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Abstract
Despite that prior work of batched inference and parameter-
efficient fine-tuning techniques have reduced the resource
requirements of large language models (LLMs), challenges
remain in resource-constrained environments such as on-
premise infrastructures to serve workload that is composed
of both inference and fine-tuning jobs. Prior solutions must
either pause existing jobs which causes service interruptions,
or queue new jobs which results in a long delay.

We present FineInfer, an efficient serving system that en-
ables concurrent LLM fine-tuning and inference. FineInfer
leverages base model multiplexing and a new task schedul-
ing mechanism, namely deferred continuous batching, to en-
able iteration-level context switch and accelerate fine-tuning
while offering inference latency that compromises service
level agreements. Our evaluation shows that FineInfer out-
performs prior solutions by up to 3x in fine-tuning latency,
and 36x when the models are larger than the GPU memory.

CCS Concepts: • Computing methodologies→ Concur-
rent algorithms; Natural language generation; • Computer
systems organization→ Neural networks.

Keywords: Systems for large language models, LLM fine-
tuning, LLM inference
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Figure 1. FineInfer offers the ability of LLM fine-tuning and
inference at the same time.

1 Introduction
Large language models (LLMs) are becoming a critical build-
ing block in emerging applications such as chatbots, search
engines, gaming, and translations [7]. Systems such as Deep-
Speed [25] and Megatron [29] have enabled serving and fine-
tuning LLMs, thus improving the accuracy of state-of-the-art
pre-trained models in specific application scenarios.
When deploying LLMs in resource-constrained environ-

ments [24, 38] including laptops, dedicated GPU servers, and
mobile devices[37], we observed new challenges to handle
heterogeneous LLMworkload that is composed of fine-tuning
and inference jobs at the same time [3, 35]. For instance, after
deploying a language model inference service for a chatbot,
if the model requires an update to incorporate user feed-
back [14, 20], current systems must either terminate the
inference service or route the fine-tuning job to other re-
sources or time periods due to a lack of resources. On the
contrary, when a fine-tuning job is in progress and a new
model inference request comes in, current systems must
dump the tuning checkpoint to memory or disk, and load
the required model for inference. In both cases, a significant
latency is incurred which has a negative impact on the ser-
vice quality. The situation becomes worse if there are many
models, applications and users.

We propose FineInfer, depicted in Figure 1, an LLM serving
system that optimally orchestrates fine-tuning and inference
jobs in resource-constrained environments. FineInfer lever-
ages the following observations and techniques to improve
upon state-of-the-art:

Firstly, with the advent of parameter-efficient fine-tuning
(PEFT) techniques such as LoRA [10, 21], prefix tuning [19],

https://doi.org/10.1145/3642970.3655835
https://doi.org/10.1145/3642970.3655835
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Figure 2. Illustration of different scheduling strategies.

and prompt tuning [15, 22], users may not need to tune the
entire model which significantly saves time and resource.
Take LoRA fine-tuning for example, given a pre-trained
matrix𝑊 ∈ R𝑑×𝑘 , LoRA approximates the update during
fine-tuning via low-rank decomposition𝑊 ′ = 𝑊 + Δ𝑊 =

𝑊 + 𝐵𝐴, where 𝐵 ∈ R𝑑×𝑟 and 𝐴 ∈ R𝑟×𝑘 . Since the rank
𝑟 ≪𝑚𝑖𝑛(𝑑, 𝑘), the number of trainable parameters can often
be 1000x smaller. Recently, Punica [8] and S-LoRA [27] offer
highly efficientmodel serving by sharing the base LLMmodel
in multiple LoRA fine-tuned applications; therefore, infer-
ence computation on the base model can be batched for im-
proved throughput, while subsequent computation on multi-
ple LoRA adapters can be accelerated via Multi-size Batched
Gather Matrix-Vector Multiplication (MBGMV) [27] or Seg-
mented Gather Matrix-Vector Multiplication (SGMV) [8].
FineInfer builds upon this idea to leverage base model mul-
tiplexing and fine-grained scheduling to enable fine-tuning
and inference of many LoRA adaptors at the same time;
doing so significantly minimizes the switching overhead
in-between fine-tuning and inference.

