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Abstract
High-performance computing (HPC) processors are nowadays integrated cyber-
physical systems demanding complex and high-bandwidth closed-loop power and 
thermal control strategies. To efficiently satisfy real-time multi-input multi-output 
(MIMO) optimal power requirements, high-end processors integrate an on-die power 
controller system (PCS). While traditional PCSs are based on a simple microcon-
troller (MCU)-class core, more scalable and flexible PCS architectures are required 
to support advanced MIMO control algorithms for managing the ever-increasing 
number of cores, power states, and process, voltage, and temperature variability. 
This paper presents ControlPULP, an open-source, HW/SW RISC-V parallel PCS 
platform consisting of a single-core MCU with fast interrupt handling coupled with 
a scalable multi-core programmable cluster accelerator and a specialized DMA 
engine for the parallel acceleration of real-time power management policies. Con-
trolPULP relies on FreeRTOS to schedule a reactive power control firmware (PCF) 
application layer. We demonstrate ControlPULP in a power management use-case 
targeting a next-generation 72-core HPC processor. We first show that the multi-core 
cluster accelerates the PCF, achieving 4.9x speedup compared to single-core exe-
cution, enabling more advanced power management algorithms within the control 
hyper-period at a shallow area overhead, about 0.1% the area of a modern HPC CPU 
die. We then assess the PCS and PCF by designing an FPGA-based, closed-loop 
emulation framework that leverages the heterogeneous SoCs paradigm, achieving 
DVFS tracking with a mean deviation within 3% the plant’s thermal design power 
(TDP) against a software-equivalent model-in-the-loop approach. Finally, we show 
that the proposed PCF compares favorably with an industry-grade control algorithm 
under computational-intensive workloads.

Keywords RISC-V · HPC processor · Power and thermal control · Scalable · Parallel 
microcontroller · PULP
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1 Introduction

After the end of Dennard’s scaling, the increase in power density has become an 
undesired but unavoidable collateral effect of the performance gain obtained with 
integrated systems’ technological scaling. An increase in power density has mul-
tiple adverse effects, which are collectively referred to as the power wall: compo-
nent’s lifetime shortening, electromigration, dielectric breakdown due to thermal 
hot spots and sharp thermal gradients, and degraded operating speed due to leakage 
current exponentially increasing with temperature. This trend has made the process-
ing elements (PEs) at the heart of computing nodes energy, power, and thermally 
constrained [1].

Two approaches have been adopted to mitigate the power wall at the system 
level  [2]: static thermal management (STM) and dynamic thermal management 
(DTM) techniques. The former allows increasing the thermal design power (TPD) 
sustained by the chip with a tailored design of heat sinks, fans, and liquid cooling. 
However, STM strategies incur increasingly unsustainable costs when over-designed 
to remove heat in the worst-case conditions for today’s high performance comput-
ing (HPC) processors. Consequently, DTM techniques have become more and more 
crucial to bound the operating temperature with run-time active control, for exam-
ple, by exploiting Process, Voltage, Temperature (PVT) sensors along with dynamic 
voltage and frequency scaling (DVFS), thread migration/scheduling, throttling, and 
clock gating. Hence, standard cooling systems can be designed to handle the average 
case, leaving the management of peaks to active control.

Modern high-performance processors feature many cores integrated into a single 
silicon die. Recent notable examples are AWS Graviton 3 (64 Arm Neoverse V1 
cores)  [3], Intel Raptor Lake (24 cores, 32 threads)  [4], AMD Epyc 7004 Genoa 
(up to 96 Zen 4 cores)  [5], SiPearl Rhea Processor (72 Arm Neoverse V1 Zeus 
cores) [6], Ampere Altra Max (128 Arm Neoverse N1), and the NVIDIA Grace cen-
tral processing unit (CPU) (144 Arm Neoverse V2 cores). Their application work-
load requires runtime dynamic trade-off between maximum performance (fastest 
operating point [7]) in CPU-bound execution phases and energy efficiency in mem-
ory-bound execution phases (energy-aware CPU [8]).

While software-centric advanced DTM policies have been proposed  [2, 9, 10], 
they mainly execute on the CPU’s application-class processors (APs), playing the 
role of high-level controllers (HLCs) governors. Nevertheless, in recent years it has 
become clear the trend of abstracting power and system management tasks away 
from the APs1 [11] towards control systems that are closer to the controlled hard-
ware components and can guarantee faster, and more precise control actions, namely 
low-level controllers (LLCs).

Modern processors integrate on-die LLCs [12] in the uncore domain, referred to 
as power controller systems (PCSs), as dedicated embedded hardware resources, co-
designed with a power control firmware (PCF) implementing complex multiple-input 

1 https:// github. com/ Arm- softw are/ SCP- firmw are.

https://github.com/Arm-software/SCP-firmware


95

1 3

International Journal of Parallel Programming (2024) 52:93–123 

multiple-output (MIMO) power management policies. Advanced DTM involves 
embedding and interleaving a plurality of activities in the PCS, namely (i) dynamic 
control of the CPU power consumption with short time constants [13], required to 
prevent thermal hazards and to meet the TDP limit (power capping [14]), (ii) real-
time interaction with commands provided by on-die (Operating System (OS)—
power management interfaces and on-chip sensors) and off-die (Baseboard Manage-
ment Controller (BMC), voltage regulator module (VRM)) units and (iii) dynamic 
power budget allocation between general-purpose (central processing units (CPUs)) 
and other integrated subsystems, such as graphic processing units (GPUs) [8].

Existing on-die power controller systems (PCSs) share a similar design structure. 
They feature an embedded single-core microcontroller unit (MCU) 1 supported by 
dedicated hardware state machines [8] or more generic accelerators [15]. The hard-
ware typically takes advantage of specific software libraries2 to implement the real-
time execution environment required to run power management policies under tight 
timing constraints. Many-core power management demands fine-grained control of 
the operating points of the processing elements (PEs) [12] to meet a given proces-
sor power budget while minimizing performance penalties. The control policy has 
to provide fast and predictable responses to promptly handle the incoming requests 
from the OS or BMC and prevent thermal hazards. A flexible and scalable way to 
sustain these computationally intensive operations is required to provide accurate 
control per core and to support more advanced control policies, such as those based 
on model-predictive control [9].

Furthermore, simultaneous hardware (HW) and software (SW) development of 
power controller system (PCS) and power control firmware (PCF) has to be cou-
pled with a dedicated co-design and validation framework within the controlled sys-
tem. Indeed PCS and PCF performance directly depends on their interaction with 
the physical state of the controlled processors—temperature, power, workload, and 
control decisions from the high-level controllers (HLCs). Such a physical state time-
scale model requires near real-time speed to be meaningful. This involves, on the 
one hand, the design of adequate on-chip interfaces between the controller to be val-
idated—integrated system under test (ISUT)—and the surrounding system. On the 
other, a proper virtual representation of the system surrounding the ISUT that mod-
els physical components on a target computer [16], called plant model. In a design 
relying on dedicated PCSs, the controlled plant is a complex multiple-input multi-
ple-output (MIMO) multi-processor system on chip (MPSoC) with application-class 
processors (APs) that is often not available during the design phase of the PCS to be 
integrated, thus being replaced by a thermal and power model encapsulating floor-
plan, power and thermal information of the central processing unit (CPU) under a 
particular application workload.

Today’s advanced heterogeneous system on chip (HeSoC) integrate both single/
multiprocessors microcontroller units (MCUs) and configurable hardware com-
ponents on the same die (field-programmable gate array (FPGA)-system on chip 

2 https:// github. com/ open- power.

https://github.com/open-power
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(SoC)). Their native integrated and configurable structure makes them ideal options 
for closed-loop emulation of on-chip PCSs targeting advanced power management.

