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Pangenome-genotyped structural variation improves
molecular phenotype mapping in cattle

Alexander S. Leonard, Xena M. Mapel, and Hubert Pausch
Animal Genomics, ETH Zurich, 8092 Zurich, Switzerland

Expression and splicing quantitative trait loci (e/sQTL) are large contributors to phenotypic variability. Achieving suffi-

cient statistical power for e/sQTL mapping requires large cohorts with both genotypes and molecular phenotypes, and

so, the genomic variation is often called from short-read alignments, which are unable to comprehensively resolve structural

variation. Here we build a pangenome from 16 HiFi haplotype-resolved cattle assemblies to identify small and structural var-

iation and genotype them with PanGenie in 307 short-read samples. We find high (>90%) concordance of PanGenie-gen-

otyped and DeepVariant-called small variation and confidently genotype close to 21 million small and 43,000 structural

variants in the larger population. We validate 85% of these structural variants (with MAF>0.1) directly with a subset of

25 short-read samples that also have medium coverage HiFi reads. We then conduct e/sQTL mapping with this comprehen-

sive variant set in a subset of 117 cattle that have testis transcriptome data, and find 92 structural variants as causal candidates

for eQTL and 73 for sQTL. We find that roughly half of the top associated structural variants affecting expression or splic-

ing are transposable elements, such as SV-eQTL for STN1 and MYH7 and SV-sQTL for CEP89 and ASAH2. Extensive linkage
disequilibrium between small and structural variation results in only 28 additional eQTL and 17 sQTL discovered when

including SVs, although many top associated SVs are compelling candidates.

[Supplemental material is available for this article.]

Assigning functional information to genetic variants is challeng-
ing. Genome-wide association studies (GWAS) have revealed
many quantitative trait loci (QTL) in cattle (Fang and Pausch
2019; Freebern et al. 2020), as well as other species (Filiault and
Maloof 2012; Yengo et al. 2022), but require substantial a priori
knowledge of phenotypes or traits of interest. Alternatively, ex-
pression QTL (eQTL) mapping can use “molecular phenotypes,”
such as RNA abundance, to identify regulatory variants, which
may contribute to inherited trait variation (e.g., carcass yield
[Leal-Gutiérrez et al. 2020; Wang et al. 2022], male fertility
[Mapel et al. 2024], and female fertility [Forutan et al. 2023]).
Similarly, variants that are associated with alternative splicing or
differential isoform usage can be identified through splicing QTL
(sQTL) mapping (e.g., milk production [Xiang et al. 2018] and
male fertility [Mapel et al. 2024]). In particular, sQTL have been
suggested as a leading candidate for explaining a substantial por-
tion of complex trait and disease heritability (Xiang et al. 2023).
Alternative splicing can also affect gene expression, and associated
variants may also appear as eQTL (Yamaguchi et al. 2022).

Detecting e/sQTL relies on both accurate and complete quan-
tification of RNA abundance, as well as the availability of matched
genotypes from the same samples. Recently, several long-read co-
horts have shown the importance of including structural variants
(SVs) in explaining phenotypic variation in human (Beyter et al.
2021), tomato (Alonge et al. 2020), and rice (Shang et al. 2022).
However, most e/sQTL studies, particularly those in livestock, pri-
marily rely on short-read sequencing (Littlejohn et al. 2016) or
genotyping arrays (Liu et al. 2020; Cai et al. 2023) to assess geno-
mic variants in enough samples to ensure sufficient statistical pow-
er to detect associations with molecular phenotypes. SVs, such as

indels >50 bp, have thus been predominantly neglected in
GWAS and e/sQTL studies, despite contributing substantially to
phenotype variation (Alonge et al. 2020; Scott et al. 2021). Some
recent work has used short reads from various cattle breeds to
call SVs (Zhou et al. 2022a; Bhati et al. 2023; Lee et al. 2023) but
was primarily restricted to deletions and duplications and required
extreme filtering to remove false positives. Long and accurate se-
quencing reads, like Pacific Biosciences (PacBio) HiFi and those
produced with Oxford Nanopore Technologies (ONT) r10 chemis-
tries, have the potential to access both small variants (including
SNPs and indels <50 bp) and SVs but are costly when sequencing
entire mapping cohorts.

A recent intermediate approach, PanGenie (Ebler et al. 2022),
produces a “pangenome” variation panel from high-quality, hap-
lotype-resolved assemblies (which can access all scales of varia-
tion). Additional samples can then be efficiently genotyped
against this panel using k-mers. Crucially, short-read sequencing
can be used to produce these k-mers, enabling genotyping of
both small variants and SVs in existing biobank-sized short-read
cohorts. Earlier pangenome genotyping methods (Chen et al.
2019; Sirén et al. 2021) relied on more laborious sequence align-
ment to genotype samples, impeding scaling to larger cohorts.

