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Wavelets on the Two-Sphere
and Other Conic Sections

Jean-Pierre Antoine and Pierre Vandergheynst

Communicated by Stephan Dahlke

ABSTRACT. We survey the construction of the continuous wavelet transform (CWT) on the two-
sphere. Then we discuss the discretization of the spherical CWT, obtaining various types of discrete
frames. Finally, we give some indications on the construction of a CWT on other conic sections.

1. Introduction

Many situations in physics, astronomy and medicine yield data on spherical manifolds.
Also, some data may live on a two-sheeted hyperboloid, in cosmology, for instance, (an
open expanding model of the universe). In optics also, in the catadioptric image processing,
where a sensor overlooks a mirror with the shape of a hyperboloid or a paraboloid. So one
needs a suitable analysis tool for data living on a non-Euclidean manifold. This suggests to
adapt the continuous wavelet transform (CWT) to the three manifolds above. In addition,
all three constitute the so-called conic sections, generated by intersecting a double cone by
a plane. Thus one may also try to design a unified CWT formalism for all conic sections
at once.

In this article, we shall review the construction of the continuous wavelet transform
(CWT) on the two-sphere, both by the group-theoretical approach and the geometrical
method based on conformal invariance. Next, we briefly discuss the discretization of this
spherical CWT, leading to various types of frames, first half-continuous ones (only the
scale is discretized), then fully discrete ones. Finally, we give some brief indications on the
construction of a CWT on the other conic sections.
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2. The CWT on the Two-Sphere

Let us begin with the two-sphere S2. Fourier analysis on S2 is standard, but cumbersome,
since it amounts to work with expansions in spherical harmonics. While the latter constitute
an orthonormal basis of L2(S2), they are not localized at all on the sphere, so that Fourier
analysis is global. Actually, there are specific combinations of spherical harmonics which
are well localized, the so-called spherical harmonics kernels [27], but then one loses the
simplicity of an orthonormal basis.

Thus it is not surprising that alternative solutions have been proposed by several au-
thors. We may quote, for instance, Gabor analysis on the tangent bundle [34]; frequential
wavelets, based on spherical harmonics [16]; or diffusion methods with a heat equation [10].
Discrete wavelets on the sphere have also been designed, using an S2 multiresolution anal-
ysis. For instance, Haar wavelets on a triangulation of S2 and refined with the lifting
scheme [32]; C1 wavelets constructed by a factorization of the refinement matrices [35]; or
wavelets obtained by radial projection from a polyhedron inscribed in the sphere (typically
locally supported spline wavelets on spherical triangulations) [29, 30]. References to the
(vast) literature on discrete spherical wavelets may be found in [29, 35] for earlier work and
in [21] for recent work.

However, various problems plague those constructions, such as an inadequate notion
of dilation, the lack of wavelet localization, the excessive rigidity of the wavelets obtained,
the lack of directionality, etc. In this respect, the continuous wavelet transform (CWT) has
many advantages: Locality is controlled by dilation, the wavelets are easily transported
around the sphere by rotations from SO(3), efficient algorithms are available. Holschnei-
der [19] was the first to build a genuine spherical CWT, but his construction involves several
assumptions and lacks a geometrical feeling. In particular, it contains a parameter that has
to be interpreted as a dilation parameter, but whose geometrical meaning is unclear. A
satisfactory solution was obtained in a series of articles from our groups [1, 2, 3, 9] that
yield a rigorous and efficient spherical CWT. A further simplification was obtained later
by invoking conformal arguments [36]. Of course, in practice, the usual two-dimensional
CWT in the plane is discretized and replaced with suitable discrete frames. Thus, to com-
plete the picture, one needs to design discrete spherical wavelet frames as well, and this
was indeed realized in [9].

This section is devoted to a rapid survey of the works mentioned above. For 2-D
wavelets in general, we refer to our recent monograph [4]. For the convenience of the
reader, we have collected in an Appendix some basic notions of group theory that are used
in the text.

2.1 The Spherical CWT: Heuristics

As we have learned from the previous cases, the design of a CWT on a given manifold
X starts by identifying the operations one wants to perform on the finite energy signals
living on X, that is, functions in L2(X, dν), where ν is a suitable measure on X. Next one
realizes these operations by unitary operators on L2(X, dν) and one looks for a possible
group-theoretical derivation.

In the case of the two-sphere S2, the required transformations are of two types:
(i) Motions, which are realized by rotations � ∈ SO(3), and (ii) dilations of some sort by a
scale factor a ∈ R∗+. The problem is how to define properly the dilation on the sphere S2.

