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Recent experiments observed a phase transition within the superconducting regime of the heavy-fermion
system CeRh2As2 when subjected to a c-axis magnetic field. This phase transition has been interpreted as a
parity switching from even to odd parity as the field is increased, and is believed to be of first order. If correct,
this scenario provides a unique opportunity to study the phenomenon of local nucleation around inhomogeneities
in a superconducting context. Here, we study such nucleation in the form of sharp domain walls emerging on a
background of spatially varying material properties and hence, critical magnetic field. To this end, we construct
a spatially inhomogeneous Ginzburg-Landau functional and apply numerical minimization to demonstrate the
existence of localized domain-wall solutions and study their physical properties. Furthermore, we propose
ultrasound attenuation as an experimental bulk probe of domain-wall physics in the system. In particular, we
predict the appearance of an absorption peak due to domain-wall percolation upon tuning the magnetic field
across the first-order transition line. We argue that the temperature dependence of this peak could help identify
the nature of the phase transition.

DOI: 10.1103/PhysRevResearch.6.023080

I. INTRODUCTION

The realization of multiple superconducting phases is com-
pelling evidence of unconventional superconductivity in a
material [1–3]. The observed sequential transitions are often
linked to the spontaneous breaking of symmetries within the
superconducting phase. Consequently, the phase transitions
are of second order, where the order parameters are connected
through a group-to-subgroup symmetry relation. In contrast,
the recent observation of an additional phase boundary in
the H-T -phase diagram of the heavy-fermion superconductor
CeRh2As2 deviates from this pattern. Instead, it seems to align
with the characteristics of a first-order transition, marked by a
discontinuous change in the order parameter [4,5]. The transi-
tion occurs at sufficiently low temperature, when a magnetic
field is applied along the c axis of the tetragonal crystal lattice,
with the phase boundary remaining essentially temperature
independent. The nature of the transition mirrors that of a
metamagnetic transition, with a sudden jump in magnetization
at a finite magnetic field [6]. This opens the intriguing oppor-
tunity to investigate effects originating from the coexistence
of the two phases (low and high field), especially in slightly
inhomogeneous samples.

CeRh2As2 has been subject to intense experimental [5,7–
18] and theoretical [19–27] investigation in recent years.
The most striking features of the H-T phase diagram have

Published by the American Physical Society under the terms of the
Creative Commons Attribution 4.0 International license. Further
distribution of this work must maintain attribution to the author(s)
and the published article’s title, journal citation, and DOI.

been attributed to the staggered noncentrosymmetricity of
this compound, where two inequivalent Ce sites (constituting
a sublattice degree of freedom) experience different crystal
fields from the surrounding Rh and As cages, giving rise to
antisymmetric Rashba spin-orbit coupling (ASOC) [27,28].
While inversion symmetry is locally broken at each Ce atom,
the point group of the material is D4h, with an inversion
center sitting between Ce sites. ASOC induced by local non-
centrosymmetricity and the resulting local parity mixing are
believed to lend this system a surprising robustness against
c-axis magnetic fields, with an extrapolated upper critical field
of 14 T despite the low onset temperature of Tc ≈ 0.26 K
to superconductivity [29,30]. The upper critical magnetic
field in this case rises in two stages when the temperature
is lowered with a kink feature at T ≈ 0.6Tc and H ≈ 4 T,
see Fig. 1(a). This anomaly is associated with the first-order
phase-boundary line, which separates a low- and a high-field
phase and is nearly temperature independent [4].

In this work, we investigate consequences of material in-
homogeneity on the properties of the superconductor in the
vicinity of the first-order phase boundary in CeRh2As2. Inho-
mogeneities give rise to nucleation when the phase boundary
is approached upon tuning the magnetic field, with parts of
the sample in the low- and others in the high-field phase, A
and B, respectively, see Fig. 1(b). In the following, we use the
phenomenological Ginzburg-Landau (GL) framework intro-
duced earlier [21] to study the formation and phenomenology
of domain walls (DW). As the balance of coexisting regions
of A and B can be affected by pressure or strain, we study
ultrasound coupling to the DWs, which are shaken and thus
provide nonresonant attenuation upon their proliferation in the
vicinity of the phase transition.
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(a) (b)

