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Abstract

The introduction of this thesis consists of two parts. In the first of these we will introduce systems
biology as a field of study by placing it in the historical context of the overarching discipline of
biology. A quick stroll through this history offers us a much needed and often absent perspective
on the field as part of the larger body of scientific philosophy that it is part of. One might
argue such positioning is paramount in any systems science whose existence predicates on the
essentiality of contextualization. In this excursion we will swiftly move from the Greeks to the
20th century, touching on historical figures and events to give an impression of how the philosophy
of biological sciences developed throughout. Then follows an examination of the scientific method,
the development of which took center stage in the scientific debate during the 20th century, where
we review different models of scientific inquiry and introduce the question of how to distinguish
science from non-science, known as the demarcation problem. The section concludes with the
introduction of the question of what systems biology is assumed to be, according to self-proclaimed
founders of the field and their predecessors, and what promises accompanied its advent.

The second section of the introduction concerns itself with cellular metabolism. Here the
relevant background on different aspects relating to the specific system studied in this work is
provided to the reader. First a general perspective on central carbon metabolism and the different
regulatory mechanisms that control it is laid out. Finally, an overview of the study of regulation of
central carbon metabolism in the model species Escherichia coli is presented in which we introduce
the current state of the field by summarizing contemporary work. This section concludes with an
outline of the experimental and computational challenges that scientists in the field are faced with.

In chapter 2 we focus on the prediction of allosteric regulation in Escherichia coli metabolism
by single reaction modeling. This model structure identification approach uses the available
metabolomics, fluxomics and proteomics steady-state data over different series of nutrient-limited
growth conditions, and then asks whether a generalized reversible enzyme kinetics rate law without
regulation is sufficient to describe the observations, or whether the inclusion of allosteric regula-
tion significantly improves this ability. In this study we take a reductionistic approach in that we
study single reactions in isolation. Herein we sacrifice the ability to probe into how a regulatory
interaction might affect emergent behavior such as network dynamics in favor of scalability that
the simplistic nature of this approach offers. We systematically assess the regulatory potential of
284 metabolites as allosteric interactors of 84 metabolic reactions. In order to lower the number of
false positives among the predicted top ranking interactions we include additional lines of evidence,
such as the reported presence of the regulatory interaction in another organism or its detection in
physical interaction studies. We then selected the top ranking interactions for follow-up study using
enzyme assays in order to test whether the predicted regulators modulate enzyme activity in wvitro.
In these validation experiments we find evidence for the existence of 11 novel metabolite-protein
interactions with potential physiological relevance.

In chapter 3 we concern ourselves with the prediction of allosteric regulation in the tricarboxilic
acid cycle of Escherichia coli by using a system of coupled differential equations. This approach
combines steady-state data on the metabolome, fluxome and proteome with that of thermody-
namic and kinetic parameter estimates to derive model priors over the initial conditions. As in
chapter 2, we opt for generalized reversible enzyme kinetics rate laws, but in contrast to it, we
study the system as an interconnected network of metabolic reactions. Two additional noteworthy
distinctions are the fact that we work with absolute quantification data on all the aforementioned
-omics levels, and that we use time series data of the observed metabolome dynamics after a carbon
source perturbation, rather than a series of steady states. Using this reaction network we exploit
existing dependencies, such as those among thermodynamic parameters, but also those between



kinetic parameters, biochemical species and their thermodynamics as described by the Haldane
relationship. Our primary goal is to answer the question of whether, based on the available data,
we can derive a model that can explain the transient dynamics observed after a carbon source
switch, and if not, to systematically identify key regulatory mechanisms that help coordinate this
dynamic adaptation. Unexpectedly however, we encountered formidable challenges during this en-
deavor trying to reproduce the work of predecessors. For that reason the majority of our effort was
spent addressing this issue in order to obtain a framework that produces models and predictions
that are reproducible, reliable and reusable. Venturing back to the tricarboxylic acid cycle, we find
that part of the observed dynamics cannot be sufficiently explained. By assembling an ensemble of
models with different regulatory interaction topologies we assess which protein-metabolite interac-
tions help to increase the explanatory potential of the model in describing the observed dynamics
most, and derive a set of predictions from these results.

Finally, we summarize the key findings of this thesis. The first achievement is that we predicted
and found in vitro evidence for the existence of up to 11 metabolite-protein interactions from our
single reaction modeling study using steady-state data and in vitro enzyme assays. However, the
absence of baseline expectations poses a problem that highlights inadequacies in scientific rigor.
The second achievement is that we have produced a modeling pipeline that generates models and
predictions that are reproducible, models that are both reliable, in that the automated construction
process minimizes the risk of errors, and reusable, since components are properly annotated, and
robust, in that the predictions obtained are less variable than those in previous work. Finally, we
show that the transient metabolome dynamics that we observe cannot be sufficiently explained
by combining the available data sources, and generate predictions on which allosteric interactions
might exist that help shape the response. We conclude with a discussion on the current state
of the field, the scientific merit of the endeavor, and bring the whole to fruition with a series of
recommendations for future experiments.



Sommario

L’introduzione di questa tesi si compone di due parti. Nella prima di queste, introdurremo la
biologia dei sistemi come campo di studio, posizionandola nel contesto storico della disciplina
biologica generale. Una rapida passeggiata attraverso questa storia ci offre una prospettiva spesso
necessaria e spesso assente sul campo come parte del pitt ampio corpo di filosofia scientifica di cui
fa parte. Si potrebbe sostenere che tale posizionamento é fondamentale in ogni scienza dei sistemi
il cui esistenza si basa sull’essenzialita della contestualizzazione. In questo excursus, passeremo
rapidamente dai Greci al XX secolo, toccando figure e eventi storici per dare un’idea di come si sia
sviluppata la filosofia delle scienze biologiche. Segue quindi un’esaminazione del metodo scientifico,
lo sviluppo del quale ha avuto un ruolo centrale nel dibattito scientifico durante il XX secolo, in cui
esamineremo diversi modelli di ricerca scientifica e introdurremo la questione di come distinguere
la scienza dalla non-scienza, nota come problema della demarcazione. La sezione si conclude con
I'introduzione della domanda su cosa si presume sia la biologia dei sistemi, secondo i fondatori
autoproclamati del campo e i loro predecessori, e quali promesse accompagnino la sua nascita.

La seconda sezione dell’introduzione si occupa del metabolismo cellulare. Qui viene fornito al
lettore il contesto rilevante su diversi aspetti relativi al sistema specifico studiato in questo lavoro.
Prima di tutto, viene delineata una prospettiva generale sul metabolismo centrale del carbonio
e sui diversi meccanismi di regolazione che lo controllano. Infine, viene presentata un’overview
dello studio della regolazione del metabolismo centrale del carbonio nel ceppo modello Escherichia
coli, in cui introduciamo lo stato attuale del campo riassumendo il lavoro contemporaneo. Questa
sezione si conclude con un’analisi delle sfide sperimentali e computazionali che i ricercatori in questo
campo devono affrontare.

Nel capitolo 2 ci concentriamo sulla previsione della regolazione alosterica nel metabolismo di
Escherichia coli mediante la modellazione di reazioni singole. Questo approccio di identificazione
della struttura del modello utilizza dati stazionari di metabolomica, fluxomica e proteomica in
diverse serie di condizioni di crescita a limitazione di nutrienti, e si chiede se una legge generale
di cinetica enzimatica reversibile senza regolazione sia sufficiente per descrivere le osservazioni, o
se I'inclusione della regolazione alosterica migliora significativamente questa capacita. In questo
studio adottiamo un approccio riduzionistico nello studio delle singole reazioni in isolamento. In
questo sacrificiamo la capacita di indagare come un’interazione regolatoria possa influenzare com-
portamenti emergenti come la dinamica di rete a favore della scalabilita che la natura semplicistica
di questo approccio offre. Valutiamo sistematicamente il potenziale regolatorio di 284 metaboliti
come interattori alosterici di 84 reazioni metaboliche. Per ridurre il numero di falsi positivi tra
le interazioni previste in alto includiamo ulteriori linee di evidenza, come la presenza segnalata
dell’interazione regolatoria in un altro organismo o la sua rilevazione in studi di interazione fisica.
Selezioniamo poi le interazioni in alto per uno studio di verifica utilizzando saggi enzimatici per
verificare se i regolatori previsti modulano 'attivita enzimatica in vitro. In questi esperimenti di
validazione troviamo prove dell’esistenza di 11 nuove interazioni metabolite-proteina con potenziale
rilevanza fisiologica.

Nel capitolo 3 ci occupiamo della previsione della regolazione alosterica nel ciclo dell’acido tri-
carbossilico di Fscherichia coli utilizzando un sistema di equazioni differenziali accoppiate. Questo
approccio combina dati stazionari sul metaboloma, il fluxoma e il proteoma con stime dei parametri
termodinamici e cinetici per derivare ipotesi del modello sulle condizioni iniziali. Come nel capitolo
2, optiamo per leggi generali di cinetica enzimatica reversibile, ma a differenza di esso, studiamo
il sistema come una rete interconnessa di reazioni metaboliche. Due distinzioni ulteriori degne di
nota sono il fatto che lavoriamo con dati di quantificazione assoluta su tutti i livelli di -omica sopra
menzionati, e che utilizziamo dati di serie temporali della dinamica osservata del metaboloma dopo



una perturbazione della fonte di carbonio, anziché una serie di stati stazionari. Utilizzando questa
rete di reazioni sfruttiamo dipendenze esistenti, come quelle tra i parametri termodinamici, ma
anche quelle tra i parametri cinetici, le specie biochimiche e la loro termodinamica come descritto
dalla relazione di Haldane. Il nostro obiettivo principale é rispondere alla domanda se, basandoci
sui dati disponibili, possiamo derivare un modello che possa spiegare la dinamica transitoria osser-
vata dopo un cambio della fonte di carbonio e, se no, identificare sistematicamente i meccanismi
regolatori chiave che aiutano a coordinare questa adattamento dinamico. Inaspettatamente, tut-
tavia, ci siamo imbattuti in sfide formidabili durante questo sforzo cercando di riprodurre il lavoro
dei predecessori. Per questo motivo la maggior parte del nostro sforzo é stata dedicata a risolvere
questo problema al fine di ottenere una struttura che produca modelli e previsioni riproducibili,
affidabili e riutilizzabili. Ritornando al ciclo dell’acido tricarbossilico, troviamo che parte della di-
namica osservata non puo essere spiegata in modo sufficiente. Assemblando un insieme di modelli
con diverse topologie di interazioni regolatorie, valutiamo

Infine, riassumiamo le principali scoperte di questa tesi. Il primo risultato é che abbiamo pre-
visto e trovato evidenze in vitro dell’esistenza di fino a 11 interazioni metabolita-proteina dal nostro
studio di modellazione delle reazioni singole utilizzando dati di stato stazionario e saggi enzimatici
in wvitro. Tuttavia, l'assenza di aspettative di base pone un problema che mette in evidenza le
lacune nella rigorosita scientifica. Il secondo risultato é che abbiamo creato una pipeline di model-
lazione che genera modelli e previsioni riproducibili, modelli che sono affidabili, nel senso che il
processo di costruzione automatizzato minimizza il rischio di errori, e riutilizzabili, dal momento
che i componenti sono adeguatamente annotati, e robusti, nel senso che le previsioni ottenute sono
meno variabili rispetto a quelle in lavori precedenti. Infine, mostriamo che le dinamiche transitorie
del metaboloma che osserviamo non possono essere spiegate in modo sufficiente combinando le fonti
di dati disponibili e generiamo previsioni sulle interazioni alosteriche che potrebbero contribuire
a plasmare la risposta. Concludiamo con una discussione sullo stato attuale del campo, il merito
scientifico dell’impresa e portiamo tutto a compimento con una serie di raccomandazioni per future
ricerche.



Dedication

I dedicate this dissertation to fellow and future students in pursuit of, or considering the pursuit
of, a doctorate in the field of systems biology.

If you wish to obtain the degree as a means to signal high value, I encourage you to adopt the
attitude and mindset of a sales consultant. Know that the use of standards and reproducibility of
research is optional, so embrace a businesslike pragmatism and don’t linger in the former. By the
time others have to deal with your work, they will either adopt the same mindset, or not, and if
not you can rest assured that their inability to reproduce your work is not something you will be
held responsible or accountable for; it can be attributed to the inaptitude of the newcomer that
you by now outrank. Your truth shall be that the best dissertation is a finished dissertation.

If you wish to do science for the sake of science, then I encourage you to challenge the established
practices first and foremost, and to use only those that you can fundamentally understand and have
mastered through endless iteration. You will find that many of the most elementary of questions
have been insufficiently or not at all addressed and that most of what is perceived-to-be knowledge
is feeble or false. Do not let yourself be nauseated by the credulous folly of your colleagues that
adore lustrous stories; we are only human, all too human. Your truth shall be that convictions are
more dangerous enemies of truth than lies.

I write this to you, dear Lisbeth, only in order to counter the most usual proofs of
believing people, who invoke the evidence of their inner experiences and deduce from
it the infallibility of their faith. Every true faith is indeed infallible; it performs what
the believing person hopes to find in it, but it does not offer the least support for the
establishing of an objective truth. Here the ways of men divide. If you want to achieve
peace %‘mind and happiness, then have faith; if you want to be a disciple of truth, then
search

IFriedrich Nietzsche, Selected Letters (Hackett Publishing, 1996).
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1.1 The history and philosophy of systems biology

Systems biology is often considered to have sprung as a field of science at the beginning of 21st
century. As such, the advent of the field coincides with the completion of the human genome
project, a time in which the notion that biology could not be comprehensively understood from
static sequencing data alone became more pervasive. As a logical consequence, people started to
devote more attention to the behavior and dynamic properties of biological systems that result from
the interactions of its constituent parts. Having spent much time working from a methodological
reductionist framework in which molecules were studied in isolation, an antagonistic perspective
known as holism came to be readily adopted in the study of complex molecular interaction networks
that ensued.

Attempts to define systems biology often yield nebulous descriptions that provide little mean-
ingful insight into its distinguishing features as a scientific discipline. That systems biology is
based on the understanding that "the whole is greater than the sum of the parts"lﬂ is a platitude
that one will inevitably encounter and one that characterizes the esoteric nature of the so-called
holistic approach adopted by scientists in the field. We will scrutinize this notion in an attempt to
define what systems biology is, and will come to see that even among scientists in the field there
exist no consensus. However, before we attempt to define what systems biology is, we will look
into its historical and philosophical underpinnings. A stroll through past events will provide us an
understanding of the context of the field in terms of preceding and contemporary paradigms that
are, in a way, the ancestors that gave birth to the discipline.

1.1.1 From Aristotle to Galenus

The Greek philosopher and naturalist Aristotle was the first of whom we know that he involved
himself with the systematic study of the phenomenon of life. Contrasting the vision of Plato, who
held that the earthly reality was a false world, a defective copy of an unchanging eternal and perfect
world, Aristotle held the believe that the transient elements in the sublunary deserved as much
attention as the — then believed to be — eternal and unchanging celestial bodies. Aristotle was not
only a pioneer in his choice of living beings as subject of research, but also on a methodological
level he brought about innovation in science. Virtually all Greek minds regarded the human
mind as the primary source of knowledge of nature, for only the spirit could penetrate into the
eternally unchangeable world. Aristotle, on the other hand, placed great importance on sensory
perception and thought that the data this yielded should take precedence over the outcomes of
rational reasoning. Furthermore, he saw the function (the goal) as the main cause for the existence
of a (part of an) organism [171].

Although Aristotle himself appears to have conducted few experiments, Alexandrian researchers
that succeeded him — such as Theophrastus around the end of the 4th century B.C. as the center
of Greek culture shifted from Athens to the Nile Delta — were among the first that systematically
conducted in vivo experiments by performing vivisection. This Aristotelian style of research came
to an end with Aelius Galenus — around the end of 2nd century — who was the last great life scientist
of this tradition, and who is famous for his use of direct observation, dissection and vivisection in
order to study physiological processes [170 [171].

Aristotle’s pioneering engagement with systematic study of life and biological phenomena laid
foundational principles that resonate in modern systems biology. His emphasis on empirical obser-
vation challenged conventional philosophical paradigms and fostered an evidence-based approach,
aligning with systems biology’s reliance on data-driven analysis. Galen, in turn, established a legacy
of empirical investigation through methods like vivisection and direct observation, prefiguring the
systemic approach embraced by contemporary systems biology. These historical underpinnings set
the stage for understanding complex biological systems as interconnected networks, a hallmark of
both Aristotle’s and Galen’s philosophies and modern systems biology.

I The quoted phrase here is often falsely attributed to Aristotle, however it originates from Gestalt psychology
|226]. In Aristotle’s Metaphysics we find the following:
névtov vap doa mhelw péen Exel xol Y EoTv 0lov oweOS TO TV GAN EoTL TL 1O Bhov Topd T& wdpLaL.
which more accurately translates to "For however many things have a plurality of parts and are not merely a
complete aggregate but instead some kind of a whole beyond its parts" [186|
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1.1.2 The Romans and Middle Ages

The Roman natural sciences, and in particular biology, were of a considerably lower quality than
that of the Greeks. The Romans were mainly interested in the practical use, and instead of observ-
ing nature themselves, as their predecessors had done, the Roman researchers limited themselves
to summarizing what others had written before them. They generally worked quite superficially.
Without too much critical reflection, they collected all kinds of data from very diverse sources.
They hardly made any attempt to link the separate facts or to theorize. All in all, Roman science
has added very little to the existing knowledge of living nature. Also in the Middle Ages, biology
remained what it had become in Roman times, namely a science based on literature research [133)].
Their treatises were essentially nothing more than collections of excerpts from the works of Aris-
totle, Galenus, and others who were regarded as recognized authorities. They derived additional
information from all kinds of literature, ranging from poetry to the bible. In general, there was
little need to verify data. As a result, medieval biology appears to be a peculiar mixture of fact
and fantasy, which is well exemplified in the work of Conrad Gessner, specifically his Tierbuch and
Fischbuch |175 |74).

As biology underwent limited growth during the Roman and Middle Ages, marked by a utili-
tarian approach based on literature research, a paradigm shift emerged with the Renaissance. This
era saw a resurgence of empirical inquiry and a departure from tradition, embracing methods that
laid the groundwork for the modern scientific approach. This transition from passive compilation
to active observation set the stage for a renewed exploration of the natural world.

1.1.3 The Renaissance

Nearly two thousand years after Aristotle’s arguments for the importance of sensory perception,
empiricism again became the methodical foundation of biology during the Renaissance. A first
indication of this can be found in the drawings made by Hans Weiditz in the treatise of the
German doctor Otto Brunfels, who broke with the habit of copying existing images and started
using plants as examples for his drawings [38, [80]. Brunfels was so in awe of the writers from
antiquity that he apologized for describing a plant not previously described by them. Almost
a decade later Hieronymus Bock published a book on botany in which he would only describe
plants that he himself had observed |22} [146|. It is worth noting that he had no qualms about
rejecting the findings of his predecessors when they were inconsistent with his own observations
and conclusions. Bock was one of the first researchers in biology to break free from this rule of
tradition. As in the Middle Ages, treatises on plants and animals were of a highly utilitarian
nature. It was not until the end of the sixteenth century that this started to change, as we
can see in botanical books by Andrea Cesalpino and Adam Zaluziansky, both of whom held the
ideal to transform botany into a independent field of science that would concentrate solely on
acquiring knowledge of the essential structure and properties of plants, rather than their practical
applications in medicine [47},[83]. Knowledge of forms of plants and animal species was considerably
expanded by the critical empirical approach. The situation was completely different with regard to
research into the functions of living organisms. Here, theories of Aristotle and Galenus prevailed
and no substantial innovation took place. In this animistic view of nature it was assumed that the
activities in plants and animals were produced and guided by immaterial forces, often referred to
as the soul [93]. With these vitalist theories all kinds of life phenomena could be explained quite
easily, but the empirical basis of such theories was slim, and criticism of the speculative character
of the explanations offered would soon follow.

1.1.4 Mechanistic physiology

In the sixteenth century, vitalist explanations also prevailed in other natural sciences. In the
early seventeenth century scientists who reasoned from a mechanistic conception of nature started
attacking this notion. The French philosopher, mathematician and scientist René Descartes is the
most famous one among these. His criticism of vitalist theories found its philosophical justification
in the what is called substance dualism. The thinking and consciousness of man were, in his view,
the only phenomena in which the soul played a part; the rest of nature consisted of nothing but
matter. He considered all processes that took place to be explainable on the basis of mechanical
interactions between elementary particles. The matter from which animals and plants are formed
was, according to Descartes, inert in that it has no source of motion of its own. At the beginning of
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time, matter had brought with it a certain amount of motion. By collision, the elementary particles
constantly transferred that motion to each other. His theory was both mechanistic and reductionist:
in order to understand the phenomena observed at macro-scale, one had to understand the particles
and their interactions at micro-scale. He formulated the notion that complex systems can be
reduced to their parts, which can each be examined in isolation, and subsequently reassembled in
order to understand their behavior. What was hitherto considered impossible, Descartes regarded
as an irrefutable truth: the soul is not necessary to understand the phenomenon of life |66 [32].

It is worth noting that although this approach gained widespread support, the majority of his
colleagues held more moderate views. Giovanni Alfonso Borelli serves as a good example. In the
preface to his work De motu animalium|28|] he stated that it was natural to regard the soul as the
ultimate primary cause of motion. While Borelli assumed the existence of a soul as the cause of
life-phenomena, for him this starting point functioned exclusively as a philosophical concept. He
did not include the soul in the field of research of the physiologist. As a researcher, Borelli worked
only with the direct so-called secondary causes which were purely physical and chemical in nature.
As a result, his theories were no less mechanistic than those of Descartes.

Mechanistic reasoning has strongly influenced the production of biological knowledge. It was a
more or less obligatory framework for the interpretation of physiological observations and largely
determined which theories were and were not accepted by the scientific community. Illustrative of
this influence are the developments in embryology by the seventeenth century biologists. Initially
they worked with the epigenesis theory, a theory that was mainly based on observations of incubated
chicken eggs that were opened at successive time intervals. In doing so, one first saw the heart
appear and then gradually the other organs. From this he drew the logical conclusion that the
formation of the embryo was a process in which the various organs came into existence in the
course of time.

1.1.4.1 Preformation theory

In the second half of the seventeenth century the rivaling preformation theory was formulated.
The proponents of this theory denied that the embryological development was characterized by
difference and growth as the epigeneticists claimed. Jan Swammerdam, one of the founders of
preformation theory, had done extensive research into the reproduction of insects. In butterflies
he discovered parts of the adult animal that were already present in the caterpillar that was
about to pupate. Although this observation related only to part of the developmental process,
Swammerdam stated that the adult animal must also be found in the ovum. According to their
theory, the organism was already complete, but present in miniature form in an egg or sperm cell
[29]. The answer to the question of the origin of this preformed creature was that it had existed
since the dawn of time; the first individual of each species had contained its entire progeny. Neither
he nor other researchers of the time had the means to empirically substantiate this conclusion and
therefore Swammerdam indicated that further research was needed to definitely demonstrate the
correctness of the theory.

Compared to the epigenesis theory, the preformation theory had a weak empirical basis. More-
over, there were all kinds of phenomena that the theory could not account for. The existence of
monstrosities and the fact that the offspring could show characteristics of both the father and the
mother could not be satisfactorily explained by the preformation theory. Given these shortcom-
ings, one would expect the preformationists to have lost out in their battle with the epigeneticists.
The opposite is the case; the preformation theory soon became the dominant theory of embryol-
ogy. Most seventeenth-century researchers did not think it was necessary to keep a reservation with
Swammerdam’s theory and unreservedly supported it [29]. Clearly, the theory did not derive its ap-
peal from the power of its observations. The decisive factor was its compliance with the mechanistic
principles. The gradual formation and development of organs, as the epigenesis theory posited,
required the assumption of a guiding principle that coordinated development, according to most
researchers. The theory thus seemed to necessitate a vitalist conception of life’s processes. The
preformation theory, on the other hand, fit in perfectly with the dominant mechanistic philosophy
of nature. The growth of already present and preformed parts could be represented mechanistically
without much difficulty. Although the requirements of empiricism were of paramount importance
to the seventeenth-century biologists, in this case they were still subordinate to the prevailing view
of nature. Notwithstanding, this mechanistic philosophy has been of great significance, the fruits
of which will be harvested in the nineteenth century.
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1.1.5 The scientific revolution

The sixteenth and seventeenth centuries are the era of the scientific revolution for the history of
science. Natural science broke away from the Greek tradition and the foundations were laid for
modern scientific practice. Rationalistic thinking, in which the reasoning mind had primacy, gave
way to empiricism that gave priority to perception. The experiment, considered artificial by the
Greeks, became a valid source of knowledge. The mechanistic worldview began to be adopted,
whereby the world was no longer seen as a living organism but as a machine. In physics and
astronomy this development, through the work of men like Galileo, Kepler, Huygens, and Newton,
led to the most remarkable results.

The first major change in biology dates from the sixteenth century and concerned the reintro-
duction of empiricism: people began to collect observations themselves again and no longer relied
solely on surviving knowledge. In the second half of the seventeenth century, the mechanistic view
of nature and the principle of uniformity became the most important presuppositions in the study
of living nature. However, the break with the past was not as great as in the physical sciences.
From the classical heritage, teleology and essentialism continued to play an important role in cer-
tain parts of biology [93]. In addition, a fundamental characteristic of the changes that occurred in
the physical sciences, namely the mathematization of the acquired knowledge of nature, is almost
absent in the research of living nature. Until the nineteenth century there was a lack of a universal
theory such as Newton formulated it for physics. Biology would only get a theory of comparable
scope with Darwin’s theory of evolution. The thread connecting the era of scientific revolution with
later periods is formed by the basic ideas that developed in the sixteenth and nineteenth century:
the empirical research method, the mechanistic model, the principle of uniformity and the idea of
the existence of a natural order in the plant and animal world.

1.1.6 Classification of nature

In the first edition of the Encyclopaedia Britannica (1771), natural history was defined as the
science that gives classifications and complete descriptions of the products of nature. Carolus
Linnaeus (1707-1778) and Georges-Louis Leclerc de Buffon (1707-1788) were the leading represen-
tatives of the classifying and descriptive-explanatory schools of eighteenth-century natural history,
respectively.

1.1.6.1 Linnaeus’s system

Linnaeus’ system was founded on essentialism as we have already encountered in Cesalpino, to
whom he wholeheartedly acknowledged his tributary debt. Following Cesalpino and stimulated by
the discovery of the sexuality of plants, Linnaeus regarded the reproductive organs as the suppliers
of the essential criteria of botanical systematics. Here he was strengthened by the firm conviction
that God had decreed that plants should be distinguished by fructification, as he called the parts
involved in reproduction. All other structures flowed logically from the essence and were seen as of
secondary importance. In the definition of a species, genus or other group one should, according to
Linnaeus, limit oneself to the essential characteristic. Description of characteristics derived from,
for example, root, leaf or stem was not only superfluous, but even appears to Linnaeus as contrary
to the interests of the system. The essence was a predetermined classification principle. The science
thus created resembled an exercise in traditional logic rather than empirical research of nature.
That was the intention. In his theoretical reflections, Linnaeus was somewhat contemptuous of
purely empirical research and argued that the scientific status of systematics was determined
first and foremost by its rational-deductive character [206]. Linnaeus has succeeded in his aim of
making systematics a recognized and mature discipline. His action resulted in the great majority of
eighteenth-century natural history focusing on this branch of science. People accepted Linnaeus’
methods and aims, but showed little receptivity to the theoretical framework in which he had
placed them.

1.1.6.2 Buffon’s perspective

Linnaeus’s work was strongly criticized by Buffon. Buffon’s critical attitude towards the system-
atists was fueled by the conviction that they were more concerned with reasoning based on a
priori assumptions than with unbiased observations of phenomena. As a self-declared supporter
of the empirical ideal of science, he was against such an approach; true knowledge of nature could
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never be obtained with this rationalistic method. He credited Linnaeus for having put an end
to the chaos in nomenclature and that classifications generally provided a convenient overview.
To Buffon, however, the system was clearly no more than a useful tool, he did not see it as an
essential adjunct to natural history. In his view, the organization of nature was characterized by
gradual transitions and by the absence of created divisions. Unlike systematists, he did not de-
fine species by form features; for Buffon, a species consisted of individuals capable of reproducing
and producing fertile offspring. Groupings other than species, such as genera, orders, and classes,
which systematists thought they could distinguish, existed, in his view, exclusively in their minds.
Remarkable is Buffon’s emphasis on the importance of anatomy to natural history. While natural
historians had until then focused almost exclusively on the external structures, Buffon argued that
these were only of secondary importance. He wanted to arrive at general theories based on empir-
ical details. The ultimate goal was to understand the more fundamental principles behind natural
historical phenomena. For Buffon, those principles lay in the processes responsible for the origin
and maintenance of life forms.

The majority of eighteenth-century natural historians found the answer to the question of the
origin of the life forms in the bible. Linnaeus summed up the prevailing view in a famous aphorism:
"There are as many species as the infinite being created diverse forms in the beginning, which,
following the laws of generation, produced many others, but always similar to them: therefore
there are as many species as we have different structures before us today" |136]. Buffon came up
with a radically different vision. He suggested that the emergence of new levels could be explained
entirely from the properties of matter. For this he needed a different understanding of matter than
that which had been used in the life sciences since Descartes. The inert particles of matter, widely
regarded as the elementary building blocks of natural objects, Buffon replaced for the plant and
animal world with what he called "organic molecules" [42]. He assigned this type of atomic particle
its own force, the force penetrantes [41], with which they could, without external influence, bring
about the characteristics processes of life. He further assumed that life had begun in a primordial
sea, and suggests that some chemical process gives rise to organic molecules in this primordial sea,
which join together to form living beings. Although he was not an evolutionist, Buffon’s genesis
theory gave a strong dynamic picture of nature. The essence of his theory is well captured in his
own words: le grand ouvrier de la nature est le temps [42].

1.1.7 Teleomechanics

Just as Newton had established the laws of the planetary system, so also for living nature a
system of laws describing its functioning had to be formulated. An indication of this need for
a comprehensive ’science of living things’ is provided by the introduction of the term biology
by the Gottfried Reinhold Treviranus (1776-1837), a physician and comparative anatomist from
Bremen. Treviranus outlined the research program that was to give biology the status of a full-
fledged Newtonian science. He was an exponent of the so-called teleomechanistic tradition in
natural research, which originated in Gottingen. Unlike most universities in the eighteenth century,
scientific research at the University of Gottingen occupied an important place. The professors were
expected not only to be engaged in teaching, as was customary elsewhere, but also in scientific
research. By the end of the century, a research program had been developed that united the
mainstreams of eighteenth-century thinking about living nature and synthesized it in a unique
way. The founders of this program were the comparative anatomist Johann Friedrich Blumenbach
(1752-1840) and the philosopher Immanuel Kant (1724-1804). They initially worked independently
of each other — Blumenbach in G6ttingen and Kant in the Prussian Koénigsberg — but after becoming
acquainted with each other’s writings, an interaction was established. Kant laid the theoretical
foundation of the teleomechanistic tradition, while Blumenbach and his followers focused on the
biological elaboration hereof.

1.1.7.1 Kant’s teleological distinction

Kant’s contribution is mainly contained in his Kritik der Urteilskraft (1790) [112]. In this work
he attempted to formulate the philosophical foundations for the study of living nature, as he
had done for inanimate nature in an earlier work, the Kritik der reinen Vernunft (1781) [111].
According to Kant, there was a fundamental difference between the organic and the inorganic
world. Mechanistic explanatory models used in inorganic natural research were inadequate for the
study of living things. The core of the difference lay in the character of the causal relations of
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animate nature. In inanimate nature there are linear chains of cause and effect: phenomenon A
causes phenomenon B, B then causes C, C leads to D, and so on. In animate nature, on the other
hand, we find chains of the form A causes B, B causes C, and then C causes A. Here the clear
distinction between cause and effect suddenly disappears: A causes C (via B), but is also itself
caused by C. A is therefore both cause and effect of C. Consider, for example, the relationship
between food intake and muscular labor. Digestion is a cause of the muscle’s ability to work,
because the required energy comes from digestion. But in its turn, muscular labor is a cause of
digestion, for the work of the muscles is indispensable in the absorption and processing of food —
each one is thus both cause and effect of the other.

In Kant’s view, this kind of causal relationship was characteristic of living beings. Every part
of the organism was dependent on all the other parts and thus on the whole animal or plant. It
was due to this interaction that the organism formed an effectively functioning whole. In other
words: because the life processes proceeded in mutual dependence, they seemed to be guided by an
intention, a goal, namely the adequate exercise of the bodily functions. This teleological aspect was
absent in inanimate nature. For the human mind, only explanatory models that proceed accord-
ing to the linear cause-effect scheme are comprehensible. The full understanding of teleological
causation is beyond our intellectual capabilities. For the mind can understand how teleological
processes work, but not how they arise, how they are produced by nature. After all, if A is the
cause of C, A does explain the occurrence of C, but the existence of A itself requires the existence
of C to be presupposed, so it remains unclear how the process ever started. Since the mind cannot
comprehend the origin of the process, teleological causation, and hence the functional organization
of living beings, can only be accepted as a starting point. In fact, we may not even say, as Aristotle
and many after him did, that the organism is purposeful. It presents itself to us as purposeful,
it behaves as if it is driven by intentions, but we can never know for sure whether it is ’really’
so. Research of living nature, says Kant, will always have to work with the restriction that the
functional organization is a given that we simply have to accept before the empirical investigation
of the organism can begin. This clarifies the term teleomechanics: the study of living nature had to
be based on mechanistic explanatory models, but the purposive character of life had to be accepted
as an axiom [126} [127].

1.1.7.2 Blumenbach and the Bildungstrieb

Johann Friedrich Blumenbach studied medicine in Jena and Gottingen and became professor of
anatomy in Gottingen in 1776. He expressed the apparent purposefulness of living beings in the
term Bildungstrieb [18], which was the "formative" principle responsible for development, efficient
functioning, and reproduction. He developed the concept independently of Kant well before the
appearance of his Kritik der Urteilskraft, their train of thought, in both cases inspired by Buffon’s
writings, showed unmistakable parallels. The Bildungstrieb should not be seen as a mysterious
force like Buffon’s moule intérieur |64], nor could it exist independently of matter, as the soul
could, but neither could it be reduced to matter. It was the expression of matter’s potential for
organization that was characteristic of living beings. According to Blumenbach, the Bildungstrieb
could be compared to Newton’s gravitational force. As with gravity, this force’s ’essence’ remains
hidden from us, while we can study its effects and trace the laws to which those effects conform.
The research program that Blumenbach developed on the basis of this principle had two ob-
jectives. First, the natural system of organisms had to be traced. Second, by studying the effects
of the Bildungstrieb, he wanted to trace the laws to which the functional organization of living
beings obeyed. In so many words he intended to do for the organic world what Newton had done
for the inorganic world. In his program for systems analysis of nature, Blumenbach joined Buf-
fon’s critique of Linnaeus. He shared the view that the higher systematic categories were purely
theoretical constructions. On the basis of a few arbitrarily chosen external characteristics it was
impossible to establish a natural division. Natural kinship rested on similarity in organization,
and thus in Bildungstrieb. Buffon had assumed the reproduction criterion: animals that can pro-
duce mutually fertile offspring belong to the same species. Given that the species was the unit of
organization, races could be understood as variants of the organizational plan of the species. Blu-
menbach discussed an example of this in a treatise on the races of man, a work for which he made
his name: De generis humani varietate nativa (1795) [20]. According to Blumenbach, the origin
of the different human races was the result of small changes in the Bildungstrieb, brought about
by differences in geographical conditions and in diet and living habits. He saw race formation as
a process of degeneration. The white Caucasian race constituted the original type or Urbild [19].
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The other varieties were degenerate variants of this, created under the influence of less favorable
environmental factors.

On this point Blumenbach differed from Kant, who also raised the question of race. Kant
also saw the species as a unity of organization, but he regarded the Urbild, which he called Stam-
mgattung [112], not as a concretely existing form, but as the totality of adaptability contained
within the organizational plan of the species. The human races were not degenerate forms of one
original race, but environmental variants of the same organizational potential. This difference in
interpretation is significant, for only in Blumenbach’s version is there any transformation from
one form into another. In Kant, nothing new actually ever arises: the Stammgattung responds to
the environment with a preexisting variant of the organizational plan. Kant and Blumenbach also
shed light on the historical dimension of the species question. The presence of extinct animals in
older geological strata, for which evidence became increasingly convincing towards the end of the
eighteenth century, could be explained without much difficulty on the basis of teleomechanistic
assumptions. In the course of the earth’s history, different forms of the Urbild could have devel-
oped under the influence of changing geological conditions, but the possibilities for variation of the
Bildungstrieb were not unlimited. Sooner or later, an organism could end up in an environment
where the Bildungstrieb could not provide an adequate response; extinction was then the result.
As an embryologist, he defended the epigenetic point of view, supported by most other teleomech-
anists: the organism is not preformed in the egg, but develops gradually, under the influence of
the Bildungstrieb [126] [127].

1.1.7.3 Kielmeyer’s development

The basic principles of the teleomechanistic program formulated by Kant and Blumenbach were
further developed by Blumenbach’s pupil Carl Friedrich von Kielmeyer (1765-1844). He studied
medicine at the Karlsschule in Stuttgart and then attended the education of Blumenbach in Got-
tingen. In Gottingen he was appointed professor at the University of Tiibingen in 1796, first in
chemistry and later also in botany and pharmacy.

Kielmeyer developed a detailed comparative-anatomical and physiological research plan that
was supposed to reveal the natural connections between organisms. The higher systematic cate-
gories, above the genus level, also received attention. Like Blumenbach, Kielmeyer promoted the
study of the relationships between organisms and their environment. For example, he wanted to
come up with a Psychologie der Thiere, which would, among other things, have to map out how
organisms succeeded in finding the right food and a suitable habitat. Extrapolating Blumenbach’s
ideas about the species to the higher systematic units, Kielmeyer argued that the richness of forms
in nature originated in a relatively small number of hypothetical Grundformen [53]. Within these,
transformation was possible: under the influence of environmental factors, new species could de-
velop from the existing ones through the occurrence of modifications in the Bildungstrieb. However,
the Grundformen were strictly separated from each other and there was therefore no question of
one continuous development series.

A new element introduced by Kielmeyer was the comparative study of the developmental his-
tory of individual organisms, the comparative embryology. Common patterns in the embryological
development of different species could provide insight into the relationships between different or-
ganizational forms. In this context, Kielmeyer posited a proposition that can be regarded as a
prototype of a hypothesis that would profoundly influence nineteenth century anatomy and em-
bryology. He argued that ontogeny — the development of the individual — was an abbreviated
recapitulation of phylogeny — the development of the species.

Kielmeyer’s contribution to the teleomechanistic program was mainly of a theoretical nature.
He has published few empirical research results in support of the new ideas he introduced. His field
of work included comparative anatomy and plant chemistry, the forerunner of organic chemistry. He
attached great importance to chemical research, for the material basis of the functional organization
of living beings lay in their chemical constitution. However, the research of organic compounds was
just beginning and for the time being the ideal of a chemical analysis of the functional organization
of living beings was unattainable.

An example of the influence exerted by Kielmeyer’s theoretical considerations can be found in
the work of the aforementioned Treviranus. It was he who introduced the concept of biology in
Germany in his six-part Biologie, oder Philosophie der lebenden Natur (1802-1822) [215]. All the
essential ingredients of the Gottingian program as drawn up by Kant, Blumenbach and Kielmeyer
can be found in Treviranus’s work. It contained little new empirical data but brought together the
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biological knowledge of the time and placed it within the framework of the teleomechanistic view
of living nature. The work was an even broader attempt to achieve what Kielmeyer had also set
out to achieve: to elevate the study of living nature to a Newtonian science by unraveling the laws
of functional organization [53].

1.1.8 German Naturphilosophie

The development of the teleomechanistic program was embraced by other scholars of the Gotting
school, leading to deeper explorations in the study of living organisms. Notably, Alexander von
Humboldt, Karl Ernst von Baer, and Johannes Peter Miiller made significant contributions to this
evolving perspective.

1.1.8.1 Alexander von Humboldt: dynamic functional organization

Alexander von Humboldt (1769-1859) was a botanist, physiologist and geographer who studied
under Blumenbach for a time. He is best known for the journey through South and Central America
that he made in the years 1799-1804. The vast amount of data he collected on this journey formed
the basis for much of his later scientific work. Comparative anatomical studies of plants led von
Humboldt to the conclusion that all plant species and genera could be reduced to a small number of
types, analogous to Kielmeyer’s Grundformen |221]. But more than the form aspect, von Humboldt
was interested in the dynamics of the functional organization. He collected quantitative data on
the distribution of plant species across geographic zones and conducted experimental research on
animals to determine the significance of environmental stimuli [151].

Building upon the foundational principles of teleomechanism, the Go6ttingen school attracted
the attention of other like-minded scholars, such as Alexander von Humboldt. His botanical and
physiological studies laid the groundwork for a deeper exploration of functional dynamics within
living organisms. This focus on dynamics later converged with the embryological investigations of
Karl Ernst von Baer, resulting in an evolving perspective on ontogeny and organismal relationships.

1.1.8.2 Karl Ernst von Baer: embryological contributions

Karl Ernst von Baer (1792-1876) was the most important of the researchers who focused their
attention on embryological aspects of the Gottingen programme. Von Baer was from Estonia and
studied medicine in Dorpat. He then moved west and studied zoology and comparative anatomy
in Vienna, Wiirzburg and Berlin. From 1817 to 1834 he worked as a zoologist and anatomist at the
University of Konigsberg. In 1834 he left for Saint Petersburg, where he was appointed a member
of the Academy of Sciences. Embryology was involved in Kielmeyer’s research because, in his
view, ontogenetic development provided starting points for determining an animal’s place in the
natural system. His most pioneering publications came about in his Kénigsberg period. In 1827 he
published his famous Uber die Bildung des Fies der Siugethiere und des Menschen [10], in which
he demonstrated the existence of the mammalian egg. Up to that point the egg stage was known
only in the lower vertebrate classes, so von Baer could now state that the embryonic development
of all vertebrates began with the egg. A year later he presented his findings on that development
process in Uber die Entwickelungsgeschichte der Thiere [220]. This work clearly shows von Baer’s
teleological framework. He presented the development of the embryo as a goal-directed process,
which is, as it were, driven by the intended end result. In fact, according to von Baer, the complete
organism logically preceded the parts; the whole ’caused’ the development of the parts.

Von Baer’s study supported Blumenbach’s view that the future organism was not present
in miniature form in the fertilized egg. According to von Baer, the egg initially consisted of a
more or less homogeneous substance, from which increasingly complex structures slowly developed.
His epigenetic view nevertheless also had a preformistic element. He assigned no more than a
stimulating function to the male sperm and believed that the assembly of chemical compounds
that represented the organizational plan of the new organism was completely present in the egg
before fertilization. He established that the development of the fertilized egg always started with
the formation of two clearly visible layers of tissue, the germ layers. The two germ layers split in
two, and each of the four layers thus formed served as the substrate for a specific group of organs.
Which organs originated from which germ layer and at what time this happened depended on the
group to which the animal studied belonged. From these observations, von Baer derived a powerful
tool for determining relationships between animals — the purpose that comparative embryology was
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intended to serve in Kielmeyer’s teleomechanistic program. In addition to anatomical similarity
between organs, the criterion for relatedness could now also be that those organs originated in
the same germ layer and from there went through the same development for a shorter or longer
period of time. The significance of this kinship criterion for the development of embryology can
hardly be overestimated. Generations of researchers have regarded the search for what we now
call homologies as their main task. Comparative embryological research was completely dominated
by it until well into the nineteenth century. By the way, we still know the germ layer theory, in
the formulation that Robert Remak gave it in 1855 [181]: von Baer called the upper germ layer
the ectoderm, the lower one the entoderm, and he combined the two intermediate layers into the
mesoderm.

An equally far-reaching influence had a second theory that von Baer launched in his Entwick-
elungsgeschichte [220]. He divided the animal kingdom into four groups, the vertebrata, mellusca,
radiata and articulata. Within the four groups, the organizational plan of all animals could be
traced back to one and the same basic plan or type. This was reflected in the fact that the em-
bryonic development of the animals within a group showed remarkable parallels. This similarity,
according to von Baer, only related to early stages of development, it was only the embryos of
the different groups that resembled each other. Moreover, at some point each embryo began to
show characteristics specific to the group to which it belonged, and then the similarity with other
embryos ceased. Other researchers would extend the theory to the entire animal kingdom, arriving
at the position that ontogeny is an abbreviated and accelerated recapitulation of phylogeny, the
developmental history of the entire animal kingdom. For von Baer, the theory only provided clues
about the way in which type manifested itself ontogenetically. Like Blumenbach and Kielmeyer,
von Baer assumed that the species were mutable and that transformation could occur within each
type. But, following Kant, he set limits to that possibility, limits determined by the organizational
plan. Transformation was based on the expression of the possibilities for adaptation contained in
this plan, so in that sense nothing new ever came into existence [164] [89].

1.1.8.3 Johannes Peter Miiller: physiological and comparative anatomy

A final example of the influence of the Gottinger tradition on the study of living nature is provided
by the work of Johannes Peter Miiller (1801-1858), one of the most important physiologists and
comparative anatomists of the nineteenth-century. Miiller studied medicine in Bonn and Berlin
and was appointed professor of comparative anatomy and physiology in Bonn in 1826. In 1833 he
acquired the chair of anatomy and physiology in Berlin, where he remained until the end of his
career. In the 1820s Miiller mainly conducted physiological research, in which he advocated for
the application of experimental methods. This experimental approach was not completely new,
but German physiology was still mainly a field of observation and description. It often came down
to trying to give a functional interpretation of anatomical structures on the basis of observations.

Miiller, on the other hand, promoted experimentation as an aid to arrive at such functional
statements, in addition to observation. He studied subjects such as human sensory perception,
sensorimotor transmission in the spinal cord and reflex movement. His sensory research led him,
among other things, to the formulation of his ’law of specific sensory energies’. According to
Miiller, the nature of the stimulation was unimportant for the qualitative response of a sense:
the sense always responded in a characteristic way, according to its own ’specific energy’. The
eye, for example, responded exclusively to light sensations, whether it was optically, chemically, or
mechanically stimulated. This is where Kant’s theory of knowledge comes in, which says that we
never get to know an object in reality as it 'really’ is; we come to know it through our perception of
it. How that sensation corresponds to 'the object in itself’ (the Ding an sich) cannot be ascertained.
The essence of the object always remains hidden from us; we can only base our knowledge on the
way in which the object stimulates our senses.

The question of the function of an organ and the significance of that function for the organism
as a whole was central to his research. The answer to this question was sought in (comparative)
anatomical and embryological data. The experiment was a tool for Miiller to obtain such data.
However, with the rise of organic chemistry in the first half of the nineteenth century, physiologists
increasingly began to investigate mechanisms of action. They wanted to find out not only what
the function of an organ was, but also how the organ functioned. This causal question required
knowledge of physics and chemistry and a more advanced experimental approach than had been
customary until then. This direction in physiological research was taken by Miiller’s students,
but Miiller himself felt insufficiently at home in the physical and chemical field. Although his
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experimental approach had brought about an important innovation in physiological research, he
also struggled with his teleological conception of life, which made him extremely skeptical of the
rigorous experimental approach of his students. In Miiller’s belief, the functioning of an organ
could never be fully understood in physical and chemical terms. The knowledge obtained from
experiments was subject to limitations. The organism was a purposeful functioning unit and it
reacted as if it were controlled by a Lebenskraft [154] — a force similar to Blumenbach’s Bildungstrieb
— which itself could not be further analyzed. The nature of the response to an experimental
stimulus, Miiller reasoned, was determined not only by that stimulus, but also by the "specific
energies" of the organism. just as it happened with the senses. The Lebenskraft played a guiding
role in this, which is why experiments could never lead to a complete causal explanation [153]. A
number of Miiller’s students did not share this skepticism.

1.1.9 Reductionistic Physiology

Anatomy and physiology were equivalent parts of biology to the teleomechanists: investigation of
form and function were both necessary for an understanding of the organism as an efficient unit.
But the experimental dimension was lacking in the first generation of teleomechanists; it only took
shape in the work of Johannes Miiller and his school. The transition to an experimental approach
involved more than just a change of method. Miiller’s objections to unbridled experimentalism re-
flected his teleomechanistic point of view, and in rejecting these objections his students at the same
time distanced themselves from Miiller’s view of living nature. The breakthrough of experimental
physiology in Germany was thus accompanied by the dismantling of teleomechanics.

1.1.9.1 Theodor Schwann: founder of cell theory

One of his students who initiated this development was Theodor Ambrose Hubert Schwann (1810-
1882), the founder of cell theory. In 1839 he was appointed professor of anatomy and physiology in
Leuven and in 1848 he exchanged Leuven for Liége, where he continued to work as an ordinarius
until 1879. As a physiologist, he made a name for himself with his discovery of the enzyme pepsin
and with his thesis that alcoholic fermentation is the work of a living organism. Schwann was at the
cradle of quantitative experimental physiology. Already in his first physiological studies he tried to
record his observations quantitatively. He distanced himself from his teleomechanistic Lebenskraft.
The same laws applied to living beings as to inanimate nature, Schwann argued. In the study
of living beings, the same methods of research could be used as in physics and chemistry, and
the aim should be to explain the activities of the organism in physicochemical terms. The core of
Schwann’s point of view can be found in his most famous work, the Mikroskopische Untersuchungen
from 1839, in which he developed his cell theory [194] 128§].

1.1.9.2 Cell theory and cellular discoveries

Briefly some backgrounds of the research into the cell. The first observations of cells were made by
the seventeenth-century microscopists. Robert Hooke, in his Micrographia Illustrata (1665) [102],
described the dead cell walls in cork and compared the small cellulae (chambers) he observed
to a honeycomb. Antoni van Leeuwenhoek also observed cells and depicted them [85]. For Van
Leeuwenhoek, both living and dead matter were made up of small spheres, the globules, and for
him cells were nothing but globules. The emphasis in their descriptions was on the cell wall, hence
the name cellulae. But the early microscopists had no clear idea of what a cell is. It is also
often difficult to say what exactly they saw — real cells or optical illusions created by the spherical
and chromatic aberration of their simple microscopes. Certainly the significance of the cell as an
elementary building block of the organism was not clear to them.