A possible solution is to use a (radial) stereographic dilation on S2, which is obtained
in three steps (Figure 1): (i) Given a point A ∈ S2, different from the South Pole S, project
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it stereographically to the point B in the plane tangent to the sphere at the North Pole N;
(ii) dilate B radially in the usual way to B’; and (iii) project back B’ to the sphere, which
yields A’. The map A �→ A’ is the required spherical dilation around N. In order to dilate
around any other point C, just bring it to N by a rotation � ∈ SO(3), dilate as above, and
go back to C by the inverse rotation �−1.

FIGURE 1 Visual meaning of the stereographic dilation on S2.

Our Hilbert space is L2(S2, dµ), where dµ = sin θ dθ dϕ, θ ∈ [0, π ] is the latitude
angle, ϕ ∈ [0, 2π) the longitude angle, ω = (θ, ϕ) ∈ S2, and we use the orthonormal basis
of spherical harmonics {Yml , l ∈ N, |m| � l}.

Then the operations just defined have a natural realization by unitary operators
in L2(S2, dµ):

. rotation R� : (R�f )(ω) = f
(
�−1ω

)
, � ∈ SO(3) , (2.1)

. dilation Da : (Daf )(ω) = λ(a, θ)1/2f (ω1/a), a ∈ R∗+ . (2.2)

In these relations, ωa = (θa, ϕ), θa is defined by tan θa
2 = a tan θ

2 for a > 0 and the
normalization factor λ(a, θ)1/2 (variously called cocycle or Radon-Nikodym derivative) is
needed for compensating the noninvariance of the measure µ under dilation. Explicitly,
this factor is given by

λ(a, θ) = 4a2[(
a2 − 1

)
cos θ + (

a2 + 1
)]2

. (2.3)

Note that the rotation �may be factorized into 3 rotations (Euler angles): R� = Rz
ϕ R

y
θ R

z
χ ,

ϕ, χ ∈ [0, 2π), θ ∈ [0, π ].
The question now is, can one derive a CWT from these ingredients, as for the 2-D

plane CWT? Is this transformation unique?



372 Jean-Pierre Antoine and Pierre Vandergheynst

2.2 The Group-Theoretical Method

According to the general scheme [4], a possible way of answering the question is to use
the general coherent state formalism relying on square integrable representations of a suit-
able transformation group. Thus we start from the affine transformations on S2, namely,
motions (here, rotations) and dilations. But a problem arises immediately. On the one
hand, motions � ∈ SO(3) and dilations by a ∈ R+∗ do not commute. On the other hand,
it is impossible to build a semidirect product of SO(3) and R+∗ , since SO(3) does not have
any outer automorphism, so that the only extension of SO(3) by R+∗ is their direct product.
However, this contradiction may be evaded if one embeds the two factors into the Lorentz
group SOo(3, 1), by the Iwasawa decomposition [8, 18]:

SOo(3, 1) = SO(3) · A ·N , (2.4)

where SO(3) is the maximal compact subgroup of SOo(3, 1), A � SOo(1, 1) � R � R+∗
(boosts in the z-direction) and N � C. This procedure is justified by the fact that the
Lorentz group SOo(3, 1) is the conformal group both of the sphere S2 and of the tangent
plane R2.

Next we have to compute the action of the Lorentz group on the sphere. The stability
subgroup of the North Pole isP = SOz(2)·A·N . Thus SOo(3, 1)/P � SO(3)/SO(2) � S2,
so that SOo(3, 1) acts transitively on S2. Then an explicit computation with help of the
Iwasawa decomposition (2.4) shows that the pure dilation by a, realized as a Lorentz boost
along the z-axis, coincides with the stereographic dilation (2.2).

Going over to the Hilbert space, we find [33] that the Lorentz group SOo(3, 1) has a
unitary irreducible representation (UIR) in L2(S2, dµ):

[U(g)f ] (ω) = λ(g, ω)1/2 f
(
g−1ω

)
, for g ∈ SOo(3, 1), f ∈ L2(S2, dµ

)
, (2.5)

where λ(g, ω) ≡ λ(a, θ) is the Radon-Nikodym derivative (2.3).
Thus the parameter space of spherical wavelets is the homogeneous space X =

SOo(3, 1)/N � SO(3) · R+∗ , which is not a subgroup of SOo(3, 1). Therefore, in order
to apply the general formalism, we must introduce a section σ : X → SOo(3, 1) and
consider the reduced representation U(σ(�, a)). Choosing the natural (Iwasawa) section
σ(�, a) = � a, � ∈ SO(3), a ∈ A, we obtain

U(σ(�, a)) = U(� a) = U(�)U(a) = R� Da , (2.6)

exactly as before, in (2.1)–(2.2).
The following three propositions show that the representation (2.6) has all the prop-

erties that are required to generate a useful CWT. First of all, it is square integrable on the
quotient manifoldX = SOo(3, 1)/N � SO(3) ·R+∗ . For simplicity, we shall identify these
two isomorphic manifolds.

