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Collective relational inference for learning
heterogeneous interactions

Zhichao Han1, Olga Fink 2,3 & David S. Kammer 1,3

Interacting systems are ubiquitous in nature and engineering, ranging from
particle dynamics in physics to functionally connected brain regions. Reveal-
ing interaction laws is of fundamental importance but also particularly chal-
lenging due to underlying configurational complexities. These challenges
become exacerbated for heterogeneous systems that are prevalent in reality,
where multiple interaction types coexist simultaneously and relational infer-
ence is required. Here, we propose a probabilistic method for relational
inference, which possesses two distinctive characteristics compared to exist-
ing methods. First, it infers the interaction types of different edges collectively
by explicitly encoding the correlation among incoming interactions with a
joint distribution, and second, it allows handling systems with variable topo-
logical structure over time. We evaluate the proposed methodology across
several benchmark datasets and demonstrate that it outperforms existing
methods in accurately inferring interaction types. The developed methodol-
ogy constitutes a key element for understanding interacting systems and may
find application in graph structure learning.

Interacting systems that contain a set of interactive entities are
omnipresent in nature and engineering. Examples include chemical
molecules1, granularmaterials2, brain regions3 andnumerous others4–6.
The interactive entities are typically represented as a graph where
edges correspond to the interactions. As the dynamics of each indi-
vidual entity and the system behavior arise from interactions between
the entities, revealing these interactions and their governing laws is
key to understand, model and predict the behavior of such systems.
However, the ground-truth information about underlying interactions
often remains unknown, and only the states of entities over time are
directly accessible. Therefore, determining the interactions between
entities poses significant challenges.

The complexity of these challenges increases significantly for
heterogeneous systems, where different types of interactions coexist
among different entities. An approach that can simultaneously reveal
the hidden interaction types between any two entities and infer the
unknown interaction law governing each interaction type constitutes a
particularly difficult but relevant task. Applications in which relational
inference is important are numerous and include, among others, the

discovery of physical laws governing particle interactions in hetero-
geneous systems7, unveiling functional connections between brain
regions8, and graph structure learning9.

Various attempts to this problem have beenmade in recent years.
This includes theneural relational inference (NRI)model proposedby7,
which is built on the variational autoencoder (VAE)10, and has shown
promising results in inferring heterogeneous interactions8. However,
NRI inherits the assumption of VAE that input data are independent
and identically distributed, and, therefore, infers the interaction types
for different pairs of entities independently. The approach neglects the
correlation among interactions on different edges. As the observed
states of each entity are the consequence of the cumulative impact of
all incoming interactions, conjecturing the interaction type of one
edge should take into consideration the estimation of other relevant
edges. Neglecting this aspect can result in a significant under-
performance, as indicated by11 and our experiments presented in
“Result”.

Chen et al.12 enhanced NRI by including a relation interaction
module that accounts for the correlation among interactions.
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Additionally, the study integrated prior constraints, such as symmetry,
into the learnt interactions. However, as our experiments will
demonstrate, these additional mechanisms prove inadequate in
accurately inferring interaction types. Othermethods includemodular
meta-learning13, as proposed by ref. 14. This approach alternates
between the simulated annealing step to update the predicted inter-
action type of every edge and the optimizing step to learn the inter-
action function for every type. However, the computation is very
expensive due to the immense search space involved, which scales
with OðK jEjÞ for an interacting system containing K different interac-
tions and ∣E∣ pairs of interacting entities. Therefore, ref. 14 used the
same encoder as NRI7 to initially infer a proposal distribution for the
interaction type of each edge. Subsequently, they used the simulated
annealing optimization algorithm to sample possible configurations of
the interaction type across different edges. The correlation among
interactions on different edges is implicitly captured through this
optimization process.

An additional limitation of these existing relational inference
methods7,12,14 is that they are designed to infer heterogeneous inter-
actions in systems with time-invariant neighborhood networks, i.e.,
systems in which each entity consistently interacts with the same
neighbors. In physical systems, it is typical for the network structure of
interactions to undergo changes over time as a result of rearrange-
ments. As we will demonstrate, currentmethods encounter difficulties
in effectively learning systems that have an evolving graph topology.

Here, we develop a novel probabilistic approach to learn hetero-
geneous interactions based on the generalized expectation-
maximization (EM) algorithm15. The proposed method named Collec-
tive Relational Inference (CRI) overcomes the above-mentioned chal-
lenges. It infers the type of pairwise interactions by considering the
correlation among different edges. We test the proposed method on
causality discovery and interacting particle systems, which are two
representative examples for heterogeneous interaction inference. We
demonstrate that the proposed framework is highly flexible, as it
allows the integration of any compatible inference method and/or
known constraints about the system. This is important, for instance,
for learning physics-consistent interaction law for granular matter.
Further, we propose an extension of CRI, the Evolving-CRI, which is
designed to address the challenge of relational inference with evolving
graph topology. We empirically demonstrate that CRI outperforms
baselines notably in both discovering causal relations between entities
and learning heterogeneous interactions. The experiments highlight
CRI’s exceptional generalization ability, data efficiency, and the ability
to learn multiple, distinct interactions. Furthermore, the proposed
variant, Evolving-CRI, proves effective in complex scenarios where the
underlying graph topology changes over time—a challenge for

previous methods. These findings underscore the advantages and
necessity of collective inference for relational inference.

Fundamental concept behind the proposed methodology
We use a directed graph to represent an interacting system, where
nodes correspond to entities and edges represent their interactions.
Our model named CRI is a novel probabilistic approach designed to
infer the interaction types of different edges collectively. We note that
CRI is not the first work aiming to perform CRI. As introduced in
“Introduction”, ref. 14 aim to implicitly capture the correlation among
interactions through simulated annealing optimization, while ref. 12
seek to capture this correlation through their proposed relational
interaction neural network. However, CRI fundamentally differs in its
approach to capturing the correlations among different edges. Unlike
previous methods12,14, CRI contains the explicit probabilistic encoding
of the correlation among different edges, as illustrated in Fig. 1. Spe-
cifically, CRI takes into account subgraphs comprising a center node
and its neighboring nodes as a collective entity and infers the joint
distribution of interaction types of the edges within each subgraph
collectively. The underlying idea behind this approach is that different
interactions affect the states of entities collectively. The subgraph
representation and the joint distribution explicitlymodel the collective
influence from neighbors.

In general, CRI is designed for relational inference for fixed
underlying graph topology, and comprises twomodules (as depicted
in Fig. 2): (1) a probabilistic relational inferencemodule that infers the
joint distribution of interaction types of edges in each subgraph, and
(2) a generative module that is a graph neural network16 approx-
imating pairwise interactions to predict new states. The entiremodel
is trained to predict the states of entities over time based on the
generalized EM algorithm. This involves iteratively updating the
inferred interaction types of edges through the inference module,
alongside updating the learnable parameters of the generative
module. The details of the CRI methodology are presented in “Col-
lective Relational Inference”.

