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  Electron-electron interac�ons in high-mobility conductors can give rise to transport 

signatures resembling those described by classical hydrodynamics. Using a nanoscale 

scanning magnetometer, we image a striking hydrodynamic transport patern – sta�onary 

current vor�ces – in a monolayer graphene device at room temperature. By measuring 

devices with increasing characteris�c size, we observe the disappearance of the current 

vortex and thus verify a predic�on of the hydrodynamic model. We further observe that 

vortex flow is present for both hole- and electron-dominated transport regimes, but 

disappears in the ambipolar regime. We atribute this effect to a reduc�on of the vor�city 

diffusion length near charge neutrality. Our work showcases the power of local imaging 

techniques for unveiling exo�c mesoscopic transport phenomena.   

 



 
  



Transport phenomena in mesoscopic devices are governed by the rela�ve distance 

separa�ng carrier scatering events compared to the characteris�c device size 𝐿𝐿 . In a non-

interac�ng system, once the device size becomes smaller than the momentum-relaxing 

scatering length 𝑙𝑙mr  set by collision events with impuri�es and phonons (𝐿𝐿 ≪ 𝑙𝑙mr ), carriers 

move unimpeded un�l they are scatered off a device boundary. This ballis�c regime is of great 

scien�fic interest and manifests itself, for example, in transverse magne�c focusing experiments 

[1] or through a quan�zed conductance in quantum point contacts [2]. 

In contrast, momentum-conserving collisions between carriers play a minor role in the 

transport of conven�onal metals, because they occur much less frequently than momentum-

relaxing collisions [3, 4]. However, in materials where scatering events are scarce, such as 

encapsulated graphene and high-mobility Ga[Al]As heterostructures at intermediate 

temperatures, 𝑙𝑙mr can approach or even surpass the carrier-carrier scatering length (𝑙𝑙ee) for a 

finite temperature range. Consequently, in a device sa�sfying 𝑙𝑙ee ≪ 𝐿𝐿, 𝑙𝑙mr, transport proper�es 

become dominated by carrier-carrier interac�ons. This regime, governed by the collec�ve 

behavior of interac�ng carriers, can give rise to peculiar transport features that are unexpected 

when compared to tradi�onal diffusive or ballis�c transport, such as viscosity [5] or even 

turbulence [6]. Owing to the analogy to classical fluid flow, this transport regime is commonly 

referred to as the viscous or hydrodynamic regime. 

Ini�al theore�cal work on hydrodynamic electron transport predicted a decrease of the 

resis�vity with increasing temperature in metallic wires [7]. This effect, known as the Gurzhi 

effect, was first demonstrated experimentally in a Ga[Al]As heterostructure [8, 9]. Other 

hallmarks of hydrodynamic transport include the viscous Hall effect [10, 11, 12, 13], superballis�c 



conduc�on [14, 15, 16], flow without the Landauer-Sharvin resistance [17], Poiseuille flow in a 

channel [18, 19, 20, 21, 22], and Stokes flow around obstacles [23, 24]. One of the most 

remarkable predic�ons of hydrodynamic theory is the forma�on of sta�onary vor�ces (or 

whirlpools) [5, 25, 26, 27, 28, 29], which has been indirectly confirmed by nega�ve resistance 

measurements caused by current backflow [30, 31, 32]. Recently, para-hydrodynamic vor�ces 

were shown to exist in WTe 2 at cryogenic temperatures through direct imaging [33]. Although 

transport in this system is described by a hydrodynamic theory, the observed vor�ces do not 

originate from electron-electron interac�ons. Genuine electron-hydrodynamic vor�ces, although 

widely an�cipated [5, 29], have remained challenging to realize. 

Here, we demonstrate direct imaging of sta�onary current whirlpools in a monolayer 

graphene (MLG) device at room temperature via scanning nitrogen-vacancy (NV) magnetometry 

(Fig. 1A). We study the crossover regime from vortex-free to vortex flow (presence of a single 

whirlpool). We find that the vortex signature is most pronounced in the smallest devices and 

disappears upon increasing the device size. We observe the whirlpools in both electron and hole-

dominated regimes, but not as the doping approaches charge neutrality. Overall, our 

measurements are well explained by a hydrodynamic descrip�on and clearly rule out a purely 

diffusive theory. 

 

Imaging of current whirlpools 

 

The collec�ve mo�on of a viscous electron fluid can be described by the Navier-Stokes 

equa�on in conjunc�on with the con�nuity equa�on [3, 18],  



 𝐽𝐽(𝑟𝑟) − 𝐷𝐷𝜈𝜈2∇2𝐽𝐽(𝑟𝑟) + 𝜎𝜎0∇𝜙𝜙(𝑟𝑟) = 0  , (1) 

 ∇ ⋅ 𝐽𝐽(𝑟𝑟) = 0  . (2) 

 Here, the current density 𝐽𝐽(𝑟𝑟) reflects the flow velocity subject to a poten�al gradient ∇𝜙𝜙(𝑟𝑟) 

and a viscous term ∇2𝐽𝐽(𝑟𝑟). 𝐷𝐷𝜈𝜈 is the characteris�c length scale describing vor�city diffusion, 

commonly referred to as the Gurzhi length, and 𝜎𝜎0 is the Drude conduc�vity [18]. The Gurzhi 

length can further be related to microscopic scatering theory via [13, 14]:  

 𝐷𝐷𝜈𝜈 = 1
2�𝑙𝑙ee𝑙𝑙mr  . (3) 

 In order to resolve spa�al signatures of viscous electron flow, the characteris�c size of the 

device should be similar to or smaller than the Gurzhi length. For high-quality MLG at room 

temperature, 𝑙𝑙ee is on the order of 0.2  μm [11, 34] and 𝑙𝑙mr ∼ 1.0  μm [35], resul�ng in an 

expected 𝐷𝐷𝜈𝜈 on the order of 0.2  μm. 

Our MLG device consists of a uniform channel with disc-shaped side pockets (Fig. 1B). For 

this geometry, the cri�cal length scale is mostly set by the disc opening 𝑎𝑎 [33]. When 𝑎𝑎 is much 

larger than 𝐷𝐷𝜈𝜈, the channel current can enter the disc and produce a co-flowing current inside 

the disc (Fig. 1C). The flow patern is primarily governed by the poten�al gradient ∇𝜙𝜙(𝑟𝑟) and 

resembles diffusive transport. By contrast, when the disc opening is similar to or smaller than 

𝐷𝐷𝜈𝜈 , the laminar current through the main channel can no longer enter the disc; instead, a 

counter-flowing vortex current appears mediated by momentum-conserving interac�ons (Fig. 

1D). Therefore, the current direc�on in the disc – co-flowing or counter-flowing – serves as a 

hallmark to discriminate between diffusive and hydrodynamic transport. 

To map the current distribu�on in the channel and disc, we image the current-generated 

magne�c field ∼ 70 nm above the MLG sheet using a scanning NV magnetometer [36] (Fig. 1A). 



We use current amplitudes 𝐼𝐼0 = 2 − 30 μA that are sufficiently small to not heat the electron 

gas but s�ll easily detectable by our magnetometer [37]. To further enhance the sensi�vity, we 

modulate the current at 𝑓𝑓 ∼ 25 − 65 kHz and synchronize it with a spin-echo detec�on of the 

spin sensor’s quantum phase [20, 37]. A graphite back gate located ∼ 24   nm  beneath the 

graphene flake is used to tune the carrier type (electrons, holes) and concentra�on between ca. 

±2 ⋅ 1012 cm−2. 

