
ETH Library

Program Sparsification with DaCe

Master Thesis

Author(s):
Kleine, Jan

Publication date:
2024

Permanent link:
https://doi.org/10.3929/ethz-b-000670940

Rights / license:
In Copyright - Non-Commercial Use Permitted

This page was generated automatically upon download from the ETH Zurich Research Collection.
For more information, please consult the Terms of use.

https://doi.org/10.3929/ethz-b-000670940
http://rightsstatements.org/page/InC-NC/1.0/
https://www.research-collection.ethz.ch
https://www.research-collection.ethz.ch/terms-of-use

Program Sparsification with DaCe

Master Thesis

Jan Kleine

April 19, 2024

Advisors: Prof. Dr. T. Hoefler, Philipp Schaad

Department of Computer Science, ETH Zürich

Abstract

The optimization of sparse computations is critical for a broad spec-
trum of applications, from material sciences to machine learning. These
computations, characterized by their irregular data structures, present
unique challenges in optimizing performance. This thesis investigates
the limitations of existing frameworks like DaCe, which are primarily
designed for dense data applications and struggle with the irregular-
ity inherent in sparse data. Building on the framework’s strengths,
we propose enhancements that enable it to handle the optimization
of sparse data applications better. By integrating a modular approach
into DaCe, we facilitate the transition between dense and sparse im-
plementations, allowing developers to interchange storage formats and
compute kernels easily. This approach not only improves productivity
by simplifying the optimization process but also has the potential to
enhance performance and portability through the use of various under-
lying libraries suited to different hardware architectures. We evaluate
our proposed workflow by applying it to synthetic and real-world appli-
cations, illustrating significant productivity improvements in optimizing
sparse computations.

i

Contents

Contents ii

1 Introduction 1

2 Background 3
2.1 High-Performance Sparse Linear Algebra Libraries 4
2.2 Custom Kernel Generation . 5
2.3 Domain-Specific Whole Program Optimization 6
2.4 Whole Program Optimization with DaCe 6

3 Storage Format Abstraction 9
3.1 Format Abstraction for Tensor Algebra Compiler 9
3.2 Tensor Data Format in DaCe 10

4 Library Node 14
4.1 Tensor Index Notation Library Node 15

5 Data-Centric Transformation 18
5.1 Container Transformation . 18

6 Evaluation 20
6.1 3MM . 20
6.2 BERT Encoder Forward Pass 25

7 Related Work 29

8 Conclusion 31
8.1 Future Work . 31

Bibliography 33

ii

Chapter 1

Introduction

The significance of sparse computations continues to grow, with diverse ap-
plications ranging from large-scale graph analytics and material simulations
to molecular dynamics, finite element analysis, and machine learning. The
challenge of optimizing these computations arises from the irregular nature
of sparse data, making it a complex problem that has attracted considerable
research attention.

The data-centric parallel programming framework, DaCe [1], has shown its
effectiveness in optimizing scientific applications. However, its design is
predominantly tailored to applications operating on dense data. The inherent
irregularity of sparse data computations leads to an inefficient dataflow
representation in DaCe as the dataflow becomes overwhelmed by control
flow, rendering traditional dataflow optimizations ineffective.

While there have been notable strides in sparse program optimization, ex-
isting solutions have their limitations. For instance, Kjølstad et al. [2, 3]
developed TACO, which excels at generating kernels for sparse tensor alge-
bra computations. However, it falls short in performance when compared to
specialized, hand-optimized libraries like Intel MKL for common operations.
Similarly, Ivanov et al. [4] demonstrated with STen how to optimize machine
learning models holistically, enabling the alteration of intermediate data’s
format and the corresponding computation update. Yet, this approach is
confined to programs in the machine learning domain.

Despite the progress in sparse program optimization, a comprehensive ap-
proach to whole-program optimization for sparse data applications is still
lacking. This thesis presents a novel solution to bridge this gap. We enhance
the data-centric parallel programming framework, DaCe, to facilitate the
optimization of general programs for sparse data. This empowers developers
to interchange between various storage formats and choose different compute
kernels to optimize their programs or adapt them to evolving requirements.

1

The remainder of this thesis is organized as follows: Chapter 2 provides an
overview of the existing research landscape. The storage format abstraction
and its integration into DaCe are detailed in Chapter 3. This is followed by
the introduction of the tensor index notation library node in Chapter 4 and
the discussion of data-centric transformations in Chapter 5. We evaluate the
proposed workflow on two example applications in Chapter 6, a synthetic
matrix multiplication application and the forward pass of the multi-head
attention on the BERT encoder. Chapter 8 concludes the thesis.

2

Chapter 2

Background

In High-Performance Computing (HPC), the critical metrics – Performance,
Portability, and Productivity, commonly referred to as the “three Ps” – have
been extensively explored across numerous domains and use cases. Despite
this widespread attention, the applicability of these principles to sparse linear
algebra computations remains less than satisfactory. Ben-Nun et al. [5] offer
the following definitions for these metrics:

• Performance: The efficiency with which a system utilizes its potential
capabilities.

• Portability: The ease with which software can be executed across
various platforms, optimally utilizing diverse hardware configurations.

• Productivity: The resources, both time and effort, required for the
development, maintenance, and extension of the software.

Among the strategies for developing sparse linear algebra applications, one
initial approach involves crafting the code from the ground up. This method,
while straightforward, is fraught with challenges: it is labor-intensive, prone
to errors, and seldom meets the criteria of the three Ps simultaneously. Suc-
cessful implementation demands a robust understanding of the underlying
storage formats and algorithms, ensuring the code’s accuracy. However, such
an approach severely lacks portability, necessitating considerable adjustments
or complete redesigns for compatibility with various architectures. While
achieving high performance is conceivable for those with an in-depth knowl-
edge of the specific hardware in use, this level of expertise is typically beyond
the purview of domain scientists, the likely authors of such applications. In
essence, while attaining high performance or portability is possible, it sub-
stantially reduces productivity. Striving for both performance and portability
concurrently leads to an untenably low level of productivity.

Fortunately, the necessity for such a burdensome approach is mitigated by

3

2.1. High-Performance Sparse Linear Algebra Libraries

the advancements in today’s HPC landscape, which offers more pragmatic
solutions. These include utilizing specialized libraries with optimized ker-
nels tailored for sparse linear algebra computations, generating sparse linear
algebra kernels through specialized compilers, and domain-specific frame-
works designed to enhance dense computational programs by leveraging
the advantages of sparse intermediate data. In the subsequent sections, we
will delve into these methodologies, examining their respective benefits and
limitations.

2.1 High-Performance Sparse Linear Algebra Libraries

Adopting standardized interfaces for essential linear algebra operations has
significantly streamlined development. These interfaces, often referred to
as kernels, embody a set of predefined operations pivotal to linear algebra
computations. A quintessential example of such an interface is BLAS, the
collection of Basic Linear Algebra Subprograms, which has become a corner-
stone in the development of linear algebra applications. In response to the
widespread utilization of BLAS, hardware manufacturers have introduced
highly optimized versions of these kernels, aiming to maximize the efficiency
of hardware resources. While BLAS predominantly addresses dense vector
and matrix operations, sparse counterparts have been developed to cater to
the sparse data structures commonly encountered in various computational
domains.

Intel’s Math Kernel Library (MKL) is a prominent library for Intel CPUs,
offering an extensive suite of dense and sparse optimized kernels. In the
domain of NVIDIA GPUs, cuSPARSE assumes a similar role, providing
specialized support for sparse vector and matrix operations. These libraries
enhance performance and productivity by offering developers access to pre-
optimized routines, thus alleviating the need for in-depth hardware-specific
optimization knowledge.

Regarding the three Ps – Performance, Portability, and Productivity – these
libraries yield substantial improvements in performance and productivity.
They offer a level of portability within the ecosystem of a given hardware
vendor, such as the cross-generational portability with MKL on Intel CPUs.
However, this portability is often confined to the vendor’s hardware spec-
trum, which presents limitations when transitioning between fundamentally
different architectures, such as from Intel CPUs to ARM-based systems or
GPUs.

Despite the advantages, these libraries are not without their constraints. Their
general-purpose design inherently limits the support to widely adopted
storage formats and operations. Consequently, in scenarios involving less
conventional matrix sizes or storage formats, the libraries may revert to less

4

2.2. Custom Kernel Generation

optimized routines, potentially necessitating costly data format conversions.
In specific niche applications, these limitations may justify the development
of custom code to realize optimal performance, echoing the initial approach
of developing sparse linear algebra applications from the ground up. This
trade-off between leveraging general-purpose libraries and crafting custom
implementations underscores the ongoing challenge of balancing the three
Ps within sparse linear algebra computations.

Another limitation in utilizing these libraries is committing to a specific
storage format during development. Altering the storage format post-
development necessitates revising the relevant sections of the codebase. This
rigidity poses a significant challenge in the exploratory stages of algorithm
design, where evaluating the performance of various storage formats is cru-
cial. Moreover, it hampers adaptability in response to evolving requirements,
further complicating the optimization process.

2.2 Custom Kernel Generation

Kjølstad et al. [2] introduced the Tensor Algebra COmpiler (TACO) to address
the shortcomings of sparse BLAS libraries. Libraries have to balance the com-
pleteness of the tensor operations they support and the performance of these
operations. This trade-off is primarily due to the combinatorial explosion
in the variety of tensor operations and formats, making it impractical to
hand-optimize code for every possible scenario.

