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Abstract

We study existence of long range order in the random field Ising model.
We define the classical Ising model and use the so-called Griffiths–Peierls
argument to prove existence of long range order for low temperatures,
in dimension two and above. Then, we introduce the random field Ising
model. We use J. Ding and Z. Zhuang recent work in [6], which extends
Peierls argument and shows that long range order also exists in this model
at low temperatures with the presence of a weak disorder, in dimension
three and above.
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Chapter 1

Introduction

The Ising model is a theoretical model in statistical physics, whose primary
incentive is to simplify the complex properties of solids by assuming that they
can be represented by a lattice arrangement of molecules interacting with
their neighbors. The model was initially introduced in 1920 by the German
physicist Wilhelm Lenz and developed later on by his student Ernst Ising in
his PhD thesis.

Given a macroscopic system made of a substantial number of molecules,
providing an accurate description of such system is a strenuous task if one
has to keep track of the positions and speed of all the molecules. As an
alternative, the Ising model gives a probabilistic description of the system by
assuming that each molecule has a random behaviour that can be described
with only few parameters. In particular, the Ising model can be used to
describe properties of magnets. Consider a piece of iron, that can typically
be pictured as a solid made of atoms of iron arranged in a regular crystalline
structure.

Fe Fe

FeFeFe

Fe Fe Fe

Fe

Figure 1.1: Piece of iron

One can assume that each atom carries an intrinsic magnetic moment,
called its atomic spin, that can take one of two possible orientations, represented
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1. Introduction

by +1 (”spin up”) or −1 (”spin down”). Short-range interactions between
atoms tend to make neighbouring spins coincide. In particular, when the
magnet is immersed in a magnetic field, spins have a tendency to align with
this field. When decreasing the intensity of the external field to zero, one
can wonder about the behaviour of the spins. A possible scenario is that the
global order of the spins will vanish, in which case we say that the piece
of iron is paramagnetic. The second possible scenario is the one where, even
though the influence of the external magnetic field decreases, the interactions
among the spins maintain polarization of the spins. In this case, we say that
the piece of iron is ferromagnetic. This phenomenon depends especially of the
temperature of the system, as a higher temperature is associated with more
thermal agitation for the atoms, and this in turn interferes with neighbouring
spins interactions. As suggested in 1936 by Peierls [13], with a proof that was
later made rigorous by Griffiths [9] in 1964, in any dimension d ≥ 2, when
the temperature decreases, the piece of iron in the Ising model undergoes
a phase transition from a paramagnetic to a ferromagnetic state at a critical
temperature TC, called the Curie temperature.

Temperature T

TC

Paramagnetic stateFerromagnetic state

Magnet polarization

Figure 1.2: Ferromagnetic/paramagnetic phase transition

To quantitatively measure whether the piece of iron is in paramagnetic
or ferromagnetic state, one can study the average value of the spins. If the
spins, on average, have a preferential value after withdrawal of the external
magnetic field, i.e. if the solid is in a ferromagnetic state, one talks about the
existence of long range order in the model.

Until now, we considered the system to be an ideal system. However,
when conducting real–life experiments, it is often the case that the system
presents some impurities, and that may have significant effects on the out-
comes. In particular, a small disorder in the physical system can antagonize
the ordering induced by spins interactions. In order to take this into account,
one can decide to improve the model by assuming that each atom of the solid
is subject to a ”noise”, that will typically be distributed according to a normal
distribution. The global perturbation generated can be identified as a random
field, and for that reason the model obtained is called the random field Ising
model (RFIM).

2



We are interested, in a first part, in proving existence of long range order
at low temperatures in the classical Ising model. Then, in a second part, we
are interested in determining under which circumstances does existence of
long range order still hold in the random field Ising model. In Chapter 2, we
define the classical model and use Griffiths–Peierls argument to prove the
existence of long range order in dimension d ≥ 2 at low temperatures. In
Chapter 3, we introduce the RFIM. We demonstrate, as in Ding and Zhuang
[6], that in dimension d ≥ 3, when the disruption caused by the external field
is relatively weak, and again at low temperatures, long range order still exists
with high probability, the degree of uncertainty being due to the randomness
of the perturbation.
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Chapter 2

Classical Ising model

2.1 Framework

Let d ≥ 1 be a dimension. We give the formal definition of the Ising model on
a d-dimensional square grid graph with nearest neighbors interactions. We
consider the d-dimensional lattice graph on Zd, with the set of edges given by

E := {xy = {x, y} ⊂ Zd : ∥x − y∥1 = 1}.

We write x ∼ y if xy ∈ E. Each vertex v ∈ Zd is characterized by a spin
σv = ±1. We consider

Ω := {−1,+1}Zd

the set of all spin configurations, or microstates, of the model.

Consider now a finite-volume Λ ⋐ Zd, containing the origin, and repre-
senting the physical system. We define the restriction of the spin configura-
tions to the set Λ by

ΩΛ := {−1,+1}Λ.

Definition 2.1.1 ∀σ ∈ ΩΛ, the energy of the configuration σ is given by the
Hamiltonian

HΛ(σ) = − ∑
xy⊂Λ
x∼y

βσxσy,

where β ≥ 0.

The Hamiltonian is simply obtained by summing the interactions over
all neighbouring spins, weighted by the coefficient β representing the strength
of the interactions. If we choose T > 0 to be the temperature of the system,
then β is related to T by the formula

β :=
kB
T

,

where kB is the Boltzmann constant.
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2. Classical Ising model

Definition 2.1.2 The Gibbs measure, also called Boltzmann distribution, of the
Ising model in Λ at parameter β ≥ 0 is the distribution on ΩΛ given ∀σ ∈ ΩΛ
by

µΛ[σ] =
e−HΛ(σ)

ZΛ
,

where
ZΛ = ∑

σ∈ΩΛ

e−HΛ(σ)

is called the partition function.

Remark 2.1 We denote by ⟨.⟩Λ the expectation with respect to the Gibbs measure in
Λ.

The Gibbs measure is a natural way to define a probability measure on
the space of spin configurations. Indeed, one can observe from the Hamil-
tonian’s formula that the more the spins agree for a given configuration,
the smaller the associated energy is. Since we consider the system to be an
isolated system, a consequence of the second law of thermodynamics is that
the system is at equilibrium if and only if its energy reaches a local minimum.
Accordingly, the measure defined on ΩΛ should favor the configurations with
smaller energy, which is exactly what the Gibbs measure does.

2.2 Boundary conditions

By symmetry of the model, in order to collect information about the behaviour
of the spins, it suffices to observe the spin at the origin. Let us consider the
value of the expected spin at 0, i.e.

⟨σ0⟩Λ = µΛ[σ0 = 1]− µΛ[σ0 = −1].

The invariance of the model under global spin flip, also referred as spin-flip
symmetry, implies that µΛ[σ] = µΛ[−σ] for all σ ∈ ΩΛ. It is straightforward
to deduce that ⟨σ0⟩Λ = 0, i.e. spins have no preferential value. We would like
to polarize the spins and break the spin–flip symmetry. This will be done by
immersing the piece of iron in an external magnetic field, whose orientation
will influence the value of the spins. In this section, we model mathematically
the action of plunging the material into a magnetic field and removing this
field afterwards.

From now on, we will assume that Λ ⋐ Zd is a finite hypercube. Specifi-
cally, for any N ≥ 1, let

ΛN = [−N, N]d ∩ Zd

be the box of side–length 2N centered at the origin 0.

Let N ≥ 1. Up to now, when defining the model on ΛN , we implicitly
considered the system to have free boundary conditions, in the sense that we
examined spin configurations within ΛN , without imposing any constraints
on the spins located outside of this volume. Let us now ”freeze” the spins
outside of ΛN .
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2.2. Boundary conditions

Definition 2.2.1 Let η := {ηx}x∈Zd\ΛN
. A configuration of the Ising model in

ΛN with boundary condition η is an element of the set

Ωη
ΛN

:= {σ ∈ ΩΛN : σx = ηx, ∀x /∈ ΛN}.

