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ABSTRACT In marine search and rescue missions, the objective is to find a missing person in the water.
Time is a critical factor in the identification of the missing person, as any delay in locating them can have
life-threatening consequences. Autonomous unmanned aerial vehicles (UAVs) possess the potential to help
in the search task by providing a bird’s-eye view helping to cover larger areas faster. Therefore, it is very
important that UAVs can efficiently and accurately detect persons in the water. This work studies automatic
person detection in the water from a UAV. We performed experiments on both lakes and sea near Turku,
Finland, and captured videos of people in the water from various altitudes and different viewing angles.
Our person-in-water detection tests focus on important factors that have not received sufficient attention
in prior studies: evaluation metrics and detection thresholds, the impact and use of different bounding box
sizes, multi-frame detection and performance in unseen environments. We provide analysis of the suitability
of different approaches for the person detection task and we also publish our training and testing data that
includes over 72000 frames. To the best of our knowledge, this is the largest publicly available person-in-
water detection dataset.

INDEX TERMS Search and rescue (SAR), person-in-water, unmanned aerial vehicle (UAV), object
detection, deep learning (DL), dataset.

I. INTRODUCTION
Marine search and rescue (SAR) missions consist of finding
the emergency site on sea or lake, locating the target, and
performing the rescue operation. SAR operations in the
marine environment can be challenging due to the vast and
often unpredictable nature of the sea or lake area. The
operations are also highly time-critical because a person
overboard can stay above the surface for only a limited time.

The associate editor coordinating the review of this manuscript and

approving it for publication was Yangmin Li .

The actual time depends on different factors, such as weather
or fitness, current condition or equipment of the target person,
but ultimately hypothermia begins when the human body
core temperature drops below 35◦C [1]. Depending on the
water temperature and clothing (e.g., drysuit vs. ordinary
clothes), the onset of hypothermia may differ from hours to
only minutes [2].

Recent studies have shown that SAR operations can
significantly benefit from supporting autonomous or tele-
operated robots and multi-robot systems [3], [4], [5]. For
marine SAR operations, unmanned aerial vehicles (UAVs)
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can offer an efficient solution by covering the search area
and helping to detect the target to be rescued. In the future,
an efficient solution could be that a UAV or a swarm of UAVs
autonomously perform area coverage above the target area
and use computer vision to find the target; then, the rescue
personnel can perform the actual rescue mission.

During the last decade, the number of applications using
computer vision algorithms and also the performance of
the algorithms have advanced significantly. With the rapid
development of deep learning networks for object detection
tasks, the performance of object detectors has greatly
improved [6]. This suggests that deep learning-based object
detection can be used in SAR missions. While some object
detection methods can already surpass human performance
in accuracy [7], some solutions can be rather slow and
computationally heavy and the performance measured in
run-time can differ a lot. In SAR operations, it is vital that the
selected algorithms can run as close to real-time as possible
on portable devices while still working with a high level of
accuracy. The faster the algorithm can operate, the faster the
UAV can search the area, which in turn can lead to a faster
rescue of the persons in distress. A high level of performance
of the algorithm assures that no important information is
missed.

In this paper, we study different aspects of deep
learning-based object detection in SAR missions. We focus
on important factors that have not received sufficient
attention in prior studies: (i) evaluation metrics and detection
thresholds, (ii) the impact and use of different bounding
box sizes, (iii) multi-frame detection, and (iv) performance
in unseen environments. Based on our experiments we
provide recommendations for further studies on the topic.
For this purpose, we have collected, annotated, and processed
a dataset of over 72000 frames which contains images
of a person swimming or floating in a water body, taken from
a UAV flying above the area. To the best of our knowledge,
this is currently the largest dataset on this topic and we will
make it publicly available.

The rest of the paper is organized as follows. Section II
briefly reviews related research. Section III describes the data
acquisition process and the collected dataset. In Section IV,
we introduce the study setup and the design factors con-
sidered in this study. Experimental results are presented in
Section V. Finally, Section VI concludes the paper.

