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Abstract 
 
In the era of big data, open-access information online is ever increasing. Harnessing its 
potential can find useful application in many scientific sectors, including public health. One 
pressing concern within this realm is the well-being of food animals, whose importance extends 
beyond economics to encompass human health. Infectious diseases, antimicrobial resistance 
(AMR), and a limited access to healthcare professionals currently pose a threat to food animals 
and the 1.3 billion people worldwide who rely on them for their subsistence. This doctoral 
thesis explores the potential of using open-access data, in conjunction with geospatial models 
and user-friendly platforms, to provide new resources that can aid decision-makers in 
improving the health of animals raised for food. 
 
Chapter 2 introduces the open-access platform resistancebank.org, an online repository that 
centralizes 2,045 point prevalence surveys (PPS) reporting AMR prevalence estimates in food 
animals. Launched in 2019 as a shiny application (R programming language), the platform 
consists of 42,891 resistance prevalence estimates of foodborne pathogens sampled from 
terrestrial and aquatic species in low- and middle-income countries. Besides individual PPS, 
the platform provides access to AMR maps at the 10x10 km2 resolution, country-level reports 
of AMR, and allow users to upload the results of their PPS through an online form or an Excel 
template. 
 
Chapter 3 illustrates how open-access addresses of veterinarians were used to identify areas 
where veterinarians are farther than 1 hour of travel time from food animals (i.e., “veterinary 
coldspots”). First, the assembling of a global address book of 303,745 veterinarians’ addresses 
using web-scraping technique is presented. Log-Gaussian Poisson Regression models and 
spatial covariates were then used to predict the global distribution of veterinarians at the 10x10 
km2 resolution. The resulting map showed that 43% of veterinarians are in high-income 
countries, which, however, account for just 21.2% of the global production of food animals. 
As a consequence, the highest percentages of all food animals in coldspots were identified in 
Asia (44.1%), Latin America (27.7%), and Africa (18.7%). 
 
In Chapter 4, AMR and veterinary capacity were used as case studies to present analyses about 
the optimal allocation of health facilities in underserved areas. Two geographic approaches 
were used to identify the locations of an additional 5% of the national number of i) health 
facilities (hospitals and clinical laboratories) to equip with laboratories for antimicrobial 
susceptibility tests (ASTs) in five African countries and ii) veterinarians predicted in Chapter 
3, with the aim to reduce the number of food animals in coldspots. The allocation of laboratories 
testing for AMR resulted in a coverage of ~21 million people that can reach a laboratory within 
1 hour. The allocation of veterinarians in countries with coldspots ensured veterinary care for 
32.6% of the global number of cattle, chickens, and pigs living in coldspots. 
 
In Chapter 5, the focus shifts on the global health crisis sparked by COVID-19. As for many 
students worldwide, the pandemic affected the trajectory of my Ph.D. However, thanks to the 
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skillset acquired while working on the project presented in Chapter 2, I was actively involved 
in research efforts aimed in monitoring the spread of the disease and the availability of 
healthcare resources in Switzerland. I set-up the open-access platform icumonitoring.ch used 
to summarize bi-weekly forecasts of COVID-19 cases, hospitalizations, intensive care units’ 
occupancy, and ventilators’ availability at the regional-, cantonal-, and hospital-level in 
Switzerland. Chapter 5 also includes my contribution in providing the Swiss Federal Office of 
Public Health with daily geocodings of COVID-19 cases. The output of this process was used 
to produce daily hotspots’ maps of COVID-19 cases and to highlight how hospitalizations, 
deaths, and the prevalence of positive COVID-19 cases were higher among the population 
living in the poorest neighbors of Switzerland. 
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Zusammenfassung 
 
Im Zeitalter von Big Data nimmt der Umfang an open-access Informationen im Internet stetig 
zu. Die Nutzung ihres Potenzials kann in vielen wissenschaftlichen Bereichen Anwendung 
finden, einschließlich des öffentlichen Gesundheitswesens. Ein drängendes Anliegen in diesem 
Bereich ist das Wohlergehen von Nutztieren, dessen Bedeutung über die Wirtschaft hinaus bis 
hin zur menschlichen Gesundheit reicht. Infektionskrankheiten, Antibiotikaresistenz (AMR) 
und der begrenzte Zugang zu Gesundheitsfachkräften stellen derzeit eine Bedrohung für 
Nutztiere und die 1,3 Milliarden Menschen weltweit dar, die auf sie für ihren Lebensunterhalt 
angewiesen sind. Diese Doktorarbeit untersucht das Potenzial der Nutzung von open-access 
Daten in Verbindung mit geografischen Modellen und benutzerfreundlichen Plattformen, um 
neue Ressourcen bereitzustellen, die Entscheidungsträgern bei der Verbesserung der 
Gesundheit von Nutztieren helfen können. 
 
Kapitel 2 stellt die Open-Access-Plattform resistancebank.org vor, ein Online-Repository, das 
2.045 Punktbefragungen (PPS) zur Prävalenz von AMR in Nutztieren zentralisiert. Die 
Plattform wurde 2019 als Shiny-Anwendung (Programmiersprache R) gestartet und enthält 
42.891 Prävalenzschätzungen von Resistenzen gegenüber durch Lebensmittel übertragenen 
Krankheitserregern, die bei terrestrischen und aquatischen Arten in Ländern mit niedrigem und 
mittlerem Einkommen entnommen wurden. Neben individuellen PPS bietet die Plattform 
Zugriff auf AMR-Karten mit einer Auflösung von 10x10 km², länderspezifische Berichte zu 
AMR und ermöglicht Benutzern das Hochladen der Ergebnisse ihrer PPS über ein Online-
Formular oder eine Excel-Vorlage. 
 
Kapitel 3 zeigt, wie Adressen von Tierärzten verwendet wurden, um Gebiete zu identifizieren, 
in denen Tierärzte mehr als 1 Stunde Reisezeit von Nutztieren entfernt sind (sogenannte 
"tierärztliche Versorgungslücken"). Zunächst wird die Erstellung eines globalen 
Adressverzeichnisses von 303.745 Tierarztadressen mithilfe von Web-Scraping-Techniken 
vorgestellt. Log-Gaußsche Poisson-Regressionsmodelle und räumliche Kovariablen wurden 
dann verwendet, um die globale Verteilung von Tierärzten mit einer Auflösung von 10x10 km² 
vorherzusagen. Die resultierende Karte zeigte, dass 43% der Tierärzte in wohlhabenden 
Ländern tätig sind, die jedoch nur 21,2% der weltweiten Produktion von Nutztieren ausmachen. 
Als Folge wurden die höchsten Prozentsätze aller Nutztiere in Versorgungslücken in Asien 
(44,1%), Lateinamerika (27,7%) und Afrika (18,7%) identifiziert. 
 
In Kapitel 4 wurden AMR und tierärztliche Kapazität als Fallstudien verwendet, um Analysen 
zur optimalen Verteilung von Gesundheitseinrichtungen in unterversorgten Gebieten 
vorzustellen. Zwei geographische Ansätze wurden verwendet, um in fünf afrikanischen 
Ländern die Standorte für zusätzliche 5 % der nationalen Anzahl an i) 
Gesundheitseinrichtungen (Krankenhäuser und klinische Laboratorien), ausgestattet mit 
Laboratorien für antimikrobielle Empfindlichkeitstests (ASTs) und ii) Tierärzten, 
vorausberechnet in Kapitel 3, zu ermitteln, mit dem Ziel, die Zahl der Nutztiere in 
Versorgungslücken zu verringern. Die Zuweisung von Laboren zur AMR-Testung führte zu 
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einer Abdeckung von rund 21 Millionen Menschen, die innerhalb von 1 Stunde ein Labor 
erreichen können. Die Zuweisung von Tierärzten in Ländern mit Versorgungslücken 
gewährleistete tierärztliche Betreuung für 32,6% der weltweiten Anzahl von Rindern, Hühnern 
und Schweinen in Versorgungslücken. 
 
In Kapitel 5 liegt der Fokus auf der globalen Gesundheitskrise, die durch COVID-19 ausgelöst 
wurde. Wie für viele Studierende weltweit beeinflusste die Pandemie den Verlauf meiner 
Promotion. Dank der erworbenen Fähigkeiten während der Arbeit an dem Projekt in Kapitel 2 
war ich aktiv an Forschungsanstrengungen beteiligt, die darauf abzielten, die Ausbreitung der 
Krankheit und die Verfügbarkeit von Gesundheitsressourcen in der Schweiz zu überwachen. 
Ich habe die Open-Access-Plattform icumonitoring.ch eingerichtet, die zweiwöchentliche 
Vorhersagen zu COVID-19-Fällen, Krankenhauseinweisungen, Auslastung der 
Intensivstationen und Verfügbarkeit von Beatmungsgeräten auf regionaler, kantonaler und 
Krankenhausebene in der Schweiz zusammenfasst. Kapitel 5 enthält auch meinen Beitrag zur 
Bereitstellung von täglichen Geocodierungen von COVID-19-Fällen an das Schweizer 
Bundesamt für Gesundheit. Die Ergebnisse dieses Prozesses wurden verwendet, um tägliche 
Karten der COVID-19-Hotspots zu erstellen und darauf hinzuweisen, wie 
Krankenhausaufenthalte, Todesfälle und die Prävalenz positiver COVID-19-Fälle unter der 
Bevölkerung in den ärmsten Vierteln der Schweiz höher waren. 
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Chapter 1 

Introduction 
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1.1 Open-access data and infectious diseases 
 
Infectious diseases, with their capacity to spread across the globe within days (1–3), are a 
serious threat to public health. In recent years, the challenge posed by infectious diseases has 
been further exacerbated by the intersecting forces of globalization (4), climate change (5), and 
the intensification of agricultural production (6). In 2019, among the ~56.5 million deaths that 
occurred worldwide, ~7.9 million (13.9%) were associated with infectious diseases (7). In 
many low- and middle-income countries (LMICs), where 83% of the world’s population lives 
(8), infectious diseases remain among the leading causes of death (9), causing ~7.3 million 
fatalities in 2019 (7). 
 