Therefore, this paper’s central idea is to fulfill a twofold need: on the one hand, 
the design of a capable PCS architecture optimized for handling a per-core, reac-
tive thermal and power control strategy within the required power budget and timing 
deadlines. On the other, the design of an agile, closed-loop framework for the joint 
HW/SW development of integrated control systems, leveraging the capabilities of 
modern HeSoC platforms.

To the best of the authors’ knowledge, this work proposes the first research plat-
form where the full-stack (HW, real-time OS (RTOS), PCF and power/thermal 
emulation setup) required for low-level controller (LLC)-driven on-chip power and 
thermal management is released open-source.3 Unlike traditional Linux-capable 
symmetric multiprocessing (SMP) multi-core systems, as a research platform for 
on-chip power and thermal management, ControlPULP aims to keep the design’s 
HW and SW complexity to a 32-bit manager and 32-bit programmable many-core 
accelerator (PMCA) with RTOS support. This design choice better fits the resource 
constraints of a controller embedded in the uncore domain of a larger CPU that is 
assumed to integrate out-of-order, massive application-class processing elements 
already.

The manuscript significantly extends the conference work in [17] by detailing and 
jointly validating the power/thermal model on the HeSoC-FPGA with the PCS and 
PCF. Overall, the work provides the following contributions: 

1. We design an end-to-end RISC-V parallel PCS architecture named ControlPULP, 
based on open RISC-V cores and hardware IPs [18]. ControlPULP is the first fully 
open-source PCS with a configurable number of cores and hardware resources to 
track the computational requirements of the increasingly complex power man-
agement policies of current and future high-performance processors (Sect. 3), as 
well as the first proposed in the RISC-V community. ControlPULP integrates a 
manager core coupled with a multi-core PMCA (cluster) with per-core FPUs for 
reactive control policy step computation. The cluster subsystem hosts a direct 
memory access (DMA) engine to accelerate the data transfers from on-chip sen-
sors. This enables data acquisition with 2D stride patterns, a crucial capability 
when reading from Process, Voltage, Temperature (PVT) sensors with equally 
spaced address mapping (Sect. 5.3).

2. We tailor ControlPULP to meet real-time power management requirements. The 
architecture integrates a fast Core Local Interrupt Controller (RISC-V CLIC [19]) 
tasked to process the interrupt messages associated with OS- and BMC-driven 
commands, as well as a low latency predictable interconnect infrastructure 
(Sect. 5.3.2).

3. We demonstrate the end-to-end capabilities of ControlPULP with a case study 
on the control algorithm quality of service (QoS). We develop a closed-loop 
evaluation framework based on the concept of heterogeneous system on chips 

3 https:// github. com/ pulp- platf orm/ contr ol- pulp.

https://github.com/pulp-platform/control-pulp
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(HeSoCs) for real-time characterization of the control policy while simultane-
ously fast-prototyping the underlying hardware (Sect. 4). The framework relies on 
a power, thermal and performance model of the controlled CPU as plant, which 
is paired with workload instruction traces and the PCF to realize the closed-loop. 
This approach enables a multi-step validation and characterization environment 
ranging from software in the loop (SIL) and model in the loop (MIL) to hardware 
in the loop (HIL) abstractions (Sect. 5.5).

4. Finally, we benchmark the reactive control algorithm against one of the few 
freely-accessible industry-graded state-of-the-art (SOTA) control policy, IBM’s 
OpenPower, in a MIL simulation, achieving 5% more precise set-point tracking 
(Sect. 5.5).

2  Related Work

There is little publicly available information on PCSs architectures and their HW/
SW interface. Table 1 summarizes the leading solutions from academia and industry.

Intel’s Power Control Unit (PCU), introduced with Nehalem microprocessor [21], 
is a combination of dedicated hardware state machines and an integrated microcon-
troller  [8]. It provides power management functionalities such as dynamic voltage 
and frequency scaling (DVFS) through voltage-frequency control states (P-states 
and C-states), selected by the HW (Hardware-Managed P-States). The PCU com-
municates with the PEs with a specialized link through power management agents. 
Intel’s main control loop runs at 500 μs [22].

AMD adopts a multiple power controller design, with one System Management 
Unit (SMU) for each CPU tile (group of cores) in a Zeppelin module. All System 
Management Units (SMUs) act as slave components, monitoring local conditions 
and capturing data. One of the SMUs also acts as a master, gathering all information 
from the slave components and then choosing the operating point for each core [23].

Table 1  Comparison among existing proprietary and freely-available PCS from industry and academia

PCS Provider HW PCF  
scheduling

Programmable 
accelerator

Openness 
(HW/SW)

Industry
PCU Intel 1-core, HW FSMs n.a. ✗ ✗✗
SCP, MCP Arm 2-cores SW FSMs ✗ ✗✓
SMU AMD 1-core n.a. ✗ ✗✗
OCC IBM 1-core, microcode engines SW FSMs ✗ ✗✓
Academia
Bambini et al. [20] Academic 1-core RTOS ✗ ✗✓
This work Academic 1-core, cluster accelerator RTOS ✓ ✓✓
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Arm implements two independent PCSs based on the Arm Cortex-M7 micro-
controller, System Control Processor (SCP) and Manageability Control Processor 
(MCP). The SCP provides power management functionality, while the MCP sup-
ports communications functionality. In Arm-based SoCs the interaction with the OS 
is handled by the System Control and Management Interface (SCMI) protocol [24]. 
SCMI provides a set of OS-agnostic standard SW and HW interfaces for power 
domain, voltage, clock, and sensor management through a shared, interrupt-driven 
mailbox system with the PCS.

The IBM On-Chip Controller (OCC), introduced with Power8 microprocessor, is 
composed of 5 units: a central PowerPC 405 processor with 768 KiB of dedicated 
SRAM and four microcode general-purpose engines (GPEs). The latter are respon-
sible for data collection from PVT sensors, performance state control and CPU stop 
functions control (PGPE and SGPE) respectively. IBM OCC’s PCF is called Open-
POWER, and has a periodicity of 250 μs  [15]. It relies on a frequency voting box 
mechanism to select a frequency for each core conservatively based on the mini-
mum input—highest Pstate—from several independent power-control (control vote) 
and temperature-capping (thermal control vote) features. The thermal control vote 
consists of one proportional integral derivative (PID) that reduces the frequency of 
each core based on the temperature of the hottest processing element (PE). Further-
more, similarly to Arm’s SCMI standard, IBM’s OCC relies on a command write 
attention/interrupt mechanism to notify the PGPE of an incoming asynchronous 
command/request to be processed2 , such as the desired PState. PGPE arbitrates this 
information with the voting box output from the PowerPC 405 according to a mini-
mum PState policy.

Last, Bambini et al. [20] show that a single-core, RISC-V-based microcontroller 
can execute similar reactive control algorithms with a control loop of 500 μ s. The 
work relies on the SPI interface to conduct the main periodic task and lacks support 
for essential HW intellectual propertys (IPs) such as DMA and floating point unit 
(FPU).

All the SOTA power controllers lack the flexibility and scalability of a multi-core 
architecture supported by adequate I/O bandwidth from/to on-die and off-die power 
monitors and actuators coupled with fast interrupt handling hardware for HLCs 
(OS and BMC) commands dispatching, which is the critical innovation provided by 
ControlPULP.

It is essential to notice that PCSs design is only half of the coin, as its perfor-
mance depends on the PCF and real-time performance achieved in closed-loop. Sev-
eral works have targeted the emulation of ’in-field’ power management algorithms, 
but none of them has validated the PCS and PCF designs jointly (co-designed).

Atienza et  al.  [25, 26] propose a thermal emulation framework where a 
generic MPSoC is implemented on FPGA. A host computer executes the thermal 
model, which is driven by real-time statistics from processing cores, memories, 
and interconnection systems emulated on the FPGA. With the increasing number 
of cores in modern CPUs, an FPGA approach that implements the entire MPSoC 
is not feasible and incurs resource partition with high platform costs. Beneventi 
et  al.  [10] design a similar closed-loop approach where a subset of the Intel 
Single-Chip-Cloud computer’s PEs execute the thermal model while receiving 
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online workload information from the remaining PEs. While employing actual 
and commercial hardware in the emulation, the work focuses on the high-level 
controller (HLC) only and with a software-centric methodology, being HW/SW 
co-design of the LLC prevented by the inaccessibility of the underlying HW.