Now, there are interactions between the external magnetic field and the
spins that are located on the inner boundary of ΛN , since the latters are at
distance l1 equal to 1 from the external magnetic field. These interactions
contribute to the energy of the system and accordingly, we need to adjust the
previous definition of the Hamiltonian.

Definition 2.2.2 ∀σ ∈ Ωη
ΛN

, the Hamiltonian associated with σ with boundary
conditions η is given by

Hη
ΛN

(σ) = −β

(
∑

xy⊂ΛN
x∼y

σxσy + ∑
x∈ΛN ,y/∈ΛN

x∼y

σxηy

)
.

Definition 2.2.3 The Gibbs measure in ΛN with boundary conditions η is
defined as

µ
η
ΛN

[σ] =
e−Hη

ΛN
(σ)

Zη
ΛN

,

where
Zη

Λ = ∑
σ∈Ωη

ΛN

e−Hη
ΛN

(σ).

The presence of the external magnetic field in the Ising model simply
corresponds to particular case of boundary conditions, namely by setting
η ≡ 1 or η ≡ −1, depending whether we want the orientation of the magnetic
field to be respectively ”+” or ”-”.

Without loss of generality, we consider the Ising model with ”+” bound-
ary conditions. Now, the average value of the spin at 0 when the piece of iron
is under the influence of ”+” boundary conditions is

⟨σ0⟩+ΛN
≥ 0,

because the propagation of the influence of ”+” boundary conditions through
the piece of iron via neighbours interactions can only increase the chances
for σ0 to be positive. In particular, if ⟨σ0⟩+ΛN

is strictly positive, the spin–flip
symmetry has been broken.

Definition 2.2.4 We say that long range order exists if the spin–flip symmetry
is not restored when taking the thermodynamic limit of the model with ”+”
boundary conditions, i.e.

md(β) := lim
N→∞

⟨σ0⟩+ΛN
> 0.

The quantity md(β) is referred to as the spontaneous magnetization of the system.
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2. Classical Ising model

2.3 Existence of long range order

Let us prove that in any dimension d ≥ 2, there exists a temperature TC(d) > 0
under which long range order exists in the Ising model.

Lemma 2.2 [14, Proposition 4.3.3] For all d ≤ d′,

md(β) ≤ md′(β).

Theorem 2.3 [14, Theorem 4.5.1] ∀d ≥ 2, there exists TC(d) > 0 such that ∀0 ≤
T ≤ TC(d) and N ≥ 1,

µ+
ΛN

({σ0 = 1}) ≥ 3
4

.

Proof By Lemma 2.2, it suffices to prove the result in dimension d = 2. In
order to do so, we rely on the Griffiths–Peierls argument.

Let σ ∈ ΩΛN with σ0 = −1. Let A0 be the maximal simply connected
component containing the origin in which all the spins have value ”-1”. A0
must be strictly contained in ΛN . Indeed, suppose it is not the case. Then,
there exists a path starting from the origin, and going all the way to the
external boundary of the box, along which all spins have value ”-1”. However,
the spins on the external boundary of the box ΛN have value ”+1”, hence the
contradiction.

We consider the ”disagreement loop”

γ := {x ∈ ΛN\A0 : ∃y ∈ A0 s.t. x ∼ y} ⊂ V.

ΛN

0

γ

Figure 2.1: Disagreement loop γ. For each vertex xy in the graph such that σx = +1 and
σy = −1, one can associate an edge in the dual graph that crosses xy perpendicularly. The union
of such edges in the dual graph forms a loop, hence the terminology used here.

Let
Eγ := {σ ∈ ΩΛN : γ is a disagreement loop}

and ∀k ≥ 4, let

Γk := {γ is a loop surrounding 0 : |γ| = k}.
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2.3. Existence of long range order

By union bound,

µ+
ΛN

[
{σ0 = −1}

]
= µ+

ΛN

[
∪k≥4 ∪γ∈Γk Eγ

]
(2.1)

≤ ∑
k≥4

∑
γ∈Γk

µ+
ΛN

[Eγ].

We prove that the disagreement loops are costly in energy for the system,
and that as a consequence, it is not likely to have a configuration with a
large disagreement loop. In order to do so, let us consider the auxiliary
configuration

σ̃x =

{
−σx x ∈ Int(γ)
σx else.

When flipping the spins inside of the disagreement loop, the change in the sys-
tem’s energy is only due to the vertices that are adjacent to the disagreement
loop. Specifically, those vertices and their neighbours in the disagreement loop
previously had spins of opposite signs and after the flip, they have coinciding
spins. On that account, one obtains that

H+
ΛN

(σ̃) = H+
ΛN

(σ)− 2β|γ|.

It follows that

µ+
ΛN

[Eγ] =
∑σ∈Eγ

µ+
ΛN

[σ]

Z+
ΛN

≤ e−2β|γ| ∑σ∈Eγ
µ+

ΛN
[σ̃]

Z+
ΛN

≤ e−2β|γ|,

as
∑σ∈Eγ

µ+
ΛN

[σ̃]

Z+
ΛN

≤ 1

by definition of a probability measure.

Let k ≥ 1. Let us bound |Γk|. The loop has to go around 0, so we pick
any of the four straight lines starting from the origin and going outside of
the box, and we know that the loop has to cross that line at some point. It is
equivalent to choose any of the four lines as the loop will in any case cross
each of these four lines. As we know that the loop has to contain the origin
and that it is of length k, we necessarily have to start somewhere on the line
at a distance less than or equal to k from 0. Thus, we have k choices for the
initial step. The loop has to move in a two-dimensional space and has to be
self-avoiding, thus we have at most 3 choices for the other steps. In summary,
one obtains that

|Γk| ≤ k3k.

From (2.1),

µ+
ΛN

[
{σ0 = −1}

]
≤ ∑

k≥4
|Γk|e−2βk

≤ ∑
k≥4

k(3e−β)k ≤ 3e−β

(1 − e−β)2 .
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2. Classical Ising model

For β large enough, we get, ∀N ≥ 1,

µ+
ΛN

[
{σ0 = −1}

]
≤ 1

4
. □
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Chapter 3

Random field Ising model

In this chapter, we study long range order in the random field Ising model.
In case of a strong disorder, it was proved for instance by J. Fröhlich [12]
in 1984 that boundary influence decays exponentially in N, so there is no
long range order. On the other hand, with presence of a weak disorder, a
classical result is that long range order exists at low temperatures. This was
shown by Imbrie [11] in 1985 and Bricmont and Kupiainen [3] in 1988, using
renormalization group theory. Here, we use the proof of Ding and Zhuang [6],
which is shorter and simpler. We note that in 2022, Ding et al. [7] extended
this result by showing that for any temperature lower than TC (the critical
temperature without disorder), long range order exists as long as the disorder
is sufficiently small, depending on the temperature.

3.1 Framework

Let d ≥ 2. As in the previous chapter, we consider the Ising model on the
d-dimensional lattice graph on Zd with nearest neighbours interactions, and a
spin configuration in Ω. Let N ≥ 1. We add some ”+/-” boundary conditions
on the boundary of the box ΛN . To obtain the random field Ising model, one
needs to simulate a random perturbation affecting individually each atom
of iron. For this, one can choose any probability measure P on the space
RZd

, as well as a collection h := {hx}x∈Zd of i.i.d. standard Gaussian random
variables under P.

Definition 3.1.1 For ε > 0, we call external field the set

εh := {εhx}x∈Zd .

The external field attributes a magnetic force of random magnitude εhx
to each vertex x ∈ Zd. The disorder induced by the external field on the
system is referred to as a quenched disorder, as the environment h is fixed from
the beginning and does not evolve in time.
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3. Random field Ising model

Definition 3.1.2 ∀σ ∈ ΩΛN , the RFIM Hamiltonian within the box ΛN with
+/- boundary conditions and external field εh is given by

H±
ΛN

(h, σ) = −
(

∑
xy⊂ΛN

x∼y

σxσy ± ∑
x∈ΛN ,y/∈ΛN

x∼y

σx − ∑
x∈ΛN

εhxσx

)
.

