
ETH Library

A better interface for type class
diagnostics

Master Thesis

Author(s):
Gray, Gavin

Publication date:
2024

Permanent link:
https://doi.org/10.3929/ethz-b-000670925

Rights / license:
In Copyright - Non-Commercial Use Permitted

This page was generated automatically upon download from the ETH Zurich Research Collection.
For more information, please consult the Terms of use.

https://doi.org/10.3929/ethz-b-000670925
http://rightsstatements.org/page/InC-NC/1.0/
https://www.research-collection.ethz.ch
https://www.research-collection.ethz.ch/terms-of-use

A BETTER INTERFACE FOR TYPE CLASS D IAGNOST ICS

gavin gray

Master of Science
Department Informatik

ETH Zürich

April 2024

Gavin Gray: A Better Interface for Type Class Diagnostics, © April 2024

To Dad

Aunt Missy

Grandpa Louis

my Right Rib

Six months can take a lot; every day
you’re missed dearly

ABSTRACT

Many modern programming languages use a form of ad-hoc polymorphism as a lan-
guage abstraction. Type classes, popularized by Haskell, have found space in other
programming languages to join the semantics of ad-hoc and parametric polymorphism.
Type class resolution is a complex black-box process implemented as a backtracking
search across program types. When this search fails, compilers struggle to provide
helpful diagnostics and frustrated developers have difficulty debugging complex type
class errors. Textual diagnostics are fundamentally reductive and we propose an in-
teractive interface to facilitate localization of type class errors. Our tool, Argus, is an
interactive debugger for Rust traits available as a VSCode extension. For 80% of tests
in a community curated test suite of difficult Rust trait errors, Argus is able to localize
the root error in at most ten interface interactions.

v

ACKNOWLEDGMENTS

Passionate people don’t let obstacles get in their way. I’ve somehow stumbled into a
thicket of passionate researchers to whom I am immensely grateful. None of my work
would be possible without Will Crichton. Given the quality of advising I’ve received
across nine time zones, I can only imagine the energy his future PhD students will get.
Will has time again saved me from the perils of JavaScript bundling as I was about to
go over the edge. He’s mastered the art of asking why don’t we try this, where “this”
is the exact task I wanted to avoid doing, but weeks later it turns out to be the best
investment for the project.

Will and I would never have met if it weren’t for Shriram Krishnamurthi. I asked
Shriram if he had a well-defined Racket project I could work on and since then it’s
been a delightful two years bouncing around in Rust-land with Will.

I must acknowledge Peter Müller and his group for providing some of the best
courses and research opportunities at ETH. I thank him for his trust as I’ve collaborated
with researchers outside the university, red tape and bureaucracy can be hard to get
through, but sometimes so worth it.

vii

CONTENTS

1 Introduction 1
1.1 My Thesis . 1

1.1.1 Overview . 2
1.2 Type Classes: a Primer . 2

1.2.1 A Class to Stringify . 3
2 Failing with Class 7

2.1 Death by Diagnostic . 7
2.1.1 A Good Diagnostic . 8
2.1.2 A Poor Diagnostic . 10

2.2 Type Classes as Logic Programs . 13
2.2.1 Type-checking a Web Server . 16
2.2.2 Diagnosing Errors . 18

3 Debugging with Class 21
3.1 Interactive Debugging with Argus . 21

3.1.1 A Good Diagnostic, Preserved 22
3.1.2 A Poor Diagnostic, Pinpointed 23

3.2 Pulling a Rabbit Out of the Hat . 28
3.2.1 Conjunct Analysis . 29
3.2.2 Subgoal Analysis . 31

3.3 System Design . 31
3.3.1 You Want What Again? . 33
3.3.2 Moving Forward . 35

3.4 Evaluation . 35
3.4.1 Procedure . 36
3.4.2 Results . 39
3.4.3 Analysis . 41

4 Related Work 43
4.1 Diagnosing Type Errors . 43

4.1.1 Fault Localization . 43
4.1.2 Interactive Debuggers . 45
4.1.3 Automated Repair . 46

ix

x contents

4.1.4 Domain-specific annotations. 47
4.2 Logic Programming . 49
4.3 Debugging Proof Assistants . 49
4.4 Final Words . 50

Bibliography 53

1
INTRODUCT ION

1.1 my thesis

Heuristic compiler diagnostics cannot always localize type class errors; interactive
visualization of type class resolution is feasible and with few interactions facilitates
localization.

Programmers crave abstraction. Throughout the history of computing researchers
and engineers have sought to manipulate data via higher-level abstractions. One such
abstraction is polymorphism, the ability for a single symbol to represent a set of types.
There are several flavors of polymorphism. Parametric polymorphism, a function
parameterized by a type, which includes Java generic functions or C++ templates.
Subtype polymorphism, operations can act over a set of types given they’re related by
a notion of substitutatbility, a fancy way of saying object-oriented subtyping. Lastly,
ad-hoc polymorphism, a set of functions and types that may have multiple concrete
implementations, and the focus of this thesis.

important note Accompanying the official hand-in for my thesis—this document—
is an interactive website1 to facilitate the learning outcomes for this work. PDFs no
doubt contain typographic advantages as compared to other online reading media,
however, the browser provides an unmatched environment for interactivity. The tool
presented in this thesis, Argus, is open-source,2 and available as a VSCode extension
on both the VSCode Marketplace and Open VSX Registry.

1 https://gavinleroy.com/msc-thesis

2 https://github.com/cognitive-engineering-lab/argus

1

https://gavinleroy.com/msc-thesis
https://marketplace.visualstudio.com/items?itemName=gavinleroy.argus
https://open-vsx.org/extension/gavinleroy/argus
https://gavinleroy.com/msc-thesis
https://github.com/cognitive-engineering-lab/argus

2 introduction

1.1.1 Overview

This thesis has the following structure:

• The rest of this chapter introduces type classes as a language abstraction, im-
portant terminology for discussing the language of type classes, and a basic
example.

• The following, Chapter 2, introduces the structure of error diagnostics in Rust.
Most important is our criteria for what distinguishes good and poor class di-
agnostics. The chapter finishes by demonstrating the connection between logic
programming and type class systems, then proposing our solution to localize
trait errors in Rust.

• After establishing the foundation for why interactive debugging benefits type
class systems, we talk about the implementation of our novel tool, Argus, that
provides an interactive debugging interface into Rust’s trait system. We discuss
the challenges and architecture of the tool aswell as future plans for improvement.
The chapter finishes by presenting our evaluation of the tool on a community
curated test suite of hard-to-debug trait errors.

• We close with an informal look at the broader research area around interactive
debugging, type error localization, and proof tree debugging.

1.2 type classes: a primer

Coined by Strachey [23], ad-hoc polymorphism occurs when a “function is defined
over several different types, acting in a different way for each type.” While designing
theHaskell type system,Wadler and Blott [26] introduced themechanism of type classes
to extend Hindley-Milner typing and unify parametric and ad-hoc polymorphism.
Modern programming languages have adopted type classes to again unify ad-hoc
and parametric polymorphism. Languages such as Coq, Scala, Rust, Swift, Lean, and
PureScript have followed suit with varying implementations of type classes—even if
branded under a different name. The remainder of this section will introduce some
terminology and ordinary use cases for type classes. For the remainder of the thesis,
core examples are given using Rust traits. In this context “trait” and “type class” are
synonymous. This introduction will put Rust and Haskell side-by-side for readers
familiar with Haskell.

1.2 type classes: a primer 3

trait ToString {

fn to_string(&self) -> String;

}

class ToString a where

toString :: a -> String

Figure 1.1: Definitions of the ToString trait in Rust (left) and Haskell (right).

impl ToString for char {

fn to_string(&self) -> String {

String::from(*self)

}

}

impl ToString for i32 {

fn to_string(&self) -> String {

format!(” {} ”, self)

}

}

instance ToString Char where

toString a = [a]

instance ToString Int where

toString a = show a

Figure 1.2: Example ToString implementations for char and i32 (a Rust integer). Trait
implementations must provide all trait members, shown here is the to_string

method.

1.2.1 A Class to Stringify

The simplest of our examples defines a class to turn values into a string—a common
operation. To start we need to define a trait with an appropriate name and trait methods. To minimize code,

assume that the show

function is “built-in,”
and not a class member.

Shown in Figure 1.2.1 is a trait definition, ToString . All future trait implemen-
tors, or class instances, will provide an implementation for each trait member—in
this case, fn to_string(&self)-> String . A trait is hardly usefull without implemen-
tors. Figure 1.2.1 implements ToString for the types char and i32 (a Rust integer).
Both of these implementations are facts, that is, they declare that each respective
type is an implementor of the ToString trait. (Note that the Haskell implementation
toString a = [a] takes advantage of the fact that in Haskell type String = [Char] .)
The implementation for integers, impl ToString for i32 , uses built-in formatting

functions to stringify the provided integer. With some basic implementors we can
already start to use the trait. Let’s write a simple function, print_ln , that will print a
value to the console.

The print_ln function is parameterized over a type T , and uses the trait method
v.to_string() to stringify v then print it to standard output. However, it does so in

4 introduction

fn print_ln<T>(v: T)

where T: ToString {

println!(” {} ”, v.to_string());

}

printLn :: ToString t => t -> IO ()

printLn = putStrLn . toString

Figure 1.3: Definition of a function print_ln that takes type parameter T bound by the
ToString trait. This function can only be instantiated with types that implement
the trait bound. We call the type constraints after the where clause the context.

the context T: ToString . A context defines a set of predicates that must hold in order to
invoke a function. For this function, that predicate is that the type T: ToString (read as
“tee implements to string”). By providing this trait bound in the where context, Rust
knows that there exists a method to_string on v .

Traits abstract over shared behavior. The ToString trait declares the behavior of
types that can be converted into a string, trait implementors provide this behavior by
implementing concrete member function instances. Defining every type an implemen-
tor would be a tedious process and so far we haven’t seen wherein the power of traits
lies. To demonstrate this, let’s consider how we might use our current ToString imple-
mentors to stringify a vector. A naïve developer might want to provide the separate
implementations shown in Figure 1.2.1.

impl ToString for Vec<char> {

fn to_string(&self) -> String {

format!(” [{}] ”,
self.iter()

.map(ToString::to_string)

.collect::<Vec<_>>()

.join(” , ”)
)

}

}

impl ToString for Vec<i32> {

fn to_string(&self) -> String {

format!(” [{}] ”,
self.iter()

.map(ToString::to_string)

.collect::<Vec<_>>()

.join(” , ”)
)

}

}

Figure 1.4: Bad examples of implementing ToString for vectors. For all vectors whose element
types T implement ToString , the implementation is equivalent.

Of course this is redundant, the implementations are equivalent. Any vectorwhose el-
ements implement ToString can share the same implementation. Traits of course allow

1.2 type classes: a primer 5

impl<T> ToString for Vec<T>

where T: ToString, {

fn to_string(&self) -> String {

format!(” [{}] ”,
self.iter()

.map(ToString::to_string)

.collect::<Vec<_>>()

.join(” , ”)
)

}

}

instance ToString a => ToString [a]

where

toString a = ”[” ++ listWSep ++ ”]”
where

listOfStrs = map toString a

listWSep = intercalate ” , ”
listOfStrs

Figure 1.5: Improving upon the bad example in Figure 1.2.1 the trait implementation can be
parameterized to accommodate both Vec<char> and Vec<i32> . This parameterized
implementation uses a context to place the trait bound T: ToString requiring that
T provide an implementation of the ToString trait.

for this abstraction, implementations can be parametric, thus chaining implementation
blocks together. The previous two declarations would canonically be implemented as
in Figure 1.2.1.

Similar to the definition of print_ln earlier, the implementations in Figure 1.2.1 are
parametric over T and rely on a context. Writing this declaration in English we might
say “a vector implements ToString if its elements implement ToString .”

The trait machinery of Rust will “figure out” which implementations to call when
print_ln is invoked with vectors of characters or integers. The figuring out process in
Rust is called trait resolution. A complex process and the topic of this work.

print_ln(vec!['a', 'b', 'c']) // "[a, b, c]"

print_ln(vec![1, 2, 3]) // "[1, 2, 3]"

Figure 1.6: Example invocations of the parametric function print_ln . The Rust compiler re-
solves implementations for char: ToString and i32: ToString allowing a vector
of these elements to also implement ToString .

