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Abstract

When talking about the security of a cryptographic scheme, researchers often model it as a game between
a challenger and an adversary. Such a game gives a clear description of the ways we consider the
adversary to interact with the scheme whose security we want to prove. A security reduction then only
needs to implement these ways of interactions which we usually call ‘oracles’. However, the scheme may
have some underlying building blocks, such as cryptographic groups or hash functions. For example, if
the scheme uses a hash function, a security proof can be in the Random Oracle Model (ROM) where
the hash function is replaced by an idealized function which returns uniformly random values from the
output space of the hash function and can be accessed only through an oracle, thus giving the adversary
no access to the code of the function. This gives a reduction some additional leverage over the adversary,
for example it can observe what queries the adversary makes to the random oracle, or it can also program
the random oracle, i.e. provide the adversary with a random oracle implementation that returns values
that are useful for the reduction. Another case where the ROM is useful is when the reduction wants to
rewind the adversary and replay it using a different hash function evaluation, for example in the context
of Fiat-Shamir based signatures. When rewinding, we consider the adversary to be a computer program
that the reduction can run multiple times and where it can determine the random coins given to the
program. Other than that, the reduction gets only black-box access.

In this thesis, we consider rewinding as a proof strategy in several contexts. First, we look into a
novel strategy of so-called undirected rewinding. In this rewinding strategy, we rewind the adversary to
every step of its execution, and then in some cases change some of its inputs at the step it has been
rewound to (e.g. change responses to oracle queries it made). We apply this strategy to circumvent
existing lower bounds (Kamath, Klein, Pietrzak and Walter, TCC 2021) for proving the adaptive security
of the Goldreich-Goldwasser-Micali Pseudo-Random Function (GGM-PRF) as a Prefix-Constrained PRF
(PC-PRF). A PC-PRF allows the holder of the secret PRF key to hand out prefix keys that allow
others to evaluate the PRF on values that start with a specific prefix, while the function should still be
pseudo-random on other inputs. In the adaptive setting, the adversary may query such prefix keys even
depending on the keys it saw before, which makes it difficult for a reduction to predict its behaviour.
We circumvent this issue by rewinding the adversary to learn some of its future choices and provide an
analysis that shows that the reduction loss is polynomial in the input length rather than super-polynomial
which would be the case for a straight-line reduction.

We furthermore apply the undirected rewinding technique to prove the adaptive security of the
Logical Key Hierarchy (LKH) protocol for server-assisted group key exchange. Also here it is tricky for
straight-line reductions to figure out when to embed challenges, and we can help the reduction with a
rewinding strategy.

We then turn to the setting of blind and partially blind signatures. A blind signature scheme is a
two-party protocol between a Signer and a User where the signer holds the secret signing key and the

vii



viii ABSTRACT

user has a message it wants to have signed. We require blindness, i.e. even a malicious Signer should
not learn the User’s message, and one-more unforgeability, i.e. a malicious User should not be able to
produce more message-signature pairs than it requested signatures from the Signer. In a partially blind
scheme, signatures are issued with respect to a shared tag info and the two security properties need to
hold with respect to each tag. We revisit the influential partially blind scheme by Abe and Okamoto
(CRYPTO 2000) whose construction and proof have served as an inspiration for several other blind and
partially blind signature schemes. We point out a subtle gap in their rewinding-based proof of one-more
unforgeability. We then show how to mend the gap with a new analysis of the success probability of the
forking strategy of the reduction.

After this, we turn to the popular blind signature scheme by Abe (EUROCRYPT 2001) which is
known to have a flaw in the rewinding based security proof (pointed out by Okuhbo and Abe, SCIS
2003). While the proof strategy for the Abe-Okamoto scheme can be applied, it incurs a rather large loss.
We therefore turn to another abstract model in cryptography for proving one-more unforgeability: the
Algebraic Group Model (AGM) (introduced by Fuchsbauer, Kiltz, Loss, CRYPTO 2018). In the AGM,
adversaries are assumed to be algebraic. Intuitively speaking, this means the adversary computes new
group elements only using the group operation. In the AGM, this intuition is modelled by requiring the
adversary to always output an explanation how it computed the group elements in its output. We show
how this algebraic explanation can be exploited by a reduction to show the concurrent security of Abe’s
blind signature scheme and even of a new partially blind variant that we introduce. We furthermore
investigate the sequential security of Blind Schnorr Signatures, and show that sequential One-More
Unforgeability of Blind Schnorr Signatures can be shown assuming the hardness of the One-More Discrete
Logarithm Problem in the AGM + ROM. We furthermore show that it is indeed necessary for an algebraic
reduction (even against an algebraic adversary) to query the Discrete Logarithm Oracle as many times as
the adversary closes a signing session.

Whenever confronted with a new abstract model, one may ask how realistic it is and how it compares
to other models and assumptions. We therefore provide some evidence towards the algebraic group model
being realistic. Namely, we construct a group scheme that we call the algebraic wrapper from strong,
but falsifiable assumptions. The algebraic wrapper allows the person who set up the group parameters to
‘extract’ an algebraic explanation in a limited manner. We show that several existing proofs from the
AGM can be translated into the algebraic wrapper setting, lending some credibility to proofs in the AGM.



Zusammenfassung

Wenn sie über die Sicherheit eines kryptografischen Schemas sprecen, modellieren Forscher diese oft als
ein Spiel zwischen einem Herausforderer und einem Angreifer. So ein Spiel gibt eine klare Beschreibung
der Arten, die wir betrachten, wie der Angreifer mit dem Schema interagieren kann, dessen Sicherheit wir
beweisen wollen. Eine Sicherheitsreduktion muss dann nur diese Arten der Interaktion implementieren,
die wir üblicherweise als Orakel bezeichnen. Allerdings kann es sein, dass das Schema zugrundeliegende
Bausteine wie Hashfunktionen oder kryptographische Gruppen verwendet. Wenn das Schma zum Beispiel
eine Hashfunktion verwendet, kann ein Sicherheitsbeweis im Zufalsorakelmodell (ROM) sein, wo die
Hashfunktion durich eine idealisierte Funktion ersetzt wird, die zufällige Werte aus dem Ausgabebereich der
Funktion zurückgibt, und auf die nur durch ein Orakel zugegriffen werden kann, also der Angreifer keinen
Zugriff auf den Programmbeschrieb der Hashfunktion hat. Das gibt der Reduktion einen zusätzlichen
Hebel gegenüber dem Angreifer, beispielsweise kann sie die Anfragen des Angreifers an das Orakel
beobachten oder sie kann das Orakel programmieren, also das Orakel für den Angreifer so implementieren,
dass es Wrte zurückgibt, die für die Reduktion nützlich sind. Ein anderer Fall, in dem das ROM nützlich
ist, ist wenn die Reduktion den Angreifer zurückspulen möchte und ihn dann erneut laufen lassen will,
aber mit einer anderen Auswertung der Hashfunktion, zum Beispiel im Kontext von Fiat-Shamir basierten
Signaturen. Wenn wir den Angreifer zurückspulen, betrachten wir ihn als Computerprogramm, das die
Reduktion mehrfach laufen lassen kann und dessen Zufallsentscheidungen sie bestimmen darf. Abgesehen
davon bekommt die Reduktion nur Black-Box-Zugriff.

In dieser Doktorarbeit betrachten wir Zurückspulen als Beweisstrategie in mehreren Kontexten.
Zuerst schauen wir uns eine neue Strategie des sogenannten ungerichteten Zurückspulens an. In dieser
Zurückspulungsstrategie spulen wir den Angreifer zu jedem Schritt seiner Ausführung zurück und
verändern dann in manchen Fällen seine Eingaben an der Stelle, zu der wir ihn zurückgespult haben
(z.B: ändern die Antworten auf Orakel-Anfragen, die er gemacht hat). Wir wenden diese Strategie an,
um existierende untere Schranken (Kamath, Klein Pietzrak und Walter, TCC 2021) für die adaptive
Sicherheit der Goldreich-Goldwasser-Micali Pseudozufallsfunktion (GGM-PRF) als präfix-beschränkte PRF
(PC-PRF) zu umgehen. Eine PC-PRF erlaubt es, dem Halter des geheimen PRF-Schlüssels, Präfixschlüssel
auszuhändigen, die es anderen erlaubem, die PRF auf Werten auszuwerten, die mit einem bestimmten
Präfix anfangen, während die Funktion weiterhin auf anderen Eingaben pseudozufällig sein sollte. Im
adaptiven Rahmen darf der Angreifer solche Präfixschlüssel sogar in Abhängigkeit von Präfixschlüsseln, die
er bereits gesehen hat anfragen, was es für die Reduktion schwierig macht, sein Verhalten vorherzusehen.
Wir umgehen dieses Problem, indem wir den Angreifer zurückspulen um einige seiter zukünftigen
Entscheidungen zu lernen und liefern eine Analyse, die zeigt, dass der Reduktionsverlust polynomiell in
der Eingabelänge anstatt superpolynomiell ist, wie es der Fall für eine geradlinige Reduktion wäre.

Wir wenden die ungerichtete Zurückspulungsstrategie ausserdem an, um die adaptive Sicherheit des
Logischen Schlüsselhierarchie-Protokolls (LKH) für Server-unterstützten Grupenschlüsselaustausch zu
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beweisen. Auch hier ist es schwierig für geradlinige Reduktionen, herauszufinden, wann Herausforderungen
eingebettet werden können, und wir können der Reduktion mit einer Zurückspulungsstrategie helfen.

Wir wenden uns dann blinden und teilweise blinden Signatuen zu. Ein blindes Signaturschema ist
ein Zweiparteienprotokoll zwischen einem Signierer und einem Benutzer, bei dem der Signierer einen
geheimen Signierungsschlüssel hat, und der Benutzer eine Nachricht, die er signiert haben möchte. Wir
erfordern Blindheit, d.h. sogar ein bösartiger Signierer sollte nicht in der Lage sein, die Nachricht des
Benutzers herauszufinden, und Einmal-Mehr-Unfälschbarkeit, d.h. ein bösartiger Benutzer sollte nicht in
der Lage sein, mehr Nachrichten-Signatur-Paare zu erzeugen, als er Signaturen vom Signierer angefragt
hat. In einem teilweise blinden Schema werden Signaturen bezüglich einer gemeinsamen Beschriftung
info ausgestellt und die beiden Sicherheitseigenschaften müssen bezüglich jeder Beschriftung gelten. Wir
greifen das einflussreiche teilweise blinde Signaturverfahren von Abe und Okamoto (CRYPTO 2000)
wieder auf, dessen Konstruktion und Beweis als Inspiration für viele andere blinde und teilweise blinde
Schemata gedient haben. Wir zeigen eine subtile Lücke in deren zurückspulungsbasiertem Beweis der
Einmal-Mehr-Unfälschbarkeit auf. Wir zeigen dann, wie man die Lücke mit einer neuen Analyse der
Erfolgswahrscheinlichkeit der Gabelungssstrategie der Reduktion schliessen kann.

Danach wenden wir uns dem beliebten blinden Signaturschema von Abe (EUROCRYPT 2001) zu,
von dem es bekannt ist, dass es einen Makel im zurückspulungsbasierten Sicherheitsbeweis enthält
(zuerst entdeckt von Okuhbo und Abe, SCIS 2003). Während die Beweisstrategie vom Abe-Okamoto-
Schema angewandt werden kann, bringt diese einen grossen Verlust mit sich. Daher verwenden wir ein
anderes abstraktes Modell der Kryptographie um die Einmal-Mehr-Unfälschbarkeit zu beweisen: das
Algebraische Gruppenmodell (AGM) (eingeführt von Fuchsbauer, Kiltz und Loss, CRYPTO 2018). Im
AGM wird davon ausgegangen, dass Angreifer sich algebraisch verhalten. Intuitiv heißt dass, dass der
Angreifer neue Gruppenelemente ausschliesslich durch die Gruppenmultiplikation berechnet. Im AGM
wird diese Intuition dadurch modelliert, dass vom Angreifer verlangt wird, dass er immer eine Erklärung
ausgibt, wie er die Gruppenelemente in seiner Ausgabe berechnet hat. Wir zeigen wie diese algebraische
Erklärung von einer Reduktion ausgenutzt werden kann, um die nebenläufige Sicherheit von Abe’s
blindem Signaturschema und sogar von einer teilweise blinden Variante, die wir einführen, zu beweisen.
Wir untersuchen weiterhin die sequentielle Sicherheit von blinden Schnorr-Signaturen und zeigen, dass
die sequentielle Einmal-Mehr-Unfälschbarkeit von blinden Schnorr-Signaturen im AGM+ROM bewiesen
werden kann, unter der Annahme, dass das Einmal-Mehr-Diskreten-Logarithmus-Problem (OMDL)
schwierig ist. Wir zeigen ausserdem, dass es tatsächlich notwendig ist, dass eine algebraische Reduktion
(sogar gegen einen algebraischen Angreifer) das diskreter-Logarithmus-Orakel so oft anfragt wie der
Angreifer Signatursitzungen schliesst.

Wenn man mit einem neuen abstrakten Modell konfrontiert ist, kann man sich fragen, wie realistisch
es ist und wie es sich im Vergleich zu anderen Modellen und Annahmen verhält. Wir bieten daher etwas
Beweismaterial in die Richtung, dass das AGM realistisch ist. Nämlich konstruieren wir ein Gruppenschema,
das wir die algebraische Verpackung nennen, von starken aber falsifizierbaren Annahmen. Die algebraische
Verpackung erlaubt es der Person, die die Gruppenparameter aufgesetzt hat, eine algebraische Erklärung
in einer beschränkten Art und Weise zu ‘extrahieren’. Wir zeigen, dass mehrere existierende Beweise
aus dem AGM in den Rahmen der algebraischen Verpackung übersetzt werden können und verleihen
Beweisen im AGM damit etwas Glaubwürdigkeit.
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Chapter 1

Introduction

1.1 Motivation

The desire of humans to send secret messages hidden from potential curious eyes dates back thousands of
years with one well-known example stemming from Caesar being said to have sent ‘encrypted’ messages
using a substitution cipher for his private correspondence [Sue21]. Other ‘encryption’ methods of the
time even relied on the method itself remaining secret, so if an adversary was to find out about the
method one would have had to come up with a new method.

It was only much later that Kerckhoffs [Ker83] came up with guidelines for developing secure
cryptographic systems. The main principle that is still relevant today is that the system itself should
not require secrecy for it to remain secure. At the time, many existing cryptosystems did not fulfill this
criterion and security was assumed if there was no existing attack.

The first modern proof of security of a cryptographic scheme was given by Shannon [Sha49] for the
one-time pad which had at the time been in use for several decades[Mil82; Ver26]. In a seminal paper,
Diffie and Hellman [DH76] introduced many important concepts for modern cryptography. For example,
they described public key encryption, i.e. schemes where there are two types of keys, one for encryption
which can be posted in a public place, and a secret decryption key, digital signatures, a primitive that
allows to sign using a secret signing key and verify signatures using a public verification key, as well as a
method for exchanging secret keys for encryption. As a building block to construct these schemes, they
introduced so-called trapdoor one-way functions. Such functions have the property that the function f is
easy to compute, however the inverse f−1 is hard to compute - unless one has access to some additional
information called the ‘trapdoor’. While they did not have a concrete example of such a trapdoor one-way
function, just two years after, Rivest, Shamir and Adleman [RSA78] had found one.

However, their signature scheme based on the RSA assumption remained without a formal proof
of security for many years, until Bellare and Rogaway [BR93] introduced the Random Oracle Model
(ROM), an abstract model in cryptography. The Trapdoor One-Way Function Full Domain Hash
(TDOWF-FDH)signature, of which RSA Full Domain Hash is an instantiation works as follows. The
underlying building blocks are a hash function H and a trapdoor one-way function f with inverse f−1.
The trapdoor is the secret key, whereas the one-way function f is the public key. To sign a message
m, one computes σ = f−1(H(m)) using the trapdoor to compute f−1. Verification is easy as one can
simply check f(σ) = H(m).

1
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1.1.1 The Random Oracle Model - an Abstract Model in Cryptography

In the ROM, the hash function is replaced by an oracle that implements a random function. The proof of
security operates via a reduction that breaks the one-way property of the trapdoor OWF. The reduction
receives a challenge, i.e. a value on which to invert the function along with a description of the function
(but not the trapdoor) as an input. It then has to use the adversary somehow to invert the function. The
adversary may also request signatures on messages of his choice from the reduction, so the reduction has
to find a way to generate such signatures. In the random oracle model, it is possible to give a proof for
TDOWF-FDH, namely the reduction can program (i.e. implement) the random oracle in such a a way
that a) it can sign using only the function f by implementing H(m) = f(σ) for values σ of its choice
and b) it can have the random oracle H output its inversion challenge for a hash query of the adversary,
thus using the adversary as an inverter. In [BR93], the authors give many more examples of applications
of the ROM such as public key encryption and non-interactive zero knowledge proofs.

One application that we will also use in this thesis is that of rewinding as a proof strategy. For some
cryptographic primitives, for example those that build on the Fiat-Shamir Heuristic [FS87], a single run
of a successful adversary may not be enough to extract information that solves a cryptographic hardness
assumption. The Fiat-Shamir Heurisitic is a way to transform a Σ-protocol [Cra97] into a non-interactive
zero-knowledge proof of knowledge or a signature. It works by replacing the random choices of the verifier
with a hash of the messages sent so far between prover and verifier. As in a Σ-protocol, the witness
can be computed from two transcripts of the protocol with the same first prover messages but different
verifier challenges, a witness can be extracted from an adversary producing non-interactive Fiat-Shamir
based proofs in the ROM as follows. First, run the adversary with the random oracle, answering queries
via lazy sampling. Then, rewind the adversary to the point just after it has made the query to the
random oracle that resulted in the proof it output in the first run. As the adversary has already made
its query, it is the same ‘first prover message’ as in the first run, but now we re-sample which response
we give to the adversary, i.e. replace the hash value by a uniformly random different hash value. If the
adversary uses the same hash query again for its forgery, the reduction can obtain a witness from the two
transcripts as they contain the same first message but different verifier challenges. The probability of
success for this strategy can be computed using the forking lemma by [PS00]. In [PS00], this technique
was used to prove security of Schnorr Signatures [Sch90] as well as the Okamoto-Schnorr blind signature
scheme [Oka93]. Later in this thesis (namely in Chapters 3 and 4), we will see more applications of
rewinding as a proof strategy.

1.1.2 Abstract Models for Cryptographic Groups

Just like hash functions can be idealized in the ROM, around the same time, Nechaev [Nec94] and Shoup
[Sho97] introduced the Generic Group Model (GGM) as a means to justify the hardness of the discrete
logarithm problem in groups of prime order. In their variant of the GGM, anyone interacting with the
group only gets to see random ‘labels’. To perform the group operation, one needs to query an oracle
that will invert the labelling, add exponents together, and output the label of the sum of the exponents.
This allows to prove the lower bounds for various assumptions in groups (including the discrete logarithm
assumption) using the following strategy: Internally, the group oracle is replaced by an oracle that instead
of operating on Zq, operates on a polynomial ring over Zq, for example in the discrete logarithm case,
the group oracle is replaced by an oracle that operates on Zq[X]. The discrete logarithm challenge
is internally replaced by the formal variable X whereas the group generator is given as the label of 1.
Then, the adversary is allowed to interact with this alternative oracle, but as X is not an actual group
exponent, there is no way the adversary can learn anything about the exponent. However, as this oracle
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internally uses a different group, this implementation is not perfect. The probability of making a ‘mistake’
that is noticeable for the adversary can however be bounded using the Schwartz-Zippel-Lemma [Sch80;
Zip79; DL78]. Later on, Maurer [Mau05] introduced a variant of the GGM that gets rid of the labelling
function where algorithms only interact with the group in a black-box manner. While many works refer
to ‘the GGM’ only, a recent work by Zhandry [Zha22] showed that the models are indeed different in the
sense that there are games that one can It is Maurer’s variant of the GGM that Fuchsbauer, Kiltz and
Loss [FKL18] used to justify the Algebraic Group Model (AGM) [Los23] and Zhandry [Zha22] indeed
shows that algorithms that work in Maurer’s model are also algebraic. Other than in the GGM(s), an
adversary in the AGM is allowed full access to a cryptographic group as long as it outputs an algebraic
explanation of what it did, i.e. how it computed the group elements in its output from the group
elements in its input using the group operation. The notion of such algebraic algorithms has been around
for longer though. Boneh and Venkatesan [BV98] introduced algebraic algorithms in the context of a
meta-reduction to show that RSA may not be equivalent to factoring. Later on, Paillier and Vergnaud
[PV05] refined this definition stating that for algebraic algorithms there must be an extractor to extract
the algebraic explanation from the adversary. Both works consider only algebraicity of reductions though,
whereas the work by Fuchsbauer, Kiltz and Loss [FKL18] is the first to consider algebraic adversaries
as well. While being a very new model, it has since found plenty of applications for proving security of
Digital Signatures [FKL18; FPS20; TZ23], Blind Signatures [FPS20; TZ22; KLX22a; Cri+23], Threshold
Signatures [CKM23], Zero-Knowledge Protocols [FKL18] as well as more general families of group based
hardness assumptions [BFL20]. Researchers also came up with variants of the model extending it to
having the adversary explain its decision bit output algebraically [RS20] as well as to a more fine-grained
explanation version where the adversary needs to additionally provide the order in which it computed the
group operations [KLX20].

All of this research interest sparks a natural question that we will discuss in the following.

1.1.3 How Realistic are Abstract Models?

To answer such a question, one first has to think about what it means for an abstract model to be
realistic. Take for example the ROM: On the one hand, as discussed above, there are many schemes
whose proofs use the ROM where no attacks are known to contradict these proofs. On the other hand,
in Canetti, Goldreich and Halevi [CGH98] constructed examples of schemes that can be proven secure in
the ROM, but are insecure when the Random Oracle is replaced by any real hash function. The schemes
constructed contain a specifically inserted breaking point. We give a high-level intuition of how this
breaking point is inserted. This builds on correlation intractable functions, which are, informally speaking,
function ensembles for which it is hard to find input-output pairs that fulfill a certain evasive relation.
Random oracles fulfill this criterion as their outputs are random, however for any real world hash function
one can define the relation of input-output pairs of the function and thus find a relation that will always
be fulfilled. The idea of ‘breaking’ any scheme that uses the ROM, say, for sake of this exposition a
signature scheme, is to modify the signing algorithm such that it first checks whether the message to
be signed and its hash fulfill a certain relation, and if yes output the secret key, if no run the normal
signing algorithm. Signature verification works analogously by outputting 1 if message and hash fulfill the
relation and using the old verification algorithm otherwise. The scheme remains both correct and secure
in the ROM as it is hard for an adversary to find a message that makes the signing oracle output the
secret key, but it is easy to break in the real world. This means, there can be no hash function that is ‘as
good’ as a Random Oracle. However, the schemes constructed in that work are not schemes intended for
use in the real world, but rather constructed specifically so that they break as soon as the hash function
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is implemented in the real world. This result has also been extended by Dent [Den02] for Shoup’s version
of the GGM.

While on the other hand, Dent’s impossibility result did not apply to Maurer’s version of the GGM,
Zhandry [Zha22] showed that also Maurer’s model cannot be instantiated by providing a public key
encryption scheme that is secure in Maurer’s model but cannot be secure for any real world group. This
impossibility result also extends to Shoup’s model without making usage of the interpretation of the
group exponentiation function as a Random Oracle. The same paper also showed that the AGM is
uninstantiable, i.e. there exists a cryptographic game that is hard to win in the AGM (assuming the
discrete logarithm assumption is hard), but easy to win outside of the AGM. The trick of how to construct
such a game is to ‘feed’ the adversary a group element label of the solution of the game in a non-algebraic
way. This allows any non-algebraic adversary to output the solution, whereas an algebraic adversary that
also has to come up with an algebraic explanation would have to break the discrete logarithm assumption.
At around the same time, another work [ZZK22], showed that the AGM is incomparable to Shoup’s
GGM, i.e. there are games that are secure in one model, but not the other and vice versa.

While none of the above models are fully instantiable, there are works providing partial instantiations
that can be used for some applications. For the ROM, there are Universal Computational Extractors
(UCE) [BHK13], a type of hash function that cannot be distinguished from a Random Oracle in a
particular 2-stage game. They show that this type of hash function can be used in various types of
encryption schemes that rely on the ROM and still yield a proof of security. However, later on Brzuska,
Farshim and Mittelbach [BFM14] showed that a certain subclass of UCEs is itself again uninstantiable,
assuming the existence of indistinguishability obfuscation, while on the other hand Jost and Maurer

[JM18] showed that the Merkle-Damg
◦
ard construction satisfied a UCE security notion if the underlying

round function had certain properties, and Brzuska and Mittelbach [BM14] provided a construction of a
hash function instantiating a certain class of UCE.

In the case of the GGM, there have been multiple approaches for instantiation. On the one hand,
there are several concrete constructions of groups in which certain hardness assumptions hold, like for
example [AH18]. In their construction of a cryptographic group, the interactive Uber assumption holds.
The Uber Assumption Family [Boy08; BBG05] is a family of assumptions generalizing the Diffie-Hellman
assumption [DH76].

On the other hand, more recently Pseudo-Generic Groups [Bau+22] were introduced as the Shoup
GGM-analogue of UCEs. While this notion captures one characterization of what it means for a group to
behave ‘like a generic group’, no provable instantiations beyond the GGM itself have been presented so
far.

For the AGM, there are two main instantiation attempts. One of them shows equivalence with a
strong algebraic knowledge assumption [KP19], the other (which we will discuss in a bit more detail in
Chapter 7) uses strong falsifiable assumptions to obtain some form of algebraic explanation with respect
to a fixed basis of group elements [AHK20].

1.1.4 Our Contributions

In this work, we interact with abstract models and proof strategies derived from them in several ways. In
particular, we show the following things:

• adaptive security of the Goldreich-Goldwasser-Micali PRF as a prefix-constrained PRF using
rewinding

• adaptive security of the Logical Key Hierarchy protocol using rewinding
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• one-more unforgeability of the Abe-Okamoto partially blind signatue scheme using rewinding in
the ROM

• one-more unforgeability of a partially blind variant of Abe’s blind signature scheme in the AGM +
ROM

• sequential one-more unforgeability of blind Schnorr signatures in the AGM + ROM, as well as the
optimality of that reduction w.r.t. amount of discrete logarithm queries made by the reduction

• how to use a partial instantiation of the AGM, called the algebraic wrapper, to transfer AGM proofs
to the standard model

We give a more detailed overview over these topics in the following.

1.2 Adaptive Security in Game-Based Notions

When proving the security of a cryptographic scheme, it is a common strategy to formulate what it
even means to be ‘secure’ as a so called game where the adversary plays against a challenger [BR04;
Sho04]. The game has an initial setup, and then the adversary is started with an initial input and access
to some oracles defined by the game. In the end, the adversary outputs its solution to the challenge
posed. For some types of cryptographic primitives, it makes sense to consider a setting where one of the
oracles is one that allows the adversary to corrupt certain parts of the structure of the primitive, thus
learning some secret information. In such a setting, we distinguish between the selective setting where the
adversary has to specify at the beginning of the game all the parts it wants to corrupt, and the adaptive
setting where it can corrupt at any point in time, and in particular after it has already learned secret
information from previous corruptions. For example, in Chapter 3, we will consider a prefix-constrained
pseudorandom function (PC-PRF). A pseudorandom function F takes as input a secret key k as well as
a value x to evaluate the function on. The pseudorandomness game works as follows. During setup, the
game samples a secret key. Then, the adversary is allowed access to an oracle that either implements
Fk(·) or a truly random function R(·). At the end, the adversary outputs a bit as a guess whether it was
given access to Fk or to R and it wins if this guess was correct. As a security property, we want that
the winning probability of the adversary is close to 1

2 . For a PC-PRF, the adversary additionally gets to
obtain so-called prefix-constrained keys, that is keys kx̄ that allow the adversary to evaluate Fk on all
inputs that have x̄ as a prefix. In this case, we say the adversary has corrupted this key. As described
above, we can consider the selective case, where the adversary specifies which prefixes it would like to
know the keys for at the beginning, or the adaptive case, where the adversary gets access to an oracle
that allows it to corrupt arbitrary keys. In addition to this, the adversary gets to also query a challenge
oracle on a value that it does know a prefix key for, and this challenge oracle is like in the standard
pseudorandomness game either a real implementation of Fk, or a truly random function R.

When proving the security of a cryptographic primitive, one often employs a reduction that shows
that an adversary against the primitive can be used to break the security of some underlying building
block or some mathematical hardness assumption.

1.2.1 The Goldreich-Goldwasser-Micali PRF

In Chapter 3, we consider the case of the Goldreich-Goldwasser-Micali (GGM) PRF [GGM84a]. It is
known that this PRF can be viewed as a PC-PRF [Kia+13; BW13; BGI14]. The GGM PRF is built on
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a so-called pseudorandom generator (PRG). A PRG is a function that maps an input x to an output
y where y is longer than x (we consider the case where y is twice as long as x, i.e. x ∈ {0, 1}n and
y ∈ {0, 1}2n). In the pseudorandomness game of a PRG the adversary is given access to an oracle that
either samples random values from the input space of the PRG and outputs the corresponding PRG
values, i.e. it samples x $← {0, 1}n and outputs G(x), or it samples random values from {0, 1}2n directly
and outputs those. The adversary then has to guess which oracle it interacted with. The GGM PRF now
works as follows. The key space is K = {0, 1}n. On input of a value x, the PRF proceeds as follows. For
each bit of x, it evaluates the PRG, first on the secret key k. If the first bit of x is 0 it takes the first
half of the output of the PRG to continue, otherwise the second. It iterates this process with the output
of the previous round as the input always using the next bit of x to select which half of the output to
use. The last output value of the PRG, i.e. when there are no more bits of x to process, is also the
output value of the PRF. This evaluation can also be expressed as a tree, namely one where the key k
sits at the root, and the two child keys are the two halves of the PRG evaluated on k, the children of
those are the halves of the PRG outputs of the PRG evaluated on the first level etc. A picture of this
tree can be seen in Figure 1.1a.

The proof for the plain PRF security proceeds by replacing the keys in the tree layer by layer from
top to bottom using the PRG security in each hybrid game. This layering is necessary as PRG security
only holds for inputs that are chosen uniformly at random from the input space.

For the prefix-constrained setting, the proof of selective security follows a similar strategy, but this
time only replacing the keys on the path to the challenge value and on its co-path1. This is possible
as by the definition of the game and the validity of the adversary, there are no corrupted keys on the
path to the challenge, and in the selective setting the adversary has to disclose at the beginning which
leaf will be its challenge, so the reductions between hybrids know which vertices lie on the path to the
challenge. A depiction of the GGM PRF tree with some replaced keys can be seen in Figure 1.1b.

For adaptive security, it is known that any straight-line reduction2 to the pseudorandomness property
of the underlying PRG will have a super-polynomial loss in the input length [Kam+21]. Therefore, it
makes sense to consider rewinding as a proof strategy.
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(a) The GGM PRF evaluation where G0 denotes
the PRG G restricted to the first half of the output
and G1 denotes G restricted to the second half.

•
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•
•

▲

▲

▲

(b) GGM PRF tree with randomized keys along
the path (blue •) and co-path (red ▲) to k101, as
desirable when x∗ = 101 is selected as challenge.

Figure 1.1: The GGM PRF evaluation (Figure 1.1a) and tree (Figure 1.1b).

1the co-path of a path in a tree consists of the vertices adjacent to the path
2i.e. one that does not rewind the adversary
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1.2.2 Rewinding Techniques

If we imagine the adversary as a piece of code, like a computer program, the reduction may be able to
run this computer program, and also reset it to previous points and re-run it with different inputs. We
call this technique of resetting and rerunning the adversary rewinding.

Rewinding is a common strategy for to extract witnesses from adversaries in settings with Σ-protocols
[Cra97] as well as signatures that result from the Fiat-Shamir [FS87] transformation of a Σ-protocol.
In particular, Schnorr signatures [Sch90] were proven secure using the forking lemma by [PS96; PS00].
Intuitively, the forking lemma says that if one runs the adversary a first time and it is successful (i.e. the
adversary wins its game, for example by forging a signature), rewinding it has a reasonable probability
to result in a successful run again. Usually, applications of the forking lemma are settings in which the
adversary is rewound until the reduction has two successful transcripts which it can then use to extract a
witness or secret key from the adversary. This is particularly useful for reductions attempting to solve a
computational problem like the discrete logarithm problem in a finite group.

In this thesis, we apply the (a variant of) the forking lemma to very carefully analyse a partially blind
signature scheme by Abe and Okamoto [AO00]. We provide some more details on this later on, but first
we want to discuss a different way we apply rewinding in this thesis. Namely, in Chapter 3, we consider
the use of rewinding to obtain tighter security guarantees for adaptive security. Let’s return to the case
of the GGM PRF as a PC-PRF. The difficulty in the adaptive setting is that the reduction does not know
in advance which keys the adversary will want to corrupt and which will be on the path to the challenge.
We note that in the case of the GGM PRF, if one has two keys kx̄ and kx̄′ where x̄ is a prefix of x̄′ one
can easily check consistency by evaluating the PRG along the path from x̄ to x̄′ in the tree. Thus, if a
reduction was to replace two such keys (or in fact anything below x̄ in the tree) by uniformly random
values using the PRG property, the adversary would be able to notice and the reduction would fail. We
depict such a scenario in Figure 1.2. However, if the adversary is valid, i.e. never asks for a key that

•

•

•

▲

▲

♦

Figure 1.2: A problematic case when having to guess the challenge or parts thereof: The GGM tree with
some nodes on a path (indicated by •) and its co-path (indicated by ▲) replaced by random values. This
hybrid would be desirable if the adversary chose 100 or 101 as the challenge. It leads to a failure however,
if the adversary chooses a different challenge (here vertex 010, denoted by ♦) and corrupts a vertex along

the replaced path as well as one of its offspring, here the vertices 1 and 11, marked by the pink boxes .

would allow him to evaluate the PRF on its challenge, we can be sure that any vertex on the path and
co-path to the challenge is never below a corrupted key and thus those vertices are safe to replace. We
therefore want to employ rewinding to give the reduction some partial information about the location of
the challenge input.

There are two main aspects to consider in the rewinding strategy, namely
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1. which point to ‘rewind to’ an what to alter for subsequent runs (the most common form of
rewinding strategy is to rewind to a suitable ‘relevant’ point in the execution of the adversary, e.g.
the time a hash query is made that is later on used in a forged signature, and for subsequent runs
some or all random-coins that the challenger/reduction uses for oracle responses after the rewound
point are resampled uniformly at random)

2. when to stop rewinding an resampling (this could be after a fixed number of rewinding rounds
or when the current run of the adversary fulfills a certain property, e.g. it outputs a valid forgery
using the same hash query again)

Let us first consider case 1. In our undirected rewinding strategy, we actually rewind to every step in the
adversary’s transcript with the challenger. However, for the PRF case, at some points in the transcript,
there is no possibility for re-randomization and thus our strategy is equivalent to not rewinding at these
points.

Informally speaking, for the purpose of this exposition the transcript consists of the following types of
events:

corruption events these happen whenever the adversary requests to corrupt a key

challenge event this event is triggered by the adversary requesting a PRF challenge

key events these are the keys (corrupted or challenge) that the adversary receives

PRG evaluation events whenever the adversary requests a corruption or a challenge, the game internally
has to derive the corresponding keys. This adds PRG evaluation events for any not yet derived key
on the path from the last derived key to the currently requested key. For example, if the key k00 is
requested to be corrupted as the first corruption in the tree, this adds PRG evaluation events for
the input of the root key kε as well as for the input of k0. If later on, the key k010 is corrupted,
this only adds a PRG evaluation event from k01 because kε and k0 have already been queried to
the PRG to derive k01 along with k00 earlier.

It is easy to see that the only type of event where the reduction can apply any kind of re-randomization
is the PRG evaluation event, and only if the key above has already been re-randomized in a previous
hybrid. As explained above, it is furthermore important that only PRG evaluations along the path to the
challenge are replaced by random function evaluations. Therefore, the point in the transcript that we
want to alter in the hop from the ith to the i+ 1st hybrid is the i+ 1st PRG evaluation event along the
path to the challenge. As this happens only when rewinding the adversary, the challenge it used in the
previous round is known and thus this path is well-defined. We further note that we use a notion of PRG
security where we can query the PRG oracle multiple times, and thus it is possible that the reduction, if
it is unhappy with the second run, rewinds the adversary again to the same spot and re-samples with
another potentially random value until the adversary behaves in the desired way.

We will now discuss what this ‘desired way’ is, namely when to stop rewinding at a certain index.
One possible strategy could be that the reduction keeps replacing the PRG evaluation event in

question (and re-evaluates the PRG for all events that depend on it) until the adversary re-uses the exact
same input value as its challenge value. This is however problematic as the number of possible challenge
values is exponential in the input length of the PRF. Therefore, there is no guarantee that the same
input value might re-occur soon and the reduction might have an exponential running time.

We therefore employ a more sophisticated strategy. We note that the transcript itself is actually of
a length polynomial in the input length of the PRF. Thus, preserving some function that is an index



1.2. ADAPTIVE SECURITY IN GAME-BASED NOTIONS 9

inside the transcript is a more feasible goal. The choice of index that we will use is the position of this
‘replacable’ PRG evaluation event described before, i.e. the i+ 1st PRG evaluation event along the path
to the challenge. As this PRG evaluation event has to happen somewhere in the transcript, there are
only as many choices for this value as there are positions in the transcript.3 By a probabilistic argument
we can therefore bound the number of repetitions of this rewinding process to a polynomial.

1.2.3 Another Application: The Logical Key Hierarchy

As a second application of the rewinding strategy, we prove the security of the Logical Key Hierarchy
(LKH) [WHA98; WGL00; Can+99] in the variant of [Pan07], a mechanism for server assisted key
exchange in group messaging applications. The LKH works as follows: Keys are arranged in a tree, where
the shared key is the root key. User keys are located at the leaves and each inner vertex is assigned a key
as well. In addition to a collection of vertices with keys, each edge is labelled with a ciphertext that is
an encryption of the parent key under the child key. This allows someone in possession of a leaf key to
decrypt the keys along the path up to the root and finally the root key. We show the structure of the
tree in Figure 1.3 The LKH protocol also supports updating keys (in the scenario of group messaging,
imagine the setting where a user leaves or joins the group, or a user’s key is leaked to an adversary).
Instead of updating all keys in the system, a key update requires only updating the keys on the path
from the leaf to the root, as well as the ciphertexts on the ingoing edges.

kε

k0

k00

c00

k01

c01

c0

k1

k10

c10

k11

c11

c1

Figure 1.3: Depiction of the LKH structure as a tree. The vertices correspond to keys whereas the labels
on the edges correspond to ciphertexts of the parent vertex key under the child vertex key.

We formulate a security game for this protocol. The game initializes the tree, and the adversary gets
to see the ciphertexts labelling the edges. The adversary is then given the opportunity to corrupt leaf
nodes. This triggers an update along the path to the root as described above. The adversary can also
request to be challenged on the root key. In this case, it either receives the real root key that is encrypted
in the ciphertexts on the two incoming edges of the root, or it receives a fresh random root key. It has to
output a guess of whether the key it got was a real or random key and wins if its guess was correct.

The rewinding proof strategy is similar to the PC-PRF case, however the conditions are more
complicated to formulate. In particular, as the tree edges are in a sense ‘directed’ from the leaves to the
root, applying the IND-CPA property to gradually ‘forget’ the root key and all information that might be
leaked about it, needs a more intricate hybrid argument.

This argument uses a strategy called pebbling. Edge-pebbling proceeds over multiple rounds where
pebbles can be placed or removed from edges in a graph according to the following rule. In each round,
an edge is allowed to be pebbled or unpebbled if all of the incoming edges of its source vertex are pebbled.

3Another way to view this condition is that we rewind until the challenge is again in the same subtree underneath the
PRG evaluation event’s position in the tree, but it is not as obvious to argue why the probability of hitting this subtree
again is high enough.
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In a tree this means that an edge can be pebbled whenever the two edges coming from the children are
pebbled.

This has the following correspondence to the LKH game: An edge is pebbled when the ciphertext
on it is an encryption of a random key and not the key of the vertex at the end of the edge. Thus, in
order to pebble an edge (using IND-CPA security), the ciphertexts of the two ingoing edges of the source
vertex cannot contain information about the encryption key. The same holds for switching back edges
(ciphertexts) to the unpebbled (real encryption) setting.

To pebble the graph up to the root vertex, we use the edge pebbling algorithm of [Jaf+17] which
recursively pebbles resp. unpebbles the child edges.

The hybrids of our rewinding based proof correspond to pebbling configurations in this algorithm, and
each step uses an IND-CPA reduction to either place or remove a pebble. Again, we need to talk about
the two rewinding criteria. For this, we first consider what kind of events can occur in the transcript
with the adversary.

corruption queries these indicate that the adversary requested to corrupt a leaf key

challenge queries these indicate that the adversary requested to be challenged

new key events these are triggered by the adversary corrupting a key and the subsequent update of the
path to the root. The keys are not leaked to the adversary, but the event indicates that the game
internally sampled a new key.

ciphertext events these are the ciphertexts output to the adversary either as part of the initial tree or
as part of an update

corrupted keys corrupted keys output to the adversary in response to a corruption query

challenge key challenge key (either real or random root key) output to the adversary in response to a
challenge query

The tricky thing for the reduction between two hybrids to decide is whether a ciphertext event on
an edge that needs to be pebbled or unpebbled in this step is a point in time when the adversary will
no longer obtain a key to decrypt this ciphertext. Like before, this corresponds to an index within the
transcript and thus has a polynomial range. Therefore, by the same probablistic argument as before, we
can preserve this index when rewinding and resampling. However, for technical reasons, the argument
becomes a bit more complicated as in between hybrids, we also need to switch some stopping and
rewinding conditions. We give a full proof of the LKH security in Section 3.3.

1.3 (Partially) Blind Signatures

We turn to another type of scheme in which rewinding as a proof technique has a long tradition [PS00].
Blind Signatures [Cha82] are a primitive by which a user can obtain a signature from a signer on a
message of its choice without revealing said message. There are two desired security properties for blind
signatures. The blindness property protects honest users from malicious signers and guarantees that
a signer cannot link message-signature pairs to interactions it had with users, whereas the one-more
unforgeability property protects honest signers from malicious users by guaranteeing that a user cannot
generate more message-signature pairs than it obtained through interaction with the signer. We note
that this is a different unforgeability notion than that of (non-blind) digital signatures as the messages
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used in signing queries are unknown to the challenger due to the blindness property and thus we can only
count interactions and signatures.

Blind signatures find applications in many different contexts - originally introduced for electronic
payments [Cha82; CFN90; OO92] they found early applications electronic voting [Cha88; FOO93],
and anonymous credentials [Bra94; CL01]. In recent years, the field has found renewed interest due
to applications in blockchain contexts [YL19; Bus+23] and for private authentication, e.g. for VPN
services [Goo].

One popular way to construct blind signatures is from the discrete-logarithm based identification
scheme by Schnorr [Sch90], with potential adaptions. In blind Schnorr signatures [Sch01], the signers
secret key is a scalar x, its public key is y = gx where g is a generator of group with prime order q.
The signer’s side of this protocol is a proof of knowledge of the secret key, whereas the user-side of the
protocol generates a Fiat-Shamir style signature on the message with some assistance from the signer.
We describe the interaction in more detail in the following. For signing, the signer sends the first message
R = gr for a uniformly random scalar r $← Zq. The user then blinds the group element using blinding
factors α, β $← Zq to obtain R′ := R · gα · yβ and computes the hash c′ = H(R′,m) where m is the
message of its choice. It sends the challenge c = c′ − β to the signer. The signer computes s = r − cx
and sends c, s to the user. The user de-blinds the value s′ = s+ α and obtains the signature (c′, s′).
Verification4 works by checking that H(gs′yc′ ,m) = c′. While blind Schnorr signatures only have proofs
in idealized group models [Sch01; FPS20; KLX22a], cannot be proven secure using the standard forking
technique [BL13b], and are vulnerable to the ROS-attack in the concurrent setting [Sch01; Wag02;
Ben+21], the blinding technique serves as a basis for many similar discrete-log based schemes, e.g.
[Abe01; AO00; TZ22].

With a lot of renewed interest in Blind Signature, much research has been conducted in recent
years toward constructing blind signatures from various underlying constructs such as pairing-free
groups [HKL19; TZ22; Cri+23], pairing groups [HLW23], lattices [Rüc10; Beu+23; AHJ21; Agr+22;
dK22], as well as isogenies [Kat+23].

1.3.1 The Scheme by Abe and Okamoto

In particular Abe and Okamoto [AO00] used the OR-proof technique of [CDS94] to combine two blind
Schnorr signatures into one partially blind signature. Partially blind signatures [AF96] are a generalization
of blind signatures where the signer and user can agree on a shared information called the tag and
create signatures that are bound to said tag. The blindness property is then only required to hold for
message-signature pairs that belong to the same tag, and one-more unforgeability also needs to hold
within each tag (i.e. the adversary should not be able to produce more message-signature pairs than
requested for each tag).

The Abe-Okamoto protocol has two keys, one public key that works like the Schnorr public key, i.e.
y = gx where x is the secret key, and a tag key z = H∗(info) where H∗ is a hash function mapping into
the group. The signer’s side of the protocol proves knowledge of the secret key or the discrete log of the
tag key. That is, it distributes the challenge e into two values c+ d and uses them as separate challenges
for the two commitments it sent before. In an honest run of the protocol with the signer, the tag key
comes out of a hash function and therefore the signer does not actually know the discrete logarithm.
It therefore simulates that half of the OR-proof by choosing d, s in advance and computing b := gszd,
whereas the commitment for the y-proof is chosen honestly as a := gu. The user blinds both values like

4This is a non-standard version of Schnorr signatures where the sign of s′ is inverted. We provide this version as it is
more in line with the two (partially) blind signature schemes described in the following.
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Signer User
sk = x pk = y
pk = (y = gx), z = H∗(info) m, info, z = H∗(info)
u, s, d $← Zq

a := gu

b := gs · zd
a,b−−→

t1, t2, t3, t4
$← Zq

α := gt1 · yt2 · a
β := gt3 · yt4 · b

h := H(α,β, z,m)
e := h− t2 − t4

e←−
c := e− d
r := u− cx

c,d,r,s−−−−→
ρ := r + t1
ω := c+ t2
σ := s+ t3
δ := d+ t4

ω + δ
?
= H(gρ · yω,gσ · zδ, z,m)

⇓
sig := (ρ, ω, σ, δ)

Figure 1.4: The Abe-Okamoto scheme with parts corresponding to the y-side of the protocol marked in
purple and parts corresponding to the z-side of the protocol marked in green.

in the Schnorr signature and hashes them together with the message. It then sends the blinded challenge
e to the signer to obtain c, d, r, s and de-blinds them to obtain a signature.

In the security proof, the hash function H∗ is modelled as a random oracle which allows the reduction
to swap the roles of z and y and answer signing queries using the discrete logarithm of z as a secret key.

This witness indistinguishability property was used in the original work to provide a proof of security
using the rewinding-based forking technique. The proof idea is essentially that the reduction can choose
whether the it uses the real secret key to generate signatures and embed a discrete logarithm challenge
in the tag key, or embed its challenge in the public key and use the discrete logarithm of the tag key as a
secret key. Intuitively, as signatures are non-interactive proofs of knowledge of one of the two possible
secret keys, it should be possible to extract one of the secret keys from the adversary through rewinding.
Furthermore, as the two modes of operation of the reduction are indistinguishable, the reduction should
have a decent chance at extract the secret key that it does not already possess itself.

However, when the reduction rewinds the adversary, the adversary also changes its queries to the
reduction in most cases, and thus the reduction has to respond differently than in the first round. The
combination of the first and second transcript therefore reveals which witness the reduction used internally
and it is not obvious how this affects the signatures that the adversary outputs in the two runs.

The original work deals with this using the following observation: as the adversary needs to make as
many hash queries to the random oracle H as it outputs signatures, i.e. more hash queries than it sends
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base, dashed lines are the top); right: not a triangle
(forking at wrong point).

Figure 1.5: Triangles

challenges e to the reduction to close signing sessions. This means that there must be pairs vectors of
random oracle responses for each ‘instance’5 that lead to the same challenges by the adversary. For these
pairs of random oracle responses, even forking runs do not reveal the witness used by the reduction, and
thus the witness extracted from the adversary’s signatures is independent of the witness used by the
reduction. Following [AO00], we call such pairs of instances, hash responses, along with the random
coins of the adversary partners.

However, these pairs of partners are hard to find for the reduction, so Abe and Okamoto [AO00]
found a way to extend the desirable properties of partnering pairs to more general forking vectors. In
particular, they show that there are vectors that fork off from both partners in the same place and at
least one of the forks between a partner and the third vector must yield the same secret key as the two
partners. We call the two partners the base of the triangle, and the third vector the triangle top. A
depiction of such a forking configuration can be seen in Figure 1.5. The two forks between a partner and
the top are called the sides of the triangle. The original work now claims that if a large majority of the
triangle sides yield a certain secret key, then also a large fraction of the triangle bases would need to yield
the same witness. More specifically, they claim that if 4

5 of triangle sides yield a certain witness, then
also 3

5 of triangle bases would yield the same witness. This argument heavily relies on the observation
that if both triangle sides do not yield a specific witness, then also the corresponding base cannot yield
that witness.

We observe that this counting argument is flawed in the following way: it works if the triangles do
not share components with each other, as then a fraction of more than one half of triangle sides not
yielding the desired witness also means that there must be triangles where both sides do not yield said
witness. However, if the triangles share components (which is in general the case and also needed for the
extension of the desirable properties of bases to be meaningful), this argument does not work any more.
Namely, if a triangle side is shared between many triangles, the corresponding opposing sides may all not
yield the desired witness, so there is a lot of these, but the single shared side yields the witness, and so
the transferral to the base does not happen. We show an example of such a configuration where the
sharing of sides of triangles leads to problems in Figure 1.6, middle picture.

Now, one may say we can consider only triangles that do not share sides with each other, however,
the sharing of bases cannot be avoided. If triangles were not allowed to share bases, the amount of
forking pairs with desirable properties would at most triple from considering bases to considering also

5An instance consists of a public key along with the random choices the challenger makes during signing sessions.
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Figure 1.6: Claim in [AO00] that if at least 4
5 of triangle sides are unsuccessful (i.e., yield the undesirable

witness ¬×), then at least 3
5 of bases (incident to two square nodes) also yield this witness. This holds

for non-overlapping triangles (left), but not for triangles overlapping in sides (middle, with 3
5 yielding the

desirable witness ×) or in bases (right, with 1
2 of bases still yielding the desirable witness ×).

triangles - as bases are hard to find for the reduction, these nice forking pairs would then also be hard to
find.

So, let’s consider the case where triangles may share bases. In this case, the counting argument from
[AO00] does not work either, as there could be ‘heavier’ triangle bases that have more corresponding
triangle sides. Thus, if a lot of the ‘bad’ triangle sides accumulate on very few of these ‘heavy’ triangle
bases, only these very few triangle bases would be forced to be bad, leaving plenty of ‘lighter’ triangle
bases that still yield the desired witness but do not have as many triangle sides attached to them. An
example of such a scenario is depicted in Figure 1.6 in the right picture.

Resolving the Gap

We rewrite most of the proof using modern techniques to model the forking proof. One key feature is
that we use what we call a ‘deterministic wrapper’ which allows us to talk about all random choices that
a reduction would make during the interaction with the adversary at once (in particular these are random
coins used for responding to signing queries). We call this collection of responses by the reduction (along
with the public key) an ‘instance’, which is given to the deterministic wrapper along with some random
coins for the adversary and a vector of values to be used when responding to hash queries. We can then
argue about the interaction of the adversary with the wrapper when the wrapper is running on these
inputs. This allows us to define forking pairs, partners, and triangles in the spirit of the proof of [AO00].
In order to show witness indistinguishability for tuples that are partners to each other, we introduce the
transcript mapping function Φ. Informally speaking, this function maps tuples of an instance, random
coins, and a hash response vector where the instance uses the y -side (resp. z-side) witness to such
tuples where the instance uses the z-side (resp. y-side) witness to such that the two produce the same
transcript between the wrapper and adversary. The random coins and hash response vectors are preserved
by the mapping. A key property of this mapping is that it preserves partnering tuples, however it does
not preserve the triangle top to base corner relationship or other non-partnering forking runs.

This mapping allows us to argue about tuples that have certain properties both before and after
applying Φ. In particular, we can show that there exists a large enough set of partner tuples that are base
corners of triangles both before and after mapping, and also that there is a large enough set that has
many triangle tops both before and after mapping. This resolves the second issue we described, i.e. the
possibility that there could be bases yielding the ‘bad’ witness that have many triangle tops and bases
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Figure 1.7: Left: In the problematic case where too many triangles share sides, we show that this would
result in more triangle bases that yield the bad witness (here depicted as a dashed line). Right: Forking
situation that would lead to such a triangle configuration. We bound the number of vectors that behave
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yielding the ‘good’ witness that only have few corresponding triangle tops.

We however still need to show that the second potentially bad scenario does not occur. Recall that
this scenario revolved around triangles sharing sides, i.e. in particular sharing base corners, and that
those shared sides would be the ones yielding the desired witness, whereas the larger set of not shared
sides would yield only the undesired witness. We show that the set of non-shared sides cannot be too
much larger than the set of shared sides, namely we bound the difference by a factor of roughly ℓ. The
strategy to do is involves the following observation: triangle sides can only be shared without producing
additional triangles between the non-shared base corners if the non-shared base corners fork from each
other at the wrong point. Thus, by considering the forking point where most of the partners fork, we
can see that at least a fraction of roughly 1

ℓ must yield triangles. We depict this in Figure 1.7.

1.3.2 Abe’s Blind Signature Scheme

A drawback of the scheme by Abe and Okamoto is that, like blind Schnorr signatures, it is susceptible to
the ROS attack whenever the adversary can open log q many signing sessions in parallel where q is the
order of the group. As the group order is roughly 2λ for a security parameter λ, this means that even a
linear or polynomial number of signing sessions would be problematic. This heavily limits the use of the
scheme in the real world, as a signer that wants to prevent this attack would have to heavily restrict the
amount of open sessions at a time, making themselves susceptible to Denial-of-Service attacks instead.
It is also not clear how one would avoid concurrency in a situation where the signer runs multiple servers
and signs with the same key on all of them.

Abe [Abe01] introduced a scheme with a similar idea as [AO00], however with a more complex
structure in the z-branch of the OR-proof. This scheme evades the ROS attack as each signing session
uses a fresh ‘session key’ in the z-branch, while still linking all session keys to the main key. As the
ROS attack heavily relies on linearly combining values from different signing sessions into signatures, it
cannot be applied any more. We show a graphic in Figure 1.8 where the y and z branches are marked in
colour as well as the two sub-branches for the session keys z1 and z2. However, the original proof not
only carries over the flaws from [AO00], but has a further issue also related to analysing the success
probability related to witness indistinguishability. This flaw was first pointed out by [OA03] who gave a
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proof in the generic group model.
In Chapter 5, we revisit this scheme. We point out that while the scheme was originally designed as

a fully blind scheme (using just one fixed ‘tag key’ z that is a hash of the rest of the public key), it can
easily be extended to a partially blind scheme by using the key part z as a tag key instead. We provide a
full concurrent security proof in the algebraic group model that avoids the problematic rewinding step
from the original work.

We further note that the proof technique from Chapter 4 can be applied to Abe’s scheme as well (we
briefly sketch how to do so in Section 5.4.4), however, it incurs a loss that is superpolynomial in the
number of signing sessions. This is inherent in the case of Abe-Okamoto due to the ROS-vulnerability,
however in the case of Abe’s scheme one can hope for a better proof.

We review the proof strategy for Abe’s blind signature scheme in the following.

Technical Overview over Chapter 5

The security proof in Chapter 5 follows the two-step approach of Abe’s original work. We first prove
that it is infeasible for the adversary to forge a signature using a fresh session key that was not issued
by the signer. This implies that the adversary must output two signatures that use the same (blinded)
session key. However, in this case a witness can be extracted with a high probability, as the adversary
would have to solve an information-theoretically hard variant of the ROS problem to output two such
signatures without revealing a witness.

The proof uses the assumption that the adversary is algebraic. This means that whenever the
adversary outputs a group element, be it as part of a signing query, in a signature, or to a random oracle,
it must also submit an explanation of how this group element can be computed from the input group
elements it has seen so far (which may come from the public key or various oracle responses).

This explanation can then be used by the reduction to avoid the rewinding step and compute one of
the secret keys needed for signing messages only from the explanation along with the signature.

However, as the reduction will again employ the witness indistinguishability to simulate with different
possible secret keys, we still need to argue in both halves of the proof that it is not possible for the
adversary to reliably output a representation that will yield the same witness that the reduction already
has. This argument is different than the one used in Chapter 4, as here there is no rewinding step.

While in the rewinding based setting, the two forking runs together reveal the witness internally used
by the reduction, the single run by the reduction in the AGM does not reveal anything about the witness
the reduction has internally.

However, the adversary may submit representations involving group elements whose internal repres-
entation is not fully known at the time of the hash query. This could allow the adversary to use the
signing oracle to retrospectively set the representation in such a way that it matches that obtained from
the signature. We prove a claim that states that this is not possible using an exhaustive case distinction
over different types of representations the adversary could submit.

We note that this case distinction is greatly simplified in comparison to that of [KLX22a] as we
employ a lemma from [KLR23a] to catch several (sub-)cases at once.

1.3.3 Sequential Security of Blind Schnorr Signatures in the AGM

In Chapter 6, we consider the security of Blind Schnorr Signatures in the AGM + ROM. Our results are
two-fold. On the one hand, we prove that the scheme can be proven sequentially secure assuming the
hardness of the one-more discrete logarithm problem (OMDL). The proof strategy is to embed discrete
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Signer User
sk = x
pk = (g,h,y = gx) pk = (g,h,y)
info m, info
z← H1(pk, info) z← H1(pk, info)
u, d, s1, s2

$← Zq

rnd $← {0, 1}λ
z1 ← H2(rnd), z2 ← z/z1
a← gu

b1 ← gs1 · zd1
b2 ← hs2 · zd2

a,b1,b2,rnd−−−−−−−→ τ , γ, t1, t2, t3, t4, t5
$← Zq

z1 ← H2(rnd)
α← a · gt1 · yt2

ζ ← zγ , ζ1 ← zγ1 , ζ2 ← ζ/ζ1
β1 ← bγ

1 · gt3 · ζt41
β2 ← bγ

2 · ht5 · ζt42
η ← zτ

h← H3(ζ, ζ1, α, β1, β2, η,m, info)
e←− e← h− t2 − t4

c← e− d
r ← u− c · x

c,r,d,s1,s2−−−−−−→ ρ← r + t1, ω ← c+ t2
σ1 ← γ · s1 + t3
σ2 ← γ · s2 + t5

δ ← d+ t4
µ← τ − δ · γ

δ + ω
?
= H3(ζ, ζ1,g

ρyω,gσ1ζδ1 ,h
σ2ζδ2 , z

µζδ,m, info)
⇓

(m, (ζ, ζ1, ρ, ω, σ1, σ2, δ, µ))

Figure 1.8: Interaction between Signer and User for the partially blind version of BSA. Components
related to proving knowledge of the discrete logarithm of z1 resp. ζ1 to g are marked in orange,
components related to proving knowledge of the discrete logarithm of z2 resp. ζ2 to h are marked in
teal, components connecting the two or related to proving knowledge of the discrete logarithm of ζ to z
are marked in green, and components related to proving knowledge of y to g are marked in purple.
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logarithm challenges in the public key as well as in the messages sent as response to Sign1 queries. The
reduction then uses the discrete logarithm oracle to respond to Sign2 queries without having to know
the secret key. It finally solves the discrete logarithm challenges by solving for the secret key using the
representations submitted in hash queries along with the signatures. Once it has the secret key, it can
combine it with the values for c and s it learned during its own Sign2 responses to solve all the other
challenges. This strategy uses as many discrete logarithm queries as the user closes signing sessions, but
due to the sequentiality, it avoids the ROS-problem that appears in [FPS20] when they prove security of
Blind Schnorr Signatures in the concurrent setting.

We then turn to the second result, namely we prove that our reduction is optimal with respect to
the amount of discrete logarithm queries made. In particular, we employ a meta-reduction against an
algebraic reduction that simulates an algebraic adversary to the reduction and solves the OMDL problem
for ℓ− 1 discrete logarithm queries and ℓ challenges whenever the reduction solves the problem.

The meta-reduction’s strategy is to provoke the reduction to output a linearly independent system of
linear equations through the algebraic explanations provided for the public key and first signer messages.
It then uses this system of equations to either solve for the secret key directly or to solve the discrete
logarithm challenges contained in the public key to obtain the secret key. The meta-reduction can then
sign arbitrary messages to submit to the reduction, which in turn breaks the OMDL assumption.

1.4 The Algebraic Group Model and the Algebraic Wrapper

As already sketched in a previous section of this introduction, in the Algebraic Group Model [FKL18], one
considers algebraic adversaries. More formally, let x1, . . . ,xn, be the group elements that the adversary
has seen so far, and let y be a group element in the output of the adversary. Then, the adversary is
required to additionally output a vector −→z ∈ Zn

q such that

y =

n∏
i=1

xzi
i .

Since its introduction in [FKL18], the AGM has found applications proving security in many areas
of cryptography, such as signatures [FKL18; TZ23; FPS20], blind signatures [TZ22; FPS20; KLX22a;
Cri+23], zero-knowledge proofs [FKL18], as well as more general cryptographic assumptions [BFL20]
from the Uber-Framework [BBG05; Boy08].

Furthermore, researchers have proposed extensions to the model, such as a decisional variant where the
adversary has to ‘explain’ its decision bit [RS20], a variant that allows for counting the number of group
operations made by the adversary to arrive at the group element [KLX20], as well as a variant where the
adversary is allowed to sample group elements without knowledge of an algebraic representation [LPS23].

In recent years however, the AGM has received some criticism. On the one hand, [ZZK22] show
that the AGM is in fact incomparable to the variant of the Generic Group Model introduced by Shoup
[Sho97], i.e. there are examples of protocols that are secure in one model but not the other. Their proof
technique relies on ‘feeding’ an adversary the label of a group element that is a solution to the problem.
In the GGM, the adversary can thus easily win the game by outputting said group element. In the AGM
however, the adversary would be required to also explain how it computed the group element from its
inputs which would reveal a discrete logarithm relation.

In another recent work, Zhandry [Zha22] compared the two variants of the GGM by Shoup [Sho97]
and by Maurer [Mau05] and showed that in the case of Maurer’s GGM variant, it indeed holds that any
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 x︸︷︷︸
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Encrypted

Algebraic Explanation

, π︸︷︷︸
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between x and c


Figure 1.9: Structure of a group element in the algebraic wrapper H.

generic algorithm is also an algebraic algorithm, while at the same time he proves that the full AGM is
uninstantiable.

1.4.1 The Algebraic Wrapper as an Approximation of the AGM

In [AHK20] (we review this in Chapter 7), we showed that, despite the uninstantiability of a full AGM,
it is possible to do a partial instantiation based on falsifiable assumptions. In this partial instantiation,
called the algebraic wrapper, a reduction would attack a problem in a base group, but the adversary
would attack a different problem in a constructed group that allows the reduction to extract a restricted
algebraic representation. The algebraic wrapper works as follows: During setup, the reduction can choose
a basis of group elements from the base group that will be used as a basis for the explanations that the
adversary submits. Group elements are then represented as an element from the base group with some
auxiliary information attached. The auxiliary information is essentially an encryption of the algebraic
explanation with respect to the basis contained in the group parameters along with a NIZK proof that the
explanation matches the group element from the base group. That is, a group element of the algebraic
wrapper looks as depicted in Figure 1.9.

In order to compute the group operation, one needs to do the following three things:

1. multiply the two base group elements - this can easily be done using the base group operation

2. provide an encrypted explanation. This can be done for example through homomorphism of the
encryption scheme which allows to add the two previous explanation vectors together

3. provide a NIZK proof of correctness. This is the trickiest part as one would need the witnesses of
the encryption scheme.

We resolve the difficulty of the last steps by relying on indistinguishability obfuscation (iO). This is a
primitive that allows to obfuscate circuits in such a way that if one has two circuits that compute the
same function, one can input one of these circuits into the obfuscator to obtain an obfuscated circuit
that computes the same function. The security guarantee states that an adversary won’t be able to tell
which of the original circuits was the input to the obfuscation.

In the algebraic wrapper, the group parameters contain an obfuscated circuit that allows users of the
group to compute the group operation, including recomputing the proof of consistency for new group
elements.

For technical reasons, we also need to include a ‘trapdoor’ that allows a reduction to output an
obfuscated circuit that computes the group operation even when the secret key of the encryption scheme
is unknown. This trapdoor can be ‘activated’ in some hybrids to allow for efficient implementations of
the addition function even when it does not have access to all the information required to do so.

This leads to the following group parameters
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• the group parameters ppG of the underlying base group

• a base for the algebraic explanations (as group elements from G)

• a public key pk of a homomorphic public key encryption scheme

• a CRS for the NIZK

• the NIZK generation trapdoor (in standard mode deactivated)

• an obfuscated circuit for the group operation

• an obfuscated circuit for re-randomizing group element encodings

We note that the proof of consistency can be created using different types of witnesses. On the one
hand, one can generate a proof using the encryption randomness and the plaintext (which is a valid
explanation), whereas on the other hand, one can use the secret key as a witness to show that the
ciphertext in question decrypts to a valid explanation. Alternatively, the proof of consistency can also be
generated using the trapdoor witness. In the security proof, we can use the indistinguishability property
to switch between a circuit that uses the public key and randomness and one that uses the secret key.
This allows us to ‘forget’ about the secret key of the encryption scheme and use the IND-CPA security of
the encryption to switch the algebraic representations of the group elements output by the challenger.
We call this property of the algebraic wrapper k-switching.

In the standard application of the wrapper, the base will be some random group elements, and only
the first entry is used by the challenger for its output group elements. A reduction using the algebraic
wrapper, however, will put its own challenge elements (and possibly some related group elements) into
the basis so that it can output related group elements in the algebraic wrapper without actually knowing
their discrete logarithm.