II. RELATED WORK
In recent years, a lot of research has been conducted towards
enabling autonomous drones to assist in SAR operations as
shown by recent reviews on related topics [3], [8], [9], [10],
[11], [12]. In this paper, we focus on the perception needed
in marine search and rescue operations, specifically when
searching for a person in the water.

The person-in-water detection in SAR missions can
be performed either using object detection or semantic
segmentation. A survey of available deep learning semantic

segmentation techniques [13], provides an extensive view
of different methods to perform the segmentation. For
autonomous driving, semantic segmentation has been studied
fairly well [14], but for marine environments, the studies have
been less common and have been focusing on a view from a
surface vessel. In [15], three commonly used state-of-the-art
deep learning semantic segmentation methods (U-Net [16],
PSP-Net [17], and DeepLabv2 [18]) were benchmarked for
obstacle detection on a marine environment. The leaderboard
for a publicly available dataset, Modd2 [19], which contains
images of swimmers and rowers among other obstacles, lists
semantic segmentation methods capable of performing in
marine environments [17], [18], [19], [20], [21], [22], [23],
[24]. In [25], a dataset for surface vessel water segmentation
was introduced, and in [26], the same data was used to
train a segmentation model for a UAV view with swimmers
and other obstacles in the water. While excellent results can
be obtained when the algorithm is applied in conditions
and environments that resemble the training images, it was
observed that the performance decreases notably in different
conditions. This further highlights the need for diverse
training images and domain adaption techniques that help to
adjust to unseen conditions [27].

A drawback of semantic segmentation is that it requires
pixel-level analysis of the images and may waste precious
time for analysing areas of lower interest, such as ground
locations. Object detection, on the other hand, only requires
region-level image analysis and can lead to faster detection
of the person in water. A survey of deep learning-based
object detection [6] has been published quite recently.
These tasks usually still require high computing power
and memory for real-time applications. Therefore, cloud
computing or small-sized object detectionmethods have been
used for UAV applications. In [28], cloud computing was
used for object detection while performing low-level object
detection and navigation on a UAV. Cloud computing assists
the system with high computing power and memory, but
communication with a cloud server can bring unpredictable
delays. An alternative to cloud computing is to rely on
specific object detection models, specifically designed for
limited computational power and memory.

In [29], frame rates of 5-18 fps were obtained on different
lightweight embedded processing platforms when running
a lightweight object detection model for vehicle detection.
In [30], an approach for learning efficient deep object
detectors for real-time UAV applications through channel
pruning of convolutional layers was proposed in [30]. The
approach was tested on different generic object classes.
In [31], another lightweight object detectionmodel was tested
on a dataset including people and objects in water. In [32],
the authors proposed an adaptive submodularity and deep
learning-based spatial search method for detecting humans
with a UAV. In [33], the authors performed human detection
for SAR operations using images from different in-land
environments.
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Recently, also person-in-water detection has received more
attention. SeaDroneSee dataset [34] includes 54,000 frames
with humans in open water captured with drones from various
altitudes and viewing angles ranging from 5 to 260 meters
and 0 to 90 degrees while providing the respective meta
information for altitude, viewing angle and other metadata.
A Maritime Computer Vision Challenge [35] included tasks
for UAV-based maritime object detection and tracking.
An approach for obtaining fast region-of-interest proposals
in a video stream on an embedded GPU for maritime human
detection tasks was proposed in [36].

III. DATA DESCRIPTION
We collected our dataset at four different water bodies in the
Turku area, Southwest Finland, in summer and early autumn
weather. Specifically, the data was collected between early
June and mid-September 2020. The dataset consists of videos
from different environments, sea and lakes, recorded with
a drone flying over the area at various heights. All dataset
images/frames contain a similar structure, an image of a water
area from above, with at least one person swimming in the
water. The camera angle is set to face straight downwards,
i.e., the camera pitch is always -90◦. The only changing factor
in the setup is the flight altitude of the drone. All people
appearing in videos are part of the study group and their
informed consent was obtained.

