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Preface

The journey leading to this book started in 2015 when we — the Computational Evolu-
tion (cEvo) group at ETH Zürich — designed a new Master course “Molecular evolution,
phylogenetics, and phylodynamics” within the Computational Biology Master program. Our
Master’s students had undergraduate degrees in areas such as mathematics, computer science,
physics, biology, or other life sciences. We did not identify a ready-to-use book catering to
these different backgrounds. Tanja Stadler, CarstenMagnus, and Timothy Vaughan developed
a new course building upon the existing wealth of literature. This course has been taught each
year since 2015 at ETH Zürich.

The first generation of PhD students in the cEvo group (led by Tanja Stadler since 2014) were
not only fantastic teaching assistants, but also offered to write down notes while we taught
— producing a script for our students. This script was shared with the students in the years
to come and refined through their critical comments. In 2017, we then decided to put the
material into a book. Two generations of PhD students and one pandemic later, we are proud
to present our book!

Thanks to everyone supporting us throughout. First, thanks to all our students for their critical
feedback. Thanks to new cEvo group members who worked through our script upon start-
ing research in the cEvo group and gave valuable feedback. A special thanks goes to Alexei
Drummond, who taught some of the Bayesian material during his sabbatical visits and gave
valuable feedback on our course content. Furthermore, we are immensely grateful to Oliver
Pybus for inspiring discussions on phylodynamics throughout the years. The following re-
searchers provided excellent feedback on different aspects of the book (in alphabetic order):
Catharine Aquino, Dr. Jack Kuipers, Dr. Sophie Seidel, and Antoine Zwaans. And, finally,
thanks to the whole cEvo group for providing a great atmosphere throughout the long and
sometimes bumpy process of writing this book!

We invite you to visit https://decodinggenomes.org/ for a PDF of the book, additional
information, and a list of known errata. If you find any errors yourself, please report them to
us via errata@decodinggenomes.org. You are welcome to send any other feedback to us
via feedback@decodinggenomes.org.

https://decodinggenomes.org/
mailto:errata@decodinggenomes.org
mailto:feedback@decodinggenomes.org
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1

1 Introduction and Basics

Nothing in biology makes sense except in the light of evolution.
(Theodosius Dobzhansky (1973))

1.1 Overview

In biology, we study organisms to understand how the living world functions. However, we
cannot directly observe and measure every aspect of the living world. Some features are not
observable because we have not (yet) developed the proper technical equipment, while other
features may be unobservable per se. For example, many species populate this planet, but
we cannot directly observe how they came about as this process occurred millions of years
before any of us were born. In the domain of epidemiology, we can observe which human
hosts are infected by a pathogen, but we cannot directly observe the dynamics of the pathogen
infecting a new human host, as we would aim to prevent the infection instead of watching
it. Statistical inference methods can help us understand such unobservable processes using
available snapshot data, such as data collected from extant species or infected hosts.

This book focuses on statistical and computational methods for learning about unobservable
evolutionary and population dynamic processes using genome data (data on the genetic mater-
ial carried by individuals), namely deoxyribonucleic/ribonucleic acid (DNA/RNA) sequence
data, possibly together with some phenotypic data (data on the appearance of individuals).
Evolution refers to the change of populations through time with respect to the heritable fea-
tures of the individuals that make up those populations. Heritable features are, in particular,
the genomes of individuals and their phenotypic features. Population dynamics refers to the
change of populations in size and density through time and across space.

A classic area of biology where statistical and computational tools are required to understand
an unobservable process is macroevolution, where the biological unit is a species, and the
available data include both genotypic and phenotypic information. Phylogenetics (Chapters 6
to 8 and 11 of the book) was initially introduced to study the evolutionary relationships
between species and has been used more recently to study relationships between other biolo-
gical units such as infected individuals or single cells.

The central object in phylogenetics is a phylogeny, which may be a tree or a network. A phylo-
geny starts with one individual, and its offspring are tracked through time. In a tree, each
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Homo sapiens

Pan troglodytes

Gorilla gorilla

Pongo pygmaeus

5-6 mya.

8-12 mya.

9-13 mya.

Figure 1.1: Phylogeny of the great apes, consisting of humans (Homo sapiens) and their
closest relatives. The phylogenetic tree shows that humans and chimpanzees
(Pan troglodytes) diverged around 5-6 million years ago from a common ancestor,
while the gorilla (Gorilla gorilla) is a more distant relative, diverging from the
common ancestral lineage around 8-12 million years ago. The orangutans (Pongo
pygmaeus) diverged from the ancestral lineage already 9-13 million years ago.

offspring has precisely one parent, while in a network, offspring may have one or more par-
ents. Phylogenetic methods aim to reconstruct the phylogeny based on genomes and possibly
phenotypic features of the sampled individuals, such as the present-day species. Figure 1.1
shows a phylogenetic tree of great apes inferred using phylogenetic methods.

Taking the analysis one step further, phylodynamics (Chapters 9 and 10 of the book) aims to
describe and quantify the population dynamic processes that gave rise to the phylogeny. In
macroevolution, the main population dynamic processes are speciation and extinction: how
quickly species appear and go extinct. A further macroevolutionary process is hybridisation,
where two or more species give rise to an offspring species. Both phylogenetics and phylo-
dynamics use models of molecular evolution (Chapter 5 of the book) to capture the way the
genomes of individuals of some biological unit, for example, a species, change through time.

The book is structured into four main parts, each containing examples of real-world data
analysis results obtained using the computational and statistical tools presented.

Obtaining and organising sequences: how do we obtain sequences from biological
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samples, align them, and what can data mining tell us about them? (Chapters 2 to 4)

Molecular evolution: how does genetic information change through time? (Chapter 5)

Phylogenetics: how can we determine the relatedness of biological samples based on their
genetic information? What is their underlying phylogeny? How do phenotypes evolve
along a phylogeny? (Chapters 6 to 8, 10 and 11)

Phylodynamics: what population dynamics (e.g. speciation and extinction or pathogen trans-
mission dynamics) give rise to the phylogeny and the genetic and phenotypic informa-
tion we observe? (Chapters 9 and 10)

We end with a chapter on applications of the presented statistical and computational meth-
odology across biological domains and a discussion of ongoing methodological challenges
(Chapter 12).

The remainder of the introduction is structured as follows. We first briefly outline areas where
phylogenetics and phylodynamics are used. Next, we give a detailed overview of the content
and structure of this book (Section 1.1.2).We then provide the basics on evolution, the process
leading to changes in the genomes and phenotypic features, and thus, a core principle behind
phylogenetics and phylodynamics (Section 1.2). Finally, we end the introduction with basic
definitions and concepts of probabilities used throughout the book (Section 1.3).

1.1.1 Application areas

“Nothing in biology makes sense except in the light of evolution,” the title of an essay by
evolutionary biologist Theodosius Dobzhansky (1973), highlights that we must acknowledge
evolutionary processes when studying any area of biology. It follows that phylogenetics and
phylodynamics are crucial to understanding unobservable processes in a wide range of bio-
logical areas beyond evolutionary biology and even non-biological areas, including, but not
limited to, fields listed below.

Macroevolution, where the biological unit is a species;

• Molecular evolution describes genetic changes in the species;

• Phylogeny displays the relationship between species, that is, the species tree or
network;

• Population dynamics describes speciation and extinction.

Microevolution, where the biological unit is a uni- or multicellular individual (such as a bac-
terial or archaeal cell, a unicellular eukaryote, or a multicellular individual);

• Molecular evolution describes genetic changes in individuals;

• Phylogeny displays the relationship between individuals;

• Population dynamics describes the birth and death of individuals.
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Infectious disease epidemiology, where the biological unit is an infected host;

• Molecular evolution describes genetic changes in the pathogen population within
an infected host and bottlenecks at transmission;

• Phylogeny displays the pathogen transmission chain;

• Population dynamics describes the transmission of the pathogen to susceptible
hosts and the recovery or death of infected hosts.

Immunology, where the biological unit is an immune response cell within a host, such as a
B- or T-cell;

• Molecular evolution describes changes in immune cells through, for example, so-
matic hypermutations or recombination;

• Phylogeny displays the immune cells’ evolutionary relationship;

• Population dynamics describes the generation and loss of different immune cells
within the host.

Development, where the biological unit is a cell within an organism;

• Molecular evolution rarely happens in somatic cells due to very good repair mech-
anisms at cell division; however, genetic barcodes that mutate fast and thus un-
dergo molecular evolution during an experiment can be inserted into cells (Wagner
and Klein 2020);

• Phylogeny displays the relationships of different cells;

• Population dynamics describes the division, differentiation, and death mechanisms
of different cells (different cells form via cell differentiation from stem cells).

Cancer, where the biological unit is a cell within an organism;

• Molecular evolution describes the genetic changes of the cells;

• Phylogeny displays the relationships of different cancer cells and healthy cells;

• Population dynamics describes the emergence, spread, and loss of different cancer
cells.

Linguistics, where the anthropological unit (rather than biological unit) is a language;

• Evolution (which is not molecular here) describes the changes in words and gram-
matical structures within languages through time;

• Phylogeny displays the evolutionary relationships of languages;

• Population dynamics describes the appearance and extinction of languages.
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1.1.2 Guide through the book

This book aims to provide readers coming from different backgrounds (including mathem-
atics, statistics, biology, computer science, and physics) with an understanding of the kind
of information encoded in genetic sequences (to answer questions such as “Why do genetic
sequence analysis?”). Furthermore, the reader will acquire the necessary skills to understand,
plan, and perform genetic sequence analysis using data mining, phylogenetic, and phylody-
namic techniques (“How to do an analysis?”). Throughout, we provide examples (“What
can be learnt from such an analysis?”). We anticipate the needs of readers with different
backgrounds by explaining fundamental concepts from biology and mathematics in the form
of boxes. Moreover, at the end of the introduction, we provide a short section on evolution
and a short section on probabilities.

In the remainder of this section, we overview this book’s specific content and structure. The
book covers the steps from obtaining genetic sequence data from DNA to performing a com-
prehensive data analysis. The first step in a genetic sequence analysis is to obtain the sequence,
that is, to transform the genetic information encoded by the individual of interest to a format
that we can use and analyse. In particular, we want to represent the individual’s DNA as a
sequence of the letters A, C, G, and T. To do so, we need to extract the DNA from cells and
then use sequencing techniques to read and decipher this DNA. In the case of RNA viruses,
RNA is extracted from virions, reverse-transcribed into DNA, and then sequenced. The book,
therefore, begins with an introduction to genetic sequencing technologies (Chapter 2). For the
purpose of this book, we assume that these sequences fully characterise the individuals in our
subject population, and we do not consider epigenetic patterns.

The next step is to align the sequences from the sequenced individual to one another. In
an alignment, different sequences are typically displayed in different rows, and their nucle-
otides are assigned to columns or sites such that the nucleotides across individuals of one
site evolved from a single ancestor. Differences in these sites across individuals mean gen-
otypic variation and may determine phenotypic variation. The differences contain inform-
ation regarding evolutionary history and evolutionary and population dynamic processes.
In Chapter 3, we discuss different methods for aligning sequences. We discuss methods for
obtaining alignments optimally and explain the basic idea of heuristic approaches for align-
ments, that is, fast approaches that do not guarantee optimality. In particular, we introduce
BLAST (https://blast.ncbi.nlm.nih.gov/Blast.cgi) (Basic Local Alignment Search
Tool, Altschul et al. (1990) and Altschul et al. (1997)), which lets us find the homologues
(see Chapter 3) to a single sequence by comparing it against a huge library of sequences. The
BLAST algorithm is the first data mining approach (an approach aimed at finding associations
within a large dataset) discussed in this book and is one of the most widely used algorithms
in bioinformatics.

In fact, sequencing technologies often do not return the whole sequence representing an in-
dividual (in particular if the genome of the individual is very large), but many sequence frag-
ments, which are called reads. The reads need to be joined to obtain the whole sequence. This
procedure is called assembly. After assembly, an alignment of the sequenced individuals can

https://blast.ncbi.nlm.nih.gov/Blast.cgi
https://blast.ncbi.nlm.nih.gov/Blast.cgi
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1.1 Overview 7

be obtained. Assembly procedures rely on alignment methods and thus are also discussed in
Chapter 3.

The alignment encodes information we aim to extract to answer biological questions. We con-
tinue with another data mining approach, namely genome-wide association studies, (GWAS)
(Chapter 4). In GWAS, the aligned genome sequences obtained from multiple individuals are
considered together with traits of these individuals (e.g. increased risk of a certain type of
cancer) to detect if certain genome variants or mutations are associated with those traits. We
highlight that whole books have been written on such data mining approaches (e.g. Aggarwal
(2015)), and we only provide the main ideas here.

Data mining approaches such as GWAS assume each site in an alignment is an independ-
ent data point. This assumption is valid for genome data stemming from different human
individuals since recombination quickly breaks up the linkage between the sites of interest.
However, if genomes accumulate substitutions along a phylogenetic tree (meaning there are no
recombination or other non-tree processes), then the individuals close in the phylogeny share
more similarities (such as identical nucleotides at a site) than distantly related individuals.
Thus, the sites are not independent data points, and GWAS approaches are not appropriate.
Joseph Felsenstein (1985b) explicitly spelt out the need to acknowledge the phylogeny when
analysing genotypes and their association with certain traits (Chapter 8).

In Chapters 6 to 10, we consider data where sites are linked due to a shared evolutionary
history. The shared evolutionary history can be displayed in a phylogeny. The overarching
aim is to reconstruct this phylogeny based on the sequences and then to infer the evolutionary
and population dynamic processes giving rise to the phylogenies.

In Figure 1.2, the left bracket groups the aspects of sequence analysis that fall in the field of
phylogenetics, the study of evolutionary history. In phylogenetics, we assume a (molecular)
evolution model (Chapter 5) and then reconstruct phylogenies (Chapters 6 and 10) based on
the sequence or morphological data. Based on the phylogenies, we can further investigate pro-
cesses occurring along the phylogenetic tree. In particular, we can obtain an understanding of
how genes and genotypes change along the phylogeny through time, that is, understand mo-
lecular evolution processes (Chapter 7). Furthermore, we can assess how traits change along
the phylogeny, with the phylogeny representing genotypic change (Chapter 8). Such analyses
shed light on phenotypic evolution processes. In particular, as in a GWAS, the relationship
between the genotype and the phenotype is addressed, now with statistical tools acknow-
ledging dependencies between sites. Importantly, all molecular or phenotypic evolutionary
processes are assumed not to influence the tree; instead, they occur on a given (unknown)
tree. In turn, the sequence data from the evolutionary processes are used to reconstruct this
tree.

The field of phylogenetics goes back to 1837 when Charles Darwin sketched a phylogenetic
tree in his notebook, shown in Figure 1.3. However, the computational birth of this field only
occurred in 1957, when Michener and Sokal published a paper on a computational tool that
allows reconstructing a phylogenetic tree from sequence data (Michener and Sokal 1957). This
first tool was based on the simple principle that similarity between two individuals indicates
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Figure 1.3: A first sketch of an evolutionary tree by Charles Darwin, from his 1837 notebook
(Darwin 1837).

that they are close relatives, whereas dissimilarity indicates a more distant relationship. Joseph
Felsenstein revolutionised phylogenetic tree inference in the 1980s by introducing statistical
tools allowing the maximum likelihood and Bayesian approaches to be applied to phylogen-
etics (Felsenstein 1981). Initially, phylogenetics was developed and used in macroevolution.
Later, starting with the studies on HIV in particular, phylogenies of viruses were reconstructed
to understand their evolution and epidemiology.

The field of phylodynamics, denoted in Figure 1.2 by the bottom right bracket, studies how
processes give rise to and shape phylogenies. Phylodynamic approaches fit population dy-
namic models (e.g. models of speciation/extinction, models of pathogen transmission, and so
on) to the reconstructed phylogenies. In particular, these approaches take into account that
the phenotype may influence the shape of the phylogeny. This allows us, for example, to
quantify fitness differences across individuals and thus to quantify selective advantages of cer-
tain phenotypes or assess the global migration pattern of individuals. Phylodynamic methods
require a time tree — a tree with branches in units of calendar time. Charles Darwin sketched
such a time tree (Figure 1.4). The first key papers on phylodynamics of macroevolution ap-
peared in the 1990s (Nee, May and Harvey 1994; Harvey, May and Nee 1994). However,
the field only started flourishing after the publication by Grenfell et al. (2004), considering
the phylodynamics of pathogens. Phylodynamics is discussed in Chapters 9 and 10.

Approaches presented in this book thus far assume that there is no linkage across sites
(Chapter 4) or that the sites evolved along a phylogenetic tree, meaning there is complete
linkage across sites of an alignment (Chapters 6 to 10). However, there is increasing evidence
that evolutionary histories are best modelled by a “Network of Life”, meaning an individual
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Figure 1.4: Sketch of a time tree with horizontal lines drawn every 1000 generations. This is
the only figure in the “Origin of Species” by Charles Darwin (1859).

has two or more parents as a result of reticulate evolution (examples are hybridisation, ho-
rizontal gene transfer, or recombination), while in a tree each individual can only have one
parent. Reticulate evolution causes some sites to have different evolutionary histories (due to
the different parents). In other words, some sites are not linked. Importantly, some sites are
also linked, making GWAS approaches unsuitable.

We end the methodological part of the book by presenting basic concepts regarding phylo-
genetic networks (Huson, Rupp and Scornavacca 2010) which are required in intermediate
scenarios between phylogenetic trees — where sites are completely linked, — and GWAS —
where all sites are unlinked (Chapter 11).

Throughout the book, we provide empirical examples of the introduced methodology, mainly
from the classic fields in phylogenetics and phylodynamics, namely macroevolution and virus
epidemiology. In the final chapter, we outline applications of the tools presented throughout
the book in fields where phylogenetics and phylodynamics are entering now (see also Sec-
tion 1.1.1), together with methodological challenges we need to overcome to make full use of
the data.
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1.2 Basics on evolution

Evolution, the process that gives rise to changes in genotypes in populations through time, is
at the core of all the statistical and computational methods discussed in this book. Thus, in
this section, we will briefly describe the main aspects of the theory of evolution and how this
theory itself evolved over time.

Throughout human history, people have been trying to explain how the living world came
into existence. The idea that everything was created at once and has since existed in a fixed
state was eventually replaced by the concept of evolution and perpetual change. Extant species
data and fossil evidence provide overwhelming support for evolution.

Initially, the concept of evolution was discarded by many, as it contradicted religious views
of men being the pride of creation. Nowadays, the concept of evolution is widely accepted
in the scientific community and significant parts of society. Some parts of society continue
to reject this concept in favour of creationism (see Matzke (2016) for an interesting view
on the evolution of creationism). Evolution as a scientific theory also went through its own
stages of evolution, from simple beginnings to current, more elaborate concepts. This section
introduces theories that paved the way to the current understanding. It is by no means a
complete picture of the evolution of evolution, but it focuses on how we came to our current
understanding of evolution through some specific influential historical concepts.

1.2.1 Lamarckian evolution

In the nineteenth century, biologists and naturalists increasingly discussed the possibility of
explaining species diversity via evolution. In 1809, the French biologist Jean-Baptiste Lamarck
proposed that evolution occurs through the use and disuse of features (Lamarck 1809). This
means that an organism could develop a useful feature during its lifetime, which would then be
passed on to its offspring. This is the definition of soft inheritance, the inheritance of acquired
characteristics.

Lamarck’s favourite example was the giraffe, shown in Figure 1.5. He explained the length of
the giraffe’s neck as follows: the first giraffes had short necks that made it hard for them to
reach the leaves on the trees. This meant that giraffes always had to stretch their necks, which
would become slightly lengthened over the course of their lives. Their offspring would then
inherit this lengthened neck, and, over the course of many generations, the neck length would
increase to its current proportion. Thus, evolution occurs via individuals locally adapting to
the environment and their offspring inheriting the acquired characteristics.

1.2.2 Darwinian evolution

In 1859, the British biologist Charles Darwin published his book “The Origin of Species by
Means of Natural Selection” (Darwin 1859) describing a theory of evolution that aims to
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Figure 1.5: Example of Lamarckian evolution. According to Lamarck, evolution occurs
through the use and disuse of features. Thus, if giraffes prefer leaves from taller
branches, they will strain their necks more and more during their lifetime, which
would cause their offspring to have longer necks (Lamarck 1809).

explain evolution via the mechanism of natural selection. For evolution to occur via natural
selection, four components are needed:

(i) Multiplication: the individuals multiply and produce offspring;

(ii) Variation: there is phenotypic variation across individuals, that is, individuals differ in
some aspect of their appearance;

(iii) Heredity: the phenotype is to some extent heritable from one generation to the next;

(iv) Competition: there are fitness differences across phenotypes, meaning that the average
number of surviving offspring depends on the phenotype of the parent individual.

While Darwin’s mechanism could explain the data he collected during his voyage on the
Beagle, one important feature was missing in the theory of natural selection: how phenotypes
are inherited could not be explained thoroughly.

1.2.3 Mendelian inheritance — foundations of genetics

In 1866, seven years after Darwin’s influential book appeared, the Austrian monk Gregor
Mendel published his observations on the possible mechanisms of heredity of the phenotypes,
which he developed from his experiments with pea plants (Mendel 1866). He observed that
certain traits, such as flower colours, get passed on to the next generation in a predictable
fashion. He described invisible factors — which we now call genes, — that have different
variants — which we now call alleles. The variants determine the traits — which we call
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phenotypes. The invisible factors are passed on from one generation to the next. We introduce
here vocabulary that is important throughout this book.

Gene: hereditary unit encoding a protein, which, in turn, defines (part of) a trait (e.g. the pea
flower colour);

Allele: the version of a gene (e.g. one allele of the colour gene may encode for white (y);
another allele for purple (Y));

Genotype: the collection of genes of one individual;

Phenotype: the collection of traits of one individual.

Based on the experimental data, Mendel concluded that each pea plant has two alleles of each
gene, a random one from the father and a random one from the mother. A dominant allele is
the allele that determines the phenotype (e.g. if the purple allele Y is dominant, peas having
the Yy allele combination will bloom purple); the other, recessive allele, is overruled by the
dominant allele and will only have an effect if both the alleles inherited from the parents are
recessive.

Weismann (1893) later performed experiments showing that only the genes in the germ line
(cell line that produces gametes or sex cells in sexually reproducing organisms) are passed on
to the next generation, and no changes in other cells of the organism (somatic cells) are passed
on.

This concept of inheritance of genes from the germ line is a core concept in modern biology.
It opposes the concept of Lamarckian evolution, which suggested that acquired phenotypes
were inherited. Nowadays, Gregor Mendel is acknowledged as the founder of the field of
genetics and as the person who closed the gap in Darwin’s work by explaining the inherit-
ance mechanism. However, Mendel’s work was widely ignored for at least 30-40 years after
publication before the connection to Darwin’s theory was made.

1.2.4 Genetic drift

Apart from evolving due to natural selection, populations may also evolve due to pure chance.
There is chance involved in which individuals reproduce and which alleles they pass to their
offspring. When considering a small population, it is evident that these chance processes can
lead some alleles to be lost or take over the population. This mechanism of “genetic drift”
for evolution was introduced by Sewall Wright (1955). The work of Motoo Kimura (1968)
emphasised the importance of such a “neutral” evolutionary process — compared to selection
processes.
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1.2.5 Modern synthesis (neo-Darwinism)

The term “modern synthesis” was coined by Julian Huxley in his 1942 book “Evolution: The
Modern Synthesis” (Huxley 1942). This theory reflects the consensus theory of evolution,
which combines Darwin’s theory of evolution through natural selection, neutral evolution,
gene flow between populations, and Mendelian genetics, with the latter providing the mech-
anism for inheritance.

Evolution may occur through natural selection acting on the phenotypes. The phenotypes are
encoded through the genotype, and the genotype in the germ line is the unit that is passed
on to offspring following the rules of Mendelian genetics. In parallel, evolution may occur
through genetic drift (pure chance); again, the inheritance follows the rules of Mendelian
genetics. Finally, gene flow between populations can also impact evolution (Andrews 2010).

Many people contributed to the establishment of this theory. Theodosius Dobzhansky, as well
as Rosemary and Peter Grant, demonstrated that the modern synthesis theory holds up if one
tests it in natural populations (Dobzhansky 1937; Grant et al. 1976). George Simpson showed
that paleontological data, which is evidence for the process of evolution in the past, is in
accordance with themodern synthesis theory (Simpson 1944). By now,modern synthesis is the
primary accepted mechanism of evolution (but see Shapiro and Noble (2021) and Rose and
Oakley (2007) for shortcomings with respect to evolutionary mechanisms such as epigenetics
and horizontal gene transfer).

This book introduces neutral sequence evolution models in Section 5.3. In Sections 9.1
and 9.2, we consider neutral evolution models at the population level. We take into account
selection in the sequence evolution models in Sections 5.5 to 5.7 and model selection at the
population level in Section 9.5.

1.2.6 Deoxyribonucleic acid (DNA)

The next step to further our understanding of evolution was to understand how genes and
genotypes are encoded.

In 1871, FriedrichMiescher published work on isolating and identifying the deoxyribonucleic
acid, or DNA (Miescher-Rüsch 1871), which encodes the genotype. Together with images by
Rosalind Franklin, this allowed us to decipher the molecular structure of DNA — a double
helix made of two linked strands — in 1953 (Watson and Crick 1953).

The double-stranded DNA helix has the same structure in all known biological entities (euka-
ryotes, bacteria, archaea, and viruses) on Earth, and it consists of a sugar-phosphate backbone
to which nitrogenous bases, namely purine or pyrimidine bases, are attached. The sugar, the
phosphate, and the nitrogenous base make up a single nucleotide — a DNA building block,
the deoxynucleotide triphosphate (dNTP).
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Figure 1.6: DNA double helix displaying how the nucleotides are arranged into a double-
stranded molecule (left). The structure of each nucleotide — a sugar-phosphate
backbone with a nitrogenous base — and their grouping into purines and
pyrimidines is displayed on the right.

We refer to a nucleotide by the name of its nitrogenous base. There are four nucleotides, two
purines, adenine (A) and guanine (G), and two pyrimidines, cytosine (C) and thymine (T). The
successive order of these four nucleotides determines an individual’s genotype. A few viruses
are RNA-based (ribonucleic acid) rather than DNA-based. The RNA strand is composed of
the same A, C, G, but uses the pyrimidine uracil (U) instead of T. Again, the successive order
of these four nucleotides is the genotype of the virus.

We call the order of nucleotides a genetic sequence. In the double-stranded helix, one strand
is complementary to the other. The nucleotides are paired in the helix according to strict
compatibility rules such that A on one strand is complemented by T on the other strand,
whereas G is always complemented by C (see Figure 1.6). This means that if we know the
sequence of one strand, we can always determine the complementary sequence of the other
strand, and thus, only one strand is reported in genetic sequence data. The analysis of genetic
sequence data is the main focus of this book.

1.2.7 The central dogma of biology

The central dogma of modern biology describes the flow of genetic information within a
biological system. It states that information flows from DNA to RNA through transcription
and from RNA to proteins through translation, without any informational exchange flowing
back (Figure 1.8 illustrates this principle flow of information).
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Figure 1.7: The codon sun shows the encoding of amino acids by triplets of nucleotides. The
nucleotide at the first position of the triplet is chosen from the innermost circle;
the second and third are then picked from the second and the third circles from
the centre, respectively. The amino acids encoded by the nucleotide triplets are
displayed on the outermost circle as three- and one-letter codes. The table on the
right shows amino acid names and their corresponding codes. Thus, for example,
the triplet TCG encodes the amino acid Serine (Ser, S).

The part of the genotype that encodes proteins is referred to as genes. Each group of three
successive nucleotides in genes is called a codon. Of the 43 = 64 possible codons, three codons
terminate RNA translation. The remaining 61 codons translate into the 20 amino acids, mean-
ing several codons encode for the same amino acid. Amino acids are abbreviated with one-
or three-letter codes. Proteins are characterised by the sequence of amino acids. Figure 1.7
depicts which codon translates into which amino acid.

The genome also consists of non-coding regions, where the nucleotides do not code for a gene.
Instead, the non-coding regions may serve regulatory functions, or may not have a function,
or have some yet unknown function. Despite not producing proteins directly, we highlight
that these regions may play a role in determining the phenotype (the organism’s appearance)
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Figure 1.8: The central dogma of biology states that information flows from DNA to RNA
(transcription) to proteins (translation). An exception to this dogma is reverse
transcription, where virus RNA is reverse-transcribed into DNA. Further, not only
DNA but also RNA may replicate.

regardless.

In summary, according to the central dogma, information flows from DNA (the genotype) to
RNA to proteins (the phenotype), meaning the genotype determines the phenotype (but see
Section 1.2.8 for an exception). According to Darwin, natural selection acts on that pheno-
type.

The famous evolutionary biologist Richard Dawkins proposed an analogy to baking, in which
he compared the genotype to the recipe and the phenotype to the cake (Dawkins 2009). This
statement nicely points out a particularity of this connection — the recipe is not necessarily
bad just because we failed to make the cake once. In the context of cell biology, this means
that even if there was an error during a single run of transcription or translation, next time, the
transcription and translation might be perfectly normal again, yielding the expected protein.

1.2.8 Exceptions to the central dogma

Generally, there is no rule without an exception, and this is also the case for the central dogma
of biology. In fact, reverse transcription of RNA to DNA is possible. Figure 1.8 shows this
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exception with an upward arrow.

Reverse transcription (Baltimore 1970) was discovered1 in a specific class of viruses, the so-
called retroviruses. For example, the human immunodeficiency virus (HIV) is a retrovirus.
It stores all its genetic information as RNA and transfers its genetic material into the host
cell with a reverse transcriptase enzyme, which reverse-transcribes the RNA into DNA. The
produced DNA is then incorporated into the host cell’s genetic material by the HIV integrase
enzyme and is transcribed and replicated using standard host cell machinery.

We note that RNA viruses may also replicate without the reverse transcription to DNA by
copying the RNA directly. In fact, this kind of replication is performed by many well-known
viruses, such as influenza, Ebola, and corona- and polioviruses.

1.2.9 Errors in replication

The variation of genotypes between cells — and, by extension, between organisms — arises
due to the error-prone replication of DNA during cell division. Errors may be introduced
into the copied DNA strand during DNA replication when a cell prepares for division, for
example, due to polymerase error or external mutagens (such as chemicals, UV radiation,
and so on). The following errors can happen during DNA replication, resulting in a different
sequence of nucleotides in the copied strand compared to the template strand.

Point mutation: during the production of the DNA copy, a wrong nucleotide is built into
the sequence with respect to the template, producing a copy where a single character is
replaced by another (this character is said to havemutated).We refer to a point mutation
as a mutation throughout this book;

Recombination: the combination of “parental” genetic sequences to produce a “child” se-
quence. For example, in eucaryotic cells, a block of nucleotides is exchanged between
chromosome pairs;

Insertion and deletion: extra nucleotides are inserted into the copy or lost compared to the
template. Such events are referred to as indels (insertions and deletions);

Repeats and inverted repeats: in a repeat, a sequence of k nucleotides in the template strand
is inserted several times into the copied DNA strand. We obtain an inverted repeat if a
reverse copy of length k occurs in the copied DNA.

A detailed understanding of these mechanisms is not crucial for our purposes. However, it
is crucial for this book to note that errors can occur during replication. These errors cause
variation in genotypes, which in turn produces variation in phenotypes.

1This discovery was a component of the research for which David Baltimore, Renato Dulbecco, andHowardMartin
Temin received the 1975 Nobel Prize in Physiology or Medicine.
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1.2.10 Darwin today

Due to errors in replication, different individuals of the same population can have slightly
different genotypes and, thus, phenotypes. Selection can then act on this phenotype, leading
to the propagation of certain variants in the population and the extinction of other variants.

To illustrate this, let us look at the interaction between a host’s immune system and a virus
population, particularly how the immune system puts selective pressure on the virus. The
cells of the immune system use the proteins on the surface of the virions (virus particles) to
identify them as foreign entities and attack them. The immune system tries to eliminate the
virions, and by doing so, it exerts selective pressure on the virus population. The virions have
an evolutionary advantage if they have a variant of the surface protein that the host’s immune
system does not recognise. This viral variant is linked to a mutation in the viral genotype; the
virions possessing this mutation will propagate, while the virions without this mutation will
be eliminated. After some time, the entire virus population will have the mutated genotype:
evolution at the genotypic level driven by selection at the phenotypic level.

As mentioned above, evolution can also be the result of pure chance or genotypes flowing
from the outside into a population.

By combining our knowledge from different scientific disciplines (such as genetics and mo-
lecular evolution) into modern theory and using Darwin’s four components in addition to
neutral drift and gene flow processes, we can summarise as follows.

(i) Multiplication: DNA replicates. Somatic cell replication produces more cells within an
individual; germ line cell replication may give rise to an offspring individual. In either
case, the genotypes determine the phenotypes.

(ii) Variation: variation in the phenotype across individuals is observed due to mutations,
recombination, insertions and deletions (indels), as well as (possibly inverted) repeats
in the genotype at replication.

(iii) Heredity: heredity of the phenotype occurs due to the passage of DNA (or RNA in
the case of RNA viruses) from parent to offspring (via the germ line in multi-cellular
organisms); the genotype of the offspring encodes its phenotype.

(iv) Competition: there are fitness differences across phenotypes, meaning the average num-
ber of surviving offspring depends on the phenotype of the parent individual.

(v) Drift: genotypes can expand or vanish purely by chance (genetic drift), meaning the
average number of surviving offspring is determined by chance if only drift occurs.

(vi) Gene flow: populations’ genotype composition may change from one generation to the
next through gene flow from the outside.
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Importantly, points (i) to (iv) result in evolution through natural selection, and points (i) to (iii)
and (v) in neutral evolution.

This view completely ignores any possible impact of the environment on the phenotype. How-
ever, increasing evidence exists for the impact of the environment on the phenotype. The field
of epigenetics studies mechanisms that change phenotypes beyond DNAmodification. In par-
ticular, the activation pattern of genes and changes in this pattern were found to be such an
epigenetic mechanism. Activation patterns vary due to the variation in molecules binding to
DNA, such as a methyl group binding to DNA (DNA methylation). The activation patterns
may change throughout an individual’s lifetime due to environmental factors and, in fact,
can also be inherited through the germ line. Such inheritance of environmentally acquired
phenotypes brings us back to Lamarck.

One example of epigenetic effects is the phenotypic differences between identical twins. Ge-
netically, these two individuals are identical (although there might be slight differences due to
somatic mutations during development); however, the two individuals might not look exactly
the same due to epigenetic differences acquired throughout the twins’ lifetime (Fraga et al.
2005). Another example is a population of clonal bacteria — bacteria with the same geno-
type — in which some bacteria are more virulent than others, for example, groups of identical
Salmonella bacteria that split into those that are more adept at entering epithelial cells in the
gut, those that release toxins, and those that reproduce quickly. Their DNA methylation pat-
terns are different due to environmental effects (Casadesús and Low 2006).

1.3 Basic definitions and concepts of probability

Consider a random experiment where the set of all possible outcomes is a discrete set called
the state space Ω. A probability is defined as a function, denoted with a capital P , that

(i) maps each outcome in Ω to a number between 0 and 1 (including 0 and 1); this number
is referred to as the probability of the outcome, and

(ii) the sum of the probabilities of all outcomes in the state space is 1.

A simple example is rolling a six-sided die one time. The possible outcomes are 1, 2, 3, 4, 5, or
6. Thus, the state space is Ω = {1, 2, 3, 4, 5, 6}. In our example, the outcome “Rolling 1 when
throwing a die once” is denoted by {1}. If the die is fair, each outcome is equally likely, and
the probability of rolling a 1 is 1/6. Formally, this is denoted by

P ({1}) = 1/6. (1.1)

A more interesting example is rolling the fair die twice. There are 36 different possible out-
comes, the state space is Ω = {(1, 1), (1, 2), . . . , (1, 6), (2, 1), . . . , (6, 6)}, and every single result
has the probability 1/36. If we are interested in the sum of the two numbers, we can calculate
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the probability of obtaining this sum by counting all possible results that lead to that number
and dividing it by all possible results:

P (sum = 5) = P ({(1, 4), (2, 3), (3, 2), (4, 1)}) = 4/36. (1.2)

A function applied to the possible outcomes, such as summing the two numbers in the example
above, is called a random variable and is denoted with a capital letter, for example, X. Note
that a random variable is neither random nor a variable but a function. For a discrete set of
outcomes, the associated random variable is said to be discrete. In our example, X((i, j)) =
i + j is a discrete random variable. For convenience, P (X = x) is an abbreviation for “the
probability of the set of outcomes for which we obtain x when we apply the function X to
the possible outcomes of the random experiment”. The value x is also called a realisation of
X. In the example with two dice, this means

P (X = x) = P ({(i, j) ∈ {(1, 1), . . . , (6, 6)} for which i+ j = x}). (1.3)

The probability that some random variable X takes some value x is written as P (X = x).
However, when there is no ambiguity regarding the random variable the probability refers to,
it is common to write P (x) instead. Similarly, when there is no ambiguity with respect to the
value, P (X) may also be used.

A stochastic model formalises a random experiment (such as a die roll) to make predictions
about this random experiment. It contains the state space Ω, the probability function P , and
the random variable X. Note that all these entities were specified above for the die-rolling
example, meaning we formulated a stochastic model for die-rolling.

There are also situations where the state space is continuous. A classic example is a person’s
height. The probability that a person is exactly 1.83m tall is 0. But the probability that a
person’s height ranges between 1.83 and 1.84m is > 0. In the case of a continuous random
experiment, one denotes its probability density instead of the probability of each individual
outcome. To obtain the probability of a continuous random variable taking the values in a
specific set, one has to integrate the probability density over this set. For example, we denote
height with the continuous random variable Y and the probability density of Y with fY . The
probability that a person’s height ranges between 1.83 and 1.84m then is

P (1.83 < Y < 1.84) =

∫ 1.84

1.83

fY (x)dx. (1.4)

Two important measures are commonly reported for every distribution. These are the mean
and the variance. The mean is the average value one would expect from a series of random
experiments. For a random variable X, the mean is denoted by E(X). If the random variable
is discrete, that is, has a discrete state space Ω, the mean is defined as the sum of all possible
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results weighted by the probability of obtaining these results:

E(X) =
∑
x∈Ω

xP (X = x). (1.5)

If the random variable is continuous, that is, it has a continuous state space Ω, and has a
probability density fX , the mean is defined as the integral of all possible values weighted by
its probability density:

E(X) =

∫
Ω

xfX(x)dx. (1.6)

Note that the mean is not necessarily a value that one can obtain as a result of the random
experiment. For example, the mean outcome when throwing a fair six-sided die is 3.5, but
that value is not included in the state space.

Var denotes the variance and is the average deviation from the mean, meaning that it measures
how dispersed the distribution is. For a discrete random variable X with state space Ω, the
variance is defined as

Var(X) = E((X − E(X))2) =
∑
x∈Ω

(x− E(X))2P (X = x). (1.7)

Similarly, the variance of a continuous random variable is defined as

Var(X) = E((X − E(X))2) =

∫
Ω

(x− E(X))2fX(x)dx. (1.8)

The standard deviation is sometimes reported instead of the variance. Standard deviation,
denoted by σ(X), is the square root of the variance:

σ(X) =
√
Var(X). (1.9)

For two random variables, the covariance is defined as

Cov(X,Y ) = E ((X − E(X))(Y − E(Y ))) . (1.10)

This definition generalises the variance, as it holds that Cov(X,X) = Var(X).

1.3.1 Conditional probability

The concept of conditional probability is easiest to understand for discrete random variables.
Consider a random experiment with discrete state spaceΩ and two sets of outcomesA,B ⊂ Ω,
with P (B) 6= 0. We denote the intersection of sets A and B with A ∩ B. The conditional
probability P (A|B) is the probability that event A happens, given that we know B happened.
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It can be calculated as

P (A|B) =
P (A ∩B)

P (B)
. (1.11)

P (A ∩ B) is also called the joint probability, the probability of both A and B happening.
Intuitively, we can understand that the above formula holds by considering P (A ∩ B) =
P (A|B)P (B). Indeed, we can calculate the joint probability by first evaluating the probability
of eventB happening and then evaluating the probability of eventA happening when knowing
that B happened. This corollary,

P (A ∩B) = P (A|B)P (B), (1.12)

is sometimes known as the product rule for probabilities.

Returning to our die experiment from above, imagine we want to determine the probability of
scoring at least a sum of 10 when rolling the die twice (event A) while knowing that a doublet
has been rolled (event B). We could only get a score of at least 10 with doublets when rolling
(5, 5) or (6, 6). This means the probability of scoring a sum of ≥ 10 given that we threw a
doublet is

P (A|B) = 2/6 = 1/3. (1.13)

Alternatively, we can get this probability by considering P (A ∩ B) and P (B). Doublets are
B = {(1, 1), (2, 2), (3, 3), (4, 4), (5, 5), (6, 6)} and thus P (B) = 6/36. Furthermore, we have
A ∩ B = {(5, 5), (6, 6)} and thus P (A ∩ B) = 2/36, Now, we apply the right-hand side of the
conditional probability equation above:

P (A ∩B)

P (B)
=

2/36
6/36

= 1/3. (1.14)

When looking at continuous random variables, the concept of conditional probabilities fol-
lows the same ideas but becomes formally more difficult. We refer the interested reader to a
textbook on probability theory, such as the book by Williams (2001).

1.3.2 Mathematical areas using probability relevant to this book

The concept of probability is used in different areas of mathematics. In this book, we will
specifically encounter the following fields.

Probability theory studies the rules to calculate probabilities of events and random variables
given that the underlying distribution is known. For example, we will derive the prob-
ability of sequences evolving along a phylogenetic tree (see Section 6.3.3).

Stochastic processes study successively repeated random experiments and the overall be-
haviour of the realisations of these processes. Here, we assume that the underlying
probability distribution is known. We will cover Markov chains in Box 24 on page 98
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and Brownian motion in Box 30 on page 209 as examples of stochastic processes. The
stochastic processes are, for example, used to model changes in genotypes and pheno-
types (see Chapters 5 and 8).

Statistics uses a set of observations to try and deduct information about the underlying
distribution.

• In parameter estimation, we use observations to estimate a parameter of an a priori
specified distribution, such as the probability of observing a particular outcome.
For example, we estimate the speciation and extinction rates based on a phylogeny
(see Chapter 9).

• In hypothesis testing, we use the observations to test whether the data support
a specific hypothesis — formalised as a specific stochastic model giving rise to a
probability distribution. Given such a hypothesis, we can calculate how likely it is
to obtain the observed or more extreme outcomes. This probability is called the
p-value (see Box 1 on page 24). The p-values will be employed to test whether the
given data (the outcome of a probabilistic experiment) evolved under the assumed
stochastic model. This value will be crucial in Chapters 4 and 7.

• In uncertainty quantification, the uncertainty of outcomes is quantified. We will
focus on uncertainty in evolutionary parameter and tree estimation in Chapter 7.
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Box 1: p-value

Definition: As introduced in Section 1.3, we use capital X to represent a random variable and
small x to represent its realisation. Let us assume a null hypothesis H0, which, in mathematical
terms, corresponds to some statement about the potential probability distribution of X. Given the
null hypothesis is true, the probability of the outcome being x or more extreme is called the p-value
for x under the null hypothesis. If more extreme means greater than x, the p-value is defined as
P (X ≥ x|H0). If more extreme means smaller than x, the p-value is defined as P (X ≤ x|H0).

Example: For example, consider rolling a six-sided die n = 100 times. Let the random variable
X be the number of sixes obtained. The null hypothesis H0 is that the six-sided die is fair, meaning
that the probability that we roll a six in a single throw is 1/6. Suppose we obtained x = 25 as a
result of our experiment, and we want to determine the p-value.

The probability to obtain k sixes out of n independent die rollings is
(n
k

)
1
6

k 5
6

n−k, that is,X follows
a binomial distributionwith parameter p equal to 1/6 (Box 3 on page 25; for a definition of the bino-
mial coefficient

(n
k

)
see Box 2 on page 25). The distribution is displayed for n = 100 in the graph be-

low. The p-value for our realisation (x = 25) is p = P (X ≥ 25|H0) =
∑100

k=25

(100
k

)
1
6

k 5
6

100−k
=

0.022 (assuming more extreme is greater). The blue-coloured areas are the events at least as extreme
as our outcome (x = 25).
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Usage: One can pre-define a significance level, commonly denoted as α, which is typically set to
α = 0.05 or α = 0.01. If a test is said to have a significance level α, the cumulative probability of a
false positive is α. If the p-value for an obtained outcome is below α, the null hypothesis is rejected
at the level α and is said to differ significantly from the null hypothesis. We can also say that such
an observation is in the tail of the distribution.

We may also reject the null hypothesis if the outcome is in the left or right tail of the distribution. The
significance level is then divided by two, and the hypothesis is rejected if P (X ≥ x|H0) < α/2 or
P (X ≤ x|H0) < α/2. α is again the significance level, and α/2 is referred to as rejection threshold.
For further information on the p-values, see, for example, Dorey (2010).
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Box 2: Binomial coefficient
The binomial coefficient is defined as (a

b

)
=

a!

b!(a− b)!
(B2.1)

for integers a ≥ b ≥ 0.

The expression a! is called factorial and for a > 0 defined as

a! = a× (a− 1)× (a− 2)× . . .× 2× 1. (B2.2)

Further, 0! is defined to be 1.

The binomial coefficient counts the number of unordered subsets of size b, given a set of size a.
Equivalently, the binomial coefficient counts the number of ways in which a+b balls can be ordered
by colour, where a balls are red and b black.

It is sometimes useful to generalise the definition of the binomial coefficient so that(a
b

)
= 0 for b > a. (B2.3)

Box 3: Binomial distribution
Letm be a number of experiments with two possible outcomes: “success” (probability p) or “failure”
(probability 1− p). Each such experiment is called a Bernoulli trial. The random variable “number
of successes amongm experiments”,X, follows the binomial distribution which has the probability
function

P (X = k) =
( k
m

)
pk(1− p)m−k. (B3.1)
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2 Sequencing

2.1 Overview

Genetic information serves as the blueprint to build an organism. This genetic information
is contained in each cell of the organism in the form of deoxyribonucleic acid (DNA). The
language of these blueprints is universal for all living organisms on Earth: each individual is
characterised by a particular order of DNA building blocks, the nucleotides. Moreover, this
language is still the same for viruses that are not considered to be alive but also contain genetic
information in the form of DNA or ribonucleic acid (RNA) within their virions. A genetic
sequence is a digital (human- and computer-readable) excerpt from the blueprint, representing
the order of nucleotides— adenine (A), cytosine (C), guanine (G), thymine (T)— as they appear
in the DNA molecule (with uracil (U) instead of thymine (T) in the case of RNA). In other
words, a sequence is a string composed of letters A, C, G, T/U. The sequence may represent the
whole genome of the individual or just parts of the genome, such as single genes. Sequencing
is the process of obtaining a genetic sequence from a biological sample. Box 4 on page 28
provides a short vocabulary to aid in understanding the sequencing techniques.

This chapter is a short introduction to DNA sequencing to give the reader an idea of the
available platforms and their advantages and disadvantages. RNA is not directly sequenced
as it is not as stable as DNA, and RNA molecules are instead reverse-transcribed to DNA
before sequencing.

We provide an overview of the steps needed to prepare a biological sample for sequencing and
then discuss DNA sequencing platforms that are currently in use or have been widely used
in the past. We distinguish three generations of sequencing technologies. No single platform
can be labelled the best, as each platform fulfils different specific needs, with respect to, for
example, sequence length and coverage, and each has its drawbacks.

To start sequencing, we first need to acquire the genetic material we want to sequence or read.
Cells are taken from an organism or a specific tissue of the organism, and the genetic material
is isolated from the cells. DNA isolation requires breaking the cell membranes and molecules
within the cell (also called lysing the cell) and then separating the non-DNA fragments from
the DNA molecules. Commercial kits employing chemical methods are available to break up
the cells, and then a centrifuge can be used to separate the DNA molecules from the non-
DNA fragments. Isolating RNA (e.g. from the virions of RNA viruses) requires analogous
steps. However, the procedure is generally more complicated for RNA, as the RNA molecule
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Box 4: Sequencing glossary

Template: a stretch of DNA in the biological sample which will be sequenced;

Primer: a short DNA fragment complementary to (one end of) the template. The primer is essential
for starting DNA polymerisation and, thus, the sequencing reaction;

Library: a mixture of different templates ready for sequencing;

Sequence: the order of building blocks (nucleotides) in a template or gene or genome;

Sequencing: the act of determining the order of nucleotides in the template;

Sequencing run: one round of operation of the sequencing machine;

Read: a single instance of output from a single sequencing run — it is a sequence representing a
partial or whole template, often still containing errors;

Sequencing error: the difference between the sequence retrieved via sequencing and the template
sequence;

Assembly: the process of combining the information in individual reads into the sequence of the
genome.

is less stable and more prone to degradation. Once the RNA is isolated, it is directly reverse-
transcribed to complementary DNA (cDNA) to ensure as little loss of information as possible
due to RNA degradation.

Second, if the DNA/cDNA is too long for sequencing, we need to selectively amplify parts of
the DNA/cDNA (e.g. using polymerase chain reaction (PCR), see Figure 2.1 and Box 5 on
page 29) or cut the DNA/cDNA into smaller pieces.Mechanical methods, such as sonification,
break up the DNA in random places, or alternatively, restriction enzymes (stemming from
bacteria) can be used to cut the DNA in specific locations. The DNA/cDNA fragments that
will be sequenced are called templates.

To start the sequencing requires that the templates are physically separated and possibly amp-
lified. Separation depends in detail on the particular sequencing technology and will be dis-
cussed in more detail as the individual technologies are introduced. Further, the first and
second generations of sequencing methods presented below have in common that the signal
from a single template instance would be too weak to be captured by the sequencer’s detection
technology. Thus, an amplification step is needed to intensify the signal, where the number
of each template present is multiplied using PCR.

Sequencing technologies then provide us with the sequence of nucleotides in the templates.
Many of these technologies produce only short reads or fragments of the biological sequences.
Bioinformatic tools can assemble these sequence fragments into the complete sequence of our
biological sample (Section 3.3).

All sequencing methods make errors, and bioinformatic tools aim to correct them. Further
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Box 5: Polymerase chain reaction (PCR)

The polymerase chain reaction (PCR) is a chemical reaction that increases the number of physical
copies of a template DNA molecule. It uses template molecules, primers, free nucleotide molecules
(dNTPs = deoxyribonucleoside triphosphates), and the DNA polymerase enzyme.

Primers are short, single-stranded DNA segments complementary to parts of the template molecules
(usually the terminal ends). One way to ensure complementarity is by designing the primers based
on selected segments from the known sequence of a genome. Another way is to attach adaptors
(short double-stranded DNA fragments) to the ends of the templates.

The DNA polymerase enzyme is an enzyme that occurs in all lifeforms and plays a central role in
DNA replication by synthesising the complement to the template DNA. A bacterial polymerase is
used for PCR, even though it is very error-prone. Other polymerases, such as human polymerase,
have much lower error rates but cannot be used since they denature at the high temperatures required
for the reaction.

A PCR starts by heating the mixture to a high temperature (90◦C) to split the double-stranded tem-
plate molecules into single-stranded templates. The mixture is then slowly cooled down to allow the
primers to bind to the templates. The polymerase enzyme then binds to where the primer ends and
the template overhangs. Polymerase synthesises the complement to the template DNA by progress-
ively adding free nucleotides, complementary to the template molecule, to the primer’s end. This
progresses until the end of the template, creating a new double-stranded DNA molecule. Each ori-
ginal double-stranded template results in two new double-stranded DNA molecules, each including
one original single strand and a complementary copy.

This cycle of heating up, cooling down, and extending primers is repeated several times until the
template molecule is amplified in sufficiently high numbers.

details on error profiles and appropriate correctionmethods can be found in Ross et al. (2013),
Elloumi (2017) and Heydari et al. (2017).

Currently, we distinguish three generations of sequencing frameworks. Each is based on
slightly different principles of detecting the signal from individual nucleotides. A rough sum-
mary of their performance is given in Section 2.1. In the remainder of this chapter, we discuss
these frameworks in detail.

2.2 First generation: Sanger sequencing

Sanger sequencing is the oldest sequencing method that still has the lowest error rate1 (Sanger,
Nicklen and Coulson 1977). As such, it continues to serve as the gold standard of sequencing.
Researchers opt for this method if an observation needs to be verified, for example, when a
genome variant needs to be confirmed as real and not a sequencing error.

1The Nobel prize in chemistry in 1980 was awarded to Frederick Sanger and his colleagues for their contribution
to the effort to decipher the genetic code.
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Figure 2.1: Polymerase chain reaction (PCR) consists of n cycles of replication of DNA tem-
plates. In each cycle, the mixture of template DNA, primers, and free nucleotides
(the dNTPs) is first heated to a high temperature to denature the double-stranded
DNA molecules and break them into single-stranded templates. The mixture is
then cooled to allow primers to bind to the template (anneal). The polymerase
will use the resulting overhangs to extend the complementary DNA strand and
complete the template duplication. At the end of the process, 2n copies of the
template will have been produced.

The throughput of this method goes up to only 100kbp per hour (kbp = kilo base pairs,
1 000bp), and the read length is up to 1 000 nucleotides. Typically, one can simultaneously
sequence up to 96 different templates per run (limited by the number of wells on the reaction
plate). One significant disadvantage of Sanger sequencing is that it requires much laborious
manual work, such as using bacteria for fragment separation and individual PCR for different
parts of the genome.

2.2.1 Separation

Sanger sequencing typically uses bacteria for template separation, primarily Escherichia coli.
Recombinant DNA molecules, each composed of a vector (e.g. a plasmid) plus an inserted
DNA fragment (the template), are introduced into a solution of bacteria. The bacteria take
up the recombinant DNA molecules with the inserted template. The concentration of recom-
binant DNA molecules in the solution is selected so that most bacteria pick up one molecule.
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Metric Generation

First Second Third

Speed (bp†/hour) 105 3× 1010 3× 108

Typical read length (bp) 1 000 2× 150 30 000*

Reads produced in parallel 96 106 105

Amplification step yes yes no

Error rate low medium medium-high
† Base pairs (number of nucleotides).
* Although the average size of fragments remains around
30 000bp, more than 2 million base pair reads have been re-
ported for Oxford Nanopore (Amarasinghe et al. 2020).

Table 2.1: Key characteristics of the three sequencing technology generations. Note that the
numbers are averages for the particular generation.

The bacteria then multiply on a plate, each creating a single colony. When a bacterium multi-
plies, it passes on a copy of its genetic information to each daughter cell. Thus, each daughter
cell gets a copy of the chromosomal DNA and, in addition, inherits a copy of the recombinant
DNA (Lodish et al. 2000). Each colony represents a clonal population stemming from a single
bacterium that took up a single template. The templates should stay separated, meaning the
individual colonies must be picked manually from the plate one by one and put into separate
reaction tubes.

2.2.2 Amplification

Next, we need to isolate the DNA from the bacteria and amplify it further. Further amplifica-
tion of the template is necessary as the sequencing method is not sensitive enough to detect the
signal on a small number of template copies. For this, bacteria are lysed (their membranes are
destroyed), and the proteins are denatured at high temperatures. Amplification is performed
with PCR (see Box 5 on page 29), employing primers complementary to the ends of the vector
into which the DNA template was inserted.

2.2.3 Sequencing

Once the amplification is finished, multiple copies of the same template are present within
each tube. Reading the template sequence requires visually distinguishing nucleotides and
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their positions in the sequence. Again, this is based on PCR and starts from a primer. How-
ever, the PCR is carried out with a mixture of normal nucleotides (normal dNTPs) and chain-
terminating inhibitors (dideoxyribonucleoside triphosphates — ddNTPs). The inhibitors are
chemically modified to disallow further nucleotide attachment and act as polymerisation ter-
minators. These molecules also contain radio-labelled phosphor to make them easier to dis-
tinguish. The first version of this method contained four steps (Sanger, Nicklen and Coulson
1977). The content of each tube is separated into four parts so that four sequencing reactions
can be performed separately. In the first reaction, the normal nucleotides are mixed with the
chain-terminating adenine A variant (ddATP). The chain is stopped whenever this nucleotide
is built in by the polymerase. After several hours, this reaction produces a mixture of short
sequences of different lengths. This reaction is repeated with chain-terminating variants of
C, T, and G. The resulting mixtures are then processed using gel electrophoresis. Shorter se-
quences move farther on the gel plates while longer sequences move less, and their positions
can be observed due to the radioactive labelling. This allows reading out the terminating nuc-
leotide for sequences of different lengths, allowing the template sequence to be reconstructed.
Figure 2.2A illustrates this process.

2.2.4 Fluorescent labels

The chain-terminating nucleotides from the original setup were later replaced by nucle-
otides labelled with fluorophores to speed up the process and eliminate the dangerous radio-
labelling. Fluorophores are molecules that emit light at a specific wavelength when excited.
As the DNA polymerase progresses along the template, it attaches different nucleotides to the
end of the primer. Again, as for the radio-labelled phosphor, since the tube contains a mixture
of unlabelled and labelled chain-terminating nucleotides, the labelled inhibitors will terminate
the primer extension at random positions as the template is being copied, producing many
partial copies of the template with varying lengths and terminal labels. In this case, we only
require one rather than four reactions as we can distinguish the four labelled nucleotides.

Afterwards, the newly produced partial copies of a template are separated on a gel using an
electric current. Again, the shorter copies will travel further in the gel as they are smaller and
thus move more easily through the gel, while the longer ones are larger and do not travel
as far. The different copies have discrete lengths, so fragments of the same length will end
up close to one another, with shorter and longer fragments being lower or higher on the gel,
respectively.

Next, a laser is used to excite the light-emitting molecules along the length of the gel. A
detector then reads the corresponding labelling of the nucleotide at each particular position
in the gel based on the colour (wavelength) of the light that is emitted. For each position,
one can determine the most common colour and thus reconstruct the template sequence.
Figure 2.2B shows a schematic of the process described here.
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Figure 2.2: Sanger sequencing follows the principle of a PCR but with labelled chain-
terminating nucleotides. A The original Sanger method uses four separate solu-
tions of radio-labelled chain-terminating nucleotides. These are mixed with nor-
mal nucleotides in four parallel reactions. Each time a chain-terminating nuc-
leotide is incorporated, DNA replication is stopped producing a sequence of a
different length. When run in gel electrophoresis, shorter DNA fragments migrate
farther than longer ones and the sequence can be read out from the bands.
B Sanger sequencing with fluorescently-labelled chain-terminating nucleotides
follows the same principle but uses a single mixture of unlabelled nucleotides
and fluorescently-labelled inhibitors. During the PCR, partial template copies of
different lengths are created, each containing a light-emitting inhibitor marking
the base at the end. The templates are again separated on a gel, and the se-
quence is read out by exciting the terminating fluorophores with a laser.
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2.3 Second generation: next-generation sequencing

Next-generation sequencing (NGS) was the name given to a group of new sequencing tech-
niques developed in the mid to late 1990s. These methods are also called high-throughput
methods as they can be parallelised to up to 6 000 million reads per run, with each read of
up to 650 nucleotides in length. Depending on the exact platform and run mode selected,
sequencing speed can go up to 30Gbp per hour (1Gbp = 109bp). As with Sanger sequencing,
NGS methods have separation, amplification, and sequencing steps, though each step is per-
formed in high throughput. The massively parallel nature of NGS methods makes them much
cheaper2 (have lower per nucleotide cost) than Sanger sequencing and allows multiplexing of
samples. In multiplexing, DNA samples from different individuals can be mixed during a se-
quencing run. To distinguish which sequence came from which individual, the DNA samples
are barcoded with a known short, unique stretch of DNA before mixing.

NGS employs high-throughput approaches for initial separation and amplification of the tem-
plates, and we discuss the various approaches below. By not relying on bacteria, NGS over-
comes the time-consuming step of separation and amplification in Sanger sequencing. How-
ever, the NGS technologies suffer from a decrease in the accuracy of the reads as the sequence
gets longer. Therefore, we can only obtain reliable sequences of a few hundred base pairs. The
reads are very accurate at the beginning of the sequence, but the error rate grows as the read
proceeds towards the end of the template.

Although third-generation sequencing exists, there is still a high demand for NGS sequen-
cers as NGS is a stable and easily available technology. Furthermore, many types of post-
processing methods are available to improve sequencing error correction, alignment, and
analysis of the reads.

Four NGS platforms have been released to the market: SOLiD (formerly Applied Biosystems,
then Thermo Fisher, now discontinued), Ion Torrent by Thermo Fisher, 454 by Roche (dis-
continued in 2016), and HiSeq/MiSeq/…by Illumina, the most widespread NGS technology
at the time of writing.

2.3.1 Pyrosequencing with 454 from Roche (discontinued in 2016)

The 454 uses emulsion PCR (see Box 6 on page 35) to separate and amplify the template
of interest. After emulsion PCR, each droplet should contain a single bead covered in the
amplified template. The beads are then distributed on a plate with wells, accommodating
exactly one bead per well. The beads are fixed and separated by falling into the wells on the
plate. This way, the amplified templates are physically separated, which is the step for which
Sanger sequencing requires bacterial cloning and manual colony picking.

2NGS sequencing is cheaper if you already own the sequencing machine. There is a tradeoff between the single-run
cost and the investment to buy the instrument.
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Box 6: Emulsion polymerase chain reaction

Emulsion PCR is a PCR where each template is amplified in its own chamber. Emulsion PCR uses
a water phase that contains the DNA templates, free nucleotides, DNA polymerase enzyme, and
beads (tiny sphere molecules) with attached primers. The water phase is mixed with oil, creating
droplets that act as PCR reaction chambers. Then a PCR is performed as explained in Box 5 on
page 29, with the single-stranded templates attaching to a primer on the bead or to a free primer
so that the complement of the template is synthesised. The mixture is set up so that most droplets
contain a single bead with a single template. Since the individual chambers do not interact dur-
ing the PCR, at the end of the amplification reaction, each bead will be covered in many cop-
ies of the template that paired up with it in the reaction chamber. However, sometimes, a single
droplet may contain one bead but more than one template, causing the bead to emit mixed signals
during sequencing. Since only a few beads in the whole reaction contain such mixed signals, this
drawback of the method is greatly overpowered by the amount of useful information produced.

Free primersdNTPs

emulsion 
oil

PCR
mix

DNA templates

Bead 
with primers

PCR amplification

The sequencing is performed as the sequence is synthesised (sequencing by synthesis). The
wells are sequentially flooded with unmodified A, C, G or T nucleotides (each flooding is
performed with only one of the four nucleotides), which are washed away before the next
nucleotide is introduced. Light is produced and recorded when that particular nucleotide is
incorporated. In particular, through a series of reactions, the nucleotide’s double phosphate
group (pyrophosphate) activates another molecule called luciferin, which emits light. This
procedure, called pyrosequencing, is shown schematically in Figure 2.3.

This method was the first next-generation sequencing technique to be released to the mar-
ket. However, it may encounter problems displaying high error rates when dealing with se-
quences containing nucleotide homopolymers (single nucleotide repeats), introducing mul-
tiple identical nucleotides. Signals generated from a high repeat number are difficult to distin-
guish from similar but slightly different repeat lengths (such as 8- and 7-nucleotide repeats).
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Figure 2.3: Pyrosequencing. The double phosphate group is detached as each new nucle-
otide is attached to the template sequence. A light-emitting molecule, luciferin,
is activated through a series of reactions, and the light is recorded to indicate
which nucleotide was incorporated.

Furthermore, the 454 sequencer itself and its consumables were quite expensive. However, this
method produced the longest reads available among next-generation sequencing methods.

2.3.2 SOLiD from Thermo Fisher (discontinued)

SOLiD sequencing also uses emulsion PCR (see Box 6 on page 35) for separation and amp-
lification of the template of interest. The beads are then transferred to a chemically treated
slide where they bind to the surface.

The sequencing itself is performed by ligation, running in the direction opposite to DNA
synthesis. First, the primer binds to the template. The reaction then uses an enzyme ligase
to join the primer to 8 nucleotide-long stretches of DNA (octamers). The binding octamers
are complementary to the template. These stretches are fluorescently labelled based on the
first two nucleotides. The last nucleotide of the stretch is modified so that no nucleotide can
attach further. Schematically, this stretch can be encoded as XYNNNZZZ, where X and Y are
the nucleotides determining the fluorescent label, N are the degenerate bases that are used for
indentation and Z are the universal bases where the last one carries the fluorescent label and
disallows the attachment of further octamers. After reading the light emitted by the fluorescent
markers labelling the combination of X and Y, one step of the process is completed. The



2.3 Second generation: next-generation sequencing 37

process continues by cutting off the last three bases of the octamer (ZZZ) to allow the next
marked octamer to attach. Once the whole template is processed in this fashion, we have
traversed its sequence in steps of 5 bases at a time: two bases are read, and three bases form
the yet unknown gaps.

After one such run, the newly created sequence is erased, and a new primer is attached. The
new primer attaches to a position in a template that is shifted forward by a single nucle-
otide with respect to the previous primer attachment position. The primer extension, sequence
erasing, and primer shifting are repeated four more times. Each base of the whole template
sequence is interrogated (read) twice due to the two-base colour-coded sequencing and the
primer shifting. The complete sequence in question can be reconstructed from the combined
light signals from each run. Figure 2.4 schematically shows the procedure of one primer ex-
tension run.

A significant advantage of this method is that each of the bases is interrogated twice during
a single run, thereby decreasing the number of potential errors. The main drawback is a low
coverage in AT-rich repetitive regions, and regions where a stretch rich in A or T nucleotides
(e.g. TAT, TAAAA, or TGTT) is repeated several times (Harismendy et al. 2009).

2.3.3 Ion Torrent from Thermo Fisher

Same as 454 and SOLiD, Ion Torrent uses emulsion PCR (see Box 6 on page 35) to amplify
and separate the templates. Each of the beads is placed in a well on a plate, and the sequencing
is performed as the sequence is synthesised. In contrast to 454, the recorded signal when a
nucleotide is added is not that of the pyrophosphate but rather a hydrogen ion (H+). Each
time a new nucleotide is attached to the synthesised sequence, a hydrogen ion (H+) is released,
which is sensed by the semi-conductor plate located below each of the wells. The H+ ion is
only released (and thus recorded) when the correct nucleotide binds in one of the four success-
ive floods of different nucleotides. No light-emitting nucleotides and no optical measurements
are required. Figure 2.5 shows the cross-section of the well with the bead and the Ion Torrent
sequencing principle.

This method has the same issue as 454, namely distinguishing homopolymer repeats. The
method’s main advantages are that it is quite cheap since it does not require any fluorescent
molecules, lasers, or detectors, and it is also fast since there is no need for steps such as the
excitation of fluorescent molecules to determine the sequence.

2.3.4 Illumina sequencers

In Illumina sequencing, the templates are separated and amplified using the solid support of a
primer-covered slide rather than beads. The templates are washed over the slide and attached
to the primers, ideally with enough space between the attached templates. Isothermal bridge
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Figure 2.4: SOLiD sequencing. This figure shows the procedure for a single run-through
of the sequencing in SOLiD. A nucleotide stretch of length 8 attaches to the
primer, which allows the light signal from the first two marked nucleotides to be
detected. Then, the last three nucleotides are cut off, and another 8-nucleotide
stretch attaches. This way, two bases get read, and three get skipped in a single
run. After a run is complete, the primer is shifted by one nucleotide, and the
procedure is repeated. Overall, five runs are performed, ensuring each base is
read twice.
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Figure 2.5: Ion Torrent sequencing. The wells containing template-covered beads are se-
quentially flooded with different nucleotides. Each time a new nucleotide is at-
tached to the template, a H+ ion is released. The ion is detected by the sensor
plate located beneath the bottom of the well containing the template-covered
bead.

amplification is then performed to create clusters of copies of the same template around the
initial attached template. Figure 2.6 shows this process.

Sequencing is performed by synthesis using nucleotides labelled with different fluorophores,
modified to act as temporary inhibitors of synthesis3. As the nucleotides are distinctly labelled,
we can wash a mixture of all nucleotides over the slide and then record the emitted light at
each spot (cluster) of the slide.

Illumina offers a wide array of machines with differing levels of throughput. The company
currently offers the best price per base pair and the fastest sequencing time. As with many
other methods using lasers and optical devices for signal detection, the accuracy of reads
decreases towards the end of the template.

2.4 Third generation: Single-molecule sequencing

The third generation of sequencing methods is the latest wave of sequencing methodologies,
allowing for much longer read lengths. At each step of the NGS sequencing process, all copies
of the template on a bead or in a cluster on a slide receive a new nucleotide; thus, the signal
comes from not one but many copies of the template simultaneously and is amplified this way.

3The HighSeq platforms use four different fluorophores, the NextSeq and MiniSeq platforms only use two. Two
nucleotides are labelled with one of these fluorophores each. The third nucleotide is labelled with both, and the
fourth nucleotide is not labelled at all. Thus, upon incorporation, the fourth nucleotide emits no light.
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Figure 2.6: Illumina sequencing. A Illumina sequencers use a solid support instead of beads.
B A primer-covered slide is washed with templates, which attach and then form
clusters as they are amplified. This process achieves what the bacterial colon-
ies were doing in Sanger: separating different templates. C During sequencing,
nucleotides modified to act as temporary inhibitors of synthesis and labelled with
different fluorophores are incorporated.

In contrast, third-generation sequencers do not need signal amplification. Instead, these aptly
named single-molecule sequencing methods can detect the signal of a single molecule. This
means they do not require target template amplification, which is one of the main sources
of errors for all previously mentioned methods. It is the main advantage of third-generation
sequencing and the main difference compared to the second-generation. For example, a single
viral genome could be sequenced without amplification, given that its genome is shorter than
the sequencer’s read length. This genome would constitute a single template to be sequenced.
Note that if we want to sequence a genome that is longer than the sequencer’s read length,
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library preparation still requires an amplification step to include templates spanning the whole
genome into the library. After sequencing the templates, assembly tools can help reconstruct
the whole genome sequence based on the individual template reads.

Third-generation sequencers employ various sequencing principles. Here, we will briefly
sketch strand synthesis (used in PacBio RS/PacBio Sequel by Pacific Biosciences) and pore-
based sequencing (used in MinION/GridION/PromethION by Oxford Nanopore) since these
have been the most widely used at the time of writing. These methods allow for average read
lengths of about 30kbp and offer high throughput with parallelisation of up to 10 million
reads per run. The disadvantage of the third-generation sequencers is that they are still quite
expensive due to the high-resolution detection systems needed to achieve single-molecule res-
olution, and the reads generally contain a higher number of sequencing errors compared to
NGS methods. However, both the costs and error rates of these methods are continuously
decreasing.

2.4.1 PacBio RS from Pacific Biosciences

PacBio uses single-molecule real-time (SMRT) sequencing technology, which does not require
PCR. A plate with wells is used to separate templates, with a polymerase attached at the
bottom of each well. The nucleotides used for synthesis are labelled with different fluorescent
markers. As the complement of the template is synthesised, the well with the polymerase is
illuminated from the bottom. The fluorophore attached to the nucleotide being incorporated
into the growing DNA strand emits light, which is immediately read by the detector. PacBio
uses proprietary technologies such as zero-mode waveguide cells that help guide and focus the
light on the bottom of the individual wells to allow for precise detection of the incorporation
of a single nucleotide. SMRT is a real-time technology since DNA synthesis and nucleotide
detection occur simultaneously, allowing the sequencer to record nucleotide incorporation
into the sequence in real-time during synthesis (Figure 2.7). In contrast, all second-generation
technologies added a nucleotide but then had to wait for the sequencer to detect the signal
before the next addition, meaning synthesis was interrupted for measurement.

This sequencing method produces raw reads with many errors, as the polymerase has a relat-
ively high error rate (10− 15%). However, this can be remedied by circularising the template
and letting the synthesis continue for several rounds (a process called circular consensus se-
quencing, CCS). Since the polymerase makes random and not position-dependent errors, the
errors will occur at different positions in each read. Bioinformatic software can thus distin-
guish errors from true nucleotides by the majority rule and exclude them from the final result.
The trade-off is that CCS reads are typically shorter than the more error-prone single-pass long
reads.
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Figure 2.7: PacBio sequencing. The reaction well with the polymerase enzyme fixed to its
bottom is illuminated from underneath. A labelled nucleotide, complementary to
the template strand, enters the reaction site of the polymerase enzyme. The nuc-
leotide is immobilised for a tiny fraction of time, sufficient for the dye attached to
the nucleotide to be illuminated and to emit a nucleotide-specific signal. The dye
is cleaved off the nucleotide upon DNA synthesis, and the nucleotide is attached
to the growing DNA strand.

2.4.2 MinION/GridION/PromethION from Oxford Nanopore

The MinION/GridION/PromethION sequencers from Oxford Nanopore all use nanopore
technology for sequencing. The nanopores can be biological, such as pore proteins within a
lipid membrane, or engineered, such as graphene. Single-stranded DNA is fed through the
pore by an enzyme attached to the edge of the pore (shown in Figure 2.8). An electric current
passes through the material in which the pores are embedded, and as a nucleotide passes
through the pore, the electric current changes. The drop in current differs depending on the size
and chemical composition of the molecule passing through the pore. As such, the sequencer
can tell which particular stretch of nucleotides passes through the pore at a specific time. The
method can even distinguish between methylated and non-methylated versions of a particular
nucleotide as it changes the time it takes to pass through the pore.

Like PacBio, the nanopore technology detects the sequence in real-time as the nucleotides pass
through the pore. Combined with special bioinformatic tools, this can allow highly efficient
species or resistance classification (within 10 minutes) (Břinda et al. 2020).
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Figure 2.8: Nanopore sequencing. The enzyme attached to the nanopore feeds the intact
template through the pore. The identity of the nucleotides is then read by the
change in the electric current caused by the template passing through the nan-
opore.





45

3 Sequence alignments

In the previous chapter, we discussed how to obtain a genetic sequence from a biological
sample of an individual (e.g. a species or an infected host). This individual is typically a rep-
resentative of a larger population. When the biological unit of interest is a species, typically,
each species is represented by a single sequenced individual from that species. For pathogens
within a host, the consensus (in a sense, the average) sequence of the pathogen population is
often used to represent that infected host.

After sequencing DNA from different individuals, we want to compare these sequences to find
similarities and differences. However, before doing this, we need to identify the regions in the
sequences that correspond to the same position in the genome for all the individual sequences.
The result of such a process is called an alignment. More precisely, alignments consist of
several sequences from different individuals (or some biological unit as listed in Section 1.1.1)
at the nucleotide or amino acid level. Sequences are called aligned if each character (nucleotide
or amino acid) within a sequence has an assigned unique position. In an alignment, sequences
are typically displayed in different rows, and characters with the same assigned position are
displayed in the same column. Each column in the alignment is referred to as a site in the
alignment. If a particular sequence has no character at a particular site, we view that specific
position as a gap (represented by a hyphen -).

In this context, we introduce three important terms, orthologues, paralogues, and homo-
logues. Two nucleotides in different sequences are orthologues (or are orthologous to one
another) if they have a shared ancestral nucleotide and were separated through speciation or
the corresponding birth event when considering biological units different from species. Sim-
ilarly, two nucleotides in different sequences are paralogues if they have a shared ancestral
nucleotide but are separated through gene duplication. The set of both paralogues and or-
thologues is referred to as homologues. The homologous nucleotides may differ in the two
sequences due to errors in replication, but that does not change their homologous nature.

When constructing an alignment, we typically aim to ensure that each site consists of ortho-
logous nucleotides, and thus, characters are ideally assigned to sites in the following way.
Suppose we know the phylogeny describing the ancestry of the different sequenced individu-
als; then, the characters across sequences are assigned to the same site if they correspond to
the same ancestral character in the most recent common ancestor sequence. The characters
at a particular site may differ across individuals due to point mutations. An insertion (or a
repeat or gene duplication) in an individual adds a site (or multiple sites) to the alignment.
All sequences that do not have this new fragment will have gaps at those sites. Similarly, the
individuals with a deletion will have gaps representing the deleted characters.
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In the case of a recombination, each character is traced back to the root sequence via its
ancestor prior to the recombination. In the case of an inversion of a part of the sequence, the
order of characters in the sequences changes when they are aligned. For example, consider
characters k, . . . , k+m in sequence A, and an inversion of characters k, . . . , k+m in sequence
B. In the alignment, assume the characters k, . . . , k + m of sequence A are assigned to sites
k, . . . , k +m. Then, the characters k, . . . , k +m of the inverted sequence are assigned to sites
k +m, . . . , k; that is, their order is reversed in the alignment.

However, since we typically do not know the true phylogeny nor the history of the evolution
of the sequences on that phylogeny, we aim to find an alignment that is hopefully close to the
true unknown alignment using a certain model or some optimisation criterion, typically not
involving a phylogeny1.

There are two types of alignments: pairwise alignmentswhere only two sequences are aligned,
andmultiple sequence alignments (MSA), where a set of multiple sequences are aligned to each
other. This chapter will discuss exact methods for pairwise alignment and heuristics for pair-
wise alignment and MSA. Exact means that the method provides the best output under some
optimality criterion (but that optimality criterion may not necessarily ensure that the output
alignment has correctly assigned the orthologues). A heuristic will not necessarily provide the
optimal answer under the optimality criterion; however, it is typically much faster than the
exact method. Heuristics for pairwise alignments are widely used for matching one sequence
against a big library, for example, using the BLAST algorithm (Basic Local Alignment Search
Tool). Heuristics for MSA are the methods of choice for aligning sequences from multiple in-
dividuals since exact methods are computationally intractable. Besides the dot-matrix method
(described in Section 3.1.1), presented alignment tools share the property that sequences are
aligned by maintaining the order of characters in each sequence and simply adding gaps to
certain positions in each sequence. In particular, these methods cannot account for inversions.
While this may bias downstream results, it is still the standard way of obtaining alignments.

As discussed in the previous chapter, the reads obtained from sequencing are often shorter
than the genomic region we want to compare across individuals. Thus, we end this chapter
by describing how the presented alignment algorithms can be used to assemble the reads to
obtain the genetic sequence of the biological sample. Once the complete genetic sequences are
assembled, we can proceed with the regular alignment and analysis techniques.

In summary, this chapter outlines the process of going from genetic samples from a population
of individuals to the alignment as illustrated in Figure 1.2, and describes how to find genetic
sequences similar to a particular sequenced one using the data mining approach BLAST.

We finish this introduction with an empirical example of a pairwise alignment.

1There are methods capable of jointly inferring both the phylogeny (the evolutionary history) and the alignment
from a set of unaligned sequences. While this approach is statistically superior to the approaches presented in
this section, it is very computationally demanding even for small datasets (Redelings and Suchard 2005; Suchard
and Redelings 2006; Redelings and Suchard 2007; Redelings 2014).
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Figure 3.1: Pairwise alignment of partial amino acid sequences of the triose-phosphate iso-
merase enzyme — responsible for efficient energy production in cells — in mos-
quito and rice.

A B

Figure 3.2: Schematic of A global and B local alignment: aligned parts of the sequences are
in blue, non-aligned parts of the sequences in orange and gaps in grey.

Example: Triose-phosphate isomerase The enzyme triose-phosphate isomerase is essen-
tial for efficient energy production in cells. Since it fulfils a vital role, it can be found in most
eukaryotes. Figure 3.1 shows an alignment of the amino acid sequence of this protein in two
very different species: rice and mosquito.

Since this is an amino acid sequence, the alignment does not only take into account perfect
matches (represented by the symbol |) but also positions where the two corresponding amino
acids have similar chemical properties and can play similar roles in the protein (represented
by the symbols !, : and . for strong, medium and low similarity, respectively). Only 36.4%
of the positions in the two sequences match perfectly; however, most positions contain similar
amino acids, meaning this is a so-called “well-conserved” protein.

3.1 Pairwise alignments

A pairwise alignment can be a local alignment or a global alignment, as shown in Figure 3.2. A
global alignment contains both sequences aligned from start to end, whereas a local alignment
only aligns sub-sequences.

Like all alignments, pairwise alignments can be between different types of sequences: protein-
protein alignments as in the triose-phosphate isomerase example, DNA-DNA, RNA-RNA,
and even DNA or RNA with protein. In the latter, there is no one-to-one correspondence
between characters in the DNA/RNA sequence and characters in the protein sequence: one
amino acid in the protein sequence corresponds to a codon (3 nucleotides) in the DNA or
RNA sequence (see Section 1.2.7). This makes dealing with insertions and deletions more
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complicated. Another difficulty is that multiple codons can encode for the same amino acid,
a phenomenon called codon degeneracy. We focus here on DNA-DNA alignments.

