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ETH Zurich

8092 Zurich, Switzerland

ABSTRACT
Designing devices for ultrasonic vibration applications is mostly done by intuitively adjusting the geometry to obtain the desired mode of
vibration at a specific operating frequency. Recent studies have shown that with optimization methods, new devices with improved per-
formance can be easily found. In this investigation, a new methodology for designing an ultrasonic amplifier through shape optimization
using Genetic Algorithms and Simplex Method with specific fitness functions is presented. Displacements at specific functional areas,
main functionality, and mode frequency are considered to determine the properties of an individual shape to meet the stated criteria.
Length, diameter, position of mountings, and further specific geometric parameters are set up for the algorithm search for an optimized
shape. Beginning with genetic algorithms, the basic shape fitting the stated requirements is found. After that the simplex method further
improves the found shape to most appropriately minimize the fitness function. At the end, the fittest individual is selected as the final
solution. Finally, resulting shapes are experimentally tested to show the effectiveness of the methodology.
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INTRODUCTION
Recent developments in ultrasonic vibration assisted ma-

chining call for new designs of tools, horns, boosters, and other
components. While a wider application range of the hybrid tech-
nology of ultrasonic vibration assistance for many manufactur-
ing technologies is of great interest, one key challenge is the
design of the system in order to achieve the desired resonance
vibration. The most common mode used in ultrasonic-vibration-
assisted machining is the longitudinal mode of an axisymmetri-
cal horn, which can be easily obtained when solving the Webster
Horn Equation [1].
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where t is time, u is displacement, A(z) is the cross sectional
area as function of position z, and c is the acoustic velocity. The

acoustic velocity c can be obtained with
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where EY is the material’s Young’s modulus, and ρ the mate-
rial density. In case of a harmonic motion, equation (1) can be
rewritten as
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where ω is the angular frequency. Using equation (3) the length
of axisymmetric horns can easily be calculated given a specific
resonance frequency. The design of tool holders and horns can be
obtained by solving the above equations [2–4] for various A(z).



Based on these findings, a great variety of axisymmetric horns
has been found and are used in the industry today. In medi-
cal engineering, a novel ultrasonic vibration tool for surgery has
been designed and tuned to the appropriate frequency for the
optimal configuration [5]. A percussive drill system was de-
signed for rock coring on planetary robotic missions using ul-
trasonic vibration assistance to reduce power and torque require-
ments [6]. More challenging are new designs for ultrasonic vi-
bration assisted machining by combining two modes for opera-
tional purposes [7]. The longitudinal-torsional composite mode
allows advanced applications for machining like drilling. Tsu-
jino et al. designed a one-dimensional longitudinal-torsional vi-
bration converter using diagonal slits within the resonating struc-
ture [8]. Designing transducers for ultrasonic assisted wire bond-
ing with finite element method has been discussed in [9] with
the goal of matching simulation results with experimental re-
sults. Enhancing vibration performance and matching simula-
tion with experimental results has also been discussed in [10] for
ultrasonic block horns. Properly designing a rotary ultrasonic
milling tool with finite element method is introduced in [11]. For
many of the mentioned designs of horns and ultrasonic vibration
components, intuitive design strategies were used by evaluating
the nodal displacements of modes simulated with an FEM soft-
ware. A common non-automated design procedure can be found
in [12], which outlines the step-by-step procedure to manually
design an ultrasonic device. Automating the intuitive/manual de-
sign process can be done by structural optimization.

Many optimization methods have been applied for finding
shapes that provide good results for ultrasonic vibration applica-
tions. Combining multi-objective decision making such as the
NIMBUS method with the finite element method can provide
very good designs as shown in [13]. Another very good opti-
mization was introduced in [14] to find advanced transducer de-
signs while satisfying conflicting optimal values in the design
space. In [15], design of experiments is used to find the cor-
rect parameters for an ultrasonic linear motor and perform a sen-
sitivity analysis for each parameter and their interactions with
each other. Based on equation (1), a ultrasonic horn optimization
method is done in [16]. Porto et al. developed a genetic algo-
rithm to optimize the amplitude of a surgical ultrasonic trans-
ducer by changing the length of specific geometric parts at a
given frequency [17].