The data collection was carried out with a small drone
equipped with an RGB camera with a rolling shutter. The
camera has a fixed focal length of 24mm (35mm format
equivalent) with a field of view of 83◦ and an aperture
f/2.8. The still images are taken with a resolution of 9MP
(4000 × 2250 pixels), while the videos in the datasets are
recorded in FullHD resolution (1920× 1080 pixels) at a rate
of 60 fps.

From the videos, we extract each frame. The different
locations, their environment type, the number of recorded
videos, and the overall length of the videos are shown in
Table 1. The dataset contains videos of different types of
water bodies with various turbidity levels and swimmers
with different swimwear. The weather varies from sunny
to overcast, which affects the illumination,e.g., the color of
the water, and different wind speeds affect to the texture
of the water. The maximum height recorded is 120m owing
to the limitations imposed by EU-level drone regulations.

TABLE 1. Dataset collection sites, environment types, number of video
clips, and combined length of the videos collected at each site.

The different subsets, listed in Table 1, contain the captured
frames and locations of the bounding boxes of the swimmer.
The annotations weremade by using the Labelbox-annotation

tool [37]. The tool allows the interpolation of the bounding
boxes in frames that are between hand-annotated frames.

The videos for training and testing were selected from
Maaria, Masku and Mustfinn subsets. The Littoinen subset
was left outside, so it could be used later for testing as a
completely unseen and different environment. The training
and testing splits were determined in a way that we use the
frames of a single video clip either for training or testing.
This way we can ensure that consecutive frames are not used
for both training and testing, and we can also reduce the
possibility of over-fitting. The splits are described in Table 2
and Table 3.

TABLE 2. List of subsets, number of videos and images used for training.

TABLE 3. List of subsets, number of videos and images used for testing.

This gives us an overall training/testing split of 67/33. All
the images contain one object that we are trying to detect,
a swimmer in the water. There are also other objects such
as rock, vegetation, beach equipment and birds in the water,
but we are not trying to detect them and they have not
been annotated. This setup makes this a one-class detection
problem.

We released the dataset:
SAR-HumanDetection-FinlandProper, along with the par-

titions used for training and testing. To the best of our
knowledge, our dataset is the largest publicly available
dataset for person-in-water detection in terms of the
number of frames. The dataset can be found in the fol-
lowing link: https://doi.org/10.23729/9b3fcb5d-9655-4c62-
9762-7442040f7579

IV. STUDY DESIGN
Our purpose is to study different design factors in deep
learning-based UAV person-in-water detection in SAR mis-
sions. The considered factors include evaluation metrics
and detection thresholds (Section IV-B), the impact and
use of different bounding box sizes (Section IV-C1), multi-
frame detection (Section IV-D), and performance in unseen
environments (Section IV-E).

In this study, we do not compare different network models
or try to find a perfect hyperparameter setup, but focus
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on the above-mentioned factors that are important for the
task at hand, but typically receive less attention. Therefore,
we selected a commonly-used baseline model and setup that
is used in all the experiments as described in Section IV-A.

A. BASELINE MODEL AND SETUP
As our baselinemodel we selected the widely-usedYOLOv4-
model [38] with MobileNetV3Small backbone. We used
a general YOLOv4/v3/v2 object detection pipeline, imple-
mented with keras and tensorflow.1 YOLOv3 -loss function
was used, and the Adam algorithmwas used for optimization.
All the experiments were performed using NVIDIA GeForce
RTX 2080 GPU with 8GB own memory.