This allows us to transfer some proofs from the AGM into the setting of the algebraic wrapper. We
give an overview over these proof strategies in the following.

1.4.2 Transferring Proofs from the AGM to the Algebraic Wrapper

We show how to transfer the proofs of various Diffie-Hellman-type assumptions based on DL like in
[FKL18]. To this end, we come up with some base elements for the Diffie-Hellan assumption in question,
namely there is a base element for each of the random variables of the assumption, i.e. for CDH, there
is a base element that corresponds to the generator g, one for gx, and one for gy. This allows the
reduction to embed its own DL challenge in either of those base elements (after application of the
appropriate switching lemmata). These proofs are mostly a proof-of-concept to get the reader familiar
with the techniques. In particular, for the Diffie-Hellman assumptions we already employ what we call
the symmetrization technique where we add group elements to the basis of the wrapper to hide from
the adversary where the discrete-logarithm challenge is embedded. If we only added one group element
fro gx (in addition to the one for g), an adversary could always present the reduction with a solution
that only allowed to solve for the discrete logarithm of gy, but never for the discrete logarithm of gx

which is what our reduction is interested in. However, when there are two equivalent base elements, the
embedding choice of the reduction remains information-theoretically hidden from the adversary.

We then turn to proofs for Schnorr Signatures as well as Signed ElGamal - the underlying AGM proof
strategy is based on [FPS20]. As the EUF-CMA game for Schnorr signatures is interactive, we have to
take care of how to simulate Random Oracle Queries as well as Signing queries. However, we consider a
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special type of Random Oracle that ignores parts of its input, namely auxiliary information provided in
the group elements. As each group element has a unique identifier, we base the hash function outputs
solely on this unique identifier while observing the auxiliary information submitted. Another thing we
need to concern ourselves with is how the reduction responds to signing queries. As usual for Schnorr
signatures, the reduction will sample values c, s, and construct the group element as R̂ = gs · pk−c.
However, in the case of the algebraic wrapper, this alternate method of generating group elements may
be noticeable to an adversary if we are not careful. We want to apply the k-switching property here,
however applying it to all signatures would yield a non-tight reduction whereas the reduction in the
AGM is tight. So, we add some group elements from the algebraic wrapper that we call origin elements.
These elements are used by the games and reduction internally to derive all group elements in the public
key as well as in the oracle responses. As there is only a constant number of origin elements, doing a
k-switching argument over those elements only leads to a constant loss.

1.4.3 Limitations of the Algebraic Wrapper

It is a natural question to ask whether the algebraic wrapper can also be used to transfer other proofs,
such as those presented in Chapters 5 and 6 or other proofs from [FKL18; BFL20]. There are two
key limiting factors to the transferrall of proof techniques. The first is whether the symmetrization
technique is applicable. This is for example not the case for our proof of one-more unforgeability of
Abe’s blind signature scheme, as the reduction relies heavily on the witness indistinguishability of the
scheme. In the AGM, this witness indistinguishability is perfect as the group elements do not reveal
any information regarding how they were computed. However, in the algebraic wrapper, the reduction
just like the adversary, has to output wrapper group elements which contain information about how
they were computed. Due to the interactivity of the one-more unforgeability game, it is not possible for
the reduction to send first-round elements that already contain the correct representation or match the
internal representation to the ‘external’ representation provided in the second signer response. Thus,
while the internal representation is hidden computationally, an information-theoretical argument is no
longer possible and it is unclear how to replace some of the information-theoretical arguments in the
proof of Abe’s scheme.

On the other hand, some proofs in the AGM rely on non-constant size assumptions, such as q-type
assumptions (where the adversary gets q group elements where q is polynomial) or interactive assumptions
such as the one-more discrete logarithm assumption. Examples of such proofs are proofs of sequential
(see Chapter 6, [KLX22a]) or concurrent (see [FPS20]) security of blind Schnorr signatures where security
is based on the one-more discrete logarithm assumption.

The difficulty with using such non-constant sized assumptions in the base group of the algebraic
wrapper is that as the reduction w.l.o.g. does not know the discrete logarithms of any of the challenge
group elements of the assumption, it would have to embed any challenge element it ever intends to send
to the adversary in the basis of the algebraic wrapper. Such an embedding would lead to a polynomial
blow-up (instead of a mere constant blow-up of the size of the wrapper group elements in comparison
to the base group elements). Even worse (as our construction is of a theoretical and proof-of-concept
nature), such an embedding of a large number of group elements would create a cyclic dependency
between the adversary’s input and potential upper bounds on the adversary’s query complexity (say for a
non-interactive assumption the adversary is bounded to make at most q queries with q a polynomial in
its input size, and so the reduction attacks an assumption of size q - now if the input size gets larger by
a factor of q, the adversary might make more than q queries).
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1.5 Outline of the Thesis

In Chapter 2 we recall important definitions and lemmata. Chapter 3 is based on [HKK23] and we discuss
the proofs of adaptive security for the Goldreich-Goldwasser-Micali PRF as a prefix-constrained PRF
based on the Pseudorandomness of the Underlying PRG as well as the adaptive security of the Logical Key
Hierarchy based on the IND-CPA security of the underlying secret key encryption scheme. In Chapter 4,
we present the full proof of One-More Unforgeability of the Abe-Okamoto partially blind signature scheme
based on the discrete logarithm problem in the ROM. This chapter is based on [KLX22c]. In Chapter 5,
we present the full proof of One-More Unforgeability of Abe’s blind signature scheme, also discussing
how to extend it to the partially blind setting. This proof is slightly different from the one originally
presented in [KLX22a] as we found a way to apply a lemma from a later work [KLR23a] to simplify some
steps. The proof is in the AGM+ROM and shows tight security under the discrete logarithm assumption.
In Chapter 6, we discuss the sequential security of blind Schnorr signatures in the AGM+ROM under
the one-more discrete logarithm assumption. This chapter is also based on work presented originally in
[KLX22a]. In Chapter 7 we present the algebraic wrapper, a way to partially instantiate the AGM, and
discuss how to apply it to some existing proofs that use the AGM. This chapter is based on [AHK20].
We conclude in Chapter 8.



Chapter 2

Preliminaries

2.1 Notation

We denote by [ℓ] := {1, . . . , ℓ} and by [ℓ]0 := {0, 1, . . . , ℓ} for a natural number ℓ ∈ N. For a vector
−→
h ,

its i-th entry is denoted by hi, and the vector of its first i entries is denoted by
−→
h [i]. Given a finite

set S, the notation x $← S means a uniformly random assignment of an element of S to the variable
x. For a vector −→x ∈ Xn, we denote by −→x ′ $← Xn

|−→x [i]
that −→x ′ is sampled uniformly at random from

{−→x ′ ∈ Xn|−→x ′[i] =
−→x [i]}. For an algorithm A, we use tA to denote its running time.

Throughout this document λ denotes the security parameter.

A function negl : N→ R is negligible in λ if for every constant c ∈ N, there exists a bound nc ∈ R,
such that for all n ≥ nc, |negl(n)| ≤ n−c.

Given an algorithm A, the notation y $← A(x) means evaluation of A on input of x with fresh random
coins and assignment to the variable y. The notation AO indicates that the algorithm A is given oracle
access to O. Given a random variable B, supp(B) denotes the support of B.

Let G be a finite cyclic group with generator g and order q. For x ∈ Zq, the notation [x]G denotes
the group element gx. Note that using this notation does not imply knowledge of x. Let K be a field
and V be a vector space over K of finite dimension n. For i ∈ [n], −→ei denotes the vector which carries 1
in its i-th entry and 0 in all other entries.

In game based proofs, outi denotes the output of game Gi. Further, we will use this notation to
highlight differences to previous hybrids.

2.1.1 Sets and Bitstrings.

For two sets X , Y we denote the symmetric difference between X and Y as X∆Y := (X \Y)∪ (Y \X ).
With {0, 1}n, {0, 1}≤n, and {0, 1}<n, we mean all bitstrings of length exactly n, at most n, and less
than n, respectively. The lexicographic ordering upon bitstrings x is denoted with ≤lex. If x is a prefix of
x′, we write x ≤pfx x

′, for a proper pefix we write x <pfx x
′. For a finite vector x = (x1, . . . , xn) ∈ Σn

over an alphabet Σ, we denote by pfxj(x) the prefix (x1, . . . , xj) of x. The symbol ∥ denotes string or
sequence concatenation.

23
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Figure 2.1: A depth-2 binary tree with node and edge names.

2.1.2 Tree Notation.

For our applications, we will consider complete binary trees whose depth we generally denote by d. We
derive generic names for nodes and edges from our applications: concretely, we denote the root node
as kε (where ε is the empty bitstring), and the two child nodes of each node kx as kx∥0 and kx∥1. For

each x ∈ {0, 1}<d and b ∈ {0, 1}, there is an edge cx∥b between kx and kx∥b. (See Figure 2.1 for an

example with d = 2.) For a binary tree of depth d and a path P = (kx, . . . , kε) from a leaf x ∈ {0, 1}d
to the root, the co-path of P consists of the sibling vertices of the vertices on P . More formally, writing
x = (x1, . . . , xd), the co-path consists of the vertices (kpfxd−1(x)∥(1−xd), kpfxd−2(x)∥(1−xd−1), . . . , k1−x1

).

2.1.3 Probabilities, Distributions, and Predicates.

If D is a distribution over some set X , then

ρD(x) := Pr
X←D

[X = x].

Furthermore, if f : X → Y is a function, then f(D) denotes the distribution over Y that arises by
applying f to values sampled from D. If P : X → {true, false} is a predicate, then D | P denotes the
conditional distribution of D conditioned on P(·) = true. As a special case, we consider equalities as
predicates P in the above sense, and may write, e.g., D | [f(·) = y].

For two random variables X,Y (which may depend on the security parameter λ), we write X ≡ Y if

they are identically distributed, X
s
≈δ Y if their statistical distance is at most δ, and X

c
≈ Y if they are

computationally indistinguishable.

2.2 Security Games

We use the standard notion of (prose-based) security games [BR04; Sho04] to present our proofs. We
denote the binary output of a game G with an adversary A as GA and say that A wins G if GA = 1.

2.3 Computational Problems

2.3.1 Subset Membership Problem

Let L = (Lλ)λ∈N be a family of families of languages L ⊆ Xλ in a universe Xλ = X. Further, let
R be an efficiently computable witness relation, such that x ∈ L if and only if there exists a witness
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w ∈ {0, 1}poly(|x|) with R(x,w) = 1 (for a fixed polynomial poly). We assume that we are able to
efficiently and uniformly sample elements from L together with a corresponding witness, and that we are
able to efficiently and uniformly sample elements from X \ L.

Definition 2.3.1 (Subset membership problem, [CS02]). A subset membership problem L ⊆ X is hard,
if for any PPT adversary A, the advantage

AdvsmpL,Aλ := Pr[x← L : A(1λ, x) = 1]− Pr[x← X \ L : A(1λ, x) = 1]

is negligible in λ.

We additionally require that for every L and every x ∈ L, there exists exactly one witness r ∈ {0, 1}∗
with R(x,w) = 1. Note that given a cyclic group G of prime order p in which DDH is assumed to
hold, the Diffie-Hellman language L[(1,x)]G

:= {[(y, xy)]G | y ∈ Zp} (for randomly chosen generators
[1]G , [x]G) satisfies this definition. Another instantiation of Definition 2.3.1 is the language containing
all commitments to a fixed value using a perfectly binding commitment scheme with unique opening.

2.3.2 Problems in Groups

This definition is derived from the definition of a non-interactive computational problem in [FJS19].

Definition 2.3.2 (Non-interactive computational problems in groups). Let G be a cyclic group with
group generation algorithm Setup. We say that P = (G, C) is a non-interactive computational problem
in G if the two procedures G and C are of the following syntax:

Setup. Takes the group parameters as input and outputs a problem instance (the challenge) I =
(C1, . . . Cu, C

′) ∈ Gu × {0, 1}∗ and a state st

Output Determination Takes as input the group parameters, the state from above, the problem
instance I and an attempt at a solution S = (S1, . . . Sw, S

′) ∈ Gw × {0, 1}∗. It is possible that
w = 0. C outputs 1 if the attempted solution S is considered a correct solution to I and 0 if it is
not a correct solution.

An example of a computational problem is the discrete logarithm problem DLOG (see Defini-
tion 2.3.4). We will later also consider some interactive computational problems that come with an
online-phase that allows the adversary access to some oracles. We will explain the winning conditions
specifically to those problems.

Definition 2.3.3 (Hardness of a non-interactive computational problem). We say that a non-interactive
computational problem P = (G, C) is hard with respect to a group generator algorithm Setup if for all
PPT adversaries A, AdvPSetup,Aλ := Pr[ExpPSetup,A(λ) = 1] is negligible.

ExpPSetup,A(λ)

pp← Setup(1λ)
(st, I)← G(pp)
S ← A(1λ, I)
return C(pp, st,S, I)

Definition 2.3.4 (Discrete Logarithm Problem). For public parameters pp = (G, q,g) for a group G
with order q and generator g, we describe the discrete logarithm game DLOGG with adversary A as
follows:
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Setup. Sample x $← Zq and set y := gx. Output (pp,y) to A.

Output Determination. When A outputs x′ ∈ Zq, return 1 if gx
′
= y and 0 otherwise.

We define the advantage of A as

AdvDLOGG
A := Pr[DLOGA

G = 1]

where the probability goes over the randomness of the game as well as the randomness of the adversary
A. We say that the discrete logarithm problem is (t, ϵ)-hard in G if for any adversary A that runs in time
at most t, it holds that

AdvDLOGG
A ≤ ϵ.

(When it is clear from context, we may omit G and only write DLOG for the game.)

Definition 2.3.5 (One-More-Discrete Logarithm Problem (OMDL)). For a stateful algorithm A and a
positive integer ℓ, we define the game ℓ-OMDL as follows:

Setup. Initialize C = ∅. Run A on input g.

Online Phase. A is given access to the following oracles:

Oracle chal takes no input and samples a group element y $← G. It sets C ← C ∪ {y} and
returns y.

Oracle dlog takes as input a group element y. It returns dlogg y. We assume that dlog can be
queried at most ℓ many times.

Output Determination. When A outputs (yi, xi)
ℓ+1
i=1 , return 1 if for all i ∈ [ℓ+ 1]: yi ∈ C, gxi = yi,

and yi ̸= yj for all j ̸= i. Otherwise, return 0.

We define the advantage of A in ℓ-OMDL as

AdvOMDL
A,ℓ := Pr

[
ℓ-OMDLA = 1

]
.

Definition 2.3.6 (Decsional Diffie-Hellman Problem (DDH)). For an algorithm A we define the game
DDH as follows:

Setup. Sample x, y, z $← Zq and b $← {0, 1}. Run A on input (g,gx,gy,gxy+bz)

Output Determination. When A outputs b′, return 1 if b = b′ and 0 otherwise.

We define the advantage of A in DDH as

AdvDDH
A :=

∣∣∣∣Pr[DDHA = 1]− 1

2

∣∣∣∣ .
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2.4 (Partially) Blind Signatures

The definitions in this section are taken from [KLX22c; KLX22a] and mostly follow [AO00].

Definition 2.4.1 (Partially Blind Signature scheme). A three-move partially blind signature scheme
PBS = (KeyGen,Sign = (Sign1,Sign2),User = (User1,User2),Verify) consists of the following ppt
algorithms:

Key Generation. On input public parameters pp, the probabilistic algorithm KeyGen outputs a public
key pk and a secret key sk. Henceforth we assume that pp is provided to all parties (including the
adversary) as an input, and do not explicitly write it.

Signer: The interactive signer Sign = (Sign1,Sign2) has two phases:

Sign1: On input a tag info and a secret key sk, the probabilistic algorithm Sign1 outputs an internal
signer state stSign, and a response R.

Sign2: On input the secret key sk, a challenge value e, and the corresponding internal state stSign,
the deterministic algorithm Sign2 outputs a response S.

User. The interactive user User = (User1,User2) has two phases:

User1: On input a public key pk, a tag info, a message m, and a Sign1 response R, the probabilistic
algorithm User1 outputs a challenge value e and an internal user state stUser.

User2: On input a public key pk, a Sign2 response S, and the corresponding internal user state
stUser, the deterministic algorithm User2 outputs a signature sig on message m along with
the tag info.

Verification. On input a public key pk, a message m, a signature sig, and a tag info, the deterministic
algorithm Verify outputs either 1 or 0, where 1 indicates that the signature is valid, and 0 that it is
not.

We say a partially blind signature scheme PBS is (perfectly) correct if for all pk,m, sig, info that result
from an honest interaction between signer and user, Verify(pk,m, sig, info) = 1.

We now define the one-more-unforgeability of a partially blind signature scheme. We do not focus
on partial blindness in this paper; we include the definition for completeness, and for a proof that the
Abe-Okamoto scheme is partially blind, see the original paper [AO00].

Definition 2.4.2 (ℓ-(Sequential-)One-More-Unforgeability (ℓ-(SEQ-)OMUF)). For a stateful algorithm
A, a three-move partially blind signature scheme BS, and a positive integer ℓ, we define the game
ℓ-OMUFBS (ℓ-SEQ-OMUFBS) as follows:

Setup. Sample (pk, sk) $← BS.KeyGen(pp) and run A on input (pk, pp).

Online Phase. A is given access to the oracles sign1 and sign2 that behave as follows.

Oracle sign1: On input info, it samples a fresh session identifier id (If sequential, it checks
if sessionid−1 = open and returns ⊥ if yes). If info has not been requested before, it
initializes a counter ℓclosed,info := 0. It sets sessionid ← open and generates (Cid, stid)

$←
BS.Sign1(sk, info). Then it returns Cid and id.
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Oracle sign2: If
∑

infoℓclosed,info < ℓ, sign2 takes as input a challenge e and a session identifier
id. If sessionid ̸= open, it returns ⊥. Otherwise, it sets ℓclosed,info ← ℓclosed,info + 1 and
sessionid ← closed. Then it generates the response R via R $← BS.Sign2(sk, stid, e) and
returns R.

Output Determination. When A outputs tuples (m1, σ1, info1), . . . , (mk, σk, infok), return 1 if there
exists a tag info such that

∣∣{(mi, σi, infoi)
∣∣infoi = info

}∣∣ ≥ ℓclosed,info + 1 (where by convention
ℓclosed,info := 0 for any info that has not been requested to the signing oracles) and for all
i ∈ [k] : BS.Verify(pk, σi,mi, infoi) = 1 and (mi, σi, infoi) ̸= (mj , σj , infoj) for all j ≠ i.
Otherwise, return 0.

We define the advantage of A in OMUFBS as

AdvOMUF
A,BS,ℓ (λ) := Pr

[
ℓ-OMUFA

BS = 1
]
.

We say that a blind signature scheme BS is (t, ϵ, ℓ)-one-more unforgeable if for any adversary that runs
in time at most t(λ) the advantage AdvOMUF

A,BS,ℓ (λ) ≤ ϵ(λ). And, respectively for SEQ-OMUFBS

AdvSEQ-OMUF
A,BS,ℓ (λ) := Pr

[
ℓ-SEQ-OMUFA

BS = 1
]
.

We say that a blind signature scheme BS is (t, ϵ, ℓ)-sequentially-one-more unforgeable if for any adversary

that runs in time at most t(λ) the advantage AdvSEQ-OMUF
A,BS,ℓ (λ) ≤ ϵ(λ).

Definition 2.4.3 (Partial Blindness). For a three-move partially blind signature scheme PBS, we define
the partial blindness game PBLINDPBS with an adversary S (in the role of the signer) as follows:

Setup. The game samples b $← {0, 1}. It then runs S on input pp.

Online Phase. When S outputs messages m̃0 and m̃1, a tag info, and a public key pk, the game checks
if pk is a valid public key if so, it assigns m0 := m̃b, m1 := m̃1−b. If pk is not a valid public key,
the game aborts and outputs 0. S is given access to oracles user1 and user2, which behave as
follows.

Oracle user1: On input a bit b′ and a Sign1 response R, if the session b′ is not yet open,
the oracle marks session b′ as open and generates a state and a challenge as (stb′ , e)

$←
PBS.User1(pk,mb′ , R, info). It returns e to S. Otherwise, it returns ⊥.

Oracle user2: On input of a Sign2 response S and a bit b′, if the session b′ is open, the oracle
computes the signature sigb′ := PBS.User2(pk, stb′ , R). It marks session b′ as closed and
saves sigb′ . If both sessions are closed and produced signatures, the oracle outputs the two
signatures sig0, sig1 to S.

Output Determination. If both sessions are closed and produced signatures, the game outputs 1 iff S
outputs a bit b∗ s.t. b∗ = b. Otherwise, it outputs 0.

We define the advantage of S as

AdvPBLIND
S,PBS (λ) =

∣∣∣∣Pr [PBLINDS
PBS = 1

]
− 1

2

∣∣∣∣
where the probability goes over the randomness of the game as well as the randomness of the adversary
S. We say the scheme PBS is (t, ϵ)-partially blind if for any adversary S running in time at most t(λ),

AdvPBLIND
S,PBS (λ) ≤ ϵ(λ).
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2.5 The Algebraic Group Model

In the following, let pp be public parameters that describe a group G of prime order q with generator
g. (We assume for simplicity that pp also includes the security parameter λ.) We denote the neutral
element by ϵ and write all other group elements in bold face. We further write Zq for Z/qZ.

Definition 2.5.1 (Algebraic Algorithm). We say that an algorithm A is algebraic if, for any group
element y ∈ G that it outputs, it also outputs a list of algebraic coefficients −→z ∈ Zt

q, i.e.,

(y,−→z ) $← A(−→x )

such that
y =

∏
xzi
i

We denote this representation as [y]−→x . For an adversary A that has access to oracles during its runtime,
we impose the above restriction to all group elements that it outputs to an oracle. Similarly, all group
elements that A receives through oracle interactions are treated as inputs to A; hence, such group
elements become part of −→x when A outputs group elements (and hence algebraic coefficients) at a later
point.

In the algebraic group model (AGM), all algorithms are treated as algebraic algorithms.

2.6 Probability Theory

We will need a special Chernoff bound. We state without proof:

Lemma 2.6.1. Let E1, . . . , Eℓ be independent events that each occur with probability p. Then

Pr
[ ℓ∨
t=1

Et

]
≥ 1− 1/eℓp/2.

The following lemma is straightforward:

Lemma 2.6.2. Let D be a distribution over X , and f : X → Y be a function. Consider random variables
X,X0 with

X0 ← D X ← D | [f(·) = f(X0)].

Then X is distributed according to D, i.e., we have ∀x ∈ X : Pr[X = x] = Pr[X0 = x] = ρD(x).

Intuitively, Lemma 2.6.2 states that resampling conditioned on a “current value” f(X0) does not
change the distribution.

Proof.

Pr[X = x] =
∑
y∈Y

Pr[X = x ∧ f(X) = y]

=
∑
y∈Y

Pr[X = x | f(X) = y] · Pr[f(X) = y]
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=
∑
y∈Y

Pr[X0 = x | f(X0) = y] · Pr[f(X0) = y]

=
∑
y∈Y

Pr[X0 = x ∧ f(X0) = y] = Pr[X0 = x].

We review the classical splitting lemma and what we call the bucket lemma (first introduced in
[KLX22c]), which will help facilitate our proofs later on.

Lemma 2.6.3 (Splitting Lemma [PS00]). Let A ⊂ X × Y such that

Pr
(x,y)

$←X×Y
[(x, y) ∈ A] ≥ ϵ.

For any α ∈ [0, ϵ) define

B =

{
(x, y) ∈ X × Y

∣∣∣∣∣ Pr
y′ $←Y

[(x, y′) ∈ A] ≥ ϵ− α

}
.

(B is sometimes called the heavy row of A.) Then the following statements hold:

1. Pr
(x,y)

$←X×Y [(x, y) ∈ B] ≥ α

2. ∀(x, y) ∈ B : Pr
y′ $←Y

[(x, y′) ∈ A] ≥ ϵ− α

3. Pr
(x,y)

$←X×Y [(x, y) ∈ B|(x, y) ∈ A] ≥ α
ϵ

Lemma 2.6.4 (Bucket Lemma). LetX be a finite set, b ∈ Z+, and letB1, . . . , Bb ⊂ X s.t.
⋃b

i=1 Bi = X.
Then for all α ∈ (0, 1) there exists a set Gα ⊂ X such that

1. |Gα| > (1− α) · |X|.

2. For all x ∈ Gα, there exists i ∈ [b] s.t. x ∈ Bi and |Bi| ≥ α · |X|b .

Proof. Fix α. Let Fα ⊂ X be the set of elements that do not belong to any Bi (i ∈ [b]) with

|Bi| ≥ α · |X|b . It therefore holds that Fα ⊂
⋃

Bi:|Bi|<α· |X|
b

Bi. We now compute an upper bound for

the size of Fα as

|Fα| ≤

∣∣∣∣∣∣∣
⋃

i:|Bi|<α· |X|
b

Bi

∣∣∣∣∣∣∣ ≤
∑

i:|Bi|<α· |X|
b

|Bi|

<
∑

i:|Bi|<α· |X|
b

α · |X|
b
≤ b ·

(
α · |X|

b

)
= α · |X|

Setting Gα = X \ Fα yields the statement.

The next lemma (originally introduced in [HKK23]) is a probabilistic version of the “bucket lemma”
of [KLX22c], which in turn generalizes the “splitting lemma” of [PS96].



2.7. PSEUDORANDOM GENERATORS AND FUNCTIONS 31

Lemma 2.6.5. Let D be a distribution over X , and f : X → Y be a function with finite range Y. For
any α ∈ [0, 1],

Pr
X←D

[
ρf(D)(f(X)) ≥ α

]
≥ 1− α · |Y|.

Intuitively, Lemma 2.6.5 states that it is likely that an X ← D has a “somewhat common” value of
f(X).

Proof.

Pr
X←D

[
ρf(D)(f(X)) ≥ α

]
=

∑
y∈Y

ρf(D)(y)≥α

ρf(D)(y)

=
∑
y∈Y

ρf(D)(y)−
∑
y∈Y

ρf(D)(y)<α

ρf(D)(y) ≥ 1− |Y| · α.

We recall the following lemma in its variant over Zq.

Lemma 2.6.6. Schwartz-Zippel Lemma ([Sch80; Zip79; DL78]) Let P ∈ Zq[X1, . . . , Xn] be a non-zero
polynomial of total degree d ≥ 0 over Zq. Let S be a finite subset of Zq. Then it holds that

Pr
x1,...,xn

$←S

[P (x1, . . . , xn) = 0] ≤ d

|S|
.

2.7 Pseudorandom Generators and Functions

For convenience, we define pseudorandom number generators (PRGs) with a multi-instance security
notion (that is however easily seen to be polynomially equivalent to the ordinary one-instance notion
using a hybrid argument):

Definition 2.7.1 ((Q, t, δ)-hard pseudorandom generator (PRG)). An efficiently computable function
G : {0, 1}n 7→ {0, 1}m with m > n is a (Q, t, δ)-hard pseudo-random generator (PRG) if every
probabilistic adversary A that makes at most Q oracle queries and runs in time at most t satisfies
|AdvPRG,A(λ)| ≤ δ, where

AdvPRG,A(λ) := Pr[MI-PRGA
G(λ) = 1]− 1/2

for the experiment MI-PRGA
G defined in Figure 2.2.

Asymptotically, we say that G is a secure PRG if for all polynomials Q, t in λ, there is a negligible
δ = δ(λ), so that G is a (Q, t, δ)-hard PRG.

In our setting, we will only be interested in PRGs with n = λ and m = 2λ.

Definition 2.7.2 (Prefix-constrained pseudorandom functions). Consider an efficiently computable
function F : {0, 1}λ×{0, 1}n → {0, 1}m that takes as input a key k ∈ {0, 1}λ and an input x ∈ {0, 1}n,
and outputs an image y ∈ {0, 1}m.

We say that F is a prefix-constrained pseudorandom function (PC-PRF) if there are polynomial-time
algorithms constrain and ceval with the following properties: constrain may be probabilistic, takes as input
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Algorithm 1: MI-PRGA
F (λ)

1 b← {0, 1}
2 b′ ← Achallenge(1λ)
3 return [b = b′]

Algorithm 2: challenge()

1 s← {0, 1}n
2 y0 := G(s); y1 ← {0, 1}m
3 return yb

Figure 2.2: Multi-instance PRG indistinguishability game

a key k ∈ {0, 1}λ and a prefix x′ ∈ {0, 1}≤n, and outputs a constrained key kx′ . ceval is deterministic,
takes as input such a constrained key kx′ and an input x ∈ {0, 1}n, and outputs an image y ∈ {0, 1}m.
We require that for all λ, k ∈ {0, 1}λ, kx′ ← constrain(k, x′), and x ∈ {0, 1}n with x′ ≤pfx x, we have

ceval(kx′ , x) = F(k, x).

The main security property of PC-PRFs is indistinguishability:

Definition 2.7.3 ((Q, t, δ)-indistinguishability for PC-PRFs). Let F be a PC-PRF as in Definition 2.7.2.
We say that F is (Q, t, δ)-indistinguishable if for every probabilistic adversary A that runs in time at most
t, makes at most Q queries to the constrain oracle and at most one query to the challenge oracle in the
PC-PRFF,A experiment, we have |AdvPC-PRFF,A (λ)| ≤ δ, where

AdvPC-PRFF,A (λ) := Pr[PC-PRFA
F (λ) = 1]− 1/2

for the experiment PC-PRFA
F defined in Figure 2.3.

Asymptotically, we say that F is an indistinguishable PC-PRF if for all polynomials Q, t in λ, there is
a negligible δ = δ(λ), so that F is (Q, t, δ)-indistinguishable.

Algorithm 3: PC-PRFA
F (λ)

1 b← {0, 1}
2 k ← {0, 1}λ
3 X := ∅
4 x∗ := ε

5 b′ ← Aconstrain,challenge(1λ)
6 return [b = b′]

Algorithm 4: constrain(x′)

1 if x′ ≤pfx x
∗ then return ⊥

2 X := X ∪ {x′}
3 kx′ ← constrain(k, x′)
4 return kx′

Algorithm 5: challenge(x)

1 if ∃x′ ∈ X : x′ ≤pfx x then return ⊥
2 x∗ := x
3 y∗0 := F(k, x); y∗1 ← {0, 1}m
4 return y∗b

Figure 2.3: CP-PRF indistinguishability game

2.8 Secret-Key Encryption

Definition 2.8.1 (Secret-key encryption). A secret-key encryption scheme consists of the following
algorithms SKE = (Gen,Enc,Dec):
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Algorithm 6: IND-CPAA
SKE(λ)

1 b← {0, 1}
2 U := [ ] // empty array

3 b′ ← ALoR,NU (1λ)
4 return [b = b′]

Algorithm 7: NU

1 k ← Gen(1λ)
2 U [len(U) + 1] := k // append to array

Algorithm 8: LoR(i,m0,m1)

1 c← Enc(U [i],mb) // ⊥ if U [i] undef’d

2 return c

Figure 2.4: Many-user, many-challenge IND-CPA game

Gen(1λ) takes as input the security parameter encoded in unary, and outputs a key k.

Enc(k,m) takes as input a key k and a message m ∈M, and outputs a ciphertext c.

Dec(k, c) takes as input a key k and a ciphertext c and outputs either a message m ∈M or an error
symbol ⊥.

We require correctness, i.e., ∀λ, and m ∈M, we have

Pr[Dec(k, c) = m | k ← Gen(1λ), c← Enc(k,m)] = 1.

Definition 2.8.2 (Many-user, many-ciphertext SKE indistinguishability). A secret-key encryption scheme
SKE is (QLoR,QNU, t, δ)-indistinguishable under chosen-plaintext attacks (short: (Qctxt,QNU, t, δ)-
IND-CPA secure) if every probabilistic adversary A that runs in time at most t, and makes at most QLoR

and QNU queries to the LoR and NU oracles below, respectively, satisfies |AdvIND-CPA
SKE,A (λ)| ≤ δ, where

AdvIND-CPA
SKE,A (λ) := Pr[IND-CPAA

SKE(λ) = 1]− 1/2

for the IND-CPAA
SKE experiment defined in Figure 2.4.

Asymptotically, we say that SKE is IND-CPA secure if for all polynomials QLoR,QNU, t in λ, there is
a negligible δ = δ(λ), so that SKE is (QLoR,QNU, t, δ)-IND-CPA secure.

We remark that this many-user, many-ciphertext formulation of IND-CPA security is polynomially
equivalent (using a standard hybrid argument) to the traditional one-user, one-ciphertext formulation (as
in, e.g., [Bel+97]).

2.9 Dual-Mode NIWI

A dual-mode NIWI proof system is a variant of NIWI proofs [FS90] offering two computationally
indistinguishable modes to setup the common reference string (CRS). A binding mode CRS provides
perfect soundness guarantees whereas a hiding mode CRS provides perfect witness indistinguishability
guarantees.

Definition 2.9.1 (Dual-mode NIWI proof system (syntax), [GS08; Alb+16]). A dual mode non-
interactive witness-indistinguishable (NIWI) proof system for a relation R is a tuple of PPT algorithms
Π = (Setup,HSetup,Prove,Verify,Ext).
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Setup(1λ). On input of 1λ, Setup outputs a perfectly binding common reference string crs and a
corresponding extraction trapdoor td ext.

HSetup(1λ). On input of 1λ, HSetup outputs a perfectly hiding common reference string crs.

Prove(crs, x, w). On input of the CRS crs, a statement x and a corresponding witness w, Prove produces
a proof π.

Verify(crs, x, π). On of the CRS crs, a statement x and a proof π, Verify outputs 1 if the proof is valid
and 0 otherwise.

Ext(td ext, x, π). On input the extraction trapdoor td ext, a statement x and a proof π, Ext outputs a
witness w.

We require Π to satisfy the CRS indistinguishability, perfect completeness, perfect soundness, perfect
extractability and perfect witness-indistinguishability.

There are several instantiations of dual-mode NIWI proof systems satisfying the above definition (or
statistical variants), [GS08; PS19; HU19].

2.10 Probabilistic Indistinguishability Obfuscation

Let C = (Cλ)λ∈N be a family of sets Cλ of probabilistic circuits. A circuit sampler for C is defined as
a family of (efficiently samplable) distributions S = (Sλ)λ∈N, where Sλ is a distribution over triplets
(C0, C1, z) with C0, C1 ∈ Cλ such that C0 and C1 take inputs of the same length and z ∈ {0, 1}poly(λ).

Definition 2.10.1 (X-ind sampler, [Can+15]). Let X(λ) be a function upper bounded by 2λ. The class
SX-ind of X-ind samplers for a circuit family C contains all circuit samplers S = (Sλ)λ∈N for C such
that for all λ ∈ N, there exists a set Xλ ⊆ {0, 1}∗ with |X | ≤ X(λ), such that

X-differing inputs. With overwhelming probability over the choice of (C0, C1, z) ← Sλ, for every
x ̸∈ Xλ, for all r ∈ {0, 1}m(λ), C0(x; r) = C1(x; r).

X-indistinguishability. For all (non-uniform) adversaries A, the advantage

X(λ) ·
(
Pr[Expsel-indS,A (λ) = 1]− 1

2

)
is negligible, where Expsel-indS,A (λ) requires A to statically choose an input, samples circuits C0, C1

(and auxiliary information z) afterwards, evaluates the circuit Cb (for randomly chosen b) on the
adversarially chosen input (let the output be y) and outputs 1 if A on input of (C0, C1, z, y) guesses
b correctly.

Definition 2.10.2 (Probabilistic indistinguishability obfuscation for a class of samplers S (syntax),
[Can+15]). A probabilistic indistinguishability obfuscator (pIO) for a class of samplers S is a uniform
PPT algorithm piO, such that correctness and security with respect to S hold.

[Can+15] present the to date only known construction of pIO for X-ind samplers over the family of
all polynomial sized probabilistic circuits.
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2.11 Statistically Correct Input Expanding pIO

Looking ahead to Chapter 7, instead of computationally correct pIO, we require a notion of statistically
correct pIO, i.e. statistical closeness between evaluations of the original (probabilistic) circuit and the
obfuscated (deterministic) circuit. Clearly, in general, this is impossible since the obfuscated circuit is
deterministic and hence has no source of entropy other than its input. However, as long as a portion
of the circuit’s input is guaranteed to be outside the view of the adversary (and has sufficiently high
min-entropy), the output of the obfuscated circuit and the actual probabilistic circuit can be statistically
close. Therefore, we compile probabilistic circuits such that they receive an auxiliary input aux but simply
ignore this input in their computation. Even though the obfuscated circuit is deterministic, the auxiliary
input can be used as a source of actual entropy.

Definition 2.11.1 (ℓ-expanding pIO for the class of samplers S). An ℓ-expanding probabilistic indistin-
guishability obfuscator for the class of samplers S over C = (Cλ)λ∈N is a uniform PPT algorithm piO⋆

ℓ ,
satisfying the following properties.

Input expanding correctness. For all PPT adversaries A, all circuits C ∈ C,∣∣∣Pr[AOC(·,·)(1λ, C) = 1]− Pr[Λ← piO⋆
ℓ (1

p(λ), C) : AOΛ(·,·)(1λ, C) = 1]
∣∣∣

is negligible, where the oracles must not be called twice on the same input (x, aux ).

OC(x, aux )
r ← {0, 1}m
return C(x; r)

OΛ(x, aux )
return Λ(x, aux )

Security with respect to S. For all circuit samplers S ∈ S, for all PPT adversaries A, the advantage

Adv
pio-ind(⋆)
piO⋆

ℓ ,S,A
λ :=∣∣∣Pr [(C0, C1, z)← S(1λ) : A(1λ, C0, C1, z, piO

⋆
ℓ (1

p(λ), C0)) = 1
]

−Pr
[
(C0, C1, z)← S(1λ) : A(1λ, C0, C1, z, piO

⋆
ℓ (1

p(λ), C1)) = 1
] ∣∣∣

is negligible in λ.

Support respecting. For all circuits C ∈ Cλ, all inputs x ∈ {0, 1}n′(λ), all aux ∈ {0, 1}ℓ(λ), all
Λ ∈ supp(piO⋆

ℓ (1
p(λ), C)), Λ(x, aux ) ∈ supp(C(x)).

Statistical correctness with error 2−e(λ). For all C ∈ Cλ and all joint distributions (X1, X2) over

{0, 1}n′(λ) × {0, 1}ℓ(λ) with average min-entropy ℓ(λ) ≥ H̃∞(X2 | X1) > m(λ) + 2e(λ) + 2, the
statistical distance between {

Λ← piO⋆
ℓ (1

p(λ), C) : (Λ,Λ(X1, X2))
}

and
{
Λ← piO⋆

ℓ (1
p(λ), C) : (Λ, C(X1;Um(λ)))

}
is at most 2−e(λ).
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We note that setting ℓ := 0 recovers the original definition of pIO for X-ind samplers due to [Can+15].
Looking ahead, our application does not require input expanding correctness.

Let S be a circuit sampler and let Ŝ denote the circuit sampler which calls S and outputs ℓ-expanded
circuits. Unfortunately, if S is an X-ind sampler does not imply that Ŝ also satisfies the requirements to
be an X-ind sampler. On a high level this is because X̂(λ) := X(λ) · 2ℓ(λ) is necessary for Ŝ to satisfy
the X-differing inputs property. Then, however, X-indistinguishability of S does not suffice to prove
X̂-indistinguishability of Ŝ. Thus, we introduce the notion of ℓ-expanding X-ind samplers.

Definition 2.11.2 (ℓ-expanding X-ind sampler). Let S be a circuit sampler. With Ŝ we denote the
circuit sampler which on input of 1p(λ)+ℓ(λ) samples (C0, C1, z) ← S(1p(λ)) and outputs the circuits

Ĉ0 := Eℓ(C0), Ĉ1 := Eℓ(C1) and auxiliary information ẑ := (C0, C1, z). The class SX-(⋆)-ind
ℓ of ℓ-

expanding X-ind samplers for a circuit family C contains all circuit samplers S = (Sλ)λ∈N for C such

that the circuit sampler Ŝ is an X-ind sampler according to Definition 2.10.1, i.e. Ŝ ∈ SX-ind.

On a high level, we instantiate the construction of pIO for X-ind samplers due to [Can+15] with a
suitably extracting puncturable pseudorandom function (pPRF). By suitably extracting we mean that
the PRF output is guaranteed to be statistically close to uniform randomness as long as the average
min-entropy of the input of the PRF is sufficiently high. Such a pPRF can be constructed by composing
a pPRF with a universal hash function.

Theorem 2.11.3. Let e be an efficiently computable function. Let F be a sub-exponentially secure
special extracting PRF family with distinguishing advantage 2−λ

ϵ

(for some constant ϵ) and error 2−e(λ)

mapping n(λ) = n′(λ) + ℓ(λ) bits to m(λ) bits which is extracting if the input average min-entropy is
greater than m(λ) + 2e(λ) + 2. Then, there exists a statistically correct input expanding pIO piO⋆

ℓ for

the class of samplers SX-(⋆)-ind
ℓ .

2.12 Re-Randomizable and Fully Homomorphic Encryption

We define an IND-CPA secure PKE scheme as a tuple of PPT algorithms PKE = (KGen,Enc,Dec) in
the usual sense. Furthermore, without loss of generality, we assume that sk is the random tape used for
key generation. Therefore, making the random tape of KGen explicit, we write (pk, sk) = KGen(1λ; sk).

A re-randomizable PKE scheme additionally provides an algorithm Rerand which re-randomizes a
given ciphertext perfectly.

Finally, a fully homomorphic PKE scheme additionally provides an algorithm Eval which given the
public key pk, an circuit C (expecting a inputs from the message space) and a ciphertexts C1, . . . , Ca,
produces a ciphertext encrypting C(Dec(sk, C1), . . . ,Dec(sk, Ca)).

Due to [Can+15], probabilistic indistinguishability obfuscation in conjunction with (slightly super-
polynomially secure) perfectly correct and perfectly re-randomizable public-key encryption yields a
perfectly correct and perfectly re-randomizable fully homomorphic encryption scheme.



Chapter 3

The Power of Undirected Rewindings
for Adaptive Security

This chapter deals with a novel way of using rewinding as a proof strategy. It is based on [HKK23].
We first show some helper results in Section 3.1, namely we consider different ways to repeatedly

resample from a distribution. The generic way to of resampling we consider (with respect to a set of
functions f1, . . . , fT ) is to sample an initial value X0 from the distribution, and then for increasing t
starting from 1 re-sample until the function ft has the same value on Xt−1 and the current sample Xt.
It is easy to see that all the samples, including the last one, are distributed according to the original
distribution. We show that there is an equivalent way of sampling that splits these ft into two functions
gt and ht, where ht is a condition applied to the distribution itself, whereas gt is still achieved via
resampling until gt(Xt−1) = gt(Xt). This way of resampling is closer to our rewinding strategy, as later
on, the rewinding games and reductions will preserve a prefix of the transcript between challenger and
adversary (this will be ht) and resample until the transcript has certain properties again (this corresponds
to gt). We further prove a lemma bounding the number of re-samplings needed until gt is fulfilled again
which will be useful to bound the running time of our reductions later on.

We then turn to our proof of adaptive security of the GGM PRF as a PC-PRF in Section 3.2. The
security is based on the pseudorandomness of the underlying PRG. The proof strategy is to gradually
replace the prefix keys on the path to the challenge by uniformly random keys. In order for this to work,
the reduction needs to know which keys will be prefix keys of the challenge. To learn this, it employs the
rewinding strategy described above.

Finally, in Section 3.3, we look at the security of the logical key hierarchy protocol, which can be
used for server-assisted key exchange in group messaging applications. We again want to apply our
rewinding technique to figure out when it is ‘safe’ for a reduction to embed its IND-CPA challenge in
a vertex in the tree. The goal of the reduction is to be able to embed an IND-CPA challenge at the
root of the LKH tree. To do this, it needs to ‘forget’ the two keys just below the root. This means, a
previous game needs to embed an IND-CPA challenge there to change these keys to something random.
Overall, this line of thought results in a pebbling strategy which we explain in Section 3.3.1. We then
further prove a technical lemma that we can use to bound the distance between certain hybrid games
in the proof of security of LKH in Section 3.3.2. We then finally turn to the main proof of security
of LKH in Section 3.3.3. In the proof, hybrids correspond to pebbling configurations and switching
between pebbling configurations is done via IND-CPA reductions. The reductions figure out the right

37
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Algorithm 9: Repeated resampling, generic

Input: D, f1, . . . , fT
1 X0 ← D
2 for t := 1 to T do
3 Xt ← D | [ft(·) = ft(Xt−1)]
4 end
5 return XT

time during the hybrid to embed an IND-CPA challenge using the rewinding technique. As the pebbling
strategy leads to different rewinding end conditions between some hybrids, we need to do some additional
technical work to show that these end conditions are actually equivalent. Therefore, this proof is a bit
more involved than that of the GGM PRF.

3.1 Analysis of a Repeated Resampling Algorithm

Overview. In this section, we will provide a few helper results for our upcoming applications. Specifically,
we will investigate what happens when we first sample some X0 from a distribution (which can be a run
with an adversary A), and then resample conditioned on parts of X0. (This latter operation corresponds
to rewinding and rerunning A until a certain property of the full run is preserved.)

As explained in the introduction, the main difference to previous rewinding treatments is that we
consider “undirected” rewindings, which translates to resampling conditioned on a-priori fixed properties
of X0. This will enable us to deduce that this resampling does not change the output distribution, and
that resampling is likely to preserve any “sufficiently common” property of the initial X0 in the process.

Generic Framework. In the following, let D be a distribution over some set X , and assume functions
f1, . . . , fT : X → Y for a finite set Y. Now consider Algorithm 9. Algorithm 9 starts with a fresh
D-sample, and then repeatedly resamples while preserving the value of the functions ft on those samples.
We have:

Lemma 3.1.1. All Xt defined through Algorithm 9 are distributed according to D, i.e., ∀t, x : Pr[Xt =
x] = ρD(x).

Proof. For X0, this is clear. For Xt−1 ← D, we obtain ∀x : Pr[Xt = x] = ρD(x) by applying
Lemma 2.6.2.

This in particular holds for Algorithm 9’s output XT . Hence, Algorithm 9 would seem like an
unnecessarily complicated way to sample from D. However, in the following, we will refine Algorithm 9
to better capture our upcoming rewinding process.

Split Resampling. Now Algorithm 10 performs the generation of the Xt through a different, yet
conceptually equivalent form of resampling. More concretely, Algorithm 10 conditions not only on one
function value ft(Xt−1), but on two function values gt(Xt−1) and ht(Xt−1). Here, we assume functions
gt : X → Y and ht : X → Z for a finite set Y and a set Z. This “double resampling” is done in a
somewhat peculiar way: the distribution already conditioned on ht(Xt−1) is sampled until a value Xt

with gt(Xt) = gt(Xt−1) appears. Still, we obtain as before:
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Algorithm 10: Repeated resampling, split

Input: D, g1, . . . , gT , h1, . . . , hT
1 X0 ← D
2 for t := 1 to T do
3 repeat
4 Xt ← D | [ht(·) = ht(Xt−1)]
5 until gt(Xt) = gt(Xt−1)

6 end
7 return XT

Lemma 3.1.2. All Xt defined through Algorithm 10 are distributed according to D, i.e., ∀t, x : Pr[Xt =
x] = ρD(x).

Proof. For any t ∈ [T ], the repeat loop samples Xt from(
D | [ht(·) = ht(Xt−1)]

)
| [gt(·) = gt(Xt−1)] = D | [ft(·) = ft(Xt−1)]

for the function ft(X) = (gt(X), ht(X)). Hence, Algorithm 10 is equivalent to Algorithm 9 (for these
ft), and Lemma 3.1.1 yields the statement.

Additionally, we can bound the runtime of Algorithm 10:

Lemma 3.1.3. Let T rep
t be the number of all iterations of the repeat loop for this value of t in

Algorithm 10. For any γ ∈ (0, 1], we have

Pr[ ∀t ∈ [T ] : T rep
t ≤ 2T · ln(2T /γ) · |Y|/γ︸ ︷︷ ︸

=:Tmax(T ,|Y|,γ)

] ≥ 1− γ, (3.1)

where Y is the (finite) domain of the gt.

Proof. First fix a t ∈ [T ]. By Lemma 3.1.2, Xt−1 is distributed according to D. Hence, using
Lemma 2.6.2, Xt−1 is also distributed according to

D′ := D | [ht(·) = ht(X
∗)]

for some independently chosen X∗ ← D. Since ht(Xt) = ht(X
∗) by definition, in each iteration of Line 4,

Xt is also distributed according to D′. Now invoke Lemma 2.6.5 with α := γ/(2T · |Y|), distribution D′,
and function gt. This yields

Pr
Xt←D′

[gt(Xt) = gt(Xt−1)] ≥ α, (3.2)

except with probability γ/(2T ) (over Xt−1).
Recall that T rep

t is the number of iterations of the repeat loop for this t. Conditioned on Eq. (3.2),
Lemma 2.6.1 (instantiated with Et as the event that the t-th iteration succeeds, p := α, and ℓ :=
2 ln(2T /γ)/α) shows

Pr

[
T rep
t ≤ 2 ln(2T /γ)

α

]
≥ 1− γ

2T
, (3.3)

where the probability is taken (only) over the resamplings in the loop. Now a union bound shows that
Eq. (3.2) and the bound from Eq. (3.3) hold for all t, except with probability γ. This finally yields
Eq. (3.1).



40 CHAPTER 3. THE POWER OF UNDIRECTED REWINDINGS FOR ADAPTIVE SECURITY

The split approach of Algorithm 10 reflects our upcoming rewinding scenario. In particular, conditioning
on a “common partial history” ht(Xt) = ht(Xt−1) will correspond to rewinding a simulation up to the
t-th “branching point”, while gt(Xt) = gt(Xt−1) is a condition we hope the rewound simulation to fulfill.
We will be able to sample from D | [ht(·) = ht(Xt−1)] directly through rewinding, but will then have to
condition on gt(·) = gt(Xt−1) by a brute-force repeat loop.

3.2 Adaptive Security for the GGM PC-PRF

In this section we use the results on repeated resampling from Section 3.1 to prove that the PRF
construction by Goldreich, Goldwasser and Micali [GGM84b] is adaptively secure as a prefix-constrained
pseudorandom function (PC-PRF), based on the security of the underlying PRG.

Definition 3.2.1 (GGM PRF). Given a length-doubling PRG G : {0, 1}λ → {0, 1}2λ and an input length
d = d(λ), the GGM PRF Fd : {0, 1}λ × {0, 1}d → {0, 1}λ with key space {0, 1}λ is defined as

Fd(k, x) = kx where kε = k and ∀x′ ∈ {0, 1}<d : kx′∥0∥kx′∥1 = G(kx′).

It was noted independently in [Kia+13], [BW13], and [BGI14] that the above PRF construction
allows for the use as a prefix-constrained PRF (PC-PRF), with

constrain(k, x′) := (x′,F|x′|(k, x
′)) = (x′, kx′) for x′ ∈ {0, 1}<d.

For ease of presentation, in the following we will often refer to kx′ as the constrained key for x′. The
algorithm ceval, on input a constrained key (x′, kx′) for a prefix x′ of x and the string x = x′∥x′′ ∈ {0, 1}d,
then computes kx as

ceval((x′, kx′), x) := constrain(kx′ , x′′).

3.2.1 Proving Security from PR

We now define the security experiment ExpGGMPRF
G,A,d (λ). Security in the sense of the following definition

immediately implies adaptive security of the GGM PC-PRF (see also Remark 3.2.3).

Definition 3.2.2 (GGMPRF Security Experiment). Let G : {0, 1}λ → {0, 1}2λ be a length-doubling
PRG, let d = d(λ) an input length, and let A be a probabilistic adversary. We denote the first half of the
output of G on input k by G0(k), the second half by G1(k).

Setup. The experiment ExpGGMPRF
G,A,d (λ) initially samples uniformly at random a challenge bit bggmprf ←

{0, 1} and a key kε ← {0, 1}λ.

Online Phase. The adversary is allowed to make the following queries.

Corruption Queries. A can adaptively make corruption queries for strings x ∈ {0, 1}≤d. This
initiates the computation of all so far undefined keys kx′b with x′ <pfx x and b ∈ {0, 1} as
kx′b := Gb(kx′), and exposes kx to A.

Challenge. At any point, A may stop the game and ask to be challenged on x∗ ∈ {0, 1}d, and then
has to distinguish the real key kx∗ (case bggmprf = 0) from a random key (case bggmprf = 1).
To make the game non-trivial, for the challenge x∗ it must hold that no corruption of any
prefix of x∗ was made throughout the game.
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Output Determination The output of the experiment is 1 if A correctly guesses the bit bggmprf , and 0
otherwise.

We define the advantage of A in this game as

AdvGGMPRF
G,A,d (λ) := Pr[ExpGGMPRF

G,A,d (λ)(λ) = 1]− 1/2.

We say that GGMPRF security holds (for G and d) if AdvGGMPRF
G,A,d (λ) is negligible for every probabilistic

polynomial-time A.

One can view this security experiment as a game on a binary tree of depth d as defined in Section 2.1,
where the adversary can adaptively compromise labels kx. For security, we require that keys that cannot
be computed trivially from compromised keys should remain pseudorandom.

Remark 3.2.3. We note that we consider adversaries that make their challenge query as the last query.
This is not a restriction as any adaptive adversary can be transformed into such an adversary with only
d additional constrained key queries, using the following reduction: All queries and responses until the
challenge query are forwarded. Once the adversary submits the challenge query, the reduction queries all
constrained keys on the co-path before forwarding the challenge query and its response. To answer any
future constrained key queries, the reduction uses the previously queried constrained keys on the co-path.

To see that security of the GGM PRF as a PC-PRF follows from our results on the GGMPRF security
experiment, note that a reduction can answer adversarial constrained key queries and PRF evaluation
queries in the PC-PRF security experiment for the GGM PRF by making corresponding corruption
queries in the GGMPRF security experiment. In particular, this means that for any adversary A that has
advantage AdvGGMPRF

G,A,d (λ), runs in time tA, and makes Qcorrupt constrained key queries, there exists an

adversary B that runs in time tB roughly equal1 to tA with

AdvPC-PRFFd,A (λ) = AdvGGMPRF
G,A,d (λ)

and makes Q′corrupt ≤ Qcorrupt + d constrained key queries.

Our strategy. Let us fix a length-doubling PRG G and a depth/input length d = d(λ). Let us first
consider a selective setting where an adversary A has to commit to the challenge x∗ in the beginning of
the game. For this setting, we can bound the success probability of any PPT adversary A by a sequence
of d+ 1 hybrid games where in the ith hybrid game, the first i PRG evaluations on the path from the
root to x∗ are replaced by random sampling, i.e. the keys kx∥0, kx∥1 for all x ≤pfx x

∗ with |x| < i are
sampled uniformly at random instead of computing G(kx). For each i ∈ [d], one can then prove that
games i− 1 and i are indistinguishable based on the security of the PRG G. Furthermore, since in game
d, the key kx∗ is sampled independently and uniformly at random, the cases bggmprf = 0 and bggmprf = 1
are information-theoretically indistinguishable, hence the advantage of A is 0 in this game. We thus
obtain an upper bound on A’s advantage in the selective GGMPRF experiment in terms of PR security
of the PRG G, with a security loss linear in d.

Also in the adaptive setting, where A can make its choices on the fly, we will bound A’s advantage
to win the GGMPRF game through a similar hybrid argument. Again, we will start with the original
GGMPRF game above and apply a number of successive changes until finally A’s view is independent of
the challenge bit bggmprf . Since we make a liberal use of rewindings, it will be helpful to formalize A’s
view:

1By “roughly equal”, we mean that B runs A only once, but as discussed with up to d added oracle queries and some
additional constrain operations.
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Definition 3.2.4 (Adversarial view). In a run of the experiment ExpGGMPRF
G,A,d (λ) from Definition 3.2.2,

we define A’s view viewA in this run as a sequence (ev1, . . . , evℓ) of events, where each evi can be one
of the following:

Query. One of A’s queries (without reply), either of the form (corrupt, x) for a corruption query, or
(challenge, x∗).

New Keys. Every time new keys kx∥0, kx∥1 are defined, right before that, a corresponding (PRG, x)
event is appended to view. Concretely, a query (corrupt, x) or (challenge, x∗) in view automatically
causes also entries (PRG, x′) for all proper prefixes x′ of x for which no PRG query has been issued
yet, to be appended immediately after that (corrupt, x) entry. Entries (PRG, x) defined at the
same time are ordered in view with keys closer to the root (i.e., with shorter x) first.

Corrupted Key. A key (key, x, kx) as a response to a corruption query.

Challenge Key. The response to the final challenge query, in the form (challenge, x∗, k) (i.e., depending
on bggmprf with either k being the real key kx∗ or a random value). This event comes after the
corresponding (PRG, x) events which are triggered by the challenge query.

Decision Bit. The final output bit bA of A, in the form (guess, bA). This event is the last in view, and
we may write outA(view) to denote that bit bA.

We are now ready to formulate and prove our main result:

Theorem 3.2.5. Let G : {0, 1}λ → {0, 1}2λ be a PRG. Then

• for every GGMPRF adversary A that runs in time tA and makes at most Qcorrupt corrupt queries,

• for every GGMPRF depth d and every γ ∈ (0, 1],

there is a PR adversary B that runs in time tB, makes at most QB oracle queries, and for which

AdvPRG,B(λ) ≥
1

2d
·
(
AdvGGMPRF

G,A,d (λ)− γ
)
, (3.4)

where

tB ⪅
(
2 · ln (2 · T /γ) · T 4/γ

)
· tA and QB ≤ 2 · ln (2 · T /γ) · T 3/γ (3.5)

with T ≤ ((d+ 2) · Qcorrupt + 2).

Before we proceed to a proof, we notice that Theorem 3.2.5 implies asymptotic security when setting
γ accordingly:

Corollary 3.2.6 (G secure⇒ GGM PRF secure PC-PRF). If G is a secure PRG (as in Definition 2.7.1) and
d = d(λ) is a polynomial, then the GGM PRF Fd is an indistinguishable PC-PRF (as in Definition 2.7.3).

Proof of Corollary 3.2.6. Assume for contradiction that there is a polynomial-time adversary A′ against
the PC-PRF indistinguishability with non-negligible advantage. By Remark 3.2.3, this immediately yields
a polynomial-time GGMPRF adversary A with (the same) non-negligible advantage εA := AdvGGMPRF

G,A,d (λ).
Since εA is non-negligible, there exists a polynomial p such that for infinitely many values of λ, we have
εA ≥ 1/p(λ).
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Now set γ = 1/(2p(λ)) and invoke Theorem 3.2.5. We obtain a PR adversary B with (by Eq. (3.5))
polynomial runtime and non-negligible advantage

AdvPRG,B(λ)
Eq. (3.4)

≥ 1

2d
·
(
εA − γ

) (∗)
≥ 1

2d
·
( 1

p(λ)
− γ
)

=
1

4d · p(λ)
,

where (∗) holds (only) for infinitely many λ.

Proof of Theorem 3.2.5. Fix A and d. In the following, we will consider a number of hybrid games, with
Game ggmprf being the original GGMPRF experiment. Denoting with outi the output of Game i, we
trivially get

Pr[outggmprf = 1] = AdvGGMPRF
G,A,d (λ) + 1/2. (3.6)

Moving on, we will formulate Game i (for 0 ≤ i ≤ d) in a (for us) convenient way, see Algorithm 11.
This formulation outsources the bulk of the game into the sampling of A’s view view from a suitable
distribution Dview

i,bggmprf
. In our upcoming refinements, we will only change Dview

i,bggmprf
and investigate the

Algorithm 11: Game i, with the bulk of the work outsourced into the sampling from Dview
i,bggmprf

.

1 bggmprf ← {0, 1}
2 view← Dview

i,bggmprf
// view has the format from Definition 3.2.4

3 return [bggmprf = outA(view)] // returns 1 iff bggmprf = outA(view)

effects on outi.

The distributions Dview
i,bggmprf

. To define the distribution Dview
i,bggmprf

for Game i with i ∈ [d]0, we use the
following notation:

• Dview
ggmprf,bggmprf

is the distribution of A-views (as in Definition 3.2.4) that is induced by running the

GGMPRF experiment with challenge bit bggmprf (that decides whether A is challenged with kx∗ or
a random key).

• len(view) is the length of a given A-view view (measured in events).

• pfxt(view) outputs the prefix of view up to (and including) the t-th event (as defined in Section 2.1).

• lastpret(view) on input view = (ev1, . . . , evT ) outputs the largest index t′ ≤ t such that event evt′
defines a key on the path from the root to x∗, i.e.,

lastpret(view) := max

({
t′
∣∣∣∣ evt′ = (PRG, x)
∧ t′ ≤ t ∧ x <pfx x

∗

}
∪ {0}

)
.

• B ∈ N is a bound on the number of repetitions of Lines 6 to 13 in Algorithm 12 for each t. In
case of B unsuccessful repetitions for one t, the whole algorithm outputs ⊥. We will fix a suitable
value for B later.
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Now consider Algorithm 12. Our distribution Dview
i,bggmprf

will be defined almost like Dview
ggmprf,bggmprf

(i.e.,

like A’s view in a GGMPRF run), but will additionally replace PRG evaluations by random sampling as
indicated by index i and use rewindings at every step. Concretely, fix an i and consider Algorithm 12,
which programmatically defines Dview

i,bggmprf
as its output.

For an adversary A with view view = (ev1, . . . , evT ) we denote by rewinding the adversary to time t
the cutting-off of the view at point t− 1, i.e. (ev1, . . . , evt−1) and resetting the adversary to the state it
had directly before evt. (By keeping track of A’s state throughout our rewindings, this will always be
possible.)

We say we resample from point t (after rewinding A to t) if we rerun A from t onwards, using
fresh challenger random coins from that point onwards. In some cases, we will also rerun A with a
specific replacement (e.g., an embedded computational challenge) in evt (if evt contains an answer to
one of A’s previous queries). The view resulting from rewinding to t and then resampling from point t is
view′ = (ev1, . . . , evt−1, ev

′
t, . . . , ev

′
T ′).

Algorithm 12: Sampler for Dview
i,bggmprf

Input: i ∈ {0, . . . , d}, bggmprf ∈ {0, 1}, B ∈ N // len, lastprei,t, B described in proof

1 view0 ← Dview
ggmprf,bggmprf

2 T := len(viewGGMPRF) // Length of viewGGMPRF (in entries)

3 for t := 1 to T do
4 Write viewt−1 = (evt−1,1, . . . , evt−1,T )
5 repeat // Output ⊥ if B repetitions fail for this t
6 Rewind adversary to point t
7 if evt−1,t = (PRG, x) with |x| ≤ i and lastpret(viewt−1) = t then // Checks if

evt−1,t defines a PRG evaluation to be replaced by random

8 Sample fresh kx∥0, kx∥1 ← {0, 1}λ // Fresh independent keys

9 Resample from point t+ 1 to obtain
viewt = (evt−1,0, . . . , evt−1,t−1, evt−1,t, evt,t+1, . . . , evt,τ )

10 else
11 Resample from point t to obtain viewt = (evt−1,0, . . . , evt−1,t−1, evt,t, . . . , evt,τ )
12 end

13 until lastpret(viewt) = lastpret(viewt−1) and len(viewt) = len(viewt−1)

14 end
15 return viewT

Having defined our hybrid distributions Dview
i,bggmprf

, we will additionally consider the distribution D̃view
0,bggmprf

which is defined as the output of a variant of Algorithm 12 for i = 0 without a bound B on the runtime.

(Hence, D̃view
0,bggmprf

will not be efficiently sampleable in general.) We will first show that the distribution

D̃view
0,bggmprf

coincides with the distribution of views in Game ggmprf. Here we will use our results from

Section 3.1, namely Lemma 3.1.2, for the distribution D = Dview
ggmprf,bggmprf

where functions ht on input

view will output the (t− 1)-sized prefix of view, and resampling conditioned on ht(view) simply means
rewinding and rerunning from point t. The stopping conditions gt(view) will preserve (1) the value
of lastpret(view), and (2) the length of view. Intuitively, preserving lastpret(view) implies that “PRG
embedding slots” along the path to the challenge x∗ defined prior to point t remain the same. This
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Game ggmprf D̃view
0,bggmprf

≡

Dview
0,bggmprf

s≈
γ

Dview
1,bggmprf

c
≈ Dview

2,bggmprf

c
≈ . . . Dview

d,bggmprf

c
≈

c
≈

Figure 3.1: Sequence of hybrids. Perfect indistinguishability (≡) is shown in Proposition 1, statistical

distance (
s
≈γ) is shown in Proposition 2, and computational indistinguishability (

c
≈) is shown in Proposi-

tion 3.

implies that no preimages of previously embedded PRG images have to be revealed, and the rewinding
did not “undo” any of the progress made so far.

Again using our results from Section 3.1, namely Lemma 3.1.3 with similar interpretation as above,
we will then choose the bound B such that the probability of an abort in Dview

0,bggmprf
can be bounded by γ.

Then we will show that A has no advantage in Game d since the view sampled according to Dview
d,bggmprf

is independent of bggmprf . Finally, we will argue that Dview
0,bggmprf

is computationally indistinguishable from

Dview
d,bggmprf

by the pseudorandomness of G. Combining these results will allow us to conclude the proof.
Our path along this sequence of hybrids can be seen in Figure 3.1.

Proposition 1. Dview
ggmprf,bggmprf

≡ D̃view
0,bggmprf

.

Proof. This follows from Lemma 3.1.2, where D = Dview
ggmprf,bggmprf

, ht(views) = (evs,1, . . . , evs,t−1), and

gt(views) = (lastpret(views), len(views)). We note that for i = 0, the if on Line 7 never returns true,
and thus the sampling procedure always enters the else branch which behaves just as in Lemma 3.1.2.

Proposition 2 (Abort probability). For

B := 2 · ln (2 · ((d+ 2) · Qcorrupt + 2)/γ) · ((d+ 2) · Qcorrupt + 2)
3
/γ,

we have Pr[⊥ ← Dview
0,blkh

] ≤ γ.