2
FA IL ING WITH CLASS

Type classes as an abstraction feature is prevalent in many modern programming lan-
guages. As discussed in Section 1.2, class instances are not always simple declarations,
but they can be polymorphic, thus chaining together. These polymorphic instances
breathe life to the power of type classes, but they also create a tower of abstraction that,
when fails, compilers cannot always reduce to a helpful error diagnostic.

For the scope of this work, a trait error has occurred if the language cannot prove that a
type U implements trait T . This definition does not state that U isn’t an implementor
of T , rather, that its existence cannot be proven.

We outline our criteria for a good error diagnostic. We call a diagnostic good if it
localizes the root cause of the failure and provides full provenance for all required
trait bounds. Poor diagnostics fail to provide this information. We will show how
branching in the Rust trait solver impedes its ability to localize the root cause of an error.
Language design decisions impact which patterns are preferred by library maintainers.
This section highlights some common patterns in Rust and how the interplay between
language features and trait resolution lead to poor diagnostics.

2.1 death by diagnostic

Many programmers laud the Rust language for providing “good” error diagnostics.
All languages should strive to provide insightful diagnostics but in this section we will
see how trait resolution can easily leave developers with little debugging information.

Traits in Rust are interesting for several reasons. The language is gaining popularity
in “the mainstream” and developers come to Rust from dynamically-typed languages,
such as Python and JavaScript, or from traditional low-level systems languages like
C. Rust may be the first strong statically-typed language they learn and their first
encounter with traits. The trait system provides a flexible semantic compared toHaskell
‘98, but with added flexibility comes undecidability. [15] Rust developers struggle to
debug trait errors especially in the face of complex trait systems that may overflow.
For example, Diesel is a object relational mapper and query builder for Rust that uses
traits extensively for static safety. Currently, five of the twenty discussion pages are

7

8 failing with class

fn main() {

print_ln(vec![1, 2, 3]); // "[1, 2, 3]"

print_ln(vec![1.618, 3.14]); // Whoops!

}

Figure 2.1: The trait ToString is not implemented for f32 , therefore the second function call
results in a trait error.

questions related to trait errors. [29] Traits are a key abstraction in Rust and many
other language features rely on them, closures, async, and thread safety to name a
few. On a quest for strong static guarantees, many trait-heavy crates are emerging in
the Rust ecosystem, forcing developers to confront complex systems of traits to do
something as simple as matrix multiplication. There is sufficient evidence to suggest
that trait errors can be hard to debug—by newcomers and experts alike.

2.1.1 A Good Diagnostic

Our interest now turns towards diagnostic messages. Specifically what is meant by
the terms “good” and “poor,” and what distinguishes the two. Exploring first with the
current example, shown in Figure 2.1.1 print_ln is called with a vector of floating-point
numbers (or f32 in Rust). This results in a type error because f32 does not implement
the ToString trait.

Rust diagnostics follow a particular structure. There’s a principle message , followed
by a series of notes on the origins of this principle. Often included are suggestions, or
“help” messages for what might fix the problem . In Figure 2.1.1 the principle message
states that the trait bound f32: ToString is not satisfied. This unsatisfied bound is the
root cause of the type error. Rust then suggests other types that do implement ToString

, in this case, i32 , if perhaps that was your intention.
The provenance of trait bounds is important. Why does f32 need to implement

ToString ? Well, the compiler wants to use the implementation rule for Vec<T> which
requires the bound on f32 as a subcondition.

The final piece of provenance is where the initial ToString bound was introduced.
The condition on the instantiated generic type, T , when calling print_ln .

We label this as a good diagnostic message. Good diagnostics help developers ac-
complish a task, usually by revealing a hole in their mental model or answering a

2.1 death by diagnostic 9

error[E0277]: the trait bound `f32: ToString` is not satisfied

|

40 | print_ln(vec![1.618f32, 3.14])

| -------- ^^^^^^^^^^^^^^^^^^^^ the trait `ToString` is not implemented for `

f32`, which is required by `Vec<f32>: ToString`

| |

| required by a bound introduced by this call

|

= help: the trait `ToString` is implemented for `i32`

note: required for `Vec<f32>` to implement `ToString`

|

17 | impl<T> ToString for Vec<T>

| ^^^^^^^^ ^^^^^^

18 | where

19 | T: ToString,

| -------- unsatisfied trait bound introduced here

note: required by a bound in `print_ln`

|

32 | fn print_ln<T>(v: T)

| -------- required by a bound in this function

33 | where

34 | T: ToString

| ^^^^^^^^ required by this bound in `print_ln`

Figure 2.2: Calling print_ln with Vec<f32> results in a trait error. f32 does not implement
the trait ToString , therefore, the implementation rule for vectors cannot be used.
The resulting error diagnostic properly reports the root cause, and provides the full
provenance of trait bounds. We call this a good diagnostic.

10 failing with class

question. Given a developer’s expectation for type 𝑈 to implement trait 𝑇, potentially
via transitive implementors 𝐴, 𝐵, 𝐶, …, a diagnostic should explain where it failed in
that chain. To accomplish this task there are two essential components for a diagnostic
to provide: the root cause, and its provenance.

specific root cause The principle message reported: “trait bound f32: ToString

not satisfied” is as specific as it gets. The compiler could have reported “the bound
Vec<f32>: ToString was not satisfied,” but this isn’t as specific. The more specific the
reported root cause, the faster developers can address the issue. There isn’t however
a precise definition of root cause. As previously mentioned, diagnostics should help
uncover holes in a developer’s mental model. Therefore, the root cause is a function of
the developer’s mental model of the program and not solely the program per se. In
general we cannot expect a computer-generated diagnostic to always point to the root
cause because it lacks access to the developer’s mental model.

full provenance The full provenance should answer the question “Why is this
bound required?” Developers should not be left unknowing of where a trait bound
came from. Good diagnostics provide this provenance. f32: ToString was required
because it’s a condition on the implementation block for Vec<T>: ToString . Furthermore,
Vec<T> was required by the condition on the call to print_ln . In the diagnostic Rust
has laid out this path for developers to follow.

2.1.2 A Poor Diagnostic

For decades programmers have laughed—and cried—at pages of unreadable diag-
nostics spewed by the C++ and Java compilers. Compilers have the Herculean task
of packaging complex failures into digestable and helpful diagnostics—a task that
increases in complexity as type systems become more sophisticated. Modern type-
checking involves proof trees and SMT queries; a type error can often be a single bit
response “No,” leaving a frustrated programmer to trial-and-error debugging. In this
section we will see how a system of traits can leave Rust programmers in a similar
situation.

Axum is the most popular web framework in Rust that touts its focus on “er-
gonomics.” Using Axum is easy. To demonstrate, our second running example will
use Axum to create a simple web. Servers provide a set of routes, and each route has a

https://github.com/tokio-rs/axum

2.1 death by diagnostic 11

async fn login(name: String, pwd: Bytes) -> String

{

if is_valid_user(&name, &pwd).await {

format!(”Welcome , {name}”)
} else {

” Inva l id c r eden t i a l s ”.to_string()
}

}

use axum::{

body::Bytes,

routing::post,

Router

};

use tokio::net::TcpListener;

async fn is_valid_user(

name: &str, pwd: &Bytes

) -> bool { true }

#[tokio::main]

async fn main() {

let app = Router::new()

.route(”/ log in ”, post(login));

let listener = TcpListener::bind(” 0 . 0 . 0 . 0 : 3 000 ”)
.await.unwrap();

axum::serve(listener, app)

.await.unwrap();

}

Figure 2.3: Simple web server example using the Axum framework. The login function is
intended for use as a post handler, except it does not satisfy the constraint of the
trait system. Handlers are asynchronous function with 0–16 parameters, each of
which must be an extractor. The bound String: FromRequestParts is not satisfied
and therefore login cannot be used as a handler. The Rust compiler reports the
general failed bound, login: Handler .

message handler. Creating a handler is as easy as: defining an asynchronous function
that has 0–16 “extractors” as parameters and returns a type convertable into a web
response—simple. Shown in Figure 2.1.2 is an example server that provides a route for
users to login to an artificial application.

There is a some boilerplate required to make a server, but the important piece is the
asynchronous function login . This is the handler for the /login route. This handler
takes two extractors. The intention is that String will extract out a string from the
incoming message, to be the user’s name. The second extractor, Bytes , consumes the
remainder of the message that will be the user’s password. (Encrypted of course.) The
response type, String , is returned by the function body —indicating success or failure.
This code does not compile. When used as a handler parameter String must come last.
To understand why, we first need to dig into some of the Axum trait specifics.

12 failing with class

error[E0277]: the trait bound `fn(String, axum::body::Bytes) -> impl Future<Output =

String> {login}: Handler<_, _>` is not satisfied

|

22 | let app = Router::new().route("/login", post(login));

| ---- ^^^^^

| the trait `Handler<_, _>` is not implemented for fn item

| `fn(String, axum::body::Bytes) -> impl Future<Output = String> {login}`

| |

| required by a bound introduced by this call

|

= help: the following other types implement trait `Handler<T, S>`:

<Layered<L, H, T, S> as Handler<T, S>>

<MethodRouter<S> as Handler<(), S>>

Figure 2.4: A poor error diagnostic resulting from an improper use of the login function
that doesn’t implement the trait Handler . Parameters of type String must come
last in handler signatures, because they consume the entire message body. login

tries to use both strings and bytes, both of which consume the message body. The
root cause is the failed bound String: FromRequestParts , but the high-level bound
login: Handler is reported.

This example demonstrates all the necessary pieces of a handler. Extractors are doing
some heavy lifting, the types encode how an incomingmessage is parsed into separated
parts, and their explanation, till now, was surface level. One tricky “gotcha” with extrac-
tors is that the first 𝑛 − 1 parameter types must implement the trait FromRequestParts ,
and the 𝑛𝑡ℎ must implement the trait FromRequest . This distinction helps Axum peel off
parts of a message, then consume the rest with the last parameter. Types implementing
FromRequestParts do the peeling. Types implementing FromRequest do the consuming.
As stated, strings must come last. A String does not implement FromRequestParts .

It does however implement FromRequest and can be used to consume the remainder
of a message. With this knowledge, in an error diagnostic we should hope the prin-
ciple message is: “ String does not implement FromRequestParts .” Instead, we get the
paragraph shown in Figure 2.1.2.

The principle message provides the unhelpful, in lay man’s terms, ” login is not a
Handler .” The important FromRequestParts trait makes no appearance.
Fortunately, some provenance is provided . This short provenance describes why

login must implement Handler , but again, the information stops there and no deeper
cause is mentioned.

2.2 type classes as logic programs 13

Programmers have a mental model. The diagnostic has said “your function is not
a handler,” but as the programmer I intended for it to be. A good diagnostic should
provide information on why my mental model was violated. I want login to be a
handler. It isn’t, but how can I figure out where I went wrong? The first criterion for a
good diagnostic message is violated. The compiler has not provided the root cause,
anywhere. There is some provenance, but not full provenance to the root cause. The
Axum diagnostic has failed the criteria and is therefore a poor diagnostic.

There is an explanation for why Rust provided a good diagnostic in the first example
and not in the second. This explanation lies within trait resolution, the process by which
Rust decides which trait implementations will be called at runtime.

2.2 type classes as logic programs

Type class systems are logic languages. A specific set of trait definitions and implemen-
tors form a logic program. Trait resolution then evaluates the constructed program and
is implemented as a backtracking search. We reduce trait resolution to logic program-
ming to emphasize problem structure. This problem is not inherent to Rust per say, but
a broader complexity coming from this evaluation style. Logic languages provide a
language-agnostic way to discuss type class systems. By abstracting away Rust-specific
details we highlight that this problem is inherent to any type class implementation
reducible to logic program evaluation. To explore the difference between the good and
poor diagnostics of the previous section we will turn each set of traits and implemen-
tations into a logic program. We then interpret a query over this program to simulate
trait resolution.

Our toy example motivating the need for type class abstraction, the ToString trait,
produced a good diagnostic. Let us step through the structure of this program one
more time, but instead we will focus on the declarative semantics of the trait language.

A trait definition establishes a unit of shared behavior. We can ask questions like
“Does this type implement that trait?”And thus is akin to a single-arity Prolog predicate.
Using Prolog conventionswe have the to_string/1 predicate that declares its parameter
an implementor of the ToString trait.