The drone equipment we used allowed us to gather
high-quality (1080 × 1920 pixels) videos. YOLO models
require the input size to be a multiple of 32. Therefore,
we first downsampled our original data from 1080 ×
1920 pixels resolution initially to 1024 × 1920 pixels.
We made experiments with this input size and input size
downsampled by a factor of 2, but these models turned
out to be computationally too heavy for our use case and
equipment. As the problem is highly time-critical and the
model is planned to be used in an edge device, we decided
to compromise between the output frame rate and input size.
Therefore, we decided to use an input size that corresponds
to downsampling by a factor of 4, i.e., 256× 480 pixels.
With this reduced input size, it is still possible to detect

objects in the water. But since a portion of the videos are
captured from a relatively high altitude, up to 120m, the
loss of detail during downsampling is quite significant as can
be noticed in Figure 1. This makes detection very difficult
from high altitudes and other methods for solving this
problem need to be considered as will be further discussed
in Section IV-C.

FIGURE 1. Images from low and high altitude, before (upper row) and
after (lower row) downsampling. The low resolution images have been
scaled back to the same size for easier comparison, and all the images
have been cropped for better representation.

The training was done in the batches of 8 images and
the training/validation split was 90/10. The Model was
pre-trained with Imagenet [39] and transfer learning was then

1github.com/david8862/keras-YOLOv3-model-set

used to train the model with our train dataset described in
Table 2. The output layers were first trained for 10 epochs,
after which the backbone was unfrozen and the model
continued to train for a maximum of 240 more epochs. The
learning rate of 0.001was used. For most experiments, testing
was performed using the test set described in Table 3. Only
when experimenting with unseen environments, the Littoinen
subset was used instead.

B. EVALUATION CRITERIA AND DETECTION THRESHOLDS
Object detection algorithms output bounding boxes with
different confidence scores. A detection is considered true
positive (TP) when the confidence is high enough and the
detected bounding box coordinates are close enough to
the ground-truth bounding box coordinates. To this end,
thresholds for the confidence level and for intersection over
union (IoU) between the detected and ground-truth bounding
boxes are typically used. If a detected bounding box does not
correspond to any ground-truth bounding box, it is a false
positive (FP) detection. A ground truth bounding box that is
not detected at all is a false negative (FN). Different object
detection evaluation metrics can be computed based on the
numbers of TPs, FPs, and FNs.

For given IoU and confidence thresholds, precision (P) and
recall (R) are defined as

P =
TP

TP+ FP
, R =

TP
TP+ FN

. (1)

Too strict confidence thresholds lead to a situation where
only a few bounding boxes are detected. If the detections are
correct, this can yield perfect precision, while recall is low
due to many FNs. Lower thresholds lead to many detected
bounding boxes. The number of FNs becomes low, but also
the number of FPs typically increases, which yields high
recall values but low precision. Object detection algorithms
need to balance between optimizing precision and recall by
selecting suitable thresholds.

Object detection algorithms are most commonly eval-
uated using different variants of Average Precision (AP)
metric [40], [41]. The most common variant selects an IoU
threshold (typically 0.5) and then computes precision and
recall values for detections arranged using their confidence
values. Average Precision (AP) with the all-point interpola-
tion [41] is computed as

mAP =
∑
n

(Rn+1 − Rn)Pinterp(Rn+1)

Pinterp(Rn+1) = max
R̂:R̂≥Rn+1

P(R̂), (2)

where Pinterp(Rn+1) denotes the maximum precision for
which the corresponding recall value is greater than Rn+1,
and thus the metric is computed for a single IoU threshold but
all possible confidence thresholds. Another commonly used
variant, AP@50:5:95, computes the average over 10 different
IoU metrics ranging from 0.5 to 0.95. Computing the
results over multiple thresholds measures the ability of
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the algorithms to yield good results for a range of user
requirements instead of studying which approach is optimal
for specific requirements.

In SAR missions, the most critical errors occur if a person
in the water is completely missed. Therefore, the number of
FNs should be as close to zero as possible. False detections
(FPs) can be relatively easily checked by the rescue personnel
assuming that the number of FPs is not overwhelmingly large.
Therefore, compared tomany other object detection tasks, the
importance of minimizing the number of FNs is emphasized,
while FPs are less critical.

