
ETH Library

Graph-based Algorithms for Linear
Computation Coding

Conference Paper

Author(s):
Rosenberger, Hans; Bereyhi, Ali; Müller, Ralf R.

Publication date:
2024-03-06

Permanent link:
https://doi.org/10.3929/ethz-b-000664583

Rights / license:
In Copyright - Non-Commercial Use Permitted

This page was generated automatically upon download from the ETH Zurich Research Collection.
For more information, please consult the Terms of use.

https://doi.org/10.3929/ethz-b-000664583
http://rightsstatements.org/page/InC-NC/1.0/
https://www.research-collection.ethz.ch
https://www.research-collection.ethz.ch/terms-of-use

Graph-based Algorithms for Linear Computation
Coding

Hans Rosenberger∗, Ali Bereyhi†, Ralf R. Müller∗
∗Institute for Digital Communications, Friedrich-Alexander-Universität (FAU), Erlangen, Germany

{hans.rosenberger, ralf.r.mueller}@fau.de
†Wireless Computing Lab, University of Toronto, Canada

ali.bereyhi@utoronto.ca

Abstract—We revisit existing linear computation coding (LCC)
algorithms, and introduce a new framework that measures the
computational cost of computing multidimensional linear functions,
not only in terms of the number of additions, but also with respect
to their suitability for parallel processing. Utilizing directed acyclic
graphs, which correspond to signal flow graphs in hardware,
we propose a novel LCC algorithm that controls the trade-
off between the total number of operations and their parallel
executability. Numerical evaluations show that the proposed
algorithm, constrained to a fully parallel structure, outperforms
existing schemes.

I. INTRODUCTION

Over-parameterized neural networks (NNs) have achieved
many of the recent advancements in improving inference
accuracy. Many real-world applications of these very large
NNs require both real-time inference and operate in a resource
constrained environment. It is therefore of great importance
to implement them with minimal computational complexity.
Various research efforts have been directed towards improv-
ing NN efficiency, including pruning, knowledge distillation,
quantization and NN-hardware co-design [1], [2].

Linear computation coding (LCC) introduces an analytical
framework that invokes the idea of sparse matrix decomposition
to reduce the computational cost of computing matrix-vector
products, i.e. the lossy compression of a multidimensional
linear function with constant coefficients. Earlier studies on
LCC mainly focus on the number of additions as the metric
of computational complexity [3]–[6]. Though important, this
metric is not the only concern in many applications.

In this paper, we revisit the earlier LCC studies from a new
perspective on computational complexity, in which not only
the number of operations, but also their order matters. Our
interest follows from a simple fact: optimizing the order in
which the operations are carried out enables us to fully exploit
the potential of parallel processing. We use the notion of a
directed acyclic graph (DAG), closely corresponding to the
signal flow graph of a hardware implementation, to develop a
new LCC algorithm. The proposed scheme explicitly tunes the
structure of the DAG and outperforms existing algorithms on
parallel processing units.

A. Notation

Vectors and matrices are denoted by lower- and upper-case
boldface letters, e.g. x and X , respectively. The Euclidean and
Frobenius norms are shown by ∥·∥2 and ∥·∥F, respectively. The
matrix transpose is denoted by (·)T. The augmented identity

This work was supported by Deutsche Forschungsgemeinschaft (DFG) under
the project Computation Coding (MU-3735-/8-1).

matrix with dimension N ×K is denoted by IN×K , and the
j-th row unit vector in K dimensions by 1j,K . The function
supp(x) returns the indices in the support of x, i.e. the set of
all indices i where xi ̸= 0.

Sets are specified by upper case caligraphic letters, e.g. A.
We use the notation |A| to represent the cardinality of A.
A DAG is denoted by D = (C,A), where C ⊂ R1×K is the
ordered set of all vertices and A the set of arcs (directed edges).
The indegree and outdegree of a vertex c ∈ C are denoted by
d−D(c) and d+D(c), respectively. Given a DAG D = (C,A) and
a vertex c ∈ C, µD(c) denotes the depth of c, i.e. the longest
path from any node c′ ∈ C to node c. The operator mat(·)
converts a vertex set C = {c1, . . . , cL} ⊂ R1×K with |C| = L
to its corresponding matrix, i.e. C = mat(C) = [c1, . . . , cL] ∈
RL×K . Unless otherwise specified, ci denotes the i-th element
in the set C or the i-th row vector of the corresponding matrix
C = mat(C). The notation [N] is an abbreviation for the set
{1, . . . , N}.