Secondly, we propose Deferred Continuous Batching, a new
strategy to schedule fine-tuning and inference at the gran-
ularity of each fine-tuning iteration, thus further batching
up inference computation and reducing fine-tuning latency.
Specifically, inference requests are pushed out slightly ac-
cording to their latency service level agreement (SLA) to
improve their chance of being able to batch up with other
requests. We found this simple strategy to be surprisingly
effective, and sometimes even critical. This is due to the fact
that fine-tuning still demands a lot of resources and therefore
will incur a significant latency penalty in the latter when
sharing the GPU with inference jobs. However, with only
0.3-0.5 second deferred inference which is often not notice-
able in end-to-end model serving applications, we observe a
26-36% improvement in the fine-tuning throughput.
Last but not least, in situations when LLMs do not fit in

the GPU memory, deferred continuous batching kicks in

again to reduce the frequency of parameter movement in-
between CPU and GPU memory, thus improving the chance
of compute batching and reducing overall latency. The key
idea is similar to batch fine-tuning and inference inputs in
the forward pass and update only adapters relevant to the
fine-tuning tasks in the backward pass.
Evaluation on a variety of models and workloads using

a single Nvidia 3090 GPU shows that FineInfer incurs very
low switching overhead and that deferred continuous batch-
ing is highly beneficial for heterogeneous LLM workloads.
For LLMs that fit into GPU memory, FineInfer can improve
fine-tuning throughput by up to 3x compared to SoTA sys-
tems while meeting inference latency SLAs. For LLMs larger
than GPU memory, we find that FineInfer can achieve up
to 36x improvement compared to SoTA offloading-based
systems. To verify the effectiveness of deferred continuous
batching, we also implemented base model multiplexing and
iteration-level context switching into other variants for fair
comparison.
This paper introduces our preliminary ideas and early-

stage efforts. FineInfer is open-sourced at https://github.com/
llm-db/FineInfer. Contributions and feedback from the com-
munity are eagerly welcomed.

2 LLM Serving in Resource-Constrained
Environments

LLM inference is an iterative autoregressive process where
an output token is generated in each model iteration. The
processing of an inference request consists of two stages: 1)
The prefill stage first generates the KV cache tensors repre-
senting the context of the input prompts, and this phase is
executed only once. 2) The decoding stage then utilizes the
KV cache tensor to generate a new token, and the context of
this token is also added to the KV cache tensor. This phase
will be executed multiple times until the generation length
limit is reached.

https://github.com/llm-db/FineInfer
https://github.com/llm-db/FineInfer
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Table 1. The breakdown of switching overhead with Llama2-
7B workloads. In each column, we report the overhead cor-
responding to fine-tuning (left) and inference (right) tasks.

Stage DeepSpeed Colossal-AI FineInfer

Task initialization 1.153 / 0.015 s 0.28 / 0.045 s 0 / 0 s
Task cleanup 2.330 / 1.252 s 3.456 / 1.376 s 0 / 0 s
Data movement 5.882 s 5.918 s 0 - 0.052 s

Continuous batching. As queries arrive in irregular pat-
terns and each of them has different input and output lengths,
new inference requests cannot be executed until the current
batch is completed. As a solution to this issue, continuous
batching techniques [13, 39] are widely adopted in exist-
ing LLM serving systems to improve inference throughput
while minimizing delay. By batching requests at the iteration
level and interleaving prefill and decoding stages, continu-
ous batching can populate new requests into the batch being
processed whenever an earlier request exits. For example,
Figure 2(a) illustrates in the inference part how continuous
batching handles three inference requests arriving at differ-
ent timestamps. When a new request arrives, continuous
batch processing will perform the prefill stage for it after the
current decoding stage is finished. New requests and their
KV cache tensors are then batched with unfinished requests
for later decoding stages.