Designing the components for ultrasonic vibration assisted
machining is generally challenging, because the high frequency
vibrations need to precisely occur at the tool edge or a preferred
location. While the maximum amplitude is desired at the tool,
minimal vibration should occur at the clamping or mounting
of the ultrasonic vibration device. In this investigation, a new
methodology for a shape optimization [18] of ultrasonic vibra-
tion amplifiers and reducers using generic algorithm (GA) and
simplex method [19, 20] is introduced. Since the GA is capa-
ble of searching for the optimum of the entire design space for

non convex problems, it serves as a global search method. The
subsequent simplex method, as a local search method, is used
to further refine the found optimum. The optimized shapes are
experimentally tested by conducting an FFT Analysis and mea-
suring displacements using a laser vibrometer.

1 OPTIMIZATION METHODOLOGY AND PARAME-
TERIZATION

1.1 Methodology
To optimize the shape of a structure via shape optimization,

specific parameters need to be altered while the optimization al-
gorithm tries to satisfy the defined criteria. Such criteria can
be stress levels, compliance, volume and others that are to be
maximized or minimized. As mentioned earlier, most of the ul-
trasonic vibration assisted machining use the longitudinal reso-
nance mode to impose oscillations to the tool. For this optimiza-
tion, the longitudinal resonance mode in z-direction is described
by the displacements of specific structural parts when exciting
the structure with the operating frequency of ω = 35kHz with
an amplitude of x0 = 10µm. This frequency is set by the genera-
tor (see section 2) used later in the experiments. The GA uses a
fitness function that is to be minimized in order to find the opti-
mal solution to the defined problem. For designing the structure,
the finite element method (FEM) results of a modal analysis [21]
and harmonic response analysis [22] are evaluated based on the
displacements of the mesh nodes at the specific structure parts
like cutting edge and mountings. The nodal displacement for de-
scribing the modal shape is used, because vibration modes are
usually graphically evaluated (e.g. [12]) through the nodal dis-
placements. Therefore, the global fitness function is made up
from the following set of dimensionless functions. At the func-
tional area or tool edge, the sum of displacements in z-direction
is to be maximized while the sum of displacements in y-direction
and the sum of displacements in x-direction are to be minimized,
as stated by
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where ux is the nodal displacement in x-direction, uy is the nodal
displacement in y-direction, and uz is the nodal displacement in
z-direction as shown in Figure 1. With this function, bending or
torsional modes will have a higher fitness value than the longi-
tudinal mode. To ensure an even displacement across all mesh
nodes at the functional area, the sum of difference between the
displacement of a single node and the average displacement in



z-direction needs to be minimized, which is stated by

f2 =

n

∑
i=0

(|uzi|− |ūz|)
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being the average displacement in z-direction. Considering the
overall longitudinal mode and the placement of the mountings
needed for fixing the device, it is necessary to position the mount-
ings at the vibration nodes of the device, because minimal vibra-
tion should occur at the mountings. This is done with

f3 =
|xm1− xn1|
|xn1|

+
|xm2− xn2|
|xn2|

!
= min (7)

where xm1, xm2 are the positions of the mountings 1 and 2, and
xn1, xn2 are the locations of the vibration nodes 1 and 2. The val-
ues for the location of the vibration nodes are selected by finding
two minima of the displacement values in z-direction along the
axis of rotation. Since the input amplitude is 10µm and a booster
or amplifier aims to increase the amplitude while an amplitude
reducer aims to decrease the amplitude of an ultrasonic vibration
system, the fitness function

f4 =
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is formulated with AR being the amplitude ratio between input
and output, ūzo is the average amplitude in z-direction at the out-
put, and ūze is the average amplitude in z-direction at the input.
While a harmonic response analysis is used to obtain the results
for the so far described fitness functions, a modal analysis is ad-
ditionally performed to obtain the resonance frequency. Ideally,
the ultrasonic device resonant frequency or mode should be equal
to the operating frequency of the transducer (Section 2). This
condition is stated by

f5 =
|ωs−ωt |

ωt

!
= min (9)

where ωs is the frequency of the vibration mode and ωt is the
targeted frequency, which is 35kHz for this ultrasonic device.