II. PRELIMINARIES

Consider the matrix vector product

y = Tx (1)

with the arbitrary, but constant, matrix T ∈ RN×K and the
arbitrary input vector x ∈ RK×1. Our goal is to approximately
compute y ∈ RN×1 with minimum effort. Calculating the
matrix-vector product straightforwardly requires NK multi-
plications and N(K − 1) additions. Using a finite-precision
representation of T , a multiplication can be reduced to additions
and bitshifts. Quantizing the matrix entries independently, it
is well known that each additional bit on average improves
the signal to quantization noise ratio (SQNR) by 6 dB while
requiring half an extra addition. Using the canonically signed
digit (CSD) representation [7], i.e. allowing for subtractions as
well, the SQNR even improves by 14.5 dB per digit. However,
by quantizing the operations of a matrix-vector product jointly,
far larger gains are possible [3], [8].

A. Addition as a Fundamental Operation

Definition 1 (Fundamental Operation): Let C ⊂ R1×K

denote a set of L vectors and be called a codebook. We define
the fundamental operation as the linear combination of at most
S vectors contained in C, or, more formally:

addS(ωS , C) = ωS mat(C) (2)

International Zurich Seminar on Information and Communication (IZS), March 6 – 8, 2024

62

with ωS ∈ WS , where

WS =

{
ω =

S∑

s=1

is1js, L : is ∈M ⊆ {0,±2Z}, js ∈ [L] ∀s
}
.

(3)

The nonzero coefficients of ωS ∈ WS are restricted to the
set of (sums of) signed powers of two, corresponding only to
bitshifts in hardware, which can be considered computationally
cheap.1 The computational cost of a fundamental operation is
governed by the at most S − 1 additions needed to form the
linear combination.

Given a codebook C and using the notion of the fundamental
operation, our aim is now to approximate a target vector t by
a single fundamental operation. We call this objective wiring.
Mathematically we aim to solve the following least squares
(LS) problem:

w(t, C, S) = argmin
ωS∈WS

∥t− ωS mat(C) ∥2, (4)

which can be equivalently seen as a sparse recovery problem [9]
due to the restricted support of ωS .

The minimization over the set of discrete vectors WS

in (4) is an NP-hard problem. Hence, an optimal solution
is generally computationally intractable. Therefore, we resort
to the following two suboptimal approaches:

• Discrete matching pursuit (DMP) [3]: Start with ω ← 0.
Find the vector in ci ∈ C scaled by a signed power of
two that reduces the error to t maximally and update ω
in the i-th component. Repeat S times.

• Reduced state (RS) approach [5]: Procedure similar to
DMP. However, instead of choosing in each iteration the
best vector minimizing the error, we retain a list of the
Q best linear combinations in each iteration and choose
the combination with minimum error at termination. This
procedure enables a performance close to full search at a
reasonable time complexity [5].

To quantify the ability of a codebook C to approximate the
matrix T with row vectors tn, we use the SQNR defined as

SQNR(T , C) = ∥T ∥2F∑N
n=1 ∥tn − w(tn, C, 1)mat(C) ∥22

. (5)

Note that w(tn, C, 1)mat(C) finds the vector in C scaled by
a signed power of two, that approximates tn best. As S = 1,
this is only a selection and potentially a bitshift, no additions
are required.