Nevertheless, more challenges arise when fine-tuning new
LLMs and serving existing LLMs at the same time. Consider
the following example in which a student is fine-tuning a
large language model on a personal computer (PC) with a
24 GB GPU to help improve her thesis for an Ancient Greek
course. For better results, she chose a 7B LLM because it is
the largest LLM that fits in her PC, and PEFT because full
parameter fine-tuning requires hundreds of GB of memory.
After she starts the fine-tuning task, all other local LLM-
based applications on the laptop will be unavailable because
there are not enough resources to run their LLMs. Choosing
a smaller LLM reduces the model’s capabilities, while fre-
quently terminating and starting fine-tuning and inference
tasks reduces computational efficiency, as discussed below.
Switching between heterogenous LLM tasks mainly re-

quires the following three steps: 1) clean the environment for
the old task; 2) initialize the environment for the new task;
and 3) load the LLM to be fine-tuned or served from CPU
memory or storage to GPU memory. Due to the explosive
growth of the LLM scale, the overhead of the third step has
become very large and can no longer be avoided using GPU
sharing technology [1, 2, 6]. Prior systems treat LLM training
and inference as completely irrelevant processes. We profile
two SoTA LLM systems (i.e., DeepSpeed [25] and Colossal-
AI [18]) and show the breakdown of switching overhead in
Table 1. It is clear that the overhead of the first two steps is
tremendous.

Key ideas and motivations of this paper. In GPU clus-
ters, throughput-intensive fine-tuning tasks and latency-
sensitive inference tasks can be scheduled [12, 17, 32] to
dedicated GPUs for training and inference separately. To
achieve low-latency inference in resource-constrained envi-
ronments, a naive solution is to switch to fine-tuning tasks
when the system is idle. However, the system would con-
stantly receive new inference requests, leaving little time for
fine-tuning tasks. Another simple solution is to postpone all
inference requests received when the system is fine-tuning
new LLMs. While it can minimize fine-tuning time by incur-
ring no switching overhead, it breaks the latency guarantee
of inference. FineInfer sits in the middle of these two sce-
narios; with slightly deferred inferences that are still within
service level agreements, we aim at a system that is able to
greatly improve the latency of fine-tuning jobs.

3 FineInfer
In this section, we describe the design of FineInfer, a resource-
efficient system optimized for heterogeneous LLM work-
loads. FineInfer builds on top of base model multiplexing
and iteration-level switch to enable lightweight and fine-
grained switching mechanism. At its core is deferred con-
tinuous batching, a new task-scheduling mechanism that
improves fine-tuning throughput by slightly deferring in-
ference requests without violating SLAs. LLMs fine-tuned
through resource-efficient fine-tuning methods including
PEFT can benefit from all designs of FineInfer. However, the
iteration level switching and deferred continuous batching
can be applied to other systems for general LLMs.

3.1 The Hybrid System
Existing systems are designed and aggressively optimized for
either LLM training or inference. Instead, FineInfer adopts a
hybrid system architecture that supports both fine-tuning
and inference. This avoids coordinating two different sys-
tems on every switch, thereby mitigating task initialization
and cleanup overhead. In addition, FineInfer incorporates op-
timizations including base model multiplexing and iteration-
level switching, making the switchingmechanismmore light-
weight and fine-grained.

Base model multiplexing. FineInfer extends the base
model multiplexing [4, 8, 27] to minimize data movement
overhead in task switch.When switching between fine-tuning
and inference tasks, FineInfer only needs to swap the active
adapters from those used for inference to the ones used for
fine-tuning as opposed to the whole model. In other words,
data movement between the GPU and CPU over the PCIe is
reduced from tens of GBs to tens of MBs.
Iteration-level switching. FineInfer also extends the

iteration-level scheduling [13, 39] in LLM inference to achieve
fine-grained switching. If FineInfer is in fine-tuning mode
and wants to serve newly arrived inference requests, it will
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Algorithm 1 Deferred continuous batching.
Input: inference request queue 𝑄𝑖 , fine-tuning task queue 𝑄 𝑓 ,
estimated completion time for a single fine-tuning iteration 𝑡𝑓

1: let 𝐵𝑖 be the current batch of inference requests
2: let 𝐵𝑛𝑒𝑤 be the batch of new inference requests
3: let 𝐵𝑓 be the current batch of fine-tuning samples
4: while True do
5: ⊲ FineInfer inference mode: ⊳