Definition 3.1.3 Let T ≥ 0. The Gibbs measure on the space ΩΛN at tempera-
ture T is given by

µ±
ΛN ,h(σ) =

e−T−1 H±
ΛN ,h(σ)

Z±
ΛN

(h)
,

where
Z±

ΛN
(h) = ∑

σ∈ΩΛN

e−T−1 H±
ΛN ,h(σ).

3.2 Existence of long range order in RFIM

Definition 3.2.1 We say that long range order exists for RFIM if for a typical
instance of the disorder εh,

lim
N→∞

⟨σ0⟩±ΛN ,h = lim
N→∞

(
µ±

ΛN ,h[σ0 = 1]− µ±
ΛN ,h[σ0 = −1]

)
̸= 0.

Theorem 3.1 [6, Theorem 1.1] Let d ≥ 3. There exists a constant C > 0 such that
for all T ≥ 0, ε ≤ C, N ≥ 1, we have

µ±
ΛN ,h[σ0 = ±1] ≥ 1 − e−CT−1 − e−Cε−2

with P-probability at least 1 − e−CT−1 − e−Cε−2
.

Remark 3.2 In the classical Ising model, existence of long range order is proved also
in dimension d = 2. However, in the RFIM, this result is not true anymore. The
random external field is a spatial perturbation of order O(Nd/2), and the boundary
conditions are of order O(Nd−1). In dimension d = 2, those two quantities are of
the same order and as a consequence, the perturbation cancels the influence of the
boundary conditions.

In the RFIM, the rate of decay of the quantity µ+
ΛN

[σ0 = −1] will depend
on the environment induced by the perturbation h. Hence, we define the
quenched probability space (

RΛN × Ω±
ΛN

, Q±
ΛN

)
,

with Q±
ΛN

being the probability measure defined below.

Definition 3.2.2 Let A ⊂ RΛN and B ⊂ {−1,+1}ΛN . We define the mixed
joint measure for (h, σ) by

Q±
ΛN

[h ∈ A, σ ∈ B] :=
∫

A
∑

σ∈B
ν±ΛN

(h, σ)dh,

where ν±(h, σ) is the joint density function for (h, σ).

12



3.3. Proof of Theorem 3.1

Using the fact that the collection {hx}x∈Zd is a collection of independent
and identically distributed standard Gaussian variables, one has that

ν±ΛN
(h, σ) = µ±

ΛN ,h[σ]

(
∏

x∈ΛN

Φ[hx]

)
,

where Φ is the density of a standard Gaussian random variable. It follows
that

Q±
ΛN

[h ∈ A, σ ∈ B] =
∫

A
µ±

ΛN ,h[B]dP(h).

One can notice that

Q±
ΛN

[σ0 = −1] =
∫

RΛN
µ±

ΛN ,h[σ0 = −1]dP(h)

= EP
[
µ±

ΛN ,h[σ0 = −1]
]
. (3.1)

For that reason, in order to prove Theorem 3.1, it suffices to control the
quantity Q±

ΛN
[σ0 = −1] and apply Markov’s inequality.

3.3 Proof of Theorem 3.1

3.3.1 Preliminaries

Lemma 3.3 (Gaussian concentration inequality) [15, Theorem 3.25]
Let X1, ..., Xn be i.i.d. Gaussian random variables, Xi ∼ N (0, 1). Then for any
f ∈ C1(Rn), t ≥ 0, one has that

P[| f (X1, ..., Xn)− E( f (X1, .., Xn)| ≥ t] ≤ e−
t2

2σ2 ,

where σ2 = ∥∥∇ f ∥2∥∞.

Definition 3.3.1 The free energy associated to the external field h is defined as

F±
T,ΛN

(h) := −T log
(
Z±

ΛN
(h)
)

Let A ⊂ Zd. For any (h, σ) ∈ RZd × Ω, let

hA
x :=

{
−hx x ∈ A
hx x /∈ A

and σA
x :=

{
−σx x ∈ A
σx x /∈ A

. (3.2)

Definition 3.3.2 The maximum amount of work the system can perform while
undergoing a flipping operation of the sign of the external field within A is
given by

∆A(h) := F±
T,ΛN

(h)−F±
T,ΛN

(hA) = −T log

(
Z±

ΛN
(h)

Z±
ΛN

(hA)

)
.

Lemma 3.4 [6, Lemma 3.1] Let A, A′ ⊂ ΛN and λ > 0. Then

13



3. Random field Ising model

(i) ∆A(h) is a ε2|A|-sub–Gaussian random variable, i.e.

P[|∆A(h)| > λ] ≤ 2e
− λ2

8ε2 |A|

(ii) ∆A(h)− ∆A′(h) is a ε2|A ⊕ A′|-sub–Gaussian random variable, i.e.

P[|∆A(h)− ∆A′(h)| > λ] ≤ 2e
− λ2

8ε2 |A⊕A′ | ,

where A ⊕ A′ := (A ∪ A′)\(A ∩ A′) denotes the symmetric difference between A
and A′.

Proof Let us first prove (i). The collection {hx}x∈A is distributed symmetri-
cally around 0, hence

E
[
∆A(h)

∣∣{hx : x ∈ Ac}
]
= 0.

Notice that the map h 7→ ∆A(h) is continuously differentiable. Let x ∈ A.

∣∣∣ ∂

∂hx
∆A(h)

∣∣∣ = ∣∣∣∣∣ ∂

∂hx
− T log

(
Z±

ΛN
(h)

Z±
ΛN

(hA)

)∣∣∣∣∣
=

∣∣∣∣∣− T ∑σ e−
1
T H±

ΛN
(σ)

Z±
ΛN

(h)

(
− εσx

T

)
+ T ∑σ e−

1
T H±

ΛN
(σA)

Z±
ΛN

(hA)

(
− εσx

T

)∣∣∣∣∣
= ε
∣∣∣∑

σ

µΛN ,h[σ]σx + ∑
σ

µΛN ,hA [σ]σx

∣∣∣
= ε
∣∣∣⟨σx⟩ΛN ,h + ⟨σx⟩ΛN ,hA

∣∣∣ ≤ 2ε.

Therefore, ∥∥∥∥∣∣∣ ∂

∂hx
∆A(h)

∣∣∣2∥∥∥∥
∞
≤ ∑

x∈A

∣∣∣∣ ∂

∂hx
∆A(h)

∣∣∣∣2 ≤ |A|4ε2.

We deduce using Lemma 3.3 that

P
[
|∆A(h)| > λ

∣∣{hx : x ∈ Ac}
]
≤ 2e

− 1
2

λ2

4ε2 |A| .

Thenceforth,

P
[
|∆A(h)| > λ

]
= ∑

h∈RΛN

P
[
|∆A(h)

∣∣ ≥ λ|{hx : x ∈ Ac}
]
P
[
{hx : x ∈ Ac}

]
≤ 2e

− 1
2

λ2

4ε2 |A| ∑
h∈RΛN

P[{hx : x ∈ Ac}]

≤ 2e
− 1

2
λ2

4ε2 |A| , (3.3)

which yields (i). Let us prove (ii). First, we notice that

∆A(h)− ∆A′(h) = F±(hA′
)−F±(hA)

14



3.3. Proof of Theorem 3.1

and that the distribution of (hA, hA′
) conditioned on {hx : x ∈ (A ∪ A′)c} is

the same as the distribution of (hA⊕A′
, h) conditioned on the same set. Thus,

F±(hA)−F±(hA′
) = ∆A(h)− ∆A′(h)

has the same conditional distribution as

F±(h)−F±(hA⊕A′
) = ∆A⊕A′(h).

From (i), we get

P
[
|∆A⊕A′(h)| > λ

∣∣{hx : x ∈ (A ∪ A′)c}
]

= P
[
|∆A(h)− ∆A′(h)| > λ

∣∣{hx : x ∈ (A ⊕ A′)c}
]

≤ 2e
− λ2

8ε2 |A⊕A′ | ,

and by the same argument as used in (3.3), we conclude that

P
[
|∆A⊕A′(h)| > λ

]
≤ 2e

− λ2

8ε2 |A⊕A′ | . □

3.3.2 Extension of the Griffiths–Peierls argument

Definition 3.3.3 Let U be the collection of all simply connected subsets A ⊂
ΛN containing the origin.