Separate domestication events, adaptation to various envi-
ronments, and selection for different phenotypic characteristics
led to the emergence of several hundred breeds of taurine and indi-
cine cattle (Loftus et al. 1994). The genetic diversity across breeds is
huge, but the genetic diversity within typical taurine breeds is low
because of the widespread use of few sires in artificial insemina-
tion, resulting in a 50-fold lower effective population size in cattle
than in human populations (Tenesa et al. 2007; Hall 2016). Fewer
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than 20 animals typically explain more than half of the genetic
diversity of current taurine populations, which suggests that
even a limited number of cattle genomeswill represent a large frac-
tion of SVs that segregate within breeds (Jansen et al. 2013;
Daetwyler et al. 2014).

Here, we created a pangenome variation panel of small vari-
ants and SVs from 16 haplotype-resolved cattle assemblies and
307 short-read samples of predominant Brown Swiss (BSW) and
Original Braunvieh (OBV) ancestry. We leverage this pangenome
variation panel to investigate how eQTL and sQTLmapping in tes-
tis tissue benefits from including SVs.

Results

Pangenome genotyping of small variants and SVs

We created the pangenome variant panel using 16HiFi-based hap-
lotype-resolved cattle assemblies, including four previously pub-
lished assemblies (two Original Braunvieh, one Brown Swiss, and
one Piedmontese) (Crysnanto et al. 2021; Leonard et al. 2022),
eight newly generated assemblies from previously published data
(four Original Braunvieh and four Brown Swiss) (Leonard et al.
2023), and four assemblies from new data (four Brown Swiss). All
assemblies were aligned to the cattle reference genome, ARS-
UCD1.2 (Rosen et al. 2020), followed by calling variants
from the alignments in confident regions (as described by PanGe-
nie). Through this approach, we identified 12,918,792 SNPs,
3,123,739 indels <50 bp, and 53,297 SVs ≥50 bp, comparable to
studies with human samples (Ebert et al. 2021). The three OBV in-
dividuals (six haplotypes) were a sire–dam–offspring trio, allowing
us to estimate the SNP and SVMendelian inconsistency rate in the
pangenome as 1.06% and 2.32%, respectively.

We compared this set of assembly-derived SVs against SVs
called directly from the HiFi reads with Sniffles using Jasmine

(Kirsche et al. 2023), requiring two SVs to be the same event type
and within 100 bp to be considered as overlapping. As expected,
we confirmed a high level of overlap with 86% of assembly SVs re-
covered in the Sniffles SVs (Fig. 1A). However, there was some dis-
agreement, particularly for large insertions exceeding the average
HiFi read size (Fig. 1B). In these circumstances, the read alignments
end in soft or hard clips on both ends of the insertion, and the SV
cannot be directly detected (Supplemental Fig. 1). Because the as-
semblies are effectively a single read with megabase-scale length,
they can cleanly resolve larger insertion SVs. Deletions larger
than the read length can generally still be directly detected.
Therewere spikes of SV frequency for both insertions anddeletions
approximately of size 1.3 kb, largely confirmed by RepeatMasker to
be endogenous retrovirus (ERV) sequence.

With PanGenie, we genotyped all the pangenome variation
for 307 Braunvieh samples (consisting of Brown Swiss/Original
Braunvieh/mixed breeds originating from a common ancestral
population) using short sequencing reads.We further supplement-
ed this genotyped variation by directly calling variants with
DeepVariant on the 307 samples and merged the PanGenie-called
andDeepVariant-called variation into a “PanGenie+” set. The larg-
er sample size for DeepVariant (307 samples vs. eight individuals
with haplotype-resolved assemblies) meant more small variants
were called, although the majority were mutually present (Fig.
1C). The overwhelming majority of SNPs and SVs in the pange-
nome variation panel were present in the larger cohort, 98.8%
and 96.2%, respectively, whereas small indels (<50 bp) were
more frequently missing (80.8% present). The genotype concor-
dance of the calls was also high, with mean F-scores of 0.90 and
0.72 for SNPs and indels, respectively, across the 307 samples
(Fig. 1D). There were also four distinct sire–dam–offspring trios
in the 307 samples, which we used to validate the genotyping ac-
curacy. The Mendelian inconsistency rate was 1.15% and 4.46%
for SNPs and SVs, respectively. We also confirmed the genotyped
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Figure 1. Concordance of variants genotyped by PanGenie. (A) SV overlap between PanGenie and Sniffles for the eight individuals used to create the
pangenome variant panel. (B) SV size distribution for the groups in A. The gray dashed lines indicate 15 kb, the average read length for the HiFi reads
used by Sniffles. (C) Small variant overlap between PanGenie-genotyped variants and DeepVariant-called variants for the 307 short-read samples. (D)
Precision and recall for the 307 samples from C. The gray lines are the F-score boundaries for the indicated values. (E) Fraction of all SVs tagged by small
variants at different thresholds of r2 within a linkage window of 1000 kb across the 307 samples. (F) Average and median number of variants that tag each
SV across different r2 thresholds.
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small variants and SVs were both independently able to recover
the expected population structure (in addition to establishing
the representativeness of the PanGenie assemblies for their respec-
tive breeds) through principal component analyses, although the
more complete small variant set explained slightly more of the
structure (Supplemental Fig. 2).