There are several strategies to build pairwise alignments, which we will cover in the following
sections:

(i) the dot-matrix method, which strictly speaking does not lead to an alignment but visu-
alises similarity (Gibbs and McIntyre 1970) (Section 3.1.1),

(ii) the exhaustive method of listing all possible alignments and scoring them according to
some scoring scheme (Section 3.1.2), and then returning the one or multiple alignments
with the highest score (Section 3.1.3),

(iii) the Needleman-Wunsch algorithm for global alignment (Needleman and Wunsch
1970), and its equivalent, the Smith-Waterman algorithm for local alignment (Smith
and Waterman 1981), which rely on dynamic programming to obtain the alignments
with the highest score (Section 3.1.4),

(iv) the BLAST algorithm as a heuristic for local alignments (Section 3.1.5).

Note that the exhaustive method and the Needleman-Wunsch algorithm both output the
alignment with the highest score. The latter is superior in speed due to dynamic program-
ming. Nevertheless, we also present the exhaustive method to illustrate the basic ideas behind
score-based alignments.

3.1.1 Dot-matrix method

The dot-matrix method helps visualise the similarity between two sequences (Gibbs and
McIntyre 1970). In this method, the two sequences are arranged in a matrix such that the
rows represent the characters of one sequence and the columns represent the characters of the
second sequence. Each position in the matrix in which the character in the column matches
the character in the row is marked with a dot in the respective field. All other positions are
left blank.

As shown in Figure 3.3, this method makes it easy to identify important features visually:
indels (insertions and deletions) are represented as gaps in the matrix (Figure 3.3 A). Repeats
are visible as repeated pattern blocks that are shifted horizontally or vertically (for example,
in Figure 3.3 B, there is a 3×3 block that is shifted vertically). Inversions are visible as reflected
diagonal patterns (Figure 3.3 C). However, this method does not return an alignment; rather,
it visually highlights areas of sequence similarity.
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Figure 3.3: Dot-matrices illustrating important features when comparing two sequences: A in-
sertions and deletions (indels), B repeats and C an inverted sequence.

3.1.2 Scoring schemes

Alignment methods rely on a scoring scheme or a stochastic model to evaluate alignments
and pick the one with the highest score or likelihood. The methods presented here require
a scoring scheme. In Chapter 5, we will introduce stochastic models for sequence evolution,
which can also be used for alignment methods using statistical approaches such as maximum
likelihood (the concept of maximum likelihood is explained in Box 25 on page 116).

The choice of a scoring scheme will strongly affect the result, as any optimal alignment is only
optimal under the specific scheme used to evaluate it. Most scoring schemes treat all positions
in the alignment as independent: the score of the entire alignment is simply the sum of the
scores at each position. In the simplest scheme, a position gets one of three possible scores
depending on whether there is a match, a mismatch, or a gap at this position. Matches will
increase the alignment score, whereasmismatches and gaps will decrease it. Gaps, representing
insertions or deletions, are biologically less likely to happen, so they generally incur a higher
penalty than mismatches. In particular, the order of characters in each sequence is maintained
in the alignment, and gaps are added between characters of a sequence. In our examples, we
will use the following scoring scheme:

(i) match score = 3;

(ii) mismatch score = −1;

(iii) gap score = −2.

More complex scoring schemes can be used; for example, one extension makes the gap scores
dependent on the length of the gap. The reasoning here is that opening a gap is an unlikely
event, but the longer an existing gap is, the easier it is to extend it. Another possible extension
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is to use substitution matrices (see Chapter 5), which imply different scores for mismatches
depending on which two characters are aligned at a position.

3.1.3 Exhaustive method

The exhaustive method lists all possible alignments for two sequences, scores them, and
chooses the ones with the highest score. Note that a site with a gap in both sequences will not
appear in any alignment, as such sites are uninformative and will only decrease the score. This
method will always return the alignment with the highest score, but the computation is very
slow as it depends on the total number of possible alignments. We will prove in Theorem 3.1.1
that the number of possible alignments grows very fast (in fact, exponentially) with sequence
length.

Theorem 3.1.1. For two sequences of lengths m and n, m ≥ n, the number of possible
alignments is

∑n
k=0

(
m+k
k

)(
m

m+k−n
)
.

Proof. Let A = a1 a2 . . . am and B = b1 b2 . . . bn be the two given sequences of lengths m
and n respectively, m ≥ n.

Assume there are k ≤ n gaps introduced in the sequence A in the alignment (k > n would
lead to at least one site at which both sequences would have a gap, which is not allowed).
The alignment is then of length m+ k, which means there are

(
m+k
k

)
possible gap placement

locations in sequence A.

Similarly, there are k′ gaps introduced in sequence B in the alignment, m + k = n + k′,
k′ = m+k−n. There cannot be a gap in both sequences at the same position in the alignment.
Thus, the k′ gaps in sequence B need to be aligned with characters of sequence A, which gives(
m
k′

)
=
(

m
m+k−n

)
possibilities for placing those gaps.

Finally, we need to sum over all possible values of k ≤ n to account for all possible numbers
of gaps in the alignment, arriving at

∑n
k=0

(
m+k
k

)(
m

m+k−n
)
.

This number grows very fast with the length of both sequences: for relatively short sequences
of lengths m = n = 100, there are already 2.05× 1075 possible alignments.

Thus, the exhaustive method is not practical for anything other than extremely short se-
quences.
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3.1.4 Dynamic algorithms

The Needleman-Wunsch (Needleman and Wunsch 1970) and Smith-Waterman (Smith and
Waterman 1981) algorithms are algorithms for global and local alignments, respectively. The
Needleman-Wunsch algorithm returns the same alignments as the exhaustive method: the
alignments with the highest score. The Smith-Waterman algorithm computes the best local
alignments, which returns the highest-scored sub-sequence alignments. This means that the
resulting local alignments cannot start or end with gaps, as that would decrease the score.
The local and global alignments of two sequences may be identical but usually differ. Both
algorithms score alignments faster (polynomial runtime) and thus more efficiently than the
exhaustive method (exponential runtime).

To speed up the alignment process, we observe that many possible alignments share the same

start or share some other regions. For example, the alignments A-TACC
ATTG-C

and A-TACC
ATT-GC

are

identical in the first three positions A-T
ATT

. This means that computing the score for several align-
ments from scratch would involve calculating the score of the same sub-alignment. Therefore,
we can speed up the score calculations by storing the scores of the sub-alignments instead of
recomputing them every time.

Moreover, we can go one step further and directly determine the highest-scoring sub-
alignments (pairwise alignments of sub-sequences), save their scores, and use them to obtain
the highest-scoring complete alignment. This technique of using a solution to a subproblem to
solve the complete problem is called dynamic programming. This general technique is often
used in bioinformatics, phylogenetics, and phylodynamics, as seen throughout this book.

The Needleman-Wunsch and Smith-Waterman algorithms apply the concept of dynamic pro-
gramming by storing the scores of best sub-alignments in a matrix that spans the two se-
quences. This matrix contains information in the form of arrows to reconstruct the highest-
scoring complete alignment based on the values in the matrix. In principle, the two algorithms
are very similar and differ only in minor details. We will explain the general ideas by focus-
ing on the Needleman-Wunsch algorithm and then highlighting the differences in the Smith-
Waterman algorithm.

3.1.4.1 Needleman-Wunsch algorithm

Suppose we want to align two sequences, A = a1 a2 . . . am and B = b1 b2 . . . bn, where ai
denotes the character at position i in sequence A and bj the character at position j in sequence
B. To determine the highest-scoring alignment, we write down a matrix, H, of dimensions
(m + 1) × (n + 1). Recall that the cell (i, j) in a matrix is the entry in the ith row and jth
column. For convenience, we count the rows and columns starting from 0. Rows 1 to m
represent the characters of sequence A, and columns 1 to n column represent the characters
of B, as shown in Figure 3.4 A.
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In the Needleman-Wunsch algorithm, the entry in the scoring matrix HNW at position (i, j),
denoted by HNW(i, j), represents the score of the highest-scoring alignment of sequences
a1 a2 . . . ai and b1 b2 . . . bj . Note that i = 0 corresponds to an empty sub-sequence of A,
and j = 0 corresponds to an empty sub-sequence of B. The initial condition isHNW(0, 0) = 0;
that is, the score of an empty alignment is 0.

Now we iteratively fill out the matrix for all i, j, where HNW(m,n) will contain the score of
the highest-scoring alignment of sequences A and B. Assume we have calculated HNW(k, l)
for all k ≤ i and l ≤ j where k + l < i+ j. Next, we want to calculate HNW(i, j). There are
three choices for the possible alignment of sub-sequences a1 a2 . . . ai and b1 b2 . . . bj , but we
really only need to consider the last characters of the sub-sequences, ai and bj :

(i) if ai and bj are aligned and the best score of the alignment of the sequences a1 a2 . . . ai−1

and b1 b2 . . . bj−1 is HNW(i− 1, j − 1), then we need to add the score for a (mis-)match
(depending on whether ai = bj or not), s(i, j), to HNW(i− 1, j − 1) to get HNW(i, j);

(ii) if bj is aligned with a gap in sequence A and the best score of the alignments of sequences
a1 a2 . . . ai and b1 b2 . . . bj−1 is HNW(i, j − 1), then we need to add the gap penalty, w,
to HNW(i, j − 1) to get HNW(i, j);

(iii) if ai is aligned with a gap in sequence B and the best score of the alignments of sequences
a1 a2 . . . ai−1 and b1 b2 . . . bj is HNW(i− 1, j), then we need to add the gap penalty, w,
to HNW(i− 1, j) to get HNW(i, j).

As we are looking for the highest score HNW(i, j) at position (i, j), we need to calculate all
three possibilities and choose the sub-alignment leading to the highest value.

In mathematical terms, we can express these rules as

HNW(i, j) = max


HNW(i− 1, j − 1) + s(i, j) (mis-)match (case 1),
HNW(i, j − 1) + w gap in sequence A (case 2),
HNW(i− 1, j) + w gap in sequence B (case 3),

(3.1)

where s(i, j) is the score of a match if ai = bj and the score of a mismatch otherwise, and w
is the score of a gap.

For each value HNW(i, j), we additionally note whether the best score comes from cases 1, 2,
or 3 in Equation (3.1). If the best score at position (i, j) resulted from case 1, the addition of
a (mis-)matched character pair ai, bj to the sequence represented at position (i− 1, j − 1), a
diagonal arrow from field (i− 1, j − 1) to field (i, j) is added. If the best score was achieved
by adding a gap to A (case 2), we draw an arrow to the right, from field (i, j − 1) to (i, j). If
the best score was achieved by adding a gap to B (case 3), we draw a down arrow from field
(i − 1, j) to (i, j). Several options can give the same score, in which case all corresponding
arrows are noted. An example is shown in Figure 3.4 B.

Once the score matrix has been filled, the best global alignment score is found in the bottom
right corner of the matrix, in position (m,n). The alignment can be reconstructed by following
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Figure 3.4: Example of filling out the score matrix in the Needleman-Wunsch algorithm. A Ini-
tial and B complete score matrices for the sequences A = AATC and B = CATG

using the Needleman-Wunsch algorithm. We attribute a score of 3 to matches
(s(i, j) = 3 if ai = bj), -1 for mismatches (s(i, j) = −1 if ai 6= bj) and penalise a
gap with w = −2.

the arrows backwards to the top left corner of the matrix, position (0, 0), and adding the
corresponding characters to the alignment as we traverse the matrix in reverse:

(i) if the arrow pointing to position (k, l) is diagonal, then characters ak and bl are added
to the alignment, aligned with each other;

(ii) if the arrow pointing to position (k, l) is a right arrow, then the character bl is added to
the alignment, aligned with a gap in sequence A;

(iii) if the arrow pointing to position (k, l) is a down arrow, then the character ak is added
to the alignment, aligned with a gap in sequence B.

Figure 3.5 A illustrates how to read the arrows and build the alignment in reverse order.
Figure 3.5 B demonstrates how to go backwards in the example from Figure 3.4 and obtain
the global alignment. Note that if more than one arrow points towards position (k, l), each
way leads to an alignment with the same (highest) score.

The number of calculations required to obtain the best global alignment can be obtained by
noting that we need the following steps: (i) to fill out each cell of the matrix, we evaluate
three products (perform three calculations) over which we take the maximum (see rule for
HNW(i, j)); (ii) we fill out (m+1)×(n+1)matrix entries; (iii) we reconstruct the alignment by
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Figure 3.5: Constructing the alignment using the Needleman-Wunsch algorithm. A Schem-
atic of how to read the arrows in the score matrix. B Score matrix of the example

in Figure 3.4 with the way through the matrix. The final global alignment is AATC
CATG

and has a score of 4.

tracing back at mostm+n arrows. This amounts to 3×(n+1)×(m+1)+(n+m) calculations.
Thus, for the Needleman-Wunsch algorithm, we have the polynomial runtime O(nm) (see
Box 7 on page 55). Note that for n = m = 100, this is on the order of 104 steps, while
the exhaustive method with an exponential runtime is on the order of 1075 steps, illustrating
the power of the dynamic programming method to make complex problems computationally
tractable.

3.1.4.2 Smith-Waterman algorithm

The Smith-Waterman algorithm (Smith and Waterman 1981) returns the best local alignment
of two sequences, only aligning sub-sequences. More precisely, it finds the best alignment for
sub-sequences ai, . . . , ak and bj , . . . , bl, where i, j, k, l are chosen such that the score of the
alignment is the maximal score. The algorithm follows a scheme similar to the Needleman-
Wunsch algorithm. However, it differs in the initialisation of the score matrix, the calculation
of the scores, and the start/end of the reverse alignment reconstruction from the score matrix.
We will now describe how to fill out the scoring matrix, HSW. As before, we denote the two
sequences with A and B and their lengths with m and n, respectively.
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Box 7: Landau symbol and algorithmic runtimes

The Landau symbol or big O notation is used to provide an approximation of the asymptotic be-
haviour of a function. The notationO was first used by the German mathematician Paul Bachmann
and widely spread by the German mathematician Edmund Landau. Thus, this notation is also re-
ferred to as Bachmann-Landau notation and goes back to the German expression “Ordnung von”,
which translates to “order of”.

A function f(x), where x is a real value, has the order of g(x), a positive real-valued function if
there exist some constants C and x0 such that |f(x)| ≤ C × g(x) for all x > x0. We denote this
property by f(x) = O(g(x)).

Throughout this book, we use the O-notation to report asymptotic runtimes. Runtime on the order
O(g(N)) means that there exist some constants C and N0 such that the number of calculations
required to solve the problem, f , is f ≤ C × g(N) for all N > N0, where N is the input data size.

We say that an algorithm has polynomial runtime if g(N) = Nk, where k is some constant that
is independent of N . We say that an algorithm has exponential runtime if g(N) = eN

k
. Since

polynomials grow much slower in N than exponentials, algorithms with polynomial runtime are
much faster than those with exponential runtime. Linear runtime is a special case of polynomial
runtime where k = 1.

Note that f(x) = O(g(x)) establishes an upper bound; for example, an algorithm with runtime
O(N) is always also an algorithm of runtime O(eN ).

Initialisation The score matrix HSW has the dimensions (m+1)× (n+1), exactly as HNW.
However, the entries of row 0 and column 0 are set to 0.

Score matrix The score matrix is then successively filled based on the scoring function:

HSW(i, j) = max


0 (stop),
HSW(i− 1, j − 1) + s(i, j) (mis-)match (case 1),
HSW(i, j − 1) + w gap in sequence A (case 2),
HSW(i− 1, j) + w gap in sequence B (case 3),

(3.2)

where s(i, j) is the score of a match if ai = bj and the score of a mismatch otherwise, and w
is the score of a gap.

Building the final alignment The alignment reconstruction starts at the position with the
highest score, (k, l) (rather than the bottom right field (m,n)). This highest score is the score
of the local alignment, which ends with the aligned nucleotides ak, bl. The alignment recon-
struction proceeds similarly to the Needleman-Wunsch algorithm but stops when a position
(i−1, j−1)with a score of 0 is reached. The alignment thus starts with the aligned nucleotides
ai, bj . Figure 3.6 shows the Smith-Waterman score matrix for the example sequences AATC
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Figure 3.6: Example of the score matrix using the Smith-Waterman algorithm for sequences
A = AATC and B = CATG. We again use the scoring scheme s(i, j) = 3 if ai = bj ,

s(i, j) = −1 if ai 6= bj , and w = −2. The best local alignment is AT
AT

.

and CATG (the same sequences we used in the Needleman-Wunsch example). The best local

alignment is AT
AT

whereas the best global alignment was AATC
CATG

.

This procedure ensures that we find the alignment of sub-sequences with the highest score;
that is, we find the best local alignment. Like in the Needleman-Wunsch algorithm, several
local alignments can have the same highest score and thus are equally good. Again, the runtime
is O(nm).

3.1.5 Heuristic alignments: BLAST

Imagine we obtained a genetic sequence and want to discover whether this or a similar se-
quence has been found before. This problem requires a large number of pairwise sequence
alignments and can arise in different contexts:

(i) imagine a patient who suffers from symptoms that cannot be unanimously assigned to a
specific disease; the only clue we have is a pathogen sequence extracted from the patient,
and we want to find out which pathogen it is;

(ii) imagine we found a gene in an organism, but we are not sure which function this gene
encodes;
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(iii) or, imagine that we have sequenced the genome from a particular individual but do not
know which species it belongs to.

These cases have in common that one obtains an unknown sequence, in this context, also
referred to as a query sequence. We want to compare the query sequence to already known
sequences from a huge database — referred to as library. In particular, we want to find homo-
logues of the query sequence. Known characteristics of the homologues, such as the corres-
ponding species or function, allow us to hypothesise about the characteristics of the query
sequence and, consequently, about the individual from which the sequence was obtained.
Differences between the query sequence and its homologues inform us about genotypic vari-
ation between the underlying individuals. Investigating the differences can be done either using
GWAS-like approaches (Chapter 4) or by reconstructing evolutionary history in the form of
the phylogeny (Chapter 6).

The comparison of the obtained sequence to the sequences in the library essentially means
that we calculate local pairwise alignments between our obtained sequence and each library
sequence. Although the dynamic programming algorithms introduced in Section 3.1.4 are
much more efficient than the exhaustive approach in calculating these pairwise alignments,
they are still too slow for scanning a big library of sequences.

One solution is to use Basic Local Alignment Search Tool BLAST (https://blast.ncbi.
nlm.nih.gov/Blast.cgi), a heuristic word algorithm first published by Altschul et al.
(1990). BLAST takes advantage of the fact that two similar sequences contain local align-
ments of short sub-sequences with high alignment scores. Two completely different sequences
do not contain such local alignments and can be excluded early in the search process.

Let the query sequence be of length n. In general, the algorithm has three steps:

1. compiling a list of words of a certain length based on the query sequence,

2. scanning the database (the library) for hits (matches) to these words, and

3. extending found matches.

Step 1: Words of short length are determined based on the query sequence of length n. A
word is a sequence of length k (also called a k-mer). A simple option to generate such a list
is to break down the query sequence into k-mers by starting at the first position and moving
one character for each new word. The word list then contains n− k + 1 words.

For example, let us consider the following query sequence of length n = 10:

NYEFILKWCL

This sequence can be cut into the following 3-mers:

NYE YEF EFI FIL ILK LKW KWC WCL

https://blast.ncbi.nlm.nih.gov/Blast.cgi
https://blast.ncbi.nlm.nih.gov/Blast.cgi
https://blast.ncbi.nlm.nih.gov/Blast.cgi
https://blast.ncbi.nlm.nih.gov/Blast.cgi
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Thus, only words that occur in the original sequence are considered.

When searching for a nucleotide sequence, the standard setting for k-mer length is k = 28; a
match is scored with +1 and a mismatch with −2.

Another option to generate the word list—which is suggested in the original paper by Altschul
et al. (1990) for amino acid sequence searches — is to consider all k-mers that align with some
part of the query sequence and have an alignment score that is bigger than a pre-defined value
T . The authors used the PAM-120 matrix2 to determine the score of the k-mers (Altschul et al.
1990). Nowadays, the default substitution matrix for the most common BLAST implementa-
tion for amino acid sequence alignment is BLOSUM62 (BLOcks SUbstitution Matrix, shown
in Figure 3.7)3. For the following explanation of the BLAST algorithm, we will also use the
BLOSUM62 matrix for amino acid substitutions.

Let us again consider the sequence NYEFILKWCL as an example, and let us assume that we
only consider words of length k = 3 that score at least T = 18 when aligned to the query
sequence. The score is calculated using the BLOSUM62 matrix (Figure 3.7). For example, let
us compute the score SNYE of the 3-mer NYE when aligning to NYEFILKWCL:

NYEFILKWCL
NYE-------

This local alignment has the score SNYE = 6 + 7 + 5 = 18. If we only include words with a
score of at least T = 18, NYE would be added to the list.

However, the best alignment of the substring EFI looks like this:

NYEFILKWCL
--EFI-----

It scores SEFI = 5 + 6 + 4 = 15 and would not be added to the list of words, even though it
is an exact substring of the query sequence.

The word TWC however aligns as follows:

NYEFILKWCL
------TWC-

2The PAM (point accepted mutation) matrix describes substitution scores from one amino acid to another. The
PAM-1 matrix lists the substitution scores in case 1% of the sequences were different, PAM-250 lists these scores
in case 20% amino acids were different. PAM matrices are not symmetric, so, for example, a substitution from G

to F can have a different score than F to G (Dayhoff, Schwartz and Orcutt 1978).
3The BLOSUM family contains symmetric amino acid substitution matrices. The alignment score of two sequences
that are 62% identical sum up to 1. These matrices were introduced in Henikoff and Henikoff (1992).



3.1 Pairwise alignments 59

C 9

S −1 4

T −1 1 5

P −3 −1 −1 7

A 0 1 0 −1 4

G −3 0 −2 −2 0 6

N −3 1 0 −2 −2 0 6

D −3 0 −1 −1 −2 −1 1 6

E −4 0 −1 −1 −1 −2 0 2 5

Q −3 0 −1 −1 −1 −2 0 0 2 5

H −3 −1 −2 −2 −2 −2 1 −1 0 0 8

R −3 −1 −1 −2 −1 −2 0 −2 0 1 0 5

K −3 0 −1 −1 −1 −2 0 −1 1 1 −1 2 5

M −1 −1 −1 −2 −1 −3 −2 −3 −2 0 −2 −1 −1 5

I −1 −2 −1 −3 −1 −4 −3 −3 −3 −3 −3 −3 −3 1 4

L −1 −2 −1 −3 −1 −4 −3 −4 −3 −2 −3 −2 −2 2 2 4

V −1 −2 0 −2 0 −3 −3 −3 −2 −2 −3 −3 −2 1 3 1 4

F −2 −2 −2 −4 −2 −3 −3 −3 −3 −3 −1 −3 −3 0 0 0 −1 6

Y −2 −2 −2 −3 −2 −3 −2 −3 −2 −1 2 −2 −2 −1 −1 −1 −1 3 7

W −2 −3 −2 −4 −3 −2 −4 −4 −3 −2 −2 −3 −3 −1 −3 −2 −3 1 2 11

C S T P A G N D E Q H R K M I L V F Y W

Figure 3.7: BLOSUM62 matrix as derived in Henikoff and Henikoff (1992).

It scores STWC = −1 + 11 + 9 = 19 and would be added to the list of words even though it is
not an exact substring of the query sequence. This way of generating the list of words based
on similarity score is used in protein BLAST with the standard settings k = 6 and T = 10.
The authors of the original publication state that “[i]f a little care is taken in programming,
the list of words can be generated in time essentially proportional to the length of the list.”
(Altschul et al. 1990).
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Query sequence: —- NYEFILKWCL

Sequence from database: —- NYEFGGTWCL

Step Word Score

Initial word ---TWC-- 5 + 11 + 9 = 25

Expansion 1 ---TWCL- 5 + 11 + 9 + 4 = 29

Expansion 2 --LTWCL- −4 + 5 + 11 + 9 + 4 = 25

Expansion 3 -ILTWCL- −4− 4 + 5 + 11 + 9 + 4 = 21

Figure 3.8: Illustration of the word extending step of BLAST. We start with the word TWC from
the list (Step 1), which aligns to the query sequence with a score of 19. This word
aligns to the database sequence with a score of 25 (Step 2). We extend this word
with characters from the query sequence (Step 3). If the score for the extended
word drops below a certain threshold from its highest score at any point, the
algorithm stops. In this example, the algorithm stops if the score drops below
20% of the highest score (20% × 29 = 5.8, so below 29 − 5.8 = 23.2), which
happens after the third extension step.

Step 2: For each entry in the library, it is checked whether a local alignment with one word
of the list exceeds a pre-defined score T ′, which can be different from the acceptance score T
in the first step. Only the sequences that were aligned with a score greater or equal to T ′ are
further processed in step 3.

Step 3: The word is successively extended to both sides by the characters from the query
sequence, and with each addition of a new character, the score between this extended word
and the word from the library is recalculated. The process terminates when the score drops
farther than a certain value below the best score for a shorter word. See Figure 3.8 for an
illustration of this process. The scores and the local alignments are reported as the output of
the BLAST search.

Using the standard BLAST software, one can search for both nucleotide and protein se-
quences. The acceptance scores and the (mis-)match scores can be adapted according to spe-
cific needs. In addition, gaps can be considered. Moreover, the acceptance criterion in Step 3
is normally more involved than what is presented in Figure 3.8 (a more detailed explanation
can be found in Altschul et al. (1997)). BLAST’s runtime depends on the library structure and
can not be precisely estimated. However, in practice, the algorithm is extremely fast and scans
huge libraries within seconds. The original BLAST algorithm sped up local alignment searches
by an order of magnitude (Altschul et al. 1990). Note that while BLAST has substantial speed
advantages over a search where one would use the Smith-Waterman algorithm for each pair
of query and library sequences, BLAST does not necessarily return the best local alignment
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between these two sequences based on the chosen scoring scheme (Pertsemlidis and Fondon
2001).

3.2 Multiple sequence alignments

Whenmore than two sequences need to be aligned, we speak of amultiple sequence alignment
(MSA). This is a common situation since MSAs form the basis of many larger comparison
studies and are central to phylogenetic tree reconstruction. A multiple sequence alignment
method aims to align a set of biological sequences (DNA, RNA, proteins), taking into account
evolutionary events such asmutations, insertions, and deletions. Similar to the case of pairwise
sequence alignments (see Section 3.1), computing an MSA requires optimising an objective
function (anMSA score) over all possible alignments. As for pairwise alignments, this typically
means maximising a sequence similarity measure (the alignment score).

MSA algorithms tend to be computationally expensive. Several possible strategies for com-
puting an MSA exist:

(i) align all sequences against a reference sequence using pairwise alignment algorithms,
which requires that a reference sequence is known and that all sequences in the align-
ment belong to the same or very closely related species;

(ii) extend the Smith-Waterman algorithm for multiple sequences, which will produce an
exact solution but requires mk calculation steps for k sequences of length m (meaning
it has exponential computational complexity in k);

(iii) use heuristic algorithms that are faster than the exact methods but do not guarantee the
optimal alignment with respect to the chosen scoring system, so they require the user to
check and possibly adjust the alignment.

If we lack a good reference sequence and the dataset is too large for an exact algorithm, we
are left with heuristic (approximate) algorithms for multiple sequence alignment. In the next
section, we introduce such a heuristic.

3.2.1 Heuristic multiple sequence alignment methods

Generalising the pairwise alignment methods by reconstructing an alignment that maximises
the sum of similarities for all pairs of sequences (the sum-of-pairs or SP score) (Edgar and
Batzoglou 2006) leads to an MSA estimate. However, this problem formulation lacks a rigor-
ous theoretical foundation for why evolution would lead to the maximal sum-of-pairs score
and ignores any available phylogenetic information. Importantly, finding the alignment with
the best SP score isNP-complete (see Box 28 on page 154) and the computational time and the
required memory scale exponentially with the number of sequences (Wang and Jiang 1994).
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Progressive alignment algorithms are the most common heuristic to speed up MSA computa-
tion. Rather than computing all-against-all alignments, a progressive scheme aligns a set of k
sequences by performing k − 1 pairwise alignments with, for example, Needleman-Wunsch,
where the inclusion order of sequence pairs is defined by a pre-computed guide tree (Ho-
geweg and Hesper 1984). The guide tree is usually computed using the neighbour-joining
or UPGMA algorithms (Section 6.3.1.1) on a distance matrix derived from pairwise align-
ments of the input sequences (Hogeweg and Hesper 1984; Higgins and Sharp 1988). The
primary example of a progressive alignment method is ClustalW (https://www.genome.
jp/tools-bin/clustalw) (Thompson, Higgins and Gibson 1994). Introduced in 1994, it is
still widely used, although it is less scalable and accurate than more modern approaches. Fur-
ther, progressive alignment methods, in general, rely heavily on the correctness of the guide
tree, which can substantially impact downstream phylogenetic analysis (Tan et al. 2015).

The progressive alignment approach has been embedded in iterative strategies (iterative align-
ment algorithm), where the guide trees and alignments are re-estimated until both con-
verge, greatly improving the accuracy. Popularmethods areMUSCLE (http://www.ebi.ac.
uk/Tools/msa/muscle/) (Edgar 2004), MAFFT (https://mafft.cbrc.jp/alignment/
software/) (Katoh et al. 2002), or ClustalOmega (https://www.ebi.ac.uk/Tools/msa/
clustalo/) (Sievers et al. 2011).

To estimate large MSAs, the guide tree estimation has been replaced by a fast pre-clustering
step using a small set of seed sequences to determine inclusion order. Examples are PartTree
in MAFFT (https://mafft.cbrc.jp/alignment/software/), or ClustalOmega (https:
//www.ebi.ac.uk/Tools/msa/clustalo/). These methods scale well, but at the cost of
reduced accuracy (Chatzou et al. 2016).

Another class of fast progressive alignment methods cluster sequences by a tree-based de-
composition — for example, SATé-II finds the longest branch in the current guide tree and
uses it to break the tree into two subsets. It continues to break up the longest branches
in the subtrees until each subset contains at most 200 sequences. After decomposition, ex-
ternal tools are used to align the subsets, merge the resulting sub-alignments, and recon-
struct a guide tree for the next iteration. While such tools do iterate over MSA and tree
reconstruction, they rely on external reconstruction tools that do not share common evol-
utionary models, making their statistical properties hard to evaluate. Examples are SATé
(https://phylo.bio.ku.edu/software/sate/sate.html) (Liu et al. 2009) and PASTA
(https://github.com/smirarab/pasta) (Mirarab et al. 2015).

The main problem of progressive alignment methods is that they can get stuck in a local
optimum of the MSA score, especially when dealing with divergent sequences (Chatzou et
al. 2016). Consistency-based alignment methods attempt to avoid such local optima. Rather
than optimising the MSA score, consistency-based algorithms maximise “agreement” (con-
sistency) within the set of all pairwise alignments computed for the input sequences. Here,
agreement means that alignments should have the same evolutionary implications, meaning
that if A is similar to B and B is similar to C, then A should be similar to C. Effectively, this
involves computing pairwise alignments for all input sequences and then assigning them an
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agreement score that signifies their compatibility with the rest of the pairwise alignments.
Consistency-based methods perform progressive or iterative alignment using this agreement
score rather than the MSA score. Consistency-based aligners vary in how they compute the
pairwise alignments and their scores but typically yield accurate MSAs, although at a signi-
ficant computational cost. Examples are T-Coffee (https://tcoffee.crg.eu/) and Prob-
Cons (http://probcons.stanford.edu/) (Notredame, Higgins and Heringa 2000; Do et
al. 2005).

A further push has been to include indel modelling into MSA estimation. One of the first
such evolution-based aligners was PRANK (http://wasabiapp.org/software/prank/)
(Löytynoja and Goldman 2005). PRANK still uses a progressive approach to aligning se-
quences along a guide tree. However, it models insertions and deletions in an evolutionarily
meaningful way that maintains character homology4 and uses the phylogenetic information
coming from the guide tree, resulting in better alignments overall (Löytynoja 2014).

Lastly, the latest promising development is co-estimating alignments and phylogenetic trees
while modelling indel evolution. The difficulty in such approaches is that they require a
tractable evolutionary model that would allow estimating both objects. Such methods are
computationally highly intense and so far are applicable only to small datasets; however,
the amount of data such methods can handle has been consistently growing in the last
few years. As of now, there are two Bayesian approaches available — BAli-Phy (https:
//www.bali-phy.org/), which is in active development and can handle up to 100 sequences
(Redelings 2021), and StatAlign (https://statalign.github.io/), which can process up
to 30 sequences (Novák et al. 2008). Another project in active development is a frequent-
ist joint alignment and tree co-estimation tool (Pečerska, Gil and Anisimova (2021), JATI
(https://github.com/acg-team/JATI)) based on a tractable model of sequence evolution
with single-character indels (Bouchard-Côté and Jordan 2013).

In general, it is worth making multiple alignments with different software and checking the
consistency between them. This avoids proceeding with downstream analyses with an MSA
that is only a local optimum rather than a globally good estimate.

This section discussed evolutionary-based alignment approaches aiming to align homologous
nucleotides. We end by noting that a large number of structural alignment approaches are
available. They aim to describe structural similarity, for example, in proteins, based on their
tertiary structure. These kinds of alignments can be used on sequences separated by large evol-
utionary distances; however, they may display similarities resulting from convergent evolution
rather than shared evolutionary history. Since this book focuses on evolutionary history, we
do not discuss these approaches further.

4Homologous characters necessarily have the same ancestor, meaning that each position in an alignment can only
be described by a single insertion event.
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3.3 From sequencing reads to genome sequences

So far, we have studied how to align sequences from different individuals. However, an in-
dividual’s genome is typically too large to be sequenced all in one piece. Instead, sequencing
technologies produce reads, which are incomplete snapshots of the underlying sequence of
interest (see also Chapter 2). There are two main avenues to reconstruct the original sequence
from the sequencing reads (assembly): if there is a good reference genome available, one can
align the reads against this reference using a short-read alignment method; otherwise, de novo
assembly is needed. Performant tools all rely on particular data structures for efficient as-
sembly; we refer the reader to the provided references for details on these data structures.

3.3.1 Short-read alignment methods

Many short-read alignment and assembly methods exist, and the choice of method typic-
ally depends on the sequencing technology used, as well as the required trade-off between
speed and sensitivity. Second- and third-generation sequencing techniques produce such a
great amount of data that typically, heuristic algorithms need to be used, specifically methods
that are optimised for speed and memory usage. The methods make assumptions about the
expected length, number, and error profile of the reads, which are specific to the sequencing
technology used.

Generally, short-read alignment methods align short-reads against the reference genome. The
methods typically use a multistep procedure: the first step uses a heuristic technique to find
a small subset of possible mapping locations of a read against the reference. In the second
step, this alignment is refined using more accurate methods, such as Smith-Waterman, on
the limited subset of locations. To scan the reference or the input reads more quickly, most
alignment methods construct auxiliary data structures called indices. Based on the type of
index used, we can distinguish twomain families of short-read alignment methods: hash table-
based methods and Burrows-Wheeler transform-based methods (Flicek and Birney 2009).

The hash-based alignment methods build a so-called hash table data structure (Sanders et al.
2019) from the sequence data to index and scan the data. These methods were the first to
attempt short-read alignment and are effectively inspired by the BLAST algorithm (see also
Section 3.1.5). They hash either the set of input reads or the reference genome (the database),
then use the other set (the query) to scan the hash table. More specifically, they analyse the
query to find all k-mers (small, fixed length subsequences) and keep the position of each k-mer
in a hash table, using the k-mer as the key. Then, the database is scanned for exact matches to
the k-mer, called seeds. These seeds are then extended on both sides and Smith-Waterman is
used to produce a final alignment. Examples are MAQ (https://maq.sourceforge.net/)
(reads hashed) (Li, Ruan and Durbin 2008), or SOAP (http://soap.genomics.org.cn/)
(reference hashed) (Li et al. 2008).

https://maq.sourceforge.net/
https://maq.sourceforge.net/
http://soap.genomics.org.cn/
http://soap.genomics.org.cn/
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Burrows-Wheeler transform methods use the FM-index data structure proposed by Ferragina
and Manzini (2000). This index is a practical improvement on the suffix array: a data struc-
ture that stores all the suffixes of a string to allow fast string matching. Ferragina and Man-
zini showed that a suffix array can be stored more efficiently if generated from the Burrows-
Wheeler transformed version of the sequence rather than the original. The FM-index retains
the rapid subsequence search of a regular suffix array, but the final index is much smaller. Such
Burrows-Wheeler transform implementations are typically much faster than their hash-based
counterparts with similar sensitivity levels (e.g. BOWTIE is 30 times faster than MAQ). Ex-
amples are Bowtie2 (https://bowtie-bio.sourceforge.net/bowtie2/index.shtml)
(Langmead and Salzberg 2012), Maw (https://maq.sourceforge.net/) (Li and Durbin
2009), SOAP2 (http://soap.genomics.org.cn) (Li et al. 2009b).

Once the reads have been aligned to the reference genome, a consensus sequence or variant
sequences can be called using specialised tools that take into account both the majority nucle-
otide for every site as well as the sequence read quality at each base (Li et al. 2009a; Li 2011;
Danecek et al. 2021).

3.3.2 De novo assembly methods

The de novo assembly methods can be divided into those using an overlap-layout-consensus
strategy or de Bruijn graphs as underlying data structure (Staden 1979; Idury and Waterman
1995; Compeau, Pevzner and Tesler 2011; Flicek and Birney 2009). Both frameworks require
at least a portion of the reads to be longer than the longest near-identical repeat in the genome
to create long assemblies de novo.

Overlap-layout-consensus methods use overlaps between reads to find the most likely lin-
ear consensus of all of them. This read-centric method works best for long-read methods,
like Sanger sequencing and third-generation sequencing technologies. It is computationally
infeasible for second-generation sequencing data because of the large number of reads and
overlaps that need to be tracked.

The second assembly framework uses the de Bruijn graph data structure (de Bruijn 1946;
Compeau, Pevzner and Tesler 2011). A de Bruijn graph is based on k-mers: it has a node
for every k-mer observed in the sequence set and an edge between nodes if these k-mers are
observed next to each other in a read. Reads will be split across their component nodes, and
if the sequence contains a repeat region, this will be stored as a set of adjacent k-mers that
many reads pass through. On the edges of the repeat, the leading and trailing k-mers will
be connected to several different k-mers, representing the distinct positions of this repeat in
the genome. How the assembler resolves the resulting forks and bubbles in the de Bruijn
graph is one of the main distinguishing features of the method implementations. The main
requirement is that the reads have to be longer than the k-mer length, whereby larger k-mers
are better but have to be supported by sufficient coverage. The big advantage of this method
is that the graph can be constructed in O(n), where n is the number of reads. However,
the memory requirements are often still a limiting factor. Examples are VELVET (https://
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github.com/dzerbino/velvet) (Zerbino and Birney 2008), ABySS (https://www.bcgsc.
ca/resources/software/abyss) (Simpson et al. 2009), SPAdes (https://cab.spbu.ru/
software/spades/) (Bankevich et al. 2012).
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4 Genetic associations

Once sequences of different individuals have been aligned using local or global alignment
tools, the differences between genotypes can be investigated. One way to compare sequences
is to look for single nucleotide polymorphisms (SNPs1) and identify their phenotypic con-
sequences. A SNP refers to variation at a single position in the DNA sequence among indi-
viduals. If more than 1% of a population carries the same nucleotide at a specific position in
the DNA sequence (compared to the majority nucleotide at that site), this variation is called a
SNP (NIH National Cancer Institute 2023). SNPs can occur both within coding regions and
in noncoding regions of DNA. If it occurs in the coding region, we have a connection with
the terms introduced earlier: a gene has more than one allele if a SNP occurs within this gene.
In such a case, the SNP may lead to variation in the amino acid sequence and, consequently,
in the phenotype.

By comparing the characters present at each site, we can identify SNPs in an alignment. Note
that if we know which site in the alignment harbours a SNP, we can target this SNP posi-
tion in the genome directly via microarray genotyping (these technologies have been reviewed
in Distefano and Taverna (2011)), which allows quick screening of many individuals for spe-
cific SNPs without sequencing. Targeting specific positions like this has the added benefit of
not requiring an alignment, saving time and resources.

A key question is whether the different alleles at a SNP position — called SNP-alleles
— are linked to different phenotypes. For example, the genome of any two people is
99.9% identical (The International HapMap Consortium 2003). Not only do the 0.1% non-
identical sites determine physical appearance, but they also impact the risk of developing
genome-associated diseases such as Alzheimer’s disease (Corder et al. 1993) or type II dia-
betes (Altshuler et al. 2000). The HapMap consortium was initialised to identify the SNPs in
the human genome that might affect human health (The International HapMap Consortium
2003). If we know that certain SNPs are associated with a malignant trait, we can examine
the parts in the DNA around these SNPs to identify the gene or genes responsible for the trait,
which is a basis for developing treatment options.

This chapter will discuss the case-control setup, a very common analysis tool for studying
genetic associations with certain diseases. This analysis tool and its various extensions are
commonly referred to as genome-wide association studies (GWAS). Importantly, within the
framework of this chapter, we assume that all considered sites (the sites with a SNP) are
unlinked, meaning that they have an independent evolutionary history. This may be the case

1SNP is pronounced as [snıp].
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if recombination rapidly breaks up any linkage between the considered sites (e.g. in the case
of sexual reproduction). In Chapters 8 and 11, we discuss methodology for datasets where
full or partial linkage exists between the considered sites.

4.1 Testing for associations

4.1.1 The case-control setup

The case-control setup was developed to identify whether a common genetic variant might
be associated with a specific disease. In this type of analysis, a large number of individuals
are recruited for a study. This group is then divided into the “case” (diseased) and “control”
(healthy) groups. For each individual, the alleles for thousands of SNP positions are determ-
ined (most commonly using microarrays and rarely through whole genome sequencing). Mi-
croarrays are comparable to sequencing techniques with which it is possible to determine the
nucleotide at a given location in the genome (e.g. see the first publication using microarrays
by Schena et al. (1995)). The microarrays from Illumina or Affymetrix are most commonly
used for GWAS.

In what follows, we assume that only two alleles occur at each SNP position: the major and
the minor variant. Each SNP-allele is checked for its association with the disease status by
calculating the odds ratio (OR). This is the ratio of the odds of having the disease amongst
individuals with the minor variant at the SNP position over the odds of having the disease
amongst individuals with the major variant at the SNP position:

OR =

(
number of diseased individuals with minor variant at SNP position
number of healthy individuals with minor variant at SNP position

)
(
number of diseased individuals with major variant at SNP position
number of healthy individuals with major variant at SNP position

) . (4.1)

If the odds ratio is greater than one, the minor variant is found more often in the diseased
individuals than in the healthy group. On the other hand, if the ratio is smaller than one, the
minor variant is present more frequently in the healthy group than in the diseased group. This
first hints at whether a minor variant might play a role in the particular disease.

However, to make a statement about our confidence in the SNP-allele playing a role in a
specific disease, we need to calculate the p-value. To calculate a p-value, we need to define
the null hypothesis clearly. The p-value and null hypothesis are generally defined in Box 1 on
page 24. Here, the null hypothesis is:

H0: The minor variant does not have an effect on the disease.
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Observed Case Control Row sums

Minor variant 49 6 55

Major variant 47 44 91

Column sums 96 50 146

Table 4.1: Contingency table for the age-related macular degeneration (AMD) GWAS.

More precisely, this means that the diseased people are a random subset of the whole popu-
lation and, therefore, independent of the allele they carry. Thus, the number of cases with the
minor allele follows a hypergeometric distribution (Box 9 on page 76).

4.1.2 Calculating the p-value in a GWAS

In this section, we show how to calculate the p-value using the null hypothesisH0 given above.
We do so using data from a very early landmark GWAS published in 2005. It investigated the
association of genetic variants with macular degeneration, an age-related eye disease that
causes loss of vision (Klein et al. 2005). With the GWAS approach, the authors could identify
two SNPs as risk factors for developing this condition.

In this study, 96 individuals suffering from age-related macular degeneration (AMD) (cases)
and 50 individuals not suffering from this disease (controls) were enrolled. In total, 116 204
SNP positions were tested per individual, with 103 611 SNP sites of good quality included in
the final data analysis.

On SNP rs380390, the minor variant is a C on both alleles. 49 cases expressed a C on both
alleles, the other 47 cases expressed a G, or a mix (e.g. one G, one C). 6 controls expressed a
C on both alleles, the other 44 controls expressed G, or a mix. These numbers were extracted
from Klein et al. (2005, Figure 1B).

These data can be represented in the form of a contingency table (see Box 8 on page 75),
shown in Table 4.1.

Could SNP rs380390 be associated with AMD? To answer this question, we first calculate
the odds ratio, OR, using Equation (4.1):
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Expected Case Control Row sums

Minor variant 36.16 18.84 55

Major variant 59.84 31.16 91

Column sums 96 50 146

Table 4.2: Expected contingency table for the age-related macular degeneration (AMD)
GWAS.

OR =

(
number of diseased individuals with minor variant at SNP position
number of healthy individuals with minor variant at SNP position

)
(
number of diseased individuals with major variant at SNP position
number of healthy individuals with major variant at SNP position

)
=

49/6
47/44

= 7.6. (4.2)

Thus, the odds ratio indicates an association between the minor variant and AMD. To calcu-
late the p-value, we apply Pearson’s χ2-test as described in Box 12 on page 79 based on the
contingency table. According to Pearson’s χ2-test, we need to calculate the expected number
of cases with the minor variant, assuming that this number follows a hypergeometric distribu-
tion. Thus, we compute the cell (1,1) of the expected contingency table using the fixed values
of the row and column sums (Box 12 on page 79):

E1,1 = 146× 55

146
× 96

146
= 36.16. (4.3)

With this entry and the fixed row and column sums, we can complete the expected contingency
table shown in Table 4.2.

We now calculate the deviance between the observed and expected numbers using Equa-
tion (B12.2) based on unrounded entries of the expected contingency table and obtain
S = 21.34. As explained in Box 12 on page 79, S is approximately χ2 distributed (see Box 11
on page 78). This allows us to calculate the p-value as P (S ≥ 21.34) = 3.84 × 10−6, which
indicates a significant association. However, overall 103 611 SNP positions were considered,
and we need to correct for multiple testing in order to make a statistical statement regarding
significance.
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Figure 4.1: Manhattan plot of p-values resulting from a GWAS. For each SNP — ordered on
the x-axis according to their position in the genome — the negative logarithm of
the p-value from a test of its association with a particular disease is shown on
the y-axis. The majority of SNPs have low − log(p − values). A few SNPs have
exceptionally high negative − log(p− values). The − log(p− values) of two SNPs
positions lie above the rejection threshold and thus point to a possibly significant
association.

4.1.3 Correcting for multiple testing

If many SNP positions are evaluated for their association with the disease status at the same
time, the p-values of these tests can be visualised to spot significant trends. One widely used
method is the so-calledManhattan plot, where the individual p-values are plotted on the y-axis
and the position of the SNP in the genome (or on the chromosome) on the x-axis (Figure 4.1).
With this method, one can visually identify the chromosome and potentially the gene with
the most SNPs associated with a specific disease.

In the following, we discuss how to statistically correct for testing significance in hundreds of
thousands of different SNP locations at the same time. As explained in Box 1 on page 24, the
p-value of a single statistical test describes how likely it is to obtain the observed outcome or
something more extreme, given the null hypothesis. The null hypothesis can be rejected if the
p-value is lower than a pre-defined significance level (the rejection threshold). In GWAS, if we
were to reject the null hypothesis using the rejection threshold 0.05 for each SNP location,
the cumulative probability of the complete study to detect a false positive would be much
higher than 0.05, meaning that the significance level α is > 0.05. To counteract this, we need
to employ strategies for correcting for multiple testing. One such strategy is the so-called
Bonferroni correction.

Assume that we test n independent SNP sites. Instead of rejecting if the p-value is < 0.05,
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we reject the null hypothesis if the p-value < 0.05/n. This rejection threshold guarantees that
the significance level is α = 0.05, meaning that the cumulative probability of detecting a false
positive is smaller than 0.05 (Van den Oord 2008).

In the study on age-related macular degeneration, the authors used the Bonferroni correc-
tion (Klein et al. 2005). In total, they included 103 611 SNP sites in the data analysis, and
the null hypothesis was rejected when the p−value was smaller than the rejection threshold
0.05/103 611 = 4.8× 10−7. We obtained a p-value of 3.84× 10−6, and thus we do not reject the
null hypothesis. However, we note that we performed a rather strict test: we focussed on the
association of C on both alleles with the disease, while each C allele may have an association
with the disease. Indeed, when using the allelic counts without insisting on homozygous al-
leles, the authors obtain a Bonferroni-corrected p-value of 4.2× 10−8 indicating a significant
association of SNP rs380390 with AMD.

4.2 Potentials and drawbacks

The GWAS introduced simultaneous screening of thousands of genetic variants for their asso-
ciation with the disease. As of March 2024, the GWAS Catalog (https://www.ebi.ac.uk/
gwas/) contains 6 779 publications with 580 440 identified unique SNP-trait associations (Sol-
lis et al. 2022; Grimm et al. 2017). The SNPedia (https://www.snpedia.com/index.php/
SNPedia) is an attempt to collect all relevant SNPs in the human genome with the associated
disease risk (Cariaso and Lennon 2012). We end this chapter by mentioning the limitations
of the described setup and how to overcome them.

The case-control setup makes sense when one can clearly distinguish between the case and
control group. However, some diseases range from expressing mild to very severe symptoms.
This information on the quantitative trait of disease severity can be used to perform an analysis
of variance (ANOVA). In this case, the null hypothesis is that there is no difference between
the phenotypic means of any genotype class (Bush and Moore 2012).

While GWAS uncovers the association of SNP-alleles with phenotypes, it cannot uncover
causation. This means that certain allele patterns at a SNP position may be associated with
a particular disease but are not the cause. Further molecular biology experiments are needed
to show if a significant SNP is indeed responsible for the disease (causation) and how it con-
tributes to the disease status (mechanistic understanding).

By using a GWAS, we assume that variation in different SNP positions is independent of
each other, implying we assume that there is no linkage between sites. Biologically, linkage
is broken up quickly between sites if there is a lot of recombination and sites of interest
are far apart. However, in reality, samples intended for GWAS may show dependencies due
to population structure or also some remaining linkage across the genome. GWAS methods
have been introduced that take into account such dependencies, for example, by using linear
mixed models or introducing principal components as covariates (Zhou and Stephens 2012).
Correcting for dependencies between samples becomes especially important for microbial

https://www.ebi.ac.uk/gwas/
https://www.ebi.ac.uk/gwas/
https://www.ebi.ac.uk/gwas/
https://www.ebi.ac.uk/gwas/
https://www.snpedia.com/index.php/SNPedia
https://www.snpedia.com/index.php/SNPedia
https://www.snpedia.com/index.php/SNPedia
https://www.snpedia.com/index.php/SNPedia
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Box 8: Contingency table test

Contingency table tests are statistical tests that allow us to test for an association between two or
more classes with two or more characteristics each. The observations are represented in a contin-
gency table. We consider here a contingency table for two classes,X and Y , with two characteristics
each: X1, X2 in class X, and Y1, Y2 in class Y . In total, there are n observations that can fall into
any of the four categories, with the results summarised in the following contingency table:

Y1 Y2 Row sums

X1 a b a+ b

X2 c d c+ d

Column sums a+ c b+ d n

where n = a + b + c + d. Entry (i, j) in the matrix describes how many observations showed Xi

and Yj .

Contingency table tests are designed to test whether a characteristic within X is associated with
a characteristic within Y . We use two examples of these tests. For small datasets, we use Fisher’s
exact test (see Box 10 on page 77; applied to data in Chapter 8); for large datasets, this test is
computationally infeasible. In such situations, we use Pearson’s χ2-test (explained in Box 12 on
page 79; applied to data in Chapter 4).

GWAS (when considering bacteria that reproduce clonally or viruses rather than eukaryotes):
phylogenetic and clustering approaches are common options to account for these depend-
encies (Power, Parkhill and de Oliveira 2017). Tools specifically developed to address these
challenges (Power, Parkhill and de Oliveira 2017; San et al. 2020) have been successfully ap-
plied, for example, to identify antibiotic resistance variants in bacteria (Ma et al. 2020; The
CRyPTIC Consortium 2022).

To learn more about GWAS and its extensions, please refer to Pearson and Manolio (2008),
Bush and Moore (2012), Scherer and Visscher (2016), Tam et al. (2019) and Uffelmann et al.
(2021).

In the following chapters, we will discuss how to deal with sequence information in case of
strong linkage and investigate associations between genotypes and phenotypes under strong
linkage in Chapter 8. In Chapter 11, we will outline the first advances in the field when sites
have intermediate amounts of linkage.
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Box 9: Hypergeometric distribution

The hypergeometric distribution is a discrete probability distribution that describes the probability
of drawing i balls of one type in k draws without replacement from an urn containing n balls of two
types. The urn contains r blue and s black balls, n = r + s. In the sketch below, the urn has n = 7
balls, of which r = 3 balls are blue and s = 4 balls are black; we draw k = 3 times, and i = 1 balls
are coloured blue.

k

n

We assign a capital letter for the random variable “the number of blue balls amongst k drawn balls”,
say Rk. What is the probability of drawing exactly i blue balls? In general, we can calculate this
probability as the number of possible draws of k balls yielding exactly i blue balls divided by the
total number of possible k ball draws from the urn with n balls.

There are
(r
i

)
possibilities (see Box 2 on page 25) to obtain i blue balls, and

( s
k−i

)
possibilities to

draw k − i black balls from the urn. Further, there are in total
(n
k

)
ways to draw k balls out of the

urn without replacement. Thus, the probability to draw i blue balls amongst the k drawn balls is

P (Rk = i) =

(r
i

)( s
k−i

)(n
k

) . (B9.1)

The mean of this hypergeometrically distributed random variable is

E(Rk) =
kr

n
, (B9.2)

and its variance is

Var(Rk) =
kr(n− r)(n− k)

n2(n− 1)
. (B9.3)

The hypergeometric distribution has many applications and is used in this book in Fisher’s exact test
(Box 8 on page 75) and for comparative methods (Section 8.1).
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Box 10: Fisher’s exact test
Fisher’s exact test|textbf was developed by the British mathematician Ronald Fisher (1890-1962) to
test the claims of a British lady who said that she could distinguish between two modes of preparing
a British tea (which is always drunk with milk). She claimed it was possible to taste the difference
between whether one adds the tea to the cup and then milk (TIF = tea into cup first) or vice versa
(MIF = milk into cup first). This example was published under “Mathematics of a Lady Tasting
Tea” (Fisher 1956).

The two classes in this example are how the tea was prepared (with the characteristics milk first
versus tea first) and the prediction of the lady tasting the tea (with the characteristics predicted milk
first and predicted tea first). Thus, the null hypothesis is:

H0: The mode of preparing the tea and the lady’s predictions are independent.

The observations from Fisher’s tea example can be written in a contingency table, where X stands
for the mode of preparing tea, X1 = TIF, and X2 = MIF. Y represents whether the lady predicts
tea in cup first, Y1, or milk first, Y2. If the mode of preparing tea and the lady’s observation were
independent, this experiment is analogue to the urn experiment described in Box 9 on page 76. The
number of blue balls corresponds to the cups of tea prepared TIF, a + b, and the number of black
balls corresponds to MIF, c + d. The number of times the lady predicts tea in cup first (Y1) when
this is, in fact, correct (X1) is a random variable Z. We refer to a specific realisation of this random
variable with a. Then, we can rewrite our null hypothesis:

H0: The random variable Z follows a hypergeometric distribution.

From Equation (B9.1), we write:

P (Z = a) =

(a+b
a

)(c+d
c

)( n
a+c

) . (B10.1)

As explained in Box 1 on page 24, the p-value is calculated by summing the probabilities to obtain
the observed or more extreme results. In the tea example, a more extreme result would be obtained
if higher predictions of correct tea preparation were made, that is, if the entry (1, 1) in the table was
greater than a. Thus, the p-value is

p =

a+b∑
i=a

(a+b
i

)( c+d
a+c−i

)( n
a+c

) . (B10.2)

This calculation can be done by hand for small numbers (in the tea example, only eight cups of tea
were brewed, 4 with TIF and 4 with MIF). We will see an example of this procedure in Chapter 8.
The summation is computationally infeasible for larger datasets. As a side note, the lady supposedly
could determine all cups of tea correctly (Salsburg 2002).
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Box 11: χ2 distribution

The χ2 distribution (chi-squared distribution)2 plays an important role in statistics, more precisely
in statistical testing. This distribution is obtained through the convolution of distributions of inde-
pendent and identically distributed random variables Yi that are normally distributed with mean µ
and variance σ2 (see Box 13 on page 80), in mathematical notation Yi ∼ Normal(µ, σ2), in the
following way:

X2
n =

n∑
i=1

(Yi − µ)2

σ2
. (B11.1)

The distribution of X2
n is called χ2 distribution with n degrees of freedom (in short χ2

n) and takes
different shapes, as shown in the following figure.
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Its density function is

fX2
n
(x;n) =

1

2n/2Γ(n/2)x
n
2
−1e−

x
2

. (B11.2)

The Γ function is further explained in Equation (B14.2) in Box 14 on page 81.

The mean of this distribution is
E(X2

n) = n, (B11.3)

and its variance is
Var(X2

n) = 2n. (B11.4)

The χ2
n distribution approximates many distributions that appear in statistical testing. This means

that if the exact distributions are not known or cannot be calculated, one can assume a χ2
n dis-

tribution when determining the p-value (see also Box 1 on page 24). For an outcome x where
fX2

n
(X ≥ x;n) = α, we also write x = χ2

n,α. The p-value of x under a χ
2 distribution can be found

in χ2-tables or can be directly computed using tools such as R (https://www.r-project.org/).

We will see applications of the χ2 distribution when calculating p-values in Box 8 on page 75 and
more generally in Chapter 7. More information on the χ2 distribution can be found in Sokal and
Rohlf (2012).

2χ is pronounced as [kaı].

https://www.r-project.org/
https://www.r-project.org/
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Box 12: Pearson’s χ2-test

In Box 10 on page 77, the p-value for data in a contingency table was calculated using Fisher’s
exact test. The p-value calculation becomes computationally infeasible for larger datasets. A way
to calculate the p-value for large datasets is to use Pearson’s χ2-test (Pearson 1900). In fact, it
only works for reasonably large datasets. The term χ2-test is used for all statistical tests where the
distribution of interest can be approximated by a χ2 distribution under the null hypothesis.

When doing an experiment, we fill in the contingency table entries Oi,j according to the observations
and also calculate the row and column sums as presented in Box 8 on page 75. Now, we further fill
in a second contingency table with the expected value E1,1 under the hypergeometric distribution.
This can be easily calculated by

E1,1 = n×
a+ b

n
×

a+ c

n
. (B12.1)

Given this value, we can fill in the remaining entries of the table as the row and column sums are
fixed.

We define the following data transformation:

S =
2∑

i=1

2∑
j=1

(Oi,j − Ei,j)
2

Ei,j
. (B12.2)

This sum describes the average deviance between the observed and the expected data, given that the
null hypothesis is true. One can demonstrate that S is approximately χ2

1 distributed, meaning that
it has a χ2 distribution with one degree of freedom (Fisher 1922; Chernoff and Lehmann 1954).
According to the definition of the p-value as the probability of obtaining the observed result, s,
or a more extreme result (see Box 1 on page 24), we can approximate the p-value using the χ2

1
distribution by

p-value = Pχ2
1
(S ≥ s). (B12.3)

As explained in Box 1 on page 24, we reject the null hypothesis if the p-value is less or equal to the
pre-defined rejection threshold.
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Box 13: Normal distribution
The normal distribution, also known as theGaussian distribution or colloquially as the bell curve, is
a probability density defined on the continuous values of a single random variableX. Its probability
density function is

fX(x;µ, σ) =
1

√
2πσ2

e
−(x−µ)2

2σ2 . (B13.1)

It has two parameters, µ and σ, which are the mean and standard deviation for this distribution,
respectively:

E(X) =µ, (B13.2)

Var(X) =σ2. (B13.3)

Writing X ∼ Normal(µ, σ2) means that random variable X is normally distributed with mean µ
and standard deviation σ (variance σ2).

Simple properties include:

1. if X ∼ Normal(µ, σ2) and Y = X + c, then Y ∼ Normal(µ+ c, σ2);

2. if X ∼ Normal(µ, σ2) and Z = (X−µ)/σ, then Z ∼ Normal(1, 0);

3. ifX ∼ Normal(µX , σ2
x) and Y ∼ Normal(µY , σ2

Y ), then their sum Z = X+Y is a random
variable with Z ∼ Normal(µX + µY , σ2

X + σ2
Y ).

The following figure displays the probability density function for a normal distribution with µ = 7.5
and σ = 3:
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The normal distribution is ubiquitous in statistics, principally as the result of the central limit the-
orem. Informally, this theorem implies that if we define the random variable Zn to be the average of
n independent samples from any single distribution with mean m and finite variance s2, the distri-
bution for Z asymptotes to a normal distribution centred onm and with variance s2/n as the sample
count n becomes large.
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Box 14: Γ distribution (gamma distribution)

The Γ distribution is defined on [0,∞) with parameters α > 0 (shape), and β > 0 (rate), and has
the probability density function

fX(x;α, β) =
βα

Γ(α)
e−βxxα−1, (B14.1)

where x ≥ 0 and

Γ(α) =

∫ ∞

0
e−ttα−1 dt. (B14.2)

The latter function is also called Γ function and fulfils Γ(n) = (n − 1)! for natural numbers n ∈
{1, 2, 3, . . .}.

A Γ distributed random variable X with parameters α, β (X ∼ Γ(α, β)) has the mean

E(X) =
α

β
, (B14.3)

and variance
Var(X) =

α

β2
. (B14.4)

In this book, wewill mostly use theΓ distributionwithα = β (that is, withmean 1). This distribution
is quite flexible with respect to different values of α, as shown in the following plot.
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5 Molecular evolution

In this chapter, we introduce evolutionary models describing the change of genetic sequences
through time, resulting in molecular evolution. Molecular evolution models allow us to
quantify evolutionary processes acting on the sequences, for example, the rates of substi-
tution of one base by another. Furthermore, they are an essential component of phylogenetic
reconstruction methods. Evolutionary models were designed for three levels of evolution: the
level of DNA or RNA sequences (genotypic level), the level of codons (triplets of nucleotides
encoding an amino acid), and the level of amino acid sequences (phenotypic level).

The models presented here (those commonly used) only account for point mutations but not
for insertions/deletions (indels), inversions, or recombination. When doing downstream ana-
lysis, these models should be used only on parts of the multiple sequence alignment (MSA)
that differ primarily (or only) due to point mutations. In practice, the MSAs often have some
gaps indicating indels, but these gaps are commonly treated as unknown nucleotides (this
treatment also applies to the models discussed below). Investigation is ongoing to assess the
potential biases stemming from these assumptions.

We will now first discuss the difference between mutations and substitutions, then define
the commonly used sequence evolution models at the DNA or RNA level, followed by a
discussion of the general properties of these models. Last, we extend this framework to study
the evolution of sequences at the codon and the amino acid level.

5.1 Substitutions vs. mutations

Although point mutations occur during DNA replication (as discussed in the introduction,
Chapter 1), molecular evolution models do not model the process of replication directly.
They all assume that character changes occur at each site within a sequence at some rate
through time. The reasoning for this modelling choice becomes clear when considering the
evolution of species. Individuals of a species have identical characters at most positions in
their sequence (for example, only 0.1% of the positions vary within the human population).
A change at a particular non-variant site happens at the species level if a mutation occurs
in the germ line of an individual, and this mutated cell gives rise to offspring. This offspring
carries the mutation both in the somatic and germ cells. Eventually, by chance or selection (see
Section 1.2), the individual with the mutated genome may spread in the population until its
offspring, in turn, make up the vast majority of the population, and we say that the mutation
became fixed. A fixedmutation is called a substitution. Thus, substitutions occur at some stage
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during a species’ existence but not at speciation. When considering a different biological unit,
for example, an infected host, we observe a similar process: one pathogen (e.g. one bacterium
or one virion) in one infected individual mutates, and the mutation may be fixed within the
pathogen population in this particular infected individual.

Based on these considerations, models for sequence evolution refer to changes in the characters
as substitutions, and the models themselves are often called substitution models.

We highlight that when using molecular evolution models for questions where biological units
are single cells or virions, the changes in the sequences are indeed mutations, but our models
still call them substitutions. One may argue that we should model this mutation process by
allowing changes only at replication events instead of at any time. This means we should not
use the substitution models presented here; instead, we should use models linking replication
with mutation. However, we can reason that these substitution models are still appropriate
even in such scenarios by imagining that we track a single cell or virion through time. Upon
replication, we follow one of its offspring. When this offspring replicates, we again follow
one of its offspring, and so on. The tracked lineage accumulates mutations through time
(happening at the replication events), and given that we have many replications, each with
a few mutations, we may choose to approximate the sequence changes by a model where
changes accumulate at some rate (as assumed in the substitution models below). In doing
so, we implicitly assume that we sampled only a few individuals from the population. This
sparse sampling implies that the observed mutations typically occur along lineages due to
unsampled replication events rather than at the branching of two observed individuals. If
the assumption of sparse sampling is violated, we would need new models that only allow
mutations at replication.

5.2 General theory on nucleotide substitution models

We will now introduce the general structure of nucleotide substitution models. They are all
specified by a substitution rate matrix (Section 5.2.1), which determines transition probabil-
ities between nucleotides (Section 5.2.2) and gives rise to a Markov chain model for sequence
evolution (Section 5.2.4).

5.2.1 Substitution rate matrix

Each site in a DNA sequence can have one of the four nucleotides A, C, T, or G. A site
in a sequence with a particular nucleotide may change through time to a different nucle-
otide. Common evolutionary models assume that the change from state i into state j (where
i, j ∈ {T,C,A,G} and i 6= j) happens in an infinitesimally small time interval ∆t with prob-
ability qi,j∆t. qi,j is called the substitution rate from i to j. Note that per this definition, the
probability of a change from i to j is the same at any point in time.
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“Infinitesimally” small here means that the time step is so small that either nothing happens
or only one event occurs with a non-negligible probability. This implies that several sequential
changes (such as a change from i to k to j) have a negligible probability of happening within
this time step. We can mathematically specify the infinitesimally small probability of more
than one event. Let us denote the rate of any substitution with q. Two events happen with
probability (q∆t)2, three events with (q∆t)3, and so on. In summary, the probability of more
than one event is of the order of O(∆t2). This term quickly goes to zero for small ∆t. Below,
we derive the equations acknowledging terms of order O(∆t2) and show how they disappear
when taking the limit ∆t→ 0.

The most convenient way to denote the substitution rates is in a matrix, where the rows
denote the original state and the columns denote the substitution, referred to as substitution
rate matrix Q:

Q =


T C A G

T · a b c
C d · e f
A g h · i
G j k l ·

. (5.1)

Note that the order of the nucleotides in the nucleotide substitution rate matrix is not unam-
biguously defined throughout the literature, so in some sources, the nucleotides are ordered
alphabetically. The rates can be read off the matrix in a row-to-column way. So, if we need
the G-to-A substitution rate, we will look at the entry in the last row and the third column in
our example rate matrix above, corresponding to the rate l.

Although the substitution rates are defined only for the off-diagonal entries, for mathematical
convenience, the diagonal entries are set such that each row sums up to zero.

In summary, we can write down the complete substitution rate matrix as follows:

Q =


T C A G

T −(a+ b+ c) a b c
C d −(d+ e+ f) e f
A g h −(g + h+ i) i
G j k l −(j + k + l)

. (5.2)

5.2.2 Transition probability matrix

Typically, we are interested in the probability of a nucleotide changing from i to j in a time
interval t. This probability in matrix form isQt+O(t2) for small t. In what follows, we derive
the probability of a nucleotide changing from i to j in any time interval t; these probabilities
are summarised in the transition probability matrix.
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Box 15: Geometric distribution
Suppose we repeat Bernoulli trials with success probability p until we observe the first success. De-
fining X as the random variable representing the repetition during which the first success occurs,
the probability of X being equal to m is given by the geometric distribution,

P (X = m) = (1− p)m−1p. (B15.1)

This is the product of the probability for the firstm−1 failures with the probability of the success in
repetition m. The shape of the geometric distribution for success probabilities 0.1 and 0.2 is shown
below.
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The mean of the distribution is the inverse of the success probability:

E(X) = 1/p. (B15.2)

Note that the process behind the geometric distribution is discrete and memoryless (see Box 24 on
page 98 for the definition).

5.2.2.1 Time to first event

We now calculate the time to the first substitution event, which will facilitate the transition
probability matrix calculation. We consider a process that generates an eventE at rate α. This
means that the probability that E occurs once in an infinitesimally small interval of time ∆t
is

P (E occurs once in ∆t) = α∆t. (5.3)

The probability of two or more events happening in ∆t is infinitesimally small. If we assume
that this probability is 0, then for some fixed∆t, the probability of an event in each interval is
α∆t, and the probability of no event is 1−α∆t. The probability of no event in the firstm− 1
intervals and of the first event in the mth interval is thus (1 − α∆t)m−1(α∆t). This follows
the geometric distribution (Box 15 on page 86) with parameter α∆t.
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In what follows, we remove the approximation that the infinitesimally small probabilities are
0. The probability that E occurs more than once is O(∆t2) (the probability of two events is
(α∆t)2, three events (α∆t)3, and so on). Let us denote the time until an event happens as X.
We can calculate the probability of no event happening within ∆t as

P (X > ∆t) = 1− α∆t+O(∆t2). (5.4)

We now aim to determine the probability density of X. We look at a longer time interval
τ and divide it into smaller time intervals ∆t such that τ = k∆t. Then, using the binomial
theorem, we obtain:

P (X > τ) = (1− α∆t+O(∆t2))k = (1− α∆t)k +O(∆t2) = (1− α∆t)τ/∆t +O(∆t2) −−−−→
∆t→0

e−ατ . (5.5)

The limit for ∆t → 0 in the latter equation holds because the exponential function is ex =
limn→∞

(
1 + x

n

)n
(see Box 16 on page 88).

This directly leads to
P (0 ≤ X ≤ τ) = 1− e−ατ , (5.6)

which is called the cumulative distribution function of X. The probability density function
can then be obtained by differentiating the cumulative distribution function:

fX(x) =
dP
dt

(x) = αe−αx. (5.7)

This is the probability density function of an exponential distribution with parameter α (see
Box 17 on page 89). This means that an event that occurs at rate α has exponentially distrib-
uted waiting times with parameter α.

In summary, we derived the waiting time until the first event. When we made the approxim-
ation of the infinitesimally small elements being equal to 0 (discrete time steps of size ∆t), we
obtained the geometric distribution; when letting ∆t go to 0 (assuming continuous time), we
obtained the exponential distribution. In Box 18 on page 90, we show that the exponential
distribution is a continuous-time limit of the geometric distribution.

5.2.2.2 Transition probability matrix at time 0 and for small time steps

The transition probability for a change from nucleotide i to j in time interval t is notated with
pi,j(t). We summarise these probabilities in the transition probability matrix:

P (t) = (pi,j(t))i,j∈{C,T,A,G} . (5.8)

To derive the transition probability matrix for any time step t, we first derive the transition
probability matrix P (0) and for infinitesimally small time steps ∆t. We employ the same
properties of rates and probabilities as in the previous sections but use matrix notation.
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Box 16: Exponential function

The exponential function can be defined in multiple equivalent ways. In this book, we will use the
following definition:

ex =

∞∑
n=0

xn

n!
. (B16.1)

We will now show that
ex = lim

n→∞

(
1 +

x

n

)n
. (B16.2)

Proof: We define sn =
∑n

k=0
xk

k!
and tn =

(
1 + x

n

)n for any x ≥ 0 and an integer n. Using the
binomial theorem, we can write down tn:

tn =
(
1 +

x

n

)n
=

n∑
k=0

(n
k

)(x
n

)k
= 1 + x+

n∑
k=2

xk

k!

n(n− 1) . . . (n− (k − 1))

nk

= 1 + x+
x2

2!

(
1−

1

n

)
+ . . .+

xn

n!

(
1−

1

n

)
. . .

(
1−

n− 1

n

)
≤ 1 + x+

x2

2!
+ . . .+

xn

n!
= sn. (B16.3)

If we let n → ∞, we can conclude from Equation (B16.1) that

lim sup
n→∞

tn ≤ lim
n→∞

sn = ex. (B16.4)

We need to use lim sup in Equation (B16.4), because we do not yet know whether the term 1 + x+
x2

2!

(
1− 1

n

)
+ . . .+ xn

n!

(
1− 1

n

)
. . .
(
1− n−1

n

)
converges.

For all 2 ≤ m ≤ n we can state that

1 + x+
x2

2!

(
1−

1

n

)
+ . . .+

xm

m!

(
1−

m− 1

n

)
≤ tn, (B16.5)

because we consider only the firstm+1 terms of tn on the left side of the equation. Taking the limit
n → ∞ on both sides of this equation, we obtain:

sm = 1 + x+
x2

2!
+ . . .+

xm

m!
≤ lim inf

n→∞
tn. (B16.6)

Again, we need to take the lim inf because we do not know whether tn converges. As the right side
of this equation is true for allm ≤ n, we can now take the limitm → ∞ on the left side and obtain

ex = lim
m→∞

sm ≤ lim inf
n→∞

tn. (B16.7)

Combining Equation (B16.4) and Equation (B16.7), we obtain,

lim sup
n→∞

tn ≤ ex ≤ lim inf
n→∞

tn. (B16.8)

Thus, the limit of tn exists and is equal to ex, proving Equation (B16.2).

This proof is an extension of the proof for x = 1 in Rudin (1976).
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Box 17: Exponential distribution

The exponential distribution is defined for a continuous positive random variable T . Often, this vari-
able represents a waiting time until some event occurs. The exponential distribution takes its name
from the exponential function (Box 16 on page 88) appearing in its probability density function:

fT (t; r) = re−rt. (B17.1)

This function can be interpreted as the product of the probability e−rt that the event does not
occur in the interval before time t with the probability density r that it occurs immediately after this
interval. Its single parameter r is the rate of the exponential distribution. The shape of the probability
density function for rates 0.5 and 1 is shown below.
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The mean of this distribution is
E(T ) = 1/r. (B17.2)

The exponential distribution can be seen as the continuous analogue of the geometric distribution
(see also Box 18 on page 90). While the geometric distribution describes the number of trials (with
success having probability p and failure having probability 1 − p) before success, the exponential
distribution describes the time before an event with a fixed rate r.

An important property is the following. If Ti are exponentially distributed random variables with
rates ri, for i ∈ [1, . . . ,M ], and we define X as the minimum of these variables, X itself is expo-
nentially distributed with the rate R =

∑M
i=1 ri.

We can easily show this for the two variable (M = 2) case:

P (X = x) = P (T2 > T1, T1 = x) + P (T1 > T2, T2 = x)

= P (T2 > T1|T1 = x)P (T1 = x) + P (T1 > T2|T2 = x)P (T2 = x)

= e−r2xe−r1xr1 + e−r1xe−r2xr2

= e−(r1+r2)x(r1 + r2). (B17.3)

The generalisation for M > 2 is straightforward.
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Box 18: Connection between exponential and geometric dis-
tribution
We demonstrate that the exponential distribution arises as a certain limit of the geometric distribu-
tion. Consider the geometric distribution defined in Box 15 on page 86:

P (m|p) = (1− p)m−1p. (B18.1)

To connect to the exponential distribution, we first need to map the discrete variable m from the
geometric distribution to a continuous time variable. We accomplish this mapping by assuming that
the discrete values m correspond to regularly spaced times on a grid where the difference between
adjacent times is∆t. Then, we define the time variable as t = m∆t. Furthermore, we define the rate
parameter r = p/∆t, which changes the probability p of success into a measure of success probability
per unit time.

The geometric probability distribution function above then becomes the probability for the continu-
ous variable t falling in a particular interval centred on t = m∆t:

P (T ∈ [t− ∆t/2, t+ ∆t/2]|r) = (1−∆tr)
t

∆t
−1∆tr. (B18.2)

The probability density at t is obtained by dividing by ∆t and taking the limit ∆t → 0:

f(t|r) = lim
∆t→0

P (T ∈ [t− ∆t/2, t+ ∆t/2]|r)
∆t

= lim
∆t→0

(1−∆tr)
t

∆t
−1r

= r lim
∆t→0

exp
((

t

∆t
− 1

)
log(1−∆tr)

)
. (B18.3)

Since exp(·) is a continuous function, we can bring the limit inside the exponential:

f(t|r) = r exp
(

lim
∆t→0

(
t

∆t
− 1

)
log(1−∆tr)

)
= r exp

(
lim

∆t→0

log(1−∆tr)
∆t

t−∆t

)
. (B18.4)

Since both the numerator and denominator of log(1−∆tr)
∆t

t−∆t

approach zero as∆t goes to zero, we can

apply L’Hôpital’s rule to find:

f(t|r) = r exp

 lim
∆t→0

−r
1−∆tr

1
t−∆t

+ ∆t
(1−∆t)2


= r exp (−rt) . (B18.5)

Thus, as the time between possible outcomes and the probability of individual outcomes of a geomet-
rically distributed random variable becomes small, its probability density distribution approaches
that of an exponentially distributed random variable.
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When no time has passed (t = 0), the probability of a substitution happening is 0, and the
probability of staying in the same state is 1. Thus,

P (0) =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 = I. (5.9)

The matrix I with 1 on the main diagonal and 0 elsewhere is called the identity matrix.

After an infinitesimally small time step ∆t, the entry pi,j(∆t) is:

pi,j(∆t) =

{
qi,j∆t+O(∆t2) if i 6= j;
1−

∑
k 6=i qi,k∆t+O(∆t2) if i = j.

(5.10)

That is when i 6= j, pi,j(∆t) represents the probability of a transition from i to j. In the limit
of small∆t, this is simply the instantaneous transition rate qi,j multiplied by the time interval
∆t. On the other hand, when i = j, pi,i(∆t), the probability of no change occurring in the
time interval can be easily expressed as 1minus the probability of any state change occurring:

pi,i(∆t) = 1−
∑
k 6=i

pi,k(∆t) = 1−
∑
k 6=i

qi,k∆t+O(∆t2). (5.11)

By employing qi,i = −
∑
k 6=i qi,k, we can write:

pi,i(∆t) = 1 + qi,i∆t+O(∆t2), (5.12)

which in matrix notation simplifies to:

P (∆t) = I +Q∆t+O(∆t2). (5.13)

Given the nucleotide substitution rate matrix defined in Equation (5.2), the corresponding
transition probability matrix for a small time step ∆t is:

P (∆t) =


1− (a+ b+ c)∆t a∆t b∆t c∆t

d∆t 1− (d+ e+ f)∆t e∆t f∆t
g∆t h∆t 1− (g + h+ i)∆t i∆t
j∆t k∆t l∆t 1− (j + k + l)∆t

+O(∆t2).

(5.14)

Note that if we ignore the O(∆t2) terms, the rows of the transition probability matrix sum
up to 1. Indeed, a row of the transition probability matrix describes the probabilities of a
nucleotide change to a different one (off-diagonal entries) and the probability of the nucleotide
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staying the same (diagonal entry). Thus, the sum of the non-negligible probabilities of one
event (nucleotide change) or no event (no change) is indeed 1.

5.2.2.3 Transition probability matrix calculation

Now, we derive the transition probability matrix P (t) for any t. We can calculate pi,j(t+∆t)
as the probability of nucleotide i changing within time t to nucleotide k, and nucleotide k
changing in the infinitesimally small time interval ∆t from k to j, summed over all k. In a
formula, this is

pi,j(t+∆t) =

4∑
k=1

pi,k(t)pk,j(∆t). (5.15)

In matrix notation, this is
P (t+∆t) = P (t)P (∆t). (5.16)

Note that the summation over k illustrates that we take into account all intermediate substi-
tutions when calculating the transition probability from i to j.

Since P (t)P (∆t) = P (t) + P (t)Q∆t + O(∆t2), we obtain the following difference equation
(which is the discrete-time analogue of a differential equation where time is continuous):

P (t+∆t)− P (t)
∆t

= P (t)Q+O(∆t). (5.17)

If we take the limit ∆t→ 0, we obtain the following differential equation:

lim
∆t→0

P (t+∆t)− P (t)
∆t

=
dP
dt

(t) = P (t)Q. (5.18)

Note that such a differential equation is also called a master equation: a master equation
describes the time evolution of the probability of a system to occupy each one of a discrete
set of states, with regard to a continuous time variable t.

