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Summary

This thesis presents a collection of works centered on computational statistics in Bayesian
seismology. Bayesian seismology interprets inverse problems in seismology as questions
of inference, striving not to produce a single answer to an inverse problem, but to ascribe
a probability to all possible solutions. To avoid evaluating every potential solution, or
scenario, algorithms from computational statistics are necessary. However, the selection
of appropriate algorithms is non-trivial, often demanding a deep understanding of the
inverse problem at hand and knowledge of the potential algorithms available. This work
focuses on the use of a specific algorithm, Hamiltonian Monte Carlo (HMC), and related
variants. It’s application to Bayesian seismology is studied from various perspectives.

Firstly, a general case study for appraising a computationally demanding inverse prob-
lem in seismology with HMC is presented. It is demonstrated that the use of the HMC
algorithm enables successful consideration of Full-Waveform Inversion within a Bayesian
inference framework, unlocking inference on parameters such as density, which have tra-
ditionally been poorly resolved.

This is followed by an effort to quantify the performance of algorithms on a given
class of inverse problems. The collection of No-Free-Lunch algorithms precludes any
single algorithm from being universally efficient, guiding the investigation into whether
HMC and related algorithms might be optimal for a reduced set of relevant problems.
While this is confirmed, the attempt is restricted by the curse of dimensionality, confining
the analysis to inverse problems of limited dimensionality.

The expertise gained on these appraisal algorithms is subsequently distilled into an
accessible and well-documented collection of open-source codes called HMCLab. This
collection includes numerous didactic materials aimed at showcasing HMC and its vari-
ants to the general geophysicist. It covers various inverse problems and their Bayesian
treatment, along with instructions on implementing inverse problems posed by the user.

Next, two approaches to writing efficient wavefield simulation codes are proposed.
The first, an open-source package named psvWave, is a C++ written and Python ac-
cessible software designed to simulate 2D wavefields in parallel. The second approach
demonstrates how to leverage modern unified chips using the Metal Shading Language to
accelerate existing C++. Its ease of use is demonstrated on the psvWave package. Effi-
cient wavefield modeling is integral to Bayesian seismology, as reducing computational
costs can enable more extensive evaluations of wavefield-based inverse problems.

The thesis concludes with a report on multiple seismological field campaigns that are
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extensively documented using aerial and ground-based photogrammetry. In the three field
campaigns, Structure-from-Motion methods were innovatively used to digitise the field
sites. It is shown that these methods are accessible with limited resources and consumer
electronics. The digitisation employing remotely operated drones enables safe surveying
of hazardous fields and the ability to rapidly create meshes of structures and topography
for wavefield simulations, while ground-based imagery offers a low-cost, low-risk alter-
native.
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Zusammenfassung

Diese Dissertation stellt eine Sammlung von Arbeiten vor, die sich mit computergestütz-
ten Statistik in der Bayesschen Seismologie befassen. In der Bayesschen Seismologie
werden inverse Probleme in der Seismologie als Fragen der Inferenz interpretiert, wobei
nicht versucht wird, eine einzige Antwort auf ein inverses Problem zu finden, sondern
allen möglichen Lösungen eine Wahrscheinlichkeit zuzuschreiben. Um nicht jede mög-
liche Lösung oder jedes mögliche Szenario auswerten zu müssen, werden Algorithmen
aus der computergestützten Statistik benötigt. Die Auswahl geeigneter Algorithmen ist
jedoch nicht trivial und erfordert oft ein gründliches Verständnis des vorliegenden inver-
sen Problems und die Kenntnis der verfügbaren potenziellen Algorithmen. Diese Arbeit
konzentriert sich auf die Verwendung eines bestimmten Algorithmus, Hamiltonian Monte
Carlo (HMC), und verwandter Varianten. Seine Anwendung auf die Bayessche Seismo-
logie wird aus verschiedenen Perspektiven untersucht.

Zunächst wird ein allgemeiner Fall zur Bewertung eines rechenintensiven inversen
Problems in der Seismologie mit HMC vorgestellt. Es wird gezeigt, dass die Verwendung
des HMC-Algorithmus es ermöglicht, die Full-Waveform-Inversion erfolgreich im Rah-
men einer Bayesschen Inferenz zu betrachten und die Inferenz von Parametern wie der
Dichte zu ermöglichen, die traditionell schlecht gelöst wurden.

Anschließend wird versucht, die Leistung der Algorithmen für eine bestimmte Klas-
se von inversen Problemen zu quantifizieren. Die Sammlung von No-Free-Lunch-Algo-
rithmen schließt aus, dass ein einzelner Algorithmus universell effizient ist, was zu der
Untersuchung führt, ob HMC und verwandte Algorithmen für eine reduzierte Menge re-
levanter Probleme optimal sein könnten. Obwohl dies bestätigt wird, wird der Versuch
durch den Fluch der Dimensionalität eingeschränkt, der die Analyse auf inverse Probleme
mit begrenzter Dimensionalität beschränkt.

Das aus diesen Algorithmen gewonnene Fachwissen wurde dann in eine zugängliche
und gut dokumentierte Sammlung von Open-Source-Code, genannt HMCLab, destilliert.
Diese Sammlung enthält zahlreiche didaktische Materialien, die darauf abzielen, HMC
und seine Varianten dem allgemeinen Geophysiker vorzustellen. Es werden verschiedene
inverse Probleme und ihre Bayessche Behandlung behandelt, zusammen mit Anleitungen
zur Implementierung von durch den Benutzer gestellten inversen Problemen.

Anschließend werden zwei Ansätze für die Erstellung effizienter Wellenfeldsimula-
tionscodes vorgeschlagen. Der erste, ein Open-Source-Paket namens psvWave, ist eine
in C++ geschriebene und in Python zugängliche Software zur parallelen Simulation von
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2D-Wellenfeldern. Der zweite Ansatz zeigt, wie moderne Unified Chips, die die Me-
tal Shading Language verwenden, zur Beschleunigung von bestehendem C++ verwendet
werden können. Die Benutzerfreundlichkeit wird anhand des psvWave-Pakets demons-
triert. Eine effiziente Wellenfeldmodellierung ist ein integraler Bestandteil der Bayess-
chen Seismologie, da eine Reduzierung der Rechenkosten umfangreichere Auswertungen
von wellenfeldbasierten inversen Problemen ermöglichen kann.

Die Dissertation schließt mit einem Bericht über mehrere seismologische Feldkam-
pagnen ab, die mit Hilfe von Luft- und Bodenphotogrammetrie ausführlich dokumentiert
wurden. In den drei Feldkampagnen wurden innovative Structure-from-Motion-Methoden
zur Digitalisierung von Feldstandorten eingesetzt. Es wurde gezeigt, dass diese Methoden
mit begrenzten Ressourcen und Unterhaltungselektronik zugänglich sind. Die Digitalisie-
rung mit ferngesteuerten Drohnen ermöglicht die sichere Untersuchung von gefährlichen
Feldern sowie die schnelle Vernetzung von Strukturen und Topografie für Wellenfeldsimu-
lationen, während bodengestützte Bilder eine kostengünstige und risikoarme Alternative
darstellen.
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Samenvatting

Dit proefschrift presenteert een verzameling van werken gericht op computationele sta-
tistiek in Bayesiaanse seismologie. Bayesiaanse seismologie interpreteert inverse proble-
men in de seismologie als inferentievragen, waarbij niet gestreefd wordt naar een enkel
antwoord op een invers probleem, maar naar het toekennen van een waarschijnlijkheid aan
alle mogelijke oplossingen. Om te voorkomen dat elke mogelijke oplossing of scenario
moet worden geëvalueerd, zijn algoritmen uit de computationele statistiek nodig. De se-
lectie van geschikte algoritmen is echter niet triviaal en vereist vaak een grondig begrip
van het inverse probleem in kwestie en kennis van de mogelijke beschikbare algoritmen.
Dit werk richt zich op het gebruik van een specifiek algoritme, Hamiltonian Monte Carlo
(HMC), en verwante varianten. De toepassing ervan op Bayesiaanse seismologie wordt
vanuit verschillende perspectieven bestudeerd.

Ten eerste wordt een algemene casus gepresenteerd voor het beoordelen van een re-
kenintensief invers probleem in de seismologie met HMC. Aangetoond wordt dat het
gebruik van het HMC-algoritme het mogelijk maakt om Full-Waveform Inversion met
succes te beschouwen binnen een Bayesiaans inferentiekader, waardoor de inferentie van
parameters zoals dichtheid, die traditioneel slecht werden opgelost, wordt ontsloten.

Dit wordt gevolgd door een poging om de prestaties van algoritmen te kwantificeren op
een bepaalde klasse van inverse problemen. De verzameling No-Free-Lunch algoritmen
sluit uit dat een enkel algoritme universeel efficiënt is, waardoor het onderzoek wordt
geleid naar de vraag of HMC en verwante algoritmen optimaal zouden kunnen zijn voor
een beperkte verzameling relevante problemen. Hoewel dit wordt bevestigd, wordt de
poging beperkt door de vloek van de dimensionaliteit, waardoor de analyse beperkt blijft
tot inverse problemen met een beperkte dimensionaliteit.

De expertise die is opgedaan met deze algoritmen is vervolgens gedistilleerd in een
toegankelijke en goed gedocumenteerde verzameling van open-source codes genaamd
HMCLab. Deze collectie bevat veel didactisch materiaal om HMC en zijn varianten uit
een te zetten voor de algemene geofysicus. Het behandelt verschillende inverse proble-
men en hun Bayesiaanse behandeling, samen met instructies voor het implementeren van
inverse problemen die door de gebruiker worden gesteld.

Vervolgens worden twee benaderingen voor het schrijven van efficiënte golfveldsi-
mulatiecodes voorgesteld. De eerste, een open-source pakket genaamd psvWave, is C++
geschreven en Python toegankelijke software ontworpen om 2D golfvelden parallel te
simuleren. De tweede benadering laat zien hoe moderne geunificeerde chips met behulp
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van de Metal Shading Language gebruikt kunnen worden om bestaande C++ te versnellen.
Het gebruiksgemak wordt gedemonstreerd op het psvWave pakket. Efficiënte golfveldsi-
mulatie is een integraal onderdeel van Bayesiaanse seismologie, omdat het verlagen van
de rekenkosten uitgebreidere evaluaties van inverse problemen op basis van golfvelden
mogelijk maakt.

Het proefschrift sluit af met een verslag van meerdere seismologische veldcampag-
nes die uitgebreid zijn gedocumenteerd met behulp van fotogrammetrie vanuit de lucht
en vanaf de grond. In de drie veldcampagnes werden Structure-from-Motion methoden
innovatief gebruikt om de veldlocaties te digitaliseren. Er wordt aangetoond dat deze me-
thoden toegankelijk zijn met beperkte middelen en consumentenelektronica. De digitali-
sering met behulp van op afstand bediende drones maakt veilig onderzoek van gevaarlijke
velden mogelijk, evenals de mogelijkheid om snel mazen van structuren en topografie te
maken voor golfveldsimulaties, terwijl beelden vanaf de grond een goedkoop alternatief
met weinig risico’s bieden.
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Chapter 1

Introduction

Science should be a narrative. Perhaps not when we consider academic publications in
highly specialised journals, but when we’re communicating our scientific story to the
wider scientific community and beyond, in communication, outreach and of course talking
to your non-academic peers. Narratives make the scientific facts palatable and digestible
and help to explain our motivations. However, storytelling is not the only goal. Maintain-
ing the process of sharing technical information with the peers in your field is a corner-
stone to performing science. Academic, sterile publications have their place and help to
ensure the utility of our works for other scientists.

Therefore, I’ve structured this work to embed my key academic publications within a
broader narrative. This approach illustrates not only my personal motivations behind these
works but also the developments and drivers from the seismological field that enabled and
guided this research. I will also discuss the projects I’ve been involved in, where I believe
my experience with algorithmic solutions made a significant contribution.

So, why did I dive into randomisation in Seismology? I have a fondness for algo-
rithms, simulations, technology, and collaboration. I aimed to explore what I thought
were promising avenues of possibility, perhaps making me the most opportunistic PhD
student to submit a thesis to my professor. At the same time, I tried to apply my methods
to every inverse problem I came across. In the end, my research did not follow the original
research plan outlined in December 2019, but the journey nevertheless has become very
insightful. In its totality it becomes a chaotic, random story that seems to reflect my own
attention span.

This narrative draws on multiple threads from academic history which have enabled
the present work. I will attempt to keep this history brief, because if you’re reading this,
there’s a high chance you’ve written a similar introduction. The following sections will
discuss Bayesian inference, computational statistics and seismic tomography.
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1. Introduction

1.1 Bayesian inference

Our ability to understand the world around us is fundamentally rooted in inference - the
process of updating our beliefs based on observations and experiments. This is a critical
procedure, as it provides a basis on which to quantify the scientific method. Updating our
beliefs within an inference framework allows scientists to refine or reject them further.

The cornerstone of statistical inference is a work from 1763. In this year, the posthu-
mously published seminal work of Thomas Bayes [Bayes, 1763] introduced the math-
ematical relationship that allows one to combine pieces of information in the form of
probability distributions, forming the basis of quantitative belief updating. This work in-
fluenced the nascent field significantly enough to have the statistical analysis of beliefs
propagated through models termed Bayesian inference.

An early adopter of Bayesian inference was Pierre-Simon Laplace, who independently
developed an analogue to Bayes’ Theorem in 1774 [Laplace, 1774] and used it in various
studies. His principle VI in Laplace [1814], loosely translated from the original text, reads
as follows:

Each of the causes to which an observed event can be attributed is indicated
with greater plausibility the more probable it is that, assuming this cause
exists, the event will occur. The probability of the existence of any of these
causes is therefore a fraction, with the numerator being the probability of the
event resulting from that cause, and the denominator being the sum of similar
probabilities related to all causes. If these various causes, considered a priori,
are unequally probable, instead of the probability of the event resulting from
each cause, the product of this probability and that of the cause itself must
be used. This is the fundamental principle of this branch of the analysis of
hazards, which consists of tracing events back to their causes.

This wording may be heavy compared to contemporary descriptions, but the key elements
of Bayes’ Theorem are recognisable. In modern notation, we simply write

p(A |B) = p(B |A) p(A)
p(B)

. (1.1)

In this notation, the distribution p(·) quantifies the probability of an event. In the context
of inference, an event is a very broad concept. It can be the event of observing a specific
outcome of an experiment, or the event that nature itself is in a specific state. In Laplace’s
interpretation, Bayes’ Theorem attempts to link two events: a cause A, and an observation
B. The distributions p(A) and p(B) are the prior beliefs of how likely events A and B are.

It wasn’t until the twentieth century that major developments in the field of Bayesian
inference led to the style of parameter estimation currently practised. Harold Jeffreys in-
troduced the concept of a non-informative expectation for an event [Jeffreys, 1939], as a
means to remain as unbiased as possible when evaluating hypotheses. Edwin Thompson
Jaynes argued that in the case of competing distributions, the maximum entropy distribu-
tion [Jaynes, 1957] should be used. This is, in essence, the least committal distribution
and can be considered a quantitative variant of Occam’s Razor.
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1.2. Computational statistics

The final building block of our modern interpretation of Bayesian inference is Albert
Tarantola’s work on inverse problem theory. Tarantola’s insights into the probabilistic
nature of inverse problems have shaped the way contemporary inference is conducted.
His early work showed us that to solve inverse problems means to [Tarantola and Valette,
1982], and his interpretation and notation were further solidified in his extensive textbook
Tarantola [2005].

The concept of Bayesian inference is more than just a powerful tool in statistical anal-
ysis. As a method of testing hypotheses, it has found widespread usage across the natural
sciences. Moreover, the mechanism of Bayesian inference itself has also been used to
model how the human brain learns, wherein a person updates their beliefs in accordance
with the rules of probability [e.g., Jaynes, 1988, Angela, 2007, Fletcher and Frith, 2009,
Clark, 2013]. For all its applicability, it might be worth regarding Bayesian inference not
as a method, but a philosophy.

1.2 Computational statistics

A gap of roughly two centuries separates the inception of Bayesian inference from the
advent of the modern computer. However, it is the computer that finally allows Bayesian
inference to live up to its potential. Pure mathematics alone turns out to be inadequate
for solving arbitrary inference problems, and ways to create numerical approximations of
distributions are needed.

In 1948, the first programmable multi-purpose computer was soon to be leveraged by
titans of twentieth-century particle physics. At Los Alamos National Laboratory, the site
of the recently declassified Manhattan project, the work of Nicholas Metropolis, Stanis-
law Ulam, and John von Neumann birthed the field of computational statistics. Their work
led to the development of the Metropolis algorithm [Metropolis et al., 1953], later refined
by Wilfred Keith Hastings into the Metropolis-Hastings algorithm [Hastings, 1970]. This
method and its many derivatives have become ubiquitous in modern computational sci-
ences. This early application of computational power to statistical problems continues to
influence scientific research, including the present work.

In 1987, Simon Duane and colleagues developed the Hybrid Monte Carlo algorithm
Duane et al. [1987], driven by the challenges in lattice field theory. Lattice field theory is a
computational method in theoretical physics where spacetime is discretised and fields are
defined at these lattice points, enabling the simulation of quantum mechanics through the
sampling of possible field states. As the number of particles and the complexity of fields
increased, generating new states became prohibitively expensive. Their approach merged
the randomness of the Metropolis-Hastings algorithm with the deterministic behavior of
simulating the equations of motion [Duane, 1985, shows how this was used to compute
intractable integrals as well], into a hybrid algorithm. Over the years, the Hybrid Monte
Carlo algorithm has become known as the Hamiltonian Monte Carlo (HMC) algorithm, as
the motion of the particles can be solved by Hamilton’s Equations. Some of the notable
works on HMC include Neal’s extensive review [Neal, 2011], the extension of the dynam-
ics to curved space to integrate the distribution’s second-order information [Girolami and
Calderhead, 2011], and the No U-Turn sampler [Hoffmann and Gelman, 2014].
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1. Introduction

Recent advances in computational statistics have seen the development of parallelised
MCMC [Geyer, 1991], transdimensional sampling [Green, 1995], sequential Monte Carlo
[Liu and Chen, 1998], and variational inference methods [e.g. Liu and Wang, 2019]. As
the range of computational methods has expanded dramatically, it could be argued that
the most significant recent development is the emergence of the "No-Free-Lunch" the-
orems [Wolpert and Macready, 1997]. These theorems state that no single method can
serve as a silver bullet. Therefore, assessing the attributes of a specific inference problem
and subsequently choosing the appropriate appraisal method remains, for the time being,
a skill exclusive to initiated experts.

1.3 Seismic tomography

One of the key competences of Earth scientists is to unravel the state of the Earth by
analysing observations. Akin to the the process Laplace described in his principle VI,
the observations of events are linked to causes through inference —- a crucial task, given
that many processes of the Earth occur beyond our direct observation. In seismology, this
process is further refined to the analysis of seismic waves.

Seismic waves, both those that occur naturally and anthropogenically, carry a wealth
of information. Over the last century and a half, the careful study of the wavefield from
various sources has enabled seismologists to distinguish multiple modes of vibration and
travel paths, leading to the distinction of various seismic phases in observations. These
different phases carry knowledge about both the originating processes and the subsur-
face they travelled through. Seismic tomography primarily aims to decode this subsurface
imprint on seismic phases, attempting to construct approximations of the Earth and ulti-
mately perform inferences about the state of the Earth based on seismic observations.

Somewhere around the middle of the 19th century the word seismology was invented,
and the field came with it. It marked the start of scientists using seismic phases to discover
key properties of the inner structure of the Earth. These very early studies often used the
time-of-flight between setting off a source and recording it at a receiver [Mallet and Mallet,
1858], to infer the wave speed of the subsurface.

Building on the basic concept of a seismic phase’s time-of-flight, ray tomography
[Dziewoński et al., 1977, Aki et al., 1977, Spakman et al., 1993, Hilst et al., 1997, Grand
et al., 1997, Gorbatov and Kennett, 2003] was one of the first practical approaches used to
probe the Earth’s deep interior. Advances in both computational resources and computa-
tional seismology subsequently facilitated the development of volumetric sensitivities in
seismic phase analysis [finite frequency tomography, see Yomogida, 1992, Dahlen et al.,
2000, Friederich, 2003, Yoshizawa and Kennett, 2004, Sigloch et al., 2008] and the com-
prehensive treatment of wave propagation physics [Full-Waveform Inversion (FWI), see
Bamberger et al., 1977, 1982, Lailly, 1983, Tarantola, 1984, Gauthier et al., 1986].

Although the term ’FWI’ might imply that this is the final iteration of tomography,
practical constraints have so far limited the fitting of a true full waveform. The computa-
tional cost associated with simulating the entire bandwidth of data has thus far constrained
seismologists to consider relatively low frequencies at any scale. Despite the computa-
tional limitations of FWI, its applications have ranged from seismic exploration [Sirgue
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1.4. Motivation

et al., 2010, Prieux et al., 2013, Warner et al., 2013], in regional tomographies [Chen
et al., 2007, Fichtner et al., 2009, Tape et al., 2010, Krischer et al., 2018], to the entire
Earth [French and Romanowicz, 2014, Bozdağ et al., 2016, Fichtner et al., 2018a, Thras-
tarson et al., 2022]. Current efforts are focusing on reducing the computational cost for
FWI and other simulation-based methods [van Herwaarden et al., 2020].

1.4 Motivation

If I had to distill my research into a single subject, it would be the study of the HMC
algorithm; its workings, its applicability to seismology and other natural sciences, as well
as its extendability. I’ve come to learn that it is a useful algorithm, that can be made effi-
cient for a wide class of problems we encounter in our research performed at Seismology
and Wave Physics. Like any algorithm, it is not, and can not be, a silver bullet. This is
demonstrated by other works that perform Bayesian FWI, such as Thurin et al. [2019],
Huang et al. [2020], Guo et al. [2020], Zhang and Curtis [2021] and Zhang et al. [2023a].
However, our continued work with the algorithm does allow for the practical usage of it,
naturally disproportionally so compared to algorithms we do not research actively.

The primary aim of my doctoral research was to explore the applicability of HMC
to the FWI problem, ranging from the synthetic scale to global waveform tomography.
Despite seismologists probing the Earth with seismic waves for many years, the field has
yet to construct satisfactory estimations of density and attenuation. These parameters are
heavily regularised in deterministic FWI across the scales, and as a result the derived
models are not widely trusted. The development of Bayesian methods for assessing the
information that data carries about these parameters allows for a more careful inference
about them.

However, as this work will demonstrate, genuine understanding cannot be achieved
without exploration. In the spirit of Bayesian thinking, I found value in traversing the
landscape of Bayesian seismology. While the development of global probabilistic models
did not materialise as initially hoped, owing to unforeseen limitations in HMC scaling, or
perhaps fortuitous diversions, my research evolved into a series of studies centered around
Bayesian inference, significant in their own right. The broadened understanding of HMC
and other gradient-based inference algorithms is crucial for the future of the field, as many
of the inverse problems that seismologists encounter are strongly non-linear, ill-posed, and
of high dimensionality. Studying the FWI problem using HMC provides key insights that
also have implications for the deterministic approach to this inverse problem. The anal-
ysis of the problem is further accelerated by developing more performant approaches to
simulating the wave equation. Lastly, by creating an accessible software package for car-
rying out Bayesian seismology, this work provides a springboard for more seismologists
to incorporate Bayesian methods into their research. The end result is a thesis on com-
putational statistics in seismology, with a flourish of small projects in other branches of
seismology.
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1. Introduction

1.5 Outline

This thesis is structured into four parts. Part I, titled "The preliminaries", comprises sim-
ply this introduction. Part II, "First author works", consists of separate first author works
I have produced throughout my doctoral studies. These chapters are included verbatim,
following the style of a cumulative thesis. Chapter 2 presents the application of HMC to
the FWI problem. Chapter 3 describes the software package HMCLab, developed collab-
oratively by Andrea Zunino and myself in two distinct programming languages. Chapter 4
attempts to provide a numerical estimate of how cost-effective inference algorithms can
be, providing numerical insights into the No-Free-Lunch theorems. Chapter 5 outlines
an open-source parallel implementation of 2D elastic FWI, facilitating rapid prototyp-
ing for geophysical inversion techniques. Chapter 6 exploits recent hardware advances
in consumer electronics to demonstrate how numerical simulations may be accelerated on
portable hardware. Lastly, Chapter 7 details a series of field campaigns designed to support
different branches of seismology. The details on the publication and peer-review status are
provided at the beginning of each chapter. Part III, "Scientific collaborations", highlights
productive collaborations with individuals outside of my research group. Chapter 8 details
collaborations within seismology, and Chapter 9 outlines those outside of geophysics. As
for these works I am not the first author, I will reproduce the relevant abstracts of the
works, and highlight my relevant contribution. Finally, Part IV, "Synthesis", synthesises
all aspects of my research, offering insights into promising research areas and providing
concluding remarks.
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Chapter 2

Bayesian Full-Waveform Inversion using
Hamiltonian Monte Carlo

Chapter published as L. Gebraad, C. Boehm, and A. Fichtner. Bayesian Elastic Full-
Waveform Inversion Using Hamiltonian Monte Carlo. J. Geophys. Res., 125(3):e2019JB018428,
Feb. 2020. doi: 10.1029/2019JB018428.

Abstract

We present a proof of concept for Bayesian elastic full-waveform inversion in 2D. This is
based on (1) Hamiltonian Monte Carlo sampling of the posterior distribution, (2) the com-
putation of misfit derivatives using adjoint techniques, and (3) a mass matrix tuning of the
Hamiltonian Monte Carlo algorithm that accounts for the different sensitivities of seismic
velocities and density. We apply our method to two synthetic end-member scenarios with
different dimension D that are particularly relevant in the context of full-waveform inver-
sion: low-dimensional models (D < 100) with potentially large variations in material pa-
rameters, and high-dimensional models (D > 300000) describing smaller-scale variations
of lower amplitude relative to some background. For both end members, the Hamilto-
nian Monte Carlo sampling reliably recovers important aspects of the posterior, including
means, covariances, skewness, as well as 1D and 2D marginals. Depending on the strength
of material variations, the posterior can be significantly non-Gaussian. This suggests to
replace local methods for uncertainty quantification based on Gaussian assumptions by
proper sampling of the posterior. In addition to P-wave and S-wave velocity, the sam-
pling provides constraints on density structure that are free from subjective regularization
artifacts.
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2.1 Introduction

2.1.1 Full-waveform inversion

While having been conceptualized already in the late 1970’s and early 1980’s [Bamberger
et al., 1977, 1982, Lailly, 1983, Tarantola, 1984, Gauthier et al., 1986], practical full-
waveform inversion (FWI) is a comparatively recent addition to the seismological toolbox.
Based on numerical wave propagation through potentially complex Earth models, it is the
natural extension of ray tomography [Dziewoński et al., 1977, Aki et al., 1977, Spakman
et al., 1993, Hilst et al., 1997, Grand et al., 1997, Gorbatov and Kennett, 2003] and finite-
frequency tomography [Yomogida, 1992, Dahlen et al., 2000, Friederich, 2003, Yoshizawa
and Kennett, 2004, Sigloch et al., 2008]. In recent years, successful applications of FWI
have been reported in seismic exploration [Sirgue et al., 2010, Prieux et al., 2013, Warner
et al., 2013], in regional studies [Chen et al., 2007, Fichtner et al., 2009, Tape et al., 2010,
Krischer et al., 2018], and for the whole Earth [French and Romanowicz, 2014, Bozdağ
et al., 2016, Fichtner et al., 2018a].

The non-linearity of the inverse problem, i.e. the non-linear relation of waveform fit
with respect to the medium parameters, can in principle be handled elegantly by Monte
Carlo sampling [Mosegaard and Tarantola, 1995, Sambridge and Mosegaard, 2002]. How-
ever, the high-dimensionality of the model space paired with the computational costs of
the forward problem, have so far limited its applicability to low-dimensional special cases
[Käufl et al., 2013, Afanasiev et al., 2014, Kotsi et al., 2018, Hunziker et al., 2019, Visser
et al., 2019]. For the same reasons, resolution and uncertainty analysis in FWI is still
mostly local, making the assumption of a Gaussian posterior centered near a hopefully
meaningful approximation of the maximum-likelihood model [Fichtner and Trampert,
2011, Bui-Thanh et al., 2013, Fichtner and Leeuwen, 2015, Liu et al., 2019a,b].