Parameter Value Range Unit

Z13 [20 ; 100] [mm]

Z15 [20 ; 200] [mm]

RR [0 ; 40] [mm]

Zz1 [0 ; Z13] [mm]

Zz2 [(Z13+RR ) ; Z15] [mm]

R1 [5 ; 16] [mm]

R2 [5 ; 16] [mm]

Table 1: Parameters defining the shape of the geometry and their
value range. Mounting width and relative height are 3mm.

Here, equations eqs. (5), (7) and (9) are normalized to remove
any dimensions.

The global fitness function for the GA optimization results
in

f =
6

∑
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Ri fi
!
= min (10)

where R is a penalty factor which can be specified for each in-
dividual fitness functions. For the following optimization, the
penalty factors are set to R1 = 10, R2 = 10, R3 = 10, R4 = 100,
and R5 = 10. These factors are chosen based on relevance of
each function. For the present optimization, ensuring the cor-
rect amplification ( f4) is most important, whereas f1, f2, f3 and
f5 are valid for many different amplification factors. It should
be pointed out that using the same penalty factor for all func-
tions also leads to valid results. But regarding this optimizing,
the minimization of the global fitness function was found to take
longer if the functions are not weighted.

1.2 Parameterization
The presented optimization methodology divides the struc-

ture into fixed and variable parts that make up the entity of the
component. While the fixed geometric specifications may not be
altered, the variable components are parameterized according to
the design space available for the optimization. Figure 1 shows
the ultrasonic vibration component to be optimized to meet the
optimization criteria. Shown are the variable geometric parame-
ters that are altered during the optimization process.

From Table 1 and Figure 1, it can be seen that Z15 must
always be greater than Z13 +RR. Therefore, an inequality con-
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Figure 1: Cross sectional view of the geometry for optimization and the corresponding parameters. At the shown configuration, the
geometry amplifies the amplitude applied to the back on the right end of the drawing. The displacements ux, uy, and uz for a mesh node
at the front are shown.

straint needs to be defined as

Z13−Z15 +RR ≤ 0 (11)

which the GA needs to satisfy for all solutions. Depending on
how volumes are created in the FEM software, a different value
can be used here instead of 0 to help with the proper geometry
building. Another inequality constraint is

R2−R1−RR ≤ 0 (12)

to avoid invalid statements in the geometry. However, this can
be replaced by simply substituting the connecting radius with a
straight line for solutions with RR being smaller than R2−R1.
While the above listed constraints should not allow invalid or
unrealistic geometric shapes, any results that cause an error or
invalid FEM calculation will be punished with a fitness value of
infinity.

1.3 Genetic Algorithm Settings and Simplex Method
Figure 2 shows the essential optimization methodology. Pro-

grams used are MATLAB for the GA and ANSYS for the FEM.
The GA is initialized to perform the optimization with the fol-
lowing settings:

• Initial Population is picked randomly within the value range
(Table 1) of each parameter.

• Maximum Generation Size is 30.

• Population Size is 500 to allow great variety among children.
• Four Elite Children will be copied from one generation to

the next generation. With this, the four best solutions will
be kept from one generation to the other.

• Parents are chosen using stochastic universal sampling, with
more fit parents having a better chance of being picked.

• 40% of the children are obtained through mutation and the
remaining 60% from crossover (reproduction).

• Mutation is done using uniform mutations at multiple points
at the genotype. Mutated genes are uniformly distributed
over the range defined in Table 1. If a mutant does not meet
the inequality constraints, it is discarded and the mutation is
repeated.

• The crossover fraction is 0.3 and reproduced children are
created as the weighted arithmetic mean of two parents.

• Terminating Conditions: If the cumulative change in the fit-
ness value does not change at least 1.0 ·10−6, or the maxi-
mum of generations is reached, or no change in the fitness
value (stall) is observed for 10 successive generations.