FIG. 1. (a) Schematic phase diagram showing the even-parity
low-field A (gray) and odd-parity high-field B (red) superconducting
phases separated by a first-order internal phase-transition (dashed)
line at H = Ht . The inset shows the configuration of the order pa-
rameters η j

μ in layer j with μ = 0, (1) for even (odd) parity. Here,
uA > vA > 0 and vB > uB > 0. (b) Schematic depiction of nucleation
(left) and evolution of (normalized) absorption peak with tempera-
ture (right). Deep in the A or B phase the system is devoid of domain
walls. At H � Ht (H � Ht ) the landscape is dominated by the A (B)
phase, with bubbles of B (A). Maximum domain-wall proliferation
is expected at H ≈ Ht . The absorption peak is expected to broaden
as temperature is lowered (T1 < T2 < T3), which is a distinguishing
feature of this first-order phase boundary (see text for details).

II. MODEL

The unit cell of CeRh2As2 is spanned by two inequiva-
lent layers (or sublattices) stacked in the crystallographic c
direction [31] with alternating Rashba-like ASOC. A mini-
mal GL model that reproduces the experimentally observed
phase diagram is based on local parity-mixed (s + p)-wave
pairing and associates the first-order phase boundary with a
global parity-switching transition [21,32]. We introduce two
layer-dependent order-parameter (OP) components with layer
index j, namely, η

j
0, an A1g spin-singlet s-wave OP, and d j

1 =
η

j
1[ky,−kx, 0], the d vector of the odd-parity component,

transforming under the A2u representation of the point group
D4h. The pertinent GL free-energy density as an expansion in
η

j
0 and η

j
1 is written as

f =
∑

j

∑
μ=0,1

f j
μ + fε + fJ + fH , with

f j
μ = aμ

∣∣η j
μ

∣∣2 + bμ

∣∣η j
μ

∣∣4 + Kμ

∣∣D‖η j
μ

∣∣2
,

fε =
∑

j

(−1) jε
(
η

j∗
0 η

j
1 + η

j
0η

j∗
1

)
,

fJ = J
∑

j

∑
μ

∣∣η j+1
μ − η j

μ

∣∣2
,

fH =
∑

j

χH2
∣∣η j

0

∣∣2
, (1)

where aμ = a0
μ(T − Tc,μ), with a0

μ, bμ, and Kμ positive,
real phenomenological constants, and ε quantifies the effect

of ASOC leading to the coupling between the even- and
odd-parity OP and transforms under the A2u representation,
whose combination leads to the mixed-parity state mentioned
above. Moreover, D‖ = [−i∇ + 2eA]‖ is the in-plane covari-
ant derivative. Despite considering the situation in a magnetic
field, we do not include the property of the mixed phase
and, therefore, omit the vector potential A when discussing
the phase diagram. We elaborate on this simplification in
Appendix D. The effect of the magnetic field then enters
only through the Zeeman coupling to the electron spin, which
involves paramagnetic limiting for the even-parity OP with∑

j χ |η j
0|2 yielding a reduction of the Pauli spin susceptibil-

ity [33]. While we introduced the bare critical temperatures
for both OP components, their ASOC-induced coupling
yields a slightly higher effective onset of superconductivity,
Tc > Tc,μ.

In the limit of vanishing interlayer coupling incorporated
by the Josephson-like J term, the staggered system consists
of independent noncentrosymmetric layers, naturally hosting
mixed-parity pairing states. Due to the alternating sign of the
ε term, the relative sign between the two OP components
alternates as well, being “+” for even j and “−” for odd j
in our setup. A finite J explicitly restores inversion symmetry,
enabling us to label the solutions as even and odd under in-
version operation, which exchanges the two layers. Assuming
that at zero magnetic field the even-parity OP is dominant
(Tc,0 > Tc,1), the interlayer coupling stabilizes a configuration,
where η

j
0 has the same phase in all layers while η

j
1 alternates

its sign. This corresponds to the low-field A phase: η
j
0 = η

j′
0 =

uA, −η
j
1 = η

j′
1 = vA, with uA > vA > 0 and j = 2n (even) and

j′ = 2n + 1 (odd). In contrast, in the high-field B phase, η
j
0 is

suppressed through the paramagnetic limiting effect such that
the now-dominant η

j
1 has the same phase for all layers with an

alternating sign for η
j
0: −η

j
0 = η

j′
0 = uB, η

j
1 = η

j′
1 = vB, with

vB > uB > 0, as described, for instance, in Ref. [21]. It is
straightforward to show that the transition occurs at a mag-
netic field given by Ht = √

