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Abstract: The manufacturing sector is undergoing a substantial digital transformation. Following decades 
of developments in data capture technologies, computer science, and IT infrastructure, manufacturers 
collect and store more data than ever. However, collecting data is one challenge; another is using it. Many 
manufacturers are struggling to take advantage of the possibilities offered by advanced analytics. This paper 
introduces a new category of industrial IT system that solves this problem: the Manufacturing Analytics 
System (MAS). 
Keywords: Manufacturing Analytics System, Artificial Intelligence, Digital Transformation, Industry 4.0, 
Cyber-Physical Production System. 

1. INTRODUCTION 

Rapid developments in digital technologies have enabled 
manufacturers to collect and store a wide range of data from 
their operations (Kusiak 2017, Kusiak 2018). Progress in data 
capture technologies, the standardization of communication 
protocols, and the emergence of cloud-based storage and 
computational capabilities are critical enablers (Lee et al. 
2015, Monostori et al. 2016). However, manufacturers often 
struggle to realize the latent productivity potential in their data 
resources (Olsen and Tomlin 2020). Consequently, data is 
underutilized in driving operational improvements (Corbett 
2019). Beyond stand-alone software packages for specific use 
cases, such as predictive maintenance or process mining, there 
is a void of integrated analytics software that helps realize the 
promise of cyber-physical production systems or “Industry 
4.0” at scale.  

Despite considerable investments in digitization, the 
application of analytical tools in manufacturing is still limited 
(Lorenz et al. 2022). Manufacturers face a situation 
characterized by an abundance of data but a scarcity of 
actionable information. They are “data rich but information 
poor.” For example, IBM reports that around 90% of industrial 
sensor data is never analyzed.1 This issue arises from several 
factors: data being stored in separate sources, fragmentation 
and verticalization of software, loss of contextual metadata, 
and a lack of standardization across sites, equipment, 
Information Technology (IT), and Operational Technology 
(OT). As a result, operations managers, process experts, and 
data engineers face significant challenges in aggregating, 
cleansing, wrangling, and using data. This calls for unifying 
analytical standards and workflows to utilize existing data 
effectively. 

In response to these challenges, this paper proposes a new 
category of IT: the Manufacturing Analytics System (MAS). 

 
1 See IBM article at https://www.ibm.com/blogs/southeast-europe/cognitive-
manufacturing-industry-4-0/ (last accessed on January 29, 2024). 

A MAS is designed to create a unified context for disparate 
data sources, employ custom artificial intelligence (AI) models 
for data analysis, and deliver insights through a suite of 
interoperable applications. These applications can be 
customized for various user types involved in improving 
operational processes. A MAS acts as an intermediary between 
data and users, offering data-driven insights rapidly. It enables 
the automation of data analysis and information presentation, 
facilitating better decision-making in manufacturing. 

The paper is structured as follows. Section 2 reviews the 
literature on IT/OT interoperability and manufacturing 
analytics. Section 3 introduces the MAS as a suggested 
solution to enable more integrated and effective analytics in 
manufacturing. In Section 4, the capabilities of the MAS are 
highlighted via three common use cases: root cause analysis, 
chat-based data exploration, and process monitoring to 
enhance operational efficiency. Section 5 provides a short 
conclusion. 

2. BACKGROUND 

Two streams of research are particularly relevant to this paper: 
(1) the literature on IT/OT interoperability and (2) the 
emerging literature on manufacturing analytics. 

2.1 IT/OT Interoperability 

In recent years, much progress has been made in developing 
IT/OT systems and facilitating their interoperability and 
integration. According to Baudin and Netland (2022, p. 289), 
OT refers to industrial computer-based systems that “drive, 
monitor, and respond to machines, robots, conveyor systems, 
or vehicles,” and IT refers to those that “only exchange data 
with other systems or with people.” Together, IT/OT 
infrastructure is an infrastructural backbone for collecting and 
forwarding the data required to apply advanced analytics in 
manufacturing. 
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The rapid developments of OT, such as modern machine 
controllers, sensors, auto-ID, and other data capture 
technologies, have lowered the barrier to collecting more and 
more types of data, in higher frequencies than before. This data 
can be transmitted to IT systems, which have seen a sharp rise 
in increased capacity and flexibility due to the emergence of 
cloud computing (Monostori et al. 2016). Overall, there is 
clear evidence that increasing amounts of detailed data are 
being collected and made more readily available (Kusiak 2017, 
Kusiak 2018). 

Recent IT/OT advances have contributed to manufacturing 
efficiency gains, but the potential is much more significant. 
This motivates seeking to overcome two remaining hurdles. 
On the one hand, there are infrastructural hurdles, such as 
those described by Pennekamp et al. (2023): scalable 
processing of data in motion and at rest, device 
interoperability, data security and data quality, network 
security, and infrastructure for secure industrial collaboration. 
And on the other hand, there is an active search for 
architectural solutions and the establishment of best practices. 
Lee et al. (2015) describe the remaining practical hurdles and 
the proposal of a five-layer architecture from data collection 
and connection to the configuration of supervisory controls of 
production machines. 