Here, it should be noted that the roles of IoU and
confidence thresholds are significantly different. The IoU
threshold does not impact the detected bounding boxes,
only whether they are considered TPs or FPs. If a detected
bounding box partially overlaps with a ground truth bounding
box is considered FP, and the corresponding object is
considered undetected (FN). Thus, a smaller IoU threshold
increases the number of TPs and typically also decreases
the number of FNs. Nevertheless, the actual detection output
(bounding boxes) do not change. The main question is which
labels (TP/FP) for the detected bounding boxes lead to the
most meaningful performance evaluation for the task at hand.

In person-in-water detection, bounding boxes are typically
small compared to the overall image. Furthermore, minor
inaccuracy in the bounding box coordinates is not a problem
as the people are expected to float around anyway and the
main goal is to help the rescue personnel to find the person
in distress. Therefore, we argue that smaller IoU thresholds
can lead to more meaningful evaluations for person-in-water
detection.

The impact of the confidence threshold can be much more
dramatic. The threshold defines, which bounding boxes are
given as the detection output. Tightening the confidence
threshold can change a TP detection to an FN (or erase an FP
detection). As mentioned above, in person-in-water detection
tasks the FN can be deadly, while FPs can be handled to some
extent. Therefore, we believe that focusing on low confidence
thresholds is reasonable.

While existing approaches in object detection for SAR
use AP or AP@50:5:95 metrics [34], [35] for performance
evaluation, we argue that this may not be the most meaningful
choice. Instead of averaging over different confidence
and IoU thresholds, we are more interested in thresholds
minimizing the number of FNs. In this article, we will study
the impact of these thresholds (along with other factors) in
person-in-water detection.

As an additional metric in our studies, we use F1-score
which considers both precision and recall for single IoU and
confidence thresholds as

F1 = 2 ·
P · R
P+ R

. (3)

C. OBJECT SIZE
A critical factor in the design of a SAR mission is the flying
altitude (distance to the target), which directly affects the

perceived size of the person in the water. By flying too high,
the risk of not detecting the person in the water is increased,
while lower altitudes mean that more critical time is needed
to cover the search area. Naturally, the optimal altitude is
affected by the camera equipment, resolution, environment,
weather, clothing and other possible equipment of the person
in the water. As described above, the models’ input size
may require downscaling, which further affects the detection
probabilities. No generic rules can be given, but study the
importance of the perceived target size in our use case in
different ways as described in Sections IV-C1-IV-C3.

1) BOUNDING BOX SIZE
Our data does not contain information on the distance to
the object to be detected. However, the target bounding box
sizes serve as a rough proxy. We compare detection rates for
bounding box sizes 1-25, 24-50, 51-100, and 100+ pixels.
Furthermore, we study the impact of using larger (zoomed-
in) bounding box sizes in training and testing as described
below.

2) ZOOMING-BASED DATA AUGMENTATION IN TRAINING
PHASE
Even though a lot of information is lost because of the
need for downsampling from 1080 × 1920 pixels to 256 ×
480 pixels, it is still possible to obtain more accurate images
of the swimmers for training the model. To this end, we do the
following: First, the original image is converted into the size
of 1024×1920 pixels. After the conversion, we use a 4×4 grid
of 256× 480 pixels to obtain images that have the same size
as the input of the model (Figure 2). From this grid, we select
the ones containing an object for training. This allows us to
use the portion of the original high-quality images with the
model’s input size (later called zoomed images) in addition
to the downsampled images for training the model. Without
using any additional data augmentation or pre-processing,
such as flipping images or adding noise to images, we will
study how including larger bounding box sizes affects the
final performance.

FIGURE 2. Image split into smaller regions during the training phase.