Data that feed into surveillance systems is the cornerstone of interventions aimed at reducing 
the burden of infectious diseases. In particular, the systematic collection and analysis of 
epidemiological, clinical, and environmental data can help i) developing prevention measures 
such as vaccines and antiviral drugs, ii) detecting clusters of infections and planning rapid 
interventions (10–12), and iii) establishing historical precedents to improve preparedness for 
future outbreaks (13). 
 
In HICs, these approaches led to establishing surveillance systems for diseases of global 
importance like influenza (14) and antibiotic-resistant infections (15–17). However, in LMICs, 
the development of surveillance systems is heavily undermined by scarce economic resources. 
An example of the disparity between HICs and LMICs concerns health expenditures per capita. 
In 2019 the average health expenditure per capita in HICs was 3,269 US$ compared to the 281 
US $ per capita of LMICs (18). Similarly, important disparities also exist in the availability of 
health workforces, with 36.6 doctors per 10,000 people in HICs against only 1.5 per 10,000 in 
low-income countries (19). These trends are also reflected, for some LMICs, in the founding 
date of public health agencies tasked with preventing and managing infectious diseases. For 
example, the Robert Koch Institute in Germany was founded in 1891, the Dutch National 
Institute for Public Health and Environment in 1910, and the Instituto Superiore di Sanità in 
Italy in 1934. In contrast, the Nigeria Centre for Disease Control (NCDC) was established as 
recently as 2011. Similarly, the United Kingdom National Health Service initiated universal 
healthcare in 1948, while South Africa adopted a similar stance only in 1994 (20). A parallel 
scenario unfolds in the foundation of continent-level public health agencies. For example, the 
European Centers for Disease Control and Prevention (CDC) emerged in 2005, while the 
United States National Institute of Health and the CDC were formally founded in 1887 and 
1946, respectively. In contrast, the Africa CDC emerged only in 2016. 
One of the consequences of the lack of resources for healthcare in LMICs translates into 
comparatively poorer medical care than in HICs, but also, and perhaps more importantly: a 
limited understanding of how diseases emerge and spread in these regions. For example, in 
2013, an 86-day delay in the detection of the primary Ebola virus case in West Africa led to an 
outbreak that was over 20 times the size of all previous outbreaks, lasting nearly four times 
longer than any previous outbreak (21). In the absence of well-established surveillance 
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infrastructure using proxies and alternative indicators could help better track diseases in 
LMICs. 
 
In this context, the same modern era of globalization that generates challenges to contain 
infectious diseases might also come with opportunities by creating solutions often hidden in 
plain sight: the existence of large open-access databases. Important categories of open data are 
to be distinguished. First, some open-access data is produced for public health purposes but is 
scattered across the scientific literature and/or different online platforms used for disease 
surveillance. Examples of these types of open-access data are point prevalence surveys (PPS) 
conducted in human and animal samples to collect prevalence estimates of antimicrobial 
resistance (22, 23). One of the main challenges to working with this category of data is the need 
to harmonize them since they might have been produced using methodologies different across 
scientific studies. 
Second, there are open-access data that are created with purposes different than informing 
public health efforts (i.e.: sales, trade, etc.) but that in fact hold considerable potential to inform 
such efforts. Today, a considerable volume of this category of data is uploaded daily on the 
internet. People all over the world contribute to expanding digital maps by uploading the 
locations of services they use or places they visit on platforms like OpenStreetMap (OSM) and 
Google Maps. Some of these data sources have already been used in public health applications: 
online national phonebooks have been used to inventory health facilities (24), while postal 
codes available from medical associations have been used to identify the location of physicians 
and investigate their geographic distribution (25). The main challenge of working with this 
category of open-access data is represented by their acquisition: thousands of this data are listed 
online, and manually extracting them can be time-consuming and increase the errors that can 
naturally occur during sampling processes. 
Furthermore, other open-access data created with purposes different than informing public 
health efforts are maps of global environmental and anthropogenic variables. These data can 
supplement open- and restricted-access databases, in combination with mathematical models, 
to make inferences on the geographic distribution of infectious diseases and healthcare 
capacities. These maps are typically disseminated by international organizations such as 
NASA, the United States Geological Survey, the European Space Agency, and other 
academics. 
 
In LMICs, these categories of open-access data represent an unprecedented opportunity to gain 
insights into infectious disease trends. Firstly, in the absence of surveillance systems that 
collect disease data, using open-access data can be the only available option to investigate 
disease trends. Secondly, findings produced through open-access data allow researchers, 
healthcare professionals, and the public to easily inspect, reproduce, and strengthen study 
results. Finally, they can potentially supplement existing public health efforts based on 
traditional data such as medical and disease records, pharmaceutical clinical trials, and public 
health surveys (26). For instance, they can i) increase statistical power to reduce disease model 
uncertainty, ii) provide greater spatial or temporal granularity to model disease trends, and iii) 
serve as early disease detection systems. One such example is the screening of social media 
posts mentioning symptoms of infectious diseases.  
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While open-access data holds considerable potential to improve infectious disease surveillance 
in resource-limited settings, transforming this data into actionable information for decision-
makers comes with challenges. Unlike randomized control trials, census, laboratory 
experiments, and systematic surveillance campaigns, open-access data results from a data 
generation process that is heterogeneous in nature. Therefore, harnessing this potential will 
depend on our capacity to amalgamate considerable volumes of information to smooth out 
heterogeneities that result from the data generation process, and satisfactorily harmonize it 
from a statistical perspective.  
 
Addressing these challenges is the aim of this doctoral thesis. 

1.2 Studying infectious diseases using open-access resources 
 
“Open-access data” are broadly defined as freely accessible and unrestricted data, text, 
software, and multimedia (27). This definition was coined in the early 2000s (28–30) when 
international organizations recognized the importance of open-access data in every public 
sector. Thanks to these initiatives, the public health sector can today rely on subject-specific 
open-access repositories such as PubMed Central (31), the International Society for Infectious 
Diseases’ ProMED (32), and the WHO Global Health Observatory (33). According to the 2019 
State of Open Data report, more than 70% of researchers use open-access data to inform their 
future research (34). 
 
In human health, one of the most significant efforts associated with using open-access data to 
study infectious diseases is the Malaria Atlas Project (35) a centralized geodatabase of statistics 
about the prevalence, burden, and severity of malaria at the global-level. Assembling such a 
database required an extensive literature review that today accounts for >24,000 surveys of 
prevalence rates of malaria performed since 1985 (36). Other initiatives focused on the human 
immunodeficiency virus (HIV) to share prevalence estimates at the county- and regional-level 
(37) and sequences of the virus’ genome (38). Furthermore, in China, databases of national 
web searches were used to identify the geographic distribution of HIV diagnoses within the 
country (39). Another example concerned a dengue outbreak in Brazil, where a sentiment 
analysis based on Twitter users’ posts revealed a good geographic relationship with the 
locations of new infections (40). 
 
Although open-access data are valuable for tracking infectious diseases in humans, they can 
also largely contribute to the study of infectious diseases in food animals. One of the reasons 
for focusing on food animals is to prevent the emergence of potential zoonoses, which can pose 
a threat to human health as well (41). The link between human and animal health is one of the 
pillars of the One Health approach, an interdisciplinary strategy that recognizes the 
interconnectedness between humans, animals, and the environment. Within this paradigm, 
considering animals in disease surveillance and prevention efforts becomes essential, as the 
health of people is closely tied to the health of animals and our shared environment (42). 
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Furthermore, keeping animals healthy is crucially important for the economy sector 
represented by food animals and for the 600 million small-scale farmers who rely on animals 
for subsistence (43). 
Examples of the use of open data in animal health include country-to-country trade records for 
poultry and wild birds from the Food and Agricultural Organization (FAO) that were used to 
track the spread of the avian influenza virus in Asia, Africa, and Europe (44). In another study, 
clinical data from 1,000 farms that participated in a national public health initiative were used 
to train machine learning algorithms to automatically diagnose mastitis in dairy herds (45). In 
addition, in 2017, the agricultural gross domestic product (46) estimates were used in 
combination with reports of monthly outbreaks of foot and mouth disease (FMD) to estimate 
the global economic risk caused by FMD in 216 countries (47). Finally, in the United Kingdom, 
open-access data of cattle movements were used for assessing the risks of disease transmission 
of bovine tuberculosis and outperformed environmental and anthropogenic to that effect (48). 
 
In parallel, an increasing number of open-access platforms are contributing to the dissemination 
of data to support investigations on infectious diseases in animals. Considering again herds’ 
movements, in Switzerland, the animal movement database (Tierverkehrsdatenbank, TVD) 
uses ear tags to monitor and record the movements of farm animals, and facilitates real-time 
contact tracing during disease outbreaks (49). Another example is the Animal Diseases 
Information System (ADIS), a European project created in collaboration with the World 
Organisation for Animal Health (WOAH), designed to register and document the evolution of 
the situation of important infectious animal diseases (50). Furthermore, the Infectious Diseases 
of East African Livestock project centralizes clinical and epidemiological data on infectious 
diseases in calves (51). Finally, the Enhanced Infectious Diseases database (ENHanCEd), 
systematically collates information about pathogens in humans and animals into a single 
resource (52). 

1.3 Maps for infectious diseases surveillance 
 
Maps carry multiple functions in veterinary epidemiology. First, maps are a visual data 
representation, making them more accessible and comprehensible for decision-makers than 
numerical outputs. Second, maps can be used for monitoring the geographical progression of 
diseases and help prevent outbreaks in healthy animals. Third, statistical associations between 
maps of environmental variables (53) and maps of diseases can help identify environmental 
risk factors that may contribute to disease transmission. Fourth, maps can also be the outputs 
of geostatistical models used to predict incidence rates of diseases (e.g., malaria in LMICs 
(35)). This can be useful to leverage the uneven coverage of data in different parts of the world, 
particularly in low- and middle-income countries (LMICs). Finally, maps can support the 
process of resource allocation against diseases, for example, to improve the accessibility to 
health services. 
 
One of the earliest use of maps to monitor epidemics can be traced back to the 17th century 
when maps were used to identify areas affected by the plague in the province of Bari (Italy). 
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Originally, these maps were purely descriptive and were used to highlight areas where new 
cases of diseases appeared. Perhaps the most notable map used for this purpose is the one 
created by the British physician John Snow to track cholera cases in London in 1854 (Fig. 1A). 
Using such a map, Snow was able to identify the source of the infection – a water pump in the 
neighborhood of Soho – and stop the epidemic. A century later, one of the first global-level 
maps showed the diffusion of the “Asian” influenza spread by the H2N2 virus that caused a 
global pandemic that killed between 1 and 4 million people globally (Fig. 1B). Over time, new 
mapping methods such as the choropleth and heat maps were used to describe the prevalence 
of diseases within different administrative country levels (Fig. 1C and 1D). 
 