Now, we need to solve this differential equation to find P (t). By definition (Box 16 on
page 88),

eQt =

∞∑
i=0

(Qt)i

i!
. (5.19)

Thus,
d
dt
eQt = Q

∞∑
i=1

i
(Qt)i−1

i!
= QeQt. (5.20)
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This means that
P (t) = eQt (5.21)

is the solution of d
dtP (t) = QP (t) with the initial value P (0) = I. Thus, the substitution rate

matrix Q fully defines the transition probability matrix P (t).

5.2.2.4 Evaluating the matrix exponential

We just showed that the substitution rate matrix Q fully defines the transition probability
matrix P (t) (Equation (5.21)). However, it is not clear how the matrix exponential P (t) = eQt

is evaluated in practice. Importantly, the exponential of a matrix is defined in terms of its
Taylor expansion:

eQt =

∞∑
i=0

(Qt)i

i!
. (5.22)

We could evaluate this sum up to a very large i. However, this is numerically unstable and
very slow since it requires many matrix multiplications. If Q is diagonalisable (see Box 19 on
page 94), we can instead employ a matrix diagonalisation algorithm to find U and D such
that D is a diagonal matrix containing the eigenvalues of Q and

Q = UDU−1. (5.23)

Since (UDU−1)n = UDnU−1, substituting this into the Taylor series yields

eQt =

∞∑
n=0

UDntnU−1

n!

= U

( ∞∑
n=0

Dntn

n!

)
U−1. (5.24)

Furthermore, since Dt is diagonal, eDt is also diagonal with (eDt)i,i = eDi,it. The exponenti-
ated rate matrix is then simply

eQt = UeDtU−1 = P (t). (5.25)

Thus, in summary, given Q is diagonalisable, we can evaluate eQt by first determining U and
D (by determining eigenvectors and eigenvalues of Q) and then taking the exponential of
scalars (the diagonal elements of Dt) and two matrix multiplications (UeDtU−1). If Q is not
diagonalisable, matrix exponentiation is difficult (Moler and Van Loan 1978; Moler and Van
Loan 2003), and models with such rate matrices are rarely employed.
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Box 19: Diagonalisable matrix

Before we define a diagonalisable matrix, we need some further terminology from linear algebra. A
square matrix M of dimensions n× n is called a diagonal matrix if it has the form:

M =


m1 0 · · · 0

0 m2

. . .
...

...
. . .

. . . 0
0 · · · 0 mn

 . (B19.1)

If all diagonal entries of a diagonal matrix are 1, the matrix is called an identity matrix and is denoted
I. A square matrix M of dimension n × n is called invertible if there exist an n × n dimensional
matrix N such that

MN = I. (B19.2)

N is often also noted as M−1.

We can now define a diagonalisable matrix: an n×n dimensional matrixM is called diagonalisable
if there exist a diagonal matrix D and an invertible matrix N both of dimensions n× n such that

M = NDN−1. (B19.3)

The entries on the diagonal of D are the eigenvalues of M .

A matrix M is called symmetric if mi,j = mj,i for all i, j. The transpose MT of a matrix M is
obtained by flipping the entries of M over the diagonal, and thus, a matrix M is symmetric if and
only if MT = M .

Any symmetric matrix M is diagonalisable. If M only contains real values, then D and N only
contain real values. We refer the reader to a textbook on linear algebra for the proofs.

5.2.3 Stochastic process of sequence evolution

We modelled the substitution process as an event happening in time step ∆t with probability
r∆t. We may make the simplifying assumption that the probability of more than one event
is 0. This is a stochastic process in discrete time, with an experiment in each time step ∆t
having outcome “substitution” (probability r∆t) or “no substitution” (probability 1− r∆t).
The process is called Bernoulli process (Box 20 on page 95), with the time to the first success
(substitution) distributed geometrically (Box 15 on page 86), and the number of successes in
L time steps distributed binomially (Box 3 on page 25).

When taking the continuous-time limit by letting ∆t go to 0, we obtain the Poisson process
(Box 21 on page 96) with time to the first event distributed exponentially (Section 5.2.2.1)
and the number of events within a time interval of fixed length distributed according to the
Poisson distribution (Box 21 on page 96).

The exponential distribution can directly be obtained as a limit of the geometric distribution
(Box 18 on page 90), and the Poisson distribution as a limit of the binomial distribution
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Box 20: Bernoulli process

A Bernoulli process is a sequence of independent Bernoulli trials with success probability p. In such
a process, the probability of the first success occurring on the mth trial is given by a geometric
distribution (Box 15 on page 86):

P (m|p) = p(1− p)m−1. (B20.1)

The probability that the Bernoulli process produces k successes after M total trials is given by the
binomial distribution (Box 3 on page 25):

P (k|M,p) =
(M
k

)
pk(1− p)M−k. (B20.2)

(Box 22 on page 97), for an overview, see Box 23 on page 98.

5.2.4 Markov chain model of sequence evolution

The model of sequence evolution defined by the rate matrix Q that gives rise to transition
probabilities as specified in Equation (5.21), is a Markov chain. Markov chains are a very
common and useful stochastic process. These models have the convenient property of being
memoryless, meaning that the probability of going from one state to another only depends on
the current state and not on any previous state. Box 24 on page 98 explains the mathematical
theory of Markov chains in a nutshell.

We can now observe that our sequence evolution model is a time-homogeneousMarkov chain
as it fulfils the following conditions:

1. the state space we use in substitution models is finite; for example, for the nucleotide
models, the state space is defined by S = {T,C,A,G};

2. the process is memoryless as the probability of substitution only depends on the current
nucleotide i (via qi,j), but not on the substitution history;

3. the process is time-homogenous as the rate matrix is identical for all times t.

Since the evolutionary models assume that each position in our MSA evolves independently
from others, every position in our MSA is a separate Markov chain. Such a chain is illustrated
in Figure 5.1.

Stationary distribution The stationary distribution π of a Markov chain is the distribution
on the state space S which remains unchanged if the Markov chain acts on it further, meaning
π = πP (t). In this context, we define an irreducible and an aperiodic Markov chain.
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Box 21: Poisson process

A Poisson process produces a sequence of events at a fixed rate r:

0 Lt1

δt1

t2

δt2

t3

δt3

t4

δt4

N events in total

The waiting times between successive events in a Poisson process with rate r (the δti intervals in the
above diagram) are exponentially distributed:

fδti (x|r) = re−rx. (B21.1)

The probability that the process will generate N events in an interval of length L (as shown in the
above diagram) is given by the Poisson distribution:

P (N = n|rL) = e−rL (rL)n

n!
. (B21.2)

The Poisson distribution has a mean and variance both equal to rL.

The Poisson process can be regarded as a continuous time limit of the Bernoulli process (Box 23 on
page 98).

Combining the event times of two independent Poisson processes with rates rA and rB produces
another Poisson process with rate rA + rB . This can be visualised by superimposing the events of
the two processes on a single time axis, then noting that the time interval between events is given by
the minimum of two exponentially distributed random variables with rates rA and rB . As explained
in Box 17 on page 89, this random variable is also exponentially distributed with rate parameter
rA + rB .

Similarly, a single Poisson process with rate r in which events are individually labelled A with prob-
ability q and B with probability 1 − q can be regarded as the union of two independent Poisson
processes with rates rq and r(1− q), respectively. Decomposing Poisson processes in this fashion is
known as thinning.

Irreducible means that it is possible for the system to go from one state to any other given
enough steps (there are no states that cannot be reached). Mathematically this is guaranteed
if for any time step t > 0, we have pi,j(t) > 0 for i 6= j and i, j ∈ {T,C,A,G}.

Aperiodic means that for any time step t > 0, we have pi,i(t) > 0 for i ∈ {T,C,A,G}.

An irreducible and aperiodic Markov chain with transition probability matrix P (t) has a
unique stationary distribution; furthermore, limt→∞ P (t) converges to a matrix where each
row is the stationary distribution. This fact is known as the “Fundamental theorem ofMarkov
Chains”.

The introduced substitution models are irreducible and aperiodic and thus have a stationary
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Box 22: Connection between Poisson and binomial distribution
Here, we demonstrate that a limit of the binomial distribution is the Poisson distribution.

Consider the binomial distribution introduced in Box 3 on page 25:

P (k|M,p) =
(M
k

)
pk(1− p)M−k. (B22.1)

We define r = pM/L. For fixed L > 0, we evaluate the limit,

lim
M→∞

P (k|M,p =
rL

M
) = lim

M→∞

(M
k

)( rL

M

)k (
1−

rL

M

)M−k

=
(rL)k

k!
lim

M→∞

M !

(M − k)!Mk
·
(
1−

rL

M

)M−k

. (B22.2)

Since the limit of a product equals the product of the limits (provided the limits exist), we rewrite
the right-hand side as

(rL)k

k!
L1 · L2, (B22.3)

where

L1 = lim
M→∞

M !

(M − k)!

1

Mk

= lim
M→∞

M(M − 1) . . . (M − k + 1)

Mk
= 1, (B22.4)

and

L2 = lim
M→∞

(
1−

rL

M

)M−k

= lim
M→∞

(
1−

rL

M

)M

lim
M→∞

(
1−

rL

M

)−k

= exp
(

lim
M→∞

M log
(
1−

rL

M

))
= exp

(
lim
x→0

log(1− rLx)

x

)
, (B22.5)

where x = 1/M.

Since both the numerator and denominator of log(1−rLx)
x

approach zero as x goes to zero, we can
apply L’Hôpital’s rule to find L2 = e−rL and thus that,

lim
M→∞

P (k|M,p =
rL

M
) = e−rL (rL)k

k!
, (B22.6)

which is the Poisson distribution with rate r.

In the context of Chapter 5, the number of substitutions within L discrete time steps of length
∆t, where more than two substitutions within a time step have probability 0, follows the binomial
distribution. When letting ∆t go to 0 (making time continuous), the number of substitutions in an
interval of a particular length (L∆t) follows the Poisson distribution. With the proof in this box,
we showed that the continuous-time model is a limit of the discrete-time model.
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Box 23: Relationships between different distributions

In previous boxes, we considered a sequence of Bernoulli trials in discrete time, meaning a Bernoulli
process, and calculated the time to first success and the number of successes among a given number
of trials. We further took the continuous-time limit of the sequence of trials, resulting in a Poisson
process. The corresponding distributions are shown in the following table.

Bernoulli trials Starting distribution Limiting distribution Limit

Time to first success m ∼ Geometric(p) t ∼ Exponential(r) Constant tr = mp
where m → ∞ and
p → 0.

Number of successes k ∼ Binomial(p,M) k ∼ Poisson(rL) Constant rL = Mp
where M → ∞ and
p → 0.

Box 24: Markov chain
A stochastic process is a series of random experiments performed through time. Time can be meas-
ured in discrete time steps or can be continuous. Consider a stochastic process that describes trans-
itions (“jumps”) between different states of the state space S, where S is a finite or countable set.
Such a stochastic process is a Markov chain if the probability of jumping from one state to another
only depends on the current state and is independent of the history of past states. This is called the
Markov property.

The mathematically rigorous definition of a Markov chain is as follows. Given state space S and a
stochastic process (Xt)t∈T , where T is a discrete or continuous set of times, the process is called a
Markov chain, if

P (Xtn+1 = xtn+1 |Xtn = xtn , Xtn−1 = xtn−1 , . . .) = P (Xtn+1 = xtn+1 |Xtn = xtn )
(B24.1)

holds for all t1 < t2 < . . . < tn < tn+1 and xt1 , . . . , xtn+1 ∈ S.

This condition means that the state dynamics are memoryless: the state at time tn+1 only depends
on the state at time tn, but not on state t1, . . . , tn−1, meaning the process has no memory of
t1, . . . , tn−1. In other words, the state we are in at the moment is the only one that matters for
the next step of the Markov chain. We note that both the Bernoulli process and the Poisson process
are Markov chains and, thus, are memoryless.

The Markov chain is called time-homogeneous if the probabilities on the state space do not change
over time, that is, if P (Xt+h = x1|Xt = x0) is the same for all t > 0.

The process is called stationary if (Xt1 , Xt2 , . . . , Xtn ) and (Xt1+τ , Xt2+τ , . . . , Xtn+τ ) have the
same distribution for all t1, t2, . . . , tn, τ ∈ T .

A Markov chain with a finite number of states in state space S can be uniquely defined by the
transition probability matrix P , and the P matrix is directly defined by Q, the rate matrix. Consult
Kelly (1979) and Ross (1996) for further information on the theory of Markov chains.
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Figure 5.1: The changes of nucleotides, codons, and amino acids, resulting in molecular
evolution, is modelled by Markov chains. Here, we provide an example using a
nucleotide sequence. The vertical string of nucleotides is a sequence at a partic-
ular time. At each time point, the sequence is in a certain state and transitions to
another state with probabilities defined by the transition probability matrix. Here,
the sequence at the highlighted site started in state T and then changed to A with
probability pTA. It then changed to C and stayed there for the rest of the Markov
chain process.

distribution. In our context, the stationary distribution is interpreted as follows. Given that
we start with some arbitrary sequence, if we allow the sequence to evolve long enough under a
substitution model with a rate matrixQ, the proportion of nucleotides in the evolved sequence
will converge to the stationary distribution. Moreover, if the sequence evolves past that point,
these proportions will not change further. We denote the probabilities of the four nucleotides
of the stationary distribution with πT, πC, πA, πG. These probabilities are also called equilib-
rium or stationary frequencies, as in expectation the evolved sequence has a fraction/frequency
of πT Ts, πC Cs, πA As, and πG Gs. This stationary distribution, and thus the equilibrium fre-
quencies, is the same regardless of the starting sequence.

5.3 Common nucleotide substitution models

This section will discuss the most commonly used nucleotide substitution models and provide
the rate matricesQ defining these models. Recall that we previously showed that the transition
probability matrix can, in general, be obtained as P (t) = eQt (Equation (5.21)). In what
follows, we explicitly provide the matrix exponential for some rate matrices. Our notation
and derivations are very similar to Yang (2014).

5.3.1 JC69 model

Substitution rate matrix under JC69 In the Jukes-Cantor (JC69) model, shown in Fig-
ure 5.2, all the substitutions occur at the same rate λ (Jukes and Cantor 1969). The substitu-



100 5 Molecular evolution

T

A G

C

Figure 5.2: Schematic representation of the substitution rates of the JC69 model. The widths
of the arrows represent the rates at which different substitutions happen. In the
JC69 model, all rates are equal; thus, all arrows have the same width.

tion rate matrix QJC69 is

QJC69 =


T C A G

T −3λ λ λ λ
C λ −3λ λ λ
A λ λ −3λ λ
G λ λ λ −3λ

. (5.26)

Transition probability matrix under JC69 In Section 5.2.2.3, we showed that we could
calculate the transition probability matrix by diagonalising the substitution rate matrix Q
(using the notationQt = UDtU−1). We obtain P (t) = U diag (eε1t, eε2t, eε3t, eε4t)U−1, where
ε1, ε2, ε3, ε4 are the eigenvalues of QJC69. The expression for P (t) can be further rewritten as:

P (t) =


p0(t) p1(t) p1(t) p1(t)
p1(t) p0(t) p1(t) p1(t)
p1(t) p1(t) p0(t) p1(t)
p1(t) p1(t) p1(t) p0(t)

 , (5.27)

where p0(t) = 1
4 + 3

4e
−4λt and p1(t) = 1

4 −
1
4e

−4λt. We encourage the interested reader to
derive these expressions by hand following the diagonalisation scheme described above. Note
that these expressions only depend on one variable, namely λt, rather than the two variables
λ and t. This makes intuitive sense: if we half the time but double the speed (the rate), we
obtain the same outcome (see also Section 5.3.5).

Stationary distribution under JC69 For JC69, the stationary distribution is Π = {πT, πC,
πA, πG} = {0.25, 0.25, 0.25, 0.25}. In general, as explained above, this is limt→∞ P (t), and for
the JC69 model leads to limt→∞ p0(t) = limt→∞ p1(t) = 0.25.
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Figure 5.3: Changes in the transition probabilities of the JC69 model with λ = 10−4 substi-
tutions/site/year through time. The longer the process is running, the closer the
probabilities are to 0.25. This is because the system approaches the stationary
distribution after a long enough time.

Example Let us consider a virus genome evolving according to the JC69 model and assume
that the substitution rate is λ = 10−4 substitutions/site/year. The probability that we start
with T and end up in C after t = 10 years is pTC(10) = p1(10) = 9.98× 10−4. The probability
that T does not change in the same time step is pTT(10) = 0.997006. In this example, λt =
10−3, meaning that the approximation for small time steps (10−3) and the exact transition
probabilities (9.98×10−4) are almost the same. However, if we are interested in t = 104, then
pTC(10

4) = 0.245 while λt = 1, meaning that using λt as an approximation of pTC(t) is too
imprecise, and we need to use the actual transition probability matrix.

The change of p0(t) and p1(t) with time follows the path shown in Figure 5.3. Starting from
any nucleotide, if we let the sequence evolve for a long enough time, the probability of each
of the four nucleotides at that site will be 0.25 (marked with a dashed line). Note that if we set
λ to a value different from 10−4, say, different by a factor f , then Figure 5.3 looks identical
up to scaling the time axis by 1/f.

The transition probability matrix P (t) at different time steps is shown in Figure 5.4. The
chain reached stationarity at the last observed time point t = 2 × 104 years. Each site is
equally likely to be in one of the four nucleotides, and the final sequence is, in expectation,
composed of the four nucleotides in equal frequencies. Thus, if the analysed sequences are too
divergent, meaning that the nucleotide content in each has reached the stationary distribution
(saturation) due to long evolutionary time scales, it is impossible to calculate the relatedness
between these sequences. They would all appear completely unrelated to each other.
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Figure 5.4: The changes in the transition probability matrix of the JC69 model with increasing
time for the example substitution rate of λ = 10−4 substitutions/site/year. At
the beginning of the process t = 0, the sequence has not changed, and all
the transition probabilities away from the original state (the off-diagonal entries
of the transition probability matrix) are zero. After 2 × 104 years, all transition
probabilities are 0.25. The time axis in years is displayed in black, while the time
axis in units of substitutions is displayed in blue (see Section 5.3.5).

5.3.2 K80 model

Substitution rate matrix under K80 By studying real biological samples, scientists found
that not all substitutions occur at the same rate. Substitutions between nucleotides with similar
chemical structures are more likely than between two different structures. Thymine (T) and
cytosine (C) consist of only one so-called pyrimidine ring structure; thus, they are referred to as
pyrimidines. Adenine (A) and guanine (G) are purine derivatives, which consist of two rings
(a pyrimidine ring fused to an imidazole ring); thus, they are named purines. Substitutions
between two pyrimidines or two purines are referred to as transitions. Substitutions between
one pyrimidine and one purine are referred to as transversions.

All substitution rates in JC69 are equal; thus, this model does not account for the difference
in rates for transitions and transversions. Kimura (1980) extended the JC69 substitution rate
model by accounting for differences between transitions and transversions, meaning that the
substitutions between two purines (A ↔ G) and between two pyrimidines (C ↔ T) happen
more easily and more often than the transversions, the substitutions between purines and
pyrimidines (A↔ C, A↔ T, G↔ C, G↔ T), see Figure 5.5. This model is called K80.



5.3 Common nucleotide substitution models 103

pyrimidines
(one ring)

purines
(two rings)

transversion
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Figure 5.5: Schematic representation of the substitution rates of the K80 model. The widths
of the arrows represent the rates at which different substitutions happen.

The substitution rate matrix QK80 therefore contains two parameters, α for the transitions
and β for the transversions:

QK80 =


T C A G

T −(α+ 2β) α β β
C α −(α+ 2β) β β
A β β −(α+ 2β) α
G β β α −(α+ 2β)

. (5.28)

Transition probability matrix under K80 Using the same diagonalisation procedure as for
JC69 we can calculate the transition probability matrix P (t) = eQt:

P (t) =


p0(t) p1(t) p2(t) p2(t)
p1(t) p0(t) p2(t) p2(t)
p2(t) p2(t) p0(t) p1(t)
p2(t) p2(t) p1(t) p0(t)

 , (5.29)

where

p0(t) =
1

4
+

1

4
e−4βt +

1

2
e−2(α+β)t, (5.30)

p1(t) =
1

4
+

1

4
e−4βt − 1

2
e−2(α+β)t, (5.31)

p2(t) =
1

4
− 1

4
e−4βt. (5.32)

As an exercise, we advise the interested reader to derive these probabilities using pen and
paper.

Analogously to the JC69 model, these equations only depend on two (α, β) instead of three
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(α, β, t) variables. The K80 model is thus very often parameterised in terms of the distance
between two sequences separated by time t, d = (α + 2β)t (Section 5.3.5), and the ratio
between the transition and transversion rates κ = α/β. With these definitions, the transition
probabilities transform into:

p0(t) =
1

4
+

1

4
e
−4d/(κ+2) +

1

2
e
−2d(κ+1)/(κ+2), (5.33)

p1(t) =
1

4
+

1

4
e
−4d/(κ+2) − 1

2
e
−2d(κ+1)/(κ+2), (5.34)

p2(t) =
1

4
− 1

4
e
−4d/(κ+2). (5.35)

Stationary distribution under K80. Again, by letting t go to infinity in the expressions
pi(t), i ∈ {0, 1, 2}, we find that all nucleotides have stationary frequencies of 0.25.

As a short side note, we want to remind the reader of the order we chose for the nucleotides
in the nucleotide substitution rate matrix. By using the order T, C, A, G, transitions cluster
together in the substitution rate matrix, which would not be the case for an alphabetical
arrangement A, C, G, T.

5.3.3 F81 model

Substitution rate matrix under F81 F81 is another extension of the JC69 model in which
the equilibrium frequencies can deviate from 0.25 (Felsenstein 1981). Recall that equilibrium
frequencies describe the expected fraction of T, C, A, and G in the sequence after the stationary
distribution, an evolutionary equilibrium, is reached. Under F81, the equilibrium frequencies
can take any values πN ∈ [0, 1], N ∈ {A,C,G,T} where πA + πC + πG + πT = 1.

The substitution rate matrix is defined as:

QF81 =


T C A G

T −(πC + πA + πG) πC πA πG
C πT −(πT + πA + πG) πA πG
A πT πC −(πT + πC + πG) πG
G πT πC πA −(πT + πC + πA)

.
(5.36)

Transition probability matrix under F81 F81 is a special case of the TN93 model, which
we will discuss in Section 5.3.4. The transition probability matrix for F81 is stated in Yang
(2014, Equation 1.20). Letting t go to infinity in the entries of the transition probability matrix
confirms that the equilibrium frequencies are indeed πA, πC, πG, πT.
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5.3.4 More general nucleotide substitution models

In the following, we present more general models and focus on their substitution rate matrices.
For further properties of the models, we refer the interested reader to Yang (2014) and Fel-
senstein (2003).

Hasegawa, Yano, and Kishino extended the K80 and F81 models to account both for trans-
itions and transversions and arbitrary equilibrium frequencies of the nucleotides (Hasegawa,
Yano and Kishino 1984). The model, normally referred to as HKY, has the substitution rate
matrix:

QHKY =


T C A G

T −(απC + βπA + βπG) απC βπA βπG
C απT −(απT + βπA + βπG) βπA βπG
A βπT βπC −(βπT + βπC + απG) απG
G βπT βπC απA −(βπT + βπC + απA)

.

(5.37)

Tamura and Nei (1993) introduced a yet more sophisticated model, called TN93, where the
rates of T ↔ C transitions (α1) can be different from those of A ↔ G (α2). The substitution
rate matrix under TN93 is:

QTN93 =


T C A G

T −(α1πC + βπA + βπG) α1πC βπA βπG
C α1πT −(α1πT + βπA + βπG) βπA βπG
A βπT βπC −(βπT + βπC + α2π) α2πG
G βπT βπC α2πA −(βπT + βπC + α2πA)

.

(5.38)

Note that HKY is a special case of TN93 where α1 = α2.

The general time-reversible model,GTR, has become very popular (Tavaré 1986; Yang 1994;
Zharkikh 1994):

QGTR =


T C A G

T −(aπC + bπA + cπG) aπC bπA cπG
C aπT −(aπT + dπA + eπG) dπA eπG
A bπT dπC −(bπT + dπC + fπG) fπG
G cπT eπC fπA −(cπT + eπC + fπA)

.

(5.39)

This is the most general model that satisfies the time-reversibility constraint, which we discuss
in detail in Section 5.3.6. All the previously discussed models are special cases of the GTR
model.

The most general substitution model without any constraints on parameter values is called
the UNREST (for “unrestricted”) model (Yang 1994):

QUNREST =


T C A G

T −(a+ b+ c) a b c
C d −(d+ e+ f) e f
A g h −(g + h+ i) i
G j k l −(j + k + l)

. (5.40)
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Each substitution rate in this model can be different and is a separate parameter of the model.
All previously discussed models are special cases of the UNREST model. The UNREST model
is not time reversible in general, and mathematical derivations under it are generally very
complicated.

Thus far, we have provided the rate matrices for these general substitution models. We now
briefly discuss their transition probabilities. There are known analytical solutions for the
transition probabilities of the HKY and TN93 substitution models, and interested readers
are encouraged to refer to Yang (2014). There is no explicit analytical solution for the trans-
ition probabilities under the GTRmodel. However,QGTR is diagonalisable with real eigenval-
ues (see Section 5.3.6), enabling efficient and stable numerical diagonalisation. Obtaining the
transition probabilities for the UNREST model is more difficult as its substitution rate matrix
QUNREST is not generally diagonalisable.

Finally, the equilibrium probabilities for the GTR model (and for all models that are special
cases of GTR) are πT, πC, πA, πG (Yang 2014). For the UNREST model, we have the general
property πPUNREST(t) = π, which is equivalent to πQUNREST = 0 (Grimmett and Stirzaker
1992), meaning we can derive the equilibrium probabilities based on the UNREST substitu-
tion rate matrix by solving πQUNREST = 0.

5.3.5 Time scale: calendar time versus evolutionary time

Evolutionary processes can be measured in units of calendar time (days, years, and so on).
However, one can also express time in terms of expected numbers of substitutions, called
(expected) distance d, through a simple transformation:

d =
time

(expected time until any substitution)
. (5.41)

For the JC69 model, this would be d = t/(3λ)−1 = 3λt, the expected number of substitutions
in elapsed time t. The advantage of using d is that it summarises two parameters (time and
rate) into one quantity. We can estimate this quantity d, the expected number of substitutions
that occurred when one sequence evolved into another one, by looking at the two sequences
(details on that follow in Section 5.4). The distance d remains the same whether the sequences
evolved at rate λ in time t or at rate 2λ in time t/2.

To calculate the calendar time that passed while one sequence evolved into the other, we would
need to know λ, which is typically unknown. In other words, obtaining separate estimates of
calendar time and substitution rates is often impossible.

Note that the default output of many phylogenetic inference methods is actually the distance
in units of substitutions (see the blue axis in Figure 5.4).
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Original: t
0 t1 t2 t3 τ

Reversed: s = τ − t
0 s1 s2 s3

Figure 5.6: In defining a time-reversible process, consider the times t1, t2 and t3 marked on
the “Original” axis above. If time reversibility holds, the joint probability of states
at these times should be exactly equal to the joint probability for these same
states but with time reversed. The time reversal is achieved by choosing a time
τ on the original axis and defining a transformed time variable s = τ − t. This
means that s = 0 on the time-reversed axis corresponds to t = τ on the original
axis.

5.3.6 Time-reversibility of the nucleotide substitution models

A stochastic process (Xt)t∈T is called time-reversible if it shows the same statistical behaviour
forwards and backwards in time (Kelly 1979). Intuitively, one can picture this property in
the following way: imagine filming a time-reversible stochastic process through time. Then,
regardless of whether the recording is played backwards or forwards, the two depictions of
the process will be statistically indistinguishable.

Almost all commonly used substitution models are time-reversible. The primary reason for
this is convenience. In particular, time-reversible models have mathematical properties that
make it easy to compute their transition probability matrices (see below and Felsenstein
(2003)). Additionally, the probability of sequences given a phylogenetic tree does not depend
on the position of the root of the tree (see Section 6.3.3). This means that phylogenetic infer-
ence algorithms can avoid a lot of computation when searching for the optimal tree (Boussau
and Gouy 2006). We will make use of these properties when calculating the probability of
observing specific sequences given a tree and a substitution model (tree likelihood calculation;
Sections 6.3.3.1 and 6.3.3.2).

Formally, a stochastic process (Xt)t∈T is called time-reversible if (Xt1 , Xt2 , . . . , Xtn) and
(Xτ−tn , Xτ−tn−1

, . . . , Xτ−t1) have the same distribution for all t1, t2, . . . , tn, τ ∈ T (see Fig-
ure 5.6 for the intuition behind this transformation). We call this the time-reversibility condi-
tion.

Lemma 5.3.1. For a stationary Markov chain (see Box 24 on page 98) on state space S
with transition probabilities pi,j , rates qi,j , and stationary probabilities πi, i, j ∈ S, the time-
reversibility condition is equivalent to the following condition:

πipi,j(t) = πjpj,i(t), (5.42)
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and also to:
πiqi,j = πjqj,i. (5.43)

A comprehensive proof of these equivalences can be found in Kelly (1979, Theorems 1.2 and
1.3).

Conditions shown in Equations (5.42) and (5.43) are also called detailed balance conditions.
Intuitively, Equation (5.42) can be interpreted such that the probability flux from state i to j
must equal the probability flux from state j to i.

Lemma 5.3.2. Consider a Markov chain on state space S with transition probabilities pi,j .
Suppose a distribution π fulfils the detailed balance condition in Equation (5.42). Then, the
given Markov chain has a stationary distribution, and this distribution is π.

Proof. We have ∑
i

πipi,j =
∑
i

πjpj,i = πj
∑
i

pj,i = πj . (5.44)

Thus, in matrix notation, πP = π, and by definition, π is a stationary distribution.

In practice, we can determine the time-reversibility of a process easily from the rate matrix
Q, as we show in Theorem 5.3.3.

Theorem 5.3.3. A stationary Markov chain with rate matrix Q is time-reversible if and only
if the rate matrix can be decomposed into a symmetric matrix S = (si,j)i,j∈{1,2,...,n} and a
diagonal matrix Π. The equilibrium frequencies are on the diagonals of Π:

Q =


s1,1 s1,2 · · · s1,n
s1,2 s2,2 · · · s2,n
...

...
. . .

...
s1,n s2,n · · · sn,n

 ·

π1 0 · · · 0

0 π2
. . .

...
...

. . . . . . 0
0 · · · 0 πn

 . (5.45)

Proof. To prove this statement, we will prove that Equations (5.43) and (5.45) are equivalent.
We do so by showing that if Equation (5.43) holds, Equation (5.45) can be derived, and the
other way around.
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Deriving Equation (5.45) from Equation (5.43) Let us assume the Markov chain with rate
matrix Q fulfils Equation (5.43), which implies that

qi,j
(5.43)
=

πj
πi
qj,i = πj

1

πi
qj,i︸ ︷︷ ︸

=si,j

= πjsi,j (5.46)

holds for all i, j ∈ {1, 2, . . . , n}. In this equation, we defined parameters si,j such that

si,j =
1

πi
qj,i. (5.47)

We can now rewrite the substitution rate matrix by replacing the entries according to Equa-
tion (5.46):

Q =


q1,1 q1,2 · · · q1,n
q2,1 q2,2 · · · q2,n
...

...
. . .

...
qn,1 qn,2 · · · qn,n

 =


π1s1,1 π2s1,2 · · · πns1,n
π1s2,1 π2s2,2 · · · πns2,n

...
...

. . .
...

π1sn,1 π2sn,2 · · · πnsn,n

 . (5.48)

This can be decomposed into:
π1s1,1 π2s1,2 · · · πns1,n
π1s2,1 π2s2,2 · · · πns2,n

...
...

. . .
...

π1sn,1 π2sn,2 · · · πnsn,n

 =


s1,1 s1,2 · · · s1,n
s2,1 s2,2 · · · s2,n
...

...
. . .

...
sn,1 sn,2 · · · sn,n

 ·

π1 0 · · · 0

0 π2
. . .

...
...

. . . . . . 0
0 · · · 0 πn

 .

(5.49)

It remains to show that the S matrix is symmetric, si,j = sj,i. This is trivial for i = j; thus,
we assume now i 6= j. Then the symmetry follows from the definition of si,j and the time-
reversibility equation:

si,j
(5.47)
=

1

πi
qj,i

(5.43)
=

1

πi

πi
πj
qi,j

(5.47)
= sj,i. (5.50)

Deriving Equation (5.43) from Equation (5.45) Let us assume that the Markov chain with
rate matrixQ fulfils Equation (5.45). For i = j, Equation (5.43) is always true. Thus, we now
look at the case i 6= j. We have si,j = sj,i, and thus we can show that Equation (5.43) holds:

πiqi,j = πisj,iπj = πjsi,jπi = πjqj,i. (5.51)

In summary, we proved that Equation (5.43) and Equation (5.45) are equivalent.
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As noted previously, the most general time-reversible substitution model is the GTR model.
The time-reversibility can be seen from decomposing the QGTR matrix (Equation (5.39)) into

QGTR =


−(aπC + bπA + cπG) aπC bπA cπG

aπT −(aπT + dπA + eπG) dπA eπG
bπT dπC −(bπT + dπC + fπG) fπG
cπT eπC fπA −(cπT + eπC + fπA)



=


−aπC+bπA+cπG

πT
a b c

a −aπT+dπA+eπG
πC

d e

b d − bπT+dπC+fπG
πA

f

c e f − cπT+eπC+fπA
πG

×


πT 0 0 0
0 πC 0 0
0 0 πA 0
0 0 0 πG

 .

(5.52)

The other shown time-reversible substitution models, JC69, K80, F81, HKY, and TN93, are
special cases of GTR.

As discussed in Section 5.2.2, it is straightforward to obtain P (t) if Q is diagonalisable with
real eigenvalues. Corrolary 5.3.4 thus shows that it is easy to calculate P (t) for all time re-
versible models.

Corollary 5.3.4. Let Q be the rate matrix of a stationary time-reversible Markov chain. Then
Q is diagonalisable and has real eigenvalues.

Proof. We can write:

Q
(5.3.3)
= SΠ = Π

−1/2Π
1/2SΠ

1/2Π
1/2, (5.53)

where S is a symmetric matrix and Π is a diagonal matrix.

From this, we can establish that Π1/2SΠ1/2 is symmetric:

(Π
1/2SΠ

1/2)T = (Π
1/2)T (S)T (Π

1/2)T = Π
1/2SΠ

1/2. (5.54)

Since Π1/2SΠ1/2 is symmetric, we can write Π1/2SΠ1/2 = U−1ΛU where Λ contains real eigen-
values (see Box 19 on page 94).

Then Q = Π1/2U−1ΛUΠ1/2 = (UΠ1/2)−1Λ(UΠ1/2) where Λ contains the real eigenvalues of
Q.
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Model Parameters Description

JC69 1 all substitutions have the same rate, all equilibrium frequencies
are equal

K80 2 transitions and transversions have different rates, all equilibrium
frequencies are equal

HKY 2 + 3∗ transitions and transversions have different rates, equilibrium
frequencies can be different

TN93 3 + 3∗ as HKY, but different rates for different kinds of transitions

GTR 6 + 3∗ general, all rates and equilibrium frequencies can vary, but the
model is still time-reversible

UNREST 12 most general, not time-reversible

Table 5.1: Overview of substitution rate models and their number of parameters. The numbers
with ∗ correspond to the number of free equilibrium frequency parameters that can
either be co-estimated alongside the remaining parameters or be fixed based on
independent data.

5.3.7 Site dependency in molecular substitution models

The overview of models mentioned in this chapter, the number of their parameters, and a
short description are displayed in Table 5.1. All discussed models have in common that they
assume that sites change independently from each other. It is debatable whether the assump-
tion of independence between sites is justified, and ignoring dependence when it is present
may lead to accuracy loss in analysis results (Nasrallah, Mathews and Huelsenbeck 2010).
There are models that define transition probabilities for nucleotide triplets (codons) called
codon models (Section 5.7), assuming that the individual nucleotides evolve together dictated
by the properties of the corresponding amino acid (see also Section 5.6). However, only a little
work has been done on any dependency beyond the nucleotides within codons, as accounting
for dependence is computationally very hard: we would need to calculate the likelihood for
each combination of states along a lineage for all sites simultaneously. For example, some
work on accounting for particular site dependences can be found in Arndt and Hwa (2005)
and Hoehn, Lunter and Pybus (2017).

5.4 Distance estimation for nucleotide sequences

One approach to reconstructing phylogenies is to calculate the distance d between all pairs of
sequences and build a phylogeny by grouping sequences with small distances close together
(see Section 6.3.1). In what follows, we will introduce methods to estimate distance d for
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pairs of sequences. That is, we will introduce estimators d̂ for d (estimators are normally
marked with ·̂). We first explain why simply counting the number of differences between two
sequences is not a good way to estimate d, and then derive estimators for d under the JC69
model. Table 5.2 states estimators for further models.

5.4.1 Simple pairwise distances

The Hamming distance and p-distance are the simplest measures of distances between two
sequences of equal length. The Hamming distance is simply the number of segregating sites,
the number of sites that vary between the two sequences. The p-distance is the Hamming
distance divided by the total sequence length. For example, the Hamming distance between
the following two sequences:

ACTAGCTG
AGTTGCTG

is 2, whereas the p-distance is 2/8 = 0.25. In the example of triose-phosphate isomerase from
Chapter 3, Figure 3.1, the Hamming distance between mosquito and rice sequences is 35,
whereas the p-distance is 0.636.

Both theHamming distance and the p-distance are very simplistic measures that ignore the fact
that some substitutions are unobserved (or hidden) when considering the observed sequences.
We will go through different scenarios of successive substitutions to illustrate cases where the
Hamming and p-distance measures are biologically inadequate. We will use the tree shown in
Figure 5.7 as an example. For demonstration, we assume that we know the true sequence at
the internal node depicting the common ancestor of taxon 1 and taxon 21.

The daughter sequences (taxa 1 and 2) differ in two sites of the MSA. In the second site, the
nucleotide difference could have resulted from a single substitution, as depicted in Figure 5.7
(orange). In this case, a C changed to a G on the branch leading to taxon 2. The Hamming
and p-distance would correctly account for one substitution.

However, in our example, there have been several unobserved substitutions, which the Ham-
ming or p-distance cannot account for. This is highlighted in blue and grey. First, we have
multiple substitutions at a single position on a branch between the common ancestor and
taxon 1. The T in position 4 (depicted in blue) of the common ancestor sequence was first
replaced by a C and only later by an A, but all we can observe is the A in the final sequence.
Here, the Hamming distance is 1, while two substitutions occurred in reality. Second, we may
have parallel substitutions, meaning a site in both descendant sequences changes to the same
nucleotide. In our example, the A in position 6 (grey) changed into C in parallel for taxa 1
and 2. Here, the Hamming distance is 0, while two substitutions occurred.

1A taxon (plural taxa) is a term used in the science of biological classification (which is referred to as taxonomy).
It describes a biological unit defined in taxonomy and can refer to a group of one or more populations of an
organism or organisms. Taxa are typically arranged in a hierarchy from kingdom to subspecies.
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A C T A G C T G taxon 1

A G T T G C T G taxon 2

A C T T G A T G

A C T T T A T C taxon 3

C>G single 
substitution

T>C C>A A>C

multiple 
substitutions

A>C 

parallel 
substitution

Figure 5.7: An illustration of different substitution scenarios on a phylogenetic tree with three
tips. The arrow indicates the most recent common ancestor of taxa 1 and 2.
Orange: A single substitution happened at site 2 on the branch leading to taxon
2. Blue: Two consecutive substitutions happened at site 4 on the branch leading
to taxon 1. Gray: At site 6, taxa 1 and 2 each had one independent substitution
from adenine (A) to cytosine (C).

Moreover, we also could not account for all substitutions using the Hamming or p-distance
in case of convergent substitution (a certain position is different in two ancestral lineages,
but both lineages have a substitution into the same nucleotide) or back substitutions (a site
changes to a different nucleotide, and then changes back to the original starting nucleotide).

In summary, the Hamming and p-distance measure a minimal distance between sequences
since they report the minimal changes required to evolve from one sequence into the other.
Using such minimal distances may bias downstream results, and a distance measure that rep-
resents the actual evolutionary distance acknowledging potential hidden or unobserved sub-
stitutions is preferable. The mathematical models of sequence evolution introduced above
provide such distance measures.

5.4.2 Pairwise distances for JC69 using the method of moments

Let us consider two sequences of length n each. One sequence was the starting sequence, hav-
ing evolved for time t under the JC69 model, into the second sequence. We want to estimate
their evolutionary distance, taking into account all possible hidden intermediate substitutions.
We start with defining the probability of any substitution over time t. From the transition
probability matrix, we obtain the total probability that a nucleotide changes:

p(t) = 3p1(t) =
3

4
− 3

4
e−4λt. (5.55)
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As explained in the previous section, we can rewrite the time, t, in units of numbers of sub-
stitutions, d, as t = d/3λ. By plugging this expression into Equation (5.55), we obtain

p(d) =
3

4
− 3

4
e−

4
3d. (5.56)

We note here that 0 ≤ p(t) ≤ 3/4, since 0 ≤ d ≤ ∞.

Now, we rearrange the Equation (5.56) and obtain:

d = −3

4
log
(
1− 4

3
p(d)

)
. (5.57)

We aim to obtain an estimator for d, d̂. Before estimating d, we obtain an estimate for p(t), p̂,
based on the method of moments. We use the two sequences as data and count the number
of segregating sites in the two sequences, x. The probability p(t) is the probability of any site
being segregating, meaning each site undergoes a Bernoulli trial (Box 20 on page 95) with
success probability p(t), and thus the expectation for a site to be segregating is p(t). When
comparing two sequences with n sites, we observe n Bernoulli trials (one for each site), and
x/n is the expectation for a site to be segregating in this sample. In the method of moments,
the estimate for the expectation p(t) is the sample expectation, p̂ = x/n. Thus, our estimator
for d based on the method of moments estimator for p(t) is:

d̂ = −3

4
log
(
1− 4

3

x

n

)
. (5.58)

Example: In Figure 5.8, we display two sampled sequences (the same as taxon 1 and 2 in
Figure 5.7) together with their (typically unknown) ancestor. For the alignment of the two
sampled sequences, we count x = 2 differences for the total length of n = 8 nucleotides. The
estimated probability of substitution is, therefore, p̂ = x/n = 2/8 = 0.25. According to the
JC69 pairwise distance formula just derived, the distance estimate is d̂ = − 3

4 log
(
1− 4

3 p̂
)
=

− 3
4 log

(
2
3

)
= 0.3.

When estimating a parameter from data, the estimated parameter does not necessarily match
the true value; thus, a parameter estimate is normally reported with a measure of uncertainty
such as the variance or a confidence interval. There are multiple methods for calculating the
variance of d̂, one of which is the so-called delta technique. We refer the interested reader to
Yang (2014, Appendix B), which describes this technique in detail. Below, we will explain
how to obtain confidence intervals for the maximum likelihood method.
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ACTTGATG

ACTAGCTG

AGTTGCTG

common ancestor

C

Figure 5.8: Example alignment of the two sequences ACTAGCTG and AGTTGCTG (taxon
1 and 2 in Figure 5.7) and their true (unknown) common ancestor sequence
ACTTGATG. The arrows indicate substitutions, and the letter on one of the ar-
rows indicates multiple substitutions.

5.4.3 Pairwise distances using a maximum likelihood approach for JC69

In this section, we derive the maximum likelihood estimator (MLE) for pairwise distances.
Maximum likelihood estimators are explained in Box 25 on page 116. Further, in Box 26 on
page 117, we explain the concept of confidence intervals (CI) and how to obtain confidence
intervals for maximum likelihood estimators.

To derive the maximum likelihood estimator for the distance between a pair of sequences,
we note that the probability of a substitution under the JC69 model in time t is p = 3p1(t),
where p1(t) = 1

4 −
1
4e

−4λt. The number of differences between two sequences of length n is
binomially distributed:

P (x substitutions out of n nucleotides) =
(
n

x

)
px(1− p)n−x. (5.59)

After substituting p by 3p1(t) =
3
4 −

3
4e

−4λt = 3
4 −

3
4e

− 4
3d, Equation (5.59) is equal to(

n

x

)(
3

4
− 3

4
e−

4
3d

)x(
1

4
+

3

4
e−

4
3d

)n−x
= L(d;x), (5.60)

which defines the likelihood function. Log-transformation of this leads to:

l(d;x) = log
(
n

x

)
+ x log

(
3

4
− 3

4
e−

4
3d

)
+ (n− x) log

(
1

4
+

3

4
e−

4
3d

)
. (5.61)
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Box 25: Maximum likelihood estimator (MLE)
Let P (X = data|θ) be a probability density of a random variableX given parameters θ. Then the function in θ

L(θ; data) = P (X = data|θ) (B25.1)

is called the likelihood function or likelihood for short. For observed data data, themaximum likelihood estimator
(MLE), is the parameter value for which the likelihood is the highest,

θ̂ = argmaxθL(θ; data). (B25.2)

Very often, the terms probability and likelihood are used interchangeably. However, they describe very different
concepts in a strict mathematical sense; the probability is a function of data, while the likelihood is a function of
model parameters.

We illustrate the concept ofMLEwith the example of repeatedly rolling a 6-sided die. After we roll the dien = 100
times and observe x = 40 sixes, we want to estimate the parameter “probability of rolling a six”, denoted by p,
using an MLE. Let the random variable X denote the number of sixes out of n die rolls. Then x = 40 is one
realisation of this random variable, our data are data = x, and our parameter is θ = p. The random variableX
is binomially distributed, P (X = x|p) =

(n
x

)
px(1− p)n−x. Thus, the likelihood function in our experiment is

L(p; x) = P (X = x|p) =
(100
40

)
p
40

(1 − p)
60. (B25.3)

The MLE is the value of p that best explains the observed data, that is, the value that maximises Equation (B25.3).
A necessary condition for minima and maxima is that the first derivative equals 0. As we are only interested in the
value at which the likelihood function takes its maximal value, the likelihood function can be transformed with
functions that do not move the location but only the actual value of the maximum, such as taking the logarithm.
This specific transformation is called the log-likelihood function, l(p; x):

l(p; x) = logL(p; x) B25.3
= log

(100
40

)
+ 40 log p+ 60 log(1 − p). (B25.4)

As the log-likelihood function from our example shows, the logarithm changes multiplications to sums, thus simpli-
fying getting an analytical solution to the maximisation. Below, we show the likelihood (black) and log-likelihood
(blue) functions for the die experiment.
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To find the location of the maximum of the log-likelihood function, we calculate the first derivative of the log-
likelihood function with respect to p and set the derivative to 0. For our example it is p̂ = x/n = 40/100 = 0.4.
Since the second derivative is < 0, we conclude this is a maximum (as seen in the plot above).
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Box 26: Confidence interval
A confidence interval (CI) is a measure of the uncertainty around a particular estimate. The interval is an estimate
itself and depends on the observed realisation of a random experiment. The interval estimate is called a (1−α)×
100% confidence interval (e.g. a 95% confidence interval) if the true parameter ϑ lies within the estimated interval
in (1−α)× 100% of the repeated random experiments. Note that if ϑ is a vector (e.g. ϑ = (µ, σ2) in a normal
distribution), its confidence measure is called a confidence region.

The likelihood framework offers an easy estimate of the CI. For given data, the MLE (see Box 25 on page 116) is
denoted with θ̂, and the log-likelihood ratio function (LR) is defined as:

LR(θ̂, ϑ) = 2(l(θ̂; data) − l(ϑ; data)) = log

(
L(θ̂; data)

L(ϑ; data)

)2

. (B26.1)

The right side of Equation (B26.1) demonstrates why this function is called the log-likelihood ratio function.

When data are generated under ϑ, we can apply Wilk’s theorem (see also Section 7.2.1) to show that LR(θ̂, ϑ)
approximately follows a χ2

k distribution (see Box 11 on page 78):

LR(θ̂, ϑ) ∼ χ
2
k. (B26.2)

In this case, the degree of freedom k corresponds to the length of the parameter vector ϑ.

The (1−α)× 100%CI is the set of parameter values θ where LR(θ̂, θ) ≤ χ2
k,α, meaning all θ which are not in

the tail of the χ2
k distribution are in the CI. Each value θ in the (1 − α) × 100% CI is a candidate for being the

true ϑ, and in α× 100% of cases, ϑ is not contained inside the (1 − α) × 100% confidence interval.

Example: To calculate the 95% confidence interval of the parameter θ = p for the die throwing example from
Box 25 on page 116, we first calculate the value of l(p̂; x). Then, we look up the value of χ2

k,5% in the χ2-table,
and calculate the values for ϑ such that l(ϑ; x) > l(p̂; x) − 0.5χ2

k,5%:

−10.0

−7.5

−5.0

−2.5

0.0

0.0 0.2 0.4 0.6 0.8 1.0

p

l(
p;

 x
)

l(p; x)ˆ

l(p; x) - 0.5χ2
k,5%

ˆ

Based on this procedure, we can determine the 95% confidence interval for the probability of rolling a six in our
example. We rolled the die 100 times and observed 40 sixes, corresponding to the probability of p̂ = 0.4. The
95% confidence interval is [0.308, 0.499] (shown in blue).

Note that if the die were fair, we would expect p = 1/6, which is not within the 95% CI of this particular
realisation.
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−10

−8

−6

−4

−2

0

0.0 0.5 1.0 1.5 2.0

d

l (
d;

 x
) l (d; x = 200, n = 800)ˆ
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Figure 5.9: Maximum likelihood estimation of the distance between two nucleotide se-
quences of length 8 (in blue) and of length 800 (in black). The log-likelihood
l(d;x) is shown on the y-axis. The sequence distance d is shown on the x-
axis. The maximum likelihood distance estimate is the x-value at which the curve
reaches a maximum. The 95% confidence intervals are indicated with blue and
black shaded areas.

To obtain the maximum likelihood estimate of the distance under JC69, we need to differ-
entiate the Equation (5.61) with respect to d and set the derivative to 0. We then obtain
d̂ = − 3

4 log
(
1− 4x

3n

)
, which is the same as the method of moments estimator under JC69 we

derived in Section 5.4.2.

Let us calculate the MLE and the CI of the distance under JC69 for the two sequences shown
in Figure 5.8 (assuming we do not know the ancestral sequence). There are two differences
between the 8-nucleotide long sequences, so the maximum likelihood distance estimate is
d̂ = − 3

4 log
(
1− 4×2

3×8

)
= 0.3. The CI for this estimate is [0.05, 1.17] (blue shaded area in

the Figure 5.9). The CI is not symmetric around the MLE, and the uncertainty in the distance
estimate is quite large (wide CI). This is due to the small amount of information our sequences
carry because of their short length. If we had more data in the form of longer sequences, we
would have more confidence in our estimate. In fact, when we repeat the calculations for
sequences of length 800 instead of 8, and with 200 differences instead of 2, we obtain the
same MLE of d̂ = − 3

4 log
(
1− 4×200

3×800

)
= 0.3, but CI = [0.26, 0.35]. As expected, the CI

is much more narrow than in the short sequence example — see the black shaded area in
Figure 5.9.

In Table 5.2, we provide the distances for other nucleotide substitution models that can be
derived as described here.
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5.5 Allowing for rate variation across sites

So far, we have only considered models where all sites in the sequence evolve under the same
model. However, this may not always be a reasonable assumption because the substitution
rates might vary between different sites. This variability can be due to variable mutation rates
in different parts of the genome (e.g. the polymerase could have different error rates across
different parts of the genome) or due to variable selective pressure on different parts of the
phenotype (e.g. a viral sequence could have parts that are under strong selective pressure to
escape the host immune system and other parts under strong pressure to remain the same to
allow the virus to use conserved host receptors to enter the host cells). Thus, we extend the
substitution rate models to account for this variability, referred to as rate heterogeneity.

The extension of variable rates across different sites in the sequence is often modelled by
replacing constant rates with a Γ distributed random variable (see Box 14 on page 81) for
each site (denoted JC69+Γ, K80+Γ, and so on). Typically, a Γ(α, α) distribution is chosen.
This distribution has mean 1, meaning that the average substitution rate remains the same as
in the original model. When considering the rates for all sites in a sequence of length n, the
empirical rate distribution corresponds to n draws from the Γ distribution.

For the JC69 evolutionary model with Γ distributed rates, we replace the single λ parameter
with λR where R is a Γ(α, α) distributed random variable. According to Equation (B14.3),
the chosen Γ distribution has mean 1, and thus E(λR) = λ. The transition probability then
becomes p(t) = 3

4 −
3
4e

−4λRt = 3
4 −

3
4e

− 4
3dR.

For a particular site, we do not know which value the random variable R takes. Thus, we
average over all possible values for R to obtain the expected transition probability:

E(p) =
∫ ∞

0

(
3

4
− 3

4
e−

4
3dr)fR(r;α, α)dr =

3

4
− 3

4

(
1 +

4d

3α

)−α

. (5.62)

To calculate the pairwise sequence distance under this extended model, we again (as in Sec-
tion 5.4.2) equate the observed proportion of different sites between the two sequences x/n
(the sample expectation for a site to be segregating) to the expectation of a site to be se-
gregating, E(p), to get d̂ = 3

4α
((

1− 4
3 p̂
)−1/α − 1

)
. Furthermore, we can use the maximum

likelihood framework, as was done in Section 5.4.3, to derive maximum likelihood distances.

Let us look back at our example alignment from Figure 5.8 (again ignoring the ancestral
sequence). The length of the two sequences is n = 8 nucleotides, of which x = 2 sites are
different. We obtained a maximum likelihood estimate of 0.3 for the distance under JC69
without site variation. We take the site variation into account by assuming Γ(2, 2) distributed
substitution rates. This results in an estimated distance of

d̂JC69+Γ =
3

4
α

((
1− 4

3
p̂

)−1/α

− 1

)
= 0.34 > 0.3 = d̂JC69 (5.63)
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between the two sequences. The distance estimate with site variation is bigger than the one
we obtained when considering a simple JC69 model. Therefore, in our example, ignoring
the site variation — given it is present — leads to underestimating sequence distance. This
observation holds in general, as we will show in Theorem 5.5.1.

Theorem 5.5.1. In the JC69 model, not modelling among-site rate variation leads to a smaller
sequence distance estimate compared to assuming a Γ distributed among-site rate variation.

Proof. We derived the distance estimator for JC69, d̂JC69 = − 3
4 log

(
1− 4

3 p̂
)
and the estimator

for JC69+Γ, d̂JC69+Γ = 3
4α
((

1− 4
3 p̂
)−1/α − 1

)
. To prove this theorem, we need to prove that

−3

4
log
(
1− 4

3
p̂

)
≤ 3

4
α

((
1− 4

3
p̂

)−1/α

− 1

)
(5.64)

for all α > 0 and 0 ≤ p̂ < 3/4.

We transformEquation (5.64) bymultiplying both sides by 4/3α, applying a logx = logxa, and
exponentiating both sides. This means that proving Equation (5.64) is equivalent to proving(

1− 4

3
p̂

)−1/α

≤ exp

((
1− 4

3
p̂

)−1/α

− 1

)
. (5.65)

We define x =
(
1− 4

3 p̂
)
. As 0 ≤ p̂ < 3/4, x ranges between 0 and 1, 0 < x ≤ 1. We now

expand the right side of Equation (5.65) using Equation (B16.1) of the exponential function
(Box 16 on page 88):

exp

((
1− 4

3
p̂

)−1/α

− 1

)
= exp

(
x

−1/α − 1
)
=

∞∑
n=0

(
x−1/α − 1

)n
n!

= 1 +
(
x

−1/α − 1
)
+

∞∑
n=2

(
x−1/α − 1

)n
n!

= x
−1/α +

∞∑
n=2

(
x−1/α − 1

)n
n!

. (5.66)

Because 0 < x ≤ 1, it follows that x−1/α = 1
x1/α
≥ 1 and thus (x−1/α − 1) ≥ 0. We can then

conclude

exp
(
x

−1/α − 1
)
= x

−1/α +

∞∑
n=2

(
x−1/α − 1

)n
n!︸ ︷︷ ︸

≥0

≥ x−1/α. (5.67)

Per definition x =
(
1− 4

3 p̂
)
, we obtain Equation (5.65), which proves that the JC69 distance

is always less than or equal to the JC69+Γ distance.
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For more complex substitution models such as the GTR model, direct integration of Equa-
tion (5.62) is impossible. Thus, when used for practical inference, this integration is handled
using an approximation (Yang 1996), in which the rate at a given site is assumed to be dis-
tributed across a small and fixed number of discrete values (rate categories) corresponding to
equal-probability quantiles of the Γ(α, α) distribution. The number of discrete rate categories
is usually displayed as a subscript of the Γ distribution; for example, the K80 model with 4
discrete rate categories will be written as K80+Γ4. Numerically averaging over these discrete
rate values approximates integrating over the Γ distribution.

Table 5.2 lists a collection of distance estimators for several substitution models, both with
and without site rate heterogeneity. Not all substitution models are present in this list (GTR
and UNREST are missing, for example), as these models lack a closed-form solution for the
transition probability function, which is used to derive the distance estimators in this list.

As discussed by Felsenstein (2003), another common approach to dealing with site-to-site
heterogeneity is simply allowing sites to be either “variable” or “invariable”, with mutation
strictly forbidden at “invariable” sites. This can be done by introducing a parameter pinv to
represent the probability of any given site being invariable, which then serves a roughly ana-
logous role to the shape parameter in the Γ(α, α) distribution. The idea behind this approach
is to allow portions of the genome — perhaps those under strong selection — to remain fixed
without influencing the inferred substitution rate for neutral sites. Substitution models with
this modification are sometimes given the suffix +I (e.g. GTR+I).

In addition to rate variation across sites, we may have rate variation across branches. We
touch upon that topic in Section 6.4.3.

5.6 Amino acid substitution models

In the previous section, we focused on the evolution of nucleotides and the models that
quantify nucleotide substitution rates. However, selection takes place at the level of the phen-
otype. This section focuses on studying evolution at this level and quantifying it using amino
acid substitution models.

Example: The human immunodeficiency virus (HIV) is a persistent infection that quickly ad-
apts to ever-changing immunological environments. The envelope protein is the only protein
that sticks out of the viral membrane and is visible to the immune system. As soon as an in-
dividual becomes infected with HIV, the immune system starts producing antibodies directed
at the envelope protein on the surface of the HIV virions. Thus, the immune system imposes
selective pressure on the virus population, leading to immune escape. The adaptation of the
amino acid sequence of the HIV envelope protein in response to the antibody response of
the host immune system is an example of evolution acting at the level of phenotype — see
Figure 5.10.
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Model Distance estimator

JC69
(Jukes and
Cantor
1969)

d̂JC69 = −
3

4
log
(
1−

4

3
p̂

)
, where (5.68)

p̂ = x/n, (5.69)

x is the number of segregating sites,
n is the sequence length.

K80
(Kimura
1980)

d̂K80 = −
1

2
log(1− 2S − V )−

1

4
log(1− 2V ), where (5.70)

S is the proportion of sites with transitional differences,
V is the proportion of sites with transversional differences.

HKY
(Hasegawa,
Yano and
Kishino
1984)

d̂HKY = 2

(
πTπC

πT + πC
+

πAπG

πA + πG

)
a

− 2

(
πTπC(πA + πG)

πT + πC
+

πAπG(πT + πC)

πA + πG
− (πT + πC)(πA + πG)

)
b, where (5.71)

a = − log

1−
S

2
(

πTπC
πT+πC

+ πAπG
πA+πG

) −

(
πTπC(πA+πG)

πT+πC
+

πAπG(πT+πC)
πA+πG

)
V

2 (πTπC(πA + πG) + πAπG(πT + πC))

 , (5.72)

b = − log
(
1−

V

2(πT + πC)(πA + πG)

)
, (5.73)

S is the proportion of sites with transitional differences,
V is the proportion of sites with transversional differences.

TN93
(Tamura
and Nei
1993)

d̂TN93 =
2πTπC

(πT + πC)
(a1 − (πA + πG)b)

+
2πAπG

(πA + πG)
(a2 − (πT + πC)b) + 2(πT + πC)(πA + πG)b, where (5.74)

a1 = − log
(
1−

(πT + πC)S1

2πTπC
−

V

2(πT + πC)

)
, (5.75)

a2 = − log
(
1−

(πA + πG)S2

2πAπG
−

V

2(πA + πG)

)
, (5.76)

b = − log
(
1−

V

2(πT + πC)(πA + πG)

)
, (5.77)

S1 is the proportion of sites with two different pyrimidines (T, C),
S2 is the proportion of sites with two different purines (A, G),
V is the proportion of sites with transversional differences.

JC69+Γ
d̂JC69+Γ =

3

4
α

((
1−

4

3
p̂

)−1/α

− 1

)
, where (5.78)

α is the shape and the rate of the Γ distribution.

K80+Γ
d̂K80+Γ =

1

2
α
(
(1− 2S − V )−1/α − 1

)
+

1

4
α
(
(1− 2V )−1/α − 1

)
, where (5.79)

α is the shape and the rate of the Γ distribution,
S is the proportion of sites with transitional differences,
V is the proportion of sites with transversional differences.

Table 5.2: Distance estimators from Yang (2014) for different nucleotide substitution models.
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Figure 5.10: Adaptation of the HIV envelope protein (the protein on the surface of HIV virions)
to the selective pressure exerted by the immune system of the host over time.
Viral strains were isolated over 7 weeks post-infection (wpi) up to 213 wpi. Small
parts of the viral sequence are shown in this figure, namely the D loop and
β23. In the patient, three waves of antibodies were identified, each directed
against a different target. Their timing is summarised on the left. Three specific
mutations (N279D, N276 glycan, R456H/Y/W) were responsible for the failure
of the antibodies. The pie charts show the presence of these mutations in the
isolated viral strains at different time points. Figure adapted from Wibmer et al.
(2013).
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The amino acid composition of the envelope protein sequences in Figure 5.10 changes over
time (the weeks post-infection (wpi) are displayed on the left of the figure). Three sites —
276, 279, and 456 — have a particularly significant impact on the success or failure of the
autologous antibody response, which is the antibody response that follows a new mutation.
The pie charts show how often mutations were found at these sites in the sampled viral se-
quences. Generally, we observe that the fraction of viral strains bearing mutations at these
sites increases. This can be seen as a hint of selection for viral variants increasingly resistant
to the autologous response.

This example nicely illustrates viral evolution at the phenotypic level. As evolution is the result
of mutation and selection, we are interested in whether we can quantify the substitution rate
of the amino acids and detect the presence of selection. To estimate substitution rates, we
will in the following extend the substitution models presented earlier. To discover hints of
selection, we then derive statistical tests (Section 5.7.2).

5.6.1 Definition of amino acid substitution models

We now define a substitution model at the amino acid level. Again, the process underlying
the amino acid substitutions is modelled as a Markov chain with all the properties mentioned
before. However, instead of four nucleotides, there are 20 amino acids. Thus, the state space
of the Markov model is 20-dimensional, and the substitution rate matrix Q — and with it,
the transition probability matrix P (t) = eQt — is a 20× 20 matrix with, in the most general
case, 380 parameters (the diagonal is again chosen such that the row sum is 0).

The amino acid substitution models are more difficult to configure than the nucleotide substi-
tution models. Like in nucleotide models, the Q matrix is ideally defined such that it ensures
the time-reversibility of the model, as otherwise, downstream statistical analyses will be dif-
ficult (see Theorem 5.3.3 for the structure of Q if it defines a time-reversible process).

Typical datasets do not contain enough information to allow us to estimate hundreds of para-
meters (time-reversible models may have more than 200 parameters). Thus, the entries of
amino acid substitution matrices are specified empirically or mechanistically, in contrast to
nucleotide models, where entries are usually estimated. One can use empirical substitution
rates (fixed rates that were previously suggested for the particular biological system) to fill
the matrix. Alternatively, a probabilistic model can be used, which takes into account the
properties of the individual amino acids and how easy it is to change from one amino acid to
another, either from a chemical or a codon point of view.

Some of the most often used empirical amino acid substitution models can be roughly di-
vided into two categories. The first category is the amino acid substitution scoring matrices,
originally derived for scoring sequence alignments. Some of the most well-known models are
the PAM matrices (point accepted mutation) introduced by Dayhoff, Schwartz and Orcutt
(1978), the JTT model by Jones, Taylor and Thornton (1992), and the BLOSUM substi-
tution matrices (BLOSUM62 mentioned briefly in Section 3.1.5 and shown on Figure 3.7)
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introduced by Henikoff and Henikoff (1992). The PAM matrices were derived from related
protein sequences (above 85% similarity) using a parsimony-based criterion. JTT used a sim-
ilar counting approach based on a much larger protein database than PAM. The BLOSUM
matrices were calculated from more divergent sequences using existing alignments with dif-
ferent similarity percentages. For example, BLOSUM62 (Figure 3.7) was calculated based on
alignments that share at least 62% similarity among sequences.

All models in this category are not based on explicit mechanistic substitution models but
rather on observed substitution patterns. In particular, PAM and BLOSUM matrices were
originally designed for scoring alignments, but they encode the information about the trans-
ition probabilities. For example, the BLOSUM matrix entries are defined as

Si,j =
1

λ
log(

pi,j
πiπj

), (5.80)

where λ is a scaling factor set arbitrarily such that the values are integer, pi,j is the empirical
substitution probability, and πi and πj are the empirical amino acid frequencies. Thus, in
terms of models as described in Section 5.2, the matrices of these empirical models state
the transition probability matrices P (t) (with value transformations necessary for PAM and
BLOSUM) rather than the substitution rate matrices Q.

The second category of models is based on a mechanistic view of amino acid substitution.
Each model was first defined mechanistically as a continuous-time Markov chain, and its
parameters were estimated using maximum likelihood from large protein databases. While
these models are mechanistic, they still have around 200 parameters. This makes it impossible
to estimate all the parameters from a single dataset, meaning that empirical rate values are
often used, while the stationary frequencies are estimated for the dataset in question.

Examples of such models includeWAG (Whelan and Goldman 2001) and LG (Le and Gascuel
2008). As different organisms may have very different underlying evolutionary mechanisms,
it is also useful to have mechanistic models with parameters estimated from specific datasets.
For example, Nickle et al. (2007) estimated a model specific to HIV-1 subtype B, including
estimates for within-host and between-host substitution matrices, and Dang et al. (2010) es-
timated a model specific to influenza proteins. All of these models provide a substitution rate
matrix Q that can be used in sequence distance estimation and phylogenetic tree reconstruc-
tion (as described in Chapter 6).

5.6.2 JC69-like distance estimation for amino acid sequences

An amino acid substitution model allows us to define a measure of distance between two
sequences as we did for the nucleotide substitution models. We use the same procedure to
estimate the distance between amino acid sequences with an empirical or mechanistic Q-
matrix. In the simplest, JC69-like model of amino acid substitution, all substitutions have the
same rate λ. Thus, the mean rate of substitution is 19λ. The expected time to substitution is
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1
19λ . This translates to time t =

d
19λ between two amino acid sequences. The distance estimator

between the two sequences is d̂ = 19
20 log

(
1− 20x

19n

)
, where n is the length of the sequences and

x the number of substitutions.

5.7 Codon substitution models

Wewill now discuss the definitions and properties of codon substitutionmodels. These models
allow us to estimate whether selection is acting on (parts of) the sequences.

5.7.1 Definition of codon substitution models

A codon consists of three nucleotides and encodes for one amino acid (see Figure 1.7). As
there are four nucleotides, there are 43 = 64 possible codons. However, during the transla-
tion of RNA into proteins, three stop codons — TAA, TAG and TGA, — stop the translation
process. The codon substitution models disregard these three codons because any premature
stop codons in the protein-coding sequence usually cause the sequence to be translated into a
non-functional protein. Thus, the codon models account for transitions between 61 codons,
resulting in a very large substitution rate and transition probability matrices (61×61 entries).

One of the codons, ATG, the so-called start codon, serves as the biological barcode, signalling
that the protein code starts at that position. The start codon and the remaining 60 codons
each encode an amino acid. However, there are only 21 amino acids, of which only 20 are
physiologically relevant and appear in the genetic code. This means that several codons can
encode the same amino acid. The “codon sun” in Figure 1.7 illustrates that some nucleotide
substitutions do not lead to any changes at the phenotypic level and, thus, are less likely to
be under selection.

Generally, each codon can change into nine other codons with one nucleotide substitution (see
Figure 5.11 for an example using codon CGG). Nucleotide substitutions in the codon leading
to the same amino acid are called synonymous substitutions, and nucleotide substitutions in
the codon leading to a different amino acid are called non-synonymous substitutions. Codons
that result from a nucleotide transition on the third position often translate to the same amino
acid, and the codons that result from a transversion often produce a different amino acid
(recall that transversions usually occur less frequently than transitions).

We will now introduce a codon model using notation following (Yang 2014). As nucleotide
and amino acid models, the codon models are Markov chain models, but with 61 possible
states. We denote codons in the codon models with capital letters (e.g. I, J) and nucleotides
with small letters (e.g. i, j). Codon models assume that the rate of change from I to J is
zero if I and J differ in more than one nucleotide position, meaning that only single nucle-
otide changes are allowed. In general, this means that we may assume arbitrary rates for the
transition of each codon into the nine codons, which are one substitution away, which makes
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CGG
Arg

CGT
Arg CGC

Arg

CGA
Arg

CTG
Leu

CCG
Pro

CAG
Gln

TGG
Trp

AGG
Arg

GGG
Gly

Figure 5.11: All possible codons into (or from) which the CGG codon could mutate with only
one nucleotide substitution. The corresponding amino acid is shown as a three-
letter code for each codon below. The non-synonymous substitutions are shown
in blue. The synonymous substitutions are in black. The bigger arrows show
transitions, and the smaller arrows show transversions. Figure inspired by Yang
(2014).

9× 61 = 549 parameters. It is typically unfeasible to estimate that many parameters. Instead,
some assumptions are made in the common codon models (Goldman and Yang 1994).

First, common codon models assume that the ratio of the synonymous transition rate to the
synonymous transversion rate is the same across all codons I. Similarly, the ratio of the non-
synonymous transition rate to the non-synonymous transversion rate is often assumed to be
the same across all codons I. The associated parameters are κ for the transition/transversion
ratio and ω for the non-synonymous/synonymous rate ratio. Furthermore, let πI be the equi-
librium frequency of codon I. We can assume that each codon frequency is a free parameter
(all frequencies summing up to 1).

Each off-diagonal entry in the substitution rate matrix making these assumptions is then
defined as (Nielsen and Yang 1998):

qIJ =



0 if I and J differ at more than 1 positions;
πJ if I and J differ by a synonymous transversion;
κπJ if I and J differ by a synonymous transition;
ωπJ if I and J differ by a nonsynonymous transversion;
ωκπJ if I and J differ by a nonsynonymous transition.

(5.81)

In practice, these transition probabilities must be evaluated numerically. Due to the sizes of the
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transition matrices for the codon model, the complexity of the calculations is proportionately
larger than those for the most general nucleotide substitution models (Felsenstein 2003).

5.7.2 Detecting selection: dN/dS ratio

The presence of selection acting on a nucleotide sequence can be revealed by comparing
the amount of synonymous and non-synonymous nucleotide differences between two se-
quences. The idea behind this comparison is that if there are significantly more (or fewer)
non-synonymous than synonymous differences than expected by chance, the protein was
likely under selective pressure to specifically adapt its amino acid composition (or to remain
unchanged). Otherwise, there was likely no selection acting on the protein.

Comparing non-synonymous and synonymous nucleotide differences between two sequences
is a challenging task. We cannot compare the number of non-synonymous and synonymous
differences directly because the probability of a random nucleotide substitution leading to a
non-synonymous or synonymous change is not the same for each site (due to differing codon
positions and the variable amounts of redundancy in codon encoding per amino-acid, see
Figure 1.7). Thus, we have to scale these differences by the number of possible substitutions
of the respective type.

The number of non-synonymous sites for two sequences is defined as the probability of a
non-synonymous nucleotide change in either sequence times the sequence length2. Analog-
ously, the number of synonymous sites for two sequences is the probability of a synonymous
nucleotide change in either sequence times the sequence length. Thus, the sum of synonymous
and non-synonymous sites for a pair of sequences equals the sequence length.

For two sequences, let us define d′N as the ratio of the number of non-synonymous nucleotide
differences to the number of non-synonymous sites. Similarly, let us define d′S as the ratio
of the number of synonymous nucleotide differences to the number of synonymous sites in
our two sequences. Note that these definitions assume the absence of back-mutations (see
Figure 5.7). Commonly used methods correct the d′N and d′S to account for this possibility,
yielding dN and dS . In the upcoming section, we provide one way to estimate dN and dS .

The dN/dS ratio is typically reported, as it contains information on the abundance of selection
between two nucleotide sequences. A ratio dN/dS < 1 means that non-synonymous substi-
tutions happen less frequently than synonymous substitutions, often referred to as purifying
selection (the genome is “purified” and substitutions are selected against; this corresponds
to highly conserved phenotypes). A ratio dN/dS > 1 means that non-synonymous substitu-
tions occur more frequently than synonymous substitutions, which leads to positive selection
that accelerates the fixation of non-synonymous substitutions. A ratio dN/dS = 1 means no
selection; synonymous and non-synonymous substitutions happen at the same rate.

2Note that this is an effective number of sites, allowing for the fact that changes at individual sites can be either
synonymous or non-synonymous depending on the substituted character.
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Several methods have been introduced for determining the dN/dS ratio (see Yang (2014) for
an overview). Here, we will look at the counting method introduced by Nei and Gojobori
(1986) to understand important concepts concerning the dN/dS ratio.

5.7.3 Counting method

We introduce the counting method for determining dN/dS (Nei and Gojobori 1986). We
follow these three steps:

1. count the number of non-synonymous and synonymous differences between the two
nucleotide sequences, referred to as Nd and Sd, respectively;

2. count the number of non-synonymous and synonymous sites in the two nucleotide se-
quences, referred to as N and S, respectively;

3. account for the unobserved nucleotide substitutions by applying the pairwise distance
formula (such as Equation (5.58) when assuming the JC69 model) to the ratios d′N =
Nd/N and d′S = Sd/S to obtain dN and dS.

We illustrate the counting method with an example, looking at the two sequences
TTTCCTCCTCCT and TTCCAGCCTCCT (example from Yang (2014, Section 2.5); this ex-
ample is used here with permission of the author), which each can be divided into four codons:

codon 1 codon 2 codon 3 codon 4

sequence 1 TTT CCT CCT CCT

sequence 2 TTC CAG CCT CCT

From the codon sun (Figure 1.7) we can see that codons TTT and TTC encode F (phenyl-
alanine), CCT encodes P (proline), and CAG encodes Q (glutamine). Thus, sequence 1 encodes
the amino acid sequence FPPP and sequence 2 encodes the amino acid sequence FQPP, giving
us a synonymous nucleotide change in codon 1 and a non-synonymous nucleotide change in
codon 2.

Step 1: counting the number of non-synonymous and synonymous differences To cal-
culate Nd and Sd, we consider each codon position I of the two aligned sequences separately
and count the number of non-synonymous nucleotide differences N I

d and the number of syn-
onymous nucleotide differences SId . When counting, we assume that only one nucleotide may
change in each time step, resulting possibly in different substitution pathways. For the whole
sequence, we have Nd =

∑K
I=1N

I
d and Sd =

∑K
I=1 S

I
d , where K is the number of codons in

each sequence.
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If the two codons at position I have the same nucleotide, we have N I
d = SId = 0. If the two

codons only differ in one nucleotide, we have either N I
d = 1 and SId = 0, or N I

d = 0 and SId =
1. If the two codons differ in two positions, we know that N I

d + SId = 2. However, we have
two possible orderings for accumulating nucleotide substitutions (two possible evolutionary
pathways), which may lead to different N I

d and SId in each pathway. If the two codons differ
in all three nucleotide positions, we have six possible pathways, and we only know that for
all of them, SId +N I

d = 3 holds. If we have more than one possible pathway, we average the
resulting N I

d and SId over the possible pathways (giving each pathway equal weight).

Example: To illustrate this procedure, we now determine Nd and Sd for our example. We
start by looking at the first codon. In sequence 1, this is TTT, and in sequence 2, it is TTC.
Both codons encode the same amino acid phenylalanine (F). Thus, we count one synonymous
nucleotide substitution and no non-synonymous nucleotide substitutions. Codon 2 differs in
two sites between sequences 1 and 2. We assume that only one nucleotide substitution can
occur per time step, so we have two nucleotide substitution pathways that could account for
the two changes. We need to average over the two possible ways:

pathway S2
d N2

d

CCT (P)→ CAT (H)→ CAG (Q) 0 2

CCT (P)→ CCG (P)→ CAG (Q) 1 1

average 0.5 1.5

This means that S2
d = 0.5 and N2

d = 1.5.

Codons 3 and 4 are the same, meaning no difference is counted.

We can now calculate the sum of all non-synonymous and synonymous nucleotide differences
between the two sequences by summing up the differences in the different codon positions:

codon 1 codon 2 codon 3 codon 4

sequence 1 TTT CCT CCT CCT

sequence 2 TTC CAG CCT CCT

Nd = 0 + 1.5 + 0 + 0 = 1.5

Sd = 1 + 0.5 + 0 + 0 = 1.5

Step 2: counting the number of non-synonymous and synonymous sites Each codon
consists of three nucleotides. Each nucleotide can change into one of the three other nucle-
otides. Thus, we list all possible single nucleotide substitutions for each codon of the original
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TTT
(F)

CTT (L) nonsyn
ATT (I) nonsyn
GTT (V) nonsyn

TCT (S) nonsyn
TAT (Y) nonsyn
TGT (C) nonsyn

TTC (F) syn
TTA (L) nonsyn
TTG (L) nonsyn

CCT
(P)

TCT (S) nonsyn
ACT (T) nonsyn
GCT (A) nonsyn

CTT (L) nonsyn
CAT (Q) nonsyn
CGT (R) nonsyn

CCC (P) syn
CCA (P) syn
CCG (P) syn

TTC
(F)

ATC (I) nonsyn
CTC (L) nonsyn
GTC (V) nonsyn

TAC (Y) nonsyn
TCC (S) nonsyn
TGC (W) nonsyn

TTT (F) syn
TTA (L) nonsyn
TTG (L) nonsyn

CAG
(Q)

TAG (-) stop
AAG (K) nonsyn
GAG (A) nonsyn

CTG (L) nonsyn
CCG (P) nonsyn
CGG (R) nonsyn

CAT (H) nonsyn
CAC (H) nonsyn
CAA (Q) syn

Figure 5.12: The four codons from our example and all codons reached from them by a
single nucleotide change.

sequences and count whether this is a synonymous or non-synonymous nucleotide substitu-
tion. Note that stop codons are not considered. Figure 5.12 shows all the possible codons
reachable through a single nucleotide substitution by the four codons in our two example
sequences.

The number of synonymous nucleotide sites per codon I (SI ) is defined as the number of
nucleotide sites in a codon (3) times the probability of obtaining a synonymous codon upon
a single nucleotide substitution. Likewise, the number of non-synonymous nucleotide sites
per codon I (N I ) is the number of sites in a codon (3) times the probability of obtaining a
non-synonymous codon upon a single nucleotide substitution. Thus, N I + SI = 3. The total
number of non-synonymous and synonymous sites for a sequence is obtained by summing
N I and SI over all codons. The average of the per-sequence numbers is the number of non-
synonymous and synonymous sites, N and S, for a pair of sequences.
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Example: We determine the number of non-synonymous. and synonymous sites, N and S,
in our example. The codon TTT has nine possible codons it can mutate into with one single
nucleotide change. The substitution is synonymous only when the T at the third site of the
codon mutates into a C. Thus, 1 out of 9 possible nucleotide substitutions are synonymous.
According to the definition of the number of synonymous sites per codon, we need to multiply
this number by 3; thus, codon TTT has 1/3 synonymous sites. 8 out of 9 possible point substi-
tutions lead to non-synonymous substitutions. Thus there are 3× 8/9 = 8/3 non-synonymous
sites in codon TTT. Following the same logic, the codon TTC has 3 × 1/9 = 1/3 synonymous
sites and 3 × 8/9 = 8/3 non-synonymous sites. The codon CCT has 3 × 3/9 = 1 synonymous
sites and 3× 6/9 = 2 non-synonymous sites.