Definition 3.3.4 Let A ⊂ Zd. We define

∂A := {xy : x ∼ y, x ∈ A, y /∈ A}

the edge boundary of A,

∂in A := {x ∈ A : ∃y /∈ A, x ∼ y},

the inner vertex boundary of A, and

∂ex A := {x /∈ A : ∃y ∈ A, x ∼ y},

the external vertex boundary of A.

Remark 3.5 The three notions of contours defined above are related by the equation

|∂ex A| = |∂A| ≤ 2d|∂in A|. (3.4)

Let A0 ∈ U be the sign component of the origin, namely the maximal
simply connected component containing the origin in which all the spins have
the same sign as the origin. We note that A0 is the component enclosed by the
disagreement loop introduced in the proof of Theorem 2.3 and corresponding
to ∂exA0 here.

When attempting to use the Griffiths–Peierls argument, the first thing
we notice is that if we flip the spins located inside sign component of the
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3. Random field Ising model

origin, the sign of the term in the Hamiltonian associated to the action of the
random magnetic field will also be flipped. Hence, the change in Hamiltonian
depends on each instance of the field h. As a result, this change cannot be
uniformly bounded, which prevents us from going further in the argument.
This can be solved by flipping both the spin and the sign of the external field
inside A0. We do so by considering the mapping

RZd × Ω −→ RZd × Ω

(h, σ) 7−→ (hA, σA),

where (hA, σA) is defined as in (3.2).

Let d ≥ 3. We consider without loss of generality that the model has ”+”
boundary conditions. By flipping both the spin and the sign of the magnetic
field component inside A0, analogously as in the classical Griffiths–Peierls
argument, the decrease in the system’s energy is only due to the vertices that
are not in the sign component but that are adjacent to it. Consequently,

H+
ΛN

(hA0 , σA0) = H+
ΛN

(h, σ)− 2|∂A0|

= H+
ΛN

(h, σ)− 2|∂exA0|.

Following tightly the strategy of the Griffiths–Peierls argument, we have

Q+
ΛN

[A0 = A] =
∫

RΛN
µ+

ΛN ,h[A0 = A]dP(h)

=
∫

RΛN
∑

σ:A0=A

e−T−1 H+
ΛN

(h,σ)

Z+
ΛN

(h)
dP(h)

=
∫

RΛN
∑

σ:A0=A

e−T−1 H+
ΛN

(hA ,σA)

Z+
ΛN

(hA)
e−2T−1|∂ex A| Z+

ΛN
(hA)

Z+
ΛN

(h)
dP(h)

≤ sup
A∈U

e−2T−1|∂ex A| Z+
ΛN

(hA)

Z+
ΛN

(h)
, (3.5)

where the last equation stems from the fact that

∫
RΛN

∑
σ:A0=A

e−T−1 H+
ΛN

(hA ,σA)

Z+
ΛN

(hA)
dP(h) = EP[µ+

ΛN ,h(A0 = A)] ≤ 1

by definition of a probability measure.

Let

E :=
{
(h, σ) ∈ (ΛN , ΩΛN ) : sup

A∈U

Z+
ΛN

(hA)

Z+
ΛN

(h)
e−|∂ex A|T−1 ≤ 1

}
.

On the event E , the probability that σ0 = −1 decays exponentially in function
of |∂exA0|. Hence, on this event, the rest of the strategy is utterly similar as
Griffiths–Peierls argument, and the desired result follows seamlessly. The
remaining task consists of proving that the bad event E c only happens with
very small P-probability. More precisely, we want to show that

P(E c) ≤ e−Cε−2
.
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3.3. Proof of Theorem 3.1

3.3.3 A naive first attempt

First, notice that

E c =

{
sup
A∈U

Z+
ΛN

(hA)

Z+
ΛN

(h)
e−|∂ex A|T−1

> 1
}

=

{
sup
A∈U

T log
(Z+

ΛN
(hA)

Z+
ΛN

(h)

)
− |∂ex A| > 0

}
=

{
sup
A∈U

∆A(h)
|∂ex A| > 1

}
,

Based on Lemma 3.4, ∆A(h) has a sub–Gaussian distribution with respect
to the probability measure P, and this is a heavy–tailed distribution. We hope
to be able to use this property to bound the P-probability of E c.

We start by attempting a naive approach, relying on the classical union
bound. ∀n ∈ N, let

Γn := {A ∈ U : |∂ex A| = n}
be the set of simply connected component in ΛN containing the origin and
having an edge boundary of size n. Let us compute |Γn|. First, we notice that
because A ∈ Γn is simply connected, ∀x, y ∈ ∂ex A,

∥xi − yj∥ ≤ 2 (3.6)

for some i, j ∈ {1, 2}, where x1, x2 and y1, y2 are respectively the endpoints of
x and y.

In order to compute Γn, we use the depth-first search (DFS) process,
which is a greedy algorithm that consists in exploring one by one all possible
paths in the graph. We use it to exhibit all possible contours ∂ex A of size
n. Let us detail the procedure. To start with, based on Equation (3.6), since
we want the origin to be contained in the connected component, one has to
choose an initial edge that is at l1-distance less than or equal to 3n from the
edges adjacent to 0. Accordingly, we can choose any edge in the box Λ3n. In
Λ3n, there are exactly (2·3n)d−1d edges. As d ≥ 3, there are

(2·3n)d−1d ≤ (2dn)d

choices for initiating the process. Next, when exploring the graph to find
a component of size n, the algorithm will make 2n steps (each edge that is
crossed will be crossed in both directions by the DFS algorithm). We should
now count, at each step, how many possible moves can be realized. Suppose
we sit on the edge x1x2. One can choose to go on one of the edges having one
endpoint in common with x1x2. There are 2d edges sharing the endpoint x1
and 2d edges sharing the endpoint x2, which adds up to 4d choices. Those
edges are still at l1-distance 0 of x1x2, hence one can decide either to choose
one of these edges, or to go further. In the second case, one can move on one
of the 2d − 1 adjacent edges. Those edges lie at l1-distance 1 of x1x2, so once
more, one can decide to choose one of these edges, or to go further. In the
latter case, one can once again move on one of the 2d − 1 adjacent edges.

Therefore, for each of the n steps where a new edge is explored, there
are

4d·
(
(2d − 1) + 1

)
·
(
(2d − 1) + 1

)
= 4d·2d·2d = 16d3

17



3. Random field Ising model

x1 x2

Figure 3.1: Edges that can be explored by the DFS at step k + 1 of the process, knowing that we
lie on edge x1x2 at step k. The edges colored in orange are at l1-distance 0 of x1x2, the edges
colored in green are at l1-distance 1 of x1x2 and the edges colored in blue are at l1-distance 2 of
x1x2. We point out that this picture is in dimension d = 2, and thus not accurate for representing
the situation, as the proof is for dimension d ≥ 3.

choices in total. The other n steps consist in crossing edges that have already
been crossed in the opposite direction, since the DFS algorithm traces back its
path. This yields the bound

|Γn| ≤ (2nd)d(16d3)2n. (3.7)

Now, using Lemma 3.4, one has that

P

[
sup
A∈U

∆A(h)
|∂ex A| > 1

]
≤ ∑

n∈N

P

[
sup
A∈Γn

∆A(h)
n

> 1

]

≤ ∑
n∈N

∑
A∈Γn

P
[∆A(h)

n
> 1

]
≤ ∑

n∈N

(2nd)d(16d3)2n2 exp
(

−n2

8ε2 supA∈U |A|

)
.

Using the isoperimetric inequality

|A| ≤ C|∂ex A|
d

d−1 = Cn
d

d−1 (3.8)

leads to

P

[
sup
A∈U

∆A(h)
|∂ex A| > 1

]
≤ 2 exp

(
C1 log(n) + C2n − C3ε−2n

d−2
d−1

)
.