Even deep into the hydrodynamic regime, the vortex current is expected to reach only a 

few percent of the total current 𝐼𝐼0. To discern the subtle vortex texture from the domina�ng 

channel flow, we align the device such that the channel current flows along 𝑥𝑥  while the 

transverse currents in and out of the disc flow along 𝑦𝑦 . Consequently, we can use the two 

magne�c field components 𝐵𝐵𝑥𝑥 ∼ +𝜇𝜇0𝐽𝐽′𝑦𝑦/2 and 𝐵𝐵𝑦𝑦 ∼ −𝜇𝜇0𝐽𝐽′𝑥𝑥/2 to obtain separate maps for 

each current direc�on. Here, 𝐽𝐽′𝑥𝑥  and 𝐽𝐽′𝑦𝑦  are the low-pass-filtered (due to the NV standoff 

distance) sheet current densi�es with units of  Am−1 ; 𝜇𝜇0 = 4𝜋𝜋 ⋅ 10−7 T/(Am−1). See (38) for 

a discussion of the current reconstruc�on. 

Figure 2A shows experimental maps of the current flow in the 𝑅𝑅 = 0.6  μm  disc, 

together with numerical simula�ons of Eqs. 1 and 2 for the hydrodynamic case (B) and the 

diffusive case (C), respec�vely. The sign and shape of the measured 𝐽𝐽′𝑦𝑦 matches the counter-

flow of the viscous simula�on. In addi�on to the vortex feature in the 𝑅𝑅 = 0.6  μm disc, the 

experiment also reproduces the smaller current vortex in the lateral voltage probe and the 

reduc�on in 𝐽𝐽′𝑥𝑥 along the channel edges (indica�ve of Poiseuille flow, see (38)). The hallmark 

sign of 𝐽𝐽′𝑦𝑦 and the detailed agreement between simulated and experimental maps cons�tutes 

the first piece of evidence that transport is governed by electron hydrodynamics in our doped 



MLG device. 

 

Transi�on from viscosity to diffusion-dominated transport 

 

To further support the hydrodynamic model, we image current flow in several discs (𝑅𝑅 =

0.6 − 1.5  μm) at a fixed carrier density of 𝑛𝑛 ≈ −1.7 ⋅ 1012 cm−2, shown in Fig. 3A. Vor�ces are 

present up to 𝑅𝑅 = 1.0  μm , and absent for the largest 𝑅𝑅 = 1.5  μm  disc, indica�ng the 

transi�on out of a viscosity-dominated transport regime. Assuming a device-independent Gurzhi 

length of 𝐷𝐷𝜈𝜈 = 0.28  μm , we accurately reproduce this transi�on with numerical simula�ons 

(Fig. 3B). 

The disappearance of the vortex with larger disc size may be explained with an intui�ve 

picture (Fig. 3C): as 𝑅𝑅  increases, so does the disc opening 𝑎𝑎 ≈ 𝑅𝑅  (see Fig. 1B). When 𝑎𝑎  is 

small, the channel current cannot enter the disc because viscosity suppresses the in- and out-

flowing currents; meanwhile, a vortex is generated in the disc through momentum transfer (le� 

sketch). As 𝑎𝑎  approaches the cri�cal opening 𝑎𝑎crit ≈ 4.7𝐷𝐷𝜈𝜈  [33], current starts entering the 

disc and the vortex fades (middle). Above 𝑎𝑎crit, the disc current reverses direc�on and flows as 

is expected from diffusive transport (right). Because the flow patern depends on the ra�o 𝑎𝑎/𝐷𝐷𝜈𝜈, 

we can es�mate 𝐷𝐷𝜈𝜈  by plo�ng the normalized transverse current density extracted 

symmetrically around the disc center as a func�on of 𝑅𝑅 ≈ 𝑎𝑎 (Fig. 3, D and E). Whereas we find 

excellent agreement for the larger discs, our model underes�mates the vortex flow for the 

smallest disc (𝑅𝑅 = 0.6  μm ). The devia�on is likely caused by the assump�on of a no-slip 

boundary condi�on; refined simula�ons with a finite slip length and complementary la�ce 



Boltzmann simula�ons both predict increased counter-flow for smaller discs (Fig. S13). 

 

Hole and electron carriers 

 

We next turn our aten�on to the carrier density dependence of the vortex flow. 

Transport models for graphene predict that both 𝑙𝑙mr and 𝑙𝑙ee vary with carrier density [39, 40, 

41], thus 𝐷𝐷𝜈𝜈 ∝ �𝑙𝑙ee𝑙𝑙mr should also depend on 𝑛𝑛. Figure 4A shows flow paterns for the 𝑅𝑅 =

0.6  μm  disc recorded for hole doping at 𝑛𝑛 ≈ −0.9 ⋅ 1012 cm−2 , near the charge neutrality 

point (CNP), and for electron doping at 𝑛𝑛 ≈ 0.9 ⋅ 1012 cm−2. Vortex flow is observed in both 

hole-dominated and electron-dominated regimes. Quite strikingly, however, the current 

backflow disappears near charge neutrality. 

For a more quan�ta�ve analysis, we record a series of magne�c field maps for varying 

carrier densi�es and fit them with numerical simula�ons to extract values for 𝐷𝐷𝜈𝜈 . Details 

regarding these simula�ons, including the implementa�on of a finite slip length boundary 

condi�on [18, 42], are discussed in (38). The resul�ng values for 𝐷𝐷𝜈𝜈 are ploted as a func�on of 

𝑛𝑛  in Fig. 4C. The data show a strong reduc�on of 𝐷𝐷𝜈𝜈  near the CNP; 𝐷𝐷𝜈𝜈  is approximately 

constant away from charge neutrality. Consistent with previous observa�ons [20, 22], we further 

observe a slight tendency for 𝐷𝐷𝜈𝜈 to decrease for large (hole) doping. Note that around the CNP, 

the data are s�ll best described by a hydrodynamic model with non-vanishing 𝐷𝐷𝜈𝜈, as opposed to 

a fully diffusive model (Fig. S15). 

The strong reduc�on of the Gurzhi length 𝐷𝐷𝜈𝜈  near the CNP, which has also been 

observed in a previous imaging experiment [43], can be explained by a reduc�on of the 



microscopic scatering lengths. In the low-density Fermi liquid regime near the CNP, charged 

impurity scatering is likely to limit the conduc�vity in our device ( 𝜎𝜎0 ∝ 𝑛𝑛 ) [, 39, 44]. 

Consequently, the mean free path with respect to momentum-relaxing interac�ons 𝑙𝑙mr =

ℎ
2𝑒𝑒2

𝜎𝜎0
√𝜋𝜋𝑛𝑛

 becomes propor�onal to √𝑛𝑛. Furthermore, 𝑙𝑙ee scales approximately as √𝑛𝑛 [11, 32]. 

One therefore expects 𝐷𝐷𝜈𝜈  to increase with carrier density near charge neutrality. In the 

ambipolar regime, current-relaxing electron-hole collisions need to be accounted for [45, 46], 

and more elaborate transport models may be required to describe the electronic transport 

accurately [47] and to connect the fited values for 𝐷𝐷𝜈𝜈 to the microscopic scatering lengths. 

Curiously, we find that 𝐷𝐷𝜈𝜈 is slightly larger for holes compared to electrons. This carrier 

asymmetry is also evident by a mildly increased vortex flow for holes in the 𝑅𝑅 = 0.6  μm disc 

(Fig. 4A). In addi�on, we observe an electron-hole inequality in the smallest inves�gated 

structure (𝑅𝑅 = 0.2  μm, Fig. S14). Further evidence for a carrier asymmetry is provided by a fit to 

the current flow profile along the main channel, which is expected to follow the Poiseuille law. 

Interes�ngly, these fits yield 𝐷𝐷𝜈𝜈 values for holes that are almost 2 × smaller compared to the 

vortex fits (Fig. S4A). By contrast, 𝐷𝐷𝜈𝜈 values for electrons are similar to those extracted from the 

vortex fits. Such electron-hole asymmetries are not expected from theory and merit further 

inves�ga�on. A possible explana�on is a carrier-type-dependent doping at the device edge, 

which would manifest itself in modified boundary condi�ons [48]. 