(a1 − a0)/χ . The model outlined
in Eq. (1) is geared toward capturing the internal phase transi-
tion and does not account for orbital depairing that ultimately
destroys the B phase at high fields. Nevertheless, the above
formula for Ht provides a good approximation even in the
presence of the vortex lattice. Indeed, the transition occurs in
the mixed phase of a strongly type-II superconductor at a field
where the vortex density is rather high and the field practically
uniform [21]. Our model coarse grains the order parameter,
neglecting the short-range modulations due the vortices with a
very small core size (see Appendix D). Because the inversion
operation exchanges even and odd layers, we may characterize
A as even- and B as odd-parity phase.

At sufficiently low temperature, both phases correspond to
separate minima of the GL free energy, where at H = Ht they
exchange their role as the global minimum and give rise to a
first-order transition, as can be shown also based on general
thermodynamic arguments [34,35]. Importantly, in a spatially
inhomogeneous material, we expect the transition to not hap-
pen everywhere at the same field Ht , but to show regions
of one phase embedded within the other, whereby the OPs
rearrange between even and odd configurations on a length
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(a) (b)

FIG. 2. Effective magnetic field profiles (top row) and the re-
sulting OP configurations (bottom row) computed via numerical
minimization. (a) Hyperbolic tangent inhomogeneity with width 4ξ0,
and (b) a double DW configuration. All H̃ (x) profiles are symmet-
ric with respect to H̃t with a maximum deviation of 5%. For the
numerical calculations, we fix temperature to T/Tc,0 = 0.5 and use
the parametrization bμ = b, Kμ = K , −a0/b = K/|a0| = 1, a1/a0 =
0.105, J/|a0| = 1, and ε/|a0| = 2. Lengths are expressed in units of
ξ0 = √

K/|a0| and the OP as � j
μ = √−b/a0η

j
μ.

scale of order coherence length ξ0 = √
K/|a0|, constituting

sharp DWs.

III. DOMAIN WALLS

Inhomogeneities in the sample lead to spatially varying
parameters and thus, critical field. We incorporate such inho-
mogeneities in our GL model through a position-dependent
parameter χ (r), assuming a relatively slow variation in space,
which only enters the Zeeman term fH in the free en-
ergy. In order to investigate the structure of a DW, we
restrict ourselves to a one-dimensional spatial dependence
χ (x), use the parametrization

√
χ (x)H ≡ H̃ (x), and, for a

model calculation, consider a step-like dependence, H̃ (x) =
H0 + H1 tanh(x/δ), with H0 − H1 < H̃t < H0 + H1 and H̃t =√

a1 − a0 corresponding to the transition point. In this way,
the A (B) phase is favored for x < 0 (x > 0). We minimize the
free energy numerically using the one-step relaxed Newton-
Jacobi method [36] and obtain a smooth, narrow DW between
the two phases, as displayed in Fig. 2(a). Using a profile for
H̃ (x) with two opposite steps shows an “island” of B phase
inside the A phase [Fig. 2(b)], as it may occur at the verge of
the bulk phase transition. The position of the DW is pinned
by the specific x dependence of H̃ (x), roughly at the position
H̃ (x0) = H̃t [x0 = 0 in Fig. 2(a)]. In what follows, we consider
a harmonic pinning potential for the DW position.

Note that, unlike deep in the A or B phase, within the
DW the OP does not adhere to global parity classification. We
also remark that the deformation of OPs in the vicinity of the
DW combined with the local noncentrosymmetricity yields a
nonvanishing spin current along the domain boundary [37],
see Appendix A. However, we do not dwell on this feature in
the following, but rather consider the effects of strain in the
system.