Regarding the settings of the genetic algorithm, it becomes
clear that it is used with high a mutation rate to allow larger
stochastic search. This is necessary, because the fitness func-
tion might have many local minima with both radii, R1 and R2,
being within the same parameter range. Since the GA is used
with high mutation, the optimization can take a longer time to
find an optimum, because more individuals are used for explor-
ing new solutions and not exploiting a known good solution. Of
course, the no free lunch theorem [23] still applies for the GA.
Other optimization algorithms can also be capable of solving the
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Figure 2: Optimization Methodology including GA and simplex
search with described settings. FEM includes the modal and
harmonic analysis. The Simplex Method picks up the best cre-
ated individual of the GA and further optimizes the parameters
to meet the stated criteria.

optimization problem (e.g. simulated annealing), but GA was
found to be superior and faster for this specific application. The
simplex method is used as a direct search method to faster op-
timize and refine the best individual found by the GA. This is
realized by taking the optimal values found by the GA and apply
the same basic methodology shown in Figure 2 and global fitness
function (10) (GA operations replaced by simplex operations),
except that the stopping conditions are only based on a maxi-
mum number of iterations and a relative fitness value change of
1.0 ·10−4. To better reach the found minimum, the initial sim-
plex is build with points of 5% increments found by the GA
optimization, which serves as the initial vertex. Increments are
slightly increased or decreased for each iteration.

2 EXPERIMENTAL PROCEDURE AND MATERIALS
To test the vibration amplitude and frequency of the manu-

factured results from the optimization, a laser vibrometer is uti-
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device

piezoeletric
transducer

Figure 3: Measurement setup for laser vibrometer tests. Red
arrows indicate the laser measurement positions.

lized. Vibrations are measured at the front and mounting 1 in
x-,y-, and z-direction. The measurement setup is shown in Fig-
ure 3. For the measurements, mounting 2 is clamped in the holder
and mounting 1 is kept free. The input amplitude is measured at
the transducer output and is kept constant throughout the entire
experiments. Operating power for the transducer is provided by a
generator with a maximum output of 900W. The generator reg-
ulates the power output based on the selected amplitude setting
and is designed for 35kHz with ±500Hz range. To check the
frequency of the longitudinal mode of each result, a FFT analy-
sis with 10V random chirp input is done. The material used for
manufacturing the ultrasonic devices is 51CrV4 with a Young’s
modulus of EY = 210GPa, density ρ = 7850kgm−3, Poisson ra-
tio of 0.3, and damping ratio of 1%. Material properties used in
the FEM analysis are set accordingly.

3 RESULTS AND DISCUSSION
To test the optimization methodology, amplifiers with am-

plification factors of 2 and 1, and amplitude reducers with ampli-
fication factors of 0.5 are designed. The so far described prob-
lem and optimization procedure have multiple results that satisfy
the optimization criteria. For simplification, the solutions with
largest R2 for the amplifier design and smallest R2 for the reducer
design are used for the experimental testing. Table 2 shows the
values of the optimized shapes satisfying the stated criteria and
minimizing the fitness function. The values of the fitness func-
tion after the GA and simplex method are also listed. It becomes
very clear, that the simplex method is essential to finding an ap-
propriate geometric shape to better minimize the stated fitness
function and meet the stated criteria. Figure 4 shows the opti-
mized shapes of the devices with amplification factors of 0.5, 1
and 2, with the mountings located at the vibration nodes of the
longitudinal vibration.



Device AR Z13 Z15 RR Zz1 Zz2 R1 R2 Input Output fGA fS

[mm] [µm]

Amplifier
2 83.11 156.66 40.74 32.12 118.54 8.88 15 10 17.3 10.03 7.0

1 62.41 146.69 39.55 33.75 105.75 14.8 15 10 9.7 15.5 2.99

Reducer 0.5 95.81 145.81 16.86 32.87 104.95 12.69 10.79 10 7.1 51 21.6

Table 2: Solutions found using the presented optimization methodology. Presented parameter values define the geometric shapes of the
solutions for the tested amplification factors. Output is the average displacement at the front resulting from the FEM analysis of the final
shape.