Furthermore, we extend our proposed CRI methodology to
address the challenge of relational inference in systems with evolving
graph topology, where entities may interact with different neighbors
at different times.We introduce a novel algorithm called Evolving-CRI,
by adapting the probabilistic relational inference module in Fig. 2.
Evolving-CRI is based on the fundamental concept of updating the
posterior distribution of possible interaction types for a newly
appearing edge. This is achieved by marginalizing out the posterior
distribution of all correlated edges. As a result, the interaction type
inferred for each edge captures the correlation with other incoming
edges, which collectively influence the observed states. The details of

Fig. 1 | Comparison between existing approaches and our proposed approach.
a Neural relational inference (NRI) approach7 and b our proposed method CRI for
relational inference. NRI predicts the interaction type of different edges indepen-
dently (e.g., the incoming edges of v1). CRI takes the subgraph of each node (e.g.,
S(1)) as an entity. We learn the joint distribution of the type for all edges in the
subgraph, allowing for modeling their collective influence on node states. The red

bars depict a categorical distributionwhere the length represents the probability of
a particular realization. F v and F e represent the function approximation of the
node state update function and interaction function (by neural networks),
respectively. Other mathematical symbols are explained in “Methods” and sum-
marized in the table in Supplementary Information Sec. 1.
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Evolving-CRI can be found in “Evolving Collective Relational
Inference”.

Design of the inference module. The inference module is designed
for collective inference of the interaction types. The desired property of
collective inference is achieved by introducing a joint distribution of
the types of correlated interactions, based on the Bayesian rules. This
explicitly encodes the correlation among different incoming interac-
tions. Such a characteristic distinctly sets CRI apart from previous
methods of relational inference as introduced in7,12,14,17. We note that
the inference module is highly flexible, allowing for the integration of
any compatible inference method. For instance, we can substitute the
proposed inference module, which infers the exact posterior dis-
tribution, with a variational inference method (e.g.,18) that infers the
approximate distribution. The details of the assessment of this flex-
ibility are presented in Supplementary Information Sec. 2.1. The design
of the inference module in Evolving-CRI is adapted from CRI, in which
the estimated type of emerging interactions is updated at each new
time step. This adaptation alleviates the constraint of fixed neighbors
for each entity over time.

Design of the generative module. The generative module of CRI can
be any type of graph neural networks, including the basic message-
passing graph neural networks (see “Relational inference for causality
discovery”). Nevertheless, if there are known constraints about the
interacting systems, they can also be integrated. For example, the
generativemodule applied for interacting particle systemsmay ensure
that the learnt interactions are physics-consistent, meaning they adhere
to Newton’s laws of motion. In those cases, as described in “Relational
inference with known constraints about the interacting system”, we
use the recently proposed physics-induced graph network for particle
interaction (PIG’N’PI)19.

Results
To showcase the versatility and performance of the proposed CRI, we
evaluate it across three challenging examples: causality discovery,
heterogeneous inter-particle interactions inference, and relational
inference in a crystallization system with an evolving topology. We
compare it to previous methods that infer different edges indepen-
dently. We consider NRI7 as the main reference which is the baseline
method.

Relational inference for causality discovery
Causality discovery aims to infer which entities exhibit a causality
relationship (see Fig. 3a). The presence or absence of this causality
relationship can be considered as two different types of interactions.

Therefore, causality discovery can be seen as a special case of graph
structure learning9 to which relational inference methods can be
applied. We acknowledge the existence of other algorithms for caus-
ality discovery, such as those based on non-parametric or parametric
statistical tests20,21 and approaches utilizing deep learning22,23. Our aim
is to assess whether the proposed collective inference offers advan-
tages in relational inference. Therefore, we restrict the comparison to
NRI, a representative method inferring relations independently. In this
context, we conduct experiments using two benchmark datasets for
causality discovery: VAR11 and Netsim3,8. The performance of CRI and
NRI is summarized in Fig. 3 and comprehensive results are provided in
Supplementary Information Sec. 3.3.

The first considered benchmark comprises vector autoregression
(VAR), which is a statistical model used to describe the relationship
between multiple quantities, commonly used in economics and nat-
ural sciences. VAR time series are created by applying the VAR model
with various underlying causality structures (see Fig. 3b). As indicated
by ref. 11, the two cases VAR-a and VAR-c present significant challenges
for NRI. We follow the procedure outlined in ref. 11 to prepare the
training and testing data, ensuring a fair comparison.

The second case study is a realistic simulated fMRI time-series
dataset named Netsim. The objective is to infer the directed connec-
tions, which represent causal relations among different brain regions.
Following the approach outlined in ref. 8, we use data consisting of
samples from 50 brain subjects. Each sample comprises N = 15 differ-
ent regions, with each region containing a time series of length
T = 200. For our process, we allocate the first 30 samples for training,
the subsequent 10 samples for validation and the final 10 samples for
testing.

In the causality discovery experiment, we use the same standard
graph neural network as employed in NRI7 for CRI, as we lack prior
information about the interactions. Viewing the presence and absence
of the causality relation as distinct interaction types, we assess the
accuracy of interaction type prediction as our evaluation metric.

Our results demonstrate that CRI outperforms NRI significantly in
the case of VARdata (see Fig. 3c). Even in challenging instances such as
VAR-a and VAR-c, where NRI faces considerable difficulties, CRI
demonstrates exceptional performance. These observations alignwith
findings highlighted by ref. 11, who identified NRI’s challenges in these
cases stemming from the absence of correlations between different
edges. As detailed in “Fundamental concept behind the proposed
methodology”, CRI effectively captures such correlations, which leads
to the observed improvement in performance.

Even in the more complex case of Netsim, which has a large
number of entities and more correlations between these entities, our
results reveal that CRI outperformsNRI for this task (see Fig. 3c).While

Fig. 2 | The pipeline of CRI.The probabilistic relational inferencemodule takes the
observed states of the interacting system at different time steps and the current
estimation of the pairwise interactions as input, and infers the joint distribution of
the interaction type of all edges in each subgraph. The generativemodule takes the
predicted joint distribution for each subgraph together with the observations as

input and updates the estimation of different interaction functions. It can be any
kind of graph neural network, e.g., the standard message-passing GNN used in7 or
the physics-induced graph neural network19. The red bars depict a categorical
distribution where the length represents the probability of a particular realization.
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it might seem that the Netsim experiment is beyond the capabilities of
bothCRI orNRI due to the assumption that theunderlying dynamicsof
each interaction type are the same across different edges—something
not necessarily true for interactions between different brain areas—CRI
demonstrates promising performance. This success is attributed to the
collective inference approach.