6: 𝐵𝑖 ← ∅
7: while True do
8: 𝐵𝑛𝑒𝑤 ← ∅
9: let 𝑡𝑐 be the current timestamp
10: for all 𝑟 ∈ 𝑄 do
11: let 𝑡𝑟 be the arrival timestamp of 𝑟
12: let 𝑑𝑟 ← 𝑡𝑐 − 𝑡𝑟 be the deferred time of 𝑟
13: let 𝑑𝑟𝑏 be the deferral bound of 𝑟
14: if 𝑑𝑟 + 𝑡𝑓 ≥ 𝑑𝑟𝑏 then
15: 𝐵𝑛𝑒𝑤 ← 𝐵𝑛𝑒𝑤 ∪ 𝑟
16: 𝑄 ← 𝑄 \ 𝐵𝑛𝑒𝑤
17: if 𝐵𝑛𝑒𝑤 ≠ ∅ then
18: let 𝐴𝑛𝑒𝑤 be the adapters required by 𝐵𝑛𝑒𝑤
19: 𝐵𝑛𝑒𝑤 ← inference_prefill(𝐴𝑛𝑒𝑤 , 𝐵𝑛𝑒𝑤 )
20: 𝐵𝑖 ← 𝐵𝑖 ∪ 𝐵𝑛𝑒𝑤
21: if 𝐵𝑖 ≠ ∅ then
22: let 𝐴𝑖 be the adapters required by 𝐵𝑖
23: 𝐵𝑖 ← inference_decode(𝐴𝑖 , 𝐵𝑖 )
24: 𝐵𝑖 ← 𝐵𝑖\ finished_requests(𝐵𝑖 )
25: if 𝐵𝑖 = ∅ then
26: Break
27: ⊲ FineInfer fine-tuning mode: ⊳

28: 𝐵𝑓 ← get_first_batch(𝑄 𝑓 )
29: 𝑄 𝑓 ← 𝑄 𝑓 \ 𝐵𝑓

30: let 𝐴𝑓 be the adapters required by 𝐵𝑓

31: 𝐴𝑓 ← fine-tune(𝐴𝑓 , 𝐵𝑓 ) ⊲ Run only one iteration

switch to inference mode upon completion of the current it-
eration. If already in inference mode, it batches the inference
requests as continuous batching. In contrast to existing train-
ing systems that terminate the process only after completing
the entire task or at least one epoch containing multiple itera-
tions, FineInfer ensures that resources are promptly available
for inference requests.

3.2 Deferred Continuous Batching
Deferred continuous batching aims to improve fine-tuning
throughout while meeting latency SLA as illustrated in Fig-
ure 2. We describe in detail how and when it switches be-
tween different tasks in heterogeneous LLM workloads in
Algorithm 1.

From fine-tuning to inference. When new inference
requests with deferral bounds arrive, FineInfer does not pro-
cess them immediately. Instead, it will be deferred until its
deferred time is close to the deferral bound. Note that on
a consumer GPU (e.g., the Nvidia 4090 GPU), the time re-
quired to process a batch of 8 inference requests is similar

(b) Deferred continuous batching
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Figure 3. Offloading-based LLM execution under different
scheduling strategies.

to the time required to process a single inference request.
Therefore, deferred continuous batching exploits the batch-
ing opportunities for inference tasks and buys more time for
fine-tuning tasks.

From inference to fine-tuning. If FineInfer is already in
inference mode, it will not switch to fine-tuning mode until
the completion of ongoing inference requests. We denote the
arrival timestamp and the deferral bound of a new inference
request as 𝑡𝑟 and 𝑑𝑟𝑏 , the current timestamp as 𝑡𝑐 , and the
estimated time to complete a single fine-tuning iteration
as 𝑡𝑓 . If 𝑡𝑐 − 𝑡𝑟 + 𝑡𝑓 ≥ 𝑑𝑟𝑏 , FineInfer will batch new and
ongoing requests starting from the next inference iteration.
Otherwise, FineInfer will switch to fine-tuning mode after
the completion of current inference requests.

When the deferral bound is small enough, the execution of
deferred continuous batching is the same as the standard con-
tinuous batching, since the gap between adjacent requests is
not even large enough for one fine-tuning iteration.