The compiler uses a flexible storage format abstraction introduced by Chou
et al. [6], representing all sparse and dense storage formats commonly used
and many more. The compiler generates code from tensor index notation,
which can express a wide variety of tensor operations. The code generator
can target CPUs and NVIDIA GPUs, indicating progress with regard to
portability.

However, the performance of the code generated by TACO can be suboptimal.
Although specific optimizations have been integrated, such as workspaces [7],
more theoretical advancements like auto-scheduling based on an asymptotic
cost model [8] have yet to be implemented. Consequently, the compiler’s
ability to optimize is limited, resulting in performance that does not rival
manually optimized code.

The available Python frontend significantly enhances productivity by simpli-
fying the use of TACO. However, one is still confined to the kernels generated
by TACO, making it challenging to combine these with the highly optimized
kernels available in specialized libraries for standard operations.

TACO’s design considers the storage format during code generation and
facilitates transitioning to alternative storage formats. Despite this flexibility,

5

2.3. Domain-Specific Whole Program Optimization

the process remains predominantly manual, necessitating the integration of
newly generated kernels into the existing codebase, which is not significantly
more straightforward than with existing libraries.

2.3 Domain-Specific Whole Program Optimization

Both BLAS libraries and TACO have one common requirement: they must
be considered while writing an application. Integrating generated or hand-
tuned kernels into an existing application can be a significant task or even
require a complete rewrite, primarily if written in a higher-level language
like Python, which is incompatible with these libraries. These hurdles may
be challenging for domain scientists who require an ergonomic language and
high performance.

Ivanov et al. [4] explored this problem specifically for machine learning
with PyTorch. Existing frameworks provide poor support for sparsity, while
specialized frameworks focus predominantly on sparse inference. They
introduced STen, a sparsity programming model and interface for PyTorch.

STen’s model works by extracting the complete computation graph from a
PyTorch model and replacing the PyTorch operations with STen wrappers.
The STen wrappers automatically dispatch the correct implementation of
an operation based on that operation’s input and output storage formats.
Adjusting the model to use different sparse formats becomes a trivial un-
dertaking as one can easily exchange the storage format of intermediate
data. The only restriction is that a compatible version of the operation must
exist in STen’s catalog of operations, i.e., a version that supports that exact
combination of input and output formats. If such an implementation does
not exist, STen will automatically convert the necessary input/output data
to an appropriate format for which an implementation exists. In addition
to this tunable sparsity, STen includes domain-specific capabilities, such as
sparsifiers to prune output tensors.

STen’s approach has several advantages. Regarding productivity, it allows
for easy adaptability of existing models by directly hooking into an existing
and widely used library. This integration allows for easy prototyping and
development in Python and later optimization of the model for sparsity,
potentially by a different performance engineer, without needing to manually
re-implement the model using a different library or language.

2.4 Whole Program Optimization with DaCe

Ben-Nun et al. [1] introduced DaCe, a data-centric parallel programming
framework that addresses the three P’s in HPC. It allows domain scientists
to express their programs in Python and translates them to an intermediate

6

2.4. Whole Program Optimization with DaCe

representation called Stateful Dataflow Multigraphs (SDFGs). SDFGs are
an intermediate representation (IR) that combine state machines for control
flow with dataflow graphs for computation. Data-centric transformations can
modify this IR to optimize the performance of the resulting code or adapt it
to different hardware architectures. Transformations can be applied manually,
by a performance engineer, or automatically, e.g., using the transfer tuning
approach demonstrated by Trümper et al. [9]. DaCe currently supports CPUs
(x86, ARM, and POWER9), GPUs (NVIDIA and AMD), and FPGAs (Xilinx
and Intel).

DaCe has proven effective in all three metrics mentioned above. Ziogas et
al. [10] used DaCe to speed up quantum transport simulations by up to
two orders of magnitude on two different supercomputers, highlighting the
performance and portability aspects. Ben-Nun et al. [11] also showed DaCe’s
productivity by porting a climate model, significantly reducing the code size
while improving performance by nearly a factor of four.

However, DaCe’s approach mainly targets applications working on dense
data and quickly reaches its limits on sparse applications. While it works
well for simple, sparse computations, such as sparse-dense matrix multiplica-
tion [9], the data-centric representation quickly reaches its limits with more
complex examples, such as sparse-sparse matrix multiplication. The SDFG is
soon dominated by control flow, as seen in Figure 2.1, making the application
challenging to reason about and prohibiting data-centric optimizations due
to a lack of dataflow.

7

2.4. Whole Program Optimization with DaCe

Figure 2.1: The inner map of sparse-sparse matrix-matrix multiplication in DaCe, containing the
co-iteration logic. The red arrows highlight some of the logic that is pushed into state transition
edges, including computations and memory accesses. The red boxes mark the only dataflow
within the computation, which are mere single value assignments.

8

Chapter 3

Storage Format Abstraction

At the base of our workflow, we need a tensor storage format abstraction. An
abstraction allows us to handle various formats uniformly without worrying
about the implementation details of the specific format.

Tensor storage formats, both dense and sparse, consist of an index and values.
The index defines how to interpret the values. For dense tensors, the index
is simple, consisting of only a few scalars to encode the order and size of
dimensions. This metadata is simple enough that most programs manually
pass it along with a pointer to the array of values.

Sparse tensor storage formats, on the other hand, need more complex index
structures involving additional auxiliary arrays. For example, the coordi-
nate (COO) format needs an additional array per tensor dimension. The
compressed sparse fiber (CSF) format, a generalization of the doubly com-
pressed sparse row or DCSR format, needs two arrays per tensor dimension.
Programmers need to keep track of and pass along the auxiliary arrays in
addition to the necessary scalars and values. Handling this much auxiliary
data soon becomes cumbersome, especially when mixing different storage
formats.

To counter this, many libraries use abstractions to hold all the auxiliary
information and values of a matrix or tensor. Some libraries, such as MKL,
limit their abstractions to just a handful of matrix storage formats. To
enable whole-program optimization, we need a more flexible and extensible
abstraction. To this end, we seek inspiration from a more general-purpose
abstraction.

3.1 Format Abstraction for Tensor Algebra Compiler

Kjølstad et al. [2, 6] propose a format abstraction for their tensor algebra
compiler, TACO. The abstraction is a modular interface that can compose

9

3.2. Tensor Data Format in DaCe

most existing storage formats and variations thereof.

The abstraction is based on coordinate hierarchies where each hierarchy level
encodes coordinates along one tensor dimension. They propose six level
formats that can be combined to create most storage formats used today and
many more. We will give an overview of the three most essential formats
here.

Dense As with fully dense tensors, storing a single dense dimension re-
quires only storing the sine of the dimension. An example of this can be seen
in Figure 3.1b to store a dense vector, or Figure 3.1f to store the dense row
dimension of the CSR format.

Compressed This level format is well-known from CSR, CSC, and similar
formats. It stores the coordinates as a segmented array. This requires two
auxiliary arrays: the pos array, containing the segment bounds of the segments
in the crd array. This level format has one segment for every coordinate
encoded in the previous level. Figure 3.1f illustrates this. The first dense
dimension encodes four coordinates. Thus, four segments are defined. The
second segment is stored in crd[2 : 4]. The segments can contain duplicate
coordinates as seen in Figures 3.1e and 3.1k in the row dimension of the COO
format. Since no previous dimension exists, only one segment is defined,
containing as many coordinates as explicitly stored values.

Singleton For every coordinate encoded in the previous level, the singleton
format stores the next coordinate. The most prominent usage of this format
is in the COO format, as seen in Figures 3.1e and 3.1k with all but the row
dimensions.

The authors further define the Range, Offset, and Hashed storage formats,
which enable diagonal and hash map storage.

We use this abstraction as the basis for our abstraction in DaCe.

3.2 Tensor Data Format in DaCe

Data in DaCe is modeled as data containers. A data container contains
accessible data, both external (program inputs) and transient (internally
managed data). There are several data container types built into DaCe, such
as Array, View, and Struct. Other data types exist but are not relevant to
this work.