Proposition 1. The UIR (2.5) is square integrable on X, that is, there exist nonzero
(admissible) vectors ψ ∈ L2(S2, dµ) such that∫ ∞

0

da

a3

∫
SO(3)

d� |〈U(σ(�, a))ψ |φ〉|2 := 〈φ|Aψφ〉<∞, for all φ ∈L2(S2, dµ
)
. (2.7)

Here d� is the left invariant (Haar) measure on SO(3).
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The resolution operator (also called frame operator)Aψ is diagonal in Fourier space
(i.e., it is a Fourier multiplier):

Âψf (l,m) = Gψ(l)f̂ (l, m) , (2.8)

where

Gψ(l) = 8π2

2l + 1

∑
|m|�l

∫ ∞

0

da

a3

∣∣ψ̂a(l, m)∣∣2
, for all l ∈ N , (2.9)

and ψ̂a(l, m) = 〈Yml |ψa〉 is a Fourier coefficient of ψa = Daψ .

Next, we have an exact admissibility condition on the wavelets (this condition was
also derived by Holschneider [19] in a somewhat ad hoc way).

Proposition 2. An admissible wavelet is a function ψ ∈ L2(S2, dµ) for which there
exists a positive constant c < ∞ such that

Gψ(l) � c, for all l ∈ N . (2.10)

Equivalently, the function ψ ∈ L2(S2, dµ) is an admissible wavelet if and only if the
resolution operator Aψ is bounded and invertible.

As in the plane case [4], there is also a weaker admissibility condition on ψ :∫
S2
dµ(ω)

ψ(θ, ϕ)

1 + cos θ
= 0 . (2.11)

Here too, this condition is only necessary in general, but it becomes sufficient under mild
regularity conditions on ψ . This is clearly similar to the “zero mean” condition of wavelets
on the line or the plane. As in the flat case, it implies that the spherical CWT acts as a local
filter, in the sense that it selects the components of a signal that are similar to ψ , which is
assumed to be well localized.

Finally, our spherical wavelets generate continuous frames.

Proposition 3. For any admissible wavelet ψ such that
∫ 2π

0 dϕ ψ(θ, ϕ) 
≡ 0, the family
{ψa,� := R� Daψ : a > 0, � ∈ SO(3)} is a continuous frame, that is, there exist two
constants m > 0 and M < ∞ such that

m ‖φ‖2 �
∫ ∞

0

da

a3

∫
SO(3)

d� |〈ψa,�|φ〉|2 � M ‖φ‖2, for all φ ∈ L2(S2, dµ
)
, (2.12)

or, equivalently, there exist two positive constants d > 0 and c < ∞ such that

d � Gψ(l) � c, for all l ∈ N

(in other words, the operators Aψ and A−1
ψ are both bounded).

Note that the condition
∫ 2π

0 dϕ ψ(θ, ϕ) 
≡ 0 is automatically satisfied for any nonzero
axisymmetric (zonal) wavelet. Also the frame so obtained is most probably not tight (we
don’t have a definite result).

A simple example of admissible spherical wavelet is the Difference of Gaussians
spherical wavelet (SDOG), obtained by lifting onto the sphere the usual plane DOG wavelet
(Figure 2). More precisely, for φ(θ, ϕ) = exp(− tan2( θ2 )), the SDOG wavelet is defined as

ψ
(α)
G (θ, ϕ) = φ(θ, ϕ)− 1

α
[Dαφ](θ, ϕ), for α > 0 . (2.13)
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FIGURE 2 The spherical waveletψ(α)G wavelet, forα = 1.25: (a) Original (a = 0.125); (b) Rotated; (c) Rotated
and scaled (a = 0.0625).

Using the previous results, we may now introduce the spherical CWT.

Definition 1. Given the admissible wavelet ψ , the spherical CWT of a function f ∈
L2(S2, dµ) with respect to ψ is defined as

Wf (�, a) := 〈ψa,�|f 〉 =
∫
S2
dµ(ω) [R�Daψ](ω) f (ω) = (ψa  f )(�) . (2.14)

In the last equality,  denotes a spherical correlation.

According to the general coherent state formalism, there is a reconstruction formula.
For any f ∈ L2(S2, dµ) and ψ an admissible wavelet such that

∫ 2π
0 dϕ ψ(θ, ϕ) 
≡ 0,

one has

f (ω) =
∫ ∞

0

da

a3

∫
SO(3)

d� Wf (�, a)
[
A−1
ψ R�Daψ

]
(ω) . (2.15)

Correspondingly, instead of the familiar isometry property, one gets a Plancherel relation:

‖f ‖2 =
∫ ∞

0

da

a3

∫
SO(3)

d� Wf (�, a) W̃f (�, a) , (2.16)

where

W̃f (�, a) := 〈
ψ̃a,�

∣∣f 〉 = 〈
A−1
ψ R�Daψ

∣∣f 〉
. (2.17)

The new fact here is the occurrence of the inverse resolution operatorA−1
ψ in these formulas.