The codon CAG is more complicated because the substitution from C to T on the first site
leads to the stop codon TAG. Stop codons are not considered in the codon substitution models
and the counting method, as they would lead to an incomplete protein, which is typically not
functional anymore. From the remaining 8 codons, only one codon results from a synonymous
substitution. Thus, the codon CAG has 3× 1/8 = 3/8 synonymous sites and 3× 7/8 = 21/8 non-
synonymous sites.

We can now calculate the number of non-synonymous and synonymous sites by averaging
over the two sequences:

codon 1 codon 2 codon 3 codon 4

sequence 1 TTT CCT CCT CCT

sequence 2 TTC CAG CCT CCT

non-synonymous sites

sequence 1 8/3 + 2 + 2 + 2 = 8.67

sequence 2 8/3 + 21/8 + 2 + 2 = 9.29

average N = 8.98

synonymous sites

sequence 1 1/3 + 1 + 1 + 1 = 3.33

sequence 2 1/3 + 3/8 + 1 + 1 = 2.71

average S = 3.02

Step 3: accounting for evolutionary history We could now compare d′N = Nd/N and
d′S = Sd/S in order to assess the amount of selection. However, the possible evolutionary steps
between the two sequences are not taken into account when just looking at these quantities.
This is why Nei and Gojobori (1986) corrected these quantities using the distance formula
based on the JC69 molecular evolution model (Equation (5.58)) and defined these distances
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as dN and dS respectively:

dN = −3

4
log
(
1− 4

3

Nd
N

)
, (5.82)

dS = −3

4
log
(
1− 4

3

Sd
S

)
. (5.83)

Example: Using the values calculated above, we can compute the dN/dS ratio:

dN/dS =
− 3

4 log
(
1− 4

3
Nd

N

)
− 3

4 log
(
1− 4

3
Sd

S

) =
log
(
1− 4

3
1.5
8.98

)
log
(
1− 4

3
1.5
3.02

) = 0.23. (5.84)

In our example, we obtain a hint of purifying selection because the dN/dS ratio is less than 1.

Overall, the counting method includes many simplifications. The JC69 distance formula is
based on the assumption that every nucleotide substitution occurs at the same rate. In par-
ticular, we do not take into account differences in transition and transversion rates and other
codon biases. The counting method was therefore extended in the literature (e.g. Li (1993),
Pamilo and Bianchi (1993), Comeron (1995), Ina (1995) and Tzeng, Pan and Li (2004)). In
addition, another class of models was introduced: the maximum likelihood methods (Gold-
man and Yang 1994), in which the dN/dS ratio is obtained based on a maximum likelihood
estimator. As discussed in Box 26 on page 117, such methods have the advantage of directly
providing a confidence interval.
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6 Phylogenetic trees

Nothing in evolution makes sense except in the light of phylogeny.
(Jay M. Savage (1997))

The following three chapters are on phylogenetics. This chapter will discuss how phylogen-
etic trees are reconstructed based on genetic sequences. The following two chapters will then
introduce methods that allow us to take reconstruction uncertainty into account and to un-
derstand genotypic and phenotypic evolutionary processes occurring on such phylogenetic
trees.

In what follows, we will first provide examples of phylogenetic trees. Second, we will intro-
duce mathematical notation for and properties of these phylogenetic trees. Third, we will
discuss the approaches for reconstructing phylogenetic trees: phenetic, cladistic, and prob-
abilistic approaches. The last type, probabilistic methods, can be employed in a maximum
likelihood or a Bayesian statistical setting. This chapter will discuss the maximum likelihood
approach in detail, while the Bayesian approach will be explained in Chapter 10. We end
this chapter by highlighting insights into HIV, which were obtained directly from reconstruc-
ted phylogenetic trees. In later chapters, we will discuss applying statistical methods to these
reconstructed trees to develop quantitative insights into the evolutionary and population dy-
namical (e.g. epidemiological) processes governing the population from which the samples
were taken.

6.1 Introduction to phylogenetic trees

The 1837 notebook of Charles Darwin shows a sketch of a phylogenetic tree (Figure 1.3).
The phylogenetic tree displays evolutionary relationships between different individuals. The
tree starts with a single ancestor individual (1) in the past and ends with branches without
descendants, also called leaves or tips (A-D). Tips represent sampled individuals, individuals
of whom we have genetic (or other types of) information. An internal node, the intercept of
several branches, represents the most recent common ancestor of the individuals represented
by the tips descending this node. Each individual has precisely one ancestor.

Phylogenetic trees were first reconstructed to display the evolutionary relationships of species.
Typically, a genetic sequence of one individual per extant species is used to reconstruct the
phylogeny; thus, each tip corresponds to one of these extant species. An internal node in a
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Gorilla
Homo sapiens

Hylobates

Lemur catta

Macaca fascicularis
Macaca mulatta

Macaca sylvanus

Macacacaca fuscata

Pan

Pongo

Saimiri sciureus
Tarsius syrichta

−90 −60 −30 0

Apes Lemurs New World monkey

Old World monkey Tarsiers

million of years

Figure 6.1: Phylogeny of primates. The tree was obtained based on results of the “Introduc-
tion to BEAST2” Taming the BEAST tutorial https://taming-the-beast.org/
tutorials/Introduction-to-BEAST2/.

species tree represents a speciation event. In the primate phylogeny in Figure 6.1, we can see
that humans are more closely related to chimpanzees (from genus Pan) than either humans
or chimpanzees to gorillas. If lengths in calendar time units are assigned to the branches in a
tree, one can read off speciation times. For example, we can see from the tree that humans
and chimpanzees diverged around 6 million years ago. Or, based on the phylogenetic tree
of mammals reconstructed by Bininda-Emonds et al. (2007) we can conclude that the most
recent common ancestor of all mammals lived around 166 million years ago (note though
that there is a lot of uncertainty and controversy around this estimate).

Hinchliff et al. (2015) reconstructed the tree of life containing 2.3 million species. Each tip
in their tree actually represented around 1 000 extant species, meaning that subtrees were
collapsed into tips. Additional genomic information helps to resolve the branching structure
in the collapsed parts of the tree. The latest version of the tree can be explored with the web
tool (Open Tree of Life (https://tree.opentreeoflife.org/)).

Sequences from different extant species can be sampled years apart. However, the evolution
of species took millions of years; thus, sampling extant species within a few years’ time can
be interpreted as sampling at the same point in calendar time. This is visualised by putting all
tips at the same point on a horizontal (time) axis in Figure 6.1.

https://taming-the-beast.org/tutorials/Introduction-to-BEAST2/
https://taming-the-beast.org/tutorials/Introduction-to-BEAST2/
https://tree.opentreeoflife.org/
https://tree.opentreeoflife.org/
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Figure 6.2: Phylogenetic tree of HIV samples from different patients created from the output
file of the analyses in Stadler et al. (2011). The tree visualises an estimated Swiss
HIV transmission cluster.

Over the past decade, the phylogenetic framework has also been heavily employed in the
context of viral infectious diseases. To determine how a virus spreads in the host population,
we need to obtain virus sequences from some infected individuals. The phylogeny of these viral
sequences (one sequence per host, which typically is a consensus sequence, Section 3.3) is then
used to approximate the transmission tree. As an example, consider the HIV phylogenetic
tree in Figure 6.2. Viral samples of different patients form the tips of the tree. An internal
node, in this context, represents the transmission of the pathogen from one host to another.
Branch lengths in calendar time units can be interpreted as the time that has elapsed between
transmission events. Compared to the phylogenetic tree of species, where branches represent
millions of years of evolution, the phylogeny of pathogens covers a much shorter time period:
usually months, years, or decades. Thus, in viral phylogenies, typically, not all tips are sampled
at the same point in time; rather, the tips in the phylogeny of a virus can be sampled at different
points in time throughout the epidemic. At the end of this chapter, we will discuss a number
of insights into HIV that were obtained using such phylogenetic trees.

Throughout the COVID-19 pandemic, phylogenetic trees of severe acute respiratory syn-
drome coronavirus 2 (SARS-CoV-2) reconstructed in real-time (Figure 6.3) became important
tools to track the spread of the virus. Real-time means that the sequencing and reconstruc-
tion were done directly upon collection of the samples from patients. The unprecedented
sequencing efforts around the world resulted in millions of sequences in the public domain
(e.g. GenBank (https://www.ncbi.nlm.nih.gov/genbank/), ENA (https://www.ebi.
ac.uk/ena/browser/home) and DDBJ (https://www.ddbj.nig.ac.jp/index-e.html))
and on the database GISAID (https://gisaid.org/), leading to the development of new
phylogenetic tools to reconstruct trees on millions of sequences in real-time (e.g. see CoV2tree
(https://cov2tree.org/); Turakhia et al. (2021)). Such advances allow policymakers to
incorporate real-time phylogenetic information into their assessments.

Note that in all examples above, we assume that we include one sequence per species or
one sequence per infected host (often a consensus sequence 3.3 of the pathogen). If we were
to include several sequences per species, we would obtain trees connecting the individuals

https://www.ncbi.nlm.nih.gov/genbank/
https://www.ncbi.nlm.nih.gov/genbank/
https://www.ebi.ac.uk/ena/browser/home
https://www.ebi.ac.uk/ena/browser/home
https://www.ebi.ac.uk/ena/browser/home
https://www.ebi.ac.uk/ena/browser/home
https://www.ddbj.nig.ac.jp/index-e.html
https://www.ddbj.nig.ac.jp/index-e.html
https://gisaid.org/
https://gisaid.org/
https://cov2tree.org/
https://cov2tree.org/
https://cov2tree.org/
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Figure 6.3: Real-time phylogenetic reconstructions from SARS-CoV-2 genomes were instru-
mental in informing public health policy during the COVID-19 pandemic. This
figure, adapted from Hodcroft et al. (2021), shows a Nextstrain (Hadfield et al.
2018) maximum likelihood phylogeny of European SARS-CoV-2 genomes se-
quenced up until November 30, 2020.

within a species nested within the species tree (or, respectively, including several sequences per
infected host will lead us to reconstruct trees connecting the different virions nested within
the transmission tree). We will show such a tree in Section 6.6.4.

We will now introduce the mathematical notation of phylogenetic trees as well as important
properties that will be required for the following sections on phylogenetic tree reconstruction
and analysis.

6.2 The mathematics of phylogenetic trees

6.2.1 The mathematical definition of a phylogenetic tree

A tree consists of nodes and branches, with branches connecting the nodes such that no cycles
are formed (otherwise, it would not be a tree, but rather a network, see Chapter 11). A node
is of degree k if it has k branches attached. Here, we consider binary trees1, which may be

1In the case of virion tracking or superspreading, we may require non-binary trees. See Section 9.4 for trees with
multifurcations.



6.2 The mathematics of phylogenetic trees 139

A

2

4

11

1

B

C

D

A BC D

1

1

1

1
2

3

1

1

1

1

2
3

A BC D

Figure 6.4: Unrooted phylogenetic tree on four tips (left) and a corresponding rooted tree
(middle). The right tree is equivalent to the rooted tree in the middle but visualised
as the trees in Figures 6.1 to 6.3.

unrooted or rooted. A binary unrooted tree (Figure 6.4, left) is defined as a tree with only
degree-1 and degree-3 nodes. A degree-1 node is a tip of the tree, and a degree-3 node is an
internal node. A binary rooted tree (Figure 6.4, middle) is an unrooted tree with one additional
degree-2 node, this node is called the root of the tree2. A rooted tree can be obtained from
an unrooted tree by dividing one of the branches into two by adding a new root node (in
Figure 6.4 left, the branch leading to node B is divided by a root node to obtain the rooted tree
shown in the middle). A labelled tree is a tree (rooted or unrooted) where each tip is assigned a
unique label. In the trees shown in Figure 6.4, each branch has a specific length. A tree without
branch lengths is called a topology. A phylogenetic tree is a rooted or unrooted labelled tree,
with or without branch lengths. A rooted phylogenetic tree with branch lengths where all tips
occur at the same time point in time is called an ultrametric tree (see e.g. Figure 6.1).

A branch attached to a tip is often called a pendant branch (in Figure 6.4, both phylogenies
have four pendant branches corresponding to the four tips A, B, C, and D). Two tips whose
adjacent pendant branches join in the same internal node are called a cherry (e.g. (C, D) and
(A, B) in Figure 6.4, left and (C, D) in Figure 6.4, middle). A rooted tree containing a single
cherry is called a caterpillar tree (Figure 6.4, middle). In a rooted tree, the set of tips descending
from an internal node is also referred to as a monophyletic group or clade, for example, the
tips (C, D, A) form a clade in Figure 6.4, middle.

Note that in the rooted trees in Figures 6.1 to 6.3, branching events are not represented by
a single node that has an ancestral branch and two descendant branches attached. Instead, a
branching event is displayed with the help of a line orthogonal to the branches from the root
towards the tip. This is simply a different visualisation of rooted trees: the branches from the
root to the tip are proportional to time, while the orthogonal lines display relationships. We
provide an example of this visualisation in Figure 6.4, right.

2Alternatively, one can define a rooted tree as an unrooted tree where one of the degree-1 nodes is the origin of
the tree (rather than a tip), and its direct descendant node is the root. Such trees are natural when considering
birth-death models in Chapter 9
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6.2.2 The Newick tree format

Most representations of phylogenetic trees are intended specifically for human inspection.
However, when interacting with computer programs, it is often useful to have a more compact
description format. One very commonly-used format is theNewick format. The name derives
from the lobster restaurant in Dover (South Carolina), where it was developed (Felsenstein
2003).

The Newick format was originally designed for rooted trees. The description of the rooted
tree starts at the tips and recursively proceeds through the internal nodes until the root. First,
the tips are assigned labels. Then, two tips X and Y that are connected through a cherry are
chosen, and their most recent common ancestor node is labelled by “(X : tX, Y : tY)”, where
tX (tY) denotes the length of the branch ancestral to node X (Y). Note that in the Newick
format, “(X : tX, Y : tY)” and “(Y : tY, X : tX)” are equivalent. The tips X and Y together
with their pendant branches are then deleted, meaning the node labelled with “(X : tX, Y :
tY)” becomes a tip. We then proceed recursively until we reach the root. In that way, each
node is labelled with the Newick format of its descending subtree. The label of the root is the
Newick format of the tree3. According to this definition, the Newick notation for the tree in
Figure 6.4, middle, is “(((C : 1, D : 1) : 1, A : 2) : 1, B : 3)”. Note that we may also write, for
example, “(B : 3, ((C : 1, D : 1) : 1, A : 2) : 1)”. In fact, we can swap expressions for subtrees
to the immediate left and right of each comma, and thus, we can write our example tree in 23

different equivalent ways.

Unrooted trees can also be described in the Newick format by using an arbitrary internal node
as the root node which would have three attached branches. Once the root node is reached,
the three node labels are put together and separated by a comma; again, each ordering of the
three node labels is allowed. Using these rules, the Newick format for the tree in Figure 6.4,
left, is “((C : 1, D : 1) : 1, A : 2, B : 4)”.

6.2.3 Counting trees

Often, we want to find the phylogenetic tree that best fits the available data. A naive tree
reconstruction method may consider all possible trees to find the best tree. To assess the feas-
ibility of this approach, we need to know how many different rooted (or unrooted) trees with
n tips exist. We will start by counting the number of branches in a tree, which will facilitate
counting the number of trees.

6.2.3.1 Counting branches

We can count the number of branches in an unrooted labelled tree with n tips by listing and
counting all possible branches in that tree. Listing and counting, also called enumeration,

3If the root has an ancestral branch of length troot attached, we extend the Newick format string by “: troot”.
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Figure 6.5: The unrooted trees with two, three, and four tips. The number of branches bi for
different tip numbers i is b2 = 1, b3 = 3, b4 = 5.

is a handy approach for small trees. However, for large trees, this is computationally very
inefficient, and we do not learn general patterns. For example, we cannot conclude if all trees
on n tips have the same number of branches unless we count the branches for every single
tree on n tips.

In what follows, we will derive an analytic formula for the number of branches, bn, of a tree
with n tips. Let us start with an example where n = 2. The two tips in an unrooted tree can
only be connected with a single branch, thus b2 = 1. For n = 3 tips, we have b3 = 3 branches
(see Figure 6.5). If we increase the number of tips by one, the number of branches increases
by 2. This is because to add a tip, we need to break one of the existing branches into two and
add an internal node to which the new tip with a new pendant branch attaches. Thus, for a
tree with n+ 1 tips we have bn+1 = bn + 2 branches. In general, we have

bn = b2 + 2(n− 2) = 2n− 3 (6.1)

for n ≥ 2. In a rooted tree, we split one branch from the unrooted tree in two by adding the
root node. This leads to

brootn = 2n− 3 + 1 = 2n− 2 (6.2)

branches in the rooted tree for n ≥ 2.

When we derived Equations (6.1) and (6.2), we employed the idea of a proof by induction.
This technique is common in mathematics. With this technique, we can prove a formula that
depends on an integer n ∈ N. The proof consists of two steps. The first step establishes the
formula for some small m ∈ N, commonly m = 1 or m = 2. The second induction step
then assumes that the formula holds for all k < n and proves that it also holds for n using
this assumption. With these two steps, it is proven that the formula holds for all n ∈ N with
n ≥ m. In the following example, we prove Equation (6.1) using proof by induction.

Theorem 6.2.1. For an unrooted tree with n tips, the number of branches bn is given by
bn = 2n− 3 (Equation (6.1)).

Proof. We prove this statement using induction.

Hypothesis to prove: bn = 2n− 3.

Base step: Check that the hypothesis holds for n = 2.
Yes, b2 = 1 = 2× 2− 3.
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Figure 6.6: All unrooted four-tip trees that can be obtained from an unrooted labelled three-
tip tree by attaching a new branch to any of the three existing branches.

Induction hypothesis: We suppose the formula holds for all k < n.
In particular, bn−1 = 2(n− 1)− 3.

Inductive step: Given the induction hypothesis, show that the formula holds for n.
We have bn = bn−1+2, as explained above, adding a tip to a tree adds two new branches.
Then, with the induction hypothesis, we establish bn−1+2 = 2(n− 1)− 3+2 = 2n− 3.

Thus, our formula holds for all n ≥ 2.

6.2.3.2 Counting unrooted labelled trees

We now count the number of unrooted labelled trees τn on n tips with labels l1, . . . , ln. For
n = 1 tips in a tree, just one single unrooted tree is possible: τ1 = 1. For n = 2 and n = 3,
there is also just one possible tree, so τ2 = τ3 = 1. To obtain any tree with n = 4 tips, we start
with a tree with n = 3 tips with labels l1, . . . , l3, and attach a new tip with label l4 to any of
the existing three branches (see Figure 6.6). Thus, τ4 = 3. Counting the number of trees with
5 tips, we get τ5 = 15. We now hypothesise that τn = 1 × 3 × 5 × . . . (2n − 5). The double
factorial m!! is defined as

m!! =

{
1 · 3 · 5 · . . . · (m− 2) ·m for uneven m ∈ N,
2 · 4 · 6 · . . . · (m− 2) ·m for even m ∈ N.

(6.3)

This means that our hypothesis is τn = (2n − 5)!!, and we will prove this hypothesis by
induction.

Theorem 6.2.2. For a tree with n tips, the number of unrooted labelled trees τn is given by
τn = (2n− 5)!!.
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Proof.

Hypothesis to prove: τn = (2n− 5)!! for n ≥ 3.

Base step: Check that the hypothesis holds for n = 3.
Yes, there is only one labelled tree on 3 tips, thus τ3 = 1.

Induction hypothesis: We suppose the formula holds for all k < n.
In particular, τn−1 = (2(n− 1)− 5)!!.

Inductive step: Given the induction hypothesis, show that the formula holds for n.
Generally, note that each tree on n tips with labels l1, . . . , ln can be viewed as a subtree
on n− 1 tips with labels l1, . . . , ln−1 plus the nth tip with label ln attached to one of the
branches of the (n− 1)-tip tree. Importantly, starting with different (n− 1)-tip trees or
attaching the nth tip to different branches yields different trees on n tips. Trivially, if we
start with two different trees on n− 1 tips and attach the nth tip, we will always obtain
different n-tip trees as the subtrees on n−1 tips are different. Second, if we start with the
same (n−1)-tip subtree but attach the nth tip to different branches, we will get different
trees as ln will cluster with different tip labels. Thus, the number of n-tip trees τn is the
number of (n−1)-tip trees times bn−1, τn = τn−1×bn−1. Using the induction hypothesis
together with the formula for bn, we get τn = (2(n−1)−5)!!×(2(n−1)−3) = (2n−5)!!.

Thus, our formula holds for all n ≥ 3.

The number of labelled trees on n tips increases double-factorially with n, which roughly
corresponds to exponential growth with n lnn. Indeed, according to Stirling’s approximation,
for large n, we have n! ∼

√
2πn

(
n
e

)n
=
√
2πnen(lnn−1). Furthermore, (2n − 5)!! = (2n −

5)(2n − 6)!! = (2n − 5)2n−3(n − 3)!, showing that the double factorial grows exponentially
with n lnn. Using the Landau notation (Box 7 on page 55), we can say that the number of
trees τn is on the orderO(en lnn). Table 6.1 shows some examples for the number of unrooted
trees on n tips.

6.2.3.3 Counting rooted labelled trees

To count the number of rooted labelled trees on n tips, we note that each rooted labelled tree
can be obtained from an unrooted labelled tree on n tips in which we choose one branch to be
divided such that a root node is added. Importantly, choosing different unrooted labelled trees
or different branches of these trees yields different rooted labelled trees. Thus, the number of
rooted trees on n tips, τ rn, is

τ rn = τn × bn = (2n− 5)!!(2n− 3) = (2n− 3)!!, (6.4)

which, again, is on the order O(en lnn).

Due to this large number of trees, finding the “best” tree from among all possible trees for a
given dataset becomes very slow for large n. Therefore, we need to find smart ways to retrieve
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Number of tips Number of unrooted trees

4 3

5 15

6 105

7 945

8 10 395

9 135 135

10 2 027 025

11 34 459 425

...
...

20 221 643 095 476 699 771 875

...
...

50 1074

Table 6.1: Number of unrooted trees on n tips.

the “best” tree in a reasonable time. The following section discusses common approaches for
finding such trees.

6.3 Inferring phylogenies

In the early days of phylogenetics, observable phenotypic characteristics, or morphological
traits, of the species were used to reconstruct phylogenetic trees. Species with similar mor-
phological traits (e.g. the ability to fly) were thought to cluster together in the species tree,
meaning that they were more closely related than species with very different morphological
traits. However, this can lead to wrong phylogenies, for example, if convergent evolution of
the phenotype occurred (evolution of the same morphological trait from different ancestors).
A prominent example is flight. Not all animals that can fly are birds; there are some mammals
and insects that can fly too, but are not closely related to birds and have evolved the ability
to fly independently.

Nowadays, genetic sequence data largely replaces the morphological trait data when inferring
phylogenies of living organisms (note though that for fossils, we still rely on morphology as
we do not have genetic sequences, for an example, see Figure 10.10). Using genetic sequence
data over morphological trait data has several advantages.
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First, it is fairly straightforward to decide which data to include when considering genetic
sequences: all nucleotides that are part of a multiple sequence alignment (MSA) of orthologues
(or, more generally, homologues, when considering gene trees). On the other hand, using
morphological traits relies on the choice of the trait and measurement.

Second, while molecular evolution models used for phylogenetic reconstruction still make
simplifying assumptions, the modelling occurs where evolution happens, namely at the nuc-
leotide, codon, and amino acid level, and each site contributes towards informing the tree
reconstruction. In particular, the molecular evolution models typically assume neutral evolu-
tion and no selection (Section 5.3). If this does not hold, we can improve these probabilistic
models of molecular evolution to account for selection, or we can use third codon position
data with simple non-selection models as these positions may be assumed to evolve close to
neutral (without selection) since such mutations rarely change the codon (Section 5.7). In
contrast, morphology is where selection acts and where the consequences of molecular evol-
ution become visible. Appropriate modelling of these selective processes and weighing the
importance of the different characters when reconstructing phylogenies is far from trivial.

Another practical advantage of using sequences is that with the new high-throughput se-
quencing technologies, these data are much easier and cheaper to obtain than morphological
trait data. For the latter, palaeontologists have to go on field trips to collect fossils and then
take appropriate measurements. Thus, obtaining morphological data is the opposite of high-
throughput.

Finally, when using genetic sequences, we can go beyond species and analyse pathogens or
other individuals for which recording morphological traits is very hard.

Tree reconstruction methods generally take an MSA of homologous genetic sequences as an
input. Alignment procedures have been described in detail in Chapter 3. When reconstructing
phylogenies from MSAs, the rationale is to put “similar” sequences close in the tree (little
evolution has occurred) and to place distant sequences very far apart in the tree (a lot of
evolution has occurred). The word “similar” is put in quotation marks because there are
several approaches to defining similarity when reconstructing phylogenetic trees. In this book,
we will introduce the three main approaches. We will discuss tree reconstruction methods
designed for each approach, as well as the advantages and disadvantages of each approach.

Phenetic approaches: (distance-based methods) infer the tree based on pairwise similarity of
genetic sequences. The pairwise distance between two sequences can be derived under
a molecular evolution model (Section 5.4).

Cladistic approaches: (parsimony methods) group organisms based on how many shared
characteristics they have without relying on an explicit molecular evolution model (but
see Section 6.3.3.3).

Probabilistic approaches: (maximum likelihood and Bayesian methods) assume an explicit
probabilistic model of evolution for the underlying data and group the organisms based
on the likelihood. The underlying transition probability matrices of the molecular evol-
ution models are introduced in Chapter 5.
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sequence 1, s1: TCACACCT
sequence 2, s2: ACAGACTT
sequence 3, s3: AAAGACTT
sequence 4, s4: ACACACCC

Table 6.2: Toy MSA on which the tree reconstruction methods are illustrated.

H s1 s2 s3 s4

s1 − 3 4 2

s2 − 1 3

s3 − 4

s4 −

Table 6.3: Hamming distance matrix for the MSA in Table 6.2.

We will illustrate the ideas behind the different tree reconstruction approaches and methods
using the MSA in Table 6.2 for sequences taken from four individuals.

6.3.1 Phenetic approach: Distance-based methods

The idea of distance-based methods is to cluster sequences that are most similar to each other.
Similarity is measured as the pairwise sequence distance. As described in Chapter 5, we can
choose between different pairwise distance measures, such as, for example, the Hamming
distance, JC69 distance or HKY distance (see Table 5.2). Distances can also be defined and
calculated based on morphological characters, and the distance-based methods can be applied
to such distance measures equivalently.

When reconstructing the tree, we first calculate the distance between each pair of sequences.
Then, the phylogeny is reconstructed such that a pair of sequences with a small distance are
close to each other in the tree. A general drawback of distance-based methods is that they
only use pairwise sequence distances, and no higher-order relationships (shared by more than
two sequences in the sample) are considered.

Here, we demonstrate the phenetic tree reconstruction using the Hamming distance meas-
ure applied to the MSA shown in Table 6.2. The Hamming distance between each pair of
sequences is put into a matrix called the distance matrix (Table 6.3). We put the distance
d(si, sj) (i < j) between sequence si and sj in matrix position (si, sj).

The matrix with all pairwise distances is symmetric; the distance between s1 and s2 is the
same as the distance between s2 and s1. Therefore, we only fill out the upper triangle in the
distance matrix. Furthermore, note that the distance of a sequence to itself, say s1 to s1, is 0.
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JC69 s1 s2 s3 s4

s1 − 0.52 0.82 0.30

s2 − 0.14 0.52

s3 − 0.82

s4 −

Table 6.4: JC69 distance matrix for the MSA in Table 6.2.

In the distance matrix, we put a − on the diagonal. We label this matrix with an “H” in the
upper left corner to indicate that all pairwise distances were calculated using the Hamming
distance measure.

Ideally, we want the distance between two sequences to represent the amount of evolution that
has occurred between them. One way to quantify this is the genetic distance (Section 5.4): the
expected number of substitutions a single site underwent in the time separating the sequences.
This is different from the Hamming distance, which only counts observed differences. As
derived in Section 5.4.2, the pairwise distance formula under JC69 is d̂ = − 3

4 log(1 −
4
3 p̂)

where p̂ = x/n and x is the number of differences between two sequences (the Hamming
distance), and n is the sequence length. The distance matrix under the JC69 model for the toy
MSA in Table 6.2 is shown in Table 6.4.

There are two different classes of distance-based methods to infer a tree based on the distance
matrix. The first class is referred to as algorithmic methods. These methods cluster together
sequences that are separated by the smallest distance according to the distance matrix in a
greedy way, meaning that in each step, they cluster according to the best choice at that mo-
ment, with the idea that many sequential best local choices should lead to a good global
choice. This means the sequences separated by the smallest pairwise distances are picked
sequentially and clustered in the tree. Such methods are very fast and are often used if the dis-
tance matrices are large. Examples of algorithmic methods are UPGMA (Sokal and Michener
1958) or neighbour-joining algorithms (Saitou and Nei 1987).

The second class of methods is referred to as optimality methods. These methods try to minim-
ise the difference between the sequence distance matrix and the inferred tree distance matrix
(Fitch and Margoliash 1967; Cavalli-Sforza and Edwards 1967). The distances in the tree
distance matrix are the sum of branch lengths on the paths between each pair of tips. These
methods can be very slow as they typically have to consider all possible trees to find the tree
that minimises the difference. We will now introduce the two classes of methods in more
detail.
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6.3.1.1 Algorithmic approach: UPGMA method

A classic distance-based (algorithmic) method is the UPGMA (Unweighted Pair Group
Method using Arithmetic means) algorithm (Sokal and Michener 1958). The UPGMA al-
gorithm constructs ultrametric trees, meaning it is only suited for data sampled at one point
in time. UPGMA makes the implicit assumption that the (genetic) data evolved according to
a strict molecular clock, that is, the substitution rates were the same for all branches in the
tree at all times. Then, the genetic distances in the distance matrix map onto an ultrametric
tree where branch lengths are proportional to calendar time.

If the assumption of a strict molecular clock is violated or sequences are sampled at differ-
ent time points, then methods inferring non-ultrametric trees are required. An algorithmic
distance-based method reconstructing non-ultrametric trees is the neighbour-joining al-
gorithm (Saitou and Nei 1987). This algorithm infers unrooted trees with branch lengths
in units of numbers of substitutions without proportionality to calendar time.

The different algorithmic approaches have in common that iteratively, pairs of nodes are
joined together to obtain a tree. Since the UPGMA method provides an easy and intuitive
understanding of algorithmic distance-based methods, we will present this method below. In
particular, we provide a step-by-step description of the UPGMA algorithm, see Algorithm 1.
Such a description can serve as a blueprint for implementing the algorithm in code and is
called pseudocode.

Example of UPGMA with the Hamming distance matrix Here, we show how the UP-
GMA algorithm (Algorithm 1) works for our example Hamming distance matrix, shown
in Table 6.3.

Iteration 1 In step 1 of the UPGMA algorithm, we look up the minimal pairwise distance
in the Hamming distance matrix. In our example distance matrix, the minimal distance is
d(s2, s3) = 1, the distance between nodes s2 and s3.

In step 2 of the UPGMA algorithm, we join these two nodes and introduce a new node s2,3.
This means that the currently reconstructed tree is a cherry plus the unconnected nodes as
shown in Figure 6.7. The distance from the new node s2,3 to the tips s2 and s3 is d(s2,s3)/2 =
0.5. We further set n2,3 = 2.

In step 3, we calculate the distances from the new node to the remaining nodes. For example,
to calculate the distance from the new node s2,3 to the node s1, we calculate d(s1, s2,3) =
n2d(s2,s1)+n3d(s3,s1)

n2+n3
= 1×3+1×4

1+1 = 7
2 = 3.5. The distances between all remaining nodes (in

this case, the distance between s1 and s4) remain the same. The new distance matrix obtained
from step 4 is shown in Table 6.5.
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Input: Distance matrix for n sequences. We refer to each sequence s1, . . . , sn as a node.
Output: A rooted ultrametric phylogenetic tree.
begin

initialise the size of each node si as ni = 1;
initialise the tree as the set of unconnected nodes si, i = 1, . . . , n;

while the distance matrix includes at least 2 nodes do
(step 1) choose nodes si and sj such that d(si, sj) is the smallest entry in the
distance matrix (in case of several minima, choose one uniformly at random);

(step 2) join nodes si and sj of the current tree to form a new node si,j with size
ni,j = ni + nj ; set the branch length between si, si,j and between sj , si,j such
that all tips descending from si,j have the same distance d(si,sj)/2 to si,j ;

if the distance matrix includes only 2 nodes then
return the tree with the root si,j as the result and finish.

end

(step 3) include node si,j into the distance matrix, with
d(sm, si,j) =

nid(si,sm)+njd(sj ,sm)
ni+nj

, where sm is a node in the distance matrix;
delete nodes si and sj from the distance matrix;

end

end
Algorithm 1: The UPGMA algorithm.

s2

0.5

s3 s1 s4

s2,3

0.5

Figure 6.7: Intermediate UPGMA tree after one iteration.

H s1 s4 s2,3

s1 − 2 3.5

s4 − 3.5

s2,3 −

Table 6.5: Intermediate UPGMA distance matrix after one iteration.
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Figure 6.8: Intermediate UPGMA tree after two iterations.

H s2,3 s1,4

s2,3 − 3.5

s1,4 −

Table 6.6: Intermediate UPGMA distance matrix after two iterations.

Iteration 2 The minimal distance between a pair of nodes in the new matrix is between s1
and s4, d(s1, s4) = 2. We create a new node s1,4 and set n1,4 = 2. The intermediate UPGMA
tree is shown in Figure 6.8, and the new distance matrix is shown in Table 6.6.

Iteration 3 Now, the minimal distance is between s2,3 and s1,4, d(s2,3, s1,4) = 3.5. In step 2
of the algorithm, we create the new node s2,3,1,4, which is the root of the tree, with distance
3.5/2 = 1.75 to all tips. As only two nodes s2,3, s1,4 are in the distance matrix, the algorithm
terminates, outputting the tree shown in Figure 6.9.

Properties of the UPGMA trees The UPGMA tree distance matrix (the distance matrix
composed of the sum of branch lengths on the path between each pair of tips in the UPGMA
tree) is shown in Table 6.7.

This tree distance matrix differs slightly from the original sequence distance matrix
(Table 6.3). The reason is that pairwise distances in the sequence distance matrix do not
generally correspond to an ultrametric tree. The UPGMA (and other distance-based meth-
ods) construct a tree representing the distances in the matrix as well as possible. The UPGMA
has the desired property that if the input distance matrix equals the tree distance matrix of
an ultrametric tree, then precisely this ultrametric tree will be returned by UPGMA. We will
prove this property of UPGMA in the following theorem.

Theorem 6.3.1. Let DN be a distance matrix of dimension N × N . Assume there exists an
ultrametric tree TN with a tree distance matrix that is equal to DN . Then, the UPGMA al-
gorithm, as defined in Section 6.3.1.1 with input matrix DN , will return TN .
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Figure 6.9: Final UPGMA tree.

s1 s2 s3 s4

s1 − 3.5 3.5 2

s2 − 1 3.5

s3 − 3.5

s4 −

Table 6.7: Tree distance matrix for the reconstructed UPGMA tree.

Proof. We prove this statement using induction as described in Section 6.2.3.1.

Hypothesis to prove: If the distance matrix DN equals the tree distance matrix of an ul-
trametric tree TN , the UPGMA algorithm with input Dn1,...,nN

N , where n1, . . . , nN are
arbitrarily chosen integers (rather than 1 as in the classic UPGMA presented above),
returns the tree TN .

Base step: Let N = 2, we consider an ultrametric tree T2 with two branches of length
d(s1,s2)/2. The distance matrixD2 has only one entry d(s1, s2), which is also the smallest
entry. The UPGMA algorithm (step 2) results in an ultrametric tree with two tips and
branch lengths d(s1,s2)/2, obtaining the tree T2. In particular, this does not depend on the
values of n1, n2. Thus, the hypothesis holds for N = 2.

Induction hypothesis: Suppose the hypothesis holds for all k < N .

Inductive step: Given the hypothesis holds for k < N , we need to prove the hypothesis for
N . According to step 1 of the UPGMA algorithm, we choose the two nodes si and sj
inDN whose entry d(si, sj) in the distance matrix is the smallest. This node is joined to
a cherry C with branch lengths d(si,sj)/2. Since DN is the tree distance matrix for TN ,
exactly this cherry also appears in TN . Further, since DN is a tree distance matrix for
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Box 27: Statistical consistency

An estimation method is statistically consistent if the true parameter is returned when the method
is presented with an infinite amount of data. Put more formally, a method is statistically consistent
if, for all ε > 0, we have

lim
n→∞

P (||T̂n − T || < ε) = 1, (B27.1)

where n is the number of data points, T is the true parameter, and T̂ is the inferred parameter. || · ||
is a metric measuring how different the inferred parameter is from the true parameter. This property
is desirable for inference methods because they will return the correct answer provided enough data.

In our context, n is the sequence length, T is the true tree on which the sequence data were generated,
and T̂ is the inferred tree. This means that if our tree inference method is statistically consistent, the
probability that we obtain a tree that differs less than ε from the true tree tends to 1 when the input
sequence length tends to infinity.

an ultrametric tree, we know that

d(si, sm) = d(sj , sm) (6.5)

is true for all nodes sm, m 6= i, j. According to step 3 in the UPGMA algorithm, the
new node si,j has the following distance to the remaining nodes sm:

d(sm, si,j) =
nid(si, sm) + njd(sj , sm)

ni + nj

(6.5)
=

(ni + nj)d(si, sm)

ni + nj
= d(si, sm). (6.6)

Thus, the new matrix DN−1 is a distance matrix for the ultrametric tree TN without
leaf j, TN−1. According to the induction hypothesis, UPGMA with input DN−1 returns
TN−1. Thus, the UPGMA on DN returns the tree TN−1 with tip i replaced by cherry C,
thus, it returns TN .

Thus, the hypothesis holds for all N ≥ 2.

Furthermore, UPGMA is statistically consistent (see Box 27 on page 152) for ultrametric trees,
which means when the method is presented with an infinite amount of data (infinitely long
sequences), the returned tree is the one on which the data were actually generated (Felsenstein
2003; Gascuel and McKenzie 2004).

Runtime of the UPGMA method The advantage of algorithmic distance-based methods is
their speed. To reconstruct a tree with n tips, we need to perform n − 1 iterations of the al-
gorithm (in each iteration, two nodes join into one). Within each iteration, a distance matrix
has to be set up and searched, which has a time complexity on the order ofO(n2). This means
that a naive approach would need to perform on the order of O(n3) calculations to obtain
the tree. However, a clever implementation can achieve faster runtimes (see, e.g. Murtagh
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(1984)). The phylogenetic reconstruction methods presented in later sections will be much
slower than the polynomial-time algorithmic distance-based methods; they have at least ex-
ponential runtime,O(en), since all trees on n tips need to be checked for optimality. For many
tens of thousands of sequences, only algorithmic distance-based methods or approximations
to the methods with exponential runtime will be fast enough to infer a tree in a reasonable
time.

6.3.1.2 Optimality approach: a least squares method

The least squares method searches for a tree that minimises the squared difference between the
sequence distance matrix and the tree distance matrix (Fitch and Margoliash 1967; Cavalli-
Sforza and Edwards 1967). In other words, the algorithm minimises the scoring function

S =

n∑
i=1

n∑
j=i+1

wi,j(Di,j − di,j)2, (6.7)

where D is the sequence distance matrix, d is the tree distance matrix for the proposed tree,
and wi,j are the weights (wi,j may be, for example, 1 or 1/Di,j).

The least squares method has the desirable property of being statistically consistent, as shown
in the following theorem.

Theorem 6.3.2. Least squares methods with distances between sequences obtained using the
maximum-likelihood estimator (Section 5.4.3) and assuming the model under which the se-
quences evolved are statistically consistent.

Proof. Consider a fixed tree with branch lengths measured in units of substitutions, meaning
that one substitution is expected to happen within one time unit. Let sequences evolve on this
tree under some model M . Let maximum likelihood distances be calculated using the model
M . A maximum likelihood estimator is statistically consistent (Newey and McFadden 1994).
Here, that means with increasing sequence length, the sequence-induced distance matrix D̂n

approaches the tree-induced distance matrix D, limn→∞ P (||D̂n −D|| < ε) = 1.

The mapping between a tree T and its distance matrix D is a bijection. We define the tree
metric as ||T̂n − T || = ||D̂n − D||2 =

∑n
i=1

∑n
j=i+1(D̂i,j − Di,j)

2, where the latter is the
function to be minimised in the least squares method. Then, limn→∞ P (||T̂n − T || < ε) =
limn→∞ P (||D̂n−D||2 < ε) = 1. This establishes that the least squares method is statistically
consistent.

Least squares algorithms are much slower than the algorithmic approaches presented before.
They search the whole space of trees to find the tree that minimises the criterion, meaning
the runtime is O(en lnn). Furthermore, the least squares optimisation problem is an NP -hard
problem (Day 1987), see Box 28 on page 154.
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Box 28: NP-completeness and NP-hardness
A decision problem is a question that can be posed as a yes-no question, for example, “Is there a tree inducing a
distance matrix with a least squares difference to a given sequence distance matrix of less than x?”. The corres-
ponding optimisation problem would be “What is the tree with the minimal least squares difference to the given
sequence distance matrix?”

In computational complexity theory, P stands for polynomial computation time. The set of decision problems P
is the set of decision problems that can be solved in polynomial time with respect to the dataset size. This means
that the number of computations (time) required to solve a problem in P with input size n is on the order of
O(nk), where k is some fixed input-independent number (e.g. k = 3 for the UPGMA above).

NP stands for nondeterministic polynomial time. The set NP is the set of decision problems for which it is
possible to verify whether a particular proposal is a solution in polynomial time. In the least squares method, it
is easy to determine if, for a given tree, the least squares difference of its distance matrix to the original sequence
distance matrix is less than some threshold x. Thus, this decision problem is in NP .

By definition, P ⊆ NP (P is a subset of NP ), but whether P = NP , whether decision problems for which a
solution can be verified in polynomial time can also be solved in polynomial time, is currently unknown, and one
of the major conundrums in computer science.

A decision problemX isNP -complete if an algorithm solvingX could also be used to solve all other problems in
NP , potentially employing a polynomial time transformation of the algorithm. As a consequence of the definition
of NP -completeness, if one NP -complete problem can be solved in polynomial time, then all problems in NP
can be solved in polynomial time (and thus P = NP ). Proving or disproving P = NP is one of the 7Millennium
Prize Problems announced in 2000 (Jaffe 2006). The first person to solve it will be awarded 1 million US dollars.
A Venn diagram can nicely display the connections between P , NP , and NP -complete:

P ≠ NP P = NP

NP-Hard

P

NP

NP-Complete

P = NP = 
NP-Complete

NP-Hard

co
m

pl
ex

ity

A popular example of an NP -complete problem is the travelling salesman problem. The travelling salesman
problem considers k cities (e.g. capitals of Europe) that a salesman has to visit. In the travelling salesman decision
problem, we want to know whether the salesman can visit all the cities on a path shorter than length L.

A problemH isNP -hard if an algorithm solving it can also solve aNP -complete problemX, possibly employing
a polynomial time transformation to adopt the algorithm for H such that it solves X. Thus, any NP -complete
problem is also NP -hard. However, an NP -hard problem does not need to be in the class NP . In particular,
a solution may not be verifiable in polynomial time, or the problem may not be a decision problem. In fact, an
NP -hard problem may be an optimisation problem. An example is the optimisation version of the travelling
salesman problem, in which we want to know the shortest path for a salesman to visit all k cities. Given that
a decision problem is NP -complete, the corresponding optimisation problem is NP -hard: we can answer the
decision problem (whether a solution ≤ L exists) using an algorithm that solves the optimisation problem.
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6.3.2 Cladistic approach: Parsimony method

We now introduce the cladistic approach, going back to Edwards and Cavalli-Sforza (1964).
It groups sequences based on how many characteristics they share. While phenetic methods
group sequences based on pairwise similarity, ignoring relationships of more than two se-
quences at a time, the cladistic method accounts for higher-order sequence relationships.

Using the cladistic approach in tree inference leads to an unrooted tree, the maximum parsi-
mony tree. For a given MSA, the maximum parsimony tree is an unrooted tree on n tips with
the lowest parsimony score among all unrooted trees on n tips. The parsimony score of a tree
is defined as the minimal number of changes (such as nucleotide substitutions for a nucleotide
MSA) required to explain theMSA on the tree. Thus, the cladistic approach aims to determine
the tree requiring the lowest number of changes.

6.3.2.1 Parsimony score example

We illustrate the concept of parsimony with our example MSA. First, since our MSA contains
five polymorphic sites (shown in orange below), we require at least five substitutions, and 5
is the lower bound for the parsimony score.

sequence 1: TCACACCT
sequence 2: ACAGACTT
sequence 3: AAAGACTT
sequence 4: ACACACCC

We will show how to calculate the parsimony score for the UPGMA tree (Figure 6.10) recon-
structed earlier. Note that this UPGMA tree is rooted. In fact, the parsimony score is calculated
on rooted trees. However, as we explain below, the parsimony score for all rooted trees with
the same underlying unrooted tree is the same, meaning that the parsimony method cannot
distinguish among these trees.

We start by looking at each site and determining how many substitutions are required to
achieve the configuration at the tips. For example, sequences s2 and s3 have an A at the first
site, so no substitution is required on the branches leading from the tips to their common
ancestor. On the other hand, s1 has a T, but s4 has an A at the first position. Thus, one
substitution is required; there may have been a substitution from T to A on the branch leading
to s4 or a substitution from A to T on the branch leading to s1. To decide, we look at the
other sequences. Since s2 and s3 both have an A, it is more parsimonious that the sequence
s1 changed rather than all the other sequences. We thus assign an A → T substitution to the
branch between the s1 tip and the common ancestor of s1 and s4. The parsimony score for
the first site is 1 since we need one substitution to explain the MSA at this site. We proceed
in the same way for all the remaining sites, assigning and counting substitutions. The sum of
the parsimony scores for each site is the parsimony score for the tree, which in this case is
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s2: ACAGACTT s3: AAAGACTT s1: TCACACCT s4: ACACACCC

Figure 6.10: Tree obtained by the UPGMA algorithm with the sequences at the tips. This tree
will be used to illustrate the parsimony score.

s2: ACAGACTT s3: AAAGACTT s1: TCACACCT s4: ACACACCC

4: C G
7: C T

2: C A
8: T C

1: A T

Figure 6.11: Tree obtained by the UPGMA algorithm with the sequences at the tips and a
minimal number of required substitutions assigned to the branches.

five (Figure 6.11). Note that here, the optimal assignment was not obtained systematically; we
merely illustrated the concept. In Section 6.3.2.3, we will present a fast and rigorous algorithm
to obtain the parsimony score for a site.

6.3.2.2 Rooted versus unrooted trees

No matter where we root the tree, we obtain the same parsimony score through the same
substitutions. In other words, the parsimony score will stay the same if we omit the root in
the UPGMA tree and then reroot by choosing another branch in the unrooted tree. This is
because we can use the same substitutions as in the original tree to explain the sequences in
the rerooted tree. In Figure 6.12, we display all possibilities for rerooting the UPGMA tree;
all these trees have the same unrooted tree.

Our example MSA has five polymorphic sites; thus, the maximum parsimony tree has a score
of at least 5. Since the UPGMA tree has a parsimony score of 5, we know that the corres-
ponding unrooted tree is one of the maximum parsimony trees. Thus, we found a maximum
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s2 s3 s1 s4

s2 s3 s1 s4

s2 s3 s1s4

s2 s3s1 s4 s2s3s1 s4

Figure 6.12: Tree obtained by the UPGMA algorithm and all possible rerooting of this tree.
All five rooted trees have the same underlying unrooted tree and, therefore, the
same parsimony score.

s2

s3

s1

s4

s2

s4

s1

s3

s2

s1

s3

s4

Figure 6.13: The three unrooted labelled trees on four tips.

parsimony tree by just looking at one rooted tree (though there may be other trees with the
same score). Often, a maximum parsimony tree has a score greater than the number of poly-
morphic sites in the MSA. This means that one has to consider the parsimony score of all
unrooted trees to determine the maximum parsimony tree. Table 6.1 states the number of
unrooted trees on n tips and Figure 6.13 shows all unrooted trees on four tips.
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6.3.2.3 Fitch algorithm

To determine the parsimony score of a tree, we can assign all possible ancestral sequences to
the internal nodes and then count the number of substitutions for each assignment of ancestral
sequences. For n nucleotide sequences of length m, we have a rooted tree on n tips and n− 1
internal nodes, thus 4n−1 possible nucleotide assignments per site. Given a site assignment, we
need to determine if the nucleotide changed or not for each of the 2n− 2 branches, meaning
we have to perform 2n − 2 operations. Thus, overall, we need to perform m · 4n−1(2n − 2)
operations to obtain the parsimony score (see also Section 6.3.2.1). Computing the parsimony
score for all these assignments would be very slow. Such an approach trying all possibilities
is called brute-force.

To calculate the parsimony score for a given tree, we can instead use a smarter approach
involving dynamic programming. We already encountered dynamic programming for pair-
wise sequence alignment in Chapter 3. Recall that the idea behind the dynamic programming
approach is to break down the problem into a collection of smaller subproblems, solve the
small subproblems first, store the results, and then use them to solve the bigger problem. This
strategy is superior to brute-force approaches, which essentially evaluate the same subprob-
lem multiple times. In a phylogenetic context, dynamic programming translates to recursively
solving the subproblem for a subtree and combining the results on the subtrees to obtain the
result for the full tree.

A fast dynamic programming algorithm for computing the parsimony score is the Fitch al-
gorithm (Fitch 1971), the main idea of which is to recursively calculate the parsimony score
on subtrees and then combine the subtree results to obtain the parsimony score for the full
tree. In Algorithm 2, we outline the Fitch algorithm in pseudocode form for nucleotides. It
works analogously for amino acids or codons.

Note that in this algorithm, we denote ∩ as taking the intersection of two sets, that is, all
elements in both sets. ∪ denotes the union, that is, all elements that belong to at least one of
the sets. ∅ is the empty set. For two disjoint setsA and T , {A}∪{T} = {A, T}; {A}∩{T} = ∅.

We will now prove by induction over the number of tips n in the tree that the Fitch algorithm
outputs the parsimony score. We provide proof for one site, m = 1. This directly completes
the proof for m > 1 since the parsimony score for many sites is the sum of parsimony scores
for each of them.

Theorem 6.3.3. For any n and m = 1, the Fitch algorithm outputs the parsimony score S
and all optimal root nucleotides. An optimal root nucleotide is a nucleotide that explains the
tip nucleotides with S substitutions.

Proof.

Hypothesis to prove: For any n andm = 1, the Fitch algorithm outputs the parsimony score
S and all optimal root nucleotides.
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Input: An unrooted phylogenetic tree and an MSA of n sequences of length m,
corresponding to the n tips of the tree.

Output: Parsimony score of the tree, the minimal number of substitutions required to
explain the sequences at the tips.

begin
root the tree at an arbitrary branch;

k ← 0;

while the root has no sequence assigned do
choose a node in the tree where all the descending nodes (all nodes on a path
down to a tip) have sequences assigned;

assign a sequence to the chosen node in the following way:
for i = 1, . . . ,m do

let Cl and Cr be the sets of nucleotides assigned to the two direct descendants
of the chosen node for site i;

if Cl ∩ Cr 6= ∅ then
assign Cl ∩ Cr to site i of the chosen node and keep k unchanged;

else
assign Cl ∪ Cr to site i of the chosen node and set k ← k + 1;

end
end

end
return k as the parsimony score.

end
Algorithm 2: Fitch algorithm to compute the parsimony score of a tree.

Base step: Check that the hypothesis holds for n = 2.
If the nucleotides differ, the parsimony score is 1, and an optimal root nucleotide is
either of the tip nucleotides. If the nucleotides are the same, the parsimony score is 0,
and the optimal root nucleotide equals the tip nucleotide. The Fitch algorithm returns
precisely these values. This completes the base step.

Induction hypothesis: Suppose that the Fitch algorithm returns the parsimony score and all
optimal root nucleotides for all trees with k tips, k < n.

Inductive step: In the inductive step, we now show that the Fitch algorithm returns the parsi-
mony score and all optimal root nucleotides for all trees with n tips. We split the rooted
tree on n tips into two rooted subtrees, 1 and 2, by deleting the root and the two adja-
cent branches. By applying the induction hypothesis, we obtain the parsimony score S1

and S2 and the optimal root nucleotides using the Fitch algorithm for the two subtrees.
The parsimony score of the n-tip tree is at least S1 + S2.
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Case 1: The intersection of the sets of optimal root nucleotides for both subtrees is
non-empty. This means that any nucleotide of the intersection can serve as a root nuc-
leotide, which leads to S1 + S2 changes. Thus, the parsimony score attains the lower
bound S1+S2, and all nucleotides in the intersection belong to the set of optimal nucle-
otides. Next, we show that a nucleotide X not in the intersection cannot be an optimal
root nucleotide:

(i) if both subtrees are assigned one of their optimal root nucleotides, then X has to
change on at least one branch adjacent to the root, and the number of substitutions
is at least S1 + S2 + 1;

(ii) if one subtree has a non-optimal root nucleotide assigned, then the number of
substitutions required in that subtree is S1 + 1, and thus, the overall number of
substitutions is at least S1 + S2 + 1, which is bigger than the parsimony score of
S1 + S2.

Case 2: The intersection of the optimal root nucleotides for both subtrees is empty.
We show that in this case, the parsimony score is S1+S2+1, and the set of nucleotides
in the union is the set of optimal root nucleotides.

We first show that the parsimony score is S1+S2+1, which can be obtained with a root
nucleotide from the union of optimal root nucleotides of the subtrees. We distinguish
three cases:

(i) if the two subtrees each have any one of their optimal root nucleotides assigned,
the subtrees contribute S1+S2 substitutions, and joining the two subtrees requires
an additional substitution — where the root nucleotide is one of the two subtree
root nucleotides, — leading to S1 + S2 + 1 substitutions;

(ii) if one subtree is assigned a non-optimal root nucleotide X, then it contributes at
least S1 +1 substitutions and we get an additional S2 substitutions from the other
subtree, meaning that at least S1 + S2 + 1 substitutions are required;

(iii) if both subtrees are assigned non-optimal root nucleotides, they contribute S1 +
S2 + 2 substitutions, which is bigger than the parsimony score.

Thus, S1 + S2 + 1 is the parsimony score. The first case shows that this score can be
obtained with the root nucleotide from the union.

It remains to be shown that the union of the optimal subtree root nucleotides is the set
of all optimal root nucleotides. Suppose nucleotide X is not in the union, then

(i) if both subtrees are assigned one of their optimal root nucleotides, then X has to
change on both branches adjacent to the root, and the number of substitutions is
S1 + S2 + 2;



6.3 Inferring phylogenies 161

(ii) if one subtree has a non-optimal root nucleotide assigned, then the number of
substitutions required in that subtree is at least S1+1. Now consider the two cases
for the other subtree:

(a) if the other subtree has an optimal nucleotide assigned, it requires one sub-
stitution from X to that optimal nucleotide plus S2 substitutions within that
subtree, leading to at least S1 + S2 + 2 substitutions;

(b) the other subtree has a non-optimal nucleotide assigned, leading to at least
S2 +1 substitutions in that subtree, and overall leading to at least S1 +S2 +2
substitutions.

Thus, X is not an optimal root nucleotide.

The Fitch algorithm is very fast as it traverses each of the n−1 internal nodes once, assigning
a state to each site at each node, resulting in a runtime of the order O(nm) where n is the
number of sequences and m is the sequence length (in our example n = 4,m = 8). Thus, the
parsimony score on a given phylogenetic tree is calculated in linear time in n.

6.3.2.4 Example of the Fitch algorithm

We continue with our example alignment from above.We consider the three possible unrooted
trees on four tips, shown in Figure 6.13. Following the Fitch algorithm, we now assign se-
quences to internal nodes (Figure 6.14). When a set of nucleotides, say A and G, is assigned to
a particular node at a site, we write {A,G}. For the middle and bottom trees, seven substitu-
tions are required to explain the sequences at the tips; for the top tree, only five substitutions
are required, meaning that the top tree is the only maximum parsimony tree.

6.3.2.5 Time complexity of the parsimony method

The Fitch algorithm calculates the parsimony score for a single tree, the input tree. However,
we have to calculate the parsimony score for each possible unrooted tree on n tips. For n = 4,
this is easy, as only three trees have to be considered, but in general, the number of trees
(see Section 6.2.3.2) — and as a consequence, the runtime, — increase drastically with n.
One may thus ask if there is a fast way to compute the maximum parsimony tree without
considering each unrooted tree. The answer is no unless P = NP : we can show that finding
the maximum parsimony tree is an NP -hard problem (Foulds and Graham 1982), meaning
we have to essentially calculate the parsimony score for all possible trees on n tips. Among all
possible trees, the trees with the lowest parsimony score are the maximum parsimony trees.
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s2: ACAGACTT

s3: AAAGACTT

s1: TCACACCT

s4: ACACACCC

A{C,A}AGACTT
ACA{C,G}AC{T,C}T1 substitution

2 substitutions
2 substitutions

{T,A}CACACC{T,C}

Parsimony score: 5

s2: ACAGACTT

s3: AAAGACTT

s1: TCACACCT

s4: ACACACCC

ACA{C,G}AC{T,C}T3 substitutions
0 substitutions

4 substitutions

Parsimony score: 7

ACA{C,G}AC{T,C}{T,C} {T,A}{C,A}A{C,G}AC{T,C}T

s2: ACAGACTT

s4: ACACACCC

s3: AAAGACTT

s1: TCACACCT

ACA{C,G}AC{T,C}T3 substitutions
0 substitutions

4 substitutions

Parsimony score: 7

{T,A}CA{C,G}AC{T,C}T A{C,A}A{C,G}AC{T,C}{T,C}

Figure 6.14: Calculation of parsimony scores for the three unrooted trees on four tips. The
dot on the internal branch is the artificially added root (the first step in the Fitch
algorithm).

6.3.2.6 Statistical inconsistency of the parsimony method

A principle shortcoming of the parsimony method is that — by definition— it always assumes
the smallest number of substitutions possible, even in cases where more substitutions might
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B

D

A

C

B

D

True tree T1 Most parsimonious tree T2

p p

q q q
p2 > q

Figure 6.15: Long branch attraction. When the correct tree (T1) has two long branches sep-
arated by a short internal branch, parsimony tends to reconstruct a wrong tree
(T2) with the two long branches grouped together. This phenomenon is called
long branch attraction.

provide a more likely explanation of the data. One specific side effect of this is that parsimony
does not acknowledge the existence of back-substitutions. For example, consider a site that
has an A at both ends of a branch. Although there may have been several hidden substitutions
along the branch, such as A→ G→ A, parsimony always assumes no substitution at all in such
a case. The result of this assumption is a particular form of bias called long branch attraction.
This is known to arise when two very long branches are connected through a relatively short
internal branch as seen in Figure 6.15, left.

To more carefully illustrate the problem, assume that we have the states 0 and 1 for each site
in the MSA (rather than A, G, C, and T), and let the probability of observing a change on the
long branches in the true tree T1 (Figure 6.15) (leading to C and D) be p, and on the three
short branches be q.

Now assume sequences evolved on the tree T1. Approximately, if p2 > q, meaning convergent
changes on the two long branches are more likely than a single change on the short internal
branch, then C and D are more often in the same state (and different from A and B) than A
and C are in the same state (and different from B and D). In turn, parsimony reconstruction
based on the sequences that evolved on tree T1 will put C and D into a cherry to minimise the
number of substitutions (tree T2). When the number of sites goes to infinity, parsimony will
necessarily pick the wrong tree T2.

While roughly correct, this argument ignores the probabilities of no change on a branch and
scenarios with changes on the branches leading to A and B. Properly considering all possibil-
ities, the condition for parsimony selecting the wrong tree in our example when the number
of sites goes to infinity is p2 > q− q2. This is shown rigorously in Felsenstein (1978) and Fel-
senstein (2003). Thus, the parsimony methods are statistically inconsistent even under such
simple evolutionary models.
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This statistical inconsistency means that parsimony is rarely used as a principal phylogenetic
inference method in macroevolution nowadays, though it is still popular within parts of the
cladist community. However, the parsimony concept continues to be useful in fields such as
epidemiology or developmental biology. For example, the parsimony concept has been suc-
cessfully employed to rapidly place additional tips on huge pathogen trees to avoid rerunning
analyses when new data become available Turakhia et al. (2021). Further, particular settings
exist where a sequence site is known to usually only change once, such as in certain experi-
ments in developmental biology. In such settings, the parsimony concept is applicable again
(see Chapter 12 for more details).

6.3.3 Probabilistic approach: maximum likelihood methods

The probabilistic approaches (dating to Edwards and Cavalli-Sforza (1964)) assume an ex-
plicit probabilistic model of evolution underlying the data. It evaluates the likelihood of the
model parameters θ given the dataD, L(θ;D) = P (D|θ) (see also Box 25 on page 116 for the
likelihood function), and then compares the likelihood for different parameters. In the max-
imum likelihood (ML) approach, the parameters maximising the likelihood function are es-
timated and reported as maximum likelihood parameter estimates. In the Bayesian approach,
the posterior distribution of parameters, which is a function of the likelihood, is estimated (see
Chapter 10 for details). Due to short-comings of the distance-based methods (only pairwise
distances are considered; higher-order relationships are ignored) and the parsimony method
(long branch attraction), maximum likelihood methods, together with Bayesian phylogenetic
methods (Chapter 10), are the methods of choice for most phylogenetic studies.

In a phylogenetic context, the probabilistic model consists of two components. The first com-
ponent of the model is the tree with branch lengths, T , which describes how the studied bio-
logical unit (such as species, viruses, single cells, and so on) replicated. The tree with branch
lengths may be a parameter or may be generated under some probabilistic tree-generating
model (see Chapter 9 for tree-generating models). In this section, we assume that the tree
is a parameter of the model. The second component is a model of sequence evolution that
describes how nucleotides (or codons or amino acids) change over time with a rate matrix
Q. Commonly used models are, for example, JC69, HKY and GTR (see Chapter 5 for de-
tails on substitution models). The probabilistic model gives rise to the probability of the data,
the MSA D, given the tree and rate matrix, P (D|T , Q). The likelihood of T and Q is thus
L(T , Q;D) = P (D|T , Q). For a given probabilistic model, we aim to find the tree and rate
matrix that maximise the likelihood maxT ,Q L(T , Q;D). This optimal tree and rate matrix
are the maximum likelihood estimates.

We will now explain how to calculate P (D|T , Q), the phylogenetic likelihood.

In a very naive approach, we could calculate P (D|T , Q) by simulation. A probabilistic de-
scription of the process means that given the parameters T and Q, we can simulate sequence
data along the tree and obtain a simulated MSA of n sequences. The probability P (D|T , Q)
is the frequency with which the particular MSA D will be simulated along the given tree for
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s2: ACAGACTT

s3: AAAGACTT

s1: TCACACCT

s4: ACACACCC

t2

t3

t1

t4

t5

Figure 6.16: Unrooted tree with the sequences at the tips used as an example for the like-
lihood calculation. Again, this is the tree obtained using UPGMA (without the
root).

the given rate matrix when simulating many MSAs. This simulation-based approach is a very
slow way to determine P (D|T , Q), as we have to simulate many MSAs.

We next discuss how to analytically calculate the probability of the MSA given T and Q. We
note that the probability of the MSA (the sequences at the tips) is the joint probability of the
sequences at the tips and sequences at all internal nodes of the tree, summed over all possible
sequences at internal nodes.

In what follows, we will consider nucleotide MSAs, but the approaches for codon or amino
acid sequence MSAs are equivalent. To further illustrate how the probability is calculated
based on a given tree, we will again use the toy MSA and the UPGMA tree as displayed in
Figure 6.16.

6.3.3.1 Calculating the likelihood using a brute-force approach

We will now show how to calculate the probability of the sequences at the tips for a given
tree and rate matrix by explicitly summing over all internal node sequences. Typically, and in
what follows, we assume one of the time-reversible models introduced in Chapter 5. These
models all assume that the sites evolve independently from one another. Consequently, we can
calculate the probability for each site separately and then take the product over the single-site
probabilities to get the full probability. Put into mathematical equations, let us assume that
the MSA consists of n sequences (s1, . . . , sn) with m sites each, then the probability of the
sequences is

P (s1, . . . , sn|T , Q) =

m∏
j=1

P (s1,j , . . . , sn,j |T , Q), (6.8)

where sk,j is the jth site of sequence sk.

To evaluate P (s1,j , . . . , sn,j |T , Q) for all j, we add a root to the unrooted tree at an arbit-
rary position, leading to tree Tr (node s7 in Figure 6.17). In what follows, we calculate the
probability for the rooted tree P (s1,j , . . . , sn,j |Tr, Q) (we will later discuss the impact of this
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s2: ACAGACTT

s3: AAAGACTT

s1: TCACACCT

s4: ACACACCC

t2

t3

t1

t4
t5t6

s6: ATAGACTC
s7: ACAGACCC s5: ACACACCT

Figure 6.17: Unrooted tree with sequences at the tips for which we calculate the probability
of the sequences at the tips. The root node position and the sequences at the
internal nodes have been assigned arbitrarily.

root placement on the probability). Next, we assign arbitrary sequences to all internal nodes
(nodes s5, s6 and s7 in Figure 6.17).

For n sequences, the rooted tree has n− 1 internal nodes, with sequences sn+1, . . . , s2n−1. By
summing over the possible nucleotides at the internal nodes, we obtain:

P (s1,j , . . . , sn,j |Tr, Q) =
∑

sn+1,j∈{T,C,A,G}

· · ·
∑

s2n−1,j∈{T,C,A,G}

P (s1,j , s2,j , . . . , s2n−1,j |Tr, Q).

(6.9)

The probability P (s1,j , s2,j , . . . , s2n−1,j |Tr, Q) is computed by

1. calculating the transition probability psl1,j ,sl2,j
(tl) from the ancestral node to the des-

cendant node for each branch l with starting sequence sl1 , ending sequence sl2 , and
branch length tl, and

2. calculating the probability of the nucleotide at the root using the equilibrium probabil-
ity, π(s2n−1,j).

We get the overall expression:

P (s1,j , s2,j , . . . , s2n−1,j |Tr, Q) = π(s2n−1,j)

2n−2∏
l=1

psl1,j ,sl2,j
(tl). (6.10)

For example, for site j = 2 in the example of Figure 6.17, the equation is:

P (s1,2, s2,2, . . . , s2n−1,2|Tr, Q) = πCpC,C(t5)pC,C(t4)pC,C(t1)pC,T(t6)pT,C(t2)pT,A(t3). (6.11)

By summing over all internal sequences and multiplying across all sites, we obtain the prob-
ability of the MSA given a rooted tree. As we assume time-reversible models, the model does
not distinguish the direction of time flow along the branches. This means that we obtain the
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same probability regardless of where the root is added to the unrooted tree (for a formal
explanation, see Section 6.4.1). In summary,

P (s1, . . . , sn|T , Q) =

m∏
j=1

∑
sn+1,j∈{T,C,A,G}

· · ·
∑

s2n−1,j∈{T,C,A,G}

π(s2n−1,j)

2n−2∏
l=1

psl1,j ,sl2,j
(tl).

(6.12)

We now assess the runtime of this approach for calculating the MSA probability and thus the
likelihood of T and Q given the MSA. In our example, we have three internal nodes, which
can have one of the four nucleotides at site j. Thus, we have 4 × 4 × 4 = 64 possibilities
for the nucleotides at site j, and the sum in our example consists of 64 terms. In general, the
sum over all nucleotides at site j in a tree with n tips has 4n−1 terms, as the tree has n − 1
internal nodes. Furthermore, for each nucleotide configuration, the approach considers each
branch in the tree (2n − 2 branches). We finally need to multiply the likelihood over all m
sites in the MSA. Overall, the runtime of this brute-force algorithm is O(m4nn), meaning it
is exponential in n.

6.3.3.2 Calculating the likelihood using Felsenstein’s pruning algorithm

A more efficient way to calculate the likelihood is called Felsenstein’s pruning algorithm (Fel-
senstein 1973; Felsenstein 1981). The likelihood of the tree and rate matrix given anMSA can
be computed in linear time given that the transition probabilities pX,Y (t) are known. Analog-
ously to the brute-force algorithm, we arbitrarily root the tree and independently calculate
the likelihood for each site in the MSA. However, we now sum over the possible nucleotides
at the internal nodes in the tree more efficiently using dynamic programming (the concept of
dynamic programming was introduced in Chapter 3). The strategy of recursively traversing
the tree in Felsenstein’s pruning algorithm is analogous to the strategy in the Fitch algorithm
(Section 6.3.2.3).

We now show how to calculate the sequence probability given a rooted tree and rate matrix for
a single site in the MSA. Given a nucleotide X ∈ {T,C,A,G} at node k, let the probability of
the nucleotides at the tips descending from node k be P (Dk|X). This probability is central to
the Felsenstein’s pruning algorithm. For a tip node k with nucleotide Y , we have P (Dk|X) = 1
ifX = Y and P (Dk|X) = 0 otherwise. If the site at tip k is a gap (a - in theMSA), we initialise
with P (Dk|X) = 1 forX ∈ {T,C,A,G}, meaning that we assume any nucleotide was possible
at that site (and in particular we assume it is not a real gap). Next, let k be an internal node
with the descending adjacent nodes l and m and branch lengths tl, tm, for which we already
calculated P (Dl|Y ), P (Dm|Z) for Y, Z ∈ {T,C,A,G}. The probability P (Dk|X) is obtained
bymultiplying the probabilities of the two descendant subtrees and the transition probabilities
from k to l and m,
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P (Dk|X) =

 ∑
Y ∈{T,C,A,G}

pX,Y (tl)P (Dl|Y )

×
 ∑
Z∈{T,C,A,G}

pX,Z(tm)P (Dm|Z)

 . (6.13)

In summary, after defining the probabilities at the tips, we prune cherries recursively towards
the root using the formula for P (Dk|X) defined in Equation (6.13). The pruning terminates
at the root r, where we calculate P (Dr|X), where X ∈ {T,C,A,G}. Finally, the probability
of the sequences observed at the tips at site j is obtained by summing over the four possible
root nucleotides:

P (s1,j , . . . , sn,j |T , Q) =
∑

X∈{T,C,A,G}

P (Dr|X)πX . (6.14)

For an MSA of lengthm on the tree shown in Figure 6.18, let us compare the brute-force way
of writing the likelihood,

P (s1, s2, s3, s4|T , Q) =

m∏
j=1

∑
s7,j∈{T,C,A,G}

∑
s6,j∈{T,C,A,G}

∑
s5,j∈{T,C,A,G}

π(s7,j)ps7,j ,s6,j (t6)

× ps6,j ,s3,j (t3)ps6,j ,s2,j (t2)ps7,j ,s5,j (t5)ps5,j ,s4,j (t4)ps5,j ,s1,j (t1),
(6.15)

with Felsenstein’s likelihood,

P (s1, s2, s3, s4|T , Q) =

m∏
j=1

∑
s7,j∈{T,C,A,G}

π(s7,j)

×

 ∑
s6,j∈{T,C,A,G}

ps7,j ,s6,j (t6)ps6,j ,s3,j (t3)ps6,j ,s2,j (t2)


×

 ∑
s5,j∈{T,C,A,G}

ps7,j ,s5,j (t5)ps5,j ,s4,j (t4)ps5,j ,s1,j (t1)

 . (6.16)

Notice how the summation signs moved “down the tree” when we used Felsenstein’s al-
gorithm.

We now illustrate the pruning algorithmwith an example. For the example tree in Figure 6.18,
where we consider a single nucleotide position, we state the values of P (Dk|X) for all tip
nodes within the figure.We now need to calculate the probabilities for each nucleotide marked
by ?.
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t2

t3

t1

t4

P(D1|X)

P(D4|X)P(D3|X)

P(D2|X)

P(D7|X)
P(D5|X)P(D6|X)

T 0    1    0    0C A G

T 0    0    1    0C A G

T 0    1    0    0C A G

T 0    1    0    0C A G

T ?    ?    ?    ?C A G T ?    ?    ?    ?C A G
T ?    ?    ?    ?C A G

Figure 6.18: Example for the setup of the likelihood computation using Felsenstein’s prun-
ing algorithm. For a node k, the number to the right of a nucleotide states the
probability P (Dk|X) with X corresponding to that nucleotide. The orange nuc-
leotides at the tips represent the data.

0.0118     0.0570      0.0570      0.0118 0.0202     0.4788       0.0067      0.0067AT C G

t2

t3

t1

t4

t5t6

P(D1|X)

P(D4|X)P(D3|X)

P(D2|X)

P(D7|X)
P(D5|X)P(D6|X)

0.0018     0.0157       0.0021      0.0010

AT C G

T 0    1    0    0C A G

T 0    0    1    0C A G

T 0    1    0    0C A G

T 0    1    0    0C A G
AT C G

Figure 6.19: Example of the likelihood computation using Felsenstein’s pruning algorithm.
The orange nucleotides at the tips represent the data. The question marks ? in
Figure 6.18 were evaluated assuming a K80 nucleotide substitution model with
κ = 2 (Section 5.3.2), and branch lengths t1 = t2 = . . . = t6 = 0.1.

We can calculate P (D6|T) as follows:

P (D6|T) =
∑

Y ∈{T,C,A,G}

pT,Y (t2)P (D2|Y )×
∑

Z∈{T,C,A,G}

pT,Z(t3)P (D3|Z)

= pT,A(t2)× pT,C(t3). (6.17)

A complete example of Felsenstein’s pruning algorithm with the internal node probabilities
calculated for each nucleotide is shown in Figure 6.19.

6.3.3.3 Time complexity and statistical consistency of maximum likelihood

Next, we determine the time complexity of Felsenstein’s pruning algorithm. In each pruning
step, we sum over four states twice (the two descending branches and four possible nucleotides
at the ends of these branches), meaning we perform a constant number of operations. The
number of pruning steps equals the number of internal nodes in the rooted tree, and thus,
the full pruning procedure has the runtime of O(n). In addition, this procedure has to be
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performed for each of the m sites. Thus, in total, the runtime of the algorithm is O(nm)
which is linear in n (as opposed to O(m4nn) for the brute-force approach).

While we can obtain the likelihood of a tree for a given MSA in linear time using Felsenstein’s
pruning algorithm, inferring the maximum likelihood phylogeny is NP-hard (Roch 2006) as
we essentially have to consider every unrooted tree on n tips for an MSA of n sequences.

Maximum likelihood tree reconstruction is statistically consistent (see e.g. Felsenstein (1973)
and Felsenstein (2003)), which means the true tree is returned when the method is presented
with an infinite amount of data in the form of infinitely long sequences (recall Box 27 on
page 152 on statistical consistency).

Maximum likelihood methods have been criticised by cladists, arguing they make too many
assumptions on the details of the evolutionary process; see, for example, Farris (1983), and
Felsenstein (2003) for more details and more references. However, it has been shown that
the parsimony tree is, in fact, equal to the maximum likelihood tree when assuming a no-
common-mechanism substitution model (Tuffley and Steel 1997). This model makes many
assumptions and is highly over-parameterised, as each site may have its own rate for each
branch in the tree, meaning it is much more detailed than the common substitution models
introduced in Chapter 5.

6.4 From unrooted trees to time trees

6.4.1 Time-reversibility implies that differently rooted trees have the
same likelihood

In Section 6.3.2, we outlined that the parsimony approach cannot distinguish between dif-
ferent rooted trees based on the same unrooted tree. Likelihood methods assuming time-
reversible substitution models cannot distinguish between different rooted trees that are based
on the same unrooted tree: In calculating the likelihood, the assumption of time-reversibility
implies that the likelihood remains the same no matter where one places the root of the tree.
We illustrate this in a simple example of a two-tip tree (Figure 6.20) where we consider two
possible roots, D1 and D2.

We consider a single site that has nucleotides s1 and s2 at the two tips of the tree; si ∈ N =
{T,C,A,G}. The likelihood of the tree with root D1 (Figure 6.20, left) is then

P (D1) =
∑
X∈N

πXpX,s1(t1)pX,s2(t2 + t3). (6.18)

The transition probability of going from the internal state X to the observed nucleotide s2 in
time t2 + t3 can be divided into the transition probability to another internal state (at node
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s1
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s2

s1

D1 D2

t1 t2+t3 t1+t2 t3

s1 s2t3t1 t2

D2D1

D2 D1

Figure 6.20: Illustration of the role of time reversibility in the context of likelihood calculations.

D2; Figure 6.20, left) and then to s2. As we do not know which state the nucleotide is in at
node D2, we have to sum over all possibilities:

pX,s2(t2 + t3) =
∑
Y ∈N

pX,Y (t2)pY,s2(t3). (6.19)

We can now substitute this into Equation (6.18) and rewrite these probabilities as

P (D1) =
∑
X∈N

πXpX,s1(t1)
∑
Y ∈N

pX,Y (t2)pY,s2(t3)

=
∑
X∈N

∑
Y ∈N

πXpX,s1(t1)pX,Y (t2)pY,s2(t3)

=
∑
X∈N

∑
Y ∈N

πXpX,Y (t2)︸ ︷︷ ︸
(5.42)
= πY pY,X(t2)

pX,s1(t1)pY,s2(t3)

=
∑
Y ∈N

πY pY,s2(t3)
∑
X∈N

pY,X(t2)pX,s1(t1)

=
∑
Y ∈N

πY pY,s2(t3)pY,s1(t1 + t2)

= P (D2). (6.20)

Thus, we prove that the likelihoods for both rooted trees are the same regardless of where the
root is placed in the tree.

Applied to trees with more than two tips, this reasoning shows that the likelihood is inde-
pendent of the position of the root along an edge. Assuming continuity of the likelihood as
the root moves past internal nodes, we further obtain that the likelihood must also remain
fixed regardless of where we place the root on the tree. This property of phylogenetic likeli-
hoods under reversible substitution models has been referred to as the pulley principle and is
discussed further by Felsenstein (1981).
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6.4.2 Rooting the tree

As discussed, core phylogenetic inference algorithms presented in this chapter return an un-
rooted tree. We can root the tree by including an outgroup into the analysis. An outgroup
is a group of individuals/species distant from the rest of the data (the ingroup) considered in
the tree. For example, for mammals, one could use bird sequences as an outgroup; for the
transmission tree of HIV subtype B, one could use sequences from HIV subtype C or A. The
point where the outgroup connects to the phylogeny of the species of interest is defined as the
root of the ingroup. Thus, one assumes a priori that the outgroup attaches to the root of the
remaining phylogeny because it is assumed to have diverged from the phylogeny of interest
at a much earlier point in time.

6.4.3 Adding a calendar time scale to rooted phylogenetic trees

The tree inference methods discussed so far estimate trees with branch lengths representing
the number of substitutions along a branch. It is useful to have trees with branch lengths and
internal node times corresponding to calendar time for many applications: for instance, to
time speciation and extinction events on the tree of life or to estimate the rate of spread of an
epidemic. Such time-scaled trees are called time trees.

To obtain branch lengths in calendar time from branch lengths in the number of substitu-
tions, we require a clock rate parameter that quantifies the expected number of substitutions
per calendar time unit. This clock rate is typically unknown and has to be co-estimated with
the calendar time branch lengths. The clock rate may be the same across all branches (strict
molecular clock (Zuckerkandl and Pauling 1962)) or may vary across branches (relaxed mo-
lecular clock (Drummond et al. 2006)). For simplicity, we now consider a strict clock, but the
general arguments also hold for a relaxed clock model.

If all tips are sampled at the same time and no additional information is provided aside from
the alignments, we can only infer branch lengths proportional to calendar time but not the
absolute branch lengths. For illustration, suppose we have a tree of height t and a clock rate
r. Scaling all branches in the tree by 2 (obtaining a new tree with height 2t) and shrinking the
clock rate to r/2 explains the data equally well; we simply slowed down the whole process
(see also Figure 6.21 and Section 5.3.5).

This correlation can also be seen in Felsenstein’s pruning likelihood calculation, as the rate
and time always appear as a product (labelled d in Section 5.3.5). Thus, absolute time and
the clock rate are not identifiable together; thus, we cannot estimate absolute time unless we
include further information.

