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A Representation-Learning Game for Classes of
Prediction Tasks

Neria Uzan and Nir Weinberger
The Viterbi Faculty of Electrical and Computer Engineering

Technion - Israel Institute of Technology
Technion City, Haifa 3200004, Israel

neriauzan@gmail.com, nirwein@technion.ac.il

Abstract—We propose a game-theoretic formulation for learn-
ing dimensionality-reducing representations of feature vectors,
when a prior knowledge on future prediction tasks is available.
We analytically find the value of the game and optimal mixed
(randomized) strategies for the case of linear representations,
tasks, and the mean squared error loss, and propose an algorithm
for general classes of representations, tasks, and loss functions.

Motivation: Data of unlabeled feature vectors {xi} ⊂ X
is commonly collected without a knowledge of the specific
downstream prediction task it will be used for. When a
prediction task becomes of interest, responses yi ∈ Y are also
collected, and a learning algorithm is trained on {(xi,yi)}.
Modern sources, such as high-definition images or genomic
sequences, have high dimensionality, and this necessitates to
reduce their dimensionality, either for better generalization,
for storage/communication savings, or for interpretability. The
goal is thus to find a low-dimensional representation z =
R(x) ∈ Rr, that preserves the relevant part of the features,
for all possible downstream prediction tasks. Unsupervised
methods for dimensionality reduction, such as principal com-
ponent analysis (PCA), kernel PCA and auto-encoders [1],
aim that the representation z will maximally preserve the
variation in x, and thus ignore any prior knowledge on future
prediction tasks. Following a formulation proposed in [2] for
the supervised learning setting, we propose a game-theoretic
formulation for the case the downstream task is only known
to belong to a given class.

Problem formulation: Assume that the response is drawn
according to y ∼ f(· | x = x), where f ∈ F for some
known class F . Let z := R(x) ∈ Rr be an r-dimensional
representation of x where R:X → Rr is chosen from a
class R of representation functions, and let Q:X → Y be
a prediction rule from a class QX , with the loss function
loss:Y × Y → R+. The pointwise regret of (R, f) is

regret(R, f | Px) := min
Q∈QRr

E [loss(y, Q(R(x)))]

− min
Q∈QX

E [loss(y, Q(x))] .

The minimax regret in mixed strategies is the worst case
response function in F given by

regretmix(R,F | Px) := min
L(R)∈P(R)

max
f∈F

E [regret(R, f | Px)] ,

(1)

where P(R) is a set of probability measures on the possible
set of representations R. The minimax regret in pure strategies
restricts P(R) to degenerated measures (deterministic), and
so the expectation in (1) is removed. Our main goal is to
determine the optimal representation strategy, either in pure
R∗ ∈ R or mixed strategies L(R∗) ∈ P(R).

Theoretical contribution: We address the basic setting in
which the representation, the response, and the prediction are
all linear functions, under the mean squared error (MSE) loss,
and the class is FS = {‖f‖S≤ 1} for a known symmetric
matrix S. Combined with the covariance matrix of the features,
S determines the relevant directions of the function in the
feature space, in contrast to just the features variability, as
in standard unsupervised learning. We establish the optimal
representation and regret in pure strategies, which shows the
utility of the prior information, and in mixed strategies, which
shows that randomizing the representation yields strictly lower
regret. We prove that randomizing between merely `∗ different
representation rules suffices, where r + 1 ≤ `∗ ≤ d is a
precisely characterized effective dimension.

Algorithmic contribution: We develop an algorithm
for optimizing mixed representations for general representa-
tions/response/predictors and loss functions, based only on
their gradients. The algorithm operates incrementally, and at
each iteration it finds the response function in F that is most
poorly predicted by the current mixture of representation rules.
An additional representation rule is added to the mixture,
based on this function and the ones from previous iterations.
To optimize the weights of the representation, the algorithm
solves a two-player game using the classic multiplicative
weights update (MWU) algorithm [3].

Further details: A full version of the paper can be found
in [4].
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The out-of-sample prediction error of the
square-root-LASSO and related estimators

Cynthia Rush
Columbia University
New York, NY, USA

email: cynthia.rush@columbia.edu

Abstract—The extent to which prediction algorithms can per-
form well not just on training data, but also on new, unseen, testing
inputs is a central concern in machine learning. In fact, reducing
a predictor’s testing error—or equivalently, improving its “out-
of-sample” performance or “generalization error”—possibly at
the expense of increased training error, is a typical informal
motivation for introducing regularization strategies in statistical
estimation. More generally, the study of issues related to problems
in which training and testing environments differ from one
another is the subject of several recent, rapidly growing areas
of research at the intersection of machine learning and statistics:
transfer learning, distributional shifts, domain adaptation, adver-
sarial attacks, learning under biased sampling and cross-domain
transfer performance are some relevant examples.

In this work, we study the classical problem of predicting
an outcome variable, Y , using a linear combination of a d-
dimensional covariate vector, X. We focus on linear predictors
whose coefficients, β̂, solve the problem:

arg inf
β∈Rd

(
EPn

[∣∣∣Y −X>β
∣∣∣
r])1/r

+ δ ρ (β) , (1)

where δ > 0 is a regularization parameter, ρ : Rd → R+ is a con-
vex penalty function, Pn is the empirical distribution of the data,
and r ≥ 1. The square-root LASSO (henceforth,

√
LASSO), the

square-root group LASSO, the square-root sorted `1 penalized
estimator (SLOPE), and the `1-penalized least absolute deviation
estimator provide examples of estimators obtained by solving (1).

We are interested in studying the out-of-sample prediction
error associated to such estimators; namely

EQ
[∣∣∣Y −X>β̂

∣∣∣
r]
. (2)

The expectation above is computed by fixing the estimated β̂,
and then drawing new covariates and outcomes according to
some joint distribution Q. The distribution Q is similar, but not
necessarily equal to, the true data generating process, P, or the
empirical distribution of the data, Pn.

Informally, our main result is the following upper bound on
the out-of-sample prediction error: If δ is chosen appropriately,
then, with high probability, for any β, we have

EQ
[∣∣∣Y −X>β

∣∣∣
r]1/r

≤

EPn

[∣∣∣Y −X>β
∣∣∣
r]1/r

+
(
δ + Ŵr(P,Q)

)
(1 + ρ (β)) ,

(3)

where Ŵr denotes a type of max-sliced Wasserstein metric. We
will present a formal definition of this metric and explain how
distributions that are close in this metric are required to have
similar prediction errors (in a sense we make precise). The
proof of the above is based on three intermediate results, which
bring together ideas related to distributionally robust optimization

(DRO), finite sample analysis of the max-sliced Wasserstein
metric, and empirical process theory.

First, we show that estimators constructed using (1) are
equivalent to those that solve a DRO problem based on a Ŵr-ball
around Pn. The DRO representation naturally yields finite-sample
bounds for (2) in terms of (1), provided that distributions Q are
close to Pn in terms of our suggested metric. Thus, our first result
provides theoretical support for the claim that predictors based
on estimators obtained via (1) (such as the

√
LASSO and related

estimators) have good out-of-sample performance.
Second, we provide a detailed statistical analysis of the balls of

distributions based on our suggested metric. More precisely, we
determine the required size of a ball centered on Pn to guarantee
that it contains P with high probability. We present both finite-
sample results and large-sample approximations. Our analysis
suggests that our balls are statistically larger than those based on
the standard Wasserstein metric. Because the balls we consider
are statistically larger, their radii can shrink to zero faster than
order n−1/d (the usual rates for Wasserstein balls), and still
contain P.

Third, we use the DRO representation of (1) and the statistical
analysis of our max-sliced Wasserstein balls to i) derive oracle
recommendations for the penalization parameter δ that guarantee
good out-of-sample prediction error; and ii) present a test statistic
to rank the out-of-sample performance of two different linear
estimators.

None of our results rely on sparsity assumptions about the
true data generating process; thus, they broaden the scope of
use of the square-root lasso and related estimators in prediction
problems.

REFERENCES
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Quantitative Group Testing and Pooled Data with
Sublinear Number of Tests

Nelvin Tan, Pablo Pascual Cobo, and Ramji Venkataramanan
Department of Engineering, University of Cambridge

Abstract—In the pooled data problem, the goal is to identify
the categories associated with a large collection of items via a
sequence of pooled tests. Each pooled test reveals the number
of items of each category within the pool. A prominent special
case is quantitative group testing (QGT), which is the case of
pooled data with two categories. We consider these problems in
the linear regime, where the fraction of items in each category
is of constant order. We propose a spatially coupled test matrix,
and prove that a suitable approximate message passing (AMP)
algorithm achieves almost-exact recovery with the number of tests
sublinear in the number of items. For both QGT and pooled data,
this is the first efficient scheme that provably achieves recovery
in the linear regime with a sublinear number of tests.

I. INTRODUCTION

Group testing is a problem where items are either defective
or non-defective and the goal is to estimate the defective set via
pooled tests, where groups of items are tested together. The
original model considers binary tests where the test returns
a positive outcome if there is at least one defective item
present in it, and a negative outcome otherwise. Its variant,
the quantitative group testing (QGT) model [1] is useful when
tests are more informative: each test reveals the number of
defective items in that pool. A more general version of QGT
is the pooled data problem [2] where the goal is to identify
the categories associated with a large collection of items via a
sequence of pooled tests. Each pooled test reveals the number
of items of each category within the pool.

Quantitative group testing: There are p items, whose
status is denoted by the binary vector β ∈ {0, 1}p, where
one represents a defective item and zero a non-defective item.
Items are allocated to tests using a design (or test matrix)
X ∈ {0, 1}n×p where n is the number of tests and p is the
number of items. The ith row Xi determines the pooling design
of the ith test where Xij = 1 indicates that the jth item will
participate in the ith test, and Xij = 0 indicates otherwise. Let
k be the number of defective items with k < p. We consider the
linear regime, where each item is independently defective with
a constant probability π ∈ (0, 1) Mathematically, the QGT
model is

yi = β⊤(Xi,:) for i ∈ {1, . . . , n}, (1)

where yi ∈ R is the output of the ith test, and Xi,: is the ith
row of X represented as a column vector. The goal to is to
recover β with as few tests as possible. We define the almost-

exact recovery criterion where we have the estimate β̃ of β
satisfying

1

p

p∑

j=1

1
{
β̃j ̸= βj

}
→ 0 as p→∞. (2)

This is a weaker notion of recovery compared to the exact
recovery criterion where we want P[β̃ ̸= β] → 0 as p → 0.
We note that an almost-exact recovery criterion is meaningful
in the linear regime but not in the sublinear regime, where
k = o(p), since setting β̃ to the all-zero vector satisfies (2).

Pooled data problem: The signal to be estimated is B ∈
{0, 1}p×L, where each row is a one-hot vector. For example
Bj = [0, 1, 0, . . . , 0] represents the jth item belonging category
2 (the position of one in Bj). We consider the linear regime
where each item’s category is independently generated from
Categorical(π), where π ∈ RL has positive entries that sum to
1. The model is

Yi,: = B⊤(Xi,:) ∈ RL for i ∈ {1, . . . , n}, (3)

where Yi,: is the ith row of Y represented as a column vector.
The output of each test Yi,: tells us the number of items from
each category present in the test, which can be viewed as a
histogram. Similar to QGT, denoting the estimate by B̂, the
almost-exact recovery criterion is

1

pL

p∑

j=1

L∑

l=1

1
{
B̂jl ̸= Bjl

}
→ 0 as p→∞.

The number of categories L does not grow with p.
In recent work [3], we analyzed an Approximate Message

Passing (AMP) algorithm for an i.i.d. Bernoulli test design,
obtaining rigorous performance guarantees for both pooled
data and QGT. In this work, we use a spatially coupled
Bernoulli test design and show that a suitable AMP algorithm
can achieve almost-exact recovery with n = o(p) tests. To our
knowledge, for both QGT and pooled data, this is the first
efficient scheme that provably achieves recovery in the linear
regime with a sublinear number of tests.
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Neural compression has brought tremendous progress in
designing lossy compressors with good rate-distortion (RD)
performance at low complexity. Thus far, neural compression
design involves transforming the source to a latent vector,
which is then rounded to integers and entropy coded. While
this approach has been shown to be optimal in a one-shot sense
on certain sources, we show that it is highly sub-optimal on
i.i.d. sequences, and in fact always recovers scalar quantization
of the original source sequence. We demonstrate that the sub-
optimality is due to the choice of quantization scheme in the
latent space, and not the transform design. By employing lattice
quantization instead of scalar quantization in the latent space,
we demonstrate that Lattice Transform Coding (LTC) is able
to recover optimal vector quantization at various dimensions
and approach the rate-distortion function, with complexity
polynomial in the dimension and rate. More generally, LTC
also improves upon standard neural compressors in vector
quantization on real-world sources.

Nonlinear Transform Coding (NTC) [1], the standard
paradigm in lossy neural compression, operates on a source
realization x by first transforming it to a latent vector y via an
analysis transform ga. The latent vector is then scalar quantized
with Q and entropy coded. To decode, a synthesis transform
gs transforms the latent into the reconstruction x̂. A theory
on why NTC performs well is that while the source x is
high-dimensional, it typically has an intrinsic low-dimensional
latent representation, which we refer to as the latent source.
For theoretical sources that have this property in [2], [3], the
authors show that NTC can (i) successfully recover the latent
source, (ii) optimally quantize it, and (iii) map back to the
original space, providing an optimal one-shot coding scheme.

However, most of the sources they analyze have a one-
dimensional uniform latent source U ∼ Unif([a, b]). While
these are sufficient to analyze the role of ga and gs, it does
not provide insights on the role of the quantizer Q. This is
because a uniform source U can be optimally quantized using
uniform scalar quantization, which is exactly what NTC uses
in the latent space. For sources with higher-dimensional latent
sources, where uniform scalar quantization is not necessarily
optimal, it is unclear whether NTC can still provide optimal
one-shot coding schemes.

In this paper, we investigate the role of the quantization in
the latent space in NTC. We first consider the challenging
case where x consists of an i.i.d. sequence of some one-
dimensional source S ∼ PS , which has no low-dimensional
latent structure, and show that NTC performs no better than
simply scalar quantizing the i.i.d. sequence itself. This is highly
suboptimal compared to the best one-shot scheme for x, whose
performance should approach the (asymptotic) rate-distortion
function R(D) of PS when the sequence length is large. This

can be achieved through vector quantization (VQ), a classi-
cal technique that has recently been investigated for neural
compression [4], [5]. However, VQ requires computational
complexity that is exponential in the rate and dimension. Thus,
we desire a method that can achieve rate-distortion limits, yet
maintain the low complexity of scalar quantization.

To resolve this, we propose to replace Q with lattice
quantization [6], which we refer to as Lattice Transform
Coding (LTC). We demonstrate that LTC is able to achieve
optimal coding schemes for i.i.d. sequences, while avoiding
the exponential complexity of a direct codebook search under
vector quantization. Our contributions are as follows.
1) We first demonstrate the inability of NTC to optimally

compress i.i.d. sequences. We show that this is due to the
choice of scalar quantization in the latent space.

2) We propose Lattice Transform Coding (LTC), and show that
it is able to optimally compress i.i.d. sequences, yet still
maintain reasonable complexity. We discuss various design
choices in the transform design as well as entropy modelling
that are required to recover optimality.

3) We demonstrate LTC on i.i.d. blocks of vector sources,
using lattice transform coding in the latent space, and show
LTC’s ability to approach the rate-distortion function of
the vector source. We additionally demonstrate on general
sources, such as correlated vector sources, and real-world
data such as image patches and audio.
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AbstractÐThe sample complexity of simple binary hypothesis
testing is the smallest number of i.i.d. samples required to
distinguish between two distributions p and q such that the Type-I
and Type-II errors are smaller than some pre-specified thresholds
α and β, respectively. Our main contribution is deriving, under
mild technical conditions, a formula for the sample complexity
in terms of parameters p, q, α, and β.

I. INTRODUCTION

Simple binary hypothesis testing is one of the most funda-
mental problems in statistics. Given that one of two hypotheses
H0 and H1 is true, the statistician observes n i.i.d. samples
X1, X2, . . . , Xn with a common distribution p under H0, or q
under H1, supported on a discrete set X . The statistician’s goal
is identify the correct hypothesis by using a decision rule ϕ
that generates an output in {0, 1} upon observing X1, . . . , Xn.
There are two kinds of errors a statistician can make: Type-I
error is when ϕ(X1, . . . , Xn) = 1 when H0 is true, and Type-
II error is when ϕ(X1, . . . , Xn) = 0 when H1 is true. If the
probabilities of the Type-I and Type-II errors are required to be
at most by α and β, then the sample complexity of the decision
rule ϕ is the n required to guarantee such a performance.

A fundamental result from statistics, the Neyman±Pearson
theorem, states that the optimal decision rule for the statistician
is the likelihood-ratio test. For some η ≥ 0, the likelihood-ratio
test with threshold η is to declare 0 if p(x)

q(x) ≥ η, otherwise
declare 1 (ties are broken arbitrarily). This simple test is
optimal in the sense that the any other test with the same
(or smaller) Type-I error than a Neyman±Pearson must have a
Type-II error that larger than or equal to that of the Neyman±
Pearson test.

Characterizing the sample complexity of the optimal
Neyman±Pearson test up to universal multiplicative constants
was first addressed in the theoretical computer science commu-
nity [1] (although it was probably folklore within the statistics
community before that [2]). Specifically [1] showed that under
mild technical conditions, the sample complexity for obtaining
Type-I and Type-II errors of at most δ is

c log(1/δ)

d2
h(p, q)

≤ n∗(p, q, δ, δ) ≤ C log(1/δ)

d2
h(p, q)

,

where c and C are some universal constants (that is, they
don’t depend on p, q, or δ), and d2

h is the Hellinger divergence
between p and q given by

d2
h(p, q) =

∑

x∈X
(
√

p(x) −
√

q(x))2.

We also express this as n∗(p, q, δ, δ) ≍ log(1/δ)
d2

h
(p,q)

. The above
bound for sufficient for applications in theoretical computer
science, and so the question of determining the sample com-
plexity when the desired Type-I and Type-II errors are unequal
was left unaddressed.

In our working manuscript [3], we show that Hellinger diver-
gence is no longer the correct measure of sample complexity
when errors are unequal. In particular, when α is a constant,
say 1/4, and β < 1/4 is allowed to be arbitrary small, the
sample complexity is given by

n∗(p, q, 1/4, β) ≍ β log(1/β)

JSβ(p, q)
,

where the denominator is the skewed Jensen–Shannon diver-
gence between p and q, defined by

JSβ(p, q) = βD(p∥βp + (1 − β)q)

+ (1 − β)D(p∥βp + (1 − β)q),

where D(p∥q) is the usual Kullback±Leibler divergence. We
also discuss extensions when α is allowed to vary, and to
Bayesian hypothesis testing settings.
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Abstract—We consider symmetric matrix factorization with
additive Gaussian noise when the rank M scales with the signal-
matrix size N as MN = o(N1/10). Allowing for a growing rank
offers new challenges and requires new methods. Working in the
Bayes-optimal setting, we show that whenever the log-concave
prior for the matrix elements takes a factorized form, then the
limiting mutual information between signal and observation is the
very same as when the rank equals one (namely, the standard
spike Wigner model), as first conjectured in [1]. The proof is
primarily based on a novel “two-step” application of the cavity
method allowing for growing rank.

Spiked matrix models of the form “signal+noise” were
introduced as simple statistical models of PCA [2] and have
now become a model of choice for the development of novel
theoretical and algorithmic approaches [3]–[8]. In this work,
we consider the archetypal spiked Wigner model, where the
data Y is generated as

Y =
√
λ/NX0X

⊺
0 +Z

where X0 ∈ RN×M is the signal, Z ∈ RN×N is a standard
Wigner noise matrix with Z ∼ exp(− 1

2TrZ
2), λ is the signal

to noise ratio. The task is to infer the spike X0X
⊺
0 given Y .

Most statistical analyses of this model focused on M = 1
or finite (i.e., N -independent) [7], [8], with recent studies
venturing into the regime of growing rank. In particular, an M -
dimensional variational formula for the limiting mutual infor-
mation can be surmised from [9] when M = o(N1/20), which
is however intractable in practice as it is still M -dependent.
We instead prove a tractable low-dimensional formula for
factorized priors when M = o(N1/10) — this is a significant
milestone towards understanding the recent observation of [1]
that the rank-M spiked Wigner model should behave as its
rank-one counterpart, so long as M = o(N).

Our main technical contribution is a generalization of the
Aizenman–Sims–Starr scheme [10] to accomodate for the
growing rank. Using this new tool we prove that the variational
formula for the mutual information reduces to the known one
of the rank-one spiked Wigner model [6]–[8].

Theorem 1. Let M = o(N1/10), let the signal X0 be made of
i.i.d. entries with common law PX which is even, log-concave
and with bounded support. Then the mutual information per
variable I(X0;Y )/(NM) tends, as N → ∞, to the same
limit as in the case M = 1, rigorously analyzed in [6]–[8].

We believe that the multi-step cavity method introduced in
this work (which will appear soon [11] ) as well as the class

of sublinear-rank inference or spin glass models are crucial
steps towards understanding the challenging extensive regime
M = Θ(N), see the recent works [1], [12]–[15].
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Abstract—Traditional channel coding theory requires a vanish-
ing block error probability for the reliability criterion. In this
note, we consider a weak decoding reliability criterion, requiring
only the local error (i.e., decoding a bit incorrectly given the other
noisy bits) to be non-trivial (i.e., bounded away from half). For
this weak decoding criterion, we provide a simple general result:
any linear transitive code achieves weak decoding below capacity
on any symmetric channel. Put in the light of the new boosting
framework of [1], [2], this gives a useful base case for a wide
variety of codes.

Definition 1. For a linear code and a symmetric1 channel,
let X be an n-dimensional codeword, Y its output on the
channel, X̂(Y ) the maximum likelihood (ML) decoding of X
based off Y , and for i ∈ [n], let X̂i(Y ) and X̂i(Y−i) be the
ML decoding of Xi based off Y and {Yj}j ̸=i respectively.
Define also Pglo = P (X ̸= X̂(Y )), Pbit,i = P (Xi ̸= X̂i(Y )),
Pbit = maxi∈[n] Pbit,i, Ploc,i = P (Xi ̸= X̂i(Y−i)), Ploc =
maxi∈[n] Ploc,i, P̄loc = (1/n)

∑
i∈[n] Ploc,i.

Note that the above measures are independent of the
codeword choice since the code is linear. Also Pbit = on(1) is
equivalent to Ploc = on(1), and for a BSC(ϵ), Pbit < ϵ∧(1−ϵ)
implies Ploc < 1/2.

Lemma 1. For a symmetric channel of capacity C and a linear
code of rate R < C, there exist Ω(n) values of j such that
Ploc,j = 1/2− Ω(1).

Proof. If the only valid codeword is 0 then Ploc,j = 0 for all
j. Otherwise let i be such that not all the codewords have
their i-th bit set to 0. Since the code is linear, it must be the
case that H(Xi) = 1. Note that H(Y ) ≤ H(X)+H(Y |X) ≤
n(H(Yi)− (C −R)). Since H(Y ) =

∑n
i=1H(Yi|Y<i), there

exist Ω(n) values of j such that H(Yj |Y<j) = H(Yi)− Ω(1).
For any such j, either H(Xj |Y−j) = H(Xj) = 0 or H(Xj) =
1 and I(Xj ;Y−j) ≥ I(Yj ;Y−j) ≥ I(Yj ;Y<j) ≥ Ω(1); either
way, Ploc,j = 1/2− Ω(1).

Corollary 1. For a symmetric channel of capacity C, a linear
code of rate R < C has P̄loc = 1/2 − Ω(1) and a linear
transitive code of rate R < C has Ploc = 1/2− Ω(1).

Definition 2. A code sequence (indexed by the blocklength n)
achieves weak decoding on a channel if Ploc = 1/2− Ωn(1).

1A symmetric channel can be viewed as a mixture of binary symmetric
channels (BSCs), i.e., independently for each i, Yi = (ϵi, Xi ⊕ wi) with ϵi
in [0, 1/2] drawn under some distribution independently of wi ∼ Ber(ϵi).

Conclusion and implications. We showed that linear
transitive codes achieve weak decoding below capacity on
any symmetric channel. This is a weak notion of decoding,
requiring the local error (as defined above) to have non-trivial
probability. This is much weaker than considering the block
error and requiring a vanishing rate. This criterion could be
tackled by the rate-distortion theory (RDT) framework, but here
we focus on rates below the traditional channel capacity (while
RDT further says that one can obtain weak decoding even
beyond the capacity). The note shows that by the sole property
of being a linear code operating below capacity, this local error
is non-trivial on average, and if the code is further transitive,
it is non-trivial for every coordinate. While this is a simple
observation, it is important once put in light of the new boosting
framework of [1], [2], since this gives a non-trivial base case
for a wide variety of codes. More specifically, the camellia
boosting as defined in [2] (or the sunflower boosting variant of
[1]) allows to boost such a weak local decoding into a strong
local decoding, where the local error becomes vanishing (rather
than just non-trivial). In order for such boosting to operate,
one needs to be able to aggregate enough spread subcodes of
the original code (with the guarantees derived here), and this
can be obtained for a broad class of symmetric codes (such as
Reed-Muller codes).
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Abstract—Nonlinear random matrices have significant applica-
tions in machine learning, statistics, and signal processing. Recent
results in the field have pointed to an intriguing equivalence
principle for these matrices. This principle shows that their
asymptotic properties, including but not limited to their spectral
characteristics, are asymptotically equivalent to those of simpler,
noisy linear equivalent models. In my presentation, I will discuss
these recent findings, shedding light on their implications and
applications in characterizing the performance of random fea-
ture regression and kernel ridge regression in high-dimensional
settings.

I. INTRODUCTION

Nonlinear random matrices and their spectral properties play
crucial roles in several problems in machine learning, statistics,
and signal processing. Examples include kernel methods (such
as kernel-PCA [1] and kernel-SVM [2]), covariance threshold-
ing procedures [3], [4], nonlinear dimension reduction [5], and
probabilistic matrix factorization [6].

For example, a random inner-product kernel matrix has the
form of

Aij
def
=

{
1√
n
fd(
√
dxT

i xj) if i ̸= j

0 if i = j
, (1)

where fd : R 7→ R is a (nonlinear) “kernel” function, and
x1, . . . ,xn ∈ Rd is a set of independent data vectors drawn
from a given distribution. A closely-related non-Hermitian
version of (1), where Aij = 1√

n
fd(
√
dxiyj) for two sets of

vectors {xi}i≤n and {yj}j≤p, appears in the random feature
model [7]–[10], an interesting theoretical model for large
random neural networks.

II. AN EQUIVALENCE PRINCIPLE

In my presentation at the seminar, I will discuss several
related recent results that point to a general equivalence prin-
ciple for many such nonlinear random matrices. For example,
it was shown in [11] that, when n/dℓ → κ ∈ (0,∞) for any
ℓ ∈ N and when the data vectors {xi}i≤n are sampled from the
spherical distribution, the empirical spectral distribution (ESD)
of A is asymptotically equivalent to that of

B =
µℓ√
nNℓ

(WTW −NℓI) + γℓH

where W ∈ RNℓ×n is an i.i.d. standard Gaussian matrix
with aspect ratio Nℓ/n → 1/(κℓ!), and H is a GOE matrix

independent of W . Both constants µℓ and γℓ depend on ℓ and
can be determined by expanding fd in the orthogonal Hermite
polynomial basis. As a direct consequence of this equivalence
principle, the limiting ESD of A can be characterized simply
as a free additive convolution between a (shifted) Marchenko-
Pastur (MP) law and a semicircle law. More recently, this
result was further extended in [12] to the case where the data
vectors {xi}i≤n are sampled from general distributions that
are i.i.d. over the coordinates. Similar equivalence principles
have also been employed to characterize the performance of
random feature regression [13] and kernel ridge regression [14]
in high-dimensional settings.
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We consider estimating a rank one matrix µ⋆ν
⊤
⋆ ∈ Rd×d

from i.i.d. observations (yi,xi, zi) drawn in an online, mini-
batched fashion according to the model yi = ⟨xi,µ⋆⟩ ·
⟨zi,ν⋆⟩+ϵi. To do so, we consider minimizing the population
loss corresponding to the negative log-likelihood, namely
L̄(µ,ν) = E{

(
yi−⟨xi,µ⟩·⟨zi,ν⟩

)2}, which we emphasize is
a non-convex function of the inputs. Towards minimizing the
population loss, consider an iterate (µt,νt). We take mini-
batches of size m with samples (yi,xi, zi)

m
i=1 and form the

data a⊤
i =

[
z⊤
i νtx

⊤
i x⊤

i µtz
⊤
i

]
for each 1 ≤ i ≤ m;

define the pair of diagonal matrices W = diag(Xµt), W̃ =
diag(Zνt); and collect the vectors ai into a concatenated data
matrix A = [a1 | a2 | . . . | am]⊤ =

[
W̃X | WZ

]
∈

Rm×2d. We then consider the following stochastic prox-linear
update to define the next iterate (µt+1,νt+1)
[
µt+1

νt+1

]
= A−1

λ

(
A⊤(y + diag(WW̃ )

)
+ λm

[
µt

νt

])
,

where λ denotes an inverse step-size parameter and Aλ =
A⊤A + λmI . Our main contribution is to provide a deter-
ministic prediction of the trajectory of the iterative method
defined in the previous display under the pair of assumptions
{xi, zi}i≥1

i.i.d.∼ N(0, Id) and ∥µ⋆∥2 = ∥ν⋆∥2 = 1. More
concretely, we obtain the following.

a) Sharp, deterministic predictions which adapt to prob-
lem error: Consider running one-step of the prox-linear update
starting from a pair (µ♯,ν♯) and let [µ⊤

+ | ν⊤
+]

⊤ denote
the next iterate. For all minibatch sizes 1 ≤ m ≤ d and
a large range of step-sizes λ ≳ (1 + σ)d/m, we derive an
explicit, deterministic, four-dimensional prediction that closely
tracks the error of its empirical counterparts. We additionally
prove a non-asymptotic guarantee on our predictions, showing
that its fluctuations scale as

∥µ♯ν
⊤
♯ −µ⋆ν

⊤
⋆ ∥F+σ

λ
√
m

, up to poly-
logarithmic in dimension factors. Note that this guarantee—
in contrast to previous work [1], [2]—provides bounds on
the deviation which scale with the current estimation error
∥µ♯ν

⊤
♯ − µ⋆ν

⊤
⋆ ∥F . This, in turn, enables a transparent con-

vergence analysis of the iterations for all noise levels σ ≥ 0.
Our proof reposes on a variant of El Karoui, et.

al’s leave-one-out method [3]. In particular, given the
ground truth µ⋆ and a current iterate µ♯, we let U =

{µ⋆,P
⊥
µ⋆

µ♯/∥P⊥
µ⋆

µ♯∥2,u3, . . . ,ud} denote an orthonormal
basis of Rd. We obtain a closed form expression for each of
the projections ⟨µ+,u⟩, u ∈ U. We then use standard tools
in random matrix theory to obtain deterministic predictions of
each of these projections.

b) Fine-grained convergence analysis: We use our deter-
ministic predictions to execute an iterate-by-iterate analysis of
the stochastic prox-linear algorithm from a local initialization.
This analysis reveals several fine-grained properties of the
convergence behavior. In particular, for the step-size choice
λ−1 ≍ m/(d(1 + σ2)) and batch size m ≳ polylog(d), we
show that it takes τ = Θ

(
d(1+σ2)

m · log
(

1
σ2

))
many iterations

in order to guarantee an error ∥µτν
⊤
τ − µ⋆ν

⊤
⋆ ∥2F ≲ σ2. This

reveals a linear speed-up in the batch size m for all noise
levels σ ≥ 0. As a consequence, the total sample complexity
for reaching estimation error σ2 is O(d(1 + σ2) log(1/σ2)).
Moreover, for other step-size choices λ−1 ≲ m/(d(1 + σ2)),
we show that it takes τ = Θ

(
λ · log

(
λm
dσ2

))
many iterations

to guarantee an error ∥µτν
⊤
τ − µ⋆ν

⊤
⋆ ∥2F ≲ σ2d

λm , which in
turn quantifies the dependence of the convergence behavior
on the step-size λ−1. That is, decreasing the step-size λ−1

introduces a tension between the increasing iteration complex-
ity and decreasing eventual estimation error. Note that our
guarantees on iteration complexity are sharp in the sense that
our bounds provide both upper and lower bounds on the rate
of convergence.

Our convergence proofs rely on properties of the determin-
istic predictions. In particular, we first prove that the deter-
ministic predictions enjoy sharp linear convergence. We then
apply the deviation bounds on the deterministic predictions to
transfer this property to the empirical iterates.
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In a generalized linear model (GLM), the goal is to estimate
a d-dimensional signal x∗ ∈ Rd from an n-dimensional
observation y = (y1, . . . , yn) ∈ Rn given by

yi = q(⟨ai, x∗⟩, ϵi), i ∈ {1, . . . , n}. (1)

Here, the covariate vectors a1, . . . , an ∈ Rd are known,
and the vector (ϵ1, . . . , ϵn) ∈ Rn contains unknown i.i.d.
random variables accounting for noise in the measurements.
The nonlinearity q generalizes linear regression (q(g, ϵ) =
g + ϵ) and incorporates a wide range of problems, e.g.,
phase retrieval (q(g, ϵ) = |g| + ϵ), 1-bit compressed sensing
(q(g, ϵ) = sign(g) + ϵ), and logistic regression.

Spectral methods provide a popular solution to obtain an
initial estimate, and they are also commonly used as a ‘warm
start’ for other algorithms. In particular, the spectral estimator
processes the observations via a function T : R → R and
outputs the principal eigenvector of the following matrix:

D =

n∑

i=1

aia
⊤
i T (yi) ∈ Rd×d. (2)

To understand the power of spectral estimators, it is crucial
to: (i) characterize their performance in terms of, e.g., the
normalized correlation between the signal and the spectral
estimate, and (ii) design the best preprocessing function T
that minimizes the sample complexity, i.e., the number n of
observations required to attain a desired limiting overlap.

The answers to these questions are well understood when
the covariates are i.i.d. Gaussian. Using tools from random
matrix theory, [1], [2] obtained tight results in the proportional
regime where n, d → ∞ and n/d → δ for a fixed constant
δ ∈ (0,∞). Specifically, a phase transition phenomenon was
established: if δ surpasses a critical value (referred to as the
“spectral threshold”), then (i) a spectral gap emerges between
the first two eigenvalues of D, and (ii) the spectral estimator
attains non-vanishing correlation with x∗; otherwise, (i) no
outlier is present to the right of the spectrum of D, and (ii)
the spectral estimator is asymptotically independent of x∗.

However, i.i.d. Gaussian covariates fail to capture the het-
erogeneity and structure of data typical in applications. To
capture data heterogeneity, a popular solution is to consider
mixed generalized linear models: the objective is to learn
multiple signals from unlabeled observations; each sample

comes from exactly one signal, but it is not known which
one. To capture data structure, a popular solution is to consider
general (correlated) designs: the covariates a1, . . . , an have an
arbitrary (and, often, unknown) covariance matrix Σ ∈ Rd×d.

The strategy of [1], [2] was to reduce the spectral matrix
D in Eq. (2) to a rank-1 perturbation. However, when the
model is mixed, additional terms appear which are difficult to
control. Furthermore, when the covariates have a covariance
Σ, the model loses its rotational invariance, which is crucially
exploited by existing approaches. To overcome these difficul-
ties, we propose a novel proof strategy based on approximate
message passing (AMP). AMP refers to a family of iterative al-
gorithms that were first proposed for linear regression, but have
then been applied to various statistical estimation problems,
including parameter recovery in a GLM. A crucial feature
of AMP is the presence of a memory term, which debiases
the iterates, ensuring that their joint empirical distribution is
asymptotically Gaussian. This in turn allows to track their
covariance structure via a low-dimensional recursion known
as state evolution.

Our idea is to design and analyze an AMP that simu-
lates a power iteration and, hence, approaches the leading
eigenvector(s) of D. Then, by leveraging state evolution, we
provide a precise asymptotic characterization of the normalized
correlation between the spectral estimators and the signals, see
[3] for a mixed model and [4] for a model with a correlated
design. As a consequence, we can optimize the preprocessing
T , which leads to a significant improvement in performance
with respect to existing heuristic approaches. We highlight that
our methodology based on AMP is broadly applicable, and
it opens the way to the study of spiked matrices and of the
corresponding spectral estimators in a variety of settings.
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Gaussian Semantic Source Coding
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Abstract—Semantic source coding differs from conventional
source coding in the sense that the decoder is required to
reconstruct, possibly in a lossy fashion, not only the observable
source realization but also an intrinsic source state that carries
certain semantic information. Centralized Gaussian semantic
source coding and its distributed counterpart are studied in this
work. We explicitly characterize their respective rate-distortion
functions for the symmetric setting and the two-component
setting via the analysis of the associated convex optimization
problems, which generalize several classical results on quadratic
vector Gaussian source coding and Gaussian multiterminal source
coding.

I. INTRODUCTION

Direct source coding [1] aims to find an efficient representa-
tion using a bit sequence based on which the observable source
realization can be reconstructed exactly or approximately. In
contrast, indirect source coding [2]–[5] deals with the situation
where the object of interest is not the observable part but
some hidden state. These two coding problems are closely
related. In fact, it is known that indirect source coding can
be reduced to direct source coding for a sufficient statistic of
the observable part with respect to the hidden state under a
suitably constructed surrogate distortion measure.

Semantic source coding [6], [7] couples the aforementioned
two coding problems by requiring the decoder to recon-
struct, possibly in a lossy fashion, both the observable source
realization and the hidden source state. This unification is
motivated by task-oriented compression (e.g., MPEG Com-
pact Descriptors for Video Analysis [8] and Video Coding
for Machines [9]–[11]) where the coded representation has
the dual responsibility of preserving the extrinsic aspect of
the given data (which corresponds to the observable source
realization) and capturing its intrinsic semantic feature (which
is assumed to be carried by the hidden source state). Note
that the two objectives of the decoder in semantic source
coding are not necessarily aligned. Indeed, with the coding
rate fixed, there often exists a tension between faithfully
reproducing the extrinsic observation and accurately estimating
the intrinsic state. Characterizing this tension in the form of
a quantitative tradeoff is a fundamental problem from the
information-theoretic perspective.

So far research on semantic source coding has been exclu-
sively focused on centralized systems with a single encoder
having access to all source components. However, in practice,
there are many situations where the source components are not
co-located and have to be processed in a distributed manner.
Even when the source components are co-located, distributed
processing might still be favored due to implementation con-
straints (e.g., small receptive fields of neural networks) or
complexity considerations. This provides a strong incentive

to study distributed semantic source coding and investigate
how it differs from its centralized counterpart in terms of the
performance limits.

In this work, we consider the quadratic Gaussian version of
centralized semantic source coding and distributed semantic
source coding. The Gaussian version is known to be analyt-
ically more tractable. Indeed, we are able to obtain several
conclusive results regarding the fundamental rate-distortion
limits, which are elusive in general. But more importantly, the
Gaussian version is of special importance due to its extremal
properties. As such, our results can be used widely as baselines
for the non-Gaussian versions.

The rest of this paper is organized as follows. We intro-
duce the problem definitions in Section II. The rate-distortion
function of centralized Gaussian semantic source coding is
explicitly characterized for the symmetric setting and the 2-
component setting in Section III. The corresponding results
for distributed Gaussian semantic source coding are presented
in Section IV. We conclude the paper in Section V.

II. PROBLEM DEFINITIONS

Let X := (X1, . . . , XL)
T be an observable vector source

and S be a state variable carrying certain semantic information.
We assume Xi = S +Ni, i = 1, . . . , L, where S,N1, . . . , NL

are mutually independent zero-mean Gaussian random vari-
ables with variances σ2

S , σ
2
N1
, . . . , σ2

NL
, respectively. So the

covariance matrix of X, denoted by KX, can be written as

KX =




σ2
S + σ2

N1
σ2
S . . . σ2

S

σ2
S σ2

S + σ2
N2

. . . σ2
S

...
...

. . .
...

σ2
S σ2

S . . . σ2
S + σ2

NL


 .

It is easy to verify that

S = E[S|X] + Z = gTX+ Z,

where Z is a zero-mean Gaussian random variable,
independent of X, with variance σ2

Z = ( 1
σ2
S

+

1
σ2
N1

+ . . . + 1
σ2
NL

)−1, and g = (
σ2
Z

σ2
N1

, . . . ,
σ2
Z

σ2
NL

)T . Let

{(X1(t), . . . , XL(t), S(t), Z(t))}∞t=1 be a joint i.i.d. process
induced by (X1, . . . , XL, S, Z).

Definition 1. Rate R is said to be achievable with respect to
reproduction distortion constraints D1, . . . , DL and semantic
distortion constraint DS via centralized coding if given any
ϵ > 0, there exist encoding function f (n) : RL×n → C(n) and
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decoding functions g(n) : C(n) → RL×n and g(n)S : C(n) → Rn

for all sufficiently large n such that

1

n
log |C(n)| ≤ R+ ϵ,

1

n

n∑

t=1

E[(Xi(t)− X̂i(t))
2] ≤ Di + ϵ, i = 1, . . . , L,

1

n

n∑

t=1

E[(S(t)− Ŝ(t))2] ≤ DS + ϵ,

where X̂n := g(n)(f (n)(Xn)) (with X(t) and X̂(t) standing
for (X1(t), . . . , XL(t))

T and (X̂1(t), . . . , X̂L(t))
T , respec-

tively, t = 1, . . . , n) and Ŝn := g
(n)
S (f (n)(Xn)). The infimum

of such achievable R is denoted by Rc(D1, . . . , DL, DS).

Definition 2. Rate R is said to be achievable with respect to
reproduction distortion constraints D1, . . . , DL and semantic
distortion constraint DS via distributed coding if given any
ϵ > 0, there exist encoding function f

(n)
i : Rn → C(n)i , i =

1, . . . , L, and decoding functions g(n) : C(n)1 × . . . × C(n)L →
RL×n and g

(n)
S : C(n)1 × . . . × C(n)L → Rn for all sufficiently

large n such that

1

n

L∑

i=1

log |C(n)i | ≤ R+ ϵ,

1

n

n∑

t=1

E[(Xi(t)− X̂i(t))
2] ≤ Di + ϵ, i = 1, . . . , L,

1

n

n∑

t=1

E[(S(t)− Ŝ(t))2] ≤ DS + ϵ,

where X̂n := g(n)(f
(n)
1 (Xn

1 ), . . . , f
(n)
L (Xn

L)) (with X̂(t)
standing for (X̂1(t), . . . , X̂L(t))

T , t = 1, . . . , n) and Ŝn :=

g
(n)
S (f

(n)
1 (Xn

1 ), . . . , f
(n)
L (Xn

L)). The infimum of such achiev-
able R is denoted by Rd(D1, . . . , DL, DS).

Without loss of generality, we assume Di ∈ (0, σ2
S + σ2

Ni
],

i = 1, . . . , L, and DS ∈ (σ2
Z , σ

2
S ] throughout this paper.

The centralized Gaussian semantic source coding problem
considered in the present work differs from that in [6] in two
aspects. Firstly, we impose a reproduction distortion constraint
on each source component while [6] adopts a trace distortion
constraint. Secondly, we consider a special correlation struc-
ture where the observable source components are conditionally
indepent given the hidden state; in constrast, [6] has no
such a restriction. It is worth mentioning that the conditional
independence assumption is introduced mainly to ensure that
the results derived for the centralized Gaussian semantic source
coding problem can be compared with those for the distributed
counterpart as the latter problem is likely intractable without
this assumption.

To the best of our knowledge, the distributed Gaussian
semantic source coding problem formulated above is new. Nev-
ertheless, it has rich connections with various network source
coding problems [12]–[31] in the literature. In particular, it
can be viewed as a coupling of the Gaussian multiterminal

source coding problem [16], [21]–[25] and the Gaussian CEO
problem [15], [17]–[20].

III. CENTRALIZED GAUSSIAN SEMANTIC SOURCE CODING

The following result, which is a simple variant of [6,
Theorem 2], provides a computable characterization of
Rc(D1, . . . , DL, DS).

Theorem 1. We have

Rc(D1, . . . , DL, DS) =min
∆

1

2
log

det(KX)

det(∆)
(1)

s.t. 0 ≺∆ ⪯ KX, (2)
diag(∆) ⪯ D, (3)

gT∆g + σ2
Z ≤ DS , (4)

where D is a diagonal matrix with the i-th diagonal entry
being Di, i = 1, . . . , L.

The optimization problem in (1) is a convex program and
its solution can be verified using the Karush-Kuhn-Tucker
conditions [32] stated in the following lemma.

Lemma 1. ∆∗ is an optimal solution of the optimization prob-
lem in (1) if it satisfies the constraints (2)–(4) and there exist
positive semidefinite matrix U, positive semidefinite diagonal
matrix Λ, and nonnegative number ρ such that

−(∆∗)−1 +U+Λ+ ρggT = 0,

U(∆∗ −KX) = 0,

Λ(diag(∆∗)−D) = 0,

ρ
(
gT∆∗g + σ2

Z −DS

)
= 0.

Equipped with Theorem 1 and Lemma 1, we proceed to
compute Rc(D1, . . . , DL, DS) for some special cases.

We first consider the symmetric setting with σ2
N1

= . . . =
σ2
NL

= σ2
N and D1 = . . . = DL = D. An explicit characteri-

zation of Rc(D1, . . . , DL, DS), abbreviated as Rc(D,DS), is
provided by the following theorem.

Theorem 2. The expression of Rc(D,DS) is given as follows:

1) If D < σ2
N and D <

(DS−σ2
Z)σ4

N

Lσ4
Z

, then

Rc(D,DS) =
1

2
log

Lσ2
Sσ

2(L−1)
N + σ2L

N

DL
.

2) If D < L−1
L σ2

N +
(DS−σ2

Z)σ4
N

L2σ4
Z

and D ≥ (DS−σ2
Z)σ4

N

Lσ4
Z

,
then

Rc(D,DS)

=
1

2
log

Lσ4
Z(Lσ

2
Sσ

2(L−1)
N + σ2L

N )

(DS − σ2
Z)σ

4
N ( L

L−1D −
(DS−σ2

Z)σ4
N

L(L−1)σ4
Z

)L−1
.

3) If D ≥ σ2
N and D < L−1

L σ2
N +

(DS−σ2
Z)σ4

N

L2σ4
Z

, then

Rc(D,DS) =
1

2
log

Lσ2
S + σ2

N

LD − (L− 1)σ2
N

.
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4) If D ≥ L−1
L σ2

N +
(DS−σ2

Z)σ4
N

L2σ4
Z

, then

Rc(D,DS) =
1

2
log

σ2
S − σ2

Z

DS − σ2
Z

.

The next result deals with the 2-component setting and
provides an explicit characterization of Rc(D1, D2, DS). Let
∆i := σ2

S + σ2
Ni
−Di, i = 1, 2, and ∆S := σ2

S −DS .

Theorem 3. The expression of Rc(D1, D2, DS) is given as
follows:

1) If D2 ≥ σ2
S + σ2

N2
− σ4

S∆1

(σ2
S+σ2

N1
)2

and DS ≥ σ2
S −

σ4
S∆1

(σ2
S+σ2

N1
)2

, then

Rc(D1, D2, DS) =
1

2
log

σ2
S + σ2

N1

D1
.

2) If D1 ≥ σ2
S + σ2

N1
− σ4

S∆2

(σ2
S+σ2

N2
)2

and DS ≥ σ2
S −

σ4
S∆2

(σ2
S+σ2

N2
)2

, then

Rc(D1, D2, DS) =
1

2
log

σ2
S + σ2

N2

D2
.

3) If Di ≥ σ2
S + σ2

Ni
− σ4

S∆S

(σ2
S−σ2

Z)2
, i = 1, 2, then

Rc(D1, D2, DS) =
1

2
log

σ2
S − σ2

Z

DS − σ2
Z

.

4) If ∆1∆2 ≥ σ4
S and DS ≥ σ4

Z

σ2
N1

D1 +
σ4
Z

σ2
N2

D2 + σ2
Z , then

Rc(D1, D2, DS) =
1

2
log

(σ2
S + σ2

N1
)(σ2

S + σ2
N2

)− σ4
S

D1D2
.

5) If ∆1∆S ≥ σ4
S and D2 ≥

σ4
N2

σ4
N1

D1 +
σ4
N2

σ4
Z
(DS − σ2

Z),
then

Rc(D1, D2, DS) =
1

2
log

(σ2
S + σ2

N1
)(σ2

S − σ2
Z)− σ4

S

D1(DS − σ2
Z)

.

6) If ∆2∆S ≥ σ4
S and D1 ≥

σ4
N1

σ4
N2

D2 +
σ4
N1

σ4
Z
(DS − σ2

Z),
then

Rc(D1, D2, DS) =
1

2
log

(σ2
S + σ2

N2
)(σ2

S − σ2
Z)− σ4

S

D2(DS − σ2
Z)

.

7) If ∆1∆2 < σ4
S , D1 < σ2

S + σ2
N1
− σ4

S∆2

(σ2
S+σ2

N2
)2

, D2 <

σ2
S+σ

2
N2
− σ4

S∆1

(σ2
S+σ2

N1
)2

, and DS ≥ σ4
Z

σ4
N1

D1+
2σ4

Z

σ2
N1

σ2
N2

(σ2
S−

√
∆1∆2) +

σ4
Z

σ4
N2

D2 + σ2
Z , then

Rc(D1, D2, DS) =
1

2
log

(σ2
S + σ2

N1
)(σ2

S + σ2
N2

)− σ4
S

D1D2 − (σ2
S −
√
∆1∆2)2

.

8) If ∆1∆S < σ4
S , D1 < σ2

S+σ
2
N1
− σ4

S∆S

(σ2
S−σ2

Z)2
, DS < σ2

S−
σ4
S∆1

(σ2
S+σ2

N1
)2

, and D2 ≥
σ4
N2

σ4
N1

D1−
2σ4

N2

σ2
N1

σ2
Z
(σ2

S−
√
∆1∆S)+

σ4
N2

σ4
Z
(DS − σ2

Z), then

Rc(D1, D2, DS)

=
1

2
log

(σ2
S + σ2

N1
)(σ2

S − σ2
Z)− σ4

S

D1(DS − σ2
Z)− (σ2

S −
√
∆1∆S)2

.

9) If ∆2∆S < σ4
S , D2 < σ2

S+σ
2
N2
− σ4

S∆S

(σ2
S−σ2

Z)2
, DS < σ2

S−
σ4
S∆2

(σ2
S+σ2

N2
)2

, and D1 ≥
σ4
N1

σ4
N2

D2−
2σ4

N1

σ2
N2

σ2
Z
(σ2

S−
√
∆2∆S)+

σ4
N1

σ4
Z
(DS − σ2

Z), then

Rc(D1, D2, DS)

=
1

2
log

(σ2
S + σ2

N2
)(σ2

S − σ2
Z)− σ4

S

D2(DS − σ2
Z)− (σ2

S −
√
∆2∆S)2

.

10) Otherwise,

Rc(D1, D2, DS)

=
1

2
log

(σ2
S + σ2

N1
)(σ2

S + σ2
N2

)− σ4
S

D1D2 −
σ4
N1

σ4
N2

4σ8
Z

(DS − σ2
Z −

σ4
Z

σ4
N1

D1 − σ4
Z

σ4
N2

D2)2
.

Remark 1. One can specialize [33, Theorem 6] and [34, The-
orem III.1] from Theorem 3 by removing semantic distortion
constraint DS , i.e., by considering only Cases 1), 2), 4), and
7) where semantic distortion constraint DS is inactive.

IV. DISTRIBUTED GAUSSIAN SEMANTIC SOURCE CODING

Let Ω(KX) denote the set of positive definite matrices KW

such that K−1
X + K−1

W is a diagonal matrix. For any KW ∈
Ω(KX),

ψ(D1, . . . , DL, DS ,KW)

:= min
∆,γ1,...,γL

1

2
log

det (KX +KW) det((K−1
X +K−1

W )−1)

det (∆+KW) det(Γ)
(5)

s.t. 0 ≺∆ ⪯ KX, (6)

0 ≺ Γ ⪯
(
∆−1 +K−1

W

)−1
, (7)

diag(∆) ⪯ D, (8)

gT∆g + σ2
Z ≤ DS , (9)

where Γ is a diagonal matrix with the i-th diagonal entry
being γi, i = 1, . . . , L, and D is a diagonal matrix with
the i-th diagonal entry being Di, i = 1, . . . , L. We define
ψ(D1, . . . , DL, DS ,KW) in a similar way except that the
constraint in (6) is replaced by

Γ = (∆−1 +K−1
W )−1. (10)

Let

Rd(D1, . . . , DL, Ds) := sup
KW∈Ω(KX)

ψ(D1, . . . , DL, DS ,KW),

Rd(D1, . . . , DL, Ds) := sup
KW∈Ω(KX)

ψ(D1, . . . , DL, DS ,KW).
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The following result, which is a simple variant of [22,
Theorems 1 and 2], provides computable lower and upper
bounds on Rc(D1, . . . , DL, DS).

Theorem 4. We have

Rd(D1, . . . , DL, DS)

≤ Rd(D1, . . . , DL, DS)

≤ Rd(D1, . . . , DL, DS).

The optimization problem in (5) is a convex program and
its solution can be verified using the Karush-Kuhn-Tucker
conditions [32] stated in the following lemma, which also
provides a matching condition for Rd(D1, . . . , DL, DS) and
Rd(D1, . . . , DL, DS).

Lemma 2. Given KW ∈ Ω(KX), (∆∗, γ∗1 , . . . , γ
∗
L) is an

optimal solution of the optimization problem in (5) if it satisfies
the constraints (6)–(9) and there exist positive semidefinite
matrices U and V, positive semidefinite diagonal matrix Λ,
and nonnegative number γ such that

− (∆∗ +KW)−1 +U− (∆∗)−1((∆∗)−1 +K−1
W )−1Λ

((∆∗)−1 +K−1
W )−1(∆∗)−1 +Λ∗ + ρggT = 0, (11)

− (Γ∗)−1 + diag(V) = 0, (12)
U(∆∗ −KX) = 0, (13)

V(Γ∗ − ((∆∗)−1 +K−1
W )−1) = 0, (14)

Λ(diag(∆∗)−D) = 0, (15)

ρ
(
gT∆∗g + σ2

Z −DS

)
= 0, (16)

where Γ∗ is a diagonal matrix with the i-th diagonal entry
being γ∗i , i = 1, . . . , L. Moreover, if this (∆∗, γ∗1 , . . . , γ

∗
L)

further satisfies (10), then

Rd(D1, . . . , DL, DS)

= Rd(D1, . . . , DL, DS)

=
1

2
log

det(KX)

det(∆∗)
.

Equipped with Theorem 4 and Lemma 2, we proceed to
compute Rd(D1, . . . , DL, DS) for some special cases.

We first consider the symmetric setting with σ2
N1

= . . . =
σ2
NL

= σ2
N and D1 = . . . = DL = D. An explicit characteri-

zation of Rd(D1, . . . , DL, DS), abbreviated as Rd(D,DS), is
provided by the following result. Let

α :=
σ2
S

σ2
S + σ2

N + βσ2
N (Lσ2

S + σ2
N )
,

where β is the unique nonnegative solution to

σ2
N

1 + βσ2
N

+
σ2
S

(1 + βσ2
N )(1 + β(Lσ2

S + σ2
N ))

= D.

Theorem 5. The expression of Rd(D,DS) is given as follows:

1) If DS ≥ Lσ4
Z

σ4
N
(D + (L− 1)αD) + σ2

Z , then

Rd(D,DS) =
1

2
log

Lσ2
Sσ

2(L−1)
N + σ2L

N

LαD(D − αD)L−1 + (D − αD)L
.

2) If DS <
Lσ4

Z

σ4
N
(D + (L− 1)αD) + σ2

Z , then

Rd(D,DS) =
1

2
log

LLσ2
Sσ

2L
Z DL−1

S

σ2L
N (DS − σ2

Z)
L
.

The next result deals with the 2-component setting and
provides an explicit characterization of Rd(D1, D2, DS).
Let Θi :=

√
σ4
Ni

+ 4DiDS , i = 1, 2, and ΘZ :=√
σ4
N1

σ4
N2

σ4
Z

+ 4D1D2.

Theorem 6. Without loss of generality, assume σ2
N1
≤ σ2

N2
.

The expression of Rd(D1, D2, DS) is given as follows:

1) If D2 ≥ σ2
S + σ2

N2
− σ4

S∆1

(σ2
S+σ2

N1
)2

and DS ≥ σ2
S −

σ4
S∆1

(σ2
S+σ2

N1
)2

, then

Rd(D1, D2, DS) =
1

2
log

σ2
S + σ2

N1

D1
.

2) If D1 ≥ σ2
S + σ2

N1
− σ4

S∆2

(σ2
S+σ2

N2
)2

and DS ≥ σ2
S −

σ4
S∆2

(σ2
S+σ2

N2
)2

, then

Rd(D1, D2, DS) =
1

2
log

σ2
S + σ2

N2

D2
.

3) If DS ≥ ( 1
σ2
S

+ 1
σ2
N1

− 1
σ2
N2

)−1, D1 ≥
(σ2

S+σ2
N1

)((σ2
S+σ2

N1
)DS−σ2

Sσ2
N1

)

σ4
S

, and D2 ≥ DS + σ2
N2

,
then

Rd(D1, D2, DS) =
1

2
log

σ4
S

DSσ2
S − σ2

Sσ
2
N1

+DSσ2
N1

.

4) If DS < ( 1
σ2
S
+ 1

σ2
N1

− 1
σ2
N2

)−1, D1 ≥
(D2

S−σ4
Z)σ4

N1

4DSσ4
Z

, and

D2 ≥
(D2

S−σ4
Z)σ4

N2

4DSσ4
Z

, then

Rd(D1, D2, DS) =
1

2
log

4σ2
Sσ

4
ZDS

σ2
N1
σ2
N2

(DS − σ2
Z)

2
.

5) If D1 < σ2
S + σ2

N1
− σ4

S∆2

(σ2
S+σ2

N2
)2

, D2 < σ2
S + σ2

N2
−

σ4
S∆1

(σ2
S+σ2

N1
)2

, and DS ≥ σ4
Z

σ4
N1

D1 +
σ4
Z

σ2
N1

σ2
N2

ΘZ +
σ4
Z

σ4
N2

D2,
then

Rd(D1, D2, DS) =
1

2
log

2σ2
Sσ

2
Z

σ2
ZΘZ − σ2

N1
σ2
N2

.

6) If D1 <
(D2

S−σ4
Z)σ4

N1

4DSσ4
Z

, DS < min{( 1
σ2
S

+ 1
σ2
N1

−
1

σ2
N2

)−1, σ2
S −

σ4
S∆1

(σ2
S+σ2

N1
)2
}, and D2 ≥ σ4

N2

σ4
N1

D1 −
σ4
N2

σ2
Zσ2

N1

Θ1 +
σ4
N2

σ4
Z
DS , then

Rd(D1, D2, DS)

=
1

2
log

2σ2
Sσ

2
Zσ

2
N1

σ2
N1
σ2
N2

Θ1 − 2σ2
Zσ

2
N2
D1 − σ4

N1
σ2
N2

.
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7) If i) D2 < DS + σ2
N2

, ( 1
σ2
S
+ 1

σ2
N1

− 1
σ2
N2

)−1 ≤ DS <

σ2
S −

σ4
S∆2

(σ2
S+σ2

N2
)2

, and D1 ≥
σ4
N1

σ4
N2

D2 −
σ4
N1

σ2
Zσ2

N2

Θ2 +

σ4
N1

σ4
Z
DS , or ii) D2 <

(D2
S−σ4

Z)σ4
N2

4DSσ4
Z

, DS < min{( 1
σ2
S
+

1
σ2
N1

− 1
σ2
N2

)−1, σ2
S −

σ4
S∆2

(σ2
S+σ2

N2
)2
}, and D1 ≥

σ4
N1

σ4
N2

D2 −
σ4
N1

σ2
Zσ2

N2

Θ2 +
σ4
N1

σ4
Z
DS ,

Rd(D1, D2, DS)

=
1

2
log

2σ2
Sσ

2
Zσ

2
N2

σ2
N1
σ2
N2

Θ2 − 2σ2
Zσ

2
N1
D2 − σ2

N1
σ4
N2

.

V. CONCLUSION

We have studied centralized Gaussian semantic source cod-
ing and its distributed counterpart in terms of their rate-
distortion functions. There are several directions worthy of
pursuing for future work. For example, it is of great interest
to investigate more general correlation structures between
the observable variables and the state variable. The i.i.d.
assumption adopted in our work also appears to be overly
restrictive. This can be remedied by considering the one-
shot formulation, which is better justified from a practical
perspective. One may further go beyond the quadratic Gaussian
setting to deal with more realistic source models and loss
functions. Here the notorious technical difficulties inherent
in distributed source coding will likely become a roadblock.
Nevertheless, it remains promising to make good progress
within the log-loss framework [35] that is most relevant to
machine learning applications.
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Abstract—Functional Representation Lemma (FRL) is an
information-theoretic technique that fixes a correlated ‘reference’
information source, and extracts a ‘residual’ information about
the original source. Recently, there has been a lot of interest
in FRL since variants of this technique appear across different
problems in information theory, and data science more broadly.

In this tutorial talk we overview the FRL problem. We
highlight some of its applications: these include the problems
of privacy and causal inference, as well as proof techniques
for single-shot information-theoretic bounds. Finally, we review
known algorithms for constructing functional representations. We
particularly focus on the greedy algorithms previously proposed
in literature.

I. EXTENDED ABSTRACT

A. Overview and Applications

We begin with the Simple Functional Representation Lemma
(FRL) which can be found in [1] and was independently
derived in [2]–[4], among others. Given two jointly distributed
discrete random variable (X,Y ), the lemma states that there
exists a random variable Z such that

I(Y ;Z) = 0, (1)
H(X|Z, Y ) = 0, (2)

and |Z| ≤ |Y|(|X | − 1) + 1. (3)

That is, Y and Z are independent, X is a deterministic function
of Y and Z, and the support of Z is bounded. This result could
be shown with a construction that we here call the Simple FRL
algorithm. See, for example, [1, Appendix B] and [4, Lemma
1] for a detailed exposition.

The simple FRL shows that a random variable Z that
satisfies (1) and (2) exists. However, there are many more
interesting questions that arise about properties of this random
variable. One line of work focuses on minimizing H(X|Z)
(or maximizing I(X;Z)). The best known result, known as
the Strong Functional Representation Lemma (SFRL), states
that it is possible to construct Z, such that

H(X|Z) ≤ I(X;Y ) + log (I(X;Y ) + 1) +O(1), (4)

where I(X;Y ) is a trivial lower bound on H(X|Z) [5],
[6]. An extensions of SFRL, known as the Poisson Matching
Lemma, has been proposed in [7]. These results find extensive
applications in derivations of single-shot coding bounds [5]–
[8], as well as for problems in information-theoretic pri-
vacy [4], [9].

Another line of work on minimizing the entropy H(Z)
finds applications in the problem of private compression [4],
[15], causal inference [16]–[20], as well as a number of other
problems in statistics [21]. Let Q =

∧
y∈Y PX|Y=y be the

lower bound with respect to majorization [21] of the set of
distributions {PX|Y=y}y∈Y . It can be shown that

H (Q) ≤ H(Z) ≤ H (Q) + 2− 22−|Y|. (5)

The lower bound in (5) was shown in [21]. It was also
shown in [21] that the upper bound for |Y| = 2 holds via
a greedy algorithms that we refer to as the majorization-based
algoirhtm. The general upperbound in (5) was shown in [22]
using the technique of geometric splitting.

An improvement on (5) has been recently shown using the
information spectrum of Z. Specifically [23], [24] show that

P[ıZ(Z) > t] ≥ sup
y∈Y

P[ıX|Y (X|Y ) > t|Y = y] (6)

where ıZ(z) = log 1
PZ(z) and ıX|Y (x|y) = log 1

PX|Y (x|y) .
Moreover, [23], [24] show that there exists a distribution Q∗

such that

H(Q) ≤ H(Q∗) ≤ H(Z). (7)

This Q∗ could be found with a simple greedy algorithm
from the information spectrum envelope on the right-hand-side
of (6). Finally, [23], [25] show that an algorithm that we call
the natural greedy algorithm is within log2(e)

e ≈ 0.53 bits of
the minimal achievable entropy, while, in general, the problem
is known to be NP-hard.

B. On Greedy Algorithms

In this talk, we particularly focus on greedy algorithm
for the problem of constructing Z. This includes the
the majorization-based algorithm which attempts to best
approximate the greatest lowebound Q in (5). The natural
greedy algorithm, on the other hand, puts as much probability
mass as possible into the likelier realizations of Z. Greedy
algorithms do not just play a role with constructing the
random variable Z. The also show up in the evaluations of
lower bounds in (5) and (7).
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Pointwise Redundancy in One-Shot Lossy
Compression via Poisson Functional Representation
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Abstract—We present a construction of one-shot variable-
length lossy source coding schemes using the Poisson functional
representation, and give bounds on its pointwise redundancy. This
allows us to describe the distribution of the encoding length in a
precise manner.

I. INTRODUCTION

Variable-length lossy source coding has been considered,
for example, in D-semifaithful codes [1], [2] where the dis-
tortion must be bounded almost surely. The redundancy of D-
semifaithful codes, i.e., the difference between the encoding
length and the rate distortion function, has been studied in
[3]–[6].

For one-shot variable-length lossy source coding with the
expected distortion constraint E[d(X,Y )] ≤ D,1 it was proved
in [7] that there is a prefix-free code with expected length
≤ R(D) + log(R(D) + 1) + 6, showing that the optimal
one-shot expected length is always within a logarithmic gap
from the rate-distortion function R(D). The proof utilizes the
Poisson functional representation [7], [8], where the codebook
is constructed as a Poisson process. Also see [9]–[11] for
related results.

In this work, we utilize the Poisson functional representa-
tion to construct one-shot variable-length lossy source coding
schemes, and give bounds on their pointwise redundancy. This
allows us to describe the distribution of the encoding length
in a more precise manner, compared to only bounding its
expectation. The proofs and details of the results mentioned in
this abstract, and the generalization to the lossy Gray-Wyner
system [12], can be found in the preprint [13].

II. MAIN RESULTS

A one-shot variable-length lossy compression scheme for
the source X ∈ X , X ∼ PX with reconstruction space Y
is a pair (PM |X , g), where PM |X is a stochastic encoder (a
conditional distribution from X to {0, 1}∗, where {0, 1}∗ is
the set of bit sequences of any length), and g : {0, 1}∗ → Y
is a decoding function. The encoder observes X ∼ PX and
outputs the description M |X ∼ PM |X . The decoder observes
M and outputs the reconstruction Ỹ = g(M). We can choose

This work was partially supported by an ECS grant from the Research
Grants Council of the Hong Kong Special Administrative Region, China
[Project No.: CUHK 24205621].

1Note that the probability of excess distortion P(d(X,Y ) > D) =
E[1{d(X,Y ) > D}] can also be written as an expected distortion.

whether to impose the prefix-free condition on M or not. We
may impose an expected distortion constraint E[d(X, Ỹ )] ≤
D, where d : X × Y → [0,∞) is a distortion function.

We can also replace the variable-length description M by
a positive integer K, and assume that the encoder produces
a positive integer description. Note that we can convert K
into a variable-length description with blogKc bits without the
prefix-free condition [14], or ≤ logK + 2 log(logK + 1) + 1
bits with the prefix-free condition using the Elias delta code
[15].

The following theorem can be proved using the Poisson
functional representation construction similar to [7, Theorem
2], with an analysis using techniques in [8]. Refer to [13] for
the proof.

Theorem 1: Fix any PX , PY |X and QY satisfying
PY |X(·|x) � QY for PX -almost all x’s. Fix any collection
of functions ψi : X × Y × Z>0 → R that are nondecreasing
in the third argument for i = 1, . . . , `. Then there exists a
lossy compression scheme with description K ∈ Z>0 and
reconstruction Ỹ such that

E
[
ψi(X, Ỹ ,K)

]
≤ E

[
ψi(X,Y, `J)

]

for i = 1, . . . , `, where (X,Y ) ∼ PXPY |X , and J ∈ Z>0 is
distributed as

J |(X,Y ) ∼ Geom

((
dPY |X(·|X)

dQY
(Y ) + 1

)−1)
.

This theorem is quite general. For example, to bound the
expected distortion, take ψi(x, y, k) = d(x, y). To bound the
excess distortion probability, take ψi(x, y, k) = 1{d(x, y) >
D}. To bound the probability that K cannot be encoded into
n bits (for a fixed-length code), take ψi(x, y, k) = 1{k >
2n}. To bound the expected length with (resp. without) the
prefix-free condition, we may take ψi(x, y, k) = log k (resp.
ψi(x, y, k) = log k + 2 log(log k + 1) + 1).

We can also use Theorem 1 to bound the pointwise re-
dundancy. We consider three different notions of pointwise
redundancy: Pointwise rate redundancy (PRR), studied in
[5], [16], is given by

|M | −R(D),

i.e., the difference between the length |M | of the description M
and the rate-distortion function R(D) where D = E[d(X, Ỹ )].
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Pointwise source-wise redundancy (PSR), studied in [5], is
given by

|M | − (X,D),

where (x,D) is the d-tilted information [5], [17], [18]
(x,D) := − logE[2−λ∗(d(x,Y ∗)−D)], where Y ∗ ∼ PY fol-
lows the Y -marginal of PXPY |X where PY |X is the condi-
tional distribution that attains the minimum in R(D) (assume
unique minimizer), and λ∗ := −R′(D). Pointwise source-
distortion-wise redundancy (PSDR) is defined as

|M | − (X,D, d(X, Ỹ )),

where we write (x,D, δ) := − logE[2−λ∗(d(x,Y ∗)−δ)] =
(x,D)− λ∗(δ −D), which can be interpreted as the amount
of information needed to convey x within a distortion δ when
the overall expected distortion is D. The expectations of these
three redundancies must be nonnegative for prefix-free codes,
but might be negative if we do not impose the prefix-free
condition. We first state a corollary of Theorem 1 that can
bound any of the three pointwise redundancies for the case
without the prefix-free condition.

Corollary 2: Fix any PX , PY |X , distortion function d : X ×
Y → [0,∞), function η : X × Y → R and γ ∈ R. Then
there exists a lossy compression scheme without prefix-free
condition such that E[d(X, Ỹ )] ≤ E[d(X,Y )], and

P
(
|M | − η(X, Ỹ ) ≥ γ

)

≤ E
[
min

{
2−η(X,Y )−γ+1(2ιX;Y (X;Y ) + 1), 1

}]
,

where (X,Y ) ∼ PXPY |X .
The result for PSDR is especially simple.
Corollary 3: For D > 0, under the regularity conditions

in [18],2 there exists a lossy compression scheme without
prefix-free condition, with E[d(X, Ỹ )] ≤ D, and with PSDR
satisfying

P
(
|M | − (X,D, d(X, Ỹ )) ≥ γ

)
≤ 2−γ+2

for every γ ∈ R.
The results for prefix-free codes are slightly more compli-

cated.
Corollary 4: Fix any PX , PY |X , distortion function d : X ×

Y → [0,∞), function η : X × Y → R, and γ ∈ R. Then
there exists a prefix-free lossy compression scheme such that
E[d(X, Ỹ )] ≤ E[d(X,Y )], and

P
(
|M | − η(X, Ỹ ) ≥ γ

)

≤ E
[
min

{
2−η(X,Y )−γ+2([η(X,Y ) + γ]+ + 1)2

· (2ιX;Y (X;Y ) + 1), 1
}]
,

where (X,Y ) ∼ PXPY |X .

2The regularity conditions in [18] are: R(δ) is finite for some δ, there exists
a finite set E ⊆ Y such that E[miny∈E d(X, y)] <∞, and the minimum in
R(D) is achieved by a unique PY |X .

Corollary 5: For D > 0, γ ∈ R, under the regularity
conditions in [18] (see Corollary 3), there exists a prefix-free
lossy compression scheme with E[d(X, Ỹ )] ≤ D, and with
PSDR satisfying

P
(
|M | − (X,D, d(X, Ỹ )) ≥ γ

)

≤ 2−γ+3E
[
([ιX;Y (X;Y ) + γ]+ + 1)2

]
.
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Abstract—The exponential strong converse for a coding prob-
lem states that, if a coding rate (or a rate pair) is beyond the
theoretical limit, the correct decoding probability converges to
zero exponentially. The exponential strong converse theorem was
initiated by Arimoto and by Dueck and Körner for the pont-
to-point channel coding; even though tight exponents have been
identified for single-user problems and simple multi-user prob-
lems, such as the Slepian-Wolf problem, tight exponents have been
unsolved for multi-user problems. In this tutorial paper, we revisit
the exponential strong converse theorems, and provide alternative
proofs for single-user problems via manipulations of information
quantities as in the weak converse argument (called “change-
of-measure argument” in the literature). Then, we present the
recently obtained result by Takeuchi and Watanabe providing
the tight exponential strong converse for the source coding with
coded side-information.

I. INTRODUCTION

The strong converse for a coding theorem claims that the
optimal asymptotic rate possible with vanishing probability
cannot be improved by allowing a fixed error probability. The
exponential strong converse further claims that, if a coding rate
is beyond the asymptotic limit, the correct decoding probability
converges to zero exponentially. Proving such a claim was
initiated by Arimoto for the channel coding problem [2]; later,
the strong converse exponent was studied by Dueck and Körner
in [4]; see also [10] for the equivalence of the two exponents
derived in [2] and [4]. Also, the strong converse exponent for
the Slepian-Wolf problem was derived by Oohama and Han in
[13].

Even though the tight strong converse exponent for point-
to-point problems or simple multi-user problems, such as
the Slepian-Wolf problem, have been identified, the strong
converse exponent for multi-user problems have been unsolved
until recently. A significant progress was made by Oohama
in a series of paper including [11], [12]. More recently, the
tight strong converse of the Wyner-Ahlswede-Körner (WAK)
problem [1], [18] was derived in [14]; the converse part of
[14] is based on a manipulations of information quantities
as in the weak converse argument, called the “change-of-
measure argument" in [15]. In this tutorial paper, we provide
alternative proofs of the strong converse exponents for single-
user problems by using the same methodology.

The change-of-measure argument was originally introduced
by Gu and Effros in [6], [7] to prove strong converse for source
coding problems where there exists a terminal that observes
all the random variables involved; a particular example is
the Gray-Wyner (GW) problem [5]. In the argument of [6],

[7], we evaluate the performance of a given code not under
the original source (or channel) but under another modified
measure which depends on the code and under which the code
is error free.1 A type based modification of this argument was
used in [17] to derive the second-order rate region of the GW
problem. A difficulty of applying this argument to the so-called
distributed coding problems, such as the WAK problem, is
that the characterization of asymptotic limits involve auxiliary
random variables and Markov chain constraints. This technical
difficulty was circumvented in [16] for the WAK problem by
relating the WAK problem to an extreme case of the GW
problem. By using the idea of “soft Markov constraint" intro-
duced by Oohama [11], the argument was further developed in
[15] so that it can be applied to distributed coding problems;
furthermore, the argument was also extended so that it can be
applied to secrecy problems such as the secret key generation
and the wiretap channel. More recently, a variation of the
change-of-measure argument was further developed by Hamad,
Wigger, and Sarkiss in [8] so that it can be applied to more
involved multi-user networks in a concise manner; rather than
adding a Markov constraint as a penalty term, they prove the
Markov constraint in an asymptotic limit.

II. PRELIMINARIES

We use the same notations as [3]. For instance, the entropy
of random variable X is denoted as H(X); the mutual
information between X and Y is denoted as I(X ∧ Y ); and
the KL-divergence between distributions P and Q is denoted
as D(P‖Q). The logarithm is base 2.

Let Xn = (X1, . . . , Xn) be an independently identically
distributed (i.i.d.) source on a finite alphabet X . For a given
set C ⊂ X n, a key step of the change-of-measure argument is
to construct a modified measure by conditioning:

PX̃n(xn) :=
PXn(xn)1[xn ∈ C]

PXn(C)
,

where 1[·] is the indicator function. A key observation, which
was used in Marton’s proof of the blowing-up lemma [9], is
that the modified measure is not too far from the original
measure in the following sense:

D(PX̃n‖PXn) =
∑

xn∈C
PX̃n(xn) log

PX̃n(xn)

PXn(xn)

1In the original argument [6], [7], the modified measure is constructed by
conditioning on typical sets in addition to the error free set; on the other hand,
the argument in [15] only conditions on the error free set.
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= log
1

PXn(C)
.

The conditional measure PX̃n is not i.i.d. in general. By
using the sub-additivity and concavity of entropy, we can
directly derive a single-letter upper bound on the joint entropy
as

H(X̃n) ≤
n∑

j=1

H(X̃j) ≤ nH(X̃J),

where J is the random variable uniformly distributed on the
index set {1, . . . , n}. It is not possible to derive a single-letter
lower bound on the joint entropy H(X̃n) directly; instead, we
manipulate it with the divergence term:

H(X̃n) +D(PX̃n‖PXn) =
∑

xn

PX̃n(xn) log
1

PXn(xn)

=

n∑

j=1

∑

xn

PX̃n(xn) log
1

PX(xj)

=

n∑

j=1

∑

x

PX̃j
(x) log

1

PX(x)

= n
∑

x

PX̃J
(x) log

1

PX(x)

= n
[
H(X̃J) +D(PX̃J

‖PX)
]
. (1)

By the convexity of the KL-divergence, we can also derive a
single-letter lower bound on the KL-divergence:

D(PX̃n‖PXn) =

n∑

j=1

D(PX̃j |X̃j−1‖PX |PX̃j−1)

≥
n∑

j=1

D(PX̃j
‖PX)

≥ nD(PX̃J
‖PX).

The derivation of the strong converse exponent proceed by a
judicious use of the above single-letter bounding manipula-
tions.

III. LOSSY SOURCE CODING

In this section, we consider the lossy source coding. For
a finite alphabet X , let Xn = (X1, . . . , Xn) be an indepen-
dently identically distributed (i.i.d.) source with distribution
PXn = Pn

X . For a finite reproduction alphabet Y , we consider
an encoder ϕ : X n → M and a decoder ψ : M → Yn.
For a distortion measure d : X × Y → R+, let dn(xn, yn) =∑n

j=1 d(xj , yj). For a distortion level ∆ ≥ 0, we shall evaluate
non-excess distortion probability:

pc := Pr
(
dn(Xn, ψ(ϕ(Xn)) ≤ n∆

)
.

For fixed ∆, a rate R is defined to be achievable if, for every
0 < ε < 1 and for sufficiently large n, there exists a code
(ϕ, ψ) such that the non-excess distortion probability satisfies
pc ≥ 1 − ε and the coding rate satisfies 1

n log |M| ≤ R.
Then, the rate-distortion function R(PX ,∆) is defined as the

infimum of achievable rates. It is well known that the rate-
distortion function is characterized as

R(PX ,∆) = min
PY |X :

E[d(X,Y )]≤∆

I(X ∧ Y ).

We provide an alternative proof for the following exponen-
tial strong converse of the lossy source coding.

Proposition 1 For any code (ϕ, ψ) such that 1
n log |M| ≤ R,

the non-excess distortion probability satisfies

1

n
log(1/pc) ≥ min

PX̃

[
D(PX̃‖PX) + |R(PX̃ ,∆) −R|+

]
,

where |a|+ := max[a, 0].

Note that the exponent is positive if and only if R <
R(PX ,∆). It is known that the strong converse exponent in
Proposition 1 is tight [3, Ex. 9.6].
Proof. Let

C :=
{
xn ∈ X n : dn(xn, ψ(ϕ(xn))) ≤ n∆

}
,

and let

PX̃n(xn) :=
PXn(xn)1[xn ∈ C]

PXn(C)
.

Then, we have

D(PX̃n‖PXn) = log(1/pc)

and

log(1/pc) = D(PX̃n‖PXn)

≥ nD(PX̃J
‖PX). (2)

Note that the rate R can be lower bounded as

nR ≥ log |M|
≥ H(Ỹ n)

= I(X̃n ∧ Ỹ n),

where Ỹ n = ψ(ϕ(X̃n)). Thus, we have

log(1/pc) = D(PX̃n‖PXn)

≥ D(PX̃n‖PXn) + I(X̃n ∧ Ỹ n) − nR.

Furthermore, by (1), we have

D(PX̃n‖PXn) + I(X̃n ∧ Ỹ n)

= D(PX̃n‖PXn) +H(X̃n) −H(X̃n|Ỹ n)

= nD(PX̃J
‖PX) + nH(X̃J) −

n∑

j=1

H(X̃j |Ỹ n, X̃−
j )

≥ nD(PX̃J
‖PX) + nH(X̃J) −

n∑

j=1

H(X̃j |Ỹj)

= nD(PX̃J
‖PX) + nH(X̃J) − nH(X̃J |ỸJ , J)

≥ nD(PX̃J
‖PX) + nH(X̃J) − nH(X̃J |ỸJ)

= nD(PX̃J
‖PX) + nI(X̃J ∧ ỸJ),
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where X̃−
j = (X̃1, . . . , X̃j−1). Also, since the support of the

changed measure PX̃n is C, note that

∆ ≥ E
[

1

n
dn(X̃n, Ỹ n)

]
= E[d(X̃J , ỸJ)].

Thus, we have

1

n
log(1/pc) ≥ D(PX̃J

‖PX) +
(
I(X̃J ∧ ỸJ) −R

)

≥ D(PX̃J
‖PX) +

(
R(PX̃J

,∆) −R
)
. (3)

By combining (2) and (3), we have

1

n
log(1/pc) ≥ D(PX̃J

‖PX) + |R(PX̃J
,∆) −R|+.

Finally, by replacing PX̃J
with the minimum over PX̃ , we

have the claim of the proposition.

IV. CHANNEL CODING

In this section, we consider the channel coding. Let Wn

be a discrete memoryless channel (DMC) from a finite input
alphabet X to a finite output alphabet Y . For a message set
M, a channel code consists of an encoder ϕ : M → X n and
a decoder ψ : Yn → M. Let

pc :=
∑

m∈M

1

|M|W
n(ψ−1(m)|ϕ(m))

be the average correct decoding probability. A rate R is defined
to be achievable if, for every 0 < ε < 1 and for sufficiently
large n, there exists a code (ϕ, ψ) such that the average correct
decoding probability satisfies pc ≥ 1 − ε and the coding rate
satisfies 1

n log |M| ≥ R. Then, the channel capacity C(W ) is
defined as the supremum of achievable rates. It is well known
that the channel capacity is characterized as

C(W ) = max
PX

I(X ∧ Y ),

where the mutual information is evaluated with respect to
(X,Y ) induced by the input distribution PX and the channel
W .

We provide an alternative proof for the following exponen-
tial strong converse of the channel coding.

Proposition 2 For any code (ϕ, ψ) such that 1
n log |M| ≥ R,

the average correct decoding probability satisfies

1

n
log(1/pc) ≥ min

PX̃Ỹ

[
D(PỸ |X̃‖W |PX̃) + |R− I(X̃ ∧ Ỹ )|+

]
.

Note that the exponent is positive if and only if R > C(W ).
It is known that the strong converse exponent in Proposition 2
is tight [4]. Furthermore, it also coincides with the strong con-
verse exponent by Arimoto [2]; see [10] for the equivalence.
Proof. Let

C :=
{
(m,xn, yn) : ψ(yn) = m

}
.

For

PMXnY n(m,xn, yn) =
1

|M|1[xn = ϕ(m)]Wn(yn|xn),

let

PM̃X̃nỸ n(m,xn, yn)

:=
PMXnY n(m,xn, yn)1[(m,xn, yn) ∈ C]

PMXnY n(C)
.

Then, we have

D(PM̃X̃nỸ n‖PMXnY n) = log(1/pc).

By noting that PY n|MXn = Wn, we have

D(PỸ n|M̃X̃n‖Wn|PM̃X̃n) = D(PỸ n|M̃X̃n‖PY n|MXn |PM̃X̃n)

≤ D(PM̃X̃nỸ n‖PMXnY n)

= log(1/pc).

By the convexity of the KL-divergence, we also have

D(PỸ n|X̃n‖Wn|PX̃n) ≤ D(PỸ n|M̃X̃n‖Wn|PM̃X̃n)

≤ log(1/pc). (4)

Furthermore, by the monotonicity of the KL-divergence, we
also have

D(PM̃‖PM ) +D(PỸ n|M̃X̃n‖Wn|PM̃X̃n)

≤ D(PM̃X̃n‖PMXn) +D(PỸ n|M̃X̃n‖Wn|PM̃X̃n)

= D(PM̃X̃nỸ n‖PMXnY n)

= log(1/pc). (5)

Now, by noting that PM is uniform distribution on M, we
have

nR

≤ log |M|
= H(M̃) +D(PM̃‖PM )

= I(M̃ ∧ Ỹ n) +D(PM̃‖PM )

≤ I(M̃ ∧ Ỹ n) +D(PM̃‖PM )

+
[
log(1/pc) −D(PM̃‖PM ) −D(PỸ n|M̃X̃n‖Wn|PM̃X̃n)

]

= I(M̃ ∧ Ỹ n) −D(PỸ n|M̃X̃n‖Wn|PM̃X̃n) + log(1/pc)

= I(M̃, X̃n ∧ Ỹ n) −D(PỸ n|M̃X̃n‖Wn|PM̃X̃n) + log(1/pc)

= I(X̃n ∧ Ỹ n) + I(M̃ ∧ Ỹ n|X̃n)

−D(PỸ n|M̃X̃n‖Wn|PM̃X̃n) + log(1/pc)

= I(X̃n ∧ Ỹ n) +D(PỸ n|M̃X̃n‖PỸ n|X̃n |PM̃X̃n)

−D(PỸ n|M̃X̃n‖Wn|PM̃X̃n) + log(1/pc)

= I(X̃n ∧ Ỹ n) −D(PỸ n|X̃n‖Wn|PX̃n) + log(1/pc), (6)

where the second equality follows since M̃ can be decoded
from Ỹ n with 0 error probability, the second inequality follows
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from (5), and the forth equality follows since X̃n is a function
of M̃ .2 Now, we conduct the single-letter procedure as follows:

I(X̃n ∧ Ỹ n) −D(PỸ n|X̃n‖Wn|PX̃n)

= H(Ỹ n) −H(Ỹ n|X̃n) −D(PỸ n|X̃n‖Wn|PX̃n)

= H(Ỹ n) −
∑

xn,yn

PX̃nỸ n(xn, yn) log
1

Wn(yn|xn)

= H(Ỹ n) − n
∑

x,y

PX̃J ỸJ
(x, y) log

1

W (y|x)
= H(Ỹ n) − nH(ỸJ |X̃J) − nD(PỸJ |X̃J

‖W |PX̃J
)

≤ nH(ỸJ) − nH(ỸJ |X̃J) − nD(PỸJ |X̃J
‖W |PX̃J

)

= nI(X̃J ∧ ỸJ) − nD(PỸJ |X̃J
‖W |PX̃J

). (7)

Thus, by combining (6) and (7), we have

1

n
log(1/pc) ≥ D(PỸJ |X̃J

‖W |PX̃J
) +

(
R− I(X̃J ∧ ỸJ)

)
.

(8)

Note also that

D(PỸ n|X̃n‖Wn|PX̃n) =
n∑

j=1

D(PỸj |X̃nỸ −
j

‖W |PX̃nỸ −
j

)

≥
n∑

j=1

D(PỸj |X̃j
‖W |PX̃j

)

= nD(PỸJ |X̃JJ‖W |PX̃JJ)

≥ nD(PỸJ |X̃J
‖W |PX̃J

). (9)

Thus, by combining (4) and (9), we have

1

n
log(1/pc) ≥ D(PỸJ |X̃J

‖W |PX̃J
). (10)

Thus, by combining (8) and (10), we have

1

n
log(1/pc) ≥ D(PỸJ |X̃J

‖W |PX̃J
) + |R− I(X̃J ∧ ỸJ)|+.

Finally, by replacing PX̃J ỸJ
with the minimum over PX̃Ỹ , we

have the claim of the proposition.

V. SOURCE CODING WITH CODED SIDE-INFORMATION

In this section, we consider the source coding with coded
side-information, also known as the Wyner-Ahlswede-Körner
(WAK) problem [1], [18]. For finite alphabets X and Y , let
(Xn, Y n) be i.i.d. correlated source with distribution PXnY n .
A code consists of two encoders ϕ1 : X n → M1 and ϕ2 :
Yn → M2, and a decoder ψ : M1 × M2 → X n. We shall
evaluate the correct decoding probability:

pc := Pr
(
ψ(ϕ1(X

n), ϕ2(Y
n)) = Xn

)
.