With this work, we explore non-linearity and uncertainty quantification in FWI with
a high-dimensional model space using a sampling method that has recently been popu-
larised in geophysics, known as Hamiltonian Monte Carlo (HMC) [Duane et al., 1987,
Betancourt, 2017, Sen and Biswas, 2017, Fichtner et al., 2018b, Fichtner and Simute,
2018]. Exploiting derivative information, HMC may solve high-dimensional problems
where widely-used variants of the Metropolis-Hastings algorithm [Chib and Greenberg,
1995] tend to fail. This work seeks to extend previous Bayesian FWI studies by making no
assumptions on the characteristics of the posterior as well as not to perform dimensionality
reduction of it, while accelerating sampling by using the HMC algorithm.

2.1.2 Objectives and outline

Our primary objective is a proof of principle that HMC can be successfully applied to two
end-member cases of 2D elastic FWI: (1) the non-linear search for coarse and a priori
poorly known models that may serve as plausible starting points for subsequent spatial
refinements, and (2) the probabilistic inversion for smaller-scale variations within more
limited bounds, set, for instance, by the previous coarse-scale inversion combined with
geologic prior knowlege.
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We begin, in section 2.2, with a summary of the necessary theoretical background,
including Bayesian inference, Markov chain Monte Carlo, Hamiltonian Monte Carlo,
and numerical seismic wave propagation. In section 2.3, we consider comparatively low-
dimensional FWI, with 75 free parameters in total. This corresponds to the end-member
case (1) described above. Section 2.4 is focused on high-dimensional problems. Specifi-
cally, we show that a single HMC chain can provide uncertainty information for > 300000
material parameters locally, while the algorithm also allows us to globally explore a pos-
terior for as many parameters. Finally, in section 2.5, we provide a detailed discussion
of advantages and drawbacks of the method. Also, we indicate possible improvements
that are likely to increase the efficiency of the sampler, possibly allowing it to address
higher-dimensional 3D problems in the future.

2.2 Theoretical background

We consider 2D elastic, isotropic models with density, r , S-wave velocity, vs, and P-wave
velocity, vp, as free parameters. The HMC algorithm can be readily applied to FWI, as
gradients of the misfit function can be conveniently computed using adjoint techniques
[Lions, 1968, Tarantola, 1988, Liu and Tromp, 2006, Fichtner et al., 2006a,b, Plessix,
2006]. There are, however, important technical details concerning target models, algo-
rithm tuning, and model priors that affect the efficiency of the sampling. The following
subsections comprise a short introduction to the theory of basic HMC sampling, and the
synthesis of FWI and HMC. For a complete theoretical overview of and possible exten-
sions to HMC we refer to Neal [2011] and Betancourt [2017]. Summaries of FWI theory
can be found in Virieux and Operto [2009], Fichtner [2011] and Liu and Gu [2012].

2.2.1 Bayesian inference and Markov Chain Monte Carlo

To set the stage and to establish basic notation, we begin with a brief recapitulation
of Bayesian inference [Jaynes, 2003, Tarantola, 2005]. For this we define m as an n-
dimensional vector containing values of the discretized material properties r , vs and vp.
Information on m available prior to the analysis of any data is decribed by the probability
density function (PDF) p(m). Similarly, the prior probability of observing data dobs given
a specific m is encoded by a conditional PDF p(dobs|m), usually referred to as the likeli-
hood function. Both priors, p(m) and p(dobs|m), can be combined into the posterior PDF
p(m|dobs) using Bayes’ theorem,

p(m|dobs) =
p(dobs|m)p(m)

p(dobs)
. (2.1)

The evidence p(dobs) =
R

p(dobs|m)p(m)dm normalizes the posterior p(m|dobs), which
contains all possibly available information on models m given observations dobs. In this
study, the focus of the Bayesian inference is the unnormalized density, and therefore we
do not consider the evidence further. It is, however, a relevant quantity which tests the
relative validity of the assumptions made in the inference [Sambridge et al., 2006]. The
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likelihood function is typically written as exponential of a misfit function c(m,dobs),

p(dobs|m) µ e�c(m,dobs) . (2.2)

The misfit function serves as a measure of fit between observed data dobs and synthetic
data d computed from m via the solution of the forward modelling equations.

The posterior p(m|dobs) is an n-dimensional PDF that is usually not known explicitly.
Therefore, quantities of interest, such as means, (co)variances or marginal PDFs, are typ-
ically approximated by Markov chain Monte Carlo (MCMC) sampling of p(m|dobs). All
MCMC methods suffer from the curse of dimensionality in some form. Widely used vari-
ants of the Metropolis-Hastings algorithm [Metropolis et al., 1953, Hastings, 1970, Chib
and Greenberg, 1995, Mosegaard and Tarantola, 1995], for instance, require increasingly
smaller step sizes as the dimension n grows, in order to ensure reasonable acceptance rates
of proposed models. As a consequence, model space exploration is slow, and subsequent
samples are highly correlated. Hamiltonian Monte Carlo (HMC), outlined in the follow-
ing paragraphs, has been designed to overcome this problem, and to enable long-distance
moves through model space while maintaining high acceptance rates [Duane et al., 1987,
Neal, 2011, Betancourt, 2017].

2.2.2 Hamiltonian Monte Carlo

Originally developed for molecular dynamics under the name hybrid Monte Carlo [Duane
et al., 1987], Hamiltonian Monte Carlo (HMC) is now commonly used for the subset of
sampling problems where gradients of the posterior p(m|dobs) with respect to the model
parameters m are easy to compute. The cost of generating independent samples with
HMC under increasing dimension n grows as O(n5/4) [Neal, 2011], whereas it grows as
O(n2) for standard Metropolis-Hastings [Creutz, 1988].

HMC constructs a Markov chain over an arbitrary n-dimensional probability density
function p(m) using classical Hamiltonian mechanics [Landau and Lifshitz, 1976]. The
algorithm regards the current state m of the Markov chain as the location of a physical
particle in n-dimensional space M. It moves under the influence of a potential energy, U ,
which is defined as

U(m) =� ln p(m) . (2.3)

In the case of a Gaussian probability density p, the potential energy U is up to an additive
constant equal to the least-squares misfit c(m). To complete the physical system, the
state of the Markov chain needs to be artificially augmented with momentum variables p
for every dimension and a generalized mass for every dimension pair. The collection of
resulting masses are contained in a positive definite mass matrix M of dimension n⇥ n.
The momenta and the mass matrix define the kinetic energy of a model as

K(p) = 1
2

pT M�1p . (2.4)
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In the HMC algorithm, the momenta p are drawn randomly from a multivariate Gaussian
with covariance matrix M. The location-dependent potential and kinetic energies consti-
tute the total energy or Hamiltonian of the system,

H(m,p) =U(m)+K(p). (2.5)

Hamilton’s equations

dm
dt

=
∂H
∂p

,
dp
dt

=� ∂H
∂m

(2.6)

determine the position of the particle as a function of the artificial time variable t . We can
simplify Hamilton’s equations using the fact that kinetic and potential energy depend only
on momentum and location, respectively,

dm
dt

= M�1p , dp
dt

=� ∂U
∂m

. (2.7)

The combination of a model m and kinetic energy p is called a state, and is uniquely linked
to a potential, kinetic and total energy. Evolving model m and kinetic energy p over time t
generates another possible state of the system with new position m̃, momentum p̃, poten-
tial energy Ũ , and kinetic energy K̃. Due to the conservation of energy, the Hamiltonian
is equal in both states. Successively drawing random momenta and evolving the system
generates a distribution of the possible states of the system. Thereby, HMC samples the
joint momentum and model space, referred to as phase space. As we are not interested in
the momentum component of phase space, we marginalize over the momenta by simply
dropping them. This results in samples drawn from the distribution exp(�U(m)), i.e.
p(m).

If one could solve Hamilton’s equations exactly, every proposed state would be a valid
sample of p(m). Since Hamilton’s equations for non-linear forward models cannot be
solved analytically, the system must be integrated numerically. Suitable integrators are
symplectic, meaning that time reversibility, phase space partitioning and volume preser-
vation are satisfied [Neal, 2011, Fichtner and Zunino, 2019]. However, the Hamiltonian
is generally not preserved exactly when explicit time-stepping schemes are used. In this
work, we employ the leapfrog method as described in Neal [2011]. As the Hamiltonian is
not preserved, the time evolution generates samples not exactly proportional to the origi-
nal distribution. A Metropolis-Hastings correction step is therefore applied at the end of
numerical integration.

In summary, samples are generated starting from a random model m in the following
way:

1. Propose momenta p according to the Gaussian with mean 0 and covariance M;

2. Compute the Hamiltonian H of model m with momenta p;

3. Propagate m and p for some time t to m̃ and p̃, using the discretized version of
Hamilton’s equations and a suitable numerical integrator;
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4. Compute the Hamiltonian H̃ of model m̃ with momenta p̃;

5. Accept the proposed move m ! m̃ with probability

paccept = min
�
1,exp(H � H̃)

�
. (2.8)

6. If accepted, use (and count) m̃ as the new state. Otherwise, keep (and count) the
previous state. Then return to 1.

The main factor influencing the acceptance rate of the algorithm is the conservation of
energy, H, along the trajectory. If the leapfrog integration has too large time steps, or the
gradients of the misfit function are computed incorrectly (e.g., by badly discretizing the
forward model), H is less well conserved, and the algorithm’s acceptance rate decreases.

The main cost of HMC, compared to other MCMC samplers, is the computation of the
gradient ∂U/∂m at every step in the leapfrog propagation. When gradients can be com-
puted easily, HMC can provide improved performance for two reasons: (1) the reduced
cost of generating independent samples, that is, the avoidance of random-walk behaviour
[Neal, 2011], and (2) the better scaling of HMC with increasing dimension [Creutz, 1988,
Neal, 2011].

The tuning parameters in HMC are simulation time t and the mass matrix M. HMC
has the potential to inject additional knowledge about the distribution p via the mass ma-
trix in order to enhance convergence significantly. At the same time, the abundance of
tuning parameters also creates potential for choosing inefficient settings, leading to sub-
optimal convergence. Fichtner et al. [2018b] and Fichtner and Zunino [2019] both illus-
trate how to create relevant mass matrices for tomographic inverse problems.

We adapt the specific tuning strategy for the mass matrix in this study depending on the
target, as illustrated in the following sections. However, for all targets we choose the size
of the discrete time steps empirically such that the acceptance rate is close to the optimum
of 65 % [Neal, 2011]. This typically results in needing approximately 10 leap-frog steps
per proposal, i.e. requiring this many forward and adjoint solves per proposal.

2.2.3 Numerical seismic wave propagation

Our inversions target 2D vertical cross sections of isotropic wave velocities and density.
For this, we consider the P-SV wave system, written in velocity-stress formulation as

∂t vx = r�1 (∂xtxx +∂ztxz) , (2.9)
∂t vz = r�1 (∂xtxz +∂ztzz) , (2.10)

∂ttxx = (l +2µ)∂xvx +l∂zvz , (2.11)
∂ttzz = (l +2µ)∂zvz +l∂xvx , (2.12)
∂ttxz = µ (∂zvx +∂xvz) (2.13)

with the velocity vector (vx,vz), the stress tensor components txx, tzz and txz, the Lamé
coefficients l and µ , and density r . All quantities are a function of position x = (x,z).
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We discretize these differential equations using the fourth-order variant of the staggered-
grid finite-difference scheme developed by Virieux [1986]. As free parameters we use the
P-wave velocity vp =

p
(l +2µ)/r , the S-wave velocity vs =

p
µ/r , and density, r .

For the computation of sensitivity kernels, we use the adjoint method [Lions, 1968,
Tarantola, 1988, Liu and Tromp, 2006, Fichtner et al., 2006a,b, Plessix, 2006]. Sub-
sequently, we project the kernels onto the basis functions, used to represent the elastic
medium. This yields the gradient needed in the HMC algorithm.

2.2.4 Waveform misfit and tempering
An important choice in the solution of an inverse problem is the misfit used to quantify
differences between observed data dobs and synthetic data d(m). It determines, among
other things, the extent to which different parameters can be resolved. In the interest of
simplicity, we choose the L2 waveform difference,

cL2(m) =
1
2 Â

i

✓
di,obs �di(m)

si

◆2
, (2.14)

where the indices i denote time samples. The scalars si are the standard deviations per
data point, corresponding to a diagonal data covariance matrix. More complex and in
real-data applications more meaningful data covariances can be used; but this is beyond
the scope of this synthetic study.

The data variances s2
i can be parameters of the inversion, which may be estimated by

hierarchical inversion [Malinverno and Briggs, 2004, Bodin et al., 2012]. They should,
however, not be changed to make the HMC sampler behave in a specific way [Scales and
Snieder, 1997]. Choosing an identical variance s2

i = s2 for all data points, makes s2

behave analogously to the temperature parameter T in tempering [Geyer and Thompson,
1995, Sambridge et al., 2013]. A tempered distribution pT is constructed from the original
distribution p as

pT(m) = p(m |dobs)
1/T µ exp

⇣
� c

T

⌘
(2.15)

The variable T determines the temperature of the tempered distribution pT . We analyse
the impact of changing temperature as a proxy for changing data variance (i.e., noise
levels) in section 2.4.

Though the L2 waveform difference (2.14) has been used traditionally in FWI studies
[Bamberger et al., 1982, Tarantola, 1984, Gauthier et al., 1986, Igel et al., 1996], other,
and in practice often more suitable, misfits may be used [Luo and Schuster, 1991, Gee and
Jordan, 1992, Fichtner et al., 2008, Leeuwen and Mulder, 2010, Métivier et al., 2016]

HMC does not necessarily require a globally convex misfit function. However, the
absence of local minima generally improves convergence, sometimes at the expense of
reduced resolution. For an illustration of the behaviour of HMC in multimodal posteri-
ors and possible mitigations, we refer to Neal [2011]. The L2 waveform misfit (2.14) is
dominated by large-amplitude S-waves, whereas lower-amplitude P-waves have a smaller
influence. This property will be reflected in the inversion results.
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2.2.5 Prior information

All model priors used in this work are uniform distributions within certain bounds. The
width of the prior reflects two end-member scenarios and objectives of Bayesian FWI:
(1) To find a range of admissible initial models for deterministic FWI, a small number of
model parameters will be used with a weak prior, that is, a broad uniform distribution. This
mode of operation is related to global optimization in the potential presence of multiple
local minima. (2) In contrast, a large number of model parameters with deviations from
a well-known background is needed to constrain small-scale deviations. Their priors will
be stronger, that is, the uniform distribution will be comparatively narrow. As with the
misfit and data covariance model, the uniform prior was chosen for its simplicity. In
practice, more complex and meaningful priors can and should be used, which for example
introduce correlations (i.e. smoothness constraints on admissible models). Examples of
constructing geologically realistic priors can be found in e.g. Linde et al. [2015].

In the HMC sampling, any model with non-zero prior likelihood could be proposed.
Consequently, the finite-difference simulations must be numerically stable for any model
admitted by the prior. This requires a conservative choice of temporal and spatial sampling
for the finite-difference simulations, dependent on the width (bounds) of the prior. In
this work, all prior realisations still result in numerically stable wavefield simulations.
Additionally, the boundaries of the prior have to be evaluated explicitly when solving
Hamilton’s equations, as these are not differentiable. As soon as the probability of the
prior goes to zero outside of the prior, the particle encounters a potential wall. Thus, when
the model passes a boundary of the uniform distributions in one dimension, it is perfectly
reflected across this boundary back into the relevant part of model space.

2.3 Low-dimensional model space sampling

We start with the case of a low-dimensional model space where Earth structure is a priori
poorly known and represented by few basis functions. This scenario is intended to mimic
the situation where plausible but yet simple initial models for a deterministic FWI need to
be found, often in the presence of limited data (in spatial coverage, bandwidth, or both).
The priors used are relatively wide with respect to the next section, with space-invariant
uniform distributions in the interval 2000± 1000 m/s for vp, 800± 400 m/s for vs, and
1500±500 kg/m3 for r .

In the interest of simplicity and easy visualization, we consider two checkerboard
patterns, shown in Fig. 2.1. Both checkerboard models are embedded in the same physical
domain, and they share identical source-receiver setups. The domain is 125 m by 125
m wide, with absorbing boundaries at all sides except the top, where a free surface is
implemented. Waves from two moment tensor sources are recorded by six receivers. The
source time function is a Ricker wavelet with a central frequency of 50 Hz and is assumed
known. The number of checkerboard blocks is 5⇥ 5. Having three physical parameters,
this corresponds to model space dimension of 75.

The checkerboards, used to compute artificial data, differ in one aspect: The anomaly
strength is either 10 % or 25 % relative to the background, and for all model parameters,
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Figure 2.1: Checkerboard patterns in vp, vs, and r . The source-receiver setup and the do-
main dimensions are identical, with receivers (H) present both at depth and at the surface.
The source mechanisms, represented by beachballs, are equally oriented.

vp, vs, and r . Variable anomaly strength allows us to investigate the effect of increas-
ing non-linearity on algorithm performance and the posterior distributions. The weaker
perturbations are referred to as checkerboard 1, whereas the stronger perturbations are re-
ferred to as checkerboard 2. In all chequerboard inversions, the assumed noise levels are
equal, but no actual noise is added.

2.3.1 Tuning strategy and starting models

While the mass matrix M can in principle be any positive definite matrix, its design deter-
mines the effectiveness of HMC by controlling the relative speed of the particle (i.e., the
model) for every separate dimension in model space. Ideally, all dimensions are explored
equally fast. For linear inverse problems (with Gaussian prior and Gaussian noise model),
this can be achieved with a mass matrix that equals the inverse posterior covariance [Ficht-
ner et al., 2018b].

The posterior covariance matrix is, by definition, not known a priori, and our inverse
problem is not linear. Therefore, we employ a trial-and-error tuning strategy based on the
acceptance rate and trace plots of preliminary runs of the Markov chain. For this, we first
simplify the mass matrix (with dimensions 75⇥75) to three tuning parameters, with one
mass for each parameter set (mvp , mvs , and mr ),

M =

2

4
mvp I25

mvs I25
mr I25

3

5 , (2.16)

where I25 stands for the 25⇥ 25 identity mass matrix. An added benefit is that the mass
matrix is diagonal, which greatly accelerates the computation of kinetic energy (2.4) and
the proposal of momenta.
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Figure 2.2: Iterative tuning of the mass matrix for checkerboard target 2 as given in
Fig. 2.1. Top: Trace plot of an exploratory Markov chain. Each curve corresponds to
one of the 75 model parameters. Coloring represents the parameter class. Bottom: The
corresponding waveform misfit during this chain. Every vertical line represents an update
of the three scalar masses. The parameters with the strongest impact on the misfit stabilize
first.

The tuning of mvp , mvs and mr is illustrated in Fig. 2.2. We start with a mass matrix
equal to the identity matrix. During the first few hundred samples, the values of vs stabilize
into two groups, as expected for the checkerboard. However, the values of vp and r hardly
move, suggesting that their masses are too large. Therefore, after around 2900 samples,
we decrease mvp and mr . This leads to larger movement of the respective parameters; and
after around 4000 samples also the values of r have stabilized. To further increase the
movement of vp, we again decrease mvp . This sequence can be repeated several times. In
this specific example, 3 iterations were sufficient to obtain reasonable values for mvp , mvs

and mr .

The initial model for all inversions is chosen to be homogeneous. After the preliminary
tuning chain, the samples after the last mass matrix update are used to supply initial models
for subsequent Markov chains. These models are chosen at random.
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2.3.2 Sampling strategy and performance

We sample the posterior by naïve parallelization on a computing cluster, meaning that we
simultaneously run 20 to 40 chains with identical settings but different starting models.
Autocorrelations of all parameters of properly converging chains fall below 0.1 within 5 %
of the total chain length, and subsequently oscillate around zero. We terminate the chains
empirically; when no apparent change to means and variances is observed over many
samples the chain is terminated. Afterwards, we assess convergence through the joint
analysis of parameter autocorrelations, Geweke tests [Geweke, 1991], running means and
variances, and trace plots of parameters and misfit. A more detailed discussion about con-
vergence can be found in section 2.5 while the convergence analysis can be found in the
electronic supplement. The results are Markov chains with 100’000 samples (target 1) and
600’000 samples (target 2), respectively. Their properties are summarized in Table 2.1.
The following subsections highlight interesting results from selected Markov chains. Pos-
terior statistics for all targets are accessible in the electronic supplement. Generating a
single proposal for the targets in this section requires about 6 seconds on 12 logical cores
of an 36 logical core Intel i9-7980XE CPU @ 2.60GHz.

2.3.3 Marginal moments and maximum poster probability

Though non-linearity implies non-Gaussianity, we begin the characterization of the pos-
terior with an analysis of means and standard deviations, shown in Figs. 2.3a,b for target
2. While the posterior mean vs model is nearly identical to the target vs model, larger
differences between mean and target are visible for vp and r . This is also reflected in
the standard deviations, which are significantly larger for r and vp than for vs. In this,
somewhat limited sense, vs is better resolved than r and vp. These results are plausible
given the relative insensitivity of seismic waveforms to density, and the dominance of
larger-amplitude S waves over lower-amplitude P waves in the L2 waveform misfit [Blom
et al., 2017]. For all parameters, the magnitude of the standard deviations is much smaller
than the uniform prior standard deviations (sprior = width/

p
12), indicating that we were

able to reduce dispersion of the marginals using the FWI experiment, i.e. we ‘learned
something’.

As can be seen in Fig. 2.3, standard deviations depend on the target parameter value,
in addition to depending on location relative to sources and receivers. The dependence
of posterior standard deviations on the target itself is a consequence of non-linearity and
non-Gaussianity, which is more explicitly expressed by the third statistical moment, the
skewness

S =
E
⇥
(X � X̄)3⇤

E[(X � X̄)2]3/2 , (2.17)

where X is a physical parameter (e.g., vs), E[.] denotes the mean, and X̄ = E[X ]. The
skewness is a measure of dispersion where positive and negative deviations contribute in
opposite magnitude, due to the third power. Thereby, skewness is a measure of lopsid-
edness or asymmetry of a distribution. Non-zero values indicate whether the distribution
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2.4. High-dimensional model space sampling

is leaning heavily to one side, i.e., having asymmetric tails. A (multivariate) normal dis-
tribution, corresponding to the posterior of a linear inverse problem, has zero skewness.
For illustration, a skew-normal distribution with two different skewness values is shown
in Fig. 2.4. Note that the mean, median, and mode are all different. This in turn im-
plies that plotting the mean model is not a sufficient characterization for highly skewed or
non-normal distributions.

Skewness in target 2, shown in Fig. 2.3, is non-zero for many parameters, indicat-
ing a non-Gaussian posterior. This suggests that the use of a Hessian approximation for
uncertainty quantification in full-waveform inversion may not be sufficient.

Additionally shown in Fig. 2.3 is the model (sample) with the maximum posterior
probability (MAP) evaluated during sampling. Although occasionally interpreted as the
solution, it is most likely not the absolute global minimum. In this case, the MAP model
actually reflects the target worse than the means of the Markov chain, especially for P-
wave velocity. However, from a wave-physical point of view, the MAP model (as well as
all other samples) do explain the observations adequately. To make the posterior draws
and the MAP model more geologically relevant one would need to encode this in the
prior (e.g. [Linde et al., 2015]), as the wave physics (likelihood) doesn’t require this. We
deliberately make our prior unrestrictive, such that we prevent artificially reducing the
effective dimension of the model space and making the inverse problem easier to solve.

2.3.4 Joint distributions and inter-parameter moments

In addition to the marginal statistical moments, sampling also allows us to visualize
marginal or conditional distributions. An example of a 2D marginal for the checker-
board targets is shown in Fig. 2.5. The two parameters visualized are P-wave velocities in
neighboring blocks centered at (78 m, 62 m) and (78 m, 46 m). As a consequence of non-
linearity, the marginal is significantly non-Gaussian, and the parameters are strongly de-
pendent, even for target 1 with the lower-amplitude perturbations. This, again, highlights
that uncertainty analysis based on a Gaussian approximation may have limited meaning.

Posterior samples provide information on covariance, which allows us to compute
correlations between model parameters in the posterior. The correlation matrix for target
2 is shown in Fig. 2.6. A more physical interpretation can be done by selecting one
column/row from the correlation matrix and plotting the values in the corresponding basis
functions. This has been done for parameter 8 of target 2 in Fig. 2.7. In the electronic
supplement correlations between all parameters are available. Higher-order co-moments
(e.g. co-skewness, co-kurtosis) are also available from the samples, but are more difficult
to interpret.

2.4 High-dimensional model space sampling

Following the consideration of a relatively low-dimensional case with large prior uncer-
tainties, we continue with a high-dimensional model space that is more suitable for the
representation of detailed geologic structures. Combined with lower prior uncertainties,
this corresponds to a scenario where we seek smaller-scale variations relative to a coarse
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Figure 2.3: Summary of the posterior distribution, including the MAP point and first
three statistical moments for checkerboard target 2 shown in Fig. 2.1. These quantities are
computed from chain B in Table 2.1. While S-wave velocity in the MAP model (subfigure
C) is virtually indistinguishable from the respective means (subfigure F), density and P-
wave velocity show deviations. Density and S-wave velocity are well resolved in the
sense of having small standard deviations, but P-wave velocity is not as close to the true
model for both the means as well as the MAP model. As expected, the smallest standard
deviations (subfigures G through I) for all parameters occur close to the sources. A large
portion of the parameters has non-zero skewness (subfigures J through L), indicating that
these are non-Gaussian. The green box plotted in subfigure E refers to the parameters
visualized in Fig. 2.5.
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2.4. High-dimensional model space sampling

A B

Figure 2.4: Examples of two skew-normal distributions with positive (subfigure A) and
negative (subfigure B) skew. The two lines plotted are: a line connecting the mean on the
x-axis with the mode (maximum of the distribution) and a line dividing the PDF area in
half (median). The skew-normal distributions are described with location 0, scale 1, and
skewness 5 (subfigure A) or -5 (subfigure B).

A B

Figure 2.5: Examples of 2D joint distributions for two highly skewed and correlated
parameters of checkerboard targets 1 (subfigure A) and 2 (subfigure B), shown in Fig. 2.1.
The two parameters are P-wave velocity of adjacent basis functions, shown by the green
rectangle in Fig. 2.3. These 2D marginals are extreme cases of non-Gaussian behaviour in
the obtained posteriors. Note, however, that for target 1 (smaller perturbations), the mean
and samples of the entire marginal distribution are closer to the target model compared to
those for target 2 (larger perturbations).
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2. Bayesian FWI using HMC

Figure 2.6: Correlation matrix for checkerboard target 2 shown in Fig. 2.1. Parameter
correlations are significant within all parameter groups, but also occur between parameter
groups. Density is positively correlated to surrounding densities, while velocities are neg-
atively correlated to surrounding velocities.
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2.4. High-dimensional model space sampling

A

Figure 2.7: Correlations to parameter 8 for checkerboard target 2 shown in Fig. 2.1.
Parameter 8 is highlighted by the white box. The positive correlation between densities is
focused around parameter 8, as seen in subfigure A. Thus, if one of these densities is found
to be higher (lower), neighboring densities are likely to be higher (lower). This is opposed
to the (weak) negative correlation to some of the surrounding P-wave velocities as seen
in subfigure B. If the density is found to be higher (lower), the surrounding velocities are
expected to be lower (higher).

background model that is already well constrained.

Specifically, we construct a 320400-dimensional target that mimics a geological structure
set in a transmission-dominated experiment. The free parameters are vp, vs and r de-
fined on the 180⇥ 60 = 100800 finite-difference grid points. The sources have random
moment tensors and are positioned near the bottom of the domain. As source-time func-
tion we again use a Ricker wavelet with dominant frequency of 50 Hz. Note that at the
dominant frequency, the spatial structure is sub-wavelength. The structural target and
source-receiver setup are shown in Fig. 2.8.