Proof. To prove this claim, we consider the process of sampling from Dview
0,blkh

according to Algorithm 12
and bound the probability that any of the iterations in the “for” loop runs the “repeat” loop more
than B times.

By Lemma 3.1.3, with gt(view) = (lastpret(view), len(view)) and ht(view) = (ev1, . . . , evt) for
view = (ev1, . . . , evlen(view)), it holds that for any γ ∈ (0, 1] (thus in particular the γ from the theorem
statement)

Pr[ ∀t ∈ [T ] : T rep
t ≤ 2T · ln(2T /γ) · |Y|/γ ] ≥ 1− γ (3.7)

where T rep
t denotes the number of runs of the “repeat” loop in the t-th iteration of the “for” loop.

We note that
len(view) ≤ Qcorrupt + 1︸ ︷︷ ︸

Query Events

+ d · Qcorrupt︸ ︷︷ ︸
PRG Events

+ Qcorrupt + 1︸ ︷︷ ︸
Corr./Chal. Key Events

for any view resulting from a run of an adversary that makes at most Qcorrupt constrained key queries.
This means that len(view) can take values up to Tmax = (d+2) ·Qcorrupt+2. Furthermore, lastpret(view)
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takes values from 0 to len(view). Thus, we can bound the size of the range Y of the gt with |Y| ≤
((d+ 2) · Qcorrupt + 2)

2.
Plugging this into Eq. (3.7) yields

Pr
[
∀t ∈ [T ] : T rep

t ≤ 2T · ln(2T /γ) · ((d+ 2) · Qcorrupt + 2)
2
/γ
]
≥ 1− γ. (3.8)

Thus, using the bound for len(view) for T again, i.e. T ≤ (d+ 2) · Qcorrupt + 2, gives

Pr [ ∀t ∈ [T ] : T rep
t ≤ B ] ≥ 1− γ. (3.9)

which yields the claim.

Proposition 3 (PR ⇒ Dview
0,bggmprf

c
≈ Dview

d,bggmprf
). Let B be as in Claim 2. If G is PR secure, then the

distributions Dview
0,bggmprf

and Dview
d,bggmprf

are computationally indistinguishable. More precisely, there exists a
PR adversary C that runs in time tC and makes QC oracle queries, such that

AdvPRG,C(λ) =
1

2d
·
(
AdvGGMPRF, 0

G,A,d (λ)−AdvGGMPRF, d
G,A,d (λ)

)
(3.10)

tC ⪅
(
2 · ln (2 · Tmax/γ) · T 4

max/γ
)
· tA and QC ≤ 2 · ln (2 · T /γ) · T 3/γ (3.11)

with T ≤ Tmax = (d+ 2) · Qcorrupt + 2.

Proof. To generate a sample viewT , our PR adversary C modifies the procedure of Algorithm 12 by
first sampling an index i∗ ← [d] and a bit bpr ← {0, 1} uniformly at random, and then embedding a PR
challenge in the “if” clause in the “repeat” loop, see Algorithm 13. C outputs 0 if A succeeds and 1
else.

Note that the key for node pfxi∗−1(x
∗) is sampled freshly and uniformly at random. Thus, we

have that for bpr = 0 and i∗ = i the modified algorithm samples from exactly the same distribution as
Algorithm 12 on input i− 1 (and same bggmprf ∈ {0, 1}, B ∈ N), and for bpr = 1 and i∗ = i from the
same distribution as Algorithm 12 on input i (and same bggmprf ∈ {0, 1}, B ∈ N). We obtain for the
advantage of C:

AdvPRG,C(λ) = Pr[bC = bpr]−
1

2

=
1

2
· (Pr[bC = 0 | bpr = 0]− Pr[bC = 0 | bpr = 1])

=
1

2
· 1
d
·
∑
i∈[d]

(
Pr

[
bC = 0

∣∣∣∣ bpr = 0
∧ i∗ = i

]
− Pr

[
bC = 0

∣∣∣∣ bpr = 1
∧ i∗ = i

])
=

1

2d
·
∑
i∈[d]

(Pr[outi−1 = 1]− Pr[outi = 1])

=
1

2d
·
(
AdvGGMPRF, 0

G,A,d (λ)−AdvGGMPRF, d
G,A,d (λ)

)
.

C runs A at most T ·B times. Bounding T = len(view0) by Tmax = (d+ 2) · Qcorrupt + 2 (see proof

of Claim 2) and plugging in B =
2T ·ln(2T /γ)·((d+2)·Qcorrupt+2)2

γ leads to the claimed bound on tC. (We
assume the time complexity of random sampling, PR oracle calls and PRG evaluations to be significantly
smaller than tA and thus neglect the corresponding terms in our bound.)
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Algorithm 13: Variant of Algorithm 12 for sampling from Dview
i∗−1+bpr,bggmprf

given oracle access
to a PR challenger with challenge bit bpr. The functions len, lastpret are as described in the
proof, B ∈ N is as in Proposition 2.

1 i∗ ← {1, . . . , d}, bggmprf ← {0, 1}
2 view0 ← Dview

ggmprf,bggmprf

3 T := len(view0) // Length of viewGGMPRF (in entries)

4 for t := 1 to T do
5 Write viewt−1 = (evt−1,1, . . . , evt−1,T )
6 repeat // Output ⊥ if B repetitions fail for this t
7 Rewind adversary to point t
8 if evt−1,t = (PRG, x) with |x| ≤ i∗ and lastpret(viewt−1) = t then

// Checks if evt,t defines a PRG evaluation to be replaced by random

9 if |x| = i∗ then
10 Request fresh PR challenge (k∗0 , k

∗
1) from PR challenger // Fresh PR

challenge

11 Set (kx∥0, kx∥1) := (k∗0 , k
∗
1)

12 else
13 Sample fresh kx∥0, kx∥1 ← {0, 1}λ // Fresh independent keys

14 end
15 Resample from point t+ 1 to obtain

viewt = (evt−1,0, . . . , evt−1,t−1, evt−1,t, evt,t+1 . . . , evt,τ )
16 else
17 Resample from point t to obtain viewt = (evt−1,0, . . . , evt−1,t−1, evt,t, . . . , evt,τ )
18 end

19 until lastpret(viewt) = lastpret(viewt−1) and len(viewt) = len(viewt−1)

20 end
21 return viewT

For the upper bound on the number of oracle calls QC, note that for each possible choice of i∗ there
is only one t such that evt−1,t = (PRG, x) with |x| = i∗ and lastpret(viewt−1) = t. Thus, the inner if
clause will apply only in one of the for iterations, which implies that there are as many PR calls as there
are iterations of the repeat loop for that t. Hence, the reduction makes at most B calls to the PR
oracle.

Proposition 4. Dview
d,bggmprf

and bggmprf are independent, so AdvGGMPRF, d
G,A,d (λ) = 0.

Proof. Recall that bggmprf is only used when responding to the challenge query, which by assumption is
the last query the adversary makes. Hence, neither the abort probability nor any of the events in viewT
before the very last events (challenge, x∗, k) and (guess, bA) depend on bggmprf . The latter also implies
that the values for lastpre and len are independent of bggmprf for all t. As the last two events of the view
(that are the only ones carrying information about bggmprf) are cut off when rewinding and resampling,
no information about bggmprf is carried from viewt−1 to viewt for any t. Furthermore, in the final view
viewT the challenge key kx∗ is sampled independently and uniformly at random, hence k has the same
distribution for both cases bggmprf = 0 and bggmprf = 0. Thus, A has no advantage in distinguishing kx∗
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from a random independent key.

To finish the proof of the theorem, it only remains to combine the above claims. In particular,
we define the adversary B exactly as C from Proposition 3. The bound on the runtime of B follows
immediately and for the advantage of B we have

AdvPRG,B(λ) =
1

2d
·
(
AdvGGMPRF, 0

G,A,d (λ)−AdvGGMPRF, d
G,A,d (λ)

)
≥ 1

2d
·
(

˜
AdvGGMPRF, 0

G,A,d (λ)−AdvGGMPRF, d
G,A,d (λ)− γ

)
≥ 1

2d
·
(
AdvGGMPRF

G,A,d (λ)−AdvGGMPRF, d
G,A,d (λ)− γ

)
≥ 1

2d
·
(
AdvGGMPRF

G,A,d (λ)− γ
)
.

3.3 Adaptive Security for LKH

Overview. The main application we have in mind in this section is a multicast key distribution protocol
called the Logical Key Hierarchy (LKH) [WHA98; WGL00; Can+99]; more precisely, we consider the
rectified version by Panjwani [Pan07]. Our strategy can easily be generalized to minor modifications
of LKH and therefore we do not focus on specific implementation details. Rather, we provide a very
brief high-level description of the protocol as well as the security guarantees we aim to guarantee. More
broadly, we believe that our results provide the core techniques to prove adaptive security also for
multicast key agreement as defined in [BDT22], as well as (various versions of) the related “TreeKEM”
protocol [BBR18; Kle+21] for (public-key) continuous group key agreement (CGKA).

Multicast Key Distribution (MKD). A protocol for multicast key distribution (MKD, see [Pan07])
is a server-aided secret-key protocol that enables a dynamically changing group of users to securely
communicate over a broadcast channel. In an initial registration step, it is assumed that each user
establishes a secret key with the server; this key infrastructure setup is however outside the protocol
specification. The server then uses these shared secret keys to communicate a group key to the current
set of user. Upon a join/leave request, the server refreshes the group key and sends rekey messages to
the new set of users, which allow each user to derive the new group key. In the security experiment, the
adversary can request join and leave operations for arbitrary users fully adaptively and learns all keys of
removed users. Finally, it can request a challenge and in return obtains either the real group key or a
random independent key.

Logical Key Hierarchy (LKH). A trivial MKD protocol would be to simply encrypt a freshly sampled
group key to all current users after each membership change. However, for large groups this does not
scale well, as it requires a linear number of encryptions. A smarter approach is taken in the Logical Key
Hierarchy (LKH) protocol, as proposed in [WHA98; WGL00; Can+99]. We will consider the rectified
version of LKH by Panjwani [Pan07]: LKH is based on a binary tree structure, where each node is
associated with a secret key kx and edges represent secret-key encryptions cx∥b of the parent key kx
under the child key kx∥b (see binary tree notation in Section 2.1). The keys associated to leaves in the
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(a) Adding user 4 to a group of 3 users. The keys
and ciphertexts that got refreshed in this process
are denoted in blue.

•

•

• •
⋄

(b) A depth-3 binary tree with red pebbles (•) at the
edges c0, c10, c110, and c111. This configuration
occurs when pebbling this graph with the pebbling
algorithm (see Algorithm 14) at some step i∗. The
node leaf3,i∗ is marked with a blue diamond (⋄).

Figure 3.2: (a) Adding a user in LKH. (b) A pebbling configuration occuring in the recursive pebbling
strategy from Algorithm 14.

tree belong to members participating in the multicast key distribution, the key kε associated to the root
is used as the group key. Users can be added to or removed from the group, which leads to a state
update where all the keys and ciphertexts associated with nodes and edges on the path from the user’s
leaf to the root are refreshed (except for the edge attached to the leaf in case of a remove), and also the
edges connecting these nodes to co-path nodes are refreshed (see Figure 3.2a). Note that in contrast to
the trivial protocol, each remove or add operation only requires an update of a logarithmic (in the size of
the group) number of ciphertexts.

3.3.1 Pebbling for LKH

Similarly to the case of GGM, the graphs that occur in the security game of LKH are trees. But now,
we are interested in randomizing the key at the root of the binary tree structure. This root key can
be derived from any of the leaf keys (and publicly available ciphertexts). Hence, there are now many
paths to the root which we need to take into account in order to randomize the root key. We therefore
will build upon the intricate “edge pebbling” strategy of [Jaf+17] to randomize kε, only with guesses
replaced by rewindings.

Edge pebbling is a multi-round game on a graph—in our case a binary tree—, where in each step a
pebble can be placed on or removed from an edge. The goal is to “pebble” the tree, which means to
reach a pebbling configuration where all edges incident on the root are pebbled. The rule is the following.

Edge-pebbling rule. We can at any point add or remove a pebble on an edge cx when all of kx’s
incoming edges (i.e., edges cx∥0 and cx∥1, if exist) are pebbled.

In particular, we can pebble or unpebble leaf edges at any point. It is easy to see that we can pebble
a binary tree in 2d+1 − 2 steps (by pebbling all edges of the tree, level by level from the leaves to the
root). Aiming to reduce the number of pebbles (i.e., the maximum number of pebbled edges at any
given point in time), one can observe that a binary tree of depth d can be pebbled in Θ(22d) steps with
only 2d pebbles, essentially by a straightforward recursion and removing all used pebbles after pebbling
upwards (see Algorithm 14, adapted from [Jaf+17, Algorithm 5]). While for our approach the number of
pebbles is not that relevant, this recursive strategy will nevertheless turn out useful. In the following we
will derive some useful properties of this strategy.
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Algorithm 14: A recursive pebbling algorithm. The “unpebbling” steps use that all pebbling
steps are reversible.

Input: A depth-d binary graph with nodes kx (x ∈ {0, 1}≤d) and edges cx (1 ≤ |x| ≤ d)
1 if d = 1 then
2 Pebble c0 and c1 // k0 and k1 are leaves

3 else
4 Recursively pebble the subgraph rooted at k0 // Pebbles c00 and c01
5 Pebble c0 // Incoming edges of k0 pebbled

6 Recursively unpebble subgraph rooted at k0
7 Recursively pebble the subgraph rooted at k1 // Pebbles c10 and c11
8 Pebble c1 // Incoming edges of k1 pebbled

9 Recursively unpebble subgraph rooted at k1
10 end

Definition 3.3.1 (Pebbling time). For d ∈ N, let Td be the pebbling time for depth-d binary trees, i.e.,
the runtime (measured in the number of times a basic pebbling rule is applied) of the pebbling algorithm
in Algorithm 14 on a depth-d binary tree.

Lemma 3.3.2. We have Td = (2/3) · (22d − 1).

Proof. Td+1 = 4Td + 2 and T1 = 2 follow immediately from the structure of pebbling algorithm in
Algorithm 14 . The claimed closed form of Td can then be proven, e.g., by induction.

Definition 3.3.3 (Edge index set). For a given run of pebbling algorithm in Algorithm 14 on a depth-d
binary tree as above, let edgesd,i denote the set of indices x of edges cx pebbled after the i-th step (i.e.,
application of a pebbling rule).

Hence, edgesd,0 = ∅ and edgesd,Td
= {0, 1}. A related observation to the following was already used

in [Jaf+17].

Lemma 3.3.4. For each i ∈ [Td]0, there is a leaf node kx (for x ∈ {0, 1}d) such that both sets edgesd,i−1
and edgesd,i (where we set edgesd,−1 := ∅) consist only of edge indices on the path from kx to kε, or its

co-path. Formally, for each i, there is an x ∈ {0, 1}d, such that for each x′∥b ∈ edgesd,i−1 ∪ edgesd,i
(for x′ ∈ {0, 1}<d and b ∈ {0, 1}), we have x′ ≤pfx x.

Proof. For d = 1, this is obvious, as all edges in the tree are incident to the path from the leftmost leaf
to the root.

Assume the statement holds for some fixed d ≥ 1. We will show it holds for d+ 1. Note that the
edges c0 and c1 lie on the path or co-path of any leaf node. As the subtrees are pebbled or unpebbled
recursively as a whole, there are no pebbles in the subtree at n1 during the pebbling or unpebbling of n0

and vice versa. Thus, for any of the subtrees, the edge sets at any point consist of the edge set of a
subtree of depth d united with potentially the edges c0 or c1 which lie on the path or co-path of any leaf.
Therefore, the statement also holds for d+ 1.

Definition 3.3.5. In the situation of Lemma 3.3.4, let leafd,i be the lexicographically smallest such
x ∈ {0, 1}d.
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The following corollary is an immediate consequence of Lemma 3.3.4.

Corollary 3.3.6. For every i, we have |edgesd,i| ≤ 2d.

The following result is an easy consequence of the recursive pebbling strategy.

Lemma 3.3.7. For each i ∈ [Td]0, let x
∗
i be the unique index in the symmetric difference of edgesd,i−1

and edgesd,i, i.e. {x∗i } := edgesd,i−1∆edgesd,i. For each x′ ∈ edgesd,i−1, it holds that |x′| ≤ |x∗i |+ 1.

Proof. If Algorithm 14 is currently at a recursive depth such that d = 1 (i.e., x∗i is incident to a leaf
node) the statement follows immediately.

Recall that by Lemma 3.3.4, all edges in edgesd,i−1 and edgesd,i are incident to the path from leafd,i
to the root. Thus, when x∗i is being pebbled (or unpebbled), the only other pebbled edges whose label
could be longer than |x∗i |+ 1 must be in the subtree rooted at the bottom of x∗i , as the algorithm first
pebbles this subtree before pebbling x∗i (and thus leafd,i must lie in this subtree). At the point when x∗i
is pebbled or unpebbled, the only other pebbled edges in the graph are thus incident to the path from x∗i
to the root (these edges have a label length |x′| ≤ |x∗i |), plus the two edges incident to x∗i directly below
x∗i (these edges have |x′| = |x∗i |+ 1).

Lemmas 3.3.4 and 3.3.7 immediately imply the following corollary.

Corollary 3.3.8. Let x∗i be as in Lemma 3.3.7. For each i ∈ [Td]0, it holds that all edges in edgesd,i−1 ∪
edgesd,i are incident on the unique path from x∗i to the root.

As an example, Figure 3.2b depicts a state that occurs when pebbling a depth-3 binary tree with
Algorithm 14. The set of pebbled edges at this point is edges3,i = {0, 10, 110, 111} where edge c111 was
pebbled in step i (i.e., x∗i = 111), and leafd,i = 110.

3.3.2 A Technical Lemma

In the following we introduce a technical lemma that will help us in proving closeness of some of the
hybrid games for LKH security. In particular, we will be mixing two sampling algorithms, in each of which
a bad event can occur. (Later, this bad event will correspond to exceeding a certain bound for repetitions
of a loop.) We want to bound the probability for this bad event in a “hybrid” sampling algorithm that
starts out as one of the algorithms, and then switches to the other when a specific event occurs.

Lemma 3.3.9. Let I1, I2, R1, R2 be randomized algorithms. Let G be a function with the following
properties:

1. for any sequence X0, . . . XT s.t. X0 ← I1, Xt ← R1(Xt−1) for t = 1, . . . , T , there exists exactly
one t such that G(Xt) = 1.

2. for any sequence X0, . . . XT s.t. X0 ← I2, Xt ← R2(Xt−1) for t = 1, . . . , T , there exists exactly
one t such that G(Xt) = 1.

3. for any index i = 0, . . . , T it holds that

Pr
X0←I1

∀t=1,...T : Xt←R1(Xt−1)

[G(Xi) = 1] = Pr
X0←I2

∀t=1,...T : Xt←R2(Xt−1)

[G(Xi) = 1]
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Algorithm 15: Algorithm P1

1 X0 ← I1()
2 for t := 1 to T do
3 Xt ← R1(Xt−1)
4 end

Algorithm 16: Algorithm P2

1 X0 ← I2()
2 for t := 1 to T do
3 Xt ← R2(Xt−1)
4 end

Algorithm 17: Algorithm P3

1 X0 ← I1()
2 t = 0
3 while ¬G(Xt) do
4 t++
5 Xt ← R1(Xt−1)

6 end
7 while t < T do
8 t++
9 Xt ← R2(Xt−1)

10 end

Figure 3.3: Algorithms for Line 10

4. for any index i = 0, . . . , T , the following identity of distributions holds:Xi

∣∣∣∣∣∣
X0 ← I1

∀t ∈ [T ] : Xt ← R1(Xt−1)
G(Xi) = 1

 ≡
Xi

∣∣∣∣∣∣
X0 ← I2

∀t ∈ [T ] : Xt ← R2(Xt−1)
G(Xi) = 1


Now consider the algorithms P1, P2, and P3 from Algorithms 15 to 17, and let F be an event

that can occur during the sampling processes I1, I2, R1, R2 such that Pr[F occurs in P1] ≤ γ1 and
Pr[F occurs in P2] ≤ γ2.

Then, we have Pr[F occurs in P3] ≤ γ1 + γ2.

Proof. We start with a technical claim:

Proposition 5. There exists exactly one i during any run of P3 such that G(Xi) = 1.

Proof of Proposition 5. From case 1 of the lemma hypothesis, we know that during P3, G will occur at
some point, as P3 samples the Xt exactly like P1 up to when G occurs.

Due to case 4, we know that when G(Xt∗) holds in either P1 or P2, the states Xt∗ are identically
distributed. As the sampling procedure for P3 uses R2 (like P2 does as well), and R2 only takes the previ-
ous state as input the ‘second part’ (Xt∗+1, . . . , XT ) of a state sequence (X0, . . . , Xt∗ , Xt∗+1, . . . , XT )
(where t∗ is the first index where G(Xt∗) = 1) will be identically distributed to (X ′t∗+1, . . . , X

′
T ) where

(X ′0, . . . X
′
t∗ , X

′
t∗+1, . . . , XT ) is a state sequence generated by P2 with G(Xt∗).

Therefore, G(Xt) ̸= 1 for all t > t∗ due to case 2.

Let t∗ be the value of t when G occurs for the first time (in any of the three algorithms). We can
split up the probability for F as follows:

Pr[F occurs in P3] =Pr[F occurs in P3 up to t∗] + Pr[F occurs in P3 after t∗]

≤ Pr
X0←I1

∀t=1,...T : Xt←R1(Xt−1)

[F ] + Pr[F occurs in P3 after t∗]
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where by ‘F occurs in P3 up to t∗’, we denote that F occurs before Xt∗ is sampled or during the
sampling process of Xt∗ and by ‘F occurs in P3 after t∗’ we denote that F occurs during the sampling
processes of Xt∗+1, . . . , XT . We now want to bound Pr[F occurs in P3 after t∗].

We will write Pr[E occurs in Pi] for i = 1, 2, 3 to denote

Pr

[
E

∣∣∣∣ X0 ← I1
∀t ∈ [T ] : Xt ← R1(Xt−1)

]
,

Pr

[
E

∣∣∣∣ X0 ← I2
∀t ∈ [T ] : Xt ← R2(Xt−1)

]
,

and

Pr

E
∣∣∣∣∣∣

X0 ← I1
∀t = 1, . . . t∗ : Xt ← R1(Xt−1)

∀t = t∗ + 1, . . . T : Xt = R2(t,Xt−1)

 ,

respectively, i.e., the probability of E happening when the sampling of the states Xi is done according to
the processes P1, P2, or P3, respectively.

Pr[F occurs after t∗ in P3]

Proposition 5
=

T∑
t=0

Pr[F occurs after t∗ in P3 ∧ t∗ = t in P3]

=

T∑
t=0

Pr[F occurs after t∗ in P3 | t∗ = t in P3] · Pr[t∗ = t in P3]

=

T∑
t=0

Pr[F occurs after t∗ in P3 | t∗ = t in P3] · Pr[t∗ = t in P1]

case 3
=

T∑
t=0

Pr[F occurs after t∗ in P3 | t∗ = t in P3] · Pr[t∗ = t in P2]

case 4
=

T∑
t=0

Pr[F occurs after t∗ in P2 | t∗ = t in P2] · Pr[t∗ = t in P2]

=

T∑
t=0

Pr[F occurs after t∗ in P2 ∧ t∗ = t in P2]

≤ Pr[F occurs in P2] ≤ γ2

Altogether, this yields
Pr[F occurs in P3] ≤ γ1 + γ2.

3.3.3 Proving Security from IND-CPA

We now define the LKH security experiment ExpLKHSKE,A,d(λ). This game models the security of LKH as
an MKD protocol.
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Definition 3.3.10 (LKH security experiment). Let SKE = (Gen,Enc,Dec) be a secret-key encryption
scheme and d = d(λ) some depth.

Setup. The LKH experiment ExpLKHSKE,A,d(λ) initially samples uniformly at random a challenge bit

blkh ← {0, 1} and keys kx ← {0, 1}λ for each x ∈ {0, 1}≤d. It then computes ciphertexts cx∥b for

all x ∈ {0, 1}<d and b ∈ {0, 1}, which encrypt key kx under key kx∥b. The adversary A receives
the ciphertexts cx∥b.

Online Phase. The adversary can make the following queries.

Corruption Queries A can adaptively corrupt “leaf” keys kx (for x ∈ {0, 1}d). This exposes kx
to A, and results in a refresh of not only kx, but also all kx′ for proper prefixes x′ of x.
Furthermore, fresh encryptions of those kx′ under keys kx′∥0 and kx′∥1 are generated and
exposed to A.

Challenge. At any point, A may stop the game by asking to be challenged to distinguish the
then-current key kε (case blkh = 0) from a random key (case blkh = 1).

Output Determination. descriptionThe output of the experiment is 1 if A correctly guesses the bit
blkh, and 0 otherwise.

We define the advantage of A in this game as

AdvLKHSKE,A,d(λ) := Pr[ExpLKHSKE,A,d(λ)(λ) = 1]− 1/2.

Asymptotically, we say that LKH is secure (with SKE) if for every polynomial-time A and every constant
c ∈ N, the advantage AdvLKHSKE,A,c·log(λ)(λ) is negligible.

2

Our strategy. We will prove that A has a negligible advantage to win the game ExpLKHSKE,A,d(λ) through
a large hybrid argument. We will start with the game above and apply a number of successive changes
until finally A’s view is independent of the real final key kε. Similar to Section 3.2, we make a liberal use
of rewindings, thus, it will be helpful to formalize A’s view:

Definition 3.3.11 (Adversarial view). In a run of the LKH experiment ExpLKHSKE,A,d(λ) from Defini-
tion 3.3.10, we define A’s view viewA in this run as a sequence (ev1, . . . , evT ) of events, where each evi
can be one of the following:

Query. One of A’s queries (without reply), either of the form (corrupt, x), or challenge.

New key. Every time a new key kx is defined, right before that, a corresponding (newkey, x) event is
appended to view. Concretely, view starts with (newkey, x) events for x ∈ {0, 1}≤d. Furthermore, a
query (corrupt, x) automatically causes also entries (newkey, x′) for a prefix x′ of x to be appended
immediately after that corrupt entry. Entries (newkey, x) defined at the same time are ordered in
view with keys further from the root (i.e., with longer x) first.

Ciphertext. An event (ctxt, x∥b, cx∥b) for a ciphertext cx∥b = Enc(kx∥b, kx), either as part of A’s initial
input, or as a side effect of a corruption query. ctxt entries defined at the same time are ordered
with ciphertexts furthest from the root (i.e., with longer x) first, and lexicographically (according
to x∥b) for x of the same length.

2Like previous works, we focus on a logarithmic depth and thus to polynomially many users.
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Corrupted key. A key (key, x, kx) as a result of a corruption query. We assume that this key appears
before the corresponding new key events and the ciphertexts that are sent to A in the same reply.

Challenge key. The result of the final challenge query, in the form (challenge, k) (i.e., depending on bB
with either k being a key kε or a random value).

Decision bit. The final output bit bA of A, in the form (guess, bA). This event is the last in view, and
we may write outA(view) for the output bit bA.

Remark 3.3.12. Note that the ordering of events above implies for an event (corrupt, x) that it
is followed by an event (key, x, kx), then a sequence of events (newkey, x′) for all prefixes x′ of x,
in decreasing length, and then a sequence (ctxt, x′∥b, cx′∥b) for all strict prefixes x′ of x and bits
b ∈ {0, 1}, again ordered by decreasing length, and siblings ordered alphabetically. For example, for depth
d = 3, a (corrupt, 010) event causes the following sequence of events: (key, 010, k010), (newkey, 010),
(newkey, 01), (newkey, 0), (newkey, ε), (ctxt, 010, c010), (ctxt, 011, c011), (ctxt, 00, c00), (ctxt, 01, c01),
(ctxt, 0, c0), and (ctxt, 1, c1).

We are now ready to formulate and prove our main result:

Theorem 3.3.13. Let SKE = (Gen,Enc,Dec) be an SKE scheme. Then

• for every LKH adversary A that runs in time tA and places at most Qcorrupt corruption queries,

• for every LKH depth d and every γ ∈ (0, 1],

there is an IND-CPA adversary B that makes at most QLoR ≤ 2 · ln(2T /γ) · T 4 · (d+ 1)/γ LoR queries,
QNU ≤ 2 · ln(2T /γ) · T 3 · (d+ 1)/γ new user queries, and runs in time tB and for which

AdvIND-CPA
SKE,B (λ) ≥ 1

2
· 1

Td
·AdvLKHSKE,A,d(λ)−

γ

2
. (3.12)

where
tB ⪅ 2 · ln (2T /γ) · T 4 · (d+ 1)/γ · tA. (3.13)

where T ≤ 2d+2 + (3d+ 1) · Qcorrupt.

Again, before proceeding to a proof, we remark that Theorem 3.3.13 implies asymptotic security
when setting γ suitably:

Corollary 3.3.14 (SKE IND-CPA ⇒ LKH secure). If SKE is IND-CPA secure (as in Definition 2.8.2),
then LKH is secure with SKE (in the sense of Definition 3.3.10).

Proof of Corollary 3.3.14. Fix a depth d = c · log(λ) (for some constant c ∈ N), and assume for
contradiction that there is a polynomial-time adversary A against the security of LKH with non-negligible
advantage εA := AdvLKHSKE,A,d(λ). Since εA is non-negligible, there exists a polynomial p such that for
infinitely many values of λ, we have εA ≥ 1/p(λ).

Now set γ = 1/(2Tdp(λ)) (for the value Td from Definition 3.3.1, which is polynomially bounded by
our choice of d and by Lemma 3.3.2), and invoke Theorem 3.3.13. We obtain an IND-CPA adversary B
with (by Eq. (3.13)) polynomial runtime and non-negligible advantage

AdvIND-CPA
SKE,B (λ)

Eq. (3.12)

≥ 1

2Td
· εA −

γ

2

(∗)
≥ 1

2Td
· 1

p(λ)
− γ

2
=

1

4Tdp(λ)
,

where (∗) holds (only) for infinitely many λ.
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Algorithm 18: Game i, with the bulk of the work outsourced into the sampling from Dview
i,blkh

.

1 blkh ← {0, 1}
2 view← Dview

i,blkh
// view has the format from Definition 3.3.11

3 return [blkh = outA(view)] // returns 1 iff blkh = outA(view)

Proof Overview.

Fix SKE, A, and d. In the following, we will consider a number of hybrid games, with Game lkh being
the original LKH experiment. Denoting with outi the output of Game i, we trivially get

Pr[outlkh = 1] = AdvLKHSKE,A,d(λ) + 1/2. (3.14)

To move on, we will formulate Game i (for 0 ≤ i ≤ Td) in a (for us) convenient way, see Algorithm 18.
This formulation outsources the bulk of the game into the sampling of A’s view view from a suitable
distribution Dview

i,blkh
. In our upcoming refinements, we will only change Dview

i,blkh
and investigate the effects

on outi.

The Distributions Dview
i,blkh

. To define the distribution Dview
i,blkh

for Game i, we use the following notation:

• Dview
lkh,blkh

is the distribution of A-views (as in Definition 3.3.11) that is induced by running the LKH
experiment with challenge bit blkh (that decides whether A is challenged with kε or a random key).

• edgesd,i is the edge index set from Definition 3.3.3 that arises out of pebbling a depth-d binary
tree.

• len(view) is the length of a given A-view view (measured in events).

• pfxt(view) outputs the prefix of view up to (and including) the t-th event (see Section 2.1).

• maxcori,t(view) on input view = (ev1, . . . , evT ) outputs

max
({
|x|
∣∣ evt′ = (ctxt, x, cx) for some t′ > t and x ≤pfx leafd,i

}
∪ {0}

)
.

• lastkeyi(view) on input view = (ev1, . . . , evT ) outputs

max { t′ | evt′ = (newkey, x∗i )},

where x∗i := edgesd,i−1∆edgesd,i for i ≥ 1 and x∗0 := edgesd,0∆edgesd,1.

• B ∈ N is a bound on the number of repetitions of Lines 6 to 14 for each t. In case of B unsuccessful
repetitions for one t, the whole algorithm outputs ⊥. We will fix a suitable value for B later.

Below we will prove some useful properties of the functions maxcor and lastkey, and are now ready to
define the distributions Dview

i,blkh
; see Algorithm 19. Our distribution Dview

i,blkh
is defined like Dview

lkh,blkh
(i.e., like an

LKH run with A), but uses rewinding and resampling (as defined in Section 3.2) at every step. Additionally,
we replace certain ciphertexts cx as indicated by x ∈ edgesd,i during the rewindings. Concretely, fix an i

and consider Algorithm 19, which programmatically describes sampling viewT according to Dview
i,blkh

.
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Algorithm 19: Sampler for Dview

i .1 ,blkh

Input: i ∈ {0, . . . , Td}, blkh ∈ {0, 1}, B ∈ N // len, pfxt,maxcori,t, lastkeyi, B described in

proof

1 view0 ← Dview
lkh,blkh

2 T := len(viewlkh) // Length of viewlkh (in entries)

3 for t := 1 to T do
4 Write viewt−1 = (evt−1,1, . . . , evt−1,T )
5 repeat // Output ⊥ if B repetitions fail for this t
6 Rewind adversary to point t // Checks if evt,t defines a ciphertext to be

pebbled

7 if evt−1,t = (ctxt, x, cx) with x ∈ edgesd,i and maxcor
i +1 ,t+1

(viewt−1) < |x| then
8 Sample fresh c⊥x ← Enc(kx,⊥) // Fresh dummy ciphertext

9 Set evt,t := (ctxt, x, c⊥x ) in viewt // Replace cx with c⊥x in viewt−1
10 Resample from point t+ 1 to obtain

viewt = (evt−1,0, . . . , evt−1,t−1, evt,t, evt,t+1, . . . , evt,τ )
11 else
12 Resample from point t to obtain viewt = (evt−1,0, . . . , evt−1,t−1, evt,t, . . . , evt,τ )
13 end

14 until maxcor
i +1 ,t+1

(viewt) = maxcor
i +1 ,t+1

(viewt−1) and len(viewt) = len(viewt−1) and

lastkey
i +1

(viewt) = lastkey
i +1

(viewt−1)

15 end
16 return viewT

Having defined our hybrid distributions Dview
i,blkh

, we will additionally consider potentially inefficient

procedures D̃view
i,blkh

which are defined similar to Algorithm 19 but without a bound B on the runtime.

We will first show that the distribution D̃view
0,blkh

coincides with the distribution of views in Game lkh.

Next, we will consider the intermediate distributions Dview
i.1,blkh

(the difference to Dview
i,blkh

being marked gray

in Algorithm 19) and show that for all i ∈ [Td − 1]0 it holds that D̃view
i,blkh

and D̃view
i.1,blkh

have the same
distribution.

We will then bound the difference in the probability of an abort in the games Dview
i,blkh

and Dview
i.1,blkh

. To
prove this we will need an additional technical lemma about the abort probability in such mixed sampling
procedures and this is the main difference to Section 3.2 in which such a mixed resampling procedure
does not occur. Setting the bound B appropriately we will be able to bound the probability of an abort
in Dview

0,blkh
by γ. In the subsequent claim we will show that A has no advantage in Game Td since the

view sampled according to Dview
Td,blkh

is independent of blkh. Finally, we will conclude the proof by arguing

that for all i ∈ [Td − 1]0 the distributions Dview
i.1,blkh

and Dview
i+1,blkh

are computationally indistinguishable by
IND-CPA security of the SKE scheme SKE. See Figure 3.4 for an overview of this sequence of arguments.
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Dview
lkh,blkh D̃view

0,blkh
D̃view

0.1,blkh
D̃view

1,blkh
D̃view

1.1,blkh

Dview
0,blkh

Dview
0.1,blkh

Dview
1,blkh

Dview
(Td−1).1,blkh Dview

Td,blkh

≡

c
≈

c
≈

s≈
γ
0
.1

· · ·

≡

s≈
γ
0

≡

s≈
γ
1

Figure 3.4: Sequence of hybrids from the proof of Theorem 3.3.13. Perfect indistinguishabilities (“≡”)
are shown in Proposition 6 and Proposition 7, statistical indistinguishabilities (“

s
≈γi

” and “
s
≈γi.1

”) with
bounds γi and γi.1 follow from our IND-CPA reduction of Theorem 3.3.13 and Proposition 8, and

computational indistinguishabilities (“
c
≈”) follow from the IND-CPA reduction. Note that the statement

D̃view
0,blkh

s
≈γ0 Dview

0,blkh
is needed to bound γ0.1.

Some Useful Properties of maxcor and lastkey.

We prove some useful properties of maxcor and lastkey.

Lemma 3.3.15. For any i ∈ {0, . . . , Td}, any view as described above, and any t ∈ {1, . . . , len(view)−1},
it holds that maxcori,t(view) ≥ maxcori,t+1(view).

Proof. This follows from the fact that maxcor considers the suffix of view and so increasing from t to
t+ 1 only removes events that are considered for maxcor.

We show that for edges that we want to put pebbles on, it does not matter whether we look at the
maxcor value for i or for i+ 1 to determine when is a good time to put a pebble. This will be useful
when game hopping later in the proof.

Lemma 3.3.16. For any i ∈ {0, . . . , Td − 1}, any view as described above, any t ∈ {1, . . . , len(view)},
any x ∈ edgesd,i, it holds

(maxcori,t(view) < |x|)⇔ (maxcori+1,t(view) < |x|).

Proof. Let x′i+1 be the longest common prefix of leafd,i and leafd,i+1.
We note that by Lemma 3.3.4, as x ∈ edgesd,i, x lies on the path or the co-path of x′i+1∥0, so in

particular |x| ≤
∣∣x′i+1∥0

∣∣. This holds because edgesd,i is a subset of both sets of edges incident on the
path to leafd,i and leafd,i+1.

If maxcori,t+1(viewt−1) < |x|, this in particular means that the length-maximal x′ fulfilling the
criterion from the definition of maxcori,t+1(viewt−1) must have |x′| < |x|. Thus, it must be a prefix
of x′i+1. Thus, it is also a prefix of leafd,i+1. As for each (ctxt, x, cx) event, the sibling event
(ctxt, pfx|x|−1(x)∥(1− x|x|), cpfx|x|−1(x)∥(1−x|x|)) must also occur right before or right after, this yields

that if x′ is the longest prefix of leafd,i after t+ 1, it must also be the longest prefix of leafd,i+1 after
t+ 1. This yields one implication of the equivalence. The reverse direction follows by a symmetrical
argument.

The following lemma states that the last corruption of the relevant key will already have happened
before a pebble is embedded (i.e. before a ciphertext is replaced by an encryption of ⊥). This will
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be useful to see that the end conditions of the repeat loops in different versions of Algorithm 19 are
equivalent.

Lemma 3.3.17. Let i ∈ [Td] and x ∈ edgesd,i. Then, maxcori,t+1(view) < |x| implies that
lastkeyi(view) < t+ 1 and lastkeyi+1(view) < t+ 1.

Proof. Let x∗i be as in the definition of lastkeyi. By Corollary 3.3.8, any x ∈ edgesd,i is incident
on the path from x∗i to the root. Thus |x| ≤ |x∗i | + 1. It follows that if maxcori,t+1(view) < |x|,
then also maxcori,t+1(view) < |x∗i | + 1. As any event of the form (newkey, x∗) triggers events of
the form (ctxt, x∗∥b, cx∗∥b) for b ∈ {0, 1}, any (newkey, x∗i ) event at or after t + 1 implies that
maxcori,t+1(view) ≥ |x∗i |+ 1. The case for lastkeyi+1 follows from Lemma 3.3.16.

We apply the above lemmas to views that share prefixes to find that identical maxcor values imply
identical lastkey values as soon as a pebble is embedded. This will again be useful in a game hop.

Corollary 3.3.18. Let t, i be arbitrary, and let view = (ev1, . . . , evT ) be such that evt = (ctxt, x, cx)
with x ∈ edgesd,i and maxcori,t+1(view) < |x|. Then, for any view′ with pfxt(view

′) = pfxt(view), we
have

maxcori,t+1(view
′) = maxcori,t+1(view) ⇒ lastkeyi(view

′) = lastkeyi(view)

and

maxcori+1,t+1(view
′) = maxcori+1,t+1(view) ⇒ lastkeyi+1(view

′) = lastkeyi+1(view).

Proof. As maxcori,t+1(view) < |x|, by Lemma 3.3.16 maxcori+1,t+1(view) < |x|. Furthermore, if
maxcori,t+1(view) = maxcori,t+1(view

′), then also maxcori,t+1(view
′) < |x| and the same implication as

above holds for view′. From Lemma 3.3.17, it follows that lastkeyi(view) < t+ 1 and lastkeyi(view
′) <

t + 1. Therefore, as the prefixes up to t of view and view′ are the same, in fact lastkeyi(view
′) =

lastkeyi(view). Using a similar argument, the implication for i+ 1 also follows.

Proof of Theorem 3.3.13.

We are now ready to prove Theorem 3.3.13.

Proof. We start with a few helper propositions to structure our proof.

Proposition 6. D̃view
0,blkh

≡ Dview
lkh,blkh

.

Proof of Proposition 6. Since edgesd,0 = ∅, the if clause can never return true and the algorithm

always enters the else clause. The statement therefore follows from Lemma 3.1.2, where D = Dview
lkh,blkh

,
ht(views) = (evs,1, . . . , evs,t−1), and gt(views) = (maxcor0,t(views), len(views), lastkey0(views)).

Proposition 7 (D̃view
i,blkh
≡ D̃view

i.1,blkh
). For all i ∈ [Td − 1]0, we have D̃view

i,blkh
≡ D̃view

i.1,blkh
.

Proof of Proposition 7. By Lemma 3.1.2, when instantiated once with

ht(view) = pfxt−1(view),

gt(view) = (maxcori,t+1(view), len(view), lastkeyi(view)),
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and once with ht as above and

gt(view) = (maxcori+1,t+1(view), len(view), lastkeyi+1(view)),

the distributions of the viewt up until the if in Line 7 of Algorithm 19 returns true for the first time
are identical. Further, by Lemma 3.3.16, the conditions for the if are equivalent, i.e. whenever the if
condition would return true for i+1 it would also return true for i and vice versa. It therefore remains to
show that the end conditions of the repeat loop are also equivalent after the first time the if returned
true.

To see this, note that after the first time the if returned true, maxcori,t+1 as well as maxcori+1,t+1

are upper bounded by the length of any of the edge labels in edgesd,i – this follows from Lemma 3.3.16
and Lemma 3.3.15.

As by Lemma 3.3.7, all of these edges are incident on the path from the longest common prefix of
leafd,i and leafd,i+1 to the root or its co-path.

Thus, if maxcori,t+1 and maxcori+1,t+1 are bounded by the length of such an edge label, it follows
in fact that maxcori,t+1(view) = maxcori+1,t+1(view).

By a similar argument, and by Corollary 3.3.18, it follows that the part of the stopping condition that
concerns lastkey is equivalent.

Lastly, we see that len(viewt) does not depend on i and thus the stopping conditions of the repeat
loops in the two algorithms are equivalent.

The statement follows.

Proposition 8. For all i ∈ [Td − 1]0, we have

γi.1 = Pr[⊥ ← Dview
i.1,blkh

] ≤ Pr[⊥ ← Dview
i,blkh

] + γ.

Proof of Proposition 8. We use Line 10, where event F will be exceeding the bound B on the iterations
of the repeat loop. We further define the procedures I1, I2, R1i, R2i as listed in Algorithms 20 to 22.

In the following, we will want to map the first placement of a pebble in Algorithm 19 to the event
G that triggers switching the algorithms in Line 10, i.e. if G(t, viewt) is true, the next iteration of
the for loop will replace a ciphertext. We define the event G1(t, viewt) in Algorithm 21 as ‘t is the
smallest value among all t′ that satisfy evt,t′+1 = (ctxt, x, cx) with x ∈ edgesd,i and maxcori,t′+2(viewt)
< |x|’, and the event G2(t, viewt) in Algorithm 22 as ‘t is the smallest value among all t′ that satisfy
evt,t′+1 = (ctxt, x, cx) with x ∈ edgesd,i and maxcori+1,t′+2(viewt) < |x|’.

Note that by Lemma 3.3.16, these definitions are in fact equivalent, i.e., G1(t, viewt) = 1 ⇔
G2(t, viewt) = 1. We will therefore in the following only speak of G = G1 = G2.

As mentioned above, we define F to be the event that the repeat loop in R1i or R2i, respectively,
is repeated more than B times, where B is defined in Claim 3.3.19.

As both definitions of G refer to the smallest t, it is obvious that the event G can occur at most once
in either a run initiated using I1 and subsequent calls to R1i, or a run initiated using I2 with subsequent
calls to R2i. Thus, G fulfills Cases 1 and 2 from Line 10.

Let P1i be defined through I1 and R1i as in Line 10. Similarly, let P2i be defined through I2 and
R2i as in Line 10. Let P3i be defined through I1, then sampling using R1i until the first occurrence of
G, and then sampling using R2i.

We note that P1i corresponds to sampling from D̃view
0,blkh

, P2i corresponds to sampling from D̃view
i.1,blkh

,

and P3i corresponds to sampling from D̃view
i,blkh

.
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Algorithm 20: I1 and I2

1 view0 ← Dview
lkh,blkh

2 return X0 = (0, view0)

Algorithm 21: R1i

Input: (t− 1, viewt−1)
1 repeat
2 Rewind adversary to point t
3 Resample from point t

4 until maxcori,t+1(viewt) =
maxcori,t+1(viewt−1) and
len(viewt) = len(viewt−1) and
lastkeyi(viewt) = lastkeyi(viewt−1)

5 return Xt = (t, viewt)

Algorithm 22: R2i

Input: (t− 1, viewt−1)
1 repeat
2 Rewind adversary to point t
3 if evt,t = (ctxt, x, cx) with x ∈ edgesd,i and

maxcori+1,t+1(viewt−1) < |x| then
4 Sample fresh c⊥x ← Enc(kx,⊥)
5 Set evt,t := (ctxt, x, c⊥x ) in viewt

6 Resample from point t+ 1

7 else
8 Resample from point t
9 end

10 until
maxcori+1,t+1(viewt) = maxcori+1,t+1(viewt−1)
and len(viewt) = len(viewt−1) and
lastkeyi+1(viewt) = lastkeyi+1(viewt−1)

11 return Xt = (t, viewt)

Figure 3.5: Algorithms for the proof of Proposition 8

Claim 3.3.19. For B := 2T · ln(2T /γ) ·
(
2d+2 + (3d+ 1) · Qcorrupt

)2 · (d+ 1)/γ, the probability of F
in P1i, i.e. any run of the repeat loop in Algorithm 21 exceeding B, is at most γ.

Proof. By Lemma 3.1.3, with gt(x) = (maxcori,t(x), len(x), lastkeyi(view)) and ht(view) = pfxt−1(view)
it holds that for any γ ∈ (0, 1] (thus in particular the γ from the theorem statement)

Pr[ ∀t ∈ [T ] : T rep
t ≤ 2T · ln(2T /γ) · |Y|/γ ] ≥ 1− γ, (3.15)

where T rep
t denotes the number of runs of the repeat loop in the t-th iteration of the for loop, and Y

denotes a set large enough to accommodate the range of any gt. We note

len(view) ≤ Tmax := 2d+2︸︷︷︸
Initial Tree

+Qcorrupt + 1︸ ︷︷ ︸
Query Events

+ d · Qcorrupt︸ ︷︷ ︸
New Key Events

+2 · Qcorrupt · (d− 1)︸ ︷︷ ︸
New ct Events

for any view resulting from a run of an adversary that makes at most Qcorrupt corruption queries. This
means that len(view) can take values up to Tmax = 2d+2+(3d+1)·Qcorrupt. Furthermore, maxcori,t(view)
takes values from 0 to d and lastkeyi(view) takes values from 0 to len(view).

Thus, |Y| ≤
(
2d+2 + (3d+ 1) · Qcorrupt

)2 · (d+ 1).
Plugging this into Eq. (3.15) yields

Pr
[
∀t ∈ [T ] : T rep

t ≤ 2T · ln(2T /γ) · T 2
max · (d+ 1)/γ

]
≥ 1− γ. (3.16)

Thus, we can set
B := 2T · ln(2T /γ) · T 2

max · (d+ 1)/γ

where as before Tmax = 2d+2 + (3d+ 1) · Qcorrupt.
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We further note that by Lemma 3.1.2 instantiated with

ht(views) =pfxt−1(views)

gt(views) =(maxcori,t+1(views), len(views), lastkeyi(views)),

the Xt defined by P1i are identically distributed to Dview
lkh,blkh

. Also by Lemma 3.1.2 instantiated with

ht(views) =pfxt−1(views)

gt(views) =(maxcori+1,t+1(views), len(views), lastkeyi+1(views)),

Xt defined by P1i+1 are identically distributed to Dview
lkh,blkh

.
Since before the occurrence of G in P2i, the sampling of the Xt is equivalent to that of P1i+1, the

Xt up to G are distributed identically to the Xt in P1i+1. It follows that G also fulfills the criteria
Cases 3 and 4 from Line 10.

Let B be chosen according to Claim 3.3.19. Then, the probability of F in P1i is at most γ. We now
consider the probability of F in P2i.

Claim 3.3.20. The probability of F in P2i is the same as the probability of ⊥ ← Dview
i,blkh

.

Proof of Claim 3.3.20. To see this, recall that by Lemma 3.3.16, the conditions for the if in Line 7
in Algorithm 19 for i are equivalent to the condition for the if in Line 3 in Algorithm 22. By the
same argument, the end condition for the repeat loop is equivalent: The condition on len(viewt) is
independent of i and thus the same. By Lemma 3.3.17, if G occurred for Xt, lastkeyi(viewt′) and
lastkeyi+1(viewt′) will be smaller than t+ 1 for any t′ > t. Due to Lemma 3.3.15, a similar property
holds for maxcor.

Putting this together and using Line 10, the claim follows.

Proposition 9. Dview
Td,blkh

is independent of blkh and in particular AdvLKH, Td

SKE,A,d(λ) = 0 for every LKH
adversary A.

Proof of Proposition 9. Recall that blkh is only used when responding to the challenge query, which
by assumption is the last query the adversary makes. Hence, neither the abort probability nor any
of the events in viewT before the very last events (challenge, k) and (guess, bA) depend on blkh. The
latter implies that the values of maxcor and lastkey (which are computed from corruption queries and
ciphertext renewal events) as well as len are independent of blkh for all t. As the resampling procedure
cuts off the tail of the view (including the last two events that may contain information about blkh) when
resampling the views, no information about blkh is carried from viewt−1 to viewt. Furthermore, since
edgesTd

= {0, 1}, the final view viewT does not contain any encryptions of the root key, and the root
key kε is therefore independent of viewT . Thus, A has no advantage in distinguishing kε from a random
independent key sampled by Gen(1λ).

We are now ready to prove the theorem.
Let A be an arbitrary LKH adversary running in time tA. First, C samples i∗ ← [Td]. It will then

simulate the game (i∗−1).1 or i∗ depending on the challenge it gets from its own challenger. To generate
a sample viewT , our IND-CPA adversary C modifies the procedure of Algorithm 19 by embedding an
IND-CPA challenge in the if clause in the repeat loop, see Algorithm 23.

We briefly describe the algorithm. Let x∗ = edgesd,i−1∆edgesd,i be the edge that needs to either be
pebbled or unpebbled in this game hop. The variable β indicates whether the former or the latter is the
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case. The core idea of Algorithm 23 is that it runs Algorithm 19, except that as the edge set it considers
edgesd,i ∪ {x∗}, and when the edge x∗ would be re-sampled during a rewinding to a ctxt event, the
ciphertext is replaced with an IND-CPA challenge, where the permutation of the challenge messages is
chosen depending on whether the edge is to be pebbled or unpebbled in the game hop (i.e. depending
on β), implicitly setting the corresponding encryption key at the lower end of the edge to the challenge
key. This is possible as for an edge to be pebbled or unpebbled, both other edges incident to its lower
vertex need to be pebbled, i.e. both of the ciphertexts sitting on those edges need to have been replaced
by encryptions of ⊥ already, thus revealing nothing about the challenge key. Furthermore, any ‘honest’
encryptions that need to be made with regard to this challenge key can be obtained by calling the LoR
oracle provided by the IND-CPA challenger with two identical messages.

For any x ∈ edgesd,i \ {x∗}, the algorithm C resamples a ciphertext of ⊥ according to the same
criteria as Algorithm 19. C outputs 0 if A succeeds and 1 else.

We have that for bindcpa = 0 and i∗ = i the modified algorithm samples from exactly the same
distribution as Algorithm 19 on input i− 1 in the gray mode (and same blkh ∈ {0, 1}, B ∈ N), and for
bindcpa = 1 and i∗ = i from the same distribution as Algorithm 19 in the plain mode on input i (and
same blkh ∈ {0, 1}, B ∈ N). We obtain for the advantage of C:

AdvIND-CPA
SKE,C (λ) = Pr[bC = bindcpa]−

1

2

=
1

2
· (Pr[bC = 0 | bindcpa = 0] + Pr[bC = 1 | bindcpa = 1]− 1)

=
1

2Td
·
∑

i∈[Td]

(
Pr

[
bC = 0

∣∣∣∣ bindcpa = 0
∧ i∗ = i

]
− Pr

[
bC = 0

∣∣∣∣ bindcpa = 1
∧ i∗ = i

])
=

1

2Td
·
∑

i∈[Td]

(
Pr[out(i−1).1 = 1]− Pr[outi = 1]

)
=

1

2Td
·
∑

i∈[Td]

(
Adv

LKH, (i− 1).1
SKE,A,d (λ)−AdvLKH, i

SKE,A,d(λ)
)
.

By Proposition 8 we have for all i ∈ [Td]

Adv
LKH, (i− 1).1
SKE,A,d (λ)−AdvLKH, i− 1

SKE,A,d (λ) ≥ −γ

and hence we obtain

AdvIND-CPA
SKE,C (λ) =

1

2
· 1

Td
·
∑

i∈[Td]

(
Adv

LKH, (i− 1).1
SKE,A,d (λ)−AdvLKH, i

SKE,A,d(λ)
)

≥ 1

2
· 1

Td
·
∑

i∈[Td]

(
AdvLKH, i− 1

SKE,A,d (λ)−AdvLKH, i
SKE,A,d(λ)− γ

)
≥ 1

2
· 1

Td
·
(
AdvLKHSKE,A,d(λ)−AdvLKH, Td

SKE,A,d(λ)
)
− γ

2
.

Plugging in Proposition 9 yields

AdvIND-CPA
SKE,C (λ) ≥ 1

2
· 1

Td
·AdvLKHSKE,A,d(λ)−

γ

2
.
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Algorithm 23: Variant of Algorithm 19 for sampling from Dview
i∗−1+bindcpa,blkh

given oracle access
to an IND-CPA challenger with challenge bit bindcpa. The functions len,maxcori∗,t, lastkeyi∗ are
described in the proof, B is as in Claim 3.3.19.

1 i∗ ← {1, . . . , Td} // guess which games need to be distinguished

2 blkh ← {0, 1}
3 Initialize ι := 0 // Counter for IND-CPA users

4 y∗∥b∗ := x∗ := edgesd,i∗−1∆edgesd,i∗ , where b∗ ∈ {0, 1} // differing edge index

x∗ = y∗∥b∗
5 β := [x∗ ∈ edgesd,i∗−1] // bit β indicates whether a pebble is added or removed

in i∗th step

6 view0 ← Dview
lkh,blkh

7 T := len(view0) // Length of viewlkh (in entries)

8 t∗ := lastkeyi∗(view0) // Time when last key for x∗ is generated

9 for t := 1 to T do
10 Write viewt−1 = (evt−1,1, . . . , evt−1,T )
11 repeat // Output ⊥ if B repetitions fail for this t
12 Rewind adversary to point t
13 if t = t∗ then
14 ι := ι+ 1 // Update current user index

15 NU() // Embed fresh IND-CPA challenge key

16 end
17 if evt−1,t = (ctxt, x, cx) with x ∈ edgesd,i∗ ∪ {x∗} and maxcori∗,t+1(viewt−1) < |x|

then
// Checks if evt,t defines a ciphertext to be pebbled

18 if x = x∗ then
19 Set k∗β := ky∗ , k∗1−β := ⊥
20 c∗ ← LoR(ι, k0, k1) from IND-CPA challenger // Fresh IND-CPA challenge

ciphertext

21 Set evt,t := (ctxt, x∗, c∗) // Replace cx with c∗ in viewt−1
22 else
23 Sample fresh c⊥x ← Enc(kx,⊥) // Fresh dummy ciphertext

24 Set evt,t := (ctxt, x, c⊥x ) // Replace cx with c⊥x in viewt−1
25 end
26 Resample from point t+ 1 to obtain

viewt = (evt−1,0, . . . , evt−1,t−1, evt,t, evt,t+1, . . . , evt,τ )
27 else
28 Resample from point t to obtain viewt = (evt−1,0, . . . , evt−1,t−1, evt,t, . . . , evt,τ ) but

with the following change: for all t′ > t∗ with evt,t′ = (ctxt, x∗, cx∗) generate
cx∗ ← LoR(ι, ky∗ , ky∗)

29 end

30 until maxcori∗,t+1(viewt) = maxcori∗,t+1(viewt−1) and len(viewt) = len(viewt−1) and
lastkeyi∗(viewt) = lastkeyi∗(viewt−1)

31 end
32 return [outA(viewT ) = blkh]
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For the runtime analysis we see that the for loop is called T times and the repeat loop is called
at most B times. During each run of the repeat loop, the adversary A is called once. This yields the
runtime given in the theorem statement.
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Chapter 4

The Abe-Okamoto Partially Blind
Signature Scheme Revisited

This chapter is based on [KLX22c]. In this chapter, we revisit the Abe-Okamoto Partially Blind Signature
Scheme [AO00].

As the scheme is based on the OR-proof technique, the reduction’s strategy is to use one of the
two OR-proof witnesses to generate signatures, while it embeds a discrete logarithm challenge in the
other branch. It then hopes to extract the other witness using the forking technique, i.e. rewinding the
adversary and responding with different responses to certain hash queries. While the protocol is normally
witness indistinguishable, Abe and Okamoto [AO00] already observed that the concatenation of two
such forking runs often reveals which witness the reduction is using internally. Therefore, they apply a
probability analysis showing that the desired witness can still be extracted with a good probability. As
explained in Section 1.3.1, this probability analysis contains a gap. In this chapter, we rewrite the proof
of security of the Abe-Okamoto scheme and mend the gap. We first give an overview of the scheme in
Section 4.1. In Section 4.2, we do a lot of preliminary work to compute the probability of extracting the
desired witness. We start by describing a wrapper adversary in Section 4.2.1 which allows the reduction
to consider the adversary as a deterministic machine where the wrapper also simulates all oracles to
the adversary. This allows us to argue about the input-output behaviour of the wrapper when run with
the adversary as a subroutine. We then provide some useful definitions related to the interaction of the
wrapper with the adversary in Section 4.2.2. After that, we are ready to start our counting arguments
for calculating the probability. We first count partners and triangles in Section 4.2.3. Then we introduce
the transcript mapping function Φ and prove its relevant properties in Section 4.2.4 before we can also
count the relevant objects in its image in Section 4.2.5. This finally allows us to find the probability of
extracting a witness in Section 4.2.6. We then turn to the main forking-based proof in Section 4.3. As
this proof deals only with adversaries that use a single tag info, we extend the result to multiple tags
using the same strategy as Abe and Okamoto [AO00] in Section 4.4.

4.1 The Abe-Okamoto Partially Blind Signature Scheme

In this section we describe the partially blind signature scheme by Abe and Okamoto [AO00]. It runs
a proof of knowledge that the signer knows either the secret key x or the discrete logarithm of the

67
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so-called tag key z, which is obtained through hashing the tag info. In this way we obtain a witness
indistinguishable scheme: an honest signer does not know dlog z and is forced to use x for issuing
signatures; while the reduction may program the random oracle so that it knows the dlog z and can then
simulate the signer without knowing the secret key x. To an outsider, e.g. an adversary, the two modes
of operation, i.e. whether x or dlog z was used are indistinguishable.

Key Generation. On input public parameters pp = (G,g, q,H∗,H) (where H∗ and H are random oracles
with ranges G and Zq, respectively), KeyGen samples x $← Zq and sets y := gx. It then outputs
(pk, sk) := (y, x).

Signer. Sign = (Sign1,Sign2) behaves as follows:

Sign1: On input info and sk, Sign1 computes the tag key z := H∗(info) and samples u, s, d $← Zq.
It then computes the commitments a := gu,b := gs · zd. It outputs the response (a,b) to
the user and an internal state stSign := (u, s, d).

Sign2: On input e ∈ Zq, stSign = (u, s, d), sk = x, Sign2 computes c := e− d and r := u− cx. It
outputs the response (r, c, s, d) to the user.

User. User = (User1,User2) behaves as follows:

User1: On input pk,m, info,a,b, User1 computes the tag key z := H∗(info) and samples t1, t2,
t3, t4

$← Zq. It then computes α := gt1 ·yt2 ·a and β := gt3 ·zt4 ·b, queries h := H(α,β, z,m)
for the message m it wants to sign, and computes the blinded challenge e := h− t2 − t4. It
outputs e to the signer and an internal state stUser := (t1, t2, t3, t4).

User2: On input pk, (r, c, s, d), stUser = (t1, t2, t3, t4), User1 computes ρ := r + t1, ω := c+ t2,
σ := s+ t3, and δ := d+ t4. It then verifies that ω + δ = H(gρ · yω,gσ · zδ, z,m); if so, it
outputs the signature (ρ, ω, σ, δ). (Otherwise, it outputs ⊥.)

Verification. On input y,m, info, (ρ, ω, σ, δ), Verify computes z := H∗(info). It outputs 1 if ω + δ =
H(gρ · yω,gσ · zδ, z,m) and 0 otherwise.

For a graphic illustration of the scheme, see Figure 4.1

4.2 Computing the Probability for Extracting the ‘Good’ Witness

As mentioned in the introduction, our analysis of the Abe-Okamoto scheme is done in two steps. In
this section, we deal with the case that the adversary U only uses a single tag, i.e., U plays the ℓ-1-info-
OMUFAO game.

4.2.1 The Deterministic OMUF Wrapper

Restricting the Adversary to Making ℓ+ 1 Hash Queries.

Suppose that the adversary U makes ℓ queries to sign2 (henceforth “signing queries”) and Qh queries to
H (henceforth “hash queries”), and uses a single tag info. Below we assume w.l.o.g. that U never makes
the same query to H twice.

We say that a message-signature pair (m, (ρ, ω, σ, δ)) corresponds to an index i ∈ [Qh], or corresponds
to the adversary U’s i-th hash query, if this query was H(yωgρ, zδgσ, z,m). (When the message m is
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Signer User
sk = x pk = y
pk = (y = gx), z = H∗(info) m, info, z = H∗(info)
u, s, d $← Zq

a := gu

b := gs · zd
a,b−−→

t1, t2, t3, t4
$← Zq

α := gt1 · yt2 · a
β := gt3 · yt4 · b

h := H(α,β, z,m)
e := h− t2 − t4

e←−
c := e− d
r := u− cx

c,d,r,s−−−−→
ρ := r + t1
ω := c+ t2
σ := s+ t3
δ := d+ t4

ω + δ
?
= H(gρ · yω,gσ · zδ, z,m)

⇓
sig := (ρ, ω, σ, δ)

Figure 4.1: The Abe-Okamoto scheme

clear from context, we may say that the signature (ρ, ω, σ, δ) corresponds to index i.) We remark that
we can further assume w.l.o.g. that there exist ℓ+ 1 hash queries of U, each of which corresponds to a
distinct message-signature pair in the output of U (in particular, Qh ≥ ℓ+ 1). This is because otherwise
one of the following must hold (assuming that U succeeds):

• There exists a pair (m, (ω, ρ, δ, σ)) that does not correspond to any hash query, i.e., H(yωgρ, zδgσ,
z,m) has never been queried. In this case, U can be turned into another adversary U′ that runs the
code of U and additionally makes such a hash query; obviously U and U′ have the same advantage.

• There exist two distinct pairs (m1, (ω1, ρ1, δ1, σ1)), (m2, (ω2, ρ2, δ2, σ2)) that correspond to the
same hash query. In this case, we have that m1 = m2, y

ω1gρ1 = yω2gρ2 , and zδ1gσ1 = zδ2gσ2 .
Then a reduction to the discrete logarithm problem can easily compute both x and w as x =
(ω1 − ω2)

−1 · (ρ2 − ρ2) and w = (δ1 − δ2)
−1 · (σ2 − σ1).

It is not hard to see that any adversary U can be turned into another adversary that makes exactly
ℓ+ 1 hash queries, with a factor of

(
Qh

ℓ+1

)
loss in advantage. Formally, we define an adversary M := MU

that works as follows. M, on input of a public key pk, chooses a random subset I of [Qh] with |I| = ℓ+1,
and invokes U(pk). For U’s i-th query to H, if i /∈ I, M responds with a random integer in Zq. For
any other query (including queries to signing oracles, queries to H∗, and the i-th query to H for i ∈ I),
M forwards it to the corresponding oracle of M’s own challenger, and forwards the response back to
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U. When U outputs a set of ℓ + 1 message-signature pairs, M checks if every pair (m, (ρ, ω, σ, δ))
corresponds to some index i ∈ I, that is, U’s i-th hash query was H(yωgρ, zδgσ, z,m). If so, M copies
U’s output (and outputs ⊥ otherwise).

Lemma 4.2.1. For M described above, we have that

Advℓ-1-info-OMUFAO

M ≥
Advℓ-1-info-OMUFAO

U (
Qh

ℓ+1

) .

Proof. It is straightforward that M simulates the OMUF game to U perfectly. Assume that U succeeds.
By our assumption on U, there is a set of indices I∗ ⊂ [Qh] corresponding to the message-signature
pairs in U’s output, with |I∗| = ℓ+ 1. If I∗ = I, then M also succeeds. Since I is a random subset of
size ℓ+ 1 of [Qh], the probability that I∗ = I is 1

(Qh
ℓ+1)

. The lemma follows.