 

Discussion and outlook 

 

Our experiments demonstrate that hydrodynamic whirlpools mediated by electron-



electron interac�ons can be observed in high-mobility materials where 𝑙𝑙mr > 𝑙𝑙ee. The reversal 

of the current direc�on provides a clear spa�al hallmark of hydrodynamic transport compared to 

other signatures such as Poiseuille flow [20]. Addi�onally, unlike the intermediate temperatures 

(𝑇𝑇 ≲ 200 K) required to observe hydrodynamic flow through a constric�on [43], we find clear 

hydrodynamic signatures at room temperature, likely because of our smaller device geometry. 

Although vortex-like features can also emerge in the ballis�c regime [29, 33], this is 

unlikely in our case owing to several reasons: first, to be dominated by ballis�c effects, 𝑙𝑙ee would 

need to be comparable or larger than the disc diameter, which is 2𝑅𝑅 ≈ 2  μm for the largest 

disc where we observe a current whirlpool (Fig. 3A). This value is an order of magnitude larger 

than previously reported 𝑙𝑙ee ∼ 0.1 − 0.25  μm at room temperature [11, 22]. Second, vortex 

flow paterns in the ballis�c regime, although possible [29, 33], are expected to deviate from 

those predicted by the hydrodynamic model. Yet, we observe detailed agreement between our 

experimental data and the hydrodynamic simula�on (Fig. 3). Because the transi�on from the 

hydrodynamic to the ballis�c regime is smooth [19, 29], however, a minor ballis�c contribu�on 

to the flow patern cannot be ruled out for the smallest discs (𝑅𝑅 ≲ 0.6  μm). 

Further studies will be needed to inves�gate the nature of boundary scatering in more 

detail, especially in view of the observed electron-hole asymmetry. Our data suggest that some 

edge defects may only affect transport for a single carrier type (Fig. S14), poten�ally because of 

edge doping [48]. More work is required to gauge whether a simple boundary condi�on using a 

single parameter (the slip length 𝑙𝑙b ) is sufficient to describe these effects. Corresponding 

experimental studies would benefit from lower temperatures where the slip length is larger [42], 

or a smaller device size where boundary effects are more prominent. Beyond graphene 



monolayers, bilayer graphene (BLG) is a next obvious candidate, as the steeper rise of 𝑙𝑙ee with 

carrier density [32, 41], lower viscosity [30], and poten�ally dominant electron-hole collisions 

near charge neutrality [45] prominently alter the transport physics. Although BLG has been 

shown to exhibit a hydrodynamic transport regime [30, 32], it has thus far eluded verifica�on 

through scanning methods [37]. Finally, an exci�ng prospect is the imaging of non-linear 

hydrodynamic effects, such as preturbulence [49, 50] and turbulence [6], which may be possible 

with NV centers via relaxometry measurements [51, 52]. 
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Figures and Cap�ons 
 
 
   

Figure  1:  Schema�c of the scanning experiment. ( A) Configura�on of the encapsulated 

monolayer graphene (hBN-MLG-hBN) device and scanning nitrogen-vacancy magnetometer. ( 

B) Topography (AFM) image of the inves�gated graphene device. The device consists of a main 

channel and disc-shaped side pockets of varying radius 𝑅𝑅. The disc opening is approximately 

𝑎𝑎 ≈ 𝑅𝑅 (𝜃𝜃 ≈ 60∘ by design). Bright features are Au contacts. 𝐼𝐼0 is the source-drain current. ( 

C) Schema�c of current flow in the diffusive regime. ( D) In the hydrodynamic regime, current 

flow inside the disc reverses direc�on.  

   
 



  
Figure 2 
  
   

Figure  2:  Observa�on of current whirlpools. ( A) Measured channel flow 𝐽𝐽′𝑥𝑥 (top), 

transverse flow 𝐽𝐽′𝑦𝑦 (middle), and velocity plot of the current density vector 𝐽𝐽 (botom) in the 

hole-doped regime (𝑛𝑛 ≈ −1.7 ⋅ 1012 cm−2). ( B) Simula�on of the same geometry using the 

hydrodynamic model (𝐷𝐷𝜈𝜈 = 0.28  μm). ( C) Simula�on using the diffusive model (𝐷𝐷𝜈𝜈 =

0.001  μm). Both simula�ons use a no-slip boundary condi�on. Simulated maps are low-pass 

filtered for direct comparison with the experimental 𝐽𝐽′𝑥𝑥 and 𝐽𝐽′𝑦𝑦 maps (38). The dashed lines 

indicate the device edges. Scale bars are 1  μm. Measurements are at room temperature. 

   

 



  
Figure 3 
  
   

Figure  3:  Disc size determines the transport regime. ( A and  B) Transverse flow 𝐽𝐽′𝑦𝑦 as a 

func�on of disc radius 𝑅𝑅. Upper row shows the experimental data and lower row shows the 

simula�on using 𝐷𝐷𝜈𝜈 = 0.28  μm with a no-slip boundary condi�on. All plots are normalized by 

the device current 𝐼𝐼0. Scale bars are 1  μm. ( C) Schema�c illustra�ng the transi�on from 

vortex flow to vortex-free flow. ( D) Magnitude of the backflow as a func�on of disc size and 

Gurzhi length (numerical simula�on). Ploted is the transverse current density 𝐽𝐽′𝑦𝑦: =

[𝐽𝐽′𝑦𝑦(−𝑅𝑅/2,0) − 𝐽𝐽′𝑦𝑦(𝑅𝑅/2,0)]/2 at loca�ons (±𝑅𝑅/2,0) rela�ve to the center of the disc, 

marked by dots in (A) and (B) . The black squares are from the simula�ons in (B). The horizontal 

center line corresponds to 𝐷𝐷𝜈𝜈 = 0.28  μm. The dash-doted line indicates the cri�cal device 

size 𝑅𝑅crit ≈ 𝑎𝑎crit where 𝐽𝐽′𝑦𝑦 changes sign. ( E) Transverse current density 𝐽𝐽′𝑦𝑦 ploted as a 

func�on of 𝑅𝑅. Red dots are the experimental data extracted from the maps in (A) (error bars 

are two standard devia�ons). Curves correspond to simula�ons using 𝐷𝐷𝜈𝜈 = 0.28  μm 

assuming a no-slip boundary condi�on (solid black line) and a finite slip length (𝑙𝑙b = 81 nm, 

blue dashed line), respec�vely (38). Measurements are at room temperature. 

   

 



  
Figure 4 
  
   

Figure  4:  Carrier dependence of the Gurzhi length. ( A) Experimental 𝐽𝐽′𝑦𝑦 flow for hole 

doping at 𝑛𝑛 ≈ −0.9 ⋅ 1012 cm−2 (le�), near charge neutrality (middle), and for electron 

doping at 𝑛𝑛 ≈ 0.9 ⋅ 1012 cm−2 (right) for the 𝑅𝑅 = 0.6  μm disc. Scale bars are 1  μm. ( B) 

Schema�c representa�on of the electronic band structure and loca�on of the Fermi energy 𝐸𝐸F 

for the scans shown in (A). ( C) Gurzhi length 𝐷𝐷𝜈𝜈 as a func�on of carrier density 𝑛𝑛. 