While the increased model space dimension acts to decelerate convergence relative to
the low-dimensional checkerboard models, this is balanced by stronger prior knowledge,
that is, smaller variations with respect to the background. The prior distributions are
uniform in the interval 2000 ± 100 m/s for vp, 800 ± 50 m/s for vs, and 1500 ± 100
kg/m3 for r .

Additionally, we vary data variance to investigate the influence of the (assumed) noise
level. The data variance is given by s2 in Eq. (2.14), and varied from s2 = 10 µm2 to
s2 = 1 µm2 and finally to s2 = 0.1 µm2. We henceforth describe these values qualita-
tively as high (10 µm2), medium (1 µm2), and low (0.1 µm2) data variance. The data
noise described by it’s variance was not added as synthetic noise to the data. As before,
important characteristics of all chains are summarized in Table 2.1 and posterior statistics
of all targets are accessible through the electronic supplement. The time needed for gen-
erating a single proposal for the target in Figure 2.8 is approximately 12.5 seconds on 12
logical cores of an 36 logical core Intel i9-7980XE CPU @ 2.60GHz.

2.4.1 Updated tuning strategy

The tuning strategy from section 2.3.1, where the mass matrix is simplified to include only
three parameters, works well when the data variance is high, i.e., when the typical set oc-
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z
z

z

A

B

C

Figure 2.8: Structural target with 100800 free parameters for vp, vs and r plotted, respec-
tively, s in subfigures A, B and C. The dashed black line indicates the region within which
parameters are allowed to vary. Sources and receivers are indicated by beachballs and
black H symbols, respectively.
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cupies a large model space volume. However, for lower data variances, the volume of the
typical set shrinks quickly, and a more elaborate mass matrix tuning becomes necessary
to ensure acceptable convergence.

Our strategy is based on the analysis of linear inverse problems, where the posterior
covariance matrix can be shown to be the optimal mass matrix [Fichtner and Zunino,
2019]. Since the posterior covariance is by definition a priori unknown, we choose an
approximate approach. For this, we first run a shorter preliminary chain using the simple
mass matrix tuning introduced in section 2.3.1. Based on these samples, we compute a
rough estimate of the diagonal entries of the posterior covariance, which then serves as a
more suitable mass matrix. Though this approach could in principle be repeated multiple
times, we only use a single estimate from a previous chain.

Implicitly, this tuning strategy rests on the assumptions that the posterior is roughly
Gaussian and that the posterior covariance matrix can be reasonably approximated by its
diagonal estimated from a limited number of samples. The extent to which these assump-
tions hold, determines the effectiveness of the enhanced tuning strategy. Empirically, we
find that this strategy accelerates convergence significantly.

In the case of high data variance (s2 = 10 µm2), the Markov chain converges rela-
tively fast. Decorrelation length for many parameters is only 3 to 5 samples, after which
on average the sampler has generated an independent sample. Satisfactory convergence
of 1D and 2D marginals is achieved using 10’000 samples, though more samples would
certainly be needed for higher-dimensional marginals or the full posterior. Re-tuning the
mass matrix, as described above, allows for the chain with s2 = 1 µm2 to converge in
approximately 3 times as many samples as in the s2 = 10 µm2 case. Although the chain
with s2 = 0.1 µm2 is not run until means and variances appear stable, the convergence
seems to be equally enhanced by re-tuning the mass matrix.

2.4.2 Analysis of the posterior

The means and standard deviations for the converged chains are shown in Figs. 2.9 and
2.11, respectively. As expected, the means differ strongly between the cases of high and
medium data variance. Because the amount of effective samples differs per chain, some
posterior quantities appear ‘noisy’ for the case of lower variance. This is effectively un-
dersampling to a low degree.

While the means of vs only delineate the strongest discontinuities for s2 = 10 µm2,
they provide a remarkably accurate image of the target model for the medium data vari-
ance of s2 = 1 µm2. The posterior mean values of r resemble the target density mostly
near discontinuities, which is plausible given that seismic waveforms are primarily sensi-
tive to density gradients. In contrast to vs and r , the posterior mean of vp is hardly similar
to the target model. This is partly due to the pronounced non-Gaussianity of the vp pos-
terior, exemplified by the 2D posterior marginals shown in Fig. 2.10. In addition, the fact
that the true parameters are relatively much closer to the edge of the prior for vp (due to
the increased uncertainty), probably influences the means of the posterior such that they
coincide less with the respective mode.

The standard deviations show a strong influence of the data variance s2. P-wave ve-
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Figure 2.9: Posterior means of chains with s2 = 10 µm2 (subfigures A, C and E) and
s2 = 1 µm2 (subfigures B, D and F). The means for the lower data variance (s2 = 1 µm2)
show a closer resemblance to the target model. However, these means appear less smooth
due to a stronger dependence of samples (undersampling). The vp mean (subfigure A and
B) is hardly similar to the vp target because the posterior is strongly non-Gaussian, as
illustrated in Fig. 2.10. The green and purple dot respectively indicate parameter 8000
and 9720, the parameters visualized in Fig. 2.10.
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A B

Figure 2.10: Examples of 2D posterior marginal distributions for two neighboring vp
parameters. Locations are indicated in Fig. 2.9. The prior is represented by the limits
of the axes. The posterior marginals appear truncated by the prior, adding to the non-
Gaussianity of the distribution. As expected, the marginal for s2 = 1 µm2 (subfigure B) is
more localized than for s2 = 10 µm2 (subfigure A). The data is especially non-informative
for parameter 9720 in subfigure A, where the posterior marginal strongly resembles the
prior.

locity shows relatively low standard deviation along the direct wave paths. As expected,
standard deviations of density are lower at discontinuities, and standard deviations for vs
are lowest in regions of elevated vs. For all parameters, posterior standard deviations are
strongly model dependent, again highlighting the non-linear nature of the inverse problem.
Changing assumed data noise, i.e., the data variance s2, not only modifies the magnitude
of the posterior variance, but also its spatial distribution. The white regions of standard
deviation in Figure 2.11 indicate parameters on which the standard deviation was not de-
creased with respect to the prior, ie. no knowledge was gained from the FWI experiment.

2.5 Discussion

In the following paragraphs we discuss further details of our method, including the anal-
ysis and acceleration of MCMC convergence, the recovery of density structure, and the
future extension to real-data applications in 3D.

2.5.1 Convergence diagnostics

While a large number of convergence diagnostics for MCMC methods have been devel-
oped [Gelman and Rubin, 1992, Geweke, 1991, Raftery and Lewis, 1991], none of these is
universally applicable or useful [Cowles and Carlin, 1996]. Thus, convergence is relative
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Figure 2.11: Posterior standard deviations for s2 = 10 µm2 (subfigures A, C and E) and
s2 = 1 µm2 (subfigures B, D and F). Not only the magnitude but also the spatial distribu-
tion of posterior standard deviations depends strongly on s . Density clearly has smaller
standard deviation at discontinuities, whereas vs standard deviation is strongly dependent
on the vs target itself. The maximum of the colorbars represent the prior standard devi-
ations, thus white regions indicate parameters where no information was gained by the
FWI experiment.
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to the information that one wishes to extract from the prior, or to the decisions one needs
to make on its basis. Here we subjectively chose to assess convergence by monitoring
means and covariances, parameter autocorrelations, trace-plots and Geweke scores. To
imply convergence, the Geweke scores are required to lie between -2 and 2. This may be
replaced by other metrics, depending on the application.

Furthermore, we ran chains from different initial models for the chequerboard models
in order to detect trapping in a local minimum. This was the case in an enlarged checker-
board inversion with 10⇥10 basis functions, corresponding to 300 model parameters (see
chain C in Table 2.1). We therefore conclude that chain C has not converged.

2.5.2 Parallel tempering

A sampling approach that tries to mitigate local minima is parallel tempering or replica
exchange, where the states of two Markov chains at different temperatures are randomly
swapped [Geyer, 1991, Sambridge, 2014]. Since one of the chains has a higher tempera-
ture, it has a higher probability of escaping local minima.

As a proof of concept, we implemented parallel tempering for the high-dimensional
target shown in Fig. 2.8. We linked six Markov chains differing in temperature, i.e.,
data variance. The highest variance was at s2 = 10 µm2, and the spacing of the lower
variances was chosen empirically, such that an acceptance rate between 20-80 % was
achieved. The result is chain G in Table 2.1. With six chains we were able to bridge
variances from s2 = 10 µm2 to s2 = 8.1 µm2 using a logarithmic temperature spacing.
On extrapolation, this would mean approximately 50-60 chains for an order of magnitude
decrease in data variance. It has been suggested that chains need not be adjacent for swaps
to occur, possibly reducing the number of required chains. We expect parallel tempering
to also benefit convergence of slowly mixing chains like chains H and I.

2.5.3 Tuning and the mass matrix

The tuning of the mass matrix largely controls the efficiency of HMC. The mass matrix
determines the relative speed in the different coordinate directions along a Hamiltonian
trajectory, and it may be used for preferential sampling, e.g., of particularly smooth or
rough models [Fichtner and Zunino, 2019].

In this work, we applied an intuitive tuning where the diagonal elements of the mass
matrix are adjusted using either a visual analysis of trace plots or a rough approximation
of the variances using a small number of samples. Ideally, the mass matrix should adapt
dynamically to the local curvature of the posterior, e.g., using second-derivative informa-
tion from the local Hessian [Dahlin et al., 2015, Fu et al., 2016]. The testing of such
Hessian-aware algorithms in the context of FWI is work in progress.
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2.5.4 Recovery of density structure and avoiding parametrization induced
regularization

A particularly noteworthy result of the HMC-based FWI is the recovery of a probabilis-
tic density model that does not suffer from artificial biases introduced by regularization,
needed to stabilize inversions for density using gradient-driven optimization [Köhn et al.,
2010, Prieux et al., 2013, Blom et al., 2017]. MCMC sampling allows density to vary
regularization-free, as required by the data. This, in turn, avoids biases in seismic veloc-
ity variations that are often scaled a priori to density variations using empirical, but not
universally valid, vp,s/r ratios [Brocher, 2005].

Additionally, because HMC scales well with increasing posterior dimension, one is
able to use many parameters to discretize the inverse problem. This in turn may avoid
parametrization induced regularization of the inverse problem, avoiding bias in the poste-
rior.

2.5.5 Towards real-data applications

This work constitutes a pilot study, intended to establish a 2D proof of concept for prob-
abilistic full-waveform inversion based on Hamiltonian Monte Carlo sampling. The tran-
sition to 3D real-data applications will require several improvements and additions to the
current method.

Most importantly, the numerical modelling must be extended to 3D and optimized for
modern high-performance computers. GPU-enabled wave propagation codes are available
for this purpose [Komatitsch and Tromp, 2002a,b, Peter et al., 2011, Gokhberg and Ficht-
ner, 2016, Afanasiev et al., 2019]. Additionally, the added free parameters relative to the
added data will likely result in the inverse problem becoming non-linear and non-unique
in 3D applications, resulting in increased computational cost.

In this synthetic study, we have deliberately chosen a simple misfit functional, i.e., the
L2 waveform misfit (Eq. 2.14). In practice, this would be replaced by other measures of
waveform similarity that are more robust and potentially introduce less trade-offs between
seismic source parameters and Earth structure [Luo and Schuster, 1991, Gee and Jordan,
1992, Fichtner et al., 2008, Brossier et al., 2010, Leeuwen and Mulder, 2010, Bozdağ et al.,
2011, Métivier et al., 2016]. Furthermore, the observational error statistics associated with
a specific misfit will need to be analyzed carefully to ensure that the model space posterior
is meaningful.

2.6 Conclusions

We have provided a proof of concept for a Bayesian elastic full-waveform inversion in
2D. This was intended to establish the methodological and computational basis for future
extensions to real-data applications.

Key ingredients of our method are (1) a Hamiltonian Monte Carlo sampler that ex-
plores the full posterior distribution, (2) the computation of misfit derivatives with the

34



22

2.7. Acknowledgements

help of adjoint techniques, and (3) a tuning strategy that adjusts the diagonal elements of
the mass matrix to accounts for the different sensitivities of seismic velocities and density.

The method successfully works for two synthetic end-member scenarios with 75 and
320400 dimensions, respectively. In both cases, the algorithm recovers important aspects
of the posterior, which can be significantly non-Gaussian. In addition to P-wave and S-
wave velocity, the sampling provides constraints on density structure that are free from
subjective regularization artifacts, yielding the prior when the data itself is uninformative
on a parameter

The most important conclusion is that further improvements listed in section 2.5.5
seem feasible, while certainly not being trivial. This suggests that 3D probabilistic FWI is
within reach.
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Chapter 3

HMCLab: a numerical laboratory for
algorithmic research in Seismology

Chapter submitted as A. Zunino, L. Gebraad, A. Ghirotto, and A. Fichtner. HMCLab: a
framework for solving diverse geophysical inverse problems using the Hamiltonian Monte
Carlo method. Geophys. J. Int., 235(3):2979–2991, 10 2023. ISSN 0956-540X. doi:
10.1093/gji/ggad403. URL https://doi.org/10.1093/gji/ggad403. Currently in
revision for Geophysical Journal International. A. Z. and L. G. contributed equally to this
work, with A. Z. developing the Julia variant, and L. G. the Python variant.

Abstract

The use of the probabilistic approach to solve inverse problems is becoming more popular
in the geophysical community, thanks to its ability to address nonlinear forward prob-
lems and to provide uncertainty quantification. However, such strategy is often tailored
to specific applications and therefore there is a lack of a common platform for solving
a range of different geophysical inverse problems and showing potential and pitfalls of
the methodology. In this work, we demonstrate a common framework within which it
is possible to solve such inverse problems ranging from, e.g, earthquake source location
to potential field data inversion and seismic tomography. This allows us to fully address
nonlinear problems and to derive sophisticated but useful information about the subsur-
face, including uncertainty estimation. This approach, in fact, can provide probabilities
related to certain properties or structure of the subsurface, such as histograms of the value
of some physical property, the expected volume of buried geological bodies or the prob-
ability of having boundaries defining different layers. Thanks to its ability to address
high-dimensional problems, the Hamiltonian Monte Carlo (HMC) algorithm has emerged
as the state-of-the-art tool for solving geophysical inverse problems within the probabilis-
tic framework. HMC requires the computation of gradients, which can be obtained by
adjoint methods. This unique combination of HMC and adjoint methods is what makes
the solution of tomographic problems ultimately feasible. These results can be obtained
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3. HMCLab

with “HMCLab”, a numerical laboratory for solving a range of different geophysical in-
verse problems using sampling methods, focusing in particular on the HMC algorithm.
HMCLab consists of a set of samplers (HMC and others) and a set of geophysical forward
problems. For each problem its misfit function and gradient computation are provided
and, in addition, a set of prior models can be combined to inject additional information
into the inverse problem. This allows users to experiment with probabilistic inverse prob-
lems and also address real-world studies. We show how to solve a selected set of problems
within this framework using variants of the HMC algorithm and analyze the results. HM-
CLab is provided as an open source package written both in Python and Julia, welcoming
contributions from the community.
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3.1. Introduction

3.1 Introduction

Historically, many new methods have been developed to solve geophysical problems.
However, broader impact has typically only resulted from generic and easy-to-use soft-
ware implementations. In such regards, development of methodologies and implementa-
tion of related codes, together with their public availability, can have a major influence
to foster progress in geophysics. Some notable examples from the literature which are
currently widely employed in the geophysical community are, e.g., the implementation of
the spectral element method for seismic wave propagation [Komatitsch and Vilotte, 1998,
Komatitsch and Tromp, 1999], the relatively recent implementation of Obspy [Beyreuther
et al., 2010, Krischer et al., 2015], a toolbox for seismology, allowing the users to down-
load and process seismic data (among other things), AxiSEM [Nissen-Meyer et al., 2007,
2008, 2014], a spectral element code for global axisymmetric seismic problems, and Sim-
PEG [Cockett et al., 2015], a framework to perform simulations and solve geophysical
inverse problems, with focus on electromagnetic methods, just to name a few.

One area where generic and easy to use tools are still missing is the solution of geo-
physical inverse problems with the Hamiltonian Monte Carlo (HMC) method [e.g., Duane
et al., 1987, Neal, 2011, Fichtner and Zunino, 2019], which has recently gained atten-
tion in solid Earth geophysics because of its peculiar properties. In this work we aim at
filling this gap by providing a framework where a range of different geophysical inverse
problems can be solved using the same toolbox.

The HMC method belongs to the framework of the probabilistic approach to inverse
problems. Within such framework, an inverse problem essentially represents an indirect
measurement where the knowledge about the observed data and model parameters is com-
pletely expressed in terms of probabilities [Tarantola, 2005]. Within such formalism, the
general solution to the inverse problem is a probability density function (PDF), i.e., the
posterior PDF (see Tarantola and Valette [1982] and Mosegaard and Sambridge [2002] for
a detailed explanation).

The posterior PDF is constructed from the combination of two pieces of separate in-
formation: 1) the prior knowledge on the model parameters, expressed by the PDF r(m),
where m represents the model parameters and 2) the information provided by the exper-
iment, described by L(m). The posterior distribution, under certain fairly wide assump-
tions, is then given by [Mosegaard and Sambridge, 2002, Tarantola, 2005]:

s(m) = k r(m)L(m). (3.1)

Since s(m) is a PDF, it requires to evaluate the relevant integrals to find features of in-
terest. For example, calculating the expected model given the data requires evaluating the
following integral

EM [m] =
Z

M
ms(m)dm, (3.2)

where M represents the whole model space.
This is mainly because of two reasons: to I) simplify the mathematical framework (lin-

ear algebra) and make the interpretation of the results easier (e.g., one single “optimal”
solution, uncertainty fully quantified by a covariance matrix) and II) tractability in terms
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of computational requirements, since Monte Carlo methods typically require a very large
amount of forward model evaluations for a large number of unknowns. Because of that,
plain Monte Carlo approaches quickly become intractable for large scale problems. How-
ever, thanks to both algorithmic and computational advances it is now becoming possible
to address several nonlinear geophysical problems by means of sampling the posterior
distribution, thereby avoiding linearizations and incorporating more sophisticated prior
information. The result of this is a fully nonlinear appraisal of inverse problems where
the output probabilities can show significantly non-Gaussian properties, the cases where
linearization-based approaches may potentially fail.

Selecting algorithms that generate samples from a specific posterior efficiently is cen-
tral to doing efficient Bayesian inference and, in this context, we now introduce HMC.

In this work we aim at unifying these diverse applications under a common framework,
showing how the probabilistic approach can be useful in multiple contexts in geophysics
and, on the practical side, providing a numerical laboratory in the form of a software
package.

In the particular case of linear forward models and Gaussian uncertainty, the proba-
bilistic formalism provides the same closed-form solution than the classical least squares
approach. In general, however, such high-dimensional integrals cannot be computed.
Therefore, we resort to sampling, a technique to approximate the computation of high-
dimensional integrals. By generating points in the model space whose density (number of
points per unit volume) is proportional to the posterior s(m), i.e., samples, one greatly
reduces the amount of computations required to estimate statistics (such as EM [m]) com-
pared to a systematic grid search. Markov Chain Monte Carlo (MCMC) methods provide
a clever way to construct a Markov chain that produces samples drawn for the target dis-
tribution, i.e., the posterior PDF. Statistical analysis of the samples obtained with MCMC
then provides the answer to any inquiry in terms of probability of certain events, i.e., spe-
cific features of the solution. Practically, this means we can compute probabilities related
to particular properties or structures of the solution. For instance, we might be interested
in the probability of a certain geological body to have a certain volume, or the probability
that there is a continuous permeable layer connecting two locations in the subsurface.
Instead, quantities such are these can be computed using Monte Carlo integration, which
is the basis of appraising Bayesian posteriors using MCMC methods.

MCMC to sample target distributions has evolved from the appearance of the origi-
nal Metropolis algorithm in physics [e.g., Metropolis and Ulam, 1949, Metropolis et al.,
1953] into a plethora of variants in many different scientific fields, including geophysics
[see Sambridge and Mosegaard, 2002, for a review]. The MCMC method to solve inverse
problems in geophysics has a long history, which dates back to the pioneering work of
Keilis-Borok and Yanovskaja [1967] and Press [1968], which were contemporary to the
classic work of Backus and Gilbert [1967] on geophysical inverse theory. The formaliza-
tion of a comprehensive theoretical framework based on probability theory for geophysical
problems was started in the 80s by Tarantola and Valette [1982] and extended later on to in-
clude MCMC sampling methods to solve nonlinear inverse problems [e.g., Mosegaard and
Tarantola, 1995, Mosegaard and Sambridge, 2002, Tarantola, 2005, Mosegaard, 2011]. An
extensive review can be found in Dębski [2010].
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The main reason for this is that MCMC methods have long been thought to be unfea-
sible for medium to large scale problems due to the high computational requirements.
However, when the forward problem is nonlinear, i.e., the calculated data depend on
the model parameters in a nonlinear fashion, Monte Carlo methods represent one of the
strategies capable of properly addressing the consequences of such nonlinearity and, at
least theoretically, to explore the set of different solutions compatible with the observed
data [Mosegaard and Tarantola, 1995, Mosegaard and Sambridge, 2002, Sambridge and
Mosegaard, 2002]. Moreover, MCMC methods provide uncertainty quantification for
such problems, an essential tool to appraise the found solution.

There has been a recent increase in the use of Monte Carlo methods to solve (geo-
physical) inverse problems, essentially for two reasons: I) relatively recent advances in
the sampling algorithms and II) substantial increase in the available computational re-
sources. These advances now allow us to tackle medium (hundreds of model parameters)
to relatively large-scale (tens of thousands model parameters) inverse problems within the
probabilistic framework.

Regarding I), the literature provides a large collection of generic algorithms to per-
form Monte Carlo sampling, including classic MCMC [e.g., Hastings, 1970], slice sam-
pling [e.g., Neal, 2003], Gibbs sampling [e.g., Geman and Geman, 1984], rejection sam-
pling [e.g., Gilks et al., 1995], sequential Monte Carlo [e.g., Liu and Chen, 1998] and
trans-dimensional Monte Carlo [e.g., Green, 1995], just to cite some of the main cat-
egories. The amount of literature dedicated to such algorithms from different fields is
so vast that it would be pointless to attempt to give an overview here. More specifi-
cally, in geophysics there has been a constant increase in the number of algorithms pro-
posed both for (pseudo-)sampling the posterior PDF and performing global optimization.
These include, for instance, an extension of the classic Metropolis-Hasting sampler [e.g.,
Mosegaard and Tarantola, 1995], simulating annealing for global optimization [e.g., Stoffa
and Sen, 1991], a strategy based on the nearest neighbour (Voronoi) partition of the model
space [e.g., Sambridge, 1999], joint inversion of different geophysical data with a cascade
MCMC [e.g., Bosch, 1999], trans-dimensional MCMC inversion [e.g., Malinverno, 2002,
Bodin and Sambridge, 2009] and samplers with geostatistical-based priors [e.g., Hansen
et al., 2012, Zunino et al., 2015]. Regarding II), the geophysicist’s arsenal for solving
inverse problems now includes large high-performance computing resources and more
easily accessible computation accelerators such as GPUs, TPUs and high-thread-count
CPUs.

Traditional algorithms such as the random walk Metropolis may be regarded difficult
to setup for large problems because of two reasons. The first is the property of generating
correlated samples which requires a large number of iterations to obtain reliable statistics.
The second is the difficulty for the proposal mechanism to generate high-probability mod-
els. In high-dimensional spaces, simply randomly perturbing a model will very unlikely
produce another model with a higher posterior PDF. The reason is that high-dimensional
spaces tend to be very empty (“curse of dimensionality”) and so the vast majority of search
directions (random perturbations) will point to low probability regions, making the overall
algorithm inefficient [Curtis and Lomax, 2001]. This tends to produce a slow exploration
of the model space, making the overall algorithm inefficient.
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If strong prior information is available and if sampling directly the prior is a possi-
bility, the extended Metropolis algorithm [Mosegaard and Tarantola, 1995] can offer a
substantial improvement in terms of efficiency. Nevertheless, defining a geologically re-
alistic prior and being able to sample it may not be an easy task in practice.

Other approaches are based on an adaptive algorithm which, for instance, computes
an approximate local covariance matrix and then samples such information to increase
the chance of moving in a direction of higher probability [e.g., Gilks et al., 1996]. A
recently proposed methodology for improving the proposal strategy is that of construct-
ing an ad hoc proposal PDF based on the results of a simplified deterministic inversion
[Khoshkholgh et al., 2021, 2022], which will make the sampling more efficient in prac-
tice, without altering the final equilibrium distribution. This may enable the solution of
large problems, although such methodology requires solving an additional inverse prob-
lem beforehand and performing some sort of interpretation in addition to the estimation
of the modeling error.

Moreover, the more the samples are uncorrelated, the better the statistical estimations.
Because of that, methods which tend to produce more independent samples are desirable
because they provide the same accuracy with a smaller number of samples compared to
methods producing highly correlated samples.

An alternative algorithm that has recently gained popularity is the HMC method [e.g.,
Duane et al., 1987, Neal, 2011, Fichtner and Zunino, 2019]. HMC combines sampling
with ideas from the field of optimization, where the proposal mechanism exploits also
information coming from the gradient of the posterior distribution. This unique combina-
tion enables a more efficient solution of problems when the calculation of gradients is not
computationally too expensive with respect to the cost of simulating the forward problem,
e.g., when adjoint methods [Tarantola, 1984, Tromp et al., 2005, Fichtner et al., 2006a,
Plessix, 2006] come into play [e.g., Zunino and Mosegaard, 2018, Fichtner and Zunino,
2019, Gebraad et al., 2020]. This is effectively a result of the No Free Lunch-theorem
described by Wolpert and Macready [1997]: one applies prior knowledge to the objec-
tive function and its properties (i.e., cheaply available gradient information), whereby it
becomes possible to select a relatively efficient algorithm. HMC is capable of generating
more uncorrelated samples compared to traditional purely random-walk based algorithms
such as the random walk Metropolis algorithm [Neal, 2011], producing more accurate
statistical estimations with a smaller number of samples. Thanks to this property, HMC
is more suitable to address high-dimensional inverse problems than traditional derivative-
free sampling methods. In fact, the cost of generating independent samples with HMC
under increasing dimension n grows as O(n5/4) [Neal, 2011], whereas it grows as O(n2)
for standard Metropolis-Hastings [Creutz, 1988]

An alternative and recently popularized approach using also information from the gra-
dient is Stein Variational Gradient Descent [SVGD, Liu and Wang, 2019] a variational
inference algorithm, which aims at approximate inference by minimizing the Kullback-
Leibler divergence between the proposed and target distributions.

By using the Hamiltonian dynamics as a proposal mechanism, at each iteration all the
model parameters are perturbed based on the information from the gradient of the posterior
PDF and the momentum. This enables a faster convergence to equilibrium (shorter burn-

42



33

3.2. Theoretical background

in) and longer moves compared to traditional pure random walk strategies. Moreover
it does not need any particular intervention from the user apart from setting the tuning
parameters and does not require the ability to draw realizations from the prior PDF. Thanks
to the above mentioned features and modern computational resources, HMC can now
address problems with thousands of unknowns.

Although the theoretical formalism and the infrastructure to perform intensive compu-
tations are there, a common framework to address different geophysical inverse problems
has not emerged yet. Implementations of the HMC algorithm are typically application-
specific and often not easily accessible to non-specialists. In addition, as these methods
are nascent in the field of solid Earth geophysics, the community as a whole has not had
time to acquire substantial expertise in the usage of these methods in order to evaluate their
potential and routinely apply them to realistic problems. Our work aims at facilitating at
least part of the generation of this expertise, specifically in applying gradient-based sam-
pling methods to inverse problems and analyzing their results. In this work we show how
HMC can be used to obtain useful information from a set of diverse geophysical data sets
through some illustrative selected examples from seismology and potential fields prob-
lems. All problems are addressed within the same framework, where generic samplers
and data structures allows us to easily experiment with different data, priors and possibly
to combine them.