Relational inference with known constraints about the
interacting system
In certain scenarios, constraints regarding the interacting system are
known. For instance, in the case of interacting particle systems, it is
crucial that the interactions and the dynamics of entities adhere to
Newton’s law of motion19. To explore this, we consider heterogeneous
interacting particle systems governed by Newtonian dynamics, where
different types of particles interact via distinct types of forces. We aim
to determine whether the proposed CRI can effectively discern these
heterogeneous interactions byobserving particle trajectories. The task
involves a twofold objective: inferring the interaction type between
any two particles and learning the associated interactions, which
should be physics-consistent.

We adapt the simulations of a variety of heterogeneous particle
systems, as used in previous studies7,12, as benchmarks. Specific
simulation details are outlined in “Details of the considered case stu-
dies”. We use PIG’N’PI19 as the generativemodule for CRI, ensuring that
the learnt interactions are physics-consistent. Our comparison involves
assessingCRI againstNRI7 andMPM12, using evaluationmetricsdefined
in “Performance evaluation metrics”. Additionally, adaptations are
made to both NRI and MPM by substituting their original decoders
with PIG’N’PI, denoted by NRI-PIG’N’PI andMPM-PIG’N’PI, respectively.
Detailed setups of these baselines are provided in “Configurations of
baseline models”. Results are summarized in Fig. 4 (comprehensive
results are provided in Supplementary Information Sec. 3.4−3.5,
3.7−3.8). Finally, we note that ModularMeta14 is not included as a
baseline in this benchmark due to technical reasons, in particular its
slow performance owing to the inner inference. Nevertheless, we have
evaluated CRI on the original dataset provided by ref. 7, where CRI
demonstrated superior performance on the Charged dataset and

matched the performance on the Springs dataset with a 99.9% accu-
racy, as detailed in Supplementary Information Sec. 3.2.

First, we evaluate the performance of the proposed methodology
in correctly predicting the interaction type. The results demonstrate
that CRI significantly outperforms the baselines in classifying the type
of each interaction (see Fig. 4-left). The performance gap is more sig-
nificant for larger systems (e.g., Spring N10K2 vs Spring N5K2, where
the former contains 10 particles and the latter has five particles), for
systems with more types of interactions (e.g., Spring N5K4 vs Spring
N5K2, where the former and latter contain four and two different
interaction types, respectively), and complex interaction functions
(e.g., complex Charge N5K2 vs simple Spring N5K2). Further, CRI
performsmuch better when training data is limited (e.g., the accuracy
of different methods using 100 or 500 simulations for training).
Finally, we find that CRI generalizes well with an accuracy greater than
99%, while the accuracy of the best baselines is only about 70% (see
Generalization Accuracy in Fig. 4 and Supplementary Information
Sec. 3.6). For this evaluation, we used Spring N5K2 as the training and
validation dataset, and evaluated the best-performingmodel (selected
using the validation set of Spring N5K2) on the test set of
Spring N10K2.

Next, we evaluate the consistency of the inferred pairwise forces
with the actual pairwise forces in terms of MAEef (see definition in
“Performance evaluationmetrics”). This evaluation is only possible for
CRI, NRI-PIG’N’PI andMPM-PIG’N’PI because the original NRI andMPM
algorithms learn a high dimensional embedding of the pairwise forces,
for which the MAEef cannot be directly computed. We find that CRI
achieves a lower error in learning the pairwise force functions in all
systems (see Fig. 4 middle and Supplementary Information Sec. 3.13),
particularly for thosewith limited trainingdata (see the x-axis from 100
to 10 k which is the training data size) and complex scenarios (e.g.,
simple Spring N5K4 and complex Charge N5K2). We note that NRI-
PIG’N’PI and MPM-PIG’N’PI only achieve about 50% accuracy in the
Charge N5K2 dataset when the training data is less than 1000, which is
similar to random guessing. This implies that their generative module
fails to learn any information about the actual force in this range since
the generative module depends on the predicted interaction type.

Fig. 3 | Illustration and results for causality discovery. a Causality discovery task
outline. The state time series of different entities are observed, but whether a pair
of entities has a causality relationship is unknown. The relational inferencemethod
is expected to infer the correct directed graph structure that represents the
underlying causality relationships. b The ground-truth causality graph and

c prediction accuracy for different datasets. Mean and standard derivation are
computed from five independent experiments. For NRI on the VAR-a and VAR-c, we
report the best performance among the five experiments because some random
seeds lead to severe sub-optimal performance for NRI on these two datasets.
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Analyzing their learned forces makes no sense with such a limited
amount of training data, as indicated by the empty symbols and
dashed lines in Fig. 4 ChargeN5K2MAEef. The superior performanceof
CRI in inferring the interactions, even with limited data access, forms
the basis for various downstream applications, such as discovering the
explicit form of the governing equations. In such cases, symbolic

regression (e.g.,24) is applied to search for the best-fitting symbolic
expression based on the predicted pairwise force by CRI, as demon-
strated in Supplementary Information Sec. 3.14.

Lastly, we evaluate the supervised learning performance of the
predicted states (position and velocity) after 10 time steps (see Fig. 4-
right). Note that the predicted state, measured by MAEstate, depends

Fig. 4 | Test performances for the spring and charge experiments. Mean and
standard derivation are computed from five independent experiments. (left col-
umn) Accuracy of the interaction type inference. (center column) MAE of pairwise
force.NRI andMPMcannot infer pairwise force. Empty symbolswith dashed lines in

E2 (ChargeN5K2) indicate the range inwhichNRI-PIG'N'PI andMPM-PIG'N'PI donot
learn any useful information about pairwise forces. (right column) MAE of state
(position and velocity combined) after 10 simulation steps.
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on both the accuracy of predicting the type of each interaction and the
quality of learning the interaction functions. The results show that CRI
achieves much smaller MAEstate in all cases.

It is important to note that the good performance of CRI is
primarily due to the proposed probabilistic inference method,
rather than PIG’N’PI (see ablation study with CRI using a standard
graph neural network in Supplementary Information Sec. 3.10).
Additionally, we verify and demonstrate that CRI is robust against
significant levels of noise (see Supplementary Information
Sec. 3.11).

