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Abstract

Rendering realistic images from 3D reconstructions is an essential task of many
Computer Vision and Robotics pipelines, notably for mixed-reality applications
as well as for training autonomous agents in simulated environments. However,
the quality of novel views heavily depends on the source reconstruction which is
often imperfect due to noisy or missing geometry and appearance. Inspired by the
recent success of reference-based super-resolution networks, we propose MaRINeR, a
refinement method that leverages information of a nearby mapping image to improve
the rendering of a target viewpoint. We first establish matches between the raw
rendered image of the scene geometry from the target viewpoint and the nearby
reference based on deep features, followed by hierarchical detail transfer. We show
improved renderings in quantitative metrics and qualitative examples from both
explicit and implicit scene representations. We further employ our method on the
downstream tasks of pseudo-ground-truth validation, synthetic data enhancement
and detail recovery for renderings of reduced 3D reconstructions.
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Chapter 1

Introduction

Figure 1.1: We introduce MaRINeR: a pipeline taking as input a novel-view
obtained from a 3D reconstruction exhibiting geometric and / or appearance arti-
facts and inaccuracies as well as a nearby reference used during the reconstruction
process, and outputting an enhanced version of the novel-view through feature
matching and transfer.

One of the fundamental problems of computer vision and robotics is reconstruct-
ing the environment from sensorial data such as color or depth cameras or LiDAR
scanners. These pipeline produce a computer-friendly representation of the space
which can be either explicit (e.g., point-clouds, meshes), implicit (e.g, occupancy
nets [1, 2], Neural Radiance Field (NeRF) [3], or hybrid (e.g., Gaussian splats [4])
which serve as starting point for many subsequent tasks, notably novel-view syn-
thesis, environment understanding, planning, and navigation. All existing methods
have limitations: point-clouds are highly dependent on the sensor quality [5], often
contain artifacts due to moving objects [6], and are not suitable for occlusion check-
ing [7] or pattern rendering. Meshing algorithms often create both appearance and
geometric artifacts and inconsistencies while connecting the vertices and coloring /
texturing the polygons [8, 9, 10, 11, 12, 13]. More modern implicit methods show
exemplary rendering performance but often require very densely sampled frames or
even depth maps which are not always available [14]. Furthermore, these methods
also need extensive per-scene training. The performance decreases drastically as
the frame-rate and the input modalities are reduced. Any artifacts or inconsis-
tencies produced by the reconstruction pipeline can lead to significant impact in
downstream tasks.
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Chapter 1. Introduction 2

To address these limitations we propose MaRINeR, a post-processing step for
novel rendered views by Matching the Rendered Images with Nearby References.
To this end, we make further use of input images to the reconstruction process as ref-
erence data. Our task is strongly connected with Reference-based Super-Resolution
(RefSR) since similar to renderings from low-quality or noisy 3D reconstructions, a
naively up-scaled version of a low resolution (low-res.) image lacks details. RefSR
methods use details present in a closely related high resolution (high-res.) reference
image to help super-resolve the low-res.. image. We notice that the methods used
to match between low-res. and high-res. image domains for information transfer and
fusion can more generally be used to transfer details from a reference to a related
image of any nature. However, the classically used CUFED5 [15] dataset is not suit-
able for our task of novel view enhancement. We therefore generate new training
and test datasets building upon the recently released LaMAR [16] dataset.
The enhanced novel views show promising results for different downstream tasks.
First, our method quantitatively and qualitatively narrows the gap between render-
ings and real images, including these of implicit representations. As a by-product,
this improves the quality of data obtained when using digital twins for training
reinforcement agents, following the recent advances in egocentric human synthetic
data generation [17]. Second, many recent datasets (12 Scenes [18], RIO10 [19],
LaMAR [16]) designed pseudo-ground-truth pipelines to automatically and accu-
rately register trajectories from various devices, notably in the context of mixed
reality experiences. One common way to validate the accuracy of these pipelines is
through qualitative checks between the aligned images and an associated rendering
from a 3D reconstruction. Narrowing the render-to-real gap by removing the arti-
facts and improving the textural accuracy and realism opens the door to automating
this process by taking advantage of existing geometric methods to estimate the ac-
curacy of the Ground Truth (GT). Third, for any downstream application, decisions
have to be made to reduce the size of 3D representations in order to efficiently pro-
cess them at the cost of reduced detail accuracy and realism. Our method is capable
of recovering the lost details and realism of such 3D reconstructions.
To summarize, our contributions are:

• We introduce MaRINeR which, to the best of our knowledge, is the first
method enhancing novel views by using a close-by reference image that is
applicable for renderings from a wide range of 3D reconstruction pipelines.

• An extensive evaluation of the proposed method is performed, providing not
only a qualitative and quantitative analysis of the method but also an overview
of the robustness of MaRINeR to different datasets, temporal conditions and
temporal changes in scenes, while discussing limitations.

• We showcase the excellent performance of our model in several applications:
elimination of manual checks in pseudo-GT pipelines, improvement of syn-
thetic AR trajectories, and enhancing the output of neural renderings.



Chapter 2

Related Work

We provide an overview of related research fields which also incorporate information
from a reference image into a target image, notably reference-based image super-
resolution and style transfer.

2.1 Reference-based image Super-Resolution

The goal of RefSR is to recover high-res. from low-res. images by transferring missing
details from high-res. reference images. The methods usually work by aligning and
fusing features extracted from low-res. and reference images. While early work uses
hand crafted features [20], more recent works use either pre-trained features [15, 21]
or train the feature extraction end-to-end with the task [22, 23, 24, 25, 26, 27, 28, 29].
The alignment of the reference and low-res. features proposes a challenge because of
the resolution difference. Some methods use implicit alignment: CrossNet [23] esti-
mates the optical flow between reference and low-res. images. Because optical flow
fails at capturing long distance correspondences, SSEN [25] utilizes deformable con-
volutions which ensure a large receptive field. Other work uses explicit alignment
by feature or patch matching. SRNTT [15] uses feature similarity and transfers
textures from the reference images at different scales. To reduce the computational
complexity, MASA-SR [28] proposes a coarse-to-fine correspondence matching mod-
ule. C2-Matching [27] introduces knowledge distillation and contrastive learning
methods to improve the matching between low-res. and reference despite the reso-
lution gap. WTRN [21] uses wavelets to separate high and low frequency parts of
the images, which helps to more transfer more visually plausible texture patterns.
DATSR [30] uses Swin-Transformers [31] to replace the commonly used residual
blocks [32], leading to more robust matches and texture transfer. HMCF [33] im-
proves the matching between low-res. and reference of similar objects with different
texture by using high-to-low-level feature matching and complementary information
fusion. RRSGAN [29] uses generative adversarial networks and deformable convo-
lutions. FRFSR [34] notes that the commonly used perceptual and adversarial loss
have an adverse effect on texture transfer and reconstruction. As a solution, they
propose the use of a texture reuse framework. RRSR [35] uses a reciprocal learning
strategy to strengthen the training process by using the super resolution result as
reference to help super-resolve a low-res. variant of the original high-res. reference.
CMRSR [36] notes that due to the gap between inputs and reference, the super
resolution image often yields distortions and ghosting artifacts and they propose
a contrastive attention-guided multi-level feature registration module to mitigate
those. There are also methods that use multiple references as input such as CIMR-
SR [37], AMRSR [38], AMSA [39] or LMR [40]. We notice that many of the ideas

3



Chapter 2. Related Work 4

to align reference and low-res. features are not limited to align images with resolu-
tion differences but can be used more broadly to also align rendered images to real
images.

2.2 Style Transfer

Artistic Style Transfer (ST) methods transfer the style of a style image to a content
image. A subcategory are the universal ST methods [41, 42, 43], which transfer
any style to the content image. This can be done by separating content and style
information in the images. AdaIN [42] transfers channel-wise mean and variance
feature statistics. WCT [41] uses whitening and coloring transformations, where the
whitening transformation can remove the style of the content image and the coloring
transformation can incorporate the style of the style image. However the separation
of content and style is challenging and some content can be corrupted. ArtFlow [43]
calls this issue content leak and introduces a reversible neural flow-based network
to avoid it. StyTr2 [44] uses transformers to extract and maintain global image
information, which then help with the content leak problem. For universal ST, the
style images usually have little content in common with the content image. The
results look like an artistic version of the content image which is however far from
being realistic. Semantic ST methods [45, 46] work with style images that contain
similar objects as the content image. The goal is to build semantic correspondences
between similar objects and map the style region only to the semantically similar
content regions [47]. NNST [45] matches VGG [48] features between content and
style and replaces the content features with the nearest style features. MST [46] uses
graph cuts for matching between content and style features. While those methods
work well at transferring the semantic correspondences, they can introduce distor-
tions and don’t produce photo-realistic images. Photo-realistic ST methods aim at
transferring the style of the color distribution while preserving the structures of the
content image [47]. WCT2 [49] adds a wavelet based correction to the whitening
and coloring transforms of WCT [41]. This helps to preserve the structural and
statistical properties of the VGG features during stylization. The result is a more
photo-realistic image without distortions. However, photo-realistic ST assumes that
the content image is already photo-realistic. If this image contains artifacts, then
those are also carried over to the stylized image.