The dominating term in the above exponential is of order n, hence the
sum does not converge and this approach does not work.

3.3.4 Coarse–graining method

The reason for the previous failure is rather intuitive : if for some A ∈ Γn, the
quantity ∆A(h) is greater than n, then, with high probability, for a component
A′ ∈ Γn very similar to A, this will also be the case. In other words, the
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3.3. Proof of Theorem 3.1

events are highly dependent, hence the same phenomenon is counted with
big multiplicity in the sum. To address this issue, we want to ”regroup” the
components that are almost identical, so that they contribute only once to
the sum. The idea, known as the coarse–graining method, is to ”blurry” the
elements of Γn, so that the components that appeared previously very similar
will then be identical. Instead of summing on all the elements of Γn, we only
sum on the possibles images of a contour through this process. We will also
have to pay a price for considering coarse–grained components instead of
original components. However, because of Lemma 3.4, the difference between
∆A(h) and its coarse–grained version is a sub–Gaussian process. To detail the
coarse–graining method, we rely on the work of Bovier [2] and Fisher et al.
[8].

Figure 3.2: Successive coarse–graining of a contour

Let k, n ∈ N. We consider the 2kZd-lattice, i.e. the lattice made of boxes
of side–length 2k, that we call 2k-boxes.

Definition 3.3.5 We define the 2k-approximation of A ∈ Γn as the set of all
2k-boxes being such that at least half of the points in the box also belong to A.
Namely,

Ãk := {C0 is a 2k-box : |C0 ∩ A| ≥ 1
2

2kd}.

We call admissible cubes the elements of Ãk. We denote Ak the union of all
admissible cubes.

A

2k
Ak

Figure 3.3: 2k-approximation of A ∈ Γn

Definition 3.3.6 Let
Fn,k := {Ak : A ∈ Γn}
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3. Random field Ising model

be the set of possibles images of the elements of Γn by 2k–approximation.

Let m ≥ 1. Notice that

sup
A∈Γn

|∆A(h)| ≤ sup
Am∈Fn,m

|∆Am(h)|+ sup
Am∈Fn,m

sup
A∈Γn

|∆Am(h)− ∆A(h)|.

For all α1, α2 ∈ N such that α1 + α2 ≤ n, it follows that

P

[
sup
A∈Γn

|∆A(h)| > n

]
≤ P

[
sup

Am∈Fn,m

|∆Am(h)| > α1

]

+ P

[
sup

Am∈Fn,m

sup
A∈Γn

|∆Am(h)− ∆A(h)| > α2

]
.

Even though ∆Am(h)−∆A(h) is a ε2|A⊕ Am|-sub–Gaussian quantity, for
m large, A is too different from its 2m-approximation Am and as a consequence,
the symmetric difference |A ⊕ Am| is too large for our purpose. We resolve
this by using triangular inequality to only compare the difference between
two consecutive box–approximations of A. More precisely, for all (αi)

m
i=1 such

that
m

∑
i=1

αi ≤ n,

it holds that

P

[
sup
A∈Γn

|∆A(h)| > n

]
≤ P

[
sup

Am∈Fn,m

|∆Am(h)| > αm+1

]

+
m

∑
k=1

P

[
sup

Ak∈Fn,k

sup
Ak−1∈Fn,k−1

|∆Ak (h)− ∆Ak−1(h)| > αk

]
.

Next, by union bound,

P

[
sup
A∈Γn

|∆A(h)| > n

]
≤ ∑

Am∈Fn,m

P
[
|∆Am(h)| > αm+1

]
+

m

∑
k=1

∑
Ak∈Fn,k

∑
Ak−1∈Fn,k−1

P
[
|∆Ak (h)− ∆Ak−1(h)| > αk

]
.

By Lemma 3.4,

P

[
sup
A∈Γn

|∆A(h)| > n

]
≤ 2|Fn,m| exp

(
−α2

m+1
8ε2 supAm∈Fn,m

|Am|

)

+ 2
m

∑
k=1

|Fn,k||Fn,k−1| exp

(
−α2

k
8ε2 supAk∈Fn,k ,Ak−1∈Fn,k−1

|Ak ⊕ Ak−1|

)
.

(3.9)
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3.3. Proof of Theorem 3.1

Upper bounding of the symmetric difference between successive coarse–
grained components

Let us show that ∀k ∈ N and ∀A ∈ Γn,

|Ak ⊕ Ak−1| ≤ C2kn.

We rely on the work of Affonso et al. [1]. We start by computing |Ak\Ak−1|.

Definition 3.3.7 Let

Xk := {Ck ∈ Ak : ∃Ck−1 ∈ Ak−1, C′
k−1 /∈ Ak−1 s.t. Ck−1 ∩ Ck ̸= ∅,

C′
k−1 ∩ Ck ̸= ∅}.

One readily sees that all contributions to the quantity |Ak\Ak−1| will be made
by elements of Xk, i.e. admissible 2k-cubes that contain both admissible
2k−1-cubes and non–admissible 2k−1-cubes.

Let Ck ∈ Xk. Let also Ck−1 ∈ Ak−1, C′
k−1 /∈ Ak−1 such that Ck−1 ∩ Ck ̸=

∅, C′
k−1 ∩ Ck ̸= ∅. We denote U := Ck−1 ∪ C′

k−1. Without loss of generality,
we assume that U = [1, 2k−1]d−1 × [1, 2k]. By definition of admissibility,

1
2

2(k−1)d ≤ |A ∩ U| ≤ 3
2

2(k−1)d. (3.10)

Ck−1

C ′k−1

Ak ∩ U

U

Figure 3.4: U = Ck−1 ∩ C′
k−1.

Lemma 3.6 [1, Lemma 3.15, Lemma 3.17] ∀k ∈ N, Ck ∈ Xk, we have

2k(d−1) ≤ C|∂ex A ∩ Ck|.

The lemma is intuitively clear as only one cube in U is admissible, so
the boundary has to cover a sufficiently large ”area” separating points in A
and points outside of A. In the most simple case, we can imagine that this
area is horizontal and flat, and it cuts the rectangle into two parts. As it is a
surface with side length 2k embedded in a space of dimension d, it has size
2k(d−1). Any boundary that is more sophisticated than that will have a larger
size, hence the lower bound.
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3. Random field Ising model

Proof We note that since |∂ex A ∩ U| ≤ |∂ex(A ∩ U)|, one cannot simply make
use of the isoperimetric inequality (3.8). Rather, one can decide to project the
points of ∂ex A ∩ U onto the faces of U and count the number of projected
points on each face. We denote {ei : 1 ≤ i ≤ d} the standard orthonormal
basis of Zd. For the sake of simplicity, we write U = ∏d

i=1[1, ri], where
ri ∈ {2k−1, 2k}. For all i ≤ d, we define

Ui := {x ∈ U : xi = 1},

the face of U that is perpendicular to the direction ei. The line that connects a
point x ∈ Ui to the opposite face of Ui is

li
x := {x + kei : 1 ≤ k ≤ ri}.

For any set A ⊂ Zd, the projection of A ∩ U into the face Ui is the set

Pi(A ∩ U) := {x ∈ Ui : li
x ∩ A ̸= ∅}.

If, when traveling via a straight line from U ∩ A to a face of the cube, we cross
points that are outside of A, it is certain that at least once we had to cross the
boundary ∂ex A. In this case, we say that the projected point is a good point.
Otherwise, it is a bad point. The sum of the good points over all the faces of
the cubes then gives a lower bound for ∂ex A ∩ U, and this will be the key for
proving the desired statement. We let

PG
i (A ∩ U) := {x ∈ Pi(A ∩ U) : li

x ∩ (U\A) ̸= ∅}
be the set of good points and

PB
i (A ∩ U) := Pi(A ∩ U)\PG

i (A ∩ U)

be the set of bad points.

Ck−1

C ′k−1

Ak ∩ U

U

Uj

p1

p2

Figure 3.5: p1 is a good point and p2 is a bad point for the face Uj.