When sequences evolve according to a strict molecular clock and are sampled at the same
time, the inferred UPGMA tree has branch lengths that are directly proportional to calendar
time (see Theorem 6.3.1), meaning we can estimate relative calendar time (but not absolute
time).
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time

1

2

clock rate 0.5 clock rate 1

Figure 6.21: Illustration of two combinations of dated topology and clock rate values that
have the same phylogenetic likelihood given the present-day sequence data.
It is impossible to differentiate between them from present-day sequence data
alone. Data from the past, such as fossils or ancient sequences, can resolve
this non-identifiability.

Scaling branch lengths for the other presented methods involves rooting the tree (e.g. through
an outgroup) first. Fossils provide information on when the most recent common ancestor
of certain species existed for obtaining time estimates. They can be used in the inference to
inform the calendar time of specific nodes, which constrains the range of possible clock rates.
If enough fossils are included, a precise estimate for the clock rate can be inferred (Heath
2012).

If we sample sequences from multiple time points, we can estimate the clock rate from the
sequences and sampling times, given that sufficient evolution occurred along the branches.
To provide an intuition, for a rooted tree with branch lengths in the number of substitutions
and under the assumption of a strict clock, we can plot the calendar time of a sample on the
x-axis and the sum of branch lengths from the root to the particular sample on the y-axis
(Figure 6.22). Later samples will have a larger y-value, and the regression slope through the
data points is an estimator for the clock rate (Rambaut et al. 2016).

A computationally efficient way to extract this clock signal from serially sampled phylogenies
with branch lengths in the number of substitutions and to estimate the clock rate and date
the phylogeny in calendar time is the least-squares dating (LSD) method (To et al. 2016).
This method uses a binary phylogenetic tree with known branch lengths in the number of
substitutions— inferred using a distance, parsimony, or maximum likelihood-based approach
— and information about the sampling times of the tips to estimate the clock rate and the
dates of all internal nodes.

In what follows, we explain the LSD method. Suppose the input consists of a rooted bin-
ary tree R on n sequences, where internal nodes of R are numbered 1, . . . , n − 1 and leaves



174 6 Phylogenetic trees

Figure 6.22: Correlation between the sampling times of different Zika sequences and their
distance to the root in terms of substitutions, shown in the software TempEst
(http://tree.bio.ed.ac.uk/software/tempest/) (Rambaut et al. 2016)
using data from Bošková, Stadler and Magnus (2018). The slope of the re-
gression provides an estimate of the clock rate.

n, . . . , 2n−1. The direct ancestor of node i is denoted by a(i). Sampling times in calendar time
are denoted by tn, . . . , t2n−1. The internal node calendar times (to be estimated) are denoted
by t1, . . . , tn−1. The clock rate (to be estimated) is denoted by r. The model then assumes that
the branch lengths in the number of substitutions (bi) are the result of a strict molecular clock
with a constant clock rate acting over a given calendar time interval ∆t = ti − ta(i), together
with a Gaussian noise term εi ∼ Normal(0, σ2

i ) stemming from sampling and estimation er-
rors:

bi = r
(
ti − ta(i)

)
+ εi. (6.21)

The estimates of the global clock rate and the internal node dates are obtained by minimising

http://tree.bio.ed.ac.uk/software/tempest/
http://tree.bio.ed.ac.uk/software/tempest/
http://tree.bio.ed.ac.uk/software/tempest/
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the weighted least squares criterion:

Φ(r, t1, . . . , tn−1) =

2n−1∑
i=2

1

σ2
i

(
bi − r(ti − ta(i))

)2
. (6.22)

Here, the variance terms σ2 are unknown, but using the Poisson nature of the substitution
process, one can arrive at the following assumptions:

σ2
i =

r(ti − ta(i))
m

, (6.23)

and

σ̂2
i =

bi + c/m

m
, (6.24)

where c is a constant, added to avoid infinite weights in the case of zero branch lengths (bi = 0),
and m is the sequence length.

This method has been shown to be reasonably accurate even in cases with minor uncorrelated
violations of the strict molecular clock, as these are absorbed into the added Gaussian noise
term (To et al. 2016). With rooted input trees, the LSD algorithm can be implemented with
approximately linear time complexity (O(n), where n is the number of tips). When the method
is extended to account for unrooted trees, the time complexity is approximately quadratic
(O(n2)).

6.5 Searching the tree space

Tree reconstruction based on distance-based optimality methods, parsimony, or maximum
likelihood methods is NP-hard and requires a search among all possible unrooted trees. Ad-
ditionally, all possible branch lengths must be checked for optimality for all methods except
parsimony. For each tree with branch lengths, the sum of squares, the parsimony score, or
the likelihood value is evaluated, and the tree with the best score is returned.

The search through branch lengths requires optimising a continuous function (least squares
function or likelihood function) over 2n− 3 real variables, namely the 2n− 3 branch lengths
for a proposed unrooted tree on n tips. Such optimisation can be done with the commonly
used hill climbing concept (see e.g. Yang (2014, Chapter 4.6)). The hill climbing algorithm
starts with some initial branch lengths. Then, new branch lengths are proposed and accepted
if they increase the likelihood function. The algorithm terminates if no increase can be found.

Searching the space of all tree topologies (trees without branch lengths) is more complicated,
as the space of trees is a huge discrete space. Checking each tree for optimality in tree space
will be too slow (see again Table 6.1); thus, we generally resort to heuristics that attempt to
check as many trees as possible. Note that this means that we may miss the best tree. However,
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subtree 1subtree 2

subtree 3

subtree 4

subtree 1

subtree 2subtree 3

subtree 4

subtree 2
subtree 1

subtree 3 subtree 4
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Figure 6.23: The nearest-neighbour interchange (NNI) move. Each internal branch in the tree
connects four subtrees or nearest neighbours. Exchanging a subtree on one
side of the branch with another on the other side constitutes an NNI move. Two
such rearrangements are possible for each internal branch (here, A subtree 2
↔ subtree 4, and B subtree 2↔ subtree 1).

finding the optimal tree is computationally intractable unlessP = NP or computational speed
increases drastically.

Checking random trees from all possible trees is inefficient, as we often check trees with very
bad scores. Thus, chances are high that we will miss the best tree unless we check many trees.
A better approach uses a random walk to search the tree space. The method starts with an
arbitrary tree and iteratively modifies the current tree by replacing it with a similar tree with
a better score. This is the same idea as hill climbing, but in this case, applied to the discrete
space of tree topologies. This procedure requires specific tree moves that propose new trees,
three of which — NNI, SPR, TBR — we will briefly discuss here (for more details, see, for
example, Felsenstein (2003) and Yang (2014)).

The NNI move, or Nearest-Neighbour Interchange, switches two neighbouring subtrees. In
particular, it chooses an internal branch uniformly at random. This branch has four subtrees
attached. Two subtrees separated by the internal branch are then exchanged, as shown in
Figure 6.23.

The other two moves are SPR, Subtree Pruning and Regrafting, and TBR, Tree Bisection and
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SPR TBR

initial tree

A B

Figure 6.24: A Tree move by subtree pruning and regrafting (SPR). A subtree is detached and
then reattached to a different location on the tree. B Tree move by tree bisection
and reconnection (TBR). The tree is broken into two subtrees by removing an
internal branch. Two branches, one from each subtree, are then chosen uni-
formly at random and rejoined to form a new tree.

Reconnection. In SPR, an internal branch with its descending subtree is first chosen uniformly
at random. The chosen branch and subtree are detached from the remaining tree. Then, a
branch in the remaining tree is chosen uniformly at random to which the detached branch and
subtree are regrafted (Figure 6.24A). In TBR, a random internal branch is chosen and deleted,
splitting a tree into two unrooted subtrees. Two branches, one in each subtree, are chosen
uniformly at random and merged to reconnect the two subtrees, as shown in Figure 6.24 B.

State-of-the-art implementations employing efficient heuristics (including the moves de-
scribed above) allow us to perform maximum likelihood tree inference for datasets con-
taining thousands of sequences. Some of the commonly used software packages are PhyML

http://www.atgc-montpellier.fr/phyml/
http://www.atgc-montpellier.fr/phyml/
http://www.atgc-montpellier.fr/phyml/
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(http://www.atgc-montpellier.fr/phyml/) (Guindon and Gascuel 2003) and RaxML
(http://embnet.vital-it.ch/raxml-bb/) (Stamatakis 2006). RaxML is optimised for
large datasets and can infer trees on the order of 105 tips.

In Chapter 7, we will discuss how to pick an appropriate substitution model for maximum
likelihood inference and how to acknowledge uncertainty in estimation results; the overall
maximum likelihood approach is summarised in Box 29 on page 198.

6.6 Examples of applications of phylogenetic
reconstruction methods

6.6.1 The first phylogenies

Michener and Sokal (1957) reconstructed the first phenetic tree (Figure 8 in their paper) based
on bee data in 1957. The tree was built based on morphological traits only.

Edwards and Cavalli-Sforza (1964) reconstructed the first cladistic (parsimony) tree in 1964.
The researchers explored the evolution of human populations using the blood groups and
their frequencies. Interestingly, the tree of blood type frequencies is in line with what is known
about the migration of human populations. The same paper also introduced the maximum
likelihood method, but since the pruning approach was not known, the method was compu-
tationally very slow.

Maximum likelihood methods were widely employed upon publication of the pruning al-
gorithm (Felsenstein 1973; Felsenstein 1981).

6.6.2 Phylogenetics can reveal the origin of an emerging infectious
diseases

In July 1981, the New York Times reported on rare cancer in 41 homosexual men in New
York and California, 8 of whom had already died. This disease was named GRID for gay-
related immunodeficiency disease.

In March 1982, the Washington Post reported about the same disease, now called Acquired
Immunodeficiency Syndrome (AIDS), highlighting that it not only affects gay people. More
than 1100 Americans have been already diagnosed with this disease, of which more than 400
have died. The disease was spreading rapidly, with more than 200 diagnoses made within the
month prior to the report. Half of the victims were younger than 35 years old.

In 1983, a virus was isolated from patients with AIDS in two separate laboratories (Barré-
Sinoussi et al. 1983; Gallo et al. 1983) and it was hypothesised that this virus, named Human

http://www.atgc-montpellier.fr/phyml/
http://www.atgc-montpellier.fr/phyml/
http://www.atgc-montpellier.fr/phyml/
http://www.atgc-montpellier.fr/phyml/
http://www.atgc-montpellier.fr/phyml/
http://embnet.vital-it.ch/raxml-bb/
http://embnet.vital-it.ch/raxml-bb/
http://embnet.vital-it.ch/raxml-bb/
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Immunodeficiency Virus (HIV), was actually the cause of AIDS (Marx 1984). It is now well-
established that HIV causes AIDS (The Durban Declaration 2000). However, people and
governments have long denied that HIV is the cause of AIDS; for example, the South African
president still denied this causation in 2000 (The Durban Declaration 2000).

In 2022, 0.7% (mean, confidence interval [0.6%, 0.8%]) of adults in the age 15 to 49 years
were estimated to be infected withHIV. The African Region remains themost severely affected
region worldwide (World Health Organization 2023). Thus, it is essential that we obtain a
detailed understanding of HIV dynamics so that appropriate actions can be taken to fight the
epidemic. In the remainder of this section, we will discuss how the origin of the HIV epidemic
was determined using phylogenetic trees. In Sections 6.6.3 and 6.6.4, we will discuss how we
can investigate the spread of HIV using phylogenetic trees. As we will see, epidemic spread
may be investigated to obtain public health knowledge or provide evidence in criminal cases.

6.6.2.1 HIV phylogeny reveals the origin of the epidemic

HIV must have evolved from some ancestor. However, no virus similar to HIV was known
within the human population. Therefore, scientists started searching for viruses similar to HIV
that infect species closely related to humans. The idea is that a virus infecting a closely related
species (see Figure 6.1) might easily adapt and infect humans as well (zoonotic transmission).

A similar virus, found in most simian species, is the simian immunodeficiency virus (SIV).
Many simian species are natural hosts to SIV, meaning SIV occurs in these species, often
without causing disease. A zoonotic transmission from simians to humans was suggested.

A huge effort was made in the 1980s-1990s to collect SIV sequences from various simian spe-
cies. Based on these sequences, scientists could reconstruct the maximum likelihood SIV/HIV
phylogenies (Hahn et al. (2000, Figures 1 and 3)). Figure 6.25 shows such a tree. The tree
highlights that HIV, in fact, comprises two genetically different groups: HIV-1 and HIV-2.
Furthermore, it highlights that HIV-1 clusters with the chimpanzee (CPZ) virus and HIV-2
clusters with the sooty mangabee (SMM) virus. Phylogenies can further indicate the direction
of transmission: for example, a tree indicates the direction from animals to humans if, when
more and more sequences are added, the HIV sequences form a few nested clades within a
large tree of SIV sequences. This is indeed what we observe when adding more sequences that
were collected since the publication of the original trees.

Initially, the direction of transmission was not clear based on the phylogenetic tree. How-
ever, non-phylogenetic evidence, such as the fact that simians are a natural reservoir for SIV,
their host range covers the areas where HIV appeared first, as well as results of evolutionary
sequence analyses of SIV and HIV sequences, indicated that all HIV clades are results of zo-
onoses from simians to humans (Sharp, Robertson and Hahn 1995; Gao et al. 1999; Hahn
et al. 2000).

In summary, the data suggest that HIV-1 is a zoonosis from chimpanzees, meaning that HIV-
1 jumped from chimpanzees to humans (and analogously for HIV-2 and sooty mangabeys).
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Figure 6.25: Phylogenetic tree on HIV and SIV samples indicating several zoonotic events.

Furthermore, the number of nested HIV clades within the SIV sequences is an estimate for
the number of observed zoonoses (three for HIV-1, four for HIV-2, Hahn et al. (2000, Figure
3)).

6.6.2.2 How did HIV jump from simians to humans?

Understanding how HIV jumped from simians to humans requires considerations beyond
phylogenetic analysis. Two main hypotheses were put forward to understand the jump.

Hypothesis 1 (polio hypothesis) Humans caused the HIV epidemic through contaminated
polio vaccines in the 1950s in Africa. This hypothesis was popularised in the book “The river”
by the journalist Edward Hooper (1999). W. D. Hamilton, one of the leading evolutionary
biologists in the 20th century (kin selection, altruism; Hamilton’s rule), set out to assess this
hypothesis. Tragically, he died from malaria after returning from an expedition to Congo,
aiming to find evidence for this hypothesis. Polio vaccines found in freezers later did not
show any sign of contamination, disproving this hypothesis.



6.6 Examples of applications of phylogenetic reconstruction methods 181

Hypothesis 2 (hunter hypothesis) HIV jumped from simians to humans in the course of
hunting simians (Sharp et al. 2001). Since hunters may experience blood-to-blood contact
with the hunted simians, such as through cuts, this could provide a potential transmission
route. The hunter hypothesis is supported by the fact that areas with high SIV prevalence
coincide with early HIV outbreaks, and hunting of simians occurs in these areas. Furthermore,
the hunter hypothesis explains the observation that there has not been one but rather several
introductions of HIV into the human population. Overall, evidence supporting the hunter
hypothesis is very strong (Pépin 2021).

Today, the hunter hypothesis is the commonly accepted hypothesis for the origin of HIV.

6.6.3 The HIV epidemic in Switzerland

Within an epidemic, pathogen phylogenies can display transmission across different popula-
tion groups. Kouyos et al. (2010, Figure 1) reconstructed a maximum likelihood phylogenetic
tree on 5 700HIV sequences from the Swiss epidemic, together with the same number of non-
Swiss sequences. The Swiss sequences were collected from patients to screen for drug-resistant
HIV strains in order to define a proper course of antiretroviral treatment. Each tip of this tree
corresponds to a single consensus pathogen genetic sequence from an infected host (see Sec-
tion 3.3.1). The colour of a tip and its pendant branch indicates the transmission group of
the host associated with the tip: blue — Swiss intravenous drug users, red — Swiss men who
have sex with men, cyan — Swiss heterosexuals, black — non-Swiss.

Clades of predominantly non-black tips nested within a subtree of black tips indicate the im-
port of HIV from abroad into Switzerland. We call these clades “Swiss clades”. Swiss clades
consisting of tips with more than one colour indicate HIV transmission between different
transmission groups within Switzerland. Swiss clades of only one colour indicate that the dis-
ease is mostly spreading within a single Swiss transmission group rather than between groups.
We observe that the red sequences often form small clusters within the black “backbone”. This
indicates ongoing transmissions in the group of Swiss men who have sex with men. In con-
trast, the Swiss heterosexuals (cyan) and intravenous drug users (blue) are well-mixed within
Swiss clades. This indicates that there is frequent transmission between the two transmission
groups.

6.6.4 Phylogenetics in the court

6.6.4.1 HIV criminal case: Louisiana 1994

The following discusses the first court case in which phylogenetic methods were used as
forensic evidence (Metzker et al. 2002). In 1994, a woman from Louisiana (USA) accused her
ex-partner, a physician, of having infected her with HIV. While she tested HIV-positive, none
of the ten men she reported sexual contact with during the previous decade were HIV-positive.
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The woman claimed that the ex-partner purposefully infected her through an injection, which
he claimed was a vitamin B boost, administered during a late-night visit to his practice. This
visit to the physician’s practice followed a fight between the victim and her ex-partner. The
victim reported that her ex-partner did not want her to leave him, and if she did, he wanted
to make sure she did not have sexual contact with anyone else anymore.

HIV only survives a couple of hours in vitro. However, it was observed that the physician
took a blood sample earlier that day from an HIV-positive patient but never sent the blood
to the laboratory.

How can one assess the victim’s claim of intentional HIV transmission on the night of the “vit-
amin B boost”? For the first time in a criminal trial, phylogenetic methods were used to assess
the claim. HIV samples from the victim, the suspected donor (the physician’s patient), and 32
other HIV-infected individuals from the local area were obtained and sequenced. Based on
these sequences, HIV phylogenies were reconstructed using various methods for two differ-
ent genes. In every single reconstruction, the victim’s sequences clustered within the suspected
donor’s sequences, and the remaining 32 sequences were further apart with bootstrap support
(assessing the robustness of results; see Section 7.4.3) of 96%−100%, indicating that the most
likely route of transmission was indeed from the suspected donor to the victim (see Metzker
et al. (2002, Figures 1 and 2)).

Together with non-phylogenetic evidence, the physician was found guilty of having infected
the woman with HIV. Additionally, he was found guilty of having infected the woman with
Hepatitis C through the “vitamin B boost”. As a result of these findings, he was sentenced to
50 years in prison.

6.6.4.2 Florida dentist

A dentist who died of HIV was suspected of having infected patients with HIV in the course
of his practice (Ou et al. 1992). In a study by the Center for Disease Control and Prevention
(CDC) published in 1992, viral samples of seven patients were sequenced, and a phylogeny
was reconstructed. The analysis revealed that for five of the patients, the sequences clustered
with the dentist’s sequences and, together with epidemiological information, indicated the
dentist to be the source of these infections.

This case induced a discussion on hygiene rules for healthcare workers. It remains unclear
whether the dentist always wore protective gear during his practice (already in the 1980s,
dentists were supposed to wear protective gloves). Generally, this was an exceptional case
because in no other lawsuit involving HIV did a healthcare worker transmit the virus to a
patient. To this day, it is not known if the transmissions by Florida’s dentist occurred by
chance or on purpose.



6.6 Examples of applications of phylogenetic reconstruction methods 183

6.6.4.3 Bulgarian nurses in Libya

The last case we present occurred in Libya. Five Bulgarian nurses and a Palestinian doctor
who were helping in Libyan hospitals were accused of having transmitted HIV to more than
400 children. They were sentenced to death by the Libyan government and were incarcerated
for over eight years. During this time, data were collected, and computational methods were
developed to show that the transmission occurred before the healthcare workers arrived in
the country (de Oliveira et al. (2006)). Upon political pressure, the healthcare workers were
finally freed in 2007.
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7 Statistical testing

This chapter will explore how to determine which stochastic models to use in phylogenetic
inference and how to summarise uncertainty in parameter estimates. At the core, we will
test the plausibility of different hypotheses. A null hypothesis is the hypothesis that the data
evolved under the null model, where the null model is some mathematical model (e.g. JC69
may be the null model; in Chapter 4, Section 4.1 the null hypothesis was that a variant has no
effect on a disease). Testing the null hypothesis means testing whether the null model describes
the data well. If not, we reject the null hypothesis. If the null hypothesis was tested against
an alternative hypothesis, rejecting the null hypothesis means that we favour the alternative
hypothesis, formalised as an alternative mathematical model. For example, think of the six-
sided die. The null hypothesis could be that the die is fair, and rolling a 6 has the probability
of 1/6. The alternative hypothesis in this case could be that the probability to roll a 6 is any
value different from 1/6. We can also perform model selection without formulating the null
hypothesis but by comparing different models using a statistical criterion.

Throughout this section, we always specify a mathematical model together with the hypo-
theses, so we will primarily use the word “model” to refer both to the model and the hy-
pothesis. In what follows, we first discuss how to test the plausibility of a null model (or
null hypothesis) H0 (Sections 7.1 and 7.2). Second, we will show how to perform model se-
lection between several models H0,H1, . . . (Section 7.3). Then, given a model, we assess the
uncertainty in the parameter and tree estimates (Section 7.4).

7.1 Test whether to reject the null model H0

In Chapter 4, we tested whether our data (a contingency table) rejected the null hypothesis that
particular SNPs were not associated with a disease status (GWAS). The general idea was to
determine the distribution P (X = x|H0), where the random variableX stands for one field in
the contingency table. The null model assumes that this random variable is hypergeometrically
distributed (Box 9 on page 76) with parameters defined by the fixed row and column sums of
the contingency table. Thus, for any possible observed data x, we can evaluate P (X = x|H0),
and can directly calculate the p-value for a particular observation (Box 1 on page 24) based
on the hypergeometric distribution. If this p-value is below a given rejection threshold, we
reject the null model H0.

In the context of phylogenetic tree inference, X is the random MSA, and H0 is a particular
tree with some rate matrix Q. Here, it is generally impossible to determine the distribution
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P (X|H0) for the particular tree and Q as it would mean to evaluate the probability for all
MSAs. However, there are roughly 4mn MSAs for n sequences of lengthm (roughly as we did
not consider the gaps). We thus proceed with a different type of test, as described in the next
section.

7.2 Test whether to reject the null model H0 in favour of H1

We will compare H0 to other models. In general, a statistical test is defined through a test
statistic, which is a function that transforms the data into real numbers, depending on H0

and H1. Depending on the value of the test statistics and the chosen significance level, we
might reject the null hypothesis.

We will consider here likelihood-based test statistics (see Box 25 on page 116 for likelihoods
in general and Section 6.3.3 for likelihoods in phylogenetics). We will first introduce the like-
lihood ratio test (LRT) to test if a null modelH0 should be rejected when tested against model
H1. Afterwards, we introduce the Akaike Information Criterion (AIC) which ranks different
models H0,H1,H2, . . . according to their support based on likelihoods (Section 7.3).

7.2.1 Likelihood ratio tests (LRT)

Log-likelihood ratios can be used to determine confidence intervals for maximum likelihood
estimators (see Box 26 on page 117) and, as we discuss here, also for model comparison.
Likelihood ratio testing (LRT) allows us to test a null model H0 against a model H1. To use
LRT, the null model needs to be a nested model, which means that the parameters of H0 are
a subset of the parameters of H1. For example, JC69 is nested in K80 because when the two
parameters of K80 have the same value, the model is reduced to JC69. We determine whether
H0 should be rejected when tested against H1. We define the log-likelihood ratio function
between the two models H0 and H1 on a given dataset as

LR(H1,H0) = 2 log

(
L1(θ̂1)

L0(θ̂0)

)
= 2(logL1(θ̂1)− logL0(θ̂0)), (7.1)

where L1 and L0 are the likelihood functions of models H1 and H0, and θ̂1 and θ̂0 are the
maximum likelihood estimates under H1 and H0, respectively.

The likelihood value L1(θ̂1) of the data under the general model will be higher or equal to the
likelihood under the null model L0(θ̂0). This is because the models are nested, and fixing some
parameters ofH1 to certain values will reduce it tomodelH0. Thus, it is always possible forH1

to obtain at least the same likelihood as H0. More formally, 2(logL1(θ̂1) − logL0(θ̂0)) ≥ 0.
However, a positive difference does not necessarily mean that H1 is a better choice, as H1
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requires more parameters. Overly general models tend to have reduced explanatory power, a
phenomenon known as overfitting.

Now, we determine how big the log-likelihood ratio should be to reject H0 against H1. As-
suming that H0 indeed generated the data, Wilk’s theorem (Wilks 1938) states that if the
sample size goes to infinity, the log-likelihood ratio is distributed as the χ2 distribution:

LR(H1,H0) = 2(logL1(θ̂1)− logL0(θ̂0)) ∼ χ2
df , (7.2)

where df is the degrees of freedom of the χ2 distribution (Box 11 on page 78). df is calculated
as the difference between the number of free parameters in H1 and the number of free para-
meters in H0. If some parameters of H0 are at the parameter boundary of H1 (e.g. 0 or ∞),
they typically only count for 0.5 degrees of freedom (for more details see e.g. Self and Liang
(1987)).

In a likelihood ratio test (LRT), we choose a level of significance α (see also Box 1 on page 24),
and evaluate LR(H1,H0). We will reject H0 if and only if the log-likelihood ratio falls in the
α-tail of the χ2

df distribution, that is, if

pχ2
df
(x > LR(H1,H0)) < α. (7.3)

The significance level α corresponds to the probability of falsely rejectingH0. We note that the
mean and variance of the χ2

df distribution increase linearly with df (see Box 11 on page 78),
and so the threshold for rejecting the null model increases for increasing df .

Comparing our definition of LRTs and confidence regions (Box 26 on page 117) reveals that
a null model is rejected at the level α if and only if its maximum likelihood parameters are
not within the (1 − α)-confidence region around the maximum likelihood estimates of H1.
For more details, see also Section 7.4.1.

Example: rolling a die We again use the die rolling experiment as introduced in Box 25 on
page 116 to illustrate the concept of likelihood ratio tests. We test whether we reject the null
modelH0 of a fair die when tested against the alternative modelH1 of a loaded die. As we did
above, we are only considering the probability of rolling a 6. In model H0, this probability is
known and equal to 1/6, soH0 has no free parameters (and the likelihood L0 is constant for a
given dataset). In modelH1, this probability is equal to θ1, the parameter of the model.We saw
in Box 25 on page 116 that if we roll the die n times and obtain a six k times, the maximum
likelihood estimate for the probability of rolling a 6 under model H1 is θ̂1 = k/n and that
L1(θ) =

(
n
k

)
θk(1−θ)n−k. The probability of rolling k sixes out of n rolls under the null model

is L0 =
(
n
k

)
( 16 )

k( 56 )
n−k. We can then calculate LR(H1,H0) = 2(logL1(θ̂1 = k/n) − logL0),

and check whether the value is in the α-tail of the χ2
1 distribution. For α = 0.05, the value is

in the α-tail if LR(H1,H0) > 3.84. Thus, 3.84 is the rejection threshold. If the value is in the
α-tail, we reject the null model H0 of our die being fair. Otherwise, we do not reject H0.
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Figure 7.1: Histogram of log-likelihood ratio values obtained from 10 000 experiments with
a fair die (blue) and the null hypothesis H0 being that the die is fair. In each
experiment, the die is rolled 1 000 times, and k, the number of throws resulting in
a 6, is recorded. The log-likelihood ratio is calculated for each value k and plotted
as a histogram in blue. The χ2

1 distribution is shown in black, and the boundary
of the 0.05-tail of the distribution is indicated with the vertical dashed line.

For the die rolling experiment performed in Box 25 on page 116, where the die was rolled
n = 100 times and a six was obtained k = 40 times, we calculate LR(H1,H0) = 30.62, which
is greater than 3.84. Thus, the null model is rejected at the α = 0.05 level. Recall that we
reject H0 precisely when the confidence interval around the maximum likelihood parameter
estimate assuming H1 does not contain 1/6. Thus, equivalently, we can conclude from the
interval calculated in Box 26 on page 117 that the null model is rejected for this experiment.

We also use the die rolling experiment to illustrate that the log-likelihood ratio function is well-
approximated by a χ2 distribution.We roll a fair die n = 1000 times and record k, the number
of throws resulting in a 6. We repeat this experiment 10 000 times. Then we calculate the log-
likelihood ratio for all 10 000 experiments and plot the histogram for LR(H1,H0) (Figure 7.1,
blue). The experimental histogram corresponds very well to the χ2

df=1 distribution, as we can
see in Figure 7.1, black. In this figure, we also plot the 95-th percentile of the χ2 distribution
(the boundary of the 0.05-tail; dashed line), which is the value C such that pχ2

df=1
(x > C) =

0.05 (thus only 5% of the distribution fall to the right of this blue line). Here df = 1, thus we
have C = 3.84.

Example: phylogenetics For a fixed tree and given MSA, we can calculate the maximum
likelihood estimates for different substitution models, for example, the JC69 and the K80
model. We then determine the log-likelihood ratio and reject JC69 at the 0.05 level if the log-
likelihood ratio is bigger than 3.84, since df = 1 (see the overview of model parameters of
nucleotide substitution models in Table 5.1).
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Figure 7.2: Decision tree showing the successive LRTs performed by the software ModelTest
(Posada and Crandall 1998) to identify an appropriate substitution model. The
first test is shown at the top, and the possible outcome of each test is shown as
A (accept H0) or R (reject H0).

The LRT only considers twomodels; however, in many phylogenetic questions, there are many
more candidate models to select from, such as, for example, JC69, K80, HKY and GTR. If we
want to choose an appropriate substitution model for a given MSA on a fixed tree, we may
need to perform several successive LRTs. An example of a scheme for such model comparison
is shown in Figure 7.2. One caveat of such a model selection scheme is that it involves multiple
tests. Correcting for multiple tests can be done easily only if the number of tests is known in
advance. This is, however, not the case here. Another caveat with this specific example is that
some models may not be tested at all, depending on the previous tests. For instance, if the
very first test (JC69 vs F81 (see Sections 5.3.1 and 5.3.3)) rejects H0, then we will proceed
directly to testing F81 against HKY and will not even consider the K80.

Summary of the likelihood ratio tests Likelihood ratio tests are a statistical test for which
the test statistic is the log-likelihood ratio. The user decides on the level of significance as
introduced in Box 1 on page 24 (α = 0.05 is often used), which allows the rejection threshold
of the test to be determined. For LRTs with 1 degree of freedom at α = 0.05, the rejection
threshold is 3.84 (compare also to the rejection threshold calculation for multiple testing in
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H0 true H0 false

Reject H0 Type I error Correct

Accept H0 Correct Type II error

Table 7.1: Two type of errors in statistical tests.

Section 4.1.3). If the calculated test statistic is greater than the rejection threshold, we will
reject H0 for the given data.

Rejecting a null model H0 does not imply that the general model H1 is a good model to
explain the data. In fact, when testing H0 against H1, we can obtain very small p−values
simply because H0 is a very bad null model, but not because H1 is a good model. Addressing
the overall fit of a model has to be done with procedures such as, for example, described in
Section 7.1. Alternatively, we can explore a wider range of models (Section 7.3).

7.2.2 Errors in statistical testing

When performing statistical tests (e.g. the LRT), it is important to distinguish between two
types of errors, shown in Table 7.1. A type I error occurs if the H0 model is true, but we
falsely reject it. A type II error occurs if H1 is true, but we fail to reject H0. The accuracy
and power of a test depend on type I and type II errors, respectively. Accuracy is defined as
(1− (type I error)) and power as (1− (type II error)). There is a trade-off between the two,
as increasing accuracy will decrease power and vice-versa.

The significance level chosen by the user is equal to the type I error, meaning the user directly
controls the accuracy of a test. Evaluating a statistical test’s power often requires simulations
under H1. In general, the power increases with the difference between model H1 and the null
model H0.

Example: rolling a die We illustrate statistical errors, accuracy, and power with the die-
rolling experiment. These results are based on our particular realisation of the experiment
and will slightly deviate for each experiment, as the outcome of each experiment is random.

First, we experiment with a fair die. This experiment will determine the accuracy and the
type I error. We perform 10 000 experiments, each consisting of 1 000 die rolls, and record the
number of times we roll a 6 (as above). We find thatH0 is rejected in 5.1%of the experiments.
This simply confirms that the significance level we have chosen is 0.05, and thus the accuracy
is 0.95.

Next, we assess the test’s power and type II error. We assume the die is unfair, meaning the
null model is wrong. First, we assume θ = 1/5. Performing the same experiments as before, we
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end up correctly rejecting H0 in 78% of the experiments. Thus, we estimate that the power is
0.78 and the type II error is 0.22.

Lastly, we consider another unfair die, for which θ = 1/2. In all 10 000 experiments we cor-
rectly reject H0. The power is, therefore, 1, and the type II error is 0.

7.3 Compare models H0,H1,H2, . . . using the Akaike
information criterion

As seen in the previous section, the likelihood ratio test can only be used for two models
where one is nested within the other. To compare more models that are not nested, we can
use the Akaike information criterion (AIC) (Akaike 1974). The AIC ranks models according
to their fit to the data.

The AIC of a particular model i is:

AICi = −2 logLi(θ̂i) + 2pi, (7.4)

where pi is the number of free parameters of the model, Li is the likelihood function under
the model, and θ̂i are the maximum likelihood parameter estimates of the model.

The AIC needs to be calculated separately for each model we want to compare. The model
with the lowest AIC is the model which fits the data best, according to the criterion. The AIC
is related to the expected Kullback-Leibler divergence (MacKay 2003); that is, AIC aims to
measure the loss of information compared to the true (unknown) model. The +2pi term has
the effect of penalising models with more parameters, which helps combat overfitting.

It is important to note that the absolute AIC values are not informative on their own. Only
the difference between the AIC values is informative. The difference represents the difference
in loss of information compared to the (unknown) true model. The model with the minimum
AIC value is picked. Again, we do not know howwell this best model explains the data overall;
we only know that it explains the data better than any of the other considered models. Models
with an AIC within 1− 2 of the minimum also have substantial support. Models with an AIC
within about 4−7 of the minimum have considerably less support, while models with an AIC
more than 10 above the minimum have essentially no support (Burnham and Anderson 2002,
page 71).

Example: substitution model selection The AIC has been used in many studies to perform
substitution model selection. As an example, we use a maximum likelihood tree topology of
the rbcL genes from 12 plant species shown in Yang (2014, Figure 4.16), reconstructed with
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Model p l AIC

JC69 21 −6 262.01 12 566.02

K80 22 −6 113.86 12 271.72

HKY 25 −6 101.76 12 253.52

JC69+Γ5 22 −5 937.80 11 919.60

K80+Γ5 23 −5 775.40 11 596.80

HKY+Γ5 26 −5 764.26 11 580.52

Table 7.2: Number of parameters p, maximum log-likelihood values l, and the AIC value for
different substitution models. Model parameters and branch lengths were optim-
ised by Yang (2014) on a fixed topology of the 12 species in Yang (2014, Figure
4.16).

an HKY+Γ5 model1. Based on that tree topology, the author estimated the maximum like-
lihood substitution model parameters and branch lengths for different models of nucleotide
substitution. We use these results with permission of the author and state the maximum log-
likelihood values l for the different models in Table 7.2.

In what follows, we employ the AIC to determine which substitution model fits this tree
topology best. The number of parameters p for each model is calculated as follows: there are
2n − 3 branches in a tree with n tips (Section 6.2.3.1), so for the tree of 12 species, there
are 2 × 12 − 3 = 21 free parameters (the branch lengths), in addition to the parameters of
the substitution model minus one. The reason for removing one free parameter is that the
substitution rate matrix and the branch lengths are correlated for trees where all tips are
sampled at the same time: multiplying all rates by a factor k and dividing all branch lengths
by the same factor k will give the same log-likelihood value (refer to Sections 5.3.5 and 6.4.3).
Thus, we can fix the average substitution rate to 1, meaning that, for example, for the JC69
model, the number of parameters is p = 21 + 1− 1 = 21.

The HKY+Γ5 has the lowest AIC value, making it the best-suited model for this dataset. The
next best model is K80+Γ5. The difference in AIC values between K80+Γ5 and HKY+Γ5 is
16.28, meaning that the simpler K80+Γ5 has essentially no support. The likelihood ratio tests
in Yang (2014) also support the HKY model with rate heterogeneity the most.

In this example, the tree topology was fixed. The AIC can also be used to compare models if
the tree topology is not fixed. This contrasts with the LRT, where the topology needs to be
fixed. If the topologies are different, we have an additional model or model parameter for the

1The Γ5 refers to a model with rate variation among sites as described in Section 5.5, using 5 discrete rate categories
to approximate the continuous Γ distribution for computational tractability.
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tree topology. If the two topologies are different, the two models or parameters are different,
and thus, the models are not nested, meaning we cannot apply LRT and need to use AIC.

We emphasise that on a fixed topology, we can assume two different nested substitution mod-
els and n−1 branch length parameters, and for each substitutionmodel, estimate its maximum
likelihood parameters together with the maximum likelihood branch lengths. Since the mod-
els are nested, we can apply the LRT, meaning in the example above, we could also perform
LRTs (as done in Yang (2014)).

Substitution model selection using LRT and AIC has been automated in software tools
such as jModelTest (https://evomics.org/learning/phylogenetics/jmodeltest/)
(Posada 2008; Darriba et al. 2012), which can test dozens of models on a fixed tree or co-
estimate trees using PhyML (PhyML (http://www.atgc-montpellier.fr/phyml/) (Guin-
don and Gascuel 2003)).

7.4 Assessing uncertainty in estimates

After selecting the best model for a given dataset, wemay also want to estimate the uncertainty
associated with the maximum likelihood parameter estimates under this model. We want to
know how wide the range of “likely” values for each parameter is. This range is called a
confidence interval for a single parameter or confidence region for one or more parameters.
Confidence intervals are formally defined in Box 26 on page 117. In what follows, we provide
four procedures for obtaining estimates for the confidence intervals. We note that for many
biological problems, we cannot freely choose between the four procedures; rather, we may be
limited to one particular approach, depending on the models and the datasets.

We illustrate the confidence intervals again using the die-rolling example. We perform one die
roll experiment consisting of 1 000 die rolls and record the number of times we roll a 6. We
recorded rolling six 165 times, meaning the maximum likelihood estimate θ̂ for the probability
of rolling a six is 0.165.

7.4.1 Obtaining confidence intervals using the LRT

In Box 26 on page 117, we described how to construct confidence intervals for maximum like-
lihood parameter estimates. The (1 − α) × 100% confidence interval is the set of parameter
values θ for which the estimated θ̂ (under a H1) would not lead to rejection of the hypothesis
that θ (H0) equals the true parameter at the significance level α. Thus, likelihood-based con-
fidence intervals are directly related to likelihood ratio tests. We show the confidence interval
based on an LRT for the die rolls example in Figure 7.3.

Most of our substitution models contain several parameters; therefore, we obtain a confidence
region composed of the intervals for all the parameters. This region is easy to characterise if
it is, for example, a circle in the two-dimensional case with the maximum likelihood estimate

https://evomics.org/learning/phylogenetics/jmodeltest/
https://evomics.org/learning/phylogenetics/jmodeltest/
http://www.atgc-montpellier.fr/phyml/
http://www.atgc-montpellier.fr/phyml/
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Figure 7.3: Confidence interval estimates. A fair die is rolled 1 000 times, and a six was re-
corded 165 times. From this experiment, we estimate the probability of rolling
a six, θ. The black curve is the log-likelihood curve for θ. The maximum likeli-
hood estimate for θ is shown in blue (solid line), and the true probability of 1/6 is
shown next to it (blue dashed line). The 95% confidence intervals obtained using
the LRT, repetition of experiments, non-parametric bootstrapping, and parametric
bootstrapping are shown as horizontal lines.

in the centre. However, often it is very different from a circle. To facilitate confidence cal-
culations, profile likelihoods are considered (e.g. see Cole, Chu and Greenland (2014)). To
calculate the profile likelihood, we fix all parameters except one to their maximum likelihood
estimates. The profile confidence interval for the un-fixed parameter is then calculated in the
same way as in the LRT-based confidence interval for the one-parameter case. From this, it
follows that in the special case when we have only one parameter, the profile confidence inter-
val equals the classic confidence interval as introduced in Box 26 on page 117. For example,
in the die experiment, we have only one parameter; thus, the profile confidence interval is the
same as the confidence interval.

LRT-based confidence intervals (or profile confidence intervals in case of many parameters)
are straightforward to calculate for parameter estimates of a given substitution model when
a fixed phylogenetic tree is provided. In Section 5.4.3, we calculated LRT-based confidence
intervals for pairwise distances between sequences under the JC69 model.
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7.4.2 Obtaining confidence intervals by redoing experiments

If we have access to the experimental system used to produce the dataset, we can repeat the
experiment multiple times. Each experiment will produce a different maximum likelihood
estimate for the parameter and, based on the definition of confidence intervals in Box 26 on
page 117, the 95% confidence interval of the parameter can be obtained by discarding the
bottom 2.5% and the top 2.5% estimates. This procedure can, for instance, be used with our
example of a die, with a bacterial evolution experiment, and so on. For the die experiment,
Figure 7.3 shows the 95% confidence interval obtained via 100 repetitions of the experiment.

The LRT-based and redoing experiment-based 95% confidence intervals are not identical in
general, as shown, for example, in Figure 7.3. This is because these confidence intervals are dif-
ferent approximations to the true confidence interval. The LRTs rely on the χ2 approximation.
Redoing experiments leads to an approximation of the CI if a finite number of experiments
is performed (only infinite repetition leads to an exact one).

In most biological applications, redoing experiments to obtain the confidence interval is not
feasible. However, we introduce this framework here as it leads to the exact confidence inter-
vals (if enough replicates are generated), and the non-parametric bootstrapping approach in
the next section approximates the procedure of redoing experiments.

7.4.3 Obtaining confidence intervals by non-parametric bootstrapping

In general, it is impossible to rerun real-life experiments such as the evolution of mammals.
However, we can mimic the repetition of experiments through bootstrapping. This term stems
from the English idiom, “to pull yourself up by your own bootstraps,” which alludes to creat-
ing something from nothing. In statistics, this refers to a process of generating “new” datasets
by somehow shuffling/sampling from an existing dataset.

Bootstrapping may be done within a parametric or non-parametric framework. In the para-
metric framework, an explicit model with a finite number of parameters is defined for gen-
erating the data. In the non-parametric framework, such an explicit model assumption is
avoided. Thus, under a non-parametric framework, a model is either completely avoided or
the model structure, such as the number of model parameters, grows with the available data
(see Section 9.2.3).

In non-parametric bootstrap, the procedure consists of randomly sampling our dataset with
replacement until we get a second dataset of the same size as the original. It is important that
the sampling is carried out with replacement (meaning we put the sample back into the dataset
before performing another sampling step); otherwise, we simply recover the original dataset.
Resampling the dataset multiple times and obtaining the maximum likelihood estimate of the
parameters for each bootstrap dataset will allow us to construct a 95% confidence interval
by ignoring the 2.5% smallest and largest maximum likelihood estimates.
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For our die rolling experiment, the 95% non-parametric bootstrapping confidence interval
is obtained by considering our initial experiment where we rolled six 165 times out of 1 000
tries. To obtain a bootstrap dataset, we sample another 1 000 die rolling results by sampling
from the 1 000 results of the initial experiment with replacement.We then obtain themaximum
likelihood estimate for the probability of rolling a six for this bootstrap dataset. In Figure 7.3,
we show the 95% non-parametric bootstrapping confidence interval. If the original dataset
was big enough, it is straightforward to see that this procedure leads to a confidence interval
indistinguishable from the one we would obtain by redoing experiments (previous section).
Note that if the dataset is small, bootstrapping underestimates the size of the true confidence
interval.

In Section 7.4.5, we will use non-parametric bootstrapping to obtain confidence measures on
tree topologies.

7.4.4 Obtaining confidence intervals by parametric bootstrapping

Finally, we can estimate confidence intervals by parametric bootstrapping. Here, additional
datasets are simulated under the model H1 with parameters θ̂, the maximum likelihood es-
timates for the dataset. For these parametric bootstrap datasets, we estimate the maximum
likelihood parameters again, and the 95% parametric bootstrapping confidence interval is
obtained, as above, by ignoring the 2.5% smallest and largest maximum likelihood estimates.

For our die-rolling experiment, we obtained 100 parametric bootstrap datasets by performing
our experiment with a die where the probability of rolling a six is 0.165. The result is shown in
Figure 7.3. For our die, the confidence interval based on parametric bootstrapping would be
equivalent to the confidence interval based on redoing experiments if the maximum likelihood
estimate equals the true parameter.

Parametric bootstrapping will be used for phylodynamic parameter inference in Sec-
tion 9.1.6.3.

7.4.5 Tree uncertainty estimation

Estimating the uncertainty in reconstructed trees is a unique challenge, as trees are complex
objects with a discrete component, namely the topology. In particular, a continuous uncer-
tainty interval or region is not defined for phylogenies. Instead, a set of trees collectively
represents the uncertainty in trees; this set can then be summarised further.

The LRT method cannot be used to assess uncertainty as comparing different topologies cor-
responds to non-nested models (see Section 7.3). Furthermore, we typically cannot rerun evol-
ution and obtain additional trees by redoing experiments. Obtaining parametric bootstrap-
ping confidence estimates is only possible if we have a model for tree growth (see Chapter 9).
Non-parametric bootstrapping, however, provides a useful tool for estimating the uncertainty
in a tree.
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Figure 7.4: Bootstrap for phylogenies. Consider an MSA with m columns. A bootstrap MSA
is obtained by sampling m columns with replacement from the original MSA. If
m is very large, the bootstrap samples show the same statistical properties as
if obtaining additional samples by repeating evolution (which, of course, is not
feasible in practice). Figure inspired by Felsenstein (2003).

The procedure (first introduced in Felsenstein (1985a)) is as follows: we obtain a bootstrap
MSA by sampling m sites (columns) at random with replacement from the original MSA
of m sites, as shown in Figure 7.4. Note that the order of the rows representing different
samples is kept unchanged during the bootstrap procedure. If the original MSA was long
enough, the resulting bootstrap MSAs show approximately the same variation as would be
obtained from repeating the evolution of those organisms multiple times. This becomes clear
when considering die rolling: if we roll the die 1 000 times (which corresponds to repeating
evolution) or if we roll it 1 000 times and then select 1 000 outcomes with replacement (which
corresponds to bootstrapping), we obtain roughly the same number of outcomes of 6.

We then reconstruct a maximum likelihood bootstrap tree from each newly created bootstrap
MSA. The set of bootstrap phylogenies can be summarised by comparing it to the original
maximum likelihood tree. A common comparison criterion is the following: for each node in
the original maximum likelihood tree, we count how many bootstrap trees have an internal
node whose set of descending tips is the same as for the node in the maximum likelihood tree.
In other words, for each clade in the original maximum likelihood tree, we count how many
bootstrap trees contain this particular clade. For each node in the maximum likelihood tree,
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Box 29: Maximum likelihood tree inference
Selecting a substitution model, reconstructing a phylogenetic tree, estimating all model parameters
for amultiple sequence alignment (MSA), and providing uncertainty estimates can be done as follows
under the maximum likelihood framework:

1. for each plausible substitution model, infer a maximum likelihood tree and choose the tree
with the topology and the branch lengths that maximise the likelihood;

2. determine the tree and substitution model with the highest support using AIC and proceed
with that tree and model in steps 3 and 4;

3. determine the confidence intervals for the model parameters using the LRT;

4. determine the confidence in the maximum likelihood tree by non-parametric bootstrapping
of the MSA.

we divide this count by the number of bootstrap trees. The resulting values, which are between
0 and 1, are called the bootstrap supports of the internal nodes in the original maximum
likelihood tree. Figure 7.5 shows the result of bootstrapping on an SIV-HIV MSA within
a maximum likelihood phylogenetic analysis; each node of the maximum likelihood tree is
marked with its bootstrap support.

Taken together, the maximum likelihood framework for tree reconstruction introduced in
Chapter 6 with the concepts on statistical testing and uncertainty introduced in this section
allow for a coherent tree reconstruction approach acknowledging uncertainty, as summarised
in Box 29 on page 198.
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Figure 2:  Phylogenetic tree of HIV subtypes and SIV from several primate species. We collected all sequences 
from GenBank and constructed the tree with a Neighbour-joining method. Feline immunodeficiency virus (FIV) 
was used as an outgroup for rooting. The numbers indicate bootstrap values (the highest value, 100, means that 
this monophyletic clade occurred in all pseudoreplicates, see chapter 4.2 for an explanation). subA and subB 
stands for subtypes A and B of HIV-1(M) and groupO for HIV-1(O). For SIV: gor stands for gorillas, cpz for 
chimpanzees and sm for sooty mangabeys. The remaining SIV abbreviations refer to other primate species, 
which are not important in this case. 

 

Figure 7.5: Maximum likelihood tree of SIV-HIV sequences with bootstrap support (between
0 and 100) marked for each internal node. Figure adapted from Sägesser (2010).
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8 Traits and comparative methods

The distribution of phenotypic traits among individuals or species is the result of evolution.
These traits are encoded in characters. Characters can be discrete, such as spike numbers of
HIV virions, leg numbers of arthropods, or the presence of a fur pattern in rodents. Characters
can also be continuous, such as height, weight, virulence, or dinosaur jaw length.

Comparative methods are a large family of approaches that study trait evolution, often with
the goal of learning whether the evolution of specific characters is correlated. The earliest
of these methods ignored potential phylogenetic relationships between samples. However, in
the late 1970s, it was recognised that ignoring phylogenetic dependencies can lead to highly
incorrect conclusions (see Felsenstein (2003) for the historical perspective). For this reason,
trait evolution is now generally studied in the context of phylogeny.

In this chapter, we will consider first discrete and then continuous trait evolution and will talk
about association and correlation between characters. Two characters are associated when
knowledge of one character informs us about the second character, meaning the characters
are not independent, while correlation of two characters is a special association where the
characters follow a particular trend such as a linear relationship (Altman and Krzywinski
2015).

We will demonstrate how phylogenetic relationships between sampled individuals or species
can easily lead to apparent associations between pairs of independently evolving characters
when phylogenetic relationships are ignored during the analysis.Wewill then introduce phylo-
genetic comparative methods that explicitly account for phylogeny, allowing evolutionary
correlations to be detected.

Note that throughout this chapter, we will assume, for the sake of simplicity, that the phylo-
genetic tree is known. In reality, we rarely know the true tree. Thus — when applied to empir-
ical data — the methods presented here are generally combined with phylogenetic inference
procedures of the kind discussed in Chapters 6 and 10.

8.1 Assessing associations between discrete characters

Suppose we want to find out whether there is an association between eye colour and feather
colour in a group of eight bird species shown in Figure 8.1. While the sample shows only
two combinations (yellow eyes and green feathers, red eyes and blue feathers), the other two
combinations (yellow eyes and blue feathers, or red eyes and green feathers) might also be
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Characters:

Species: 1 2 3 4 5 6 7 8

Figure 8.1: The combinations of discrete characters — eye and feather colour — for eight
sampled species. Eyes in this example are either yellow or red, feathers green
or blue.

possible, even though they are not present in our data. From looking at the data, it is tempting
to conclude that there is a strong evolutionary correlation between the two characters; that
is, if a species evolves to have green feathers, this will likely coincide with the appearance of
yellow eyes.

8.1.1 Assuming independence across samples

One way to quantify the significance of this correlation would be to employ Fisher’s exact
test (see Box 10 on page 77). Recall that we need to formulate the null hypothesis before
performing this statistical test. The null hypothesis in our case is:

H0: Having yellow eyes is equally likely among green- and blue-feathered species.

For Fisher’s exact test, we fill out a contingency table with our observations (see Table 8.1),
and we can then formulate the null hypothesis mathematically:

H0: The number of species with both yellow eyes and green feathers is drawn from a hyper-
geometric distribution, given the total number of species with each of the four individual trait
values (the row and column sums of the contingency table).

The hypergeometric distribution describes an urn experiment. In this case, we can use the
urn analogy to represent the number of green balls obtained when drawing 4 balls without
replacement (representing the individuals with yellow eyes) from an urn with 4 green balls
(representing green-feathered individuals) and 4 blue balls (representing the blue-feathered
individuals). We denote the number of green balls among the drawn 4 balls with the random
variable Z. We calculate the p-value of the observed outcome, a, which is the probability of
obtaining the observed or more extreme outcomes. Here, we define more extreme as obtaining
more species with yellow eyes and green feathers than observed. We set the significance level
to 0.05. If the obtained p-value is less than the significance level, we reject the null hypothesis,
as it is very unlikely that we could get such data under the null model.

In the above example, we observe four individuals with yellow eyes and green feathers. Let
us now compute the probability of this event under hypothesisH0 by following Fisher’s exact
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Totals

4 0 4

0 4 4

Totals 4 4 8

Table 8.1: Contingency table for the feather and eye colours using the example in Figure 8.1.
No species in the sample has green feathers and red eyes or blue feathers and
yellow eyes; four species have green feathers and yellow eyes, and four species
have blue feathers and red eyes.

test (Box 10 on page 77):

P (Z = 0|H0) =

(
4
4

)(
4
0

)(
8
4

) ' 0.0143. (8.1)

As we cannot observe more green balls than 4 (a more extreme event is impossible), the p-value
is 0.0143, well below a significance level of 0.05. We thus reject the null hypothesis of an equal
distribution of yellow eyes among green- and blue-feathered species at the 0.05 significance
level. Instead, there seems to be a significant correlation between the two features.

8.1.2 Considering phylogenetic relatedness

The analysis above relies on the assumption that the individuals in our samples are independ-
ent from one another. Let us now assume that, in reality, our eight species are related by the
evolutionary history shown in Figure 8.2. The colours along the branches depict the history
of the evolution of feather and eye colour traits.

When accounting for this relatedness, instead of considering the traits at the tips, we consider
the changes along the branches of the phylogenetic tree. In particular, we test whether two
characters change on the same branch more often than expected under a null model. Again,
we summarise the example data in a contingency table shown in Table 8.2.

Suppose again wemodel our changes using an urn experiment. Let us use red balls to represent
the branches where the feather colour trait underwent an evolutionary change (here, 1 red ball)
and black balls to represent the branches this trait did not change (here, 13 black balls). Now,
we draw k balls without replacement (here k = 1) to determine the branches on which the
change of eye colour occurred. The number of red balls drawn follows the hypergeometric
distribution (Box 9 on page 76).
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Characters:

Species: 1 2 3 4 5 6 7 8

change in 
eye color

change in 
feather color

Figure 8.2: The phylogenetic tree connecting the eight sampled species from Figure 8.1.
The species at the root of the tree has yellow eyes and green feathers, and so
do four of its descendants. In this particular example, the changes in feather and
eye colours occurred only once, and both took place along the same branch.

From this new perspective, our null hypothesis is:

H0: The number of branches with a change in both feather and eye colour follows a hyper-
geometric distribution.

The probability of the data under the null hypothesis is:

P (both feather and eye colour change on a branch|H0) =

(
1
1

)(
13
0

)(
14
1

) ' 0.0714. (8.2)

The p-value is obtained by summing over the probability of the data and the probability of
any more extreme result. More extreme corresponds to more than one branch having both a
feather and eye colour change. As we only have one change of each trait, the p-value equals
0.0714. As the p-value is higher than a significance threshold 0.05, we do not reject the null
hypothesis that changes are equally likely on every branch and thus are not correlated at the
0.05 significance level.
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Change No change Totals

Change 1 0 1

No change 0 13 13

Totals 1 13 14

Table 8.2: The contingency table for changes per branch based on the tree in Figure 8.2.
In this example, there are no branches with a single change, one with changes in
both characters and 13 with no changes.

This is an entirely different result from the one we arrived at when we did not consider the
phylogeny. It shows that to detect correlated evolution between traits, we must take into
account the phylogenetic relationships between individuals or species.

8.1.3 Detecting associations between discrete variables in empirical
data

While the above analysis demonstrates the necessity of considering phylogeny when testing for
correlated evolution, it does not immediately lead to an obvious practical means of detecting
such correlations. The reason is that for real datasets, we typically know neither the phylogeny
nor the pattern of trait evolution that proceeds down it (that is, we do not have the full picture
of the phylogeny with character changes along branches like the one shown in Figure 8.2).

While we will not delve into the details here, we note that several studies have proposed co-
herent methodology to test for correlated evolution in discrete characters, starting with Ridley
(1983) who proposed a test using the parsimony algorithm (see Section 6.3.2) to reconstruct
the tree and the ancestral changes. Later, it was explicitly recognised that longer branches have
a higher chance of co-occurring changes than shorter branches, which is taken into account
in analyses using likelihood-based methods (Pagel 1994). For an extended discussion on this
topic, refer to Felsenstein (2003, Chapter 25).

8.2 Assessing associations between continuous characters

Just as with discrete characters, spurious correlations between continuous characters can be
induced by shared ancestry when ignoring this ancestry and, consequently, common evolution
during analysis. The only difference is how these characters evolve through time. Evolution
occurs due to a continuous time jump process for discrete characters, with instantaneous
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transitions (changes) occurring between the allowed states. For continuous characters, evolu-
tion occurs according to a process that can take any state in a continuous space. In both cases,
evolution is such that points on the tree that are close together (less time passed) are more
likely to share the same trait value than points that are far apart (more time passed). This
means that groups of closely related individuals are more likely to share similar trait values
than distantly related individuals. Failing to account for this can lead to incorrect conclusions
since the similarity of additional samples from the closely related group can be incorrectly
interpreted as evidence for correlation.

Consider the distribution of a pair of continuous traits — for example, wing span and beak
length — corresponding to the same set of species as discussed in the previous section, illus-
trated in Figure 8.3. The individual values are the result of a random process, which we detail
later in this chapter. The qualitative effect of the phylogeny is already clear. For instance, the
wing span trait values (blue) for species 1 and 2 are almost identical, as are the corresponding
beak length trait values (black) for the same species. Similarly, all of the blue values for the
remaining six species have similar values, as do the remaining black values. In other words,
although we have eight distinct species in this dataset, the number of independent species
samples of each trait value is less. It may be as low as two since we observe two main clades.
Looking only at the trait values in the absence of the phylogeny, the presence of these closely
related species in the dataset can lead to the conclusion that the evolution of the two traits is
correlated, even when no such correlation exists in the underlying random process.

To quantify this effect, we need a quantitative test for correlation. In the following, we describe
a quantitative test for correlation ignoring the phylogeny (analogously to Section 8.1.1 for
the discrete case). In Section 8.2.3, we describe a quantitative test for correlation given a
phylogeny (analogously to Section 8.1.2 for the discrete case).

8.2.1 Assuming independence across individuals

Imagine that two distinct traits X and Y (wing span and beak length in our example) are
recorded for each of n sampled species, with the numerical trait values for species i given by
xi and yi.

A common approach to detecting simple correlation between continuous variables is linear
regression. In this method, we assume that the observations (the trait values) are related to
each other linearly such that

yi = βxi + b+ εi, (8.3)

where β and b are unknown constants describing the slope and offset of the relationship.
The terms εi are “error” or “noise” terms, which account for any deviation from the linear
relationship. The error terms are assumed to be:

1. statistically independent from one another, and
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Figure 8.3: A The phylogeny relating eight bird species and B continuous wing span and
beak length traits of the eight species. The trait values highly depend on which
of the two main clades of the phylogeny a given species belongs to.

2. drawn from the same normal distribution Normal(0, σ2) (see Box 13 on page 80) for
all data points.

This means that the error terms are independent and identically distributed.

Fitting this linear model to the data requires we find estimates β̂ and b̂ that minimise the
difference between the measured values yi and the predicted values fi = β̂xi + b̂. Once the
model is fit to the data, we can compute the coefficient of determination R2. It quantifies
the amount of variance in Y that is explained by X. Given the mean of the observed data
ȳ = 1

n

∑n
i=1 yi, R

2 is defined as

R2 = 1−
∑n
i=1(fi − yi)2∑n
i=1(yi − ȳ)2

. (8.4)
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Therefore, a R2 value close to 1 means that the variation in Y is perfectly explained by X,
while a value close to 0 indicates that X is unable to predict the variation in Y through linear
regression.

Performing these calculations for the trait data shown in Figure 8.3 B yields an R2 value
of 0.98, indicating a very strong correlation between the two traits. The p-value computed
from the corresponding t-statistic1 is 2.49 × 10−6, suggesting that this correlation is highly
significant.

However, we know that these individuals have a shared evolutionary history, shown in the
phylogenetic tree in Figure 8.3 A. The fact that traits evolved on this phylogeny means that
their noise terms are neither independent nor identically distributed, meaning that the assump-
tions of a classic linear regression are not met. Thus, applying classic linear regression directly
to the two sets of trait values is not a reliable means of testing for the correlated evolution of
the characters since the assumed null model is incorrect.

The following section will define a null model for continuous trait evolution along a phylo-
geny. Then, we will show how to use linear regression in combination with this improved
null model to detect significant correlations between characters more reliably.

8.2.2 Modelling continuous trait evolution with Brownian motion

A simple model to describe the evolution of continuous traits along a phylogenetic tree is the
Brownian motion model (Box 30 on page 209). Figure 8.4 illustrates how Brownian motion
can be applied to continuous trait evolution on a tree. In Figure 8.4 A we see a phylogeny
of four extant species, 1-4. Figure 8.4 B shows one possible evolution of a single continu-
ous character under the Brownian motion model on this phylogeny. Individuals 1, 2, and 3
share a common evolutionary history; their characters evolve together from the root until the
branching in the phylogenetic tree (dashed lines in Figure 8.4 B).

If we assume Brownian motion for each trait as the null model, the trait values of 1, 2, and
3 are not independent. Thus, we cannot perform standard linear regression to investigate
correlations between these traits evolving along the tree.

8.2.3 Considering phylogenetic relatedness using the contrast method

One method that lets us account for the interdependencies of evolutionary traits on trees —
using Brownian motion as the null model — is the contrast method developed by Joseph
Felsenstein (1985b). In the contrast method, we mathematically eliminate interdependence in
our data by performing linear regression not on the original data points but on recomputed

1The t-statistic is defined as t̂ = β̂/s
β̂
, where sβ̂ is the standard error of β̂. The t-statistic obeys a well-known

distribution and can be used to test for statistical significance, giving a p-value under the null hypothesis that no
correlation existed (β = 0) (Fisher 1925).
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Box 30: Brownian Motion
Brownian motion is named after the Scottish botanist Robert Brown, who formulated it after ob-
serving crop seed movement in water under a microscope. He noticed that the crop seeds move
randomly on the water surface due to hits from water molecules. Another example of this type of
movement is a ball thrown around by a crowd in a football stadium. Different people push the ball
around, resulting in a random movement pattern.

Brownian motion is the motion resulting from a Wiener process, which is a continuous time
stochastic process. Note that the terms Wiener process and Brownian motion process refer to the
same process. The Wiener process is named after the American mathematician Norbert Wiener
(1894-1964). The Wiener process is defined as a stochastic process (Wt)t∈T and T ⊆ R that fulfils
the following four conditions:

1. W0 = 0: the process starts in 0;

2. Wt is almost surely continuous: P (Wt continuous) = 1;

3. Wt has independent increments which implies memorylessness: for 0 ≤ s1 ≤ t1 < s2 ≤ t2,
(Wt1 −Ws1 ) and (Wt2 −Ws2 ) are independent;

4. for 0 ≤ s ≤ t, the difference Wt −Ws is distributed as a normal distribution with variance
that depends on the time difference (Wt −Ws ∼ Normal(0, σ2(t− s))).

Note that thus far, we considered a memoryless stochastic process on a discrete state space (Markov
processes in Box 24 on page 98), while the Wiener process is a memoryless stochastic process on a
continuous state space. The Wiener process is important for many fields, including statistical physics
and quantitative finance. As such, detailed information about the process can be found inmost books
introducing stochastic processes (see e.g. Bertoin (1994)).

values that are independent and identically distributed. The recomputed values are referred
to as contrasts. We will illustrate the contrast method on the example phylogeny on four tips
in Figure 8.5.

In the following, we assume to have j = 1, . . . ,m distinct continuous characters, each evolving
down the same phylogenetic tree in Figure 8.5, starting at the root, according to the Brownian
motion model with variance parameter σ2

j . We denote the value of the observed trait j ∈ [1,m]

at node k ∈ [1, 4] by Xj
k. We use the same notation for the unobserved trait values at the

internal nodes where k > 4. Finally, the branch length leading to node k is tk.

It is clear from the tree that the trait values Xj
1 and Xj

2 are not independent observations,
as they share evolutionary history through branches t6 and t5. In what follows, we use the
trait values at the tips and the branch lengths to define a set of independent variables — nor-
malised contrasts — such that they possess identically normally distributed errors under the
assumption that the traits evolved according to the Brownian motion model. With the norm-
alised contrasts, we can perform linear regression to test for additional correlation between
the traits besides that due to the common ancestry.
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Figure 8.4: A A phylogeny of four individuals and B a realisation of trait evolution along the
phylogeny according to the Brownian motion model. When a branching event
happens in the phylogeny, the stochastic process modelling trait evolution splits
into two separate and independent stochastic processes, starting with the trait
value of the ancestral individual upon branching.

8.2.3.1 Preliminaries

Before proceeding, we will first prove two lemmas that will be useful in the following calcu-
lations.

In what follows, the following general identities for random variables will be used repeatedly:

Var(αU + βV ) = α2Var(U) + β2Var(V ) + 2αβ Cov(U, V ), (8.5)
Cov(Y, αU + βV ) = αCov(Y, U) + β Cov(Y, V ), (8.6)

Cov(U,U) = Var(U), (8.7)

where U , V and Y are arbitrary real random variables, and α and β are real constant values
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Figure 8.5: A phylogenetic tree on four tips on which the contrast method is illustrated. The
extant nodes are labelled 1, . . . , 4, the root 0, and the internal nodes 5, 6. The
length of the branch leading to node k is denoted with tk. The observed value of
trait j in node k is denoted by xjk (blue boxes).

(positive or negative); variance and covariance were defined in Section 1.3.

Lemma 8.2.1. The variance of the trait variable at a leaf a is determined by the sum of the
branch lengths between the leaf and the root, tsum, as

Var(Xj
a) = σ2

j tsum. (8.8)

Proof. Firstly, note that the random variable that represents the trait value at a leaf node
(node 1, for example) can be expanded as a sum of the following differences:

Xj
1 = (Xj

1 −X
j
6) + (Xj

6 −X
j
5) + (Xj

5 −X
j
0) +Xj

0 . (8.9)

SinceXj
0 is fixed at 0 (Brownianmotion property 1) and due to the independence of increments

(Brownian motion property 3), we have

Var(Xj
1) = Var(Xj

1 −X
j
6) + Var(Xj

6 −X
j
5) + Var(Xj

5 − 0). (8.10)

Furthermore, due to the linear dependence of the variance of the Brownian motion process
on time (Brownian motion property 4), we have

Var(Xj
1) = σ2

j t1 + σ2
j t6 + σ2

j t5 = σ2
j (t1 + t6 + t5), (8.11)

meaning the variance of the trait variable at the leaf is determined by the sum of the branch
lengths between the leaf and the root. While we used a particular example tree and node, this
proof works for any tree and node.
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Lemma 8.2.2. The covariance between the random variables corresponding to the trait values
at any two nodes a and b is determined by the sum of the lengths of the ancestral branches
they share, tsum, as

Cov(Xa
1 , X

b
2) = σ2

j tsum. (8.12)

Proof. Consider the covariance between the trait variables at two different tip nodes, for
example, tips 1 and 2. To do this, note that, like Xj

1 , X
j
2 can also be expanded as a sum of

changes along branches:

Xj
2 = (Xj

2 −X
j
6) + (Xj

6 −X
j
5) + (Xj

5 − 0). (8.13)

To compute the covariance between Xj
1 and Xj

2 , we successively apply the covariance iden-
tities and invoke Brownian motion properties 3 and 4 to find

Cov(Xj
1 , X

j
2) = σ2

j (t6 + t5). (8.14)

Thus, the covariance between the random variables corresponding to the trait values at any
two nodes is determined by the sum of the lengths of the ancestral branches they share. Again,
while we used a particular tree and node pair here, this proof works for any tree and node
pair.

8.2.3.2 Contrast method

The key idea behind the contrast method is to focus on contrasts between the trait values
observed for species pairs rather than the absolute trait values. These contrasts depend only
on the evolution that has occurred along the branches between the two species and their most
recent common ancestor, but not on the evolution along the parts of the phylogeny that the
two species share (the branches from the most recent common ancestor of the two species to
the root). Our goal is to transform the observed trait values into another set of values (namely
the contrasts) that are mutually independent and identically distributed under the null model
of Brownian motion.

The contrasts are defined through a recursive procedure. We now state the overall recursive
idea, referring to the core equations derived in later parts.

In the recursion, repeat until no cherries are left in the tree:

1. identify a cherry in the phylogeny with child nodes c1 and c2 and parent node p;

2. compute a normalised contrast for each trait Ẑj(c1,c2) as in Equation (8.19); if this is the
only cherry remaining, finish here;

3. prune the chosen cherry from the tree, replacing it with a new tip node p′;

4. compute new trait values X̂j
p for this node as in Equation (8.28) and the length t̂p of

the branch above it as in Equation (8.30) (or terminate if this node is the root).
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By construction, the pruning step leaves us with a new tree with a set of trait values that are
statistically independent of the previously calculated contrast. Thus, for each trait, a set of
n − 1 independent normalised contrasts are calculated for a tree on n individuals, while the
normalisation ensures that the contrasts are identically distributed.

Unlike the raw trait values, the contrasts, under the null model of Brownian motion, satisfy
the assumption of the linear regression correlation test introduced above (independence and
identical distribution) and can be used to test for the presence of evolutionary correlations
between continuous character, beyond those correlations naturally introduced by the shared
phylogeny.

8.2.3.3 Contrast for a cherry

Consider the values of trait 1, observed at the cherry consisting of leaf nodes 1 and 2 in
Figure 8.5. We define the contrast for a cherry as the difference in trait values:

Zj(1,2) = Xj
1 −X

j
2 . (8.15)

Due to the independence of increments property of the Brownian motion process (Box 30 on
page 209), this contrast is statistically independent of the trait value at every other leaf on the
tree.

To normalise this contrast to a standard deviation of 1, we need to compute the variance of
Z(1,2). To do this, consider that

Zj(1,2) = (Xj
1 −X

j
6) + (Xj

6 −X
j
2). (8.16)

Again, because of the independence of these two increments, we have

Var(Zj(1,2)) = Var((Xj
1 −X

j
6)) + Var((Xj

6 −X
j
2)), (8.17)

which, by the property 4 of the Brownian motion , becomes

Var(Zj(1,2)) = σ2
j t1 + σ2

j t2. (8.18)

Thus, the normalised contrast is

Ẑj(1,2) =
Z(1,2)√

Var(Z(1,2))
=

Xj
1 −X

j
2

σj
√
t1 + t2

. (8.19)
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8.2.3.4 Pruning the tree

As outlined in Section 8.2.3.2, we now prune the cherry corresponding to the contrast calcu-
lated in Section 8.2.3.3 and replace it with a new tip. Then, a new set of trait values needs to
be associated with this new tip, such that a further cherry can be picked from the resulting
tree to calculate another contrast. We now explain how to associate the new trait value.

The key requirement for the new trait value (in our example X̂j
6 ) is that it needs to be statist-

ically independent of the cherry contrast Z(1,2). That is, we require that

Cov(Zj(1,2), X̂
j
6) = 0. (8.20)

Given this goal and that Zj(1,2) is the difference between the trait values 1 and 2, it is natural

to propose that an independent variable might be obtained via the weighted average of Xj
1

and Xj
2 . Thus, we assume

X̂j
6 = fXj

1 + (1− f)Xj
2 . (8.21)

To determine which f fulfils the condition in Equation (8.20), we combine Equations (8.20)
and (8.21):

Cov(Zj(1,2), fX
j
1 + (1− f)Xj

2) = f Cov(Zj(1,2), X
j
1) + (1− f)Cov(Zj(1,2), X

j
2)

= f Cov(Xj
1 −X

j
2 , X

j
1) + (1− f)Cov(Xj

1 −X
j
2 , X

j
2)

= f Cov(Xj
1 , X

j
1)− f Cov(X

j
2 , X

j
1)

+ (1− f)Cov(Xj
1 , X

j
2)− (1− f)Cov(Xj

2 , X
j
2)

= f Var(Xj
1)− (1− f)Var(Xj

2) + (1− 2f)Cov(Xj
1 , X

j
2).
(8.22)

Using Lemmas 8.2.1 and 8.2.2 we can substitute

Var(Xj
1) = σ2

j (t1 + t6 + t5), (8.23)

Var(Xj
2) = σ2

j (t2 + t6 + t5), (8.24)

Cov(Xj
1 , X

j
2) = σ2

j (t6 + t5), (8.25)

to obtain

Cov(Zj(1,2), fX
j
1 + (1− f)Xj

2) = σ2
j

(
f(t1 + t6 + t5)− (1− f)(t2 + t6 + t+ 5)

+ (1− 2f)(t6 + t5)
)

= σ2
j (ft1 + (1− f)t2) = 0. (8.26)
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Solving for f , we find that Equation (8.20) is satisfied when

f =
t2

t1 + t2
. (8.27)

Substituting this back into Equation (8.21) yields the following expression for the new trait
value:

X̂j
6 =

t2X
j
1 + t1X

j
2

t1 + t2
. (8.28)

This implies that X̂j
6 is simply the average of the trait values at the descendant leaves when

the branch lengths on either side of the cherry (here t1 and t2) are the same.

To determine further contrasts in the pruned tree using this new trait value, we also need to
compute its variance and its covariance with other tips in the tree. Again, using the properties
of the Brownian motion process on the tree, we find:

Var(X̂j
6) = f2Var(Xj

1) + (1− f)2Var(Xj
2) + 2f(1− f)Cov(Xj

1 , X
j
2)

= σ2
j

(
2(t1 + t6 + t5) + (1− f)2(t2 + t6 + t5) + 2f(1− f)(t6 + t5)

)
= σ2

j

(
t6 + t5 + t2 + f2(t1 + t2 + 2t6 + 2t5)

− 2f(t2 + t6 + t5) + 2f(t6 + t5)− 2f2(t6 + t5)
)

= σ2
j

(
t6 + t5 + f2t1 + (1− f)2t2

)
= σ2

j

(
t6 + t5 +

t1t2
t1 + t2

)
. (8.29)

Note that the variance is almost the variance of the unknown true trait value Xj
6 at node 6,

σ2
j (t6 + t5), but with an additional increment. This is equivalent to the variance one would

see if one were to extend the original branch length t6 to

t̂6 = t6 +
t1t2
t1 + t2

. (8.30)

It is straightforward to show that the covariance of the new trait value X̂j
6 with the trait value

at any other (non-descendant) leaf is simply the variance contributed by the shared branches.
For example, the covariance between X̂j

6 and X3 is given by

Cov(X̂j
6 , X3) = f Cov(X1, X3) + Cov(X2, X3)

= fσ2
j t5 + (1− fσ2

j t5)

= σ2
j t5. (8.31)

With that, the pruning step becomes the following:
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Figure 8.6: Pruning step of the contrast method. The cherry (1, 2) for which the first nor-
malised contrast was calculated in the original tree (Figure 8.5) is removed,
and replaced with a new tip node 6′ that has trait values defined by X̂j

6 =
(t2X

j
1−t1X

j
2)/(t1+t2) and a parent branch of length t̂6 = (t6+t1t2)/(t1+t2). A cherry

in the pruned tree is chosen to calculate the next normalised contrast.

1. replace the cherry corresponding to the first contrast with a new leaf node 6′;

2. define the trait values at this new leaf node using Equation (8.28);

3. lengthen the branch above the cherry according to t̂6 using Equation (8.30).

This procedure is summarised in Figure 8.6, which illustrates the decomposition of the original
tree in Figure 8.5 into both the first normalised contrast Ẑj(1,2) and the pruned tree with the

new leaf node 6′, trait value X̂j
6 and branch length t

′
6.

8.2.3.5 Some notes on the application of the method

In the above method, we made two key assumptions:

1. we assumed that the starting state of the Brownian motion process was the same (zero)
for every character, and

2. we assumed that the variance accumulation parameter σ2
j of each trait-specific Brownian

motion process was known.
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In practice, neither of these assumptions is likely to be met. However, neither of them matters
when we use linear regression to assess the independence of characters. For the first, this
is simply because the contrasts depend only on differences between observed values. Thus,
unlike the raw trait values, the contrasts for a given trait are always centered around zero —
adding an offset due to the starting value at the root does not change this property.

To see why the second assumption does not matter, consider what would happen if the traits
evolved under the Brownian motion processes with distinct trait-specific variance parameters,
σ2
j , but performing the above contrast calculations assuming a fixed variance accumulation

parameter of 1. For a given trait, it is easy to see from Equation (8.19) that the normalised
contrasts computed under this incorrect assumption would still be identically normally dis-
tributed with some variance, but this variance would no longer equal 1. Therefore, the set
of normalised contrasts belonging to each trait would each be normally distributed with a
variance unique to that trait.

In this situation, are the assumptions of the linear regression correlation test still met? The
answer is yes. To see why, let us rewrite Equation (8.3) in terms of (realisations of) the nor-
malised contrast variables Ẑ1

(c1,c2)
and Ẑ2

(c1,c2)
. The linear regression assumption is then:

ẑ1(c1,c2) = αẑ2(c1,c2) + b+ ε(c1,c2). (8.32)

All we require is that ε(c1,c2) is drawn from a fixed normal distribution with a given variance
and a mean of 0 for some value of b which captures constant offsets, and any value of α. That
is, we require Ẑ1

(c1,c2)
−αẐ2

(c1,c2)
to be normally distributed around some mean and variance.

Given that both Ẑ1
(c1,c2)

and Ẑ(c1,c2) are normally distributed, this is immediately satisfied due
to the properties of normally distributed random variables (Box 13 on page 80).

Thus, for the purposes of linear regression, contrasts can be computed assuming any fixed
starting value for the Brownian motion process and any variance parameter value (1 is a
natural choice).

8.2.4 Examples using the contrast method

Independent contrasts for the example tree with two clades As a concrete demonstra-
tion of the application of this method, we will consider again the 8-species, 2-trait example
shown in Figure 8.3. We will not give detailed calculations here; we will only provide the
results. By calculating the contrasts for each of the two characters and plotting the results
(see Figure 8.7), we see that the previous evidence for correlation has essentially disappeared.
In particular, the R2 value between these two sets of contrasts is approximately 0.34, much
weaker than between the raw trait values, for which theR2 was 0.92. Similarly, the p-value for
rejecting the null hypothesis (no correlation between the contrasts of different characters) is
0.168 compared to the p-value of 10−4 obtained from the raw trait values. Thus, the contrasts
in this example offer no support for the hypothesis that there is a correlation. We highlight
that there could still be a correlation, but we did not observe it due to a type II error.
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Figure 8.7: The contrasts computed for the pair of continuous characters shown in the ex-
ample Figure 8.3. The contrasts, from which the effect of the shared ancestry
has been removed, do not show evidence for correlated evolution. Recall that a
simple regression that does not remove the effect of phylogenetic relatedness
suggested a strong correlation.

Example: Evolution of bird nesting behaviour An organism’s “life history” is a term used
to encompass the many details of its life: how long it takes to mature, its life span, the number
of offspring, and so on. Like any heritable biological traits, those involved in the life history
can evolve and are potentially subject to selection. Martin (1995) presented a detailed study
of how aspects of the life histories of birds vary across species. More specifically, the author
studied a variety of life history traits of 123 species of North American birds from the orders
Passeriformes and Piciformes, seeking to understand some of the main evolutionary and en-
vironmental influences behind the observed variation in these traits. Identifying whether or
not there existed evidence for correlated evolution among pairs of life history traits was the
principal goal of the study.

Among the studied continuous traits were body mass, nest predation (probability of nest
failure due to predation), clutch size (average number of offspring in a nest), adult survival
rates (probability of adult birds surviving over a fixed time period) and annual fecundity
(offspring produced by female birds in a year). Table 8.3 lists the p-values obtained for three
distinct pairs of these traits by applying linear regression first to the raw trait values and then
to the independent contrasts. While all three pairs display significant correlation when studied
using the uncorrected trait values, only adult survival vs. annual fecundity retains its statistical
significance when phylogeny is taken into account. This means that the available data only
provide evidence that this particular pair of traits may be evolving in a correlated way and
further drives home the importance of accounting for shared ancestry when conducting such
analyses.
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Trait comparison p-value (traits) p-value (independent contrasts)

Predation vs. clutch size < 0.001 0.089

Body mass vs. annual fecundity < 0.001 0.052

Adult survival vs. annual fecundity < 0.001 < 0.001

Table 8.3: Comparison between regression p-values obtained by Martin (1995) for pairs of
avian life history traits, with (right-most column) and without (middle column) ac-
counting for phylogenetic relatedness using the phylogenetic independent con-
trasts method.