We can provide a trait implementation for ground types. Shown in Figure 2.2 are
the implementations for i32 and char . These implementations declare facts. A fact
that these types satisfy the to_string predicate. Non-parameterized

types are converted to
atoms in the logic model.

14 failing with class

trait ToString { /*...*/ }

impl ToString for i32 { /*...*/ }

impl ToString for char { /*...*/ }

impl<T> ToString for Vec<T>

where

T: ToString, { /*...*/ }

to_string(i32).

to_string(char).

to_string(vec(T)) :-

to_string(T).

Figure 2.5: A translation of the ToString trait and its implementors into a logic program.
Traits become predicates, non-parameterized implementations become facts, and
parameterized implementations become rules. Trait solving can be thought of as
querying the logic database, for example ?- to_string(vec(f32)) is equivalent to
asking “does Vec<f32> implement ToString ?”

Withpolymorphismwe can chain trait implementations, such as the type-parameterized
implementation for Vec<T> . These implementations form a rule. In order for the rule
to be proven, several additional body predicates need to be satisfied. These predicates
are the clauses that come after Rust’s where keyword, or after Prolog’s :- in the rule
body.

Calling our print_ln function with a vector of floating-point numbers created a
trait bound, Vec<f32>: ToString . It is then the compiler’s job to resolve the ToString

implementation for the instantiated type T . In logic programming we can phrase
this bound as a query, ?- to_string(vec(f32)) , interpreting this query is equivalent to
resolving the trait implementation.The funny ?-

indicates that the clause
is a question, not a

statement.

We take the definition of logic program computation from Sterling and Shapiro
[22]: computation progresses via goal reduction. At each stage there is a conjunction of
goals to be proved, this is called the resolvent. The interpreter will choose a goal from
the resolvent and a clause from the program environment such that the clause head
unifies with the goal. (A clause is either a fact or a rule.) The computation continues
by replacing the resolvent with the clause’s body. When picking a goal and clause, we
constrain the interpreter to choose left-to-right and top-to-bottom, respectively. After
successfully proving a goal in the conjunction the interpreter continues to the next.
After failing to prove a goal the interpreter backtracks to the last point of choice, where a
clause was picked from the environment, and chooses the next clause if one is available.
Tracing the execution of the described interpreter constructs a proof tree. Each goal
has a set of candidate clauses from which the interpreter can choose to perform goal

2.2 type classes as logic programs 15

to_string(i32);

to_string(char);

to_string(vec(T)) :-

to_string(T);

?- to_string(vec(f32)).

Step 1
Step 2

to_string(vec(f32)) :- to_string(f32 to_string(f32) No?- to_string(vec(f32)

Figure 2.6: Execution trace of the logic interpreter for the ToString example. Step 1: The goal
unifies with the rule head from the program environment. The goal is then reduced
to the conditions in the rule body, here the singular to_string(f32) . Step 2 The
goal does not unify with any program clause and execution fails.

reduction. Reducing a goal with a rule clause introduces a conjunction of subgoals
that must be proven. If a goal fails, the interpreter can backtrack and retry by reducing
the goal with a different clause. This was quite a bit of technical information, but the
visualization clarifies the proof tree structure.

Tracing the execution of the simple program using ToString , we get the proof tree
shown in Figure 2.6, goals connected by a dashed line represent an Or relationship.
At least one child in an Or relationship must hold for the parent to be proven. Goals
connected with a solid line form an And relationship. All child goals must be proven
for their parent to be proven. This type of proof tree is commonly referred to as an
And–Or tree. Each level in the tree is either a conjunction: all child goals must be proven,
or a disjunction: at least one child goal must be proven.

The execution of this program was as follows. The start of the search process is
the root goal. This is where the Rust trait solver asks “Does Vec<f32> implement
ToString ?” The interpreter unifies the goal with the rule head from the program.
Unifying to_string(vec(T))= to_string(vec(f32)) results in the constraint T = f32 . The
current goal is reduced to the body of the rule, to_string(f32) . In this case there is

16 failing with class

only one goal of the rule body, if there were many, they would be conjunctive. These
conjunctive nodes are siblings in the proof tree and they form an And relationship
with their parent. This means that for the parent goal to be proven, all children must
be proven. The now current goal, to_string(f32) , fails to unify with any clause in the
program. Therefore this goal cannot be proven. There are no other rules the interpreter
can backtrack to. Therefore, the root goal, to_string(vec(f32)) cannot be proven. It’s
then said that the trait bound Vec<f32>: ToString is not satisfied.

Now that terminology is out of the way and we’ve seen a simple example, it’s time
to start looking at the proof tree for the Axum trait error. The resulting proof tree for
the simple ToString trait was more of a proof stick, no backtracking occurred. Let us
direct our attention to the running example with Axum, introduced in Section 2.1.2,
where we will see some branching.

2.2.1 Type-checking a Web Server

We start with the root goal, asking whether the type login implements Handler . In
Rust, login has type1

fn(String, Bytes) -> impl Future<Output = String>

Our interpreter chooses clauses top-to-bottom. Step 1 The first rule handler(fn_once([T1], Fut))

is tried but automatically fails. We’ve said that the rule head needs to unify with the
goal and in this case the arity of the goal and rule head functions differ—two vs one.
Continuing its search the interpreter backtracks and tries to reduce the goal via a differ-
ent clause, the second implementation rule for handler . Step 2 The second clause head
does unify with the current goal. Take note that these two rules form an Or relationship
with the root goal. The first failed but the root goal may still be proven via the second
clause. After the clause head unified, the goal is replaced by the clause body. The
subgoals introduced in the reduction are a conjunction, forming an And relationship
with the parent rule.

Step 3Working left-to-right, the goal future(promise(string), Res) needs to be proven
as part of the conjunction. The interpreter unifies this with a program fact and the
subgoal is said to be proven. The effect of this unification is the learned constraint,
Res = string . Continuing in the interpretation we now have to prove the subgoal

1 The logic version of the Axum API uses the atom promise to represent something that implements the
future trait. This is a bit over-simplified from the Rust Async model, but an unimportant detail for this
example.

2.2 type classes as logic programs 17

handler(fn_once([T1], Fut)) :-

future(Fut, Res),

into_response(Res),

from_request(T1).

handler(fn_once([T1, T2], Fut)) :-

future(Fut, Res),

into_response(Res),

from_request_parts(T1),

from_request(T2).

fn_once([], _).

fn_once([_|_], _).

from_request_parts(parts(_)).

from_request(bytes).

from_request(string).

future(promise(O), O).

into_response(string).

?- handler(fn_once([string, bytes]), promise(string)).

Step 2

Step 1

Step 3

Step 4

Step 5
handler(fn_once([T1, T2], Fut)) :- ..

future(promise(string), string

into_response(string)

from_request_parts(string)

from_request(bytes)

No

Yes

Yes

handler(fn_once([T1], Fut)) :- .. No

?- handler(
fn_once([string, bytes]),

promise(string)
).

Figure 2.7: Execution trace for interpreting the query created by the trait bound
login: Handler . Step 1 The solver attempts to unify the goal head with the rule
body but the mismatch in function arity causes the unification to fail immediately.
Step 2 The solver backtracks and unifies the goals with the second rule head, this time
succeeding. The goal is then reduced to the subgoals of the rule body. Step 3 The
response type unifies successfully with the function return value, and the constraint
Res = string is added. Step 4 The resolvant subgoal into_response(string) uni-
fies with a program fact. Step 5 The next subgoal, from_request_parts(string) fails
to unify with any program clause, therefore, this subtree fails. The interpreter has
no further rules it can backtrack to and therefore the root goal fails.

18 failing with class

into_response(string) . Step 4 One again a fact from the program unifies with the goal
and it is said to be proven. Step 5 The first parameter type of the function login , StringIntoResponse is the

set of types the Axum
API knows how to

convert into an HTTP
response.

must implement FromRequestParts . The goal, from_request_parts(string) , does not unify
with any program clause. Therefore, the goal fails. At this point, the interpreter has
exhausted the disjunction of clause rules and can no longer backtrack. The root goal
can therefore also not be proven and execution halts.

2.2.2 Diagnosing Errors

Each of the running example programswas translated into an equivalent logic program,
and the queries were traced to build proof trees. Both trees in Figure 2.6 and Figure 2.7
failed, and the compiler must turn this proof tree into a diagnostic message. We can
partially formalize this final step in the compiler as a function, diagnose , that takes a
tree as input and returns the problematic tree node.

diagnose :: ProofTree -> Node

The diagnose function is reductive. It takes the large data of a proof tree and chooses
a small piece to show developers. There is a tension in forming error diagnosis as a
reduction. Diagnostics want to be as helpful as possible, reflect on our criteria for a
good diagnostic: it must determine the specific root cause and includes full provenance
of the failure. Shown in Figure 2.8 are the two failing proof trees for the good and poor
diagnostics.

The ToString examples produces a simple tree. There only exists a single failing
node! In this case the reduction is straightforward, by reducing the tree to its single
failing node, to_string(f32) , no information has been lost. The specific root cause is
the failing node and the provenance is generated by traversing the tree upwards, from
failing node to root. The complex tree produced by the Axum Handler example is
not as straightforward. Here the reduction must choose between two failing nodes,
however, choosing either of the nodes forgets the information of the other failed branch.
Compiler diagnostics are conservative, so rather than reduce the tree to a failed node
the tree is reduced to the least common ancestor of the failed nodes.

One’s initial intuition may be to simply improve reduction algorithm. This is equiva-
lent to “making diagnostics better.” Indeed there are circumstances where type infor-
mation may be able to eliminate certain failed branches, but the problem is still that of
reduction.

2.2 type classes as logic programs 19

Step 1
Step 2

to_string(vec(f32)) :- to_string(f32 to_string(f32) No?- to_string(vec(f32)

Step 2

Step 1

Step 3

Step 4

Step 5
handler(fn_once([T1, T2], Fut)) :- ..

future(promise(string), string

into_response(string)

from_request_parts(string)

from_request(bytes)

No

Yes

Yes

handler(fn_once([T1], Fut)) :- .. No

?- handler(
fn_once([string, bytes]),

promise(string)
).

Figure 2.8: Proof trees obtained from tracing the logic interpreter (or equivalently the trait
solver). for the and examples. Top: simple trace for ToString with no branching,
that produced a good errormessage. Bottom: trace of the complex Handler example.
This trace does contain branching and the error diagnostic did not mention any
data below the branch point.

20 failing with class

This thesis proposes to change the fundamental problem of error diagnosis. We
proposes an alternative function, ui , to the reductive diagnose :The type constructor

Visualize is doing a
lot of heavy lifting in

this signature. ui :: ProofTree -> Visualize ProofTree

No longer is error diagnosis a reduction problem. By changing the output type
from Node to Visualize ProofTree , the problem is now an interface problem. We want to
facilitate information extraction from the proof tree and allowdevelopers to discover the
root cause of an error, while preserving provenance. The benefit is that no information
is lost; the root cause of an error is always available. The drawback, again, is that
no information is lost. Proof trees are large and complex, and the designed interface
should facilitate localizing the root cause with as few interactions as possible.

3
DEBUGGING WITH CLASS

Interactive visualization of type class resolution is feasible and with few interactions
facilitates localization. This chapter presents Argus; a tool to facilitate interactive
exploration of trait resolution in Rust. Argus does not provide error diagnostics in the
traditional sense, but features that satisfy our criteria for a good diagnostic: access to
the root cause of a trait error, and its full provenance. The interactive interface facilitates
exploring an error in the way a static compiler diagnostic cannot.

In Section 2.2 we established that sets of traits and implementors are logic programs.
Trait bounds, or obligations, are logic queries that evaluate the program. Debugging
logic programs is difficult, and by equivalence, so is debugging arbitrary trait errors.
Literature from algorithmic debugging and interactive fault localization provides a
basis on which we can build an interactive tool to debug trait errors.

Reinterpreting diagnostics as an interface problem introduces the challenges and
drawbacks of visualizing large data. Not only does Argus provide an exploratory
interface of proof trees, but also a set of simple heuristics to suggest developers where
to start in the debugging process. The Rust community has created a set of confusing
trait errors, and for 80% of tests developers using Argus will encounter the root cause
within 20 cognitive steps. This chapter outlines our design and development of Argus
and how a generalized tool of this nature could benefit all languages with class—type
class.