Beyond these approaches, our work aims at co-designing the LLC (PCS) and 
HW/SW components of the controlled plant to assess “in-field” performance. 
This step is well understood in the design flow of classic control systems target-
ing automotive, avionics, and robotics domains, where progressively more real-
istic simulations of the plant in the closed-loop are coupled with the introduc-
tion of the actual hardware controller (HIL) and checked against model-based 
closed-loops (SIL, MIL) from early development stages of the control design.

A taxonomy of the various design possibilities for a control system that adapts 
well to the scenario of this work is provided in [27]. On the controller side, an 
FPGA emulation approach provides the benefit of testing the control firmware 
developed during SIL/MIL on the actual hardware controller with the guaran-
tee of cycle-accurate simulation. The latter is required to achieve fine-grained 
hardware observability and controllability  [16] and one-to-one correspond-
ence between the register transfer level (RTL) source and its FPGA mapping 
in terms of clock cycles (Direct FPGA Architecture Model Execution (FAME) 
systems [28]). On the plant side, a virtual simulation of the plant is preferred to 
an FPGA-based approach, which incurs high development costs due to the com-
plexity of the whole plant system to be emulated. For this purpose, MCUs are 
the solution adopted by the industry nowadays: they are cheap, general-purpose 
and with a standardized and automated software development process.

The combination of MCUs and field-programmable gate arrays (FPGAs) flex-
ibility takes the best of both worlds and is supported by modern, commercial 
off-the-shelfs (COTSs) FPGA-SoCs platforms such as Xilinx Zynq Ultrascale+ 
and Versal families, making it the solution of choice adopted in our work.

3  The ControlPULP Platform

ControlPULP extends commercial controllers’ single-core architecture, pro-
viding the first multi-core RISC-V PCS architecture. To make the paper self-
contained, in the following, we first provide a high-level overview of a generic 
high performance computing (HPC) CPU that integrates the PCS. We detail the 
platform’s software stack, which helps understand the control policy flow, the 
interaction between the controlled plant and the controller, and the terminology 
adopted throughout the manuscript (Sect. 3.1). Finally, we detail ControlPULP’s 
hardware architecture and design trade-offs (Sect. 3.2) to implement the control 
algorithm.
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3.1  Controlled Plant and Power Control Firmware

Figure  1 depicts the high-level structure of the HPC CPU silicon die. From a 
control perspective, we distinguish between the controlled system (plant) and the 
on-chip LLC controller, namely ControlPULP. Furthermore, the figure illustrates 
the environment surrounding the CPU socket hosting the silicon die, namely the 
motherboard, with off-chip actors, such as VRM and BMC. The OS running on 
the PEs, as well as the off-chip BMC, are the two HLCs.

We assume the controlled plant is a many-core HPC CPU with 72 application-
class PEs, and exposes hardware mailboxes through a network on chips (NoC) 
interconnect system. While the mailboxes mediate the dynamic frequency scaling 
(DFS) commands (e.g. target frequency) dispatched on-chip by the governor OS 
HLC to the LLC, power management protocols such as Power Management Bus 
(PMBUS), Adaptive Voltage Scaling (AVSBUS) and Management Component 
Transport Protocol (MCTP) mediate dynamic voltage scaling (DVS) commands 
(e.g. power budget threshold) from the BMC HLC, as detailed in Sect. 3.2.3.

Fig. 1  High-level overview of the system. We highlight on-chip and off-chip HLCs (OS and BMC), 
the LLC (ControlPULP) and the MIMO IO interfaces. Furthermore, the figure details the PCF phases 
described in Sect. 3.1

Fig. 2  ControlPULP software 
stack. The application control 
policy (PCF) executes on top of 
FreeRTOS, which controls the 
hardware with target-specific 
drivers and hardware abstrac-
tion layer (HAL) application 
programming interfaces (APIs)
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To clarify the terminology in Fig. 1, on-die designates any element of the HPC 
CPU that resides on the chip die, such as PVT sensors and registers, frequency actu-
ators, and mailboxes. In-band services refer to SCMI-based interaction and PVT 
data acquisition. Lastly, off-die indicates VRM communication and BMC requests 
through out-band services.

The PCF executes the thermal and power control functions and manages on-die 
and off-die communications and data transfers. Real-time priority-driven scheduling 
with static task priorities and preemption is required to manage the control func-
tions. In this work, we use FreeRTOS, an industry-grade, lightweight, and open-
source operating system for microcontrollers. The software stack of the proposed 
platform is shown in Fig. 2.

The PCF routine implements a two-layer control strategy [20], managed by the 
FreeRTOS scheduler as two periodic tasks characterized by multiple harmonic fre-
quencies: the periodic frequency control task (PFCT)—2 kHz, i.e. 500 μs—and 
the periodic voltage control task (PVCT)—8 kHz, i.e. 125 μ s. Splitting the control 
routine into two tasks grants more fine-grained control actions and helps meet differ-
ent performance requirements and sensors-update frequencies. For instance, power 
changes rapidly due to instruction-level variation of the effective switching capaci-
tance of the computing units, while temperature variations are slower. The control 
policy has to handle these widely split time scales. Furthermore, VRM generally 
update more frequently than temperature sensors.

The PFCT is the main control task. It receives the desired clock frequency oper-
ating point for each processing element from the OS HLC governor as well as a 
power budget threshold from the BMC HLC via the PVCT, and computes the opti-
mal frequency/voltage pair to meet the physical and imposed constraints of the sys-
tem. The task is then responsible for dispatching the controlled frequency by directly 
accessing the CPU PLLs, as from Fig.  1. The PFCT executes a two-layer control 
strategy [20] consisting of a power dispatching layer and a thermal regulator layer. 
PFCT’s control step n comprises several phases, illustrated in Fig.  1: (P1) allo-
cate the controlled clock frequency computed at step n − 1 to each core; (P2) read 
the PVT sensor’s registers and the workload characteristics from each core; (P3) 
obtain commands and information on the constraints (DVFS operating points, power 
budget) from the OS and the BMC; (P4) compute the estimated power for each 
core and the total consumed power of the system; (P5) apply a power capping algo-
rithm, such as alpha [20] when the total power exceeds the power budget constraint; 
(P6) further reduce the power of each core through proportional integral deriva-
tives (PIDs) computation when the temperature at phase (P2) exceeds the threshold; 
(P7) compute both the frequency and voltage to be applied to the controlled system. 
Throughout this manuscript, we name control action the computational body of the 
PCF execution (P4)–(P7).

The PCF does not provide per-core voltage control but groups PEs in coarse-
grained voltage domains. The PVCT is responsible for detecting the changes in the 
system’s power consumption. It periodically reads the power consumption of the 
voltage rails—associated with each voltage domain—from the VRM and programs 
micro-architectural power/instruction throughput capping interfaces (if supported by 
the PEs). Lastly, it modifies the PFCT’s power budget threshold as requested by the 
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BMC. Even though the PFCT computes both optimal frequency and voltage, it only 
dispatches the frequencies to apply at phase (P1) in step n + 1 . In contrast, the PVCT 
dispatches the voltages at step n (one iteration before), hence the names chosen for 
the two tasks.

3.2  System Architecture

Figure 3 provides a block diagram overview of ControlPULP. The top-level subsys-
tem of the design is the manager domain, consisting of a CV32E40P open-source4 
industry-grade processor core and a set of system I/O interfaces to interact with 
external peripherals and memory-mapped devices (Sect. 3.2.3). The primary micro-
controller-like subsystem is also a recurrent element in the SOTA designs surveyed 
in Sect. 2.