Let j ≤ d and p ∈ PB
j (A ∩ U) be any bad point in the projection onto

the face j. Let rj := |l j
p|. We have

|PB
j (A ∩ U)| = r−1

j ∑
p∈PB

j (A∩U)

|l j
p|

≤ r−1
j |A ∩ U| ≤ 3

2
2(k−1)dr−1

j .

We differentiate two cases.
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3.3. Proof of Theorem 3.1

(i) Suppose |Pj(A ∩ U)| > 7
8 |Uj| for some j ≤ d. Then,

7
8
|Uj| < |Pj(A ∩ U)| ≤ |PG

j (A ∩ U)|+ |PB
j (A ∩ U)|

≤ |∂ex A ∩ U|+ 3
2

2d(k−1)r−1
j

Using that rj ∈ {2(k−1), 2k} and |Uj| ∈ {2d(k−1), 2dk}, it holds that

7
8
|Uj| −

3
2

2(k−1)dr−1
j =

1
8
(7|Uj| − 12.2d(k−1)r−1

j )

≥ 1
8
(7.2(k−1)d − 6.2d(k−1))

≥ 1
4

2d(k−1).

Finally,
2d(k−1) ≤ 4|∂ex A ∩ U|. (3.11)

(ii) Suppose |Pj(A ∩ U)| ≤ 7
8 |Uj| for all j ≤ d. We start by proving by

induction on the dimension d that

d

∑
i=1

|Pi(A ∩ U)| ≤ C|∂ex A ∩ U|.

For d = 2, U = [1, r1]× [1, r2]. If there are no bad points in P1(A ∩ U),
then one readily sees that

|P1(A ∩ U)| = |PG
1 (A ∩ U)| ≤ |∂ex A ∩ U|.

If there is a bad point p = (1, p2) ∈ PB(A ∩ U), by definition, l1
p ⊂

A ∩ U. By assumption, |P1(A ∩ U)| ≤ 7
8 |Ui| < |Ui|, so there exists

p′ = (1, p′2) ∈ U1\P1(A ∩ U). This implies in turn that l1
p′ ∈ Ac ∩ U.

Therefore, for any k ≤ r1, as (k, p2) ∈ A ∩ U and (k, p′2) /∈ A ∩ U, we can
find a point pk = (k, pk

2) ∈ ∂ex A ∩ U. We notice that ∀k1 ̸= k2, pk1 ̸= pk2 ,
so r1 ≤ |∂ex A ∩ U|. Hence

|P1(A ∩ U)| ≤ |U1| = r2 ≤ 2r1 ≤ 2|∂ex A ∩ U|.

By the same argument,

|P2(A ∩ U)| ≤ 2|∂ex A ∩ U|,

and thus,
2

∑
i=1

|Pi(A ∩ U)| ≤ 4|∂ex A ∩ U|.

Now, if the statement holds in dimension d − 1, we prove that it also
holds in dimension d. We split U into layers by setting

Lk := {x ∈ Zd : xd = k}

23



3. Random field Ising model

U ∩ L1

U ∩ Ln

Ud

...

Figure 3.6: Splitting U into layers

for every k ≤ rd. Then, we have

d

∑
i=1

|Pi(A ∩ U)| =
d−1

∑
i=1

rd

∑
k=1

|Pi(A ∩ U) ∩ Lk|+ |Pd(A ∩ U)|

=
rd

∑
k=1

d−1

∑
i=1

|Pi(A ∩ U) ∩ Lk|+ |Pd(A ∩ U)|.

One can notice that Pi(A ∩ U) ∩ Lk = Pi(A ∩ U ∩ Lk). Define

Uk := U ∩ Lk.

For all p ∈ PB
j (A ∩ Uk), by definition, l j

p ⊂ A ∩ Uk. Let x ∈ l j
p. We

can associate x to a point x′ ∈ Pd(A ∩ U) by setting x′m = xm for all
m ≤ d − 1, and x′d = 1.

U ∩ L1

U ∩ Ln

Ud

...

p x
ljp

x′

Figure 3.7: x′ is the projection of x on Ud

Hence, it holds that

∑
p∈PB

j (A∩Uk)

|l j
p| ≤ |Pd(A ∩ U)|.
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This leads to

rj|PB
j (A ∩ Uk)| = ∑

p∈PB
j (A∩Uk)

|l j
p| ≤ |Pd(A ∩ U)|.

It follows that

|PB
j (A ∩ Uk)| ≤ r−1

j |Pd(A ∩ U)|

≤ 7
8
|Ud|r−1

j ≤ 7
8

(
∏
q ̸=d

rq

)
r−1

j

≤ 7
8

(
∏

q ̸=d,a ̸=r
rq

)
=

7
8

∣∣(Uk)j
∣∣, (3.12)

where
∣∣(Uk)j

∣∣ is simply the projection of U ∩ Lk on the face j.

We consider again two cases.

• If |Pi(A ∩ Uk)| ≤
7
8+1

2

∣∣(Uk)i
∣∣ for all i ≤ d − 1, then by induction

hypothesis,
d−1

∑
i=1

|Pi(A ∩ Uk)| ≤ C|∂ex A ∩ Uk|.

• If there exists j ≤ d − 1 such that |Pj(A ∩ Uk)| >
7
8+1

2

∣∣(Uk)j
∣∣, by

Equation (3.12)

|PG
j (A ∩ Uk)| = |Pj(A ∩ Uk)| − |PB

j (A ∩ Uk)|

≥ |
7
8 + 1

2

∣∣(Uk)j
∣∣− 7

8

∣∣(Uk)j
∣∣ ≥ 7

8 − 1
2

∣∣(Uk)j
∣∣.

Accordingly,

∣∣(Uk)j
∣∣ ≤ 2

1 − 7
8
|PG

j (A ∩ Uk)| ≤ 2
1 − 7

8
|∂ex A ∩ Uk|.

By noticing that for all i ≤ d,

|(Uk)i| ≤ (2U)d−2 ≤ 2d−2∣∣(Uk)j
∣∣,

we obtain that

d−1

∑
i=1

|Pi(A ∩ Uk)| ≤
d−1

∑
i=1

|(Uk)i|

≤ (d − 1)2d−2|(Uk)j|

≤ (d − 1)2d−1

1 − 7
8

|∂ex A ∩ Uk|

≤ C|∂ex A ∩ Uk|.
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Now, it holds that

d

∑
i=1

|Pi(A ∩ U)| ≤
rd

∑
i=1

d−1

∑
i=1

|Pi(A ∩ Uk)|+ |Pd(A ∩ U)|

≤
rd

∑
i=1

C|∂ex A ∩ Uk|+ |Pd(A ∩ U)|

≤ C|∂ex A ∩ U|+ |Pd(A ∩ U)|.

One notices that for any j ≤ d, we can repeat the same strategy by
splitting U into layers {x ∈ U : xj = k}, where k ≤ rj. This way, we
obtain

d

∑
i=1

|Pi(A ∩ U)| ≤ C|∂ex A ∩ U|+ |Pj(A ∩ U)|

for all j ≤ d. By summing over all possible values of j, we conclude

d

∑
j=1

d

∑
i=1

|Pi(A ∩ U)| ≤
d

∑
j=1

C|∂ex A ∩ U|+
d

∑
j=1

|Pj(A ∩ U)|

⇐⇒
d

∑
i=1

|Pi(A ∩ U)| ≤ C|∂ex A ∩ U|, (3.13)

which ends the induction.