These results are obtained with “HMCLab”, a tool to solve research problems and a
numerical laboratory for experimenting with inverse algorithms such as HMC for a variety
of geophysical topics. HMCLab provides software for a set of geophysical problems, for
which functions to solve the forward problem, compute gradients of the misfit function
and several kinds of priors and samplers for the HMC method are provided. This package
is currently written partly in Python [van Rossum, 1995] and partly in Julia [Bezanson
et al., 2017], depending on the specific problem. It is, however, in constant evolution as
new geophysical problems are added or translated into the other one of the two languages.
Moreover, users can supply their own forward model functions and priors which can easily
be used with the HMC samplers. In addition, several Jupyter Notebooks are provided that
guide the user through the various aspects of applying MCMC algorithms and analyzing
their results, for various inverse problems.

In the following, we first give a brief overview of the core of HMC algorithms and
illustrate what kind of information can obtained by solving some selected example prob-
lems using HMCLab.

3.2 Theoretical background

The HMC algorithm can be efficient in sampling a broad class of posterior PDFs compared
to sampling algorithms that do not exploit gradient information and rely on purely random
walk behavior (e.g. the “Random Walk Metropolis-Hastings” (RWMH)).
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3.2.1 The original HMC sampler

HMC constructs a Markov chain over an n-dimensional probability density function s(m)
using classical Hamiltonian mechanics. The algorithm regards the current state m of the
Markov chain as the location of a physical particle in an n-dimensional space M (i.e.,
model or parameter space). It moves under the influence of a potential energy, U , which
is defined as

U(m) =� ln(s(m)). (3.3)

To complete the physical system, the state of the Markov chain needs to be artificially
augmented with momentum variables p and a generalized mass for every dimension pair.
The collection of resulting masses is contained in a symmetric positive definite mass ma-
trix M of dimension n⇥n. The momenta and the mass matrix define the kinetic energy of
the particle as

K(p) = 1
2

pT M�1p. (3.4)

In the HMC algorithm, the momenta p are drawn randomly from a multivariate Gaussian
with covariance matrix M (the mass matrix). The sum of the location-dependent potential
and momentum-dependent kinetic energy constitute the total energy, or Hamiltonian, of
the system

H(m,p) =U(m)+K(p). (3.5)

The Hamiltonian dynamics are governed by the following equations,

∂m
∂t

=
∂H
∂p

,
∂p
∂t

=� ∂H
∂m

, (3.6)

which determine the position and momentum of the particle as a function of time t . This
time t is artificial just like the mass matrix, it has no connection to the actual physics of
the inverse problem at hand.

We can simplify Hamilton’s equations using the fact that kinetic and potential energy
depend only on momentum and location, respectively, to obtain

∂m
∂t

= M�1p, ∂p
∂t

=� ∂U
∂m

. (3.7)

Evolving m over time t generates another possible state of the system with new position
m̃, momentum p̃, potential energy Ũ , and kinetic energy K̃. Due to the conservation of
energy, the Hamiltonian is equal in both states, i.e., U +K = Ũ + K̃. Successively drawing
random momenta and evolving the system generates a distribution of the possible states
of the system. Thereby, HMC samples the joint momentum and model space, referred to
as phase space. As we are not interested in the momentum component of phase space, we
marginalize over the momenta by simply dropping them. This results in samples drawn
from s(m).
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If one could solve Hamilton’s equations exactly, every proposed state (after burn-in)
would be a valid sample of s(m). Since Hamilton’s equations for non-linear forward
models cannot be solved analytically, the system must be integrated numerically. Suitable
integrators are symplectic, meaning that time reversibility, phase space partitioning and
volume preservation are satisfied [Neal, 2011, Fichtner and Zunino, 2019]. In this work,
we employ the leapfrog method as described in Neal [2011], with higher order symplectic
integrators also implemented. However, the Hamiltonian is generally not preserved ex-
actly when explicit time-stepping schemes are used [e.g., Simo et al., 1992]. Therefore,
the time evolution generates samples not exactly proportional to the original distribution.
A Metropolis-Hastings correction step is therefore applied at the end of numerical inte-
gration.

In summary, at each iteration, samples are generated starting from a randomly drawn
model m in the following way:

1. Propose momenta p according to the Gaussian with mean 0 and covariance matrix
M;

2. Compute the Hamiltonian H of model m with momenta p;

3. Propagate m and p for some time t to m̃ and p̃, using the discretized version of
Hamilton’s equations and a suitable numerical integrator;

4. Compute the Hamiltonian H̃ of model m̃ with momenta p̃;

5. Accept the proposed move m ! m̃ with probability

paccept = min
�
1,exp(H � H̃)

�
. (3.8)

6. If accepted, use (and count) m̃ as the new state. Otherwise, keep (and count) the
previous state. Then return to 1.

The mass matrix M is one of the important tuning parameters of the HMC algorithm;
details on its meaning and suggestions for tuning can be found in Fichtner and Zunino
[2019], Fichtner et al. [2021]. Moreover, employing the discrete leapfrog integrator im-
plies that there are two additional parameters that need to be tuned, namely the time step
e and the number of iterations L [Neal, 2011].

3.2.2 HMC variants
The algorithm described so far is the simplest version of HMC, however, several variants
of the original algorithm exist, which mostly aim at automatically tuning some of the
parameters or improving mixing [Neal, 2011, Sambridge, 2014, Fichtner et al., 2021].

A notable example is the No U-Turn Sampler (NUTS) [Hoffmann and Gelman, 2014],
which aims at providing an automatic tuning of the two leapfrog integrator-related param-
eters, e and L. NUTS finds a suitable value for e during the burn-in and then fixes it for
the following iterations to avoid breaking the detailed balance property. The number of
iterations L instead is dynamically adjusted (“dynamic HMC”) at each iteration in a way
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such that there is no doubling back of the trajectory. This allows for long or short moves
depending on the region of the model space which the algorithm is visiting. NUTS is
implemented in HMCLab following Hoffmann and Gelman [2014].

Additionally, methods to investigate inverse problems that might show strongly iso-
lated modes exist. By running multiple chains with tempered (i.e. smoothed) posterior
PDFs and letting these samplers exchange states, the exploration of local minima might
be accelerated [Sambridge, 2014]. Tempered trajectories following Neal [2011] may also
help discovering isolated modes. This variation does not require multiple Markov chains,
nonetheless, it is able to more easily transition between local minima, at the expense of a
reduced acceptance rate.

3.2.3 Gradient computations

As mentioned above, one important aspect of a successful HMC strategy is the capabil-
ity to efficiently compute the gradient of the potential energy —U(m) = —(� log(s(m))).
The first method that proves powerful for relatively simple models is to evaluate deriva-
tives analytically. This typically allows for cheap computation of the gradients, but is only
applicable to models that can be analytically differentiated. This is most notably used for
the joint non-linear source location and medium velocity estimation as mentioned later in
this manuscript. For larger problems, a tool that can provide a substantial help in making
gradient calculations efficient is the adjoint method [e.g., Lions, 1971, Tarantola, 1984,
Talagrand and Courtier, 1987, Tromp et al., 2005, Fichtner et al., 2006a, Plessix, 2006,
Hinze et al., 2008]. This strategy allows us to compute the gradient —U with a computa-
tional cost of about two (three in practice) forward simulations, much cheaper than other
approaches such as finite difference methods. We employ the adjoint technique in some
of our geophysical problems, namely in the case of acoustic and elastic full waveform
inversion and for the nonlinear traveltime problem (eikonal solver).

Another useful tool to compute the gradient for certain problems is automatic dif-
ferentiation [e.g., Sambridge et al., 2007, Griewank and Walther, 2008], a computational
technique where derivatives of a user-coded function are provided automatically by the
software in the form of a function. This technique can be convenient for problems where
it is difficult to derive the adjoint equations (e.g., when the forward operator is not self-
adjoint) or where the forward model needs to be adapted for each specific case because
it depends, e.g., on the specific rock types present in the area under study, requiring a re-
derivation of the analytical derivatives (such as rock physics models [Mavko et al., 2003]).
We use this tool, e.g., for the problem of inversion of amplitude-versus-angle (AVA) seis-
mic reflection data, where the forward modelling is a combination of a rock physics model
[e.g., Mavko et al., 2003] and a convolutional seismic model.

3.2.4 Prior information

Prior information plays an important role in solving inverse problems by providing addi-
tional information directly on the model parameters to better constrain plausible values
for the solution and helping to mitigate the non-uniqueness [e.g., Curtis and Lomax, 2001,
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Scales and Tenorio, 2001, Hansen et al., 2012, Zunino et al., 2015, Hansen et al., 2016]. In
the probabilistic approach, prior information is represented by a PDF r(m) on the model
parameters.

HMCLab provides a set of common PDFs for the prior, ranging from simple multivari-
ate Gaussian distributions to more complex distributions such as a combination of Beta
PDF-based marginals with a Gaussian copula to correlate the marginals. Another inter-
esting prior is based on the Laplace distribution (related to the L1-norm) which promotes
sparse (or blocky) models. Moreover, the user can provide his/her own prior by simply
implementing functions with the appropriate signature (see the code documentation for
more details). Any of the available priors can be combined with any of the available or
user-generated forward models.

3.3 Inferring complex information about the subsurface with HM-
CLab

The HMCLab framework allows us to solve diverse inverse problems using sampling
methods under a common platform. The software package includes a set of pre-defined
geophysical forward and inverse problems, a set of prior distributions and allows the user
to supply his/her own forward problem. In the following we show some examples of how
to extract useful information about the subsurface for a set of selected geophysical inverse
problems in the framework of the HMC method.

Once a collection of samples from the posterior distribution has been obtained, in order
to calculate some arbitrary function f(m) of m, we can use the following relationship:

Z

M
f(m)s(m)dm ⇡ 1

N

N

Â
i=1

f(mi) (3.9)

where N is the number of available samples and mi represents one of the posterior models.

3.3.1 2D full waveform acoustic inversion of reflection data
The first example is a 2D inversion of a seismic dataset based on the acoustic approxima-
tion. The forward problem is represented by the constant-density acoustic wave equation:

1
v2

∂ 2u
∂ t2 =

∂ 2u
∂x2 +

∂ 2u
∂ z2 + s (3.10)

where t is time, x and z the spatial coordinates, u is the pressure field, v the acoustic ve-
locity and s the source term. Forward calculations are carried out using a finite-difference
scheme [Bunks et al., 1995, Pasalic and McGarry, 2010], where the model parameters are
velocity at a set of grid points with size (Nx ⇥Nz) = (160⇥90) for the x- and z-direction
respectively, for a total of 14400 model parameters. The grid spacing is 10 m in both direc-
tions. We assume the observational errors to be Gaussian distributed. Therefore, we use
an L2-norm potential energy function. The gradient of such a misfit function with respect
to velocity is computed by means of the adjoint method for the acoustic wave equation,
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Figure 3.1: Acoustic waves inversion for velocity. a) Target model of velocity, i.e., the one
used to calculate the synthetic data. b) The starting velocity model used in the inversion.
c) A randomly selected model from the collection of posterior models. d) A plot of the
potential energy (misfit) as a function of iteration number, where the red dot indicates the
potential energy of the model shown in panel d). e) A map of the probability of having a
layer boundary of a fault computed using the collection of posterior models. f) A vertical
profile of velocity showing the probability as computed from the collection of posterior
models. The profile location is shown by a vertical line in panel c).
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as described in Bunks et al. [1995]. The use of the adjoint method enables us to effi-
ciently evaluate the gradient, an essential prerequisite for being able to perform an HMC
inversion. The geometry of the problem resembles the one typically found in exploration
seismology, where active sources and receivers are located near the surface of the Earth,
as shown in Fig. 3.1. The top boundary condition is a free surface, while the other sides
are absorbing boundaries implemented as C-PML layers [Komatitsch and Martin, 2007].
We use a set of 6 sources to generate synthetic data, add correlated Gaussian noise (stan-
dard deviation 0.05, correlation length 0.01 s) and use the result as the observed data to
be inverted for the velocity model. To perform the inversion we use the NUTS algorithm
[Hoffmann and Gelman, 2014], part of HMCLab.

We ran 2⇥ 105 iterations of the NUTS algorithm, collecting about 45000 samples
after thinning the chain and removing the models resulting from the burn-in phase. The
starting velocity model is laterally homogeneous (see Fig. 3.1b). The target model is a
modified version of the SEG/EAGE overthrust model [Aminzadeh and Brac, 1997].

Fig. 3.1c shows a randomly chosen model from the collection of the posterior models.
The model resembles the target model well, and all the different layers are visible. The
potential energy decreases rapidly within the first few hundreds of iterations, when the
algorithm attempts to find a model which fits the large-scale structures (see Fig. 3.1d).
Subsequently, the misfit keeps decreasing relatively slowly for much longer. We suspect
this is due to the algorithm slowly adjusting the fine-scale structures, until it reaches a
relatively stable misfit value. From the resulting collection of posterior models we can
extract different pieces of information. One practical example is, e.g., calculating the
probability of having a layer boundary or fault at any given node of the grid. To do so, we
exploit eq. 3.9 using an indicator function h(m) and compute

Z

M
h(m)s(m)dm ⇡ 1

N

N

Â
i=1

h(mi) (3.11)

which produces a value of one in case a boundary/edge is detected and zero if not. The
function h(m) in this case is represented by a Canny edge detection filter [Canny, 1986],
which is applied to each velocity model in the posterior collection, so that the model is
transformed into a binary image of zeros and ones. Fig. 3.1e shows the results of such
calculations. The large majority of the boundaries present in the target model appear as
high probability structures in Fig. 3.1e, particularly at shallow depths. Finally, Fig. 3.1f
shows a map of probability for a vertical profile of velocity at x = 1030.0 m, showing
the spread of the solutions. The profiles of the starting and target model are shown for
comparison.

3.3.2 First arrival traveltime hypocenter location using fiber-optic sensing

An archetypal seismological inverse problem is the estimation of earthquake hypocenters
in a medium with unknown structure and velocity using the first arrival times of the se-
icmic waves excited by the events. HMCLab supplies a simple approach to the hypocenter
location problem that uses first arrival data, assuming a homogeneous medium. Arrival
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times are modelled by straight rays propagating through this homogeneous medium. The
inverse problem only requires relative arrival times of a single phase.

Although the physics of this model seem simple, the strong trade-offs between lo-
cation, origin time and medium velocity make it ideal for Bayesian inference methods.
Especially in the presence of trade-offs, one would expect strongly correlated posteriors,
for which the HMC algorithm works particularly well.

To illustrate how HMC performs on this inverse problem, we applied the algorithm
to a dataset acquired on Grimsvötn volcano in Iceland using a 12.5 km long Distributed
Acoustic Sensing (DAS) fiber [Fichtner et al., 2022, Klaasen et al., 2022], for which the
acquisition geometry is shown in Fig. 3.2. Due to the use of DAS, this dataset has ap-
proximately 1500 separate channels. We simultaneously infer the location of multiple
events for which the effective medium velocity is assumed to be the same. The events
are selected based on similarity in the observed move-out, as we expect these events to
be relatively close. By simulatenously inferring the location of multiple events the data
better constrains the medium velocity, which reduces the trade-off between origin time
and medium velocity compared to inferring location, origin time and medium velocity for
a single event. We define an L2 misfit on the relative first arrivals of the picked phases,
and only include those channels where the phase is picked. This means that some events
have relatively less data points and therefore less importance within the inference. As
prior, we use uniform distributions on location in a bounded cube of 20 km by 20 km by
10 km (width by length by depth) centered around the DAS cable. As the medium below
the field site is unkown, we construct a prior on the P-wave velocity with a logarithmic
uniform distribution (to take into account the fact that velocity is a positive parameter)
between 340 and 7000 m/s, the extreme ends of possible medium material, i.e. air to
relatively fast rock.

The results of a parallel tempered appraisal with 10 chains using HMC are given in
Fig. 3.2. The posterior on medium velocity, seen in Fig. 3.2c, shows how, despite having
a model with strong trade-offs in the parameters (namely origin time and medium P-wave
velocity), one is still able to infer knowledge on one of these parameters, adding knowl-
edge compared to the prior. Event 3, which was recorded on relatively few channels of
the fiber-optic cable, features a high uncertainty of its location in the subsurface. This is
in contrast to event 1 and 2, which seem to have a more concentrated volume of uncer-
tainty. These results show that the posterior PDF of the location of these events is neither
unimodal nor Gaussian, something which would have been difficult to deal with using
deterministic methods. In general, one can see in Fig. 3.2b that events with fewer picks
are constrained less. Examples of relevant indicator functions [Arnold and Curtis, 2018]
for this inference would be the expected average depth of an event, or the probability of
the medium velocity lying within a limited interval.

3.3.3 First arrival tomography based on the eikonal equation

Traveltime tomography is a popular approach for seismic inversion where the arrival time
of seismic waves at given locations is used to infer the velocity structure of the subsurface.
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Figure 3.2: Source hypocenter location for data recorded on the Grimsvötn volcano. a)
Overview of Iceland and location of the inset b). b) Geometry of the DAS acquisition
fiber with posterior means and standard deviation ellipses oriented along principal axes.
c) Marginal distribution of medium velocity prior and posterior to the inference. Note
that the prior on medium velocity extends beyond the range of the plot. d)-f) Marginal
distributions for the Y and Z components of the first 3 events. Note how for event 1 and
2, the volumes of uncertainty are more concentrated than for event 3.
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Figure 3.3: Nonlinear traveltime inversion. a) Target model used to generate the “ob-
served” data, b) starting model, c) a selected model from the posterior collection, d) his-
togram of velocity at (x,y) = (92,5,26.25) (marked by a red dot in c)), e) potential energy,
f) profile of velocity showing a probability map as computed from the posterior collection
of models (the profile location is shown by a vertical line in panel c)).
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In this case, the forward model is represented by the eikonal equation:

Â
d

✓
∂ t
∂xd

◆2
= c�2(x) , (3.12)

where t is the traveltime, c the velocity and d = 2or3 is the number of dimensions. Since
the forward model is nonlinear, typically ray paths are computed a priori in a reference
Earth model and fixed, to linearize the problem and hence solve the inverse problem with
gradient-based deterministic methods. However, such strategy where a single solution is
sought might miss some important information. Because of the nonlinearity of the prob-
lem, the misfit functional may feature multiple minima which cannot be detected with
deterministic methods. On the contrary, a probabilistic approach may reveal different
plausible velocity models to be consistent with the observed data, as we show in the fol-
lowing example.

The example we address here is to solve a 2D inverse problem with a geometry de-
picted in Fig. 3.3, where we have a velocity model described by 4800 cells (80 in the
x-direction and 60 in the y-direction), a set of sources randomly distributed close to the
bottom of the model and a set of receivers near the surface and along the left and right
sides of the model. The grid spacing is 1.25 km in both directions. The forward problem
is solved using a fast marching method (FMM) [e.g., Sethian, 1996, Rawlinson and Sam-
bridge, 2004, Treister and Haber, 2016] which computes the traveltimes at each point of a
grid using a finite-difference strategy. The gradient of the Gaussian misfit functional with
respect to velocity is computed by means of the adjoint method [e.g., Leung and Qian,
2006, Taillandier et al., 2009, Zunino and Mosegaard, 2018]. To solve the inverse prob-
lem, we ran 2⇥ 105 iterations with the NUTS algorithm. The target model is shown in
Fig. 3.3a, while the starting model is depicted in Fig. 3.3b. The latter is a laterally homo-
geneous velocity model. Panels c and d of Fig. 3.3 show a randomly selected model from
the posterior collection and a histogram of the velocity at a given location as obtained
by looking at all samples after the burn-in period. Interestingly, the histogram shows a
multi-modal distribution, where probable velocity values cluster near three different val-
ues. This means that there are three different ranges of velocity values which are highly
probable, i.e., they are all compatible with the observed data. Such finding would not be
possible with an optimization method where the solution is represented by a single veloc-
ity model. The potential energy (misfit) as a function of iterations (Fig. 3.3) features a
sharp decrease in the first hundreds of iterations and then a slow descent until equilibrium
is reached around 5⇥ 105 iterations. Fig. 3.3f shows a map of probability for a vertical
profile at x = 27.5 km, together with the profile for the starting and target model.

3.3.4 Magnetic anomaly inversion with polygonal bodies
The last synthetic example presented is an inversion of magnetic anomaly data using
a 2.75D parameterization in terms of polygonal bodies [e.g., Rasmussen and Pedersen,
1979, Campbell, 1983]. The design and detailed description of the method to construct
and solve this inverse problem is the subject of another paper [Zunino et al., 2022]. In this
setup, each polygonal body has a homogeneous magnetization and its shape is controlled
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Figure 3.4: Magnetic anomaly problem. a) Three panels showing (from top to bottom): 1)
the observed magnetic anomaly, the one calculated from the starting and selected models,
2) the starting, target and selected polygonal bodies including topography and position of
measurements and 3) a scatter plot of the position of the vertices before and after the burn-
in phase (every 10 iterations). b) A plot of the potential energy (log. scale) as a function
of iteration number.
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by the position of its vertices, which, in this example, are the unknowns of the inverse
problem. In this setup, the relation between the position of vertices (model parameters)
and the magnetic response is nonlinear. The label 2.75D means that the polygonal bodies
have a given finite lateral extent in the y direction that can be different in the +y and �y
directions.

The observed data are represented by a profile along the x direction with about 130
observation points (see Fig. 3.4a). To solve the inverse problem, we ran 5⇥ 104 itera-
tions using the NUTS algorithm. The potential energy decreases rapidly in the first few
hundreds of iterations (see Fig. 3.4b) when the polygonal bodies move from the starting
position to a more likely configuration, similar to the target model. Afterwards, the al-
gorithm samples the posterior distribution, producing a set of posterior models. In this
example the mass matrix contains non-zero off-diagonal elements in order to force the
algorithm to avoid creating geologically implausible shapes. Such off-diagonal elements
control the correlation of the momentum variables and hence indirectly the correlation
shown in the models visited by the algorithm.

A randomly selected model from the posterior collection is shown in Fig. 3.4a, which
fits the observed data well and is also close to the shape of the target model. In the last
panel of Fig. 3.4a a set of position of the vertices before and after the burn-in phase are
depicted, showing the relatively low uncertainty in the positions for the anomaly.

3.4 The HMCLab framework as a software package

The HMCLab framework is practically implemented in a set of open-source software
packages written in the Python [van Rossum, 1995] and Julia [Bezanson et al., 2017]
programming languages. HMCLab is, in fact, a numerical laboratory to allow the user
to experiment with sampling algorithms on different geophysical problems, ranging from
purely educational examples to research-oriented studies. The aim is to provide a user-
friendly framework where it is possible to experiment with various problems and algo-
rithms and solve realistic inverse problems, either provided by HMCLab or created by the
user.

Table 3.1 summarizes the geophysical problems and prior models which are currently
available in HMCLab. Both Julia and Python implementations are modular in that, for-
ward modelling, gradient calculations and sampler (or optimizer) can be combined arbi-
trarily. Moreover, in addition to the listed problems, the sampler (or optimizer) can be
used on user-defined problems.

The main categories of inverse problems currently addressed by HMCLab are:

• linearized (straight rays) and nonlinear (eikonal equation) traveltime tomography,

• full waveform inversion in 2D in the acoustic and elastic formulations (P-SV),

• earthquake source location in 3D based on the straight-ray approximation,

• joint (or independent) gravity and magnetic anomaly inversion in 2.75D using polyg-
onal bodies,
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• amplitude versus angle (AVA) seismic data including a rock physics model in 3D.

In addition, a set of priors is provided, which can be combined with any problem. For all
the above mentioned geophysical problems, HMCLab provides functions to solve forward
problems and to compute the gradient of misfit functions with respect to model parameters.
For all these physics, samplers are available to appraise the inverse problem. However, the
functions of these physics can be used independently of the sampler, hence the user can
construct his/her own inversion scheme. Also, the user may supply his/her own forward
model, prior and gradient calculation code and subsequently use the available inversion
algorithms by providing a minimum set of functions with the appropriate signature as
described in the documentation.

HMCLab is not limited to flavors of the HMC algorithm, but includes other more tra-
ditional algorithms such as the random walk Metropolis-Hastings algorithm [Metropolis
et al., 1953, Hastings, 1970], where gradients are not used. Moreover, we provide an inter-
face [Gebraad, 2022b] to the Stein Variational Gradient Descent (SVGD, [Liu and Wang,
2019]) variational inference algorithm, providing an alternative probabilistic appraisal al-
gorithm to the included MCMC algorithms. As already mentioned, HMCLab includes
functions to compute gradients of the misfit functional, and, as such, deterministic inver-
sions are also possible [e.g., Zunino and Mosegaard, 2019]. An example is basic gradient
descent, where the modes (local minima) of the defined posterior distribution can be found
deterministically. As such, HMCLab also facilitates the usage of Python [e.g., Virtanen
et al., 2020] and Julia optimization libraries, including popular algorithms such as the
(Limited Memory) Broyden-Fletcher-Goldfarb-Shanno and Newton Conjugate Gradient
algorithms [Nocedal and Wright, 2006].

Noteworthy is the inclusion of several notebooks that illustrate the basic concepts of
MCMC sampling in general, applied to HMCLab in particular. This ranges from investi-
gating the basic properties of a Markov chain, such as number of proposals, stepsizes and
resulting acceptance rates, to tuning the various included algorithms and even implement-
ing one’s own inverse problems. These notebooks are available to all users to run out-of-
the-box in our supplied Docker environment, but are also available without a Python or
Julia interpreter as plain HTML. HMCLab homepage can be found at https://hmclab.
science, while the Julia and Python versions at https://gitlab.com/JuliaGeoph
and https://python.hmclab.science/index.html, respectively.

Finally, HMCLab is constantly updated and expanded and contributions from the com-
munity are welcomed.

3.5 Conclusions

In this work we have shown how a common framework for probabilistic inversion can be
utilized to solve a diverse range of geophysical problems. In particular, the HMC method
can be used to solve a variety of nonlinear geophysical inverse problems. In contrast to
other MCMC algorithms, HMC exploits the information derived from the gradient of the
posterior PDF to drive the sampling towards regions of high probability, hence being able
to traverse the model space more efficiently. This property is very beneficial, especially
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for problems which allow efficient computation of the gradients, e.g., when using the ad-
joint method, analytical derivatives or automatic differentiation. In this paper we have
shown a set of example problems including full-waveform acoustic inversion, hypocenter
location, traveltime tomography and magnetic anomaly inversion using polygonal bodies.
The examples presented have been solved using the software implementation HMCLab,
a numerical laboratory for better understanding and solving inverse problems in a prob-
abilistic manner, written in the high-level languages Julia and Python. By providing a
collection of models as the solution of the inverse problem, HMCLab enables the user to
perform a statistical analysis and retrieve desired probabilistic information. HMCLab is
in constant evolution, and hopefully will be augmented by contributions from interested
users. In addition to the available forward problems and priors, we made it accessible to
the user to construct their own inverse problem and easily apply the methods provided by
HMCLab. Moreover, several types of prior information are available, allowing the user to
adequately describe prior certainties and uncertainties.

3.6 Data Availability

The general webpage of the project HMCLab can be found at https:/hmclab.science,
containing all the relevant info and links to the software repositories. The Julia ver-
sion of HMCLab is available in the public repository Gitlab at https://gitlab.com/
JuliaGeoph, while the Python version is available in the public repository Github at
https://github.com/larsgeb/hmclab.
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Chapter 4

Interrogating algorithms for free lunch

Chapter in preparation for submission to Inverse Problems, by L. Gebraad, X. Zhang, A.
Zunino, A. Fichtner, and A. Curtis.

Abstract

This study investigates optimal appraisal algorithms within the context of Bayesian in-
ference problems in geophysics, aiming to establish a concise, quantifiable performance
metric. For Bayesian inference problems of small dimensionality, it is found that the en-
tropy of an algorithm’s output can be compared to the expected entropy of an inverse
problem. The disparity between these entropies facilitates a relative numerical measure of
algorithmic performance.