A rate pair (R1, R2) is defined to be achievable if, for every
0 < ε < 1 and for sufficiently large n, there exists a

2Note that M̃ may not be a function of X̃n when the encoder is not one-
to-one, and I(M̃ ∧ Ỹ n|X̃n) may not be 0.

code (ϕ1, ϕ2, ψ) such that the correct decoding probability
satisfies pc ≥ 1 − ε and rate pair satisfies 1

n log |M1| ≤ R1

and 1
n log |M2| ≤ R2, respectively. Then, the achievable

region RWAK(PXY ) is defined as the closure of all achievable
rate pairs. It is well known that the achievable region is
characterized as

RWAK(PXY ) =
{
(R1, R2) : ∃PU |Y ∈ P(U|Y) s.t.

R1 ≥ H(X|U), R2 ≥ I(U ∧ Y )
}

where P(U|Y) is the set of all channels from Y to an auxiliary
alphabet U satisfying |U| ≤ |Y| + 1.

Note that the characterization of the achievable region
involves an auxiliary random variable U that does not appear
in the problem setting. Furthermore, U is generated only from
Y via channel PU |Y ; in other words, U , Y , and X must satisfy
the Markov chain. In many cases, difficulty of analyzing multi-
user problems stem from the existence of auxiliary random
variables and Markov chain constraints, and the WAK problem
is the most basic problem involving such difficulties.

The following exponential strong converse of the WAK
problem was obtained in [14].

Proposition 3 For any code (ϕ1, ϕ2, ψ), the correct decoding
probability satisfies

1

n
log(1/pc)

≥ min
PŨX̃Ỹ

{
D(PŨX̃Ỹ ‖PŨ |Ỹ PXY ) + |I(Ũ ∧ Ỹ ) −R2|+ :

R1 ≥ H(X̃|Ũ)
}
,

where the minimization is taken over joint distributions on
U×X ×Y for an auxiliary alphabet satisfying |U| ≤ |X ||Y|+2.

For the proof, see [14]; furthermore, it can be proved that the
bound in Proposition 3 is asymptotically tight.

In contrast to the characterization of the achievable region,
the exponent in Proposition 3 does not involve the Markov
chain constraint. In fact, we can decompose the divergence
term as

D(PŨX̃Ỹ ‖PŨ |Ỹ PXY ) = D(PX̃Ỹ ‖PXY ) + I(Ũ ∧ X̃|Ỹ ).

Thus, in the analysis of the strong converse exponent, the
Markov chain constraint is imposed as a (potentially non-zero)
penalty term. The idea of introducing this kind of penalty term
rather than the exact Markov chain constraint was proposed by
Oohama in [11], which culminated in the tight strong exponent
of the WAK problem in [14].
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Abstract—In private computation, a user wishes to retrieve
a function evaluation of messages stored on a set of databases
without revealing the function’s identity to the databases. Obead
et al. introduced a capacity outer bound for private nonlinear
computation, dependent on the order of the candidate functions.
Focusing on private quadratic monomial computation, we propose
three methods for ordering candidate functions: a graph edge-
coloring method, a graph-distance method, and an entropy-based
greedy method. We confirm, via an exhaustive search, that all
three methods yield an optimal ordering for f < 6 messages. For
6 ≤ f ≤ 12 messages, we numerically evaluate the performance of
the proposed methods compared with a directed random search.
For almost all scenarios considered, the entropy-based greedy
method gives the smallest gap to the best-found ordering.

I. INTRODUCTION

Private computation (PC) [1] is a generalization of the
renowned private information retrieval (PIR) problem that
aims at addressing privacy concerns in distributed computing
services. For example, in distributed machine learning, many
common classification, dimensionality reduction, and linear
regression algorithms operate on the inner products of the data
samples rather than the individual data samples. In PC, the
user wants to privately download a function evaluation of the
messages stored across a set of databases, i.e., without leaking
any information to the databases (in an information-theoretic
manner) on the identity of the desired function evaluation.

To measure the efficiency of a PC protocol, the PC rate,
defined as the ratio between the (smallest) size of the function
evaluation and the number of downloaded symbols, is typically
considered. The maximum PC rate is referred to as the PC
capacity, and it is known for the case of linear function
evaluations, referred to as private linear computation (PLC),
from noncolluding replicated and coded databases [1]–[3].
Private polynomial computation (PPC) was first considered by
Karpuk in [4], and later in [5]–[8]. The capacity of PPC is still
unknown, and there is generally a substantial gap between the
best achievable rate and the best-known capacity outer bound.
Private inner product retrieval from noncolluding replicated
databases was considered in [9], while the general case of
PC for nonlinear function evaluations was considered in [10]
where an outer bound on the capacity was first introduced.
It was noted in [10] that the value of the PC capacity outer
bound depends on how the candidate functions are ordered.1

1Due to the inherent relation between PC and PIR, a similar observation was
made in [11] for PIR with dependent messages, i.e., dependent PIR (DPIR).

To the best of our knowledge, an optimal order for the outer
bound has not yet been considered in the open literature.

In this work, inspired by private inner product retrieval
[9], we focus on the case of private quadratic nonparallel
monomial computation (PQNMC) and propose three methods
for finding a good ordering of the µ candidate functions.
In PQNMC, the set of candidate functions is the set of all
quadratic nonparallel monomials of f messages where each
message symbol is chosen from a size-q finite field Fq , thus,
µ = f(f−1)/2. Given that graphs present a strong framework
for illustrating the interdependence among random variables,
offering insights into the dependency structure of the candidate
function set, we propose two graph-based methods. The first is
an edge-coloring method we name (enhanced) edge-coloring
((E-)EC) and the second is a graph-distance method we name
longest-distance first (LDF). Then, we compare the resulting
PC capacity outer bound with the one found by our third
method: an entropy-based greedy (EBG) algorithm.

For f < 6 messages chosen from F2, we verify through an
exhaustive search that the proposed methods output optimal
orders. However, we note that the orders are not unique and
are finite field-dependent, which illustrates the difficulty of
finding a general ordering of quadratic nonparallel monomials
that will optimize the outer bound of the PQNMC capacity.
Moreover, for larger numbers of messages, an exhaustive
search quickly becomes infeasible even over F2. As a result,
we opt for a directed random search to numerically analyze
the performance of the proposed methods. Accordingly, we
note that for 6 ≤ f ≤ 10 and f = 12 messages, the EBG
algorithm outperforms the proposed graph-based methods with
the smallest gap to the best-found ordering. Nevertheless, the
significance of the graph-based methods arises as a relatively
low-complexity alternative to the EBG method as the complex-
ity of computing the entropies needed for the EBG algorithm
grows exponentially with the number of candidate monomials
µ with base equal to the size q of the underlying finite field Fq .
Finally, although we consider PQNMC in this work, we note
that the results may also have independent interest beyond PC.

II. PRELIMINARIES

A. Notation

We denote by N the set of all positive integers and
[a] ≜ {1, 2, . . . , a} for a ∈ N. A random variable is denoted
by a capital Roman letter, e.g., X , while its realization is
denoted by the corresponding small Roman letter, e.g., x.
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Vectors are boldfaced, e.g., X denotes a random vector, and x
denotes a deterministic vector. Sets are denoted by calligraphic
uppercase letters, e.g., X . Concatenation of vectors x1, . . . ,xa

is represented by (x1 | · · · | xa). Furthermore, some constants
and functions are depicted by Greek letters or a special font,
e.g., X. The entropy of X is represented by H(X). A degree
g monomial zi in f variables z1, . . . , zf over a finite field
Fq is written as zi = zi11 · · · z

if
f , where i ≜ (i1, . . . , if ) ∈

({0} ∪ N)f is the exponent vector with
∑f

j=1 ij = g and
ij ≤ q − 1 for all j ∈ [f ].2 A simple undirected graph with
vertex set V and edge set E is denoted by G = (V, E).
B. Problem Statement

We consider the PQNMC problem, which is formally de-
scribed as follows.3 Consider a distributed storage system
(DSS) consisting of n noncolluding databases, each storing
a replica of f independent messages. The messages are
denoted by W (1), . . . ,W (f) and each message W (m) =(
W

(m)
1 , . . . ,W

(m)
βL

)
, m ∈ [f ], is a length-βL vector with

independent and identically distributed symbols that are chosen
uniformly at random from the field Fq for some β,L ∈ N.4

Hence, we have

H
(
W (m)

)
= βL, ∀m ∈ [f ],

H
(
W (1), . . . ,W (f)

)
= fβL (in q-ary units).

In PQNMC, a user wishes to privately compute exactly one
quadratic nonparallel monomial X(k,ℓ)

i ≜ W
(k)
i W

(ℓ)
i , ∀ i ∈

[βL], for some k, ℓ ∈ [f ], k < ℓ, out of µ ≜
(
f
2

)
candidate

quadratic nonparallel monomials. For convenience, we denote
by T ≜ {(k, ℓ) : k, ℓ ∈ [f ], k < ℓ} the set of all ordered
2-tuples, where |T | = µ. In q-ary units, we have

H(X(k,ℓ)) = βLH
(
X(k,ℓ)

)
, ∀ (k, ℓ) ∈ T ,

H
(
X(1,2), . . . ,X(f−1,f)

)
= βLH

(
X(1,2), . . . , X(f−1,f)

)
,

for prototype random variables X(k,ℓ).
The user privately selects an index (k, ℓ) and wishes to

compute the (k, ℓ)-th quadratic nonparallel monomial while
keeping the requested index (k, ℓ) private from each database.
In order to retrieve the desired function X(k,ℓ), (k, ℓ) ∈ T ,
from the DSS, the user sends a random query to the j-th
database for all j ∈ [n]. The user generates the queries without
any prior knowledge of the realizations of the stored messages,
and they are independent of the candidate quadratic nonparallel
monomials. In response to the received query, the j-th database
sends an answer back to the user.

To measure the efficiency of a PC protocol, we consider the
required number of downloaded q-ary symbols for retrieving
the βL q-ary symbols of the desired function evaluation.

2For nonvanishing polynomials, following the Combinatorial Nullstellensatz
theorem [12, Thm. 1.2], the degree of every variable in a multivariate
polynomial must be strictly smaller than the finite field size.

3A monomial m(z) is said to be parallel if it can be raised by another
monomial to a positive integer power, i.e., m(z) = (zi)d for some d ∈ N
and i ∈ ({0} ∪ N)f .

4For consistency, we use the notation required for the achievable rate in
[10, Thm. 2] where asymptotically L → ∞ but β is fixed.

Definition 1 (PQNMC Rate and Capacity): The rate of
a PQNMC protocol, denoted by R, is defined as the ratio
between the smallest desired monomial size βLHmin and the
total required download cost D, i.e.,

R ≜ βLHmin

D
,

where Hmin ≜ min(k,ℓ)∈T H
(
X(k,ℓ)

)
. The PQNMC capacity,

denoted by CPQNMC, is the maximum achievable PQNMC rate
over all possible PQNMC protocols.

Note that for quadratic nonparallel monomials, we have
Hmax ≜ max(k,ℓ)∈T H

(
X(k,ℓ)

)
= Hmin. Accordingly, every

quadratic nonparallel monomial carries the same amount of
information and following the terminology of DPIR [11] we
denote the PQNMC problem as balanced.

Let P(T ) be the set of all permutations on the set T , and
denote an ordered set S ≜ (s1, . . . , sµ) ∈ P(T ). Using the
same approach as [10], it can be shown that the PQNMC
capacity is bounded from above by CPQNMC ≤ C(S), where

C(S) ≜ nµ Hmin
µ∑

v=1
nµ−v+1 H(X(sv) |X(s1), . . . , X(sv−1))

. (1)

The goal of this work is to determine the best (lowest) outer
bound to the PQNMC capacity CPQNMC, among all the possible
orders of the quadratic nonparallel monomials for a given
number of messages f , i.e., we are interested in obtaining the
best-ordered set that achieves minS∈P(T ) C(S).

Remark 1: We have observed by exhaustive search for f ≤
5 that the set of optimal orderings (the ones that minimize the
capacity outer bound in (1)) is independent of n ≥ 2, which
suggests that one can choose n = 2 for finding an optimal
order for the capacity outer bound C(S).

C. Edge-Coloring and Matching

Quadratic nonparallel monomials in f variables can be
represented by a simple undirected graph G = (V, E), with
V = [f ] where the vertices k and ℓ correspond to the messages
W (k) and W (ℓ) (for prototype random variables W (k) and
W (ℓ)), respectively, and the edge (k, ℓ) ∈ E represents the
nonparallel monomial X(k,ℓ). Thus, we have µ = |E| and the
set of all quadratic nonparallel monomials in f variables are
represented by a complete graph Kf .

Definition 2 (Distance): Given a graph G = (V, E), the
distance between two vertices u, v ∈ V , denoted by d(u, v), is
the length of the shortest path connecting them, measured in
number of edges.

Definition 3 (Matching): Given a graph G = (V, E), a
matching M in G is a set of pairwise nonadjacent edges, i.e.,
a set of edges where no two edges share common vertices.
When |V| is an even number, a perfect matching is a matching
that includes all vertices of the graph, and when |V| is an odd
number, a near-perfect matching is a matching that includes
|V| − 1 vertices of the graph.

Definition 4 (Edge-Coloring [13, Ch. 17]): A proper edge-
coloring of a graph is an assignment of colors to the edges
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such that the edges incident to a vertex have distinct colors.
A graph G is said to be κ-edge colorable if G has a proper
edge-coloring with κ colors. The chromatic index of a graph G,
denoted by χ′(G), is the minimum number of colors required
to properly edge-color G.

The definition of proper edge-coloring of a graph G implies
that the κ-edge coloring of a graph partitions the graph edge
set E into κ (near) perfect matchings M1, . . . ,Mκ such that
E =M1 ∪ · · · ∪ Mκ, and the sets M1, . . . ,Mκ are known
as the color sets of edges. For complete graphs of f vertices,
denoted by Kf , it is known [14, Thm. 1] that

χ′(Kf ) =

{
f − 1 if f is even,
f if f is odd.

Remark 2: Let M be the set of all (near) perfect matchings
of a complete graph Kf . Let S[1 : η] = (s1, . . . , sη) be the
first η elements of the ordered set S, where η ≜ f(f−1)/2χ′(Kf )

is the number of edges within a complete graph matching. For
S to be an optimal order of quadratic nonparallel monomials
of f > 3 variables, we conjecture that S[1 : η] must constitute
a (near) perfect matching of Kf , i.e., {s1, . . . , sη} ∈M .

III. ALGORITHMS TO DETERMINE A GOOD ORDER

In this section, we propose three methods for finding a
good order, one based on edge-coloring, one based on graph
distance, and one entropy-based greedy algorithm.

Remark 3: Computing the capacity bound of (1) for a
given order entails the computation of µ conditional entropies,
resulting in a computational complexity of order O(qµ).
Taking that into account, it can be seen that performing an
exhaustive search over all possible orders to optimize the
PQNMC capacity outer bound would intuitively require a
complexity of order O(µ!× qµ).

A. Edge-Coloring

The key idea is to first find a proper edge-coloring of the
complete graph Kf . Then, build an order based on grouping the
edges according to their color, i.e., first take the edges corre-
sponding to one of the colors, then the edges corresponding to
another color, etc., until all colors have been considered. The
time complexity of finding an order based on simple edge-
coloring follows from the time complexity of finding a proper
edge-coloring of Kf . We follow the procedure in [15, App. A]
which runs in polynomial time, i.e., of order O(µ).

We first give an example to illustrate how edge-coloring can
give us a good order SEC for the capacity outer bound.

Example 1: For f = 6 messages, a proper 5-edge coloring
of K6 is as follows:

Purple (1, 5)(2, 4)(3, 6)
Yellow (1, 6)(2, 5)(3, 4)

Red (1, 2)(3, 5)(4, 6)
Green (1, 3)(2, 6)(4, 5)
Blue (1, 4)(2, 3)(5, 6)

1

2

3

4

5

6

The resulting order is

SEC =
(
(1, 5), (2, 4), (3, 6), (1, 6), (2, 5), (3, 4), (1, 2),

(3, 5), (4, 6), (1, 3), (2, 6), (4, 5), (1, 4), (2, 3), (5, 6)
)
,

and for n = 2 and q = 2, the capacity outer bound is C(SEC) =
0.5198943946817.

The permutation of the colors affects the value of
C, which indicates that edge-coloring by itself does not
guarantee finding an optimal order. Thus, a search over color
permutations for the capacity bound, i.e., over (χ′(Kf ) − 1)!
permutations (the first η edges corresponding to a single color
can be fixed; see Remark 2), can potentially improve it in
exchange for added complexity. We refer to this improved
method as enhanced edge-coloring (E-EC), and its complexity
is of order O(µ + (χ′(Kf ) − 1)! × qµ). For example, if we
reorder the colors in Example 1 as (purple, yellow, blue, red,
green), we obtain the order

SE-EC =
(
(1, 5), (2, 4), (3, 6), (1, 6), (2, 5), (3, 4), (1, 4),

(2, 3), (5, 6), (1, 2), (3, 5), (4, 6), (1, 3), (2, 6), (4, 5)
)
,

which results, for n = 2 and q = 2, in the improved capacity
outer bound C(SE-EC) = 0.5198121367672.

We have observed that even within a set of edges of a
given color, the permutation of the edges also affects the value
of C. For instance, considering the blue color in Example 1,
the values of C between the orders {(1, 4), (2, 3), (5, 6)} and
{(2, 3), (1, 4), (5, 6)} are different. However, when searching
for the best order within the edges of every color, the compu-
tational complexity becomes O(µ+((η!)χ

′(Kf ))× qµ), which
renders finding the best order quickly infeasible. Here, we are
presenting the (E-)EC solution as a low-complexity solution
for finding a good order. Thus, we opt out of optimizing the
(E-)EC solution any further, and we simply order the edges
(k, ℓ) within each color set according to the lexicographical
order on [f ]× [f ].

The E-EC method is briefly summarized as Algorithm 1.
B. Longest-Distance First

The goal of LDF is to minimize dependency among the
first selected monomials within an order. Thus, the intuition
behind the LDF method also follows from graph matching.
However, unlike in the (E-)EC method, we do not restrict
ourselves to (near) perfect matchings of the complete graph
Kf . Here, we follow the convention that if two vertices belong
to different connected components, then the distance is defined
as infinite [13], i.e., there is no path connecting the two
vertices. The LDF method is summarized with the following
sequential steps (further details and a pseudo-code can be
found in [15, App. B]).

Start with the null graph G = Nf , i.e., a graph with V = [f ]
and E = ∅. Then, adhere to the following steps, adding an edge
(u, v) to G and partial order SLDF with each step repetition.

1) Repeatedly add an edge not adjacent to any other edge.
2) Repeatedly add an edge that connects two vertices with

the longest distance and lowest degree in the graph, until
a length-f cycle is formed.
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Algorithm 1: Searching for a good order for C based
on edge-coloring (E-EC)

Input : f , q, n
Output: A good order of edges SE-EC

1 E1, . . . Eχ′(Kf ) ← color sets of edges with edges ordered
lexicographically on [f ]× [f ]

2 EE-EC ← E1, i← 1
3 Ec ← a permutation of the remaining color sets of edges
4 SE-EC ← (EE-EC | Ec)
5 Compute CE-EC–best = C(SE-EC)
6 while i ≤ (χ′(Kf )− 1)! do
7 i← i+ 1
8 Ec ← next permutation of the remaining color sets of

edges
9 if C(EE-EC | Ec) < CE-EC–best then

10 SE-EC ← (EE-EC | Ec), CE-EC-best ← C(SE-EC)
11 end
12 end
13 return SE-EC

3) Repeatedly add an edge that connects two vertices with
the lexicographically smallest numbers of induced length-
l cycles for 3 ≤ l ≤ f , until G is complete, i.e., G = Kf .

As for the (E-)EC method, we elaborate on the LDF algorithm
with an illustrative example.

Example 2: For f = 6, first, add an edge that is not adjacent
to any other edge. For example (1, 2), then (3, 4). As a result,
one remaining edge can be added following Step 1), which is
(5, 6). Note that E = {(1, 2), (3, 4), (5, 6)} constitute a perfect
matching of K6, adhering to Remark 2. The corresponding
graph G and graph distances are illustrated in the following
figure, where v ∈ V denotes the vertex label.

1

2

3

4

5

6

2 1
3 ∞ ∞
4 ∞ ∞ 1
5 ∞ ∞ ∞ ∞
6 ∞ ∞ ∞ ∞ 1

v 1 2 3 4 5

Next, to add an edge that connects two vertices with the
longest distance and lowest degree in the graph, we select, for
example, the edge (1, 6) with d(1, 6) = ∞ and both vertices
of degree 1. As a result, we have d(2, 5) = 3 and d(2, 6) =
d(1, 5) = 2, as depicted in the following figure:

1

2

3

4

5

6

2 1
3 ∞ ∞
4 ∞ ∞ 1
5 2 3 ∞ ∞
6 1 2 ∞ ∞ 1

v 1 2 3 4 5

Next, to repeat Step 2), we can select from any available
edge (u, v) with vertices of degree 1 and d(u, v) = ∞, i.e.,
u, v ∈ {2, 3, 4, 5}. For example, select the edge (2, 3), then
(4, 5) forming a length-f cycle as illustrated in the left-hand
side (l.h.s.) of the figure below where a dashed line indicates
the order of adding. Now, for Step 3), we count the cycles

induced from adding each of the remaining edges as seen in
the following table, where o = (o1, . . . , oi, . . . , of−2) and oi
is the number of cycles of length i+ 2.

1

2

3

4

5

6
(u, v) o

(1, 4), (2, 5), (3, 6) (0, 2, 0, 1)

(1, 3), (1, 5), (2, 4)
(1, 0, 1, 1)

(2, 6), (3, 5), (4, 6)

Each of the edges (1, 4), (2, 5), and (3, 6) induces the smallest
number of cycles, lexicographically, thus we select one of
these edges. Let that edge be (1, 4). The corresponding graph
G is illustrated in the l.h.s of the following figure:

1

2

3

4

5

6

(u, v) o

(2, 5), (3, 6) (0, 5, 0, 2)

(2, 6), (3, 5) (1, 2, 3, 1)

(1, 3), (1, 5)
(2, 2, 1, 1)

(2, 4), (4, 6)

By repeating Step 3), the choices for the following edges
remain the same. As can be seen from the above table, edges
(2, 5) and (3, 6) induce the same number of cycles in G. Thus,
we select for example (2, 5). The remaining edges follow
from repeating Step 3) and are added to the order and G as
illustrated in the following left-to-right top-to-bottom order:

1

2

3

4

5

6

1

2

3

4

5

6

1

2

3

4

5

6

1

2

3

4

5

6

At the end of the LDF procedure, we obtain the order

SLDF =
(
(1, 2), (3, 4), (5, 6), (1, 6), (2, 3), (4, 5), (1, 4),

(2, 5), (3, 6), (2, 4), (1, 3), (1, 5), (2, 6), (3, 5), (4, 6)
)
,

and for n = 2 and q = 2, the capacity outer bound is
C(SLDF) = 0.5197824997350, which is strictly better than for
the E-EC method. Interestingly, SLDF corresponds to a proper
edge-coloring, i.e., no two adjacent edges share the same
color, but it does not correspond to an optimal edge-coloring.

C. Entropy-Based Greedy Method

The EBG method starts with an empty graph and sequen-
tially adds edges in a greedy manner, i.e., the edge that
minimizes the (partial) bound in (1), computed based on the
new edge and the already added edges, is added at each step
in the algorithm. In case of ties, one of the candidate edges is
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TABLE I
COMPARISON BETWEEN PQNMC CAPACITY OUTER BOUNDS OBTAINED WITH THE (E-)EC (C(S(E-)EC)), LDF (C(SLDF)), AND EBG (C(SEBG))

METHODS, AS WELL AS WITH THE BEST BOUND FOUND BY EXHAUSTIVE/DIRECTED RANDOM SEARCH (C(SES/RS)), FOR n = 2 DATABASES, AND FOR A
FIELD SIZE OF q = 2. THE BEST BOUND FOR EACH NUMBER OF MESSAGES f IS MARKED IN BOLD. THE BEST-KNOWN ACHIEVABLE RATE R FROM [10,

THM. 2] IS GIVEN AS WELL TO SHOW THE CAP TO THE CAPACITY OUTER BOUND.

f 5 6 7 8 9 10 11 12

C(SEC) 0.5382035621102 0.5198943946817 0.5158988408975 0.5088200966114 0.5071434701312 0.5041602427037 0.5033789063480 0.5020207578041

C(SE-EC)
5 0.5321513151313 0.5198121367672 0.5130098344723 0.5085684044374 0.5058885273733 0.5039972538181 0.5028028499055 0.5019311781396

C(SLDF) 0.5321513151313 0.5197824997350 0.5129571653366 0.5085546467521 0.5058724664437 0.5039960955809 0.5027529132784 0.5019069907637

C(SEBG) 0.5321513151313 0.5197824997350 0.5129571653366 0.5085546463038 0.5058724626997 0.5039958945996 0.5027582097217 0.5019068074415

C(SES/RS) 0.5321513151313 0.5197824997350 0.5129571653366 0.5085546398430 0.5058724411573 0.5039961304091 0.5027529200313 0.5019070293099

R 0.5026676304668 0.5001371033940 0.5000032431709 0.5000000359051 0.5000000001891 0.5000000000005 0.5000000000000 0.5000000000000

selected at random. In particular, in the first step, an arbitrary
edge is added to an initially empty graph. Then, in the second
step the bound in (1) is computed with µ = 2 based on the
previously added edge and a new edge selected among the
possible remaining edges. The new edge that minimizes the
computed partial bound is then selected and added to the graph.
In this manner, an edge is added to the graph in each step
of the algorithm and a monomial order is constructed. The
complexity of the EBG method is of order O(µ(µ+1)/2× qµ).
Finally, note that the order returned by the EBG method is
independent of the value of n ∈ N, including n = 1, while
Remark 1 requires n ≥ 2. Hence, n = 1 can be used for better
numerical stability when conducting the EBG search.

IV. DISCUSSION AND RESULTS

In Table I, we compare the results from the proposed (E-
)EC, LDF, and EBG methods for 5 ≤ f ≤ 12 messages, for
n = 2 databases, and for a field size of q = 2 with those
of an exhaustive search (for f = 5) and a directed random
search (for 6 ≤ f ≤ 12). The directed random search is
done by first fixing at least the first f edges according to
edge-coloring (corresponding to two or three colors) and then
conducting a random search among the remaining orders. As
can be seen from the table, the LDF and EBG methods and
the exhaustive/directed random search yield the same capacity
outer bound for f ≤ 7 messages, while for f = 8 and
f = 9 messages a directed random search gives slightly better
results (in the 8-th digit). (E-)EC gives the same bound as
LDF for f = 4 messages, while for f ≥ 6, E-EC performs
worse compared to the LDF and EBG methods. The EC
method performs in general slightly worse compared to the
E-EC method, but has the lowest computational complexity.
Interestingly, for f = 11, the LDF method outperforms all
other methods. The best-known achievable rate R from [10,
Thm. 2] is given in the last row of Table I to show the cap to
the capacity outer bound. As a final remark, we note that for
larger q (results not included here), the gap between the bounds
produced by the LDF and EBG methods increases, which can
be attributed to the fact that the proposed simple undirected
graph model captures less of the dependencies for larger q.

5Due to high computational complexity, we fix two color sets of edges and
then search over the remaining color permutations for f = 11 and f = 12.

V. CONCLUSION

We proposed two graph-based methods and one EBG al-
gorithm to optimize the order of quadratic monomials in an
outer bound for the PQNMC capacity. For f < 6 messages, all
three methods minimize the bound, while for 6 ≤ f ≤ 12 the
results were compared with those of a directed random search.
For almost all examined cases, the EBG algorithm yields the
smallest gap to the best-found monomial ordering.
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Abstract—We consider the problem of weakly-private infor-
mation retrieval (WPIR) when data is encoded by a maximum
distance separable code and stored across multiple servers. In
WPIR, a user wishes to retrieve a piece of data from a set of
servers without leaking too much information about which piece
of data she is interested in. We study and provide the first WPIR
protocols for this scenario and present results on their optimal
trade-off between download rate and information leakage using
the maximal leakage privacy metric.

I. INTRODUCTION

Private information retrieval (PIR), introduced in a seminal
paper by Chor et al. [1], [2], has been extensively studied
for more than two decades in both the computer science
and information theory communities, see, e.g., [3]–[8] and
references therein. In PIR, the objective is to download a
piece of data stored on a set of servers without leaking any
information about which piece of data is being requested to
the servers storing the data, while minimizing the overall
communication cost. As the upload cost is typically much
lower than the download cost, the download rate, defined as
the ratio between the amount of requested information and
the amount of downloaded information, is used as a measure
to compare different PIR protocols. When data is replicated
across several servers, the maximum achievable download rate,
referred to as the PIR capacity, was derived in [9], while the
capacity for the case where the data is encoded by a maximum
distance separable (MDS) code and stored across a set of
servers was settled in [10]. Arbitrary linear storage codes were
considered in [11], [12].

Weakly-private information retrieval (WPIR), introduced
independently by Lin et al. [13] and Samy et al. [14], is a
relaxed version of PIR that allows for reducing the download
cost at the expense of some information leakage on the identity
of the requested piece of data to the servers storing it. So
far, only the case of replicated data (across servers) and
the single server case have been considered in the literature
[15]–[21], while in this work we consider for the first time
the case where the data is encoded by an MDS code and
stored across multiple servers. WPIR protocols allow for a
trade-off between download rate and privacy leakage, and the
optimal trade-off curve for the case of multiple servers is
still an open problem. As in previous works, we consider the
maximal leakage (MaxL) privacy metric [22]–[24]. Our main
contributions are as follows.

• We adapt the PIR protocols in [25], [26] for MDS-coded
databases to allow for information leakage. The adapted
protocols from [25], [26], referred to as the ZYQT and
ZTSL MDS-WPIR schemes, respectively, yield a trade-
off between download rate and information leakage, and
we show that for the MaxL privacy metric the optimal
trade-off is the solution of a convex optimization problem
(see Theorem 1). The optimized ZYQT MDS-WPIR
scheme yields the best trade-off but also has the largest
query space.

• We propose a new WPIR protocol, referred to as the
OLR MDS-WPIR scheme, with a much smaller query
space than the ZYQT scheme while providing an equally
good or better trade-off between download rate and
information leakage. As for the ZYQT and ZTSL MDS-
WPIR schemes, the optimal trade-off is the solution of a
convex optimization problem (see Theorem 1).

II. PRELIMINARIES AND SYSTEM MODEL

A. Notation

We denote by N the set of all positive integers, and
[a : b] ≜ {a, a+ 1, . . . , b} for a, b ∈ {0} ∪ N, a ≤ b. Vectors
(normally row-wise) are denoted by bold letters, random
variables (RVs) (either scalar or vector) by uppercase letters,
and sets by calligraphic uppercase letters, e.g., x, X , and X ,
respectively. Matrices are denoted by sans serif letters, while
random matrices are represented by bold sans serif capital
letters, e.g., X, and x represents its realization. The all-one
(all-zero) row vector is denoted by 1 (0), and its length will
be clear from the context. When a set of indices S is given, XS
denotes {Xs : s ∈ S}. EX [·] denotes expectation with respect
to the RV X . X ∼ PX denotes an RV distributed according
to a probability mass function (PMF) PX(x), x ∈ X , and
X ∼ U(S) a uniformly-distributed RV over a set S. H(·)
denotes the entropy function, (·)T the transpose of a matrix, and
gcd(a, b) the greatest common divisor of two positive integers
a and b.

B. System Model

We consider an MDS-coded distributed storage system
(DSS) with N noncolluding servers that store M independent
files W(1), . . . ,W(M), where each file is represented as a
random matrix W(m) =

(
W

(m)
i,j

)
of size λ × K, λ,K ∈ N.

Each file W(m) is encoded row-wise using an [N,K] MDS
code C over some finite field Fq of size q ≥ N resulting in
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the codewords
(
X

(m)
i,1 , . . . , X

(m)
i,N

)
= (W

(m)
i,1 , . . . ,W

(m)
i,K )GC ,

i ∈ [0 : λ − 1], where GC denotes a generator matrix for C.
Denote by X

(m)
j ≜

(
X

(m)
0,j , . . . , X

(m)
λ−1,j

)T
a vector consisting

of λ code symbols generated by the code C. Then, the j-th
server stores Xj ≜

(
(X

(1)
j )T| · · · |(X(M)

j )T
)T

, j ∈ [1 : N].
To retrieve a file W(M), from the MDS-coded DSS, the

user sends a query Qj to the j-th server for all j ∈ [1 : N].
Here, M ∼ U([1 : M]) is an RV representing the desired file
index. In response to the received query, server j returns the
answer Aj , which is a function of Qj and the code symbols
Xj stored in the server, back to the user. We formally describe
an MDS-coded (M,N,K) WPIR scheme as follows.

Definition 1 (MDS-WPIR Scheme). An (M,N,K) MDS-
WPIR scheme for an [N,K] MDS-coded DSS with N non-
colluding servers consists of:

• M independent files W(m) of size λ×K, for some λ ∈ N,
m ∈ [1 : M].

• A global random strategy S, whose alphabet is S. In
general, the realization of S is a matrix.

• An (N,K) MDS storage code C that encodes the file
W(m) into the matrix X(m) =

(
X

(m)
1 | · · · |X(m)

N

)
as

described above, m ∈ [1 : M].
• N queries Qj = ϕj(M,S) with alphabet Qj , j ∈ [1 : N],

that are generated by the query-encoding functions ϕj .
Query Qj is sent to the j-th server.

• N answers Aj = ψj(Qj ,Xj) with alphabet A = Fq ,
j ∈ [1 : N], that are constructed by the answer functions
ψj . All answers Aj are sent back to the user.

• N answer lengths ℓj(Qj) ∈ {0} ∪ N, j ∈ [1 : N], each
being a function of the corresponding query Qj .

In addition, the scheme should satisfy the following condi-
tion of perfect retrievability:

H
(
W(M)

∣∣A[1:N],Q[1:N],M
)
= 0.

C. Maximal Leakage Metric

From Definition 1, one can notice that at the j-th server,
the requested file index M can be inferred by observing
the query distribution PQj

, which results in an informa-
tion leakage on M to the servers. In this work, we adopt
a meaningful information-theoretic privacy metric from the
computer science literature, the MaxL metric, to measure
information leakage. Formally, given the query distributions
PM,Qj

, j ∈ [1 : N], of a given (M,N,K) WPIR scheme C ,
the overall MaxL about M of C is defined as

ρ(MaxL)(C ) ≜ max
j∈[1:N]

MaxL(M ;Qj),

where

MaxL(M ;Q) ≜ log2

(∑

q∈Q
max

m∈[M]
PQ|M (q|m)

)
.

Note that an [N,K] MDS-coded PIR scheme is an
(M,N,K) WPIR scheme C that satisfies ρ(MaxL)(C ) = 0,
such a condition is refereed to as the perfect privacy constraint.

D. WPIR Download Cost and Rate

The overall download cost (in number of symbols over Fq)
and rate of a WPIR scheme C , denoted by D(C ) and R(C ),
respectively, are given by

D(C ) =
N∑

j=1

EQj
[ℓj(Qj)] and R(C ) ≜ λK

D(C )
.

III. GENERAL MDS-WPIR SCHEMES

In this section, we give a general description of the
(M,N,K) MDS-WPIR schemes we consider in this work. We
start by reviewing two MDS-PIR capacity-achieving schemes
for small file sizes, namely the ZYQT scheme [25] and the
ZTSL scheme [26].1

A. The ZYQT Scheme and the ZTSL Scheme

1) Storage Data Structure: The following effective code
parameters are universally defined for an MDS-coded DSS:

n ≜ N

gcd(N,K)
, k ≜ K

gcd(N,K)
, r ≜ n− k.

Moreover, the subpacketization size for each file is given by
λ = n−k. For ease of exposition, we further append k dummy
variables X(m)

i,j ≡ 0 for i ∈ [n− k : n− 1], j ∈ [1 : N], such
that for all m ∈ [1 : M],

X(m) =




X
(m)
0,1 X

(m)
0,2 X

(m)
0,N

X
(m)
n−k−1,1X

(m)
n−k−1,2 X

(m)
n−k−1,N

0 0 0
. . .

0 0 0








k rows

. (1)

2) Query Generation: The query generation is the main
difference among the (M,N,K) MDS-WPIR schemes. In our
context, we will make use of the set

Pn
k ≜

{
sT = (s1, . . . , sk)

T : si, si′ ∈ [0 : n− 1],

si ̸= si′ , ∀ i, i′ ∈ [1 : k], i ̸= i′
}

of column vectors. The global random strategy alphabet for
the ZYQT and ZTSL schemes are, respectively, given by

SZYQT ≜ {s = (sT
1, . . . , s

T
M) : sT

m′ ∈ Pn
k , m

′ ∈ [1 : M]},

SZTSL ≜
{
s ∈ [0 : n− 1]M :

(
M∑

m′=1

sm′

)
mod n = 0

}
.

Note that |SZYQT| =
((

n
k

)
k!
)M

and |SZTSL| = nM−1. Since
the cost of uploading the queries for an MDS-PIR scheme
depends on the cardinality of the global random strategy al-
phabet, it is apparent that the ZTSL scheme has a lower upload
cost than the ZYQT scheme. It is also worth mentioning that
MDS-PIR schemes are generally constructed using an S that
is uniformly distributed over the set S.

1Precisely, the ZTSL scheme we consider here is the so-called Construction-
A MDS-PIR code that is referred in [26, Sec. III].
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We next present the original query generation for the ZYQT
and ZTSL MDS-PIR schemes for retrieving the m-th file
X(m), m ∈ [1 : M]. Notice that we do not adopt the uniformly-
distributed S here. Thus, the leakage ρ(MaxL) is not necessarily
equal to 0. We refer to the corresponding proposed schemes as
the ZYQT MDS-WPIR and ZTSL MDS-WPIR schemes and
denote them by CZYQT and CZTSL, respectively.
CZYQT : The query qj ∈ Qj , j ∈ [1 : N], generated from the

query-encoding function ϕj is defined as

qj = (sT
1, . . . , s

T
m−1,

(
sT
m + (j − 1)1T

)
mod n,

sT
m+1, . . . , s

T
M), sT

m ∈ Pn
k , m ∈ [1 : M].

CZTSL : The query qj ∈ Qj , j ∈ [1 : N], is generated by

qj =






s1 sm−1 (sm + (j − 1))sm+1 sM

s1 sm−1 (sm + (j − 1))sm+1 sM


 k rows

+




0 0 0
1 1 1

. . .

k − 1k − 1 k − 1




︸ ︷︷ ︸
M columns


 mod n,

where s ∈ SZTSL.
3) Answer Construction: Upon receiving a query (matrix)

qj =



q1,1 q1,2 q1,M

qk,1 qk,2 qk,M


,

the j-th server uses the answer function ψj to construct the
answer

Aj = ψj(qj ,Xj) =

(
M∑

m′=1

X
(m′)
q1,m′ ,j , · · · ,

M∑

m′=1

X
(m′)
qk,m′ ,j

)T

consisting of k sub-responses. With the storage data defined
in (1), the length of the answer is given by the number of
nonzero components in Aj , which is equal to

ℓj(qj) =
k∑

i=1

1

{
min

m′∈[1:M]
qi,m′ ≤ n− k − 1

}
,

where 1{statement} is the indicator function whose value is
1 if the statement is true and 0 otherwise.

Finally, we remark that according to the query constructions
for both the ZYQT and ZTSL MDS-WPIR schemes, the file
W(m) can always be reconstructed by the MDS property of
the storage code C (the so-called K-out-of-N property).

B. Time-Sharing MDS-WPIR Scheme

Clearly, selecting a different global random strategy S leads
to a different WPIR rate and privacy leakage of an MDS-WPIR
scheme. This work aims to achieve the best trade-off between
download rate and privacy leakage by using the best S for
an MDS-WPIR scheme. However, the minimization problem

of the information leakage for a given WPIR rate over the
global random strategy for an MDS-WPIR scheme is generally
not convex. Hence, in order to easily tackle the optimization
problem, we make use of a time-sharing principle to convexify
the optimization problem for determining the best rate-leakage
trade-off [16, Sec. VII].

Definition 2 (Time-Sharing MDS-WPIR Scheme). Consider
an MDS-WPIR scheme C̊ with query-encoding functions ϕ̊j ,
answer functions ψ̊j , and a global random strategy S̊. The
time-sharing MDS-WPIR scheme of C̊ is made by the query-
encoding functions ϕj = ϕ̊σT−1(j)(M,S) and the answer
functions ψj = ψ̊σT−1(j)

(
ϕ̊σT−1(j)(M,S),Xj

)
, j ∈ [1 : N],

for a given requested file index M , where T ∼ U([1 : N]),
and σ(·) denotes a left circular shift, while l left circular
shifts are obtained through function composition and denoted
by σl(·). Such an MDS-WPIR scheme C is called the time-
sharing scheme of C̊ .

Remark 1.
• A time-sharing MDS-WPIR scheme always has equal

information leakage at each server [16, Th. 1].
• In the following, unless specified otherwise, all the MDS-

WPIR schemes we discuss are assumed to be already
post-processed by applying the time-sharing principle,
and the minimization of MaxL is also done for the time-
sharing scheme of an MDS-WPIR scheme.

C. Minimization of MaxL for MDS-WPIR Schemes

Denote by zs ≜ PS(s) the PMF of the random strategy S. It
can be shown that both the MaxL ρ(MaxL)(C ) and the WPIR
download cost D(C ) of a given MDS-WPIR scheme C can
be expressed in terms of zs, s ∈ S. Thus, the minimization
of ρ(MaxL)(C ) under a download cost constraint D(C ) ≤ D
can be re-written in terms of the variables {zs}s∈S as the
optimization problem

minimize ρ(MaxL)({zs}s∈S) (2a)
subject to D({zs}s∈S) ≤ D, (2b)

∑

s∈S
zs = 1. (2c)

The following theorem can be proved using a similar
argument as in [16, Sec. VII].

Theorem 1. The optimization problem (2) is convex.

All the rate-leakage trade-off curves of the MDS-WPIR
schemes we study in this work are based on solving the convex
optimization problem above.

IV. NEW PROPOSED MDS-WPIR SCHEME

This section presents a new MDS-WPIR scheme, referred to
as the OLR MDS-WPIR scheme. We first present an example
illustrating the motivation for studying the new MDS-WPIR
scheme in Section IV-A. In particular, we will show that the
ZTSL MDS-WPIR scheme is naturally not a good scheme as it
is not functional in the high-rate region when there is leakage.
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A. Motivating Example: (M,N,K) = (2, 3, 2)

For (N,K) = (3, 2), we have the effective code parameters

n =
N

gcd(N,K)
= 3, k =

K

gcd(N,K)
= 2, r = n− k = 1,

and the subpacketization size for each file is λ = n− k = 1.
For the (2, 3, 2) ZTSL MDS-WPIR scheme, we have
SZTSL = {(0, 0), (1, 2), (2, 1)}, and the corresponding condi-
tional query PMF PQj |M (qj | m) and answer lengths are as
follows:




PQj |M (qj | m)
(
0 0
1 1

)(
1 2
2 0

)(
2 1
0 2

)(
1 0
2 1

)(
2 2
0 0

)(
0 1
1 2

)(
2 0
0 1

)(
0 2
1 0

)(
1 1
2 2

)

1 z1
3

z2
3

z3
3

z1
3

z2
3

z3
3

z1
3

z2
3

z3
3

2 z1
3

z2
3

z3
3

z2
3

z3
3

z1
3

z3
3

z1
3

z2
3

PQj
(qj)

z1
3

z2
3

z3
3

z1+z2
6

z2+z3
6

z1+z3
6

z1+z3
6

z1+z2
6

z2+z3
6

ℓj(qj) 1 1 1 1 1 1 2 2 0




{
m

,

(3)

where zj ≜ Pr(sj) for sj = (j − 1, (n − j + 1) mod n) ∈
SZTSL, j ∈ [1 : n]. A simple calculation gives

D(CZTSL) = 3 + z1, 0 ≤ z1 ≤ 1,

which indicates that D(CZTSL) can only range between 3 and
4, and never reaches R = λK/D = 2/D = 1. Thus, the ZTSL
MDS-WPIR scheme can not operate in the high-rate region.

B. New (M,N,K) MDS-WPIR Scheme

We now describe the new proposed (M,N,K) MDS-WPIR
scheme, referred to as the OLR MDS-WPIR scheme and
denoted by COLR. Here, only the query generation is presented,
as its answer construction is the same as Section III-A3.

1) Query Generation: The strategy set for our new MDS-
WPIR scheme is defined as

SOLR ≜
{
s = (sT

1, . . . , s
T
M−1) : s

T
m′ ∈ Pn

k , m
′ ∈ [1 : M],

(
M∑

m′=1

sT
m′

)
mod n = 0T

}
.

By definition, |SOLR| ≤
((

n
k

)
k!
)M−1

< |SZYQT| =
((

n
k

)
k!
)M

,
as we do not include all the possible vectors sT

m′ ∈ Pn
k .

The query qj ∈ Qj , j ∈ [1 : N], for retrieving the m-th
file, m ∈ [1 : M], is defined as

qj = (sT
1, . . . , s

T
m−1, q

T
m, s

T
m, . . . , s

T
M−1), (4)

where (sT
1, . . . , s

T
M−1) = s ∈ SOLR and

qT
m ≜

(
(j − 1)1T −

∑

m′∈[1:M−1]

sT
m′

)
mod n.

Example 1. Consider the same code parameters (M,N,K) =
(2, 3, 2) as in Section IV-A. We consider the strategy set

SOLR =
{(

0
1

)
︸︷︷︸
z1

,
(
0
2

)
︸︷︷︸
z2

,
(
1
0

)
︸︷︷︸
z3

,
(
1
2

)
︸︷︷︸
z4

,
(
2
0

)
︸︷︷︸
z5

,
(
2
1

)
︸︷︷︸
z6

}
.
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Fig. 1. Rate-leakage trade-off curve for the proposed MDS-WPIR protocols
from (3, 2) MDS-coded storage with M = 2 (circle markers), M = 3 (square
markers), M = 4 (diamond markers), and M = 5 (pentagon markers).

Similar to (3), we illustrate 9 out of the 18 query matrices
based on (4) and the corresponding query distributions and
answer lengths of the OLR MDS-WPIR scheme below:




PQj |M (qj | m)
(
0 0
2 1

)(
0 0
1 2

)(
2 1
0 0

)(
2 1
1 2

)(
1 2
0 0

)(
1 2
2 1

)(
1 0
0 1

)(
1 0
2 2

)(
0 1
1 0

)

1 z1
3

z2
3

z3
3

z4
3

z5
3

z6
3

z1
3

z2
3

z3
3

2 z2
3

z1
3

z5
3

z6
3

z3
3

z4
3

z3
3

z4
3

z1
3

PQj
(qj)

z1+z2
3

z1+z2
6

z3+z5
3

z4+z6
6

z3+z5
6

z4+z6
6

z1+z3
6

z2+z4
6

z1+z3
6

ℓj(qj) 1 1 1 0 1 0 2 1 2




{
m

.

As a result, one can compute the download cost D(COLR)
and obtain

D(COLR) = 2 + 2(z1 + z2 + z3 + z5) ≥ 2,

which shows that R(COLR) can reach (n−k)K/2 = 1, demon-
strating a complete rate-leakage trade-off for the new MDS-
WPIR scheme.

V. NUMERICAL RESULTS

Here, we compare the optimal rate-leakage trade-off curves
for our three proposed MDS-WPIR schemes CZYQT, CZTSL,
and COLR. The optimal trade-off curve is obtained by solving
the corresponding convex optimization problems as outlined
in (2). For the sake of presentation, the leakage is normalized
by log2 M bits so that its range is from 0 to 1.

In Fig. 1, we consider the case of N = 3 servers and K = 2,
and with different number of files M. As can be seen from
the figure by comparing the green and the blue curves, CZYQT
gives a better rate-leakage trade-off curve than CZTSL for all
considered values of M. Moreover, the ZTSL scheme cannot
be extended to a high information leakage. On the other, the
OLR scheme performs equally well as the ZYQT scheme
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Fig. 2. Rate-leakage trade-off curve for the proposed MDS-WPIR protocols
from (5, 3) MDS-coded storage with M = 2 (circle markers) and M = 3
(square markers).

for M = 2 files and slightly better for a certain range of
information leakage for M = 3 and M = 4 files, while at the
same time allowing for a much smaller query space.

The corresponding rate-leakage trade-off curves for N = 5
servers with K = 3 are provided in Fig. 2. The same
observations as in Fig. 1 can be made, i.e., the ZYQT scheme
outperforms the ZTSL scheme, while the proposed OLR
scheme yields an equal trade-off curve as the ZYQT scheme
for M = 2 files. As the query space is significant for the
ZYQT scheme for M = 3 files, we were not able to solve the
corresponding convex optimization problem as outlined in (2)
and therefore no curve for M > 2 is presented. However, as
mentioned previously, a nice feature of the OLR scheme is its
smaller query space, and hence the corresponding optimization
problem in (2) can be readily solved even for M = 3. In
particular, we have |SZYQT| = 216000 > |SOLR| = 1500 for
M = 3.

VI. CONCLUSION

This work is the first to consider WPIR for coded storage. In
particular, we proposed and compared three WPIR protocols
for the case where the data is encoded by an MDS code and
stored across multiple servers. Allowing for some leakage on
the identity of the requested file index allows for a higher
download rate, and we showed that the optimal trade-off
of download rate and information leakage using the MaxL
privacy metric is the solution to a convex optimization problem
for all three proposed protocols.
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Abstract—The paper considers an information-theoretic bi-
static integrated sensing and communication (ISAC) model and
provides new results on the fundamental limits of this model.
Specifically, we show a strong converse result for memoryless
ISAC where the channel transition law depends on an underlying
binary hypothesis, which the radar receiver wishes to determine
with largest exponential decay rates of the probabilities of detec-
tion error under the two hypotheses. In this sense, the channel is
a compound channel, and we establish a strong converse under
maximum probability of error criteria. We further prove that the
fundamental limits of our ISAC system remain unchanged under
average probability of error criteria as long as the admissible
channel decoding errors are bounded by 1/2.

Index Terms—Integrated sensing and communication, bi-static
radar, detection error exponent.

I. INTRODUCTION

Huge technological efforts are being made to integrate radar
systems with communication systems, in particular in view of
the future 6G mobile communication standard [1], [2] and its
deployment for autonomous navigation or smart manufacturing
sites. In integrated sensing and communication systems (ISAC),
the idea is to use a common waveform for both tasks: the
emitted signals are modulated so as to achieve reliable data
communication while the backscatters of these signals are used
to sense the environment, detect hazardous events, or infer
properties of other terminals (e.g., velocities or directions of
other cars).

ISAC has already inspired a plethora of works in the signal
processing and communications communities, see for example
[3]–[10] and references therein, as well as (to a lesser extent) in
the information-theoretic community [11]–[21]. The results in
[17]–[20] and the present manuscript all focus on the system
model in Figure 1 consisting of a transmitter (Tx) sending
a message to a receiver (Rx) over a state-dependent discrete
memoryless channel (SDMC). A bi-static radar receiver close
to the Tx receives the backscattered signal, and due to the
proximity to the Tx, this radar receiver also knows the Tx’s
channel inputs and compares them to the backscatterers.

We follow the model in [17]–[20], where the channel is
memoryless and stationary with a transition law that depends
on a binary hypothesis. The goal of the radar receiver is to
detect the underlying hypothesis. In a real-world application,
the hypothesis can correspond to the presence or absence of
an obstacle, which the radar receiver wishes to determine.
As in [18], we measure sensing performance in terms of the

Encoder
<latexit sha1_base64="EV4yW81Z5ZTI/hR7iGeb9Zwkl5s=">AAAB7nicbVBNS8NAEJ34WetX1aOXxSJ4Kkk96LEogscK9gPaUDabSbt0swm7G6GE/ggvHhTx6u/x5r9x2+agrQ8GHu/NMDMvSAXXxnW/nbX1jc2t7dJOeXdv/+CwcnTc1kmmGLZYIhLVDahGwSW2DDcCu6lCGgcCO8H4duZ3nlBpnshHM0nRj+lQ8ogzaqzUuZMsCVENKlW35s5BVolXkCoUaA4qX/0wYVmM0jBBte55bmr8nCrDmcBpuZ9pTCkb0yH2LJU0Ru3n83On5NwqIYkSZUsaMld/T+Q01noSB7Yzpmakl72Z+J/Xy0x07edcpplByRaLokwQk5DZ7yTkCpkRE0soU9zeStiIKsqMTahsQ/CWX14l7XrNu6zVH+rVxk0RRwlO4QwuwIMraMA9NKEFDMbwDK/w5qTOi/PufCxa15xi5gT+wPn8AUGSj4I=</latexit>

Decoder
<latexit sha1_base64="dpAVxATrt941Dm/n0Hp/ZTLuKJA=">AAAB7nicbVBNS8NAEJ34WetX1aOXxSJ4Kkk96LGoB48V7Ae0oWw2k3bpZhN2N0IJ/RFePCji1d/jzX/jts1BWx8MPN6bYWZekAqujet+O2vrG5tb26Wd8u7e/sFh5ei4rZNMMWyxRCSqG1CNgktsGW4EdlOFNA4EdoLx7czvPKHSPJGPZpKiH9Oh5BFn1Fipc4csCVENKlW35s5BVolXkCoUaA4qX/0wYVmM0jBBte55bmr8nCrDmcBpuZ9pTCkb0yH2LJU0Ru3n83On5NwqIYkSZUsaMld/T+Q01noSB7Yzpmakl72Z+J/Xy0x07edcpplByRaLokwQk5DZ7yTkCpkRE0soU9zeStiIKsqMTahsQ/CWX14l7XrNu6zVH+rVxk0RRwlO4QwuwIMraMA9NKEFDMbwDK/w5qTOi/PufCxa15xi5gT+wPn8ATI3j3g=</latexit>

Y n
<latexit sha1_base64="rW5tEujeh7sqqVxfjbj7iUAurFc=">AAAB6nicbVDLTgJBEOzFF+IL9ehlIjHxRHbRRI9ELx4xysPASmaHBibMzm5mZk3Ihk/w4kFjvPpF3vwbB9iDgpV0UqnqTndXEAuujet+O7mV1bX1jfxmYWt7Z3evuH/Q0FGiGNZZJCLVCqhGwSXWDTcCW7FCGgYCm8Hoeuo3n1BpHsl7M47RD+lA8j5n1Fjp7uFRdoslt+zOQJaJl5ESZKh1i1+dXsSSEKVhgmrd9tzY+ClVhjOBk0In0RhTNqIDbFsqaYjaT2enTsiJVXqkHylb0pCZ+nsipaHW4zCwnSE1Q73oTcX/vHZi+pd+ymWcGJRsvqifCGIiMv2b9LhCZsTYEsoUt7cSNqSKMmPTKdgQvMWXl0mjUvbOypXb81L1KosjD0dwDKfgwQVU4QZqUAcGA3iGV3hzhPPivDsf89ack80cwh84nz84s43B</latexit>

Radar Rec.
<latexit sha1_base64="cISHHdkKQWAxf+38KZEtHt56TEI=">AAAB8XicbVC7TsNAEFzzDOEVoKQ5ESFRWXYooIygoQwReYjEitbnS3LK+WzdnZEiK39BQwFCtPwNHX/D5VFAwkgrjWZ2tbsTpoJr43nfztr6xubWdmGnuLu3f3BYOjpu6iRTlDVoIhLVDlEzwSVrGG4Ea6eKYRwK1gpHt1O/9cSU5ol8MOOUBTEOJO9zisZKj3WMUJE6o26vVPZcbwaySvwFKcMCtV7pqxslNIuZNFSg1h3fS02QozKcCjYpdjPNUqQjHLCOpRJjpoN8dvGEnFslIv1E2ZKGzNTfEznGWo/j0HbGaIZ62ZuK/3mdzPSvg5zLNDNM0vmifiaIScj0fRJxxagRY0uQKm5vJXSICqmxIRVtCP7yy6ukWXH9S7dyXylXbxZxFOAUzuACfLiCKtxBDRpAQcIzvMKbo50X5935mLeuOYuZE/gD5/MHlb6QMg==</latexit>

Channel �Y Z|XS
<latexit sha1_base64="fHpOZ/bpvz3aWfWhTeUsZwsI5q0=">AAACAXicbVC7TgMxEPTxDOF1QINEY5EgUUV3oYAyIgWUQZAHJFG05ziJFdt3sn1I0REafoWGAoRo+Qs6/gbnUUDCSCuNZna1uxNEnGnjed/OwuLS8spqai29vrG5te3u7FZ0GCtCyyTkoaoFoClnkpYNM5zWIkVBBJxWg35x5FfvqdIslDdmENGmgK5kHUbAWKnl7hd7ICXlONu4ACGgldzePdSuh9mWm/Fy3hh4nvhTkkFTlFruV6MdklhQaQgHreu+F5lmAsowwukw3Yg1jYD0oUvrlkoQVDeT8QdDfGSVNu6EypY0eKz+nkhAaD0Qge0UYHp61huJ/3n12HTOmgmTUWyoJJNFnZhjE+JRHLjNFCWGDywBopi9FZMeKCDGhpa2IfizL8+TSj7nn+TyV/lM4XwaRwodoEN0jHx0igroEpVQGRH0iJ7RK3pznpwX5935mLQuONOZPfQHzucPWuuWLg==</latexit>

Zn
<latexit sha1_base64="3ASCIcMFvxUfz9en2fbdr7uccoI=">AAAB6nicbVDLTgJBEOzFF+IL9ehlIjHxRHbRRI9ELx4xyiPCSmaHBibMzm5mZk3Ihk/w4kFjvPpF3vwbB9iDgpV0UqnqTndXEAuujet+O7mV1bX1jfxmYWt7Z3evuH/Q0FGiGNZZJCLVCqhGwSXWDTcCW7FCGgYCm8Hoeuo3n1BpHsl7M47RD+lA8j5n1Fjp7uFRdoslt+zOQJaJl5ESZKh1i1+dXsSSEKVhgmrd9tzY+ClVhjOBk0In0RhTNqIDbFsqaYjaT2enTsiJVXqkHylb0pCZ+nsipaHW4zCwnSE1Q73oTcX/vHZi+pd+ymWcGJRsvqifCGIiMv2b9LhCZsTYEsoUt7cSNqSKMmPTKdgQvMWXl0mjUvbOypXb81L1KosjD0dwDKfgwQVU4QZqUAcGA3iGV3hzhPPivDsf89ack80cwh84nz86OY3C</latexit>

Xn
<latexit sha1_base64="KHeLAVaOaSURC+R0ZraVfnPtBG4=">AAAB6nicbVBNS8NAEJ34WetX1aOXxSJ4KkkV9Fj04rGi/YA2ls120y7dbMLuRCihP8GLB0W8+ou8+W/ctjlo64OBx3szzMwLEikMuu63s7K6tr6xWdgqbu/s7u2XDg6bJk414w0Wy1i3A2q4FIo3UKDk7URzGgWSt4LRzdRvPXFtRKwecJxwP6IDJULBKFrpvv2oeqWyW3FnIMvEy0kZctR7pa9uP2ZpxBUySY3peG6CfkY1Cib5pNhNDU8oG9EB71iqaMSNn81OnZBTq/RJGGtbCslM/T2R0ciYcRTYzoji0Cx6U/E/r5NieOVnQiUpcsXmi8JUEozJ9G/SF5ozlGNLKNPC3krYkGrK0KZTtCF4iy8vk2a14p1XqncX5dp1HkcBjuEEzsCDS6jBLdShAQwG8Ayv8OZI58V5dz7mrStOPnMEf+B8/gA3LY3A</latexit>

Sn
<latexit sha1_base64="DzHWlqw4CNhDhRPEnqB0ut2xt8I=">AAAB6nicbVDLTgJBEOzFF+IL9ehlIjHxRHbRRI9ELx4xyCOBlcwOvTBhdnYzM2tCCJ/gxYPGePWLvPk3DrAHBSvppFLVne6uIBFcG9f9dnJr6xubW/ntws7u3v5B8fCoqeNUMWywWMSqHVCNgktsGG4EthOFNAoEtoLR7cxvPaHSPJYPZpygH9GB5CFn1FipXn+UvWLJLbtzkFXiZaQEGWq94le3H7M0QmmYoFp3PDcx/oQqw5nAaaGbakwoG9EBdiyVNELtT+anTsmZVfokjJUtachc/T0xoZHW4yiwnRE1Q73szcT/vE5qwmt/wmWSGpRssShMBTExmf1N+lwhM2JsCWWK21sJG1JFmbHpFGwI3vLLq6RZKXsX5cr9Zal6k8WRhxM4hXPw4AqqcAc1aACDATzDK7w5wnlx3p2PRWvOyWaO4Q+czx8vj427</latexit>

M<latexit sha1_base64="LYKb6VVKloxBSLpM78v6ttRQbOI=">AAAB6HicbVDLSgNBEOyNrxhfUY9eBoPgKexGQY9BL16EBMwDkiXMTnqTMbOzy8ysEEK+wIsHRbz6Sd78GyfJHjSxoKGo6qa7K0gE18Z1v53c2vrG5lZ+u7Czu7d/UDw8auo4VQwbLBaxagdUo+ASG4Ybge1EIY0Cga1gdDvzW0+oNI/lgxkn6Ed0IHnIGTVWqt/3iiW37M5BVomXkRJkqPWKX91+zNIIpWGCat3x3MT4E6oMZwKnhW6qMaFsRAfYsVTSCLU/mR86JWdW6ZMwVrakIXP198SERlqPo8B2RtQM9bI3E//zOqkJr/0Jl0lqULLFojAVxMRk9jXpc4XMiLEllClubyVsSBVlxmZTsCF4yy+vkmal7F2UK/XLUvUmiyMPJ3AK5+DBFVThDmrQAAYIz/AKb86j8+K8Ox+L1pyTzRzDHzifP6ZbjNU=</latexit>

M̂
<latexit sha1_base64="FVu+ftcDZQ2FwatDeRgGYkjyeQs=">AAAB7nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mqoMeiFy9CBfsBbSib7aZdutmE3YlQQn+EFw+KePX3ePPfuG1z0NYHA4/3ZpiZFyRSGHTdb6ewtr6xuVXcLu3s7u0flA+PWiZONeNNFstYdwJquBSKN1Gg5J1EcxoFkreD8e3Mbz9xbUSsHnGScD+iQyVCwShaqd0bUczup/1yxa26c5BV4uWkAjka/fJXbxCzNOIKmaTGdD03QT+jGgWTfFrqpYYnlI3pkHctVTTixs/m507JmVUGJIy1LYVkrv6eyGhkzCQKbGdEcWSWvZn4n9dNMbz2M6GSFLlii0VhKgnGZPY7GQjNGcqJJZRpYW8lbEQ1ZWgTKtkQvOWXV0mrVvUuqrWHy0r9Jo+jCCdwCufgwRXU4Q4a0AQGY3iGV3hzEufFeXc+Fq0FJ585hj9wPn8AcDOPog==</latexit>

Ĥ
<latexit sha1_base64="w8vlduPY9OyX2JWiaHRfuaYF6NM=">AAAB+nicbVDLSsNAFJ34rPWV6tLNYBFclaQKuiy66bKCfUAbys100g6dTMLMRCkxn+LGhSJu/RJ3/o2TNgttPTBwOOde7pnjx5wp7Tjf1tr6xubWdmmnvLu3f3BoV446KkokoW0S8Uj2fFCUM0HbmmlOe7GkEPqcdv3pbe53H6hULBL3ehZTL4SxYAEjoI00tCuDCeh0EIKeEOBpM8uGdtWpOXPgVeIWpIoKtIb212AUkSSkQhMOSvVdJ9ZeClIzwmlWHiSKxkCmMKZ9QwWEVHnpPHqGz4wywkEkzRMaz9XfGymESs1C30zmGdWyl4v/ef1EB9deykScaCrI4lCQcKwjnPeAR0xSovnMECCSmayYTEAC0aatsinBXf7yKunUa+5FrX53WW3cFHWU0Ak6RefIRVeogZqohdqIoEf0jF7Rm/VkvVjv1sdidM0qdo7RH1ifP9dzlGA=</latexit>

PS or QS
<latexit sha1_base64="PpksMcMF95LQ5+Dzb3A7Lkqn1Uo=">AAACAnicbVC7SgNBFJ2NrxhfUSuxGQyCVdiNgpZBG8uEmAckYZmdzCZDZmeWmbtiWIKNv2JjoYitX2Hn3zh5FJp4qsM593LvOUEsuAHX/XYyK6tr6xvZzdzW9s7uXn7/oGFUoimrUyWUbgXEMMElqwMHwVqxZiQKBGsGw5uJ37xn2nAl72AUs25E+pKHnBKwkp8/qvg13AH2AFLpiIgUK43HuOrX/HzBLbpT4GXizUkBzVHx81+dnqJJxCRQQYxpe24M3ZRo4FSwca6TGBYTOiR91rZUkoiZbjqNMManVunh0B4PlQQ8VX9vpCQyZhQFdjIiMDCL3kT8z2snEF51Uy7jBJiks0NhIjAoPOkD97hmFMTIEkI1t79iOiCaULCt5WwJ3mLkZdIoFb3zYql6UShfz+vIomN0gs6Qhy5RGd2iCqojih7RM3pFb86T8+K8Ox+z0Ywz3zlEf+B8/gBB+5ax</latexit>

Xn = �(n)(M)
<latexit sha1_base64="lAsMzHKF6N1MN3GZEqv84g4YqtU=">AAAB+nicbVBNS8NAEJ34WetXqkcvi0VoLyWpgl6EohcvQgX7AW1aNtttu3SzCbsbpcT+FC8eFPHqL/Hmv3Hb5qCtDwYe780wM8+POFPacb6tldW19Y3NzFZ2e2d3b9/OHdRVGEtCayTkoWz6WFHOBK1ppjltRpLiwOe04Y+up37jgUrFQnGvxxH1AjwQrM8I1kbq2rlmR1y2oyHrJAVRnBRui10775ScGdAycVOShxTVrv3V7oUkDqjQhGOlWq4TaS/BUjPC6STbjhWNMBnhAW0ZKnBAlZfMTp+gE6P0UD+UpoRGM/X3RIIDpcaBbzoDrIdq0ZuK/3mtWPcvvISJKNZUkPmifsyRDtE0B9RjkhLNx4ZgIpm5FZEhlphok1bWhOAuvrxM6uWSe1oq353lK1dpHBk4gmMogAvnUIEbqEINCDzCM7zCm/VkvVjv1se8dcVKZw7hD6zPH8rOkwo=</latexit>

Fig. 1: Bi-static Radar ISAC Model

two exponential decay-rates of the detection error probabilities
under the two hypotheses. The difference between [18] and
the present work is that we allow for positive probabilities of
decoding error in the communication and determine the funda-
mental limits of ISAC under this assumption. In particular, we
prove a strong converse by showing that even when one allows
for positive decoding error probabilities neither the achievable
rate nor the achievable sensing performance can be improved.
Our results are based on maximum error-probability criteria. In
fact, since the communication channel is a compound channel
(on a set of two channels) it is known that a geneal strong
converse fails under average-probability of error criteria even
for only the channel coding part [22], [23].

The converse proof in this paper is an extension of the
channel coding strong converse proof in [24] to incorporate
also the sensing bounds, see also [20] for a strong converse for
bi-static ISAC when sensing performance is measured in terms
of Stein’s exponent or distortion. Strong converse proofs based
on change-of-measure arguments go back to Gu and Effros
[25], [26] and can be also found in various other works, e.g.,
[27]. The proof method was formalized and first applied to
channel coding by Tyagi and Watanabe [28].

Notation: Upper-case letters are used for random quantities
and lower-case letters for deterministic realizations. Calli-
graphic font is used for sets. All random variables are assumed
finite and discrete. We abbreviate the n-tuples (X1, . . . , Xn)
and (x1, . . . , xn) as Xn and xn. We further abbreviate in-
dependent and identically distributed as i.i.d. and probability
mass function as pmf. Pmfs of i.i.d. random tuples are denoted
by P⊗.

Entropy, conditional entropy, and mutual information func-
tionals are written as H(·), H(·|·), and I(·; ·), potentially with
pmfs in the subscripts. The Kullback-Leibler divergence is
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denoted by D(·‖·). We denote by πxn the type of a sequence
xn. We also use Landau notation, where o(1) denotes a
function that tends to 0 as n→∞.

II. SETUP AND MAIN RESULTS

Consider the bi-static radar receiver model over a mem-
oryless channel in Fig. 1. A transmitter (Tx) that wishes
to communicate a random message M to a receiver (Rx)
over a state-dependent channel. The message M is uniformly
distributed over the set M = {1, . . . , 2nR} with R > 0 and
n > 0 denoting the rate and blocklength of communication,
respectively. The channel from the Tx to the Rx depends on a
state-sequence Sn = (S1, . . . , Sn) which depends on a binary
hypothesis H ∈ {0, 1}. Under the null hypothesis H = 0
it is i.i.d. according to the pmf PS and under the alternative
hypothesis H = 1 it is i.i.d. according to the pmf QS . For
a given blocklength n, the Tx thus produces the n-length
sequence of channel inputs

Xn = φ(n)(M) (1)

for some choice of the encoding function
φ(n) : {1, . . . , 2nR} → Xn.

Based on Xn and Sn the channel produces the sequences
Y n observed at the Rx and the backscattered signal Zn. The
channel is assumed memoryless and described by the station-
ary transition law ΓY Z|SX implying that the pair (Yt, Zt) is
produced according to the channel law ΓY Z|SX based on the
time-t symbols (Xt, St).

The Rx attempts to guess message M based on the sequence
of channel outputs Y n:

M̂ = g(n)(Y n) (2)

using a decoding function of the form g(n) : Yn →
{1, . . . , 2nR}.

Performance of communication is measured in terms of
maximum error probability

p(n)(error) :=

max
H∈{0,1}

max
m∈{1,...,2nR}

Pr
[
M̂ 6= M |H = H,M = m

]
. (3)

We assume a radar receiver close to the Tx, that wishes
to guess the underlying hypothesis based on the inputs and
backscattered signals. I.e., it produces a guess of the form

Ĥ = h(n)(Xn, Zn) ∈ {0, 1}. (4)

Radar sensing performance is measured in terms of error-
exponent pairs. That means, it is required that the type-I and
type-II error probabilities

αn := max
m∈M

Pr
[
Ĥ = 1

∣∣∣H = 0,M = m
]

(5)

and
βn := max

m∈M
Pr
[
Ĥ = 0

∣∣∣H = 1,M = m
]

(6)

decay exponentially fast to 0 with largest possible exponents.

Definition 1: A rate-exponent pair (R, θ) is (ε, r)-achievable
over the state-dependent DMC (X ,Y,ΓY Z|XS) with state-
distributions PS and QS , if there exists a sequence of en-
coding, decoding, and estimation functions {(φ(n), g(n), h(n))}
such that for each blocklength n the maximum probability of
error (over the two hypotheses) satisfies

lim
n→∞

p(n)(error) ≤ ε, (7)

while the detection error probabilities satisfy:

− lim
n→∞

1

n
logαn ≥ r, (8)

− lim
n→∞

1

n
log βn ≥ θ. (9)

We use the abbreviations:

PY Z|X(y, z|x) :=
∑

s∈S
PS(s)ΓY Z|SX(y, z|s, x) (10)

QY Z|X(y, z|x) :=
∑

s∈S
QS(s)ΓY Z|SX(y, z|s, x). (11)

Let also PY |X , PZ|X and QZ|X , QY |X denote the respective
conditional marginals.

Theorem 1: For any ε ∈ [0, 1) and r > 0, a rate-exponent
triple (R, θ, r) is (ε, r)-achievable, if and only if, there exists
a pmf PX satisfying

R ≤ min{IPXPY |X (X;Y ), IPXQY |X (X;Y )}, (12)

and

θ ≤ min
P̄Z|X :

EPX
[D(P̄Z|X‖PZ|X)]≤r

EPX

[
D(P̄Z|X‖QZ|X)

]
. (13)

Proof: Achievability follows by standard random coding
arguments for a compound channel, where the transmitter uni-
formly picks the codewords over the set of n-length sequences
of a fixed type PX and the decoder uses a universal decoding
rule such as a maximum mutual information (MMI) decoder.
The radar receiver checks the conditional type of the received
sequence zn given the transmitted codeword xn and decides
on Ĥ = 0 if the conditional type πzn|xn satisfies

EPX
[D(πzn|xn‖PZ|X)] ≤ r. (14)

The converse, which is the main contribution of this paper, is
proved in Section III.

Remark 1: Above Theorem 1 applies to a setup with maxi-
mum probabilities of error, see (3), (5), and (6). The theorem
however applies unchanged also when the definitions (3), (5),
and (6) are replaced by the following average probabilities of
error:

p(n)(error) := max
H∈{0,1}

Pr
[
M̂ 6= M |H = H

]
. (15a)

αn := Pr
[
Ĥ = 1

∣∣∣H = 0
]

(15b)

βn := Pr
[
Ĥ = 0

∣∣∣H = 1
]

(15c)
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under the condition that ε ∈ [0, 1/2). The converse proof under
these average probability of error criteria is obtained by first
applying expurgation arguments and then following similar
steps as in Section III.

III. STRONG CONVERSE PROOF

Fix a sequence of encoding, decoding, and estimation func-
tions {(φ(n), g(n), h(n))}∞n=1. Assume that (7) and (8) are
satisfied. For readability, we will also write xn(·) for the
function φ(n)(·). Choose a sequence of small positive numbers
{µn}∞n=1 satisfying

lim
n→∞

µn = 0 (16)

lim
n→∞

n · µ2
n = ∞. (17)

Let T be uniform over {1, . . . , n} independent of all other
quantities and consider an increasing subsequence of block-
lengths {ni} so that the expected type EM [πxn(M)(x)] con-
verges and denote the convergence point by PX(x):

PX(x) := lim
i→∞

EM [πxni (M)(x)], x ∈ X . (18)

In the remainder of this proof, we restrict attention to this
subsequence of blocklengths {ni}∞i=1.

Proof of Channel Coding Bound: We first prove the
converse bound for channel coding. We start by considering
the case H = 0 and channel transition law PY |X .

Fix a blocklength n ∈ {ni}. Based on the two conditions

g(n) (yn) = m (19a)∣∣πxn(m)yn(a, b)− πxn(m)(a)PY |X(b|a)
∣∣ ≤ µn, (19b)

define for each message m ∈M the set

DC,m := {yn : (19a) and (19b)} . (20)

Introduce the new random tuple Y n
C with the following

conditional pmf given the message M :

PY n
C |M (yn|m) =

P⊗nY |X(yn|xn(m))

∆C,m
· 1 {yn ∈ DC,m} , (21)

for

∆C,m :=
∑

yn

P⊗nY |X(yn|xn(m)) · 1 {yn ∈ DC,m} . (22)

By the union bound, by (7), and by [29, Remark to
Lemma 2.12], we have:

∆C,m ≥ 1− ε− |X ||Y|
4µ2

nn
, ∀m ∈M. (23)

Continue to notice that:

R
(a)
=

1

n
I(M ;Y n

C ) (24)

≤ 1

n

n∑

i=1

H(YC,i)−
1

n
H
(
Y n
C
∣∣M
)

(25)

= H(YC,T |T )− 1

n
H
(
Y n
C
∣∣M
)

(26)

≤ H (YC,T )− 1

n
H
(
Y n
C
∣∣M
)
, (27)

where we defined the random variable T to be uniform over
{1, . . . , n} independent of the other random variables. Here,
(a) holds because M = g(Y n

C ) by Condition (19a).
Define next XT = xT (M) (the T -th symbol of codeword

xn(M)), and notice that

PXTYC,T
(x, y) =

1

n

n∑

t=1

PXtYC,t
(x, y) (28)

=
1

n

n∑

t=1

E [1 {(Xt, YC,t) = (x, y)}] (29)

= E
[
πxn(M)Y n

C
(x, y)

]
(30)

= EM

[
πxn(M)(x)

]
· PY |X(y|x) + o(1), (31)

where the last equality holds by Condition (19b). By continuity
of the entropy functional and the definition in (18):

lim
ni→∞

H (YC,T ) = HPXPY |X (Y ). (32)

Next, by definition and by (21):

1

n
H(Y n

C |M = m)

= − 1

n

∑

yn∈DC,m

PY n
C |M=m(yn) logPY n

C |M=m(yn) (33)

≥ − 1

n

∑

yn∈DC,m

PY n
C |M=m(yn) log

P⊗nY |X(yn|xn(m))

∆C,m

(34)

= − 1

n

n∑

t=1

∑

yt∈Y
PYC,t|M=m(yt) logPY |X(yt|xt(m))

+
1

n
log ∆C,m, (35)

= − 1

n

n∑

t=1

∑

y∈Y
E
[
1 {YC,t = y}

∣∣∣M = m
]

logPY |X(y|xt(m))

+
1

n
log ∆C,m, (36)

= − 1

n

n∑

t=1

∑

y∈Y
E

[∑

x∈X
1 {xt(m) = x, YC,t = y}

∣∣∣M = m

]

· logPY |X(y|x)

+
1

n
log ∆C,m, (37)

= −
∑

x∈X

∑

y∈Y
E
[
πxn(m)Y n

C
(x, y)

∣∣∣M = m
]
· logPY |X(y|x)

+
1

n
log ∆C,m (38)

= −
∑

x∈X

∑

y∈Y
πxn(m)(x)PY |X(y|x) · logPY |X(y|x) + o(1),

(39)

where the last equality holds by Condition (19b) and because
the two Inequalities (23) and ε ∈ [0, 1) imply that 1

n log ∆C,m
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vanishes as n → ∞. Taking the average over all messages
yields:

1

n
H(Y n

C |M) ≥ −
∑

x∈X

∑

y∈Y
E
[
πxn(M)(x)

]
logPY |X(y|x)

+o(1). (40)

Using the definition of PX , we obtain:

lim
i→∞

1

ni
H(Y n

C |M)

= −
∑

x∈X
PX(x)

∑

y∈Y
PY |X(y|x) logPY |X(y|x)

= HPXPY |X (Y |X). (41)

Combining (27) with (32) and (41), we can conclude that

R ≤ HPXPY |X (Y )−HPXPY |X (Y |X) (42)
= IPXPY |X (X;Y ), (43)

for PX as defined in (18).
Following the same steps (19)–(43) but with the channel law

QY |X instead of PY |X , one can show that

R ≤ min
{
IPXPY |X (X;Y ), IPXQY |X (X;Y )

}
. (44)

Proof of the Error Exponents: Fix a small value of δ > 0
and consider any conditional type P̄Z|X so that

EPX

[
D
(
P̄Z|X

∥∥ PZ|X
)]
< r − δ. (45)

Fix a sufficiently large blocklength n ∈ {ni} and a message
m, for which the following two inequalities hold:

Eπxn(m)

[
D
(
P̄Z|X

∥∥ PZ|X
)]

≤ EM

[
Eπxn(M)

[
D
(
P̄Z|X

∥∥ PZ|X
)]]

(46)
< r − δ/2. (47)

Then, based on the conditions

h(n) (xn(m), zn) = 0 (48a)∣∣πxn(m)zn(a, b)− πxn(m)(a)PZ|X(b|a)
∣∣ ≤ µn, (48b)

define the set

DS,m , {zn : (48a) and (48b)} . (49)

Define also the new random variable Zn
S of conditional law

PZn
S (zn) =

P⊗nZ|X(zn|xn(m))

∆S,m
· 1 {zn ∈ DS,m} , (50)

for

∆S,m :=
∑

zn

P⊗nZ|X(zn|xn(m))·1 {zn ∈ DS,m} . (51)

Defining Db(a‖b) := a log2
a
b +(1−a) log2

1−a
1−b , we notice

the sequence of (in)equalities:

− 1

n
log Pr

[
Ĥ = 0

∣∣∣H = 1,M = m
]

≤ − 1

n
log

∑

zn∈DS,m

Q⊗nZ|X(zn|xn(m)) (52)

=
1

n
Db


 ∑

zn∈DS,m

PZn
S (zn)

∥∥ ∑

zn∈DS,m

Q⊗nZ|X(zn|xn(m))




(53)

≤ 1

n
D
(
PZn

S

∥∥ Q⊗nZ|X(·|xn(m))
)

(54)

≤ 1

n

∑

zn∈Zn

PZn
S (zn) log

P⊗nZ|X(zn|xn(m))

Q⊗nZ|X(zn|xn)

− 1

n
log ∆S,m (55)

=
1

n

∑

x∈X

∑

t∈{1,...,n} :
xt(m)=x

∑

z

PZ̃S,t
(z) log

PZ|X(z|x)

QZ|X(z|x)

− 1

n
log ∆S,m, (56)

where Inequality (53) holds because
∑

zn∈DS,m
PZn

S (zn) = 1.

To bound the term ∆Z,m, let Txn(m)(P̄Z|X) be the set of zn

sequences satisfying (48a) (and thus DZ,m ⊆ Txn(m)(P̄Z|X))
and notice that

αn ≥ Pr
[
Ĥ = 1

∣∣∣H = 0,M = m
]

(57)

≥
∑

zn∈Txn(m)(P̄Z|X)\DS,m

P⊗nZ|X(zn|xn(m)) (58)

=
∑

zn∈Txn(m)(P̄Z|X)

P⊗nZ|X(zn|xn(m))−∆S,m (59)

= 2
−n

(
Eπxn(m)(x)[D(P̄Z|X‖PZ|X)]+o(1)

)
−∆S,m, (60)

where the last equality holds by a conditional version of
Sanov’s theorem. Therefore,

∆S,m ≥ 2
−n

(
Eπxn(m) [D(P̄Z|X‖PZ|X)]+o(1)

)
− αn, (61)

and by the condition on the type-I error probability (8) and
our assumption (46)–(47):

− 1

n
log ∆S,m ≤ Eπxn(m)

[
D(P̄Z|X‖PZ|X)

]
+ o(1). (62)

We next observe that
1

n

∑

t∈{1,...,n} :

xt(M̃)=x

PZ̃t
(z) =

1

n

∑

t∈{1,...,n} :

xt(M̃)=x

1{Z̃t = z} (63)

=
1

n

∑

t∈{1,...,n}
1{xt(M̃) = x, Z̃t = z}

(64)
= πxn(m)Z̃n(x, z) (65)

= πxn(m)(x)P̄Z|X(z|x) + o(1), (66)

where the last equation holds by the type-condition (48a).
From the definition of βn and by combining (56), (62), and

(66), we obtain:

− 1

n
log βn
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≤ − 1

n
log Pr

[
Ĥ = 0

∣∣∣H = 1,M = m
]

(67)

≤
∑

x

πxn(m)(x)
∑

z

P̄Z|X(z|x)
P̄Z|X(z|x)

QZ|X(z|x)

+Eπxn(m)

[
D(P̄Z|X‖PZ|X)

]
+ o(1) (68)

≤
∑

x

πxn(m)(x)D(P̄Z|X(·|x)‖QZ|X(·|x)) + o(1) (69)

≤
∑

x

EM [πxn(M)(x)]D(P̄Z|X(·|x)‖QZ|X(·|x)) + o(1), (70)

where the last step holds by (47).
The desired converse is then immediately established by

considering the accumulation point of the increasing block-
lengths {ni}, and by using definition (18).

IV. CONCLUSION AND FUTURE DIRECTIONS

We established the strong converse for a memoryless ISAC
problem with bi-static radar when the sensing performance is
measured in terms of the largest exponential decay rates of the
detection error probabilities under the two hypotheses. Notice
that our model also includes as special case the setups where
the receiver has perfect or imperfect channel-state information
by including this state-information as part of the output.

Interesting future research directions include extensions to
mono-static radar systems where the transmitter can apply
closed-loop encodings depending also on past generalized
feedback systems or systems with memory. Analyzing other
sensing criteria is also of interest, such as the estimation error
when the distribution of the state-sequence depends on a single
continuous-valued parameter as for example the Doppler shift
in a radar application.
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Abstract—We propose a universal classifier for binary
Neyman–Pearson classification where null distribution is known
while only a training sequence is available for the alternative
distribution. The proposed classifier interpolates between Ho-
effding’s classifier and the likelihood ratio test and attains the
same error probability prefactor as the likelihood ratio test, i.e.,
the same prefactor as if both distributions were known. Similarly
to Hoeffding’s universal hypothesis test, the proposed classifier
is shown to attain the optimal error exponent tradeoff attained
by the likelihood ratio test whenever the ratio of training to
observation samples exceeds a certain value.

I. PRELIMENARIES

Consider the following binary classification problem where
an observation x = (x1, . . . , xn) is generated in an i.i.d.
fashion from either of two possible distributions P0 or P1

defined on the probability simplex P(X ) with alphabet size
|X | <∞. We assume that the distribution P0 is known while
only a sequence of training samples z = (z1, . . . , zk) ∼ P k1
generated in an i.i.d. fashion from P1 is available; training and
test sequences are sampled independently from each other. We
also assume that both P0(x) > 0, P1(x) > 0 and P0(x)

P1(x)
≤ c

for each x ∈ X for some positive c. Also we let k, the length
of the training, be such that k = αn for some positive α.

The type of an n-length sequence y is defined as T̂y(a) =
N(a|y)
n , where N(a|y) is the number of occurrences of symbol

a ∈ X in sequence y. The types of the observation and training
sequences x, z are denoted by T̂x, T̂z respectively. The set of
all sequences of length n with type P , denoted by T nP , is
called the type class. The set of types formed with length n
sequences on the simplex P(X ) is denoted as Pn(X ).

Let φ(z,x) : X k × Xn → {0, 1} be a classifier that
decides the distribution that generated the observation x upon
processing the training sequence z. We consider deterministic
classifiers φ that decide in favor of P0 if x ∈ A0(P0, z),
where A0(P0, z) ⊂ Xn is the decision region for the first
hypothesis and is a function of P0 and the training samples z.
We define A1(P0, z) = Xn \A0 to be the decision region for
the second hypothesis. If we assume no prior knowledge on
either distribution, the two possible pairwise error probabilities
determine the performance of the classifier. Specifically, the

This work has been funded in part by the European Research Council under
ERC grant agreement 725411 and by the Spanish Ministry of Economy and
Competitiveness under grant PID2020-116683GB-C22.

type-I and type-II error probabilities are defined as

ε0(φ) =
∑

z∈Xk

P1(z)
∑

x∈A1(P0,z)

P0(x), (1)

ε1(φ) =
∑

z∈Xk

P1(z)
∑

x∈A0(P0,z)

P1(x). (2)

In the case where both distributions are known, the training
sequence is not needed and the classifier becomes a hypothesis
test. In this case, the classifier is said to be optimal whenever
it achieves the optimal error probability tradeoff given by

min
φ:ε0(φ)≤ξ

ε1(φ), (3)

where ξ ∈ [0, 1]. It is well known that likelihood ratio test

φlrt(x) = 1

{
Pn1 (x)

Pn0 (x)
≥ enγ

}
, (4)

attains the optimal tradeoff (3) for every γ. This is the
well-known Neyman–Pearson lemma [1]. The likelihood ratio
test can also be expressed as a function of the type of the
observation T̂x as e.g.[2], [3]

φlrt(T̂x) = 1
{
D(T̂x‖P0)−D(T̂x‖P1) ≥ γ

}
(5)

where D(P‖Q) =
∑
x∈X P (x) log

P (x)
Q(x) is the relative entropy

between distributions P and Q. The optimal error exponent
tradeoff (E0, E1) is defined as

E∗1 (E0) , sup
{
E1 ∈ R+ : ∃φ, ∃n0 ∈ Z+ s.t.

