
ETH Library

Exponential Strong Converse in
Multi-user Problems

Conference Paper

Author(s):
Watanabe, Shun

Publication date:
2024-03-06

Permanent link:
https://doi.org/10.3929/ethz-b-000664572

Rights / license:
In Copyright - Non-Commercial Use Permitted

This page was generated automatically upon download from the ETH Zurich Research Collection.
For more information, please consult the Terms of use.

https://doi.org/10.3929/ethz-b-000664572
http://rightsstatements.org/page/InC-NC/1.0/
https://www.research-collection.ethz.ch
https://www.research-collection.ethz.ch/terms-of-use


Exponential Strong Converse in Multi-user Problems
Shun Watanabe

Tokyo University of Agriculture and Technology
Tokyo, Japan

email: shunwata@cc.tuat.ac.jp

Abstract—The exponential strong converse for a coding prob-
lem states that, if a coding rate (or a rate pair) is beyond the
theoretical limit, the correct decoding probability converges to
zero exponentially. The exponential strong converse theorem was
initiated by Arimoto and by Dueck and Körner for the pont-
to-point channel coding; even though tight exponents have been
identified for single-user problems and simple multi-user prob-
lems, such as the Slepian-Wolf problem, tight exponents have been
unsolved for multi-user problems. In this tutorial paper, we revisit
the exponential strong converse theorems, and provide alternative
proofs for single-user problems via manipulations of information
quantities as in the weak converse argument (called “change-
of-measure argument” in the literature). Then, we present the
recently obtained result by Takeuchi and Watanabe providing
the tight exponential strong converse for the source coding with
coded side-information.

I. INTRODUCTION

The strong converse for a coding theorem claims that the
optimal asymptotic rate possible with vanishing probability
cannot be improved by allowing a fixed error probability. The
exponential strong converse further claims that, if a coding rate
is beyond the asymptotic limit, the correct decoding probability
converges to zero exponentially. Proving such a claim was
initiated by Arimoto for the channel coding problem [2]; later,
the strong converse exponent was studied by Dueck and Körner
in [4]; see also [10] for the equivalence of the two exponents
derived in [2] and [4]. Also, the strong converse exponent for
the Slepian-Wolf problem was derived by Oohama and Han in
[13].

Even though the tight strong converse exponent for point-
to-point problems or simple multi-user problems, such as
the Slepian-Wolf problem, have been identified, the strong
converse exponent for multi-user problems have been unsolved
until recently. A significant progress was made by Oohama
in a series of paper including [11], [12]. More recently, the
tight strong converse of the Wyner-Ahlswede-Körner (WAK)
problem [1], [18] was derived in [14]; the converse part of
[14] is based on a manipulations of information quantities
as in the weak converse argument, called the “change-of-
measure argument" in [15]. In this tutorial paper, we provide
alternative proofs of the strong converse exponents for single-
user problems by using the same methodology.

The change-of-measure argument was originally introduced
by Gu and Effros in [6], [7] to prove strong converse for source
coding problems where there exists a terminal that observes
all the random variables involved; a particular example is
the Gray-Wyner (GW) problem [5]. In the argument of [6],

[7], we evaluate the performance of a given code not under
the original source (or channel) but under another modified
measure which depends on the code and under which the code
is error free.1 A type based modification of this argument was
used in [17] to derive the second-order rate region of the GW
problem. A difficulty of applying this argument to the so-called
distributed coding problems, such as the WAK problem, is
that the characterization of asymptotic limits involve auxiliary
random variables and Markov chain constraints. This technical
difficulty was circumvented in [16] for the WAK problem by
relating the WAK problem to an extreme case of the GW
problem. By using the idea of “soft Markov constraint" intro-
duced by Oohama [11], the argument was further developed in
[15] so that it can be applied to distributed coding problems;
furthermore, the argument was also extended so that it can be
applied to secrecy problems such as the secret key generation
and the wiretap channel. More recently, a variation of the
change-of-measure argument was further developed by Hamad,
Wigger, and Sarkiss in [8] so that it can be applied to more
involved multi-user networks in a concise manner; rather than
adding a Markov constraint as a penalty term, they prove the
Markov constraint in an asymptotic limit.