AR front mounting 1 AMR ωo

ûx ûy ûz ûx ûy ûz

2 0.02 0.02 2.39 0.22 0.25 0.14 1.9 35.3

1 0.02 0.02 1.25 0.23 0.24 0.06 1.0 35.1

0.5 0.02 0.02 0.72 0.19 0.19 0.1 0.6 35.2

Table 3: Measured amplitudes at front and mounting 1 in [µm].
AR indicates the simulated amplification factor and AMR states the
measured amplification factor, which is calculated by dividing
the measured amplitude in z-direction at the front by the input
amplitude. ωo is the effective operating frequency [kHz] for this
device.

Figure 5 shows the FFT analysis for all three devices. The
operating mode at 35kHz can clearly be seen. Table 3 con-
tains the measured amplitudes at the front and mounting 1 for
all tested device shapes. The input amplitude for these experi-
ments is 1.2µm at approximately 35kHz. It can be seen that the
actual amplification ratios are very near the previously stated am-
plification factors of the optimization. The actual output ampli-
tudes change accordingly for each device. Vibrations measured
at mounting 1 are very low indicating that it is correctly placed
at the vibration node of the longitudinal mode of the device.

Regarding the solution of amplification of AR = 1, the value
of Z15 nearly matches the length of a cylindrical horn determined
by solving equation (1). In case of a cylindrical horn, equa-
tion (1) can be solved to

l =
nπ

ω
c (13)

with l being the total length of the cylindrical horn, n is the nth

half wavelength or here the n number of vibration nodes, ω is
the angular excitation frequency, and c is the acoustic veloc-
ity [24]. Solving equation (13) with the appropriate values, the
total length equals l = 147.8mm. It shows that the optimiza-
tion procedure works for simple geometries as well. When con-
sidering function f5, a very small change of 0.2mm in length
would result in a change of 100Hz, assuming a cylindrical horn
and equation (13). Here, the simplex method is very suitable for
finding the most appropriate values.

Discrepancies between simulation results and experimen-
tal results are most likely caused by inexact material properties,
and numerical errors of the FEM. A change in material proper-
ties (see Section 2) affects the frequency of the vibration mode
and thereby the results for the shape optimization. For exam-
ple, if the Young’s modulus is set as EY = 200GPa instead of
EY = 210GPa, the frequency goes up about 850Hz. It is there-
fore important to set the material parameters in the FEM as good
as possible to the physical properties of the material used. Re-
garding the measured operating frequency in Table 3, the used
material and geometric parameters allow a very precise FEM
calculation of the solution. The element size of the mesh has
an impact on the optimization as well, since with different mesh
density, the results can differ.

4 CONCLUSION
In conclusion, it has been shown that the presented optimiza-

tion methodology for ultrasonic devices is capable of delivering
usable results that are in accordance with the specifications of
the application. The presented fitness functions allow the op-
timizer to appropriately find geometric shapes of ultrasonic de-
vices. They consist of the displacements at essential areas of
the ultrasonic device and position of functional parts of the de-
vice. For finding the optimal design, a GA and simplex method
is used. A longitudinal mode with the appropriate amplification
at the functional area and two fix points with minimal vibration
was tested for the amplitude modifiers. Changing the amplifi-



(a) Device with amplification of 2 (b) Device with amplification of 1 (c) Device with amplification of 0.5

Figure 4: Results of the Optimization Methodology. The longitudinal mode at 35kHz for all three results is shown. Colors show
absolute values of displacement with an increasing amplitude at the front.

cation factor resulted in new shapes that meet the optimization
criteria. Changing other specifications, such as frequency or res-
onance mode type, can also be done.

For further investigations, this optimization methodology
needs to be tested on various ultrasonic components as well as
cutting tools. To enhance the presented optimization procedure,
minimization of internal stress [25] can be included in the fitness

function. This is very important for small and thin high-power
ultrasonic devices. Adding further constraints to simulate the
connection at the mountings might also be included. Further-
more, a topology optimization needs to be developed to enable a
wider range of possible solutions for ultrasonic components.
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Figure 5: 2 shows the FFT for device with amplification 1, 4
for amplification 2, and 3 for amplification 0.5 (= reducer). Ef-
fective operating frequencies are listed in Table 3.
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