An Array is a randomly accessible multidimensional array. A View is a
reinterpretation of an array. It must be directly connected to the container

10

3.2. Tensor Data Format in DaCe

8 7 9 3
0 1 2 3 4 5 6 7

Co
m
pr
es
se
d

cr
d

po
s 0 4

1 4 5 7

8 7 9 3values

De
ns
e

siz
e 8

8 7 9 3values

(a) An 8-vector

8 7 9 3
0 1 2 3 4 5 6 7

Co
m
pr
es
se
d

cr
d

po
s 0 4

1 4 5 7

8 7 9 3values

De
ns
e

siz
e 8

8 7 9 3values

(b) Dense vector

8 7 9 3
0 1 2 3 4 5 6 7

Co
m
pr
es
se
d

cr
d

po
s 0 4

1 4 5 7

8 7 9 3values

De
ns
e

siz
e 8

8 7 9 3values

(c) Sparse Vector

1 8
7 3

5 4 2

Ro
w
s

Columns

0

1

2

3

0 1 2 3 4 5

Co
m
pr
es
se
d

cr
d

po
s

De
ns
e

siz
e 6

1 7 8 3 5 4 2

0 1 0 1 3 3 3

0 2 5 5 6 6 7

values

De
ns
e

siz
e

Co
m
pr
es
se
d

cr
d

po
s

4

1 8 7 3 5 4 2

0 1 0 1 1 3 5

0 2 4 4 7

values

Co
m
pr
es
se
d

cr
d

po
s

Co
m
pr
es
se
d

cr
d

po
s 0

0 2 4 7

0 1 3

3

1 8 7 3 5 4 2

0 1 0 1 1 3 5

values

Si
ng
le
to
n

cr
d

Co
m
pr
es
se
d

cr
d

po
s 0

1 8 7 3 5 4 2

0 1 0 1 1 3 5

0 0 1 1 3 3 3

7

values

Co
m
pr
es
se
d

cr
d

po
s

De
ns
e

siz
e

De
ns
e

siz
e

De
ns
e

siz
e 2

1 8 0 7 3 0

0 0 1

0 1 3

2

3

0 0 0

0 5 0 0 0 0 4 0 2

values

(d) A 4 × 6 matrix

1 8
7 3

5 4 2

Ro
w
s

Columns

0

1

2

3

0 1 2 3 4 5

Co
m
pr
es
se
d

cr
d

po
s

De
ns
e

siz
e 6

1 7 8 3 5 4 2

0 1 0 1 3 3 3

0 2 5 5 6 6 7

values

De
ns
e

siz
e

Co
m
pr
es
se
d

cr
d

po
s

4

1 8 7 3 5 4 2

0 1 0 1 1 3 5

0 2 4 4 7

values

Co
m
pr
es
se
d

cr
d

po
s

Co
m
pr
es
se
d

cr
d

po
s 0

0 2 4 7

0 1 3

3

1 8 7 3 5 4 2

0 1 0 1 1 3 5

values

Si
ng
le
to
n

cr
d

Co
m
pr
es
se
d

cr
d

po
s 0

1 8 7 3 5 4 2

0 1 0 1 1 3 5

0 0 1 1 3 3 3

7

values

Co
m
pr
es
se
d

cr
d

po
s

De
ns
e

siz
e

De
ns
e

siz
e

De
ns
e

siz
e 2

1 8 0 7 3 0

0 0 1

0 1 3

2

3

0 0 0

0 5 0 0 0 0 4 0 2

values

(e) COO

1 8
7 3

5 4 2

Ro
w
s

Columns

0

1

2

3

0 1 2 3 4 5
Co

m
pr
es
se
d

cr
d

po
s

De
ns
e

siz
e 6

1 7 8 3 5 4 2

0 1 0 1 3 3 3

0 2 5 5 6 6 7

values

De
ns
e

siz
e

Co
m
pr
es
se
d

cr
d

po
s

4

1 8 7 3 5 4 2

0 1 0 1 1 3 5

0 2 4 4 7

values

Co
m
pr
es
se
d

cr
d

po
s

Co
m
pr
es
se
d

cr
d

po
s 0

0 2 4 7

0 1 3

3

1 8 7 3 5 4 2

0 1 0 1 1 3 5

values

Si
ng
le
to
n

cr
d

Co
m
pr
es
se
d

cr
d

po
s 0

1 8 7 3 5 4 2

0 1 0 1 1 3 5

0 0 1 1 3 3 3

7

values

Co
m
pr
es
se
d

cr
d

po
s

De
ns
e

siz
e

De
ns
e

siz
e

De
ns
e

siz
e 2

1 8 0 7 3 0

0 0 1

0 1 3

2

3

0 0 0

0 5 0 0 0 0 4 0 2

values

(f) CSR

1 8
7 3

5 4 2

Ro
w
s

Columns

0

1

2

3

0 1 2 3 4 5

Co
m
pr
es
se
d

cr
d

po
s

De
ns
e

siz
e 6

1 7 8 3 5 4 2

0 1 0 1 3 3 3

0 2 5 5 6 6 7

values

De
ns
e

siz
e

Co
m
pr
es
se
d

cr
d

po
s

4

1 8 7 3 5 4 2

0 1 0 1 1 3 5

0 2 4 4 7

values

Co
m
pr
es
se
d

cr
d

po
s

Co
m
pr
es
se
d

cr
d

po
s 0

0 2 4 7

0 1 3

3

1 8 7 3 5 4 2

0 1 0 1 1 3 5

values

Si
ng
le
to
n

cr
d

Co
m
pr
es
se
d

cr
d

po
s 0

1 8 7 3 5 4 2

0 1 0 1 1 3 5

0 0 1 1 3 3 3

7

values

Co
m
pr
es
se
d

cr
d

po
s

De
ns
e

siz
e

De
ns
e

siz
e

De
ns
e

siz
e 2

1 8 0 7 3 0

0 0 1

0 1 3

2

3

0 0 0

0 5 0 0 0 0 4 0 2

values

(g) CSC

1 8
7 3

5 4 2

Ro
w
s

Columns

0

1

2

3

0 1 2 3 4 5

Co
m
pr
es
se
d

cr
d

po
s

De
ns
e

siz
e 6

1 7 8 3 5 4 2

0 1 0 1 3 3 3

0 2 5 5 6 6 7

values

De
ns
e

siz
e

Co
m
pr
es
se
d

cr
d

po
s

4

1 8 7 3 5 4 2

0 1 0 1 1 3 5

0 2 4 4 7

values

Co
m
pr
es
se
d

cr
d

po
s

Co
m
pr
es
se
d

cr
d

po
s 0

0 2 4 7

0 1 3

3

1 8 7 3 5 4 2

0 1 0 1 1 3 5

values

Si
ng
le
to
n

cr
d

Co
m
pr
es
se
d

cr
d

po
s 0

1 8 7 3 5 4 2

0 1 0 1 1 3 5

0 0 1 1 3 3 3

7

values

Co
m
pr
es
se
d

cr
d

po
s

De
ns
e

siz
e

De
ns
e

siz
e

De
ns
e

siz
e 2

1 8 0 7 3 0

0 0 1

0 1 3

2

3

0 0 0

0 5 0 0 0 0 4 0 2

values

(h) DCSR

1 8
7 3

5 4 2

Ro
w
s

Columns

0

1

2

3

0 1 2 3 4 5

Co
m
pr
es
se
d

cr
d

po
s

De
ns
e

siz
e 6

1 7 8 3 5 4 2

0 1 0 1 3 3 3

0 2 5 5 6 6 7

values

De
ns
e

siz
e

Co
m
pr
es
se
d

cr
d

po
s

4

1 8 7 3 5 4 2

0 1 0 1 1 3 5

0 2 4 4 7

values

Co
m
pr
es
se
d

cr
d

po
s

Co
m
pr
es
se
d

cr
d

po
s 0

0 2 4 7

0 1 3

3

1 8 7 3 5 4 2

0 1 0 1 1 3 5

values

Si
ng
le
to
n

cr
d

Co
m
pr
es
se
d

cr
d

po
s 0

1 8 7 3 5 4 2

0 1 0 1 1 3 5

0 0 1 1 3 3 3

7

values
Co

m
pr
es
se
d

cr
d

po
s

De
ns
e

siz
e

De
ns
e

siz
e

De
ns
e

siz
e 2

1 8 0 7 3 0

0 0 1

0 1 3

2

3

0 0 0

0 5 0 0 0 0 4 0 2

values

(i) BCSR

Ro
w
s

Columns

Tu
be
s

0

1

2

0 1 2

0

1

Co
m
pr
es
se
d

cr
d

po
s

Co
m
pr
es
se
d

cr
d

po
s

Co
m
pr
es
se
d

cr
d

po
s 0

0 2 4

0 2

2

0 2 4 5 6

0 1 0 2

1 7 8 3 4 2

0 1 0 1 1 1

values

Si
ng
le
to
n

cr
d

Si
ng
le
to
n

cr
d

Co
m
pr
es
se
d

cr
d

po
s 0

0 1 0 1 1 1

0 0 1 1 0 2

0 0 0 0 2 2

6

1 7 8 3 4 2values
(j) A 2 × 3 × 2 tensor

Ro
w
s

Columns

Tu
be
s

0

1

2

0 1 2

0

1

Co
m
pr
es
se
d

cr
d

po
s

Co
m
pr
es
se
d

cr
d

po
s

Co
m
pr
es
se
d

cr
d

po
s 0

0 2 4

0 2

2

0 2 4 5 6

0 1 0 2

1 7 8 3 4 2

0 1 0 1 1 1

values

Si
ng
le
to
n

cr
d

Si
ng
le
to
n

cr
d

Co
m
pr
es
se
d

cr
d

po
s 0

0 1 0 1 1 1

0 0 1 1 0 2

0 0 0 0 2 2

6

1 7 8 3 4 2values

(k) COO

Ro
w
s

Columns

Tu
be
s

0

1

2

0 1 2

0

1

Co
m
pr
es
se
d

cr
d

po
s

Co
m
pr
es
se
d

cr
d

po
s

Co
m
pr
es
se
d

cr
d

po
s 0

0 2 4

0 2

2

0 2 4 5 6

0 1 0 2

1 7 8 3 4 2

0 1 0 1 1 1

values

Si
ng
le
to
n

cr
d

Si
ng
le
to
n

cr
d

Co
m
pr
es
se
d

cr
d

po
s 0

0 1 0 1 1 1

0 0 1 1 0 2

0 0 0 0 2 2

6

1 7 8 3 4 2values

(l) CSF

Figure 3.1: Examples of different vector, matrix, and tensor storage formats.