∀n > n0, ε0(φ) ≤ e−nE0 and ε1(φ) ≤ e−nE1
}
. (6)

By using Sanov’s Theorem [2], [4], the optimal error exponent
tradeoff (E1, E0), attained by the likelihood ratio is given by

E0(φ
lrt) = min

Q∈Q0(γ)
D(Q‖P0), (7)

E1(φ
lrt) = min

Q∈Q1(γ)
D(Q‖P1), (8)

where

Q0(γ) =
{
Q ∈ P(X ) : D(Q‖P0)−D(Q‖P1) ≥ γ

}
, (9)

Q1(γ) =
{
Q ∈ P(X ) : D(Q‖P0)−D(Q‖P1) ≤ γ

}
. (10)

By varying the threshold γ in the range −D(P0‖P1) ≤
γ ≤ D(P1‖P0), Eqs. (7) and (8) fully characterize the error
exponent tradeoff in (6).
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The classification problem described above with known P0

and a training sequence from P1, can also be viewed as
the composite binary hypothesis problem where additional
training sequence samples are given for the second hypotheses.
In a composite hypothesis testing setting with given P0 and the
other hypothesis is unrestricted to P(X ), Hoeffding proposed
the generalized likelihood-ratio test given by [5]

φglrt(x) = 1
{
D(T̂x‖P0) > E0

}
, (11)

By Sanov’s theorem, the error exponent of Hoeffding’s test is
given by

E0(φ
glrt) = E0, (12)

E1(φ
glrt) = min

Q∈P(X ),
D(Q‖P0)≤E0

D(Q‖P1). (13)

By varying the threshold E0 in the range 0 ≤ E0 ≤
D(P1‖P0), (12) and (13) fully characterize the optimal error
exponent tradeoff in (6). Using a large deviations refinement
[6], [7], the type-I error probability of the likelihood ratio test
can be expressed as

ε0(φ
lrt) =

1√
n
e−nE0

(
c+ o(1)

)
, (14)

while, for Hoeffding’s test it can be expressed as [8], [6]

ε0(φ
glrt) = n

|X|−3
2 e−nE0

(
c′ + o(1)

)
(15)

where c, c′ are constants that only depend on P0, P1 and the
corresponding test thresholds. Since the likelihood ratio and
Hoeffding’s tests attain the optimal error exponent tradeoff
(6), for any fixed E0, then E1(φ

glrt) = E1(φ
lrt). As a result,

when the number of observations is large, Hoeffding’s test,
although attaining the optimal error exponent tradeoff, suffers
in exponential prefactor when compared to the likelihood
ratio’s 1√

n
for observation alphabets such that |X | > 2. For

|X | = 2, the decision regions for the likelihood ratio and
Hoeffding’s tests coincide and thus, (15) is the same as (14).

II. FIXED SAMPLE SIZED UNIVERSAL CLASSIFIER

We propose a classifier that interpolates between the like-
lihood ratio and Hoeffding’s tests that attains a prefactor that
is independent of the alphabet size and is equal to 1√

n
. In

addition, we show that if the ratio of training samples to the
number of test samples α exceeds a certain threshold, the
proposed test also achieves the optimal error exponent tradeoff.

Hoeffding’s test can favor the second hypothesis for test
sequences with types close to P0 while far from P1. Suppose
we have a training sequence type T̂z , we can relax the
Hoeffding’s test from a ball centered at P0 to a hyperplane
tangent to the Hoeffding’s test ball, directed towards the type
of the training sequence – this is precisely what enables the
improvement in the prefactor of the type-I probability of error.
We propose the following classifier

φβ(T̂x, T̂z) = 1
{
βD(T̂x‖T̂ ′z)−D(T̂x‖P0) ≤ γ(E0, T̂

′
z)
}
,

(16)

where 0 ≤ β ≤ 1, the threshold γ(E0, Q1) is given by

γ(E0, Q1) = β min
Q∈P(X ),

D(Q‖P0)≤E0

D(Q‖Q1)− E0, (17)

and the perturbed training type T̂ ′z(a) is

T̂ ′z(a) =
(
1− δn

)
T̂z(a) +

δn
|X | , (18)

where, δn can be chosen as any function of the order o(n−1).
We add this small perturbation of the training type to avoid
the cases where some of the alphabet symbols have not been
observed in the training sequence. We define the decision
regions of the proposed classifier by

A0(T̂z, β) = {Q : Q ∈ P(X ), φβ(Q, T̂z) = 0}, (19)

A1(T̂z, β) = {Q : Q ∈ P(X ), φβ(Q, T̂z) = 1}. (20)

Since parameter β controls how much the training weights in
the decision, we have that when β = 0 we recover Hoeffding’s
test while for β = 1 the test is reminiscent of a likelihood ratio
test where instead of P1, we have the perturbed training type
T̂ ′z(a). Intuitively, as long as we have enough training samples,
the training type T̂ ′z(a) will be close to P1 and we will attain
the optimal error exponent tradeoff.

Next, we find a refined expression for the type-I error
probability and show that the error probability prefactor is of
order O( 1√

n
), i.e., of the same order of the prefactor achieved

by the likelihood ratio test.

Theorem 1: For P0, P1, 0 < β ≤ 1 and fixed E0, the
classifier φβ defined in (16) attains a type-I error probability
such that

ε0(φβ) =
1√
n
e−nE0(c+ o(1)), (21)

In addition, for every P0, P1, E0, β ∈ (0, 1], there exists a
finite training to sample size ratio α∗β such that for any α > α∗β

ε1(φβ) =
1√
n
e−nE

∗
1 (E0)(c′ + o(1)), (22)

where c, c′ are positive constants that only depend on the data
distributions and E0.

Theorem 1 shows that the classifier proposed in (16) not
only achieves the optimal error exponent tradeoff for α >
α∗β but also achieves the same prefactor of the type-I error
probability of the likelihood ratio test. This is a significant
improvement with respect to the Hoeffding’s universal test for
observation alphabets |X | > 2, cf. (15). The result also shows
that the proposed classifier achieves the same type-II error
probability prefactor as the likelihood ratio test, establishing
the optimality of the proposed classifier up to a constant. The
proof of the result, as well as upper and lower bounds to α∗β
and an extension to the sequential case can be found in [9].
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Abstract—Consider a binary statistical hypothesis testing prob-
lem, where n independent and identically distributed random
variables Zn are either distributed according to the null hy-
pothesis P or the alternate hypothesis Q, and only P is known.
A well-known test that is suitable for this case is the so-called
Hoeffding test, which accepts P if the Kullback-Leibler (KL)
divergence between the empirical distribution of Zn and P is
below some threshold. In this work, we characterize the first
and second-order terms of the type-II error probability for a
fixed type-I error probability for the Hoeffding test as well as
for divergence tests, where the KL divergence is replaced by
a general divergence. We demonstrate that, irrespective of the
divergence, divergence tests achieve the first-order term of the
Neyman-Pearson test, which is the optimal test when both P and
Q are known. In contrast, the second-order term of divergence
tests is strictly worse than that of the Neyman-Pearson test.
We further demonstrate that divergence tests with an invariant
divergence achieve the same second-order term as the Hoeffding
test, but divergence tests with a non-invariant divergence may
outperform the Hoeffding test for some alternate hypotheses Q.

I. INTRODUCTION

Consider a binary hypothesis testing problem that decides
whether a sequence of independent and identically distributed
(i.i.d.) random variables Zn is either generated from distribu-
tion P or from distribution Q. Assume that both distributions
are discrete and the hypothesis test has access to P but not to
Q. A suitable test for this case is the well-known Hoeffding
test [1], which accepts P if DKL(TZn∥P ) < c, for some c > 0,
and otherwise accepts Q. Here, TZn is the type (the empirical
distribution) of Zn and DKL(P∥Q) is the Kullback-Leibler
(KL) divergence between P and Q [2]. In this paper, we
analyze the second-order performance of the Hoeffding test as
well as of Hoeffding-like tests, referred to as divergence tests,
where the KL divergence is replaced by other divergences (see
Section II for a rigorous definition).

Part of this work was done while K. V. Harsha and J. Ravi were
with the Signal Theory and Communications Department, Universidad Car-
los III de Madrid, Leganés, Spain. K. V. Harsha, J. Ravi, and T. Koch
have received funding from the European Research Council (ERC) under
the European Union’s Horizon 2020 research and innovation programme
(Grant No. 714161). J. Ravi has further received funding from the Sci-
ence and Engineering Research Board (SERB) under Start-up Research
Grant (SRG) and also from IIT Kharagpur under Faculty Start-up Re-
search Grant (FSRG). T. Koch has further received funding from the Span-
ish Ministerio de Ciencia e Innovación under Grant PID2020-116683GB-
C21 / AEI / 10.13039/501100011033.

We focus on the asymptotic behaviour of the type-II error
βn (the probability of declaring hypothesis P under hypothesis
Q) for a fixed type-I error αn (the probability of declaring
hypothesis Q under hypothesis P ). When both P and Q are
known, the optimal test is the likelihood ratio test, also known
as the Neyman-Pearson test. For this test, the smallest type-II
error βn for which αn ≤ ϵ satisfies [3, Prop. 2.3]

− lnβn = nDKL(P∥Q)−
√
nV (P∥Q)Q−1(ϵ) + o(

√
n) (1)

as n→∞, where

V (P∥Q) ≜
k∑

i=1

Pi

[(
ln
Pi

Qi
−DKL(P∥Q)

)2
]

(2)

denotes the divergence variance; Q−1(·) denotes the inverse
of the tail probability of the standard Normal distribution;
Pi and Qi denote the i-th components of P and Q; and
k denotes their dimension. Here and throughout this paper,
we write an = o(bn) for two sequences {an} and {bn} of
real numbers if limn→∞

an

bn
= 0. We write an = O(bn) if

limn→∞ |an

bn
| < ∞. By inspecting the expansion of − lnβn

in (1), one can define the first-order term β′ and the second-
order term β′′ of any hypothesis test T as

β′ ≜ lim
n→∞

− lnβn(T)
n

(3)

and
β′′ ≜ lim

n→∞
− lnβn(T)− nβ′

√
n

(4)

if the limits exist. The first-order term β′ is sometimes referred
to as the error exponent. For the Neyman-Pearson test, we have
β′ = DKL(P∥Q) and β′′ = −

√
V (P∥Q)Q−1(ϵ).

It was shown in [1] that the first-order term β′ of the
Hoeffding test is also DKL(P∥Q). In other words, the Ho-
effding test is first-order optimal. Recently, we have demon-
strated [4] that the second-order term of the Hoeffding test
is β′′ = −

√
V (P∥Q)Q−1

χ2
k−1

(ϵ), where Q−1
χ2
k−1

(·) denotes the
inverse of the tail probability of the chi-square distribution
with k − 1 degrees of freedom. Since

√
Q−1

χ2
k−1

(ϵ) > Q−1(ϵ),
it follows that the second-order performance of the Hoeffding
test is worse than that of the Neyman-Pearson test.

In this paper, we analyze the second-order performance of
the divergence test TD, which accepts P if D(TZn∥P ) < c,
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for some c > 0, and otherwise accepts Q. The divergence
D of the divergence test TD is arbitrary, so TD includes
the Hoeffding test as a special case when D = DKL. We
demonstrate that the divergence test TD achieves the same
first-order term β′ as the Neyman-Pearson test, irrespective of
the divergence D. Hence, TD is first-order optimal for every
divergence D. We further demonstrate that, for the class of
invariant divergences [5], which includes the Rényi divergence
and the f-divergence (and, hence, also the KL divergence), the
divergence test TD achieves the same second-order term β′′ as
the Hoeffding test. In contrast, we show that a divergence test
TD with a non-invariant divergence may achieve a second-
order term β′′ that is strictly better than that of the Hoeffding
test for some Q and ϵ.

A. Related Work

The considered hypothesis testing problem falls under
the category of composite hypothesis testing [6]. Indeed, in
composite hypothesis testing, the test has no access to the
distribution P of the null hypothesis and the distribution Q of
the alternate hypothesis, but it has the knowledge that P and Q
belong to the sets of distributions P and Q, respectively. Our
setting corresponds to the case where P = {P} and Q = Pc

(where we use the notation Ac to denote the complement of
a set A).

The Hoeffding test is a particular instance of the generalized
likelihood-ratio test (GLRT) [7], which is arguably the most
common test used in composite hypothesis testing. A useful
benchmark for the Hoeffding test is the Neyman-Pearson test,
which is the optimal test when both P and Q are known.
As mentioned before, the Hoeffding test achieves the same
first-order term β′ as the Neyman-Pearson test, both in Stein’s
regime, where the type-I error satisfies αn ≤ ϵ, as well as in
the doubly-exponential regime, where αn ≤ e−nγ , γ > 0; see,
e.g., [1], [8]–[11]. Thus, the first-order term of the Neyman-
Pearson test can be achieved without having access to the
distribution Q of the alternate hypothesis. However, not having
access to Q negatively affects higher-order terms. For example,
for a given threshold γ, the type-I error of the Hoeffding test
satisfies [11, Eq. (10)]

αn = n
k−3
2 e−nγ(c′ + o(1)) (5)

whereas for the corresponding Neyman-Pearson test [11,
Eq. (9)]

αn = n−
1
2 e−nγ(c+ o(1)). (6)

Here, c and c′ are constants that only depend on P , Q, and γ.
Moreover, it was demonstrated in [9] that the variance of the
normalized Hoeffding test statistic nDKL(TZn∥P ) converges
to 1

2 (k−1) as n→∞. Both results suggest that, for moderate
n, the Hoeffding test scales unfavorably with the cardinality
of P and Q, which motivated the authors of [9] to propose
their test via mismatched divergence. The same observation
can be made for Stein’s regime. Indeed, as mentioned before,
the second-order term of the Hoeffding test is [4]

β′′ = −
√
V (P∥Q)Q−1

χ2
k−1

(ϵ) (7)

whereas the second-order term of the Neyman-Pearson test is
[3, Prop. 2.3]

β′′ = −
√
V (P∥Q)Q−1(ϵ). (8)

Since Q−1
χ2
k−1

(ϵ) is monotonically increasing in k, this again
suggests an unfavorable scaling with the cardinality of P and
Q.

Our setting where P = {P} and Q = Pc was also studied
by Watanabe [12], who proposed a test that is second-order
optimal in some sense. The related case where only training
sequences are available for both P and Q was considered in
[13]. The test proposed in [13] was later shown to be second-
order optimal [14].

II. DIVERGENCE AND DIVERGENCE TEST

A. Divergence

Let us consider a random variable Z that takes value in a
discrete set Z = {a1, · · · , ak} with cardinality |Z| = k ≥ 2.
Let P(Z) denote the set of probability distributions on Z , and
let P(Z) denote the set of probability distributions with strictly
positive probabilities. Any probability distribution R ∈ P(Z)
can be written as a length-k vector R = (R1, · · · , Rk)

T, where
Ri ≜ Pr{Z = ai}, i = 1, · · · , k. Note that this R can also
be represented by its first (k − 1) components, denoted by
the vector R = (R1, · · · , Rk−1)

T, which takes value in the
coordinate space

Ξ ≜
{
(R1, · · · , Rk−1)

T : Ri > 0,

k−1∑

i=1

Ri < 1

}
. (9)

Given any two probability distributions S,R ∈ P(Z),
one can define a non-negative function D(S∥R), called a
divergence, which represents a measure of discrepancy be-
tween them. A divergence is not necessarily symmetric in its
arguments and also need not satisfy the triangle inequality;
see [15], [16] for more details. More precisely, a divergence
is defined as follows [15]:

Definition 1: Consider two distributions S and R in P(Z).
A divergence D : P(Z)×P(Z)→ [0,∞) between S and R,
denoted by D(S∥R), is a smooth function1 of S ∈ Ξ and
R ∈ Ξ (we may write D(S∥R) = D(S∥R)) satisfying the
following conditions:

1) D(S∥R) ≥ 0 for every S,R ∈ P(Z).
2) D(S∥R) = 0 if, and only if, S = R.
3) When S = R + ε for some ε = (ε1, · · · , εk−1)

T, the
Taylor expansion of D satisfies

D(R+ ε∥R) =
1

2

k−1∑

i,j=1

gij(R)εiεj +O(∥ε∥32) (10)

as ∥ε∥2 → 0 for some (k − 1) × (k − 1)-dimensional
positive-definite matrix G(R) = [gij(R)] that depends
on R. In (10), ∥ε∥2 is the Euclidean norm of ε.

1We shall say that a function is smooth if it has partial derivatives of all
orders.
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4) Let R ∈ P(Z), and let {Sn} be a sequence of distribu-
tions in P(Z) that converges to a distribution S on the
boundary of P(Z). Then,

lim
n→∞

D(Sn∥R) > 0. (11)

Remark 1: We follow the definition of divergence from the
information geometry literature. In particular, according to [15,
Def. 1.1], a divergence must satisfy the first three conditions
in Definition 1. Often, the behavior of divergence on the
boundary of P(Z) is not specified. In Definition 1, we add the
fourth condition to treat the case of sequences of distributions
{Sn} that lie in P(Z) but converge to a distribution on the
boundary of P(Z). Note that condition 4) is consistent with
conditions 1) and 2).

Given a divergence D and R ∈ P(Z), consider the
function D(·∥R) : Rk−1 → R. By computing the partial
derivatives of D(S∥R) with respect to the first variable
S = (S1, · · · , Sk−1)

T, it follows from the third condition in
Definition 1 that

D(S∥R) = (S−R)TAD,R(S−R) +O(∥S−R∥32) (12)

as ∥S−R∥2 → 0, where AD,R is the matrix associated with
the divergence D at R, which has components

aij(R) ≜ 1

2

∂2

∂Si∂Sj
D(S∥R)

∣∣∣∣
S=R

, i, j = 1, · · · , k − 1.

(13)
Based on AD,R, we can introduce the notion of an invariant
divergence.

Definition 2: Let D be a divergence, and let R ∈ P(Z).
Then, D is said to be an invariant divergence on P(Z) if the
matrix associated with the divergence D at R is of the form
AD,R = ηΣR for a constant η > 0 (possibly depending on
R) and a matrix ΣR with components

Σij(R) =

{
1
Ri

+ 1
Rk
, i = j

1
Rk
, i ̸= j.

(14)

The notion of an invariant divergence is adapted from the
notion of invariance of geometric structures in information
geometry; see [15], [17] for more details. The matrix ΣR

represents the unique invariant Riemannian metric in P(Z)
with respect to the coordinate system Ξ; see [18, Eq. (47)],
[5] for more details. However, in the information geometry
literature, the constant η is often required to be independent
of R. Well-known divergences, such as the KL divergence, the
f -divergence, and the Rényi divergence, are invariant [19]. For
an invariant divergence, (12) becomes

D(S∥R) = η(S−R)TΣR(S−R) +O(∥S−R∥32) (15)

as ∥S−R∥2 → 0, where η is a positive constant.
There are many divergences that do not satisfy (15). An

example is the squared Mahalanobis distance, which is of the
form

DSM(S∥R) = (S−R)TWR(S−R) (16)

for some positive-definite matrix WR. This divergence is non-
invariant if WR is not a constant multiple of ΣR.

For a detailed list of divergences and their properties, we
refer to [19, Ch. 2].

B. General Setting and Divergence Test

We consider a binary hypothesis testing problem with null
hypothesis H0 and alternate hypothesis H1. We assume that,
under hypothesis H0, the length-n sequence Zn of observa-
tions is i.i.d. according to P ∈ P(Z); under hypothesis H1,
the sequence of observations Zn is i.i.d. according to Q, where
Q ∈ P(Z) \ {P}.

We next define the divergence test. To this end, we first
introduce the type distribution, which for every sequence zn

is defined as

Tzn(ai) ≜
1

n

n∑

ℓ=1

1{zℓ = ai}, i = 1, . . . , k (17)

where 1{·} denotes the indicator function.
For a divergence D and a threshold r > 0, a divergence test

TD
n (r) for testing H0 against the alternative H1 is defined as

follows:
Observe Zn: if D(TZn∥P ) < r, then H0 is accepted;

else H1 is accepted.

When the divergence D is the Kullback-Leibler divergence
DKL, the divergence test becomes the Hoeffding test, proposed
by Hoeffding in [1].

For r > 0, define the acceptance region for H0 as

AD
n (r) ≜ {zn : D(Tzn∥P ) < r} . (18)

Then, the type-I and the type-II errors are given by

αn

(
TD
n (r)

)
≜ Pn

(
AD

n (r)c
)

(19)

βn
(
TD
n (r)

)
≜ Qn

(
AD

n (r)
)
. (20)

Our goal is to analyze the asymptotic behavior of the type-II
error βn when the type-I error satisfies αn ≤ ϵ, 0 < ϵ < 1.

III. MAIN RESULTS

The asymptotic behavior of the divergence test depends on
the asymptotic behavior of the random variable nD(TZn∥P )
in the limit as n → ∞. For certain divergences, the limiting
distribution of nD(TZn∥P ) has been analyzed in the literature.
For example, when D is the KL divergence, a well-known
result by Wilks [20] states that 2nDKL(TZn∥P ) converges in
distribution to a chi-square random variable with k−1 degrees
of freedom. This result generalizes to the α-divergence [21,
Th. 3.1], [22, Th. 3]. In Lemma 1, we show that, for a general
divergence D, nD(TZn∥P ) converges in distribution to a
generalized chi-square random variable, defined as follows:

Definition 3: The generalized chi-square distribution is the
distribution of the random variable

ξ =

m∑

i=1

wiΥi (21)
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where wi, i = 1, · · · ,m are deterministic weight parame-
ters and Υi, i = 1, · · · ,m are independent chi-square ran-
dom variables with degree of freedom 1. We shall denote
the generalized chi-square distribution with weight vector
w = (w1, · · · , wm)T and degrees of freedom m by χ2

w,m. If
wi = 1 for all i, then the generalized chi-square distribution
becomes the chi-square distribution χ2

m with degrees of free-
dom m.

Lemma 1: Let Zn be a sequence of i.i.d. random vari-
ables distributed according to the distribution P of the
null hypothesis, and let D be a divergence. Further let
λ = (λ1, · · · , λk−1)

T be a vector that contains the eigenvalues
of the matrix Σ

−1/2
P AD,PΣ

−1/2
P , where AD,P is the matrix

associated with the divergence D at P and the matrix ΣP

is defined in (14). Then, the tail probability of the random
variable nD(TZn∥P ) satisfies

Pn(nD(TZn∥P ) ≥ c) = Qχ2
λ,k−1

(c) +O(δn), c ≥ 0 (22)

for some positive sequence {δn} that is independent of c and
satisfies limn→∞ δn = 0. Here, Qχ2

λ,k−1
(c) ≜ Pr(ξ ≥ c) is the

tail probability of the generalized chi-square random variable
ξ with weight vector λ and degrees of freedom k − 1.

Proof: Omitted due to space limitations.
We are now ready to present the main result of this paper:
Theorem 1: Let D be a divergence as defined in Definition 1,

and let 0 < ϵ < 1. Further let P,Q ∈ P(Z) and P ̸= Q. Recall
that the cardinality of Z is k ≥ 2. Then, for all sequences of
thresholds {rn} satisfying

αn(TD
n (rn)) ≤ ϵ (23)

the divergence test TD
n introduced in Section II-B satisfies

sup
rn : αn(TD

n (rn))≤ϵ

− lnβn
(
TD
n (rn)

)

= nDKL(P∥Q)−√n
√

cTA−1
D,Pc

√
Q−1

χ2
λ,k−1

(ϵ)

+O(max{δn
√
n, lnn}). (24)

Here, AD,P is the matrix associated with the diver-
gence D at P; the sequence {δn} was defined in (22);
c = (c1, · · · , ck−1)

T is a vector with components

ci ≜ ln

(
Pi

Qi

)
− ln

(
Pk

Qk

)
, i = 1, · · · , k − 1; (25)

and Q−1
χ2
λ,k−1

is the inverse of the tail probability Qχ2
λ,k−1

introduced in Lemma 1.
Proof: Omitted due to space limitations.

Remark 2: Since the sequence {δn} tends to zero as n→∞,
we have that O(max{δn

√
n, lnn}) = o(

√
n).

Corollary 1: For the class of invariant divergences, (24) in
Theorem 1 becomes

sup
rn : αn(TD

n (rn))≤ϵ

− lnβn
(
TD
n (rn)

)

= nDKL(P∥Q)−
√
nV (P∥Q)Q−1

χ2
k−1

(ϵ) + o(
√
n). (26)

Since the KL divergence belongs to the class of invariant
divergences, it follows that (26) also characterizes the second-
order performance of the Hoeffding test.

We observe from Theorem 1 that the divergence test TD
n

achieves the same first-order term β′ as the Neyman-Pearson
test, irrespective of D. In contrast, it can be shown that

−
√

cTA−1
D,Pc

√
Q−1

χ2
λ,k−1

(ϵ) < −
√
V (P∥Q)Q−1

N (ϵ). (27)

Thus, the second-order term β′′ of the divergence test TD is
strictly smaller than the second-order term of the Neyman-
Pearson test.

In the next section, we show that there are divergences for
which the divergence test outperforms the Hoeffding test for
certain distributions Q of the alternate hypothesis.

IV. SECOND-ORDER PERFORMANCE COMPARISON

In order to contrast the performances of different divergence
tests, we numerically evaluate the second-order performances
of TDKL and TDSM , where DKL is the KL divergence and
DSM is the squared Mahalanobis distance. Recall that the
KL divergence is an invariant divergence. For the squared
Mahalanobis distance, we shall consider (16) with WP having
components

Wij(P) =

{
1

2P 2
i
+ 1

2P 2
k
, i = j

1
2P 2

k
, i ̸= j

(28)

which is a non-invariant divergence. To better visualize the
second-order performances, we focus on distributions with
dimension k = 3 and represent them by the two-dimensional
vectors P = (P1, P2)

T and Q = (Q1, Q2)
T in the coordinate

space Ξ.
Since the first-order term β′ of the divergence test TD is

not affected by the choice of D, we shall compare the second-
order performances of TDKL and TDSM by considering the ratio
of the second-order terms β′′ as a function of P , Q, and ϵ:

ρ(P,Q, ϵ) ≜

√
cT(WP)−1c

√
Q−1

χ2
λ,2

(ϵ)

√
V (P∥Q)

√
Q−1

χ2
2
(ϵ)

. (29)

If ρ(P,Q, ϵ) > 1, then the second-order term of the divergence
test is strictly smaller than the second-order term of the
Hoeffding test, hence the Hoeffding test has a better second-
order performance. In contrast, if ρ(P,Q, ϵ) < 1, then the
divergence test has a better second-order performance.

In Fig. 1, we plot the contour lines of the ratio ρ(P,Q, ϵ)
as a function of Q ∈ Ξ for ϵ = 0.02 and the three different
null hypotheses P = (0.15, 0.6), P = (0.32, 0.35), and
P = (0.1, 0.8). In the figure, the coordinate space Ξ is divided
into two regions: one region is labeled as “Hoeffding test bet-
ter" and includes the points Q ∈ Ξ for which ρ(P,Q, ϵ) > 1;
the other region is labeled as “Divergence test better" and
includes the points Q ∈ Ξ for which ρ(P,Q, ϵ) < 1. The
solid contour line drawn in all three sub-figures shows all the
points Q ∈ Ξ for which the Hoeffding test and the divergence
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(a) P = (0.15, 0.6, 0.25) (b) P = (0.32, 0.35, 0.33) (c) P = (0.1, 0.8, 0.1)

Fig. 1: Second-order performance comparison between the Hoeffding test TDKL and the divergence test TDSM for the three
different null hypotheses P = (0.15, 0.6, 0.25), P = (0.32, 0.35, 0.33), and P = (0.1, 0.8, 0.1) and ϵ = 0.02.

test have the same second-order performance. For each sub-
figure, the color bar on the right indicates the values of the
ratio ρ(P,Q, ϵ).

Observe that there are distributions Q of the alternate
hypothesis for which the Hoeffding test has a better second-
order performance than the divergence test, and there are
distributions Q for which the opposite is true. The set of dis-
tributions Q for which one test outperforms the other typically
depends on the distribution P of the null hypothesis and on
ϵ. Potentially, this behavior could be exploited in a composite
hypothesis testing problem by tailoring the divergence D of
the divergence test TD to the set Q of possible alternate
distributions.
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Abstract—The error probability trade-off of quantum hypoth-
esis testing is related to that of a certain surrogate classical
hypothesis test via the Nussbaum-Szkoła mapping. This connec-
tion was used in the information-theoretic literature to establish
the asymptotic error exponent of Bayesian quantum hypothesis
testing and asymmetric quantum hypothesis testing (Hoeffding
bound). In this work, we analyze the non-asymptotic gap between
the error probability of a quantum test and the corresponding
classical test via the Nussbaum-Szkoła mapping.

I. INTRODUCTION

We study the problem of discriminating between two quan-
tum states. Specifically, let us consider the density operators1

ρ and σ, acting on some finite dimensional complex Hilbert
space H with dimension d, and define the hypotheses

H0 : ρ, H1 : σ. (1)

In this binary setting we distinguish between two error types:
• The type-I error occurs when accepting H1 when the true

state is the null hypothesis H0 : ρ.
• The type-II error is the error of accepting H0 when the

true system state is H1 : σ.
A binary test is defined by a positive self-adjoint operator Π

acting on H such that 0 ⪯ Π ⪯ 1, where 1 denotes the identity
matrix and the notation A ⪯ B means that B − A is positive
semidefinite. For a test Π associated to H1, let Π̄ ≜ 1 − Π.
The type-I and type-II error probabilities are, respectively,

α(Π) = Tr[Πρ], (2)
β(Π) = Tr[Π̄σ] = 1− Tr[Πσ]. (3)

The two error probabilities cannot be made arbitrarily small
at the same time. The best achievable trade-off between these
probabilities is given by the Pareto optimal boundary

α⋆
β(ρ, σ) = inf

Π:β(Π)≤β
α(Π). (4)

When the alternatives are n-fold tensor products, i.e.,
ρ ≡ ρ⊗n and σ ≡ σ⊗n, previous results established the
asymptotic exponential behavior of the type-I and type-II error
probabilities as n → ∞. Several of these asymptotic results
were obtained using a mapping, first proposed by Nussbaum

†G. Vazquez-Vilar is also with the Gregorio Marañón Health Research
Institute, Madrid, Spain. This work has been funded in part by the Spanish
Ministry for Science and Innovation under Grant PID2020116683GB-C21 /
AEI / 10.13039/501100011033.

1Density operators are self-adjoint, positive semidefinite and have unit trace.

and Szkoła in [1], that relates the quantum testing problem to
a classical one with the same asymptotic exponential behavior.

In this work, we study the Nussbaum-Szkoła mapping in the
non-asymptotic setting of fixed n. We analyze its properties
and highlight the distinctions between quantum and classical
testing problems through specific examples.

The organization of the remainder of the article is as follows.
In Sec. II, we summarize some relevant asymptotic results
and introduce the Nussbaum-Szkoła mapping. In Sec. III we
present bounds on the error probability trade-off and show their
tightness under certain conditions. Finally, Sec. IV closes this
work with several numerical examples and some final remarks.

II. PRELIMINARIES

For a test between the alternatives H0 : ρ
⊗n and H1 : σ

⊗n,
we consider three significant asymptotic regimes as n→∞:

1) In a Bayesian setting with prior probabilities Pr [H0] = η
and Pr [H1] = 1− η, the optimal average error probability is:

ϵ⋆η
(
ρ⊗n, σ⊗n

)
= inf

0⪯Π⪯1

{
ηα(Π) + (1− η)β(Π)

}
. (5)

The asymptotic exponential analysis of this probability leads
to the quantum Chernoff bound [1], [2] (see also [3, Sec. 3]):

lim sup
n→∞

− 1

n
log ϵ⋆η

(
ρ⊗n, σ⊗n

)
= sup

0≤s≤1

{
− log Tr

[
ρ1−sσs

]}
.

(6)

2) In a non-Bayesian setting with a fixed type-II error β, the
optimal type-I error is given by α⋆

β(ρ
⊗n, σ⊗n). Its exponential

behavior corresponds to the quantum Stein’s Lemma [4], [5]:

lim sup
n→∞

− 1

n
logα⋆

β(ρ
⊗n, σ⊗n) = Tr

[
σ
(
log σ − log ρ

)]
. (7)

3) Enforcing an exponential decrease in the type-II error as
βn = e−nr, the Hoeffding bound asserts that [6], [7]:

lim sup
n→∞

− 1

n
logα⋆

βn
(ρ⊗n, σ⊗n)

= sup
0≤s≤1

{
1

s− 1
log Tr

[
ρ1−sσs

]
+

s

s− 1
r

}
. (8)

Two important information metrics appear in these results:
the quantum extension of the Renyi and the Kullback-Leibler
divergences between density operators σ and ρ are defined as

Ds(σ∥ρ) ≜
1

s− 1
log Tr

[
ρ1−sσs

]
, (9)

DKL(σ∥ρ) ≜ Tr
[
σ
(
log σ − log ρ

)]
= lim

s→1
Ds(σ∥ρ). (10)
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A. The Nussbaum-Szkoła Mapping
We consider the eigen-decomposition of the quantum states:

ρ =
d∑

i=1

λi |xi⟩ ⟨xi| , σ =
d∑

j=1

µj |yj⟩ ⟨yj | . (11)

The Nussbaum-Szkoła mapping transforms the states ρ and σ
in two classical distributions P and Q which are defined as

pi,j = λi |⟨xi | yj⟩|2 , qi,j = µj |⟨xi | yj⟩|2 , (12)

for i, j = 1, . . . , d. For this mapping, it follows that [3, Prop. 1]

Tr
[
ρ1−sσs

]
=
∑

i,j

p1−s
i,j qsi,j . (13)

Then, the quantum Renyi and Kullback-Leibler divergences
(9)-(10) coincide with their classical counterparts:

Ds(σ∥ρ) = Ds(Q∥P ) ≜
1

s− 1
log
∑

i,j

p1−s
i,j qsi,j , (14)

DKL(σ∥ρ) = DKL(Q∥P ) ≜
∑

i,j

qi,j
(
log qi,j−log pi,j

)
. (15)

It follows that the exponential behavior of the quantum test
ρ⊗n v. σ⊗n and that of the classical test P⊗n v. Q⊗n coincide
in the three asymptotic regimes considered above. Given this
(maybe) surprising property, one may wonder about how these
tests compare in the non-asymptotic setting of fixed n.

III. NON-ASYMPTOTIC ANALYSIS

Let α⋆
β(P,Q) denote the error probability trade-off of a

classical hypothesis test between the distributions P and Q.2

Theorem 1: For a binary quantum hypothesis test between
states ρ and σ, and for the classical distributions P and Q
defined via the Nussbaum-Szkoła mapping (12), it follows that

α⋆
β(ρ, σ) ≥

1

2
α⋆
2β(P,Q), (16)

for any β ∈
[
0, 12

]
, and trivially α⋆

β(ρ, σ) ≥ 0 for β ∈
(
1
2 , 1
]
.

Proof: This result corresponds to [3, Prop. 2], which is
stated for the average error probability in a Bayesian setting.
Using the same technique, in Sec. III-A we give a direct proof
for the bound on the error probability trade-off α⋆

β(·).
The inequality (16) implies that the optimal error probability

trade-off of the quantum test ρ v. σ is lower bounded by that
of the classical test when both the type-I and type-II error
probabilities α and β are multiplied by 1/2. Obviously, this
lower bound also applies to curve of the classical test P v. Q.

Analogously, applying a change of variable α′ ↔ 2α,
β′ ↔ 2β in (16), we conclude that the optimal error probability
trade-off of both the quantum test and that of the classical test
is upper bounded by the quantum curve when both the type-I
and type-II error probabilities are multiplied by 2.

In Sec. IV, we illustrate the accuracy of these bounds
through numerical experiments. Prior to that, we prove the
main result, and we show that this non-asymptotic bound is
indeed tight for specific symmetric discrimination problems.

2The function α⋆
β(P,Q) coincides with (4) when ρ and σ are diagonal

operators with the distributions P and Q in their respective diagonals.

A. Proof of Theorem 1
The proof of Theorem 1 is based on the following variational

formulation of the optimal trade-off α⋆
β(·). For fixed t ≥ 0, let

Πt ≜
{
tσ − ρ ≥ 0

}
be the projector onto the non-negative

eigenspace of tσ − ρ, and Π̄t ≜ 1−Πt. Then, [8, Lemma 2]

α⋆
β(ρ, σ) = sup

t≥0

{
Tr
(
ρΠt

)
+ t
(
Tr
(
σΠ̄t

)
− β

)}
. (17)

Using the eigendecompositions of ρ and σ from (11),
together with the cyclic property of the trace, then (17) yields

α⋆
β(ρ, σ) = sup

t≥0

{∑
i
λi ⟨xi|Πt|xi⟩

+ t
∑

j
µj ⟨yj | Π̄t|yj⟩ − tβ

}
. (18)

For the projectors Πt and Π̄t, it holds that Πt = Πt1Πt

and Π̄t = Π̄t1Π̄t. Moreover, the identity operator can be
decomposed as 1 =

∑
i |xi⟩ ⟨xi| =

∑
j |yj⟩ ⟨yj |. Therefore,

after some algebra, we shall rewrite (18) as:

α⋆
β(ρ, σ) = sup

t≥0

{∑
i,j
λi
∣∣⟨xi|Πt|yj⟩

∣∣2

+ t
∑

i,j
µj

∣∣⟨xi| Π̄t|yj⟩
∣∣2 − tβ

}
. (19)

We group the two sums and we focus on the (i, j)-th addend

λi
∣∣⟨xi|Πt|yj⟩

∣∣2 + tµj

∣∣⟨xi| Π̄t|yj⟩
∣∣2

≥ min(λi, tµj)
(∣∣⟨xi|Πt|yj⟩

∣∣2 +
∣∣⟨xi| Π̄t|yj⟩

∣∣2
)

(20)

≥ 1

2
min(λi, tµj)

(∣∣⟨xi|Πt|yj⟩
∣∣+
∣∣⟨xi| Π̄t|yj⟩

∣∣)2 (21)

≥ 1

2
min(λi, tµj)

∣∣⟨xi|Πt|yj⟩+ ⟨xi| Π̄t|yj⟩
∣∣2 , (22)

where in (20) we used that both λi and tµj are lower
bounded by min(λi, tµj); in (21) we defined the vector
u = [⟨xi|Πt|yj⟩ ⟨xi| Π̄t|yj⟩]T featuring k = 2 dimensions,
and applied the norm inequality ∥u∥2 ≥ 1√

k
∥u∥1, u ∈ Ck;

and in the last step (22) we used that |u1|+ |u2| ≥ |u1 + u2|.
Applying the inequality chain (20)-(22) to the addends in

(19) for each (i, j), and recalling that Πt + Π̄t = 1, hence
⟨xi|Πt|yj⟩+ ⟨xi| Π̄t|yj⟩ = ⟨xi|yj⟩, we obtain

α⋆
β(ρ, σ) ≥ sup

t≥0

{
1

2

∑
i,j
min(λi, tµj)

∣∣⟨xi|yj⟩
∣∣2− tβ

}
. (23)

Using the definitions of P and Q in (12), we note that

min(λi, tµj)
∣∣⟨xi|yj⟩

∣∣2 = pi,j1[λi≤tµj ]+ tqi,j1[λi>tµj ], (24)

where 1E denotes the indicator function for the event E .
Particularizing the variational formulation (17) for ρ, σ

being diagonal operators with P,Q in their diagonal, it yields:

α⋆
β (P,Q) = sup

t≥0

{∑
i,j
pi,j1[pi,j≤tqi,j ]

+ t
(∑

i,j
qi,j1[pi,j>tqi,j ] − β

)}
, (25)

Therefore, noting that for the distributions P and Q in (12),
[pi,j ≤ tqi,j ] ⇔ [λi ≤ tµj ], moving the factor 1

2 out of the
maximization in (23) (using that β = 1

22β), we obtain the
desired lower bound (16) from (23)-(24) using (25).

International Zurich Seminar on Information and Communication (IZS), March 6 – 8, 2024

59



B. Pure-state discrimination and symmetric error probability

We now consider a testing problem between two pure states,

H0 : ρ = |x1⟩ ⟨x1| , (26)
H1 : σ = |y1⟩ ⟨y1| , (27)

where |x1⟩ and |y1⟩ are assumed to satisfy 0 < |⟨x1|y1⟩|2 < 1.
We apply one step of the Gram-Schmidt process and define:

|x2⟩ =
|y1⟩ − |x1⟩ ⟨x1 | y1⟩
∥|y1⟩ − |x1⟩ ⟨x1 | y1⟩∥

, (28)

|y2⟩ =
|x1⟩ − |y1⟩ ⟨y1 |x1⟩
∥|x1⟩ − |y1⟩ ⟨y1 |x1⟩∥

. (29)

Both the orthonormal basis {|x1⟩ , |x2⟩} and {|y1⟩ , |y2⟩} span
the same 2-dimensional subspace encompassing |x1⟩ and |y1⟩.
If the dimension of the underlying Hilbert space is d > 2, the
remaining eigenvectors |x3⟩ , . . . , |xd⟩ and |y3⟩ , . . . , |yd⟩ are
orthogonal to both |x1⟩ and |y1⟩, and they become irrelevant in
the sequel. In Fig. 1(a), we illustrate a 2-dimensional example
of these bases for certain ρ = |x1⟩ ⟨x1| and σ = |y1⟩ ⟨y1|.

1) Classical test: For the eigendecompositions of ρ and σ
defined above, the Nussbaum-Szkoła mapping from (12) yields

pi,j =

{
|⟨x1|yj⟩|2 , i = 1, j = 1, 2,

0, otherwise,
(30)

qi,j =

{
|⟨xi|y1⟩|2 , i = 1, 2, j = 1,

0, otherwise.
(31)

The distributions P and Q exhibit non-overlapping supports,
except in the singular case (i, j) = (1, 1), under which

p1,1 = q1,1 = |⟨x1|y1⟩|2 = Tr[ρσ] ≜ a. (32)

Here we defined a = |⟨x1|y1⟩|2 for future convenience.
The optimal classical test for this problem decides the

correct hypothesis with no error, except when (i, j) = (1, 1).
For this observation, in the symmetric setting, the optimal
test may select between H0 and H1 at random with equal
probability, hence incurring an error with probabilities

αc = 1
2p1,1 = 1

2a, βc = 1
2q1,1 = 1

2a. (33)

2) Quantum test: A binary test Π = |x2⟩ ⟨x2| does not yield
a symmetric error probability in the measurement process.
Neither it does the test Π = |y1⟩ ⟨y1|. Instead, we construct a
symmetric measurement Π = |vy⟩ ⟨vy|, Π̄ ≜ 1−Π, with

|vx⟩ ≜
|x1⟩+ |y2⟩
∥|x1⟩+ |y2⟩∥

, (34)

|vy⟩ ≜
|y1⟩+ |x2⟩
∥|y1⟩+ |x2⟩∥

. (35)

The vector |vx⟩ (resp. |vy⟩) corresponds to the normalized
vector which is exactly at the midpoint between |x1⟩ and |y2⟩
(resp. between |y1⟩ and |x2⟩). It can be verified that these
vectors are orthogonal, ⟨vx|vy⟩ = 0, and that they define an
orthonormal basis of the subspace spanned by {|x1⟩ , |y1⟩}.
This basis is depicted in Fig. 1(b) for illustration purposes.

(a) (b)

Fig. 1: Hypothesis test between pure states |x1⟩ and |y1⟩,
with 0 < |⟨x1|y1⟩|2 ≤ 1

2 . (a) Basis {|x1⟩ , |x2⟩} (solid) and
{|y1⟩ , |y2⟩} (dashed). (b) Orthogonal symmetric measurement
{|vx⟩ , |vy⟩} (solid gray) for testing between |x1⟩ and |y1⟩.
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Fig. 2: Ratio between αq = βq and αc = βc for a hypothesis
test between pure states |x1⟩ and |y1⟩, versus a = |⟨x1|y1⟩|2.

We now derive the error probabilities for this quantum test:

αq = Tr
[
ρ |vy⟩ ⟨vy|

]
, βq = Tr

[
σ |vx⟩ ⟨vx|

]
. (36)

We first note that

Tr
[
ρ |vy⟩⟨vy|

]
= Tr

[
|x1⟩⟨x1| · |vy⟩⟨vy|

]
= |⟨x1|vy⟩|2 , (37)

and, using (35), we write

|⟨x1|vy⟩|2 =

∣∣⟨x1|y1⟩+ ⟨x1|x2⟩
∣∣2

∥|y1⟩+ |x2⟩∥2
=

a

2
(
1 +
√
1− a

) . (38)

In the last step we used that ⟨x1|x2⟩ = 0 and
∣∣⟨x1|y1⟩

∣∣2 = a;
and then we used (28) to obtain, after some straightforward
algebra, that ∥|y1⟩+ |x2⟩∥2 = 2

(
1 +
√
1− a

)
.

According to (36)-(38) and given the symmetry of the
problem, the type-I and type-II error probabilities are thus

αq = βq =
a

2
(
1 +
√
1− a

) , (39)

which depend only on a = |⟨x1|y1⟩|2.
Figure 2 shows the ratio between αq = βq and the classical

error probability αc = βc = 1
2a as a function of a. We observe

that, as a tends to 0 (i.e., states |x1⟩ and |y1⟩ approaching
orthogonality), this ratio tends to 1

2 . Indeed, using the Taylor
expansion of f(a) ≜ a

2(1+
√
1−a)

around a = 0, it yields

αq = βq = 1
4a+ o(a), (40)

where o(a) satisfies lima→0
o(a)
a = 0 (little-o notation).

Therefore, up to a vanishing term o(a), the quantum error
probabilities αq = βq coincide with the lower bound from
Theorem 1, given by 1

2α
c = 1

2β
c. We conclude that the bound

in Theorem 1 is tight in certain scenarios, even when n = 1.
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Fig. 3: Error probability trade-off of a hypothesis test between
mixed states ρ⊗n and σ⊗n, with ρ and σ given in (41).

IV. NUMERICAL RESULTS AND CONCLUSIONS

We now compare the type-I and type-II error probability
trade-off of a quantum hypothesis test with that of the classical
hypothesis test resulting from the Nussbaum-Szkoła mapping.

A. Mixed-state discrimination

Consider the quantum states defined by the density operators

ρ =

[
0.9 0
0 0.1

]
, σ =

[
0.5 0.4
0.4 0.5

]
. (41)

Both ρ and σ are mixed states with overlapping supports.
Figure 3 compares the error probability trade-off of the

quantum hypothesis test ρ⊗n v. σ⊗n with that of the surrogate
classical test P⊗n v. Q⊗n defined via the Nussbaum-Szkoła
mapping (11)-(12). Even when n = 1 both curves exhibit
a similar behavior. Note that P⊗n and Q⊗n correspond to
discrete distributions defined over d2n points, hence their
staggered shape when depicted in logarithmic scale (due to
the corresponding affine segments in linear scale).

For comparison, we also depict the upper and lower bounds
that follow from Theorem 1. Note that in general these bounds
are not tight. Moreover, the gap between the upper and lower
bound (when plotted in logarithmic scale) is approximately
constant with n, as it could be expected due to the multiplica-
tive nature of the bounds that follow from Theorem 1.

B. Pure-state discrimination

We now consider two pure states defined by

ρ =

[
1 0
0 0

]
, σ =

[
cos(ϕ)2 cos(ϕ) sin(ϕ)

sin(ϕ) cos(ϕ) sin(ϕ)2

]
. (42)

Figure 4 shows the error probability trade-off for the test
ρ⊗n v. σ⊗n with n = 1 and n = 6, for the states in (42)
with ϕ = π

4 . For n = 1 the inner product between the two
states is a = Tr[ρσ] = 1

2 , and the gap from the error trade-off
to the upper and lower bounds is still significant. As the value
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Fig. 4: Error probability trade-off of a hypothesis test between
pure states ρ⊗n and σ⊗n, with ρ and σ from (42) when ϕ = π

4 .

of n increases, the pure states ρ⊗n and σ⊗n exhibit a growing
degree of orthogonality. In this regime, as shown in Sec. III-B,
the lower and upper bound become increasingly tight for the
symmetric error probability. This is apparent from Fig. 4, since
for n = 6 (i.e., a ≈ 0.0156) the gap between the error curves
and the bounds becomes negligible in the region where α ≈ β.

The Nussbaum-Szkoła mapping transforms a hypothesis test
between two quantum states into a test between two classical
probability distributions. While this mapping was primarily
used to study the asymptotics of quantum hypothesis testing as
n→∞, it also approximates its non-asymptotic performance
for fixed n. In this work we examine and illustrate the gap
between the error probability trade-off of the quantum and
classical hypothesis tests in certain settings of interest, laying
the groundwork for potential future research in this direction.
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Abstract—We revisit existing linear computation coding (LCC)
algorithms, and introduce a new framework that measures the
computational cost of computing multidimensional linear functions,
not only in terms of the number of additions, but also with respect
to their suitability for parallel processing. Utilizing directed acyclic
graphs, which correspond to signal flow graphs in hardware,
we propose a novel LCC algorithm that controls the trade-
off between the total number of operations and their parallel
executability. Numerical evaluations show that the proposed
algorithm, constrained to a fully parallel structure, outperforms
existing schemes.

I. INTRODUCTION

Over-parameterized neural networks (NNs) have achieved
many of the recent advancements in improving inference
accuracy. Many real-world applications of these very large
NNs require both real-time inference and operate in a resource
constrained environment. It is therefore of great importance
to implement them with minimal computational complexity.
Various research efforts have been directed towards improv-
ing NN efficiency, including pruning, knowledge distillation,
quantization and NN-hardware co-design [1], [2].

Linear computation coding (LCC) introduces an analytical
framework that invokes the idea of sparse matrix decomposition
to reduce the computational cost of computing matrix-vector
products, i.e. the lossy compression of a multidimensional
linear function with constant coefficients. Earlier studies on
LCC mainly focus on the number of additions as the metric
of computational complexity [3]–[6]. Though important, this
metric is not the only concern in many applications.

In this paper, we revisit the earlier LCC studies from a new
perspective on computational complexity, in which not only
the number of operations, but also their order matters. Our
interest follows from a simple fact: optimizing the order in
which the operations are carried out enables us to fully exploit
the potential of parallel processing. We use the notion of a
directed acyclic graph (DAG), closely corresponding to the
signal flow graph of a hardware implementation, to develop a
new LCC algorithm. The proposed scheme explicitly tunes the
structure of the DAG and outperforms existing algorithms on
parallel processing units.

A. Notation

Vectors and matrices are denoted by lower- and upper-case
boldface letters, e.g. x and X , respectively. The Euclidean and
Frobenius norms are shown by ∥·∥2 and ∥·∥F, respectively. The
matrix transpose is denoted by (·)T. The augmented identity

This work was supported by Deutsche Forschungsgemeinschaft (DFG) under
the project Computation Coding (MU-3735-/8-1).

matrix with dimension N ×K is denoted by IN×K , and the
j-th row unit vector in K dimensions by 1j,K . The function
supp(x) returns the indices in the support of x, i.e. the set of
all indices i where xi ̸= 0.

Sets are specified by upper case caligraphic letters, e.g. A.
We use the notation |A| to represent the cardinality of A.
A DAG is denoted by D = (C,A), where C ⊂ R1×K is the
ordered set of all vertices and A the set of arcs (directed edges).
The indegree and outdegree of a vertex c ∈ C are denoted by
d−D(c) and d+D(c), respectively. Given a DAG D = (C,A) and
a vertex c ∈ C, µD(c) denotes the depth of c, i.e. the longest
path from any node c′ ∈ C to node c. The operator mat(·)
converts a vertex set C = {c1, . . . , cL} ⊂ R1×K with |C| = L
to its corresponding matrix, i.e. C = mat(C) = [c1, . . . , cL] ∈
RL×K . Unless otherwise specified, ci denotes the i-th element
in the set C or the i-th row vector of the corresponding matrix
C = mat(C). The notation [N ] is an abbreviation for the set
{1, . . . , N}.

II. PRELIMINARIES

Consider the matrix vector product

y = Tx (1)

with the arbitrary, but constant, matrix T ∈ RN×K and the
arbitrary input vector x ∈ RK×1. Our goal is to approximately
compute y ∈ RN×1 with minimum effort. Calculating the
matrix-vector product straightforwardly requires NK multi-
plications and N(K − 1) additions. Using a finite-precision
representation of T , a multiplication can be reduced to additions
and bitshifts. Quantizing the matrix entries independently, it
is well known that each additional bit on average improves
the signal to quantization noise ratio (SQNR) by 6 dB while
requiring half an extra addition. Using the canonically signed
digit (CSD) representation [7], i.e. allowing for subtractions as
well, the SQNR even improves by 14.5 dB per digit. However,
by quantizing the operations of a matrix-vector product jointly,
far larger gains are possible [3], [8].

A. Addition as a Fundamental Operation

Definition 1 (Fundamental Operation): Let C ⊂ R1×K

denote a set of L vectors and be called a codebook. We define
the fundamental operation as the linear combination of at most
S vectors contained in C, or, more formally:

addS(ωS , C) = ωS mat(C) (2)
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with ωS ∈ WS , where

WS =

{
ω =

S∑

s=1

is1js, L : is ∈M ⊆ {0,±2Z}, js ∈ [L] ∀s
}
.

(3)

The nonzero coefficients of ωS ∈ WS are restricted to the
set of (sums of) signed powers of two, corresponding only to
bitshifts in hardware, which can be considered computationally
cheap.1 The computational cost of a fundamental operation is
governed by the at most S − 1 additions needed to form the
linear combination.

Given a codebook C and using the notion of the fundamental
operation, our aim is now to approximate a target vector t by
a single fundamental operation. We call this objective wiring.
Mathematically we aim to solve the following least squares
(LS) problem:

w(t, C, S) = argmin
ωS∈WS

∥t− ωS mat(C) ∥2, (4)

which can be equivalently seen as a sparse recovery problem [9]
due to the restricted support of ωS .

The minimization over the set of discrete vectors WS

in (4) is an NP-hard problem. Hence, an optimal solution
is generally computationally intractable. Therefore, we resort
to the following two suboptimal approaches:

• Discrete matching pursuit (DMP) [3]: Start with ω ← 0.
Find the vector in ci ∈ C scaled by a signed power of
two that reduces the error to t maximally and update ω
in the i-th component. Repeat S times.

• Reduced state (RS) approach [5]: Procedure similar to
DMP. However, instead of choosing in each iteration the
best vector minimizing the error, we retain a list of the
Q best linear combinations in each iteration and choose
the combination with minimum error at termination. This
procedure enables a performance close to full search at a
reasonable time complexity [5].

To quantify the ability of a codebook C to approximate the
matrix T with row vectors tn, we use the SQNR defined as

SQNR(T , C) = ∥T ∥2F∑N
n=1 ∥tn − w(tn, C, 1)mat(C) ∥22

. (5)

Note that w(tn, C, 1)mat(C) finds the vector in C scaled by
a signed power of two, that approximates tn best. As S = 1,
this is only a selection and potentially a bitshift, no additions
are required.

B. Constant matrix vector multiplication (CMVM)

Using the notion of a fundamental operation, any matrix-
vector product with finite precision can now be expressed as
a DAG with K input and N output vertices. Input vertices
are all vertices with no preceding fundamental operations, i.e.
{c ∈ C|d−D(c) = 0}. Likewise, output vertices have no arcs
directed to subsequent vertices ({c ∈ C| d+D(c) = 0}). In such
a graph, each vertex, except the input vertices, corresponds to
one fundamental operation, and each directed arc is labeled
with a signed power of two. An example of such a DAG is
depicted in Fig. 1a. It is our goal, given some target matrix

1In this paper we consider the set of wiring coefficients to be unrestricted,
i.e. M = {0,±2Z}. For some applications, it is beneficial to restrict the
coefficients to a subset. Efficient strategies for such cases are investigated
in [6].
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Fig. 1: A DAG realizing the function y(x1, x2) = (21/8)x2 − (5/4)x1 is
depicted in (a). The same DAG is extended in (b) with delay elements to allow
for pipelining.

T , to find a DAG requiring a minimum of computations given
some fidelity constraint. We can therefore define now a CMVM
problem.

Definition 2 (CMVM Problem): For all fundamental op-
erations assume without loss of generality S = 2. Given a
target matrix T and some positive parameter ϵ, find a DAG
D = (C,A) with vertex set C ⊂ R1×K , that solves

min |C| (6a)
s.t. SQNR(T , C) > ϵ (6b)

cm = 1m,K ∀m ∈ [K] (6c)
cl = add2(ω2, {ci ∈ C : i ∈ [l − 1]}) ∀l > K (6d)

The CMVM problem is at least NP-complete. Similar to
multiple constant multiplication (MCM) [10], it is an even
broader generalization of the single constant multiplication
(SCM) problem,2 which is known to be NP-complete [11],
[12]. Hence, by polynomial reduction the CMVM problem has
to be at least as difficult. As the optimal solution is generally
computationally intractable, we focus for the remainder of this
paper on the development of efficient heuristics for obtaining
decomposition DAGs.

Remark 1: Throughout the paper we do not specify the set
of arcs A of a DAG explicitly for reasons of brevity. As new
vertices are created from an initial codebook, i.e. the set of unit
vectors, by means of fundamental operations, implicitly A is
defined uniquely3 by C for any decomposition DAG D = (C,A)
as well.

C. Computational Cost

Three terms contribute to the overall computational cost

Ctotal = CaddNadd + CdelayNdelay + CinvNinv. (7)

The number of additions Nadd, the number of delay elements
(latches) Ndelay and the number of sign inverters Ninv required.
Further, Cadd, Cdelay and Cinv are the effective cost for an

2The optimization of the multiplication of a constant scalar to a scalar
variable.

3Uniqueness only refers in that context to the start and endpoint of individual
arcs, not their labeling. For example two different fundamental operations,
differing in their labeling/bitshift, might produce the same result, i.e. c2 =
c1 − 1/4c1 = 1/2c1 + 1/4c1.
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addition, a delay element and an inverter, respectively. Inspired
by the CMOS implementation of these basic functions, we
assume for simplicity that the cost for an adder and a delay
element are approximately equal and set to4 Cadd = Cdelay =
20. For an inverter we assume a cost of Cinv = 2, since these
can be easily implemented by two transistors [13].

The number of additions in computing a DAG is upper
bounded, as zeros are allowed for coefficients as well, by

Nadd =

|C|∑

i=K+1

(
d−D(ci)− 1

)
(8a)

(a)
= (|C| −K)(S − 1) (8b)

where (a) follows from the fact that the number of additions
S − 1 for all vertices is constant.

For medium to large matrices it may not be desirable to
straightforwardly implement the DAG in hardware, apply a
realisation of x, and wait for the output y to be computed.
Particularly, for a DAG with many logical operations in
sequence, this may take some time and is not an optimal
use of resources. Instead, a pipelined approach is desirable,5

each adder is followed by a latch or delay element that is able
to store the intermediate result produced by that adder. For
example, after an addition is completed, and the result is stored,
the following input realization can already be forwarded to the
adder. The stored result is then forwarded to the subsequent
adder. The schematic of a pipelined design is depicted in
Fig. 1b. There, a pipelined signal flow graph/DAG with two
inputs x1 and x2 computes a single output y. The second input
is required for the final addition computing the output. Thus,
two additional delay elements are required in the upper branch
to delay the input accordingly, adding to the overall hardware
cost.

Pipelining largely improves overall throughput, keeping each
adder busy and reducing idle times of resources. However, to
enable that, idle paths require additional delay elements that
contribute to the overall hardware cost. Hence, for a practical
algorithm it is desirable to not only minimize the number of
adders but to find a DAG structure that limits the number of
delay elements. The overall number of delay elements required
for a pipelined implementation of a decomposition DAG can
be computed by

Ndelay = Nadd +
∑

∀c̃∈C̃

(
max

c∈D(c̃)
µD(c)− µD(c̃)− 1

)
(9a)

with

C̃ =
{
c ∈ C|d+D(c) > 0

}
(9b)

D(c̃) = {c ∈ C|(c̃, c) ∈ A} (9c)

The set D(c̃) contains all vertices c that are connected by
a directed arc in A from c̃ to c. The total number of delay
elements is the sum of the number of adders, as each adder
needs a buffer at the output, and for each node with outgoing
arcs the longest path difference minus one that needs to be
equalized.

4The cost of a full adder ranges around 20 transistors and can vary depending
on the specific implementation used, clock speed, etc. This cost only considers
a full adder for the addition of two inputs of a single bit. For larger bitwidths the
cost scales accordingly and simplifications in the implementation are possible.
For simplicity we only consider the cost per bit.

5For a detailed discussion of pipelining, refer to [14].

The number of inverters depends on the specific algorithm
used. For brevity, we will not discuss inverters in detail. A
reduction algorithm for the number of inverters in parallel LCC
algorithms is discussed in [15].

III. ALGORITHMIC APPROACHES

We now discuss two existing algorithmic approaches for
LCC, namely a fully sequential and fully parallel algorithm.
Utilizing the best of both worlds, we introduce a new mixed
algorithm (MA) that enables us to tune the DAG structure for
further analysis.

A. Fully sequential (FS) Algorithm

Given the set of all unit vectors in K dimensions as our
initial codebook set C = {11,K , . . . ,1K,K}, we recursively
add vertices to the DAG using the following update rule [4]:

C ← C ∪ {w(tñ, C, S)mat(C)} . (10)

This means that we find the best linear combination of vectors
in C that approximates tñ well and requires S − 1 additions.
We choose the row vector with index ñ from T that provides us
with the largest reduction of the squared error for the update:

ñ = argmin
n∈[N ]

(
∥tn − w(tn, C, S)mat(C) ∥22+

∑

k ̸=n

∥tk − w(tk, C, 1)mat(C) ∥22
)

(11)

Although this approach shows excellent performance when
looking at the tradeoff between distortion and the number of
additions required, it is in many cases not suited for pipelining.
This follows from the fact that any S vertices in a given
codebook can be combined in each iteration, the obtained graph
has an arbitrary structure (c.f. Fig. 2a). Assuming for simplicity
that each fundamental operation takes time tf to compute,6 it
is concluded that the delay at any node c is µD(c)tf . Thus,
if the depth µD(c) varies in c, delays are introduced that
need to be compensated for. The additional hardware resources
and overhead required by the FS algorithm are typically not
acceptable, especially for large matrices. Therefore, algorithms
that take these hardware constraints into account are desirable.

B. Fully parallel (FP) algorithm

Instead of performing updates sequentially, we now succes-
sively refine the codebook for all vectors of the target matrix in
parallel and then forget the old codebook. Such a fully parallel
algorithm can be written as a product of matrices [3]:

T ≈WLWL−1 · · ·W 2W 1C0. (12)

The n-th row of the l-th matrix factor W l is recursively
obtained by

wl,n = w(tn,Cl−1, S) ∀n ∈ [N ] (13)

with

Cl−1 = W l−1W l−2 · · ·W 2W 1C0. (14)

Each layer l refines the approximation for each tn using
the codebook obtained in the previous iteration l − 1. Using
our DAG based interpretation, this is the same as effectively

6This assumption is valid as long as we use the same type of adder throughout
a DAG, i.e. S is fixed.
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1(a) Fully Sequential Algorithm 1(b) Fully Parallel Algorithm 1(c) Mixed Alg. (∆µmax = 0) 1(d) Mixed Alg. (∆µmax = 1)

Fig. 2: Resulting graph topologies of different algorithmic approaches for decomposing a target matrix T of dimension 6× 2. Green nodes represent input
vertices corresponding to elements of the input vector x, red nodes represent output vertices of the resulting matrix-vector product y and blue nodes are
intermediary vertices of the decomposition graph.

restricting the codebook used in iteration l to the subset of
vectors in C at depth l−1, i.e. the matrix Cl−1 contains all row
vectors that are also included in the set {c ∈ C|µD(c) = l−1}.
As for the FS algorithm, we use the set of all unit vectors as
the initial codebook C0 = IN×K . The structure of the DAG
generated by this algorithm is depicted in Fig. 2b. Compared to
the FS algorithm, a fully parallel implementation in hardware
can be achieved, no delays by differing path lengths are
introduced. However, this algorithm is not without drawbacks.
First, previous work [5] showed that refinement of the initial
codebook during the first few iteration comes with a drop in
performance. Second, this algorithm does not scale to arbitrarily
small matrices. As the effective codebook scales with the
target matrix size this can lead to convergence issues when
decomposing smaller matrices.

C. Mixed algorithm (MA)

Using the ideas of the FS and FP algorithms we introduce a
new MA enabling us tune the structure of the computation DAG.
We reuse the sequential update rule from the FS algorithm
in (10) to update C.

ñ = argmin
n∈[N ]

λn

(
∥tn − w(tn, C, S)mat(C) ∥22+

∑

k ̸=n

∥tk − w(tk, C, 1)mat(C) ∥22
)

(15a)

with

λn = max
j∈S

µD(cj) and S = supp (w(tn, C, S)) .

To obtain the index ñ for the target vector to be approximated,
we amend the objective to update the approximation with the
largest drop in error in (11) by a multiplicative penalty factor
λn. This factor penalizes the absolute depth of approximations
for different target vectors, i.e. updating a codeword at a higher
depth leads to a larger penalty. Moreover, to be able to limit
the number and depth of idle paths in the DAG, we introduce
a side constraint limiting the difference in depth for any linear
combination of codewords, which is

max
j∈S

(µD(cj))−min
j∈S

(µD(cj)) ≤ ∆µmax. (15b)

The parameter ∆µmax controls the maximum difference in
depth for the codewords used in each update. For ∆µmax →
∞ and λn = 1 the algorithm is equal to the FS algorithm.
Constraining ∆µmax = 0 we obtain a parallel structure of
the decomposition DAG, similar to the FP algorithm; however,
codewords are added sequentially with a constraint on a parallel

structure. In general, the constraint on depth lets us tune the
structure of the graph with respect to parallelism. In Fig. 2c
and 2d, the resulting graph structures for a graph constraint to
a fully parallel structure and a depth difference of ∆µmax = 1
are depicted, respectively.

D. Related Algorithms

Most competing algorithms for CMVM have a decent
time complexity for small matrices. However as they solve
complex underlying problems, such as 0-1 integer linear
programming [8], they do not scale well with growing matrix
size and/or precision. They are hence often intractable. Instead,
we use as a benchmark the best-performing MCM algorithm
known, presented in [10], that has reasonable polynomial time
complexity and is thus tractable for larger matrices as well.
Note that MCM, the multiplication of a variable scalar to a
arbitrary constant vector, is a special case of CMVM. Any
CMVM problem can therefore be rewritten as a sum of K
MCM problems, i.e.

y = Tx =
K∑

k=1

tkxk, (16)

that are solved independently. Here, tk and xk are the k-th
column vector in T and k-th element in x, respectively. Due
to the reduced search space the benchmark MCM algorithm
has excellent performance. However, the adder tree required
for the summation of the K partial results, as well as a DAG
structure, similar to the FS algorithm, limit the performance
when pipelined.

IV. NUMERICAL EXPERIMENTS

The entries of all target matrices in the subsequent evaluations
are drawn from an i.i.d. Gaussian distribution with zero mean
and unit variance. We expect that for practical matrices, e.g.
weight matrices of NNs, similar performance is observed for
LCC algorithms [17]. A Python implementation of all algo-
rithms discussed in this paper is available in our github reposi-
tory: https://github.com/hansrosenberger/computationcoding.

As the first experiment, we compare the different algorithms
for target matrices of dimension 64 × 4 in Fig. 3. The
figure shows, the FS algorithm achieves the highest SQNR,
considering only the cost of additions (dashed lines). However,
when considering the total hardware cost, the FS performance
massively deteriorates, leaving this algorithm impractical for
a pipelined implementation. The overall hardware cost in this
case is dominated by delay elements required to equalize path
differences within the DAG. The MA constrained to a FP
structure shows the best overall performance, when considering
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the total hardware cost. It outperforms the FP algorithm, both
the DMP and RS versions. Relative gains are particulary large
for the low SQNR regime. This is achieved by first setting
S = 2 and utilizing the DMP to build up a coarse codebook
from the initial codebook, and then dynamically switching to
S = 3 via the RS approach. The savings of MA to the FS
result from an improved structure of the DAG for the first few
layers. The FP algorithm is forced to find an approximation
for each target vector separately. This creates codewords that
are correlated and unnecessary for the computation. The MA
eliminates this redundancy (cf. Figs. 2b and 2c).

As the second experiment we compare the performance of the
MA using different depth parameters ∆µmax for target matrices
of dimension 16 × 4 in Fig. 4. Considering only the cost of
the adders (dashed lines), we can clearly observe a tradeoff
between parallelism and performance, i.e. decreasing ∆µmax

leads to a performance degradation. However, when considering
the total hardware cost (solid lines) the MA performs best when
constrained to a FP structure (∆µmax = 0). For ∆µmax > 0
the MA performs worse than its FP counterpart and for some

instances even worse than the FS algorithm. This result seems
somewhat intuitive: Elements that incur a hardware cost that is
not vanishingly small should also improve the SQNR. Hence,
a fully parallel structure seems to be the best option.

Remark 2: LCC works best for matrices with an exponential
aspect ratio, i.e. K ≈ logN . Therefore, we only consider in the
evaluation matrices with that property. For approximately square
matrices it is beneficial to cut these into rectangular matrices
with more extreme aspect ratios and apply an LCC algorithm
to each slice individually [18]. For example, to decompose a
64 × 64 matrix with a target SQNR of 47 dB, a slicing into
submatrices of size 64× 4 is a good choice.

V. CONCLUSION

By interpreting the decomposition of a matrix as a DAG, we
proposed a new MA for LCC. The proposed algorithm is able
to significantly outperform existing schemes. Using a realistic
hardware model for pipelining, we show that in almost all
cases it is best to decompose a target matrix constraining the
resulting DAG to a parallel structure.
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Optimizing IRS-Assisted SIMO/MISO Channels:
An Analytical Approach

Milad Dabiri, Sergey Loyka

Abstract—Intelligent reflective surfaces (IRS) have recently
emerged as a tool to improve the energy and spectral efficien-
cies of wireless systems and networks at reasonable cost. The
underlying IRS optimization problems are difficult due to their
non-convex nature, complicated analytical structure and the lack
of appropriate analytical tools. While a number of algorithms
were proposed to obtain locally-optimal or approximate solutions,
globally-optimal ones are out of reach at the moment. This
paper considers single-input multiple-output (SIMO) or multiple-
input single-output (MISO) IRS-assisted channels and develops
an analytical approach for their global optimization exploiting
some special features of the problem. A number of closed-form
solutions for globally-optimal IRS phase shifts are obtained in
some special but practically-important cases, which show that the
globally-optimal IRS gain scales either linearly or quadratically
with the number of its elements. For a distributed multi-IRS
channel, it scales linearly with the number of IRSs. From this,
a minimum number of elements can be determined for IRS to
have a significant impact. Upper bounds to the globally-optimal
IRS gain are established in the general case, which are tight for
some channels thus establishing globally-optimal phase shifts in
those cases.

I. INTRODUCTION

Intelligent reflecting surfaces (IRS, also known as recon-
figurable intelligent surfaces) have recently emerged as a low
complexity/cost tool to improve spectral and energy efficien-
cies of modern wireless networks at reasonable complex-
ity/cost [1]-[4]. Experimental studies and prototypes demon-
strate the feasibility of this approach and report notable gains
[4][5][9], at least in certain scenarios. A number of studies
of IRS-assisted MIMO wireless systems/channels have been
reported as well - we refer the reader to the recent surveys [1]-
[3] for more details and review some of these studies below.

Since analytical solutions are not feasible in most cases
due to the complexity of underlying optimization problems
and other factors, a number of numerical algorithms for
IRS optimization in various configurations and using various
criteria have been proposed [3][10]-[13]. While these algo-
rithms do optimize IRS phase shifts in various ways and
are valuable from a practical perspective, they suffer from
the same fundamental weakness: their convergence point is
locally-optimal at best and can be far away from a globally-
optimal one; it also depends on an algorithm’s initial point
and the gap to a globally-optimal solution is not known. It
should be emphasized that these weaknesses are not due to
some deficiencies of the above algorithms but rather due to
non-convexity of the underlying optimization problems and
their complicated analytical structure, which is typical for
non-convex problems in general [16][17]. While algorithm
for global non-convex optimization do exist, their complexity
is exponential in the number of variables and constraints so

M. Dabiri and S. Loyka are with the School of Electrical Engi-
neering and Computer Science, University of Ottawa, Canada, e-mail:
sergey.loyka@uottawa.ca

that only small-size problems can be solved in reasonable
time; non-convex problems are known to be hard in general
[17]. Since IRS offers significant advantages when the number
of elements is large (100s or 1000s) [9][10], using generic
algorithms for global optimization is ruled out.

From analytical perspective, no closed-form solutions to
the considered optimization problems are known either (due
to their difficult analytical structure and the lack of appro-
priate tools). This makes it difficult to evaluate fundamental
performance limits from communication/information-theoretic
perspective.

Thus, the major challenge for the IRS optimization
problems is to determine reflector phase shifts that are
globally rather than locally optimal, preferably analytically
and in a manageable closed-form (amendable to further
communication/information-theoretic analysis), or with algo-
rithms of reasonable (polynomial) complexity. The key diffi-
culty is due to the non-convexity of the related optimization
problems so that any standard approach (e.g. using KKT
conditions, gradient-decent or similar algorithms) will result
in locally-optimal solutions at best [16][17]. New tools are
needed to overcome this difficulty by exploiting the problem’s
structure.

In this paper, we consider SIMO/MISO channels assisted by
single or multiple IRS(s) (made of passive reflectors with ad-
justable phase shifts). The considered channel model is general
enough to include line-of-sight (LOS) and non-LOS scenarios,
multipath and fading, propagation and reflection losses, in
near or far-field scenarios. To address the above-mentioned
issues, we adopt an analytical approach (reminiscent of the
approaches used in information theory, which are based on
upper bounds and achievability schemes) and revisit the IRS
optimization problem in terms of its global (rather than local)
optima in two ways:

(i) we present compact closed-form upper and lower bounds
to the globally-optimal IRS gain in the general case, which
are tight in some special cases, thus providing a globally-
optimal solution in those cases; the upper bounds can also be
used as a benchmark to evaluate the performance of known
algorithms in terms of their global optimality gap (which
remains unknown at this time),

(ii) we obtain closed-form globally-optimal solutions for
some special cases typical for massive MIMO and distributed
multi-IRS channels; these solutions indicate that the IRS-
assisted globally-optimal gain scales either linearly or quadrat-
ically with the number of reflectors and linearly with the
number of IRSs, which is consistent with measurements in
[5][7]; since the presented solutions are in compact closed-
forms, they can be used for online optimization of large IRSs.

Notations: bold capitals and bold lower-case letters denote
matrices and vectors, respectively, while regular lower case
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Fig. 1. An illustration of IRS-assisted SIMO channel; h0 represents the direct
Tx-Rx link while hl - the l-th reflected link.

letters denote scalars; |h|, hT and h+ denote Euclidean norm
(length), transposition and Hermitian conjugation of column
vector h (for scalar h, h+ denotes complex conjugation), hi

is i-th entry of vector h; arg{z} is the argument (phase) of a
complex number z.

II. CHANNEL MODEL AND PROBLEM FORMULATION

Let us consider an IRS-assisted SIMO (uplink) channel as
shown in Fig. 1, consisting of a single-antenna transmitter
(Tx, e.g. user equipment), an IRS equipped with L passive
reflectors, and a receiver (Rx) equipped with N antennas (e.g.
a base station). Following the standard discrete-time baseband
model [3][10]-[13], the received signal is

y =
(
h0 +

∑L

l=1
ejφlhl

)
x+ z (1)

where y = [y1, ..., yN ]T ∈ CN×1 is the Rx signal vector and
its n-th entry yn is the Rx signal of n-th antenna, z ∈ CN×1

is the circularly-symmetric, complex Gaussian noise vector,
i.i.d. across antennas, of zero mean and variance σ2

0 per Rx
antenna; x is the scalar transmitted (Tx) signal satisfying
the Tx power constraint E{|x|2} = P ; h0,hl ∈ CN×1 are
the channel vectors representing the direct Tx-Rx and the
reflected Tx-IRS-Rx links (via l-th reflector), n-th entry of hl

is hl,n = hTx
l hRx

l,n , where hTx
l and hRx

l,n represent the Tx-IRS
and IRS-Rx links via l-th reflector (all including the average
propagation loss and the reflection loss), and φl is the reflector-
induced phase shift (to be optimized later on).

The channel is further assumed to be static or quasi-static
(stays fixed for a sufficiently long time), frequency-flat, with
full channel information (CSI) available to the Rx and IRS
controller1. Note that this model accommodates single-IRS
as well as multi-IRS settings, where L is the total number
of reflectors and hl, l = 1..L, represent the respective IRS-
assisted links, and it applies to LOS, non-LOS (or partially-
blocked LOS) and multi-path scenarios (since we do not make
any specific assumptions on h0, hl at this point).

For the no-IRS case, the Rx SNR or power is maximized via
matched filtering (MF)/beamforming (also known as maximal-
ratio combining, MRC) and can be expressed as [15]

γno−IRS = |h0|2γ0, γ0 = P/σ2
0 (2)

Absorbing the average propagation path loss into P , γ0

becomes the Rx SNR in the unit-gain channel. Likewise, for
the IRS-assisted channel in (1), heq

∆
= h0 +

∑L
l=1 e

jφlhl is

1the case of partial CSI can be handled via the compound channel approach,
similarly to the standard MIMO channel [20]. This, however, is beyond the
scope of the present paper.

the equivalent channel vector and the MF beamforming does
maximize its Rx SNR/power for given φ,

γ(φ) = g(φ)γ0, g(φ) = |heq |2 =
∣∣∣h0 +

L∑

l=1

ejφlhl

∣∣∣
2

(3)

where φ = [φ1, · · · , φL]T is the vector of IRS phase shifts,
and we emphasize that the SNR γ(φ) depends on φ; g(φ)
is the IRS-assisted gain for given φ; with some abuse of
terminology, we call it simply ”IRS gain” in the rest of this
paper.

For a given φ, the maximum achievable rate per unit
bandwidth (spectral efficiency) supported by this IRS-assisted
SIMO channel is R(φ) = log(1 + g(φ)γ0) and the IRS-
assisted channel capacity is

CIRS = max
φ

R(φ) = log(1 + γ0g
∗), (4)

g∗ = max
φ

∣∣h0 +
∑L

l=1
ejφlhl

∣∣2 (5)

where g∗ = g(φ∗) = maxφ g(φ) is the globally-optimal
IRS gain and φ∗ are the respective globally-optimal phase
shifts. This SIMO channel setting can also be extended to a
MISO channel via the uplink-downlink duality and channel
reciprocity [15].

III. PRIOR RESULTS

Despite its apparent simplicity, no closed-form solution of
the problem in (5) is known to date in the general SIMO
case, i.e. for arbitrary h0, hl, L and N . The key difficulties
are non-convexity of the problem and the lack of appropriate
analytical tools. While a number of numerical algorithms have
been proposed [3][10]-[12], they lack insights, exhibit local
convergence at best (since the problem is not convex) and the
gap to global optima is not known. The relevant analytical
results for global optima are rare. We briefly review them
below.

The first special case for which the globally-optimal solution
is known (and easy to establish) is that of the SISO channel,
i.e. N = 1 so that h0, hl are scalars. The globally-optimal
phase shifts and IRS gain are [1][3]

φ∗
l = arg{h0} − arg{hl}, g∗ =

(
|h0| +

∑L

l=1
|hl|

)2 (6)

so that the signals of the direct and all reflected links add up
constructively. Unfortunately, this result does not extend to a
general SIMO channel (when h0, hl are arbitrary vectors).
However, closed-form solutions can be obtained in some
special cases.

Specifically, for SIMO channels typical for millimeter waves
(mmWave) or THz propagation conditions, where the dom-
inant propagation mode is via LOS, the globally-optimal
closed-form solutions can be obtained as follows [14].

Proposition 1. Let the IRS-assisted channel satisfy hl =
ejαlh1, l = 1 · · ·L, for some real αl and α1 = 0, and let
h0 be arbitrary. Then, the globally-optimal IRS gain and the
respective phase shifts are as follows:

g∗ = |h0|2 + 2L|h+
0 h1| + L2|h1|2 (7)

φ∗
l = arg{h+

1 h0} − αl = arg{h+
l h0} (8)
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where 2nd equality in (8) holds if h+
1 h0 6= 0. If h+

1 h0 = 0,
then φ∗

l = α0 − αl, where α0 is arbitrary, i.e. the optimal
phase shifts are not unique.

It follows from (7) that the globally-optimal IRS gain g∗

scales either linearly or quadratically with the number L of
reflectors, depending on how strong the direct link h0 is, e.g.
g∗ = L2|h1|2 if h0 = 0 (blocked direct link). Note that the
conditions of this Proposition are always satisfied if L = 1,
so it gives the globally-optimal solution in this case.

Proposition 1 can be further extended to a slightly more
general case of alighted reflector links with hl = alh1 for
some complex al but, unfortunately, not beyond that. The
general case of arbitrary h0,hl, N and L can be addressed
via lower and upper bounds. To this end, let

H = [h0, · · · ,hL], w = [1, ejφ1 , · · · , ejφL ]T (9)

and H = UΣV+ be the singular value decomposition
(SVD), where U,V are the unitary matrices of left and right
singular vectors of H, respectively, and Σ = diag{σl(H)}
is the diagonal matrix of its singular values σl(H) sorted in
decreasing order, i.e. σ1(H) is the largest one; vl is the l-th
column of V (i.e. the right singular vector corresponding to the
l-th largest singular value σl(H)). The following Proposition
presents the desired lower and upper bounds for the general
SIMO (and, by duality, MISO) case using the SVD of H [14].

Proposition 2. The globally-optimal IRS gain g∗ = g(φ∗) for
the channel in (1) is bounded as follows:

glb ≤ g∗ ≤ gub = σ2
1(H)(L+ 1) (10)

glb = σ2
1(H)|v1|21 +

r(H)∑

l=2

σ2
l (H)|w+

1 vl|2 (11)

w1l = exp{j arg(v1l) − j arg(v11)}, l = 1...L+ 1 (12)

where r(H) is the rank of H, |v1|1 =
∑L+1

l=1 |v1l| is l1 norm;
v1l and w1l are l-th entry of v1 and w1, respectively.

The lower bound is tight, i.e. glb = g∗, if H is rank-one,
r(H) = 1,

g∗ = σ2
1(H)|v1|21, φ∗

l = arg{v1(l+1)} − arg{v11} (13)

where φ∗
l are globally-optimal phase shifts for this case.

If v1 has equal-magnitude entries, i.e. |v1l| = |v11| for l =
1..L + 1, then the upper and lower bounds coincide and are
therefore tight,

g∗ = glb = gub = σ2
1(H)(L+ 1) (14)

and the globally-optimal phase shifts are as in (13).

The lower bound is close to the globally-optimal IRS gain,
g∗ ≈ glb, if σ1(H) ≫ σ2(H) and this becomes exact equality
if r(H) = 1. Note also from (10) and (11) that the globally-
optimal IRS gain g∗ (or Rx SNR/power) scales at least as
σ2

1(H) in the general case,

σ2
1(H) ≤ σ2

1(H)|v1|21 ≤ g∗ ≤ σ2
1(H)(L + 1) (15)

where 1st inequality is due to |v1|1 ≥ 1. This is somewhat
similar to the regular MIMO channel with channel matrix
H, where the maximum SNR gain achievable with Tx/Rx
beamforming is σ2

1(H) so that the globally-optimal IRS gain

is at least as large (assuming both channels have the same
channel matrix H).

To the best of our knowledge, no other analytical results
for the problem in (5) are known. The next Section presents
new analytical results for this problem, for which the proofs
are outlined in the Appendix.

IV. NEW BOUNDS AND CLOSED-FORM SOLUTIONS

The next Proposition presents novel upper bounds to g∗ with
explicit dependence on channel vectors hl (since the SVD,
while being a useful tool from computational and information-
theoretic perspectives, essentially ”hides” such dependence).

Proposition 3. The globally-optimal IRS gain g∗ is upper
bounded in the general case as follows:

g∗ ≤ gUB , |h0|2 + 2

L∑

l=1

|h+
0 hl| +

L∑

l,k=1

|h+
l hk| (16)

≤
(
|h0| +

∑L

l=1
|hl|

)2 (17)

where both inequalities hold with equality (i.e. the upper
bounds are attained) if hl = alh0 for all l and some
complex al, and the respective globally-optimal phase shifts
are φ∗

l = − arg{al}.

Comparing the upper bounds in (16) and (10), it can be
shown (by examples) that neither is tighter in general, so that
they are complementary to each other.

Next, we present closed-form solutions for the problem in
(5) and identify additional cases where the upper bound in
(16) is tight, i.e. where g∗ = gUB .

A. Massive MIMO

When the number N of Rx antennas is large, as in massive
MIMO, and the condition known as ”favorable propagation”
holds, individual propagation paths become resolvable and the
respective channel vectors become orthogonal to each other,
h+

l hk = 0, l 6= k [19]. The next Proposition presents a closed-
form globally-optimal solution of (5) in this case.

Proposition 4. Let the channel vectors of reflected paths be
mutually-orthogonal, h+

l hk = 0, l 6= k, where l, k = 1...L
(no such assumption is made for the LOS path). Then, the
globally optimal phase shifts are φ∗

l = arg{h+
l h0} and the

respective IRS gain is

g∗ = |h0|2 + 2
∑L

l=1
|h+

l h0| +
∑L

l=1
|hl|2 (18)

If h+
l h0 = 0, then φ∗

l is arbitrary.

Note that, in this case, the upper bound in (16) is also tight,
g∗ = gUB . Comparing the above result to (8), we note that
φ∗

l = arg{h+
l h0} is globally-optimal in the cases where hl

are either orthogonal or parallel to each other. This feature can
be used to obtain a globally-optimal solution for a distributed
multi-IRS channel as follows.

B. Multi-IRS channel

A multi-IRS setup is often considered in the literature
as an inexpensive way to enhance system performance. In
this section, we consider a scenario where several IRSs are
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Fig. 2. An illustration of multi-IRS SIMO channel with M IRSs.

spatially distributed, as in Fig. 2. When the number N of Rx
antennas is large and, therefore, the Rx antenna array angular
resolution is high [18], reflectors from different IRSs can be
resolved at the Rx (since their spacing is large) so that their
channel vectors are orthogonal to each other. On the other
hand, reflectors from the same IRS are not resolvable since
their spacing is not large enough so that their Rx angles of
arrival are almost the same.

Based on this consideration, the overall multi-IRS channel
matrix H can be block-partitioned as H = [h0 H1 ... HM ],
where each block represents the respective IRS (collects
channel vectors from that IRS):

H1 = [h1, ..., hL1 ] (19)
Hm = [hL1+...+Lm−1+1, ..., hL1+...+Lm] (20)

where Hm representsm-th IRS, Lm is its number of reflectors,
m = 1...M , and M is the number of IRSs. The total number
of reflectors (in all IRSs) is L =

∑M
m=1 Lm. For further use,

let us define the index set Im of columns in Hm:

Im = {l : L1 + ...+ Lm−1 + 1 ≤ l ≤ L1 + ...+ Lm} (21)

Since reflectors from different (distant) IRSs are resolvable,
their channel vectors are orthogonal to each other, so that
h+

l hk = 0 for l ∈ Im1 , k ∈ Im2 , m1 6= m2, and therefore
H+

m1
Hm2 = 0. On the other hand, since reflectors of the same

IRS are not resolvable due to their proximity to each other,
r(Hm) = 1 and therefore

hl = alum for some al ∀l ∈ Im, m = 1...M (22)

where um is the unit basis vector of span{Hm}; without loss
of generality, we further assume that al 6= 0 for all l. Since
different blocks are orthogonal to each other, it follows that
{u1...uM} is an orthonormal set.

For this multi-IRS channel, the following Proposition pro-
vides an explicit globally-optimal solution of (5).

Proposition 5. The globally-optimal phase shifts and the
respective IRS gain of the multi-IRS channel described above
are as follows:

φ∗
l = arg{u+

mh0} − arg{al} = arg{h+
l h0} ∀l ∈ Im (23)

g∗ = gUB = |h0|2 + 2
M∑

m=1

Am|h+
0 um| +

M∑

m=1

A2
m (24)

where 2nd equality in (23) holds if u+
mh0 6= 0; Am is the

combined amplitude gain of m-th IRS,

Am =
∑

l∈Im

|al| =
∑

l∈Im

|hl| (25)

If u+
mh0 = 0, then φ∗

l = ψm − arg{al} for all l ∈ Im and
arbitrary (real) ψm.

It should be noted that the globally-optimal phase shifts in
(23) are of the same form as in (8) and (18), and, for this multi-
IRS channel, the upper bound in (16) is also tight, g∗ = gUB .
(25) represents an equal-gain combiner (EGC) and Am is its
amplitude gain.