This results from the square integrability of the representation (2.5) over the quotient space
X, instead of the group itself.

Note that all the formulas simplify if the wavelet is axisymmetric. In particular, the
third Euler angle χ drops out in R�, so that motions are now indexed by points ω ∈ S2.
Hence, we may writeR[ω] instead ofR�. The corresponding wavelet family is thus {ψa,ω :=
R[ω]Daψ : a > 0, ω ∈ S2}, and it is a frame under the same condition as in Proposition 3.
Otherwise there is no essential modification.

In order to illustrate the capabilities of our spherical CWT, we present first, in Figure 3,
an academic example, namely, the transform of the characteristic function of a triangle with
apex at the North Pole, 0◦ � θ � 50◦, 0◦ � ϕ � 90◦, obtained with the spherical DOG
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wavelet ψ(α)G given in (2.13), for α = 1.25. The transform is shown at three different,
gradually smaller, scales, a = 0.2, 0.1 and 0.035. As expected, it vanishes inside the
triangle, and presents a “wall” along the contour, with sharp peaks at each vertex, and the
North Pole does not play any particular role. This example confirms that the spherical CWT
behaves exactly as its plane counterpart.

FIGURE 3 Spherical wavelet transform of the characteristic function of a triangle, obtained with the spherical

DOG wavelet ψ(α)G , for α = 1.25. (a) Original image. The transform is shown at three gradually smaller scales,
(b) a = 0.2; (c) a = 0.1; and (d) a = 0.035.

Next we present, in Figure 4, a real life example, namely, the analysis of an image of
the Milky Way, based on data from the Hipparcos and Tycho Star Catalogues.

2.3 The Euclidean Limit

The geometry of the sphere suggests that, when the radius R increases to infinity, the
CWT on S2 should tend locally to the CWT on the tangent plane at the North Pole. This
condition, imposed for consistency reasons by Holschneider [19], may actually be derived
in the group-theoretical approach, using the technique of group contraction, with the sphere
radius as parameter, R → ∞.

The limit R → ∞ must be taken at several successive stages. The result of the
analysis is the following.
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FIGURE 4 Spherical wavelet transform of an image of the Milky Way. (a) Original image. The transform is
shown at three successive scales, (b) a = 0.08; (c) a = 0.04; (d) a = 0.02.

(1) For the groups.

SOo(3, 1) = SO(3) · R+∗ ·N −→ R2 � SIM(2) .

Thus the parameter space SO(3)·R+∗ , which is not a group, becomes in the limit the group
SIM(2), that is, precisely the group underlying the 2-D plane CWT.

(2) For the group actions.

Let us replace the sphere S2 by the sphere S2
R of radius R. Then:

Action of σ(X) ⊂ SOo(3, 1) on S2
R −→ action of SIM(2) on R2 .

(3) For the representations.

Define a family of representations UR on L2(S2
R, dµR(ω)), where dµR(ω)=R2dµ(ω), by

UR(�, a) := U
(
σ
(
�, aR−1)) ,

where U is the representation of SOo(1, 3) given in (2.5) and (2.6). Then UR →
U as R → ∞, as a strong limit on a dense set [11, 12].

(4) For the CWT on S2.

Letψ(�x) ∈ L2(R2, d2 �x) andψR = �−1
R ψ , where�R : L2(S2

R, dµR(ω)) → L2(R2, d2 �x)
is the unitary map induced by the stereographic projection (see (2.18) below). Then

GψR(l) � c ( for all l ∈ N)
R→∞−→ cψ ∼

∫
R2

∣∣ψ̂(�k)∣∣2 d
2�k∣∣�k∣∣2
< ∞ .

Thus admissible vectors on S2 correspond to admissible vectors on R2, i.e., the Euclidean
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limit holds. In summary, for ψ = limR→∞�RψR:

ψR admissible on S2
R �⇒

∫
S2
R

dµR(ω)
ψR(ω)

1 + cos θ
= 0

⇓ ⇓
ψ admissible on R2 �⇒

∫
R2
d2 �x ψ(�x) = 0 .

To give an example, take the Difference of Gaussians wavelet. When R → ∞, the SDOG
wavelet on S2

R tends to the usual DOG wavelet on R2.

2.4 The Geometrical or Conformal Method

The group-theoretical method discussed so far yields an asymptotic connection with the
plane CWT, via the Euclidean limitR → ∞. In fact, there is also a direct connection (unitary
map) through the inverse stereographic projection and it is uniquely specified by geometrical
considerations, as we show now. The result is that one obtains uniquely the spherical CWT
from the plane (Euclidean) one, simply by lifting everything from the tangent plane to the
sphere by inverse stereographic projection, the wavelets, the admissibility conditions, the
directionality or steerability properties [36].