In the eighteenth century, the idea of the cell as a building block did not play a role either. The
idea did take hold that plants and animals are built from the same elementary units. However, those
units were not cells, but fibers. The physician Herman Boerhaave and a number of contemporaries
believed that tissues and organs were made up of orderly arranged fibres [86]. Little progress was
made in microscopic research in the eighteenth century. Van Leeuwenhoek’s observations with his
microscopes turned out to be inimitable, not least because Van Leeuwenhoek had carefully kept
his refined lens-grinding technique secret.
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1.1.9.3 Evolution of microscopy techniques

An improvement in microscopic technique, which started in the 1820s, slowly put an end to the
confusion. The chromatic aberration was largely controlled and an ever-increasing resolution was
achieved. In the 1830s, researchers gradually got the improved instruments at their disposal and
reliable observations of both plant and animal material increased rapidly. Robert Brown stated
in 1831 that all plant cells have a nucleus [37]. Evangelista Purkinje saw the cell nucleus in 1830
and gave descriptions of nerve cells and brain cells in 1837-1838 [178]|. He also pointed out general
similarities between plant and animal cells. Felix Dujardin described the cell fluid in unicellular
organisms in 1835 [71] and Purkinje gave it the name protoplasm in 1839.

These and similar observations culminated in the cell theory of Matthias Schleiden and Theodor
Schwann. The botanist Schleiden (1804-1881), also a student of Johannes Miiller, concluded in the
late 1830s that the cell is the elementary building block of the plant. Stimulated by Schleiden’s
work, Schwann went in search of a comparable structure in animals. Due to the lack of a cell wall
and the great diversity of the cells, it is much more difficult to recognize the cellular structure
of the tissues in animals than in plants. However, careful microscopic examination of numerous
animal tissues led Schwann to conclude that Schleiden’s thesis also applied to animals. This is how
the cell theory took shape in Schwann’s Mikroskopische Untersuchungen from 1839 [194]: all living
beings, both plants and animals, are made up of the same elementary units, the cells. Although
cell division had already been observed by several microscopists in the 1830s, its significance was
still unknown to Schleiden and Schwann. Observations by Carl Négeli and Robert Remak, among
others, made it plausible in the 1840s and 1850s that division is the cell’s normal multiplication
mechanism. Rudolph Virchow summarized these studies in 1855 in his famous statement omnis
cellula e cellula: every cell (emerges) from a cell.

Theorists could only speculate about what went on inside the cell. Its fundamental role in
metabolism and reproduction could not be demonstrated until later, and the development of cell
physiology research that would eventually take place was largely a twentieth-century affair. This
did not prevent Schwann from developing a new vision of the functioning of living beings based on
cell theory. This brings us back to Schwann’s role in the development of physiology after Johannes
Miiller. At the end of his Mikroskopische Untersuchungen, Schwann presented what he himself
called a new ’theory of the organism’. For Schwann, cell theory was not just a theory of the unity
of structure of the plant and animal organism. In his eyes it also had a physiological dimension:
the cell was also the elementary unit of function. He had two arguments for this statement. The
first was that a cell could exist on its own. The second argument he derived from the way cells
were formed and developed. The process started with the formation of nuclei in the cytoblastema.
These nuclei formed by a kind of crystallization of substances from the ground substance of the
cytoblastema. After reaching a certain size in this way, a membrane formed around the core.
The further development of the cell was now based on imbibition, the active uptake of substances
through the membrane, and intussusception, the insertion of substances between the membrane
and the nucleus.

He compared cell formation to the formation of crystals in inorganic nature. The implication
was that the formation of living and inanimate structures was not essentially different. Although
crystals grew by accretion, growth from the outside, while organisms grew by imbibition and
intussusception, Schwann did not think this difference was fundamental. This is evidenced by
his aphoristic statement that organisms are nothing but "dafs die Organismen nichts sind als
die Formen, unter denen imbibitionsfiihige Substanzen kristallisieren" [61]. The formation of the
organism was a physico-chemical process, according to Schwann, for which the same necessary laws
applied as in inorganic nature, and in which the same blind forces were at work; not purposeful
forces: the assumption of a Lebenskraft was superfluous.

Schwann’s description of cell formation denounced yet another facet of teleomechanistic think-
ing, namely the priority of the whole over the parts. In von Baer’s embryology, for example, it
was assumed that the development of the embryo was controlled by the intended end result. The
complete organism, in a sense, caused’ its own development from the ovum; the whole logically
preceded the parts. The cell theory, according to Schwann, suggested just the opposite. Living
beings were made up of structurally and functionally independent parts that together determined
the organism as a whole. The formation of those elementary parts themselves relied on physico-
chemical processes. And so the parts determined the whole, not the other way around [128|.
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1.1.9.4 Justus von Liebig: chemical analysis in physiology

Schwann’s cell theory expanded the horizons of understanding life at the microscopic level, par-
alleling the shift in thought initiated by Justus von Liebig’s advocacy for chemical analysis in
physiology. Liebig’s exploration of organic chemistry’s role in life processes challenged the notion
of vital forces, providing a chemically-based perspective that resonated with Schwann’s cellular
revelations. As Schwann illuminated the microscopic realm, Liebig, a contemporary of his, delved
into the molecular intricacies. In the forties of the nineteenth century, Liebig emerged as a leading
proponent of applying chemical methods of analysis to physiology. Remarkably, he also found
room for the concept of vital force, albeit in its original teleomechanistic sense, which he deemed
indispensable for comprehending the complexities of life phenomena.

Justus von Liebig’s journey into the realm of science began as a chemist, having studied at the
universities of Bonn and Erlangen, and later apprenticed with the eminent chemist Joseph-Louis
Gay-Lussac in Paris. In 1824, he assumed a professorship of chemistry in Gieften, embarking on a
pioneering career that would shape the understanding of organic compounds [33]. This was an era
when the elemental composition of organic substances — carbon, hydrogen, oxygen, and nitrogen
— was unravelled by Lavoisier and his contemporaries in the late eighteenth century [213]. As
organic chemistry rapidly advanced, the pursuit shifted towards quantifying the proportions of
these elements in various compounds.

Liebig’s description of the breathing process was grafted onto Lavoisier’s work. Breathing,
he had said, was slow combustion. When carbon and hydrogen from the nutrients came into
contact with oxygen, they were oxidized to carbon dioxide and water. The heat released thereby
compensated for the heat loss of the organism to its environment. Thus, the ability of animals to
maintain their body temperature at a high, constant level relied on a chemical process. Liebig’s
vision of the breathing process was that an animal’s heat production was entirely based on the
combustion of sugars and fats. The carbon dioxide and water vapor excreted through the lungs by
an organism at rest came entirely from the oxidation of sugars and fats. The nitrogenous nutrients,
the proteins, were responsible for the constructive metabolic processes. They did not play a role
in heat management but ensured the construction and maintenance of the blood and tissues. The
background to these ideas was Liebig’s belief that proteins were present in a ready-made form
in food and hardly needed to undergo any changes in order to be absorbed into the tissues and
blood. This ruled out the participation of differently composed substances, such as sugars and
fats, in tissue building, Liebig reasoned. Because in that case the elements that contributed these
substances would eventually have to be removed again and there was no reason to assume such a
pointless exercise [128] 213].

1.1.9.5 Herman von Helmholtz: reductionist physiology

We find the same attitude, strongly oriented towards physics, in Herman von Helmholtz (1821-
1894). Helmbholtz studied medicine in Berlin and trained in physiology under Johannes Miiller. He
mainly focused on sensory physiology and in particular on the physical aspects of this. Eventually
he would switch completely to physics: in 1871 he was given the chair of physics in Berlin. Before
that he had been appointed extraordinarius in physiology in Berlin in 1849, professor of anatomy
and physiology in Bonn in 1855, and professor of physiology in Heidelberg in 1858. During the
years that Helmholtz worked in Miiller’s laboratory, he undertook a number of deliberate attempts
to undercut the ’vitalism’ of his generation of teachers. Liebig’s Organische Chemie in ihrer
Anwendung auf Physiologie und Pathologie of 1842 [132|, which described physiological processes
in terms of chemical transformations, put him on the trail.

To put this to the test, Helmholtz designed a series of ingenious electrophysiological experiments
with frog legs. The result of this was, firstly, that the chemical changes that a contracting frog’s
leg underwent were entirely due to material conversion processes in the muscle tissue. Second,
according to Helmholtz, the experiments showed that the nervous system — often regarded by
vitalists as the main or even the sole seat of the vital force — played no direct role in these
chemical transformations. Helmholtz succeeded in quantitatively measuring the heat generation of
contracting muscles. These experiments with frog legs were part of a broader investigation that led
Helmholtz in 1847 to confirm the law of conservation of ’force’ (’energy’, in modern terminology):
all forms of energy in nature — mechanical, chemical, electrical and so on — are interconvertible
and each conversion begins and ends with forms of energy that are exactly equivalent [95]. No
new energy is generated, no energy is lost. Helmholtz’s experiments are also typical illustrations
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of reductionist physiology. Anatomy played no explanatory role, the methods used were the same
as in chemistry and physics, instruments formed an essential part of the experimental design, and
attempts were made to quantify the relationships described [119].

1.1.10 Holistic Physiology

Jacques Loeb (1859-1924) has long been known as a typical follower of the German reductionist
school of Helmholtz. This view is mainly based on a collection of essays that Loeb published in
1912 under the title The Mechanistic Conception of Life [139] and which can indeed be read as
a reductionist creed. But research into Loeb’s life and work shows that this is only part of the
story. Until 1912, Loeb had sharply opposed the German school. The collection of essays marked
the beginning of a new period of research in which he radically broke with the principles that had
dominated his work until then. Loeb had studied medicine in Berlin and Munich before doing
doctoral research with the brain physiologist Friedrich Goltz in Strasbourg. Goltz was a student of
Hermann von Helmholtz, but he opposed his reductionist approach to life phenomena. He rejected
the then widespread localization theory, which held that every brain function could be located in a
specific anatomical sub-area of the brain. For example, in the brain there would be a speech center,
a touch center, a smell center and so on. Goltz believed that brain functions were a complex set
of dynamic, constantly interacting processes. In his opinion, localization theory was insufficient to
understand the dynamics and interplay of brain functions [6].

In his dissertation, which he completed in 1884, Loeb adopted this perspective from his teacher.
In the following years he was strongly influenced by the philosopher and physicist Ernst Mach.
Mach’s ideas, he believed, provided a philosophical justification for Goltz and himself’s approach
to brain function. A core of Mach’s philosophy was that theoretical scientific concepts, such
as ’electron’ and ’gene’, were no more than brief descriptions of observational data. It was not
permissible to attribute a real existence to the entities for which those concepts stood. The scientist
had to deal only with observable and measurable phenomena, and any statement about 'underlying’
entities by which those phenomena would be caused, belonged, according to Mach, to metaphysics
[140]. For example, the concept of ’gene’ sensibly summarized a number of hereditary phenomena,
but that did not entitle the researcher to conclude that genes really existed.

Loeb decided to look at movement responses in animals and soon came with remarkable results.
In certain butterfly species that deposit their eggs close to the ground on brushwood, he saw that
the larvae moved upwards immediately after leaving the egg. This is how they reached their food,
the young leaves at the ends of the branches. Loeb determined experimentally that the behavior
resulted from positive heliotropy, an involuntary orientation toward a strong light source. The
compulsion of the reaction was dramatically demonstrated when the larvae were placed on a bush
with a lamp attached at the base of the trunk. The animals then oriented downwards instead of
upwards, with the result that they starved to death. In another experiment, Loeb managed to
produce a two-headed Tubularia polyp by permanently keeping the larva in a floating position
in the water, thus avoiding contact with the bottom. This contact was apparently necessary for
the differentiation of a foot (stereotropism), and in the absence of that stimulus a second head
developed at the bottom [6].

Results like this led Loeb to develop a new physiological research program in the years 1888-
1891. Scientific activity, Loeb argued, was characterized by practicality, by observation, measure-
ment, and weighing of observable phenomena. It was useless to look for the imperceptible causes
of these phenomena, for in doing so the scientist fell into metaphysical speculations. Thus, not
causal analysis was the goal, but description in terms of reproducible measurement results. This
led Loeb, following Ernst Mach, to reject the distinction between science and technology. To do
science was to take action, and it made no fundamental difference whether natural responses of the
organism were observed or artificial ones provoked for some technical purpose. The technical point
of view was the heart of Loeb’s program. His research gave him confidence that full control over
the phenomena of life could be obtained through technical manipulation. This also meant that the
researcher would have far-reaching possibilities to change the behavior of organisms in a direction
desired by him. Man could ultimately make living nature subservient to his own interests; Loeb
was aiming for a kind of biological engineering.

Loeb’s greatest success came in 1899: artificial parthenogenesis. He discovered that unfertil-
ized sea urchin eggs in seawater of certain salt concentrations spontaneously began to divide and
develop into larvae |138]. So even a mechanism as basic as reproduction could be controlled with
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experimental methods, Loeb concluded. A simple saline solution could substitute for the role nor-
mally played by the sperm. Loeb obtained a similar result with frog eggs, and he was not afraid to
predict that eventually the reproduction of mammals, including humans, could also be controlled
by physico-chemical techniques. His imaginative results and his suggestion that humanity would
take its future fate into its own hands also brought him fame among the general public. From that
moment on, he had no lack of resources to continue his research.

Around 1910 we are dealing with a completely different Loeb, namely as an archreductionist.
The turnaround had several causes. Over time, Loeb grew tired of the role of public figure that had
been thrust upon him after his initial successes. He was more and more inclined to abandon his
controversial biotechnological vision and retreat to purely scientific terrain. He now saw it as his
task to solve the riddles of life in a ’purely scientific’ way. Instead of controlling the phenomena of
life, causal analysis now came to be at the forefront, and this led to a break with Mach’s philosophy.
Loeb eventually joined the previously despised reductionist tradition that sought analysis down to
the lowest, physico-chemical level |6} 169].

1.1.10.1 Lawrence Joseph Henderson: biochemical buffer systems

Lawrence Joseph Henderson (1878-1942) studied medicine at Harvard and physical chemistry with
the colloid chemist Franz Hofmeister in Strasbourg. In 1905 he was appointed to teach biochemistry
at Harvard University. Henderson had already become interested in the biological implications of
Svante Arrhenius’s theory of electrolytic dissociation during his student days. At Harvard Uni-
versity, he started research into the buffer system of the blood, the system that ensures that the
pH, the acidity of the blood, remains within relatively narrow limits despite fluctuations in the
concentrations of acid and base [|98]|. Faced with the great chemical complexity of the blood, Hen-
derson first decided to study simplified physiological buffers containing only some of the elements
found in the blood. In order to be able to compare different buffers, he drew up an equation that
enabled him to express the buffer effect quantitatively. His research taught him that physiological
buffers are much more efficient at maintaining the correct acidity than the simple buffers used
by chemists. In addition, he established that combinations of buffers, such as those found in the
blood, greatly increase the buffering capacity. Henderson’s most striking result was that the buffers
in the living organism performed their work in conjunction with other chemico-physiological sys-
tems and achieved their greatest effectiveness within that context. For example, he discovered a
buffer system that was only moderately effective in vitro, but that operated within the organism
in conjunction with the breathing gases, achieving much greater efficiency.

After these preliminary studies, Henderson attempted to map the blood pH system in its en-
tirety [98]. He was not so much concerned with the individual chemical reactions as with the
interactions between the various subsystems and with the organization of the system as a whole.
The main problem Henderson faced was that a change in one of the variables affected all the others.
He eventually found the solution by arranging his experimental data in a so-called Cartesian nomo-
gram, in which the total effect of each change in one of the variables can be read. In-vitro studies
were insufficient to map the complexity of life phenomena. Physicochemical reactions formed
the basis of the functioning of organisms, but a reductionist approach failed to understand the
higher-level interactions and the mutual coordination of the subsystems that enabled the efficient
functioning of the individual as a whole. The blood’s buffering system, Henderson argued, was
one of the regulatory systems that maintained that internal environment. The system no doubt
rested entirely on physico-chemical mechanisms, but much remained hidden from the reductionist
analyst who looked no further than these mechanisms [5].

1.1.10.2 Walter Bradford Cannon: homeostasis and dynamic equilibrium

The ability of the organism to self-regulate was also central to the work of Henderson’s colleague,
the physician and physiologist Walter Bradford Cannon (1871-1945). Cannon, too, had studied at
Harvard and remained here after graduation, first as a zoology teacher and, from 1906, as a professor
of physiology. He was particularly interested in the role of the nervous and endocrine systems in the
regulation of bodily processes. He studied part of the autonomic nervous system, the sympathetic
system, which controls the body’s regulatory mechanisms. Cannon made this controlling role
visible by removing parts of the sympathetic system in a cat [44]. Certain regulatory mechanisms,
for example to maintain body temperature, became inoperative as a result. The cat could continue
to live with this without many problems, provided that the conditions in which the animal found

33



itself, the temperature in this case, were kept almost constant. Any slightly larger change caused
problems, not because the regulatory mechanisms were missing, but because the ’order’ for these
mechanisms to come into effect was not forthcoming. Cannon proposed the term homeostasis to
denote the regulatory processes that kept the body’s internal environment in dynamic equilibrium,
a term still in use today. Like Henderson, he believed that homeostasis was established on the
basis of purely physical and chemical processes, yet also denied that the phenomenon could be
fully understood at that lowest level of analysis. Understanding the system was only possible by
focusing on the dynamics of the whole [5].
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1.2 The contemporary framework of systems biology

As we navigate through the historical currents that have shaped our understanding of life, we
arrive at a pivotal juncture where the prevailing notion asserts that true comprehension of a system
demands a focus on its entirety. Having journeyed through the annals of biology’s evolution, it is
now only fitting, if not imperative, to inquire: What exactly is systems biology and how does it
weave into this narrative?

In the realm of biology, diversity flourishes across various levels and scales — from the minute
nuances of nucleotides and proteins to the orchestration of cells, tissues, organs, and entire ecosys-
tems. However, what defines biology at its core? Enter Francis Harry Compton Crick (1916-2004),
who boldly stated that modern biology’s essence lay in explicating everything through the language
of physics and chemistry, embodying a strong reductionist stance [82]. In this viewpoint, biological
systems emerge as mere amalgamations of molecules and their interactions, with the behavior of
organisms emerging from the underlying physical properties of their molecular constituents.

Yet, biology embarks on a transformative journey that sets it apart from the mere realms of
chemistry and physics. While the arrangement of organic bases in DNA can be fashioned in a myr-
iad of ways that adhere to the tenets of physics and chemistry, the true intrigue surfaces within
the confines of the cell. It is within these microscopic landscapes that specific nucleotide sequences
are meticulously tailored to function as a code — an initiation of the concept of information pro-
cessing. This pivotal shift towards a systems perspective marks the departure of biology from its
reductionist foundations.

A quintessential characteristic of life resides in the intricate fabric of information processing
that occurs across multiple levels. As we accumulate evolutionary knowledge over time and trans-
mit genetic instructions from DNA to various intra- and intercellular processes, a complex web of
information unfolds. This intricate web of information processing speaks to the multi-level opera-
tion that lies at the heart of biology’s complexity, an enigmatic phenomenon often referred to as
emergence.

1.2.1 What is systems biology, anyway?

Emerging from this landscape, systems biology takes center stage. It’s the discipline that envisions
organisms as interwoven entities functioning across diverse spatiotemporal scales. In essence, it
represents the fusion of biology, mathematics, technology, and computer science. It interlaces the
various threads of theoretical biology, biochemistry, molecular biology, evolution, ecology, systems
theory, network science, game theory, pattern formation, and nonlinear dynamics. At its core,
systems biology seeks to unravel organisms as holistic systems, composed of dynamic cellular
components like genes, proteins, and metabolites, and to fathom the intricate interactions birthing
their function and behavior.

Within this domain, models assume a central role. These models, intricate constructs woven
from a blend of physical laws, observational insights, and well-informed conjectures, serve as the
cornerstone of our understanding. While the number of modeling formalisms is plentiful, ranging
from cellular automata to differential equations [141], we can group them into two categories:
forward and reverse modeling. In reverse modeling, data is dissected to unearth correlations
suggesting causal relationships. This methodology gained prominence in the wake of data deluges
brought about by omics technologies. Conversely, forward modeling commences with postulated
causal relationships, constructing mathematical models from these conceptual foundations. Often,
it is this forward trajectory that unveils profound insights into into the intricate behaviors exhibited
by complex systems. These models transcend mere mathematical abstractions. Instead, they
materialize as logical engines, crafted to deduce the consequences of our assumptions or knowledge
about a system. In molecular systems biology, they function as crucibles where we test the validity
of our assumptions against physical laws and observational evidence, potentially reshaping our
understanding of the underlying processes and mechanisms of life.

So, what is systems biology, anyway? According to Wikipedia at the date of writing this, the
birth of systems biology as a distinct field began around the year 2000, with the establishment of the
Institute for Systems Biology (ISB) in Seattle [55]. As we inquire into the very nature of systems
biology, we find the ISB addressing the fundamental question, "What is systems biology?", on its
official website [208]. We’re confronted with their definition of systems biology, a definition replete
with grandiose terms and lofty aspirations. However, upon closer scrutiny, it becomes evident
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that this definition is not immune to the trappings of cliché and vagueness. Let’s deconstruct this
definition and explore why it might fall short of providing the clarity and substance we seek.

1.2.2 Critique of the "whole is greater than the sum of its parts" notion

The phrase "Systems biology is based on the understanding that the whole is greater than the sum
of the parts" is one of the central tenets of the contemporary definition of systems biology. At
first glance, it might appear to hold profound insight into the very essence of systems biology. Yet,
upon closer inspection, we find it lacking in concrete elaboration. This assertion fails to expound
on the mechanisms that give rise to this emergent property of systems. It stands as an assertion
without the underpinnings of detailed explanation or empirical grounding.

The phrase "The whole is greater than the sum of its parts" has become a widespread notion
used to encapsulate the concept of emergence, where complex systems exhibit properties that
cannot be directly deduced from the properties of individual components. It’s a principle that
permeates various fields, from philosophy to sociology. It’s an idea well-tread and widely accepted,
not exclusive to the domain of systems biology. In fact, its frequent invocation in diverse contexts
has somewhat diluted its impact and relegated it to the status of a platitude rather than a thought-
provoking insight. While the concept may carry theoretical significance, its ambiguity not only
makes formulating testable hypotheses or predictions challenging but also renders it elusive as it
fails to provide an operational framework for scientists working in the field of biological research.

The concept of emergence can also lead to an unnecessary division between levels of organiza-
tion, creating a false dichotomy between reductionist and holistic perspectives. In reality, there is
a continuum of complexity and organization, and attributing properties solely to emergence can
oversimplify the intricate relationships that exist across different scales. By focusing on emergent
properties, one risks ignoring the underlying principles and interactions that contribute to the
emergence itself.

Furthermore, emergence may not be a necessary concept to explain complex phenomena. Re-
ductionist approaches, when appropriately applied, can account for the emergence of properties
through the interactions and behaviors of individual components. Chaos theory, for instance,
demonstrates that seemingly unpredictable and emergent behavior can arise from deterministic,
nonlinear interactions at lower levels.

In systems biology, the notion of emergence takes on particular significance, given the field’s
focus on unraveling the mechanisms underlying emergent properties and interactions in biological
systems. The field does not merely rest on the repetition of this well-worn phrase but aims to go
beyond by delving into the specifics of how and why the whole is greater than the sum of its parts.
Systems biology seeks to elucidate the intricate processes and behaviors that give rise to emergent
phenomena, offering a deeper understanding of the mechanisms driving the complex interplay
within biological systems. The critique of this platitude is not a dismissal of its validity but rather
a call for a more rigorous and detailed exploration of its implications. It prompts us to move beyond
surface-level acknowledgment and to engage in the intricate investigation of the interconnectedness,
feedback loops, and dynamic behaviors that characterize complex biological systems. Systems
biology aspires to be the vanguard of this exploration, dedicating itself to uncovering the underlying
principles that truly manifest the phenomenon, thus transforming the cliché into a scientifically
grounded and actionable insight. As we deconstruct and reassess the conventional definition of
systems biology, we find ourselves standing at the crossroads of its inception and the broader
historical context. It is clear that while the Institute for Systems Biology’s (ISB) grand assertion
of the "whole being greater than the sum of its parts" captures an essential concept, it lacks the
precision and depth necessary to guide the field with tangible methodologies.

With this exploration in mind, we transition to the next subsection, delving deeper into the
historical roots of systems biology and its emergence from the field of bioinformatics.

1.2.3 The emergence of systems biology from bioinformatics

The roots of systems biology trace back to the realm of bioinformatics, a field dedicated to decipher-
ing the intricate information processes within living organisms. Coined by Hesper and Hogeweg
in 1970, bioinformatics encompasses the study of informatic processes in biotic systems, revealing
profound insights into the complexities of life. They defined it as "the study of informatic processes
in biotic systems" [99]. Clearly, they recognized the intrinsic significance of information processing
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as a defining property of life. They saw that information accumulation during evolution, informa-
tion transmission from DNA to intra- and intercellular processes, and the interpretation of such
information at multiple levels, were pivotal processes within living systems. This understanding
led them to propose that information processing could serve as a powerful metaphor for compre-
hending the intricate workings of biological entities. This information-centric perspective echoed
the essence of molecular biology’s focus on genetic information. Concepts like the "genetic code"
and the "central dogma" highlighted the pivotal role of information in biological systems. The
notion of "transfer of genetic information" encapsulated the essence of molecular biology before
the era of sequence data. This thematic emphasis on information has persisted over time, period-
ically reemerging in various contexts, such as the identification of distinct research fields and the
exploration of processes like sensing the environment and dynamic modifications of molecules.

The theoretical underpinnings of biology were gaining further traction with works like Stuart
Kaufman’s exploration of random Boolean networks |114] and their application to transcriptional
regulation networks [115]. Kaufman’s work introduced the concept of large-scale regulatory net-
works and envisioned cell types as attractors within multidimensional dynamical systems. This
foundational concept of viewing biological systems as dynamic entities laid the groundwork for later
developments in systems biology. Within the scope of bioinformatics, two distinctive paradigms
emerged:

Static bioinformatics: This approach involves analyzing real-world data obtained from var-
ious biological contexts. Static bioinformatics focuses on recognizing patterns embedded within
these data through thorough analyses. By deciphering these patterns, researchers infer and hypoth-
esize about the underlying biological mechanisms that might have given rise to the observed data.
For instance, large-scale phylogenetic studies uncover evolutionary relationships among species,
while Genome-Wide Association Studies (GWAS) pinpoint genes associated with specific diseases.
Static bioinformatics relies on data-driven insights to unveil the mechanisms shaping biological
systems.

Dynamic bioinformatics: Contrasting with static bioinformatics, the dynamic approach
engages with the inherent processes that generate patterns within biological systems. In dynamic
bioinformatics, researchers construct formal models that represent basic biological assumptions
derived from observations. These models capture the processes and interactions underlying the
system’s behavior, allowing researchers to study emergent patterns or outcomes. For instance,
by applying dynamical evolutionary modeling, scientists explore prevalent phenomena like whole-
genome duplications in extant species. This approach enables researchers to simulate and examine
the impact of various assumptions on the behavior of the system, leading to insights into complex
biological processes.

The dynamic approach in bioinformatics, particularly the exploration of processes and inter-
actions, has paved the way for the birth of systems biology. Systems biology capitalizes on the
principles of dynamic bioinformatics to delve into the holistic understanding of organisms as intri-
cate networks of interconnected components. By integrating data-driven insights with modeling
techniques, systems biology transcends the reductionist perspective and captures the complex in-
teractions that define life’s intricacies. The journey from bioinformatics to systems biology reflects
the evolution of our quest to unravel the mysteries of life, shifting from patterns in data to the
dynamic interactions that give rise to these patterns. This pivotal shift lays the foundation for a
more comprehensive and precise definition of systems biology.

1.2.4 Defining systems biology

To define a research field, it’s insightful to pinpoint its most ambitious ultimate objective, the
question that, when resolved, would epitomize its research endeavors. For biology, this overarching
question is "What is Life? ”EI. How does this aspiration transpose into the ultimate aim of Systems
Biology?

Boogerd et al. have characterized systems biology as a biological approach that can sidestep
the consideration of evolution [27] [26]. Given the widespread adherence to Dobzhansky’s maxim
"Nothing in biology makes sense except in the light of evolution" [211], this assertion appears almost
heretical. Biology’s scientific philosophy is deeply rooted in historical exploration of phenomena,
setting it apart from non-historical sciences like physics and chemistry. Boogerd et al. acknowledge
this, suggesting that the absence of evolutionary perspectives is a temporary drawback, indicating

2Title of a seminal paper by Erwin Schrédinger[192]
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that systems biology will eventually align with mainstream biology and its evolutionary interpreta-
tions. Contrarily, Kirschner argues that the primary objective of systems biology is to understand
how biology creates variation, a concept distinct from physical sciences and foundational to all
of life [118]. Breitling proposes that systems biology is the research endeavor that provides the
scientific foundation for successful synthetic biology [30]. While he acknowledges that an evolution-
ary outlook initially aids in comprehending general design principles, such as the balance between
robustness and evolvability in cellular and developmental circuitry, according to him the ultimate
demonstration of understanding life’s organizational principles necessitates the ability to engineer
entirely novel, unevolved life forms.

While a number of scholars have proposed various perspectives on systems biology, ranging
from sidestepping evolutionary considerations to the foundational aspect of generating biological
variation or underpinning synthetic biology, a common thread among these definitions seems elu-
sive; instead these definitions offer a somewhat fragmented view. Taking into account the diverse
viewpoints and the challenges in identifying a unified perspective, let’s delve deeper to provide a
more comprehensive definition of systems biology. This understanding hinges not just on singular
perspectives but on capturing the vast complexities and nuances inherent to biological systems:

Systems biology is an integrative scientific approach that investigates how interactions
between processes operating at different organizational levels and on varying timescales
give rise to the behaviour and functions of living organisms.

This complexity reveals itself in several defining properties:

e Locality of interactions: Unlike the standardized particles in physics, entities in biology
are distinct. This leads to distinctive local interactions in biological systems, which is often
accompanied by spatial pattern formation.

e Multiple levels of organization: Organisms operate on multiple organizational levels that
cohesively interrelate and exert mutual influences. Not only do to parts constitute the whole,
there also exists feedback from the higher level entities on lower level ones.

e Diverse timescales: Biological processes unfold over varying timescales, including ecology,
evolution, and regulation. There needs to be an awareness of the inherent risk and potential
fallaciousness associated with assuming a clear separation of timescales in systems biology.

e Evolutionary signatures: All living organisms are products of evolution and thus carry
its imprints. Notably, neutrality plays a pivotal role, and evolution itself can undergo trans-
formative shifts, a phenomenon that underscores the adaptability of biological systems.

To account for individual difference, researchers in systems biology may employ localized models,
such as cellular automata, or adopt an individual-based modeling framework. A frequently used
example illustrating how local or individual rules can give rise to complex behavior is the phe-
nomenon of self-organization, which is observed in studies of population dynamics, tissue morpho-
genesis, epidemiology, and microbial consortia [183] 58, 90, (97, {180]. Multiple levels of organization
and selection emerge as fundamental aspects of biological systems. For instance, the early death
of RNA replicators may seem counterintuitive at a micro-level, yet they evolve due to influences
from macro-level entities, such as propagating Darwinian waves |129| [209) |188]. Furthermore, un-
derstanding the interaction between different timescales is crucial. For instance, the separation
of evolutionary and ecological timescales can prove fallacious, as demonstrated by research on
time-dependent fitness in animal populations and host-parasitoid systems [158) [24]. Lastly, the
exploration of evolutionary signatures further enriches our comprehension of biological systems.
This is exemplified by the existence of pseudogenes, constraints on molecular interactions due to
co-evolution, and the identification of phylogenetic signals in gene expression patterns [130, |231}
182]. Based on these insights we may extrapolate Dobzhanksky’s famous aphorism to formulate
two additional guiding principles:

e Nothing in biology makes sense, except in light of self-organization, and
e Nothing in biology makes sense, except in light of multilevel evolution.

In the following sections, we will delve deeper into several of these concepts, exploring their impli-
cations and significance in the context of systems biology.
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1.2.5 The role of models in systems biology

The intuitive work flow in experimental biology is: observation of an interesting phenomenon,
formulation of a hypothesis, and testing of this hypothesis. For example, if we observe an organism
that exclusively lives in a particular geospatial location, we hypothesize that there must be a
reason for this. Perhaps the environmental conditions at this location are uniquely suitable for
it, due to the presence of specific nutrients or the absence of predators. In forward modeling we
take a different approach: we construct a model with minimal assumptions to see whether these
assumptions are sufficient to reproduce the observed behavior. If this is not the case, we explore the
validity of our assumptions and explore the parameter space to see what we might be missing. A
model that describes the organism in its environment, however, may show that geometric features
of the landscape and random dispersal may be sufficient to explain the phenomenon. Where the
intuitive approach immediately tries to seek an explanation for the observed pattern, modeling
allows one to discover that no additional explanation is needed.

To meaningfully describe biological systems, we must appreciate the power of modeling and
understand the strengths and weaknesses of different modeling approaches. Models need to encap-
sulate the necessary complexity and no more than that, presenting a conundrum: what is the right
level of complexity to address the question at hand? There is no straightforward way to answer
this question and we need to explore different models and modeling approaches. Therefore, it is
important to know what the limitations of the model are in order to understand what can and
cannot be learned from them. For example, ordinary differential equations may not be able to
explain the existence of subpopulations, whereas a spatial or stochastic modeling approach might
|12} |201]. Similarly, while growth rate optimization in constraint-based models might be a useful
objective for understanding flux distributions in microbes, it may be unsuitable for understanding
those in more complex organisms, such as animals. Importantly, not only do we need to take
into consideration constraints on the system, there exist feedback mechanisms within and between
different levels of organization. In such a complex system, the rules at microscale, be it the in-
teractions of individual molecules or organisms, gives rise to patterns at mesoscale whereof the
behavior cannot be predicted a priori from our knowledge of the behavior at a local level — that is
to say not without simulation. This also implies that not all biological behavior can be understood
in terms of fitness optimization, instead, observations may often be considered as side-effects of
higher-level feedback mechanisms. Even if there is a fitness benefit, we need to ask to whom this
fitness benefit is conveyed.

A striking example of this is evident in the world of RNA-like replicators. Research has illumi-
nated a seemingly counterintuitive phenomenon: the evolution of early death in these replicators.
At first glance, early death might appear as a disadvantage. After all, an earlier death implies
a reduced window of opportunity for an individual replicator to reproduce. However, in a dense
competitive environment with mutant populations, the early demise of individual replicators can
free up space, facilitating the growth and propagation of neighboring replicators. This can lead to
the formation of beneficial structures, like faster-rotating spiral waves, which in turn can give an
edge to the population in competition against mutants. Therefore, while early death does not favor
the individual replicator, it indirectly enhances the overall fitness of the population, providing a
competitive advantage in certain contexts [129) |188]. In the end, if multiple modeling approaches
provide evidence for the emergence of a particular behavior, then it is more likely to be true;
multiple points-of-view are needed in order to truly understand a biological process.

Finally, we consider what purpose a model serves. Models can provide us a baseline expectation.
For example, we may use a metabolic network model to provide us insight into which biochemical
pathways could be used to synthesize a specific precursor. Models can provide us a means to
explore novel ideas and new areas of research. For example, the RNA genotype-phenotype mapping
paradigm provided a template which guided the discovery of evolutionary properties of systems.
The Lotka-Volterra equations, describing predator—prey interactions, are another good example;
although the model is clearly incorrect — e.g. prey don’t die — it has taught us a lot about
population dynamics [223]. Models can serve as a proof of principle. For example, the group
selection model in the study evolution was used to show that a particular type of behavior is, at
least theoretically, possible [229]. Models can help to debug ideas and assumptions by forcing us
to make them explicit. For example, classical models of the E. coli Lac operon, based on 50 years
of experimental work, showed that there was bistability and hysteresis in the system [167]. The
model is relatively complex and many of its experimentally determined parameter value estimates
varied several orders of magnitude. When other researches later evolved the model, they obtained
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a model without bistability [217]. When the work was due to be published, however, a paper
came out that showed experimental evidence for the existence of the bistability that the original
model predicted [198|. Years later, it was discovered that this bistability resulted from the use of
an artificial inducer, IPTG, which, unlike lactose, could not be metabolized [179]. Debugging of
both experiment and model was necessary here in order obtain this finding, which dispelled the
dominant theory at the time — that of the existence of bistability in the Lac operon system. Models
can also be predictive. For a model to be predictive we need both the correct interaction structure
as well as its parameter values and initial conditions. There are different flavors and purposes of
models, but the simplest answer to why we use them is that they provide us an understanding:
starting from known or assumed interactions at a micro-scale, consequences of complex behaviour
at meso-scale can be derived, which may not be obvious and be counter-intuitive when considering
local interactions alone.

1.2.6 Modes of explanation

Beyond the mere constructs of models lies the deeper quest of 'why’ — the inherent human drive
to explain phenomena. Exploring the multifaceted nature of explaining biological phenomena, we
begin with a whimsical Dutch saying that perfectly captures the essence of curiosity: "Waarom,
waarom, zijn de bananen krom?’. Translated to English, it means: Why, oh why, are bananas
bent? This saying reminds us that there are different ways to approach explanations, each offering
a unique perspective on the underlying principles of complex systems.

1.2.6.1 Tautological

The first mode of explanation involves the use of tautology, a form of reasoning based on self-evident
truths. In this context, we might consider the bent shape of a banana as a defining characteristic
— essentially, a yellow fruit is a banana, and if it’s not bent, it’s not a banana. However, while
this approach appears straightforward, it tends to fall short of offering deep insights. It’s akin
to stating that survival of the fittest is fundamental for evolution — undeniably true, yet lacking
in profound illumination. Yet, despite its apparent simplicity, this perspective doesn’t necessarily
downplay its significance. To illustrate this point, consider the concept of survival of the fittest.
Although it’s often assumed to be a universal truth tied to explicit fitness, it’s not always the
case. A remarkable example of this lies in the intricate interplay of a host-parasitoid system,
as explored by Boerlijst and colleagues. This system presents an intriguing scenario where even
low-fitness parasitoids can emerge as dominant players in the long term, under the condition that
they arise in the central regions of spiral waves 23| 24]. The exploration of this host-parasitoid
system reveals an unexpected twist. In the realm of ordinary differential equation (ODE) models,
increasing the death rate of a replicator is typically considered a disadvantageous trait. However,
when we venture into the realm of cellular automata (CA) models and allow for mutations in
the death rate of individuals, a fascinating phenomenon unfolds. This phenomenon defies initial
intuitions and necessitates a shift in perspective. In this CA model, where growth and interactions
are governed by local rules, the process of replication depends on the availability of adjacent empty
spaces. Replicators interact and assist each other in their replication process. Spiral waves, a key
feature of this system, exhibit intriguing dynamics where faster-rotating spirals can overtake and
replace slower-rotating ones. This principle of spirals competing for space is established through
theoretical insights from excitable media studies [124}, 24]. Further insights into this host-parasitoid
system unveil the pivotal role of the core region within the spiral waves. All offspring originate from
this central region, which leads to a profound consequence. While a higher death rate might seem
detrimental for an individual replicator — offering less time for replication — it turns out that a higher
death rate can, in fact, evolve within the population. The intricate interplay becomes clearer when
considering the dynamics within the spirals. Faster-rotating spirals exhibit a faster succession of
replicator generations — A followed by B, then C, and so forth. The speed at which these replicators
replicate and vacate space becomes a determining factor in the competition among spirals. A higher
death rate, paradoxically, enables replicators to more swiftly vacate space, resulting in a faster-
rotating spiral wave. This phenomenon transcends the conventional trade-off mechanisms and
introduces a new level of selection dynamics.

In summary, the exploration of this host-parasitoid system offers a thought-provoking perspec-
tive on the intricate interplay between fitness, replication dynamics, and the emergence of domi-
nant traits. It challenges our conventional understanding of fitness optimization and illustrates how
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seemingly counterintuitive traits can emerge under specific contexts. This example underscores the
richness and complexity of biological systems, where even apparently straightforward concepts like
survival of the fittest can unfold into intricate narratives of adaptation and evolution. Moreover,
tautologies can convey profound insights. The notion that survival of the fittest is equivalent to
competitive exclusion is, at its core, a tautology. Recognizing that the different terms stem from
the same underlying concept can shed light on their meaning and implications, and understanding
where these different terms come from is insightful.

1.2.6.2 Generic property

Another mode of explanation involves considering prevalence. When bananas are almost always
bent, a straight banana becomes the exception. In this light, our assumptions or stereotypes might
perceive a straight banana as a deviation from the norm. This concept aligns with the notion that
studying specific cases, such as model organisms, can shed light on general properties. However,
investigating these ’deviations’ can also lead us to uncover the inherent characteristics of systems,
or prompt us to question whether "why" is indeed the right question to ask. To illustrate this
point, let’s delve into the fascinating example of B-cell nodule formation in lymph nodes. In lymph
nodes, B cells congregate in clusters amidst T cells, forming distinctive B cell nodules. Both cell
types enter the lymph node randomly, which raises two pivotal questions:

1. How are these nodules formed?
2. Why did the system evolve this pattern?

Addressing these inquiries, Hogeweg crafted a cellular automaton (CA) model in 1989 [101]. In this
model, the 2D grid serves as a cross-section of the lymph node, where each grid point represents
the presence or absence of a T cell or a B cell. The evolution of each grid point is governed
by processes of birth and death, as well as influx and efflux of cells. As T cells and B cells
traverse the lymph node, their movements contribute to the overall dynamics, characterized by
localized influx and efflux. The model assumes a stochastic influx of T and B cells, with T
cells autonomously proliferating and B cells proliferating in proximity to T helper cells [163].
Remarkably, this seemingly straightforward model yields a remarkable observation: B cell nodules
emerge, featuring a higher density of B cells at the edges of nodules, where they are spurred to
divide by T helper cells. This phenomenon mirrors real-life observations within lymph nodes.
This illustration underscores a profound insight: patterns need not necessarily originate from a
purposeful mechanism or serve a functional explanation. In fact, this model incorporated no
specific mechanism to generate the pattern, nor did it attribute any explicit advantage or function
to the observed arrangement. Curiously, in this instance, the clumped B cell configuration is
actually disadvantageous to the system. These clustered patterns can impede the interactions
between B cells and T cells, which are pivotal for proliferation. Paradoxically, while optimal
proliferation might require a well-mixed system, local proliferation dynamics render achieving such
homogeneity challenging. This example offers a pivotal revelation: patterns need not solely result
from optimization mechanisms or specific causal chains. Frequently, patterns serve as the default
expectation, particularly in the context of biology and cellular automaton models. The prevalence
of non-uniform distribution resulting from local interactions emerges as a fundamental aspect,
challenging the assumption that patterns must always emerge from deliberate optimization or
functional intent. So, why do lymph nodes exhibit their distinct structure? The answer lies in
the fact that this pattern reflects the inherent default state — suboptimal yet prevalent — while
achieving randomness is, in reality, a formidable task.

1.2.6.3 Imposing value or benefit

Imposing a certain value or benefit presents another avenue for explanation. For example, one
might posit that specific phenomena, such as the curvature of bananas, hold optimality for certain
purposes. However, such assertions require precise definitions of terms like "optimal" to carry
meaningful weight. Furthermore, the question "optimal for whom?" underscores the intricate
and multi-level nature of biological systems. To illustrate this concept, consider Rodney Brooks’
robots [35]. He designed state-of-the-art robots capable of planning optimal paths through rooms.
However, these robots often spent too much time planning and reconsidering due to changing envi-
ronments. Brooks’ later work emphasized a more adaptable approach, where robots continuously
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adjusted their behavior based on real-time feedback from the environment [34]. This example
underscores that sometimes, instead of rigidly adhering to preconceived notions of optimality,
adaptable behaviors driven by immediate environmental cues lead to more effective outcomes. An-
other example comes from self-organization in animal groups. Flocking birds, schooling fish, and
migrating herds demonstrate complex behaviors emerging from simple individual rules in inert
environments. These behaviors aren’t necessarily optimized but result from interactions with their
surroundings |183] [58|. This further exemplifies that behavior can stem from simple rules and cues,
rather than explicit optimization strategies.

Many behaviors that are hailed as optimized could stem from what is known as TODO-based
behavior — simple rules guiding behaviors based on local environmental cues [58}97]. A fundamental
principle that sheds light on this concept is the "do what there is to do" principle, which underscores
that behavior is steered by local information. Organisms respond to cues in their environment,
triggering specific behaviors when necessary. Additionally, the "do based on what is done" principle
emphasizes that an organism’s perception of its environment evolves as a result of its actions. As
organisms engage with their surroundings, a shared memory collectively shapes their behaviors.
This framework reveals that flexible behavior often emerges from rigid rules. The concept of
automatic adaptation becomes apparent, where organisms don’t engage in behaviors lacking the
required environmental cues to trigger its enactment. The fallacy of assuming optimality is a
critical consideration in understanding biological systems. Many features observed in nature are not
necessarily optimized, yet it is a common error to assume that these features evolved to be optimal.
Instead, they might exist due to side-effects, constraints, or from neutrality. The wide variations
seen in certain features could stem from the absence of significant fitness advantages or costs
associated with those variations. Hence, the notion of optimality in biology must be approached
with caution, taking into account the complex interplay between organisms and their environments,
the influence of local cues, and the possibility of non-optimal but functional configurations emerging
due to various factors.

1.2.6.4 Epiphenomenon

Side-effects often provide alternative explanations for observed phenomena, offering valuable in-
sights into the underlying mechanisms at play. In this mode of explanation, certain features or
behaviors emerge not as direct products of evolution but as byproducts or consequences of other
processes. Banana curvature, for instance, might arise as a side-effect of growth patterns influenced
by gravity or bunching, shifting the focus from evolution to physical forces during growth. This
perspective suggests that understanding the cause of a phenomenon might not necessarily reveal an
adaptive purpose. Consider the case of bananas: explaining their bentness could lead us to identify
the gene or genes responsible for this trait. Yet, diving deeper into the genetic basis migt uncover
an infinite regression of explanations, as we inquire about the origins of those genes and the factors
that influenced their development. This endless quest could potentially trace back to fundamental
cosmic events, like the Big Bang, rendering such explanations impractical for understanding the
immediate biological context.

Epiphenomena can manifest in various ways across biological systems. A striking example is
the phenomenon of social differentiation observed in bumblebee colonies. This differentiation is
dependent on nest structure and growth rates, with certain bees becoming elite workers that lay
eggs. While this might initially seem puzzling from an evolutionary optimization standpoint, a
closer examination reveals that these properties are not heritable and, instead, serve as integral
components of a socially regulated clock that governs the bumblebee colony’s life-cycle. This sheds
light on how what appears as an evolved trait might, in fact, be a side-effect of complex social
interactions and environmental factors |227, [8]. Similarly, other examples from nature highlight
the concept of side-effects. Grouping behavior among animals might not necessarily arise from an
innate desire to form groups but can be an epiphenomenon resulting from distinct foraging behav-
iors or priorities [97]. This insight challenges assumptions about the purposes of certain behaviors
and illustrates how behaviors that appear optimized might, in fact, be unintended consequences
of individual actions interacting with their environment. Another compelling illustration of how
side-effects can lead to unexpected outcomes in evolutionary processes is provided by Hillis’ work
on sorting algorithms. Hillis aimed to evolve efficient algorithms for parallel sorting. While the
primary goal was a fast sorting algorithm, he selected algorithms based on their ability to correctly
sort a certain number of problems. Interestingly, this selection criterion led to the emergence of
fast sorting algorithms as a side-effect [100].
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In summary, considering epiphenomena as explanations opens doors to understanding the intri-
cate interplay between evolving organisms and their environments. While evolution may optimize
specific traits, it can also produce side-effects that contribute to the diversity and complexity of
biological systems. By recognizing these non-adaptive consequences, we gain a more comprehen-
sive perspective on the forces shaping the natural world, challenging assumptions of optimization
and offering new avenues for exploration and understanding.

To conclude, we might undertake the task of constructing a detailed model to decipher the unique
curvature of bananas. By integrating all available data, our objective is to shed light on the myriad
factors influencing this distinct growth pattern. Central to this quest is the realization that even
ostensibly trivial questions can produce multifaceted responses, contingent on the perspective and
level of analysis employed. It is judicious to address any question or behavior through multiple
lenses for a holistic comprehension. Central to our philosophy is the application of analogous
principles across varied systems to unveil common behaviors, accentuating their robustness to
shifts in model structure and foundational theories.

In the broader arena of scientific modeling, this philosophy finds echoes. While models founded
on the basic laws of physics might be hailed as unbiased representations of reality, their counterparts
in biology aren’t as clear-cut. The equations that we use, such as for example mass action kinetics,
are not physics or chemistry, but phenomenology. Although biology is grounded in physics, its
models don’t have the same predictive prowess as those sprung from the fundamental laws of
physics. In biology we need to make assumptions. The pharmacologist James Black understood this
well. In his 1988 Noble prize lecture he stated: "Models in analytical pharmacology are not meant
to be descriptions, pathetic descriptions, of nature; they are designed to be accurate descriptions
of our pathetic thinking about nature" and that "they are meant to expose assumptions, define
expectations and help us to devise new tests" [17].

The same philosophy stands true in biology. The justification for any model therefore lies in its
use to test the pathetic assumptions it is was build on. From this perspective, it may seem attractive
to focus on the assumptions to see what surprising behavior might emerge if we tweak or add more
of these. The scientific publication record, however, is testimony of the fact that the results of
these endeavors are often mundane. Instead, we should focus on the question we wish to address,
assess whether our assumptions are sufficient, and ask to what extent they are consequential to
the result or conclusion the model provides. Specifically in biology, the assumptions that we make
may have significant consequences for the results we obtain. Ultimately, the choice of modeling
framework is subjective and the certainty of conclusions derived from the model are, and should
always be considered, in relation to its assumptions. They are, echoing James Black’s resonant
phrase, "accurate descriptions of our pathetic thinking" [92].
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1.3 Cellular metabolism

Cellular metabolism encompasses the suite of chemical reactions within cells, falling broadly into
two categories: catabolism, which degrades molecules to release energy and smaller components;
and anabolism, which assembles these components into larger structures, consuming energy in the
process.