2.2 Manufacturing Analytics 

Modern factories generate vast amounts of data, which can be 
used to generate insights for productivity improvement 
(Kusiak 2017). This data spans the production value chain, 
including process models, order information, operational 
histories, raw material data, environmental data, product 
measurements, process measurements, quality data, and 
images. Manufacturing analytics is essential for capturing the 
full value of these data assets (Wuest et al. 2016, Kusiak 2018, 
Tao et al. 2018, Lorenz et al. 2022). Several applications of 
manufacturing analytics already exist. Among the most 
prominent are quality management, production planning, and 
maintenance (cf. Senoner 2021). 

First, quality management has emerged as one of the key areas 
of research on manufacturing analytics. Reported applications 
are quality inspection (Bergmann et al. 2019, Chen et al. 
2020), root cause analysis (Chen et al. 2005, Chien et al. 2007, 
Senoner et al. 2022), and quality prediction (Wu & Zhang 
2010, Lieber et al. 2013). Second, manufacturing analytics is 
used in production planning. For example, manufacturing 
analytics has been used for scheduling (Waschneck et al. 2018, 
Kuhnle et al. 2019, Senoner et al. 2023), predicting lead times 
(Lingitz et al. 2018, Gyulai et al. 2018), and managing 
production capacity (Gyulai et al. 2014, Schneckenreither et 
al. 2021). A third key focus area of manufacturing analytics is 
maintenance. There are numerous applications reported for 
remaining-useful-life estimation (Ren et al. 2017, Sun et al. 
2019), fault classification (Susto et al. 2015, Wang et al. 2020), 
and condition monitoring (Luo et al. 2019, Michau et al. 2020, 
Michau et al. 2022). 

Other promising application areas in manufacturing include 
process parameter optimization (Pfrommer et al. 2018), 
bottleneck detection (Subramaniyan et al. 2020), and energy 

management (Lu et al. 2020)—in addition to office tasks like 
purchasing, human resource management, and engineering 
support. This paper contributes to the literature on 
manufacturing analytics by proposing and defining an IT 
system that enables these applications to be used more 
holistically and effectively. 

3. PROPOSED SYSTEM ARCHITECTURE 

A MAS provides interoperable end-user applications that 
address the numerous challenges manufacturers are faced with 
in pursuit of operational excellence. These challenges look 
different on the factory floor, upper management levels, and 
between. However, the interoperability requirement means 
avoiding siloed solutions is necessary. The proposed MAS 
architecture addresses this via a shared core of AI models, 
which are then used in problem-specific ways by the MAS 
applications. The models must also be decoupled from the 
various mechanisms required to deal with the variety of data 
sources and data quality in modern manufacturing.  

In response to these challenges, this paper proposes a three-
layered MAS architecture:  
• an Application Layer with user-facing software addressing 

specific manufacturing needs,  
• a Model Layer with AI models specialized for 

manufacturing challenges, and  
• a Context Layer pulling in various data sources and 

representing their relationships. 

Figure 1 illustrates this MAS architecture and how it bridges 
the gaps between data sources and end-users. The following 
subsections describe each layer in more detail. 

3.1 Context Layer 

The Context Layer serves as the foundation of a MAS. It 
prepares and organizes the data for its use in the Model Layer. 
This layer does not duplicate existing databases. Instead, it 
stores only relevant data, automatically wrangled together 
from different sources in a unified and aggregated format. It 
provides a crucial link across disparate data sources. This is 
achieved by mapping or creating common identifiers like 
timestamps, part IDs, and batch IDs. The context and 
connections in this layer enable comprehensive analysis across 
different datasets. 

3.2 Model Layer 

The Model Layer comprises advanced AI models for complex 
data analysis in manufacturing. Unlike standard data platforms 
that use off-the-shelf machine learning algorithms (e.g., 
Random Forests, CNNs, etc.), this layer involves tailored AI 
models specifically designed for manufacturing tasks (e.g., 
root cause analysis, visual inspection, material flow analysis, 
etc.). Tailored models in this layer enable a MAS to effectively 
address context-specific challenges where generic approaches 
are of limited use. 

3.3 Application Layer 

The Application Layer contains the user-facing applications 
that leverage the data processed by the underlying layers. Due 
to the shared architecture of the models in the Model Layer, 
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the results from one application can be passed on to others for 
further processing or aggregation, for example, to create 
integrated reports or configurable operational user-centered 
dashboards. It also becomes feasible to build frameworks for 
no-code applications. Users engage with the relevant 
information in tools that are custom-built for manufacturing 
workflows. The applications can be both interoperable and 
fine-tuned for intuitive use by each user type and problem type 
that matters for operational excellence in the firm-specific 
manufacturing context. 