Chapter 3

Method Development

The task of novel-view enhancement using a reference image is a research field
that has no direct prior work. Related fields like RefSR and ST exists but their
tasks have different requirements. For example, we aim to enhance renderings of
3D reconstructions that may contain appearance and geometric artifacts. RefSR
assumes the artifacts come only from the resolution difference and ST does not
address the possibility of wrong content in the content image. These different
requirements are reflected by both datasets and architectures used, which are not
optimal to enhance novel-view renderings. In this chapter we describe how we take
an existing RefSR method MASA-SR [28], analyze its architecture and with the
help of several visualizations adapt it to the novel-view enhancement task. Because
commonly used RefSR datasets are not suitable for our purpose, we use the newly
released Augmented Reality (AR) dataset LaMAR [16] to create training and test
data.

3.1 Choosing a RefSR method

We notice that the property of transferring information from a high-res. to a low-res.
image is not limited to the low-res. and high-res. domain and can also be applied to
transfer information from a reference image to renderings of any 3D reconstruction
pipeline. For this we search for a RefSR method that can be built upon. The method
we choose is MASA-SR [28] because the architecture of the model is relatively small
resulting in fewer trainable parameters then newer state-of-the-art methods such as
FRFSR [34]. Despite its small size, it still beats more recent methods considering
Learned Perceptual Image Patch Similarity (LPIPS) [34] and gives visually pleasing
results. Furthermore, the source code is publicly available and uses recent software
packages, giving the project a good start without having to work with outdated
library versions. Some alternative models are very large in the number of trainable
parameters [30, 15] and therefore require a lot of time and resources to train. Many
models do not include the full implementation code [50, 35, 51, 52, 33, 34] and others
have the assumption of a low-res. input tightly coupled to the architecture making
it difficult to adapt the model later to a differently shaped input [27]. Alternatively,
one could also attempt to adapt an existing ST method. There is however one
fundamental difference in the way those methods are trained. RefSR methods train
fully supervised having a precise GT available. For ST methods on the other hand
this is not the case. The GT is usually unknown and one possible way of training
those models is using a cycle loss [45] making sure the features of the generated
image are closely related to the ones of the style image. Because the enhanced
rendering should optimally look like a real image, it is possible in our case to acquire

5



Chapter 3. Method Development 6

Figure 3.1: MASA-SR [28] pipeline. The RefSR method MASA-SR takes a
low-res. image and a high-res. reference as input and produces a super resolved
version of the low-res. image.

GT data by taking device captured images.

3.2 MASA-SR

Fig. 3.1 shows the pipeline of the MASA-SR [28] method. The method takes a
low-res. image and a high-res. reference as input. Because of the resolution differ-
ence, the model down-samples the reference image resulting in a third input, the
low-res. reference. All those are then run through an end-to-end trained encoder,
resulting in feature maps of three different levels where level 2 and 3 each halve
the spatial resolution of the features. The features of level 1 are then used for
feature matching, finding similar content in both low-res. image and low-res. ref-
erence. This step is performed by the Matching and Extraction Module (MEM).
For performance reasons, those matches are established hierarchically: First on a
coarse block level and then on a fine patch level withing the matching blocks. Us-
ing those matches, the high-res. reference features are warped, moving the reference
features to the location of the matching low-res. features. This is done patch-wise
on all three levels of the reference features, where the patch size is chosen rela-
tive to the spatial resolution of the feature level. At the end, the decoder fuses
the low-res. and warped high-res. features together keeping the content from the
low-res. image while adding missing details from the warped reference. For fusion,
the decoder uses Spatial Adaptation Module (SAM)s and Dual Residual Aggre-
gation Module (DRAM)s where SAM maps the color distribution of the reference
to that of the low-res. image, ensuring the color distribution and illumination of
the low-res. image remains unchanged. DRAMs are an improved way of merging
features, with the goal to enhance the details of both inputs. As a last step, an
up-scaled version of the low-res. input is added to the output of the decoder, giving
the pipeline a further signal to stay content-wise close to the low-res. input image.
Because much of this pipeline can be reused for our task, in the following we go into
more details regarding architecture specific blocks such as the encoder, the feature
matching of the MEM and the fusion modules with the SAMs and DRAMs.

3.2.1 Encoder and feature matching

The encoder consists of three connected levels, where each level consists of residual
blocks [32] and a convolution that halves the spatial resolution of the features. The
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result are following dense feature tensors for each of the input images:

{FR
1 ∈ RH×W×F ,FR

2 ∈ RH/2×W/2×F ,FR
3 ∈ RH/4×W/4×F }

{FR↓
1 ∈ RH/4×W/4×F ,FR↓

2 ∈ RH/8×W/8×F ,FR↓
3 ∈ RH/16×W/16×F }

{FI
1 ∈ RH/4×W/4×F ,FI

2 ∈ RH/8×W/8×F ,FI
3 ∈ RH/16×W/16×F }

(3.1)

for the reference (R), the low-res. reference (R ↓) and the low-res. image (I). For
brevity of the notation we assume the spatial resolution of the reference and the
up-scaled low-res. image to be the same. In practice those can be different.

Matching and Extraction Module (MEM)

For feature matching and alignment, MASA-SR [28] uses MEM. The goal is to
find feature matches between the low-res. and down-scaled reference image. Those
can then be used to build an aligned version of the reference. The best matching
images locations are extracted from the reference and warped to their matching
location in the low-res. image. Those aligned features can subsequently be fused
with fusion modules. Fig. 3.1 shows an overview over the module. The matching
is performed on the level 1 features of the low-res. image and the down-scaled
reference FI

1 and FR↓
1 . The MEM performs patch matching first on coarse blocks

and then densely within those blocks. The result of the matching is an index

map D ∈ NH/4×W/4
0 and a similarity map S ∈ RH/4×W/4. The similarity between two

normalized patches pIi ⊂ FI
1 and pR↓

j ⊂ FR↓
1 is calculated using the cosine similarity

ri,j = (pIi )
T pR↓

j . The index map is defined as Di = argmaxjri,j and the similarity

map as Si = maxjri,j . Those two maps are used to warp the reference features FR
s at

all three levels s ∈ {1, 2, 3}, where patches with size relative to the spatial resolution
of the features are cropped for the different levels. The index map D is used to
create a list of rearranged reference patches Ls

i = crop(pRDi
, s), where crop(p, s)

crops the patch p relative to the spatial feature resolution of the level s. The
rearranged reference features are obtained as follows: FR→I

s = fold(Ls)⊙S↑s , where
⊙ denotes the element-wise multiplication and ↑ bi-linear interpolation. fold(·) is
the operation used to combine the patches where overlapping values are averaged.
This thus yields:

{FR→I
1 ∈ RH×W×F1 ,FR→I

2 ∈ RH/2×W/2×F2 ,FR→I
3 ∈ RH/4×W/4×F3} (3.2)

Multiplying the features with the similarity map has the effect that matches with
low feature similarity get less weight and have little influence on the super resolved
image.

3.2.2 Feature fusion

Fig. 3.2 shows the architecture of the blocks used by MASA-SR [28]. The fusion
module is responsible for merging low-res. F lr and high-res. Fhr features, where
the F lr features have halve of the spatial resolution of Fhr. F lr comes directly
from the encoder or from the output of a previous fusion block. Fhr comes from
the warped reference features. The fusion module uses SAM and DRAM to merge
the features and residual blocks [32] to process them.

Spatial Adaptation Module (SAM)

Based on the observation that in many situations the low-res. and high-res. reference
image have similar content and texture but different color and illumination distri-
butions, the features may not merge optimally in the fusion process [28]. To address
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Figure 3.2: MASA-SR [28] building blocks. The feature fusion part of
the pipeline consists of SAM, DRAM and fusion modules. The DRAM has two
branches: The low resolution and high resolution branches responsible to refine the
details of their respective features.

this issue, MASA-SR [28] introduces SAM. The structure is illustrated in Fig. 3.2.
The idea is to remap the distribution of Fhr features to that of the up-scaled F lr↑

features. To this end, the module learns two spatial adaption parameters γ and
β using convolutions, where the convolutions take the concatenated Fhr and F lr↑

features as input. Because the difference between the features varies based on the
spatial location, the mean µlr and standard deviation σlr of F lr↑ are added to the
learned parameters before updating the instance normalized [53] Fhr features:

β = conv(Fhr||F lr↑) + µlr

γ = conv(Fhr||F lr↑) + σlr

Fhr = Fhr · γ + β

(3.3)

where || stands for concatenation of the features and the other operations are per-
formed element-wise.

Dual Residual Aggregation Module (DRAM)

The DRAM is used to merge two feature tensors of different resolutions: Fhr and
F lr. A naive merging approach would be to concatenate the features and feed
the into a merging convolution layer, which leads to non-optimal results because
of the resolution difference [28]. MASA-SR proposes an alternative approach that
consists of two branches: the low-res. and high-res. branch. Both branches aim to
refine the high frequency details of their input features before merging them using
concatenation and a convolution. Fig. 3.2 shows the architecture of the module.
Convolutions are used to reduce the spatial resolution of the high-res. features to
that of the low-res. features and deconvolutions to increase the resolution back to the
high resolution. Before the final merging convolution, the features of both branches
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Reference low-res. Input Result GT

Figure 3.3: MASA-SR [28] trained on CUFED5 [15]. Successful reproduc-
tion of the MASA-SR results as described by their work.

are of similar spatial resolution, resulting in the following expression decribing the
output O:

Fhr
branch = Fhr + deconv(conv(Fhr)−F lr)

F lr
branch = deconv(F lr + (F lr − conv(Fhr)))

O = conv(F lr
branch||Fhr

branch)

(3.4)

where || stands for concatenation of the features and the other operations are per-
formed element-wise.