To get some insight, let us consider the case of absent
(blocked) direct link, h0 = 0, for which (24) reduces to

g∗ =

M∑

m=1

A2
m =

M∑

m=1

( ∑

l∈Im

|hl|
)2 (26)

Note that the internal summation represents amplitude-wise
combining (or EGC) for each IRS across its reflectors while
the external sum is a power-wise combining across different
IRSs. This difference is due to the fact that the reflectors within
the same IRS are not resolvable (so that their channel vectors
are parallel to each other) while the reflectors of different IRSs
are resolvable (so that their channel vectors are orthogonal to
each other).

To reveal the scaling of the globally-optimal IRS gain g∗

with the number M of IRSs and the numbers Lm of reflectors
in each IRSs, let us consider the case when all IRSs are
identical and have similar channels to their reflectors so that
Lm = L1, |u+

mh0| = |u+
1 h0| for all m, and |hl| = |h1| for

all l. In this case, (24) reduces to

g∗ = |h0|2 + 2|h+
1 h0|ML1 + |h1|2ML2

1 (27)

In the case of weak or absent direct link, the last term
dominates so that

g∗ ≈ |h1|2ML2
1 if

|h0|2
ML1

+ 2|h+
1 h0| ≪ |h1|2L1 (28)

i.e. g∗ scales quadratically with L1 but only linearly with M
and this scaling holds provided the number L1 of reflectors
per IRS is large enough. If the opposite is true,

g∗ ≈ |h0|2 + 2|h+
1 h0|ML1 if

|h0|2
ML1

+ 2|h+
1 h0| ≫ |h1|2L1

i.e. the scaling with M,L1 is linear at best, and this holds
provided the direct link is not too strong,

g∗ ≈ 2|h+
1 h0|ML1 if |h0|2 ≪ 2|h+

1 h0|ML1 (29)

If the opposite is true, then g∗ ≈ |h0|2, i.e. IRSs are useless.
Thus, of all three cases considered, the first one is most
favorable in terms of IRSs impact, i.e., the stronger the direct
link, the smaller the impact of the IRSs. For IRSs to be
effective, either (28) or (29) has to hold, which can be used
as design guidelines as to (i) how many reflectors per IRS or
(ii) how many IRSs are needed to make a significant impact.

Finally, one can consider the case of resolvable direct and
reflected paths so that their channel vectors are orthogonal to
each other, h+

1 h0 = 0. In this case, (27) reduces to

g∗ = |h0|2 + |h1|2ML2
1 (30)
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and IRSs have significant impact if 2nd term is dominant, i.e.
g∗ ≈ |h1|2ML2

1 if ML2
1 ≫ |h0|2|h1|−2. The latter condition

can be combined with physically-based models in [8]-[10] to
evaluate h0,h1 and thus to determine the required M,L1 for
IRSs to have substantial impact.

We further note that the above scalings in (27)-(30) are
consistent with the measurements in [5, Fig. 12(b)][7, Fig. 18],
where quadratic scaling of the IRS gain with the number of
reflectors was experimentally verified in a certain environment
for large (single) IRS.

C. Variable-gain reflectors

One can further consider a more general setting where IRS
reflectors, while being passive, have variable gains βl, where
βl ≤ 1 reflects their passive nature. In this setting, the IRS
gain is

g(φ,β) = |h0 +
∑

l
βle

jφlhl|2 (31)

and it can be jointly optimized over φ and β:

g∗ = max
φ,β

∣∣h0 +
∑L

l=1
βle

jφlhl

∣∣2 s.t. βl ≤ 1, l = 1...L

It follows that using the largest possible gains βl = 1 is
optimal in the cases of Propositions 1, 3-5 provided phase
shifts are also optimized and, therefore, there is no loss of
optimality in assuming βl = 1. However, it can be shown (by
examples) that βl = 1 are not necessarily optimal if phase
shifts are not optimized as well, i.e. the largest possible gains
are optimal for the joint optimization only.

V. APPENDIX: OUTLINES OF PROOFS

Proof of Proposition 3: Using (3), one obtains, after some
manipulations:

g(φ) = |h0|2 + 2
∑L

l=1
|h+

0 hl| cos(φl + ϕ0l) (32)

+
∑L

l,k=1
|h+

l hk| cos(φk − φl + ϕlk)

≤ |h0|2 + 2
∑

l
|h+

0 hl| +
∑

k,l
|h+

l hk| (33)

≤ |h0|2 + 2
∑

l
|h0||hl| +

∑
k,l

|hl||hk| (34)

=
(
|h0| +

∑
l
|hl|

)2 (35)

where ϕlk = arg{h+
l hk}; (33) is due to cos(x) ≤ 1 and

(34) is due to Cauchy-Schwarz inequality |h+
l hk| ≤ |hl||hk|,

which holds with equality if hl = alh0 for all l. Since the
upper bounds in (33), (34) are independent of φ, taking maxφ

on all sides, (16) and (17) follow. If hl = alh0 for all l, (34)
holds with equality and

ϕlk = arg{h+
l hk} = arg{ak} − arg{al} (36)

so that setting φl = − arg{al} = −ϕ0l,

φl + ϕ0l = 0, φk − φl + ϕlk = 0 (37)

and therefore (i) (33) holds with equality as well, and (ii)
φl = − arg{al} are the globally-optimal phase shifts in this
case, since they attain both upper bounds.

Proof of Proposition 4: In this case, using (32),

g(φ) = |h0|2 + 2
∑

l

|h+
0 hl| cos(φl + ϕ0l) +

∑

l

|hl|2 (38)

≤ |h0|2 + 2
∑

l
|h+

0 hl| +
∑

l
|hl|2 (39)

where (38) is due to h+
l hk = 0 for l 6= k. Note that the

upper bound holds for any φ, including the optimal one, is
independent of φ and is attained by φl = −ϕ0l = arg{h+

l h0},
which are therefore globally-optimal. If h+

l h0 = 0, then φ∗
l

is arbitrary since arg{0} is arbitrary and the upper bound in
(39) is achieved for any φl in this case.

Proof of Proposition 5: Observe that the upper bound gUB

in (16) also applies to the multi-IRS case here, where L is
the total number of reflectors. It can be verified, after some
lengthy but otherwise straightforward manipulations, that the
upper bound is attained by the phase shifts in (23) under the
conditions of this Proposition, which are therefore globally-
optimal. The same manipulations verify (24) and (25) as well.
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Abstract—Beamforming is a powerful tool for physical layer
security, as it can be used for steering signals towards legitimate
receivers and away from eavesdroppers. An active eavesdropper,
however, can interfere with the pilot phase that the transmitter
needs to acquire the channel knowledge necessary for beamform-
ing. By doing so, the eavesdropper can make the transmitter
form beams towards the eavesdropper rather than towards
the legitimate receiver. To mitigate active eavesdroppers, we
propose VILLAIN, a novel channel estimator that uses secret
pilots. When an eavesdropper interferes with the pilot phase,
VILLAIN produces a channel estimate that is orthogonal to the
eavesdropper’s channel (in the noiseless case). We prove that
beamforming based on this channel estimate delivers the highest
possible signal power to the legitimate receiver without delivering
any signal power to the eavesdropper. Simulations show that
VILLAIN mitigates active eavesdroppers also in the noisy case.

I. INTRODUCTION

Security is a concern of paramount importance in modern
communication systems [1]. Physical layer security (PLS) is
emerging as a powerful alternative to classical cryptography [2],
[3]. While classical cryptography is based on the assumption
that certain computational problems are hard, PLS builds on
the characteristics of the channel itself and offers information-
theoretic security. In multi-antenna transmission systems, PLS
can leverage beamforming to steer communication signals to-
wards the intended recipient and away from an eavesdropper [4].

Beamforming requires the transmitter to know the channels
to the receivers—to the legitimate receiver for steering signals
towards it and to the eavesdropper for steering signals away
from it. Most research on eavesdropper mitigation simply
assumes perfect knowledge of all channels [4]–[7]. However, it
is unclear how the transmitter could obtain channel knowledge
of an eavesdropper, which—if not declared otherwise—is
usually understood to be a passive eavesdropper, i.e., one which
emits no signals. Thankfully, transmitters with a large number
of antennas (as are used, e.g., in the massive multiple-input
multiple-output (MIMO) downlink) are intrinsically resistant
to passive eavesdropping due to the narrow beams that such
transmitters form towards the receiver. Such narrow beams
entail significantly higher signal strength at the legitimate
receiver than at the eavesdropper [8]–[10].

In contrast to passive eavesdroppers, active eavesdroppers
try to influence communication in their favor by emitting
signals themselves. For instance, an active eavesdropper may
contaminate the channel estimation (or pilot) phase such that
the transmitter forms beams towards the eavesdropper instead
of the receiver [11]–[13]. This pilot contamination renders

active eavesdroppers effective also against transmitters with
many antennas. On the flip side, the signals that an active
eavesdropper emits give the transmitter an opportunity to
somehow estimate the eavesdropper’s channel and then using
beamforming to steer signals away. Much research on active
eavesdropper mitigation therefore simply assumes that the
channel of an active eavesdropper is perfectly [14]–[18] or
imperfectly [19], [20] known at the transmitter, or that at
least its second-order statistics are known [12], [13]. How this
channel knowledge should be obtained is usually not discussed,
however. In particular, a sophisticated active eavesdropper
might only transmit during the pilot phase and thus never
provide the transmitter with snapshots of its channel that are
uncontaminated by the pilot signals of the legitimate receiver.

A. Contributions

We propose VILLAIN (short for eaVesdropper resILient
channeL estimatIoN) for active eavesdropper mitigation in the
single-user MIMO downlink. When an active eavesdropper
contaminates the pilot phase, VILLAIN produces an estimate
of the legitimate receiver’s channel that is orthogonal to the
eavesdropper’s channel (if the noise at the basestation (BS)
is negligible). We prove that using this channel estimate for
maximum-ratio transmission (MRT) results in a beamformer
that is optimal in the sense that it delivers the highest possible
signal power to the legitimate receiver while simultaneously
ensuring that the received signal power at the eavesdropper is
zero. VILLAIN therefore guarantees perfect secrecy against
active eavesdroppers,1 and it does so without requiring wiretap
coding. Using numerical simulations, we show that VILLAIN
succeeds in mitigating active eavesdroppers also when the noise
at the BS is not negligible.

B. Notation

Column vectors and matrices are denoted by lowercase bold-
face (e.g., a) and uppercase boldface (e.g. A) letters, respec-
tively. The transpose is denoted (·)T, the complex conjugate (·)∗,
the conjugate transpose (·)H, and the Moore-Penrose pseudoin-
verse (·)†. The Frobenius-norm is ‖ · ‖F , the 2-norm ‖ · ‖2, and
the absolute value | · |. The subspace spanned by a is span(a)
and its orthogonal complement is span(a)⊥. The circularly-
symmetric complex Gaussian distribution with variance Q is
CN (0, Q). The expectation operator is E[·].

1By perfect secrecy, we mean that H(s|yed) = H(s), where s and yed are
defined in Sec. II, and where H(·) and H(·|·) denote (conditional) entropy.
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II. SYSTEM MODEL

We consider the case where a B-antenna BS wants to transmit
data (from a constellation S with unit average symbol energy)
to a single-antenna user equipment (UE) in the presence of a
single-antenna eavesdropper. The receive signals at the UE and
the eavesdropper can be written as

yue = hTx + nue, (1)

yed = jTx + ned, (2)

respectively. Here, x ∈ CB is the BS transmit vector that must
satisfy a power constraint E

[
‖x‖22

]
≤ P , hT, jT ∈ CB are the

downlink channel vectors (which include the effects of large-
scale as well as of small-scale fading) between the BS and the
UE and the eavesdropper, respectively, and nue ∼ CN (0,Nue)
and ned ∼ CN (0,Ned) model the noise at the UE and the
eavesdropper, respectively. The transmit vector x is a linear
function of the data symbol s ∈ S to be sent to the UE, i.e.,

x = ws, (3)

where w is the BS’s precoding vector.2 This precoding vector
has two objectives: First, it should ensure that the UE can
easily recover s based on yue. Second, it should ensure that
the eavesdropper cannot recover s based on yed (not even if
the eavesdropper knows both j and w).

The BS determines its precoding vector w based on a pilot
phase in which the UE transmits a length-T pilot sequence
sT ∈ CT that is known to the BS. In other words, w = f(YT )
for some function f : CB×T → CB , where YT ∈ CB×T is
the BS’s pilot receive signal. We assume that sT is secret (i.e.,
unknown to the eavesdropper) and potentially random.3

In a no-eavesdropper or passive eavesdropper scenario, the
receive matrix YT from the pilot phase can be written as

YT = hsT
T + NT , (4)

where the UE uplink channel vector h is the transpose of the
UE downlink channel vector due to channel reciprocity, and
where NT

i.i.d.∼ CN (0,Nbs) models the receive noise at the BS.
The precoding vector w is often determined by first forming

an estimate ĥ = g(YT ) of the UE channel vector h, and then
setting w = h(ĥ) for some function h (i.e., f = h ◦ g). A
classic example is least squares (LS) channel estimation

ĥ = g(YT ) = YT (sT
T )† (5)

followed by maximum ratio transmission (MRT) precoding

w = h(ĥ) =
√
P ĥ∗/‖ĥ‖2. (6)

2Since we assume that the constellation S has unit average symbol energy,
the power constraint E

[
‖x‖22

]
≤ P is equivalent to ‖w‖22 ≤ P .

3To prevent the eavesdropper from learning the pilot sequence, sT should be
changed every coherence time. For information-theoretic security, this would
require reading from a one-time pad (OTP). However, this OTP could be much
shorter than a message-encrypting OTP, since pilots are transmitted infrequently.
Moreover, even if one abandons information-theoretic security and uses a
cryptographic random number generator (CRNG) to update sT , the resulting
security is much better than in classical cryptography, since the eavesdropper
has to break the CRNG in real time to create an attack opening (while in
classical cryptography, the received message can be stored and cracked offline).

The UE can then simply estimate s by rescaling yue as

ŝ = βyue, (7)

where β = 1/|hTw| recovers the scale of the transmit signal.4

With these choices of w and β, we have ŝ→ s as ‖NT ‖F → 0.
In this paper, we consider an active eavesdropper that

transmits a signal z ∈ CT during the pilot phase to make the BS
use a precoding vector w that makes it easy for the eavesdropper
to detect s based on yed. Thus, the pilot receive signal does
not have the form of (4), but instead can be written as

YT = hsT
T + jzT + NT . (8)

In the active eavesdropper literature, it is typically assumed
that the eavesdropper knows the pilot sequence sT . In that
case, it is natural for the eavesdropper to also transmit the
pilot sequence (potentially at higher power), i.e., zT = αsT

T for
some α ≥ 1. A BS that uses an LS channel estimator as in (5)
with MRT beamforming as in (6) will then effectively form a
least-square estimate not of h, but of h+ αj. As α→∞, this
becomes a (scaled) estimate of j, so that the BS optimizes its
precoding vector for the eavesdropper instead of the UE and,
consequently, forms its beam towards the eavesdropper rather
than towards the UE.

In contrast, we assume the eavesdropper does not know sT , so
that z cannot depend on sT . However, the eavesdropper can still
influence the BS to its advantage by sending z

i.i.d.∼ CN (0, Q)
for some Q > 0. In that case, the LS channel estimator in (5)
gives hsT

T (sT
T )† = h in the UE term, but jzT(sT

T )† = ωj in
the eavesdropper term, where ω ∼ CN (0, Q/‖sT ‖22). So, even
if the eavesdropper transmits Gaussian noise, a BS with a LS
channel estimator effectively forms a least-square estimate of
h+ ωj, where ω is complex Gaussian with variance Q/‖sT ‖22.
If Q � ‖sT ‖22, then with high probability |ω| > 1, so that
the BS chooses w mainly as a function of the eavesdropper
channel vector j and not the UE channel vector h.

III. VILLAIN: A CHANNEL ESTIMATOR
FOR ACTIVE EAVESDROPPER MITIGATION

Before we present VILLAIN, a remark is in order. VILLAIN
is a channel estimator—how can a channel estimator mitigate an
eavesdropper? The answer is that VILLAIN does not produce
an unbiased estimate of h, but one that is projected onto
(an estimate of) the orthogonal complement span(j)⊥ of the
eavesdropper subspace span(j). The following result shows that
if such a channel estimate is combined with MRT precoding
as in (6), then the eavesdropper receives no signal.

Proposition 1. If the BS obtains a channel estimate ĥ 6= 0
from the image of the projection P = I − jj† onto span(j)⊥,
(i.e., ĥ = Ph̃ for some h̃ ∈ CB) and uses MRT precoding as
in (6), then the eavesdropper receives no signal, jTw = 0.

4This way of expressing the scaling factor β assumes—unrealistically—that
the UE knows both h and w. However, β depends primarily on the large-scale
fading between the UE and the BS, which changes slowly in time. We therefore
assume that the UE can estimate β from the receive signals [21].
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All proofs are in the Appendix. Motivated by this result, we
now present VILLAIN. In VILLAIN, the UE sends a redundant
pilot sequence, i.e., a pilot sequence of length T > 1. As we will
see, this redundancy allows the BS to estimate two things: the
eavesdropper subspace and the projection of the UE’s channel
onto the orthogonal complement of the eavesdropper subspace.

Let the pilot phase be given as in (8). Then VILLAIN solves

min
h̃∈CB ,

P̃∈GB−1(CB)

∥∥P̃YT − h̃sT
T

∥∥2

F
. (9)

Here, GB−1(CB) = {IB−aa† : a ∈ CB} is the Grassmannian
manifold, i.e., the set of orthogonal projections onto (B − 1)-
dimensional subspaces of CB . The channel estimate ĥ that is
obtained from solving (9) can then be used for MRT precoding
as in (6). Even though the problem in (9) is non-convex, it has
a closed-form solution:

Proposition 2. The problem in (9) is solved by

P̂ = IB − uuH and ĥ = P̂YT (sT
T )†, (10)

where u ∈ CB is the left singular vector which corresponds
to the largest singular value of YT (IT − (sT

T )†sT
T ).

In (10), u should be understood as an estimate of the
eavesdropper subspace (i.e., u ≈ αj for some α ∈ C), P̂
is the orthogonal projection onto the orthogonal complement of
that subspace (i.e., P̂ ≈ IB − jj†), and ĥ is an estimate of the
projection of the UE’s channel vector onto the orthogonal com-
plement of the eavesdropper subspace (i.e., ĥ ≈ (IB − jj†)h).
If the pilot sequence sT is chosen at random and unknown to
the eavesdropper, and if there is no noise at the BS, then we
have the following guarantee:

Theorem 1. Assume that T >1, that sT
i.i.d.∼ CN (0, 1) and z 6=0

are independent of each other, and that Nbs = 0. Then, almost
surely, the precoding vector w that results from the VILLAIN
channel estimator in conjunction with MRT precoding solves

max
w̃∈CB :‖w̃‖22≤P

|hTw̃|2 such that jTw̃ = 0. (11)

That is, w achieves the highest UE receive signal power of all
vectors that achieve zero eavesdropper receive signal power.
The delivered signal power is |hTw|2 = ‖(IB − jj†)h‖22P .

Note that the mitigation strategy pursued here—maximizing
the receive power at the receiver while ensuring that the
eavesdropper receives no signal—is suboptimal in the sense
that it generally does not achieve the secrecy capacity [22].
However, VILLAIN has the following advantages: First, under
the conditions of Thm. 1, it achieves perfect secrecy without
requiring a priori information of the UE’s or the eavesdropper’s
channel. Second, it then achieves perfect secrecy using off-the-
shelf MRT precoding, without requiring wiretap coding. The
only price to be paid is a randomized pilot phase of length
at least two, and computing the VILLAIN channel estimate
in Prop. 2. Its computational complexity is dominated by the
SVD, whose complexity scales with max{B, T}min{B, T}2.

IV. SIMULATION RESULTS

A. Line-of-Sight Channel Without Noise at the BS

For illustrative purposes, we start by considering a textbook
line-of-sight (LoS) channel, where a BS with B = 8 antennas
arranged as a uniform linear array (ULA) with antennas spaced
at half a wavelength is located at the coordinate origin, while
the UE and the eavesdropper are located in far-field at degrees
of θUE = 70◦ and θED = 20◦, respectively. We assume that
there is no noise at the BS (Nbs = 0), that the BS power
constraint is P = 1, and that the channel gains of the UE
and the eavesdropper are ‖h‖2 = ‖j‖2 = 1. A textbook LoS
channel vector g with unit gain can be written in dependence
of the angle φ (relative the the ULA) as

g(φ) =
1√
B

[
1, e−iπ cos(φ), . . . , e−iπ cos(φ)(B−1)

]T
, (12)

and we have h = g(θUE) and j = g(θED).
We consider three different scenarios in which the BS com-

putes its precoding vector w. For each of the scenarios, Fig. 1
shows the receive power E

[
|gT(φ)x|2

]
= |gT(φ)w|2 (in dB) as

a function of φ. For each of the scenarios, we also compute the
advantage δ, which we define as the ratio between the power
received at the UE and the power received at the eavesdropper,

δ , |h
Tw|2
|jTw|2 . (13)

If the noise at the UE and the eavesdropper are equally strong,
Nue = Ned, then δ > 1 implies that the secrecy capacity for
that precoding vector w is positive; δ ≤ 1 implies that it is
zero. The three considered scenarios are as follows:

1) Passive Eavesdropper and LS channel estimation: In this
scenario, the eavesdropper does not transmit during the pilot
phase in which the UE sends a pilot sequence of length T = 8.
The BS uses the LS channel estimator of (5) with the MRT
precoder of (6). The signal receive strength (as a function
of φ) for the resulting precoder is shown in Fig. 1(a). The
receive strength is highest at φ = θUE, where a gain of 0 dB is
achieved. In contrast, the receive strength at the eavesdropper
is significantly lower, and an advantage of δ = +16.7 dB is
achieved. This confirms the claim of [8]–[10] that multi-antenna
precoding protects naturally against passive eavesdroppers.

2) Active Eavesdropper: This scenario differs from the
previous one in that the eavesdropper transmits i.i.d. circularly-
symmetric Gaussian samples (independent of sT , so that the
eavesdropper need not know sT ) during the pilot phase, at
25 dB higher expected power than sT . The BS uses the same
LS channel estimator of (5) and MRT-precoder of (6) as in
the first scenario. The signal receive strength for the resulting
precoding is shown in Fig. 1(b). Since the pilot receive signal
is dominated by the eavesdropper, the signal receive strength
is highest in the direction of the eavesdropper, where a gain
of almost 0 dB is achieved. In contrast, the signal receive
strength at the UE is much lower, resulting in a negative gain
of δ = −20.8 dB. This result shows a clear need for active
eavesdropper mitigation if physical-layer security is desired.
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(c) Active eavesdropper and VILLAIN channel est.

Fig. 1. Signal receive power (in dB) as a function of the incidence angle φ for three different scenarios. The BS has B = 8 antennas arranged as a ULA. We
assume a textbook LoS channel with the UE and the eavesdropper being in far-field at 70◦ and 20◦, respectively. The performance of a precoding can be
characterized in terms of the ratio δ between the signal receive power at the UE and at the eavesdropper. VILLAIN effectively mitigates the active eavesdropper.

3) Active Eavesdropper with VILLAIN: The third scenario
is identical to the second one, except that the BS now uses the
VILLAIN channel estimator (together with the MRT precoder
of (6)). The signal receive strength of the resulting precoding
vector is plotted in Fig. 1(c). The results show that VILLAIN
succeeds in mitigating the active eavesdropper: Even though
the pilot receive signal is dominated by the eavesdropper’s
contribution, the signal receive strength is highest at the UE,
where a gain of almost 0 dB is achieved. In contrast, the receive
strength at the eavesdropper is now so low that it does not even
show on the axis, and an advantage of δ = +289 dB is achieved.
In theory, the advantage in such a noiseless scenario should
be δ = +∞ dB, but the floating-point accuracy of MATLAB
simulations limits the advantage to a finite value.

B. QuaDRiGa UMa Channels With Noise at the BS

We now simulate a more realistic scenario that considers
noise at the BS and uses channel vectors that are generated
using QuaDRiGa [23] with a 3GPP 38.901 urban macrocellular
(UMa) channel model [24]. The carrier frequency is 2 GHz, the
BS has B = 16 antennas arranged as a ULA spaced at half a
wavelength, and the UE and the eavesdropper are uniformly and
independently placed at a distance between 10 m and 100 m in
a 120◦ sector in front of the BS. We compare the performance
of VILLAIN to the performance of a conventional LS channel
estimator. In both cases, the UE transmits an i.i.d. CN (0, Es)
pilot sequence of length T = 4. The eavesdropper transmits
i.i.d. CN (0, Q) samples at 30 dB higher transmit power than
the UE during the pilot phase (i.e., 10 log10(Q/Es) = 30 dB).
We quantify the BS noise variance Nbs relative to the transmit
signal power Es, where we define the signal-to-noise ratio
as SNR = Es/Nbs. We consider three different noise levels:
SNR = 0 dB, SNR = 15 dB, and SNR = 30 dB. Fig. 2 shows
the cumulative distribution function (CDF) for the different
channel estimators and the different SNRs.5 We see that the
SNR is irrelevant when using LS channel estimation—the
eavesdropper dominates the receive signal. For each SNR, the
eavesdropper achieves a negative advantage (in dB) in around
75% of the cases, and the median advantage is δ = −16 dB.
The performance of VILLAIN is far superior and increases with
SNR: Already for a 0 dB SNR, VILLAIN achieves a positive
advantage (in dB) in 94% of cases and a median advantage of

5These CDFs take into account the large channel gain variation between
the UE and the eavesdropper that results from the random distance to the BS.
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Fig. 2. CDF of VILLAIN and LS channel estimation for different noise levels
at the BS. The eavesdropper’s transmit signal is 30dB stronger than the UE’s.

δ = +26 dB. For an SNR of 15 dB and of 30 dB, VILLAIN
achieves a positive advantage (in dB) in more than 99% of
cases, and a median advantage of δ = +51 dB and δ = +68 dB,
respectively. These results show that VILLAIN succeeds in
mitigating active eavesdroppers also in the presence of noise.
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APPENDIX A
PROOFS

A. Proof of Prop. 1
If ĥ = Ph̃ for some h̃ ∈ CB and w =

√
P ĥ∗/‖ĥ‖2, then

we can write

‖ĥ‖2jTw =
√
P jT(Ph̃)∗ =

√
P jTP∗h̃∗ (14)

(a)
=
√
P jTPTh̃∗ =

√
P (Pj)Th̃∗

(b)
= 0Th̃∗ = 0, (15)

where (a) follows because P is an orthogonal projection and
so PH = P and (b) follows because Pj = 0. From this, the
result follows by dividing both sides by ‖ĥ‖2 6= 0. �
B. Proof of Prop. 2

For given P̃, the problem in (9) is quadratic in h̃, and is
minimized by h̃=P̃YT (sT

T )†. Plugging this back into (9) gives

min
P̃∈GB−I(CB)

‖P̃YT (IT − (sT
T )†sT

T )‖2F , (16)

which is minimized by P̃ = IB − uuH, where u ∈ CB is the
left singular vector corresponding to the largest singular value
of YT (IT − (sT

T )†sT
T ) [25]. By plugging this value for P̃ back

into h̃ = P̃YT (sT
T )†, the result follows. �
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C. Proof of Thm. 1

Since we assume Nbs = 0, we have YT = hsT
T + jzT. By

Prop. 2, the optimal P̃ equals IB − uuH, where u is the left
singular vector corresponding to the largest singular value of

YT (IT − (sT
T )†sT

T ) (17)

= (hsT
T + jzT)(IT − (sT

T )†sT
T ) (18)

= h sT
T (IT − (sT

T )†sT
T )︸ ︷︷ ︸

=0

+jzT(IT − (sT
T )†sT

T ) (19)

= jzT(IT − (sT
T )†sT

T ). (20)

In (20), zT(IT − (sT
T )† is the orthogonal projection of z onto

span(sT )⊥, which is distinct from zero if z /∈ span(sT ). Under
our assumptions that T > 1, that sT

i.i.d.∼ CN (0, 1) and z 6=0
are independent of each other, we have z /∈ span(sT ) almost
surely. The rest of the proof is conditioned on this almost sure
event. It follows that the subspace spanned by u contains j, in
which case the optimal P̃ can be written as

P̃ = IB − uuH = IB − jj†. (21)

By Prop. 2, the channel estimate by VILLAIN is therefore

ĥ = (IB − jj†)YT (sT
T )† (22)

= (IB − jj†)(hsT
T + jzT)(sT

T )† (23)

= (IB − jj†)h sT
T (sT

T )†︸ ︷︷ ︸
=1

+ (IB − jj†)j︸ ︷︷ ︸
=0

zT(sT
T )† (24)

= (IB − jj†)h. (25)

When using MRT precoding, we get the precoding vector

w = (
√
P/‖Ph‖2)(Ph)∗, (26)

where we define P , IB − jj† for the remainder of the proof.
We now show that the solution to the optimization problem

in (11) coincides with (26). The set of vectors w̃ that satisfy
the constraint jTw̃ = 0 is simply the image of P∗ and can be
rewritten by substituting w̃ with P∗w̄:

{w̃ : w̃ ∈ CB , jTw̃ = 0} = {P∗w̄ : w̄ ∈ CB}. (27)

The problem in (11) can therefore be reformulated as

max
w̄∈CB :‖P∗w̄‖22≤P

|hTP∗w̄|2 = max
‖P∗w̄‖22≤P

|hTPTw̄|2 (28)

= max
‖P∗w̄‖22≤P

|(Ph)Tw̄|2, (29)

which is solved by w̄ ∝ (P̂h)∗. By reinserting w̃ = P∗w̄, and
respecting the power constraint, we get the w̃ that solves (11):

w̃ =
√
P

P∗(Ph)∗

‖P∗(Ph)∗‖2
=
√
P

(Ph)∗

‖Ph‖2
, (30)

which coincides with (26). The signal power at the UE is

|hTw|2 = P
|hT(Ph)∗|2
‖Ph‖22

= P
|hHPh|2
‖Ph‖22

= P
|hHPHPh|2
‖Ph‖22

(31)

= P‖Ph‖22 = P‖(IB − jj†)h‖22. (32)

This concludes the proof. �
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Abstract—This paper introduces extensions to data-driven
polar decoders, enabling list decoding and accommodating asym-
metric input distributions. These are crucial steps to develop
data-driven codes that 1) achieve capacity and 2) are competitive
in moderate block lengths. We commence by integrating list de-
coding into the data-driven polar codes, which significantly allevi-
ates the inherent error propagation issues associated with succes-
sive cancellation decoding. Secondly, we expand the applicability
of these codes to channels with stationary, non-uniform input
distributions by incorporating the Honda-Yamamoto scheme.
Both modifications are computationally efficient and do not
require an explicit channel model. Numerical results validate the
efficacy of our contributions, which offer a robust and versatile
coding mechanism for various channel conditions.

I. INTRODUCTION

Polar codes allow the construction of capacity-achieving
codes for symmetric binary-input memoryless channels [1].
When given N independent copies of a binary discrete
memoryless channel (DMC) W , successive cancellation (SC)
decoding induces a new set of N binary effective channels
W

(i)
N . Channel polarization is the phenomenon whereby, for

N sufficiently large, almost all of the effective bit channels
W

(i)
N have capacities close to 0 or 1. Specifically, the fraction

of channels with capacity close to 1 approaches I(W ) and
the fraction of channels with capacity close to 0 approaches
1−I(W ), where I(W ) is the channel’s symmetric capacity. The
construction of polar codes involves choosing which rows to
keep from the square generator matrix given by Arikan’s trans-
form [1, Section VII]. The encoding and decoding procedures
are performed by recursive formulas whose computational
complexity is O(N logN).

Polar codes can also be applied to finite state channels
(FSCs). Arikan’s transform also polarizes the bit channels
W

(i)
N in the presence of memory [2], and thus the encoding

algorithm is the same as if the channel is memoryless. How-
ever, the decoding algorithm needs to be updated since the
derivation of the SC decoder in [1] relies on the memoryless
property. To account for the channel memory, the channel
outputs are represented by a trellis, whose nodes capture the
information of the channel’s memory. This trellis was embed-
ded into the SC decoding algorithm to yield the successive
cancellation trellis (SCT) decoding algorithm [3], [4].

However, the SCT decoder is only applicable when the
channel model is known and when the channel’s state alphabet
size is finite and relatively small. For FSCs, the computational
complexity of the SCT decoder is O(|S|3N logN), where |S|
is the number of channel states. For Markov channels where

the set of channel states is not finite, the SCT decoder is not
applicable without quantization of its states. With quantization,
there may be a strong tension between the computational com-
plexity and the error introduced by quantization. Additionally,
the SCT decoder cannot be used for an unknown channel with
memory without first estimating the channel as it requires an
explicit channel model.

The authors of [5] proposed a novel methodology for data-
driven polar decoders. The methodology uses a neural SC
(NSC) decoder, which uses four distinct neural networks
(NNs) instead of the elementary operations of the SC de-
coder. Specifically, the NNs approximate the channel’s output
statistics, the check-node, the bit-node, and the soft decision
operations, denoted by E,F,G,H , respectively. The param-
eters of E,F,G,H are determined in a training phase, in
which the mutual information (MI) of the effective channels
W

(i)
N is estimated. After the training phase, the set of “clean”

effective channels are determined by a Monte Carlo (MC)
evaluation of the MI of the effective bit channels to complete
the code design. The main advantage of this scheme is 1)
its computational complexity does not grow cubicly with the
channel’s state alphabet size, and 2) it does not require an
explicit channel model.

However, despite the fact that polar codes are capacity
achieving, their performance under SC decoding are inferior to
low density parity check (LDPC) and turbo codes at moderate
block lengths. One of the reasons for that, as identified in [6],
is that in SC decoding, decoding errors at early stages of the
decoding procedure propagate to the succeeding bits, which
yields in sub-optimal performance. Hence, the authors of [6]
design a successive cancellation list (SCL) decoder for polar
codes that instead of decoding a single codeword, as in the SC
decoder, it decodes L codewords. Then, the decoder chooses
one codeword from the list with the highest likelihood1.
The performance of the SCL decoder improved dramatically
towards the performance of the maximum likelihood (ML)
decoder, and accordingly it is now part of the 5G standard.
Therefore, it is of great interest to examine the performance
of data-driven polar codes with list decoding, which is the first
goal of this paper.

An additional issue to be addressed when designing capacity
achieving codes is to accommodate data-driven polar codes

1The authors of [6] also showed the cyclic redundancy check (CRC) bits
can be used as side information shared between the decoder and the encoder
that allows to choose the correct codeword by checking which word in the
list passes the CRC.
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with asymmetric input distributions, as the capacity achieving
input distribution is not necessarily uniform independently
identically distributed (i.i.d.). In that regard, this paper pro-
vides an extension of data driven polar codes for stationary
input distributions by incorporating the Honda-Yamamoto
scheme [7] into the methodology of data-driven polar codes.
This is the second goal of the paper.

The paper is organized as follows. Section II defines the
notation and gives the necessary background on polar codes.
Specifically, it presents polar codes as given in [1], and data-
driven polar codes, as given in [5]. Section III extends data-
driven polar codes to stationary input distributions. Section
IV presents the idea of list decoding and its application to
data-driven polar codes. Section V presents the numerical
experiments.

II. NOTATIONS AND PRELIMINARIES

Throughout this paper, we denote by (Ω,F ,P) the under-
lying probability space on which all random variables are
defined, with E denoting expectation. Random variables (RVs)
are denoted by capital letters and their realizations are denoted
by lower-case letters. Calligraphic letters denote sets, e.g. X .
We use the notation Xn to denote the RV (X1, X2, . . . , Xn)
and xn to denote its realization. The probability Pr[X = x]
is denoted by PX(x). Stochastic processes are denoted by
blackboard bold letters, e.g., X := (Xi)i∈N. An n-coordinate
projection of P is denoted by PXnY n := P

∣∣
σ(Xn,Y n)

, where
σ(Xn, Y n) is the σ-algebra generated by (Xn, Y n). We
denote by [N ] the set of integers {1, . . . , N}. The MI between
two RVs X,Y is denoted by I (X;Y ).For two distributions
P,Q, the cross entropy (CE) is denoted by hCE (P,Q), the
entropy is denoted by H (P ) and the Kullback Leibler (KL)
divergence is denoted by DKL (P∥Q). The notation P ≪ Q
indicates that P is absolutely continuous with respect to Q.

The tuple
(
WY |X ,X ,Y

)
defines a memoryless channel

with input alphabet X , output alphabet Y and a transi-
tion kernel WY |X . Throughout the paper, we assume that
X = {0, 1}. For a memoryless channel, we denote its
input distribution by PX = PXi for all i ∈ Z. The
tuple

(
WY ∥X ,X ,Y

)
defines a time invariant channel with

memory, where WY ∥X =
{
WY0|Y −1

−i+1,X
0
−i+1

}
i∈N

. The term

WY N∥XN =
∏N

i=1WY0|Y −1
−i+1,X

0
−i+1

denotes the probability
of observing Y N causally conditioned on XN [8]. The sym-
metric capacity of a channel is denoted by I (W ). We denote
by DM,N = {xj,i, yj,i}j∈[M ],i∈[N ] ∼ PXMN ⊗WY MN∥XMN

a finite sample of pairs of input-output vectors for M consec-
utive blocks of N symbols, where xj,i, yj,i denotes the i-th
input and output of the j-th block.

A. Polar Codes for Symmetric Channels

Let GN = BNF
⊗n be Arikan’s polar transform with the

generator matrix for block length N = 2n for n ∈ N. The
matrix BN is the permutation matrix associated with the bit-
reversal permutation. It is defined by the recursive relation
BN = RN (I2 ⊗ BN

2
) starting from B2 = I2. The term

IN denotes the identity matrix of size N and RN denotes a

permutation matrix called reverse-shuffle [1]. The term A⊗B
denotes the Kronecker product of A and B when A,B are
matrices, and it denotes a tensor product whenever A,B are
distributions. The term A⊗N := A ⊗ · · · ⊗ A denotes an
application of the ⊗ operator N times.

We define a polar code by the tuple(
X ,Y,W,EW , F,G,H

)
that contains the channel W ,

the channels embedding EW and the core components of the
SC decoder, F,G,H . We define the effective bit channels by
the tuple

(
W

(i)
N ,X ,X i−1 × YN

)
for all i ∈ [N ]. The term

EW : Y → E denotes the channel embedding, where E ⊂ Rd.
For example, for a memoryless channel W :=WY |X , a valid
choice of EW , as used in the remainder of this paper, is
given by the following:

EW (y) = log
W (y|1)
W (y|0) + log

PX (1)

PX (0)
, (1)

where the second term in the right-hand-side (RHS) cancels
out in the case where PX is uniform.

The functions F : E × E → E , G : E × E × X → E
denote the check-node and bit-node operations, respectively.
We denote by H : E → [0, 1] a mapping of the embedding
into a probability value, i.e. a soft decision. For the choice of
EW in (1), F,G,H are given by

F (e1, e2) = 2 tanh−1
(
tanh

e1
2
tanh

e2
2

)
,

G(e1, e2, u) = e2 + (−1)ue1,
H(e1) = σ(e1), (2)

where σ(x) = 1
1+e−x is the logistic function and e1, e2 ∈

E , u ∈ X . For this choice, the hard decision rule h :
[0, 1] → X is the round function h(l) = Il>0.5, where
I is the indicator function. Applying SC decoding on the
channel outputs yields an estimate of the transmitted bits
and their corresponding posterior distribution [1]. Specifi-
cally, after observing yN , SC decoding performs the map
(yN , fN ) 7→

{
ûi, PUi|Ui−1,Y N

(
1|ûi−1, yN

)}
i∈[N ]

, where fN

are the frozen bits that are shared between the encoder and the
decoder. That is, fi ∈ {0, 1} if i ∈ [N ] is frozen, and fi = 0.52

if i is an information bit. This mapping is denoted by
{
ûi, PUi|Ui−1,Y N

(
1|ûi−1, yN

)}
i∈[N ]

= SCdecode

(
yN , fN

)
.

(3)
For more details on SC decoding, the reader may refer to [1,
Section VIII].

B. Neural Successive Cancellation Decoder

A NSC decoder [5] is defined by the tuple(
X ,Y,W,EW

θ1
, Fθ2 , Gθ3 , Hθ4

)
, where EW

θ1
, Fθ2 , Gθ3 , Hθ4 are

NNs with parameters θi ∈ Θ ⊂ Rp in a compact space Θ.
For simplicity, we denote θ = {θ1, θ2, θ3, θ4}. The parameters
θ are estimated in a training phase, in which the MI of
the effective bit channels is estimated. The training phase
includes the following steps. First, draw xN , yN ∼ DM,N and

2The value 0.5 is chosen arbitrarily to indicate that the bit needs to be
decoded.
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compute uN = xNGN . Next, the functions EW
θ , Fθ, Gθ, Hθ,

are used to decode uN with the SC decoding scheme, i.e. by
applying SCdecode

(
yN , fN

)
with fN = uN . This yields in

an estimate of
{
PUi|Ui−1,Y N

(
1|ui−1, yN

)}
i∈[N ]

denoted by{
P θ
Ui|Ui−1,Y N

(
1|ui−1, yN

)}
i∈[N ]

. Finally, θ is optimized by

the negative-log-loss (NLL) via stochastic gradient descent
(SGD), as given by:

min
θ∈Θ
− 1

M

M∑

i=1

logP θ
Ui|Ui−1,Y N

(
ui|ui−1, yN

)
. (4)

In [5, Algorithm 2], the authors showed a recursive formula
for the computation of the NLL. Let

L = NSCTrain
(
eN , uN

)
, (5)

where ei = EW
θ (yi), denote the computation of the NSC loss.

Also, the authors of [5] showed that the NSC decoder is a
consistent estimator of the theoretical polar decoder whenever
W is a FSC.

III. DATA-DRIVEN POLAR CODES FOR ASYMMETRIC
SOURCES

This section describes how to extend the data-driven polar
decoder in Section II-B to the case where the input distribution
is not necessarily symmetric. Specifically, it starts with a
brief description of the Honda-Yamamoto scheme [7]. Then,
it extends the data-driven polar decoder to accommodate
asymmetric input distributions by incorporating this scheme
in Section III-B.

A. Honda-Yamamoto Scheme for Asymmetric Channels

The Honda-Yamamoto scheme [7] generalizes polar coding
for asymmetric input distributions. Here, the polar decoder is
applied twice: first, before observing the channel outputs and
second, after observing the channel outputs. An equivalent
interpretation is that the first application of SC decoding is
done on a different channel whose outputs are independent
of its inputs. Indeed, in this case, as given in (1), the first
term of the RHS cancels out, and it follows that the channel
embedding are constant for all y ∈ Y . Thus, for the first
application of SC decoding, we denote the constant input
embedding by EX (rather than EW ). The second application
of SC decoding follows the same procedure as in the case of
symmetric channels.

Accordingly, a polar decoder with non symmetric input dis-
tribution is defined by the tuple

(
X ,Y,W,EX , EW , F,G,H

)
.

Here, we add the input embedding EX to the definition, where
EX(y) is constant for all y ∈ Y . An important observation is
that the functions F,G,H are independent of the channel, i.e.
both applications of SC decoding (before and after observing
the channel outputs) share the same functions F,G,H .

B. Honda-Yamamoto Scheme for Data-Driven Polar Decoders

This section considers two issues. The first is the choice
of an input distribution. This is addressed by employing
algorithms for capacity estimation [9], [10]. The second issue

Algorithm 1 Data-driven polar code design for channels with
memory and non-i.i.d. input distribution
input: Input distribution PXN , Channel WY N∥XN , block
length nt, #of info. bits k
output: Optimized eXθ , E

W
θ , Gθ, Fθ, Hθ

Initiate the weights of eXθ , E
W
θ , Gθ, Fθ, Hθ

N = 2nt

for k = 1 to Niters do
Sample xN , yN ∼ PXN ⊗WY N∥XN

uN = xNGN

Duplicate eXθ to eNX
Compute eNY by ei = EW

θ (yi)
Compute LX by applying NSCTrain

(
eNX , u

N , 0
)

Compute LY by applying NSCTrain
(
eNY , u

N , 0
)

Minimize LX + LY w.r.t. θ.
end for
return Optimized θ

addresses the construction of a NSC decoder that is tailored
for stationary input distributions.

For the choice of the input distribution, we employ a recent
method for the optimization of the directed information neural
estimator (DINE), as presented in [10]. Therein, the authors
provide an reinforcement learning (RL) algorithm that uses
DINE to estimate capacity achieving input distributions. The
input distribution is approximated with an recurrent neural
network (RNN) with parameter space denoted by Π. Let Pπ

X
be the estimated capacity achieving input distribution. Thus,
by application of [10, Algorithm 1], we obtain a model of Pπ

X
from which we are able to sample the channel inputs.

Extension of the NSC decoder to PXN (that is not uni-
form and i.i.d.) involves introducing additional parameters,
that we denote by θ5 ∈ Θ. Accordingly, we denote the
set of the channel embedding by θ1, θ5, where θ5 denotes
the parameters of EX and θ1 are the parameters of EW .
We define EX

θ : Y → Rd as a constant RV that satisfies
EX

θ (y) = eX ∈ Rd for all y ∈ Y . Accordingly, the NSC in
this case is defined by EX

θ , E
W
θ , Fθ, Gθ, Hθ. Thus, the NSC

decoder needs to be updated in order to optimize EX
θ as well.

This is addressed by first applying the NSC with inputs eNX
to compute P θ

Ui|Ui−1 , where eNX ∈ Rd×N is a matrix whose
columns are duplicates of eX . Second, the NSC is applied with
eNY to compute P θ

Ui|Ui−1,Y N , where eNY ∈ Rd×N is a matrix
whose i-th column is EW

θ (yi).

The training procedure admits the following steps. First,
the channel inputs and outputs are sampled by xN , yN ∼
Pπ
XN ⊗ WY N∥XN . Then, the values of uN = xNGN are

computed, and form the labels of the algorithm. Next, the
channel statistics eNY are computed and the input statistics are
duplicated to obtain eNX . The next step is to apply the NSC-
Train procedure twice, i.e.

LX = NSCTrain(eNX , u
N ) (6)

LY = NSCTrain(eNY , u
N ), (7)

which are minimized via SGD, as shown in Algorithm 1.
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IV. LIST DECODING OF DATA-DRIVEN POLAR CODES

In this section, we delve into the concept of list decoding
for polar codes and discuss its integration into our data-driven
polar codes. To this end, the NSC is benchmarked against
two ground truth decoding methods: the SC decoder and the
SCT decoder, depending on the presence or absence of chan-
nel memory. Notably, contemporary algorithms predominantly
utilize the list decoding technique, known for its improved
performance compared to the conventional SC algorithm. Con-
sequently, to enable the NSC decoder to compete with state-
of-the-art algorithms, this section incorporates list decoding
with the NSC decoder.

A. SC List Decoder

To enhance the error correction performance of polar codes,
especially with codes of moderate lengths, the SCL decoding
algorithm was introduced in [6]. The fundamental concept
behind list decoding lies in leveraging the structured nature of
the polar transformation. Instead of relying solely on a single
SC decoder, the SCL decoder concurrently decodes multiple
codeword candidates. This is achieved by applying multiple
SC decoders over the same channel’s outputs, with the number
of these decoders denoted as the list size L.

The SCL decoder generates a list of potential codewords,
each ranked by its likelihood of being the transmitted message.
Subsequently, this list undergoes a refining process to identify
the most likely original message. To achieve this, the SCL
algorithm estimates each bit’s value (0 or 1) while considering
both possibilities. At each estimation step, the number of
codeword candidates (also referred to as paths) doubles. To
manage the algorithm’s complexity, it employs a memory-
saving strategy by retaining only a limited set of L codeword
candidates at any given time. Consequently, after each estima-
tion, half of the paths are discarded. To determine which paths
to retain, a path metric (PM) is associated with each path. This
metric is continuously updated with each new estimation and is
computed via the log-likelihood ratios (LLRs). The algorithm
maintains the L paths with the lowest path metrics, allowing
them to persist and continue the decoding process.

B. NSC List Decoder

Here we highlight that the concept of list decoding can be
integrated into our data-driven polar codes. Recall that the
NSC decoder uses the same structure as the SC decoder and
the SCT decoder, with the only distinction being the replace-
ment of elementary operations with NN. Accordingly, we can
seamlessly incorporate the list decoding concept into the NSC
decoder. Specifically, since the NSC decoding algorithm can
estimate the LLRs at the decision points, we can leverage
them to compute the PM and follow the same SCL decoding
procedure.

C. Computational Complexity

The standard SC algorithm has a computational complexity
of O (N log(N)), whereas the SCT algorithm’s computa-
tional complexity is O

(
|S|3N log(N)

)
. In the context of

list decoding, a technique based on leveraging the memory
sharing structure among the candidate paths was introduced
in [6]. This technique demonstrates that the SCL decoder
can be implemented with a computational complexity of
O (LN log(N)). When applying the same technique to the
SCT algorithm with list decoding, it follows directly that the
computational complexity increases to O

(
L|S|3N log(N)

)
.

The following theorem examines the computational com-
plexity of the NSC list decoder for the case where
Eθ, Fθ, Gθ, Hθ are NNs with k hidden units and the embed-
ding space satisfies E ⊂ Rd. Due to space limitation, the proof
is omitted.

Theorem 1. Let Eθ, Fθ, Gθ, Hθ be NNs with k hidden units
and let E ⊂ Rd. Then, the computational complexity of NSC
list decoding is O (LkdN log2N).

The main purpose of Theorem 1 is to facilitate a comparison
between the NSC list decoder and SCT list decoder. Note
that the computational complexity of the SCT list decoder,
as previously mentioned, scales with the memory size of the
channel O

(
L|S|3N logN

)
. This highlights a key advantage

of the NSC list decoder since its computational complexity
remains independent of the channel’s memory size.

V. EXPERIMENTS

This section presents experiments designed to evaluate
the performance of our proposed algorithms. It begins with
asymmetric channels in Section V-A and continues with
list decoding in Section V-B. In all experiments, the NNs,
Fθ, Gθ, Hθ, E

X
θ , E

W
θ , are implemented by two layered fully-

connected NNs with 50 hidden units per layer.

A. Asymmetric Channels

In this section, we conduct experiments to evaluate our
methodology for designing polar codes tailored to asym-
metric channels. As an example of a memoryless channel,
we consider the non-symmetric BEC, as defined in [11].
This channel is defined by two erasures probabilities, ϵ0, ϵ1,

4 6 8 10
10−3

10−2

10−1

n

B
E

R

SC-HY
NSC-HY

4 6 8 10
10−3

10−2

10−1

n

SCT-HY
NSC-HY

Figure 1: These figures compare the bit error rates (BERs)
attained by the Honda-Yamamoto scheme (SC-HY) and its
extension to the NSC decoder (NSC-HY). The left and right
figures show the results on an asymmetric binary errasure
channel (BEC), and the Ising channel, respectively.
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Figure 2: These figures compare the FERs attained by the the
SCL decoder and its extension the NSC decoder (NSCL). The
left figure shows the results on an binary-input AWGN channel
with signal-to-noise ratio (SNR) of 1.5, and the right figure
shows the results on the Ising channel.

namely the probabilities for an erasure of the “0” symbol
and the “1” symbol, respectively. Accordingly, W (x|x) =
1 − ϵx, W (?|x) = ϵx for x ∈ {0, 1}. Similar to [11], we
choose ϵ0 = 0.4 and ϵ1 = 0.8159.

As an instance of a channel with memory, we choose the
Ising channel that was introduced in [12], which belongs to
the family of FSCs, and therefore, its optimal decoding rule is
given by the SCT decoder. This channel is defined by Y = X
or Y = S with equal probability, and S′ = X , where X is the
channel input, Y is the channel output, S is the channel states
at the beginning of the transmission and S′ is the channel’s
state at the end of the transmission.

Figure 1 compares the BERs obtained via the extension of
the Honda-Yamamoto scheme, as described in Section III, and
by the optimal decoding rule of the Honda-Yamamoto scheme.
The left figure compares the result on the asymmetric BEC, a
memoryless channel, and the right figure compares the results
on the Ising channel, a FSC.

B. List Decoding

In this Section, we demonstrate the performance of NSC list
decoder compared to the SCL decoder. As an example of a
memoryless channel, we consider the additive white Gaussian
noise (AWGN) channel. The AWGN channel is defined by
the following relation Y = X + N , where X is the channel
input, Y is the channel output, and N ∼ N (0, σ2) is an
i.i.d. Gaussian noise. In our experiments σ2 = 1.5. Figure 2
illustrates the frame error rates (FERs) obtained via the SCL
decoder with the FERs obtained via the NSC list decoder as
a function of the list size L. The left figure demonstrates the
results for the AWGN channel while the right figure compares
the results for the Ising channel. As can be seen in the figures,
the NSC list decoder indeed converges to the ground truth SCL
decoder for both channels.

VI. CONCLUSIONS

This paper presents pivotal extensions to data-driven polar
decoder, addressing two critical applications: list decoding

and adaptation to asymmetric input distributions. These en-
hancements are essential steps towards realizing data-driven
codes that achieve channel capacity and excel at moderate
block lengths. By seamlessly integrating list decoding, we
effectively mitigate error propagation issues inherent to SC
decoding, improving the practical performance of polar codes.
Simultaneously, our incorporation of the Honda-Yamamoto
scheme enables these codes to adapt to non-uniform input
distributions in a computationally efficient manner, without
the need for explicit channel model. Our numerical results
validate the effectiveness of these contributions, establishing
data-driven polar codes as robust and versatile coding solutions
adaptable to diverse channel conditions.
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Abstract—Recent experiments have shown that the capacity of
DNA storage systems may be significantly increased by synthe-
sizing composite DNA letters. In this work, we model a DNA
storage channel with composite inputs as a multinomial channel,
and propose an optimization algorithm for its capacity achieving
input distribution, for an arbitrary number of output reads.
The algorithm is termed multidimensional dynamic assignment
Blahut-Arimoto (M-DAB), and is a generalized version of the
DAB algorithm, proposed by Wesel et al. [1] developed for the
binomial channel. We also empirically observe a scaling law
behavior of the capacity as a function of the support size of
the capacity-achieving input distribution.

I. INTRODUCTION

DNA storage [2], [3] is an emerging technology that in-
volves converting digital information into nucleotide sequences
with quaternary encoding, represented by the letters A, C,
G, and T . The sequence, known as a strand, is written via
synthesis and is read via sequencing. An intriguing aspect
of this process is the generation of multiple copies of the
same strand during the synthesis process. In this paper, we
focus on one approach to harnessing this redundancy, achieved
by introducing the concept of composite DNA letters [4]–
[8]. These composite letters consist of different mixtures
of nucleotides, and have been successfully utilized in data
encoding experiments [4], [5], [8]. In theory, using composite
DNA letters can dramatically increase the capacity of the DNA
storage channel, since while the capacity of simple 4-letter
DNA encoding is bounded by log(4) = 2 bits per channel
use, the capacity of composite DNA encoding is unbounded.
Furthermore, the larger capacity enables encoding data in
shorter strands, which is particularly effective in DNA storage,
due to the high cost of the synthesis process [5], and the nature
of the process, in which the error probability increases as the
strand gets longer [9].

The process of writing a composite letter and randomly
reading n copies can be modeled as the operation of a noisy
channel. In this channel, the input is a probability vector of
length k = 4 (in the case of DNA letters), which represents
a mixture of nucleotides. The channel output is distributed as
a multinomial random variable, with n event trials and event
probabilities given by the input vector. The input represents
the expected frequency of occurrences of each of the four
nucleotides in the n output copies. We thus refer to this
channel as the multinomial channel. The maximal storage rate
of information possible over this channel is the capacity of
the channel. As is well-known [10], the capacity is obtained

by maximizing the mutual information between the input
and output of the channel, over all feasible choices of input
distributions, that is, distributions over the (k−1)-dimensional
probability simplex.

In this paper, we consider the problem of determining the
capacity-achieving input distribution (CAID) when the number
of reads n is finite. Since the output alphabet of this channel is
discrete, there exists a CAID with support of finite cardinality.
Thus, the CAID can be parameterized by a finite set of
points in the (k−1)-dimensional simplex (locations) and their
respective probabilities (weights). If one then further fixes the
locations, then the channel is reduced to a discrete memoryless
channel (DMC), and the optimal probabilities can be computed
by the Blahut-Arimoto algorithm [11]. Consequently, the main
computational challenge is to identify the optimal locations in
the (k − 1)-dimensional simplex.

Previous works have addressed this challenge for the special
case of k = 2, known as the binomial channel [12], and for a
variation of it called the particle-intensity channel [13]. These
works introduce an algorithm for finding the CAID, termed
the Dynamic Assignment Blahut-Arimoto (DAB) algorithm
[1]. In this paper, we propose a generalization of the DAB
algorithm, which finds the CAID for the multinomial channel
(k > 2). We focus on the challenges associated with the
multidimensionality of the channel symbols, and refer our
algorithm as the multidimensional dynamic assignment Blahut-
Arimoto (M-DAB). Using M-DAB, we compute the CAID
for various values of n. These CAIDs can directly be used
in coded DNA storage systems to obtain improved coding
rates. In addition, we evaluate the cardinality of the support of
the CAID as a function of the mutual information. We show
that this cardinality matches the scaling law behavior, recently
conjectured in [14].

This paper is organized as follows. Section II defines the
multinomial channel and the optimization problem. Section III
studies properties of the multinomial channel CAID, which
be later used in our algorithm. Section IV introduces the
DAB algorithm as preliminary work and presents the M-DAB
algorithm including the challenges associated with multidi-
mensional inputs. Section V shows the achieved CAID and
corresponding channel capacities. Lastly, in Section VI we
discuss open problems. Due to limited space, full proofs can
be found in the extended version [15].
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II. MULTINOMIAL CHANNEL PROBLEM DEFINITION

In this section, we formally define the multinomial channel
and the resulting CAID optimization problem. The multino-
mial channel input alphabet is the (k − 1)-dimensional prob-

ability simplex, given by ∆k := {x ∈ Rk
+ |

k∑
i=1

xi = 1}. The

multinomial channel n-output alphabet is the set of all multi-
sets with cardinality n over [k], given by Yn,k := {y ∈ Zk

+ |
k∑

i=1

yi = n}, whose cardinality satisfies |Yn,k| =
(
n+k−1
k−1

)
. For

a given input x ∈ ∆k, the output of the multinomial channel is
given by Y ∼ Multinomial(n, x), that is, given input x ∈ ∆k

the output y ∈ Yn,k obeys the following transition probability

P
(n,k)
Y |X (y|x) = n!

∏k
j=1 yj !

k∏

j=1

x
yj

j .

The channel is referred to as binomial if k = 2. Hence, if
the input is a composite letter x ∈ ∆k, then the expected
number of times that the i-th alphabet letter appears in the
output strand is nxi. We remark that this channel only models
the randomness in the output due to sampling of the input,
but does not model additional noise in the reading process.
If the reading process can be modeled as a symmetric DMC,
with a total flip probability of ϵ (thus ϵ

k−1 to each of the other
k−1 letters), then the result is simply a Multinomial(n, x∗ϵ)
channel, where

(x ∗ ϵ)i := xi(1− ϵ) + ϵ(1− xi) for all i ∈ [k].

It is thus straightforward to extend our algorithm and results
to this case too. For convenience, we henceforth consider the
noiseless channel.

Our main objective is to find the CAID of the multinomial
channel, i.e., to find the input distribution that maximizes the
mutual information. Let Fk be the set of all input distributions
supported on the input alphabet ∆k. Specifically, we aim to
solve the following optimization problem of the CAID of the
multinomial channel:

Cn,k := max
fX∈Fk

I(X;Y ). (1)

Alternatively, the dual problem to (1), also known as the
Csiszár minimax capacity theorem [16], is given by

Cn,k = min
PY

max
x∈∆k

D(PY |X=x||PY ), (2)

where D(·||·) denotes the Kullback–Leibler (KL) divergence,
and PY is a distribution over Yn,k.

III. PROPERTIES OF THE CAPACITY-ACHIEVING INPUT
DISTRIBUTION

For any finite n, there is no analytical solution for the
capacity and CAID of the multinomial channel. Thus, we
next derive a few properties of this CAID, which will be
useful later on, e.g., in reducing the size of the optimization
input space. Interestingly, the same capacity arises in universal
coding [17], where it has been demonstrated that the CAID

is asymptotically proportional to Jeffrey’s prior [18], and the
following asymptotic expression holds [19]

lim
n→∞

(
Cn,k −

k − 1

2
log
( n

2πe

))
= log

(
Γk(1/2)

Γ(k/2)

)
, (3)

where Γ(z) :=
∫∞
0
e−ttz−1dt is the Gamma function.

The first property shows that the CAID can be atomic with
finite support. We modify the result of [20], which was proven
using Dubins’ theorem [21]:

Lemma 1. Consider a channel, with an input X taking values
in ∆k for some k > 1, and a discrete finite output alphabet Y .
Assume the transition probability distribution function x →
PY |X(y|x) is continuous for each y ∈ Y . Then, there exists a
CAID supported on less than |Y | points in ∆k.

Corollary 1. There is a CAID with finite support size m ≤
|Y(k, n)|. The corresponding input distribution is given by

f∗X(x) =

m∑

i=1

p∗i δ(x− x(i)), (4)

and δ(x) is the Dirac delta function. That is, f∗X(x) is an
atomic distribution.

The second property pertains to the set of input symbols at
the vertices of the simplex. In the context of DNA encoding,
the vertices symbols are the non-composite letters.

Lemma 2. Cn,1 is achieved by a uniform distribution on the
k vertices of ∆k.

This property allows us to use the CAID for n = 1 as
an initialization to our search. The third property pertains
to the symmetry of the CAID with respect to (w.r.t.) the
input alphabet. For the binomial channel (k = 2), a simple
symmetry argument combined with the concavity of the mutual
information w.r.t. the input distribution implies that the set
of distributions satisfying fX((x, 1 − x)) = fX((1 − x, x))
includes a CAID. The generalized property for the multinomial
channel is more involved, and is given as follows.

Definition 1. Let Sk be the set of all bijections from [k] to
itself (the symmetric group over [k]). An input distribution
fX(x) is said to be invariant under input dimension permu-
tation (IDP) if fX(x) = fX(π(x)) for any x ∈ ∆k and any
π ∈ Sk.

Lemma 3. There exists a CAID that is invariant under IDP.

The above properties allow us to reduce the search
space for a CAID from all possible distributions on ∆k

to the subset of input distributions that are finitely sup-
ported with at most m atoms and which are invariant under
IDP. Thus, we will search a CAID over distributions sup-
ported on the (k − 1)-dimensional ordered simplex ∆≥

k :=
{x ∈ ∆k | x0 ≥ x1 ≥ · · · ≥ xk−1 ≥ 0}, such that the input
distribution fX corresponding to a distribution f̃X supported
on ∆≥

k is given by

fX =
1

k!

∑

π∈Sk

f̃π(X). (5)
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IV. MULTIDIMENSIONAL DYNAMIC ASSIGNMENT
BLAHUT-ARIMOTO

Our proposed algorithm M-DAB generalizes the DAB al-
gorithm, which finds the CAID for the multinomial channel,
rather than for the binomial channel. The main novelty of M-
DAB is the handling of the multiple dimensions of the multi-
nomial channel. To present M-DAB, we first briefly review
algorithms for the binomial channel [12], and specifically the
DAB algorithm.

A. Preliminaries: Algorithms for the Binomial Channel

In [12], it was suggested to solve the dual problem (1)
using the ellipsoid method [22]. However, [1] reported that
this method converges slowly, even with well-chosen initial
conditions. The DAB algorithm was developed to overcome
this. Subsequently, [13] further improved and utilized it to find
a CAID of the particle-intensity channel.

The DAB algorithm can be thought of as a primal-dual
alternating optimization algorithm, in which the weights and
locations of the CAID (4) are alternatively updated via the
primal and dual problems. Specifically, the dual problem
is used to update the locations, and the main idea is that
given PY , adding a point in the location of the maximizer
xmax ∈ ∆k tends to reduce the dual objective in (2). The
DAB algorithm for the CAID of Cn,k=2 is as follows:

0) Initialize the locations of fX as the locations of the CAID
of Cn−1,k=2.

1) Run the Blahut-Arimoto algorithm on the current loca-
tions to optimize the weights, obtain an input distribution
fX , and compute the value of the primal objective (1).
Also compute the output distribution PY .

2) Using PY , find the maximizer xmax ∈ ∆k of the KL
divergence in (2).

3) Find the nearest mass point xclosest in fX to xmax.
4) Determine whether to add a point to the support of fX .
5) Move xclosest in the direction of xmax and compute the

value of the dual objective function (2).
6) Stop if the primal and dual are ϵ-close. Otherwise Jump

to step 1.

B. Overview of the M-DAB Algorithm

The M-DAB algorithm (Algorithm 1) is based on the steps
of the DAB algorithm. The CAID optimization for Cn,k is
initialized with the mass points from the CAID of Cn−1,k,
and for C1,k the vertices of the simplex are used, as suggested
by Lemma 2. An important operation of M-DAB is Reduce-
ToOrderedSimplex (row 1), which reduces the search space to
the ordered simplex by simply removing all the mass points
outside the ordered simplex. Whenever a computation requires
the full input distribution (rows 3, 4, 5 and 15), we use the
expansion operation Expand which creates the full simplex
from the ordered simplex by inserting all the permutations as
suggested in (5).

At each iteration we use the Blahut-Arimoto algorithm
(row 3) over the current locations, in order to get the corre-
sponding weights, which together with the locations uniquely

Algorithm 1 M-DAB

Input: x = (x(1), x(2), . . . , x(m)), n, ϵ.
Output: x = (x(1), x(2), . . . , x(m

′)),p = (p1, p2, . . . , pm) st.
I(x,p) ≥ C − ϵ.

1: x← ReduceToOrderedSimplex(x)
2: while True do
3: p← BlahutArimoto(Expand(x))
4: I ← I(Expand(x),p)
5: D,xmax ← max

x∈∆
≥
k

D(PY |X=x||PY (Expand(x),p))

6: if D − I ≤ ϵ then
7: return Expand(x),p.
8: end if
9: dx, xclosest ← min

x
D(x||xmax)

10: dv, vclosest ← min
v∈V ertices

D(v||xmax)

11: if dx > dv then
12: x← AddPoint(x, vclosest)
13: else
14: g← CreateDirectionV ector(x, xclosest, xmax)
15: δmax ← max

δ
I (Expand(x+ δg))

16: x← x+ δmaxg
17: end if
18: end while

determine the input distribution fX . The input distribution,
together with the channel transition probabilities, are then used
to calculate the mutual information (row 4) and the output
distribution PY . Next, we search for the symbol xmax, which
maximizes the KL divergence between its output distribution
and PY (row 5). The maximum divergence D is the value of
the dual function, and thus it is an upper bound for the capacity.
The algorithm will continue until the mutual information is ϵ
close to the upper bound (row 6).

The next steps involve adjusting our guess based on xmax,
by checking which mass point is closest to xmax using the
KL divergence as a distance measure (row 9). In case that one
of the vertices of the ordered simplex is closer (row 10), this
point is added (row 12), using the AddPoint operation, which
simply inserts the point to x. Otherwise, we need to adjust the
closest mass point xclosest. For simplicity, we represent the set
x as a vector. The operation CreateDirectionVector (row 14)
is used to create the direction vector g, which is 0 for any x
that is not xclosest, and there it equals xmax − xclosest. Then,
the algorithm uses a line search (row 15) to find the optimal
adjustment step δ, and uses it to adjust the locations (row 16).

C. A Generalization to Higher Input Dimensions

We next emphasize how the multidimensionality k > 2
affects the steps made in the DAB algorithm, and what
modifications were needed.

Initialization and Step 0: We first harness the symmetry
assured by Lemma 3 to reduce the search space. In the
binomial channel case, the DAB algorithm utilizes the apparent
symmetry between inputs x ∈ [0, 1] and 1 − x ∈ [0, 1] and
adjusts the locations in pairs. M-DAB further expands this
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symmetry, to make use of all the permutations, and reduce
the search space from ∆k to ∆≥

k (row 1), thus reducing
the number of the optimized location parameters. The dis-
tribution supported on ∆≥

k is symmetrically expanded to an
input distribution on ∆k as in (5), and the latter is used
to compute the mutual information, for running the Blahut-
Arimoto algorithm, for computing the output distribution, and
for finding the maximizer of the KL divergence (rows 3, 4 and
5). This process is equivalent to changing the initialization of
Step 0 to use only the CAID mass points supported on ∆≥

k . We
also mention that the dependence of each run of the algorithm
on an initialization based on previous runs causes the error
to accumulate. Step 6 includes a threshold, ϵ, such that the
algorithm continues until the mutual information is ϵ-close to
the upper bound (row 6). This threshold affects whether the
initialization will be sufficient or not for larger values of n.

Step 1: This step is similar to the DAB algorithm.

Step 2: This step is challenging in M-DAB since it requires a
more complicated multidimensional maximization, compared
to a simple line search for k = 2. Moreover, the bounds of the
maximization problem, i.e., the edges of the ordered simplex,
tend to behave as a small scale of the original problem. In
order to address these challenges we use known the simplicial
homology global optimization (SHGO) algorithm [23], with
sampling using the Sobol sequence [24].

Step 3: The DAB algorithm finds the closest mass point to
the global maximum, and this point is later used in Step 4 and
Step 5. This method works well for the binomial case, but in
the multinomial case, we experimentally observed iterations in
which adjusting the closest point in the direction of the max-
imum does not increase the value of the mutual information.
Moreover, DAB does not adjust the vertices {0, 1}, even if they
are the closest ones [1]. Later, [13] suggested to constrain the
search of the closest points to the interval bounded by xmax

and 0.5. We thus conclude that the Euclidean distance is not
necessarily the most efficient distance measure, and modify the
M-DAB algorithm to use the KL divergence as the distance
measure (row 9). The KL divergence is empirically better,
and appears to be a natural measure in this scenario, as we
would like to find which input is more likely to be interpreted
as the global maximum. Figure 1 illustrates such a case.
During the first iteration of the algorithm for Cn=7,k=3 we
find the maximum in (0.616, 0.192, 0.192) while the nearest
point using the Euclidean distance is (0.682, 0.318, 0). This
point is on the edge of the simplex, and trying to adjust it is
not beneficial, so the algorithm will not converge.

Step 4: The M-DAB algorithm decides whether to add a
mass point or not. For k = 2 , DAB adds points either at x =
0.5, or by splitting this point. For the multidimensional case, a
new mass point may be required in any of the vertices of ∆≥

k

(rows 10, 11 and 12), whereas in the binomial case, the vertices
{0, 1} are always occupied. Moreover, M-DAB algorithm adds
a new mass point to the input distribution implicitly whenever
a point moves from one of the symmetry axes.

Figure 1: The first iteration of the M-DAB algorithm for
Cn=7,k=3. The simplex is an equilateral triangle, and the
ordered simplex is a right-angled triangle on the bottom-left.
There are 3 mass points in the ordered simplex (blue ’o’). The
color bar represents the KL divergence value in each point in
the simplex, and the maximizer is marked with purple ’x’.

Figure 2: The capacity achieved for Cn,k=4. In blue, our
method M-DAB, and in purple, the method used in [5]. In
black are the upper bounds on any base 4 and 15 encoding.

V. RESULTS

In this section, we present empirical results of the M-
DAB algorithm. Specifically, for the case k = 4 suitable
for our DNA storage motivation, the mass points locations
and weights are available in the extended version [15]. These
CAIDs can be used in future experiments and systems of
composite DNA storage. In Figure 2, the capacity is achieved
by running M-DAB for k = 4. We compare the mutual
information achieved by M-DAB to the naive method of
using only the uniform composite (1, 0, 0, 0), (0.5, 0.5, 0, 0),
(0.25, 0.25, 0.25, 0.25) and (0.333, 0.333, 0.333, 0), proposed
in [5]. Considering the critical number of copies where our
result surpasses other methods, using composite letters is not
beneficial only for n = 1. Thus, composite letters are strictly
better than using ordinary DNA encoding whenever the output
strands are redundant, i.e., n ≥ 2. The uniform composite is
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Figure 3: The capacity as function of the number of mass
points in the minimal support size CAID. The dimensions are
represented in different colors. A scaling law can be observed,
where the capacity behaves as a logarithm with a factor of 3

4 .

a CAID for small values of copies, the CAID obtained by
M-DAB is better for any n ≥ 5. Furthermore for any n ≥ 9
copies, the capacity of M-DAB surpasses the limit of any base
15 method (log(15) ∼ 3.907).

The capacity of the multinomial channel computed by the
M-DAB algorithm for finite n allows to compare it with
a scaling law recently found in [25] for the binomial and
Gaussian channels, which was conjectured to be universal in a
subsequent study [14]. The scaling law claims that the mutual
information I(X;Y ) for CAID supported on m atoms scales as
3
4 logm. Our method allows us to plot the capacity and support
size for different values of n, as a parametric curve (Figure 3).
Doing so we numerically validate the conjecture of [14], and
testify that M-DAB finds the CAID with the minimum number
of mass points.

VI. FUTURE RESEARCH

We have seen that the dimensionality of the input com-
plicates the design of the M-DAB algorithm compared to
the DAB algorithm. While the experimental results demon-
strate the effectiveness of M-DAB, theoretical convergence
guarantees are lacking. This is challenging since the M-DAB
algorithm optimizes the location of just one mass point at
each iteration, and so can be viewed as a coordinate descent
algorithm. The convergence analysis of such algorithms is not
always obvious. We notice that even for small values of n
(such as n = 9) the CAID requires several dozens of mass
points, and as suggested by the scaling law, the support size
scales exponentially as a function of the capacity. This might
be impractical to implement in DNA storage systems, since
any mass point requires a specific mixture of nucleotides, it
is desirable to use a minimal number of such mixtures. This
raises a natural and important follow-up problem, which is
to determine the CAID of the multinomial channel under a
constraint on the support size.
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Abstract—This paper investigates achievable information rates
in mismatched decoding when the channel is close to the decoding
rule in terms of relative entropy. We derive an approximation of
the worst-case generalized mutual information as a function of
the radius of a small relative entropy ball centered at the decoding
metric, allowing to characterize the loss incurred due to good,
yet imperfect channel estimation.

I. INTRODUCTION AND PROBLEM SETUP

Mismatched decoding is the problem that studies reliable
communication employing a fixed and possibly sub-optimal
metric for decoding. Mismatched decoding encompasses a
number of important problems such as channel uncertainty, bit-
interleaved coded modulation, finite-precision arithmetic and
zero-error communication [1]. The problem is described as
follows. Consider reliable transmission of M messages over
a discrete memoryless channel with input X and output Y ,
taking values from discrete alphabets X and Y , respectively.
The input distribution is denoted by QX(x) = Pr[X = x] for
all x ∈ X and the channel transition distribution is defined
as W (y|x) = Pr[Y = y|X = x] for all (x, y) ∈ X × Y .
For transmission, the encoder transmits the n-symbol code-
word x(m) = (x

(m)
1 , . . . , x

(m)
n ) corresponding to message

m = 1, . . . ,M from the codebook Cn = {x(i)}1≤i≤M . The
decoder receives y and estimates the transmitted message as

m̂ = argmax
1≤m̄≤M

n∏

j=1

q
(
x

(m̄)
j , yj

)
. (1)

When q(x, y) = W (y|x), the decoder is said to be matched
and coincides with maximum-likelihood decoding; in any other
case, the decoder is referred to as mismatched. An error is
declared when m̂ 6= m, and the probability of error for Cn is
defined as pe(Cn) = Pr[m̂ 6= m].

A number of achievable rates for mismatched decoding have
been derived in the literature [1]. When standard i.i.d. random
coding is employed, the corresponding rate is the generalized
mutual information (GMI) [2] given by

IGMI(QX) = sup
s≥0

EQX×W

[
log

q(X,Y )s

EQX
[q(X̄, Y )s|Y ]

]
. (2)

This work was supported in part by the European Research Council under
Grant 725411 and by the Spanish Ministry of Economy and Competitiveness
under Grant PID2020-116683GB-C22. Francesc Molina is also supported by
the Spanish Ministry of Universities through Margarita Salas Fellowship.

The GMI is known to be tight with respect to the ensemble of
i.i.d. codes [1]. In general, we have that IGMI(QX) ≤ CM,
where CM is the mismatch capacity. Although the GMI is
an achievable rate for arbitrary decoding metrics q(x, y), we
consider the case where the decoder metric is a channel
estimate Ŵ (y|x) corresponding to the output of a channel
estimator. We analyze the GMI for a mismatched decoder
that uses the channel estimate Ŵ (y|x) as if it were perfect.
We impose a constraint on the level of mismatch between
estimated and true channels by defining an appropriate distance
measure, and find the worst-case achievable rate for small
mismatch. Similarly to [3], for small mismatch between the
channel estimate Ŵ and the true channel W we require that

W ∈ B(QX , Ŵ , r) =
{
W : D(Ŵ‖W |QX) ≤ r

}
, (3)

where B(QX , Ŵ , r) is a relative entropy ball centered at Ŵ of
radius r, assumed to be small. This definition adopts a decoder-
centric perspective in which the ball is centered around the
known quantity, i.e., the channel estimate employed to decode.

One of the advantages of this formulation for sufficiently
small r is that we can resort to [4, eq. (1)–(4)] to express
the relative entropy as function of θ(y|x) ,W (y|x)−Ŵ (y|x)
minus a non-negative term of minor relevance, as

D(Ŵ‖W |QX) =

1

2

∑

x,y

QX(x)
θ2(y|x)

Ŵ (y|x)
− o
(∑

x,y

QX(x)
θ2(y|x)

Ŵ (y|x)

)
. (4)

Without loss of generality, we adopt throughout the paper
natural logarithms and information units in nats.

II. WORST-CASE GMI

In this section, we derive the worst-case GMI for small
mismatch. We begin by defining the mismatched information
density as

is(x, y) = log
Ŵ (y|x)s

EQX
[Ŵ (y|X)s]

, (5)

where s ≥ 0, for which the GMI can therefore be written as

IGMI(QX) = sup
s≥0

EQX×W [is(X,Y )]. (6)
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The worst-case GMI is defined as

IGMI(QX , Ŵ , r) = min
W∈B(QX ,Ŵ ,r)

sup
s≥0

EQX×W [is(X,Y )] (7)

where the minimization is over all valid conditional probability
distributions W in the relative entropy ball B(QX , Ŵ , r). Since
the true channel is unknown, the worst-case GMI problem (7)
finds the channel that gives the worst possible GMI. This gives
an indication of the loss incurred by good (but not perfect)
channel estimation.

Theorem 1. Consider a channel estimate Ŵ and fixed input
distribution QX . Then, for sufficiently small r ≥ 0, the worst-
case GMI is

IGMI(QX , Ŵ , r)

= sup
s≥0

IML
s (QX , Ŵ )−

√
2r · Vs(QX , Ŵ )− o(r) (8)

where the term o(r) is non-negative,

IML
s (QX , Ŵ ) = E

QX×Ŵ
[
is(X,Y )

]
, (9)

and

Vs(QX , Ŵ ) = EQX

[
Var

Ŵ
[is(X,Y )|X]

]
. (10)

Proof. The proof of Theorem 1 is provided in Appendix A;
only the main steps are outlined here. We minimize the dual
expression for GMI (7) dropping the o(·) term in (4) as [4],
thus obtaining an accurate upper bound on IGMI as r → 0. The
convex minimization problem is vectorized and then solved
using the standard Lagrangian method.

In addition, observe that for a fixed Ŵ the worst-case GMI
is upper bounded by the mutual information between input and
output achieved through estimated channel Ŵ with input QX :

IGMI(QX , Ŵ , r) ≤ sup
s≥0

IML
s (QX , Ŵ ) (11)

= IMI(QX , Ŵ ). (12)

Rates above this cannot be achieved. The bound is tight at r =
0, in which case W = Ŵ and IMI(QX ,W ) = IMI(QX , Ŵ ).

Corollary 1. Let the approximate worst-case GMI be

ĨGMI(QX , Ŵ , r) = sup
s≥0

IML
s (QX , Ŵ )−

√
2r · Vs(QX , Ŵ ).

(13)

Then, the minimizing channel transition distribution is

W̃ ∗GMI(y|x) = Ŵ (y|x)
(

1−
√

2r · ϕ(x, y, is)
)

(14)

with

ϕ(x, y, is) ,
is(x, y)− E

Ŵ
[is(x, Y )]√

Vs(QX , Ŵ )

. (15)

Observe that W̃ ∗GMI is only a valid conditional probability
distribution provided it is non-negative, for which the follow-
ing condition on the radius of the divergence ball must hold
for all (x, y) ∈ X × Y , everywhere Ŵ (y|x) > 0:

r <
1

2ϕ2(x, y, is)
. (16)

The condition is not restrictive for sufficiently small r and
values of s near the optimal one. Specific examples are shown
in the simulations.

Corollary 2. The approximate worst-case GMI can be lower-
bounded by setting s = 1 as

ĨGMI ≥ IMI(QX , Ŵ )−
√

2r · V1(QX , Ŵ ) ; (17)

a tight approximation to the worst-case GMI for sufficiently
small values of r. As r → 0, the penalty term shrinks
until the estimated channel mutual information IMI(QX , Ŵ )
is achieved, above which rates cannot be achieved.

A. Example: Symmetric Ŵ and Equiprobable QX

We derive the worst-case GMI for discrete and symmetric
estimated channels Ŵ and an equiprobable input distribution
QX(x) = |X |−1 (where |X | is the cardinality of the input
set). Due to the symmetry of Ŵ , previous expressions can be
further simplified and expressed using one of its rows that we
denote Ŵsym. The approximate worst-case GMI is given by

ĨGMI(QX , Ŵ , r) = sup
s≥0

{
log

|X |
∑

y Ŵsym(y)s
− sH(Ŵsym)

+

√
2r · Vs(QX , Ŵ )

}
(18)

with

Vs(QX , Ŵ ) = s2Var
Ŵsym

[log Ŵsym]

= s2
(
E
Ŵsym

[log2 Ŵsym]−H2(Ŵsym)
) (19)

and where

H(Ŵsym) = −
∑

y

Ŵsym(y) log Ŵsym(y) (20)

is the entropy of the probability mass function Ŵsym. Equation
(18) can be lower bounded by setting s = 1 to yield

ĨGMI(QX , Ŵ , r) ≥ C(Ŵ )−
√

2r · Var
Ŵsym

[log Ŵsym] (21)

where C(Ŵ ) , log |X |−H(Ŵsym) is the matched capacity of
(symmetric) DMC Ŵ .

B. Example: Ternary-Input Ternary-Output Ŵ

We compute the approximate worst-case GMI ĨGMI from
(13) for input distribution channel estimate Ŵ given by

QX =
[
0.3 0.3 0.4

]
(22)

Ŵ =




0.85 0.05 0.1
0.15 0.825 0.025
0.025 0.1 0.875


 . (23)
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Fig. 1. Achievable rates and approximations computed for fixed QX in (22)
and estimated channel Ŵ in (23).

We plot the approximation in Figure 1 along with the worst-
case GMI IGMI, numerically computed from (7) using an off-
the-shelf solver. To clarify notation, asterisks in superscripts
indicate optimal variables.
IMI(QX , Ŵ ) is shown by dashed line in Figure 1 for

reference; it is achievable as r → 0. We also plot the mutual
information IMI(QX , W̃

∗
GMI) of the channel from Corollary 1,

as well as that of the optimal channel W ∗GMI for the worst-case
GMI. For r > 0, the curves decrease rapidly from the reference
IMI(QX , Ŵ ). In particular, both the true and approximated
worst-case GMI decrease with an infinitely negative gradient
at r = 0. The mutual information for the worst-case channels
also exhibits similar behavior. This is because the most harmful
channel in the relative entropy ball is such that it causes the
GMI rate to decrease with an infinite slope. This shows that
even a small mismatch can have a significant impact on the
achievable transmission rates.

Our final comment is related to the validity of the approx-
imation. In the example reported in Figure 1, r = 0.52 is the
maximum radius limit at which W̃ ∗GMI and the corresponding
GMI remain positive. For all other channel estimates Ŵ we
considered, the limit is not restrictive for the range of validity
of the approximation, i.e., r < 0.01.

APPENDIX A
PROOF OF THEOREM 1

We formulate the problem based on the dual expression as

IGMI(QX ,Ŵ , r)

= min
W∈B(QX ,Ŵ ,r)

sup
s≥0

EQX×W [is(X,Y )] (24)

= sup
s≥0

min
W∈B(QX ,Ŵ ,r)

EQX×W [is(X,Y )] (25)

The minimax theorem [5] is applied to switch the order of
the optimizations from (24) to (25) since EQX×W [is(X,Y )]

is convex with respect to W and concave with respect to s [1,
Ch. 2.3], and constraints are convex in W .

The inner optimization problem can be vectorized and
rewritten in terms of the auxiliary vector

θ =
[
θ(y1|x1), . . . , θ(y|Y||x1), θ(y1|x2), . . . , θ(y|Y||x|X |)

]T
(26)

where θ(y|x) = W (y|x) − Ŵ (y|x). It follows that for
sufficiently small r

Is(QX , Ŵ , r)

= min
1
2θ

TK(Ŵ )θ−o(θTK(Ŵ )θ)≤r
1T
j θ=0, 1≤j≤|X|

{
IML
s (QX , Ŵ ) + θT∇Is

}

(27)

= min
1
2θ

TK(Ŵ )θ≤r
1T
j θ=0, 1≤j≤|X|

{
IML
s (QX , Ŵ ) + θT∇Is

}
− o(r) (28)

with

IML
s (QX , Ŵ ) = E

QX×Ŵ [is(X,Y )], (29)

K(Ŵ ) = diag

(
QX(x1)

Ŵ (y1|x1)
, . . . ,

QX(x|X |)

Ŵ (y|Y||x|X |)

)
, (30)

∇Is = [QX(x1)is(x1, y1), . . . , QX(x|X |)is(x|X |, y|Y|)]
T ,

(31)

1j = [0 . . . 0 1(1,j) . . . 1(|Y|,j) 0 . . . 0]T . (32)

In the optimization problem, the 1T
j θ = 0 constraints ensure

that for every xj ∈ X ,
∑

yW (y|xj) = 1. To handle the
error terms in the inequality constraint, it is easy to see that
the constraint is dominated by the first term as r → 0.
Then, the problem can be equivalently written by translating
the lowest-order term of the constraint to the cost function
as o(θTK(Ŵ )θ), which turns into o(r) after applying the
constraint. We do not explicitly impose a positivity constraint
on W since a sufficiently small r ≥ 0 exists such that the
positivity of the resulting conditional distribution is guaran-
teed. The resulting optimization problem is convex, so the
KKT conditions are necessary and sufficient [6]. The standard
Lagrangian method is used to solve it.
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Abstract—We derive a lower bound to the error exponent of
the Gilbert-Elliott channel by means of mismatched decoding.
The corresponding achievable rate, the generalized mutual infor-
mation, is shown to coincide with the lower bound of Mushkin
and Bar-David.

I. INTRODUCTION

The Gilbert-Elliott channel [1], [2] is an elementary binary-
input binary-output finite-state channel (FSC) described by
the two-state Markov chain in Fig. 1. When the channel
is in the ‘good’ state, transmission occurs over a ‘good’
binary-symmetric channel (BSC) with crossover probability δg.
Similarly, when the channel is in the ‘bad’ state, transmission
occurs over a ‘bad’ BSC with crossover probability δb. In other
words, the channel transition law W (y|x, s) is determined by
the BSC corresponding to the state. Reference [3] defined
the channel memory as µ ≜ 1 − g − b. For µ > 0, the
channel has a persistent memory, whereas for µ < 0 it has
an oscillatory memory. When µ = 0 the channel is said to
be memoryless, i.e. the current state is independent of all
previous states. The Gilbert-Elliott channel is known to be
indecomposable, i.e., the effect of the initial state dies away
with time [4, Sec. 4.6]. We denote the stochastic Markov

transition matrix by Γ ≜
[
pGG pGB

pBG pBB

]
=

[
1− b b
g 1− g

]
and

denote by [πG, πB ] =
[

g
g+b ,

b
g+b

]
the stationary distribution of

the Markov chain that defines the channel (see Fig. 1).
We define the channel input and output sequences xn, yn ∈

{0, 1}n, where n is the length of the sequences. We consider
reliable transmission of M messages over the Gilbert-Elliott
channel described above. Each message is assigned a codeword
from a codebook C = {xn1 , . . . , xnM}. The rate of the code is
defined as R = 1

n logM . The channel capacity of the Gilbert-
Elliott channel has been studied in a number of works but
no single-letter closed-form expression has yet been found.
Reference [3] derived upper and lower bounds to the capacity,
which was numerically evaluated in [5]. Since the underlying
channels are BSCs, the capacity is attained by an equiprobable
input distribution Q(0) = Q(1) = 1

2 .
In this paper, we develop a mismatched decoding (see

e.g. [6] and references therein) approach to coding over the

This work has been funded in part by the European Research Council under
ERC grant agreement 725411 and by the Spanish Ministry of Economy and
Competitiveness under grant PID2020-116683GB-C22.