1.3.1 Significance and molecular foundations

To appreciate the vastness of cellular metabolism, we must understand the multifaceted roles it
plays in cellular functioning and broader biological contexts:

Energy production and maintenance: At its core, cellular metabolism is responsible for
the production of energy needed for cellular activities. Through processes like glycolysis, the tri-
carboxylic acid cycle (TCA), and oxidative phosphorylation, cells generate adenosine triphosphate
(ATP), the universal energy currency. ATP fuels cellular processes, such as active transport, muscle
contraction, and DNA replication, ensuring the continuity of life.

Biomolecule synthesis: Beyond energy production, metabolism plays a pivotal role in syn-
thesizing the building blocks required for the construction of complex biomolecules. Carbohydrates,
lipids, proteins, and nucleic acids are intricately woven into the fabric of living organisms, forming
the basis for cellular structures, enzymes, hormones, and genetic material.

Regulation of homeostasis: Cellular metabolism intricately intertwines with the imperative
task of maintaining internal equilibrium, commonly known as homeostasis. Metabolic pathways
regulate the concentrations of various molecules within cells, tissues, and organs. For instance, the
levels of glucose and other metabolites are tightly controlled to ensure adequate energy supply and
prevent detrimental imbalances.

Adaptation to environmental changes: Cells must continuously adapt to changes in their
environment to survive and thrive. Metabolic pathways allow cells to adjust their activities based
on nutrient availability, oxygen levels, and other environmental cues. This adaptability is essential
for cells to respond to challenges, such as nutrient scarcity or exposure to toxins.

Interplay with signaling pathways: Metabolism and cellular signaling pathways are in-
terconnected, influencing each other’s activities. Metabolites, the intermediates and products of
metabolic reactions, often serve as signaling molecules that modulate cellular processes. This in-
tricate cross-talk enables cells to integrate information from their surroundings and adjust their
metabolic responses accordingly.

Health and disease: Dysregulation of cellular metabolism is implicated in numerous diseases,
including metabolic disorders, cancer, and neurodegenerative conditions. Understanding the molec-
ular foundations of metabolism provides insights into disease mechanisms and offers opportunities
for therapeutic interventions.

Evolutionary conservation: Many metabolic pathways are conserved across diverse species,
reflecting their essential role in sustaining life. Evolution has fine-tuned these pathways over
millions of years, resulting in the remarkable diversity of metabolic strategies among organisms.

In the sections ahead, we’ll trace the history of cellular metabolism, highlighting its pioneers
and origins. We’'ll then examine its molecular pathways, cycles, and regulations, offering insights
into cellular function and the complexity of metabolism.

1.3.2 The discovery of cellular metabolism

The discovery of cellular metabolism can be traced back to the early 19th century and coincides
with the discovery of photosynthesis. It cannot be pinned to a specific date, as it involved a gradual
process to which many people contributed. The discovery started with Jean Baptiste van Helmont,
who performed an experiment in which he grew a willow tree in a pot of soil and measured the
mass of the tree and the soil over a period of five years. He found that the mass of the tree
increased by significantly, by 74 kg, but the mass of the soil remained relatively constant, losing
only 57g. In the posthumous publication of this work, in 1648, he attributed this difference to the
uptake of water [96]. More than a century later, in 1774, Joseph Priestley discovered that plants
produce and absorb gas [177]. Although he didn’t realize it at the time, his experiments proved that
oxygen is present in the air. Five years later, in 1779, Jan Ingenhousz performed an experiment
in which he kept plants submerged in jars and observed bubble formation on the surface of the
leafs, but only when the jars were placed in sunlight [106]. From this he concluded that plants
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use light to produce oxygen. It would take almost two more decades until, in 1796, Jean Senebier
demonstrated that plants absorb carbon dioxide and release oxygen with the help of sunlight [196].
However, it was not until 1845, after Julius Robert von Mayer published his seminal work on the
conservation of energy [148], that von Mayer enunciated the idea that the movement of molecules
in living organisms is the source of their energy [147]. It was around this time that the first studies
on chemical reactions in cells commenced, such as those conducted by Jean-Baptiste Dumas and
Jean-Baptiste Boussingault |72], that the chemical theory of metabolism was proposed by Justus
von Liebig [131], defining metabolism as a concept and ushering in a new field of research.

In the late 19th and early 20th centuries, scientists such as Louis Pasteur, Eduard Buchner, Otto
Warburg, and Leonor Michaelis made further discoveries that paved the way for the development
of the modern study of cellular metabolism. Following up on the work of Theodor Schwann’s
cell theory, Louis Pasteur conducted a series of experiments that showed that micro-organisms are
responsible for the fermentation of sugars. In 1858 he showed that lactic acid bacteria convert sugar
into lactic acid, while yeast convert it into alcohol [168|, and that the rate of these fermentation
processes diminishes in the presence of oxygen, something which is nowadays referred to as the
Pasteur effect. In subsequent fermentation study conducted in 1897, Eduard Buchner showed
that fermentation can occur in the absence of living cells, which provided the first evidence for
the existence of enzymes [39]. In the 1924, Otto Heinrich Warburg discovered the respiratory
enzyme, cytochrome, and its involvement in electron transfer during the conversion of glucose and
oxygen into energy, which helped to establish the basic principles of cellular respiration and energy
production [224]. In furtherance of understanding cellular respiration, one of his students, Hans
Adolf Krebs, would come to discover a cyclic series of biochemical reactions that is used for the
production of energy from carbohydrates and fatty acids [123|. This cycle, which is known as the
tricarboxylic acid cycle or Krebs cycle, is part of central carbon metabolism and will take center
stage in the third chapter of this thesis.

1.3.3 Central carbon metabolism

At the core of metabolism lay pathways that are universal to life. This system of biochemical
pathways, referred to as central carbon metabolism (CCM), is a hub at the intersection of catabolic
and anabolic processes. Central carbon metabolism comprises several interconnected metabolic
subsystems, such as glycolysis, the pentose phosphate pathway (PPP) and the tricarboxylic acid
cycle (TCA).

Glycolysis is a fundamental metabolic pathway that occurs within cells and is conserved across
diverse organisms. It plays a crucial role in energy production and provides a source of pyruvate
that can enter various downstream metabolic processes. The process initiates with the phosphory-
lation of glucose, trapping it within the cell and priming it for subsequent breakdown. Glycolysis
comprises two main phases: an energy-investment phase and an energy-payoff phase. In the
energy-investment phase, ATP is consumed to convert glucose into glucose-6-phosphate, which is
then further metabolized. During the energy-payoff phase, three-carbon molecules generated from
glucose are processed to yield ATP and NADH, valuable energy-rich molecules for cellular func-
tions. The final product of glycolysis is pyruvate, a versatile metabolite that can be channeled into
various metabolic pathways.

Gluconeogenesis is the reverse of glycolysis and is essential for maintaining glucose levels when
glucose availability is limited. This process occurs in specific tissues and cells, ensuring a con-
stant supply of glucose for critical functions. While glycolysis breaks down glucose into pyruvate,
gluconeogenesis synthesizes glucose from precursors like pyruvate, lactate, and select amino acids.
Converting pyruvate to glucose requires the reversal of specific glycolytic steps. Unique enzymes
facilitate several of these reactions, which are regulated to prevent wasteful cycling between gly-
colysis and gluconeogenesis. This process consumes energy in the form of ATP and GTP and is
tightly controlled to meet the energy demands of the cell or organism. Collectively, glycolysis and
gluconeogenesis assume a crucial role in maintaining energy equilibrium and optimizing nutrient
utilization across diverse biological systems.

The pentose phosphate pathway (PPP), also known as the hexose monophosphate shunt,
is a metabolic pathway that operates parallel to glycolysis. It serves multiple essential functions
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within cells by generating reducing equivalents, NADPH, and producing pentose sugars that con-
tribute to various biosynthetic processes. The PPP consists of two interconnected phases: the
oxidative phase and the non-oxidative phase. In the oxidative phase, glucose-6-phosphate is ox-
idized to form 6-phosphogluconate, generating NADPH in the process. NADPH plays a critical
role in an array of biochemical reactions, including the synthesis of nucleotides and fatty acids, as
well as in redox regulation and defense against oxidative stress. The non-oxidative phase involves
the interconversion of sugars and is pivotal for generating ribose-5-phosphate, a key precursor for
nucleotide synthesis. This phase provides cells with the building blocks necessary for DNA, RNA,
and ATP synthesis. The PPP’s dual role in producing NADPH and ribose-5-phosphate highlights
its significance in both maintaining redox balance and supporting the synthesis of crucial cellular
components. Moreover, NADPH generated by the PPP helps protect cells from oxidative damage.
It fuels various antioxidant systems, including the regeneration of glutathione, a potent antioxi-
dant that scavenges reactive oxygen species generated during cellular respiration. By maintaining
cellular redox equilibrium, the PPP contributes to cell viability and overall health.

The tricarboxylic acid cycle (TCA cycle), also known as the citric acid cycle or Krebs cycle, is
a fundamental metabolic pathway that operates in both prokaryotic and eukaryotic cells, playing a
central role in energy generation and the synthesis of key biomolecules. In prokaryotes, like E. coli,
the TCA cycle occurs in the cytoplasm, the cell’s main compartment, whereas the cycle operates in
mitochondria in eukaryotic cells, which are specialized organelles responsible for energy production.
The cycle begins with the condensation of acetyl-CoA, derived from various carbon sources, with
oxaloacetate to form citrate. This initiates a series of enzymatic reactions that ultimately lead
to the production of reducing equivalents such as NADH and FADH2. The electrons carried by
NADH and FADH2 are crucial for the electron transport chain (ETC), which is embedded in
the prokaryotic cell membrane. This chain facilitates the transfer of electrons along a series of
protein complexes, ultimately leading to the establishment of an electrochemical gradient across
the membrane. This gradient drives ATP synthesis, similarly to the process in eukaryotes. In
addition to its role in energy production, the TCA cycle is vital for biosynthesis. Intermediates
of the cycle can be extracted to serve as precursors for the synthesis of various biomolecules,
including amino acids and fatty acids. This versatile aspect of the TCA cycle contributes to
the overall metabolic flexibility of prokaryotic and eukaryotic cells. Overall, the TCA cycle is a
central hub of metabolic activity in prokaryotes, contributing to energy generation, the synthesis of
essential molecules, and maintaining metabolic balance. Its universality across diverse organisms
underscores its fundamental significance in cellular metabolism.

Anaplerotic reactions are crucial cellular mechanisms that replenish intermediates within
metabolic pathways, enabling cells to maintain balanced fluxes in response to varying metabolic
demands. These reactions play a vital role in central carbon metabolism, ensuring the availability
of essential metabolites for various cellular processes. Central carbon metabolism features several
key anaplerotic reactions:

e Phosphoenolpyruvate carboxylase (PPC): This enzyme facilitates the conversion of
phosphoenolpyruvate (PEP) to oxaloacetate (OAA) in the presence of COs. Replenishing
OAA is pivotal for the continuation of the TCA cycle and other biosynthetic pathways.

e Phosphoenolpyruvate carboxykinase (PEPCK): Functioning in the reverse direction
of PEPCK, this enzyme transforms oxaloacetate back into phosphoenolpyruvate, consuming
ATP. This reaction contributes to maintaining a balance between energy production and
biosynthetic processes.

e Malic enzyme (ME): The malic enzyme plays a critical role by converting malate to
pyruvate using NAD(P)H. This reaction assists in pyruvate regeneration, contributing to
energy equilibrium and redox homeostasis.

e Glyoxylate shunt: As a bypass of the TCA cycle, the glyoxylate shunt is particularly
relevant in organisms utilizing acetate or fatty acids as carbon sources. The isocitrate lyase-
mediated conversion of isocitrate to succinate and glyoxylate leads to glyoxylate condensing
with acetyl-CoA to produce malate. This malate then feeds into the gluconeogenic pathway,
allowing for the conversion of fatty acids into carbohydrates. This adaptation enables cells
to grow using acetate and fatty acids as sole carbon sources.
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The glyoxylate shunt not only showcases the cell’s metabolic flexibility in generating essential
molecules from diverse carbon substrates but also highlights the intricate coordination of path-
ways for sustainable growth and survival. Anaplerotic reactions contribute to metabolic balance
by dynamically adjusting the availability of key intermediates, reflecting the sophisticated strate-
gies cells employ to optimize their metabolic responses under different conditions. These reactions
underscore the complexity and adaptability of cellular metabolism, ensuring the harmonious func-
tioning of diverse biochemical processes.

1.3.3.1 Interplay with other pathways

Central carbon metabolism serves as a critical hub in the intricate web of cellular activities. It inter-
acts with essential pathways like amino acid biosynthesis, lipid metabolism, and energy production,
highlighting its vital role in cellular functionality. For instance, central carbon intermediates con-
tribute to amino acid synthesis, ensuring the creation of necessary proteins. This process not only
aids protein formation but also optimizes resource use by harnessing energy and reducing equiva-
lents. The relationship with lipid metabolism is similarly important, as central carbon molecules
are essential for generating fatty acids and lipids used in membranes, energy storage, and signaling.
Moreover, central carbon metabolism is key for energy production, converting nutrients into ATP
through glycolysis, the TCA cycle, and oxidative phosphorylation. This energy powers cellular
processes like transport and biosynthesis. The coordinated interplay of these pathways maintains
metabolic balance and resource allocation across diverse conditions.

1.3.4 Regulation of Metabolism

The precise orchestration of enzymatic reaction rates, also known as fluxes, lies at the heart
of cellular metabolism. The efficient generation of ATP, the regeneration of cofactors, and the
synthesis of essential biomolecules, including amino acids and fatty acids, necessitate a delicate
balance of metabolic fluxes. Achieving such balance is crucial for maintaining cellular homeostasis
and adapting to changing environments. In order to achieve this, regulatory mechanisms have
evolved, which play a pivotal role in allowing cells to dynamically adjust their metabolic states
on both short and long time scales. The magnitude of metabolic fluxes is determined by multiple
factors, including the availability of substrates and products, as well as the abundance and activity
of enzymes involved. Two primary avenues of regulating reaction rates exist: modulation of enzyme
abundance and modulation of enzyme activity. Modulation of enzyme abundance is often referred
to as hierarchical regulation, whereas modulation of enzyme activity is often referred to as metabolic

regulation (Figure [LI]).

1.3.4.1 Hierarchical Regulation

Hierarchical regulation plays a pivotal role in shaping the cellular landscape, influencing enzyme
abundance which, in turn, affects the capacity of metabolic pathways. The concentration of en-
zymes within the cell is determined by a dynamic interplay of processes including transcriptional
control, post-transcriptional regulation, translation, and protein degradation. These mechanisms
collectively orchestrate the availability of enzymes, a key determinant of cellular function and
adaptation.

Transcriptional regulation affects the process of DNA to RNA transcription and includes
various mechanisms:

e promoter-related regulation, which involves the interaction of transcription factors with
specific DNA sequences [145], RNA polymerase recruitment to the promoter region [191],
and mediator complex activation [203].

e enhancer/silencer-mediated regulation, such as enhances and silencers of gene expres-
sion [205], cis- and trans-regulatory elements 4], and transcriptional activators and repressors
|4} [15].

e epigenetic regulation, such as DNA methylation and histone modifications, which control
gene expression by modifying chromatin structure [173], and chromatin remodeling complexes
that alter the accessibility of DNA for transcription [52].
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Figure 1.1: Metabolic Regulation. Enzyme abundances can be controlled by transcriptional regula-
tion. This involves transcription of the DNA to RNA, translation of RNA into proteins, as well as protein
folding and complex formation, before such regulation is effective. Typical time-scales of these processes
are on the order of 1 minute for transcription, 1 minute for translation, and 1 millisecond to 1 minute for
protein folding and complex formation. Even though in prokaryotes genes can start to be translated while
they’re still being transcribed, the process is still estimated to take at least a minute. On the other hand,
enzyme activity can also be regulated directly by metabolites. For example, if substrate pools increase,
this will increase the thermodynamic driving force of a reaction rate. However, metabolites may also mod-
ulate enzyme activity directly. If they are structurally similar to the cognate substrate they may do so
by non-covalently binding at the active site, thereby acting as competitive inhibitors. Alternatively, they
may do so by non-covalently binding outside the catalytic site, instead binding to a so-called allosteric
site, and inducing a conformational change. This latter process is referred to as allosteric regulation, and
such metabolites are called allosteric effectors or regulators. Finally, we also consider post-translational
modifications, which are covalent modifications, such as phosphorylation, acetylation, methylation and
glycosylation, that can also directly affect enzyme activity by altering the protein’s conformation. The
typical time-scale of the process of ligand-induced conformational change is on the order of a millisecond,
whereas that of metabolite turnover is on the order of a second.
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Post-transcriptional regulation operates on mRNA molecules after transcription, and encom-
passes a wide range of mechanisms:

e alternative processing, such as alternative splicing of pre-mRNA into different isoforms
[207] and alternative polyadenylation to the 3’ end of mRNA [214].

e sequence modification, such as the enzymatic conversion of adenosine to inosine via RNA
editing |88, [160], or RNA modifications such as methylation or pseudouridylation [187].

e interference and degradation, such as RNA interference by microRNAs (miRNAs) and
small interfering RNAs (siRNAs) [2], regulation of RNA stability via specific sequences in
the 5 and 3’ untranslated regions (UTRs) |228|, and RNA-binding proteins masking the
ribosome binding site or other regions [204].

e localization and structural changes, such as transport to specific subcellular location
before translation [137] and the binding of small molecules to riboswitches which induce a
conformational change [197].

Translational regulation focuses on controlling the process of protein synthesis itself, and
includes the following mechanisms:

e initiation factors and ribosome availability, which control the initiation of translation
and overall translation rate and efficiency [122].

e translational activators and repressors, which enhance translation by recruiting ribo-
somes and initiation factors, or inihibit it by blocking ribosome binding or recruitment,
respectively [157].

e codon usage and tRNNA abundance impact the translation process, where efficient trans-
lation depends on the availability of tRNAs that can recognize and deliver the appropriate
amino acid for each codon [104].

e metabolite sensing, as a means to control translation initiation, enables the cell to respond
to metabolic changes by adjusting protein synthesis [156].

e protein product feedback regulation, can act as a negative regulator to control its own
translation, contributing to homeostasis through feedback inhibition [157].

Protein degradation includes passive degradation by instability, characterized by a half-life,
as well as active mechanisms:

e ubiquitin-proteasome system and tagging, includes degradation via ubiquitin tag-
ging and proteasome-mediated breakdown [155], as well as degradation based on specific
N-terminal and C-terminal amino acid sequences [103} |125].

e lysosomal and vesicular degradation, includes the sequestration of cellular components
in autophagosomes [65], degradation in lysosomes by lysozymes [25], and exosome-mediated
degradation [218].

e cellular quality control and signaling, includes endoplasmic reticulum-associated degra-
dation of misfolded proteins |185|, regulated intramembrane proteolysis of membrane proteins
to release functional fragments [36], and apoptotic proteolysis [159].

These mechanisms form a hierarchical cascade that operates on longer time scales, intertwining
various layers of regulation to ensure fine-tuned control over enzyme abundance, which is essen-
tial for long-term adaptation of cellular metabolism. We note that protein degradation via the
ubiquitin-proteasome system is a post-translational modification, and that lysosomal degradation,
as well as regulated intramembrane proteolysis, can be induced via post-translational modifications
[152) 1149].

1.3.4.2 Metabolic Regulation

Metabolic regulation primarily influences enzyme activity, fine-tuning the catalytic efficiency of
individual enzymes in response to immediate cellular demands. Enzyme activity can be rapidly
influenced by protein-metabolite interactions, including covalent and non-covalent modifications.
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Orthosteric regulation, also known as competitive inhibition, is a regulatory mechanism that
involves the non-covalent binding of a molecule to the active site of an enzyme, blocking the cognate
substrate from binding. This results in the inhibition of enzyme activity and subsequent metabolic
reactions.

Allosteric regulation involves the non-covalent binding of regulatory molecules at specific sites
other than the active site of an enzyme, resulting in conformational changes that impact enzyme
activity. Allosteric regulation can be further categorized into:

e Non-competitive regulation: The regulatory molecule binds to an allosteric site, inducing
a conformational change that either reduces or increases enzyme activity in a manner that
is not dependent on substrate binding.

e Uncompetitive regulation: The regulatory molecule binds to the enzyme-substrate com-
plex, inhibiting or activating its function and by altering either substrate or product binding
affinity.

Post-translational regulation involves covalent modifications of enzymes and other proteins
after translation. These modifications influence enzyme activity, stability, and subcellular localiza-
tion. Examples of post-translational regulatory mechanisms include phosphorylation, acetylation
and methylation and glycosylation, among many others.

These regulatory mechanisms discussed in this section collectively ensure the precise control of
metabolic pathways; they operate on a similar time scale, providing rapid adaptation to environ-
mental changes. However, the contemporary nomenclature used to classify these mechanisms may
sometimes lead to a perceived differentiation across dimensions of time and space. Orthosteric and
allosteric on the one hand, and post-translational modifications on the other, are often considered
separate categories, seemingly differentiating them by their temporal and spatial characteristics.
However, this differentiation blurs when considering that both competitive inhibition and allosteric
regulation occur post-translationally. Moreover, many post-translational modifications occur out-
side the active site, whereas others may occur at the active side, effectively making them allosteric
and orthosteric regulators, respectively [162]. Considering this, an alternative and potentially bet-
ter approach might be to group these mechanisms based on the nature of their interactions; whether
they are covalent or non-covalent. It seems that this approach could provide a more comprehen-
sive and nuanced understanding of how these regulatory mechanisms influence metabolic pathways,
bridging the apparent gap and false dichotomy allosteric and post-translational regulation.

The interconnectedness of hierarchical and metabolic regulation we’ve explored gives rise to a truly
intricate web of control governing cellular metabolism. It’s essential to recognize that these regula-
tory mechanisms often intersect and influence one another. This complexity, which is amplified by
the contemporary definitions, challenges any oversimplified attempt to separate these mechanisms
solely across temporal or spatial dimensions.

1.3.4.3 Cellular signaling

The intricate web of central carbon metabolism is not an isolated entity within the cell, but rather
intricately intertwined with cellular signaling pathways. This interconnectedness underscores the
dynamic nature of metabolism, which responds to various cellular signals and cues. Central car-
bon metabolism exhibits profound sensitivity to nutrient availability and growth factors. Cellular
signals triggered by nutrient levels, such as glucose and amino acids, are transmitted to metabolic
pathways to regulate flux in an attempt to ensure an optimal balance between energy production
and biosynthesis. This allows cells to efficiently adapt their metabolism to match changing nu-
tritional conditions, enhancing their survival and fitness. Moreover, the interplay between central
carbon metabolism and cellular signaling pathways extends beyond nutrient availability. Growth
factors and signaling cascades can modulate enzyme activities and expression levels, thereby influ-
encing metabolic fluxes. These interactions highlight the intricate integration between metabolic
processes and cellular signalling processes, where metabolic fluxes serve as both indicators and ef-
fectors of cellular states. In essence, central carbon metabolism not only governs energy generation
and biosynthesis but also integrates cellular signaling inputs to fine-tune metabolic outcomes. This
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dynamic interplay between metabolism and signaling ensures that the cell’s metabolic activities are
in harmony with its physiological needs, ultimately contributing to cellular function and survival.

1.3.5 Experimental techniques for studying central carbon metabolism

The exploration of central carbon metabolism has been significantly advanced by modern experi-
mental techniques that leverage high-throughput methods to generate vast amounts of data. These
methods offer insights into the dynamic behavior of metabolic networks and enable the identifica-
tion of key regulatory nodes. The resulting "data deluge" poses both opportunities and challenges,
as making sense of the collected data and extracting meaningful insights are complex undertakings.

Metabolomics plays a crucial role in unveiling the dynamic interplay of metabolites within
central carbon metabolism. Advances in mass spectrometry and nuclear magnetic resonance spec-
troscopy have enabled the simultaneous quantification of numerous metabolites in a single experi-
ment |67} {199, |7, 230, |75]. Metabolomic profiling generates comprehensive snapshots of metabolite
concentrations, highlighting changes in response to environmental conditions, genetic modifica-
tions, and metabolic interventions. By integrating metabolomic data with computational tools,
researchers can construct metabolic maps and predict how perturbations impact metabolic fluxes.

Stable isotope tracing techniques provide a powerful means to investigate metabolic fluxes
through central carbon pathways |76} [60]. By introducing isotopically labeled substrates, such as
labeled glucose or amino acids, researchers can track the fate of labeled carbon atoms as they tra-
verse the metabolic network. Mass spectrometry and nuclear magnetic resonance spectroscopy are
again instrumental in measuring isotopic enrichment in metabolites. These techniques yield dy-
namic flux information, allowing the identification of pathway contributions and the quantification
of metabolic turnover rates.

High-throughput screening methodologies have revolutionized the study of central carbon
metabolism by enabling the rapid characterization of enzyme activities, metabolite interactions,
and regulatory effects [199) [234]. These methods leverage robotic platforms and microfluidics to
perform thousands of experiments in parallel. For instance, enzyme assays can be miniaturized
to measure reaction rates for numerous enzyme-substrate pairs simultaneously. Such approaches
facilitate the identification of allosteric effectors, substrates, and inhibitors on a global scale.

"Omics" technologies integration, including genomics, transcriptomics, and proteomics, yield
extensive molecular data related to central carbon metabolism. Genomic sequencing and gene
expression profiling identify genes involved in metabolic pathways and regulatory networks. Tran-
scriptomics reveals gene expression patterns, highlighting transcriptional responses to changing
conditions. Proteomics quantifies protein abundances and post-translational modifications, offer-
ing insights into how the proteome responds to metabolic cues. The integration of these high-
throughput techniques has generated a wealth of data, shedding light on the complexity of central
carbon metabolism [81]. However, managing and interpreting this abundant information presents
challenges in data integration, model construction, and hypothesis generation. Computational
tools, encompassing network reconstruction algorithms and machine learning approaches, play a
pivotal role in transforming raw data into analyzable formats. These techniques empower re-
searchers to decipher the regulatory mechanisms underlying metabolic responses, contributing to
a deeper exploration of cellular behavior.

1.3.6 Computational techniques for understanding metabolic flux

The exploration of central carbon metabolism is greatly facilitated by computational techniques
that harness the power of data integration and modeling to unravel its intricate dynamics. These
approaches bridge the gap between experimental data and mechanistic understanding, enabling
researchers to simulate and analyze metabolic behaviors across various conditions.

Constraint-based models are computational frameworks that leverage stoichiometric infor-
mation and known reaction constraints to predict feasible metabolic flux distributions. These
models provide insights into the possible metabolic states that a cell can achieve, aiding in the
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interpretation of high-throughput experimental data. Constraint-based models offer a balance be-
tween computational efficiency and biological accuracy, making them valuable tools for analyzing
large-scale metabolic networks. One of the pivotal breakthroughs in the recent history of systems
biology is the advent of genome-scale metabolic models (GSMMs) [166), (91]. These models encap-
sulate the entirety of cellular metabolic reactions, providing a comprehensive framework to study
flux distributions, nutrient utilization, and regulatory interactions. The reconstruction of GSMMs
for various organisms, including Escherichia coli [166|, Saccharomyces cerevisiae |70], and even of
human cells [200] tissues [222] and their gut microbiata [143], has enabled predictions of cellular
phenotypes, growth rates, and metabolic responses to varying environmental conditions. The mat-
uration of GSMMs has been paralleled by the emergence of constraint-based modeling techniques.
Flux balance analysis (FBA) and related methods leverage stoichiometric constraints to predict
metabolic flux distributions while accounting for thermodynamics and cellular objectives [165].
These approaches have offered insights into optimal metabolic states, potential drug targets, and
the interplay between metabolic networks and cellular functions.

Kinetic models integrate enzyme kinetics and reaction mechanisms to simulate the dynamic
behavior of metabolic pathways and even entire subsystesms [48] 210]. By considering the rate
equations for individual reactions, these models capture the time-dependent changes in metabolite
concentrations and fluxes. While more complex and computationally intensive than constraint-
based models, kinetic models offer a deeper level of detail and can reveal non-linear interactions
and regulatory effects. Allosteric regulation, a cornerstone of systems biology, has been brought into
focus with the development of dynamic models that incorporate regulatory interactions. Advanced
computational methods, such as kinetic modeling and dynamic flux balance analysis (dFBA) [144],
enable the simulation of metabolic responses to perturbations and environmental changes. This
has shed light on how allosteric effectors, feedback loops, and regulatory motifs influence cellular
behavior, contributing to our understanding of metabolic homeostasis and adaptability.

Hybrid and multi-scale models often integrate multiple modeling techniques, offering the
ability to obtain a more comprehensive understanding of cellular physiology. This approach en-
ables the exploration of genetic and environmental influences on metabolic responses, elucidating
system dynamics across various organizational levels and time scales, and even extending to en-
compass whole-cell models [59} [113]. Furthermore, the power of multi-scale models lies in bridging
scales and times, connecting molecular interactions with cellular behavior [62]. In addition, hybrid
modeling techniques, such as the fusion of constraint-based and kinetic models, or the integration
of boolean networks with constraint-based models, expand the frontier of metabolism research
[233] |56], |45]. Together, the integration of omics data and hybrid modeling propels us toward a
unified understanding of metabolic regulation, revealing key regulatory nodes and network motifs
that orchestrate the complex cellular processes.

Machine learning techniques have gained significant traction in deciphering intricate pat-
terns and predicting metabolic behaviors from large and diverse datasets. Leveraging the power
of computational algorithms, these approaches extend from simpler regression and classification
analyses to advanced deep learning models. By mining complex data structures, machine learning
models excel at extracting meaningful insights that may otherwise remain hidden. They play a
pivotal role in identifying correlations, classifying diverse metabolic states, and contributing to the
discovery of novel regulatory interactions. Through their predictive capabilities, machine learning
techniques guide the formulation of hypotheses that can inform experimental designs and elucidate
intricate metabolic networks |63} (120} |57]. Moreover, these methods provide a versatile toolbox for
advancing our comprehension of metabolic dynamics and their functional implications.

In essence, the recent history of systems biology in cellular metabolism has been marked by the
integration of diverse approaches to decipher the orchestration of metabolic networks. The syn-
ergy between experimental techniques, computational modeling, and omics data has propelled our
understanding of how metabolic pathways respond to environmental cues, adapt to changing con-
ditions, and contribute to cellular fitness. This multidisciplinary endeavor continues to refine our
knowledge of cellular metabolism, paving the way for novel insights and potential applications in
biotechnology, medicine, and synthetic biology.

52



1.4 FEscherichia coli metabolism

The study of Escherichia coli (E. coli) metabolism has a history that stretches over a century. In
the early 1900s, scientists first began to investigate its metabolic processes, focusing on its ability
to break down sugars and other organic compounds. These studies laid the foundation for the
identification of key metabolic pathways in E. coli, such as the glycolytic and the pentose phos-
phate pathway. In the subsequent decades many more enzymes, catalytic reactions and metabolic
pathways were identified, as well as a number of mechanisms that control metabolic processes.

The dynamic interplay between metabolic processes and gene expression in E. coli reveals a
sophisticated regulatory network that ensures efficient growth and adaptation to varying environ-
mental conditions. This regulatory coordination involves a series of mechanisms that help the
bacterium detect and respond to nutrient availability, prioritize carbon source utilization, and bal-
ance protein synthesis with energy generation. However, our understanding of the role of these
regulatory interactions in shaping responses, such as those seen in metabolism during the adaption
to a change in the environment, is still very limited.

1.4.1 Transcriptional regulation

The phenomenon of preferential carbon utilization is exemplified by the classic case of the glucose-
lactose diauxic shift, where E. coli initially consumes glucose exclusively and then switches to
lactose once glucose is depleted [105]. Glucose is identified as a favored carbon source in many
organisms, often inhibiting the use of secondary sources through a mechanism called glucose repres-
sion or carbon catabolic repression (CCR) [142]. CCR is a vital regulatory mechanism affecting
numerous genes in various bacterial species |87, [50]. The molecular basis of CCR has been elu-
cidated for sugars transported by the phosphotransferase system (PTS), including glucose and
mannose. This transport pathway leads to reduced cyclic AMP (cAMP) levels, which in turn
affects cAMP receptor protein (CRP), a global regulator essential for activating carbon utilization
promoters. PTS sugars lower CRP activity and inhibit alternative carbon systems, and recently
discovered small regulatory RNAs (sRNAs) have been implicated in CCR |13} [21]. Transcriptional
regulation in F. coli extends beyond individual pathways, embodying the concept of operons. This
phenomenon, initially proposed by Jacob and Monod [107], involves grouping functionally related
genes under a single promoter, streamlining their co-expression. CRP binds to specific DNA sites
and activates the transcription of genes involved in energy-intensive processes, such as glucose
metabolism, enabling it to prioritize glucose consumption over that of other carbon sources when
it is readily available. The relative contribution of these mechanisms to CCR, varies depending on
the carbon source, while the metabolic and energetic state of the cell also impacts cAMP levels
[232]. o-ketoacids, central carbon metabolites, can negatively influence cAMP levels under certain
conditions, forming a feedback loop that regulates carbon uptake based on cell needs between an-
abolism and catabolism [69]. A study into the utilization of non-glucose sugars in E. coli showed
preferential uptake of specific sugars over others, revealing a hierarchy based on the growth rates
these sugars support, which is linked to the activity of the master regulator cAMP-CRP. Under
certain conditions both sequential and simultaneous expression of sugar systems was observed, sug-
gesting a multi-objective optimization strategy that balances rapid growth and future adaptation
to less preferred sugars [3].

While numerous regulatory mechanisms influence metabolic transitions, determining which are
active drivers of adaptation in response to environmental changes is challenging. The commonly
used approach involves inferring active regulatory events by comparing steady-state endpoints of
adaptations. Extending this, Gerosa et al. conducted a study in which they investigated the dy-
namics of gene expression in E. coli central carbon metabolism using a "pseudo-transition" analysis
approach. Pseudo-transition analysis is a method that aims to identify active regulatory events
driving dynamic cellular adaptations by assessing the proportionality between regulatory inputs
and functional outputs across different steady-state conditions. This research focused on over
30 transcription factors by ssing a library of fluorescent transcriptional reporters to quantify the
activity of central metabolic promoters across a spectrum of 26 environmental conditions. This
investigation has uncovered two primary modes of regulation: the dominant influence of global
regulation by the growth rate-dependent cellular expression machinery and specific, transcription
factor-mediated regulation that is primarily localized to a subset of promoters, particularly those
associated with the TCA cycle and the Embden-Meyerhoff-Parnas (EMP) pathway. Interestingly,
the investigation identifies just two transcription factors, Cra and Crp, and a trio of regulatory
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metabolites, cAMP, fructose-1,6-bisphosphate (FBP), and fructose-1-phosphate (F1P), as the pri-
mary drivers of a substantial portion of specific transcriptional regulation. However, around 70%
of flux changes remain unexplained [84].

Interestingly, whereas glucose is the preferred carbon source of E. coli, under specific circum-
stances involving a single amino acid (arginine, glutamate, or proline) as the sole nitrogen source,
E. coli exhibits slower growth on glucose than on other sugars. This counterintuitive behav-
ior, resulting in a reversed diauxic shift, is attributed to a metabolic imbalance characterized by
elevated TCA-cycle metabolite levels, particularly a-ketoglutarate, and low levels of the regula-
tory molecule cAMP [31]. This highlights the existence of complex interactions between various
metabolic subsystems, emphasizing the need to study their intricate interplay for for a compre-
hensive understanding. Table ) provides an overview of several of the best-known transcription
factors known to modulate metabolism in E. coli.

Table 1.1: Well-known transcription factors (TF) involved in regulating E. coli metabolism.

TF Role
CRP | Responds to cellular cAMP levels, prioritizing glucose consumption and energy-intensive processes
Cra Modulates central carbon metabolism in response to preferred carbon sources

Lacl Regulates lactose metabolism & Represses transcription of lac operon genes in the absence of lactose
ArcA | Influences gene expression during anaerobic growth, affecting electron acceptors and metabolic balance
FNR | Regulates the switch between aerobic and anaerobic metabolism based on oxygen levels

CrpP | Shares functional similarities with CRP, affecting carbon source utilization and energy metabolism
IclR Regulates genes related to glyoxylate shunt enzymes and influences acetate utilization

MalT | Activates maltose transport and metabolism genes in response to maltose availability

LexA | Involved in the cellular response to DNA damage or inhibition of DNA replication

CysB | Regulates genes related to sulfur metabolism and cysteine biosynthesis

NtrC | Activates genes involved in nitrogen assimilation and metabolism in response to nitrogen availability
GadE | Involved in the maintenance of pH homeostasis, including the principal acid resistance system

FadR | Regulates genes related to fatty acid metabolism and fatty acid degradation pathways

NarLL | Part of the two-component regulatory system for response to nitrate and nitrite availability

PhoB | Controls the phosphate regulon, impacting genes involved in phosphate transport and metabolism

1.4.2 Allosteric regulation

Despite significant accumulated experimental data on the role of small molecules in enzyme reg-
ulation, genome-scale understanding of such interactions remains limited. Allosteric regulation
and competitive inhibition by small molecules are crucial for homeostasis and rapid adaptations
to environmental changes. While feedback inhibition conserves resources in pathways like amino
acid biosynthesis, feedforward activation allows for swift glucose import after periods of carbon
starvation. In a recent study by Reznik et al. the authors reconstructed the small molecule
regulatory network (SMRN) of E. coli by aggregating data from diverse sources, such as the
Braunschweig Enzyme Database (BRENDA) and BioCyc database [190, |46]. The resulting net-
work reveals widespread enzyme regulation by endogenous metabolites and can be overlaid on a
genome-scale metabolic model, enabling a direct comparison of metabolic topology and regula-
tory patterns. Integrating the SMRN with experimental metabolite concentrations and binding
affinities offered insights into the dual roles of small molecules as substrates or inhibitors and their
context-dependent impact on metabolic flux regulation [184].

The reconstructed E. coli small molecule regulatory network (SMRN) comprises 1,669 interac-
tions involving 321 unique endogenous metabolites and 364 unique enzymes (EC numbers). Around
83% of these interactions are inhibitory, and approximately half of the unique EC numbers in the
E. coli genome-scale model are regulated by at least one native metabolite. Similarly, 320 dis-
tinct native metabolites were found to regulate at least one enzyme. Several metabolites and EC
numbers are prominently involved in regulatory interactions. Notably, ATP, AMP, ADP, PI, PPI,
NADPH, GTP, cysteine, pyruvate, and phosphoenolpyruvate (PEP) are frequent regulators. The
authors also note that small molecule regulators can affect enzymes beyond their native substrates
or products, potentially enabling distant signaling between metabolic pathways [184].
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Figure 1.2: Small molecule regulatory network of E. coli central carbon metabolism. Depiction
of the small molecule regulatory interactions in the central carbon metabolism of E. coli. Red metabolites
are inhibitors and green metabolites are activators of the indicated reactions. Adopted from Reznik et al.

The genome-scale reconstruction iJO1366, an achievement described by Orth et al., revolutionized
our understanding of E. coli’s metabolism [166]. This comprehensive reconstruction encapsulates
1366 genes, 2251 metabolic reactions, and 1136 metabolites, reflecting intricate cellular compart-




ments and newly discovered pathways. The framework, a product of experimental screenings and
gap-filling strategies, empowers flux balance analysis to predict growth rates, substrate uptake
rates, and product secretion rates. Moving beyond the foundational genome-scale metabolic mod-
els, researchers have employed computational techniques that enable a deeper understanding of how
metabolic networks function. One such technique is Flux Balance Analysis (FBA) [165], a mathe-
matical approach that utilizes the information encoded within these large-scale reconstructions to
predict cellular behaviors under varying conditions. FBA seeks to maximize or minimize a specific
objective function while ensuring that the network’s reactions satisfy mass balance constraints.
Typically, the objective function is chosen to represent a cellular goal, often the maximization of
biomass production rate. By optimizing the allocation of fluxes through reactions, FBA provides a
snapshot of how the network’s reactions collaborate to achieve the chosen objective. It also consid-
ers additional constraints, such as reaction reversibility, thermodynamics, and capacity limitations,
to reflect the physiological realities of the cell. FBA has provided a multitude of important insights
into the metabolism of E. coli and other microorganisms. Some of the most significant results and
findings obtained using FBA in E. coli include:

e Optimal growth predictions: predicting optimal growth conditions and rates under var-
ious nutrient scenarios, providing insights into growth regulation [165].

e Metabolic pathway discovery: identification of novel pathways and alternative routes for
metabolite synthesis, expanding our understanding of E. coli’s metabolic capabilities [73].

e Essential reactions and genes: pinpointing essential reactions and genes by simulating
knockouts, aiding in the identification of critical metabolic nodes and potential drug targets
[77].

e Metabolic engineering: guiding metabolic engineering efforts, aiding in strain design for
improved yields, selecting gene targets for modification, and predicting genetic modifications’
effects |43].

e Stress response insights: revealing how F. coli adapts its metabolic network under stress,
offering insights into microbial behavior in changing environments [54].

e Trade-offs and constraints: exposing trade-offs and constraints within the metabolic net-
work, illuminating resource allocation’s impact on cellular fitness [193].

e Pathway analysis: assessing flux distributions across pathways, providing a systems-level
view of nutrient utilization and metabolite production [189)].

e Carbon source utilization: predicting the preferred order of carbon source utilization and
the metabolic shifts in response to different nutrient availabilities [78§].

e Phenotypic predictions: predicting diverse phenotypes beyond growth, such as metabolite
production, by constraining fluxes through specific reactions [219)].

e Comparative analysis: enabling comparative studies of metabolic capabilities across strains
or species, revealing evolutionary adaptations and differences [212].

While constraint-based genome-scale gnome-scale models and FBA analysis have significantly en-
hanced our comprehension of E. coli metabolism, they do have limitations. If we wish to venture
beyond static steady state analysis and into the dynamic domain of transient responses, kinetic
models are a more suitable alternative. Kinetic models take into account the rate equations of
individual reactions, enzyme kinetics, and the time-dependent interactions between different com-
ponents of the metabolic network. This allows them to capture the nuances of cellular behavior
under varying environments and stimuli, providing insights into how the metabolism adapts and
responds in real time.

1.4.4 Kinetic models

One of the key advantages of kinetic models in the study of E. coli metabolism is their ability
to capture transient responses and complex regulatory mechanisms. These models can simulate
how metabolite concentrations change over time, taking into account factors such as enzymatic
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saturation, substrate availability, and allosteric regulation. Kinetic models are particularly useful
for studying processes involving fast dynamics, such as signaling cascades and transient metabolic
shifts in response to perturbations. In the context of E. coli metabolism, kinetic models have
yielded valuable insights. Notably, the work of Chassagnole et al. presented a dynamic model of
the central carbon metabolism of E. coli. The study incorporated enzyme kinetics and mass bal-
ance equations to describe the dynamics of glycolysis, pentose phosphate pathway, and the TCA
cycle. This approach enabled the simulation of metabolite concentrations, fluxes, and intracellular
redox balances over time. By fitting the model to experimental data, the authors demonstrated
its capability to predict dynamic responses and capture transient metabolic behaviors [48]. Fur-
thermore, kinetic models have shed light on the effects of post-translational modifications, enzyme
cooperativity, and feedback regulation in F. coli metabolism. These models allow researchers to
simulate how changes in enzyme activity and metabolite levels impact metabolic fluxes and cellu-
lar behavior. By integrating experimental data on enzyme kinetics and metabolite concentrations,
kinetic models can be parameterized to match observed metabolic behaviors as closely as possible.
Some of the most significant results and findings obtained using kinetic modeling in E. coli include:

e Detailed enzyme kinetics: providing a deeper understanding of enzyme kinetics, allowing
researchers to quantify reaction rates, enzyme activities, and substrate affinities for various
metabolic pathways [134] [195].

e Metabolic control analysis (MCA): enabling the application of MCA, a powerful tool for
quantifying the relative control that enzymes have over metabolic fluxes. This analysis helps
identify key regulatory points in the network and assess their impact on overall metabolism
[79].

e Uncovering regulatory mechanisms: facilitating the exploration of regulatory mecha-
nisms, including feedback loops, feedforward activation, and allosteric regulation. By inte-
grating experimental data with kinetic parameters, researchers can better understand how
regulatory interactions shape metabolic behavior [210, [51].

e Stress responses and adaptation: allowing the simulation of cellular responses to various
stresses, such as nutrient limitations or environmental changes. These models help uncover
how metabolic networks adapt to maintain essential functions and achieve homeostasis [109,
49].

e Substrate preference and competition: helping to explain the preference for specific sub-
strates under varying conditions. They reveal how enzyme affinities and kinetic parameters
influence substrate utilization and competition between alternative pathways [11].

e Prediction of dynamic responses: enabling the prediction of dynamic responses to
changing conditions over time. This is crucial for understanding transient behavior during
metabolic shifts and adaptation |135] |121].

¢ Quantification of metabolite pools: providing insights into the dynamics of metabolite
concentrations, helping to elucidate the interplay between production, consumption, and
transport of metabolites within the cell |225].

e Flux redistribution under perturbations: revealing how metabolic fluxes redistribute
when enzymes are perturbed, aiding in the identification of potential drug targets or engi-
neering strategies [117, [116].

e Identification of rate-limiting steps: allowing the identification of rate-limiting steps in
metabolic pathways, guiding efforts to enhance pathway efficiency or productivity [9].

e Informed Metabolic Engineering: providing a quantitative framework for metabolic
engineering. They guide the design of optimal genetic modifications for improving production
of biofuels, pharmaceuticals, and other valuable compounds |161].

e Integration with -omics data: providing a comprehensive view of cellular processes
through the integration of omics data (genomics, transcriptomics, proteomics), and thereby
enabling a more accurate representation of metabolic behavior |59, [113].
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While kinetic models provide a powerful tool for obtaining insights into FE. coli metabolism, the
study of metabolic networks also faces experimental and computational challenges that need to be
addressed. In the following section, we will delve into the various challenges researchers encounter
when studying the dynamics and complexities of F. coli metabolism, including the limitations
of current experimental techniques, the role of genetic variability, and the intricacies of cellular
regulation.

1.4.5 Experimental challenges

From cellular heterogeneity to temporal dynamics, and from quantifying metabolite concentrations
to understanding the impact of post-translational modifications, the landscape of experimental
challenges is vast. In order to unravel the complex interplay of biochemical reactions and regu-
latory mechanisms within the cell, researchers must confront a range of experimental challenges
that impact how metabolic networks are characterized and understood. These challenges extend
beyond the confines of the laboratory bench, encompassing factors such as cellular heterogene-
ity, dynamic perturbations, and the intricacies of post-translational modifications. Overcoming
these challenges demands innovative techniques and approaches capable of capturing the nuanced
metabolic behavior within living cells.

e Metabolic interplay: The interconnectedness of metabolic pathways means that changes
in one pathway can affect others. The core challenge here is delineating system boundaries.

e Time scales: Metabolic processes in cells are highly dynamic and can vary over time scales
ranging from milliseconds to hours. Capturing these rapid changes and understanding the
kinetics of metabolic reactions in real-time presents a challenge.

e Quantitative metabolomics: Accurate quantification of metabolite concentrations is cru-
cial for understanding metabolic fluxes and network behavior. However, metabolomics tech-
niques often face challenges in quantifying low-abundance metabolites accurately.

e Dynamic perturbations: The effects of dynamic perturbations, such as sudden nutrient
changes or environmental shifts, on metabolic networks are complex to unravel. Moreover,
finding an appropriate perturbation may prove challenging.

e Post-translational modifications (PTMs): PTMs can significantly impact enzyme ac-
tivity and metabolic regulation. FExploring the effects of PTMs on enzyme kinetics and
metabolic behavior is a challenge due to the diversity of possible modifications.

e Interaction with macromolecules: Metabolic enzymes can interact with other macro-
molecules, such as RNA and proteins, influencing their activity.

e Cellular heterogeneity: FE. coli populations can exhibit heterogeneity in their metabolic
states, especially in response to changing environments. Single-cell techniques are needed to
capture this variability and understand how individual cells contribute to the population-level
behavior.

The majority of knowledge on allosteric interactions to date originates from decades of research
in enzymology. Central to this research are in vitro activity assays in which enzyme kinetics are
studied by observation of substrate consumption and/or product formation |[14]. This has proven
useful for the identification of catalytic reaction mechanisms as well as of metabolites regulating
enzymatic activity. The advantage of an in vitro enzyme assay is that there are only a relatively
small number of distinct states present in the test tube at any given time, and hence these can
be more easily observed as compared to a situation that involves cells or cell extracts. Due to the
smaller number of states in the system it is easier to induce a local change in any one of them and
study local effects, since complex interaction structures, such as feedback loops involving additional
states normally present in the cell, are absent here. When no other reactions are taking place that
might affect substrate or product levels the observational data can be used to determine kinetic
parameters of the enzyme. However, there are also serious limitations to this approach. Starting
with the enzyme of interest, it must be isolated from the cell, something which is hard if not
downright impossible for enzymes that are membrane bound or those part of protein complexes.
Then, it has to be purified, because impurities can bring about confounding effects. The enzyme
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also needs to remain active, meaning that the isolation and purification procedure should not affect
its tertiary structure. Moreover, the in vivo physiochemical conditions present in the cell need to
be emulated, including pH, ionic strength, redox state and the presence of the necessary cofactors
[16]. In practice this means that the conditions for any enzyme of interest under study need to be
optimized. As a result this approach is laborious, which, outside of the aforementioned constraints,
makes systematic assessment of metabolite-protein interactions prohibitively expensive.