II. PRELIMINARIES

We use the same notations as [3]. For instance, the entropy
of random variable X is denoted as H(X); the mutual
information between X and Y is denoted as I(X ∧ Y ); and
the KL-divergence between distributions P and Q is denoted
as D(P‖Q). The logarithm is base 2.

Let Xn = (X1, . . . , Xn) be an independently identically
distributed (i.i.d.) source on a finite alphabet X . For a given
set C ⊂ X n, a key step of the change-of-measure argument is
to construct a modified measure by conditioning:

PX̃n(xn) :=
PXn(xn)1[xn ∈ C]

PXn(C)
,

where 1[·] is the indicator function. A key observation, which
was used in Marton’s proof of the blowing-up lemma [9], is
that the modified measure is not too far from the original
measure in the following sense:

D(PX̃n‖PXn) =
∑

xn∈C
PX̃n(xn) log

PX̃n(xn)

PXn(xn)

1In the original argument [6], [7], the modified measure is constructed by
conditioning on typical sets in addition to the error free set; on the other hand,
the argument in [15] only conditions on the error free set.
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= log
1

PXn(C)
.

The conditional measure PX̃n is not i.i.d. in general. By
using the sub-additivity and concavity of entropy, we can
directly derive a single-letter upper bound on the joint entropy
as

H(X̃n) ≤
n∑

j=1

H(X̃j) ≤ nH(X̃J),

where J is the random variable uniformly distributed on the
index set {1, . . . , n}. It is not possible to derive a single-letter
lower bound on the joint entropy H(X̃n) directly; instead, we
manipulate it with the divergence term:

H(X̃n) +D(PX̃n‖PXn) =
∑

xn

PX̃n(xn) log
1

PXn(xn)

=

n∑

j=1

∑

xn

PX̃n(xn) log
1

PX(xj)

=

n∑

j=1

∑

x

PX̃j
(x) log

1

PX(x)

= n
∑

x

PX̃J
(x) log

1

PX(x)

= n
[
H(X̃J) +D(PX̃J

‖PX)
]
. (1)

By the convexity of the KL-divergence, we can also derive a
single-letter lower bound on the KL-divergence:

D(PX̃n‖PXn) =

n∑

j=1

D(PX̃j |X̃j−1‖PX |PX̃j−1)

≥
n∑

j=1

D(PX̃j
‖PX)

≥ nD(PX̃J
‖PX).

The derivation of the strong converse exponent proceed by a
judicious use of the above single-letter bounding manipula-
tions.

III. LOSSY SOURCE CODING

In this section, we consider the lossy source coding. For
a finite alphabet X , let Xn = (X1, . . . , Xn) be an indepen-
dently identically distributed (i.i.d.) source with distribution
PXn = Pn

X . For a finite reproduction alphabet Y , we consider
an encoder ϕ : X n → M and a decoder ψ : M → Yn.
For a distortion measure d : X × Y → R+, let dn(xn, yn) =∑n

j=1 d(xj , yj). For a distortion level ∆ ≥ 0, we shall evaluate
non-excess distortion probability:

pc := Pr
(
dn(Xn, ψ(ϕ(Xn)) ≤ n∆

)
.

For fixed ∆, a rate R is defined to be achievable if, for every
0 < ε < 1 and for sufficiently large n, there exists a code
(ϕ, ψ) such that the non-excess distortion probability satisfies
pc ≥ 1 − ε and the coding rate satisfies 1

n log |M| ≤ R.
Then, the rate-distortion function R(PX ,∆) is defined as the

infimum of achievable rates. It is well known that the rate-
distortion function is characterized as

R(PX ,∆) = min
PY |X :

E[d(X,Y )]≤∆

I(X ∧ Y ).

We provide an alternative proof for the following exponen-
tial strong converse of the lossy source coding.

Proposition 1 For any code (ϕ, ψ) such that 1
n log |M| ≤ R,

the non-excess distortion probability satisfies

1

n
log(1/pc) ≥ min

PX̃

[
D(PX̃‖PX) + |R(PX̃ ,∆) −R|+

]
,

where |a|+ := max[a, 0].