3.3 MASA-SR experiments

We take a close look at MASA-SR [28] and perform various experiments to under-
stand if we can reproduce the results and if the architecture manages to over-fit
to a single image. This experiments are performed to make sure the architecture
performs in the way as it is described and not, for example, ignores the reference
image.

3.3.1 Reproducing results

As a first step, we train MASA-SR [28] on the CUFED5 [15] dataset, which is
typically used to train RefSR methods. CUFED5 consists of 11871 training image
pairs where each pair contains a high-res. image and a corresponding reference at
a resolution of 160 x 160. The low-res. input image is obtained by down-scaling
the high-res. image by a factor of 4. The goal is then to super-resolve the low-res.
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Reference low-res. image Result GT

Figure 3.4: MASA-SR [28] over-fitting experiment. In the first experiment
the reference is similar to the GT and we train with only one image to ensure the
network can learn to predict identity. To make sure the network makes use of the
reference details we train it with one image and a different reference.

image back to the high resolution. The CUFED5 [15] test set consists of 126 image
pairs where each high-res. image comes with 5 references. Fig. 3.3 shows that we
are successfully able to reproduce the results as they are described in their work.

3.3.2 Over-fitting to a single image

To validate the model architecture, we train MASA-SR only on one image. This
image is used as low-res., high-res. and reference image. The goal is to make sure
the model can over-fit to this one image simulating the simplest scenario where the
model does not have to generalize. Fig. 3.4 shows the results of the experiment,
where the GT is successfully recovered. To verify that the model takes the reference
into account and not only enhances the input while ignoring the reference, we run
a second experiment. In this experiment we train again on only one training image
that is used as low-res. and high-res. input. However, this time the reference is
a different image. Fig. 3.4 shows that the model did not manage to perfectly
reconstruct the GT. This means that the model is not ignoring the reference and
the quality of the result is related to the quality of the reference image.

3.4 Dataset

The goal of our project is to enhance renderings of novel views created by 3D
reconstructions. We aim to do this by building on top of a RefSR method. Currently
these methods train on CUFED5 [15] data which does not reflect the goal of our
task since, as Fig. 3.3 shows, images of this dataset use a low-res. version of the
GT as input and not a 3D reconstruction rendering. We therefore utilize data from
LaMAR [16] to build new training and test sets. I the following we will elaborate
on the process of training and test dataset creation from the LaMAR dataset.

3.4.1 LaMAR

We use the recently introduced LaMAR dataset [16] to create training and test
datasets. LaMAR consists of a large-scale dataset captured using AR devices. The
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Figure 3.5: Common dataset challenges. There can be different objects
present between rendering and GT, some of which can be artifacts. The illumi-
nation can also be different because of day time or seasonal changes.

dataset consists of three different scenes: CAB, LIN and HGE. CAB is a multi-floor
office building, LIN is a few blocks of an old town and HGE the ground floor of a
historical university building. The data was captured using head-mounted HoloLens
2 and hand held iPhone / iPad devices. The device trajectories were recorded at
day and at night times and over the course of up to 1 year. What LaMAR also
provides is a ground-truthing pipeline to automatically and accurately register the
AR device trajectories against large-scale 3D laser scans [16]. The 3D laser scans are
obtained using NavVis M6 laser scanners which use inertia-lidar SLAM to estimate
for all scanned images poses relative to the beginning of the session and to create
a colored 3D point cloud with grid resolution of 1cm. The point cloud is then
transformed to a dense mesh using the Advancing Front algorithm [54]. We can
use this 3D reconstruction to render images. The device trajectories and the mesh
reconstructions are available to download. The renderings of those meshes have to
be generated by ourselves. Because of the automatic GT pipeline for localization,
the device trajectories are all registered inside the common 3D reconstruction. This
registration gives us for every frame inside the trajectories a camera pose of the
orientation and location where the image of this frame was taken. For the task of
novel view enhancement, we need three images: The rendering of a novel view, the
GT, showing a realistic image with the same viewpoint as the rendering, and a close
by reference image. To generate those from a registered AR trajectory we do the
following: Every frame inside the trajectory is captured by a device and therefore
realistic. We use those frames as the GT. The camera pose that comes with the
registered frame is used to create a rendering from the mesh. This is then used as
the rendering input image and has the same viewpoint as the device captured image.
Because the trajectory data is ordered temporally and recorded with 1 frame per
second, we take the surrounding frames as reference images. Fig. 3.5 shows examples
of image pairs created this way. Because the trajectories were recorded over the
course of up to one year and at different day times, the content of the rendering and
the GT images is not exactly the same. While the viewpoint is similar, different
objects can be present in GT and rendering. There can also be seasonal changes or
strong illumination changes for night time recorded trajectories. Furthermore, the
rendering can have artifacts that appeared during the process of 3D reconstruction
generation.

3.4.2 Training and test datasets

We create a training set from the device trajectories capture in the CAB and LIN
scenes. We merge the scenes because CAB contains mostly indoor and LIN outdoor
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Figure 3.6: Removal of unrecognizable renderings. We filter the data to
remove renderings that are mostly artifact.

recordings. Test sets are created from all three scenes: CAB, LIN and HGE. HGE
is used to test generalization to novel scenes. Processing all trajectories available,
the merged CAB and LIN training set contains 21350 image pairs which is roughly
twice the amount of images used to train the MASA-SR [28] model. The CAB, LIN
and HGE test sets consist of 329, 608 and 492 image pairs. The datasets contain
different references of various levels for each rendering: a low level indicates that
the reference pose is close to the GT pose (easier) and a high level indicates that
the reference is further away (harder). Because RefSR methods usually train on
the CUFED5 [15] dataset which consists of images with resolution 160x160, we also
re-scale our dataset images to this resolution.

3.4.3 Filtering

The dataset created by LaMAR [16] contains various rendering artifacts. While it
is the goal of our task to also remove rendering artifacts, some images are unrec-
ognizable. Fig. 3.6 shows a collection of such renderings. We argue that gradients
related to them would not benefit the training process of the model and therefore we
filter the data first to remove such renderings. We do this by calculating a homog-
raphy error in a similar way as SuperPoint [55]. Because the images are localized,
we can estimate a homography between the rendering and GT. While this is no
accurate way of assessing whether the localization was successful, it is enough to
filter out those renderings that are mostly artifact. We estimate the homography
based on SuperPoint [55] features with SuperGlue [56] matches. Ideally the homog-
raphy should be identity. The homography error uses the estimated homography to
remap the corners of the image. If the corners end up at their original position, the
homography is close to identity and the error is close to zero. Using this method
we filter out 32 % of the data. Because LaMAR provides renderings containing
the depth, we also export a mask to potentially mask out pixels with invalid depth
values. However, this mask is not used in the final pipeline.

3.5 MASA-SR with LaMAR data

Using the new datasets we can directly use the pre-trained MASA-SR [28] to do
inference on our test data. Because the resolution of our renderings is similar to
the resolution of our reference, we first downscale the rendering to be of the shape
RefSR methods expect as input. To create an easier task for the network, we use
the GT as reference image instead of a close-by view for evaluation only. Fig. 3.7
shows the the pipeline of this approach and Fig. 3.8 shows the results. The RefSR
method almost recovers the rendering image that was down-scaled before. Details
are however lost in the process and artifacts are still present. We notice that the
RefSR method is not using the information from the reference image. A possible
explanation of this observation can be that the feature encoder of MASA-SR is
trained end-to-end on the CUFED5 [15] data. Because it has never been trained
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Figure 3.7: First Pipeline. Using the RefSR method MASA-SR [28] with a
down-scaled LaMAR [16] rendering and a close by view as reference.

Ref. = GT Rendering MASA-SRCUFED MASA-SRLaMAR

Figure 3.8: Results of MASA-SR [28] on LaMAR [16] data. Inference
using the model pre-trained on CUFED5 data leads to little enhanced realism.
Training the model on LaMAR data successfully transfers some information from
the reference but does not manage to remove the larger rendering artifacts.

to match between features obtained by renderings and the ones of real images, this
matching is likely to fail. When RefSR methods fail to find correspondences in the
reference, then they aim to enhance the details without the reference. This would
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explain why the rendering could be mostly recovered but has no information from
the reference. However, also other possible explanations for this observation are
possible. Because we also created a training set from LaMAR [16], we train MASA-
SR using the pipeline in Fig. 3.7. Doing this, we aim for the model to create the
ability to match between the render and real domains. Fig. 3.8 shows the results
of the training. This time we notice some information that is transferred from the
reference to the rendering. Even tough some image parts look now enhanced, still
details are missing or wrong new details are introduced. Also, larger artifacts do
not disappear. We conclude that some architectural change are necessary. However,
we still do not understand precisely why the method does not work in our favour.
For example, why are the details from one part of the image successfully transferred
but others are not. The first image in Fig. 3.8 shows that this happens even if the
image parts are right next to each other and belong to the same object.
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Figure 3.9: Tensorboard. Visualization of the training process plotting the
losses, evaluation metrics and images on an epoch level.
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Figure 3.10: Feature matching visualization. The dots show the matches
of the coarse blocks from the MEM. The lines are colored with the matching
confidence, using the plasma color map. The visualization shows that missing details
can be caused by block mismatches.