 
Fig. 1. Examples of historical maps used in public health. (A) Cholera cases (black boxes) 
tracked by John Snow in the Soho neighborhood of London in 1854 (54). (B) The global 
diffusion of “Asian” influenza between 1957 and 1958 (55). (C) Westward diffusion of 
cerebrospinal meningitis in sub-Saharan Africa prior to 1939 (56). (D) Standardized mortality 
ratio for breast cancer in Britain for women aged 15-64 years between 1980 and 1982 (57). 
 
A significant milestone in the evolution of mapping methods was the introduction of the 
concept of spatial correlation, as articulated by Waldo R. Tobler in the form of the first law of 
geography (58). With increased computational capabilities, maps were further developed to 
incorporate this concept into statistical models applied to spatial elements. These advancements 
led to the development of the field of geostatistics, largely attributed to the contributions of 
Danie G. Krige and Georges Matheron (59). Their work formed the foundation for techniques 
that enable interpolating spatial data, capturing their correlation, and performing spatial 
predictions. These principles underlie different contemporary mapping methods. For example, 
the kriging technique is used to interpolate the values of a variable at observed locations and 
predict its value at unobserved locations, weighting predictions by the degree of correlation 
between observed values (60). Such a method was used for producing maps of species 
distribution (61) and maps of infectious diseases (23, 62–64). 
Another family of computational methods developed to study infectious diseases is network 
analysis, which is rooted in the graph theory developed in the 18th century (65). Network 
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analysis provides a means to examine interactions between spatial elements and was first 
introduced to enhance travel efficiency and reduce costs in urban planning. To date, this 
approach remains the cornerstone of the methods used to calculate travel times and generate 
maps of accessibility, amongst others for health facilities. Other methods in network analysis 
also include solvers for the “facility location problems” (66), which describe the challenges of 
maximizing access to a facility (i.e.: a hospital) for the largest population possible (67, 68). 
 
In this thesis, we explore the use of these methods in combination with open-access data for 
three case studies of global importance: antimicrobial resistance, COVID-19, and accessibility 
to veterinary healthcare.  

1.4 Investigated case studies 
 
Antimicrobial resistance 
 
Antimicrobial resistance (AMR) is the ability of bacteria to evolve and withstand the effect of 
treatment with antibiotics (69). While the development of AMR is a naturally occurring 
phenomenon, excessive antibiotic use (AMU) accelerates this process (70). Infections with 
bacteria that are resistant to antibiotics (71) have serious consequences for human health. 
Currently, it is estimated that 1.3 million deaths occurring each year globally are attributable 
to antimicrobial-resistant infections (72). 
 
However, to address the burden of AMR in humans and its relationship with AMU it is 
important to expand investigations beyond humans (73) and recognize the scale of AMU in 
animals. The antibiotics used in animals raised for food for the treatment and prevention of 
infectious diseases and, in 45 countries, for growth promotion (74), represent 73% of all 
antibiotics sold globally (75). The use of antibiotics in animals is driven by the increasing 
demand for animal protein (76), and contributes, along with other factors, to the increase of 
drug-resistant bacteria in food animals. These bacteria can then be transmitted to humans 
through the food chain or via environmental contamination. Therefore, regulating AMU in food 
animals has become a crucial component of the strategies for controlling AMR. While HICs 
can rely on surveillance systems to collect AMU and AMR data (16, 17, 77), in most of LMICs 
these systems are still in development. Reasons for the lack of systematic surveillance in these 
countries include the absence of laboratory facilities and a lack of qualified personnel for 
performing antimicrobial susceptibility testing (AST) (78–80). 
 
In the absence of systematic surveillance, recent research efforts centralized open-access data 
scattered across the scientific literature to create resources intended as proxies of surveillance. 
For example, the global PPS project has established a global network of hospitals to assess and 
compare the quantity and quality of antibiotics prescribed and AMR prevalence in adults, 
children, and neonates worldwide (22). In a different effort, Hendriksen and colleagues 
attempted to monitor AMR worldwide using AMR gene abundances in urban sewage collected 
in 60 countries (81, 82). In food animals, efforts focused on producing global predictions of 
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AMU using antibiotic sales (mostly from in HICs) (83–85), and collecting PPS of resistance 
prevalence estimates found in foodborne bacteria and summarized to predict current AMR 
trends in LMICs (23). Such results were integrated within geospatial models that returned 
global maps for the investigation of AMU and AMR trends at a finer geographical scale than 
the national one (i.e., at the 10x10 km2 resolution) (85, 86). 
 
Further research initiatives based on online platforms hold the potential to improve proxies of 
surveillance based on PPS. Firstly, they can be used as repositories for centralizing existing 
PPS that were previously scattered across studies performed in different parts of the world. 
This can provide scientists with up-to-date databases that can support additional AMR 
investigations, such as studies about species-specific resistance and to identify new emerging 
AMR patterns in food animals. Secondly, online platforms could be used to summarize 
epidemiological information in outputs aggregated at different geographic levels, such as 
country-level reports. Third, they can become a focal point for the AMR community and 
engage researchers to contribute additional PPS to expand their existing database. Finally, they 
can overcome barriers imposed by publication and access fees of scientific journals by a free 
dissemination of their findings. Platforms conceived for these purposes are based on an 
architecture that requires communication with remote data storage services (Fig. 2).  
 

 
Fig. 2. Workflow of an open-access platform programmed in R. The workflow shows the 
operation of a platform conceived for data sharing. The source code of the platform is translated 
into HyperText Markup Language (HTML) to work on every browser and then uploaded on a 
cloud server that runs the platforms on the internet. Users can interact with the platform through 
a user-friendly Graphical User Interface, download outputs (e.g., datasets, documents, maps), 
and upload their data, which will be integrated into databases stored on remote data storage 
services (e.g., Amazon S3, Dropbox). These up-to-date databases will then be loaded each time 
new users access the platform. 
 
These platforms can be coded in different programming languages (R, python, Java, etc.). 
Specifically, the R environment provides packages such as shiny (87) that translate the platform 
source code into HyperText Markup Language (HTML), used by web browsers. Furthermore, 
R also provides hosting services consisting of cloud servers to run platforms coded in R. This 
can considerably simplify the work of developers for configuring their local servers. In 
addition, platforms conceived for data sharing must rely on remote data storage services (e.g., 
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Amazon, Dropbox, or Google) that will contain databases loaded upon users’ access (Fig. 2, 
blue arrow). These services will be used to store data uploaded by the users (Fig. 2, green 
arrow) that will be subsequently combined with the existing databases. 
 
Veterinarians 
 
In the context of managing AMU and monitoring AMR in food animals, it is essential to 
recognize the role played by veterinarians. On the one hand, veterinarians could exacerbate 
AMR through unnecessary and non-targeted antibiotic prescriptions that could be partially 
driven by economic incentives, such as profits deriving from antibiotic sales (88). On the other 
hand, they play a key role in monitoring infectious diseases (89), promoting responsible 
farming practices, such as using narrow-spectrum antibiotics based on diagnostic tools (90), as 
well as performing regular check-ups on animals. 
 
These aspects acquire greater importance when considering the livelihood of the 1.3 billion 
people (91) who rely on food animals for their subsistence. Of these, 600 million are small-
scale farmers, and the majority of them currently live in extreme poverty (<2$ per day) (92). 
Therefore, keeping animals healthy is crucially important for their economic, sociocultural, 
environmental, and nutritional well-being. Lack of access to veterinarians, especially in these 
settings, can create multiple problems: for example, the absence of systematic guidance from 
veterinarians might result in a decrease in food animals’ productivity due to the reliance of 
farmers on lay knowledge of animal health (93). This could lead to economic losses and food 
insecurity for the population (94), and potential misuse of antibiotics (95). Furthermore, lack 
of veterinary surveillance can increase the number of infections spreading undetected among 
animals (96), increasing the risk of epidemics that can impact food production and public 
health. 
 
However, assessing the availability of veterinarians for food animals at a finer geographical 
scale than the national one is challenging. Currently, veterinary associations and organizations 
provide estimates of the number of veterinarians at the country-level (97), with only a few 
HICs reporting similar information at the provincial- or regional level (98–102). In addition, 
even fewer studies have investigated the national veterinarians’ distribution (103–105) and 
their degree of accessibility (99). This situation can be attributed to multiple factors. Firstly, 
countries with limited resources may lack the means to systematically inventory fine-scale data 
of veterinarians. Secondly, the resolution of this data – when it exists – can vary significantly 
between regions, municipalities, and individual practices, and lacks standardization. Thirdly, 
many countries have stringent data privacy laws, such as the General Data Protection 
Regulation in Europe, which safeguards the personal information of healthcare professionals, 
including veterinarians. Similarly, professional associations and licensing bodies may have 
policies that limit the dissemination of information related to their members. 
 
Without a fine-scale distribution of veterinarians at the global-level it is then challenging to 
quantify the differences in access to care at the sub-national level, especially in LMICs. 
Furthermore, outlining the global distribution of veterinarians could help support the 



 21 

identification of “veterinary coldspots”. These represent areas where animals are farther than 
1 hour of travel time from a veterinarian. This is a concept similar to the “golden hour” defined 
for humans, referring to the evidence that people who are cared within 1 hour after a traumatic 
event have a high chance of a positive health outcome (106). Mapping these coldspots globally 
could help in planning capacity-building efforts to expand the veterinary workforce.  
 
In this context, open-access data could constitute an unprecedented opportunity to get a first 
outline of the global distribution of veterinarians. Such open-access data can be represented by 
the addresses of veterinarians scattered among diverse online platforms such as national 
phonebooks, tools to find veterinarians by postcode, registries of veterinary associations, and 
governmental reports. Their addresses can be used to obtain more granular information about 
veterinary capacities than the ones currently available at the national level. 
 