3.1 interactive debugging with argus
An interactive version of
this thesis is available
online and
recommended over the
PDF—pictures aren’t
quite as fun as the real
thing.

Argus is a tool for interactive exploration of Rust’s trait solving process, made possible
by exposing the internal proof trees constructed by the Rust trait solver. The Argus
interface creates a lens into trait resolution and does not reduce away important in-
formation like compiler diagnostics. This section introduces the Argus interface with
the two running examples, and shows how Argus can provide more specific error
information for our Axum web server.

21

https://gavinleroy.com/msc-thesis

22 debugging with class

Figure 3.1: The Argus bottom-up view for the simple print_ln error seen in Figure 2.1.1. The
root cause, the failed bound f32: ToString is the only failed subgoal in this simple
example.

3.1.1 A Good Diagnostic, Preserved

Compiler diagnostics are reductive, explained in Section 2.2.2. If a reductive diagnostic
can satisfy our criteria for a good error message, an interactive interface should do
no worse. Simple cases should remain simple, at the very least Argus should never
perform worse than a compiler diagnostic message.

Shown in Figure 3.1 is the default Argus interface. Failed obligations are grouped by
expression of origin (where the obligation was introduced), expressions are grouped
by functions, and functions are grouped by file. A key idea in Argus it that there is notAdvanced Rust users

may have other top-level
items such as constant

expressions.

a single correct way to view the proof tree. The best view depends on the programming
task. Similar to a performance profiler, Argus presents both a bottom-up view (starting at
the failed leaves) and a top-down view (starting at the root goal). By default Argus starts
in the bottom-up view. Recall that we claim: interactive visualization facilitates error
localization with few interactions. By presenting the bottom-up view first, developers
are immediately confronted with the potential root causes.

For this simple trait error, the bottom-up view shows us the same information as
provided by the compiler diagnostic: an unsatisfied trait bound f32: ToString . That is

3.1 interactive debugging with argus 23

Figure 3.2: The expanded versions of the bottom-up (left) and top-down (right) views for the
root cause f32: ToString . The trait solver did not branching in this example so
the views are mirrors of each other. The top-down view encodes the relationship
(And/Or) of the child to its parent. A dashed line signifies an Or relationship and
a solid line signifies an And relationship.

our root cause. Expanding the bottom-up view shows the provenance of each bound.
The top-down view of this example is uninteresting because the trait solver did no
branching, and the proof tree is really a “proof stick.” Therefore, it is simply the mirror
of the bottom-up view as shown in Figure 3.2.

The top-down view starts with the failed root goal, and interactively allows for ex-
ploration down towards failures. Encoded in the left border is the relationship between
parent and child (And/Or). A dashed border represents the Or relationship, meaning
one child needs to hold. This is used when reducing a goal via a trait implementation
rule. The solid border represents the And relationship, meaning all children need to
hold to satisfy the parent. This conjunctive relationship is most commonly introduced
by goal subconditions introduced by the where clause of a trait implementation block.

3.1.2 A Poor Diagnostic, Pinpointed

In Chapter 2 we explored how the requirements for the Axum Handler trait created
a poor diagnostic. Figure 2.7 traced the trait solver execution; due to branching and
backtracking in the search the compiler reports a higher failed bound than the actual

24 debugging with class

Figure 3.3: Left: Argus is able to localize the root cause of the failed trait bound,
String: FromRequestParts , and presents this first in the bottom-up debugging view.
Right: Developers can expand this failure up to the root goal to see the full prove-
nance.

root cause. In lieu of reductive diagnostics, we preserve the proof tree and are solving
an interface problem. This means Argus doesn’t shy away from branching—it embraces
the full proof tree—developers can always dig further down into failed trait bounds.We
now see Argus in action. The root error cause of code is that String doesn’t implement
FromRequestParts , barring the function from implementing the desired Handler .
Seen in Figure 3.3, Argus has done something that Rust couldn’t—or wouldn’t—it

has reported the root cause of the trait error. We did not solve the branching problem or
deploy sophisticated diagnostic strategies. Argus uses a small set of simple heuristics
and filtering to suggest root causes. These heuristics are discussed in Section 3.2. Argus
can rank the likelyhood of each error and present them to the user because it does not
reduce the proof tree, where compilers need to be conservative, Argus can be daring.

The problem of proof tree exploration is that of an interface problem. The compiler
has large data, Rust types are large, and yet we need to make this information consum-
able. Argus isn’t tied down to reporting textual static diagnostics, opening the room to
interface design experimentation. Some of the ways in which Argus deals with large
data is path shortening and trimming trait implementation headers.

path shortening The definition path of an item is the absolute, qualified path
uniquely identifying its definition. Common paths such as std::vec::Vec don’t seem
too harmless. Library paths, especially those involving traits, are a bit harder to read

3.1 interactive debugging with argus 25

fn users_with_equiv_post_id(

conn: &mut PgConnection

) {

users::table

// .inner_join(posts::table)

.filter(users::id.eq(posts::id))

.select((users::id, users::name))

.load::<(i32, String)>(conn);

}

use diesel::prelude::*;

table! {

users(id) {

id -> Integer,

name -> Text,

}

}

table! {

posts(id) {

id -> Integer,

name -> Text,

user_id -> Integer,

}

}

Figure 3.4: A small media platform with users and posts, application uses the Diesel library to
achieve static safetywhen building queries. The function users_with_equiv_post_id

returns all users who have a post with an id equivalent to theirs. This query is invalid
because the tables need to be joined before filtering, the missing line is commented
out.

at times. Consider a simple social media application whose implementation uses the
popular Diesel library to handle relational mapping and query building.

The application has two tables, users and posts , and for some reason there’s
a query to select all users who have a post with the same id as their user id. (A
promotional idea perhaps?) The code shown in Figure 3.4 doesn’t compile, there’s
a missing INNER JOIN on the tables before filtering on equivalent IDs . Diesel pushes
these errors into the trait system to provide static safety. The fully qualified type in the
principle error message is below.

<QuerySource as diesel::query_source::AppearsInFromClause<posts::table>>::Count

== diesel::query_source::peano_numbers::Once

To further beat a dead horse Rust reports “the full type name has been written
to ‘file.long-type.txt”’ where all types involved in the error are written. Ponder this Temporary debug files

have several hashes in
their names making the
real filename much
longer too.

statement. The typewas too long to be displayed and the developer needs to dig through
output files if they want to see it.

Instead of shying away from these large qualified paths, Argus can shorten them by
default, and provide the fully qualified version on hover, demonstrated in Figure 3.5.

26 debugging with class

Figure 3.5: Argus provides fully-qualified paths on hover. Shortening paths by default helps
the interface remain readable and reduces visiual clutter. Here the user is hovering
over the symbol Count to see its fully qualified definition path.

Hiding qualified types by default reduces the size of information attacking developer’s
visual system and helps them sift through information faster. There are, of course,
instances where shortening paths by default can be confusing. If multiple paths shorten
to the same symbol, for example trait methods within different implementation blocks,
information may seem redundant or conflicting. In these cases we provide a small
visual prefix to indicate that the symbols are part of a larger path.

trimming implementation headers Documentation is a crucial resource to help
developers, especially when using new libraries. Rust documentation is generally
good, but it could do better especially when it comes to traits and their implementors.
Consider again our running example with Axum. We have a function login that
fails to satisfy the criteria to implement the Handler trait. The reported error is like
“trait bound login: Handler is not satisfied.” The intuition for many developers is to
visit the documentation page for handlers to see what types do implement the trait.
Unfortunately, the verbosity of Rust is a little jarring when sifting through dozens of
implementation types in documentation.

Shown in Figure 3.6 is the implementation block for functions of arity sixteen. There
is a nearly equivalent documentation item for functions of arity fifteen, and fourteen,
and thirteen ...ldots and so on down to zero. These blocks are trying to say the same
thing: handlers are asynchronous functions whose first 𝑛 − 1 arguments implement
FromRequestParts and whose 𝑛𝑡ℎ argument implements FromRequest and whose return
type implements IntoResponse . Extra verbosity in the documentation comes from allAdditional Rust-isms

like 'static and
Send further clutter
the documentation.

those type parameters. As previously stated, handlers can have between zero and
sixteen arguments, therefore the documentation has one implementation block for
each function arity.

3.1 interactive debugging with argus 27

Figure 3.6: Example implementation block from theAxum Handler documentation. Implemen-
tations with a high number of type parameters become hard to read. An unfortunate
pattern in Rust, especially when implementing a trait for functions of varying arity.

Looking through this documentation can be confusing and it isn’t initially apparent
which block one should start with. Ideally, Rust would have variadic generics, a long
sought after feature,1 that would allow all these implementation blocks be written as
one. Variadic generics are unlikely to land in the near future so Argus does its best
to hide the unnecessary information by default. Shown in Figure 3.7 is how Argus
hides type parameter lists and where clauses by default, shifting focus to the type
and trait involved. Of course, this information isn’t lost and users can click the area to
toggle its view as seen in previous figures. A small sample of user feedback suggests
that the Argus view is more readable than online documentation. This isn’t to say it
couldn’t be improved, future work will include hyperlinks to library documentation
and improved rendering of Fn trait output types. Using the notation -> Ty instead of
Fn::Output == Ty to indicate return types.

1 See online discussions at variadic-generics-design-sketch/18974.

https://internals.rust-lang.org/t/variadic-generics-design-sketch/18974

28 debugging with class

Figure 3.7: Example of how Argus makes implementation blocks more readable. Type parame-
ter lists and where clause constraints are hidden by default, reducing much of the
visual noise. Items in the top-down view are sorted by the failure nodes they lead
to, here, the block for functions of arity two, Fn(T1, T2) , is shown first.

3.2 pulling a rabbit out of the hat

Compiler writers have for years used a bag of heuristics to provide error diagnostics.
The sophistication of these heuristics increase alongside the sophistication of the type
systemwhose errors they are diagnosing. Heuristics are imperfect, and this work shows
that interactive debugging uncovers the root cause of errors when static diagnostics
cannot. However, Argus also falls victim to the heuristic. It is not sufficient to simply
give developers a whole proof tree and say “there, go digging!” We must also tell
developers where to start, which failures are most likely the root cause. For this reason
Argus comes with its own set of heuristics to rank failed errors. We want developers
on the right debugging track with as few interactions as possible.

Providing the exact root failure is undecidable. The Rust trait system is Turing-
complete and thanks to our friend the Halting Problemwe cannot guarantee termination
of running a Turing-complete program. Debugging is a human problem, not an algorith-
mic problem. Therefore we cannot expect that Argus, or any tool, be able to accurately
localize arbitrary program errors algorithmically. Indeed there are even problems
where there doesn’t exist only one failure, but a set of failures working together. (See
Figure 3.11 for an example.) Argus provides a set of failed obligations in its bottom-up
view, and heuristics are used to rank them by their likelyhood of being a root cause.

3.2 pulling a rabbit out of the hat 29

Nohandler(fn_once([T1], Fut)) :- ..?- handler(fn_once([string, bytes]), promise(string))

future(promise(string), string

handler(fn_once([T1, T2], Fut)) :- ..?- handler(fn_once([string, bytes]), promise(string))

Yes

from_request(bytes)

from_request_parts(string)

into_response(string)

No

Yes

Figure 3.8: Clipping And–Or trees along the disjunctions returns a forest of failed proof trees,
each with a direct path of failure from root to leaf. Leaves may contain a conjunctive
set of goals that can be analyzed together to understand the nature of the failure.

In this section obligations with potentially useful data are described as interesting.
Identifying interesting failed obligations is a two step process: conjunctive subgoals are
analyzed together as a set—this to first pare down the set of possibilities, then failed
leaf obligations are ranked and partitioned on individual merit.

3.2.1 Conjunct Analysis

Imagine snipping the And–Or tree along the Or relations. Doing so produces a forest of
failed trees . Each tree in the forest has no branching except for a failed conjunctive set Each tree is a failure

otherwise the initial goal
wouldn’t have failed.

at its leaf. See Figure 3.8 for the resulting forest of snipping the proof tree of the Axum
login example. Each conjunctive set is then analyzed to find those with interesting
obligations.

