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Abstract—Functional Representation Lemma (FRL) is an
information-theoretic technique that fixes a correlated ‘reference’
information source, and extracts a ‘residual’ information about
the original source. Recently, there has been a lot of interest
in FRL since variants of this technique appear across different
problems in information theory, and data science more broadly.

In this tutorial talk we overview the FRL problem. We
highlight some of its applications: these include the problems
of privacy and causal inference, as well as proof techniques
for single-shot information-theoretic bounds. Finally, we review
known algorithms for constructing functional representations. We
particularly focus on the greedy algorithms previously proposed
in literature.

I. EXTENDED ABSTRACT

A. Overview and Applications

We begin with the Simple Functional Representation Lemma
(FRL) which can be found in [1] and was independently
derived in [2]–[4], among others. Given two jointly distributed
discrete random variable (X,Y ), the lemma states that there
exists a random variable Z such that

I(Y ;Z) = 0, (1)
H(X|Z, Y ) = 0, (2)

and |Z| ≤ |Y|(|X | − 1) + 1. (3)

That is, Y and Z are independent, X is a deterministic function
of Y and Z, and the support of Z is bounded. This result could
be shown with a construction that we here call the Simple FRL
algorithm. See, for example, [1, Appendix B] and [4, Lemma
1] for a detailed exposition.

The simple FRL shows that a random variable Z that
satisfies (1) and (2) exists. However, there are many more
interesting questions that arise about properties of this random
variable. One line of work focuses on minimizing H(X|Z)
(or maximizing I(X;Z)). The best known result, known as
the Strong Functional Representation Lemma (SFRL), states
that it is possible to construct Z, such that

H(X|Z) ≤ I(X;Y ) + log (I(X;Y ) + 1) +O(1), (4)

where I(X;Y ) is a trivial lower bound on H(X|Z) [5],
[6]. An extensions of SFRL, known as the Poisson Matching
Lemma, has been proposed in [7]. These results find extensive
applications in derivations of single-shot coding bounds [5]–
[8], as well as for problems in information-theoretic pri-
vacy [4], [9].

Another line of work on minimizing the entropy H(Z)
finds applications in the problem of private compression [4],
[15], causal inference [16]–[20], as well as a number of other
problems in statistics [21]. Let Q =

∧
y∈Y PX|Y=y be the

lower bound with respect to majorization [21] of the set of
distributions {PX|Y=y}y∈Y . It can be shown that

H (Q) ≤ H(Z) ≤ H (Q) + 2− 22−|Y|. (5)

The lower bound in (5) was shown in [21]. It was also
shown in [21] that the upper bound for |Y| = 2 holds via
a greedy algorithms that we refer to as the majorization-based
algoirhtm. The general upperbound in (5) was shown in [22]
using the technique of geometric splitting.

An improvement on (5) has been recently shown using the
information spectrum of Z. Specifically [23], [24] show that

P[ıZ(Z) > t] ≥ sup
y∈Y

P[ıX|Y (X|Y ) > t|Y = y] (6)

where ıZ(z) = log 1
PZ(z) and ıX|Y (x|y) = log 1

PX|Y (x|y) .
Moreover, [23], [24] show that there exists a distribution Q∗

such that

H(Q) ≤ H(Q∗) ≤ H(Z). (7)

This Q∗ could be found with a simple greedy algorithm
from the information spectrum envelope on the right-hand-side
of (6). Finally, [23], [25] show that an algorithm that we call
the natural greedy algorithm is within log2(e)

e ≈ 0.53 bits of
the minimal achievable entropy, while, in general, the problem
is known to be NP-hard.

B. On Greedy Algorithms

In this talk, we particularly focus on greedy algorithm
for the problem of constructing Z. This includes the
the majorization-based algorithm which attempts to best
approximate the greatest lowebound Q in (5). The natural
greedy algorithm, on the other hand, puts as much probability
mass as possible into the likelier realizations of Z. Greedy
algorithms do not just play a role with constructing the
random variable Z. The also show up in the evaluations of
lower bounds in (5) and (7).
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