Corresponding plots for the slip length 𝑙𝑙b and fits of the channel flow profiles are shown in 

Figs. S3 and S4, respec�vely. The gray region indicates the ambipolar transport regime (|𝐸𝐸F| ≤

2𝑘𝑘B𝑇𝑇, see (38)). The uncertain�es of 𝐷𝐷𝜈𝜈 values are around ±0.025  μm, and are dominated 

by systema�c errors caused by an imprecise knowledge of the device geometry, see (38) and 

Fig. S6. Measurements are at room temperature.   
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MATERIALS AND METHODS

Device fabrication

The encapsulated graphene device is assembled from mechanically-exfoliated graphene and hexagonal
boron nitride flakes using a pick-up technique (35, 54). The sample is then annealed in an Ar atmosphere at
350 ◦C for 3 hours. We define the shape of the contacts via electron beam lithography using a triple-layer
resist film of AR-P 632.04, AR-P 672.045, and AR-PC 5090.02, etch away the top hBN layer (CHF3/O2

plasma) and create a one-dimensional contact to the graphene sheet through deposition of a Cr/Au (10/50
nm) film and subsequent lift-off (35). Through a secondary electron beam lithography step followed by dry
etching, the device geometry is defined (visible through the color change in the stack in Fig. S1). A gold
patch was added in a third step to fix a fissure of the graphene sheet next to contact D.

The carrier density in the graphene sheet is tuned via a graphite back gate located dBG ≈ 24 nm below
the graphene sheet. Assuming a capacitive model with ϵr ≈ 3.76 (55), we use n = ϵ0ϵrVBG/(edBG) ≈
8.7·1012V−1cm−2·VBG. The associated Fermi energy is |EF| = ℏvF

√
π|n|, where vF is the Fermi velocity

and where the sign of EF equals the sign of n. Charge neutrality is typically found near VBG = 0V.

Scanning magnetometer setup

We use commercially available all-diamond scanning probes attached to quartz tuning forks for tip-sample
distance control (QZabre). A lock-in amplifier (Zurich Instruments HF2LI) is used to monitor the tun-
ing fork oscillation amplitude and update the target z-position of the sample stage (PI P-527.3CL) using a
PID controller. Optical initialization and readout of the NV center is achieved with a confocal microscope
(50 µm pinhole) featuring an objective with a numerical aperture of 0.75 (Mitutoyo M Plan Apo HR 50x).
We use a custom-built 520 nm pulsed diode laser for optical excitation of the NV center. The photolumines-
cence of the NV center is recorded with a single-photon avalanche photodiode (Excelitas SPCM-AQRH).
For the manipulation of the NV spin state, microwave pulses are generated using an IQ mixer (Marki
MMIQ-0205HSM) where the local oscillator is provided by a microwave synthesizer (NI Quicksyn FSW-
0020). The I and Q signals are generated by an arbitrary waveform generator (Spectrum DN2.663-04). The
microwave delivery is accomplished using an Al bond wire positioned several tens of micrometers away
from NV. The degeneracy of the mS = ±1 sublevels of the ground state of the NV center is lifted with a
permanent magnet located beneath the sample stage.

During magnetometry operation, we use two analog channels of the arbitrary waveform generator to apply
the source-drain voltage VSD and the back-gate voltage VBG synchronously with the pulsed experiments.
The resulting device current I0 is amplified using a transimpedance amplifier (FEMTO DHPCA-100) and
monitored with the data acquisition module of a digital lock-in amplifier (Zurich instruments MFLI).

Quantum sensing protocol

We use an AC quantum sensing technique to measure the magnetic field above the sample of interest (20,
37, 56). After initializing the spin state into the |0⟩ state, a π/2 pulse is applied to create the superposition
state 1/

√
2(|0⟩+ |−1⟩). For a duration τ/2, the spin evolves freely and interacts with the applied magnetic

field signal B⃗(t). For sufficiently small off-axis fields, the NV is only affected by the component BNV(t)

parallel to the symmetry axis of the NV center (57). After this evolution time, the spin state can be written
as |ψ⟩ = 1/

√
2(|0⟩+eiϕ(τ/2)|−1⟩) with ϕ(τ/2) = γe

∫ τ/2
0 BNV(t)dt (58). Here, γe/(2π) = 28.02GHz/T
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is the gyromagnetic ratio of the NV electronic spin. A subsequent π pulse effectively reverses the coupling
between the spin and the magnetic field (spin echo), and therefore, the total acquired phase after another
evolution time of τ/2 is given by ϕ(τ) = γe

∫ τ/2
0 BNV(t)dt− γe

∫ τ
τ/2BNV(t)dt. For the sinusoidal signals

with period T = τ used throughout this work, this expression evaluates to ϕ(τ) = 2
πγeBNVτ . A final π/2

pulse with a phase Φ relative to the initial microwave pulse converts ϕ into a population difference, and a
subsequent optical readout yields a PL signal of the form (37, 59):

CΦ = C0
ref

(
1− ϵ

2
+
ϵe−(τ/T2)α

2
cos
(
γNV

π

2
τB|| +Φ

))
(S1)

Here, C0
ref is the PL signal of the mS = 0 state, ϵ is the contrast of the NV center, T2 is the dephasing time,

and α is a free exponent. The phase ϕ is extracted from a set of four measurements (Φ ∈ {0, π/2, π, 3π/2}),

ϕ = arctan2(C3π/2 − Cπ/2, C0 − Cπ), (S2)

with arctan2 being the two-argument arctangent function, see Refs. (20, 37).

Reconstruction of current density

Reconstruction of the current density is performed in two steps. In a first step, we compute the in-plane (Bx

andBy) components of the magnetic field from the measured projectionBNV. We carry out the computation
in k-space (36, 43, 60),

B̂x =
ikxB̂NV

iexkx + ieyky − ezk
(S3)

B̂y =
ikyB̂NV

iexkx + ieyky − ezk
(S4)

where hat symbols denote two-dimensional Fourier transforms, k⃗ = (kx, ky) is the in-plane k-space vector

and k =
√
k2x + k2y . Further, e⃗ = (ex, ey, ez) = (sin θ cosφ, sin θ sinφ, cos θ) is the unit vector describing

the projection axis and (θ, φ) is the known anisotropy axis of the NV center.

For recovering the current density vector J⃗ = (Jx, Jy), we note that the stray fields in k-space are given by

B̂x =
1

2
µ0e

−kzĴy (S5)

B̂y = −1

2
µ0e

−kzĴx (S6)

where z is the standoff distance. Thus, Bx and By are low-pass filtered images of Jy and −Jx, respectively
(see Fig. S2). The filter convolution function is given by the inverse Fourier transform of e−kz , which has a
Lorentzian-like shape,

G = F−1
[
e−kz

]
=

z

2π[x2 + y2 + z2]3/2
(S7)

The J ′
x and J ′

y maps shown in the main manuscript represent these low-pass filtered maps of Jx and Jy,

J ′
x = G ∗ Jx = −2By/µ0 (S8)

J ′
y = G ∗ Jy = 2Bx/µ0 (S9)
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The convolution function has a full width at half maximum of approximately 1.5z, and sets the minimum
feature size for the J ′

x, J ′
y maps. Since the spatial transport features in our experiments are typically larger

than 100 nm, the low-pass filtering only has a minor effect on the images. If desired, the spatial resolution
could be improved to 0.5 − 1.0z using inverse filtering (36, 60), however, this procedure can introduce
image artifacts and thus, we refrained from using it in our analysis unless noted otherwise.

Note that due to a singularity at k = 0, the offsets of J ′
x and J ′

y are undefined (60, 61). For the J ′
y-maps

presented in this work, we fix the offset by subtracting the average value of the image. Since the channel of
the device is oriented along the x-axis, we expect approximately equal positive and negative contributions to
the J ′

y image (see Fig. S2). The aforementioned offset calibration is therefore appropriate for this component
of the current density. For the J ′

x image, an analogous offset correction is not possible and we determine
the offset from a region far away from the device.