G B1− b

b

g

1− g

0 0

1 1

δg

0 0

1 1

δb

Fig. 1. Gilbert-Elliott channel model.

Gilbert-Elliott channel. Specifically, we derive a lower bound
to the error exponent by means of mismatched decoding,
employing a memoryless decoding metric corresponding to a
single BSC. We show that the corresponding achievable rate,
the generalized mutual information (GMI) [7], coincides with
the bound derived by Mushkin and Bar-David [3].

II. MISMATCHED DECODING

Mismatched decoding arises in situations where the decoder
does not employ a maximum-likelihood decoder, but instead
uses a maximum-metric decoder with a sub-optimal decoding
metric qn(xn, yn) [6]. This occurs in a number of cases
of relevance such as channel uncertainty, reduced-complexity
decoding, bit-interleaved coded modulation, and zero-error
communication [6]. In addition, mismatched decoding is em-
ployed to derive achievable information rates in situations
where the channel capacity does not admit simple expressions.
In these instances, a decoding metric that somehow simplifies
the derivation is chosen. In this paper, although the channel
has memory, we will assume a decoding metric that ignores
this memory, i.e.,

qn(xn, yn) =

n∏

i=1

q(xi, yi). (1)

Specifically, we will assume that q(x, y) is the channel transi-
tion probability of a single BSC with a crossover probability
that depends on the Gilbert-Elliott channel parameters.

Following the footsteps of Gallager [4, Sec. 5.9], it can be
shown that there exists a code of rate R and length n such that
the error probability for a given message m, given the initial
state s0, can be bounded by

Pe,m(s0) ≤ e−n(Er(R)−ϵ) (2)
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for any ϵ > 0, and sufficiently large n, where

Er(R) = max
0≤ρ≤1

sup
τ≥0

F∞(ρ, τ)− ρR (3)

with F∞(ρ, τ) = limn→∞ Fn(ρ, τ),

Fn(ρ, τ) = max
QXn

min
s0

E0,n(ρ, τ,QXn , s0) (4)

E0,n(ρ, τ,QXn , s0)

= − 1

n
logE

[(∑

x̄n

Q(x̄n)
qn(x̄n, Y n)τ

qn(Xn, Y n)τ

)ρ]
(5)

where E[·] denotes the expectation over the joint distribution
given the initial state P (xn, yn|s0). The E0 function will be
denoted by E0,n(ρ, τ) by leaving the dependencies on input
distribution and initial state implicit. This exponent naturally
leads to the following generalized mutual information rate

Igmi = sup
τ≥0

lim
n→∞

1

n
E
[
log

qn(Xn, Y n)τ∑
x̄n Q(x̄n)q(x̄n, Y n)τ

]
. (6)

III. GILBERT-ELLIOTT ERROR EXPONENT

Let sn be a binary state sequence of length n and let nG be
the number of good states in sn. Define the set of all sequences
with nG good states as T n

nG
; this is the binary type class of

type nG

n . Also, let Eg
0 (ρ, τ) and Eb

0 (ρ, τ) be the mismatched
E0 functions corresponding to the good and bad BSCs with
decoding crossover probabilities δq , and define ∆E0(ρ, τ) ≜
Eb

0 (ρ, τ)−Eg
0 (ρ, τ). By spelling out the expectation in (5) and

marginalizing over state sequences sn, we have that

∑

sn

P (sn)
∑

xn,yn

P (xn, yn|sn)
(∑

x̄n Q(x̄n)qn(x̄n, yn)τ

qn(xn, yn)τ

)ρ

(7)

=
∑

sn

P (sn)

n∏

i=1

∑

xi,yi

P (xi, yi|si)
(∑

x̄Q(x̄)q(x̄, yi)
τ

q(xi, yi)τ

)ρ

(8)

=
n∑

nG=0

∑

s̄n∈T n
nG

P (s̄n)e−nGEg
0 (ρ,τ)e−(n−nG)Eb

0 (ρ,τ) (9)

= e−nEb
0 (ρ,τ)

n∑

nG=0

∑

s̄n∈T n
nG

P (s̄n)enG∆E0(ρ,τ) (10)

where (8) holds since we assume a product input distribution, a
memoryless decoding metric, and the fact that P (xn, yn|sn) =∏n

i=1 P (xi, yi|si), and (9) follows from re-writing as a func-
tion of nG. We rewrite (10) as the expectation over the random
variable NG with Pr{NG = nG} =

∑
s̄n∈T n

nG

P (s̄n) as

F∞(ρ, τ) = Eb
0 (ρ, τ)− lim

n→∞
1

n
logE

[
eNG∆E0(ρ,τ)

]
. (11)

In order to calculate the error exponent of the Gilbert-
Elliott channel we need to find limn→∞E0,n(ρ, τ). To this
end, define the Markov composition of a given sequence sn

as A(sn) ≜
[
nGG nGB

nBG nBB

]
, where njk stands for the number

of transitions from state j to state k, j, k ∈ {G,B}. By

normalizing this matrix we get Φ(sn) ≜
[
fGG fGB

fBG fBB

]
where

fjk = njk/nj with nj representing the number of state j in
sequence sn. Similarly we define the empirical distribution
as F (sn) ≜ [fG, fB ] where fj = nj/n, and by construction
F (sn) is the stationary distribution for Φ(sn).

The probability of a given sequence sn with Markov com-
position A(sn) can be expressed as [8]

P (sn) = pnGG

GG pnGB

GB pnBG

BG pnBB

BB (12)

= exp

[ ∑

j,k∈{G,B}
njk log pjk

]
(13)

= exp

[
n

∑

j∈{G,B}
fj

∑

k∈{G,B}
fjk log pjk

]
(14)

= exp

[
n

∑

j∈{G,B}
fj

∑

k∈{G,B}
fjk log

pjk
fjk

+ fjk log fjk

]

(15)

= exp

[
− n

∑

j∈{G,B}
fj

(
D(Φ(j)∥Γ(j)) +H(Φ(j))

)]

(16)

= exp
[
− n

(
D(Φ∥Γ|F ) +H(Φ|F )

)]
(17)

where (14) follows directly from the previous definition; (17)
holds since D(Φ∥Γ|F ) is the conditional relative entropy
between the rows of Φ and those of Γ, that is

D(Φ∥Γ|F ) = fG

(
fGG log

fGG

pGG
+ fGB log

fGB

pGB

)

+ fB

(
fBG log

fBG

pBG
+ fBB log

fBB

pBB

)
.

(18)

Since nj =
∑

k njk =
∑

k nkj , symmetry property nGB =
nBG holds. Thus, the Markov type of a length-n sequence is
determined if nG and nGG are known. Thus,

∑

s̄n∈T n
nG

P (s̄n) =

nG∑

nGG=0

∑

s̄n∈An
nG,nGG

pnGG

GG pnGB

GB pnBG

BG pnBB

BB

(19)

=

nG∑

nGG=0

∣∣An
nG,nGG

∣∣e−n[D(Φ∥Γ|F )+H(Φ|F )]

(20)

where An
nG,nGG

is the set of sequences with Markov type
described by nG and nGG. Davisson et al. [8] showed that
for a two-state Markov transition,

∣∣An
nG,nGG

∣∣ .= enH(Φ|F ) (21)
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where the notation an
.
= bn means that limn→∞ 1

n log an

bn
= 0.

Substituting this into (20), we get

∑

s̄n∈T n
nG

P (s̄n)
.
=

nG∑

nGG=0

e−nD(Φ∥Γ|F ) (22)

.
= max

nGG∈[0,nG]
e−nD(Φ∥Γ|F ) (23)

= e−nD∗(Φ∥Γ|F ) (24)

where we denote D∗(Φ∥Γ|F ) ≜ minfGG∈[0,fG]D(Φ∥Γ|F ).
Lemma 1. The minimum relative entropy in (24) is given by

D∗(Φ∥Γ|F )

=

{
fG log bg−β+2µfG

2(1−b)µfG
+ fB log bg−β+2µfB

2(1−g)µfB
(µ ̸= 0)

fG log fG
g + fB log fB

b (µ = 0)

(25)

and it is achieved when

f∗GG =

{
bg+2µfG−β

2µfG
µ ̸= 0,

fG µ = 0.
(26)

where β =
√
b2g2 + 4bgµfGfB .

Observe that D∗(Φ∥Γ|F ) is a function of fG and the
channel parameters. The divergence becomes zero if and only
if Φ = Γ. In other words, the empirical distribution is exactly
equal to the stationary distribution, namely

min
fG∈[0,1]

D∗(Φ∥Γ|F ) = D∗(Φ∥Γ|F )
∣∣
fG=πG

= 0. (27)

To see this, we differentiate w.r.t. fG, which gives

∂D∗(Φ∥Γ|F )
∂fG

= log
(1− g)fBf∗GG

(1− b)(fB − fG + fGf∗GG)
= 0 (28)

for µ ̸= 0. We find that fG = πG and we write f∗GG = 1− b,
which by substituting back to (25), we get D∗(ϕ∥Γ|F ) = 0,
which is achieved uniquely at fG = πG.

Applying the LogSumExp(LSE) inequality maxi ai ≤
log
∑n

i=1 exp(ai) ≤ log n+maxi ai and substituting (24) into
(11), we obtain

F∞(ρ, τ)

= Eb
0 (ρ, τ)− lim

n→∞
1

n
max

nG∈[0,n]

[
nG∆E0(ρ, τ)− nD∗(Φ∥Γ|F )

]

(29)

= Eb
0 (ρ, τ)− max

λ∈[0,1]

[
λ∆E0(ρ, τ)−D∗(Φ∥Γ|F )

∣∣
fG=λ

]

(30)

where the last equation holds by interchanging the maxi-
mum and limit as a result of the function inside the square
bracket of (29) being uniformly continuous, and we denote
λ ≜ limn→∞

nG

n .
It can be shown that the function λ∆E0(ρ, τ) −

D∗(Φ∥Γ|F )
∣∣
fG=λ

is concave in λ. Thus, the maximum value
can be found by equating the partial derivative to zero. which
leads to the optimizing λ∗

λ∗ =

√
α− 1 + g + (1− b)e∆E0(ρ,τ)

2
√
α

(31)

with α = (1− g)2 +2(bg−µ)e∆E0(ρ,τ) +(1− b)2e2∆E0(ρ,τ).
By construction λ∗ is independent of the blocklength, and
substituting λ∗ into (30) gives rise to the following theorem.

Theorem 1. The mismatched Gilbert-Elliott F∞ function is
equal to

F∞(ρ, τ) = λ∗Eg
0 (ρ, τ)+(1−λ∗)Eb

0 (ρ, τ)+D
∗(Φ∥Γ|F )|fG=λ∗

(32)
with λ∗ given in (31).

For memoryless channels with µ = 0, i.e., the current state
is independent of all previous states, we have

λ∗ =
ge∆E0(ρ,τ)

b+ ge∆E0(ρ,τ)
. (33)

Together with (25), Theorem 1 can be written in the form

F∞(ρ, τ) = Eb
0 (ρ, τ)− log

(
b+ ge∆E0(ρ,τ)

)
. (34)

Observe that applying Jensen’s inequality to (11) yields

E0,n(ρ, τ) ≤ Eb
0 (ρ, τ)−

E[NG]

n
∆E0(ρ, τ). (35)

Since the definition of stationarity implies

lim
n→∞

E[NG]

n
= πG (36)

this gives the simple upper bound

F∞(ρ, τ) ≤ πGEg
0 (ρ, τ) + πBE

b
0 (ρ, τ). (37)

IV. GENERALIZED MUTUAL INFORMATION

In this section, we study the GMI of the Gilbert-Elliott
channel. We write the GMI as

Igmi = sup
τ≥0

Igmi(τ). (38)

We rewrite (6) using the assumption of memoryless decoding
metric as stated in (1)

Igmi(τ) = lim
n→∞

1

n
E
[ n∑

i=1

log
q(Xi, Yi)

τ

∑
x̄Q(x̄)q(x̄, Yi)τ

]
(39)

= lim
n→∞

1

n

∑

sn

P (sn)
∑

xn,yn

P (xn, yn|sn, s0)

×
n∑

i=1

log
q(xi, yi)

τ

∑
x̄Q(x̄)q(x̄, yi)τ

(40)

= lim
n→∞

1

n

∑

sn

P (sn)
n∏

i=1

∑

xi,yi

P (xi, yi|si)

×
n∑

j=1

log
q(xj , yj)

τ

∑
x̄Q(x̄)q(x̄, yj)τ

(41)

where (40) follows by marginalizing over the state sequence sn

and (41) uses the fact that the state sequence is independent of
the input sequence. Using the distributive law of multiplication
and the fact that the term inside the logarithm only selects
the corresponding joint probability while the rest will sum
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up to one, we can express the GMI in terms of conditional
expectation as

Igmi(τ) = lim
n→∞

1

n

∑

sn

P (sn)
n∑

i=1

E
[
log

q(Xi, Yi)
τ

∑
x̄Q(x̄)q(x̄, Yi)τ

∣∣∣∣Si

]

(42)

= lim
n→∞

1

n

∑

sn

P (sn)
n∑

i=1

Isigmi(τ) (43)

which is a general expression for FSCs with state transition
being independent of the input sequence under any memoryless
decoding metric. For the Gilbert-Elliott channel using the same
argument as before, we can write

Igmi(τ)

= lim
n→∞

1

n

n∑

nG=0

∑

s̄n∈T n
nG

P (s̄n)
[
nGI

g
gmi(τ) + nBI

b
gmi(τ)

]

(44)

= Ibgmi(τ) +
[
Iggmi(τ)− Ibgmi(τ)

]
lim
n→∞

E(NG)

n
(45)

which using (36) yields

Igmi = sup
τ≥0

πGI
g
gmi(τ) + πBI

b
gmi(τ), (46)

the weighted sum of the GMIs per channel, weighted by the
stationary distribution.

Given that the memoryless decoding metric q(x, y) can
be chosen arbitrarily, we select it as a BSC with crossover
probability δq with 0 < δq < 0.5. In this case, we have that

Iggmi(τ) = log
2

δτq + (1− δq)τ
+(1−δg) log(1−δq)τ+δg log δτq

(47)
and Ibgmi(τ) has a similar form with δg replaced by δb. It was
shown in [6, Sec. 2] that for a given q(x, y), the GMI is a
concave maximization problem (38).

For the optimal τ , the Igmi can be shown to be concave in
δq . Then we can determine the optimal value of τ and δq that

Theorem 2. The GMI of the Gilbert-Elliott channel using a
mismatched BSC with crossover probability δq = πGδg+πBδb
for decoding is

Igmi = log 2− h2(πGδg + πBδb) (48)

where h2(p) ≜ −p log p−(1−p) log(1−p) denotes the binary
entropy function. Equality in (48) is attained if and only if
µ = 0, i.e., in the memoryless case.

The capacity lower bound (48) coincides with the lower
bound Mushkin and Bar-David [3, eq. (2.31)].

We illustrate Theorems 1 and 2 by means of an example
for a persistent Gilbert-Elliott channel with parameters b =
0.1, g = 0.4, δg = 0.05 and δb = 0.2. The F∞ function
given in (32) and the Jensen’s inequality upper bound in (37)
are depicted in Fig. 2 together with those for the good and

maximize the GMI by setting the partial derivatives to zero,
yielding τ = 1 and δq = πGδg + πBδb.

0 0.2 0.4 0.6 0.8 1

0

0.1

0.2

0.3

0.4

Igm
i
=
0.4

14

ρ
F
∞
(ρ
,s
)

Eb
0 (ρ)

Eb
0 (ρ, τ) (mismatch)

Eg
0 (ρ)

Eg
0 (ρ, τ) (mismatch)

F∞(ρ, τ), upper bound

F∞(ρ, τ) exact

Fig. 2. Function F∞ for a persistent Gilbert-Elliott channel with parameters
b = 0.1, g = 0.4, δg = 0.05 and δb = 0.2.

bad states using a mismatched BSC with crossover probability
δq = πGδg + πBδb. The parameter τ has been optimized in
all curves. We use (48) to compute

Igmi = log 2− h2
( 0.4

0.4 + 0.1
× 0.05 +

0.1

0.4 + 0.1
× 0.2

)

(49)
= 0.414 nat/channel use (50)

which coincides with the gradient of F∞(ρ, τ) at ρ = 0. As
we observe, the upper bound is very close to F∞ for small
values of ρ.
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Abstract—We derive random-coding/binning error exponents
for block source coding for finite-state sources. Specifically, our
derivation accounts for a mismatch in the finite-state source
model, recovers known special cases and provides an achievable
rate, the generalized entropy rate, that quantifies the loss in rate
with respect to the entropy rate induced by mismatch.

I. INTRODUCTION

Consider a finite-state source with source alphabet V , a finite
set of states S = {1, 2, . . . , A}, A conditional probability mea-
sures {p(·|s)}s∈S , and a next-state function f : S × V → S .
Given an initial state s0, the conditional probability of a source
sequence vn = v1, . . . , vn ∈ Vn is defined as

PV n|S(v
n|s0) =

n∏

i=1

PV |S(vi|si−1) (1)

where si = f(si−1, vi) for all 1 ≤ i ≤ n. We define,

P̄V n(vn) =
∑

s0

1

A
PV n|S(v

n|s0). (2)

With some abuse of notation we will use S to refer to this
source model. A finite-state model S is said to be irreducible
if and only if it is possible, with nonzero probability, to reach
each state from any other state in a finite number of states.

A block source code C(n,R) is defined as a mapping
g : Vn → X of source n-tuples vn ∈ Vn to a set of
indices/bins/codewords X = {1, . . . ,M} where R = 1

n logM
is the code rate. A decoder ϕ : X → Vn maps each in-
dex/bin/codeword back into a source n-tuple v̂n. Typically the
number of codewords is smaller than the number of n-tuples
and the decoder makes an error whenever ϕ(x(vn)) ̸= vn.

Given the source model S, the initial state s0 and a block
source code C(n,R), the decoder that minimizes the average
probability of the error is the maximum-likelihood (ML)
decoder which maps each codeword x to the most likely source
sequence encoded into x, i.e.,

v̂n = ϕ(x) = argmax
vn: g(vn)=x

PV n(vn|s0). (3)

This work has been funded in part by the European Research Council under
ERC grant agreement 725411 and by the Spanish Ministry of Economy and
Competitiveness under grant PID2020-116683GB-C22 and by the Universities
and Research Department of Generalitat de Catalunya under grant 2021 SGR
00772.

Block source codes have been considered in a number of works
in different contexts, see e.g. [1]–[4] and references therein.

In practical systems, the exact source model is almost
never known exactly and we are bound to fit some model
to the source data and use the extracted model for designing
an efficient code. Therefore it is meaningful to assume that
in a block source coding setup, the decoder always uses a
mismatched source model for decoding. Such a model can be
generated during the encoding process and shared with the
decoder to allow for correct decoding.

II. MAIN RESULTS

Assume that instead of the real source model S, we describe
the source with a mismatched model with a finite set of
states Ŝ = {1, 2, . . . , Â}, Â conditional probability measures
{Q(·|ŝ)}ŝ∈Ŝ , and a next-state function f̂ : Ŝ × V → Ŝ.

We consider a maximum metric decoding based on mis-
matched model without the knowledge of initial state as
follows,

v̂n = ϕ̂(x) = argmax
vn

q(vn, x), (4)

where
q(vn, x) = Q̄V n(vn)1 {g(vn) = x} , (5)

and Q̄V n(vn) = 1
Â

∑
ŝ0
QV n|S(vn|ŝ0).

In the following, we consider the random ensemble of
(n,R) codes for alphabet V as the set of all (n,R) block codes
where each source n-tuple is mapped randomly, independently
and with equal probability 1

M into one of the M indices
or codewords independent from the initial state s0. In this
paper, we study a random-coding error exponent for finite-
state sources S with decoding based on a mismatched source
model Ŝ.

Theorem 1. For a finite-state source with irreducible model
S, there exists a block code with M = ⌈enR⌉ codewords such
that using a decoder based on mismatched source model Ŝ
for any initial state s̄0 we have

pe(s̄0) ≤ e−n er(R) (6)

where
er(R) = sup

ρ∈[0,1],τ≥0

ρR− Es(ρ, τ), (7)

Es(ρ, τ) = log λ(ρ, τ) + ρ log λ̂(τ) + o(n) (8)
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and λ(ρ, τ), λ̂(τ) are respectively the largest magnitude eigen-
values of the matrices Γρ,τ ∈ RAÂ×AÂ, Γ̂τ ∈ RÂ×Â with
entries

γjȷ̂kk̂(ρ, τ) =
∑

v

PV,S|S(v, j|k)
QV,S|S(v, ȷ̂|k̂)τρ

(9)

γ̂ȷ̂k̂(τ) =
∑

v

QV,S|S(v, ȷ̂|k̂)τ , (10)

where γjȷ̂kk̂(ρ, τ) is the entry in row (j−1)Â+ ȷ̂ and column
(k − 1)Â+ k̂ of matrix Γρ,τ .

Proof: Since the decoding metric is independent of the
initial state we bound the random-coding error probability as

p̄e ≤
∑

vn

P̄V n(vn)P
[ ⋃

v̄n ̸=vn

{q(v̄n, X) ≥ q(vn, X)}
]

(11)

For events {Bi} it can be shown that for any 0 ≤ ρ ≤ 1 we
have P[

⋃
i Bi] ≤ (

∑
i P[Bi])ρ [5, Ch. 5]. Using the random

ensemble definition, for any sequences vn, v̄n we have

P[q(v̄n, X) ≥ q(vn, X)] =
1

M
1
[
Q̄V n(v̄n) ≥ Q̄V n(vn)

]

(12)

≤ 1

M

Q̄V n(v̄n)τ

Q̄V n(vn)τ
(13)

for any τ ≥ 0. Therefore, the average error probability
(averaged also over the initial state)

p̄e ≤
1

Mρ

∑

vn

P̄V n(vn)

( ∑

v̄n ̸=vn

Q̄V n(v̄n)τ

Q̄V n(vn)τ

)ρ

. (14)

Since the average error probability over the ensemble is upper
bounded as in (14), there is at least one code in the ensemble
that satisfies the above bound. Also, since the error probability
for such a code is an average over A equally likely states, the
conditional error probability given any particular initial state,
can be no more than A times the average. This gives a bound
on error probability which is valid for any initial state and no
longer depends on the assumption of the equally likely states
as per (2). Therefore, conditional on any initial state s̄0 ∈ S
the average error probability is bounded as

p̄e(s̄0) ≤
A

Mρ

∑

vn∈Vn

P̄V n(vn)

( ∑

v̄n ̸=vn

Q̄V n(v̄n)τ

Q̄V n(vn)τ

)ρ

. (15)

For any sequences vn, v̄n we have

Q̄V n(v̄n)τ

Q̄V n(vn)τ
≤ Â|τ−1|

∑
ŝ0
QV n|S(v̄n|ŝ0)τ∑

ŝ′0
QV n|S(vn|ŝ′0)τ

. (16)

This can be seen by considering separately the cases for τ ≤ 1
and τ ≥ 1. For τ ≤ 1 we use the inequality (

∑
ai)

r ≤∑ ari
for 0 < r ≤ 1 to upper bound the numerator and (

∑
Piai)

r ≥∑
Pia

r
i for r ≤ 1 to lower bound the denominator. For τ ≥ 1

we use (
∑
Piai)

r ≤ ∑Pia
r
i for r ≥ 1 to upper bound the

numerator and (
∑
ai)

r ≥∑ ari for r ≥ 1 to lower bound the

denominator. Substituting (16) in (15) we get

p̄e(s̄0) ≤
AÂρ|τ−1|

Mρ

×
∑

vn∈Vn

P̄V n(vn)

(∑

v̄n

∑
ŝ0
QV n|S(v̄n|ŝ0)τ∑

ŝ′0
QV n|S(vn|ŝ′0)τ

)ρ

. (17)

We further bound the term in brackets by swapping the sums
over v̄n and ŝ0 and upper bounding the numerator using
(
∑
ai)

r ≤ ∑
ari for 0 < r ≤ 1 and lower bounding the

denominator using (
∑
Piai)

r ≥∑Pia
r
i for r ≤ 1. This gives

p̄e(s̄0) ≤
AÂρ|τ−1|

Mρ

×
∑

vn∈Vn

P̄V n(vn)

∑
ŝ0

(∑
v̄n QV n|S(v̄n|ŝ0)τ

)ρ

Âρ−1
∑

ŝ′0
QV n|S(vn|ŝ′0)τρ

. (18)

Using (2), changing the order of sums over vn and s0 and
upper bounding the sum over s0 by A times maximum over
s0, and upper bounding the sum over ŝ0 by Â times maximum
over ŝ0 and upper bounding the sum over ŝ′0 as

1∑
ŝ′0
QV n|S(vn|ŝ′0)τρ

≤ max
ŝ′0

1

ÂQV n|S(vn|ŝ′0)τρ

we obtain

p̄e(s̄0) ≤
AÂρ|τ−1|−ρ+1

Mρ
max
s0

max
ŝ′0

max
ŝ0

enEs(ρ,τ,s0,ŝ0) (19)

where

Es(ρ, τ, s0, ŝ
′
0, ŝ0)

=
1

n
log

∑

vn∈Vn

PV n|S(v
n|s0)

(∑

v̄n

QV n|S(v̄n|ŝ0)τ
QV n|S(vn|ŝ′0)τ

)ρ

(20)

We notice that the bound in (19) is valid for the general
finite-state source without the deterministic state transition
assumption. Similarly to the channel coding case with ML
decoding [5, Sec. 5.9] it can be shown that for any s0, ŝ′0, ŝ0
the function Es(ρ, τ, s0, ŝ

′
0, ŝ0) is continuous, increasing and

convex in ρ with Es(0, s, s0, ŝ
′
0, ŝ0) = 0. This will prove

important to derive the corresponding achievable rate. In the
following, we proceed to simplifying (19).

In the following, we split the maximization argument in (19)
into two terms and work out the two terms separately

p̄e(s̄0) ≤
AÂρ|τ−1|−ρ+1

Mρ

(
max
s0

max
ŝ0

∑

vn∈Vn

PV n|S(vn|s0)
QV n|S(vn|ŝ0)τρ

)

×max
ŝ0

(∑

v̄n

QV n|S(v̄
n|ŝ0)τ

)ρ

, (21)

where in the first term we change the notation from ŝ′0 to ŝ0,
since after splitting there is no more confusion between those.

Based on the state transition mechanism of source model
S and mismatched model Ŝ given the initial states s0 and ŝ0,
the source sequence vn = (v1, . . . , vn) uniquely determines
state sequences s = s(vn, s0) and ŝ = ŝ(vn, ŝ0). Therefore,
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similarly to [5, Eq. (5.9.31)] we can define

PV n,S|S(vn, s|s0)
QV n,S|S(vn, ŝ|ŝ0)τρ

=

{
PV n|S(vn|s0)

QV n|S(vn|ŝ0)τρ for s, ŝ

0 othewise,
(22)

and

PV n,S|S(vn, s|s0)
QV n,S|S(vn, ŝ|ŝ0)τρ

=

n∏

i=1

PV,S|S(vi, si|si−1)

QV,S|S(vi, ŝi|ŝi−1)τρ
(23)

where

PV,S|S(vi, si|si−1) =

{
PV |S(vi|si−1) for si = f(si−1, vi)

0 othewise.
(24)

We thus write the first term in brackets in (21) as

max
s0

max
ŝ0

∑

s,ŝ

∑

vn

n∏

i=1

PV,S|S(vi, si|si−1)

QV,S|S(vi, ŝi|ŝi−1)τρ
(25)

= max
s0

max
ŝ0

∑

s,ŝ

n∏

i=1

∑

vi

PV,S|S(vi, si|si−1)

QV,S|S(vi, ŝi|ŝi−1)τρ
(26)

Similarly, we write the second term in brackets in (21) as

max
ŝ0

(∑

ŝ

n∏

i=1

∑

v̄i

QV,S|S(v̄i, ŝi|ŝi−1)
τ

)ρ

. (27)

Now we define an AÂ×AÂ matrix Γρ,τ with elements

γjȷ̂kk̂(ρ, τ) =
∑

v

PV,S|S(v, j|k)
QV,S|S(v, ȷ̂|k̂)τρ

(28)

for j = f(k, v), ȷ̂ = f̂(k̂, v) and γjȷ̂kk̂(ρ, τ) = 0 otherwise.
We also define an Â× Â matrix Γ̂τ with elements

γ̂ȷ̂k̂(τ) =
∑

v

QV,S|S(v, ȷ̂|k̂)τ , (29)

for ȷ̂ = f̂(k̂, v) and γ̂ȷ̂k̂(τ) = 0 otherwise. Observe that the
matrices Γρ,τ and Γ̂τ , are not always stochastic matrices. We
denote by 1 and 1̂ respectively column vectors of length AÂ
and Â with all 1’s and by e(s0ŝ0) and e(ŝ0) respectively row
vectors with a 1 in position corresponding to (s0 − 1)Â+ ŝ0
and ŝ0, and 0 in all other components. We rewrite the bound
(21) as

p̄e(s̄0) ≤
AÂρ|τ−1|−ρ+1

Mρ

(
max
s0

max
ŝ0

e(s0ŝ0)Γ
n
ρ,τ1

)

×
(
max
ŝ0

(
e(ŝ0)Γ̂

n
τ 1
)ρ)

(30)

We note that if both actual and mismatched models are irre-
ducible, the product model corresponding to the matrix Γρ,τ

will have a single irreducible subset and the rest of the product
states will be transient states, namely their stationary proba-
bility will be zero. Therefore we can omit rows and columns
corresponding to those transient states from Γρ,τ matrix and
obtain an irreducible matrix. Assuming that the matrices Γρ,τ

and Γ̂τ are irreducible, using Perron-Frobenius theorem we
know that they have largest magnitude eigenvalues with real

positive values. We denote these dominant eigenvalues by
λ(ρ, τ) and λ̂(τ) and their corresponding positive right eigen-
vectors by u(ρ, τ) =

(
u1(ρ, τ), . . . , uAÂ(ρ, τ)

)
, ujȷ̂(ρ, τ) >

0 and û(τ) =
(
u1(τ), . . . , uÂ(τ)

)
, uȷ̂(τ) > 0 respectively,

such that

Γρ,τu(ρ, τ) = λ(ρ, τ)u(ρ, τ) (31)

Γ̂τ û(τ) = λ̂(τ)û(τ). (32)

The positive right eigenvectors u(ρ, τ) and û(τ) are unique
except for a multiplicative factor. To make them unique we
assume that

∑

jȷ̂

ujȷ̂(ρ, τ) = 1,
∑

ȷ̂

ûȷ̂(τ) = 1. (33)

If we denote by umax(ρ, τ) and umin(ρ, τ) the largest and
smallest component of the positive right eigenvector u(ρ, τ),
then for any s0 and ŝ0 we have

umin(ρ, τ)

umax(ρ, τ)
λn(ρ, τ) ≤ e(s0ŝ0)Γn

ρ,τ1 ≤
umax(ρ, τ)

umin(ρ, τ)
λn(ρ, τ). (34)

Using a similar bound on the second term in (30) we obtain

p̄e(s̄0) ≤
AÂρ|τ−1|−ρ+1

Mρ
· umax(ρ, τ)

umin(ρ, τ)
λn(ρ, τ)

×
(
ûmax(τ)

ûmin(τ)
λ̂n(τ)

)ρ

(35)

= e−n(ρR−Es(ρ,τ)), (36)

where

Es(ρ, τ) = log λ(ρ, τ) + ρ log λ̂(τ) + δn (37)

and

δn =
1

n
log

(
umax(ρ, τ)

umin(ρ, τ)
· ûmax(τ)

ρ

ûmin(τ)ρ
AÂρ|τ−1|−ρ+1

)
. (38)

Finally, observe that for any s0, ŝ0 using (34) we obtain
∣∣∣∣Es(ρ, τ, s0, ŝ0)− log λ(ρ, τ)− ρ log λ̂(τ)

∣∣∣∣

≤ 1

n
log

(
umax(ρ, τ)

umin(ρ, τ)
· ûmax(τ)

ρ

ûmin(τ)ρ

)
. (39)

We observe that the term (38) is the only term depending on
the block length n is decreasing with n since the argument of
the log function is greater than or equal to 1. This in turn shows
that the corresponding achievable rate, termed the generalized
entropy rate, is non-increasing in n and thus, it is attained in
the limit for n→∞. The generalized entropy rate is defined
as

Hger(V) = inf
τ≥0

∑

kk̂

ukk̂(0)
∑

v

−PV |S(v|k)

× log

(
QV |S(v|k̂)τ∑

k̂′ ûk̂′(τ)
∑

v̄ QV |S(v̄|k̂′)τ

)
,

(40)
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where ukk̂(0) is the stationary probability of the product state
kk̂ and ûk̂′(τ) is the k̂′-th element of the eigenvector û(τ).

Theorem 2. For a finite-state source with irreducible model
S using block code and a decoder based on a mismatched
source model Ŝ, the generalized entropy rate Hger(V) is an
achievable rate.

Proof: For any τ ≥ 0 the generalized entropy rate is
obtained as n→∞ and thus it is given by

Hger(V, τ) = lim
n→∞

∂

∂ρ
Es(ρ, τ, s0, ŝ0)|ρ=0

=
∂

∂ρ
log λ(ρ, τ)|ρ=0 + log λ̂(τ). (41)

The next steps to obtain the generalized entropy rate follow
similar lines as [6] where Vašek derived the error exponent
and entropy rate of an ergodic Markov source. Using (33),
from (31) and (32) we have
∑

jȷ̂

∑

kk̂

γjȷ̂kk̂(ρ, τ)ukk̂(ρ, τ) =
∑

jȷ̂

λ(ρ, τ)ujȷ̂(ρ, τ) = λ(ρ, τ),

(42)
and

∑

ȷ̂

∑

k̂

γ̂ȷ̂k̂(τ)ûk(τ) =
∑

ȷ̂

λ̂(τ)ûȷ̂(τ) = λ̂(τ). (43)

In the following, in order to simplify the notation, we define
pjk(v) = PV,S|S(v, j|k) and qȷ̂k̂(v) = QV,S|S(v, ȷ̂|k̂). Taking
the derivative of log λ(ρ, τ) with respect to ρ using (42) and
simplifying it we obtain

∂

∂ρ
log λ(ρ, τ) = −

∑

jȷ̂

∑

kk̂

∑

v

pjk(v)

qȷ̂k̂(v)
τρλ(ρ, τ)

× log(qȷ̂k̂(v)
τ )ukk̂(ρ, τ) +

∑

jȷ̂

∑

kk̂

γjȷ̂kk̂(ρ, τ)

λ(ρ, τ)
u′
kk̂
(ρ, τ).

(44)

Since for ρ = 0 from (28) the entries of the matrix Γ0,τ do not
depend on τ , we omit the dependence on τ . We observe that
the resulting matrix denoted by Γ0 is a stochastic matrix with
column sums equal to 1, i.e.,

∑
jȷ̂ γjȷ̂kk̂(0) =

∑
j pjk(v) = 1.

Therefore it has a largest magnitude eigenvalue λ(0) = 1 with
positive right eigenvector u(0) which is the stationary state
distribution of the product finite-state model.

Evaluating (44) at ρ = 0 we obtain

∂

∂ρ
log λ(ρ, τ)|ρ=0 =−

∑

jȷ̂

∑

kk̂

∑

v

pjk(v) log(qȷ̂k̂(v)
τ )ukk̂(0)

+
∑

kk̂

u′
kk̂
(0). (45)

Taking the derivative of both sides in (42) with respect to
ρ we obtain
∑

jȷ̂

(
λ′(ρ, τ)ujȷ̂(ρ, τ) + λ(ρ, τ)u′jȷ̂(ρ, τ)

)
= λ′(ρ, τ). (46)

Simplifying the left hand side and canceling λ′(ρ, τ) from both

sides we have

λ(ρ, τ)
∑

jȷ̂

u′jȷ̂(ρ, τ) = 0. (47)

Since λ(ρ, τ) is strictly positive, we get
∑

jȷ̂ u
′
jȷ̂(ρ, τ) = 0 and

therefore, the second term in (45) is cancelled. Introducing
(45) and (43) in (41) we obtain

Hger(V, τ) =−
∑

jȷ̂

∑

kk̂

∑

v

pjk(v) log(qȷ̂k̂(v)
τ )ukk̂(0)

+ log


∑

ȷ̂

∑

k̂

∑

v

qȷ̂k̂(v)
τ ûk̂(τ)


 . (48)

Noting that pjk(v) = 0 if j ̸= f(k, v) and similarly qȷ̂k̂(v) = 0

if ȷ̂ ̸= f̂(k̂, v), we merge the sums over jȷ̂ and kk̂ and also
sums over ȷ̂ and k̂ in (48) obtaining

Hger(V, τ) =−
∑

kk̂

ukk̂(0)
∑

v

PV |S(v|k) log(QV |S(v|k̂)τ )

+ log


∑

k̂

ûk̂(τ)
∑

v

QV |S(v|k̂)τ

 . (49)

Noticing that
∑

kk̂ ukk̂(0)
∑

v PV |S(v|k) = 1, combining the
two terms in (49) we obtain (40).

III. SPECIAL CASES

Using our general result from Section II, we recover special
cases of a memoryless mismatched model and a matched
finite-state model.

Theorem 3. For a finite-state source with irreducible model S,
there exists a block code with M = ⌈enR⌉ codewords such that
using a decoder based on a memoryless mismatched source
model for any initial state s̄0 we have

p̄e(s̄0) ≤ e−n er(R)

where
er(R) = sup

ρ∈[0,1],τ≥0

ρR− Es(ρ, τ),

and

Es(ρ, τ) = log λ(ρ, τ) + ρ log
∑

v

QV (v)
τ (50)

+
1

n
log

(
umax(ρ, τ)

umin(ρ, τ)
A

)
, (51)

with achievable rate

Hger(V ) = inf
τ≥0
−
∑

v

PV (v) log
QV (v)

τ

∑
v̄ QV (v̄)τ

, (52)

where PV (v) =
∑

k uk(0)PV |S(v|s = k).

In the case where the source is also memoryless, (51)
reduces to

Es(ρ, s) = log
∑

v

PV (v)

(∑
v̄ QV (v̄)

τ

QV (v)τ

)ρ

. (53)
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Fig. 1: Binary source with 4 states.

with achievable rate given by (52).

Theorem 4. For a finite-state source with irreducible model
S, there exists a block code with M = ⌈enR⌉ codewords such
that using a matched decoder for any initial state s̄0 we have

p̄e(s̄0) ≤ e−n er(R)

where
er(R) = max

ρ∈[0,1]
ρR− Es(ρ),

and

Es(ρ) = (1 + ρ) log λ(ρ) +
1 + ρ

n
log

(
umax(ρ)

umin(ρ)
A

)
, (54)

with achievable rate

Hger(τ) = inf
τ≥0
−
∑

k

uk(0)
∑

v

PV |S(v|k) logPV |S(v|k),

= inf
τ≥0

∑

k

uk(0)H(V |k). (55)

Example 1. Consider a binary source with 4 states given
in Fig. 1. The entropy rate of this source is given by
H(V) =∑

i

πiH(V |si) where πi is the stationary probability

of being in state si. Assuming the conditional distributions of
the source as {p0, p1, p2, p3} = {0.3, 0.6, 0.2, 0.7} we can
calculate the stationary probabilities as {π0, π1, π2, π3} =
{0.4, 0.15, 0.15, 0.3} and the entropy rate of the source as
H(V) = 0.8708 bits. Assume that at the decoder we attempt
to describe this source with three different models: i) a
matched model, ii) a mismatched model with 2 states as
shown in Fig. 2 with conditional probabilities {pa, pb} as
pa =

∑
i∈{0,2}

πi

π0+π2
pi = 0.2727 and pb =

∑
i∈{1,3}

πi

π1+π3
pi =

0.6667, iii) a memoryless model with distribution {1 − p, p}
p =

∑
i

πipi = 0.45. The generalized entropy rate of the

models are H(ii)
ger(V) = 0.8782 and H

(iii)
ger (V) = 0.9928 bits,

respectively. Fig. 3 illustrates the error exponent and entropy
rate losses due mismatch.

a b0/p̄a

1/pa

0/p̄b

1/pb

Fig. 2: Mismatched model with 2 states.
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Fig. 3: Error exponents for Example 1.
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Abstract—In source coding under the logarithmic loss distor-
tion measure, a source is compressed into a message, which is then
decompressed into a soft reconstruction (i.e. probability distribu-
tion). The distortion is measured by the remaining uncertainty
about the source given the message. Shkel and Verdú showed that
this lossy source coding setting is intimately related to almost
lossless source coding with list decoding, and used this insight
to characterize the single-shot excess distortion error probability.
In this work, we build upon this connection to list decoding
and derive error exponents for source coding under logarithmic
loss, without and with side information. The error exponents are
closely related to their almost lossless counterparts.

I. INTRODUCTION

In this paper we study the problem of fixed-length lossy
source coding of a discrete memoryless source (DMS) under
the logarithmic loss (log-loss) distortion measure. While the
log-loss is most commonly used in prediction and learning
theory, its adoption as a distortion measure in lossy source cod-
ing is also natural, specifically in settings where the decoder
produces a soft reconstruction (i.e. probability distribution) of
the source instead of a point estimate [1]–[3].

The log-loss distortion measure enjoys some mathematical
properties that enable elegant characterizations in a number of
settings. For instance, under an average distortion criterion, the
rate-distortion function is given by [1, Example 2]

R(∆) = H(X)−∆ (1)
where H(X) is the source entropy and ∆ is the average log-
loss distortion (assume 0 ≤ ∆ ≤ H(X)). The converse for
the corresponding coding theorem is obtained by bounding the
average log-loss distortion using the conditional entropy of the
source given its reconstruction. By building upon this property,
Courtade and Weissman [2] derived tight outer bounds in
various multi-terminal source coding settings under average
log-loss distortion (see also Courtade and Wesel [1]).

More recently, Shkel and Verdú [3] derived single-shot
bounds under both excess and average log-loss distortion
criteria, without and with decoder side information (see [4],
[5] for universal extensions). Key to their approach is a close
connection between the log-loss setting and the almost lossless
setting with list decoding. As we shall see, this connection to
list decoding also plays a central role in our current work.

In this paper, instead of single-shot bounds, we are interested
in error exponents under an excess log-loss distortion criterion.
We derive error exponents without and with side information,

This work was partially supported by the European Research Council (ERC)
under the ERC Starting Grant N. 101116550 (IT-JCAS).

while mainly focusing on universal schemes. We also demon-
strate close connections to results in almost lossless settings.

Notation: We use standard notation, briefly explained here.
P(X ) denotes the probability simplex on a finite alphabet
X . For a probability mass function (pmf) PX ∈ P(X ), we
denote its support by S(PX) and its entropy by H(PX). The
relative entropy between two pmfs QX and PX is denoted by
D(QX∥PX). For (X,Y ) with joint pmf PXY = PX|Y PY , the
conditional entropy of X given Y is denoted by H(PX|Y |PY ).
The type of a sequence x ∈ Xn is denoted by Px, and Pn(X )
is the set of all types of sequences in Xn. For Q ∈ Pn(X ), the
corresponding type class is denoted by Tn(Q). Given a second
sequence y ∈ Yn, Pxy and Px|y are the joint and conditional
types. Pn(X × Y) and Pn(X|Y) are the sets of all joint and
conditional types. Tn(QX|Y |y) is the conditional type class of
QX|Y ∈ Pn(X|Y) given y. We will make use of types and
type classes and their basic properties, such as cardinality and
probability bounds (see, e.g., [6, Ch.2]).

II. SOURCE CODING UNDER LOG-LOSS

Consider a DMS with finite alphabet X that randomly
generates i.i.d. source sequences X ≜ (X1, X2, . . . , Xn)
according to a pmf PX ∈ P(X ). We use x ≜ (x1, x2, . . . , xn)
to denote a realization of X . A soft reconstruction of x is a
member of P(Xn), i.e. a distribution on Xn, denoted by P̂n.
The log-loss distortion between x and P̂n is defined as

d(x, P̂n) ≜ log
1

P̂n(x)
. (2)

The log-loss, also referred to as the self-information loss,
can be understood as the remaining uncertainty about x given
its reconstruction P̂n [1]–[3]. For instance, d(x, P̂n) is zero if
and only if P̂n has a single mass point at x, i.e. an exact hard
reconstruction; and infinite whenever x has zero probability
under P̂n. For convenience, we work with the normalized (per-
symbol) log-loss defined as dn(x, P̂n) ≜ 1

nd(x, P̂n).
In the lossy source coding setting considered in this work,

the sequence X is encoded into a message index from the finite
setMn, which is then decoded into a soft reconstruction from
P(Xn). A lossy source code of block-length n is thus a pair of
mappings ϕn : Xn →Mn and φn :Mn → P(Xn), referred
to as the encoder and decoder respectively.

For a lossy source code (ϕn, φn), the code rate is given
by 1

n log |Mn|, while P
[
dn
(
X, φn (ϕn(X))

)
> ∆

]
is the

excess distortion error probability for some distortion level
∆ ≥ 0. We say that (ϕn, φn) is an (n,R,∆, ϵ)-code if
1

n
log |Mn| ≤ R and P

[
dn
(
X, φn (ϕn(X))

)
> ∆

]
≤ ϵ.
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The minimal error probability for fixed (n,R,∆) is defined as

ε(n,R,∆) ≜ inf {ϵ : there exists an (n,R,∆, ϵ)-code} .
We are interested in characterizing the asymptotic behaviour
of ε(n,R,∆), captured through the error exponent defined as

E(R,∆) ≜ lim
n→∞

1

n
log

1

ε(n,R,∆)
. (3)

Remark 1. The above problem does not fall under the um-
brella of standard lossy source coding in discrete memoryless
settings [6], [7]. In the standard paradigm, the reconstruction
is a sequence drawn from a discrete product alphabet; and
the distortion is additive, i.e. a normalized sum of single-letter
distortions. In the setting considered here, the reconstruction
alphabet P(Xn) is not a product alphabet and is not discrete;
and the distortion measure is not additive. For dn(x, P̂n) to
be additive, the soft reconstruction P̂n must be a product
distribution, as in earlier works on log-loss source coding [1],
[2]. This need not be the case in general, and as we shall see,
the codes we propose employ non-product soft reconstructions.

A. Connection to list decoding

In [3], Shkel and Verdú established a fundamental connec-
tion between lossy source coding under log-loss and almost
lossless source coding with list decoding, leading to an exact
characterization of ε(n,R,∆). This connection is central to
the approach we take here, therefore, we review it in some
detail. We start with a key lemma linking the log-loss of a
soft reconstruction to the list size in list decoding.

To this end, fix a soft reconstruction P̂n ∈ P(Xn) and a
distortion level ∆ ≥ 0. We say that a sequence x ∈ Xn is
∆-covered by P̂n if dn(x, P̂n) ≤ ∆. If P̂n ∆-covers every
element of a set (or list) Ln ⊆ Xn, then the set Ln is also
said to be ∆-covered by the soft reconstruction P̂n.

Lemma 1. Let Ln ⊆ Xn. There exists a soft-reconstruction
P̂n ∈ P(Xn) that ∆-covers Ln if and only if

|Ln| ≤ ⌊exp(n∆)⌋. (4)

Proof. The direct part holds by taking P̂n to be uniform on
Ln and zero elsewhere. The converse part follows from [3,
Lemma 1], reproduced here for completeness. Let Bn(∆, P̂n)
be the set of all source sequences ∆-covered by P̂n, i.e.

Bn(∆, P̂n) ≜
{
x ∈ Xn : dn(x, P̂n) ≤ ∆

}
. (5)

It is sufficient to show |Bn(∆, P̂n)| ≤ ⌊exp(n∆)⌋. Note that
x ∈ Bn(∆, P̂n) implies P̂n(x) ≥ exp(−n∆), and therefore

1=
∑

x∈Xn

P̂n(x) ≥
∑

x∈Bn(∆,P̂n)

P̂n(x) ≥
∣∣Bn(∆, P̂n)

∣∣ exp(−n∆).

The bound is tightened by including the floor function.

Now consider an almost lossless list source code: here a
source sequence is encoded into one of ⌊exp(nR)⌋ message in-
dices, and a message index is decoded into a list of ⌊exp(n∆)⌋
source sequences. A decoding error occurs if the generated

source sequence is not in the decoded list. From Lemma 1, we
see that such a code with error probability ϵ can be converted
into a (n,R,∆, ϵ) log-loss source code. Conversely, a log-loss
source code can be converted into an almost lossless list source
code. This connection leads to the following result.

Theorem. (Shkel-Verdú [3, Theorem 5-6]). Let G : Xn →
{1, 2, . . . , |Xn|} be a a probability rank function that ranks
source sequences in decreasing order of their probability. Then

ε(n,R,∆) = P
[
G(X) > ⌊exp(nR)⌋ ⌊exp(n∆)⌋

]
. (6)

III. ERROR EXPONENT

We now present the first result of this paper. To this end,
we first define the function F (R) on 0 ≤ R < log |S(PX)| as

F (R) ≜ min
QX :H(QX)≥R

D(QX∥PX). (7)

Note that F (R) = E(R, 0), which is the error exponent in the
almost lossless case [6], [8], [9]. F (R) is continuous, convex
and increasing on its domain, with F (R) = 0 on 0 ≤ R ≤
H(PX). The expression in (7) is known as a primal form.
F (R) admits an equivalent dual form given as [6, Prob.2.15]

F (R) = sup
ρ≥0

ρ
(
R−H 1

1+ρ
(X)

)
(8)

where H 1
1+ρ

(X) is the Rényi entropy of order 1/(1 + ρ).
Recall that the log-loss rate-distortion function is given by

R(∆) = H(PX) −∆, and to ensure that ε(n,R,∆) goes to
zero, we must have R > H(PX)−∆. On the other hand, for
rates satisfying R ≥ log |S(PX)| − ∆, the whole support of
Pn
X can be covered by lists of size en∆. Therefore, the relevant

range is H(PX) < R+∆ < log |S(PX)|.
Theorem 1. Let (R,∆) be a rate-distortion pair such that
H(PX) < R+∆ < log |S(PX)|. Then

E(R,∆) = F (R+∆). (9)

We observe that E(R,∆) = E(R +∆, 0), i.e. the log-loss
error exponent as a function of R is merely a translation of
the almost lossless error exponent by ∆ bits to the left. This
can be understood in light of the optimal source code that
achieves (6) as follows. For a log-loss source code of rate
R and distortion ∆, an excess distortion error occurs when
the source generates a sequence with probability rank greater
than

⌊
enR

⌋ ⌊
en∆

⌋
, that is the number of sequences covered by⌊

enR
⌋

lists of size
⌊
en∆

⌋
each. On the other hand, an almost

lossless source code of rate R +∆ makes an error when the
source generates a sequence with probability rank greater than⌊
en(R+∆)

⌋
. Asymptotically, the two error events have almost

the same probability, yielding in the same error exponent.
The above argument is sufficient for proving Theorem 1,

yet it employs a code that depends on the source pmf (or
probability rank function). Further on we present an alternative
proof using the method of types, extending the Longo-Sgarro
approach [9] (see also Csiszár-Körner [6]) from the almost
lossless case to the log-loss case. As is often the case with
types-based proofs, a universal scheme emerges.
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It is worthwhile mentioning that the log-loss error exponent
expression in (9) can be obtained from Marton’s error exponent
[7] by replacing the general rate-distortion function with its
log-loss counterpart. While this is perhaps expected, the result
in Theorem 1 does not follow directly from Marton’s proof, at
least not without modification, as the log-loss setting consid-
ered here is not a special case of the classical rate-distortion
setting (see Remark 1). We shall see next that Theorem 1 is
proved directly using the connection to list decoding.

A. Proof of Theorem 1

1) Achievability: Fix R > 0 and n ∈ N, and let Jn =
|Pn(X )| and Mn =

⌊
(1 + n)−|X|enR

⌋
. For every type Q ∈

Pn(X ), partition Tn(Q) into Mn lists all roughly of the same
size. Ln(x) denotes the list containing x. By construction,

|Ln(x)| ≤
⌈ |Tn(Px)|

Mn

⌉
(10)

for every x ∈ Xn. An emitted source sequence x is encoded
into ϕn(x) =

(
tn(x), ln(x)

)
, where tn(x) ∈ {1, 2, . . . , Jn}

is the type index and ln(x) ∈ {1, 2, . . . ,Mn} is the list
index. Upon receiving ϕn(x), the decoder reproduces the list
Ln(x) containing x. The corresponding soft reconstruction
φn(ϕn(x)) = P̂n

(
· |ϕn(x)

)
is set as

P̂n

(
x̂|ϕn(x)

)
=

{
1

|Ln(x)| , x̂ ∈ Ln(x)

0, otherwise.

The rate of this code satisfies 1
n log (JnMn) ≤ R. For any

sequence x ∈ Xn, the log-loss incurred by the corresponding
reconstruction φn(ϕn(x)) is bounded above as

dn
(
x, φn(ϕn(x))

)
=

1

n
log |Ln(x)|

≤ 1

n
log

⌈
enH(Px)

⌊
enR−|X| log(1+n)

⌋
⌉

(11)

≤ H(Px)−R+ δn (12)

where δn ≥ 0 goes to zero as n grows large.
We now analyze the error probability. To this end, fix ∆ ≥ 0

such that H(PX) < R +∆ < log |S(PX)|. We can see from
(12) that all source sequences in the set Bn, defined as

Bn =
⋃

Q∈Pn(X ):H(Q)≤R+∆−δn

Tn(Q), (13)

are reconstructed with a log-loss not exceeding ∆, and thus
the excess distortion error event is included in Xn \ Bn. The
error probability under source pmf PX is bounded above as

Pn
X(Xn \ Bn) =

∑

Q∈Pn(X ):H(Q)>R+∆−δn

Pn
X

(
Tn(Q)

)

≤
∑

Q∈Pn(X ):H(Q)>R+∆−δn

e−nD(Q∥PX) (14)

≤ (n+ 1)|X | max
Q∈Pn(X ):H(Q)>R+∆−δn

e−nD(Q∥PX) (15)

≤ (n+ 1)|X |e−nF (R+∆−δn). (16)

The above steps are standard and use the properties of types
and type classes. Achievability follows from (16) and the
continuity of F (R′) on H(PX) < R′ < log |S(PX)|.
Remark 2. As mentioned earlier, the above source code is
universal and does not depend on PX . The code is also
universal with respect to the distortion level ∆, and only
depends on the rate R (and block-length n). For fixed R,
the same sequence of codes achieves a positive exponent for
every PX and ∆ satisfying R < H(PX)−∆. The key to the
universality with respect to ∆ is the variable list partitioning of
type classes, where list sizes depend on the type and code rate
but not on the distortion level (see (10)). The same partitioning
is used by Bunte and Lapidoth in [10] in the context of strictly
lossless list source coding (also known as task encoding),
where the focus is on analyzing list size moments.

Remark 3. In the achievability proof of Marton’s error expo-
nent [7], a key ingredient is the type covering lemma which
states that for any type Q ∈ Pn(X ) with a rate-distortion
function satisfying R(Q,∆) ≤ R − δ, the corresponding
type class Tn(Q) can be ∆-covered by enR reconstruction
sequences. The type covering lemma is often proved using
random selection (i.e. random coding). In the log-loss setting
considered here, type covering is accomplished through simple
partitioning, and the proof does not rely on random coding.

2) Converse: Fix a pair (R,∆) and a source pmf PX such
that H(PX) < R +∆ < log |S(PX)|. For every block-length
n, let (ϕ⋆n, φ

⋆
n) be an optimal code achieving the minimal error

probability ε(n,R,∆). Moreover, define the set B⋆n ≜
{
x ∈

Xn : dn (x, φ
⋆
n (ϕ

⋆
n(x))) ≤ ∆

}
. An error occurs whenever the

source produces a sequence in Xn \ B⋆n.
Let M(∆,B⋆n) be the minimum number of soft reconstruc-

tion required to ∆-cover B⋆n. From Lemma 1, we know that
any soft reconstruction can ∆-cover at most ⌊en∆⌋ source
sequence. Therefore, we must have

M(∆,B⋆n) ≥
⌈ |B⋆n|
⌊en∆⌋

⌉
. (17)

It immediately follows that the rate R of (ϕ⋆n, φ
⋆
n) must satisfy

enR ≥M(∆,B⋆n) ≥ |B⋆n|e−n∆. (18)

Now let δn = |X |
n log(1+n)+ 1

n log 2 and let Q ∈ Pn(X ) be
a type such that H(Q) ≥ R+∆+ δn. The cardinality of the
corresponding type class Tn(Q) is bounded below as

|Tn(Q)| ≥ (1 + n)−|X|enH(Q) ≥ 2en(R+∆) ≥ 2|B⋆n|
from which we conclude that at least half of the sequences in
Tn(Q) are not contained in B⋆n. Therefore

ε(n,R,∆) = Pn
X (Xn \ B⋆n) ≥

1

2
Pn
X (Tn(Q))

≥ 1

2
(n+ 1)−|X|e−nD(Q∥PX) = e−nD(Q∥PX)−nδn (19)

obtained from the standard type class probability lower bound.
This holds for all types satisfying H(Q) ≥ R+∆+δn, hence

− 1

n
log ε(n,R,∆) ≤ δn + min

Q∈Pn(X ):H(Q)≥R+∆+δn
D(Q∥PX)
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= δn + Fn(R+∆+ δn) (20)

where Fn(R
′) is defined as F (R′) in (7) except that the

minimization is over types in Pn(X ) instead of all pmfs in
P(X ). By definition, we know that F (R′) ≤ Fn(R

′). In
addition, it can be shown that Fn(R

′) ≤ F (R′)+ δ′n for some
δ′n > 0 that goes to zero as n grows large.1 By combining this
with (20) and taking the limit, the converse result follows.

IV. SIDE INFORMATION

In this section we consider settings with side information.
Here we have a pair of DMSs with finite alphabets X and
Y . The sources randomly generate an i.i.d. sequence of pairs
(X,Y ) ≜

(
(X1, Y1), (X2, Y2), . . . , (Xn, Yn)

)
according to a

joint pmf PXY ∈ P(X×Y). The goal remains to compress the
sequence X and then decompress it into a soft reconstruction
in P(Xn), but now Y is available either at both the encoder
and decoder sides, or at the decoder side only.

A. Encoder-decoder side information

For the case where the side information sequence is avail-
able at both the encoder and decoder sides, a lossy source
code of block-length n is given by the pair of mappings
ϕn : Xn × Yn → Mn and φn : Mn × Yn → P(Xn). A
(n,R,∆, ϵ)-code, minimal error probability and error exponent
are defined in a standard manner. The latter two are denoted
by εX|Y (n,R,∆) and EX|Y (R,∆) respectively.

This problem is very similar to its counterpart with no
side information, i.e. given Y = y, the problem reduces to
encoding and decoding a memoryless source (not necessarily
i.i.d.) with distribution PX|Y (x|y) =

∏n
i=1 PX|Y (xi|yi).

Nevertheless, it is still useful to characterize the error exponent
in this case, as it provides an upper bound for the more
interesting case with decoder side information only. To this
end, we define FX|Y (R) on 0 ≤ R < log |S(PX)| as

FX|Y (R) ≜ min
QXY :H(QX|Y |QY )≥R

D(QXY ∥PXY ). (21)

FX|Y (R) is continuous, convex and increasing on its domain;
and is zero for 0 ≤ R ≤ H(PX|Y |PY ). Moreover, we have
FX|Y (R) = EX|Y (R, 0), that is the error exponent in the
almost lossless case. FX|Y (R) also admits the following dual
form in terms of Arimoto’s conditional Rényi entropy [11]

FX|Y (R) = sup
ρ≥0

ρ
(
R−H 1

1+ρ
(X|Y )

)
(22)

obtained using Lagrangian duality techniques (see, e.g., the
proof of [10, Equation (32)] by Bunte and Lapidoth).

Theorem 2. Let (R,∆) be a rate-distortion pair such that
H(PX|Y |PY ) < R+∆ < log |S(PX)|. Then

EX|Y (R,∆) = FX|Y (R+∆). (23)

The proof of Theorem 2 (omitted for brevity) is very similar
to that of Theorem 1, but relies on conditional types.

1By continuity and since
⋃

n∈N Pn(X ) is dense in P(X ) [9, Rem. 2].

B. Decoder side information: Wyner-Ziv

We now turn our attention to the case where the side
information sequence Y is only available at the decoder. This
is the Wyner-Ziv setting, specialized to the log-loss distortion
measure. A lossy source code of block-length n here is given
by the pair ϕn : Xn →Mn and φn :Mn × Yn → P(Xn).
The minimal error probability and error exponent are denoted
by εWZ

X|Y (n,R,∆) and EWZ
X|Y (R,∆) respectively.

Next, we observe that the encoder-decoder side information
result in Theorem 2 provides the following converse bound

EWZ
X|Y (R,∆) ≤ Esp

X|Y (R,∆) ≜ FX|Y (R+∆). (24)

For ∆ = 0, the setting reduces to the Slepian-Wolf problem,
and we denote the error exponent by ESW

X|Y (R). The bound
ESW

X|Y (R) ≤ FX|Y (R), a special case of (24), was obtained by
Gallager in [12] (see also Csiszár and Körner [13, Theorem 3]).
This bound on the Slepian-Wolf error exponent is sometimes
referred to as the sphere-packing exponent [14], due to close
resemblance to the sphere-packing exponent in channel coding.
Similarly, the bound in (24) can be thought of as a sphere-
packing exponent for the log-loss Wyner-Ziv setting.

Next, we derive a lower bound for EWZ
X|Y (R,∆). Define the

function F̃X|Y (R) on 0 ≤ R < log |S(PX)| as

F̃X|Y (R)≜min
QXY

{
D(QXY ∥PXY )+

∣∣R−H(QX|Y |QY )
∣∣+
}

where |a|+ ≜ max{0, a}. Note that F̃X|Y (R) ≤ FX|Y (R).
Moreover, F̃X|Y (R) admits a dual form

F̃X|Y (R) = max
ρ∈[0,1]

ρ
(
R−H 1

1+ρ
(X|Y )

)
. (25)

F̃X|Y (R) is an achievable error exponent in the Slepian-Wolf
setting [12], [13], referred to as the random-coding error expo-
nent, as it is achieved through random coding (or binning) in
close resemblance to the random-coding exponent in channel
coding. A corresponding random-coding error exponent for the
log-loss Wyner-Ziv problem is presented next.

Theorem 3. Let (R,∆) be a rate-distortion pair such that
H(PX|Y |PY ) < R+∆ < log |S(PX)|. Then

EWZ
X|Y (R,∆) ≥ Er

X|Y (R,∆) ≜ F̃X|Y (R+∆).

For fixed ∆, the exponents Er
X|Y (R,∆) and Esp

X|Y (R,∆)

coincide on H(PX|Y |PY ) − ∆ < R ≤ Rcr, where Rcr is
the largest rate at which the convex curve Esp

X|Y (R,∆), as a
function of R, meets it supporting line of slope 1. Note that
Rcr is reminiscent of the critical rate in channel coding. Above
this rate, the two exponents differ in general.

C. Proof of Theorem 3

The proof is based on random binning and a list decoding
variant of the universal minimum entropy decoding rule [13],
[15]. In the analysis of this scheme, we use H(x|y) as a
shorthand notation for the conditional entropy H(Px|y|Py)
calculated from the joint type Pxy = Px|yPy .
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Let Jn = |Pn(X )| and Mn =
⌊
(1 + n)−|X|enR

⌋
for fixed

R and n. A binning function bn : Xn → {1, 2, . . . ,Mn} is
a mapping that assigns an index bn(x) ∈ {1, 2, . . . ,Mn} to
every source sequence x ∈ Xn. For a fixed bin assignment,
determined by a given binning function bn, the set of all source
sequences with the same bin index as x is denoted by

Bn(x|bn) ≜ {x̂ ∈ Xn : bn(x̂) = bn(x)}.
Further on, we will analyze the error probability averaged over
an ensemble of binning functions. To that end, we denote a
random binning function by Bn, where bn is a realization of
Bn. We use Gallager’s ensemble [12]: every source sequence is
assigned a bin index uniformly at random; and bin assignments
are pairwise independent across sequences.

Encoding: The generated source sequence x is encoded into
ϕn(x) =

(
tn(x), bn(x)

)
, where tn(x) is the type index and

bn(x) is the bin index. The rate satisfies 1
n log (JnMn) ≤ R.

Decoding: Upon receiving ϕn(x), the decoder knows that
x is in the set Tn(Px) ∩ Bn(x|bn). Now suppose that the
side information sequence is equal to y. For every sequence
x̂ ∈ Tn(Px)∩Bn(x|bn), the decoder computes the conditional
entropy H(x̂|y) and produces a list Ln(ϕn(x),y) of size

|Ln(ϕn(x),y)| = min
{ ⌊

en∆
⌋
, |Tn(Px) ∩ Bn(x|bn)|

}

comprising source sequences with the lowest conditional en-
tropy. The soft reconstruction is taken to be uniformly sup-
ported on Ln(ϕn(x),y). It is clear that an excess distortion
error occurs if Ln(ϕn(x),y) does not include the encoded
source sequence x. Moreover, by setting ∆ = 0, we recover
the classical minimum entropy decoder.

Error probability: Let En(x|y, bn) denote the set of all
source sequences other than x, but with the same type and
bin as x, and a conditional entropy smaller than or equal to
that of x given y. For an excess distortion error to occur, we
must have |E(x|y, bn)| ≥

⌊
en∆

⌋
= en(∆−δn), where δn ≥ 0

goes to zero as n grows large. The excess distortion error
probability, averaged over Bn, is hence bounded above by

P

[
|En(X|Y , Bn)| ≥ en(∆−δn)

]
≤

∑

x,y

Pn
XY (x,y)min

{
1, e−n(∆−δn)E

[
|En(x|y, Bn)|

]}
(26)

which follows from Markov’s inequality combined with the
trivial upper bound of 1. We now take a small detour to
bound E [|En(x|y, Bn)|]. To this end, define the set E ′n(x|y) ≜{
x̂ ∈ Tn(Px) : x̂ ̸= x, H

(
x̂|y
)
≤ H

(
x|y
)}

, and observe that

E [|En(x|y, Bn)|] =
∑

x̂∈E′
n(x|y)
P [Bn(x̂) = Bn(x)] =

|E ′(x|y)|
Mn

which follows from uniform pairwise independent bin assign-
ment. Next, we note that

|E ′n(x|y)| ≤
∑

QX|Y ∈Pn(X|Y):H(QX|Y |Py)≤H(x|y)
|Tn(QX|Y |y)|

≤ (n+ 1)|X |·|Y|enH(x|y). (27)

From the above and Mn =
⌊
(1 + n)−|X|enR

⌋
, we obtain

E [|En(x|y, Bn)|] ≤ enH(x|y)−nR+nδ′n (28)

from some δ′n ≥ 0 which goes to zero as n grows large.
Defining δ′′n ≜ δn + δ′n, and using (28), it follows that

min
{
1, e−n(∆−δn)E

[
|En(x|y, Bn)|

]}
≤e−n|R+∆−H(x|y)|++nδ′′n .

Plugging this back into (26), and invoking the usual random
coding argument of the existence of a code, we obtain

εWZ
X|Y (n,R,∆)≤

∑

y∈Yn

∑

x∈Xn

Pn
XY (x,y)e

−n|R+∆−H(x|y)|++nδ′′n

≤
∑

QXY ∈Pn(X×Y)

e−nD(QXY ∥PXY )e−n|R+∆−H(QX|Y |QY )|++nδ′′n

≤ (n+ 1)|X |·|Y|e−nF̃X|Y (R+∆)+nδ′′n . (29)

The result in Theorem 3 follows.

V. CONCLUDING REMARKS

In the high rate regime where Er
X|Y (R,∆) and Esp

X|Y (R,∆)
diverge, it is possible to derive a tighter achievable exponent,
which is a log-loss counterpart of the expurgated exponent in
source coding [15]. We skip this due to lack of space. As
an extension, it is of interest to derive error exponents and
universal schemes for the multi-terminal settings in [1], [2].
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Abstract—For the discrete-time AWGN channel with a power
constraint, we derive a lower bound on the optimal correct-
decoding exponent. The derivation uses the method of types with
finite alphabets of sizes depending on the block lengthn and with
the number of types sub-exponential inn.1

I. I NTRODUCTION

We study reliability of communication through the discrete-
time additive white Gaussian noise (AWGN) channel with a
power constraint imposed on blocks of its inputs. Consider
the capacity formula of this channel, which was found by
Shannon:

C = 1
2 log2(1 + s2/σ2), (1)

whereσ2 is the channel noise variance ands2 is the power
constraint. This capacity corresponds to the maximum of
the mutual informationI( pX , w) over pX , under the power
constraint onpX , wherew stands for the channel transition
probability density function (PDF) andpX is the channel input
PDF. Let us briefly recall the technicalities [1] of how the
expression (1) is obtained from the mutual information:

max
pX : E[X2] ≤ s2

I( pX , w)

= max
pX : E[X2] ≤ s2

{
D

(
w ‖ p̂Y | pX

)
− D

(
pY ‖ p̂Y

)}

= max
pX : E[X2] ≤ s2

{
E
[
X2

]
− s2

2 ln(2)(s2 + σ2)
− D

(
pY ‖ p̂Y

)

︸ ︷︷ ︸
≤ 0

}

+ 1
2 log2(1 + s2/σ2). (2)

Here p̂Y (y) , 1√
2π(s2 + σ2)

exp
(

− y2

2(s2 + σ2)

)
and pY (y) ≡

∫
R pX(x)w(y | x)dx, the operatorE[ · ] denotes the expecta-

tion, andD is the Kullback–Leibler divergence between two
probability densities. In this paper we propose an explanation,
similar to (2), for Oohama’s converse bound on the optimal ex-
ponent in the block correct-decoding probability of the AWGN
channel [2, Eq. 4]. This bound for the AWGN channel parallels
the similar bound for the discrete memoryless channel, given
by Arimoto [3], [4].

In the case of discrete memoryless channels, the mutual
information enters into the expressions for correct-decoding

1This work was supported by the Israel Science Foundation (ISF) grant
#1579/23.

and error exponents through the method of types [4], [5].
For the moment without any interpretation, let us rewrite
the constant-composition correct-decoding exponent [4] with
PDF’s:

min
pY |X

{
D

(
pY |X ‖ w | p̂X

)
+

∣∣R − I
(
p̂X , pY |X

) ∣∣+
}

, (3)

where p̂X denotes the Gaussian density with zero mean and
variances2, which maximizes (2),R > 0 is the information
rate, and| t |+ , max {0, t}. When p̂X is Gaussian, the
minimum (3) allows an explicit solution by the method of
Lagrange multipliers. The minimizing solutionp∗

Y |X of (3) in
this case is also Gaussian. Then it turns out thatp

∗
Y |X and

the y-marginal PDF of the product̂pXp
∗
Y |X play the same

roles in the derivation of the converse bound, asw and p̂Y ,
respectively, in the maximization (2).

In this paper, in order to derive an expression similar to (3),
we extend the method of types [1, Ch. 11.1], [6] to include
countable alphabets consisting of real numbers, with the help
of power constraints on types. The countable alphabets depend
on the block lengthn, and the number of types satisfying the
power constraints is kept sub-exponential inn. The types are
empirical distributions of uniformly quantized real numbers in
quantized versions of real channel input and output vectorsof
lengthn. We emphasize that the quantized versions serve only
for classification of channel input and output vectors and not
for the communication itself. The uniform quantization step
may be different for the quantized versions of channel inputs
and outputs, and in both cases it is chosen to be a decreasing
function of n.

Similarly as (2), the proposed derivation demonstrates, that,
in order to achieve the converse bound on the correct-decoding
exponent, it is necessary for the types of the quantized versions
of codewords to converge to the Gaussian distribution in
characteristic function (CF), or, equivalently, in cumulative
distribution function (CDF).

II. N OTATION

Countable alphabets consisting of real numbers are denoted
by Xn, Yn. The set of types with denominatorn over Xn

is denoted byPn(Xn). Capital ‘P ’ denotes probability mass
functions, always corresponding to types. The type class ofa
type PX is denoted byT (PX). Small ‘p’ denotes probability
density functions. Thin lettersx, y represent real values, while
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thick lettersx, y represent real vectors of lengthn. Capital
lettersX , Y represent random variables, a boldface letterY
represents a random vector of lengthn. Smallw stands for a
conditional PDF, andWn stands for a discrete positive mea-
sure,which does not necessarily add up to1. All information-
theoretic quantities such as the mutual informationI(PXY ),
I
(
PX , PY |X

)
, I

(
PX , pY |X

)
, the Kullback-Leibler divergence

D
(
PY |X ‖ Wn | PX

)
, D

(
pY |X ‖ w | PX

)
, and the informa-

tion rateR are defined with respect to the logarithm to a base
b > 1, denoted aslogb(·). The natural logarithm is denoted
as ln. Logical “or” and “and” are represented by the symbols
∨ and∧, respectively.

III. C OMMUNICATION SYSTEM

We consider communication over the time-discrete additive
white Gaussian noise channel with real channel inputsx ∈ R
and channel outputsy ∈ R and a transition probability density

w(y | x) , 1

σ
√

2π
e− (y − x)2

2σ2 .

Communication is performed by blocks ofn channel inputs.
Let R > 0 denote a nominal information rate. Each block
is used for transmission of one out ofM messages, where
M = M(n, R) , ⌊bnR⌋, for some logarithm baseb > 1. The
encoder is a deterministic functionf : {1, 2, . . . , M} → Rn,
which converts a message into a transmitted block, such that

f(m) = x(m) =
(
x1(m), x2(m), . . . , xn(m)

)
,

m = 1, 2, . . . , M,

wherexk(m) ∈ R, for all k = 1, 2, . . . , n. The set of all the
codewordsx(m), m = 1, 2, . . . , M , constitutes a codebook
C. Each codewordx(m) in C satisfies the power constraint:

1

n

n∑

k =1

x2
k(m) ≤ s2, m = 1, 2, . . . , M. (4)

The decoder is another deterministic functiong : Rn →
{0, 1, 2, . . . , M}, which converts the received block ofn
channel outputsy ∈ Rn into an estimated message, or,
possibly, to a special error symbol ‘0’:

g(y) =

{
0, y ∈ ⋂M

m = 1 Dc
m,

m, y ∈ Dm, m ∈ {1, 2, . . . , M},
(5)

where each setDm ⊆ Rn is either an open region or the
empty set, and the regions are disjoint; i.e.,Dm ∩ Dm′ = ∅
for m 6= m′. Observe that the maximum-likelihood decoder
with open decision regionsD∗

m , defined form = 1, 2, . . . , M
as

D∗
m = Rn\

⋃

m′: (m′ < m) ∨(
m′ > m ∧ x(m′) 6=x(m)

)

{
y : ‖y−x(m′)‖ ≤ ‖y−x(m)‖

}
,

is a special case of (5). Note that the formal definition of
D∗

m includes the undesirable possibility ofx(m′) = x(m) for
m′ 6= m.

IV. D EFINITIONS

For eachn, we define two discrete countable alphabetsXn

andYn as one-dimensional lattices:

α, β ∈ (0, 1), α + β < 1,

∆α, n , 1/nα, ∆β, n , 1/nβ, (6)

Xn ,
⋃

i ∈ Z

{
i∆α, n

}
, Yn ,

⋃

i ∈ Z

{
i∆β, n

}
. (7)

For eachn, we define also a discrete positive measure (not
necessarily a distribution), which will approximate the channel
w:

Wn(y | x) , w(y | x) · ∆β, n, ∀x ∈ Xn, ∀y ∈ Yn. (8)

Denoting by C0(A) a class of functionsf : R → R≥ 0

continuous on an open subsetA ⊆ R, for eachn we define

Fn ,
{

f : R → R≥ 0

∣∣∣ f ∈ C0
(
R \ {Yn + ∆β, n/2}

)
,

sup
y ∈ R

f(y) < +∞,

∫

R
f(y)dy = 1

}
. (9)

With a parameterρ ∈ (−1, +∞), we define the following
Gaussian probability density functions [7], [8]:

p
(ρ)
Y |X(y | x) , 1

σY |X(ρ)
√

2π
exp

{
− (y − kρ · x)2

2σ2
Y |X(ρ)

}
, (10)

kρ , SNR− ρ − 1 +
√

(SNR− ρ − 1)2 + 4 · SNR
2 · SNR , SNR, s2

σ2 , (11)

σ2
Y |X(ρ) , (1 + ρ)kρ σ2, (12)

p̂
(ρ)
Y (y) , 1

σY (ρ)
√

2π
exp

{
− y2

2σ2
Y (ρ)

}
, (13)

σ2
Y (ρ) , σ2 + kρ s2, (14)

p̂X(x) , 1
s
√

2π
exp

{
− x2

2s2

}
. (15)

The first property of the following lemma shows thatp̂
(ρ)
Y is

the y-marginal PDF of the product̂pXp
(ρ)
Y |X .

Lemma 1 (Properties of (10)-(15)):
The following properties hold:

σ2
Y (ρ) = σ2

Y |X(ρ) + k2
ρ s2, (16)

1 + ρ

σ2
Y |X(ρ)

=
ρ

σ2
Y (ρ)

+
1

σ2
, (17)

σ2
Y |X(ρ) = σ2 + kρ(1 − kρ)s

2, (18)

1 ≥ kρ > 0, ρ ≥ 0, (19)
1
2

[
1 +

√
1 + 4σ2s−2

]
≥ kρ ≥ 1, −1 ≤ ρ ≤ 0, (20)

and for any two jointly distributed random variables(X, Y ),
such thatE

[
X2

]
= σ2

X ≤ s2 + ǫ, ǫ > 0, andY | X = x ∼
N

(
kρ x, σ2

Y |X(ρ)
)
, it holds that

E
[
(Y − X)2

]
= σ2 + (1 − kρ)s

2 + (1 − kρ)
2(σ2

X − s2)

≤ σ2 + ǫσ2s−2, −1 < ρ ≤ 0. (21)

Here (13) corresponds to [7, Eq. 63], definition (14) combined
with (11) corresponds to [7, Eq. 64], relationships (12), (17),
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and (10) can be found in [7, Eq. 65], while (10), (11), (18)
correspond respectively to [8, Eq. 327, 302, 328].

Proof of Lemma 1:The first property (16) can be verified
using (14), (12), (11). Then (17) can be obtained from (16),
(14), (12). Property (18) follows by (16) and (14). It can
be verified from (11) thatkρ is a positive monotonically
decreasing function ofρ, such thatk0 = 1. Then we get (19)
and (20). The equality of (21) can be obtained using (18).
Then, the inequality of (21) can be verified using (20).�

The following expression will describe our result for the
correct-decoding exponent:

Ec(R) , sup
−1 < ρ ≤ 0{

D
(
p
(ρ)
Y |X ‖ w | p̂X

)
+ ρ

[
I
(
p̂X , p

(ρ)
Y |X

)
− R

]}
. (22)

The following identity can be obtained using (10), (12), (13),
(15), (17):

D
(
p
(ρ)
Y |X ‖ w | p̂X

)
+ ρI

(
p̂X , p

(ρ)
Y |X

)
≡ c0(ρ) + c1(ρ)s2,

c0(ρ) , 1

ln b
ln

(
σ · σρ

Y (ρ)

σ1 + ρ
Y |X (ρ)

)
, c1(ρ) , 1 − kρ

2σ2 ln b
. (23)

It can be verified that withρ ≥ 0 the expression inside
the supremum of (22) is equivalent to the expression for
the Gaussian random-coding error exponent of Gallager prior
to the maximization overρ [9, Eq. 7.4.24 with Eq. 7.4.28].
Therefore, if the supremum is taken overρ ≥ 0, the expression
(22) coincides with Shannon’s sphere-packing converse bound
on the error exponent [10, Eq. 3, 4, 11] in the limit of a large
block length.

V. CONVERSE BOUNDS IN TERMS OF TYPES

For a vector ofn channel inputsx = (x1, x2, . . . , xn) ∈ Rn

let Qα(x) = xq = (xq
1, x

q
2, . . . , x

q
n) ∈ X n

n ≡ (Xn)n be its
quantized version, with components

xq
k = Qα(xk) , ∆α, n ·⌊xk/∆α, n+1/2⌋, k = 1, . . . , n. (24)

For a vector ofn channel outputsy = (y1, y2, . . . , yn) ∈ Rn,
similarly, let Qβ(y) , yq = (yq

1 , y
q
2, . . . , y

q
n) ∈ Yn

n be its
quantized version, withyq

k = Qβ(yk) for all k = 1, . . . , n.
We derive a converse bound on the correct-decoding exponent
in terms of types in two steps. At first, we derive the bound for
a codebook with all thequantized versionsof its codewords
belonging to the same type. We start with the conditional
probability of correct decoding in such a codebook, given the
joint type of the transmitted codeword and the received block.

Lemma 2 (Conditional probability of correct decoding):
Let PXY ∈ Pn(Xn × Yn) be a joint type, such that

EPX

[
X2

]
≤ cX , EPY

[
Y 2

]
≤ cY , and EPXY

[
(Y − X)2

]
≤

cXY , and letC be a codebook, such that the quantized versions
(24) of its codewordsx(m), m = 1, 2, . . . , M(n, R), are all
of the typePX , that is:

xq(m) = Qα(x(m)) ∈ T (PX), ∀m.

Let J ∼ Unif
(
{1, 2, . . . , M}

)
be a random variable, inde-

pendent of the channel, and letx(J) → Y be the random
channel-input and channel-output vectors, respectively.Let
Yq = Qβ(Y) ∈ Yn

n . Then

Pr
{
g(Y) = J

∣∣ (
xq(J), Yq

)
∈ T (PXY )

}
≤

b−n
(
R̃ − I(PXY )+ o(1)

)
,

where R̃ = 1
n logb M(n, R), and o(1) → 0, as n → ∞,

depending only onα, β, cX , cY , cXY , andσ2.
The proof is given in [11, Lemma 10].

Then, the unconditional converse bound, for a codebook
with all the quantized versions of its codewords belonging to
the same type, is given by the following lemma:

Lemma 3 (Correct-decoding exponent of mono-composition
codebooks):

LetPX ∈ Pn(Xn) be a type, such thatEPX

[
X2

]
≤ cX , and

let C be a codebook, such that the quantized versions (24) of
its codewordsx(m), m = 1, 2, . . . , M(n, R), are all of the
typePX , that is:

xq(m) = Qα(x(m)) ∈ T (PX), ∀m.

LetJ ∼ Unif
(
{1, 2, . . . , M}

)
be a random variable, indepen-

dent of the channel, and letx(J) → Y be the random channel-
input and channel-output vectors, respectively. Then for any
ǫ > 0 and σ̃2 ≥ σ2 there existsn0 = n0(α, β, σ̃2, ǫ) ∈ N,
such that for anyn > n0

− 1

n
logb Pr

{
g(Y) = J

}
≥

min
{
En(PX , R, σ̃, ǫ), E(σ̃)

}
+ o(1), (25)

where

E(σ̃) , 1

2 ln b

[
σ̃2/σ2 − 1 − ln (σ̃2/σ2)

]
, (26)

En(PX , R, σ̃, ǫ) , min
PY |X :

PXY ∈ Pn(Xn × Yn),

E[(Y −X)2] ≤ σ̃2 + ǫ{
D

(
PY |X ‖ Wn | PX

)
+

∣∣R − I
(
PX , PY |X

) ∣∣+
}
, (27)

and where| t |+ , max {0, t}, and o(1) → 0, as n → ∞,
depending only onα, β, cX , σ̃2 + ǫ, andσ2.
The proof is given in [11, Lemma 16].

Next, similarly as in [4, Lemma 5], minimization over types
PX extends the bound of Lemma 3 to arbitrary codebooks:

Lemma 4 (Correct-decoding exponent):
Let J ∼ Unif

(
{1, 2, . . . , M}

)
be a random variable,

independent of the channel, and letx(J) → Y be the
random channel-input and channel-output vectors, respec-
tively. Then for anỹǫ, ǫ > 0 and σ̃2 ≥ σ2 there exists
n0 = n0(α, β, s2, σ̃2, ǫ̃, ǫ) ∈ N, such that for anyn > n0

− 1

n
logb Pr

{
g(Y) = J

}
≥

min
{
En(R, σ̃, ǫ̃, ǫ), E(σ̃)

}
+ o(1), (28)
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where

En(R, σ̃, ǫ̃, ǫ) , min
PX|:

PX ∈ Pn(Xn),

E[X2] ≤ s2 + ǫ

En(PX , R, σ̃, ǫ̃ ), (29)

and whereE(σ̃) andEn(PX , R, σ̃, ǫ̃ ) are as defined in (26)
and (27), respectively, ando(1) → 0, as n → ∞, depending
only on the parametersα, β, s2 + ǫ, σ̃2 + ǫ̃, andσ2.
The proof is given in [11, Lemma 17].

The final lemma relates between the minimum over types
(27) and an infimum over PDF’s of the class defined by (9):

Lemma 5 (Type to PDF):
For any cXY and ǫ > 0 there existsn0 = n0(β, cXY , ǫ) ∈

N, such that for anyn > n0 and for any typePX ∈ Pn(Xn):

min
PY |X :

PXY ∈ Pn(Xn × Yn),

EPXY
[(Y −X)2] ≤ cXY{

D
(
PY |X ‖ Wn | PX

)
+

∣∣ R − I
(
PX , PY |X

) ∣∣+
}

≥ inf
pY |X :

pY |X( · | x) ∈ Fn, ∀x,

EPXpY |X [(Y −X)2] ≤ cXY + ǫ

{
D

(
pY |X ‖ w | PX

)
+

∣∣R − I
(
PX , pY |X

) ∣∣+
}

+ o(1),

where o(1) → 0, as n → ∞, and depends only on the
parametersβ and cXY .
The proof is given in [11, Lemma 20].

VI. M AIN RESULT

In this section we prove the main theorem and conclude
with a proposition, which gives an alternative representation
for (22). The proof of Theorem 1 relies on Lemmas 4 and 5.

Theorem 1 (Correct-decoding exponent):
Let J ∼ Unif

(
{1, 2, . . . , M}

)
be a random variable,

independent of the channel, and letx(J) → Y be the random
channel-input and channel-output vectors, respectively.Then

lim inf
n → ∞

inf
C

inf
g

{
− 1

n
logb Pr

{
g(Y) = J

}}
≥ Ec(R),

where Ec(R) is defined by (22), decoder functionsg are
defined by (5), and codebooksC satisfy (4).

Proof: Starting from Lemma 4, for eachR > 0 we can
choose a different parameterσ̃ = σ̃(R) ≥ σ, such that there
is equalityE(σ̃(R)) = Ec(R) between (26) and (22). Then
by (28) we obtain

lim inf
n → ∞

inf
C

inf
g

{
− 1

n
logb Pr

{
g(Y) = J

}}
≥

min
{

lim inf
n → ∞

En(R, σ̃(R), ǫ̃, ǫ), Ec(R)
}
.