B. Constant matrix vector multiplication (CMVM)

Using the notion of a fundamental operation, any matrix-
vector product with finite precision can now be expressed as
a DAG with K input and N output vertices. Input vertices
are all vertices with no preceding fundamental operations, i.e.
{c ∈ C|d−D(c) = 0}. Likewise, output vertices have no arcs
directed to subsequent vertices ({c ∈ C| d+D(c) = 0}). In such
a graph, each vertex, except the input vertices, corresponds to
one fundamental operation, and each directed arc is labeled
with a signed power of two. An example of such a DAG is
depicted in Fig. 1a. It is our goal, given some target matrix

1In this paper we consider the set of wiring coefficients to be unrestricted,
i.e. M = {0,±2Z}. For some applications, it is beneficial to restrict the
coefficients to a subset. Efficient strategies for such cases are investigated
in [6].

x1

x2

+ +

+
y

22

−21
2−2

20

20

2−3

1

(a) DAG

x1

x2

+ D + D

+

D D

y

1

(b) Pipelined DAG

Fig. 1: A DAG realizing the function y(x1, x2) = (21/8)x2 − (5/4)x1 is
depicted in (a). The same DAG is extended in (b) with delay elements to allow
for pipelining.

T , to find a DAG requiring a minimum of computations given
some fidelity constraint. We can therefore define now a CMVM
problem.

Definition 2 (CMVM Problem): For all fundamental op-
erations assume without loss of generality S = 2. Given a
target matrix T and some positive parameter ϵ, find a DAG
D = (C,A) with vertex set C ⊂ R1×K , that solves

min |C| (6a)
s.t. SQNR(T , C) > ϵ (6b)

cm = 1m,K ∀m ∈ [K] (6c)
cl = add2(ω2, {ci ∈ C : i ∈ [l − 1]}) ∀l > K (6d)

The CMVM problem is at least NP-complete. Similar to
multiple constant multiplication (MCM) [10], it is an even
broader generalization of the single constant multiplication
(SCM) problem,2 which is known to be NP-complete [11],
[12]. Hence, by polynomial reduction the CMVM problem has
to be at least as difficult. As the optimal solution is generally
computationally intractable, we focus for the remainder of this
paper on the development of efficient heuristics for obtaining
decomposition DAGs.

Remark 1: Throughout the paper we do not specify the set
of arcs A of a DAG explicitly for reasons of brevity. As new
vertices are created from an initial codebook, i.e. the set of unit
vectors, by means of fundamental operations, implicitly A is
defined uniquely3 by C for any decomposition DAG D = (C,A)
as well.

C. Computational Cost

Three terms contribute to the overall computational cost

Ctotal = CaddNadd + CdelayNdelay + CinvNinv. (7)

The number of additions Nadd, the number of delay elements
(latches) Ndelay and the number of sign inverters Ninv required.
Further, Cadd, Cdelay and Cinv are the effective cost for an

2The optimization of the multiplication of a constant scalar to a scalar
variable.

3Uniqueness only refers in that context to the start and endpoint of individual
arcs, not their labeling. For example two different fundamental operations,
differing in their labeling/bitshift, might produce the same result, i.e. c2 =
c1 − 1/4c1 = 1/2c1 + 1/4c1.

International Zurich Seminar on Information and Communication (IZS), March 6 – 8, 2024

63

addition, a delay element and an inverter, respectively. Inspired
by the CMOS implementation of these basic functions, we
assume for simplicity that the cost for an adder and a delay
element are approximately equal and set to4 Cadd = Cdelay =
20. For an inverter we assume a cost of Cinv = 2, since these
can be easily implemented by two transistors [13].

The number of additions in computing a DAG is upper
bounded, as zeros are allowed for coefficients as well, by

Nadd =

|C|∑

i=K+1

(
d−D(ci)− 1

)
(8a)

(a)
= (|C| −K)(S − 1) (8b)

where (a) follows from the fact that the number of additions
S − 1 for all vertices is constant.

For medium to large matrices it may not be desirable to
straightforwardly implement the DAG in hardware, apply a
realisation of x, and wait for the output y to be computed.
Particularly, for a DAG with many logical operations in
sequence, this may take some time and is not an optimal
use of resources. Instead, a pipelined approach is desirable,5

each adder is followed by a latch or delay element that is able
to store the intermediate result produced by that adder. For
example, after an addition is completed, and the result is stored,
the following input realization can already be forwarded to the
adder. The stored result is then forwarded to the subsequent
adder. The schematic of a pipelined design is depicted in
Fig. 1b. There, a pipelined signal flow graph/DAG with two
inputs x1 and x2 computes a single output y. The second input
is required for the final addition computing the output. Thus,
two additional delay elements are required in the upper branch
to delay the input accordingly, adding to the overall hardware
cost.