3.2.1  Real‑Time and Predictability

In the following, we discuss the architectural design decisions concerning RAM 
banking and interrupt processing taken to make the design more suitable for real-
time workloads.

L2 Memory Banks Constant Access Time
The L2 RAM, which is the RAM block connected to the manager domain and 

system I/O interfaces, is sized to 512 KiB, enough to fit the whole firmware binary 
and data so that no swapping is required. The L2 RAM comprises six banks. The 
access time to each bank is constant when there are no access conflicts. Two of 
these banks are marked private to prevent DMA transfers from peripherals and other 

Fig. 3  ControlPULP hardware architecture. On the left, the manager domain with the manager core and 
surrounding peripherals. On the right, the cluster domain accelerator with the eight cores (workers)

4 https:// github. com/ openh wgroup/ cv32e 40p.

https://github.com/openhwgroup/cv32e40p
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components from disturbing the manager core’s instruction and data fetching. The 
manager core has exclusive access to those.

Low Constant Latency Core-Local (CLIC) Interrupt Controller
Provided the need for a real-time and predictable architecture, we extend the orig-

inal core-local interruptor (CLINT), compliant with RISC-V privileged specifica-
tions [29], with the newly proposed core-local interrupt controller (CLIC), currently 
under ratification by the RISC-V community. We employ an open-source implemen-
tation of the CLIC5 that reflects the latest status of the RISC-V CLIC draft specifi-
cations [19]. The integration process includes the addition of CSRs registers in the 
processor’s micro-architecture as per specifications.

The CLIC introduces several improvements to the standard CLINT to achieve 
faster interrupt handling. Among those are dedicated memory-mapped registers for 
software configurable interrupt priority and levels at the granularity of each inter-
rupt line, runtime-configurable interrupt mode and trigger type, and support for 
interrupt preemption within the same privilege level (interrupt nesting). Selective 
hardware vectoring (SHV) enables the programmer to optimize each incoming inter-
rupt for either faster response (vectored mode, when each interrupt service routine 
has a reserved entry in the interrupt table) or smaller code size (direct mode, when 
each interrupt traps to the same exception handler address). Lastly, with the CLIC, 
local interrupts can be extended to 4096 lines instead of being limited to the proces-
sor’s XLEN (32-bit for CV32E40P).

In this work, we implement 256 local interrupt lines coming to ControlPULP 
from the mailbox infrastructure (Sect. 3.2.3). The CLIC configuration helps reduce 
the interrupt response latency and is capable of entering the interrupt handler within 
30 clock cycles (Sect. 5). This is a crucial property to increase responsiveness on 
external, agent-driven requests.

3.2.2  Cluster Accelerator

To meet the computational demands of the control algorithms, in particular, when 
scaling to a large number of controlled high-performance PEs and improving the 
control performance, we opt for a flexible programmable accelerator, namely a clus-
ter of RISC-V CV32E40P cores—referred to as workers in this manuscript—tightly 
coupled to 64 KiB RAM (L1) and a DMA engine. The accelerator is represented in 
Fig. 3 as cluster domain.

Multi-core Computing System
Control algorithms (Sect.  3.1) can be parallelized on the cluster domain 

(Sect. 5.2). This guarantees a high grade of flexibility on the software development 
side, and is in sharp contrast with hardwired control logic featured in SOTA control-
lers (Sect.  2), which lack flexibility. The manager core offloads the control algo-
rithm to the team of workers in the cluster. Each worker features a private instruc-
tion cache for instructions stored in the main L2 memory and accesses L1 through a 
single-cycle latency logarithmic interconnect.

5 https:// github. com/ pulp- platf orm/ clic.

https://github.com/pulp-platform/clic
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In the most straightforward parallelization scheme, a worker computes the con-
trol action (Sect. 3.1) for a subset of the controlled cores. The number of workers in 
the cluster is parametric. In the following, we consider eight cores to demonstrate 
scalability. Each core in the cluster features an FPU with a configurable number of 
pipeline stages. In our instantiation, we use one internal pipeline stage, which is suf-
ficient to meet our frequency target (Sect. 5.1). Furthermore, Montagna et al.  [30] 
show that this configuration achieves high performance and reasonable area/energy 
efficiency on many benchmarks.

2-D DMA Transfer Engine
The cluster domain integrates a multi-channel DMA with direct access to L1 

RAM and low-programming latency (62 clock cycles, Sect. 5.3). The DMA’s main 
task is to provide direct communication between L2 and L1 memories in parallel 
and without intervention from the manager or cluster domains [31].

We tailor the DMA’s capabilities to suit the control policy use case by (i) directly 
routing the cluster DMA to the PVT sensors registers through the outgoing AXI 
master interface, which guarantees flexibility by decoupling data transfers and 
computation phases, (ii) exploiting 2-D transfers for equally spaced PVT registers 
accesses and (iii) increasing the number of outstanding transactions (up to 128) to 
hide the latency of regular transfers.

Commercial PCSs described in Sect. 2 also decouple the actual computation from 
data acquisition. For instance, according to available SOTA information, IBM’s 
OCC employs general-purpose cores (GPEs) tasked to read PEs’s data and tempera-
tures instead of a dedicated data mover engine with reduced programming interface 
overhead [15].

3.2.3  System I/O Interfaces

AXI4 Interfaces ControlPULP features two AXI4 ports, one master and one 
slave, with 64-bit W/R, 32-bit AW/AR wide channels. They play a crucial role in 
the design and guarantee low-latency communication with the controlled system. 
The AXI slave drives the booting process of the PCS. In the high-level structure 
depicted in Fig. 1, an external, secure subsystem is responsible for loading the PCF 
binary into ControlPULP’s L2 SRAM by mapping to a region of the L2 SRAM. 
The AXI master is the transport layer over which the PCS collects PVT sensors data 
and power policy target requirements. On the other hand, it dispatches the computed 
optimal operating point to the PEs during the control policy (Sect. 3.1). Its address 
space is reachable from both the manager and cluster domains.

Mailbox-Based SCMI Communication
ControlPULP adopts and implements the Arm standard SCMI protocol to han-

dle external power, performance, and system management requests from the OS 
HLC. SCMI allows an OS kernel that supports SCMI to interact with Control-
PULP without requiring a bespoke driver directly. Furthermore, the design of the 
SCMI protocol reflects the industry trend of delegating power and performance 
to a dedicated subsystem  [11]. SCMI involves an interface channel for secure 
and non-secure communication between a caller (named agent, i.e., one process-
ing element of an HPC CPU) and a callee (named platform, i.e., ControlPULP). 
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The latter interprets the messages delivered by the former in a shared memory 
area (mailbox region, Fig. 1) and responds according to a specific protocol. The 
proposed PCS implements an interrupt-driven transport mechanism through the 
CLIC. In our use case with 72 controlled cores, the platform can process up to 
144 secure, and non-secure interrupt notifications.

We design hardware mailboxes as the transport layers for the SCMI commu-
nication mechanism. The shared memory region is implemented according to the 
single-channel memory layout described in the specifications. We reserve a space 
of 8B for the implementation-dependent payload field, totaling 40B per channel. 
Each channel is associated with one outgoing interrupt line in the agent-platform 
direction (doorbell). The agent identifier is encoded with the message such that 
more agents can use the same channel as the notification vehicle. Hence, the 
number of interrupts dispatched by the mailbox system can be smaller than the 
number of agents, with the benefit of reducing the area of the interrupt control-
ler’s configuration register file. The agent identifier is not described in the official 
specifications and is mapped to a reserved field of the single-channel memory 
layout. With 64 channels as employed in this work, the shared memory region has 
a size of about 2kiB.