We also examined the linkage disequilibrium (LD) between
small variants and SVs, finding that∼70%of SVs are strongly tagged
(r2 >0.8) by small variants within a 1-Mb cis-window, whereas only
∼5% of SVs are poorly tagged (r2 <0.2) (Fig. 1E). SVs were tagged by
an average of 116 variants (median, 15 variants) within that win-
dow above the strongly tagged threshold (Fig. 1F).

Variant discovery in a cohort subset with long-reads

We also collected moderate coverage (12.9 ±1.4-fold) of PacBio
HiFi reads on 25 samples of predominant Braunvieh ancestry
and called SVs from the long-read alignments using Sniffles. We
find that even a small number of samples captures a large portion
of SVs present in a given population (Fig. 2A), andwe estimate that
roughly 100 samples would likely capture nearly all SVs that segre-
gate in a typical taurine cattle breed such as Braunvieh, finding
only approximately 100 new SVs per additional sample beyond
this population size (Supplemental Fig. 3). Using Jasmine again
with a 100-bp distance threshold, we identified that 69% of SVs
discovered through the 25 long-read alignments were already pre-
sent in the PanGenie variant set and genotyped into the larger
population (Fig. 2B), rising to 85% when considering only SVs
with allele frequency >10% (Fig. 2C). There were also 15,930 SVs
that were not in the PanGenie variant set; however, these are likely
singleton or rare SVs present in the 25 samples unrelated to those

used in constructing the pangenomepanel. As such, there is a non-
negligible portion of SVs that could only be discovered through in-
cluding additional assemblies into the PanGenie variant set or
directly calling SVs with long reads on each sample in the
e/sQTL set.

Wewere also able to compare small variant accuracy between
HiFi and short reads in the 25 samples with about 10-fold coverage
of both sequencing approaches. Notably, although there areminor
differences for autosome-wide alignments between HiFi and short
reads, with HiFi read alignments covering only 0.3% more of the
autosomal bases than the short-read alignments, there is a moder-
ate and large effect for the X and Y Chromosomes, respectively:
3.5% and 31.5%. The improved alignments in the sex chromo-
somes contributed most of the additional variants called by HiFi
reads over short reads (Supplemental Fig. 4). Taking the short-
read variants as truth, the mean SNP and indel F-score was 0.92
and 0.82, respectively (Fig. 2D), where the higher recall than preci-
sion is largely owing to the additional variants called by HiFi reads.
Similarly, we observed that HiFi-based alignments (at comparable
coverage) called substantially more variants in regions annotated
as centromeric satellites, lowmappability, tandem repeats, and re-
petitive, resulting from inconsistent and lower-quality short-read
alignments, whereas the number of variants in “normal” regions
was comparable (Fig. 2E).

cis-eQTL mapping

After splittingmultiallelic variants and filtering at 1%minor allele
frequency in the PanGenie+ set, 20,931,316 variants remained for
downstream analyses, including 17,439,736 SNPs, 3,449,049
small indels, and 42,531 SVs (Table 1). There were 8355 SVs >1
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Figure 2. Comparison of variant calling with a small long-read cohort. (A) SV intersection between PanGenie (called from eight individuals with haplo-
type-resolved assemblies) and Sniffles (called from 25 HiFi read samples). (B) SV saturation for 25 HiFi read samples. Markers indicate the mean value of
unique SVs over 10 random shuffles of sample order, and error bars represent the standard deviation. The dotted line is a fitted curve of the form f(x) =
ax−b+ c, predicting saturation at approximately 175,000 SVs. (C) SV overlap for different allele frequency (based on the 25 samples) bins. (D) Small variant
accuracy of HiFi-based and short-read-based calls, taking the short-read data as truth, stratified by autosomes and sex chromosomes for SNPs and indels.
Large markers indicate the mean over the 25 samples. (E) Small variant intersections between HiFi-based and short-read-based calls in genomic regions
identified as centromeric satellites, low mappability, tandem repeats, repetitive, and “normal” (all other regions). A large proportion of variants called
in the challenging regions were unique to HiFi-based alignment and calling.
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kb, of which 2103 were >5 kb. Because the SVs were only geno-
typed through PanGenie and small variants were also called
directly, there were fewer rare SVs filtered out compared with
SNPs (Supplemental Fig. 5).