3.6 Visualizations

To better understand the learning process of MASA-SR [28] and the effect of its
core modules, we build several visualizations. We plot the training progress using
tensorboard, visualize the feature matching and compare the results using diagonal
swipe animations and grid overlay plots.

3.6.1 Tensorboard

We setup a tensorboard environment to visualize the training process. Also, we
fix a hand picked selection of evaluation images to compare training sessions with
different models. Additionally, we log all experiments noting the scores and visual
results on the evaluation images. Fig. 3.9 shows an overview over the tensorboard
environment. The logged values are the reconstruction, perceptual and adversarial
training losses and the Peak Signal Noise Ratio (PSNR) and Structural Similarity
Index Measure (SSIM) evaluation metrics.

3.6.2 Feature matching

The MEM inside the MASA-SR [28] pipeline is used to find correspondence in
the reference. To visualize this process, we mark the matched locations of the
coarse matching between rendering and reference. The confidence of the matches is
visualized by coloring the connecting line with the plasma color-map. Blue values
denote low and yellow values high confidence. Fig. 3.10 shows a relationship between
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Figure 3.11: Diagonal swipe animations. To make sure the viewpoint is not
changed, animations that perform diagonal swipes over the images can be inspected.

Figure 3.12: Grid overlay. Visualization to compare the result with the GT in
detail.

the quality of the enhanced rendering and the matching confidence. If the matching
fails, no details are transferred from the reference. This visualization enables us to
better understand the effect of architectural changes to the pipeline, where we can
now explain why certain changes end up in worse or better quality results. For
example, this explains why for the same object some parts can be very detailed
while neighboring parts lack details. If the coarse matching is not successful, then
also the dense matching can have no success. This then leads to the network ignoring
the reference and enhancing the image on its own.

3.6.3 Diagonal swipe & grid overlay

We want to make sure that the model keeps the viewpoint similar to the rendering.
To this end, diagonal swipe Fig. 3.11 and grid overlay Fig. 3.12 visualizations are
added to make sure of this with manual sanity checks.

3.7 Migration to PyTorch Lightning

With all visualizations in place, the next step is to modify the RefSR architecture.
A first step is to adapt the model to take as input a high-res. rendering instead of a
low-res. image. To be able to add architectural changes to MASA-SR [28], we need
to be able to build several architectures within one project. Ideally, all of those
can be run using config scripts. Even tough MASA-SR uses a decent codebase with
recent package versions, it is designed to build RefSR models. Assumptions about
the spatial resolution of the input are scattered throughout the project, making it
very time consuming and error-prone to adapt it to a high-res. input. The process
would also lead to a large amount of code duplication because the disentangling of
the resolution assumption. Instead, we use the PyTorch Lightning [57] framework.
This has the advantage that the code can be written hardware agnostic, removing
all the existing shifting of tensors from and to devices. The engineering code,
such as for the trainer or for multi GPU support is hidden, well maintained and
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Figure 3.13: Pipeline of MASA-RE Removing all content related to low-res.
inputs from MASA-SR [28]

abstracted away. This allows for focusing on the actual model development. The
framework is also fully modular, which allows for dividing the MASA-SR codebase
into modules and swapping them out with new ones in the model development
process. While the use of such a high level framework has many advantages, it also
comes with certain limitations. The fact that all engineering code is abstracted
away can lead to situations where the provided abstractions are not sufficient to
the current need. In such a case, those functionalities have to be overwritten or
extended leading to more complicated code then when using pure PyTorch [58]. An
example of such a situation is training Generative Adversarial Networks [59] that
use non-standard optimizer behaviour, where first the discriminator takes some
steps and then the generator. Because errors caused by such behavior are thrown
within the framework, those are much more time consuming to debug then when
using a custom pure PyTorch training loop. Knowing the limitations, we conclude
that the advantages out-weight the shortcomings for this specific project. After
the migration, our code-base is organized in high level encoder, decoder, attention
modules. The assembling of the modules happens on the level of a config file,
which makes it extremely fast to swap different modules or to select different hyper
parameters by just changing one line in a config file and no code. This way, we have
for the MASA-SR architecture one config file and for the following experiments we
create others. This allows to maintain the architectures next to each other while
minimizing code that deals with the different input resolutions.

3.8 MASA-RE

Using the modular code base, we iterate on the first model by removing all archi-
tecture related to low-res. inputs. We call the new model MASA-RE for Rendering
Enhancement. The pipeline is shown in Fig. 3.13. Similar to MASA-SR [28], the
level 1 features of rendering and reference are used for feature matching. However,
only the level 1 features from the reference are warped and fused to the render-
ing features. The performance of the new model is worse because many blocks
were removed, some of which were also important for the rendering enhancement
task. To understand how the model can be improved we analyze the impact of the
loss functions, data-augmentation strategies and alternative encoder and decoder
modules.
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Figure 3.14: Loss Analysis Fine-tuning the model with different loss functions.
The best results can be seen using the Reconstruction loss (Rec) without using
other losses or data-augmentation. Adding the Perceptual loss (Per) decreases the
scores and so does the Adversarial loss (Adv).

3.8.1 Loss analysis

We analyze the impact of the different loss functions on the result of the model,
assessing whether they are suitable for the task of rendering enhancement. MASA-
SR [28] uses three loss functions: The reconstruction, perceptual and adversarial
loss. The loss is calculated between the high-res. Ground Truth image IGT and the
Super Resolved output image ISR.

L = λrecLrec + λperLper + λadvLadv (3.5)

Lrec = ∥IGT − ISR∥1 (3.6)

Lper = ∥ϕi(IGT)− ϕi(ISR)∥2 (3.7)

Ldisc = −EIGT
[log(D(IGT, ISR))]− EISR [log(1−D(ISR, IGT))] (3.8)

Ladv = −EIGT [log(1−D(IGT, ISR))− EISR [log(D(ISR, IGT))] (3.9)

The reconstruction loss calculates the ℓ1 norm between the enhanced rendering and
GT. The loss ensures that the result is on a per pixel basis close to the GT. The
perceptual loss uses the i-th layer of VGG19 [48] features ϕi to guide the images
to be semantically similar. MASA-SR uses the layer conv5 4. The adversarial loss
improves the visual quality of the image by training a discriminator. Fig. 3.14 shows
the result of fine-tuning the MASA-RE model using different loss configurations.
We notice that both the perceptual and adversarial loss have a negative impact on
the scores. While for the adversarial loss this can be explained because the loss aims
for visual quality instead of reconstruction accuracy, the perceptual loss should not
have this effect, hinting that an adaption of the loss can have a beneficial impact
on the training process. With a perceptual loss that does not decrease the scores,
the training process could also be adapted to train with the perceptual loss from
the beginning and fine-tune only with the adversarial loss. When looking at the
loss plots, we notice high fluctuations. At the beginning of the learning process
this is expected, but near the end when the loss converges, the changes should be
more subtle. The reason for this behavior is the learning rate scheduler which is
configured to only converge after 500 epochs. Changing this to the current number
of epochs leads to smaller changes in the fine-tuning process. The result is an image
with higher reconstruction accuracy and more subtle impact of the adversarial loss.
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Figure 3.15: Analysis of the data-augmentation strategies. The model
without data-augmentation performs the best, hinting that the rotations and flips,
even if they are only performed horizontally, are not beneficial for the task of ren-
dering enhancement.

3.8.2 Data-augmentation analysis

The data-augmentation strategy used by MASA-SR [28] focuses randomly rotating
and flipping the images as well as on random contrast and brightness changes.
Those flips can be both horizontally and vertically, leading to the image being
upside down. We train the model three times: once using all data-augmentations,
once without any and once where we only remove the vertical flips. Fig. 3.15 shows
that the model trained without data-augmentation performs the best. We conclude
that while the data-augmentations are beneficial for the RefSR task, for the task of
novel view enhancement we need to find different, more task specific strategies.

3.8.3 Architecture experiments

We experiment with different architectural changes to improve the model. In this
section we give an overview over the performed experiments. Because from Fig. 3.10
we learned that the matching of the features has a substantial impact on the final
result, our idea is to make this matching more robust by using different types of
features. Fig. 3.16 shows an overview over the architectures of different encoders
we tried.

Deeper Feature Channels

Some RefSR methods [15, 21] use pre-trained features instead of training them end-
to-end like MASA-SR [28]. Those features can leverage that they are trained on
a much larger dataset and generalize better. Typically, VGG features are used for
this purpose. The MASA-RE model supports only feature channels of dimension
64 for all encoder levels. We adapt both encoder, feature matcher and decoder to
support features with 64, 128 and 256 channels making it compatible with common
pre-trained feature extractors. We also train the model end-to-end on those deeper
features which leads to similar results as with the original encoder that has fixed
64 feature channels.