Conjunct analysis uses three metrics to determine whether or not a set contains
interesting failed goals. The depth of the failed conjunct, the number of knownprinciple
types, and the ratio of conjunct size to the number of known principle types. Conjuncts
are interesting if any of these metrics lie more than one standard deviation outside the
average for all sets.

30 debugging with class

depth Trait solving is a fail fast process. This means that if there isn’t enough informa-
tion at any point the process stops along its current branch and returns an ambiguous
response. Failures deep in the proof tree indicate that the solver was able to go further
along the current branch. Progress was made. Intuitively we can think of the solver
as being closer to a solution in a deep failure than in a shallow one. This metric helps
combat Prolog-style unification failures when many inference variables remain un-
solved. Refer back to the running example using the Axum Handler trait. The library
uses macros to generate the trait implementation rule for functions of arity zero to
sixteen. If the function used as a handler has arity two, this means there will be fourteen
candidates whose rule head does not properly unify with the function type. Unification
failures are shallow. The candidate that properly unifies with the rule head, in this case
of function arity two, will result in the rule subgoals being solved for—at a greater
depth. Appealing to this intuition we conclude the general rule that deep failures are
more interesting than shallow ones.

number of known principle types A trait goal of the form Type: Trait has
principle type: Type . Of course obligations have a left-hand-side type, why make this
distinction? Trait solving inRust is interleavedwith type inference.Many goalsmay start
looking like 0?: Trait , where 0? is an inference variable. Its type is currently unknown,
referring back to the goal, this goal has an unknown principle type. These goals are
often answeredwith ‘ambiguous’ by the trait solver, butmay produce a set of additional
constraints on the inference variable. We may learn that 0? = Vec<1?> , meaning the
inference variable is a vector whose type parameter remains unknown. Note that the
goal Vec<1?>: Trait has a known principle type. As a metric we favor groups that have
a higher number of known principle types. They are more interesting than groups
with remaining inference variables, which are bound to fail by construction.

ratio of size by known principle types Again using the number of known
principle types we can additionally take into account the group size. Let us say there
exist two groups, each with ten obligations with known principle types. Is one more
interesting than the other if the groups have sizes 10 and 100? We argue yes. Small
groups with a high number of known principle types are more interesting. Their data
is more concrete. Failures are more concrete. This leads to the third metric, the ratio of
group size by the number of known principle types; this favors smaller groups with
more concrete information to aid debugging.

3.3 system design 31

The proposed list of metrics is by no means exhaustive and will likely be extended in
the future to analyze conjunctive sets more thoroughly. See Chapter 4 for ideas lifted
from related research areas. Using this list we filter out conjunctive sets that do not
meet our criteria. Now, failed goals are ranked amongst themselves to lift interesting
failures to the top of the Argus proposed list.

3.2.2 Subgoal Analysis

Analyzing sets of failed goals together is how we catch all interesting obligations. This
does not mean that all members of an interesting set are themselves interesting. To
throw out these wolves in sheep’s clothing we partition the set of interesting groups
one more time, throwing out individual obligations that are uninteresting.

In this context an interesting obligation is one that provides concrete information.
This happens in one of two ways, either its principle type is known, or the obligation
resulted in “no” or “maybe: overflow.” Ambiguous obligationswith unknown principle
types are automatically thrown out. They provide the least amount of debugging help.
This naïve partion is sufficient to remove obligations that produce visual noise and
little useful information. They are however still available in the bottom-up debugging
list, just at a lower rank.

3.3 system design

The chiseled statue presented in research was, just a few months prior, a heaping
mess of granite. The process and challenges in a project are often the most interesting
technical aspects, this section highlights specific design decisions and rough edges of
the Argus internals. We finish with a discussion on known shortcomings and future
plans.

Shown in Figure 3.9 is the general system architecture of Argus. There is a main
component, argus::analysis , that type-checks aRustmodule and records all obligations
solved for by the trait solver. These obligations are available via the inspect_typeck

2

function that exposes obligations via a callback. This feature was made available by
PR 119613 to expose obligations such that third party tools can extract generated proof
trees. After type-checking, Argus analyzes and filters the recorded obligations in the

2 https://doc.rust-lang.org/stable/nightly-rustc/rustc_hir_typeck/fn.inspect_

typeck.html

https://github.com/rust-lang/rust/pull/119613
https://doc.rust-lang.org/stable/nightly-rustc/rustc_hir_typeck/fn.inspect_typeck.html
https://doc.rust-lang.org/stable/nightly-rustc/rustc_hir_typeck/fn.inspect_typeck.html

32 debugging with class

hir_typeck

argus::analysis

argus/ide

rustc_inspect

argus::serialize

fn foo<T: ToString>(v: Vec<T>) { ... }

0?: ToString

Vec<T>: ToString

(): Sized

︙

fn foo<T: ToString>(v: Vec<T>) { ... }

Vec<T>: ToString

︙

{ 'bodyData': […] }

Figure 3.9: Abstracted architecture design of the Argus system. Orange boxes are Rust com-
piler modules and blue boxes are Argus modules. argus::analysis is the system
entrypoint that passes Rust HIR items, such as functions, to be type-checked. While
type-checking a body, Rust invokes an Argus callback passing solved obligations
and results. After type-check Argus processes and filters these obligations then
extracts the proof tree from the trait solver via rustc_inspect . Information is then
serialized into JSON and passed to the web view.

3.3 system design 33

argus::analysis module. Analysis results are passed back to the Rust compiler to extract
necessary proof trees via the the proof tree visitor API. All data is then serialized into
a custom JSON format and passed to the Argus web view. Here we detail the filter and Argus has little

dependence on VSCode.
There is even an Argus
MdBook utility.

analysis steps of the argus::analysis module.

3.3.1 You Want What Again?

The first step in the Argus pipeline is to type-check the workspace modules and record
obligations solved for during trait resolution. Post initial type-checking, Argus now
has a large set of obligations and needs to determine which the developer would
find useful. This set is comprised of all queries made by the trait solver, determining
which are useful to debug an error is difficult for three reasons. First, we don’t want
to expose overly complex compiler internals. The trait system has several variants of
obligation, many of which, don’t have a source code representation. Second, after a
failed obligation the trait solver may learn new information and then retry the query.
There is no direct mechanism to distinguish a failed obligation from a failed obligation
that succeeds on a subsequent solve attempt. Third, the trait solver can solve obligations
that are not hard requirements, but rather, the answer informs type inference. I will
refer to these as softline obligations, their failure does not always imply a type-check
error.

complex obligations Until now, discussions of obligations centered around the
form U: T , read as: “does type U implement trait T ?” As of April 2024, Rust has
eight kinds of predicates the trait solver can ask, and an additional seven “clause kinds”
(a kind of predicate). Only three in total have an analogous source-code representation.
By default Argus only shows these three clause kinds to users:

• trait predicates: U: T

• region outlives predicates: 'a: 'b

• type outlives predicates: U: 'a

Other predicates are hidden by default and shown only if they are the direct cause of
a type-check error. This includes queries such as “Is type U well-formed?” and “Can
trait T be used as a trait object?” The goal is to avoid overwhelming developers with
information they may not need. (Or may not have known existed!)

https://doc.rust-lang.org/stable/nightly-rustc/rustc_trait_selection/solve/inspect/analyse/trait.ProofTreeVisitor.html

34 debugging with class

subsequent obligations The trait solver not only returns a yes/no/maybe answer
for each obligation, but also a set of inference variable constraints. Added inference
constraints may cause a previously ambiguous obligation to succeed. Consider again
the simple ToString trait example. The type signature of the print_ln function is
fn print_ln<T>(v: T)where T: ToString , this means that the caller needs to provide a type
T that satisfies the bound ToString . In the calling context the first obligation given
to the trait solver is 0?: ToString , where 0? is an inference variable. This obligation
will result in an ambiguous response. However, the solver will add the inference
constraint 0? = Vec<f32> . The subsequent iteration of this goal, Vec<f32>: ToString , is
not ambiguous and fails. We do not want to show developers the first ambiguous
obligation, only the second failure. Argus currently piggybacks on Rust compiler
infrastructure to test whether a failed obligation 𝑂𝐹 implies an ambiguous obligation
𝑂𝐴. It should be noted that this strategy is unsafe due to inference variables potentially
leaking out of context.

softline obligations Obligations received from the compiler comemarked with a
“cause code.” This encodes data about the origin of the obligation. For example, types re-
turned from functions need to be sized. Consider the function fn to_string(&self)-> String

from the ToString trait. The obligation String: Sized is solved for with a cause code
SizedReturnType .3 Unfortunately, to the authors chagrin, there exists a dummy cause
code, MiscObligation

4 that can be used when the obligation is ill-classified. This cause
code is also used for softline obligations. The issue is that Argus cannot ignore these
obligations as they can demonstrate important failures.

Consider again the ToString trait, we will modify the example main function from
Section 1.2 to that shown in Figure 3.3.1.

The Rust compiler reports the correct root cause, but it attempts solving an additional
obligation while searching for an appropriate trait method implementation . In this
case the miscellaneous obligation Vec<A>: Display is solved for.

The default behavior for Argus is to ignore miscellaneous obligations, unless their
span can be tracked to amethod call. Formethod calls, Arguswill removemiscellaneous
obligations and re-perform method selection, registering each obligation as required.

3 https://doc.rust-lang.org/stable/nightly-rustc/rustc_infer/traits/enum.

ObligationCauseCode.html#variant.SizedReturnType

4 https://doc.rust-lang.org/stable/nightly-rustc/rustc_infer/traits/enum.

ObligationCauseCode.html#variant.MiscObligation

https://doc.rust-lang.org/stable/nightly-rustc/rustc_infer/traits/enum.ObligationCauseCode.html#variant.SizedReturnType
https://doc.rust-lang.org/stable/nightly-rustc/rustc_infer/traits/enum.ObligationCauseCode.html#variant.SizedReturnType
https://doc.rust-lang.org/stable/nightly-rustc/rustc_infer/traits/enum.ObligationCauseCode.html#variant.MiscObligation
https://doc.rust-lang.org/stable/nightly-rustc/rustc_infer/traits/enum.ObligationCauseCode.html#variant.MiscObligation

3.4 evaluation 35

struct A;

fn main() {

let v = vec![A];

format!(” {} ”, v.to_string());

}

Figure 3.10: A modification of the running example trait ToString . The struct A is introduced
and it implements no trait, therefore, the method call v.to_string() is ambiguous
and the code fails to type-check. In addition to Vec<A>: ToString , the Rust com-
piler also solves for Vec<A>: std::fmt::Display with a miscellaneous cause code.
The compiler tries this additional obligation in an attempt to provide a helpful
diagnostic to the developer.

3.3.2 Moving Forward

In future releases ofArguswehope to improve the collect andfilter steps in argus::analysis .
In certain circumstances Argus filters too aggressively and important obligations are fil-
tered from the default view. This can be improved by tracking the cause code within the
Rust compiler more precisely, or a smarter analysis to distinguish truly miscellaneous
obligations from important ones. Memory consumption during obligation collection
can spike in evenmedium-sized codebases. Argus needs to maintain information about
each obligation that it wishes to analyze further, especially ones for which a proof
tree is generated. The current Argus release does little to throw away data it will not
use and these extra obligations take up space. To throw away unnecessary obligations
again requires the knowledge that an obligation will not be shown to the user, our
hope is that the problems during collect and filter can both be mitigated by the extra
provenance information coming from the compiler.

3.4 evaluation

The thesis of this work is that interactive debugging facilitates localization with few
interactions. Users can explore the proof tree either top-down, from the root, or bottom-
up, from failed obligations. An error is always discoverable by doing a full traversal
of the top-down tree—this however does not make a quality debugging experience.
Discussed in Section 3.2 are the heuristics Argus employs to rank failed obligations in

36 debugging with class

the bottom-up view. We want users to encounter the root cause as soon as possible.
This work evaluates Argus on two research questions:

rq1 How many cognitive steps does it take to reach the root cause in the top-down
and bottom-up views?

rq2 Does our ranking heuristic reduce the number of cognitive steps in the bottom-
up view?