We then investigated the impact of SVs on gene expression in
a subset of 117 mature bulls for which we also had deep total RNA
sequencing from testis tissue, with 257±35 million paired-end
reads per sample. After aligning to the cattle reference genome
and annotation (Ensembl release 104), followed by quantifying ex-
pression as transcripts permillion (TPM), we retained 19,440 genes
for cis-eQTLmapping.We ran a permutation analysis to determine
the significance thresholds, followed by a conditional analysis,
finding 3,677,218 associated variants for 15,406 eQTL (11,030 ex-
pressed genes [eGenes]). Of those variants, 6985 were SVs (includ-
ing 1412 and 97 SVs >1 kb and >10 kb, respectively). Association
testing in a relatively small cohort of animals with widespread
LD often produces identical test statistics for multiple nearby var-
iants. As themost significantly associated variant is not necessarily
the causative variant, we also considered variants with conditional
significance within 1.5× of the top variant (adapted from Sanchez
et al. 2017) as candidate causal variants. We find 92 SV-eQTL in
which 25 have eSVs as the unique-top variant (Fig. 3A) and 58
eQTL in which the top variant is an SV that is in near-perfect LD
with a small variant (Fig. 3B).

We also performed the permutation and conditional analyses
using small variants combinedwith 52,221 SVs directly discovered

and genotyped through the cohort short reads with DELLY and
INSurVeyor. There were 3,615,699 variants associated with the ex-
pression of 11,061 eGenes. All eGenes found uniquely with the
short-read data set were just missed by the significance threshold
in the PanGenie+ data set, suggesting they are of marginal impor-
tance (Fig. 3C). On the other hand, there were 26 eGenes found
only with the PanGenie+ data set, including four for which the
top eVariant was an SV (and the remaining were typically small
indels within tandem repeats). Nearly half of the PanGenie+ SV-
eQTL were not discovered through the short reads alone, whereas
a further quarter were discovered but poorly genotyped and were
not significant eQTL (Supplemental Table 1; Supplemental Fig. 6).

We further examined in more detail several eGenes that are
affected by SVs identified uniquely with the PanGenie+ set
(Supplemental Table 2). For example, we identified a strong cis-
eQTL∼14 kb downstream from the annotated translation termina-
tion codon of STN1 (ENSBTAG00000015019) encoding STN1 sub-
unit of the CST complex (Fig. 4A). This cis-eQTL was significantly
associated with 672 variants, although one of the top variants (P=
1.99×10−22) was a 5.9-kb deletion containing 3.9 kb of DNA trans-
posons, RTEs, and ERV-LTR elements, occurring with a frequency
of 32% in the 117 animals. The deletion is in high LD (r2 = 0.923)
with the top SNP (Chr 26: 24,452,023 bp) and the association sig-
nal only slightly lower. STN1 is moderately expressed (13.59±1.92
TPM) in testis, but the deletion reduces STN1 mRNA abundance
(effect size [β] of −1.11). Closer inspection of the eQTL also

Table 1. Breakdown of variants for SNPs, small insertions and deletions (<50 bp), and SV insertion and deletions (≥50 bp) for the total merged
PanGenie+ variant set and the MAF-filtered variant set

SNPs Small insertion Small deletion SV insertion SV deletion

PanGenie+ 23,278,277 2,954,293 2,502,528 28,087 21,033

PanGenie +MAF≥0.01 17,439,736 1,852,334 1,596,065 24,193 18,338
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Figure 3. cis-QTL mapping. (A) Twenty-five independent eGene signals with red diamonds denoting SVs as uniquely top hits. Other SVs are shown as
yellow diamonds, and small variations are shown as teal circles. (B) Fifty-eight independent eGene signals with SVs as top hits in LD, with small variants
denoted as orange diamonds and with yellow diamonds and teal circles as described in A. (C) eGenes that are present in only the PanGenie+ data set
or the short-read-only DeepVariant data set. The dashed line indicates equal significance thresholds between the two conditional analyses.
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revealed limitations of the current func-
tional annotation of the bovine reference
genome. The Ensembl annotation of
STN1 contains five transcripts, whereas
the RefSeq annotation suggests 10 iso-
forms, of which eight are expressed in
testis, including one (XM_024985601.1)
that has an intron overlapping the dele-
tion (Supplemental Fig. 7A). Although
the deletion reduces the expression of
three isoforms, including the canonical
isoform (NM_001076849.1), it increases
the abundance of five other isoforms
(Supplemental Fig. 7B). Because the ca-
nonical isoform is more abundant than
all other isoforms, the deletion overall re-
duces STN1 expression. We corroborated
that the SV-eQTL impacts not only the
overall expression of STN1 but also its rel-
ative isoform abundance, as this SV is
also strongly associated with a sQTL (P=
3.96×10−22) (Supplemental Fig. 7C), al-
though it was not the top candidate.

A 118-bp deletionwas strongly asso-
ciated with CEP15 (ENSBTAG0000000
1889, encoding centrosomal protein 15)
mRNA abundance (Fig. 4B). The deleted
sequence is a short interspersed nuclear
element (SINE). The SV-eQTL was locat-
ed 8 kb downstream from the transcrip-
tion start site of CEP15 and was 1.4× as
significant (P=6.60×10−27) as the clos-
est SNP. The deletion was associated with increased (β= 1.23)
CEP15 expression.