VGG Encoder

Using the compatibility with deeper feature channels, we swap the encoder against
an encoder using pre-trained VGG16 [48] features. We see the effect of those features
already at the beginning of the training. While the end-to-end trained features
starting from randomly initialized weights fail to establish any matches, the VGG16
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Figure 3.16: Architecture of alternative encoders. We experiment with dif-
ferent encoders: an end-to-end trained encoder with larger feature channels, an
encoder using pre-trained VGG16 features and an encoder that adds an additional
LoFTR [60] module consisting of alternating self and cross attention layers to fine-
tune the features for improved matching.

features successfully establish many correspondences. Despite this early advantage,
only after couple epochs the matches of the end-end trained model are already
better. The VGG16 features are frozen and do not adapt to the current task.
We conclude that we need to fine-tune or process the features such that they can
specialize on the rendering enhancement task.

Transformers and LoFTR

There is a whole research field focused on feature matching. Because feature match-
ing is also in essence what we do in the first part of the MEM module, the idea
comes up to use modules of a modern feature matching pipeline to improve our
model. LoFTR [60] is a detector free local feature matcher that uses transformers.
Specifically, we use the LoFTR module which consists of alternating self and cross
attention layers [61] shown in Fig. 3.16. We experiment with fixed, learnable and
rotational [62] position encodings. Now the matches also change in the training
process for the pre-trained features. We not that the performance is worse than for
the end-to-end trained model while the training time significantly increased.

DINOv2 Features

DINOv2 [63] features could be an alternative to the use of VGG features because
they are trained without supervision on a large dataset of 142 million images and
show promising results on downstream tasks. Training on those features shows an
interesting effect: The decoder converges to a trivial state and just returns an image
full of zeros. We experiment with different decoders and also try to over-fit to just
one image. Unfortunately all experiments end with the same result: a black image.
This leaves us to explore further options to improve the architecture.

Iterative training

Having tried several alternative encoders, the result is still the same. Especially in
the presence of larger artifacts, the matching is likely to fail which leads to a lack of
detail in the affected image regions. We found a solution for this by implementing
an iterative process. Instead of applying our model once, we apply it over several
iterations. This has the effect that while in a first iteration the matching might
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fail, the model can still remove the artifacts and enhance the image. As a result,
subsequent iterations have better chances for finding successful matches.

Matching on level 3 features

In the MASA-RE model shown in Fig. 3.13, we use the level 1 features for matching
similar to MASA-SR [28]. This comes from the resolution difference of the RefSR
inputs, where the level 3 features are a scale factor of 16 times smaller in the
spatial resolution than the high-res. reference features. For our model, the inputs
are of similar spatial resolution. We therefore change the model to use deeper
level 3 features, which exhibit increased robustness. Having matches on the level 3
features, opens also the door to warp and fuse the level 3, 2 and 1 reference features
in a similar way as MASA-SR. We indeed observe increased performance for the
matching process and on the overall visual result quality.

Adaption to different resolutions

The current model works best on 160 x 160 images. For other resolutions the
matching process is not successful. We experiment with several options to increase
the supported resolution. For one, in the current architecture the block and patch
sizes are fixed. We adapt the architecture such that those can be chosen dynam-
ically based on the input size. We change to a deeper encoder and fine-tune the
network on higher resolution images. This requires a lot of computational time
where the training of our model increases from 24 hours to over one week. We
detect the bottleneck in the MEM module, but even after one week, the matching
shows no improvement. Furthermore, the discriminator trained for the adversarial
loss is specifically targeted to images with resolution of 160 and would have to be
adapted for fine-tuning using this loss. We suspect that switching to a more in-
volved matching pipeline and eventually replacing the MEM might allow the model
to also predict higher resolution images. In the meantime, we use an alternative
approach for higher resolution images, where we first down-scale the images such
that the shorter edge matches the resolution of 160, do inference with our model and
upscale the result using the super-resolution method Real-ERSGAN [64] to recover
the original resolution. While it works and some results look good, this approach is
far from optimal because both our method and Real-ERSGAN introduce artifacts
which are amplified in the process. Also Real-ERSGAN only scales the images up
to a factor of times 4. Everything higher is bilinear interpolated and lacks details.

3.9 MaRINeR

Having experimented with many possible architecture changes, loss functions and
data-augmentation strategies we create a new architecture, MaRINeR, incorpo-
rating the conclusions of those experiments. The new pipeline includes a different
version of the perceptual loss, matches on level 3 features and fuses warped refer-
ence features of all levels. To further increase the robustness, the result is refined
in an iterative fashion. In the training process we use two new data-augmentation
strategies specifically target for the task of novel-view enhancement.
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The MaRINeR pipeline, illustrated in Fig. 4.1, takes as input a rendering with
noisy appearance and geometry as well as a nearby reference and outputs an en-
hanced version of the rendering by transferring relevant information from the ref-
erence. The pipeline starts by densely extracting features at multiple levels from
both input images with a shared convolutional encoder. Next, the deepest features
extracted from the rendering are matched to those of the reference to retrieve simi-
lar content. These matches are then used to warp the reference features at different
levels. The warped reference features are fused with those of the rendering in the
decoder. Given the severe artifacts sometimes present in novel views, we employ
an iterative refinement approach that repeats the process by replacing the input
rendering with the enhanced output of the previous iteration. We start from the
MASA-SR RefSR [28] pipeline and implement several changes in architecture, loss
function as well as data augmentation to make it amenable to the novel task of
reference-based rendering enhancement.

4.1 Encoder

As mentioned above, we use a shared convolutional encoder to extract features at
multiple levels from both the rendered image I and the reference R, for simplic-
ity assumed both of size H ×W . We use three levels, each halving the resolution
of the previous one, yielding two sets of dense tensors: {FI

1 ∈ RH×W×F1 ,FI
2 ∈

Figure 4.1: MaRINeR architecture. The learned features of the encoder are
used to for correspondence matching and warping of the reference features. They are
fused with the rendering features to create a enhanced rendering, which is iteratively
refined.

23
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Figure 4.2: Architecture of the decoder. We fuse the rendering and warped
reference features using SAM [28], DRAM [28] and residual blocks [32].

RH/2×W/2×F2 ,FI
3 ∈ RH/4×W/4×F3} and {FR

1 ,FR
2 ,FR

3 } for the rendering and the ref-
erence, respectively, where Fi is the number of channels of the output of level i.
These features will next be used to find corresponding patches between the render-
ing and the reference in a coarse-to-fine fashion.

4.2 Feature matching

We use the MEM from MASA-SR [28] to match the deepest features of both input
images, FR

3 and FI
3 , using cosine similarity. The MEM performs matching first on

a coarse grid with a stride and then densely within a fixed-size window around the
resulting matches. This step yields a mapping m of indices from the level 3 features
of the rendering to those of the reference and associated matching scores s:

mI→R : (x, y) ∈ FI
3 → {(u, v) ∈ FR

3 , s ∈ R} . (4.1)

This mapping is used to warp and weight the reference features at each of the three
levels i, where blocks of features with size relative to the spatial resolution of the
current level are cropped and moved together resulting in warped feature maps
{FR→I

1 ,FR→I
2 ,FR→I

3 }. In contrast to RefSR methods which have an input with
lower resolution and thus need to perform the matching on the F1 features of the
low-res. input and down-scaled reference [28], we use deeper features, allowing us
to leverage the increased robustness to find better quality matches. Weighting the
warped features based on the matching scores reduces the impact of features with
low confidence matches. This enables the model to only use the reference features if
they have a confident match and otherwise use the rendering features when fusing
them in the decoder.

4.3 Decoder

Using the deepest features of the rendering FI
3 and the warped reference features

FR→I
3 , FR→I

2 and FR→I
1 , we fuse them using SAM [28], DRAM [28] and residual

blocks [32], as shown in Fig. 4.2. SAM learns to remap the distribution of the
reference features to the one of the rendering features. DRAM fuses features of dif-
ferent spatial resolution aiming to refine and aggregate the details of both branches
and up-sample the low-res. features with a transposed convolution. The decoder
procedure can be summarized as follows:

O3 = P3(SAM(FI
3 , F

R→I
3 )⊕FI

3 )

O2 = P2(DRAM(SAM(O↑
3 ,FR→I

2 ),O3))

O1 = P1(DRAM(SAM(O↑
2 ,FR→I

1 ),O2))

(4.2)

where Pi stands for processing the features using a convolution and Ni residual
blocks [32], ⊕ for a convolution to merge the features and ↑ for bilinear interpola-
tion. We merge the level 3 rendering features FI

3 with the warped level 3 reference
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features FR→I
3 by concatenating and processing them using a convolution, leverag-

ing that the rendering and warped reference features are of similar spatial resolution.
The SAM aligns the rendering and warped reference feature distributions such that
the DRAM can successfully merge the features. The output image is then created
from O1 using a convolution to reduce the feature dimension. In contrast, RefSR
methods such as MASA-SR deal with features with a different spatial resolution
that can not directly be merged. MASA-SR first fuses the low resolution features of
level 3 to 1 together before merging the reference features. For the task of RefSR this
is beneficial because the result is encouraged to be structurally similar to the input
with only additional details from the reference. For the task of rendering enhance-
ment where the rendering can contain structures that come from artifacts, merging
the features of similar spatial resolution enables the model to also take structural
information from the reference. This is beneficial to remove rendering artifacts or
fill in missing image parts caused by gaps in the source 3D reconstruction.