However, assembling a global database of addresses to investigate the coldspots distribution 
comes with challenges. First, there is a need to identify exhaustively all potential platforms, 
and then techniques must be used to systematically collect such addresses to prevent errors 
occurring naturally during processes of manual data extraction and mitigate the long time 
required to extract thousands of addresses present within platforms of big countries. A solution 
to these challenges resides in web-scraping. Web scraping is a procedure using software that 
can be programmed in different languages (e.g., R, python, etc.) for automatic web data 
extraction (107). The history of web-scraping dates back to the 1990s, right after the World 
Wide Web was born (108). Since web pages are coded through the HTML language, web-
scrapers were developed to read this HTML code (comparable to the text on book pages), 
identify specific strings of code (the words in the text), and assemble them into a database (Fig. 
3). In addition, advanced software for web-scraping called web-crawlers (109), were developed 
to automatize the web pages navigation, which requires, for example, to press specific buttons 
and display additional text to collect. 
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Fig. 3. Web-scraping workflow. 1) Launch of the web page containing the data to collect. 2) 
Web-scraping software defined through programming languages like R and python access the 
web page and read its HyperText Markup Language (HTML) source code. 3) Identification of 
the target text (red boxes) present within structures of the HTML code that repeats inside the 
web page (e.g., white blocks shown in the figure of Step 1). 4) This information is extracted 
and then assembled inside a database. 
 
A database of veterinarians’ addresses assembled through web-scraping represents the starting 
point for getting granular information about the workforce of veterinarians worldwide. In 
addition, these data could help supplement ongoing projects that aim to strengthen national 
veterinary capacities such as the Performance of Veterinary Services (PVS) pathway defined 
by the World Organisation for Animal Health (WOAH) (110). The PVS pathway offers 
countries the methods for a self-evaluation of their veterinary workforce. Therefore, providing 
them with a database of veterinarians’ addresses could ease this process. 
However, additional methods are required to identify what is the degree of accessibility of 
veterinarians to food animals living inside coldspots. Drawing from the definition of coldspots 
based on travel times, it is possible to use maps reporting the land coverage to calculate travel 
times to reach health services, such as veterinarians. These maps are called land cover maps 
(Fig. 4) and are openly disseminated at different resolutions (e.g., 100 m2) by services like 
Copernicus Global Land Service (111) or NASA (112) at the global-level. These maps are 
created from satellite photographs obtained through sensors that can capture different land 
coverages (e.g., forests, water bodies, urban areas). 
 



 23 

 
Fig. 4. Land cover map. Classes of physical land coverage in the North of Sub-Saharan Africa 
in 2019 at 100 m2 resolution, disseminated by the Copernicus Global Land Service (111). 
 
Next, land cover maps can be combined with maps of road networks available from OSM that 
are associated with a traveling speed. In a process known as “rasterization”, these vectors can 
be converted into maps that match the resolution of land cover maps and are overlayed to them. 
Then, additional speed limits can be associated with the land cover classes where traveling by 
walking is possible (generally, the speed considered in this case is 5 km per hour (113)). 
Knowing the speed to travel across each class, these maps can be converted into friction 
surfaces, which are maps that contain information about the time required to cross a unit of 
length (e.g., meters) in each of their pixels. Notable examples of global friction surfaces 
available at 1 km2 resolution are the ones produced by Weiss and colleagues to calculate travel 
time maps to cities with >50,000 inhabitants (114) or to health facilities (115). Other friction 
surfaces at a higher resolution (e.g., 100 m2) have been so far assembled at the country-level 
and could provide more granular information about the population lacking accessibility to 
health facilities (116). 
 
The identification of veterinary coldspots using these travel time maps can help in quantifying 
the number of food animals lacking prompt access to care. Furthermore, these maps can also 
support efforts to increase the number of animals with access to care by identifying ways to 
improve the network of veterinarians. One of the purposes of this network analysis, known as 
the facility location problem (66), is to maximize the population brought within a certain travel 
time threshold from facilities by allocating supplementary ones (117). This approach is defined 
as the maximal covering location problem (MCLP) (118). MCLP-based approaches used with 
maps of travel times and population density allow to identify locations of additional facilities 
that maximize the population coverage. Therefore, they can help support an efficient increment 
of veterinarians to reduce coldspots. 
 
SARS-CoV-2 
 
Open-access data can be essential to supplement or make up for the lack of official data during 
health emergencies. As of October 2023, the COVID-19 caused nearly 7 million deaths 
worldwide (119). In Switzerland, the first COVID-19 wave started in February 2020, leading 
the Swiss government to implement measures such as social distancing, and banning large 
events to limit the spread of the virus. Compared to countries like Italy, France, and Spain, 
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where a national lockdown was imposed (120), these measures were less severe, and they were 
eased during the summer of 2020. However, in October 2020, the second, and deadliest wave 
of COVID-19 led to stricter sanitary measures in Switzerland (121). 
 
Along with these measures, open-access data and platforms available at the national- and 
global-level played a crucial role in monitoring the spread of the virus and planning national 
resource allocation (122–124). In Switzerland, COVID-19-related data such as the number of 
daily deaths, daily reported cases, and daily hospitalizations were initially daily centralized, 
and grouped by canton, by the open-access platform OpenZH (125). In addition, confidential 
time series of hospitalizations in intensive care units (ICU), at the hospital-level, were reported 
twice a day by the Information and Operation System (IES) managed by the Coordinated 
Sanitary Service of Switzerland. 
 
In this context, ICU occupancy data could be used as a proxy to outline the pandemic trajectory 
at its initial stage (when COVID-19 tests were not yet available) and disseminate such 
information through user-friendly platforms to competent authorities and the public. Therefore, 
with the support of the Swiss Armed Forces, our research group supplemented restricted access 
data (IES) with open-access data (OpenZH) to provide forecasts of ICU occupancy, in addition 
to deaths, hospitalizations, and availability of ventilators at the hospital-, cantonal-, and 
regional-level of Switzerland. Although hospital-level data remained confidential, their 
forecasts were aggregated at the cantonal- and regional-level. In addition, data from IES and 
OpenZH were both included in the models forecasting COVID-19 cases to increase their 
predictive power. 
 
Providing these forecasts to decision-makers became the priority during the pandemic, and 
open-access platforms (Fig. 2) can be useful for this purpose. Different platforms were 
developed in 2020 to support global (119, 123) and local (126) efforts aiming at maximizing 
the spread of information useful for limiting the burden of COVID-19. In this context, a 
platform releasing data about ICU occupancy could not only be used as a proxy for tracking 
the evolution of the pandemic but also for actively supporting competent authorities in 
managing the flow of patients being hospitalized. However, it is essential that this work is not 
hindered by the spread of misinformation upon potential leaks of sensible data, such as the ICU 
capacities of each Swiss hospital. Therefore, this type of open-access platform should be used 
to display sensible data with the public only when released in an aggregated format (e.g., at the 
cantonal- or regional-level), and use modules to encrypt such data (e.g., hospital-level ICU 
occupancy) to display them through an authentication system, based on username and 
password, only with competent authorities. 
 
Besides platforms, the spread of COVID-19 was also investigated using maps in combination 
with open-access data (127, 128). In Switzerland, our group established a collaboration with 
the Federal Office of Public Health (FOPH) to provide daily maps of COVID-19 hotspots 
across the country. For this reason, in June 2020, I went with my Ph.D. supervisor to Bern, 
where we had a meeting to establish a collaboration with members of the FOPH who had access 
to the databases of every person in Switzerland who tested for COVID-19 antigens. The 
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databases also contained their residential address. Therefore, we offered to develop a pipeline 
for the routine geocoding of these addresses using the dedicated Google Application 
Programming Interface (API). Due to the sensitive content of these databases, using an 
“anonymization by dilution” that mixes people’s addresses with the addresses of public 
facilities like restaurants and shops can prevent potential hacks in the API framework to rebuild 
the original database of COVID-19 positive cases. 
 
Once geocoded, these addresses can be used to produce descriptive maps showing the locations 
of new daily infections and how their hotspots change or increase over time (129). This can 
support the investigation of the spatial trends of a pandemic and assist timely interventions to 
allocate additional healthcare resources where hotspots are emerging. Furthermore, using 
geographic coordinates of COVID-19 cases in combination with socioeconomic factors has the 
potential to unravel important socioeconomic disparities among the neighborhoods of the 
country. An example is the availability of healthcare resources, such as COVID-19 tests and 
ICU admissions, at different socioeconomic strata of the population. 

1.5 Thesis structure 
 
The research questions of this thesis develop around the potential of using open-access data 
and platforms as resources to improve the surveillance of food animals and human health. 
Based on such premises, this thesis is organized around four projects: 
 

1. Open-access repository for AMR data sampled in food animals. This project 
describes the first version of the open-access platform resistancebank.org. When 
launched in 2019, the platform centralized 1,285 PPS reporting AMR prevalence 
estimates obtained from four foodborne pathogens (Escherichia coli, non-typhoidal 
Salmonella spp., Staphylococcus aureus, and Campylobacter spp.) sampled in cattle, 
chickens, pigs, and sheep across LMICs. A subsequent integration of PPS in September 
2021 led to an upgrade of the platform, which in its current version contains 2,045 PPS 
performed on pathogens sampled both in terrestrial and aquatic food animals. Currently, 
resistancebank.org summarizes the information of these PPS through different, open-
access outputs: 10x10 km2 maps of AMR, species-specific resistance prevalence 
estimates to each antibiotic tested per PPS, and country-level reports with socio-
economic information and AMU estimates, along with AMR prevalence estimates for 
different drug-pathogen combinations. 

 
2. Identification of coldspots of veterinary capacity. This project illustrates how web-

scraping techniques were used to amalgamate 303,745 addresses of veterinarians 
available in the public domain. These addresses, converted in geographic locations, 
were used with geospatial models and spatial covariates (i.e., maps of human population 
density, gross domestic product, travel time to cities, and food animals’ density) to 
predict the global distribution of veterinarians at the 10x10 km2 resolution. The project 
then describes how such a map was used to identify areas lacking accessibility to 
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veterinarians, comparable to the “medical deserts” for the human population. These 
areas, called “veterinary coldspots”, were defined as areas where food animals are 
farther than 1 hour of travel time from the nearest veterinarian, and were observed 
predominantly in LMICs. 