With the choice2ǫ̃ = ǫσ2s−2, the first term in the minimum
can be lower-bounded as follows:

lim inf
n → ∞

min
PX|:

PX ∈ Pn(Xn),

E[X2] ≤ s2 + ǫ

min
PY |X :

PXY ∈ Pn(Xn × Yn),

E[(Y −X)2] ≤ σ̃2(R) + ǫ̃{
D

(
PY |X ‖ Wn | PX

)
+

∣∣ R − I
(
PX , PY |X

) ∣∣+
}

a
≥ lim inf

n → ∞
min
PX|:

PX ∈ Pn(Xn),

E[X2] ≤ s2 + ǫ

inf
pY |X :

pY |X( · | x) ∈ Fn, ∀x,

E[(Y −X)2] ≤ σ̃2(R) + 2ǫ̃{
D

(
pY |X ‖ w | PX

)
+

∣∣R − I
(
PX , pY |X

) ∣∣+
}

b
≥ lim inf

n → ∞
min
PX|:

PX ∈ Pn(Xn),

E[X2] ≤ s2 + ǫ

inf
pY |X :

pY |X( · | x) ∈ Fn, ∀x,

E[(Y −X)2] ≤ σ̃2(R) + 2ǫ̃{
D

(
pY |X ‖ w | PX

)
− ρ

[
R − D

(
pY |X ‖ p̂

(ρ)
Y | PX

)]}

c≡ lim inf
n → ∞

min
PX|:

PX ∈ Pn(Xn),

E[X2] ≤ s2 + ǫ

inf
pY |X :

pY |X( · | x) ∈ Fn, ∀x,

E[(Y −X)2] ≤ σ̃2(R) + 2ǫ̃

{
c0(ρ)

+ c1(ρ) E
[
X2

]
− ρR + (1 + ρ)D

(
pY |X ‖ p

(ρ)
Y |X | PX

)}

d
= lim inf

n → ∞
min
PX|:

PX ∈ Pn(Xn),

E[X2] ≤ s2 + ǫ

{
c0(ρ) + c1(ρ) E

[
X2

]
− ρR

}
(30)

e
≥ c0(ρ) + c1(ρ)(s2 + ǫ) − ρR, (31)

where:
(a) follows by Lemma 5 withcXY = σ̃2(R) + ǫ̃.
(b) holds forρ ∈ (−1, 0 ], because

∣∣ R − I
(
PX , pY |X

) ∣∣+
≥ −ρ

[
R − I

(
PX , pY |X

) ]
for any suchρ, and because

I
(
PX , pY |X

)
≤ D

(
pY |X ‖ p̂

(ρ)
Y | PX

)
, where p̂

(ρ)
Y is the

Gaussian PDF defined in (13).
(c) holds as an identity inside the infimum by the definitions

(10), (13), (23), and properties (12), (17).
(d) holds if 2ǫ̃ ≥ ǫσ2s−2 andρ ∈ (−1, 0 ], because then by

(21) and (9) the functionp(ρ)
Y |X satisfies the conditions under

the infimum and achieves the infimum.
(e) follows by the condition under the minimum of (30)

sincec1(ρ) ≤ 0 for ρ ∈ (−1, 0 ].
In conclusion, since (31) is the lower bound for anyρ ∈

(−1, 0 ] and2ǫ̃ ≥ ǫσ2s−2, we obtain

lim inf
n → ∞

En

(
R, σ̃(R), ǫσ2s−2/2, ǫ

)
≥

sup
−1 < ρ ≤ 0

{
c0(ρ) + c1(ρ)(s2 + ǫ) − ρR

} ǫ → 0−→ Ec(R). �

Remark:Observe that the inequality (b) in the proof of The-
orem 1 cannot be met with equality unlessD

(
p

(ρ)
Y ‖ p̂

(ρ)
Y

)
→

0, wherep
(ρ)
Y is they-marginal PDF ofPXp

(ρ)
Y |X . Accordingly,

sincep̂
(ρ)
Y is Gaussian, whilep (ρ)

Y is a convolution ofPX with
the Gaussian PDFp(ρ)

Y |X , the typePX must converge to the
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Gaussian distribution in CF2 and CDF in order to achieve the
exponent of Theorem 1. In the proof, the typePX represents
the histograms of codewords, i.e., the empirical distributions
of their quantized versions.

Proposition 1 (Parametric representation ofEc ): For every
R ≥ I( p̂X , w) there exists a uniqueρ ∈ (−1, 0 ], such that

R = I
(
p̂X , p

(ρ)
Y |X

)
, Ec(R) = D

(
p
(ρ)
Y |X ‖ w | p̂X

)
. (32)

The parametric representation of (32) is analogous to [9,
Eq. 7.4.30, Eq. 7.4.31], it is equivalent to [2, Eq. 22] and
appears in [12, Eq. 25, 26]. Here we present an alternative
proof of Proposition 1 in the vein of the proof of Theorem 1.

Proof: Let us denoteRβ , I
(
p̂X , p

(β)
Y |X

)
. Then forβ ∈

(−1, 0 ] we can write a sandwich proof:

inf
pY |X :

p̂XpY |X ∈ N

{
D

(
pY |X ‖ w | p̂X

)

+
∣∣ Rβ − I

(
p̂X , pY |X

) ∣∣+
}

(33)
a
≥ sup

−1 < ρ ≤ 0
inf

pY |X :

p̂XpY |X ∈ N

{
D

(
pY |X ‖ w | p̂X

)

− ρ
[
Rβ − D

(
pY |X ‖ p̂

(ρ)
Y | p̂X

)]}

b≡ sup
−1 < ρ ≤ 0

inf
pY |X :

p̂XpY |X ∈ N

{
D

(
p
(ρ)
Y |X ‖ w | p̂X

)
− ρ

[
Rβ − Rρ

]

+ (1 + ρ)D
(
pY |X ‖ p

(ρ)
Y |X | p̂X

)}

c
= sup

−1 < ρ ≤ 0

{
D

(
p
(ρ)
Y |X ‖ w | p̂X

)
− ρ

[
Rβ − Rρ

]}

≡ Ec(Rβ)
d
≥ D

(
p
(β)
Y |X ‖ w | p̂X

)
, (34)

where N denotes the set of all bivariate non-degenerate
Gaussian PDF’s. Here (a) follows similarly to the inequality
(b) in Theorem 1; (b) is an identity; (c) follows because
p̂Xp

(ρ)
Y |X is Gaussian andp(ρ)

Y |X achieves the infimum; (d) is
a lower bound on the supremum atρ = β. Finally, since the
RHS of (34) is further lower-bounded by the infimum (33),
we conclude thatEc(Rβ) = D

(
p
(β)
Y |X ‖ w | p̂X

)
.

From I
(
p̂X , p

(ρ)
Y |X

)
= 1

2 logb

(
σ2

Y (ρ)/σ2
Y |X(ρ)

)
using (14)

and (18) we obtaindRρ

dρ =
dRρ

dkρ
· dkρ

dρ < 0. Hence for every
R ≥ I( p̂X , w) the parameterρ(R) ∈ (−1, 0 ] is unique. �
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This is an extended abstract for an invited talk based
on [AC23; AC24].

I. SHIFTED COMPOSITION RULE

We formulate a new technique for bounding information-
theoretic divergences. For KL divergence, this Shifted Chain
Rule (SCR) states

KL(µY ∥νY ) ≤ KL(µX′ ∥νX) + EKL(µY |X=x ∥νY |X=x′
)

where µ is a joint distribution on X,X ′, Y ; ν is a joint
distribution on X,Y ; and the expectation is over any coupling
(x, x′) of µX and µX′

. By taking X = X ′, the SCR
generalizes the standard KL chain rule which (combined with
data-processing) gives the bound

KL(µY ∥νY ) ≤ KL(µX,Y ∥νX,Y )

= KL(µX ∥νX) + EKL(µY |X=x ∥νY |X=x) .

The key advantage of the SCR is the additional flexibility in
X ′, which intuitively enables modifying the “history” of the
process X 7→ Y to X ′ 7→ Y (first term) at a price given by how
different X and X ′ are (second term). This enables addressing
applications where the standard chain rule would not suffice,
such as situations where KL(µX ∥νX) is large or even infinite
(e.g., µX , νX are different Dirac measures).

More generally, our papers consider Rényi divergences of any
positive order. The SCR then becomes the Shifted Composition
Rule, analogously extending the standard Rényi composition
rule via this additional flexibility in X ′. In this abstract, we
focus on KL for simplicity of exposition.

II. REVERSE TRANSPORT INEQUALITIES

In these two papers, our main application is the derivation
of reverse transport inequalities for the Langevin diffusion

dXt = −∇V (Xt) dt+
√
2 dBt , (1)

where (Bt)t≥0 is Brownian motion. Let (Pt)t≥0 denote the
Markov semigroup for (1) and fix probability measures µ, ν,
ν′ and t > 0. As a representative example of our results, we
use the SCR to show that if ∇2V ⪰ αI , then

KL(µPt ∥ νPt) ≤
αW 2

2 (µ, ν)

2 (exp(2αT )− 1)
, (2)

and if −βI ⪯ ∇2V ⪯ βI , then

KL(µPt ∗ ν ∥µPt ∗ ν′) ≤
βW 2

2 (ν, ν
′)

2 (1− exp(−2βt)) . (3)

These inequalities capture complementary aspects of the
diffusion: (2) measures sensitivity w.r.t. the initial condition
(indeed, for α ≥ 0 it yields a mixing time bound), whereas (3)
captures the regularity of the marginal law of the process. In
other words, they encode regularity for Kolmogorov’s backward
and forward equations, respectively.

As an illustration of the use of the SCR, suppose that we
want to establish (2) when µ = δx, ν = δy are Diracs. To
formulate an argument in discrete time, we first replace the
continuous-time semigroup (Pt)t≥0 by a discretized one and
apply a limiting argument. Then, the question is to bound
KL(δxP

N ∥ δyPN ) for a Markov kernel P . A naïve application
of the KL chain rule is vacuous, since KL(δx ∥ δy) = ∞.
Instead, we construct an auxiliary process {X ′

n}Nn=0 such
that X ′

0 = y and X ′
N ∼ δxP

N , and we instead bound
KL(law(X ′

N ) ∥ δyPN ) via the SCR (details in [AC23]). In this
context, this argument can be seen as a generalization of the
shifted divergence technique from the differential privacy and
sampling literature [Fel+18; AT22; AT23] or as a discrete-time
analogue of the coupling in [ATW06].

III. FUNCTIONAL ANALYSIS, GEOMETRY, AND PROBABILITY

Inequalities (2) and (3) are part of a larger story—called
Bakry–Émery theory [BGL14]—which relates analytic proper-
ties of the semigroup, through functional inequalities, to the
curvature of the underlying space and of the measure (i.e., the
Hessian ∇2V of the negative log-density), and to probabilistic
aspects such as concentration of measure and mixing. Indeed, it
is well-known that via duality, (2) is equivalent to the celebrated
dimension-free Harnack inequality of [Wan97], and implies
back the curvature lower bound ∇2V ⪰ αI .

On the other hand, the inequality (3), which is equivalent to
a shift Harnack inequality [Wan14], appears in its sharp form
for the first time in our paper [AC24]. This allows us to prove
that (3) implies back the curvature upper bound ∇2V ⪯ βI .
In our paper, we leave open the intriguing question of whether
this observation can form the basis of a Bakry–Émery theory
for curvature upper bounds.
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Abstract—Globally lipschitz transport maps have found many
applications in the study of probabilistic functional inequali-
ties such as logarithmic Sobolev and Poincaré inequalities, by
transporting an inequality from a nice reference measure to
another one. For example, a theorem of Caffarelli states that
optimal transport maps from the standard Gaussian measure
onto uniformly log-concave measures are 1-lipschitz. This then
recovers the sharp bounds of Bakry and Emery on the logarithmic
Sobolev constant of such measures.

In this talk, I will discuss a construction of non-optimal
transport maps using the heat flow, due to Kim and Milman,
and explain how it allows to get dimension-free lipschitz maps
in new settings, including certain Riemannian manifolds. Joint
work with D. Mikulincer and Y. Shenfeld.

Caffarelli’s contraction theorem [2] states that probability
measures on Rd with density of the form e−V with HessV ≥
Id can be realized as the image of a standard Gaussian measure
on Rd by a 1-lipchitz map. The map is actually the Brenier
map from optimal transport theory [1], viewed as a solution
of a Monge-Ampère partial differential equation. This result
found various applications to the study of sharp constants in
fucntional inequalities and concentration inequalities. We refer
to [5], [6] for surveys and further developments.

Later on, Kim and Milman [4] gave an alternative construc-
tion of Lipschitz transport maps under the same assumptions
as Caffarelli’s theorem, using heat flow to define a map,
and deducing regularity properties of the map from regularity
properties of the heat flow.

In this talk, I will present results of [3] that show how Kim
and Milman’s argument works in other situations, where the
quantitative regularity of Brenier maps is not well-understood.
In particular, we show that there exists globally Lipschitz maps
with dimension-free constants between the standard Gaussian
measure and log-lipshcitz perturbations of it. A precise state-
ment is

Theorem 1: Let γ be the standard Gaussian measure on Rd

and ν = efdγ be a probability measure such that f is L-
Lipschitz. Then there exists a transport map T sending γ onto
ν such that ||T ||lip ≤ exp(c(L+L2)), where c is a numerical
constant that does not depend on f nor on the dimension.

The Lispchitz constant is explicit, and of the sharp order
of magnitude when applied to deduce functional inequalities

such as Poincaré inequalities. Similar results are also obtained
for non-Gaussian measures, under assumptions of uniform
convexity of the potential and bounds on the third-order
derivatives.

We also investigated Riemannian manifolds satisfying cer-
tain geometric assumptions on the curvature, showing for
example existence of dimension-free Lispchitz transport maps
between certain probability measures on spheres with appro-
priately scaled radius.
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Abstract—The Gromov-Wasserstein (GW) distance quantifies
dissimilarity between metric measure (mm) spaces and provides
a natural correspondence between them. As such, it serves as a
figure of merit for applications involving alignment of heteroge-
neous datasets, including object matching, single-cell genomics,
and language models translation. While various heuristic methods
for approximately evaluating the GW distance from data have
been developed, formal guarantees for such approaches—both
statistical and computational—remained elusive. This work closes
these gaps for the quadratic GW distance between Euclidean mm
spaces of different dimensions. At the core of our proofs is a novel
dual representation of the GW problem as an infimum of a certain
class of optimal transportation problems. The dual form enables
deriving, for the first time, sharp empirical convergence rates for
the GW distance by providing matching upper and lower bounds.
For computational tractability, we consider the entropically
regularized GW distance. We derive bounds on the entropic
approximation gap, establish sufficient conditions for smoothness
and convexity of the objective in the dual problem, and devise
efficient algorithms with local and, under convexity, even global
convergence guarantees. These advancements facilitate principled
estimation and inference methods for GW alignment problems,
that are efficiently computable via the said algorithms.

I. EXTENDED ABSTRACT

The Gromov-Wasserstein (GW) distance quantifies discrep-
ancy between probability distributions supported on different
metric spaces by aligning them with one another. Given two
metric measure (mm) spaces (X , dX , µ) and (Y, dY , ν), the
(p, q)-GW distance between them is [1], [2]

Dp,q(µ, ν) := inf
π∈Π(µ,ν)

(∫∫

X×Y
∆p

q dπ ⊗ π
) 1

p

, (1)

where ∆q(x, y, x
′, y′) :=

∣∣dX (x, x′)q − dY(y, y′)q
∣∣ is the

distance distortion cost, Π(µ, ν) is the set of all couplings
between µ and ν. The GW distances thus equals the least
amount of distance distortion one can achieve between the mm
spaces when optimizing over all possible alignments thereof
(as modeled by couplings). This approach, which is rooted
in optimal transport (OT) theory, is an Lp relaxation of the
Gromov-Hausdorff distance between metric spaces and enjoys
various favorable properties. Among others, the GW distance
(i) identifies pairs of mm spaces between which there exists
an measure preserving isometry; (ii) defines a metric on the
space of all mm spaces modulo the aforementioned isomorphic
relation; and (iii) captures empirical convergence of mm space,
i.e., when µ, ν are replaced with their empirical measures
µ̂n, ν̂n based on n samples. Although alignment schemes

inspired by the GW framework have seen many applications in
computer vision, machine learning, single-cell genomics, and
more, existing estimation and computation methods are heuris-
tic and lack formal sample or time complexity guarantees.

To close these gaps, we develop a duality theory for the
GW distance, which linearizes this quadratic functional and
ties it to the well-understood OT problem. This is done by
introducing an auxiliary, matrix-valued optimization variable
A ∈ Rdx×dy that enables linearizing the dependence on the
coupling. We then interchange the optimization over A and
π and identify the inner problem as classical OT problem
with respect to a cost function cA that depends on A. This
representation allows us to lift tool from statistical OT to
derive, for the first time, the sample complexity of the empir-
ical plug-in estimator of the GW distance. The derived two-
sample rate is n−2/max{min{dx,dy},4} (up to a log factor when
min{dx, dy} = 4), which matches the corresponding rates for
empirical OT. We then provide matching lower bounds, thereby
establishing sharpness of the derived rates.

From a computational standpoint, evaluation of the GW
distance requires solving a quadratic assignment problem,
which is known to be NP-complete. A popular, computa-
tionally tractable proxy is the entropic GW (EGW) problem,
which regularizes the distance distortion cost from (1) by the
Kullback-Leibler divergence penalty ϵDKL(π∥µ ⊗ ν); ϵ > 0
is the regularization parameter. We show that the entropic
approximation gap is at most O(ϵ log(1/ϵ)), whereby EGW
can approximate GW to an arbitrary precision. We then note
that our GW duality naturally extends to the EGW distance,
up to replacing the OT cost in the variational problem with
its entropic OT (EOT) counterpart. Leveraging the connection
to EOT, we derive smoothness and convexity properties of the
objective in this variational problem, which enable computing
it via accelerated gradient descent. Gradients are evaluated by
employing Sinkhorn’s algorithm to solve the EOT problem,
which we model as an inexact oracle and account for it in our
analysis. This results in the first efficient algorithms for solving
the EGW problem that are subject to formal guarantees in
both the convex and non-convex regimes. There results enable
principled estimation and computation of GW alignment.

REFERENCES

[1] F. Mémoli, “Gromov-Wasserstein distances and the metric approach to
object matching,” Found. Comput. Math., vol. 11, no. 4, 2011.

[2] K.-T. Sturm, “The space of spaces: curvature bounds and gradient flows
on the space of metric measure spaces,” arXiv:1208.0434, 2012.

International Zurich Seminar on Information and Communication (IZS), March 6 – 8, 2024

112



Training Generative Models from Privatized Data via Entropic

Optimal Transport

Daria Reshetova Wei-Ning Chen Ayfer Özgür
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Local differential privacy has been a powerful method for privacy-preserving data collection. It is typically
done by adding proper noise so that only population-level statistics can be inferred, hence protecting sensitive
individual information. In this work, we develop a framework for training Generative Adversarial Networks
(GANs) on locally differentially privatized data. We show that entropic regularization of optimal transport
– a popular regularization method in the literature that has often been leveraged for its computational
benefits – enables the generator to learn the raw (unprivatized) data distribution even though it only has
access to privatized samples. We prove that, at the same time, this leads to fast statistical convergence
at the parametric rate. This shows that entropic regularization of optimal transport uniquely enables the
mitigation of both the effects of privatization noise and the curse of dimensionality in statistical convergence.
We provide experimental evidence to support the efficacy of our framework in practice.

1

International Zurich Seminar on Information and Communication (IZS), March 6 – 8, 2024

113



Linearized Brascamp–Lieb Inequalities
Thomas A. Courtade

University of California, Berkeley
Department of Electrical Engineering and Computer Sciences

email: courtade@berkeley.edu

Abstract—Combining Valdimarsson’s characterization of ex-
tremizers for the Brascamp–Lieb inequalities together with their
dual entropic form, a linearization argument reveals that sev-
eral well-known inequalities in probability can be viewed as
consequences of the Brascamp–Lieb inequalities. The resulting
“linearized Brascamp–Lieb inequalities” admit interpretation as
a sharp spectral gap inequality for a simple physical process.

I. INTRODUCTION

Fix a Euclidean space E, linear subspaces Ei ⇢ E, i =
1, . . . , k, a collection of linear maps B = (Bi : E ! Ei)

k
i=1,

and non-negative real numbers c = (ci)
k
i=1 ⇢ (0,1). The pair

(B, c) is called a (Brascamp–Lieb) datum. The Brascamp–Lieb
inequalities [3], [4] take the form

Z

E

kY

i=1

(fi �Bi)
ci  eBL(B,c)

kY

i=1

✓Z

Ei

fi

◆ci

, (1)

where the Brascamp–Lieb constant BL(B, c) is defined to be
the smallest constant such that (1) holds for all non-negative
fi 2 L1(Ei), i = 1, . . . , k. Here, the integrals are with respect
to Lebesgue measure, and a theorem of Lieb [15] is that
BL(B, c) can be computed by considering centered Gaussian
functions (fi)

k
i=1.

For a linear subspace V ⇢ E, we let PV : E ! E denote
the orthogonal projection of E onto V . A datum (B, c) is said
to be geometric if B⇤

i Bi = PEi
for each i = 1, . . . , k, and the

following frame condition holds:
kX

i=1

ciPEi
= idE . (2)

When (B, c) is geometric, we have BL(B, c) = 0 [1].
For a given datum (B, c), inequality (1) is said to be

extremizable if there exist admissible (fi)
k
i=1 such that (1)

is met with equality. Modulo an equivalence relation that
amounts to a linear change of variables, it is known that all
extremizable data are equivalent to geometric data [1], and the
extremizers in this case have been completely characterized by
Valdimarsson [18].

For a Euclidean space E, let M(E) denote the set of Borel
probability measures on E, absolutely continuous with respect
to Lebesgue measure. For µ 2M(E) with density dµ = fdx,
We define the (Shannon) entropy

h(µ) = �
Z

E

f log fdx,

The author acknowledges support from NSF-CCF 1750430, the hospitality
of the Laboratoire de Probabilités, Statistique et Modélisation, and the Invited
Professor Program of the Fondation Sciences Mathématiques de Paris.

provided the integral exists in the Lebesgue sense. Carlen and
Cordero-Erausquin [8] observed the following dual formula-
tion of the Brascamp–Lieb inequalities: For every µ 2M(E)
with finite entropy,

h(µ) 
kX

i=1

cih(Bi#µ) + BL(B, c), (3)

where # denotes the usual pushforward operation. We say that
(3) is extremizable if there exists µ 2M(E) such that (3) is
an equality, and all entropies therein are finite; such a µ is
called an extremizer. As one expects, (3) is extremizable if
and only if (1) is extremizable. Hence, we can simply refer to
the datum (B, c) as being extremizable without confusion.

Recall that for two probability measures ⌫, µ 2M(E), the
relative entropy is defined as

D(⌫kµ) :=

(R
E

log( d⌫
dµ )d⌫ if ⌫ ⌧ µ

+1 otherwise.

Having recalled all of the above, we can now state a
variation of the Brascamp–Lieb inequalities involving relative
entropies, for reference measure equal to an extremizer of (3).

Theorem 1. Let (B, c) be extremizable, and µ 2 M(E) an
extremizer in (3). For any ⌫ 2M(E), we have

kX

i=1

ciD(Bi#⌫kBi#µ)  D(⌫kµ). (4)

A linearization argument leads to the following family of
variance inequalities, which is the subject of this note.

Theorem 2. Let (B, c) be extremizable, and µ 2 M(E) an
extremizer in (3). For X ⇠ µ and integrable ' : E ! R,

kX

i=1

ci Var(E['(X)|BiX])  Var('(X)). (5)

In order to apply (5) in practice, we need two things: (i) a
characterization of extremizable data; and (ii) a characteriza-
tion of extremal µ 2M(E) in (3). The first has been already
addressed, and in particular, it suffices to consider geometric
data, which are concisely characterized by the frame condition
(2). The second can also be addressed easily enough. In
particular, Valdimarsson’s characterization of extremal (fi)

k
i=1

in (1) can be translated to a neat characterization of extremal
µ in (3). To state it, let µ 2M(E), and let µEi

(resp. µE?
i

)
denote the marginal of µ on Ei (resp. E?

i ). We say that µ splits
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along (Ei, E
?
i ) if we have the decomposition µ = µEi⌦µE?

i
.

In other words, µ splits along (Ei, E
?
i ), if it is product with

respect to the orthogonal decomposition E = Ei � E?
i .

The following can be distilled from Valdimarsson’s charac-
terization of extremal (fi)

k
i=1 in (1), and provides a satisfactory

answer to the second issue noted above.

Proposition 1. Let (B, c) be geometric, and let µ 2 M(E)
have finite entropy. The following are equivalent:
1) µ is an extremizer in (3);
2) µ splits along (Ei, E

?
i ) for each i = 1, . . . , k.

We remark that Valdimarsson [18] actually leads to a more
explicit characterization of extremal µ than above (roughly
speaking, an extremal µ has a rigid factorization into inde-
pendent components, with some factors chosen freely, and
others isotropic Gaussians). However, for our purposes, the
characterization in Proposition 1 suffices, and is easily stated.

We thus arrive at the following simple and explicit state-
ment, which we call linearized Brascamp–Lieb inequalities.

Corollary 1 (Linearized Brascamp–Lieb inequalities). Let c
and (Ei)

k
i=1 satisfy the frame condition (2). If X has law

that splits along (Ei, E
?
i ) for each i = 1, . . . , k, then for all

integrable ' : E ! R,
kX

i=1

ci Var(E['(X)|PEiX])  Var('(X)). (6)

The remainder of this note is organized as follows. Section
II illustrates a few applications of (6) to inequalities in prob-
ability. Section III explains how (6) may be interpreted as a
sharp spectral gap inequality. Section IV contains the proofs,
and Section V gives some brief concluding remarks.

II. APPLICATIONS

It’s well-known that the Brascamp–Lieb inequalities (1)
contain many classical analytic and geometric inequalities
(e.g., the Hölder, Young, and Loomis–Whitney inequalities),
and their dual formulation (3) can be seen as generalizing
the information-theoretic inequality known as subadditivity of
entropy. All of these applications require only the evaluation
of BL(B, c), which can be accomplished in practice due to
the Gaussian saturation property. By incorporating the char-
acterization of extremizers into the picture, we obtain (4) and
(5). As a consequence, we find that a variety of probabilistic
inequalities may also be obtained from the Brascamp–Lieb
inequalities. Toward that end, let us now demonstrate some
special cases of the linearized Brascamp–Lieb inequalities.

Example 1 (Efron–Stein inequality [13], [17]). Let X =
(Xi)

k
i=1 be a random vector with independent components

(Xi)
k
i=1, and define

X(i) = (X1, . . . , Xi�1, Xi+1, . . . Xk).

For any measurable ' with Var('(X)) <1,

Var('(X)) 
kX

i=1

E[Var('(X)|X(i))]. (7)

Proof. We can assume X takes values in E, and choose Ei

such that Xi is the component of X in E?
i . This implies the

orthogonal decomposition E = �k
i=1E

?
i , which yields the

frame condition

1

k � 1

kX

i=1

PEi = idE .

By the independence hypothesis, the law of X splits along
(Ei, E

?
i ) for each i = 1, . . . , k, and therefore (7) follows

from (6) by invoking the classical variance decomposition
Var('(X)) = E[Var('(X)|Y )]+Var(E['(X)|Y ]) with Y =
X(i).

More generally, the classical variance decomposition can be
applied directly to (6) to obtain a generalized version of the
Efron–Stein inequality. We’ll return to this in our interpretation
of (5) as a spectral gap inequality in Section III.

Example 2 (Dembo–Kagan–Shepp inequality [12]). Let
(Xi)i�1 be a sequence of i.i.d. random vectors, and define
Sn =

Pn
j=1 Xj . If function g satisfies E[g(Sn)] <1, then

Var(E[g(Sn)|Sm])  m

n
Var(g(Sn)), n � m � 1. (8)

Proof. For simplicity of notation, we’ll assume each Xi is one-
dimensional. Consider the random vector X = (X1, . . . , Xn)
taking values in E := Rn, with Xj the projection of X along
natural basis vector ej , j = 1, . . . , n. Take (Ei)

k
i=1 be an

enumeration of all k =
�

n
m

�
subspaces of E, equal to the linear

span of exactly m natural basis vectors. By construction, X
splits along (Ei, E

?
i ), and the frame condition (2) holds with

ci = n
m/
�

n
m

�
for each i. By symmetry, E[g(Sn)|PEi

X] are
equal in law for each i = 1, . . . , k. So, an application of (6)
with '(X) = g(Sn) gives

Var(E[g(Sn)|X1, . . . , Xm])  m

n
Var(g(Sn)), n � m � 1.

The claim follows since Sm is a sufficient statistic of
(X1, . . . , Xm) for Sn.

By L2 duality, (5) is equivalent to the following “variance
drop” inequality.

Corollary 2 (Variance Drop1). Let the notation and assump-
tions of Theorem 2 prevail. For any real-valued  i : BiX 7!
 i(BiX) with finite variance,

Var

 
kX

i=1

ci i(BiX)

!


kX

i=1

ci Var ( i(BiX)) . (9)

Moreover, this is equivalent to (5).

It is tempting to regard (9) as a consequence of Jensen’s
inequality applied to convexity of variance. To see that it is
not, assume without loss of generality that (B, c) is geometric.
Taking traces of the frame condition implies

Pk
i=1 ci  1, with

1Inequality (9) can be obtained by applying (1) to functions fi = e✏ i f̃i,
for extremal (f̃i)

k
i=1 and vanishing ✏. However, the interpretation of f̃i as

the marginal density of Bi#µ for some meaningful µ only becomes apparent
upon inspection of passage between (1) and (3) via duality.
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equality only in the case where Ei = E for every i. In this
latter case, every X is an admissible extremizer. Hence, (9) is a
strict improvement of Jensen’s inequality except in degenerate
cases.

Proof. To see that (5) implies (9), put ' :=
Pk

i=1 ci i � Bi.
Applying Cauchy-Schwarz twice followed by (5), we have

Var('(X))

=
kX

i=1

ci Cov(E['(X)|BiX], i(BiX))


kX

i=1

ci Var (E['(X)|BiX])
1/2

Var ( i(BiX))
1/2


 

kX

i=1

ci Var (E['(X)|BiX])

!1/2 kX

i=1

ci Var ( i(BiX))

!1/2

 Var ('(X))
1/2

 
kX

i=1

ci Var ( i(BiX))

!1/2

.

To see the reverse implication (9) )(5), observe that

kX

i=1

ci Var(E['(X)|BiX])

=

kX

i=1

ci Cov('(X), E['(X)|BiX])

 Var('(X))1/2 Var

 
kX

i=1

ciE['(X)|BiX]

!1/2

 Var ('(X))
1/2

 
kX

i=1

ci Var (E['(X)|BiX])

!1/2

,

where the first inequality is Cauchy–Schwarz, and the second
follows from (9) with  i(BiX) = E['(X)|BiX].

As a special case, we recover an inequality due to Madiman
and Barron [16], which is itself a generalization of a classical
result on U -statistics due to Hoeffding [14]. To state it, recall
that T ⇢ 2[n] is said to be an r-cover of [n] := {1, . . . , n} if
each element of [n] is contained in exactly r members of T .

Example 3 (Madiman–Barron inequality [16]). Let X =
(Xm)n

m=1 be a collection of n independent random random
vectors, and let (Si)

k
i=1 ⇢ 2[n] be an r-cover of [n]. For any

real-valued  i : BiX 7!  i(BiX) with finite variance,

Var

 
kX

i=1

 i(XSi)

!
 r

kX

i=1

Var ( i(XSi)) , (10)

where XSi
:= (Xm)m2Si

.

Proof. Let E be the space in which the random vector X =
(X1, . . . , Xn) takes values. Consider the geometric datum with
ci = 1/r and Ei equal to the subspace of E in which the
coordinate XSi

lives, and apply (9).

We’ve focused this section on implications of (5), but we
emphasize that the relative entropy inequalities (4) also contain
useful results. To give a quick example, we note that Shearer’s
inequality corresponds to the case where (B, c) is geometric,
and µ has suitable product structure.

Example 4 (Shearer’s inequality [10]). Let E admit an orthog-
onal decomposition E = �n

m=1Vm, and let µ = µ1⌦ · · ·⌦µn

enjoy product structure with respect to this decomposition
(µm is a probability measure on Vm, m = 1, . . . , n). Fix a
collection of subsets (Si)

k
i=1 ⇢ 2[n]. If c = (ci) ⇢ (0,1)k

i=1

satisfies
P

i:Si3m ci = 1 for each m = 1, . . . , n, then for all
probability measures ⌫

kX

i=1

ciD(⌫Si
kµSi

)  D(⌫kµ), (11)

where µSi
(resp. ⌫Si

) denotes the marginal of µ (resp. ⌫) on
�m2Si

Vi.

Proof. Put Ei = �m2Si
Vi, and note that

P
i:Si3m ci = 1

coincides with the frame condition (2). Thus, the claim follows
from (4).

Remark 1. The most common statement of Shearer’s inequal-
ity assumes (Si)

k
i=1 is an r-cover of [n], and has all (ci)

k
i=1

equal to 1/r. However, inequality (11) can be regarded as
a simple self-strengthening obtained by iteration. A weighted
version of (10) also appears in [16].

Remark 2. In the terminology of Valdimarsson [18], Shearer’s
inequality (11) corresponds to (4) in the special case of a
geometric datum (B, c) with no “dependent subspace”.

The author has previously observed that the Dembo–Kagan–
Shepp inequality and the Madiman–Barron inequality can be
derived directly by linearizing Shearer’s inequality [11], as
can be the Efron–Stein inequality. Of course, each of these
classical inequalities has its own direct proof by ad hoc
arguments. Nevertheless, these examples are worth repeating
to emphasize their interpretation as special cases of linearized
Brascamp–Lieb inequalities. The following is a simple explicit
example of a linearized Brascamp–Lieb inequality that is not
a linearization of Shearer’s inequality.

Example 5. Let X ⇠ N(0, idR2), and let (ui)
3
i=1 ⇢ R2

be equiangular unit vectors (i.e., uT
i ui = 1 and uT

i ui0 =
cos(2⇡/3) = �1/2 for i 6= i0). For any integrable ',

3X

i=1

Var(E['(X)|uT
i X])  3

2
Var('(X)).

III. SPECTRAL GAP INTERPRETATION

We’ve seen how several inequalities in probability follow
as special cases of the linearized Brascamp–Lieb inequalities.
Now, we turn attention to the most general statement of
the linearized Brascamp–Lieb inequalities and give a simple
physical interpretation, inspired by the folklore interpretation
of the Efron–Stein inequality as a Poincaré (or, spectral gap)
inequality. Toward this end, for a linear subspace V ⇢ E
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and x 2 E, write x = (xV , xV ?), where xV := PV x, and
xV ? := PV ?x = (idE �PV )x.

Consider an experiment where two particles of equal mass
and respective velocities x, x0 2 E undergo an elastic colli-
sion. By conservation of energy and momentum, the particles
necessarily exchange velocity components on some subspace
V . That is, the post-collision velocities of the first and second
particles are, respectively:

x+ = (x0
V , xV ?), and x0

+ = (xV , x0
V ?).

Suppose we now adopt a probabilistic collision model in
which the subspace V is randomly chosen from some set
{V1, . . . , Vk}, with respective probabilities p1, . . . , pm. Then,
given pre-collision velocities x, x0, the expected change of
velocity imparted to the first particle through collision is

�v(x, x0) =

kX

i=1

pjPVi(x
0 � x).

If the incoming velocities x, x0 undergo a common orthogonal
transformation, then a natural physical constraint imposed on
the model is that the expected change in velocity �v(x, x0)
should undergo the same orthogonal transformation. That is,
we require �v to satisfy �v(Ux, Ux0) = U�v(x, x0) for all
x, x0 2 E and orthogonal U : E ! E. Using definitions, this
invariance implies that there must exist some � 2 R such that

kX

i=1

piPVi = � idE .

Moreover, it is easy to check that 0  �  1, with equality
only in the trivial cases where Vi = {0} for every i (non-
interacting particles), or where Vi = E for every i (particles
completely exchange velocities).

Now, let µ be a probability measure on E, and consider a
stochastic process (X(t); t � 0) where a particle with initial
velocity X(0) is placed in contact with a bath containing
particles with velocities distributed i.i.d. according to µ, and
collisions between our particle and particles in the bath occur
at rate 1, according to a Poisson point process. Note that if a
collision happens at time t, the post-collision velocity of our
particle will be

X(t+) = (X 0
Vi

, XV ?
i

(t�)) with probability pi, 1  i  k,

where X 0 ⇠ µ is independent of the pre-collision velocity
X(t�) of the particle of interest. Assuming the bath is in
equilibrium, the background measure µ must be invariant under
these dynamics, which is true if and only if it splits along each
(Vi, V

?
i ), i = 1, . . . , k.

The linearized Brascamp–Lieb inequalities can be inter-
preted as a spectral gap inequality for this stochastic process.
Indeed, define Ei := V ?

i and ci := pi

1�� , which can be checked
to satisfy the frame condition (2). For X ⇠ µ, the linearized
Brascamp–Lieb inequalities can be rewritten as

Var('(X))  1

�

kX

i=1

piE[Var('(X)|XV ?
i

)],

by the classical variance decomposition. Thus, in general, the
linearized Brascamp–Lieb inequalities coincide with the sharp
Poincaré inequality for the described dynamics.

The inequality (4) can similarly be interpreted as governing
convergence to equilibrium, but in the stronger sense of relative
entropy. In our setting, (4) can be written as

kX

i=1

piD(µVi
⌦ ⌫V ?

i
kµ)  (1� �)D(⌫kµ), (12)

where µVi
and ⌫V ?

i
denote the marginals of µ and ⌫ on Vi

and V ?
i , respectively. If our particle has pre-collision velocity

with law ⌫, then the post-collision velocity of the particle
will have µVi

⌦ ⌫V ?
i

with probability pi, and therefore the
law of the post-collision velocity averaged over the collision
model is the mixture ⌫+ :=

Pk
i=1 µVi

⌦ ⌫V ?
i

. By convexity
of relative entropy, the above inequality implies D(⌫+kµ) 
(1 � �)D(⌫kµ), demonstrating a strict trend to equilibrium
in relative entropy with each collision. Since we assume
collisions occur at rate 1, if our particle has initial velocity
with law ⌫0 and (⌫t)t�0 denotes the evolution of ⌫0 along
these dynamics, an application of Grönwall’s lemma yields
the exponential decay of entropy

D(⌫tkµ)  e��tD(⌫0kµ), t � 0.

Remark 3. There seems to be no fundamental reason to
limit ourselves to a discrete set of collision possibilities.
For example, if E = Rn, we could take the frame to be
{Pspan{�};� 2 Sn�1}, equipped with the uniform measure on
Sn�1. This would give spectral gap � = 1/n, and the unique
invariant measures are the isotropic Gaussians.

IV. PROOFS

The hard work has already been done by Bennett, Car-
bery, Christ and Tao [1], Valdimarsson [18], and Carlen and
Cordero-Erausquin [8]. We only need to point out how the
ingredients fit neatly together. We only sketch the proofs due
to space constraints.

Proof of Proposition 1. Let (B, c) be geometric. As observed
in [8, Theorem 2.2], inspection of the duality argument that
allows passage between (1) and (3) reveals that µ is an
extremizer in (3) if and only if it admits a density f satisfying

f =

kY

i=1

(fi �Bi)
ci , (13)

where fi denotes the density of Bi#µ. Moreover, if (13)
holds, the marginal densities (fi)

k
i=1 will be extremizers in

(1). Now, the asserted splitting property can be obtained from
the splitting property in Valdimarsson’s characterization of
extremizers for (1) in geometric settings [18].

With the identity (13) already noted, Theorem 1 follows
easily.

Proof of Theorem 1. All extremizable data are equivalent to
geometric data by a linear change of variables. Hence, by the
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data processing property of relative entropy, we may assume
(B, c) is geometric without any loss of generality.

To prove (4), it clearly suffices to assume D(⌫kµ) < 1,
since otherwise the claim is trivial; note that this implies ⌫ ⌧
µ, and also D(Bi#⌫kBi#µ) < 1 for each i by the data
processing inequality. Now, let dµ = fdx, and write

D(⌫kµ) = �h(⌫) +

Z
log fd⌫

� �
kX

i=1

ci

✓
h(Bi#⌫) +

Z
log(fi �Bi)d⌫

◆

= �
kX

i=1

ci

✓
h(Bi#⌫) +

Z
log(fi)d(Bi#⌫)

◆

=

kX

i=1

ciD(Bi#⌫kBi#µ),

where the first and last lines are definitions, the inequality
follows from (3) and (13), and the penultimate line follows
from the definition of pushforward.

The standard program for deriving a spectral gap inequality
from an entropy inequality is to linearize it to reveal the
local behavior (see, e.g., [9]). Toward that end, recall that the
relative entropy of P ⌧ Q can be written as D(PkQ) =R

dP
dQ log

⇣
dP
dQ

⌘
dQ. Therefore, if P is a perturbation of Q in

the sense that dP = (1+✏')dQ for a bounded function ' and ✏
sufficiently small, then Taylor expansion of x 2 R+ 7! x log x
about x = 1 gives the local behavior of relative entropy

D(PkQ) =
✏2

2
VarQ(') + o(✏2),

where the first-order term is absent since ' necessarily satisfiesR
'dQ = 0 for P to be a probability measure.

Proof of Theorem 2. It suffices to assume ' is bounded, since
the general statement follows by localization. Thus, let X ⇠ µ
be an extremizer in (3), assume

R
'dµ = 0 and define dµ✏ :=

(1 + ✏')dµ, which is a valid probability measure for all ✏
sufficiently small. Definitions imply

d(Bi#µ✏) = (1 + ✏E['(X)|BiX])d(Bi#µ),

where E['(X)|BiX] is the conditional expectation of '(X)
with respect to the �-algebra generated by BiX . Thus, by
linearization and Theorem 1, we have

✏2

2

kX

i=1

ci Var(E['(X)|BiX]) + o(✏2)

=
kX

i=1

ciD
�
Bi#µ✏

��Bi#µ
�

 D(µ✏kµ) =
✏2

2
Var('(X)) + o(✏2).

Dividing through by ✏2 and letting ✏ # 0 completes the proof.

In view of Proposition 1 and Theorem 2, Corollary 1 holds
whenever µ is absolutely continuous with respect to Lebesgue
measure and has finite entropy. It is straightforward to extend
the statement to the case when either (or both) of these
qualifications do not hold.

V. CLOSING REMARKS

The duality between functional Brascamp–Lieb inequalities
and their entropic form continues to hold in abstract settings.
The transference principle of extremizers introduced here to
obtain inequalities of the type (4) continues to apply. This
suggests many interesting questions. For example, do the
Shearer-type inequalities for non-product measures in [2], [5]–
[7] fit into the context of Brascamp–Lieb-type inequalities on
suitable spaces, as happens with Sn [9]? Does an approximate
form of (4) hold when µ is a near-extremizer in a quantitative
sense? Answers could lead to a systematic development of
spectral gap inequalities for interesting classes of processes.
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Abstract—In the binary classification problem, the decision
maker observes a testing sequence sampled from one of the
two unknown distributions P0 and P1, along with two training
sequences following each of the distributions. Since the two
distributions are unknown, it is natural to impose universal
guarantees on certain performances. The focus of this paper is a
“semi-sequential” setup where the training sequences have fixed
length and testing samples arrive sequentially, with universality
constraints set on the expected stopping time and the type-I error
exponent. The goal is to study the error exponent benefit under a
competitive Neyman-Pearson criterion à la Levitan and Merhav
[1], that is, the type-I error exponent is required to achieve a
pre-set distribution-dependent constraint �(P0, P1) for all P0, P1.
A novel upper bound on the optimal type-II error exponent is
proved, showing that unlike the fully-sequential case considered
by Hsu, Li, and Wang [2] where testing and training samples all
arrive sequentially, in general there remains a trade-off between
the type-I and type-II error exponents. We also propose a two-
phase test and prove that it achieves the upper bound when
�(P0, P1) is continuous and not greater than a Rènyi divergence
of P1 from P0. The benefit of sequentiality is demonstrated by
comparison with the cases where testing and training sequences
are both of fixed length or both sequentially observed.

I. INTRODUCTION

In a binary hypothesis testing problem, the decision maker
observes a sequence of samples drawn i.i.d. from one of the
two known distributions P0 or P1. The task is to decide from
which distribution the sequence is generated and the perfor-
mance is measured by the type-I and type-II error probabilities.
Both error probabilities decay exponentially as the number
of samples n goes to infinity, and the exponential rates are
denoted as the error exponents. Blahut [3] characterized the
optimal trade-off between the two exponents. When samples
are taken sequentially and the decision maker is free to decide
when to stop as long as the expected stopping time is less than
a given constraint n, Wald’s Sequential Probability Ratio Test
(SPRT) [4] is shown to be optimal [5] and the error exponents
can simultaneously achieve the two extremes, namely, the two
KL divergences D(P1kP0) and D(P0kP1). Sequentiality in
taking samples eradicates the trade-off in error exponents.

While the benefit of sequentiality of taking samples in
hypothesis testing is well understood, a caveat is that the
underlying distributions P0 and P1 are fully known to the
decision maker. This is not the case in many real-world prob-
lems: instead of knowing the two distributions, the decision
maker may only observe two training sequences generated
from P0 and P1 respectively. Since the underlying distributions

are unknown, it is natural to ask for a universal guarantee
on certain performances. Ziv [6] considered this problem,
assuming the number of training samples scales linearly with
that of the testing samples and the ratio is ↵ > 0. He gave
a formulation under a generalized Neyman-Pearson criterion,
where a universality constraint is set on the type-I error
exponent to be no less than a given constant �0 > 0 regardless
of the underlying distributions. Subsequently Gutman [7] char-
acterized the optimal type-II error exponent, which depends on
the underlying distributions and the constant �0.

However, satisfying the universality constraint in [6], [7] on
the type-I error exponent comes at a price: it can be shown that
no matter how small �0 is, there always exists a pair of distinct
distributions P0, P1 so close to each other that the type-II error
probability tends to 1. Levitan and Merhav [1] proposed the
competitive Neyman-Pearson criterion, where a distribution-
dependent constraint �(P0, P1) replaces the constant �0. Under
this criterion, they characterized the optimal type-II error
exponent and proposed an asymptotically optimal test, and a
trade-off between �(P0, P1) and the type-II error exponent
is observed. They also established necessary and sufficient
conditions on �(P0, P1), for which there exist tests with
exponentially vanishing error probabilities. For such tests, the
two error exponents are bounded by the two Rényi divergences
D ↵

1+↵
(P1kP0) and D ↵

1+↵
(P0kP1) respectively, analogous to

D(P1kP0) and D(P0kP1) in Blahut’s result [3].
In this work, we aim to investigate the benefit of sequen-

tiality of taking samples in the binary classification problem
under the competitive Neyman-Pearson criterion. Universality
constraints are set on the expected stopping time and the
type-I error exponent. Our focus is on the semi-sequential
setup where the training sequences are fixed-length and the
testing samples are taken sequentially. The optimal type-II
error exponent is characterized when the type-I error exponent
universality constraint �(P0, P1) is continuous in (P0, P1)
and upper bounded by D ↵

1+↵
(P1kP0). For achievability, we

propose a two-phase test. To ensure the expected stopping
time is bounded by n, the test stops at n � 1 if the type of
the testing sequence is close enough to one of the type of the
training sequences, similar to the Sequential Type Matching
Test (STMT) in [2], and this is shown to happen with high
probability. Otherwise, n testing samples are not enough, so it
continues until n2 testing samples are collected and uses the
fixed-length test in [1].
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To prove the optimality of our test, we provide two upper
bounds on the type-II error exponent, and the minimum of the
two upper bounds is shown to be achievable by our proposed
test under the aforementioned condition on �(P0, P1). For the
first bound we follow a standard argument and utilize the data
processing inequality of KL divergence. The second bound
is obtained by a reduction from a new composite hypothesis
testing problem where the distribution of the testing samples
is assumed to be known. By the results in [1], we have an
upper bound on the performance of tests for the new problem.
Since any tests that solve the binary classification problem can
be used to solve the new problem and a correspondence in
the error probabilities is clearly established, the upper bound
can be transformed into a bound for the binary classification
problem.

Finally, we show the benefit of sequentiality by comparing
the optimal error exponents with those of fixed-length tests
in [1] and fully-sequential (both testing and training samples
arrive sequentially) tests in [2]. For fair comparison, we follow
[2] and focus on tests with vanishing error probabilities under
all possible distributions. Aside from numerical comparison,
we also prove that there is a strict gap between the optimal
error exponents of semi-sequential and fully-sequential tests if
and only if ↵ < 1. In other words, in general there exists a
trade-off between error exponents, which makes sense since
the training sequences are still fixed-length. Nevertheless, the
trade-off is completely eradicated when ↵ � 1.

Related works: Haghifam et al. [8] considered the semi-
sequential classification problem as well. They proposed a test
and showed that it achieves larger Bayesian error exponent
over the fixed-length case. Under the same setting, Bai et
al. [9] proposed an almost fixed-length two-phase test with
performance lying between Gutman’s fixed-length test and
the semi-sequential test in [8]. However, in both [8] and [9],
they did not have a universality constraint on the expected
stopping time, nor other universal guarantees over all possible
distributions. For example, in [8], the expected stopping time
of their test depends implicitly on the unknown distributions
P0, P1. Moreover, in order to achieve certain performance
guarantees, parameters have to be chosen to satisfy some
conditions that depend on the underlying distribution.

Notations: A finite-length sequence (x1, x2, ..., xn) is de-
noted as xn. Logarithms are of base 2 if not specified. P(X )
is the set of all probability distributions over alphabet X .
Given positive sequences {an} and {bn}, we write an

.
= bn

if limn!1 1
n log an

bn
= 0. The relation ̇ is defined similarly.

Also, {·} denotes the indicator function.

II. PROBLEM FORMULATION

Let X be a finite alphabet with |X | = d � 2 and consider
the set of distributions bounded away from the boundary of
the probability simplex. Specifically, fix some " > 0 and let

P" = {P 2 P(X ) | 8x 2 X , P (x) � "} .

This assumption is made to ensure that the KL divergences
between these distributions are bounded and uniformly contin-

uous. Note that P" is compact. The underlying distributions are
described by a pair of distinct distributions (P0, P1) 2 D" =
{(P, Q) | P, Q 2 P", P 6= Q}, and (P0, P1) is unknown to the
decision maker. The decision maker observes a testing se-
quence {Xk} consisting of i.i.d. samples following P✓, where
✓ 2 {0, 1} is the unknown ground truth. Given n 2 N and
↵ > 0, to learn about the unknown underlying distributions,
the decision maker also has access to two training sequences
TN

0 and TN
1 , where N = d↵ne, T0,k

i.i.d.⇠ P0 and T1,k
i.i.d.⇠ P1.

The testing and training sequences are mutually independent.
The objective of the decision maker is to output ✓̂ 2 {0, 1}

as an estimation of the ground truth ✓, based on the observed
samples. A test is a pair �n = (⌧n, �n) where ⌧n 2 N is
a Markov stopping time with respect to the filtration Fk =
�(Xk, TN

0 , TN
1 ). We may write ⌧n as ⌧ when it is clear from

the context. The decision rule �n : X ⌧ ⇥X N ⇥X N ! {0, 1}
is a F⌧ -measurable function. For simplicity, denote the output
of �n as ✓̂. Note that here n can be viewed as an index of
the problem, indicating the length of the training sequences.
Moreover, �n refers specifically to a test for the problem with
N = d↵ne samples in each training sequence. In the following,
when Xk is observed, denote the empirical distribution (type)
as P̂ k, where P̂ k(x) = 1

k

Pk
i=1 {Xi = x} for x 2 X . The

empirical distributions of TN
0 and TN

1 are denoted as P̂N
0 and

P̂N
1 (we omit N if it is clear from the context).
The above problem formulation is described as a semi-

sequential version. The fixed-length setting can be viewed as
restricting ⌧n = n. In the fully-sequential setting, the testing
and training samples are all sequentially observed. At time k,
there are k testing samples and Nk = d↵ke training samples
from each distribution. A test is similarly defined with the
constant N replaced by a time-dependent variable Nk.

To evaluate the performance of tests, we consider the
error probability and the number of samples used. Given
(P0, P1) 2 D" and ✓ 2 {0, 1}, the error probability is defined
as ⇡✓(�n|P0, P1) = P✓{✓̂ 6= ✓}, where P✓ is the shorthand
notation for the joint probability law of the testing sequence
and training sequences. The average number of samples used
can be described by the expected stopping time E✓[⌧n], where
E✓ denotes the expectation under P✓.

Since the underlying distributions are unknown, it is natural
to ask for some universal guarantees on the performance. The
universality constraints are twofold. First, to compare with
fixed-length tests, we set a constraint on the expected stopping
time to be at most n under all possible distributions (P0, P1) 2
D". The error exponents can be defined accordingly.

Definition 1 (Error Exponents). Let {�n} be a sequence
of tests where �n satisfies E✓[⌧n]  n for all underlying
distributions and ground truth ✓. The type-I and type-II error
exponents of {�n} with (P0, P1) 2 D" are defined as

e✓(P0, P1) = lim inf
n!1

� 1
n log ⇡✓(�n|P0, P1), ✓ = 0, 1.

Second, a universality constrained is set on the type-I error
exponent, where we adopt the competitive Neyman-Pearson
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criterion proposed in [1]. We focus on tests satisfying

e0(P0, P1) � �(P0, P1), 8 (P0, P1) 2 D", (1)

where � : P" ⇥P" ! [0,1) is a function with positive value
on D". Among all the tests satisfying (1), the goal is to find
an optimal test that maximizes e1(P0, P1) uniformly over the
underlying distributions.

III. MAIN RESULTS

To present the results, we first introduce the Rényi Diver-
gence. The Rényi Divergence of order ↵

1+↵ of P from Q can
be expressed as

D ↵
1+↵

(PkQ) = minV 2P(X ){D(V kQ) + ↵D(V kP )}.

The results are summarized in the following theorem.

Theorem 1. Let � : P" ⇥ P" ! [0,1) be a function with
positive value on D" = {(P, Q) | P, Q 2 P", P 6= Q}, and
{�n} be a sequence of semi-sequential tests such that

• for each �n = (⌧n, �n), E✓[⌧n]  n for all (P0, P1) 2 D"

and ground truth ✓ 2 {0, 1},
• the type-I error exponent satisfies (1).

Then for any (P0, P1) 2 D",

e1(P0, P1)  min
n

D ↵
1+↵

(P0kP1) , µ(P0, P1)
o

, (2)

where

µ(P0, P1) = inf
Q0,Q12P(X )
g(Q0,Q1)<0

⇣
↵D(Q0kP0) + ↵D(Q1kP1)

⌘
,

and g(Q0, Q1) =

inf
P 0

12P"\{P1}
↵D(Q0kP1) + ↵D(Q1kP 0

1)� �(P1, P
0
1).

If �(P0, P1)  D ↵
1+↵

(P1kP0) for all (P0, P1) 2 D", then
there exist tests that satisfy the above universality constraints.
Moreover, if � is continuous, the upper bound (2) can be
achieved simultaneously for all (P0, P1) 2 D".

The proof of achievability and converse are delegated to
Section IV and V respectively. Next we briefly state the results
for the fixed-length setting [1] and fully-sequential setting [2],
serving as comparisons.

Theorem 2 ( [1, Theorem 1 & 2] ). Let � : P" ⇥ P" !
[0,1) be a function with positive value on D", and {�n} be
a sequence of fixed-length tests satisfying (1). Then for any
(P0, P1) 2 D", the type-II error exponent e1(P0, P1) is upper
bounded by

inf
Q,Q0,Q12P(X )
g1(Q,Q0,Q1)<0

⇣
D(QkP1) + ↵D(Q0kP0) + ↵D(Q1kP1)

⌘
,

where gn(Q, Q0, Q1) =

inf
(P 0

0,P 0
1)2D"

nD(QkP 0
0)+↵D(Q0kP 0

0)+↵D(Q1kP 0
1)��(P 0

0, P
0
1).

Moreover, using � as a threshold function, there exist tests that
satisfy (1) and achieve the upper bound simultaneously for all
(P0, P1) 2 D".

Theorem 3 ( [2, Theorem 1] ). Let {�n} be a sequence of
fully-sequential tests such that

• for each �n = (⌧n, �n), E✓[⌧n]  n for all (P0, P1) 2 D"

and ground truth ✓ 2 {0, 1},
• the error probabilities vanish regardless of the underlying

distributions as n goes to infinity,
then for any (P0, P1) 2 D", e0(P0, P1)  D ↵

1+↵
(P1kP0) and

e1(P0, P1)  D ↵
1+↵

(P0kP1). Moreover, there exist tests that
satisfy the above universality constraints and achieve these
upper bounds simultaneously for all (P0, P1) 2 D".

A sequence of tests is said to be efficient [1] or universally
exponentially consistent [10] if the error probabilities decay
to zero exponentially for all the underlying distributions as
the number of samples grows to infinity. Theorem 3 implies
that there exist fully-sequential tests that are universally ex-
ponentially consistent, and there is no need to set constraints
on the type-I error exponent. In [1], a necessary and sufficient
condition on �(·, ·) for the existence of efficient fixed-length
tests is provided. Also, it is shown that by taking a natural
choice �(P0, P1) = ⇠D ↵

1+↵
(P1kP0) for some 0 < ⇠ < 1, there

exist efficient fixed-length tests. Since a fixed-length test can be
viewed as a special case of the semi-sequential tests, we know
that there indeed exist semi-sequential tests with exponentially
decay error probabilities under all possible distributions, given
some appropriately chosen �(·, ·).

(a) min{�0, ⇢D ↵
1+↵

(P1kP0)} (b) ⇠D ↵
1+↵

(P1kP0)

Fig. 1: The optimal type-II error exponent under different
choices of �(P0, P1). Here we fix X = {0, 1}, " = 0.01,
↵ = 0.7, and choose P ⇤

0 = Ber(0.4), P ⇤
1 = Ber(0.9). In

Figure 1a, ⇢ is chosen as 0.9999, and �0 increases from 0.001
to 0.42. In Figure 1b, ⇠ increases from 0.001 to 0.999.

To see the benefit of sequentiality, we focus on universally
exponentially consistent tests. Fix some (P ⇤

0 , P ⇤
1 ) 2 D" and

plot e1(P
⇤
0 , P ⇤

1 ) versus e0(P
⇤
0 , P ⇤

1 ), it is shown that the achiev-
able region lies inside the rectangle bounded by two Rényi
divergences. As stated in Theorem 3, fully-sequential tests
can achieve the corner point. For fixed-length tests and semi-
sequential tests, there is a trade-off between the two error ex-
ponents, and the trade-off curve depends on the function �(·, ·).
Specifically, given two different constraint functions �(·, ·) and
�0(·, ·), even if �(P ⇤

0 , P ⇤
1 ) = �0(P ⇤

0 , P ⇤
1 ), the corresponding
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optimal e1(P
⇤
0 , P ⇤

1 ) may be different. We demonstrate by
plotting the error exponent regions with respect to two different
choices of �(·, ·). The first one is modified from Gutman’s
setting [7]. We define �(P0, P1) = min{�0, ⇢D ↵

1+↵
(P1kP0)}

with some �0 > 0 and 0 < ⇢ < 1. The result for different
constant �0 is shown in Figure 1a. Alternatively, in Figure 1b,
we choose �(P0, P1) = ⇠D ↵

1+↵
(P1kP0) for some 0 < ⇠ < 1.

It is clear that the trade-off curves are different in two figures.
In Figure 1a and Figure 1b, the performance of semi-

sequential tests lies between those of fixed-length tests and
fully-sequential tests. However, it turns out semi-sequential
tests can achieve the same error exponents as fully-sequential
tests under certain circumstances. A necessary and sufficient
condition is provided in the following.

Proposition 1. Semi-sequential tests can achieve the same
error exponents as fully-sequential tests for all (P0, P1) 2 D"

if and only if ↵ � 1.

Proposition 1 shows that if ↵ < 1, then for any semi-
sequential tests, there exists some distributions (P0, P1) 2 D"

such that the point
�
D ↵

1+↵
(P1kP0) , D ↵

1+↵
(P0kP1)

�
is not

achievable, and the trade-off between type-I and type-II error
exponent remains. Meanwhile, when ↵ � 1, the trade-off is
completed eradicated as in the fully-sequential case. The proof
is given in Appendix A of the extended version [11].

IV. ACHIEVABILITY

We propose a test �n = (⌧n, �n) for the semi-sequential
problem. First consider the empirical distributions at time
n � 1, namely, (P̂n�1, P̂0, P̂1) 2 P(X )3. In the fixed-length
setting, in order to satisfy (1), the test should output 0 if the
empirical distributions are close to some possible distributions
(P 0

0, P
0
0, P

0
1) with (P 0

0, P
0
1) 2 D". However, this will make

the type-II error exponent small, so one should get more
samples and decide later. Nevertheless, the expected stopping
time should not exceed n, meaning the probability of taking
more samples should be kept small. Observe that with high
probability, the empirical distributions are close to the true
underlying distributions. This happens if and only if the type
of the testing sequence is close to the type of one of the training
sequences. We measure the closeness with

GJS(P, Q,↵) = minV 2P(X ){D(QkV ) + ↵D(PkV )},

↵-weighted Generalized Jensen-Shannon Divergence (GJS).
Let us now define two sets, for i 2 {0, 1},

⇤n
i =

n
(Q, Q0, Q1) 2 P(X )3

���GJS(Q, Qi,↵) < ⌘n

o
,

where ⌘n =
⇥
(d + 2) log n + d log(N + 1)

⇤
/(n � 1). By

the method of types, with high probability, the empirical
distributions will lie in these sets. Hence, the stopping time
⌧n = n�1 if (P̂n�1, P̂0, P̂1) 2 ⇤n

0 [⇤n
1 . Otherwise, ⌧n = n2.

Next we specify the decision rule. When ⌧n = n � 1, the
decision rule is similar to the STMT in [2]:

�n(Xn�1, TN
0 , TN

1 ) =

(
0 if (P̂n�1, P̂0, P̂1) 2 ⇤n

0 ,

1 if (P̂n�1, P̂0, P̂1) 2 ⇤n
1 .

When ⌧n = n2, we use the fixed-length test in [1] for n2

testing samples and N training samples with threshold function
�n(P0, P1) = �(P0, P1)/n. As a result, we can ensure that
the type-I error probability is of the same order as when ⌧n =
n� 1. Specifically, the decision rules is

�n(Xn2

, TN
0 , TN

1 ) =
n

gn(P̂n2

, P̂0, P̂1) � 0
o

.

Now the test is clearly defined, we are ready to analyze its
performance. First we show that the proposed test satisfies the
universality constraint on the expected stopping time. Given
any (P0, P1) 2 D" and ✓ 2 {0, 1}, we have

E✓[⌧n]  n� 1 + P✓

n
(P̂n�1, P̂0, P̂1) 2 (⇤n

✓ )c
o
⇥ n2

 n� 1 + nd(N + 1)d ⇥ 2�(n�1)⌘n ⇥ n2 = n,

where the last inequality follows from the method of types.
Next we calculate the type-I error exponent. Based on the

stopping time, the error events can be divided into two parts.
When ⌧n = n� 1, there is an error only if (P̂n�1, P̂0, P̂1) 2
⇤n

1 . Since ⌘n vanishes as n goes to infinity, following the proof
of error exponents in [2], it can be shown that

P0

n
(P̂n�1, P̂0, P̂1) 2 ⇤n

1

o
̇ 2

�nD ↵
1+↵

(P1kP0)
.

When ⌧n = n2, by the method of types,

P0

n
⌧n = n2, �n(Xn2

, TN
0 , TN

1 ) = 1
o

 (n2 + 1)d(N + 1)2d ⇥ 2�n2�n(P0,P1) .
= 2�n�(P0,P1).

Notice that under the assumption �(P0, P1)  D ↵
1+↵

(P1kP0),
the error probability is dominated by the second part, where the
exponential rate is �(P0, P1). We conclude that {�n} satisfies
the universality constraint on the type-I error exponent (1).

For the type-II error exponent, we use the same method.
When ⌧n = n� 1, we have

P1

n
(P̂n�1, P̂0, P̂1) 2 ⇤n

0

o
̇ 2

�nD ↵
1+↵

(P0kP1)
. (3)

When ⌧n = n2, by the method of types,

P1

n
⌧n = n2, ✓̂ = 0

o
 (n2 + 1)(N + 1)2d ⇥ 2�nµn(P0,P1),

where µn(P0, P1) =

inf
Q,Q0,Q12P(X )
gn(Q,Q0,Q1)<0

nD(QkP1) + ↵D(Q0kP0) + ↵D(Q1kP1) .

Lemma 1. For (P0, P1) 2 D", the sequence {µn(P0, P1)} is
non-decreasing in n, and limn!1 µn(P0, P1) = µ(P0, P1).

Proof. It is not hard to see that {µn(P0, P1)} is non-decreasing
and bounded above, implying the convergence. Now, as n
grows, to minimize nD(QkP1)+↵D(Q0kP0)+↵D(Q1kP1),
Q should be close to P1, otherwise nD(QkP1) gets too large.
Also, to have gn(Q, Q0, Q1) less than 0, P 0

0 should be close
to Q. Setting P 0

0 = Q = P1 gives µ(P0, P1). The details
are given in Appendix B of the extended version [11]. Notice
that in some steps, we utilize the compactness of P" and the
continuity of �.
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By Lemma 1, we know the exponential error rate when ⌧n =
n2 is µ(P0, P1). Along with (3), the type-II error exponent is
shown to achieve the upper bound (2).

V. CONVERSE

In this section we show the upper bound on the type-II error
exponent. For the first half of (2), the Rényi Divergence, we
follow the proof of converse in [2] and replace the expected
number of training samples E✓[N⌧ ] by the deterministic N . For
µ(P0, P1), we use a reduction from a fixed-length composite
hypothesis testing problem. Intuitively, if we are allowed to
drop the constraint on the expected stopping time and take
infinitely many testing samples, P✓ can be fully known. In this
situation, consider the following equivalent problem. Suppose
a distribution P 2 P" is fixed and known. The decision maker
observes two independent fixed-length sequences TN

0 , TN
1 ,

where N = d↵ne and the objective is to decide between the
following two hypotheses:

H0 : T0,k
i.i.d.⇠ P, T1,k

i.i.d.⇠ P̄ for some P̄ s.t. (P, P̄ ) 2 D"

H1 : T1,k
i.i.d.⇠ P, T0,k

i.i.d.⇠ P̄ for some P̄ s.t. (P, P̄ ) 2 D"

Equivalently, using the language of composite hypothesis
testing, we can view the two sequences as a sequence of pairs
{(T0,k, T1,k)}N

k=1, and define the following two sets of product
distributions:

P0 =
�
PP̄

�� (P, P̄ ) 2 D"

 
and P1 =

�
P̄P

�� (P, P̄ ) 2 D"

 
.

Here we further emphasize the connection between this prob-
lem and the original problem. Given a sequence of semi-
sequential tests {�n} satisfying the universality constraints on
the type-I error exponent, we can use it for this new composite
hypothesis testing problem. Specifically, with the knowledge
of P , we can generate the testing sequence. Along with the
observed fixed-length sequences TN

0 , TN
1 , the test �n will

output a decision. One can now observe a correspondence
between the error probabilities:

(original) (new problem)
⇡0(�n|P0, P1) = ⇡0(�n|P = P0, P̄ = P1) = ⇡0(�n|P0P1),

⇡1(�n|P0, P1) = ⇡1(�n|P = P1, P̄ = P0) = ⇡1(�n|P0P1).

The above method gives us a randomized test, yet theoreti-
cally it can be easily derandomized and the error probabilities
are at most twice the original, so it would not affect the
exponential rate. Given P, P̄ , the error exponents in the new
problem are defined as

e0(PP̄ ) := lim inf
n!1

� log ⇡0(�n|PP̄ )
N = e0(P,P̄ )

↵ , (4)

e1(P̄P ) := lim inf
n!1

� log ⇡1(�n|P̄P )
N = e1(P̄ ,P )

↵ . (5)

Since {�n} satisfies the universality constraints on the type-I
error exponent and by (4), for any fixed P 2 P", we have
e0(PP̄ ) � �(P, P̄ )/↵, for all PP̄ 2P0. Using the results in
[1], we know that e1(P̄P )  infQ2Q D

�
Q
��P̄P

�
, where Q is

the following set of distributions
n

Q 2 P(X 2)
��� infPP̄ 02P0

⇣
D
�
Q
��PP̄ 0�� �(P,P̄ 0)

↵

⌘
< 0

o
.

For a distribution Q 2 P(X 2), let Q0, Q1 2 P(X ) denote its
marginal distributions. Since P̄P is a product distribution, by
the chain rule of KL divergence,

D
�
Q
��P̄P

�
= D(QkQ0Q1) + D

�
Q0

��P̄
�

+ D(Q1kP ) .

As D(QkQ0Q1) � 0, we can restrict Q to be a product
distribution in the above results. Combining with (5) leads us
to the upper bound µ(P0, P1).

Note that when deriving this bound, we assume infinite
testing samples, which is closer to the reality when ↵ < 1.
This provides an intuition of Proposition 1, explaining why
µ(P0, P1) is a more accurate bound when ↵ < 1.

VI. CONCLUDING REMARKS

In this work, we mainly focus on universally exponentially
consistent tests. Also in Theorem 1, it is required that �
is upper bounded by the Rényi Divergence, which makes it
impossible to choose � as a constant. However, in the fixed-
length setting [1], there is no such limitation. An interesting
question is what the optimal type-II error exponents will be
if we drop this requirement. Similarly, in the fully-sequential
setting, what will happen if we replace the constraint on
vanishing error probabilities with the universality constraint
on the type-I error exponent? It turns out the optimal error
exponents can be characterized in both the above scenarios.
As a result, the benefit of sequentiality can also be observed
in the case without exponential consistency. In particular, we
can take �(·, ·) = �0 and compare the type-II error exponent
with Gutman’s result. The proof involves some modifications
in both the achievability and converse, which will be presented
in a future paper.
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Abstract—Learning algorithms that divide the data into
batches are prevalent in many machine-learning applications,
typically offering useful trade-offs between computational effi-
ciency and performance. In this paper, we examine the benefits
of batch-partitioning through the lens of a minimum-norm over-
parameterized linear regression with isotropic Gaussian features.
We suggest a natural small-batch version of the minimum-
norm estimator, and derive an upper bound on its quadratic
risk, showing it is inversely proportional to the noise level
and to the overparameterization ratio, for the optimal choice
of batch size. In contrast to minimum-norm, our estimator
admits a stable risk behavior that is monotonically increasing
in the overparameterization ratio, eliminating both the blowup
at the interpolation point and the double-descent phenomenon.
Interestingly, we observe that this implicit regularization offered
by the batch partition is partially explained by feature overlap
between the batches. Our bound is derived via a novel combi-
nation of techniques, in particular normal approximation in the
Wasserstein metric of noisy projections over random subspaces.

I. INTRODUCTION

Batch-based algorithms are used in various machine-
learning problems. Particularly, partition into batches is nat-
ural in distributed settings, where data is either collected in
batches by remote sensors who can send a small number of
bits to a central server, or collected locally but offloaded to
multiple remote workers for computational savings, see e.g.
[1], [2]. Learning in batches is also employed in centralized
settings; this is often done to reduce computational load, but is
also known (usually empirically) to sometimes achieve better
convergence, generalization, and stability, see e.g., [3], [4].
One of the most basic and prevalent learning tasks is linear
regression, which has been extensively studied in both central-
ized and distributed settings. Linear regression is of particular
contemporary interest in the overparameterized regime, where
the number of parameters exceeds the number of samples.
In this regime there are infinitely many interpolators, and a
common regularization method is to pick the minimum norm
(min-norm) solution, i.e., the interpolator whose ℓ2 norm is
minimal. However, this method requires inverting a matrix
whose dimensions are the number of samples, a task that can
be computationally costly and also result in a non-stable risk,
growing unbounded close to the interpolation point [5], [6].
Performing linear regression separately in batches and com-
bining the solutions (usually by averaging) can help with the
computational aspects, and has been studied before mainly for
large (linear in the number of samples) batches [2]. However,
such solutions break down and cannot control the risk for
sublinear batch size; they also shed no light on the performance
benefits heuristically known to be offered by small batches.
Can the min-norm solution benefit more from small batch
partitioning? We answer this question in the affirmative, by
suggesting a simple and natural min-norm-based small-batch
regression algorithm, and showing it stabilizes the min-norm
risk. We discuss the ramifications of our result in several
settings.

Our contribution. We consider a linear model with
isotropic features, in the overparameterized regime with n data
samples and p > n parameters, where the n×p feature matrix
is i.i.d. Gaussian. The risk attained by min-norm in this setting
and related ones was previously analyzed in [6]. Here, we
suggest the following small batch variation of min-norm. First,
the data is partitioned into small disjoint batches of equal size
b, and a simple min-norm estimator is computed separately for
each batch. Then, the resulting n

b weak estimators are pooled
together to form a new n

b × p feature matrix for a modified
“linear” model, with suitably weighted modified samples.
The modified model is not truly linear, since both the new
features and noise depend on the parameter. Finally, a min-
norm estimator is computed in this new setting, yielding our
suggested batch minimum norm (batch-min-norm) estimator.
While the modified model is far more overparameterized than
the original model (by a factor of b), its features are now
favorably correlated with the underlying parameters. We shall
see that this trade-off can be beneficial.

To that end, we derive an upper bound on the risk obtained
by our estimator, in the limit of n, p → ∞ with a fixed
overparameterization ratio γ = p/n, as a function of the SNR.
Our bound is compared to simulations and is demonstrated
to be quite tight. We then analytically find the batch size
minimizing the bound, and show that it is inversely propor-
tional to both γ and SNR; in particular, there is a low-SNR
threshold point below which increasing the batch size (after
taking n, p→∞) is always beneficial (albeit at very low SNR
we can do worse than the null solution), see Figure 1. Unlike
min-norm, and similarly to optimally-tuned ridge regression
[7], the risk attained by batch-min-norm is generally stable;
it is monotonically increasing in γ, does not explode near
the interpolation point γ = 1, and does not exhibit a double
descent phenomenon [6] (all this assuming SNR ≥ 1, see
Figure 2). It is (trivially) always at least as good (and often
much better) than min-norm. Another interesting observation is
that the batch algorithm exactly coincides with the regular min-
norm algorithm for any batch size, whenever the feature matrix
has orthogonal rows. Thus, somewhat intriguingly, the reason
that batches are useful can be partially attributed to the fact that
feature vectors are slightly linearly dependent between batches,
i.e., there is small overlap between the subspaces spanned by
the batches. From a technical perspective, as we shall later
see, this overlap implicitly regularizes the noise amplification
suffered by the standard min-norm.

The derivation of the upper bound is the main technical
contribution of the paper. The main difficulty lies in the second
step of the algorithm, namely analyzing the min-norm with the
feature matrix comprised of per-batch min-norm estimators.
This step is no longer under a standard linear model, since
the new feature matrix and the corresponding noise vector
depend on the parameters, in a generally non-linear way.
This poses a significant technical barrier requiring the use
of several nontrivial mathematical tools. To compute the bias
of the algorithm, we first write it as a recursive perturbed-
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Fig. 1: Optimal batch size vs. normalized signal-to-noise ratio
ξ = SNR

1+SNR . When ξ < 0.6478, the optimal batch size b→∞,
for any γ > 1.

projection onto a random per-batch subspace, drawn from
the Haar measure on the Stiefel manifold. We show that the
statistics of these projections are asymptotically close in the
Wasserstein metric to i.i.d. Gaussian vectors, a fact that allows
us to obtain a recursive expression for the bias as batches are
being added, with a suitable control over the error term. We
then translate this recursion into a differential equation, whose
solution yields the asymptotic expression for the bias. The full
version of this paper, which includes further discussions, full
proofs and numerical experiments, can be found in [8].

A. Ramifications

Distributed linear regression. In this setting, the goal is
usually to offload the regression task from the main server by
distributing it between multiple workers; the main server then
merges the estimates given by the workers. This merging is
typically done by simple averaging, e.g., [1], with the number
of workers large but fixed (i.e., the batch size is linear in
the sample size). The regime of sublinear batch sizes is less
explored in the literature, perhaps due to practical reasons.
When b is sublinear, the server-averaging approach breaks
down since its risk is trivially dominated by the per-batch bias,
and hence it attains the null risk asymptotically. In contrast,
our algorithm projects the modified observations onto the
subspace spanned by the entire collection of weak estimators,
therefore resulting in much less bias than each weak estimator
separately. Hence, our algorithm is far superior to server-
averaging for fixed batch size. Numerical results indicate that
this is also true in the general sublinear regime.

Mini-batch learning, High-dimensional overparameterized
linear regression is known to sometimes serve as a reasonable
proxy (via linearization) to more complex settings such as
deep neural networks [9]. Furthermore, min-norm is equivalent
to full Gradient Descent (GD) in linear regression, and even
exhibits similar behavior observed when using GD in complex
models, e.g. the double-descent [6]. Learning using small
batches is a common approach that originated from compu-
tational considerations [10], but was also observed to improve
generalization [11]. There is hence clear impetus to study
the impact of small batches on min-norm-flavor algorithms
in the linear regression setting. Indeed, mini-batch SGD for
linear regression has been recently studied in [12], who gave
closed-form solutions for the risk in terms of Volterra integral
equations. In contrast to a practically observed phenomenon in
deep networks, [12] showed that the linear regression risk of
mini-batch SGD does not depend on the batch size b as long
as b≪ n1/5. Our batch-min-norm algorithm, while clearly not

equivalent to mini-batch SGD in the linear regression setting,
does exhibit the small-batch gain phenomenon, and hence
could perhaps shed some light on similar effects empirically
observed in larger models. In particular, the batch regulariza-
tion effect we observe can be traced back to a data “overlap”
between the batches, and it is interesting to explore whether
this effect manifests itself in other settings. Moreover, from a
high-level perspective, our algorithm “summarizes” each batch
to create a “representative sample”, and then trains again via
GD only on these representative samples. It is interesting to
explore whether this approach can be rigorously generalized
to more complex models.

Fig. 2: Risk of batch-min-norm with optimal batch size vs.
overparametrization ratio γ with ξ = 0.7. Optimized ridge is
ridge regression with the optimal regularization parameter.

II. PRELIMINARIES

A. Notation

We denote by x, x, scalars and vectors, respectively. Vectors
can be either row or column, which will be clear from
context. We use X , X to denote random variables, and random
vectors or matrices, respectively. The ℓ2 norm of X is denoted
∥X∥2 (and sometimes ∥X∥). For b orthogonal random vectors
U1, · · · ,U b ∈ Rn, b ≤ n, with unit norm we say that
{U i} were uniformly drawn if the matrix U = [U1, · · · ,U b]
was drawn from the Haar measure on the Stiefel manifold
Vb(Rn) ≜ {A ∈ Rb×n : AAT = Ib}, where Ib is the b × b
identity matrix. We sometimes drop the subscript and write I ,
when the dimension is clear from the context.

B. Wasserstein Distance

The p-Wasserstein distance between two probability mea-
sures µ and ν on Rn is

Wp(µ, ν) ≜ ( inf E∥X − Y ∥p2 )
1
p , (1)

where the infimum is taken over all random vector pairs
(X,Y ) with marginals X ∼ µ and Y ∼ ν. Throughout this
paper, we say Wasserstein distance to mean the 1-Wasserstein
distance W1(µ, ν), unless explicitly mentioned otherwise.
With a slight abuse of notations, we write W1(X,Y ) to
indicate the Wasserstein distance between the corresponding
probability measures of X and Y .

The Wasserstein distance plays a key role in our proofs,
mainly due to the following facts. First, our batch-min-norm
algorithm performs projections onto small random subspaces.
Wasserstein distance can be used to quantify how far these are
from projections onto i.i.d. Gaussian vectors (Theorem 2 in
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[8]). Second, closeness in Wasserstein distance implies change-
of-measure inequalities for expectations of Lipschitz functions
via the famous Kantorovich-Rubinstein duality theorem, which
allows us to compute expectations in the Gaussian domain with
proper error control. For further details on the properties of
Wasserstein distance, see [8].

III. PROBLEM SETUP

Let Y = (Y1, · · · , Yn)T be a data samples vector obtained
from the linear model

Y = Xβ +W (2)

where β ∈ Rp is a vector of unknown parameters, X ∈ Rn×p

is a given feature matrix with i.i.d. standard Gaussian entries,
and W ∈ Rn is a noise vector independent of X with
i.i.d. N (0, σ2) entries. Here, the norm ∥β∥2 = r is assumed
unknown unless otherwise stated. Define the overparametriza-
tion ratio γ ≜ p

n . When γ > 1 we call the problem overpa-
rameterized and when γ < 1 we say it is underparametrized.
An estimator β̂ = β̂(Y ,X) for β from the samples and
features is a mapping β̂ : Rn × Rn×p → Rp. We measure
the performance of an estimator via the quadratic (normalized)
risk R(β̂) ≜ 1

r2 E∥β̂(Y ,X)− β∥2 it attains. Note that while
R(β̂) is the estimation risk, it is also equal in this case (up to a
constant) to the associated prediction risk, namely the mean-
squared prediction error E∥xT β̂ − xTβ∥2 when using β̂ to
estimate the response to a new i.i.d. feature vector x.

A. Minimum-Norm Estimation

In the overparametrized case γ > 1, there is an infinite
number of solutions to the linear model Xβ = y, and in
order to choose one we need to impose some regularization.
A common choice is the ℓ2-norm regularization, which yields
the min-norm estimator, defined as

β̂MN ≜ argmin ∥β∥22, s.t. Xβ = y, (3)

and explicitly given by

β̂MN = XT (XXT )−1y. (4)

The risk of the min-norm estimator is then

R(β̂MN) = (1− 1
r2E ∥Lβ∥2) + 1

r2E[W
T (XXT )−1W ], (5)

where L = XT (XXT )−1X is the orthogonal projection onto
the row space of X , and we used the fact that the matrix X is
orthogonal to its null space I −L. The first term in the above
is the (normalized) bias of the estimator, which represents the
part of β that is not captured in the subspace spanned by X .
The second term is the (normalized) variance of the estimator.
As previously shown in [6], the asymptotic risk of the min-
norm estimator under the above model is

lim
p→∞

R(β̂MN) = 1− γ−1 +
1− ξ
ξ
· 1

γ − 1
. (6)

where ξ ≜ r2

r2+σ2 = SNR
1+SNR (also known as the Wiener

coefficient), and SNR ≜ r2

σ2 is the normalized SNR.

IV. BATCH MINIMUM-NORM ESTIMATION

We proceed to suggest and study a natural batch version of
the min-norm estimator. Let us divide the samples Y to n/b
batches of some fixed size b, and denote by Y j ∈ Rb the jth
batch. From each batch Y j we can obtain a min-norm estimate
of β, given by

β̂j ≜ XT
j (XjX

T
j )

−1Y j , j = 1, · · · , n/b, (7)

where Xj are the feature vectors that correspond to Y j . We
now have n/b weak estimators for β, each predicting only
a tiny portion of β’s energy. However, these estimators are
clearly better correlated with β compared to random features.
Hence, it makes sense to think of each β̂

T

j as a modified feature
vector x′

j that summarizes what was learned from batch j.
Since each modified feature x′

j is a linear combination the jth
batch’s feature vectors, with coefficients Y T

j ·(XjX
T
j )

−1, we
can similarly construct the corresponding jth modified sample

Y ′
j ≜ Y T

j · (XjX
T
j )

−1Y j = x′
jβ +W ′

j , (8)

where W ′
j = Y T

j (XjX
T
j )

−1W j is the modified noise.

We can now pool all these modified quantities to form a
new model:

Y ′ = X ′β +W ′, (9)

where the modified feature matrix X ′ and modified noise
vector W ′ are given by X ′ = [x′T

1 , · · · ,x′T
n/b]

T , and W ′ =
[W ′

1, · · · ,W ′
n/b]

T . Of course, the above is not truly a linear
model, since both the matrix X ′ and the noise W ′ depend on
the parameter β. But we can nevertheless naturally combine all
the batch estimators by simply applying min-norm estimation
to (9). This yields our suggested batch-min-norm estimator:

β̂BMN ≜ X ′T (X ′X ′T )−1Y ′. (10)

The risk of β̂BMN is then given by

R(β̂BMN) = (1− 1
r2E

∥∥L′β
∥∥2) + 1

r2E[W
′T (X ′X ′T )−1W ′],

(11)

where L′ is now the projection operator onto the subspace
spanned by the rows of X ′, again using the fact that X ′ is
orthogonal to its null space I−L′. We can see that the first and
second terms in (11) are the (normalized) bias and variance
of β̂BMN, denoted Bias(β̂BMN) and Var(β̂BMN), respectively.
Unlike in the min-norm estimator case, the rows of X ′ depend
on the parameter β, and the noise W ′ depends on X ′, which
makes the analysis of the risk significantly more challenging.

It is interesting to point out that if X happens to have
orthogonal rows, then L = L′, which means the bias of the
batch estimator coincides with that of min-norm. Moreover, in
this case, the variance of both batch- and regular min-norm is
simply the variances of the noises W ′ and W , respectively,
which are identical. Therefore, the risk of both estimators
coincides in the orthogonal case, for any batch size. However,
as we show in the next section, in the general case the risk
can benefit from batch partition. This suggests that the gain
of batch-min-norm can be partially attributed to the linear
dependence between the feature vectors in different batches.
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V. MAIN RESULT

Our main result is an upper bound on the risk of batch-min-
norm. Throughout the paper limits are taken as n, p→∞ and
γ = p/n held fixed.

Theorem 1. For any γ > 1/b, the asymptotic risk of batch-
min-norm is upper bounded by

lim
p→∞

R(β̂BMN) ≤
γb− 1

γb+ (b− 1)ξ
+

(1− ξ)(b− (b− 1)ξ)

ξ(γb− 1)
,

(12)

where the first addend upper bounds the asymptotic bias and
the second addend upper bounds the asymptotic variance.

Note that while we are interested in the γ > 1 regime,
our bound applies verbatim to γ > 1/b. Loosely speaking,
the reason is that working in batches “shifts” the interpolation
point from 1 to 1/b, similarly to what would happen if we
naively discarded all but n/b samples and applied min-norm
to the remaining ones (batch-min-norm is superior to this naive
approach, as demonstrated in [8, Section 7]).

Our upper bound turns out to be quite tight for a wide
range of parameters (see [8, Section 7]). It can therefore be
used to obtain a very good estimate for the optimal batch
size (which we therefore loosely refer to as “optimal” in
the sequel), by minimizing (12) with respect to b. To that
end, we need to assume that the SNR (namely ξ) is known;
this is often a reasonable assumption, but otherwise the SNR
can be estimated well from the data for almost all β (see,
implicitly, in [6, Section 7]). The minimization yields an
explicit formula for the optimal batch size as a function of the
overparameterization ratio γ and the SNR, see [8, Subsection
5.1]. In particular, it can be analytically verified that the
optimal batch size is inversely proportional to both γ and SNR;
more specifically, there is a low-SNR threshold point below
which increasing the batch size (after taking n, p → ∞) is
always beneficial. This can be seen in Figure 1, which plots
the optimal batch size for different values of SNR and γ. For
further discussion see [8, Subsection 5.1].

Let us briefly outline the proof of Theorem 1. We start
with the bias of the algorithm, and write it as a recursive
relation, where a single new batch is added each time, and
its expected contribution to the bias reduction is quantified.
In a nutshell, we keep track of the projection of β onto the
complementary row space of the modified feature vectors from
all preceding batches. We then write the batch’s contribution
as a function of the inner products between the (random)
batch’s basis vectors and the basis of that space. We show
that this collection of inner products is close in Wasserstein
distance to a Gaussian vector with independent entries, and
derive an explicit recursive rule for the bias as a function of
the number of batches processed, under this approximating
Gaussian distribution. This function is then shown to be Lips-
chitz in a region where most of the distribution is concentrated,
which facilitates the use of Wasserstein duality to show that
the recursion rule is asymptotically correct under the true
distribution. Finally, we convert the recursive rule into a certain
differential equation, whose solution yields the bias bound.
This is done in Section VI.

To bound the variance, we note that the jth modified sample
Y ′
j , features vector x′

j , and noise W ′
j , are all linear combi-

nations of the corresponding batch elements, Y j , Xj and
W j , with the same (random) coefficients. These coefficients
converge almost surely to the original samples Y j . We use
this to show that the variance converges to that of a Gaussian

mixture noise with χ2-distributed weights that is projected onto
the rows of a Wishart matrix. This part of the proof can be
found in [8].

VI. PROOF OF MAIN RESULT - BIAS PART

In order to estimate the asymptotic bias, we rewrite the
Bias(β̂BMN) term in (11) as a recursive equation where at
the jth step we add the jth batch Y j , that corresponds to
the matrix rows Xj , and update the contribution of this
batch to the overall projection. Recall that Y j = Xjβ +
W j = Xj(β + Zj), with Zj ≜ XT

j (XjX
T
j )

−1W j .
with Zj ≜ XT

j (XjX
T
j )

−1W j . Then, the jth row in the
modified feature matrix X ′ is x′

j = (βT + ZT
j )Dj , with

Dj the projection matrix onto the row space of Xj . Denote
by X ′

j = [x′T
1 , · · · ,x′T

j ]T the modified feature matrix after
the first j steps and let L′

j ≜ X ′T
j (X ′

jX
′T
j )−1X ′

j be the
projection onto the row space of X ′

j . Then, applying the rank-
one update rule of the inverse of matrix product (see e.g. [13])
on (X ′

jX
′T
j )−1 we get

∥L′
jβ∥2 = ∥L′

j−1β∥2 + update(j), (13)

with update(j) = E
[

((βT+ZT
j )DT

j (I−L′
j−1)β)2

(βT+ZT
j )Dj(I−L′

j−1)Dj(β+Zj)

]
.