More recently, methods that allow for high-throughput measurement have started to be devel-
oped [1]. These solutions these methods offers are versatile. For example, grouping metabolites
into subsets and studying the commonality of effects in samples where a specific metabolite is
present [40], the detection of physical interactions by means of nuclear magnetic resonance spec-
trometry [68] and the detection of such by mass spectrometry-coupled limited-proteolysis [174] are
new approaches that recently have been explored. While these studies have been conducted in
attempt to systematically identify metabolite-protein interactions, the overlap in the interactions
they find is low. To illustrate, of the 162 positive hits founds in the two studies of which the
enzyme-metabolite pair was also tested in the other study; only 11 were predicted in both [174]
68]. While these methods aim to address the question of what interactions exist, yielding an im-
portant prerequisite and necessary conditions, it yields a static picture. In order to understand
the functional role of regulatory interactions in the system, computational models are needed.

1.4.6 Computational challenges

Computational challenges in the study of regulation in E. coli metabolism arise due to the intricate
nature of cellular regulatory mechanisms and the complexity of metabolic networks. Here are some
key computational challenges researchers face when studying regulation in E. coli metabolism:

1. Data integration: Integrating heterogeneous omics data such as transcriptomics, pro-
teomics, and metabolomics poses challenges in accurately representing the underlying regu-
latory dynamics and reconciling inconsistencies.

2. System demarcation: Defining the scope of the model is a nuanced task involving balancing
model complexity, scale, and dimensionality. This requires including the necessary complexity
to study the phenomena of interest while avoiding excessive detail. The challenge lies in
determining the appropriate level of detail, which is not known a priori, often requires an
iterative process of discovery, and remains uncertain post hoc.

3. Structure identification: Inference of missing edges in the network, both metabolic reac-
tions and regulatory interactions, from experimental data is complex due to noise, incomplete
information, and context-dependent relationships.

4. Parameter estimation: Accurate quantification of interaction strengths and kinetics is
crucial. However, estimating parameters for regulatory models is challenging due to limited
data and nonlinear regulatory dynamics.

5. Model validation: Validating regulatory models against experimental observations is in-
tricate, considering the network complexity and data limitations. Incorporating time-series
data is essential for validating kinetic models.

State-of-the-art kinetic models of E. coli CCM often ignore metabolic regulation, usually because
of missing kinetic information and the inherent difficulty accurately measuring fast metabolic re-
sponses [202} (110, |94]. Kinetic models that try to capture this level of regulation rely on interactions
previously reported in literature, and include these in an ad hoc manner [48, [216], which is prone
to errors in the form of missing or falsely inferred interactions. Recently, kinetics models have
been developed that combine transcriptional, reactant and metabolic regulation, however, these
were only validated by their ability to predict steady-state levels in wild type and gene knockout
mutants 172} [117] [176] [108], not by their ability to capture system dynamics. Interestingly, the
latest model published to date suggests that metabolic regulation is the main control mechanism
[150]. Moreover, the authors find that flux control is distributed throughout the network, thereby
refuting claims made in previous work that indicated flux control is most strongly exerted by a
limited number of ‘rate-limiting’ reactions. Evidently, there is no consensus on the relevant flux
control mechanisms, reflecting that certain regulatory mechanisms are more relevant under specific
conditions than others.
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1.5 Research goals

This thesis aims to address key challenges in understanding the regulation of central carbon
metabolism in F. coli through a systems biology perspective. By rectifying ambiguities and mis-
conceptions surrounding the field’s terminology, we provided a refined conceptualization that serves
as an overarching guide for our subsequent investigations within a coherent systems biology frame-
work. Our research objectives are structured as follows:

Prediction of allosteric interactions by single reaction modeling

Our first research goal involves the identification of allosteric regulators within E. coli central car-
bon metabolism. Leveraging steady-state data, we employ a single-reaction modeling approach to
predict metabolite-protein interactions. Quantifying the predictive power of the Michaelis-Menten
equation, we assess the contribution of allosteric regulation to these predictions. Experimental
validation through enzyme assays provides tangible evidence for the existence of nine previously
unrecognized allosteric interactions.

Prediction of allosteric interactions in the tricarboxylic acid cycle using an ensemble
of systems of coupled differential equations

The second research goal centers on unraveling the dynamic implications of allosteric interactions
within the tricarboxylic acid (TCA) cycle. Using systems of coupled differential equations as assess
the regulatory importance of allosteric interactions in the metabolic response of E. coli CCM upon
an environmental perturbation. We meticulously construct these models in order to minimize the
bias introduced by assumptions, incorporate as much of the available data as possible, and leverage
thermodynamic constraints to ensure a physically realistic portrayal of the system’s dynamics. By
assembling an ensemble of models featuring various regulatory interaction topologies, we evaluate
the contributions of protein-metabolite interactions in fitting the observed time series data. By
aggregating the predictions of this ensemble we compute a score that reflects how much each of
the putative allosteric interactions has contributed to explain the observed dynamics. Our findings
illuminate the intricate interplay of regulatory mechanisms governing the TCA cycle and emphasize
the significance of considering dynamic responses.

By addressing these research goals, we aim to contribute to the advancement of systems biology
and enhance our understanding of the intricate metabolic network of E. coli.
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2.1 Introduction

Metabolism comprises the integrality of chemical reactions that provide cells with the energy and
molecular building blocks needed to thrive in a set of highly diverse and dynamic environments.
In order to successfully acclimatize to these environments cells need to adapt their metabolism to
accommodate growth, reproduction and homeostatic maintenance. Metabolic adaptation consists
of the tuning of rates at which metabolites are converted in a chemical reaction process, commonly
referred to as metabolic flux. This conversion is often catalyzed by enzymes, and their abundance
and activity can be modulated to adjust metabolic fluxes in order to meet anabolic and catabolic
demands. To facilitate the balancing of fluxes in accordance with these demands regulatory mecha-
nisms have evolved that help orchestrate the adaptation process. In order to gain a comprehensive
understanding of how cells adapt to fluctuating environments knowledge of their regulatory inter-
action system is a prerequisite. Knowledge of these regulatory interactions can in turn be used to
help optimize biotechnological production processes or therapeutic treatment programs that are
often plagued by a limited understand hereof.

2.1.1 The regulation of cellular metabolism

One way to regulate enzymatic flux is via a hierarchical cascade comprised of transcriptional, post-
transcriptional and translational regulation, which ultimately control enzyme abundance. The
regulation of enzyme abundance is a process that occurs over longer time-scales because gene
transcription, mRNA translation and protein folding all need to occur before metabolic flux is
affected. Another way to regulate fluxes is through direct modulation of enzyme activity by
metabolites, either by binding at the active site, or by binding outside of the active site, a process
referred to as allosteric regulation. The modulation of enzyme activity by metabolites is direct and
therefore far more rapid, constituting a process that occurs on the millisecond to second timescale
[57]. Of these two regulatory processes, the regulation of enzyme abundance has been studied more
thoroughly. This is because these processes are easier to observe, which can be attributed, among
others, to the following;:

1. effects have a relatively slow onset and are comparatively long-lived

2. signals at the transcript level can be amplified, e.g. using next generation sequencing tech-
nologies

3. amenability to engineering and the availability of molecular tools: overexpression libraries
[31], inducible expression systems [19], tuneable degradation systems [56|, and libraries of
promoters, ribosomal binding sites [47] and GFP-fusion proteins [64].

Based on the time-scales of the two regulatory processes one might think that the primary role of
metabolic regulation is to govern the initial response, and that subsequently hierarchical regulation
takes over as the driver of long term adaptation. However, recent work suggests a more prominent
role for metabolic regulation by concluding that small molecule regulation, rather than hierarchical
control, is responsible for the majority of long-term metabolic flux changes |14} |15} |37} (22, |44].
With regard to E. coli specifically, Gerosa et al. (2015) suggest that 70% of the observed difference
in steady state flux distributions between growth on eight different carbon sources cannot be
explained by transcriptional and reactant regulation alone [18|. Based on these findings we focus
on the identification of allosteric regulation in this study.

2.1.2 The identification of allosteric regulation

Different computational approaches have been established in furtherance of the aim to under-
stand metabolic regulation. These can broadly be classified as top-down approaches, which are
those starting with data and seeking to find causal explanations for the observed correlations, and
bottom-up approaches, which are those that impose a pre-existing structure to the problem in the
form of a model containing known or suspected causalities. To the former of these two categories
most of the modern machine learning algorithms belong, and their popularity is reflected by the
number of studies performed using them [25| 50, |38} |2} |24]. In these part of the existing knowledge
of allosteric interactions is used to train a model that is subsequently used to predict the existence
of of allosteric interactions in the left out data. One limitation of this approach is the availability
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of data, as the largest database of allosteric interactions currently contains 1949 allosteric proteins
[26]. Another challenge is a bias in reporting positive results, hence many of these approaches deal
with by use randomly selected combinations of metabolite-protein pairs as negatives. It should
furthermore be noted that the work cited in this paragraph focused solely on optimization of per-
formance metrics with respect to yet available data; newly predicted interactions on randomly
selected protein-metabolite pairs serving as negatives are considered false positives in these studies
and no investigation of newly predicted interactions or validation hereof was performed.

To the latter of the two categories belong approaches that use models which reflect previously
acquired knowledge of the system, such as knowledge of enzyme kinetics or the metabolic network
structure. One such method is allosteric regulation FBA, a constraint-based method that has
been used to try to understand the contribution of allostery on flux distributions [43]. This and
other constraint-based methods are centered around a steady-state assumption that facilitates the
prediction of fluxes by sacrificing the ability to include information on or predict metabolite or
enzyme concentrations. An approach that does inherently have this capability is kinetic modeling,
which has been applied in several studies on allosteric regulation [54} [12} 40, [13]. These approaches,
however, require additional parameters to present each interaction in the network. Although these
methods are capable of describing complex intricacies more accurately, they scale poorly because
they suffer from the curse of dimensionality since the parameter space grows exponentially with
the size of the system.

In pursuit of addressing the challenge of scalability, a recent publication by Hackett et al.
introduced a single-reaction modeling approach aimed at predicting allosteric interactions using
steady-state omics data [22]. The authors ask whether the observed variation in metabolic fluxes
across 25 conditions can be sufficiently explained by generalized Michaelis-Menten kinetics, or
whether the inclusion of allosteric regulation improves the models’ ability to explain the data.
Using this approach the authors were able to retrieve several of the known allosteric regulators
in Saccharomyces cerevisiae metabolism, as well as predict new interactions that they afterwards
validated using enzyme essays.

Additionally, Kotte and Heinemann proposed a divide-and-conquer strategy to analyze under-
determined biochemical models [35]. Their approach focuses on breaking down complex models
into smaller, solvable submodels, providing insights into the behavior of underdetermined systems.
While their method differs from the single-reaction modeling approach of Hackett et al., it demon-
strates the diversity of computational approaches used in the pursuit of understanding metabolic
regulation.

While we acknowledge the valuable contributions of diverse methodologies in understanding
metabolic regulation, we found Hackett’s approach particularly compelling due to its suitability
for predicting allosteric interactions even in distally related metabolites and enzymes. Building
upon the foundation established by Hackett et al., our study takes a step further by uniquely
extending this approach to the realm of Escherichia coli metabolism. Although the foundational
methodology serves as a blueprint, we navigate different terrain by utilizing distinct datasets and
tailored version of the computational approach, implementation from scratch, to suit our needs.
The developed method integrates proteomic, fluxomic and metabolomics data in order to assess
the in vivo relevance of allosteric regulators. We more than double coverage of the metabolites by
combining targeted and non-targeted data, almost doubling the number of reactions we cover and
more than doubling the number of allosteric interactions whose regulatory potential we can assess
for each of these reactions. In addition, we do not limited our search to regulatory interactions
previously reported in other organisms, but exhaustively search through all possible interactions.
Furthermore, we increased the penalty of conditional errors in order to increase sensitivity to detect
events of condition-specific regulation. Finally, we include additional information from orthogonal
studies in order to increase our confidence in the final set of predictions. Experimental validation
using in vitro enzyme essays of the top scoring interactions lead us to confirm the existence of nine
newly predicted allosteric interactions that are in agreement with our predictions. We also find
experimental evidence for two allosteric interactions whose effect is opposite of what we predicted.
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2.2 Materials and Methods

2.2.1 In vitro experimentation

2.2.1.1 Protein expression and purification

E. coli strains for overexpression of AroG, PfkA, FbaA, FumA, HisG, PurF, TktA, SerB, IlvA,
GlmS, PurA and ThrC proteins were obtained from the ASKA library [31]. Shake flasks containing
50mL LB medium were inoculated in a 1:100 ratio with LB precultures and protein overexpression
was induced with 0.1mM isopropyl B-D-1-thiogalactopyranoside (IPTG). Cultures were incubated
for 16h at 37°C while being shaken at 300RPM. Cells were harvested by centrifugation at 5000RCF
and 4°C for 15min and afterwards resuspended in 5.7mL lysis buffer [B-PER lysis buffer, 500mM
NaCl, 20mM imidazole, 2mg mL ™" lysozyme (Fluka), 0.2mgmL ™' DNAse I (Roche), ImM MgCl,
and 4mM phenylmethanesulfonyl fluoride]. Cells were disrupted by vortexing and shaking for
10min at room temperature and cell extracts were separated from cell debris by centrifugation
at 21000RCF and 4°C for 30min. His-tagged proteins were purified from cell extracts using His-
GraviTrap TALON columns and the elution buffer was replaced by enzyme essay buffer [10mM
Tris-HCI buffer of pH7.5 and 1mM MgCl,] using ZEBA desalting columns (Thermo Scientific) with
a 7kDa cutoff. Final protein concentration was determined by NanoDrop A280 measurements, as
well as sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE).

2.2.1.2 FIA-TOF enzyme assays

Enzymatic activity assays were performed at room temperature in a reaction master mix of pH7.5
containing 1mM of the required substrates in enzyme assay buffer, as well as the corresponding
regulatory compounds at 4mM or the closest to that concentration possible given the solubility
constraints. Different enzyme concentrations were tested to find one at which the product formation
rate of the reaction exhibited linearity. Enzyme essays were started by the addition of 10uL of the
purified enzyme solution in 190uL of reaction master mix. At different time intervals - 0, 30, 60,
120, 240 and 300 s - the reactions were quenched by addition of methanol of -20°C to 80% v/v.
Each enzyme was analyzed in triplicate.

The product concentration of these samples was determined through flow injection analysis
coupled to time-of-flight (FIA-TOF) on a platform consisting of a Hitachi L-7100 liquid chromo-
tography pump coupled to a Gerstel MPS2 autosampler and an Agilent 6520 QTOF mass spec-
trometer (Agilent, Santa Clara, CA, USA) operated as previously published [17]. The isocitrate
flow was 150pLmin~! of mobile phase consisting of isopropanol:water (60:40v/v) buffered with
5mM ammonium fluoride at pH9 for negative ionization mode. For online mass axis correction,
2-propanol, taurocholic acid, and Hexakis(1H,1H,3H-tetrafluoropropoxy)-phosphazine were used.
Mass spectra were recorded in profile mode from 50 to 1000m/z with a frequency pf 1.4 spectra/sec
for double injection using the higest resolving power (4GHz HiRes). Source temperature was set to
325°C with 5L min~! drying gas and a nebulizer pressure of 30 psi. Fragmenter, skimmer and oc-
topole voltages were set to 175V, 65V and 750V, respectively. All steps of mass spectrometry data
processing and ion annotation were performed with Matlab R2017b (The Mathworks, Natick, MA,
USA) using functions embedded in Bioinformatics, Statistics, Database and Parallel Computing
toolboxes as previously described |17]. Reaction velocities were determined by linear regression
analysis.

For the regulators showing a significant effect calibration curves were generated of the product
and regulator if interest for a particular reaction in order to be able to differentiate between
regulatory effects on enzyme kinetics and FIA-TOF artifacts (Supplementary Figure . These
calibration curves were measured in duplicate and enzyme essay data were normalized with respect
to this data to correct for confounding effects (matrix effects). The final measurement uncertainty
was determined by means of propagation of errors |36|, taking into consideration the variance in
the data.

f=fxy,z2), x1 & 021, T2 £ 0T (2.1)

Since the uncertainty depends on two variables we use the following formula in which we add the
relative uncertainties in quadrature.

5 = \/ L snye, (S L gy (2:2)
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where f denotes the normalized data, and x; and x5 are the measurement data of the samples and
calibration curves. Which can be rewritten to obtain the relative uncertainty as follows:

8 _ N@in ) miwn? _ fom? | o’ (2.9
f 122 X To

2.2.1.3 Photometric enzyme essays

For the reaction catalyzed by the enzyme AroG we had no chemical stock available to prepare
a calibration curve. Hence, instead of using the mass spectrometer, in vitro enzymatic essays
were performed in which we monitored the decrease of phosphoenolpyruvate by measuring the
absorbance of the solution at 232 nm [46]. A 1 in 4 dilution of both the reaction master mix and
the solutions containing the putative regulatory compound as were used in the FIA-TOF essay
were used for this assay. As with the FIA-TOF enzyme essays different enzyme concentrations
were tested to find a range in which the product formation rate of the reaction exhibited linearity.
Absorbance was measured on the TECAN Infinity M200 (Tecan Trading AG, Switzerland) at
intervals of 13s and time points in the range of 100 to 300s were used to determine the reaction
rate by linear regression analysis. The enzyme assay was conducted in quadruplicate. Similar
as done in the TTA-TOF assays, a calibration curve was used to normalize the samples in order
to remove a potential bias, and error propagation was performed in order to determine the final
uncertainty of the normalized measurement data.

2.2.2 In silico experimentation
2.2.2.1 Steady-state multiomics data

The metabolomics data consists of liquid chromotography-mass spectrometry (LC-MS) data, flow
injection analysis coupled to time of flight (FIA-TOF) mass spectrometry and physiological data on
different F. coli strains accross a set of 16 steady-state conditions |33|. Eight of these conditions
belong to a carbon titration where glucose uptake was controlled, whereas the other eight are
part of a nitrogen titration in which glutamate uptake was controlled. Both these titrations were
performed using strains that had different inducible uptake systems whose expression was controlled
by chemical induction. The inducing agent for the carbon titration was 3-methylbenzyl alcohol
(3-MBA), and for the nitrogen titration isopropyl-B-D-1-thiogalactopyranoside (IPTG) was used.
We confirmed that the qualitative trends in both LC-MS and FIA-TOF data from this study were
consistent, and combined them into a single data set. Since we only use relative changes in our
modeling approach, we opted to use use absolute quantification data of the LC-MS method over
the relative quantification data from FIA-TOF when both were available for a particular metabolic
species. The final data set covers 284 different metabolites.

The fluxomics data covers 26 fluxes in central carbon metabolism in the same 16 conditions,
which were derived using *C metabolic flux analysis [33]. This data was using in a constraint-based
modeling approach to obtain flux estimates for the entire metabolic network.

The proteomics data was obtained from Hui et al. and covers 1043 proteins across 14 conditions
[27]. These conditions do not match the aforementioned conditions exactly, and only 10 conditions
were used in our analysis. Five of these belong to a carbon titration where lactose uptake was
controlled, and the other five are part of a nitrogen titration in which glutamate uptake was
controlled. A noticeable difference is that the carbon source titration in this study is performed
using lactose instead of glucose, however, the proteome response in these conditions is highly similar
[33].

Finally, in the last step of data integration procedure we paired up the conditions from the
studies that were closest in growth rate of these studies. We were able to match nine conditions, four
for the carbon source titration and five for the nitrogen titration (See Table [2.1)). We corrected for
small differences in growth rates in the conditions that were paired up by exploiting the observation
that metabolic fluxes and protein concentrations tend to be linearly dependent on the growth rate
(Supplementary Figure , and used this to adjust the fluxes and protein concentrations in
accordance with the growth rate of the metabolomics experiment.
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Table 2.1: Multi-omics data used in this study. Nine conditions, four from a carbon titration and
five from a nitrogen titration, from three experiments conducted in two different studies were combined.
The metabolomics data and fluxomics data are obtained from Kochanowski et al. (2021) [33], whereas
the proteomics data are obtained from Hui et al. (2015) |27]. The growth rates are given in units of h™*.
The induction agent used in all of the carbon source titration experiments is 3-MBA, and in all nitrogen
titrations IPTG was used, both of which are given in units of pM. Strain NQ381 achieves variable lactose
uptake by regulating LacY expression |63]. Strain NQ393 has a glutamate dehydrogenase (ghdA) deletion
and an IPTG inducible glutamate synthase (gltBD) [27]55]. Strain NQ1243 has a 3-methylbenzyl alcohol
(3MBA) titratable ptsG expression system to for controlled glucose uptake [5]. Strain NCM3722 is a
glutamine prototrophic strain derived from E. coli K-12 [60].

Carbon Titration Nitrogen Titration

strain NCM3722 | NQ1234 | NQI1234 | NQ1234 | NCM3722 | NQ393 | NQ393 | NQ393 | NQ393
Metabolomics | growth rate | 0.90 0.85 0.70 0.57 0.91 0.85 0.74 0.50 0.45

induction 0 400 100 0 0 100 50 40 30

strain NCM3722 | NQ1234 | NQ1234 | NQ1234 | NCM3722 | NQ393 | NQ393 | NQ393 | NQ393
Fluxomics growth rate | 0.95 0.91 0.74 0.62 0.92 0.88 0.61 0.51 0.44

induction 0 400 100 0 0 100 50 40 30

strain NCM3722 | NQ381 NQ381 NQ381 NCM3722 | NQ393 | NQ393 | NQ393 | NQ393
Proteomics growth rate | 1.04 0.87 0.67 0.58 0.97 0.89 0.72 0.60 0.46

induction 0 500 50 25 0 100 50 40 30

2.2.2.2 Flux balance and flux variability analyses

Constraint-based modeling using the genome-scale metabolic model of E. coli 1JO1366 [49] was
performed to derive a flux distribution for the entire metabolic network. To facilitate this process
the Cobra Toolbox v3.0 [23] was used using a Matlab 2017b environment. We constrained the
exchange rates in accordance with the uptake and secretion rates reported in the physiological
data and the intracellular fluxes from the 13C metabolic flux analysis |33].

Constraints

e Major exchange rates of glucose, acetate and 2-oxogluterate in accordance with the reported
mean exchange rates, allowing for 5% error.

e Minor exchange rates of succinate, malate, citrate, phenylpyruvate, glycine, valine and glu-
tamine in accordance with with the reported mean exchange rates, allowing 10% error.

e The growth rate in accordance with the reported mean growth rate

e Flux ratios of phophofructokinase - G6P dehydrogenase, phosphoglucoisomerase - phospho-
gluconate dehydratase, malate dehydrogenase - PEP carboxylase and enolase - PEP car-
boxykinase in accordance with 3C flux analysis data

e Glyoxylate shut and malic enzyme flux set to zero in accordance with 3C flux analysis data

e Glutamate dehydrogenase flux to zero in accordance with the knockout strain used in the
glutamate titration

e Bypass reactions Fructose 6-phosphate aldolase and Sedoheptulose 1,7-bisphosphate D-glyceraldehyde-
3-phosphate-lyase set to zero to avoid the existence of thermodynamically infeasible cycles

To obtain the final set of fluxes we performed a two-step optimization procedure. First we set
ATP-production as the objective and found a flux solution that maximizes this objective within
the set of given constraints. Second, we fixed the production rate found in the first step by
setting it as a constraint and then minimized the sum of absolute fluxes. Since this just provides
us with a single solution while we’re interested in how individual fluxes may vary around this
optimal solution we also performed a variability analysis to determine the effective flux bounds by
minimizing and maximizing flux through individual reactions [21]. The estimated fluxes agree well
with those reported in the 13C metabolic flux analysis (Supplementary figure 7). In total we found
532 reactions to carry flux in at least one of the conditions that was considered well-constrained
give the following cutoff criterion.

FVAmax - FVAm,ML
(FV Az + FVApin)/2

)| > 0.3 (2.4)

median(
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where the median refers to the median value computed across the set of conditions under consider-
ation. The threshold value of 0.3 was adapted from Hackett et al., who utilized a similar criterion
in their study [22].

2.2.2.3 Reaction-by-reaction fitting

The reaction-by-reaction fitting procedure that we use in this work has been written in Python
(v3.6.2) and can be found here: https://github.com/hexavier/RbRfit_Algorithm. As input
the method takes omics data that quantify the either absolute or relative changes in the states of
metabolites, fluxes and proteins. These entities need to be linked by specifying which metabolites
are converted in specific reactions, and which enzymes catalyze these reactions. Hereto a genome-
scale metabolic network may be provided, such as iJO1366 used in this study, as long as care is
taken that the identifiers of reactions, enzymes and metabolites in the data sets match those in the
model. For each of the reactions a model in the form of a generalized reversible Michaelis-Menten
rate law is constructed [39].

1 [e73 1 5.7
W(Hi Ai T Ko Hj Bj )
1 + Zk Z;Ril(}%ck )m

(2.5)

jP = (Z Ehkliclcat)
h

where j© denotes the metabolic flux, which is expressed as a function of metabolite concentra-
tions, for which A;, B; and Ry denote the substrates, products and all reactants taken together
and «;, B; and ~; denote their stoichiometric coefficients, enzyme concentrations, for which Ej,
denotes the isoenzyme concentration, and a set of parameters, where Ky, K4, K.q: denote the
dissociation, equilibrium and catalytic constant, respectively.

The available data for each of the reactions is then retrieved from the different data sets and
an overview is generated that shows which information is available for each individual reaction.
We obtained sufficient coverage for 84 reactions in the metabolic network (Supplementary Table
. All of the metabolites for which data is available are considered to be putative allosteric
regulators of a reaction, and for all combinations of enzymes and putative regulators a model is
constructed by augmenting the rate law with additional terms representing this regulation. To
include allosteric interactions to the model the follow terms are added to the rate law expression:

A+¢K for activation and ﬁ for inhibition, where A and I represent the concentrations of the
a %

activator and inhibitor, respeétively, and K, and K their respective affinity constants.

Once the mathematical model of the reaction has been formulated we try to find the parameter
set that best fits the model to the flux data. Since we work with relative quantification data,
meaning that no physical units are associated, model parameter lose their physical interpretability.
As a consequence we cannot retrieve their values from databases or primary literature and instead
they need to be inferred.

Apart from testing individual regulatory interactions, we also explore pairwise combinations of
interactions to understand potential synergistic or antagonistic effects. Due to the combinatorial
complexity of this analysis, we decided to limit the search space by focusing on 100 metabolites
for pairwise interactions. This pragmatic approach effectively reduces the search space by two
orders of magnitude. To select these 100 metabolites, we devised a simple heuristic based on
two key considerations. First, we observed that metabolites that exhibit greater variability across
conditions are more likely to play a role in flux regulation [41]. Second, there is a tendency for
regulatory interactions observed in one organism to exist in others [53|. To quantify the selection
criteria, we introduced a scoring metric:

Score; = Var;[5 x number of database entries + 1] (2.6)

where Score; represents the calculated score for metabolite i, Var; represents the variability of
metabolite ¢ across condition, and the term (5 X number of database entries + 1) accounts for
the importance of metabolites with existing regulatory interactions in the database. Using this
scoring metric, we selected the top 100 metabolites with the highest scores for further analysis. For
each of the 84 reactions, we then applied three types of models: one without any regulation, 568
models considering single interaction regulation, and 4950 models exploring pairwise interaction
regulations.
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2.2.2.4 Parameter estimation

If we assume that deviations between predicted and measured fluxes can be modeled as independent
and identically distributed continuous random variables, we can apply Bayes’ theorem to define
the posterior probability distribution for the parameters:

Pr(M,E, j|©)Pr(©)
Pr(M, E, jM)

Pr(®|M, B, jM) = (2.7)

where M, E, and j™ denote the data on the metabolites, enzymes, and fluxes, respectively, and
© denotes the parameters. Pr(0|M, E, ;™) denotes the posterior distribution, which we compute
using the likelihood, denoted by Pr(M, E, j*|©), and the prior over the parameters, denoted as
Pr(©), and the marginal distribution of the data, denoted as Pr(M, E, j*). Since the marginal
distribution over the data is just a normalizing constant that does not depend on the parameters,
we can ignore it in our parameter estimation procedure and rewrite Bayes’ theorem as follows:

Pr(6|M, E, iM) < Pr(M, E, j™|0)Pr(0) (2.8)

which states that the posterior probability is proportional to the product of the likelihood and
the prior probability. In order to sample the parameter space for estimation of the posterior
distribution, we used a Markov Chain Monte Carlo (MCMC) algorithm for sampling that consists
of the following steps:

1. Construction of an uninformative prior over the parameters. For K4, K, and K; a log-
uniform distribution around the median values of their respective metabolite concentrations
was taken. A log-uniform distribution around the median of the reaction quotient @), was
chosen for K.

2. A parameter set is drawn from the prior distribution

3. In case of missing data for one of the states in the system in a given condition, this was
sampled from a normal distribution around the median value based on the data available for
the other conditions.

4. We estimate the catalytic constant k.q; by linear regression using non-negative least squares.

5. We compute the flux estimates using the generalized reversible Michaelis-Menten rate law

given in (2.5

6. We compute the likelihood of ©. If we use the point estimates from our constraint-based
modeling as the measured fluxes the likelihood is computed as follows

9 9 . .
LOIM, B, M) = logl¢(x = jM;p=jlo” = Demi e ~d )2>] (2.9)
c=1

9

where ¢ denotes a Gaussian probability density function. Given that we account for uncer-
tainty in our experimentally determined fluxes by means of using the variability estimate
the equation above must be rewritten to include the uniform density between the lower and
upper flux bound

9
. 1
L(O|M,E, ;M) = Zlog[ﬁ
c=1
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where JM~ and JM* denote the lower and upper flux bound.
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7. Determine the posterior probability of ©, which is proportional to the likelihood. The non-
uniform prior distributions, introduced in the first step, play a significant role in shaping the
parameter space exploration during the MCMC procedure. Here, the likelihood computed
in the previous step combines with priors for each parameter. This yields the unnormalized
posterior distribution, guiding parameter acceptance or rejection. Non-uniform priors fun-
damentally affect acceptance probability, biasing parameter space exploration to empirical
distributions.

8. If the likelihood improves we accept the parameter set. Otherwise we accept the parameter
set with a probability of
P?"(M, E,jM|®proposed)
P’I“(M, E’ JM‘@cum-ent) + P?"(M, E’ jM‘@proposed)

(2.11)

where ©°%¢"t and newly ©P7°P°s¢? denote the current and proposed set of kinetic parame-
ters, respectively.

9. We iterate over steps 2 to 8 recording the parameter set every 20 iterations to reduce artificial
correlations that result from the MCMC sampling procedure until a total of 200 samples
have been collected. The algorithm was executed independently 10 times from diverse initial
conditions. By comparing the outcomes of the 10 distinct Markov chains obtained from each
model using the multivariate potential scale reduction factor (MPSRF) [8|, we confirmed the
convergence of all instances to equivalent posterior distributions.

After the MCMC sampling the maximum a posteriori (M AP) estimate was computed

© = argmaz(Pr(6|M, E, jM)) (2.12)
e

MAP = Pr(6|M, E, ;™) (2.13)

To assess how well a proposed model fits the experimental data we need to assess how much of it’s
discrepancy can be attributed to uncertainty in the data. In order to do so, we use a multivariate
delta method to esitmate the collective error of all species in the reaction [42]

Var(i?) = (Gt () (214)

where s is the set of all species involved in the reaction, j the pathway-level flux, v the reaction-level
fluxes and ¥ denotes the covariance matrix of the species. Here, Var() represents the variability
or uncertainty in the model fit. Pathway-level flux encapsulates the cumulative flow of metabolites
through a specific metabolic pathway; it represents the overall rate of metabolite transformation
within the pathway, capturing the collective behavior of all contributing reactions. In the context
of assessing model fit, this equation quantifies the variability in pathway-level flux (j) by con-
sidering the relationships between reaction-level fluxes (v) and the concentrations of the involved
metabolites (s). The covariance matrix (3) encapsulates the interdependencies among species in
the reaction.

2.2.2.5 Confidence assessment

In order to assess the confidence of the regulatory interactions modeled we compare the likelihood of
a model that describes the reaction kinetics without regulation with those of models that include
additional regulatory interactions. Next we wish to assess the significance of these regulatory
interactions, for which we use three different metrics: the likelihood ratio test statistic, the elasticity
and the Akaike Information Criterion (AIC). In order to increase sensitivity of our method in order
to be able to pick up regulatory interactions that are functionally relevant in only a subset of the
conditions we computed a weighting factor that we used to generate our summary statistics.

W = M (2.15)

> In(z)

where x denotes the p-value, elasticity coefficient or AIC of the respective analyses. The inclusion
of this weighting factor aligns with our aim to capture context-specific regulatory effects and
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ensures that our analysis is capable of identifying condition-specific regulatory interactions within
the metabolic network. This weighting factor is applied to combine the multiple metrics into a
comprehensive summary score that accounts for the relative contributions of each metric, allowing
us to effectively prioritize regulatory interactions based on their functional relevance across different
conditions.

The likelihood ratio test is used for significance testing. It informs us whether, at a confidence
level of our choice, we can accept the hypothesis of a simpler model without regulation over the
alternative hypothesis of a more complex model that includes regulation.

A=-2In L(Q ) (2.16)
L(©)

where L denotes the maximized likelihood and Oy and © denote the parameter sets of the null
hypothesis and alternative hypothesis, respectively. It is important to note that this test can only
be used to differentiate between hypothesis of nested models, which is to say models in which the
parameters of the null hypothesis are a subset of those in alternative hypothesis. This is because
the test-statistic is assumed to follow a x? distribution with & degrees of freedom, where k denotes
the number of parameters in our model. This assumption holds for nested models because the
parameters that are absent in the smaller model are by their exclusion implicitly assumed to be
zero. However, when both models contain parameters absent in the other model this assumption
is violated. In our case this test can thus be used to compare a model without regulation, the null
hypothesis, with models that contain additional regulation as the alternative hypothesis, but not
in the comparison of models containing different regulatory interactions. In the latter case we will
need to resort to the use of the AIC.

Elasticity coefficients are a measure of the sensitivity of reaction rates to changes in reactant
concentrations [29]. They quantify how small variations in metabolite concentrations influence
reaction fluxes, providing insights into local sensitivities. Mathematically, the elasticity coefficient
for a reactant in reaction flux is defined as follows:

dlnv _ ov S
sInS  6Sw
where €% denotes the elasticity coefficient, v the reaction level flux and S the reactant concentration.

Elasticity values are always in the range of 0 to 1, where 0 indicates that no potential for flux
regulation, and 1 indicates strong sensitivity of the local reaction flux. It is essential to note that
elasticity coeflicients capture local sensitivities, making them suitable for understanding immediate
impacts of changes in reactant concentrations. However, in situations where the operating point
is near saturation conditions or when global regulatory effects are of interest, elasticity coefficients
might not provide a comprehensive depiction. Therefore, while they offer valuable insights into local
sensitivities and potential control points, additional methodologies may be necessary to account
for non-linear dynamics and global regulatory behavior.

The AIC is an estimator of prediction error that can be used to decide which model fits the data
best [1, [11]. More specifically, it estimates the Kullback-Leibler information loss between a model
generating the data and a fitted candidate model. Two important requirements that need to be
met in order to be able to use AICs to perform model selection are that the competing models were
constructed on the same data and that model likelihoods have been maximized; AICs computed for
models that have not been fitted should not be compared. In contrast to the likelihood ratio test,
it does not make any assumptions on the distribution of differences between AICs when comparing
models. It therefore offers a way to compare and perform model selection when these models are
not nested |9} [10].

(2.17)

€g =

AIC = 2k —21n(L) (2.18)
where k£ denotes the number of parameters in the model and L the maximum likelihood estimate
of the model. The AIC reflects the relative loss of information when assuming a particular model
represents the process that generated the information, hence a lower score indicates less information
loss and a higher quality model. We use an extension the AIC that corrects for small sample sizes
(AICc)

2k? + 2k
AlCe=AIC + —— 2.19
¢ * n—k—1 ( )
We therefore only consider models containing allosteric interactions that have a lower AIC than
their counter parts without allosteric regulation in our downstream analysis.
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2.2.2.6 Prediction prioritization

The previous work by Hackett et al. (2016) has noted that the major potential difficulty of
their approach is the fact that false positives inevitably arise as a result of correlations between
metabolites [22]. We note that the absence of data, such as the inability to use any of the available
information on parameters due to the absence of physical units, further exacerbates this. Unlike
Hackett et al. (2016), who limit themselves to testing regulatory interactions found in other
organisms previously, we don’t bias our search and exhaustively test all combinations of 84 reactions
and 284 metabolites for which data is available. Since we don’t limit our search to interactions
previously reported in other organisms we expect to suffer from a false positives rate that is at
least as large as theirs. In order to address this issue we invoke a prediction prioritization scheme
that boost predictions for which additional evidence exists, consisting of the following:

e Prior information from literature reporting the existence of an allosteric interaction in another
species. Similar to Hackett et al. (2016) we expect some level of evolutionary conservation, or
even convergent evolution for that matter, of allosteric regulation. The information on previ-
ously reported allosteric regulation was taken from a study in which the authors constructed
the small-molecule regulatory network across species |53].

e A physical interaction study reporting protein-metabolite interactions in central carbon
metabolism of E. coli that were detected using nuclear magnetic resonance (NMR) spec-
troscopy [16].

e A physical interaction study reporting protein-metabolite interactions in central carbon
metabolism of E. coli that were detected using a limited proteolysis-coupled mass spec-
tromtry (LiP-MS) approach [51].

e Regulatory elasticity coefficients indicative of the potential for metabolites to exert flux
control. If the absolute elasticity coefficient is over 0.5 (Je| > 0.5) we categorize it as positive,
otherwise negative. These were computed from the data used in the fitting procedure of this
study.

The evidence of each of these sources was compared to the predictions made using our reaction-
by-reaction fitting approach by generating receiver operating characteristic (ROC) curves. The
discrimination threshold was defined as follows

AAIC = AIC(L(Oy)) — AIC(L(©)) (2.20)
where L(0g) and L(©) denote the maximum likelihood estimates of the null hypothesis - the model
without regulation - and the alternative hypothesis - the model with regulation. With respect to
each of these, if we predict:

e An interaction and it was reported to exist or be detected we consider it a true positive,
otherwise a false positive.

e Absence of interaction and it was not reported or detected we consider it a true negative,
otherwise a false negative.

For these ROC curves the area under the curve (AUC) is a measure of information content of each
of these sources with respect to the predictions resulting from fitting individual reactions. Each of
the AUC was normalized as follows:

AUC
W= c—— 2.21
STAUC ( )
and used as a weighting factor to prioritize predictions of the fitting procedure.
Score = Z W;AICc; (2.22)

where AIC¢; refers to the corrected Akaike Information Criterion (AICc) value for the individual
model or reaction denoted by the index 1.
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2.3 Results

2.3.1 Integration of heterogeneous multiomics data

In order to assess the potential of metabolites as regulators of enzymatically catalized reactions we
leveraged data on nutrient-limited steady-state growth conditions from two studies: metabolomics
and fluxomics data from [32] with the proteomics data from [27], as described in materials and
methods section The resulting data set comprises four carbon-source limited growth con-
ditions, and five nitrogen-source limited growth conditions. For each of these, the data set contains
relative changes of 284 metabolites, relative changes of 345 metabolic enzymes, and 26 absolute
fluxes from central carbon metabolism, as well as uptake and secretion rates of 10 metabolites and
cellular growth rates.

Since information on metabolites, enzymes and fluxes are needed in our fitting procedure we
estimated the complete cellular metabolic flux distribution using a genome-scale metabolic model
(iJO1366 [49]) and a flux balance analysis approach [48|. Using the available data on the 26
fluxes and the uptake, secretion and growth rates were used to constrain the solution space we
perform a two-step procedure to estimate genome-scale fluxes. Under the assumption that cells
maximize energy production in nutrient-limited growth conditions, we first set ATP production
as the objective. In the second step, based on the assumption that cells minimize enzyme usage,
the ATP production rate is fixed to the value found in the previous step and minimization of
the sum of absolute fluxes is performed to approximate this resource-to-enzyme allocation (see
section for details). The result hereof indicated non-zero cellular fluxes for a total of
532 reactions in at least one of these conditions, which from here on out will be referred to as
"measured" or "observed" fluxes in order to contrast them with fluxes predicted later on using
our fitting procedure, which correlated well with the '3C flux analysis data (Supplementary Figure
. Flux variability analysis [21] was performed in order to assess the uncertainty of these flux
estimates.

Given that our fitting procedure requires data on metabolites, enzymes and fluxes, we end
up with sufficient coverage for 84 reactions (Supplementary Table . Although central carbon
metabolism has the highest coverage of any metabolic subsystem, most of the reactions are part
of different subsystems and overall coverage of the metabolic network is sparsely distributed.

2.3.2 Analysis of flux control

First we investigated how much of the flux changes across conditions can be explained using a
generalized reversible Michaelis-Menten kinetics rate law [39] without any allosteric regulation.
We find that for 62% of the models without regulation we obtain a Pearson correlation coeffi-
cient of R? > 0.35 when we compared measured and predicted metabolic fluxes (Supplementary
Figure . This indicates that a model without allosteric regulation can largely explain the
observed fluxes for these reactions. For the remaining reactions, however, we are unable to obtain
a reasonable fit to the data, suggesting that we might be missing allosteric regulation.

The best fit was obtained for the transketolase reaction TKT2, which constitutes a reversible re-
actions that connects glycolysis and the pentose phosphate pathway (Figure ) We observe flux
reversal in the three conditions with the most severe glutamate limitation and the non-regulated
model is capable of capturing the reversible nature of this reaction. On other end of the spectrum
we find models for which we do not obtain a proper fit, such as aspartate carbomoyltransferase
(ASPCT). ASPCT catalyzes the transfer of carbamoyl from carbamoyl-phosphate (CbP) to as-
partate (Asp), which is the first reaction in the de novo synthesis of pyrimidine nucleotides. Here
the search through models augmented with allosteric regulation resulted in a prediction of activa-
tion by succinate, which turns out to be a well-known activator of ASPCT in conditions of excess
carbamoyl phosphate and limiting aspartate [28].

In the process of evaluating metabolite regulatory potential during the reaction fitting proce-
dure, it became evident that relying solely on these data might introduce false positives due to
correlations between these metabolites. To address this concern and reduce the likelihood of false
positives in our top-ranking predictions, we strategically gave precedence to predictions backed
by additional evidence. This encompassed reports confirming interactions in other organisms [53],
detection in physical interaction studies employing LiP-MS [51] or NMR [16], and the utilization
of elasticity coefficients computed from available data (Figure . Our rationale was clear: an
interaction reported in another organism was deemed more likely to exist in E. coli, potentially via
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Figure 2.1: Reaction fitting analysis. (A) Schematic representation the approach in which we compare
the measured flux and the predicted flux based on a generalized reversible Michaelis-Menten rate law. The
enzyme depicted in red and the metabolites, substrates (S1 and S2), products (P) and putative allosteric
regulator (A or I) depicted in green. (B) For transketolase (TKT2) the measured (red) and base model
predicted fluxes (blue dashed) across nine conditions match well. (C) There exist two isoforms (TktA
and TktB) that catalyze the transketolase reaction, which converts E4P and Xu5P to F6P and G3P.
(D) For aspartate carbomoyltransferase (ASPCT) the measured (red) and base model predicted fluxes
(blue dashed) across nine conditions do not align. A model including allosteric activation by succinate
yielded a much better fit to the data (blue solid). (E) A holoenzyme composed of two catalytic trimers
(PyrB) and three regulatory dimers (Pyrl) catalyzes the aspartate carbomoyltransferase reaction that
converts Asp and CbP to CbP-Asp and phosphate. Abbreviations: E4P (erythrose-4-phosphate), Xu5P
(xylulose-t-phosphate), F6P (fructose-6-phosphate), G3P (glyceraldehyde-3-phosphate), Asp (aspartate),
CbP (carbamoyl-phosphate), CbP-ASP (N-carbomoyl-aspartate), Pi (phosphate), Succ (Succinate).

84



AAIC AAIC  SCORE
EEg} 2 SCORE = AUC,,,, - NMR + AUC, - LiP + AUC. - € + AC,, - PK Eﬁgﬁ ? 822
NG S I
REGS 1 REGZ 5 -0.10
= = 2
=) = =
METABOLITES METABOLITES METABOLITES METABOLITES
B PRIOR KNOWLEDGE
NMR LiP-PROTEOMICS ELASTICITY IN OTHER ORGANISMS
7
7
[~ // //
o 7 /
7
7
Ve
AUC=0.48 AUC=0.52 - AUC=0.80 AUC=0.50
¢
7 . 7
Ve y 7
7/ Ve
== Ve 7
== 7 7
Z, //
Ve
AUC=0.43 AUC=0.49 - AUC=0.78 AUC=0.48
FPR FPR FPR FPR

Figure 2.2: Confidence boosting of predictions obtained after reaction fitting. (A) The normal-
ized area under the curve (AUC) of receiver operating characteristic (ROC) curves indicates the overlap
between the interactions predicted by the fitting procedure with those of other sources of information.
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reaction fitting procedure of single regulators and (C) AUCs of the reaction fitting procedure of pairwise
combinations of regulators.
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evolutionary conservation or convergent evolution. Furthermore, detection in physical interaction
studies significantly increased the likelihood of identifying potential allosteric regulators. However,
it’s important to note that higher elasticity coefficients indicating a propensity for metabolites to
regulate flux constituted a necessary but not sufficient condition for flux control.

To leverage this multifaceted information, we employed receiver operating characteristic (ROC)
curves. These curves, while not used for direct validation, served as a means to enhance confidence
in specific predictions by employing them as weighting factors. They illustrated the alignment
between our fitting procedure’s predictions and the various other information sources mentioned
earlier. Among these sources, only the elasticity coefficients demonstrated an area under the curve
(AUC) significantly greater than 0.5. This was anticipated as the same data used in the fitting
procedure, coupled with the estimated parameter set, computed these coefficients. However, it’s
noteworthy that apart from elasticity coefficients, other sources presented AUC values close to 0.5,
indicating limited discriminatory power in binary classification.

Despite the higher influence of elasticity coefficients, all information sources were utilized in
generating final predictions. Unlike the approach by Hackett et al. [22], our predictions were not
confined to allosteric interactions previously reported in other organisms. This approach ensured
an unbiased search and fitting procedure, allowing for the prediction of entirely novel interactors
and leveraging existing evidence for prioritization.

2.3.3 Systematic analysis of in silico screening results

We have sufficient data on 84 reactions, for each of which we fit one model without regulation, 568
single interaction models and 4, 950 pairwise interactions models. After having obtained maximum
likelihood estimates from our fitting procedure we compute the Akaike information criterion (AIC)
of each model in order to be able to compare models with different allosteric regulation. As a result
we find that for 57 out of 84 reactions there is at least one allosteric interactions that improves upon
the model without regulation. In total 687 out of 23,856 single interaction models (Supplementary
Figure and 3,611 out of 415, 800 pairwise interaction models improve on their respective base
model without regulation (Figure . For these interactions we found additional evidence for
105 out of 687 single interaction models and 1,006 out of 3,611 pairwise interaction models in
literature or the aforementioned physical interaction studies.

2.3.4 Validation by in vitro enzyme assays

In order to validate our predictions we selected newly predicted allosteric interactions for experi-
mental follow-up in an in vitro enzyme assay study. We selected the 12 highest ranking interactions
subject to the following constraints: (1) enzymatic catalysis was not performed by a heterocomplex
or (2) by membrane-bound enzymes and (3) the substrate and (4) predicted regulatory metabolite
were available. We successfully managed to purify the most abundant isoenzyme known to catalyze
these reactions for nine of these. Next we assessed enzymatic activity of these nine enzymes and
found five that were active (Supplementary Table|A.2)). For these five enzymes we tested 22 newly
predicted allosteric regulators (Table .

The first reaction is 3-deoxy-D-arabino-heptulosonate 7-phosphate synthase (DDPA). DDPA
catalyzes the conversion of phosphoenolpyruvate (PEP) and erythrose-4-phosphate (E4P) to 3-

Table 2.2: Predicted regulatory interactions. Five reactions, their respective isolated isoenzyme and
the predicted regulatory effectors tested in enzyme assay validation experiments. In green those for which
we find support in in vitro enzyme assays, in orange those for which we find experimental evidence for the
opposite mode of action as predicted. The astrix indicates that a calibration curve was used to correct
for matrix effects. 3-deoxy-D-arabino-heptulosonate 7-phosphate synthase (DDPA), phosphofructokinase
(PFK), fructose-bisphosphate aldolase (FBA), phosphoserine phosphatase (PEP L) and adenylosuccinate
synthetase (ADSS).