 
3. Optimal allocation of public health facilities. Building upon the topics of projects 1 

and 2, this project illustrates how open-access data can be used to investigate the spatial 
allocation of public health facilities. The aim was to quantify the physical accessibility 
to facilities within 1 hour of travel time when targeted approaches were used to increase 
the national number of facilities by 5%. Using maps reporting traveling costs within 
each area of a country, two case studies related to AMR and veterinary capacities are 
presented in this project: 

 
• The first identifies locations of public health facilities (hospitals and diagnostic 

laboratories) to equip for AST in Senegal, Sierra Leone, Gabon, Burkina Faso, 
and Malawi to maximize the population living within 1 hour of motorized travel 
time from these facilities. Increasing their availability can increase the number 
of AST performed and better frame how AMR trends in humans and animals 
evolve. 

 
• The second explores the allocation of veterinarians to reduce the number of food 

animals in coldspots. However, this case study focuses more on approximating 
the allocation approach that maximizes the food animals removed from 
coldspots to reduce the computational time of the allocations when working 
with global-level maps. 

 
4. Open-access resources against COVID-19. This project was conceived during the 

waves of the COVID-19 pandemic that hit Switzerland (2020-2021). It describes the 
development of open-access resources used to monitor and mitigate the effects of 
COVID-19. Specifically, data related to the forecasts of ICU occupancy were 
summarized in the online platform icumonitoring.ch, aiding decision-makers in 
managing the large flow of hospitalizations caused by the pandemic. 
This chapter also describes my involvement in another “operational support” project 
related to COVID-19 in Switzerland. We used the geographic coordinates of positive 
COVID-19 cases to investigate the relationship between socioeconomic indicators of 
the neighborhoods where they lived with the number of COVID-19 tests performed 
among these neighborhoods, as well as the number of positive cases, hospitalizations, 
and deaths. 
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Abstract 
 
Antimicrobial resistance (AMR) is a growing threat to the health of humans and animals that 
requires global actions. In high-income countries, surveillance systems helped inform policies 
to curb AMR in animals. In low- and middle-income countries (LMICs), demand for meat is 
rising, and developing policies against AMR is urgent. However, surveillance of AMR is at 
best nascent, and the current evidence base to inform policymakers is geographically 
heterogeneous. We present resistancebank.org, an online platform that centralizes information 
on AMR in animals from 1,285 surveys from LMICs. Surveys were conducted between 2000 
and 2019 and include 22,403 resistance prevalence estimates for pathogens isolated from 
chickens, cattle, sheep, and pigs. The platform is built as a shiny application that provides 
access to individual surveys, country-level reports, and maps of AMR at 10x10 kilometers 
resolution. The platform is accessed via any internet browser and enables users to upload 
surveys to strengthen a global database. resistancebank.org aims to be a focal point for sharing 
AMR data in LMICs and to help international funders prioritize their actions. 

Introduction 
 
Antimicrobials are essential drugs that have helped considerably reducing infectious diseases 
mortality. However, in recent years, their overuse in human medicine and animal production1–

3 has caused a rise in antimicrobial resistance4–6 (AMR). Globally, 73% of all antimicrobials 
are used in animals to prevent and treat infections7, but also to improve weight gain and 
productivity on farms8. The rise of antimicrobial use and resistance in animals is a growing 
concern for the future of animal health, and for the livelihood of billions of people who rely on 
animals for subsistence9,10. In addition, in recent years a growing body of evidence suggested 
that antimicrobial-resistant bacteria can be transferred between animals to humans11–15, and 
cause drug-resistant infections in humans16. As for other infectious diseases of global 
importance17–19, the rise of AMR in animals is a health challenge that requires close monitoring 
to coordinate international actions. 
In high-income countries, trends in AMR in animals are monitored via systematic surveillance 
20 by organizations such as the European Food Safety Authority (EFSA) in Europe, the National 
Antimicrobial Resistance Monitoring System for Enteric Bacteria (NARMS) in the United 
States, or the Canadian Integrated Program for Antimicrobial Resistance Surveillance 
(CIPARS) in Canada21. However, in low- and middle-income countries (LMICs), where 
demand for meat (and antimicrobials) is rising rapidly2,10, systematic surveillance systems 
remain largely absent22. International actions to set-up or scale-up surveillance systems in 
LMICs have been initiated23,24. However, these may take years to be fully operational to inform 
policymakers. In the short term, efforts to target investments in LMICs against AMR could be 
informed by point-prevalence surveys25 (PPS). Hundreds of PPS on foodborne pathogens are 
conducted each year across LMICs. In the absence of systematic surveillance systems, these 
could be used to document trends in AMR in food animals. In 2019, PPS that were initially 
scattered across the veterinary scientific literature were systematically reviewed to produce a 
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first global map of AMR in food animals at a sub-national level25. In addition, the findings of 
systematic reviews of PPS could be used to identify hotspots of resistance in animals in LMICs 
where stewardship efforts should be focused, or to identify areas poorly surveyed, where 
recruiting local epidemiologists may help improve the assessments of the AMR situation. 
However, systematic surveys are time-consuming, need to be repeated frequently, and may 
require access to publications outside of the public domain. In addition, valuable information 
on AMR may be missed in systematic reviews due to i) linguistic barriers, ii) expensive 
publishing fees of international journals for researchers in LMICs, and iii) data availability 
restrictions from industry-program sponsor or governmental monitoring programs. An open-
access platform for reporting results of PPS on AMR in real-time could help overcome these 
limitations and empower local communities of researchers. A platform designed with an 
intuitive interface may also encourage data sharing in the AMR community. This would not 
only improve the circulation of knowledge between researchers but also strengthen estimates 
of the AMR burden and provide up-to-date information to policymakers who allocate resources 
for intervention. 
Online platforms have enabled data sharing in multiple scientific fields26–29. In epidemiology, 
they are used, amongst others, to integrate translational medicine data30, exchange datasets of 
high-risk tumors31, or disseminate estimates of the burden of malaria32–34. In AMR 
epidemiology, online platforms have been introduced to report drug-resistant infections in 
humans32. Thus far a comparable tool is missing for reporting AMR levels in animals. The 
development of such a tool to encourage data aggregation and visualization has been 
recognized as a priority by international donors35,36 and organizations37,38. 
Here, we introduce resistancebank.org, an online platform for surveys and maps of AMR in 
animals. First, we present a database of PPS reporting AMR prevalence estimates globally. 
Second, we introduce local indicators of AMR burden available for download: maps and 
country-level reports. Third, we provide a step-by-step guide of the User Interface (UI), as seen 
by the visitor of the platform to upload their data in resistancebank.org. 

Methods 
 
Database 
We conducted a systematic literature search in January 2019 and extracted information on 
resistance prevalence estimates from 1,285 PPS. The search for PPS on AMR in food animals 
from LMICs was conducted in three bibliographic databases: PubMed, Scopus, and Web of 
Science. We targeted four indicator bacteria recommended by the World Health Organization’s 
Advisory Group on Integrated Surveillance of Antimicrobial Resistance (AGISAR). Titles and 
abstracts were deduplicated and screened for PPS. Books, meta-analysis, reviews, and PPS 
reporting on sick animals were excluded, according to the AGISAR guidelines39. In addition, 
we included data available in paper journals, Ph.D. and MSc thesis, and conference proceedings 
after field visits to five veterinary schools in India. All relevant data to AMR surveillance were 
screened across all manuscripts, including sampling size, animal hosts, bacterial species, 
sampling latitude and longitude. The resistance prevalence estimates from antimicrobial 
susceptibility testing (AST) were aggregated by individual location/host/bacteria 
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combinations. For each study, all tested antimicrobials and the number of isolates included in 
each assay were recorded. For the geospatial analysis, only antimicrobials recommended by 
the AGISAR were used. A description of the database variables reported in Table 1 can be 
found on resistancebank.org. For a detailed explanation of the methods used for the literature 
search see the Supplementary Materials of Van Boeckel & Pires, 201925. 
 
Table 1. Metadata of the variables available in resistancebank.org. 
DOI Digital object identifier or PubMed ID 
Author Name of the first author  
ISO3 Country identifier of the International Organization of Standardization. 
YCoord, XCoord Latitude and longitude of the PPS in decimal degrees 
StartDate, EndDate Starting and ending date of field samplings (day/month/year)  
Species Animal host species  
SampleOrigin Type of biological sample used to isolate bacteria from 
Method Experimental Methodology for the AST 
Pathogens Bacterial species  
Strain Bacterial subtype 
Nsamples Number of samples collected 
Prev Pathogen prevalence  
NIsolates Number of isolates used for AST 
Class Classification of antimicrobials based on their chemical structure 
Compound Antibiotic molecule  
ATC.Code Anatomical Therapeutic Chemical identifier of the compound 
Rescom Percentage of isolates resistant for a given drug-pathogen combination 
Concg Concentration/amount of antimicrobial used for AST 
Guidelines Guideline used for antimicrobial AST (document and year)  
Breakpoint Resistance breakpoint used for interpreting AST results 
Remarks Comments relative to the publication.  
 
The database contains 22,403 resistance prevalence estimates (n) extracted from PPS 
conducted on foodborne pathogens in LMICs between 2000 to 2019 (Fig. 1). The pathogens 
isolated for AST include Escherichia coli (n = 9,206, 41.09%), non-typhoidal Salmonella spp. 
(n = 7,080, 31.60%), Staphylococcus aureus (n = 4,828, 21.55%), and Campylobacter spp. (n 
= 1,290, 5.76%). The PPS were conducted in 72 out of the 135 countries classified as LMICs 
by The World Bank40. Overall, 61.4% of all PPS listed on resistancebank.org were conducted 
in Asia, 24.1% in Africa, and 14.5% in Central and South America (Fig. 1); 49.41% of PPS 
were collected in India, China, Brazil, and Iran. Across all studies, bacteria were isolated from 
poultry (38.35%), cattle (37.56%), pigs (15.28%), and sheep (8.81%). In addition, in 55.66% 
of the PPS, bacteria were isolated from food products, in 43.82% from living or slaughtered 
animals, and in the remaining 0.52% from drag swabs (e.g., fecal samples, eggshells). The 
platform includes resistance prevalence estimates for 143 antimicrobials grouped in 37 
different families based on their chemical structure41. Amongst all the resistance prevalence 
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estimates available in resistancebank.org, 13,163 (59%) are for drug-pathogen combinations 
recommended for AST by the AGISAR39. 
 