8.3 Extensions

This chapter introduced basic modelling approaches to assess the association between charac-
ters. For continuous characters, we assumed a Brownian motion model of evolution, and for
discrete characters, we assumed the hypergeometric distribution for changes along branches.

Many more sophisticated methods have been suggested that build upon these approaches
(see e.g. Felsenstein (2003) and Garamszegi (2014)). In particular, the book by Luke Harmon
(2018) provides a useful guide.

We highlight two extensions of the basic approaches. First, we only considered methods that
compare discrete characters with discrete characters or continuous characters with continuous
characters. More generally, however, it is useful to study evolutionary correlations between
continuous and discrete characters. Such comparisons are the focus of Felsenstein (2012).

Second, we assumed a process without biological constraints by using Brownian motion for
continuous and hypergeometric distribution for discrete characters. In particular, under the
Brownian motion model, the variance in a trait increases linearly with time without any
bounds. However, many traits (for example, the body size of terrestrial animals) are bounded.
One way to address such constraints is to replace the basic Brownian motion process with
another continuous stochastic process, namely the Ornstein-Uhlenbeck process, which is es-
sentially a Brownian motion process with a forcing term that ensures a stationary state. This
idea was initially proposed by Felsenstein (1988) and first used by Hansen (1997). Recent
comparative methods such as Mitov, Bartoszek and Stadler (2019) allow for arbitrary com-
binations of Brownian motion and Ornstein-Uhlenbeck models.

8.4 Connections to GWAS

We now comment on parallels between this chapter and Chapter 4, where we considered
genome-wide association studies (GWAS). Both here and in the GWAS chapter, we are in-
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terested in detecting correlations between characters. However, GWAS is classically applied
only to single nucleotide polymorphisms (SNPs) in sexually reproducing organisms undergo-
ing recombination. The SNP sites are generally separated far enough apart on the genome
such that their linkage is broken up quickly through sexual reproduction. Thus, these SNPs
can be considered completely unlinked, meaning that the phylogenetic relationships between
the samples are different for every SNP. This assumption implies that each individual is an
independent data point, and null models, such as the hypergeometric distribution of trait val-
ues (as used in Chapter 4), may be appropriate. Putting this independence of samples into a
tree concept means that the relationships between all sampled individuals are equally distant,
corresponding to an ultrametric star tree (meaning each individual is connected to the root of
the tree with a single branch; these branches all have the same length).

Looking at this from the opposite angle, if we have samples with a shared evolutionary history
but ignore it, we essentially use the wrong ultrametric star tree instead of the true evolutionary
tree.

In summary, we assumed full independence of samples in Chapter 4 and, in particular, no
linkage between sites (corresponding to an ultrametric star tree). In this chapter, we assumed
that samples are interdependent through shared ancestry in the form of a phylogenetic tree,
and all the sites are linked. In Chapter 11, we will consider the intermediate case, where
samples have some linked and some unlinked sites, which we will model using networks.
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9 Phylodynamics

In the previous chapters, we explored the field of phylogenetics. We assumed that for a set
of samples, a phylogenetic tree describes their evolutionary relationships, discussed methods
to infer this phylogenetic tree, and studied genotypic and phenotypic evolution along the
tree. Importantly, these evolutionary processes were assumed not to affect tree generation;
instead, they happen along a given tree. A key goal in phylogenetics is to infer the past “state”
of the population of interest, the phylogenetic tree, based on the genetic sequences and the
evolutionary models.

The size and genetic composition of a population through time are of core interest. Classically,
population size and its changes through time are studied by population dynamics (going back
to Lotka (1910) and Volterra (1928)). In contrast, genetic changes within a population of a
given size (its evolution) are studied by the field of population genetics (going back to Fisher
(1930), Wright (1931) and Haldane (1932); and later to the coalescent framework (Kingman
1982)).

In what follows, we introduce phylodynamics, a term coined by Grenfell et al. (2004), to
consider both population dynamics and population genetics based on a sample of genetic
sequences. In particular, phylodynamics studies how phylogenetic trees are generated and
which factors shape the trees.

The tree generation process is a population dynamic process of individuals representing some
biological unit, and these individuals are replicating and dying. For example, in macroevolu-
tion, trees are generated as species undergo speciation, which induces new branching events,
and extinction, which induces branch termination. Analogously, in infectious disease epi-
demiology, infected individuals induce new branching events through disease transmission,
and branches terminate upon recovery or death. For more examples, see Section 1.1.1. The
goal of phylodynamics is to infer properties of the past “process” of tree generation (rather
than the past “state” as in phylogenetics).

A wide variety of factors can influence tree generation processes. For example, for viruses and
other rapidly evolving pathogens, phylogenetic trees are shaped by evolutionary, epidemiolo-
gical and immunological dynamics, and phylodynamics aims to quantify these processes. To
consider this in more detail, we note that viruses typically have large population sizes, high
mutation rates, and short generation times, producing evolutionary rates so fast that the virus
and its genome may undergo significant changes over the course of a single epidemic. The
evolution of the virus happens within infected individuals and at transmission bottlenecks.
Evolutionary change can be neutral or can happen in response to host immune systems. This
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means that virus evolutionary, epidemiological, and immunological processes operate on sim-
ilar timescales. Consequently, viral genetic sequences — and the corresponding phylogenetic
tree we use to interpret them — may contain evidence of the epidemiological and immunolo-
gical dynamics that influenced the evolution of the genetic diversity they represent.

Throughout this chapter, we will assume that we have already obtained the phylogenetic tree
from the data, with branch lengths representing calendar time, for example, days, months, or
years (see Section 6.4.3). Such trees are called time trees. We will discuss the two main mod-
elling frameworks for generating such trees, namely birth-death and coalescent models, and
how vital parameters such as speciation and transmission rates or changes in population sizes
can be estimated from the phylogenetic tree under these frameworks. Estimating phylody-
namic parameters simultaneously with the phylogenetic tree will be the topic of Chapter 10.

9.1 Birth-death models

An important class of models used in phylodynamic analyses are the birth-death models, in
which birth and death events give rise to the phylogenetic tree. Phylodynamic analysis using
these birth-death models aims to understand and quantify the birth and death rates in the
studied population based on a phylogenetic tree. Mathematical derivations throughout this
section — which sometimes involve lengthy algebraic expressions — are illustrated in the
accompanying Mathematica file.

9.1.1 Population dynamic model

The basic population dynamic model, the constant rate birth-death model, is shown in Fig-
ure 9.1. In this model, the compartment labelled I, which stands for “Individuals,” represents
the population. Individuals may correspond to any biological units discussed in Section 1.1.1.
In what follows, we assume that the process starts at some time 0with I(0) individuals, which
is the initial state. All individuals in this population are identical and give rise to other indi-
viduals at a birth rate β and die at a death rate δ. We call the compartments within a model
the “states”, and the rates quantify the “dynamics”. Such models are called compartmental
models.

Throughout this section, we will explain phylodynamic principles based on this basic model
and mention how time dependence or competition between individuals is introduced into the
models at the end of the section. Many applications require models with sub-populations to
take into account heterogeneity across individuals. We will discuss such models in Section 9.5.

A compartmental model can be considered in a deterministic or stochastic manner. In the
deterministic formulation, where I(t) denotes the number of individuals in compartment I



9.1 Birth-death models 225

I
� �

Figure 9.1: Constant rate birth-death model. Individuals from compartment I are born at birth
rate β and die at death rate δ.

after time t has elapsed, the change in I(t) is described as

d
dt
I(t) = (β − δ)I(t). (9.1)

Thus, since d
dte

(β−δ)t = (β − δ)e(β−δ)t,

I(t) = I(0)e(β−δ)t (9.2)

is the solution to this differential equation. If the birth rate is equal to the death rate, the
derivative above will be equal to 0, and the size of the population will remain constant through
time. If the birth rate is greater than the death rate, the population will grow exponentially,
while if the death rate is greater than the birth rate, the population size will tend to zero. Note
that I(t) not only takes integer values but can also take any non-integer value between 0 and
∞. This means that I(t) under the deterministic model is not the actual population size but
rather the average population size at the given point in time (see also Theorem 9.1.4).

In phylodynamic applications, we do not track population averages as in the deterministic
case, but we track individuals represented as branches within the phylogenetic tree. The
stochastic formulation of the birth-death model allows us to view the phylogenetic tree as
a stochastic outcome of the model.

In the stochastic formulation, the rate r associated with an arrow in the compartmental model
means that the probability of the corresponding event happening within a small time step ∆t
is r∆t (see also Section 5.2.2.1). Thus, for the constant rate birth-death model, the probability
that an individual gives birth to a new individual in a small time step is β∆t. The probability
that an individual dies in a small time step is δ∆t. Therefore, the waiting time to a birth event
is exponentially distributed with the parameter β, and the waiting time to a death event is
exponentially distributed with the parameter δ (see also Section 5.2.2 and Box 17 on page 89).
According to Box 21 on page 96, an individual gives birth through time according to a Poisson
process with parameter β.

In phylodynamics, we assume that the birth-death model starts with one individual at time 0
and stops after time T , usually representing present time. A simulation of such a process is
shown in Figure 9.2 A.
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Figure 9.2: A Representation of the full population dynamics of one realisation of the birth-
death model. Time is shown on the x-axis; each horizontal solid black line in
the graph represents an individual’s lifetime, blue arrows represent birth events,
and orange crosses represent death events. The process is stopped after T
timesteps, and the horizontal solid black lines reaching T correspond to indi-
viduals alive at time T . Dashed lines indicate birth event times, dotted lines in-
dicate death events times, and the dot-dashed line indicates the end time T of
the process. B The complete tree of the population dynamics of the top figure (P
stands for parent, C for child). C Phylogenetic tree of extant lineages resulting
from pruning the lineages without descendants at time T from the complete tree.
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We will now derive the mathematical properties of this birth-death model, which we will
use in a phylodynamic context in Section 9.1.2. In particular, we will derive the population
size through time under a birth-death process that starts with a single individual at time 0.
Throughout this section, we assume β > δ > 0 unless stated otherwise, meaning that on
expectation, the process gives rise to an exponentially growing population within which in-
dividuals may die. For the cases β = δ and δ = 0, one can take the limit δ → β and δ → 0 as
done in Stadler and Steel (2019) and the case 0 < β < δ is covered in Stadler et al. (2013).
We note that many derivations throughout this section also hold for β < δ (see also accom-
panying Mathematica file); however, for presenting the main concepts, we focus on a single
individual giving rise to an exponentially growing population (β > δ).

We consider the population size, Xt, after time t has elapsed. The state space of the random
variable Xt is {0, 1, 2, . . .}. Formally, this offspring population size is a stochastic process
(Xt)t∈[0,T ]. We are interested in the distribution of Xt, the probability of population size n
after time t, P (Xt = n). We abbreviate this probability as

p(n|t) = P (Xt = n). (9.3)

Recall that under the deterministic model, the population size after a time interval t is e(β−δ)t.
In what follows, we will derive p(n|t) for all n and all t using difference equations leading
to differential equations for p(n|t). Solving the differential equations yields a closed-form ex-
pression for p(n|t) (n = {0, 1, . . .}). These expressions were initially derived using generating
functions in Kendall (1948). We employ the expressions when considering the phylogenetic
trees generated by birth-death models.

9.1.1.1 Deriving the probability of extinction, p(0|t)

The birth-death model starts with one individual. What is the probability that no individuals
survived after time interval t, p(0|t)?

First, note that for t = 0, we have p(0|t = 0) = 0 since we assume that the process starts with
one individual.

To determine p(0|t) for t > 0, we derive its differential equation. In particular, we first derive
p(0|t + ∆t), the probability that the process goes extinct after time t + ∆t, as a function of
p(0|t). The process starts with a single individual for which, in a time interval ∆t, a death
event happens with probability δ∆t, and a birth event happens with probability β∆t.

We partition the time interval t+∆t as illustrated in Figure 9.3. During the time ∆t after the
start of the process, four things can happen:

(i) nothing, which has the probability 1 − (β + δ)∆t; then, the original individual has to
go extinct within the remaining time t, which has probability p(0|t);

(ii) the individual dies with probability δ∆t;
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Figure 9.3: Partitioning of time as employed in the derivation of p(0|t) and p(1|t).

(iii) the individual gives birth to another individual with probability β∆t, and both indi-
viduals go extinct within time t, which has probability p(0|t)2;

(iv) more than one event happens, which has the probability O(∆t2).

Thus, we obtain the equation:

p(0|t+∆t) = (1− (β + δ)∆t)p(0|t)︸ ︷︷ ︸
(i)

+ δ∆t︸︷︷︸
(ii)

+β∆tp(0|t)2︸ ︷︷ ︸
(iii)

+O(∆t2)︸ ︷︷ ︸
(iv)

. (9.4)

Rearranging leads to the following difference equation:

p(0|t+∆t)− p(0|t)
∆t

= −(β + δ)p(0|t) + δ + βp(0|t)2 +O(∆t). (9.5)

Taking the limit ∆t→ 0 leads to the differential equation:

d
dt
p(0|t) = −(β + δ)p(0|t) + δ + βp(0|t)2. (9.6)

This differential equation is a master equation describing the time evolution of the probability
for extinction (see also Section 5.2.2.3).

The solution to this differential equation with the initial condition p(0|t = 0) = 0 is

p(0|t) = δ(1− e−(β−δ)t)

β − δe−(β−δ)t , (9.7)

which can easily be verified by differentiating the expression and plugging it into the differ-
ential equation. Furthermore, the formula yields 0 for t = 0, meaning the initial condition is
met.

9.1.1.2 Deriving p(1|t)

For t = 0, we have p(1|t = 0) = 1 since we consider one individual at the start of the process.
For t > 0, we again express p(1|t +∆t) as a function of p(1|t) and rely on partitioning time
as illustrated in Figure 9.3. Note that for p(1|t), compared to the derivation of p(0|t), a death
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event cannot occur during the first time step∆t, as then the process would die out and would
not lead to one individual at present. We obtain the following equation,

p(1|t+∆t) = (1− (β + δ)∆t)p(1|t) + β∆t× 2p(1|t)p(0|t) +O(∆t2). (9.8)

The factor of 2 in this equation accounts for the fact that either one of the descendants of
the birth event may lead to the surviving individual after time t. Rearrangement of terms and
taking the limit ∆t→ 0 leads to the following differential equation:

d
dt
p(1|t) = −(β + δ)p(1|t) + 2βp(1|t)p(0|t). (9.9)

The solution to this differential equation with initial condition p(1|t = 0) = 1 is

p(1|t) = (1− p(0|t))(1− β

δ
p(0|t)), (9.10)

which again can easily be verified by (i) differentiating the expression and plugging it into the
differential equation, and (ii) evaluating the formula for t = 0.

9.1.1.3 Deriving p(n|t)

Theorem 9.1.1. The probability for an individual to produce n ∈ {0, 1, 2, . . .} extant indi-
viduals after time t, p(n|t), is

p(0|t) = δ(1− e−(β−δ)t)

β − δe−(β−δ)t , (9.11)

p(1|t) = (1− p(0|t))(1− β

δ
p(0|t)), (9.12)

p(n|t) = p(1|t)
(
β

δ
p(0|t)

)n−1

for n ≥ 2. (9.13)

Proof. The expressions for n = 0 and n = 1 have been derived above. To prove the expression
for p(n|t), n ≥ 2, we first note that at time t = 0 we have one individual, and thus p(n|t =
0) = 0 for n ≥ 2. Indeed, Equation (9.13) is 0 for t = 0 and n > 1, since p(0|t = 0) = 0.

For t > 0, we again derive the differential equation. We now consider p(n|t+∆t) as a function
of p(n|t) for all n ≥ 1. In contrast to the derivation of p(0|t) and p(1|t), we split up time into
an interval of length t, followed by a time interval of length ∆t as illustrated in Figure 9.4.

To arrive at n (n ≥ 1) individuals after time t+∆t, after time t we may arrive at:

(i) n individuals (probability p(n|t)) followed by no event in the last time interval (prob-
ability 1− n(β + δ)∆t);
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Figure 9.4: Partitioning of time as employed in the derivation of p(n|t).

(ii) n − 1 individuals (probability p(n − 1|t)) followed by a birth event in the last interval
(probability (n− 1)β∆t);

(iii) n + 1 individuals (probability p(n + 1|t)) followed by a death event in the last interval
(probability (n+ 1)δ∆t);

(iv) any number > 0 of individuals, followed by more than two events in the last interval
(probability on the order of O(∆t)2).

This leads to the differential equation for p(n|t):

d
dt
p(n|t) = −n(β + δ)p(n|t) + (n− 1)βp(n− 1|t) + (n+ 1)δp(n+ 1|t) for n ≥ 1. (9.14)

We can now prove the expression for p(n|t) by induction:

Hypothesis to prove: p(1|t)
(
β
δ p(0|t)

)n−1

for n ≥ 2 is a solution to the differential Equa-
tion (9.14).

Base step: Check that the hypothesis holds for n = 2.
Consider Equation (9.14) for n = 1: d

dtp(1|t) = −(β + δ)p(1|t) + 2δp(2|t). Rearranging
leads to

p(2|t) =
1

2δ

(
d
dt
p(1|t) + (β + δ)p(1|t)

)
(9.9)
=

1

2δ

(
− (β + δ)p(1|t) + 2βp(1|t)p(0|t) + (β + δ)p(1|t)

)
= p(1|t)

(
β

δ
p(0|t)

)
. (9.15)

Induction hypothesis: Suppose the hypothesis holds for all k ≤ n.

Inductive step: Show that the formula holds for k = n + 1. We consider Equation (9.14) in
a rearranged form:

(n+ 1)δp(n+ 1|t) = d
dt
p(n|t) + n(β + δ)p(n|t)− (n− 1)βp(n− 1|t). (9.16)
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Differentiating the expression for p(n|t) as stated in Equation (9.13) and combining the
result with the expressions in Equations (9.6) and (9.9), we obtain

(n+ 1)δp(n+ 1|t) (9.13)
=

d
dt
p(1|t)

(
β

δ
p(0|t)

)n−1

+ p(1|t)(n− 1)

(
β

δ
p(0|t)

)n−2 β

δ

d
dt
p(0|t)

+ n(β + δ)p(1|t)
(
β

δ
p(0|t)

)n−1

− (n− 1)βp(1|t)
(
β

δ
p(0|t)

)n−2

(9.6,9.9)
= (−(β + δ)p(1|t) + 2βp(1|t)p(0|t))

(
β

δ
p(0|t)

)n−1

+ p(1|t)(n− 1)

(
β

δ
p(0|t)

)n−2 β

δ
(−(β + δ)p(0|t) + δ + βp(0|t)2)

+ n(β + δ)p(1|t)
(
β

δ
p(0|t)

)n−1

− (n− 1)βp(1|t)
(
β

δ
p(0|t)

)n−2

=

(
β

δ
p(0|t)

)n−2

((n− 1)βp(1|t) − (n− 1)βp(1|t))

+

(
β

δ
p(0|t)

)n−1

(−(β + δ)p(1|t) + (−(β + δ)p(1|t)(n− 1)) + n(β + δ)p(1|t))

+

(
β

δ
p(0|t)

)n

(2δp(1|t) + δp(1|t)(n− 1))

=

(
β

δ
p(0|t)

)n

δ(n+ 1)p(1|t). (9.17)

Thus, we obtain,

p(n+ 1|t) = p(1|t)
(
β

δ
p(0|t)

)n
, (9.18)

which establishes the induction step.

It directly follows from Theorem 9.1.1 that,

Corollary 9.1.2. Consider one individual at some time point. The number of extant descend-
ants produced by this individual after time t, conditioned on non-extinction of the process,

has probability function p(n|t)
1−p(0|t) = (1− β

δ p(0|t))
(
β
δ p(0|t)

)n−1

. This is a geometric distribu-

tion with parameter
(
1− β

δ p(0|t)
)
(see Box 15 on page 86). Thus, 1(

1− β
δ p(0|t)

) is the expected

number of lineages arising from a single lineage within time t, conditioned that the process
survives.

9.1.2 Phylodynamic model

The simulation displayed in Figure 9.2 A does not look like a phylogenetic tree. We obtain the
complete tree by plotting a branching event for each birth event instead of the blue arrows, as
shown in Figure 9.2 B. The parent-child relationships are depicted as labels on each branching
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event: the lineage that already existed before the corresponding birth event is labelled (P) for
the parent, and the lineage that just appeared is labelled (C) for the child.

This complete tree contains all lineages that have ever existed during the process. Together
with the P/C labels, it represents the total population dynamic history. In most empirical
datasets, however, we do not sample the entire population or know the P/C labels.

We now add a samplingmodel to the population dynamicsmodel. Bothmodels together define
the phylodynamic model giving rise to time trees. First, we define extant sampling, which
models the sampling of individuals at present. Under the simplest model, each individual at
present is sampled with probability ρ.

Second, we define sampling through time. The rate of sampling an individual prior to the
present time is denoted ψ. Upon sampling, an individual dies with probability r and continues
to live with probability 1−r. Thus, ψr is the death rate with sampling compared to δ, the death
rate without sampling. The samples obtained through time may stem from fossils, ancient
DNA, or patients throughout an epidemic.

Thus, our full phylodynamic model contains the following parameters (Stadler et al. 2011):

(i) β: birth rate,

(ii) δ: death rate,

(iii) T : time after which the process is stopped,

(iv) ρ: extant sampling probability,

(v) ψ: sampling rate of individuals before the present,

(vi) r: death probability upon sampling of individuals sampled before the present.

Under this model, we can simulate complete trees with sampling events forwards in time. To
obtain the phylogenetic tree from a complete tree, we remove the parent-child labels and all
lineages without sampled descendants. Then, each sample in the tree is assigned a unique label
to obtain the phylogenetic tree.

For ρ = 1, ψ = 0, a resulting phylogenetic tree is shown in Figure 9.2 C, with the samples (the
four extant individuals) labeled W,X, Y, Z. For ρ = 0, ψ > 0, r = 1, we observe the phylo-
genetic tree shown in Figure 9.5 A, with the samples (the five individuals sampled through
time) labelled A,B,C,D,E. We note that we have a branch ancestral to the root in these
phylogenetic trees, which has not been the case for most trees encountered thus far. The start
of the branch above the root is the start of the birth-death process (this may correspond to
the start of an epidemic or the stem age of a group of species). See also Section 6.2 for the
definitions of rooted trees.

For ρ = 1, ψ > 0, r < 1, we observe the phylogenetic tree shown in Figure 9.5 B. This
latter tree has so-called sampled ancestors (Gavryushkina et al. 2014) (labelled with E and
F ), meaning samples which give rise to further samples. Sampled ancestors can be generated
when samples are not removed from the population upon sampling through time (which
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Figure 9.5: Trees generated under the birth-death phylodynamic model. A Tree generated
with ρ = 0, ψ > 0 and r = 1. We obtain tip samples through time labeled
by A − E, but no present-day samples. B Tree generated with ρ = 1, ψ > 0
and r < 1. We obtain both present-day samples (with labels A − D), sampled
ancestor samples (with labels E − F ), and tip samples before the present (with
labels G− I).

occurs with probability 1− r). If a descendant of such a non-removed sample is also sampled,
we obtain a sampled ancestor. Note that a labelled tree is now defined as a tree where a unique
label is assigned to each sample (tip or sampled ancestor). A sampled ancestor in the context
of epidemiology is observed if a patient — after being sampled — infects another patient
who is also sampled. Furthermore, fossils within species trees may be sampled ancestors, as
descendants of the species representing a fossil sample may be sampled. Note that we did not
account for sampled ancestors in Chapter 6 on phylogenetic inference. Instead, all samples
were tips in the tree. However, recently published Bayesian inference tools (see Chapter 10)
allow for inference with sampled ancestors (Gavryushkina et al. 2017; Zhang et al. 2016).

In what follows, we explain how to infer the population’s birth and death rates based on the
phylogenetic tree reconstructed from sampled individuals, assuming the introduced phylody-
namic birth-death model. Throughout the remainder of the section, we will assume that we
sample the entire population at present, that is, ρ = 1, but we have no samples from the past,
that is, ψ = 0 (and thus r is irrelevant). Finally, we continue to assume β > δ > 0. This
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setting allows us to get an intuitive understanding of the phylodynamic models and inference.
Finally, we briefly explain how to extend the discussed inference framework to more general
scenarios.

9.1.3 Ranked labelled tree topologies

We start by considering a phylogenetic tree where we ignore branch lengths, meaning we only
consider the discrete part of the phylogenetic tree, that is, the tree topology. We will show
in this section that the topology contains no information about birth and death rates. Later
in this chapter, this result will allow us to estimate birth and death rates from the branching
times, discarding the topology.

In particular, we consider the ranked labelled tree topology (Ford, Matsen and Stadler 2009)
generated by a constant rate birth-death model with ρ = 1 and ψ = 0. The phylogenetic tree
is ranked by assigning a rank to each internal node. An internal node obtains the rank i if this
node is the ith branching event in the tree. In particular, the root has rank 1, and the highest
rank in a tree on n tips is n−1 (see Figure 9.6). A ranked labelled tree topology (discrete part)
together with the vector of branching times x1, x2, . . . (time between start of process and
branching) associated with the nodes of rank 1, 2, . . . (continuous part, Figure 9.6) uniquely
determine the phylogenetic tree.

Under the constant rate birth-death model, if an event (birth or death) happens, each indi-
vidual has the same probability of undergoing this event because all individuals have the same
birth and death rates. This observation leads to the following theorem.

Theorem 9.1.3. The constant rate birth-death model with ρ = 1 and ψ = 0 induces a uniform
distribution on ranked labelled tree topologies. Each ranked labelled tree topology has the
probability 2n−1

n!(n−1)! .

Proof. Consider a realisation of a birth-death model leading to n extant tips where an in-
ternal node with rank i has the branching time xi. Consider the resulting ranked labelled tree
topology. To calculate the probability of that ranked labelled tree topology within the set of
all such topologies with the same associated branching times x1, . . . , xn−1, we trace the in-
dividuals from the present back in time. At time xn−1, we have

(
n
2

)
possibilities to coalesce

(merge) two individuals. Since all individuals follow the same dynamics (that is, have the same
birth and death rates), the probability of observing the branching event in our given tree is
1/(n2). We proceed with the same reasoning until we reach the root of the tree. Overall, the
probability of the ranked labelled tree topology given any x1, . . . , xn−1 is

∏n
i=2

1/(i2). Using
the definition of the binomial coefficient, we can simplify this expression to

n∏
i=2

1(
i
2

) =

n∏
i=2

2!(i− 2)!

i!
=

2n−1

n!(n− 1)!
. (9.19)
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Figure 9.6: A, B Two examples of ranked labelled trees with four tips. The branching times
x1, x2, x3 are the same in both trees, but the ranked labelled tree topologies are
not.

Thus, the birth-death model induces a uniform distribution on ranked labelled tree topologies
on n tips.

This result implies that the distribution of ranked labelled tree topologies is independent of
the birth and death rates. Aldous (2001) generalises this result using reasoning analogous to
the proof above. Any model where the birth and death rates are the same across all individuals
at every point in time induces a uniform distribution on ranked labelled tree topologies —
even if, for example, these rates change through time (Stadler 2011; Morlon, Parsons and
Plotkin 2011) or are a function of the overall number of individuals (Etienne et al. 2011).
Such models are also called homogeneous models as all individuals at the same time point
undergo the same dynamics (while this dynamic may differ for different time points). The
individuals are called exchangeable as they are all equivalent with respect to the population
dynamic process. We emphasise that homogeneity here refers to homogeneous individuals at
one time point. In Box 24 on page 98 describing Markov chains, we encountered a different
type of homogeneity, namely homogenous probabilities through time.

Consequently, when we aim to quantify birth and death rates under models where these rates
are the same across co-existing individuals, the ranked labelled tree topology contains no
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information about these rates. Thus, the branching times x1, . . . , xn−1 contain all the inform-
ation about the birth and death rates. For the introduced phylodynamic birth-death model,
we will now first provide an intuitive approach for birth-death parameter estimation based on
expectations derived from branching times and then a maximum likelihood approach based
on the full distribution of branching times.

9.1.4 Expected population sizes and branching times

The plot with the number of lineages through time in a tree on the y-axis versus time on the
x-axis is called the lineages-through-time (LTT) plot. An example of an LTT plot is shown in
Figure 9.7 C. The LTT plot of the complete tree (referred to as the complete LTT plot) shows
the population size through time. In contrast, the LTT plot of the phylogenetic tree (referred to
as the phylogenetic LTT plot) shows the number of lineages surviving to the present through
time. Note that the LTT plot only summarises the branching times but does not display any
information regarding the ranked labelled tree topology.

The LTT plots provide one method of estimating the parameters of the birth-death model. To
illustrate how this works, we simulate a large number of realisations of the same phylody-
namic constant rate birth-death model, obtaining a large number of trees starting with one
individual at time 0 and stopping at a fixed time T , using our assumption β > δ > 0 and
ρ = 1, ψ = 0. We then plot the average phylogenetic LTT plot in Figure 9.8, blue; the average
complete LTT plot is shown in black. Note that when averaging the LTT plots, all simulations
that went extinct prior to time T are ignored as they do not induce a phylogenetic tree. Finally,
the average total population size over all simulations, — that is, over the complete trees and
the trees that went extinct prior to time T , — is shown with a black dashed line. Note that
the y-axis is on the log scale. In what follows, we discuss the shape of these LTT plots under
the phylodynamic constant rate birth-death model. The resulting insights show that the LTT
plots, the branching times of phylogenetic trees, encode information about both the birth and
death rates. In Section 9.1.5, we introduce a likelihood framework for estimating birth and
death rates from the branching times in a phylogenetic tree.

9.1.4.1 Expected total population size

In Figure 9.8, we visualise — based on our simulations — that the expected total population
size through time has a constant slope β − δ on the log scale (dashed line), corresponding to
the expected total population size e(β−δ)t at time t. We denote the expected total population
size at time t by N(t) and note that N(t) is the expectation of the random variable Xt (the
offspring population size) defined in Section 9.1.1, N(t) = E(Xt). We prove in the following
theorem that N(t) indeed grows exponentially at rate β − δ.

Theorem 9.1.4. The expected number of lineages at time t, N(t), is, for β > δ > 0,

N(t) = e(β−δ)t. (9.20)
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Figure 9.7: A Complete tree, B phylogenetic tree, and C corresponding lineages-through-
time (LTT) plot, continuing the example in Figure 9.2. The LTT plot of the complete
tree is shown in dotted blue, and the LTT plot of the phylogenetic tree is shown
in red.
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Figure 9.8: Average complete lineages-through-time (LTT) plot (top solid black line) and av-
erage phylogenetic LTT plot (bottom blue line) obtained from simulations. Note
that in the LTT average, all simulations in which no individual survived to time
T = 50 are ignored. The dashed black line shows the average total population
size (including all simulations that went extinct prior to T ). The plots display the
scenario β > δ > 0 (with β = 1, δ = 0.9), that is, an on-average increasing
population size where death may occur. The increased slope at the start of the
average complete LTT plot is called the push-of-the-past; the increased slope at
the end of the average phylogenetic LTT plot is called the pull-of-the-present (Nee
et al. 1994). Note that the slopes β − δ and β + δ are exact quantifications only
in the limit T →∞ while the slope β is exact for all T .

Proof. First, we note that
∑∞
n=1 nx

n−1 = 1
(1−x)2 for −1 < x < 1. This follows directly from

differentiating the formula for an infinite geometric series
∑∞
n=0 x

n = 1
1−x , where−1 < x < 1.

Second, we note that 0 ≤ β
δ p(0|t), since β, δ and p(0|t) are non-negative. Third, we have
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β
δ p(0|t) =

β−βe−(β−δ)t

β−δe−(β−δ)t < 1. Combining these ideas we get 0 ≤ β
δ p(0|t) < 1, and

N(t) =

∞∑
n=0

np(n|t)

(9.13)
=

∞∑
n=1

np(1|t)
(
β

δ
p(0|t)

)n−1

(9.12)
=

p(1|t)(
1− β

δ p(0|t)
)2 =

1− p(0|t)
1− β

δ p(0|t)

(9.11)
= e(β−δ)t. (9.21)

The last equation follows when using the equality 1− β
δ p(0|t) = e−(β−δ)t(1− p(0|t)), which

can be established from Equation (9.11).

Note that the expected population sizeN(t) equals the population size under the deterministic
model, I(t).

9.1.4.2 Expected complete LTT plot

Based on the simulation result in Figure 9.8, the complete LTT plot (black) goes through a
period of accelerated growth at the beginning of the process before growing at a constant
rate. Recall that the complete LTT plot only includes populations that survive to the present.
An intuitive explanation for the initial fast growth is that populations that grow slowly at the
start are more likely to go extinct before the end of the process and, thus, are not included
in the average complete LTT plot. This phenomenon is called the push-of-the-past (Nee et al.
1994). In the following, we provide the full equation for the black line, NT (t), which was
originally stated in Harvey, May and Nee (1994) and Nee, May and Harvey (1994).

Theorem 9.1.5. The expected number of lineages at time t ≤ T , conditioned on non-
extinction at present time T , is denoted NT (t) = E(Xt|XT > 0). We have

NT (t) =
e(β−δ)t

1− p(0|T )
− p(0|T )− p(0|t)

(1− p(0|t))(1− p(0|T − t))
. (9.22)
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Proof. We have

P (Xt = n|XT > 0) =
P (Xt = n,XT > 0)

P (XT > 0)

=
P (XT > 0|Xt = n)P (Xt = n)

P (XT > 0)

=
(1− p(0|T − t)n)p(n|t)

1− p(0|T )
. (9.23)

Taking the expectation, we obtain

NT (t) =

∞∑
n=1

nP (Xt = n|XT > 0)

=

∑∞
n=1 np(n|t)
1− p(0|T )

−
∑∞
n=1 np(0|T − t)np(n|t)

1− p(0|T )
. (9.24)

Using Theorem 9.1.4 for the left expression and
∑∞
n=1 nx

n−1 = 1
(1−x)2 for the right expres-

sion (see also the proof of Theorem 9.1.4 for the latter), we obtain

NT (t) =
e(β−δ)t

1− p(0|T )
− p(1|t)p(0|T − t)

1− p(0|T )
1

(1− β
δ p(0|t)p(0|T − t))2

. (9.25)

This can be simplified to Equation (9.22) as also demonstrated in the accompanying Math-
ematica file.

To investigate the shape of the LTT plot under the constant rate birth-death model, we con-
sider the derivative of log(NT (t)). The derivative is the slope of the LTT plot. We obtain

d
dt

log(NT (t)) =
β(β − δ)

(
δ + βe2t(β−δ) − 2δe(β−δ)(2t−T )

)
−βδ + β2e2t(β−δ) − 2βδe(β−δ)(2t−T ) + δ(β + δ)e(β−δ)(t−T )

, (9.26)

which simplifies for the cases t = 0 and t = T to

d
dt

log(NT (t = 0)) = β + δ +
δ(β − δ)

δ − βe(β−δ)T
, (9.27)

d
dt

log(NT (t = T )) = β − δ + δ(β − δ)2

(δ − βe(β−δ)T )2
. (9.28)

We now discuss the shape of the expected complete LTT plot in the limit; recall that we assume
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β > δ > 0. First, we note that

lim
T→0

d
dt

log(NT (t = 0)) = β, (9.29)

and is monotonously increasing with T , leading to

lim
T→∞

d
dt

log(NT (t = 0)) = β + δ. (9.30)

Thus, the initial slope of the complete LTT plot is between β and β + δ. Furthermore,

lim
T→0

d
dt

log(NT (t = T )) = β, (9.31)

and is monotonously decreasing with increasing T , leading to

lim
T→∞

d
dt

log(NT (t = T )) = β − δ. (9.32)

Thus, the final slope of the complete LTT plot is between β and β − δ.

In summary, for T → ∞, the slope of the LTT plot at the start of the process is β + δ and
decreases with time to β − δ. For finite T , lower initial and higher final slopes are observed,
quantified in Equation (9.28). For T → 0, the slope is β.

9.1.4.3 Expected phylogenetic LTT plot

Based on the simulation results in Figure 9.8, blue, the phylogenetic LTT plot initially grows
with a constant rate and has an accelerated growth close to the present. This phenomenon is
called the pull-of-the-present (Nee et al. 1994). An intuitive explanation for the accelerated
recent growth is that lineages appearing close to the present have less time to go extinct and,
thus, are more likely to be sampled, leading to an apparent increase in the number of lineages
in the phylogenetic tree. Again, we provide the equation for the blue line, NT,p(t).

Theorem 9.1.6. The expected number of lineages through time in a phylogenetic tree condi-
tioned on non-extinction, NT,p(t) is

NT,p(t) =
e(β−δ)t(1− p(0|T − t))

1− p(0|T )
. (9.33)

Proof. This result was first presented in Harvey, May and Nee (1994) and Kubo and Iwasa
(1995). We prove the result analogously to Kubo and Iwasa (1995).
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The expected number of lineages after time t, conditioned on non-extinction, is 1/
(
1− β

δ p(0|t)
)

(see Corrolary 9.1.2). Thus,

NT,p(T ) =
1

1− β
δ p(0|T )

. (9.34)

Furthermore, the average number of offspring at time T produced by one individual at time t,
NT,p(T )/NT,p(t), is equivalent to the expected number of offspring of one individual after time
T − t. Using Corrolary 9.1.2, it follows that

NT,p(T )

NT,p(t)
=

1

1− β
δ p(0|T − t)

. (9.35)

In summary, we obtain

NT,p(t) =
1− β

δ p(0|T − t)
1− β

δ p(0|T )
. (9.36)

Since 1− β
δ p(0|t) = e−(β−δ)t(1−p(0|t)) (see proof of Theorem 9.1.4), we complete the proof.

To investigate what the phylogenetic LTT plot looks like under the constant rate birth-death
model, we consider the derivative of log(NT,p(t)),

d
dt

log(NT,p(t)) =
β(β − δ)

β − δe(β−δ)(t−T )
, (9.37)

and thus,

d
dt

log(NT,p(t = 0)) =
β(β − δ)

β − δe−(β−δ)T , (9.38)

d
dt

log(NT,p(t = T )) = β. (9.39)

For t = 0, we further note that limT→0
d
dt log(NT,p(t = 0)) = β, and this function is mono-

tonously decreasing with an increasing T , to reach in the limit limT→∞
d
dt log(NT,p(t = 0)) =

β − δ (recall that β > δ > 0).

In summary, the phylogenetic LTT plot has a slope β at present and decreases going into the
past towards β − δ. The slope β − δ is reached for T →∞.

Recall that all our derivations were for constant birth and death rates through time. When
birth and death rates are functions of time, the works by Kendall (1948), Nee, May and
Harvey (1994) and Kubo and Iwasa (1995) lead to a generalisation of the expressions given
in Theorem 9.1.1 and Corrolary 9.1.2 as well as the expressions for the LTT plots, primarily
relying on the concept of generating functions.
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9.1.4.4 Parameter estimation with LTT plots

Using these insights, we can determine the birth and death rates of an empirical phylogenetic
tree by displaying its LTT plot, Figure 9.9: each black square corresponds to a branching event,
its time displayed on the x-axis, and the number of lineages in the tree after the branching
event is displayed on the y-axis. Given that we observe a phylogenetic tree, we first conclude
that the population is growing, thus β > δ. Assuming T is large enough, the initial slope of
the LTT plot should (on expectation) be β − δ, and its recent slope should (on expectation)
be β (see Section 9.1.4.3). Thus, in theory, we can estimate the birth and the death rates from
the slopes of the two regression lines fitted to the black squares of the empirical LTT plot, as
shown in Figure 9.9, bold blue lines. One regression is performed on the early part of the LTT
plot to estimate β − δ, and one on the late part to estimate β.

However, there are problems with this method of estimating the parameters of the birth-
death models. Firstly, the variance in the timing of the next branching event (the next square
in Figure 9.9) decreases with increasing population size. Thus, a classic linear regression (see
Chapter 8) assuming the same variance for each data point is not valid. Secondly, the time
of transition between the two phases of the curve is unclear. This makes it difficult to decide
where to place the cutoff between points used to fit the first linear regression line and those
used to fit the second linear regression line. Lastly, the value of the initial slope β−δ is derived
for T →∞ and is higher for finite T (Section 9.1.4.3).

Nevertheless, this ad-hoc approach should illustrate that phylogenetic trees, despite not in-
cluding samples of all individuals (here we exclude all individuals without descendants at
time T ), provide information on both birth and death rates. The next section explains how to
coherently estimate birth and death rates from a phylogenetic tree using a likelihood-based
approach.

9.1.5 Distribution of branching times

We now derive the probability density of a labelled phylogenetic tree under the phylodynamic
constant rate birth-death model. Given the uniform distribution on ranked labelled trees,
this derivation essentially provides the probability density of branching times, whereas, in
the previous section, we only considered the expectation of branching times. Based on these
derivations, we provide a maximum likelihood approach to estimate the birth and death rates
based on the branching times in a phylogenetic tree. Such an approach will overcome the
problems mentioned above when using linear regression on LTT plots to estimate birth and
death rates.

The birth-death process is stochastic forwards in time. We typically track an individual from
time 0 until time T . When considering the tree, we interpret 0 as the present, and no samples
are taken later than the present. We then increase time going into the past, assuming the tree
has a single individual at some time T > 0 in the past.
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Figure 9.9: The plot shows the fit of two regression lines (blue) to an empirical phylogenetic
LTT plot (black squares), on top of the LTT plots from Figure 9.8. We note that
the first four squares from the left correspond to the root and the following three
branching events. To ensure readability, we do not plot squares for all the later
branching events.

9.1.5.1 Parameter estimation with maximum likelihood

Recall that in phylogenetics, we calculate the phylogenetic likelihood L(T , Q;D) =
P (D|T , Q), for a phylogenetic tree T and substitution rate matrix Q, given an MSA D. In
particular, the tree T is a parameter. The aim of phylodynamics is to calculate the so-called
phylodynamic likelihood: L(η = (β, δ, T, ρ, ψ, r); T ) = P (T |η) where T is now the data.
Given a fixed phylogenetic tree T , we aim to determine the maximum likelihood estimate for
the birth-death parameters (summarised in η). Such a maximum likelihood approach — ig-
noring sampling through time — was first introduced in Thompson (1975) and then in Nee,
May and Harvey (1994). In the following, we derive P (T |η) based on the assumption of
complete extant tip sampling, ρ = 1 and ψ = 0.

Consider a phylogenetic tree T on n extant tips, which is obtained from a birth-death model
stopped at time T . We measure time in reverse for convenience. In particular, we set the
present time as 0. The n − 1 branching events occur at times x1 > x2 > . . . > xn−1 prior to
present (note that since our stochastic process is continuous in time with constant rates, the
probability of two branching events at the same time is 0). Finally, we define the start time of
the process as x0 = T . To facilitate the mathematical derivation, we label the two descendants
of each branching event with “left” and “right”, while the tips are not labelled. Such trees are
also called oriented trees, while the phylogenetic trees considered so far were labelled trees.
An example of an oriented tree with four tips is shown in Figure 9.10.
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Figure 9.10: Oriented tree T o with four tips on which the phylodynamic likelihood calculation
is explained. The tree has the two subtrees T oa and T ob . We reverse time such
that the present time is 0 and the first individual appeared at T time units in the
past.

Suppose this example tree evolved under a constant rate birth-death model without death,
δ = 0. Then, the probability density of this oriented tree T o is a product of exponentials and
rates:

P (T o|β, δ = 0, T = x0, ρ = 1, ψ = 0, r) = e−β(x0−x1)β e−βx1︸ ︷︷ ︸
T o
b

e−β(x1−x2)βe−βx2e−β(x2−x3)βe−2βx3︸ ︷︷ ︸
T o
a

= β3
3∏

i=0

e−βxi , (9.40)

where T oa is the left and T ob is the right subtree descending branching time x1 as visualized in
Figure 9.10.

For β > δ > 0, the probability density calculation is more complicated: we need to take
into account all possible unobserved events leading to extinct (meaning unsampled) subtrees.
Suppose we were to know all these unobserved events, that is, the complete tree in which
the phylogenetic tree is embedded. In that case, we could calculate the probability of the
complete tree as a product of exponentials and rates. Since we do not have information on the
unobserved events leading to extinct subtrees, we must sum over them.We could sum over the
probability density of all complete trees in which our oriented phylogenetic tree is embedded.
However, this will be too slow in practice as there are infinitely many such complete trees.
Below, we will do this summation using differential equations instead.

The probability density of the example oriented tree in Figure 9.10 can be calculated as the
product of the probability density of the first branch between x0 and x1, the probability
density of a branching event at time x1, and the probability density of the two subtrees T oa
and T ob descending from time x1. Here, we employ the property of the birth-death model,
which is that birth and death events occur independently in different parts of the tree. Let
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elapsed timex1tt+∆t

Figure 9.11: Partitioning of time employed in the derivation of p(t, x1).

p(x0, x1) be the probability density of an individual — at time x0 in the past — to produce a
branch of length x0−x1. Then, the probability density of an oriented tree T o with age T = x0
is:

P (T o|T = x0) = p(x0, x1)βP (T oa |T = x1)P (T ob |T = x1). (9.41)

Note that we omit the parameters β, δ, ρ = 1, ψ = 0, r in the expression for the probability
density of the tree to facilitate readability. We can continue expanding this expression recurs-
ively until we come to the tips of the tree, meaning the tree probability density is the product
of the probability densities of branches and birth rates.

To calculate the probability density of the branch between t and x1, p(t, x1) (where t ≥ x1),
we write down the equation in discrete time using the same considerations as in the derivation
of p(1|t) but reversed in time (as shown in Figure 9.11):

p(t+∆t, x1) = (1− (β + δ)∆t)p(t, x1) + 2β∆tp(t, x1)p(0|t) +O(∆t2), (9.42)

which after rearranging and taking the limit ∆t→ 0 gives us the following differential equa-
tion:

d
dt
p(t, x1) = −(β + δ)p(t, x1) + 2βp(t, x1)p(0|t). (9.43)

This is the same differential equation as for p(1|t). The initial condition is p(x1, x1) = 1, as
the presence of an individual in the tree at time x1 induces with probability one a branch of
length zero. Thus, p(t, x1) =

p(1|t)
p(1|x1)

, and in particular p(x0, x1) =
p(1|x0)
p(1|x1)

.

Overall, we obtain,

P (T o|T = x0) = p(x0, x1)βP (Ta|T = x1)P (Tb|T = x1) = βn−1
n−1∏
i=0

p(1|xi), (9.44)

using the observation that each internal node is once the ending and twice the starting point
of a branch. This proves the following theorem:

Theorem 9.1.7. Consider the constant rate birth-death model for time T with birth rate β and
death rate δ. Further, consider complete extant tip sampling (ρ = 1) and no sampling through
time (ψ = 0). The probability density of an oriented tree T o, conditioned on non-extinction
(XT > 0), is

P (T o|T = x0, XT > 0, β, δ) =
p(1|x0)

1− p(0|x0)

n−1∏
i=1

βp(1|xi). (9.45)
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Analogous probability densities for different types of conditioning are provided in Stadler
(2013).

To obtain the probability density of a labelled phylogenetic tree T on n samples, we note that
we can label the samples of an oriented tree in n! ways, where each labelling has the same
probability. Further, we note that given a tree (without sampled ancestors) on n− 1 internal
nodes, for a particular labelling, there are 2n−1 orientations (left or right for each of the n−1
internal nodes). Thus,

Corollary 9.1.8. The probability density of a labelled tree T , with ρ = 1, ψ = 0 and condi-
tioned on non-extinction, is

P (T |T = x0, XT > 0, β, δ) =
2n−1

n!

p(1|x0)
1− p(0|x0)

n−1∏
i=1

βp(1|xi). (9.46)

In Theorem 9.1.3, we showed that each ranked labelled tree topology has the same probab-
ility. Thus,

Corollary 9.1.9. The probability density of the branching times x1 > x2 > . . . > xn−1,
meaning the probability density of the LTT plot, with ρ = 1, ψ = 0 and conditioned on
non-extinction, is

P (x1, x2, . . . , xn−1|T = x0, XT > 0, β, δ) = (n− 1)!
p(1|x0)

1− p(0|x0)

n−1∏
i=1

βp(1|xi). (9.47)

We can now perform maximum likelihood inference on the parameters β and δ based on
the branching times in the phylogenetic tree. The parameter T is typically fixed, as it is the
stem age of a group of species in macroevolution or the start of an epidemic in epidemiology.
Alternatively, the probability of the branching times conditioned on the first branching event
(x1) can be derived (for an overview, see e.g. Stadler (2013)). The values for β and δ that
maximise the probability density P (x1, x2, . . . , xn−1|T = x0, XT > 0, β, δ) are the maximum
likelihood parameter estimates of the birth-death model for the given branching times. We
note that the expressions in Theorem 9.1.7 and Corollaries 9.1.8 and 9.1.9 all lead to the
same maximum likelihood parameter estimates, as these expressions only differ in a function
that depends on the number of samples, n, but not on the tree. Importantly, this maximum
likelihood approach considers the full probability density of the LTT plot, while the linear
regression approach from the last section only uses properties of the expected LTT plot.

In this chapter, we quantify the birth and death rates based on a given phylogenetic tree
T . In particular, the maximum likelihood birth and death rate estimates are (β̂, δ̂) =
argmaxβ,δP (T |T = x0, XT > 0, β, δ). The interested reader may wonder how to quantify
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the birth and death rates based on sequence data D,

(β̂, δ̂) = argmaxβ,δP (D|T = x0, XT > 0, β, δ). (9.48)

So far, we have not established an expression for P (D|T = x0, XT > 0, β, δ). However, we
can rewrite:

P (D|T = x0, XT > 0, β, δ) =

∫
T
P (D, T |T = x0, XT > 0, β, δ)dT

=

∫
T
P (D|T )P (T |T = x0, XT > 0, β, δ)dT . (9.49)

In the last equation, we make the common assumption that the sequence evolution process
is independent of the tree generation process. While we can calculate the two expressions
within the last integral, we cannot analytically integrate over all trees (see Section 6.2.3.3 on
the size of the tree space). In Chapter 10, we will discuss numerical algorithms to deal with
this integral.

9.1.5.2 General birth-death models

As mentioned above, the probability density of a constant rate birth-death tree with complete
present-day sampling (ρ = 1) and no sampling through time (ψ = 0) was initially calculated
in Thompson (1975, page 58). Nee, May and Harvey (1994) further accounted for ρ < 1
and time-dependence of the birth and death parameters. In the derivations above, ρ < 1 can
be accounted for by changing the initial conditions. The structure of the resulting probability
density remains the same as in Corrolary 9.1.8; however, the functions p(0|t) and p(1|t) change
(Stadler 2013). We can further account for the time dependence by changing the birth and
death parameters in the differential equations through time.

Over the past few years, the probability densities for phylogenetic trees have been derived for
extensions of this basic birth-death model. The derivations for these generalisations rely on
the ideas introduced above.

Allowing for sampling through time (ψ > 0) with r = 0 (recall that r is defined as the probab-
ility for death upon sampling prior to the present) has been introduced in Stadler (2010). Al-
lowing for sampling through time essentially requires changing initial conditions and slightly
modifying the differential equations. The birth and death parameters were allowed to change
through time with r = 1 in Stadler et al. (2013). In particular, the rates changed in a piece-
wise constant fashion, and this model is also called birth-death skyline plot. The extension to
time dependence again relies on changing the parameters in the differential equations through
time. Furthermore, Stadler et al. (2013) provided the possibility to assume a different sampling
probability ρi at time points ti by modifying the initial conditions. This extension can be used,
for instance, to represent mass extinctions (in macroevolution datasets) or punctual sampling
efforts (in epidemiology). Gavryushkina et al. (2014) used such models with any r ∈ [0, 1].
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For the models thus far, the differential equations describing the tree probability density can
be solved analytically. Allowing for competition among co-existing individuals has been ac-
counted for in Leventhal et al. (2014) and Vaughan et al. (2019) requiring the numerical
integration of differential equations.

Under the scenario of only extant tip sampling (that is, ψ = 0), a range of models has been in-
troduced with macroevolutionary applications in mind. Foundational work includes Morlon,
Parsons and Plotkin (2011) modelling time-continuous changes of speciation and extinction
rates and Etienne et al. (2011) modelling density-dependent effects.

We showed that a constant birth and constant death rate can be estimated from a tree when
ρ = 1, ψ = 0. When we have additional unknown parameters (such as rates changing through
time or the sampling parameter), it is possible that not all values can be inferred from the tree
since different parameter combinations can lead to precisely the same phylodynamic likeli-
hood value (recall that the phylodynamic likelihood is L(η = (β, δ, T, ρ, ψ, r); T ) = P (T |η)
with P (T |η) derived in Theorem 9.1.7). In other words, the likelihood surface could have a
ridge.

Such a ridge exists under a model with the three free parameters β, δ, ρ (while ψ = 0). These
three parameters always appear as βρ and β − δ in the terms βp(t|1) and p(t|1)

1−p(0|1) (Stadler

2013) which give rise to the likelihood (Theorem 9.1.7). This implies that if a β̂, µ̂ maximises
the likelihood for ρ = 1, parameter combinations like ρ = 0.5 and β̃ = 2β̂ and δ̃ = 2β̂−(β̂−δ̂)
would result in the same likelihood value; and this property holds for any tree. Thus, only
two out of the three birth-death parameters are identifiable (Stadler 2009), even in the case
of infinite data; infinite data here means infinitely many trees of age T for which we simultan-
eously estimate their shared birth, death, and sampling rates, with the full phylodynamic like-
lihood being the product of the phylodynamic likelihood for each tree1. Similarly, if sampling
through time is modelled with ψ > 0 (with r = 1 and ρ = 0), the three parameters β, δ, ψ
always appear as βψ and β − δ − ψ in the likelihood function meaning only two out of the
three parameters are identifiable (Stadler et al. 2011; Stadler et al. 2013). Note that if one of
the three parameters is known, the other two parameters can be estimated based on a tree
using the maximum likelihood technique.

These non-identifiability results were recently generalised for time-varying birth-death models
(Louca and Pennell 2020; Louca et al. 2021). They show that for a fixed ψ = 0, assuming that
birth and death rates are allowed to change arbitrarily through time, the birth and death rate
trajectories cannot both be inferred even when the sampling parameter ρ is known. Instead,
very different birth and death rate trajectories can explain the tree equally well. A set of traject-
ories that produce the same phylodynamic likelihood value for all trees is called a congruence
class. Significantly, this result does not depend on the amount of data used for inference: con-
gruent trajectories remain impossible to distinguish even with infinite data (meaning infinitely
many trees, see above). In practice, congruent trajectories may be very different, making it im-
possible to distinguish, for instance, if rates increase, decrease, or remain constant over time

1While in phylodynamics, infinite amount of data correspond to infinitely many trees, in phylogenetics, infinite
amount of data correspond to infinitely long sequences (Chapter 6).
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in a clade. However, Legried and Terhorst (2022) and Legried and Terhorst (2023) showed
that models with rates specified as piecewise-polynomial intervals are identifiable — meaning
the birth and death rate trajectories can be inferred — as long as the sampling parameter is
provided. This means that subtly restricting the shape of the birth and death rate trajector-
ies will make the model identifiable. Additionally, Truman et al. (2024) have recently shown
that models that generate sampled ancestors are always identifiable (this means the removal
parameter r is less than 1). Furthermore, Morlon, Robin and Hartig (2022) discuss how the
identifiability results of Louca and Pennell (2020) impact birth and death rate estimation in
general and highlight that phylogenies remain a valuable source of information for birth and
death rates when used, for example, within a hypothesis-driven framework (that is when
comparing a small number of plausible models), using parsimony principles or the so-called
regularisation techniques (that favour the “simplest” model if several are plausible), as well
as by adding non-phylogenetic data (such as fossils or classic epidemiological data).

We conclude this part by highlighting that all co-existing lineages have the same birth, death,
and sampling parameters in the models discussed above. Such “neutral” models were gener-
alised to multi-type birth-death models where different co-existing lineages of the phylogeny
follow different birth and death rates (Maddison, Midford and Otto 2007; Stadler and Bon-
hoeffer 2013; Kühnert et al. 2016). To calculate the phylodynamic likelihood under such
models, we need to formulate separate differential equations for each state. Under multi-type
models, we no longer obtain a uniform probability on ranked labelled tree topologies; thus,
the tree topology and the branching times together inform the birth and death parameters.
We will discuss these models in more detail in Section 9.5.

9.1.6 Applications

9.1.6.1 Epidemiology: quantifying the spread of Ebola in the West African epidemic of
2013-2016

In epidemiology, a quantity of interest is the basic reproductive number, R0 (Anderson and
May 1979). R0 is the expected number of secondary infections caused by a single infected
individual introduced into an entirely susceptible population. The value of this parameter is
a strong indicator of the fate of an epidemic: if R0 < 1, the epidemic will eventually die out,
whereas ifR0 > 1, then the infected population size will increase on average, and the epidemic
will spread. Furthermore, the value ofR0 indicates the amount of public health effort required
to contain an epidemic outbreak. If we assume the constant rate birth-death model, the basic
reproductive number can be calculated as R0 = β/(δ+rψ) (Gavryushkina et al. 2014) (for a
more general overview on modelling epidemics, see e.g. Keeling and Rohani (2008)).

In what follows, we calculate R0 for the West African Ebola outbreak from 2013 to 2016. 72
Ebola genomes from different patients in a Sierra Leone outbreak were published in August
2014 (Gire et al. 2014). The reconstructed phylogenetic tree of the samples from Sierra Leone
and 3 sequences from Guinea is shown in Gire et al. (2014, Figure 3B). Here, we estimate R0
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based on this tree. As these genomes were sampled early in the epidemic, we assume a constant
transmission rate, β, and constant rate of becoming uninfectious (that is, rate of recovery or
death, with or without sampling), δ + rψ, with r = 1. The parameters β and δ correspond to
the birth and death rates in the constant rate birth-death model. No samples from the present
were available, so we set the extant tip sampling probability ρ = 0. Using estimates from
other studies, we set the sampling probability prior to the present to ψ/(δ+ψ) = 0.7 (meaning
ψ = 7/3δ).

We obtain the maximum likelihood estimates β̂ and ˆ(δ + ψ) using the phylodynamic like-
lihood, and through this we calculate R0 = β̂/ ˆ(δ+ψ) = 1.34 with the confidence interval
CI = [1.12, 1.55] (Stadler et al. 2014).

In this example, we used a fixed tree from Gire et al. (2014) and therefore ignored any un-
certainty in the tree. Phylogenetic trees obtained from pathogen sequences from an epidemic
outbreak often show high uncertainty in the estimated tree (see Section 7.4.5 for assessing
uncertainty). In Chapter 10, we will see how Bayesian methods can provide phylodynamic
parameter estimates (such as estimates for β, δ, ψ,R0) by accounting for this phylogenetic
uncertainty. Section 10.3 will discuss an Ebola analysis using such Bayesian methods.

9.1.6.2 Epidemiology: quantifying the basic reproductive number of SARS-CoV-2 at
the start of the pandemic

In the first few months of 2020, genomes were becoming increasingly available. Thus, many
scientists in the field of phylodynamics began to tentatively apply the methods described in
this chapter to characterise the developing situation.

One early analysis, performed by some of us, used the birth-death model to infer country-
dependent R0 values for China, Italy, Washington State (USA), and the Diamond Princess
cruise ship. Sequences for a location were selected from public sources. These sequences were
from samples belonging to patients at the specific location. Additionally, the sequences were
from patients in other countries who had recently travelled from the location of interest,
meaning returning travellers were considered as a sentinel population, giving insight into the
transmission dynamics at the location of interest.

As in the Ebola virus analysis, we assumed a birth-death model in which individuals are
sampled through time with rate ψ (and r = 1) and noted that R0 = β/(δ+ψ). We fixed the
sum of the sampling and death rates (the “become uninfectious” rate) to 36.5/lineage/year,
corresponding to an average infectious period of 10 days. Similarly, we assumed that the
birth rate β was constant throughout the analysis as we were studying only a short period at
the start of the epidemic, before the introduction of major public health measures. The sole
exception to this rule was the Diamond Princess, where a ship-wide quarantine was imposed
immediately upon detection of the first case and thus before any of the samples corresponding
to the sequences were collected. Thus, for the Diamond Princess, we included both before-
quarantine and after-quarantine birth rate parameters and used only the first to calculate R0.
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We assumed the HKY substitution model (Section 5.3.4) with two different mean substitution
rates (5 × 10−4 or 1 × 10−3 substitutions per site per year), chosen to explore how strongly
the results depend on this parameter (for which there was some uncertainty at the time).

Analyses were carried out separately for each location-specific outbreak and used to infer the
R0 parameters. Conceptually, one can view these analyses as a two-step process: First, infer-
ring the tree under the substitution model, then inferring the birth-death model parameters
from the tree. In reality, these analyses were conducted jointly using the Bayesian techniques,
which we will discuss in Chapter 10.

Figure 9.12 shows the results of the four analyses, repeated for each of the two mean sub-
stitution rates. The distributions show the support for R0 values for each population. In the
analyses under the slower substitution rate, the R0 estimates are centred around 3 for the
country-based outbreaks, with a slightly higher value for the ship-based outbreak. For the
faster substitution rate, estimates are slightly higher — particularly for China. Those analyses
were performed in real-time, and results were shared via a forum onMarch 1, 2020 (Vaughan
et al. 2020).

The study was eventually extended to include other countries and more sequence data, as is
described by Vaughan et al. (2024). Figure 9.13 shows the results of these analyses, supporting
an R0 of SARS-CoV-2 of well above 2 — which led to the rapid global spread we had to
experience in early 2020.

9.1.6.3 Macroevolution: estimating diversification rate changes through time in
mammals

About 65 million years ago, a meteorite hit Earth and caused mass extinction, specifically
the extinction of dinosaurs. Palaeontological data led to the hypothesis that this event was
followed by a period of increased mammalian diversification (Archibald and Deutschman
2001), with the diversification rate defined as d = (speciation rate− extinction rate).

In what follows, we investigate whether the phylogenetic tree of mammals also supports in-
creased diversification of mammals after the extinction of dinosaurs (Stadler 2011). We use
the phylogenetic tree of extant mammals from Bininda-Emonds et al. (2007), shown in Figure
1 of the article. An extended birth-death model was applied to this tree, allowing the para-
meters to change piece-wise through time (with ψ = 0 and ρ = 1). That is, rates are constant
until time t1, then change to other constant values until time t2, and so on.

The results, presented in Figure 9.14 (blue), show that the maximum likelihood diversification
rate d̂ (which is birth rate minus death rate) was roughly 0.05 until 35 million years ago, where
there was a peak followed by a decline in diversification rate2. As shown in Figure 9.14, the

2Note that the peak observed 35 million years ago may be a flaw of the analysis. In Bininda-Emonds et al. (2007),
the authors pulled together unresolved lineages that potentially led to too many diversification events around 35
million years ago, leading to an overestimation of diversification around that time point.
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Figure 9.12: Phylodynamic estimation of the basic reproductive number R0 of SARS-CoV-2
for individual outbreaks, compared with the prior. In the case of the Diamond
Princess, this estimate corresponds to the period before the implementation of a
quarantine. R0 is obtained by dividing the birth rate by the death and sampling
rate. We show distributions rather than point estimates, as the analysis was
performed within the Bayesian framework (Chapter 10). The dashed vertical
line shows an R0 of 1. This analysis was performed as the outbreaks unfolded
and was shared on a forum on March 1, 2020. Figure adapted from Vaughan
et al. (2020).

analysis shows no evidence of an increase or decrease in diversification rate around 65 million
years ago.

Stadler (2011) assessed the uncertainty in the estimate of the diversification rate using a para-
metric bootstrapping approach (Section 7.4.4). Multiple trees were simulated using the estim-
ated maximum likelihood parameters. Based on these simulated trees, birth-death parameters
were re-estimated from the simulated phylogenies. Re-estimated maximum likelihood diver-
sification rates are consistent with the original estimate, as shown in Figure 9.14 (black).

Phylogenetic analysis based on a different mammalian phylogenetic tree (Meredith et al. 2011)
did not show evidence for an increase or decrease in diversification rate around 65 million
years ago either. Why does the phylogenetic inference disagree with the hypothesis based on
paleontological data? This is still an open area of research, and we see the potential to shed
light on this question by jointly analysing fossil and phylogenetic tree data (Zhang et al. 2016;
Gavryushkina et al. 2017).
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Figure 9.13: Phylodynamic estimation of the basic reproductive number R0 of SARS-CoV-
2 in different populations based on sequence data. The real-time analyses
performed for Figure 9.12 were expanded and published in a peer-reviewed
journal retrospectively; see Vaughan et al. (2024) for details. Figure adapted
from Vaughan et al. (2024).
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Figure 9.14: Maximum likelihood diversification rate estimate through time (blue) based on a
mammal phylogeny. The black lines indicate the parametric bootstrap interval,
which was obtained by simulating birth-death trees using the maximum likeli-
hood parameters, and then re-estimating the diversification rate of each simu-
lated tree (black). No signal is visible for elevated diversification upon dinosaur
extinction around 65 million years ago. Figure adapted from Stadler (2011).
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9.2 Coalescent theory

We now introduce the coalescent model, or simply the coalescent, as a modelling framework
for trees. The original coalescent model was introduced by John Kingman (1982) as a way to
model allele frequency dynamics; it is the basis of many studies in population genetics. More
recently, this model and its extensions have been widely applied to estimate processes within
the field of population dynamics, using the coalescent within phylodynamic inference. In this
context, coalescent models naturally allow the population size to become an explicit target of
phylodynamic inference. At its core, the coalescent is a backwards-in-time process that starts
with extant lineages at present (tips of the tree) that coalesce to give rise to a tree. Recall
that the birth-death models described in the previous section are forwards-in-time processes
starting from the first individual and ending at present; we compare the two frameworks in
more detail in Section 9.3.

9.2.1 The Wright-Fisher process

To develop a quantitative connection between population size and phylogeny, we first need to
define a model for propagating heritable traits within a fixed-size population. One such model
is the Wright-Fisher process that models genetic drift (Wright 1931; Fisher 1930), which has
been a cornerstone of population genetics since its introduction by the founders of the field.

In the classic Wright-Fisher process, we assume a population with a constant size of N indi-
viduals. While these individuals may differ in genetic make-up or other ways, the model itself
is completely blind to these differences, treating every individual equally.

The model assumes discrete, non-overlapping generations. Eachmember of a given generation
has exactly one parent in the previous generation. Thus, the model is most directly applic-
able to biological units undergoing asexual reproduction (see Section 1.1.1). However, these
units might be genes or other genetic elements that can be treated as reproducing asexually,
although they belong to sexually reproducing organisms.

The choice of a parent from the previous generation is completely random. Importantly, this
means that the choice is independent of any trait associated with the individual or its parent.
It is, therefore, a neutral model, as any selection of parents based on fitness criteria is not
allowed. Correspondingly, each parent may have zero, one, or many children in the next
generation, but the total number of children in a generation must equal the population size
N .

Figure 9.15 represents the basis on which the Wright-Fisher model operates: the number of
individual population members in each generation through time. Figure 9.16 shows a par-
ticular realisation of the Wright-Fisher model, which results in assigning children to parents
between generations of the population. The thick lines and the filled circles represent the
phylogenetic relationships between three arbitrarily chosen (or sampled) individuals. These
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Figure 9.15: The Wright-Fisher model is a population genetic model based on a sequence of
discrete generations of a population of a constant size. For example, the above
schematic represents three generations of such a population, where each circle
represents an individual member of the population, and each row of circles
represents the members of a single generation. Time is measured in generations
from past to present, shown on the y-axis.

relationships are implied by the particular outcome of the Wright-Fisher process and define
the phylogenetic tree for the three sampled individuals.

9.2.1.1 Most recent ancestor of two samples

In the simplest case, when two samples are drawn randomly from the present population,
quantifying their phylogenetic tree is reduced to the following question: what is the probability
that themost recent common ancestor (MRCA) of these two samples occurredm generations
before the present?

To answer this, consider that:

(i) since each individual picks their parent uniformly at random, the probability that two
individuals from the same generation have the same parent is 1/N;

(ii) the probability that two individuals in the same generation do not have a common
ancestor in the previous generation is (1− 1/N).

Thus, the probability for the two sampled individuals to share a common ancestor in themth
generation before the present is the product of the probability of no common ancestor in the
firstm−1 generations and the probability of a common ancestor in themth generation before
the present:

PMRCA(m) = (1− 1

N
)m−1 1

N
. (9.50)

This is simply a geometric distribution (Box 15 on page 86) with a success probability of 1/N.
Since the mean of such a distribution is equal to the inverse of the success probability, we must
wait on average N generations to see a common ancestor of two samples from a population
of size N .
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Figure 9.16: A realisation of the Wright-Fisher model across multiple generations. As in Fig-
ure 9.15, each row of circles represents a single generation, while time, meas-
ured in generations, increases downwards. Lines between the circles represent
the randomly chosen parent-child relationships; each individual chooses a par-
ent uniformly at random from all individuals in the previous generation. The
three filled circles in the last generation (bottom row) represent three arbitrarily
chosen sampled individuals. The thick lines and filled circles in earlier gener-
ations represent the ancestry of those three sampled individuals obtained by
“tracing back” along the parent-child relationships. Note that while the lines rep-
resenting parent-child relationships may cross, it is always possible to reorder
the members of each row so that these lines do not cross — as we have done
here.

This result can be extended to develop the full probability of a larger sampled tree under
the discrete-time Wright-Fisher model. In such a tree, internal nodes would occur at integer
generation numbers and could involve more than two child lineages, producing non-binary
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trees (see also Figure 9.16). Instead, at this point, we will leave the discrete-timeWright-Fisher
model and begin to develop an approximate coalescent model for continuous-time binary
phylogenetic trees.

9.2.2 Kingman’s coalescent process

Kingman’s coalescent (also known as Kingman’s n-coalescent, where n refers to the number
of sampled lineages at the start of the process) is a continuous-time Markov chain (see Box 24
on page 98) which produces time trees. The process runs backwards in time, building the tree
through successive pairwise merging events known as coalescence events or simply coales-
cences. There are several distinct population genetic models for which Kingman’s coalescent
arises as a limiting case. Here, we introduce the coalescent using the Wright-Fisher model that
was discussed in the previous section.

9.2.2.1 Coalescence rate between two lineages

We consider a pair of individuals sampled from a particular generation of a Wright-Fisher
population. In the previous section, we derived that the probability that these individuals share
a parent in the previous generation is 1/N and that the number of generations until they share
a common ancestor follows a geometric distribution. When developing the corresponding
Kingman coalescent model, we consider what happens whenN is very large, meaning that the
probability of a pair of lineages finding a common ancestor in any given generation becomes
extremely small. As discussed in Box 18 on page 90, this is the limit at which a geometric
distribution approaches an exponential distribution.

More specifically, the geometric distribution (Equation (9.50)) for the pair of lineages coales-
cing under the Wright-Fisher model has a success probability of p = 1/N. Using g to represent
the time interval between successive generations, and t2 = mg as the time of the mth genera-
tion before the present, we define the coalescence rate θ = p/g = 1/Ng, that is, the probability
of a pair of lineages coalescing per unit of time.

With these definitions, we can apply the limit described in Box 18 on page 90 to derive the
probability density of observing a coalescence at time t2 before the present, in the limit of
g → 0 and N →∞, where θ = 1/Ng is constant:

f(t2|θ) = e−θt2θ. (9.51)

In this limit, referred to hereafter as the coalescent limit, the time until a pair of lineages
coalesce is thus exponentially distributed with rate θ.
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9.2.2.2 Coalescence rate between more than two lineages

This naturally leads to the probability density for the first coalescence between any pair se-
lected from k lineages per unit time, where k ≥ 2. Importantly, in our large N limit, the
probability of more than two lineages finding a common ancestor simultaneously approaches
zero. This means that the time of the first coalescence event is simply the minimum of the(
k
2

)
pairwise coalescent times, each exponentially distributed with rate θ. We can then use the

result given in Box 17 on page 89 to find that the minimum is itself exponentially distributed
with a rate equal to the sum of the pairwise rates, that is,

f(tk|θ) = exp
(
−tk

(
k

2

)
θ

)
×
(
k

2

)
θ. (9.52)

As usual, we can interpret this as the product between the probability of no coalescence oc-
curring in time tk (the exponential function) and the probability density of a coalescence
occurring immediately after.

This probability density was first calculated by John Kingman (1982).

9.2.2.3 The coalescent process and the probability density of a coalescent tree

So far, we have derived the probability distributions for the time taken for different numbers
of sampled lineages to coalesce by considering the limit of the Wright-Fisher process when N
goes to infinity. This is all required to define the coalescent model: a stochastic process that
produces sampled coalescent trees. This process is a continuous-time Markov chain (Box 24
on page 98) on the sampled lineages at a particular time. It starts at present with the in-
dividuals sampled at present, moving into the past, producing coalescence events governed
by the probability density in Equation (9.52). Each event merges a randomly chosen pair of
sampled lineages (lineages with a sampled descendant) into a new internal tree node, reducing
the number of ancestral lineages by 1. The Markov chain process terminates when a single
lineage remains.

The probability density of a labelled tree generated by this process can be expressed as a
product between the probability for the time intervals between coalescence events, the prob-
ability densities (the rates) of coalescences occurring at times corresponding to the internal
nodes, and the probability of the particular pair coalescing at that node. For example, the
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Figure 9.17: A labelled tree with coalescence and sampling event times.

probability density for the labelled tree given in Figure 9.17 can be written as

f(T |θ) = exp
(
−(t1 − t0)

(
4

2

)
θ

)
θ

× exp
(
−(t2 − t1)

(
3

2

)
θ

)
θ

× exp
(
−(t3 − t2)

(
2

2

)
θ

)
× exp

(
−(t4 − t3)

(
3

2

)
θ

)
θ

× exp
(
−(t5 − t4)

(
2

2

)
θ

)
θ. (9.53)

Notably, in the above expression, the binomial coefficients appear only in the exponential
functions representing the probability of no coalescence in each interval, but do not appear in
the factors to the right of the exponentials. This is because we derive the probability density
of a labelled tree, that is, we distinguish between coalescences involving different pairs of
lineages: the probability of a chosen pair of k lineages coalescing is less than the probability
of any arbitrary pair coalescing, by a factor of

(
k
2

)
.

Additionally, the third line is missing the coalescence rate term entirely. This is because, for
this particular tree, t3 corresponds to a sampling event. The coalescent process conditions on
such events explicitly; thus, the event does not contribute to a rate term but merely increases
the number of lineages by 1.

In general, the probability density for a labelled tree T under the coalescent can be expressed
in terms of intervals between consecutive coalescence or sampling events. For a tree with n
leaves, we have n − 1 coalescent times. Furthermore, assume the leaves are sampled at m
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different times (in Figure 9.17, we have m = 2). In total, we then have m+ n− 1 coalescence
or sampling events that happened atm+ n− 1 time points. Defining ti as the time of event i,
ki as the number of ancestral lineages extant in the interval between ti and ti−1, and νi as 1
if the event i is a coalescence event and 0 otherwise, we can state the following:

Theorem 9.2.1. The probability density for a labelled tree T with n leaves sampled atm times
under the coalescent is given by:

f(T |θ) =
m+n−1∏
i=1

exp
(
−(ti − ti−1)

(
ki
2

)
θ

)
θνi . (9.54)

Interpreting this expression as a function of θ (see Box 25 on page 116) is the likelihood
function for the coalescence rate parameter θ given the tree T . This implies that we can infer
θ based on a phylogenetic tree, assuming the conditions of the coalescent model are met.

Note that given all n samples are collected at present, the probability density is a function of
the branching times t1 < t2 < . . . tn−1 in the tree and the coalescent parameter θ. Specifically,
the probability density of the tree is independent of the tree topology, as was also the case
under the birth-death model (Section 9.1.3). Analogously to the proof in Theorem 9.1.3,
we can show that each ranked labelled tree on n tips has the same probability under the
coalescent (this also holds for all the extensions of the coalescent model without structure in
the population; for structured models see Section 9.5).

9.2.2.4 The expected height of a coalescent tree

An interesting consequence of the coalescent process is that the expected time required for n
lineages to coalesce into 1, that is, the expected age of a coalescent tree with n leaves sampled
at present is

E(troot) =

n∑
k=2

Ng(
k
2

)
= Ng

n∑
k=2

2

k(k − 1)

= 2Ng
n∑
k=2

(
1

k − 1
− 1

k

)

= 2Ng

(
n∑
k=1

1

k
−

n∑
k=2

1

k

)

= 2Ng(1− 1

n
), (9.55)
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which approaches the upper bound of 2Ng as the number of samples increases.

Of course, when leaf nodes are sampled through time, the root may be arbitrarily old com-
pared to the most recent sample.

9.2.2.5 Coalescence rates and finite population sizes

Before proceeding, let us take a moment to consider what these results imply from a practical
perspective. Strictly speaking, the probability density above only exists in the limit of infinite
population sizes (N →∞) and zero generation times (g → 0). However, any real population
with discrete generations will have a finite number of individuals and non-zero times between
generations. Does this mean that the distribution above, and, by extension, the coalescent
model, is useless?

Not at all!While the probability density for the time between coalescence events is only exactly
exponential in the specified limit, it remains a good approximation for the corresponding
probability distribution in finite populations with large population sizes and relatively short
generation times. In such cases, we interpret the coalescence rate θ as approximately equal to
1/Ng, whereN is the population size and g is the inter-generation time for the finite population.

From this point on, we will always write 1/Ng instead of θ, keeping in mind that the expres-
sions are, strictly speaking, only approximations when written this way. This reflects the way
coalescent models are used in phylodynamics.

9.2.3 Population dynamics

So far, we have considered a constant population size N . However, the sizes of real pop-
ulations usually change over time. An obvious extension is to replace this constant with a
time-dependent population size function N(t). Throughout this section, we explain how to
quantify population dynamics expressed as N(t) based on a phylogenetic tree.

For example, we might define an exponentially growing population N(t) = e−rtNpresent,
where r is the growth rate and Npresent is the population size at present. Here, the minus
sign in the exponential is because t increases backwards in time. As we will outline below,
these population size changes over time will impact the shape of the sampled trees.

Incorporating time dynamics into the coalescent is straightforward. For instance, Griffiths
and Tavaré (1994) showed that in the coalescent limit, the coalescence rate between a pair of
lineages in aWright-Fisher model with time-dependent population size is 1/N(t)g. Here,N(t) is
the continuous-time large population size limit of the discrete-time Wright-Fisher population
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Figure 9.18: Trees generated by coalescent processes assuming different population dy-
namics. A shows a tree generated by a coalescent, assuming an exponential
population growth model. B shows a tree generated by a coalescent assuming
a constant population size model. The width of the grey background indicates
the population size at different times.

function. This means that the coalescence rate is larger when the population is small than
during periods when it is large. The probability of a labelled tree becomes

f(T |N(t)g) =

m+n−1∏
i=1

exp

(
−
(
ki
2

)∫ ti

ti−1

dt
N(t)g

)(
1

N(ti)g

)νi
, (9.56)

where ki is the number of ancestral lineages extant in the interval between ti and ti−1. Note
that for constant N , this formula simplifies to Theorem 9.2.1. An example of the effect of
population size variation on the shapes of trees is shown in Figure 9.18. The larger the popu-
lation size, the larger the waiting time until a coalescence event since the continuous-time rate
of coalescence 1/N(t)g will be smaller. We can compare an exponentially growing population
of size N1(t) with a population of constant size N2, where both have the same present-day
population size N1(0) = N2. All coalescence rates in the exponentially growing population
will be larger than or equal to the coalescence rates in the population of constant size, leading
to shorter trees in the exponential scenario. Consequently, the timing of coalescence events
in phylogenies reconstructed from the sampled sequences can inform us about the total pop-
ulation size changes over time.
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Figure 9.19: A Tree and a corresponding B skyline plot. The skyline plot quantifies population
dynamics, allowing each interval between coalescence events to have a distinct
population size.

9.2.3.1 Non-parametric inference of population dynamics

What if we do not know (or do not want to assume) that population size is governed by
a particular parametric model (a model with a finite number of parameters, such as expo-
nential growth)? In this case, we can use the so-called non-parametric methods, which use
models where the number of free parameters grows with the number of samples (see also
Section 7.4.3).