The lemma above implies that it is sufficient to consider an adversary that makes exactly ℓ + 1
(distinct) hash queries, since an upper bound of the adversary’s advantage in this specific case immediately
translates to such an upper bound in the general case. Below we simply assume that the adversary makes
ℓ+ 1 hash queries.

The Deterministic Wrapper.

For any adversary M that makes exactly ℓ+ 1 distinct hash queries, we define a deterministic wrapper
A that, given the witness and random coin tosses for one side, simulates the view of M. The wrapper
uses either the y-side witness (i.e., the secret key) x or the z-side witness w = dlog z to respond to
sign2 queries, and simulates the other side of the OR-proof using fixed values. We begin with the formal
definition of an instance:

Definition 4.2.2 (Instances). For the deterministic wrapper simulating the OMUF-game to the adversary
we define two types of instances I. A y-side (a.k.a. honest) instance consists of the following components:

b = 0: bit indicating that the secret key x will be used for simulation

x: the secret key, also referred to as the y-side witness

z: the tag key, to be returned by oracle H∗ for requested info

di, si: simulator choices for z-side part corresponding to the i-th signing session

ui: discrete logarithm of the y-side commitment ai in the i-th signing session

A z-side instance consists of the following components:

b = 1: bit indicating that the tag witness w will be used for simulation

y: the public key

w: the discrete logarithm of the tag key z as above

ci, ri: simulator choices for y-side part corresponding to the i-th signing session

vi: discrete logarithm of the z-side commitment bi in the i-th signing session
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Let
−→
h be the vector of responses returned by random oracle H (so

∣∣∣−→h ∣∣∣ = ℓ + 1), rand be the

randomness used by the adversary M, and info be the tag used in the OMUF game. We define a

deterministic wrapper A := AM
info

that runs on (I, rand,
−→
h ) as shown in Figure 4.2. The wrapper allows

us to argue about which (I, rand,
−→
h ) tuples cause the adversary to succeed.

A has two simulation modes. For b = 0, it runs the honest signer’s algorithm to simulate both sign1
and sign2 oracle queries; for H∗ queries, it responds with z if the input is info and ⊥ for all other inputs.
In mode b = 1, A knows w and not x. It therefore runs the so-called z-side signer (see Figure 4.3), which
is the honest signer’s algorithm except that w is treated as the secret key. A responds to queries to H∗

with gw for info and ⊥ otherwise. In both modes, A responds to queries to H using entries in the hash

vector
−→
h . Finally, upon receiving M’s output message-signature pairs, A checks if they are all valid, and

if so, A copies M’s output (and outputs ⊥ otherwise).
It is easy to see that

tA = tM +O(ℓ) = tU +O(ℓ) + O(Qh
2) = tU +O(ℓ) + O(Qh

2),

where the term O(ℓ) comes from verifying ℓ + 1 signatures, and O(Qh
2) comes from identifying the

hash indices that correspond to signatures.

The Set of Successful Tuples.

Let
Succ := {(I, rand,

−→
h )|A(I, rand,

−→
h ) ̸= ⊥}

be the set of all “successful” input tuples to the wrapper A. For a pair of instance and randomness
I, rand, it is also useful to define SuccI,rand as the set of successful input tuples with instance I and
randomness rand, i.e.,

SuccI,rand :=

{
(I′, rand′,

−→
h ) ∈ Succ

∣∣∣∣ I′ = I
rand′ = rand

}
.

In the following we further denote by I the set of all possible instances, by R the set of all possible
randomness of A, and by ϵ the success probability of A, i.e.,

ϵ :=
|Succ|∣∣I ×R× Zℓ+1

q

∣∣
We show in Lemma 4.2.21 below (in Section 4.2.4) that the simulation using the z-side witness is

perfectly indistinguishable from the real execution where the y-side witness is used (this is called the
witness indistinguishability of the scheme), i.e., A simulates the OMUF game to M perfectly. Furthermore,
if M succeeds, then so does A, since A copies M’s output in this case (see lines 10–11 of Figure 4.2).
Therefore,

ϵ = Advℓ-1-info-OMUFAO

M .

4.2.2 Basic Definitions

We first define some concepts related to the wrapper A’s input tuple (I, rand,
−→
h ), that will be used

throughout the security proof.
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A(I, rand,
−→
h )

00 parse b from I
01 if b = 0
02 parse (b, x, z,

−→
d ,−→s ,−→u ) := I

03 pk := gx

04 else
05 parse (b,y, w,−→c ,−→r ,−→v ) := I
06 pk := y
07 sid := 0
08 j := 0
09 (mi, (ρi, ωi, σi, δi))

ℓ+1
i=1 := Msign1,sign2,H,H

∗
(pk; rand)

10 if ∀i : Verify(pk,mi, (ρi, ωi, σi, δi))
11 return (mi, (ρi, ωi, σi, δi))

ℓ+1
i=1

12 else
13 return ⊥
H(ξ)
14 j++
15 return hj

H∗(info)

16 if info = info
17 if b = 0 return z
18 else return gw

19 else return ⊥

sign1(info)

20 if info = info
21 sid++
22 open(sid) := true

23 if b = 0
24 asid := gusid

25 bsid := gssid · zdsid

26 else
27 asid := grsid · ycsid

28 bsid := gvsid

29 return (sid,asid,bsid)
30 else return ⊥
sign2(sid, esid)
31 if open(sid)
32 if b = 0
33 csid := esid − dsid
34 rsid := usid − csid · x
35 else
36 dsid := esid − csid
37 ssid := vsid − dsid · w
38 else
39 return ⊥
40 open(sid) := false

41 return (csid, rsid, dsid, ssid)

Figure 4.2: Wrapper A that simulates the OMUF game to the adversary M
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Transcripts.

We begin with the definition of the query transcript, which consists of the adversary’s signing queries:

Definition 4.2.3 (Query Transcript). Consider the wrapper A running on input tuple (I, rand,
−→
h ). The

query transcript, denoted −→e (I, rand,
−→
h ), is the vector of queries esid made to the sign2 oracle (simulated

by A) by the adversary M, ordered by sid.

Next, we define (full) interaction transcripts between adversary M and wrapper A. These contain, in

addition to −→e (I, rand,
−→
h ), also M’s sign1 queries and the signatures from the output of M. This will be

useful to argue about A’s behavior on different inputs (I, rand,
−→
h ). Looking ahead, we will see that it is

possible to deterministically transform (I, rand,
−→
h ) into a dual input Φ

rand,
−→
h
(I, rand,

−→
h ) that results in

the same behavior as (I, rand,
−→
h ) (i.e., produces the same full transcript as (I, rand,

−→
h )), but inverts

the type of the witness I from y-side to z-side (or vice-versa).

Definition 4.2.4 (Full Transcripts). Consider the wrapper A running on input tuple (I, rand,
−→
h ). We

denote by tr(I, rand,
−→
h ) the transcript produced between A and the adversary M, i.e., all messages sent

between the user (played by M) and the signer (played by A). Concretely,

tr(I, rand,
−→
h ) =

(
info, (−→a ,

−→
b ),−→e , (−→c ,−→r ,

−→
d ,−→s ), sig1, . . . sigℓ+1

)
,

where sig1, . . . , sigℓ+1 are the signatures output by M. (If M aborts at any point during the protocol or
outputs fewer than ℓ+ 1 signatures, we consider any undefined entry to be ⊥.)

Forking, Partners, and Triangles.

We next define what it means for two input tuples to fork successfully — this corresponds to all cases
where the reduction would be able to compute at least one of the two witnesses from the resulting
signatures. However, without further work, the witness that can be computed might be the one that the
reduction already knows.

Definition 4.2.5 (Successful forking). We say two successful input tuples (I, rand,
−→
h ), (I, rand,

−→
h ′) ∈

Succ fork from each other at index i ∈ [ℓ+ 1] if
−→
h [i−1] =

−→
h ′[i−1] but hi ̸= hi. We denote the set of

hash vector pairs (
−→
h ,
−→
h ′) such that (I, rand,

−→
h ), (I, rand,

−→
h ′) fork at index i as Fi(I, rand).

We now define partners, which will play a key role in our analysis. Informally, two tuples (I, rand,
−→
h )

and (I, rand,
−→
h ′) are partners at some index i if they fork from this index and produce the same query

transcript (but not necessarily the same full transcript).

Definition 4.2.6 (Partners). We say two (successful) tuples (I, rand,
−→
h ), (I, rand,

−→
h ′) are partners at

index i ∈ [ℓ+ 1] if the followings hold:

• (I, rand,
−→
h ) and (I, rand,

−→
h ′) fork at index i

• −→e (I, rand,
−→
h ) = −→e (I, rand,

−→
h ′)
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We denote the set of (
−→
h ,
−→
h ′) such that (I, rand,

−→
h ) and (I, rand,

−→
h ′) are partners at index i by

prti(I, rand). We further denote by PI,rand the following set:

PI,rand =
{
(I, rand,

−→
h ) ∈ SuccI,rand

∣∣∣∃−→h ′, i ∈ [ℓ+ 1] : (
−→
h ,
−→
h ′) ∈ prti(I, rand)

}
We define triangles in order to extend the nice properties of partners to more general forking tuples.

Informally, a triangle consists of three vectors
−→
h ,
−→
h′ ,
−→
h′′ which all fork from each other at the same index,

and also have the property that
−→
h and

−→
h′ are partners at this index. This way, it is natural to view these

vectors as corners of the triangle and any pair of two vectors as the sides.

Definition 4.2.7 (Triangles). A triangle at index i ∈ [ℓ+ 1] with respect to I, rand is a tuple of three
(successful) tuples in the following set:

△i(I, rand) =


((I, rand,

−→
h ),

(I, rand,
−→
h ′),

(I, rand,
−→
h ′′))

∣∣∣∣∣∣∣
(
−→
h ,
−→
h ′) ∈ prti(I, rand)

(
−→
h ,
−→
h ′′) ∈ Fi(I, rand)

(
−→
h ′,
−→
h ′′) ∈ Fi(I, rand)


For a triangle ((I, rand,

−→
h ), (I, rand,

−→
h ′), (I, rand,

−→
h ′′)) ∈ △i(I, rand), we call the pair of tuples

((I, rand,
−→
h ), (I, rand,

−→
h ′)) the base, and ((I, rand,

−→
h ), (I, rand,

−→
h ′′)) and ((I, rand,

−→
h ′), (I, rand,

−→
h ′′))

the sides. We further refer to the tuples (I, rand,
−→
h ), (I, rand,

−→
h ′), (I, rand,

−→
h ′′) as corners, where the

two corners incident to the base are called base corners, and the third corner is called the top. We will

sometimes write (
−→
h ,
−→
h ′,
−→
h ′′) ∈ △i(I, rand) for compactness.

Maximum Branching Index and Set.

In the following we define two important characteristics of partner tuples. We begin by defining the

maximum branching index, which is the index at which a partner tuple (I, rand,
−→
h ) ∈ PI,rand has the

most partners.

Definition 4.2.8 (Maximum Branching Index). Fix a pair I, rand. The maximum branching index of a

partner tuple (I, rand,
−→
h ) ∈ PI,rand is the index at which (I, rand,

−→
h ) has the most partners, i.e.,

Brmax(I, rand,
−→
h ) = argmaxi∈[ℓ+1]

∣∣∣{−→h ′∣∣∣(−→h ,
−→
h ′) ∈ prti(I, rand)

}∣∣∣ .
In case of ties, we pick the lowest such index.

The maximum branching index naturally defines a partition of any non-empty set of partnered tuples
PI,rand, where the i-th set of the partition contains all tuples with maximum branching index i. We
define the maximum branching set as the largest part of this partition, i.e., the largest subset of tuples
that share a common maximum branching index.

Definition 4.2.9 (Maximum Branching Set). For a pair I, rand, consider the partition of partner tuples
according to their maximal branching indices:

Bi(I, rand) =
{
(I, rand,

−→
h )
∣∣∣Brmax(I, rand,

−→
h ) = i

}
.
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The maximum branching set of I, rand is defined as the largest set among them, i.e.,

Bmax(I, rand) = Bimax(I,rand)(I, rand),

where

imax(I, rand) = argmaxi∈[ℓ+1] |Bi(I, rand)| .

In case of ties, we pick the lowest such index.

Note in particular that B
Brmax(I,rand,

−→
h )
(I, rand) (henceforth BBrmax

(I, rand,
−→
h ) for simplicity) is

the set of all tuples (I, rand,
−→
h ′) which have the same maximum branching index as (I, rand,

−→
h ) (so

(I, rand,
−→
h ) ∈ BBrmax(I, rand,

−→
h )). We define the heavy row of the set of successful tuples Succ as

HR(Succ) :=
{
(I, rand,

−→
h ) ∈ Succ

∣∣∣|SuccI,rand| ≥ ϵ

2
· qℓ+1

}
By Lemma 2.6.3, |HR(Succ)| ≥ 1

2 |Succ|.
In the following we define a subset P ⊂ HR(Succ) of “partner tuples” which have a partner at some

index. We also define a “good” subset PG of P and its “bad” complement PB . Intuitively, PG consists

of those tuples (I, rand,
−→
h ) in P which have many partnering tuples at at least one index, i.e., for which

BBrmax(I, rand,
−→
h ) is large (relative to the number of all tuples (I, rand, ·) in P ).

Definition 4.2.10 (Partner Tuples). We call (I, rand,
−→
h ) ∈ HR(Succ) a partner tuple if

−→
h has a partner

with respect to I, rand (at any index i ∈ [ℓ+ 1]), i.e., if (I, rand,
−→
h ) ∈ P where

P =
{
(I, rand,

−→
h ) ∈ HR(Succ)

∣∣∣(I, rand,−→h ) ∈ PI,rand

}
.

We further define the set of good partner tuples as

PG =

{
(I, rand,

−→
h ) ∈ P

∣∣∣∣ ∣∣∣BBrmax(I,rand,
−→
h )

∣∣∣ ≥ 1

(ℓ+ 1)3
|P ∩ PI,rand|

}
.

The set of bad partner tuples is defined as PB = P \ PG.

Finally, we introduce the notion of S-suffixes (at some index j). For a successful tuple (I, rand,
−→
h ) ∈

S ⊂ SuccI,rand we consider all hash vectors that share a j-prefix (i.e., up to index j − 1) with
−→
h and

also lie in S. We define the set Γj,S(I, rand,
−→
h ) of its S-suffixes at index j as the set of all the j-th

entries h∗ of such vectors.

Definition 4.2.11 (S-Suffixes). Fix I, rand and some S ⊂ SuccI,rand. For a hash vector
−→
h with

(I, rand,
−→
h ) ∈ S and all j ∈ [ℓ+ 1], we define its set of S-suffixes at index j as

Γj,S(I, rand,
−→
h ) :=

h∗

∣∣∣∣∣∣∣∃
−→
h ′ :

(I, rand,
−→
h ′) ∈ S

−→
h ′[j−1] =

−→
h [j−1]

h′j = h∗


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4.2.3 Counting Partners and Triangles

Having defined our basic objects of interest, we now move to lower bounding their numbers. We start by
considering the sizes of sets P and PG.

The following lemma asserts that if the set SuccI,rand is sufficiently large for some fixed I, rand (i.e.,

many different vectors
−→
h lead to success together with I, rand), then the set PI,rand of tuples (I, rand,

−→
h )

that have some partner (I, rand,
−→
h ′), is large.

Lemma 4.2.12. For I, rand such that |SuccI,rand| > qℓ, there exist at least |SuccI,rand| − qℓ + 1 hash

vectors
−→
h such that (I, rand,

−→
h ) ∈ PI,rand.

Proof. There are at most qℓ possible query transcripts. Thus, by pigeon hole-principle, for |SuccI,rand| > qℓ

there can be at most qℓ − 1 hash vectors that do not have a partner. This yields the statement.

We have proven above that the number of partner tuples with respect to a sufficiently good pair

I, rand (i.e., one for which many
−→
h lead to success) is large. The following simple corollaries combine

the above with the properties of HR(Succ) to ensure that the set P of heavy-row partner tuples (i.e.,
over all pairs I, rand ∈ HR(Succ)) is also large.

Corollary 4.2.13. For I, rand such that ∃
−→
h : (I, rand,

−→
h ) ∈ HR(Succ) and ϵ ≥ 4

q , it holds that

|PI,rand| ≥ 1
2 |SuccI,rand|.

Corollary 4.2.14. For ϵ as in Corollary 4.2.13, |P | ≥ 1
4 |Succ| .

Proof. By Corollary 4.2.13, |PI,rand| ≥ 1
2 |SuccI,rand| for I, rand with (I, rand,

−→
h ) ∈ HR(Succ) for some

−→
h . Summing over all such (I, rand) pairs yields that |P | ≥ 1

2 |HR(Succ)|. As |HR(Succ)| ≥ 1
2 |Succ|,

the statement follows.

Next, we also show that the subset PG of good tuples is large within P .

Lemma 4.2.15 (Many partner tuples are good).

|PG| ≥
(
1− 1

(ℓ+ 1)2

)
|P | .

Proof. Fix I, rand such that PI,rand∩P ̸= ∅. For all i ∈ [ℓ+1], let Bi = Bi(I, rand) (as in Definition 4.2.9)
and α = 1

(ℓ+1)2 . We note here that P∩PI,rand = PI,rand for I, rand as above and thus the Bi are a partition

of P ∩PI,rand. By Lemma 2.6.4, there exists a subset G(I, rand) of size at least
(
1− 1

(ℓ+1)2

)
|P ∩ PI,rand|,

such that all tuples (I, rand,
−→
h ) ∈ G(I, rand) lie in a set Bi of size at least |Bi| ≥ 1

(ℓ+1)3 |P ∩ PI,rand|,
where by definition i = Brmax(I, rand,

−→
h ). By definition of PG, (I, rand,

−→
h ) ∈ PG. Since this holds for

any (I, rand,
−→
h ) ∈ G(I, rand), we have that G(I, rand) ⊂ PG. Hence,⋃

I,rand:
P∩PI,rand ̸=∅

G(I, rand) ⊂ PG,
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and since the sets G(I, rand) ⊂ PI,rand are disjoint for distinct I, rand,

|PG| ≥
∑

I,rand:
P∩PI,rand ̸=∅

|G(I, rand)|

≥
∑

I,rand:
P∩PI,rand ̸=∅

(
1− 1

(ℓ+ 1)2

)
|P ∩ PI,rand|

=

(
1− 1

(ℓ+ 1)2

)
|P | .

We now want to argue that for sufficiently large sets of vectors, there must be a sufficiently large set
of possible suffixes for many vectors within the set. In particular, this will help us find triangles.

Lemma 4.2.16 (Lower-bounding the amount of possible suffixes). Fix I, rand and ζ ∈ [0, 1]. Let

H ⊂ Zℓ+1
q with |H| ≥ ζ · qℓ+1, such that for all

−→
h ∈ H, (I, rand,

−→
h ) ∈ S ⊂ Succ for some set S ⊃ H.

Then for any constant c ∈ (0, 1) the following holds: for each index j ∈ [ℓ+ 1], there exists a subset

Hj ⊂ H with |Hj | > c · |H|, such that for any
−→
h ∈ Hj ,∣∣∣Γj,S(I, rand,
−→
h )
∣∣∣ ≥ (1− c) · ζ · q

Proof. Assume toward a contradiction that for some c ∈ (0, 1) and index j ∈ [ℓ+ 1], no such Hj ⊂ H
exists. This can be rephrased as: there exists a subset F ⊂ H such that |F | > (1− c) · |H| and for all
−→
h ∈ F ,

∣∣∣Γj,S(I, rand,
−→
h )
∣∣∣ < (1 − c) · ζ · q. For any

−→
h ∈ F , consider all successful vectors

−→
h ′ with

−→
h ′[j−1] =

−→
h [j−1]. The j-th entry of

−→
h ′ takes

∣∣∣Γj,S(I, rand,
−→
h )
∣∣∣ possible values, and all of the remaining

ℓ− j + 1 entries take (up to) q possible values. Therefore,∣∣∣∣∣
{
−→
h ′ ∈ Zq

ℓ+1

∣∣∣∣∣ (I, rand,
−→
h ′) ∈ Succ

−→
h ′[j−1] =

−→
h [j−1]

}∣∣∣∣∣ ≤ ∣∣∣Γj,S(I, rand,
−→
h )
∣∣∣ · qℓ−j+1 < (1− c) · ζ · qℓ−j+2

Then we have

|F | ≤
∑
−→
h [j−1]

s.t.
−→
h∈F

∣∣∣∣∣
{
−→
h ′ ∈ Zq

ℓ+1

∣∣∣∣∣ (I, rand,
−→
h ′) ∈ Succ

−→
h ′[j−1] =

−→
h [j−1]

}∣∣∣∣∣
≤ qj−1 · max−→

h∈F

∣∣∣∣∣
{
−→
h ′ ∈ Zq

ℓ+1

∣∣∣∣∣ (I, rand,
−→
h ′) ∈ Succ

−→
h ′[j−1] =

−→
h [j−1]

}∣∣∣∣∣
< (1− c) · ζ · q(ℓ+1) ≤ (1− c) · |H| ,

which is a contradiction to the assumption that |F | > (1− c) · |H|.

We apply the lower bound for suffixes from above to lower bound the number of triangle base corners
that lie within PG. We begin by proving the following technical lemma.
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Lemma 4.2.17 (Many Good Partner Tuples are Triangle Base Corners). Assume ϵ ≥ 72(ℓ+1)3

q and

fix I, rand such that (I, rand,
−→
h ) ∈ HR(Succ) for some

−→
h . Then at least 5

6 of tuples in PG ∩ PI,rand

are triangle base corners at index Brmax(I, rand,
−→
h ). That is, there exists a subset T ⊂ PG ∩ PI,rand

with |T | ≥ 5
6 |PG ∩ PI,rand| such that all tuples (I, rand,

−→
h ′) ∈ T are base corners of a triangle at index

Brmax(I, rand,
−→
h ).

Proof. Take any I, rand as in the lemma statement. Then

|P ∩ PI,rand| ≥
1

2
|SuccI,rand| ≥

ϵ

4
· qℓ+1,

where the first inequality is due to Corollary 4.2.13, and the second inequality is due to the definition of
HR(Succ). (Corollary 4.2.13 requires that ϵ ≥ 4

q , which is implied by our assumption on ϵ here.)

Consider any index ν for which Bν(I, rand) ∩ PG ̸= ∅. Then, by definition of PG it holds that

|Bν(I, rand)| ≥
1

(ℓ+ 1)3
|P ∩ PI,rand| ≥

ϵ

4(ℓ+ 1)3
· qℓ+1.

Applying Lemma 4.2.16 with H = S = Bν(I, rand), ζ = ϵ
4(ℓ+1)3 , and c = 5

6 , we get: for any index

j ∈ [ℓ+ 1], there exists a subset Tj(I, rand) ⊂ Bν(I, rand) with |Tj(I, rand)| ≥ 5
6 |Bν | such that for all

(I, rand,
−→
h ) ∈ Tj(I, rand),∣∣∣Γj,Bν (I, rand,

−→
h )
∣∣∣ ≥ (1− 5

6

)
· ϵ

4(ℓ+ 1)3
· q ≥ 3.

The set Tν(I, rand) yields a set of triangle corners at index ν, which can be seen as follows. First, for

any tuple (I, rand,
−→
h ) ∈ Tν(I, rand), there is a partner tuple (I, rand,

−→
h ′) at index ν (by definition of

Bν(I, rand)). Hence, hj , h
′
j ∈ Γj,Bν

(I, rand,
−→
h ) = Γj,Bν

(I, rand,
−→
h ′). As

∣∣∣Γj,Bν
(I, rand,

−→
h )
∣∣∣ ≥ 3, there

exists at least one further entry h′′j which lies in Γj,Bν (I, rand,
−→
h ). Thus, (I, rand,

−→
h ), (I, rand,

−→
h ′),

(I, rand,
−→
h ′′) mutually fork from each other at index ν. Moreover, the first two among them are partners

and at least one of them lies in Tν(I, rand). Hence, the three of them satisfy the definition of a triangle
at index ν and at least one of the triangle base corners lies in Tν(I, rand). Finally, by definition of the

set Bν(I, rand), Brmax(I, rand,
−→
h ) = ν as required.

Now define
T :=

⋃
ν : Bν(I,rand)∩PG ̸=∅

Tν(I, rand).

Using that the sets Bν(I, rand) s.t. Bν(I, rand) ∩ PG form a partition of PI,rand ∩ PG

|T | =

∣∣∣∣∣∣
⋃

ν : Bν(I,rand)∩PG ̸=∅

Tν

∣∣∣∣∣∣ =
∑

ν : Bν(I,rand)∩PG ̸=∅

|Tν |

≥
∑

ν : Bν(I,rand)∩PG ̸=∅

5

6
|Bν(I, rand)| ≥

5

6
|PI,rand ∩ PG| ,

where the second equality follows from disjointness of the sets Tν . This yields the statement of the
Lemma.
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Corollary 4.2.18. Assume ϵ as in Lemma 4.2.17. Then at least 5
6 of all tuples in PG are triangle base

corners.

Proof. Consider I, rand such that (I, rand,
−→
h ) ∈ PG for some

−→
h . By definition, PG ⊂ HR(Succ), so

(I, rand,
−→
h ) ∈ HR(Succ) for some

−→
h . By Lemma 4.2.17, at least 5

6 of vectors in PG ∩ SuccI,rand are
triangle base corners. Summing over all such (I, rand) pairs yields the result.

Lemma 4.2.19. If (I, rand,
−→
h ),(I, rand,

−→
h ′) are a triangle base at index i, and (I, rand,

−→
h ′′) is a partner

of (I, rand,
−→
h ) at index i, then (I, rand,

−→
h ), (I, rand,

−→
h ′′) are also a triangle base at index i.

Proof. We distinguish between two cases:

Case h′i = h′′i : Let
−→
h ′′′ be such that (I, rand,

−→
h ), (I, rand,

−→
h ′), (I, rand,

−→
h ′′′) form a triangle at index

i (such
−→
h ′′′ must exist because (I, rand,

−→
h ), (I, rand,

−→
h ′) form a triangle base at index i). Then

(I, rand,
−→
h ), (I, rand,

−→
h ′′), (I, rand,

−→
h ′′′) also form a triangle at index i.

Case h′i ̸= h′′i : in this case (I, rand,
−→
h ), (I, rand,

−→
h ′′), (I, rand,

−→
h ′) form a triangle at index i where

(I, rand,
−→
h ′) takes the role of the triangle top.

4.2.4 The Mapping Φ

For any successful tuple (I, rand,
−→
h ), we now define the mapping Φ

rand,
−→
h

and prove its transcript

preserving properties in Lemma 4.2.21. We remark that this mapping is not efficiently computable and
will merely serve as a technical tool in our analysis.

Definition 4.2.20 (Mapping instances via transcript). For (I, rand,
−→
h ) ∈ Succ, we define Φ

rand,
−→
h
(I) as

follows. For a y-side instance I = (1, w,y,−→c ,−→r ,−→u ), Φ
rand,

−→
h
(I) is a z-side instance that consists of

b = 0 x = dlogy z = gw ∀i ∈ [ℓ] : di = ei − ci

∀i ∈ [ℓ] : si = ui − di · w ∀i ∈ [ℓ] : vi = ci · x+ ri

For a z-side instance I = (0, x, z, d, s, v), Φ
rand,

−→
h
(I) is a y-side instance that consists of

b = 1 w = dlog z y = gx ∀i ∈ [ℓ] : ci = ei − di

∀i ∈ [ℓ] : ri = vi − ci · x ∀i ∈ [ℓ] : ui = di · w + si

(where −→e is the query vector produced by rand,
−→
h using instance I). We will sometimes use the notation

Φ−→e instead of Φ
rand,

−→
h

for a given (I, rand,
−→
h ). We also define Φ(I, rand,

−→
h ) = (Φ

rand,
−→
h
(I), rand,

−→
h ).

Lemma 4.2.21 (Φ
rand,

−→
h
is a bijection that preserves transcripts). Fix rand,

−→
h . For all tuples (I, rand,

−→
h )

∈ Succ, Φ
rand,

−→
h

is a self-inverse bijection and

tr(I, rand,
−→
h ) = tr(Φ

rand,
−→
h
(I), rand,

−→
h )
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Proof. We show the lemma for a z-side instance I = (1, w,y,−→c ,−→r ,−→u ); the argument for y-side
instances works analogously.

Let (0, x, z,
−→
d ,−→s ,−→v ) = Φ

rand,
−→
h
(I) and −→e be the vector of queries to Sign2 made by the adversary

U on input (I, rand,
−→
h ). We first show that I and Φ

rand,
−→
h
(I) produce the same transcript. The bit b is

not used actively in the simulation and thus does not affect the transcript. As the public key y = gx is
the same in both instances from the view of U, and U is running on the same randomness rand, the info
used will be the same for both instances. The tag key z = gw is the same in both instances. We now
look at a single session of the protocol. For any i it holds that: The commitments ai,bi are computed
as ai = gvi = gri+c·x = gri · yci and bi = gsi · zdi = gui−di·w · gdi·w = gui which are the same group
elements for both instances. We now use induction on the signing sessions in the order of the Sign2
requests. Let therefore ik be the session index of the kth closed session. As the instances provide the
same response to Sign1, the view up until the first query to Sign2 is identical for U and thus it makes
the same first Sign2 query in both runs. Analogously, if the transcript is identical up to the kth request
to Sign2, the kth query eik will also be identical. We now argue that for the kth closed session, if the
views have been identical before, the kth response to Sign2 is also identical. Thus, U makes the same
query eik to Sign2. As dik = eik − cik , it holds that c

′
ik

= eik − (eik − cik) = cik , where c′ik is the cik
computed in the run with Φ

rand,
−→
h
(I). Thus r′ik = vik − cik · x = (rik + cik · x)− cik · x = rik where r′ik

is the rik computed in the run with Φ
rand,

−→
h
(I). Thus, the response rik , cik , sik , dik of the oracle Sign2 is

identical. As the view as the adversary is identical for the entire run of the protocol, it must also output
the same signatures in both runs. Thus, the two transcripts are identical.

We thus use −→e to denote the queries to Sign2 in both runs. We now show that Φ
rand,

−→
h
is a self-inverse

bijection. For an instance I, we show that Φ
rand,

−→
h
(Φ

rand,
−→
h
(I)) = I (denote with ’ the components of

Φ
rand,

−→
h
(Φ

rand,
−→
h
(I))):

• w′ = dlog z = dlog gw = w

• y′ = gx = y

• ∀i ∈ [ℓ] : c′i = ei − di = ei − (ei − ci) = ci

• ∀i ∈ [ℓ] : r′i = vi − ci · x = (ci · x+ ri)− ci · x = ri

• ∀i ∈ [ℓ] : u′i = di · w + si = (ei − ci) · w + [ui − (ei − ci) · w] = ui

Thus, Φ
rand,

−→
h

is a bijection and its own inverse.

The lemma above shows that the Abe-Okamoto scheme is witness indistinguishable, i.e., a simulator
that uses the z-side witness to sign (see Figure 4.3) creates a view identical to the real view to the
adversary. In particular, this implies that the wrapper A simulates the ℓ-OMUF game to the adversary M
perfectly.

Corollary 4.2.22. (I, rand,
−→
h ) ∈ Succ⇔ (Φ

rand,
−→
h
(I), rand,

−→
h ) ∈ Succ.

We look into the effect of the transcript mapping function on partner tuples. We have proven that

Φ
rand,

−→
h
preserves the transcript (and hence success) of (I, rand,

−→
h ). However, note that this does not (by

itself) imply that partnering tuples (I, rand,
−→
h ) and (I, rand,

−→
h ′) result in partnering tuples (Φ

rand,
−→
h
(I),

rand,
−→
h ) and (Φ

rand,
−→
h
(I), rand,

−→
h ′), or (Φ

rand,
−→
h ′(I), rand,

−→
h ) and (Φ

rand,
−→
h ′(I), rand,

−→
h ′), respectively.

Lemma 4.2.23 asserts that this is indeed the case.
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Signer User
pk = (y) pk = y
z = H∗(info) = gw m, info, z = H∗(info)
c, r, v $← Zq

a := gryc

b := gv

a,b−−→
t1, t2, t3, t4

$← Zq

α := gt1 · yt2 · a
β := gt3 · yt4 · b

h := H(α,β, z,m)
e := h− t2 − t4

e←−
d := e− c
s := v − dw

c,d,r,s−−−−→
ρ := r + t1
ω := c+ t2
σ := s+ t3
δ := d+ t4

ω + δ
?
= H(gρ · yω,gσ · zδ, z,m)

⇓
sig := (ρ, ω, σ, δ)

Figure 4.3: How to use the z-side witness to sign in the Abe-Okamoto scheme

Lemma 4.2.23 (Partners stay partners through Φ). For all I, rand, and vectors
−→
h ,
−→
h ′,

(
−→
h ,
−→
h ′) ∈ prti(I, rand)⇔ (

−→
h ,
−→
h ′) ∈ prti(Φrand,

−→
h
(I), rand)

⇔ (
−→
h ,
−→
h ′) ∈ prti(Φrand,

−→
h ′(I), rand)

Proof. Suppose (
−→
h ,
−→
h ′) ∈ prti(I, rand) ⊂ Fi(I, rand); we have that (I, rand,

−→
h ), (I, rand,

−→
h ′) ∈ Succ.

Then by Corollary 4.2.22, (Φ
rand,

−→
h
(I), rand,

−→
h ), (Φ

rand,
−→
h ′(I), rand,

−→
h ′) ∈ Succ.

Furthermore, as
−→
h ,
−→
h ′ are partners for I, rand, they produce the same query vector −→e (I, rand,

−→
h ) =

−→e (I, rand,
−→
h ′). Thus Φ

rand,
−→
h
(I) = Φ−→e (I) = Φ

rand,
−→
h ′(I). Using this fact, we obtain

−→e (Φ
rand,

−→
h
(I), rand,

−→
h ) = −→e (I, rand,

−→
h ) = −→e (I, rand,

−→
h ′)

= −→e (Φ
rand,

−→
h ′(I), rand,

−→
h ′) = −→e (Φ

rand,
−→
h
(I), rand,

−→
h ′)

as follows. The first equality follows because −→e (I, rand,
−→
h ) is contained in tr(I, rand,

−→
h ) and by

Lemma 4.2.21, we have that tr(I, rand,
−→
h ) = tr(Φ

rand,
−→
h
(I), rand,

−→
h ). The second equality holds

because
−→
h and

−→
h ′ are partners. The third equality follows because −→e (I, rand,

−→
h ′) is contained in
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tr(I, rand,
−→
h ′) and from Lemma 4.2.21, we have that tr(I, rand,

−→
h ′) = tr(Φ

rand,
−→
h
(I), rand,

−→
h ′). The

fourth equality holds by another application of Lemma 4.2.21 which yields tr(I, rand,
−→
h ′) = tr(Φ

rand,
−→
h ′(I),

rand,
−→
h ′) = tr(Φ

rand,
−→
h
(I), rand,

−→
h ′).

Combining the two paragraphs above, we get (
−→
h ,
−→
h ′) ∈ prti(Φrand,

−→
h
(I), rand). Using a similar

argument, (
−→
h ,
−→
h ′) ∈ prti(Φrand,

−→
h ′(I), rand). The inverse direction follows from the self-inverse property

of Φ
rand,

−→
h
.

Corollary 4.2.24. Brmax(I, rand,
−→
h ) = Brmax(Φrand,

−→
h
(I), rand,

−→
h ).

4.2.5 Counting the Image of Φ

In the following, we consider the image of the set PG of all partners under Φ1. Recall that (roughly
speaking) we defined PG as the set of all ‘good’ partner tuples, i.e., tuples with many partner tuples. The
goal of the next lemma is to lower bound the number of ‘doubly good’ tuples in PG who retain a large
number of partners after being mapped with Φ, i.e., good partner tuples whose image under Φ remains
‘good’. Below, we implicitly use the fact that Φ(P ) yields a set of partner tuples (due to Lemma 4.2.23).

Lemma 4.2.25 (Many good partner tuples have a good image). Let

P ′G =

{
(I, rand,

−→
h ) ∈ Φ(P )

∣∣∣∣∣∣∣BBrmax(I,rand,
−→
h )
∩ Φ(P )

∣∣∣ ≥ 1

(ℓ+ 1)3
|Φ(P ) ∩ SuccI,rand|

}
.

Then

|Φ(PG) ∩ P ′G| ≥
(
1− 2

(ℓ+ 1)2

)
|P | .

Proof. Fix I, rand with Φ(P ) ∩ SuccI,rand ̸= ∅. Then it holds that each (I, rand,
−→
h ) ∈ SuccI,rand ∩ Φ(P )

lies in one set Bi ∩ Φ(P ) (namely i = Brmax(I, rand,
−→
h )). As there are (ℓ + 1) hash queries, there

are at most (ℓ + 1) such sets. Thus, by Lemma 2.6.4 with α = 1
(ℓ+1) , there exists a set Gα such

that for all (I, rand,
−→
h ) ∈ Gα it holds that

∣∣∣B
Brmax(I,rand,

−→
h )
∩ Φ(P )

∣∣∣ ≥ 1
(ℓ+1)3 |Φ(P ) ∩ SuccI,rand| and

|Gα| ≥
(
1− 1

(ℓ+1)

)
·|SuccI,rand|∩Φ(P ). Taking the Gα of all SuccI,rand with SuccI,rand∩Φ(P ) ̸= ∅ yields

that |P ′G| ≥
(
1− 1

(ℓ+1)2

)
· |P |. Since Φ(PG) ⊂ Φ(P ) and P ′G ⊂ Φ(P ), it holds, using Lemma 4.2.15

and the inclusion-exclusion principle that

|Φ(PG) ∩ P ′G| ≥
(
1− 2

(ℓ+ 1)2

)
· |P | .

We now turn to lower bounding the number of triangle base corner within the set P ′G from
Lemma 4.2.25. Together with the fact that PG has many triangle base-corners, we will then be
able to conclude that the images of many triangle base-corners remain base-corners in some other triangle
at the same index.

1We have defined Φ(I, rand,
−→
h ) = (Φ

rand,
−→
h
(I), rand,

−→
h ), hence Φ(P ) is well-defined.
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Lemma 4.2.26 (Many images of good partner tuples are triangle base corners). Assume ϵ ≥
3·144· (ℓ+1)2−1

(ℓ+1)2

q

as well as ϵ as in Corollary 4.2.13 (whichever is larger). Then at least 11
18 of tuples (I, rand,

−→
h ) ∈ P ′G are

base corners of a triangle at Brmax(I, rand,
−→
h ).

Proof. Let ϵP ′
G

=
|P ′

G|
|I×R×Zq

(ℓ+1)| be the probability of getting a tuple in P ′G when sampling a tuple

uniformly at random. Then

ϵP ′
G
≥
(
1− 1

(ℓ+ 1)2

)
· ϵP ≥

(
1− 1

(ℓ+ 1)2

)
· ϵ
4
, (∗)

where the first inequality is due to the fact that |P ′G| ≥
(
1− 1

(ℓ+1)2

)
|P | (see the proof of Lemma 4.2.25),

and the second inequality is due to Corollary 4.2.14.
Define the heavy row of P ′G as

HR(P ′G) =
{
(I, rand,

−→
h ) ∈ P ′G

∣∣∣|P ′G ∩ SuccI,rand| ≥
ϵP ′

G

3
· q(ℓ+1)

}
.

By Lemma 2.6.3, |HR(P ′G)| ≥ 2
3 |P

′
G|. Now consider any tuple (I, rand,

−→
h ) ∈ HR(P ′G). From the

definition of P ′G it follows that∣∣∣B
Brmax(I,rand,

−→
h )
∩ P ′G

∣∣∣ ≥ 1

(ℓ+ 1)3
|Φ(P ) ∩ SuccI,rand|

P ′
G⊂Φ(P )

≥ 1

(ℓ+ 1)3
|P ′G ∩ SuccI,rand| ≥

ϵP ′
G

3(ℓ+ 1)3
· q(ℓ+1).

Similar to the proof of Lemma 4.2.17, we apply Lemma 4.2.16 with H = B
Brmax(I,rand,

−→
h )
∩ P ′G,

S = S
Brmax(I,rand,

−→
h )
∩ P ′G, ζ =

ϵP ′
G

3(ℓ+1)3 , and c = 11
12 . This yields that for all indices j ∈ [ℓ+ 1], there

exists a subset Hj(I, rand) ⊂ B
Brmax(I,rand,

−→
h )
∩P ′G with |Hj(I, rand)| ≥ 11

12

∣∣∣B
Brmax(I,rand,

−→
h )
∩ P ′G

∣∣∣ such
that for all (I, rand,

−→
h ′) ∈ Hj(I, rand),∣∣∣Γj,S(I, rand,
−→
h ′)
∣∣∣ ≥ (1− 11

12

)
·

ϵP ′
G

3(ℓ+ 1)3
· q

(∗)
≥
(
1− 1

(ℓ+ 1)2

)
· ϵ

144(ℓ+ 1)3
· q ≥ 3

where the last step is obtained by plugging in ϵ as in the lemma statement. Setting j = Brmax(I, rand,
−→
h ),

we obtain a subset H
Brmax(I,rand,

−→
h )
(I, rand) of triangle base corners at index Brmax(I, rand,

−→
h ) by a

similar argument as in Lemma 4.2.17. (Henceforth we simplify it to H
Brmax(I,rand,

−→
h )
.) Let T be the

union of all such sets, i.e.,
T =

⋃
(I,rand,

−→
h )∈HR(P ′

G)

H
Brmax(I,rand,

−→
h )

Then all vectors in T are triangle base corners, and

|T | =

∣∣∣∣∣∣∣
⋃

(I,rand,
−→
h )∈HR(P ′

G)

H
Brmax(I,rand,

−→
h )

∣∣∣∣∣∣∣ ≥
11

12

∣∣∣∣∣∣
⋃

(I,rand,
−→
h )

(
B

Brmax(I,rand,
−→
h )
∩ P ′G

)∣∣∣∣∣∣
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(∗∗)
≥ 11

12
|HR(P ′G)| ≥

11

12
· 2
3
|P ′G| =

11

18
|P ′G| ,

where (∗∗) is because for any (I, rand,
−→
h ′) ∈ HR(P ′G) it holds that

(I, rand,
−→
h ′) ∈ B

Brmax(I,rand,
−→
h ′)
∩ P ′G ⊂

⋃
(I,rand,

−→
h )∈HR(P ′

G)

(
B

Brmax(I,rand,
−→
h )
∩ P ′G

)
,

hence
HR(P ′G) ⊂

⋃
(I,rand,

−→
h )∈HR(P ′

G)

(
B

Brmax(I,rand,
−→
h )
∩ P ′G

)
.

Having bounded the number of triangle corners within both PG and P ′G, we now compute their

overlap. More precisely, we show that there is a large set T such that all tuples (I, rand,
−→
h ) ∈ T are

triangle base corners and, moreover, Φ(I, rand,
−→
h ) is also a triangle base-corner at the same index.

Lemma 4.2.27. Assume ϵ as in Lemma 4.2.26. Then there exists a set T ⊂ P with |T | ≥ 1
12 |P | such

that for all (I, rand,
−→
h ) ∈ T it holds that both (I, rand,

−→
h ) and Φ(I, rand,

−→
h ) are triangle base-corners

at index Brmax(I, rand,
−→
h ).2

Proof. Let C denote the set of triangle base corners at their maximal branching index, i.e.,

C :=
{
(I, rand,

−→
h )
∣∣∣∃−→h ′,−→h ′′ : (−→h ,

−→
h ′,
−→
h ′′) ∈ △

Brmax(I,rand,
−→
h )

}
.

Then

|P ′G ∩ C|
Lemma 4.2.26

≥ 11

18
|P ′G|

Lemma 4.2.25
≥ 11

18
·
(
1− 1

(ℓ+ 1)2

)
|P |

ℓ≥1
≥ 11

24
|P | ;

|PG ∩ C|
Lemma 4.2.17

≥ 5

6
|PG|

Lemma 4.2.15
≥

(
1− 1

(ℓ+ 1)2

)
· 5
6
|P |

(ℓ≥1
≥ 5

8
|P | .

Let T = Φ(PG ∩ C) ∩ (P ′G ∩ C). Clearly T ⊂ C ∩ Φ(C), implying that the tuples in T satisfy the
requirements of the lemma. Moreover, T ⊂ Φ(PG) ∩ P ′G ⊂ P . By inclusion-exclusion, this yields

|T | ≥ |Φ(PG ∩ C)|+ |P ′G ∩ C| − |P | = |PG ∩ C|+ |P ′G ∩ C| − |P |

≥ 5

8
|P |+ 11

24
|P | − |P | = 1

12
|P |

We now relate the sets T from Lemma 4.2.27 and BT . Recall that elements of the set T are triangle

base-corners (I, rand,
−→
h ) at Brmax(I, rand,

−→
h ) s.t. (Φ

rand,
−→
h
(I), rand,

−→
h ) remains a triangle base-corner

at index Brmax(I, rand,
−→
h ). Concretely, we show that T ⊂ BT . This establishes, for one, that BT is

large (because T is large, as we have shown).

2Note that Brmax(I, rand,
−→
h ) = Brmax(Φrand,

−→
h
(I), rand,

−→
h ) due to Corollary 4.2.24.
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Lemma 4.2.28. Let T be as in Lemma 4.2.27. Then T ⊂ BT .

Proof. Fix some (I, rand,
−→
h ) ∈ T . Then there exist

−→
h ′,
−→
h ′′,
−→
h ′′′,
−→
h ′′′′ such that (

−→
h ,
−→
h ′,
−→
h ′′′) ∈

△
Brmax(I,rand,

−→
h )
(I, rand) and (

−→
h ,
−→
h ′′,
−→
h ′′′′) ∈ △

Brmax(Φrand,
−→
h
(I),rand,

−→
h )
(Φ

rand,
−→
h
(I), rand). By Corol-

lary 4.2.24, Brmax(Φrand,
−→
h
(I), rand,

−→
h ) = Brmax(I, rand,

−→
h ); let this index be i. In the following, we

also use that (
−→
h ,
−→
h ′) ∈ prti(Φrand,

−→
h
(I), rand) which follows from Lemma 4.2.23.

• If h′i = h′′i , then we can replace
−→
h ′′ by

−→
h ′ in the triangle (

−→
h ,
−→
h ′′,
−→
h ′′′′) as h′i = h′′i ̸= h′′′′i . Since

(
−→
h ,
−→
h ′) ∈ prti(Φrand,

−→
h
(I), rand), (

−→
h ,
−→
h ′,
−→
h ′′′′) ∈ △i(Φrand,

−→
h
(I), rand) and thus,

−→
h ,
−→
h ′,
−→
h ′′

and
−→
h ′′′′ meet the definition of BT . Hence, (I, rand,

−→
h ) ∈ BT .

• If h′i ̸= h′′i , then, since (
−→
h ,
−→
h ′) ∈ prti(Φrand,

−→
h
(I), rand), (

−→
h ′,
−→
h ′′) ∈ prti(Φrand,

−→
h
(I), rand), and

hi ̸= h′′i , it must also be the case that (
−→
h ,
−→
h ′′) ∈ prti(Φrand,

−→
h
(I), rand). This implies that

(
−→
h ,
−→
h ′,
−→
h ′′) ∈ △i(Φrand,

−→
h
(I), rand) and thus (I, rand,

−→
h ) ∈ BT .

Either way, (I, rand,
−→
h ) ∈ BT , so T ⊂ BT .

Corollary 4.2.29. |BT | ≥ 1
12 |P |.

4.2.6 Extracting a Witness from a Fork

Witness Extraction. We briefly recall how the reduction can compute a witness from two signatures
from forking runs of the wrapper A. We say a signature (ρ, ω, σ, δ) on a message m in the output of A

on input (I, rand,
−→
h ) corresponds to a hash value hi, if H(g

ρyω,gσzδ, z,m) was the i-th hash query
made to the random oracle H in this run of A. Informally we say that a witness can be extracted from

I, rand, and a pair of forking hash vectors (
−→
h ,
−→
h ′) ∈ Fi(I, rand), if it can be efficiently computed from

the two signatures corresponding to hi and h′i. We make this formal in the following definition.

Definition 4.2.30 (Witness Extraction). Fix I, rand and let (
−→
h ,
−→
h ′) ∈ Fi(I, rand) for some i ∈ [ℓ+ 1].

Moreover, denote sigi, sig
′
i the signatures that correspond to hi and h′i, respectively. Consider the two

witness extraction algorithms Ey,Ez as described in Figure 4.4. For × ∈ {y, z}, we say that the ×-side
witness can be extracted from (I, rand,

−→
h ) and (I, rand,

−→
h ′) at index i if E× on input (sigi, sig

′
i) does

not return ⊥.

Lemma 4.2.31. Let I, rand, i, (
−→
h ,
−→
h ′) ∈ Fi(I, rand), sigi, sig

′
i, and algorithms Ey,Ez be as in Defin-

ition 4.2.30. Then at least one of Ey and Ez outputs a correct witness on input the two signatures
sigi = (ρi, ωi, σi, δi) and sig′i = (ρ′i, ω

′
i, σ
′
i, δ
′
i) corresponding to hi and h′i. More specifically, Ey outputs

the y-side witness if and only if ωi ̸= ω′i, otherwise Ez outputs the z-side witness.

Proof. Suppose ωj ≠ ω′j . Let A make two runs, one on (I, rand,
−→
h ) and one on (I, rand,

−→
h ′). As the

two runs were identical up to the point when A makes its j-th query to H, this query αj ,βj , zj ,mj

was also identical (note that rand is fixed and thus A is deterministic). Since (
−→
h ,
−→
h ′) ∈ Fj(I, rand), we

know that (I, rand,
−→
h ), (I, rand,

−→
h ′) ∈ Succ, i.e., A outputs ℓ+ 1 valid signatures in both runs. This

means that the two sigma protocol transcripts (αj , ωj , ρj) and (αj , ω
′
j , ρ
′
j) are both accepting, so we
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Ey((ρi, ωi, σi, δi), (ρ
′
i, ω
′
i, σ
′
i, δ
′
i))

42 if (ωi ̸= ω′i)

43 return x :=
ρi−ρ′

i

ω′
i−ωi

44 else
45 return ⊥

Ez((ρi, ωi, σi, δi), (ρ
′
i, ω
′
i, σ
′
i, δ
′
i))

46 if (δi ̸= δ′i)

47 return w :=
σi−σ′

i

δ′i−δi
48 else
49 return ⊥

Figure 4.4: The two witness extraction algorithms from Definition 4.2.30

have αj = gρj · gωj ·x = gρ′
j · gω′

j ·x Thus, x can be computed as x = (ω′j − ωj)
−1 · (ρj − ρ′j). Now

suppose that ωj = ω′j . In this case, since ωj + δj = hj ̸= h′j = ω′j + δ′j , δj ̸= δ′j . For δj ≠ δ′j we have

βj = gσj · gδj ·w = gσ′
j · gδ′j ·w and thus w = (δ′j − δj)

−1 · (σj − σ′j).

Remark 4.2.32. We note that the witness may be contained in the instance I, in which case the witness
can be trivially extracted. For the purposes of the lemma we only consider the more interesting case that
the witness can be computed from the two signatures directly, regardless of which witness was used for
simulating the signing oracles.

Witnesses in triangles. We now show that if a witness can be extracted from the base of a triangle,
it can also be extracted from at least one of the sides. This was previously shown in [AO00].

Corollary 4.2.33. Fix I, rand and let (
−→
h ,
−→
h ′,
−→
h ′′) ∈ △i(I, rand) for some i ∈ [ℓ+1]. Moreover, suppose

that the y-side witness can be extracted from the base (I, rand,
−→
h ), (I, rand,

−→
h ′) of the triangle at index

i. Then the y-side witness can also be extracted from at least one of the sides (I, rand,
−→
h ), (I, rand,

−→
h ′′)

or (I, rand,
−→
h ′), (I, rand,

−→
h ′′) at index i. An analogous statement holds for the z-side witness.

Proof. Toward a contradiction, suppose that the y-side witness can be extracted from the base

(I, rand,
−→
h ), (I, rand,

−→
h ′) at index i, but can not be extracted at index i for either of the sides

(I, rand,
−→
h ), (I, rand,

−→
h ′′) or (I, rand,

−→
h ′), (I, rand,

−→
h ′′). Then, by Lemma 4.2.31, ωi = ω′′i and

ω′i = ω′′i , so ωi = ω′i. By Lemma 4.2.31 again, the y-side witness can not be extracted from

(I, rand,
−→
h ), (I, rand,

−→
h ′), a contradiction. An analogous argument can be made for the z-side.

We now define both-sided triangle base corners as triangle base corners (I, rand,
−→
h ) which remain

base corners of some triangle at their maximal branching index when mapped via Φ
rand,

−→
h
. (Recall that by

Corollary 4.2.24, the maximal branching index is preserved under Φ.) On top of this, if (I, rand,
−→
h ) is a

both-sided triangle base corner, and forms a triangle base with (I, rand,
−→
h ′) at index Brmax(I, rand,

−→
h ),

then (Φ
rand,

−→
h
(I), rand,

−→
h ) and (Φ

rand,
−→
h
, rand,

−→
h ′) also form a triangle base.

For every such tuple (I, rand,
−→
h ), we further define the set Dy

i (I, rand,
−→
h ) of tuples that form a

both-sided triangle base with (I, rand,
−→
h ) at index i from which the y-side witness can be extracted,

and an analogous set Dz
i (I, rand,

−→
h ) for the z-side witness. This allows us to then define sets By

T and
Bz

T that contain tuples where the majority of both-sided triangle bases incident to the tuple allow for
extraction of the y-side or z-side witness, respectively.
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Definition 4.2.34 (Both-sided Triangle Base Corners). We call elements of the set

BT :=

{
(I, rand,

−→
h )

∣∣∣∣∣ ∃
−→
h ′,

−→
h ′′,
−→
h ′′′

:
(
−→
h ,
−→
h ′,
−→
h ′′) ∈ △

Brmax(I,rand,
−→
h )
(I, rand)

(
−→
h ,
−→
h ′,
−→
h ′′′) ∈ △

Brmax(I,rand,
−→
h )
(Φ

rand,
−→
h
(I), rand)

}

both-sided triangle base corners. For any index i ∈ [ℓ+ 1], we define sets

Dy
i (I, rand,

−→
h ) :=


(I, rand,

−→
h ′)

∣∣∣∣∣∣∣∣∣∣∣
∃
−→
h ′′,
−→
h ′′′

:

(
−→
h ,
−→
h ′,
−→
h ′′) ∈ △i(I, rand)

(
−→
h ,
−→
h ′,
−→
h ′′′) ∈ △i(Φrand,

−→
h
(I), rand)

The y-side witness can be

extracted from (I, rand,
−→
h ),

(I, rand,
−→
h ′) at index i


and By

T ⊂ BT as

By
T :=

(I, rand,
−→
h )

∣∣∣∣∣∣∣∣∣
Dy

Brmax(I,rand,
−→
h )
(I, rand,

−→
h ) ̸= ∅∣∣∣Dy

Brmax(I,rand,
−→
h )
(I, rand,

−→
h )
∣∣∣

≥
∣∣∣Dz

Brmax(I,rand,
−→
h )
(I, rand,

−→
h )
∣∣∣


We define sets Dz

i (I, rand,
−→
h ) and Bz

T analogously.

Lemma 4.2.35 (Both-sided triangle bases produce the same witness on both sides). It holds that

1. Φ(By
T ) = By

T and Φ(Bz
T ) = Bz

T ;

2. By
T ∪Bz

T = BT .

Proof. 1. We show the equation for By
T ; the one for Bz

T can be proved similarly. By definition of
BT and the self-inverse property of Φ, it follows that Φ(BT ) = BT and thus Φ(By

T ) ⊂ BT . Fix

any (I, rand,
−→
h ) ∈ By

T . Further, fix a vector
−→
h ′ with (

−→
h ,
−→
h ′) ∈ prt

Brmax(I,rand,
−→
h )
(I, rand) for which

there exist
−→
h ′′,
−→
h ′′′ with (

−→
h ,
−→
h ′,
−→
h ′′) ∈ △

Brmax(I,rand,
−→
h )
(I, rand), (

−→
h ,
−→
h ′,
−→
h ′′′) ∈ △

Brmax(I,rand,
−→
h )
(

Φ
rand,

−→
h
(I), rand) and such that the y-side witness can be extracted from (I, rand,

−→
h ) and (I, rand,

−→
h ′)

at Brmax(I, rand,
−→
h ) (i.e., as guaranteed the definition of By

T ).

By Lemma 4.2.21, the signatures resulting from the tuple (I, rand,
−→
h ) and (I, rand,

−→
h ′) are the same

as the signatures resulting from (Φ
rand,

−→
h
(I), rand,

−→
h ) and (Φ

rand,
−→
h ′(I), rand,

−→
h ′), respectively. As

−→
h

and
−→
h ′ are partners, Lemma 4.2.23 implies that (Φ

rand,
−→
h ′(I), rand,

−→
h ′) = (Φ

rand,
−→
h
(I), rand,

−→
h ′) and

by Corollary 4.2.24, Brmax(I, rand,
−→
h ) = Brmax(Φrand,

−→
h
(I), rand,

−→
h ). Hence, the signatures that result

from (Φ
rand,

−→
h
(I), rand,

−→
h ), (Φ

rand,
−→
h
(I), rand,

−→
h ′) are the same signatures that result from (I, rand,

−→
h )

and (I, rand,
−→
h ′). As the witness that can be extracted from (I, rand,

−→
h ) and (I, rand,

−→
h ′) at index

Brmax(I, rand,
−→
h ) is completely determined by the signatures corresponding to h

Brmax(I,rand,
−→
h )

and

h′
Brmax(I,rand,

−→
h )
, the same witness can be extracted from (Φ

rand,
−→
h
(I), rand,

−→
h ), (Φ

rand,
−→
h
(I), rand,

−→
h ′)

at index i. By assumption, (
−→
h ,
−→
h ′,
−→
h ′′′) ∈ △

Brmax(I,rand,
−→
h )
(Φ

rand,
−→
h
(I), rand) and (

−→
h ,
−→
h ′,
−→
h ′′) ∈
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△
Brmax(I,rand,

−→
h )
(I, rand) = △

Brmax(I,rand,
−→
h )
(Φ

rand,
−→
h
(Φ

rand,
−→
h
(I)), rand), where we have applied the self-

inverse property of Φ
rand,

−→
h
. So (Φ

rand,
−→
h
(I), rand,

−→
h ) meets the requirements of the definition of By

T ,

and thus (Φ
rand,

−→
h
(I), rand,

−→
h ) ∈ By

T . As (I, rand,
−→
h ) ∈ By

T was chosen arbitrarily, we obtain that

Φ(By
T ) ⊂ By

T . Using the self-inverse property of the bijection Φ once more, we immediately obtain the
converse inclusion By

T ⊂ Φ(By
T ). Thus Φ(B

y
T ) = By

T .

2. Consider any tuple (I, rand,
−→
h ) ∈ BT . By Lemma 4.2.31, at least one witness can be extracted

from each triangle base.Let i = Brmax(I, rand,
−→
h ). For any

−→
h ′ as in Definition 4.2.34, we know that

(
−→
h ,
−→
h ′) ∈ Fi(I, rand). By Lemma 4.2.31, at least one witness can be extracted from (I, rand,

−→
h ) and

(I, rand,
−→
h ′), so at least one of Dy

i (I, rand,
−→
h ), Dz

i (I, rand,
−→
h ) is not ∅. Suppose D×i (I, rand,

−→
h ) is the

larger of the two sets; then D×i (I, rand,
−→
h ) ̸= ∅ and thus (I, rand,

−→
h ) ∈ B×T . This shows that any tuple

in BT is in By
T or Bz

T , so By
T ∪Bz

T = BT .

We define B×T as the larger set of By
T and Bz

T . By the second item of Lemma 4.2.35,
∣∣B×T ∣∣ ≥ 1

2 |BT |.
Let B×T,y (resp. B×T,z) be the subset of B×T with y-side instances (resp. z-side instances). We stress

that By
T and B×T,y are two different sets: (I, rand,

−→
h ) ∈ By

T means that more both-sided triangle bases

(with (I, rand,
−→
h ) as one of its corners) allow for extracting the y-side witness than the z-side witness;

whereas (I, rand,
−→
h ) ∈ B×T,y means that (I, rand,

−→
h ) ∈ B×T and I is a y-side witness.

Lemma 4.2.36.
∣∣∣B×T,y

∣∣∣ = ∣∣∣B×T,z

∣∣∣ = 1
2

∣∣B×T ∣∣.
Proof. By the first item of Lemma 4.2.35, Φ is a bijection within B×T , and since Φ maps a tuple with a
y-side instance to a tuple with a z-side instance (and vice versa), we know that Φ is a bijection between

B×T,y and B×T,z; therefore,
∣∣∣B×T,y

∣∣∣ = ∣∣∣B×T,z

∣∣∣. Since B×T,y and B×T,z form a partition of B×T , we know that∣∣∣B×T,y

∣∣∣+ ∣∣∣B×T,z

∣∣∣ = ∣∣B×T ∣∣, and the lemma follows.

We now give a lower bound of the size of B×T . Let ϵB×
T

be the probability of getting a tuple in B×T
while sampling uniformly at random, i.e.,

ϵB×
T
:=

∣∣B×T ∣∣∣∣∣I ×R× Zq
ℓ+1
∣∣∣ .

Lemma 4.2.37 (Lower-bounding the size of B×T ). Assume ϵ ≥
432

(
1− 1

(ℓ+1)2

)
q . Then

ϵB×
T
≥ ϵ

96
.

Proof. ∣∣B×T ∣∣ ≥ 1

2
|BT | ≥

1

2
· 1
12
|P | ≥ 1

2
· 1
12
· 1
4
|Succ| = ϵ

96

∣∣∣I ×R× Zq
ℓ+1
∣∣∣,

where the steps follow (in this order) from Lemma 4.2.35, Corollary 4.2.29, Corollary 4.2.14, and the

definition of ϵ. Thus, ϵB×
T
=

|B×
T |

|I×R×Zq
ℓ+1| ≥

ϵ
96 .
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Finding triangle tops. In order for our security proof to go through, a key step is to compute the
probability that the reduction hits a triangle side from which the ×-side witness can be extracted when
forking the wrapper, independently of the witness that is being used by the reduction. This event is
crucial in our proof because, assuming that the reduction samples one of these sides, it is likely that
it did so with the witness opposite of ×, meaning that it extracts the witness × it does not already
know with significant probability, hence solving the discrete logarithm problem. In order to lower bound
the probability of the event above, we first define relevant triangle tops for a both-sided triangle base

corner (I, rand,
−→
h ) ∈ B×T . These are all the tuples (I, rand,

−→
h ′′) such that (

−→
h ,
−→
h ′,
−→
h ′′) forms triangles

at index i (where
−→
h ′ is as in the definition of both-sided triangle tops (Definition 4.2.34)).

Definition 4.2.38 (Relevant triangle tops). For a tuple (I, rand,
−→
h ), define its relevant triangle tops at

index i as tuples in the following set:

T×T,i(I, rand,
−→
h ) :=

(I, rand,
−→
h ′′)

∣∣∣∣∣∣∣∣∣∃
−→
h ′ :

(
−→
h ,
−→
h ′,
−→
h ′′) ∈ △i(I, rand)

The × -side witness

can be extracted from (I, rand,
−→
h ),

(I, rand,
−→
h ′) at i


We will mostly consider relevant triangle tops at the maximum branching index

Brmax(I, rand,
−→
h ) and we thus define T×T (I, rand,

−→
h ) := T×

T,Brmax(I,rand,
−→
h )
(I, rand,

−→
h ).

What remains to be shown is that many elements of B×T actually have many relevant triangle tops,
regardless of whether they reside in B×T,y or B×T,z, i.e., independently of the witness that they store. This
ensures that when the reduction samples and then (partially) resamples the vectors during the forking
process, it will hit a side from which the desired witness can be extracted with significant probability, as
explained above.

Lemma 4.2.39 (There are enough relevant triangle tops). There exists a subset Gy ⊂ B×T,y with

|Gy| ≥ 3
8

∣∣∣B×T,y

∣∣∣ such that for each (I, rand,
−→
h ) ∈ Gy,

∣∣∣T×T (I, rand,
−→
h )
∣∣∣ ≥ ϵB×

T

16(ℓ+ 1)
· qℓ−Brmax(I,rand,

−→
h )+2 − 2qℓ−Brmax(I,rand,

−→
h )+1.

An analogous statement holds for B×T,z.

Proof. We show this for Gy; the proof for Gz works analogously. By Lemma 4.2.36 it holds that∣∣∣B×T,y

∣∣∣ = 1
2

∣∣B×T ∣∣.
For i ∈ [ℓ + 1] we define a subset of B×T,y that are both-sided triangle base corners at index i as

follows:

Gi,y :=
{
(I, rand,

−→
h ) ∈ B×T,y

∣∣∣ i = Brmax(I, rand,
−→
h )

}
It is easy to see that Gi,y (i ∈ [ℓ+ 1]) form a partition of B×T,y. We note that membership in Gi,y is

symmetrical, i.e., the other base corner of a both-sided triangle is always also contained in Gi,y.

Denote the set of indices i ∈ [ℓ+1] such that |Gi,y| ≥ 1
4(ℓ+1)

∣∣∣B×T,y

∣∣∣ as J . We now apply Lemma 2.6.4

with Bi = Gi,y, b = ℓ + 1, α = 1
4 , and X = B×T,y. Due to Lemma 2.6.4, at least 3

4 of the tuples
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(I, rand,
−→
h ) in B×T,y has the property that there exists i ∈ J such that (I, rand,

−→
h ) ∈ Gi,y. For each

Gi,y with i ∈ J , define

HR(Gi,y) =

{
(I, rand,

−→
h ) ∈ Gi,y

∣∣∣∣∣∣∣Gi,y ∩ Succ
I,rand,

−→
h [i−1]

∣∣∣ ≥ 1

8
· 1

ℓ+ 1
ϵB×

T,y
· qℓ−i+2

}
where ϵB×

T,y
:=

|B×
T,y|

|I×R×Zq
ℓ+1| =

1
2ϵB×

T
. Then, by Lemma 2.6.3, |HR(Gi,y)| ≥ 1

2 |Gi,y| for each Gi,y with

i ∈ J . Now, fix some arbitrary i ∈ J and (I, rand,
−→
h ) ∈ HR(Gi,y) ⊂ Gi,y. Furthermore, fix a partner

(I, rand,
−→
h ′) ∈ D×i (I, rand,

−→
h )´. Then, there exist at most qℓ+1−i vectors in Gi,y∩SuccI,rand,−→h [i−1]

that

share the first i entries with
−→
h and at most qℓ+1−i vectors in Gi,y∩SuccI,rand,−→h [i−1]

that share the first i

entries with its designated partner
−→
h ′. These vectors do not form triangles at index i with (I, rand,

−→
h ) and

(I, rand,
−→
h ′). We denote this set of non-triangle-tops by N(I, rand,

−→
h ,
−→
h ′) and by the above reasoning,∣∣∣N(I, rand,

−→
h ,
−→
h ′)
∣∣∣ ≤ 2 · qℓ+1−i. We note that Succ

I,rand,
−→
h [i−1]

\N(I, rand,
−→
h ,
−→
h ′) ⊂ T×T,i(I, rand,

−→
h ).