Next, by Remark 3.4 and Equation (3.13),

1
2d

|∂ex(A ∩ U)| ≤ |∂in(A ∩ U)|

≤ |∂in(A ∩ U) ∩ ∂inU|+ |∂in(A ∩ U) ∩ (U\∂inU)|
≤ |∂inU|+ |∂in A ∩ U|

≤ 2
d

∑
i=1

|Pi(A ∩ U)|+ |∂ex A ∩ U|

≤ C|∂ex A ∩ U|. (3.14)

Furthermore, by isoperimetric inequality (3.8), Equation (3.10) and Equa-
tion (3.14),

2k(d−1) ≤ C|A ∩ U|
d−1

d

≤ C|∂ex(A ∩ U)|
≤ C|∂ex A ∩ U|. (3.15)

From Equation (3.11) and Equation (3.15), we obtain

2d(k−1) ≤ C|∂ex A ∩ U| ≤ C|∂ex A ∩ Ck|. □

∀Ck ∈ Ak, using Lemma 3.6,

|Ck| = 2kd = 2d2k(d−1)

≤ 2kC|∂ex A ∩ Ck|.
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3.3. Proof of Theorem 3.1

Hence,

|Ak\Ak−1| = ∑
Ck∈Xk

|Ak\Ak−1 ∩ Ck|

≤ ∑
Ck∈Xk

|Ck| ≤ 2k ∑
Ck∈Xk

C|∂ex A ∩ Ck|

≤ 2kC|∂ex A| = 2kCn.

We apply the same reasoning for the quantity |Ak−1\Ak|. This yields

|Ak ⊕ Ak−1| = |Ak\Ak−1|+ |Ak−1\Ak| ≤ C2kn.

Upper bounding of the number of possible 2k-approximation of a contour in
Γn

Let us prove that

|Fn,k| ≤ exp
(

Ckn
2(d−1)k

)
. (3.16)

In order to do so, we rely on Fisher et al. [8].

Remark 3.7 By a slight abuse of notation, we denote

∂in Ak = {x ∈ Ak : ∃y /∈ Ak, x ∼ y}

i.e. ∂in Ak is the surface delimiting the coarse–grained set Ak.

It is clear that Ak defines uniquely ∂in Ak. Conversely, if we are only
given the boundary ∂in Ak, it is also the case that it uniquely defines Ak.
Indeed, given x ∈ ∂in Ak, as Ak is connected and as it is a finite union of
cubes, we have sufficiently enough information to determine unambiguously
which neighbours y ∼ x belong to Ak and this way, we can recover the whole
set Ak. As a consequence, |Fn,k| is also equal to the number of possible
coarse–grained contours ∂in Ak.

Lemma 3.8 [8, Proposition 1] ∀k ∈ N,

|∂in Ak| ≤ Cn.

Proof Recalling Definition 3.3.7, and because the surface of a 2k-cube is equal
to 2d·2k(d−1), one can notice that

|∂in Ak| ≤ ∑
Ck∈Xk

2d·2(d−1)k.

Using Lemma 3.6, it holds that

|∂in Ak| ≤ 2d ∑
Ck∈Xk

2(d−1)k

≤ ∑
Ck∈Xk

C|∂ex A ∩ Ck|

≤ C|∂ex A| = Cn. □
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3. Random field Ising model

Let us prove Equation (3.16). It might be that Ak is not connected, but
that it is made of a collection of connected components {Aα

k}α. Using Lemma
3.8,

|∂in Ak|
2d·2(d−1)k

≤ Cn
2(d−1)k

=: α∗

so there are less than ⌊α∗⌋ such connected components. Moreover,

∑
α

|∂in Aα
k | = |∂in Ak| ≤ Cn. (3.17)

For {xα}α a set of lattice points in 2kZd, we define d1 := ∥x1∥1 and for
any α,

dα := ∥xα − xα−1∥1.

Let Γk
(
{xα, aα}

)
be the number of contours ∂in Ak such that for all α,

xα ∈ ∂in Aα
k and |∂in Aα

k | = aα. By Grimmett [10, (4.24)], ∀a ∈ R, x ∈ Zd,

#{E : E connected component of size a containing x} ≤ 7da. (3.18)

∀α ≤ ⌊α∗⌋, ∂in Aα
k is a connected component. Hence, using Equation (3.17)

and Equation (3.18) yields

Γk
(
{xα, aα}

)
≤ ∏

α≤⌊α∗⌋
7daα

≤
(
7daα

)⌊α∗⌋

≤ exp
(

C ∑α aα

2(d−1)k

)
≤ exp

(
Cn

2(d−1)k

)
. (3.19)

Let us bound the number of possible choices of {dα}α. If Ak is connected,
we set D := Ak. If Ak is made of at least two connected components, we set

D := ∂in A ∪
( ⋃

α≤⌊α∗⌋
∂in Aα

k

)

and one can check that it is a connected set. In both cases, Equation (3.17)
yields

|D| ≤ Cn.

Since D is a connected set, it is proved for instance in Diestel [5, Proposi-
tion 1.5.6.] that we can remove edges from D until we extract a spanning tree
from it. One can explore this tree by using depth–first search process. We
decide to order the xα according to the order of exploration of those vertices
by the DFS process. We note that ∀α ≤ ⌊α∗⌋, the l1-distance dα is less than the
distance between xα and xα−1 in the tree. The number of edges in D is less
than 2d|D|

2 = d|D| and each edge is used at most twice during the exploration
process. Hence, it holds that

∑
α≤⌊α∗⌋

dα ≤ 2d|D|.
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By a classical counting argument,

#
{(

d1, ..., d⌊α∗⌋
)
∈ Z

⌊α∗⌋
+ : ∑

α≤⌊α∗⌋
dα ≤ 2d|D|

}

=
2d|D|

∑
N=1

#
{(

d1, ..., d⌊α∗⌋
)
∈ Z

⌊α∗⌋
+ : ∑

α≤⌊α∗⌋
dα = N

}
(3.20)

=
2d|D|

∑
N=1

(
N − 1 + ⌊α∗⌋

⌊α∗⌋

)

≤
2d|D|

∑
N=1

( CN
⌊α∗⌋

)⌊α∗⌋
≤ exp

(
Ckn

2(d−1)k

)
. (3.21)

Hence, we get at most

exp
(

Ckn
2(d−1)k

)
choices for the collection {dα}α.

Let us bound the number of possible choices of the collection {xα}α.
Suppose that the collection {dα}α is fixed. For x1, one can choose any point
among the a1 points of ∂ex A1

k . There are less than Cn points in ∂ex Ak, hence
a1 ≤ Cn. Then, to choose x2, one has to pick a point at l1-distance d2 of x1,
so a point among the Cdd

2 points in the ∥.∥1-ball of radius d2. We repeat the
same operation for all the α’s. We get

Cn ∏
α≤⌊α∗⌋

Cdd
α

possible outcomes for this process. Using the method of Lagrange’s multiplier
yields that the above product is maximal when all the xα are equidistant and
dα = n

⌊α∗⌋ for all α. Hence, for {dα}α fixed, we have at most

Cn
( n

α∗

)d⌊α∗⌋
= Cn

(
C2(d−1)k)d⌊α∗⌋

≤ exp
(
C ln(n) + ln(2)d2k⌊α∗⌋

)
≤ exp

(
Ckn

2(d−1)k

)
. (3.22)

choices for {xα}α.

Let us now bound the number of possibilities for {aα}α. We have that

∑
α≤⌊α∗⌋

aα ≤ n,

and that aα is divisible by 2(d−1)k for every α. Let α ≤ ⌊α∗⌋. There exists
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3. Random field Ising model

mα ∈ N such that aα = mα2(d−1)k. Hence,

#
{(

a1, ..., a⌊α∗⌋
)
∈ Z

⌊α∗⌋
+ : ∑

α≤⌊α∗⌋
aα ≤ n

}
= #

{(
a1, ..., a⌊α∗⌋

)
∈ Z

⌊α∗⌋
+ : ∑

α≤⌊α∗⌋
mα ≤ n

2(d−1)k

}

=
n2−(d−1)k

∑
N=1

#
{(

a1, ..., a⌊α∗⌋
)
∈ Z

⌊α∗⌋
+ : ∑

α≤⌊α∗⌋
mα = N

}
.

Similarly as in Equation (3.20), we get at most

exp
(

Ckn
2(d−1)k

)
(3.23)

possibilities for {aα}α.

In summary, |Fn,k| is given by

Γk
(
{xα, aα}

)
·#
{

choices for {xα}α

}
·#
{

choices for {dα}α

}
·#
{

choices for {aα}α

}
,

and by Equations (3.23), (3.19), (3.22) and (3.20), it holds that

|Fn,k| ≤ exp
(

Ckn
2(d−1)k

)
.

as desired.