(1) Uniqueness of the stereographic projection.

Let p : S2 \ {S} → R2 be a radial diffeomorphism from the 2-sphere to the tangent
plane at the North Pole:

p(θ, ϕ) = (r(θ), ϕ) with inverse p−1(r, ϕ) = (θ(r), ϕ) .

Assume in addition that p is a conformal map, i.e., it preserves angles. Then r(θ) = 2 tan θ
2 ,

i.e., p is the stereographic projection.

(2) Uniqueness of the stereographic dilation.

Let Da be a radial dilation on the sphere S2:

Da(θ, ϕ) = (θa(θ), ϕ) .

Assume Da is a conformal diffeomorphism. Then one has uniquely:

tan
θa

2
= a tan

θ

2
,

i.e., Da is the stereographic dilation (2.2).
Thus one obtains an equivalence between the two wavelet formalisms. Let � :

L2(S2, dµ) → L2(R2, d2 �x) be the unitary map induced by the stereographic projection
(note that � = �R for R = 1, as given in Section 2.3):

[�F ](�x) = 1

1 + (r/2)2
F

(
p−1(�x)), F ∈ L2(S2, dµ

)
, (2.18)

with inverse

[
�−1f

]
(θ, ϕ) = 2

1 + cos θ
f (p(θ, ϕ)), f ∈ L2(R2, d2 �x) . (2.19)
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Then every admissible Euclidean wavelet ψ ∈ L2(R2, d2 �x) yields an admissible spherical
wavelet �−1ψ ∈ L2(S2, dµ). In particular, if ψ is a directional wavelet, so is �−1ψ .

As an example, the (real part) of the spherical Morlet wavelet is shown in various
positions in Figure 5. In order to exhibit its directional selectivity, we present in Figure 6
the analysis of the triangle from Figure 3. The wavelet is oriented in two ways, χ = 0◦
and χ = 90◦ (χ is the third Euler angle (see Section 2.1), which describes a rotation of the
wavelet around its center). As expected, this wavelet filters out the directions perpendicular
to its orientation, keeping the great circles ϕ = const. in the first case and the longitude
circles θ = const. in the second case.

FIGURE 5 The spherical Morlet wavelet is shown at two scales, (a) a = 0.3 and (b) a = 0.03. Then displaced:
(c) a = 0.03, centered at (π/3, π/3); and (d) The same, rotated by π/2.

FIGURE 6 Analysis of a triangle with the spherical Morlet wavelet, in two different orientations: (a) χ = 0◦;
(b) χ = 90◦, showing the directional selectivity of the wavelet.
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2.5 Wavelet Frames on the 2-Sphere

In order to discretize our spherical CWT, we have to generalize the notion of frame. The
classical notion [4] is that a countable family of vectors {φn : n ∈ �} in a (separable) Hilbert
space H is a (discrete) frame if there exist two positive constants m > 0 and M < ∞
such that

m ‖f ‖2 �
∑
n∈�

|〈φn|f 〉|2 � M ‖f ‖2, for all f ∈ H . (2.20)

The index set � may be finite or infinite. We introduce two variants to this classical notion.
The family {φn} is a controlled frame in H if there is a positive bounded operator C, with
bounded inverse, such that

m ‖f ‖2 �
∑
n∈�

〈φn|f 〉 〈f |Cφn〉 � M ‖f ‖2, for all f ∈ H . (2.21)

The family {φn} is a weighted frame in H if there are positive weights wn > 0 such that

m ‖f ‖2 �
∑
n∈�

wn |〈φn|f 〉|2 � M ‖f ‖2, for all f ∈ H . (2.22)

These two notions are in fact mathematically equivalent to the classical notion of frame [6],
namely, a family of vectors {φn} is a controlled frame, resp. a weighted frame, if and only
if it is a frame in the standard sense (with different frame bounds, of course). However, this
is not true numerically, the convergence properties of the respective frame expansions may
be quite different [4, 6]. And, indeed, the new notions are used precisely for improving the
convergence of the reconstruction process.

Half-Continuous Spherical Frames

In a first step, we will build a half-continuous spherical frame, by discretizing the scale
variable only, while keeping continuous the position variable on the sphere (this is exactly
the approach adopted by Duval-Destin et al. for designing the so-called continuous wavelet
packets [14]).

Let us choose the half-continuous grid � = {(ω, aj ) : ω ∈ S2, j ∈ Z, aj > aj+1},
where A = {aj : j ∈ Z} is an arbitrary decreasing sequence of scales, and νj are weights
that mimic the natural (Haar) measure da/a3.