3.4.1 Procedure

A 2022 Rust Foundation grant tasked amember of the community to improve trait error
diagnostics. The solution proposed in this work is discussed later, see Chapter 4, but the
grant awardees assembled a mass of difficult-to-debug trait-error-laden programs from
the community—in other words, an Argus test.5 This suite relies on the trait-heavy
crates, such as the previously mentioned Axum and Diesel. Table 3.1 shows the full list
of included crates.It is interesting that

many of the mentioned
libraries boast being

“simple,” or “for
humans.” Yet their

usage obfuscates
diagnostics and make
debugging difficult.

The notion of a root cause is important for our evaluation. Each test was analyzed
and the root cause was predetermined by the authors. In some cases tests from the
community suite were split and modified to contain exactly one error. After analyzing
all the community tests several were withdrawn from the Argus suite for one of
three reasons. Either the root cause remained ambiguous after test simplification, the
behavior of the stable and in-progress trait solver diverged, or a bug within Argus
caused evaluation to fail.

3.4.1.1 Ambiguous root causes

Discussion of a root cause until now has assumed that there exists a single root cause.
However, by the nature of some trait errors it may not be possible to present a single
failed obligation to a user. To explain how this might happen let us turn our attention
once again to the Axumweb framework. Recall that in our running example the handler
function did not implement the trait Handler due to an incorrect parameter type. This
example reflects the type of trait error with a root cause, reflecting the kinds of errors

5 https://github.com/weiznich/rust-foundation-community-grant

https://github.com/weiznich/rust-foundation-community-grant

3.4 evaluation 37

crate description
uom Units of measurement
typed-builder Compile-time type-checked builder derive
easy-ml Machine learning library providing matrices, named tensors, linear

algebra and automatic differentiation aimed at being easy to use
diesel A safe, extensible ORM and Query Builder for PostgreSQL, SQLite,

and MySQL
chumsky A parser library for humans with powerful error recovery
bevy A refreshingly simple data-driven game engine and app framework
axum Web framework that focuses on ergonomics and modularity
entrait Loosely coupled Rust application design made easy

Table 3.1: Crates used in the testing suite of hard-to-debug trait errors. Many emphasize ease-
of-use an ergonomics but complex trait systems can obfuscate errors when things go
wrong.

we can evaluate within the scope of this work. Shown in Figure 3.11 is example code
that does not produce a single root cause failure.

In Figure 3.11 the developer attempts to use struct A as a handler. This struct doesn’t
satisfy any of the handler requirements and therefore its usage results in an error. Note
that this error doesn’t have a specific failure. A is not a function, regardless of arity.
A does not implement IntoResponse . It isn’t that a single obligation fails, but rather If a value can be turned

directly into a response
it is usable as a sort of
static handler. A subtle
detail that hasn’t been
important for previous
examples.

they all fail.
Argus reports the error list shown in Figure 3.12. It is the sum of all these failed

obligations that describe the failure, A is incompatible as a handler in every way
possible. From the initial test suite six test cases were removed due to an ambiguous
root cause.

3.4.1.2 Divergent Errors

Argus requires a nightly version of Rust with the in-progress trait solver enabled. This
solver still has known unsoundness and incompleteness issues. Any test case within
the suite that resulted in a different trait error, or produced an incorrect result by the

38 debugging with class

use axum::{body::Bytes, routing::post, Router};

use tokio::net::TcpListener;

struct A;

#[tokio::main]

async fn main() {

let app = Router::new().route(”/ log in ”, post(A));

let listener = TcpListener::bind(” 0 . 0 . 0 . 0 : 3 000 ”)
.await.unwrap();

axum::serve(listener, app).await.unwrap();

}

Figure 3.11: Example program where multiple failed goals combine to form the root cause. The
struct A is neither an asynchronous function nor does it implement IntoResponse .
In terms of the logic model, all program clause heads fail to unify with the goal.
Developers are left to look at all failed obligations to understand the failure.

Figure 3.12: First few entries of the Argus bottom-up list view for the “not a function” program.
An example error where Argus reports all the correct information, though it lacks
concrete information for developers. The struct A does not satisfy any of the
Handler trait constraints. Developers must currently intuit the failure from the
sum of all failed candidates.

3.4 evaluation 39

definition of the Rust semantics, was thrown out. From the initial test suite only two
tests were removed for this reason.

3.4.1.3 Argus Bugs
Understatement of the
century?Despite what they authors want to believe, even research software can contain bugs.

Two tests from the original community suite were removed due to a bug in the Argus
implementation. It should be noted that neither of these pose threats to the validity of
the software but highlight engineering difficulties. (Notably in serialization.)

After splitting and filtering the community suite, there remained 12 test cases on
which we ran the evaluation. The root causes for each test were determined by the
authors and written in plain text in the Argus test suite. We use an automated test
runner to load each workspace into a Playwright chromium instance where Argus is
opened. Our tool expands the bottom up and top-down versions of the proof tree views
and textually searches for the root cause. Nodes in the bottom-up view are evaluated
on rank, i.e., their position in the list. Nodes in the top-down view are evaluated by
the number of “cognitive steps” away from the tree node they are. We assume that
developers know exactly which tree nodes to expand and read strictly from top-to-
bottom. This measure is therefore a lower bound for the top-down debugging process.
We define the cognitive steps a developer would have to take as reading or clicking on
a node in the proof tree. The nodes in the top-down view were manually checked by
the authors to ensure a correct count of cognitive steps.

3.4.2 Results

Figure 3.13 shows the cumulative distribution of the fraction of tasks for the bottom-up
and top-down metrics. Left is the fraction of tests such that the root cause was at rank
𝐾. Remember that 𝐾 is the position in the bottom-up list. Right in the figure is the
fraction of tests such that the root cause was 𝑆 cognitive steps from the top-down tree
root.

Figure 3.14 the maroon line shows the cumulative distribution of the fraction of tests
such that the root cause was at rank 𝐾 when shuffled randomly. Shown in blue for
contrast is the CDF when nodes were ranked by the Argus heuristic.

https://playwright.dev/dotnet/

40 debugging with class

0 5 10 15 20 25
Rank (K)

0.0

0.2

0.4

0.6

0.8

1.0
Bottom Up

5 10 15 20
Cognitive Steps (S)

0.0

0.2

0.4

0.6

0.8

1.0
Top Down

0 10,000 20,000 30,000 40,000 50,000
Node Count (N)

axum

bevy

diesel

nalgebra

Li
br

ar
y

Proof Tree Size by Library

CDF

Figure 3.13: Top: the cumulative distribution function for the fraction of test below a threshold.
Left: Fraction of tests with a root cause rank 𝐾. Right: Fraction of tests with a root
cause cognitive steps 𝑆𝐾 away from the tree root. Bottom: Size of tested proof trees
by library.

3.4 evaluation 41

0 20 40 60 80 100 120
Rank (K)

0.0

0.2

0.4

0.6

0.8

1.0

Argus Heuristics
Random Sample

Ranked by

Heuristic Rank / Random Sample

0 5 10 15 20 25
Rank (K)

0.0

0.2

0.4

0.6

0.8

1.0

axum
bevy
diesel
nalgebra

Library

CDF by Library

Figure 3.14: Cumulative distribution of the fraction of tests whose root causewas ranked 𝐾. Left:
Shown in blue, the distribution of errors ranked by the Argus heuristic. Contrasted
in maroon is the distribution of errors averaged from a random sample of size 20.
Right: Cumulative distribution by library involved under test. Argus heuristics
perform notably worse with Diesel than other trait-heavy libraries. (Note: the Bevy
and nAlgebra cases overlap in the top-left corner.)

3.4.3 Analysis

rq1 The comparison between bottom-up and top-down nodes shows a substantive
improvement in the number of interactions required before encountering the root cause.
This is supported by the assumption made about the cognitive steps to reach an error
node. We’ve assumed that the developer will always make the right decision when
expanding the tree, making 𝑆 a lower bound on the cognitive interactions required. In
practice, the proof trees can have a high branching factor and developers unfamiliar
with the library internals could easily expand subtrees in the wrong direction. We
point readers to Figure 3.13 (bottom) where the size of proof tree is shown by library.
Axum has the fewest nodes per tree on average, 1758, which is still a large amount of
data in which to potentially get lost. The bottom-up is crucial to get developers the
information they need faster.

rq2 The heuristic ablation data, Figure 3.14 (left), show that randomly sorting the
error nodes in the bottom-up list is insufficient. The Argus heuristics do, in fact, matter
and additional 60% of test cases had the root cause shown first to the user.

42 debugging with class

This is not to say there isn’t room for improvement. Comparing the number of
interface interactions between the bottom-up versus top-down we see that in some
cases it is easier to traverse the tree. Again, the cognitive steps is a lower bound, but the
data highlights that there is room for improvement in the heuristics. The cumulative
distribution by library supports the need for a more sophisticated analysis. Tests with
Diesel perform much worse than those involving Axum, Bevy, or nAlgebra. Further
investigation is required to understand the discrepancy. One intuition may be the high
variance in proof tree size, Figure 3.13 shows a node count range 250–47000 for Diesel
test cases.

4
RELATED WORK

This work has outlined the difficulty in debugging type class errors. A solution was
explored in the context of the Rust Programming Langugae with the intention of
making these errors more explorable, and ultimately, easier repaired. However this
work is not about Rust, nor is it specifically about type classes. The lens of type classes
is used to explore the area of debugging complex logic structures, which are ever more
prevalent in modern programming languages. This larger problem encompases many
research areas with similar goals: type inference diagnostics, logic program debuggers,
proof tree debugging, and the human factors of debugging. These areas should be
able to pull ideas from each other to help human developers better understand failing
logical mechanisms.

4.1 diagnosing type errors

Hindley-Milner type inference is at once a great triumph of functional programming,
and simultaneously a source of unending pain. For 40 years, researchers have proposed
increasingly sophisticated methods for diagnosing type inference errors (although
none have made it to production, to our knowledge). A variety of strategies have
emerged:

4.1.1 Fault Localization

As a result of the global nature of HM type constraints, where the type-checker notices
an error is not usually where the real fault lies. The strategy of fault localization is to
try and blame the “right” line of code for a type error.

Wand [27] developed an algorithm to track the provenance of unifications made
by the type-checker, which could then be presented to the user. Wand provides the
intuition for needing this information as a question. “Why did the checker think it was
dealing with a list here?” Having access to the provenance of unifications, experts can

43

44 related work

track the origins of unexpected checker states—the origin of an inconsistent type is
likely not intended by the developer.

The usage of the raw proof tree presented by Argus follows the same intuitional logic.
Like Wand, we currently rely on the intuition of expert programmers to justify the
usefulness of such provenance. A planned extension of our work is to understand what
user-friendly or expert-system interactions are desired—for both expert and beginner
programmers.

Hage and Heeren [8] developed the Top framework to support customizable type-
inference. Traditional HM systems solve constraints as they go, biasing the compiler
to report errors towards the end of a program. The Top framework builds type graphs,
allowing for the use of heuristics over the global type graph to aid error diagnosis. An
example heuristic is a “trust factor,” which sorts constranits from least to most trusted
when placing blame. For example, types imported from the language standard are
considered high-trust—such functions can only be used incorrectly. Argus benefits from
such a rule, and even stronger, Rust requires type declarations on all functions, which
can be trusted more than inferred types. For a thorough treatment of the heuristics
used in Argus see section Section 3.2.

Described in Section 3.1, oftentimes a subtree fails because of many conjuncts. How-
ever, one piece of informationmaymake the entire subtree succeed. This same principle
applies in fault localization. Many recent systems look for sets of constraints, that if
resolved, the program would type-check. Pavlinovic, King, and Wies [14] and Loncaric
et al. [13] use an SMT solver, and Zhang et al. [28] use a Bayesian analysis. Seidel et al.
[18] go further and use machine learning to predict blame based on a training set of
ill-typed programs.

The Argus heuristics use a similar approach by analyzing conjunctions for certain
properties. However we do not look at sets of constraints as final. The obligations in a
proof tree deviate from a constraint-satisfaction model because they can be ambiguous.
Ambiguous obligations, if resolved, could result in further required obligations for the
success of the subtree—additional obligations could be unsatisfiable or unintended by
the user. A concrete example of this situation was already demonstrated in Figure 3.11
Compiler developers have operated for many years using a heuristic-based approach
to diagnostics. While fault localization techniques can help with diagnosing Rust
trait errors, they are unlikely to generalize to all cases. Our experience with Argus
corroborates this intuition as each heuristic performs different on different shapes of
trait system. Fault localization is usefull, not to determine accurate blame, but to point
users to likely points of failure.