3) GRID ZOOMING IN TEST PHASE
In the test phase, the images can also be separated into smaller
images using a 4× 4 grid (Figure 3), similarly as in the data
augmentation phase. The original image is split into 16 sub-
images and all the sub-images are fed into the network and
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then combined back to the original size. This allows us to use
higher-quality images in testing, but the disadvantage is that
the network needs to process 16 times the amount of images
compared to performing the detection with downsampled
images.

FIGURE 3. Illustration of the original image, and a smaller image
obtained with grid-zooming.

In the post-processing phase, the smaller 256 × 480 pixel
images need to be stitched back together into the original
size (1024 × 1920 pixels). Since the detection can be at the
edge of two or more smaller images, there can be multiple
detections of a single object. This could be avoided by using
more small images, some of which are overlapping, but since
the problem is time-critical, adding more input regions would
further slow down the overall process. Instead, we merge the
multiple detections of a single object using Algorithm 1.

Algorithm 1 Algorithm for Merging Detections
Made With Grid-Zooming Method: Two Bounding
Boxes are Considered Overlapping if they are Within
the dist of Each Other. Overlapping Bounding Boxes
are Merged. Algorithm Continues Until there are No
Overlapping Bounding Boxes
for all found bounding boxes:
Data: bbox(xmin, ymin, xmax , ymax)
B1← bbox1;
B2← bbox2;
dist ← 10 pixels;
if overlap(B1,B2, dist) then

Bnew.xmin← min(B1.xmin,B2.xmin);
Bnew.ymin← min(B1.ymin,B2.ymin);
Bnew.xmax ← max(B1.xmax ,B2.xmax);
Bnew.ymax ← max(B1.ymax ,B2.ymax);
save Bnew

else
save B1;
save B2;

end

D. MULTI-FRAME DETECTION
In SAR tasks, the goal is to find the missing person in the
water. It does not matter if the person is detected in every

frame where he/she appears or only in sufficiently many
frames to alert the rescue personnel. Furthermore, as the
drones are taking videos, it is reasonable to assume that
despite the movement, any person in water would appear in
several frames.

We will study a multi-frame detection scheme, where
windows of N frames are used. We consider that we have
a TP detection if a person-in-water appearing in the window
is detected at least in 1/2 of the frames. We hope that this
approach can remove FPs appearing in single frames, while
not causing additional FNs. Using the multi-frame scenario
we will also study if the frame rate can be lowered without
significantly harming the results to make the computations
faster.

E. UNSEEN ENVIRONMENT
While all the test images used in our experiments are unseen
and selected from different video clips than the training
data, the test set used in most experiments still comes from
the same water bodies. We will study how the results are
affected when the test frames are from a completely unseen
environment.

V. EXPERIMENTAL RESULTS
A. EVALUATION METRICS AND DETECTION THRESHOLDS
-RESULTS
We first studied the impacts of IoU and confidence
thresholds on person-in-water detection. We trained our
baseline approach described in Section IV-A and evaluated
the model with different IoU-thresholds (0.10, 0.25, 0.50,
0.75) using the confidence threshold 0.1. The AP results are
computed using the all-point interpolation over all confidence
thresholds. Thus, they are not directly based on the given
numbers of TPs, FPs and FNs. The results are given in
Table 4. A couple of examples of detection results are shown
in Figure 4. Similarly, we evaluated the model with different
confidence thresholds (0.1, 0.3, 0.5, 0.7, 0.9) using the IoU
threshold 0.1. The results are given in Table 5. Here, we do
not give AP values as they are computed over all confidences,
not separately for different confidence thresholds.

As expected, in Table 4, the numbers of TPs, FPs, and FNs
are all best for the lowest threshold and, thus, also all the other
evaluation metrics show the best results for this threshold.
The IoU examples in Figure 4 show that it is meaningful
to consider the detected bounding boxes as TPs because
despite the low IoU they can lead rescue personnel to find the
person-in-water.