DDPA (AroG) PFK (PfkA) FBA (FbaA) PSP _L (SerB) ADSS (PurA)
metabolite prediction | metabolite prediction | metabolite prediction | metabolite prediction | metabolite prediction
indpyr inhibition | hxan inhibition 3pg activation® | hxan inhibition* | amp inhibition
pep inhibition | indpyr inhibition* | ade inhibition gtp inhibition acglu inhibition
bgly inhibition | glu inhibition | hxan inhibition gly inhibition | pnto inhibition
34hpp inhibition | gly activation | atp inhibition* | ino inhibition
4pyrdx inhibition imp activation® | pser inhibition
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Figure 2.3: Likelihood improvement upon addition of pairwise allosteric regulators across
the 84 reactions. The likelihood of the unregulated reaction (red) is shown, as well as the best likelihood
upon includion of single regulators (orange) and pairwise combinations of regulators (yellow). For each
reaction, nine adjacent smaller bars correspond to the nine conditions. Only regulators that improve
the akaike information criterion (AIC) with respect to the unregulated model are considered. Reaction
abbreviations correspond to BiGG identifiers.
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Figure 2.4: Allosteric regulation of 3-deoxy-D-arabino-heptulosonate 7-phosphate synthase
(DDPA). A. DDPA catalyzes the conversion of phosphoenolpyruvate (PEP) and erythrose-4-phosphate
(E4P) to 3-deoxy-D-arabino-heptulosonate 7-phosphate (DHAP) and phosphate (Pi). The three isoen-
zymes that catalyze this reaction are AroG, AroF and AroH. B. The rate law equation of the reaction
with the term for allosteric regulation given in red. C. On top two of the best performing predicted pair-
wise interactions and below two best performing predicted single interactions, with the measured (red),
base model predicted (blue dashed) and regulated model predicted (blue solid) fluxes. D. The FIA-TOF
enzyme assay results of 4mM phenylalanine and novel inhibitors of AroG (4mM PEP, 3.4mM indolepyru-
vate, 4mM 4-hydroxophenylpyruvate, and 4mM hippurate)) show significant effects, based on a one-tailed
T-test. E. Absorbance spectroscopy enzyme essay (1/4 diluted substrates and inhibitors, and 1/2 diluted
enzyme with respect to FIA-TOF enzyme assays) and measuring the decrease in absorbance at 232nm by
PEP. Significance was determined using a one-tailed T-test: p < 0.05 (*); p < 0.01 (**); p < 0.001 (***).
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deoxy-D-arabino-heptulosonate 7-phosphate (DHAP) and phosphate (Pi). This constitutes the
first committed step in the synthesis of aromatic amino acids [45]. The three isoforms that are
known to catalyze this reaction, AroG, AroF and AroH, are known to be regulated by pathway
products phenylalanine, tyrosine and tryptophan, respectively [59]. In our analysis we also find
phenylalanine and tyrosine among the top scoring regulators (Figure . Conversely, we predict
phenylpyruvate to be an allosteric regulator, ranked 43th out of 628, however a previous study that
of the interaction found no evidence for the interaction [46] and hence its final ranking after includ-
ing the additional evidence was to 213th and we did not follow-up with enzyme essays. The newly
predicted interactions are inhibition of DDPA by PEP, indolpyruvate, 4-hydroxyphenylpyruvate
(4HPP) and hippurate, for each of which we detected a decrease in product formation that is
indicative of inhibitory regulation (Figure ) Due to the unavailability of DHAP we could not
generate a calibration curve and hence matrix effects - which refers to the effect other compounds
in the sample have on the detection of the one of interest - could not be excluded. As a result this
data is less reliable due to the possibility of confounding effects. We therefore decided to perform
the enzyme assay again and measure PEP consumption by absorbance spectroscopy. Strikingly,
none of the four newly predicted allosteric inhibitors could be detected as inhibiting AroG using
this method (Figure ) Moreover, PEP and 4HPP seemed to increase the enzyme activity
instead. We found that 4HPP absorbs at the same wavelength as PEP, which likely explains part
of these conflicting results. Moreover, the high structural similarity of 4HPP to PEP led us to hy-
pothesize that 4HPP might act as a competitive substrate. We confirmed that part of the decrease
is absorbance is caused by consumption of 4HPP (Supplementary Figure [A.7).

The next reactions which we followed up on are phosphofructokinase (PFK) and fructose-
bisphosphate aldolase (FBA), which catalyze two consecutive reactions in glycolysis (Figure .
PFK catalyzes the conversion of fructose-6-phosphate (F6P) and ATP to fructose-1,6-biphosphate
(FBP) and there are two known isozymes, PfkA and PfkB. The known regulators, FBP, ATP, ADP,
PEP and citrate |6} 34], collectively make up 11% of the predicted pairwise interactions. Outside of
these, of the four highest ranking predictions we detected significant inhibition by indolepyruvate,
which was subsequently calibrated to exclude matrix effects. FBA catalyzes the conversion of FBP
to glyceraldehyde 3-phosphate (G3P) and dihydroacetone-phosphate (DHAP). PEP is a known
allosteric activator [4] and 3-phosphoglycerate (3PG) a known inhibitor [61]. Interestingly, we find
the opposite effect for 3PG. Of the newly predicted interactions we find that IMP and ATP act as
allosteric activators.

The forth reaction involves the dephosphorylation of 3-phosphoserine (PSER), which is cat-
alyzed by phosphoserine phosphatase (PEP L) and of which SerB is the only isoenzyme, to pro-
duce L-serine (SER) (Figure . The only known allosteric inhibitor of this enzyme is L-serine
[52]. Among the five metabolites tested we found hypoxantine to significantly inhibit enzyme
activity.

Finally, adenylosuccinate synthetase (ADSS) isoenzyme PurA, catalyzes the GTP-dependent
formation of adenylosuccinate from IMP and aspartic acid. This is the first committed step toward
the de movo synthesis of AMP from IMP. Fumerate, which is formed when adenylosuccinate is
cleaved to produce AMP and fumerate, is a reported allosteric inhibitor |20} 7] that was used as
a control. We tested AMP, acetyl-glutamate and pantothenate as allosteric inhibitors and found
that all three inhibit the enzymes’ catalytic activity.

In total we find evidence for the existence of up to 11 out of the 22 predicted interactions that we
tested, for nine of which the observed effect was consistent with the predicted mode of action and
two showing a significant but opposite effect. Most of these constitute cross pathway interactions,
suggesting not only that cross pathway regulation might be more prevalent then currently known,
but also a more important mechanism for the global as opposed to local regulation of metabolism.
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Figure 2.5: Allosteric regulation of phosphofructokinase (PFK) and frutose-bisphosphate al-
dolase (FBA). A. PFK phosphorylates fructose-6-phosphate (F6P) to form fructose-bisphosphate (FBP).
Two known isoforms are PfkA and PfkB. Two known inhibitors are citrate and FBP @ B. in wvitro
FIA-TOF enzyme assay results for PfkA show significant inhibition by controls (citrate and fbp) and in-
dolepyruvate. C. in vitro FIA-TOF enzyme assay results for FbaA. The controls here are PEP and 3PG,
a reported activator and inhibitor, respectively. Conflicting previous reports we detect an activatory effect
for 3pg on FbaA. D. FBA catalyzes the subsequent reaction in glycolysis involving the cleavage reaction
of FBP to produce DHAP and G3P. Two known isoforms are FbaA and FbaB. Known regulation includes
the activation by PEP [4] and inhibition by 3PG Significance was determined using a one-tailed T-test:
p < 0.05 (*); p < 0.01 (*); p < 0.001 (***). Error bars indicate the standard error of the mean across
triplicates.
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Figure 2.6: Allosteric regulation of phosphoserine phosphatase (PSP L) and adenylosuc-
cinate synthetase (ADSS). (A) Phosphoserine phosphatase catalyzes the dephosphorylation of phos-
phoserine, which constitutes the last step in serine biosynthesis. The only known isoenzymes is SerB and
the only known allosteric regulator is L-serine, which is also the product . (B) in vitro FIA-TOF
enzyme assay results for SerB show significant inhibition by the control (L-serine) and the newly predicted
inhibitor hypoxantine. (C) in vitro FIA-TOF enzyme assay results for PurA. Fumerate and IMP are
known inhibitors used as controls. For all three newly predicted inhibitors, AMP, acetyl-glutamate and
pantothenate, we see a significant inhibitory effect. Note that none of these enzyme assays was calibrated.
(D) Adenylosuccinate synthetase catalyzes the first committed step toward the de novo synthesis of AMP
from IMP. The only known isoenzyme is PurA. The known allosteric inhibitors are fumerate and IMP
. Significance was determined using a one-tailed T-test: p < 0.05 (*); p < 0.01 (**); p < 0.001 (***).
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2.4 Discussion

Allosteric regulation is a widespread mechanism of control of protein function; effectors bind to
regulatory sites distinct from the active site, usually inducing conformational changes that influence
their activity. Conventional methods used to study allosteric regulation consist of in vitro studies
of enzyme kinetics in the presence and absence of an allosteric effector. Although these experiments
provide detailed information from which kinetic parameter can be inferred, it requires the isolation
of the enzyme from the cell and reconstitution of an intracellular-like environment outside the cell
in which they can be studied. These experiments are difficult and laborious because far from all
enzymes can be isolated in an active-form, as we have also seen in this study. More recently method
have been introduced that allow one to assess the physical interactions between multiple protein-
metabolite pairs, or even an entire cellular extract [16} [51]. However, the low level of agreement
between the detected interactions in these high-throughput methods indicates that they have strong
biases or are prone to produce false positives. It also remains an open question how well the in
vitro behavior translates to that in a native cellular context and, moreover, what their physiological
relevance is to the larger cellular system it is part of.

In order to address these limitations we used a single-reaction model fitting procedure that
combines the available data on the cellular metabolome, proteome and fluxome to predict the
mostly likely regulatory interactions. This computational approach is scalable and uses snapshot
data of the in vivo state of the cell, providing the ability to predict allosteric interactions that are
physiologically relevant in the conditions tested. Among the top scoring candidates we tested 22
newly predicted interactions across five enzymes with the use of enzyme assays. We found evidence
for the existence of half of them; nine in accordance with the mode of regulation predicted, two
showing the opposite effect, and the remaining half not showing a significant effect on enzymatic
activity. Negative results, meaning no effect is observed although allosteric regulation was pre-
dicted, might indicate false predictions, however it is also possible that the in vitro experimental
conditions do not resemble the intracellular environment closely enough. The same holds for the
predicted allosteric interactions whose effect is significant but opposite of what was predicted; these
might simply be false positives that by chance turn out to have an opposite effect, or it might also
be that conditions in the cell cause this effect, such as the presence of another modulator.

The high number of true positives is striking given that previous work using a similar approach
in S. cerevisiae reported a high false positive rate [22]. One reason might be the data quality,
and in particular the determination of the observed fluxes. The previous study relied on the
inference of internal fluxes solely based on the uptake and secretion rates and growth rate of
the cells. In this study isotopic labeling data was used as well, providing important information
on the split of fluxes at metabolic branching points. Another contributing factor might be that
the previous study limited its search through candidate interactions reported to exist in other
organisms, whereas we did not and instead prioritized predictions post hoc. This offers us the
ability to evaluate all candidates, meaning that we don’t prematurely discard any good candidate.
Furthermore, we boost the ranking of predictions for which we have additional evidence, such as
their detection in physical interactions studies. It is also important to realize the limitation of the
orthogonal approaches used in the experimental validation. In the case of FIA-TOF enzyme assays
calibration is important because the compounds other than the analyte of interest can affect the
ionization process and thereby taint the results (also known as the matrix effect) [58|. In the case of
DDPA (AroG), where we could not calibrate the mass spectrometer due to absence of the product
DHAP, we instead decided to perform a classical absorbance spectroscopy enzyme assay to measure
PEP consumption. These results, with exception of the controls used, showed either no significant
effect or even an opposite effect as to what we observed in the TIA-TOF enzyme assay. Notably,
in the FIA-TOF assay we determined catalytic activity by observing product formation, whereas
in the absorbance assay we measured the consumption of one of its substrates. Considering that
in the initial conditions of the enzyme assay the substrates are present at a saturating amounts
whereas the products are absent changes in product formation are more readily detected than
those in substrate consumption. Lack of a calibration curve and the absence of support from the
absorbance spectroscopy assay makes the confirmatory evidence for these interactions less strong.
We conclude from this that there is support for those predictions that are confirmed by the FIA-
TOF enzyme assay as long as these are not contradicted in the absorbance based assay. In the
case of PFK (PfkA), FBA (FbaA) and PEP L (SerB) the product of the reaction was available
and hence calibration curves were used, whereas for ADSS (PurA) we did not.
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Taken together we find evidence for the existence of up to 11 novel allosteric interactions. The
identification of these in an organism as well studied as E. coli further supports the notion that there
is an extensive network of allosteric regulation that we are still largely unaware of. The systematic
identification of regulatory interactions is a first step towards understanding the role of allosteric
regulation in metabolism. Considering the cross-pathway nature of most of the interactions found
in this study, it is possible that this type of interaction is possible underestimated. However,
we cannot rule out the fact that these might be spurious interactions, possibly resulting from of
the narrow biochemical space that small molecules occupy [3], which have no biological relevance.
Determination of cellular concentrations of the metabolites and quantification of the strength of
these interactions would be a next step in determining of their functional relevance. Knowing
which interactions exist and what effect they have at a local level paves the way for functional
analyses at a larger scale in which we study their contribution to large-scale system dynamics.
This knowledge can in turn be used to develop more efficient disease treatment programs from a
biomedical perspective or improve metabolic engineering strategies and biotechnological production
processes in an industrial setting.

The main limitations of the approach used here are (1) that relative quantification data are used,
(2) that we use data from steady-state conditions, (3) consider only generalized Michaelis-Menten
kinetics and (4) that we combine data from two different studies. The first of these implies that we
cannot use any information available to us in the form of kinetic or thermodynamic parameters.
Ideally we would use this information, however it would require us to obtain absolute quantification
data of the metabolome, proteome and fluxome. The second limitation means that we inherently
limit ourselves to the detection of allosteric interactions whose effect can be observed at steady-
state, and the thereby exclude those relevant in coordinating transient responses. Regarding the
third limitation, it is possible that different rate law approximations might be more appropriate
for specific reaction, which have not be considered in this work. It could therefore be interesting
to see how predictions change with different rate law approximations, specifically so for individual
reaction mechanisms that have been studied in-depth and can be found in the SABIO-RK database
[62]. Finally, we did not conduct our own experiments to obtain the multi-omics data and instead
leveraged two previous studies used to derive our predictions. When combining data from different
studies conducted by different errors, such as those introduced by the experimentalist, the instru-
ment or the environment, are no longer systematic are therefore less easily differentiated from
the biological variation of interest. Moreover and specific to our study, the carbon-limited growth
condition data was derived from growth on glucose in one study [32], whereas it was derived from
growth on lactose in the other |27]. Although proteome differences on these carbon sources might
affect only a small subset of enzymes and growth rate limitation might be a dominant driver, this
discrepancy is a shortcoming of our study we had to accept in order not to discard carbon-limited
growth conditions. Such a situation that would be avoided when designing and conduction one’s
own experiments and the significance of this discrepancy is expected to directly affect the accuracy
of our predictions.

Although knowledge of the existence of physical interactions is primary, the next step towards a
more comprehensive understanding of allosteric regulation is the study of their functional relevance.
In this work we took a systems identification approach in which we brought together the existing
data and a generalized model of enzyme kinetics in order to see if it can explain the data for
individual reactions. Bringing these individual reactions together in a model describing the larger
metabolic system that they comprise would allow one to probe deeper into the complex behavior
that emerges as a consequence of network dynamics. This will bring along a new set of challenges,
including questions such as how to properly demarcate a subsystem of interest, ensuring that
physical dependencies in the system are not violated, dealing with discrepancies in the data, dealing
with a parameter space that is sparsely populated with in vitro data that might not translate well
to an in wvivo context, as well as more fundamental issues related to structural and practical
identifiability.
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3.1 Introduction

Enzymatic reaction rates, or fluxes, constitute the functional output of metabolism. At the core of
metabolism lay pathways that are universal to life. This system of biochemical pathways, referred
to as central carbon metabolism, is a hub at the intersection of catabolic and anabolic processes.
Because of its central role in ATP generation, cofactor regeneration, amino acid, fatty acid and
nitrogen base biosynthesis, it is pivotal that metabolic fluxes are distributed appropriately such that
energy production and precursor biosynthesis are balanced in accordance with cellular demand.
Therefore, flux control is of the highest importance for bacteria such as FEscherichia coli if they
are to achieve homeostasis and successfully adapt to new environments. In order to achieve this,
regulatory circuitries have evolved that enable the cell to adopt to a large variety of states on a
physiological time scale.

3.1.1 Metabolic regulation

Regulatory circuitries can be grouped into those that affect enzyme abundance and those that
affect enzyme activity. Enzyme activity can be regulated by covalent and non-covalent metabolite
interactions, whereas enzyme abundance is controlled through protein synthesis, degradation and
dilution. Metabolic flux in the cell is therefore not only the product of chemical reaction kinetics
driven by thermodynamics and physiochemical determinants hereof, such as temperature, pH and
ionic strength [38], but also of the layers of regulatory circuitry that control the abundance and
activity of enzymatic catalysts in the network.

3.1.1.1 Temporal dynamics of metabolic regulation

Since metabolic turnover in the cell occurs on a time scale ranging from milliseconds to seconds, lo-
cally induced changes in metabolite abundance quickly propagate through the metabolic network.
As a consequence, modulation of enzymatic activity by metabolites, even by those more distally
related in the metabolic network, constitutes a mechanism that operators on roughly the same
timescale [81|110]. In contrast, protein levels are controlled by processes of synthesis, degradation
and dilution. Adjustment through modulation synthesis rates involves a graded response that in-
volves additional steps such as gene transcription, mRNA translation and protein folding. These
range from riboswitches to rho-dependent termination at the transcriptional level [126] [31} [119],
from antisense RNA to nonsense-mediated decay at the RNA level [47] |102], and from uniquiti-
nation to protosomal degradation at the protein level [97, 26]. Control of enzyme abundance by
degradation constitutes an active regulatory mechanism that occurs on a time scale ranging from
minutes to tens of minutes. It is invoked when, for example, an enzyme gets damaged as a result
of oxidative stress, at which stage it gets targeted for degradation by the ubiquitin-proteasome
system [91]. Dilution, on the other hand, constitutes a passive mechanism that occurs on a time-
scale ranging from tens of minutes to hours, depending largely on the duration of the cell cycle
[95]. Tt is important to note that this results in a process whose first effects at the metabolic level
can be observed after approximately a minute and it might take several hours before fluxes are
fully adjusted and a new steady-state is attained |81} [110]. Hence in the event of a perturbation
we can distinguish two phases: an initial phase in which the response is driven by thermodynamics
and in which regulatory control is exerted by metabolites that directly modulate enzyme activity,
and a more gradual long term response that includes the aforementioned processes that ultimately
control enzyme abundance.

3.1.1.2 Importance of metabolic regulation

Understanding how cells control metabolic fluxes is of extensive interest in the study and treatment
of numerous diseases that are associated with metabolic dysregulation, including diabetes [129],
obesity [69], Alzheimer’s [128]| and many types of cancers [93]. From a biotechnological perspective
the understanding of metabolic regulation is needed both for the development of new, as well as the
optimization of existing, industrial production processes |82} |40, 44]. However, our understanding
of these regulatory processes if far from sufficient and therefor limits our ability to successfully
treat metabolic maladies or engineer strains with the desired production characteristics. One of
the reasons for this is the fact that we don’t possess a complete picture of the regulatory interaction
network. Moreover, even if we were to possess a complete picture of both the biochemical pathway
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and regulatory interaction topology, a static description of nodes and edges alone is often insufficient
to predict how behavior of the system changes over time.

3.1.1.3 Understanding metabolic regulation

Chassagnole et al. (2002) introduce a dynamic model of glycolysis and the pentose-phosphate
pathway in E. coli |16]. Validated with transient metabolite data, the model explores central
carbon metabolism as a source of precursors. It notably links sugar transporter PTS kinetics to
central carbon metabolism, emphasizing a strong nonlinear feedback /feedforward link between PTS
and glycolytic pools of PEP and Pyr. The model successfully replicates experimental metabolite
dynamics, including oscillations. Additionally, it’s applied to metabolic control analysis, revealing
shared flux control between glucose uptake system PTS and enzymes degrading PTS inhibitors
G6P and pyruvate.

Kadir et al. (2010) focused on simulating the main metabolic pathways in E. coli, including
glycolysis, TCA cycle, pentose phosphate pathway, and anaplerotic pathways [56]. Using enzymatic
reaction models, they fine-tuned parameters based on in vivo metabolite concentrations. The
specific ATP, CO2, and NADPH production rates were computed and utilized for estimating
growth rate, cell yield, and oxidative pentose phosphate pathway flux. The study incorporated
batch and continuous cultivations, aligning changing metabolite concentrations with experimental
data. Gene knockout effects were investigated for pathways like Ppc, Pck, and Pyk, revealing
intricate metabolic responses. The importance of the anaplerotic route of Ppc and Pyk knockout-
induced regulatory shifts was highlighted. The simulation results showed good predictability for
gene knockout effects, emphasizing the model’s usefulness for understanding metabolic changes
due to specific gene perturbations.

Peskov et al. (2012) developed a more detailed kinetic model for E coli’s central carbon
metabolism [94]. Their model provided insight into both steady-state and dynamic behaviors of
the system. By focusing on steady-state analysis, they investigated the distribution of fluxes in E.
coli’s central carbon metabolism during glucose-limited aerobic growth. They discovered that gly-
colysis dominates glucose assimilation, while the PMP and Entner-Doudoroff pathways contribute
to <35% of glucose consumption. The study delved into metabolic issues like the looping of the
TCA cycle, revealing a possible Mdh/Mqo futile cycle for precise intracellular malate regulation.
They explored the flux distribution between enzyme isoforms, demonstrating that kinetic models
outperform stoichiometric models in distinguishing these fluxes. Additionally, the study provided
insights into pyruvate kinase isozymes, revealing that both PykA and PykF operate during glucose-
limited growth. They observed the dominance of specific enzyme isozymes in phosphofructokinase
and fructose bisphosphatase under varying glucose concentrations. Furthermore, the researchers
studied pykA knockout mutants and refined their model to describe both steady-state flux distri-
butions and metabolomics data. They hypothesized a novel regulatory mechanism, Gnd inhibition
by PEP, which improved the agreement between model predictions and experimental metabolomics
data.

Khodayari et al. (2014) employed an ensemble modeling strategy to construct a kinetic model
of E. coli’s core metabolism [59]. This method involves obtaining a steady-state flux distribution
using available data. Within the EM framework, reactions are deconstructed into elementary steps
with explicit forward and reverse fluxes. Thermodynamic constraints and normalized metabo-
lite concentrations guide reaction reversibility. Enzyme conservation and kinetic parameters are
determined based on reversibilities and enzyme fractions. An ensemble of kinetic parameters is
generated by sampling reversibilities and enzyme fractions. The system’s differential equations
are solved for each parameter set to achieve steady-state, and model fitness is improved using an
optimizer to update parameters. Their resulting kinetic models are matched against diverse data,
validated against metabolomics, kinetic constants, and cross-validations. The model successfully
captured 78% of reactions within experimental ranges, and cross-validation demonstrated reliable
predictions for mutants adjacent to those used in training. Furthermore, metabolite concentra-
tions were accurately predicted for 68% of metabolites. Comparative analysis of kinetic parameters
showed strong agreement with literature data for 35% of Km and 77% of kcat values.

Jahan et al. (2016) developed a kinetic model replicating flux data from knockout mutants in
glucose-based aerobic batch cultures [54]. Validation showed good performance at higher growth
rates, albeit underestimating TCA cycle fluxes in some mutants. Sensitivity analysis identified
crucial enzymes for growth, particularly related to glucose uptake and irreversible reactions. Fur-
thermore, the effect of gene regulatory and allosteric interactions was studied:
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e With respect to gene regulation, the absence of Crp-cAMP interaction reduced TCA cycle and
glyoxylate shunt fluxes. Conversely, Cra-FBP interaction absence increased gluconeogenesis,
TCA cycle, and glyoxylate shunt activity. Removing PdhR-PYR interaction notably hindered
glyoxylate shunt but minimally affected other fluxes.

e With respect to allosteric regulations: PEP inhibition removal increased Pfk synthesis ratio
and flux through neighboring reactions, TCA cycle, and glyoxylate shunt. FBP activation
removal raised Pyk activity, enhancing TCA cycle and glyoxylate shunt flux. Malic enzyme
flux decreased by removing AcCoA and cAMP inhibition. Fbp removal increased flux through
TCA cycle, anaplerotic reaction, and glyoxylate shunt; Ppc activation removal increased
gluconeogenic flux.

Crucially, these findings underscore the inherent complexity of biological systems and the intri-
cacies of metabolic networks. While the current study’s insights provide a solid foundation for
understanding the effects of genetic and allosteric perturbations on glucose-based growth, extrap-
olating to alternate carbon sources demands a cautious approach. Our ability to make informed
predictions based on metabolic network analysis is invaluable, yet the dynamic interplay of diverse
factors within living systems introduces a level of unpredictability that transcends our current
grasp. The remarkable complexity of cellular metabolism reminds us that even with sophisticated
models, we navigate a terrain where our comprehension, while advancing, remains humblingly
partial.

3.1.2 Allosteric regulation in E. coli CCM

A recent study on regulation coefficients in Escherichia coli (E. coli) has shown that thermodynam-
ics and transcriptional regulation alone cannot explain the majority of the difference in metabolic
fluxes observed between different steady-states [37]. In another study on E. coli, in which metabolic
control analysis was performed using a dynamic model used to fit steady-state data, the authors
conclude that metabolite-enzyme interactions, as opposed to gene regulation, explains the majority
of experimental observations |80]. The importance of direct regulation of enzymes by metabolites
has also been highlighted in the yeast Saccharomyces cerevisiae. One such study on steady-state
data concludes that metabolite concentrations have more than double the physiological impact of
enzymes [41]. Another using a dynamic modeling approach showed that the inclusion of allosteric
regulation was crucial in obtaining a good correspondence between the model and steady-state
as well as dynamic data [32]. These results suggest a prominent role for allosteric regulation in
shaping dynamic responses in, and the homeostatic regulation of, metabolism.

3.1.2.1 Previous studies on the role of allosteric regulation

Two previous studies from our lab have scrutinized the role of allosteric regulation in glycolysis
[75] and the pentose phosphate pathway [17] of E. coli. In the study of glycolysis a perturbation
resulting in flux reversal was performed and ten interactions were predicted to be relevant, six
of which were already known at the time and one that was newly confirmed, whereas the study
on the pentose phosphate pathway lead to new insight at the functional level that contradicted
contemporary presuppositions regarding the prima causa of flux rearrangement in central carbon
metabolism after exposure to reactive oxygen species. Both of these studies used a dynamic
modeling-based approach in which a systematic analysis of regulatory topologies was performed
in order to predict the existence of allosteric interactions based on the their ability to improve the
correspondence between model simulation and the observed metabolite dynamics. These results
show that such an approach can be used to identify unknown allosteric regulation as well as shed
light on their functional relevance in context of the larger system that they inhabit.

3.1.2.2 Allosteric regulation in the tricarboxylic acid cycle

Based on our current knowledge of allosteric interactions in E. coli metabolism it appears that
these are less prevalent in the tricarboxylic acid (TCA) cycle than in glycoslysis and the pentose
phosphate pathway. However, a systematic analysis of the relevance of allosteric interactions in
shaping metabolite dynamics in this subsystem using a dynamic modeling-based approach has not
yet been performed. Interstingly, almost all of the reported allosteric interactions in the TCA cycle,
and the majority of those affecting anaplerotic pathways, were found to be of an inhibitory nature
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in E. coli |100]. However, determining the functionality of these inhibitory interactions solely based
on their inhibitory nature can be misleading, as their impact depends on the relative change of
the input signal. To illustrate, an interaction that inhibits when the signal increases may actually
lead to stimulation when the signal decreases, thus accelerating the process it influences. Moreover,
many reported allosteric regulators might not be universally valid and could have condition-specific
relevance. It hence remains an open question what role allosteric interactions in the TCA cycle of
E. coli play during metabolic adaptation.

In this study we investigate their role in tuning transitory dynamics that result from switching
from a less preferred to a preferred carbon source. Furthermore, a comparison will be made
with methods used in the previous studies on glycolysis and the pentose phosphate pathway.
Concerning experiments, the intricacies of the experimental procedures are examined and results
of this study will be contrasted with those obtained in previous work. With regard to modeling,
model dependence on assumptions and guesswork will be discussed. Finally, standards, practices
and their consequences for reproducibility, reliability and reuseability are evaluated to come with
suggestions on how to improve on the status quo moving forward.

The method we use to assess the functional relevance of allosteric interactions consists of re-
lating observational time series data from a fast filtration experiment to simulated data from
models containing different sets of allosteric interactions. In the experimental procedure we sam-
ple cells growing in mid-exponential phase, the initial pseudo steady-state condition, place them
on a filter and perfuse them with medium containing a different carbon source for short periods of
time, and then immediately quench and extract them. These cell extracts are subjected to liquid
chromatography-coupled mass spectrometry in order to quantify intracellular metabolite concen-
trations. The modeling approach consists of constructing an ensemble of dynamic models that
comprises a base model without regulation, models containing a single regulatory interaction and
models containing combinations of pairwise regulatory interactions.

The limitation to pairwise interactions in our method is driven by the complexity and computa-
tional challenges of modeling higher-order interactions within the metabolic network. Focusing on
pairwise interactions strikes a balance between computational feasibility and the potential for cap-
turing relevant regulatory insights. This approach enables systematic exploration of the regulatory
landscape and offers predictive insights through an ensemble of dynamic models. While none of
these models individually can provide an accurate representation of the complex metabolic network,
they act as "weak learners" that, when combined, have the potential to offer predictive insights
beyond any individual model. This approach allows us to encompass a broad range of regulatory
scenarios, capturing uncertainties and potential interactions. Notably, this ensemble approach is
unbiased in that it does not include previously reported allosteric interactions by default. This
unbiased approach allows us to assess the regulatory relevance of allosteric interactions in specific
conditions, as well as the ability to predict allosteric interactions not previously reported. Any
newly predicted interactions can be subjected to experimental validation using in wvitro enzyme
essays.

3.1.3 Research objectives

While previous studies have provided insights into the role of allosteric regulation in E. coli CCM
during the initial response after a perturbation in glycolysis and the PPP, such a study has not yet
been conducted for the TCA cycle and anaplerotic pathways. To address these gaps, this study
aims to achieve the following objectives:

1. Perform an unbiased assessment: By excluding previously reported allosteric regulators
from our model by default, we aim to perform an unbiased estimation of allosteric interactions
within the TCA cycle of E. coli. This approach will allow us to discern between condition-
specific regulatory interactions and those with broader functional significance.

2. Investigate condition-dependent relevance: Our investigation seeks to understand the
condition-specific relevance of allosteric interactions during metabolic adaptation. By focus-
ing on the switch from a less preferred to a preferred carbon source, we aim to uncover how
these interactions impact transitory dynamics and contribute to the cell’s ability to adapt to
changing environmental conditions.

3. Extend understanding to the TCA cycle regulation: Building on insights gained
from previous studies in glycolysis and the pentose phosphate pathway, we aim to extend
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our understanding of allosteric regulation to the TCA cycle. This essential subsystem of
metabolism has unique characteristics that warrant a dedicated investigation into the role of
allosteric interactions.

4. Evaluate methodological improvements: This study will critically evaluate the method-
ology employed in the dynamic modeling-based approach. We will discuss the assumptions,
uncertainties, and limitations associated with the model construction. Additionally, we will
explore how improvements in the modeling approach can contribute to the accuracy and
reliability of the predictions.

5. Enhance reproducibility and reliability: In the pursuit of scientific rigor, we will assess
the current standards and practices in the field, with a specific focus on their implications
for reproducibility, reliability, and reusability. Through this evaluation, we aim to propose
suggestions for enhancing the overall quality of research in metabolic regulation.

By accomplishing these objectives, we seek to advance our understanding of allosteric regulation
in the TCA cycle, provide insights into condition-specific regulatory networks, and contribute to
the development of more accurate and reliable methodologies for studying metabolic regulation.
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3.2 Materials and Methods

3.2.1 In vivo experimentation
3.2.1.1 Media

Lysogeny Broth (LB) 5g tryptone, 2.5¢ yeast extract and 2.5g NaCl was dissolved in 500mL
deionized water. For plating medium 7.5g granulated agar was added. Subsequently the medium
was autoclaved.

M9 minimal medium

e Carbon source solutions
The final concentration of the carbon source stock solutions was 0.5M for glucose, 1.0M for
pyruvate, 0.5M for succinate, and 1.5M for acetate. The carbon source stock solutions were
pH neutralized, using either a 37% HCI or a 10M NaOH solution, and filter sterilized.

e Base salts solution
37.6g Na,HPO,-2H,0, 15¢ KH,PO,, 2.5g NaCl, 7.5¢ (NH,),SO,, was dissolved in 1.0L of
deionized water.

e Trace elements solution
0.18g ZnSO,4-7H,0, 0.12g CuCl,-2H,0, 0.12g MnSO,-H,0 and 0.18g CoCl,-6 Hy,O was
dissolved in 1.0L of deionized water.

e Thiamine-HCI solution
25mg thiamine-HCl was dissolved in 50mL of deionized water.

e CaCl2 solution
1.47g CaCly-2H,0 was dissolved in 50mL of deionized water to yield a 0.1M solution.

e MgSO4 solution
24.6g MgSO,-7H,0 was dissolved in 50mL of deionized water to yield a 1.0M solution.

e FeCl3 solution
1.35g FeCls-6 HyO was dissolved in 50mL of deionized water to yield a 0.1M solution.

The M9 minimal medium was prepared by mixing 200mL of the base salts solution, 700mL ddH20,
10mL trace element solution, 1.0mL of 0.1M CaCl2, 1.0mL of 1.0M MgSO4, 0.6mL of 0.1M FeCl3.
This solution was stored at 4°C for up to two weeks. Prior to growth experiments 2mL of the
thiamine-HCI solution, and 25mL carbon source solution - with the exception of succinate where
37.5mL was added - was added, and deionized water was used to fill up to 1.0L.

3.2.1.2 Strain and cultivation

The wild-type strain E. coli BW 25113 was used in all experiments. For cultivation, frozen glycerol
stocks were used to inoculate agar-containing LB plates and incubated at 37°C overnight, and
subsequently stored at 4°C for up to a week. Single colonies were then used to inoculate liquid
LB medium, and grown for 6 hours at 37°C and 250RPM. These LB pre-cultures were then used
to inoculate a dilution series of M9 pre-cultures containing either 25mL of a 1.0M pyruvate stock
solution, 37.5mL of a 0.5M succinate stock solution, or 25mL of a 1.5M acetate stock solution per
litre, and grown overnight at 37°C and 250RPM. A preculture with an optical density at 600nm
(OD600) between 0.5 and 1.0 was chosen to inoculate 500mL shake flasks containing 100mL of
M9 minimal medium with the same respective carbon source as used in the M9 preculture, and
cultivated at 37°C and 250RPM until an OD600 between 0.3 and 0.4 was reached while monitoring
the OD600 in order to determine the growth rate. The culture was then transferred to a 500mL
beaker glass and placed on a magnetic stirrer plate inside a 37°C chamber until an OD600 of 0.5
was reached.
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3.2.1.3 Carbon source switches

Aliquots of 2mL of E. coli cultures were drawn using a 5mL pipet, and dispensed on a 0.45pm pore
size Hydrophilic PVDF filter (Millipore) on top of a Buchner funnel to perform vacuum filtration.
While on this filter the cells were perfused with a fresh M9 medium containing the same carbon
source as was used during cultivation - either pyruvate, succinate or acetate - for 10s using a 50mL
syringe. Immediately after this the perfusion media was switched to a fresh M9 medium containing
glucose for a duration of 30s, using another 50mL syringe, and back again to the first perfusion
media for another 30s. Perfusion solutions were kept at 37°C. This process was repeated and
stopped at different stages to obtain samples of different time points during this perturbation: 10s,
15s, 20s, 25s, 40s, 45s, 50s, 55s and 70s. A control, which consisted of perfusing the cells for 70s
with the fresh M9 medium containing the same carbon source as was used during cultivation, was
performed to assess the effect of the experimental procedure without the carbon source switch.
Every sample was immediately quenched and extracted by rapidly transferring the filter from the
Buchner funnel to a 6-well plate with wells containing 4mL of a 2:2:1 acetonitrile:methanol:water
extraction solution and was kept at -20°C. For the purpose of normalization 100pL of 3 C-internal
standard was added to the extraction solution directly after a sample was taken. This 3C internal
standard is a metabolite extract of E. coli grown on [U-!3C|glucose that had been previously
prepared. At the end of the entire perfusion experiment an OD600 measurement was performed
to correct for biomass growth during the experiment, and to ensure that an OD600 of 1.0 was
not surpassed, indicating cells were still in mid-exponential phase. Fast filtration perturbation
experiments were performed in triplicate starting from different single colonies of the LB agar
plate for each of the different carbon source shift experiments.

3.2.1.4 Metabolic sample preparation

After the samples were placed in the extraction solution they were covered with a lid and kept at
-20°C for 2 hours to complete the extraction. The extracts were then transferred to 15mL falcon
tubes for overnight storage at -20°C. The next day extracts were centrifuged at 14,000RCF at
4°C for 20min to remove cell debris. Supernatants were dried at 0.12mbar to complete dryness
in a SpeedVac composed of an Alpha 2-4 LD plus cooling trap, a RVC 2-33 rotational vacuum
concentrator and a RC-5 vacuum chemical hybrid pump (Christ, Osterode am Harz, Germany).
Dry metabolite extracts were stored at -80°C until further analysis. Dried metabolite samples were
resuspended in 120pL deionized water, plated over 3 different 96-well plates each containing 30nL
of the sample; one for direct measurement and two were stored for backup at -80°C.

3.2.1.5 Metabolite calibration

For absolute metabolite quantification, a mix of more than 100 metabolites from E. coli metabolism
was used which had been previously prepared. This mix contained metabolites at a known equimo-
lar concentration, from which a two-fold dilution series was prepared ranging from 100mM to 49pM
using 1mL Eppendorf tubes. For the purpose of normalization 100pL of **C-internal standard was
added to the extraction solution directly after a sample was taken. 100pL of '3C internal standard
was added to each of the samples of the dilution series, which was prepared fresh on the same day
right before the fast filtration perturbation. These underwent the exact same procedure as the
samples: transfer to 6-well plate with wells containing 4mL of a 2:2:1 acetonitrile:methanol:water
extraction solution, kept at -20°C, transferred to 15mL falcon tubes, and dried simultaneously in
the same SpeedVac as the samples.

3.2.1.6 Metabolite measurements

10pL of each of the wells was injected into a Waters Acquity UPLC with a Waters T3 column
(150mm x 2.1mm x 1.8mm; Waters Corporation, Milford, MA) coupled to a Thermo TSQ Quan-
tum Ultra triple quadrupole instrument (Thermo Fisher Scientific, Waltham, MA) with electro-
spray ionization. The calibration curve was measured once before each of the samples of biological
replicates of a carbon source shift experiment, and once after (technical replicate).
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3.2.1.7 Raw data to signal intensities

The .raw files were converted using in-house software on a server, resulting in .xml files being
returned. These files are stored on an internal database accessible through https://baobab.ethz.ch/.
Peak integration was performed manually with the in-house software “msSoftware”. 3C-traces and
metabolite concentrations were determined as previously described [13].

3.2.1.8 Background signal

A background signal obtained from deionized water measurements was subtracted from the raw
intensities measured in the samples, for both '2C and '3C signals. Values below zero were removed.

3.2.1.9 Calibration curve

Calibration curves were analyzed by fitting a linear model to the log-converted intensities and
concentrations. Covariances were estimated for the sake of error propagation in the inference
of concentrations in the samples. Both ?C and '?C/!3C normalized calibration models were
generated.

3.2.1.10 Sample analysis

Sample analysis started with a correction for biomass by normalizing for the inferred OD600 at
sampling time by using a linear model fit to log-transformed OD600 data for each of the biologi-
cal replicates. Relative changes could be directly calculated from these data, which was done by
z-scoring the OD600-corrected signal intensities of the samples. For absolute metabolite quan-
tification, the sample concentrations were inferred using the calibration models. In order to go
from sample concentration to intracellular concentration, we used a conversion factor obtained by
multiplying the following three elements:

1. The resuspension over sample volume (120uL per 2mL sample)
2. An OD600 to gram cell dry weight (sCDW) factor of 0.433 + 0.023 gCDW OD600 ™ L—!
3. a gram cell dry weight to intracellular volume factor of 2.3mL gCDW .

The latter two conversion factors were previously determined [37]. A detailed description on the
determination of intracellular metabolite concentrations can also be found in published work [9).
The inferred intracellular metabolite concentrations are in units of mM.

3.2.2 In silico experimentation
3.2.2.1 Annotation data

In this work we have adopted the use of BiGG database standard as primary identifiers for
compounds and reactions. We have additionally annotated the compounds using a multitude
of other well-established database identifiers (See Supplementary Tables ?? and ?7). We have
opted for BiGG identifiers as these are unique, whereas for the other databases often more
than one entry exists. Moreover, they are easily human readable. For metabolites these an-
notations include: BiGG [105], CHEBI [23], KEGG [57], Biocyc |15], SEED [90], HMDB [127],
MetaNetX [36], Reactome [19] and LipidMaps [33]. For reactions these include: BiGG [105],
EC-code 4], KEGG [57], Biocyc [15], MetaNetX [36], Reactome [19] and RHEA [3]. Annota-
tion of these identifiers was obtained programmatically, validated to be compliant with the Min-
imal Information Requested In the Annotation of biochemical Models (MIRIAM) standard [68].
To access the tools and scripts used for this annotation, please refer to the GitLab repository
https://gitlab.ethz.ch/karrenbelt/sbml_tools!|

3.2.2.2 Initial condition data

All sources used concern studies on E. coli strain BW25113 during mid-exponential growth.
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Table 3.1: Condition-dependent cell volume of E. coli. The units are: h™' growth rate, pm cell length,
nm cell width, L single cell volume, 10% cells mL~*OD™ OD-specific cell concentration, and pL mL~1OD™}
OD-specific total cell volume. Adapted from [121].

growth condition | growth rate | cell length | cell width | single cell volume | OD-specific cell concentration | OD-specific total cell volume
acetate 0.2940.02 2.3+0.6 1.240.1 2.4+1.3 16.8+1.7 4

fumarate 0.4740.03 2.440.6 1.1£0.1 2.4+1.2 17.0+1.7 4.1

galactose 0.17+£0.02 2.0+0.5 1.1£0.1 1.941.2 19.94+2.0 3.8

glucose 0.60+0.05 3.0£0.7 1.440.2 3.2+1.2 11.1£1.1 3.6

glucosamine 0.3940.03 2.7+0.7 1.3£0.1 2.9+1.3 12.2+1.2 3.5

glycerol 0.4740.03 2.340.6 1.240.1 2.3+1.3 19.6+2.0 4.5

pyruvate 0.40+0.03 2.240.6 1.0+0.1 2.1+1.2 21.0£2.1 4.5

succinate 0.4940.02 2.440.6 1.1£0.2 2.4+1.3 16.7+1.7 4.1

Addressing the cell volume data is crucial, as its substantial error propagates significantly into
enzyme concentration estimates. It’s important to note that the absence of raw data and the
provision of summary statistics in linear scale introduce sampling bias. This bias arises from the
challenge of converting arithmetic mean and standard deviation into geometric terms, which is
impossible without the raw data. Consequently, when sampling from a normal distribution, there
is a tendency to draw unrealistically small cell volumes. This, in turn, leads to the generation of
unrealistically large enzyme concentrations, impacting the overall accuracy of our model. As the
most quantities in biology are lognormally distributed, we decided to to use such a distribution for

sampling of the cell size:
1 _ (n@)—w?

flp,0) = e e (3.1)

ToV 2T

where p is the geometric mean, o the geometric standard deviation, and = the random variable. We
approxitated the geometric mean and standard deviation from the arithmetic data as fuog = In(g)
and o1, = 2. As this approximation suffers from potential outliers during sampling, we used a
truncated lognormal distribution:

F(alp,0,a,b) : S (32)
x|p,0,a,b) = e’ 20 .
a 2oV 2 (D(2) — D(24))

where ®(z) is the cumulative distribution function, z, = w and z, = W, and a and

b denote the lower and upper bound, respectively. The smallest and largest bacterial cells have
a diameter of 0.2 pm and 750 pm, respectively [108]. Assuming a perfect spherical shape, the
formula V = $7r% was used to obtain a lower and upper bound of 3.35 x 10~'7 and 1.77 x 1075,
respectively.

Enzyme concentrations were obtained from the absolute protein quantification study by Schmidt
et al. [106]. We have aggregated these using the gene-reaction-rules present in the model (See Sup-
plementary Table . These counts were aggregated on a per-reaction basis using these boolean
rules: and-logic indicates both proteins are needed, hence we took the minimum, whereas or-logic
indicates both can be used, and hence summation was performed, in order to approximate to total
number of enzymes that could catalyze a given reaction (See Supplementary Table . It’s im-
portant to acknowledge that considering the number of subunits is a significant aspect that should
be considered. However, due to time constraints and the complexity of assessing its significance,
we have regrettably not been able to address this in our current work. We note that enzyme
concentrations were assumed to be constant throughout the duration of our experiment, hence
also served merely as scaling factors in our simulations. Enzyme counts were also sampled using
the truncated lognormal distribution, and subsequently converted to cellular concentration using

. _ enzyme counts
concentration (M) — cell volume (L)X Avogadro’s Number *

Metabolite concentration data was aggregated from the works of Gerosa et al. and Kochanowski
et al. |37, [64]. We averaged these, relying on the uncertainties package [71| for error propagation
(See Supplementary Table .

Flux data were obtained from Gerosa et al. [37] (See Supplementary Table [A13)).

3.2.2.3 Parameter data

Kinetic parameter data were retrieved from the BRENDA database [107]. Only data from wildtype
E. coli were used, as kinetic properties of mutants often deviate significantly. For the derivation
of priors, we computed geometric means and standard deviations from the available data for ki-
netic parameters, including forward catalytic rate constants (kcatr) and Michaelis-Menten constants
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(Kym) (See Supplementary Tables and . In cases where specific parameter values or their
geometric standard deviations were missing, we supplemented the data using a generic prior distri-
bution (See Supplementary Table. The kinetic parameters are also sampled from a truncated
lognormal distribution.

The Gibbs free energy (AG°) values used in this work were obtained along with their associ-
ated covariance matrix. These values were acquired using Equilibrator |34], where we assumed a
constant temperature of 37°C, an intracellular pH of 7.4, and an ionic strength of 0.25M [131},|125]
(See Supplementary Table . We sampled the Gibbs free energy values and their associated
covariance matrix from a multivariate normal distribution. The distribution was parameterized by
the mean vector, denoted as p, and the covariance matrix, denoted as ¥. The sampling process
followed the multivariate normal distribution equation:

; *;ex flx— Iy1(x—
P B) = s e (0 )5 e ) (33

where x represents a vector of Gibbs free energy values, p is the mean vector, 3 is the covariance
matrix, and k is the dimensionality of the vector x. This sampling process allowed us to capture the
uncertainty and correlations among Gibbs free energy values when estimating kinetic parameters
and performing subsequent analyses. After obtaining the sample of Gibbs free energy values and
their associated covariance matrix, we converted these values into equilibrium constants using the
relation AG® = —RT In(K), where R is the gas constant (8.314 Jmol ' K~1), T is the absolute
temperature, and K is the equilibrium constant.

3.2.2.4 Time series data

The time series data that was obtained as described in the in vivo experiments section (see Figures
A.20, [A.21Jand [A.22), published time series data from |75 on the pyruvate to glucose shift was
used (see Figure [A.19)

3.2.3 Model simulation

In order to assess the functional relevance of allosteric interactions we construct an ensemble of
models that consists of a base model without regulation, models containing a single regulatory
interaction, and a set of models containing all combinations of pairwise regulatory interactions.
Next, we initialize each model at pseudo steady-state, run the simulations, and estimate the pre-
diction error based on a trade-off between goodness-of-fit and model complexity that is reflective
of model quality. Finally, we aggregate the results from our modeling procedure to derive a score
for each of the individual regulatory interactions based on the prediction error and the frequency
of a the interaction occurring in models that improve upon the base model.

3.2.3.1 Systems demarcation

Our first aim was to collect the available data from previous studies in order to determine how
to demarcate our subsystem of interest from the rest of metabolism and other cellular subsystems
in both space and time. Systems demarcation is a nontrivial process and somewhat of an art
that requires knowledge of both the system and data at hand, as model complexity needs to be
balanced in accordance with data availability and the expected signal-to-noise ratio on data yet-
to-be collected. Hence, systems demarcation is performed by means of heuristic reasoning rather
than through the use of an algorithmic procedure and associated are implicit assumptions that
often escape our attention. It is a part of the modeling process that most often omitted, yet it
should not be and hence is explicated upon here. Decisive considerations include the following:

3.2.3.2 The modeling framework

From a menagerie of modeling frameworks, including finite-state machines, cellular automata, Petri
nets, boolean network, constraint-based, stochastic and ordinary, partial and delay differential
equations, our first task consists of choosing a suitable candidate. Each of these frameworks has
specific advantages and technical foibles, discussion of which deserves its own treatise |5, (39, |24],
essential however is to select a paradigm that is suitable for addressing the research question
at hand. The research question we pose concerns the role of allosteric interactions in the TCA

108



cycle during metabolic adaption. One way to approach this question is through steady-state
analysis, however, previous such analyses have indicated that the majority of flux changes remained
unexplained [37]. A limitation of this approach is that dynamic behaviour cannot be simulated. As
the process of metabolic adaptation implies change, we opt for a differential equation framework
to study how metabolite-protein interactions shape the response of the TCA cycle intermediates
upon a perturbation. In order to be able to describe dynamics, however, we will need to introduce
parametrized rate laws, which significantly increases the complexity of the model. There is a trade-
off to be made; one where we sacrifice scale for the ability to simulate dynamic behaviour of the
network.

Furthermore, we consider stochastic effects to be negligible for the following reasons. First
off, since metabolic changes can be observed on a timescale ranging from milliseconds to seconds,
whereas changes in enzyme abundance take at least a minute, we chose to focus on solely the
first minute of the response after a perturbation. Such time-scale separation allows us to assume
enzyme levels remain constant. Secondly, we note that cellular metabolite concentrations are
generally much higher than protein concentrations |9} [76, [L06]. Given that the cellular metabolite
concentrations of interest to us are expected to be in the 1pM to 10mM range |9} |75} |37] we assume
stochastic effects to be negligible even on a single cell level. Regardless, single cell metabolomics is
not feasible with contemporary technology, hence our cellular metabolite concentration estimates
are derived from large cell populations in the range of 10% to 100 cells. The law of large numbers
dictates that regression to the mean will occur, which is to say that stochastic effects at the single
cell level average out. We specifically chose ordinary differential equations, and hence neglect spatial
gradients and implicitly assume that our our system is well-mixed. This entails that we are not able
to model phenomena such as the diffusion of gasses [45, 27|, membrane transport |[124] 67], or the
effects of molecular crowding [30} |89] accurately. Although we cannot accurately model membrane
transport dynamics, this phenomena is not of primary interest to us. We furthermore note that,
unlike eukaryotes, prokaryotes such as E. coli do not possess mitochondria that separate TCA
cycle metabolism from the rest of the cell, lending additional support for our choice. Nonetheless,
it would be a stretch to think that cells are well-mixed bags of chemicals without gradients. In
fact we know they’re not, as there exist intracellular pH gradients [120], protein gradients [60],
and affinity gradients that can localize metals and minerals through sequestration |29} [6] and
compartmentalize reactions to metabolosomes to reduce toxicity [116, |114]. Even in an initially
well-mixed (bio)chemical reaction-diffusion systems spatial gradients can emerge spontaneously,
which has been observed in cells [111] and cell-free systems |7}, /130]. We do not include a description
of spatial gradients simply because it requires far more knowledge on spatial organization in the
cell than we currently possess, and greatly increases model complexity.