Thus, the amount of triangle tops for (I, rand,
−→
h ) is at least∣∣∣T×T,i(I, rand,

−→
h )
∣∣∣ ≥ ∣∣∣Succ

I,rand,
−→
h [i−1]

\N(I, rand,
−→
h ,
−→
h ′)
∣∣∣

≥
∣∣∣Succ

I,rand,
−→
h [i−1]

∣∣∣− ∣∣∣N(I, rand,
−→
h ,
−→
h ′)
∣∣∣

≥ 1

8
· 1

ℓ+ 1
ϵB×

T,y
· qℓ+1−i+1 − 2 · qℓ+1−i

≥ 1

16
· 1

ℓ+ 1
ϵB×

T
· qℓ+1−i+1 − 2 · qℓ+1−i

Since (I, rand,
−→
h ) ∈ HR(Gi,y) was arbitrarily chosen, taking the union over all HR(Gi,y) s.t. i ∈ J

yields the statement.

Corollary 4.2.40. Let Gy be as in Lemma 4.2.39. Then

Pr
(I,rand,

−→
h )

$←I×R×Zq
ℓ+1

i
$←[ℓ+1],

−→
h ′ $←Zq

ℓ+1

|
−→
h [i−1]

[
(I, rand,

−→
h ′) ∈ T×T (I, rand,

−→
h )

∣∣∣∣∣ (I, rand,
−→
h ) ∈ Gy

Brmax(I, rand,
−→
h ) = i

]

≥
ϵB×

T

16(ℓ+ 1)
− 2

q
.

An analogous statement holds for Gz.

Proof. Suppose (I, rand,
−→
h ) ∈ Gy and Brmax(I, rand,

−→
h ) = i. Note that

∣∣∣∣Zq
ℓ+1

|
−→
h [i−1]

∣∣∣∣ = qℓ−i+2. There-

fore, the probability of sampling an
−→
h ′ such that (I, rand,

−→
h ′) ∈ T×T (I, rand,

−→
h ) is∣∣∣T×T (I, rand,

−→
h )
∣∣∣

qℓ−i+2
≥

ϵ
B

×
T

16(ℓ+1) · q
ℓ−i+2 − 2qℓ−i+1

qℓ−i+2
=

ϵB×
T

16(ℓ+ 1)
− 2

q
.
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(I, rand,
−→
h ′)

∈ Gy ∪Gz

(I, rand,
−→
h )

∈ O×
T

(I, rand,
−→
h ′′)

∈ T×
T,i(I, rand,

−→
h ′)

∩T×
T,i(I, rand,

−→
h )

extract × at i

(a) Definition of (I, rand,
−→
h ) ∈ O×

T where i =

Brmax(I, rand,
−→
h ′).

(I, rand,
−→
h ) (I, rand,

−→
h ′)

(I, rand,
−→
h ′′)

∈ A×
T,i(I, rand,

−→
h )

/∈ A×
T,i(I, rand,

−→
h ′)

×

×

¬×

(b) A useful triangle top for a base corner is one
where the ×-side witness can be extracted. The
× (resp. ¬×) on an edge means that the ×-side
witness can (resp. cannot) be extracted at index i.

Figure 4.5: Opposing base corners and useful triangle tops

Opposing Base Corners

By Corollary 4.2.33 we know that each triangle with a relevant base has at least one relevant side. We
now want to consider the probability of finding such a relevant side in the forking proof.

To this end, we consider opposing base corners — corners of relevant bases whose partners are in Gy

or Gz. See Figure 4.5a for a graphic illustration. (Keep in mind that the sets Gy and Gz are the sets of
both sided triangle base corners for which there exist many triangle tops.)

Definition 4.2.41 (Opposing base corners).

O×T :=


(I, rand,

−→
h )

∣∣∣∣∣∣∣∣∣∣∣∣
∃
−→
h ′ :

(I, rand,
−→
h ′) ∈ Gy ∪Gz

(
−→
h ,
−→
h ′) ∈ prt

Brmax(I,rand,
−→
h ′)

(I, rand)

the × -side witness can be

extracted from (I, rand,
−→
h ),

(I, rand,
−→
h ′) at Brmax(I, rand,

−→
h ′)


Good Corners with Useful Tops

For each tuple (I, rand,
−→
h ) in O×T or B×T we define useful triangle tops — triangle tops that allow for

extraction of the ×-side witness when combined with the base corner (I, rand,
−→
h ) (see Figure 4.5b for a

graphic illustration):

Definition 4.2.42 (Useful triangle tops). For any (I, rand,
−→
h ) ∈ O×T ∪B×T , define

A×T,i(I, rand,
−→
h ) :=

 (I, rand,
−→
h ′′)

∈ T×T,i(I, rand,
−→
h )

∣∣∣∣∣∣∣
the × -side witness can be

extracted from (I, rand,
−→
h ),

(I, rand,
−→
h ′′) at index i


Recall that relevant base corners — those in Gy or Gz — are tuples in B×T for which many triangle

tops are relevant (i.e., the corresponding T×T set is large). We now consider a subset of these relevant
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base corners for which a lot of the relevant triangle tops are useful (i.e., the corresponding A×T set is
large). We call these base corners good.

Definition 4.2.43 (Good base corners). We say that a base corner in Gy ∪Gz is good if it lies within
the following set:

B̂×T :=

(I, rand,
−→
h ) ∈ Gy ∪Gz

∣∣∣∣∣∣∣∣
∣∣∣A×T (I, rand,−→h )

∣∣∣
≥ 1

2

∣∣∣T×T (I, rand,
−→
h )
∣∣∣

−qℓ−Brmax(I,rand,
−→
h )+1


We now want to show that if the set of good base corners is small, then there exist a lot of opposing

base corners — which we call good opposing base corners — that fulfill a property analogous to good
base corners.

Definition 4.2.44 (Good opposing base corners).

Ô×T :=



(I, rand,
−→
h )

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∃
−→
h ′ :

(I, rand,
−→
h ′) ∈ Gy ∪Gz

(
−→
h ,
−→
h ′) ∈ prt

Brmax(I,rand,
−→
h ′)

(I, rand)

the × -side witness can be

extracted from (I, rand,
−→
h ),

(I, rand,
−→
h ′) at Brmax(I, rand,

−→
h ′)∣∣∣A×

T,Brmax(I,rand,
−→
h ′)

(I, rand,
−→
h )
∣∣∣

≥ 1
2

∣∣∣T×
T,Brmax(I,rand,

−→
h ′)

(I, rand,
−→
h )
∣∣∣

−qℓ−Brmax(I,rand,
−→
h ′)+1


Let B̂×T,y ⊂ B̂×T and Ô×T,y ⊂ Ô×T be analogous to B×T,y ⊂ B×T , i.e., the subset of tuples with y-side

instances. We define B̂×T,z and Ô×T,z similarly.

Lemma 4.2.45. If
∣∣∣B̂×T,y

∣∣∣ < 1
2 |Gy|, then

∣∣∣Ô×T,y

∣∣∣ ≥ 1
8(ℓ+1) |Gy|. An analogous statement holds for z.

Proof. Let F = Gy \ B̂×T,y (so |F | ≥ 1
2 |Gy|). Consider any (I, rand,

−→
h ′) ∈ F , and let i =

Brmax(I, rand,
−→
h ′). Then∣∣∣A×T,i(I, rand,

−→
h ′)
∣∣∣ < 1

2

∣∣∣T×T,i(I, rand,
−→
h ′)
∣∣∣− qℓ−i+1.

By Corollary 4.2.33, for any (
−→
h ,
−→
h ′,
−→
h ′′) ∈ △i(I, rand) such that the ×-side witness can be ex-

tracted from the base (I, rand,
−→
h ), (I, rand,

−→
h ′), if the ×-side witness cannot be extracted from

(I, rand,
−→
h ′), (I, rand,

−→
h ′′), then it can be extracted from (I, rand,

−→
h ), (I, rand,

−→
h ′′). (All extractions

mentioned above are at index i.) Therefore,∣∣∣A×T,i(I, rand,
−→
h )
∣∣∣+ ∣∣∣A×T,i(I, rand,

−→
h ′)
∣∣∣ ≥ ∣∣∣T×T,i(I, rand,

−→
h ′)
∣∣∣ .
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We note that all but qℓ−i+1 elements of T×T,i(I, rand,
−→
h ) are also elements of T×T,i(I, rand,

−→
h ′). This

is because (I, rand,
−→
h ∗) ∈ T×T,i(I, rand,

−→
h ) \ T×T,i(I, rand,

−→
h ′) implies that (

−→
h ,
−→
h ∗) ∈ Fi(I, rand) but

(
−→
h ′,
−→
h ∗) /∈ Fi(I, rand), which means that

−→
h ∗ must share its first i entries with

−→
h ′ (recall that

−→
h and

−→
h ′ share the first i− 1 entries), so there are at most qℓ−i+1 such vectors. We get that∣∣∣T×T,i(I, rand,

−→
h ′)
∣∣∣ ≥ ∣∣∣T×T,i(I, rand,

−→
h )
∣∣∣− qℓ−i+1.

Combining all inequalities above, we get∣∣∣A×T,i(I, rand,
−→
h )
∣∣∣ ≥ ∣∣∣T×T,i(I, rand,

−→
h ′)
∣∣∣− ∣∣∣A×T,i(I, rand,

−→
h ′)
∣∣∣

>
∣∣∣T×T,i(I, rand,

−→
h ′)
∣∣∣− (1

2

∣∣∣T×T,i(I, rand,
−→
h ′)
∣∣∣− qℓ−i+1

)
=

1

2

∣∣∣T×T,i(I, rand,
−→
h ′)
∣∣∣+ qℓ−i+1

≥ 1

2

(∣∣∣T×T,i(I, rand,
−→
h )
∣∣∣− qℓ−i+1

)
+ qℓ−i+1

>
1

2

∣∣∣T×T,i(I, rand,
−→
h )
∣∣∣− qℓ−i+1

I.e., if (I, rand,
−→
h ′) ∈ F , then all of its partners (I, rand,

−→
h ) at index i with which it forms triangle bases

from which the ×-side witness can be extracted, are in Ô×T,y.

We now lower-bound the number of such partners (I, rand,
−→
h ). Define the set of tuples that yield

the same query transcript with (I, rand,
−→
h ′) as

E(I, rand,
−→
h ′) = {(I, rand,

−→
h ⋆)|−→e (I, rand,

−→
h ⋆) = −→e (I, rand,

−→
h ′)}.

Note that E(I, rand,
−→
h ′) is the set of partners of (I, rand,

−→
h ) at any index. Consider a subset Ei(I,

rand,
−→
h ′) of all tuples that fork from (I, rand,

−→
h ′) at index i, i.e.,

Ei(I, rand,
−→
h ′) =

{
(I, rand,

−→
h ⋆)|(

−→
h ⋆,
−→
h ′) ∈ prti(I, rand)

}
.

Recall that i = Brmax(I, rand,
−→
h ′). By the definition of maximum branching index, we have∣∣∣Ei(I, rand,

−→
h ′)
∣∣∣ ≥ 1

ℓ+ 1

(∣∣∣E(I, rand,
−→
h ′)
∣∣∣− 1

)
≥ 1

2(ℓ+ 1)

∣∣∣E(I, rand,
−→
h ′)
∣∣∣

(where the −1 comes from excluding (I, rand,
−→
h ′) itself). As (I, rand,

−→
h ′) ∈ B×T , it holds that at least

half of the tuples in Ei(I, rand,
−→
h ′), together with (I, rand,

−→
h ′), allow for the extraction of the ×-side

witness. This means that at least half of the tuples in Ei(I, rand,
−→
h ′) are in Ô×T,y.

We have shown that for any (I, rand,
−→
h ′) ∈ F , at least 1

4(ℓ+1) of tuples in E(I, rand,
−→
h ′) are

in Ô×T,y. Further note that for any (I1, rand1,
−→
h 1) and (I2, rand2,

−→
h 2), either E(I1, rand1,

−→
h 1) =
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E(I2, rand2,
−→
h 2) or E(I1, rand1,

−→
h 1) ∩ E(I2, rand2,

−→
h 2) = ∅. 3 Summing over all E(I, rand,

−→
h ′) for

some (I, rand,
−→
h ′) ∈ F , we get∣∣O×T ∣∣ ≥ 1

4(ℓ+ 1)

∑
E s.t. E=E(I,rand,

−→
h ′)

for some (I,rand,
−→
h ′)∈F

|E| ≥ 1

4(ℓ+ 1)

∑
E s.t. E=E(I,rand,

−→
h ′)

for some (I,rand,
−→
h ′)∈F

|E ∩ F |

=
1

4(ℓ+ 1)

∣∣∣∣∣∣∣∣∣∣
⋃

E s.t. E=E(I,rand,
−→
h ′)

for some (I,rand,
−→
h ′)∈F

(E ∩ F )

∣∣∣∣∣∣∣∣∣∣
=

1

4(ℓ+ 1)
|F | ≥ 1

8(ℓ+ 1)
|Gy| .

Remark 4.2.46. We point out that it is at this point that we need to require the adversary to make
exactly ℓ + 1 hash queries (and thus lose a

(
Qh

ℓ+1

)
factor in advantage). The proof of Lemma 4.2.45

would not go through with Qh > ℓ+ 1 hash queries, as hash vectors in this case may fork at arbitrary
indices that do not have a corresponding signature. Therefore, not every tuple in an E-set would also be
a partner of every other tuple in the same E-set (with the definition of partners adapted to this setting,
i.e., two tuples can only be partners if they both have a signature at their forking index).

In the following, we want to avoid the case distinction of whether triangle corners come from the
B-sets or the O-sets. We therefore define good triangle corners:

Definition 4.2.47. Let Ĝy be the larger set of B̂×T,y and Ô×T,y. Furthermore, for a tuple (I, rand,
−→
h ) ∈ Ĝy,

let t(I, rand,
−→
h ) be an index at which many relevant triangle tops exist, i.e.,

t(I, rand,
−→
h ) =

Brmax(I, rand,
−→
h ) (if Ĝy = B̂×T,y)

Brmax(I, rand,
−→
h ′) (if Ĝy = Ô×T,y)

(where
−→
h ′ is as in the definition of Ô×T,y). If multiple such

−→
h ′ (and thus multiple choices for t)

exist, choose one that results in the smallest value of t. Define set Ĝz analogously, and for a tuple

(I, rand,
−→
h ) ∈ Ĝz, define t(I, rand,

−→
h ) analogously.

It is easy to see that for a good opposing base corner, the number of triangle tops is the same as for
the corresponding tuple from Gy ∪Gz. We state this as a lemma.

Lemma 4.2.48.

Pr
b

$←{0,1}
(I,rand,

−→
h )

$←Ib×R×Zq
ℓ+1

i
$←[ℓ+1],

−→
h ′ $←Zq

ℓ+1

|
−→
h [i−1]

[
−→
h ′ ∈ T×T,i(I, rand,

−→
h )

∣∣∣∣∣ (I, rand,
−→
h ) ∈ Ĝy

t(I, rand,
−→
h ) = i

]
≥

ϵB×
T

16(ℓ+ 1)
− 2

q

3This is because E(I1, rand1,
−→
h 1)∩E(I2, rand2,

−→
h 2) ̸= ∅ implies that I1 = I2, rand1 = rand2, and

−→e (I1, rand1,
−→
h 1) =

−→e (I2, rand2,
−→
h 2), which in turn implies that E(I1, rand1,

−→
h 1) = E(I2, rand2,

−→
h 2).
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An analogous statement holds for Ĝz.

Proof. If Ĝy = B̂×T,y, then the lower bound is implied by Corollary 4.2.40. If Ĝy = Ô×T,y, setting the

partner from the proof of Lemma 4.2.39 to the triangle corner from Ô×T,y yields this lower bound.

We furthermore note the following regarding the probability of sampling a tuple in Ĝy and Ĝz:

Lemma 4.2.49.

Pr
b

$←{0,1}
(I,rand,

−→
h )

$←Ib×R×Zq
ℓ+1

i
$←[ℓ+1],

−→
h ′ $←Zq

ℓ+1

|
−→
h [i−1]

Pr
[
(I, rand,

−→
h ) ∈ Ĝy

]
≥ 3

128(ℓ+ 1)
ϵB×

T

The same holds for Ĝz.

Proof. We prove the lemma for Ĝy; the argument for Ĝz is analogous. By Lemma 4.2.45, either∣∣∣B̂×T,y

∣∣∣ ≥ 1
2 |Gy| or

∣∣∣Ô×T,y

∣∣∣ ≥ 1
8(ℓ+1) |Gy|, so

∣∣∣Ĝy

∣∣∣ = max
{∣∣∣B̂×T,y

∣∣∣ , ∣∣∣Ô×T,y

∣∣∣} ≥ 1
8(ℓ+1) |Gy|. By

Lemma 4.2.39, |Gy| ≥ 3
8

∣∣∣B×T,y

∣∣∣; by Lemma 4.2.36,
∣∣∣B×T,y

∣∣∣ = 1
2

∣∣B×T ∣∣. Combining these three inequalities

yields ∣∣∣Ĝy

∣∣∣ ≥ 3

128(ℓ+ 1)

∣∣B×T ∣∣ ,
and the lemma follows.

We will use the sets Ĝy and Ĝz for simplicity in the forking proof to avoid case distinctions over

whether B̂×T,y or Ô×T,y (or B̂×T,z or Ô×T,z) are larger.

4.3 Forking Proof for Concurrent OMUF

In this section, we show that the Abe-Okamoto partially blind signature scheme AO is single-tag one-more
unforgeable. We extend the proof to multiple tags in Section 4.4.

Theorem 4.3.1 (OMUF security for single-tag adversaries). For all ℓ ∈ N, if there exists an adversary
U that makes Qh hash queries to random oracle H and (tU, ϵU, ℓ)-breaks 1-info-OMUFAO with

ϵU ≥
432

(
1− 1

(ℓ+1)2

)
q ·

(
Qh

ℓ+1

)
, then there exists an algorithm B that (tB, ϵB)-breaks DLOG with

tB = 2tU +O(Qh
2)

and

ϵB ≈
3ϵ2U

75423744 ·
(
Qh

ℓ+1

)2 · (ℓ+ 1)3
.
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Proof. We use the wrapper A as described in Figure 4.2. We now construct a reduction B that plays the
DLOG game as follows.

After B receives its discrete logarithm challenge U, it samples a bit b $← {0, 1}. It then samples an
instance I of type b where it sets z := U if b = 0 and y := U if b = 1, and all other items uniformly

at random from Zq. Furthermore, B samples a random tape rand for A and a random hash vector
−→
h .

After that, B runs A on (I, rand,
−→
h ). If A returns a set of ℓ+ 1 valid message-signature pairs, B chooses

a random index i $← [ℓ+ 1]. B then re-samples the vector
−→
h ′ $← Zq

ℓ+1

|
−→
h [i−1]

and runs A on (I, rand,
−→
h ′).

If A outputs a second set of ℓ + 1 valid message-signature pairs, B identifies the signature matching
the hash value hi and h′i respectively in both pair (it aborts if there exists no such signature for h′i).
Denote the corresponding signature components to the ith hash query by ρi, ρ

′
i, ωi, ω

′
i, σi, σ

′
i, δi, δ

′
i (see

Figure 4.1).
If ωi ̸= ω′i and b = 1, B computes

x := (ωi − ω′i)
−1 · (ρ′i − ρi)

as its output; if δi ̸= δ′i and b = 0, B computes

w := (δi − δ′i)
−1 · (σ′i − σi)

as its output. Otherwise B aborts. (If A fails to return a set of ℓ+ 1 valid message-signature pairs either
time, B also aborts.)

B runs A twice, and performs Θ(ℓ) additional computation (in particular, B verifies up to 2(ℓ+ 1)
signatures). Plugging in tA = tU +O(Qh

2), we get that

tB = 2tU +O(Qh
2).

We now analyze the advantage of reduction B. Let ϵU be the advantage of U in the OMUF game, and
ϵ be the probability that A outputs ℓ+ 1 valid message-signature pairs. By Lemma 4.2.1 and subsequent
analysis in Section 4.2.1,

ϵ ≥ ϵU(
Qh

ℓ+1

) .
We can see that B internally runs the witness extracting algorithm Ey or Ez in Definition 4.2.30.
Therefore, by Lemma 4.2.31, we have that

AdvDLOG
B = Pr

b
$←{0,1}

(I,rand,
−→
h )

$←Ib×R×Zq
[ℓ+1]

i
$←[ℓ+1],

−→
h ′ $←Zq

[ℓ+1]

|
−→
h [i−1]

[
(I, rand,

−→
h ) ∈ Succ ∧ (I, rand,

−→
h ′) ∈ Succ

(b = 0 ∧ δi ̸= δ′i) ∨ (b = 1 ∧ ωi ̸= ω′i)

]

≥Pr


(I, rand,

−→
h ) ∈ Ĝy ∪ Ĝz

(I, rand,
−→
h ′) ∈ T×T,i(I, rand,

−→
h )

t(I, rand,
−→
h ) = i(

(b = 0 ∧ δi ̸= δ′i)
∨(b = 1 ∧ ωi ̸= ω′i)

)

 ≥ Pr


(I, rand,

−→
h ) ∈ Ĝy ∪ Ĝz

(I, rand,
−→
h ′) ∈ T×T,i(I, rand,

−→
h )

t(I, rand,
−→
h ) = i(

(b = 0 ∧ × = z ∧ δi ̸= δ′i)
∨(b = 1 ∧ × = y ∧ ωi ̸= ω′i)

)


=Pr

 (b = 0 ∧ × = z ∧ δi ̸= δ′i)
∨(b = 1 ∧ × = y ∧ ωi ̸= ω′i)

∣∣∣∣∣∣∣
(I, rand,

−→
h ) ∈ Ĝy ∪ Ĝz

(I, rand,
−→
h ′) ∈ T×T,i(I, rand,

−→
h )

t(I, rand,
−→
h ) = i


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· Pr

 (I, rand,
−→
h ) ∈ Ĝy ∪ Ĝz

(I, rand,
−→
h ′) ∈ T×T,i(I, rand,

−→
h )

t(I, rand,
−→
h ) = i


We now lower-bound the first term, where we abbreviate the event (I, rand,

−→
h ) ∈ Ĝy ∪ Ĝz ∧

(I, rand,
−→
h ′) ∈ T×T,i(I, rand,

−→
h ) ∧ t(I, rand,

−→
h ) = i as E(I, rand,

−→
h ):

Pr
b

$←{0,1}
(I,rand,

−→
h )

$←Ib×R×Zq
[ℓ+1]

i
$←[ℓ+1],

−→
h ′ $←Zq

[ℓ+1]

|
−→
h [i−1]

[
(b = 0 ∧ × = z ∧ δi ̸= δ′i)
∨(b = 1 ∧ × = y ∧ ωi ̸= ω′i)

∣∣∣∣ E(I, rand,
−→
h )

]

=Pr

[
b = 1 ∧ × = y

ωi ̸= ω′i

∣∣∣∣ E(I, rand,
−→
h )

]
+ Pr

[
b = 0 ∧ × = z

δi ̸= δ′i

∣∣∣∣ E(I, rand,
−→
h )

]
=Pr[b = 1] · Pr

[
× = y ∧ ωi ̸= ω′i

∣∣∣ b = 1 ∧E(I, rand,
−→
h )

]
+ Pr[b = 0] · Pr

[
× = z ∧ δi ̸= δ′i

∣∣∣ b = 0 ∧E(I, rand,
−→
h )

]
=
1

2

(
Pr
[
× = y ∧ ωi ̸= ω′i

∣∣∣ b = 1 ∧E(I, rand,
−→
h )

]
+Pr

[
× = z ∧ δi ̸= δ′i

∣∣∣ b = 0 ∧E(I, rand,
−→
h )

])
=
1

2

(
Pr[× = y] · Pr

[
ωi ̸= ω′i

∣∣∣ b = 1 ∧ × = y ∧E(I, rand,
−→
h )

]
+Pr[× = z] · Pr

[
δi ̸= δ′i

∣∣∣ b = 0 ∧ × = z ∧E(I, rand,
−→
h )

])
=
1

2

(
Pr[× = y] · Pr

[
(I, rand,

−→
h ′) ∈ A×T,i(I, rand,

−→
h )

∣∣∣∣ b = 1 ∧ × = y

∧E(I, rand,
−→
h )

]
+Pr[× = z] · Pr

[
(I, rand,

−→
h ′) ∈ A×T,i(I, rand,

−→
h )

∣∣∣∣ b = 0 ∧ × = z

∧E(I, rand,
−→
h )

])
≥1

2

(
Pr[× = y] ·

(
1

2
− 1

q

)
+ Pr[× = z] ·

(
1

2
− 1

q

))
=

(
1

4
− 1

2q

)
· (Pr[× = y] + Pr[× = z]) =

1

4
− 1

2q
,

where the inequality is due to the following: since (I, rand,
−→
h ) ∈ Ĝy ∪ Ĝz, we have that∣∣∣A×T,i(I, rand,

−→
h )
∣∣∣ ≥ 1

2

∣∣∣T×T,i(I, rand,
−→
h )
∣∣∣− qℓ−i+1.

Since we conditioned on (I, rand,
−→
h ′) ∈ T×T,i(I, rand,

−→
h ), the probability in question is∣∣∣A×T,i(I, rand,

−→
h )
∣∣∣∣∣∣T×T,i(I, rand,

−→
h )
∣∣∣ ≥ 1

2
− qℓ−i+1∣∣∣T×T,i(I, rand,

−→
h )
∣∣∣ ≥ 1

2
− qℓ−i+1

qℓ−i+2
=

1

2
− 1

q
.
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In the following we denote by Ĝb the set Ĝy if b = 1 and the set Ĝz if b = 0. Plugging the result
back into the previous lower bound of B’s advantage yields

AdvDLOG
B ≥

(
1

4
− 1

2q

)
· Pr

 (I, rand,
−→
h ) ∈ Ĝb

(I, rand,
−→
h ′) ∈ T×T,i(I, rand,

−→
h )

t(I, rand,
−→
h ) = i


=

(
1

4
− 1

2q

)
· Pr

[
(I, rand,

−→
h ′) ∈ T×T,i(I, rand,

−→
h )

∣∣∣∣∣ (I, rand,
−→
h ) ∈ Ĝb

t(I, rand,
−→
h ) = i

]
· Pr

[
(I, rand,

−→
h ) ∈ Ĝb

]
· Pr

[
t(I, rand,

−→
h ) = i

∣∣∣(I, rand,−→h ) ∈ Ĝb

]
≥
(
1

4
− 1

2q

)
·
( ϵB×

T

16(ℓ+ 1)
− 2

q

)
·

3ϵB×
T

128(ℓ+ 1)
· 1

ℓ+ 1

(where the last inequality is due to Lemma 4.2.48 and Lemma 4.2.49). Plugging in ϵB×
T
≥ ϵ

96 for

ϵ ≥
432

(
1− 1

(ℓ+1)2

)
q (see Lemma 4.2.37) and ϵ = ϵU

(Qh
ℓ+1)

yields the theorem statement.

4.4 Extension to Multiple Tags

Theorem 4.4.1. Let U be an adversary against ℓ-OMUFAO that runs in time tU, closes at most
ℓinfo signing sessions per tag info, closes at most ℓ signing sessions in total, and queries at most Qinfo

tags info to oracle H∗. Let AdvOMUFAO

Qinfo,ℓinfo,U
be U’s advantage. Then there exists a reduction B against

1-info-OMUFAO that runs in time tB ≈ tU and makes at most ℓinfo signing queries and has advantage

Advℓinfo-1-info-OMUFAO

B ≥
Advℓ−OMUFAO

Qinfo,ℓinfo,A
− ℓ

q

Qinfo
.

The proof of this theorem mostly follows that in [AO00].

Proof. Without loss of generality, assume that U’s queries to H∗ are all distinct. We first describe a
game-hop.

G0: This is the original ℓ-OMUFAO game.

G1: This game outputs 0 if U outputs a valid tuple (m, sig, info) where info has never been queried to
H∗.

Claim 4.4.2.
∣∣Pr[GU

0 = 1]− Pr[GU
1 = 1]

∣∣ ≤ ℓ
q .

Proof. Let Valid be the event that U outputs a valid tuple (m, sig = (ρ, ω, σ, δ), info) where info has
never been queried to H∗; G0 and G1 are identical unless Valid happens. For each output (m, sig, info)
of U, if H∗(info) has never been queried, z = H∗(info) is a random element in G independent of all
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other random variables in U’s view. Hence, H(gρyω,gσzδ, z,m) is a random integer in Zq, and the
probability that it equals ω+ δ is 1/q. Since there are at most ℓ such output tuples in total, we have that

Pr[Valid] ≤ ℓ

q
,

and the claim follows.

The reduction B against 1-info-OMUFAO behaves as follows.

Setup: On input a public key pk = y, B forwards it to U and samples J $← [Qinfo] (a guess that U’s
J-th H∗ query is part of its final output).

Online Phase: B answers signing and hash queries as follows.

Queries to H∗: For the J-th query infoJ to H∗, B forwards the query to its challenger and
forwards the response back to U. For any other query info, B lazily samples winfo

$← Zq and
sets H∗(info) := gwinfo .

Queries to H: B forwards these queries to its challenger and forwards the responses back to U.

Queries to sign1: On input info, if info = infoJ , B forwards the query to its challenger and
forwards the response back to U. Otherwise B behaves as the z-side signer. That is, it
increments the session id sid, sets infosid := info, samples csid, rsid, vsid

$← Zq, and sets
a := ycsid · grsid and b := gvsid . It saves the internal state csid, rsid, vsid and outputs sid,a,b
to U.

Queries to sign2: On input (sid, e), B checks if infosid = infoJ . If so, it forwards the query to
its challenger. Otherwise it computes dsid := e− csid and ssid := vsid − dsidwinfo. It outputs
csid, rsid, dsid, ssid to U.

Output determination: When U outputs a list of signatures (mi, sigi, infoi)
ℓ+1
i=1 , B checks that all info

were queried to H∗ by U. If so, B outputs all (mi, sigi, infoi) tuples with infoi = infoJ . Otherwise
B aborts.

We now analyze the advantage of the reduction B. Due to the witness-indistinguishability of the
scheme (see Lemma 4.2.21 in Section 4.2.4), B simulates game G1 perfectly to U. If U wins G1, there
must be one tag for which U has output more signatures than closed signing sessions. By the definition
of G1, this tag was queried to H∗ by U. Therefore, with probability 1

Qinfo
, this tag is infoJ .

We conclude that

Advℓinfo-1-info-OMUFAO

B ≥ Pr[GU
1 = 1]

Qinfo
≥

Pr[GU
0 = 1]− ℓ

q

Qinfo
=

Advℓ−OMUFAO

Qinfo,ℓinfo,A
− ℓ

q

Qinfo
.
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Chapter 5

Abe’s (Partially) Blind Signature
Scheme

In this chapter, we revisit Abe’s blind signature scheme [Abe01]. The original paper by Abe is known to
contain a flaw in the forking-based proof of one-more unforgeability. This was pointed out by Ohkubo
and Abe [OA03] who gave a proof in the GGM instead.

This chapter is mostly based on [KLX22a] with some improvements from a follow-up work [KLR23a].
We first describe a natural extension of Abe’s scheme to the partially blind setting in Section 5.1. Namely,
instead of obtaining the public key part z by hashing the other public key elements g,h,y, we additionally
include the tag info making z a tag key as in the scheme by Abe and Okamoto discussed in Chapter 4.
The original scheme can be obtained by leaving the tag empty. Like the scheme by Abe and Okamoto
[AO00], Abe’s scheme (and our partially blind variant) heavily relies on the OR-proof technique. However,
to avoid vulnerability to the ROS attack, the scheme uses what we call linking components, that is, in
each session the signer samples a new value z1 through a random oracle and computes z2 = z/z1. From
the signer’s side, the protocol is a proof of knowledge of the discrete logarithm of the public key part y
to g (this is the branch used during normal signing) or of z1 to g and z2 to the public key part h (this
branch can only be used by a reduction that has control over the random oracles used to generate z
and z1). To achieve (computational) blindness, the user blinds the values z and z1 into ζ = zγ and
ζ1 = zγ1 for some γ $← q. This also sets ζ2 = zγ2 = ζ/ζ1. With the help of the signer, the user generates
a signature that serves as a Fiat-Shamir style proof of knowledge of the discrete logarithm of y to g or
ζ1 to g and ζ2 to h and ζ to z (the last part the user generates without the signer’s help as it knows γ).

We then turn to proving partial blindness of the scheme in Section 5.2. Partial blindness holds unter
the Decisional Diffie-Hellman assumption (DDH) in the underlying group in the ROM - the algebraic
group model is not needed for this proof.

The main result of this chapter is the proof of one-more unforgeability which we provide in Section 5.3.
We tightly prove OMUF under the Discrete Logarithm assumption in the AGM + ROM. Like the proof
by Abe [Abe01], we proceed in two steps. First, we prove the so-called restrictive blinding lemma in
Section 5.3.3 which states that it is infeasible for the adversary to come up with its own values for ζ and
ζ1 such that they are not linked to a signing session We then turn to the main theorem in Section 5.3.4
which shows full one-more unforgeability of Abe’s blind signature scheme where now we can rely on
the fact that since the adversary cannot come up with its own linking components, there must be two
signatures linked to the same session.
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After having proven the full concurrent security in the AGM, we briefly sketch how the forking-based
technique from Chapter 4 can be applied to the partially blind variant of Abe’s scheme in Section 5.4.
We note that the same strategy for extending a single tag proof to a multi-tag proof as in the previous
chapter does not work, and thus we turn to a slightly adapted proof strategy where the deterministic
wrapper directly deals with all the tags.

5.1 Adaption of Abe’s Blind Signature Scheme to Allow Partial
Blindness

We begin by describing an adaption of Abe’s blind signature scheme BSA [Abe01] to the partially blind
setting. A figure depicting an interaction between signer and user can be found in Figure 5.1 . Let again
G be a group of order q with generator g described by public parameters pp. Let H1 : {0, 1}∗ → G \ {ϵ},
H2 : {0, 1}∗ → G \ {ϵ}, H3 : {0, 1}∗ → Zq be hash functions.

• KeyGen : On input pp, KeyGen samples h $← G, x $← Zq and sets y ← gx. It sets sk ← x,
pk← (g,h,y) and returns (sk, pk).

• Sign1 : On input sk, info, Sign1 samples rnd $← {0, 1}λ and u, d, s1, s2
$← Zq. It computes

z← H1(pk, info), z1 ← H2(rnd), z2 ← z/z1, a← gu, b1 ← gs1 · zd1, b2 ← hs2 · zd2. It returns a
commitment (rnd,a,b1,b2) and a state stS = (u, d, s1, s2, info).

• Sign2 : On input a secret key sk, a challenge e, and state stS = (u, d, s1, s2, info), Sign2 computes
c← e− d mod q, r ← u− c · sk mod q and returns the response (c, d, r, s1, s2).

• User1 : On input a public key pk and a commitment (rnd,a,b1,b2), a tag info, and message
m, User1 does the following. It samples γ $← Z∗q and τ, t1, t2, t3, t4, t5

$← Zq. Then, it computes
z← H1(pk, info), z1 ← H2(rnd), α ← a · gt1 · yt2 , ζ ← zγ , ζ1 ← zγ1 , ζ2 ← ζ/ζ1. Next, it sets
β1 ← bγ

1 · gt3 · ζt41 , β2 ← bγ
2 · ht5 · ζt42 , η ← zτ , and h← H3(ζ, ζ1, α, β1, β2, η,m, info). Finally,

it computes a challenge e ← h − t2 − t4 mod q, the state StU ← (γ, τ, t1, t2, t3, t4, t5,m) and
returns e, StU .

• User2 : On input a public key pk, a response (c, d, r, s1, s2) and a state (γ, τ, t1, t2, t3, t4, t5,m),
User2 first computes ρ← r + t1, ω ← c+ t2, σ1 ← γ · s1 + t3, σ2 ← γ · s2 + t5, and δ ← d+ t4.
Then, it computes µ← τ − δ · γ and h← H3(ζ, ζ1,g

ρyω,gσ1ζδ1 ,h
σ2ζδ2 , z

µζδ,m). It returns the
signature σ ← (ζ, ζ1, ρ, ω, σ1, σ2, δ, µ) if δ + ω = h; otherwise, it returns ⊥.1

• Verify : On input a public key pk, a signature (ζ, ζ1, ρ, ω, σ1, σ2, δ, µ) and a message m, Verify
returns 0 if ζ = ζ1 = ϵ.2 It then computes first z← H1(pk, info) and then h := H3(ζ, ζ1,g

ρyω,
gσ1ζδ1 ,h

σ2ζδ2 , z
µζδ,m, info). It returns 1 if δ + ω = h; otherwise, it returns 0.

We note that the only change we made to Abe’s scheme is that in our variant, the z part of the
public key is derived as a hash of pk and a tag info instead of as a hash of the other elements of the
public key. It is easy to see that by using an empty info this yields the original scheme and thus our
proofs about the adapted scheme also apply to the original.

1We note that the check for h = ω + δ implicitly checks that c+ d = e as well as a = ycgr,b1 = zd1g
s1 ,b2 = zd2h

s2 ,
i.e. it checks that the output of Sign2 was valid.

2This is necessary as otherwise there is a trivial attack: pick ω, ρ $← Zq, set α = gρyω, then pick σ1, σ2, µ
$← Zq

compute h = H3(ζ, ζ1, α,gσ1 ,hσ2 , zµ, info). Then set δ = h− ω and output the signature (ζ, ζ1, ρ, ω, σ1, σ2, δ, µ)
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Signer User
sk = x
pk = (g,h,y = gx) pk = (g,h,y)
info m, info
z← H1(pk, info)
u, d, s1, s2

$← Zq

rnd $← {0, 1}λ
z1 ← H2(rnd), z2 ← z/z1
a← gu

b1 ← gs1 · zd1
b2 ← hs2 · zd2

a,b1,b1−−−−−→ τ, t1, t2, t3, t4, t5
$← Zq

z1 ← H2(rnd)
α← a · gt1 · yt2

ζ ← zγ , ζ1 ← zγ1 , ζ2 ← ζ/ζ1
β1 ← bγ

1 · gt3 · ζt41
β2 ← bγ

2 · ht5 · ζt42
η ← zτ

h← H3(ζ, ζ1, α, β1, β2, η,m, info)
x←− e← h− t2 − t4

c← e− d
r ← u− c · x

c,r,d,s1,s2−−−−−−→ ρ← r + t1, ω ← c+ t2
σ1 ← γ · s1 + t3
σ2 ← γ · s2 + t5

δ ← d+ t4
µ← τ − δ · γ

δ + ω
?
= H3(ζ, ζ1,g

ρyω,gσ1ζδ1 ,h
σ2ζδ2 , z

µζδ,m, info)
⇓

(m, (ζ, ζ1, ρ, ω, σ1, σ2, δ, µ))

Figure 5.1: Interaction between Signer and User for the partially blind version of BSA
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We note that Abe refers to z, z1, ζ, ζ1 as the tags of a signing session or signature. However, as we
are considering partial blindness, we will refer to them as the linking components. By [Abe01], the original
scheme is computationally blind under the Decisional Diffie-Hellman assumption. For completeness, we
provide a detailed proof of the partial computational blindness of our variant in Section 5.2.

5.2 Partial Blindness of the Adapted Abe Scheme

We provide a formal proof of partial blindness under chosen keys for the Abe blind signature scheme.
Abe [Abe01] proved the scheme to be blind for keys selected by the challenger.

Lemma 5.2.1. If the Decisional Diffie-Hellman problem is (t, ϵ)-hard in G, the partially blind variant
of Abe’s blind signature scheme BSA is (t,≈ 2ϵ) computationally partially blind in the random oracle
model.

Proof. We use similar techniques as [BL13a].
Game G1 The first game is identical to the blindness game from Definition 2.4.3 for Abe’s blind signature
scheme.

Setup. G1 samples b $← {0, 1}.

Simulation of oracle H1. G1 simulates H1 by lazy sampling of group elements.

Online Phase. When M outputs a public key (g,y,h) and messages m̃0 and m̃1, and tags info0, info1,
G1 verifies info0 = info1 assigns m0 = m̃b and m1 = m̃b−1

Oracle user1. works the same as described in Definition 2.4.3

Oracle user2. works the same as described in Definition 2.4.3

Simulation of H2. H2 is simulated through lazy sampling

Simulation of H3. H3 is simulated through lazy sampling

Output determination. as described in Definition 2.4.3

The second game replaces the signature for m0 by a signature that is independent of the run with the
signer.
Game G2 The second game generates the signature on m0 independently of the corresponding signing
session.

Setup. G2 samples b $← {0, 1}.

Simulation of oracle H1. G2 simulates H1 by lazy sampling of group elements.

Online Phase. When M outputs a public key (g,y,h) and messages m̃0 and m̃1 and ĩnfo0, ĩnfo1, G2

verifies that the key is well-formed and that ĩnfo0 = ĩnfo1 and aborts with output 0 if this check

fails. It further assigns m0 = m̃b and m1 = m̃b−1 as well as info0 = ĩnfo0 and info1 = ĩnfo1.

Oracle user1. For message m1, the oracle behaves the same as in G1. For message m0, it checks
that session 0 is not open yet and opens session 0. Then the game picks δ, ω, σ1, σ2, ρ, µ
uniformly at random from Zq. It further draws two random group elements ζ and ζ1 and sets
ζ2 := ζ/ζ1. It then sets H3(y

ω · gρ, ζδ1 · gσ1 , ζδ2 · hσ2 , ζδ · zµ,m0, info0) := δ + ω. It draws
e $← Zq uniformly at random and returns e as a challenge to the adversary.
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Oracle user2. For message m1, the oracle behaves the same as in G1. For message m0, on input
c, d, r, s1, s2, the game does the following checks3: e = d+ c, a0 = gr · yc, b1,0 = gs1 · zd1,0,
b2,0 = hs2 · zd2,0. It considers the produced signature to be the one generated in user1.

Simulation of H2. H2 is simulated through lazy sampling

Simulation of H3. For values not programmed in user1, G2 simulates H3 via lazy sampling

Output determination. as described in Definition 2.4.3

Claim 5.2.2. The advantage of an adversary B to tell the difference between G1 and G2 is AdvG1,G2

B =∣∣∣Pr [G1
B = 1

]
− Pr

[
G2

B = 1
]∣∣∣ ≤ AdvDDH

B′ .

Proof. We provide a reduction B′ that receives a random-generator DDH challenge (W,X,Y,Z) and
simulates either G1 or G2 to the adversary. During the first phase of the online phase, the reduction
programs the random oracle H1 to return values Wfi fi ∈ Zq. For simulation of H2, the reduction
chooses exponents gi

$← Zq and returns values Xgi , yielding uniformly random values from the group
G. In user1 for m0, when the adversary sends the commitment which contains a random string rnd to
be queried to the oracle H2, the reduction identifies the g = gi that was used as the random exponent
for z1 = Xg. Denote further by f the fi used for generation of z = H1(pk, info1). It sets ζ = Yf and
ζ1 = Zf ·g. The reduction then proceeds to generate a signature by programming the random oracle H3

as described in G2. For m1, the reduction participates honestly in the signing protocol. In user2, for
m0, the reduction checks that the adversary produces a valid signing transcript as described in G2. If
both interactions yield valid signatures (i.e. the adversary produced a valid transcript for m0 and a valid
signature for m1), the reduction outputs both signatures, otherwise ⊥. If the adversary outputs it was
playing game G1, the reduction outputs 0, otherwise it outputs 1.

We argue that if the challenge is a Diffie-Hellman tuple, the reduction simulates G1 perfectly. For a
tuple W,Wa,Wb,Wab, the tuple z = Wf , z1 = Wa·f · gf , ζ = Wb·f , ζ1 = Wa·b·f ·g is a valid Diffie-
Hellman tuple w.r.t generator Wf . Furthermore, the user tags ζ and ζ1 can be computed from z and z1
using blinding factor γ = b. Furthermore, for any c, d, r, s1, s2 and signature components ω, δ, ρ, σ1, σ2, µ
there are unique choices of t1 = ρ−r, t2 = ω−c, t3 = σ1−γ ·s1, t4 = δ−d, t5 = σ2−γ ·s2, τ = µ+δ ·γ
that explain the signature in combination with the transcript. Thus, the produced combination of
signature and transcript is identically distributed as an honestly generated signature.

If the challenge is not a Diffie-Hellman tuple, then the reduction simulates G2 perfectly as the linking
components ζi, ζ1,i look like random group elements and the reduction computes the same steps as G2

to generate the signatures and its outputs to the adversary.

We describe the final game G3 where both signatures are independent from the runs with the signer.
Game G3

Setup. G3 samples b $← {0, 1}.

Simulation of oracle H1. G3 simulates H1 by lazy sampling of group elements.

Online Phase. When M outputs a public key (g,y,h) and messages m̃0 and m̃1, G3 verifies that the
key is well-formed and checks that info0 = info1 and aborts with output 0 if this check fails. It
further assigns m0 = m̃b and m1 = m̃b−1

3We note that these checks need to be done explicitly here, as they are no longer implicitly performed through checking
that h = ω + δ,
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Oracle user1. For session b′, the game checks that session b′ is not open yet and opens session
b′. It sets z ← H1(info). Then the game picks δ, ω, σ1, σ2, ρ, µ uniformly at random from
Zq. It further draws two random group elements ζ and ζ1 and sets ζ2 := ζ/ζ1. It then sets
H3(y

ω · gρ, ζδ1 · gσ1 , ζδ2 · hσ2 , ζδ · zµ,mb′ , infob′) := δ + ω. It draws e $← Zq uniformly at
random and returns e as a challenge to the adversary.

Oracle user2. For both sessions (denoted by i = 0, 1), on input ci, di, ri, s1,i, s2,i, the game does

the following checks: ei = di + ci, ai = gri · yci , b1,i = gs1,i · zdi
1,i, b2,i = hs2,i · zdi

2,i. It
considers the output signature to be the one generated for this session in user1.

Simulation of H2. H2 is simulated through lazy sampling

Simulation of H3. For values not programmed in user1, G2 simulates H3 via lazy sampling

Output determination. as described in Definition 2.4.3

Claim 5.2.3. The advantage of an adversary B to tell the difference between G1 and G2 is AdvG2,G3

B′′′ =

Pr
[
G2

B′′′
= 1
]
− Pr

[
G3

B′′′
= 1
]
≤ AdvDDH

B′′ .

Proof. Follows along the same lines as Claim 5.2.2, embedding the DDH challenge in the signature for
m1 this time.

In game G3, the adversary cannot win, as both signatures are completely independent from the two
runs. As game G3 needs to program the random oracle H3 twice to generate the signatures (this fails
with probability at most 2Qh

q4·2|m0| , i.e. if the adversary has made the exact same requests before), we get

the following overall advantage of

AdvBLINDBSA

M =
2 ·Qh

q4 · 2|m0|
+AdvDDH

B′ +AdvDDH
B′′

5.3 One-More-Unforgeability

In the following, we provide a proof for the one-more-unforgeability. Similar to [Abe01] we do this in two
steps. First, we show that it is infeasible for an adversary to generate a signature that does not use a
tag that corresponds to a closed signing session. (Note that the scheme is only computationally blind,
and an unbounded algorithm can link signatures and sessions since (z, z1, ζ, ζ1) forms a DDH tuple.
We call such tuples linking components, and refer to z, z1 as “signer-side” and ζ, ζ1 as “user-side”.)
This corresponds to Abe’s restrictive blinding lemma. Then, as the main theorem, we show that it is
also infeasible for an adversary to win ℓ-OMUF by providing two signatures corresponding to the same
closed signing session.

Our techniques. The main idea for both the lemma and the theorem is to use the algebraic represent-
ations of the group elements submitted to the random oracle H3 in combination with the corresponding
signature to compute the discrete logarithm of either y or h. This fails either when the adversary has
not made a hash query for the signature in question, or when the representation of the hash query does
not contain more information than the signature, i.e., the exponents in the representation already match
the signature. We show that both of these cases only occur with a negligible probability. We simulate
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the protocol in two different ways. One way is to use the secret key x like an honest signer and try to
extract the discrete logarithm of h or one of the z (as we will compute all the z using h the latter two
cases are equivalent). The other way is to program the random oracles H1 and H2 so that the reduction
can use the discrete logarithms of z, z1, z2 to simulate the other side of the OR-proof for extraction of
the secret key. We will show that the reduction always has an efficient way to identify the ‘forgery’, i.e.
a signature that was not generated using the honest singing algorithm. We elaborate on this in the next
part. This efficient identification, in combination with not having to run the protocol twice for forking,
renders a tight proof.

Comparison to the original standard model proof by Abe [Abe01]. We briefly recall that similar to
our proof, the original proof also shows the restrictive blinding lemma first, which, shows that an adversary
that wins the OMUF game and at the same time produces a signature where dlogζ ζ1 ̸= dlogz z1,i for
all sessions i, can be used to solve the discrete logarithm problem. The proof uses the forking technique,
i.e. it rewinds the adversary to obtain a second set of signatures with different hash responses to H3.
The original proof of the restrictive blinding lemma also uses two signers, one that embeds in y and
signs using the z-side witness, another that embeds in h and signs using the secret key x. These two
signers are indistinguishable for a single run, however, two forking runs using the same witness reveal
the witness being used internally. In particular, a forking pair of runs using the secret key x to sign,
cannot be reproduced by a signer that does not know the x-side witness. Therefore, the distribution
of signatures obtained from forking runs, in particular the components δ and ω may depend on which
witness was used internally. We note that for example in ‘honestly generated’ signatures (i.e. when the
adversary followed the User1 and User2 algorithms to generate signatures), the a pair of signatures at
the forking hash query reveals exactly the same witness as the signer used to sign while forking, so it is
not clear why a similar thing may not also hold for ‘dishonestly generated’ signatures.

As our reduction for the restrictive blinding lemma works in the AGM, we can avoid the rewinding
step. The adversary submits representations of all the group elements contained in a hash query, which
gives the reduction information that would otherwise be obtained from the previous run. As the scheme
is perfectly witness indistinguishable, the representations submitted by the adversary are independent of
the witness used internally. We show in Claim 5.3.10, that even a so-called reduced representation that
does use factors that are only determined after all signing sessions were closed, is likely to reveal enough
information for the reduction to be able to solve the discrete logarithm problem.

5.3.1 The z-side Signer

We describe an alternate signing procedure for the scheme from Section 5.1 that will come in handy
during the proof of one-more unforgeability. This z-side signer has knowledge of the discrete logarithms
of all zi, z1,i as well as of h, but it does not need the secret key x to generate signatures. We will specify
later on how our reduction(s) can obtain knowledge of these values and just write dlog here to denote
the various discrete logarithms.

Sign1 On input info, sample c, r, v1, v2
$← Zq, sample rnd $← {0, 1}λ, set a = gryc, b1 = gv1 , b2 = gv2 ,

z1 = H2(rnd), z = H1(pk, info). Return (rnd,a,b1,b2) stS = (c, r, v1, v2, z, z1).

Sign2 on input stS = (c, r, v1, v2, z, z1) along with e, compute d = e − c, s1 = v1 − d · dlogg z1 and
s2 = v2 − d · dlogh(z/z1). Output (c, d, r, s1, s2).

We show also an interaction between the z-side signer and the user in Figure 5.2.
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Signer User
pk = (g,h,y) pk = (g,h,y)
info m, info
z← H1(pk, info) z← H1(pk, info)
c, r, v1, v2

$← Zq

rnd $← {0, 1}λ
z1 ← H2(rnd), z2 ← z/z1
a← gryc

b1 ← gv1

b2 ← hv2
a,b1,b1−−−−−→ τ, t1, t2, t3, t4, t5

$← Zq

z1 ← H2(rnd)
α← a · gt1 · yt2

ζ ← zγ , ζ1 ← zγ1 , ζ2 ← ζ/ζ1
β1 ← bγ

1 · gt3 · ζt41
β2 ← bγ

2 · ht5 · ζt42
η ← zτ

h← H3(ζ, ζ1, α, β1, β2, η,m, info)
x←− e← h− t2 − t4

c← e− c
s1 ← v1 − d · dlogg z1
s2 ← v2 − d · dlogh z2

c,r,d,s1,s2−−−−−−→ ρ← r + t1, ω ← c+ t2
σ1 ← γ · s1 + t3
σ2 ← γ · s2 + t5

δ ← d+ t4
µ← τ − δ · γ

δ + ω
?
= H3(ζ, ζ1,g

ρyω,gσ1ζδ1 ,h
σ2ζδ2 , z

µζδ,m, info)
⇓

(m, (ζ, ζ1, ρ, ω, σ1, σ2, δ, µ))

Figure 5.2: How to sign using the z-side witnesses in BSA. We will describe how the reduction can
obtain the necessary discrete logarithms in the games where it needs them.
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5.3.2 Useful Lemmata

Before we turn to the proof of one-more unforgeability, we want to prove some lemmata that will come
in handy in the following.

The first is the ‘template proof’ claim adapted from [KLR23a, Definition D.1 and Claim D.1].

Lemma 5.3.1 (Template Proof Lemma). Let X : Zq → Zq and Y : Zq → Zq be two functions defined as

X (Ω) := C0 + C1 · Ω

and

Y(∆) :=
C2 + C4 ·∆
C3 + C5 ·∆

such that C4/C3 ̸= C1 or C5 ̸= 0.
Let ξ′ $← Zq be a value sampled uniformly at random after the values C1,...,5 are fixed. It then holds

for any value ξ ∈ Zq that

Pr
Ω,∆

$←Zq

s.t. Ω+∆=ξ

[X (Ω) + Y(∆) = ξ′] ≤ 5

q
.

Proof. We distinguish two cases depending on which one of the values Ω and ∆ is chosen uniformly at
random. However, since these cases are analogous, we only prove the claim assuming that Ω is random.
By putting the definitions of X and Y, we get

C0 + C1 · Ω+
C2 + C4 ·∆
C3 + C5 ·∆

= ξ′.

As ∆ = ξ − Ω, we have

C0 + C1 · Ω+
C2 + C4 · (ξ − Ω)

C3 + C5 · (ξ − Ω)
= ξ′.

We make the following case distinction

1. C1 = 0. In this case, we obtain that the event X (Ω)+Y(∆) = ξ′ occurs iff (C0C5+C4−ξ′C5) ·∆ =
ξ′C3 − C2 − C0C3. As C0,...,5 are fixed before ξ′ is sampled, the probability for the righthand side
becoming 0 is 1

q . Therefore, with probability 1− 1
q , this linear equation has exactly one solution.

As ∆ gets sampled uniformly at random after ξ′ is sampled, the probability of X (Ω) + Y(∆) = ξ′

in this case is ≤ 2
q . We therefore assume in the following that C1 ̸= 0.

2. C5 = 0. In this case, we can simplify the event to the linear equation (C1−C4/C3)Ω+C0+C2/C3+
C4/C3 · ξ = ξ′. This linear equation has one solution for Ω after ξ, ξ′ have been fixed as C5 = 0
implies C4/C3 ≠ C1 As Ω is sampled after ξ′ and ξ have been fixed, the probability of the event
X (Ω) + Y(∆) = ξ′ occurring in this case is 1

q .

3. For the last case, we know C1 ̸= 0 and C5 ̸= 0. Thus By rearranging this equation, we get

V1 · Ω2 + V2 · Ω+ V3 = 0,

where V1 = −C1 ·C5,V2 = C1 ·(C3+C5 ·ξ)−C4−C5 ·(C0−ξ′), V3 = (C0−ξ′)·(C3+C5 ·ξ)+C2+C4 ·ξ.
This quadratic equation has at most two solutions for Ω. In particular, it must hold that either

Ω =
−V2 +

√
V2
2 − 4 · V1 · V3

2 · V1
, (5.1)
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or

Ω =
−V2 −

√
V2
2 − 4 · V1 · V3

2 · V1
. (5.2)

Thus, if X (Ω) + Y(∆) = ξ′ occurs, the values Ci for i ∈ {0, . . . , 5} ξ, and ξ′ must be chosen,
such that at least one of the equations (5.1) and (5.2) holds. However, the value C0, . . . , C5, ξ,
and ξ′ are fixed and cannot be influenced after Ω gets fixed, hence satisfying these equations is
equivalent to guessing the value of Ω in two attempts, which is achievable with probability at most
2
q , because Ω is chosen uniformly at random in Zq.

In summary, this yields that X (Ω) + Y(∆) = ξ′ occurs with probability at most 5
q

Additionally, we introduce a second ‘template proof’ style lemma. This will be useful when arguing
about hidden algebraic decompositions of group elements.

Lemma 5.3.2 (Hidden Decomposition Lemma). Let 0 ̸= c1, c2 ∈ Zq. Fix linear polynomials L1, L2 over
Zq in two variables W1,W2. It holds that either

1. W1 = L1(W1,W2) mod (c1 ·W1 +W2 − c2)

or W2 = L2(W1,W2) mod (c1 ·W1 +W2 − c2) (as polynomials).

2. or

Pr
w1,w2

$←Zq

c1w1+w2=c2

[w1 = L(w1,w2) ∨w2 = L(w1,w2)] ≤
2

q

Proof. Assume case 1 does not occur (otherwise we’re done). We want to apply the Schwartz-Zippel
Lemma (see Lemma 2.6.6). We show this for W1, the other case is symmetrical. To this end, we replace
W2 by c2 − c1 ·W1 in L1, name this polynomial L′1 (L′1 is a polynomial only in W1). As we assumed
case 1 does not occur, it how holds that still W1 ̸= L1(W1) as polynomials. It holds that

Pr
w1

$←Zq

[w1 = L1(w1)] = Pr
w1,w2

$←Zq

c1w1+w2=c2

[w1 = L(w1,w2)]

and by Lemma 2.6.6 it further holds that

Pr
w1

$←Zq

[w1 = L1(w1)] =
1

q
.

A union bound yields case 2.

5.3.3 The Restrictive Blinding Lemma

We first provide a reduction for the restrictive blinding lemma in the AGM + ROM. We therefore define
the game ℓ-RB-OMUFBSA as follows:

Setup: Sample keys via (sk = x, pk = (g,h,y)) $← BSA.KeyGen(pp).
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Online Phase: M is given access to oracles sign1, sign2 that emulate the behavior of the honest signer
in BSA. It is allowed to arbitrarily many calls to sign1 and allowed to make ℓ queries to sign2.
In addition, it is given access to random oracles H1, H2, H3. Let ℓinfo denote the number of
interactions that M completes with oracle sign2 in this phase for each tag info.

Output Determination: When M outputs a list L of tuples (m1, sig1, info1), . . . ,
(mk, sigk, infok), proceed as follows:

• If the list contains a tuple (m, sig, info) s.t. Verify(pk,m, sig, info) = 0, or does not contain
ℓinfo + 1 pairwise-distinct tuples for some tag info, return 0.

• Let zj , z1,j denote the values of z and z1 used in the j-th invocation of sign1. If there exists
(m, sig, info) ∈ L with signature components ζ ̸= ζ1 (equivalently, ζ2 ≠ ϵ), s.t. for all j with

H1(pk, info) = zj whose sessions were closed with an invocation of sign2, ζ
dlogzj

z1,j ̸= ζ1,
then return 1. Otherwise, return 0. We call the first signature in L with these mismatched
linking components the special signature.

Define AdvRB-OMUF
M,ℓ,BSA ← Pr[ℓ-RB-OMUFM

BSA = 1]. We show that an algebraic forger M that wins
ℓ-RB-OMUFBSA can be used to solve the discrete logarithm problem. This reduction is tight and does
not require rewinding of the adversary.

Lemma 5.3.3 (Restrictive Blinding, see Lemma 3 in [Abe01]). Let M be an algebraic algorithm that
runs in time tM, makes at most ℓ queries to oracle Sign2 in RB-OMUFBSA and at most (total) Qh

queries to H1, H2, H3. Then, in the random oracle model, there exists an algorithm B s.t.

AdvDLOG
B ≥

(
1− 4

q

)
1

2
AdvRB-OMUF

M,ℓ,BSA − ℓ+ 1

q

−AdvDLOG
R1

−AdvDLOG
R2

+AdvDLOG
R3

− 15Qh + 20

q

Proof. Let M be as in the lemma statement. As before, we assume w.l.o.g. that M makes exactly ℓ
queries to Sign2 and outputs a list of ℓ + 1 tuples. The proof goes by a series of games, which we
describe below.

Game 0. This is ℓ-RB-OMUFBSA.

Game 1. To define Game 1, we first define the following event E1. E1 happens if M returns
a list L of ℓ + 1 valid signatures on distinct messages m1, ...,mℓ and there exists (m, sig, info) =
(m, (ζ, ζ1, ρ, ω, σ1, σ2, δ, µ) , info) ∈ L s.t. for all j whose sessions were closed with an invocation

of sign2, ζ
dlogzj

z1,j ≠ ζ1 and M did not make a query of the form H3(ζ, ζ1,g
ρyω,gσ1ζδ1 ,h

σ2ζδ2 ,
zµζδ,m, info). In the following, we refer to the first tuple (m, sig, info) ∈ L as the special tuple for
convenience. Game 1 is identical to Game 0, except that it aborts when E1 happens.

Claim 5.3.4. Pr[E1] =
ℓ+1
q

Proof. The only way for an adversary to succeed without querying H3 for the signature is by guessing
the hash value h = ω + δ. Since there are ℓ + 1 valid signatures in L, the probability of guessing h
correctly for one of them is ℓ+1

q .

By the claim, we have that AdvGame 1
M ≥ AdvGame 0

M − ℓ+1
q .
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Game 2. Game 2 is identical to Game 1, except that it keeps track of the algebraic representations of
group elements submitted to H3 by M and aborts if a certain condition applies that, looking forward,
will make it impossible for the reduction to extract the discrete logarithm.

Simplifying Notations. For each query to H3, the adversary M submits a set of group elements
ζ, ζ1, α, β1, β2, η along with a message m and info.

As M is algebraic, it also provides a representation of these group elements to the basis of elements

g,h,y,−→z ,−→a ,
−→
b1,
−→
b2,
−→z1 that it has previously obtained via calls to H1, H2, sign1, or sign2. We note

that by programming the oracles H1 and H2 the game (as well as the reduction later on) knows a
representation of its responses zi and z1,i to the base g and h. Any element a,b1,b2 that was returned
as reply to a query to sign1 can be represented as a = yc · gr,b1 = zd1 · gs1 ,b2 = zd2 · hs2 . For elements
a,b1,b1 coming from sessions that are never closed, the game closes the session on its own in the end
by sampling a random value e $← Zq and defining c and d accordingly.

Here, z1, z2 = z/z1 correspond to the call H2(rnd) made as part of answering this query to sign1.
This allows us to convert any representation provided by M into a reduced representation in the (simpler)
basis g,h,y. For a group element o, we denote this reduced representation by [o]−→

I
and its components

as g[o]−→
I
, h[o]−→

I
, y[o]−→

I
, respectively, where

−→
I ← (g,h,y). If M wins, we define the following values

for each message tag signature tuple (m, info, (ζ, ζ1, ρ, ω, σ1, σ2, δ, µ)) in the output of M where the
algebraic representations are those submitted when the first hash query to H3 corresponding to this
message tag signature tuple was made.:

ω′ := y[α]−→
I

δ′ :=
h[β1]−→I

h[ζ1]−→I

δ′′ :=
g[β2]−→I

+ x · y[β2]−→I

x · y[ζ2]−→I + g[ζ2]−→I

δ′′′ :=


g[η]−→

I
+x·y[η]−→

I
−h[η]−→

I
·w0,i,g/w0,i,h

g[ζ]−→
I
+x·y[ζ]−→

I
−h[ζ]−→

I
·w0,i,g/w0,i,h

if w0,i,h ̸= 0

h[η]−→
I

h[ζ]−→
I

if w0,i,h = 0
.

Looking forward, the ‘preliminary values’ will be used like values from a second signature would be
used in a forking based proof. That is, if there is a signature with the value ω′ ̸= ω, a reduction will be
able to efficiently compute the discrete logarithm of y and if one of the δ′, δ′′, δ′′′ ≠ δ, the reduction will
be able to compute the discrete logarithm of the z-side witness h.

However, we first note that it is not obvious to see that the values δ′, δ′′, δ′′′ are defined. In fact, an
earlier version of this proof (the one published in [KLX22a]) had to make the additional requirement here
that ζ2 ̸= ϵ where ϵ is the neutral element of the group G. We avoid this by sampling the values for
z, z1 slightly different, but it means that the proof that the preliminary values for δ are defined is a bit
more involved.

We define the following non-exclusive boolean variables that tell us which of the δ′, δ′′, δ′′′ is defined.

C1 ←h[ζ1]−→I
̸= 0

C2 ←g[ζ2]−→I + x · y[ζ2]−→I ̸= 0

C3 ← ̸ ∃γ ∈ Zq : g[ζ]−→
I
+ x · y[ζ]−→

I
= γ · w0,i,g ∧ h[ζ]−→

I
= γ · w0,i,h



5.3. ONE-MORE-UNFORGEABILITY 113

Claim 5.3.5.

Pr
w0,i,g,w0,i,h

$←Zq

w0,i,g+dlogg h·w0,i,h=dlogg zi

[∨
i

Ci = 1

]
≥ 1− 4

q
.