Pipelining largely improves overall throughput, keeping each
adder busy and reducing idle times of resources. However, to
enable that, idle paths require additional delay elements that
contribute to the overall hardware cost. Hence, for a practical
algorithm it is desirable to not only minimize the number of
adders but to find a DAG structure that limits the number of
delay elements. The overall number of delay elements required
for a pipelined implementation of a decomposition DAG can
be computed by

Ndelay = Nadd +
∑

∀c̃∈C̃

(
max

c∈D(c̃)
µD(c)− µD(c̃)− 1

)
(9a)

with

C̃ =
{
c ∈ C|d+D(c) > 0

}
(9b)

D(c̃) = {c ∈ C|(c̃, c) ∈ A} (9c)

The set D(c̃) contains all vertices c that are connected by
a directed arc in A from c̃ to c. The total number of delay
elements is the sum of the number of adders, as each adder
needs a buffer at the output, and for each node with outgoing
arcs the longest path difference minus one that needs to be
equalized.

4The cost of a full adder ranges around 20 transistors and can vary depending
on the specific implementation used, clock speed, etc. This cost only considers
a full adder for the addition of two inputs of a single bit. For larger bitwidths the
cost scales accordingly and simplifications in the implementation are possible.
For simplicity we only consider the cost per bit.

5For a detailed discussion of pipelining, refer to [14].

The number of inverters depends on the specific algorithm
used. For brevity, we will not discuss inverters in detail. A
reduction algorithm for the number of inverters in parallel LCC
algorithms is discussed in [15].

III. ALGORITHMIC APPROACHES

We now discuss two existing algorithmic approaches for
LCC, namely a fully sequential and fully parallel algorithm.
Utilizing the best of both worlds, we introduce a new mixed
algorithm (MA) that enables us to tune the DAG structure for
further analysis.

A. Fully sequential (FS) Algorithm

Given the set of all unit vectors in K dimensions as our
initial codebook set C = {11,K , . . . ,1K,K}, we recursively
add vertices to the DAG using the following update rule [4]:

C ← C ∪ {w(tñ, C, S)mat(C)} . (10)

This means that we find the best linear combination of vectors
in C that approximates tñ well and requires S − 1 additions.
We choose the row vector with index ñ from T that provides us
with the largest reduction of the squared error for the update:

ñ = argmin
n∈[N]

(
∥tn − w(tn, C, S)mat(C) ∥22+

∑

k ̸=n

∥tk − w(tk, C, 1)mat(C) ∥22
)

(11)

Although this approach shows excellent performance when
looking at the tradeoff between distortion and the number of
additions required, it is in many cases not suited for pipelining.
This follows from the fact that any S vertices in a given
codebook can be combined in each iteration, the obtained graph
has an arbitrary structure (c.f. Fig. 2a). Assuming for simplicity
that each fundamental operation takes time tf to compute,6 it
is concluded that the delay at any node c is µD(c)tf . Thus,
if the depth µD(c) varies in c, delays are introduced that
need to be compensated for. The additional hardware resources
and overhead required by the FS algorithm are typically not
acceptable, especially for large matrices. Therefore, algorithms
that take these hardware constraints into account are desirable.

B. Fully parallel (FP) algorithm

Instead of performing updates sequentially, we now succes-
sively refine the codebook for all vectors of the target matrix in
parallel and then forget the old codebook. Such a fully parallel
algorithm can be written as a product of matrices [3]:

T ≈WLWL−1 · · ·W 2W 1C0. (12)

The n-th row of the l-th matrix factor W l is recursively
obtained by

wl,n = w(tn,Cl−1, S) ∀n ∈ [N] (13)

with

Cl−1 = W l−1W l−2 · · ·W 2W 1C0. (14)

Each layer l refines the approximation for each tn using
the codebook obtained in the previous iteration l − 1. Using
our DAG based interpretation, this is the same as effectively

6This assumption is valid as long as we use the same type of adder throughout
a DAG, i.e. S is fixed.