3.2.3.3 Existing metabolic pathway definitions

Our TCA cycle model should minimally encompass the entirety of metabolites and reactions com-
monly considered to be part of the TCA cycle [123]. It also includes closely associated pathways
such as the glyoxylate shunt |66] and anaplerotic reactions [65], as these are closely associated and
likely play a significant role in the flux adaptation process. Finally, one must also consider other
reactions in which metabolites are known to be consumed or produced [61]; specifically co-factors
such as ATP and NAD might play an important role, however these are known to be involved in
many other reactions.

We decided to use the E. coli genome scale metabolic model [88] (see Supplementary Figure
IA.8) and core model [87] as starting templates, from which we demarcated the subsystem
depicted in Figure
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Figure 3.1: Tricarboxylic acid cycle of E. coli. Model boundary species are extracellular: pyru-
vate (PEP), acetate (Acetate), succinate (Succinate), phosphoenolpyruvate (PEP), adenosine triphos-
phate (ATP), adenosine diphosphate (ADP), nicotinamide adenine dinucleotide (NAD), reduced nicoti-
namide adenine dinucleotide (NADH), nicotinamide adenine dinucleotide phosphate (NADP), reduced
nicotinamide adenine dinucleotide phosphate (NADPH), L-glutamate (Glu), and D-lactate (Lac). The
graphic is created with the use of Escher [62]. Note: Protons (H+) and water (H20) are ignored in reac-
tion kinetics.

3.2.3.4 Model construction and simulation

The models were constructed using the Systems Biology Markup Language (SBML) and a
custom pipeline written in python v3.6. Steady-state flux analysis was performed using the co-
bra toolbox . To constrain the space for sampling of the initial metabolite concentrations,
we derived linear inequality constraints from the equilibrium constants and measured metabo-
lite concentrations, and computed the primal in order to assess whether a feasible solution ex-
isted . For hit-and-run sampling we used an implementation of the algorithm available here:
https://github.com/fontclos/hitandrun. To simulate system dynamics, we use a generalized re-
versible modular rate laws to describe the reactions kinetics . This modular rate law is

defined as follows: T

regD + Dreg
where v denotes metabolic flux, E, the enzyme concentration, 7" the thermodynamic term, D the

denominator, and R,., and D,..q4, regulatory terms. The thermodynamic term 7' can be expressed
in the form of simple reversible mass-action kinetics

T = ky H atihi k. H7r1"h (3.5)

where k¢ and k, are forward and reverse catalytic rate constants, o and 7 are relative concentrations
for the substrate and product respectively (o = K[S][s] and ™ = K[L%p]), n; the stoichiometry of
species and h; the degree of cooperativity. In this work we made the simplifying assumption that

cooperativity is insignificant and can be neglected for several key reasons:

v=FE.R (3.4)

e Many other reactions in the TCA cycle involve relatively simple substrate-product conver-
sions, where the mechanisms are well understood and cooperativity effects are less likely to
play a significant role. We note that there have been studies suggesting cooperativity in
isocitrate dehydrogenase (ICDHyr) in the yeast S. cerevisiae . Furthermore, there is
evidence of negative cooperativity in the isomerization of isocitrate catalyzed by aconitases
in E. coli [118].
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e Our modeling approach prioritizes clarity and ease of interpretation, avoiding unnecessary
complexity introduced by cooperativity-related parameters and equations.

e Due to limited available data and knowledge about specific enzyme cooperativity in this
context, introducing such effects could lead to unreliable results.

e Lastly, our model’s primary aim is to capture essential behaviors and trends of the TCA
cycle, and neglecting cooperativity aligns with this focus.

Using the Briggs-Haldane relationship [12]

 ViKp
- V. Kg

Keq (3.6)
where V; and V,. are the maximal forward and reverse rates, S and P denote substrate and product
concentrations, we can eliminate one of the catalytic rate constants by introducing the equilibrium
constant and expressing the thermodynamic term using the Haldane form

r
T= Tl = 3.7
[Tor -5 (37)
where I" denotes the mass-action ratio (I' = g :7:) and K., the equilibrium constant. The

denominator term D comes in a variety of different flavors |73]. In this work we opted for the use
of convenience kinetics [72]

D=]J+a)" + ] +m)" —1 (3.8)

(3 7

which is also known as the common modular form and is equivalent to the reversible Michaelis-
Menten equation [104]. Allosteric regulation in the generalized rate law is described using R,g,
which assumes independent regulator binding, which is to say that regulators can bind to all
enzymes states.

Drog = [T(pa+[1 = pal=2=)* [T (o1 + 11 = p1]

T )¢ (3.9)

1+pn
where p4 and p; are the relative basal rates, varying from 0 to 1, for the activator and inhibitor,
v is expressed as the ratio of the concentration of the allosteric effector to the corresponding
dissociation constant, and w a matrix containing the regulation numbers. The p values determine
whether there is partial or complete activation or inhibition. In this work we assumed p to be zero
and explore only complete allosteric regulation. This choice parallels our simplification approach
for cooperativity and is motivated by a commitment to model clarity, data limitations, and the
desire to capture primary behaviors. Hence this term was reduced to

1
Dreq = [T )" (3.10)

Finally, the R,., term represents non-allosteric regulation, such as competitive inhibition, a mech-
anism left unexplored in this work [73].

Symbolic solutions for equations, such as for the solving for catalytic constants, were performed
using sympy [79] and JITCODE [8]. Simulation of the differential equation model was performed
using libRoadRunner [112]. Numba [70] was used to speed up the remaining numerical computation
where necessary and possible. The prediction errors were computed as the sum of squares of the

log residuals.
n

Ely] = (In(g:) — In(y;))? (3.11)

i=1
where E denotes the error over the metabolites, ranging from i to n, y the prediction and y the
data. Measurement uncertainties were not explicitly incorporated in the evaluation of goodness-
of-fit. Instead, we relied on the log residuals of means as our assessment metric. To be able
to compare the information content of models with additional parameters we used the Akaike

information criterion (AIC) [2]. R
AIC =2k — 2In(L) (3.12)
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where k denotes the number of parameters in the model and L the maximum likelihood estimate of
the model. Note that the least squares estimation is equivalent to maximum likelihood estimation
under the assumption of Gaussian errors [122|. The AIC reflects the relative loss of information
when assuming a particular model represents the process that generated the information, hence a
lower score indicates less information loss and a higher quality model. We use an extension the
AIC that corrects for small sample sizes (AICc)

2k? + 2k
AlCe = Al _— 1
Cec C+n—k—1 (3.13)

where n denotes the sample size.
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3.3 Results

Earlier studies on flux regulation in central carbon metabolism have proposed that non-covalent
metabolite interactions play a prominent role |32} |37, 41, |80]. Previous research, most notably
on the part of Link et al. and Christodoulou et al. |75, [17], describes the use of an ensemble
modeling approach to determine which allosteric metabolite-protein interactions allow the model
to fit the data better. In the present study, we employ this approach to investigate the significance
of allosteric noncovalent metabolite-protein interactions in governing metabolic flux adaptation
within the TCA cycle. Our goal is to assess whether these allosteric interactions contribute to
the dynamic regulatory behavior observed during metabolic transitions. To achieve this, we first
evaluate the performance of a model without regulatory mechanisms in describing the measured
metabolite dynamics. Subsequently, we create an ensemble of topologically distinct models, created
by augmenting the base model with either single or pairwise allosteric interactions. The ensem-
ble modeling approach may be regarded as an unbiased estimator of the importance of allosteric
regulatory interactions, in that we do not include any of the previously reported allosteric inter-
actions. In order to assess the importance of individual allosteric interactions, we aggregate the
results across models and simulations in order to compute a score for each of them, representing
their contribution to reducing the error of the fits. These models can be regarded to act as a
set of "weak learners" [35], each with its own contribution to predictive insight. By focusing on
the predictive capacity of the ensemble as a whole, we aim to decipher the relative relevance of
regulatory interactions without getting lost in the details of individual fits.

3.3.1 Experimental data

In this study, we extend the ensemble modeling approach pioneered by Link et al. and Christodoulou
et al. |75 [17] to unravel the significance of allosteric noncovalent metabolite-protein interactions in
governing metabolic flux adaptation within the TCA cycle. By incorporating single and pairwise
allosteric interactions into the model, we aim to discern their impact on the model’s ability to
recapitulate experimental time series observations upon a perturbation. Since allosteric regulation
involves direct protein-metabolite interactions, the effect of a change in concentration of an effector
almost instantaneously propagates to the target enzyme. The effect of transcriptional regulation
on metabolism, on the other hand, takes at least a minute to set in as it involves a cascade of
processes that ultimately effect enzyme levels [110]. In order to capture the effects of allosteric
regulators, as well as to be able to exclude the effects of transcriptional regulation, we focused on
dynamics observed within the first minute after such a perturbation.

We selected perturbations involving shifts in carbon sources, specifically transitioning from a
medium with a less favored carbon source to one containing glucose, which serves as F. coli’s
preferred carbon source. "Preferred carbon source" in this context refers to a carbon source that is
consumed as a priority, as indicated by previous research |1]. Notably, when transitioning to this
preferred carbon source, E. coli has been observed to exhibit instantaneous glucose metabolism
[75].

The choice of initial conditions regarding carbon sources was guided by the documented steady-
state fluxes observed in E. coli during mid-exponential growth when using these sources as the sole
carbon source [37]. Our selection of succinate and acetate as initial conditions is grounded in the
remarkable contrasts in steady-state flux distribution as compared to glucose. More specifically,
there are stark differences anaplerotic fluxes between growth on succinate and glucose, while on
acetate the glyoxylate shunt is active, a pathway that remains quiescent during growth on glucose
[37]. Hence, cells need to facilitate these changes as part of their adaptory process when transition-
ing between these carbon sources. Consequently, cells are compelled to facilitate these metabolic
adjustments as part of their adaptive response during the transition between these diverse car-
bon sources. Pyruvate was additionally considered in this analysis, as its role in the metabolic
transition from pyruvate to glucose had been investigated previously during the switch from glu-
coneogenic to glycolytic modes. Not only will this serve as a control, significant changes in TCA
cycle intermediates were also observed during this transition.

We cultivated E. coli to mid-exponential phase on a carbon source of secondary preference:
either acetate, succinate or pyruvate. We then placed samples of this culture on a filter on which
we perfused the cells for 10 seconds with medium containing the original carbon source of secondary
preference, then for 30 seconds with medium containing glucose, and finally another 30 seconds
with medium containing the original carbon source. During this time, and at specific time intervals
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during the perturbation, filters with cells were quenched and extracted for metabolite concentration
quantification via mass spectrometry (see section .

Our attempts to estimate metabolite concentrations from mass spectrometry data encountered
significant challenges. Many crucial metabolites were difficult to reliably detect, leading to gaps
in their time series. Moreover, we observed considerable variance in the estimated metabolite
concentrations across both technical and biological replicates. The best results obtained after
numerous iterations are presented in the appendix of this thesis (See Figure and
A.22)).

In our attempt to replicate the pyruvate-glucose-pyruvate switch experiment conducted by Link
et al., we observed that, among the 14 metabolites present in our model that Link et al. could
accurately quantify, we encountered significant difficulty in reliably detecting signals for 10 of these
metabolites. To elaborate, when we mention "reliably," we are referring to a situation in which, out
of the three replicates, each encompassing 11 time points, we encountered the unfortunate outcome
of losing signals for more than half of these time points. Specifically, PEP shows an initial drop
upon the switch to glucose, whereafter its concentration quickly rises back to the initial state level,
and drops again after the switch back to glucose, which is qualitatively similar to what Link et
al. observed. The observed dynamics of FBP, though not present in our model, are characterized
by a significant spike upon the switch to glucose, and an equally significant drop upon switching
back to glucose. Looking into the other metabolites that are present in our model and detected
by Link et al., we find no further similarity. More precisely, for the metabolites citrate, isocitrate,
alpha-ketogluterate, succinyl-CoA, succinate, fumurate, malate and oxaloacetate, all of which show
coefficients of variation under 10% across the entire time series in Link et al., we do not detect
a signal in more than half of the samples, with the exception of malate. Regarding co-factors,
AMP, ADP and ATP, as well as NADH and NADPH, were consistently detected, but exhibited
coefficients of variation greater than 100%.

Upon assessing data dissimilarity, our dataset revealed an average coefficient of variation (CV)
of 39% among the top 25% (15 signals) of metabolites, markedly surpassing Link et al.’s benchmark
of 12% across their entire dataset of 57 metabolites. This substantial discrepancy highlights the
challenge in achieving data consistency essential for elucidating the intricate dynamics of metabolic
flux adaptation. The high CV in our dataset impedes our ability to distinguish between various
model fits and assess the relevance of allosteric interactions during metabolic transitions based on
aggregated results. Consequently, we relied on previously published data concerning a pyruvate-
glucose-pyruvate shift 75|, where dynamics of TCA cycle intermediates were recorded but not
utilized (see Figure [A.19).

During discussions with a senior scientist regarding our data, concerns were raised about its
reliability. Specifically, the senior scientist highlighted the high variance observed and suggested
caution regarding its interpretation. This input was critical as it emphasized the challenges we
faced in obtaining consistent and reliable data, corroborating our own observations.

The empirical validation in our field presents inherent challenges due to the weakness in pre-
dictions and the absence of a definitive ground truth. This limitation significantly impacts model
selection and directly influences the aims of our study. The inability to establish a reliable ground
truth contributes to the difficulty in interpreting and validating empirical data, particularly con-
cerning the intricate dynamics of metabolic flux adaptation. Consequently, assessing whether data
quality is sufficient becomes an arduous task without a definitive benchmark or ground truth for
comparison.

The dataset limitations, such as undetectable signals for key metabolites and high coefficients
of variation for consistently detected co-factors, significantly compromised the reliability of our
dataset, aligning with the discussion in [77, [10] regarding the impact of data uncertainties on
in silico studies. More specifically, limited availability of accurate metabolite concentration data
poses a significant hurdle in discriminating between the fits of topologically different models, and
as a consequence our ability to differentiate between the relevance of allosteric interactions during
metabolic transitions derived from aggregating these results.

Moreover, adhering to the GIGO Principle (Garbage In, Garbage Out), the quality of output
is determined by the quality of the input data. It emphasizes the critical role of data quality in
computational processes, highlighting that using unreliable or inconsistent data will yield unreli-
able or inconsistent results. Therefore, based on the high variance, lack of detection for crucial
metabolites, and the caution raised by the senior scientist, we made a decision not to move forward
using this dataset. Therefore, we resorted to the use of data previously published on a pyruvate-
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glucose-pyruvate shift |75], in which dynamics of TCA cycle intermediates had been recorded but
were not used (see Figure [A.19)).

3.3.2 Computational modeling
3.3.2.1 Integration of heterogenous data

Our first challenge was to find a way to integrate data from different sources for model initialization.
Data on initial conditions of metabolite concentrations, metabolic fluxes, enzyme counts and cell
volume estimates were collected from recent publications [121} 75} (37} [L06] (Supplementary Tables
[A.12] |A.11) and |A.13). Kinetic parameter data was obtained from the BRENDA database and
equilibrium constants obtained with the use of a biochemical thermodynamics calculator named
eQuilibrator [107, |85] (Supplementary Tables [A.15] [A.16{ and [A.14). An overview of coverage of
our model by the data is provided in Table the specifics are provided in section [3.2.2

Table 3.2: Model data coverage

Data Total Fraction

States

cell volume 1 1 1.00
metabolites 14 30 0.47
enzymes 22 23 0.97
fluxes 14 23 0.61
Parameters

Keq 23 23 1.00
Kecat, 8 23 0.35
keat, 2 23 0.09
K, 50 92 0.54

Among the states in our biological system we may differentiate cell volume, metabolites, en-
zymes and fluxes. Cell volume data is necessary since enzyme quantification data consists of counts
per cell, necessitating conversion into concentrations for use in our rate law equations. With re-
spect to enzymes we have data on 22 of the reactions out of the 23 in our system, with PPCK
being the noteable exception, whereas steady-state fluxes are available for 14 out of 23 reactions,
and with metabolites covering 14 out of 30 species in the model.

With respect to parameters, we differentiate thermodynamic and enzyme kinetic parameters.
Data on thermodynamic parameters, specifically the Gibbs free energies of formation, are available
for all reaction in the model (see Figure [A.14). We found data for 10 catalytic constants, which
represents approximately a quarter of the catalytic constants present in the model and for seven
out of these only a single value is reported in literature (see Figure . With respect to the
Michaelis-Menten constants we found data for 50 of them, which represents more than half of the
dissociation constants in the model (see Figure . When no specific data was available, we
opted to use a generic prior that was derived from the entire collection of available data of different
studies reported in databases |76] (Supplementary Table .

The overview reveals a stark contrast: while all the equilibrium constants are known, most of
the kinetic parameters remain unknown. This discrepancy is further compounded by the consider-
ation of estimate uncertainty and the heterogeneity of data sources. Specifically, the equilibrium
constants are jointly estimated for the entire network. The availability of data from which these
are derived, and the fact that thermodynamic parameters don’t vary between in vivo and in vitro
conditions makes them a valuable source of information.

In contrast, the situation with kinetic parameters is more complex. These parameters, which
underlie enzyme kinetics, are determined independently through biochemical enzyme assays. These
assays have been conducted in indedepent studies, diverse geographical locations, and over the
course of several decades. Moreover, the experimental conditions used for these assays vary widely,
as optimal conditions, such as temperature, pH and the presence of cofactors, can vary considerably.
Although there appears to be a tendency to move towards in vitro conditions that more closely
mimic those found in vivo, achieving a faithful emulation of in vivo conditions remains challenging.
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Hence, it is questionable whether test tube conditions are representative of behavior in the cell
under physiological conditions, a source of uncertainty that affects enzyme kinetic parameters but
not chemical equilibrium constants [20, [78]. Therefore, we opted to formulate the rate law in
Haldane form, effectively exchanging an unknown catalytic constant for a known thermodynamic
constant (see equations B.7).

Previously reported metabolite-protein interactions are also available. However, we did not
include these during model development because of two main reasons. First, including them
will greatly increase model complexity. Specifically, with respect to the enzymatic reactions in our
model of the F. coli TCA cycle and anaplerotic reactions, a total of 46 inhibitory and 13 activatory
allosteric interactions have been reported [100]. Including all of these would significantly increase
the number of parameters in our model. Moreover, not only is it likely that this set contains
false positives, for example due to the use of non-physiological conditions, not all of they may be
relevant in the conditions we’re testing. Secondly, by not including this information a prior: we
reserve this data for validation post hoc.

3.3.2.2 Model initialization procedure

Here, we provide a high-level overview of the steps involved in generating samples and initializing
the model:

Algorithm 1 Model Initialization

Equilibrium constants:

- Sample ArG’° from a multivariate normal distribution

- Convert ArG’® to equilibrium constants K4

Fluxes:

- Generate a flux solution using constrained-based optimization

- Introduce parameter to address futile cycling

Metabolites:

- Use equilibrium constants and known concentrations as constraints

- Sample metabolites using constrained-based hit-and-run sampling

Cell volume:

- Sample cell volume from a truncated lognormal distribution

Enzymes:

- Sample enzymes with data from a truncated lognormal distribution

- Use cell volume to calculate enzyme concentrations

Kinetic constants:

- Sample forward catalytic rate constants from a truncated lognormal distribution
- Sample Michaelis-Menten constants from a truncated lognormal distribution
Consistency adjustment:

- Adjust enzyme concentrations to match the steady-state flux solution

Each step in the initialization process contributes to building a comprehensive starting point
for our computational model.

Equilibrium constants: We estimate the equilibrium constants for our system, which encom-
pass the Gibbs free energy of formation (AfG’®) each of the metabolites and the Gibbs free energy
of reactions (ArG’®) describing the transformation of one set of metabolites into another. As these
Gibbs free energies are calculated for the network as a whole, we explored the resulting covari-
ance matrix using a multivariate sampling approach (Section . The multivariate normal
sampling of ArG’® followed by conversion to equilibrium constants K., provides the foundation
for thermodynamic considerations, parameter which we will not only use in the rate law equa-
tions, but also in conjunction with the flux estimate in the process of sampling initial metabolite
concentrations, as we detail below.

Fluxes: To initialize the model at a predefined steady-state, we first obtained a steady-state flux
solution for the model using contraint-based analysis approach. Specifically, our goal was to match
the fluxes reported in a previous publication that compared the steady-state growth of E. coli on
various carbon sources [37]. However, due to structural dissimilarities between the model used
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in that study and ours, direct mapping of fluxes was not feasible. To address this limitation, we
employed a constraint-based modeling approach known as Minimization of Metabolic Adjustment
(MOMA) [109]. MOMA is commonly used to predict flux distributions in knock-out mutants by
minimizing the distance to fluxes observed in the wild type. In our case, we utilized MOMA to
derive a flux solution that closely resembles the flux distribution in the published data.

Although some differences exist between the reported fluxes and the solution we obtained,
such as for phosphoenolpyruvate carboxykinase (PPCK) (7%), o-ketoglutarate dehydrogenase
(AKGDH) (1%), and the exchange reactions involving pyruvate (9%), acetate (1%), and succi-
nate (1%) (see Figure and Figure , we regard these disparities as inconsequential for
our modeling procedure. Given the inherent uncertainty in the original estimates, as well as the
variation in other states and parameters within our model, we assumed that these relatively small
deviations do not significantly impact our final model predictions.

Lastly, we introduced an additional parameter to address futile cycling at the PPS / PYK node.
In the constraint-based model, both reactions are irreversible, and only one of them carries flux in
the obtained steady-state flux solution. For growth on pyruvate, the flux-carrying reaction is PPS,
whereas the flux through PYK is zero. However, the solution represents the net flux through both
reactions. Since the extent of futile cycling remains uncertain, we chose to sample the ratio from
a uniform range between 0.01 and 0.99. We then increased both fluxes by an amount equal to this
ratio multiplied by the net flux to maintain the original steady-state conditions. This approach
ensures that the preserved net flux captures the interplay between PPS and PYK under these
conditions.

Initial metabolite concentrations We leverage the equilibrium constants within our system
[34] and integrate physiological and steady-state flux data [37] to define the space of possible initial
metabolite concentrations using linear inequality constraints (Section . For metabolites
without available data, we employed an uninformative generic prior [76] (Supplementary Table
IA.10). To determine the thermodynamically feasible initial metabolite concentrations, we employ
linear programming. The objective is to solve the following optimization problem:

min c¢Ix

X

subject to A px < by,
Acgx = bgq,
I1<x <,

where:

e x is the vector of metabolite concentrations being determined.

c is the objective vector, which we set to maximize the flux through a specific row named
"mdf."

e A} is the coefficient matrix for the upper bound constraints, which includes an additional
"mdf" row.

e by, is the right-hand side vector for the upper bound constraints, combining sampled equi-
librium constants with metabolite concentration bounds.

o A, is the coeflicient matrix for equality constraints (not applicable here).
o b, is the right-hand side vector for equality constraints (not applicable here).
e | and u are lower and upper bounds, respectively, for the concentrations of each metabolite.

Ayp is a matrix embodying conditions to be satisfied, formed by multiplying the stoichiometric
matrix (S) with the flux directionality vector (sign(v)). b,p contains upper bounds, encapsulating
log-transformed equilibrium constants, with a small value ¢ = 1.07¢ subtracted to ensure strict
inequalities during optimization rather than inclusive ones during optimization. This practice is
a standard procedure in optimization to address potential numerical inaccuracies, ensuring that
constraints remain satisfied even in the presence of small rounding errors or other numerical in-
tricacies. The bounds [ and u were determined based on the available metabolite data and set
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to encompass 3 standard deviations from the mean concentration (Supplementary Table .
This was achieved by calculating the relative standard error, which is the ratio of the standard
deviation to the mean concentration. For metabolites without available data the upper and lower
bound were set of 1.07! and 1.07% M. Prior to incorporating these bounds into the optimization
process, they were also converted to the logarithmic scale, aligning with the logarithmic nature of
the linear programming approach.

The optimization process is driven by the objective function, which involves specifying an
objective vector denoted as c¢. The pivotal step in this linear programming formulation is the
inclusion of the "mdf" row in the objective vector ¢. Within this vector, all elements are initially
set to zero, except for the entry corresponding to the "mdf" row, which is assigned a value of 1. This
strategic inclusion highlights the optimization’s focus on maximizing the flux associated with the
molecular driving force, a thermodynamic parameter critical in determining reaction directionality
based on changes in free energy [85]. Additionally, uniform bounds of —1000 and 41000 are
applied to the elements of the objective vector. It is worth noting that both the objective ¢ and
its associated bounds are arbitrary and devoid of specific physical units. Instead, they function
as guiding parameters for the optimization process and are not intended to represent physical
quantities.

With these matrices and vectors in place, the linear programming problem aims to find the
concentration vector x that minimizes the objective function while satisfying the defined inequali-
ties. By including the "mdf" row in the objective vector ¢ and imposing upper bound constraints
through A,p, and by, we systematically determine initial metabolite concentrations that fulfill
mass balance, thermodynamic, and driving force constraints. Solving this linear programming
problem provides the vector x, representing the optimal initial metabolite concentrations that sat-
isfy mass balance and thermodynamic constraints while maximizing the flux through the "mdf"
row. This approach systematically identifies a feasible range of initial metabolite concentrations
that align with available data and thermodynamic principles.

To systematically explore this constrained space, we utilized the hit-and-run sampling method
[43] for uniform sampling. The resulting distribution of sampled metabolite concentrations, illus-
trated in Figure serves as the foundation for initializing our model. The figure provides a
visual representation of the sampled metabolite concentrations and their respective ranges. The
grey area signifies the range of the generic prior for metabolites lacking data. In contrast, the
black region represents the empirically determined actual sampling range. Metabolites with avail-
able data were further constrained based on three standard deviations from the mean, as reported
by Link et al. |75]. Additionally, data from [37] and |63] are depicted in blue for reference. It’s
important to note that while Figure offers a visual portrayal of the sampling ranges, the
polytope’s actual size is influenced by joint sampling of metabolites in high-dimensional space, a
dimensionality that cannot be fully captured in a two-dimensional figure.

Range
W sampled
@ Gerosa (2015) & Kochanowski (2017)
& Link (2013)

Metabolite samples
1071
e I
1072 4 III u i R
1074 4
107% Ll

1079 4

Molar concentration

=

T ——T—T—T——T—T—T—T————T
ul ml u‘ u‘ ul ul ul u‘ u‘ ul ul oY T N A SR
UU'BUC}.Q.U\D.CI..‘:N!DE .‘ZJ'U.ECLJ:FUB'E_;‘\—CQNUUR!
m @ o 5 T % g e 0 oo O | mT T om o 5 2oL Y9 o
e c ¥ 1 m LI = = £ @ @0 ocos H{H B w2 20U
T e B S e B T R I
om=E=E= = E=S5%= == s 7

s = = =

Species

Figure 3.2: Sampled initial metabolite concentrations. The sampling range of the generic prior
for metabolites without data is shown in grey (Range). The empirically determined actual sampling range
is shown in black (Sampled). Metabolites for which there was data available was constrained to three
standard deviations from the mean as reported by Link et al. |75]. For comparison the data obtained by
Gerosa et al. and Kochanowski et al. |37} |63] is shown in blue.
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The figure presents a visual representation of the sampled initial metabolite concentrations,
shedding light on the consistency between the obtained samples and established experimental
data. The black region, which represents the actual sampled range of metabolite concentrations,
showcases the empirically determined sampling range as a result of constraints imposed by the
combination of equilibrium constants and known concentrations. A discernible observation emerges
from this figure: the disparity between our sampled concentrations and the mean and standard
deviation values derived from the studies conducted by Gerosa et al. and Kochanowski et al.,
symbolized by the blue data points [37, 63]. This discordance stems from a deliberate pivot
towards integrating previously published time series data by Link et al. [75], due to unexpected
challenges encountered in our own experimental time series data acquisition. The reason we opted
to primarily use the data from Link et al. for model initialization, rather than combining data from
various studies, is because these metabolic concentrations also serve as the initial data point for our
time series data fitting. This decision was made to ensure consistency in the model’s initialization
and subsequent analysis, as well as to align the model with the specific time-dependent behavior
observed in Link et al.’s measurements.

Cell volume: To account for the variability in cell volume, we sample the cell volume from a
truncated lognormal distribution. Cell volume sampling captures the inherent variability in cellular
sizes, which is necessary for calculating enzyme concentrations from the absolute quantification

data counts (Section |3.2.2.2)).

Enzymes: To initialize enzyme concentrations, we utilize a truncated lognormal distribution,
leveraging available data to constrain the sampling space, and subsequently compute the cellular
concentration of these. Enzymes are constant in our model, effectively serving as a scaling factor,
and due to error propagation of the cell volume have significant uncertainty associated.

Kinetic constants: The kinetic parameters of enzymes under consideration here include the
forward catalytic rate constants (k! ,) and Michaelis-Menten constants (k,,). To initialize these

kinetic constants, we sample from a truncated lognormal distribution using the available data

(Supplementary Tables and |A.16]).

Consistency adjustment: In our model initialization procedure, a notable instance of redun-
dancy arises as multiple variables interact to ensure the consistency of our calculations. Specifically,
we address the relationship between the enzyme concentration (F), catalytic rate constant (keatt),
and the flux (v) through a reaction, given the known values of the other parameters in the general-
ized Michaelis-Menten equation (Equation . We are confronted with the requirement that the
right-hand side of the equation must match the predefined flux (v). This dependence introduces
a redundancy, as we are using both the sampled enzyme concentration and catalytic constant to
compute the flux, while already having the target flux value. To reconcile this redundancy, we
adjust the sampled enzyme concentration until the equation’s right-hand side aligns with the de-
sired flux. The choice to adjust the enzyme concentration stems from a careful consideration of
the intrinsic uncertainties inherent in enzyme quantification. Notably, the enzyme concentration
estimation is significantly influenced by the uncertainty in cell size measurements. This uncertainty
ripples through the estimation process, creating a considerable error in the computed enzyme con-
centration. Furthermore, our estimation of enzyme concentration is derived from gene reaction
rules, which presents another layer of complexity. This method offers a rather coarse approxima-
tion, overlooking the stoichiometric coefficients of enzyme subunits, thereby limiting its accuracy
and precision. Consequently, the decision to adjust the enzyme concentration offered a relatively
simple and straightforward approach.

3.3.2.3 Experimental time series data as direct model input

In scenarios where we lack an explicit description of glycolysis, a pertinent question arises regard-
ing how to describe extracellular perturbation events such as the switch to glucose. To tackle
this, we chose to model the perturbation by assigning the dynamics of certain metabolites, namely
phosphoenolpyruvate (PEP), lactate, and L-glutamate, to align with available experimental mea-
surements. PEP it specifically difficult to model, as it is involved in glucose uptake via the glucose
phosphotransferase system.
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Furthermore, cofactors are also difficult to model, since they are involved in numerous other
reactions, which thus affect their pools, though these are not part of the model. Nonetheless,
cofactors likely play a crucial role in when it comes to the dynamics of the TCA cycle; not only
are they essential cofactors of almost every of the individual reactions in the TCA cycle, they
have also been reported to act as allosteric regulators. To illustrate, with respect to the enzymatic
reactions in our model, no less than 13 allosteric interactions involving co-factors have been reported
[100]. To capture their behavior during perturbation events, we integrated measurement data for
cofactors—AMP, ADP, ATP, NAD", NADH, NADP", and NADPH —into the model as direct
inputs. This approach accounts for cofactor fluctuations during metabolic transitions and their
influence on the TCA cycle’s regulatory mechanisms.

The assignment of metabolite dynamics was achieved through linear interpolation and rule-
based assignments using the SBML framework. This approach ensured that the model’s behavior
accurately captures the experimental dynamics of these metabolites. Notably, for these assigned
metabolites, we did not simulate their dynamics or explicitly account for uncertainty. Instead, we
employed rule-based assignments to directly set the values of these metabolites based on provided
mathematical expressions.

Finally, we have also chosen to utilize time series measurement data for metabolites to explore
their potential role as allosteric regulators in our model’s enzymatic reactions. This approach
allows us to assess the influence of metabolites, including those not explicitly accounted for in the
system of differential equations. In brevi, dynamics of 9 out of 30 metabolites in the model were
assigned instead of simulated, and all 57 metabolites from central carbon metabolism for which
measurement data was available were tested as putative allosteric regulators (see Figure |A.19)).
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3.3.2.4 Kinetic Parameter Optimization

Following the initialization of the model to its predefined steady state, the subsequent step involves
evaluating the model’s ability to replicate the observed system dynamics during a carbon source
perturbation. To achieve this, we employ a constraint-based optimization approach. In this proce-
dure, we optimize the Michaelis-Menten constants within the model. These constants are bounded
by either their literature-reported values or, in the absence of specific data, by an uninformative

prior distribution (Supplementary Tables and [A.10]).

Importantly, during each iteration of the optimization process, we ensure that the enzyme
concentrations are adjusted to maintain the original and initial steady state. This preservation
of the steady state serves as a critical constraint in our parameter optimization. Moreover, to
maintain the physical feasibility of enzyme concentrations, if a computed enzyme concentration
ever falls below zero during this procedure, our cost function returns infinity. This effectively
constrains enzyme concentrations to remain within the realm of physical reality, ensuring that
our optimization explores biologically meaningful parameter regions. Furthermore, we explore the
parameter space in a logarithmic scale. This is done because parameters might vary over several
orders of magnitude, and searching for optimal values in a linear scale could lead to numerical
instabilities, slow convergence, or issues with precision.

We utilized a scoring function to assess the goodness-of-fit between the model predictions and
the observed data. Specifically, we computed the sum of squares of log residuals to quantify the
discrepancies between the model-predicted values () and the experimental measurements (y). For
the case of absolute quantification data, the log residuals are computed as per Equation [3.11
In the case of relative quantification data, we first normalized these by their initial time point,
providing us fold changes.

Initially, we undertook parameter optimization using basin-hopping, a technique frequently
applied to nonlinear multimodal optimization problems in structural biology [86]. However, we
encountered challenges, including slow convergence rates and fluctuating minima. These issues
prompted us to investigate alternative optimization algorithms. Our exploration revealed that a
differential evolution algorithm [115] exhibited faster convergence and consistently led to lower
minima, thus overcoming the limitations of the previous approach.

Given the complexity of the system and the large number of simulations involved, we opted
not to perform sensitivity analysis at this juncture. This decision was informed by two factors.
First, local sensitivity analysis using partial derivatives, while providing an avenue to explore
sensitivities, lacks informativeness and is inappropriate for nonlinear systems [103]. Second, while
global sensitivity analysis is better suited for nonlinear systems, it poses challenges similar to finding
a suitable global optimization method, as both require extensive exploration of the parameter space.

Returning to our initial exploration, we aimed to assess the potential of a kinetic model devoid
of allosteric regulation in capturing dynamics (refer to Figure . Through 10,000 optimizations,
each initialized with diverse starting conditions drawn from the prior distribution, we aimed to
evaluate the model’s capability to explain metabolite dynamics.

While we acknowledge that we cannot definitively rule out the existence of a solution that per-
fectly matches the data, our outcomes suggest that the model struggles to comprehensively capture
metabolite dynamics. Notably, the most substantial deviations were observed for metabolites at
the junction of glycolysis and the TCA cycle, such as acetyl-CoA, citrate, aconitate, and isocitrate.
Additionally, the dynamics of fumarate and malate exhibit another limitation, as the simulated
response to glucose contradicts the observed behavior.

In conclusion, our analysis demonstrates that a model without additional regulatory elements
falls short in capturing the short-term dynamics observed after a carbon source switch. We defer
a more comprehensive discussion of these results and potential avenues for further exploration to
the dedicated "Discussion" section.
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Figure 3.3: Best one percent of predictions without allosteric regulation. On top of the simulated
time series depicted for each of the metabolite the geometric mean and standard deviation of the log
residuals is provided.
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3.3.2.5 Ensemble Modeling

In order to assess the relevance of putative allosteric regulators, we evaluated the impact of in-
corporating these interactions on the model’s ability to fit the data. To investigate the potential
of allosteric regulation, we expanded the model by simulating additional regulatory interactions
involving all 57 metabolites for which time series data were available. We considered both single
and pairwise combinations of metabolite-enzyme interactions, resulting in a total of 2,850 models
with a single allosteric interaction and 3,898,800 models with pairwise interactions.

Among these models, we conducted simulations for the single interaction models 1,000 times
each with newly sampled initial conditions. For the pairwise interaction models, we performed
simulations once. In the final step of our modeling procedure, we aggregated the outcomes to
calculate a score for each individual allosteric interaction that was tested.

More precisely, the information content of each of the models was compared using the Akaike
information criterion [2], which penalizes for additional parameters, needed to describe additional
interactions, in the models. We then ranked the interactions based on the following two metrics: 1.
the frequency at which an individual interaction occurred in a model that outperformed a model
without regulation, and 2. the score of the information content of the achieved by the models
containing this interaction (Figure [3.4).

Relevance of interactions
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Figure 3.4: Top ranking allosteric interaction predictions. The results of all single and pair-
wise interaction models was combined in order to derive a ranking for each of the individual interactions
tested. Abbreviations: isocitrate dehydrogenase (ICDHr), phosphoenolpyruvate carboxylase (PPC), phos-
phoenolpyruvate carboxykinase (PPCK), sedoheptulose 7-phosphate (s7p), 6-phospho-D-gluconate (6pg),
citrate (cit), isocitrate (icit), L-tyrosine (tyr), L-phenylalanine (phe), D-xylulose 5-phosphate (xu5p), cis-
aconitate (acon).

Figure presents the results of the individual allosteric interaction tests conducted in
our study. Among the highest-ranking interactions, notable entries include isocitrate dehydroge-
nase (ICDHr), phosphoenolpyruvate carboxykinase (PPCK), and phosphoenolpyruvate carboxy-
lase (PPC). An intriguing observation is the qualitative similarity in the predicted behaviors of
allosteric regulators for various reactions (Figure . For instance, the dynamics of metabo-
lites such as citrate, aconitate, and isocitrate are remarkably consistent, a consequence of their
interconversion via an isomerase. Similarly, phenylalanine and tyrosine display closely resembling
dynamics, owing to the latter’s formation from the former through a single hydroxylation reaction.

While the congruence in predictions for related metabolites underscores the robustness of our
approach, it also accentuates a notable limitation. The method, by design, lacks the capacity to
definitively differentiate between candidates exhibiting comparable dynamics. In instances where
our predictions suggest that citrate, aconitate, and isocitrate act as inhibitors of ICDHr, or where
tyrosine and phenylalanine activate PPCK, we are presented with reliable predictions that also
illuminate the challenge of disentangling such closely related candidates. Although the possibility
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exists that one of these predictions represents a true positive while others are false positives due
to the similarity in dynamics, it’s important to consider that their structural resemblance at the
molecular level introduces the prospect of multiple regulatory roles.

Taking a closer look at a high-ranking prediction involving sedoheptulose 7-phosphate (s7p)
inhibiting isocitrate dehydrogenase (ICDHr), we observe substantial improvements, especially in
the fitting of citrate, aconitate, and isocitrate, as compared to the base model (Figure .
This enhancement is particularly understandable considering the substantial errors that these
metabolites exhibited in the base model’s predictions. Remarkably, the positioning of ICDHr
within the metabolic network as a pivotal control point aligns well with the logical rationale for
this regulatory interaction.
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Figure 3.5: Best one percent of predictions with sedoheptulose 7-phosphate (s7p) inhibiting
isocitrate dehydrogenase (ICDHr). On top of the simulated time series depicted for each of the
metabolite the geometric mean and standard deviation of the log residuals is provided.
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3.3.2.6 Predictions vs. Reported Interactions

The predictions extracted from our study’s analysis showcase specific allosteric interactions within
key enzymes of the metabolic network. In comparison to the previously reported interactions (Sup-
plementary Table , our findings reveal some noteworthy disparities. For instance, our evalua-
tion of Isocitrate Dehydrogenase (ICDHr) predicted interactions with sedoheptulose 7-phosphate
(s7p), 6-phospho-D-gluconate (6pg), citrate (cit), isocitrate (icit), and cis-aconitate (acon). No-
tably, among the previously reported regulators, phosphoenolpyruvate (PEP) was the sole interac-
tion present in both the reported list and the candidates we evaluated; however, it wasn’t predicted
by our analysis. In the case of Phosphoenolpyruvate Carboxylase (PPC), our study anticipates
an interaction with isocitrate (icit), diverging from the six previously reported interactions that
were included in our study, encompassing citrate (cit), fructose 1,6-bisphosphate (fdp), fumarate
(fum), guanosine triphosphate (GTP), and succinate (succ). We note, however, the high correla-
tion between isocitrate (icit) and citrate (cit) due to their conversion by an isomerase. Notwith-
standing, our analysis predicts an inverse mode of action compared to the reported interactions.
Phosphoenolpyruvate Carboxykinase (PPCK) presents a distinct scenario, with our predictions
highlighting tyrosine (tyr), phenylalanine (phe), D-xylulose 5-phosphate (xubp), and sedoheptu-
lose 7-phosphate (s7p) as potential regulators. Similar to our prior findings, none of these align
with the previously reported regulators, which encompass compounds such as 3-phosphoglycerate
(3PQ), acetyl-coenzyme A (ACCOA), adenosine triphosphate (ATP), dihydroxyacetone phosphate
(DHAP), fructose 6-phosphate (F6P), fructose 1,6-bisphosphate (FDP), reduced nicotinamide ade-
nine dinucleotide (NADH), and phosphoenolpyruvate (PEP).

These discrepancies and divergences between our predictions and the previously reported inter-
actions raise several plausible factors to consider. Firstly, false positives might arise due to strong
correlations in metabolite time series data, leading to predictive overlaps that don’t necessarily
denote direct regulatory relationships. Secondly, conditions reported in literature might have been
obtained under in vitro conditions that aren’t physiologically relevant, potentially skewing the ob-
served interactions. Additionally, reported interactions might indeed be valid but under different
experimental conditions not replicated in our study. Moreover, inherent issues with the infer-
ence procedure, including model limitations or inherent biases, might contribute to discrepancies
between predictions and known interactions.

In our evaluation of 2850 metabolite-reaction pairs as potential regulatory interactions, we
found supporting evidence in the literature for 43 of them. With respect to the top 10 interactions
we predicted, we found:

e Isocitrate Dehydrogenase (ICDHr): Our model covers two known interactions, while
all five of our predictions are novel.

e Phosphoenolpyruvate Carboxylase (PPC): Among the six interactions covered by our
model, our predicted interaction is novel.

e Phosphoenolpyruvate Carboxykinase (PPCK): eight known interactions are covered
by our model, while all four predicted interactions are novel.

While these reasons warrant careful consideration, there remains the intriguing possibility of en-
tirely novel regulatory roles or previously unidentified interactions within the metabolic network.
Verifying these conjectures experimentally would be imperative to ascertain the true nature of
these predictions.
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3.4 Discussion

In this discussion, we delve into the implications and interpretations of our modeling results,
focusing on the putative allosteric regulators and their potential impact on the dynamic behavior
of reactions within or closely associated with the tricarboxylic acid (TCA) cycle. As in previous
works [75] 17|, our modeling framework primarily serves as a hypothesis generation tool, aiding in
the identification of candidate regulatory interactions that could contribute to observed metabolic
dynamics.

It’s crucial to highlight the pronounced divergence between the observed and simulated dynam-
ics of Acetyl-Coenzyme A (AcCoA). An essential aspect to consider is that our available data for
this metabolite was solely in the form of relative measurements. Despite this constraint, our model
simulations were only capable of reproducing up to 30% of the substantial 70% decrease observed
in the initial steady-state concentration. This discrepancy raises significant questions, the answers
to which could provide deeper insights into our parameterization strategy. While one contributing
factor might indeed be inaccuracies in parameter values, it’s important to acknowledge that other
complexities could also contribute. AcCoA is not merely an average metabolite; rather, it occupies
a central regulatory role and participates in various metabolic pathways, much like other cofactors.
Unaccounted interactions and regulatory dynamics involving AcCoA could further contribute to
the observed inconsistency between the data and the model simulations.

Our modeling results highlight the necessity of regulatory mechanisms to explain the metabolic
response dynamics observed in the initial segment of the TCA cycle, specifically from oxaloac-
etate (OAA), the entry point of acetyl-CoA, to the bifurcation between isocitrate dehydrogenase
(ICDHr) and isocitrate lyase (ICL). Among the candidate enzymes, our analysis singles out isoci-
trate dehydrogenase (ICDHr), phosphoenolpyruvate carboxylase (PPC), and phosphoenolpyruvate
carboxykinase (PPCK) as the most likely targets of regulation.

Of particular note are the dynamics associated with the predicted allosteric interactions involv-
ing ICDHr. The predicted allosteric activators, sedoheptulose 7-phosphate (s7p), and 6-phospho-
D-gluconate (6pg), exhibit rapid increases in cellular concentration upon the switch to glucose.
Conversely, predicted allosteric inhibitors such as citrate, aconitase, and isocitrate display swift
declines in intracellular levels following the perturbation. These findings align logically, suggesting
that an augmented flux through ICDHr, as indicated by both activation and inhibition scenarios,
could account for the observed dynamics.

It’s worth noting that our modeling efforts revealed that the observed dynamics of isocitrate
cannot be adequately described by Michaelis-Menten kinetics alone. Although substrate inhibition
was considered, the established knowledge about ICDHr and the lack of previous observations of
substrate inhibition in this context [83} 21} |22, [99] render it unlikely as the primary cause.

Another explanation for the inability to capture these dynamics is phosphoregulation of ICDHr.
This enzyme was among the first bacterial enzymes shown to be regulated by phosphorylation
[117) |52], and this phosphoregulation has been implicated in regulating the glyoxylate shunt |52}
51, /18]. However, our method does not account for phosphoregulation, and distinguishing between
allosteric and post-translational mechanisms remains a challenge, as both processes operate on
similar timescales [110]. Moreover, detecting changes in the phophorylation state of the enzyme
requires additional techniques, such as phosphoproteomics, and is further complicated by the short
sampling time interval required. Future research employing phosphomutants could offer insights,
provided they are carefully designed to mitigate potential confounding factors. Such confounding
factors do not only pertain to the possibility of affected enzyme kinetics, as the cells may also
attain a different steady-state than the wild type. If such a mutation in central metabolism alters
cellular physiology severely, the comparison of mutant and wildtype becomes impossible.

Among the top-ranking predictions, PPC and PPCK also emerge as key enzymes deserving
attention. These enzymes govern the flux from phosphoenolpyruvate to oxaloacetate, with opposite
catalytic directions. Allosteric activation of PPC by isocitrate could lead to decreased flux through
PPC due to the perturbation-induced drop in isocitrate concentration. Similarly, the dynamics
of predicted allosteric activators of PPCK, tyrosine, and phenylalanine, exhibit comparable spikes
followed by rapid recovery. Their dynamics coincide with those of xubp and s7p, which also
show a prompt concentration increase and sustained levels. This concordance suggests a potential
requirement for increased flux through PPCK, a conclusion that aligns logically with the findings
for PPC.

It also may be noted that neither of these mechanisms by itself is sufficient to explain the

126



observed dynamics. It is therefore well possible that more complex regulation is needed, or that a
flux-carrying reaction is missing. For example, secretion of malate could help explain our observa-
tions, however, F. coli BW25113 is not known to naturally secrete this, nor is it observed during
steady-state growth on medium containing pyruvate or glucose.

Notably, none of the top-ranking interactions we identified have been previously reported in
literature. To substantiate these predictions, further experimental assays are essential. Enzyme
assays examining the effects of the predicted allosteric regulators in vitro could provide supportive
evidence. However, given the complex cellular context, and the possibility to obtain false positives
by using non-physiological test conditions in wvitro, such a result cannot be considered definitive
by itself for the existince of the allosteric interaction, let alone its relevance in a given condition.
Using allosteric mutants as an avenue for potential validation of functional relevance may offer a
way forward. However, it’s important to acknowledge that this approach is susceptible to similar
challenges as those encountered in phosphomutant experiments. The potential confounding effects
of allosteric- and phosphomutants underscore the need for careful experimental design to mitigate
unintended physiological alterations. The limitations of any single approach, including computa-
tional modeling and in vitro assays, suggest that a multifaceted approach involving orthogonal
methods is necessary for a comprehensive understanding of regulatory interactions in the intricate
milieu of E. coli.

3.4.1 Differences in methodological approaches

In this section, we delve into the discrepancies between our current methodological approach and
those employed in previous studies. We discuss the implications of these differences on our predic-
tions and propose suggestions for future research.

3.4.1.1 Experimental procedure

In previously work by Link et al. (2013) a perturbation starting from growth on pyruvate, and
another from growth on fructose, to glucose, was performed [75]. In Christodoulou et al. (2018)
a perturbation with hydrogen peroxide was performed [17]. In this work we focus on carbon
source perturbations, starting from growth on pyruvate, succinate or acetate, and then switching
to glucose.

Although carbon source switches may be considered less disruptive than exposure to hydrogen
peroxide, the perturbation procedure itself introduces an intrinsic effect. During the experiments
conducted in each of these studies, cells were placed on a filter in order to perfuse them with a
secondary medium in order to perturb them. This filter is placed on top of a Buchner funnel that
is connected to a vacuum pump to help facilitate the exchange of medium, which is necessary
to prevent the cells from washing off. This approach, however, has several several downsides
associated, pertaining to the perturbation event and manual operating procedure.