Proof. First of all, we note that the case ζ = ζ1 = ϵ is excluded by the verification algorithm of the
scheme. Thus, we can rule out the case that h[ζ1]−→I

= 0 ∧ g[ζ2]−→I + x · y[ζ2]−→I = 0 ∧ γ = 0. We next

consider the case that ∃γ ∈ Zq\ : g[ζ]−→
I
+ x · y[ζ]−→

I
= γ ·w0,i,g ∧ h[ζ]−→

I
= γ ·w0,i,h. If this is not the case

we are done as C3 = 1.
We distinguish two cases. First, if γ = 0, then ζ = ϵ, but as we require then ζ1 ̸= ϵ, it must hold

that either h[ζ1]−→I
̸= 0 or g[ζ2]−→I + x · y[ζ2]−→I = −

(
g[ζ1]−→I + x · y[ζ1]−→I

)
≠ 0 (recall that the representation

of ζ2 is computed as the difference of the representations of ζ and ζ1).
The second case is γ ̸= 0. In this case, we want to apply Lemma 5.3.2. We again imagine that

the game samples the values w0,j,h and w0,i,g at the end of the game such that they match the used
element zi. In particular, we set W1 to be a formal variable representing w0,i,h and W2 to be w0,i,g,
and c1 = dlogg h, and c2 = dlogg zi. In order for g[ζ2]−→I + x · y[ζ2]−→I = 0 to occur, it must hold that

g[ζ1]−→I +x ·y[ζ1]−→I = g[ζ]−→
I
+x ·y[ζ]−→

I
= γ ·w0,i,g. We thus set L1 = g[ζ1]−→I +x ·y[ζ1]−→I /γ where we interpret

g[ζ1]−→I + x · y[ζ1]−→I as a polynomial in w0,i,g. Applying Lemma 5.3.2 yields that either g[ζ1]−→I + x · y[ζ1]−→I
is of the form w0,i,g · γ, i.e. the representation of ζ1 contains zγi and then only h-components. Applying

the same lemma again using L2 =
h[ζ1]−→

I
−γ·W2

γ yields that again, either h[ζ1]−→I
= 2 · γ ·W2 which would

imply that actually ζ1 contains z2γi , a contradiction to what we already found out above, or that the
probability of ‘compensating’ for the h-component of zi using other group elements is at most 2

q .

Game 2 aborts if none of the values δ′, δ′′, δ′′′ is defined. According to Claim 5.3.5, this happens
with probability at most 4

q .

Game 3. This game aborts if there exists a signature among the ℓ+ 1 forgeries where the preliminary
value δ′′′ is defined and δ′′′ = δ.

Claim 5.3.6. If there exists a signature for which δ′′′ is defined, then there exists a reduction R1 such
that.

Pr [δ′′′ = δ] ≤ AdvDLOG
R1

+
5Qh

q

Proof. We want to apply Lemma 5.3.1 to ω′ and δ′′′. To this end, we need to define the values C1, . . . , C5
of Lemma 5.3.1 and show that either C4/C3 ̸= C1 or C5 ̸= 0.

Let sid∗ denote the number of the last4 session that is open at time of the hash query and eventually
closed such that asid∗ , b1,sid∗ or b2,sid∗ appear with a non-zero coefficient in the representations of
α, β1, β2, η, ζ, ζ1. For a group element o, we denote by a(o) the coefficient of asid∗ in the representation
of o, by b1(o) the coefficient of b1,sid∗ and by b2(o) the coefficient of b2,sid∗ . We set X (Ω)← ω′, that
is Ω = csid∗ and C0 ← y[α]−→

I
− a(α) · csid∗ and C1 ← a(α) where by a(·) we denote exponent of asid∗ in

the representation of the group element in brackets. For δ′′′ we set

C2 := h[η]−→
I
− b1(η) · dsid∗ · w1,sid∗,h + b2(η) dlogh(b1)

4by closing time
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and
C3 := b1(η) · w1,sid∗,h − dlogh(g)b2(η)(w0,sid∗,g − w1,sid∗,g)

and
C4 := h[ζ]−→

I
− b1(η) · dsid∗ · w1,sid∗,h + b2(ζ) dlogh(b1)

and
C5 := b1(ζ) · w1,sid∗,h − dlogh(g)b2(ζ)(w0,sid∗,g − w1,sid∗,g)

in the case that w0,sid∗,g = 0. We note that if b1(ζ) = 0 and b2(ζ) = 0, C5 = 0 and C4 = h[ζ2]−→I
. and

otherwise

C2 := g[η]−→
I
+ x · y[η]−→

I
− d · b2(η) · (w0,sid∗,g − w1,sid∗,g) + b1(η) dlogg(b1)

+
w0,sid∗,g

w0,sid∗,h
·
(
h[η]−→

I
− b1(η) · dsid∗ · w1,sid∗,h + b2(η) dlogh(b1)

)
and

C4 := b1(η) · w1,sid∗,h − dlogh(g)b2(η)(w0,sid∗,g − w1,sid∗,g)

+
w0,sid∗,g

w0,sid∗,h

(
b2(η) (w0,sid∗,g − w1,sid∗,g)− b1(η) dlogg h · w1,sid∗,h

)
and

C3 := g[ζ]−→
I
+ x · y[ζ]−→

I
− d · b2(ζ) · (w0,sid∗,g − w1,sid∗,g) + b1(ζ) dlogg(b1)

+
w0,sid∗,g

w0,sid∗,h
·
(
h[ζ]−→

I
− b1(ζ) · dsid∗ · w1,sid∗,h + b2(ζ) dlogh(b1)

)
and

C5 := b1(ζ) · w1,sid∗,h − dlogh(g)b2(ζ)(w0,sid∗,g − w1,sid∗,g)

+
w0,sid∗,g

w0,sid∗,h

(
b2(ζ) (w0,sid∗,g − w1,sid∗,g)− b1(ζ) dlogg h · w1,sid∗,h

)
We focus on the latter case that C5 = 0, otherwise we can directly apply Lemma 5.3.1 and be done.
We show that this can occur with probability at most AdvDLOG

R1
for a reduction R1 to the discrete

logarithm problem that succeeds in this case. We provide the reduction in the following. The reduction
embeds its discrete logarithm challenge in h, samples a secret key value x $← Zq and simulates all
oracles as Game 3 using the secret key x to simulate. If C4/C3 = C1, the reduction solves the equation
C4/C3 = C1 for the dlogg h expressions appearing in C4 (we note that dlogg h = (dlogh g)−1). We note

that as C5 = 0, it actually holds that C3 = g[ζ]−→
I
+ x · y[ζ]−→

I
+

w0,sid∗,g

w0,sid∗,h
· h[ζ]−→

I
.

If C1 ̸= C4/C3 or C5 ̸= 0, we apply Lemma 5.3.1 to obtain that Pr[δ′′′ = δ] ≤ 5
q for a single signature.

Applying a union bound over all signatures yields the statement.

Corollary 5.3.7.

Pr[Game 3 = 1]− Pr[Game 2 = 1] ≤ AdvDLOG
R1

+
5

q
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Proof. Follows directly from Claim 5.3.6.

We furthermore prove the following claim:

Claim 5.3.8. The probability that δ′′′ is undefined is 4
q if the representation of ζ is not of the form zγi .

Proof. This follows from Lemma 5.3.2. To see this, we imagine the following game: Instead of fixing the
values w0,i,h and w0,i,g at the beginning of the game like Game 3, the game samples dlogg zi

$← Zq at
the beginning of the game and then later on, after the adversary’s run, samples w0,i,g

$← Zq and sets
w0,i,h accordingly. This game is identically distributed to Game 3, however we can apply Lemma 5.3.2
as follows. We set c1 = dlogg h and c2 = dlogg zi. We further replace all occurrences of w0,i,h in the
representation of ζ by the formal variable W1 and all occurrences of w0,i,g by the formal variable W2.
We set L1 to be h[ζ]−→

I
/γ where γ is the value from the definition of δ′′′, and where we interpret h[ζ]−→

I

as a polynomial in W1 (as we are considering the h-component, W2 does not appear.). Lemma 5.3.2
yields that either h[ζ]−→

I
/γ must be of the form W1, or the probability that h[ζ]−→

I
/γ = w0,i,h is at most

2
q . Applying the same argument to (g[ζ]−→

I
+ x · y[ζ]−→

I
)/γ yields the claim.

Remark 5.3.9 (On how to identify a ‘special signature’ if dlogg h is unknown). Throughout this section,
reductions may need to identify the special signature while they have embedded a discrete logarithm
challenge in h.

This is however still possible by the above claim. For any signature, if the corresponding δ′′′

is undefined, there exists an value γ that can be computed without the knowledge of dlogg h as
γ = h[ζ]−→

I
/h[zi]−→I

= g[ζ]−→
I
/g[zi]−→I .

So , by Claim 5.3.8, the reduction can always either solve for dlogg h or identify the special signature
efficiently by computing γ and comparing the corresponding ζ1 to the values zγ1 .

Game 4. Game 4 aborts in case the adversary ‘predicted’ the hash response to the random oracle, i.e.
if the values ω and δ from all signatures are equal to the corresponding preliminary values. However, as
some parts of the ‘internal’ representation may be influenced by the adversary closing signing sessions
that were open at the time of the hash query, proving that this influence is infeasible is non-trivial.

We describe this as an event. We define E2 as the following event: ω′ = ω, and for any of δ′, δ′′, δ′′′,
as long as its denominator is not 0 (i.e., it is well-defined), then it is equal to δ. That is,

E2 :=(ω′ = ω) ∧ (C1 = 0 ∨ (C1 = 1 ∧ (δ′ = δ)))

∧ (C2 = 0 ∨ (C2 = 1 ∧ (δ′′ = δ))) ∧ (C3 = 0 ∨ (C3 = 1 ∧ (δ′′′ = δ))).

Claim 5.3.10.

Pr[E2] ≤ AdvDLOG
R2

+AdvDLOG
R3

+
10 ·Qh + 20

q

Proof Strategy. We give a brief overview over the proof strategy. The main idea of this proof is that
the adversary fixes most parts of the representation of the group elements at the time it makes the hash
query to H3. After the hash query is made, the only way to influence the representation is by the values
c and d included in the internal representations of a and b1,b2, which can be influenced by the adversary
only through the value e it sends to close a signing session. Thus, we need to consider how these c and
d values of sessions open at time of the hash query can impact the representations.
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In the end, we will want to employ Lemma 5.3.1 for each of the defined δ. To do this, we must
define the values C1, . . . , C5 and then show that for each defined δ either C1 ̸= C4/C3 or C5 ̸= 0.

This is a difference to our proof in [KLX22a], as we there used a manual case distinction over all
possible representations that the adversary could submit to the hash oracle.

Proof. We want to apply Lemma 5.3.1. To this end, we need to define what the constants C1, . . . , C5
are for each of the (potentially) defined δ. Let sid∗ be defined as before.

In the following b1(o) denotes the exponent of b1,sid∗ in the representation of o and b2(o) denotes
the exponent of b2,sid∗ in the representation of o For all δ, we set ∆ := dsid∗ .

For δ′, we set Y(∆) := δ′ and

C2 := h[β1]−→I
− b1(β1) · dsid∗ · w1,sid∗,h + b2(β1) dlogh(b1)

and

C3 := b1(β1) · w1,sid∗,h − dlogh(g)b2(β1)(w0,sid∗,g − w1,sid∗,g)

and

C4 := h[ζ1]−→I
− b1(ζ1) · dsid∗ · w1,sid∗,h + b2(ζ1) dlogh(b1)

and

C5 := b1(ζ1) · w1,sid∗,h − dlogh(g)b2(ζ1)(w0,sid∗,g − w1,sid∗,g).

We note that if b1(ζ1) = 0 and b2(ζ1) = 0, C5 = 0 and C4 = h[ζ1]−→I
.

For δ′′ we set

C2 := g[β2]−→I
+ x · y[β2]−→I

− d · b2(β2) · (w0,sid∗,g − w1,sid∗,g) + b1(β2) dlogg(b1)

and

C3 := b2(β2) (w0,sid∗,g − w1,sid∗,g)− b1(β2) dlogg h · w1,sid∗,h

and

C4 := g[ζ2]−→I + x · y[ζ2]−→I − d · b2(ζ2) · (w0,sid∗,g − w1,sid∗,g) + b1(ζ2) dlogg(b1)

and

C5 := b2(ζ2) (w0,sid∗,g − w1,sid∗,g)− b1(ζ2) dlogg h · w1,sid∗,h.

We note that if b1(ζ2) = 0 and b2(ζ2) = 0, C5 = 0 and C4 = g[ζ2]−→I + x · y[ζ2]−→I .

Remark 5.3.11. We note that the values C2, . . . , C5 may not always be efficiently computable without
knowledge of dlogg h. Looking forward, this will allow some reductions to solve the discrete logarithm
problem.

In the following, we always assume that we are dealing with the so-called special signature which
can be efficiently identified both by the game as well as by the reduction(s) we will provide due to
Remark 5.3.9 and because we introduced an abort condition in Game 3 if δ′′′ is defined for any signature
and δ′′′ = δ.

We now turn to the next case.
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Case 1: δ′ is defined and b2(β1) ̸= 0. We want to apply Lemma 5.3.1 to δ′. We again assume that
C5 = 0 as otherwise we can apply Lemma 5.3.1 directly. In this case, we again provide a reduction solving
for dlogg h. The reduction R2 has the same strategy as in the previous case except that it considers the C
values from δ′. The reduction embeds its discrete logarithm challenge in h and simulates using the secret
key x to sign. It answers random oracle queries as described in Game 4. If the current case occurs, it
uses the equation C3/C4 = C1 to solve for dlogh g. As we assumed that C5 = 0, it holds that C4 = h[ζ1]−→I

which the reduction can compute efficiently without knowledge of dlogg h. As dlogg h = (dlogh g)
−1

mod q, this allows the reduction to solve the discrete logarithm problem.

Case 2: δ′′ is defined and b1(β2) ̸= 0. In this case we want to show that either Lemma 5.3.1 can be
applied to δ′′ or a reduction can solve for the discrete logarithm of h. We describe how to deal with
the latter case in the following: Analogously to the previous two cases we assume C5 = 0 and use a
reduction R3 to solve for dlogg h. The reduction can embed the discrete logarithm in the same way as
in the previous case and solve for dlogg h.

Case 3: δ′′ is undefined. In this case, we want to apply Lemma 5.3.1 to δ′. We want to show that
in this case, C4/C3 ̸= C1 for the C3, C4 derived from β1 and ζ1. This follows from Lemma 5.3.2 in the
following way: First of all, we note that if δ′′ is undefined, then g[ζ1]−→I + x · y[ζ1]−→I = g[ζ]−→

I
+ x · y[ζ]−→

I
.

On the other hand, we want to consider the case of C4/C3 = C1. As C5 = 0 and we already know
δ′ is defined, we know that C3 ̸= 0. On the other hand, we know that C4 = b1(β1) · w1,sid∗,h, and
thus we can set L2 = a(α) · h[ζ1]−→I

/b1(β1) where we consider h[ζ1]−→I
to be a polynomial in w1,sid∗,h

as a formal variable W1,sid∗,h. We further replace all occurrences of w1,sid∗,g with a formal variable
W1,sid∗,g Then, Lemma 5.3.2 with W2 = W1,sid∗,h and L2 as described above, and c1 = dlogg h and
c2 = dlogg z1,sid∗ , yields that either L2 = W1,sid∗,h mod dlogg h ·W1,sid∗,h +W1,sid∗,g = dlogg z1,sid∗

or Pr[w1,sid∗,h = L2(w1,sid∗,h)] ≤ 2
q . As L2 is a polynomial in W1,sid∗,h only , it must hold that if

L2 = W1,sid∗,h mod dlogg h ·W1,sid∗,h +W1,sid∗,g = dlogg z1,sid∗ already L2 = W1,sid∗,h. Thus, the

probability of L2 = w1,sid∗,h is 2
q (we also note that as the internal decomposition is perfectly hidden from

the adversary at all times, we can actually pretend that the game samples the internal decompositions
at the end, like in the proof of Claim 5.3.8). Thus, we in the following assume that h[ζ1]−→I

is of the

form zγ1

1,sid∗ for a suitable value γ1. We now want to consider the probability that at the same time,
g[ζ1]−→I + x · y[ζ1]−→I = g[ζ]−→

I
+ x · y[ζ]−→

I
. As we consider the case that δ′′′ is undefined, it holds that

g[ζ]−→
I
+ x · y[ζ]−→

I
is of the form w0,sid∗,g, but we also know that g[ζ1]−→I + x · y[ζ1]−→I contains a non-zero

z1,sid∗-component. Thus, applying Lemma 5.3.2 again, this time with W0,sid∗,g as a replacement of
w0,sid∗,g and L2(W0,sid∗,g) = g[ζ1]−→I + x · y[ζ1]−→I , we obtain that again, the probability is 2

q .

Case 4: δ′ is undefined. This case is symmetrical to the previous case and can thus occur with the
same probability.

Case 5: both δ′ and δ′′ are defined and none of the previous cases occurred. We show that,
using Lemma 5.3.2, it is infeasible for the adversary to provoke the case that C4/C3 = C1 for both δ′

and δ′′. Using the same argument as for the two previous cases, we come to the conclusion that if
C4/C3 = C1 for both, then h[ζ1]−→I

must be of the form w1,sid∗,h · γ1 whereas g[ζ2]−→I +x · y[ζ2]−→I must be of

the form (w0,i,g −w1,sid∗,g) · γ2. Thus, in particular, also g[ζ1]−→I consists of w0,i,g · γ1 and h[ζ2]−→I
consists
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of (w0,sid∗,h − w1,sid∗,h) · γ2. We note that since the representation of ζ2 is computed from that of ζ1
and ζ, an occurrence of w1,sid∗,g or w1,sid∗,h there can only come from ζ1, and thus it must hold that
γ1 = γ2.

Furthermore, since we assumed that the representation of ζ is of the form zγi it must hold that
zi = zsid∗ or g[ζ2]−→I + x · y[ζ2]−→I will be of the form above only with probability 4

q . In particular, any
additional occurrence of zsid∗ in the representation of ζ1 to cancel out some of the w0,sid∗,g in the
representation of ζ2 would lead to additional h-components in the representation of ζ1.

As δ′′′ is undefined, we know that the representation of ζ is of the form zsid∗ by Claim 5.3.8. We
consider the ‘leftover’ parts of the representations of ζ1 and ζ2, i.e. the parts of the representation that
are not zγ1

1,sid∗ in ζ1 and zγ1

2,sid∗ in ζ2. We note that as we are looking at the special signature, these

leftover components must exist as otherwise γ = γ1,= γ2 and ζ = zγi and ζ1 = zγ1,sid∗ . We further note,
that in the case of ζ1, these components must amount to (γ − γ1) · w0,sid∗,g.

Thus, we can again apply Lemma 5.3.2 to the leftover component to find that the probability that
g[ζ1]−→I + x · y[ζ1]−→I − γ1 · w1,sid∗,g = (γ − γ1) · w0,sid∗,g is 2

q .

We are now ready to apply Lemma 5.3.1. Using the value δ′, δ′′ for which either C5 ̸= 0 or C4/C3 ̸= C1,
we can obtain that in the remaining cases the probability of E2 is at most 2·Qh·5

q where the factor 2

comes from union bounding over the two δ′, δ′′ and the factor Qh comes from union bounding over the
Qh queries made to H3.

We note there that since Lemma 5.3.1 makes an information-theoretical argument, it is not necessary
that the values C1, . . . , C5 are efficiently computable for any reduction that may have embedded a discrete
logarithm challenge somewhere.

We now union bound over all the cases and their different subcases.

Pr[E2] ≤ AdvDLOG
R2

+AdvDLOG
R3

+
6

q
+

6

q
+

8

q
+

5 · 2 ·Qh

q

In the following, we explain how the reduction can simulate Game 4 to the adversary M and win the
discrete logarithm game.

Simulation of H1, H2, H3. We begin by describing how S0, S1 simulate the random oracles H1, H2, H3.
These simulations are common to both Sι and are performed in the straightforward way using lazy sampling.
We assume that the oracles keep respective lists Li for bookkeeping, where Li stores input/output pairs.
More specifically.

• H1 and H2: on each fresh input ξ, Hi samples wg, wh
$← Zq and returns gwghwh . It stores

(ξ,gwghwh , wg, wh) in Li.

• H3 : on each fresh input ξ, H3 samples h $← Zq and returns h. It stores (ξ,−→rep, h) in Li.

• On repeated inputs Hi returns whatever it returned the first time that ξ was queried.

Scheduling of Signing Sessions. We assume that each Si internally schedules sessions with the
oracles sign1 and sign2 as required by Game 4 . This can be easily implemented by using a fresh session
identifier for each new session.
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Extracting Equations from Forgery. Suppose that M wins Game 4. Recall that in this case, M
produces a one-more forgery of at least ℓ+ 1 valid signatures, after having completed at most ℓ sessions
with oracle sign2. In addition, we have required that one of the returned tuples (m, info, sig) be special,

i.e., that ζ
dlogzj

z1,j ̸= ζ1 for all zj and z1,j (where again zj and z1,j corresponds to the value of z and
z1, respectively, derived during the j-th interaction with oracle sign1).

From the verification equation of the special signature (m, info, sig), one obtains the equations
α = gρ · yω, β1 = ζδ1 · gσ1 , β2 = ζδ2 ·hσ2 , η = zµj · ζδ. Denoting w0,j ← dlog zj , w ← dlogh, we obtain
the reduced equations

g[α]−→
I
+ x · y[α]−→

I
+ w · h[α]−→

I
= ρ+ x · ω (5.3)

g[β1]−→I
+ x · y[β1]−→I

+ w · h[β1]−→I
= (g[ζ1]−→I + w · h[ζ1]−→I

+ x · y[ζ1]−→I ) · δ + σ1 (5.4)

g[β2]−→I
+ x · y[β2]−→I

+ w · h[β2]−→I
= (g[ζ2]−→I + w · h[ζ2]−→I

+ x · y[ζ2]−→I ) · δ + σ2 · w (5.5)

g[η]−→
I
+ w · h[η]−→

I
+ x · y[η]−→

I
= w0,j · µ+ (g[ζ]−→

I
+ w · h[ζ]−→

I
+ x · y[ζ]−→

I
) · δ. (5.6)

We continue by describing simulators S0 which covers case C0, and S1 which covers C1, C2, C3. As
we will see, the values c, r, d, s1, s2 inside a signature issued as part of a signing query are all known to
Si. Together with the above observations, it is easy for each simulator to convert a query to H3 into
reduced representation. Moreover, the winning tuple in M’s output can be identified through knowledge
of the logarithms of all zi and all z1,i efficiently.

Case C0 = 1. We describe simulator S0, which simulates Game 4 using knowledge of w = dlogg h.
On input a discrete logarithm instance U← gx, it behaves as follows:

Setup: S0 samples w $← Zq and computes the public key pk as pk ← (g,h ← gw,y ← U), which
implicitly sets sk← x.

Online Phase. S0 runs M on input pp, pk and simulates the oracles sign1, sign2 as described below. In
addition, it simulates the oracles H1, H2, H3 as outlined above.

Queries to sign1. When M queries sign1(info) to open session sid, it calls H1(pk, info) and
H2(rndsid) for rnd

$← {0, 1}λ. It then uses th z-side signing algorithm from Section 5.3.1 to
generate asid,b1,sid,b2,sid and outputs them along with rndsid to the adversary.

Queries to sign2. When M queries sign2(sid, esid), S0 uses the z-side signer from Section 5.3.1
to compute csid, dsid, rsid, s1,sid, s2,sid using dlogg h along with the values w0,sid,g, w0,sid,h,
w1,sid,g, w1,sid,h stored in the lists L1, L2. It is straightforward to verify that the above
simulation of Game 4 is perfect.

Solving the DLOG instance. When M returns ℓ+ 1 message signature pairs, S0 identifies a special
signature using the exponents stored in L2 along with dlogg h. It retrieves the corresponding
hash query to H3 from L3 together with representations of α, β1, β2, η. S0 uses Eq. (5.3)
and the fact that C0 = 1 ⇔ ω ̸= y[α]−→

I
, to (efficiently) compute and output the value x as

x = (ρ− g[α]−→
I
−w · h[α]−→

I
)/(y[α]−→

I
−ω). (In case C0 = 0, or there is no hash query corresponding

to the special signature, it aborts.)

If C0 = 1, then S0’s simulation of Game 4 is perfect.
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Case C0 = 0. We describe simulator S1, which simulates Game 4 using x. On input a discrete logarithm
instance U← gw, it behaves as follows.

Setup. S1 samples x $← Zq. It sets pk← (g,h← U,y← gx), sk← x.

Online Phase. S1 runs M on input pp, pk and simulates the oracles sign1, sign2 as described below. In
addition, it simulates the oracles H1, H2, H3 as outlined above.

Queries to sign1. When M queries sign1(info) to open session sid, it calls H1(pk, info) and
H2(rndsid) for rnd

$← {0, 1}λ. It computes a,b1,b2 like the normal signer.

Queries to sign2. When M queries sign2 on input (sid, esid), S1 uses the normal signing algorithm
with the secret key x to compute c, d, r, s1, s2 and returns them.

Solving the DLOG instance. When M returns ℓ+ 1 message signature pairs, S1 identifies the special
signature using the exponents stored in L2 and the method described in Remark 5.3.9. It retrieves
the corresponding hash query to H3 from L3 together with representations of α, β1, β2, η. If there
is no hash query to H3 corresponding to the special signature, it aborts. Since C0 = 0 it holds
that C1 = 1 ∨ C2 = 1 ∨ C3 = 1. S1 uses one of the following extraction strategies.

If C1 = 1. S1 uses the equation Eq. (5.4) to compute a value

σ′1 := g[β1]−→I
+ x · y[β1]−→I

−
(
g[ζ1]−→I + x · y[ζ1]−→I

)
· δ′.

It then solves the equation

dlogg ζ1 =
σ − σ′

δ′ − δ

we have ruled out that δ = δ′ in a previous game, this value is indeed computable and well-defined.
Using dlogg ζ1 = g[ζ1]−→I + x · y[ζ1]−→I + w · h[ζ1]−→I

with ζ1 ̸= 0 allows S1 to solve for

w =
dlogg(ζ1)−

(
g[ζ1]−→I + x · y[ζ1]−→I

)
h[ζ1]−→I

.

If C1 = 0 and C2 = 1. In this case, the reduction S1 uses Eq. (5.5) to compute an alternate

σ′2 := h[β2]−→I
− h[ζ2]−→I

· δ′′.

It then computes

dlogh(ζ2) :=
σ2 − σ′2
δ′′ − δ

and from this

w =

(
dlogh ζ2 − h[ζ2]−→I

g[ζ2]−→I + x · y[ζ2]−→I

)−1
.
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If C1 = C2 = 0 and C3 = 1. In this case, the simulator can compute dlogzi
ζ. First, it computes

µ′ :=
g[η]−→

I
+ x · y[η]−→

I
− δ′′′(g[ζ]−→

I
+ x · y[ζ]−→

I
)

w0,i,g
=

h[η]−→
I
− δ′′′h[ζ]−→

I

w0,i,h
.

This allows the reduction S1 to also compute the value dlogzi
ζ = µ′−µ

δ′′′−δ and then

dlogg h =
g[ζ]−→

I
+ x · y[ζ]−→

I
− dlogzi

ζ · w0,i,g

h[ζ]−→
I
− dlogzi

ζ · w0,i,h

where i is an index corresponding to info.

Since both simulators provide a perfect simulation (in their respective cases) and cover all cases that can
happen whenever M wins Game 4, B can run the correct simulator to extract the discrete logarithm with
advantage AdvDLOG

B ≥ AdvGame 4
M /2. Hence, tB ≈ tM and summing up over the game hops leading to

Game 4 yields

AdvDLOG
B ≥

(
1− 4

q

)
1

2
AdvRB-OMUF

M,ℓ,BSA − ℓ+ 1

q

−AdvDLOG
R1

−AdvDLOG
R2

+AdvDLOG
R3

− 15Qh + 20

q

5.3.4 The Main Theorem

In the following, we show that Abe’s blind signature scheme has full one-more-unforgeability. We make
use of the restrictive blinding lemma to identify the forged signature.

Theorem 5.3.12. Let M be an algebraic algorithm that runs in time tM, makes at most ℓ queries to
oracle sign2 in ℓ-OMUFBSA and at most (total) Qh queries to H1, H2, H3. Then, in the random oracle
model, there exists an algorithm C and reductions R1, . . .R5 such that

AdvDLOG
C ≥ 1

4
·
(
1− 4

q

)
·
(
AdvOMUF

M,ℓ,BSA −
2ℓ+ 41Qh + 25

q
− 2AdvDLOG

R1
− 2AdvDLOG

R2

−2AdvDLOG
R3

−AdvDLOG
R4

−AdvDLOG
R5

/

(
1− 4

q

))
Proof Overview. The proof strategy is very similar to that of Lemma 5.3.3. The strategy of the main
reduction is mostly the same, except that we assume that for every signature the value δ′′′ is well defined
(we can use Claim 5.3.8 to ensure that), and that there are two instead of one ‘special signatures’, namely
there are two signatures linked to the same session via a DDH-style relation by the ζ, ζ1 values in the
signature and the z, z1 values from the signer.

We then prove an analogous claim to Claim 5.3.10, showing that even though there are intertwined
dependencies between the values d and δ and c and ω, it is infeasible for the adversary to provoke a
scenario where the preliminary δ′, δ′′, δ′′′ and ω′ are equal to the actual signature components δ and ω
for both of the special singatures.

Proof of Theorem 5.3.12. We prove this using a series of games.
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Game 0. This is the standard one-more unforgeability game for the partially blind scheme.

Game 1. This game aborts if there are no two signatures linked to the same session.

Claim 5.3.13.
Pr[Game 1 = 1]− Pr [Game 0 = 1] = Pr [RB-OMUF = 1]

Proof. As there are ℓ+1 valid signatures and ℓ closed signing sessions, there must be either two signatures
that are linked to the same session, or one that is not linked to any session.

Game 2. This game aborts if there is a signature among the ℓ+ 1 signatures in the adversary’s output
where no hash query to H3 was made.

Claim 5.3.14. It holds that Pr [Game 2 = 1]− Pr [Game 1 = 1] ≤ ℓ+1
q .

Proof. This is because the probability that ω+ δ = ε for such a signature is 1
q as the value ε (the output

of H3) would be sampled after the values ω and δ are already fixed. Union bounding over all signatures
yields the above claim.

Game 3. In this game, we introduce a conceptual change to how we sample the values zi and z1,i in the
RO responses for H1, H2. Namely, instead of sampling from G directly, we sample w0,i,g, w0,i,h

$← Zq in
the case of zi and w1,i,g, w1,i,h

$← Zq in the case of z1,i. We then set zi = gw0,i,g · hw0,i,h and
z1,i = gw1,i,ghw1,i,h .

In the following, we use the definitions of the reduced representations as in the proof of Lemma 5.3.3
as well as the definitions of δ′, δ′′, δ′′′, ω′ and of the cases C0, C1, C2, C3 for the two special signatures
instead of one special signature.

Game 4. This game aborts if there exists a signature among the ℓ+ 1 forgeries where the preliminary
value δ′′′ is defined and δ′′′ = δ.

Claim 5.3.15.

Pr[Game 4 = 1]− Pr[Game 3 = 1] ≤ AdvdlogR1
+

5Qh

q

Proof. This follows from Claim 5.3.6 as δ′′′ is defined in the same way here as in the proof of Lemma 5.3.3.

Game 5. In this game, we introduce an abort condition that will be analogous to that of E2 in the
proof of Lemma 5.3.3.

Namely, we define the event Ei for the ith signature as follows:

Ei :=(ωi = ω′i) ∧ ((δ′i = ⊥) ∨ (δ′i = δi))

∧ ((δ′′i = ⊥) ∨ (δ′′i = δi)) ∧ ((δ′′′i = ⊥) ∨ δ′′′i = δi)

Game 5 aborts if for the special signatures (indexed by i∗, i∗∗) it holds that Ei∗∗ ∧ Ei∗ .
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Claim 5.3.16.

Pr[Ei∗ ∧ Ei∗∗ ] ≤
21Qh + 4

q
+ AdvDLOG

R2
+ AdvDLOG

R3
+ AdvDLOG

R4
+ AdvDLOG

R5
/(1 − 4

q
)

Proof. We first note that we already ruled out δ′′′i ̸= ⊥ ∧ δ′′′i = δi in Game 4. Thus, we consider here
only the cases where δ′′′ = ⊥.

Case 1: any of the C5 ̸= 0. In this case, we can apply Lemma 5.3.1 and find that the probability of
Ei∗∗ ∧ Ei∗ is at most 5Qh

q .

Case 2: δ′i∗ ̸= ⊥∧ b2(β1,i∗) ∨ δ′i∗∗ ̸= ⊥∧ b2(β1,i∗∗). We want to apply Lemma 5.3.1 to the values δ′i∗
and δ′i∗ . In this case, it either holds that C4/C3 ̸= C1 for at least one of the two special signatures, and
we can apply Lemma 5.3.1 to upper bound the probability of Ei∗∗ ∧ Ei∗ to 5

q . Or, if C4/C3 = C1 for
both special signatures, we apply the same reduction strategy as in the analogous case of Claim 5.3.10
to solve the discrete logarithm problem.

Case 3: δ′′i∗ ̸= ⊥∧ b1(β2,i∗) ̸= 0∨ δ′′i∗∗ ̸= ⊥∧ b1(β2,i∗∗) ̸= 0. We want to show that here we can either
we can apply Lemma 5.3.1 for either δ′′i∗ or δ′′i∗∗ , or we can again solve a discrete logarithm problem. In
this case, either C4/C3 ̸= C1 for at least one of the special signatures and we can apply Lemma 5.3.1 to
upper bound the probability of the corresponding event Ei∗ or Ei∗∗ as 5

q or (in the case that C4/C3 ̸= C1
for the δ′′ of both special signatures) we can apply the same reduction strategy as in the corresponding
case in Claim 5.3.10 to solve for the discrete logarithm of the group element h in the public key.

Case 4: ∃s ∈ {∗, ∗∗} : δ′is ̸= ⊥∧ δ′′is = ⊥∨ δ′is = ⊥∧ δ′′is ̸= ⊥. Since we assumed that for both special
signatures, δ′′′ is undefined, we know that h[ζis ]−→I

= γisw0,i,h ∧ g[ζis ]−→I = γisw0,i,g for s ∈ {∗, ∗∗}.
Furthermore, it holds that ζ1,is = zγis

1,i and thus h[ζ1,is ]−→
I

= γis · w1,i,h and g[ζ1,is ]−→
I

= γis · w1,i,g (if

this is not the case then we can employ a reduction R4 that embeds its discrete logarithm challenge in
h, simulates using the secret key, and solves for dlogg h using that γis · (w1,i,g + dlogg h · w1,i,h) =
g[ζ1,is ]−→

I

+ dlogg h · h[ζ1,is ]−→
I

).

Case 5: δ′i∗ ≠ ⊥ ∧ δ′′i∗ ̸= ⊥ ∧ δ′i∗∗ ̸= ⊥ ∧ δ′′i∗∗ ̸= ⊥ . In this case, we want to show that provoking the
event Ei∗ or Ei∗∗ is equivalent to solving a 2− 1-ROS problem which is information-theoretically hard.
First, we would like to note that δ′i∗ = δ′′i∗ and δ′i∗∗ = δ′′i∗∗ as otherwise at least one of the δ′, δ′′ will be
unequal to δ from the corresponding signatures and we are done with the proof.

First, we argue that it is infeasible for the adversary to provoke the events Ei∗ or Ei∗∗ if it does not use
zsid∗ , z1,sid∗ such that dlogzsid∗

ζi∗ = dlogz1,sid∗
ζ1,i∗ and dlogzsid∗

ζi∗∗ = dlogz1,sid∗
ζ1,i∗∗ . First, we note

that we have already ruled out the case that C5 ̸= 0. If for any of the δ′i∗ , δ
′′
i∗ , δ

′
i∗∗ , δ

′′
i∗∗ the corresponding

values C4/C3 ≠ C1, we can apply Lemma 5.3.1 to bound the probability of the corresponding event Ei∗

or Ei∗∗ to 5
q .

We thus consider the probability of C4/C3 = C1 while at the same time using zsid∗ , z1,sid∗ not linked
to ζi∗ , ζi∗∗ , ζ1,i∗ and ζ1,i∗∗ .

We note that we are considering the special signatures here, and thus there exists a session i that is
linked to both i∗ and i∗∗ via dlogzi

ζi∗ = dlogz1,i
ζ1,i∗ =: γi∗ and dlogzi

ζi∗∗ = dlogz1,i
ζ1,i∗∗ =: γi∗∗ .
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As we assumed that δ′′′i∗ and δ′′′i∗∗ are undefined, the values γi∗∗ and γi∗ can be efficiently computed even
without knowledge of dlogg h via Remark 5.3.9 with probability 1− 4

q . Thus, if the representations of ζ1,i∗

and ζ1,i∗∗ are not of the form (gw1,i,g ·hw1,i,h)γi∗ and (gw1,i,g ·hw1,i,h)γi∗∗ (i.e. h[ζ1,is ]−→
I

≠ w1,i,h ·γis), a
reduction R5 embedding its discrete logarithm challenge in h and simulating signatures using x can solve
for dlogg h using the knowledge that g[ζ1,is ]−→

I

+x ·y[ζ1,is ]−→
I

+dlogg h ·h[ζ1,is ]−→
I

= w1,i,g ·γis +w1,i,h ·γis .
Applying Lemma 5.3.2 in a similar fashion to Claim 5.3.8 yields that the representations of ζ1,i∗ and

ζ1,i∗∗ must be of the form zγi∗
1,i and zγi∗∗

1,i .
We therefore obtain that C4 must be of the form γis · w1,i,h in the case of δ′is and γis · w1,i,g in the

case of δ′′is .
To bound the probability of C4/C3 = C1 if i ̸= sid∗, we again want to apply Lemma 5.3.2, this

time with W1 replacing w1,sid∗,h and W2 replacing w1,sid∗,g, and L1 = C′4/(C′1 · b1(β1,is)) where all
occurrences of w1,sid∗,h are replaced with the corresponding variable (in the case of δ′, using the values
C′4, C1 from δ′). We apply the same argument for C′′4 , C′′3 with C1 for δ′′is using W1 as a replacement for
w1,sid∗,g.

This bounds the probability in case i ̸= sid∗ to 4
q + 5Qh

q .

We therefore assume that indeed dlogz ζis = dlogz1
ζ1,is for s ∈ {∗, ∗∗}. We write the verification

equations with respect to ω′, δ′:

hi∗ =ω′i∗(csid∗) + δ′i∗(dsid∗)

hi∗∗ =ω′i∗∗(csid∗) + δ′i∗∗(dsid∗)

As dsid∗ + csid∗ = esid∗ , and the only way the adversary can influence csid∗ , dsid∗ is through esid∗ , this
corresponds to solving a 1-ROS problem. The probability of success for this is 1

q for a single hash query

and thus Qh

q if we union-bound over all hash queries.
Summing up over all the potential cases yields

Pr[Ei∗ ∧ Ei∗∗ ] ≤
5Qh

q
+

5Qh

q
+AdvDLOG

R2
+

5Qh

q
+AdvDLOG

R3
+AdvDLOG

R4

+
5Qh

q
+

4

q
+AdvDLOG

R5
/(1− 4

q
) +

Qh

q

We can now apply the almost same reduction strategy as for Lemma 5.3.3 to solve the discrete
logarithm problem.

In particular, the reduction first flips a coin whether to run one of the two simulators S0 or S1

described in the following.
We first describe the simulation parts that S0 and S1 have in common:

Hash Oracles H1, H2: given their respective public keys (whose generation we will describe later), both
simulators implement H1, H2 via lazy sampling, but instead of sampling uniformly at random from
G, they sample two exponents wg, wh

$← Zq and output gwghwh . They keep lists L1, L2 (for
H1, H2) of the hash queries along with wg, wh and the hash output.

Hash Oracle H3: both S0 and S1 simulate H3 via lazy sampling from Zq. They both keep a list of the
algebraic representations submitted by the adversary.
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Case C0 = 1. We now turn to the specifics of simulator S0 which simulates Game 5 and extracts
dlogg y in case C0 = 1:

Setup: S0 samples w $← Zq and computes the public key pk as pk ← (g,h ← gw,y ← U), which
implicitly sets sk← x.

Online Phase. S0 runs M on input pp, pk and simulates the oracles sign1, sign2 as described below. In
addition, it simulates the oracles H1, H2, H3 as outlined above.

Queries to sign1. When M queries sign1(info) to open session sid, it calls H1(pk, info) and
H2(rndsid) for rnd

$← {0, 1}λ. It then uses th z-side signing algorithm from Section 5.3.1 to
generate asid,b1,sid,b2,sid and outputs them along with rndsid to the adversary.

Queries to sign2. When M queries sign2(sid, esid), S0 uses the z-side signer from Section 5.3.1
to compute csid, dsid, rsid, s1,sid, s2,sid using dlogg h along with the values w0,sid,g, w0,sid,h,
w1,sid,g, w1,sid,h stored in the lists L1, L2. It is straightforward to verify that the above
simulation of Game 5 is perfect.

Solving the DLOG instance. When M returns ℓ+ 1 message signature pairs, S0 identifies the two
special signatures using the exponents stored in L2 along with dlogg h. It retrieves the corresponding
hash queries to H3 from L3 together with representations of α, β1, β2, η. S0 uses Eq. (5.3) and the
fact that C0 = 1⇔ ω ̸= y[α]−→

I
for at least one of the special signatures, to (efficiently) compute

and output the value x as x = (ρ− g[α]−→
I
− w · h[α]−→

I
)/(y[α]−→

I
− ω). (In case C0 = 0, or there is

no hash query corresponding to the special signature, it aborts.)

If C0 = 1, then S0’s simulation of Game 5 is perfect.

Case C0 = 0. We now describe the simulator S1 which simulates Game 5and extracts dlogg h in case
C1 = 1 ∨ C2 = 1 ∨ C3 = 1. We capture these cases with one simulator as the strategy during the
online-phase is the same and only extraction differs.

Setup. S1 samples x $← Zq. It sets pk← (g,h← U,y← gx), sk← x.

Online Phase. S1 runs M on input pp, pk and simulates the oracles sign1, sign2 as described below. In
addition, it simulates the oracles H1, H2, H3 as outlined above.

Queries to sign1. When M queries sign1(info) to open session sid, it calls H1(pk, info) and
H2(rndsid) for rnd

$← {0, 1}λ. It computes a,b1,b2 like the normal signer.

Queries to sign2. When M queries sign2 on input (sid, esid), S1 uses the normal signing algorithm
with the secret key x to compute c, d, r, s1, s2 and returns them.

Solving the DLOG Instance. When M returns ℓ+ 1 message signature pairs, S1 identifies the special
signatures using the exponents stored in L2 and the method described in Remark 5.3.9 or a
signature for which δ′′′ ̸= ⊥. It retrieves the corresponding hash queries to H3 from L3 together
with representations of α, β1, β2, η. If there is no hash query to H3 corresponding to the special
signature, it aborts. By Claim 5.3.5 it holds that C1 ∨ C2 ∨ C3 with probability 1− 4

q . S1 uses
one of the following extraction strategies, where again the two special signatures are indexed by is

for s ∈ {∗, ∗∗}.
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If C1 = 1 for is with s ∈ {∗, ∗∗}. S1 uses the equation Eq. (5.4) to compute a value

σ′1,is := g[β1,is ]−→
I

+ x · y[β1,is ]−→
I

−
(
g[ζ1,is ]−→

I

+ x · y[ζ1,is ]−→
I

)
· δ′is .

It then solves the equation

dlogg ζ1,is =
σ1,is − σ′1,is

δ′is − δis

we have ruled out that δ = δ′ in a previous game, this value is indeed computable and well-defined.
Using dlogg ζ1,is = g[ζ1,is ]−→

I

+ x · y[ζ1,is ]−→
I

+ w · h[ζ1,is ]−→
I

with ζ1 ̸= 0 allows S1 to solve for

w =
dlogg(ζ1,is)−

(
g[ζ1,is ]−→

I

+ x · y[ζ1,is ]−→
I

)
h[ζ1,is ]−→

I

.

If C1 = 0 and C2 = 1 for is with s ∈ {∗, ∗∗}. In this case, the reduction S1 uses Eq. (5.5) to
compute an alternate

σ′2,is := h[β2,is ]−→
I

− h[ζ2,is ]−→
I

· δ′′is .

It then computes

dlogh(ζ2,is) :=
σ2,is − σ′2,is

δ′′is − δis

and from this

w =

(
dlogh ζ2,is − h[ζ2,is ]−→

I

g[ζ2,is ]−→
I

+ x · y[ζ2,is ]−→
I

)−1
.

If C1 = C2 = 0 and C3 = 1 for is with s ∈ {∗, ∗∗}. In this case, the simulator can compute
dlogzi

ζis . First, it computes

µ′is :=
g[ηis ]−→I

+ x · y[ηis ]−→I
− δ′′′is (g[ζis ]−→I + x · y[ζis ]−→I )
w0,i,g

=
h[ηis ]−→I

− δ′′′ish[ζ]−→
I

w0,i,h
.

This allows the reduction S1 to also compute the value dlogzi
ζis =

µ′
is−µis

δ′′′
is
−δis and then

dlogg h =
g[ζis ]−→I + x · y[ζis ]−→I − dlogzi

ζ · w0,i,g

h[ζis ]−→I
− dlogzi

ζ · w0,i,h

where i is an index corresponding to info.

This yields in total that

AdvDLOG
C ≥ 1

4
·
(
1− 4

q

)
·
(
AdvOMUF

M,ℓ,BSA −
ℓ+ 1

q
−AdvDLOG

R1
−AdvDLOG

R2

−AdvDLOG
R3

− 15Qh + 20

q
− ℓ+ 1

q
AdvDLOG

R1
− 5Qh

q
− 21Qh + 4

q
−AdvDLOG

R2
+AdvDLOG

R3

−AdvDLOG
R4

−AdvDLOG
R5

/

(
1− 4

q

))
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5.4 Applying the Forking-Based Proof from Chapter 4 to Abe’s
Scheme

This section is based on the full version [KLX22b] of [KLX22c].

In this section, we briefly sketch how the technique described in Chapter 4 can be applied to the
(partially) blind signature scheme by Abe [Abe01]. We note that Abe’s blind signature scheme is immune
to the ROS-attack. Therefore, it may be possible to prove security also outside of the AGM with respect
to polynomially many concurrent signing sessions. However, the forking-based strategy from Chapter 4
yields a superpolynomial loss in such a setting. It remains an open question whether Abe’s scheme can
be proven secure for polynomially many concurrent signing sessions in the plain ROM (i.e. without using
the AGM).

5.4.1 Adapting the Proof to Partial Blindness

In [KLX22b], we described how to use the forking reduction to solve for the discrete logarithm of the
public key group element h (which is part of the z-side proofs), or for the discrete logarithm of y. This
reduction was applied to the original version of Abe’s blind signature scheme, i.e. without the adaption
to partial blindness described in Section 5.1.

Here, we extend this reduction to also capture the partially blind variant. However, as the public
key of the partially blind variant contains a z-side component h that is shared over all tags, we cannot
directly apply the same strategy as in Theorem 4.4.1. Instead, we alter the main reduction in such a way
that it alternates between witnesses only for one selected tag info, whereas it uses the z-side signer for
all other tags. This strategy is necessary as, unlike for the scheme by Abe and Okamoto, the key part h
is the same for all signatures to all tags. We briefly sketch some other approaches to overcome this issue
and why they are less promising or do not work at all.

• Using the same techniques as in Theorem 4.4.1. While we could still re-program the random oracle
H1 and H2 for all sessions that do not use the challenge tag, the reduction does not know the
discrete logarithm of h and therefore also not the discrete logarithms of the values z2,i to h.

• proving a different variant of Theorem 4.4.1 by re-randomizing the values z and z1,i from a
single-tag challenger. One could attempt to take a single-tag challenger and whenever the adversary
asks for signatures with different tags, the reduction would re-randomize the single tag key z
to z′ = z · gκ for some uniformly random value κ. The corresponding session keys z1,i could
be re-randomized to z′1,i = z1,i · gκ using the same κ for the same info, making it possible to
also adapt the z1-parts of the signing queries accordingly. The z2,i parts of the signing queries
would stay the same, allowing the reduction to re-use the value b2 as well as d, s2 from the
single-tag signer. In principle, this strategy works, however, the drawback is that then the sum of
all concurrent open sessions can only be the same as for one single session which would be even
worse than for the Abe-Okamoto scheme.

• Directly applying the reduction for all tags but with alternating the witnesses for all tags at once
as well. This on the one hand has the same issue as the previous approach, and on the other hand
it would require a one-more forgery with respect to the total count of signing sessions instead of
with respect to the number of sessions per tag.
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5.4.2 The Deterministic Wrapper

We describe the reduction strategy. Mostly this proof follows the steps from Chapter 4. However, due to
the structure of Abe’s scheme, part of the z-side witness, namely the public key part h is fix throughout
all signing sessions. This prevents us from using the z-side simulator in a one-tag-to-many-tag theorem.
We therefore instead prove security for all tags directly. To this end, we will pick one of the tags info
where the simulation will differ between y-side and z-side, and for all other tags we simulate using the
z-side signer.

Guessing the Challenge Tag. The instances will contain an index j∗ that corresponds to a hash query
made by the adversary to H1. We consider the adversary to be successfull only if its one-more forgery
corresponds to the tag info such that (pk, info) is the j∗th fresh hash query made to H1. If QH1

is an
upper bound on the number of distinct queries that U makes to H1, this introduces a loss of 1

QH1
. Using

a game hop we can also rule out the case that the adversary never queries the challenge tag to the RO
H1, as guessing the challenge tag key without querying it to the RO succeeds with probability at most
1

q−1 .

Restricting the Hash Queries to ℓ+ 1. For an adversary U that makes at most ℓ signing queries
per tag info (i.e. closes ℓ signing sessions) and Qh hash queries we make use of the same hash query
guessing strategy as before, i.e. we use a wrapper M that restricts the adversary to exactly ℓ+ 1 hash
queries and introduces a loss of 1

(Qh
ℓ+1)

. In this case, the wrapper guesses the hash queries used for the

ℓ+ 1 signatures that correspond to the guessed challenge tag info.

The Deterministic Wrapper We describe the inputs of the deterministic wrapper A.
Different to before, the wrapper will have an index j∗ that corresponds to a hash query to the hash

oracle H1 that maps (pk, info) to the tag key z. We denote the tag corresponding to this hash query by
info. We again want to define y-side instances and z-side instances, but now both types of instances will
simulate using the z-side witness whenever the tag is not info.

First, we define y-side instances, i.e. instances that use the y-side witness x for simulation when the
tag is info.

• b = 0

• x ∈ Zq

• w ∈ Zq

• zinfo ∈ G; j∗ ∈ [QH1
]

• for j ∈ [QH1 ] \ {j∗} : w0,j ∈ Zq

• for i ∈ [(Qinfo − 1) · ℓ] : rndi ∈ {0, 1}λ

• for i′ ∈ [ℓ] : rndi′ ∈ {0, 1}λ

• for i′ ∈ [ℓ] : z1,i′ = gw1,i′ with w1,i′ ∈ Zq

• for i ∈ [(Qinfo − 1) · ℓ] : z1,i = gw1,i with w1,i ∈ Zq
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• for i′ ∈ [ℓ] : ui′ , di′ , s1,i′ , s2,i′ ∈ Zq

• for i ∈ [(Qinfo − 1) · ℓ] : ci, ri, v1,i, v2,i ∈ Zq

We further describe the z-side instances, i.e. instances that alway simulate using the z-side signer:

• b = 1

• y ∈ G

• w,w0,info ∈ Zq; j
∗ ∈ QH1

• for j ∈ [QH1
] \ {j∗} : w0,j ∈ Zq

• for i ∈ [(Qinfo − 1) · ℓ] : rndi ∈ {0, 1}λ

• for i′ ∈ [ℓ] : rndi′ ∈ {0, 1}λ

• for i ∈ [(Qinfo − 1) · ℓ] : w1,i ∈ Zq

• for i′ ∈ [ℓ] : w1,i′ ∈ Zq

• for i′ ∈ [ℓ] : ci′ , ri′ , v1,i′ , v2,i′ ∈ Zq

• for i ∈ [(Qinfo − 1) · ℓ] : ci, ri, v1,i, v2,i ∈ Zq

The wrapper additionally takes as input a set of random coins rand = (rB, rA) as well as a vector of

hash responses
−→
h ∈ Zq

Qh . We show the wrapper as pseudocode in Figure 5.3
Analogous to before, we can define forking tuples, partners, and triangles. For this, we consider only

the partial query transcript w.r.t. the challenge tag info. We denote this partial transcript corresponding
to the sessions where info was used by −→e .

Definition 5.4.1 (Query Transcript). Consider the wrapper A running on input tuple (I, rand,
−→
h ). The

query transcript for info, denoted −→e (I, rand,
−→
h ), is the vector of queries esid made to the sign2 oracle

for sessions with the tag info (simulated by A) by the adversary M, ordered by sid.

We use the same definition of forking as in Definition 4.2.5 and redefine partners w.r.t. the partial
transcript of info.

Definition 5.4.2 (Partners). We say two (successful) tuples (I, rand,
−→
h ), (I, rand,

−→
h ′) are partners w.r.t.

info at index i ∈ [ℓ+ 1] if the followings hold:

• (I, rand,
−→
h ) and (I, rand,

−→
h ′) fork at index i

• −→e (I, rand,
−→
h ) = −→e (I, rand,

−→
h ′)

We denote the set of (
−→
h ,
−→
h ′) such that (I, rand,

−→
h ) and (I, rand,

−→
h ′) are partners at index i by

prti(I, rand). We further denote by PI,rand the following set:

PI,rand =
{
(I, rand,

−→
h ) ∈ SuccI,rand

∣∣∣∃−→h ′, i ∈ [ℓ+ 1] : (
−→
h ,
−→
h ′) ∈ prti(I, rand)

}
We can use the same definition for the maximum branching index.
In order to count PG like in Lemma 4.2.12, we consider that the number of query transcripts

corresponding to info is of size at most qℓ whereas there need to be ℓ+ 1 hash queries made w.r.t. info.
Thus, the same lemma applies.
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AM(I, rand,
−→
h ) :

50 L1 = L2 = L3 = ∅
51 jinfo = 0
52 sid, i, i′, hind← 0
53 parse I = (b, . . .)
54 if b = 0
55 parse I =

(0, x,h, w1, w2, z,
−→
rnd,−→z1,−→u ,

−→
d ,−→s1 ,−→s2)

56 pk← (g,y = gx,h
57 L1 ← L1 ∪ {((pk, info), z)}
58 for i ∈ [ℓ]
59 L2 ← L2 ∪ {(rndi, z1,i)}
60 else
61 parse I = (1,y, w, w0,

−→
rnd,−→w1,

−→c ,−→r ,−→v1,−→v2)
62 pk← (g,y,h = gw, z = gw0)
63 L1 ← L1 ∪ {((pk, info), z)}
64 for i ∈ [ℓ]
65 L2 ← L2 ∪ {(rndi,gw1,i)}
66 (mi, sigi)

ℓ+1
i=1

$← MSign1,Sign2,H1,H2,H3(pk)
67 for i = 1 . . . ℓ+ 1
68 if Verify(pk,mi, sigi) = 0
69 output ⊥
70 output (mi, sigi)

ℓ+1
i=1

H1(ξ) :
71 if (ξ, z̃, w) /∈ L1

72 jinfo ++
73 if j∗ == jinfo
74 if b = 0
75 L1 ← L1 ∪ {(ξ, z,⊥)}
76 else
77 L1 ← L1 ∪ {(ξ,gw0 , w0)}
78 parse ξ = pk, info
79 set info = info
80 else
81 w̃ $← Zq

82 z̃← gw

83 L1 ← L1 ∪ {(ξ, z̃, w̃)}
84 lookup (ξ, z̃, ·) ∈ L1

85 return z̃

H2(ξ) :
86 if (ξ, ·) /∈ L2

87 w̃ $← Zq

88 L2 ← L2 ∪ {(ξ,gw̃, w̃)}
89 lookup (ξ, z̃, ·) ∈ L2

90 return z̃

H3(ξ) :
91 if (ξ, ·) /∈ L3

92 hind++
93 L3 ← L3 ∪ {(ξ, hhind)}
94 lookup (ξ, h̃) ∈ L3

95 return h̃

Sign1(info) :
96 sid++
97 sid.open = true

98 zsid := H1(pk, info)
99 infosid = info

100 if info = info
101 i′ ++
102 if b = 0
103 a← gui′

104 b1 ← gs1,i′ · zdi′
1,i′

105 b2 ← hs2,i′ · (z/z1,i′)di′

106 (usid, dsid, s1,sid, s2,sid) :=
(ui′ , di′ , s1,i′ , s2,i′)
107 else
108 a← gri′ · yci′

109 b1 ← gv1,i′

110 b2 ← hv2,i′

111 (csid, rsid, v1,sid, v2,sid) :=
(ci′ , ri′ , v1,i′ , v2,i′)
112 else
113 i++
114 a← gri · yci

115 b1 ← gv1,i

116 b2 ← hv2,i

117 (csid, rsid, v1,sid, v2,sid) :=
(ci, ri, v1,i, v2,i)
118 return rndsid,a,b1,b2

Sign2(s̃id, e) :

119 if s̃id.open = false

120 return ⊥
121 s̃id.open← false

122 if b = 0 ∧ infosid = info
123 c

s̃id
← e− d

s̃id
124 rsid ← u

s̃id
− c

s̃id
· x

125 else
126 retrieve ((pk, info), zsid, w0,sid) ∈
L1

127 retrieve (rndsid, z1,sid, w1,sid) ∈ L2

128 d
s̃id
← e− c

s̃id
129 s

1,s̃id
← v

1,s̃id
− d

s̃id
· w

1,s̃id

130 w
2,s̃id
← (w0,sid − w

1,s̃id
)/w

131 s
2,s̃id
← v

2,s̃id
− d

s̃id
· w

2,s̃id
132 return c

s̃id
, r

s̃id
, d

s̃id
, s

1,s̃id
, s

2,s̃id

Figure 5.3: Deterministic wrapper for Abe’s blind signature scheme
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5.4.3 The Transcript Mapping Function and Its Image

We describe the transcript mapping function Φ for Abe’s scheme where by ei′ we denote the value esid
from the session where i′ ∈ [ℓ] was used.

Definition 5.4.3 (Mapping Instances of Abe’s scheme). The transcript mapping function Φ is defined

like this. For an instance I = (0, x,h, w1, w2, z,
−→
rnd,−→z1,−→u ,

−→
d ,−→s 1,

−→s 2), mapping Φ(I, rand,
−→
h ) with

the query transcript −→e generated by running the wrapper AU(I, rand,
−→
h ) does the following:

• b← 1

• y← gx

• w ← dlogg h

• w′1 ← w1

• w′2 ← w2

•
−→
rnd′ ←

−→
rnd

For sessions that use info:

• ∀i′ ∈ [ℓ] : w1,i ← dlogg z1,i

• ∀i′ ∈ [ℓ] : ci ← ei′ − di′

• ∀i′ ∈ [ℓ] : ri ← ui′ − ci′ · x

• ∀i′ ∈ [ℓ] : v1,i ← w1,i′ · di′ + s1,i′

• ∀i′ ∈ [ℓ] : v2,i ← w2,i′ · di′ + s2,i′

For sessions that do not use info

• for i ∈ [(Qinfo − 1) · ℓ] keep all values as is

For an instance I = (1,y, w, w1, w2,
−→
rnd,−→w 1,

−→c ,−→r ,−→v1 ,−→v2) the mapping does the following:

• b← 0

• x← dlogg y

• h← gw

• w′1 ← w1

• w′2 ← w2

•
−→
rnd′ ←

−→
rnd

For sessions that use info

• ∀i′ ∈ [ℓ] : z1,i′ ← gw1,i′



132 CHAPTER 5. ABE’S (PARTIALLY) BLIND SIGNATURE SCHEME

• ∀i′ ∈ [ℓ] : ui′ ← ci′ · x+ ri′

• ∀i′ ∈ [ℓ] : di′ ← ei′ − ci′

• ∀i′ ∈ [ℓ] : s1,i′ ← v1,i′ − di′ · w1,i′

• ∀i′ ∈ [ℓ] : s2,i′ ← v2,i′ − di′ · w2,i′

For sessions that do not use info

• for i ∈ [(Qinfo − 1) · ℓ] keep all values as is

Analogously to before, we can show that Φ is a self-inverse bijection that preserves the partner
relation. We can then lower-bound the sizes of relevant sets in the image of Φ to finally show that there
is a large enough set of both-sided triangle corners.

Using the analogous definition of B×T and B̂×T , as well as Ô×T , we can obtain that there must be a
‘good set’ G for which forking is likely to result in the desired witness.

5.4.4 Forking Reduction

Theorem 5.4.4 (OMUF security of Abe’s scheme). For all ℓ ∈ N, if there exists an adversary U
that requests at signatures w.r.t. at most Qinfo tags from the signer with at most ℓ singatures per
tag, makes QH1 queries to random oracle H1, Qh hash queries to random oracle H3 and (tU, ϵU, ℓ)-

breaks OMUFAbe with ϵU ≥
432

(
1− 1

(ℓ+1)2

)
q ·

(
Qh

ℓ+1

)
· QH1 , then there exists an algorithm B that(

tB ≈ 2tU +O(ℓ+ 1) + O(Qh
2), ϵB ≈ 3ϵ2U

75423744·(Qh
ℓ+1)

2·(ℓ+1)3·Q2
H1

)
-breaks DLOG.

Proof. We give a sketch of the main parts of the proof that work slightly different from the AO scheme.
We describe the reduction R. On input of a discrete logarithm challenge U, R first samples a bit b.

If b = 0 it samples a y-side instance I with h = U, otherwise it samples a z-side instance I with y = U.

It furthermore samples rand and a hash vector
−→
h $← Zq

ℓ+1. It then runs the wrapper BM(I, rand,
−→
h ).

Where M is the hash query reduction wrapper around U as described in the previous subsection.

R then samples i $← [ℓ + 1] and re-samples
−→
h ′ $← Zq

ℓ+1

|
−→
h [i]

. The reduction R then re-runs

BA(I, rand,
−→
h ′).

We denote by (ζi, ζ1,i, ωi, δi, ρi, σ1,i, σ2,i, µi) and (ζ ′i, ζ
′
1,i, ω

′
i, δ
′
i, ρ
′
i, σ
′
1,i, σ

′
2,i, µ

′
i) the signature at

hash index i in the first and second run respectively. If both runs are successful and produced a signature
for index i, the reduction attempts to solve its discrete logarithm challenge as follows:

If the reduction chose b = 0: First compute

dlogg ζ1,i = dlogg ζ
′
1,i =

σ′1,i − σ1,i

δi − δ′i

and

dlogh ζ2,i = dlogh ζ ′2,i =
σ′2,i − σ2,i

δi − δ′i

and

dlogzj∗
ζi = dlogz ζ

′
i =

µ′i − µi

δi − δ′i
.
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Then, compute

dlogg z
∗
1 =

dlogg ζ1,i

dlogzj∗
ζi

and

dlogh z∗2 =
dlogh ζ2,i
dlogzj∗

ζi

to finally obtain
dlogg z = dlogg z

∗
1 + w · dlogh z∗2

If the reduction chose b = 1 it merely computes

dlogg y =
ρ′i − ρi
ω′i − ωi

.

We note that if b = 0, extraction works if δi ̸= δ′i. We further note that this event is only dependent
on the first run, as this run fixes ζi, ζ1,i, and ζ2,i already (it is only that the reduction needs the second
run to compute).

In the case that b = 1, the reduction succeeds in solving its dlog challenge if ωi ̸= ω′i.
We can thus apply a similar analysis as for the Abe-Okamoto scheme and obtain the following.

AdvDLOG
R ≥

(
1

4
− 1

2q

)
· Pr

 (I, rand,
−→
h ) ∈ Ĝb

(I, rand,
−→
h ′) ∈ T×T,iI, rand,

−→
h

t(I, rand,
−→
h ) = i


=

(
1

4
− 1

2q

)
· Pr

[
(I, rand,

−→
h ′) ∈ T×T,iI, rand,

−→
h

∣∣∣∣∣ (I, rand,
−→
h ) ∈ Ĝb

t(I, rand,
−→
h ) = i

]
· Pr

[
(I, rand,

−→
h ) ∈ Ĝb

]
· Pr

[
t(I, rand,

−→
h ) = i

∣∣∣(I, rand,−→h ) ∈ Ĝb

]
≥
(
1

4
− 1

2q

)
·
(
1− ℓ+ 1

q

)( ϵB×
T

16(ℓ+ 1)
− 2

q

)
·

3ϵB×
T

128(ℓ+ 1)
· 1

ℓ+ 1

(where the last inequality is due to Lemma 4.2.48 and Lemma 4.2.49). Plugging in ϵB×
T
≥ ϵM

96 for

ϵM ≥
432

(
1− 1

(ℓ+1)2

)
q and ϵM = ϵU

(Qh
ℓ+1)
· 1
QH1

(see Lemma 4.2.37) yields the theorem statement.

5.4.5 Discussion

We note that Abe’s scheme is immune to the ROS-attack5 and thus the bounds induced by the recent
polynomial-time ROS-solver [Ben+21] do not apply to this scheme. This means that unlike for the
Abe-Okamoto scheme, the gap between our proof of security and the best possible bound one could
hope for is rather large. It therefore remains an open question whether this gap can be closed without
relying on the AGM.

5The ROS attack by [Ben+21] is algebraic and therefore would contradict our proof in the AGM.
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Chapter 6

Sequential Security of Blind Schnorr
Signatures in the AGM

This chapter is based on [KLX22a]. In this chapter, we look into the sequential security of Blind Schnorr
Signatures in the AGM based on the One-More Discrete Logarithm Assumption (OMDL). In Section 6.1
we revisit the Blind Schnorr Signature scheme and show that it can be proven secure in the AGM under
OMDL. This proof largely follows the proof of [FPS20], however avoiding the ROS-problem as there are
no concurrent sessions. The reduction strategy is as follows: The reduction embeds its DL challenges in
the public key x as well as in the first signer messages r. For every signing query the adversary closes,
the reduction queries its DL oracle on r · xc to obtain the signature part s. This allows the reduction to
sign without knowing the secret key.