11

3.2. Tensor Data Format in DaCe

1 CSR = Tensor(
2 dace.float64 ,
3 (M, N),
4 [
5 (Dense(), 0),
6 (Compressed (), 1)
7],
8 nnz ,
9 "CSR_Matrix"

10)
11

12 # or using shorthand
13

14 CSR = Tensor.CSR(
15 (M, N), nnz ,
16 dace.float64
17)

Listing 3.1: Python definition of a CSR Matrix

1 CSR = Tensor(
2 dace.float64 ,
3 (M, N),
4 [
5 (Dense(), 1),
6 (Compressed (), 0)
7],
8 nnz ,
9 "CSC_Matrix"

10)
11

12 # or using shorthand
13

14 CSC = Tensor.CSC(
15 (M, N), nnz ,
16 dace.float64
17)

Listing 3.2: Python definition of a CSC Matrix

it is viewing and can be used, for example, to access subarrays or reshape
an array (such as viewing a three-dimensional M × N × K array as a two-
dimensional (M · N) × K array). Much like their C counterpart, Structs
are nested data containers. They can have several fields, each being a data
container of its own and can be passed along as one unit. Views can be used
to look at individual fields within a struct.

Handling multidimensional sparse data typically involves dealing with many
individual data containers or defining a custom struct to unite the necessary
containers. To simplify this, we introduce a new data container type Tensor
inspired by TACO’s data abstraction. A Tensor can be defined by a few key
parameters: The value data type, the number and size of dimensions, the
index type and order, the number of non-zeros, and a name for the resulting
struct.

Listings 3.1 and 3.2 show how to define M × N matrices in the compressed
sparse row (CSR) and compressed sparse column (CSC) formats, respectively.
Note that the only difference is in the order in which the dimensions are
stored. Both formats have a dense level followed by a compressed level, with
CSR compressing the columns in each row while CSC compresses the rows
in each column.

We provide a further shorthand for the most common formats, such as CSR
and CSC, to make usage even more ergonomic.

This abstraction achieves little on its own. It can generate the necessary
struct for the code generation. However, its actual use is to allow other DaCe
components to use the storage format of such a data container to decide on

12

3.2. Tensor Data Format in DaCe

implementation. We will look at an example of this in the next Chapter.

13

Chapter 4

Library Node

In DaCe, library nodes symbolize abstract units of work, such as matrix
multiplication or transposition. Instead of having a native dataflow represent
this operation, a library node can be used. The library node has two different
purposes.

Expansion Firstly, a library node can be expanded, turning it from a generic
node into a specific implementation. This implementation can be a native
dataflow or, as the name suggests, it can use a library such as a fast Basic
Linear Algebra Subprograms (BLAS) library like MKL. This allows DaCe to
benefit from highly optimized libraries.

Transformation The second benefit of library nodes is that they enable
transformations based on the semantics of a library node. This allows for
transformations that may not be easily possible when using native dataflow
or generic library nodes. One example of this is a matrix multiplication
followed by a transposition. The matrix multiplication library node may be
expanded to a specialization based on a specific library. Suppose that the
library allows for the major order of the output to be changed (i.e., row- to
column-major). In that case, a transformation can recognize this and fuse
the multiplication and transposition into one multiplication that writes the
output in the correct order.

Many library nodes exist, ranging from concrete operations like tensor trans-
position to more abstract operations such as evaluating an Einstein summa-
tion expression. We will use this more abstract approach to further enable
our workflow and optimize programs for sparsity.

14

4.1. Tensor Index Notation Library Node

4.1 Tensor Index Notation Library Node

We introduce a new Tensor Index Notation (TIN) library node to DaCe. It
evaluates a given tensor index expression, much like the Einsum library node
evaluates an Einstein summation expression.

Tensor index notation expresses how each element of the output tensor is
comprised of the input tensors. It’s a declarative language; it does not dictate
in what order the computation is performed, just what the result should be.
The tensor index expression for a matrix multiplication looks as follows:

Cij = ∑
k

Aik ∗ Bkj

Sometimes, a shorthand is used, where summations are implied over all
variables not captured by the left-hand side. The matrix multiplication can
thus be simplified to

Cij = Aik ∗ Bkj

The TIN library node has one input for every tensor on the left-hand side
and one output. We allow the inputs and output to be either of type Array
or Tensor, where an array is just interpreted as a tensor with all dense
dimensions.

There are two possible expansions: using TACO and mapping the expression
to other existing library nodes.

TACO Expansion For this expansion, the library node first checks the input
and output tensors to verify that they have a tensor storage format that TACO
supports. At the time of writing, this is limited to a combination of dense
and compressed level formats. If the formats are supported it calls TACO
with the tensor expression to generate the kernel to compute the expression.
The code is then augmented with the logic to convert from the DaCe structs
to TACO’s storage format. That code then replaces the library node in a
tasklet. Figures 4.1 and 4.2 show the before and after of a tensor contraction
example.

Expansion to Other Library Nodes Common operations, such as matrix
multiplications, are usually supported by highly optimized libraries that
outperform TACO-generated code. Further, TACO does not support every
possible hardware configuration, such as AMD GPUs, further amplifying the
case for falling back to these libraries when possible.

DaCe makes it easily possible to offer multiple expansions for a library node.
We add another expansion that tries to map tensor contractions to existing
calls in BLAS libraries. We will look at mapping a tensor index expression to
a sparse-dense matrix-matrix multiplication in MKL (mkl_sparse_?_mm).

15

4.1. Tensor Index Notation Library Node

C[i,j,m,n] = A[i,j,k] * B[m,n,k]

BA

C

Figure 4.1: Tensor index notation library
containing a tensor contraction.

int32_t B_tensor_dims[] = {N, N};
int32_t B_tensor_ordering[] = {0, 1};
taco_mode_t B_tensor_types[] = {taco_mode_dense,
taco_mode_sparse};
taco_tensor_t* B_tensor = init_taco_tensor_t(2,
sizeof(double), B_tensor_dims, B_tensor_ordering,
B_tensor_types);
B_tensor->vals = (uint8_t *) tin_B_task->values;
B_tensor->indices[1][0] = (uint8_t *) tin_B_task-
>idx1_pos;

BA

C

Figure 4.2: Tensor index notation library
node expanded using TACO generated code.

The apparent case first. If the expression is of the form Cij = Aik ∗ Bkj, A is
in a supported sparse format (e.g., CSR), and both B and C are dense (both
in row major or column major layout) we can directly map this to matrix
multiplication because it is one.

However, there are other variations that we can map equally to matrix
multiplications. If we have more leading or trailing dimensions, e.g., instead
of i and j, we have mno and st respectively, so the expression becomes
Cmnost = Amnok ∗ Bkst, we can still reduce this to a matrix multiplication. We
can insert the necessary Views to reinterpret, for example, the B tensor as
a matrix with dimensions K × (S · T). Importantly, this also works with
a sparse tensor where all but the last dimension is dense. We can thus
reinterpret A as a (M · N · O)× K CSR matrix.

Finally, many libraries allow transposing the operands for matrix multiplica-
tion. This allows us to support cases where the contracted dimension is the
trailing dimension in both tensors. When this is not the case (such as with
MKLs mkl_sparse_?_mm, which only allows transposing the sparse operand
A), we can insert transpositions where necessary.

Figure 4.3 shows such an expansion. The resulting CSRMM and Transpose
library nodes can be expanded to specific implementations relying on tuned
BLAS libraries like MKL or native data flow implementations.

16

4.1. Tensor Index Notation Library Node

CSRMM

B’A_rows

tmp

A B

Transpose

C’

C

A_cols A_vals

Figure 4.3: Expansion of the library node in Figure 4.1 to sparse matrix multiplication and
transpose library nodes.

17

Chapter 5

Data-Centric Transformation

The power of DaCe lies in its data-centric transformations. Transformations
recognize patterns in the form of sub-graphs in the SDFG and replace them
with a sub-graph that achieves the same but may have different dataflow
properties. The power here is that a performance engineer can do this with-
out understanding the underlying math, simply by recognizing inefficient
dataflow patterns. Further, this process can be automized with the help of
machine learning, as showcased by Trümper et al. [9].

An example of such a transformation is map tiling. For example, matrix
multiplication can be implemented naïvely with three nested loops. In DaCe
this would be represented using a three-dimensional map. A map surrounds
a sub-graph and can be viewed as (parallel) loop, executing the enclosed
sub-graph once for every index combination. However, it is beneficial to
break the computation into smaller blocks to improve cache locality. The
MapTiling transformation replaces the original map with two nested maps.
The outer iterates over the tiles, while the inner iterates within a tile. This
turns the naïve matrix multiplication into a blocked matrix multiplication.

Transformations can also help identify more abstract operations. The Lift
Einsum transformation can recognize sub-graphs that can be expressed via
Einstein summation notation and replaces them with an Einsum library node.
This enables the expansion of the library node to specialized versions such as
GEMM for matrix multiplications and further to specialized implementations
utilizing high-performance libraries.