The confidence threshold has a larger impact on the
number of FNs as shown in Table 5. The difference between
confidence thresholds 0.1 and 0.9 is over 3-fold. This can be
a critical life-saving difference in a SAR task. Furthermore,
it can be seen that the precision for the lowest confidence
threshold remains relatively high at 0.8880 showing that the
number of FPs does not explode too high.
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FIGURE 4. Three images from different environments. The green bounding box is the ground truth and the blue bounding box is the detection. All the
images have been cropped for better representation. In all images 0.1 ≤ IoU < 0.25.

TABLE 4. Impact of IoU threshold.

TABLE 5. Impact of confidence threshold.

As a conclusion, these experiments validate our expec-
tations from Section IV-B. Evaluating the person-in-water
detection performance in SAR tasks using low IoU thresholds
is justified. Due to the high variation of FNs for different
confidence thresholds, it is important to focus on the low-
confidence results. Using the commonly used AP metric
overall confidence can potentially lead to choosing a model
that performs better on high confidence, but fails to optimize
the most important result with the lowest thresholds. Due
to these observations, we will use the IoU and confidence
threshold of 0.1 in the following experiments and report only
evaluation metrics that are computed for these thresholds
leaving out the AP considerations.

B. SIZE OF THE OBJECT
Next, we study the impact of the bounding box sizes in
different ways. We first study the different combinations
of zooming-based data augmentation in the training phase

(Section IV-C2) and the grid-zooming-based evaluation in
the test phase (Section IV-C3). The results are given in
Table 6. The non-augmented training set and the original
test set denote unmodified data that has been only scaled to
the input size of 256 × 480 pixels. The augmented training
set denotes training data that has been augmented by using
the 4 × 4 grid-zoomed images in training in addition to
the original downsampled image. The grid-zoom test data
denotes that the images have gone through the grid-zoom
procedure during the test phase.

As we can see from Table 6, using augmented training data
gives better results than the original training data for both test
set types. The data augmentation does not affect the model’s
inference speed and is therefore clearly a recommendable
approach for person-in-water detection tasks. The described
approach will be used in the remaining experiments of
this paper. It should be noted that there is potential for
further improvement using more varied downscaling factors,
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TABLE 6. Impact of zooming-based data augmentation and grid-zooming in test phase.

TABLE 7. Impact of object size (bounding box area).

TABLE 8. Using multiple consecutive frames in detection.

TABLE 9. Impact of dropping frame rate for 300 frame window.

but we leave further studies on this topic for future
work.

Using grid-zooming does not give desirable results when
using non-augmented training data. This can be explained
by the fact that such an arrangement requires the model to

detect objects that are clearly larger than the training objects.
Grid-zooming with the augmented training data gives the best
results among all options. In particular, the number of FNs is
significantly lower than for the other options. Nevertheless,
it should remembered that using the grid-zooming option
makes the inference 16 times slower, which may not be
doable on the edge device. Therefore, studying other ways
to improve the inference speed is important.

Next, we study the direct impact of the target bounding
box size, which can be interpreted as a proxy for the distance
to the target. The higher the altitude, the smaller the target
bounding box. The results categorized by the bounding box
size are given in Table 7. Unsurprisingly, the results suggest
that detection is more difficult from the higher altitudes. The
model that does not use grid-zooming performs better at the
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TABLE 10. Unseen environment: Littoinen subset.

lowest altitude, but when going to higher altitudes the model
that uses grid-zooming increases the number of TP detections
and greatly reduces the number of FP detections. These
results emphasize that the flying altitude must be carefully
optimized in SAR tasks to balance between the area coverage
speed and the risk of missing a person in the water [42].

C. MULTI-FRAME DETECTION
In Table 8, detections were considered as detections, if they
occurred in at least 50% of the frames. We used non-
overlapping windows. When the video lengths are not
divisible by the window lengths, the excess frames were
removed from the end of the videos for all window lengths
(i.e., the same frames are included in all the test sets
for different window lengths). The ground-truth number of
objects is lower for the longer windows as in the multi-frame
detection, a single person-in-water appearing in multiple
frames is considered as a single object.