4.4 Iterative refinement

Since the gap between the rendering and the reference can be large due to rendering
artifacts that occlude the underlying geometry, we found it beneficial to apply the
model several times in an iterative fashion. The first iteration can thus focus on
removing artifacts and enhancing the image. The following iterations are then more
successful in establishing correspondences and transferring the missing details to the
enhanced rendering. To this end, we supervise the model after each iteration, thus
obtaining a more general model that can deal with a wide variety of rendering
qualities.

4.5 Loss function

Our goal is to preserve the spatial information of the rendering while removing
artifacts, adding details from the reference, and producing a visually pleasing result.
To this end, we combine a reconstruction loss, perceptual loss, and adversarial loss
with associated weights λrec, λper, and λadv, written as:

L = λrecLrec + λperLper + λadvLadv . (4.3)

4.5.1 Reconstruction loss

The enhanced rendering IER should be close to the GT image taken at the same
pose as the rendering by using the information present in the close-by reference.
We adopt the following reconstruction loss:

Lrec = ∥IGT − IER∥1 , (4.4)

where ∥ · ∥1 is the ℓ1 norm.

4.5.2 Perceptual loss

The perceptual loss is widely used by RefSR models [28, 30, 34, 27] to enhance the
visual quality of the result by guiding the resulting image to be more semantically
similar to the GT. This loss is formulated as:

Lper =
1

3

3∑
i=1

∥ϕi(IGT)− ϕi(IER)∥22 , (4.5)
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where ϕi(·) denotes the outputs of ImageNet [65]-pretrained VGG16 [48] at layers
relu1 1, relu2 2 and relu3 3. Contrary to RefSR methods, we chose to use more
shallow features [66] since the domain gap between rendering and reference leads
to a mismatch between the deeper features and therefore causes increased artifact
generation. We show qualitative results in the ablation study Chapter 7.

4.5.3 Adversarial loss

The drawback of the perceptual loss is that it tends to generate grid like arti-
facts [67]. The adversarial loss [68] helps to remove those artifacts and generate
visually pleasing images:

Ldisc = −EIGT
[log(D(IGT, IER))]− EIER

[log(1−D(IER, IGT))] , (4.6)

Ladv = −EIGT
[log(1−D(IGT, IER))− EIER

[log(D(IER, IGT))] , (4.7)

where Ldisc represents the discriminator loss and Ladv is the generator loss. We
adopted the Relativistic GAN [69] formulation following MASA-SR [28].
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Experiments

5.1 Implementation details

The encoder consists of 3 levels where each level is connected to the next one and
consists of 1 convolutional layer and 4 residual blocks [32]. In our experiments, we
keep the number of feature channels fixed to Fi = 64 for all levels. We train on
160x160 images following the convention of recent RefSR methods [28, 30, 34]. In
the decoder we use N3 = 12, N2 = 8 and N1 = 4 residual blocks in the merge
and fusion layers. We train our model for 60 epochs using only the reconstruction
and perceptual loss and fine-tune the model for 20 epochs using additionally the
adversarial loss. In our experiments, the weight coefficients λrec, λper and λadv

are 1, 1 and 0.001. For training we use a NVIDIA Tesla A100 40GB GPU with a
batch size of 9 for 37 hours. We use two data-augmentation strategies specifically
targeted to our task. For generalization to a wide range of rendering qualities,
we augment the training data with renderings from down-sampled versions of the
meshes containing only 10% of the original triangles. To ensure that the model
removes artifacts and enhances the rendering even if the reference image is far away
or has little content in common, we pick the training reference images randomly
from within a 5s temporal window in the sequence.

5.2 Evaluation metrics

Because we start from a RefSR method, we use the same metrics for evaluation,
notably: Peak Signal Noise Ratio (PSNR) ↑ and Structural Similarity Index Mea-
sure (SSIM) ↑. To follow the convention [28, 30], all PSNR and SSIM results
are evaluated on the Y channel of the YCbCr color space. Because PSNR and
SSIM can not determine visual quality we also report the Learned Perceptual Im-
age Patch Similarity (LPIPS) ↓ [70] version 0.1 and the Edge-Restoration Quality
Assessment (ERQA) ↑ [71]. LPIPS represents the visual quality with respect to the
human perception. Because PSNR and SSIM do not align with human perception
when it comes to value blurry images against images with details [70], we also use
ERQA that measures how well a method performs at restoring edge details. The
PSNR [72] is defined as

PSNR(IGT , IER) = 10log10

(
2552

MSE(IGT , IER)

)
MSE(IGT , IER) =

1

HW

H∑
i=1

W∑
j=1

(IGT (i, j)− IER(i, j))
2

(5.1)

27
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where the MSE is the mean squared error. The SSIM [73] is calculated on two
equally sized windows x ⊂ IGT and y ⊂ IER

SSIM(x, y) =
(2µxµy + c1)(2σxy + c2)

(µ2
x + µ2

y + c1)(σ2
x + σ2

y + c2)
(5.2)

where c1 = (0.01 · 255)2 and c2 = (0.03 · 255)2. The formula is based on three
components that measure the difference between x and y in terms of luminace,
constrast and structure. The ERQA [71] finds edges in IGT and IER using the
Canny algorithm [74]. Those edges are compared using the F1 score

precision =
TP

TP + FP
, recall =

TP

TP + FN
(5.3)

F1 = 2
precision · recall
precision+ recall

(5.4)

where TP (True Positive) are the number of pixels detected as edge in both IGT

and IER. FP (False Positive) is the number of pixels detected only in IER, FN
(False Negative) are pixels only detected in IGT . To account for networks that
produce small edge shifts either globally over the entire image or locally, ERQA
builds in compensations to match the pixels of those edges before calculating the
F1 score. The LPIPS [70] uses deep neural networks as feature extractor and trains
a similarity predictor network based on the feature difference of the images at several
layers.

LPIPS(IGT , IER) =
∑
l

Gl

 1

HlWl

Hl∑
i

Wl∑
j

∥wl ⊙ (ϕl(IGT )i,j − ϕl(IER)i,j∥22)


(5.5)

where ϕl denotes the output of layer l of the pretrained AlexNet [75]. LPIPS uses
layers conv 1 to conv 5. Gl is the trained prediction network for layer l, ⊙ stands
for scaling the activations channel-wise by a vector wl.

5.3 Comparison with RefSR and ST methods

We conduct quantitative and qualitative comparisons between our method and ex-
isting RefSR and ST methods. The RefSR methods we compare with are MASA-
SR [28] and DATSR [30]. The ST methods are the universal method Artflow [43],
the photorealistic method WCT2 [49] and the semantic method NNST [45]. Tab. 5.1
shows the results of the quantitative comparison. The metrics are calculated be-
tween the GT and the enhanced rendering. The row Render is the baseline and
shows the scores of the not enhanced rendering and the GT. In the column
CABRef.=GT the GT is used as the reference showing the methods’ performance
when using the optimal reference image. MaRINeR successfully enhances the
rendering leading to a significant improvement in all metrics. It also performs bet-
ter at the task than existing RefSR and ST methods. Even though HGE is a novel
scene, our model performs similarly well as on the CAB and LIN scenes, demon-
strating that our model exhibits a strong generalization ability. Because in our
dataset different objects can be present in rendering and GT, the enhanced render-
ing will not necessarily exactly look like the GT. This is also reflected in the scores,
which are generally lower then when comparing RefSR methods where the GT and
low-res. match content-wise.
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Table 5.1: Quantitative evaluation. Our model enhances the rendering in
common image quality metrics. It does so using the optimal reference Ref. = GT
as an upper bound or using a close-by reference. It generalizes to the unseen HGE
scene and performs better than existing RefSR (RSR) and Style Transfer (ST)
methods.

Method
CABRef.=GT CAB LIN HGE

PSNR SSIM ERQA LPIPS PSNR SSIM ERQA LPIPS PSNR SSIM ERQA LPIPS PSNR SSIM ERQA LPIPS

Render 15.60 0.559 0.564 0.380 15.60 0.559 0.564 0.380 14.39 0.529 0.549 0.392 15.84 0.575 0.619 0.364

R
S
R MASA [28] 15.55 0.555 0.568 0.347 15.47 0.524 0.544 0.367 14.17 0.419 0.523 0.397 15.62 0.478 0.576 0.360

DATSR [30] 15.65 0.568 0.553 0.349 15.63 0.557 0.530 0.364 14.34 0.468 0.483 0.438 15.80 0.536 0.553 0.376

S
T

Artflow [43] 16.30 0.472 0.533 0.334 15.39 0.414 0.489 0.393 17.00 0.503 0.622 0.321 16.97 0.500 0.602 0.341

WCT2 [49] 16.48 0.559 0.569 0.357 16.08 0.554 0.567 0.367 17.44 0.569 0.565 0.332 17.52 0.589 0.623 0.324

NNST [45] 18.52 0.643 0.620 0.303 16.33 0.559 0.566 0.370 18.53 0.568 0.661 0.315 18.48 0.591 0.646 0.315

R
E MaRINeR 23.89 0.799 0.722 0.089 20.03 0.697 0.643 0.180 21.73 0.668 0.705 0.155 20.96 0.673 0.684 0.176

5.4 Qualitative comparison

Fig. 5.1 shows a visual comparison with RefSR and ST methods. RefSR meth-
ods stay close to their low-res. input structure and color wise. They add details
from the reference which are first transformed to the low-res. color distribution.
Therefore they can not remove artifacts and the color distribution is not adapted to
the one of the reference. Style-transfer methods on the other hand have a built in
trade-off between content preservation and style transfer. Photo-realistic methods
successfully adapt the color distribution of the reference while not changing the
content of the rendering, which inadvertently also preserve the artifacts. Univer-
sal style transfer methods transfer both the color and content from the reference
to the output so some artifacts can disappear. However, they do not distinguish
between real content and artifacts and therefore introduce unrealistic distortions
into the image. Semantic style transfer methods match between content and style
and successfully transfer the style of matching objects. If no matches are found,
then the methods also introduce distortions. Our model successfully transfers the
colors, removes rendering artifacts while preserving the underlying content and fills
in missing parts.
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Figure 5.1: Qualitative comparison. Comparing the results of different meth-
ods MASA-SR [28], DATSR [30] (RefSR), ArtFlow [43], WCT2 [49] and NNST [45]
(ST) with ours for the task of novel view enhancing.
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Further Analysis

To understand the capabilities of MaRINeR, we analyze its robustness to various
challenging situations. Those include renderings of meshes with different resolution
or created using different algorithms as well as renderings with large artifacts or
missing image parts. In the end, we investigate if our model also works for high
resolution renderings.