Simulation of current density maps

For the simulations presented in the main text, we generally assume that variations in the carrier density
can be neglected, and that only a single carrier type is present in the device. Furthermore, we neglect the
effects of the small magnetic field (few tens of mT) applied to split the mS = ±1 sublevels of the NV
center, see Supplementary Text 4 for a detailed discussion about the effect of the bias field on the transport.
For direct comparison between experimental and simulated data, we compute the low-pass filtered version
of the current density (J ′

x, J ′
y) where necessary.

No-slip boundary condition

For the simulations involving a no-slip boundary condition (18), we solve the partial differential equation
describing the electronic transport using the Partial Differential Equation ToolboxTM in MATLAB®. We
solve Eqs. (1,2) of the main text for (ϕ, Jx, Jy), where ϕ is the electric potential, by applying suitable
Dirichlet boundary conditions for all boundaries. We note that fixing the electric potential on both the
source and drain contact results in varying amounts of current flow depending on simulation parameters
such as Dν and σ0. Where necessary, we rescale the results to reflect the desired amount of current flowing
through the device. This is possible due to the linearity of the equation and is equivalent to a change of the
source-drain potential. All simulations are performed with a mesh size smaller or equal to 20 nm. For the
diffusive case, we set Dν = 1nm.

General boundary condition

For the experimental determination of the hydrodynamic model parameters, we solve the Navier-Stokes
equation using COMSOL Multiphysics®, similar to Ref. (33). We solve the partial differential equations
for the variables (ϕ, Jx, Jy) with a maximal mesh size of 20 nm. For the source and drain contacts, we
impose Dirichlet boundary conditions fixing the injected current and the potential, respectively. For the
remaining boundaries, we impose a Neumann boundary condition for the current density:

−(n⃗ · ∇)J⃗ = −(n⃗ · ∇)J⃗ t − (n⃗ · ∇)J⃗n =
(
ltb
)−1

J⃗ t + (lnb )
−1 J⃗n (S10)

Here, the tangential and normal components of the current density are denoted by the superscripts t and
n, respectively, where n⃗ denotes the outward normal vector. We introduce two independent slip length
parameters ltb and lnb for the tangential and the normal component, respectively. By setting lnb = 0.1 pm,
we force the normal current density J⃗n to (virtually) vanish at the device edge without forcing its derivative
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(n⃗ · ∇)J⃗n to vanish. The remaining tangential part of the boundary condition is identical to the commonly
employed boundary condition with variable slip length ltb (18, 42):

−(n⃗ · ∇)J⃗ t =
(
ltb
)−1

J⃗ t (S11)

Estimation of Dν , lb and z from the vortex flow

We extract estimates for the vorticity diffusion length Dν , slip length lb := ltb and standoff z by comparing
the experimental data to simulations based on the Navier-Stokes equation. For a discrete set of parameters
(Dν ∈ [10 nm; 400 nm] in steps of 10 nm (up to 500 nm for the R = 0.6 um disc); lb ∈ [1 nm; 193 nm]

in steps of 8 nm), we simulate maps of the current density using COMSOL Multiphysics® and compute
the corresponding magnetic field maps according to Ref. (60), accounting for a 1 ◦ rotation of the sample
with respect to the scan axes. We generate magnetic field maps for standoff distances between 50 nm and
120 nm in steps of 2 nm. For the computation of the magnetic field projection BNV, we use the NV angles
(θ ≈ 55 ◦, φ ≈ 1 ◦).

For the data shown in Fig. 4C of the main text, we estimate the Gurzhi length and the slip length of the
experimental data by fitting the maps of the normalized magnetic field derivative Γx = 1

I0
∆BNV
∆x to the hy-

drodynamic model via nonlinear least squares. We compare Γx rather thanBNV, since the spatial derivative
allows us to disentangle the disc flow more easily from the channel flow (see Fig. S2). Furthermore, the
derivative conveniently removes long-range magnetic field signals originating from current flow in nearby
metallic leads. Note that we compare solely the pixels in a circular area with radius R + 0.1 µm around
the disc center (see Fig. S3 (C)). This ensures that the parameter estimation is based on the signatures from
the whirlpool and is not affected by imperfections in the channel that are not accounted for by the model.
We use cubic interpolation to generate maps of Γx for fit parameters not covered by our discrete set of
simulations. The results of this fitting procedure are shown in Fig. S3 (A-B) for a fixed standoff distance
z = 72nm (see next paragraph). Estimates for the standard deviations of the fit parameters are obtained
from the covariance matrix returned by the fit. Experimental data and the corresponding simulations are
presented in Fig. S3 (G-J) for a measurement on the 0.6 µm disc.

For the data shown in the main text and in Fig. S3 (A-B), we assume a standoff distance of z = 72nm,
based on the fitting results from the channel flow (Fig. S4 (C)). Note that for our discrete set of simulations,
the maps computed for z = 72nm approximate zfit ≈ 73 nm the best. When additionally fitting for the
standoff distance z (Fig. S3 (D-F)), the results are qualitatively similar. However, we also observe a weak
correlation between the fitted standoff z and the disc radius R in this case. Since all scans were acquired
with the same scanning probe, a large change of z is not expected (see also Fig. S5 for the time evolution of
z extracted from the channel fit). Therefore, we believe that this correlation is nonphysical and an artifact
of the fitting.

Estimation of Dν , lb and z from the channel flow

We further analyze the flow profile through the main channel, which is expected to show a gradual reduction
of Jx to zero near the device edges (Poiseuille flow, c.f. supplementary text 2). Rather than fitting the one-
dimensional profile by an analytical function (20), we apply the above minimization to a two-dimensional
channel region, as indicated in Fig. S4. For the channel fitting, we minimize the magnetic field derivative
Γy = 1

I0
∆BNV
∆y rather than Γx. Fig. S4 (A-C) summarizes the results of this analysis. Interestingly, we find

≈ 2× smaller values for Dν on the hole side compared to the disc fitting. Also, the suppression of Dν near
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the CNP is much less pronounced. Entering the parameters obtained from the channel fit of a R = 0.6 µm

disc measurement into a simulation of the disc flow, we find that the vortex features are not well reproduced,
see e.g. Fig. S4 (D, F). Thus, a single Dν value cannot simultaneously and correctly reproduce the vortex
and Poiseuille flow profiles. This points towards a systematic deviation of the observed flow from a purely
hydrodynamic (Navier-Stokes) model with rigid boundary conditions.

Systematic error in Dν due to variations in the device geometry

To assess whether this discrepancy could be explained by a mismatch between the simulated and the
lithographically-defined device geometry, we generate current density maps for 3 additional device lay-
outs of the R = 0.8 µm disc (see Fig. S6). As a first test, we study a slightly larger geometry (G1) with
W = 1.05 µm and R = 0.825 µm and an opening angle of 60 deg. This error could be caused, for exam-
ple, by a slight calibration offset between the commercial AFM used to record the height map that forms
the basis for simulations, and the scanning stage of the scanning NV magnetometer. In a second geometry
(G2), we keep the channel width and the disc radius constant but increase the opening gap to a = 0.85 µm.
Such an modification is expected, for example, if the spatial resolution of the patterning process is insuffi-
cient to properly define the sharp corners. Finally, we mimic the case of an overexposure during the e-beam
lithography process with geometry G3. For this simulation, we shift the device boundaries inward by 25 nm

while keeping disc center at the original location. Note that we keep the opening gap fixed a = 0.8 µm for
this study.

As illustrated in Fig. S6(C-H), we find that the above variations in the simulated geometry lead to systematic
errors in all three fit parameters. The changes in the extracted Dν values are approximately ±0.025 µm,
and exceed the fit errors from the least squares minimization, which are of order ±0.01 µm. Therefore, we
conclude that the accuracy of Dν is dominated by systematic errors related to incomplete knowledge of the
device geometry, and not by statistical fit errors. Since a systematic error shifts all Dν values in Fig. 4C in
the same direction, neither the electron-hole asymmetry nor the pronounced dip near the CNP are affected.
Furthermore, the discrepancies on the hole side between the vortex and channel fits are not eliminated.