We also examined two prominent insertion SV-eQTL. The ex-
pression of MYH7 (ENSBTAG00000009703) encoding myosin
heavy chain 7 was associated with a 388-bp insertion (P=1.27×
10−22) consisting almost entirely of LINE sequence. The LINE se-
quencewas inserted 8.3 kb downstream fromMYH7 and increased
mRNA abundance (β=1.37). The expression of LOC112443864
(ENSBTAG00000053433) encoding MHC class I polypeptide-relat-
ed sequence B-like was associated with an 11.6-kb insertion (P=
2.18×10−25) containing 2.3 kb of SINE, LINE, and ERV-LTR ele-
ments 7.4 kb upstream (β=1.09) (Supplemental Fig. 8). Given its
location nearby the bovine leukocyte antigen (BoLA) complex,
this SV potentially could contribute to eQTL in immune-related
tissues.

We realized that the 11.6-kb insertion affecting LOC1124
43864 expression also highlights difficulties in association testing
with large SVs. The original pangenome variant panel constructed
from the 16 haplotypes contained three near-identical (>99.9% se-
quence identity) insertion alleles, differing by only several SNPs.
Each allele, when considered individually for molQTL mapping
after PanGenie-based genotyping, was below the significance
threshold for LOC112443864, but curating andmerging the alleles
before genotyping and conducting the eQTL analysis revealed a
highly significant peak (Supplemental Fig. 9).

cis-sQTL mapping

Weperformed a similar analysis for sQTL, nowusing intron excision
ratios as the phenotypes.We tested for associations in 14,243 genes

with 46,417 splicing clusters. With the PanGenie+ variant set, we
find 3,613,475 associated variants for 16,893 sQTL (7064 spliced
genes [sGenes] and 10,629 splicing clusters), of which 5366 were
SVs and 1061 were SVs >1 kb. Again, we found only 11 additional
sGenes compared with using the short-read-only data set, but we
did find 73 SV-sQTL with 15 sSVs as the unique-top variant (Fig.
5A) and 58 sQTL for which the top variant is an SV that is in near-
perfect LD with a small variant (Fig. 5B; Supplemental Table 2).
Similar to our observations for SV-eQTL, over half of the PanGenie
+ SV-sQTL were undetected by short reads with a further quarter
with low genotyping accuracy (Supplemental Table 1).

We examined an sQTL for CEP89 (ENSBTAG00000004864)
encoding centrosomal protein 89 in more detail, noting that a
1.3-kb insertion at Chr 18: 43,395,289 3 kb downstream from
the transcription start site and 420 bp upstream of the 3′ splice
site of the second intron was the top associated variant for a splice
cluster containing two splice junctions. This 1.3-kb insertion was
approximately six times more significant (P=6.0 ×10−11) than
the next highest SNP, with β=−0.86 (Fig. 5C). The inserted se-
quence was almost entirely an LTR retrotransposon and was pre-
sent in ∼30% of samples, contributing to alternative splicing
(Fig. 5D). The two associated splice junctions span the second
and third exon of CEP89 (Supplemental Fig. 10). However, the an-
notation of three CEP89 transcripts in Ensembl again appears in-
complete as RefSeq indicates seven CEP89 isoforms. Although
the SV does not affect the overall CEP89 expression (i.e., CEP89
was not an eGene), it is associated with the abundance of two iso-
forms, suggesting that this sQTL promotes alternative isoform us-
age and so impacts the relative abundance of distinct CEP89
isoforms (Supplemental Fig. 10C).
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Figure 4. Nominal eQTL association significance (left) and normalized TPM values for the expressed
gene (right) for STN1 (A) and CEP15 (B). The red diamond represents the top-associated SV. Linkage dis-
equilibrium (LD) between the SV and all other variants within the cis-window is indicated with the color
gradient.
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We also examined an sQTL for ASAH2 (ENSBTAG0000000
3529) encoding N-acylsphingosine amidohydrolase 2. The top as-
sociated variant was 34 kb downstream and was a 3.6-kb insertion
and was approximately 150 times more significant (P= 1.60×
10−11) than the next most significant SNP, causing alternative
splicing (Supplemental Fig. 11) with β=1.24. The inserted se-
quence contained ∼2 kb of BovB repeats, another transposable
element.

The inserted sequence was located within a putative duplica-
tion, causing potentialmisalignments of short reads and thus erro-
neously calling a C-to-T transition at 26:8694035. This variant has
previously been reported (EVA: rs385128608). However, long-read
alignments more strongly support the 2-kb insertion detected
through the assemblies, although even these were complicated
to validate (Supplemental Fig. 12). Although the SV genotyped
through PanGenie appears to be the most accurate, the limited
LD observed with adjacent small variations may also indicate im-
perfect genotyping owing to limited unique k-mers in the region.
More generally, there are 4338 instances in which a SNP and SV
share a starting genomic coordinate, of which 1851 (42.7%) occur
in regions identified as VNTRs (Leonard et al. 2023), inwhich short
reads can easily misalign and appear as motif variation rather than
insertions/deletions of additional repeats. There are 599 and 425
SV-e/sVariants, respectively, overlapped by SNPs, of which 61
and 85, respectively, are highly significant (P<1× 10−10).

