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This is an extended abstract for an invited talk based
on [AC23; AC24].

I. SHIFTED COMPOSITION RULE

We formulate a new technique for bounding information-
theoretic divergences. For KL divergence, this Shifted Chain
Rule (SCR) states

KL(µY ∥νY ) ≤ KL(µX′ ∥νX) + EKL(µY |X=x ∥νY |X=x′
)

where µ is a joint distribution on X,X ′, Y ; ν is a joint
distribution on X,Y ; and the expectation is over any coupling
(x, x′) of µX and µX′

. By taking X = X ′, the SCR
generalizes the standard KL chain rule which (combined with
data-processing) gives the bound

KL(µY ∥νY ) ≤ KL(µX,Y ∥νX,Y )

= KL(µX ∥νX) + EKL(µY |X=x ∥νY |X=x) .

The key advantage of the SCR is the additional flexibility in
X ′, which intuitively enables modifying the “history” of the
process X 7→ Y to X ′ 7→ Y (first term) at a price given by how
different X and X ′ are (second term). This enables addressing
applications where the standard chain rule would not suffice,
such as situations where KL(µX ∥νX) is large or even infinite
(e.g., µX , νX are different Dirac measures).

More generally, our papers consider Rényi divergences of any
positive order. The SCR then becomes the Shifted Composition
Rule, analogously extending the standard Rényi composition
rule via this additional flexibility in X ′. In this abstract, we
focus on KL for simplicity of exposition.

II. REVERSE TRANSPORT INEQUALITIES

In these two papers, our main application is the derivation
of reverse transport inequalities for the Langevin diffusion

dXt = −∇V (Xt) dt+
√
2 dBt , (1)

where (Bt)t≥0 is Brownian motion. Let (Pt)t≥0 denote the
Markov semigroup for (1) and fix probability measures µ, ν,
ν′ and t > 0. As a representative example of our results, we
use the SCR to show that if ∇2V ⪰ αI , then

KL(µPt ∥ νPt) ≤
αW 2

2 (µ, ν)

2 (exp(2αT )− 1)
, (2)

and if −βI ⪯ ∇2V ⪯ βI , then

KL(µPt ∗ ν ∥µPt ∗ ν′) ≤
βW 2

2 (ν, ν
′)

2 (1− exp(−2βt)) . (3)

These inequalities capture complementary aspects of the
diffusion: (2) measures sensitivity w.r.t. the initial condition
(indeed, for α ≥ 0 it yields a mixing time bound), whereas (3)
captures the regularity of the marginal law of the process. In
other words, they encode regularity for Kolmogorov’s backward
and forward equations, respectively.

As an illustration of the use of the SCR, suppose that we
want to establish (2) when µ = δx, ν = δy are Diracs. To
formulate an argument in discrete time, we first replace the
continuous-time semigroup (Pt)t≥0 by a discretized one and
apply a limiting argument. Then, the question is to bound
KL(δxP

N ∥ δyPN ) for a Markov kernel P . A naïve application
of the KL chain rule is vacuous, since KL(δx ∥ δy) = ∞.
Instead, we construct an auxiliary process {X ′

n}Nn=0 such
that X ′

0 = y and X ′
N ∼ δxP

N , and we instead bound
KL(law(X ′

N ) ∥ δyPN ) via the SCR (details in [AC23]). In this
context, this argument can be seen as a generalization of the
shifted divergence technique from the differential privacy and
sampling literature [Fel+18; AT22; AT23] or as a discrete-time
analogue of the coupling in [ATW06].

III. FUNCTIONAL ANALYSIS, GEOMETRY, AND PROBABILITY

Inequalities (2) and (3) are part of a larger story—called
Bakry–Émery theory [BGL14]—which relates analytic proper-
ties of the semigroup, through functional inequalities, to the
curvature of the underlying space and of the measure (i.e., the
Hessian ∇2V of the negative log-density), and to probabilistic
aspects such as concentration of measure and mixing. Indeed, it
is well-known that via duality, (2) is equivalent to the celebrated
dimension-free Harnack inequality of [Wan97], and implies
back the curvature lower bound ∇2V ⪰ αI .

On the other hand, the inequality (3), which is equivalent to
a shift Harnack inequality [Wan14], appears in its sharp form
for the first time in our paper [AC24]. This allows us to prove
that (3) implies back the curvature upper bound ∇2V ⪯ βI .
In our paper, we leave open the intriguing question of whether
this observation can form the basis of a Bakry–Émery theory
for curvature upper bounds.
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