3.3 Deferred Continuous Batching for LLMs beyond
GPU Memory

The explosive growth in the size of LLM and the limited GPU
memory in resource-constrained environments have led to
a series of offload-based LLM systems [5, 18, 26, 28, 30] that
aggregate memory and computation from the GPU, CPU, and
even disk to run LLMs. Pure deferred continuous batching is
less effective in offload-based LLM executions because the
bottleneck shifts to data movement between GPU and CPU.
We propose to incorporate heterogeneous batching into the
deferred continuous batching to optimize offload-based LLM
executions.
Heterogeneous batching. Since the system has to run

the LLMs multiple times to generate multiple tokens for an
inference request, the model has to be loaded from CPU
memory to GPU memory multiple times. For fine-tuning,
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Algorithm 2 Deferred continuous batching optimized for
larger-than-GPU LLMs.

Input: inference request queue 𝑄𝑖 , fine-tuning task queue 𝑄 𝑓 ,
estimated completion time for a single inference iteration 𝑡𝑖 ,
estimated completion time for a single fine-tuning iteration 𝑡𝑓

1: let 𝐵𝑖 ← ∅ be the current batch of inference requests
2: let 𝐵𝑓 be the current batch of fine-tuning samples
3: let 𝐹 be the flag of whether to run fine-tuning
4: while True do
5: let 𝑡𝑐 be the current timestamp
6: for all 𝑟 ∈ 𝑄𝑖 do
7: let 𝑡𝑟 be the arrival timestamp of 𝑟
8: let 𝑑𝑟 ← 𝑡𝑐 − 𝑡𝑟 be the deferred time of 𝑟
9: 𝐵𝑖 ← 𝐵𝑖 ∪ 𝑟
10: 𝑄𝑖 ← 𝑄𝑖 \ 𝐵𝑖
11: 𝐹 ← True
12: for all 𝑟 ∈ 𝐵𝑖 do
13: let 𝑑𝑟𝑏 be the deferral bound of 𝑟
14: if 𝑑𝑟 + 𝑡𝑓 − 𝑡𝑖 ≥ 𝑑𝑟𝑏 then
15: 𝐹 ← False
16: let 𝐴𝑖 be the adapters required by 𝐵𝑖
17: if 𝐹 then ⊲ FineInfer heterogeneous mode
18: 𝐵𝑓 ← get_first_batch(𝑄 𝑓 )
19: 𝑄 𝑓 ← 𝑄 𝑓 \ 𝐵𝑓

20: let 𝐴𝑓 be the adapters required by 𝐵𝑓

21: loss , 𝐵𝑖 ← forward(𝐴𝑖 , 𝐵𝑖 , 𝐴𝑓 , 𝐵𝑓 )
22: gradients← backward(loss, 𝐴𝑓 )
23: 𝐴𝑓 ← update(𝐴𝑓 , gradients)
24: for all 𝑟 ∈ 𝐵𝑖 do
25: 𝑑𝑟 ← 𝑑𝑟 + 𝑡𝑓 − 𝑡𝑖
26: else ⊲ FineInfer inference mode
27: 𝐵𝑖 ← forward(𝐴𝑖 , 𝐵𝑖 )
28: 𝐵𝑖 ← 𝐵𝑖\ finished_requests(𝐵𝑖 )

the system also requires loading the model for each batch of
training samples, which presents a substantial opportunity
to reduce data movement via batching. Therefore, FineInfer:
1) batches the input of one iteration of the inference requests
and the input of a batch of training samples of the fine-tuning
task; 2) loads each transformer layer of the model sequen-
tially and runs forward passes of inference and fine-tuning
tasks on this layer and corresponding adapters; and 3) runs
backward pass of fine-tuning task. As shown in Figure 3,
the combination of deferred continuous batching and het-
erogeneous batching significantly reduces data movement
in GPU-CPU execution. Detailed pseudocode is included in
Algorithm 2.