From these results, we can notice that observing multiple
consecutive frames together increases both the precision and
recall of both models tested. It can also be noticed, that
with the grid-zoom model, the number of false negative
detections decreases as the time window increases, and
eventually vanishes. This can be considered an excellent
outcome, considering the scope of this research.

The results also indicate that dropping the frame rate in the
multi-frame detection scheme may be a viable option. Taking
the 300 frames (5 seconds) windows, we consider only every
2,3,4, or 10 frames and compare the results with the original
ones in Table 9. We observe that dropping the frame rate
even to 10% does not lead to any missed detections. This is
a promising outcome considering that time is a critical factor
in SAR missions.

D. UNSEEN ENVIRONMENTS
Here we test our model on the Littoinen subset, which was
recorded on a different day, different location, and different

environment as the training set collected at Maaria, Masku
and Mustfinn sites. We use the same time window approach
described in the previous section. The results are given in
Table 10.
It can be noticed that the performance drops quite

drastically. The model that does not use grid-zooming,
maintains quite high precision, while the model which uses
grid-zooming maintains quite high recall. However, the
grid-zoom model detects a high number of FPs, while the
other model results in more FNs. It should be also taken
into account that the unseen environment is still in the
same country and same part of the country. If we moved
to a different climate, the results would probably be much
worse. The conclusion is not surprising: to guarantee optimal
performance in critical SAR tasks, the modes should be
trained with datasets including data collected in the intended
use environments.

VI. CONCLUSION
In this paper, we studied deep learning-based person-in-water
detection in SAR missions using a non-modified YOLOv4
model as our baseline. We collected a large person-in-water
dataset using aUAVon Finnish lakes and sea areas. The initial
findings from the automatic person-in-water detection system
are encouraging for its potential use in SAR missions.

Our focus was on different design factors that have not
received much attention in prior studies. We considered
different evaluation metrics and detection thresholds. We dis-
cussed how false negatives can be much more disastrous than
FPs in SAR missions because they can lead to missing the
person to be rescued.We showed that using low values of both
IoU and detection thresholds ismeaningful in the task at hand.
As a result, we also recommend avoiding the AP performance
metric commonly used in object detection and instead using
performance metrics computed for single IoU and confidence
thresholds. The main focus should be minimizing the number
of FNs while checking that the number of FPs does not
explode.
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We then studied the impact of target bounding box sizes
in different ways. As expected, the results are better for
larger bounding box sizes, which highlights the importance
of finding a suitable flying altitude and frame resolution.
We showed that the results can be improved by including
zoomed-in images in the training set. Similarly, using zoomed
images in the test phase can improve the results but with
additional computational cost.

In SAR tasks, the goal is to find the missing person in
the water. It does not matter if the person is detected in
every frame where he/she appears. Therefore, we introduced
a multi-frame detection scheme where we focus on detecting
a person-in-water in different-length windows. We show that
this approach can lead to reducing false positive detections
while not leading to additional missed targets. We also show
that the frame rate in the multi-frame detection scheme can
be significantly lowered without harming performance.

Finally, we tested our model in an unseen but similar
environment. The results were worse than in the known
environments, which highlights the importance of collecting
training datasets in as many different environments and
weather conditions as possible and training the models with
data that includes images collected in the intended application
environments.

Our original wish was to use the downsampled images for
obtaining fast low-level confidence detection of an object,
and then use active zooming with high-quality images to get
higher confidence in what we detected. However, it turned
out that with the downsampled images, the model does
not detect anything when the drone gets to higher altitudes
and therefore we could not use the active zooming method.
Because of this, we performed the grid zooming. While
this is not optimal time-wise, it proved that zooming in
can improve the results. In the future, we will further study
approaches for faster computation of high-resolution results.
The multi-frame detection approach along with lowering the
frame rates looks like a promising direction.
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