 
Fig. 1. Metadata of resistancebank.org. a) Number of surveys per 1 million people in LMICs. 
b) Point-prevalence surveys grouped by country and literature source (peer-reviewed vs grey 
literature). c) Number of resistance prevalence estimates grouped by year and animal species. 
d) Resistance prevalence estimates grouped by pathogen and animal species. 
 
Software implementation 
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We coded resistancebank.org in the open-access R language42, in combination with JavaScript 
and CSS code for the UI (full code43 available at https://github.com/hegep-
eth/resistancebank.org). We used the functionalities of the shiny package44 to translate the R 
code used for the software architecture into HTML language to produce an online platform 
accessible from all major web browsers: Safari, Google Chrome, Microsoft Edge, Internet 
Explorer, and Opera. Once completed, we deployed the application on the shinyapps.io servers 
(https://www.shinyapps.io), a cloud service that, with our configuration, can guarantee 
simultaneous access to the platform to 2,500 users. 
We used the leaflet R package to display spatial data34,45,46 and add geographic layers in the 
UI. For displaying the AMR maps, we used a geographic information system software (QGIS 
2.1847) to produce raster tiles (light square images in .png format) at ten different zoom levels. 
We stored 2.8 million tiles on a GitHub Pages website linked, as an online resource, to the 
leaflet object used to define the maps. Depending on the zoom and map position, the platform 
loads just the necessary maps tiles to ensure smooth navigation across zoom levels. 
For remote data collection and storage, we used the R packages rdrop2 and aws3 to interface 
the platform with cloud storage services, respectively Dropbox and Amazon Web Services. 
With every new submission, reistancebank.org uploads the corresponding .csv file in an online 
folder, emptied every time a human operator approves the new submissions. The central 
database (and its main sub-datasets), the plots present in each pop-up window of the geographic 
markers, and all of the files downloadable from resistancebank.org are stored remotely too. 
We used functions implemented in packages of the ROpenSci project (e.g., europepmc) to 
gather the bibliographic information of the collected PPS. 
Finally, we used a reactive R Markdown document to generate AMR country reports 
downloadable from resistancebank.org in .pdf format. We connected the Markdown file (.Rmd 
format) to the source code of resistancebank.org through an input parameter, i.e., a country 
name present in the application that depends on a specific object (datasets, functions, etc.). This 
country name can be specified by the users directly in the UI (e.g., selection of an LMIC 
through a drop-down menu). Based on that choice, the R Markdown document uses just a 
specific set of data (or functions) associated with one country to produce its corresponding 
country report. 

Results 
 
User interface 
The UI of resistancebank.org is organized around an interactive map (Fig. 2). The red map 
shows spatial variations in a summary metric of resistance: P50, the proportion of 
antimicrobials tested for which bacteria have developed a resistance higher than 50%25. This 
index has been predicted by geospatial models at 10x10 km resolution for every LMIC using 
PPS25. Updates of the P50 map will be conducted on an annual basis. 
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Fig. 2. User Interface. Antimicrobial resistance map (red) showing the proportion of 
antimicrobials with resistance higher than 50% (P50). The point-prevalence surveys are 
represented as blue geographic markers linked to a pop-up window displaying resistance 
prevalence estimates and bibliographic information. The Controls panel enables activating 
individual geographic layers, downloading the database of point-prevalence surveys, uploading 
new point-prevalence surveys, and displaying country reports. 
 
The panel in the top-right corner is divided into three sections: the “Maps” section controls the 
activation of every geographic layer available on resistancebank.org (PPS, AMR map, satellite 
base map). In the “Data” section, users can download the database of PPS (.csv format) 
described in Table 1 via the “Resistance bank” button, as well as the P50 raster (.tif format) via 
the “AMR hotspots map” button. The “Country report” button displays a panel containing a 
summary of the AMR reports available for each country (Fig. 3). From this panel, it is possible 
to download the country report for each country where at least one PPS has been reported. 
Along with the report, users can also download a country-based subset of the central database 
(.csv format) containing all the data used to generate this output. 
Through the “Add your survey” menu, users can choose amongst two modalities for uploading 
their PPS data in resistancebank.org: either by filling an online form, or an Excel template (see 
next section). The last button in the “Data” section, “Filter data” allows users to filter the 
database for countries, animal species and animal sample origin, pathogens and if their 
combination with the antimicrobials aligns with the AGISAR guidelines. In addition, it is also 
possible to filter the database for an individual antimicrobial class defined by the World Health 
Organization based on its importance for human medicine41 (e.g. 3rd generation 
cephalosporine). Users can then download the filtered results or display them on the map. In 
the latter case, when users filter for the antimicrobial class, the geographic marker intensity 
colour of each survey will vary based on the average resistance prevalence estimate for the 
selected antimicrobial class. 
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Finally, the “Info” panel links to the software’s GitHub repository (https://github.com/hegep-
eth/resistancebank.org) and a YouTube video (https://youtu.be/TpMQ_3JLJ2I) illustrating 
how to use the different sections of the platform. 
 

 
Fig. 3. Country report downloadable from resistancebank.org. a) Country-level 
antimicrobial resistance map. b) Socio-demographic indicators (antimicrobial use and its 
projected increase in 2030, livestock heads, population, and gross domestic product per 
inhabitant) and the number of point-prevalence surveys grouped by year and type of paper 
(peer-review or grey literature). c) Country-level exposure to antimicrobials in chickens, pigs, 
and cattle (Supplementary Materials of Van Boeckel & Pires, 201925). d) Resistance prevalence 
estimates grouped per drug-pathogen combinations listed by the Advisory Group on Integrated 
Surveillance of Antimicrobial Resistance. 
 
Uploading new data 
One of the objectives of resistancebank.org is to provide up-to-date data visualizations for 
policymakers continuously collecting evidence from potential users who conducted a PPS in 
LMICs. To this end, users can input their AST data on resistancebank.org using an online form 
or a pre-filled Excel template. The Excel template can be downloaded and subsequently 
uploaded from the platform via the “Upload template” button under the “Add your survey” 
section. Before integrating a new survey, the platform executes automatic verifications for 
possible misspelled words and typos. If necessary, typos are corrected after comparison with a 
set of correct words provided for every template field. If resistancebank.org recognizes errors 
that can’t be corrected automatically (e.g., numerical values outside an appropriate range, such 
as AMR prevalence estimates higher than 100%), the platform will invite users to revise their 
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inputs. If users wish to use an online form instead of an Excel template, a step-by-step user 
guide is provided in the next paragraph (“Use Scenario”). 
Following the submission of the template or the form, the application automatically performs 
bibliographic research in the NCBI and PubMed databases to control if the users have provided 
a valid Digital Object Identifier (DOI) of their study. The application will also automatically 
extract information on the author(s) name, study title, publication year, journal name, and a 
link to the journal website associated with the survey submitted. Following submission, a new 
temporary geographic marker is added on the map, while awaiting further verification by a 
human operator who is notified of a new submission by email. This marker is light blue, to 
differentiate it from dark blue markers corresponding to confirmed studies (see Fig. 2 or the 
YouTube video). The human operator verifies the new data through an internal auxiliary 
software developed to support resistancebank.org. These verifications include a critical 
interpretation of the resistance values reported and breakpoints values used for each drug-
pathogen combination. The human operator may contact the authors of the study to request 
corrections/clarifications, and then give its final approval to a submission and merge it with the 
other surveys in the database. After the upload of a new survey, a near-real-time update of the 
platform is triggered such as to update all outputs (database available for download and 
country-level reports). This final step enables resistancebank.org to present only the most 
recent aggregated AMR results based on the PPS available in the scientific literature. 
 
Use scenario 
We describe examples of the possible use of the platform by a user who wants to upload his/her 
AMR survey conducted, hypothetically, on a farm near New Delhi, India. The subsequent steps 
(visually represented in Fig. 4 and the YouTube video) aim to give an overview of the 
functionalities of resistancebank.org and the procedure to submit a new survey. 
 

1. A user launches the online platform by connecting to https://resistancebank.org. 
2. The user starts exploring the AMR map and the PPS geographic marker (in the Controls 

panel section “Maps” these two geospatial layers are both active when the application 
starts). The user can zoom in on the desired location or type the location name in the 
navigation bar in the top left part of the UI to explore P50 levels near New Delhi. If the 
user has recorded the precise coordinates of the study, the input text box can also accept 
latitude and longitude (separated by a space) in decimal degrees. 

3. The map view is now centered in New Delhi. The user can start exploring the P50 levels 
around the city and the PPS information aggregated at the animal species level present 
in the geographic marker. This window also contains a URL to connect the user to the 
journal webpage of the study to retrieve additional information besides the ones 
presented in resistanbank.org. 

4. Detailed information about the national AMR situation in India is available in the panel 
accessible through the “Country report” button. Once “India” is selected from the drop-
down menu, the country report is ready for download, together with the database of the 
PPS data collected just in India. 

5. The user decides to upload a PPS in resistancebank.org. He/she clicks on the “Add your 
survey” button, a new panel will open, and then the user can decide to upload data 

https://resistancebank.org/
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through an online form or an Excel template. The hyperlink “.xlsx template” triggers 
the download of a .zip folder that contains the template and a guide on how to fill it. 
For this example, we will use the online form. 

6. In the upper section of the form, the user can input his contact information. The second 
section of the form concerns bibliographic information; if a DOI is available, fields as 
title, journal, and publication year will be automatically filled. In this section, the user 
must specify the study region, the location (e.g., city, address, or latitude and longitude), 
and the sampling scheme adopted for the study (if it is a routine, a longitudinal study, 
a one-time research survey, or a study mandated by public authorities). In the AMR 
section, every row corresponds to an AST. The mandatory fields are animal species, 
the animal sample origin (e.g., different swabs, stools, meat, eggshells, gut, dairy 
products, etc.), the pathogen, the AST method, the antibiotic tested, and the relative 
value of resistance. Other non-mandatory fields are the number of isolates (at least 10 
to be valid for a survey or template submission), the prevalence, the strain used in the 
quality control of the AST performance, the report of the use of antimicrobials in the 
farms where animal samples were collected, and the breakpoints. If the researcher 
tested more than one antibiotic, he/she can add a row that will keep the information 
from the previous row, except for the new compound name and its resistance value. 

