

Towards an Integrated Database for Enhanced Monitoring and Optimization of IVS Observing Programs

Conference Poster

Author(s):

Schartner, Matthias (D); Schneider, Marcell; Soja, Benedikt (D)

Publication date:

2024

Permanent link:

https://doi.org/10.3929/ethz-b-000665445

Rights / license:

Creative Commons Attribution 4.0 International

Originally published in:

https://doi.org/10.5281/zenodo.10847991

Towards an Integrated Database for Enhanced Monitoring and Optimization of IVS Observing Programs M. Schartner¹, M. Schneider¹, B. Soja¹

Introduction:

1 ETH Zurich

- IVS oversees diverse selection of observing programs
- Managing hundreds of sessions per year
- Sessions are processed by various Analysis Centers (AC)

We are producing great results! However, it is hard to access these results and our presentation is lacking

- Results dispersed across various (mostly text) files
- Many files not publicly accessible (login required)
- Often inconsistencies within files
 - Sometimes different formats between ACs
 - Tedious to write custom parser per file (and often AC)
- AC often update their results (new version)
 - Hard to keep track
- Quality control and monitoring essential
- Public relations need to be improved
- Easier access of VLBI results for young researchers

IVS products and VLBI results must become more accessible and visible!

Session Analysis Centers (ACs) Master CRF TRF Schedule Session EOP Reports Open Database Baselines Stations Sessions Sources ACs **Application Programming** Web Interface Interface (API) Users (scientists, software packages, and the public)

Our contribution to improve the current situation:

- ETH Zurich launches initiative to address this issue
- Open Research Data (ORD) project funded to develop database to integrate IVS-related results, products and statistics
- Project started January 2024 (duration 9 months)
- Aim: provide unified public access of database through web interface and application programming interface (API)
- Using modern state-of-the-art tools and interactive visualizations

Important question answered by database:


- What is the current performance of observing program X?
- How does observing program X perform compared to observing program Y?
- How good is the performance of station/source X based on its WRMSE or the percentage of successful observation?
- In which session did station X participate?
- In which session was source X observed?
- What are EOP estimates and uncertainties of observing program X w.r.t IERS combined solution?
- What is current coordinate uncertainty of source X?
- And many more!

Roadmap:

- ✓ EOP parser (1.2 million solutions from 11 ACs)
- ✓ TRF parser
- ✓ CRF parser
- ✓ Schedule files (20.000 sessions)
- ✓ Schedule master (79 files)
- Parser for analysis reports
- Parser for spool files
- Automatic updates
- ✓ Database design (10 Tables)
- Database deployment
- Web interface
- Online visualization
- Application programming interface (API)

Considerations:

- Project still in early stage \rightarrow adaptations possible!
- We are looking for feedback:
- What else might be interesting?
- Potential use-cases?
- Open source initiative → Integration into IVS?

Who will benefit:

- Observing program Principal Investigator (PIs)
- Scientists (research, proposal, student works...)
- Station staff (monitoring and feedback)
- The IVS in general
- You