Note that the exponent is positive if and only if R <
R(PX ,∆). It is known that the strong converse exponent in
Proposition 1 is tight [3, Ex. 9.6].
Proof. Let

C :=
{
xn ∈ X n : dn(xn, ψ(ϕ(xn))) ≤ n∆

}
,

and let

PX̃n(xn) :=
PXn(xn)1[xn ∈ C]

PXn(C)
.

Then, we have

D(PX̃n‖PXn) = log(1/pc)

and

log(1/pc) = D(PX̃n‖PXn)

≥ nD(PX̃J
‖PX). (2)

Note that the rate R can be lower bounded as

nR ≥ log |M|
≥ H(Ỹ n)

= I(X̃n ∧ Ỹ n),

where Ỹ n = ψ(ϕ(X̃n)). Thus, we have

log(1/pc) = D(PX̃n‖PXn)

≥ D(PX̃n‖PXn) + I(X̃n ∧ Ỹ n) − nR.

Furthermore, by (1), we have

D(PX̃n‖PXn) + I(X̃n ∧ Ỹ n)

= D(PX̃n‖PXn) +H(X̃n) −H(X̃n|Ỹ n)

= nD(PX̃J
‖PX) + nH(X̃J) −

n∑

j=1

H(X̃j |Ỹ n, X̃−
j )

≥ nD(PX̃J
‖PX) + nH(X̃J) −

n∑

j=1

H(X̃j |Ỹj)

= nD(PX̃J
‖PX) + nH(X̃J) − nH(X̃J |ỸJ , J)

≥ nD(PX̃J
‖PX) + nH(X̃J) − nH(X̃J |ỸJ)

= nD(PX̃J
‖PX) + nI(X̃J ∧ ỸJ),
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where X̃−
j = (X̃1, . . . , X̃j−1). Also, since the support of the

changed measure PX̃n is C, note that

∆ ≥ E
[

1

n
dn(X̃n, Ỹ n)

]
= E[d(X̃J , ỸJ)].

Thus, we have

1

n
log(1/pc) ≥ D(PX̃J

‖PX) +
(
I(X̃J ∧ ỸJ) −R

)

≥ D(PX̃J
‖PX) +

(
R(PX̃J

,∆) −R
)
. (3)

By combining (2) and (3), we have

1

n
log(1/pc) ≥ D(PX̃J

‖PX) + |R(PX̃J
,∆) −R|+.

Finally, by replacing PX̃J
with the minimum over PX̃ , we

have the claim of the proposition.

IV. CHANNEL CODING

In this section, we consider the channel coding. Let Wn

be a discrete memoryless channel (DMC) from a finite input
alphabet X to a finite output alphabet Y . For a message set
M, a channel code consists of an encoder ϕ : M → X n and
a decoder ψ : Yn → M. Let

pc :=
∑

m∈M

1

|M|W
n(ψ−1(m)|ϕ(m))

be the average correct decoding probability. A rate R is defined
to be achievable if, for every 0 < ε < 1 and for sufficiently
large n, there exists a code (ϕ, ψ) such that the average correct
decoding probability satisfies pc ≥ 1 − ε and the coding rate
satisfies 1

n log |M| ≥ R. Then, the channel capacity C(W ) is
defined as the supremum of achievable rates. It is well known
that the channel capacity is characterized as

C(W ) = max
PX

I(X ∧ Y ),

where the mutual information is evaluated with respect to
(X,Y ) induced by the input distribution PX and the channel
W .

We provide an alternative proof for the following exponen-
tial strong converse of the channel coding.

Proposition 2 For any code (ϕ, ψ) such that 1
n log |M| ≥ R,

the average correct decoding probability satisfies

1

n
log(1/pc) ≥ min

PX̃Ỹ

[
D(PỸ |X̃‖W |PX̃) + |R− I(X̃ ∧ Ỹ )|+

]
.

Note that the exponent is positive if and only if R > C(W ).
It is known that the strong converse exponent in Proposition 2
is tight [4]. Furthermore, it also coincides with the strong con-
verse exponent by Arimoto [2]; see [10] for the equivalence.
Proof. Let

C :=
{
(m,xn, yn) : ψ(yn) = m

}
.