IV. ULTRASOUND PROBE

Recent experiments observed a significant effect of hy-
drostatic pressure on the superconducting phase diagram of
CeRh2As2. Most glaringly, pressure decreases the overall Tc

and affects the balance between A and B phases [12,13].
Owing to its tetragonal symmetry, the phase diagram of
CeRh2As2 under hydrostatic pressure can also be appreci-
ated qualitatively by considering that strain along the c axis
changes the ratio between the strength of parity mixing and
interlayer coupling, namely, ε/J . While this aspect may be
more purposefully investigated by uniaxial c-axis strain, here
we propose a related experiment based on ultrasound modes.

For this purpose, we first discuss the coupling of DWs to
ultrasound. DWs represent a boundary between two phases
with vortex lattices of different flux density and, thus, differ-
ent mean magnetization. The first-order nature of the phase
transition furthermore yields a jump in magnetization [21],
quite analogous to a metamagnetic transition. Naturally, this
induces a supercurrent flowing within the layers along the
domain boundary. The temporal variation of strain through
the ultrasound waves leads to a periodic displacement of the
DW and yields a dissipation via the motion of currents as
well as the vortices near the DW. Thus, we expect an extra
contribution to ultrasound absorption due to local nucleation
in the vicinity of the first-order phase boundary.

To formulate this concretely, we introduce an ultrasound
mode as a longitudinal plane wave of frequency ω propa-
gating in the z direction (crystallographic c axis), u(r, t ) =
ẑu0eikz−iωt , where u is the lattice displacement field and k
is the wave vector along z, which depends on the properties
of the medium. This mode transforms under the trivial A1g

representation and hence is not symmetry breaking. Since the
only relevant element in the strain tensor is εzz = ∂zuz, we
focus in the discussion of the deformation energy and strain-
OP coupling on this component only. Then, the corresponding
additional terms to the free energy include the elastic energy
fel and the coupling term fsη, yielding [38]

fel = c33

2
ε2

zz = c33

2
(∂zuz )2,

fsη =
∑

j

(
γ0εzz

∣∣η j
0

∣∣2 + γ1εzz

∣∣η j
1

∣∣2)
, (2)

with c33 the elastic constant and γ0,1 phenomenological cou-
pling constants. These terms describe the modification of the
phase diagram under c-axis uniaxial strain.

The DWs are pinned by the spatial inhomogeneities of
H̃ (x), which we model by a harmonic potential around a given
equilibrium position. The free-energy densities of the two
phases have different pressure dependence, therefore strain
imposes a force to shift the DW from its original equilibrium
position. If in the absence of strain the DW is at x = x0, we
define the shifted coordinate x̄ = (x − x0), and write the DW
potential term as

fDW = 1
2 c(H̃ )x̄2 + γ εzzx̄. (3)

For εzz �= 0, the minimum is shifted to x̄ = −γ εzz/c(H̃ ), with
γ a measure for the coupling of strain and DW. Note that for
simplicity, we assume a DW that is infinitely extended in the
y- and z direction such that we can model our system in one
spatial dimension (x). The coefficient of the quadratic term
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c(H̃ ) depends on the details of H̃ (x), and by linearizing we
find to leading order that c(H̃ ) ∝ (∂H̃ (x)/∂x)|x=0. Intuitively,
a steeper inhomogeneity profile yields a stiffer potential, re-
stricting the DW motion. On the other hand, γ is independent
of H̃ (x) and can be approximated through the different strain
dependence of energy densities in the A and B phases, fA and
fB, respectively, such that

γ ∝
(

∂ fA

∂εzz
− ∂ fB

∂εzz

)∣∣∣∣
εzz=0

. (4)

Note that the equilibrium position still depends on the details
of H̃ (x). For details of the above calculation see Appendix B.