Alignment of the device boundary

To compare experimental with simulated magnetic field maps, we need to accurately determine the physical
coordinates of the device with respect to the simulation. Our two reference coordinates are the y coordinate
of the horizontal symmetry axis of the channel (yC) and the x coordinate of the vertical symmetry axis of
the circle (xC).

We have implemented two strategies for determining yC . A first approach (used for Fig. 3, Fig. S7, S14,
and Supplemental Text 5) consists in finding the y-coordinates along vertical line cuts where BNV is closest
to zero in the channel. The highest occurrence is then determined to be yC (see Fig. S7 (A)). A second
approach, used for the parameter estimation described in the Methods, consists in finding the maxima and
minima of BNV along vertical line cuts. After fitting the coordinates of the maxima and minima with linear
functions, yC is set to the half-way point between the maximum and minimum locations. For the estimation
of xC , we analyze the reconstructed Bx image (Fig. S7 (B)). The maximum and minimum of the laminar
channel flow (marked as yellow dots) should be located symmetrically around the center of the disc. An
estimate for xC is found by averaging the x-coordinates of the two extreme values.

The alignment can also be validated by plotting the estimated device boundaries together with the NV photo-
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luminescence (PL) image recorded simultaneously with the magnetic field map (Fig. S7 (C)). The NV PL
map is expected to reflect the device geometry accurately, however, it is less quantitative than the magnetic
estimation above. The physical device edges indicated in Fig 4A, Fig. S9, S10, and S11 are determined
directly from the PL maps.

Current monitoring normalization

We monitor the device current by recording a sample I(t) of the source-drain current at each pixel, see
Fig. S8. The amplitude I0 is determined as one-half the peak-to-peak amplitude of I(t). When comparing
current flow patterns, we typically normalize the magnetic field maps by I0.

Measurement parameters for Figs. 2-4

Fig. 2A used the following parameters: n ≈ −1.7 · 1012 cm−2 (VBG = −2V), I0 = 28.7 µA. θ = 56◦,
φ = 1◦ (Scanning probe NV1). For the streamlines, we reconstruct the current density with z = 75nm and
λ = 1.5 · z.

Fig. 3A used the following experimental parameters: n ≈ −1.7 · 1012 cm−2 (VBG = −2V), I0 =

{15.7, 15.7, 15.5, 15.4} µA from left to right. θ = 55◦, φ = 1◦ (Scanning probe NV2).

Fig. 3B used the following simulation parameters: Dν = 0.28 µm, z = 110 nm.

Fig. 4A used the following parameters: n ≈ {−0.9, 0,+0.9} ·1012 cm−2 (VBG = {−1, 0,+1}V) from left
to right, I0 = {24.3, 8.7, 24.3} µA from left to right. θ = 56◦, φ = 1◦ (Scanning probe NV1).

Fig. 4C used n ≈ (−1.9 . . . 1.7)·1012 cm−2 corresponding to VBG = (−2.2 · · ·+2)V, I0 = 2−15 µA. All
measurements were acquired with scanning probe NV2. We fit the experimental data assuming z = 72nm.
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SUPPLEMENTARY TEXT 1: NON-LINEARITY NEAR CHARGE NEUTRALITY

In the vicinity of the CNP, we often observe an asymmetry in the recorded current trace for a symmetrically
applied AC source-drain voltage (Fig. S9 (A)). This could be an indication that the local carrier density
is not fixed during the AC magnetometry protocol. Since we apply source-drain voltages on the order of
100mV to overcome the large two-terminal resistance at the CNP (∼ 25 kOhm) and generate a detectable
source-drain current, the electrostatic potential at the measurement location is also expected to change.
Indeed, measurements of the longitudinal resistance between contacts C and D (comprising the Au patch,
Fig. S1) confirm that the local VCNP changes as a function of the applied bias voltage (Fig. S9 (B)).

To exclude that the fading of the vortex feature close to charge neutrality is an artifact of a carrier density
modulation, we image the R = 0.8 µm disc using a complementary DC technique. For this purpose,
we conduct a Ramsey-type experiment at VSD = 0.2V with τ = 16 · 2π/A||

g ≈ 5.27 µs. Here, A||
g ≈

2π ·3.03MHz is the parallel hyperfine coupling of the NV center. For this particular choice of the evolution
time τ , the polarization of the 15N nuclear spin forming the NV center does not affect the measurement result
and a simple PL signal of the form of Eq. S1 is recovered. We take measurements near charge neutrality
(VBG = 0.1V) and far away (VBG = 2V) using a differential scheme (signal on/off). The resulting J ′

y maps
are shown in Fig. S9 (C-D) for a DC current flowing in negative x direction. This experiment confirms that
the vortex feature indeed disappears near charge neutrality.

SUPPLEMENTARY TEXT 2: POISEUILLE FLOW

We also analyze the channel flow profile, which should turn from rectangular to parabolic as the transport
changes from diffusive to hydrodynamic. This spatial signature is known as Poiseuille flow, and has been
analyzed in previous spatial imaging experiments (19, 20). In the limit where the current density vanishes
completely at the device boundaries (no-slip), the current profile is given by (18):

Jx =
σ0
e
∇ϕ

[
1−

cosh y−y0
Dν

cosh w
2Dν

]
(S12)

In the extreme case where Dν is large compared to the width w of the channel (and lee ≪ w), the current
profile can be described approximately by a parabola. Ref. (20) observed such behavior in room-temperature
monolayer graphene and reported Dν ≳ 0.3 µm for their devices. Given the estimate for the Gurzhi length
in our device (see Figs. S3, S4), we would expect to observe a non-uniform channel profile at the very least
away from the CNP, i.e., for |n| ≳ 0.5 · 1012 cm−2.

Fig. S10 shows maps of the current density in theR = 0.6 µm disc at VBG = −2V (n ≈ −1.7 ·1012 cm−2)
(A-B), and at VBG = 0V (C-D). These maps were recorded using the Ramsey protocol to prevent a modu-
lation of the carrier density during data acquisition (see Supplementary Text 1). Again, we observe a current
vortex only away from charge neutrality. Line cuts of the normalized magnetic field BNV/I0 and current
density Jx/I0 are shown in Fig. S10 (E-F). We notice that BNV barely differs between the two images. For-
tunately, the reconstructed current density is more instructive. The channel profile at hole doping is indeed
more parabolic than at charge neutrality. While this observation is consistent with our previous findings, the
differences are less striking than the presence or absence of a current vortex. This is to be expected, because
the channel profile becomes gradually flatter in the center upon decreasing Dν and does not display a hall-
mark sign change like the vortex maps. Therefore, we find the whirlpools to be better suited for studying
electron hydrodynamics in our device than the Poiseuille flow.
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SUPPLEMENTARY TEXT 3: ELECTRIC FIELD IMAGING

Fig. S11 (A-B) displays the numerically computed derivative of a measured AC magnetic field map acquired
using the protocol described in the Methods section, together with a corresponding image obtained using the
scanning gradiometry technique (62). Both measurements are taken at n ≈ −1.7 · 1012 cm−2. As expected,
the vortex appears in both images. However, the gradiometry technique picks up an additional signal above
the etched region of the vdW stack where the back gate is not screened by the graphene sheet. We attribute
this signal to the static electric field generated by the back-gate potential. Such static electric fields are only
visible in a dynamic imaging mode (oscillating tuning fork) because they are otherwise screened by mobile
charges on the diamond tip (63, 64).