We apply this metric to an variety of widely used inference algorithms from the
Markov chain Monte Carlo and variational inference categories. As our metric evaluates
increasingly complex and non-linear inference problems, it reveals the inherent limita-
tions of the tested algorithms. In these cases, clear performance differences for the tested
algorithms can be observed, demonstrating that a specific algorithm can consistently and
objectively outperform others within a subset of problems.

While optimal algorithms are identifiable for certain cases, it is discovered that due
to the complexities of calculating entropies for high-dimensional distributions, our scor-
ing method is inherently constrained to evaluating algorithms for low-dimensionality ap-
praisal problems. This is due to the methods for calculating entropy becoming more
resource-intensive in line with the curse of dimensionality—an effect that most sampling
algorithms seek to circumvent—leading to a circular limitation.
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4.1 Introduction

This study examines the implications of the No-Free Lunch theorems [Wolpert and Macready,
1997] in the context of geophysical problems. The No-Free Lunch theorems state that, av-
eraged across all conceivable problems, all algorithms exhibit the same performance, with
performance defined as the average across all possible metrics.

Our work aims to construct a relevant metric for assessing the quality of samples
generated by Bayesian appraisal in the context of geophysical inversion. Using this metric,
we explore the potential for certain algorithms to consistently outperform others within a
specific class of problems.

Although the theory of Bayesian inference in parameter estimation settings seems
elegant, in practical terms the analytical descriptions of the posterior density at any point
are often inadequate. To effectively leverage Bayesian inference, meaningful questions
need to be posed to the data. For example, a relevant question might be, "What are the
most probable parameter values describing our physical system given the data?"

However, to answer such questions, integrals over the posterior distributions gener-
ated by Bayesian inference need to be calculated. As the complexity of these integrals in-
creases with the number of parameters, standard techniques for evaluating integrals such
as numerical quadrature fail. Over the past 70 years, a multitude of methods for com-
puting these high-dimensional integrals has been developed. The aim of this work is to
determine if any algorithm can be tested to consistently outperform others.

4.2 Bayesian inference

We start by reviewing the core elements of Bayesian inference and providing an extended
interpretation of its components. This work assumes that the experimental design, numer-
ical implementation, and the relationship between the model and data are all fixed.

Models are a collection of parameters that describe the state of nature. These pa-
rameters can be either continuous or discrete, while the collection itself can be finite or
infinite in number of parameters. For the rest of this work, we won’t consider models
of infinite dimension. Typical examples in geophysics include discrete velocity maps of
the subsurface, where each pixel, or voxel in three dimensions, represents a cell with a
constant velocity, or the coefficients and spatial coordinates describing a moment tensor.
In this work, we represent models as vectors m residing in the in linear model space M ,
although in general one should consider models in manifolds [Tarantola, 2005]. This vec-
tor resides. The dimension of this space is often referred to as the dimension of the inverse
problem, as it represents the space in which algorithms search for models that explain the
recorded data.

Data is defined as a collection of observations, which are similarly organised in this
work into a vector. This vector, denoted as d, could be a concatenation of multiple seis-
mograms or the measured gravity at certain locations organised into a vector. Unless
specified, the vector d can refer to observed, computed or hypothesized data. This vector
exists in data space D . Combined, a given model and data reside in the joint model-data
space, J , which has a dimensionality equal to dim(M )+dim(D).
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The forward relationship is the embodiment of a geophysicist’s understanding and
description of the process at play in the inverse problem. It is the mathematical or nu-
merical operation that transforms a model into predictions. Examples might include a
numerical wave propagation code or a lookup table for precomputed waveforms. Often
referred to as the forward modelling relationship or simply the forward model, it is often
denoted as d = F(m), although implicit relationships such as solution to differential equa-
tions might also be used. To complete the Bayesian interpretation of the data, data noise
should be included, which may or may not depend on the model but is generally consid-
ered a stochastic rather than deterministic quantity, modifying the previous equation to
d = F(m)+ e(m).

Prior beliefs encapsulated in p(m) summarise pre-experimental presumptions about
what the subsurface might look like, in terms of the model parametrisation. It assigns a
probability to any potential model m 2 M . However, a significant knowledge gap might
exist here; the understanding of a geological setting, for instance, does not straightfor-
wardly translate into a discretisation and hence into a distribution over the used model
space. As such, transposing complete prior beliefs into a proper mathematical formula-
tion often proves challenging.

4.2.1 Data likelihood

The probability of any given datum being produced by a specific model, while adequately
accounting for error statistics e , is determined by the data likelihood. In an ideal scenario
without noise, this likelihood is represented by:

p(d|m) µ d (F(m)�d) (4.1)

In this equation, d represents the Dirac delta distribution. It should be noted that in this
equation, d is a free parameter.

If one were to condition this equation with some observation (d = dobserved), this
relationship implicates that a model is only admissible if it perfectly explains this data.
This is often not realistic, thus demanding the introduction of error statistics. When e is
independent of m and uniformly distributed across all datapoints according to N (0,s), a
more accurate representation of the data likelihood becomes:

p(d|m) µ exp
✓
�F(m)�d

s2

◆
(4.2)

Variations of this relationship exist, typically based on the assumed statistics of e . The
likelihood distribution can be seen as a function of m, d, or both.

Given that all likelihoods are defined up to a multiplicative constant, denoted by the
’proportional to’ symbol µ, the likelihood can be interpreted in model space, data space,
or joint space. In practical terms, this means a conditional probability can be considered
in the joint space or with either d or m fixed to a certain value, giving interpretations in
the model space or data space, respectively.
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Examples of these quantities include p(d|m = m0), which denotes the probability of
any given datapoint given a fixed model m0, and p(d = d0|m), representing the probabil-
ity that a specific datum d0 is produced by any specific model m. The latter interpretation
is commonly used in parameter estimation problems. The normalisation constant is calcu-
lated by integrating the entire likelihood over the relevant space and ensuring the integral
equals 1 by introducing a multiplicative constant.

4.2.2 The post-experimental knowledge on model and data
In this section, a deviation from the typical interpretation of Bayesian inference is done.
Rather than applying Bayes’ theorem directly, the joint knowledge derived from prior
information and the forward relationship is considered first. The d vector is not fixed to
any potential observations at this stage. The joint knowledge is obtained by multiplying
the prior and the data likelihood, in accordance with the chain rule of probability:

p(m,d) = p(d|m) p(m) (4.3)

This distribution truly is only defined in the joint space. It describes the likelihood of
any datum and model combination, integrating both the physics and the prior. If noise is
Gaussian with standard deviation s , the probability of any noise realisation is non-zero
(since e ⇠N (0,s) and thus e 2 (� inf, inf)), making the probability for any datum-model
combination non-zero, irrespective of its absolute likelihood.

4.2.3 Bayes’ theorem
Through Bayes’ theorem, a third equality can be added to the previous equation that aids
in answering questions about models under a given observation:

p(m,d) = p(d|m) p(m) = p(m|d) p(d),

which is commonly written as:

p(m|d) = p(d|m) p(m)

p(d)
=

p(m,d)
p(d)

. (4.4)

Here, p(m|d) denotes the probability of any model m under observation d, considering
prior beliefs.

4.2.4 The interpretation of p(d)
It’s important to note that when d is fixed to a specific observation, the term p(d) becomes
a constant known as the evidence, or (data) normalisation constant. However, if one is
interpreting distributions in the joint space J or data space D , this term is the data dis-
tribution. In either scenario, it contains a priori information about the data. This can be
clarified by expressing the term as a marginalisation of p(m,d):
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p(d) =
Z

M

p(m,d)dm

=
Z

M

p(d|m) p(m)dm

= EM [p(d|m)] (4.5)

Here, EM (⇤) denotes the expected value of the term over model space, weighted using the
prior distribution. This final line indicates that the term represents the expected probability
of observing a given data point across all models, factoring in the prior distribution on
p(m). When fixed to a particular observation, it specifies the likelihood of observing
that particular data point, averaged over all models, appropriately weighted with the prior.
Conversely, when interpreted within the D space, it expresses the likelihood of any data
point being observed across all a priori likely models.

As p(d) is expressed as an integral, it’s generally not feasible to find a direct ex-
pression for it. This can be intuitively understood by acknowledging that computing this
quantity directly would require an inverse relationship for the forward model operator.
This operator is in generally not available, with only the simplest of models allowing for
the direct inverse relationship. It becomes wholly impossible to acquire when the forward
mapping is not one-to-one, a scenario easily caused by the consideration of error statistics.

4.3 The Equality of Entropy

In order to evaluate the results of Bayesian inference appraisal algorithms, a mathematical
descriptor is sought that can quantify the ’goodness’ of a result relative to a baseline. In
this context, we introduce the concept of entropy of a distribution:

Ent p(m) = EM [� log(p(m))]

=
Z

M

� log(p(m)) p(m)dm. (4.6)

This differential entropy can be understood as a measure of the information content within
a distribution. A distribution that is ’sharper’ or more ’peaked’ possesses lower entropy.
It is worth noting that a distribution need not be localised to a single region in domain to
have low entropy; even a ’sharp’ multimodal distribution can exhibit low entropy as long
as the information is concentrated at its modes.

4.3.1 Estimating the Entropy of a Distribution
The differential entropy for distributions of continuous random variables can be estimated
through various methods. One such approach is through numerical quadrature. However,
this method requires knowledge of the normalised probability density function, a condition
that is not always met in practical applications .

An alternative method for entropy estimation is the histogram-based calculation. This
technique requires only samples drawn from the distribution, which can be obtained from
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the unnormalised posterior density. The method bins these samples and determines the av-
erage probability density for each bin. Subsequently, a discretised version of Equation 4.6
is used to estimate the entropy

Ent =�Â
i

pi log(pi)DVi, (4.7)

where pi is the probability density of each bin, and DV represents the hypervolume of each
bin. The accuracy of the histogram-based method largely dependent on the selection of
the bin width and the total number of samples drawn. It should be noted that the memory
requirements for this approach scales exponentially with the distribution’s dimensionality,
thus practically limiting the method to distributions of around 5-8 dimensions for 1TB
of working memory, i.e. on high-end workstations or HPC resources. Under increasing
number of samples drawn from the posterior, this method scales linearly.

Kernel density estimation (KDE) presents a third method for entropy estimation, which
offers computational stability even in scenarios with fewer samples. This method fits a
mixture model to the observed samples, after which their individual normalised probabil-
ities are estimated. By taking the mean of the logarithmic probabilities of all N samples,
the entropy is estimated

Ent =� 1
N Â

i
log(pi). (4.8)

The accuracy of the KDE-based method depends strongly on the choice of bandwidth of
the kernels. Unlike the histogram-based method, the KDE-based method can compute
entropy efficiently in high-dimensional spaces, without the substantial memory require-
ments inherent to the histogram-based approach. It does, however, experience an expo-
nential increase in the computational time required as the number of samples used for
entropy estimation grows, which is necessary to maintain accuracy in high dimensional
distributions [Silverman, 1986].

It’s important to note that both histogram- and KDE-based entropy calculations are
significantly constrained by the curse of dimensionality. While the memory requirements
for the histogram-based method scale exponentially with the distribution’s dimensionality,
the KDE method is limited by the exponential increase in computational time needed to
fit a larger number of samples from the distribution. Due to the dimensionality of the
distributions involved, the calculations of the entropy for the joint distribution p(m,d) are
the first ones to go out of scale.

4.3.2 Shewry and Wyn: A Litmus Test for Algorithms

Having defined the entropy, it is useful to introduce the following relation between the
information of the posteriors, the data, and the joint distribution as stated by Shewry and
Wynn [1987]:

ED [Ent p(m|d,x )]+Ent p(d|x ) = Ent p(m,d|x ). (4.9)

64



44

4.3. The Equality of Entropy

Previous studies [van Den Berg et al., 2003] have utilised this equation to find the optimal
experimental design x , by maximising the entropy in the prior data Ent p(d|x ). The term
Ent p(m|d,x ) denotes the amount of information contained in the posterior distribution
for a specific datum and experimental design. The calculation of this term’s expectation
over the entire data space D yields the expected information in a posterior, regardless of
the data realisation. This, in turn, enables the evaluation of information in an experiment
without necessitating actual observations.

One can adapt this equation to consider a single inverse problem at a time:

ED [Ent p(m|d)]+Ent p(d) = Ent p(m,d). (4.10)

This equation implies that the entropy of a posterior p(m|d), averaged over the data dis-
tribution, equals the difference in information between the joint and data distributions.
Notably, because the expectation over D is desired, re-expanding into the integral would
require weighting by p(d) again in the first term:

Z

D

Ent p(m|d) p(d)dd+Ent p(d) = Ent p(m,d).

The crux of the proposed metric is this: the algorithms examined in this work aim
to appraise posteriors p(m|d). In the typical implementations of these algorithms, this
is achieved either by generating samples from the posterior or by generating samples for
a kernelised parametrisation of the posterior, for Monte Carlo and SVGD methods, re-
spectively. Both these outputs allow for the computation of the entropy of the appraisal.
By substituting this entropy into Equation 4.10 and quantifying the discrepancy, a perfor-
mance metric is constructed:

EoE = ED [Ent p(m|d)]algorithm � [Ent p(m,d)�Ent p(d)]baseline . (4.11)

This Error of Entropy (EoE), which is the difference between the entropy produced by the
algorithms and the baseline entropy, measures the quality of the posteriors produced by
an algorithm. Importantly, this approach does not require any actual data, since it quan-
tifies an algorithm’s performance under all prior likely data. Another way to understand
why the EoE measures algorithm performance involves considering the baseline entropy
[Ent p(m,d)�Ent p(d)]baseline. This quantity encapsulates how much information should,
on average, be present in the posterior, as this is precisely the amount of information the
data can extract from the joint distribution.

Importantly, Equation 4.9’s terms, Ent p(d) and Ent p(m,d), can be calculated with
relative ease provided the prior distribution and data error distribution are directly sam-
pleable. To achieve this, a closer look at Equation 4.5 is warranted. By drawing a sample
m0 directly from the prior distribution p(m), one generates samples proportional to the
second term of the integral. Using that sample m0 as input for the forward model, in-
cluding the stochastic modelling of the errors, one generates a data sample proportional to
p(d|m0). Repeating this process with multiple draws from the prior distribution generates
samples (mi,di) with probability p(mi) in the joint space J . These samples are propor-
tional to p(d|m) p(m), and by virtue of Equation 4.3, proportional to p(m,d). From these
samples, the entropy of the joint distribution Ent p(m,d) can be obtained.
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Furthermore, marginalising these samples with respect to the components in m gives
samples proportional to the data distribution. This marginalisation, or the process of taking
the integral over M , is as simple as disregarding the m-component(s) of each sample,
which yields samples proportional to p(d). From these samples, the entropy of the data
Ent p(d) can be readily computed.

The average entropy of the posteriors, ED [Ent p(m|d)], can be calculated by drawing
samples from p(d) using the previously outlined method. Serving as mock-observed data,
these samples aid in the generation of the posteriors, p(m|d). The algorithm under review
evaluates these posteriors, and the entropy of each is determined based on the results. The
mean entropy of these posteriors is subsequently calculated. The difference between this
average and the baseline entropy is named the Error of Entropy (EoE).

The EoE method for testing an algorithm A is encapsulated in the following steps,
where all tuning parameters of the EoE method are denoted by a capital N and an associ-
ated subscript:

1. Draw Nprior samples from the prior distribution p(m).

2. Use each sample from the model prior as input for the forward model with appro-
priate error statistics F(m)+ e to draw samples from p(d).

3. Calculate the entropy of the data distribution Ent p(d) from its samples, setting a
fixed number of bins Nbins.

4. Direct sum each prior sample with its corresponding data sample, m�d, to create
an ensemble of samples proportional to p(m,d).

5. Calculate the entropy of the joint distribution Ent p(m,d) from its samples, setting
a fixed number of bins Nbins.

6. For each of the Ncopies samples from p(d):

(a) Create the posterior p(m|di) using data sample di

(b) Assess the posterior p(m|di) using the algorithm A, optionally limiting the
number of evaluations to Neval.

(c) From the resulting samples for each posterior, calculate the entropy Ent p(m|di),
setting a fixed number of bins Nbins.

(d) From these entropies, compute the average entropy for all posterior appraisals
ED [Ent p(m|d)].

This process enables the generation of samples from all three terms in Equation 4.9. For
the calculation of entropy, either the histogram or KDE-based method can be used used.
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4.4 Testing algorithms

What one understands as an algorithm depends on context. When a study on geophysical
inverse problems discusses the used methods, it might be common for it to state which
algorithm was used, e.g. "for this appraisal we used the Gibbs sampling algorithm". How-
ever, in the context of the No-Free Lunch theorem, an algorithm is understood as a com-
bination of the operations of what is typically understood as an algorithm, along with all
of its settings, or colloquially, its tuning parameters.

In this work three algorithms are investigated. Below one will find the details on the
operations of each algorithm, but each test of algorithm will also include associated tuning
parameters.

4.4.1 Monte Carlo autotuning

The performance of MCMC algorithms depends on specific tuning settings. A commonly
recurring tuning parameter across many MCMC algorithms is stepsize, which controls
the distance of proposed moves from the current sample. By increasing the stepsize, the
algorithm’s mixing performance can be improved, as it allows the chain to attempt longer
distance moves. However, thus also reduces the acceptance rate of proposals, as larger
proposed moves are more likely to fall outside the region of probability, thereby being
rejected by the target distribution. This trade-off between stepsize and acceptance rate
is an important challenge in Monte Carlo methods, with the optimal stepsize for a given
problem often not immediately apparent [Neal, 2011].

One heuristic for setting the stepsize is to aim for an acceptance rate that is neither
excessively high nor low. This can be accomplished by iteratively adjusting the stepsize
during the sampling process, based on the observed acceptance rate. However, this method
can inject memory into the sampling process, thereby violating the Markov property and
potentially leading to biased estimates. To mitigate this issue, one can use separate tuning
stages in which an isolated chain is used to fine-tune the stepsize and other parameters
prior to generating samples for analysis.

This study utilises asymptotic tuning to automate the tuning and analysis process
within a single chain, by adjusting the stepsize over time to approach an optimal value
[Zunino et al., 2023]. Asymptotic tuning offers improved efficiency over iterative tuning,
as it negates the need for additional sampling or user input to estimate the optimal stepsize.
However, it can introduce further bias if the asymptotic behaviour of the chain is not well
understood, or if the algorithm is finely tuned to the local geometry of the distribution.

4.4.2 Random Walk Metropolis-Hastings

The Random Walk Metropolis-Hastings algorithm (RWMH) is a variant of the Metropolis-
Hastings (MH) algorithm, initially proposed by Metropolis et al. in 1953 [Metropolis
et al., 1953]. The Metropolis algorithm introduced a symmetric proposal distribution.
The Random Walk Metropolis-Hastings algorithm, as we know it today, incorporates de-
velopments from the 1970 paper by Hastings [Hastings, 1970]. In this work, Hastings
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generalized the algorithm to allow for a wider class of proposal distributions, including
non-symmetric ones. The key innovation was the introduction of the ’Hastings correction’
to account for the asymmetry in the proposal distribution. Specifically, RWMH generates
new samples by proposing a move around the current sample using a Gaussian distribu-
tion. The mean of this distribution, denoted as µ , is set to the model coordinates of the
current sample, and the covariance, denoted as S, serves as a tuning parameter for the
algorithm. This covariance defines a hyper-ellipsoid proposal volume.

The random walk version of the MH algorithm is powerful as it can generate new
samples with a relatively high posterior likelihood by conducting a local search around
the current sample. This might not be the case when using the prior distribution as the
proposal distribution for the MH algorithm in scenarios where the prior is considerably
different from the posterior, as this would result in a relatively low acceptance rate in
regions with large discrepancy.

The covariance S is typically simplified to s2I, where s represents the step size, and
I is the identity matrix corresponding to the target’s dimensionality. By utilising a full
covariance matrix, one could introduce prior knowledge on the Hessian structure of the
posterior. While this does not alter the MCMC result in the limit, it can typically expedite
sampling. If only stepsize is used to tune RWMH, the proposal volume becomes a unit
hypersphere scaled by the stepsize.

A notable drawback of the local proposal strategy is that RWMH exhibits random walk
behaviour, leading to poor mixing and slow convergence. The chain might take a substan-
tial amount of time to explore the entire parameter space, particularly in the presence of
multiple local minima. The adverse effects of this behaviour are tied to the stepsize, or co-
variance, of the proposal distribution. Using a larger stepsize generates distant proposals
that ameliorate these unfavorable properties, while using a smaller stepsize exacerbates
their effects. Unfortunately, increasing the stepsize also leads to a lower acceptance rate,
as the sampler seeks new likely models in a significantly larger volume in model space.

As the model space dimension increases, the exponetially growing volume of the pro-
posal distribution results in a decrease in acceptance rate for a specific stepsize. As such, to
maintain acceptance rates, stepsizes are reduced for RWMH applied to high-dimensional
posteriors. This results in an unfavorable scaling property of the algorithm as the problem
size increases [Creutz, 1988, Neal, 2011].

4.4.3 Hamiltonian Monte Carlo

The Hamiltonian Monte Carlo (HMC) [Duane et al., 1987] algorithm is a complex vari-
ation of the standard MH algorithm. It implements two significant alterations to the tra-
ditional methodology. Firstly, it expands the target distribution with a distribution over
auxiliary variables. This resultant distribution is referred to as the canonical distribution.
Secondly, instead of using a proposal distribution for the canonical distribution, it di-
rectly generates new coordinates for the auxiliary variables (analogous to blocked Gibbs
sampling) and then applies Hamiltonian dynamics to evolve the original and auxiliary
variables together, proposing a new state.

The proposal process can be interpreted within the framework of Hamiltonian dynam-
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ics, drawing parallels to physical phenomena. The original variables of the posterior dis-
tribution are perceived as the coordinates of an N-dimensional particle, while the auxiliary
variables are considered the particle’s momentum. The negative logarithmic probabilities
of the posterior and momentum variables, � log p(m) and � log p(q), can then be inter-
preted as the potential and kinetic energies of this system, P(m) and K(q) respectively.
Consequently, this system models a particle moving in a potential field described by P,
and its behaviour can be predicted using Hamilton’s equations.

This physical interpretation leads to efficient exploration of the parameter space be-
cause the Hamiltonian dynamics naturally move the particle towards regions of higher
posterior probability. The HMC algorithm generates candidate moves by evolving the
system for a fixed amount of "time" according to Hamilton’s equations, using numerical
integration methods.

The key advantage of HMC over e.g. RWMH is its ability to propose distant moves
while still maintaining a high acceptance rate, which leads to more efficient exploration
of the parameter space. This property makes it particularly suited for high-dimensional
problems where the acceptance rate of RWMH drops.

The algorithm introduces three key tuning parameters: the step size for the numerical
integration, the "time" for which the system is evolved, and the arbitrary distribution on
the auxiliary variables. The step size for the numerical integration functions much like the
stepsize of RWMH, and can be tuned accordingly.

The numerical requires the gradient of the posterior distribution to be available. The
integation time, defined by the number of steps taken by the numerical integration, controls
how many gradient evaluations are performed during a proposal.

Lastly, the distribution of the auxiliary variables functions exactly the same as the pre-
conditioning matrix in RWMH. It allows one to correct for large variations in curvature
and correlation. In the physical intepretation of HMC, it can be regarded as the multidi-
mensional mass matrix of the hypothetical particle.

4.4.4 Stein Variational Gradient Descent

Stein Variational Gradient Descent [SVGD, Liu and Wang, 2019] belongs to the class
of variational inference algorithms. Instead of generating samples from the posterior,
SVGD represents the target distribution through a set of particles. These particles are
updated using optimisation techniques, specifically by minimising the Kullback-Leibler
divergence between the particles and the true posterior, evaluated at the particle locations.
This methodology allows SVGD to generate globally dispersed samples, mitigating some
of the issues of local exploration that traditional MCMC methods encounter. Addition-
ally, since all samples are updated simultaneously without requiring communication, their
computations can be executed in parallel during each iteration of the algorithm, making
SVGD well suited for modern HPC systems.

The key tuning parameters in SVGD are the choice of kernel function, its bandwidth,
the number of samples that initialise the algorithm’s ensemble, and finally the tuning pa-
rameters of the optimisation algorithm. The kernel function and its bandwidth define the
similarity between particles. The bandwidth parameter is particularly crucial as it deter-
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mines the range of influence or the spread of the kernel, and is therefore integral to the
performance of the algorithm. In many respects, it is analogous to the stepsize in MCMC
methods, as it scales the ensemble to match the posterior. The number of samples in the
ensemble determines the final size of the posterior samples. A larger sample size en-
ables more precise estimators of integrands of interest. However, it also linearly impacts
the computational time required for SVGD. Finally, the parameters for the optimisation
algorithm are essential as well. This depends on the choice of optimisation algorithm.

The tuning parameter for bandwidth can be autotuned using the ’median trick’. This
approach involves computing the pairwise Euclidean distances between all pairs of parti-
cles and selecting the median of these distances as the bandwidth parameter. The use of
median distance as the bandwidth allows the RBF kernel to adaptively change size as the
local structure, or Hessian, of the posterior changes when the samples are updated [Liu
and Wang, 2019].

The SVGD algorithm also has a physical interpretation, in that pulls the particles
towards the high-probability regions of the target distribution as if the posterior were a
potential, counterbalanced by the particles repelling static forces defined by their kernels.

4.4.5 The symmetries between the algorithms tuning parameters

We posit that the parameters used to tune each of the three algorithms in this manuscript
have strong similarities. Firstly, all three algorithms can be autotuned to account for the
unknown scale of the posterior. For both Monte Carlo algorithms - RWMH and HMC -
this is achieved by autotuning based on the acceptance rate. For SVGD, this is done using
the median trick. Therefore, it is expected that the effect of these parameters and their
automatic tuning methods help decouple the performance of the algorithms from the scale
of the distribution.

Secondly, the curvature of a target distribution can also be accounted for in all three
algorithms. The curvature is a multivariate effect that goes beyond the absolute scaling
of the posterior in all dimensions equally. Curvature describes how the individual pa-
rameters are dispersed and correlated. This can be described locally by the Hessian, or
second derivative, of the posterior, but can vary in a non-Gaussian way across the poste-
rior. Accounting for this effect is done by controlling the proposal distribution, auxiliary
distribution or kernel distribution for RWMH, HMC and SVGD respectively.

The basic variations of each algorithm can account for a multivariate Gaussian curva-
ture of the posterior, that is, a negative log of the distribution that behaves like a quadratic
polynomial. However, any distribution which can be sampled from can in principle be
incorporated as a preconditioner through either of the three preconditioning distributions.
The effects of preconditioning on non-Gaussian posteriors is not investigated in this work.
For SVGD, non-Gaussian kernels can be tuned for automatically [Ai et al., 2022]. Similar
approaches for the mass matrix in HMC can be constructed using (L-)BFGS style gradient
accumulationFichtner et al. [2021].
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RWMH HMC-3 HMC-10 SVGD-50 SVGD-500
Iterations As limited by the numerical test, based on allowed f (m) evaluations
Preconditioner Unit Unit Unit Unit Unit
Stepsize Autotuned Autotuned Autotuned — —
Integration steps — 3 10 — —
Burn-in 20% 20% 20% — —
Kernel size — — — Median trick
Optimiser — — — Gradient descent
f (m) eval. per iteration 1 4 11 50 500
Final ensemble size Eval. ⇠ Eval./4 ⇠ Eval./11 50 500

Table 4.1: Tuning settings for the five different instances of the algorithms under test. For
RWMH, HMC, and SVGD, the preconditioner corresponds to the proposal distribution,
mass matrix, and kernel function, respectively. "Unit" refers to the unit normal distribu-
tion.