The reduction hopes to learn the secret key from the signatures submitted by the adversary along
with the algebraic representations submitted during random oracle calls for signature generation. As
the signing happens in a sequential manner, each hash query can be uniquely attributed to one of the
following timestamps:

• before any signing session is opened

• during the ith signing session for some i, i.e. after Sign1 was called the ith time and before Sign2
is called the ith time

• in between the ith and i+ 1st signing session, i.e. after Sign2 is called for the ith time but before
Sign1 is called for the i+ 1st time

• after the last signing session was closed or while the last (unclosed) signing session is still open

The key idea here is that most of the algebraic representation of the group element r′ submitted to
the random oracle H for a signature is actually already completely fixed w.r.t. x and g, with only at
most one ‘unresolved’ value r present in the representation for which a Sign2-query can be made and a
response s can still be learned. Thus, either the representation is entirely fixed at the time of the hash
query, in which case the hash response and resulting signature will allow the reduction to extract the
secret key with overwhelming probability, or there is dependent on value c to be queried to Sign2 and
the response. In the latter case, there must be two hash queries that eventually result in signatures being
made during the same signing session, i.e. depending on the same value c. We show that in this case,

135
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the probability of linear dependence of the two algebraic representations is small and thus extraction can
happen using at least one of the two signatures resulting from these hash queries.

In the end, the reduction uses the knowledge of the secret key to solve all other challenges using the
values s, c it learned during its signing sessions.

The second part of this chapter (Section 6.2) is devoted to showing that this reduction is optimal
with respect to the number of discrete logarithm queries made. In particular, we provide a meta-reduction
that shows that if there exists a reduction that makes a smaller number of discrete logarithm queries, this
reduction can be used to break the OMDL assumption efficiently. The meta-reduction’s strategy is to
provoke the reduction to output a system of linear equations (through the algebraic representations) that
can be solved for the discrete logarithms of the challenges or directly for the secret key of the reduction.
This in turn allows the meta-reduction to generate signatures and thus use the reduction to solve OMDL.

6.1 Sequential Unforgeability of Blind Schnorr Signatures

In this section we show that Schnorr’s blind signature scheme satisfies sequential one-more unforgeability
under the one-more DL assumption in the AGM. We first recall Schnorr’s blind signature scheme BSS
below. A figure depicting an interaction can be found in Figure 6.1.1

Signer User
sk = x pk = x = gx

m

r $← Zq
r=gr

−−−→ α, β $← Zq

r′ := r · gα · xβ

c′ := H(r′,m)
c′←− c := c′ + β

s := c · x+ r gs ?
= r · xc

s′ := s+ α
⇓

(m,σ = (r′, s′))

Figure 6.1: Interaction between Signer and User for BSS

Let H : {0, 1}∗ → Zq be a hash function.

• KeyGen : On input pp, KeyGen samples x $← Zq and sets x ← gx. It sets sk ← x, pk ← x and
returns (sk, pk).

• Sign1 : On input sk, Sign1 samples r $← Zq and returns the commitment r := gr and the state
StS := r.

• Sign2 : On input a secret key sk, a state StS = r and a challenge c, Sign2 computes s← c · sk+ r
mod q and returns the response s.

1We use different letters to denote the variables in the scheme than what we used in the previous section. Our choices
are in line with the standard notation for this scheme.



6.1. SEQUENTIAL UNFORGEABILITY OF BLIND SCHNORR SIGNATURES 137

• User1 : On input a public key pk, a commitment r, and a message m, User1 does the following. It
samples first samples α, β $← Zq. Then, it computes r′ ← r·gα ·pkβ and c′ ← H(r′,m), c← c′+β
mod q. It returns the challenge c and the state StU ← (r, c, α, β,m).

• User2 : On input a public key pk, a state StU = (r, c, α, β,m), and a response s, User2 first
checks if gs = r ·xc and returns ⊥ if not. Otherwise, it computes r′ ← r · gα · pkβ and s′ ← s+α
and returns the signature σ ← (r′, s′).

• Verify : On input a public key pk, a signature σ = (r′, s′) and a message m, Verify computes

c′ ← H(r′,m) and checks whether gs
′
= r′ · pkc

′
. If so, it returns 1; otherwise, it returns 0.

Theorem 6.1.1. Let M be an algebraic adversary that runs in time tM, makes at most ℓ queries to sign2
in ℓ-SEQ-OMUFBSS, and at most Qh random oracle queries to H. Then there exists an adversary B
such that

AdvOMDL
B,ℓ ≥ AdvSEQ-OMUF

M,ℓ,BSS − q2h +Qh + 2

2q
,

and B runs in time tB = tM +O(ℓ+Qh).

We briefly explain the proof idea. Many of the ideas and notations are reused from [FPS20]; we include
them for completeness. Since M can query sign2 a total of ℓ times, it is allowed to open ℓ+1 sessions and
close the first ℓ of them (the last session is never closed). Let x be the public key, and r1, . . . , rℓ+1 be
the group elements returned by sign1. Let (m

∗
1, (r

∗
1, s
∗
1)), . . . , (m

∗
ℓ+1, (r

∗
ℓ+1, s

∗
ℓ+1)) be M’s final outputs,

i.e., (r∗i , s
∗
i ) (where i ∈ [ℓ+ 1]) is M’s forgery on message m∗i . Since M is algebraic, it also outputs r∗i ’s

algebraic representation (γ∗i , ξ
∗
i , ρ
∗
i,1, . . . , ρ

∗
i,ℓ+1) based on g,x, r1, . . . , rℓ+1, i.e.,

r∗i = gγ∗
i · xξ∗i ·

ℓ∏
j=1

r
ρ∗
i,j

j · rρ
∗
i,ℓ+1

ℓ+1 = gγ∗
i +ρ∗

i,ℓ+1rℓ+1 · xξ∗i ·
ℓ∏

j=1

r
ρ∗
i,j

j

(where rℓ+1 = dlog rℓ+1). Suppose M wins ℓ-SEQ-OMUFBSS, i.e., (r
∗
i , s
∗
i ) is a valid forgery on

message m∗i and we have that

gs∗i = r∗i · xc∗i , (6.1)

where c∗i = H(r∗i ,m
∗
i ), for all i ∈ [ℓ+ 1]. The two equations above combined yield

xc∗i +ξ∗i ·
ℓ∏

j=1

r
ρ∗
i,j

j = gs∗i−γ
∗
i −ρ

∗
i,ℓ+1rℓ+1 . (6.2)

The reduction to ℓ-OMDL, B, works as follows. B queries its challenge oracle ℓ+ 1 times to obtain
x, r1, . . . , rℓ, samples rℓ+1

$← Zq and sets rℓ+1 ← grℓ+1 , and simulates sign1() by returning ri. To
simulate sign2(cj) queries, B queries its dlog oracle and returns sj ← dlog(rj · xcj ). Substituting the
definition of sj into Eq. (6.2), we get

xc∗i +ξ∗i−
∑ℓ

j=1 ρ∗
i,jcj = gs∗i−γ

∗
i −

∑ℓ
j=1 ρ∗

i,jsj−ρ
∗
i,ℓ+1rℓ+1 ,

which can be used to compute x = dlogx as long as χi = c∗i + ξ∗i −
∑ℓ

j=1 ρ
∗
i,jcj ̸= 0 for some i.

Now we need to upper bound the probability that χi = 0 for all i = 1, . . . , ℓ + 1. Recall that
in [FPS20], this is reduced to the ℓ-ROS problem (which can be solved in polynomial time when ℓ ≥ λ, as
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shown in the recent work of [Ben+21]). Here, since we are in the sequential setting where the adversary
must close one session before opening another, we can make a statistical argument instead.

For each message/forgery pair (m∗i , (r
∗
i , s
∗
i )), there is a corresponding random oracle query H(r∗i ,m

∗
i ).

(If M does not make such a query, then Pr[χi = 0] = 1/q.) Call this query the i-th special query. Any
special query is made during a session which is eventually closed (i.e., between M’s j-th sign1 query
and j-th sign2 query for some j ∈ [ℓ]), or between two sessions (including before the first session), or
during the last session which is never closed. If there is any special query (say the i-th) made between
two sessions or during the last session, then it is not hard to see that all coefficients in χi’s expression,
except c∗i , are fixed when M makes its i-th special query. On the other hand, c∗i is a uniformly random
integer in Zq. Therefore, Pr[χi = 0] = 1/q for a single H(r∗i ,m

∗
i ) query. Otherwise, i.e., if all special

queries are made during some session which is eventually closed, since there are ℓ such sessions and
ℓ+ 1 special queries, there is at least one session (say the j0-th) with at least two special queries (say
the i-th and (i+ 1)-th) during it. At the time when M makes its (i+ 1)-th special query, i.e., when
c∗i+1 is chosen at random from Zq, all coefficients in both χi and χi+1’s expression, except c

∗
i+1 and

cj0 , are fixed. Therefore, at this time whether M can come up with a cj0 s.t. χi = χi+1 = 0 is already
determined, and it depends on the random choice of c∗i+1. It can be shown (see the full proof) that there
is at most one c∗i+1 s.t. the linear system χi = χi+1 = 0 (with unknown cj0) has a solution; therefore,
Pr[χi = χi+1 = 0] ≤ 1/q for a single pair of H(r∗i ,m

∗
i ) and H(r∗i+1,m

∗
i+1) queries.

2

Proof. Let M be as in the theorem statement. Without loss of generality, we assume that M
makes exactly ℓ + 1 many sign1() and exactly ℓ many sign2 queries, and returns exactly ℓ + 1
valid signatures (r∗1, s

∗
1), . . . , (r

∗
ℓ+1, s

∗
ℓ+1) of messages m∗1, . . . ,m

∗
ℓ+1.

3 We further assume that pairs
(m∗1, r

∗
1), . . . , (m

∗
ℓ+1, r

∗
ℓ+1) are all distinct; otherwise M could not win ℓ-SEQ-OMUFBSS as we prove

in the following simple claim.

Claim 6.1.2. The pairs (m∗i , r
∗
i ), . . . , (m

∗
j , r
∗
j ) are pairwise distinct for all i, j ∈ [ℓ+ 1].

Proof. Suppose (m∗i , r
∗
i ) = (m∗j , r

∗
j ) for i ̸= j ∈ [ℓ + 1]. If s∗i = s∗j then M outputs two identical

message/signature pairs, violating the winning condition. Otherwise it cannot be the case that both
(r∗i , s

∗
i ) and (r∗i , s

∗
j ) are both valid signatures of m∗i , since given m∗i and r∗i , s

∗
i as in the valid signature

is uniquely defined (as in Eq. (6.1)).

Let x be the public key, r1, . . . , rℓ+1 be the group elements returned by sign1, and M’s sign2 queries
be sign2(c1), . . . , sign2(cℓ). The proof goes by a sequence of games, which we describe below. For
convenience, we set AdvGi

M := Pr[GM
i = 1].

Game G0. This is the ℓ-SEQ-OMUF game. We have that

AdvG0

M = AdvSEQ-OMUF
M,ℓ,BSS .

2We remark that this is essentially the 1-ROS problem, which is statistically hard.
3Since the security game is sequential OMUF, and M can make at most ℓ many sign2 queries, this implies that M can

make at most ℓ+ 1 many sign1 queries. Obviously, any adversary who makes less than ℓ+ 1 many sign1 queries, or less
than ℓ many sign2 queries, or returns more than ℓ+ 1 valid signatures, can be turned into an adversary who makes exactly
ℓ+ 1 many sign1 and exactly ℓ many sign2 queries, and returns exactly ℓ+ 1 valid signatures, with the same advantage
and roughly the same running time.
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•
••

•

••

Figure 6.2: Depiction of the two cases for our reduction with hash queries denoted by • and signing
sessions denoted by orange boxes . Case C1 is on the left with a hash query made in between two
signing sessions, and case C2 on the right with two hash queries made within the same signing session.

Game G1. In G1 we make the following change. When M returns its final outputs (m∗1, (r
∗
1, s
∗
1)), . . . ,

(m∗ℓ+1, (r
∗
ℓ+1, s

∗
ℓ+1)), together with r∗i ’s algebraic representation (γ∗i , ξ

∗
i , ρ
∗
i,1, . . . , ρ

∗
i,ℓ+1) based on g,x,

r1, . . . , rℓ+1, for each i ∈ [ℓ+ 1] for which H(r∗i ,m
∗
i ) is undefined, we emulate a query c∗i ← H(r∗i ,m

∗
i )

via lazy sampling. (If M has not seen a certain rj when outputting r∗i , then the game naturally sets

ρ∗i,j = 0, as M is not allowed to use rj as a base.) After that, we define χi ← c∗i + ξ∗i −
∑ℓ

j=1 ρ
∗
i,jcj ,

and abort if χi = 0 for all i. (Note that ρ∗i,ℓ+1 does not appear in the definition of χi.)

G1 and G0 are identical unless χi = 0 for all i ∈ [ℓ+ 1]. Call this event E.

Claim 6.1.3. Pr[E] ≤ q2h+Qh+2
2q

Proof. If M does not query H(r∗i ,m
∗
i ) for some i, then c∗i is a uniformly random element of Zq in M’s

view, so Pr[χi = 0] = 1/q.

Next we assume that M queriesH(r∗i ,m
∗
i ) for all i; call such query the i-th special query. Since (m

∗
i , r
∗
i )

pairs are all distinct, c∗i = H(r∗i ,m
∗
i ) is a uniformly random element in Zq (independent of everything

else) when M makes the i-th special query. Also, r∗i ’s algebraic representation (γ∗i , ξ
∗
i , ρ
∗
i,1, . . . , ρ

∗
i,ℓ+1)

is already determined when M makes its i-th special query. Any special query is made either during
a session which is eventually closed (i.e., between M’s j-th sign1 query and j-th sign2 query for some
j ∈ [ℓ]), or between two sessions (including before the first session), or during the last session which
is never closed (i.e., after M’s (ℓ + 1)-th sign1 query). A depiction of the two cases can be seen in
Figure 6.2 We consider these cases separately:

Case C1. Suppose that there is any special query (say the i-th) made (a) between two sessions (including
before the first session); say the i-th special query is made after the j0-th sign2 query and before the
(j0 + 1)-th sign1 query, or (b) after the (ℓ+ 1)-th sign1 query. Consider the time when M makes its i-th
special query H(r∗i ,m

∗
i ). In case (a), at this point all group elements M has seen are g,x, r1, . . . , rj0 ,

so ρ∗i,j0+1 = . . . = ρ∗i,ℓ = 0; furthermore, the algebraic coefficients (for r∗i ) ξ
∗
i , ρ
∗
i,1, . . . , ρ

∗
i,j0

are all fixed.
Finally, cj (where j ∈ [j0]) is fixed when M makes its j-th sign2 query, which happens before M’s i-th
special query. Similarly, in case (b), at this point the algebraic coefficients (for r∗i ) ξ

∗
i , ρ
∗
i,1, . . . , ρ

∗
i,ℓ+1

are all fixed, and c1, . . . , cℓ are fixed when M makes its ℓ-th sign2 query, which happens before M’s i-th
special query. This means that in both cases (a) and (b), all coefficients in χi’s expression, except c

∗
i ,

are fixed when M makes its i-th special query. On the other hand, c∗i is a uniformly random element in

Zq. Therefore, Pr[χi = c∗i + ξ∗i −
∑j0

j=1 ρ
∗
i,jcj = 0] = 1

q , for a single H(r∗i ,m
∗
i ) query. Since M makes

Qh random oracle queries in total, we have that Pr[χi = 0 ∧ C1] ≤ Qh

q , and hence Pr[E ∧ C1] ≤ Qh

q .
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Case C2. Suppose that all special queries are made during some session which is eventually closed.
Since there are ℓ such sessions and ℓ+ 1 special queries, there is at least one session with at least two
special queries during it; say the i-th and (i+ 1)-th special queries are made during the j0-th session.
Consider the time when M makes its (i+ 1)-st special query. At this point all group elements M has
seen are g,x, r1, . . . , rj0 , so ρ∗i,j0+1 = . . . = ρ∗i,ℓ = 0; furthermore, the algebraic coefficients (for r∗i
and r∗i+1) ξ

∗
i , ρ
∗
i,1, . . . , ρ

∗
i,j0

, ξ∗i+1, ρ
∗
i+1,1, . . . , ρ

∗
i+1,j0

are all fixed. The output of M’s i-th special query
c∗i is also fixed right after M makes its i-th special query, which happens before M’s (i+ 1)-th special
query. Finally, cj (where j ∈ [j0 − 1]) is fixed when M makes its j-th sign2 query, which again happens
before M’s (i+ 1)-th special query. (This is because M’s (i+ 1)-th special query is made during the
j0-th session, which is started after the j-th session is closed.) This means that all coefficients in χi and
χi+1’s expressions, except cj0 and c∗i+1, are fixed when M makes its (i+ 1)-th special query.
Next consider the time when M makes its j0-th sign2 query (i.e., when the j0-th session is closed). At
this point c∗i+1 is also fixed, so the only coefficient in χi and χi+1’s expressions which is not fixed is
cj0 (to be chosen by M). In sum, the last coefficient fixed is cj0 (chosen by M), and the second last
coefficient fixed is c∗i+1 (uniformly random in Zq).
Consider the linear system with unknown cj0{

χi = c∗i + ξ∗i −
∑j0

j=1 ρ
∗
i,jcj = 0,

χi+1 = c∗i+1 + ξ∗i+1 −
∑j0

j=1 ρ
∗
i+1,jcj = 0.

(6.3)

Denote A :=

(
ρ∗i,j0 c∗i + ξ∗i −

∑j0−1
j=1 ρ∗i,jcj

ρ∗i+1,j0
c∗i+1 + ξ∗i+1 −

∑j0−1
j=1 ρ∗i+1,jcj

)
and B :=

(
ρ∗i,j0

ρ∗i+1,j0

)
the augmented matrix

and coefficient matrix, respectively, of (6.3). We first note that if ρ∗i,j0 = ρ∗i+1,j0
= 0 all factors in

Eq. (6.3) are fixed when M makes his query. Thus, the probability that χi = χi+1 = 0 is at most 1
q over

the choice of c∗i and c∗i+1. In the following we assume that ρ∗i,j0 ̸= 0 or ρ∗i+1,j0
̸= 0. Then

Pr[χi = χi+1 = 0] = Pr[cj0 is the solution of (6.3)] ≤ Pr[(6.3) has a solution]

= Pr [rank(A) = rank(B)] ≤ Pr [rank(A) ≤ 1] = Pr [det(A) = 0]

= Pr

[
ρ∗i,j0c

∗
i+1 + ρ∗i,j0(ξ

∗
i+1 −

∑j0−1
j=1 ρ∗i+1,jcj)

−ρ∗i+1,j0
(c∗i + ξ∗i −

∑j0−1
j=1 ρ∗i,jcj) = 0

]
=

1

q
,

for a single pair of H(r∗i ,m
∗
i ) and H(r∗i+1,m

∗
i+1) queries. (The last equation is true because when M

makes its (i+1)-th special query, c∗i+1 is a uniformly random element of Zq, and all other coefficients are

fixed.) Since M makes Qh random oracle queries in total, we have that Pr[χi = χi+1 = 0 ∧C2] ≤
(Qh

2 )
q ,

and hence Pr[E ∧ C2] ≤
(Qh

2 )
q .

In sum, we have that (let case C0 be “M does not make the i-th special query for some i ∈ [ℓ+ 1]”)

Pr[E] = Pr[E ∧ C0] + Pr[E ∧ C1] + Pr[E ∧ C2]

≤ 1

q
+

Qh

q
+

(
Qh

2

)
q

=
q2h +Qh + 2

2q
.

By the claim, AdvG1

M ≤ AdvG0

M − q2h+Qh+2
2q .
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Reduction to ℓ-OMDL. We now upper bound AdvG1

M via a reduction B from ℓ-OMDL. B runs
on input (G,g, q), and is given oracle access to chal and dlog. B first queries x ← chal() and runs
M(G,g, q,x). B runs the code of G1 except that (1) on M’s j-th sign1 query (j ∈ [ℓ]), B returns
rj ← chal(); (2) on M’s j-th sign2 query, B returns sj ← dlog(g, rj · xcj ). (B answers M’s (ℓ+ 1)-th
sign1 query just as in G1, i.e., by sampling rℓ+1

$← Zq and returning rℓ+1 := grℓ+1 .) Finally, when M
returns its final outputs, if there exists an i ∈ [ℓ+ 1] s.t. χi ̸= 0, B computes

x←
s∗i − γ∗i −

∑ℓ
j=1 ρ

∗
i,jsj − ρ∗i,ℓ+1rℓ+1

χi

and

rj ← sj − cjx,

and outputs (x, r1, . . . , rℓ). (If χi = 0 for all i, B aborts.)

Clearly, B runs in time tM +O(ℓ+Qh). We claim that B wins ℓ-OMDL if M wins G1. Since M is
algebraic, we have that

r∗i = gγ∗
i · xξ∗i ·

ℓ∏
j=1

r
ρ∗
i,j

j · rρ
∗
i,ℓ+1

ℓ+1 = gγ∗
i +ρ∗

i,ℓ+1rℓ+1 · xξ∗i ·
ℓ∏

j=1

r
ρ∗
i,j

j .

On the other hand, since M wins G1, i.e., (r
∗
i , s
∗
i ) is a valid forgery on message m∗i , we have that

gs∗i = r∗i · xc∗i .

The two equations above combined yield

xc∗i +ξ∗i ·
ℓ∏

j=1

r
ρ∗
i,j

j = gs∗i−γ
∗
i −ρ

∗
i,ℓ+1rℓ+1 . (6.4)

By definition of sj , we have that

rj =
gsj

xcj
, (6.5)

substituting (6.5) into (6.4), we get

xχi = xc∗i +ξ∗i−
∑ℓ

j=1 ρ∗
i,jcj = gs∗i−γ

∗
i −

∑ℓ
j=1 ρ∗

i,jsj−ρ
∗
i,ℓ+1rℓ+1 ,

so x = dlogx. By (6.5) again, rj = dlog rj . This means that B wins ℓ-OMDL. We have that

AdvOMDL
B,ℓ = AdvG1

M .

We conclude that

AdvOMDL
B,ℓ ≥ AdvSEQ-OMUF

M,ℓ,BSS − q2h +Qh + 2

2q
,

completing the proof.
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6.2 Optimality of Our Reduction

In this section, we show an impossibility result which states (roughly) that reducing ℓ-sequential one-more
unforgeability of Schnorr’s blind signature scheme from ℓ-OMDL (as shown in section 6.1) is the best
one can hope for. Concretely, we show that any algebraic reduction B that solves (ℓ− 1)-OMDL when
provided with black-box access to a successful algebraic forger A in ℓ-SEQ-OMUFBSS, can be turned
into an efficient adversary M against (ℓ− 1)-OMDL.

Algebraic Black Boxes. We consider a type of algebraic adversary that, apart from providing algebraic
representations for each of its output group elements to the reduction, does not provide any further
access (beyond black-box access). In particular, the reduction does not get access to the code of the
adversary. This notion was previously put forth and used by Bauer et al. [BFL20].

Theorem 6.2.1. 4 Let B be an algebraic reduction that satisfies the following: if algorithm A is an
algebraic black-box algorithm that runs in time tA then

AdvOMDL
B,ℓ−1 = ϵB

(
AdvSEQ-OMUF

A,ℓ,BSS

)
and B runs in time tB(tA). (Here, ϵB and tB are functions in the success probability and running time of
A). Then there exists an algorithm M (the meta-reduction) such that

AdvOMDL
M,ℓ−1 ≥ ϵB

((
1− 1

q

)ℓ
)

and M runs in time tM = tB(O(ℓ3)).

Proof Idea. We employ the meta-reduction technique [Cor02]. Our meta-reduction provides the
reduction with interfaces from the one-more discrete logarithm game as well as an algebraic black box
forger for blind Schnorr signatures. It plays the OMDL game itself and forwards all oracle queries and
responses, thereby providing the reduction with the interfaces of an OMDL challenger. The meta-
reduction (in the role of the forger) first opens and closes all signing sessions before it makes its first
hash query. We note that up to this point the only outputs made by the meta-reduction in the role of
the forger have been uniformly random queries to the sign2 oracle provided by the reduction, and thus
independent of the algebraic representations output by the meta-reduction during the process. It then
uses the algebraic representations output by the reduction as well as the responses from sign2 to compute
the secret key through means of linear algebra. The meta-reduction then starts making queries to the
random oracle provided by the reduction and generating signatures, providing the discrete logarithm
of its random commitments as a representation. Thus, all representations as well as all queries made
by the reduction are independent from the algebraic representations that the reduction provides to the
meta-reduction but not a to a real adversary. When the meta-reduction has output its signatures to the
reduction, the reduction solves the OMDL challenge. The meta-reduction at this point only forwards the
solution to its own OMDL challenger and wins whenever the reduction wins.

4This theorem even holds for a weaker version of ℓ-SEQ-OMUFBSS where the adversary A is required to output
signatures for ℓ+ 1 distinct messages.



6.2. OPTIMALITY OF OUR REDUCTION 143

Doesn’t This Also Contradict Section 5.3? One may ask if it is possible to apply a similar meta-
reduction technique to Abe’s blind signature scheme or our partially blind variant, which would contradict
our result from Section 5.3. However, this is not possible as the algebraic representations output by the
reduction break the witness-indistinguishability of the scheme. The meta-reduction would only be able to
compute the witness used by the reduction. Thus, the combination of representations provided by the
adversary and signatures provided by the adversary would be dependent on the algebraic representations
provided by the reduction.

Proof of Theorem 6.2.1. We briefly sketch an unbounded algebraic adversary U that wins the game
ℓ-SEQ-OMUF. The adversary receives the public key x. It then opens and closes ℓ singing sessions,
using a freshly sampled c $← Zq. The adversary then brute-forces the discrete logarithm dlogg x. Finally,
the adversary U picks values r1, . . . , rℓ+1

$← Zq. It queries H(gri ,mi) with uniformly random messages
mi to the random oracle H provided by the reduction for i = 1, . . . , ℓ + 1. For this, it includes the
algebraic representation merely as ri. It generates signatures using the normal signing key dlogg x it
previously retrieved. This adversary succeeds in the SEQ-OMUF game with probability 1.

We will now provide a meta-reduction that simulates the adversary U to the reduction with probability(
1− 1

q

)ℓ
over its own internal random choices.

The meta-reduction M needs to provide the oracles from (ℓ − 1)-OMDL as well as simulate an
adversary A playing the ℓ-SEQ-OMUF.

Interactions with (ℓ− 1)-OMDL. M forwards all queries to the oracles dlog and chal made by B to
the corresponding oracles provided by the interface of its own game (ℓ− 1)-OMDL. We denote
the ith challenge value returned by chal in (ℓ− 1)-OMDL with Ui.

Public Key. When B outputs a public key x, M obtains its algebraic representation −→z0 such that

x = gz0,0 ·
ℓ∏

i=1

U
z0,i
i .

Signing Sessions. To simulate the behaviour of an adversary in signing sessions j = 1, . . . , ℓ of
ℓ-SEQ-OMUF, M does as follows. It first queries rj ← sign1() (as a query to B made by an
algebraic forger), and obtains rj ’s algebraic representation −→zj such that

rj = gzj,0 ·
ℓ∏

i=1

U
zj,i
i .

Then M picks cj
$← Zq and queries sj := sign2(cj). M knows that

gsj = rj · xcj .

If the above equation does not hold, M aborts. This is consistent with a real adversary A as then
the verification equation does not hold.

Obtaining the Secret Key. Combining all equations above, M obtains a linear system of ℓ equations

sj − cj ·

(
z0,0 +

ℓ∑
i=1

z0,i · dlogUi

)
︸ ︷︷ ︸

x=dlog x

= zj,0 +

ℓ∑
i=1

zj,i · dlogUi︸ ︷︷ ︸
dlog rj

(∗)
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for j = 1, . . . , ℓ. We will show below that either (1) with probability at least (1− 1
q )

ℓ this linear

system yields a solution for dlogUi (i = 1, . . . , ℓ), or (2) M can compute the secret key x = dlog x

without solving dlogUi. In case (1), M can compute x = z0,0 +
∑ℓ

i=1 dlogUi
z0,i .

Either way, M now knows the secret key x with probability at least (1 − 1
q )

ℓ, conditioned on B
being able to answer all signing queries.

Forging Signatures. After obtaining x, M runs the standard Schnorr signing protocol ℓ + 1 times.
Concretely, for k = 1, . . . ℓ+ 1, M picks random distinct mk

$← {0, 1}λ and rk
$← Zq, computes

r′k = grk , and queries H(r′k,mk) (using rk the algebraic representation of r′k). Then M computes
sk := rk + x ·H(r′k,mk) and outputs (m1, (r

′
1, s1)), . . . , (mℓ+1, (r

′
ℓ+1, sℓ+1)) to B.

Solving OMDL. Once B outputs the final outputs (supposed to be dlogUi for i = 1, . . . , ℓ), M forwards
them to its own challenger. We note that this step is necessary because M may not have received
all of dlogU1, . . . ,dlogUℓ in the “obtaining the secret key” step.

Analysis of success probability. We now analyze the linear system (∗) in step ‘obtaining the secret
key’ (recall that the unknowns are dlogU1, . . . ,dlogUℓ). Its augmented matrix is

A =

 (−c1 · z0,1 − z1,1) · · · (−c1 · z0,ℓ − z1,ℓ) z1,0 − s1 + c1 · z0,0
...

...
(−cℓ · z0,1 − zℓ,1) · · · (−cℓ · z0,ℓ − zℓ,ℓ) zℓ,0 − sℓ + cℓ · z0,0


Claim 6.2.2. If the first j − 1 rows of A are linearly independent, then either (1) the j-th row is linearly
independent of the previous rows with probability at least 1− 1

q (over the choice of cj), or (2) M can

compute the secret key x from the j-th row. (In the case of j = 1 or 2, a single vector is linearly
independent iff it is non-zero.)

Proof. Suppose that the first j − 1 rows of A are linearly independent. The algebraic representation
−→zj of rj is provided by the reduction B, and the algebraic representation −→z0 of x has been provided by
B at the beginning of the game. As ℓ-SEQ-OMUF is played in a sequential manner, in session j, all
parameters in the first j − 1 rows of A (and thus their corresponding equations) are known to both B
and M. We want to analyze for which possible choices of cj the j-th row of A can be linearly expressed
by the first j − 1 rows. This is equivalent to asking for which parameters d1, . . . , dj−1, cj it is possible,
for any i ∈ [j], to express (−cj · z0,i − zj,i) as d1 · (−c1 · z0,i − z1,i) + ...+ dj−1 · (−cj−1 · z0,i − zj−1,i).
Thus, we are led to analyze the following linear system with unknowns d1, . . . , dj−1, cj (where we only
consider the left-hand side of the matrix A):

 (−c1 · z0,1 − z1,1) . . . ·(−cj−1 · z0,1 − zj−1,1) z0,1
...

(−c1 · z0,ℓ − z1,ℓ) . . . ·(−cj−1 · z0,ℓ − zj−1,ℓ) z0,ℓ

 ·


d1
...

dj−1
cj

 =

 −zj,1...
−zj,ℓ

 (∗∗)

There are three possibilities:

(∗∗) has no solution. In this case, for any possible choice of cj , the j-th row of A is linearly independent
of the first j − 1 rows.
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(∗∗) has a solution and the kernel is trivial. In this case, there is exactly one cj such that the j-th
row of A is not linearly independent of the first j − 1 rows. Note however, that the coefficient
matrix in (∗∗) is independent and fixed before M returns cj to B. Therefore, the probability that
the j-th row of A is linearly independent of the first j − 1 rows is 1− 1

q .

(∗∗) has a solution and the kernel has dimension 1. We argue that in
this case the meta-reduction M can compute the secret key x. M first solves (∗∗) and puts
cj as the variable term; that is, the values for di are expressed dependent on cj . Fixing any cj ∈ Zq,
M can thus compute the corresponding d1, . . . , dj−1 (which are uniquely defined). Plugging this
back into (∗) yields that

zj,0 − sj + cj · z0,0 =

j−1∑
i=1

di · (zi,0 − si + ci · z0,0),

so M can compute

sj = −
j−1∑
i=1

di · (zi,0 − si + ci · z0,0) + zj,0 + cj · z0,0.

M can thus choose two arbitrary cj , c
′
j ∈ Zq with cj ̸= c′j . It sends cj as a challenge to B and

obtains sj . (It does this only in order to close the current session with B). It computes s′j for c′j
according to the above formula. It obtains

sj − x · cj = s′j − x · c′j = dlog rj ,

hence x =
sj−s′j
cj−c′j

.

Given the claim, we analyze the probability that M is able to compute the secret key x. Let Ej be
the event that the first j rows of A are linearly independent or that the meta-reduction can compute the
secret key after round j by means of case three. We have that

Pr [M can compute x] ≥ Pr [Eℓ]

= Pr


ℓ-th row lies outside the span

of the previous rows
∨

case three applies in rows ≤ ℓ

∧ Eℓ−1



= Pr


ℓ-th row lies outside the span

of the previous rows
∨

case three applies in rows ≤ ℓ

∣∣∣∣∣∣∣∣Eℓ−1

 · Pr [Eℓ−1]

≥
(
1− 1

q

)
· Pr [Eℓ−1] ≥ . . . ≥

(
1− 1

q

)ℓ−1

· Pr
c1

$←Zq

[E1]

=

(
1− 1

q

)ℓ−1

· Pr
c1

$←Zq

[∃i : − c1 · z0,1 − z1,i ̸= 0]
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≥
(
1− 1

q

)ℓ

We thus obtain that M simulates a successful algebraic adversary in
ℓ-SEQ-OMUFBSS to B with probability at least (1− 1

q )
ℓ over the choice of c1, . . . , cℓ. Furthermore, M

wins (ℓ− 1)-OMDL whenever B wins (ℓ− 1)-OMDL. Since B solves (ℓ− 1)-OMDL with probability

ϵB

(
AdvSEQ-OMUF

A,ℓ,BSS

)
for any adversary algebraic black box adversary A against ℓ-SEQ-OMUFBSS, M

has advantage

AdvOMDL
M,ℓ−1 = ϵB

((
1− 1

q

)ℓ
)

Running Time. M needs to solve the linear system of equations A or the system of equations given in
Claim 6.2.2. This takes time O(ℓ3), for example using Gaussian elimination. The signatures (in case M
is successful in computing the secret key) can be generated in time O(ℓ). Thus the running time of M
for signature generation is O(ℓ3). For a reduction B that takes time tB(tA) where tA is the running time
of an adversary, M thus takes time tM = tB(O(ℓ3)).



Chapter 7

The Algebraic Wrapper

In this section, we discuss the applications of the ‘algebraic wrapper’, a partial instantiation of the AGM.
This chapter is based on [AHK20]. We then turn to our main construction, namely we introduce what
it means for a group scheme to be an algebraic wrapper in Section 7.1. A group scheme is a way to
model cryptographic groups, especially those where group elements may have multiple encodings as
a set of algorithms that give users a clear interface of how to interact with the group. The algebraic
wrapper provides additional functionalities, such as an alternative setup algorithm that take in group
elements from the base group, i.e. the group that is to be ‘wrapped’ by the algebraic wrapper, as well as
an algorithm for unwrapping group elements (i.e. getting back the element from the base group) and
extracting an algebraic explanation (the key feature that likens this group variant to the AGM). The
algebraic wrapper also allows for re-randomization of group elements into other group elements with the
same algebraic explanation.

We then briefly recall how to construct an algebraic wrapper using falsifiable assumptions in Section 7.2
and sketch the proofs of its key properties. We give a short overview of the construction and an intuition
for why the key properties hold.

Finally, in Section 7.3 we show how the algebraic wrapper can be applied to transfer several proofs
from the AGM into the standard model. We first briefly describe some common techniques that come in
handy when using the algebraic wrapper in Section 7.3.1. We then warm up with some Diffie-Hellman
type assumptions in Section 7.3.2 before we turn to the proof of security of Schnorr signatures from
[FPS20] in Section 7.3.4 and Signed ElGamal in Section 7.3.5.

7.1 How to Simulate Extraction – Algebraic Wrappers

In order to instantiate the AGM, we need to first find a way to conceptualize what it means to be a
group in a cryptographic sense. This is captured by the notion of a group scheme or encoding scheme,
[GGH13]. In a nutshell, a group scheme provides an interface of algorithms abstracting the handling of a
cryptographic group. As we want to prove hardness of certain problems based on hardness assumptions
in an already existing base group, we incorporate this existing group into our group scheme.

More specifically, we introduce the concept of an algebraic wrapper, i.e. a group scheme that
allows to extract a representation which – similar to the AGM – can be used in a security reduction.
A similar approach has already been taken by [KP19]. [KP19] define their group scheme as a linear
subspace of G×G for an existing group G in such a way that the Generalized Knowledge of Exponent

147
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Assumption (GKEA) can be used to extract a representation (membership can for instance be tested
via a symmetric pairing). Hence, that group scheme can also be viewed as an extension, or a wrapper,
for the underlying base group. However, [KP19] relies on GKEA in the base group which more or less
directly yields an equivalence between algebraic groups and GKEA. The existence of algebraic groups,
however, implies the existence of extractable one-way functions with unbounded auxiliary input (since
the AGM allows an additional unstructured input from {0, 1}∗) which in turn conflicts with the existence
of indistinguishability obfuscation, [Bit+14]. Due to this contradiction and the difficulty to assess the
plausibility of knowledge-type assumptions, we strive for a weaker model which can purely be based on
falsifiable assumptions.

Extraction Trapdoors. In [KP19], extraction is possible as long as the code and the randomness which
where used to produce a group element are known. Since we strive to avoid knowledge-type assumptions,
we need to find a different mechanism of what enables extraction. We observe that in order to reproduce
proof strategies from the algebraic group model, extraction is only necessary during security reductions.
Since the reduction to some assumption in the base group is in control of the group parameters of the
wrapper, the reduction may use corresponding trapdoor information which we define to enable extraction.
We call this notion private extractability.

7.1.1 Group Schemes

A group scheme or encoding scheme [GGH13] abstracts the properties of mathematical groups used in
cryptography. Group schemes have recently been studied in [Alb+16; AH18; Far+18; KP19]. In contrast
to traditional groups, group elements are not bound to be represented by a unique bitstring (henceforth
referred to as encoding). This allows to encode auxiliary information inside group elements.

Formally, a group scheme H consists of the algorithms (SetupH,SamH,ValH,AddH,EqH,GetIDH).
A group generation algorithm SetupH, which given 1λ, samples group parameters ppH. A sampling
algorithm SamH, given the group parameters and an additional parameter determining the exponent
of the desired group element, produces an encoding corresponding to that exponent. A validation
algorithm ValH, given the group parameters and a bitstring, decides whether the given bitstring is a
valid encoding. The algorithm AddH implements the group operation, i.e. expects the group parameters
and two encodings as input and produces an encoding of the resulting group element. Since group
elements do not necessarily possess unique encodings, the equality testing algorithm EqH enables to test
whether two given encodings correspond to the same group element (with respect to the given group
parameters). Note that EqH(ppH, ·) defines an equivalence relation on the set of valid bitstrings. Finally,
again compensating for the non-unique encodings, a group scheme describes a “get-identifier” algorithm
which given the group parameters and an encoding of a group element, produces a bitstring which is
unique for all encodings of the same group element.1 Note that EqH(ppH, a, b) can be implemented
using GetIDH by simply comparing GetIDH(ppH, a) and GetIDH(ppH, b) as bitstrings. The “get-identifier”
algorithm compensates for the potential non-uniqueness of encodings and allows to extract, for instance,
symmetric keys from group elements.

For a group scheme it is required that the quotient set

{a ∈ {0, 1}∗ | ValH(ppH, a) = 1}/EqH(ppH, ·)

1Previous work refers to this algorithm as “extraction algorithm”. However, in order not to overload the word “extraction”,
we rename this algorithm in this work.
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equipped with the operation defined via AddH(ppH, ·, ·) defines a mathematical group (with overwhelming
probability over the choice of ppH ← SetupH(1

λ)). We say that an a is (an encoding of) a group element
(relative to ppH), written as a ∈ H, if and only if ValH(ppH, a) = 1.

A group scheme requires that encodings corresponding to the same group element are computationally
indistinguishable as formalized by the “Switching Lemma(s)” in [Alb+16; AH18; Far+18].

Due to the non-uniqueness of encodings, we henceforth use the notation ĥ to denote an encoding of
a group element.

7.1.2 An Algebraic Wrapper

Given a cyclic group, an algebraic wrapper is a group scheme which equips a given group G with a notion
of extractability while preserving its group structure and complexity theoretic hardness guarantees. In
particular, we achieve a property which we refer to as “private extractability” with respect to a given
set of group elements in the base group. More precisely, the group generation algorithm expects group

parameters ppG of the base group together with a set of group elements
[−→
b
]
G
∈ Gn in that base group,

henceforth referred to as basis, and produces group parameters ppH of the wrapper group together with
a corresponding trapdoor τH. This trapdoor enables to extract a representation with respect to the basis[−→
b
]
G
from every encoding. Looking ahead, this property will allow to implement proof strategies of the

algebraic group model, [FKL18].
More precisely, encodings can be seen to always carry computationally hidden representation vectors

with respect to the basis
[−→
b
]
G
. The private extraction recovers this representation vector. Given the

trapdoor, we require that it is possible to “privately” sample encodings which carry a specific dictated
representation vector. We require that publicly sampled encodings and privately sampled encodings
are computationally indistinguishable. We refer to this property as “switching”. In order to preserve
tightness of security reductions when implementing AGM proofs with our algebraic wrapper, we require
a statistical re-randomization property. Furthermore, we require that representation vectors compose
additively (in Zn

q ) with the group operation and do not change when encodings are re-randomized.
Let BnppG := {([1]G , [x2]G , . . . , [xn]G)

⊺ ∈ Gn | x2, . . . , xn ∈ Z×p } be the set of what we call
“legitimate basis vectors”. Note that we require the first group element to be the generator of the group.
This is necessary to allow public sampling.

Definition 7.1.1 (Algebraic wrapper for G). An algebraic wrapper H for G is a tuple of PPT algorithms
(SetupH,SamH,ValH,AddH,EqH,GetIDH,RerandH,PrivSamH,PrivExtH,UnwrapH) such that (SetupH,
SamH,ValH,AddH,EqH,GetIDH) constitutes a group scheme and the following properties are satisfied.

G-wrapping. The algorithm UnwrapH(ppH, ·) is deterministic and for all ppG ∈ supp(SetupG(1
λ)),

all
[−→
b
]
G
∈ BnppG , all (ppH, τH) ∈ supp(SetupH(ppG,

[−→
b
]
G
)), UnwrapH(ppH, ·) defines a group

isomorphism from H to G.

Extractability. The algorithm PrivExtH is deterministic. Furthermore, for all ppG ∈ supp(SetupG(1
λ)),

all
[−→
b
]
G
∈ BnppG , all (ppH, τH) ∈ supp(SetupH(ppG,

[−→
b
]
G
)), all ĥ ∈ H, we require that PrivExtH

always extracts a representation of [x]G with respect to
[−→
b
]
G
, i.e. for −→z := PrivExtH(τH, ĥ),[−→z ⊺ ·

−→
b
]
G
= UnwrapH(ppH, ĥ).
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Correctness of extraction. For all ppG ∈ supp(SetupG(1
λ)), all

[−→
b
]
G
∈ Bn

ppG
, all (ppH, τH) ∈

supp(SetupH(ppG,
[−→
b
]
G
)), all ĥ0, ĥ1 ∈ H, we require that private extraction respects the group

operation in the sense that for all ĥ2 ∈ supp(AddH(ppH, ĥ0, ĥ1)),
−→z (i) := PrivExtH(τH, ĥi) sat-

isfy −→z (2) = −→z (0) + −→z (1). Furthermore, for all ppG ∈ supp(SetupG(1
λ)), all

[−→
b
]
G
∈ BnppG ,

all (ppH, τH) ∈ supp(SetupH(ppG,
[−→
b
]
G
)), all ĥ ∈ H, we require that re-randomization does

not interfere with private extraction in the sense that for all ĥ′ ∈ supp(RerandH(ppH, ĥ)),

PrivExtH(τH, ĥ) = PrivExtH(τH, ĥ′).

Correctness of sampling. For all ppG ∈ supp(SetupG(1
λ)), all

[−→
b
]
G
∈ BnppG , all (ppH, τH) ∈

supp(SetupH(ppG,
[−→
b
]
G
)), we require that

• for all −→v ∈ Zn
q , Pr[PrivExtH(τH,PrivSamH(τH,

−→v )) = −→v ] = 1, and

• for all x ∈ Zp, Pr[PrivExtH(τH,SamH(ppH, x · −→e1)) = x · −→e1 ] = 1.

k-Switching. We say a PPT adversary A is a legitimate k-switching adversary if on input of base

group parameters ppG, A outputs two bases (
[−→
b
](j)
G

)j∈{0,1} and two lists comprising k represent-

ation vectors (−→v (j),(i))i∈[k],j∈{0,1} (and an internal state st) such that
[−→
b
](0)
G

,
[−→
b
](1)
G
∈ BnppG

and −→v (0),(i),−→v (1),(i) ∈ Zn
q for some n ∈ N and all i ∈ [k] and

[
(−→v (0),(i))⊺ ·

−→
b (0)

]
G

=[
(−→v (1),(i))⊺ ·

−→
b (1)

]
G
for all i ∈ [k].

For all legitimate k-switching PPT adversaries A,

Advk-switchingH,A λ :=
∣∣∣Pr[Expk-switchingH,A,0 (λ) = 1]− Pr[Expk-switchingH,A,1 (λ) = 1]

∣∣∣
is negligible, where Exp

k-switching
H,A,b (λ) (for b ∈ {0, 1}) is defined in Figure 7.1.

Statistically re-randomizable. We say an unbounded adversary A is a legitimate re-randomization

adversary if on input of base group parameters ppG, A outputs
[−→
b
]
G
and a state st such that[−→

b
]
G
∈ Bn

ppG
and, in a second phase, A on input of (ppH, τH, st) outputs two valid encodings

ĥ0, ĥ1 (and a state st) such that PrivExtH(τH, ĥ0) = PrivExtH(τH, ĥ1).

For all unbounded legitimate re-randomization adversaries A,

AdvrerandH,A λ :=
∣∣Pr[ExprerandH,A,0 (λ) = 1]− Pr[ExprerandH,A,1 (λ) = 1]

∣∣ ≤ 1

2λ
,

where ExprerandH,A,b (λ) (for b ∈ {0, 1}) is defined in Figure 7.1.

For simplicity we require that encodings are always in {0, 1}penc(λ) for a fixed polynomial penc(λ).
The k-switching property allows to simultaneously switch the representation vectors of multiple group

element encodings. It is necessary to switch all encodings simultaneously since private sampling can only
be simulated knowing the trapdoor τH which is not the case in Exp

k-switching
H,A,b (λ).
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ExprerandH,A,b (λ)

ppG ← SetupG(1
λ)

(
[−→
b
]
G
, st)← A(1λ, ppG)

(ppH, τH)← SetupH(ppG,
[−→
b
]
G
)

(ĥ0, ĥ1, st)← A(ppH, τH, st)

ĥ← RerandH(ppH, ĥb)

return A(ĥ, st)

Expk-switchingH,A,b (λ)

ppG ← SetupG(1
λ)(

(
[−→
b
](j)
G

)j∈{0,1},

(−→v (j),(i))i∈[k],j∈{0,1}, st
)
← A(1λ, ppG)

(ppH, τH)← SetupH(ppG,
[−→
b
](b)
G

)

ĥ∗i ← PrivSamH(τH,
−→v (b),(i))

return A(ppH, (ĥ
∗
i )i∈[k], st)

Figure 7.1: The re-randomization and k-switching games.

7.2 Construction

Our construction follows the ideas from [Alb+16; AH18; Far+18]. Let SetupG be a group generator for
a cyclic group G. Let T D be a family of hard subset membership problems. Let FHE = (KGen,Enc,
Dec,Eval,Rerand) be a perfectly correct and perfectly re-randomizable fully homomorphic public-key

encryption scheme. Let ppG be group parameters for G and
[−→
Ω
]
G
∈ Gn for some n ∈ N. Let TD ⊆ X

be a subset membership problem from T D and y ← X \ TD and pk be a public key for FHE. For ease

of notation, we define pars := (ppG, TD, y, pk,
[−→
Ω
]
G
). Let Π := (Setup,Prove,Verify,HSetup,Ext) be a

perfectly complete, perfectly sound and perfectly witness-indistinguishable dual-mode NIZK proof system
for the language

L :=
{
y := (pars, [x]G , C)

∣∣ ∃w : (y, w) ∈ R := R1 ∨R2 ∨R3

}
.

The relations R1,R2,R3 are defined as follows.

R1 =


(
(pars, [x]G , C), (sk,−→v )

) ∣∣∣∣∣∣∣∣
KGen(1λ; sk) = (pk, sk)

∧ Dec(sk, C) = −→v
∧

[−→
Ω ⊺ · −→v

]
G

= [x]G


R2 =

{(
(pars, [x]G , C), (r,−→v )

) ∣∣∣∣∣ Enc(pk,−→v ; r) = C

∧
[−→
Ω ⊺ · −→v

]
G

= [x]G

}
R3 =

{ (
(pars, [x]G , C), (wy)

) ∣∣∣ (y, wy) ∈ RTD

}
With m′(λ) we denote a polynomial upper bound on the number of random bits FHE.Rerand(1λ, ·, ·) ex-
pects and withm′′(λ) we denote a polynomial upper bound on the number of random bits Π.Prove(1λ, ·, ·, ·)
expects. Let ℓ(λ) := m′(λ) +m′′(λ) + 2(λ+ 1) + 3. Let piO be a pIO scheme for the class of samplers

SX-ind and let piO⋆
ℓ be an ℓ-expanding pIO scheme for the class of samplers SX-(⋆)-ind

ℓ . Further, let
padd(λ) denote a polynomial upper bound on the size of addition circuits and prerand(λ) denote a polyno-
mial upper bound on the size of re-randomization circuits which are used during the proof, see fig:cadds
for details.

Our algebraic wrapper H is composed of the PPT algorithms (SetupH,SamH,ValH,AddH,EqH,
RerandH,PrivExtH,PrivSamH,GetIDH,UnwrapH) which are defined in Figures 7.2a and 7.2b. We note
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SetupH(ppG,
[−→
b
]
G
= [(b1, . . . , bn)

⊺]G)

α1 := 1, α2, . . . , αn ← Z×q[−→
Ω
]
G
:= ([b1]

α1

G , . . . , [bn]
αn

G )⊺

(pk, sk)← FHE.KGen(1λ)
crs← Π.Setup(1λ),TD← T D, y ← TD

ΛAdd ← piO(1padd(λ), CAdd)
Λrerand ← piO⋆

ℓ (1
prerand(λ), Crerand)

pars := (ppG, TD, y, pk,
[−→
Ω
]
G
)

ppH := (crs, pars,ΛAdd,Λrerand)

τH := (ppH, sk, α1, . . . , αn,
[−→
b
]
G
)

return (ppH, τH)

SamH(ppH,
−→v ∈ Zn

q )
C = Enc(pk,−→v ; r)

[x]G :=
[−→
Ω ⊺ · −→v

]
G

π = Prove(crs, (pars, [x]G , C), (r,−→v ))

return ĥ := ([x]G , C, π)H

ValH(ppH, ĥ)
parse x̂ =: ([x]G , C, π)H
return Π.Verify(crs, (pars, [x]G , C), π)

UnwrapH(ppH, ĥ)

if ¬ValH((crs, pars), ĥ) then
return ⊥

parse ĥ =: ([x]G , C, π)H
return [x]G

EqH(ppH, ĥ1, ĥ2)

if ∃j ∈ [2] : ¬ValH((crs, pars), ĥj) then
return ⊥

parse ĥi =: ([xi]G , Ci, πi)H
return [x1]G = [x2]G

GetIDH(ppH, ĥ)

if ¬ValH((crs, pars), ĥ) then
return ⊥

parse ĥ =: ([x]G , C, π)H
return [x]G

AddH(ppH, ĥ1, ĥ2)

return ΛAdd(ĥ1, ĥ2)

CAdd[pars, crs, sk](ĥ1, ĥ2; r)

if ∃j ∈ [2] : ¬ValH((crs, pars), ĥj) then
return ⊥

parse ĥi =: ([xi]G , Ci, πi)H
[xout]G := [x1]G · [x2]G
Cout ← FHE.Eval(pk, C(+)[Zn

q ], C1, C2)

// C(+)[Zn
q ] computes addition in Zn

q−→v i ← Dec(sk, Ci)−→v out :=
−→v 1 +

−→v 2

πout ← Prove(crs,
(pars, [xout]G , Cout), (sk,

−→v out))

return ĥout := ([xout]G , Cout, πout)

(a) Definition of the algorithms SetupH, SamH,ValH,EqH,GetIDH,AddH,UnwrapH and the circuit CAdd.

PrivSamH(τH,
−→v ∈ Zn

q )−→
v∗ := (v1 · α−11 , . . . , vn · α−1n )⊺

[x]G :=
[−→
b ⊺ · −→v

]
G
=
[−→
Ω ⊺ ·

−→
v∗
]
G

C = Enc(pk,−→v ∗; r)
π = Prove(crs, (pars, [x]G , C), (sk,−→v ∗))
return ([x]G , C, π)H

PrivExtH(τH, ĥ)

if ¬ValH(ppH, ĥ) then
return ⊥

parse ĥ =: ([x]G , C, π)H
(v1, . . . , vn)

⊺ =: −→v = Dec(sk, C)
return (v1 · α1, . . . , vn · αn)

⊺

RerandH(ppH, ĥ)
u← {0, 1}ℓ(λ)
return Λrerand(ĥ, u)

Crerand[pars, crs, sk](ĥ; r1, r2)

if ¬ValH((crs, pars), ĥ) then
return ⊥

parse ĥ =: ([x]G , C, π)H−→v := Dec(sk, C)
Cout := FHE.Rerand(pk, C; r1)
πout ← Prove(crs,

(pars, [x]G , Cout), (sk,
−→v ); r2)

return ĥout := ([x]G , Cout, πout)H

(b) Definition of the algorithms PrivSamH,PrivExtH,RerandH and the circuit Crerand.

Figure 7.2: Algorithms of our algebraic wrapper construction.
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that the algorithm ValH which is evaluated inside CAdd and Crerand only requires a certain part of the
public parameters as input. In particular, ValH does not depend on ΛAdd and Λrerand.

During “honest” use of our algebraic wrapper, encodings carry proofs produced for relation R1

or relation R2. Relation R2 enables sampling without knowledge of any trapdoors. Re-randomized
encodings always carry proofs for relation R1. Relation R3 is a trapdoor branch enabling simulation.
Note that during “honest” use of the algebraic wrapper y ̸∈ TD and, hence, due to perfect soundness of
Π, there exists no proof for relation R3.

Differences to [Alb+16; AH18; Far+18].

[Alb+16; Far+18] introduce similar constructions of a group scheme featuring a multilinear map and
of a graded encoding scheme, respectively. More precisely, [Alb+16; Far+18] equip a base group with
encodings carrying auxiliary information which can be used (in an obfuscated circuit) to “multiply in
the exponent”. We observe that these constructions already wrap a given base group in the sense that
“unwrapping” encodings yields a group isomorphism to the base group.

Our construction builds upon these group schemes. In order to enable extractability with respect to a
dynamically chosen basis2, our group parameters must be generated depending on that basis.

This modification, however, comes at the cost of the multilinear map functionality. This is because
any implementation of a multilinear map requires knowledge of discrete logarithms of each group element
encoding to a fixed generator. This is undesirable for our purposes, since we want to be able to use sets
of group elements as basis which we do not know discrete logarithms of (for instance group elements
provided by a reduction). Thus, we have to give up the multiplication functionality.

Furthermore, looking ahead, we crucially require that the basis can be altered via computational game

hops during proofs. We solve this problem by linearly perturbing the given basis
[−→
b
]
G
(except for its

first entry to enable meaningful public sampling). We refer to this perturbed basis as
[−→
Ω
]
G
. Our group

element encodings are defined to carry representation vectors with respect to
[−→
Ω
]
G
. By construction of

CAdd, these representation vectors are treated homomorphically by the group operation.
To preserve tightness of security reductions, we additionally introduce a statistical re-randomization

mechanism.
As opposed to [Alb+16; Far+18], [AH18] uses a quite different approach. In [AH18], the group scheme

is constructed from scratch, meaning there is no necessity for an underlying group. The consequences
are twofold. On one hand, very strong decisional assumptions can be proven to hold in the resulting
group scheme. On the other hand, however, the group scheme from [AH18] lacks a GetIDH algorithm
limiting its applicability.

Theorem 7.2.1. Let

(i) SetupG be a group generator for a cyclic group G,

(ii) T D be a family of hard subset membership problems,

(iii) FHE = (KGen,Enc,Dec,Eval,Rerand) be a perfectly correct and perfectly re-randomizable fully
homomorphic public-key encryption scheme,

(iv) Π := (Setup,Prove,Verify,HSetup,Ext) be a perfectly complete, perfectly sound and perfectly
witness-indistinguishable dual-mode NIZK proof system for the language L,

2With basis we mean a set of group elements in the base group.
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(v) piO be a pIO scheme for the class of samplers SX-ind and

(vi) piO⋆
ℓ be an ℓ-expanding pIO scheme for the class of samplers SX-(⋆)-ind

ℓ .

Then, H defined in Figures 7.2a and 7.2b is an algebraic wrapper.

Here we provide a formal proof of the statistical re-randomization property and a high-level idea for
the remaining properties.

Proof Sketch. Since piO is support respecting, the algorithms defined in Figure 7.2a equip the base group
G with non-unique encodings but respect its group structure. Thus, the tuple (SetupH,SamH,ValH,EqH,
AddH,GetIDH) forms a group scheme such that UnwrapH(ppH, ·) defines a group isomorphism from H
to G. Therefore, H satisfies G-wrapping. Extractability follows (more or less) directly by the soundness
of the consistency proof and correctness of FHE. Correctness of extraction follows by construction and
the correctness of FHE and the fact that piO and piO⋆

ℓ are support respecting. Correctness of sampling
follows directly by correctness of FHE.

Since our construction builds upon techniques developed in [Alb+16], we also employ similar strategies
to remove information about the secret decryption key from the public group parameters ppH. To prove
k/̄switching, we next use the IND-CPA security of FHE to remove all information about the basis from
the group element encodings. Finally, the only remaining information about the basis used to setup the

group parameters resides in
[−→
Ω
]
G
which thus looks uniformly random to even an unbounded adversary.

A crucial technical difference to previous work [Alb+16; AH18; Far+18] is the ability to statistically
re-randomize encodings. The key ingredient enabling this is our statistically correct pIO scheme due to
Theorem 2.11.3. We prove this in the following.

Lemma 7.2.2. The group scheme H defined in Figures 7.2a and 7.2b satisfies statistical re-randomizability.

Proof. The circuit Crerand takes inputs from {0, 1}penc(λ) and expects a randomness from {0, 1}m′(λ) ×
{0, 1}m′′(λ). We recall that piO⋆

ℓ is an ℓ-expanding pIO scheme for ℓ(λ) = m′(λ)+m′′(λ)+2(λ+1)+3.

Since for every distribution X1 over {0, 1}penc(λ), H̃∞(Uℓ(λ) | X1) = ℓ(λ) > m′(λ)+m′′(λ)+2(λ+1)+2,
the statistical distance between{

Λrerand ← piO⋆
ℓ (Crerand) : (Λrerand,Λrerand(X1, X2))

}
and

{
Λrerand ← piO⋆

ℓ (Crerand) : (Λrerand, Crerand(X1;Um′(λ)+m′′(λ)))
}

is at most 2−(λ+1).
Let ĥ0 =: ([x0]G , C0, π0)H, ĥ1 =: ([x1]G , C1, π1)H ∈ H be the encodings chosen by the adversary

A. Since A is a legitimate re-randomization adversary, PrivExtH(τH, ĥ0) = PrivExtH(τH, ĥ1). Due
to perfect correctness of FHE and since α1, . . . , αn ∈ Z×p are invertible, Dec(sk, C0) = Dec(sk, C1).

Due to perfect re-randomizability of FHE, the ciphertexts produced by Crerand(ĥ0) and Crerand(ĥ1) are

identically distributed. Furthermore, since Crerand(ĥb) produces the consistency proof using the witness

(sk,Dec(sk, Cb)), the distributions produced by Crerand(ĥ0) and Crerand(ĥ1) are identical. Therefore,
AdvrerandH,A λ ≤ 2 · 2−(λ+1) = 2−λ.

Note that since G has unique encodings, A is unable to extract auxiliary information from the
encodings of UnwrapH(ppH, ĥ). This is crucial since such auxiliary information may be used to distinguish

whether ĥ0 or ĥ1 was used to derive ĥ.
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7.3 How to Use Algebraic Wrappers – Implementing Proofs from
the AGM

In the following, we demonstrate how proof techniques from the algebraic group model can be implemented
with our algebraic wrapper. Mainly, we want to use the extracted representation provided by the algebraic
wrapper in a similar way as in AGM proofs. We adapt the proofs of Diffie-Hellman assumptions from
[FKL18] in Section 7.3.2 and Section 7.3.3as well as the proof for the EUF-CMA security of Schnorr
signatures from [FPS20] in Section 7.3.4. Before we demonstrate how to use the algebraic wrapper, we
sketch two modifications which will be necessary when we replace the AGM with the algebraic wrapper.

7.3.1 Common Techniques in the Algebraic Wrapper

The Symmetrization technique. Information-theoretically, the basis3 the algebraic wrapper enables
extraction for, as well as the representation vectors inside group element encodings are known to the
adversary. However, several security reductions in [FKL18] employ case distinctions where different
reduction algorithms embed their challenge in different group elements. For instance, in the CDH game,
the discrete logarithm challenge Z can be embedded either in [x]H or [y]H, leading to two different security
reductions. Due to the ideal properties of the AGM, both reductions simulate identically distributed
games.

However, transferring this strategy directly using algebraic wrappers fails, since the two reductions are
information-theoretically distinguishable depending on the choice of basis. An unbounded adversary who
knows which game he is playing could therefore influence the representation of his output in such a way
that it always becomes impossible for the reduction to use the representation to compute the discrete
logarithm. We call such a situation a bad case. It is necessary that the different reduction subroutines
have mutually exclusive bad cases, so that extraction is always possible in at least one game type. Thus,
we need find a way that even these representations (and the basis used to generate ppH) are identically
distributed.

We therefore introduce a proof technique which we call symmetrization. We extend the basis and
group element representations in such a way that the games played by different reduction subroutines are
identically distributed (as they would be in the AGM). This is done by choosing additional base elements
to which the reduction knows the discrete logarithm (or partial logarithms), so that these additional
base elements do not add any unknowns when solving for the discrete logarithm. With this technique,
we achieve that the games defined by the different reduction algorithms are identically distributed but
entail different mutually-exclusive bad cases. For the CDH reduction, this means that both challenge
elements [x]H and [y]H are contained in the basis, so that it is not known to the adversary which one is
the reduction’s discrete logarithm challenge. This allows to adopt the proofs from AGM.

The Origin Element Trick. Applying the algebraic wrapper to AGM proofs where an oracle (e.g.
a random oracle or a signing oracle) is present, entails the need to change the representation vectors
of all oracle responses. One possibility to realize this is to apply Q-switching, where Q denotes a
polynomial upper bound on the number of oracle queries. However, as the switching property only
provides computational guarantees, this naive approach results in a non-tight reduction. Since we are
interested in preserving the tightness of AGM proofs when applying the algebraic wrapper, we use
so-called origin elements from which we construct the oracle responses using the group operation. This

3With basis we mean the set of group elements in the base group to which we can extract.
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cdh
x, y ← Zq

s← A([1]G , [x]G , [y]G)
return s = [xy]G

sqdh
x← Zq

s← A([1]G , [x]G)
return s =

[
x2
]
G

lcdh
x, y ← Zq

u, v, w, s← A([1]G , [x]G , [y]G)
return s =

[
u · x2 + v · xy + w · y2

]
G

Figure 7.3: The different types of Diffie-Hellman games shown in [FKL18]

enables to use n-switching for a constant number n of origin elements instead of Q-switching for Q
oracle responses.

Limitations of Our Techniques. While our algebraic wrapper provides an extraction property that is
useful for many proofs in the AGM, it also has its limitations. Mainly, the base elements to which the
PrivExt algorithm can extract need to be fixed at the time of group parameter generation. Therefore, we
cannot mimic reductions to assumptions with a variable amount of challenge elements, where extraction
needs to be possible with respect to all these challenge elements. For instance, q-type assumptions
which are used in [FKL18] to prove CCA1-security of ElGamal and the knowledge-soundness of Groth’s
ZK-SNARK.

Furthermore, there are security proofs in the AGM that rely on the representation used by the
reduction being information-theoretically hidden from the adversary. An example for this is the tight
reduction for the BLS scheme from [FKL18]. As the reduction can forge a signature for any message, it
relies on the representations provided by the adversary being different from what the reduction could
have computed on its own. In the AGM, it is highly unlikely that the adversary computes the forged
signature in the exact same way as the reduction simulates the signing oracle, because the reduction
does not provide the adversary with an algebraic representation. However, since we need to be able to
extract privately from group element encodings, the group elements output by the reduction information
theoretically contain algebraic representations. Therefore, information/theoretically, an adversary sees
how the reduction simulates hash responses and signatures, and thus could provide signatures with a
representation that is useless to the reduction.

This problem is circumvented in the Schnorr proof in Section 7.3.4 due to the representation provided
by the adversary already being fixed by the time it receives a challenge through the Random Oracle. We
leave it as an open problem to transfer the BLS proof to the algebraic wrapper.