If we start from the standard weighted frame condition given in (2.22), we do obtain
a weighted frame, but there is no way of getting a tight one. The reason is obvious, the
resolution operatorAψ has not been taken into account. We start instead from the Plancherel
formula (2.16) and write a modified frame condition

m ‖f ‖2 �
∑
j∈Z

νj

∫
S2
dµ(ω)Wf (ω, aj ) W̃f (ω, aj ) � M ‖f ‖2 . (2.23)

To give an example, choose the axisymmetric SDOG wavelet (2.13)ψ(α)G (α = 1.25). Then,
proceeding as before, with the same weights νj , one obtains that the ratio M/m tends to 1
as the number of voices increases. Thus a tight frame might be obtained by this method.
Indeed, the following proposition holds true.
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Proposition 4. Let A = {aj : j ∈ Z} be a decreasing sequence of scales. If ψ is an
axisymmetric wavelet for which there exist two constants m, M ∈ R∗+ such that

m � gψ(l) � M, for all l ∈ N , (2.24)

where

gψ(l) = 4π

2l + 1

∑
j∈Z

νj
∣∣ψ̂aj (l, 0)

∣∣2
,

then any function f ∈ L2(S2, dµ) may be reconstructed from the corresponding family of
spherical wavelets, as

f (ω) =
∑
j∈Z

νj

∫
S2
dµ

(
ω′)Wf

(
ω′, aj

) [
�−1
ψ R[ω′]Dajψ

] (
ω′) , (2.25)

where �ψ is the (discretized) resolution operator defined by ̂
�−1
ψ h(l,m) = gψ(l)

−1 h(l,m).

Note that the resolution operator �ψ is simply the discretized version of the continuous
resolution operator Aψ . Clearly (2.25) may be interpreted as a (weighted) tight frame
controlled by the operator �−1

ψ .

Discrete Spherical Frames

Next, we design a fully discrete spherical frame, by discretizing all the variables. The scale
variable is discretized as before: a ∈ A = {aj ∈ R∗+ : aj > aj+1, j ∈ Z}. As for the
positions, we choose an equiangular grid Gj indexed by the scale level:

Gj =
{
ωjpq = (θjp, ϕjq) ∈ S2 : θjp = (2p+1)π

4Bj
, ϕjq = qπ

Bj

}
, (2.26)

for p, q ∈ Nj :={n ∈N : n <2Bj } and some range of bandwidths B={Bj ∈ 2N :j ∈ Z}.
Note that, in (2.26), the values {θjp} constitute a pseudo-spectral grid, with nodes on

the zeros of a Chebyshev polynomial of degree 2Bj . Their virtue is the existence of an
exact quadrature rule [13], namely,∫

S2

dµ(ω)f (ω) =
∑

p,q∈Nj

wjp f (ωjpq) , (2.27)

for certain (explicit) weightswjp > 0 and for every band-limited function f ∈ L2(S2, dµ)

of bandwidth Bj (i.e., f̂ (l, m) = 0 for all l � Bj ). Thus the complete discretization grid
is �(A,B) = {(aj , ωjpq) : j ∈ Z, p, q ∈ Nj }.

As before, we are looking for a controlled frame. The result [9] is that one can indeed
get a discrete weighted, nontight, frame controlled by the operator A−1

ψ , namely, {ψjpq =
R[ωjpq ]Dajψ : j ∈ Z, p, q ∈ Nj }:

m ‖f ‖2 �
∑
j∈Z

∑
p,q∈Nj

νjwjp Wf (ωjpq, aj ) W̃f (ωjpq, aj ) � M ‖f ‖2 . (2.28)

A sufficient condition for (2.28) may be given, but it is very complicated, involving the
determinant of an ∞-dimensional matrix, unless f is band-limited. Here again, the direct
approach using a one voice discretization of the scale variable fails to yield a tight frame.
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As usual, when the frame bounds are close enough, approximate reconstruction for-
mulas may be used. The convergence of the process may still be improved by combining the
reconstruction with a conjugate gradient algorithm. A spectacular example may be found
in [9]. The signal is a World map, reconstructed with a half-continuous spherical frame and
the SDOG wavelet, with a relative error of 1.1%. Adding the conjugate gradient algorithm
with 3 iterations only, the relative error drops to 2.10−3 %.

2.6 Applications of the Spherical CWT

Up to now, the spherical CWT has been applied essentially in cosmology, notably the anal-
ysis of the fluctuations of the Cosmic Background radiation (CMB). Several astrophysics
groups are by now using this approach, e.g., in Santander, Cambridge, EPFL, or in China
(see, for instance, [22]). Two reviews of these applications, with references to previous
work, may be found in this special volume, namely [37] and [24].