It can be seen that at each step the numerator of update(j)
is the projection of the part of β that lies in the null space
of L′

j−1, namely the part of β that was not captured by the
first j − 1 rows of X ′, onto the row space of the new batch.
However, the projection is affected by the current batch’s noise,
Zj . We can view this as a noisy version of the projection Dj ,
a perspective that will be made clear in the next lemma, which
is the key tool for analyzing the recursive rule (13).

Lemma 1. Let P be a projection onto a subspace of dimension
δp for δ ∈ [0, 1]. Write ∥β∥ = r and ∥Pβ∥2 = αr2 for
α ∈ [0, 1]. Let {U i}bi=1 be uniformly drawn orthonormal
vectors, and D̃ a noisy projection onto the span of {U i}
given by D̃v = Dv+

∑b
i=1 U iZi, where D =

∑b
i=1 U iU

T
i ,

Zi ∼ N (0, Ti · σ2/p), and Ti are r.vs. mutually independent
of {U i} and concentrated in the interval [1− o(1), 1 + o(1)]
with probability at least 1−o(1/p). Then, the expected squared
noisy projection of β in the direction of PD̃β is

E
[ ⟨PD̃β,β⟩2
∥PD̃β∥2

]
=

1

p

(
αr2

δ

(
1 +

αr2(b− 1)

σ2 + r2

)
+ o(1)

)
. (14)

The remainder of this section is dedicated to the proof of
Lemma 1, via a Gaussian approximation technique. But first,
we use this lemma to prove the upper bound on the bias in
Theorem 1.

Proof of bias part in Theorem 1. We give the high level
sketch of the proof. Full proof can be found in [8]. Write
Bj = 1 − 1

r2 ∥L
′
jβ∥2 for the bias after j steps and assume

without loss of generality that r = 1. Then B0 = 1, and
the desired bias is given by limBias(β̂BMN) = limEBn

b
. Let

{U i}b1, be the orthonormal basis for the row space of Xj ,
then Dj =

∑b
i=1 U iU

T
i , and Dj(β +Zj) can be written as

D̃jβ. Then we get from Lemma 1 with P = I − L′
j−1 that

the update term in (13) is given by

update(j) = E
[

1
p−jBj(1 + (b− 1)ξBj)

]
+ o(1/p), (15)
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where we set α = Bj and used the fact that with probability
1 the dimension of L̄j−1 is δ = 1− j/p. Then, using (13) and
taking expectation we get

EBj+1 = EBj − 1
p−j (EBj + (b− 1)ξEB2

j ) + o(1/p). (16)

Next, we will show that (16) can be translated to a differ-
ential equation, which we then solve to produce the desired
upper bound. Define tj ≜ EBj . Using the (trivial) bound
(EBj)

2 ≤ EB2
j ≤ EBj that holds for any random variable

with support in the unit interval, we obtain

1 + (b− 1)ξtj
1− j/p ≤ tj+1 − tj

1/p
+ o( 1p ) ≤ −

1 + (b− 1)ξt2j
1− j/p . (17)

We are interested in tn/b under the initial condition t0 = 1, as
p → ∞ and p/n = γ is held fixed. The upper bound in (17)
is monotonically increasing in tj , and therefore we can use
it iteratively. Noticing that over n/b iterations of the recursive
bound (17) the error term o(1/p) can grow to at most o(1), we
drop it hereafter and add it back later. Then, loosely speaking,
by taking g(x) to be some convex function such that

g′(x) ≤ g(x+ 1/p)− g(x)
1/p

≤ −g(x) · (1 + (b− 1)ξg(x))

1− x ,

we will get tj ≤ g(j/p). The above is a differential inequality
with the initial condition g(0) = 1. Solving it we get g(x) ≤

1−x
1+(b−1)ξ·x , hence, we have tj ≤ g(j/p) ≤ 1−j/p

1+(b−1)ξ·j/p . Then,
adding back the error term we get

lim
p→∞

1
r2 Bias

(
β̂BMN

)
≤ lim

p→∞
g( 1

γb ) + o(1) ≤ γb− 1

γb+ (b− 1)ξ
,

Next, we turn to prove Lemma 1. Let S = [S1, · · · , S2b] be
a random vector given by

Si ≜
{
⟨PU i,β⟩, i = 1, · · · b,
⟨(I − P )U i,β⟩, i = b+ 1, · · · , 2b , (18)

and define the function

f(s, z) ≜ (
∑b

i=1 si (si + sb+i + zi))
2

∑b
i=1 (si + sb+i + zi)

2
. (19)

The outline of the proof for Lemma 1 is as follows. First, in
Lemma 2 we show that the expected squared projection (14)
is approximately equal to Ef(S,Z), for any noise Z that
is sufficiently close in distribution to i.i.d. N (0, 1/p) noise.
Then, we show that Ef(S,Z) can be calculated with good
accuracy by replacing the vector S with a Gaussian vector
G with independent entries that have the same variance as the
elements of S. To do so, in Lemma 3 we bound the Wasserstein
distance between S and G using Corollary 1, and show
that f is Lipschitz where S and G are concentrated, hence
|Ef(S,Z)− Ef(G,Z)| ⪅W1(S,G). Then in Lemma 4 we
explicitly calculate Ef(G,Z) as a (random) weighted sum of
MMSE estimators, yielding (14) and concluding the proof.

First, we show that indeed Ef(S,Z) approximates the
mean-squared projection (14). The proofs of all the lemmas
can be found in [8].

Lemma 2. Let S be given by (18), Z = [Z1, · · · , Zb] as in
Lemma 1, and f(S,Z) as in (19). Then,
∣∣∣E[ 1δ f(S,Z)]− E

[
⟨PD̃β,β⟩2
∥PD̃β∥2

]∣∣∣≤ 1
4
√
pE[

1
δ f(S,Z)] + o( 1p ). (20)

Next, we show that for large p the vector S is close to
Gaussian in the Wasserstein distance, a fact we can utilize to
approximate Ef(S,Z).

Corollary 1. Let S ∈ R2b be the random vector given in (18),
and let G ∈ R2b have independent entries such that

Gi ∼
{N (0, αp ), i = 1, · · · b,
N (0, 1−α

p ), i = b+ 1, · · · , 2b . (21)

Then W1(S,G) ≤
√

b
p · 2

√
2b

p−1 .

We see that S in (18) is O(p- 3
2 )-close in Wasserstein

distance to G in (21). If f was k-Lipschitz in s, this would
yield a O(kp- 3

2 ) approximation for Ef(S,Z), by calculating
the latter using the Gaussian statistics. This is however not
the case, since f ’s gradient diverges along certain curves.
Nonetheless, we will show that f is Lipschitz in the region
where S and G are concentrated, which along with the fact
that Z is independent of S and G, will yield an upper bound
on |Ef(S,Z)− Ef(G,Z)|.
Lemma 3. Let f : R2b × Rb → R be defined in (19), S
and Z defined in (18) and Lemma 1, respectively, and G be
distributed as in (21) and independent of Z. Then,

|Ef(S,Z)− Ef(G,Z)| = o (1/p) . (22)

Lemma 4. Let G be as in Corollary 1 and Z as in Lemma 1,
then

E [f(G,Z)] = αr2

p (1 + (b− 1)ξα) + o(1/p). (23)

The proof of Lemma 1 is now a direct result of Lemmas 2,
3 and 4.
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Abstract—In this paper, we study the problem of deciding
whether two random databases X ∈ Rn×d and Y ∈ Rn×d, each
composed of n users with d features, are statistically dependent
or not. This problem is relevant in computational biology, natural
language processing, analysis of social media, etc. We formulate
this decision task as the following hypothesis testing problem:
under the null hypothesis, these two databases are statistically
independent, while under the alternative, there exists an unknown
row permutation σ, such that X and Yσ , a permuted version of
Y, are statistically dependent with some known joint distribution.
For this problem, we characterize the thresholds at which optimal
testing is information-theoretically impossible and possible, as a
function of n, d, and the generative distributions of the datasets.
Specifically, we prove that if a certain function of the eigenvalues
of the likelihood function and d, is below a certain threshold,
as d→∞, then weak detection (performing slightly better than
random guessing) is statistically impossible, irrespectively of the
value of n. This matches the performance of an efficient test that
thresholds a centered version of the log-likelihood function of the
observed matrices.

I. INTRODUCTION

Prompted by practical scenarios, such as computational
biology applications [1], [2], social network analysis [3], [4],
computer vision [5], [6], and data anonymization/privacy-
focused systems, there has been a recent focus on explor-
ing the theoretical underpinnings and algorithmic solutions
for database alignment under statistical frameworks. Indeed,
quantifying relationships between disparate databases stand
as fundamental undertakings in statistics. Modern databases
present many challenges: they are high-dimensional, lack
labels, contain noise, and appear scrambled. One concrete
example of an inference problem, involving a pair of databases,
is framed as the following hypothesis testing problem. Under
the null hypothesis, no statistical dependency exists between
the databases, whereas under the alternative hypothesis, there
exists a permutation that reorganizes one database in such
a way that the two become dependent. Then, given these
databases, under what conditions can we discern whether they
are dependent or not?

As a tangible folklore example, consider the following
scenario: envision two distinct data sources, such as Netflix
and IMDb, each providing feature lists for a set of entities,
like users. These features encompass diverse user attributes,
such as names, user IDs, and ratings. Frequently, feature labels
are either unavailable or intentionally removed to safeguard
sensitive personally identifiable information. Consequently,
straightforwardly matching feature pairs between the two

sources, corresponding to the same user, becomes challenging.
Nevertheless, there is optimism that when a substantial corre-
lation exists between the two databases, it becomes feasible
to establish connections between them and create a coherent
alignment for their respective feature lists [3], [4].

Recently, there has been a focus on what is known
as the data alignment problem. This problem can be seen
as a straightforward probabilistic model that encapsulates the
scenario described above. It was introduced and explored in,
e.g., [7], [8]. In essence, this problem involves two databases,
denoted as X ∈ Rn×d and Yn×d, each comprising n users,
each with d features. The key challenge lies in uncovering an
unknown permutation or correspondence that matches users in
X with those in Y. When a pair of entries from these databases
is matched, their features are dependent according to a known
distribution, whereas for unmatched entries, the features are
independent. The primary objective is to recover the unknown
permutation and establish statistical assurances regarding the
feasibility and impossibility of this recovery. The feasibility
of recovery is contingent upon factors such as the correlation
level, n, and d. The statistical limits of this recovery problem
are understood for some specific probability distributions that
generate the databases. For instance, in the Gaussian case,
where the two databases have independent standard normal
entries, with correlation coefficient ρ between the entries of
matched rows, it has been demonstrated in [8] that perfect
recovery is attainable if ρ2 = 1− o(n−4/d), while it becomes
impossible if ρ2 = 1− ω(n−4/d) as both n, d→∞.

The detection counterpart of the recovery problem dis-
cussed above has also undergone extensive investigation in [9]–
[12], in the Gaussian case. As mentioned earlier, the central
question here revolves around determining the correlation level
needed to decide whether the two databases are correlated or
not. It has been established in [10] that when ρ2d → ∞,
efficient detection becomes feasible (with an exceedingly small
error probability) using a straightforward thresholding of the
sum of entries in XTY. Conversely, it has also been demon-
strated that when ρ2d

√
n → 0 and d = Ω(log n), detection

is information-theoretically impossible. Most recently, in [12],
the gap between the lower and upper bound above has been
conclusively addressed, proving that the upper bound is tight,
i.e., if ρ2d→ 0 as d→∞, weak detection (performing slightly
better than random guessing) is information-theoretically im-
possible, regardless of the specific value of n. In fact, while
the main focus in related literature was exclusively on the
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asymptotic regime where both n and d tend to infinity, [12]
determine sharp thresholds for all possible asymptotic regimes
of n and d.

In this paper, we continue the investigation of the
database alignment detection problem. While the results above
are neat and interesting, they apply for the Gaussian case
only. This is in fact true not just for the detection but also
for the recovery problem. This case is, however, restricted
in the sense that for jointly Gaussian random variables, the
notion of uncorrelatedness and independence are equivalent;
the information-theoretic limits depend on the distribution
through the correlation parameter solely. Accordingly, for
general distributions, it is a priori unclear how these thresholds
depend on the distribution. Furthermore, as it turns out, many
of the techniques in [9]–[12] are tailored to the Gaussian
case, and the tight analysis of general distributions becomes
challenging. To the best of our knowledge, our paper is the
first to provide characterization for the thresholds at which
optimal testing is information-theoretically impossible and
possible, for two general distributions. Specifically, given two
generative distributions, we prove that weak (strong) detection
is information-theoretically impossible if a certain function of
the eigenvalues of the likelihood function kernel (see, (6)) is
below some threshold; we consider all possible asymptotic
regimes as a function of n and d. We then complement out
lower bounds by algorithmic upper bounds, and show that
these are tight in a few classical examples. To that end, we
propose three detection algorithms and analyze their associated
risks and sample complexities.

We will now provide a brief overview of other related
works. In [13], the problem of partial recovery of the hidden
alignment was investigated. In [14], necessary and sufficient
conditions for successful recovery through a typicality-based
framework were established. Additionally, [15] and [16] ex-
plored the problem of alignment recovery in cases involving
feature deletions and repetitions, respectively. A recent devel-
opment in this area involved the joint analysis of correlation
detection and alignment in Gaussian databases, as presented
in [11]. Finally, it is worth noting that the challenges in
database alignment and detection closely relate to various
planted matching problems, specifically the graph alignment
problem, which has yielded numerous intriguing results and
valuable mathematical techniques. Roughly speaking, in this
problem the goal is to detect the edge correlation between two
random graphs with unlabeled nodes. For further exploration,
one can refer to works such as [17]–[24], and their associated
references. In particular, as we mention later on in the outlook
of our paper, an interesting open problem mentioned in [21]
is to investigate the case of general edge weight distributions,
which inspired our work for the random databases case.

For any n ∈ N, the set of integers {1, 2, . . . , n} is
denoted by [n], and an1 = {a1, a2, . . . , an}. Let Sn denotes
the set of all permutations on [n]. For a given permutation
σ ∈ Sn, let σi denote the value to which σ maps i ∈ [n].
Random vectors are denoted by capital letters such as X with
transpose XT . A collection of n random vectors is written

as X = (X1, . . . , Xn). The notation (X1, . . . , Xn) ∼ P⊗n
X

means that the random vectors (X1, . . . , Xn) are independent
and identically distributed (i.i.d.) according to PX . We use
N (η,Σ) to represent the multivariate normal distribution with
mean vector η and covariance matrix Σ. Let Poisson(λ) denote
the Poisson distribution with parameter λ. The n× n identity
matrix is denoted by In×n. For probability measures P and
Q, let dTV(P,Q) = 1

2

∫
|dP − dQ| denote the total variation

distance. For a probability measure µ on a space Ω, we use
µ⊗d for the product measure of µ (d times) on the product
space Ωd. For a measure ν ≪ µ (that is, a measure absolutely
continuous with respect to µ), we denote (by abuse of notation)
the Randon-Nikodym derivative ν with respect to µ by ν

µ .
For functions f, g : N → R, we say that f = O(g) (and
f = Ω(g)) if there exists c > 0 such that f(n) ≤ cg(n)
(and f(n) ≥ cg(n)) for all n. We say that f = o(g) if
limn→∞ f(n)/g(n) = 0, and that f = ω(g) if g = o(f).
Due to space limitation, our proofs appear in [25].

II. SETUP AND LEARNING PROBLEM

Probabilistic model. As mentioned in the introduction, in this
paper we will investigate the following decision problem. In
general, we deal with two databases X = (X1, . . . , Xn) and
Y = (Y1, . . . , Yn), where Xi ∈ Rd and Yi ∈ Rd, for i =
1, 2, . . . , n, with n being the number of entities (say, users),
and d is the number of features. Now, under the null hypothesis
H0, the databases X and Y are generated independently at
random, where X1, . . . , Xn ∼ P⊗d

X and Y1, . . . , Yn ∼ P⊗d
Y ,

with PX = PY . We denote by P0 the null distribution, i.e., the
joint distribution of (X,Y) under H0. Also, for simplicity of
notation, we denote the product measure QXY ≜ PX × PY .
Under the alternate hypothesis H1, the databases X and Y are
dependent under an unknown alignment/permutation σ ∈ Sn,
namely, given σ ∈ Sn, a permutation over 1, 2, . . . , n, we have
(X1, Yσ1

), (X2, Yσ2
), . . . , (Xn, Yσn

)
i.i.d∼ P⊗d

XY , with the same
marginals PX = PY . For a fixed σ ∈ Sn, we denote the joint
distribution measure of (X,Y) under the hypothesis H1 by
PH1|σ . To summarize,

H0 : (X1, Y1), . . . , (Xn, Yn)
i.i.d∼ P⊗d

X × P⊗d
Y

H1 : (X1, Yσ1
), . . . , (Xn, Yσn

)
i.i.d∼ P⊗d

XY , for σ ∈ Sn.
(1)

Thinking about X as an n × d matrix, we denote its (i, j)
element by Xij (and similarly for Y). We remark here that the
distributions QXY and PXY are allowed to be functions of n
and d. In fact, as we will see later on, this is the interesting
non-trivial case.
Learning problem. Given the databases X and Y, a
test/detection algorithm ϕn,d : Rn×d×Rn×d → {0, 1}, for the
hypothesis testing problem above, is tasked with outputting a
decision in {0, 1}. We define the risk of a detection algorithm
ϕn,d as the sum of its Type-I and (worst-case) Type-II error
probabilities, namely,

R(ϕn,d) ≜ PH0
[ϕn,d(X,Y) = 1] + max

σ∈Sn
PH1|σ[ϕn,d(X,Y) = 0].

(2)
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The minimax risk for our hypothesis detection problem is

R⋆ ≜ inf
ϕn,d:Rn×d×Rn×d→{0,1}

R(ϕn,d). (3)

We remark that R (and R⋆) is in general a function of n, d,
QXY , and PXY . However, we omit them from our notation
for the benefit of readability, as we shall do for our detection
algorithms as well.

As in [12], we study the information-theoretic limits
(i.e., impossibility and possibility lower and upper bounds)
of the hypothesis testing problem in (1), for several possible
asymptotic regimes of n and d. To be more precise, let D
denote the pair of distributions QXY , and PXY . Then, the
regimes we investigate are characterized by sequences of the
parameters (D, d, n) = (Dℓ, dℓ, nℓ)ℓ∈N. For example, if PX =
PY = N (0, 1) and PXY denote the joint distribution of two
standard normal random variables with correlation coefficient
ρ, then the triplet (D, d, n) is equivalent to (ρ, d, n). In this
paper, the asymptotic regimes we consider correspond to the
scenarios where dℓ and nℓ are either fixed or tend to infinity.
Accordingly, asymptotic notations, such as, f(D) = o(·),
f(D) = Ω(·), etc., where f(·) is some one-dimensional
function of D, should be interpreted in terms of the sequences
above. For example, the condition f(D) = o(d−1) means that
the sequence (D, d, n) satisfies f(Dℓ)dℓ → 0, as ℓ → ∞.
Later on, we will give concrete examples which elucidate the
notations above. With the above in mind, we are in a position
to define the notions of strong and weak detection.

Definition 1. A sequence (D, d, n) = (Dk, dk, nk)k is said to
be:

1) Admissible for strong detection if limk→∞ R⋆ = 0.
2) Admissible for weak detection if lim supk→∞ R⋆ < 1.

A few comments are in order. First, it should be clear
that admissibility of strong detection implies the admissibility
of weak detection. More concretely, if a test ϕ achieves strong
detection, i.e., R(ϕ) → 0, then ϕ achieves weak detection
as well. Also, note that strong detection requires the test
statistic to determine with high probability whether (X,Y) is
is drawn from H0 or H1, while weak detection only aims
at strictly outperforming random guessing of the underlying
hypothesis. Finally, recall that the optimal average risk R̄⋆,
which corresponds to the case where σ is uniformly drawn
over Sn (rather being unknown), and which lower bounds the
worst-case risk R⋆, is given by 1 − dTV(PH0 ,PH1). This is
achieved by the likelihood ratio (or, Neyman-Pearson) test.
Accordingly, weak and strong detection are equivalent to
lim inf dTV(PH0

,PH1
) > 0 and lim dTV(PH0

,PH1
) = 0,

respectively. In the same vein, to rule out the possibility of
weak/strong detection, we will use the well-known facts that,

dTV(PH0
,PH1

) = o(1) =⇒ lim
k→∞

R⋆ = 1, (4)

and

dTV(PH0
,PH1

) ≤ 1− Ω(1) =⇒ lim inf
k→∞

R⋆ > 0. (5)

To wit, the implication in (4) correspond to the impossibility
of weak detection, while (5) corresponds to the impossibility
of strong detection, respectively.

III. MAIN RESULTS

In this section, we present our main results concerning
the thresholds for admissibility and impossibility of weak and
strong detection. We differentiate between the various possible
asymptotic regimes: (I) both n, d → ∞; the standard regime
analyzed in most related past literature, (II) n is a constant
and d→∞, and (III) d is a constant and n→∞. We begin
with our impossibility lower-bounds. To that end, we introduce
a few important notations.

Let L(x, y) = PXY (x,y)
QXY (x,y) , for any x ∈ X and y ∈ Y . This

kernel defines an operator as follows: for any square-integrable
function f under QXY ,

(Lf)(x) ≜ EY∼QY
[L(x, Y )f(Y )] , (6)

In addition, L2 = L ◦ L is given by L2(x, y) =
EZ∼Q[L(x, Z)L(Z, y)], and Lk is similarly defined. Assume
that L(x, y) = L(y, x), and hence L is self-adjoint. Further-
more, if we assume that

∫ ∫
L2(x, y)QX(dx)QY (dy) < ∞,

then L is Hilbert-Schmidt. Thus L is diagonazable with
eigenvalues λi’s and the trace of L is given by trace(L) =
EY∼QY

[L(Y, Y )] =
∑

i∈N λi. Without loss of generality, we
assume that the sequence of eigenvalues {λi}i≥0 decreasing,
namely, λi ≥ λi+1, for all i ∈ N. As we show in the proofs,
the largest eigenvalue of L is one, i.e., λ0 = 1. We are now
in a position to state our main results.

Theorem 1 (Weak detection lower bound). Weak detection is
impossible as long as

∑

i≥1

λ2i
1− λ2i

= o(d−1). (7)

That is, for a sequence (D, d, n) = (Dℓ, dℓ, nℓ)ℓ∈N such that
(7) holds:

• If d is any function of k, and n→∞ then limk→∞ R⋆ =
1.

• If n is constant and d→∞ then limk→∞ R⋆ = 1.
Namely, (ρ, d, n) is not admissible for weak detection.

Based on Theorem 1, we see that weak detection is
impossible when (7) holds, for all different asymptotic regimes
of n and d; however, if d is fixed then the right-hand-side of
(7) should be understood as o(1), as n→∞. Next, we move
forward to our strong detection lower bounds.

Theorem 2 (Strong detection lower bounds). A sequence
(D, d, n) = (Dℓ, dℓ, nℓ)ℓ∈N is not admissible for strong de-
tection if:

1) d ∈ N and {λi}i≥1 are constants, such that

d < − log λ21
log
∑

i∈N λ
2
i

, (8)

and n→∞.
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2) n, d→∞, and
∑

i≥1

λ2i
1− λ2i

< (1− ε)d−1, (9)

for some ε > 0, independent of n and d.
3) d→∞, and n ∈ N,

∑

i≥1

λ2i
1− λ2i

= O(d−1). (10)

It is evident that for strong detection, we can prove
slightly stronger results; for example, when n, d → ∞,
comparing (7) and (9) we see that the barriers are the same up
to a constant factor. We next consider two canonical special
cases for which we find explicit formulas for the lower bounds
in Theorems 1 and 2.

Example 1 (Gaussian databases). In the Gaussian case, we
assume that QXY = PX × PY , with PX and PY correspond
to the densities of a Gaussian random variable with zero
mean and unit variance, while PXY is the joint density of two
correlated zero mean Gaussian random variables with unit
variance, i.e.,

PXY ≡ N
([

0
0

]
,

[
1 ρ
ρ 1

])
, (11)

for some known correlation coefficient ρ ∈ [−1, 1] \ {0}. The
Gaussian case above was analyzed in [9]–[12]. It can be
shown that the eigenvalues of L in this case are given by
λℓ = ρℓ, for ℓ ≥ 0. Accordingly, a little bit of algebra reveals
that (7) holds if ρ2 = o(d−1). This condition, coincides with
[12]. Similarly, in the regime where d is fixed, strong detection
is impossible when (8) holds, which in the Gaussian setting
boils down to d < log ρ2

log(1−ρ2) , which again coincides with
the results of [12]. Therefore, our general lower bounds in
Theorems 1 and 2 recover the known bounds in the literature.

Example 2 (Bernoulli databases). In the Bernoulli case, we as-
sume that QXY = PX ×PY , with PX = PY = Bernoulli(τp),
for some p ∈ (0, 1) and τ ∈ [0, 1], and PXY denotes the
joint distribution of two correlated Bernoulli random variables.
Specifically, under PXY , we have X ∼ Bernoulli(τp), and

Y |X ∼
{

Bernoulli(τ), if X = 1

Bernoulli
(

τp(1−τ)
1−τp

)
, if X = 0.

(12)

Here, Pearson correlation coefficient is given by,

ρ ≜ cov(X,Y )√
var(X)

√
var(Y )

=
τ(1− p)
1− τp . (13)

The Bernoulli case was not studied in the literature in the
context of the database alignment detection problem, but it is
the focus in related work on testing correlation of unlabeled
random graphs, e.g., [21], where the edges are modelled as
Bernoulli random variables. Here, it can be shown that the
eigenvalues of L are 1 and ρ. Thus, the lower bound in
Theorem 1 for weak detection, boils down to ρ2 = o(d−1),
as in the Gaussian case. Similarly, in the regime where d is

fixed, strong detection is impossible when (8) holds, which in
the Bernoulli setting, translates to d < log(1/ρ2)

log(1+ρ2) , similarly to
the Gaussian case.

Next, we present our detection algorithms and the corre-
sponding upper bounds. We start with the following sum test,

ϕsum(X,Y) ≜ 1





1

dn2

n∑

i,j=1

d∑

ℓ=1

K(Xiℓ, Yjℓ) ≥ τsum



 , (14)

where

K(Xiℓ, Yjℓ) ≜ log
PXY (Xiℓ, Yjℓ)

QXY (Xiℓ, Yjℓ)
− dKL(QXY ||PXY )

− EA∼PX

[
log

PXY (A, Yiℓ)

QXY (A, Yiℓ)

]

− EB∼PX

[
log

PXY (Xiℓ, B)

QXY (Xiℓ, B)

]
, (15)

is the centered likelihood function, and τsum ∈ R. In the
Gaussian case (as well as in the Bernoulli case) it can be
shown that (14) is equivalent to thresholding the sum of all
entries of the inner product XTY, i.e.,

∑n
i,j=1XijYij . This

test was analyzed in [10], in the Gaussian case. For the general
case, we have the following result. Below VarQ(X) denotes
the variance of X distributed according to Q.

Theorem 3 (Sum test). Consider the sum test in (14), and let

τsum = dn
dKL(PXY ||QXY ) + dKL(QXY ||PXY )

2
. (16)

Then,

R(ϕsum) ≤
16 · VarQXY

(K(A,B))

d · (dKL(PXY ||QXY ) + dKL(QXY ||PXY ))
2 .

(17)

In particular, if

d · (dKL(PXY ||QXY ) + dKL(QXY ||PXY ))
2

VarQXY
(K(A,B))

= ω(1), (18)

then, R(ϕsum)→ 0, as d→∞.

Note that Theorem 3 implies also that weak detection is
possible using the sum test if

d · (dKL(PXY ||QXY ) + dKL(QXY ||PXY ))
2

VarQXY
(K(A,B))

= Ω(1). (19)

At this point, it is evident that based on the bound in Theorem
3, the sum test can achieve strong detection (vanishing risk)
only if d→∞; in fact it can be shown that this is also neces-
sary. Accordingly, we propose the following testing procedure,

ϕcount(X,Y) ≜ 1





n∑

i,j=1

1

{
1

d
log

P⊗d
XY (Xi, Yj)

Q⊗d
XY (Xi, Yj)

≥ τcount
}

≥ 1

2
nPd



 , (20)
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where Pd ≜ PP⊗d
XY

[∑d
ℓ=1 L (Aℓ, Bℓ) ≥ d · τcount

]
, where

L (x, y) ≜ logL(x, y) = log PXY (x,y)
QXY (x,y) , for (x, y) ∈ X × Y ,

and τcount ∈ R. Roughly speaking, ϕcount counts the number of
pairs whose likelihood individually exceed a certain threshold.
This is similar (but not exactly the same) to a test proposed in
[12] in the Gaussian setting, which counts the number of inner
products between all possible (normalized) rows in X and Y
who individually exceed a certain threshold. We mention here
that our result holds for any natural d ≥ 1, while in [12] it is
assumed that d ≥ d0, for some fixed d0 ∈ N (most notably,
excluding the d = 1 case). We define the Chernoff’s exponents
EP , EQ : R → [−∞,∞) as the Legendre transforms of the
log-moment generating functions, namely,

EQ(θ) ≜ sup
λ∈R

λθ − ψQ(λ); EP (θ) ≜ sup
λ∈R

λθ − ψP (λ), (21)

where ψQ(λ) ≜ logEQ[exp(λL )] and ψP (λ) ≜
logEP [exp(λL )]. We have the following result.

Theorem 4 (Count test). Fix d ∈ N, and consider
the count test in (20). Suppose there is a τcount ∈
(−dKL(QXY ||PXY ), dKL(PXY ||QXY )) with

EQ(τcount) = ω(log n1/d), EP (τcount) = ω(n−1d−1). (22)

Then, R(ϕcount)→ 0, as n→∞.

As for the lower bounds, we provide examples for which
we derive explicit formulas for the upper bounds above.

Example 3 (Gaussian databases). Consider the same setting as
in Example 1. For the sum test in Theorem 3, a straightforward
calculation shows that

dKL(PXY ||QXY ) = −
1

2
log(1− ρ2), (23)

dKL(QXY ||PXY ) =
1

2
log(1− ρ2) + ρ2

1− ρ2 . (24)

Furthermore,

K(A,B) =
ρ

1− ρ2 ·AB, (25)

and thus VarQXY
(K(A,B)) = ρ2

(1−ρ2)2 . Therefore, the con-
dition in (18) boils down to dρ2 = ω(1), which in light of
Example 1 is tight up to a constant term. Finally, for fixed
d ∈ N, it can be shown that a sufficient condition for the
count test to achieve strong detection is ρ2 = 1−o(n−4/d), as
n→∞. Interestingly, this bound coincided with the threshold
for the recovery problem [8], achieved by the exhaustive
maximum-likelihood estimator, while the count test is efficient.
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Abstract—In this paper, we establish novel data-dependent
upper bounds on the generalization error through the lens of
a “variable-size compressibility” framework that we introduce
newly here. In this framework, the generalization error of an
algorithm is linked to a variable-size ‘compression rate’ of its
input data. This is shown to yield bounds that depend on the
empirical measure of the given input data at hand, rather than
its unknown distribution. Our new generalization bounds that we
establish are tail bounds, tail bounds on the expectation, and in-
expectations bounds. Moreover, it is shown that our framework
also allows to derive general bounds on any function of the input
data and output hypothesis random variables. In particular, these
general bounds are shown to subsume and possibly improve
over several existing PAC-Bayes and data-dependent intrinsic
dimension-based bounds that are recovered as special cases, thus
unveiling a unifying character of our approach.

I. INTRODUCTION AND PROBLEM SETUP

Let Z P Z be some input data distributed according to an
unknown distribution µ, where Z is the data space. A major
problem in statistical learning is to find a hypothesis (model)
w in the hypothesis space W that minimizes the population
risk defined as [1]

Lpwq :“ EZ„µrℓpZ,wqs, w PW, (1)

where ℓ : Z ˆ W Ñ R` is a loss function that measures
the quality of the prediction of the hypothesis w P W . The
distribution µ is assumed to be unknown, however; and one
has only access to n (training) samples S “ tZ1, . . . , Znu „
PS “ µbn of the input data. Let A : S Ñ W , S “ Zn, be
a possibly stochastic algorithm which, for a given input data
s “ tz1, . . . , znu P Zn, picks the hypothesis Apsq “ W PW .
This induces a conditional distribution PW |S on the hypothesis
space W . Instead of the population risk minimization prob-
lem (1) one can consider minimizing the empirical risk, given
by

L̂ps, wq :“ 1

n

ÿm

i“1
ℓpzi, wq. (2)

Nonetheless, the minimization of the empirical risk (or a
regularized version of it) is meaningful only if the difference
between the population and empirical risks is small enough.
This difference is known as the generalization error of the
learning algorithm and is given by

genps,Apsqq :“ LpApsqq ´ L̂ps,Apsqq. (3)

An exact analysis of the statistical properties of the gener-
alization error (3) is out-of-reach, however, except in very

few special cases; and, often, one resort to bounding the
generalization error from the above, instead. The last two
decades have witnessed the development of various such
upper bounds, from different perspectives and by undertak-
ing approaches that often appear unrelated. Common ap-
proaches include information-theoretic, compression-based,
fractal-based, or intrinsic-dimension-based, and PAC-Bayes
ones. Initiated by Russo and Zou [2]and Xu and Raginsky [3],
the information-theoretic approach measures the complexity
of the hypothesis space by the Shannon mutual information
between the input data and the algorithm output. See also
the follow-up works [4]–[7]. The roots of compression-based
approaches perhaps date back to Littlestone and Warmuth [8]
who studied the predictability of the training data labels using
only part of the dataset. This compressibility approach has
been extended in various ways in several works to elaborate
data-dependent bounds. Closer to our work is another popular
compressibility approach that studies the compressibility of
the hypothesis space, see, e.g., [9], [10]. The fractal-based
approach is a recently initiated line of work that hinges on
that when the algorithm has a recursive nature, e.g., it involves
an iterative optimization procedure, it might generate a fractal
structure either in the model trajectories [11]–[14] or in its
distribution [15]. These works show that, in that case, the
generalization error is controlled by the intrinsic dimension of
the generated fractal structure. The original PAC-Bayes bounds
were stated for classification [16]; and, it has then become
clear that the results could be extended to any bounded loss,
resulting in many variants and extensions of them.

The aforementioned approaches have evolved independently
of each other; and the bounds obtained with them differ in
many ways that it is generally difficult to compare them.
Arguably, however, the most useful bounds must be com-
putable. This means that the bound should depend on the
particular sample of the input data at hand, rather than just on
the unknown data distribution. Such bounds are called data-
dependent; they are preferred and are generally of bigger
utility in practice. In this sense, most existing information-
theoretic and rate-distortion theoretic-based bounds on the
generalization error are data-independent. This includes the
mutual information bounds of Russo and Zou [2] and Xu and
Raginsky [3] whose computation requires knowledge of the
joint distribution of the input data and output hypothesis; and,
as such, they are not computable with just one sample training
dataset at hand.
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Contributions. In this paper, we establish novel data-
dependent generalization bounds through the lens of a
“variable-size compressibility” framework that we introduce
here. In this framework, the generalization error of an algo-
rithm is linked to a variable-size ‘compression rate’ of the
input data. This allows us to derive bounds that depend on the
particular empirical measure of the input data, rather than its
unknown distribution. The novel generalization bounds that we
establish are tail bounds, tail bounds on the expectation, and
in-expectations bounds. Moreover, we show that our variable-
size compressibility approach is somewhat generic and it can
be used to derive general bounds on any function of the input
data and output hypothesis random variables – In particular,
see our general tail bound of Theorem 3. In fact, as we show,
the framework can be accommodated easily to encompass
various forms of tail bounds, tail bounds on the expectation,
and in-expectation bounds through judicious choices of the
distortion measure. In particular, in Section IV, by specializing
them we show that our general variable-size compressibility
bounds subsume various existing data-dependent PAC-Bayes
and intrinsic-dimension-based bounds and recover them as
special cases. Hence, another advantage of our approach is that
it builds a unifying framework that allows formal connections
with the aforementioned, seemingly unrelated, Rate-distortion
theoretic, PAC-Bayes, and dimension-based approaches. In the
extended version of this work [17], we show how using this
framework, we can establish new PAC-Bayes bounds as well
as new data-dependent intrinsic dimension-based bounds.

The rest of this paper is organized as follows. In Section II,
we introduce our variable-size compressibility framework and
provide a data-dependent tail bound on the generalization
error. Section III contains our general bounds. Section IV
provides various applications of our main results, in particular,
to establish rate-distortion based, PAC-Bayes and dimension-
based bounds. The proofs, as well as further results can be
found in the extended version of this work [17].

Notations: We denote random variables, their realiza-
tions, and their alphabets by upper-case letters, lower-case let-
ters, and calligraphy fonts; e.g., X , x, and X . The distribution,
the expected value, and the support set of a random variable X
are denoted as PX , ErXs, and supppPXq. A random variable
X is called σ-subgaussian, if logErexppλpX ´ ErXsqqs ď
λ2σ2{2, @λ P R.1 A collection of m P N random variables
pX1, . . . , Xmq is denoted as Xm or X, when m is known by
the context. The notation txiumi“1 is used to represent m real
numbers; used also similarly for sets or functions. We use the
shorthand notation rms to denote integer ranges 1, . . . ,m P N.
Finally, the non-negative real numbers are denoted by R`.

Throughout we will use the following sets, defined for a
random variable X P X with distribution PX and a real-valued
function gpXq : X Ñ R as

GδX :“tνX P PX : DKLpνX}PXq ď logp1{δqu, (4)

SXpgpXqq :“␣
νX P PX

ˇ̌@x P supppνXq : gpxq ą 0
(
, (5)

1All log are considered with base e in this paper.

where PX is the set of all distributions defined over X .

II. VARIABLE-SIZE COMPRESSIBILITY

As we already mentioned, the approach of Sefidgaran et
al. [10] is based on a fixed-size compressibility framework;
and, for this reason, it only accommodates bounds on the
generalization error that are independent of the data. In this
work, we develop a “variable-size” compressibility framework,
which is more general and allows us to establish new data-
dependent bounds on the generalization error. As it will
become clearer throughout, in particular, this allows us to build
formal connections with seemingly-unrelated approaches such
as PAC-Bayes and data-dependent intrinsic dimension bounds.

We start by recalling the aforementioned fixed-size com-
pressibility framework, which itself can be seen as an extension
of the classic compressibility framework found in source
coding literature.

Consider a learning algorithm ApSq : S Ñ W . The goal
of the compression for the generalization error problem is
to find a suitable compressed learning algorithm ÂpS,W q “
Ŵ P Ŵ Ď W which has a smaller complexity than that of
the original algorithm ApSq and whose generalization error is
close enough to that of ApSq. Define the distortion function
d̃ :“ SˆWˆŴ Ñ R as d̃pw, ŵ; sq :“ genps, wq´genps, ŵq.
In order to guarantee that d̃pApSq, ÂpS,ApSqqq does not
exceed some desired threshold one needs to consider the
worst-case scenario; and, in general, this results in looser
bounds. Instead, they considered an adaptation of the block-
coding technique, previously introduced in the source coding
literature, for the learning algorithms. Consider a block of
m P N datasets sm “ ps1, . . . , smq and one realization of the
associated hypotheses wm “ pw1, . . . , wmq, with wi “ Apsiq
for i P rms, which we denote in the rest of this paper with a
slight abuse of notation as Apsmq “ wm. In this technique,
the compressed learning algorithm Apsm, wmq : Sm ˆWm Ñ
Ŵm is allowed to jointly compress these m instances, to pro-
duce Ŵm. Let, for given sm the distortion between the output
hypothesis of algorithm Ap¨q applied on the vector sm, i.e.,
wm “ Apsmq, and its compressed version Âp¨, ¨q applied on
the vector psm, wmq, i.e., ŵm “ Âpsm, wmq, be the average
of the element-wise distortions d̃p¨, ¨, ¨q between their com-
ponents, d̃mpwm, ŵm; smq :“ 1

m

ř
iPrms d̃pwi, ŵi; siq. As is

easily seen, this block-coding approach with average distortion
enables possibly smaller distortion levels, in comparison with
those allowed by worst-case distortion over the components.

Sefidgaran et al. introduced the following definition of
(exponential) compressibility, which they then used to estab-
lish data-independent tail and in-expectation bounds on the
generalization error. Denote by PpS,W qbm the probability with
respect to the m-times product measure of the joint distribution
of S and W .

Definition 1 ( [10, Definition 8]): The learning algorithm
A is called pR, ϵ, δ; d̃mq-compressible2 for some R, δ P R`

2Similar to the previous work, we drop the dependence of the definition on
µ, n, and PW |S .
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and ϵ P R, if there exists a sequence of hypothesis books
tHmumPN, Hm “ tŵrjs, j P rlmsu Ď Ŵm such that lm ď
emR and

lim
mÑ8

„
´ 1

m
logPpS,W qbm

´
min
jPrlms

d̃mpWm, ŵrjs;Smq ą ϵ
¯ȷ

ě logp1{δq. (6)

The inequality (6) expresses the condition that, for large m,
the probability (over pSm,Wmq) of finding no ŵrjs that is
within a distance less than ϵ from Wm vanishes faster than
δm. Equivalently, the probability that the distance from Wm

of any element ŵrjs of the book exceeds ϵ (sometimes called
probability of “excess distortion” or “covering failure”) is
smaller than δm for large m.

A result of [10, Theorem 9] states that if A is pR, ϵ, δ; d̃mq-
compressible in the sense of Definition 1 and the loss ℓpZ,wq
is σ-subgaussian for every w PW then with probability p1´δq
it holds that

genpS,W q ď a
2σ2pR ` logp1{δqq{n` ϵ. (7)

Also, let Rpδ, ϵq :“ supQPGδ
S,W

RDpϵ;Qq where

RDpϵ;Qq :“ infPŴ |S IpS; Ŵ q, (8)

s.t. ErgenpS,W q ´ genpS, Ŵ qs ď ϵ,

the supremum is over all distributions Q over S ˆ W that
are in the δ-vicinity of the joint PS,W in the sense of (4), i.e.,
Q P GδS,W ; and, in (8), the Shannon mutual information and the
expectation are computed with respect to QPŴ |S . In the case
in which SˆW is discrete, a result of [10, Theorem 10] states
that every algorithm A that induces PS,W is pRpδ, ϵq `ν1, ϵ`
ν2, δ; d̃mq-compressible, for every ν1, ν2 ą 0. Combined, the
mentioned two results yield the following tail bound on the
generalization error for the case of discrete S ˆW ,

genpS,W q ď a
2σ2pRpδ, ϵq ` logp1{δqq{n` ϵ. (9)

It is important to note that the dependence of the tail-
bound (9) on the input data S is only through the joint dis-
tribution PS,W , not the particular realization at hand. Because
of this, the approach of [10] falls short of accommodating
any meaningful connection between their framework and ones
that achieve data-dependent bounds such as PAC-Bayes bounds
and data-dependent intrinsic dimension-based bounds. In fact,
in the terminology of information-theoretic rate-distortion,
the described framework can be thought of as being one
for fixed-size compressibility, whereas one would here need
a framework that allows variable-size compressibility. It is
precisely such a framework that we develop in this paper.
For the ease of the exposition, hereafter we first illustrate our
approach and its utility for a simple case. More general results
enabled by our approach will be given in the next section. To
this end, define

dpw, ŵ; sq :“ genps, wq2 ´ genps, ŵq2,
dmpwm, ŵm; smq :“ 1

m

ÿ
iPrms dpwi, ŵi; siq. (10)

Definition 2 (Variable-size compressibility): The learn-
ing algorithm A is called pRS,W ,ϵ,δ; dmq-compressible for
some tRs,wups,wqPSˆW , where Rs,w P R` and Rmax :“
sups,w Rs,w ă 8, ϵ P R, and δ P R`, if there exists a
sequence of hypothesis books tHmumPN, Hm:“tŵrjs, j P
rtemRmaxusu, such that

lim
mÑ8

„
´ 1

m
logPpS,W qbm

ˆ
min
j
dmpWm, ŵrjs;Smq ą ϵ

˙ȷ

ě logp1{δq, (11)

where the minimum over j is taken over j ď e
ř

iPrms RSi,Wi .
The former compressibility definition (Definition 1) corre-
sponds to Rs,w :“ R for all ps, wq. Comparatively, our Def-
inition 2 here accommodates variable-size hypothesis books.
That is, the number of hypothesis outputs of Hm among which
one searches for a suitable covering of psm, wmq depends on
psm, wmq. The dependency is not only through PS,W but, more
importantly, via the quantity

ř
iPrms RSi,Wi

. The theorem that
follows shows how this framework can be used to obtain a
data-dependent tail bound on the generalization error.

Theorem 1: If the algorithm A is pRS,W ,ϵ,δ; dmq-
compressible and @wPW , ℓpZ,wq is σ-subgaussian, then with
probability at least p1 ´ δq,

genpS,W q ď
b
4σ2pRS,W ` logp2n{δqq{p2n´ 1q ` ϵ.

Note that the seemingly benign generalization to variable-
size compressibility has far-reaching consequences for the tail
bound itself as well as its proof. For example, notice the
difference with the associated bound (7) allowed by fixed-
size compressibility, especially in terms of the evolution of
the bound with the size n of the training dataset. Also,
investigating the proof and contrasting it with that of (7) for the
fixed-size compressibility setting, it is easily seen that while
for the latter it is sufficient to consider the union bound over
all hypothesis vectors in Hm, among which there exists a
suitable covering of pSm,Wmq with probability at least p1´δq,
in our variable-size compressibility case this proof technique
does not apply and falls short of producing the desired bound
as the effective size of the hypothesis book depends on each
pSm,Wmq.

Next, we establish a bound on the degree of compressibility
of each learning algorithm.

Theorem 2: Suppose that the algorithm ApSq “ W induces
PS,W and SˆW is a finite set. Then, for any arbitrary ν1, ν2 ą
0, A is pRS,W `ν1, ϵ`ν2, σ; dmq-compressible if the following
sufficient condition holds: for any νS,W P GδS,W ,

inf
pŴ |S

inf
qŴ

!
DKL

´
pŴ |SνS}qŴ νS

¯
´DKLpνS,W }PW |SνSq

)

ď EνS,W
rRS,W s, (12)

where the first infimum is taken over all pŴ |S that satisfy

EνS,W pŴ |S

”
genpS,W q2 ´ genpS, Ŵ q2

ı
ď ϵ. (13)

Combining Theorems 1 and 2 one readily gets a potentially
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data-dependent tail bound on the generalization error. Because
the result is in fact a special case of the more general
Theorem 3 that will follow in the next section, we do not state
it here. Instead, we elaborate on a useful connection with the
PAC-Bayes bound of [16]. Let P be a fixed prior on W . It is
not difficult to see that the choice RS,W :“ log

dPW |S
dP pW q

satisfies the condition (12) for ϵ “ 0. The resulting tail
bound recovers the PAC-Bayes bound of [18], [19], which is
a disintegrated version of that of [16].

We hasten to mention that an appreciable feature of our
approach here, which is rate-distortion theoretic in nature, is
its flexibility, in the sense that it can be accommodated easily
to encompass various forms of tail bounds, by replacing (10)
with a suitable choice of the distortion measure. For example,
if instead of a tail bound on the generalization error itself,
ones seeks a tail bound on the expected generalization error
relative to W „ π, it suffices to consider pRS,π, ϵ, δ; dmq-
compressibility, for some RS,π P R`, to hold when in the
inequality (11) the left hand side (LHS) is substituted with

lim
mÑ8

„´1

m
logPSbm

ˆ
min
j

1

m

ÿ

iPrms

`
EWi„πSi

rgenpSi,Wiq2s

´ genpSi, ŵirjsq2
˘ ą ϵ

˙ȷ

and the inequality should hold for any choice of distributions
πS (indexed by S) over W and any distribution νS P GδS – Note
the change of distortion measure (10) which now involves an
expectation w.r.t. W „ πS . Using this, we obtain that with
probability at least p1 ´ δq, the following holds:

@π : EW„πrgenpS,W qs ď
b
4σ2pRS,π ` logp2n{δq{p2n´ 1qq.

In the next section, we discuss how to derive a general form
of this tail bound which, in particular, recovers as a special
case the PAC-Bayes bound of [16].

III. GENERAL DATA-DEPENDENT GENERALIZATION BOUND

In this section, we take a bigger view. We provide generic
bounds, as well as proof techniques to establishing them, that
are general enough and apply not only to the generalization
error but also to any arbitrary function of the pair pS,W q.
Specifically, let f : S ˆ W Ñ R be a given function. We
establish tail bounds on the random variable fpS,W q that
are in general 3 data-dependent. The extension of this result
to generalization bounds expressed in terms of the Rényi
information divergence term instead of the KL-divergence
term, and also similar tail bounds on the expectation and
in-expectation bounds can be found in [17]. We insist that
by “data-dependent" we here mean that the bound can be
computed using just one sample S “ pZ1, . . . , Znq and does
not require knowledge of PS . For instance, bounds that depend
on pS,W q through its distribution PS,W , such as those of [3],

3However, we hasten to mention that since our approach and the resulting
general-purpose bounds of this section are meant to unify several distinct
approaches, some of which are data-independent, special instances of our
bounds obtained by specialization to those settings can be data-independent.

[10], are, in this sense, data-independent. Also, as it is shown
in Section IV, many existing data-dependent PAC-Bayes and
intrinsic dimension-based bounds can be recovered as special
cases of our bounds, through judicious choices of fpS,W q,
e.g., fpS,W q “ pgenpS,W qq2.

Theorem 3: Let fpS,W q : S ˆW Ñ R and ∆pS,W q : S ˆ
W Ñ R`. Fix arbitrarily the set Ŵ and define arbitrarily
gpS, Ŵ q : SˆŴ Ñ R. Then, for any δ P R`, with probability
at least 1 ´ δ,

fpS,W q ď ∆pS,W q, (14)

if for some ϵ P R4 and any νS,W P Fδ
S,W :“

GδS,W
ŞSS,W pfps, wq ´ ∆ps, wqq, it holds that

inf
pŴ |S

inf
λą0,qŴ |S

!
EνS

”
DKL

`
pŴ |S}qŴ |S

˘ı

` logEPSqŴ |S

”
egpS,Ŵ q

ı

´DKLpνS,W }PW |SνSq
´ λ

`
EνS,W

r∆pS,W qs ´ ϵ
˘) ď logpδq, (15)

where νS is the marginal distribution of S under νS,W , the
first infimum is taken over all pŴ |S that satisfy

EνS,W pŴ |S

“
∆pS,W q ´ gpS, Ŵ q‰ ď ϵ. (16)

The bound of Theorem 3 requires a condition to hold for every
νs,w P Fδ

S,W Ď GδS,W . Intuitively, this is equivalent to covering
all sequences pSm,Wmq whose empirical distributions Q are
in the vicinity of PS,W in the sense of (4), using the Ŵ defined
by pŴ |S . Furthermore, the distribution qŴ |S is the one used
to build (part of) the hypothesis book Hm,Q (see the proof of
Theorem 2 in [17] for a definition of Hm,Q).

Furthermore, in our framework of compressibility, ϵ stands
for the allowed level of average distortion in (16). The specific
case ϵ “ 0 corresponds to lossless compression; and, it is clear
that allowing a non-zero average distortion level, i.e., ϵ ‰ 0,
can yield a tighter bound (14). In fact, as will be shown in
the subsequent sections, many known data-dependent PAC-
Bayes and intrinsic dimension-based bounds can be recovered
from the “lossless compression” case. Also, for ϵ “ 0 the
condition (15) of the part (i.) of the theorem with the choices
Ŵ :“W , gps, ŵq :“ fps, ŵq, and pŴ |S :“ νW |S reduces to

inf
qW |S ,λą0

"
EνS,W

„
log

ˆ
dPW |S
dqW |S

˙
` logEPSqW |S

”
eλfpS,W q

ı

´λ∆pS,W q
ȷ*

ď logpδq. (17)

Besides, since Fδ
S,W Ď GδS,W , the theorem holds if we

consider all νS,W P GδS,W . The latter set, although possibly
larger, seems to be more suitable for analytical investigations.
Furthermore, for any νS,W P Fδ

S,W , the distortion criterion

4Although for simplicity ϵ is assumed to take a fixed value here, in general,
it can be chosen to depend on νS,W .
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(16) is satisfied whenever

EνS,W pŴ |S

“
fpS,W q ´ gpS, Ŵ q‰ ď ϵ. (18)

This condition is often easier to consider, as we will see in
the next section. In particular, (18) can be further simplified
under the Lipschitz assumption, i.e., when @w, ŵ, s : |fps, wq´
gps, ŵq| ď Lρpw, ŵq, where ρ : W ˆ Ŵ Ñ R` is a distortion
measure over W ˆ Ŵ . In this case, a sufficient condition to
meet the distortion criterion (16) is

EνS,W pŴ |S

“
ρpW, Ŵ q‰ ď ϵ{p2Lq. (19)

IV. APPLICATIONS

In this section, we show breifly how the general bound
of Section III unifies various existing approaches, including
rate-distortion theoretic, PAC-Bayes, and dimension-based ap-
proaches. As these have so far been thought of, and developed,
largely independently of each other in the related literature, in
particular, this unveils the strength and unifying character of
our variable-size compression framework.

Rate-distortion theoretic bounds. As shown in [17],
the tail bound of [10, Theorem 10] can be recovered
and extended using our Theorem 3 with the choices
fpS,W q :“ genpS,W q, Ŵ Ď W , and ∆pS,W q :“ ∆ :“c
2σ2

´
supνS,W PGδ

S,W
RDpϵ; νS,W q ` logp1{δq

¯
{n` ϵ.

PAC-Bayes bounds. As shown in [17], using and extension
of Theorem 3, we derive that with probability at least p1´ δq,

@π : EW„πrfpS,W qs ďDKL

`
π}qW |S

˘
(20)

` logEPSqW |S

”
efpS,W q

ı
` log p1{δq.

The obtained bound (20) equals that of [20, Theorem 1.ii].
Similarly, derivations using our Theorem 3 and the condi-
tion (17) allow to recover the result of [20, Theorem 1.i]. As
observed by Clerico et al. [21], these recovered bounds are
themselves general enough to subsume most of other existing
PAC-Bayes bounds.

Our variable-size compressibility framework also allow to
establish novel PAC-Bayes type bounds, presented in [17].

Dimension-based bounds. Prior to this work, the connec-
tion between compressibility and intrinsic dimension-based
approaches has been established in [10]. However, as the
framework introduced therein is of a “fixed-size” compressibil-
ity type and only allows establishing data-independent bounds,
the connection was made only to the intrinsic dimensions of
the marginal distributions introduced by the algorithm. This
departs from most of the proposed dimension-based bounds
in the related literature, which are data-dependent, i.e., they
depend on a particular dimension arising for a given S “ s.
See, e.g., [11], [13], [15].

In the extended version of this work [17], we show how
using our variable-size compressibility one can recover the
main generalization error bound of [11], which is in terms of
the Hausdorff dimensions of the optimization trajectories. The
approach can be extended similarly to derive [15, Theorem 1].
Finally, we establish a new data-dependent intrinsic dimension-

based bounds in [17], which connects the generalization error
to the optimization trajectories and reveals various interesting
connections with rate-distortion dimension of process, Rényi
information dimension of process, and metric mean dimension.
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persistent homology and generalization in neural networks,” in Advances
in Neural Information Processing Systems (NeurIPS), 2021.

[13] L. Hodgkinson, U. Simsekli, R. Khanna, and M. Mahoney, “Gener-
alization bounds using lower tail exponents in stochastic optimizers,”
in International Conference on Machine Learning. PMLR, 2022, pp.
8774–8795.

[14] S. H. Lim, Y. Wan, and U. Simsekli, “Chaotic regularization and heavy-
tailed limits for deterministic gradient descent,” Advances in Neural
Information Processing Systems, vol. 35, pp. 26 590–26 602, 2022.

[15] A. Camuto, G. Deligiannidis, M. A. Erdogdu, M. Gurbuzbalaban,
U. Simsekli, and L. Zhu, “Fractal structure and generalization properties
of stochastic optimization algorithms,” Advances in Neural Information
Processing Systems, vol. 34, pp. 18 774–18 788, 2021.

[16] D. A. McAllester, “Some pac-bayesian theorems,” in Proceedings of the
eleventh annual conference on Computational learning theory, 1998, pp.
230–234.

[17] M. Sefidgaran and A. Zaidi, “Data-dependent generalization bounds via
variable-size compressibility,” 2023.

[18] G. Blanchard and F. Fleuret, “Occam’s hammer,” in Learning Theory:
20th Annual Conference on Learning Theory, COLT 2007, San Diego,
CA, USA; June 13-15, 2007. Proceedings 20. Springer, 2007, pp. 112–
126.

[19] O. Catoni, “Pac-bayesian supervised classification,” Lecture Notes-
Monograph Series. IMS, vol. 1277, 2007.

[20] O. Rivasplata, I. Kuzborskij, C. Szepesvári, and J. Shawe-Taylor, “Pac-
bayes analysis beyond the usual bounds,” Advances in Neural Informa-
tion Processing Systems, vol. 33, pp. 16 833–16 845, 2020.

[21] E. Clerico, G. Deligiannidis, B. Guedj, and A. Doucet, “A pac-bayes
bound for deterministic classifiers,” arXiv preprint arXiv:2209.02525,
2022.

International Zurich Seminar on Information and Communication (IZS), March 6 – 8, 2024

138



Rate-Loss Regions for Polynomial Regression with
Side Information

Jiahui Wei1,2, Philippe Mary2, and Elsa Dupraz1
1 IMT Atlantique, CNRS UMR 6285, Lab-STICC, Brest, France

2 Univ. Rennes, INSA, IETR, UMR CNRS, Rennes, France

Abstract—In the context of goal-oriented communications, this
paper addresses the achievable rate versus generalization error
region of a learning task applied on compressed data. The study
focuses on the distributed setup where a source is compressed and
transmitted through a noiseless channel to a receiver performing
polynomial regression, aided by side information available at the
decoder. The paper provides the asymptotic rate generalization
error region, and extends the analysis to the non-asymptotic
regime. Additionally, it investigates the asymptotic trade-off
between polynomial regression and data reconstruction under
communication constraints. The proposed achievable scheme is
shown to achieve the minimum generalization error as well as
the optimal rate-distortion region.

Index Terms—Information theory, source coding, statistical
learning, rate-distortion theory, generalization error

I. INTRODUCTION

Learning under communication constraints has received in-
creased attention recently, for instance for distributed learning
and sensor networks applications [1]. When considering a
rate-limited channel, one key question is whether the design
principles for the encoder and decoder for a learning task still
align with those of traditional communication systems, where
the main goal is data reconstruction.

To address this issue, researchers have explored simple
distributed learning problems involving two correlated sources
X and Y , where X is the source to be encoded and Y serves
as side information at the decoder. Distributed hypothesis
testing has been extensively studied for specific hypothesis
tests on the joint distribution PXY , and asymptotic limits
on the Type-II error exponent have been determined in [2]–
[4]. Furthermore, [5] demonstrated that the rate required for
estimating a parameter θ from the joint distribution PXY is
less than the rate necessary for reconstructing the source.
Finally, [6] developed a universal achievable bound on the
learning generalization error, applicable to a wide range of
distributed learning problems involving two sources. However,
it was later shown in [7] that this bound is quite loose when
applied to linear regression. Building upon [7], this paper
focuses on the wider problem of polynomial regression and
aims to establish achievable generalization error bounds that
improve over the ones presented in [6]. Despite its simplicity,

This work has received a French government support granted to the
Cominlabs excellence laboratory and managed by the National Research
Agency in the “Investing for the Future” program under reference ANR-10-
LABX-07-01. This work was also funded by the Brittany region.

polynomial regression, captures essential learning theory con-
cepts and is widely applied in signal and image processing,
e.g., [8], [9].

Morever, this paper investigates a secondary, yet significant
concern, which is the trade-off between data reconstruction
and learning under communication constraints. In this mat-
ter, [10] demonstrated that there indeed exists a tradeoff
between data reconstruction and visual perception. Similar
tradeoffs have been observed for other problems, such as
hypothesis testing in [2], or identifying noisy data in a database
in [11]. All previous works utilize distortion as the figure of
merit for data reconstruction and employ distinct measures for
the learning aspect; like a divergence between two distributions
in [10], and the type-II error exponent in [2]. Unfortunately,
none of these metrics are applicable to polynomial regression,
underlining the need for a different analysis in our case.

Least squares regression, a fundamental statistical prediction
problem, has been extensively investigated in literature. The
ordinary least squares (OLS) estimator is a popular regression
method, and its generalization error with k predictors and
n samples is known to scale as k

n−k+1 [12]. However, this
result does not take into account the communication con-
straint, which is an important consideration in many practical
scenarios. In the context of polynomial regression, this paper
determines the minimum achievable source coding rate under
a constraint on the generalization error for both asymptotic
and non-asymptotic regimes. The regions are derived using
both standard asymptotic information theory tools [13], [14]
and finite-length tools [15], and they improve over the bounds
established by [6]. Additionally, the analysis reveals that no
trade-off exists between data reconstruction and polynomial
regression in terms of coding rate.

The outline of the paper is as follows. Section II defines the
problem of coding for polynomial regression. Section III in-
troduces the asymptotic rate-loss bounds. Section IV provides
the rate-loss bounds in finite blocklength. Section V shows
numerical results.

II. PROBLEM STATEMENT

A. Notation

Throughout this article, random variables and their re-
alizations are denoted with capital and lower-case letters,
respectively, e.g., X and x. Random vectors of length n are
denoted X = [X1, ..., Xn]

T , and E[X] and C [X] are the
expected value and the covariance matrix of X , respectively.
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Next, X = [X1, · · · ,Xp] is a matrix gathering a p-length
sequence of random vectors Xi, i ∈ J1, pK. We use Tr(X) to
denote the trace of matrix X , while λmax(X) and λmin(X)
are the maximum and minimum eigenvalues of matrix X ,
respectively. We further denote ||X|| as the norm-2 of a matrix
X . Sets are denoted with calligraphic fonts, and if f : X → Y
is a mapping then |f | denotes the cardinality of Y . Finally
log(·) denotes the base-2 logarithm.

B. Source definitions
Let (X,Y ) ∼ PXY be a pair of jointly distributed random

variables, where X is the source to be encoded and Y is the
side information only available at the decoder, see Figure 1.
For simplicity and without loss of generality, we consider
E [Y ] = 0. We define β = [β0, β1, ..., βk−1]

T ∈ Rk, and
Y ⋆ = [Y 0, Y 1, ..., Y k−1]T ∈ Rk, where Y i is the variable Y
raised to power i. We assume that X follows a polynomial
model of order k defined as

X =

k−1∑

i=0

βiY
i +N = βTY ⋆ +N, (1)

where N ∼ N (0, σ2) follows a Gaussian distribution with
mean 0 and variance σ2. The vector β is constant and unknown
at the transmitter.

C. Polynomial Regression
Polynomial regression aims at estimating the parameter

vector β̂ from realizations, or noisy realizations, of X and
Y . As a standard supervised learning problem, polynomial
regression consists of two phases. We use X , Y to denote
symbols generated at the training phase, and X̃ , Ỹ for symbols
generated at the inference phase. The training phase consists
of estimating β from a training sequence composed by the
available side information Y and by a coded version of
X which is denoted U . The inference phase consists of
calculating estimates of the symbols X̃ as X̂ = β̂Ỹ

⋆
, where

β̂ is the estimate of β from the training phase. Note that the
inference phase does not need any data transmission, since the
side information Ỹ is directly available to the decoder.

Following the notation introduced by Raginsky in [6], we
next formalize the problem as follows. Let F be the set of
polynomial functions f : R → R of the form f(y) = αTy⋆,
where α ∈ Rk. Polynomial regression outputs a sequence
of functions f̂ (n) ∈ F , called predictors, such that f̂ (n) :
Zn×R→ R, where Z = (U ,Y ) ∈ Zn is a training sequence
in which U and Y are sequences of length n. Given that
f̂ (n) ∈ F , we can equivalently write

f̂ (n)(Z, y) = α(Z)Ty⋆, (2)

where α : Zn → Rk.
Consider the quadratic loss function ℓ : R2 → R defined as

ℓ(x, x̂) = (x− x̂)2. The minimum expected loss is defined as
in [6], [7] as1

L⋆(F ,β) = inf
f∈F

E [ℓ(X, f(Y ))] . (3)

1One may also define a loss over a sequence. However, since the samples
from the training and inference phases are i.i.d. it does not change the analysis.

X β̂Encoder Decoder Regression

Y

U

Fig. 1. Coding scheme for regression

The generalization error is defined as

G(f̂ (n),β) = EX̃Ỹ

[
ℓ
(
X̃, f̂ (n)(Z, Ỹ )

)
|Z
]
. (4)

where (X̃, Ỹ ) ∼ PXY is independent from Z, the training
sequence. The generalization error being a random variable
due to the conditioning on Z, the quantity EZ

[
G
(
f̂ (n),β

)]

is referred to as the expected generalization error.
In the previous expressions, the minimum expected loss (3)

simply expresses the average gap between X and f(Y ), for
the function f that minimizes the quantity E [ℓ(X, f(Y ))] over
the space of polynomial functions F . However, there is no
guarantee that this optimal function f can be obtained from
training. On the opposite, the generalization error measures
the learning performance as the expected loss for a certain
training sequence Z. This training sequence allows to produce
an estimated function f̂ (n)(Z, ·) which can then be used
to evaluate new samples ˆ̃X = f̂ (n)(Z, Ỹ ) at the inference
phase. Especially, it is easy to show that EZ

[
G
(
f̂ (n),β

)]
≥

L⋆(F ,β). Therefore, the gap EZ

[
G
(
f̂ (n),β

)]
− L⋆(F ,β)

is a key quantity to characterize the performance of a coding
scheme dedicated to learning, and this is why our rate-learning
regions will be expressed from this quantity.

D. Coding scheme

The coding scheme is analogue to the one for linear
regression in [7]. However, the theoretical analysis differs
and becomes more complex, as will be described in the next
sections.

Definition 1. A polynomial regression scheme at rate R is
defined by a sequence {(en, dn, R, f̂ (n)))} with an encoder
en : Xn −→ J1,MnK a decoder dn : Yn × J1,MnK→ Un and
the learner tn : Yn × Un → F such that

lim sup
n→∞

logMn

n
≤ R.

Definition 2. An (n,M, l, ε) code for the sequence
{(en, dn, R, f̂ (n))} and ε ∈ (0, 1) is a code with |en| = M
such that

P
[
G(f̂ (n),β) ≥ l

]
≤ ε and

logM

n
≤ R. (5)

Definition 3. For fixed l and blocklength n, the finite block-
length rate-loss functions with excess loss ε is defined by:

R(n, l, ε) = inf
R
{∃ (n,M, l, ε) code} (6)
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Definition 4. A pair (R, δ) is said to be achievable if there
exists a sequence {(en, dn, R, f̂ (n))} such that

lim sup
n→∞

EZ

[
G(f̂ (n),β)

]
≤ L∗(F ,β) + δ (7)

As discussed in Section II-C, the achievable region is de-
fined in terms of gap between EZ

[
G(f̂ (n),β)

]
and L∗(F ,β).

Although the regions defined in this section pertain to rate-
generalization error regions, for the sake of simplicity and
with a minor deviation in terminology, we refer to them as
rate-loss regions in the subsequent discussions.

III. ASYMPTOTIC BOUND ON THE RATE-LOSS FUNCTION

In [6, Theorem 3.3], it is shown that, for a quadratic loss
function, the generalization error can be bounded as:

L⋆ 1
2 (F ,β) ≤ lim sup

n→∞
E
[
G(f̂ (n),β)

1
2

]
≤ L⋆ 1

2 (F ,β)

+ 2DX|Y (R)
1/2

(8)

where DX|Y (R) is the conditional distortion-rate function. It
can be shown that for the polynomial regression, the minimum
expected loss in (3) is L⋆(F ,β) = σ2. In this section, we build
a coding scheme that allows to improve the upper bound in (8)
for the polynomial model.

A. Rate-loss region

Theorem 1. Given any rate R > 0, the pair (R, 0) is
achievable for the polynomial regression scheme with squared
loss, for sources (X,Y ) following the polynomial model (1).

This result states that the minimum generalization error
which is given by the loss function L⋆(F ,β) in (8) can be
achieved with any arbitrary rate R, as long as the training
sequence is long enough. The proof of the Theorem is based
on an achievability scheme built on a Gaussian test channel.
This test channel is known for being optimal for joint Gaussian
sources when considering data reconstruction [16], although
it may be suboptimal for other models like the one we
consider in this paper. However, in our case, we show that
this test channel achieves the optimal rate-loss region (R, 0)
for polynomial regression, and we further discuss its optimality
for data reconstruction in Section III-C.

B. Proof of Theorem 1 : Achievability scheme

Let us consider the test channel U = α(X + Φ), where
Φ ∼ N (0, σ2

Φ) is independent of X , and α and σ2
Φ are two

parameters which depend on the distribution of X and Y .
The parameters β and the joint distribution PXY are un-

known to the encoder and decoder but the noise variance of the
model, i.e. σ2, is assumed to be known at the encoder. Hence,
the transmission rate is perfectly known at the encoder and
the variable-rate scheme in [14] becomes a fixed-rate coding
scheme in our setup. The same idea of binning is used and
the de-binning is performed based on the empirical mutual
information between x and u evaluated thanks to the type
of x transmitted in a prefix transmission [14]. Given that

D < σ2
x and (X | Y ) is Gaussian, we show that the rate-

distortion function Rb(D) = 1
2 log

(
1 + σ2

σ2
Φ

)
is achievable for

EXU [d(X,U)] ≤ D, where D is a function of σ2
Φ.

Then, for a training sequences (y,u), the OLS estimator β̂
is given by [17, Chapter 7]

β̂ = α−1(Y ⋆Y ⋆T )−1Y ⋆u. (9)

where Y ⋆ = [Y ⋆
1 , ...,Y

⋆
n ] ∈ Rk×n and this estimator has the

following statistical properties :

E
[
β̂
]
= β and C

[
β̂|Y

]
=

1

α2
σ2
U |Y (Y

⋆Y ⋆T )−1 (10)

where C
[
β̂|Y

]
is the covariance matrix of β̂ given Y . Hence,

the generalization error (4) can be rewritten as

G(f̂ (n),β) = EX̃Ỹ

[
[β − β̂]T Ỹ ⋆Ỹ ⋆T [β − β̂] +NTN |Z

]

= [β − β̂]TEỸ

[
Ỹ ⋆Ỹ ⋆T

]
[β − β̂] + σ2.

(11)
Let Σ̃ = EỸ

[
Ỹ ⋆Ỹ ⋆T

]
and Σ = 1

nY
⋆Y ⋆T . Then, the

expected generalization error is

EZ

[
G(f̂ (n),β)

]

= σ2 + E
[
1

n
(Σ−1Y ⋆(N +Φ))T Σ̃

1

n
(Σ−1Y ⋆(N +Φ))

]

= σ2 +
σ2 + σ2

Φ

n
E
[
Tr
(
Σ̃Σ−1

)]
. (12)

The next step is to show that E
[
Tr
(
Σ̃Σ−1

)]
is bounded

by some constant C for n large enough. The following
proposition bounds the trace of a product of two matrices by
their eigenvalues.

Proposition 1. [18, p 340] (Ruhe’s trace inequality). If U
and V are k×k positive semidefinite Hermitian matrices with
eigenvalues λi(U), λi(V ), i ∈ {1, · · · , k} then

Tr(UV ) ≤
k∑

i=1

λi(U)λi(V ) (13)

Lemma 1. If A and B are real symmetric matrices, then:

λmin(A) ≥ λmin(B)− ||A−B|| (14)

Proof: Let x be a vector such that ||x||2 = 1, by Cauchy-
Schwartz inequality, for a real symmetric matrix M , we have

−||M || ≤ xTMx ≤ ||M ||. (15)

With the properties of eigenvalues, we have

λmin(M) ≤ xTMx ≤ λmax(M). (16)

For real symmetric matrices A and B, we have

xTAx = xTBx+ xT (A−B)x. (17)

Applying the above inequalities shows the desired result.
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We remark that Σ is an estimator of the covariance matrix
of Y . Then, from Proposition 1 and Lemma 1, for n large
enough, Tr

(
Σ̃Σ−1

)
is bounded almost surely by:

Tr
(
Σ̃Σ−1

)
≤ k λmax(Σ̃)

λmin(Σ̃)− ||Σ̃−Σ||
. (18)

Substituting this into (12) with some constant C = λmax(Σ̃)

λmin(Σ̃)

and the fact that ||Σ̃−Σ|| → 0 almost surely, shows that the
expected generalization error is upper bounded by

EZ

[
G(f̂ (n),β)

]
≤ σ2 +

(σ2 + σ2
Φ)

n
kC (19)

Thus EZ

[
G(f̂ (n),β)

]
→ σ2 as n→∞, which completes the

proof.
Our result closes the gap between the lower bound and the

upper bound from [6] (see equation (8)). In order to provide
a bound applicable to a wide range of problems, the upper
bound from [6] considered both the observation noise between
X and Y and the distortion between X and U . While in our
result, by the Gaussian test channel and OLS estimation from
U and Y , we show that the quantification error term in (19),
and hence the distortion term, is vanishing with the block-
length n.

C. Trade-off between data reconstruction and polynomial re-
gression

In this section, we show that the previous achievability
scheme considered for polynomial regression also achieves the
optimal Wyner-Ziv rate-distortion function for data reconstruc-
tion, for sources modeled by (1).

Corollary 1. For a pair of sources (X,Y ) modeled from (1),
there is no trade-off in terms of coding rate between distortion
and polynomial regression generalization error.

Proof: We first investigate the conditional setup in which
the side information Y is also available at the encoder.
Since the random variable (X|Y ) ∼ N (0, σ2), the following
conditional rate-distortion function can be achieved [19]

RX|Y (D) =
1

2
log

(
σ2

D

)
, (20)

where D = E
[
(X − X̂)2

]
is the distortion. We now show

that in the Wyner-Ziv setup where Y is only available at
the decoder, the rate-distortion function RWZ(D) is equal
to RX|Y (D) when considering the same test channel U =

α(X+Φ) as in the proof of Theorem 1, with α = σ2−D
σ2 , and

σ2
Φ = Dσ2

σ2−D . By using the proposed achievability scheme, the
random variable U can be recovered perfectly at the decoder,
and then produces X̂ = U +(1−α)βTY ⋆. This allows us to
evaluate E

[
(X − X̂)2

]
= (α − 1)2σ2 + α2σ2

Φ. Replacing α

and σ2
Φ by their expressions leads to E

[
(X − X̂)2

]
= D. Sec-

ond, the Wyner-Ziv rate-distortion function has expression [16]

I(X;U)− I(Y ;U) =
1

2
log2

(
σ2 + σ2

Φ

σ2
Φ

)

where the equality comes from the fact that N and Φ are
Gaussian random variables. Replacing σ2

Φ by its expression
gives that RWZ(D) = RX|Y (D) in (20), which shows that
the Gaussian test channel is optimal when considering our
polynomial source model. Note that in the previous derivation,
we considered that β is perfectly known. If this is not the case,
X̂ is computed from β̂ instead of β, and following the same
derivation as for the generalization error permits to show that
E
[
(X − X̂)2

]
→ D as n→∞.

This result differs from the other ones in literature that show
that there is a tradeoff between reconstruction and learning,
such as for the hypothesis testing problem for instance [2].

IV. RATE-LOSS NON-ASYMPTOTIC BOUND

In the finite-blocklength regime, not all codewords satisfy
the generalization error constraint, and hence the excess prob-
ability, defined in Definition 2, has to be taken into account.
The characterization of the non-asymptotic achievable bound
for the rate-generalization error region is built from the rate-
distortion problem in finite blocklength regime, studied in [15].
Similarly, we define the information-loss density vector as
follows:

i(U,X, Y, X̃, Ỹ ) :=




− log
PU |Y (U |Y )

PU (U)

log
PU |X(U |X)

PU (U)

ℓ(X̃, f̂ (n)(Z, Ỹ ))




(21)

where the third term is specific to our non-linear regression
problem. The expectation of i over the distribution PUXY X̃Ỹ

is J =
[
−I(U ;Y ), I(U ;X),EZ

[
G(f̂n,β)

]]T
, where the

sum of the first two components gives the Wyner-Ziv coding
rate. The covariance matrix of (21) is

V = C
[
i(U,X, Y, X̃, Ỹ )

]
. (22)

Let k be a positive integer and V ∈ Rk×k be a positive-
semi-definite matrix. Given a Gaussian random vector B ∼
N (0,V ), the dispersion region is [20]

S (V , ε) := {b ∈ Rk : Pr(B ≤ b) ≥ 1− ε}. (23)

By replacing the distortion measure by the generalization
error, and adapting some steps of the analysis, we can obtain
a similar result as Theorem 2 in [15]. Finally, by applying
this theorem in conjunction with the multidimensional Berry-
Esséen Theorem, we show that for all 0 < ε < 1 and n
sufficiently large, the (n, ε)-rate-generalization error function
satisfies:

Rb(n, ε, l) ≤ inf

{
MT

(
J +

S (V , ε)√
n

+
2 log n

n
13

)}

(24)

with M = [1 1 0]T and 13 = [1 1 1]
T .
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Fig. 2. Non-asymptotic rate-generalization error region labeled on the
blocklength n and the excess loss probability ε.

V. NUMERICAL RESULTS

Let us consider X = β0 + β1Y + β2Y
2 +N , and assume

that Y is uniform over [−1, 1]. We also set β = [2, 3, 1]T and
σ2 = 16. From the theorem of change variable, for β2 > 0
and β2

1 + 4β2(v− β0) ≥ 0, the distribution of V = βTY ⋆ is:

PV (v) =





1√
β2
1+4β2(v−β0)

|y1(v)| ≤ 1 and |y2(v)| ≤ 1

1

2
√

β2
1+4β2(v−β0)

|y1(v)| ≤ 1 or |y2(v)| ≤ 1

0 otherwise

where y1 =
−β1−

√
β2
1+4β2(v−β0)

2β2
, y2 =

−β1+
√

β2
1+4β2(v−β0)

2β2
.

The probability density function of U = α(V +N + Φ) can
then be expressed as

PU (u) =
1

α
√

2π(σ2 + σ2
Φ)

∫ ∞

−∞
PV (v)e

− ( u
α

−v)2

2(σ2+σ2
Φ

) dv (25)

which can be evaluated numerically. Using (24) with (U |Y ) ∼
N (0, α2(σ2 + σ2

Φ)) and (U |X) ∼ N (0, α2σ2
Φ), we can

estimate the information-density-loss vector by generating a
large number of samples, and thus estimate the dispersion
region in (23). Figure 2 shows the boundaries of the achievable
rate-loss region for different parameters n and ε. The black line
represents the best achievable generalization error, i.e. σ2. We
observe that the achievable region enlarges when the source
size, n, or the excess probability increases. Indeed, when the
excess probability is larger, the proportion of codewords which
exceeds the generalization error constraint is larger, and this
situation occurs for smaller rate. Moreover, for a fixed excess
probability, increasing n allows to reduce the rate since the
poorly reconstructed U is compensated by the large number
of samples for estimating the regression parameters. These
results do not deal with an outer bound at finite blocklength,
i.e. a rate-loss region that cannot be exceeded, and the region
outside the boundary needs further investigation.

VI. CONCLUSION

This paper provided achievable rate-generalization error
regions for the polynomial regression problem in both asymp-

totic and non-asymptotic regimes. An important result of
our study states that asymptotically there is no trade-off
between data reconstruction and polynomial regression under
communication constraints. The characterization of the outer
bound (converse) for the rate-generalization error region is
also of great interest and would allow to refine the analysis.
The developed framework could be extended to more complex
learning taks, such as non-parametric estimation, in the future.
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Abstract—This paper investigates Distributed Hypothesis test-
ing (DHT), in which a source X is encoded given that side
information Y is available at the decoder only. Based on the
received coded data, the receiver aims to decide on the two
hypotheses H0 or H1 related to the joint distribution of X and
Y. While most existing contributions in the literature on DHT
consider i.i.d. assumptions, this paper assumes more generic, non-
i.i.d., non-stationary, and non-ergodic sources models. It relies
on information-spectrum tools to provide general formulas on
the achievable Type-II error exponent under a constraint on the
Type-I error. The achievability proof is based on a quantize-and-
binning scheme. It is shown that with the quantize-and-binning
approach, the error exponent boils down to a trade-off between
a binning error and a decision error, as already observed for
the i.i.d. sources. The last part of the paper provides error
exponents for particular source models, e.g., Gaussian, stationary,
and ergodic models.

I. INTRODUCTION

In distributed communication networks, data is gathered
from various remote nodes and then sent to a server for further
processing. Often, the primary objective of the server is not to
reconstruct the data, but instead to make a decision based on
the collected data. This type of setup is known as distributed
hypothesis testing (DHT), and it was first investigated from
an information-theoretic perspective in [1], [2].

In DHT, a source X is encoded using side information
Y available only to the decoder, as shown in Figure 1. The
receiver aims to make a decision between two hypotheses: H0,
where the joint probability distribution of (X,Y) is PXY,
and H1, where the joint distribution is PXY. Hypothesis
testing involves two types of errors, called the Type-I error
and the Type-II error [3]. The information-theoretic analysis
of DHT aims to determine the achievable error exponent for
the Type-II error while keeping the Type-I error below a fixed
threshold [1], [2].

Previous contributions on DHT typically assume that the
sources X and Y generate independent and identically dis-
tributed (i.i.d.) pairs of symbols (Xt, Yt) [4]–[8]. For exam-
ple, [7] and [8] provide the error exponent achieved by a
quantize-and-binning scheme for i.i.d. sources. Some more
complex source models have been investigated in [9], [10],
which assume that the sources X and Y generate pairs of
Gaussian vectors (XM

t ,Y
N
t ) with auto-correlations in each

This work has received a French government support granted to the
Cominlabs excellence laboratory and managed by the National Research
Agency in the “Investing for the Future” program under reference ANR-10-
LABX-07-01.

vector XM
t and YN

t , as well as cross-correlation between
them. However, the models of [9], [10] are block-i.i.d. in the
sense that the successive pairs (XM

t ,Y
N
t ) are assumed to be

i.i.d. with t.
Nevertheless, i.i.d. and block-i.i.d. models are often inade-

quate for capturing the statistics of signals like time series
or videos, which cannot be decomposed into fixed-length
independent blocks and are frequently non-stationary and/or
non-ergodic. As a result, the objective of this paper is to
consider a more general source model that is non-i.i.d. and can
account for non-stationary and non-ergodic signals, while still
encompassing the previous models as particular instances. To
investigate DHT under these conditions, we utilize information
spectrum tools, which were first introduced in [11] and gen-
erally provide information theory results that are applicable
to a broad range of source models. It should be noted that
information spectrum has been previously used for hypothesis
testing in [12], but only for the encoding of a source X alone,
without the use of side information Y.

In this paper, we investigate DHT using general source
models for X and Y and provide an achievability scheme that
yields a general expression for the Type-II error exponent. Our
approach to the achievability scheme builds upon the quantize-
and-binning techniques presented in [8], while taking into
account the use of side information for more complex source
models. As in [8], the resulting error exponent consists of two
terms: one for the binning error and the other for the decision
error. We then specialize our error-exponent to source models
of interest, including (i) i.i.d. sources, for which we recover
the error exponent reported in [8]; (ii) non-i.i.d. stationary
and ergodic sources in general; and (iii) non-i.i.d. Gaussian
stationary and ergodic sources.

The outline of the paper is as follows. Section II describes
the general sources model and restates the DHT problem.
Section III provides the achievable error exponent for general
sources, and Section IV derives the proof. Section V considers
some examples of source models.

II. PROBLEM STATEMENT

In what follows, J1, nK denotes the set of integers between
1 and n. We also use upper-case letters, e.g, X , to denote
random variables (RVs) and lower-case letters, e.g, x, to denote
their realizations. Random sequences of length n are denoted
Xn = (X1, X2, · · · , Xn).
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Figure 1. Distributed Hypothesis Testing coding scheme

A. General Sources

In the DHT problem shown in Fig.1, the encoder observes a
source sequence X, and the decoder receives a coded version
of X as well as a side information sequence Y, where X and
Y are correlated. We consider that the sequences X and Y are
produced from two general sources which are not necessarily
i.i.d., and not even stationary or ergodic. As in [12], we define
general sources X and Y as two infinite sequences :

X = {Xn = (X1, X2, · · · , Xn)}∞n=1 ,

Y = {Yn = (Y1, Y2, · · · , Yn)}∞n=1 (1)

of n-dimensional random variables Xn,Yn, respectively.
Each component random variable Xi, Yi, i ∈ J1, nK, takes
values in a finite source alphabet X ,Y , respectively. Next,
PXn is the probability distribution of the length-n vector Xn,
and PX = {PXn}∞n=1 is the collection of all probability
distributions PXn . The same holds for the source Y.

We now describe two particular cases of (1). The first one
consists of a scalar i.i.d. model in which the sequences Xn and
Yn come from two i.i.d. sources, i.e., the successive pairs of
symbols (Xn, Yn) are independent and distributed according
to the same joint distribution PXY . This model was considered
for DHT in [7], [8]. The second case still relies on an i.i.d.
model but for source vectors. In this case, the source sequences
Xn and Yn are defined as

Xn =
{
XM

t

}n
t=1

, Yn =
{
YM

t

}n
t=1

, (2)

where {XM
t }nt=1 and {YM

t }nt=1 are sequences of i.i.d.
M-dimensional random vectors and the successive pairs(
XM

t ,Y
M
t

)
are distributed according to the same joint distri-

bution PXMYM . The i.i.d. property of the successive M-length
vectors simplifies the DHT analysis by allowing for an orthog-
onal transform to be applied onto the successive independent
blocks XM

t and YM
t [9], [10]. Our model described in (1) is

more general since it considers infinite sequences without the
i.i.d. assumption.

B. Distributed Hypothesis Testing

In what follows, we consider that the joint distribution of
the sequence pair {(Xn,Yn)}∞n=1 depends on the underlying
hypotheses H0 and H1 defined as

H0 : (Xn,Yn) ∼ PXnYn , (3)

H1 : (Xn,Yn) ∼ PX
n
Y

n . (4)

where the marginal probability distributions PXn and PYn do
not depend on the hypothesis.

We consider the following usual coding scheme defined in
the literature on DHT [1], [8].

Definition 1: The encoding function f (n) and decoding
function g(n) are defined as

f (n) : Xn −→Mn = J1,M2K, (5)

g(n) :Mn × Yn −→ H = {H0, H1}, (6)

such that lim supn→∞
1
n logM2 ≤ R, where R is the rate and

M2 is the cardinality of the alphabet set Mn.
Definition 2: The Type-I and Type-II error probabilities αn

and βn are defined as

αn = P
[
g(n)

(
f (n) (Xn) ,Yn

)
= H1 | H0 is true

]
, (7)

βn = P
[
g(n)

(
f (n) (Xn) ,Yn

)
= H0 | H1 is true

]
. (8)

Definition 3: For given The Type-II error exponent θ is said
to be achievable for a given rate R, if for large blocklength
n, there exists encoding and decoding functions

(
f (n), g(n)

)

such that the Type-I and Type-II error probabilities αn and βn
satisfy

αn ≤ ϵ, (9)

and
lim sup
n→∞

1

n
log

1

βn
≥ θ (10)

for any ϵ > 0.
In the following, we aim to determine the achievable Type-II
error exponent θ for general sources.