Discussion

Genotyping pangenome-discovered variation, including both
small variants and SVs, with short reads improves eQTL and
sQTL mapping over just using the short reads alone. Compared
with the long-read truth set, we detected too few deletions
(10,000 vs. 32,000) and too many insertions (43,000 vs. 37,000)
with short reads, and of the discovered SVs,manywere poorly gen-

otyped. Many putative short-read SVs were filtered out, like the
388-bp insertion affectingMYH7, which could not be confidently
clustered as per-sample alleles erroneously ranged from 130 to 458
bp. Furthermore, ∼20% of discovered insertions were incomplete-
ly assembled, whichwould hinder downstream characterization of
the sequence and prevent differentiation betweenmultiple alleles,
which occur frequently at large SVs. From the same set of short
reads and assemblies from eight individuals, PanGenie was able
to accurately genotype variation and discover several new
e/sGenes, as well as compelling new SV causal candidates.

Given the relatively small effective population size (about
100) and high relatedness of the Original Braunvieh and Brown
Swiss breeds, even 16 haplotypes were sufficient to capture 69%
of SVs in 25 unrelatedOriginal Braunvieh or Brown SwissHiFi sam-
ples. The assemblies also could detect larger insertions compared
with using the samples’ raw sequencing directly with read-based
approaches, as recently observed (Harvey et al. 2023). Further-
more, we identify cases like an SV-sQTL for ASAH2, in which
SNPs (including some reported in public databases) may actually
be SVs. PanGenie can resolve such cis-e/sQTL associations with
the genotyped SVs correctly called from high-quality assemblies.
Creating haplotype-resolved assemblies is currently the biggest
bottleneck in this approach, but given a larger number of initial as-
semblies, associationmapping may further improve by only using
PanGenie genotyped variation and not supplementing with occa-
sionally erroneous short-read-called variation.

We observe extensive LD between SNPs and SVs, as reported
elsewhere (Zhou et al. 2022b; Lee et al. 2023), which limits the
number of e/sGenes that were uniquely discovered by the
PanGenie variant set. However, including SVs revealed equally or
more significant top associations and, in some cases,more compel-
ling causal candidates (e.g., deletion of an entire exon) than the
tagging SNPs. This is particularly true for 53 and 41 insertion SV-
e/sQTL, respectively, which can only comprehensively be
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interrogated through long reads or assembly-based approaches.
Still, the variant set lacks a moderate fraction of SVs segregating
in this cattle population, particularly rare alleles that might have
an especially strong impact on gene expression and splicing (Li
et al. 2017; Wagner et al. 2023), and so, a full long-read cohort
may provide greater power to find untagged SV-QTL.

Several of the SV-QTL examined in detail (e.g., STN1, CEP89,
and ASAH2) contain inserted or deleted sequences that are largely
composed of transposable elements, like ERV-LTR, BovB, andhobo
transposons. More generally, we found 51 out of 92 (55.4%)
SV-eQTL and 37 out of 73 (50.7%) SV-sQTL contained transpos-
able elements (Supplemental Table 3), matching previous observa-
tions of SVs widely containingmobile genetic elements (Chaisson
et al. 2019; Ebert et al. 2021). Althoughmany of these e/sQTLwere
also associated with SNPs that were in LD with SVs, transposable
elements are widely reported to be able to mediate expression
(Almeida et al. 2007; Elbarbary et al. 2016; Platt et al. 2018; Kelly
et al. 2022), and so are strong candidates for being the causal var-
iants. Given the SV size distribution spike around the size of LTR
elements, it is likely such transposable elements will increasingly
be identified as a driving force behind bovine phenotypic
diversity.

Association mapping with SVs is not just a simple extension
to using SNPs, owing to SVs’ greater proclivity of having highly
similar but distinct alleles. Larger SVs (e.g., >1 kb) are likely to ap-
pear multiallelic across older assemblies or individual high-quality
reads (typically quality value of about 30, or one error expected per
one kb). Distinguishing technical noise (errors in reads/assem-
blies) from meaningless biological variation (differences in allele
have no functional consequence) or from meaningful biological
variation (differences in allele may functionally impact gene regu-
lation) is an open and challenging question. Addressing this ques-
tion is particularly critical for pangenomes containing diverse
(sub)species, as multiallelic but similar SVs become increasingly
common, which can dilute significant associations below their
thresholds.

We also confirm recent results that at moderate coverages
(about 10-fold), HiFi reads can replace short reads for small variant
calling, while accurately calling SVs (Harvey et al. 2023; Kucuk
et al. 2023). The former is especially true in highly repetitive re-
gions like centromeric satellites or tandem repeats, which have
largely been challenging to assess with short reads even using ded-
icated tools. As such, future large efforts, like the Bovine Long Read
Consortium (BovLRC) (Nguyen et al. 2023), will likely be able to
assess nearly all genomic variation from only a single data source
of accurate long reads, as well as providing sufficient samples for
statistically significant QTL mapping of rare SVs and trans-QTL.
However, in the intermediate future, although solely long-read co-
horts are prohibitively costly, we show that several assemblies and
pangenome genotyping of SVs can greatly improve our ability to
detect additional e/sQTL as well as identify more compelling caus-
al candidates.