7. Once uploaded, the form panel closes automatically, notifying the user of the 
submission. The light blue geographic marker will appear on the location specified in 
the form. The geographic marker will remain in a temporary status until a human 
operator accepts the new submission and merges it with the existing database stored in 
resistancebank.org. 
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Fig. 4. Workflow of the submission of a point-prevalence survey on resistancebank.org. 
Panel 1 shows the home screen of resistancebank.org. The steps from 2 to 4 show how the 
users can explore the visual outputs of the platform, i.e., the antimicrobial resistance map at 
(10x10 kilometers), the resistance prevalence estimates present in the pop-up window of a 
point-prevalence survey represented as a geographic marker, and the country report. Panels 5 
and 6 show the steps to input new data. Panel 7 shows temporary geographic markers, bar 
charts, and bibliographic information when the submission of a survey is complete. 
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Discussion 
 
Thus far, a large body of evidence on AMR trends in animals in LMICs was scattered across 
the veterinary literature. resistancebank.org is a starting point to integrate this information. The 
platform is a surrogate but not a substitute for state-of-the-art systematic surveillance 
systems48,49. The goals of the platform are to summarize current knowledge on AMR in animals 
and to provide a tool for strengthening its evidence-based surveillance with additional PPS in 
the future. Furthermore, it overcomes barriers associated with traditional scientific publication 
(publication fees and access fees), thereby improving the visibility of researchers from LMICs, 
empowering local communities of scientists, and encouraging national networks coordinators 
to release their findings onto the website. 
Locally, resistancebank.org could be used to encourage epidemiological investigations by field 
officers from LMICs in areas of particular interest. Globally, resistancebank.org offers the 
opportunity to support the actions of international funders such as the Bill & Melinda Gates 
Foundation, the Fleming Fund, the Food and Agriculture Organization, and the World 
Organization for Animal Health. Specifically, areas identified as hotspots of resistance (P50 > 
0.4) could be used to investigate the effects of stewardship campaigns, and alternatives to 
antimicrobials, such as vaccines and probiotics50,51. 
 
Before resistancebank.org, different studies have centralized AMR data to describe their large-
scale trends both in foodborne and human pathogens5,25,52,53. However, the use of an online 
platform has multiple advantages over individual studies. First, given its open-access nature, 
downloading and uploading information can be done free by anyone. Second, the diversity of 
outputs: we provide maps, summary reports for policymakers but also detailed data about 
resistance prevalence estimates in individual surveys, with the possibility to filter them at a 
national- and microbiological-level to better target interventions. Third, the information on 
resistancebank.org is continuously updated in near-real-time. Fourth, the platform provides a 
much-needed -and thus far missing- focal point of data for a community of researchers studying 
the epidemiology of AMR in animals. For humans, online platforms that display AMR trends 
do exist: the Surveillance Atlas of Infectious Diseases54 developed by the European Centre for 
Disease Prevention and Control, and resistancemap55, developed by the Center for Disease 
Dynamics, Economics and Policy, display, respectively, European and global yearly AMR 
trends in common human pathogens. However, unlike resistancebank.org, these platforms lack 
the high spatial resolution of the data, since they aggregate trends at the country-level. While 
such trends are informative, the granular information underlying them is unfortunately not 
available in open access. Furthermore, these platforms do not include a possibility for 
uploading new surveys or dataset by external users. Similar platforms focus on the genetic 
determinants of AMR56,57, and how these affect the spread of pathogens. These include, 
amongst others, Microreact58 and Nextstrain59, and are complementary to the phenotypic 
information provided on resistancebank.org. For animals, WHONET60 (https://whonet.org) 
stores users’ AST results obtained from individual bacterial isolates. However, this platform is 
not currently available for every operating system, and -to the best of our knowledge- does not 
include geographic information on AMR trends in a centralized context. In contrast, 
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resistancebank.org can be used with any internet browser. Our platform has been developed to 
complement current tools available for AMR surveillance in animal production which requires 
international attention given its potential implications on human health, animal health, and the 
long-term sustainability of the livestock sector. 

Limitations 
 
The data presented in resistancebank.org come with limitations. The first set of limitations 
concerns the quality of the event-based surveillance data and comparability across surveys. In 
the human population, most of studies focus on diagnostic samples taken mainly from sick 
patients. In contrast, in animals, surveillance relies on different data collection contexts: 
sampling of living versus dead animals, sampling of animal food products, outbreak 
investigation, sample collection required by food regulatory authorities, etc. These different 
sampling contexts, which are inherent to event-based surveillance, represent a challenge to the 
harmonization and the interpretation of resistance prevalence estimates reported on this 
platform. In particular, the surveys listed on resistancebank.org may differ in terms of i) 
sampling strategy (random or convenient), ii) animal breeds and farming systems, iii) the 
number of isolates tested per survey, testing, and iv) the degree of aggregation used for 
reporting antimicrobial prevalence estimates in each survey (population versus isolate-level 
information). For these reasons, in resistancebank.org, we allow users to specify additional 
surveys information such as the sampling scheme, the guidelines, and breakpoints used for 
AST, the quality control strains used, etc., to include as much information about these factors 
that may affect the interpretation of the resistance prevalence estimates reported. 
 
The second set of limitations concerns the attempt to summarize trends in resistance across 
drug-pathogen combinations using P50: the proportion of drugs tested in a survey with 
resistance prevalence estimates higher than 50%. From a practical perspective, P50 expresses 
the probability of providing treatments that work out of a portfolio of treatment options, when 
antimicrobial therapy is indicated for a medical condition. Multiple summary metrics have been 
proposed61–64 and debated65 to aggregate resistance prevalence estimates to multiple drug-
pathogen combinations. As with every attempt to reduce this complexity, P50 comes with 
sources of uncertainty. First, the number of drugs tested in each survey can differ, and this can 
typically be influenced by the methods used for antimicrobial susceptibility testing in different 
laboratories (diffusion vs dilution methods), although a good agreement has been shown 
between the methods66. Second, in some surveys, screening for resistance of second-line drugs 
such as imipenem may be conducted on a subset of the isolates and introduce bias in P50 
estimates. In this study, sub-sampling for second-line antimicrobials was limited to 34 out of 
1,940 estimates of P50. Third, P50 reflects the number of compounds with resistance higher 
than 50% rather than the number of classes of compounds with resistance higher than 50%. 
Therefore, resistancebank.org also provides resistance prevalence estimates for classes of 
compounds considered medically important by the WHO41. The P50 is a summary metric 
intended to help resource allocation against AMR in countries where systematic surveillance 
is limited. However, because of the non-systematic nature of the data P50 summarizes, 
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comparisons of resistance prevalence estimates for individual drug classes should be preferred 
for informing public health strategies. 
 
The third set of limitations concerns the intensity of our data collection efforts between 
countries. Our online literature search was supplemented by field officers who collected PPS 
on paper during visits to veterinary schools. However, these field visits could only be 
conducted in India, where our collaboration network is extensive. Collaboration with 
international organizations could help leverage a larger network of field officers to supplement 
the information currently in resistanbank.org. We conducted the literature searches in six 
languages (English, Mandarin Chinese, Spanish, French, Portuguese, and German). Although 
these languages are spoken by 46.6% of the world population67, further inquiries in other 
languages could help supplement our database. Finally, the computational cost of re-running 
the geospatial model is currently preventing instantaneous updates of the AMR map on a global 
level and should be the focus of future research efforts to move from yearly updates of our 
maps to daily updates. For the reasons listed above, resistancebank.org is an imperfect 
surrogate to systematic surveillance systems. It is a platform reporting large-scale trends in 
AMR meant to help international funders to target their efforts in the short term and facilitate 
the development of a global systematic surveillance system in the long term. 
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Abstract 
 
Veterinarians play a vital role in providing healthcare, detecting zoonotic outbreaks, and 
safeguarding the livelihood of those relying on animals for subsistence. However, veterinary 
capacities are unequal between countries, and their geography is seldom documented despite 
significant implications for healthcare access. We used web-scraping techniques to sample 
303,745 addresses of veterinarians from 115 countries. Once geocoded, we used geospatial 
models implemented in the Bayesian framework provided by the Integrated Nested Laplace 
Approximation to map the global distribution of veterinarians at 10x10 km2. High population 
density and gross domestic product, and low travel time to cities were associated with a high 
density of veterinarians. The distribution of veterinarians was used in combination with density 
maps of cattle, chickens, and pigs to identify areas where veterinarians are farther than 1 hour 
of travel time from the animals, which we defined (“veterinary coldspots”). Low- and middle-
income countries accounted for 93.8% of all the coldspots identified at the global-level. 

Introduction 
 
Maps have been instrumental in prioritizing interventions against infectious diseases of global 
importance (1). In human medicine, fine-scale maps have helped quantify the burden of 
diseases such as malaria and dengue, and facilitated geographically targeted campaigns to 
target insecticide bed nets in specific regions (2). Concomitantly, maps of healthcare facilities 
(3, 4) have been used to make international comparisons of access to primary care and guide 
the deployment of important medicines such as antiretroviral therapy against HIV (5). In 
animal health, similar efforts have been conducted to map diseases that threaten the livelihood 
of those who raise animals for subsistence such as avian influenza (6), rift valley fever (7), or 
antimicrobial resistance (8–11). However, unlike for humans, mapping access to veterinary 
care has thus far received little attention. 
 
Veterinarians are the first line of defense against all diseases of animal origin (12). Yet efforts 
to map veterinarians have thus far been limited to country-level census or, in a few countries, 
at province/state-level (United States, France, Italy, Spain, Switzerland) (13–17). The most 
notable global effort to inventory veterinary capacities – currently led by the World 
Organisation for Animal Health – is focused on country-level performance assessments (18). 
Although crucially important, these efforts can overshadow important geographic disparities 
in access to veterinary care. This is particularly true for low- and middle-income countries 
(LMICs) currently transitioning from extensive farming to intensive farming (19), a phase 
associated with an increased risk of emergence of zoonotic pathogens (20).  
 