Perturbation event: With respect to the perturbation media, the first thing to note is that
this is fresh as opposed to preconditioned. The medium where the cells are sampled from is the
medium these cells have been cultivated in, therefore, outside of a difference in carbon source, any
other changes introduced in its content by the cultivation process constitute perturbation factors.
This encompasses a wide range of factors, such as other nutrients taken up, as well accumulation
of secreted metabolites, which may affect the extracellular pH, as well as signalling molecules. It is
also worth noting that cells are expected to experience increased exposure to air. To mitigate such
confounding effects, cells are perfused with fresh medium containing the original carbon source
the cells were growing on for the first 10 seconds, before switching to medium containing glucose.
However, whether this is sufficient to establish a new pseudo steady-state is unlikely. Experiments
conducted by Ryback et al. with the yeast S. cerevisiae have shown that the filtration procedure
itself has a considerable effect [101], providing credence to this claim.

It’s important to note that even controls taken after perfusion with fresh medium, mimicking
the perturbation conditions without a carbon source switch, exhibited substantial changes, raising
questions about the extent to which the perturbation itself contributes to the observed effects. This
control experiment was also included in the work by Link et al. and Christodoulou et al., however
it is not clear how this data was used, if at all. We note that in the case of several metabolites
the change in the control is as significant or larger than that observed in the samples with the
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perturbation of interest |75, |L7], and we have observed the same in our experiments (see Figures
[A.20, [A.21} |A.22]).

This does not mean that the signal of the effect of the intended perturbation was lost in the
noise introduced by experimental handling. In future work, however, it is advisable to perform the
experiment with and without the perturbation of interest, such that the effect of the experimental
handling can be disentangled from those of the perturbation of interest.

Manual operating procedure: The human element in experimental procedures introduces an
inherent degree of variability and potential error. Manual handling is an integral part of the current
experimental procedure, encompassing the sampling of cells, applying the perturbation once cells
are on the filter, and the transfer of the filter into extraction medium. The experimental design is
further shaped by the necessity to initiate the experiment at an OD of 0.5 to ensure sufficient cell
mass for quantification, while avoiding the onset of an OD of 1.0 to retain cells in mid-exponential
growth. This dual requirement creates a time-sensitive window for conducting the experiment.
The duration of this window varies based on the carbon source and growth rate, necessitating
meticulous timing and execution.

Sampling cells manually poses certain challenges. Throughout the course of the experiment, cell
density undergoes changes. While corrections are applied based on OD measurements taken before
and after the experiment, with interpolation for specific sampling times to account for variations in
cell density, this correction does not address the impact of cell density on the flow rate of perfusion
medium through the filter.

In the context of manual perfusion, we utilized syringes to administer medium to the cells.
Achieving and maintaining a consistent pressure for a uniform flow rate from the syringe is in-
herently challenging. While efforts were made to automate this process using a peristaltic pump,
ensuring a steady flow rate that avoids both cell drying and medium overflow is complex. This
challenge might be attributed to the increasing cell density during the experiment. It’s noteworthy
that employing a larger filter could aid in mitigating overflow concerns, yet it could simultaneously
exacerbate the risk of cell drying, given the larger perfusion area required.

In addition to addressing the intricacies of manual operations, achieving high precision in
both manual perfusion and timing simultaneously presents challenges, particularly considering the
necessity to prevent cell drying and medium overflow during the procedure. This dual requirement
places a significant cognitive burden on the experimentalist, who must not only monitor the cells
undergoing perfusion but also keep track of the precise timing using a stopwatch. This multitasking
endeavor adds another layer of complexity to the experimental process, as the experimentalist must
carefully synchronize these tasks to ensure accurate timing of sampling intervals.

A distinct concern arises at the conclusion of the perturbation procedure. Failure to termi-
nate perfusion at precisely the right moment will result in variable volumes of perfusion medium
remaining with the cells on the filter. Moreover, the presence of excess medium on the filter can
significantly affect downstream mass spectrometry measurements. Any additional time required to
drain excess perfusion medium from the filter will inevitably lead to inaccuracies in the sampling
interval.

However, our experimental setup incorporated a video camera to record the entire procedure,
offering valuable insights and aids in overcoming some of these challenges. The recorded footage
allowed for subsequent analysis, enabling the identification and correction of errors in the timing
of sampling intervals, as well as other potential experimental issues. This approach enhances
the experimental accuracy and reliability, as it offers the opportunity to review the procedure
in detail, ensure proper execution, and identify and address any discrepancies that might have
occurred during the experiment. Furthermore, the use of audio commentary in the video recording
allowed for real-time note-taking, eliminating the need for manual recording and reducing the risk
of errors during the process.

In future experimental designs, meticulous attention to the synchronization of manual pro-
cedures and accurate timing of sampling intervals should be a priority. Innovative methods to
optimize these aspects could include automated perfusion systems and refined filter designs that
minimize medium retention while ensuring consistent cell perfusion rates. By addressing these chal-
lenges, researchers can minimize the confounding effects of imprecise timing and manual handling,
leading to more reliable and reproducible experimental outcomes.
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Data quality and analytical variability: An integral aspect of our investigation pertained
to the quality of the data acquired, and its comparison to previous studies. Strikingly, despite
conducting the experiment with meticulous care and a range of replicates, our data quality fell
notably short of that reported by Link et al. (2013), raising pertinent questions. The signal-to-
noise ratio, a key metric reflecting data robustness, exhibited significant reduction in our results.
Expert support from individuals well-versed in the experimental and analytical techniques did not
amend this outcome.

Our study incorporated technical replicates to discern the extent of variability attributed solely
to experimental procedures. These technical replicates involved secondary sample injections from
the same well on a 96-well plate, with variations introduced only by liquid chromatography, mass
spectrometry, and subsequent analysis. In a analysis of the top 15 metabolites, constituting 25% of
the total dataset, with the highest signal-to-noise ratios, employing '3C normalization only when it
reduced sample variance, yielded an average coefficient of variation (CVs) of 0.15+£0.07 in technical
replicates and 0.39 + 0.28 in biological replicates.

Comparing these metrics with the previous study by Link et al., we find an average CV of
0.12 £ 0.10 across all metabolite time series for biological replicates. The absence of technical
replicates in the previous studies occludes direct comparison of technical variability. However,
it is notable that our technical replicates’ variance exceeded the total variance seen in biological
replicates of Link et al.. We furthermore noticed that the variance in biological replicates in our
study, after subtraction of technical variance, also exceeded that of Link et al. by more than
two-fold. Looking into other previous studies using the experimental procedure by Christodoulou
et al., and Buffing et al., we find average CVs of 0.45 £ 0.35 and 0.38 4= 0.26, respectively [14, [L7].
It is essential to acknowledge that multiple factors, ranging from variations in experimental setups
to differences in analytical techniques, could contribute to such disparities.

We sought insights from experts in the field and carefully compared our results to those pub-
lished by Link et al. While we are cautious in making direct claims about the data generated by
others, the substantial differences observed raise questions about the reproducibility and robust-
ness of the original findings. These observations have significant implications for the feasibility of
model inference and predictions based on the obtained data. The discrepancies in data quality
necessitated a reevaluation of the complexity of the models we could employ, ultimately challeng-
ing our ability to draw meaningful conclusions from the noisy data. In fact, the data quality was
deemed unsuitable for model inference, rendering our original research goals unattainable. This
unexpected outcome compelled us to critically examine and reevaluate the legitimacy of the data
we generated.

In the face of the inherent challenges presented by the inconsistencies in data quality and the
lack of reproducibility, we were compelled to consider alternative approaches. Intriguingly, we
turned to the same dataset published by Link et al., acknowledging the contentious nature of its
validity, in our pursuit to perform model fitting. Our reluctance to rely on such data underscores
our profound concerns regarding the reliability and reproducibility of our experimental procedure.
It is not our intention to cast aspersions on the work of our colleagues; rather, we emphasize the
importance of open and transparent discussions surrounding data quality and research methodology
within the scientific community.

3.4.1.2 Modeling procedure

There are also some notable differences with previous approaches, which will be presented and
discussed to guide future trailblazers. These are the three main issues addressed in this work:

1. reproducibility of models and their predictions
2. reusability of models and pipelines

3. errors in the construction process
Model construction

Model format: In previous work models were manually constructed and hard-coded into
MATLAB. The model in Link et al. (2013) was constructed using Simulink, a MATLAB-based
proprietary graphical programming environment, and does not exist in SBML format [48|. The
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model in Christodoulou et al. (2018) was provided in SBML format. Although it can be simulated,
it fails to pass the SBML validator checks. The SBML validator consists of various tests, and
consists of checks for the following:

e consistency of measurement units associated with quantities

e correctness and consistency of identifiers used for model entities

e syntax of mathematical expressions [53|

e validity of systems biology ontology annotations [55]

e static analysis of whether the model is overdetermined

e various other good modeling practices and general SBML consistency checks

In contrast, models in this work are constructed programmatically with the use of libSBML [11],
adheres to the specifications set out for level 3 version 2 [49, [50] and passes SBML validator tests.

To facilitate this automated model construction process, we have developed a comprehensive
toolkit available in the repository at: https://gitlab.ethz.ch/karrenbelt/sbml_tools. This
toolkit offers a suite of tools designed to work with SBML models and streamline various aspects
of the modeling workflow. Some of the tools included are:

e An annotator for model annotation, ensuring consistent and accurate annotation of model
entities.

e A COBRA wrapper to simplify constraint-based modeling tasks, enhancing the ease of work-
ing with these models.

e A data integrator allowing for various forms of interpolation and assignment of experimental
measurement data to model variables.

e Equilibrator integration for estimating thermodynamic data for the model after annotation.
e A parameter balancer to aid in balancing model parameters.
o A RoadRunner wrapper for fast and efficient model simulations.

e A module for symbolic manipulation of mathematical equations within the model, enabling
advanced mathematical operations.

e A Kinetic rate law factory for automatic generation of kinetic rate equations based on reaction
types.

e A parameter factory for generating model parameters with proper units and annotations.
e A unit and unit definition factory to handle proper unit assignments for model components.

e Automatic data retrieval of BRENDA data based on model annotation, facilitating integra-
tion of experimental enzyme kinetics data.

e And more tools tailored to enhance the modeling process.

We will illustrate the importance hereof more concretely in the following paragraphs.

system demarcation: In previous work, stoichiometric models were constructed in an ad-
hoc manner. Modelers made decisions on lumping reactions and metabolites, often ignoring co-
factors. Consequently, these systems lacked mass or charge balance, which is essential for accurately
representing cellular metabolism and ensuring the model’s physical feasibility. In this work the full
metabolic subsystem as we understand it today was used, ensuring that all reactions in the system
are, and as a consequence the system as a whole is, both mass and charge balanced.
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model annotation: Metabolites and reactions in the previous work were identified with
alphanumeric abbreviations of a non-standardized format. The interpretation of non-standardize
names is ambiguous and can lead to confusion (e.g. fdp and fbp being used by different people
to describe the same metabolite). Moreover, it prevents the automatic retrieval and linking of
information from external databases. In this work we have adopted the well-known identifier
standard of the BiGG database [105], and annotated entities in the model using a multitude of
external well-established database identifiers as well (see section for details). Annotation
of these entities with these identifiers was performed programmatically, validated to be compliant
with the Minimal Information Requested In the Annotation of biochemical Models (MIRIAM)
standard [68], and used for automated data retrieval from databases. Furthermore, elements of the
model have also been annotated using the Systems Biology Ontology [55]. This further clarifies
the nature of elements in the model and the intention of the modeler when it comes to entities
such as species, parameters, reactions and rate laws, which in turn facilitates the interpretation
and reusability.

metabolic rate laws: In previous work reactions were assumed to be either reversible or
irreversible, and rate laws were chosen in accordance to obtain a kinetic model. In the case
of thermodynamically unfavorable reactions irreversible Michaelis-Menten kinetics were chosen.
For reactions deemed reversible, enzyme kinetics were assumed to be irrelevant and a simplified
mass-action kinetics rate law was chosen. Whereas irreversible Michaelis-Menten kinetics may
be considered suitable to describe the initial enzyme kinetics in an in silico setting where there
initially is no product, it is not a realistic equation for the describing in vivo kinetics of a biochemical
system. That is because in a metabolic pathway there must always be product available for the
next enzymatic step, thus in order to model a pathway some degree of product inhibition or
reversibility must be explicitly included |104]. In contract, this work assumes that enzyme kinetics
can be described by convenience kinetics, a generalized enzymatic rate law that is fully reversible.

In earlier work, rate laws were manually crafted and hardcoded into MATLAB scripts. This
manual process could be error-prone. Moreover, in both Link et al. (2013) and Christodoulou
et al. (2018) the apparent assumption is made that co-factors are irrelevant to describe reaction
kinetics. Interestingly, when a reaction model is used to accommodate the use of an in wvitro
enzyme essay a far more elaborate rate law is used, which includes a co-factor and its associated
dissociation constant (see supplementary material on method details [17]). In this work rate
laws are constructed using a programmatic framework, which, among others, checks certain basic
assumptions (e.g. that the stoichiometry of the reaction matches the assumptions of the selected
rate law), and ensures that there are no errors in the rate laws.

Model initialization

steady-state flux analysis: In all three approaches steady-state fluxes were used to initialize
the model around a steady-state. In previous work these steady-state fluxes were derived through
flux balance analysis (FBA) [88], using the maximum uptake rate of the carbon source and sampling
flux ratios for pathway branches and futile cycles. In this work the available data from 2C
metabolic flux analysis (MFA) by Gerosa et al. (2015) was used and a minimization problem was
formulated to find a flux solution as close as possible to the reported steady-state flux |37} [109].
Using flux estimates from MFA offers a key advantage: flux ratios no longer require sampling, as
labeling data is utilized for their estimation.

thermodynamics: Equilibrium constants were not used in previous work; reactions were
either deemed irreversible or otherwise assumed to be in equilibrium. In this work we used Equili-
brator [34] to obtain estimates for the Gibbs free energy of the metabolic reactions of our systems.
In order to obtain proper estimates for these Gibbs free energies of reactions, it is important that
reactions are mass and charge balanced, which is something we ensured when we demarcated our
subsystem of interest. Since Gibbs free energies are estimated for the entire network, the resulting
covariance matrix becomes available. Multivariate sampling of this matrix allows us to account
for dependencies between the equilibrium constants, allowing us to obtain a thermodynamically
consistent set of parameters.
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metabolite concentrations: The metabolite concentrations of the first time point of the
times series are used to initialize initial the model. In previous work metabolites for which no data
was available were either lumped or sampled independently from a uniform distribution between
0 and 2 mM 75| |17]. We utilize the estimated equilibrium constants to define the sampling space
of the metabolome more precisely, allowing us to constrain it to a smaller, thermodynamically
feasible domain. In other words, the initial metabolite concentrations sampled from this space
yield a thermodynamically consistent set of initial conditions.

enzyme concentrations: Enzyme concentrations were estimated from absolute protein quan-
tification data [106] and cellular volume data [121]. Protein data was mapped to the model using
gene identifiers (Supplementary Table, and the gene-reaction-rules (Supplementary Table
present in the genome-scale metabolic model of E. coli [88] to estimate steady-state enzyme con-
centrations for 22 out of the 23 reactions. An uninformative prior is constructed using all available
data from the observed population of enzymes, which is then used to establish a comprehensive
prior distribution over the enzymes.

kinetic parameters: In previous work, parameter data from BRENDA [107] was used to
compute the mean value of Michaelis-Menten constants (K,,,) for irreversible reactions. To account
for uncertainty, K, values were randomly sampled from an interval of 0.1 to 10 times the reported
literature value. This range is arbitrarily chosen and samples are drawn from a uniform linear
distribution. However, kinetic parameters are log-normally distributed [107] |76], hence the sam-
pling was heavily biased towards smaller values. In this work the BRENDA database on enzyme
kinetic parameters was parsed. This parser allows to customize building of the kinetic parameter
prior by including data from species at different taxonomy levels by specifying a weighting factor
that weighs data from more distantly related species less, allowing this information to be used in
case no information at the species level is available. The same holds for mutant data. With the
current, pipeline settings only E. coli-specific non-mutant data are used, however, an uninforma-
tive prior over all available data for a particular type of parameter was also constructed and used
as an uninformative prior in case no data is available for a specific parameter in the model. In
previous work, only a single substrate was assumed to be relevant to describe irreversible reaction
kinetics, and hence these equations involve a single Michaelis-Menten constant. In this work, we
consider all substrates and products as relevant players. The former strategy yields a model with
8 Michaelis-Menten constants, for each of which a single literature reference was found. In this
work, our model encompasses 92 Michaelis-Menten constants, with species-specific data available
for 50 of them.

In previous work, irreversible kinetics were described using Michaelis-Menten kinetics with
a Vinae term, while reversible reaction kinetics were represented by a kT and k~ mass-action
constant. The equation was solved for V., given the previously determined steady-state flux for
irreversible reactions. In Link et al., (2013) the k™ and k= were fixed at an arbitrary 100 s~*
and 100 s~ mol ™!, consequently leading to a new steady-state. In Christodoulou et al. (2018) a
back flux ratio between 0 and 1 was sampled, then forward and backward flux were balanced to
maintain a consistent net flux, from which subsequently the £ and ¥~ were determined, preserving
the original steady-state. In this work, we decompose V4, into a catalytic constant term and an
enzyme term. Catalytic forward rate constants were obtained for 8 out of 23 reactions. Data
were available for 2 out of the 23 backward catalytic rate constants. The data on backward
catalytic rate constants is currently not used; instead we opted to rewrite the kinetic rate laws
in their thermodynamic form, effectively replacing the need for backward catalytic rate constants
with equilibrium constants (see section . Since enzyme concentration as assumed constant
through the duration of the experiment, these act merely as a scaling factor. Together with the
previously determined steady-state flux solution, we solve the systems for each reaction by drawing
a sample of the enzyme and forward catalytic rate constant that matches this steady-state flux.

Ensemble modeling

Simulation throughput: Previous approaches employed MATLAB’s built-in solvers for
model simulations. Christodoulou et al. (2018) recognized the potential of parallelization, which
spread the computational workload across multiple workers, thus reducing the overall runtime. In
our work, we further optimized individual simulations by leveraging a just-in-time (JIT) compiler

132



[8L [70L [112]. This compilation strategy significantly improved simulation speeds. The average
simulation time of the base model: 7.0 s, 2.3 s and 0.025 s, in Link et al. (2013), Christodoulou
et al. (2018) and this work, respectively. This substantial increase in simulation throughput was
crucial to enable the numerical optimization of the models, without which the exploration of both
allosteric topologies and their associated parameter space would have been computationally un-
feasible. For instance, in the study by Link et al., simulating the ensemble of models required
approximately three days, while Christodoulou et al. needed around one day. Given that the opti-
mization process requires several hundred times more simulations per parameter set than a single
simulation utilizing randomly sampled initial conditions, undertaking such optimizations without
the acceleration provided by JIT compilation would have been computationally unfeasible.

Optimization strategies: The utility of optimization strategies in scientific modeling has
been extensively validated within the field. A substantial body of research has consistently demon-
strated that the employment of optimization techniques contributes to the identification of lower
minima, resulting in enhanced model performance. This assertion is supported by empirical evi-
dence spanning various domains of science and engineering, where optimization has been instru-
mental in achieving higher accuracy and reliability [113, |42].

One key advantage of optimization is its ability to refine parameter space exploration. Through
iterative refinement, optimization methods systematically guide the search towards regions of pa-
rameter space that yield improved fits to the available data. This iterative nature, often combined
with a multi-start approach, ensures a broader exploration of the solution landscape and reduces
the likelihood of convergence to local minima. Consequently, compared to approaches reliant solely
on randomly sampled initial conditions, optimization-driven methodologies provide heightened ro-
bustness and a more comprehensive assessment of the parameter space. The scientific consensus
established by these studies reinforces the efficacy of optimization as a means to enhance the fidelity
of model predictions and the robustness of outcomes [84}, [98].

In previous studies, a random sampling methodology was employed to identify the optimal
parameter set. In these earlier approaches, the steady-state flux ratios, Michaelis-Menten constants,
and metabolite concentrations without available data were uniformly sampled within a linear space.
Specifically, the Michaelis-Menten constants were sampled over a range spanning 10-fold both
above and below their literature-referenced values, while missing metabolite concentrations were
drawn from a range between 0.1 and 2.0 mM. Notably, the model lacking allosteric regulation was
subjected to a large number of simulations: 10,000 times in Link et al. (2013) and 2,000 times in
Christodoulou et al. (2018), ultimately leading to the selection of the best performing model.

In contrast, our approach takes a different route. Equilibrium constants are sampled from a
multivariate distribution, followed by the application of a thermodynamic sampling approach to
metabolite concentrations, leveraging available data. Fluxes are acquired using the flux projection
procedure [109} 85]. Enzyme and catalytic constant initial values are sampled based on available
data and steady-state flux solutions. To optimize kinetic parameters, we employ an evolutionary
algorithm, setting bounds either according to available data or within the limits defined by the
uninformative prior. The use of a just-in-time (JIT) compiler significantly accelerates this process,
reducing the simulation time by two orders of magnitude. As each iteration of the optimization
requires a simulation run, the JIT compilation’s speed boost becomes indispensable in handling
the several hundred iterations needed for optimization. The procedure is halted once a solution
converges to a (local) minimum. Importantly, this comprehensive procedure is replicated 1,000
times for the base model.

Allosteric search: An exhaustive search was undertaken to evaluate the allosteric interac-
tions that enhance the base model’s capability to depict observed dynamics. This exploration
involved augmenting the models with either single or pairwise allosteric interactions. The in-
troduction of an additional term, encompassing an extra parameter to represent the interaction,
effectively incorporates the supplementary interaction into the model.

Diverging from previous methodologies, where only species included within the model were
considered as potential regulators, our approach directly incorporates measured data as putative
regulatory input signals. This strategy involves interpolating experimentally determined metabo-
lite values and integrating them into the model. This extension enables the assessment of regulators
not explicitly represented in the system of differential equations. Additionally, unlike prior investi-
gations that confined candidate allosteric regulation to irreversible reactions, our study embraces all
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reactions as prospective targets. Previously the assumption was made that reversible reactions are
less likely to be regulated, however, no discernible correlation exists between the thermodynamic
driving force of a reaction and the number of reported allosteric regulators influencing enzymes
governing such reactions [100].

In the study by Link et al. (2013), 1,000 samples were drawn for the single interaction model,
while 500 were drawn for pairwise interaction models. In contrast, Christodoulou et al. (2018)
drew 2,000 parameters for all model topologies. Our simulations encompassed 1,000 iterations for
models with a single interaction, and once for pairwise interaction models (as detailed in Table

53).

Table 3.3: Overview of numbers relating to the models and allosteric search space of previous and current
studies. The glycolytic gluconeogenic switch in glycolysis was studied in Link et al. (2013), the effect of
reactive oxygen species on the penthose phosphate pathway (PPP) in Christodoulou et al. (2018), and the
dynamics resulting from a pyruvate to glucose switch on tricarboxilic acid (TCA) cycle metabolism in this
study.

Link et al. (2013) Christodoulou et al. (2018) this work

Base Model

metabolites 7 12 30
reactions 14 16 23
Allosteric interactions

single interaction 126 162 2,850
pairwise interaction 3,600 12,000 3,898,800
Simulations

single interaction 126,000 324,000 2,850,000
pairwise interaction 6,200,000 24,000,000 3,898,800

time series analysis: In prior studies, metabolite data and simulations underwent normal-
ization to their initial steady-state value, leading to relative error calculations using the residual
sum of squares. In this work we deviated from this normalization approach for two key reasons.
Firstly, normalization to the initial steady-state concentration of metabolites results in the loss
of information, as it no longer penalizes absolute differences. Secondly, such normalization overly
sensitizes the scoring to the initial observation. To mitigate these issues, we opted to calculate
the residual sum of squares of the log residuals. Similar to previous methodologies, our model
comparisons rely on two main metrics:

1. The Akaike information criterion (AIC) [2], which introduces penalties for models with ad-
ditional parameters, and

2. The frequency with which specific allosteric interactions contribute to enhancing the models’
explanatory power over the observed data.

When it comes to deriving a final ranking, our approach remains largely similar, with one minor
distinction: we employ an extended version of the AIC that corrects for finite sample sizes, ensuring
more robust model comparison outcomes. It is essential to note that the utilization of the AIC
rests upon the assumption that the provided score constitutes a maximum likelihood estimate. This
assumption, however, is violated in previous approaches where models are simulated via random
initialization rather than optimization procedures. Drawing a conclusion from this, it becomes
evident that employing optimization procedures rather than random initialization is essential not
only for improving model fits but also for ensuring the validity of the AIC-based comparisons.

3.4.2 Suggestions for future work

With regard to the experimental work, we operated under the assumption that we would be able to
obtain data of a similar quality as had been reported by Link et al. (2013). We suggest that a future
experimentalist ensures that they can measure intracellular metabolite concentration reliably and
consistently, such that they establish such expectation based on their own work, and not the work
of others.
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3.4.2.1 Automation

The current fast filtration experiment in which the perturbation is performed requires a lot of
manual handling. As such, it is highly involved and challenging to perform as it requires pre-
cise coordination of cell dispensation, alternation between perfusion media while ensuring cells do
not dry out or wash off the filter, all the while measuring time intervals of 5 seconds precisely.
This error on the time-axis has thus far been ignored. To mitigate these challenges and enhance
experimental accuracy, we suggest exploring the implementation of advanced automation technolo-
gies. The adoption of automated cell dispensation systems, coupled with robotic media switching
mechanisms, can minimize human-related inconsistencies and errors. Furthermore, integrating
high-speed imaging systems can provide real-time monitoring and data acquisition, alleviating the
need for manual sampling. This integration of technology has the potential to significantly enhance
experimental precision and data quality, ultimately leading to more reliable insights into cellular
dynamics.

Automation of the experiment, particularly the automation of cell sampling and perfusion
for perturbation, holds the potential to significantly minimize technical variability introduced by
human involvement. Beyond enhancing data consistency, automation also paves the way for scala-
bility in experimental design. An intriguing prospect is the application of a continuous cultivation
setup, such as a chemostat, where the culture undergoes constant monitoring. Continuous me-
dia outflow from the culture provides a reservoir of cells that can be subjected to perturbations
and subsequent measurement. By maintaining the culture at mid-exponential growth, the pseudo
steady-state assumption can be upheld, offering advantageous conditions for model initialization.

The utility of a chemostat setup extends further due to its inherent capacity to finely control
growth rates through dilution rate modulation. This precise growth control adds an extra layer of
advantage, enabling the initiation of experiments from diverse steady-state conditions. The wealth
of information garnered from distinct steady-states can prove invaluable for systems identification.
We have partially explored the potential of such steady-states in the second chapter of this the-
sis and delved into dynamic response post-perturbation in the third chapter. Intertwining these
approaches emerges as a logical progression for subsequent experimental work, promising an even
deeper understanding of metabolic dynamics.

3.4.2.2 Observable states

With respect to metabolite quantification, it is important to carefully consider the states of inter-
est that require observation. While our mass spectrometry method comprehensively covers most
metabolites within central carbon metabolism, specific compounds like co-factors and glyoxylate
present challenges in quantification, demanding additional efforts for accurate measurement. Given
that central carbon metabolism plays a crucial role in energy generation and cofactor regenera-
tion, it is reasonable to expect that their dynamics are of significant interest to those that wish to
understand behavior of this system.

The work by Link et al. underscores substantial changes in the relative abundance of co-factors
triggered by carbon source shifts. However, the quantification of co-factors presents difficulties
due to their instability and propensity to react with other molecules, leading to degradation. To
accurately measure these species, fresh standards must be prepared on the day of the experiment.

From the perspective of metabolic modeling, cofactors pose an equally formidable challenge.
They are involved in so many reactions that it is either practically impossible or becomes trivially
easy to model, depending on the amount of free parameters one is willing to introduce. In this study,
we therefore chose to assign the dynamics of these species instead using the collected observational
times series data. This highlights an interesting consideration in the design of our approach: we
decide which dynamics we hold to be true, and what others we wish to estimate based on the data
of the former. However, it’s essential to acknowledge that we haven’t yet quantified the extent of
the impact of this choice on our model predictions, which stands as an important avenue for future
investigation.

Moreover, the selection of relevant states to observe hinges on the specific behavior under study,
the initial conditions, and the chosen perturbation. Although selecting an appropriate method for
metabolite quantification necessitates informed judgment, identifying the states that carry the most
informative content is inherently uncertain. For instance, during steady-state growth on pyruvate
or glucose, the glyoxylate shunt does not exhibit significant flux. However, this absence of flux does
not eliminate the potential for the pathway to play a role during flux adaptation. Notably, the
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dataset from Link et al. that we utilized lacks glyoxylate measurements. A subsequent study could
include glyoxylate quantification to assess the utilization of the glyoxylate shunt. Investigating
glyoxylate’s dynamics would be particularly relevant in scenarios involving carbon sources known
to activate the glyoxylate shunt, such as during growth on acetate or galactose. Moreover, a
specialized method tailored for quantifying a-keto acids, such as glyoxylate, in central carbon
metabolism, has been developed |132], further supporting its investigation.

3.4.2.3 Long-term adaptation

When contemplating long-term adaptation, such as transitioning between distinct steady-state
growth conditions, a different approach to perturbation can be explored. One strategy involves
perturbing the entire culture by manipulating the dilution rate of the chemostat, and subsequently
monitoring the culture throughout the transition until a new steady-state is reached. This approach
offers a straightforward means to study adaptations over an extended timescale.

This type of perturbation may be considered gentler than others, potentially not revealing all
the attainable states of the system. Nevertheless, it provides a more detailed understanding of the
underlying regulation during growth on a specific carbon source. Importantly, this perturbation
impacts only a single exogenous variable, in contrast to the carbon source switch in our fast
filtration experiment that affects at least two exogenous variables due to changes in both the
original carbon source and the perfusion media composition.

A noteworthy aspect pertains to the media composition during cultivation. In our experi-
ments, media preconditioning was not applied, leading to variations in the media composition.
Consequently, transitioning to a different carbon source brought about alterations in metabolic
by-products, proteins, and signaling molecules. To mitigate this effect, an alternative approach
could be considered—modifying the inflow into the chemostat with an additional nutrient, for in-
stance. However, this alteration would affect only a solitary exogenous variable within the system.

Incorporating enzyme levels as additional states in the model would escalate its complexity,
particularly when considering dynamic changes beyond the initial minute. Nonetheless, continuous
measurement alongside supplementary techniques like transcriptomics and proteomics could offset
this complexity to some extent. Embracing increased complexity becomes paramount when aiming
to delve into the intricacies of long-term adaptation.

Ultimately, delving into long-term adaptation necessitates navigating a balance between sys-
tem complexity and the depth of insight gained, while simultaneously leveraging advancements in
measurement techniques to enhance the accuracy and fidelity of experimental observations.

3.4.2.4 Input signals

In the context of system identification, it’s noteworthy that a precise knowledge of the perturbation
mechanism isn’t an absolute requirement for comprehending resultant dynamics. What holds
greater significance is the capacity to observe key states and the ability to perturb them, either
directly or indirectly. This approach can yield the essential information necessary for understanding
complex systems.

While the inherent nature of an input signal is crucial, it’s equally vital to take into account the
frequency and amplitude of the signal. For instance, employing a single step- or pulse-like input,
such as the glucose administration in our experiment, might not be exhaustive enough to unveil
the complete spectrum of attainable system states and dynamic behaviors.

A compelling alternative is the use of a random binary input signal, a technique commonly
embraced in systems identification methodologies [58|. This input signal possesses a unique at-
tribute: it encompasses all the frequencies constituting the Bode plot at uniform amplitude levels,
rendering it ideal for estimating frequency responses. Consequently, tracking cellular responses
when subjected to diverse input signals—such as randomized doses of carbon sources administered
at irregular intervals—can yield a wealth of valuable information.

Besides covering a large spectrum of frequencies, such observations may be considered more
interesting from a biological perspective. This is because experimental conditions can be simulated
that more closely resemble those E. coli may face in the wild, where cells are exposed to both
gradual and sudden changes in their environment.

Within the realm of modeling procedures, the direct integration of measurement data as input
holds notable advantages. As evident in our work, this approach facilitates the exploration of

136



extracellular perturbations on a metabolic subsystem without necessitating the inclusion of intri-
cate descriptions linking the perturbing agent to the subsystem. The challenges associated with
describing such connections can often be cumbersome and occasionally fraught with difficulties.

A pertinent illustration arises from the study by Christodoulou et al. (2018), which investigated
the dynamics of the pentose phosphate pathway in response to reactive oxygen species (ROS). In
this model, NADPH is produced by two reactions that are described by irreversible Michaelis-
Menten kinetics, and scavenged by ROS. ROS is also present in the lumped reactions describing
lower glycolysis, indirectly describing scavenging of NADH. Since NADPH is not part of any kinetic
rate law description, the response of a model without regulation is characterized by a steep drop in
NADPH, an almost insignificant effect on PEP, while the other metabolite levels remain constant
(see Supplementary Figure S1 |17]). Only once a regulatory interaction is added to the model that
links NADPH to the kinetics of other enzymes is the model capable of simulating dynamics in the
rest of the network. Given that the model without regulation is treated as a null hypothesis to
address the question of whether a model without regulation can sufficiently describe the observed
dynamics, the answer was trivial.

This raises the question if the model without regulation is a proper null hypothesis to as-
sess whether additional regulation is required. While there is no definitive way to answer what
constitutes a better null hypothesis, it would have been interesting to assess to what extend the
remaining states could be predicted using different combinations of metabolites as input signals.
More specifically, different non-empty subsets of the species could have been assigned to follow the
trajectory of its observed dynamics, and the question of whether the remaining dynamics can be
sufficiently recapitulated could have been assessed in this context. This couples back to our earlier
point of being able to decide what constitutes an input to the model, and which remaining states
need to be estimated. Furthermore, the ability to assess the regulatory potential of metabolites
outside of those described in the kinetic equations extends the range of putative regulators that
can be assessed.

3.4.2.5 FEvaluation metrics

The prediction of potential activators or inhibitors can be considered as a classification approach.
This raises the question in what way we may best assess the quality of the predictions derived
from our modeling approach. In statistical classification an error matrix is often used. True
positives, in this regard, are the interactions that were predicted and either previously reported
or validated in follow-up in vitro experiments, such as enzyme essays. Oppositely, false positives
would be predicted allosteric interactions where an effect on enzyme kinetics cannot be observed
experimentally. False positives can, among others, result from the correlation between metabolites,
missing post-translation regulation, or the absence of an unknown but necessary cofactor in an
enzyme essay. True negatives are interesting to consider, however, negatives are commonly not
reported - even when reported they do not end up in the BRENDA enzyme database - and newly
predicted negatives are generally not followed up on. Lastly there are false negatives, which would
be interactions predicted not to be relevant in the model, but for which evidence in the literature
exists.

There is an important distinction to be made here between interactions that exist and those
that are relevant in a given condition. An allosteric interaction may simply not play an important
regulatory role in one condition, yet be of regulatory importance in another. A reported interaction
may also have resulted from the use of test tube conditions that do not resemble the physiological
conditions, such as the use of concentrations that exceed those in the cell. A bias towards publish-
ing positive results further complicates the situation by increasing the number of false positives
and decreasing the number of negatives reported in studies. Ultimately, deciding what metric is
meaningful depends on the specific use case and goals of the model.

Molecules in a cellular environment are in constant motion and their collision frequency is
high since the intracellular environment is crowded. Yet, most of these physical interactions are
(in)elastic collisions that do not lead to a chemical reaction or regulatory binding event. If we
want to understand the behavior of central carbon metabolism, we want to find models containing
the minimal complexity required not only to explain observations, but also to provide us with
falsifiable predictions. In light of these considerations, true positives are likely the most relevant
to consider as a metric to assess the quality or usefulness of our ensemble modeling approach. For
example, the ratio of positive results among the top ranking predictions can be compared to the
number of positives one would expect to find in a random selection of enzyme-metabolite pairs.
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The best approximation of a random selection that is currently available are large-scale physical
interaction studies [96| 25]. Using the overlap in the detected physical interactions as the ground
truth, a sample size calculation can be performed to determine how many predictions need to be
experimentally tested in order to address this question at a desired confidence level |28].
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4.1 Conclusions

In this thesis, we embarked on a journey to unravel the intricate regulatory mechanisms govern-
ing central carbon metabolism in Escherichia coli. Guided by a systems biology perspective, we
addressed key challenges in understanding the dynamic behavior of this essential cellular process.
Our contributions can be summarized as follows:

e We began by revisiting the foundations of systems biology and critically analyzing the prevail-
ing definitions in the field. Through a meticulous exploration of its history and philosophy,
we attempt to establish an operational framework that provides a clear and coherent con-
ceptualization of systems biology. This foundational step allowed us to navigate subsequent
investigations within a well-defined systems biology perspective.

e In our first study we used a single-reaction modeling approach, which we used to predict
metabolite-protein interactions from steady-state data. Analogous to the way in which ex-
perimental measurement of metabolite variation in wvitro is used for the inference of regu-
lators and enzyme kinetic parameters, physiological changes in fluxes bring about a change
in metabolite concentrations that can be used to infer reaction kinetics from cellular data.
Using measurement data on metabolic fluxes, enzyme and metabolite concentrations across
multiple series of steady-state growth conditions, we determined how well a Michaelis-Menten
equation was able to capture these observations, and to what extend the inclusion of allosteric
regulatory interactions increases this ability. A significant benefit is that the physiological
importance of an allosteric regulator is implicit from its role in determining metabolic flux.
Following up on the top ranking allosteric interactions predicted, we found experimental
evidence for the existence of 11 new interactions.

Contextualizing these findings involves considering the broader landscape of knowledge.
Comparing the 11 new interactions to previous research, where Reznik et al. extracted
1699 metabolite-enzyme interactions involving 321 metabolites and 364 enzymes for E. coli
from databases, the addition of 11 interactions might appear initially modest in scale [4].
The EcoCyc database, as it stands, documents around 100 regulatory interactions related to
the 35 major isoenzymes of central metabolism [2].

However, the significance of these 11 new interactions becomes more apparent when consid-
ered in light of Diether et al.’s NMR-based physical interaction study [1]. This study aimed
to enhance our understanding of complex protein-metabolite interactions within central car-
bon metabolism. By systematically analyzing ligand-detected NMR profiles of 29 purified
enzymes from E. coli central metabolism and 55 selected metabolites, they explored a total of
1595 potential interactions. Notably, their investigation uncovered a total of 98 interactions,
with 76 of them being newly predicted. The identification of a physical interaction is a sine
qua non for recognizing an allosteric regulator of an enzyme. Consequently, it is only logical
to anticipate a higher count of physical interactions compared to allosteric regulators. In this
light, the hit rate of 11 out of 22 stands as remarkably elevated when contrasted with the 92
out of 1595 interactions unveiled by Diether et al. [1].

In the exploration of more distantly related pairs, it’s noteworthy to consider the work by
Piazza et. al., which employs limited proteolysis-coupled mass spectrometry (LiP-MS) to
examine protein structural changes and perturbations in a whole proteome [3|. It provides a
comprehensive view of the bacterial metabolite-protein interactome, shedding light on both
known and novel binding events that may govern various cellular processes. The work’s
peptide-level resolution approach also offers valuable insights into the promiscuity of enzyme
active sites and the potential functional relevance of binding sites beyond active sites. In
our work we also find more distally related pairs, such as the inhibition of AroG and PfkA
by indolepyruvate, inhibition of serB by hypoxantine, and the inhibition of purA by D-
pantothenate and N-Acetyl-L-glutamate.

In evaluating why 11 new interactions are noteworthy despite their seemingly limited number,
it’s important to recognize that they represent an incremental expansion of our knowledge
within a well-studied domain. The fact that these interactions were successfully predicted and
subsequently supported by experimental evidence highlights the precision and relevance of
the modeling approach. Moreover, given that the interactions were discovered within central
carbon metabolism, a core aspect of cellular function, their impact on cellular processes could
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be substantial. By integrating these data-driven predictions into a comprehensive framework,
we bridge the gap between physical interactions and their potential functional roles. This
approach places these findings in a different category as those of functional studies that rely
solely on in wvitro validation, as it offers both experimental evidence and the foundation for
plausible in vivo functional impact.

It’s noteworthy that among these 11 interactions, alignment in terms of their modus operandi
(i.e., inhibition or activation) was observed in only 9 instances. To bolster the robustness
of these findings, additional replication or, ideally, orthogonal evidence is imperative. At
the forefront, the existence of these interactions propels the notion that allosteric regulation
may wield a more extensive influence on CCM than previously envisioned. The potential
contribution of distantly connected enzyme-metabolite pairs, as yet largely unexplored, holds
promise for further research, unveiling uncharted territories within this regulatory network.

Nonetheless, we acknowledge that while these interactions are compelling, their physiolog-
ical relevance remains speculative when considered in isolation. The exclusive reliance on
single-reaction models and static network analyses risks presenting an incomplete perspec-
tive. Importantly, the predictions stemming from these newly found interactions can serve
as valuable guiding principles for constructing and refining these larger, more comprehensive
dynamic models. By integrating these predictions into the models, we can strategically focus
our explorations, enabling simulations that illuminate how these interactions influence the
behavior of the entire system over time.

In the second phase of our study, we focused on constructing a comprehensive model of the
TCA cycle using coupled differential equations. Our approach aimed to ensure reliability,
reusability, and reproducibility in model generation through a systematic pipeline. By simu-
lating metabolic dynamics in response to a carbon source switch, we investigated the role of
allosteric interactions in shaping these responses. However, while our effort in establishing a
standardized model construction process is commendable, we fell short of reaching substantial
biological insights within the given timeframe.

Navigating the intricate landscape of model construction prompts a pivotal question: how
do we harmonize models that yield insights, albeit challenging to reproduce, with meticu-
lously structured models that fall short in delivering substantial biological insights? From
my standpoint, the essence of science inherently resides in reproducibility. A model’s va-
lidity hinges on its ability to be independently verified, which is a fundamental element of
the scientific method. Complexity in models is indeed a double-edged sword — while it can
enhance fidelity, it can also hinder applicability. This underlines the true challenge: finding
the equilibrium between complexity and functionality. Yet, the pursuit of this balance isn’t a
binary choice; it’s a dynamic process. It involves optimizing the trade-off between complexity
and functionality at different research stages. During the initial phases, emphasizing func-
tionality and feasibility is paramount. Simplified models, while grounded in a larger number
of assumptions and less extensive data reliance, can pave the way for the development of
a more comprehensive functional system. This approach facilitates the rapid creation of a
starting point, which can then be systematically and iteratively enhanced over time. A sim-
pler model, albeit heavily relying on assumptions, remains valuable as long as it’s grounded
in rigorous reproducibility. This approach enables us to progressively delve into the intricate
details, scrutinize assumptions, and dissect the impact of various factors. By embracing a
dynamic and iterative approach, we can navigate the complexities of scientific inquiry while
nurturing a foundation rooted in rigorous reproducibility.

This leads us to a fundamental question: even in a scenario where our data were ideal, would
the standardized model construction be the sole determinant of success? The reality is more
nuanced. The journey of scientific discovery is riddled with complexities that extend beyond
model construction. The impeccable quality of data, while important, is not the sole factor
determining success. Next hurdles emerge, including the incorporation of biological context
and validation against a wider array of experimental observations. This brings to light the
necessity of a broader perspective and engagement with ongoing research, methodologies, and
insights. Our work, which predominantly centered around model construction, is merely the
initial step in a much larger process. Demonstrating the full potential of our standardized
pipeline requires a multifaceted approach. While the pipeline itself streamlines construction,
a true demonstration would involve showcasing how it accelerates the discovery process.
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This entails demonstrating the pipeline’s efficacy in revealing novel biological insights that
can guide experimental studies and facilitate a deeper understanding of complex cellular
systems.

e Contributions to model construction:

— Model construction framework: A significant advancement achieved in this work was the
development of an automated model construction framework. This approach harnessed
the capabilities of various libraries, enabling us to build models with a high degree of re-
liability and consistency. By automating the model construction process, we eliminated
the risk of manual errors and ensured adherence to the SBML specifications, resulting
in standardized models that meet the highest quality standards.

— Model annotation: The adoption of a standardized identifier system, exemplified by the
BiGG database, coupled with the integration of external database identifiers, marked
a pivotal enhancement in model annotation. This approach provides accurate and con-
sistent annotation of model entities, a critical step that streamlined automated data
retrieval, which improves the model’s reusability and interpretation of the model.

— Rate law construction: another improvement of this work was the implementation of a
programmatic framework for constructing rate laws. This approach replaces error-prone
manual procedures with automated processes, ensuring the precision and reliability of
rate law formulation. Although not explored in this work, the framework’s flexibility
allows the exploration of a diverse range of rate laws, extending its utility across various
biochemical systems.

— Initialization strategies: our research redefined model initialization by leveraging avail-
able data on species, kinetic parameters and equilibrium constants. This shift yielded
multiple benefits, including the establishment of thermodynamically consistent initial
conditions and the utilization of more accurate and informed data-driven sampling
strategies.

To conclude, this thesis earnestly explores the intricate regulatory mechanisms governing central
carbon metabolism in E. coli. Guided by a systems biology perspective, we address key challenges
in understanding the dynamic behavior of this essential cellular process. However, it’s important
to note that the vast complexities of biological systems are far from fully understood, and our
work offers a modest contribution to the ongoing discourse. The journey embarked upon in this
thesis is not a final destination but rather a stepping stone in the continuous quest to uncover the
mysteries of life at the molecular level. Recognizing the expansive terrain that lies ahead, we strive
to contribute to a foundational understanding that may inspire future exploration in the realms of
systems biology and metabolic research.

In this context, I wish to extend my heartfelt appreciation to the "Computational Modeling in
Biology" Network (COMBINE, https://co.mbine.org/). Their commendable efforts in coordinating
the development of community standards, formats, and software tools in systems biology and
related fields (http://co.mbine.org/standards) deserve significant credit and recognition. I believe
that their work is instrumental in advancing our collective understanding and capabilities in the
realm of computational biology.

In summary, this thesis reflects our modest attempt to contribute to the ongoing exploration
of central carbon metabolism within the framework of systems biology.
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4.2 Outlook

While our research primarily concentrated on unveiling allosteric interactions within the TCA
cycle, the broader landscape of central carbon metabolism presents numerous opportunities for
further exploration. Future studies could expand upon our findings to investigate the regulatory
intricacies in other metabolic pathways, bridging different regulatory layers and considering longer
time scales. Additionally, incorporating additional experimental data and advanced modeling
techniques could enhance the accuracy of predictive models and provide a more comprehensive
understanding of metabolic responses. Furthermore, as this research sheds light on the intricate
regulatory mechanisms of central carbon metabolism in F. coli, several promising avenues for future
investigations emerge:

e Incorporating post-translational modifications: To enhance our understanding of al-
losteric interactions and their modulation, investigating the impact of post-translational mod-
ifications (PTMs) is an exciting avenue. PTMs; such as phosphorylation and acetylation, play
a crucial role in fine-tuning protein function and interaction dynamics. Incorporating PTMs
into the modeling framework could uncover novel regulatory mechanisms and their influence
on metabolic dynamics.

e Integration of transcriptional regulation: While this study predominantly focuses on
the post-translational regulation of metabolic pathways, the integration of transcriptional
regulation remains a critical aspect. Future research could explore how transcriptional and
post-translational control mechanisms cooperate to orchestrate the metabolic response to en-
vironmental changes and cellular demands. This could involve the development of integrated
models that encompass both layers of regulation, providing a more holistic view of cellular
behavior.

e Dynamic responses to multiple perturbations: The robustness and adaptability of
metabolic networks are evident in their responses to various perturbations. Future studies
could explore how central carbon metabolism dynamically responds to multiple environmen-
tal changes, such as shifts in nutrient availability and temperature variations. Investigating
these scenarios could reveal how the network’s regulatory mechanisms prioritize different
metabolic objectives under diverse conditions, providing insights into cellular versatility.

e Advanced model validation techniques: Develop and employ advanced validation tech-
niques for models, such as uncertainty quantification and sensitivity analysis. These tech-
niques help you identify critical model parameters that should be better characterized ex-
perimentally and provide insights into the variability in model predictions under different
conditions.

e Machine learning approaches: Integrate machine learning approaches to analyze complex
metabolic datasets and identify novel regulatory patterns. Machine learning algorithms can
uncover hidden relationships and assist in predicting allosteric interactions based on large-
scale data analysis. By analyzing complex metabolic datasets using machine learning, one
can generate hypotheses about regulatory patterns, interactions, and dependencies that were
not previously considered. They can guide the formulation of new mechanistic models or
the modification of existing ones, allowing you to test and refine your assumptions based on
data-derived patterns.

e Synthetic biology applications: Design synthetic circuits or genetic modifications that
exploit allosteric interactions to engineer desired metabolic outcomes, such as increased pro-
duction of specific metabolites or improved pathway efficiency. For example, one may design
synthetic genetic circuits that enable the controlled expression of allosteric regulators in
response to specific cues, such as specific external signals.

These directions for future research have the potential to deepen our comprehension of cellular
regulation and contribute to broader advancements in the field of systems biology. In moving
forward, it is essential to build upon the recommendations provided in earlier chapters without
reiterating them, ensuring a seamless integration of ideas as we continue to uncover the complexities
of cellular regulation.
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4.3 Personal reflections

Throughout this research journey, I've embarked on a quest to unravel the intricate mechanisms
of central carbon metabolism in E. coli and navigated the labyrinthine complexities of systems
biology. How much this expedition deepened my understanding of cellular regulation pales in
comparison with the invaluable insights it has provided into the challenges and intricacies that
characterize the landscape of scientific research and academia.

Indeed, my foray into the world of systems biology has been a double-edged sword—while I
haven’t gleaned transcendental knowledge about metabolic regulation, my path has been illumi-
nated by a different facet of discovery. It is the academic system itself, with its aspirations, pitfalls,
and quirks, that I’ve come to understand with an ever-deepening clarity.

In engaging with the academic community, reviewing research proposals, and reflecting upon
the scientific process, I've witnessed both the brilliance of inquiry and the shadows that frequently
accompany it. I've come face-to-face with the underbelly of academia—the tangled webs of in-
centive structures, the reproducibility crisis, and the interplay between genuine discovery and the
strategic pursuit of recognition.