The most well-known example is the skyline plot developed by Pybus, Rambaut and Harvey
(2000). In this model, the probability of a tree with all samples at present is given by3

f(T | ~Ng) =
n−1∏
i=1

exp
(
−(ti − ti−1)

(
ki
2

)
1

Nig

)
1

Nig
, (9.57)

where ~N = (N1, . . . , Nn−1) is a vector of length n−1. Thus, this vector has as many elements
as coalescence events in the tree. This model assumes that population size is constant within
each time interval between merging events, as illustrated in Figure 9.19.

As in the other models, the expression for the tree probability density function f(T | ~Ng) is
the likelihood L( ~Ng|T ) for the elements of ~Ng given a tree. Given a tree, we can calculate a

3The original model described by Pybus, Rambaut and Harvey (2000) was expressed slightly differently but is
equivalent to what we present here.
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maximum likelihood estimate of the population dynamics, in this case, the population sizes
through time.

In fact, we can derive a closed-form expression for the maximum likelihood estimates. To do
this, note that the complete likelihood for ~Ng can be written as the product of the likelihoods
of the individual elements:

L( ~Ng|T ) =
n−1∏
i=1

L(Nig), (9.58)

where

L(Nig) = exp
(
−(ti − ti−1)

(
ki
2

)
1

Nig

)
1

Nig
. (9.59)

Then we define N̂i as the maximum likelihood estimate of Ni, which by definition satisfies

d
dNi

L(Nig)

∣∣∣∣
Ni=N̂i

= 0. (9.60)

Since log(x) is a function monotonically increasing in x, we can apply the same optimality
condition to logL(Ni) and optimise with respect to N−1

i , getting
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Thus, in each interval, we have the following maximum likelihood estimate:

N̂ig = (ti − ti−1)

(
ki
2

)
. (9.62)

While this is the simplest case, extensions to the classical skyline plot method involve allowing
the grouping of multiple intervals together (Strimmer and Pybus 2001). Many ways have also
been developed to incorporate uncertainty into the results (Drummond et al. 2005; Heled and
Drummond 2008) within a Bayesian framework (see also Chapter 10).
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9.2.4 Coalescent approximation of birth-death models

Asmentioned earlier, coalescent theory is not intrinsically tied to theWright-Fisher population
dynamics model. Indeed, a much broader class of population genetic models has a limit in
which the probability of a sampled tree is given by the coalescent process. One of the most
important features of population models that possess coalescent limits is the exchangeability
of individuals within the population. This requirement forms the basis for the very general
Cannings model (Cannings 1974), of which the Wright-Fisher model is a special case. It also
encompasses the Moran model (Moran 1962), which is similar to the Wright-Fisher model
but which allows overlapping generations. Given that birth-death models described at the
beginning of this chapter (see also Theorem 9.1.3) also feature exchangeability of individuals,
it is unsurprising that we can approximate these models using a coalescent distribution (Volz
et al. 2009; Volz 2012; Volz and Frost 2014).

To see how such an approximation works, consider a typical birth-death trajectory such as
the one shown in Figure 9.20. As discussed in Section 9.1.1, under the birth-death model, the
birth events occur at a rate βI, where I is the population size. While this exact rate is itself
a random variable (since the population size I depends on the outcome of the birth-death
process at a given time), we can approximate it using the expected value of the population
size under the stochastic model (Section 9.1.1). We thus define the birth rate B(t) = βI(t) =
βI0 exp (−t(β − µ)) where I0 is the population size at present.

Compared to the formulation in Section 9.1.1, we changed the sign in the exponent, letting
the time t run backwards for consistency with the coalescent. This approximation of the
stochastic outcome with the expectation is adequate when I(t) is very large4.

Consider the two sampled lineages extending from the right-hand side of Figure 9.20. These
lineages must coalesce at a time point corresponding to a birth event. As these ancestral lin-
eages propagate backwards in time, every birth event they encounter represents a possible
coalescence time. What is the probability that the chosen pair of tree lineages coalesce at
a particular birth event? To answer this, consider that all population members are equival-
ent under our model. The probability that this particular pair of lineages coalesce at a given
birth event is the inverse of the total number of such pairs in the population which could
coalesce at that time point: p2(t) = 1/(I(t)2 ). More generally, for k extant lineages in the tree,
the probability of a coalescence occurring among them at a given birth event is the ratio of
the number of pairs among those k lineages to the total number of pairs in the population.
That is, pk(t) = (k2)/(I(t)2 ).

By combining the per-birth-event coalescent probability pk(t) with the population birth rate

4In fact, one can show that the standard deviation in the population size of this approximation vanishes relative
to the population size for the simple birth-death model in the large population limit when β > δ, meaning the
deterministic approximation becomes arbitrarily good in this case.
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Figure 9.20: Relationship between a birth-death process trajectory (black) and a possible
coalescence time of a pair of sampled lineages at time t1 (blue). The x-axis de-
notes time, with t0 being the present, and the y-axis the size of the population
I(t). Each birth event time, represented by vertical lines at t > t0, represents a
possible coalescence time. This consideration leads to the coalescent approx-
imation of birth-death processes described in the text.

B(t), we recover an approximation for the coalescence rate at a given time:
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2

)
2β

I(t)
. (9.63)

We drop the −1 from the denominator in the final line since that value is negligible when I(t)
is large.

This coalescence rate can be used to compute an approximate probability for a tree for a given
set of birth-death parameters. This approximation is valid only when the population size re-
mains large over the entire timespan of the tree, that is, when the deterministic approximation
of the stochastic population size is valid.
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Interestingly, this coalescence rate is identical to the coalescence rate between lineages of the
Wright-Fisher model for a deterministically varying population size N(t) that we discussed in
Section 9.2.3. The only difference is that in the Wright-Fisher case, the rate is proportional to
1/g (the inverse of the time between generations), while in the approximate birth-death case,
the rate is proportional to 2β.

9.2.5 Effective population size

Of course, real populations evolve in far more complex ways than these simple models de-
scribe. For instance, real populations are often structured in some way. For example, con-
sider that the population may exist as several distinct communities within which individuals
are more likely to share a recent common ancestor than individuals belonging to separate
communities (e.g. birds on different islands). Alternatively, one may apply the Wright-Fisher
model not only to haploid populations but to populations of genes belonging to sexually re-
producing organisms. Non-random mating in those populations can produce a similar effect
as population structure, where pairs of “child” genes may be more or less likely to share a
“parent” gene in the previous generation depending on the mating preferences of the organ-
isms in which they exist. Furthermore, while completely ignored in the basic Wright-Fisher
model, selection can play an extremely important role in shaping trees and, therefore, se-
quence diversity.

For these reasons, when population size is estimated assuming an ideal Wright-Fisher model,
we refer to the result as the effective population size (Wakely 2016). Loosely speaking, it is
the size of an idealised Wright-Fisher population model with the same genetic diversity as
our actual population. The changes in effective population size may reflect underlying actual
population size changes but may also be influenced by the presence of population structure
(Pannell 2003), expected generation time (Volz et al. 2009), or selection (Charlesworth 2009).
The explicit modelling of structured populations is discussed later in Section 9.5.

9.2.6 Application

9.2.6.1 Epidemiology: Hepatitis C epidemic in Egypt

Hepatitis C The hepatitis C virus (HCV) was first identified in 1989 (Choo et al. 1989; Kuo
et al. 1989). Its genome is a single-stranded, 9.6 kilobases long RNA molecule.

The World Health Organisation (WHO) estimates that around 1.5 million people are newly
infected with HCV every year, of which about 70%develop a chronic infection (WHO 2023).
Chronic HCV infections damage the liver, causing liver cirrhosis and increasing the risk of
some types of cancer that affect major organs, including the liver and pancreas.
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Figure 9.21: Estimate of the infected population size through time obtained from an Egyptian
HCV sequence dataset under a coalescent skyline plot. The black line is the
median estimate, and the uncertainty interval is shown in grey. The figure was
created from the results of the “Skyline plots” Taming the BEAST tutorial https:
//taming-the-beast.org/tutorials/Skyline-plots/.

HCV is mostly transmitted through exposure to infected blood, although other modes, such
as sexual transmission and vertical (mother-to-child) transmission, are also possible. Blood
transfusions and injections with infected needles account for most new infections.

Hepatitis C in Egypt At the end of the 20th century, Egypt had a Hepatitis C prevalence
of around 20%, the highest HCV prevalence in the world at that time (Quinti et al. 1995;
Arthur et al. 1997). The neighbouring countries had much lower HCV prevalence. The dom-
inant hypothesis for the high prevalence in Egypt was that HCV was spread by contaminated
needles as part of an independent public health campaign against another parasite, namely
Schistosoma worms (Frank et al. 2000), during the first part of the 20th century. An invest-
igation into the genetic evidence for this explanation formed one of the first applications of
coalescent models to phylodynamics (Pybus et al. 2003).

Figure 9.21 illustrates the results of a later analysis by Drummond et al. (2005), based on 63
individual 411 bp HCV E1 gene sequences from Egypt (Ray et al. 2000; Pybus et al. 2003).
These sequences were used to infer a phylogenetic tree, which was related to the infected
population size through time using the skyline coalescent model introduced in the previous
section5. The results suggest an almost 100-fold increase in the infected population size during
the first half of the 20th century.

5In fact, this was done simultaneously via the Bayesian techniques which we will introduce in Chapter 10.

https://taming-the-beast.org/tutorials/Skyline-plots/
https://taming-the-beast.org/tutorials/Skyline-plots/
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Figure 9.22: Estimate of the reproductive number Re through time obtained from the same
Egyptian HCV dataset as used in Figure 9.21, now assuming a piecewise
constant birth-death model (birth-death skyline plot). The effective reproduct-
ive number for a particular time point is the birth rate divided by the death
rate at that time point. The black line is the median estimate, and the uncer-
tainty interval is shown in grey. The figure was created from the results of the
“Skyline plots” Taming the BEAST tutorial https://taming-the-beast.org/
tutorials/Skyline-plots/.

This result was complemented by another analysis on the same dataset performed eight years
later, using the birth-death skyline plot. For each time point, the ratio of estimated birth
and death rate was considered, which is the expected number of secondary infections caused
by a single infected individual at that time point — called the effective reproductive num-
ber Re6. For the HCV analysis, the effective reproductive number estimate also reveals an
increase in transmission during the same period as the coalescent analysis, as shown in Fig-
ure 9.22 (Stadler et al. 2013).

These estimated timings of the increase in HCV transmission are consistent with the antis-
chistosomal injection therapy explanation for the rapid dissemination of HCV. In particular,
injection therapy against Schistosoma worms involving potentially contaminated needles was
in use from the 1920s through to the 1980s (Frank et al. 2000). Additional detailed ana-
lyses show that the estimated effective reproductive number of HCV decreased to 1when oral
therapy for schistosomiasis was introduced (Stadler et al. 2013).

6We note that the effective reproductive number is a generalisation of the basic reproductive number. At the start
of an outbreak with all individuals being susceptible, the effective reproductive number is, in fact, the basic
reproductive number.

https://taming-the-beast.org/tutorials/Skyline-plots/
https://taming-the-beast.org/tutorials/Skyline-plots/
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9.3 Comparison of coalescent and birth-death models

Both the coalescent and the birth-death models describe P (T |η), the distribution of trees T
given the parameters of the population model η. The coalescent is based on a backwards-
in-time process that starts with tips at present, and the branching times in our notation are
denoted by t1 < t2 < . . . tn−1 from present to root, Figure 9.19. It is parameterised by the
population size through time and the generation time. That is, it is parametrised by η =
(N(t), g), which determines the coalescence rate. It is important to emphasise that while the
coalescent process for the sampled tree proceeds backwards in time, the population genetic
models (such as the Wright-Fisher model) from which the coalescent is derived describe the
evolution of the population forwards in time.

In contrast, the birth-death model is a forwards-in-time process that starts with the first in-
dividual in the past, and in our notation, the branching times from the root to the present
are denoted by x1 > x2 > . . . > xn−1, Figure 9.10. It is parameterised by the birth
and death rates through time together with the start time and sampling parameters, that is,
η = (β(t), δ(t), T, ρ, ψ, r).

Both models are neutral in the sense that the same dynamics of birth, death, or coalescence
rates govern all individuals at a particular time point. Consequently, under both frameworks,
each ranked labelled tree on n tips sampled at a single time point has the same probability
(Theorem 9.1.3). Interestingly, the critical birth-death process (a birth-death process where
the birth rate equals the death rate) and the coalescent also have the same expected branching
times (up to a scaling factor that depends on the number of tips), but the branching times
have a different variance and different higher moments (Gernhard 2008). In general, the dis-
tributions of branching times — including the expectations — differ. These differences stem
from differences in modelling assumptions, such as the sampling process, the population size,
and generation times.

First, as suggested by the underlying parameters, there is a conceptual difference in how the
models deal with samples. Generally, the birth-death models explicitly model the production
of samples (we introduced the parameters ρ, ψ, r), while coalescent models generally condition
on the given number and times of samples rather than treating these aspects as data. This
means that, while analyses based on coalescent methods may not be as easily led astray by
a misspecified generative sampling model, birth-death models can use information from the
numbers and times at which sequences have been collected to learn more about the population
dynamic process. From a simulation perspective, the coalescent model gives rise to trees on
some pre-specified sampling times, while for the birth-death model, such times are part of
the data, and thus, a simulation just based on the model gives random sampling times. As a
consequence, trees from these two models cannot be compared directly (May and Rothfels
2023). We note that approaches to also assume a sampling model under the coalescent were
introduced but thus far are not frequently being used (Volz and Frost 2014).

Second, coalescent models generally assume a deterministically varying population7, while
7But see, for example, Popinga et al. (2015), which explores stochastic extensions to the coalescent.
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birth-death phylodynamic models intrinsically rely on a stochastic model assumption. This is
related to the fact that the coalescent process is derived by taking a limit to infinite popula-
tion sizes where fluctuations are negligible, while our use of birth-death phylodynamic models
does not involve taking such a limit. Since the relative importance of population size fluctu-
ations can be extreme when the population size is small (even if only temporarily (Bošková,
Bonhoeffer and Stadler 2014)), this means that one should take care when interpreting the
results of applying coalescent models when the ancestral population is likely to have been
small at some point along the tree. For example, small population sizes may occur at the start
of epidemic outbreaks.

Finally, the generation times differ. Birth-death models assume exponentially distributed wait-
ing times until birth or death events. The coalescent can be derived as a limit of the Wright-
Fisher model with discrete non-overlapping generations (as demonstrated above); however,
as mentioned earlier, one can also derive the coalescent under different generation time as-
sumptions such as the Moran model (Moran 1962).

For more information about how these two models compare on exponentially growing pop-
ulations, please refer to Bošková, Bonhoeffer and Stadler (2014), Volz and Frost (2014) and
Stadler (2013).

9.4 Phylodynamics for non-binary trees with co-occurring
internal nodes

In Chapter 6, we have considered binary tree topologies, assuming each internal node has
exactly two descendants. As an extension, we mentioned trees in Section 9.1 that may have
nodes with precisely one descendant, a sampled ancestor node. We did not consider trees
where nodes have more than two direct descendants. Further, we only considered time trees
where internal nodes all occurred at different time points: the probability of two lineages
branching, or two pairs of lineages coalescing at precisely the same time, was 0 (Chapter 9
and Section 9.2).

Here, we will now mention approaches and applications where nodes may have more than
two descendants or may be co-occurring in time.

There are applications where it is natural to allow parent nodes to have more than two chil-
dren instead of forcing a binary tree structure. Consider, for example, the phylogeny of HIV
virions. When an infected T-cell produces new virions, it does so in a “burst” that can pro-
duce tens of thousands of new viral particles simultaneously. As another example, in the case
of infectious disease transmission, transmissions may occur due to “superspreading” events
(imagine an infected person sneezing in a packed elevator or bus). Also, some highly fertile
marine species engage in reproductive behaviours with what is known as “sweepstakes re-
productive success,” where there is a small but non-zero chance that a single individual may
become the direct ancestor of the majority of the next generation. In all these cases, binary
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trees cannot capture important aspects of the population dynamics. Internal nodes with more
than two descendants are called polytomies or multifurcations. Approaches have been sug-
gested to infer trees with polytomies by pruning nodes in binary trees (Kuhn, Mooers and
Thomas 2011).

While it is still uncommon, some phylodynamic methods do allow for multifurcations. One
example is the multifurcating skyline plot (Hoscheit and Pybus 2019) which provides an ana-
logue to the standard coalescent skyline plot we discussed in Section 9.2, but is based on
the multifurcating generalisation to the coalescent known as the Λ-coalescent (Donnelly and
Kurtz 1999; Pitman 1999; Sagitov 1999). Similarly, a method to perform tree and parameter
inference under a spatially continuous generalisation of the structured coalescent known as the
spatial Λ-Fleming-Viot model, which also generates polytomies, has been developed (Guin-
don, Guo and Welch 2016).

A related concept when considering time trees is that of “multiple mergers”. Multiple mergers
are internal nodes in different parts of the tree that coincide in time. This co-occurrence may
happen when we sample pathogens from within a host. At a transmission event, multiple
virions may go through the transmission bottleneck founding the new infection. Initially, the
strains may expand rapidly in the new host, with all the first branching events essentially co-
occurring. None of the phylodynamic models described in this book thus far produce such
coincidences. Models of viral phylogenies with dense sampling and transmission bottlenecks,
including bottleneck-induced polytomies and multiple mergers, are in development (Stolz,
Stadler and Vaughan 2024).

We note that for virions (but also for single cells), the mutations only occur at replication
and not — as assumed by the available models (Chapter 5) — along branches. It remains
to be investigated if this model violation causes biases, particularly under dense sampling
(Section 5.1).

9.5 Accounting for population structure

So far, we assumed that the populations of interest are homogeneous, meaning that all indi-
viduals are exchangeable. In reality, most populations are structured: for instance, different
individuals will have different risks of catching a particular disease based on factors such as
their location, age, social group, and so on. Furthermore, based on their phenotype, different
species may have a different risk for extinction.

This section will delve into the various extensions to phylodynamic models that can be used
to account for underlying population structure.
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Figure 9.23: Population structure impacts the shape of the phylogeny. In this example, in-
spired by Pannell (2003), the ancestry of samples from three distinct island pop-
ulations is shown. Weak migration between islands means that lineages from
a specific island coalesce quickly with lineages ancestral to samples from the
same island (“scattering phase”) but slowly with lineages ancestral to samples
from other islands (“collecting phase”).

9.5.1 Population structure shapes phylogenies

Population structure can directly affect the shape of the resulting phylogeny. For instance,
consider a toy example in which samples are collected from three distinct islands with limited
migration between them. From the reconstructed phylogeny for these samples (Figure 9.23),
one can see that lineages ancestral to samples from the same island coalesce rapidly, while
lineages ancestral to samples from distinct islands take a lot longer to coalesce. The degree to
which population structure influences the phylogeny depends heavily on the properties of the
populations, so in the toy example, the migration rate plays an important role. However, it
is clear that structure can affect the shape of the phylogeny to the extent that it is possible to
discern this structure from the shape of the phylogeny alone. Importantly, we no longer have
a uniform distribution of ranked labelled phylogenies on n tips sampled simultaneously, as
we did under the unstructured birth-death and coalescent frameworks. This means that the
parameters of the structured model are informed both by the branching times and the ranked
tree topology (compared to only branching times under the unstructured models).

There are three important motivations for incorporating structure into phylodynamic models.
Firstly, any structure unaccounted for by the model can lead to biases in the results obtained
from phylodynamic analyses. For example, a basic coalescent analysis of the phylogeny shown
in Figure 9.23 might conclude that the difference in coalescence rates results from a recent re-
duction in effective population size. In contrast, a birth-death skyline analysis might conclude
that the birth rate of the population has recently increased. Incorporating structure into the
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Figure 9.24: Transmission trees simulated under two different scenarios. Infected individuals
are classified according to whether the infecting strain is sensitive (black) or
resistant (blue) to a particular drug. A shows a simulated tree with drug resist-
ance being mainly transmitted. B shows a simulated tree where drug resistance
always evolves de novo within a patient.

phylodynamic models allows us to avoid this bias.

The second motivation is that incorporating structure allows us to use phylodynamic ana-
lyses to address questions relating to population structure directly. For instance, what is the
migration rate between islands? What are their respective sub-population sizes? Is a particu-
lar morphological trait tied to higher rates of speciation or extinction? In the epidemiological
context, one can assess whether infection rates depend on sub-populations or determine when
a disease first entered a geographic region. Notably, many of these population structure ques-
tions cannot be addressed thoroughly by non-genetic time series data (data on the number
of individuals through time in different population subgroups), while the genomes and their
mutations and substitutions contain information about the structure through the relationships
in the induced tree.

Taking the example of a pathogen with two strains, a drug-resistant strain and a drug-sensitive
strain, two scenarios for the spread of the drug-resistant strain are possible: (i) transmitted
drug resistance, where the drug-resistant strain is directly transmitted from patient to patient,
and (ii) de novo drug resistance, where the drug-resistant strain is never transmitted but re-
peatedly arises through mutation in an already infected patient. These two scenarios and their
impact on the resulting phylogenetic tree are shown in Figure 9.24.

While Figure 9.24 shows the full history, typically only the genomic sequences and the drug-
resistant status of the samples in the tree are known in empirical studies. Reconstructing trees
based on the genetic sequences of the samples and assigning drug resistance status (resistant
or sensitive) to each tip leads to phylogenies like the ones shown in Figure 9.25. Note that
this does not lead to information on the ancestral drug resistance status (branch colours as
shown in Figure 9.24). Nevertheless, the reconstructed phylogenetic tree still contains valuable



9.5 Accounting for population structure 277

drug resistant
drug sensitive

timetime

De novo drug resistance:  Transmitted drug resistance: A B

Figure 9.25: When reconstructing transmission trees based on sequences coming from pa-
tients infected with strains that are sensitive (black) or resistant (blue) to par-
ticular drugs, then the history of drug resistance (ancestral branch colours) is
missing in the reconstructed phylogenies (unlike in Figure 9.24, where we show
the full information). However, blue tips forming a cluster A points to transmitted
drug resistance while blue tips being spread across the phylogeny B points to
frequent de novo evolution of drug resistance.

information about the underlying scenario: transmitted drug resistance is more likely if drug-
resistant tips mostly cluster together, whereas de novo resistance leads to drug-resistant and
drug-sensitive tips interspersed with one another (Kühnert et al. 2018b; Pečerska et al. 2021).

The third motivation is that structured models enable the quantification of selection (concep-
tually, this is a special case of the second motivation, but we list it separately to highlight that
phylodynamics can lead to a better understanding of non-neutral processes). In the example
on drug resistance, the phylogenetic trees were reconstructed based on the part of the genome
not associated with drug resistance (which is, ideally, a neutrally evolving part). The drug res-
istance mutations are used to determine the tip label (drug-sensitive or drug-resistant). Now,
the birth and death rates of the sensitive and resistant strains are estimated based on the tree
and shed light on transmission fitness advantages. More generally, structured models can ac-
count for the fitness effects of any heritable phenotypic trait. Furthermore, they can quantify
sequence-dependent fitness effects (Section 9.5.4.1).

9.5.2 Structured birth-death phylodynamic models

The multi-type birth-death model was developed to handle structured populations; it is an ex-
tension of the models in Section 9.1. The model contains two or more compartments or types.
In epidemiology, different compartments can represent different pathogen strains, geographic
locations, host risk groups, or any other pathogen or host population structure. In macro-
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Figure 9.26: Schematic representation of a multi-type birth-death model with two compart-
ments (states of individuals) and the dynamics associated with it (arrows la-
belled with rates). Here, we set both βij = 0 for i 6= j and ψi = 0, thus not
showing these arrows for simplicity.

evolution, different types may correspond, for example, to different species traits, different
geographic locations, or different habitats.

Each compartment has its own birth rate βii, death rate δi, and sampling rate ψi. Births can
also occur between compartments at rate βij for i 6= j, which is the rate at which individu-
als in i produce new individuals in compartment j. Migration rates γij describe the rate of
individuals moving from one compartment i to another j. A schematic of a model with two
compartments is shown in Figure 9.26.

In the example of drug resistance, the two compartments I1 and I2 represent the population
infected with the drug-sensitive strain and the population infected with the drug-resistant
strain, respectively. β11 and β22 are the transmission rates of the drug-sensitive strain and the
drug-resistant strain, and γ12 is the rate of resistance evolution.

In what follows, we will derive the probability density of a time tree under the multi-type
birth-death model. The resulting phylodynamic likelihood is then used in parameter inference.

9.5.2.1 Deriving the probability of an individual having 0 or 1 descendants at time t

Firstly, we consider the probability pi(0|t) that no descendants of a type i individual are alive
after t time units. This condition is equivalent to p(0|t) in the unstructured case, with the
difference being that now we also consider the type of the individual.
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To compute this probability, we use the same arguments as in Section 9.1.1.1. We write the
probability pi(0|t + ∆t) in terms of pi(0|t) and use this relationship to derive a differential
equation. We partition time as in Figure 9.3. In the time ∆t after the start of the process, any
of the following can happen:

(i) no event occurs with probability 1 − (δi +
∑
j(βij + γij))∆t; but since no individuals

are present at t+∆t, the descendants of the original individual must go extinct within
the remaining time t, which has the probability pi(0|t);

(ii) the individual dies with probability δi∆t, leaving no descendants at time t+∆t;

(iii) the individual gives birth to another individual of type j with probability βij∆t and
both individuals must go extinct within time t, which has the probability pi(0|t)pj(0|t);

(iv) the individual changes type (migrates) from i to j with probability γi,j∆t; in this case,
the probability of all its descendants going extinct is the probability that all descendants
of an individual of type j go extinct in the remaining time t, pj(0|t);

(v) more than one event happens, which has the probability O(∆t2).

Combining these possibilities allows us to write down the probability of extinction:

pi(0|t+∆t) =

1−

δi +∑
j

(βij + γij)

∆t

 pi(0|t)︸ ︷︷ ︸
(i)

+ δi∆t︸︷︷︸
ii

+
∑
j

βij∆tpi(0|t)pj(0|t)︸ ︷︷ ︸
iii

+
∑
j

γij∆tpj(0|t)︸ ︷︷ ︸
iv

+O(∆t2)︸ ︷︷ ︸
v

. (9.64)
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Rearranging the terms and taking the limit ∆t→ 0 yields the following differential equation:

d
dt
pi(0|t) = −

δi +∑
j

(βij + γij)

 pi(0|t)

+ δi +
∑
j

(βijpi(0|t) + γij) pj(0|t). (9.65)

We note that with a similar set of arguments, we can also derive the differential equation for
the probability of one descendant,

d
dt
pi(1|t) = −

δi +∑
j

(βij + γij)

 pi(1|t)

+
∑
j

(βij(pi(0|t)pj(1|t) + pi(1|t)pj(0|t)))

+
∑
j

γijpj(1|t). (9.66)

Unlike the differential equations for p(0|t) and p(1|t) in the unstructured model, the differen-
tial equations for pi(0|t) and pi(1|t) in the structured model do not have known analytical
solutions. However, they can be solved using standard numerical integration techniques (Sciré
et al. 2022).

9.5.2.2 Probability density of an oriented sample-typed tree

To derive the probability density of the tree under the multi-type birth-death model, we use
considerations similar to those used in Section 9.1.5. As in that section, we assume complete
sampling at present and that no samples have been collected before that time.

First, we define different variations of phylogenetic trees when dealing with structured models
(Sciré et al. 2022). A phylogenetic tree that has type information associated with the leaves,
as in Figure 9.25, is referred to as a sample-typed tree or tip-typed tree. A phylogenetic tree
in which the edges at every point are annotated with the ancestral types, as in Figure 9.24 is
referred to as a branch-typed tree. A multi-type tree may be either a sample-typed tree or a
branch-typed tree.

In what follows, we will present a means of computing the probability density of an oriented
sample-typed tree under the multi-type birth-death model. Here, we note that at a branching
event with descending individuals of type i and j, the types are allocated to the left and right
branches with equal probability.
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Figure 9.27: Sample-typed tree based on which we explain the probability density calculation
for a tree under the multi-type birth-death model. On this tree, an arbitrary time
t on edge e is marked. We consider an individual represented on edge e at time
t and assume it is of type i. We denote the left and right child branches of e
with el and er, respectively.

Consider an oriented sample-typed tree T o and let e be a branch of T o. Again, let time 0 be the
present, and time is reversed, meaning the origin of the tree is at time T > 0. Let t be some time
at which branch e exists (see Figure 9.27). Let T oe (t) be the subtree descending from branch
e with time of origin t. Now consider an individual of type i at time t. The probability that
this individual produces T oe (t) is denoted by gei (t) (see Figure 9.27). By considering all events
that may happen to the considered individual, we find that along branch e, gei (t) changes
according to a differential equation of the same form as Equation (9.66):

d
dt
gei (t) = −

δi +∑
j

(βij + γij)

 gei (t)

+
∑
j

(
βij(g

e
i (t)pj(0|t) + gej (t)pi(0|t))

)
+
∑
j

γijg
e
j (t). (9.67)

At the end of branch e (time te, Figure 9.27), the probability density gei (te) depends onwhether
the node at time te is a leaf or a branching event:

gei (te) =


1 if the node is a leaf of type i,
0 if the node is a leaf of type j 6= i,∑
j

1
2βij

(
geli (te)g

er
j (te) + gelj (te)g

er
i (te)

)
otherwise,

(9.68)
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where el and er are defined as the left and right child edges in the case that e gives rise to an
internal node. The factor 1/2 acknowledges the equal probability of branch er starting in type
i (vs. j).

The dependence of the boundary condition for internal nodes on the solutions for the branches
descending these nodes allows us to numerically integrate Equation (9.67) backwards in time
from each leaf, then successively combine these solutions at internal nodes until we reach the
origin of the tree where the integration returns gri (T ), where r is the branch connecting the
origin and the root of tree T o.

The probability density gri (T ) is the probability of observing the tree and the leaf states, given
that the process began with an individual in state i at time T before the present. That is,
gri (0) = P (T o|i,β,γ, ~δ, T ), where β and γ are the birth and migration rate matrices, and ~δ is
the vector of type-specific death rates. To convert this into the probability density of the tree
without conditioning on the starting state, we assume initial state probabilities πi, where πi
is the probability of the first individual at time T in the past being in state i.

The initial state probabilities πi need to be chosen by the user: It may make sense to fix the
state of the initial individual, πj = 1, and πi = 0 for all states i different from j (for example,
the initial individual may be assumed to be infected with a drug-sensitive strain; and not a
drug-resistant strain). One can also assume π1 = π2 = . . . or fix the probabilities in some
other way based on independent data and knowledge. Finally, if the model has a stationary
distribution, one can set ~π to the stationary probabilities (Section 5.2.4). The latter was done
in Maddison, Midford and Otto (2007) and Stadler and Bonhoeffer (2013).

We can then write
P (T o|β,γ, ~δ, ~π, T ) =

∑
i

gri (x0)πi, (9.69)

proving the following theorem.

Theorem 9.5.1. Consider a multi-type birth-death model for time T with birth rate matrix
β, migration rate matrix γ, and death rate vector ~δ. Furthermore, consider complete extant
tip sampling (ρ = 1) and no sampling through time (ψ = 0). The initial state probabilities are
~π. The probability density of an oriented tree T o, conditioned on non-extinction (XT > 0), is

P (T o|T,XT > 0,β,γ, ~δ, ~π) =
∑
i

gri (T )πi
1− pi(0|T )

. (9.70)

with gri (T ) being evaluated according to Equation (9.67) and Equation (9.68).

Theorem 9.5.1 states the probability density of a time tree under the multi-type birth-death
model with complete sampling in the present and no sampling through time. We note that the
probability density of a time tree in the unstructured case (Theorem 9.1.7) was derived using
a slightly different strategy. However, the same strategy as employed in the multi-type case
would also prove Theorem 9.1.7. Extending this same computational approach to handle



9.5 Accounting for population structure 283

sampling through time, incomplete sampling in the present, and rates changing through time
is straightforward (Sciré et al. 2022).

The expression of Theorem 9.5.1, considered as a function of the parameters, is the phylody-
namic likelihood used in inference methods (see applications below).

The framework above was initially introduced for trees where all tips were sampled at the
same time, aiming to model trait-dependent speciation and extinction processes leading to
extant species (e.g. see Maddison, Midford and Otto (2007), FitzJohn, Maddison and Otto
(2009), Goldberg, Lancaster and Ree (2011) and Goldberg and Igić (2012)). We highlight
that one must carefully select which traits to use when applying this framework. To illustrate
this, assume a tree evolved under some trait-dependent speciation and extinction process. Fur-
thermore, assume that traits not influencing speciation and extinction rates are considered in
a phylodynamic analysis. Then, the analysis may nevertheless estimate trait-dependent spe-
ciation and extinction rates, as the alternative (constant rates) would not explain the tree
— which is shaped by a structured population — well (Rabosky and Goldberg 2015; Beau-
lieu and O’Meara 2016). Methods allowing for hidden traits potentially affecting speciation
and extinction rates were introduced to address this problem (e.g. in Beaulieu and O’Meara
(2016)).

Furthermore, models where the tip states are not known but are inferred have been presen-
ted, for example, in Stadler and Bonhoeffer (2013), Maliet, Hartig and Morlon (2019) and
Barido-Sottani, Vaughan and Stadler (2020), assuming a multi-type birth-death model, and
in Rabosky (2014) using a variation of the multi-type birth-death model (but see Moore et al.
(2016) for limitations of the latter framework).

It is possible to use the general strategy introduced above to compute the probability density
of a branch-typed tree (Sciré et al. 2022), such as the one shown in Figure 9.24. The only
major difference in that case is that type-change (migration) events become additional nodes
in the tree, and the differential equation for the probability distribution gei (t) does not allow
for type change events along edge e.

9.5.2.3 Example application: geographic spread of seasonal influenza

Themulti-type birth-death phylodynamic likelihood is the basis for performing phylodynamic
inference on structured populations.

For example, to gain insight into the spread of the influenza virus around the globe, flu se-
quences — annotated according to the geographic location of the patient: northern hemi-
sphere, southern hemisphere, or tropical area — were analysed (Kühnert et al. 2016) using a
multi-type birth-death model.

The effective reproductive numbers were estimated for the three different locations over the
time span of three years. The results are shown in Figure 9.28. The effective reproductive
numbers for both the northern and southern hemispheres showmarked seasonality: in winter,
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the reproductive number is above one, and in summer, it is below one. The reproductive
number in the tropical area is stable, confirming that influenza is endemic in this area.

Using the phylodynamic likelihood for branch-typed trees, one can additionally infer the loc-
ation of each branch in the tree. This is shown with different colours for different locations
in Figure 9.29. The backbone of this tree is composed almost exclusively of tropical lineages,
which indicates that the tropical area is the reservoir for the flu virus, and tropical strains
start the seasonal epidemics in other locations. Viruses from the northern (or southern, re-
spectively) hemisphere cluster together in localised epidemics, highlighting the seasonality.

9.5.3 Structured coalescent phylodynamic models

Like the coalescent distribution discussed in Section 9.2, the structured coalescent provides
a probability distribution over sampled time trees conditional on a particular demographic
(that is, population size) history. Just as in the unstructured case, the structured coalescent
arises as a limiting case of a number of distinct population models, one of which is a structured
extension to the Wright-Fisher model.

9.5.3.1 The structured Wright-Fisher model

The structured Wright-Fisher model we discuss here is described in Notohara (1990), and
consists of a population of N individuals distributed among d distinct “islands”, “demes”, or
“compartments”. In each deme i = 1 . . . d, there are a constant number ofNi individuals, with∑d
i=1Ni = N . We summarise the population sizes Ni in ~N . The dynamics of the model occur

over discrete generations, separated by a fixed generation time g. Each generation consists
of two distinct phases: a migration phase and a reproduction phase. In the migration phase,
individuals move freely between each pair of populations i and j with probabilities qijg. The
migration rates are assumed to be slow enough relative to g such that qijg < 1 for all i, j and
that

∑
j
j 6=i

qij < 1 for all i. In the reproduction phase, each population individually undergoes

Wright-Fisher-style resampling: in deme i, each of theNi children is assigned a parent selected
uniformly at random from the N ′

i members of the deme after the migration phase.

This resampling means that the population size of each deme at the end of the generation
is the same as it was at the beginning. An example generation for a two-deme structured
Wright-Fisher model is illustrated in Figure 9.30.

The stochastic process described above allows for the free movement of individuals between
subpopulations. There is no assumption that the migration phase itself preserves the size of
individual populations, even in expectation. For example, the probabilities qijg and qjig may
be very different even in a two-deme model, meaning that under the migration process alone,
the population sizes would deviate from their initial values of Ni and Nj . However, the re-
production phase of the model returns the individual population sizes to their original values.
Thus, the process mimics the dynamics of a population spread across distinct demes such that
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Figure 9.28: The effective reproductive number of seasonal influenza was inferred for the (a)
northern hemisphere, (b) tropical areas and (c) southern hemisphere, under the
multi-type birth-death model based on influenza sequence data. The effective
reproductive number is the birth rate divided by the death and sampling rate
for a particular area and season. Figure adapted from Kühnert et al. (2016).
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Figure 9.29: (a) Phylogenetic tree showing the estimated geographic spread of seasonal in-
fluenza inferred under the multi-type birth-death model. (b) (bottom left) shows
the posterior distribution for the root location, that is, the estimated probability
that the epidemic started in the northern, southern, or tropical area. Figure ad-
apted from Kühnert et al. (2016).

the size of the population of a single deme is maintained at the deme’s carrying capacity. The
assumption that migration does not affect the population size distribution is equivalent to
assuming that the effects of migration on the population size are only transient and that the
population sizes rapidly re-equilibrate to their natural sizes (that is, carrying capacities) of ~N .

9.5.3.2 The structured coalescent model

The structured coalescent provides a distribution for branch-typed phylogenetic trees con-
ditional on the parameters of the model and the locations of the samples representing the
tree leaves. Like the unstructured coalescent, the probability density for a branch-typed tree
under the structured model can be interpreted as the probability density of a particular real-
isation of a backwards-in-time continuous-time Markov process. A simplified description of
the derivation provided by Notohara (1990) follows.

The structured coalescent probability density of a tree is again derived from the discrete-time
structured Wright-Fisher model by fixing the coalescence rate θ and taking the limit of large
N (and thus small g). For this derivation, we must consider two things:
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Figure 9.30: The structured Wright-Fisher model is a discrete-generation model in which
each generation consists of two phases: a migration phase and a reproduction
phase. This figure illustrates a possible outcome of these two phases for a two-
deme model.

(i) the probability that a pair of individuals in a single deme share a common ancestor in
the previous generation, and

(ii) the probability that the parent of a member of a deme in the current generation was a
member of another deme in the previous generation.

In the limit of large population sizes, the first of these probabilities gives the within-deme
pairwise coalescence rate, while the second gives the per-lineage backward migration rate.

The coalescence rate between a single pair. Suppose we select a pair of individuals from
deme i. Under the structured Wright-Fisher model, what is the probability that these indi-
viduals share a common ancestor in the previous generation?

If we knew the total number of immigrants Ri and emigrants Si, which respectively arrived
and departed from deme i during the migration phase of the generation, we could answer this
question directly using the same reasoning used to compute the probability in the unstructured
case. That is, the probability that the second individual is assigned a parent identical to the
first during the reproduction phase of the generation would be

P (coalescence in i|Ri, Si) =
1

Ni +Ri − Si
. (9.71)

Thus, the probability depends on the specific movements of individuals in each generation.

At this point, it is helpful to define θi = 1/Nig. In terms of this variable, we rewrite this
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probability as

P (coalescence in i|Ri, Si) =
θiNig

Ni +Ri − Si

=
θig

1 + (Ri − Si)θig
. (9.72)

To determine the limiting coalescence rate of the pair of lineages (the probability of coales-
cence per unit of time), we must first examine the limiting behaviour of the probability dis-
tributions governing the number of immigrants and emigrants. Defining nij as the number of
individuals which move from deme i to j, the assumptions of the structured Wright-Fisher
model imply that nij has the following binomial distribution:

P (nij | ~N, q, g) =
(
Ni
nij

)
(qijg)

nij (1− qijg)(Ni−nij)

=

(
Ni
nij

)(
qij
Niθi

)nij
(
1− qij

Niθi

)(Ni−nij)

. (9.73)

Recall that the binomial distribution approaches a Poisson distribution in the limit of a large
number of trials and a small success probability (see Box 22 on page 97). This is exactly
the limit we are interested in; the success probability here is qi,j/Niθi, while the number of
“trials” is Ni. Thus, for large Ni and small g (with θi = 1/(Nig)) we find that the probability
distribution for nij approaches a Poisson distribution with mean qij/θi. That is,

P (nij | ~N, q, θi) ' e
−qij/θi

(qij/θi)nij

nij !
. (9.74)

The total number of immigrants into deme i is given by

Ri =
∑
j
j 6=i

nji. (9.75)

Since the sum of Poisson-distributed random variables is also Poisson-distributed (Box 21 on
page 96), Ri is Poisson-distributed with a mean (and variance) equal to

∑
j
j 6=i

qji/θj. Similarly,

the number of emigrants out of i is given by Si =
∑

j
j 6=i

nij and is therefore also Poisson-

distributed with a mean (and variance) given by
∑

j
j 6=i

qij/θi.

Since the mean and variance of Ri and Si depend only on ~θ and q, they remain fixed in
the coalescent limit. Thus, the coalescence rate between the pair of individuals converges in
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probability to

lim
g→0

P (coalescence in i)
g

= lim
g→0

∑
Ri,Si

P (coalescence in i|Ri, Si)P (Ri, Si)
g

(9.72)
= θi lim

g→0

∑
Ri,Si

P (Ri, Si)

1 + (Ri − Si)θig

= θi = 1/(Nig). (9.76)

Since the reproduction phase follows the migration phase, members of different populations
cannot share a parent in the previous generation. Hence, the coalescence rate between pairs
of individuals in distinct demes is zero.

Thus, in general, the rate of coalescence between a pair of individuals in demes i and j is given
by θi if i = j and is 0 otherwise.

The backwards migration rate of an individual. Now, suppose we select a single individual
from deme i. What is the probability that this individual has a parent who was a deme j 6= i
member in the previous generation?

To do this, we introduce the variables Zp and Zc to represent the demes of the parent and the
child, respectively, and derive the probability P (Zp = j|Zc = i). The expression for P (Zp =
j|Zc = i) can be rearranged using the rules of conditional probability (see Section 1.3.1) in
the following way:

P (Zp = j|Zc = i) =
P (Zc = i|Zp = j)P (Zp = j)

P (Zc = i)

=
P (Zc = i|Zp = j)× P (Zp = j)∑
k P (Zc = i|Zp = k)× P (Zp = k)

. (9.77)

The terms on the right-hand side of this equation are directly provided by the model, so we
can write

P (Zp = j|Zc = i) =
qjigNj/N(∑

k
k 6=i

qkigNk/N

)
+

(
(1−

∑
k
k 6=i

qikg)Ni/N

)
=

qjiθ
−1
j(∑

k
k 6=i

qkiθ
−1
k

)
+ (Ni −

∑
k
k 6=i

qikθ
−1
i )

. (9.78)

Note that the expression in the right bracket of the denominator refers to the case k = i. The
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backward-time rate that a lineage in deme i migrates to deme j is then given by

Mij = lim
g→0

P (Zp = j|Zc = i)

g
= lim
g→0

qjiθ
−1
j∑

k
k 6=i

qkiθ
−1
k g + (Nig −

∑
k
k 6=i

qikθ
−1
i g)

= lim
g→0

qjiθ
−1
j∑

k
k 6=i

qkiθ
−1
k g + (θ−1

i −
∑

k
k 6=i

qikθ
−1
i g)

=
qjiθ

−1
j

θ−1
i

=
qjiNj
Ni

. (9.79)

9.5.3.3 The structured coalescent process and the probability of a branch-typed tree

In the previous section, we derived the rate of coalescence of two individuals in the same deme
i to be θi = 1/Nig, the rate of coalescence of two individuals in distinct demes to be 0, and the
backwards rate of migration from deme i to deme j (i 6= j) to beMi,j =

qjiNj

Ni
. We can now

formulate the structured coalescent as a backwards-time stochastic process. To do this, we
introduce the vector ~k whose elements ki represent the number of sampled lineages belonging
to deme i.

We generalise the pairwise coalescence and backwards-time migration rates to provide the
coalescence and backwards migration rates for arbitrary numbers of lineages.

Suppose we have ki sampled lineages in deme i. As the coalescent limit only allows for in-
dependent pairwise coalescences (coalescence between three or more lineages occurs with
probability 0 in this limit), we can multiply the pairwise coalescence rate θi = 1/Nig, by the
number of pairs of sampled lineages in this deme, to get the following expression for the total
coalescence rate in this deme: (

ki
2

)
1

Nig
. (9.80)

Similarly, we can obtain the total rate of backwards migration of sampled lineages from
deme i to some other deme j by multiplying the per-lineage backwards migration rate in that
direction,Mij = (qjiNj)/Ni by the number of sampled lineages in i to get

kiMij . (9.81)

With these transition rates, we can write down the probability density for a branch-typed
tree T under the structured coalescent. Consider the branch-typed tree shown in Figure 9.31.
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Figure 9.31: A branch-typed tree for which the tree probability density calculation under
the structured coalescent is explained. The tree has the event times t0, . . . , t7
(coalescence, migration and sample times) marked. The time variable increases
into the past.

The probability of this tree under a two-deme structured coalescent model conditional on the
sample types C and the model parameters can be written as follows:

f(T | ~Ng,M, C) = exp
(
−(t1 − t0)

((
2

2

)
1

N1g
+

(
2

2

)
1

N2g
+ 2M12 + 2M21

))
1

N1g

× exp
(
−(t2 − t1)

((
1

2

)
1

N1g
+

(
2

2

)
1

N2g
+M12 + 2M21

))
M12

× exp
(
−(t3 − t2)

((
3

2

)
1

N2g
+ 3M21

))
1

N2g

× exp
(
−(t4 − t3)

((
2

2

)
1

N2g
+ 2M21

))
× exp

(
−(t5 − t4)

((
1

2

)
1

N1g
+

(
2

2

)
1

N2g
+M12 + 2M21

))
1

N2g

× exp
(
−(t6 − t5)

((
1

2

)
1

N1g
+

(
1

2

)
1

N2g
+M12 +M21

))
M12

× exp
(
−(t6 − t5)

((
2

2

)
1

N2g
+ 2M21

))
1

N2g
. (9.82)

Each line of the right-hand expression corresponds to the probability of seeing no event in
the associated time interval, followed by the probability (density) of the observed event that
terminates the interval. Just as in the unstructured case presented in Section 9.2.2.3, the ab-
sence of the binomial coefficients in the event probabilities is due to these terms representing
the probability that a particular pair coalesces or a particular lineage migrates. Also, as in the
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unstructured case, the tree probability is conditional on the sample times and locations; thus,
the sampling events do not contribute directly to the probability but instead alter the number
of lineages at particular times. Note that the above equation uses the generalised binomial
coefficient definition from Box 2 on page 25, in which

(
a
b

)
= 0 when b > a.

In general, the probability density of a branch-typed tree is

f(T | ~Ng,M, C) =

L∏
l=1

exp

−(tl − tl−1)

d∑
i=1

(kli
2

)
1

Nig
+

d∑
j=1

kliMij


×

d∏
i=1

( 1

Nig

)νc
i d∏
j=1

(Mij)
νm
ij

 , (9.83)

where l ∈ [0, L] indexes the L intervals between unique coalescence, migration and sample
times in order of increasing age, tl is the time at the oldest end of the interval l, and we define
t0 = 0 as the age of the most recent leaf. We further define kli as the number of lineages in
deme i in the interval between tl and tl−1, νci as the number of coalescence events between
lineages in deme i, and νmij as the number of migration events on the tree from deme i to deme
j backwards in time.

If the tree and the ancestral migration history were perfectly known, this probability density
could be used on its own as the basis for a maximum likelihood inference scheme to infer
migration ratesMij and effective population sizes Ni.

In practice, however, the ancestral migration history is rarely known. Thus, the structured
coalescent is often used as one component of a larger inference scheme where the tree and
the ancestral migration history are inferred together with the migration rates and effective
population sizes (see Chapter 10 for details).

9.5.3.4 Expected coalescence times under 2-deme symmetric model

Unfortunately, the complexity of the structured coalescent model means that few results can
be proved analytically. However, among those that can be proven is a particularly elegant
result regarding the expected time to the most recent common ancestor (tMRCA) of two
samples in a structure coalescent model with two demes, equal sub-population sizes N1g =
N2g = Ng and symmetric backwards migration ratesM12 =M21 = m.

To derive this result (which can also be found, for example, in Hein, Schierup and Wiuf
(2005)), we define τS as the expected tMRCA for two samples drawn from the same popu-
lation and τD as the expected tMRCA for a pair of samples drawn from distinct populations
(that is, one sample from each deme).

To derive expressions for these quantities, we begin by relating them algebraically. The re-
lationships we write down rely heavily on the properties of exponential distributions and
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Poisson processes laid out in Box 21 on page 96. In particular, we use the fact that the mean
value of an exponentially distributed time t with rate parameter λ is given by 1/λ, as well as
the fact that the minimum of two event times t1 and t2 which are individually exponentially
distributed with rates λ1 and λ2 is itself exponentially distributed with rate λ1 + λ2.

Firstly, consider τD, the expected time until coalescence for lineages ancestral to samples in
different demes. Since lineages in different demes cannot directly coalesce, a migration in either
of the two possible directions has to occur first. Thus, τD must include the expected waiting
time until one of the two possible migrations occurs. After such a migration, the two lineages
are in the same deme, so the remaining time to coalescence is τS . That is,

τD =
1

2m
+ τS , (9.84)

where 1/2m is the expected time for either migration to occur since this time is exponentially
distributed with rate m+m (that is, one m for each migration direction).

We can similarly decompose τS into the expected time until any event occurs and then deal
with the two possibilities (migration or coalescence) individually. This gives

τS =
1

2m+ 1/Ng
+ pMτD + pC · 0, (9.85)

where pM and pC are the respective probabilities of the event being a migration or a coales-
cence, and the factor following the migration probability is τD, as again, the two lineages are
in distinct demes. The factor following pC is zero because there is no additional waiting time
as the coalescence has already occurred. Substituting in pM = 2m

(2m+1/Ng) (which is the ratio of
the total migration rate to the sum of all of the rates) and eliminating the term with the zero
factor yields:

τS =
1

2m+ 1/Ng
+

2mτD
2m+ 1/Ng

. (9.86)

Solving the recursion relation defined by Equations (9.84) and (9.86) then gives the following
values for the mean tMRCAs:

τS = 2Ng, (9.87)

τD =
1

2m
+ 2Ng. (9.88)

As expected, τD increases without bound in the limit of low migration since there must be
at least one migration before coalescence can occur under the structured coalescent model.
Interestingly, however, τS , the expected time for a pair of lineages from the same deme to
coalesce in this symmetric two-dememodel, is independent of the migration ratem. Moreover,
this is exactly the same expectation as in an unstructured model with a total population size of
2N . However, this correspondence only holds in the mean, as the variance in the tMRCA, even
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in this simple model, depends on the migration rate and is thus distinct from the unstructured
model.

9.5.3.5 Approximations to the structured coalescent

While the probability of a branch-typed tree can easily be written down, computed, and used
directly for inference (as in the following example), using it in practice is challenging since
this likelihood requires explicit consideration of ancestral types — information that is rarely
directly observable. This means that, in practice, we usually need to sum over all the possible
ancestral states. Since there is no general analytical solution to this problem, this summation
has to be computed numerically, dramatically increasing the computational complexity of the
problem.

Several authors have proposed approximations to the structured coalescent to com-
bat this complexity, allowing this summation to be performed much more effi-
ciently, at the cost of introducing slight deviations from the true structured coales-
cent model. All involve attempts at replacing the ancestral types in a branch-typed
tree with the probabilities that lineages occupy particular states given the observed
types at the leaves. The approximations of Volz (2012) and de Maio et al. (2015)
(the latter method is implemented as a package BASTA (https://bitbucket.org/
nicofmay/basta-bayesian-structured-coalescent-approximation) in BEAST2
(https://www.beast2.org/)) both compute lineages type probabilities under the assump-
tion that the migration of one lineage is completely independent of all other lineages. An
improved approximation of Müller, Rasmussen and Stadler (2017) (implemented in the soft-
ware package MASCOT (https://github.com/nicfel/The-Structured-Coalescent),
also as a part of BEAST2) acknowledges that the migration of one lineage is influenced by
the location of other lineages and their coalescent probabilities.

These methods are extremely influential in the practical application of structured coalescent
models.

9.5.3.6 Example application: geographic spread of seasonal influenza

As in Section 9.5.2.3, we demonstrate the use of the structured coalescent by again consider-
ing the case of the worldwide circulation of the influenza virus. Vaughan et al. (2014) analysed
a similar dataset to that used in Section 9.5.2.3. They used a three-deme structured coalescent
model, with the three effective population sizes accounting for the differing infectious pool
sizes in the three sample locations: New Zealand (southern hemisphere), Hong Kong (trop-
ics), and New York (northern hemisphere). The results, shown in Figure 9.32, agree with
the results of the multi-type birth-death model in Figure 9.29, suggesting that the “trunk” of
the transmission tree is predominantly in the tropics. In addition, results from the coalescent
model analysis provide a direct inference of Ng for the three locations. The ordering of these

https://bitbucket.org/nicofmay/basta-bayesian-structured-coalescent-approximation
https://bitbucket.org/nicofmay/basta-bayesian-structured-coalescent-approximation
https://bitbucket.org/nicofmay/basta-bayesian-structured-coalescent-approximation
https://bitbucket.org/nicofmay/basta-bayesian-structured-coalescent-approximation
https://www.beast2.org/
https://www.beast2.org/
https://www.beast2.org/
https://github.com/nicfel/The-Structured-Coalescent
https://github.com/nicfel/The-Structured-Coalescent
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Ng

A

B

C

Figure 9.32: Structured coalescent model analysis of influenza sequences. A three-deme
structured coalescent model is assumed to infer A ancestral locations, B the
root location, C effective population sizes, and migration rates (not pictured),
using influenza genetic sequence data collected at different times from three
locations — tropics: Hong Kong, southern hemisphere: New Zealand, northern
hemisphere: New York. Figure adapted from Vaughan et al. (2014).

Ng values reflects the ordering of human population sizes, with the New Zealand deme hav-
ing the smallest Ng and New York having the highest. This ordering of Ng values implies a
similar ordering of effective population sizes, assuming the generation time g is comparable
between these locations.
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9.5.4 Related structured models

9.5.4.1 Neutral trait evolution (phylogeography)

So far, in this section, we have focused on models for structured populations that allow differ-
ent compartments or populations to have different demographic characteristics. For instance,
members of the drug-resistant and drug-sensitive compartments in the model shown in Fig-
ure 9.26 are assumed to have different removal or recovery rates. Similarly, members of dif-
ferent demes in a structured coalescent model coalesce at different rates due to differences in
population sizes.

A large class of structured models focuses on the special case where the deme/compartment
does not affect quantities such as birth, death, and coalescence rates. Such models are some-
times referred to as “neutral trait” models, where we identify compartment membership with
a particular trait and claim that the value of this trait does not affect reproductive success.

Such models are popularly applied to problems in phylogeography: the study of the relation-
ship between phylogeny and geography. A significant contribution was made by Lemey et al.
(2009) providing a widely-used method under such a model.

The idea behind such “neutral trait” models is fairly simple: a tree is assumed as given (mean-
ing we can assume it was generated, for example, by any of the unstructured birth-death or
coalescent models for the tree generation process). Traits are assumed to evolve forward in
time along the branches of the tree according to a continuous-time Markov chain with fixed
transition rates. This is perfectly analogous to how we model nucleotide substitutions on a
phylogeny. In fact, such models are mathematically equivalent to appending a single addi-
tional site to the genetic MSA that evolves according to a special substitution model. As such,
computing the probability of the trait distribution among the samples can be done directly
using Felsenstein’s pruning algorithm and thus is highly efficient.

Importantly, the neutrality assumption also extends to the sampling process: such models
generally assume that the trait value carried by an individual has no bearing on its probab-
ility of being sampled. Violating this assumption is known to result in biased estimates of
phylodynamic parameters (de Maio et al. 2015).

9.5.4.2 Models with continuous structure

The structured population models we have described so far have all had one thing in com-
mon: they assume that a population may be divided into discrete sub-populations, within
which individuals are identical. However, many populations are better described by mod-
els with a continuum of compartments. An obvious example is the spatial distribution of a
population. Although we can approximate this distribution using discrete demes, as in the
structured Wright-Fisher model, it is generally more natural to assign a unique location to
every individual.
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A variety of phylodynamic models allow for continuously structured populations. One of
the simplest is the continuous version of the neutral trait model discussed in Section 9.5.4.1
(Lemey et al. 2010). These models, commonly referred to as continuous phylogeographymod-
els, are neutral in the sense that the continuous structure does not affect the birth and death
rates. An individual has the same rates no matter which continuous structure value charac-
terises it.

Continuous phylogeography models have been widely applied in an effort to understand the
geographical spread of populations of all kinds. For example, in the traditional context of
species phylogeography, this approach has been employed in the study of the spread of plant
(Ronikier et al. 2023) and animal (Malleret et al. 2022) populations over long timescales.
Continuous phylogeographic analyses have also been used to infer fine-grained details of the
spatial dynamics of diverse pathogens such as yellow fever virus in Brazil (Faria et al. 2018),
and the SARS-CoV-2 in the United Kingdom (Kraemer et al. 2021), as well as the global spread
of avian influenza virus (The Global Consortium for H5N8 and Related Influenza Viruses
2016), to name just a few. Finally, such models have also been used to infer properties of the
geographical dynamics of languages, including identifying the origin of the Indo-European
family (Bouckaert et al. 2012) and understanding the expansion of the Bantu linguistic family
out of West Central Africa (Grollemund et al. 2015).

The following two approaches do not make the neutrality assumption; the trait may affect
the reproduction process. Maliet, Hartig andMorlon (2019) introduced a model where, upon
birth, the birth rate may shift following the law of some continuous distribution. This model
thus makes it possible to have a continuum of lineage-specific birth rates. A continuous variant
of the structured coalescent model also exists, known as the spatial Λ-Fleming-Viot process
(Barton, Etheridge and Véber 2010). A phylodynamic inference scheme based on this model
was developed by Guindon, Guo and Welch (2016), although its computational demands
have limited its use (Guindon and de Maio 2021).

9.5.4.3 Genotypes affecting reproductive fitness

One way in which many real populations exhibit population structure is via the effects of
natural selection. Any given biological population may have diversity in the fitness of its
members, leading to a heterogeneity of birth, death, and coalescence rates in the population.
Although this is often ignored for practical reasons, this can result in biases in inference results
(Neher and Hallatschek 2013).

One direct approach to incorporating this fitness variation is treating fitness classes as com-
partments in the multi-type birth-death model introduced above. While this solves the prob-
lem in principle, the large number of compartments necessary to represent the possible fitness
variation in a real population requires sophisticated approximations, such as those presented
in the work of Rasmussen and Stadler (2019), to make phylodynamic inference under such
models feasible.
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9.5.4.4 Combating over-parameterisation in multi-type models

Analyses using multi-type phylodynamic models of all forms suffer from the common prob-
lem that the number of unknown parameters that need to be inferred increases rapidly with
the number of distinct types or demes considered. Consider, for instance, a multi-type birth-
death model parameterised by type-specific birth and death rates and migration rates. In the
most general case, the number of unique parameters increases quadratically with the number
of types. Considering that an increase in available data does not necessarily mirror this in-
crease in model complexity, analysing samples drawn from populations involving more than
a handful of types can easily present an insurmountable challenge.

One approach to addressing this problem is to employ so-called “regularisation” approaches,
which, for example, may apply a penalty to non-zero rate parameters to ensure the total
number of rates that need to be estimated is kept as low as possible while still having sufficient
rates to explain the data. This approach is used by the original discrete neutral trait method
of Lemey et al. (2009) to keep the number of type-transition rate parameters low, and the
regularisation allows this method to be used with many distinct types.

Furthermore, one can treat the different birth and death rates not as independent parameters
but rather as discrete categories from a continuous distribution, similar to how rate variations
between sites can be handled in a substitution model (see Section 5.5). In this situation, the
parameters are the number of types d and the mean and variance of the chosen distribution.
Based on these three parameters, the continuous distribution is discretised in d parts, leading
to a rate for each type. Thus, the number of parameters no longer depends on the number of
types. This approach was implemented in Höhna et al. (2019).

Another approach to dealing with the explosion in model complexity is to treat the model
parameters as possible covariates of external environmental factors. For instance, assuming
migration rates between spatial compartments are inversely proportional to the geographic
distance between the compartment centroids. This approach, which also extends to skyline
plot models with time-dependent rates, not only addresses the practical problems of over-
parameterisation but also allows us to investigate possible explanations for rate variation
directly. A popular example of this approach is the analysis of global patterns of seasonal
influenza transmission conducted by Lemey et al. (2014), where migration rates of a neutral
trait evolution model are tied probabilistically to several possible explanatory variables, in-
cluding distance between locations, population density, and frequency of air travel between
locations. Another example is given byMüller, Dudas and Stadler (2019), who used the struc-
tured coalescent to model the phylodynamics of the Ebola virus in Sierra Leone, linking ef-
fective population size dynamics to observed case counts and migration rates to geographic
distances between districts.
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9.5.4.5 Ecological models

Several multi-compartment phylodynamic models (Etienne et al. 2011; Volz et al. 2009;
Rasmussen, Ratmann and Koelle 2011; Leventhal et al. 2014) were developed to assess eco-
logical and epidemiological questions. In ecology, a carrying capacity was introduced as a
separate compartment. One compartment comprises the species that are also tracked in the
phylogeny, and the second comprises the free niches that affect the dynamics of the first com-
partment. Upon extinction or speciation of a species, the number of free niches increases or,
respectively, decreases by one. The speciation rate depends on the number of free niches. In
epidemiology, the considered models are so-called SIR-type models where infected individu-
als (compartment I) are tracked in a phylogeny, while the number of susceptible individuals
(compartment S) may affect dynamics through density-dependent effects.

Importantly, in this book, we track single populations in a phylogeny, such as species or infec-
ted individuals. Potentially, the multi-compartment models could be generalised to multi-type
Lotka-Volterra (Lotka 1910; Volterra 1928) models, fully embedding population dynamic ap-
proaches within phylodynamics by appreciating the interactions and competitions between
different populations. In particular, under Lotka-Volterra models, several populations that
span separate trees (e.g. a predator and a prey tree) would be tracked. Phylodynamic models
accounting for these different trees can shed light on the interaction dynamics between these
populations.
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10 Bayesian inference

In the previous chapters, we discussed the key components that go into a phylogenetic and
phylodynamic analysis. First, we have discussed how sequence data are obtained and pro-
cessed. Then, we discussed the models that give rise to sampled sequence data: models for the
mutation and substitution processes and models for the generation of trees by populations of
reproducing individuals. Finally, we have discussed how these models, coupled with the data,
can be used in a statistical framework to infer phylogenetic relationships and phylodynamic
model parameters. In particular, we highlighted inference methods using algorithmic (such as
UPGMA) or optimisation (such as maximum likelihood) approaches.

These presented methods of inference have some limitations. Firstly, assessing uncertainty is
challenging, often requiring external methods such as bootstrap resampling. In particular, a
phylodynamic analysis is done assuming a fixed phylogenetic tree, that is, assuming no un-
certainty in the tree. Secondly, these methods provide no mechanism to incorporate prior
information into an analysis other than fixing parameters to known values. Finally, perform-
ing model selection is not straightforward. For example, when models are not nested, the
thresholds for model selection criteria such as AIC (Section 7.3) can be difficult to interpret.
On the other hand, when nested models are compared in a pairwise fashion, correcting for
multiple testing can be challenging.

This chapter introduces the Bayesian phylogenetic and phylodynamic inference framework
as an alternative. Here, the phylogenetic tree with the substitution model and phylodynamic
parameters are estimated simultaneously based on the genetic sequence data. With this ap-
proach, an inference result is always coupled with an estimate of the uncertainty, and the
inclusion of prior information is a natural and important part of the analysis. Further, explicit
model selection can often be reduced to comparing easily understandable model probabilities
or implicitly averaging over possible model choices.

This chapter first introduces the fundamentals of Bayesian inference and then shows how
genetic sequence data can be analysed within this framework, assuming the data have a shared
phylogenetic history.

10.1 Bayesian theory

Suppose we have data D from which we want to learn something about a parameter θ under
some model M . The model is generative and stochastic, meaning it connects the parameter
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and the data probabilistically via P (D|θ,M). How can we proceed?

We have seen several approaches to this general problem in previous chapters of this book.
We might, for instance, use some estimator θ̂f = f(D) with well-known statistical properties.
We can also use analytical or computational means to produce confidence intervals containing
the truth in a certain chosen percentage of all cases (often 95%). Estimators and confidence
intervals are often derived using the likelihood function P (D|θ,M) (e.g. maximum likelihood
estimators, see Box 25 on page 116) but not necessarily (e.g. the UPGMA tree reconstruction
algorithm, see Section 6.3.1.1).

The Bayesian approach to this general problem is as follows: suppose that what we want to
know about θ is best expressed as a probability distribution of θ given the model and our
data, P (θ|D,M). Knowing this distribution would allow us to compute probabilities for any
characteristic of θ directly.

We proceed to use the rules of probability described in Section 1.3 to express P (θ|D,M) in
terms of the likelihood function:

P (θ|D,M) =
P (θ,D|M)

P (D|M)
=
P (D|θ,M)P (θ|M)

P (D|M)
. (10.1)

This is known as the Bayes’ rule1, and it establishes a link between what is known about θ in
the absence of D, P (θ|M), and what is known after the data have been taken into account,
P (θ|D,M).

The different components of Bayes’ rule have specific names:

(i) P (θ|D,M) is the posterior probability distribution or the posterior of the parameter θ,

(ii) P (D|θ,M) is the likelihood for θ under the modelM ,

(iii) P (θ|M) is the prior probability distribution, or simply the prior for θ, and

(iv) P (D|M) is themarginal likelihood of the modelM , also known as the evidence for that
model.

It is important to note that these names identify the roles these distributions play in a particular
analysis rather than any intrinsic property of the distributions. That is, while P (θ|D,M) plays
the role of the posterior in the case above, it can also be used as the prior for a subsequent
analysis, as we will discuss later.

Note that the modelM constitutes not only the assumptions underlying the likelihood func-
tion P (D|θ,M) but also the prior knowledge of the model parameters θ embodied in P (θ|M).

1Bayes’ rule is named for Reverend Thomas Bayes, a Presbyterian minister who derived and applied the rule in an
essay read to the Royal Society in 1763 (Jaynes 2003).
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The marginal likelihood is so named because it can be considered a result of integrating out
(marginalising) the model parameters θ in the likelihood function:

P (D|M) =

∫
θ

P (D|θ,M)P (θ|M)dθ. (10.2)

Thus, a practical interpretation of the role of the marginal likelihood in Equation (10.1) is
that of a normalising constant in an analysis (as D andM are constants).

The marginal likelihood is often difficult to compute, especially when θ is a vector with many
dimensions (the model contains many parameters), and the integral cannot be solved analyt-
ically. Computing the marginal likelihood is the central challenge of many Bayesian inference
problems. Later in this chapter, we will discuss numerical techniques that allow us to proceed
without directly computing this quantity.

10.1.1 Maximum likelihood vs. Bayesian inference

Due to the simplicity of the derivation above, it is easy to assume that the difference between
Bayesian inference and non-Bayesian inference is minimal. After all, the Bayes’ rule is a simple
consequence of conditional probabilities.

It is important to note that the principal distinction between the inference strategies discussed
in this chapter and those presented in earlier chapters has to do with the interpretation of
probability. In previous chapters, our use of probability has been restricted to situations where
random variables are used to represent the outcome of some random process, P (D|θ,M): dice
rolls, sequence evolution, and so on. In other words, the probability of an outcome can be
regarded as the relative frequency with which that outcome occurs. The available data are an
outcome of the process.

In contrast, by writing P (θ|D,M), we are using a random variable to describe a parameter
of the model. In our context, it is the parameter of a model giving rise to our data. In doing
so, we represent a distribution of a state of knowledge rather than the physical properties of
a system. The question immediately arises: “Whose state of knowledge?” The answer to this
question is simply, “Anyone with access to the same information about the parameter.”

A consequence of the Bayesian framework is that it is completely permissible for different
analyses to give different results if they are subject to different information, as encoded in the
prior P (θ|M).

Be aware that in cases where a single model is assumed during the analysis, it is common to
avoid explicitly includingM in the formulation of Bayes’ rule. However, one must take care
when omitting this term as its absence can lead to confusion (e.g. the term P (D|M) in the
denominator is arguably clearer than P (D) on its own).
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10.1.2 Example: Bayesian inference of pairwise genetic distance

In Section 5.4, we discussed estimating the genetic distance, measured in the expected number
of substitutions, between a pair of sequences under the JC69 substitution model. We used a
method of moments estimator (Section 5.4.2) as well as a maximum likelihood estimator
(Section 5.4.3). We will now discuss a Bayesian approach to the same problem.

Suppose we have a pair of aligned sequences of length L, and suppose the sequences differ at
S sites. Under the JC69 model, the probability of observing a difference at a single site after
time t assuming an evolutionary rate λ is given by Equation (5.56),

p(d) =
3

4
− 3

4
e−

4
3d, (10.3)

where d is the genetic distance between the sequences, d = 3λt.

Since each site evolves independently under this model, we can write the likelihood function:

P (S|d,ML) =

(
L

S

)
p(d)S(1− p(d))L−S =

(
L

S

)(
3

4
− 3

4
e−

4
3d

)S (
1

4
+

3

4
e−

4
3d

)L−S
. (10.4)

Here,ML represents our model, the JC69 model on L sites, and our prior assumption on the
model parameter d. In Section 5.4.3, the likelihood function was maximised over d to obtain
the maximum likelihood estimate for d given the data S and modelML. The prior assumption
does not influence the likelihood value and thus does not influence the maximum likelihood
framework.

The goal of the Bayesian approach is to derive the posterior probability for the parameter of
interest, d, under the assumed model. In this case, we know S (the data) and assume a model
ML (JC69 model on L sites together with a prior assumption on d). We want to estimate the
posterior probability distribution P (d|S,ML).

Using the Bayes’ rule, we have:

P (d|S,ML) =
P (S|d,ML)P (d|ML)

P (S|ML)
=

P (S|d,ML)P (d|ML)∫
d
P (S|d,ML)P (d|ML)dd

. (10.5)

This formulation highlights that the posterior is a function of both the likelihood P (S|d,ML),
which is given by the JC69 substitution model (Equation (10.4)), and the prior distribution
P (d|ML).

We now specify the prior distribution, P (d|ML). Suppose we know that d is less than some
upper bound dmax. Then, since d is constrained to positive values by the model, we may want
to assume the following prior:

P (d|ML) =

{
1/dmax for 0 ≤ d ≤ dmax,
0 otherwise.

(10.6)
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Figure 10.1: Prior and posterior distribution for genetic distance d between two sequences.
Blue lines: Posterior (solid) and prior (dashed) distribution for the genetic dis-
tance d between two sequences of length L = 10 differing at S = 4 sites, as-
suming a JC69 model of evolution and that all values for d in the interval (0.0, 3.0)
are equally likely. Black lines: Posterior (solid) and prior (dashed) distribution
for the same data, assuming an exponential prior for d, with the exponential
truncated at 3.0.

Combining this with the likelihood (Equation (10.4)), we get:

P (d|S,ML) =

 1
Z

(
3
4 −

3
4e

− 4
3d
)S (

1
4 + 3

4e
− 4

3d
)L−S

for 0 ≤ d ≤ dmax,
0 otherwise,

(10.7)

where we define Z as the following integral:

Z =

∫ dmax

0

(
3
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− 3

4
e−

4
3d

)S (
1

4
+

3

4
e−

4
3d

)L−S
dd (10.8)

and omit the constant binomial coefficients since they appear both in the numerator and
denominator. This integral can easily be computed numerically. The resulting posterior is
illustrated in Figure 10.1 for a pair of sequences of length L = 10 differing at S = 4 sites and
assuming dmax = 3, alongside the corresponding prior distribution P (d|ML).

10.1.3 Priors

As we saw at the beginning of this chapter, the appearance of P (θ|M) in Equation (10.1) is
mathematically necessary to transform the likelihood of θ into a probability of θ. Thus, from
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the Bayesian perspective, incorporating prior/external knowledge is a basic requirement for
inference.

This means that any analysis must begin with selecting prior probability distributions for the
parameters of modelM we want to infer. If previous inference results are available, those can
be used directly (as discussed in the next section).

In other cases, we must select the most appropriate distributions given any known parameter
constraints. The specific question of which prior is best to use in a given situation is difficult to
answer precisely because the prior seeks to quantify information external to the data currently
under investigation. As an example, consider the genetic distance inference described in the
previous section. Suppose we replace our original simple constraint on d with an assertion
that d is likely to be smaller rather than larger. With this assumption, we might say that
P (d|M exp

L ) = e−d truncated at 3 (as before). Note that we replacedML withM exp
L to signify

that our model now includes this modified assumption. This prior distribution and its effect
on the posterior is shown in blue in Figure 10.1.

A common desire is to find a prior representing “no information” about a particular para-
meter. There are several systematic approaches to identifying such priors, such as the principle
of maximum entropy for discrete variables and the method of transformation groups in the
case of continuous variables (Jaynes 2003). Something to be aware of when selecting priors
for continuous variables is that probability density functions are affected by changes in vari-
ables. For example, a uniform prior for some variable is not a uniform prior on the logarithm
of the variable.

Since the prior is necessary for computing the posterior, the chosen prior distributions are
actually a part of the model assumptions. Thus, when reporting modelling choices for an
analysis, it is critical to report both the model specifying the likelihood function and the
prior probability distributions. Reporting only the model specifying the likelihood is akin to
reporting only a part of the assumed mathematical model, meaning that the reported results
become irreproducible.

10.1.4 Incorporating additional data into a Bayesian analysis

We have mentioned that it is possible to use the posterior of a previous analysis as the prior
distribution for a subsequent analysis. Here, we show that, indeed, the results are equivalent
when analysing all data together or updating an analysis based on a subset of the data with
the remaining data.

Consider again the problem of inferring genetic distance. Following the analysis presented
in Section 10.1.2, suppose we acquire an additional pair of sequences corresponding to the
same individuals analysed previously. The length of this new MSA is L′, and the number of
differing sites is S′. Our knowledge about the genetic distance between the sequences, in light
of all data, is expressed by the new posterior P (d|S, S′,ML,L′), whereML,L′ again represents
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the JC69 model, now for L and L′ sites together with the prior assumption for d. Using Bayes’
rule, this is:

P (d|S, S′,ML,L′) =
P (S′|d, S,ML,L′)P (d|S,ML,L′)

P (S′|S,ML,L′)
=
P (S′|d,ML′)P (d|S,ML)

P (S′|ML′)
. (10.9)

Thus, the prior for the second analysis really is the posterior for the first analysis. We may
either analyse all data together or update a posterior as new data come in, using the previously
inferred posterior as the prior.

10.1.5 Reporting uncertainty: credible intervals

The result of a Bayesian inference is a posterior probability distribution, which fully specifies
our knowledge of parameters of interest in light of the available data and our prior assump-
tions. However, arbitrary probability distributions can be unwieldy to convey andmay include
more information than is practically necessary regarding the final state of knowledge.

Thus, results are often summarised, particularly for inferences of single parameters. Summar-
ies can include means, variances, and other higher-order moments. In particular, it is common
to summarise the results of Bayesian analyses using credible intervals. These regions of the
parameter space carry a certain chosen percentage of the probability mass. For instance, a
95% credible interval for the parameter d from our example is an interval [dl, du] such that
the posterior probability for d to be in that interval, given the data and model including prior
information, is 0.95. One can generalise the notion of credible intervals to that of credible sets
(applicable to discrete-valued parameters or multiple disjoint intervals on continuous para-
meters) and credible regions (for combinations of continuous parameters).

Of course, a credible interval is not unique. It is therefore common to report the so-called
highest posterior density (HPD) interval of a parameter, defined as the smallest interval that
contains the desired probability mass (Box and Tiao 1992). The central posterior density
(CPD) interval, defined as the interval between the 0.025 and 0.975 quantiles of the posterior
distribution, is also seen occasionally. Both these intervals are illustrated in Figure 10.2.

One should be aware that although credible intervals resemble confidence intervals, these are
entirely different concepts. Confidence intervals characterise the distribution of possible in-
tervals generated by all possible datasets. In quantitative terms, 95% of the estimated 95%
confidence intervals contain the true (unknown) parameter. Thus, confidence intervals rely on
a fixed parameter, but the boundaries are random variables. As a result, confidence intervals
should never be regarded as conveying information about the possible values of the true para-
meter given the observed dataset. Indeed, their definition explicitly forbids this interpretation
(Neyman 1937).

In contrast, credible intervals do convey this information; they are fixed intervals where the
unknown parameter is the random variable: the probability that the true value is within a 95%
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Figure 10.2: Posterior distribution for the genetic distance between two sequences of length
L = 10 differing at S = 4 sites (blue line), assuming a JC69 model of evolution
and a uniform prior distribution in the interval (0.0, 3.0), showing both the 95%
highest posterior density (HPD) interval and the 95% central posterior density
(CPD) interval.

credible interval, conditional on the observed data and prior information, is, by definition,
0.95.

10.1.6 Bayesian model selection

The Bayesian framework also provides a natural approach to judging the extent to which data
support different models, which is an alternative to the approaches described in Chapter 7.

Consider two possible models,M1 andM2, either of which may be the true model that gen-
erated our data D. Just as for parameter inference within a particular model, we can apply
Bayes theorem to the problem of selecting between different models:

P (Mi|D) =
P (D|Mi)P (Mi)

P (D)
. (10.10)

This is the posterior probability that the model that generated the data D is Mi. Here i is
either 1 or 2, and P (D) is the result of summing the numerator over both values of i. The
term P (D|Mi) is the marginal likelihood introduced in Section 10.1, and here the reasoning
for its name becomes clear: it is the likelihood for modelMi given the data.

With these probabilities in hand, one can judge the support for one or the other model by
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considering the ratio of their respective posterior probabilities:

P (M1|D)

P (M2|D)
=
P (D|M1)

P (D|M2)
· P (M1)

P (M2)
, (10.11)

where the denominators from Equation (10.10) cancel. Since it is common to assume equal
prior support for the models under comparison, this motivates the following definition of the
Bayes factor (BF ) as the ratio of the marginal likelihoods:

BF =
P (D|M1)

P (D|M2)
. (10.12)

Bayes factor values of less than 1 indicate that the data supportM1, while values greater than
1 indicate that the data favourM2.

Interpretation of Bayes factors for choosing between the models is usually done on a logar-
ithmic scale. For instance, Jeffreys (1983) suggests that a value of BF between 101 and 101.5

could be considered “strong” evidence forM1, while a value of BF greater than 102 could be
considered “decisive” support forM1. Similarly, a BF of less than 10−2 would be considered
decisive support forM2.

One challenge of using this approach to model selection is that it requires evaluating the
marginal likelihood terms, which, as we discuss further in Section 10.2, can be difficult to
compute in practice. However, there are several sophisticated numerical approaches to this
problem, including methods such as thermodynamic integration (Lartillot and Philippe 2006)
and nested sampling (Skilling 2006).

10.1.7 A Bayesian phylogenetics and phylodynamics framework

In the previous sections, we introduced the Bayesian framework. In what follows, we employ
this framework in a joint phylogenetic and phylodynamic analysis.

More concretely, suppose we have an MSA A of n sequences, which may have been collected
at different times. We assume these sequences evolved from an unknown common ancestor
along a time tree T according to a substitution model with rate matrix Q. Furthermore, we
assume that the time tree T itself is the product of a population dynamic process parameterised
by η. In the case of a birth-death model, η would be the birth, death, and sampling rate
parameters together with the start time of the process, while in the case of a coalescent model,
η would be the effective population size and the generation time. Again, we useM to formally
denote the combination of our model assumptions, specifying the likelihood and any prior
information on the model parameters.

To formulate a Bayesian analysis, we first express what we want to learn from the analysis in
terms of a conditional probability distribution. Here, we want to learn about all the unknown
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aspects of the past evolutionary process (tree, substitution model parameters, tree-generating
model parameters) conditional on our data A and our modelM , P (T , Q, η|A,M).