Methods

HiFi sequencing

We extracted high-molecular-weight DNA from blood of two ani-
mals with the Qiagen MagAttract HMW kit, following the manu-
facturer’s protocols. PacBio HiFi libraries were generated and
sequenced on three SMRT cells each by the Functional Genomic
Center Zurich (FGCZ).

Testis tissue from 25 additional BSW/OBV individuals was
sampled froma commercial abattoir in Zürich, Switzerland.We ex-
tracted high-molecular-weight DNA with the Monarch HMW ex-
traction kit for tissue (New England BioLabs) and followed the
manufacturer’s recommendations. DNA fragment length and
quality were assessed by the FGCZ with the Femto pulse system
(Agilent). PacBio HiFi libraries were produced and sequenced on
one SMRT cell per individual with a Sequel IIe.

Genome assembly

Four Original Braunvieh and four Brown Swiss haplotypes
were assembled from publicly available data (under NCBI
BioProject [https://www.ncbi.nlm.nih.gov/bioproject/] accession
number PRJEB42335). In addition, we assembled four Brown
Swiss haplotypes from new HiFi data (accession codes
ERS15606279 and ERS15606280) from two F1s. We used hifiasm
(v0.19.4-r575) (Cheng et al. 2021) to generate the haplotype-re-
solved assemblies, using default parameters and providing paren-
tal k-mers of size 31 counted by yak (v0.1-r66-dirty, https
://github.com/lh3/yak) for the two trios. We scaffolded the result-
ing contigs to ARS-UCD1.2 using RagTag (v2.1.0) (Alonge et al.
2022) with the additional parameters “-cx asm20.”

PanGenie genotyping

We created the variant panel from the 16 cattle assemblies
following the approach laid out by PanGenie (Ebler et al. 2022).
Briefly, we aligned each assembly to ARS-UCD1.2 with minimap2
(v2.24-r1122) (Li 2018) with the parameters “-ax asm20 -m 10,000
-z 10,000,50 -r 50,000 ‐‐end-bonus=100 -O 5,56 -E 4,1 -B 5,” fol-
lowed by calling haploid variants for each haplotype with paf-
tools.js. Variants were merged into diploid calls and filtered
according to PanGenie. We additionally modified the merging
step to consider SVs with >98% sequence identity to be part of
the same cluster and take the first SV of the cluster as the allele.

We genotyped 307 short-read samples using PanGenie
(v.2.1.1) (Ebler et al. 2022) with the pangenome variant panel us-
ing default parameters. Each VCFwas thenmerged using BCFtools
(v1.17) merge (Danecek et al. 2021).

Small variant calling

We aligned short-read samples (available fromNCBI BioProject ac-
cession no. PRJEB28191) to the ARS-UCD1.2 reference using BWA-
MEM (v0.717) (Li 2013) using the -M flag, followed by coordinate
sorting and deduplicating with SAMtools (v1.17) (Danecek et al.
2021). Variants were called per-sample using DeepVariant
(v1.5.0) (Poplin et al. 2018) with the “WGS” model and jointly
genotyped and filtered using GLnexus (v1.4.1) (Yun et al. 2021)
with the “DeepVariantWGS” configuration. Sporadically missing
variants were then imputed using Beagle (v5.4) (Browning et al.
2018).

We aligned long-read samples to ARS-UCD1.2 using mini-
map2 with the parameters “-ax map-hifi” and converted to BAM
files as described above. We called variants as above, except using
the “PACBIO” model for DeepVariant.

Long-read SV calling

We called and jointly genotyped SVs using Sniffles (v2.0.7)
(Smolka et al. 2024) on the aligned long-read files with the param-
eter “‐‐min_sv_len=50.” For the assembly haplotype samples, we
additionally used the “‐‐phased” parameter. We filtered out
BND-type variants as well as variants exceeding 100 kb with
BCFtools view.
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Short-read SV calling

We used DELLY (v1.1.8) (Rausch et al. 2012) to call SVs per sample
from the aligned short-read BAM files, before using delly merge
with the flags “‐‐minsize 50 ‐‐precise ‐‐pass” to create a list of SV
sites. We then used delly call to force-genotype these SV sites.
We also used INSurVeyor (v1.1.2) (Rajaby et al. 2023) to similarly
discover SV sites, merged across samples with SurVClusterer
(v1.0, https://github.com/Mesh89/SurVClusterer), and then
force-genotype using SurVTyper (796e9d0; https://github.com/
kensung-lab/SurVTyper). We removed all insertions from the
DELLY SV calls before merging with the INSurVeyor SV calls
using BCFtools concat to create a unified set of insertions and de-
letions from short reads.