4.3.1 A fractured foundation

Amidst the grandeur of scientific pursuit and the quest for knowledge lies a disquieting truth—an
erosion of trust in the reproducibility of scientific findings. The reproducibility crisis, a widespread
phenomenon plaguing various fields, exposes the vulnerability of the scientific method to biases,
errors, and undue influences.

In the heart of scientific inquiry, the ability to replicate and verify results is a cornerstone of
credibility. Yet, unsettlingly, a growing body of evidence suggests that many research findings are
difficult to reproduce, casting shadows of doubt over the reliability of published studies. Whether
due to undisclosed methodological choices, data manipulation, publication bias, or the failure to
publish raw data and the code used to analyze it altogether, the reproducibility crisis challenges
the very bedrock upon which science is built.

This crisis is not a mere academic abstraction; it resonates deeply with the scientific commu-
nity, stakeholders, and society at large. It prompts introspection about the systemic factors that
contribute to this predicament and compels us to address the root causes. Is it the pressure to
publish prolifically, the allure of striking but unsubstantiated results, or the lack of incentives for
reproducibility that fuels this phenomenon?

The reproducibility crisis underscores the need for transparency, rigor, and humility in scientific
practice. It exhorts us to embrace open science, where data, methodologies, and analyses are
shared openly, fostering a culture of collaboration and accountability. Moreover, it compels us to
reconsider the incentive structures that shape the conduct of research, steering us away from the
perilous path of prioritizing quantity over quality.

4.3.2 A dichotomy of motivations

Within the realm of academia, the pursuit of knowledge and the propagation of truth have stood
as guiding principles. However, the incentive structures that underlie academic research often bear
the weight of a more complex reality. The duality of motivations within these structures can shape
research trajectories, yielding both inspiring advancements and concerning pitfalls.

The pressure to publish prolifically and secure research funding can inadvertently steer re-
searchers towards a precarious path. Quantity can take precedence over quality, fostering a culture
where novelty and attention-grabbing results are prioritized over rigorous investigation. This incli-
nation towards eye-catching findings can lead to a distortion of priorities, encouraging the pursuit
of provocative results.

In this landscape, a potential misalignment arises between the pursuit of truth and the quest
for recognition. The allure of high-impact publications, prestigious awards, and coveted tenure
positions can eclipse the fundamental responsibility to ensure the validity and reproducibility of
research findings and undermine the scientific process itself.

This phenomenon echoes the sentiment of "trust, but Verify”EI, a guiding principle in the sci-
entific world. It highlights the importance of skepticism and the critical examination of findings,

1From the Russian proverb: ITepsoe mpasmo: mosepsii, HO mposepsii, which translates to "Rule number one:
trust but verify", made popular by Ronald Reagan, who adopted it during the Cold War era.
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regardless of the source. However, in the modern research environment, the adage may face chal-
lenges in practice, as the pressures of the academic system can lead to a somewhat paradoxical
situation—where verification is overshadowed by the need to move forward rapidly.

While the incentive structures that govern academia may at times appear flawed, they also hold
the potential for rejuvenation. The recent emergence of the Web3 movement with its maxim of
"don’t trust, verify" offers a glimpse of hope and a potential blueprint for reshaping the incentive
structures of academia. As decentralized network technologies gain prominence, the emphasis on
transparency, decentralization, and collaboration provides a fresh perspective on how systems can
be designed to prioritize truth over expedience.
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Figure A.1: Calibration curves to correct the effect of the regulation presence in the
FIA-TOF. A. Duplicates of calibration curves of the FbaA products glyceraldehyde-3-phosphate and
dihydroxyacetone-phosphate (1:1). B. Duplicates of calibration curves of the PfkA product frustose-

hbiphosphate. C. Duplicates of calibration curves of the SerB product serine. The ratio of the slope
between curves with and without the regulator present is used as the correction factor.

A.1 Supplement Chapter 2
A.2 Supplement Chapter 3
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Table A.1: Reaction data coverage

reaction formula enzymes substrates products
A5PISO rubp__D_c <=>arabp_c kdsD rubSp__D

ACACTIr 2.0 accoa_c <=>aacoa_c + coa_c fadA accoa coa
ACACT2r accoa_c + btcoa_c - -3ohcoa_c + coa_c fadA accoa, btcoa coa

ACGK acglu_c + atp_c —>acgbp_c + adp_c argB acglu, atp adp

ACGS accoa_c + glu__L_c -—>acglu_c + coa_c+h_c argA accoa, glu_ _L acglu, coa
ACONTa  cit_c <=>acon_C_c + h20_c acnA, acnB cit acon_C
ACONTb  acon_C_c + h2o_c <=>icit_c acnA, acnB acon_C

ADSLIr decamp_c < amp_c + fum_c purB dcamp amp, fum
ADSS asp__L_c+ gtp_c + imp_c —>dcamp_c + gdp_c + 2.0h_c + pi_c purA asp_ _L, gtp, imp dcamp, gdp
AGMHE adphep_DD_c —>adphep_LD_c hldD adphep_DD

AIRC3 Saizc_c <=>5caiz_c purE Saizc

AKGDH akg_c + coa_c + nad_c —>co2_c + nadh_c + succoa_c IpdA, sucB, sucA  akg, coa, nad nadh, succoa
ARGSS asp__L_c+atp_c+citr__L_c->amp_c + argsuc_c +h_c + ppi_c argG asp_ L, atp, citr_ _L amp, ppi
ASPIDC  asp__L_c+h_c—>ala_B_c+ co2_c panD asp__L

ASPCT asp__L_c + cbp_c —>cbasp_c + h_c + pi_c pyrB aspi:L, cbp

ASPK asp__L_c+atp_c <=>4pasp_c + adp_c thrA, metL, lysC  asp_ L, atp 4pasp, adp
ASPTA akg_c +asp__L_c<=>glu__L_c + oaa_c aspC akg, asp_ _L glu__L
ATPPRT  atp_c + prpp_c —>ppi_c + prbatp_c hisG atp, prpp ppi

CPMPS gtp_c + h20_c —>cpmp_c + ppi_c moaC gtp ppi

CTPS2 atp_c +gln__L_c+h20_c +utp_c-—>adp_c +ctp_c+glu__L_c+2.0h_c+pi_c pyrG atp, gln__L, utp adp, ctp, glu__L
CYTK1 atp_c + cmp_c <=>adp_c + cdp_c cmk atp, cmp adp, cdp
DDPA edp_c + h2o_c + pep_c —>2dda7p_c + pi_c aroF, aroG, aroH  edp, pep 2dda7p

DHBS 23dhb_c + atp_c + h_c —>23dhba_c + ppi_c entE 23dhb, atp ppi

DHORTS dhor__S_c + h20_c <=>cbhasp_c +h_c pyrC dhor__S

DHQS 2dda7p_c —>3dhq_c + pi_c aroB 2ddaTp 3dhq

DHQTi 3dhq_c ~>3dhsk_c + h20_c aroD 3dhq 3dhsk
DUTPDP  dutp_c + h20_c —>dump_c + h_c + ppi_c dut dutp ppi

E4APD edp_c + h20_c +mnad_c <=>4per_c + 2.0h_c + nadh_c gapA edp, nad nadh

FBA fdp_c <=>dhap_c + g3p_c fbaB, fbaA fdp dhap

FUM fum_c + h20_c <=>mal__L_c fumC, fumA fum mal__L
G3PD2 glye3p_c + nadp_c >dhap_c + h_c + nadph_c gpsA glye3p, nadp dhap, nadph
G6PDH2r  gbp_c + nadp_c 6pgl_c + h_c + nadph_c zwf g6p, nadp 6pgl, nadph
GF6PTA  f6p_c + gln__L_c-—>gambp_c + glu__L_c glm$S f6p, gn__L gam6p, glu__L
GK1 atp_c + gmp_c >adp_c + gdp_c gmk atp, gmp adp, gdp
GLU5K atp_c + glu__L_c-—>adp_c + glusp_c proB atp, glu__L adp

GLUDy glu__L_c+h20_c + nadp_c <=>akg_c + h_c + nadph_c + nh4_c gdhA glu__L, nadp akg, nadph
GLUPRT gln__L_c+h20_c + prpp_c —>glu__L_c + ppi_c + pram_c purF gln__L, prpp glu_ L, ppi, pram
GLYK atp_c + glyc_c —>adp_c + glye3p_c + h_c glpK atp, glyc adp, glye3p
GND 6pge_c + nadp_c —>co2_c + nadph_c +ruSp__D_c gnd Gpge, nadp nadph, ruSp__D
GTPCI gtp_c + h20_c —>ahdt_c + for_c + h_c folE gtp

HISTP h20_c + hisp_c —>histd_c + pi_c hisB hisp

IMPC h20_c + imp_c <=>fprica_c purH imp

IMPD h2o_c + imp_c + nad_c —>h_c + nadh_c + xmp_c guaB imp, nad nadh

IPPMIb 2ippm_c + h20_c¢ <=>3c3hmp_c leuC, leuD 2ippm

IPPS 3mob_c + accoa_c + h20_c¢ —>3c3hmp_c + coa_c + h_c leuA 3mob, accoa coa

KDOPP h20_c + kdo8p_c —>kdo_c + pi_c kdsC kdo8p

LEUTAI 4dmop_c +glu__L_c->akg ¢ +leu__L_c ilVE, tyrB 4mop, glu__L akg, leu_ L
MDH mal__L_c + nad_c >h_c + nadh_c + oaa_c mdh mal__L, nad nadh
METAT atp_c + h20_c + met__L_c —>amet_c + pi_c + ppi_c metK atp, met__L ppi

NDPK2 atp_c + udp_c >adp_c + utp_c ndk, adk atp, udp adp, utp

NDPK3 atp_c + cdp_c <=>adp_c + ctp_c ndk, adk atp, cdp adp, ctp
PFK atp_c + f6p_c —>adp_c + fdp_c +h_c pfkA, ptkB atp, f6p adp, fdp
PGCD 3pg_c + nad_c —>3php_c + h_c + nadh_c serA 3pg, nad 3php, nadh
PGI gbp_c <=>f6p_c pgi g6p f6p

PGK 3pg_c +atp_c <=>13dpg_c + adp_c pgk 3pg, atp adp

PGL 6pgl_c + h20_c —>6pgc_c +h_c pgl 6pgl 6pgc
PHETA1  akg ¢+ phe__L_c <=>glu__L_c + phpyr_c ilvE, tyrB, aspC akg, phe__L glu_ L, phpyr
PMPK 4ampm_c + atp_c —>2mahmp_c + adp_c thiD 4ampm, atp adp
PPBNGS 2.0 5aop_c —>2.0 h2o_c + h_c + ppbng_c hemB 5aop

PRAGSr  atp_c + gly_c + pram_c <=>adp_c + gar_c+ h_c + pi_c purD atp, gly, pram adp
PRASCSi  Baize_c + asp__L_c + atp_c —>25aics_c + adp_c + h_c + pi_c purC Saizc, asp__L, atp adp
PRFGS atp_c + fgam_c + gln__L_c + h20_c —>adp_c + fpram_c + glu__L_c +h_c + pi_c purL atp, fgam, gln__L adp, glu__L
PSCVT pep_c + skmbp_c <=>3psme_c + pi_c aroA pep, skmbp

PSERT 3php_c +glu__L_c->akg_c+ pser__L_c¢ serC 3php, glu__L akg, pser__L
PSP_L h20_c +pser__L_c->pi_c +ser__L_c serB pser__L ser_ L
PYK adp_c + h_c + pep_c —>atp_c + pyr_c pykF, pykA adp, pep atp
RHCCE rheys_c —>dhptd_c + heys__L_c luxS rheys

RPE Tubp_ D _c<=>xuSp__D ¢ Tpe Tubp_ D xubp__D
RPI r5p_c >rusp__D_c rpiA r5p rusp__D
S7PI s7p_c —>gmhepTp_c gmhA s7p

SADT2 atp_c + gtp_c + h20_c + so4_c —=aps_c + gdp_c + pi_c + ppi_c cysN, cysD atp, gtp, sod gdp, ppi
SERAT accoa_c + ser__L_c <=>acser_c + coa_c cysE accoa, ser__L coa

SHKK atp_c +skm_c —>adp_c + h_c + skmbp_c aroK atp, skm adp, skmbp
THD2pp 2.0h_p + nadh_c + nadp_c —>2.0h_c + nad_c + nadph_c pntA, pntB nadh, nadp nad, nadph
THDPS h20_c + succoa_c + thdp_c —>coa_c + sl2a6o_c dapD succoa, thdp coa, sl2a6o
THRD_L thr__L_c->2obut_c + nhd_c ilvA thr_ L 2obut
THRS h2o_c + phom_c —>pi_c + thr__L_c thrC phom thr_ L
TKT1 rbp_c + xubSp__D_c >g3p_c +sTp_c tktB, tktA 5p, xusp__D sTp

TKT2 edp_c +xubp__D_c <=>f6p_c + g3p_c tktB, tktA edp, xusp__D f6p

TPI dhap_c <=>g3p_c tpiA dhap

TRPS3 3ig3p_c —>g3p_c + indole_c trpB, trpA 3ig3p indole
TYRTA akg_c + tyr__L_c <=>34hpp_c + glu__L_c tyrB, aspC akg, tyr__L glu_ L
UAGCVT  pep_c + uacgam_c —>pi_c + uaccg_c murA pep, uacgam uaccg
UMPK atp_c + ump_c <=>adp_c + udp_c cmk, pyrH atp, ump adp, udp
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Figure A.2: A model without allosteric regulation can explain a lot of the fluxes in 62% of
the reactions. The Pearson correlation coefficient indicates correspondence of observed and predicted
fluxes in nine different conditions. Reactions for which R? > 0.35 are shown in green, those below in red.
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Table A.2: In vitro enzyme assays

Reaction
3-deoxy-D-arabino-heptulosonate 7-phosphate synthetase

Major isoenzyme Purified Active Enzyme a

PFK Phosphofructokinase PfkA
FBA Fructose-bisphosphate aldolase FbaA
FUM Fumarase FumA
ATPPRT | ATP phosphoribosyltransferase HisG
GLUPRT | Glutamine phosphoribosyldiphosphate amidotransferase | PurF
TKT2 Transketolase TktA
PSP L Phosphoserine phosphatase (L-serine) SerB
THRD_L | L-threonine deaminase IIvA
GF6PTA | Glutamine-fructose-6-phosphate transaminase GImS
ADSS Adenylosuccinate synthase PurA
THRS Threonine synthase ThrC
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Figure A.3: correlations among the metabolites across nine conditions. In our reaction fitting
procedure high correlations among metabolites that are tested as putative regulators will result in similar
prediction scores, and hence reflect chances of false positive results of predictions are made solely using
this data to differentiate candidate regulators.
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Figure A.4: Most fluxes and protein concentrations tend to depend linearly on the growth
rate. A. Correlation between protein concentrations of the 84 analyzes reactions and growth rate. B.
Correlation of fluxes with growth rate. These linear dependencies are used to inter/extrapolate proteomic
and fluxomic values and compare data at the same growth rate.
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Figure A.5: Correlation between 2C flux analysis and CCM fluxes determine by FBA. Eeach
figure plots the two flux sources against the growth rate across the eight glucose-limitation (blue) and eight
glutama-limitation (red) conditions. The correspondence of FBA-dervied (circles) and '*C flux analysis
(diamonds) is high for the growth rate and the 26 measured CCM fluxes.

159



Likelihood

S N o N » o ©

2}
SUPRSGINY
S
1,_%1'»\?,0

&\

»

2%
103e|nb3y | e

N
USJUB|N-SI[RBUDIN [eJ2URY)

0_}5
\

2
™

Q%
s
|

Q
O
DX

>
NRSEN
%b

S
X

S
R
X

Ry
A’({«o
X

Q >
DoVe, 2
6503,
Sy

e
|

|

\“

°o RO D
bs‘%?—%’%%%%
l
judwianoadw pooyidyI]

Q

W
DN,
D\ »"'\%>»

D

N
X

‘f_p»

Figure A.6: Likelihood improvement upon addition of single allosteric regulators across the
84 reactions. The likelihood of the unregulated reaction (red) is shown, as well as the best likelihood
upon includion of single regulators (orange). For each reaction, nine adjacent smaller bars correspond to
the nine conditions. Only regulators that improve the akaike information criterion (AIC) with respect to
the unregulated model are considered. Reaction abbreviations correspond to BiGG @ identifiers.
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Figure A.7: AroG absorbance enzyme assay with 1mmol of 4-hydroxyphenylpyruvate and
250pmol erythrose-4-phosphate. The absorbance indicates consumption of 4-hydroxyphenylpyruvate
suggesting that it acts as a competitive substrate. The lines correspond to three biological replicates with
an average slope of —4.765e4 units s~!, which is significantly different from the slope observed in the
absence of enzyme —6.276e5 units s~ (One-tailed t-test p-value < 0.001).
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Figure A.11: Flux projection of steady-state pyruvate data. Data from [3| were projected on the
metabolic model depicted in Figure using known as minimization of metabolic adjustment (MOMA)
. On the left hand side a plot of projects versus reported flux data. Residuals with respect to the

original data are shown on the right hand side.
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Figure A.10: Steady-state fluxes during growth on pyruvate projected onto the TCA model
demarcated in this study. These steady-state fluxes are part of the initial conditions of the system

prior to switching to glucose-rich medium. Data are from .
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Database . The data covers 11 catalytic constants and for the majority of these there is only a single

literature reported value available.
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Enzyme Database . The data covers 45 dissociation constants and for the majority of these
multiple values from the published literature.
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Figure A.14: Equilibrium constants of the TCA cycle. Estimates were obtained using the eQuili-
brator biochemical thermodynamics calculator . Reactions with a negative Gibbs energy of formation
are thermodynamically favorable and indicated in green. Those with a positive Gibbs free energy are

thermodynamically unfavorable.
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Figure A.16: Cell volume of E. coli grown on pyruvate. Data were obtained from and the

kernel density estimate was plotted to highlight the issue of computing mean and standard deviation in
linear scale, and not supplying the raw data.
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Figure A.17: Sampled enzyme concentrations. Absolute enzyme count data were obtained from

and cell volume data from . The result of reporting only the mean and standard deviation on linear
scale results in skewed sampling results, with unrealistically high enzyme concentrations.
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Table A.3: Genes present in the E. coli TCA cycle model. These gene identifiers were used to

map absolute protein quantification data from Schmidt et. al. [15] to the model.

b-number | gene | uniprot | asap ecogene | ncbigene | ncbigi
b1676 pykF | POAD61 | ABE-0005600 | EG10804 | 946179 gi:16129632
b1854 pykA | P21599 ABE-0006182 | EG10803 | 946527 gi:16129807
b1702 ppsA | P23538 ABE-0005678 | EG10759 | 946209 g1:16129658
b3956 ppc P00864 ABE-0012950 | EG10756 | 948457 gi:16131794
b3403 pck P22259 ABE-0011106 | EG10688 | 945667 gi:16131280
b1479 maeA | P26616 ABE-0004931 | EG10948 | 946031 £i:90111281
b4015 aceA | POA9G6 | ABE-0013128 | EG10022 | 948517 gi:16131841
b2976 glcB P37330 ABE-0009767 | EG20080 | 948857 gi:16130876
b4014 aceB | P08997 ABE-0013125 | EG10023 | 948512 gi:16131840
b0116 Ipd POA9PO | ABE-0000404 | EG10543 | 944854 gi:16128109
b0114 aceE | POAFGS8 | ABE-0000397 | EG10024 | 944834 gi:16128107
b0115 acel" | P06959 ABE-0000400 | EG10025 | 944794 gi:16128108
b0720 gltA POABHT7 | ABE-0002451 | EG10402 | 945323 £i:16128695
b1276 acnA | P25516 ABE-0004283 | EG11325 | 946724 gi:16129237
b0118 acnB | P36683 ABE-0000411 | EG12316 | 944864 gi:16128111
b1136 icd P08200 ABE-0003823 | EG10489 | 945702 £i:16129099
b0726 sucA | POAFG3 | ABE-0002478 | EG10979 | 945303 gi:16128701
b0727 sucB | POAFG6 | ABE-0002480 | EG10980 | 945307 gi:16128702
b0728 sucC | POA836 | ABE-0002483 | EG10981 | 945312 gi:16128703
b0729 sucD | POAGE9 | ABE-0002485 | EG10982 | 945314 gi:16128704
b0724 sdhB | P07014 ABE-0002468 | EG10932 | 945300 gi:16128699
b0722 sdhD | POAC44 | ABE-0002464 | EG10934 | 945322 gi:16128697
b0721 sdhC | P69054 ABE-0002460 | EG10933 | 945316 £i:16128696
b0723 sdhA | POAC41 | ABE-0002466 | EG10931 | 945402 gi:16128698
b1611 fumC | P05042 ABE-0005380 | EG10358 | 946147 gi:16129569
b1612 fumA | POAC33 | ABE-0005392 | EG10356 | 946826 gi:16129570
b4122 fumB | P14407 ABE-0013501 | EG10357 | 948642 £i:16131948
b3236 mdh P61889 ABE-0010613 | EG10576 | 947854 gi:16131126
b2297 pta POA9MS | ABE-0007582 | EG20173 | 946778 gi:16130232
b2458 eutD | P77218 ABE-0008097 | EG14188 | 946940 gi:16130383
b1849 purT | P33221 ABE-0006162 | EG11809 | 946368 gi:16129802
b3115 tdeD | P11868 ABE-0010245 | EG11172 | 947635 g1:145698313
b2296 ackA | POA6A3 | ABE-0007579 | EG10027 | 946775 gi:16130231
b3528 dctA | POA830 | ABE-0011527 | EG20044 | 948039 £i:16131400
b1380 ldhA | P52643 ABE-0004619 | EG13186 | 946315 gi:16129341
b2133 dld P06149 ABE-0007048 | EG10231 | 946653 gi:16130071
b1761 gdhA | P00370 ABE-0005865 | EG10372 | 946802 gi:16129715
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Table A.4: Gene reaction rules of the E. coli TCA cycle model. Gene-reaction-rules represent how
genes, via the proteins they encode, are associated with metabolic reactions. These rules are represented
using Boolean expressions: ’or’ signifies that either (set of) gene can catalyze the reaction, while ’and’
mandates the presence of both (sets of) genes.

reaction gene rule

PYK b1854 or b1676

PPS b1702

PPC b3956

PPCK b3403

ME1 b1479

ICL b4015

MALS b4014 or b2976

PDH b0115 and b0114 and b0116
CS b0720

ACONTa b0118 or b1276

ACONTD b0118 or b1276

ICDHyr b1136

AKGDH b0726 and b0116 and b0727
SUCOAS b0728 and b0729

SUCDIi b0723 and b0721 and b0722 and b0724
FUM b4122 or b1612 or b1611

MDH b3236

PYRt2

PTAr b2297 or b2458

ACKr b2296 or b3115 or b1849

ACt2r

SUCCt2_2 | b3528
LDH D b2133 or b1380
GLUDy b1761
FUMt2 2 | b3528
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Table A.5: Reactions in the E. coli TCA cycle model. These reaction identifiers were used to
retrieve data from the BRENDA database . Reactions are BiGG identifiers . Other identifier
databases: metanetx , ec-code , kegg ‘ The following annotation are omitted here for clarity:

SBO, biocyc, reactome, rhea.

reaction metanetx ec-code kegg
PYK MNXR103371 | 2.7.1.40 R00200
PPS MNXR103140 | 2.7.9.2 R00199
PPC MNXR103096 | 4.1.1.31 R00345
PPCK MNXR103099 | 4.1.1.49 R00341
ME1 MNXR101446 | 1.1.1.39, 1.1.1.38 R00214
ICL MNXR100789 | 4.1.3.1 R00479
MALS MNXR101347 | 2.3.3.9 R00472
PDH MNXR102425 | 2.3.1.12, 1.2.1.51, 1.8.1.4, 1.2.4.1 | R00209
CS MNXR96920 | 2.3.3.1, 2.3.3.16, 2.3.3.3 R00351
ACONTa MNXR95386 | 4.2.1.3 R01325
ACONTD MNXR95387 | 4.2.1.3 R01900
ICDHyr MNXR100781 | 1.1.1.42 R00267
AKGDH MNXR95655 1.2.1.52, 1.2.4.2, 1.8.1.4, 2.3.1.61 | R08549
SUCOAS MNXR104635 | 6.2.1.5 R00405
SUCDi MNXR99641

FUM MNXR99705 | 4.2.1.2 R01082
MDH MNXR101439 | 1.1.1.37, 1.1.1.299 R00342
PYRt2 MNXR103385

PTAr MNXR103319 | 2.3.1.8 R00230
ACKr MNXR95269 | 2.7.2.1, 2.7.2.15 R00315
ACt2r MNXR95429

SUCCt2 2 | MNXR104620

LDH D MNXR101037 | 1.1.1.28 R00704
GLUDy MNXR100086 | 1.4.1.13,1.4.1.3, 1.4.1.4 R00248
FUMt2 2 | MNXR99711
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Table A.6: Reaction formulae of the E. coli TCA cycle model. This is the model used for flux

balance analysis from which the kinetic model is derived. Reactions prefixed with 'EX
reactions used for flux balance analysis. Metabolites are suffixed with a compartment identifier:

’ are exchange

' ¢ for

cytosol and ’ e’ for extracellular.

reaction reaction

ACKr ac_c + atp ¢ <=>actp c + adp c

ACONTa cit ¢ <=>acon C ¢+ h20 ¢

ACONTD acon_C ¢ + h20 ¢ <=>icit_c¢

ACt2r ac e+ h e<=>ac c+h ¢

AKGDH akg ¢+ coa ¢ +mnad c¢c-—>co2 c + nadh c + succoa ¢
CS accoa ¢ + h2o0 ¢ + oaa ¢ -—>cit ¢+ coa c+h ¢
FUM fum ¢+ h20 c<=>mal L c

FUMt2 2 fum e+ 20h e<=>fum c+20h ¢

GLUDy glu L ¢+ h20 ¢+ nadp c¢c<=>akg c+h c+ nadph c+ nhd c
ICDHyr icit ¢ + nadp ¢ <=>akg c¢ + co2 c¢ + nadph c

ICL icit ¢ —>glx ¢ + succ_c

LDH D lac. D c¢c+nad ¢ <=>h c+mnadh c+ pyr c

MALS accoa ¢ + glx ¢+ h20 c¢—>coa ¢+ h c+mal L ¢
MDH mal L ¢+ mnad ¢ <=>h c+nadh c+ oaa c

ME1 mal L ¢+ nad ¢—>co2 c+ nadh c + pyr c

PDH coa_c + nad c¢ + pyr c—>accoa_c + co2 ¢ + nadh c
PPC co2 ¢+ h20 c+pep ¢c—>h c+oaa c+pi ¢

PPCK atp ¢+ oaa_c—>adp ¢+ co2 c -+ pep ¢

PPS atp ¢+ h20 ¢+ pyr c—>amp ¢+ 20h c+ pep ¢+ pi c
PTAr accoa_c + pi_c <=>actp c¢ + coa_c

PYK adp ¢+ h c+ pep c¢c—>atp ¢+ pyr ¢

PYRt2 h e+ pyr e<=>h c+ pyr c

SUCCt2_2 20h e+ succ_e->2.0h c+ succ_c

SUCDi q8 c¢ + succ_c —>fum c + q8h2 ¢

SUCOAS adp_c + pi_c + succoa_c <=>atp_c¢ + coa_c + succ_c
EX ac_e ac_e <=>

EX adp ¢ adp ¢ <=>

EX amp c amp ¢ <=>

EX atp_c atp_¢ <=>

EX co2 c co2 ¢ <=>

EX fum e fum e <=>

EX glu L c|glu L c¢c<=>

EX h20 c h20 ¢ <=>

EX h ¢ h ¢ <=>

EX h e h e <=>

EX lac D c|lac. D c<=>

EX nad ¢ nad ¢ <=>

EX nadh ¢ nadh ¢ <=>

EX nadp c nadp ¢ <=>

EX nadph c nadph ¢ <=>

EX nh4d ¢ nhd ¢ <=>

EX pep c pep_c <=>

EX pi ¢ pi_¢c <=>

EX pyr e pyr_e <=>

EX g8 ¢ a8 ¢ <=>

EX q8h2 ¢ q8h2 ¢ <=>

EX succ_e succ_e <=>
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Table A.7: Metabolites in the E. coli TCA cycle model. These metabolite identifiers were used
to retrieve data from the BRENDA database [16]. Metabolites are BiGG identifiers [14]. Other identifier
databases: seed [4], kegg [5] and metanetx [2]. The following annotation are omitted here for clarity:
reactome, chebi, hmdb, biocyc, lipidmaps.

metabolite | seed kegg metanetx
adp cpd00008 C00008 MNXMT7

h cpd00067 C00080 MNXM1
pep c¢pd00061 C00074 MNXM73
atp cpd00002 C00002 MNXM3
pyr c¢pd00020 C00022 MNXM23
h2o0 cpd00001, cpd15275, cpd27222 | CO0001, CO1328, C18714 | MNXM2
amp cpd00018, cpd22272 C00020 MNXM14
pi cpd00009, cpd27787 C00009, C13558 MNXM9
co2 cpd00011 C00011 MNXM13
0aa cpd00032, cpd02469 C00036, C03981 MNXM46
mall, cpd00130 C00149 MNXMO98
nad cpd00003 C00003 MNXMS
nadh c¢pd00004 C00004 MNXM10
icit cpd00260 C00311 MNXM89661
glx cpd00040 C00048 MNXM69
succ c¢pd00036 C00042 MNXM25
accoa cpd00022 C00024 MNXM21
coa cpd00010, cpd22528 C00010 MNXM12
cit cpd00137 C00158, C13660 MNXM131
aconC cpd00331 C00417 MNXMS813
nadp c¢pd00006 C00006 MNXMb
akg cpd00024 C00026 MNXM20
nadph cpd00005 C00005 MNXMG6
succoa c¢pd00078 C00091 MNXM92
q8 cpd15560 C17569 MNXM232
fum cpd00106 C00122 MNXM93
q8h2 cpd15561, cpd29608 C00390 MNXM191
actp c¢pd00196 C00227 MNXM280
ac cpd00029 C00033 MNXM26
lacD cpd00221 C00256 MNXM285
glulL cpd00023, cpd19002, cpd27177 | C00025, C00302 MNXM89557
nh4 cpd00013, cpd19013 C00014, C01342 MNXM15
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Table A.8: Metabolite formulae and charge of the E. coli TCA cycle model. Metabolites are
BiGG identifiers |[14]. Boundary condition indicates whether or not the metabolite was considered as such
in the kinetic model. Rule assigned denotes whether a species were modeled using a linear interpolated
rule and experimentally determined time series data.

metabolite | formula charge | boundary condition | rule assigned
ac C2H302 -1 False False
accoa C23H34N7017P3S | -4 False False
aconC C6H306 -3 False False
actp C2H305P -2 False False
adp C10H12N5010P2 -3 True True
akg C5H405 -2 False False
amp C10H12N507P -2 True True
atp C10H12N5013P3 -4 True True
cit C6H507 -3 False False
co2 CcO2 0 True False
coa C21H32N7016P3S | -4 False False
fum C4H204 -2 False False
gluLL C5H8NO4 -1 True True
glx C2H103 -1 False False
h2o0 H20 0 True False
h H 1 True False
icit C6H507 -3 False False
lacD C3H503 -1 True True
malL C4H405 -2 False False
nad C21H26N7014P2 -1 True True
nadh C21H27N7014P2 -2 True True
nadp C21H25N7017P3 -3 True True
nadph C21H26N7017P3 -4 True True
nh4 H4N 1 True False
oaa C4H205 -2 False False
pep C3H206P -3 True True
pi HO4P -2 True False
pyr C3H303 -1 False False
q8 C49H7404 0 True False
q8h2 C49H7604 0 True False
succ C4H404 -2 False False
succoa, C25H35N7019P3S | -5 False False
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Table A.9: Small Molecule Regulatory Network Table of E. coli. This table presents data ex-
tracted from Reznik et al.’s supplement [13], featuring columns detailing biochemical reactions (Reaction),
associated metabolites (Metabolite), Enzyme Commission numbers (E.C. number), Kyoto Encyclopedia
of Genes and Genomes IDs (KEGG ID), mode of action (Mode), and the regulatory mechanisms (Mecha-
nism). Only those reactions and metabolite that are part of our study are presented, using their respective
BiGG identifiers.

Reaction | Metabolite | E.C. number | KEGG ID | Mode | Mechanism
cs accoa, 2.3.3.16 + Allosteric
cs akg 2.3.3.16 C00026 - Competitive
cs atp 2.3.3.16 - Competitive
cs nad 2.3.3.16 - Allosteric
cs nadh 2.3.3.16 C00004 - Allosteric
fum cit 4.2.1.2 C00158 - Competitive
icdhyr pep 1.1.1.42 C00074 - Allosteric
icdhyr oaa 1.1.1.42 C00036 - Competitive
icl 3pg 4.1.3.1 C00597 - Competitive
icl akg 4.1.3.1 C00026 -

icl pep 4.1.3.1 C00074 - Uncompetitive
icl succ 4.1.3.1 C00042 - Uncompetitive
pdh accoa 1.2.4.1 C00024 -

ppc accoa 4.1.1.31 + Allosteric
ppc cit 4.1.1.31 -

ppc fdp 4.1.1.31 C00354 + Allosteric
ppc fam 41.1.31 C00122 -

ppc gtp 4.1.1.31 C00044 + Allosteric
ppc succ 4.1.1.31 C00042 -

ppck 3pg 4.1.1.49 C00597 -

ppck accoa 4.1.1.49 C00024 +

ppck atp 4.1.1.49 C00002 -

ppck dhap 4.1.1.49 Co0111 -

ppck fop 4.1.1.49 C00085 -

ppck fdp 4.1.1.49 C00354 -

ppck nadh 4.1.1.49 C00004 -

ppck pep 4.1.1.49 -

pps adp 2.7.9.2 C00008 -

pPpSs akg 2.7.9.2 C00026 -

pps amp 2.7.9.2 C00020 -

pPps atp 2.7.9.2 C00002 -

pps pep 2.7.9.2 C00074 -

pyk amp 2.7.1.40 + Allosteric
pyk atp 2.7.1.40 -

pyk fdp 2.7.1.40 C00354 + Allosteric
pyk g6p 2.7.1.40 C00092 +

pyk gtp 2.7.1.40 -

pyk pep 2.7.1.40 C00074 +

sucoas adp 6.2.1.5 C00008 -

sucoas adp 6.2.1.5 C00008 +

sucoas akg 6.2.1.5 C00026 -

sucoas atp 6.2.1.5 C00002 -

sucoas nadh 6.2.1.5 C00004 -

sucoas succ 6.2.1.5 C00042 -
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A.2.1 Rate Equations

The rate equations governing the dynamics of the metabolic network comprising the TCA cycle
and anaplerotic reactions. Each rate equation represents the rate of a specific metabolic reaction,
and it encapsulates the effects of enzyme concentrations, substrate concentrations, and reaction
constants. In the following rate equations, various symbols and notations are used to represent
enzymes, metabolites, constants, and mathematical relationships. A reaction-local nomenclature
is used for enzymes and parameters to facilitate readability:

Enzyme symbols: Enzymes are represented by E corresponding to the enzyme of the
specific reaction.

Metabolite symbols: Reactants and products are indicated by their BiGG identifiers. Only
for extracellular metabolites has a subscript been used: ace, pyre, fume, succe,mal..

Catalytic rate constants: forward catalytic constants are represented by kfat.

Michaelis-Menten constants: are denoted with their corresponding metabolite in the
superscripts, for instance, K2,

Equilibrium constants: are designated by K., and provide insight into the balance of
products and reactants at equilibrium.
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A.2.2 Differential Equations

The differential equations governing the dynamics of the metabolic network comprising the TCA
cycle and anaplerotic reactions. Each equation encapsulates the rate of change of a specific metabo-
lite concentration with respect to time. The notation employed in these differential equations builds
upon the established conventions in biochemical modeling;:

e Metabolite symbols: The symbols used for metabolites reflect the chemical compounds
they represent, such as pyr for pyruvate, oaa for oxaloacetate, and mal-L for L-malate.

e Reaction rates: The terms in the differential equations correspond to the summed rates of
various metabolic reactions that either produce or consume the respective metabolite.

dpyr
% = vpYK + UME1 + UPYRt2 + YLDH-D — UPPS — UPDH (A.26)
doaa
i VppC + UMDH — YPPCK — UCS (A.27)
dmal-L
i = UMALS 1+ YFUM — YME1 — UMDH (A.28)
dicit
P VYACONTb — VICL — VICDHyr (A.29)
dglx
X bieL — vuaLs (A.30)
dt
dsucc
—g; = VICL +USUCOAS F USUCCr2-2 — USUCD: (A.31)
daccoa A
7, = UPDH ~ UMALS — VCS ~ UPTAr (A.32)
dcoa,
I = UMALS 1 Vcs + USUCOAS + UPTAr — UPDH — YAKGDH (A.33)
dcit
—— = ¥CS — UACONTa (A.34)
dt
dacon-C
T = VUACONTa — VACONTbD (A~35)
dak
Wg = VICDHyr T YGLUDy — VAKGDH (A.36)
dsuccoa A
& UAKGDH — USUCOAS (A.37)
dfum
a USUCDi T VFUMt2-2 — UFUM (A.38)
dact
d L UPTAr T VACKr (A.39)
t
dac
E = VACt2r — VACKr (A40)
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Table A.10: Generior prior on states and parameters. These values were taken from Lubitz et
al. [10]. Symbols: kcar: forward catalytic constant, kcatr: reverse catalytic constant, K,,: Michaelis-
Menten constant, K;: inhibition constant, K,: activation constant, K.q: equilibrium constant, u: enzyme
concentration. c¢: metabolite concentration.

Symbol | Geometric Mean | Geometric Std. Dev. | Lower Bound | Upper Bound | Unit

kcatt 10.0 100.0 1.0 x 1072 1.0 x 107 1/s

Eecatr 10.0 100.0 1.0 x 1077 1.0 x 107 1/s

K,, 1.0 x 1072 10.0 10 x 1077 1.0 M

K; 1.0 x 1072 10.0 1.0 x 107 1.0 x 10T M

K, 1.0 x 1072 10.0 1.0 x 107 1.0 x 1071 M

K.q 1.0 100.0 1.0 x 10719 1.0 x 108 dimensionless
u 1.0 x 107 100.0 1.0 x 1079 5.0 % 10 % M

c 1.0 x 1072 10.0 1.0 x 1077 1.0 M
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Table A.11: Enzyme counts on pyruvate for reactions in the E. coli TCA cycle model. Enzyme
counts for each reaction were estimated using the absolute protein quantification data from Schmidt et
al. |15] in conjunction with the gene-reaction-rules present in the model (See Supplementary Table
|[12]. These counts were aggregated on a per-reaction basis using these boolean rules: AND indicates both
proteins are needed, hence we took the minimum, whereas OR indicates both can be used, and hence
summation was performed, in order to approximate to total number of enzymes that could catalyze a
given reaction.

reaction mean std unit

ACKr 10637.0 793.78 counts
ACONTa 17180.0 749.37 counts
ACONTD 17180.0 749.37 | counts
AKGDH 4196.0 625.62 counts

CS 37156.0 4265.51 | counts
FUM 3903.0 NaN counts
FUMt2 2 | 126.0 30.52 counts

GLUDy 3776.0 682.70 | counts
ICDHyr 35445.0 1265.39 | counts

ICL 48723.0 1476.31 | counts
LDH D 1123.0 107.59 | counts
MALS 4989.0 578.44 counts
MDH 129097.0 | 9075.52 | counts
ME1 480.0 14.208 counts
PDH 15791.0 3611.40 | counts
PPC 1536.0 468.17 | counts
PPS 4184.0 186.61 counts
PTAr 3512.0 1027.26 | counts
PYK 5587.0 219.79 counts
SUCCt2_2 | 126.0 30.51 counts
SUCDi 48.0 8.64 counts

SUCOAS 18432.0 263.58 counts

Table A.12: Metabolite concentrations on pyruvate for species in the E. coli TCA cycle
model. Metabolite concentrations were estimated by combining and averaging the data from Gerosa et
al. and Kochanowski et al. [3|(8].

metabolite | mean std unit
adp 9.876e-04 | 4.29e-05 M
akg 8.543e-04 | 2.364e-04 | M
amp 7.719e-04 | 1.41e-05 M
atp 5.776e-03 | 1.741e-04 | M
cit 1.117e-02 | 8.437e-04 | M
fum 1.350e-03 | 2.062e-04 | M
icit 5.620e-04 | 5.47e-05 M
mal-L 2.363e-03 | 8.93e-05 M
nad 6.751e-03 | 1.868e-04 | M
nadh 2.018e-04 | 1.711e-04 | M
nadp 1.84e-05 7e-07 M
nadph 1.33e-04 | 8e-06 M
pep 3.97e-04 3.17e-05 M
succ 1.857e-03 | 1.187¢-03 | M
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Table A.13: Steady-state fluxes on pyruvate for reactions in the E. coli TCA cycle model.
Fluxes data were obtained from Gerosa et. al. [3].

reaction mean std unit
EX ac_e 1.40e-03 | 6.40e-05 | M/s
EX_succ_e | 0.00e+00 | 0.00e4+00 | M/s
EX pyr_e | 3.20e-03 | 0.00e+00 | M/s
PYK -4.20e-04 | 3.00e-05 | M/s
PDH 2.50e-03 1.30e-05 | M/s
CS 9.80e-04 | 2.70e-06 | M/s
ICDHyr 9.60e-04 1.20e-05 | M/s
AKGDH 9.00e-04 1.20e-05 | M/s
SUCDi 9.10e-04 | 2.70e-06 | M/s
FUM 9.10e-04 | 2.70e-06 | M/s
MDH 9.00e-04 | 3.00e-05 | M/s
ME1 2.30e-05 | 3.00e-05 | M/s
PPC 3.00e-04 1.50e-05 | M/s
PPCK 1.40e-04 | 3.30e-05 | M/s
ICL 1.20e-05 1.30e-05 | M/s
FUMt2 2 0.00e+00 | 0.00e+00 | M/s
LDH D -1.40e-04 | 8.30e-06 | M/s

Table A.14: Standard Gibbs free energy for reactions in the E. coli TCA cycle model.
Standard Gibbs free energy change (AG®) values and their corresponding standard deviations. These values
were acquired using Equilibrator 1], where we assumed a constant temperature of 37°C, an intracellular
pH of 7.4, and an ionic strength of 0.25M |21}, |20]. We sampled the covariance matrix, which is not shown
here for convenience. Units are kJ/mol.

AG° std
PYK -23.448 | 0.186
PPS -6.3 0.258
PPC -40.211 | 10.057
PPCK 11.047 | 10.111
ME1 12.901 | 10.099
ICL 9.637 1.896
MALS -38.073 | 4.501
PDH -35.732 | 10.786
CS -40.278 | 0.199

ACONTa 8.324 1.336
ACONTbDb -0.697 | 1.338

ICDHyr 5.743 | 10.547
AKGDH | -29.617 | 15.675
SUCOAS | 1.698 | 1.847
SUCDi “71.138 | 42.165
FUM -3.433 | 0.08
MDH 25.303 | 0.097
PYRt2 0.0 0.0
PTAr 9.247 | 0.382
ACKr 14.708 | 0.314
ACt2r 0.0 0.0
SUCCt2_2 | 0.0 0.0
LDH D 10.412 | 4.464
GLUDy 31.811 | 0.146
FUMt2 2 | 0.0 0.0
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Table A.15: Forward catalytic rate constants for reactions of the FE. coli TCA cycle model.
Data were obtained from the BRENDA database [16].

reaction | gmean gstd mean std unit
CS 8.10e+01 | nan 8.10e+01 | nan 1/s
FUM 4.10e+02 | 4.30e+00 | 7.80e+02 | 5.20e+02 | 1/s
GLUDy | 3.70e+01 | nan 3.70e+01 | nan 1/s
ICDHyr | 8.80e+01 | nan 8.80e+01 | nan 1/s
MALS 4.80e+01 | nan 4.80e+01 | nan 1/s
PDH 3.80e+01 | nan 3.80e+01 | nan 1/s
PPC 5.40e+02 | nan 5.40e+02 | nan 1/s
PTAr 6.00e+01 | 2.00e+00 | 7.50e+01 | 4.50e+01 | 1/s

Asparagine
Aspartate
Fumarate
Glutamate
Glutamine
GTTox
GTTred
Hexoses
Homoserine
Malate
Panthothenate
PEP
Phenylalanine
Succinate

Tyrosine

Technical replicates
12C

12C /13C

0.12 0.13
0.13 0.14
0.15 0.24
0.03 0.04
0.11 0.1
0.21 0.55
047 0.24
0.35 0.41
0.16 0.41
0.19 0.27
0.13 0.15
0.14 0.11
0.12 0.12

0.1 0.09
0.13 0.16

Biological replicates

12
0.24
0.26
0.39

0.2
0.19

0.4

0.7
0.62
0.28
0.49
0.24
0.38
0.34
0.27
0.36

12C /13C

Figure A.18: Analysis of best peaks from the pyruvate-glucose-pyruvate shift experiment.
Samples were measured as biological triplicates from independent experiments, each of which was injected
twice from the same well on the same 96-well plate to assess technical variability.
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0.12
043
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0.1
1.21
0.59
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1.15
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Table A.16:
cycle model.

Michaelis-Menten constants for reaction-metabolite pairs in the E. coli TCA

Data were obtained from the BRENDA database [16].

reaction | species | gmean | gstd mean std unit
ACKr ac 4.60e-02 | 6.50e+00 | 1.50e-01 | 1.50e-01 | M
ACKr actp 8.90e-04 | 5.60e+00 | 2.60e-03 | 2.40e-03 | M
ACKr adp 1.50e-03 | nan 1.50e-03 | nan M
ACKr atp 9.40e-04 | nan 9.40e-04 | nan M
ACONTa | acon_C | 3.00e-05 | 1.90e+00 | 3.70e-05 | 2.10e-05 | M
ACONTa | cit 3.60e-03 | 3.10e+00 | 6.10e-03 | 4.90e-03 | M
ACONTD | acon_C | 3.00e-05 | 1.90e+00 | 3.70e-05 | 2.10e-05 | M
ACONTD | cit 3.60e-03 | 3.10e+00 | 6.10e-03 | 4.90e-03 | M
AKGDH | akg 1.00e-04 | nan 1.00e-04 | nan M
AKGDH | nad 3.00e-04 | 3.40e+00 | 6.10e-04 | 7.10e-04 | M
AKGDH | pyr 4.00e-04 | nan 4.00e-04 | nan M
CS accoa 4.00e-04 | 2.30e+00 | 5.20e-04 | 2.90e-04 | M
CS oaa 1.70e-05 | 1.50e+00 | 1.80e-05 | 7.50e-06 | M
FUM fum 3.70e-04 | 2.20e+00 | 5.10e-04 | 4.60e-04 | M
FUM mal L | 3.90e-04 | 3.10e+00 | 6.70e-04 | 7.20e-04 | M
GLUDy akg 1.10e-03 | 4.40e+01 | 1.00e-01 | 2.00e-01 | M
GLUDy glu L | 9.70e-03 | 1.70e+01 | 3.40e-01 | 5.80e-01 | M
GLUDy nadp 1.10e-04 | 9.20e+00 | 2.70e-03 | 6.40e-03 | M
GLUDy nadph 7.20e-05 | 1.60e+01 | 6.70e-03 | 1.90e-02 | M
GLUDy nh4 8.90e-03 | 8.50e400 | 6.90e-02 | 1.20e-01 | M
ICDHyr icit 3.40e-05 | 1.20e400 | 3.50e-05 | 5.80e-06 | M
ICDHyr nadp 3.90e-05 | nan 3.90e-05 | nan M
ICL glx 1.30e-04 | nan 1.30e-04 | nan M
ICL icit 6.50e-04 | nan 6.50e-04 | nan M
MALS accoa 1.40e-05 | 1.60e+00 | 1.50e-05 | 6.50e-06 | M
MALS glx 3.40e-05 | 1.60e4-00 | 3.80e-05 | 1.70e-05 | M
MDH mal L | 1.80e-05 | 1.50e+02 | 1.30e-03 | 1.30e-03 | M
MDH nad 1.50e-05 | 1.70e+01 | 1.30e-04 | 1.30e-04 | M
MDH nadh 6.10e-05 | nan 6.10e-05 | nan M
MDH oaa 3.60e-05 | 1.50e4-00 | 3.90e-05 | 1.40e-05 | M
ME1 mal L | 5.20e-04 | 2.00e+00 | 6.40e-04 | 4.10e-04 | M
ME1 nad 5.80e-05 | 1.20e+00 | 5.90e-05 | 8.30e-06 | M
ME1 nadh 2.50e-05 | nan 2.50e-05 | nan M
ME1 nadp 2.30e-03 | nan 2.30e-03 | nan M
ME1 oaa 3.70e-03 | 1.50e+00 | 4.00e-03 | 1.30e-03 | M
PDH nad 3.00e-04 | 3.40e+00 | 6.10e-04 | 7.10e-04 | M
PDH pyr 3.80e-04 | 1.30e+00 | 3.90e-04 | 1.00e-04 | M
PPC co2 1.90e-04 | nan 1.90e-04 | nan M
PPC pep 6.00e-04 | nan 6.00e-04 | nan M
PPCK adp 5.00e-05 | nan 5.00e-05 | nan M
PPCK atp 6.00e-05 | nan 6.00e-05 | nan M
PPCK oaa 6.70e-04 | nan 6.70e-04 | nan M
PPCK pep 3.20e-04 | 9.70e+00 | 2.70e-03 | 3.70e-03 | M
PPS atp 2.80e-05 | nan 2.80e-05 | nan M
PPS pyr 8.30e-05 | nan 8.30e-05 | nan M
PTAr accoa 2.10e-05 | 2.20e+00 | 2.70e-05 | 1.80e-05 | M
PTAr actp 5.30e-04 | 1.70e4-00 | 6.10e-04 | 2.90e-04 | M
PTAr coa 3.30e-05 | nan 3.30e-05 | nan M
SUCOAS | atp 3.20e-05 | 2.20e+00 | 4.20e-05 | 2.80e-05 | M
SUCOAS | coa 4.00e-03 | nan 4.00e-03 | nan M
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