Applying Bayes’ rule, this can be written as:

P (T , Q, η|A,M) =
P (A|T , Q, η,M)P (T , Q, η|M)

P (A|M)
. (10.13)

The definition of conditional probability (Section 1.3.1) allows us to write P (T , Q, η|M)
= P (T |Q, η,M)P (Q, η|M), so the equation becomes:

P (T , Q, η|A,M) =
P (A|T , Q, η,M)P (T |Q, η,M)P (Q, η|M)

P (A|M)
. (10.14)

This expression of the posterior distribution is completely general.

We make the following model assumptions in most phylogenetic and phylodynamic analyses.
First, we assume that theMSA depends only on the substitution process and the tree, and it has
no dependence on the phylodynamic parameters η. Thus P (A|T , Q, η,M) = P (A|T , Q,M).

Second, the tree is a product only of the phylodynamic process, and thus P (T |Q, η,M) =
P (T |η,M).

Finally, we assume that our prior information relating to Q is independent of our prior in-
formation relating to η, meaning we can write P (Q, η|M) = P (Q|M)P (η|M).

With these assumptions, the expression for the posterior distribution is:

P (T , Q, η|A,M) =
P (A|T , Q,M)P (T |η,M)P (Q|M)P (η|M)

P (A|M)
, (10.15)

and it involves terms that we already discussed: the phylogenetic likelihood P (A|T , Q,M), the
tree probability density or tree prior P (T |η,M), the prior distributions P (Q|M) and P (η|M),
and the marginal likelihood P (A|M).

Note that in the last section, we called the expression P (T |η,M) — which is the probability
density of the tree — the phylodynamic likelihood, emphasising a function in η where T was
the data (and optimising over η resulted in maximum likelihood estimates). Now, the data
are A, and P (T |η,M) is part of the prior, also called tree prior.

Bayesian phylogenetic and phylodynamic inference methods aim to determine the posterior
distribution P (T , Q, η|A,M). However, despite the apparent simplicity of this problem, it
presents a major challenge because

(i) the probability distribution involves a highly multi-dimensional state space (the space
of possible combinations of T , Q, and η for an MSA of a given size), and
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(ii) the distribution itself often has a complex structure with multiple peaks for analyses
of practical interest; this complex structure, due to the combination of discrete tree
topologies and continuous branch length parameters, has been investigated numerically
by Whidden and Matsen (2015).

In particular, the large dimensionality of the state space means that the denominator on the
right-hand side, the marginal likelihood, is virtually impossible to evaluate directly, as we did
in our toy example (Section 10.1.2). The difficulty can be seen more clearly if we expand it in
terms of the distributions found in the numerator:

P (A|M) =

∫
T ,Q,η

P (A|T , Q,M)P (T |η,M)P (Q|M)P (η|M)dT dQdη. (10.16)

Directly evaluating this integral would involve summing over every possible combination of
T , Q, and η. Not only would this require integrating over many continuous parameters, but
it would also require evaluating the probability of every single possible tree T relating the
sequences in the MSA. As we have noted previously (see Section 6.2.3), the number of such
trees is extremely large, even for small numbers of sequences, making this integration highly
impractical.

The following section introduces a framework for determining the posterior distribution
without evaluating the marginal likelihood.

10.2 Markov chain Monte-Carlo (MCMC) sampling

In Bayesian analyses, the marginal likelihood is often impossible to calculate directly. This is
particularly true for phylogenetic applications that, combined with many parameters, have a
large state space that includes all possible phylogenetic trees.

The marginal likelihood P (D|M) does not depend on the model parameter θ. Thus, provided
we can compute the likelihood and the prior for a particular combination of parameter values,
we can still compute the posterior probability of θ, given the data D, up to a multiplicative
constant (namely up to the marginal likelihood):

P (θ|D,M) =
1

P (D|M)
· P (D|θ,M)P (θ|M) =

1

Z
f(θ). (10.17)

However, not knowing the normalising constant Z prohibits us from judging whether some
parameter value θ′ is probable or not. Imagine that for θ = θ′, we compute f(θ′) = P (D|θ =
θ′,M)P (θ = θ′|M). The result of this product is proportional to the posterior probability
density P (θ = θ′|M,P ) shown in Figure 10.3. However, since we do not know the normal-
isation, we cannot know whether the probability density of θ′ is large or small.
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Figure 10.3: An example posterior distribution. This illustrates the necessity of knowing the
normalisation of the distribution. Without such a normalisation, there is no way of
knowing that the posterior probability density for values in the vicinity of θ = θ′

is, in fact, relatively low due to the large peak elsewhere.

To solve this problem, we will use a technique that compares posterior probabilities and
thus does not need to calculate the normalising constant directly. Bayesian inference com-
monly uses Monte Carlo algorithms2 to characterise posterior probability distributions. In-
stead of directly evaluating the probability density of the particular parameter values, these
algorithms produce random samples from the posterior distribution using an algorithm that
does not require evaluating the normalising constant. For example, suppose we draw samples
θ(1), θ(2), . . . from P (θ|D,M). We can then compute the mean of the posterior by using the
fact that the average of the samples approaches the mean of the distribution in the limit of a
large number of samples:

E(θ) = lim
n→∞

1

n

n∑
i=1

θ(i) =

∫
θP (θ|D,M)dθ. (10.18)

We can compute the variance in a similar way:

Var(θ) = lim
n→∞

1

n

n∑
i=1

(θ(i) − E(θ))2 =

∫
(θ − E(θ))2P (θ|D,M)dθ. (10.19)

In fact, with enough of these samples, it is possible to answer any question regarding the shape
of the underlying distribution.

The particular Monte Carlo algorithm used frequently in phylogenetics and many other
applications of Bayesian statistics is the so-called Markov chain Monte Carlo (MCMC) al-
gorithm. It is also known as the Metropolis-Hastings algorithm, as its current general form
was developed in a pair of papers by Nicholas Metropolis and two husband and wife teams
—Arianna andMarshall Rosenbluth, and Augusta and Edward Teller — in 1953 (Metropolis
et al. 1953). Hastings (1970) further elaborated on this method. The original application of

2Named in honour of a famous casino in Monte Carlo.
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the algorithm was to solve problems in statistical physics, but today, it is used in a wide array
of fields.

10.2.1 MCMC algorithm

Consider a parameter θ distributed according to some distribution π(θ) which we want to
characterise. Imagine the space of all possible parameter values θ in a particular model. A point
in this space, which we refer to as a state, precisely identifies one configuration of parameter
values. The goal of MCMC is to characterise a probability distribution π(θ) over this state
space. In our context, this distribution is the posterior probability for θ, P (θ|D,M).

The MCMC algorithm approaches this goal by constructing a random walk through the
parameter space such that the frequency with which each state is visited is proportional to
the posterior probability of that state. This random walk is a series of “steps” through this
space that fulfil the properties of a Markov chain: each step is independent of the previous
steps and only depends on the current position. We refer to this walk as the “chain”.

Specifically, we define a Markov chain θ(1), θ(2), . . . by setting the initial value of the paramet-
ers θ(1) arbitrarily, and then for each subsequent step applying the following rules:

(i) choose a new state θ′ from some (easy to sample) distribution q(θ′|θ(i)), where i is the
index of the previous step;

(ii) accept the new state with probability α(θ′|θ(i)) and set θ(i+1) ← θ′,
otherwise reject the new state and set θ(i+1) ← θ(i).

Our goal is to define the functions q and α such that the chain possesses a stationary distribu-
tion, and this distribution is the target distribution π(θ). That is, after many steps, we want
the probability of finding the chain in state θ to be π(θ).

To meet this goal, we firstly require the proposal distribution q(θ′|θ) to be chosen such that
the chain can reach every possible value of the parameter θ when considering only those for
which π(θ) > 0. Note that states only need to be reachable eventually, not necessarily in a
single step. The chain thus defined has the irreducibility property described in Section 5.2.4.

Secondly, we require that the chain fulfils the detailed balance condition (Equation (5.42)):

π(θ)α(θ′|θ)q(θ′|θ) = π(θ′)α(θ|θ′)q(θ|θ′). (10.20)

This implies that the chain has a stationary distribution and that π(θ) is this stationary distri-
bution (Lemma 5.3.2). We can ensure this detailed balance condition is satisfied by defining
the function α(y|x) in the following way:

α(y|x) = min
(
1,
π(y)q(x|y)
π(x)q(y|x)

)
. (10.21)

That this satisfies Equation (10.20) can be seen by substitution.
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Figure 10.4: Illustration of three different proposals during an MCMC analysis. In Proposal 1,
the proposed state (pointed to by the dashed arrow) has a higher probability
than the original state (solid square) and will thus always be accepted. In Pro-
posal 2, the proposed state has a slightly lower probability than the previous
state, meaning the move will be frequently — but not always — accepted. For
Proposal 3, the proposed state has a much lower probability than the original
state and will thus be rarely accepted. Note that this picture is correct only when
the proposal satisfies the symmetry q(θ′|θ) = q(θ|θ′).

Because the acceptance probability α(θ′|θ) is the only place that the target distribution (that
is, the posterior probability distribution) enters the algorithm, the fact that it depends only
on the ratio between the probability distribution evaluated at θ and θ′ means that we do not
need to know the marginal likelihood to use the algorithm.

This procedure ensures the chain will make more steps toward higher probability states.
Moreover, in the limit of an infinite number of steps, the relative number of visits to a partic-
ular state will precisely equal the posterior probability of that parameter configuration.

Looking at Equation (10.21) can give some insight into how this works. When the state pro-
posal distribution is symmetric such that q(θ′|θ) = q(θ|θ′), we can see that the acceptance
probability α(θ′|θ) is 1 whenever π(θ′) ≥ π(θ). As the posterior probability of the proposed
state drops below that of the current state, the acceptance probability also drops according to
the ratio of the probability of the proposed state relative to that of the current state. Thus, the
chain is biased toward high-probability states while continuing to explore lower-probability
states.

Figure 10.4 roughly illustrates the properties of the MCMC random walk as they apply to
sampling a one-dimensional probability distribution.
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Box 31: Glossary of MCMC terms

MCMC algorithm: a random walk through a parameter state space such that the frequency with
which each parameter configuration is visited is proportional to a targeted posterior prob-
ability distribution.

State: a single realization of the parameters whose posterior distribution we seek to quantify.

State space: all possible parameter value combinations; the domain of the posterior distribution
which the MCMC algorithm aims to characterise.

Step/iteration: the index of a single state visited by an MCMC algorithm.

Chain: a sequential list of states produced by the MCMC algorithm.

Proposal distribution: the probability distribution that governs how the state at the next step in an
MCMC chain is generated from the current state.

Acceptance probability: the probability that a state drawn from the proposal distribution is accep-
ted as the next state of the chain.

Convergence: “equilibration” of theMCMC chain to the target posterior distribution. Roughly, the
point at which one can say that the chain’s current state represents a draw from the posterior.
Before this point, the starting state of the chain still had an influence on the distribution.

Burn-in: the number of steps required for a chain to converge. The burn-in is removed from the
output.

Autocorrelation: statistical correlation between states at nearby steps in a chain.

Effective sample size (ESS): an estimate of the effective number of independent draws from the
posterior represented by a given chain, taking into account the autocorrelation between states
in the chain. The ESS is usually much smaller than the chain length, and results should only
be taken seriously when some minimum ESS has been achieved.

Mixing rate: a colloquial term used to refer to the speed at which an MCMC chain converges and
acquires effectively independent samples. It is affected by many things, including the proposal
distribution used and the posterior distribution itself. When this rate is slow, we often say
that the chain is mixing slowly or mixing poorly.

Log: a record of the states visited by an MCMC algorithm. Usually, only a fraction of visited states
are included, for example, 1 logged state for every 1 000 steps.
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Figure 10.5: A Plot showing the state trajectory of the MCMC as a function of the step num-
ber, with the burn-in period highlighted in grey. C Histogram showing the relative
frequency of the states visited by the chain (after burn-in) and the target prob-
ability distribution (blue). B, D State trajectory and histogram of a longer chain.
Note the close correspondence between the relative frequencies and the target
distribution.

10.2.2 Toy example

Wenow illustrate theMCMCalgorithm in a toy example. In this example, wewant to produce
samples from the target distribution π(θ) ∝ exp

(
−(θ−25)2/2

)
. To do this, we define a uniform

proposal distribution with the proposal density defined such that q(θ′|θ) = 1/2W when |θ −
θ′| < W and 0 otherwise, with W being some fixed positive number. Again, recall that this
choice is highly arbitrary — all that is required is for a chain of such steps to be capable of
reaching every value of θ.
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The acceptance probability function then becomes:

α(θ′|θ) = min
[
1,
π(θ′)q(θ|θ′)
π(θ)q(θ′|θ)

]
(10.22)

= min

[
1,
exp

(
−(θ′−25)2/2

)
exp

(
−(θ−25)2/2

) ] , (10.23)

where the proposal probabilities cancel out since, in this case, q(θ′|θ) = q(θ|θ′).

The result of running this chain for 1 000 steps, starting from an initial state θ(1) = 0 and
using a proposal distribution with W = 1, is shown in Figure 10.5 A. Here, we see that the
chain initially heads toward the peak of the probability distribution at θ = 25, then fluctuates
around this maximum. Clearly, the choice of the initial state influences the first part of the
chain very heavily. This initial period (highlighted in grey in the figure) of the chain where
the initial state continues to influence the result is known as the burn-in, and the first step in
analysing the results of an MCMC chain is to identify and discard this burn-in period (for the
definition of these and other MCMC-related terms, see Box 31 on page 315).

Figure 10.5 C shows a histogram of the states visited by the chain (after removing the burn-in
period), compared with the true density π(θ) we are aiming to sample. We see that there is
already a close correspondence between the sampled histogram and target distribution, even
after only 1000 steps.

Figure 10.5 B and Figure 10.5 D show the chain and corresponding histogram after 10 000
steps. Here, we see almost perfect agreement between the histogram and the target distribu-
tion.

10.2.3 Mixing rate and effective sample size

As shown above, an important property of the MCMC algorithm is that any proposal density
q(θ′|θ) that is able to explore the whole state space (that is, makes it possible to eventually
reach any state with enough steps) can be used to produce a correct MCMC algorithm. By
“correct,” wemean that the relative frequencies of visits to each state will eventually match the
target distribution in the limit of an infinite number of steps. However, practical applications
of MCMC can only ever involve a finite number of steps. Thus, we are interested in the
number of steps required to characterise the target distribution well.

Continuing with the example from the previous section, we consider two different scenarios.
In the first scenario, we modify the proposal density so that the proposal windowW takes a
much smaller value of 0.1. This means that each step can only change θ by a tiny amount.

Figure 10.6 A shows the state trajectory resulting from 10 000 steps with this modified pro-
posal distribution. We can see that the burn-in process takes much longer to complete (around
2 000 steps, compared to just around 100 for the W = 1 proposal). Furthermore, even after
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Figure 10.6: A, C State trajectory and histogram of an MCMC chain as in Figure 10.5 but
reduced proposal window W = 0.1 (instead of W = 1). This proposal is not
bold enough, leading to a poorly mixing chain with few effectively independent
samples. B, D State trajectory and histogram produced using a very large pro-
posal window W = 100. This proposal is far too bold, which also leads to poor
mixing.

the chain has reached the peak of the target distribution, the fluctuations about this point
are much slower. We say such a chain is mixing slowly or mixing poorly. Such slow mixing
reduces the quality of the characterisation of the target density, as is evident from the associ-
ated histogram in Figure 10.6 B, which displays a much weaker correspondence to the true
distribution.

We now consider a second scenario in which the proposal density is modified so that the
proposal window W has a much larger value of 100. This means that each step can produce
a very wide range of values.

As we see in Figure 10.6 C, this situation is also problematic. While the burn-in period is
extremely fast, the chain appears “jagged”, and the associated histogram in Figure 10.6 D is
again quite far from the target distribution. What we see is the result of the proposal being too
“bold” for this target density. The proposal distribution often produces states that are very
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different from the current state, meaning that if the current state is close to the peak of the
target distribution, it is highly likely that the proposed state will be very far away from this
peak and will thus have a very low probability. Such proposals are rarely, if ever, accepted,
meaning that for many steps in this chain, the state remains the same, leading to long runs of
identical states and hence the step-like appearance of the state trajectory. Thus, this scenario
also produces a slow mixing chain.

Some MCMC practitioners use the concept of effective sample size (ESS) to quantify the
information that a given chain carries about the target distribution. The effective sample size
is loosely defined as the number of effectively independent samples from the target distribution
contained in a given MCMC chain. Because each step in the MCMC chain produces a new
state in a manner that is conditional on the current state, nearby states tend to be highly
correlated, meaning the ESS will always be less than the total number of steps. This is true
even when the proposal distribution q(θ′|θ) is independent of the previous state since the
possibility of rejection can always induce autocorrelation. In the example above, we saw the
ESS can become very low if the width of the proposal distribution is too narrow. We refer the
interested reader to Magee et al. (2023) for a good overview of ESS and autocorrelation in a
Bayesian phylogenetic MCMC context.

In practice, users will generally set a predefined ESS threshold to decide whether the algorithm
has run for enough steps and sampled sufficiently from the target distribution or should run
for more steps.

The example scenarios illustrated that, even in the simple case of a single-parameter model,
the choice of proposal distribution can strongly influence the number of steps required for
the samples to characterise the target distribution usefully. This influence is even more pro-
nouncedwhen performingMCMCon the largemultivariate problems commonly encountered
in Bayesian phylogenetics and phylodynamics.

10.2.4 MCMC for phylogenetics and phylodynamics

Markov chain Monte Carlo is used in Bayesian phylogenetics in order to produce
samples from and thus characterise the posterior distribution given by Equation (10.15),
P (T , Q, η|A,M).

As we have seen, theMCMC algorithm relies on appropriate proposal distributions that allow
the resulting chain to explore the parameter space efficiently. In phylogenetic and phylody-
namic applications, new values for the continuous parameters (e.g.Q, η) are usually proposed
by scaling the current values, whereas new tree topologies (T ) are proposed via the moves
presented in Chapter 6: nearest-neighbour interchange (NNI), subtree pruning and regrafting
(SPR) and tree bisection and reconnection (TBR).

The output of such anMCMC algorithm is a series of samples from the parameter space. Each
sample contains the tree topology, associated branch lengths, and the values of all continuous
parameters from the evolutionary (Q) and the tree-generating (η) models.
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Figure 10.7 illustrates the posterior distribution for the phylogenetic time tree relating a num-
ber of H1N1 influenza A virus sequences from the 2009 Swine Flu pandemic collected from
publicly-available data by Hedge, Lycett and Rambaut (2013), as sampled using MCMC. In
this figure, sampled trees are drawn on top of one another to illustrate the uncertainty in the
inferred tree remaining after the data are taken into account.

Together with samples of the trees, we obtain samples ofQ and η. Thus, we naturally perform
a joint phylogenetic (leading to the tree and the substitution rate matrix) and phylodynamic
(leading to η) analysis. The parameter estimates for η, in particular, take the tree uncertainty
into account.

There are a large number of software tools available that implement MCMC for Bayesian
phylogenetic applications. Some of the most popular include:

• BEAST (https://beast.community/) (Drummond and Rambaut 2007) and BEAST2
(https://www.beast2.org/) (Bouckaert et al. 2014; Bouckaert et al. 2019),

• MrBayes (https://nbisweden.github.io/MrBayes/) (Huelsenbeck and Ronquist
2001), and

• RevBayes (https://revbayes.github.io/) (Höhna et al. 2016).

10.2.5 Time complexity of phylogenetic MCMC algorithms

We have seen several approaches to inferring phylogenetic trees in this book, ranging from
extremely simple techniques, such as the UPGMA algorithm, to the sophisticated Bayesian
techniques we have discussed in this chapter. For each of the previous algorithms, we have
discussed how the runtime of the algorithm scales as a function of the size of the tree (that is,
the number of leaves). We now ask: what is the time complexity of MCMC-based Bayesian
phylogenetic inference algorithms?

ForMCMC, a critical quantity is the burn-in time. As already discussed in Section 10.2.3, this
is the approximate number of steps required for a chain to reach its stationary distribution
(the posterior) after being initialised using a given starting state. This is also related to the
effective sample size since the ESS is also determined by the number of steps necessary for the
chain to “forget” about an earlier state.

It can be shown that the burn-in time for simpleMCMC algorithms in d-dimensional continu-
ous real parameter spaces sampled using simplistic multivariate normal proposal distributions
grows linearly in d (Roberts and Rosenthal 2016). However, the phylogenetic situation is far
more complex, involving both continuous and highly structured discrete parameters. Further-
more, different sets of sequence data can produce posterior distributions with very different
qualitative characteristics. For instance, in a comprehensive empirical study, Whidden and
Matsen (2015) demonstrated that some phylogenetic posteriors can be strongly multi-modal
and thus difficult to sample using MCMC, while others can appear almost uni-modal. This

https://beast.community/
https://beast.community/
https://www.beast2.org/
https://www.beast2.org/
https://www.beast2.org/
https://nbisweden.github.io/MrBayes/
https://nbisweden.github.io/MrBayes/
https://revbayes.github.io/
https://revbayes.github.io/
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Figure 10.7: Posterior distribution of the phylogenetic tree relating a set of H1N1 influenza A
virus sequences, visualised in DensiTree (Bouckaert and Heled 2014) by draw-
ing the time trees sampled by the MCMC chain on top of one another in green.
The highest probability topology is depicted in blue and can be regarded as the
mode of the tree distribution.

results in a wide variation in the number of steps necessary for characterisation across data-
sets.

For these reasons, it is clear that the asymptotic runtime estimates from simpler models should
not be applied to the phylogenetic case and that the question, in general, remains open.

10.3 Applications

We close this chapter by highlighting several studies using Bayesian phylogenetic and phylody-
namic inferences for macroevolutionary and epidemiological applications. For the presented
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studies, we outline the main ideas and results. We refer the reader to the cited papers for in-
formation about the assumed prior distributions and further details of the analyses. All studies
used the software platform BEAST2 (Bouckaert et al. 2014; Bouckaert et al. 2019).

10.3.1 Epidemiology: The Ebola epidemic in West Africa, 2013-2016

As we saw in Chapter 9, the Ebola epidemic in West Africa 2013-2016 was studied using
phylogenetic and phylodynamic methods. In particular, we discussed that the maximum like-
lihood estimates for the birth and death rates of the epidemic on a fixed phylogenetic tree
were obtained by Stadler et al. (2014), giving an estimate of the basic reproductive number
R0 = 1.34 (CI [1.12, 1.55]). Applying BayesianMCMC inference takes into account the phylo-
genetic uncertainty when estimatingR0, leading also to less certainR0 estimates (median 1.65,
95% HPD interval [1.02, 2.70] (Stadler et al. 2014)).

Finally, using the birth-death skyline approach in a Bayesian MCMC setting, the effective
reproductive number through time in that Ebola outbreak was estimated in du Plessis (2016),
showing that the effective reproductive number started declining drastically in the second
half of May 2014 (Figure 10.8), well before the epidemic became a WHO “public health
emergency of international concern” in early August 2014 (Check Hayden 2014).

10.3.2 Epidemiology: The SARS-CoV-2 pandemic

The evolutionary dynamics of the SARS-CoV-2 pandemic have been studied extensively us-
ing Bayesian phylogenetic and phylodynamic methods. Indeed, the study discussed earlier in
Section 9.1.6 describing per-country estimation of R0 from genomic data was conducted as a
Bayesian phylodynamic study.

Another Bayesian analysis was conducted as part of the study by Nadeau et al. (2023), in
which over 5000 SARS-CoV-2 virus genomes collected in Switzerland during the year 2020
were grouped into small clusters representing independent Swiss transmission chains. A large
birth-death phylodynamic analysis was conducted in which the phylogenetic tree of every
cluster, together with overall rates of sampling and transmission, allowing for cluster-specific
transmission rate variation, were jointly inferred using Bayesian MCMC.

These inference results were used to identify genomic evidence for the efficacy of Swiss contact
tracing measures, which were assumed to produce a cluster-specific reduction in transmission
rate shortly after detecting the first sample in each cluster. Figure 10.9 shows the relevant
figure from the paper, which illustrates the posterior distributions of cluster-specific trans-
mission rate damping at different times throughout the year. Based on the genomic sequence
data, the study suggests that contact tracing was effective in the summer of 2020 — slowing
transmission by around 50% — but was overwhelmed in the fall of 2020.
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Figure 10.8: Bayesian analysis of Ebola sequences from West Africa outbreak 2013-2016.
Phylogenetic tree (blue), posterior distribution of the start of the epidemic
(green) and median with 95% HPDs of the effective reproductive number (or-
ange) obtained from a BEAST2 analysis. Figure adapted from du Plessis (2016).

10.3.3 Macroevolution: Phylogeny of penguins

This example illustrates using Bayesian inference to study macroevolution, in this case, the
evolution of penguins (Gavryushkina et al. 2017). The analysis used the DNA sequences of
extant species and the dates and morphological characteristics of several fossils.

The morphological characteristics were included as sequences of morphological characters
produced by domain experts analysing each fossil. These morphological sequences were then
organised into a table resembling an MSA, allowing their evolution to be modelled as the
result of a continuous-time Markov chain process analogous to the processes used to model
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Figure 10.9: Bayesian analysis of SARS-CoV-2 sequences from Switzerland collected in
2020 performed in BEAST2. The panel on the left shows the number of recorded
cases throughout the year, with the colours indicating the season. The panel on
the right shows the posterior distributions of the clade-specific transmission-
rate damping factors for each season, with higher factors implying more trans-
mission damping. These results indicate that contact tracing efforts were most
effective in the summer — since the dampening factor was highest in summer
— but were overwhelmed in the fall. The two different “polytomy assumptions”
relate to two different approaches to clustering sequences into transmission
chains; both sets of results were included as a robustness check. Figure adap-
ted from Nadeau et al. (2023).

genetic sequence evolution.

A Bayesian MCMC analysis was performed using morphological and molecular evolution
models and a birth-death model generating the tree. In the birth-death model, sampling was
performed through time (giving rise to fossils; the removal probability was zero) and at present
(giving rise to extant penguins). This specific setting of sampling in the birth-death model is
also called the fossilised birth-death process (Heath, Huelsenbeck and Stadler 2014).

The phylogeny obtained is shown in Figure 10.10. In particular, using all data in a joint
analysis suggested that the most recent common ancestor of the extant penguins is much
younger than previously thought. Note that in this analysis, the posterior distribution of the
phylodynamic model parameters was not explored further; however, these parameters are an
essential component of the analysis even when we are merely interested in the phylogenetic
tree.
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11 Phylogenetic networks

This book has so far focused on scenarios where evolution occurs in a tree-like fashion (but
see Chapter 4 where we assumed that sites are completely independent/unlinked due to, for
example, recombination). A tree means that all individuals descend from a single ancestor,
and each individual has precisely one parent from whom it inherits all genetic material. The
phylogenetic and phylodynamic models we have discussed so far have this tree assumption
built into their cores.

While the tree-based view of evolution is tremendously useful, there are many situations where
it is false. Eukaryotic organisms almost always reproduce sexually; thus, all individuals have
two parents. While individual alleles often come from just one of these parents, recombina-
tion ensures that sequences may share their ancestry between multiple parents. Bacteria may
exchange and acquire new genetic material through various mechanisms such as contact-
dependent plasmid transfer, phage-mediated transduction, and transformation via DNA up-
take from the environment (Thomas and Nielsen 2005). Virus ancestry may be non-tree-like
due to recombination and reassortment (Pérez-Losada et al. 2015).

Non-tree-like processes do not only occur within populations of individuals, single cells, or
virions. On the macroevolutionary level, multiple parental species may hybridise to form a
single descendant species (Mallet 2007) or species may exchange genetic material through
horizontal gene transfer (Soucy, Huang and Gogarten 2015).

Due to the prevalence and importance of these events, it is now sometimes suggested that
instead of talking about the “tree of life” we might instead refer to a “network of life” (e.g.
see Ragan, McInerney and Lake (2009) and Doolittle (1999)). This chapter will focus on
several ways these more general evolutionary processes can be accounted for in phylogenetic
and phylodynamic analyses. This chapter can be seen to fall between the previous chapters
on trees where none of these network events occurred, and Chapter 4, where the network
processes were so dominant that we could treat all data points as independent.

11.1 Mathematics of phylogenetic networks

Mathematically, phylogenetic networks are a generalisation of phylogenetic trees as defined
in Section 6.2. Generally, we consider unrooted or rooted binary networks. As in trees, nodes
in binary unrooted phylogenetic networks may be either degree-1 or degree-3, with degree-1
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nodes referred to as leaves or tips and degree-3 nodes referred to as internal nodes. Rooted
networks additionally have a single degree-2 node called the root.

The major difference is that, unlike trees, phylogenetic networks may have cycles. This means
there may be more than one sequence of branches connecting a given pair of nodes in the
network.

In a rooted tree, each degree-3 node has one ancestor branch and two descendant branches. In
a rooted network, a degree-3 node may again have one ancestor and two descendant branches
(coalescence nodes); or it may have two ancestor branches and one descendant branch (retic-
ulation nodes).

An important consequence of allowing cycles is that the number of possible distinct networks
on n leaves is infinite, while the number of distinct trees on n tips is finite (Section 6.2.3). To
see this, consider the rooted phylogenetic tree shown in Figure 11.1 A. This tree can be trans-
formed into a rooted phylogenetic network by adding one reticulation node, one coalescence
node, and an edge connecting them, as shown in Figure 11.1 B. We can keep adding edges,
as shown in Figure 11.1 C and D. Since each of these phylogenetic networks is distinct and
valid, and since we can always add an edge to form a new network, the number of possible
unique phylogenetic network relationships between a given number of leaves is trivially infin-
ite. This implies that introducing cycles infinitely expands the already large space of possible
phylogenies, potentially making the inference problem even more challenging.

More details on the mathematical properties of phylogenetic networks and algorithmic ap-
proaches can be found in Huson, Rupp and Scornavacca (2010).

In what follows, we discuss phylogenetic networks in the context of different evolutionary
processes.

11.2 Recombination networks

Phylogenetic networks are used to study the effects of recombination. On a general level, re-
combination describes the combination of “parental” genetic sequences to produce a “child”
sequence. Thus, a strand of DNA of a child contains information from the DNA strands
of both parents. Depending on the exact molecular mechanism, recombination can result in
either

(i) inserting non-homologous genetic material into a genome, or

(ii) replacing a portion of genetic material with homologous material.

The latter is known as homologous recombination and is the exclusive focus of this chapter
due to its effect on phylogenetic reconstruction from homologous sequence alignments. Ho-
mologous recombination of some form occurs in many parts of the tree of life.
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A B C D

A B C D A B C D

A B C D

coalescence
 node

reticulation
node

A B

C D

Figure 11.1: A A phylogenetic tree on four leaves can be transformed into a B phylogenetic
network by adding a new edge and a reticulation node. C, D New network
topologies can be created by adding new edges. This process can be continued
endlessly, meaning there are infinite possible network topologies relating the
four tips.

11.2.1 Homologous recombination processes

Homologous recombination in eukaryotes In eukaryotic organisms such as plants and
animals, homologous recombination usually occurs due to genetic crossover during meiosis:
the process that generates the germ cells necessary for reproduction. A schematic view of this
process is shown in Figure 11.2.

A result of this process is that sites that are close to one another in a single chromosome
sequence are more likely to be inherited together than sites that are far apart since distant
sites are more likely to be separated by a crossover event. The propensity for sites to be
inherited together is referred to as linkage. Nearby sites are, therefore, usually strongly linked,
and the strength of this linkage decays with the distance between the sites. Sites on different
chromosomes are almost completely unlinked, as the ancestry of a site on one chromosome
is, after very few generations, almost completely distinct from sites on another chromosome.

Recombination in bacteria In bacteria, recombination is so prevalent that its influence
on genetic diversity matches or outweighs that of mutation alone in many species (Vos and
Didelot 2009). Homologous recombination is commonly used as a DNA repair mechanism
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Figure 11.2: Homologous recombination. Schematic representation of the process of germ
cell generation via meiosis. During this process, crossover results in the gener-
ation of new alleles by combining the homologous parental alleles.

and can also introduce variability into the bacterial genome. It occurs when a DNA molecule
(such as the chromosome) is interrupted by a double- or single-stranded break, for instance,
due to UV radiation. Other stretches of DNA in the cell that are homologous to the DNA on
either side of the break will be used to patch the break.

If the used DNA originally came from a different parent cell, new genetic material is intro-
duced into the DNA molecule. DNA from multiple parent cells can be present in the same
bacterium due to horizontal gene transfer (HGT). Bacteria share genetic material between
neighbours as a result of several distinct processes. These include:

Conjugation, in which pairs of bacteria exchange genetic material via cell-to-cell contact,
mediated by a specially constructed tubular apparatus known as the pilus;

Transduction, in which genetic material is exchanged via bacteria-infecting viruses known as
bacteriophages (or simply phages);

Transformation, in which a bacterium takes up naked genetic material from its surrounding
environment.

Unlike crossover-style recombination in eukaryotes, homologous recombination in bacteria is
often best described as gene conversion. This style of recombination results in replacing a frag-
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ment of the recipient’s genome with a homologous fragment from the donor. This asymmetry
is unlike the situation in eukaryotes, where material is swapped.

We note that HGT may lead to gene conversion, but not always. In many cases, the genes
acquired through HGT are kept in addition to the genomic material of the recipient bacterium
without recombining with the original genomicmaterial. An example is the transfer of a whole
plasmid (through conjugation), which then exists in the cytoplasm without gene conversion.

Recombination in viruses Recombination in viruses occurs often enough that it, too, must
be considered when inferring phylogenies of virions. As discussed by Pérez-Losada et al.
(2015), recombination occurs due to different mechanisms in different viruses but essentially
results from single host cells becoming infected with multiple strains of the same virus, lead-
ing to the production of hybrid strains. Again, the recombination processes are subtly distinct
from what occurs in eukaryotes and can generally be regarded as an example of gene con-
version. Additionally, in segmented viruses, a particular mechanism, reassortment (see also
below), may occur. This is not a recombination process as defined above, but it can be mod-
elled in similar ways.

11.2.2 Impact of recombination on phylogenies

To develop an intuition for the potential effect homologous recombination has on phylogen-
etic inference, consider an alignment of just three eukaryotic sequences (Figure 11.3). As is
often the case with nuclear genetic sequences obtained from eukaryotic cells, each sequence is
much shorter than a full genome. Now consider starting from the left-most site in the align-
ment. Because a character at a single site on one chromosome can only ever be inherited
from a single parent, the relationship between the observed characters at this first site on the
three sequences can definitely be represented using a tree. Similarly, it is highly likely that
the same tree will also have produced the characters belonging to the second site. However,
at some point along the sequence, it is possible (or almost certain, depending on the length
of the sequences) that somewhere in the ancestry, a lineage will take a different path due to
a recombination break-point. This will have the effect that the tree associated with this and
subsequent sites will differ.

Thus, recombination means that the phylogeny of the sequences is described not by a single
tree but by a sequence of local trees associated with contiguous sequence stretches, as illus-
trated in Figure 11.3.

Several factors govern the probability of seeing more than one tree across an alignment.
Shorter sequence alignments are less likely to be affected by recombination than longer align-
ments. Single nucleotide polymorphisms (SNPs) are usually assumed to be widely separated
and thus are often considered completely unlinked — meaning that each SNP has a com-
pletely separate phylogeny (this is a necessary assumption for the validity of GWAS analyses
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A

B

C

Figure 11.3: The effect of recombination on phylogenetic reconstruction. The blue bars rep-
resent an alignment of three sequences from individuals labelled A, B, and C.
The phylogenetic relationships between the sequences are shown above the
alignment. As a result of recombination, this relationship can be different in dif-
ferent alignment sections. Each of these trees is known as a local tree.

discussed in Chapter 4). Additionally, the rate of recombination in the study organism and
the location of the sequence in the genome both play important roles.

When more than one local tree exists across a given alignment, recombination presents an
important source of model misspecification, meaning that analyses that do not take this into
consideration will inevitably produce biased results. Thus, phylogenetic analyses of recom-
bining organisms must take steps to deal with these effects. Often, these steps involve using
one of several pre-processing schemes to detect and remove parts of the sequence alignment
affected by recombination.

One very well-known filtering scheme for bacterial recombination is implemented in Gubbins
(https://nickjcroucher.github.io/gubbins/) (Croucher et al. 2014). It uses a sliding
window approach to identify portions of the alignment that exceed some statistical incom-
patibility threshold with a maximum likelihood tree estimated using the full alignment. These
portions are then removed, and a new maximum likelihood tree is estimated. This process is
repeated iteratively until no incompatible portions remain.

While such schemes allow us to continue using our standard phylogenetic tree inference meth-
ods, they have the disadvantage of forcing us to discard potentially useful data. The alternative
approach, which we will discuss in the remainder of this section, is to model the recombin-
ation process explicitly. This modelling is typically performed with the Wright-Fisher model
and its limiting coalescent process. The birth-death model has not been considered widely in
this context.

https://nickjcroucher.github.io/gubbins/
https://nickjcroucher.github.io/gubbins/
https://nickjcroucher.github.io/gubbins/
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Female Male

Figure 11.4: Explicit model of sexual reproduction and recombination. Boxes represent indi-
viduals, while the bars inside the boxes represent homologous pairs of genetic
sequences.

11.2.3 Wright-Fisher model with recombination

We can model eukaryotic recombination using an extension (Hein, Schierup and Wiuf 2005)
of the Wright-Fisher model introduced in Section 9.2. To introduce this extension, we first
consider the diploid discrete-generation model illustrated in Figure 11.4. In this model, we
explicitly divide the population into males and females, each individual carrying a homolog-
ous pair of genetic sequences. These sequences may be portions of the full genome. We aim
to model the ancestral history of these genetic sequences.

We do this by selecting one member of the child generation and randomly assigning it one
male and one female parent. Then, each of these chosen parents uses its own sequence pair
to produce a single combined sequence. With probability r, which is proportional to the
sequence length, this combined sequence contains a proportion of one of the homologues as
the first part of the sequence, and the remainder is made up of the other homologue. The
breakpoint is chosen uniformly at random. With probability 1 − r, the combined sequence
is made up entirely of the first or the second sequence (precisely which of the sequences is
selected is determined uniformly at random). Finally, two combined sequences, one from
each parent, are assigned to the child. The process is then repeated for all remaining children.
This procedure is illustrated in Figure 11.4.

Just as with the originalWright-Fishermodel, we now consider that the pairing of homologous
sequences within specific individuals matters only over the course of a few generations and is
largely irrelevant over evolutionary timescales. Thus, we can remove the boxes around pairs of
homologous sequences and treat each independently without dramatically affecting themodel,
as shown in Figure 11.5. In this simplified model, we only consider the effect of the process
on the individual sequences. Thus, each child sequence selects one parent sequence from the
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Gen i

Gen i+1

Figure 11.5: Wright-Fisher model with recombination. Individual sequences in the child gen-
eration randomly choose a parental sequence in the previous generation, then
with probability r choose a second parental sequence to combine with the first.

previous generation. With probability r, the child selects an additional parent sequence and
combines this with the first around a sequence breakpoint chosen uniformly at random. This
simplification also allows the model to be applied to bacterial or viral populations, which
cannot be divided between male and female parents.

We will refer to this simplified model as the Wright-Fisher model with recombination.

11.2.4 Coalescent with recombination

Just as we did in Section 9.2, we now consider the ancestry of a small number of individu-
als (or, more precisely, individual sequences) in the limit as the total number of individuals
N becomes large and the time between generations g becomes small (with θ = 1/(Ng) be-
ing constant). With the inclusion of recombination, we also require that the recombination
probability r becomes small, such that the recombination rate φ = r/g remains finite.

In this limit, we arrive at the coalescent with recombination, first formulated by Hudson
(1983). Like the regular coalescent, this is a backwards, continuous-timeMarkov process that
begins with several sampled lineages and whose realisations describe possible ancestral rela-
tionships between those samples. However, unlike Kingman’s coalescent (see Section 9.2.2),
the coalescent with recombination produces recombination networks, also referred to as an-
cestral recombination graphs (ARGs), instead of trees.

The coalescent with recombination involves two distinct stochastic events:

(i) coalescent events, which describe the point at which a pair of lineages finds a common
ancestor, and

(ii) recombination events, which represent the effect of a recombination breakpoint within
the sampled sequence.
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For a given number of lineages k, coalescence occurs at the same rate as for the original
coalescent process: (

k

2

)
1

Ng
, (11.1)

meaning that each pair of lineages coalesces with a fixed rate 1/Ng. Recombination events, on
the other hand, occur at the rate

φk, (11.2)

meaning that each lineage splits (backwards in time) with a fixed rate φ. The process ends
when the number of lineages reaches 1.

In addition to the merging and splitting of lineages, at a recombination event, the model must
specify which sites are associated with each parental lineage. That is, it needs to specify which
parent contributed the character at each site of the child sequence. This can be modelled by
recording a sequence breakpoint with each (observed) recombination event and stating that
the left-hand parent contributed everything to the left of this breakpoint, while the right-hand
parent contributed everything to the right.

An example realisation of this process is shown in Figure 11.6. The bars below each edge
represent the sequence carried by that edge. The blue intervals represent those portions of
the sequence that are ancestral to at least one sampled sequence (all bars at the base of the
graph are completely blue). Grey portions represent sites that are ancestral to no sampled
sequences. The orange intervals represent sites that have found a common ancestor, meaning
that the local tree belonging to these sites has already found a root. The root of the network
is the grand MRCA orGMRCA: the first time that all ancestral lineages coalesce into a single
individual. Note that the GMRCA can be much older than the roots of all local trees.

For further information on coalescent models for recombination networks, please refer to,
for example, Hein, Schierup and Wiuf (2005).

11.2.5 Bayesian inference

Phylogenetic recombination networks can be inferred in the Bayesian framework using an
approach very similar to the one described in Chapter 10. We begin by writing down the
expression for the posterior distribution of a phylogenetic network G given a sequence align-
ment:

P (G,φ, θ,Q|A) = 1

P (A)
P (A|G,Q)P (G|φ, θ)P (φ, θ,Q), (11.3)

whereQ is the substitution rate matrix, φ is the recombination rate and θ the coalescence rate.

Each of the terms in the numerator of the right-hand side of this equation is easily evaluated.
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Figure 11.6: An example realisation of the coalescent with recombination. The bars below
each edge represent the sequence carried by the lineage, with the blue interval
representing those portions of the sequence ancestral to at least one sampled
sequence. The orange intervals represent those sites that have found a common
ancestor.

The network likelihood P (A|G,Q) can be written as a product of local tree likelihoods:

P (A|G,Q) =

m∏
i=1

P (Ai|Ti, Q), (11.4)

where m is the number of local trees, Ti is the ith local tree, and Ai is the fragment of the
sequence alignment corresponding to this tree. The probability density P (G|φ, θ) can be eval-
uated analogously to the regular coalescent by considering the timings between coalescence
and recombination events. Finally, the prior distribution P (φ, θ,Q) has to be chosen as part
of the model when setting up an analysis.

However, performing inference under this model is far more challenging than under the stand-
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ard coalescent. This is because achieving chain convergence in a reasonable time is difficult
due to the following reasons (among others):

(i) the space of phylogenetic networks with significant posterior probability is usually ex-
tremely large,

(ii) some features ofG, including the exact times of recombination events, do not contribute
directly to the likelihood (that is, some features are unidentifiable), and

(iii) the likelihood surface contains many distinct peaks.

Despite these challenges, several MCMC-based algorithms exist for inference under the co-
alescent with recombination, including:

• ARGWeaver (https://github.com/mdrasmus/argweaver) is an MCMC sampler
under a computationally efficient approximation of the coalescent with recombination
(Rasmussen et al. 2014);

• PSMC (http://github.com/lh3/psmc) is a method that also uses an approximation
of the coalescent with recombination to perform phylodynamic inference of ancestral
populations (Li and Durbin 2011);

• SMARTIE is an earlier MCMC algorithm that actually uses a non-informative network
prior rather than the coalescent with recombination (Bloomquist and Suchard 2010);

• ClonalOrigin (https://github.com/xavierdidelot/ClonalOrigin) is an MCMC
sampler for bacterial ARGs under the coalescent with gene conversion, which is a modi-
fication of the coalescent with recombination to account for homologous gene conver-
sion — the kind of recombination most prevalent among bacteria (Didelot et al. 2010);

• CoalRe (https://github.com/nicfel/CoalRe) is an MCMC algorithm for infer-
ring ARGs resulting from reassortment (rather than recombination) processes in viruses
(Müller et al. 2020), where the underlying model is again based on the coalescent with
recombination.

In the remainder of this section, we will discuss several concrete applications of some of these
recombination network inference methods in different areas of biology.

11.2.6 Applications

11.2.6.1 Inference of ancestral human population dynamics (PSMC and MSMC)

One well-known application of the coalescent with recombination has been to infer human
population dynamics using whole-genome sequence data. Recall that coalescent-based phylo-
dynamic models can be used to infer ancestral effective population sizes, as discussed in Sec-
tion 9.2. The signal for such an inference is derived from the timing between coalescence
events drawn from exponential distributions whose rates are inversely proportional to the

https://github.com/mdrasmus/argweaver
https://github.com/mdrasmus/argweaver
http://github.com/lh3/psmc
http://github.com/lh3/psmc
https://github.com/xavierdidelot/ClonalOrigin
https://github.com/xavierdidelot/ClonalOrigin
https://github.com/nicfel/CoalRe
https://github.com/nicfel/CoalRe
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population size. In the absence of recombination, it would only ever be possible to obtain a
very broad estimate of the effective population size from a single pair of aligned sequences
since their ancestry would be described by a single two-tip tree with a single coalescence time.

In the presence of recombination, however, this situation changes dramatically. As shown
in the schematic on Figure 11.3, recombination induces changes in the local tree over the
alignment, meaning that, instead of a single coalescence event, we can have a large number of
independent coalescence times between a single pair of aligned sequences given recombination
occurs frequently. Since eukaryotes generally carry two distinct copies of every chromosome,
this leads to the very tantalising possibility of inferring population dynamics from the genetic
material of just one member of that population.

This precise idea was used by Li and Durbin (2011) to infer ancestral human population dy-
namics using homologous whole chromosome sequences assembled from blood samples from
individual people. Their method, known as the pairwise sequentially Markovian coalescent
(PSMC), is based on an approximation to the coalescent with recombination but does not
employ MCMC. Rather, it uses a technique known as expectation maximisation (Dempster,
Laird and Rubin 1977) to find the population history function, which maximises the posterior
probability distribution. Note that while this algorithm employs the coalescent with recom-
bination model as a prior distribution over local trees, it implicitly averages over all possible
ARGs instead of explicitly inferring this network.

The original method was limited to inference based on pairs of homologous sequences. How-
ever, since the original publication, a multi-sequence extension known as themultiple sequen-
tially Markovian coalescent (MSMC) has been developed (Schiffels and Durbin 2014).

11.2.6.2 Recombination among Escherichia coli (ClonalOrigin)

The coalescent with gene conversion is a modification of the coalescent with recombination,
accounting for homologous gene conversion (Didelot et al. 2010) in bacteria. Specifically, this
model accounts for the fact that gene conversion results in the substitution of short homolog-
ous fragments from an external source. This is in contrast to the crossover-style recombination
described by the coalescent with recombination model, where genetic material is swapped.

Application of the model revealed recent recombination-driven gene flow from a Shiga toxin-
producing clade of Escherichia coli (+STEC) to a non-Shiga toxin-producing clade (-STEC)
within BEAST2 Vaughan et al. (2017). This gene flow is potentially important because
+STEC is a highly pathogenic form of Escherichia coli, and thus may result in currently
non-pathogenic strains becoming pathogenic in the future. Figure 11.7 illustrates a summary
network produced from the posterior distribution of this analysis.
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Figure 11.7: Inferred ancestral recombination graph representing the ancestry of Escheri-
chia coli sequences. Edges due to recombination events are represented by
dashed lines, with colours indicating the gene affected. The timing of the events
indicates that gene flow is from +STEC to -STEC strains. Figure adapted from
Vaughan et al. (2017).

11.2.6.3 Reassortment networks in influenza (CoalRe)

Next, we will consider viral reassortment (Lowen 2018), which is distinct from recombin-
ation. This process occurs in viruses whose genomes are divided into two or more distinct
segments. This segmented structure allows cells that are infected by more than one viral strain
to potentially produce hybrid strains whose genomes are composed of segments drawn from
different original strains. Among the many viruses that display such segmentation are influ-
enza A (8 segments) and Rotavirus (11 segments), both of which are very common in human
populations (Varsani et al. 2018; McDonald et al. 2016).

Reassortment is interesting for two main reasons. Firstly, its presence means that one must
take care when inferring phylogenetic trees from sequences drawn from segmented viruses
since individual segments may have distinct phylogenetic ancestry. Secondly, reassortment
is thought to play a key role in enabling zoonotic transmission, the transmission of viruses
between host species.

Several methods exist for inferring reassortment networks from sequence data. Some ap-
proaches, such as TreeKnit (https://github.com/PierreBarrat/TreeKnit.jl) (Barrat-
Charlaix, Vaughan and Neher 2022), take an indirect approach by inferring the network from
trees inferred separately for each segment. This approach essentially looks for discrepancies
between these segment trees and treats these as evidence for reassortment.

https://github.com/PierreBarrat/TreeKnit.jl
https://github.com/PierreBarrat/TreeKnit.jl
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Figure 11.8: Estimate of the ancestral reassortment graph relating a set of influenza A sub-
type H3N2 genome samples collected over four decades, inferred using CoalRe.
Figure adapted from Müller et al. (2020).

Müller et al. (2020) recently introduced a method named CoalRe (https://github.com/
nicfel/CoalRe?tab=readme-ov-file) for inferring reassortment graphs directly from se-
quence data. This is an MCMC-based Bayesian approach very similar to that described in
Section 11.2.5, with the only major difference being that CoalRe employs a modified ver-
sion of the coalescent with recombination (Section 11.2.4) which accounts for the differences
between eukaryotic recombination and viral reassortment. In particular, while the former ran-
domly selects a breakpoint to divide the genome between the left and right parents, the latter
assumes that each segment is randomly assigned to one or another of the parental lineages.
This method has been extended by Stolz et al. (2021) to also account for population structure
in the viral host population.

Figure 11.8 illustrates the application of this approach to the inference of the reassortment
network ancestral to a set of sequences derived from isolates of influenza A subtype H3N2.
This influenza subtype is one of the main influenza viruses responsible for seasonal influenza
outbreaks. While most of the network looks like a regular phylogenetic tree, reassortment
events (shown using coloured edges) are clearly visible. Note that, this being a Bayesian ap-
proach, the actual inference result is a posterior distribution over ancestral networks — the
one shown in this figure is merely a summary network derived from this distribution.

https://github.com/nicfel/CoalRe?tab=readme-ov-file
https://github.com/nicfel/CoalRe?tab=readme-ov-file
https://github.com/nicfel/CoalRe?tab=readme-ov-file
https://github.com/nicfel/CoalRe?tab=readme-ov-file
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11.3 Species networks

As mentioned at the start of this chapter, phylogenetic networks also exist at the level of
species evolution. Some species populations can merge and form a hybrid species, which is
very common in plants and some fish. This can occur, for instance, when populations that
are close enough in terms of their genome and were previously geographically separated are
brought into contact (this could happen through some geological process, such as a land
bridge). Subsequent interbreeding can lead to a hybrid population, thus forming a new species
from the genetic material of the two parent species. Additionally, asymmetric horizontal gene
transfer (HGT) events may result in a number of genes from one species being transferred to
another. The occurrence of these processes is one of the many reasons why species definition
is difficult.

Before considering how to model these processes, first consider that even when represent-
ing species evolution using trees, one has to bear in mind that each particular species tree
branch does not represent a single individual but, rather, a whole population of individuals
of a species, and the branching events are not as obviously defined as when considering, for
example, the division of individual bacteria. When tracing the history of sampled sequences
of individuals from different species into the past, the coalescence of the genetic sequences
may occur at a time earlier than the speciation time. Thus, we obtain two distinct types of
trees, gene trees that follow the evolution of genetic sequences within species populations and
species trees that follow the evolution of the species populations themselves (see Figure 11.9,
ignoring, for now, the branch labelled with γ and the red gene tree). For more details on these
nested trees, see, for example, Degnan and Rosenberg (2009).

If hybridisation or horizontal gene transfer between species occurs, the species ancestry needs
to be modelled by a phylogenetic network instead of a tree, as trees alone cannot represent
the merging of species. For instance, allowing for species hybridisation requires the species
ancestry model to include special hybrid nodes that have two ancestral species and only one
descendant species lineage — as shown in Figure 11.9.

Many methods for inferring species networks have been proposed over the years. For in-
stance, Yu, Barnett and Nakhleh (2013) provided a method that sought to determine the
most parsimonious network (fewest reticulations) given a set of gene trees. More recently,
Bayesian methods capable of inferring species networks together with the nested gene trees
have been introduced (see, for example, Wen, Yu and Nakhleh (2016), Zhang et al. (2018)
and Rabier et al. (2021)). However, Bayesian approaches tend to be highly computationally
demanding due to the extremely large state space of species networks with nested gene trees.
This, therefore, remains an area of active development.

Despite these challenges, several groups have made exciting headway in using these meth-
ods to learn about species ancestry in the presence of hybridisation and horizontal gene
transfer. A fascinating example can be found in the work of Barley et al. (2022), who ap-
ply (among many other approaches) the Bayesian PhyloNet (https://phylogenomics.
rice.edu/html/phylonetTutorial.html) method by Wen, Yu and Nakhleh (2016) and

https://phylogenomics.rice.edu/html/phylonetTutorial.html
https://phylogenomics.rice.edu/html/phylonetTutorial.html
https://phylogenomics.rice.edu/html/phylonetTutorial.html
https://phylogenomics.rice.edu/html/phylonetTutorial.html
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Figure 11.9: Species network (tubes) and its embedded gene trees (orange and blue lines),
as used by Zhang et al. (2018) in their inference method. The parameter γ is
the probability with which individual gene tree lineages are assigned to one of
the parental species. Figure adapted from Zhang et al. (2018).

the likelihood-based PhyloNetworks (https://crsl4.github.io/PhyloNetworks.jl/
latest/) method by Solís-Lemus and Ané (2016) to probe the reticulations present in the
complex evolutionary history of over 30 species of North American whiptail lizards. Their
Bayesian analysis provides evidence for a large number of distinct hybridisation events be-
ing responsible for the present-day diversity seen in these lizards. These and other examples
demonstrate the importance of accounting for non-treelike processes when seeking to under-
stand the evolution of species.

https://crsl4.github.io/PhyloNetworks.jl/latest/
https://crsl4.github.io/PhyloNetworks.jl/latest/
https://crsl4.github.io/PhyloNetworks.jl/latest/
https://crsl4.github.io/PhyloNetworks.jl/latest/
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12 Opportunities and challenges

Throughout this book, the empirical examples of the methodology we have presented come
mainly from the fields of macroevolution and virus epidemiology (in particular, we discussed
RNA viruses such as HIV, HCV, influenza virus, Ebola virus, and SARS-CoV-2). Indeed,
phylogenetic and phylodynamic approaches were first developed with a macroevolutionary
application in mind. Later, these approaches were widely adopted and applied in RNA virus
epidemiology. More recently, phylogenetic methods have been applied across various bio-
logical and non-biological fields. In the introduction, we briefly touched on some of these
emerging application areas (Section 1.1.1). This last chapter will discuss these areas in more
detail, linking to the concepts introduced throughout the book. As outlined below, phylo-
genetic approaches have been applied in these areas, yet the opportunities stemming from
phylodynamic approaches have not been widely explored.

This chapter is comprised of two parts. The first highlights some of the many opportunities
to achieve new understanding across biological and non-biological scales by employing the
tools discussed in this book. The second part outlines major statistical and computational
challenges in genetic sequence analysis with an evolutionary perspective in mind.

12.1 Opportunities through novel applications

12.1.1 Applications in biology and the life sciences

12.1.1.1 Infectious disease epidemiology beyond RNA viruses

Much of the epidemiological examples in this book involve RNA viruses. Indeed, the first
epidemiological applications of phylogenetic and phylodynamic techniques involved RNA
viruses, with DNA virus and bacterial applications appearing more recently. One essential
reason for this is that RNA viruses evolve much faster than DNA viruses or bacteria. A single
gene of RNA viruses typically contains enough diversity to perform phylodynamic studies
(Chapter 9). Evolution is slower for DNA viruses and bacteria, and thus, diversity in samples
is low. A single gene typically does not contain enough diversity to yield a phylogenetic signal
on epidemic time scales; however, whole genomes may contain enough diversity. Thus, DNA
virus and bacterial applications could only be pursued once whole genome sequencing became
possible on a large scale.
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Figure 12.1: Phylogenetic tree of Mycobacterium tuberculosis strains collected during an
outbreak in Switzerland. Inference was performed with Bayesian methodology.
Figure adapted from Kühnert et al. (2018a).

The concepts introduced in this book can generally be used for the epidemiology of infectious
diseases beyond RNA viruses, such as DNA viruses and bacteria, based on whole genome
sequence data. As for RNA virus epidemiology, in this context, a unit is an infected host. For
DNA viruses or bacteria without horizontal gene transfer (such as Mycobacterium tubercu-
losis), the presented phylogenetic and phylodynamic tools can be used directly (see Kühnert et
al. (2018a) and Pečerska et al. (2021) forMycobacterium tuberculosis examples). A calendar-
time scaled phylogenetic tree of an Mycobacterium tuberculosis outbreak in Switzerland is
shown in Figure 12.1. This study suggests that the peak of infections in this outbreak was
around 1990, several years prior to the detection of the outbreak (as also suggested by Stucki
et al. (2015)).

For bacteria with considerable horizontal gene transfer, the non-tree-like processes have to be
acknowledged, as discussed in Chapter 11, where we also provided an application of phylo-
genetic networks to Escherichia coli (Figure 11.7).

Finally, eukaryotic infectious agents such as Plasmodium causing malaria cannot easily be
analysed in the phylogenetic context: they recombine very frequently so that linkage between
sites is very weak, and no tree or network represents the transmission chain well. However,
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GWAS approaches (Chapter 4) can be used to analyse such pathogen sequence data (Orjuela-
Sánchez et al. 2010).

12.1.1.2 Microevolution

Microevolution refers to evolutionwithin a single species population, with an individual mem-
ber of the population as the biological unit. Any evolutionary study of bacterial populations
falls under this application (e.g. Chapter 11). So does the study of evolutionary changes within
the human population (again see Chapter 11 as well as Chapter 4) or a population of indi-
viduals from some other species. Furthermore, viruses within a host also form an evolving
population.

Most bacteria exchange genetic material horizontally, most eukaryotes reproduce sexually,
and viruses within a host may recombine when infecting the same cell. For pathogens, we
were able to ignore such horizontal processes in most parts of the book because we focused
on transmission trees where a tip corresponds to a host rather than a tip corresponding to a
single pathogen individual. However, when studying, for example, an HIV population within
a single host, where the individual is a single pathogen such as a virion, recombination cannot
be ignored. Similarly, when considering the macroevolutionary scale with a species being an
individual, we were considering species trees throughout the book (but see Chapter 11 for
horizontal events in macroevolution); yet when performing microevolutionary studies focus-
sing on individuals within species, horizontal processes are very prevalent. Network models
(Chapter 11) are required in such microevolutionary settings unless only SNPs without link-
age are considered, in which case GWAS approaches are valid Chapter 4.

12.1.1.3 Immunology

An immunological application of phylogenetic and phylodynamic methods is the proliferation
of B lymphocytes (also called B cells), responsible for producing antibodies. Antibodies bind
to antigens on the pathogen surface and neutralise them.

A wide repertoire of B cells is generated through so-called VDJ recombination in the bone
marrow1. When a B cell is exposed to a pathogen, it undergoes somatic hypermutation. The
resulting B cells ideally target the pathogen better (affinity maturation). This process of so-
matic hypermutation can be modelled by a tree: cells divide and rapidly accumulate point
mutations. In this context, a B cell is a biological unit, and phylodynamics can be used to
investigate the dynamics of B cell evolution during affinity maturation (Hoehn et al. 2016).

In Hoehn, Pybus and Kleinstein (2022), the authors infer B cell phylogenetic trees with max-
imum parsimony (see Figure 12.2). Parsimony is commonly employed in this context for speed
reasons. However, maximum likelihood methods taking into account explicit models for B
cells have been developed (Hoehn, Lunter and Pybus 2017; Hoehn et al. 2019), followed by

1Susumu Tonegawa received the Nobel Prize in Physiology or Medicine for this finding.
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Figure 12.2: a Phylogenetic tree of B cells and b, c, d estimated ancestry of cell types in
different patients. Figure adapted from Hoehn, Pybus and Kleinstein (2022).

Bayesian methods (Dhar et al. 2020). Alongside these methods, simulation frameworks to
assess the performance of the new approaches for B cells were developed, such as Yermanos
et al. (2017). Advances in sequencing B cells and robust inference of their phylogenies of-
fer unique opportunities to enhance the understanding of affinity maturation by employing
phylodynamic approaches (Stadler, Pybus and Stumpf 2021).

12.1.1.4 Developmental biology

In the development of an organism, an initial cell (the fertilised egg) develops through cell
division, differentiation, and death into a full multicellular organism. Thus, the ancestry of all
cells within an organism can be depicted in a tree with single cells as the unit represented as a
tree branch. ForCaenorhabditis elegans, the whole developmental tree has been painstakingly
mapped by directly imaging its developmental process (Sulston et al. 1983). However, this is
a unique exception: such imaging is generally not possible over the whole developmental
time. An alternative is to reconstruct the tree using genomic sequences; however, few somatic
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mutations occur during healthy development. Thus, it is very challenging to reconstruct a cell
tree based on the genome sequences of different cells from an organism.

Recent technological advances aim to generate synthetic sequence data that are informative
enough to reconstruct the tree of development. The underlying principle is to insert an en-
gineered “barcode” into the genome of the first cell. This barcode is constructed such that
it evolves in a neutral way and accumulates enough diversity to reconstruct the cell phylo-
genetic tree based on sequenced barcodes from different cells (McKenna and Gagnon 2019;
McKenna et al. 2016; Raj et al. 2018; Spanjaard et al. 2018; Alemany et al. 2018; Chow et al.
2021; Loveless et al. 2021; Choi et al. 2022). These barcodes, in principle, contain inform-
ation about the cell tree of a whole organism or the cell trees of particular organs or other
tissue.

The statistical tools for molecular evolution presented in this book (Chapter 5) need to be ad-
apted to analyse the barcode genomic data since barcode evolution is typically not dominated
by point mutations but instead by processes such as scarring, insertion, and deletion. Mostly
parsimony or distance-based methods have been used on the barcode datasets (e.g. Choi et al.
(2022), also shown in Figure 12.3). Recently, model-based approaches such as Feng et al.
(2021) were developed, some also providing a calendar-time scale for the tree (Seidel and
Stadler 2022; Fang et al. 2022).

A core challenge in developmental biology is to understand and quantify cell differentiation.
Datasets containing both the barcodes and the transcriptome (from RNA sequencing) for a
set of cells allow us to reconstruct calendar-time scaled phylogenies based on the barcodes; the
trees can be amended with the transcriptomic information for the tips. Such a tree provides
insights into how cells differentiated into their current transcriptomic state (Kester and van
Oudenaarden 2018). Using the new barcoding and sequencing technologies together with
phylodynamic models will open up the opportunity to obtain a quantitative understanding
of the cell differentiation process. A phylodynamic cell differentiation model, the cell state
transition diagram, based on the compartmental models in Section 9.5.2, was introduced in
Stadler, Pybus and Stumpf (2021).

12.1.1.5 Cancer

Cancer occurs as a result of an out-of-control cell division process. During this uncontrolled
division, many genetic changes occur, such as point mutations, copy number variations, chro-
mosomal rearrangements, and ploidy changes. The genomes of cancer cells can be sequenced
to reconstruct the underlying cell phylogenetic tree, where single cells are the unit correspond-
ing to a branch in the tree.

Classically, bulk sequencing of cancer samples was performed. Bulk sequencing means that
based on a sample, raw reads are obtained from a set of cells jointly. These reads then repres-
ent the cells within the considered sample. Treating each sample as a tip does not lead to the
evolutionary tree since samples contain information on a set of cells that may not be clonal;
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Figure 12.3: Phylogenetic tree of single cells traced with a barcode during the developmental
process. Figure adapted from Choi et al. (2022).

instead, some cells in one sample may be more closely related to cells in another sample com-
pared to cells in the same sample (Alves, Prieto and Posada 2017). Computational methods
were developed, aiming to deconvolve the mixture such that reads are assigned to different
cells (Sottoriva et al. 2015; Ling et al. 2015; Zhai et al. 2017; Beerenwinkel et al. 2014).

Tree structures, where essentially each node corresponds to a cell, were reconstructed from
this deconvolved bulk data using different clustering approaches. The field is moving towards
inferring the phylogenetic tree representing evolutionary history through time, now with cells
being the tips, as done in Martinez et al. (2018) (based on so-called crypt-based bulk data)
using a parsimony approach as well as a Bayesian approach within BEAST (see Chapter 10).
For an overview, see Schwartz and Schäffer (2017).

Recent technology enables single-cell sequencing, resulting directly in one assembled sequence
per cell based on which a tree can be reconstructed; see, for example, Casasent et al. (2018).
A challenge is the noise in the single-cell sequence data due to the small amount of DNA.
Computational methods such as Zafar et al. (2017), Kozlov et al. (2022), Kang et al. (2022)
and Kang et al. (2023) introduce approaches to model this noise directly — meaning the
downstream results take the noise into account — while also adapting substitution models to
the specific evolutionary process in cancer. The latter is a prerequisite for accurate estimation
of time-scaled trees.

Going forward, we see a lot of potential in analysing time-scaled cancer tumour trees from
different patients jointly to quantify general patterns about cancer evolution and progression;
see also Stadler, Pybus and Stumpf (2021).
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12.1.2 Applications in anthropology

Concepts introduced in this book have also been used in anthropological studies. Here, we
will outline advances in linguistics and human migration. Phylodynamics has further been
used to study the evolution of stratified societies (Watts et al. 2016) and the evolution of
political systems (Currie et al. 2010). Moreover, phylodynamics has been used to investigate
the impact of past human trade on ocean ecology (for example, on herring species, (Atmore
et al. 2022)). Finally, in a twist of irony, phylogenetics has been used to study the recent
evolution of policies opposed to teaching evolution in schools (Matzke 2016).

12.1.2.1 Linguistics

Linguists encode languages into binary sequences, where each site on the sequence indicates
the presence or absence of a sound/meaning combination known as a cognate in each lan-
guage. Instead of a biological unit, we define a language as the anthropological unit we study.
Substitution processes similar to the ones used to model nucleotide substitution are used to
model the change in a sequence representing a language, representing the gain and loss of
cognates from languages over time (Forster and Renfrew 2006; Nicholls and Gray 2008;
Bouckaert and Robbeets 2017).

Based on an alignment of the sequences corresponding to languages with a substitution model
and a tree-generating model, phylogenetic and phylodynamic inference can be performed as
outlined in Chapters 6, 9 and 10.

A well-known example of this kind of application can be found in the study of the origin of
the Indo-European language family (Bouckaert et al. (2012, Figure 2)).

12.1.2.2 Human migration

The past movement of humans can be estimated indirectly via the evolution of the microor-
ganisms— specifically bacteria —which they carry. This approach has the advantage that the
evolutionary processes affecting bacterial genomes generally occur thousands of times faster
than the analogous process affecting human genomes. This means that evolutionary relation-
ships between bacteria are much easier to resolve over the relatively short timescales involved
in human migration than the corresponding human evolutionary relationships would be. A
phylogenetic study of bacteria associated with human populations describes the movement of
bacteria around the world and, thus, indirectly, human migration. In this context, a unit is a
human population. In Linz et al. (2007, Figure S3), the past humanmigration process is recon-
structed from Helicobacter pylori sequences using the neighbour-joining tree reconstruction
method.



352 12 Opportunities and challenges

12.2 Statistical and computational challenges

The statistical advances across phylogenetics and phylodynamics presented in this book
have been implemented as free software. Over the last decade, much of this work has fo-
cused on developing and contributing to large extensible software platforms. Major ex-
amples include RevBayes (https://revbayes.github.io/) (Höhna et al. 2016), MrBayes
(https://nbisweden.github.io/MrBayes/) (Huelsenbeck and Ronquist 2001), BEAST1
(https://beast.community/) (Drummond and Rambaut 2007) and BEAST2 (https:
//www.beast2.org/) (Bouckaert et al. 2019) (the authors of this book mainly contribute
to the latter), with all four being Bayesian frameworks. For the prospective BEAST2 user, we
offer a “Taming the BEAST” website, housing many BEAST2 tutorials that can be used for
self-study and are taught in the corresponding workshop series of the same name (Barido-
Sottani et al. 2018). While such platforms were extended by many different researchers in
various ways, offering broad functionality, core statistical and computational challenges in
phylogenetics and phylodynamics remain.

12.2.1 Analysing large datasets

The Bayesian approach is very appealing due to its conceptual simplicity and its requirement
to explicitly state the stochastic model under which the data are assumed to be generated,
including the prior information. However, many implementations of Bayesian approaches
quickly become unwieldy when applied to large datasets. As discussed in Section 6.2.3.3,
the number of trees on n leaves grows exponentially on the order of O(en lnn). Traditional
Metropolis-Hastings MCMC approaches, in particular, may require extremely long chains to
characterise posterior distributions over such big tree spaces fully.

For this reason, statisticians have developed sophisticated alternatives. One example is the so-
called Hamiltonian Monte Carlo approaches (Girolami and Calderhead 2011), which use the
gradient of the target distribution to guide proposals and more efficiently explore continuous
state space. However, despite advances in applying such methods to discrete phylogenetics
state spaces (Dinh et al. 2017), practical Bayesian phylogenetic inference remains limited to
trees with less than a thousand tips.

Distance-based methods and approximate maximum likelihood methods are much faster in
estimating a phylogenetic tree topology. In fact, significant progress was made in estimating
large tree topologies during the COVID-19 pandemic, as millions of SARS-CoV-2 sequences
became available. One approach to continuously update very large trees with new sequences
was to sequentially add new sequences to the tree using a parsimonious concept (https://gen-
ome.ucsc.edu/cgi-bin/hgPhyloPlace (UShER) (Turakhia et al. 2021)).

For datasets with a lot of signal and little uncertainty regarding the tree topology, a way
forward can be to fix the topology using one of these fast methods and only account for
uncertainty in branch lengths, evolutionary parameters, and phylodynamic parameters with
the Bayesian approaches.

https://revbayes.github.io/ 
https://revbayes.github.io/ 
https://nbisweden.github.io/MrBayes/
https://nbisweden.github.io/MrBayes/
https://nbisweden.github.io/MrBayes/
https://beast.community/
https://beast.community/
https://beast.community/
https://www.beast2.org/
https://www.beast2.org/
https://www.beast2.org/
https://www.beast2.org/
UShER
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12.2.2 Combining genetic sequences with additional data

Genetic sequences encode aspects of the history of the individuals they represent. However,
there is also a limit on the amount of information that genetic sequences contain; for example,
as we discussed in Section 9.1.5.2, only two out of the three phylodynamic parameters (birth,
death, and sampling) can be inferred from genetic sequence data alone. Additional data, such
as fossil data or classic epidemiological data, can provide information on the third parameter.

Generally, many aspects beyond the genetic sequences may be measured to understand the
evolutionary and population dynamic processes giving rise to the considered samples. For
example, human travel may be considered when studying epidemics, RNA transcriptomic
data may be generated for single cells, and climate or tectonic activity may be estimated for
the earth over the past millions of years.

Conceptually, there are two different types of additional data. Each sequence may have an
array of metadata associated with it (e.g. RNA transcriptomic data for single cells, clinical
information on infection outcome or the age of infected individuals for epidemics, phenotypic
traits for species). Alternatively, general data may be available spanning the time scale of
the phylogeny (e.g. paleoclimatic data for macroevolution, prevalence information or travel
patterns for epidemiology).

12.2.2.1 Additional data spanning the time scale of the phylogeny

For data spanning the time scale of the phylogeny, one can employ time-dependent phylody-
namic models, where changes in dynamics through time are informed by the additional data.
In a Bayesian context, the additional information flows into the phylodynamic model through
the prior on time-dependent rates.

A factor that complicates analyses with such metadata comes into play when the metadata
observations are not independent of the sequence data observations. Observing the climate
through time is, of course, a measurement that is independent of sequence data of species.
However, if we have case count data in addition to the pathogen sequences, then the case
counts and the sequences are part of the same transmission tree and, thus, are not independ-
ent observations. If the dependency is weak (e.g. the number of sequences is very small com-
pared to the number of counted cases), one can assume independence (Rasmussen, Ratmann
and Koelle 2011) and work with time-dependent phylodynamic models. More generally, we
need to acknowledge the dependence, which brings statistical and computational challenges
(Vaughan et al. 2019).

12.2.2.2 Additional data for each tip in the phylogeny

One can use structured models (Section 9.5) for sequence-specific metadata, assuming a separ-
ate deme for each unique metadata combination. However, this quickly leads to an explosion
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in the number of parameters that need to be inferred.

The general approach to dealing with this is to additionally incorporate some prior knowledge
about the similarity of the dynamics of individuals having similar (yet not identical) metadata
combinations.

Assigning individuals to a discrete space (finite number of demes) A commonly used
approach is to partition the metadata space into a small number of subsets. The approach then
assumes that all individuals belonging to one of these subsets possess identical dynamics. Each
subset is identified as a “deme” for the phylodynamic analysis. Multi-type analyses can then
be feasibly performed on these demes, using either a structured coalescent or a multi-type
birth-death model, as discussed in Section 9.5.

While this approach is straightforward, the obvious limitation is its requirement for partition-
ing the metadata. In some cases, there is a natural way to divide the metadata. For instance,
consider the case where the metadata are geographical coordinates (latitude and longitude) of
an animal population spread across several islands. Grouping all coordinates corresponding
to the same island might make sense if the within-island populations themselves are homo-
geneous. However, imagine now that the geographical coordinates belong to a population
spread across a large continent. In this case, a natural way to partition the coordinates, such
that the assumption of homogeneous mixing within a subset makes sense biologically, may
not exist.

As a side note, continuous phylogeography models such as those mentioned in Chapter 9
implicitly assign the entire geographic coordinate space to a single deme. Thus, these mod-
els assume the same phylodynamic parameters (such as birth, death, sampling or pairwise
coalescence rate, and migration/diffusion rates) for all individuals and merely quantify the
geographic movement of the individuals through time.

Assuming tight priors in continuous space (e.g. generalised linear models) A second
approach assumes that each individual with uniquemetadata has its own parameters, meaning
each individual exists in a separate deme. Then, tightly informative priors on a large number
of phylodynamic parameters are assumed. This can be done by introducing some simple,
functional relationship between the metadata combination and the phylodynamic parameters.
For example, let us assume that metadata for each sequence is its geographical coordinates
with the average temperature and yearly precipitation and that we have a simple model for
how individuals move geographically. One may then assume that a linear function of the
average temperature and yearly precipitation at a coordinate determines the (logarithm of
the) transmission rate at that coordinate. This kind of approach is known as a generalised
linear model (GLM, Nelder and Wedderburn (1972)), and it has been used in Lemey et al.
(2014) to explore, for example, the relationship between migration history of the virus and
factors such as airline flight frequencies, population sizes, and so on within a phylogeography
approach (see Section 9.5.4.1). In this framework, regularisation techniques can be used to
restrict the parameter space further, meaning non-zero parameters are penalised.
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When employed in a birth-death model framework, the metadata can be used as information
on the birth and death rates, meaning they may influence the birth and death rates. Thus
far, we have considered the sequence alignment separately, as data evolving on a given tree
(see models in Chapter 5), not influencing birth and death rates. In other words, it was as-
sumed that the sequences evolve neutrally — the genotype influences neither birth nor death.
However, one may treat parts of the sequences as part of the “metadata” and thus allow it
to affect the phylodynamic parameters, lifting the assumption of complete neutrality. For ex-
ample, in Section 9.5, we put sequences into different demes depending on whether they carry
a drug-resistant mutation or not. This idea has been recently generalised by looking at several
mutations simultaneously to infer genotype-dependent transmission rates in the context of
Ebola and influenza virus evolution (Rasmussen and Stadler 2019).

The approach of assuming tight priors is still not widely used. A reason for this is the spe-
cialised nature of such models: they generally involve many parameters which must be tuned
carefully for a particular application. Generally flexible and performant implementations of
these methods are not yet available.

12.2.3 Determining model adequacy

As stated above, Bayesian inference yields important advantages over other inference frame-
works due to transparency with respect to its modelling and prior assumptions and its explicit
accounting for uncertainty in the final results. It also provides a clear framework, through the
Bayes factors (see Section 10.1.6), for selecting from different possible models. But what hap-
pens when the models do not describe the biological system well? How much can we really
trust our inference results?

One approach to this problem involves assessing what has been termedmodel adequacy (Boll-
back 2002).

This involves quantifying the degree to which the best-fitting model actually produced the ob-
served data. It is centred around what is known as the posterior predictive distribution defined
as the probability distribution of (hypothetical) new data conditional on the model and the
existing data. Assessing model adequacy generally involves sampling the posterior predictive
distribution and comparing key summary statistics of this new (simulated) data with the sum-
mary statistics of the observed data. The assumption is that if the model really does describe
the observed data well, these summary statistics should be comparable. Practically speaking,
sampling the posterior predictive distribution can be done by taking combinations of model
parameters sampled from the posterior and simulating a new dataset under the model from
each combination.

Several applications of this idea in a phylogenetic and phylodynamic context have been re-
cently explored, and many more are in development. A technique for assessing the model
adequacy of molecular clock models has been developed (Duchêne et al. 2015), as has a re-
lated technique applied specifically to birth-death (Duchêne et al. 2018), coalescent skyline
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plot (Fonseca et al. 2022) and phylogeographic (Carstens et al. 2022) models. While these
tools are not yet widely used, such approaches will be instrumental in evaluating the appro-
priateness of models and, in turn, avoiding biased results due to model misspecification.

12.3 Final words

In recent years, the field of genomic sequence analysis has flourished thanks to new sequen-
cing technologies producing an unprecedented wealth of data and exciting developments in
statistics and computation. In this book, we have outlined classic approaches and recent de-
velopments that allow us to learn about biology by looking at the genetic code of different
organisms from an evolutionary perspective.

We envision that the concepts in this book, combined with overcoming challenges outlined in
this last chapter, will enable statistical and computational analyses of genomic sequence data
across biological scales. More broadly, the tools will enable us to answer questions that lie
beyond biology, studying further fields where evolution plays a role, such as anthropology.
Overall, leveraging new datasets and statistical tools will enable us to answer fundamental
research questions as well as generate evidence for policymakers.
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S DECODING GENOMES demonstrates how to uncover information about past evolutionary 

and population dynamic processes based on genomic samples. The last decades have 
seen considerable theoretical and methodological advances in this area. These enable the 
assessment of critical scientific questions such as the impact of environmental changes on 
biodiversity and the evolution of pathogens during recent epidemics. The book gives the 
reader a detailed understanding of the whole process: from genome sampling to obtaining 
biological insights by applying sophisticated statistical and computational analyses. In 
particular, sequencing of genomic samples, the alignment of sequences, molecular evolu-
tion models, phylogenetics, and phylodynamics are core topics. Statistical and computation-
al approaches discussed include dynamic programming, maximum likelihood, Bayesian 
statistics, and model selection, to name a few. The concepts introduced and applied 
throughout the book enable readers to answer questions across biological scales, including 
microevolution, macroevolution, immunology, development, cancer, and epidemiology, as 
well as in fields other than biology where evolutionary concepts are key, such as linguistics. 

Target audience. The book is for students and researchers who aim to analyse genomic 
sequence data or develop statistical and computational approaches for such analyses. The 
content is tailored to readers from a wide variety of backgrounds, ranging from mathemat-
ics and statistics, computer science, or physics to biology, and, more generally, the life 
sciences.  

The authors. All authors are or have been part of the Computational Evolution group at 
ETH Zürich, which is widely recognised as one of the leading teams in developing evolu-
tionary and population dynamic models for analysing genomic data. Their various back-
grounds — including mathematics, computer science, physics, and biology — help make 
this work accessible to a broad audience.
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