Upper bounding of the bad event E c

Let us come back to Equation (3.9). At least half of the elements in the
boxes belonging to the 2m-approximation of A must also belong to A, thus
there must be at most |A|

2dm−1 boxes in the 2m-approximation of A. Using the
isoperimetric inequality (3.8) yields

|Am| ≤ 2dm |A|
2dm−1 = 2|A| ≤ Cn

d
d−1 .

Accordingly, Equation (3.9) becomes

P

[
sup
A∈Γn

|∆A(h)| ≥ n

]
≤ 2|Fn,m| exp

(
−α2

m+1

8ε2Cn
d

d−1

)
+

m

∑
k=1

2|Fn,k||Fn,k−1| exp

(
−α2

k
8ε2C2kn

)

≤ 2 exp

(
C1mn

2m(d−1)
−

C2α2
m+1n

d
1−d

ε2

)
+

m

∑
k=1

2 exp

(
C3n

2k(d−1)
−

C4α2
k

ε22kn

)

We choose m ∈ N such that 2m = n
1
3 and for all k ≤ m, αk := nk−2. The first

term in the equation becomes

2 exp

(
C1mn

2m(d−1)
−

C2α2
m+1n

d
1−d

ε2

)
≤ 2 exp

(
C1 ln(n)n

4−d
3 − C2n

d−2
d−1 ln(n)−4ε−2

)
≤ 2 exp

(
C1 ln(n)n

1
3 − C2n

d−2
d−1 ln(n)−4ε−2

)
≤ 2 exp

(
− n

d−2
d−1
(
C2ε−2 ln(n)−4 − C1n

5−2d
3d−3 ln(n)4))
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3.3. Proof of Theorem 3.1

As d ≥ 3, we have that 5−2d
3d−3 < 0, so for n large, the term is of order

exp
(
− Cn

d−2
d−1 ε−2

)
≤ exp

(
− Cn

1
2 ε−2

)
.

As for the second term in the equation, it holds that

m

∑
k=1

2 exp

(
C3n

2k(d−1)
−

C4α2
k

ε22kn

)
≤ 2

m

∑
k=1

exp

(
C3n

2k(d−1)
− C4n2k−4ε−22−k

)

≤ 2m exp

(
C3n2d+1

2md − C4n2m−4ε−22−m

)
≤ 2m exp

(
C3n1− d

3 2d − C4n
2
3 ln(n)−4ε−2

)
Once again, we have 1 − d

3 < 0, so for n large, the term is of order

exp
(
− Cn

2
3 ε−2).

In summary, we get that

P

[
sup
A∈Γn

|∆A(h)| > n

]
≤ exp

(
− Cn

2
3 ε−2).

It follows that

P[E c] = P

[ ⋃
n∈N

{
sup
A∈Γn

|∆A(h)| > n
}]

≤ ∑
n∈N

P

[
sup
A∈Γn

|∆A(h)| > n

]
≤ ∑

n∈N

exp
(
− Cn

2
3 ε−2) ≤ e−C1ε−2

. (3.24)

3.3.5 Conclusion of the proof

Let us bound Q+[σ0 = −1]. The event {σ0 = −1} can be split into two
subevents, depending on whether E is happening or not.

Q+[σ0 = −1] = Q+[{σ0 = −1} ∩ E ] + Q+[{σ0 = −1} ∩ E c]

≤ Q+[{σ0 = −1} ∩ E ] + P[E c].

According to Equation (3.5),

Q+[{σ0 = −1} ∩ E ] = ∑
A∈U

Q+[E , {σ0 = −1} ∩ A0 = A]

≤ ∑
A∈U

sup
A0=A,h∈E

e−2T−1|∂ex A| Z+
ΛN

(hA)

Z+
ΛN

(h)

≤ ∑
A∈U,A∈Γn

sup
A0=A,h∈E

e−2T−1|∂ex A|

≤ ∑
n≥1

∑
A∈U,A∈Γn

e−2nT−1
.
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3. Random field Ising model

Using Equation (3.7),

Q+[{σ0 = −1} ∩ E ] ≤ ∑
n≥1

|Γn|e−2nT−1

≤ ∑
n≥1

(2nd)d(16d3)2ne−nT−1

≤ ∑
n≥1

exp
(

n
T

(
dT log(2d) + 2T log(16d3)− 1

))
.

Let us choose

T <
1

d log(2d) + 2 log(16d3)
,

so that

dT log(2d) + 2T log(16d3)− 1 < 0.

One obtains

Q+[{σ0 = −1} ∩ E ] ≤ ∑
n≥1

e−CnT−1 ≤ e−C2T−1
. (3.25)

Putting together Equation (3.24) and Equation (3.25) and choosing a positive
constant C ≤ min

{C1
2 , C2

2
}

, one gets

Q+[σ0 = −1] ≤ e−2CT−1
+ e−2Cε−2

.

Ultimately, by using Markov’s inequality and Equation (3.1),

P
[
µ+[σ0 = −1] ≥ e−CT−1

+ e−Cε−2
]
≤

EP
[
µ+[σ0 = −1]

]
e−CT−1 + e−Cε−2

≤ Q+[σ0 = −1]
e−CT−1 + e−Cε−2

≤ e−2CT−1
+ e−2Cε−2

e−CT−1 + e−Cε−2 ≤ e−CT−1
+ e−Cε−2

,

which yields exactly the desired result.
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[8] D.S. Fisher, J. Fröhlich, and T. Spencer. The Ising model in a random
magnetic field. Journal of Statistical Physics, 34:863–870, 1984. URL https:

//link.springer.com/article/10.1007/BF01009445.

[9] Robert B. Griffiths. Peierls proof of spontaneous magnetization in a
two-dimensional Ising ferromagnet. Phys. Rev., 136:A437–A439, Oct 1964.

33

https://www.researchgate.net/publication/372654476_Phase_Transition_for_Long-Range_Random_Field_Ising_Model_in_Higher_Dimensions
https://www.researchgate.net/publication/372654476_Phase_Transition_for_Long-Range_Random_Field_Ising_Model_in_Higher_Dimensions
https://www.researchgate.net/publication/372654476_Phase_Transition_for_Long-Range_Random_Field_Ising_Model_in_Higher_Dimensions
https://www.cambridge.org/core/books/statistical-mechanics-of-disordered-systems/randomfield-ising-model/07A9340DA27A179CE6582003E860A1E1
https://www.cambridge.org/core/books/statistical-mechanics-of-disordered-systems/randomfield-ising-model/07A9340DA27A179CE6582003E860A1E1
https://www.cambridge.org/core/books/statistical-mechanics-of-disordered-systems/randomfield-ising-model/07A9340DA27A179CE6582003E860A1E1
https://doi.org/10.1007/BF01224901
https://doi.org/10.1007/BF01224901
https://link.aps.org/doi/10.1103/RevModPhys.39.883
https://link.aps.org/doi/10.1103/RevModPhys.39.883
https://link.springer.com/book/10.1007/978-3-662-53622-3
https://link.springer.com/book/10.1007/978-3-662-53622-3
https://onlinelibrary.wiley.com/doi/abs/10.1002/cpa.22127
https://onlinelibrary.wiley.com/doi/abs/10.1002/cpa.22127
https://arxiv.org/abs/2209.13998
https://link.springer.com/article/10.1007/BF01009445
https://link.springer.com/article/10.1007/BF01009445


Bibliography

doi: 10.1103/PhysRev.136.A437. URL https://link.aps.org/doi/10.

1103/PhysRev.136.A437.

[10] G. Grimmett. Percolation. Springer, 1999. URL https://link.springer.

com/book/10.1007/978-3-662-03981-6.

[11] John Z. Imbrie. The ground state of the three-dimensional random-field
Ising model. Communications in Mathematical Physics, 98(2):145 – 176, 1985.
doi: 10.1007/BF01220505. URL https://doi.org/10.1007/BF01220505.
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