International Zurich Seminar on Information and Communication (IZS), March 6 – 8, 2024

64

1(a) Fully Sequential Algorithm 1(b) Fully Parallel Algorithm 1(c) Mixed Alg. (∆µmax = 0) 1(d) Mixed Alg. (∆µmax = 1)

Fig. 2: Resulting graph topologies of different algorithmic approaches for decomposing a target matrix T of dimension 6× 2. Green nodes represent input
vertices corresponding to elements of the input vector x, red nodes represent output vertices of the resulting matrix-vector product y and blue nodes are
intermediary vertices of the decomposition graph.

restricting the codebook used in iteration l to the subset of
vectors in C at depth l−1, i.e. the matrix Cl−1 contains all row
vectors that are also included in the set {c ∈ C|µD(c) = l−1}.
As for the FS algorithm, we use the set of all unit vectors as
the initial codebook C0 = IN×K . The structure of the DAG
generated by this algorithm is depicted in Fig. 2b. Compared to
the FS algorithm, a fully parallel implementation in hardware
can be achieved, no delays by differing path lengths are
introduced. However, this algorithm is not without drawbacks.
First, previous work [5] showed that refinement of the initial
codebook during the first few iteration comes with a drop in
performance. Second, this algorithm does not scale to arbitrarily
small matrices. As the effective codebook scales with the
target matrix size this can lead to convergence issues when
decomposing smaller matrices.

C. Mixed algorithm (MA)

Using the ideas of the FS and FP algorithms we introduce a
new MA enabling us tune the structure of the computation DAG.
We reuse the sequential update rule from the FS algorithm
in (10) to update C.

ñ = argmin
n∈[N]

λn

(
∥tn − w(tn, C, S)mat(C) ∥22+

∑

k ̸=n

∥tk − w(tk, C, 1)mat(C) ∥22
)

(15a)

with

λn = max
j∈S

µD(cj) and S = supp (w(tn, C, S)) .

To obtain the index ñ for the target vector to be approximated,
we amend the objective to update the approximation with the
largest drop in error in (11) by a multiplicative penalty factor
λn. This factor penalizes the absolute depth of approximations
for different target vectors, i.e. updating a codeword at a higher
depth leads to a larger penalty. Moreover, to be able to limit
the number and depth of idle paths in the DAG, we introduce
a side constraint limiting the difference in depth for any linear
combination of codewords, which is

max
j∈S

(µD(cj))−min
j∈S

(µD(cj)) ≤ ∆µmax. (15b)

The parameter ∆µmax controls the maximum difference in
depth for the codewords used in each update. For ∆µmax →
∞ and λn = 1 the algorithm is equal to the FS algorithm.
Constraining ∆µmax = 0 we obtain a parallel structure of
the decomposition DAG, similar to the FP algorithm; however,
codewords are added sequentially with a constraint on a parallel

structure. In general, the constraint on depth lets us tune the
structure of the graph with respect to parallelism. In Fig. 2c
and 2d, the resulting graph structures for a graph constraint to
a fully parallel structure and a depth difference of ∆µmax = 1
are depicted, respectively.

D. Related Algorithms

Most competing algorithms for CMVM have a decent
time complexity for small matrices. However as they solve
complex underlying problems, such as 0-1 integer linear
programming [8], they do not scale well with growing matrix
size and/or precision. They are hence often intractable. Instead,
we use as a benchmark the best-performing MCM algorithm
known, presented in [10], that has reasonable polynomial time
complexity and is thus tractable for larger matrices as well.
Note that MCM, the multiplication of a variable scalar to a
arbitrary constant vector, is a special case of CMVM. Any
CMVM problem can therefore be rewritten as a sum of K
MCM problems, i.e.

y = Tx =
K∑

k=1

tkxk, (16)

that are solved independently. Here, tk and xk are the k-th
column vector in T and k-th element in x, respectively. Due
to the reduced search space the benchmark MCM algorithm
has excellent performance. However, the adder tree required
for the summation of the K partial results, as well as a DAG
structure, similar to the FS algorithm, limit the performance
when pipelined.