For

PMXnY n(m,xn, yn) =
1

|M|1[xn = ϕ(m)]Wn(yn|xn),

let

PM̃X̃nỸ n(m,xn, yn)

:=
PMXnY n(m,xn, yn)1[(m,xn, yn) ∈ C]

PMXnY n(C)
.

Then, we have

D(PM̃X̃nỸ n‖PMXnY n) = log(1/pc).

By noting that PY n|MXn = Wn, we have

D(PỸ n|M̃X̃n‖Wn|PM̃X̃n) = D(PỸ n|M̃X̃n‖PY n|MXn |PM̃X̃n)

≤ D(PM̃X̃nỸ n‖PMXnY n)

= log(1/pc).

By the convexity of the KL-divergence, we also have

D(PỸ n|X̃n‖Wn|PX̃n) ≤ D(PỸ n|M̃X̃n‖Wn|PM̃X̃n)

≤ log(1/pc). (4)

Furthermore, by the monotonicity of the KL-divergence, we
also have

D(PM̃‖PM ) +D(PỸ n|M̃X̃n‖Wn|PM̃X̃n)

≤ D(PM̃X̃n‖PMXn) +D(PỸ n|M̃X̃n‖Wn|PM̃X̃n)

= D(PM̃X̃nỸ n‖PMXnY n)

= log(1/pc). (5)

Now, by noting that PM is uniform distribution on M, we
have

nR

≤ log |M|
= H(M̃) +D(PM̃‖PM )

= I(M̃ ∧ Ỹ n) +D(PM̃‖PM )

≤ I(M̃ ∧ Ỹ n) +D(PM̃‖PM )

+
[
log(1/pc) −D(PM̃‖PM ) −D(PỸ n|M̃X̃n‖Wn|PM̃X̃n)

]

= I(M̃ ∧ Ỹ n) −D(PỸ n|M̃X̃n‖Wn|PM̃X̃n) + log(1/pc)

= I(M̃, X̃n ∧ Ỹ n) −D(PỸ n|M̃X̃n‖Wn|PM̃X̃n) + log(1/pc)

= I(X̃n ∧ Ỹ n) + I(M̃ ∧ Ỹ n|X̃n)

−D(PỸ n|M̃X̃n‖Wn|PM̃X̃n) + log(1/pc)

= I(X̃n ∧ Ỹ n) +D(PỸ n|M̃X̃n‖PỸ n|X̃n |PM̃X̃n)

−D(PỸ n|M̃X̃n‖Wn|PM̃X̃n) + log(1/pc)

= I(X̃n ∧ Ỹ n) −D(PỸ n|X̃n‖Wn|PX̃n) + log(1/pc), (6)

where the second equality follows since M̃ can be decoded
from Ỹ n with 0 error probability, the second inequality follows
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from (5), and the forth equality follows since X̃n is a function
of M̃ .2 Now, we conduct the single-letter procedure as follows:

I(X̃n ∧ Ỹ n) −D(PỸ n|X̃n‖Wn|PX̃n)

= H(Ỹ n) −H(Ỹ n|X̃n) −D(PỸ n|X̃n‖Wn|PX̃n)

= H(Ỹ n) −
∑

xn,yn

PX̃nỸ n(xn, yn) log
1

Wn(yn|xn)

= H(Ỹ n) − n
∑

x,y

PX̃J ỸJ
(x, y) log

1

W (y|x)
= H(Ỹ n) − nH(ỸJ |X̃J) − nD(PỸJ |X̃J

‖W |PX̃J
)

≤ nH(ỸJ) − nH(ỸJ |X̃J) − nD(PỸJ |X̃J
‖W |PX̃J

)

= nI(X̃J ∧ ỸJ) − nD(PỸJ |X̃J
‖W |PX̃J

). (7)

Thus, by combining (6) and (7), we have

1

n
log(1/pc) ≥ D(PỸJ |X̃J

‖W |PX̃J
) +

(
R− I(X̃J ∧ ỸJ)

)
.