5.1 Container Transformation

We introduce a simple transformation to enable our envisioned workflow.
The transformation changes the data format of data containers connected to
TIN library nodes. Since the implementation of the library node depends on

18

5.1. Container Transformation

the connected data containers, we can use this to optimize the program for
sparse intermediate data.

Specifically, two conditions have to be met to apply the transformation:

1. The data container can only be connected to TIN library nodes.

2. The data format of the container must be Array or Tensor, both before
and after the transformation.

Based on condition 1, we can transform transient data between TIN library
nodes, input data only read by TIN library nodes, and output data written
by a TIN library node. This ensures that the change is handled appropriately
by the rest of the graph.

Condition 2 allows us to switch the tensor from dense to sparse, sparse to
dense, and sparse to sparse (with different formats).

19

Chapter 6

Evaluation

We evaluate our workflow using one synthetic and one real-world scenario.

We run all benchmarks on a system with 2× Intel Xeon Gold 6154 CPUs
on the Ault testbed at the Swiss National Supercomputing Centre (CSCS).
We execute all benchmarks on a single CPU core. While parallelization
with OpenMP is possible for all examples discussed here, the potential (lack
of) scalability would be attributed to the individual BLAS implementations
and the TACO-generated code. We aim to evaluate the workflow, not the
individual implementations’ scalability.

We repeat all benchmarks 1000 times (unless noted otherwise) and visualize
the runtimes as box-and-whisker or line plots. In the case of box plots, the
box denotes quartiles of the measurements, while the whiskers extend to
the 2.5 and 97.5 percentiles, respectively. In the case of line plots, the bands
show a 95% interval, ranging from the 2.5 to the 97.5 percentile. Where
applicable, the annotations on the plot show the median time. The matrices
are randomly generated, with uniformly distributed non-zero elements in
the case of sparse data. The runtimes are collected using DaCe’s build-in
profiling tool and are the end-to-end runtime of the entire program unless
noted otherwise.

6.1 3MM

For a synthetic example, we look at the multiplication of four matrices,
A = (B · C) · (D · E), commonly referred to as 3MM. Figure 6.1 shows the
corresponding SDFG using TIN library nodes for the matrix multiplications.
We use this example to highlight the ease of prototyping. All implementations
in this Section are working on matrices with double precision (64 bit) floating
point values. For simplicity, we will look exclusively at square matrices.

20

6.1. 3MM

BC[i,j] = B[i,k] * C[k,j]

CB

BC

DE[i,j] = D[i,k] * E[k,j]

ED

DE

A[i,j] = BC[i,k] * DE[k,j]

A

Figure 6.1: SDFG of 3MM.

100 200 300 400 500
N (Input Matrix Sizes: NxN)

0

2

4

6

8

10

12

Ti
m

e
[m

s]

0.99
1.74

3.33

6.24

11.79
MKL 3MM (dense)

Figure 6.2: Execution time of 3MM using Intel MKL BLAS matrix multiplication kernels. Plot
derived from 100 executions, annotated with median execution time.

We start with a dense baseline; for this, we expand the matrix multiplications
to BLAS matrix multiplications with Intel MKL’s BLAS implementation.
Figure 6.2 shows the execution times of the dense baseline.

We can now very quickly adapt the program to work with sparse data.
Assume we want all inputs sparse while being flexible on the output format.

For our first experiment, we apply the data container transformation to the
original SDFG and change the data format for all data containers to CSR.
We leave everything else to the default implementation so that DaCe will
replace the library nodes with TACO-generated code. The execution time of
this version is shown in Figure 6.3.

21

6.1. 3MM

0.
01

0.
02

0.
03

0.
04

0.
05

0.
06

0.
07

0.
08

0.
09 0.

1
0.

11
0.

12
0.

13
0.

14
0.

15
0.

16
0.

17
0.

18
0.

19 0.
2

0.
21

0.
22

0.
23

0.
24

0.
25

0.
26

0.
27

0.
28

0.
29

Input Density

0

50

100

150

200

250
Ti

m
e

[m
s]

Dense Baseline

TACO 3MM (N = 500)

(a) Fixed size of N = 500 and varying den-
sity.

100 200 300 400 500
N (Input Matrix Sizes: NxN)

0

50

100

150

200

Ti
m

e
[m

s]

2.62
15.00

50.02

114.87

217.53
TACO 3MM (density = 0.1)

(b) Fixed density of 0.1 = 10% and varying
size.

Figure 6.3: Execution time of sparse 3MM using TACO generated matrix multiplication kernels.
This version was benchmarked over 100 instead of 1000 runs.

Since we are working with sparse data, the density, i.e., the fraction of non-
zero elements, becomes relevant to execution time. However, the dense
version outperforms the sparse implementation even at low densities. For
moderate degrees of sparsity, the execution time of the sparse code, as
depicted in Figure 6.3b, is more than an order of magnitude slower than
its dense counterpart. Looking at how the runtime varies depending on
sparsity, we can see in Figure 6.3a that at a density of 1%, we are just barely
outperforming the dense implementation at 10.76 ms vs. 11.33 ms.

Profiling the SDFG reveals the problem: The third matrix multiplication
dominates the execution time. Figure 6.4 shows the visualization of such
a profile, revealing a 19× difference in the execution time between the first
multiplications and the last. This slowdown is due to decreased sparsity over
subsequent multiplications, meaning the intermediate data is dense. Storing
dense data in a sparse format and using sparse compute kernels is less than
ideal.

In response, we can change the data type of the transient and output con-
tainers back to dense. Now that the final multiplication is consuming and
producing dense data again, it can fall back to the dense MKL BLAS call
from the baseline.

Figure 6.5a shows the execution time of the hybrid approach at varying den-
sities. With this approach, the execution time increases gradually compared
to the fully sparse version in Figure 6.3a. If we compare the two, we can see
that with N = 500 at a density of 0.17, the execution time of the hybrid and
dense versions are very close. Indeed, comparing the execution time of the
hybrid version with a fixed density of 0.17, as seen in Figure 6.5b, to its dense
counterpart (Figure 6.2), the execution times are virtually identical. We can

22

6.1. 3MM

Figure 6.4: Screenshot of the DaCe SDFG editor with the profiling overlay visualizing the median
execution time of the tasklets. N = 500, density = 0.01, execution time: 0.47 ms for the green
tasklets, 9.02 ms for the red tasklet.

0.
01

0.
02

0.
03

0.
04

0.
05

0.
06

0.
07

0.
08

0.
09 0.

1
0.

11
0.

12
0.

13
0.

14
0.

15
0.

16
0.

17
0.

18
0.

19 0.
2

0.
21

0.
22

0.
23

0.
24

0.
25

0.
26

0.
27

0.
28

0.
29 0.

3

Input Density

5.0

7.5

10.0

12.5

15.0

17.5

20.0

22.5

25.0

Ti
m

e
[m

s]

Dense Baseline

TACO-MKL Hybrid 3MM (N = 500)

(a) Fixed size of N = 500 and varying den-
sity.

100 200 300 400 500
N (Input Matrix Sizes: NxN)

0

2

4

6

8

10

12

Ti
m

e
[m

s]

0.95
1.70

3.35

6.37

11.22
TACO-MKL Hybrid 3MM (density = 0.17)

(b) Fixed density of 0.17 = 17% and varying
size. The density was chosen to match the
performance of the dense baseline.

Figure 6.5: Execution time of hybrid (sparse & dense) 3MM using TACO generated kernels for
sparse multiplications and Intel MKL BLAS for dense multiplications.

thus conclude that the sparse TACO-MKL hybrid implementation matches
the performance of the dense implementation when the density is 17% and
surpasses it at lower densities.

Finally, since matrix multiplications are very common, MKL offers a sparse-
sparse matrix multiplication with dense output (mkl_sparse_?_sp2md). We
can use this function if both inputs have the same storage format (CSR, CSC,
or BSR). Since this is the case in our example, we can use a specialized
expansion as discussed in Chapter 4 to expand the TIN library node to a
version using the MKL sparse library.

This final specialization further improves performance, as seen in Figure 6.6,

23

6.1. 3MM

0.
01

0.
02

0.
03

0.
04

0.
05

0.
06

0.
07

0.
08

0.
09 0.

1
0.

11
0.

12
0.

13
0.

14
0.

15
0.

16
0.

17
0.

18
0.

19 0.
2

0.
21

0.
22

0.
23

0.
24

0.
25

0.
26

0.
27

0.
28

0.
29 0.

3

Input Density

4

6

8

10

12

14

16

18

20
Ti

m
e

[m
s]

Dense Baseline

MKL Hybrid 3MM (N = 500)

(a) Fixed size of N = 500 and varying den-
sity.

100 200 300 400 500
N (Input Matrix Sizes: NxN)

0

2

4

6

8

10

12

Ti
m

e
[m

s]

1.02
1.78

3.46

6.54

11.48
MKL Hybrid 3MM (density = 0.2)

(b) Fixed density of 0.20 = 20% and varying
size. The density was chosen to match the
performance of the dense baseline.

Figure 6.6: Execution time of hybrid (sparse & dense) 3MM using MKL sparse and MKL BLAS
libraries for matrix multiplication kernels.