Relational inference with evolving graph topology
Real-world systems often exhibit more complexity than the bench-
mark problems considered in previous sections. Many physical sys-
tems consist of a large number of entities, and possess interactions
that are restricted to a specific neighborhood defined by a critical
distance, resulting in a changing topology of the underlying interac-
tion graph over time. To evaluate the ability of Evolving-CRI to handle
such complex systems, we examine simulations, adapted from ref. 25.
These simulations model the crystallization behavior observed when
two different types of particles (e.g., water and oil) are combined (see
Fig. 5-left). The system consists of 100 particles with identical mass.
Particle interactions are governed by the Lennard-Jones (LJ) and
dipole-dipole potentials. Proximity triggers the LJ potential, while the
dipole-dipole interaction is attractive for identical particles and
repulsive for non-identical ones. These conditions cause particles to
reorganize over time, leading to the eventual formation of crystalline
structures (see Fig. 5-left).

We evaluate the interpolation ability of each model by ran-
domly splitting the time steps of the entire simulation into training,
validation and testing parts. Additionally, we evaluate the models’
extrapolation ability by using the first part of the entire simulation
for training and validation, and the remaining time steps for testing
(details are provided in “Details of the considered case studies”).
The model receives particle positions and velocities as inputs and
aims to predict accelerations as the target. Due to the evolving
topology of the interaction graph over time, adjustments to the
baseline models are necessary, as described in detail in “Config-
urations of baseline models”.

The results for both interpolation and extrapolation assessments
clearly demonstrate that Evolving-CRI significantly outperforms all
considered baselines (see Fig. 6 and Supplementary Information
Sec. 3.9). Notably, Evolving-CRI demonstrates accurate prediction of
edge types (see Accuracy in Fig. 6a, b), learns the physics-consistent
heterogeneous interactions without direct supervision (see MAEef in
Fig. 6a, b) and predicts particle states in the subsequent time step (see
MAEacceleration in Fig. 6a, b). This stands in contrast to the baselines,
which consistently struggle to learn heterogeneous interactions in the
particle system with evolving graph topology.

Discussion
Weproposed a novel probabilisticmethod for relational inference that
operates collectively and demonstrated its unique ability to collec-
tively infer heterogeneous interactions. This approach distinguishes
itself from and addresses the limitations of previous methods of rela-
tional inference. Our initial application of CRI in causality discovery
notably outperformed the baseline, NRI, showcasing the advantage of
collective inference. This success hints at CRI’s potential in broader
graph structure learning tasks aimed at inferring unknown graph
connectivity topologies9,26,27.

Subsequently, we tested CRI on heterogeneous particle systems
where integration of known constraints was feasible in the generative
module. CRI demonstrated substantial improvements over baseline
models, exhibiting an exceptional generalization ability and data effi-
ciency.Most notably, these experiments highlightedCRI’s capability in
inferring multiple (>2) interaction types, an area where current state-
of-the-art methods struggle. These results hint at the possible appli-
cation of CRI for heterogeneous graph structure learning28. Lastly, we
evaluated the performance of the Evolving-CRI variant on complex
scenarios where the underlying graph topology evolves over time. Our
results showcased its ability to infer heterogeneous interactions
effectively, unlike baseline models, which encountered significant
challenges.

In summary, our experiments highlight the effectiveness and
versatility of the proposed framework, which demonstrates high
adaptability and seamless integration with compatible approximation
inference methods to infer the joint probability of edge types. The
experimental results presented emphasize CRI’s potential in enhan-
cing relational inference across diverse applications, including graph
structure learning and the discovery of governing physical laws in
heterogeneous physical systems.

Methods
Graph representation of interacting systems
We explore heterogeneous interacting systems in which entities
interact with each other. As mentioned previously, entities can be
different correlated regions of the human brain or interacting parti-
cles. Each entity undergoes changes in its internal state over time due
to these interactions. In such systems, we observe the states of entities
at different points in time, lacking specific information about their
underlying interactions. These observations can manifest as time-
series of signals or the movements of physical particles. Similar to the
approach outlined in ref. 7, we assume knowledge of the number of
distinct interactions, denoted by K. The goal of relational inference in
this context is twofold: first, inferring the interaction type between any
pair of entities, and second, learning the interaction functions asso-
ciated with these K different types of interactions. The used mathe-
matical symbols are summarized in the table in Supplementary
Information Sec. 1.

Fig. 5 | Concept of Evolving-CRI to learn the heterogeneous interactions in
crystallization problems. (left) System evolution during crystallization. Yellow
and red colors indicate two different kinds of particles with heterogeneous

interactions. (right) Schematic of Evolving-CRI consisting of an inference module
and a generative module. Evolving-CRI is trained to predict the ground-truth
acceleration. After training, the heterogeneous interactions are implicitly learnt.
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We model the interacting system as a directed graph G = (V, E),
where nodes V = {v1, v2,…, v∣V∣} represent the entities and the directed
edges E = {ei,j∣vj acts on vi} represent the interactions. Each node vi is
associated with the feature vector xt

i that describes the state of vi at
time step t. In the causality discovery experiments, the feature of each
node is amultivariate time series. In the particle systems, the featureof
a node xt

i = ½rti , _r
t
i ,mi� contains its position rti , velocity _rti and mass mi.

We use Γ(i) = {vj∣ei,j∈ E} to denote the neighbors having an interaction
with vi. Here, we consider two different cases: First, the graph topology
remains fixed during the entire time, i.e., the neighbors of each node
do not change over time. Second, the underlying graph G has an
evolving topology in which nodes interact with different neighbors at
different times. In practice, the latter can model realistic physical
systems where each node interacts only with nearby nodes, which are
within some cutoff radius. In this work, we assume the ground-truth
cutoff radius is known, which allows us to focus on developing the
relational inference method and to ensure that the comparison with
previouswork is fair.We showcase how the cutoff radius influences the
prediction accuracy by one example in Supplementary Information
Sec. 3.12. In both cases, the interaction type between any two nodes
remains unchanged over time, irrespective of whether the underlying
graph topology changes or not.

Collective Relational Inference (CRI)
CRI is tailored for interacting systems where each node maintains a
consistent neighborhood structure over time. The number of neigh-
bors of vi is denoted as ∣Γ(i)∣. The framework, illustrated in Fig. 7, canbe
considered as a generative model29. Its primary function is to predict

observed node states, specifically by predicting the state increment €xt
i .

This increment is used to update the nodes’ states from time t to t + 1.
In the context of time series in causality discovery, the state increment
represents the difference between time series values. In a particle
system, the state increment is analogous to acceleration. The ground-
truth increment is computed based on the states of two consecutive
time steps.