I/O Peripherals for Voltage Rails Power Management ControlPULP inte-
grates a peripheral subsystem in the manager domain, where an I/O data engine 
unit (named �DMA intellectual property (IP)) enables autonomous communication 
between off-die elements and the L2 SRAM with low programming overhead for 
the manager core. In this work, we upgrade the peripheral subsystem with industry-
standard power management interfaces to handle off-die communication services. 
The PCS integrates 6 AVSBUS and PMBUS interfaces towards VRM. The PMBUS 
and AVSBUS bus protocols extend I2C and SPI to monitor voltage and power rails 
digitally, preserving optimal speed/power consumption trade-off. 5 I2C master/slave 
interfaces manage the communication with the BMC and other board-level control-
lers. The slave interfaces transfer DVS operating points (power budget) from the 
BMC according to the Platform Level Data Model (PLDM) and MCTP transport 
layer protocols.

4  FPGA‑Based HIL Thermal, Power, Performance and Monitoring 
Emulation Framework

This section provides an end-to-end description of the HeSoC based HIL emulation 
methodology. The closed-loop approach that we implement introduces the actual 
LLC executing the PCF as ISUT and relies on a thermal, power and performance 
model for the controlled CPU plant. While the control literature refers to such a 
setup as processor in the loop (PIL) or FPGA in the loop (FIL), others already define 
a closed-loop as HIL when the connection between the integrated system under test 
and the plant reflects the actual hardware interface of the final manufactured silicon, 
without relying on a virtual representation [16]. Since this is the case for the present 
work, we adopt the HIL terminology.
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4.1  HIL System and PCS Mapping on FPGA

The Xilinx Ultrascale+ FPGA family is widely adopted in the heterogeneous 
computing domain [32]. It features a Processing System (PS), or host computer, 
and a Programmable Logic (PL), namely the configurable FPGA, integrated on 
the same physical die. Figure 4 provides an overview of the FPGA based emula-
tion framework designed in this work and its main actors.

The PS consists of an industry-standard, application class, quad-core, 64-bit 
 Armv8® Cortex-A53 Application Processing Unit with 32 KiB L1 instruction 
and data cache per core and a 1 MiB L2 cache shared by all four cores—on-chip 
memory (OCM)—, clocked at 1.2 GHz, a dual-core Cortex-R5F Real Time Unit, 
and  Mali™-400 MP2 GPU based on Xilinx’s 16nm FinFET.

We implement ControlPULP on the ZCU102 PL with Xilinx Vivado 2022.1. 
The PS interfaces with ControlPULP through the AXI4 master and slave ports 
(Sect. 3) and provides it with an external reset and 125 MHz clock, which is inter-
nally converted to 50 MHz system clock by the ISUT. Table 2 shows the board’s 
resource utilization inferred by the implementation. Overall, ControlPULP fits 
the available resources with almost 97% utilization.

The communication between the plant simulation and the ISUT is regulated 
through a 4 GiB off-chip DDR4 DRAM provided on the board, which allows 

Fig. 4  HIL test procedure on an FPGA-SoC with ControlPULP

Table 2  ControlPULP resource 
utilization on the Xilinx 
UltraScale+ ZCU102

Bold value indicates the number of LUTs

Resource Utilization Available Utilization [%]

LUT 265718 274080 96.95
FF 153155 548160 27.94
BRAM 278 912 30.48
DSP 93 2520 3.69
I/O 83 328 25.30
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them to exchange data and realize the feedback loop with up to 19.2 GB/s of 
bandwidth.

4.2  Plant Simulation

In the considered control scenario, the plant provides a thermal, power, perfor-
mance, and monitoring framework capable of simulating the power consumption 
and temperature of a high-end CPU processor. The plant simulation is programmed 
in embedded C. Its functionalities are split into several threads employing pthread 
Linux libraries to exploit multi-core parallelism. In the following, we refer to Fig. 4 
and detail the threads’ organization and interaction with the ISUT.

The thermal and power model thread is the leading simulation thread. It car-
ries out the computation of the thermal and power model with a periodicity of 1 μ s 
which, according to the literature  [33, 34], is fast enough to capture the thermal 
dynamics, i.e., three orders of magnitude faster than the fastest thermal time con-
stant ∼ 1ms , and to simulate power spikes and oscillations that are not filtered by the 
hardware power delivery network (up to ∼ 100 μs  [35]). The thread takes as input 
the values controlled and dispatched by the PCS controller (frequency and volt-
age) and the modeled workload from the performance model thread to compute the 
average consumed power and the temperature of each core. The average consumed 
power is computed with an algebraic model of the cores, which includes core-to-
core variability and noise, according to [34]:

where � represents the temperature dependency of the computed power, and Ceff is 
the equivalent effective capacitance of the controlled CPU. The temperature is sim-
ulated through a discrete state space model, which considers the temperature and 
instantaneous power of the neighboring simulated cores. Coefficients are extracted 
from a commercial multi-node RISC-V cluster capable of providing an HPC produc-
tion stack, Monte Cimone [36].

The performance model thread assists the thermal and power model thread by 
providing the workload characteristics for the next interval of time. We rely on a 
trace-driven approach for the simulated workload for practical reasons: (i) the traces 
could be extracted from accurate benchmarks such as PARSEC [37], SPEC [38] or 
real HPC applications; (ii) simpler but effective performance models can be built 
on top of workload traces, e.g., instructions per cycle (IPC) model and roofline 
model  [39], enabling the evaluation of the impact of the power management poli-
cies; (iii) the power consumption is mainly affected by workload composition, i.e., 
memory bandwidth and vector/single instruction, multiple data (SIMD) arithmetic 
density.

In this paper, we craft a synthetic benchmark (Wsynth) that stresses the con-
trol corner cases and consists of maximum power (WsynthMax) and idle power 
(WsynthIdle) instructions, mixed power instructions (WsynthMix) and lastly 
instructions with different power densities and fast switching (WsynthFast) to 
stress the power limiter and the shorter timing constants of the temperature response.

(1)Pi = Pi,static + Pi,dynamic = �(TSi,i) ⋅ (Icc,i ⋅ Vdd + (Ceff,i ⋅ fi ⋅ V
2
dd
))
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The governor thread emulates command dispatching agents such as the operat-
ing system running on the CPU or the off-chip BMC in the motherboard. They are 
tasked to send requirement directives to the controller, such as DFS and DVS operat-
ing points. In the plant simulation presented in this manuscript, the OS and BMC 
communication is modeled through the SCMI transport layer. Future work will inte-
grate PLDM/MCTP transport layers supported by ControlPULP (Sect. 3.2.3) in the 
HIL framework for BMC-related communication.

Finally, the data retriever thread collects all the simulation data and periodically 
dispatches them through the network. It relies on Eclipse Mosquitto as a message 
broker, which implements the Message Queuing Telemetry Transport (MQTT) net-
work-based messaging protocol. Collected data are fed to Examon  [40], an open-
source6 framework that enables performance and energy monitoring of HPC sys-
tems. Examon relies on Grafana as interactive data-visualization platform with 
live-updated dashboards.

4.3  HIL Testing Procedure

We identify two main phases to carry out the emulation. In the system setup phase, 
the communication between PS and PL happens in a conductor-follower fashion. 
The PS drives the PCS deployment on the FPGA, its booting process, and firmware 
binary flashing. The AMBA AXI4 protocol regulates the data transmission across 
this communication channel. To this aim, we generate a complete embedded SMP 
Linux system paired with a persistent root file system on top of the four Arm A53 
processors with Buildroot.7

In the subsequent system emulation phase, PS and PL execute the respective rou-
tines and communicate asynchronously with each other through the shared DRAM 
memory region. The lack of an explicit synchronization point between the controller 
and the simulated plant is inherent to the nature of the control since dynamic ther-
mal and power management involves run-time active control. At the same time, the 
underlying MPSoC varies its workload to meet a specific computational need.

The system’s setup and emulation phases consist of the following steps: 

1. Linux First Stage BootLoader (FSBL): the PL is programmed with Control-
PULP’s bitfile, which contains the hardware design information of the controller.