0.00 0.05 0.10 0.15 0.20 0.25 0.30
Input Density

5

10

15

20

25

Ti
m

e
[m

s]

Dense Baseline

3MM (N = 500)

Type
TACO
TACO-MKL Hybrid
MKL Hybrid

(a) Fixed size of N = 500 and varying den-
sity.

100 150 200 250 300 350 400 450 500
N (Input Matrix Sizes: NxN)

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

Ti
m

e
[m

s]

3MM (density = 0.15)
Type

TACO
TACO-MKL Hybrid
MKL Hybrid
Dense Baseline

(b) Fixed density of 0.15 = 15% and varying
size.

Figure 6.7: Comparison of all explored approaches. The pure TACO approach is only partially
shown to keep the y-axis scale within useful bounds.

pushing the border at which the sparse implementation matches the speed
of the dense implementation to 20%.

Figure 6.7 shows a complete comparison of all discussed approaches. Fig-
ure 6.7a highlights the “break-even” point, at which the sparse implementa-
tions match the performance of the dense implementation. The plot further
shows how, at lower densities, the difference between the two hybrid ap-
proaches becomes negligible. This is to be expected as, with decreasing
density, the computation becomes increasingly irregular, negating optimiza-
tions MKL might have over the TACO-generated kernel. Figure 6.7b shows
how the performance scales with increased matrix size.

We can explore these optimizations with a few clicks of a button without man-

24

6.2. BERT Encoder Forward Pass

ually changing the code. This allows for very convenient manual exploration
and optimization, as we have done here. However, more importantly, it lays
the groundwork for automatic optimizations. Auto-tuners and brute-force
optimizers could enumerate the best choice for storage formats and kernel
implementations, enabling non-performance engineers to benefit from these
optimizations.

6.2 BERT Encoder Forward Pass

To examine our workflow on a real-world program, we look at the forward
pass of the multi-head attention of the BERT encoder. Listing 6.1 contains
the corresponding Python code, and Figure 6.8 shows the resulting SDFG.
We want to investigate whether we can benefit from using sparse weights
(namely wq, wk, and wv). Note that we are not concerned with sparsifying
the weights; we want to investigate the performance of a potentially sparse
version.

The weights are used in a tensor contraction at the beginning of the program,
specifically, lines 14–16 of Listing 6.1, which correspond to the highlighted
sections of the SDFG in Figure 6.8. The Einstein summation phi, bki → phbk
corresponds to the tensor index notation qq′phbk = wqphi · xbki (where qq′ is

1 @dace.program
2 def mha_forward(
3 x: dace.float32[BB, SM , N],
4 wq: dace.float32[P, H, N],
5 wk: dace.float32[P, H, N],
6 wv: dace.float32[P, H, N],
7 wo: dace.float32[P, H, N],
8 bq: dace.float32[P, H, 1, 1],
9 bk: dace.float32[P, H, 1, 1],

10 bv: dace.float32[P, H, 1, 1],
11 bo: dace.float32[N],
12 scaler: dace.float32 ,
13):
14 qq = np.einsum("phi ,bki ->phbk", wq , x) + bq
15 kk = np.einsum("phi ,bki ->phbk", wk , x) + bk
16 vv = np.einsum("phi ,bki ->phbk", wv , x) + bv
17

18 beta = scaler * np.einsum("phbk ,phbj ->hbjk", kk , qq)
19 alpha = softmax(beta)
20 gamma = np.einsum("phbk ,hbjk ->phbj", vv , alpha)
21 out = np.einsum("phi ,phbj ->bji", wo , gamma) + bo
22

23 return out

Listing 6.1: Python code of mutli head attention forward pass.

25

6.2. BERT Encoder Forward Pass

Figure 6.8: SDFG of the BERT encoder multi-head attention forward pass. The targeted tensor
contractions are highlighted in red.

26

6.2. BERT Encoder Forward Pass

0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50
Input Density

0

500

1000

1500

2000

2500
Ti

m
e

[m
s]

Dense Baseline

BERT contraction
Type

TACO
MKL Sparse

(a) Runtime of a single tensor contraction.

0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50
Input Density

0

1000

2000

3000

4000

5000

6000

7000

8000

Ti
m

e
[m

s]

Dense Baseline

BERT Total
Type

TACO contraction
MKL Sparse contraction

(b) Total end-to-end runtime of the BERT
multi-head attention forward pass.

Figure 6.9: Runtime comparison at varying weight densities of the BERT encoder multi-head
attention forward pass. The program was executed ten times for every tested density, resulting in
30 executions of the relevant tensor contraction.

the temporary value used to compute qq = qq′ + bq).

DaCe can expand this Einstein summation to a BLAS matrix multiplication.
We use this with MKL’s BLAS implementation as our performance baseline.
For our first sparse version, we transform the weight tensor to a compressed
sparse fiber (CSF) tensor and use the TACO expansion of the tensor index
expression.

As we saw the tensor index notation previously in Figure 4.1 in Chapter 4,
we know that, as long as we can reduce the sparse tensor to a CSR matrix, we
can expand the library node to a sparse-dense matrix multiplication followed
by a transpose, as seen in Figure 4.3. To test this, we transform the sparse
tensor to only compress the third dimension, which allows us to use the
expansion. We further expand the resulting CSRMM and Transpose library
nodes to optimized MKL implementations and refer to it as “MKL Sparse”.

Figure 6.9 shows the runtime of the three versions. It is apparent that, even
at very optimistic densities, the sparse version of the encoder is significantly
slower than the dense version. The TACO contraction is 13.3×–37.0× slower
than the dense baseline, resulting in a 2.66×–5.56× slowdown in end-to-end
time. While the MKL sparse version is significantly faster than TACO, the
contraction is still 2.23×–8.57× slower than the baseline, with a 1.16×–1.96×
slowdown in end-to-end runtime.

Theoretically, it is possible to improve the execution time of the MKL Sparse
version by fusing the transpose with the addition following it. However,
the transposition accounts for approximately 15 ms of the contraction time
(constant over density). Thus, even if we remove it entirely, the runtime will
still be slower than the dense baseline. Because of this, we do not attempt
any further optimizations.

27

6.2. BERT Encoder Forward Pass

Our primary focus here is not to optimize the application but to highlight
the ease with which we can explore the different approaches. We show that
we can apply the same workflow as before to a real-world application like
BERT, switching between storage formats and algorithm implementations
with the click of a button. Doing the same on an application written with just
TACO or MKL would be more complicated, requiring manual code changes.
Changing a conventional application to use MKL instead of TACO would
require more extensive manual intervention. We show how to do it without
even touching the code.

28

Chapter 7

Related Work

Many previous works have focused on optimizing sparse applications. In
the following, we highlight a few of the most closely related approaches
and point out some ways our holistic workflow enriches sparse program
optimization capabilities.

Tensor Algebra Compiler Bik et al. [12] discussed integrating TACO’s
techniques into the MLIR open-source compiler architecture. Tian et al. [13]
have done a similar thing, developing a sparse tensor algebra dialect for
the MLIR infrastructure based on their domain-specific tensor contraction
compiler, COMET [14].

Henry et al. [15] generalized the concepts from TACO to sparse array pro-
gramming. They extended tensor index notation to array index notation,
which can handle arbitrary user-defined functions instead of just additions
and multiplications. Further, the framework allows compressing other values
than zeros (e.g., ones).

Extending and integrating these tensor algebra compilers into a compiler
enables more optimizations and a more integrated workflow. Our approach
offers a similar convenience while also allowing the exploration of external,
hand-optimized libraries.

Other Code Generation Approaches Du et al. [16] showed how to generate
storage formats and GPU kernels for sparse matrix-vector products (SpMV)
based on input sparsity pattern and hardware architecture.

Yadav et al. [17, 18] built a distributed tensor algebra compiler, DISTAL,
targeting CPU and GPUs. They later extended it to support sparse tensor
computations with SpDISTAL.

DaCe can adapt applications to run in distributed settings. While a single
sparse computation can not yet be easily adapted to run in a distributed

29

environment, it should already be possible to distribute separate sparse
computations across different nodes.

Hardware Approaches Hsu et al. [19] build the Stardust compiler as a
separate compilation path in the TACO that compiles sparse tensor algebra
to reconfigurable dataflow architectures. They later developed the sparse
abstract machine [20], an abstract machine model for targeting sparse tensor
algebra to reconfigurable fixed-function dataflow accelerators.

Srivastava et al. [21] similarly propose a hardware accelerator to accelerate
dense and sparse tensor factorization.

While we have not explored utilizing reconfigurable fixed-function hardware
in this work, DaCe does support FPGAs. In its current form, this enables
offloading different parts of an application to different accelerators while
optimizing CPU codes with the approach we have explored here.

Inspector-Executor Compiler Optimizations Strout et al. [22], Nandy et
al. [23], Zhao et al. [24], and Venkat et al. [25, 26, 27] adapted polyhedral
optimizations to the sparse world with the sparse polyhedral framework. It
is based on the inspector-executor model, where an inspector analyzes the
data at runtime and selects an optimized executor based on that knowledge.
They also explore a series of other compiler transformations and automatic
parallelization for sparse matrix computations.

DaCe currently does not implement these inspector-executor workflows.
However, it should generally be possible to integrate them using data-centric
transformations, further expanding DaCe’s optimization capabilities.