III. MAIN RESULT: ERROR EXPONENT

A. Definitions

We first provide some definitions which will be useful to
express our main result. The lim sup and lim inf in probability
of a sequence {Zn}∞n=1 are, respectively, defined as [11]

p− lim sup
n→∞

Zn = inf

{
α | lim

n→+∞
P (Zn > α) = 0

}
, (11)

p− lim inf
n→∞

Zn = sup

{
α | lim

n→+∞
P (Zn < α) = 0

}
. (12)

The spectral sup-mutual information I(X;U), the spectral
inf-mutual information I(U;Y), the spectral inf-divergence
rate D

(
PUY∥PUY

)
, and the spectral sup-divergence rate

D
(
PUY∥PUY

)
are, respectively, defined as [11]

Ī(X;U) = p− lim sup
n→∞

1

n
log

PUn|Xn (Un | Xn)

PUn (Un)
, (13)

I(U;Y) = p− lim inf
n→∞

1

n
log

PUn|Yn (Un | Yn)

PUn (Un)
, (14)

D
(
PUY∥PUY

)
= p− lim inf

n→∞
1

n
log

PUnYn (Un,Yn)

PU
n
Y

n (Un,Yn)
,

(15)

D
(
PUY∥PUY

)
= p− lim sup

n→∞

1

n
log

PUnYn (Un,Yn)

PU
n
Y

n (Un,Yn)
.

(16)
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B. Achievable error-exponent for general sources

Theorem 1: For the coding scheme of Definition 1, the
following error exponent θ is achievable for general sources
defined by (1):

θ ≤ min

{
r −

(
I(X;U)− I(U;Y)

)
,

D
(
PUY∥PUY

)
+
(
I(X;U)− I(X;U)

) }
, (17)

where U is an auxiliary random variable with same conditional
distribution PU|X = PU|X under H0 and H1 and such that
the Markov chain U → X → Y is satisfied under both H0

and H1. In addition, PUY, and PUY are the joint distributions
of (Un,Yn) under H0 and H1, respectively, and r ≤ R.
As expected, we find that our error exponent is consistent with
that shown in [8] for the i.i.d. case. The error exponent (17)
is the result of a trade-off between the binning error and the
decision error, as in the i.i.d. case [7], [8]. The binning strategy
introduces a new type of error event that does not appear in
the DHT scheme without binning for general sources of [12].
In addition, the decision error, e.g., the second term in (17),
not only contains a divergence term that appears in [7], [8]
and related works, but also the difference I(X;U)− I(X;U)
between the spectral inf-mutual information and the spectral
sup-mutual information of X and U. Especially, if the term
1
n log

PUn|Xn (Un|Xn)

PUn (Un) does not converge in probability, then
the two mutual information terms differ, inducing a penalty
in the error exponent. For stationary and ergodic sources, this
term converges and there is no such penalty.

IV. PROOF OF THEOREM 1

We first restate the following lemma from [13], which will
be useful in the proof.

Lemma 1 ([13]): Let Zn,Xn, Un, be random sequences
which take values in finite sets Zn,Xn, Un, respectively, and
satisfy the Markov condition Un → Xn → Zn. Let {Ψn}∞n=1

be a sequence of mappings such that Ψn : Zn×Un → {0, 1},
and

lim
n→∞

P (Ψn(Z
n,Un) = 1) = 0. (18)

Then, ∀ε > 0, there exists a sequence {fn}∞n=1 of mappings
fn : Xn → {un

i }M
i=1 ⊂ Un such that M = ⌈en(I(U;X)+ε)⌉

and
lim

n→∞
P (Ψn(Z

n, fn(X
n)) = 1) = 0. (19)

A. Coding scheme

Random codebook generation: Generate M1 = enr0

sequences un
i randomly according to a fixed distribution

PUn|Xn . Assign randomly each un
i to one of M2 = enr

bins according to a uniform distribution over J1,M2K. Let
B(un

i ) ∈ J1,M2K denote the index of the bin to which un
i

belongs to.
Encoder : Given the sequence xn, the encoder uses a pre-

defined mapping fn : Xn → {un
i }M1

i=1 to output a certain

sequence un
i = fn(x

n) and checks if the condition (xn,un
i ) ∈

T
(1)
n is satisfied, where

T (1)
n = (20){
(xn,un) s.t. r0 − ϵ <

1

n
log

PUn|Xn (un | xn)

PUn (un)
< r0 + ϵ

}

where r0, r0 ∈ R. If such a sequence is found, the encoder
sends the bin index B(un

i ). Otherwise, it sends an error
message.

Decoder : The decoder first looks for a sequence in the bin
according to the joint distribution PUnYn under H0. Given
the received bin index and the side information yn, going over
the sequences un in the bin one by one, the decoder checks
whether (yn,un) ∈ T (2)

n with

T (2)
n =

{
(yn,un) s.t.

1

n
log

PUn|Yn (un | yn)

PUn (un)
> r

′ − ϵ
}
,

(21)
with r′ ∈ R. The decoder declares H1 if no such sequence
is found in the bin or if it receives an error message from
the encoder. Otherwise, it declares H0 if the sequence un

extracted from the bin belongs to the acceptance region An

defined as

An =

{
(yn,un) s.t.

1

n
log

PUnYn (un,yn)

PU
n
Y

n (un,yn)
> S − ϵ

}
,

(22)
where S ∈ R is the decision threshold; if otherwise, it declares
H1. The sets T

(1)
n , T (2)

n , and An can be seen as decision
regions depending on threshold values r0, r̄0, r′ and S. Those
parameters will be chosen such that αn ≤ ϵ, for any ϵ > 0.

B. Error probability analysis

Type-I error αn : The error events with which the decoder
declares H1 under H0 are as follows:

E11 =

{
∄un s.t. (Xn,un) ∈ T (1)

n , (Yn,un) ∈ T (2)
n ,

(Yn,un) ∈ An

}
, (23)

E12 =

{
∃u′n ̸= un s.t. B(u′n) = B(un),

(
Yn,u′n) ∈ T (2)

n ,

but (Yn,u′n) /∈ An

}
. (24)

The first event E11 is when there is an error either in the
encoding, during debinning, or when taking the decision. The
second event E12 corresponds to a debinning error, where a
wrong sequence is extracted from the bin. By the union-bound,
the Type-I error probability αn can be upper bounded as

αn ≤ P (E11) + P (E12) . (25)

Regarding the first error event, for r0 = I(X;U), r0 =
I(X;U), and from the definitions of I(X;U) and I(X;U)
in (13) and (14), we have

lim
n→∞

P
(
(Xn,Un) /∈ T (1)

n

)
= 0.

International Zurich Seminar on Information and Communication (IZS), March 6 – 8, 2024

146



In addition, according to the definition of I(Y;U) in (14),
and setting r

′
= I(Y;U), we also have

lim
n→∞

P
(
(Yn,Un) /∈ T (2)

n

)
= 0. (26)

Finally, when S = D
(
PUY∥PUY

)
and from the definition of

D
(
PUY∥PUY

)
, we have

lim
n→∞

P ((Yn,Un) /∈ An) = 0.

Thus, by defining

Ψn(x
n,yn,un) = (27)




0, if (xn,un) ∈ T (1)
n , (yn,un) ∈ T (2)

n and
(yn,un) ∈ An,

1, otherwise.

we get that P(Ψn(X
n,Yn,Un) = 1) → 0 as n → ∞.

Then, given that Un → Xn → Yn forms a Markov chain,
applying Lemma 1 allows to show that there exists a sequence
of functions fn such that P(E11)→ 0 as n→∞.

Then, the error probability P (E12) can be expressed as

P (E12) ≤
∑

yn

PYn (yn)
∑

u′n:u′n ̸=un

(yn,u′n)∈T (2)
n ∩An

P
(
B(u′n) = B(un)

)

≤
∑

yn

PYn (yn)
∑

u′n:u′n ̸=un

(yn,u′n)∈T (2)
n

e−nr (28)

From (21), for
(
yn,u′n) ∈ T (2)

n we get

PYn (yn) < PYn|Un

(
yn | u′n) e−n(r′−ϵ),

which allows us to write

P (E12) ≤
∑

u′n

∑

yn:(yn,u′n)∈T (2)
n

PYn|Un

(
yn | u′n) e−n(r+r′−ϵ)

≤ e−n(r+r′−r0−ϵ) (29)

where enr0 is the number of sequences un in the codebook.
Therefore, from the condition r ≥ r0 − r′ + ϵ = I(X;U) −
I(Y;U) + ϵ, we get that P (E21)→ 0 as n→∞.

Type-II error βn : A Type-II error occurs when the decoder
declares H0 although H1 is the true hypothesis. The corre-
sponding error events are:

E21 =

{
∃ũn ̸= un : B(ũn) = B(un),

(
Y

n
, ũn

)
∈ T (2)

n ,

and
(
Y

n
, ũn

)
∈ An

}
,

E22 =
{
(Y

n
,un) ∈ T (2)

n , (Y
n
,un) ∈ An

}
. (30)

The first event E21 is a debinning error and the second event
E22 is the testing error. By the union bound, we get

βn ≤ P (E21) + P (E22) . (31)

Since the marginal probability distribution PYn does not
depend on the hypothesis, the probability P (E21) can be

expressed by following the same steps as for P (E12). Given
that r0 = I(X;U) and r

′
= I(Y;U) , we get

P (E21) ≤ e−n(r−(I(X;U)−I(Y;U))−ε). (32)

Next, the probability P (E22) can be expressed as

P (E22) ≤
∑

(xn,yn)

PX
n
Y

n (xn,yn)
∑

un∈J1,M1K,
(xn,un)∈T (1)

n

P
(
(yn,un) ∈ An

)

≤ enr0
∑

(xn,yn)

PX
n
Y

n (xn,yn)
∑

un:
(xn,un)∈T (1)

n

(yn,un)∈An

PUn(un)

Since (xn,un) ∈ T (1)
n ,

PUn(un) < PUn|Xn(un | xn)e−n(r0−ϵ).

In addition, the conditional distributions PUn|Xn and PU
n|Xn

are the same, and the Markov chain Un → Xn → Yn is
satisfied. Thus, PUn|Xn = PU

n|Xn
,Y

n , and

P (E22) ≤ en(r0−r0+ϵ)
∑

un:(yn,un)∈An

PU
n
Y

n (un,yn) . (33)

For (yn,un) ∈ An, we have

PU
n
Y

n (un,yn) < PUnYn (un,yn) e−n(S−ϵ). (34)

Combining this with (33) gives that

P (E22) ≤ e−n(r0−r0+S−2ϵ) (35)

Now, substituting (32) and (35) into (31), with S =
D
(
PUY∥PUY

)
, the Type-II error is upper-bounded as

βn ≤e−n(r−(I(X;U)−I(Y;U))−ϵ)

+ e−n(I(X;U)−I(X;U)+D(PUY∥PUY)−2ϵ). (36)

Finally, from the definition of the error exponent θ given
by (10), we show that (17) is achievable, which proves
Theorem 1.

V. EXAMPLES

A. Stationary and ergodic sources

We now apply Theorem 1 to sources which are stationary
and ergodic, but not necessarily i.i.d.

Proposition 1: If the sources Xn and Yn are stationary
and ergodic under both H0 and H1, the error exponent (17)
becomes :

θ ≤ min

{
lim

n→∞
r −

[
1

n
h (Un | Yn)− 1

n
h (Un | Xn)

]
,

lim
n→∞

1

n
D
(
PUnYn∥PU

n
Y

n

) }
. (37)

This proposition is due to the strong converse property [11].
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B. Stationary and ergodic Gaussian sources

Let X and Y be two stationary and ergodic
sources distributed according to Gaussian distributions
N (µX,KX) and N (µY,KY), with covariance matrices KX

and KY, respectively. The two hypotheses are formulated as

H0 :

(
Xn

Yn

)
∼ N (µXY,K), (38)

H1 :

(
Xn

Yn

)
∼ N (µXY,K). (39)

In the expressions (38) and (39), µXY is defined as a block
vector [µX, µY]

T . In addition, K and K are the joint covari-
ance matrices of X and Y defined as

K =

[
KX KXY

KYX KY

]
,K =

[
KX KXY

KYX KY

]
, (40)

We assume that all the matrices KX, KY, KY, KXY, and
KXY are positive-definite. We also denote the conditional
covariance matrix of Xn given Yn by

KX|Y = KX −KXYK−1
Y KXY. (41)

The eigenvalues of KX|Y are further denoted by λ(X|Y )
i .

Proposition 2: If the sources X and Y are Gaussian,
stationary, and ergodic, under both H0 and H1, the terms in
(37) reduce to

lim
n→∞

1

n
h (Un | Yn)− lim

n→∞
1

n
h (Un | Xn) =

lim
n→∞

1

2n

n∑

i=1

log
λ
(X|Y )
i + κ

κ
, (42)

and

lim
n→∞

1

n
D
(
PUnYn∥PU

n
Y

n

}
= lim

n→∞
1

2n

[
log

∣∣Σ
∣∣

|Σ| − 2n +

(µUY − µUY)
T
Σ

−1
(µUY − µUY) + tr

{
Σ

−1
Σ
} ]

,

(43)

where Σ and Σ are the joint covariance matrices of U and Y
under H0 and H1, respectively.
The terms given by (42) and (43) are obtained by considering
that the source U is Gaussian such that U = X + Z, where
Z ∼ N (0, κIn) is independent of X, and In is the identity
matrix of dimension n×n. The covariance matrices Σ and Σ
are then defined as

Σ =

[
KU KUY

KYU KY

]
,Σ =

[
KU KUY

KYU KY

]
. (44)

We now consider the case where the pair (U,Y) has different
covariance matrices, Σ under H0 and Σ under H1. We also
assume that all the Gaussian vectors are zero-centered. We
then define H0 and H1 as

H0 :

(
Xn

Yn

)
∼ N (0,K), H1 :

(
Xn

Yn

)
∼ N (0,K).

In this case, it can be shown that the expression (42) remains
the same, while the expression (43) reduces to

lim
n→∞

1

n
D
(
PUnYn∥PU

n
Y

n

}
= lim

n→∞
1

2n

[
log

∣∣Σ
∣∣

|Σ|

−2n+ tr
{
Σ

−1
Σ
} ]

.

(45)

The matrices Σ and Σ are of length 2n× 2n, where n tends
to infinity. Therefore, for some specific Gaussian sources, one
needs to study the convergence of the determinants |Σ| and∣∣Σ
∣∣, and also of the trace tr

{
Σ

−1
Σ
}

.

VI. CONCLUSION

We provided an information-spectrum approach to DHT
for general non-i.i.d., non-stationary, and non-ergodic sources.
The derived error exponent is achieved from a quantize-and-
binning scheme, which, we found, boils down to a trade-off
between a binning error and a decision error. Future works
will focus on comparing our error exponent to state-of-the-art
ones obtained very recently for the i.i.d. case [14]. Other future
works will include designing practical coding schemes, as well
as considering other applications of DHT such as synchronism
identification in spread spectrum signal detectors [15].
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Communication Over Entanglement-Breaking
Channels With Unreliable Entanglement Assistance
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Abstract—Entanglement assistance can improve communica-
tion rates significantly. Yet, its generation is susceptible to
failure. The unreliable assistance model accounts for those
challenges. Previous work provided an asymptotic formula that
outlines the tradeoff between the unassisted and excess rates
from entanglement assistance. We derive a full characterization
for entanglement-breaking channels, and show that combining
entanglement-assisted and unassisted coding is suboptimal. From
a networking perspective, this finding is nontrivial and highlights
a quantum behavior arising from superposition.

I. INTRODUCTION

Quantum entanglement has the potential to revolutionize
communication systems, as it could be used to transmit infor-
mation at speeds far beyond what is possible classically [1, 2].
In optical communications, generating pre-shared entangle-
ment between the transmitter and the receiver can be challeng-
ing due to photon absorption during transmission. Therefore,
practical systems rely on a back channel to confirm successful
entanglement generation [3]. However, this introduces delays
and further degrades entanglement resources. The author, along
with Deppe and Boche [4], proposed an alternative approach
for communication with unreliable entanglement assistance.
Our principle of operation provides reliability by design, by
adapting the communication rate based on the availability
of entanglement assistance, while eliminating the need for
feedback, repetition, or distillation.

Suppose that Alice wishes to send two messages, at rates
R and R′. She encodes both messages using her share of
the entanglement resources, as she does not know whether
Bob will have access to the entangled resources. Nevertheless,
heralded entanglement generation guarantees that Bob knows
whether the procedure was successful or not. Bob has two
decoding procedures. If the entanglement assistance has failed
to reach Bob’s location, he performs a decoding operation to
recover the first message alone. Hence, the communication
system operates on a rate R. Whereas if Bob has entangle-
ment assistance, he decodes both messages, hence the overall
transmission rate is R+R′. In other words, R is a guaranteed
rate, and R′ is the excess rate of information that entanglement
assistance provides.

The previous work [4] established an asymptotic regularized
formula for the capacity region, i.e., the set of all rate pairs
(R,R′) that can be achieved with a vanishing probability of
decoding error. The achievability scheme is inspired by the
classical network technique of superposition coding (SPC).

We refer to the quantum method as quantum SPC. The
classical technique consists of layered codebooks, by which
the codewords are divided into so-called cloud centers and
satellites, representing the first and second layers, respectively.
In analogy, quantum SPC uses conditional quantum operations
that map quantum cloud centers to quantum satellite states.
Decoding is performed in two stages. First, Bob recovers the
cloud index, corresponding to the guaranteed information. If
the entanglement assistance is absent, then Bob quits after the
first step. Otherwise, if Bob has entanglement assistance, then
he continues to decode the satellite. Until now, it has remained
unclear whether quantum SPC is optimal.

Entanglement breaking is a fundamental property of a large
class of quantum channels, mapping any entangled state to
a separable state [5]. One example is the qubit depolarizing
channel, which is entanglement breaking only when the depo-
larization parameter is ≥ 2/3 [6]. From a Shannon-theoretic
perspective, entanglement-breaking channels are much better
understood, compared to general quantum channels [7, 8].
In particular, the unassisted capacity is characterized by the
single-letter Holevo information [7]. While an entanglement-
breaking channel cannot be used to generate entanglement,
it may facilitate the transmission of classical messages, and
entanglement assistance can increase the channel capacity for
sending classical information substantially [2].

In this work, we establish full characterization of the ca-
pacity region with unreliable entanglement assistance for the
class of entanglement-breaking channels. Our main contribu-
tion is thus a converse result that complements the previous
achievability proof, and shows that quantum SPC is indeed
optimal for the class of entanglement-breaking channels. The
analysis relies on observations from another work by the author
[9, Sec. III-D] along with the geometric properties of the rate
region. To complete the characterization, we single-letterize
our capacity formula and show that the auxiliary systems have
bounded dimensions.

We also demonstrate our results for an entanglement-
breaking depolarizing channel. We show that quantum SPC
can outperform time division even in this simple point-to-point
setting. This is surprising because SPC is typically useful in
more complex network setups, and does not yield an advantage
in point-to-point communication. For example, in a classical
broadcast channel with degraded messages, where a transmitter
communicates with two receivers, SPC is unnecessary when
the receivers’ outputs are identical, as the capacity region can
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be attained using a simpler approach of time division. That is,
concatenating two single-user codes is optimal. In our context,
the system can be regarded as a quantum broadcast channel
with degraded messages where one receiver has entanglement
assistance, and the other does not. Nevertheless, the output
states of the receivers are identical (without violating the no-
cloning theorem, as we consider two alternative scenarios, see
(1)-(2) below). The expectation would be that time division,
combining assisted and unassisted codes, achieves optimality.
However, this expectation is proven false as quantum SPC
can outperform time division, based on the combination of
a superposition code with a superposition state.

The full version of this paper can be found in [10].

Illustrative Metaphor
Communication with unreliable entanglement assistance is

not a mere combination of the entanglement-assisted and
unassisted settings. The protocol poses a challenge as Alice
must encode without knowledge of the availability of as-
sistance. The availability of entanglement is not associated
with a probabilistic model either. To illustrate the concept of
reliability, consider the following metaphor.

Imagine there are N travelers embarking on a journey
aboard a ship that may have a variable number of lifeboats.
The total capacity of the lifeboats is L, which determines how
many travelers can be accommodated in case of a shipwreck,
L ≤ N . The ship’s speed is denoted as V ≡ V (N,L), while
the lifeboats’ speed is v0. If the ship does not sink, each
traveler will travel at speed V . To avoid a morbid narrative,
let us envision that in the event of an unforeseen shipwreck,
(N − L) travelers will be safely rescued and brought back
to the starting point, while the journey continues with the
remaining travelers aboard the lifeboats. The speed of travel
in this scenario is calculated as the average, R = (L/N)v0.

In our metaphor, R represents the guaranteed speed for
the remaining travelers, while R′ = V − R indicates the
excess speed that the ship would have provided. Increasing
the number of lifeboats improves the guaranteed speed but
reduces the excess speed, while decreasing the number of
lifeboats has the opposite effect. When planning for the worst-
case scenario, it is crucial to consider both speeds, rather than
just the average.

One may consider the option of dividing the travelers among
a heavy ship and a light ship. Figuratively, our findings show
that if the journey is subject to a quantum evolution, then we
may outperform the division plan by allowing travelers to be
in a quantum superposition state between the two ships.

II. CODING WITH UNRELIABLE ASSISTANCE

A. Notation, Information Measures, and Quantum Channels

We use standard notation for quantum channels and infor-
mation measures, as in [11, Chap. 11]: X,Y, Z, . . . are discrete
random variables, on finite sets X ,Y,Z, ..., respectively. We
use xn = (xi)i∈[n] to denote a sequence of letters from X .

The state of a quantum system A is given by a density
operator, ρA. The quantum mutual information is denoted by

I(A;B)ρ = H(ρA) + H(ρB) − H(ρAB), where H(ρ) ≡
−Tr[ρ log(ρ)] is the von Neumann entropy. The conditional
quantum entropy is defined by H(A|B)ρ = H(ρAB)−H(ρB),
and I(A;B|C)ρ is defined accordingly.

A quantum channel NA→B is a cptp map. If An =
(A1, . . . , An) is sent through n channel uses, then the input
state undergoes the product map N⊗n

A→B . The channel is
called entanglement breaking if for every input state ρAA′ ,
where A′ is an arbitrary reference system, the channel output
(NA→B⊗1)(ρAA′) is separable. Every entanglement-breaking
channel can be represented as a serial concatenation of a
measurement channel followed by a classical-quantum channel
[11, Corollary 4.6.1].

B. Coding and Channel Capacity
We define a code for communication with unreliable en-

tanglement resources. Alice and Bob’s entangled systems are
denoted TA and TB , respectively.
Definition 1. A (2nR, 2nR

′
, n) code with unreliable entangle-

ment assistance consists of the following: Two message sets
[2nR] and [2nR

′
], where 2nR, 2nR

′
are integers, an entangled

state ΨTA,TB
, a collection of encoding maps Fm,m′

TA→An for
m ∈ [2nR] and m′ ∈ [2nR

′
], and two decoding POVMs,

DBnTB
= {Dm,m′} and D∗

Bn = {D∗
m}.

Alice chooses two messages, m ∈ [2nR] and m′ ∈ [2nR
′
].

She applies the encoding map to her share of the entangled
state, and then transmits An over n channel uses of NA→B .
Bob receives Bn. If the entanglement assistance is present, i.e.,
Bob has access to the resource TB , then he should recover both
messages. He performs a joint measurement DBnTB

to obtain
an estimate (m̂, m̂′).

Otherwise, if entanglement assistance is absent, Bob does
not have TB . Hence, he performs the measurement D∗

Bn to
obtain an estimate ˆ̂m of the first message alone. The error
probability is

P
(n)
e|m,m′ = 1− Tr

[
D ◦ N⊗n

A→B ◦ Fm,m′
(ΨTA,TB

)
]

(1)

in the presence of entanglement assistance, and

P
∗(n)
e|m,m′ = 1− Tr

[
D∗ ◦ N⊗n

A→B ◦ Fm,m′
(ΨTA

)
]

(2)

without assistance. Note that the same channel NA→B appears
in both. Furthermore, the encoded input is the same in both
scenarios, since Alice does not know whether entanglement is
available or not. Therefore, the error depends on (m,m′) in
both cases. A rate pair (R,R′) is achievable if there exists a
sequence of (2nR, 2nR

′
, n) codes with unreliable entanglement

assistance, such that max(P
(n)
e|m,m′ , P

∗(n)
e|m,m′)→ 0 as n→∞.

The capacity region CEA*(N ) with unreliable entanglement
assistance is defined as the set of achievable rate pairs.

III. RESULTS

Let NA→B be an entanglement-breaking channel (see Sec-
tion II-A). Define the region

REA*(N ) =
⋃{

(R,R′) : R ≤ I(X;B)ω
R′ ≤ I(G2;B|X)ω

}
(3)
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where the union is over all auxiliary variables X ∼ pX , all
quantum states φG1G2

, and all encoding channels F (x)
G1→A,

ωXAG2 =
∑

x∈X
pX(x) |x⟩⟨x| ⊗ (F (x)

G1→A ⊗ id)(φG1G2) ,

ωXBG2
= (id⊗NA→B ⊗ id)(ωXAG2

) . (4)

Intuitively, X represents the guaranteed information, and G1 is
Alice’s resource. Since the entangled resources G1 and G2 are
pre-shared, the state is uncorrelated with the messages. Alice
encodes the excess information using the encoding channel
F (x).

A. Capacity Theorem

Our main results are stated below, characterizing the ca-
pacity region for communication over entanglement-breaking
channels with unreliable entanglement assistance. Previous
work [4] established a regularized characterization for the
capacity region, i.e., an asymptotic multi-letter formula of
the form

⋃∞
K=1

1
KR(N⊗K). Here, we provide a complete

characterization in the form of a single-letter formula.

Theorem 1. The capacity region of an entanglement-breaking
quantum channel NA→B with unreliable entanglement assis-
tance is given by

CEA*(N ) = REA*(N ) (5)

where REA*(N ) is as defined in (3).

The proof is given in Section IV-B.

Remark 1. Single-letterization is highly valued in Shannon
theory for reasons of computability, uniqueness, and insights
on optimal coding [12]. However, the result in Theorem 1 in
itself is not enough to claim that this is truly a single-letter
characterization, as the computation of a rate region requires
specified dimensions. Thereby, we show in Section III-C that
the auxiliary systems, X , G1, and G2, all have bounded di-
mensions. Together, the results in Theorem 1 and Section III-C
complete the characterization.

B. Equivalent characterization

Before we prove the capacity theorem, we establish useful
properties of the region REA*(N ), as defined in (3). We show
an equivalence to the region below:

OEA*(N ) =
⋃{

(R,R′) : R ≤ I(X;B)ω
R+R′ ≤ I(XG2;B)ω

}
(6)

where the union is as in (3). This will be useful in the proof
for our main theorem. We begin with the convexity of our
original region.

Lemma 2. The rate region REA*(N ) is a convex set.

Corollary 3. For every λ ∈ [0, 1],

REA*(N ) ⊇{
(R,R′) : R ≤ (1− λ)I(X;B)ω

R′ ≤ I(G2;B|X)ω + λI(X;B)ω

}
. (7)

The proof for the convexity properties in Lemma 2 and
Corollary 3 is given in [10, App. A]. Next, we use those
properties to establish equivalence.
Lemma 4 (Equivalence). REA*(N ) = OEA*(N ).

Proof. The inclusion REA*(N ) ⊆ OEA*(N ) is immediate by
the chain rule. It remains to show that every rate pair in the
region OEA*(N ), belongs to REA*(N ) as well.

Let (R,R′) ∈ OEA*(N ), hence

R ≤ I(X;B)ω , R+R′ ≤ I(XG2;B)ω . (8)

By the first inequality, there exists 0 ≤ λ ≤ 1 such that

R = (1− λ)I(X;B)ω . (9)

By (8)-(9),

R′ ≤ I(XG2;B)ω −R
= I(XG2;B)ω − I(X;B)ω + λI(X;B)ω

= I(G2;B|X)ω + λI(X;B)ω . (10)

Hence, by Corollary 3, (R,R′) ∈ REA*(N ).

C. Single-letterization

We establish that our characterization is a single-letter
formula (see Remark 1). Denote dA ≡ dim(HA).
Lemma 5. The union in (3) is exhausted by pure states
|ϕG1G2

⟩, cardinality |X | ≤ d 2
A + 1, and dimensions

dim(HG1
) = dim(HG2

) ≤ dA(d 2
A + 1).

The first part has already been stated in [4]. The quantum
dimension bound is new, see proof is in Section IV-A below.

IV. ANALYSIS

A. Single-Letterization

The first part of Lemma 5 has already been established
in our previous work [4, Lemma 4], using convex analysis.
Bounding the quantum dimensions is more challenging.

Consider a pure state, |ψG1G2
⟩. Since the Schmidt rank is

bounded by each dimension, we may assume w.l.o.g. that G1

and G2 are qudits of the same dimension d0, for some d0 >
0. We would like to show that the union can be restricted
such that encoded state ωx

G2A
≡ (id⊗F (x)

G1A
)(|ψG2G1⟩⟨ψG2G1 |)

remains pure.
Since every quantum channel has a Stinespring dila-

tion, there exists a unitary V (x) such that F (x)
G1→A(ρ) =

TrDE

[
V (x)(|0⟩⟨0|D ⊗ ρ)V (x)†], where V (x) maps fromHD⊗

HG1
to HE ⊗ HA, while D,E are reference systems with

appropriate dimensions. Since G1 is an arbitrary ancilla, we
may include the reference D within this ancilla, and simplify
as F (x)

G1→A(ρ) = TrE
[
U (x)ρU (x)†], where U (x) is a unitary

from HG1 to HE ⊗HA.
We would like the ancilla G2 to absorb the reference E

as well. Seemingly, this would contradict (3) as E could be
correlated with x. To resolve this difficulty, we show that the
encoding operation can be reflected to G2. Fix x ∈ X and
consider the purification

∣∣∣ω(x)
G2EA

〉
≡ (1⊗ U (x)) |ψG2G1

⟩.
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Let Wi,j denote the Weyl operators on HG1 ≡ HG2 , for
i, j ∈ {0, . . . , d0−1} [11, Sec. 3.7.2]. By plugging a decompo-
sition of |ψG2G1

⟩ in the generalized Bell basis [11, Ex. 3.7.11],
and applying the mirror lemma, by which (1⊗U) |Φ⟩ = (UT⊗
1) |Φ⟩ for every qudit operator U [11, Ex. 3.7.12], we obtain∣∣∣ω(x)

G2EA

〉
=
∑d0−1

i,j=0 αi,j

(
Wi,jF

(x)
G1→G2E

⊗ 1A

)
|Φ⟩G1A

, with

F
(x)
G1→G2E

= (U (x))T . We see that (3) can thus be represented
as a union over all unitaries F (x)

G1→G2E
⊗ 1A.

In this formulation, both E and G2 are encoded by an
operation depending on x. Thus, we can extend the union to
Ḡ2 = (G2, E). The bound on the guaranteed rate R remains.
As for the excess rate, I(Ḡ2;B|X)ω ≥ I(G2;B|X)ω . Hence,
it suffices to consider pure states

∣∣∣ω(x)
G2A

〉
, the Schmidt rank of

which is bounded by dA. Thus, the region is exhausted with
d0 ≤ |X |dA.

B. Capacity Proof

The direct part was proved in our earlier work [4]. We now
focus our attention on the converse. Suppose that Alice and
Bob share an unreliable resource ΨTATB

. Alice first prepares
classical correlation,

πKMK′M ′ ≡


 1

2nR

2nR∑

m=1

|m⟩⟨m| ⊗ |m⟩⟨m|




⊗


 1

2nR′

2nR′
∑

m′=1

|m′⟩⟨m′| ⊗ |m′⟩⟨m′|


 (11)

locally. She encodes by FMM ′TA→An , and transmits An. Bob
receives Bn in the state ωKK′TBBn ≡ (id⊗N⊗nF)(π ⊗Ψ).
He decodes with either DBnTB→M̂M̂ ′ or D∗

Bn→M̃
, depending

on the availability of entanglement assistance.
Consider a sequence of codes (Fn,Ψn,Dn,D∗

n) with van-
ishing errors. By continuity and data processing arguments,

nR ≤ I(K;Bn)ω + nε∗n , (12)
n(R+R′) ≤ I(KK ′TB ;B

n)ω + nεn (13)

where εn, ε∗n → 0 as n→∞ [4, App. C].
Since the channel is entanglement-breaking, it can be rep-

resented by a measurement channel MA→Y , followed by a
preparation channel PY→B , where Y is classical [9, Sec.
III-D]. Define the sequence of classical variables, Xi ≡
(K,Y i−1), for i ∈ [n]. By the chain rule and the data
processing inequality, (12)-(13) imply

n(R− ε∗n) ≤
n∑

i=1

I(KBi−1;Bi)ω

≤
n∑

i=1

I(KY i−1;Bi)ω

=
n∑

i=1

I(Xi;Bi)ω , (14)
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Fig. 1. Achievable rate regions.

and similarly,

n(R+R′ − εn) ≤
n∑

i=1

I(K ′TBXi;Bi)ω . (15)

Letting J be uniformly distributed index in [n], we have
R − ε∗n ≤ I(XJ ;BJ |J)ω ≤ I(JXJ ;BJ)ω and R + R′ −
εn ≤ I(K ′TBJXJ ;BJ)ω with respect to ωJK′TBXJBJ

≡
1
n

∑n
i=1 |i⟩⟨i|J ⊗ ωK′TBXiBi .

Taking G2 ≡ (K ′, TB), X ≡ (J,XJ), A ≡ AJ , hence
B ≡ BJ , we deduce that (R,R′) ∈ OEA∗(N ). This, in turn,
implies (R,R′) ∈ REA∗(N ), by Lemma 4.

V. EXAMPLE

Consider the qubit depolarizing channel, N (ρ) = (1 −
ε)ρ + ε12 , with ε ∈ [0, 1]. The unassisted capacity, C(N ), is
achieved with a symmetric distribution over {|0⟩, |1⟩}. On the
other hand, the capacity with reliable entanglement assistance
CEA(N ) is achieved with an EPR state (see [11]). A classical
mixture of those strategies yields the time division region,

CEA*(N ) ⊇ ⋃
0≤λ≤1

{
(R,R′) : R ≤ (1− λ)C(N )

R′ ≤ λCEA(N )

}
.

We claim that this is suboptimal.
Figure 1 depicts the capacity region for a parameter such

that the channel is entanglement breaking, ε = 0.7 (as opposed
to [4, Example 1]). The time-division bound is below the red
line, whereas the blue curve indicates the capacity region that is
achieved using a superposition state. Based on Theorem 1, we
establish that the capacity region of an entanglement-breaking
qubit depolarizing channel with unreliable entanglement assis-
tance is given by

CEA*(N ) =

⋃

0≤α≤ 1
2





(R,R′) : R ≤ 1− h2
(
α ∗ ε

2

)

R′ ≤ h2(α) + h2
(
α ∗ ε

2

)

−H
(

αε
2 ,

(1−α)ε
2 , β+, β−

)





(16)

with β± ≡ 1
2 − ε

4 ±
√

ε2

16 − (1− α)αε(1− 3ε
4 ) +

1−ε
4 , where

H(p) ≡ −∑i pi log(pi) is the Shannon entropy, the binary
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entropy function is h2(x) ≡ H(x, 1 − x) for x ∈ [0, 1], and
α ∗ β = (1− α)β + α(1− β).
Proof. By Theorem 1, it suffices to evaluate the region
REA*(N ), as defined in (3).

We begin with the converse part and show that the set on the
right-hand side of (16) is an outer bound on REA*(N ). Con-
sider a rate pair (R,R′) ∈ REA*(N ). Hence, R ≤ I(X;B)ω
and R′ ≤ I(G2;B|X)ω , or, equivalently,

R ≤ H(B)ω −H(B|X)ω , (17a)
R′ ≤ H(G2|X)ω +H(B|X)ω −H(G2B|X)ω , (17b)

for some pure input state |ϕG1G2
⟩, variable X ∼ pX , and

encoder F (x)
G1→A (see Lemma 5).

Based on the analysis in Section IV-A, it suffices to consider
an encoder that produces a pure state

∣∣∣ω(x)
G2A

〉
, for x ∈ X .

Consider a Schmidt decomposition,∣∣∣ω(x)
G2A

〉
=
√
1− αx |θ0x⟩ ⊗ |ψ0x⟩+

√
αx |θ1x⟩ ⊗ |ψ1x⟩

with αx ∈ [0, 1]. Since the encoding channel is applied to G1

alone, the reduced state of G2 remains unchanged. Thereby,
the eigenvalues (1− αx, αx) must be independent of x. That
is, αx ≡ α for x ∈ X , hence

H(G2|X)ω = h2(α) . (18)

Furthermore, the depolarizing channel is unitarily covariant,
i.e., N (UρU†) = UN (ρ)U† for every unitary U onHA. Thus,

H(B|X)ω = H(N (ϕ̃A)) = h2

(
α ∗ ε

2

)
(19)

where
∣∣∣ϕ̃G2A

〉
= (1− α) |00⟩+ α |11⟩, and similarly,

H(G2B|X)ω = H
(
(id⊗N )(ϕ̃G2A)

)
(20)

= H

(
αε

2
,
(1− α)ε

2
, β±

)
(21)

(see [13]). As H(B)ω ≤ 1, the converse follows.
Achievability follows as in [4, Example 1]. Instead of a

classical mixture, we now use quantum superposition. Set
|ϕG1G2

⟩ ≡
√
1− α |00⟩ +√α |11⟩, pX =

(
1
2 ,

1
2

)
, F (x)(ρ) ≡

XxρXx, where X is the bitflip Pauli operator. Thus, α = 0
and α = 1

2 achieve the unassisted capacity and entanglement-
assisted capacity, respectively. This results in (16).

VI. SUMMARY

We address communication over an entanglement-breaking
quantum channel, given unreliable entanglement assistance.
Previous work established a multi-letter formula and presented
the quantum SPC achievable region [4]. Here, we show that
the region is optimal for entanglement-breaking channels, and
we single-letterize the formula, providing a complete charac-
terization of the capacity region. Furthermore, we derive a
closed-form expression for the qubit depolarizing channel, with
a parameter ε ≥ 2

3 . The capacity region is strictly larger than
the time-division rate region. From a networking perspective,
this finding is nontrivial and highlights a quantum behavior
arising from superposition.
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[6] L. Moravčíková and M. Ziman, “Entanglement-
annihilating and entanglement-breaking channels,” J.
Phys. A: Math. Theor., vol. 43, no. 27, p. 275306, 2010.

[7] P. W. Shor, “Additivity of the classical capacity of
entanglement-breaking quantum channels,” J. Math.
Phys., vol. 43, no. 9, pp. 4334–4340, May 2002.

[8] M. M. Wilde, A. Winter, and D. Yang, “Strong converse
for the classical capacity of entanglement-breaking and
hadamard channels via a sandwiched Rényi relative en-
tropy,” Commun. Math. Phys., vol. 331, pp. 593–622,
2014.

[9] U. Pereg, “Communication over quantum channels with
parameter estimation,” IEEE Trans. Inf. Theory, vol. 68,
no. 1, pp. 359–383, 2022.

[10] ——, “Communication over entanglement-breaking
channels with unreliable entanglement assistance,” Phys.
Rev. A, vol. 108, p. 042616, Oct 2023. [Online].
Available: https://arxiv.org/pdf/2305.17692.pdf

[11] M. M. Wilde, Quantum information theory, 2nd ed.
Cambridge University Press, 2017.

[12] J. Körner, “The concept of single-letterization in informa-
tion theory,” in Open Prob. Commun. Comp. Springer,
1987, pp. 35–36.

[13] D. Leung and J. Watrous, “On the complementary quan-
tum capacity of the depolarizing channel,” Quantum,
vol. 1, p. 28, 2017.

International Zurich Seminar on Information and Communication (IZS), March 6 – 8, 2024

153



Semantic Communications with Privacy
Constraints

Amirreza Zamani†, Sajad Daei†, Tobias J. Oechtering†, Deniz Gündüz‡, Mikael Skoglund†
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Abstract—We study a semantic communication problem
with privacy constraints where an encoder has access to
information source X = (X1, . . . , XN ) which is arbitrarily
correlated with private data S. A user asks for a task h(X)
and the encoder designs the semantic of the information source
f(X) to disclose. Here, h(X) denotes the goal or task of
the receiver and f(X) corresponds to the semantic. Due to
the privacy constraints f(X) can not be revealed directly
and the encoder applies a statistical privacy mechanism to
produce disclosed data U . The goal is to design U based
on (f(X), h(X), S) that maximizes the revealed information
about the task h(X) while satisfying a privacy criterion.

In this work, we propose a novel approach where U
is produced by adding artificial noise M to the semantic
f(X). We design M utilizing different methods such as using
extended versions of the Functional Representation Lemma,
Strong Functional Representation Lemma, and separation
technique. Lower and upper bounds on privacy-utility trade-
off are derived and we study the obtained bounds in different
scenarios to evaluate them.

I. INTRODUCTION

In this paper, random variable (RV) X = (X1, . . . , XN )
denotes the information source and is correlated with the
private data denoted by RV S. As shown in Fig. 1 a user
asks an encoder about a task denoted by a function of X ,
i.e., h(X). In this work h(X) describes the task or goal of
the communication. The encoder designs a message which
is a function of X , i.e., f(X), to disclose it. Here, f(X)
corresponds to the semantic of the information source which
has less dimension compared to X . Since f(X) can not
be revealed directly (due to the privacy constraints) the
encoder utilizes a privacy mechanism to produce disclosed
data described by RV U . The goal is to design U based on
the goal, semantic, and private data that reveals as much
information as possible about h(X) and satisfies a privacy
criterion. We use mutual information to measure utility and
privacy leakage. In this work, some bounded privacy leakage
is allowed, i.e., I(S;U) ≤ ε.
The information theoretic privacy mechanism design and
semantic communication problems are receiving increased
attention recently. Related works can be found in [1]–[20].
Semantic communication involves transmitting a modified
version of the original messages with reduced dimension-
ality to a receiver. The receiver’s objective is to extract a
specific goal or task, which is a lower-dimensional subset
of the original message. Semantic communication takes into
account not only the literal interpretation of the message but
also the context, connotations, and nuances of language. It
aims to avoid ambiguity and misunderstanding by consider-
ing how the message is perceived by the recipient and how

Information Source

X = (X1, . . . , XN )

S

PS|X

Private data

Leakage matrix

f(X) U

User

h(X)

Disclosed data

PU|f(X),h(X),S

Semantic Privacy mechanism

Goal or Task

Fig. 1. Private semantic communication model. The goal is to design
U such that it keeps as much information as possible about h(X) while
satisfying a privacy constraint.

it aligns with their knowledge, expectations, and cultural
context [1]. Excluding the private data, relevant scenarios
have been studied in [2] and [3].

In [4], a source coding problem with secrecy is stud-
ied. Privacy-utility trade-offs considering equivocation as
measure of privacy and expected distortion as a measure
of utility are studied in both [4] and [5]. In [6], the problem
of privacy-utility trade-off considering mutual information
both as measures of privacy and utility is studied. Under
perfect privacy assumption, it has been shown that the pri-
vacy mechanism design problem can be reduced to a linear
programming. In [7], we have designed privacy mechanisms
with a per letter privacy criterion considering an invertible
PX|Y where a small leakage is allowed. We generalized
this result to a non-invertible leakage matrix in [8]. In
[9], the problem of secrecy by design is studied where the
results are derived under the perfect secrecy assumption.
Bounds on secure decomposition have been derived using
the Functional Representation Lemma and new bounds on
privacy-utility trade-off are derived. In [10], the privacy
problems considered in [9] are generalized by relaxing the
perfect secrecy constraint and allowing some leakages. More
specifically, we considered bounded mutual information,
i.e., I(U ;X) ≤ ε for privacy leakage constraint. Moreover,
the bounds obtained in [10] have been tightened in [20] by
using separation technique.

In the present work, we utilize concepts from the privacy
mechanism design outlined in [10] and [20] to introduce an
innovative private semantic communication framework. The
proposed scheme offers a mathematical approach to design a
goal-oriented private utility function. This function not only
facilitates the receiver in achieving the goal but also guaran-
tees the privacy of the data from the recipient. For privacy
mechanism design which corresponds to the acheivabilty
we use different methods. To this end, extended versions of
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Information Source

X = (X1, . . . , XN )

Encoder

S

PS|X

Private data

Leakage matrix

f(X)

M

+ U

User

h(X)

Disclosed data

Added Noise

Semantic

Goal or Task

Fig. 2. Proposed approach for dealing with privacy concerns: adding
artificial noise to the semantic f(X).

the Functional Representation Lemma and the Strong Func-
tional Representation Lemma and separation technique are
used to address a private semantic communication problem.
The Functional Representation Lemma (FRL) [9, Lemma 1]
and the Strong Functional Representation Lemma (SFRL)
[21, Theorem 1] are constructive lemmas that are valuable
for the privacy design. Separation technique corresponds to
representing a discrete random variable (RV) by two RVs
which are correlated in general. We call this observation
separation technique since it separates a RV into two RVs.
To produce disclosed data U we propose an approach where
artificial noise denoted by RV M is added to the semantic.
We then use the privacy mechanism to design the artificial
noise. In this work we assume that both semantic and goal
are known by the encoder. We provide lower and upper
bounds on the privacy-utility trade-off and study the bounds
in special cases.

II. SYSTEM MODEL AND PROBLEM FORMULATION

Let PSX = PSX1...,XN
denote the joint distribution

of discrete random variables X = (X1, . . . , XN ) and S
defined on finite alphabets X = X1×. . .XN and S. Here, X
is vector with dimension N . We represent PSX by a matrix
defined on R|S|×|X| and marginal distributions of S and X
by vectors PS and PX defined on R|S| and R|X | given by
the row and column sums of PSX . We represent the leakage
matrix PS|X by a matrix defined on R|S|×|X|. In this work,
semantic of the source is a function of X denoted by f(X)
with dimension T where T ≤ N . Furthermore, the goal or
task of communication is represented by other function of
X , i.e., h(X), with dimension K where K ≤ N . In most
cases K is significantly smaller than N since semantic is
designed based on the goal. In general f 6= h, since f(·)
needs to be designed in an efficient way and efficiency can
be defined based on different parameters.

As shown in Fig. 2, one approach of dealing with
the privacy issue is to add artificial noise denoted by a
discrete RV M ∈ M to the goal at the encoder side and
communicate the resulting signal. However, it can annihilate
the performance of the system by decreasing the utility
achieved by the user. Thus, following this approach leads
to a privacy-utility trade-off problem. In this model, the
leakage is measured by the mutual information between
S and U . Furthermore, the utility achieved by the user is
measured by the mutual information between U and h(X).
As we mentioned earlier we assume that both semantic and
goal are known to the encoder and the task is to design the
artificial noise that achieves the optimal trade-off.

The private semantic communication design problem can
be sated as follows

hε(PS,f(X),h(X)) = sup
PU|S,f(X),h(X):I(U ;S)≤ε,

I(h(X);U),

(1)

where U = f(X) + M , PS,f(X),h(X) is the joint distribu-
tion of (S, f(X), h(X)), and PU |S,f(X),h(X) describes the
conditional distribution. In the following we study the case
where 0 ≤ ε < I(S;h(X)), otherwise the optimal solution
of hε(PS,f(X),h(X)) is H(h(X)) achieved by U = h(X),
i.e., M = f(X)− h(X).

Remark 1. In (1), the privacy mechanism design is based
on f(X), h(X), and S which are accessible by the encoder.
Hence, the optimization is over PU |S,f(X),h(X) instead of
PU |S,X . In other words, the encoder does not require access
to the information source X .

Remark 2. A scenario that motivates our model can be
stated as follows. Assume that the information source is not
accessible directly to the encoder. Moreover, there exists
a third party which designs f(X) based on the task or
goal h(X) and shares it with the encoder. Since f(X) is
correlated with S, it can not be revealed directly. Thus,
the encoder needs to design a message U based on f(X),
h(X), and S and disclose it.

Example 1. Let X represent an image and the goal is to
convey a specific feature of the image. For instance let X be
the MNIST data set and the feature be the number which is
illustrated inside the image. In this case, instead of encoding
the whole image we only focus on the desired feature which
is a number between 0 and 9 and encode it. The purpose
of this paper is to develop a framework that guarantees the
achievement of this goal while protecting the privacy of the
private element.

III. MAIN RESULTS

In this part, we provide lower and upper bounds for
the privacy problems defined in (1) considering different
scenarios. We study the tightness of the bounds in spe-
cial cases and compare them in examples. To do so, in
Appendix A, we present a simple observation which we
call “separation technique”. In the following results let
KS be all possible representations of S using separation
technique where X = (S1, S2). In other words we have
KS = {(S1, S2) : S = (S1, S2), |S1| ≥ 2, |S2| ≥ 2}.

Before stating the next theorem we derive an important
expression for I(X;U). For any correlated random variables
S, X , and U , We have

I(X;U) = I(S,X;U)− I(S;U |X),

= I(S;U) + I(X;U |S)− I(S;U |X),

= I(S;U)+H(X|S)−H(X|U, S)−I(S;U |X).
(2)

Next, we derive lower and upper bounds on
hε(PS,f(X),h(X)). For deriving lower bounds we use
EFRL [10, Lemma 3], ESFRL [10, Lemma 4], and
separation technique. For simplicity the remaining results
are derived under the assumption f(·) : X1 × . . .XN → R,
i.e., T = 1.
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Theorem 1. For any 0 ≤ ε < I(S;h(X)) and joint
distribution PS,f(X),h(X), we have

max
i∈{1,..,4}

{Lih(ε)}≤hε(PS,f(X),h(X))≤H(h(X)|S) + ε, (3)

where

L1
h(ε) = H(h(X)|S)−H(S|h(X)) + ε

= H(h(X))−H(S) + ε,

L2
h(ε) = H(h(X)|S)− αH(S|h(X)) + ε

− (1− α) (log(I(S;h(X)) + 1) + 4) ,

L3
h(ε) = H(h(X)|S) + ε− (log(I(S;h(X)) + 1) + 4)

− min
(S1,S2)∈KS

{α2H(S2|h(X))},

L4
h(ε) = H(h(X)|S) + ε− (log(I(S;h(X))+1)+4)

− min
(S1,S2)∈KS

{α2 (H(S|h(X)− log(I(S;h(X))+1)+4))},

with α = ε
H(S) and α2 = ε

H(S2)
for any representation S =

(S1, S2). The lower bound in (3) is tight if H(S|h(X)) = 0,
i.e., S is a deterministic function of h(X). Furthermore, if
the lower bound L1

h(ε) is tight then we have H(S|h(X)) =
0.

Proof. Using (2) we have

I(f(X) +M ;h(X)) = I(f(X) +M ;S) +H(h(X)|S)

− I(f(X) +M ;S|h(X))

−H(h(X)|S, f(X) +M), (4)

which results in

I(f(X) +M ;h(X)) ≤ ε+H(h(X)|S). (5)

For deriving the lower bounds L1
h(ε) and L2

h(ε) we use
EFRL and ESFRL using S ← X and h(X) ← Y . Let Ū
and Ũ be the output of the EFRL and ESFRL. Using the
same arguments in [10, Theorem 2] we have

I(Ū ;h(X)) ≥ L1
h(ε), (6)

I(Ũ ;h(X)) ≥ L2
h(ε), (7)

I(Ū ;S) = I(Ũ ;S) = ε. (8)

To achieve L1
h(ε) let M = Ū − f(X) and to attain L2

h(ε)
let M = Ũ − f(X). The main idea for constructing a RV
U that satisfies EFRL or ESFRL constraints is to add a
randomized response to the output of FRL or SFRL. The
randomization introduced in [22] is taken over S. To derive
L3
h(ε) and L4

h(ε), let (S1, S2) be a possible representation
of S, i.e., S = (S1, S2). The main idea to achieve L3

h(ε)
and L4

h(ε) is to take randomization over S2 instead of S.
In other words, we add a randomized response which is
based on S2 instead of S. Considering L2

h(ε) and L4
h(ε),

α corresponds to the probability of randomizing over S,
however, α2 corresponds to the probability of randomizing
over S2 for any representation S = (S1, S2). Let Ū be found
by SFRL with S = (X1, X2) ← X and h(X) ← Y . We
have

I(Ū ;S1, S2) = H(h(X)|Ū , S1, S2) = 0,

I(S1, S2; Ū |h(X)) ≤ log(I(S1, S2;h(X)) + 1) + 4.

Moreover, let U = (Ū ,W ) with W =

{
S2, w.p. α2

c, w.p. 1− α2

,

where c is a constant which does not belong to S1∪S2∪X

and α2 = ε
H(S2)

. First we show that I(U ;S1, S2) = ε. We
have

I(U ;S1, S2) = I(Ū ,W ;S1, S2)
(a)
= I(W ;S1, S2)

=H(S1,S2)−α2H(S1|S2)−(1−α2)H(S1,S2) = ε,

where (a) follows since Ū is independent of (S1, S2,W ).
Next, we expand I(U ;S1, S2|h(X)).

I(U ;S1, S2|h(X)) (9)
= I(Ū ;S1, S2|h(X)) + I(W ;S1, S2|h(X), Ū)

= I(Ū ;S1, S2|h(X)) +H(S1, S2|h(X), Ū) (10)
−H(S1, S2|h(X), Ū ,W )

= I(Ū ;S1, S2|h(X)) + α2H(S1, S2|h(X), Ū) (11)
− α2H(S1|h(X), Ū , S2)

= I(Ū ;S1, S2|h(X))− α2H(S1|h(X), Ū , S2) (12)

+ α2

(
H(S1, S2|h(X))− I(Ū ;S1, S2|h(X))

)

=(1−α)I(Ū ;S1,S2|h(X))+α2H(S1, S2|h(X))

−α2H(S1|h(X), Ū , S2). (13)

In the following we bound (13) in two ways. We have

(13) =(1−α2)I(Ū ;S1,S2|h(X))+α2H(S2|h(X)) (14)
+ αI(S1; Ū |h(X), S2)

= I(Ū ;S1,S2|h(X))+α2H(S2|h(X)) (15)
−α2I(Ū ;S2|h(X))

(a)

≤ log(I(S1, S2;h(X)) + 1) + 4 + α2H(S2|h(X)).
(16)

Furthermore,

(13) ≤(1−α2)I(Ū ;S1,S2|h(X)) + α2H(S1,S2|h(X))

(b)

5 (1−α2) (log(I(S1, S2;h(X)) + 1) + 4)

+ α2H(S1,S2|h(X)). (17)

Inequalities (a) and (b) follow since Ū is produced by SFRL,
so that I(Ū ;S1, S2|h(X)) ≤ log(I(S1, S2;h(X)) + 1) + 4.
Using (16), (17) and key equation in (2) we have

hε(PXY ) ≥ I(U ;h(X))

(c)

≥ ε+H(h(X)|S1, S2)− α2H(S2|h(X))

− (log(I(S1, S2;h(X)) + 1) + 4)

= ε+H(h(X)|S)− α2H(S2|h(X))

− (log(I(S1, S2;h(X)) + 1) + 4) , (18)

and

hε(PXY ) ≥ I(U ;h(X))

(d)

≥ ε+H(h(X)|S1, S2)− α2H(S1, S2|h(X))

− (1− α2)(log(I(S1, S2;h(X)) + 1) + 4)

= ε+H(h(X)|S)− α2H(S|h(X))

− (1− α2)(log(I(S;h(X)) + 1) + 4). (19)

In steps (c) and (d) we used H(h(X)|S1, S2, U) = 0. The
latter follows by definition of W and the fact that Ū is
produced by SFRL. Note that since both (18) and (19) hold
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for any representation of X we can take maximum over all
possible representations and we obtain

hε(PS,f(X),h(X))

≥ H(h(X)|S) + ε− (log(I(S;h(X)) + 1) + 4)

− min
(S1,S2)∈KS

{α2H(S2|Y )} = L3
h(ε),

hε(PS,f(X),h(X))

≥ H(h(X)|S) + ε− (log(I(S;h(X))+1)+4)

− min
(S1,S2)∈KS

{α2 (H(S|h(X)− log(I(S;h(X))+1)+4))},

= L4
h(ε).

To design the artificial noise M , let RVs U1 and U2 achieve
L3
h(ε) and L4

h(ε). Then, the privacy mechanism design that
achieves L3

h(ε) and L4
h(ε) are obtained by M1 = U1−f(X)

and M2 = U2 − f(X). Finally, the results about tightness
can be proved by using [10, Theorem 2].

Example 2. Let X = (X̄1, X̄2, X̄3), h(X) = (X̄1, X̄2),
and S = X̄1 + X̄2, where X̄1, X̄2, and X̄3 are arbitrary
correlated. In this case since S is a deterministic function
of h(X), by using Theorem 3 the lower bound L1

h(ε) is tight
and we have

hε(PS,f(X),h(X)) = H(h(X)|S) + ε (20)
= H(X̄1, X̄2|X̄1 + X̄2) + ε. (21)

Next, we show that tightness of the upper bound in Theo-
rem 1 can be improved using the concept of common infor-
mation. In other words, instead of having H(S|h(X)) = 0
we propose larger set of distributions that the upper bound is
attained. To do so let us recall the definition of the common
information between X and Y using [23]. For any pair of
RVs (X,Y ) defined on discrete alphabets X and Y , the
common information between X and Y can be defined as
follows

C(X;Y ) = inf
PW |XY :X−W−Y

I(X,Y ;W ). (22)

As shown in [23, Remark A] we have

I(X;Y ) ≤ C(X;Y ) ≤ min{H(X), H(Y )}. (23)

One simple observation is that when H(X|Y ) = 0 or
H(Y |X) = 0 we have I(X;Y ) = C(X;Y ). This follows
since when H(X|Y ) = 0 we have

I(X,Y ;W ) = I(Y ;W )

and W can be chosen as X , hence X − W − Y holds.
However, these are not the only cases where we have
I(X;Y ) = C(X;Y ) [24].

Corollary 1. For any 0 ≤ ε < I(S;h(X)), if the common
information and mutual information between the private
data S and goal h(X) are equal then we have

hε(PS,f(X),h(X)) = H(h(X)|S) + ε.

Proof. The proof is based on [25, Theorem 3] and [25,
Proposition 6].

Corollary 1 improves the condition H(S|h(X)) = 0 for
achieving the upper bound in Theorem 1. Consequently,

when the goal h(X) is a deterministic function of S i.e.,
H(h(X)|S) = 0, we have

hε(PS,f(X),h(X)) = ε.

Example 3. Let X = (X̄1, X̄2, X̄3), h(X) = X̄1+X̄2, and
S = (X̄1, X̄2, S1), where X̄1, X̄2, X̄3, and S1 are arbitrary
correlated. In this case since h(X) is a deterministic
function of S, by using Corollary 1 we have

hε(PS,f(X),h(X)) = ε. (24)

Moreover, considering perfect privacy constraint i.e., ε = 0,
non-zero utilities can not be attained.

Special case: H(h(X)|S) = 0

As we discussed earlier when H(h(X)|S) = 0 we
have hε(PS,f(X),h(X)) = ε. In this part, we propose a
RV U that attains the upper bound ε.To achieve ε let

U =

{
h(X), w.p. α
c, w.p. 1− α , where c is a constant which

does not belong to the support of S and α = ε
I(S;h(X)) .

We emphasize that since we only consider the range ε <
I(S;h(X)), we have α < 1. To verify the privacy constraint
we have

I(U ;S) = H(S)−H(S|U)

= H(X)− αH(S|h(X))− (1− α)H(S)

= αI(S;h(X)) = ε.

Using (2) we have

I(U ;h(X))
(a)
= ε−H(S|h(X)) +H(S|h(X), U)

= ε−H(S|h(X)) +H(S|h(X)) = ε,

where in (a) we use I(U ;S) = ε and H(h(X)|S) =
H(h(X)|S,U) = 0.

Comparison

In this part we study the bounds considering different
cases. For simplicity let X = (X1, X2) where X1 and X2

are arbitrary correlated. In this case we have

U ε1 = H(h(X)|S1, S2)− ε,
Lε1 = H(h(X)|S1, S2)−H(S1, S2|h(X)) + ε,

Lε2 = H(h(X)|S1, S2)− αH(S1, S2|Y ) + ε

− (1− α) (log(I(S1, S2;h(X)) + 1) + 4) ,

L̄ε3 , H(h(X)|S1, S2) + ε− (log(I(S1, S2;h(X)) + 1) + 4)

− α2H(S2|Y ) ≤ Lε3,
L̄ε4 , H(h(X)|S1, S2) + ε+α2H(S1, S2|h(X))

− (1−α2)(log(I(S1, S2;h(X))+1)+4) ≤ Lε4,

where α = ε
H(S) and α2 = ε

H(S2)
. Note that the lower

bounds L̄ε3 and L̄ε4 are obtained based on the initial repre-
sentation of S = (S1, S2). Therefore, we have L̄ε3 ≤ Lε3 and
L̄ε4 ≤ Lε4. Here, we compare the lower bounds Lε2, L̄ε3, and
L̄ε4. To do so we consider the following scenarios.
Scenario 1: To compare L̄ε4 with Lε2, let us assume that
H(S1, S2|h(X)) ≤ log(I(S1, S2;h(X)) + 1) + 4. A simple
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example can be considering S1 and S2 as binary RVs. In
this case we have

L̄ε4 − Lε2 = ε(
1

H(S2)
− 1

H(S1, S2)
)×

(log(I(S1, S2;h(X)) + 1) + 4−H(S1, S2|h(X))) ≥ 0.

Scenario 2: To compare L̄ε3 with Lε2, let us assume that
S2 is a deterministic function of h(X) and H(S1|h(X)) ≥
log(I(S1, S2;h(X))+1)+4. A simple example is to let 4+
H(h(X)) ≤ H(S1|h(X)) which leads to H(S1|h(X)) ≥
log(I(S1, S2;h(X)) + 1) + 4. In this case we have

L̄ε3 − Lε2 =
ε

H(S1, S2)
(H(S1|h(X))−log(I(S1, S2;h(X))+1)−4) ≥ 0.

Moreover, we have

L̄ε3−L̄ε4
=α2(H(S1|h(X))−log(I(S1;h(X))+H(S2|S1)+1)−4)

(a)

≥ α2 (H(S1|h(X))− I(S1;h(X))−H(S2|S1)− 4)

(b)

≥ α2 (H(S1|h(X))− I(S1;h(X))−H(h(X)|S1)− 4)

= α2 (H(S1|h(X))−H(h(X))− 4)

≥ 0, (25)

where (a) follows since log(1 + x) ≤ x and (b) holds since
we have H(S2|S1) ≤ H(h(X)|S1) and H(S2|h(X)) = 0.
Furthermore,

L̄ε3−Lε1
=H(S1|h(X))−log(I(S1;h(X))+H(S2|S1)+1)−4

≥ H(S1|h(X))− I(S1;h(X))−H(S2|S1)− 4

≥ H(S1|h(X))− I(S1;h(X))−H(h(X)|S1)− 4

= H(S1|h(X))−H(h(X))− 4 ≥ 0. (26)

Finally, by using (25) and (26) we have

L̄ε3 ≥ max{Lε2, L̄ε4, Lε1}.
IV. CONCLUSION

We have introduced a semantic communication with pri-
vacy constraint where it has been shown that using extended
versions of the FRL, SFRL, and separation technique lower
bounds on hε(PS,f(X),h(X)) are obtained. When the private
data S is a deterministic function of the goal h(X), the
upper bound is achieved. Also, this statement is generalized
by using the concept of common information. Finally, we
have studied the bounds considering different scenarios.
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APPENDIX A
Observation. (Separation technique) Any discrete RV S
supported on S = {1, . . . , |S|} can be represented by two
RVs (S1, S2).

Proof. First, let |S| be not a prime number. Thus, there
exist |S1| and |S2| such that |S| = |S1|× |S2| where |S1| ≥
|S2| ≥ 2. We can uniquely map each x ∈ S into a pair
(s1, s2) where s1 ∈ S1 and s2 ∈ S2. As a result, we can
represent S by the pair (S1, S2) where S1 = {1, . . . , |S1|},
S2 = {1, . . . , |S2|}, and PS(s) = PS1S2

(s1, s2). Next, let
|S| be a prime number. Hence, there exist |S1| and |S2| such
that |S| + 1 = |S1| × |S2| and we can represent S by the
pair (S1, S2) where PS1S2(s1 = |S1|, s2 = |S2|) = 0. In
other words, the last pair (|S1|, |S2|) is not mapped to any
s ∈ S.
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Abstract—We investigate the problem of securely emulating a
two-user multiple-access channel (MAC) aided by a multiple-
access network of noiseless links as a resource. In this con-
figuration, two encoders observe independent and identically
distributed (i.i.d.) samples of a source random variable each
and send rate-limited messages over their respective pairwise
(noiseless) communication links to the decoder. The decoder also
receives i.i.d. samples of a side-information random variable.
At limited rates, each encoder and the decoder additionally
possess independent pairwise shared randomness. The objective
is for the decoder to generate approximately i.i.d. samples of
another random variable, which is jointly distributed with the
two sources and the side information. Furthermore, we require
that an external eavesdropper who intercepts the communication
links and has correlated observations but no access to the
shared randomness variables, learns virtually nothing about
the input sources and the simulated output sequence. We are
interested in the rate tuples which permit such simulation with
strong secrecy. We establish a complete characterization for this
secure multi-terminal coordination problem when the sources are
independent and one of the pairwise shared randomness rates
is unconstrained. Moreover, we derive an achievable region and
an outer bound for the general case of correlated sources and
limited shared randomness rates.

I. INTRODUCTION

Cuff et al. [1] introduced the framework of coordination
capacity, which shifts the focus of network communication
from traditional data transmission between nodes to establish-
ing a desired joint distribution of actions among all nodes.
In this framework, the nodes communicate with each other
to coordinate their actions, making it particularly relevant in
scenarios where distributed agents must achieve decentralized
cooperation (wireless sensor networks, self-driving cars, etc.
being a few examples). In [1], two criteria were introduced:
empirical coordination where the joint type of the actions must
approach a target distribution, and strong coordination, where
the distribution of the sequence of actions must be close in
total variation to a target distribution. Strong coordination is
especially useful in adversarial settings, where the node actions
must appear random to an external adversary overhearing the
communication. This work falls within the realm of strong co-
ordination, and examines it in a two-sender noiseless multiple-
access network setting with an eavesdropper.

Strong coordination, also known as channel simulation,
aims to describe the minimal communication required to
achieve remote correlation. An encoder observing an inde-
pendently and identically distributed (i.i.d.) source Xn with

Enc 1

Dec

M
1 ∈ [1 : 2nR

1]

Y n

K1 ∈ [1 : 2nR01 ]

Xn
1

Enc 2Xn
2 M2

∈ [1 : 2
nR2 ]

Wn

EveZn

K2 ∈ [1 : 2nR02 ]

Fig. 1. Strong coordination over a two-sender multiple-access network of
noiseless links subject to secrecy constraints.

distribution qX transmits a message to a decoder through a
noiseless link in the point-to-point formulation. The decoder’s
task is to produce a sequence Y n such that the total variation
distance between the induced joint distribution of (Xn, Y n)
and the i.i.d. joint distribution obtained by transmitting the
source Xn through a discrete memoryless channel qY |X
vanishes asymptotically with blocklength. Both the encoder
and the decoder may benefit from common randomness to
accomplish such channel simulation. The complete optimal
trade-off region between communication and shared random-
ness rates was independently discovered by [2] and [3], where
the available shared randomness reduces the communication
rate requirements. Expanding on this characterization, [4] ob-
tained a complete characterization for a point-to-point network
involving interactive communications between the two nodes.

Conclusive results on channel simulation in multi-terminal
networks are comparatively rare – we outline a few of them. A
cascade network as an extension of the point-to-point network
with secrecy constraints was examined in [5], and the optimal
trade-off between communication and common randomness
rates was determined. A generalization of [3] to include
side information at the receiver was addressed in [6], where
some tight characterizations were obtained for specific cases.
In [7], strong coordination over a multiple-access network
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consisting of noiseless links was explored, where a complete
characterization was established for the case of independent
sources. The role of shared randomness amongst the encoders
in reducing the communication rate requirements for channel
simulation was also investigated therein.

Channel simulation has also been investigated subject to
secrecy constraints. For instance, an achievable region was
obtained in [8] for a two-terminal noiseless setting with
an external eavesdropper who taps into the communication
between legitimate nodes and has access to correlated obser-
vations. Secure randomized function computation between two
mutually distrusting users (with no external adversaries) was
addressed in [9] and the class of randomized functions which
can be computed with perfect security was characterized.

In this paper, we address secure multiple access channel
simulation over a multiple-access network of noiseless links.
This is a three-terminal version of [3], where we require that
correlated sources be encoded in a distributed manner so as
to achieve strong coordination with a decoder output, while
also ensuring strong secrecy against an external eavesdropper.
The current setting thus constitutes an extension of the multi-
terminal noiseless network coordination problem addressed in
[7] to account for insecure communication links and provide
secrecy guarantees against the external eavesdropper (please
refer to Remarks 1 and 2 in Section III that highlight the dif-
ferences compared to this work). Compared to [8], our setting
explores secure channel simulation in a multi-terminal network
rather than a point-to-point network with an eavesdropper.
Main Contributions.

• We derive an achievable region (Theorem 1) and an outer
bound (Theorem 2) for the general case. Our achievable
scheme combines coordination coding in the spirit of [3]
with encryption of the communication between the nodes
using the shared randomness as secret keys (as a one-time
pad [10]).

• For the case when the input sources and side information
are mutually independent, and one of the shared ran-
domness rates is unconstrained, we establish a complete
characterization for this secure multi-terminal coordina-
tion problem (Theorem 3).

II. SYSTEM MODEL

We investigate strong coordination of signals in a two-
sender multiple-access network of noiseless links with se-
crecy constraints. The setup comprises two encoders, with
encoder j ∈ {1, 2} observing an input given by Xn

j , and
a decoder which observes a side information sequence Wn.
For j ∈ {1, 2}, encoder j and the decoder can harness
pairwise shared randomness Kj , assumed to be uniformly
distributed on [1 : 2nR0j ]. Encoder j ∈ {1, 2} (which observes
Xn

j and has access to Kj) transmits a rate-limited message
Mj ∈ [1 : 2nRj ] over its respective noiseless communication
link to the decoder. It is assumed that the message com-
munication between the encoder-decoder pairs occurs over a
public channel, where an eavesdropper (Eve) can tap into the
messages (M1,M2) sent over the channel (Eve does not have

access to the shared randomness (K1,K2)). In addition, Eve
has access to correlated observations Zn which is jointly dis-
tributed with the input sources and decoder side information.
In particular, (X1i, X2i,Wi, Zi), i = 1, 2, . . . , n, are assumed
to be independent and identically distributed (i.i.d.) with joint
distribution specified by nature as qX1X2WZ . The random
variables X1, X2,W,Z assume values in finite alphabets
X1,X2,W,Z , respectively. The shared randomness indices
K1 and K2 are assumed to be independent of each other
and of (Xn

1 , X
n
2 ,W

n, Zn). The decoder obtains (M1,M2)
along with (K1,K2,W

n) and simulates an output sequence
Y n (where Yi, i = 1, . . . , n, assumes values in a finite alphabet
Y) which along with the input sources, side information and
eavesdropper observations must be approximately i.i.d. accord-
ing to the joint distribution q(n)X1X2WZY (x

n
1 , x

n
2 , w

n, zn, yn) :=∏n
i=1 qX1X2WZY (x1i, x2i, wi, zi, yi) (refer Figure 1). More-

over, we require strong secrecy against the eavesdropper in
the sense that the messages (M1,M2) must appear to be
independent of (Xn

1 , X
n
2 ,W

n, Zn, Y n).

Definition 1. A (2nR1 , 2nR2 , 2nR01 , 2nR02 , n) code comprises
two randomized encoder maps pEncj (mj |xnj , kj) for j ∈ {1, 2}
and a randomized decoder map pDec(yn|m1,m2, k1, k2, w

n),
where the shared randomness and communication indices
assume values kj ∈ [1 : 2nR0j ] and mj ∈ [1 : 2nRj ]
respectively for j ∈ {1, 2}.

The induced joint distribution of all the random
variables (Xn

1 , X
n
2 ,W

n, Zn,M1,M2,K1,K2, Y
n),

the resulting induced marginal distribution on
(Xn

1 , X
n
2 ,W

n, Zn, Y n,M1,M2) and the induced marginal
distribution on (M1,M2) are respectively given by

p(xn1 , x
n
2 , w

n, zn,m1,m2, k1, k2, y
n)

=
1

2n(R01+R02)
q(xn1 , x

n
2 , w

n, zn)
2∏

j=1

pEncj (mj |xnj , kj)

× pDec(yn|m1,m2, k1, k2, w
n),

and

pind(xn1 , x
n
2 , w

n, zn, yn,m1,m2)

=
∑

k1,k2

p(xn1 , x
n
2 , w

n, zn,m1,m2, k1, k2, y
n),

pind(m1,m2)

=
∑

k1,k2,xn
1 ,x

n
2 ,w

n,zn,yn

p(xn1 , x
n
2 , w

n, zn,m1,m2, k1, k2, y
n).

Definition 2. A rate quadruple (R1, R2, R01, R02) is
said to be achievable for a target joint distribution
qX1X2WZY with secrecy provided there exists a sequence of
(2nR1 , 2nR2 , 2nR01 , 2nR02 , n) codes such that

lim
n→∞

||pind
Xn

1 ,Xn
2 ,Wn,Zn,Y n,M1,M2

− pind
M1,M2

q
(n)
X1X2WZY ||1 = 0,

(1)
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where q
(n)
X1X2WZY is the target i.i.d. product distribution

defined as

q
(n)
X1X2WZY (x

n
1 , x

n
2 , w

n, zn, yn)

:=

n∏

i=1

qX1X2WZY (x1i, x2i, wi, zi, yi).

We notice that (1) implies the following strong secrecy crite-
rion against the eavesdropper

lim
n→∞

I(M1,M2;X
n
1 , X

n
2 ,W

n, Zn, Y n) = 0. (2)

Moreover, (2) along with the approximate i.i.d. nature of
(Xn

1 , X
n
2 ,W

n, Zn, Y n) from (1) can be alternatively ex-
pressed as

lim
n→∞

|I(M1,M2, Z
n;Xn

1 , X
n
2 ,W

n, Y n)

− nI(Z;X1, X2,W, Y )| = 0. (3)

Definition 3. The rate region Rsecrecy
coordination is the closure of the

set of all achievable rate quadruples (R1, R2, R01, R02).

Let Rsecrecy
coordination, R02 → ∞ be the rate region when the avail-

able pairwise shared randomness K2 is unconstrained, i.e.,

Rsecrecy
coordination, R02 → ∞ = {(R1, R2, R01) : ∃ R02

s.t. (R1, R2, R01, R02) ∈ Rsecrecy
coordination}. (4)

III. MAIN RESULTS

Firstly, let us present an inner bound to the rate region
Rsecrecy

coordination.

Theorem 1 (Achievable Rate Region). Given a target p.m.f.
qX1X2WZY , the rate quadruple (R1, R2, R01, R02) is in
Rsecrecy

coordination provided

R1 ≥ I(U1;X1|U2,W, T )

R2 ≥ I(U2;X2|U1,W, T )

R1 +R2 ≥ I(U1, U2;X1, X2|W,T )
R01 ≥ I(U1;X1, X2, Z, Y |W,T )− I(U1;U2|W,T )
R02 ≥ I(U2;X1, X2, Z, Y |W,T )− I(U1;U2|W,T )

R2 +R01 ≥ I(U1;X1, X2, Z, Y |W,T )
+ I(U2;X2|U1,W, T )

R1 +R02 ≥ I(U2;X1, X2, Z, Y |W,T )
+ I(U1;X1|U2,W, T )

R01 +R02 ≥ I(U1, U2;X1, X2, Z, Y |W,T ),
for some p.m.f.

p(x1,x2, w, z, t, u1, u2, y) =

p(x1, x2, w, z)p(t)

2∏

j=1

p(uj |xj , t)p(y|u1, u2, w, t)

(5)

such that
∑

u1,u2

p(x1, x2, w, z, u1, u2, y|t) = q(x1, x2, w, z, y), for all t.

A detailed proof of Theorem 1 can be found in the long
version [11]. We may think of (U1, U2) as quantization
codebooks for the respective encoder source observations
(X1, X2). Furthermore, to ensure secrecy, the compressed
source descriptions are encrypted using the shared randomness
variables as secret keys. In particular, the shared randomness
Kj is used as a one-time pad on the message Mj for j = 1, 2.

Remark 1. Compared to the setting of [7] without secrecy
constraints, the proof of Theorem 1 in the full version [11]
differs considerably due to the stronger constraint (1) im-
posed on the joint distribution for ensuring strong secrecy.
In particular, we show that there exists a sequence of
(2nR1 , 2nR2 , 2nR01 , 2nR02 , n) codes with encoder and decoder
mappings along with the particular realization of random
binning resulting in vanishing total variation distance as well
as the required strong secrecy constraint.

We next derive an outer bound to the rate regionRsecrecy
coordination.

Theorem 2 (Outer Bound). Given a target p.m.f. qX1X2WZY ,
any rate quadruple (R1, R2, R01, R02) in Rsecrecy

coordination obeys,
for every ϵ ∈ (0, 14 ],

R1 ≥ I(U1;X1|W,T )
R2 ≥ I(U2;X2|W,T )

R1 +R2 ≥ I(U1, U2;X1, X2|W,T )
R01 ≥ I(U1;X1, X2, Z, Y |W,T )− 2g(ϵ)

R02 ≥ I(U2;X1, X2, Z, Y |W,T )− 2g(ϵ)

R01 +R02 ≥ I(U1, U2;X1, X2, Z, Y |W,T )− 2g(ϵ),

with

g(ϵ) = 2
√
ϵ

(
Hq(X1, X2,W,Z, Y ) +R1 +R2

+ log
(|X1||X2||W||Z||Y|)

ϵ

)

(where g(ϵ)→ 0 as ϵ→ 0), for some p.m.f.

p(x1,x2, w, z, t, u1, u2, y) =

p(x1, x2, w, z)p(t)p(u1, u2|x1, x2, t)p(y|u1, u2, w, t)
(6)

such that

p(u1|x1, x2, w, z, t) = p(u1|x1, t), (7)
p(u2|x1, x2, w, z, t) = p(u2|x2, t), (8)
||p(x1, x2, w, z, y|t)− q(x1, x2, w, z, y)||1 ≤ ϵ for all t.

The details of the proof can be found in the full version [11].
It should be noted that the outer bound in Theorem 2 represents
an epsilon rate region, as discussed in [3, Section VI-C].

Remark 2. Compared to the setting of [7] without secrecy
constraints, the proof of Theorem 2 in the long version [11]
makes use of the stronger constraint (10) implied by a suc-
cessful code in the current setting. This allows us to prove the
strong secrecy constraint as in steps (12)–(14) in Appendix A.
Another crucial difference compared to [7] is that the stricter
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lower bounds on the shared randomness rates in the current
setting (due to the dual purpose of the shared randomness
variables for achieving coordination as well as encrypting
the public communication), R01 in (16) of Appendix A, are
facilitated by the same strong secrecy constraint.

When the random variables (X1, X2,W ) are mutually inde-
pendent, and one of the shared randomness rates is unlimited,
we can demonstrate the tightness of the inner bound presented
in Theorem 1. This is accomplished by obtaining a stronger
outer bound than the one in Theorem 2 and establishing
cardinality bounds on the auxiliary variables, that allows us to
prove the continuity of the outer bound at ϵ = 0, which in turn
allows us to fully characterize the region Rsecrecy

coordination, R02 → ∞.

Theorem 3 (Tight Characterization - Independent Sources).
Consider a target p.m.f. qX1X2WZY such that the random vari-
ables (X1, X2,W ) are mutually independent, i.e., qX1X2W =
qW qX1

qX2
. Then the rate region Rsecrecy

coordination, R02 → ∞ is spec-
ified by the set of all rate triples (R1, R2, R01) such that

R1 ≥ I(U1;X1|T )
R2 ≥ I(U2;X2|T )
R01 ≥ I(U1;X1, Z, Y |X2,W, T ),

for some p.m.f.

p(x1,x2, w, z, t, u1, u2, y) =

p(w)p(x1)p(x2)p(z|x1, x2, w)p(t)

×
2∏

j=1

p(uj |xj , t)p(y|u1, u2, w, t) (9)

such that
∑

u1,u2

p(x1, x2, w, z, u1, u2, y|t) = q(x1, x2, w, z, y), for all t,

with |U1| ≤ |X1||X2||W||Z||Y|, |U2| ≤
|U1||X1||X2||W||Z||Y| and |T | ≤ 3.

The converse of Theorem 3 involves deriving a single-
letter characterization that exhibits a p.m.f. structure matching
that of the inner bound in Theorem 1. This is accomplished
by leveraging the independence condition on the sources.
The achievability follows from Theorem 1 by invoking the
independence condition q(x1, x2, w) = q(w)q(x1)q(x2) along
with the fact that R02 is unconstrained. For a detailed proof
of converse, please refer to Appendix A.

IV. CONCLUSION

We investigated secure strong coordination in a multiple-
access network of noiseless links in the presence of an external
eavesdropper. General inner and outer bounds were derived
on the rate region of communication and shared randomness
rates, along with a tight characterization for the special case
of independent sources. It would be interesting to explore a
more general scenario where the noiseless links are replaced
by a (noisy) multiple access channel as a resource, which is
part of our ongoing work.

APPENDIX A
CONVERSE PROOF OF THEOREM 3

Consider a coding scheme that induces a joint distribution
on (Xn

1 , X
n
2 ,W

n, Zn, Y n,M1,M2) which satisfies

∥pXn
1 ,Xn

2 ,Wn,Zn,Y n,M1,M2
− pM1,M2

q
(n)
X1X2WZY ∥1 ≤ ϵ,

(10)

for ϵ ∈ (0, 14 ]. To simplify notation, we define Θ∼i ≜
(Θi−1,Θn

i+1) for any vector Θn. The following lemma will
be useful in establishing the outer bound.

Lemma 1. [12, Lemma 6] Let pSn be such that ||pSn −
q
(n)
S ||1 ≤ ϵ, where q(n)S (sn) =

∏n
i=1 qS(si), then

n∑

i=1

Ip(Si;S∼i) ≤ ng1(ϵ), (11)

with g1(ϵ) = 2
√
ϵ
(
H(S) + log |S|+ log 1√

ϵ

)
→ 0 as ϵ→ 0.

We take S = (X1, X2,W,Z, Y ) in Lemma 1 for our
purposes. We note that for ϵ ∈ (0, 14 ], the following holds

max

{
g1(ϵ), 4ϵ

(
log |S|+ log

1

ϵ

)}
≤ g(ϵ)

:= 2
√
ϵ

(
H(S) +R1 +R2 + log |S|+ 2 log

1√
ϵ

)

= 2
√
ϵ

(
H(X1, X2,W,Z, Y ) +R1 +R2

+ log |X1||X2||W||Z||Y|+ 2 log
1√
ϵ

)
, (12)

which is g(ϵ) in Theorem 2. Thus, one can replace g1(ϵ) in
Lemma 1 by g(ϵ), which satisfies limϵ→0 g(ϵ) = 0 as well.

We first prove the strong secrecy constraint. We can bound
the total variation distance between the induced joint distri-
bution on (Xn

1 , X
n
2 ,W

n, Zn, Y n,M1,M2) and the product
of the induced distributions on (Xn

1 , X
n
2 ,W

n, Zn, Y n) and
(M1,M2) as follows:

∥pXn
1 ,Xn

2 ,Wn,Zn,Y n,M1,M2
− pXn

1 ,Xn
2 ,Wn,Zn,Y npM1,M2

∥1
(a)

≤ ∥pXn
1 ,Xn

2 ,Wn,Zn,Y n,M1,M2
− pM1,M2

q
(n)
X1X2WZY ∥1

+ ∥pXn
1 ,Xn

2 ,Wn,Zn,Y npM1,M2 − pM1,M2q
(n)
X1X2WZY ∥1

= ∥pXn
1 ,Xn

2 ,Wn,Zn,Y n,M1,M2
− pM1,M2

q
(n)
X1X2WZY ∥1

+ ∥pXn
1 ,Xn

2 ,Wn,Zn,Y n − q(n)X1X2WZY ∥1
(b)

≤ 2∥pXn
1 ,Xn

2 ,Wn,Zn,Y n,M1,M2
− pM1,M2

q
(n)
X1X2WZY ∥1

(c)

≤ 2ϵ, (13)

where (a) follows from triangle inequality, (b) follows from [3,
Lemma V.1] while (c) follows by the definition of achievabil-
ity, i.e., from (10). Consequently, it follows from [13, Theorem
17.3.3] that the mutual information can be bounded as

I(Xn
1 , X

n
2 ,W

n, Zn, Y n;M1,M2)

= H(Xn
1 , X

n
2 ,W

n, Zn, Y n) +H(M1,M2)
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−H(Xn
1 , X

n
2 ,W

n, Zn, Y n,M1,M2)

≤ 4nϵ

(
log |X1|+ log |X2|+ log |W|+ log |Z|+ log |Y|

+R1 +R2 + log
1

ϵ

)
≤ ng(ϵ). (14)

Let us next prove the lower bound on Rj for j ∈ {1, 2}.
nRj ≥ H(Mj) ≥ H(Mj |Kj)

≥ I(Mj ;X
n
j |Kj)

(a)
= I(Mj ,Kj ;X

n
j )

=
n∑

i=1

I(Mj ,Kj ;Xji|Xn
j,i+1)

(b)
=

n∑

i=1

I(Mj ,Kj , X
n
j,i+1;Xji)

(c)
=

n∑

i=1

I(Uji;Xji)
(d)
= nI(UjT ;XjT |T )

(e)
= nI(Uj ;Xj |T ), (15)

where (a) follows from the independence between Kj and
Xn

j , (b) follows from the i.i.d. nature of Xji for i = 1, . . . , n,
(c) follows from an identification of U1i = (M1,K1, X

n
1,i+1)

and U2i = (M2,K2, X
n
2,i+1), (d) follows by the introduction

of a uniform time-sharing random variable T ∈ [1 : n] that
is independent of all other variables, while (e) follows by
defining U1 := U1T , U2 := U2T , X1 := X1T , X2 := X2T ,
Y := YT , W :=WT and Z := ZT .

Let us next derive the lower bound on R01.

nR01 = H(K1)

≥ H(K1|M1, X
n
2 ,W

n)

≥ I(K1;X
n
1 , Z

n, Y n|M1, X
n
2 ,W

n)

= I(M1,K1;X
n
1 , Z

n, Y n|Xn
2 ,W

n)

− I(M1;X
n
1 , Z

n, Y n|Xn
2 ,W

n)

(a)

≥ I(M1,K1;X
n
1 , Z

n, Y n|Xn
2 ,W

n)− ng(ϵ)

=

n∑

i=1

I(M1,K1;X1i, Zi, Yi|Xn
1,i+1, Z

n
i+1

Y n
i+1, X

n
2 ,W

n)− ng(ϵ)

=
n∑

i=1

I(M1,K1, X
n
1,i+1, Z

n
i+1, Y

n
i+1, X2∼i,

W∼i;X1i, Zi, Yi|X2i,Wi)

−
n∑

i=1

I(Xn
1,i+1, Z

n
i+1, Y

n
i+1, X2∼i,W∼i;X1i,

Zi, Yi|X2i,Wi)− ng(ϵ)
(b)

≥
n∑

i=1

I(M1,K1, X
n
1,i+1;X1i, Zi, Yi|X2i,Wi)− 2ng(ϵ)

=
n∑

i=1

I(U1i;X1i, Zi, Yi|X2i,Wi)− 2ng(ϵ)

= nI(U1T ;X1T , ZT , YT |X2T ,WT , T )− 2ng(ϵ)

= nI(U1;X1, Z, Y |X2,W, T )− 2ng(ϵ), (16)

where (a) follows from (14) and (b) follows since
n∑

i=1

I(Xn
1,i+1, Z

n
i+1, Y

n
i+1, X2∼i,W∼i;X1i, Zi, Yi|X2i,Wi)

≤
n∑

i=1

I(X1∼i, X2∼i, Y∼i, Z∼i,W∼i;X1i, X2i, Yi, Zi,Wi)

≤ ng(ϵ) (17)

by (10) and Lemma 1. When R02 is unlimited, the auxiliary
random variable alphabet cardinalities can be limited to:

|U1| ≤ |X1||X2||W||Z||Y|,
|U2| ≤ |U1||X1||X2||W||Z||Y|, and |T | ≤ 3,

where |T | follows using the support lemma [14, Appendix
C]. On the other hand, the cardinalities of U1 and U2 can be
restricted as above following the perturbation method of [15].
Finally, by invoking the continuity properties of total variation
distance and mutual information in the probability simplex,
similar to the approach in [3, Lemma VI.5] and [4, Lemma
6], the converse for Theorem 3 is complete.
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