Variant analyses

We used BCFtools to merge the DeepVariant short-read-called var-
iants with the PanGenie genotyped variants for the 307 samples,
using the concat commandwith the “-D” flag to remove duplicate
variants (giving allele/genotype priority to DeepVariant). Indels
were left-normalized with BCFtools norm.

We assessed genotype accuracy using hap.py (v0.3.15, https
://github.com/Illumina/hap.py), using the short-read-called vari-
ants as truth and the HiFi-called variants as query. We determined
the overlap of the two variant sets using BCFtools isec with param-
eters “-c some -n +1” to allow partial overlapping of multiallelic
sites, followed by determination of the proportion in centromeric
satellites using BEDTools (v2.30.0) (Quinlan and Hall 2010) inter-
sect on those positions and annotated regions. We determined if
multiples SVs were “the same” using Jasmine (v1.1.5) (Kirsche
et al. 2023), allowing intersections up to the smaller of max_dist_
linear = 1 (proportional to SV size) and max_dist = 1000 (1 kb).

We used the BCFtoolsmendelian2 plugin to assessMendelian
inconsistency rates.

RNA sequencing and alignment

RNA from117 testis sampleswere sequenced frompaired-end total
RNA libraries, as described previously (Mapel et al. 2024), available
from the NCBI BioProject accession number PRJEB46995. Briefly,
the sequencing reads were trimmed using fastp (v0.23.4) (Chen
et al. 2018) and aligned to ARS_UCD1.2 and the Ensembl gene an-
notation (release 104) with STAR (version 2.7.9a) (Dobin et al.
2013). We produced an additional set of alignments with the
flag ‐‐waspOutputMode to account for allelic mapping bias for
sQTL analyses.

QTL analyses

Gene quantification and covariate files were processed for e/sQTL
analyses as previously described (Mapel et al. 2024). Briefly, to
quantify gene-level expression in TPM, we used QTLtools quan
(Delaneau et al. 2017), and to infer gene-level read counts, we
used featureCounts (Liao et al. 2014). We removed lowly eGenes
and only included genes with ≥0.1 TPM in ≥20% of samples and
six or more reads in ≥20% of samples. Filtered expression values
were quantile-normalized and inverse normal transformed for
downstream analyses.

For splicing quantification, we considered intron-excision
values from intron clusters identified. Specifically, we identified
exon–exon junctions from WASP-filtered reads with RegTools
(Cotto et al. 2023), followed by using Leafcutter (Li et al. 2018)
to construct intron clusters and an altered “map_clusters_to_
genes.R” script to map clusters to the cattle gene annotation
(Ensembl release 104). We filtered introns with read counts in

<50% of samples, introns with low variability across samples,
and introns with fewer than max(10, 0.1n) unique values (where
n is sample size). We used the “prepare_phenotype_table.py”
script from Leafcutter to normalize filtered counts and produce fi-
les for sQTL mapping.

We filtered variants with MAF<0.01 and split multiallelic
sites using BCFtools view and norm, respectively. We performed
all association testing (for both e/sQTL) using QTLtools (v1.3.1)
(Delaneau et al. 2017). Permutation analyses were performed using
a 1-Mb cis-window 2000 times with a false-discovery rate of 0.05,
which determined the significance thresholds for each gene in
the conditional pass. Nominal association was performed using a
significance threshold of 0.05. LD scores for specific variants
were calculated using PLINK v1.9 (Chang et al. 2015).

The abundance of RefSeq (version 106, GCF_002263795.1)
transcripts was quantified using kallisto (version 0.46.1) (Bray
et al. 2016) and aggregated to the gene level using R (v4.2) (R
Core Team 2022) with the package tximport (Soneson et al. 2016).

Data access

The HiFi data generated in this study have been submitted to the
NCBI BioProject database (https://www.ncbi.nlm.nih.gov/
bioproject/) under accession numbers PRJEB46995 (accessions
SAMEA113612078, SAMEA113612079, SAMEA113612080, SAM
EA113612081, SAMEA113612082, SAMEA113612083, SAMEA1
13612084, SAMEA113612085, SAMEA113612086, SAMEA1136
12087, SAMEA113612088, SAMEA113612089, SAMEA113612
090, SAMEA113612091, SAMEA113612092, SAMEA113612093,
SAMEA113612094, SAMEA113612095, SAMEA113612096, SAM
EA113612097, SAMEA113612098, SAMEA113612099, SAMEA1
13612100, SAMEA113612101, SAMEA113612102) for the truth
set long reads and PRJEB42335 (accessions SAMEA113612103
and SAMEA113612104) for the new assemblies. The F1 parental
short-read data generated in this study have been submitted under
accession number PRJEB18113 (accessions SAMEA8565028 [sire]
& SAMEA8565098 [dam] and SAMEA32980918 [sire] &
SAMEA32981668 [dam], respectively). All scripts are available at
GitHub (https://github.com/AnimalGenomicsETH/pangenome_
molQTL) and as Supplemental Code.
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