Probibalistic Modeling for Cache and Locality Improvements Heras et
al. [28, 29], Pichel et al. [30, 31], Hong et al. [32] modeled and improved cache
locality of sparse matrix-vector products through reordering.

Fraguela et al. [33, 34, 35] and Doallo et al. [36, 37] explored probibalistic
cache miss modeling.

DaCe’s analytical capabilities regarding locality and cache optimizations are
currently limited to dense data. These approaches could guide auto-tuners
in their search for the best optimizations.

30

Chapter 8

Conclusion

This work showed how a modular approach to sparsity can be implemented
in DaCe. The presented workflow allows developers to easily switch from a
dense to a sparse implementation of the same program and quickly iterate
between different sparse versions. It makes it possible to explore different
storage formats and kernel implementations with the figurative click of a
button instead of wasting valuable time on lengthy manual modifications of
programs.

Looking back at the three Ps in HPC – Performance, Portability, and Produc-
tivity – our workflow drastically improves productivity. While performance
and probability depend on the underlying libraries used for the sparse
computations, it is clear that the workflow can accelerate the choice of algo-
rithm and library for optimal performance. Further, our modular approach
enables the integration of further libraries supporting different hardware
architectures, which should aid the portability of sparse applications.

8.1 Future Work

This work lays the groundwork for further developments of sparse optimiza-
tions with DaCe.

Portability To facilitate portability to different architectures, such as GPU,
adding support for different libraries is necessary. A notable candidate is
cuSPARSE, targeting NVIDIA GPUs. The modular approach of DaCe makes
it easy to integrate new libraries and associated storage formats (e.g., m : n
or, more specifically, 2 : 4 sparsity).

Native Dataflow Support The advantages of the storage format abstraction
are currently only utilized by library nodes that expand to library calls or
fixed C++ code. Implementing sparse algorithms using DaCe’s data flow

31

8.1. Future Work

abstraction still needs to be more convenient. DaCe could be extended with
map schedules that allow iterating and co-iterating the different level formats
of the storage abstraction. This could replace the TACO code generation with
a native dataflow implementation. A native dataflow implementation would
also enable data-centric transformations on the sparse algorithms, such as
tiling or fusing maps iterating sparse data structures.

Stochastic Modeling The abovementioned native dataflow representation
could also enable stochastic modeling of the algorithms in order to predict,
for example, cache misses. Such information could guide the optimization of
sparse algorithms.

Data Optimizations we have only explored the algorithm side of sparse
program optimization. Reordering sparse matrices can significantly increase
locality and, thus, performance. Transformations could be added that insert
reordering logic and modify the dataflow to account for the new order.

Inspector Executor Workflows Similarly, a transformation could insert an
inspector to gather statistics about the sparse data that can be used in later
stages of the program.

32

Bibliography

[1] T. Ben-Nun, J. de Fine Licht, A. N. Ziogas, T. Schneider, and T. Hoe-
fler, “Stateful dataflow multigraphs: A data-centric model for high-
performance parallel programs,” CoRR, vol. abs/1902.10345, 2019.
arXiv: 1902.10345. [Online]. Available: http://arxiv.org/abs/1902.
10345.

[2] F. Kjolstad, S. Kamil, S. Chou, D. Lugato, and S. Amarasinghe, “The ten-
sor algebra compiler,” Proceedings of the ACM on Programming Languages,
vol. 1, no. OOPSLA, pp. 1–29, Oct. 2017. doi: 10.1145/3133901.

[3] F. Kjolstad, S. Chou, D. Lugato, S. Kamil, and S. Amarasinghe, “Taco:
A tool to generate tensor algebra kernels,” in 2017 32nd IEEE/ACM
International Conference on Automated Software Engineering (ASE), IEEE,
Oct. 2017. doi: 10.1109/ase.2017.8115709.

[4] A. Ivanov, N. Dryden, T. Ben-Nun, S. Ashkboos, and T. Hoefler, “Sten:
Productive and efficient sparsity in pytorch,” Apr. 15, 2023. doi: 10.
48550/ARXIV.2304.07613. arXiv: 2304.07613 [cs.LG].

[5] T. Ben-Nun, T. Gamblin, D. S. Hollman, H. Krishnan, and C. J. New-
burn, “Workflows are the new applications: Challenges in performance,
portability, and productivity,” in 2020 IEEE/ACM International Workshop
on Performance, Portability and Productivity in HPC (P3HPC), IEEE, Nov.
2020. doi: 10.1109/p3hpc51967.2020.00011.

[6] S. Chou, F. Kjolstad, and S. Amarasinghe, “Format abstraction for
sparse tensor algebra compilers,” Proceedings of the ACM on Program-
ming Languages, vol. 2, no. OOPSLA, pp. 1–30, Oct. 2018. doi: 10.1145/
3276493.

[7] F. Kjolstad, P. Ahrens, S. Kamil, and S. Amarasinghe, “Tensor algebra
compilation with workspaces,” in 2019 IEEE/ACM International Sympo-
sium on Code Generation and Optimization (CGO), IEEE, Feb. 2019. doi:
10.1109/cgo.2019.8661185.

33

https://arxiv.org/abs/1902.10345
http://arxiv.org/abs/1902.10345
http://arxiv.org/abs/1902.10345
https://doi.org/10.1145/3133901
https://doi.org/10.1109/ase.2017.8115709
https://doi.org/10.48550/ARXIV.2304.07613
https://doi.org/10.48550/ARXIV.2304.07613
https://arxiv.org/abs/2304.07613
https://doi.org/10.1109/p3hpc51967.2020.00011
https://doi.org/10.1145/3276493
https://doi.org/10.1145/3276493
https://doi.org/10.1109/cgo.2019.8661185

Bibliography

[8] P. Ahrens, F. Kjolstad, and S. Amarasinghe, “Autoscheduling for sparse
tensor algebra with an asymptotic cost model,” in Proceedings of the 43rd
ACM SIGPLAN International Conference on Programming Language Design
and Implementation, ACM, Jun. 2022. doi: 10.1145/3519939.3523442.

[9] L. Trümper, T. Ben-Nun, P. Schaad, A. Calotoiu, and T. Hoefler, “Per-
formance embeddings: A similarity-based transfer tuning approach to
performance optimization,” in Proceedings of the 37th International Con-
ference on Supercomputing, ser. ICS ’23, Orlando, FL, USA: Association
for Computing Machinery, 2023, pp. 50–62, isbn: 9798400700569. doi:
10.1145/3577193.3593714. [Online]. Available: https://doi.org/10.
1145/3577193.3593714.

[10] A. N. Ziogas, T. Ben-Nun, G. I. Fernández, T. Schneider, M. Luisier,
and T. Hoefler, “Optimizing the data movement in quantum transport
simulations via data-centric parallel programming,” in Proceedings of
the International Conference for High Performance Computing, Networking,
Storage and Analysis, ACM, Nov. 2019. doi: 10.1145/3295500.3356200.

[11] T. Ben-Nun, L. Groner, F. Deconinck, T. Wicky, E. Davis, J. Dahm,
O. D. Elbert, R. George, J. McGibbon, L. Trümper, E. Wu, O. Fuhrer, T.
Schulthess, and T. Hoefler, Productive performance engineering for weather
and climate modeling with python, 2022. doi: 10.48550/ARXIV.2205.
04148.

[12] A. Bik, P. Koanantakool, T. Shpeisman, N. Vasilache, B. Zheng, and
F. Kjolstad, “Compiler support for sparse tensor computations in mlir,”
ACM Transactions on Architecture and Code Optimization, vol. 19, no. 4,
pp. 1–25, Sep. 2022, issn: 1544-3973. doi: 10.1145/3544559.

[13] R. Tian, L. Guo, J. Li, B. Ren, and G. Kestor, “A high performance sparse
tensor algebra compiler in mlir,” in 2021 IEEE/ACM 7th Workshop on
the LLVM Compiler Infrastructure in HPC (LLVM-HPC), IEEE, Nov. 2021.
doi: 10.1109/llvmhpc54804.2021.00009.

[14] E. Mutlu, R. Tian, B. Ren, S. Krishnamoorthy, R. Gioiosa, J. Pienaar, and
G. Kestor, “Comet: A domain-specific compilation of high-performance
computational chemistry,” Feb. 13, 2021. doi: 10.48550/ARXIV.2102.
06827. arXiv: 2102.06827 [cs.MS].

[15] R. Henry, O. Hsu, R. Yadav, S. Chou, K. Olukotun, S. Amarasinghe,
and F. Kjolstad, “Compilation of sparse array programming models,”
Proc. ACM Program. Lang., vol. 5, no. OOPSLA, Oct. 2021. doi: 10.1145/
3485505. [Online]. Available: https://doi.org/10.1145/3485505.

[16] Z. Du, J. Li, Y. Wang, X. Li, G. Tan, and N. Sun, “Alphasparse: Gen-
erating high performance spmv codes directly from sparse matrices,”
Nov. 7, 2022. doi: 10.48550/ARXIV.2212.10432. arXiv: 2212.10432
[cs.DC].