4.5 Algorithm evaluations

To evaluate the performance of RWMH, HMC, and SVGD algorithms, numerical Ex-
pected Posterior Entropy (EoE) tests on inverse problems of varying dimensionality and
complexity are performed. A comparison is conducted between one instance of the RWMH
algorithm, two instances of the HMC algorithm, and two instances of the SVGD algo-
rithm. The HMC instances differ in the number of integration steps, while the SVGD
instances vary in initial ensemble size. A detailed description of all tuning parameters can
be found in Table 4.1.

In the context of the ’no free lunch’ theorems, the number of iterations an algorithm
performs is considered a tuning parameter. In these tests, the number of iterations of
each algorithm is limited by a maximum number of model f (m) evaluations. The idea is,
that with an equal number of model evaluations, algorithms are evaluated based on their
performance within a given computational budget. Since SVGD and HMC require the
calculation of the gradients of the posteriors, ∂

∂m f (m), these evaluations are considered
additional model evaluations, and thus detract from the overall budget. This one-to-one
cost is rationalised by the fact that, in cases of analytical derivatives, the gradients typically
present similar complexities. In more practical cases of numerical models, the adjoint
method allows for the computation of gradients at roughly the same order of magnitude
of computational cost as a forward evaluation. In adapting the presented method, one can
scale the weighting of the evaluation of the gradient of the forward model to correspond
to relatively costlier gradients.

To calculate the expected posterior entropy, each algorithm is run multiple times with
different realisations of the data for a specified number of forward model evaluations. The
number of allowed evaluations varies in logarithmic spacing from 100 to 107 across 40
grid points. At each point, all algorithms are evaluated 50 times for different realisations
of the data. This amounts to a total of 10’000 algorithm runs per forward model for the
five algorithms tested, with runs at higher evaluation numbers being significantly more
computationally demanding than runs with fewer evaluation numbers. This computational
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(a) Linear f (m) (b) Cubic f (m) (c) Sinusoid f (m)

Figure 4.1: The prior, joint and data distributions of the three tested models of dimension-
ality n = 1. If one were to condition on a specific datum, i.e. create a posterior p(m|d),
that would mean to create a slice of the joint distribution at that given datum. The dotted
lines in the panel of the joint densities are the forward models. This shows why posteriors
can be non-unique, i.e. through noise in all cases, and through the absence of one-to-one
mappings in the non-linear cases.

demand is facilitated through parallel evaluation of the algorithms on high-performance
computing systems and local workstations.

4.5.1 Linear models

First, we test the method on linear models of the form

d = Gm (4.12)

where G is an arbitrary matrix of dimensions n⇥ n. We simplify this even further by
setting G equal to the unit matrix In. A Gaussian noise model with a standard deviation
of s = 0.1 is used, yielding the prior, joint, and data distributions as given in Figure 4.1a
for n = 1. This results in a 1-dimensional inverse problem, with a 1-dimensional data
space and a 2-dimensional joint space. The same linear model (i.e., G = In) is tested
for dimensionality 2 and 3. Of note is that the combination of a Gaussian prior with a
linear model and a Gaussian noise model creates a Gaussian posterior, with characteristic
function equal to the least squares solution.

The resulting entropies for dimensionality 1 are shown in Figure 4.2a. It can be clearly
seen that as the number of iterations increases, all models significantly alter their average
results. All three Monte Carlo methods asymptotically converge to the expected posterior
entropy, with the RWMH algorithm showing the best convergence, at around 103 number
of evaluations. Furthermore, the HMC algorithms show a similar level of convergence
after an order of magnitude more model evaluations, around 104 model evaluations. The
comparison of the two variants of HMC illustrate that in the case of a 1 dimensional linear
inverse problem, the expenditure of more computational power per sample, in the form of
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more integration steps, is not beneficial to the rate of convergence of the entropy. As all
Monte Carlo algorithms sequentially grow the ensemble, their initial entropies start out at
low values and increase towards the expected posterior entropy.

For the two SVGD variants, one sees that these start out with a relatively high entropy.
As these algorithms are initialised from the prior distribution, they start out more disper-
sive than the posteriors. The SVGD variant with 50 samples naturally has a lower entropy,
as it spans less of the prior with fewer samples in the same volume of model space. In-
terestingly, for either SVGD configuration, the asymptotic entropy value as the number of
evaluations tends to infinity is not the expected posterior entropy. This means that in the
limit, the SVGD algorithm does not converge to the true solution. However, the SVGD
algorithms seem to converge faster to their asymptotic value than the HMC algorithms,
with an ensemble of 50 samples reaching convergence after 103 model evaluations. The
SVGD algorithm seems to underestimate the dispersion of the posterior in the limit but
does transition through the correct entropy. This additionally means that from a single
evaluation of the EoE, it might be impossible to tell if an algorithm has performed well or
simply found the correct entropy by chance. This highlights a limitation of our method:
the correct entropy cannot fully capture the entire posterior, as no other quantity except
the full posterior can.

As the SVGD algorithm only uses a predetermined number of samples in its ensemble
to describe the posterior, the concern existed that this limited number of samples might
actually describe the posteriors better than was shown from the EoE test, which do not
take into account the kernel function. To test for this, the entropy on posterior sample
ensembles created by multiplexing the SVGD results was computed. Using the kernel
trick, the bandwidth of the kernel was estimated for the final state of the SVGD-produced
ensemble, after which the generation of derived samples from the ensemble was made
possible by repeatedly selecting ensemble members at random and adding Gaussian noise
proportional to the bandwidth. However, the resulting multiplexed ensembles showed no
improvement in EoE score towards the target posteriors.

As the dimensionality of the inverse problem increases, the asymptotic behaviour of
the Monte Carlo algorithms occurs at an exponentially higher number of model evalua-
tions, meaning the algorithms need more evaluations to converge. Interestingly, increasing
dimensionality of the inverse problems does not seem to influence the convergence point
of the SVGD algorithms noticeably in the linear forward model case. However, for the
SVGD instances, the EoE score does drop with increasing dimensionality.

4.5.2 Non-linear models
The algorithms are subsequently tested on models with non-Gaussian curvature, poten-
tially having local minima. The two models considered are a cubic polynomial, defined
as

f (m) = 0.1m3 +0.1m2 �1.5m�0.9, (4.13)

and a sinusoid, defined as

f (m) = 2sin(5m). (4.14)
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(a) n = 1 (b) n = 2 (c) n = 3

Figure 4.2: Entropy terms for the linear models of dimensionality n = 1, 2, and 3, calcu-
lated using the histogram-based method with 200 bins. The EoE is not directly shown,
however, the left and right-hand side of the required equality are shown, meaning that a
well-performing algorithm converges with a minimum amount of model evaluations to
the black line of expected posterior entropy p(m, d)� p(d). The vertical bars indicate the
variability in the posterior entropy. For n = 3, the computation of the entropy of the joint
distribution in 6-dimensional space with high enough precision becomes intractable.

These two forward models and their associated probability density functions can be found
in Figures 4.1b and 4.1c, respectively.

The results of the cubic polynomial forward model are very similar to those of the lin-
ear models, showing convergence of the Monte Carlo algorithms around the same number
of iterations. Similarly, the SVGD algorithms show convergence after approximately 104

model evaluations, but to entropies that are significantly lower than the expected posterior
entropy from the EoE expression.

Interesting behaviour appears for algorithms appraised on the sinusoid model. The
Monte Carlo algorithms seem to stagnate far below the expected posterior entropy. No-
tably, both HMC configurations come closer to the expected entropy than RWMH, outper-
forming RWMH for a given number of model evaluations for the first time. As the number
of evaluations increases beyond 105 evaluations, the HMC algorithm using 10 integration
steps diverges from its previous asymptote, converging closer to the expected posterior
entropy. In contrast, both the RWMH algorithm and the HMC algorithm with 3 integra-
tion steps fail to exhibit this behaviour before the maximum number of evaluations tested.
This suggests that these algorithms appear to be limited by the strong multimodality of
the posteriors in this model, as the lower entropy asymptote seems to indicate. The HMC
algorithm with 10 integration steps can escape these local minima and performs a more
efficient global search, in the number of evaluations tested. It is expected that all Monte
Carlo algorithms would show this same behaviour in the limit of infinite samples, as pre-
dicted by the theoretically guaranteed convergence of MCMC methods. For the SVGD
algorithm with an ensemble size of 50, it is difficult to estimate the number of model
evaluations required to reach an asymptote, as the algorithm seems to decrease its entropy
very slowly as the number of evaluations increases. On the other hand, the configuration
with an ensemble size of 500 moves to its asymptote relatively quickly. For an ensemble
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(a) Cubic f (m) (b) Sinusoid f (m)

Figure 4.3: The entropy terms for the EoE tests on the non-linear and sinusoid models.

that spans the prior well, SVGD is expected to handle multimodal posteriors effectively,
as it can initially capture much of the multimodality by initialising the ensemble over a
large volume of the prior.

4.6 Discussion

It is rather unfortunate that the very curse of dimensionality that motivates the develop-
ment of appraisal algorithms also limits the extent to which it is possible to characterise
their performance. When characterising inverse problems it becomes apparent that al-
gorithms show differing behaviour. RWMH excels in posterior distributions similar to
Gaussians, whereas gradient-based algorithms clearly outperform RWMH on multimodal
posteriors and posteriors without constant curvature. The limit on entropy estimation,
unfortunately, precludes a thorough investigation of the scaling relationships of these al-
gorithms as the dimensionality increases.

While Monte Carlo methods are developed for the generation of independent and iden-
tically distributed samples, variational inference methods are designed around the aim of
minimising the KL-divergence between the approximation and true posterior. This differ-
ence in algorithm intent is not clearly reflected in the entropies produced for the distri-
butions investigated. However, the way the Monte Carlo and SVGD algorithms approach
the expected posterior entropy, from either a less or a more dispersive initial ensemble
respectively, can be used to design conservative experiments, where either under- or over-
estimation of uncertainty is preferred in case of any errors due to limited evaluations from
computational constraints.

4.6.1 Computational limitations

Estimating the entropy of the joint distribution Ent p(m,d) exacerbates the limitations of
entropy estimation. As the highest dimensional object in EoE calculations, this distribu-
tion is the first to hit computational resource limits. The memory scaling of the histogram
method is exponential. For instance, for a 6-dimensional joint distribution, this require-
ment is about 90 terabytes.

75



44

4. Free lunch

The use of a fitted KDE model only seems to mitigate this issue initially. Calculating
entropy on a 6-dimensional distribution requires very limited memory, but to achieve suf-
ficient precision, the logarithmic probabilities for each drawn sample must be calculated,
requiring the normalisation of the distribution. The computational time for KDE estimates
of entropy scales exponentially with an increasing ensemble size.

To apply the EoE method to larger inverse problems, alternative methods for calcu-
lating entropies for high-dimensional distributions should be considered. For example,
adaptive or sparse binning strategies in histogram methods [e.g. as included in Brun and
Rademakers, 1997] might resolve the memory issues encountered in the histogram-based
approach.

4.6.2 Parallelisation in Bayesian inference

Although the quantification of performance could only be done for small-scale problems
in this work, it is important to note that all the algorithms discussed in this work have been
successfully applied to more computationally demanding practical cases [Fichtner et al.,
2018b, Gebraad et al., 2020, Zhang and Curtis, 2021, Zhang et al., 2023a, Zunino et al.,
2023]. For large-scale problems, this process typically involves a high degree of multi-
node parallelisation to effectively utilise modern supercomputing resources. In this sense,
the curse of dimensionality does not limit the practical usage of the discussed algorithm,
solely the practical scoring.

MCMC methods produce i.i.d. samples in the limit of many iterations, allowing sepa-
rate MCMC results to be combined into a single ensemble of samples without altering the
original distribution. This is best done by ensuring similar burn-in and mixing characteris-
tics for all separate chains. Multiple works demonstrate how parallel non-communicating
Markov chains can be used to accelerate convergence on high-dimensional or computa-
tionally demanding targets [Murray, 2010, Laskey and Myers, 2003]. MCMC mixing can
be further enhanced in parallelisation using methods such as replica exchange [Earl and
Deem, 2005] or data-partitioning [Neiswanger et al., 2014, De Souza et al., 2022].

SVGD can be parallelised without altering the algorithm, with each update to the
ensemble requiring multiple independent evaluations of the posterior likelihood. These
evaluations can be performed on separate compute nodes, and the results used for an
update on a single node. As a result, this method scales well on multi-node resources.

However, despite both sampling and variational methods being applicable to large-
scale geophysical inverse problems, the actual quantification of entropies in these large
dimensionality problems remains out of scale. SVGD and HMC might specifically avoid
sampling large low-probability spaces by utilising gradients of the posterior. However, the
required histogram operations as well as the sampling of the joint distributions make our
current approach out of scale for problems with dimensionalities (prior model and prior
data combined) higher than approximately 4, even on HPC resources.
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4.6.3 Conclusion
This study provides insights into how algorithm performance can be quantified. It high-
lights the different behaviours of these algorithms, with RWMH excelling in simple Gaus-
sian distributions, and gradient-based methods performing better for multimodal posteri-
ors and those lacking constant curvature.

What is striking is the immediate reduction in accuracy of any method as the dimen-
sionality of the inference problems increases. Per the defined EoE metric, the number eval-
uations required to reach similar conservation of entropy with MCMC algorithms seems to
grow exponentially with the number of dimensions. This effect is not seen for variational
methods, but these methods never reach similar performance.

The study also underlines the challenges in assessing algorithm performance in high-
dimensional spaces, especially due to the computational limitations of entropy estimation.
The curse of dimensionality is an inherent limit that pervades all aspects of optimisation
theory. Therefore, future research should focus on developing methods to efficiently es-
timate entropy and approximate posteriors in high dimensions, as these are crucial for
evaluating complex, real-world inverse problems.
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Chapter 5

psvWave: elastic wave propagation in 2d
for Python and C++

Chapter submitted as preprint L. Gebraad and A. Fichtner. psvWave: elastic wave propa-
gation in 2d for Python and C++. EarthArXiv, Feb. 2022b. doi: 10.31223/X5R91Q. This
chapter is not intended to be published in a peer-reviewed fashion, but serves to document
the development of a sizeable software package.

Abstract

We present ‘psvWave’, a basic numerical finite difference solver for Python and C++,
specifically targeted at seismologists. The solver is based on the well-established stag-
gered grid approaches developed for the P-SV elastic wave equation. Although its func-
tionality is limited (solely moment tensor sources, only Ricker wavelets source time func-
tions), it does possess the ability to perform adjoint simulations, and its performance has
so far allowed the development of Bayesian sampling for Full-Waveform Inversion using
the Hamiltonian Monte Carlo algorithm. We present this as an open source project, and
invite anyone to contribute.
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5. psvWave

5.1 Introduction

This software was born out of the need to simulate many small wavefields quickly, from a
Python environment. As such, we implemented Virieux’s Virieux [1986] seminal work in
a C++ OpenMP enabled code that interfaces with Python. Configuration and functionality
is minimal, and therefore so is overhead. Its fast performance has so far allowed it to be
used for Hamiltonian Monte Carlo sampling with hundreds of thousands of simulations
performed in a short time Gebraad et al. [2020]. The software can perform ‘forward’ as
well as ‘adjoint’ computations, thereby facilitating the computation of sensitivity kernels
relevant to various inverse theory methods Fichtner et al. [2006a]. It should be noted that
the main aim of psvWave is research, and we do not consider it suited for production.

5.2 The solver and Python interface

The psvWave package contains a forward and an adjoint 2d elastic wave equation solver.
The staggered grid as well as the leap-frog time integration are equal to that described
in Virieux [1986]. Additionally, the C++ core allows one to compute misfits w.r.t. some
observed data, and to subsequently calculate sensitivity kernels using the resulting adjoint
sources. The Python interface gives access to all core functionality, but also extends the
C++ functionality by providing plotting functions.

The simulations performed make a few basic assumptions about the medium, wave-
field and sources, as given below.

5.2.1 Assumptions

All sources propagate waves through the same medium / domain in the x,z-plane, and are
recorded by the same network of receivers. The physics are for in-plane shear waves and
defined in a right-handed coordinate system. However, one can interpret the simulations
in any unit and orientation. One should make sure that all units used result in wavefields
that are within the range of C++ doubles.

All sources are normal / reverse faults (with strike parallel to the y-axis) using a Ricker
wavelet as source time function. Every source can have a different dip angle. This source
time function can be altered in both the Python and C++ API, the focal mechanism / source
type not.

Simulations are divided in shots, i.e. a single time length in which data is recorded
and some sources fire. The code allows for time staggering of sources, i.e. firing multiple
sources in a single simulation.

The domain is truncated on all 4 sides by absorbing boundary conditions. It’s width
is variable, but as of yet, the same on all sides. This does not directly allow for free
boundary conditions, but this is planned to change. When measuring distance or counting
gridpoints, the zero-point is the first points not inside the boundary layer but in the actual
simulation medium. When updating medium properties within the domain, the boundary
copies the medium properties closest to it, to avoid creating reflectors.
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5.2. The solver and Python interface

Figure 5.1: Snapshot at time index 120 for P-wave (yellow-blue) and S-wave (orange-
green) particle motion from Notebook 1 superimposed on the P-wave velocity model of
the elastic Marmousi model.

The location of the sources and receivers is not expressed in distance, but in gridpoint
numbering. Because the actual indexing starts within the medium, and not the absorbing
boundary, sources and receivers can only be placed inside the medium. However, the and
variables determine how many gridpoints are not considered free parameters. The idea
behind this is that this allows us to place sources/receivers in regions of the domain that
are not inverted for, and are also not inside the boundary. This to avoid near-source and
near-receiver effects.

5.2.2 Known limitations

The solver does not employ checkpointing for the forward simulation when it is saved for
the imaging condition in the adjoint equation, but simply stores the the forward dynam-
ical fields fields (particle motion, strain) at specific intervals. This setting, found in the
configuration files as inversion.snapshot_interval allows one to reduce the storage
in host machines RAM, but also deteriorates the precision of the computed sensitivity
kernels if it is chosen too high.

Additionally, all simulations store their wavefields separately. By growing the number
of simulations in a single modeller (by e.g. adding more sources), the memory required
to store the wavefields (for subsequent adjoint simulations) grows linearly. This could be
circumvented by running all forward and adjoint simulations sequentially and re-using the
memory used between sources, but is as of yet not implemented.

The misfit that is implemented in the package, with its adjoint source, is currently only
the L2 misfit. The documentation illustrated how one can smooth the gradients for this
misfit.
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5. psvWave

5.3 Availability, instructions and tutorials

In the project repository [Gebraad, 2022a], we provide installation instructions for PyPi
installation, as well as a dedicated Docker image. The PyPi installation only supports
Linux AMD64 architectures. The Docker is fully multiplatform and requires no set-up.
Additionally, the repository provides two notebooks. Notebook 1 concerns itself with the
configuration file and performing forward simulations, as well as the visualization of the
outputs. Notebook 2 demonstrates how psvWave combined with the L-BFGS [Nocedal,
1980] algorithm allows one to perform deterministic full-waveform inversion.

Acknowledgements

We would like to thank all the open source software projects that allow psvWave to func-
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Chapter 6

GPU physics with Apple M-series

Chapter published as L. Gebraad and A. Fichtner. Seamless GPU Acceleration for C++-
Based Physics with the Metal Shading Language on Apple’s M Series Unified Chips.
Seismol. Res. Lett., 94(3):1670–1675, Feb. 2023. doi: 10.1785/0220220241.

Abstract

The M series of chips produced by Apple have proven a capable and power-efficient al-
ternative to mainstream Intel and AMD x86 processors for everyday tasks. Additionally,
the unified design integrating the central processing and graphics processing unit, have
allowed these M series chips to excel at many tasks with heavy graphical requirements
without the need for a discrete graphical processing unit (GPU), and in some cases even
outperforming discrete GPUs.

In this work, we show how the M series chips can be leveraged using the Metal Shad-
ing Language (MSL) to accelerate typical array operations in C++. More importantly,
we show how the usage of MSL avoids the typical complexity of CUDA or OpenACC
memory management, by allowing the central processing unit (CPU) and GPU to work
in unified memory. We demonstrate how performant the M series chips are on standard
one-dimensional and two-dimensional array operations such as array addition, Single-
Precision A·X Plus Y and finite difference stencils, with respect to serial and OpenMP
accelerated CPU code. The reduced complexity of implementing MSL also allows us to
accelerate an existing elastic wave equation solver (originally based on OpenMP acceler-
ated C++), while retaining all CPU and OpenMP functionality without modification.

The resulting performance gain of simulating the wave equation is near an order of
magnitude for large domain sizes. This gain attained from using MSL is similar to other
GPU-accelerated wave-propagation codes with respect to their CPU variants, but does
not come at much increased programming complexity that prohibits the typical scientific
programmer to leverage these accelerators. This result shows how unified processing units
can be a valuable tool to seismologists and computational scientists in general, lowering
the bar to writing performant codes that leverage modern GPUs.
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6. GPU physics with Apple M-series

Figure 6.1: Schematic design of discrete processing unit systems versus the M series
chips. On M systems, both processing units can talk to the same random access memory
(RAM) without moving data locations.

6.1 Introduction

Scientific computing has always been at the forefront of technological developments in
computing. On the point of the latest ARM chips produced by Apple, the M series, the
scientific community should act no different. This series of chips is a relatively new com-
ponent of MacBooks produced by Apple. The fact that these are ARM based chips means
that their instruction sets are fundamentally different from typical notebook, workstation
and HPC suited processors from Intel or AMD. According to Apple, the usage of ARM
chips in high performance notebooks and workstations increased performance and power
efficiency[Apple, 2020].

More importantly, however, is that the design of the M series chips is such that they
combine the central and graphical processing units (CPU and GPU) onto a single chip,
creating a ’Unified’ Processing Unit, something atypical for modern systems. This means
that both processing units can communicate with the same memory, simplifying many
operations. The differences in design are schematically illustrated in Figure 6.1.

The Metal Shading Language (MSL), originally developed for the iPhone iOS oper-
ating system, is a programming language tailored to address GPU hardware present on
Apple ARM chips in general. Although it has been in development for approximately a
decade, it only saw its first stable release in 2019, and its first non-mobile usage in 2020,
when Apple released their first ARM-based MacBooks, fitted with M1 chips. Prior to this,
MSL was only used to perform GPU operations on mobile devices. Although MSL is also
able to control various GPUs from other manufacturers, we do not focus on systems with
these GPUs in this work.

Although MSL is mostly focused on enabling graphics-oriented operations on Apple
ARM GPUs, it also possesses functionality to instruct these chips for mathematical oper-
ations. This aspect of the M chip has, as it currently seems, not received much attention
in the computational sciences, outside of the development of an MSL version of the pop-
ular TensorFlow software [Apple, 2022b]. This might be in part due to the fact that most
documentation provided by Apple is focused on the Objective-C and Swift programming
languages, typically favoured for developing general-purpose software on MacOS. The
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6.2. MSL execution and memory model

focus of these documentations is of course not the computational sciences, and as such,
the exposure of the community to MSL has so far been limited.

In this work, we illustrate the usage of MSL in general C++ array operations, and
analyse how and when MSL provides a benefit over running “plain” (multithreaded) CPU
code. Special attention will be given to GPU operations in existing scientific C++ codes,
specifically for numerical simulations of partial differential equations (PDEs) using finite
differences. A case study focusing on accelerating elastic wave propagation in two dimen-
sions using the M1 GPU illustrates the potential performance and ease of use of the M chip
and unified processing units in general. All our simulations are run using single-precision
decimal numbers (floats). Additionally, we provide a web portal that both links to our re-
search codes as well as material helpful to the computational scientist to get started using
MSL in C++ [Gebraad and Fichtner, 2022a].

6.2 MSL execution and memory model

MSL code itself compiles to instructions that are purely run on the GPU. These compiled
functions are called shaders, or kernels. To orchestrate the execution of these kernels from
the CPU, the instructions need to be fed from CPU code, i.e., any program we write in,
e.g., C++. The communication of these instructions, as well as the scheduling of mul-
tiple operations and other “steering” tasks, are performed by the Metal Framework, an
Objective-C library callable directly from C++ using ‘metal-cpp‘ [Apple, 2022c]. Per-
forming operations on data with the Metal Framework on a GPU follows a set collection
of steps [Apple, 2022c]:

1. Create a command buffer and encoder. These objects respectively receive instruc-
tions (buffer), and encode them into machine language for the appropriate GPU
(encoder);

2. Place instructions and data addresses in encoder;

3. Encode instructions with the encoder;

4. Execute instructions.

During the execution of the command buffer, the CPU can resume operation and syn-
chronize with GPU execution at a later stage. Although one does need to instruct the GPU
which data to use for these operations, the data itself does not need to be communicated
to the GPU, by virtue of the unified design. The Metal Framework allows one to create
this shared data in existing applications, and then simply get a standard C++ pointer to
the underlying data such that it can be used in existing CPU code. This greatly simplifies
exposing existing codes’ arrays to new GPU operations, compared to using e.g. NVidia’s
CUDA [NVidia et al., 2022]. Trying to access the data from both the CPU and GPU
simultaneously creates a race condition, and should be avoided.

Although encoding the commands and data in the buffer is more intricate than typ-
ical C++ operations, we provide a simple interface to these operations for both one-
dimensional and two-dimensional data on our web portal.
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Figure 6.2: Runtime of one-dimensional operations on data of various sizes. Note that
the median runtime is connected with the line, but all individual runs (i.e. multiple per
data size per configuration) are indicated by circles, demonstrating variability of runtimes.
Note that the runtime of OpenMP using 8 threads is always shorter than that of 10 threads,
likely because the 2 performance cores of the M1 chip slow down OpenMP scheduling.

6.3 Basic array operations

To introduce how performant the M GPU is with respect to (M) CPU configurations, we
benchmark various "single instruction, multiple data", or SIMD, operations on both pro-
cessing units for one-dimensional data. We test the performance of the SAXPY operation
(Single-Precision a ·x+y) and a 3-point central differencing scheme. By testing these op-
erations on arrays of different sizes, we can thoroughly demonstrate the overhead required
for using both OpenMP and MSL configurations. To generate these numbers, we ran the
operations repeatedly on a 2021 MacBook Pro equipped with the M1 Max 10 core CPU
(of which 8 performance cores) and a 32 core GPU.

Figure 6.2 shows how operations in GPU configurations, as well as operations in mul-
tithreaded CPU configuration, only provide benefit when the data is relatively large. Both
array operations show fastest performance in serial mode up to an approximate data size
of 216 (= 65536). The exact speed-up of using various configurations at largest data size is
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6.4. Multidimensional operations

Operation 8T vs 1T MSL vs 1T MSL vs 8T
1D SAXPY 2.0x 3.9x 1.9x
1D CD 3.4x 19x 5.6x
2D EW 1.4x 4.7x 3.3x
2D LA 1.4x 12x 8.3x
2D LA9p 4.3x 47x 11x

Table 6.1: Speed-up of various array operations at maximum tested array size. For the one-
dimensional and two-dimensional operations respectively, these sizes are 228 and 214⇥214

elements. Speed-ups are calculated for OpenMP with 8 threads (8T) versus serial (1T), the
Metal Shading Language (MSL) versus serial, and MSL versus OpenMP with 8 threads.
The operations summarized are those of the largest data sizes in Figures 6.2 and 6.3;
one-dimensional a · x+ y (1D SAXPY), one-dimensional central differencing using a 3-
point stencil (1D CD), two-dimensional element wise function (2D EW), two-dimensional
Laplacian using a 5-point stencil (2D LA) and two-dimensional Laplacian using a 9-point
stencil (2D LA9p).

summarized in Table 6.1. These sepeed-ups demonstrate that even for simple operations,
the usage of the GPU does accelerate one-dimensional array operations. The benefit of
using the GPU for these relatively simple array operations in one dimension however only
manifests itself at large data sizes, i.e. at 222 elements and up.

6.4 Multidimensional operations

One staple of physical modelling are spatial derivatives, especially when solving PDEs
(e.g. the wave equation) in two or three dimensions. MSL enables one to execute kernels
specifically with two- or three-dimensional layouts, greatly simplifying the implementa-
tion of kernels that operate on two-dimensional or three-dimensional arrays.