2. Linux U-Boot: Linux kernel boots on the Arm Application Processing Unit (APU) 
cores.

3. ControlPULP is clocked from the PS, out of reset, and in idle state. Internal divi-
sions of the external clock are handled within ControlPULP.

4. The PS drives ControlPULP booting process by flashing the L2 SRAM with the 
control firmware executable (Fig. 3).

6 https:// github. com/ EEESl ab/ examon.
7 https:// build root. org/.

https://github.com/EEESlab/examon
https://buildroot.org/
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5. The PS and PL start to asynchronously execute the plant simulation and the con-
trol firmware routines, respectively, through the shared memory.

The data are then collected for online dashboard monitoring, as detailed in the previ-
ous section.

The key benefit of the proposed methodology is the flexibility gained at the HW/
SW interface. Design space exploration can be carried out on both the hardware 
controller and the control algorithm, with a short turnaround development time. 
The methodology especially fits integrated (on-chip) control systems validation and 
co-design due to the native on-chip hardware flexibility offered by the SoC-FPGA 
ecosystem.

5  Evaluation

In this section, we analyze and characterize both hardware (the ControlPULP plat-
form) and software (the PCF) layers:

• We break down ControlPULP’s post-synthesis area, which represents a small 
overhead (< 1%) compared to a modern HPC processor die (Sect. 5.1).

• We first evaluate ControlPULP architecture with a cycle-accurate RTL testbench 
environment as depicted in Fig. 5. We model the latency of the interconnect net-
work sketched in Fig. 1 by adding a programmable latency to the AXI4 interface. 
In the described test scenario, we first study the parallelization of the control 
action (P4)–(P7) on the cluster (Sect. 5.2). We then characterize in-band trans-
fers, namely strided DMA accesses for data acquisition from PVT registers and 
CLIC interrupt latency with SCMI command processing (Sect.  5.3). Finally, 
we show the overall performance improvement of a single control step when 
accelerating control tasks in the cluster compared to single-core (Sect.  5.4). 
The testbench depicted in Fig. 6a does not provide the RTL description of the 
surrounding HPC processor. Instead, we model the closed-loop with a shared 
memory region between the PCS platform—the ISUT—and the system under 
control. Note that the real-time temperature and telemetry information from the 

Fig. 5  ControlPULP RTL testbench simulation environment
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HPC processor are pre-computed from a MIL emulation of the control algorithm 
executed with a fixed time step and statically stored in the simulation memory as 
unfolded in time.

• Since the standalone RTL simulation environment fails to provide a near-real-
time closed-loop emulation framework for the control algorithm, we rely on 
the FPGA-SoC methodology detailed in Sect. 4 to analyze the PCF QoS when 
ControlPULP is mapped on real hardware and compare against a pure MIL 
approach to assess the validity of the HW/SW co-design.

• Finally, we show that the proposed PCF compares favorably against one of the 
most well-documented and freely accessible SOTA industrial solutions on the 
market, IBM’s OpenPower (Sect. 5.5). The comparison is carried in pure MIL 
simulation, being IBM’s PCS hardware source publicly unavailable.

5.1  Area Evaluation

We synthesize ControlPULP in GlobalFoundries 22FDX FD-SOI technology using 
Synopsys Design Compiler 2021.06. One gate equivalent (GE) for this technol-
ogy equals 0.199 μm2 . As shown in Table 3, the design has an overall area of 9.1 
MGE, 32% occupied by the computing cluster accelerator and local L1 memory, 
and almost half (60%) by the main L2 memory in the manager domain. We use a 
system clock frequency of 500 MHz. The rationale of the frequency choice is the 
following: the PCS typically belongs to the same clock domain of the CPU’s uncore 
region. While the core region hosting the application-class PEs runs at frequencies 
in the order of 1-3GHz, the uncore is clocked at lower frequencies, in the order of 
hundreds of MHz, with modern architectures and technology nodes.

The target controlled-system die area is assumed comparable to other commer-
cials, multi-core ( > 64 ) server-class processors such as [3], about 460 mm2 . By cor-
relating the gate-equivalent count of the HPC CPU die in the same technology node 
of this work, ControlPULP would still represent about 0.5% of the available die 
area.8 This first-order estimation makes the design choice of a parallel PCS valuable 
since its capabilities are much increased, while the silicon area cost remains negligi-
ble within a high-performance processor die.

Table 3  ControlPULP post-
synthesis area breakdown on 
GF22FDX technology

Unit Area [mm2] Area [kGE] Percentage [%]

Cluster domain 0.467 2336.7 25.5
Manager domain 0.135 675.9 7.4
L1 SRAM 0.119 595.7 6.5
L2 SRAM 1.108 5542.1 60.6
Total 1.830 9150.3 100

8 This has to be considered a first approximation, since it compares post-synthesis results with publicly 
available data of a modern HPC die, nowadays manufactured in a more advanced technology node.
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5.2  Firmware Control Action

In the following, we analyze the execution of the PCF phases (P4)–(P7) on the multi-core 
cluster accelerator. We enforce power capping (alpha reduction  [20]) to evaluate each 
computational phase fairly. Each cluster core is responsible for a subset of the controlled 
PEs. The parallelization is implemented as a fork-join process where the workload is stati-
cally distributed among the workers. In ControlPULP, the construct is implemented 
through a per-worker thread_id ∈ [0 ∶ Nworkers − 1] and an equally distributed 

chunk_size where �����_���� =
Nctrl_cores

Nworkers

 . We are interested in extracting perfor-

mance figures for the control action in a single periodic step n. We execute the PCF for S 
steps to amortize the effect of the initially cold instruction cache. Finally, we perform the 
arithmetic mean over S to get the mean absolute execution time for each (P4)–(P7) phase.

We report the execution time �0 and the multi-core speedup ( �0,single
�0,multi

 ) at varying 
number of controlled cores N cc for each PCF phase in Fig. 6a and b respectively. The 

Fig. 6  a, b Firmware control action, execution time, and speedup comparison between single-core (man-
ager domain) and 8-cores (cluster domain). c in-band data acquisition from simulated PVT registers, 
execution time without and with DMA in 1-D and 2-D configurations. d Execution time in the interrupt 
handler from the interrupt edge to its completion with a basic SCMI message at varying interconnect net-
work access latency to the mailbox
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total speedup of the full control action at fixed N cc is the geometric mean over the 
speedups of each phase. In our use case of 72 controlled PEs, ControlPULP executes 
the control action 5.5x faster than in single-core configuration, reaching 6.5x with 
296 controlled cores.

We make the following observations. First, multi-core speedup scales with the 
number of controlled cores due to the increased workload and is affected by the 
workload characteristics of each phase. Second, the control action is not a fully com-
putational step. In fact, instruction branching associated with power and frequency 
bounds checks per core introduces additional load/store stalls due to data access 
contention in a multi-core configuration. Finally, the computational body of (P6) 
and (P7) can be separated into independent parallel tasks and is thus an embarrass-
ingly parallel problem. Instead, (P4) and (P5) show dependency across the values 
computed by the workers in the form of reduction sums, i.e., in (P4) to calculate the 
total power of the CPU and (P5) to calculate a normalization base for alpha power 
capping [20] and again the total CPU power. When a reduction sum is needed, we 
use a hardware barrier to synchronize the threads and join the concurrent execution 
on the cluster master core (core 0), which carries out the reduction.

As discussed in the analysis above, the increased parallel compute capability of 
handling the control’s computational workload, paired with the general purpose 
nature of the accelerator, enable us to (i) improve the control performances with 
more advanced algorithms and (ii) be fully flexible when designing the control 
algorithm.

