs addressing the most complex task always
include lidar sensors. This underscores the superior capability
of lidar-equipped sensor pipelines due to their lower FNR and
FPR across a wider range of class configurations.

VI. CONCLUSION

This paper introduced a framework for designing mobile
robots tailored to specific tasks by selecting hardware and
software components. The choice comprises various elements
including robot bodies, sensors, perception algorithms, sensor
mounting configurations, motion planning algorithms, and
computing units. We delved into the decision-making aspect of
mobile robots by exploring what information a motion planner
requires from the perception system. We introduced occupancy
queries for sampling-based motion planners, allowing one to
identify the necessary perception requirements based on prior
knowledge of object classes, their dynamics, and shapes within
the environment. With the obtained perception requirements
and the perception performance of a sensor combined with a
detection algorithm, abstracted into FNRs and FPRs metrics,
we formulated the sensor selection and placement problem
and solved it as a weighted set cover problem using an
ILP approximation. Our case study on designing an AV for
urban driving scenarios revealed that enhanced task complexity,
in terms of scenario variety or nominal speeds, necessitates
more resources for the robot’s design. We demonstrated how
restricting prior knowledge of object configurations within sce-
narios can simplify designs and reduce resource requirements.
Moreover, motion planners that generate broader distributions
of occupancy queries or require longer planning horizons lead
to increased task performance and perception requirements,
necessitating more advanced and costly sensors and perception
algorithms for the robot’s design. The findings highlight
that the preference for specific sensors is influenced by the
prioritization of resources. For designs prioritizing lower costs
and weight, camera sensors are favored. Conversely, when
minimizing power consumption and computing resources, lidar
sensors are the preferred choice. Overall, lidar sensors exhibit
superior perception performance and coverage, proving to be
essential for handling complex tasks. In future work, we aim
to integrate additional agent architectures and motion planners
beyond sampling-based. Additionally, rather than using upper
bounds of FNRs and FPRs to determine object detection, we
plan to implement filtering and sensor fusion techniques that
incorporate considerations of time and uncertainty into the
detection and sensor selection process. Moreover, we plan
to conduct expanded case studies that include a variety of
tasks and robots, not limited to AVs, and utilize state-of-the-art
perception and decision-making software.
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