To confirm the electrical origin of this signal, we image the sample again using an AC sensing technique
(Hahn echo). However, instead of modulating the device current, we modulate the back-gate voltage
VBG. A map of the resulting electric-field-induced frequency shift and its derivative along x are shown
in Fig. S11 (C-D). These maps clearly show the presence of an electric field above the etched part of the
device. Furthermore, the features observed in the gradiometry scan are qualitatively well explained by the
electric field gradient.

SUPPLEMENTARY TEXT 4: EFFECT OF AN OUT-OF-PLANE MAGNETIC FIELD

Current flow in the hydrodynamic model, subject to an out-of-plane magnetic field Bz , is described by the
linearized Navier-Stokes equation and the continuity equation (10, 13):

J⃗(r⃗)−D2
ν∇2J⃗(r⃗) + ωcτ(1 +D2

H∇2)J⃗(r⃗)× e⃗z + σ0∇ϕ(r⃗) = 0 (S13)

∇ · J⃗(r⃗) = 0 (S14)

In this equation, ωc = sgn(n) eBz
m∗ is the cyclotron frequency, τ is the mean free time with respect to

momentum-relaxing scattering events, and m∗ is the cyclotron mass. We include the signum function
sgn(n) to reproduce the correct sign dependence for electrons (n > 0) and holes (n < 0). DH is a diffusion
constant related to the Hall viscosity νH (10, 13).

In a typical scanning NV magnetometry experiment, applied magnetic fields do not exceed a few tens of mT

and expected values for the diffusion length DH are < 1 µm for monolayer graphene at room temperature
(10). While a perpendicular magnetic field does affect the potential landscape, it does not significantly
change the current profile in the Hall-bar geometry. As shown in Fig. S12, the current density distribution
is only modified near the source and drain contacts, but not in the imaging region near the discs. Therefore,
we neglect the pertinent terms in the equations of the main text and the associated simulations.

SUPPLEMENTARY TEXT 5: RELATIVISTIC LATTICE BOLTZMANN SIMULATIONS

We employ the relativistic lattice Boltzmann method (RLBM) to model two-dimensional (2D) single-
particle flow away from the hydrodynamic and diffusive limits, shown with Fig. S13. Our RLBM framework
is based on the D2V72 quadrature scheme (65) in the ultra-relativistic limit (66). RLBM simulations dis-
cretize the energy and momentum phase space of the quasi-particle distribution function f into a set of 72
quadrature components. These quadratures are combinations of six energies and twelve isotropic momenta
vectors in 2D. f is uniquely defined at every lattice point and lattice points are placed on a square grid to
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approximate any simulation geometry in real space. The governing equation is given by:

pµ∂µf =
pµU

µ

v2F
Ω[f ] , (S15)

where pµ = |p|[1, vxvF ,
vy
vF
] is the quasi-particle momentum, Uµ = γ[vF, ux, uy] is the macroscopic ve-

locity, γ =
(
1− u · u/v2F

)−1/2 is the Lorentz factor, and ∂µ = [ ∂tvF ,−∂x,−∂y] is the gradient operator,
shown in contravariant form using the (+,−,−) metric signature. u = [ux,uy] and v = [vx,vy] are
the macroscopic (belonging to the lattice point) and microscopic (belonging to the individual quadrature)
two-component velocities, respectively. vF ∼ 106m/s is the Fermi velocity (analogous to the speed of light
in special relativity), and Ω is the collision operator, defined below. It is convenient to convert Eq. S15 into
the following version of the RLBM equation:

∂f

∂t
+ v · ∇f = ηΩ[f ] , (S16)

as it closely resembles the classical LBM equation with one addition prefactor term, η = γ
(
1− v · u/v2F

)
,

that captures relativistic effects. The left- and right-hand sides of Eq. S16 represent the streaming and
collision steps of the simulation, respectively. In the streaming step, the quadratures are propagated out-
ward from their respective lattice point according to their momenta and are collected by neighboring lattice
points. Bilinear interpolation is used to collect streamed quadrature components that end up between neigh-
boring lattice points (65). In the collision step, the collected quadrature components are redistributed by
the collision operator according to their energy and momentum. The RLBM framework alternates between
streaming and collision steps to iteratively approach a steady-state distribution across all lattice points.

The collision operator includes both momentum-conserving and relaxing terms to account for the carrier-
carrier scattering and carrier-phonon/impurity scattering. Specifically, we set

Ω[fk] =
feek − fk
τee

+
fmr
k − fk
τmr

=
feek
τee

+
fmr
k

τmr
− fk
τeff

, (S17)

where the subscript k refers to the 72 quadrature components, feek comes from evaluating the Fermi-Dirac
equilibrium distribution function (using the BGK approximation (67)) and fmr

k isotropically redistributes
the momentum at every lattice point via energy-conserving collisions (68). It can be explicitly written as

fmr
k =

∑
i δεk,εifi∑
i δεk,εi

, (S18)

where δ is the Kronecker delta function and εk is the energy of the kth quadrature. The fk/τeff term
ensures quasi-particle conservation. The simulation-wide time constants directly relate to the macroscopic
scattering length scales through τee = lee/vF, τmr = lmr/vF, with τ−1

eff = τ−1
ee + τ−1

mr . Thus, τee and τmr

act as user-controlled values that steer the RLBM simulation towards a more hydrodynamic or diffusive
behavior. Ballistic effects, while not directly accounted for, naturally arise as characteristic device sizes
decrease relative to all scattering lengths. We note that simulation artifacts may arise if ballistic effects
dominate (e.g., in the deep ballistic regime).

We describe scattering off device edges via one of three redistribution methods. Bounce-back scatter-
ing (69), where momentum is inverted, is used to mimic a zero-slip-length boundary condition as it ensures
zero velocity on the edges. Specular scattering (9), which reflects perpendicular components of momenta,
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and diffusive scattering (70), which redistributes momenta accounting for energy and density conservation,
mimic a more general boundary condition with non-zero slip length.

To set the device current, we apply Neumann boundary conditions (a constant, uniform flux of current
density) at the source and drain contact of the simulated device. No additional forcing term was applied.
A given simulation iterates until subsequent iterations show an average absolute change in macroscopic
velocity across all lattice points that is below a convergence threshold, typically of order 10−6. Other
simulation details include a lattice grid size of 25 nm, T = 300K and no chemical doping.

To determine the macroscopic current density, we first compute the energy-momentum tensor Tµν at every
lattice point (65),

Tµν =
∑
k

fkp
µ
kp

ν
k . (S19)

Then, we solve the eigenequation Tµ
ν Uν = εUµ numerically (via the power method) for the macroscopic

energy density eigenvalue ε and the macroscopic velocity eigenvector Uµ. From the macroscopic velocity,
the quasi-particle density can then be computed with ρ =

∑
k Uµp

µ
kfk = vF

∑
k fk|pk|ηk. Finally the

current density J can be obtained by combining the charge q, density ρ, and macroscopic two-component
velocity u:

J = qρu = qvF
∑
k

fk|pk|ηku . (S20)
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SUPPLEMENTARY FIGURE 1

FIG. S1. Optical microscope image of the whirlpool device. We send a current through contacts A and B, and use contacts
C and D for monitoring the longitudinal voltage drop. The carrier density in the graphene sheet can be tuned via contact E. The
unlabeled contact is not connected.
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SUPPLEMENTARY FIGURE 2
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FIG. S2. Illustration of the different reconstruction methods and analysis tools used for the investigation of current
whirlpools. The data shown in this figure are simulated. Starting from the quantum phase (A) as obtained from the Hahn-
echo protocol, we first extract the encoded magnetic field map BNV (B) by unwrapping the phase map and using the relation
ϕ = 2