34

https://doi.org/10.1145/3519939.3523442
https://doi.org/10.1145/3577193.3593714
https://doi.org/10.1145/3577193.3593714
https://doi.org/10.1145/3577193.3593714
https://doi.org/10.1145/3295500.3356200
https://doi.org/10.48550/ARXIV.2205.04148
https://doi.org/10.48550/ARXIV.2205.04148
https://doi.org/10.1145/3544559
https://doi.org/10.1109/llvmhpc54804.2021.00009
https://doi.org/10.48550/ARXIV.2102.06827
https://doi.org/10.48550/ARXIV.2102.06827
https://arxiv.org/abs/2102.06827
https://doi.org/10.1145/3485505
https://doi.org/10.1145/3485505
https://doi.org/10.1145/3485505
https://doi.org/10.48550/ARXIV.2212.10432
https://arxiv.org/abs/2212.10432
https://arxiv.org/abs/2212.10432

Bibliography

[17] R. Yadav, A. Aiken, and F. Kjolstad, “Distal: The distributed tensor
algebra compiler,” PLDI ’22, Mar. 15, 2022. doi: 10.1145/3519939.
3523437. arXiv: 2203.08069 [cs.PL].

[18] R. Yadav, A. Aiken, and F. Kjolstad, “Spdistal: Compiling distributed
sparse tensor computations,” Jul. 28, 2022. doi: 10.48550/ARXIV.2207.
13901. arXiv: 2207.13901 [cs.DC].

[19] O. Hsu, A. Rucker, T. Zhao, K. Olukotun, and F. Kjolstad, “Stardust:
Compiling sparse tensor algebra to a reconfigurable dataflow archi-
tecture,” Nov. 7, 2022. doi: 10.48550/ARXIV.2211.03251. arXiv: 2211.
03251 [cs.PL].

[20] O. Hsu, M. Strange, R. Sharma, J. Won, K. Olukotun, J. S. Emer, M. A.
Horowitz, and F. Kjølstad, “The sparse abstract machine,” in Proceedings
of the 28th ACM International Conference on Architectural Support for
Programming Languages and Operating Systems, Volume 3, ACM, Mar.
2023. doi: 10.1145/3582016.3582051.

[21] N. Srivastava, H. Jin, S. Smith, H. Rong, D. Albonesi, and Z. Zhang,
“Tensaurus: A versatile accelerator for mixed sparse-dense tensor
computations,” in 2020 IEEE International Symposium on High Perfor-
mance Computer Architecture (HPCA), IEEE, Feb. 2020. doi: 10.1109/
hpca47549.2020.00062.

[22] M. M. Strout, M. Hall, and C. Olschanowsky, “The sparse polyhedral
framework: Composing compiler-generated inspector-executor code,”
Proceedings of the IEEE, vol. 106, no. 11, pp. 1921–1934, Nov. 2018. doi:
10.1109/jproc.2018.2857721.

[23] P. Nandy, M. Hall, E. Davis, C. Olschanowsky, M. Mohammadi, W.
He, and M. Strout, “Abstractions for specifying sparse matrix data
transformations,” Proceedings of the Eighth International Workshop on
Polyhedral Compilation Techniques, Jan. 23, 2018. [Online]. Available:
https://par.nsf.gov/biblio/10309097.

[24] T. Zhao, T. Popoola, M. Hall, C. Olschanowsky, and M. Strout, “Polyhe-
dral specification and code generation of sparse tensor contraction with
co-iteration,” ACM Transactions on Architecture and Code Optimization,
vol. 20, no. 1, pp. 1–26, Dec. 2022. doi: 10.1145/3566054.

[25] A. Venkat, M. Shantharam, M. Hall, and M. M. Strout, “Non-affine
extensions to polyhedral code generation,” in Proceedings of Annual
IEEE/ACM International Symposium on Code Generation and Optimization,
ACM, Feb. 2014. doi: 10.1145/2581122.2544141.

[26] A. Venkat, M. Hall, and M. Strout, “Loop and data transformations for
sparse matrix code,” ACM SIGPLAN Notices, vol. 50, no. 6, pp. 521–532,
Jun. 2015. doi: 10.1145/2813885.2738003.

35

https://doi.org/10.1145/3519939.3523437
https://doi.org/10.1145/3519939.3523437
https://arxiv.org/abs/2203.08069
https://doi.org/10.48550/ARXIV.2207.13901
https://doi.org/10.48550/ARXIV.2207.13901
https://arxiv.org/abs/2207.13901
https://doi.org/10.48550/ARXIV.2211.03251
https://arxiv.org/abs/2211.03251
https://arxiv.org/abs/2211.03251
https://doi.org/10.1145/3582016.3582051
https://doi.org/10.1109/hpca47549.2020.00062
https://doi.org/10.1109/hpca47549.2020.00062
https://doi.org/10.1109/jproc.2018.2857721
https://par.nsf.gov/biblio/10309097
https://doi.org/10.1145/3566054
https://doi.org/10.1145/2581122.2544141
https://doi.org/10.1145/2813885.2738003

Bibliography

[27] A. Venkat, M. S. Mohammadi, J. Park, H. Rong, R. Barik, M. M. Strout,
and M. Hall, “Automating wavefront parallelization for sparse matrix
computations,” in SC16: International Conference for High Performance
Computing, Networking, Storage and Analysis, IEEE, Nov. 2016. doi: 10.
1109/sc.2016.40.

[28] D. Heras, J. Cabaleiro, and F. Rivera, “Modeling data locality for the
sparse matrix–vector product using distance measures,” Parallel Com-
puting, vol. 27, no. 7, pp. 897–912, Jun. 2001. doi: 10.1016/s0167-
8191(01)00089-8.

[29] D. Heras, V. Blanco, J. Cabaleiro, and F. Rivera, “Modeling and improv-
ing locality for the sparse-matrix–vector product on cache memories,”
Future Generation Computer Systems, vol. 18, no. 1, pp. 55–67, Sep. 2001.
doi: 10.1016/s0167-739x(00)00075-3.

[30] J. Pichel, D. Heras, J. Cabaleiro, and F. Rivera, “Improving the locality of
the sparse matrix-vector product on shared memory multiprocessors,”
in 12th Euromicro Conference on Parallel, Distributed and Network-Based
Processing, 2004. Proceedings., IEEE, 2004. doi: 10.1109/empdp.2004.
1271429.

[31] J. C. Pichel, J. A. Lorenzo, F. F. Rivera, D. B. Heras, and T. F. Pena,
“Using sampled information: Is it enough for the sparse matrix-vector
product locality optimization?” Concurrency and Computation: Practice
and Experience, vol. 26, no. 1, pp. 98–117, Oct. 2012. doi: 10.1002/cpe.
2949.

[32] C. Hong, A. Sukumaran-Rajam, I. Nisa, K. Singh, and P. Sadayappan,
“Adaptive sparse tiling for sparse matrix multiplication,” in Proceedings
of the 24th Symposium on Principles and Practice of Parallel Programming,
ACM, Feb. 2019. doi: 10.1145/3293883.3295712.

[33] B. B. Fraguela, R. Doallo, and E. L. Zapata, “Cache misses prediction
for high performance sparse algorithms,” in Euro-Par’98 Parallel Pro-
cessing, Springer Berlin Heidelberg, 1998, pp. 224–233. doi: 10.1007/
bfb0057857.

[34] B. B. Fraguela, R. Doallo, and E. L. Zapata, “Modeling set associative
caches behavior for irregular computations,” ACM SIGMETRICS Per-
formance Evaluation Review, vol. 26, no. 1, pp. 192–201, Jun. 1998. doi:
10.1145/277858.277910.

[35] B. B. Fraguela, R. Doallo, and E. L. Zapata, “Memmory hierarchy
performance prediction for blocked sparse algorithms,” Parallel Pro-
cessing Letters, vol. 09, no. 03, pp. 347–360, Sep. 1999. doi: 10.1142/
s0129626499000323.

36

https://doi.org/10.1109/sc.2016.40
https://doi.org/10.1109/sc.2016.40
https://doi.org/10.1016/s0167-8191(01)00089-8
https://doi.org/10.1016/s0167-8191(01)00089-8
https://doi.org/10.1016/s0167-739x(00)00075-3
https://doi.org/10.1109/empdp.2004.1271429
https://doi.org/10.1109/empdp.2004.1271429
https://doi.org/10.1002/cpe.2949
https://doi.org/10.1002/cpe.2949
https://doi.org/10.1145/3293883.3295712
https://doi.org/10.1007/bfb0057857
https://doi.org/10.1007/bfb0057857
https://doi.org/10.1145/277858.277910
https://doi.org/10.1142/s0129626499000323
https://doi.org/10.1142/s0129626499000323

Bibliography

[36] R. Doallo, B. Fraguela, and E. Zapata, “Cache probabilistic model-
ing for basic sparse algebra kernels involving matrices with a non-
uniform distribution,” in Proceedings. 24th EUROMICRO Conference
(Cat. No.98EX204), IEEE Comput. Soc, Aug. 1998. doi: 10.1109/eurmic.
1998.711825.

[37] R. Doallo, B. Fraguela, and E. Zapata, “Direct mapped cache perfor-
mance modeling for sparse matrix operations,” in Proceedings of the
Seventh Euromicro Workshop on Parallel and Distributed Processing. PDP’99,
IEEE, 1999. doi: 10.1109/empdp.1999.746696.

37

https://doi.org/10.1109/eurmic.1998.711825
https://doi.org/10.1109/eurmic.1998.711825
https://doi.org/10.1109/empdp.1999.746696