IV. NUMERICAL EXPERIMENTS

The entries of all target matrices in the subsequent evaluations
are drawn from an i.i.d. Gaussian distribution with zero mean
and unit variance. We expect that for practical matrices, e.g.
weight matrices of NNs, similar performance is observed for
LCC algorithms [17]. A Python implementation of all algo-
rithms discussed in this paper is available in our github reposi-
tory: https://github.com/hansrosenberger/computationcoding.

As the first experiment, we compare the different algorithms
for target matrices of dimension 64 × 4 in Fig. 3. The
figure shows, the FS algorithm achieves the highest SQNR,
considering only the cost of additions (dashed lines). However,
when considering the total hardware cost, the FS performance
massively deteriorates, leaving this algorithm impractical for
a pipelined implementation. The overall hardware cost in this
case is dominated by delay elements required to equalize path
differences within the DAG. The MA constrained to a FP
structure shows the best overall performance, when considering

International Zurich Seminar on Information and Communication (IZS), March 6 – 8, 2024

65

0 5000 10000 15000 20000 25000 30000

Estimated cost in hardware C

0

10

20

30

40

50

60

70

80

90

10
lo

g
1
0

(S
Q

N
R

)

5000 7500 10000 12500

10

20

30

40

50

FP (DMP, S = 2)
FP (RS, S = 3, Q = 50)

FS (DMP, S = 2)
MA (DMP/RS, S = 2, 3, Q = 50)

MCM

Fig. 3: Comparison of different algorithmic approaches for decomposing a
64× 4 target matrix T . Solid lines indicate results considering the total cost
Ctotal. Dashed lines only consider the cost of adders CaddNadd. MCM refers
to the algorithm presented in [10] (using the C++ implementation available
on [16] and extended by our hardware model). The results for each algorithm
are averaged over 105 matrix entries.

0 1000 2000 3000 4000 5000 6000 7000

Estimated cost in hardware C

10

15

20

25

30

35

40

45

50

10
lo

g
1
0

(S
Q

N
R

)

FP (DMP, S = 2)
FS (DMP, S = 2)
MA (DMP, S = 2, ∆µmax = 0)

MA (DMP, S = 2, ∆µmax = 1)
MA (DMP, S = 2, ∆µmax = 2)
MA (DMP, S = 2, ∆µmax = 3)

Fig. 4: Comparison of different depth parameters ∆µmax of the MA given a
16× 4 target matrix T . Solid lines indicate results considering the total cost
Ctotal. Dashed lines only consider the cost of adders CaddNadd. The results
for each algorithm are averaged over 105 matrix entries.

the total hardware cost. It outperforms the FP algorithm, both
the DMP and RS versions. Relative gains are particulary large
for the low SQNR regime. This is achieved by first setting
S = 2 and utilizing the DMP to build up a coarse codebook
from the initial codebook, and then dynamically switching to
S = 3 via the RS approach. The savings of MA to the FS
result from an improved structure of the DAG for the first few
layers. The FP algorithm is forced to find an approximation
for each target vector separately. This creates codewords that
are correlated and unnecessary for the computation. The MA
eliminates this redundancy (cf. Figs. 2b and 2c).

As the second experiment we compare the performance of the
MA using different depth parameters ∆µmax for target matrices
of dimension 16 × 4 in Fig. 4. Considering only the cost of
the adders (dashed lines), we can clearly observe a tradeoff
between parallelism and performance, i.e. decreasing ∆µmax

leads to a performance degradation. However, when considering
the total hardware cost (solid lines) the MA performs best when
constrained to a FP structure (∆µmax = 0). For ∆µmax > 0
the MA performs worse than its FP counterpart and for some

instances even worse than the FS algorithm. This result seems
somewhat intuitive: Elements that incur a hardware cost that is
not vanishingly small should also improve the SQNR. Hence,
a fully parallel structure seems to be the best option.

Remark 2: LCC works best for matrices with an exponential
aspect ratio, i.e. K ≈ logN . Therefore, we only consider in the
evaluation matrices with that property. For approximately square
matrices it is beneficial to cut these into rectangular matrices
with more extreme aspect ratios and apply an LCC algorithm
to each slice individually [18]. For example, to decompose a
64 × 64 matrix with a target SQNR of 47 dB, a slicing into
submatrices of size 64× 4 is a good choice.