π
γeBNVτ . We can then reconstruct the current density J ′

x = − 2
µ0

By and J ′
y = 2

µ0
Bx (C and D) using the known NV an-

gles θ = 55.7◦, φ = 1◦. Alternatively, we can apply inverse filtering (36, 60) to trade signal-to-noise ratio for a slightly improved
spatial resolution (Jx and Jy in E and F) using a Hann filter (here with λ = 100 nm); however, this inverse filtering was not
necessary for most of the data shown in this work. Finally, the signatures from the current flow of the disc can also be disentangled
from the channel flow by computing the magnetic field derivatives ∆BNV

∆y
(G) and ∆BNV

∆x
(H). Via a subsequent computation of

−∆Bz
∆x

(I) involving the NV angles, a map reminiscent of Jy can be obtained.
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SUPPLEMENTARY FIGURE 3
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FIG. S3. Parameter fits to vortex flow. (A and B) Carrier density dependence of Dν and lb obtained by fitting Γx = 1
I0

∆BNV
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for several scans on three separate discs. The standoff distance is fixed at z = 72nm. The fit areas are indicated in C. Error bars
represent one standard deviation. (D-F) Fit results obtained by optimizing also with respect to the standoff distance z. (G and H)
Experimental data (Γx, Γy computed from BNV) taken at n ≈ 0.9 · 1012 cm−2 (VBG = 1V) and (I and J) simulated maps with
(Dν , lb, z = 72nm) chosen as close as possible to the fitted parameters. The fit area is indicated by the blue dashed line.
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SUPPLEMENTARY FIGURE 4
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FIG. S4. Parameter fits to channel flow. (A-C) Carrier density dependence of Dν , lb, and z obtained by fitting Γy = 1
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at three different location above the channel (see inset in B for the fit areas). The mean fitted standoff distance is ≈ 73 nm. Error
bars represent one standard deviation. (D and E) Experimental data (Γx, Γy) taken at n ≈ 0.9 · 1012 cm−2 (VBG = 1V) for the
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SUPPLEMENTARY FIGURE 5
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SUPPLEMENTARY FIGURE 6
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FIG. S6. Estimation of the systematic fit errors for the R = 0.8 µm disc. (A) Height map of the R = 0.8 µm disc acquired
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SUPPLEMENTARY FIGURE 7

A B C D

FIG. S7. Illustration of the device boundary alignment procedure. (A) BNV map for determining the horizontal symmetry
axis of the channel (yC ). (B) Bx map for determining the vertical symmetry axis of the circle (xC ). (C) NV PL map for validating
the boundary alignment. (D) Representation of the mask of the scan used for distinguishing between the scan boundary (black,
two pixels), the relevant device region (orange) and the background region (white). The dark (light) gray line corresponds to the
boundary of the inner (outer) graphene sheet. The gap is defined via reactive ion etching and has a width of ∼ 0.2 µm. Scale bars
are 1.0 µm
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SUPPLEMENTARY FIGURE 8
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FIG. S8. Extraction of the current amplitude from experimental data. The current signal I(t) is recorded at each pixel
(colored traces). The current amplitude I0, defined as half of the peak-to-peak current signal, is then extracted from the average
over all traces (black). The sharp peaks (indicated by arrows) are due to a modulation of the back-gate voltage. Since they occur
outside the phase accumulation window of the quantum sensor, they do not influence the magnetometry signal. Four repetitions
are shown, corresponding to the four readout phases of the sensing protocol.
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SUPPLEMENTARY FIGURE 9
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FIG. S9. Imaging near charge neutrality. (A) Asymmetry in the current trace of a scan recorded at VBG = 0.3V and
VSD = 0.2V. (B) Longitudinal resistance measured between contacts C and D as a function of the back-gate voltage for different
source-drain biases. A small AC modulation (VAC = 5mV) is added on top of the bias voltage for lock-in detection. (C) DC map
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y acquired away from charge neutrality.

For this image, the averaging time per pixel has been reduced to yield approximately the same SNR as the image shown in (C).
Scale bars are 1 µm.
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SUPPLEMENTARY FIGURE 10
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FIG. S10. Simultaneous DC imaging of current vortices and channel profiles. (A and B) Maps of the current density
components Jx and Jy at VBG = −2V (n ≈ −1.7 ·1012 cm−2). Measurements use a Ramsey protocol with a phase accumulation
time of τ = 11.8 µs. For the reconstruction, we assume a standoff distance of z = 72nm (estimated based on the fitting results
for the channel) and use λ = 1.5 · z. The device geometry is indicated with dashed lines (estimated from PL maps). (C and D)
Corresponding maps for VBG = 0V. The black line indicates the location of the line cuts analyzed in E and F. Scale bars are
1 µm. (E) Comparison of the magnetic field line scans across the channel. The data sets are normalized by the device current
I0. Error bars represent one standard deviation, extracted from the shot noise in the measurement signal (37). (F) Reconstructed
current density profiles. The shaded area represents one standard deviation. This uncertainty is extracted from a region without
signal next to the channel.
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SUPPLEMENTARY FIGURE 11
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FIG. S11. Imaging of the magnetic and electric field over the R = 0.6 µm disc. (A) Map of ∆BNV/∆x derived from an AC
measurement at n ≈ −1.7 · 1012 cm−2. (B) Image of the same region recorded using the gradiometry technique. An additional
gradient signal ∆Π/∆x is picked up, most prominently at the device edge. (C) Map of the shift fE of the NV resonance frequency
caused by the electric field from the back gate. An AC detection scheme is used for this measurement. (D) Spatial derivative
along x of the map shown in (C). This map is low-pass filtered in Fourier space using a Hann filter with a cutoff frequency at
2π/(100 nm). The dashed lines indicate the physical edge of the device and have been determined from PL maps. Scale bars are
1 µm.
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SUPPLEMENTARY FIGURE 12

A D G

B E H

C F I

FIG. S12. Simulations of the electric potential ϕ and current density components Jx, Jy in a perpendicular magnetic field.
(A-C) Solutions of the Navier-Stokes equation in zero-field. (D-F) Simulation results for an out-of-plane magnetic field of Bz =

20mT. (G-I) Simulation results at Bz = 20mT and assuming DH = 1 µm. For all simulations, we assume n = 1012 cm−2,
Dν = 0.25 µm and µ = eτ/m∗ = 2.64 · 104 cm2/Vs.
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SUPPLEMENTARY FIGURE 13
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FIG. S13. Disc simulations beyond the no-slip Navier-Stokes simulation and for the Lattice-Boltzmann method. (A and
B) Normalized low-pass filtered current density J ′

y/I0 (A) and true current density Jy/I0 (B) obtained from lattice Boltzmann
simulations with different boundary conditions. (C and D) Normalized low-pass filtered current density J ′

y/I0 (C) and true current
density Jy/I0 (D) obtained from Navier-Stokes simulations with different slip lengths. In all panels, the no-slip data (shown with
red circles) is the Navier-Stokes simulation curve shown in Fig. 3E of the main text and the black dots are the corresponding data
points. (E) J ′

y/I0 for a no-slip boundary condition and varying Dν .
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SUPPLEMENTARY FIGURE 14
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FIG. S14. Observed asymmetries between electron and hole doping. (A) Asymmetry in the vortex flow for the 0.2 µm

disc. The signature in the channel is much less pronounced for the scan at VBG = −2V (n ≈ −1.7 · 1012 cm−2). For these
measurements, we use a dynamic decoupling sequence with 8 refocusing pulses and a phase accumulation time of τ = 55 µs. (B)
Carrier-type dependent scattering at the device edge for scans on the R = 1.0 µm disc. The arrow indicates the location where the
asymmetry occurs.
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FIG. S15. Demonstration that the Gurzhi length is non-zero even at charge neutrality. Plots show the measured data
(VBG = 0V) together with the corresponding simulations of the Navier-Stokes equation assuming different values for Dν . A
no-slip boundary condition is assumed for all simulations.