We assign each edge ei,j a latent categorical random variable zi,j.
p(zi,j = z) is then the probability of ei,j having interaction type z
(z = 1, 2,…,K). Rather than inferring p(zi,j) for different edges inde-
pendently, we consider the subgraph S(i) (vi∈V) spanning a center
node vi and its neighbors Γ(i) as an entity. We use the random variable
z(i) to represent the realization of the edge type of the subgraph S(i),
which is the combination of realizations of the edge types for all edges
in S(i). The probability p(z(i)) captures the joint distribution of the
realizations for all edges in S(i). We use ϕzðiÞ

ðjÞ 2 f1,2, . . . ,Kg to denote
the interaction type zi,j of edge ei,j given the realization z(i) of subgraph
S(i). For example, in Fig. 7b, z(1) = r2 corresponds to
fϕzð1Þ

ð2Þ= 1,ϕzð1Þ
ð3Þ= 2Þg, assuming that the color blue indicates type 1

and green indicates type 2. Given the edge type configuration z(i) of the
subgraph, we adapt the standard message-passing GNN used in ref. 7
or PIG’N’PI19 to incorporate different interaction types to predict the
state increment of the center node vi. Specifically, K different neural
networks NN1

θ1
, NN2

θ2
, …, NNK

θK
are used to learn K different interac-

tions. Here, we consider the same architecture but different sets of
parameters for these neural networks, and hence denote them as NN1,
NN2,…, NNK. The learnable parameters in these K neural networks are
denoted as Θ = {θ1, θ2,…, θK}. The predicted state increment €̂x

t

ijzðiÞ (∀ i)

Fig. 6 | Performances of Evolving-CRI on the crystallization problem with an
evolving graph topology. a Interpolation and b extrapolation results of Evolving-
CRI andothers.Meanand standardderivation are computed from five independent
experiments. (left columnof a,b) Accuracy in inferring the interaction type. (center

column of a, b) Mean Absolute Error in particle acceleration. (right column of a, b)
Mean Absolute Error in pairwise interaction. NRI andMPMcannot explicitly predict
the pairwise force.
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given z(i) and the current states of nodes is computed by Eq. (1):

Using standard message-passing GNN:: €̂x
t

ijzðiÞ =NNnode

X
j2ΓðiÞ

NN
ϕzðiÞ ðjÞðxt

i ,x
t
j Þ,xt

i

 !

Orusing PIG
0
N

0
PI forparticles: €̂x

t

ijzðiÞ =
X
j2ΓðiÞ

NN
ϕzðiÞ ðjÞðxt

i ,x
t
j Þ=mi

ð1Þ

where NNnode is a neural network that takes the incoming interactions
and the state of itself as input.

We use Gaussianmixturemodels30 to represent the probability of
the ground-truth state increment, in a manner where every realization
of the subgraph is considered a component, and the latent variable z
determines the probability of belonging to each component. Essen-
tially, this model is akin to Gaussian Mixtures, utilizing a neural net-
work to shape the distribution of each component. Specifically, the
conditional likelihood given the subgraph realization z(i) is computed
by fitting the ground-truth state increment into the multivariate nor-
mal distribution whose center is the predicted state increment of the
generative module, as expressed by

lðΘj€xt
i , zðiÞÞ=pð€xt

i jΘ, zðiÞÞ=N €xt
i j€̂x

t

ijzðiÞ , σ
2I

� �
ð2Þ

where σ2 is the pre-defined variance for the multivariate normal
distributions.

We denote the prior probability of any subgraph having realiza-
tion zbyπz = p(z(i) = z) (∀ i).ϒ is the set of all possible realizations of the
subgraph. If all nodes have the same number of neighbors, ∣ϒ∣ is equal
to K∣Γ(i)∣ (∀ i). The prior distribution π = {π1,π2,…,πϒ} and the neural
network parameters Θ are the learnable parameters, which are deno-
ted by Θ = (Θ,π).

We infer unknown parameters Θ by maximum likelihood esti-
mation over the marginal likelihood given the ground-truth state

increments following:

LðΘÞ=
YjV j

i = 1

Xjϒj

z = 1

pðzðiÞ = zÞ|fflfflfflfflfflffl{zfflfflfflfflfflffl}
πz

Y
t

lðΘ j €xt
i ,zðiÞ = zÞ ð3Þ

Directly optimizing log LðΘÞ in Eq. (3) with respect to Θ = (Θ,π) is
intractable because of the summation in the logarithm. Therefore, we
design the inference model under the generalized EM framework15,
which is an effective method to find the maximum likelihood estimate
of parameters in a statistical model with unobserved latent variables.
Overall, the EM iteration alternates between the expectation (E) step,
which computes the expectation of the log-likelihood evaluated using
the current estimation of the parameters (denoted Q function), and
the maximization (M) step, which updates the parameters by
maximizing the Q function found in the E step.

In the expectation (E) step, we compute the posterior probability
of z(i) given the ground-truth state increment and the current estima-
tion of the learnable parameters Θnow by applying Bayes’ theorem:

pðzðiÞ = zj€x1:T
i ,ΘnowÞ= pðzðiÞ = z,€x1:T

i jΘnowÞ
P

z0pðzðiÞ = z0,€x1:T
i jΘnowÞ

=
πnow
z
Q

tpð€xt
i jΘnow,zðiÞ = zÞP

z0π
now
z0
Q

tpð€xt
i jΘnow,zðiÞ = z0Þ

ð4Þ

where pð€xt
i jΘnow,zðiÞ = zÞ is computed by Eq. (2). With the posterior

pðzðiÞj€x1:T
i ,ΘnowÞ, the Q function of CRI becomes:

QCRIðΘjΘnowÞ=
XN

i= 1

EzðiÞ ∼pðzðiÞ j€x1:T
i ,ΘnowÞ logπzðiÞ

h i

+
XN

i = 1

EzðiÞ ∼pðzðiÞ j€x1:T
i ,ΘnowÞ

XT
t = 1

log lðΘj€xt
i ,zðiÞÞ

" # ð5Þ

In the maximization (M) step, we update the prior π and Θ by
maximizing QCRI(Θ∣Θnow). Note that π has an analytic solution but Θ

Fig. 7 | FrameworkofCRI.TheproposedCRImethod, shown in the gray area, takes
node states at every time step and predicts the state at the next step. Dashed
squares represent objects. Solid squares represent various operators, such as linear
algebra operations or a neural network. To simplify, a case featuring only two
distinct types of interactions is presented, though the proposed method is general
and applicable to broader scenarios. a The interacting system over time. At every
time step, each node is described by the feature vector xt

i representing its state.
b All possible realizations denoted by the random variable z(1) for the subgraph S(1).

c The subgraph S(1) at time t. d The subgraph S(1) exhibits different realizations at
time t, serving as the input to the generative model. e The predicted state incre-
ment of v1 across different realizations at time t. The increment is used to predict
the state at the subsequent time step. f The final predicted state increment,
representing the expectation derived from the estimated probability z(1). g The
ground-truth state increment, computed from the observed states between two
consecutive time steps.