We model nonresonant absorption by the overdamped os-
cillation of the DW position and write the equation of motion
for x̄ as well as the displacement field uz as [38]

η∂t x̄ = −∂ ftot

∂ x̄
, ρ∂2

t uz(r, t ) =
∑

i

∂i
∂ ftot

∂[∂iuz(r, t )]
. (5)

Here, ftot = f + fel + fsη + fDW, η is a phenomenological
viscosity constant resulting from the dissipation due to the
motion of the DW, and ρ is a mass density. We can solve
these equations in Fourier space, where an external drive of
frequency ω results in the wave vector

k =
√

ρω√
c33 − γ 2

iωη+c

. (6)

This finally yields the ultrasound absorption coefficient

α = −Im k = γ 2

2c33csη

ω2

ω2 + ω2
0

, (7)

where cs = √
c33/ρ denotes the sound velocity and ω0 = c/η

is a characteristic frequency of the DW. For details of the
above calculation consult Appendix C. The coefficient α is
a measure for the absorption per unit area of the DW. The
total absorption is proportional to the spatial average of α,
as well as the DW density in the system for a given external
magnetic field. Below, we elaborate on the evolution of the
latter as one tunes the magnetic field across Ht . As pointed
out earlier, larger value of c (steeper inhomogeneity profile)
describes stronger pinning, which in turn results in a reduced
motion of the DW and, therefore, less absorption, which is
reflected in Eq. (7). Hence, c is in general position dependent.
The origin of the viscosity parameter η is analogous to that
of vortex motion in the mixed phase of a superconductor, but
depends on the microscopic details of the DW.

Our simple model accounts for the contribution to ultra-
sound absorption per unit area of a DW. As such, the total
ultrasound absorption depends on the DW density upon driv-
ing the external magnetic field through the phase boundary at
Ht . As the magnetic field approaches Ht from below, islands of
the high-field phase B appear due to inhomogeneities within
the A phase, as schematically shown in Fig. 1(b). In our
one-dimensional model, such a B-phase bubble is depicted
in Fig. 2(b). Upon increasing the field, the islands bounded
by a DW proliferate and eventually DWs percolate through
the sample. A further rise of the magnetic field leads to the
shrinkage of A domains in a landscape dominated by the B
phase [see Fig. 1(b)]. Naturally, the largest contribution to
sound absorption is expected when the DWs percolate and

their density is largest, such that the absorption shows a peak
as a function of the external field.

Finally, let us make some practical remarks on the ex-
perimental signatures that would help identify the absorption
mechanism in a material like CeRh2As2. To date, the first-
order nature of the internal phase transition has not been
unambiguously established. Since tuning across a possible
second-order phase transition could also yield an absorption
peak (analogous to critical opalescence), the observation of
an absorption peak alone may not be conclusive. However, if
temperature is lowered when the system is on the verge of
a second-order phase transition, the critical region narrows
with the accompanying absorption peak becoming sharper.
In contrast, the superconducting coherence length, given in
our model by ξ0 = √

K/|a0|, decreases with decreasing tem-
perature, whereby the OPs can realize a DW on a smaller
length scale, thus in a wider magnetic field range. For this
reason, a first-order phase transition with accompanying local
nucleation tends to broaden the absorption peak as a function
of field when the temperature is lowered, as the opposite phase
can nucleate more easily on smaller inhomogeneities. The
evolution of an absorption peak as a function of temperature
may therefore help pin down the order of the internal phase
transition in this system.

V. DISCUSSION

While the proposed mechanism of ultrasound absorption
provides a way to detect the first-order transition between
phases A and B in the presence of sample inhomogeneity
or inhomogeneous magnetic field, the nonuniform nucleation
could also be observed by other means. The different vortex
density in the two phases [21] may be possible to track by sur-
face scanning probes by observing either the magnetic field or
the vortex lattice on its own. A further interesting aspect is the
different spin susceptibilities of the A and B phases. Nuclear
magnetic resonance (NMR) Knight-shift measurements as a
local probe would in principle be able to observe two distinct
signals with a varying volume fraction of the two domains as
the magnetic field is tuned through H ∼ Ht .