(8)

Note also that

D(PỸ n|X̃n‖Wn|PX̃n) =
n∑

j=1

D(PỸj |X̃nỸ −
j

‖W |PX̃nỸ −
j

)

≥
n∑

j=1

D(PỸj |X̃j
‖W |PX̃j

)

= nD(PỸJ |X̃JJ‖W |PX̃JJ)

≥ nD(PỸJ |X̃J
‖W |PX̃J

). (9)

Thus, by combining (4) and (9), we have

1

n
log(1/pc) ≥ D(PỸJ |X̃J

‖W |PX̃J
). (10)

Thus, by combining (8) and (10), we have

1

n
log(1/pc) ≥ D(PỸJ |X̃J

‖W |PX̃J
) + |R− I(X̃J ∧ ỸJ)|+.

Finally, by replacing PX̃J ỸJ
with the minimum over PX̃Ỹ , we

have the claim of the proposition.

V. SOURCE CODING WITH CODED SIDE-INFORMATION

In this section, we consider the source coding with coded
side-information, also known as the Wyner-Ahlswede-Körner
(WAK) problem [1], [18]. For finite alphabets X and Y , let
(Xn, Y n) be i.i.d. correlated source with distribution PXnY n .
A code consists of two encoders ϕ1 : X n → M1 and ϕ2 :
Yn → M2, and a decoder ψ : M1 × M2 → X n. We shall
evaluate the correct decoding probability:

pc := Pr
(
ψ(ϕ1(X

n), ϕ2(Y
n)) = Xn

)
.

A rate pair (R1, R2) is defined to be achievable if, for every
0 < ε < 1 and for sufficiently large n, there exists a

2Note that M̃ may not be a function of X̃n when the encoder is not one-
to-one, and I(M̃ ∧ Ỹ n|X̃n) may not be 0.

code (ϕ1, ϕ2, ψ) such that the correct decoding probability
satisfies pc ≥ 1 − ε and rate pair satisfies 1

n log |M1| ≤ R1

and 1
n log |M2| ≤ R2, respectively. Then, the achievable

region RWAK(PXY ) is defined as the closure of all achievable
rate pairs. It is well known that the achievable region is
characterized as

RWAK(PXY ) =
{
(R1, R2) : ∃PU |Y ∈ P(U|Y) s.t.

R1 ≥ H(X|U), R2 ≥ I(U ∧ Y )
}

where P(U|Y) is the set of all channels from Y to an auxiliary
alphabet U satisfying |U| ≤ |Y| + 1.

Note that the characterization of the achievable region
involves an auxiliary random variable U that does not appear
in the problem setting. Furthermore, U is generated only from
Y via channel PU |Y ; in other words, U , Y , and X must satisfy
the Markov chain. In many cases, difficulty of analyzing multi-
user problems stem from the existence of auxiliary random
variables and Markov chain constraints, and the WAK problem
is the most basic problem involving such difficulties.

The following exponential strong converse of the WAK
problem was obtained in [14].

Proposition 3 For any code (ϕ1, ϕ2, ψ), the correct decoding
probability satisfies

1

n
log(1/pc)

≥ min
PŨX̃Ỹ

{
D(PŨX̃Ỹ ‖PŨ |Ỹ PXY ) + |I(Ũ ∧ Ỹ ) −R2|+ :

R1 ≥ H(X̃|Ũ)
}
,

where the minimization is taken over joint distributions on
U×X ×Y for an auxiliary alphabet satisfying |U| ≤ |X ||Y|+2.

For the proof, see [14]; furthermore, it can be proved that the
bound in Proposition 3 is asymptotically tight.

In contrast to the characterization of the achievable region,
the exponent in Proposition 3 does not involve the Markov
chain constraint. In fact, we can decompose the divergence
term as

D(PŨX̃Ỹ ‖PŨ |Ỹ PXY ) = D(PX̃Ỹ ‖PXY ) + I(Ũ ∧ X̃|Ỹ ).

Thus, in the analysis of the strong converse exponent, the
Markov chain constraint is imposed as a (potentially non-zero)
penalty term. The idea of introducing this kind of penalty term
rather than the exact Markov chain constraint was proposed by
Oohama in [11], which culminated in the tight strong exponent
of the WAK problem in [14].
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