State and cache management. To improve computa-
tional efficiency, fine-tuning requires maintaining the opti-
mizer state and activations, while inference requires main-
taining a KV cache. Using the Llama2-7B model (FP16) as
an example, if a fine-tuning task employs the rank-8 version
of LoRA along with the AdamW optimizer (FP32), sets the
batch size to 4, and aligns the length of each training sam-
ple to 256, an additional 3.14 GB of memory is needed to

maintain optimizer states and activations. For an inference
task with the same batch size, input sequence length of 224,
and output sequence length of 32, an additional 0.5 GB of
memory is required to maintain the KV cache.
However, when performing heterogeneous batching, ex-

isting systems will naively maintain and calculate the opti-
mizer states, activations, and KV cache for both fine-tuning
and inference tasks. Since the intermediate results are not
released until the autoregressive generation process is com-
pleted, the memory consumption will be tens or hundreds
of times that of fine-tuning or inference alone. Naively us-
ing heterogeneous batching in the fine-tuning and infer-
ence task examples above would result in an additional
32 ∗ (3.14 + 0.5) = 116.48 GB memory consumption.

To address these issues, we customize the computational
graph of the fine-tuning task and the KV cache of the infer-
ence task to ensure that they only maintain and calculate
intermediate results for the corresponding inputs. Mean-
while, FineInfer promptly deallocates the optimizer state and
activations for fine-tuning between iterations, and the KV
cache for inference between requests.

4 Evaluation
We now present a preliminary evaluation of FineInfer includ-
ing comparisons against the state-of-the-art LLM systems
Through experiments, we confirm the following:

• FineInfer effectively reduces the switching overhead
between heterogeneous LLM tasks.
• In resource-constrained environments, FineInfer can
complete fine-tuning tasks faster while meeting the
latency guarantees of inference requests.
• When LLMs do not fit in GPU memory, FineInfer also
outperforms strong state-of-the-art baselines.

4.1 Experimental Setup
We evaluate FineInfer on a dual-socket server with two 16-
core AMD EPYC 7313 CPUs clocked at 3.0GHz, 256 GB of
DRAM, and four Nvidia 3090 GPUs (24 GB). For all experi-
ments, we ensure that only one GPU is enabled.

Models and datasets.We choose the Llama2 [34] models
with 7B and 13B parameters as the base models and create
PEFT adapter models from them and LoRA methods. In the
fine-tuning task, we use the Alpaca [33] dataset and follow
the default configuration for data preprocessing.
Workloads.We conducted experiments using synthetic

workloads consisting of fine-tuning and inference, each last-
ing five minutes. For workloads of GPU-resident LLMs, new
requests will arrive randomly within 2 seconds of the last
request’s arrival. For workloads of larger-than-GPU LLMs,
new requests will arrive randomly within 1 minute of the
last request’s arrival. For all workloads, we assume that there
are always unfinished or new tasks in the fine-tuning queue,
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Figure 4. Experiment for LLMs fit in GPU memory. The
benefits of deferred continuous batching increase with larger
deferral bounds.

since each of them may take several minutes or tens of min-
utes.
Baselines. To the best of our knowledge, no other sys-

tem has been optimized for concurrent LLM fine-tuning and
inference. So we conduct experiments using variants of Fine-
Infer and two popular open-source systems, DeepSpeed [25]
and Colossal-AI [18]. As of February 2024, only these two
systems fully support training, inference, and offloading. To
ensure a fair comparison, the base model multiplexing and
iteration-level switching are also implemented in the base-
lines whenwe verify the effectiveness of deferred continuous
batching.

4.2 Switching Overhead
We run simple microbenchmarks consisting of either one
fine-tuning iteration or one inference request to quantify
the effectiveness of our design in reducing switching over-
head. As Table 1 shows, FineInfer can reduce the data move-
ment overhead from around 6 seconds to less than 0.1 sec-
onds since base model multiplexing allows it to preserve
the pre-trained model in GPU memory. At the same time,
the hybrid system architecture avoids task initialization and
cleanup overhead. The low end-to-end switching overhead
of FineInfer makes running heterogeneous LLM workloads
in resource-constrained workloads feasible.

4.3 GPU-Resident Performance
Our first end-to-end experiment evaluates the effectiveness
of deferred continuous batching using Llama2-7B. Figure 4
plots how each variant behaves under inference requests
with random arrival times and different deferral bounds.
FineInfer outperforms all variants for small latency bounds
and significantly minimizes fine-tuning time for larger la-
tency bounds. The improvement is capped at 3.2x because
when the deferral bound is large enough, inference cannot
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Figure 5. Experiment for larger-than-GPU LLMs. The com-
bination of deferred continuous batching and heterogeneous
batching boosts the improvement to 36x over the SoTA LLM
systems by amortizing the data movement overhead with
inference requests.

continue to increase its throughput by increasing the size of
the batch.