This work was motivated by the heavy fermion supercon-
ductor CeRh2As2. Some aspects of our discussion, however,
might not apply straightforwardly to this material. Recent
NMR measurements indicate the presence of magnetic order
coexisting with the A phase, but not with the B phase [5,16].
We did not attempt here to integrate this feature into our
discussion, since it is unclear so far how this material-specific
property connects to the field-induced (first-order) transition.
An interesting point we also leave open for the time being
is the study of the damping mechanism, such as the effect
of DW shape and supercurrents on the viscous motion of
DWs. Naturally, such questions become more urgent once the
presence of DWs is established. Still, besides probing the
physics of nucleation in a superconducting context, our efforts
may help further understand the phase diagram of CeRh2As2,
where investigations are still in their early stages.
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APPENDIX A: SPIN CURRENT

Analogously to the case of charge currents and U(1) vector
potential, to compute spin currents in the GL formalism we
construct an SU(2) gauge field Aa

μ(x), where μ = x, y are
spatial indices and a = x, y, z is the SU(2) index [37]. Due to
the magnetic field aligned with ẑ, we can single out the Az

μ(x)
component. The gauge field (an Eu quantity) coupled to the
spin Sz (an A2g quantity) transforms as Eu ⊗ A2g = Eu, and
with the appropriate basis vectors this object reads {Az

y,−Az
x}.

Then, the symmetry-allowed nonvanishing term in the free
energy is of the form

fsc =
∑

j

D̂xAz
y(−1) jε

(
η

j
0η

j∗
1 + c.c.

)
,

with D̂x the derivative operator along x. The spin current
along y is then Jy

z = (∂ fsc/∂Az
y
)|Az

y=0, yielding two independent
contributions localized to the DW (where the derivative is
nonvanishing) as

Jy
z =

∑
j=0,1

(−1) jε

[
L1

∂η
j
0

∂x
η

j∗
1 + L2η

j
0

∂η
j∗
1

∂x
+ c.c.

]
, (A1)

with L1,2 phenomenological coefficients.

APPENDIX B: DOMAIN-WALL POTENTIAL

In the main text, we briefly motivate the form of the DW
potential term in the free energy as

fDW = c(H̃ )x̄2 + γ εzzx̄, (B1)

where fDW and x̄ are measured in units of a2
0/b and ξ0, respec-

tively, which renders the rest of the parameters dimensionless.
We now proceed to elaborate on the coefficients c(H̃ ) and
γ by means of numerical simulations. The stiffness of the
quadratic potential is characterized by c(H̃ ), which depends
on the shape of the inhomogeneity through H̃ (x). To leading
order, we assume its form to be c(H̃ ) ∝ f (w) with f some
function of w = (∂H̃ (x)/∂x)|x=0. For εzz = 0, the potential
minimum is located at x̄ = 0, whereas for finite strain it is
shifted to

x̄ = − γ εzz

2c(H̃ )
. (B2)

For the following analysis, we set the coupling of the order
parameters to strain [Eq. (2) of the main text] to γ0 = γ1 =
0.65.

To extract the DW potential, we first use the one-step re-
laxed Newton-Jacobi method [36] to minimize the free energy

for εzz = 0 in the presence of a tanh-shaped inhomogeneity,
centered around H̃t = √

a1 − a0, and with varying width δ. In
dimensionless form, the corresponding term in the free energy
reads

b

a2
0

fH =
(

H̃ (x)

|a0|
)2 ∑

j=0,1

∣∣� j
0

∣∣2

= (1 − a1/a0)[1 + A tanh(x/δ)]2
∑
j=0,1

∣∣� j
0

∣∣2
, (B3)

where in the second equality we measure H̃ in units of H̃t and
in our analysis we set the maximal deviation A = 0.05. The
rest of the parameters are the same as in Fig. 2 of the main text.
Notice that the above spatial dependence yields w = A/δ. In
what follows, we always use a dimensionless free energy and
measure any length in units of the coherence length ξ0.

As a next step, we compute the integral of the free-energy
density on x/ξ0 ∈ [−22, 22] with the previously derived nu-
merical solution �

j
μ(x) as a function of an added shift∫

dx f [� j
μ(x − x̄)] in the presence of −0.1 � εzz � 0. How-

ever, to leading order we use the solution �
j
μ(x) obtained for

zero strain. To proceed and extract c(H̃ ) and γ , we fit the
data obtained this way with a parabola, see Fig. 3. The fit
parameters are shown in Table I.