5.3  In‑Band Services

5.3.1  PVT Sensors

To assess in-band services involving PVT physical sensors—phases (P1) and 
(P2)—, we measure the transfer time required for reading data bursts on the AXI4 
master bus with the SoC timer. The exploration is three-fold: (i) direct data gath-
ering from the ControlPULP cluster’s cores, (ii) data gathering by offloading the 
transfers to the DMA in 1-D configuration, and (iii) DMA offload in 2-D configu-
ration  [31]. For (i) and (ii), we investigate the data collection on either 1-core or 

Table 4  Interrupt latency 
from interrupt edge to the first 
instruction in the interrupt 
handler as number of cycles

Location Increment 
[cycles]

Sum [cycles]

CLIC input to output 1 1
CLIC output to core (handshake) 2 3
Claim interrupt 1 4
Jump in vector table to CLIC handler 2 6
Save caller save regs (addi + 15 regs) 17 23
Compute and load CLIC handler address 5 28
Jump to CLIC handler address 2 30
Summary – 30
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8-cores configurations. The address range is equally distributed among the issuing 
cores in the latter scenario. In (iii), one core performs the read operation to highlight 
the advantages of offloading a single, large transfer with non-contiguous but uni-
formly spaced addresses to the DMA, which increases the addresses by the selected 
stride. This configuration becomes important when atomically gathering PVT 
information from equally spaced address locations (HPC PEs) with only one trans-
fer request. As in Sect. 5.2, we use synchronization barriers to coordinate the eight 
cores. Figure  6c reports the execution time �1 required for data movement when 
reading from up to 1000 PVT registers (4B each), an estimate bound given the num-
ber of PEs and the information needed from them (P, V, T, i.e., ≥ 3 , lower bound). 
Figure 6c shows that the best DMA-based transfers assuming 1000 PVT registers 
(2-D) are 5.3x faster than single-core direct data gathering.

5.3.2  SCMI and Interrupt Latency

An interrupt-driven (doorbell) transport regulates the communication of DVFS 
operating points in the agent-platform direction. Table 4 gives an overview of the 
overall CLIC interrupt latency measured as the number of cycles from the triggering 
edge in the CLIC to the ISR Handler’s first instruction. The configuration of inter-
rupt level, priority, and threshold configuration is handled with memory-mapped 
and CSR accesses to the CLIC register file and the manager core, respectively. This 
leads to a lower programming latency than software-driven approaches required 
in standard RISC-V platform-level interrupt controller (PLIC) or CLINT interrupt 
controllers.

With a working frequency of 500 MHz, the interrupt latency of one SCMI com-
mand coming from the OS HLC controller governor is negligible compared to the 
period of the PFCT that executes every 500 μ s, namely 0.01%.

Analogously, the context switch time needed to preempt the PFCT with the 
PVCT, which runs 4 times faster (every 125 μs), during the execution of a PCF step 
is 0.08% the available time period of the PFCT, more than enough for the two tasks 
to coexists while executing their respective policies.

It is essential to notice that the latency of the interconnect NoC between Control-
PULP and the mailboxes located in the die (Fig. 1) has a significant impact on the 
load/store access times, thus the time spent in the ISR, which grows with the inter-
connect delay size. We show this effect by emulating the shared mailboxes as well as 
the NoC latency in the RTL testbench environment (Fig. 5). The black line in Fig. 6d 
reports the execution time for directly decoding and responding to a sample SCMI 
command (Base Protocol, protocol_id = 0x10, message_id = 0x0 [24]) 
in the ISR when an external simulated driver rings a doorbell to the PCS. The fig-
ure reveals that the time spent in the ISR linearly increases with the NoC latency. 
We tackle the impact of NoC latency by deferring pending interrupts as they are 
triggered, thus keeping the ISR time short and insensitive to the CPU interconnect 
network delay, with the FreeRTOS timer API xTimerPendFunctionCall-
FromISR(). From the red line in Fig. 6d, we see that deferring interrupt handling 
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to a task is preferable over direct handling, as it is network-latency insensitive for 
realistic NoC latencies larger than 50 cycles. Other existing solutions, such as Arm 
SCP firmware, propose a bespoke Deferred Response Architecture 1 to mark selected 
requests coming from an agent as pending and defer the platform response. We 
instead rely on a trusted scheduler that decouples OS and PCF driver APIs, improv-
ing flexibility and portability.

5.4  System‑Level PCF Step Evaluation

We finalize the standalone evaluations of ControlPULP’s architectural features from 
the previous sections with the overall PFCT step cycle count comparison between 
accelerator-enhanced and single-core configurations, reported in Table 5 in the case 
of 72 controlled cores. Table 5 shows a breakdown of the required actions.

The total execution time differs in the two execution models. In the single-
core case, we execute sequentially with less overhead from data movement 

Fig. 7  Benefits of a performant parallel PCS on the control problem, namely, room for more computational-
intensive control policies from the concurrent acceleration. The figure shows that the hyper-period free time 
window (slack) increases to almost 95% when the policy is accelerated with the cluster domain 

Table 5  Execution time T of a PFCT step, single-core and cluster configurations. SCMI commands 
exchange and off-die transfers, handled by the SoC manager core, are not included in the comparison 
since they are a shared overhead

Bold value indicates the total speedup

Firmware phase Time step Execution time [cycles] Speedup

1-core Multi-core

control action (P4)–(P7) �
0

61867 11372 5.5x
in-band transfers (P1), (P2), (P3) �

1
5463 3523 (DMA) 1.6x

Offload to the Cluster �
2

– 389 –
L2–L1 transfers �

3
– 434 (DMA) –

L1–L2 transfers �
4

– 872 (DMA) –
Return from cluster �

5
– 574 –

Step total time T 67330 13641 4.9x
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( Tsingle = �0 + �1 ). In the multi-core case, ( Tmulti = max(�0, �1) +
∑5

i=2
�i ) we (i) exe-

cute the computation �0 and data acquisition �1 at step n concurrently, (ii) rely on 
𝜏0,multi ≪ 𝜏0,single , and (iii) introduce an overhead due to additional data movement 
involving L1 and L2 for data telemetry between manager and cluster domains dur-
ing the PFCT.

Overall, multi-core execution achieves a 4.9x speedup over the single-core con-
figuration. Provided a fixed hyper-period, i.e., the least common multiple of the 
control tasks’ periods [13], which in this work equals the PFCT step period of 500 
μ s, Fig. 7 shows the benefits of a programmable accelerator on the control policy 
time scale. Assuming a working frequency of 500 MHz, and considering the inter-
rupt latency and task preemption context switch time from the scheduler negligible 
as from Sect. 5.3.2, single-core execution time already leaves a free time window 
(slack) of about 70% the hyper-period with the reactive control algorithm imple-
mented in this work. Cluster-based acceleration significantly raises the free time 
window to about 95% the PFCT period. This means the acceleration reduces the 
utilization time to complete the control task within the deadline. Furthermore, the 
more embarrassingly parallel the control problem, the more the concurrent speedup, 
hence the benefits of the acceleration.

Other effects in the plant can impact the control loop period in the control 
scenario presented in this work: (i) phase locked loop (PLL) lock time and 
voltage regulator response time, (ii) communication latency to sensors/actua-
tors, and (iii) model dynamics evolution. PLL lock time and voltage regula-
tor response time are in the order of microseconds. Similarly, communication 
latency depends on the interconnect network of the CPU. The PCF computes the 
frequencies/voltages at time step n and applies them at time step n+1. There-
fore, latency issues—if any—due to the effects of (i) and (ii) can be addressed 
by starting early the application of the set points during time step n, provided 
the control period has enough slack time after the computation phase. Model 
dynamics (iii) are tightly coupled with the system in use and can be broken down 
into workload, power, and temperature effects. Temperature variations are in the 
order of magnitude of milliseconds. Workload and power can potentially change 
at each clock cycle. Arm proposes the Maximum Power Mitigation Mechanism 
(MPMM) for mitigating and limiting the execution of high-activity events, such 
as vector instructions. The management of this mechanism is left to the power 
controller. This could be a potential extension to ControlPULP as well. The 500 
μs hyperperiod used in this work is shorter than the fastest dynamics in terms of 
temperature, but longer than the workload and power variations. The latter case 
represents a worst-case scenario to guarantee safe margins on the power con-
straint in actual HPC benchmarks. 