V. CONCLUSION

By interpreting the decomposition of a matrix as a DAG, we
proposed a new MA for LCC. The proposed algorithm is able
to significantly outperform existing schemes. Using a realistic
hardware model for pipelining, we show that in almost all
cases it is best to decompose a target matrix constraining the
resulting DAG to a parallel structure.

REFERENCES

[1] A. Gholami, S. Kim, Z. Dong, Z. Yao, M. W. Mahoney, and K. Keutzer,
“A survey of quantization methods for efficient neural network inference,”
2021. arXiv:2103.13630.

[2] J. O. Neill, “An overview of neural network compression,” 2020.
arXiv:2006.03669.

[3] R. R. Müller, B. M. W. Gäde, and A. Bereyhi, “Linear computation
coding: A framework for joint quantization and computing,” Algorithms,
vol. 15, no. 7, p. 253, 2022.

[4] R. R. Müller, “Linear computation coding inspired by the Lempel-Ziv
algorithm,” in 2022 IEEE Information Theory Workshop (ITW), IEEE,
2022.

[5] H. Rosenberger, J. S. Fröhlich, A. Bereyhi, and R. R. Müller, “Linear
computation coding: Exponential search and reduced-state algorithms,”
in 2023 Data Compression Conference (DCC), IEEE, 2023.

[6] A. Karataev, H. Rosenberger, A. Bereyhi, and R. R. Müller, “Storage
constrained linear computation coding,” in 2023 Data Compression
Conference (DCC), IEEE, 2023.

[7] A. D. Booth, “A signed binary multiplication technique,” The Quarterly
Journal of Mechanics and Applied Mathematics, vol. 4, no. 2, pp. 236–
240, 1951.

[8] L. Aksoy, P. Flores, and J. Monteiro, “A novel method for the approxima-
tion of multiplierless constant matrix vector multiplication,” in 2015 IEEE
13th International Conference on Embedded and Ubiquitous Computing,
IEEE, 2015.

[9] S. Foucart and H. Rauhut, A Mathematical Introduction to Compressive
Sensing. Springer New York, 2013.

[10] Y. Voronenko and M. Püschel, “Multiplierless multiple constant multipli-
cation,” ACM Transactions on Algorithms, vol. 3, no. 2, p. 11, 2007.

[11] P. Cappello and K. Steiglitz, “Some complexity issues in digital
signal processing,” IEEE Transactions on Acoustics, Speech, and Signal
Processing, vol. 32, no. 5, pp. 1037–1041, 1984.

[12] M. R. Garey and D. S. Johnson, Computers and Intractability. W. H.
Freeman and Company, 1979.

[13] U. Tietze, C. Schenk, and E. Gamm, Halbleiter-Schaltungstechnik.
Springer Vieweg Berlin, Heidelberg, 16 ed., 2019.

[14] J. L. Hennessy and D. A. Patterson, Computer Architecture: A Quantita-
tive Approach. Elsevier, Morgan Kaufmann, 5 ed., 2012.

[15] A. Lehnert, H. Rosenberger, R. Müller, and M. Reichenbach, “More
efficient CMMs on FPGAs: Instantiated ternary adders for computation
coding,” in Applied Reconfigurable Computing. Architectures, Tools, and
Applications, pp. 275–289, Springer Nature Switzerland, 2023.

[16] “Spiral: Software/hardware generation for performance: Multiplier
block generator.” https://spiral.ece.cmu.edu/mcm/gen.html. Accessed:
15.04.2023.

[17] R. R. Müller, H. Rosenberger, and M. Reichenbach, “Linear computation
coding for convolutional neural networks,” in Statistical Signal Processing
(SSP) Workshop, (Hanoi, Vietnam), 2023.

[18] A. Lehnert, P. Holzinger, S. Pfenning, R. Müller, and M. Reichenbach,
“Most resource efficient matrix vector multiplication on FPGAs,” IEEE
Access, vol. 11, pp. 3881–3898, 2023.

International Zurich Seminar on Information and Communication (IZS), March 6 – 8, 2024

66