4.1 diagnosing type errors 45

4.1.2 Interactive Debuggers

In contrast to fault localization, which attempts to find the root cause of an error, an
alternative is to give the programmer an interface into all the information. Chitil [3]
designed a compositional explanation graph of principal typings. This use of “composi-
tional” requires that the explanation of a problem have a tree structure, where the type
of each node must be uniqely determined by the node’s children’s types. This graph is
combined with a command-line interface that asks users about the intended types of
expressions in a process called algorithmic debugging, introduced by Shapiro [20]. The
value of algorithmic debugging is to bring the developer in the loop to understand the
mental under which they’re work.
reverse [] = []

reverse (x:xs) = reverse xs ++ x

last xs = head (reverse xs)

init = reverse . tail . reverse

rotateR xs = last xs : init xs

The algorithmic debugging process for this program c To help the tool place blame
a series of questions are posed to the user. Below is an example user-interaction script
from the above ill-typed program, with the user responses (y/n) appearing to the
right.
Type error in: (last xs) : (init xs)

last :: [[a]] -> a

Is intended type an instance? (y/n) n

head :: [a] -> a

Is intended type an instance? (y/n) y

reverse :: [[a]] -> [a]

Is intended type an instance? (y/n) n

(++) :: [a] -> [a] -> [a]

Is intended type an instance? (y/n) y

Using this script the tool can identify that the error lies within the function reverse ,
but the inferred type of the append operator ++ is not to be blamed.

Algorithmic debugging is explained in great detail because it provides a promis-
ing direction forward for Argus when the tool faces ambiguity. In scenarios of great
ambiguity such as Figure 3.11 human input can help Argus provide better feedback.

46 related work

Furthermore, interactive debugging in the context of typing has been refined in
multiple ways. Tsushima and Asai [25] developed a tool to work with the OCaml com-
piler rather than requiring a “debugger-friendly” re-implementation of type inference.
Similar to some fault localization approaches, Stuckey, Sulzmann, andWazny [24] uses
constraint satisfiability and constraint provenance as a debugging aid. Chen and Erwig
[2] use a “guided debugging” approach with counter-factual typing. A comprehensive
set of type-change suggestions is filtered and presented to the programmer to find
correct code changes [1].

Our approach to type class debugging took inspiration from many of the above tools.
It distinguishes itself as being a richer 2D graphical interface that integrates into the
existing VSCode IDE. This integration is essential to map errors to respective source
locations, and does not require users to exit their development environment to run a
command-line tool.

The published version does not provide an algorithmic debugging interface to refine
error suggestions nor does it use counter-factual typing to propose code changes. An
algorithmic debugging interface would certainly be a simple extension to the Argus
system and rule out many “trivially false” obligations with a few user questions.

Code suggestions is an oft-requested feature. Understanding the source of an error
is great, but wouldn’t it be better to “magically” provide a solution too? This is indeed
a motivation behind program synthesis and automated repair.

4.1.3 Automated Repair

Stronger than the counter-factual typing presented in the last section by Chen and
Erwig [2], several systems attempt to identify a small change to the input program that
causes it to be well-typed [1, 12, 17]. In this thesis the proposed method of type class
debugging aims to exhaust other avenues for debugging before reaching to program
synthesis—a sledgehammer tool. A direction for exploration would be to present users
with a set of types that do satisfy a class bound. Indeed the Rust compiler already
attempts to do this under certain circumstances. However, Rust will not compose types
for these suggestions, but following the obligations of a failed proof tree provides a
recipe with which a tool could compose types to satisfy a given bound. This set of types
is potentially empty if no instances are declared or are not visible at the error location.
This feature would be more lightweight than full-blown synthesis as only the types
are suggested, not an instance of those types.

4.2 logic programming 47

4.1.4 Domain-specific annotations.

evidenced by the myriad of techniques to generally diagnose type errors, building a
fully generic diagnostic system is a tricky task. An alternative approach is to give library
authors the necessary tooling to inject domain-specific knowledge into diagnostics.

The Helium subset of Haskell introduced by Heeren, Hage, and Swierstra [9] took
such an approach. Library authors can use a DSL to express custom errors messages
that reflect common errors known to library maintainers.

Notably, most of the efforts in the Rust ecosystem towards addressing trait er-
rors also have the shape of domain-specific annotations. RFC #2397 1 describes a
#[do_not_recommend] annotation that library authors could place on certain trait imple-
mentations. For instance, if a trait is implemented for tuples of length 32, then a library
author could mark that implementation to not appear in the suggestions of diagnostics.

At time of publishing, the Rust compiler includes a nightly feature allowing library
authors to append additional notes to diagnostic messages. One good example of its
usage is in the Axum web framework. The pitfalls of creating a correct Handler have
been discussed at lenghts in this written work. A portion of RFC #2397 was to improve
error messages and here the following annotation was included on the Handler trait:
#[cfg_attr(

nightly_error_messages,

rustc_on_unimplemented(

note = ``Consider using `#[axum::debug_handler]' to improve the error message''

)

)]

This annotation framework is not as expressive as Helium’s DSL so the authors
have created a custom macro that does the heavy lifting, axum::debug_handler . This
macro expands into additional code that does a static type assertion for all the Handler
constraints. This macro-based approach is convincing and in many cases provides the
current most-specific diagnostic. The downside is every library needs to create, and
maintain, these additional debugging facilities. One attractive feature of the Helium
system is that error notes are statically-checked to ensure compatibility with the current
function types.

48 related work

Figure 4.1: Example logic program trace visualization. A cyclic And–Or tree from Senay and
Lazzeri [19].

4.2 logic programming 49

4.2 logic programming

While logic programming has fallen out of fashion, the sizable research program
around it in the 1980s and 90s has left us many interesting threads to potentially pick
back up. In particular, researchers developed a number of tools to facilitate debugging
of Prolog programs. Several systems visualized And–Or trees that represented the
execution trace of a Prolog program: the Dewlap debugger [4], the Transparent Prolog
Machine [6], and cyclic And–Or graphs [19]. Figure 4.1 shows an example diagram
from the last system. Other Prolog debuggers like Opium [5] focused on abstracting
data and control-flow within large execution traces.

These trees provide some guidance in how to compactly visualize various aspects of
a logic program trace, such as unification and backtracking. The Argus system adopts
the And–Or structure of the tree but puts a larger emphasis on scaling. Large-scale
visualization become illegible quickly and we need to make sure developers can find
the information they’re looking for as quick as possible. The idea is that with a quick
scan they already have a better idea of what went wrong.

For example, the AORTA diagrams from Eisenstadt include small icons on the nodes
and edges that encode control flow direction and unification through the tree. These
icons are tremendously helpful in the given example (Figure 4.1) but do not scale
well for larger problems. Argus puts a much larger emphasis on hiding unnecessary
information by default, but giving developers the settings to opt-in should they choose.
Later work on the Transparent Prolog Machine emphasized helping users orient them-
selves while inspecting a large tree, and some techniques may be appropriate for future
work.

4.3 debugging proof assistants

The use of tactics in modern proof assistants seems to have the same flavor of usability
problem as trait errors. For example, a programmer applies a tactic to some goal; the
application either succeeds or gets simply a “No” failure. In theory, similar techniques
might be useful to diagnose a trait error as to diagnose a tactic failure. However, we
struggled to find much related work on this subject. In the space of proof assistants
there are two styles of tool, proof visualizers and proof state visualizers. The former

1 rust-lang/rfcs/2397-do-not-recommend.md

https://github.com/rust-lang/rfcs/blob/master/text/2397-do-not-recommend.md

50 related work

emphasizes writing proofs, following a pattern similar to that taken on paper, and the
latter emphasizes understanding the state of the current proof.

Proof state visualizers render the proof tree before and after each tactic application,
but do not help with understanding the application itself. Notable tools in the space
include Alectryon [16] for Lean and Coq-PSV [7], and Shi, Pierce, and Head [21]
describe a “tactic preview” which can help readers of proofs identify the goals solved
by a given tactic. Even though proof state visualization may seem tangential to trait
solving, an extension for Argus is to iteratively step through the solver’s execution
visualizing the type state at each step. We imagine this feature would be more useful
to compiler writers and library maintainers.

Proof visualization tools seem to take an approach ofmodeling sequent calculus with
Gentzen trees. These tools aim to help proof writers by providing a more “paper-like”
feel to mechanized proofs. The oldest tool in this space, ProofTree, works with Coq
and ProofGeneral and displays the tree top-down similar to the Argus And–Or tree.
Figure 4.2 show two additional tools in the space, Paperproof and Traf [10, 11] that
use a more Gentzen-style natural deduction proof to help proof writers.

4.4 final words

Heuristic compiler diagnostics cannot always localize type class errors; interactive
visualization of type class resolution is feasible and with few interactions facilitates
localization. In Chapter 2 we talked about the reductive nature of compiler diagnos-
tics. Type class resolution is a complex process. In most compilers it is black-box to
developers, thus the curt response “No” is a frustrating and hard-to-debug experience.
Compilers may use the words “bounds unsatisfied,” or “failed to synthesize instance”
but they can carry the same emptiness as a “No.” Instead of reducing internal failures
to a single diagnostic, why not give developers an interface by which they can explore
the problem?

Chapter 3 introduced our first attempt at a solution to this problem. How canwe give
developers the right tools to facilitate debugging? First they need the data. Diagnostics
often remove this data—we keep it. Second they need an interface. Diagnostics produce
a static file, much like this PDF document, that’s not much of an interface. We built an
interactive debugger into the popular VSCode editor, we even took this a step further
and built an MdBook plugin for Argus.

4.4 final words 51

Figure 4.2: Top: The Paperproof VSCode extension interface. Users can interactively build
proofs for the Lean language. Bottom: The Traf graphical proof aid for Coq using a
Gentzen-style deduction proof.

52 related work

Visualization comes with inherent problems. Interfaces get visually cluttered, they’re
confusing to use, and oftentimes too much data can be a bad thing. Especially if that
data is leaking parts of the Rust compiler internals. Argus uses some simple heuristics
to provide debugging entrypoints to developers. On 80% of our community curated
tests these heuristics served the root cause within the first ten items. Ten may seem like
a lot, and indeed there’s plenty of room for improvement, but often documentation
pages contain dozens of items. Not to mention the two or three pages of documentation
of required reading before the root cause becomes apparent.

Most researchers would title this a “conclusion,” but it’s more of an extended aside.
The intention was for it to be a discussion, but the fragile web of cross-references
did not allow for the already existing “discussion” file to be renamed. Some of the
most exciting, frustrating, and interesting pieces of research are not the stuffy words
in the text, but rather the software around it. The process. The reference structure
around these source files is so fragile because the authoring software used to write the
thesis was built while writing the thesis. Turns out this is like building a Formula 1 car
mid-grand prix.

The goal was always to have a web version of the thesis, but it turns out universities
appreciate a PDF. Well—they require one. The solution was to create a custom markup
language to write the thesis and accommodate both output formats. This requirement
compounded with haste and inexperience resulted in a funky language. Dynamic
scoping? Check. Interfaces?Why yes. Macros? Of course. Ultimately this was a stressful
but highly rewarding process resulting in a language no one should ever use again.

Many projects have a difficult technical bit that no one cares about. You can shout
I spent months working out the details! Yet it receives little interest from advisors or
peers. The unsung hero of this story is pretty printing. Section 3.3 contains a loose
architecture diagram of Argus. The module argus::serialize gets its own box for good
reason. This module contains code to serialize the entirety of Rust’s type system, taking
heavy inspiration from the rustc_middle::ty::print::pretty module. If pretty printing
doesn’t seem difficult, just count the number of TODO , FIXME , and “uhhh, is this right?”
comments in the Rust pretty printing source code. The challenge was worth it. We can
now serialize Rust types to JSON and play around with them in Argus.

This work has many possible extensions, and have been outlined in Section 3.3,
Section 3.4, and Chapter 4. The future for Argus is hopefully upward, and coming to
an IDE near you.

B IBL IOGRAPHY

[1] Sheng Chen andMartin Erwig. “Counter-Factual Typing for Debugging Type Er-
rors.” In: Proceedings of the 41st ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages. POPL ’14. San Diego, California, USA: Association for
Computing Machinery, 2014, pp. 583–594. isbn: 9781450325448. doi: 10.1145/
2535838.2535863. url: https://doi.org/10.1145/2535838.2535863.