5.5  Control‑Level PCF Evaluation

We refer to the PCF QoS as an indicator of the control policy functional correct-
ness (HW and SW) when the simulated MPSoC is assigned a certain workload. In 
this section, we present the results of this analysis by leveraging the FPGA-SoC 
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closed-loop framework, the thermal and power model, and the synthetic workload 
introduced in Sect. 4.3. We subsequently complete the QoS exploration with a com-
parison against the IBM OpenPower open-source control algorithm.

5.5.1  Standalone QoS Evaluation on the HIL FPGA‑SoC Framework

Provided a workload assigned to the simulated MPSoC, the HIL framework enables 
assessing the evolution in time of critical features of the control algorithm at the 
granularity of each controlled core (Sect.  3.1): power/thermal capping, workload-
aware control, and frequency/voltage set-point tracking as a response to OS and 
BMC DVFS commands.

Figure 8c and d show the frequency and voltage scaling enforced when the con-
troller’s SCMI mailboxes are notified DVFS operating point commands from the 
plant’s governor thread running on the PS on a per-PE basis (Sect. 4.2). The SCMI 
agent dispatches the commands according to the executed workload; interrupts pro-
cessing is deferred by the FreeRTOS scheduler and committed by ControlPULP’s 
interrupt controller. Once registered, the governor’s directive is processed by the 
PFCT in phases (P3)–(P7) and returns the reduced frequency as computed in the 
cluster domain. Figure 8a and b show per-core thermal capping and the total power 
consumption and capping in action on the controlled plant during the execution of 
Wsynth, respectively. The maximum thermal limit from Fig. 8a, specific for each 
PE, is assumed to be 85 ◦C . The orange line represents instead an additional thermal 

Fig. 8  Thermal, power capping and DVFS emulation on the FPGA-SoC HIL framework with Wsynth. 
Requests coming from the HLCs (OS or BMC) governors, such as the target frequency and power 
budget, are processed by the reactive control, phases (P6)–(P7) described in Sect.  3.1. The number of 
controlled cores is 72
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threshold required to stabilize the temperature with a safety margin in case of over-
shoots during the PID. Analogously, in Fig. 8b, the total power consumption of the 
system is bound by the power budget imposed through SCMI from the HLCs.

The HIL simulation is further compared with the software-equivalent model-
based closed-loop from MATLAB Simulink, the first phase of the control algo-
rithm design. Due to MATLAB Simulink runtime execution, we restrict the floor-
plan of the controlled 72-core CPU to a tile of 9 cores, let the PVCT apply a 
constant voltage Vfixed = 0.75 V and fix the simulation duration to 2 s. Figure 9a 
shows the average frequency evolution in time for the controlled cores in the 
tile. The discrepancy between the outcome of the two simulations has multiple 

Fig. 9  HIL and MIL comparison when Wsynth is assigned to the controlled system. The emulation 
assumes a floorplan with a tile of 9 cores and runs for 2 s to align with MATLAB runtime
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reasons: (i) different data collection methodology: MATLAB records data at the 
exact time, while the FPGA simulation captures the information at a non-deter-
ministic sequence of instants in the simulation interval due to its real-time char-
acteristic, (ii) different resolution, and (iii) uncertainties and non-deterministic 
control delays introduced in the FPGA emulation and challenging to replicate 
in the MIL framework. Figure  9b shows the measured consumed power of the 
assigned workload under power budget constraints from the HLCs, represented 
with a dashed yellow line. Overall, the HIL-based emulation gives comparable 
results when validated against the software-equivalent MIL. Albeit power spikes 
due to the discrepancies described above, DVFS tracking achieves a mean devia-
tion within 3% the system’s thermal design power (TDP) (120W in the emula-
tion), more than acceptable for the assessment.

5.5.2  Comparative QoS Evaluation with SOTA

We cross-benchmark the PCF with the IBM OpenPOWER (Sect.  2). We model 
IBM’s control action, i.e., the Voting Box Control described in Sect. 2, excluding a 
few architecture-specific features, and the two-layer PCF control described in this 
work with MATLAB Simulink to enable a fair and hardware-agnostic comparison. 
The PID-like coefficients of the IBM control are adapted to the HPC chip model 
power and thermal characteristics. Wsynth (Sect.  4.2) is distributed as follows: 
core 1-core 3 and core 2-core 4 pairs are assigned WsynthMax and WsynthIdle 
respectively. Core 5, core 6, and core 9 execute WsynthMix while core 7 and core 
8 are exposed to WsynthFast. We rely again on constant voltage Vfixed = 0.75 V 
and do not consider overhead nor delays in the PLLs and VRM operating point tran-
sitions. The power budget is changed five times during the simulation to stress all 
the elements of the control action. The simulation runs for 2 s on a tile of 9 cores.

Fig. 10  Comparison between the modified IBM OpenPOWER control with per-core temperature PID for 
frequency reduction and the original IBM OpenPOWER control. The simulation time is 2 s
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First, we show that a controller with a multi-core cluster able to deliver higher 
computational power is beneficial to the performances of the HPC chip. We com-
pare the IBM control and a version of it with a per-core temperature PID for fre-
quency reduction. In fact, as from Sect.  2, the IBM control policy considers the 
maximum temperature among the PEs when applying frequency reduction. We con-
jecture that this limitation is enforced by the limited control policy complexity that 
can be handled by IBM’s OCC. Conversely, ControlPULP enables fine-grained fre-
quency reduction on a per-core temperature granularity. The performance is shown 
in Fig. 10. The number of retired instructions indicates the execution time achieved 
by the workload at the end of the simulation: the more retired instructions, the faster 
the workload, meaning a more efficient control.

While using only one temperature for the whole tile results in an average perfor-
mance reduction per core of 5% , cores executing high-power instructions (core 1 
and core 3) receive a performance increase of 4% and 5% respectively. In fact, being 
the frequency reduction based on the hotter cores and thus a shared penalty, neigh-
boring cores get colder, and other cores consume less power during power capping 
phases, leaving more power available to boost performances of core 1 and core 3.

Last, we compare the PCF and the IBM control with per-core temperature PIDs. 
The PCF control favors cores executing high-power instructions  [20] (core 1 and 
core 3 in this simulation with Wsynth benchmark), thus compensating the perfor-
mance penalty showed in the previous test. Results in Fig. 11 show a performance 
increase in executed instructions ranging from +2.5 to +5% . This holds for cores 
with mixed instructions (up to +3.5% ) as well, while cores involved in less demand-
ing workloads witness a decrease between −2 and −3% . We conclude that the modi-
fied policy with per-core temperature PID calculation can selectively boost the 
retired instructions, achieving a higher application performance on the HPC chip 
while still meeting the thermal cap.

Fig. 11  Comparison between the PCF control and the modified IBM OpenPOWER firmware with per-
core temperature PID for frequency reduction. The simulation time is 2 s
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6  Conclusion

In this paper, we presented ControlPULP, the first HW/SW RISC-V control system 
for HPC processors that exploits multi-core capabilities to accelerate control algo-
rithms, featuring a specialized DMA and fast interrupt handling and synchronization. 
We assess the HW/SW interface and take into account physical state variations sur-
rounding the integrated controller by designing an agile, near-real-time closed-loop 
emulation framework that takes inspiration from the road paved by modern HeSoC 
platforms on FPGA. The framework relies on a power and thermal model of the con-
trolled CPU as plant, which is paired with workload instruction traces and the con-
trol algorithm to realize the closed-loop. With the proposed multi-core architecture, 
a control policy step executes 4.9x faster than in a single-core configuration, increas-
ing the hyper-period’s slack and thus enabling the implementation of more complex 
and computationally demanding control algorithms (for example, predictive policies) 
with fine-grained frequency dispatching.
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