4.4 Larger-than-GPU Performance
Next, we evaluate each variant with the Llama2-13B for
GPU-CPU execution. As shown in Figure 5, FineInfer using
only deferred continuous batching does not perform well in
this case because the performance of this workload depends
primarily on data movement overhead. By incorporating het-
erogeneous batching, FineInfer (w/ hb) performs 2.1x better
than deferred continuous batching alone and can achieve
throughput that is an order of magnitude higher (up to 29
samples per minute) than SoTA LLM systems (0.8 samples
per minute).

5 Related Work
Our work builds upon rich literature on parameter-efficient
fine-tuning, GPU scheduling and sharing, and offloading-
based LLM systems.
Parameter-efficient fine-tuning. A substantial body

of works [10, 15, 19, 21, 22] has been explored to reduce
memory and compute demand of fine-tuning from an algo-
rithmic perspective. They achieve this goal while providing
promising statistical performance by updating a small set
of parameters during fine-tuning. Although our evaluation
focuses on the widely used LoRA, FineInfer can seamlessly
integrate other PEFT techniques and lead to similar perfor-
mance improvements.
GPU cluster scheduling. Scheduling strategies [12, 17,

23, 40] have been extensively explored to maximize resource
utilization of deep learning (DL) workloads on GPU clusters.
The above approach assigns DL jobs to appropriate machines
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or GPUs based on compute, memory, and bandwidth require-
ments, and is therefore not suitable for resource-constrained
environments. Exploring scheduling strategies to co-locate
DL jobs using the same pre-trained model in a GPU cluster,
and then applying our work, would be an interesting future
task.
GPU sharing. GPU sharing can be categorized into spa-

tial sharing and temporal sharing. Spatial sharing [1, 2, 31]
allows multiple processes to run on different regions of the
same GPU simultaneously, eliminating task switch over-
heads. However, using spatial sharing requires the system to
hold at least two copies of models, one for inference and one
for fine-tuning. Compared to our solution, spatial sharing
must sacrifice statistical performance because it can only use
smaller models to meet memory constraints.
Temporal sharing [6] temporally multiplexing the GPU

by context-switching between multiple jobs to improve uti-
lization. Unlike spatial sharing, it dedicates all resources of
a GPU to a single job for a time slice. Compared to time-
sharing solutions, heterogeneous batching allows FineInfer
to serve PEFT and inference simultaneously.

Offloading-based LLM systems. FlexGen [28] optimizes
throughput-oriented LLM inference for latency-insensitive
scenarios via zig-zag block schedule. PowerInfer [30] and
LLM-in-a-flash [30] leverage the activation sparsity of ReLU-
based LLMs to reduce CPU-GPU data movement in LLM
inference, but these methods require retraining after modi-
fying the model architecture. DeepSpeed [26] and Colossal-
AI [18] both provide offloading solutions in their training
systems and inference systems. They can achieve advanced
performance in homogeneous training or inference tasks but
are not optimal for heterogeneous LLM workloads due to
the overhead of coordinating two different systems.

6 Conclusion and Future Work
We introduce FineInfer, the first system designed for concur-
rent LLM fine-tuning and inference in resource-constrained
environments. FineInfer uses a combination of new and ex-
tended existing techniques, including (1) base model multi-
plexing and iteration-level scheduling to minimize switching
overhead, (2) deferred continuous batching to orchestrate
resource-efficient fine-tuning and inference, and (3) heteroge-
neous batching to reduce data movement. Evaluation results
show that on an Nvidia 4090 GPU, FineInfer can reduce fine-
tuning time by up to 3x for GPU-resident LLMs and 36x for
larger-than-GPU LLMs compared to existing systems under
different workloads while ensuring the latency guarantees
of inference requests.

In the future, we aim to include more resource-constrained
devices (e.g., personal computers and mobile phones) and
metrics (e.g., SLAs) in the evaluation. Additionally, we will
use statistical modeling [9] or real-world LLM job traces [11,
16, 36] to better generate workloads.
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