We detail the performance in CPU and GPU configurations by again performing
benchmarks of various operations on a 2021 M1 Max chip. Specifically, we investigate
element-wise operations as well as 5 and 9-point Laplacian finite-difference stencils.

The runtimes of these benchmarks are given in Figure 6.3. The operations again show
dominance of the scheduling overhead (for both CPU and GPU) for multithreaded con-
figurations at small data sizes compared to the serial configurations. The crossover point
(for all operations) where GPU becomes the most performant configuration seems to be
around a data size of 210 ⇥210 elements, close to the same number of effective elements
for the crossover points in one dimension.

As the number of instructions per operation increases (i.e. top to bottom in Figure 6.3),
so does the benefit of both the multithreaded CPU and GPU configurations with respect
to serial configuration. Table 6.1 summarizes the speedup of the MSL, serial and optimal
OpenMP configurations, showing how for large data sizes, MSL becomes more than an
order of magnitude faster than OpenMP if the operation is complex.
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Figure 6.3: Runtime of two-dimensional operations on data of various sizes, always of
equal width and height. As in Figure 6.2, separate runtimes are plotted using points,
and the medians are connected by lines. The largest data sizes show almost an order of
magnitude speed-up between CPU (OpenMP 8 threads) and MSL GPU.
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6.5 Accelerating existing codes: elastic wave propagation on the M
series GPU

Possibly the biggest strength of using MSL is its drop-in capabilities. Because the CPU
and GPU have unified memory, data created in this unified pool can be readily accessed
by both processing units. Thus, MSL allows a user to readily modify existing C++ to be
GPU-capable.

Specifically, when creating an MSL buffer (i.e. an array that can be seen by the CPU
and GPU), one can easily obtain a plain C++ pointer to the underlying data. This way,
integrating MSL into an existing C++ application simply requires two additional lines per
array: the declaration of the buffer and retrieving the raw C++ pointer.

To demonstrate this capability, we took an existing two-dimensional elastic wave prop-
agation code [Gebraad and Fichtner, 2022b, Gebraad, 2022a] based on Virieux’s semi-
nal paper [Virieux, 1986]. This wave propagation code was developed to perform Full-
Waveform Inversion (FWI), an approach to fit recorded vibrations to interior structure of
materials. This method finds applications in seismology when imaging the Earth [Virieux
and Operto, 2009, Lei et al., 2020, Thrastarson et al., 2022], in non-destructive testing
when imaging man-made structures [Nguyen and Modrak, 2018, Kordjazi et al., 2020],
and in medical tomography when imaging the human body [Guasch et al., 2020, Marty
et al., 2021].

We implement the integration of the dynamic fields (material velocity in x and z direc-
tion, i.e. vx,vz, and vertical, horizontal and shear strains txx,tzz,txz) in MSL, but perform
the rest of the operations required for forward and adjoint simulations[Lions, 1968, Taran-
tola, 1988, Plessix, 2006, Fichtner et al., 2006a] of wavefields on CPU. These operations
include recording the entire forward dynamical wavefields (for later use in the computa-
tion of sensitivity kernels), injecting point sources, recording wavefields at receivers, and
the cross-correlation between forward and adjoint dynamical fields.

Figure 6.4 demonstrates a surprising result with respect to our preceding results. At all
domain sizes, the GPU configuration outperforms the 8-threaded OpenMP configuration.
Where we were seeing cross-over points between the two configurations only at larger
data sizes for simpler array operations, it now seems that the complexity of integrating
wavefields means that MSL always outperforms OpenMP.

As domain size grows, so does the speed-up of MSL with respect to OpenMP. The sim-
ulation code fails at domain sizes above approximately 2000⇥2000, as system RAM runs
out on our benchmarking machine. We were able to run a limited number of benchmarks
at a domain size of 5000⇥ 5000, where the speed-up of MSL with respect to 8-threaded
OpenMP was approximately a factor 10.

6.6 Discussion

Although the acceleration of computational physics by graphical processing units has long
been acknowledged to yield performant codes, the complexity of implementation does
create a barrier to its actual usage. The M chip series might herald the start of a paradigm-
shift in computational sciences towards usage of unified chips and their programming lan-
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Figure 6.4: Runtimes of two-dimensional elastic wave propagation in media of various
sizes for both OpenMP 8 threads configuration and MSL GPU configuration. The domain
size indicates the amount of grid-points used for the parameter and dynamical fields.
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6.6. Discussion

guages. Although the M1 chip is not the first unified chip to be commercially available,
nor is our implementation the first GPU-accelerated physical simulation, its ease of im-
plementation does demonstrate the first implementation on a widely available chip using
minimal effort. The upcoming release of the M2 chip promises increased unified memory
bandwidth, thus further enlarging the potential for M series chips [Apple, 2022a].

Although for simple operations the speed-up of MSL with respect to OpenMP only
becomes apparent at relatively large data sizes, in practical use for computational physics
this threshold is much lower, due to the amount of instructions of the operations. This
means that practically for our studied example (elastic wave propagation), it is typically
worthwhile to use MSL over OpenMP. It is, however, not limited to our specific physics or
numerical solver; these concepts of acceleration translate well to other PDEs solved with
finite differences as well as to other numerical methods such as the finite element method
[Rietmann et al., 2012, Kiss et al., 2012].

6.6.1 ThreadGroupSize dimensions
When using MSL shader functions, one needs to define in what shape the GPU traverses
the operation. This access pattern is designated ThreadGroupSize in MSL, and is defined
by a one-, two- or three-dimensional vector, depending on the input data. These vectors
define in what pattern the multiple parallel cores on the GPU operate on the input data.

As an example, we show how we define the traversing of two-dimensional array op-
erations for arrays with nx rows and ny columns. C++ arrays have linear memory layout
and are indexed in two dimensions using the following linear index i:

i = ix ·ny + iy (6.1)

where ix is the index of the row, iy is the index of the column of the array. The Thread-
GroupSize to launch two-dimensional kernels is defined by (tx, ty), where tx and ty indicate
the dimensions of the tile of cores working on the data. The total amount of cores operat-
ing on the data in this tile is tx · ty.

The usage of ThreadGroupSize is similar to CUDA scheduling of thread blocks. The
access patterns of the data influence the performance of MSL and CUDA code alike. As
an example, consider finite differencing schemes accessing neighboring elements. In these
cases it is often beneficial to process multidimensional data in the order it is laid out in
memory. Specifically, our two-dimensional data is laid out with strides of 1 element in the
second dimension (y), and strides of ny in the first dimension (x). Therefore, we launch
our kernels with ThreadGroupSizes of (tx, ty), where ty >> tx. We find that this way our
MSL kernels are the most performant. These optimal memory access patterns are well-
known for general CPU and GPU programming, where the practice of optimizing access
is typically known as memory coalescing [NVidia, 2013, Davidson and Jinturkar, 1994].

6.6.2 Asynchronous operation
As the CPU and GPU on the M series chips can operate asynchronously, there exists a
potential further speed-up of array operations and computational tasks in general. We
implemented this hybrid configuration for the two-dimensional elastic wave propagation.
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In this configuration, approximately half the workload is shifted from the GPU back
to the CPU on the M chip by letting the CPU integrate the vertical velocity field and the
shear strain field, while the other 3 fields are integrated by the GPU. As the strain fields
depend on the velocity fields and vice-versa, synchronization between the GPU and CPU
is performed twice per time-step.

The results, however, are disappointing. For any configuration, the runtime of the
hybrid configuration is approximately half that of the CPU configuration. This is because
the M1 GPU significantly outperforms the M1 CPU for the elastic wave propagation, and
spends most of the time waiting for synchronization. To actually attain a practical speed-
up, the workload needs to be divided proportionally to the performance of both processing
units, i.e. a larger part of the compute task needs to be allocated to the GPU. This was not
implemented for our work.

6.7 Data and Resources

All code used in this work is accessible through the accompanying portal [Gebraad and
Fichtner, 2022a]. All data used in this work is generated by these codes.
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Chapter 7

Structure-from-Motion for seismological
fieldwork

Chapter in preparation for submission to Seismica Field Reports, by L. Gebraad, I. Naets,
P. Marty, and A. Fichtner.

Abstract

This report documents the application of photogrammetry in diverse seismological field-
work settings to reconstruct the field site using off-the-shelf products and open-source
software with high precision and relative ease. The photogrammetry method was em-
ployed in three distinct cases: (1) to survey a high-risk avalanche valley to verify loca-
tions of mass movements that potentially generated seismic signals, (2) to document the
field state of a complex Distributed Acoustic Sensing (DAS)-fibre deployment, and (3)
to survey a structure and surrounding topography for seismic simulation to predict be-
haviour under seismic movement. Owing to its easy integration with fieldwork, and the
wide availability of required resources and skills, photogrammetry has proven to be ac-
cessible for a broad range of applications. Our findings underscore that photogrammetry
is a potent tool for digitizing field environments, holding potential to inform and augment
future seismological research.

93



77

7. SfM for seismological fieldwork

Figure 7.1: Schematic of common points triangulation from two images with known cam-
era properties (3D location, orientation, and projection).

7.1 Introduction

The popularity of unmanned aerial vehicles (UAVs) for consumers has led to an explosive
growth in the capabilities of these devices. These UAVs, typically quadcopter drones, are
now regularly equipped with high-quality imaging instruments, accurate global position-
ing sensors and advanced and accessible flight controls.

In parallel, the development of 3D vision algorithms and software has led to the
creation of a vast collection of user-friendly photogrammetry products with high per-
formance. Contemporary photogrammetry software handles large volumes of imagery
to produce highly accurate models. The Structure-from-Motion (SfM) [Ullman, 1979,
Bolles et al., 1987, Özyeşil et al., 2017] technique is based on the identification of com-
mon points in multiple images, allowing triangulation of these points in 3D space and
creation of surfaces or volumes representing the investigated subject. In the ideal case, if
the camera properties, i.e. location, rotation, and projection, of every image are known,
common points can be triangulated in 3D space by projecting them out from the images,
as illustrated in Figure 7.1.

The availability of SfM algorithms poses a great benefit to the geosciences, which
often concerns itself with large outdoor areas. Especially under transient conditions, the
fact that only consumer electronics are required make UAV-based SfM much more acces-
sible than other airborne remote sensing methods. Additionally, the ease of performing
acquisition for large survey areas make it much faster than conventional laser scanning
approaches. Because of this, it is argued that UAV-based reconstructions fill a niche of
digital twinning for resource-light studies. Examples in geosciences include reconstruc-
tions for permafrost [Kaiser et al., 2022] and forestry [Iglhaut et al., 2019] research. In
seismology specifically, studies that leverage SfM surveying typically are focused on tran-
sient sites [Johnson et al., 2014, Kayen et al., 2018, Pierce et al., 2020]. Carrivick et al.
[2016] provides an overview of SfM applications in geosciences.

In this report, we detail our process for the acquisition, pre-processing and recon-
struction of the SfM imagery at three field sites, as well as further analysis of the spatial
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reconstructions. We provide a detailed description of the field sites. The use of pho-
togrammetry for each field site served a unique scientific purpose, and accordingly, this
study aims to distill the three field sites to archetypes of application. Each field site pos-
sessed unique properties and required a slight adjustments in our approach to accurately
capture and reconstruct the environments.

7.2 The Structure-from-Motion Technique for Seismology

The capacity to capture high-resolution, georeferenced imagery and transform it into de-
tailed 3D models of the environment presents a powerful tool for seismologists. This
section delves into the fundamental components of the SfM technique, detailing the ac-
quisition, processing, and analysis of data.

7.2.1 Acquisition

Though professional survey planning and flight control software are available, all surveys
for this work were conducted manually, using the complementary flight app from DJI. This
app allows for hyperlapse captures, which provide templates for flying in straight lines and
circles, during which imagery is acquired at fixed intervals. This feature makes the app
ideal for our desired level of control. Two field sites were surveyed using a quadcopter
drone. One field site, located near a military airport with flight restrictions, was surveyed
using a mirrorless digital camera.

A successful survey requires capturing imagery of all desired reconstruction surfaces
from multiple viewpoints. Operating the drone in hyperlapse mode along various lines
with varying camera operations proved to provide optimal footage. Hyperlapse mode on
consumer drones enables flights in set lines, acquiring imagery at consistent intervals. Al-
though most available software can also process video, and video can be transformed into
individual frames, we found no benefit over still images. By using still images, we reduced
redundancy in imagery, preventing the generation of overly similar frames. An additional
advantage of using still images is that DJI drones record geolocation to these files, unlike
with video files. The significance of this in the following reconstruction process cannot be
overstated. Lastly, we strongly advise capturing imagery on overcast days, or conducting
surveys within as short a timeframe as possible. Preliminary tests revealed that inconsis-
tent lighting in images can impair the reconstruction, to the point where reconstructions
become disjointed. For the field site where imagery was captured using a handheld cam-
era, we employed ground control points (GCP) to georeference the reconstruction. Further
details of this are provided in the description of the field site.

7.2.2 Processing of the datasets

Successful processing of imagery from aerial or handheld surveys necessitates that image
selection is performed prior to the reconstruction. Consequently, only images that are free
of rolling shutter effects, which are difficult to correct for in SfM, or inconsistent shadows,
which might lead to poor matching of common points, are selected.
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To perform the reconstruction, numerous free and open-source softwares (FOSS) [Gri-
wodz et al., 2021, Wu, 2013, Vacca and others, 2019], as well as commercial services, are
available. We opted to use WebODM [Toffanin and WebODM Authors, 2023], for several
reasons. Firstly, the developers of WebODM provide a Docker image, which requires no
additional effort beyond installing Docker to set up the software on any system. Secondly,
WebODM’s interface is accessible via the internet from any location. This feature allows
us to test partial reconstructions in the field, offering rapid prototyping of the acquisition,
identifying blind spots, and testing the resolution of the reconstruction. Lastly, we found
that the quality of reconstruction more than meets our needs. Potential users might also
appreciate the broad community support on their forums, the command-line interface to
OpenDroneMap (ODM) itself, or the paid cloud processing access through ODM’s Light-
ning Network. All reconstructions in this report were made with WebODM.

WebODM has multiple settings that allow alteration of the quality of the reconstruc-
tion. As a baseline, it is suggested to simply use the default preset, with one important
alteration. Given that the extent of the desired reconstruction is typically already known,
it is recommended to use a boundary polygon to limit the reconstruction only to areas of
interest. This potentially saves a significant amount of computational time by skipping
areas that are present in the imagery but not of interest to the field investigation. Boundary
polygons can be easily created on geojson.io.

7.2.3 Data products

The reconstructions completed with WebODM produce various data outputs. The raw
output of most SfM algorithms, including WebODM, are coloured point clouds of the
surfaces in the survey area. Furthermore, WebODM processes these point clouds into
surface meshes, which are continuous triangular surfaces. WebODM also constructs two
digital elevation models (DEMs) by default: a digital surface and a digital terrain model,
respectively with and without buildings, for use in GIS applications. The last data product
that is highlighted is the orthophoto. This is a georeferenced re-projection of the acquired
imagery such that the scale is uniform and viewed top-down. All data products generated
for this study are available in the dataset repository [Gebraad et al., 2023].

7.3 Field sites and data acquisition

Drone- and handheld acquisitions were performed at three field sites. The method was
used in three distinct cases:

• to digitise the transient state of a valley at high risk of avalanches, thereby verifying
seismic monitoring solutions;

• to digitise a highly complex Distributed Acoustic Sensing (DAS)-fibre deployment
that differed from the proposed array geometry, thereby documenting the deploy-
ment;
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• to digitise a complex structure and surrounding topography, thereby allowing the
creation of a spectral element mesh for simulations.

These three field sites have distinct acquisition, processing, and reconstruction attributes,
which are given in Table 7.1. Notably, the resolution of the reconstructions is reflected in
the average ground sampling distance (GSD) values, highlighting the varying fidelity of
the reconstruction, as necessitated by the differing objectives of the fieldwork.

Field site 1 Field site 2 Field site 3
Location Flüela pass Field in Zurich Contra Dam
Date 2022-03-25 2022-08-06 2023-03-17
Acquisition method UAV Handheld UAV
Instrument used DJI Mavic Air 2 Nikon Z6 DJI Mavic Air 2
Images used 128 365 1143
Reconstructed area 2.2 km2 840 m2 0.16 km2

Point cloud size 2.2M points 16M points 100M points
Average GSD 12cm 0.25 cm 2.9cm
Reconstruction use surface state deployment docu-

mentation
mesh generation

Table 7.1: Acquisition, processing, and reconstruction attributes for the three field sites.

7.3.1 Field site 1: Reconstruction for spatial analysis in transient high-risk
areas

The first field site was located on the upper parts of the Flüela Pass, a road in Eastern
Switzerland that reaches above 2300 metres and is highly susceptible to avalanches in the
winter. Our objective was to verify the locations of mass movements that might have gen-
erated seismic signals, as studied in Edme et al. [2023]. The rugged terrain and potential
hazards made it challenging to access the site directly, particularly as the road is closed in
winter and is not cleared of snow. Figure 7.2 indicates the exact location, just east of the
highest point of the pass.

To safely fly the drone within line-of-sight over the hazardous field site, we launched
on the 25th of March, 2022, from the summit of the pass, ascending from the safer north
side. The image acquisition was performed over the course of 1 hour and 20 minutes,
during which multiple hyperlapses were collected.

The processing of this dataset yielded a continuous, low-resolution reconstruction of
the large area of the valley, which strongly correlates with existent satellite imagery and
digital markers from the Swiss Map Vector 25 [Bundesamt für Landestopografie, 2018].
The reconstruction places topographic markers with near-perfect consistency, solely based
on the GPS data embedded in the UAV-imagery.

As the primary objective of the study was the verification of mass movements, the data
product of most interest was the orthophoto. This orthophoto is visualised in Figure 7.2.
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Figure 7.2: The field site on the Flüela Pass in Eastern Switzerland. Pictured here is the
orthophoto generated during the construction, overlain with features from SwissTopo. The
suspected mass movements are indicated by polygons.

We were able to confidently mark 4 mass movements in this orthophoto, showing a mix
of snow and soil for A through C, and only snow for D in the transported material.

7.3.2 Field site 2: Reconstruction for DAS-fibre deployment geometry

The second field site, situated in the city of Zurich, focused on a complex Distributed
Acoustic Sensing (DAS)-fibre deployment. The main objective of the photogrammetry
campaign was to document the field state of the DAS-fibre system, a task presenting
unique challenges due to the system’s complexity and the need for accurate spatial config-
uration capture. Owing to the site’s proximity to a military airport, obtaining the necessary
flight authorisation for UAV operation was not feasible within the required timeframe.
Consequently, a mirrorless camera was used, with imagery being collected by manually
moving the camera across the field site grid from multiple orientations on 17 March, 2023,
over a span of one hour.

In SfM, camera positions are not directly recorded in the photographs, often resulting
in initial incorrect camera positions that necessitate optimisation during the reconstruction
process. SfM algorithms are invariant under affine transformations such as scale and ro-
tation, posing challenges for obtaining to-scale, georeferenced reconstructions. Whereas
drones usually record GPS positions, providing a more reliable starting point for the al-
gorithms and enhancing their speed and accuracy, the mirrorless camera employed in this
study lacked GPS capabilities. Consequently, ground control points (GCPs) were used for
georeferencing the reconstruction.
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Figure 7.3: The field site for the DAS fibre optic cable deployment geometry study. The
pictured reconstruction is the high-resolution orthophoto, with two callouts illustrating the
high-resolution georeferenced reconstruction obtained in this reconstruction.

GCPs are identifiable landmarks depicted in the imagery with known geolocations.
They aid the reconstruction algorithm in counteracting the scale, translational, and rota-
tional invariance of the imagery. In this instance, the GCPs were defined retrospectively
by selecting identifiable features such as postboxes, traffic markings, and building features
based on satellite imagery, which were then tagged in the acquired survey imagery.

Close-range photogrammetry and the high number of images facilitated the high-
resolution reconstruction of this field site, as demonstrated in the call-outs in Figure 7.3.
The resultant digital model provided valuable documentation of the field state, thereby
aiding in the analysis and assessment of the DAS-fibre system’s performance.

7.3.3 Field site 3: Reconstruction for simulation mesh generation

The third field site was devoted to the generation of a mesh for elastic wave simulations
using the Spectral Element Method (SEM). The aim was to target a specific structure and
its surrounding topography for which no mesh existed, and at a low capital cost and with
reduced man-hours, to generate a mesh suitable for seismological research. The survey
was performed on the Contra Dam in the Verzasca Valley of Southern Switzerland.

Given that the dam operates as an active power station and is within the control zone
of Locarno airport, extensive planning and communication were undertaken with the dam
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Figure 7.4: The field site for the geometry reconstruction of the Contra Dam in the Verza-
sca Valley, Southern Switzerland. The left panel illustrates the field setting, while the right
panel shows the reconstructed orthophoto. The lake was partially drained at the time of
the acquisition.

operators and Locarno Air Traffic Control. Imagery was acquired on March 2, 2022,
over approximately three hours, utilising multiple circular and linear hyperlapse flight
templates. Coincidentally, the reservoir behind the dam was drained for maintenance at
the time of the survey.

The result of the WebODM reconstruction, in conjunction with a map of the field
site, is presented in Figure 7.4. To simulate the wave physics of the investigated structure
and its surrounding topography, a volumetric description of the field site is required. The
process to achieve this involves several steps, detailed below.

Firstly, it is necessary to ensure the surface mesh is continuous. As demonstrated in
Figure 7.5, the reconstruction exhibits exceptional quality in the well-surveyed areas, such
as near the dam. However, the imagery might be inadequate near the edges of the domain
of interest, resulting in defects, typically manifested as holes in the surface. These defects
were corrected using 3D sculpting tools in Blender, as shown in Figure 7.6, Panel B. Sec-
ondly, the mesh needs to be extruded both horizontally and downwards. The profiles along
one bound of the surface mesh were used for horizontal extrusion to square dimensions.
These new sides were then extruded downwards to such a degree that the final surface
mesh roughly enclosed a cube. This process is depicted in Figure 7.6, Panel C. Finally,
the volume enclosed by the newly generated surface mesh required a volumetric meshing
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Figure 7.5: The coloured surface mesh from field site 3. Panel A presents an overview
of the field site, with camera locations indicated by the blue dots. Unconformities can
be observed at various locations near the edges of the mesh, such as downstream (i.e.
left side of the image), near the bottom of the valley. Panels B and C show close-ups of
the structure itself, respectively downstream and upstream of the dam. These close-ups
illustrate the high accuracy achieved for well-surveyed areas.
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Figure 7.6: The process of creating a volumetric spectral element mesh from the We-
bODM output, as illustrated for field site 3. Panel A displays the original surface mesh
from WebODM. This surface extends beyond the main area of interest, as well as having
non-conforming geometry. Panel B shows the surface mesh after cut-out and correction of
reconstruction errors. Panel C highlights how the horizontal and vertical extrusion create
a surface that encloses a roughly cubic volume. Panel D visualises the volumetric mesh
that is generated from the surface mesh using Cubit®.

process to make it compatible with the SEM simulation software Salvus[Afanasiev et al.,
2019]. This was achieved using Cubit®, with the result displayed in Panel D of Figure 7.6.

In order to perform simulations using the generated mesh, material properties need to
be assigned. For illustrative purposes, typical elastic properties of granite were assigned
throughout the entire domain, irrespective of whether the medium was likely part of the
structure or surrounding bedrock. As the lake was mostly drained at the time of the survey,
the usually submerged topography was digitised. As part of the modelling process, a body
of water was virtually reintroduced, consistent with the markings left by the original lake
prior to drainage.

Showcase simulations were performed for this report to demonstrate the validity of the
approach. A single point source was added at the bottom-centre of the domain, and the
effects of this source were propagated through the domain using a coupled elastic-acoustic
wave equation for the solid and fluid medium, respectively. An example wavefield snap-
shot is presented in Figure 7.7.

7.4 Data availability

The input and output data for the SfM reconstructions, as well as the generated SEM
meshes for field site 3, are available on Zenodo[Gebraad et al., 2023]. WebODM, Blender,
QGIS and ParaView are software programs that are free to use. Cubit and Salvus are
software programs that require a license.

7.5 Conclusion

This work presented three diverse field scenarios, representing unique archetypes, where
Structure from Motion (SfM) photogrammetry was effectively utilised. These scenarios
showcased the robustness and flexibility of SfM, emphasising its accessibility and adapt-
ability in the context of geoscientific research.
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Figure 7.7: Snapshot of wavefields generated from a point source below the digitised
Verzasca Dam, visualised using ParaView.

The first scenario highlighted the utility of SfM in enabling inspection of field sites
under hazardous conditions. The technology served as a reliable tool to generate de-
tailed 3D reconstructions, providing critical insights without compromising safety. This
use-case underscores the potential of SfM as a risk-mitigation tool in diverse geoscience
applications.

In the second scenario, the versatility of SfM was demonstrated through the documen-
tation and georeferencing of a complex Distributed Acoustic Sensing (DAS)-fibre deploy-
ment. In an urban setting, where traditional measurement and documentation techniques
may struggle, SfM provided accurate, detailed data, offering a valuable tool in the precise
documentation of instrument deployments.

The third scenario showcased the ability of SfM to generate simulation meshes of
field sites. This highlighted the role of SfM not only as a documentation tool but also as
a crucial asset in generating data for sophisticated scientific simulations, bridging the gap
between field data and computational models.

In conclusion, Structure from Motion photogrammetry is not only accessible but presents
exciting possibilities in various geoscience research contexts. This paper illustrates its
utility across a range of applications, from inspection of hazardous sites, through precise
documentation of deployments, to the generation of sophisticated simulation meshes. The
results highlight the potential of SfM as a versatile, low-cost, and accessible tool that can
significantly contribute to the advancement of geoscientific research. As its use becomes
more widespread, further development and innovation in its application are anticipated,
opening the door to new possibilities in geoscientific investigation.
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Chapter 8

Inverse problems in seismology

Within my direct network, we oftentimes come across new inverse problems for which
we can readily use HMCLab. Examples of this is normal mode tomography [van Tent
et al., 2020, 2021a,b, 2022], hypocenter location[Klaasen et al., 2022, 2023] and surface
wave dispersion [Lanteri et al., 2022, 2023]. However, some inverse problems require ex-
tensions to the existing functionality of HMCLab, or are not suited for MCMC sampling.
This chapter documents two of those cases.

8.1 A bisection algorithm for ray-tracing in layered media

In support of a study with aiming to characterise the vertical structure of ice streams,
a ray-tracing algorithm was developed to invert for wave speeds in layered media in a
performant way. With field data from the EastGRIP site in Greenland, where a DAS cable
was deployed in a vertical borehole to learn more about the mechanical properties of the
ice, the following work was recently submitted to arXiv [Fichtner et al., 2023] and the
Geophysics Journal International.

A. Fichtner, C. Hofstede, L. Gebraad, A. Zunino, D. Zigone, and O. Eisen. Borehole
fibre-optic seismology inside the Northeast Greenland Ice Stream. arXiv, July 2023.
doi: 10.48550/arXiv.2307.05976.

Original abstract Ice streams are major contributors to ice sheet mass loss and sea
level rise. Effects of their dynamic behaviour are imprinted into seismic properties,
such as wave speeds and anisotropy. Here we present results from the first Distributed
Acoustic Sensing (DAS) experiment in a deep ice-core borehole in the onset region of
the Northeast Greenland Ice Stream. A series of active surface sources produced clear
recordings of the P and S wavefield, including internal reflections, along a 1500 m
long fibre-optic cable that was lowered into the borehole. The combination of nonlinear
traveltime tomography with a firn model constrained by multi-mode surface wave data,
allows us to invert for P and S wave speeds with depth-dependent uncertainties on the
order of only 10 m/s, and vertical resolution of 20–70 m. The wave speed model in
conjunction with the regularly spaced DAS data enable a straightforward separation
of internal upward reflections followed by a reverse-time migration that provides a
detailed reflectivity image of the ice. While the differences between P and S wave
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Figure 8.1: Acquisition geometry for the Northeast Greenland Ice Stream DAS experi-
ment.

speeds hint at anisotropy related to crystal orientation fabric, the reflectivity image
seems to carry a pronounced climatic imprint caused by rapid variations in grain size.
Currently, resolution is not limited by the DAS channel spacing. Instead, the maximum
frequency of body waves below ⇠ 200 Hz, low signal-to-noise ratio caused by poor
coupling, and systematic errors produced by the ray approximation, appear to be the
leading-order issues. Among these, only the latter has a simple existing solution in the
form of full-waveform inversion. Improving signal bandwidth and quality, however,
will likely require a significantly larger effort in terms of both sensing equipment and
logistics.