In addition, we present here another application, which exploits explicitly our spher-
ical frames, namely, a local enhancement of Jupiter’s Red Spot. The method runs as
follows. Before reconstruction, the coefficients at the finest scaleWf (ω, a7) are multiplied
by a Gaussian mask

M(ω) = 1 + na′
(
R[ω′]Da′G

)
(ω) ,

localized on the centerω′ of the Spot. HereG is a Gaussian (this is only for convenience), a′ a
dilation factor such that the dilated Gaussian covers the entire Spot and na′ a normalization
factor ensuring that ‖M‖∞ = 2. This mask increases the amplitudes of the fine scale
coefficients by a factor up to 2 in the vicinity of the Red Spot, but the rest of the coefficients
are not modified (the mask is thus a frame multiplier [6]). The reconstruction is made with
a half-continuous spherical frame with a SDOG wavelet and an equiangular grid of size
512 × 512, which gives a good discretization for |j | � 7. The tools are the SpharmonicKit
package [28] and our own MATLAB© YAWtb toolbox [38]. The result is shown in Figure 7.
Clearly, such a technique is impossible to implement with a purely frequential spherical
decomposition; one really needs a spherical wavelet frame.

2.7 Recent Developments

New techniques for spherical wavelets continue to emerge, mostly motivated by the astro-
physical applications described above. For instance, an alternative approach to the spherical
CWT has been proposed very recently [23, 31]. The idea is to avoid the stereographic pro-
jection and to define dilations by a scaling operation in spherical harmonic space (that is,
effectively, in Fourier space), an idea that goes back to Holschneider [19] and Freeden [15].
These new wavelets have been applied successfully to the detection of point sources, but
the full potential of the method has not yet been analyzed.

On the other hand, a new class of discrete spherical wavelets, called needlets, has
been introduced [7, 25]. These functions are derived by combining three ideas, namely,
a Littlewood-Paley decomposition, a suitable distribution of (finitely many) points on the
sphere, called centers, and an exact quadrature rule. The upshot is a new class of tight frames
on the sphere. The frame functions, which are actually special spherical harmonics kernels,
are both compactly supported in the frequency domain (i.e., band-limited in l) and almost
exponentially localized around each center. When combined with a new statistical method,
they offer a powerful tool for analyzing CMB (WMAP) data, in particular analyzing the
cross-correlation between the latter and galaxy counts from sky surveys [26].
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FIGURE 7 Local enhancement of Jupiter’s Red Spot. (a) Original image; (b) Local mask; (c) Zoom over the
Red Spot; (d) Zoom over the Red Spot with sharper details.

3. Outcome: The CWT on Other Conic Sections

According to Apollonius, the conic sections are the sphere S2, the paraboloid P 2 and the
two-sheeted hyperboloid H 2. All three are obtained as sections by a plane of a double
null-cone

C3
0 = {

(x0, x1, x2, x3) ∈ R4 : x2
0 − x2

1 − x2
2 − x2

3 = 0
}
. (3.1)

As we have seen in the previous section, there is a completely satisfactory CWT on the
two-sphere. What about the other cases? Interesting results have been obtained, but much
work still lies ahead. We will report in detail on these nonspherical cases in a further
publication [5] and give here only a glimpse.

(1) The two-sheeted hyperboloid.

H 2 is the dual manifold of the sphere S2, with constant negative curvature and a
large isometry group, namely SOo(2, 1). As in the case of the sphere, the latter yields
motions on the manifold, but here dilations are problematic. The hyperbolic analogue of
the stereographic dilation is inadequate, since large stereographic dilations map the upper
sheet ofH 2 onto the lower sheet. Several other methods are available, however. In addition,
a reconstruction formula may be derived, with help of an appropriate integral transform, the
Fourier-Helgason transform, that defines harmonic analysis on H 2, including convolution
theorems. Thus there exists a satisfactory CWT on H 2, even several, but no results are
known concerning frames.

(2) The paraboloid.

This is a limit case between the sphere S2 and the two-sheeted hyperboloid H 2.
Actually the paraboloidP 2 does not have a constant curvature, and there is no large isometry
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group, so that the general method does not work. Therefore, designing a CWT on P 2, by
a limiting procedure or otherwise, is bound to be a hard process. One can design a certain
integral transform, but it does not involve proper dilations, hence it is not really a wavelet
transform.

(3) A unified approach to all conic sections.

All conic sections may be obtained simply by varying the tilt angleα of the plane inter-
secting the null-cone (3.1), i.e., writing the equation of the plane as x0 = 1 + tan α(x3 − 2),
0 � α � π . Thus it is tempting to try to design a unified CWT. Several methods may be
used, mostly relying on group theory. The approach looks promising, but it is still incom-
plete.

The conclusion of this review is that wavelets on non-Euclidean manifolds are an
active field of research, that keeps finding new and exciting applications, mostly, but not
only, in astrophysics. Progress is also made on the mathematical side, but much work
remains to be done, especially on the nonspherical cases.