[2] Sheng Chen and Martin Erwig. “Guided Type Debugging.” In: Functional and
Logic Programming. Ed. by Michael Codish and Eijiro Sumii. Cham: Springer
International Publishing, 2014, pp. 35–51. isbn: 978-3-319-07151-0.

[3] Olaf Chitil. “Compositional Explanation of Types and Algorithmic Debugging
of Type Errors.” In: Proceedings of the Sixth ACMSIGPLAN International Conference
on Functional Programming. ICFP ’01. Florence, Italy: Association for Computing
Machinery, 2001, pp. 193–204. isbn: 1581134150. doi: 10.1145/507635.507659.
url: https://doi.org/10.1145/507635.507659.

[4] Alan D. Dewar and John G. Cleary. “Graphical display of complex information
within a Prolog debugger.” In: International Journal of Man-Machine Studies 25.5
(1986), pp. 503–521. issn: 0020-7373. doi: https://doi.org/10.1016/S0020-
7373(86)80020-7. url: https://www.sciencedirect.com/science/
article/pii/S0020737386800207.

[5] Mireille Ducassé. Abstract Views of Prolog Executions in Opium. Research Re-
port RR-3531. INRIA, 1998. url: https://inria.hal.science/inria-
00073154.

[6] Marc Eisenstadt and Mike Brayshaw. “The Transparent Prolog Machine (TPM):
an execution model and graphical debugger for logic programming.” In: The
Journal of Logic Programming 5.4 (1988), pp. 277–342.

[7] Mario Frank. The Coq Proof Script Visualiser (coq-psv). 2021. arXiv: 2101.07761
[cs.LO].

53

https://doi.org/10.1145/2535838.2535863
https://doi.org/10.1145/2535838.2535863
https://doi.org/10.1145/2535838.2535863
https://doi.org/10.1145/507635.507659
https://doi.org/10.1145/507635.507659
https://doi.org/https://doi.org/10.1016/S0020-7373(86)80020-7
https://doi.org/https://doi.org/10.1016/S0020-7373(86)80020-7
https://www.sciencedirect.com/science/article/pii/S0020737386800207
https://www.sciencedirect.com/science/article/pii/S0020737386800207
https://inria.hal.science/inria-00073154
https://inria.hal.science/inria-00073154
https://arxiv.org/abs/2101.07761
https://arxiv.org/abs/2101.07761

54 bibliography

[8] Jurriaan Hage and Bastiaan Heeren. “Heuristics for Type Error Discovery and
Recovery.” In: Implementation and Application of Functional Languages. Ed. by
Zoltán Horváth, Viktória Zsók, and Andrew Butterfield. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2007, pp. 199–216. isbn: 978-3-540-74130-5.

[9] Bastiaan Heeren, Jurriaan Hage, and S. Doaitse Swierstra. “Scripting the Type
Inference Process.” In: Proceedings of the Eighth ACM SIGPLAN International
Conference on Functional Programming. ICFP ’03. Uppsala, Sweden: Association
for Computing Machinery, 2003, pp. 3–13. isbn: 1581137567. doi: 10.1145/
944705.944707. url: https://doi.org/10.1145/944705.944707.

[10] Evgenia Karunus and Anton Kovsharov. Paperproof. https://github.com/
Paper-Proof/paperproof. 2023.

[11] Hideyuki Kawabata. Traf. https://github.com/hide-kawabata/traf.
2018.

[12] Benjamin S. Lerner, Matthew Flower, Dan Grossman, and Craig Chambers.
“Searching for Type-Error Messages.” In: Proceedings of the 28th ACM SIGPLAN
Conference on Programming Language Design and Implementation. PLDI ’07. San
Diego, California, USA:Association forComputingMachinery, 2007, pp. 425–434.
isbn: 9781595936332. doi: 10.1145/1250734.1250783. url: https://doi.
org/10.1145/1250734.1250783.

[13] Calvin Loncaric, Satish Chandra, Cole Schlesinger, andManu Sridharan. “APrac-
tical Framework for Type Inference Error Explanation.” In: Proceedings of the 2016
ACM SIGPLAN International Conference on Object-Oriented Programming, Systems,
Languages, and Applications. OOPSLA 2016. Amsterdam, Netherlands: Associ-
ation for Computing Machinery, 2016, pp. 781–799. isbn: 9781450344449. doi:
10.1145/2983990.2983994. url: https://doi.org/10.1145/2983990.
2983994.

[14] Zvonimir Pavlinovic, Tim King, and Thomas Wies. “Finding Minimum Type
Error Sources.” In: Proceedings of the 2014 ACM International Conference on Object
Oriented Programming Systems Languages & Applications. OOPSLA ’14. Portland,
Oregon, USA: Association for Computing Machinery, 2014, pp. 525–542. isbn:
9781450325851. doi: 10.1145/2660193.2660230. url: https://doi.org/
10.1145/2660193.2660230.

https://doi.org/10.1145/944705.944707
https://doi.org/10.1145/944705.944707
https://doi.org/10.1145/944705.944707
https://github.com/Paper-Proof/paperproof
https://github.com/Paper-Proof/paperproof
https://github.com/hide-kawabata/traf
https://doi.org/10.1145/1250734.1250783
https://doi.org/10.1145/1250734.1250783
https://doi.org/10.1145/1250734.1250783
https://doi.org/10.1145/2983990.2983994
https://doi.org/10.1145/2983990.2983994
https://doi.org/10.1145/2983990.2983994
https://doi.org/10.1145/2660193.2660230
https://doi.org/10.1145/2660193.2660230
https://doi.org/10.1145/2660193.2660230

bibliography 55

[15] Simon Peyton Jones, Mark Jones, and Erik Meijer. “Type classes: an exploration
of the design space.” In: Haskell workshop. 1997. url: https://www.microsoft.
com/en-us/research/publication/type-classes-an-exploration-

of-the-design-space/.
[16] Clément Pit-Claudel. “Untangling mechanized proofs.” In: Proceedings of the 13th

ACM SIGPLAN International Conference on Software Language Engineering. SLE
2020. Virtual, USA: Association for Computing Machinery, 2020, pp. 155–174.
isbn: 9781450381765. doi: 10.1145/3426425.3426940. url: https://doi.
org/10.1145/3426425.3426940.

[17] Georgios Sakkas, Madeline Endres, Benjamin Cosman, Westley Weimer, and
Ranjit Jhala. “Type Error Feedback via Analytic Program Repair.” In: Proceed-
ings of the 41st ACM SIGPLAN Conference on Programming Language Design and
Implementation. PLDI 2020. London, UK: Association for Computing Machinery,
2020, pp. 16–30. isbn: 9781450376136. doi: 10.1145/3385412.3386005. url:
https://doi.org/10.1145/3385412.3386005.

[18] Eric L. Seidel, Huma Sibghat, Kamalika Chaudhuri, Westley Weimer, and Ranjit
Jhala. “Learning to Blame: Localizing Novice Type Errors with Data-Driven
Diagnosis.” In: Proc. ACM Program. Lang. 1.OOPSLA (2017). doi: 10.1145/
3138818. url: https://doi.org/10.1145/3138818.

[19] H. Senay and S. Lazzeri. “Graphical representation of logic programs and their
behaviour.” In: Proceedings 1991 IEEEWorkshop on Visual Languages. Los Alamitos,
CA, USA: IEEE Computer Society, 1991, pp. 25,26,27,28,29,30,31. doi: 10.1109/
WVL.1991.238854. url: https://doi.ieeecomputersociety.org/10.
1109/WVL.1991.238854.

[20] Ehud Yehuda Shapiro. Algorithmic program debugging. AAI8221751. USA: Yale
University, 1982.

[21] Jessica Shi, Benjamin Pierce, and Andrew Head. “Towards a Science of Interac-
tive Proof Reading.” In: Proceedings of the 13th Annual Workshop on the Intersection
of HCI and PL. PLATEAU ’23. 2023.

[22] Leon Sterling and Ehud Shapiro. The art of Prolog (2nd ed.): advanced programming
techniques. Cambridge, MA, USA: MIT Press, 1994. isbn: 0262193388.

https://www.microsoft.com/en-us/research/publication/type-classes-an-exploration-of-the-design-space/
https://www.microsoft.com/en-us/research/publication/type-classes-an-exploration-of-the-design-space/
https://www.microsoft.com/en-us/research/publication/type-classes-an-exploration-of-the-design-space/
https://doi.org/10.1145/3426425.3426940
https://doi.org/10.1145/3426425.3426940
https://doi.org/10.1145/3426425.3426940
https://doi.org/10.1145/3385412.3386005
https://doi.org/10.1145/3385412.3386005
https://doi.org/10.1145/3138818
https://doi.org/10.1145/3138818
https://doi.org/10.1145/3138818
https://doi.org/10.1109/WVL.1991.238854
https://doi.org/10.1109/WVL.1991.238854
https://doi.ieeecomputersociety.org/10.1109/WVL.1991.238854
https://doi.ieeecomputersociety.org/10.1109/WVL.1991.238854

56 bibliography

[23] Christopher Strachey. Fundamental Concepts in Programming Languages. Lecture
Notes, International Summer School in Computer Programming, Copenhagen.
Reprinted in Higher-Order and Symbolic Computation, 13(1/2), pp. 1–49, 2000.
Aug. 1967.

[24] Peter J. Stuckey, Martin Sulzmann, and Jeremy Wazny. “Interactive Type De-
bugging in Haskell.” In: Proceedings of the 2003 ACM SIGPLAN Workshop on
Haskell. Haskell ’03. Uppsala, Sweden: Association for Computing Machinery,
2003, pp. 72–83. isbn: 1581137583. doi: 10.1145/871895.871903. url: https:
//doi.org/10.1145/871895.871903.

[25] Kanae Tsushima and Kenichi Asai. “An Embedded Type Debugger.” In: Im-
plementation and Application of Functional Languages. Ed. by Ralf Hinze. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2013, pp. 190–206. isbn: 978-3-642-
41582-1.

[26] P. Wadler and S. Blott. “How to make ad-hoc polymorphism less ad hoc.” In:
Proceedings of the 16th ACM SIGPLAN-SIGACT Symposium on Principles of Pro-
gramming Languages. POPL ’89. Austin, Texas, USA: Association for Computing
Machinery, 1989, pp. 60–76. isbn: 0897912942. doi: 10.1145/75277.75283.
url: https://doi.org/10.1145/75277.75283.

[27] Mitchell Wand. “Finding the Source of Type Errors.” In: Proceedings of the 13th
ACMSIGACT-SIGPLANSymposium onPrinciples of Programming Languages. POPL
’86. St. Petersburg Beach, Florida: Association for Computing Machinery, 1986,
pp. 38–43. isbn: 9781450373470. doi: 10.1145/512644.512648. url: https:
//doi.org/10.1145/512644.512648.

[28] Danfeng Zhang, Andrew C. Myers, Dimitrios Vytiniotis, and Simon Peyton-
Jones. “Diagnosing Type Errors with Class.” In: Proceedings of the 36th ACM
SIGPLAN Conference on Programming Language Design and Implementation. PLDI
’15. Portland, OR, USA: Association for Computing Machinery, 2015, pp. 12–21.
isbn: 9781450334686. doi: 10.1145/2737924.2738009. url: https://doi.
org/10.1145/2737924.2738009.

[29] diesel-rs GitHub Discussions. https://github.com/diesel-rs/diesel/
discussions?discussions_q=not+implemented+for. Accessed: 2024-04-
24.

https://doi.org/10.1145/871895.871903
https://doi.org/10.1145/871895.871903
https://doi.org/10.1145/871895.871903
https://doi.org/10.1145/75277.75283
https://doi.org/10.1145/75277.75283
https://doi.org/10.1145/512644.512648
https://doi.org/10.1145/512644.512648
https://doi.org/10.1145/512644.512648
https://doi.org/10.1145/2737924.2738009
https://doi.org/10.1145/2737924.2738009
https://doi.org/10.1145/2737924.2738009
https://github.com/diesel-rs/diesel/discussions?discussions_q=not+implemented+for
https://github.com/diesel-rs/diesel/discussions?discussions_q=not+implemented+for