Article https://doi.org/10.1038/s41467-024-47098-7

Nature Communications |         (2024) 15:3191 8



does not (see Supplementary Information Sec. 2.2 for details). We take
one gradient ascent step to update θ1, θ2,…, θK.

We iteratively update the posterior probabilities of different rea-
lizations for each subgraph in the E step and the learnable parameters
Θ in theKdifferent edge neural networks and the priors τ in theMstep.
Convergence to the (local) optimum is guaranteed by the generalized
EM procedure15. After training, NN1, …, NNK approximate K different
pairwise interaction functions. By finding the most probable realiza-
tion of edge types in each subgraph, the interaction type for every
edge is determined by the ϕ mapping. The detailed derivation and
implementation of CRI are provided in Supplementary Informa-
tion Sec. 2.2.

It should be noted that due to the exact computation of the
expectation, the computational complexity OðN � K jΓjÞ (∣Γ∣ is the num-
ber of neighbors of each node) of CRI limits its application to systems
with sparse interacting nodes. However, any compatible inference
method can be built into CRI to approximate the expectation. To
demonstrate the flexibility of CRI, we use, for instance, the basic form
of variational method30 to approximate the expectation in Q(Θ∣Θnow).
The derivation and results of this CRI variant named the Variational
Collective Relational Inference (Var-CRI) are discussed in Supplemen-
tary Information Sec. 2.1. Other potential options of inferencemethods
include advanced variational approximation methods18,31 and Markov
Chain Monte Carlo (MCMC) techniques32.

Evolving Collective Relational Inference (Evolving-CRI)
The basic form of CRI presented in “Collective Relational Inference” is
tailored for relational inference in which nodes consistently interact
with the same neighbors. However, in various real-life scenarios, nodes
may interact with varying neighbors at different times, causing the
underlying graph topology to change over time. To address the chal-
lenge of inferring relations in systems with evolving graph topology,
we adapt CRI and develop a new algorithm called Evolving-CRI, as
shown in Fig. 8. Similarly as in CRI, we use the random variable zi,j∈K

to represent the interaction type of ei,j. The fundamental concept
behind Evolving-CRI involves updating the posterior distribution over
zi,j of a newly appearing edge by marginalizing out the posterior dis-
tribution of all other appearing edges. As a result, the interaction type
inferred for each edge captures the correlation with other incoming
edges, which collectively influence the node’s states. It is worth noting
that our proposed approach for relational inference with evolving
graph topology is different from the concept of dynamic relational
inference33–35 where the interaction type between two nodes can
change over time. In our case, the interaction type of any edge remains
the same over time, but the edges may not always exist in the under-
lying interaction graph.

Here, we denote the neighbors of vi at time t by Γt(i) and all
neighbors of vi across all time steps by Γ(i) =⋃tΓ

t(i). Following the
approach of CRI (Eq. (1)), the predicted state increment of vi (∀ i) at
time t given the edge types and the current states of those nodes
within the cutoff radius is computed by Eq. (6):

Using standard message-passing GNN: €̂x
t

ijzi,1 ,...,zi,jΓt ðiÞj =NNnode

X
j2Γt ðiÞ

NNzi,j ðxt
i ,x

t
j Þ ,xt

i

0
@

1
A

Or using PIG0N0PI for particles: €̂x
t

ijzi,1 ,...,zi,jΓt ðiÞj =
X
j2Γt ðiÞ

NNzi,j ðxt
i ,x

t
j Þ=mi

ð6Þ

To compute the conditional likelihood given the different reali-
zations of the edge types, we fit the ground-truth state increment by
the multivariate normal distribution with the predicted state incre-
ment as the mean:

lðΘj€xt
i ,zi,1, . . . ,zi,jΓt ðiÞjÞ=pð€xt

i jΘ,zi,1, . . . ,zi,jΓt ðiÞjÞ=N €xt
i j€̂x

t

ijzi,1 ,...,zi,jΓt ðiÞj ,σ
2I

� �

ð7Þ

where €̂x
t

ijzi,1 ,...,zi,jΓt ðiÞj is computed by Eq. (6).

Fig. 8 | Framework of Evolving-CRI. a The interacting system at various moments
in time. Nodes may interact with different neighbors at different times. The inter-
action radius of node 3 (orange) is indicated by a black circle. The feature vector xt

i

of each node vi contains its state at each time step t. b At each time step, we update
the estimation of the posterior distributions of the interaction type for edges
appearing at this time step, using Eq. (11). c The estimated posteriors after

observing the system across all time steps. d Example subgraph S(3) at time t. e The
example subgraph with different realizations of edge types at time t, which is the
input for the generative model. f The predicted state increment, which is the
expectation over the inferred posterior distribution in (c).g The ground-truth state
increment computed from the observed states between two consecutive
time steps.
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We denote the prior probability of any edge ei,j having the inter-
action type realization z by τz = p(zi,j = z) and the prior distribution by
τ = {τ1,…, τK} (K is the number of different interactions). The learnable
parameters in Evolving-CRI are Θ = (Θ, τ).

In the expectation step, we infer by induction the posterior dis-
tribution over different interaction types of each edge given the
ground-truth state increments and the current estimation of the
learnable parametersΘnow. At the start (t = 0),pðzi,jj€x0

i ,Θ
nowÞ is equal to

the prior τnowzi,j
as there is no information available about the nodes

states. Suppose that the posterior distributions pðzi,jj€x1:t�1
i ,ΘnowÞ,

where €x1:t�1
i is the ground-truth state increment of vi until time t − 1 for

t ≥ 1, is known, we update the posterior pðzi,j j€x1:t
i ,ΘnowÞ for any edge ei,j

that appears at time t by the rule of sum:

pðzi,jj€x1:t
i ,ΘnowÞ=

X
zi,�j

pðzi,j,zi,�j j€x1:t
i ,ΘnowÞ ð8Þ

where
P

zi,�j
sums over all realizations of the other incoming edges in

S(i) at time t except for ei,j.
The posterior distribution pðzi,j ,zi,�jj€x1:t

i ,ΘnowÞ in Eq. (8) is com-
puted by applying Bayes’ theorem:

pðzi,j,zi,�j j€x1:t
i ,ΘnowÞ/ pðzi,j,zi,�jÞpð€x1:t

i jzi,j ,zi,�j,Θ
nowÞ

= pðzi,j,zi,�jÞpð€x1:t�1
i jzi,j,zi,�j,Θ

nowÞpð€xt
i jzi,j ,zi,�j ,Θ

nowÞ
/ pðzi,j,zi,�j j€x1:t�1

i ,ΘnowÞpð€xt
i jzi,j,zi,�j ,Θ

nowÞ
ð9Þ

Assuming that pðzi,j ,zi,�jj€x1:t�1
i ,ΘnowÞ is fully factorized, we find:

pðzi,j ,zi,�j j€x1:t
i ,ΘnowÞ / pðzi,jj€x1:t�1

i ,ΘnowÞpðzi,�j j€x1:t�1
i ,ΘnowÞpð€xt

i jzi,j,zi,�j ,Θ
nowÞ
ð10Þ

Combining Eq. (8) and Eq. (10), we get

pðzi,jj€x1:t
i ,ΘnowÞ / pðzi,jj€x1:t�1

i ,ΘnowÞ
X

zi,�j
pðzi,�jj€x1:t�1

i ,ΘnowÞpð€xt
i jzi,j ,zi,�j ,Θ

nowÞ

ð11Þ
This shows thatwe can iteratively update the posterior zi,j of each edge
ei,j by incorporating the conditional distribution of the ground-truth
state increment at each time step (as illustrated in Fig. 8b). The
conditional distribution pð€xt

i jzi,j ,zi,�j ,Θ
nowÞ, which models the joint

influenceof incoming edges, is computedby Eq. (6) and Eq. (7). Finally,
we denote the inferred edge type of each edge after observing the
interacting system across all time steps in Eq. (11)
by p*ðzi,jÞ=pðzi,jj€x1:T

i ,ΘnowÞ.
The Q function for the Evolving-CRI is

QevolvingðΘjΘnowÞ=
XjV j

i= 1

XΓðiÞ

j = 1

Ezi,j ∼p*ðzi,j Þ log τzi,j

h i

+
XjV j

i = 1

XT

t = 1

Ezi,1 ,...,zi,jΓt ðiÞj ∼p*ðzi,1Þ,...,p*ðzi,jΓt ðiÞj Þ

log lðΘj€xt
i ,zi,1, . . . ,zi,jΓt ðiÞjÞ

h i

ð12Þ

where lðΘj€xt
i ,zi,1, . . . ,zi,jΓt ðiÞjÞ is computed by Eq. (7).

In the maximization step, we update the prior τ and Θ by max-
imizing Qevolving(Θ∣Θnow). Similar to CRI, τ has the analytic solution but
Θ does not. Therefore, we take one gradient ascent step to update
θ1, θ2,…, θK. Finally, for verification, let us consider the case of having
no observations of the interacting systems. In this case, the second
term in Eq. (12) becomes 0, and Qevolving(Θ∣Θnow) corresponds to the
entropy becausep*(zi,j) becomes τzi,j . Therefore, maximizingQevolving is
equivalent to maximizing the entropy, which, by the principle of

maximum entropy, leads to 1/K probability for each edge to have any
kind of interaction. This shows that in the absence of information, this
method converges to a fully random estimation of the edge type, as
expected.

Performance evaluation metrics
We use the commonly used accuracy for the evaluation metric of
causality discovery. For particle systems, the performance evaluation
focuses on three aspects. First, the supervised learning performance is
assessed through the mean absolute error MAEstate, which quantifies
the discrepancy between the predicted particle states (i.e., position
and velocity) and the corresponding ground-truth states. Second, we
assess the ability of the relational inference methods to correctly
identify different interactions. We use the permutation invariant
accuracy as the metric, which is given by:

Accuracy= max
α2Ω

1
jEj
X
e2E

δðαðẑðeÞÞ,zðeÞÞ ð13Þ

whereα is a permutationof the inferred interaction types andΩ is a set
containing all possible permutations. The Kronecker delta δ(x, y)
equals 1 if x is equal to y and 0 otherwise. ẑðeÞ 2 K is the predicted
interaction type for the edge e and z(e)∈K is the ground-truth
interaction type of e. Thismeasure accounts for the permutation of the
interaction type label because good accuracy is achieved by clustering
the same interactions correctly. Third, we assess the extent to which
the learnt pairwise forces are consistent to theunderlyingphysics laws.
This evaluation involves two aspects: (1) how well the predicted
pairwise forces approximate the ground-truth pairwise forces,which is
measured by themean absolute error on the pairwise forceMAEef, and
(2) whether the predicted pairwise forces satisfy Newton’s third law,
which is measured by the mean absolute value of the error in terms of
force symmetry MAEsymm. To compute the predicted pairwise force
required for MAEef and MAEsymm, we use the generative module (i.e.,
the decoder) of each model that corresponds to the ground-truth
interaction type, given the permutation used to compute the accuracy
in Eq. (13). Therefore, MAEef and MAEsymm reflect the quality of the
trained generative module, independent of the performance of the
edge type prediction.

Details of the considered case studies
The datasets used in the causality discovery experiment are from the
original papers8,11. For the interacting particle systems, we generate the
data ourselves using numerical simulations. The key distinctive prop-
erty of the simulated interacting particle systems is that the inter-
particle interactions are heterogeneous. Previousworks, such as7, have
used some of the selected cases. However, in our study, we modified
some configurations to make them more challenging and realistic.

• Spring simulation: Particles are randomly connected by different
springs with different stiffness constants and balance lengths.
Suppose vi and vj are connectedby a springwith stiffness constant
k and balance length L, the pairwise force from vi to vj is k(rij− L)nij

where rij = krj � rik is the Euclidean distance and nij =
rj�ri

krj�rik is the

unit vector pointing from vi to vj. The spring N5K2 simulation and
spring N10K2 simulation have two different springs with
(k1, L1) = (0.5, 2.0) and (k2, L2) = (2.0, 1.0). The spring
N5K4 simulation has four different springs: (k1, L1) = (0.5, 2.0),
(k2, L2) = (2.0, 1.0), (k3, L3) = (2.5, 1.0) and (k4, L4) = (2.5, 2.0).

• Charge simulation: We randomly assign electric charge q = + 1 and
q = − 1 to different particles. The electric charge force from vi to vj
is �cqiqjnij=r

2
ij where the constant c is set to 1. To prevent any

zeros in the denominator of the charge force equation, we add a
small number δ (δ =0.01) when computing the Euclidean dis-
tance. Since particles have different charges, the system contains
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attractive and repulsive interactions. Note that we do not provide
charge information as an input feature for the ML algorithms.
Thus, the relational inferencemethods need to infer whether each
interaction is attractive or repulsive.