Appendix: Some Key Facts from Group Theory

We collect here some key facts from group theory which are used in the text. Further
information may be found in standard textbooks, such as [8] or [17].

All the groups mentioned in the text are matrix groups, namely the orthogonal groups
SO(2), SO(3) and the pseudo-orthogonal ones SOo(1, 3), SOo(1, 2). These are in fact Lie
groups, that is, groups G which are at the same time smooth manifolds such that the map
G×G → G, (g, h) �→ g h−1 is (infinitely often) differentiable.

If G is a Lie group and H a closed subgroup of G, then the quotient G/H , that
is, the set of left cosets gH , is a smooth manifold. For instance, SO(3)/SO(2) � S2, the
two-sphere, and the two are isomorphic smooth manifolds. Given a quotient X = G/H , a
section is a map σ : X → G such that the composed map π ◦ σ : X → X is the identity;
here π : G → X is the (canonical) map g �→ gH .

An isomorphism between two groupsG,G′ is a bijection β : G → G′ that preserves
the group law: β(g1g2) = β(g1)β(g2), for all g1, g2 ∈ G. An automorphism of G is an
isomorphism β : G → G. An inner automorphism is simply the conjugation by an element
h ∈ G: g �→ hgh−1, for all g ∈ G. An outer automorphism of G is an automorphism
which is not inner.

Let H,K be two groups for which there exists a map (in fact, a homomorphism) α
from K to the automorphisms of H . Then the semidirect product of H (noted additively)
by K (noted multiplicatively), with respect to the map α, is the group G = H � K of all
pairs (h, k) ∈ H ×K , with composition law

(h, k)(h′, k′) = (h+ α(k)h′, kk′), for all (h, k), (h′, k′) ∈ H ×K .

A typical example is the Euclidean group E(3) = R3� SO(3), with the composition law
(x, R)(x′, R′) = (x+Rx′, RR′), for all (x, R), (x′, R′) ∈ R3 ×SO(3). Thus, if the group
K has no (outer) automorphism (i.e., α(k) ≡ identity), the only possibility for building a
larger group out of H and K is to take their direct product—but then the two factors must
commute: hk ≡ (h, eK)(eH , k) = (h, k) = (eH , k)(h, eK) ≡ kh (eH , eK are the units).

The Iwasawa decomposition: Every connected Lie group G may be decomposed
uniquely into a product of three subgroups, G = KAN , where K is the maximal compact
subgroup, A is abelian and N is nilpotent [8, 18].

If G is a group, with unit e, and X is a set, an action of G on X is a map (g, x) ∈
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G×X �→ g[x] ∈ X such that (i) g1g2[x] = g1[g2[x]], for all g1, g2 ∈ G, for all x ∈ X,
and (ii) e[x] = x, e ∈ G, for all x ∈ X. The action of G on X is transitive if, for every
pair x, x′ ∈ X, there exists an element g ∈ G such that x = g[x′]. The canonical example
is the action of a group G on a quotient G/H , g[g′H ] = (gg′)H , which is then called
a homogeneous space. For instance, the Lorentz group SOo(1, 3) acts transitively on the
two-sphere S2.

Every locally compact group, in particular, every Lie group, possesses a unique (up
to normalization) left invariant measure µ (called a Haar measure), that is, a measure µ on
G which satisfies the following relation for any µ-integrable function f :∫

G

f (g0g) dµ(g) =
∫
G

f (g) dµ(g), for all g0 ∈ G ,

or, equivalently,
dµ

(
g−1

0 g
) = dµ(g) .

A unique right invariant measure also exists and it is equivalent to the left invariant one.
The Haar measures allow a full theory of integration on a locally compact group.

A unitary representation of a groupG in a Hilbert space H is a homomorphism U of
G into the unitary operators on H:

U(g1g2) = U(g1)U(g2), for all g1, g2 ∈ G .

It follows thatU(g−1) = U(g)−1 = U(g)∗ andU(e) = I . The representation is irreducible
if the only closed subspaces of H which are invariant under U are the trivial subspace {0}
and H itself. The unitary irreducible representation U is square integrable if it possesses a
nonzero (admissible) vector η ∈ H such that∫

G

|〈U(g)η|η〉|2 dµ(g) < ∞ ,

where µ is the left Haar measure on G, or, equivalently,∫
G

|〈U(g)η|φ〉|2 dµ(g) < ∞, for all φ ∈ H .

The notion of square integrability of a representation may be extended to a quotient, as
follows [compare (2.7)]. Let X = G/H be a homogeneous space of G, with left invariant
measure ν, and σ : X → G a suitable section. Then the unitary irreducible representation
U is square integrable on X for the section σ if there exist a nonzero (admissible) vector
η ∈ H such that∫

X

|〈U(σ(g))η|φ〉|2 dν(x) < ∞, for all φ ∈ H (x ≡ gH) .
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