6.1 Rendering artifacts

We test our model on different images with challenging artifacts that cover large
parts of the image. Fig. 6.1 a shows that our model manages to recover the sky,
which was lost during creation of the 3D model. Fig. 6.1 b shows the models
capability to recover large parts of the floor that was occluded by a floating triangle.

6.2 Mesh resolution

Fig. 6.1 e shows the robustness of the model to different mesh resolutions. We use
renderings of a down-sampled mesh with 10 % size of the original mesh to make
the model robust to different rendering qualities. As a result the model is able to
enhance a wide range of renderings of different quality 3D reconstructions.

6.3 Device agnostic

The LaMAR [16] dataset also contains trajectories recorded with HoloLens 2 de-
vices, which capture greyscale images. Fig. 6.1 d shows that also for greyscale
renderings and references recorded with a different device our model performs sim-
ilarly well.

6.4 Reference similarity

In some cases the reference image might not be similar to the rendering. Possible
reasons are changed illumination or non overlapping views. Fig. 6.1 c shows that
our model also handles very strong illumination changes, Fig. 6.1 f shows that even
with a reference with no content in common our model still removes the rendering
artifacts and enhances the image.

31
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Figure 6.1: Robustness of MaRINeR. Our model recovers missing parts that
appear due to rendering artifacts a, b. It adopts the illumination from the reference
c, is device agnostic generalizing to gray-scale images d. The model enhances
renderings of low triangle meshes e and also improves the rendering even if the
reference has little content in common f. It can be applied to unseen scenes such
as 12 Scenes [18] g or Aachen Day-Night [76] h without retraining.
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Table 6.1: 12 Scenes evaluation. 12 Scenes [18] was captured with a higher
frame rate which is reflected in the scores that are closer to the Ref.=GT case on
LaMAR.

Method
12 Scenes

PSNR SSIM ERQA LPIPS

Render 20.59 0.732 0.640 0.164

MaRINeR 22.99 0.775 0.703 0.071

Table 6.2: Evaluation on images of higher resolution. Renderings of higher
resolutions are only marginally enhanced by MaRINeR. To improve the enhance-
ment, we extend the pipeline with the super resolution method Real-ERSGAN [64].
As a result also higher resolution renderings can be enhanced.

Method
CAB512Ref.=GT

PSNR SSIM ERQA LPIPS

Render 15.27 0.649 0.287 0.544

MaRINeR 17.91 0.709 0.398 0.350

MaRINeR + Real-ERSGAN 21.51 0.759 0.434 0.277

6.5 Reconstruction method

Contrary to LaMAR [16] which uses a NavVis scanner running LiDAR-inertial
SLAM followed by the Advancing Front [54] algorithm for meshing, we report re-
sults on the 12 Scenes [18] dataset which uses RGB-D SLAM on Kinect data and
BundleFusion [77] in Tab. 6.1 and visually in Fig. 6.1 g. Furthermore, Fig. 6.1 h
shows the results on the Aachen Day-Night [76] dataset which uses texture maps
instead of vertex coloring to texture the 3D reconstruction.

6.6 Generalization to higher resolutions

MaRINeR is trained on 160x160 images. We evaluate the generalization to higher
resolution images by enhancing 512x512 renderings of the CAB scene using the
reference as GT. Tab. 6.2 shows that the enhancement of our model on 512 images
is not as successful as on the 160 images. In order to use our model also for higher
resolution images, we add an optional extension to the pipeline. Higher resolution
images are down-scaled such that the smaller edge of the image is of size 160. Then
we use MaRINeR to enhance the low-res. rendering. To scale the result back
to the original resolution we use the super-resolution method Real-ERSGAN [64].
Fig. 6.2 shows that using this method, our model also enhances the high quality
renderings.
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Ref. = GT Rendering MaRINeR +Real-ERSGAN

Figure 6.2: Inference on high resolution images. The MaRINeR model
works best on resolutions in the order of 160. On images with higher resolution,
here 512x512, the feature matching is not optimal. Down-scaling the renderings to
160 and predicting with our model and up-scaling again using the super resolution
method Real-ERSGAN [64] allows to enhance renderings of arbitrary resolution.
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Ablation Study

We perform ablation studies to asses the effectiveness of our data augmentations
and the loss functions for the given task. Further we compare the encoder and
decoder to alternative versions confirming the respective architecture.

Reference Rendering No Augment. Augment.

le
ve
l
1

le
ve
l
7

Figure 7.1: Reference level data augmentation. Impact of using random
close-by images as reference instead of only the closest one. While the model per-
forms similar for the close by references of level 1, the correspondence matching
fails for further away references of level 7 leading to worse results.

7.1 Data augmentation

We first analyze the effectiveness of our data augmentation strategies. We augment
the data in two ways: First we add renderings of a down-sampled mesh to the
training data to make the model more robust against changes in the mesh quality
and second we use a random close-by image as reference instead of the closest one.
Tab. 7.1 left shows the model trained without the augmentation performs worse
on meshes with different resolutions. While on the 100% mesh the PSNR/SSIM
difference is 0.35 dB and 0.001, on the 10% mesh it increases to 1.12 dB and 0.024.
Visually the effect can be seen in Fig. 7.2 where the model without augmentation
fails to find correspondences in the rendering of the down-sampled mesh. Tab. 7.1
right shows that for the case without random reference augmentation, the perfor-
mance is better when the reference is the GT. However as soon as the reference

35
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Reference Rendering No Augment. Augment.

10
0%

10
%

Figure 7.2: Mesh quality data augmentation Comparison of the model with
and without augmenting the data with renderings from a down-sampled mesh.
While for a mesh size of 100% the results are visually similar, for the mesh size
of 10% the non augmented model fails to find correspondences and the result lacks
the details from the reference.

Table 7.1: Robustness. Left – Mesh quality. Augmenting the data with
renderings of a down-sampled mesh increases robustness to changes in the mesh
resolution. Right – Reference level. A higher level indicates a larger temporal
distance to the rendering within a sequence which generally correlates with less
content in common.

Mesh size
CABaug CAB

PSNR SSIM PSNR SSIM

100% 19.80 0.687 19.45 0.686

75% 19.46 0.680 18.92 0.678

50% 19.41 0.677 18.83 0.673

25% 19.33 0.669 18.56 0.660

10% 19.10 0.650 17.98 0.626

Ref. Level
CABaug CAB

PSNR SSIM PSNR SSIM

0 = GT 22.91 0.777 23.51 0.783

1 19.88 0.687 19.85 0.681

2 18.99 0.664 18.48 0.644

5 18.25 0.646 17.13 0.607

8 18.04 0.643 16.79 0.600

level increases, the performance drops to a PSNR/SSIM difference of 1.25 dB and
0.043 compared to the augmented model. Fig. 7.1 shows the effect visually where
without the augmentation, the model fails to match objects with a different scale.

7.2 Influence of the perceptual loss

Because the task of novel view enhancement is different from RefSR, we investigate
the effectiveness of the commonly used perceptual loss on our task. Fig. 7.3 λper = 0
shows that without the perceptual loss, fine geometric structure like the texture
of the box are not correctly transferred. Increasing the weight to λper = 0.02
and λper = 0.1, we observe increased texture details. A higher perceptual weight
λper = 0.5 leads to grid like artifacts [67] which are more visible in image regions
where the correspondence matching is less confident. The extreme case can be
observed for λperMASA using the same perceptual loss as MASA-SR [28]. Fig. 7.3
shows that λper = 0.1 increases the details optimally while introducing minimal
artifacts which is also confirmed numerically in Fig. 7.4a.
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Rendering λper = 0 λper = 0.02 λper = 0.1 λper = 0.5 LMASA
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Figure 7.3: Impact of the perceptual loss. Increased weight enhances details
and the visual quality but also introduces perceptual loss specific grid-like artifacts.

(a) Perceptual loss weight influence (b) Adversarial loss weight influence

Figure 7.4: Influence of the loss weights. The results of our experiments
finding the optimal weights for a) the perceptual loss and b) the adversarial loss.

Rendering λadv = 0 λadv = 0.0002 λadv = 0.001 λadv = 0.005
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Figure 7.5: Impact of the adversarial loss. Increased weight removes the
perceptual loss artifacts and keeps the underlying texture. Increasing the weight too
much leads to the introduction of hallucinated details not present in the reference.