• Crystallization simulation: The crystallization simulation contains
two different kinds of particles with local interaction, i.e. inter-
actions only affect particles within a given proximity to each
other. Hence, the underlying graph topology changes over time.
In this simulation, the Lennard-Jones potential, which is given by
VLJðrÞ=4ϵLJfðσLJ=rÞ12 � ðσLJ=rÞ6g, exists among all nearby parti-
cles. We set σLJ =0.3 and ϵLJ= 10−5. Additionally, particles of the
same type have an attractive dipole-dipole force, whose potential
is VA(r) = −Cr−4, and particles of different types have a repulsive
dipole-dipole force, whose potential is VR(r) =Cr−4. We set the
constant C =0.02. To summarize, the pairwise interaction of two
particles of the same and different types is governed by VLJ +VA

andVLJ+VR, respectively. The heterogeneous systemcontains 100
particles in total, each with the same unit mass. The simulation is
adapted from25.

Additionally, unlike the simulations in ref. 7, particles in the spring
and charge simulations have varyingmasses. Themassmi of particle vi
is sampled from the log-uniform distribution within the range [− 1, 1]
( ln ðmiÞ∼Uð�1,1Þ). The initial locations and velocities of particles are
both drawn from the standard Gaussian distribution N ð0,1Þ. We use
dimensionless units for all simulations as the considered learning
algorithms are not designed for any specific scale. The presented cases
serve as proof of concept to evaluate the relational inference cap-
abilities for heterogeneous interactions.

The Spring N5K2, Spring N5K4, Spring N10K2 and Charge N5K2
cases in “Relational inference with known constraints about the
interacting system” each comprise 12 k simulations in total. Each
simulation consists of 100 time stepswith a step size 0.01. Of these 12 k
simulations, 10 k are reserved for training (we train the models with
100, 500, 1 k, 5 k and 10 k simulations to assess the data efficiency), 1 k
for validation and 1 k for testing. In each simulation, particles interact
with all other particles and the interaction type between any particle
pair remains fixed over time.

The crystallization simulation contains a single simulation of 100
particles. We generate this simulation over 500 k time steps using step
size 10−5, and then downsample it to every 50 time steps, ultimately
yielding a simulation with 10 k time steps. Note that it is possible to
consider advanced sampling strategies (e.g., ref. 36) to sample infor-
mative time steps, but we leave this for future exploration. We use two
different ways to split the simulation for training, validation and test-
ing. First, to evaluate the interpolation ability, we randomly split the
10k simulation steps into the training dataset, validation dataset and
testing dataset with the ratio 7: 1.5: 1.5. Then, to evaluate the extra-
polation ability, we use the first 7 k time steps as training set, next 1.5 k
consecutive time steps for validation and the remaining 1.5 k time steps
for testing. In the crystallization simulation, particles interact with
nearby particles within a cutoff radius. However, to simplify the input
for the ML methods, we constrain each particle to interact with its five
closest neighbors. In the simulation, 500 edges are active at each time
step, and a fixed-size tensor variable in PyTorch can represent the
activated edges. It is important to note that the relational inference
methods, such as CRI and the baselines, can handle varying edge sizes
at different time steps. However, for the purposes of this study, the
described simulation is suitable as a proof of concept and provides a
straightforward implementation of the relational inference methods.

We train the relational inference models on the training dataset,
fine-tune hyperparameters and select the best trainedmodel based on
the performance on the validation dataset with respect to the training
objective MAEstate. It should be noted that the models are not chosen
based on the metrics on which they will later be evaluated since we

cannot access the ground-truth interactions during training. We then
evaluate the performance of the selected trained model on the testing
dataset. For the generalization evaluation in “Relational inference with
known constraints about the interacting system”, we train and validate
the model using the training and validation datasets of Spring N5K2,
and report the performance of the trained model on the testing
dataset of Spring N10K2.

Configurations of CRI, Var-CRI and Evolving-CRI
Weuse the samehyperparameters for CRI, Var-CRI and Evolving-CRI in
each experiment. We find that the performance is mostly affected by
the number of hidden layers in PIG’N’PI and the Gaussian variance σ2.
We perform grid search to tune these two parameters for different
experiments. The detailed configurations are summarized in Supple-
mentary Information Sec. 3.1. In addition, we use the Adam optimizer37

with a learning rate 0.001 for training. All models are trained over 500
epochs.

We run experiments on a server with RTX 3090 GPUs. Each
experiment is run on a single GPU—we did not implement multi-GPU
parallelism. It takes nine hours for CRI to reproduce the original
simulation dataset provided in the NRI reference, which is the
experiment reported in Supplementary Information Sec. 3.2. Each VAR
dataset in “Relational inference for causality discovery” takes three
hours and the Netsim dataset takes 2.5 h (while the graph size of Net-
sim is larger than that of VAR, Netsim needs fewer training epochs).
The time needed for the particle simulations in “Relational inference
with known constraints about the interacting system” varies from one
hour for five particles with 100 training examples to 47 h for ten par-
ticles with 10,000 training examples. The experiment of Evolving-CRI
in “Relational inference with evolving graph topology” takes 30 h.

Configurations of baseline models
In the causality discovery experiment, we use the same setting of NRI
as suggested in the original papers for the VAR dataset11 and for the
Netsim dataset8. The source code of NRI for these two datasets is
publicly available8,11. We noticed that NRI is very likely to get stuck in
local minima in the VAR experiment and the random seed has a sig-
nificant influence on the performance. We discard the random seeds
that lead to severely inferior prediction accuracy.

For the spring and charge systems, we use the default setting of
NRI and MPM as suggested in their original papers7,12, i.e. the encoder
uses a multi-layer perception to learn the initial edge embedding for
the spring dataset, and a convolutional neural network (CNN) with the
attention mechanism for the charge dataset. Additionally, to ensure a
fair comparison, the decoder of NRI-PIG’N’PI and MPM-PIG’N’PI is the
same as the one applied in CRI (including the same hidden layers and
the same activation function).

For the crystallization experiment, modifications of NRI andMPM
are required to learn heterogeneous systems with evolving graph
topology, as discussed in “Relational inference with evolving graph
topology”. The CNN reducer in the original NRI and MPM first learns
the initial edge embedding, and then uses additional operations to
learn the edge types based on this embedding. The edge embedding is
learnt by taking the states of two particles across all time steps. We
modify the encoder such that only the time steps when the edge
appears contribute to the edge embedding. As for the decoder, we
mask the effective edges of each node at each time step and only
aggregate these active edges as the incoming messages.

Data availability
The data used in causality discovery experiments are open bench-
marks provided by their original papers8,11. The simulation data used
for learning heterogeneous inter-particle interactions have been
deposited in ETH Research Collection and can be downloaded from
https://www.research-collection.ethz.ch/handle/20.500.11850/610139.
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Code availability
The implementation of the proposed method is based on PyTorch38.
The source code is available on Gitlab: https://gitlab.ethz.ch/cmbm-
public/toolboxes/cri.
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