Another limitation is that due to the reduction being private, we cannot use the extraction in
reductions between problems in the same group. That is, our wrapper does not allow for “multi-step”
reductions as in the AGM.

7.3.2 Diffie-Hellman Assumptions

We show how to adapt the security reductions for Diffie-Hellman problems from [FKL18] to our algebraic
wrapper (see Figure 7.3 for the definitions). The main proof idea, namely to use the representation of
the adversary’s output to compute the discrete logarithm, stays the same; however, due to the nature of
our wrapper, we need to apply the symmetrization technique to achieve the same distributions as in the
AGM.

Theorem 7.3.1. Let G be a group where the discrete logarithm is hard. Then, the computational
Diffie-Hellman assumption holds in an algebraic wrapper H for G of dimension ≥ 3.
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G0

ppG ← SetupG(1
λ)

β2, β3 ← Zq

(ppH, τH)← SetupH(ppG, ([1]G , [β2]G , [β3]G)
⊺)

x, y ← Zq

1̂ = RerandH(ppH,SamH(ppH, 1))
x̂ = RerandH(ppH,SamH(ppH, x))
ŷ = RerandH(ppH,SamH(ppH, y))
s← A(ppH, 1̂, x̂, ŷ)
return EqH(x̂

y, s)

G1

ppG ← SetupG(1
λ)

X ← G
z ← Zq

(ppH, τH)← SetupH(ppG, ([1]G , [x]G , [y]G)
⊺)

1̂ = RerandH(ppH,SamH(ppH, 1))
x̂ = RerandH(ppH,PrivSamH(τH, (0, 1, 0)

⊺))
ŷ = RerandH(ppH,PrivSamH(τH, (0, 0, 1)

⊺))

s← A(ppH, 1̂, x̂, ŷ)
return EqH([xy]G , s)

Figure 7.4: The CDH games used in the security proof. G0 corresponds to the honest CDH-game.
Games of type G1 allow the reduction to embed its discrete logarithm challenge and extract a useful
representation.

Proof. We show this as a series of games. The first game G0 corresponds to the ‘honest’ CDH game
in H where all group elements are represented in the first component. We then switch to a basis and
group element representations that allow the reduction to embed its challenge and extract a useful
representation. The reduction uses the extracted representation like in [FKL18] to compute the discrete
logarithm. The games are shown in Figure 7.4.

Game hop from G0 ⇝ G1. The two games in Figure 7.4 are computationally indistinguishable due to
re-randomizability and 2-switching. For the re-randomizability, we define four hybrid games H0 to H3

where H0 is G0. In H1, we use PrivSamH for generation of 1̂. In H2, we additionally use PrivSamH for
x̂ and in H3 we additionally use PrivSamH for generation of ŷ. A reduction between distinguishing the
hybrid games and re-randomization embeds its challenge encoding in the ith group element contained
in the challenge and thus simulates either Hi or Hi+1 perfectly. As the representation vectors of the
challenge group elements are the same, this reduction constitutes a legitimate adversary in the rerand
game, and therefore AdvrerandR,H λ ≤ 1

2λ
. This results in

|Pr [outG0
= 1]− Pr [outH3

= 1]| ≤ 3

2λ

We apply 2-switching to hop from H3 to G1. The reduction to 2-switching works as follows:
Assume there is an adversary that can distinguish games G0 and G1. Then, a reduction chooses the
two bases for the games, and the corresponding representation vectors of x̂ and ŷ as in the two games.
On input of the group parameters and the vectors, it uses these elements as well as SamH(ppH, 1) as a
challenge to the distinguisher between the games and outputs whatever the distinguisher outputs.

Games G1.0 and G1.1. Here, the reduction applies the symmetrization technique to achieve identical
distribution of the two games. To the CDH-adversary, the embedding of Z is information-theoretically
hidden.

A reduction algorithm for the discrete logarithm simulates the games of type G1 by replacing X
with its discrete logarithm challenge. If the CDH adversary A wins the game, the reduction extracts
(η, ι, θ) = PrivExtH(τH, s). For a valid solution s, the following holds in G1.0:

x · y =η + θ · x+ ι · y ⇔
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G0

ppG ← SetupG(1
λ)

x← Zq

β ← Zq

ppH ← SetupH(ppG, (1, β)
⊺)

1̂ = RerandH(ppH,SamH(ppH, 1))
x̂ = RerandH(ppH,SamH(ppH, x))
s← A(ppH, 1̂, x̂)
return EqH(s,PrivSamH(τH, (x

2, 0)⊺))

G1

ppG ← SetupG(1
λ)

X ← G
ppH ← SetupH(ppG, (1, X)⊺)

1̂ = RerandH(ppH,SamH(ppH, (1, 0)
⊺))

x̂ = RerandH(ppH,PrivSamH(τH, (0, 1)
⊺))

s← A(ppH, 1̂, x̂)
return EqH(s,PrivSamH(τH, (x

2, 0)⊺))

Figure 7.5: Square Diffie-Hellman games

x =
η + ι · y
y − θ

The bad case here is if y = θ, in which case the reduction can not solve for x. However, if the challenge
is embedded in ŷ (as in G1.1), we can solve as follows:

y =
n+ θ · x
x− ι

If both ι = x and θ = y, then η = −xy, because

η + θ · x+ ι · y = xy ⇔
η + y · x+ x · y = xy ⇔

η = −xy

The reduction can check in either game type whether both bad cases appeared by checking if [xy]G =
UnwrapH(s) = Xθ = yι. In this case, the reduction can solve for x or y (depending on where the
challenge was embedded) as x = −η

y and y = − η
x .

As the games G1.0 and G1.1 are identically distributed, the probability that the discrete logarithm
was embedded in such a way that it is possible to extract is at least 1

2 . Thus

AdvDLOG
R,G λ ≥

AdvCDH
A,H λ− 2 ·Adv2-switchingA′,H λ− 3

2λ

2

which concludes the proof.

7.3.3 More Diffie-Hellman Proofs

We further show that [FKL18]’s proof for the square Diffie-Hellman and linear combination Diffie-Hellman
assumptions can be transferred to the algebraic wrapper.

Theorem 7.3.2. Let G be a group where the discrete logarithm is hard. Then, the square Diffie-Hellman
assumption holds in an algebraic wrapper H of dimension ≥ 2 for G.

Proof. Under 1-switching and re-randomizability, the games in Figure 7.5 are computationally indistin-
guishable. The game hop works the same as for CDH. A reduction can embed its discrete logarithm
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challenge as X. It can check the solution by solving for the discrete logarithm of X (if it is impossible to
solve for x, it returns 0). The discrete logarithm solving works as follows.

For a successful adversary in G1, the reduction can solve for x because x2 = η + θ · x for (η, θ) =
PrivExtH(s). For a correct square Diffie-Hellman solution this quadratic equation has at least one solution.
Let x1, x2 the (possibly equal) solutions to the equation. The reduction can compute [x1]G and [x2]G to
check which of the two possible solutions is the correct one. Thus,

AdvDLOG
R,G λ ≥ AdvSQ-DH

A,H λ−Adv1-switchingA′,H λ− 2

2λ

Theorem 7.3.3. Let G be a group where DLOG is hard and H be an algebraic wrapper of dimension
≥ 3 for G. Then, the linear-combination Diffie-Hellman problem is hard in H.

Proof. Similar to the above theorems, we embed the DLOG-challenge as one of the base elements.
The games are similar to Figure 7.4. When the adversary outputs z, u, v, w, we extract η, θ, ι s.t.
η + x · θ + y · ι = z. In the case that u ̸= 0, we can solve the resulting quadratic equation for x (with
probability 1

2 this is where the DLOG was embedded). In the case that w ̸= 0, we solve for y in a similar
fashion. As the games are identically distributed, (even an unbounded adversary cannot decide where the
DLOG challenge is embedded), we can solve for the DLOG with probability 1

2 in these cases. In the case
that w = 0 and u = 0, we can either solve for

x =
−η − ι · y
vy − θ

or for

y =
−η − θ · x
vx− ι

.

This is analogous to the reduction for CDH. Thus the probability that a reduction R solves the DLOG
problem is

AdvDLOG
R,G λ ≥

AdvLC-DH
A,H λ− 2 ·Adv2-switchingA′,H λ− 3

2λ

2

7.3.4 Schnorr Signatures

We apply the algebraic wrapper to mimic the proof of tight EUF-CMA security of Schnorr Signatures
from [FPS20].

Theorem 7.3.4. Let SetupG be a group generator for a cyclic group G such that DLOG is hard relative
to SetupG and let H be an algebraic wrapper of dimension ≥ 2 for G. Then, the Schnorr signature
scheme in H (Figure 7.6) is tightly EUF-CMA secure in the random oracle model.

More precisely, for all PPT adversaries A, there exists a PPT adversary B and a legitimate switching
adversary A′′ both running in time T (B) ≈ T (A)+(qs+qh)·poly(λ) and T (A′′) ≈ T (A)+(qs+qh)·poly(λ)
such that

Adveuf-cma
Σschnorr,Aλ ≤ AdvDLOG

B,G λ+Adv1-switchingA′′,H λ+
O(qs(qs + qh))

2λ
,

where qh is a polynomial upper bound on the number of random oracle queries, qs is a polynomial upper
bound on the number of signing queries and poly is a polynomial independent of qs and qh.
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KGen(ppH)
x← Zq

1̂ := RerandH(ppH,SamH(ppH, 1))

X̂ := RerandH(ppH,SamH(ppH, x))

pk := (ppH, 1̂, X̂)
sk := (pk, x)
return (pk, sk)

Sign(sk,m)
r ← Zq

R̂← RerandH(ppH,SamH(ppH, r))

c := H(R̂,m)
s := r + c · x mod q
return σ := (R̂, s)

Ver(pk = (ppH, 1̂, X̂),m, σ = (R̂, s))

c := H(R̂,m)

return EqH(ppH,SamH(ppH, s), R̂ · X̂c)

Figure 7.6: The Schnorr signature scheme Σschnorr. Note that to compensate for the non-uniqueness of
group element encodings, the (random oracle) hash value of a group element encoding is computed for
the unique identifier produced by GetIDH(ppH, ·).

Expeuf-cma
Σschnorr,A(λ)

ppG ← SetupG(1
λ)

(ppH, τH)← SetupH(ppG, ([1]G , [β2]G)
⊺)

x← Zp

ξ1 ← RerandH(ppH,SamH(ppH, 1))
ξ2 ← RerandH(ppH,SamH(ppH, x))
pk := (ppH, ξ1, ξ2)
Q := ∅, T := []

(m∗, R̂∗, s∗)← AH,Sign(1λ, pk)
if m∗ ∈ Q then return 0
c∗ = H(R̂∗,m∗)

return EqH(ppH,SamH(ppH, s
∗), R̂∗ · ξc∗2 )

H(R̂,m)

if T [(GetIDH(ppH, R̂),m)] = ⊥ then

T [(GetIDH(ppH, R̂),m)]← Zp

return T [(GetIDH(ppH, R̂),m)]

Sign(m)
r ← Zp

R̂← RerandH(ppH,SamH(ppH, r))

c := H(R̂,m)
s := r + cx
Q := Q ∪ {m}
return (R̂, s)

Figure 7.7: The EUF-CMA game for Schnorr signatures. Note that β2 can be chosen arbitrarily.

Game 1
ppG ← SetupG(1

λ)
(ppH, τH)← SetupH(ppG, ([1]G , [β2]G)

⊺)
x← Zp

ξ1 ← RerandH(ppH,SamH(ppH, 1))
ξ2 ← RerandH(ppH,SamH(ppH, x))
pk := (ppH, ξ1, ξ2)
Q := ∅, T := []

(m∗, R̂∗, s∗)← AH,Sign(1λ, pk)
if m∗ ∈ Q then return 0
c∗ = H(R̂∗,m∗)

return EqH(ppH,SamH(ppH, s), R̂
∗ · ξc∗2 )

H(R̂,m)

if T [(GetIDH(ppH, R̂),m)] = ⊥ then

T [(GetIDH(ppH, R̂),m)]← Zp

return T [(GetIDH(ppH, R̂),m)]

Sign(m)
r ← Zp

R̂1 ← SamH(ppH, r)

c := H(R̂1,m)
s := r + cx

R̂2 ← RerandH(ppH,SamH(ppH, s− cx))
Q := Q ∪ {m}
return (R̂2, s)

Figure 7.8: The randomness for signatures is drawn using an x-component. Game 1 is identically
distributed to Expeuf-cma

Σschnorr,A(λ).
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Game 2
ppG ← SetupG(1

λ)
(ppH, τH)← SetupH(ppG, ([1]G , [β2]G)

⊺)
x← Zp

ξ1 ← RerandH(ppH,SamH(ppH, 1))
ξ2 ← RerandH(ppH,PrivSamH(τH, x))
pk := (ppH, ξ1, ξ2)
Q := ∅, T := []

(m∗, R̂∗, s∗)← AH,Sign(1λ, pk)
if m∗ ∈ Q then return 0
c∗ = H(R̂∗,m∗)

return EqH(ppH, [s
∗]H , R̂∗ · ξc∗2 )

H(R̂,m)

if T [(GetIDH(ppH, R̂),m)] = ⊥ then

T [(GetIDH(ppH, R̂),m)]← Zp

return T [(GetIDH(ppH, R̂),m)]

Sign(m)
r ← Zp

R̂1 ← SamH(ppH, r)

c := H(R̂1,m)
s := r + cx
R̂2 ← RerandH(ppH, ξ

s
1 · ξ−c2 )

Q := Q ∪ {m}
return (R̂2, s)

Figure 7.9: We construct the randomness from two origin elements. This is statistically close to Game 1
due to the re-randomizability.

Proof. We use the origin element trick to avoid using qs-switching (see Definition 7.1.1) which would
compromise tightness of the reduction. Figure 7.7 shows the EUF-CMA game with Schnorr signatures
instantiated with the algebraic wrapper. We note that for groups with non-unique encodings, the hash
function hashes the unique identifier returned by GetIDH, hence, encodings corresponding to the same
group element are mapped to the same hash value. The reduction uses a table T to keep track of
previously made hash queries and their responses, as well as a set Q to keep track of the messages the
adversary has requested signatures for. We show Game 1 in Figure 7.8.

Game hop from Expeuf-cma
Σschnorr,A(λ)⇝Game 1. Since r = s− cx mod q and hence GetIDH(ppH, R̂1) =

GetIDH(ppH, R̂2), these two games are identically distributed.

Game hop Game 1⇝Game 2. In Game 2(see Figure 7.9), we construct R̂2 from origin elements
through the group operation instead of sampling. This game hop is justified by the re-randomizability
of the algebraic wrapper. A reduction to this property works as a series of qs + 1 hybrids where H0 is
Game 1, where qs denotes a polynomial upper bound on the number of signing queries. In Hi, the first i
signature queries are answered as in Game 2 and the i+ 1-th to qs-th signature queries are answered
as in Game 1. In the last hybrid, the public key is also changed to private sampling. If there is an
(unbounded) adversary that distinguishes Hi and Hi+1, the reduction A′ uses this adversary to attack
the re-randomizability as follows. On input of base group parameters ppG, A

′ picks a basis ([1]G , [β2]G)
and gives it to the rerand challenger. It receives public parameters and the trapdoor. Then, it simulates
Hi to the adversary for the first i signature queries, i.e. it samples R̂2,j ← RerandH(ppH, ξ

sj
1 · ξ

−cj
2 ) for

j < i. For the i + 1-th signature query, A′ sends the two elements ĥ0 = SamH(ppH, si+1 − ci+1 · x)
and ĥ1 = ξ

si+1

1 · ξ−ci+1

2 to the challenger and receives a challenge Ĉ. It uses this challenge Ĉ as R̂2,i+1

to answer the i + 1-th hash query and responds to the remaining queries as in Hi+1, i.e. it samples

R̂j ← RerandH(ppH,SamH(ppH, sj − cj · x)) for j > i+ 1. Depending on the challenge encoding Ĉ, A′

either simulates Hi or Hi+1 perfectly and outputs the output of the corresponding game.
In hybrid Hqs , all signature queries are answered as in game Game 2. The last step to game

Hqs+1 =Game 2 changes how ξ2 (which is part of the public key) is sampled. An adversary distinguishing
Hqs and Hqs+1 can be used to build an adversary A′ in rerand similarly as above. More precisely, A′



162 CHAPTER 7. THE ALGEBRAIC WRAPPER

Game 3
ppG ← SetupG(1

λ)
x← Zp

(ppH, τH)← SetupH(ppG, ([1]G , [x]G)
⊺)

Q := ∅, T := []
ξ1 ← RerandH(ppH,SamH(ppH, 1))
ξ2 = RerandH(ppH,PrivSamH(τH, (0, 1)

⊺))
pk := (ppH, ξ1, ξ2)

(m∗, R̂∗, s∗)← AH,Sign(1λ, pk)
if m∗ ∈ Q then return 0
c∗ = H(R̂∗,m∗)

return EqH(ppH, [s
∗]H , R̂∗ · ξc∗2 )

H(R̂,m)

if T [(GetIDH(ppH, R̂),m)] = ⊥ then

T [(GetIDH(ppH, R̂),m)]← Zp

return T [(GetIDH(ppH, R̂),m)]

Sign(m)
r ← Zp

R̂1 ← SamH(ppH, r)

c := H(R̂1,m)
s := r + cx
R̂2 ← RerandH(ppH, ξ

s
1 · ξ−c2 )

Q := Q ∪ {m}
return (R̂2, s)

Figure 7.10: We switch the basis and the representation of ξ2.

outputs the encodings ĥ0 ← SamH(ppH, x) and ĥ1 ← PrivSamH(τH, x) (note that τH is known during
the rerand game) and uses the challenge encoding from the rerand challenger as ξ2. We note that
this last game hop paves the way to apply 1-switching.

Due to correctness of sampling and correctness of extraction, the representation vectors of the
elements used in the rerand game are identical and hence A′ is a legitimate adversary in the rerand

game and its advantage is upper bounded by 1
2λ
. Therefore,

|Pr [out1 = 1]− Pr [out2 = 1]| ≤ qs + 1

2λ
.

Game hop Game 2⇝Game 3. In game Game 3 (see Figure 7.10) we switch the basis and the
representation of the origin element ξ2. This game hop is justified by 1-switching. Let A be an
adversary distinguishing Game 2 and Game 3. We construct an adversary A′′ on 1-switching as

follows. Initially, A′′ on input of ppG, outputs
[−→
b
](Game2)

G
= [(1, β2)

⊺]G and
[−→
b
](Game3)

G
= [(1, x)⊺]G

and the representation vectors
−−−−−→
v(Game2) := (x, 0)⊺ and

−−−−−→
v(Game3) := (0, 1)⊺. In return, A′′ receives

public parameters ppH and an encoding Ĉ and samples ξ2 ← RerandH(ppH, Ĉ). The trapdoor τH is
not necessary to simulate Game 2 and Game 3 (except for sampling ξ2). Hence, A

′′ perfectly simulates
Game 2 or Game 3 for A depending on the challenge provided by the 1-switching challenger. Thus,
|Pr[out3 = 1]− Pr[out2 = 1]| ≤ Adv

1-switching
H,A′′ λ. Note that A′′ is a legitimate switching adversary since

[(1, β2)]G · (x, 0)⊺ = [x]G = [(1, x)]G · (0, 1)⊺ and hence Adv1-switchingH,A′′ λ is negligible.

Game hop Game 3⇝Game 4. In Game 4 (see Figure 7.11), we introduce a list U to keep track of the
representations of group elements used in Random Oracle queries. The games Game 3 and Game 4 differ
in the fact that Game 4 extracts the representation vectors contained in the encoding of a group element
when this group element message tuple is queried for the first time and stores this representation in a
list. Furthermore, Game 4 introduces an abort condition which is triggered if the representation of R̂∗

originally used to query the random oracle on (R̂∗,m∗) already contained the response in the second
component ζ∗. This corresponds to the game hop from G0 to G1 in [FPS20]. The game only aborts

if the hash T [(GetIDH(ppH, R̂
∗),m∗)] is the same as the second component ζ∗ of the representation
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Game 4
ppG ← SetupG(1

λ)
x← Zp

(ppH, τH)← SetupH(ppG, ([1]G , [x]G)
⊺)

Q := ∅, T := [], U := []
ξ1 = RerandH(ppH,SamH(ppH, 1))
ξ2 = RerandH(ppH,PrivSamH(τH, (0, 1)

⊺))
pk := (ppH, ξ1, ξ2)

(m∗, R̂∗, s∗)← AH,Sign(1λ, pk)
if m∗ ∈ Q then return0
if U [(GetIDH(ppH, R̂

∗),m∗)] ̸= ⊥ then

(γ∗, ζ∗) := U [(GetIDH(ppH, R̂
∗),m∗)]

if ζ∗ = −T [(GetIDH(ppH, R̂
∗),m∗)] then return0

c∗ = H(R̂∗,m∗)

return EqH(ppH, [s
∗]H , R̂∗ · ξc∗2 )

H(R̂,m)

if T [(GetIDH(ppH, R̂),m)] = ⊥ then

T [(GetIDH(ppH, R̂),m)]← Zp

U [(GetIDH(ppH, R̂),m)] = PrivExtH(τH, R̂)

return T [(GetIDH(ppH, R̂),m)]

Sign(m)
r ← Zp

R̂1 ← SamH(ppH, r)

c := H(R̂1,m)
s := r + cx
R̂2 ← RerandH(ppH, ξ

s
1 · ξ−c2 )

Q := Q ∪ {m}
return (R̂2, s)

Figure 7.11: Game 4 corresponds to G1 in [FPS20].

extracted from R̂∗. Since the hash T [(GetIDH(ppH, R̂
∗),m∗)] is chosen uniformly at random after the

representation (γ∗, ζ∗) is fixed, the probability that an unbounded adversary can find such an (R̂∗,m∗)
is upper bounded by qh

q ≤
qh
2λ
, where qh denotes a polynomial upper bound on the number of random

oracle queries. Hence, |Pr[out4 = 1]− Pr[out3 = 1]| ≤ qh
2λ
.

Game hop Game 4⇝Game 5. In game Game 5 (see Figure 7.12), we change how signature queries are
answered such that it is not necessary anymore to know the discrete logarithm of the public key. This
game hop corresponds to the hop from G1 to G2 in [FPS20]. On one hand, since GetIDH(ppH, R̂1) =

GetIDH(ppH, R̂2), replacing R̂1 with R̂2 does not change the distribution. On the other hand, as we

are only able to answer a signing query if we can program the random oracle at (R̂2,m) (for randomly

chosen R̂2), the signing oracle has to abort in case the hash was already queried before. Since R̂2 is
a independently sampled uniformly random group element, this happens only with probability 1

q ≤
1
2λ
.

Hence, by a union bound, this abort occurs at most with probability qs(qs+qh)
2λ

cases, where qs denotes a
polynomial upper bound on the number of signing queries and qh denotes a polynomial upper bound
on the number of random oracle queries. Conditioned on the event that no abort occurs, Game 4 and
Game 5 are distributed identically. Hence, by the Difference Lemma due to Shoup [Sho04], we have

|Pr[out5 = 1]− Pr[out4 = 1]| ≤ qs(qs+qh)
2λ

. As in [FPS20], on extraction of the initial representation

(γ∗, ζ∗) of R̂∗ from a valid signature (R̂∗, s∗) output by the adversary, the reduction can use that

R̂∗ = [γ∗]H · [ζ∗ · z]H = [s∗ − c∗ · z]H. Therefore,

z =
s∗ − γ∗

ζ∗ − c∗
.

Due to the added check in Game 4, an adversary can only win Game 4 or Game 5 when ζ∗ − c∗ ̸= 0 and
therefore the overall advantage of an adversary B on DLOG in G is

AdvDLOG
B,G λ
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Game 5
ppG ← SetupG(1

λ)
Z ← G
(ppH, τH)← SetupH(ppG, ([1]G , Z)⊺)
Q := ∅, T := [], U := []
ξ1 ← RerandH(ppH,SamH(ppH, 1))
ξ2 = RerandH(ppH,PrivSamH(τH, (0, 1)

⊺))
pk := (ppH, ξ1, ξ2)

(m∗, R̂∗, s∗)← AH,Sign(1λ, pk)
if m∗ ∈ Q then return 0
if U [(GetIDH(ppH, R̂

∗),m∗)] ̸= ⊥ then

(γ∗, ζ∗) := U [(GetIDH(ppH, R̂
∗),m∗)]

if ζ∗ = −T [(GetIDH(ppH, R̂
∗),m∗)] then return

0
c∗ = H(R̂∗,m∗)

return EqH(ppH, [s
∗]H , R̂∗ · ξc∗2 )

H(R̂,m)

if T [(GetIDH(ppH, R̂),m)] = ⊥ then

T [(GetIDH(ppH, R̂),m)]← Zp

U [(GetIDH(ppH, R̂),m)] = PrivExtH(τH, R̂)

return T [(GetIDH(ppH, R̂),m)]

Sign(m)
c, s← Zp

R̂2 = RerandH(ppH, ξ
s
1 · ξ−c2 )

if T [(GetIDH(ppH, R̂2),m)] = ⊥ then

T [(GetIDH(ppH, R̂2),m)] := c
else

abort
Q := Q ∪ {m}
return (R̂2, s)

Figure 7.12: Game 5 corresponds to G2 in [FPS20].

≥Pr[out5 = 1]

≥Pr[out4 = 1]− qs(qs + qh)

2λ

≥Pr[out3 = 1]− qh
2λ
− qs(qs + qh)

2λ

≥Pr[out2 = 1]−Adv1-switchingA′′,H λ− qh
2λ
− qs(qs + qh)

2λ

≥Pr[out1 = 1]− qs + 1

2λ
−Adv1-switchingA′′,H λ− qh

2λ
− qs(qs + qh)

2λ

≥Pr[Expeuf-cma
Σschnorr,A(λ) = 1]− qs + 1 + qh + qs(qs + qh)

2λ
−Adv

1-switching
A′′,H λ

≥Pr[Expeuf-cma
Σschnorr,A(λ) = 1]− O(qs(qs + qh))

2λ
−Adv1-switchingA′′,H λ

which concludes the proof.

7.3.5 Signed ElGamal

In the hashed ElGamal key-encapsulation mechanism (KEM), a public key is a group element Y , the
corresponding secret key is y = dlogg(Y ). For encryption, one picks a random exponent x ← Zp to
compute a key H(Y x) accompanied by an encapsulation X := gx. Given the encapsulation and the
secret key y, the receiver can recover that key K = H(Xy). [FPS20] showed that Schnorr-signed
ElGamal, a variant of hashed ElGamal, is tightly IND-CCA2 secure under the DLOG assumption in the
AGM and the random oracle model. Schnorr-signed ElGamal (see Figure 7.13) works similarly as hashed
ElGamal but every encapsulation is accompanied by a Schnorr signature for message X under public
key X. Decryption works as before with the difference that decryption aborts if the provided Schnorr
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KGen(ppH)
y ← Zq

Ĝ := RerandH(ppH,SamH(ppH, 1))

Ŷ := RerandH(ppH,SamH(ppH, y))

pk := (ppH, Ĝ, Ŷ )
sk := (pk, y)
return (pk, sk)

Enc(pk = (ppH, Ĝ, Ŷ ))
x, r ← Zq

R̂← RerandH(ppH,SamH(ppH, r))

X̂ ← RerandH(ppH,SamH(ppH, x))

k := H ′(Ŷ x)

s := r +H(R̂, X̂) · x mod q

return (k, (X̂, R̂, s))

Dec(sk, (X̂, R̂, s))

if [s]H ̸=H X̂H(R̂,X̂) · R̂ then
return ⊥

return k := H ′(X̂y)

Figure 7.13: The Schnorr-signed ElGamal encryption scheme PKEsElG. Note that to compensate for the
non-uniqueness of group element encodings, the (random oracle) hash value of a group element encoding
is computed for the unique identifier produced by GetIDH(ppH, ·). The hash function H maps tuples of
group elements from H to elements in K and the hash function H ′ maps group elements from H to Zp

elements.

signature is invalid.
In this section, we demonstrate that our algebraic wrapper can be applied to mimic the proof of tight

IND-CCA2 security of Schnorr-signed ElGamal PKEsElG from [FPS20]. In contrast to our tight reduction
for Schnorr signatures from Section 7.3.4, the tightness for Schnorr-signed ElGamal does not require the
“origin element trick” since it is not necessary to apply switching to oracle responses.

Theorem 7.3.5. Let SetupG be a group generator for a cyclic group G such that DLOG is hard relative
to SetupG and let H be an algebraic wrapper of dimension ≥ 2 for G. Then, PKEsElG in H is tightly
IND-CCA2 secure in the random oracle model.

More precisely, for all PPT adversaries A, there exists a PPT adversary B and a legitimate switching
adversary A′ both running in time T (B) ≈ T (A)+(qd+qh)·poly(λ) and T (A′) ≈ T (A)+(qd+qh)·poly(λ)
such that

Advind-cca2PKEsElG,Aλ ≤ AdvDLOG
B,G λ+Adv2-switchingA′,H λ+

O(qd + qh)

2λ
,

where qh is a polynomial upper bound on the number of random oracle queries, qd is a polynomial upper
bound on the number of decryption queries and poly is a polynomial independent of qd and qh.

Proof. The proof strategy follows (up to some preparations) the outline of [FPS20]. The hybrid Game 0
is identical to Expind-cca2PKEsElG,A(λ). The initial game transitions until hybrid Game 3 are preparation steps
due to the algebraic wrapper. The following hybrids Game 4, Game 5, Game 6 correspond exactly to
the hybrids G1, G2, G3 from [FPS20], respectively. The preparation steps set up the randomness for the
challenge ciphertext as x∗ := z · y. Further, the randomness for the signature in the challenge ciphertext
is chosen using an x∗-component similar to the proof of Schnorr signatures Section 7.3.4. Subsequently,
re-randomizability and switching are applied such that the public key Ŷ uses the representation vector
(0, 1)⊺ and the randomness for the challenge ciphertext X̂∗ uses the representation vector (0, z)⊺. The
remaining proof proceeds as in [FPS20].

For simplicity, we introduce the notation Â =H B̂ for EqH(ppH, Â, B̂). We proceed over a series
of games starting from the IND-CCA2 game in the random oracle model, see Figure 7.14. The hash
functions H̃ : H×H→ Zp and H̃ ′ : H→ K behave exactly as there counterparts H and H ′, respectively,
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Game 0
ppG ← SetupG(1

λ)
(ppH, τH)← SetupH(ppG, ([1]G , [β2]G)

⊺)
y ← Zp

Ĝ← RerandH(ppH,SamH(ppH, 1))

Ŷ ← RerandH(ppH,SamH(ppH, y))

pk := (ppH, Ĝ, Ŷ )
T, T ′ = []
x∗, r∗ ← Zp

X̂∗ ← RerandH(ppH,SamH(ppH, x
∗))

R̂∗ ← RerandH(ppH,SamH(ppH, r
∗))

c∗ := H̃(R̂∗, X̂∗)
s∗ := r∗ + c∗ · x∗ mod p
k0 := H̃ ′(Ŷ x∗

), k1 ← K
b′ ← AH,H′,Dec(pk, kb, (R̂∗, X̂∗, s

∗))
return b = b′

H(R̂, X̂)

if T [(GetIDH(ppH, R̂),GetIDH(ppH, X̂))] = ⊥ then

T [(GetIDH(ppH, R̂),GetIDH(ppH, X̂))]← Zp

return T [(GetIDH(ppH, R̂),GetIDH(ppH, X̂))]

H ′(K̂)

if T ′[GetIDH(ppH, K̂)] = ⊥ then

T ′[GetIDH(ppH, K̂)]← K
return T ′[GetIDH(ppH, K̂)]

Dec(R̂, X̂, s)

if R̂ =H R̂∗ ∧ X̂ =H X̂∗ ∧ s = s∗ then
return ⊥

c := H̃(R̂, X̂)

if [s]H ̸=H R̂ · X̂c then
return ⊥

k := H̃ ′(X̂y)
return k

Figure 7.14: The description of Game 0. Game 0is identical to Expind-cca2PKEsElG,A(λ).

and act solely as helper functions. The adversary A only has access to the oracles H and H ′ (and Dec).

Throughout the proof, the behavior of H̃ and H̃ ′ will not be altered.

Game hop Game 0⇝Game 1. Similarly to the security proof of Schnorr signatures, we first change how
the signature in the challenge ciphertext is generated. Particularly, the randomness used for the signature
is chosen using a y-component, see Figure 7.15. Because x∗ is in both games uniformly distributed
and r∗ = s∗ − c∗ · x∗ mod p and thus GetIDH(ppH, R̂

∗
1) = GetIDH(ppH, R̂

∗
2), Game 0 and Game 1 are

distributed identically.

Game hop Game 1⇝Game 2. In Game 2 (see Figure 7.16), the encodings Ŷ , X̂∗ and R̂∗2 are produced
using private sampling or the group operation instead of public sampling. Since these encodings are re-
randomized, this game hop is justified by the re-randomizability of the algebraic wrapper H. More precisely,
we successively replace RerandH(ppH,SamH(ppH, y)) by RerandH(ppH,PrivSamH(τH, y)), RerandH(ppH,
SamH(ppH, x

∗)) by RerandH(ppH,PrivSamH(τH, x
∗)) and, finally, RerandH(ppH,SamH(ppH, s

∗−c∗ ·x∗))
by RerandH(ppH, Ĝ

s∗ ·(X̂∗)−c∗). Due to correctness of sampling, we have PrivExtH(τH,SamH(ppH, y)) =
y · −→e1 = PrivExtH(τH,PrivSamH(τH, y)) and PrivExtH(τH,SamH(ppH, x

∗)) = x∗ · −→e1 = PrivExtH(τH,
PrivSamH(τH, x

∗)). Further, due to correctness of sampling and correctness of extraction, we have

PrivExtH(τH,SamH(ppH, s
∗ − c∗ · x∗)) = (s∗ − c∗ · x∗) · −→e1 = PrivExtH(τH, Ĝ

s∗ · (X̂∗)−c∗). Hence, due
to statistical re-randomizability, |Pr[out2 = 1]− Pr[out1 = 1]| ≤ 3

2λ
.

Game hop Game 2⇝Game 3. Towards removing the necessity to know y for the simulation, we

change the basis to be
[−→
b
]
G
:= ([1]G , [y]G)

⊺ and adapt the representation vectors used for private

sampling of Ŷ and X̂∗ accordingly, see Figure 7.17. This game hop is justified by 2-switching.
We construct an adversary A′ on 2-switching as follows. Initially, on input of ppG, A′ outputs

two basis vectors
[−→
b
](G2)

G
:= ([1]G , [β2]G)

⊺ and
[−→
b
](G3)

G
:= ([1]G , [y]G)

⊺ and representation vectors
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Game 1
ppG ← SetupG(1

λ)
(ppH, τH)← SetupH(ppG, ([1]G , [β2]G)

⊺)
y ← Zp

Ĝ← RerandH(ppH,SamH(ppH, 1))

Ŷ ← RerandH(ppH,SamH(ppH, y))

pk := (ppH, Ĝ, Ŷ )
T, T ′ = []
z, r∗ ← Zp, x

∗ := z · y
X̂∗ ← RerandH(ppH,SamH(ppH, z · y))
R̂∗1 ← RerandH(ppH,SamH(ppH, r

∗))

c∗ := H̃(R̂∗, X̂∗)
s∗ := r∗ + c∗ · z · y mod p
R̂∗2 ← RerandH(ppH,SamH(ppH, s

∗ − c∗ · x∗))
k0 := H̃ ′(Ŷ z·y), k1 ← K
b′ ← AH,H′,Dec(pk, kb, (R̂∗2, X̂

∗, s∗))
return b = b′

H(R̂, X̂)

if T [(GetIDH(ppH, R̂),GetIDH(ppH, X̂))] = ⊥ then

T [(GetIDH(ppH, R̂),GetIDH(ppH, X̂))]← Zp

return T [(GetIDH(ppH, R̂),GetIDH(ppH, X̂))]

H ′(K̂)

if T ′[GetIDH(ppH, K̂)] = ⊥ then

T ′[GetIDH(ppH, K̂)]← K
return T ′[GetIDH(ppH, K̂)]

Dec(R̂, X̂, s)

if R̂ =H R̂∗2 ∧ X̂ =H X̂∗ ∧ s = s∗ then
return ⊥

c := H̃(R̂, X̂)

if [s]H ̸=H R̂ · X̂c then
return ⊥

k := H̃ ′(X̂y)
return k

Figure 7.15: The description of the hybrid Game 1.

Game 2
ppG ← SetupG(1

λ)
(ppH, τH)← SetupH(ppG, ([1]G , [β2]G)

⊺)
y ← Zp

Ĝ← RerandH(ppH,SamH(ppH, 1))

Ŷ ← RerandH(ppH,PrivSamH(τH, y))

pk := (ppH, Ĝ, Ŷ )
T, T ′ = []
z, r∗ ← Zp, x

∗ := z · y
X̂∗ ← RerandH(ppH,PrivSamH(τH, z · y))
R̂∗1 ← RerandH(ppH,SamH(ppH, r

∗))

c∗ := H̃(R̂∗, X̂∗)
s∗ := r∗ + c∗ · z · y mod p
R̂∗2 ← RerandH(ppH, Ĝ

s∗ · (X̂∗)−c∗)
k0 := H̃ ′(Ŷ z·y), k1 ← K
b′ ← AH,H′,Dec(pk, kb, (R̂∗2, X̂

∗, s∗))
return b = b′

H(R̂, X̂)

if T [(GetIDH(ppH, R̂),GetIDH(ppH, X̂))] = ⊥ then

T [(GetIDH(ppH, R̂),GetIDH(ppH, X̂))]← Zp

return T [(GetIDH(ppH, R̂),GetIDH(ppH, X̂))]

H ′(K̂)

if T ′[GetIDH(ppH, K̂)] = ⊥ then

T ′[GetIDH(ppH, K̂)]← K
return T ′[GetIDH(ppH, K̂)]

Dec(R̂, X̂, s)

if R̂ =H R̂∗2 ∧ X̂ =H X̂∗ ∧ s = s∗ then
return ⊥

c := H̃(R̂, X̂)

if [s]H ̸=H R̂ · X̂c then
return ⊥

k := H̃ ′(X̂y)
return k

Figure 7.16: The description of the hybrid Game 2.
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Game 3
ppG ← SetupG(1

λ)
y ← Zp

(ppH, τH)← SetupH(ppG, ([1]G , [y]G)
⊺)

Ĝ← RerandH(ppH,SamH(ppH, 1))

Ŷ ← RerandH(ppH,PrivSamH(τH, (0, 1)
⊺))

pk := (ppH, Ĝ, Ŷ )
T, T ′ = []
z, r∗ ← Zp, x

∗ := z · y
X̂∗ ← RerandH(ppH,PrivSamH(τH, (0, z)

⊺))

R̂∗1 ← RerandH(ppH,SamH(ppH, r
∗))

c∗ := H̃(R̂∗, X̂∗)
s∗ := r∗ + c∗ · z · y mod p
R̂∗2 ← RerandH(ppH, Ĝ

s∗ · (X̂∗)−c∗)
k0 := H̃ ′(Ŷ z·y), k1 ← K
b′ ← AH,H′,Dec(pk, kb, (R̂∗2, X̂

∗, s∗))
return b = b′

H(R̂, X̂)

if T [(GetIDH(ppH, R̂),GetIDH(ppH, X̂))] = ⊥ then

T [(GetIDH(ppH, R̂),GetIDH(ppH, X̂))]← Zp

return T [(GetIDH(ppH, R̂),GetIDH(ppH, X̂))]

H ′(K̂)

if T ′[GetIDH(ppH, K̂)] = ⊥ then

T ′[GetIDH(ppH, K̂)]← K
return T ′[GetIDH(ppH, K̂)]

Dec(R̂, X̂, s)

if R̂ =H R̂∗2 ∧ X̂ =H X̂∗ ∧ s = s∗ then
return ⊥

c := H̃(R̂, X̂)

if [s]H ̸=H R̂ · X̂c then
return ⊥

k := H̃ ′(X̂y)
return k

Figure 7.17: The description of the hybrid Game 3.

−−−−−→
v(1),(G2) := (y, 0)⊺,

−−−−−→
v(2),(G2) := (z · y, 0)⊺ and

−−−−−→
v(1),(G3) := (0, 1)⊺,

−−−−−→
v(2),(G3) := (0, z)⊺. In return, A′

receives public parameters ppH and two encodings Ĉ(1) and Ĉ(2). A′ computes Ŷ ← RerandH(ppH, Ĉ
(1))

and X̂∗ ← RerandH(ppH, Ĉ
(2)) and simulates the remaining game as in Game 2. Note that this is

possible since τH is not necessary. A′ simulates either Game 2 or Game 3 for A depending on the challenge
provided by the 2-switching-game. Hence, |Pr[out3 = 1]− Pr[out2 = 1]| ≤ Adv2-switchingH,A′ λ. Since A′

is a legitimate 2-switching adversary, Adv
2-switching
H,A′ λ is negligible.

Game hop Game 3⇝Game 4. From this point on, we are able to closely follow the lines of [FPS20].
In Game 4 (see Figure 7.18), the oracle H stores the private extractions of the encodings used to call
H in a list U . Furthermore, the decryption oracle obtains representation vectors corresponding to the
supplied encodings R̂ and X̂ by first looking for a matching entry in U and, if no such entry is present,
by applying private extraction. Let (ν, µ) and (ν′, µ′) be the thus obtained representation vectors of R̂

and X̂, respectively. Game 4 additionally introduces an abort condition. If µ+ µ′ · c = 0 and µ′ ̸= 0,
Game 4 aborts and outputs a random bit. The games Game 3 and Game 4 only differ if Game 4aborts.

Note that all values in the table T are set in an adversarial call to either H or Dec, except for c∗ =
T [(GetIDH(ppH, R̂

∗
2),GetIDH(ppH, X̂

∗))] which is set using H̃ in the game. If Dec(R̂, X̂, s) ̸= ⊥, then
(R̂, X̂) ̸= (R̂∗2, X̂

∗) since otherwise s = s∗. Hence, the value c = T [(GetIDH(ppH, R̂),GetIDH(ppH, X̂))]
is independent of (ν, µ, ν′, µ′). Therefore, the probability that Game 4 aborts is upper bounded by the
probability that c is chosen as c = − µ

µ′ mod p which can be upper bounded by 1
p ≤ 2−λ. By a union

bound, the probability that Game 4 aborts is upper bounded by qd
2λ
. Since Game 3 and Game 4 behave

identical unless Game 4 aborts, we have |Pr[out4 = 1]− Pr[out3 = 1]| ≤ qd
2λ
.

Game hop Game 4⇝Game 5. Figure 7.19 shows the description of Game 5. Instead of sampling r∗

and querying the H̃ for c∗ to obtain s∗ = r∗ + c∗ · x∗, Game 5samples s∗ and c∗ independently and
computes R̂∗2 = RerandH(ppH, Ĝ

s∗ · (X̂∗)−c∗) as in Game 4. This behavior is identical to Game 4 except
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Game 4 (corresponds to G1 from [FPS20])
ppG ← SetupG(1

λ)
y ← Zp

(ppH, τH)← SetupH(ppG, ([1]G , [y]G)
⊺)

Ĝ← RerandH(ppH,SamH(ppH, 1))

Ŷ ← RerandH(ppH,PrivSamH(τH, (0, 1)
⊺))

pk := (ppH, Ĝ, Ŷ )
T, T ′ = [], U := []
z, r∗ ← Zp, x

∗ := z · y
X̂∗ ← RerandH(ppH,PrivSamH(τH, (0, z)

⊺))

R̂∗1 ← RerandH(ppH,SamH(ppH, r
∗))

c∗ := H̃(R̂∗, X̂∗)
s∗ := r∗ + c∗ · z · y mod p
R̂∗2 ← RerandH(ppH, Ĝ

s∗ · (X̂∗)−c∗)
k0 := H̃ ′(Ŷ z·y), k1 ← K
b′ ← AH,H′,Dec(pk, kb, (R̂∗2, X̂

∗, s∗))
return b = b′

H ′(K̂)

if T ′[GetIDH(ppH, K̂)] = ⊥ then

T ′[GetIDH(ppH, K̂)]← K
return T ′[GetIDH(ppH, K̂)]

H(R̂, X̂)

if T [(GetIDH(ppH, R̂),GetIDH(ppH, X̂))] = ⊥ then

T [(GetIDH(ppH, R̂),GetIDH(ppH, X̂))]← Zp

U [(GetIDH(ppH, R̂),GetIDH(ppH, X̂))] :=

(PrivExtH(τH, R̂),PrivExtH(τH, X̂))

return T [(GetIDH(ppH, R̂),GetIDH(ppH, X̂))]

Dec(R̂, X̂, s)

if R̂ =H R̂∗2 ∧ X̂ =H X̂∗ ∧ s = s∗ then
return ⊥

c := H̃(R̂, X̂)

if [s]H ̸=H R̂ · X̂c then
return ⊥

(ν, µ)← PrivExtH(τH, R̂)

(ν′, µ′)← PrivExtH(τH, X̂)

if U [(GetIDH(ppH, R̂),GetIDH(ppH, X̂))] ̸= ⊥ then

(ν, µ, ν′, µ′) := U [(GetIDH(ppH, R̂),GetIDH(ppH, X̂))]
if (µ+ µ′ · c = 0) ∧ (µ′ ̸= 0) then
abort game and output random bit

k := H̃ ′(X̂y)
return k

Figure 7.18: The description of the hybrid Game 4.

for the event that the tuple (R̂∗2, X̂
∗) already has an entry in T . If this event occurs, Game 5 aborts.

Since R̂∗2 and X̂∗ are uniformly random and T contains at most qd + qh many entries after at most qd
Dec-queries and qh H-queries, the probability that Game 5 aborts but Game 4 does not can be upper
bounded by qd+qh

22λ
. Hence, |Pr[out5 = 1]− Pr[out4 = 1]| ≤ qd+qh

22λ
.

Game hop Game 5⇝Game 6. Game 6 (see Figure 7.20) introduces two further abort conditions (⋆)
and (⋆⋆). As in [FPS20], we show that if Game 6 differs from Game 5, then we can solve discrete
logarithms.

We construct an adversary B on the discrete logarithm problem. Given (ppG, [1]G , [y]G), B produces

(ppH, τH) ← SetupH(ppG, ([1]G , [y]G)
⊺) and simulates Game 6 for A. Note that Ŷ and X̂∗ can be

sampled without knowing y (and x∗).

• B simulates queries to H ′ as follows. When A queries H ′ for K̂, B computes (ν′′, µ′′) ←
PrivExtH(τH, K̂). Hence,

UnwrapH(ppH, K̂) = (ν′′, µ′′) · ([1]G , [y]G)
⊺.

To test whether K̂ = (X̂∗)y which in turn (implicitly) equals Ĝz·y2

, B solves the equation

z · y2 − µ′′ · y − ν′′ = 0 mod p

for y. If one solution is the discrete logarithm of the given DLOG challenge game Game 6 aborts
and B outputs y. (Note that due to (⋆), if the game does not abort, A’s view is independent if it
receives kb or k1.)
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Game 5 (corresponds to G2 from [FPS20])
ppG ← SetupG(1

λ)
y ← Zp

(ppH, τH)← SetupH(ppG, ([1]G , [y]G)
⊺)

Ĝ← RerandH(ppH,SamH(ppH, 1))

Ŷ ← RerandH(ppH,PrivSamH(τH, (0, 1)
⊺))

pk := (ppH, Ĝ, Ŷ )
T, T ′ = [], U := []
z, c∗, s∗ ← Zp, x

∗ := z · y
X̂∗ ← RerandH(ppH,PrivSamH(τH, (0, z)

⊺))

R̂∗2 ← RerandH(ppH, Ĝ
s∗ · (X̂∗)−c∗)

if T [(GetIDH(ppH, R̂
∗
2),GetIDH(ppH, X̂

∗))] = ⊥ then

T [(GetIDH(ppH, R̂
∗
2),GetIDH(ppH, X̂

∗))] := c∗

else
abort game and output random bit

k0 := H̃ ′(Ŷ z·y), k1 ← K
b′ ← AH,H′,Dec(pk, k1, (R̂∗2, X̂

∗, s∗))
return b = b′

H ′(K̂)

if T ′[GetIDH(ppH, K̂)] = ⊥ then

T ′[GetIDH(ppH, K̂)]← K
return T ′[GetIDH(ppH, K̂)]

H(R̂, X̂)

if T [(GetIDH(ppH, R̂),GetIDH(ppH, X̂))] = ⊥ then

T [(GetIDH(ppH, R̂),GetIDH(ppH, X̂))]← Zp

U [(GetIDH(ppH, R̂),GetIDH(ppH, X̂))] :=

(PrivExtH(τH, R̂),PrivExtH(τH, X̂))

return T [(GetIDH(ppH, R̂),GetIDH(ppH, X̂))]

Dec(R̂, X̂, s)

if R̂ =H R̂∗2 ∧ X̂ =H X̂∗ ∧ s = s∗ then
return ⊥

c := H̃(R̂, X̂)

if [s]H ̸=H R̂ · X̂c then
return ⊥

(ν, µ)← PrivExtH(τH, R̂)

(ν′, µ′)← PrivExtH(τH, X̂)

if U [(GetIDH(ppH, R̂),GetIDH(ppH, X̂))] ̸= ⊥ then

(ν, µ, ν′, µ′) := U [(GetIDH(ppH, R̂),GetIDH(ppH, X̂))]
if (µ+ µ′ · c = 0) ∧ (µ′ ̸= 0) then

abort game and output random bit
k := H̃ ′(X̂y)
return k

Figure 7.19: The description of the hybrid Game 5.



7.3. HOW TO USE ALGEBRAIC WRAPPERS – IMPLEMENTING PROOFS FROM THE AGM 171

Game 6 (corresponds to G3 from [FPS20])
ppG ← SetupG(1

λ)
y ← Zp

(ppH, τH)← SetupH(ppG, ([1]G , [y]G)
⊺)

Ĝ← RerandH(ppH,SamH(ppH, 1))

Ŷ ← RerandH(ppH,PrivSamH(τH, (0, 1)
⊺))

pk := (ppH, Ĝ, Ŷ )
T, T ′ = [], U := []
z, c∗, s∗ ← Zp

X̂∗ ← RerandH(ppH,PrivSamH(τH, (0, z)
⊺))

R̂∗2 ← RerandH(ppH, Ĝ
s∗ · (X̂∗)−s∗)

if T [(GetIDH(ppH, R̂
∗
2),GetIDH(ppH, X̂

∗))] = ⊥ then

T [(GetIDH(ppH, R̂
∗
2),GetIDH(ppH, X̂

∗))] := c∗

else
abort game and output random bit

k0 := H̃ ′(Ŷ z·y), k1 ← K
b′ ← AH,H′,Dec(pk, k1, (R̂∗2, X̂

∗, s∗))
return b = b′

H ′(K̂)

if K̂ = X̂∗
y
then

abort game and output random bit (⋆)

if T ′[GetIDH(ppH, K̂)] = ⊥ then

T ′[GetIDH(ppH, K̂)]← K
return T ′[GetIDH(ppH, K̂)]

H(R̂, X̂)

if T [(GetIDH(ppH, R̂),GetIDH(ppH, X̂))] = ⊥ then

T [(GetIDH(ppH, R̂),GetIDH(ppH, X̂))]← Zp

U [(GetIDH(ppH, R̂),GetIDH(ppH, X̂))] :=

(PrivExtH(τH, R̂),PrivExtH(τH, X̂))

return T [(GetIDH(ppH, R̂),GetIDH(ppH, X̂))]

Dec(R̂, X̂, s)

if R̂ =H R̂∗2 ∧ X̂ =H X̂∗ ∧ s = s∗ then
return ⊥

c := H̃(R̂, X̂)

if [s]H ̸=H R̂ · X̂c then
return ⊥

(ν, µ)← PrivExtH(τH, R̂)

(ν′, µ′)← PrivExtH(τH, X̂)
if µ+ µ′ · c ̸= 0 then
abort game and output random bit (⋆⋆)

if U [(GetIDH(ppH, R̂),GetIDH(ppH, X̂))] ̸= ⊥ then

(ν, µ, ν′, µ′) := U [(GetIDH(ppH, R̂),GetIDH(ppH, X̂))]
if (µ+ µ′ · c = 0) ∧ (µ′ ̸= 0) then
abort game and output random bit

k := H̃ ′(X̂y)
return k

Figure 7.20: The description of the hybrid Game 6. The view of A is independent of b.

• B simulates queries to Dec as follows. As argued above, if Dec(R̂, X̂, s) does not return ⊥, then
(R̂, X̂) ̸= (R̂∗, X̂∗). We have that

UnwrapH(ppH, R̂) = (ν, µ) · ([1]G , [y]G)
⊺ mod p

UnwrapH(ppH, X̂) = (ν′, µ′) · ([1]G , [y]G)
⊺ mod p

If Dec does not return ⊥, we have s = r + c · x mod p and hence

y · (µ+ µ′ · c) = s− ν − ν′ · c mod p. (7.1)

If µ+ µ′ · c ̸= 0 mod p, Game 6 aborts and B solves Eq. (7.1) for y. If µ+ µ′ · c = 0 mod p and
µ′ ̸= 0 then both Game 5 and Game 6 abort. If µ + µ′ · c = 0 mod p and µ′ = 0 then µ = 0
and dlog[1]G(UnwrapH(ppH, X̂)) = x = ν′ allowing the reduction to simulate Dec response as

k := H̃ ′(Ŷ x).

Therefore, |Pr[out6 = 1]− Pr[out5 = 1]| ≤ AdvDLOG
G,B λ.
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Chapter 8

Conclusion

In this thesis, we looked into several ways in which rewinding as well as algebraic group model related
techniques can be used to prove security of cryptographic primitives.

In particular, in Chapter 3, we used a novel rewinding technique to prove adaptive security of two
schemes with an underlying tree structure, namely the Goldreich-Goldwasser-Micali PRF and the Logical
Key Hierarchy. The first result circumvents a lower bound for straight-line reductions.

In Chapter 4, we closed a gap in the proof of one-more unforgeabilty of the Abe-Okamoto partially
blind signature scheme. This proof also relies heavily on rewinding, however the core of the analysis is the
computation of probability of extracting the correct witness. While overall we employed a forking-lemma
style argument, estimating the sizes of the sets to fork over takes some careful counting.

Staying in the realm of blind signatures, we then revisited Abe’s blind signature scheme. We showed
that with a minor modification, it can be turned partially blind, thus extending the realm of potential
applications, and then proved one-more unforgeability in the AGM + ROM assuming the hardness of the
discrete logarithm problem.

As a minor result, we showed that blind Schnorr signatures are sequentially secure in the AGM
assuming the one-more discrete logarithm problem is hard. We further proved that, even in the AGM,
a reduction needs to make as many OMDL queries as the user closes signing sessions, otherwise the
reduction breaks OMDL already.

In our last chapter, we showed that, in some cases, the AGM can be replaced by a weaker construct
called the algebraic wrapper. The algebraic wrapper ‘wraps’ around a cryptographic group and provides
reductions with a limited extraction of algebraic explanations from adversaries. We showed how this
construction can be used to implement proof strategies from the AGM, namely for some constant-size
Diffie-Hellman assumptions, Schnorr signatures, and Signed ElGamal.

8.1 Open Questions and Future Research Directions

In the following, we discuss some open questions and potential follow-up work. Since the publication of
the results we presented in this thesis, there have also been independent works that answer some of the
questions left open at the time.
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8.1.1 Undirected Rewinding and Adaptive Security

In the context of undirected rewinding, it could be interesting to find a general framework for the
application of our rewinding technique as the two applications we presented are still rather involved.
While we provide a somewhat modular framework where we formulated the two rewinding conditions
as functions, the two proofs still have some differences, e.g. the proof for adaptive security of LKH
contains hybrids without a bound on the number of rewinding loops as a method to change the stopping
conditions of the rewinding. Such a game hop strategy could be generalized more using some abstract
lemmata. Similarly one could formulate the underlying security assumptions, i.e. PRG security and
IND-CPA security as generic indistinguishability notions. All of these generalizations might allow for
a generic framework that allows to prove security of further schemes in a very compact way, i.e. just
proving that certain properties hold both for the underlying assumption as well as for the hybrids.

It seems that protocols and primitives with an underlying tree structure are particularly suited to
the application of ‘undirected rewinding’, and thus another research direction could be to investigate
the applicability of this technique to other protocols with such a structure, either with or without the
generalization described above.

On the other hand, in the current variant, the ‘undirected rewinding’ strategy rewinds the adversary
to many points where no meaningful change can happen, in particular in the setting of the Goldreich-
Goldwasser-Micali PC-PRF. To reduce the loss, one could look into how to save on these extra rewinding
cycles while still allowing for the probabilistic analysis presented in the main body.

8.1.2 Blind Signatures

In the realm of blind signatures, a key open question is to find efficient, concurrently secure blind or
partially blind signature schemes. Many current candidate schemes, such as Abe’s scheme [Abe01], our
partially blind variant thereof, the schemes by Tessaro and Zhu [TZ22], as well as the threshold scheme
from [Cri+23] all come with a proof in an idealized group model. It remains an open question whether
there exists a pairing-free scheme that can be proven concurrently secure without relying on idealized
group models such as the AGM or GGM(s).

As all of the schemes mentioned above use an interactive version of the Fiat-Shamir transform, it
is a natural question to ask whether it is possible to prove security using a forking-lemma/rewinding
technique. The rewinding technique we used for the Abe-Okamoto scheme incurs a fairly large loss
in the number of concurrent signing sessions. This is unsurprising and inherent for the Abe-Okamoto
scheme as it is vulnerable to the ROS attack [Ben+21]. However, for some other schemes that rely on
the witness-indistinguishability of an OR-proof, this ROS attack does not apply. The question is therefore
two-fold: On the one hand, it is possible that there is an inherent lower bound for the ‘naive’ rewinding
strategy for two-witness blind signature schemes. It would be interesting to see whether the proof strategy
and modelling of ‘naive’ rewinding of Baldimtsi and Lysyanskaya [BL13b] can be extended to two-witness
schemes. In their proof, they assume that the reduction programs the random oracle in a naive way, in
particular independent of the inputs that the adversary makes. This allows a meta-reduction to predict
the reduction’s random oracle responses and use them to generate signature. When the reduction resets
the adversary, it can use (most) forking runs to actually obtain the unique secret key. The forking
runs it cannot use for extracting the secret key correspond to the notions of ‘partners’ in our proof, i.e.
forking runs that yield the same query transcript from the adversary. As the general rewinding strategy
in our setting also relies on this technique, in particular on the resampling of the random oracle outputs
independent of the inputs, a meta-reduction could also use predictions of the random oracle responses as
its leverage for forging signatures. However, the key difference is that now, forking runs would reveal
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only the witness used by the reduction. As we prove using the counting argument however, any real
adversary is forced to at least sometimes give the reduction the other witness. Thus, a more elaborate
strategy would be needed to actually construct a (potentially unbounded) adversary that actually gives
the reduction the undesired witness most of the time, i.e. in all the cases except the cases proven by our
reduction.

The other angle from which one could look at this problem is to construct a reduction that could
circumvent such issues. For example, in the original proof of security in [Abe01], in the case of the main
theorem, only one session is simulated using the other witness. This is possible when one has already
proved the restrictive blinding lemma which shows that all signatures have a hidden link to a session. All
other sessions use the z-side witness, one session uses either the z-side witness or the y-side witness. As
this setting already assumes that the adversary links all signatures to a signing session, the reduction can
embed a discrete logarithm challenge in one of the session keys and hope it obtains two signatures linked
to that session from which it can then extract. Such a strategy of individual session keys with alternate
keys could be one approach for constructing efficient, provably concurrently secure schemes without
idealized group models. One problem one would need to overcome in this context would be to prove
that it is infeasible for the adversary to generate a signature that is not linked to any signing session -
this corresponds to the ‘restrictive blinding’ lemma in [Abe01] whose forking-based proof in the ROM
contains a flaw.

As there are many two-witness OR-proof based schemes that build on the Abe-Okamoto scheme and
its proof, such as Anonymous Credentials Light [BL13a], BlindOR [AHJ21], and CSI-Otter [Kat+23],
another interesting question could be how to formulate a general framework for this type of schemes, for
example building on the Linear Function Family framework by Hauck, Kiltz and Loss [HKL19]. Especially
for those schemes that are not vulnerable to the ROS attack, such as ACL 1 or Abe, a generic proof
strategy could yield variants of the schemes from other assumptions using different building blocks such
as lattices, pairings, or even isogenies2

8.1.3 The AGM, the Algebraic Wrapper, and Their Relationships to Other
Models

Since the introduction of the AGM in 2018, researchers have investigated its relationships to other
models. While we provided a partial instantiation in [AHK20], this left open at the time whether the
AGM could be instantiated fully. Zhandry [Zha22] showed that no group can ‘force’ an adversary to
behave algebraically by providing a security game that is hard to win assuming the discrete logarithm
problem in the AGM, but easy to win in the standard model. The key strategy in the proof is that
the game ‘feeds’ the adversary the encoding of a group element, but split into its bits such that it is
‘independent’ of any group element encoding (a requirement made by [FKL18]). This does not contradict
the algebraic wrapper, as a group element of the algebraic wrapper would always contain an encrypted
algebraic representation. Thus, if the adversary was to simply output a group element it got bit-by-bit
from an oracle, this group element would contain whichever algebraic explanation the oracle encrypted.

On the other hand, our work on the algebraic wrapper only investigated the relationship of the AGM
to the standard model, not to other models such as the generic group models. When introducing the

1Benhamouda, Lepoint, Loss, Orrù and Raykova [Ben+21] claimed that ACL was vulnerable to their attack. Later on,
we showed in [KLR23a] that this is not true. The application of the ROS attack on ACL contained a typo in the verification
equations that when fixed, rendered the attack inefficient. We proved concurrent security in the AGM+ROM.

2While the plain ROS attack is not applicable to the isogeny-based CSI-Otter scheme [Kat+23], other ROS-like attacks
have since been discovered [KLR23b; DHP23].
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AGM as a model, Fuchsbauer, Kiltz and Loss [FKL18] argued that it was a natural weakening of ‘the
generic group model’, i.e. any algorithm that is generic is also algebraic in the sense that it outputs an
algebraic representation. It turned out that this is true for Maurer’s variant of the GGM [Zha22], it does
not hold for Shoups variant [ZZK22].

More closely related to the algebraic wrapper, we left open the question of where it can be applied
outside of the reductions we showed how to implement. In fact, the while the algebraic wrapper already
relies on matching components of the algebraic explanation to a basis, we only introduced ‘reduced
representations’ as a concept in our work on pairing-free blind signatures [KLX22a]. It seems that
reduction strategies using such reduced representations would be a good match for the algebraic wrapper,
as the reduced representation, especially to a constant-sized number of group elements, could be easily
mapped to a basis of the wrapper. However, many of these proofs, such as for example the proofs
of the LRSW assumption [Lys+99] and the BLS signature scheme [BLS01] by Fuchsbauer, Kiltz and
Loss [FKL18], or also our proof of Abe’s scheme, rely on two reduction strategies that are perfectly
indistinguishable in the AGM, but at best computationally indistinguishable in the algebraic wrapper.
It remains an open question whether such a reduction strategy can be implemented in the algebraic
wrapper or a similar construct.

Another limitation of the wrapper is to deal with reduced representations or bases that are larger
than constant size, such as for example when using a q-type assumption. As the base size influences
the size of the group description as well as the size of group element encodings in the wrapper, one
cannot guess the number of queries the adversary will make and use a matching assumption internally,
as the number of queries of the adversary can depend on its input size, and thus on the size of the group
description. This leads to a cyclic dependency. It therefore also remains an open question whether it is
possible to find a partial instantiation of the AGM where reductions relying on q-type assumptions can
be implemented.

There have also been several follow-up works to the introduction of the AGM that introduced variants
of what it means to be algebraic. For example, Rotem and Segev [RS20] introduced a variant of the
AGM where adversaries are additionally required to explain decision bits, and Katz, Loss and Xu [KLX20]
introduced a variant of the AGM where adversaries further need to explain the order in which they
performed group operations. While both models have been compared to generic group models, there are
no attempts at (partial) instantiation and their relationship to partial instantiations such as the algebraic
wrapper remains an open question.

Another extension of the AGM [LPS23] covers the sampling of group elements without knowing their
discrete logarithm. In many real-world groups, methods such as hashing into elliptic curves allow for
such sampling. The algebraic wrapper offers no such method as one always has to provide an algebraic
explanation when sampling a group element. Therefore, it remains an open question how to model such
explanation-oblivious methods of sampling in the algebraic wrapper.

Looking towards the GGM(s) again, a recent work by Bauer, Farshim, Harasser and O’Neill [Bau+22]
introduced the concept of pseudo-generic groups as a new notion for what it means for a group to
behave ‘like a generic group’. This yields the natural open question what is the relationship between such
a pseudo-generic group and the AGM, as well as whether techniques like those used for the algebraic
wrapper can be used to construct a candidate pseudo-generic group.

Lastly, we note that there is still a gap between the AGM and the algebraic wrapper itself, and further
research is needed to find where exactly the standard model ends and the uninstantiability of the AGM
begins.
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[Hof+23] D. Hofheinz, J. Kastner, A. Ünal and B. Ursu. Decoding LTFs in the Generic Group Model.
Cryptology ePrint Archive, Paper 2023/866. https://eprint.iacr.org/2023/866. 2023.
url: https://eprint.iacr.org/2023/866 (cit. on p. xii).

https://doi.org/10.1007/978-3-030-45724-2_3
https://doi.org/10.1007/3-540-47721-7_12
https://doi.org/10.1145/100216.100272
https://doi.org/10.1007/978-3-642-38348-9_1
https://doi.org/10.1109/SFCS.1984.715949
https://one.google.com/about/vpn/howitworks
https://doi.org/10.1007/978-3-540-78967-3_24
https://doi.org/10.1007/978-3-031-38545-2_24
https://doi.org/10.1007/978-3-031-38545-2_24
https://doi.org/10.1007/978-3-030-17659-4_12
https://doi.org/10.1007/978-3-031-30589-4_26
https://eprint.iacr.org/2023/866
https://eprint.iacr.org/2023/866


BIBLIOGRAPHY 183
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