As expected, the coefficient of the quadratic term in the fit
is approximately independent of the strain, but varies strongly
with δ. Intuitively, the stiffness of the harmonic pinning poten-
tial is set by the inhomogeneity profile, in that slower spatial
variation (larger δ) yields a softer potential (smaller quadratic
coefficient). Therefore, for fixed δ/ξ0 = {2, 3, 4, 5, 6, 7} we
average over εzz and notice that the function f (w) = pw =
pA/δ yields an excellent fit with p ≈ 0.7, see Fig. 4(a). Hence,
we conclude that to leading order c(H̃ ) ∝ (∂H̃ (x)/∂x)|x=0.

Introducing εzz > 0 shifts the equilibrium position of the
DW by an amount described by Eq. (B2). Here, γ is indepen-
dent of δ, which can be seen if we shift the linear coefficients
in Table I so that for εzz = 0 the fit is purely quadratic (“corr.”
column). Such a correction is needed because the potential,
obtained by shifting a DW solution in the expression of the
free energy, is necessarily slightly asymmetric, as the free-
energy densities of the two phases on either side of the DW
are different, and we integrate them over a finite region.

To extract γ , we average over δ for each εzz and fit the
resulting data with a linear function with zero intercept, see
Fig. 4(b). This method yields γ ≈ 0.094. Alternatively, γ can
be approximated via the change in energy densities of the A
and B phases upon varying εzz as in Eq. (4) of the main text. To
this end, we minimize the homogeneous free-energy density
f + fsη in the A and B phases separately (in the absence of
DWs) for εzz = 0. Subsequently, as before, we re-evaluate the
free-energy densities for varying finite strain, which yields a
linear εzz dependence, albeit with different slopes for the A
and B phases. The difference in the slopes yields γ . As repro-
ducing this calculation is straightforward, we only quote the
result γ ≈ 0.109. The two scenarios therefore yield consistent
values for the coupling γ .
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FIG. 3. DW potential (measured in units of b/a2
0) for various values of εzz and δ, with fitted parabolas for each data set. For clarity we shifted

the data sets vertically in the following way: for εzz = {0,−0.02, −0.04, −0.06, −0.08, −0.1} curves are shifted by (−1) × {5, 4, 3, 2, 1} units
of free energy, respectively.

APPENDIX C: SOUND ABSORPTION COEFFICIENT

We first consider the equation of motion for the displace-
ment field uz from Eq. (5) of the main text, yielding

ρ∂2
t uz = ∂z

⎛
⎝∑

j,μ

γμ

∣∣η j
μ

∣∣2 + c33∂zuz + γ x̄

⎞
⎠. (C1)

In the leading-order approximation, we only consider the
effect of strain on the DW via coupling to the two phases
differently, and not its direct influence on the OPs. Then, we

obtain in Fourier space

−ρω2uz = −c33k2uz + ikγ x̄. (C2)

Next, we turn to the equation of motion of x̄ in Eq. (5) of the
main text and write it as

iωηx̄ = −cx̄ − ikγ uz, (C3)

TABLE I. Fit parameters of the parabolic curves from Fig. 3, with “corr.” the corrected linear coefficients, whereby all values for fixed δ

are shifted by the same amount such that εzz = 0 yields zero linear coefficient.

δ/ξ0 = 2 δ/ξ0 = 3 δ/ξ0 = 4

εzz Constant Linear Corr. Quadratic Constant Linear Corr. Quadratic Constant Linear Corr. Quadratic

0 −69.81 0.0054 0 0.0165 −69.76 0.0044 0 0.0122 −69.72 0.0033 0 0.0093
−0.02 −70.99 0.0035 −0.0020 0.0163 −70.94 0.0022 −0.0022 0.0118 −70.89 0.0013 −0.0019 0.0092
−0.04 −72.13 0.0015 −0.0039 0.0161 −72.09 0.0003 −0.0041 0.0117 −72.04 −0.0007 −0.0039 0.0090
−0.06 −73.25 0.0004 −0.0051 0.0164 −73.20 −0.0013 −0.0057 0.0117 −73.16 −0.0025 −0.0058 0.0088
−0.08 −74.34 −0.0015 −0.0069 0.0162 −74.29 −0.0032 −0.0077 0.0113 −74.25 −0.0043 −0.0076 0.0087
−0.1 −75.40 −0.0032 −0.0087 0.0160 −75.36 −0.0050 −0.0095 0.0111 −75.31 −0.0061 −0.0093 0.0084