For this work I developed the algorithm to obtain vertical seismic profiles for P and S
wave speeds from the respective refracting arrivals for both phases. The first arrivals were
obtained by analysing the active source generated data in the acquisition geometry given
in Figure 8.1. The developed machinery is applicable to all vertical seismic profiles with
source a varying offset at the surface from the borehole.

To invert for the wave speeds it was assumed that the medium was only varying up
to a small degree, such that upward propagation of the phases was negligible. It was
further assumed that the medium is only vertically varying, a good approximation in large
glaciers. To invert for the medium velocity, a ray has to be traced through this layered
medium, after which the travel time along this ray can be compared to the observed first
arrival, and subsequently minimised. The ray-tracing for varying take-off angles from a
source is demonstrated in Figure 8.2.

Although a code for repeatedly calculating Snell’s law in layered media is relatively
straightforward to implement for a given take-off angle at the source, the complexity of
this inverse problem arises from the fact that it is unknown which take-off angle should
be used to connect a specific source and receiver. To find and trace the connecting ray is
thus a non-trivial problem. To solve this, I developed a parallel search algorithm based
on the bisection algorithm [see e.g. Arfken et al., 2011] that progressively becomes more
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Figure 8.2: Ray-tracing through a random wave speed model for take-off angles linearly
spaced between 0 and 90 degrees from vertical. Note that only rays taking off over 20
degrees from vertical arrive at the DAS cable at all, while most of the rays between 40 and
80 degrees do not propagate to the DAS cable.

performant. It initialises itself using linearly spaced take-off angles between 0 and 90
degrees from vertical. The rays originating from these angles are traced in parallel, after
the ray with the closest approach to each channel is refined by a bisection of the take-
off angles. Furthermore, once enough close approaches are calculated, new bisection are
placed at take-off angles predicted by interpolation of close approaches. The addition of
a stochastic component to each bisection enables the algorithm to avoid local minima.
Further acceleration of the algorithm is achieved by memory of the take-off angles for the
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Figure 8.3: Ray-tracing using the solved take-off angles for the same wave speed. Every
ray connects the source to a DAS channel.

last computed wave speed model, such that updates in, e.g., gradient based optimisation
require much fewer iterations of the search algorithm to execute accurate ray-tracing.

Tracing rays through each layer in the wave speed models allows the computation of
the gradient of the observables, i.e., the first arrivals, on the fly. As such, this inverse
problem becomes suited to non-linear optimisation strategies. The total dataset for P and
S wave speed is inverted for using the L-BFGS algorithm. By bootstrapping the data
with the observational noise and repeating these optimizations, a proxy for the posterior
uncertainty is created from the ensemble of final models, as shown in Figure 8.4.

The generated model is an example how with relatively simple physics a very interest-
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Figure 8.4: Final P wave speed from the first arrivals of all 5 sources.

ing inverse problem can be created. Further extensions using existent data from varying
azimuth sources is the incorporation of azimuthal anisotropy. To fully understand the
trade-offs and uncertainties of this inverse problem, further probing of the model with
Bayesian appraisal algorithms such as HMC is recommended. This code will be made
available through the HMCLab Python interface [Zunino et al., 2023].

8.2 Hypothesis testing in large-scale inversions

The following work is a multidisciplinary effort to understand an fast wave speed anomaly
that consistently appears across contemporary global tomography models. This extremely
large anomaly present in the Pacific Ocean from 800-1100km depth is present in both
GLAD-25 [Lei et al., 2020] and LOWE [Thrastarson et al., 2022], which are both FWI-
based reconstructions. Currently, the following work is in preparation for submission.
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(a) The original LOWE model from Thrastarson et al. [2022].

(b) The modified version of LOWE, with the fast anomaly in the pacific damp-
ened.

Figure 8.5: Global depth slices of SV-wave speed anomalies in LOWE at a depth of 1100
km, with and without the Pacific Ocean Anomaly.
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T. Schouten, L. Gebraad, S. Noe, A. Gülcher, B. Vaes, S. Thrastarson, D.-P. van
Herwaarden, and A. Fichtner. Global full-waveform inversion reveals mid-mantle
structure beneath the remote Earth: evidence for Cretaceous to Cenozoic intraoceanic
Pacific-Panthalassa subduction? In preparation. T. S., L.G. and S.N. contributed
equally to this manuscript.

Original abstract The plate tectonic cycle is the continuous process of the creation,
motion, and destruction of tectonic plates that constitute the Earth’s lithosphere. As
plates subduct into the mantle, they leave only few hints of their former existence in the
rock record. Earth’s lithosphere is composed of tectonic plates whose motions can be
determined through records of oceanic spreading and quasi-stationary hotspots. How-
ever, reconstructing the evolution of convergent plate boundaries is more challenging
due to the destructive nature of subduction, which removes much of the evidence from
the surface.

Seismic tomographic imaging of the mantle provides an important archive of these
plates by detecting fast wavespeed anomalies interpreted as subducted lithosphere.
Classical ray-based seismic tomography relies on P- and S-wave arrival times and re-
quires stations near areas where resolving power is desired. This renders it impossible
to infer mid-mantle structure beneath remote regions such as the Pacific Ocean.

Recent developments in global-scale full-waveform inversion (FWI) enable tomogra-
phic imaging with unprecedented resolution, illuminating the mantle even in regions
with poor coverage. Here we present evidence of a large, flat-lying positive wavespeed
anomaly at a depth of 800-1200 km below the Western Pacific, which we name the
Nemo anomaly. This anomaly lies directly below the area lost to subduction between
the Australian, Eurasian and Pacific plates lost to subduction since ⇠ 120 Ma. We
identify several exotic terranes in western Pacific orogens that may hold key geologic
information on the origin of the Nemo slab. These findings demonstrate FWI’s poten-
tial in exploring the mantle in the remote Earth to find the missing pieces of the plate
tectonic puzzle.

The anomaly observed in the models, shown in Figure 8.5a, is a massive anomaly.
So massive, that we at all costs wanted to avoid the over-interpretation of the anomaly
in the case it would be hallucinated by the inversion method or other unforeseen factors,
and thus to prevent outrageous, unfounded claims. We furthermore suspect the reason this
anomaly has gone unnoticed until now is the recent advent of global-scale FWI, which
gives much better spatial sensitivities, especially in regions with as poor station coverage
as the Pacific.

My contribution to this manuscript was the extensive testing on whether this anomaly
is required by the data. Our hypothesis was that such a coherent feature within one model
[Thrastarson et al., 2022, i.e., LOWE], that is furthermore present in multiple models, is a
feature imposed by the data and not an inversion artefact.

To test this, we resorted to creating a twin of the final model of LOWE, with the SV-
wave speed model dampened to the starting model over the extent of the anomaly, shown
in Figure 8.5b. With the two variants of the model, we would be able to see the influence
of the anomaly on the different parts of the data fit. Thus we could test the hypothesis that
this anomaly is actually present.

We selected all events likely to directly probe the anomaly and computed the synthetic
data for the newly created dampened version of LOWE. Compared to the original LOWE
model, the anomaly-dampened version produced a worse total data fit. Subsequently, the
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Figure 8.6: The difference between the original residuals in envelope and phase for the
LOWE model, compared to the residuals calculated with the anomaly-dampened version
of LOWE, stacked for epicentral distances across all simulated events. Visualised are the
R, Z and T components observed on at the seismic station, respectively the radial, vertical
and transverse component, oriented with respect to the source location. Note that the
reduced sensitivity of the transverse component is due to the fact the anomaly removed
was SV wave speed anomaly, thus any impact on the fit of the transverse component must
be from converted phases in the coda. Almost no change can be observed in the residuals
for any phase other than multiples of the S phase.

difference of the synthetics with the observations, i.e. the residuals, in both envelope and
phase, were compared to the original residuals created by the LOWE model.

The result shown in Figure 8.6 confirm our suspicion that the phases most sensitive to
an anomaly in such a coverage-poor region are mostly complex phases not integrated in
pre-FWI global-scale tomographies such as Amaru [2007], Ritsema et al. [2011], Hosseini
et al. [2019]. What should furthermore be noted is the LOWE model is optimised using a
time and frequency dependent phase misfit [Fichtner et al., 2008].
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Furthermore, the overall increase in misfit from the LOWE model to anomaly-dampened
LOWE model, along with the propensity of the difference in phase residual (Figure 8.6)
to prefer the anomaly, lead us to believe the Pacific Ocean anomaly is in fact present. This
claim was recently further reinforced by a study seemingly identifying the reflecting top
of the anomaly [Zhang et al., 2023b].

I believe that simplified but targeted probing of misfits liek the approach demonstrated
here can bridge the gap between elegant Bayesian inference and practical non-linear op-
timization approaches. The treatment of the global-scale FWI problem such as the one
in Thrastarson et al. [2022] as a statistical one remains heavily out of scale for current
computational resources, but targeted hypothesis testing offers a reasonable simplifica-
tion. This approach could possibly be further enhanced by limited interrogation-theory
based sampling [Arnold and Curtis, 2018] of a low dimensional parametrisation of a hy-
pothesis. An example of such a parametrisation might be a scalar-valued feature strength,
where an anomaly is dampened by a scalar factor, which is subsequently sampled over to
produce posterior beliefs on the likelihood of the feature to be present at a given strenght.
This can be naturally extended to all PDE-based inverse problems. Further geological and
geodynamical interpretation of this anomaly are left out of this text, as this is still a matter
of debate, even between the authors of this study.
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Chapter 9

Gradient-based sampling beyond
geophysics

Specialising in inverse problems and sampling methodologies not only provides expertise
in a specific research area but also equips one with tools applicable across a variety of sci-
entific disciplines. Through fortunate connections, I was able to collaborate with scientists
from fields outside of Earth Sciences also dealing with optimisation problems that could
potentially benefit from a performant sampler capable of handling high dimensionality.
This chapter highlights two collaborations where my experience with HMC has proven
advantageous.

9.1 Metamaterial design

The design of metamaterials presents a domain where global optimisation of parameters
is of critical importance. Preliminary work conducted in collaboration with Cyrill Boesch
showcased the utility of HMC sampling in the context of coupled oscillator design prob-
lems. The coupled oscillator are intended to exhibit a specific spectral response, for which
the design is attempted to be optimised. Here, HMC successfully bypassed local minima
that had limited non-linear optimisation methods. Currently, we are applying HMC to
metamaterial design challenges, as outlined in the recent work Dubček et al. [2023].

T. Dubček, D. Moreno-Garcia, T. Haag, P. Omidvar, H. R. Thomsen, T. S. Becker,
L. Gebraad, C. Bärlocher, F. Andersson, S. D. Huber, D.-J. van Manen, L. G. Vil-
lanueva, J. O. A. Robertsson, and M. Serra-Garcia. Binary classification of spoken
words with passive phononic metamaterials. arXiv, July 2023. doi: 10.48550/arXiv.
2111.08503

Original abstract Mitigating the energy requirements of artificial intelligence requires
novel physical substrates for computation. Phononic metamaterials have a vanishingly
low power dissipation and hence are a prime candidate for green, always-on comput-
ers. However, their use in machine learning applications has not been explored due to
the complexity of their design process: Current phononic metamaterials are restricted
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to simple geometries (e.g. periodic, tapered), and hence do not possess sufficient ex-
pressivity to encode machine learning tasks. We design and fabricate a non-periodic
phononic metamaterial, directly from data samples, that can distinguish between pairs
of spoken words in the presence of a simple readout nonlinearity; hence demonstrating
that phononic metamaterials are a viable avenue towards zero-power smart devices.

9.2 Bayesian neural network training

Despite its feasibility for Monte Carlo sampling of neural network parameters being demon-
strated as early as the mid-nineties [Neal, 1996], Hamiltonian Monte Carlo (HMC) has
not garnered as much popularity as other algorithms such as Adam [Kingma and Ba,
2014] and SGD [Robbins and Monro, 1951]. A Bayesian approach to neural network
training, however, offers two significant advantages: it enables quantification of inherent
uncertainty—often overlooked by deterministic optimisation—resulting in probabilistic
outputs, and it can potentially mitigate the common issue of local minima encountered
during neural network training. These advantages of HMC were put to use in the recent
work of Louvet et al. [2023].

T. Louvet, V. Maillou, F. Bohte, L. Gebraad, and M. Serra-Garcia. Training elastic
neural networks with the Hamiltonian Monte Carlo sampling algorithm. Bull. Am.
Phys. Soc., Mar. 2023

Original abstract Because of their low damping and highly non-linear characteristics,
artificial neural networks (ANNs) made of nonlinear elastic resonators are promising
candidates for low-power computing, as illustrated by recent demonstrations of pas-
sive speech recognition. However, designing information-processing elastic structures
is a hard optimization problem: While the training of software-based ANNs can be
facilitated by increasing the network size (converting local minima into saddle points),
and by choosing activation functions with beneficial properties, there are usually hard
limits on the size and activation functions in physically-implemented neural networks.
Here we train resource-constrained elastic ANNs by applying the Hamiltonian Monte
Carlo method, a variant of the Metropolis-Hastings algorithm used in statistical physics
to sample probability distributions presenting a large number of local minima. While
our work focuses on computers consisting of physical elastic resonators, our conclu-
sions can be applied to general low power/resource constrained machine learning.

To showcase the application of HMCLab on a neural network, we performed a case
study with a neural network functioning as a regressor.

The trainable weights m of a neural network are typically optimised utilising stochas-
tic methods. The loss function c(m) along with its derivative, are provided to an opti-
misation routine such as gradient descent. These routine then attempt to find a vector m
that minimises c . Considering the typical overparametrisation of neural networks, numer-
ous local minima exist. Algorithms such as gradient descent encounter issues with these
minima, as they may become trapped without any hint of local or global convergence.
This scenario necessitates the development of techniques to supplement optimisation rou-
tines, ensuring they converge as closely as possible to the global minimum - the optimal
set of parameters from all possible combinations. During the machine learning surge of
the 2010s, Adam, with its various methods to bypass local minima and accelerate conver-
gence, was a popular variant.
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(a) Loss and validation loss values throughout 30
epochs of Adam optimisation.

(b) All losses sampled during subsequent HMC
sampling.

Figure 9.1: Loss functions of the trained Bayesian neural network during Adam burn-
in and the sampling phase. The burn-in phase epoch number was selected to achieve
maximum convergence. Note that despite the Adam algorithm typically yielding models
with low loss value, the HMC algorithm discovers alternatives with both higher and lower
loss values.

Interpreting these loss functions within a Bayesian framework enables us to consider
the collection of probable trainable weights that adequately explain the training dataset.
In this scenario, the loss function must be explored to characterise all probable models.
This exploration equates to navigating the probability distribution denoted by

p(m) = exp(�c [m]) . (9.1)

This distribution spans the N-dimensional parameter space occupied by the neural net-
works’s trainable weights.

This approach is demonstrated on the Miles-per-Gallon dataset [Quinlan, 1993]. The
Miles-per-Gallon (MPG) dataset is a commonly used dataset for regression analysis. The
data comes from the 1970s and 1980s and consists of several attributes of automobiles,
such as cylinders, displacement, horsepower, weight, acceleration, model year, and origin.
The target variable is the car’s fuel efficiency measured in miles per gallon (MPG).

We create a dense neural net using Keras to acts a a multivariate regressor between car
properties and miles-per-gallon. We utilise a rudimentary network architecture comprising
a normalisation layer, followed by a sequence of 3 ReLU layers with 64, 32, and 16 nodes
before converging into a single output, for a total of 3265 trainable parameters. Following
initial training with Adam, the obtained network weights serve as a starting model for
the HMC algorithm. Autotuned solely by the stepsize of the time integration scheme, the
algorithm then executed 50,000 proposals. Figure 9.1 illustrates this training process.

The resulting set of network parameters can be utilised for neural network predictions.
For every input, the neural network can generate a distribution of outputs. Figure 9.2
presents these predictions.

As the predictions are samples, they allow for the calculation of their statistics, such
as means and variances. A more comprehensive comparison of the deterministic and
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Figure 9.2: Direct comparison of the deterministic and probabilistic neural network pre-
dictions. Note the considerable variability in the dispersion of the probabilistic network’s
output, typically demonstrating high uncertainty when the deterministic result deviates
substantially from ground truth.

probabilistic network can be achieved by calculating the mean of the probabilistic neural
network output, as done in Figure 9.3. This analysis clearly reveals that even with the
complete ensemble, which includes parameter instances with higher loss, the probabilistic
predictions yield lower absolute errors.

Though training neural networks using HMC offers unique benefits, it also introduces
a significantly higher computational cost during the training phase. As a result, it is gen-
erally not recommended for use in common settings. This method is best reserved for
situations where a probabilistic output from the neural network is either desired or neces-
sary.
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(a) Predicted values comparison for neural net-
works trained using Adam and HMC, evaluated
over the test dataset.

(b) Distribution of Mean Absolute Error (MAE)
for the neural networks trained using Adam and
HMC, evaluated over the test dataset.

Figure 9.3: Comparison of the prediction accuracy and error rates for the neural net-
works trained using both methods. Note that the Bayesian capabilities of the network
were utilised for the HMC trained net, with predictions evaluated using the ensemble out-
put mean instead of the best sampled set of parameters.
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Horizons for Bayesian FWI

The pace of development within Bayesian seismology is increasing. We are witnessing
a rise in the number of tomographies performed using more advanced samplers and vari-
ational algorithms, such as Thurin et al. [2019], Guo et al. [2020], Huang et al. [2020],
Zhang and Curtis [2021], Zhang et al. [2023a]. Looking ahead, there are several method-
ologies that could lead to further advancements in Bayesian FWI capabilities and related
inverse problems.

Replica exchange for parallel and multi-fidelity tomography

New MCMC algorithms can be readily constructed from a combination of existing algo-
rithms. As long as the separate transitions leave the distribution invariant, proposal mech-
anism from e.g. the RWMH, Gibbs and HMC sampler can alternatingly applied. This
might affect the convergence behaviour of the chain, but in the limit will still produce
i.i.d. samples of the target distribution.

This approach is how replica exchange algorithms are constructed. In these algo-
rithms, multiple instances of a sampler are run in parallel, typically with varying tuning
settings, creating multiple Markov chains. After a defined number of iterations by each
sampler, exchange proposals are made between the chains. Because during the replica
exchange a Metropolis correction step is applied, these exchanges also leave the target
distribution invariant.

When multiple Markov chains are constructed over a distribution p(m) that is differ-
ently tempered for each Markov chain, that is, it is raised to a different power of 1/T ,

pi(m) = p(m)
1
Ti , (9.2)

the approach is known as parallel tempering [Dosso et al., 2012, Sambridge, 2014]. Fig-
ure 9.4 illustrated the Himmelblau distribution at various temperatures, sampled with 3
separate HMC instances and 3 replica exchanging HMC instances. It is clear that the in-
stances that communicate by replica exchange achieve much better mixing with a limited
number of evaluations. From the perspective of a single instance of a sampler in the paral-
lel tempering scheme, the replica exchanges across temperatures simply emulates a much
more informed proposal distribution. Practically, this we can design temperature sched-
ules tailored to the computational resources available. Demonstrated in Klaasen et al.
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Figure 9.4: The Himmelblau distribution for various temperatures, sampled using unmod-
ified HMC and parallel tempered HMC. Note how the individual sampler at temperature
T = 1 fails to escape a local minima at all. The sampler appraising the distribution for
temperature T = 10 is able to appraise more local minima, but still is biased by its ini-
tial model. Only after linking the samplers to a sampler that moves more freely through
model space, are the distributions adequately sampled. The tuning settings of every algo-
rithm were identical, with the stepsize of the time integration in HMC being estimated by
autotuning. Acceptance rates for all samplers were around 88%.

[2023], these schedules should aim to saturate the available multithreaded capabilities of
a system, accelerate mixing by including high temperatures, but also increase the number
of samples by including multiple instances of the base distribution at T = 1, thus yielding
samples from multiple instances for population MCMC [Laskey and Myers, 2003].

A further boost in efficiency could be achieved by an unstudied method. Recently,
multi-fidelity sampling has gained popularity as a sequential approach to enhance PDE-
based Bayesian inference, e.g. Cai and Adams [2022] and Nitzler et al. [2022]. The work

126



9999

by Cai and Adams [2022] demonstrates that transitioning to computationally manageable
models can serve as shortcuts to efficiently explore relevant parts of the model space.

This concept can be extended to parallel replica exchange by using sampler instances
with varying resolutions of the computational model. The more computationally effi-
cient sampler instances can propose more states within the same computational resources
required for the complex model to make one proposal. Consequently, these efficient sam-
plers are likely to traverse greater distances in the model space. Subsequent replica ex-
changes would then propagate these distant states to the high-resolution sampler instance,
leading to overall better convergence. Importantly, this does not alter the final distribution
of samples from the separate models, as the Metropolis-Hastings correction steps ensure
the convergence of the Markov chains.

In seismic tomography, the computational expense of a model primarily depends on
the desired resolution of Earth’s structure and the volume of included data, which is in-
fluenced by frequency content and the number of source-receiver combinations. High-
resolution Bayesian inference in waveform-based tomography is strongly limited by the
frequency scaling of computational costs. Although various approaches exist to mitigate
some of these costs [Tromp and Bachmann, 2019, van Herwaarden et al., 2020, Thras-
tarson et al., 2022], multi-fidelity replica exchange allows for further parallelisation on
modern high-performance computing hardware. This approach could potentially enable
additional scaling of Bayesian FWI. Notably, the communication of model states in multi-
fidelity replica exchange is much more demanding on an MPI interface compared to the
communication of dynamical fields in wavefield simulations. Performance could be fur-
ther improved by batching the data, similar to the approach in van Herwaarden et al.
[2020], following the method of De Souza et al. [2022]. Although I am currently unaware
of any works implementing this, it is possible that any alternative method to MCMC sam-
pling for Bayesian FWI, such as ensemble filters or variational inference, could potentially
benefit from the same parallelisation across resolutions.

Memory-HMC

In the HMC algorithm, a significant amount of information generated during its execution
is typically discarded. Between the first and last state of a Hamiltonian trajectory, many
gradient evaluations of the posterior go to waste. Over the years, I’ve had the urge to
recycle this valuable information and incorporate it back into the sampler, into some sort of
memory of traversed model space. However, doing so presents theoretical inconsistencies
as it breaks the ergodic property. This, however, might not be a practical issue at all, as
demonstrated by the autotuning strategies in Fichtner et al. [2021], which makes a first
step in this regard, propagating information to an BFGS-style accumulator to adaptively
precondition the posterior during sampling.

However, the variable curvature of arbitrary distributions is not accounted for in this
approach. Inverse problems like FWI can exhibit strong non-linearity, which contradicts
the assumption of BFGS to approximate the curvature of the target distribution using a
single Hessian matrix. An alternative approach may be found in the field of physics-
informed neural networks (PINNs), a relatively recent branch of machine learning. PINNs
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train regressors with the specific purpose of approximating an unknown high-dimensional
function. In Bayesian FWI, the PINN regression model would not only be trained to
minimise the loss between e.g. predicted and observed wavefields (input-output pairs)
but also to satisfy the wave equation. A neural network trained during the Monte Carlo
sampling of an inverse problem could be employed online to accelerate new proposals or
aid in iterative runs of the algorithm.

Another potential extension of the HMC algorithm involves training adjoint-informed
neural networks. Each evaluation of the posterior produces a negative log-likelihood value
and its gradient, which has the potential to further accelerate neural network training.
Preliminary tests with JAX [Bradbury et al., 2018] have shown that neural networks can be
constructed to output a function and its mathematical derivatives. By combining the input
model parameters and the output negative log-likelihood and its gradient with respect to
the model parameters, these pairs of observations can be used to train these networks. The
inclusion of gradients enhances the network’s ability to reconstruct a function [Papoulis,
1977], similar to seismic gradiometry [Igel et al., 2007, Langston, 2007a,b].
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Concluding remarks

When discussing our attempts to investigate high resolution tomographies using the meth-
ods of computational statistics, we are more often than not met with incredulity from
statisticians. The scale at which Earth scientists would like to perform analyses does not
correspond to the size of computational models statisticians seem to run. I have felt, how-
ever, that as Earth scientists, we possess some naive optimism about the possibilities of
these mathematical and computational tools. The theme of this thesis has undeniably been
computational statistics, and its application as a powerful method of analysis for geophys-
ical inverse problems (Chapter 2), as a didactic tool (Chapter 3), an investigation of the
tools of computational statistics (Chapter 4), and two contributions to the efficient solving
of PDE-based models we use in this field (Chapter 5 and 6).

Chapter 2 demonstrates that inference on the scale of high-resolution tomographies
is possible. This is enabled by the application of the HMC algorithm combined with the
adjoint method to compute the derivatives needed for this algorithm. Furthermore, this
chapter shows that density does imprint itself into our observation, although only through
its spatial changes.

Chapter 3 relates the development of HMCLab software package, a collection of
MCMC algorithms tailored to geophysical inverse problems, with a focus on gradient-
based sampling. It describes various inverse problems included in the software package,
but also encourages the user to probe their own inverse problems using the developed al-
gorithms. This software fills the niche left open by popular sampling software as it ensures
the interfaces, tutorials and examples speak the common language of geophysics.

Chapter 4 shows that although we might find ways to quantify the performance of an
algorithm, the curse of dimensionality still remains an important limitation when dealing
with high dimensional functions and distributions. The method developed in this chap-
ter can be employed the determine which algorithm is appropriate for a specific inverse
problem, although only at limited dimensionality.

Chapter 5 briefly documents the development of psvWave, a parallelised finite dif-
ference simulation code written in C++ to be used for high-performance FWI in limited
settings. Interfaces to Python are developed, to enhance its utility to the seismological
community.

Chapter 6 highlights the capabilities of modern unified chip systems, and the benefits
it gives researchers wanting the write performant code in C++. The usage of unified chips
allows bottlenecks in existing CPU codes to be accelerated by the GPU with minimal code
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rewriting. It’s applicability is demonstrated on the psvWave suite.
Chapter 7 concludes with the reporting of multiple imagery-enhanced fieldworks dur-

ing which the capabilities of modern Structure-from-Motion are demonstrated. These
digitisation methods are shown to be accessible, allowing for the documentation of field
sites, the safe surveying of hazardous fields, and finally the ability to create digital twins of
structures and topography on which to simulate wave physics. Although the final chapter
(Chapter 7) of this thesis is a relative outsider, it does reiterate the need for open accessi-
ble and well-designed software for any scientific field. The fact that I, as someone with
relatively little experience on drone operation and 3D reconstructions, was able to go from
field operation to digitisation and meshing of fields sites highlights both the accessibility
of the WebODM software, and its potentials for seismology at large. I hope that with com-
munity involvement, HMCLab can be as enabling for Bayesian inference in seismology.

In my work, I have more focused on the how than the why of Bayesian inference
in seismology, by enabling larger inferences to be performed faster (with the accelerated
GPU physics) and simpler (with HMCLab). Going forward, seismologist will likely be
able to do MCMC and variational inference on much bigger scales than demonstrated in
this work. This will be great, as the desire for higher and higher resolution tomographies
seems here to stay. It is useful in itself to generate large ensembles of solutions to inverse
problems, even if it is only to escape local minima and end up at a better singular model in
the end. We must, at the same time, also reflect on the why of Bayesian inference, already
realised in our field 25 years ago [Scales and Snieder, 1997]; what do we really want to
answer when we perform these tomographies? In accordance with that, I think the future
lies in performing high-resolution Bayesian inference, and subsequently reducing these
results effectively to answer hypotheses.
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