7.3 Influence of the adversarial loss

Using the perceptual loss can lead to grid-like artifacts [67]. To remove those and
make the images more visually pleasing [28, 30] we use the adversarial loss. Fig. 7.5
shows the impact of different weights for the loss. λadv = 0 contains the artifacts
from the perceptual loss. λadv = 0.005 removes those artifacts completely but
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Iterations # Runtime (ms)

1 49.2

2 66.3

3 88.7

4 110.5

Figure 7.6: Impact of the number of iterations. Increasing the number of
iterations leads to better results. The largest improvement can be seen between 1
and 2 iterations. More iterations marginally improve the result while increasing the
inference time linearly.

introduces high frequency details not present in the reference. Fig. 7.4b shows that
also the scores decrease with higher adversarial loss weight. We found that with
λadv = 0.001 the perceptual loss artifacts are removed while minimal new details
are wrongly introduced.

7.4 Effect of iterative refinement

Fig. 7.7 and Fig. 7.6 show the effect of refining the rendering over multiple itera-
tions. With one iteration the model can fail matching regions with large artifacts.
Using two or more iterations, the first iteration can remove the artifacts such that
the correspondence matching can succeed in the next iteration. We note the largest
improvement when using 2 iterations. Using more iteration gives only small im-
provement but for each iteration the model requires more inference time.

Rendering Iteration 1 Iteration 2 Iteration 3 Iteration 4

R
ef
er
en
ce

Figure 7.7: Visual improvement with iterative refinement. Refining the
result over several iterations helps the correspondence matching in presence of large
artifacts.

7.5 Encoder

An important part of the model performance is whether the matching between
rendering and real image is successful. This matching is performed on the features
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Table 7.2: Left - Encoders Results of using different encoders. Right - De-
coders Results of replacing SAMs and DRAMs in the decoder.

Encoder
CAB

PSNR SSIM

Learned 64 19.88 0.687

Learned 64 128 256 19.66 0.685

VGG 19.08 0.653

VGG + LoFTR 18.99 0.652

Decoder
CAB

PSNR SSIM

SAM + DRAM 19.88 0.687

No SAM 19.73 0.685

No DRAM 19.71 0.676

from the encoder. MASA-SR [28] uses features trained end-to-end with the super
resolution task which has the advantage that the features are hand tailored for
the task. Another option is to use pre-trained features [15, 21]. If we use for
example VGG features, we can leverage that those models were trained on a much
larger dataset and the features potentially generalize better. The first encoder is
trained end-to-end like ours but increases the feature dimension with each stage.
The second one uses a pretrained VGG16 [48] encoder where we use the relu1 1,
relu2 2 and relu3 3 features. Because VGG features were not trained to match
between rendering and real images, we use a LoFTR module [60] with a rotational
position encoding [62] to finetune and enhance the features in the third encoder.
Tab. 7.2 left shows that our original encoder, where all stages have 64 feature
channels, gives the best result.

7.6 Decoder

We show that the SAM and DRAM blocks are also applicable for the task of novel
view enhancement. For this we train two models, where in the first one the decoder
has no SAMs. In the second model, the DRAMs are replaced by simply concate-
nating the features and merging them using a convolution. Tab. 7.2 right shows
that the scores are the best using both DRAMs and SAMs.
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Applications

Novel view enhancement can be applied to a variety of situations. We showcase
the benefits of using our model for eliminating manual sanity checks, enhancing
synthetic trajectories and as post-processing tool for renderings of NeRFs.

8.1 Validation of localization pseudo-ground-truth

A limitation of automatic pseudo-GT pipelines for localization is that they often re-
quire manual validation. For instance, the LaMAR [16] pipeline registers sequences
of images recorded by AR devices, into a common 3D reconstruction based on a high
quality LiDAR scanner. To check if the generated alignment is accurate, manual
checks between renderings from mesh and input images are needed. To automate
those, an option is to estimate a homography between the rendering of the scene at
the estimated pose and the associated image of the input sequence. The homogra-
phy should be identity if the localization of the pipeline was successful. However,
estimating a homography between the rendered and real image is not accurate be-
cause of the domain gap. Using our method, we can enhance the renderings and
improve the accuracy of the estimated homography. We use SuperPoint [55] for
feature extraction and SuperGlue [56] for matching. Fig. 8.1 and Tab. 8.1 show
that with our method we increase the number of matches and the inlier ratio sup-
porting the homography. This leads to a more accurate homography estimation,
characterized by the homography error [55] in the table which is optimally zero.
Because of the increased accuracy of the homography we can therefore eliminate
the manual sanity checks and replace them with an automated tool.

8.2 Enhancing synthetic trajectories

When creating large AR datasets, substantial human effort is needed to record
AR devices trajectories. With recent advances in simulating natural human body

Table 8.1: Improved homography estimation. Using enhanced renderings
improves the matching and homography estimation between the rendering and the
raw image.

# matches inlier ratio homography error

Rendering - Image 39.21 61.24% 4.86

Enhanced - Image 58.89 78.16% 1.88

40
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Render vs GT MaRINeR vs GT

Figure 8.1: Better homography estimation. Using enhanced renderings of
our method, estimating a homography between the GT is more accurate and can
be used to automate manual sanity checks in the LaMAR [16] pipeline.

Table 8.2: NeRF posprocessing results. Our model successfully enhances
renderings of NeRFs with respect to the perceived visual image quality.

PSNR SSIM ERQA LPIPS

Render 21.14 0.622 0.646 0.238

OURS 20.45 0.592 0.701 0.167

movements in 3D scenes such as EgoGen [17], synthetic trajectories can be generated
effortlessly to extend the existing datasets. However, because of the quality of the
underlying 3D representations, there is a gap between synthetic and real images.
Fig. 8.2 shows that with our method we can take a synthetic trajectory and enhance
it using a nearby existing reference image from previously recorded trajectories.

8.3 NeRF postprocessing

Training NeRFs can be computationally expensive and requires a large number of
images to generate accurate 3D representations [14]. A sufficient number of images
may not always be available and training a small model on a large scene with not
enough data can lead to noisy representations. Fig. 8.3 shows how our off-the-shelf
model removes the artifacts created by the nerfacto [78] model on the Floating tree
and Egypt scenes. Both scenes are large and detail-rich outdoor scenes. We use
the smallest nerfacto model with default parameters and enhance the evaluation
images using the closest training image as reference. Tab. 8.2 shows that our model
successfully enhances the nerfacto rendering with respect to ERQA and LPIPS.



Chapter 8. Applications 42

t=
0

t=
1

t=
2

t=
3

t=
4

t=
5

Synthetic Enhanced

Figure 8.2: Enhancing synthetic trajectories with nearby localized im-
ages. The result exhibits increased realism and can extend the current dataset
without introducing a gap between synthetic and human recorded trajectories.
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Reference Rendering Result

Figure 8.3: NeRF posprocessing results. Training a nerfacto [78] model on
the Floating tree and Egypt data. We use the smallest nerfacto model and the
result contains artifacts which our model can successfully remove.



Chapter 9

Limitations and Future Work

Fig. 9.1 shows an overview over the current limitations of MaRINeR. While the
model detects and removes rendering artifacts, it is also possible that some content
is wrongly detected as an artifact and removed. This can lead to blurry or smeared
out image parts. It can happen that the model finds no matches in the reference for
some image parts. In such cases the model comes up with artificial details, which
can look non realistic to the human eye. The model preserves the content of the
rendering, but may transfer additional content from the reference. Currently the
model works best on images with resolution in the order of 160 with any aspect
ratio. Larger resolutions are only indirectly supported, by first down-scaling the
rendering, running our model and then up-scaling the image again using a super
resolution method, such as Real-ERSGAN [64]. This could be addressed in the
future by transitioning to a more advanced matching pipeline such as LoFTR [60]
or CroCro [79] which would come at the cost of more inference time. The model
is targeted to enhance low quality renderings, thus high quality renderings are only
improved with very close references. The method matches objects on a texture
level and not on a semantic level. This means that the objects should have similar
texture, where the rendering is a low quality version. The current model may
introduce flickering between neighboring frames of a sequence. For video prediction,
the pipeline may be further extended to ensure temporal consistency between the
generated frames.

44



45

Reference Rendering Result
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Figure 9.1: Limitations of MaRINeR. Some objects can be wrongly detected
as artifacts and partially vanish. This limits the method to enhance high quality
renderings, here shown as a blurry version of a real image. Also content can be
transferred from the reference that was not present before in the rendering. In
some situations, the content of the rendering is also changed, where for example
doors can be closed.



Chapter 10

Conclusion

In this work, we propose a novel method to enhance renderings of 3D reconstruc-
tions. Specifically, we use localized images in the 3D scene to enhance renderings
from the 3D reconstruction. Our experiments verify that our model MaRINeR en-
hances the rendering better than existing models in the domains of Reference-based
Super-Resolution or Style Transfer. It is scene and device agnostic, robust to mesh
resolution changes, generalizes to greyscale and reliably removes 3D reconstruction
artifacts. Possible applications include the automatizing of manual sanity checks in
ground-truthing pipelines, enhancing synthetic trajectories data and improving the
rendering results of neural renderings trained with limited data or resources.
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