δ/ξ0 = 5 δ/ξ0 = 6 δ/ξ0 = 7

εzz Constant Linear Corr. Quadratic Constant Linear Corr. Quadratic Constant Linear Corr. Quadratic

0 −69.67 0.0024 0 0.0074 −69.63 0.0018 0 0.0062 −69.58 0.0014 0 0.0053
−0.02 −70.85 0.0004 −0.0020 0.0073 −70.80 −0.0001 −0.0019 0.0061 −70.76 −0.0005 −0.0019 0.0052
−0.04 −72.00 −0.0014 −0.0039 0.0072 −71.95 −0.0020 −0.0038 0.0060 −71.91 −0.0024 −0.0038 0.0051
−0.06 −73.11 −0.0033 −0.0057 0.0071 −73.07 −0.0038 −0.0056 0.0059 −73.03 −0.0042 −0.0056 0.0050
−0.08 −74.20 −0.0051 −0.0075 0.0069 −74.16 −0.0056 −0.0074 0.0058 −74.12 −0.0060 −0.0073 0.0050
−0.1 −75.27 −0.0068 −0.0092 0.0068 −75.22 −0.0073 −0.0091 0.0057 −75.18 −0.0076 −0.0090 0.0049
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FIG. 4. (a) c(H̃ )/A averaged over εzz = −k 0.02 for k = 0, 1, . . . , 5 (red points) and least square fit of the function p/δ. The dashed line
represents a fit of all available data, whereas the solid line ignores the first data point at δ = 2ξ0, where the inhomogeneity length scale becomes
too short and our leading-order approximation is less accurate. (b) Linear coefficients of the parabolic DW potential from Table I, averaged
over δ/ξ0 = 2, . . . , 7 (red points) and a linear fit with zero intercept (black line).

and eventually we obtain

k =
√

ρω√
c33 − γ 2

iωη+c

≈
√

ρω√
c33

[
1 + 1

2c33

γ 2

c + iωη

]
, (C4)

where in the second equality we Taylor expand in γ 2/[c33(c +
iωτ )]. Finally, we arrive at the expression for the absorption
coefficient

α = −Im k = γ 2

2c33csη

ω2

ω2 + ω2
0

. (C5)

APPENDIX D: VORTEX EFFECTS ON FIRST-ORDER
NUCLEATION IN CeRh2As2

In our treatment of an external magnetic field, we have
neglected vortex physics and only incorporated the coupling
through a Zeeman term. To estimate the effect of vortices on
the first-order nucleation in CeRh2As2, we first give an ap-
proximation to the strength of the self-field, which is roughly
equal to Hc1. To this end we first estimate the thermodynamic
critical field as

μ0Hc ≈ 10−2
√

γ

γ0
Tc[K] ≈ 0.1 T, (D1)

where γ /γ0 ≈ 1000 in CeRh2As2 [14], which is the ratio of
the Sommerfeld coefficient to that of a normal metal, thus
reflecting the heavy-fermion nature of this compound. From
here, the Ginzburg-Landau parameter can be estimated as

κ = Hc2√
2Hc

≈ 100, (D2)

which corresponds to a strongly type-II superconductor. Here,
Hc2 ≈ 14 T in CeRh2As2 [4]. Finally, we obtain an approxi-
mation of the vortex field using

Hc1 = Hc2

κ2
≈ 10−3 T. (D3)

The field of an individual vortex is therefore far too weak
to trigger nucleation of the high-field phase, which happens
around 4 T.

To address the inhomogeneity due to the vortex lattice
close to the first-order line, note that the distance between
vortices is on the order d = √

�0/B, where �0 is the flux
quantum. Around the transition field, this yields d ≈ 10 nm.
On the other hand, the penetration depth λ can be calculated
if we first approximate the coherence length from [39]

Hc2 = �0

2πξ 2
, (D4)

which yields ξ ≈ 5 nm, ultimately leading to λ ≈ 500 nm.
Since d  λ, for our purposes the field inside the supercon-
ductor can be approximated as homogeneous.
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