 
Figure 1. The three layers of a Manufacturing Analytics System 
(MAS) make the varying and disparate data available to AI models, 
whose insights are then presented in applications tailored to the needs 
of specific end-users involved in the improvement of production. 

4. USE CASES 

This section describes three exemplary use cases of the MAS: 
(1) root cause analysis, (2) chat-based data exploration, and (3) 
process monitoring. All use cases are based on real-life 
implementation of MAS in industry-leading companies. 

4.1 Root Cause Analysis 

Root cause analysis is a systematic process to identify the 
underlying causes of production issues. For this purpose, 
manufacturers increasingly rely on data-driven methods to 
investigate undesirable production outcomes such as quality 
losses, downtime, and high energy consumption. These issues 
often have varied and complex origins, necessitating data 
analysis from multiple data sources (e.g., MES and Historian). 
A root cause analysis in MAS can be realized as follows: 

• The Context Layer is responsible for mapping independent 
variables (e.g., process parameters like temperature and 
pressure) and dependent variables (e.g., quality or 
downtime) into a unified data format that can be analyzed. 
This standardization is needed so that the models in the 
Model Layer can assess how different parameters influence 
production outcomes. 

• The Model Layer contains custom models for root cause 
analysis (e.g., Chen et al. 2005, Chien et al. 2007, Senoner 
et al. 2022). These models are different from applying off-
the-shelf machine learning (e.g., assessing feature 
importance based on predictive models like Random 
Forests). For example, Senoner et al. (2022) developed a 
data-driven decision model that is specifically designed to 
identify sources of quality variation and subsequently 
select suitable actions for quality improvement. 

• The Application Layer is where the outputs of the Model 
Layer are translated into actionable insights. It uses data 
visualization techniques to present how various parameters 
are interrelated, enabling domain experts to design 
physical experiments or implement improvements in their 
production lines. 

4.2 Chat-Based Data Search 

Chat-based data exploration with Large Language Models 
(LLMs) is a novel approach for interacting with and analyzing 
vast data sets. Users describe in natural language what 
information they want to retrieve (e.g., “What was the average 
quality on this production line in January 2024?”), and custom 
LLMs are used to respond to these queries. Here, the MAS 
serves as an intermediary between the user and the data.  

• The Context Layer stores the contextualized production 
data and makes it accessible to the LLM in the Model 
Layer. It ensures this data is in a format that the LLM can 
access, understand, and analyze effectively. 

• The Model Layer can be based on open-source LLMs like 
LLaMa 2 (Touvron et al. 2023) or Mistral (Jiang et al. 
2023). These models can be specifically fine-tuned to 
handle manufacturing queries based on the predefined data 
format. Fine-tuning enables the LLM to produce better 
results because generic models may lack the domain-
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specific knowledge required for manufacturing. When the 
LLM receives a prompt via the Application Layer, it 
executes a custom code function to extract the requested 
insights from the contextualized data in the Context Layer.   

• The Application Layer is essential for bidirectional 
communication in the system. It serves as the interface 
through which users send queries to the Model Layer and 
receive the requested insights. 

4.3 Process Monitoring 

Detailed monitoring and tracking of production processes is 
difficult with traditional methods such as statistical process 
control. These methods struggle to handle the large 
heterogeneity of data modern factories generate. Machine 
learning models are well suited to monitor high-dimensional 
production data and detect anomalies. In this context, the MAS 
ensures that models can monitor data across the entire value 
stream. 

• The Context Layer is responsible for collecting and 
aggregating high-dimensional production data. For 
example, it matches time series data from different 
machines into an aggregated format with the same 
timestamp granularity. The data is then pre-processed in a 
way that it can be interpreted by the monitoring models in 
the Model Layer. 

• The Model Layer incorporates machine learning models 
that are designed to monitor high-dimensional production 
data. Examples include unsupervised model architectures 
(e.g., Michau et al. 2020, Michau et al. 2022) that can 
determine whether a parameter or a combination of 
parameters behave differently from a predefined baseline. 

• The Application Layer displays process behaviors in real-
time. It alerts users about potential anomalies and suggests 
troubleshooting actions before a process gets out of 
control. 

5.  CONCLUSIONS 

Over the past decades, manufacturers have considerably 
improved their data acquisition capabilities (Lee et al. 2015, 
Monostori et al. 2016, Kusiak 2017, Baudin and Netland 
2022). However, to benefit from their data assets, 
manufacturers need advanced analytics that can access and 
analyze data stored in disparate formats and sources. This 
paper proposes the MAS as the solution to this problem. 

The proposed MAS is a new IT system category. It enables 
more effective analytics across different use cases by unifying 
diverse data sources and employing tailored AI models. It 
overcomes challenges related to the interoperability of models, 
applications, and data and integrates tightly into user 
workflows. Overall, the MAS offers manufacturers access to 
advanced analytical capabilities and user-centric applications 
to improve operational decision-making in pursuit of 
operational excellence. 
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