Important insight could be gained from assessing the state of the veterinary workforce at a fine 
spatial scale. Firstly, by identifying areas akin to medical deserts in human medicine (21) where 
long travel times to/for veterinarians are a major obstacle to delivering care. While travel time 
is only one dimension of the multifaceted challenge of access to care (i.e.: cost, education, 
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regulatory hurdles) it was recently identified in a meta-analysis (22) as a leading factor for 
insufficient animal care in LMICs. Maps could guide capacity building in these regions using 
travel time as a criterion for resource allocation. Secondly, mapping areas where veterinary 
capacities are currently insufficient could indirectly help strengthen surveillance for potential 
pandemic pathogens (23) in regions associated with a high risk of disease emergence (24, 25). 
 
In the last decade, platforms have appeared in many countries that enable internet users to find 
veterinarians in their vicinity using their postcodes/addresses (26–29). Whilst not primarily 
intended for public health, these platforms are an unprecedented opportunity to investigate the 
fine-scale geographic distribution of veterinarians and its determinants. However, to convert 
this data into actionable insights for capacity-building decisions multiple challenges must first 
be addressed. First, platforms listing addresses of veterinarians must be exhaustively 
inventoried. Second, web-scraping tools are required to extract the hundreds of thousands of 
addresses of veterinarians listed on webpages, and these must also be curated and geocoded. 
Third, statistical models that can capture variations in veterinarians’ density, and integrate the 
influence of factors affecting that density, must be developed and validated regionally to ensure 
robust interpolation between data-rich regions and data-poor regions. Fourth, model 
predictions for the number of veterinarians in each country must be consistent with estimates 
from national and international databases. Finally, models should account for variations in the 
presence of veterinarians on online platforms between countries characterized by different 
levels of economic development and internet penetration. 
 
In this study, we mapped the global distribution of veterinarians at 10x10 km2 resolution using 
geospatial models in combination with a global address book of veterinarians assembled from 
open-access online platforms. Furthermore, we mapped regions where food animals live more 
than 1 hour away from veterinarians by motorized transport and classified these areas as 
“veterinary coldspots”. 

Building a global address book of veterinarians 
 
We identified 87 online platforms listing the addresses of veterinarians across 115 countries 
(fig. S1), including OpenStreetMap and Google Maps, 16 national platforms listing 
veterinarians by postcode, 21 websites of veterinary councils, and 48 national phonebooks (fig. 
S2). We used web-scraping methods (Supplementary Materials) to extract addresses of 303,745 
veterinary practices (Fig. 1 and fig. S3). Records were curated to i) remove practices different 
from the veterinary ones, ii) prevent duplicates across platforms, and iii) remove permanently 
closed practices. A majority of addresses were retrieved from the Americas (39.7%), Europe 
(38%), and Asia (18.2%), while Africa and Oceania accounted for 2.1%, and 2% of records, 
respectively. Veterinarians’ specialization (companion vs food animals) was reported for 9.1% 
of veterinarians sampled. Amongst those, 85% cared for companion animals, and 15% cared 
for food animals. 
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Global distribution of veterinarians 
 
We used a Log-Gaussian Poisson Regression model (30) to map veterinarians globally at 10x10 
kilometers (fig. S4) via statistical associations between veterinarians’ locations, and covariates 
such as human population density, gross domestic product, travel time to cities, and 
environmental variables (31, 32) (table S1). Models were cross-validated in nine subregions 
(fig. S5) High-income countries (HICs) and low- and middle-income countries (LMICs) 
accounted, respectively, for 43% and 57% of all veterinarians predicted. Population density, 
gross domestic product, and low travel time to cities were positively associated with a high 
density of veterinarians and had the highest influence in predicting their distribution (table S2). 
 
Mapped predictions of veterinarians were re-aggregated in each country and compared with 
the numbers of veterinarians reported from veterinary associations, international organizations, 
and peer-reviewed publications (table S3). National predicted numbers of veterinarians were 
within ±50% of estimates from national reports in 75.7% of countries (Supplementary 
Materials, fig. S6). In addition, records of graduates from 680 veterinary schools in 120 
countries were used as upper bound to assess the plausibility of the re-aggregated predictions 
in each country (Supplementary Materials). Our predictions were lower than the national 
numbers of veterinary graduates in all countries except for Finland, Latvia, Cuba, and Uganda 
(fig. S6). 
 
We also mapped the proportion and number of veterinarians specialized in food animals (vs 
companion animals) using a beta regression model (33) (Supplementary Materials, fig. S7). 
Pixels with a majority of veterinarians specialized in food animals were in Africa (54.6%), 
Oceania (43.4%), and Latin America (29.8%). In contrast, this proportion decreased to 18.9% 
in Europe, 13.5% in Asia, and 6% in North America. 
 
A map of veterinarians specialized in food animals was compared with the global distribution 
of the livestock units (LSUs (34), Supplementary Materials) of food animals raised extensively 
(19) (Fig 1B). The aim was to identify veterinarians’ availability in small-scale farms of people 
who rely on livestock for subsistence (35, 36). For extensive farms in LMICs, one veterinarian 
cared on average for 5.4 LSUs while this number fell to 0.2 in HICs. At the country-level, we 
identified pixels with more than 5 LSUs of extensively raised food animals per veterinarian 
(hereafter referred to as “high animals’ density areas”) in 81.5% of Latin American countries, 
92% of African countries, and 63.3% of Asian countries. 
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Fig. 1. Point pattern of the addresses of veterinarians and livestock units of extensively 
raised food animals per veterinarian. (A) Green dots represent the geographic locations of 
veterinarians, obtained by geocoding the addresses within online platforms. (B) Distribution of 
livestock units (34) of extensively raised food animals per veterinarian (specialized in food 
animals) at the 10x10 km2 resolution in West Africa (B1), India (B2), and Mainland South-
East Asia (B3). 

Travel time to veterinary services 
 
For each country, we calculated the travel time between the mapped predictions of 
veterinarians specialized in food animals and cattle, chickens, and pigs (31). We used a friction 
surface to estimate travel times based on land use characteristics (e.g., roads’ speed limits, 
physical barriers, and elevation) (37). “Coldspots” of veterinary capacity were defined as 
10x10 km2 pixels where food animals were more than 1 hour away by motorized transport from 
the nearest veterinarian. 
 
Global maps of coldspots (Fig. 2) showed that 189 million LSUs, lived more than 1 hour away 
from veterinarians. That is equivalent to 1.2 times the biomass of animals raised for food in the 
U.S. Asia had the highest percentage of animals living in coldspots (44.1%), followed by Latin 
America (27.7%), and Africa (18.7%). The highest percentages of all cattle in coldspots were 
in Brazil (22.1%), Sudan (8.1%), China (7.6%), Chad (7.5%), and Australia (4.5%). For 
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chickens, the highest percentages were in China (15%), Bolivia (8.5%), Russia (8.2%), Iran 
(7.5%), and Indonesia (6.9%), while for pigs were in China (49.9%), Myanmar (7.4%), Papua 
New Guinea (6%), Russia (5.5%), and Brazil (4.6%). Finally, at the species-level, LMICs 
accounted for 94% of cattle, 93.4% of chickens, and 99.4% of pigs in coldspots. Countries with 
the highest average travel time to reach an animal in coldspots were Somalia, China, Guyana, 
Sudan, Papua New Guinea, and Central African Republic. These patterns remained consistent 
when setting maximum travel time thresholds to define coldspots at 2 and 4 hours (fig. S8). 
 

 
Fig. 2. Coldspots of veterinary capacity in cattle, chickens, and pigs. (A) Travel time for 
animals living at least 1 hour away by motorized transport from a veterinarian. (B) Average 
motorized travel time per animal living in coldspots per country. Numbers in the bars represent 
the percentages of animals per country living in coldspots, relative to the global number of 
animals in coldspots. 
 
Except for North America and Europe (excluding Russia), regions with high percentages 
(>50%) of coldspots of veterinarians and low animal densities (<5 LSUs/10 km2) were present 
in every continent (Fig. 3). Of even greater concerns were regions that combined the presence 
of coldspots with growing animals’ densities (>5 LSUs/10 km2). These were located 
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predominantly in Asia, and to a lesser extent in West Africa, and around the African Great 
Lakes. In Rwanda, Malawi, Bangladesh, Papua New Guinea, Vietnam, Philippines, and Haiti 
more than 75% of the aggregated LSUs of cattle, chickens, and pigs were present in coldspots 
and/or high animals’ density areas. 
 

 
Fig. 3. Regional veterinary capacities available to food animals. Proportion of 10x10 km2 
pixels per administrative unit where food animals were more than 1 hour away (by motorized 
transport) from the nearest veterinarian (“coldspot”), combined with the proportion of pixels 
classified as high animals’ density areas, i.e., pixels where the number of extensively raised 
food animals (converted in livestock units (34)) per veterinarian was higher than 5. In regions 
with a white background, the proportion of food animals in coldspots and/or high animals’ 
density areas was lower than 1%. 

Discussion 
In this study, we assembled an address book of >300,000 veterinarians from 115 countries 
using data web-scraped from online veterinary registers. Although this data is irregular in 
nature, when used in combination with statistical models showed a good agreement with 
national estimates of the number of veterinarians. Furthermore, we showed that it can 
supplement international efforts that document veterinary capacities by providing insights into 
the geographic distribution of veterinarians at unprecedented resolution (10x10 km2). 
 
Using this resource, we could produce travel time maps to identify “veterinary coldspots”, i.e., 
areas where veterinarians are >1 hour away from food animals. This could translate in the 
absence of regular veterinary controls in these areas that can affect the well-being of animals, 
but it could also escalate the potential for zoonotic diseases. For further investigating this 
dynamic, future research efforts could leverage our coldspots maps to examine their correlation 
with distributions of hotspots of emerging infectious diseases, as the ones provided by Jones 
and colleagues (41). Since nearly 60% of such diseases have a zoonotic origin (41), 
understanding the spatial overlap between veterinary coldspots and disease hotspots becomes 
crucial. However, a notable challenge in conducting such a comparative analysis lies in the fact 
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that, due to the lack of veterinarians, many of these zoonoses could spread undetected and lead 
to a biased correlation with the presence of coldspots. 
Furthermore, it is essential to acknowledge that physical access is only one dimension of the 
multifaceted aspect of access to care. Our efforts to build a global dataset of veterinarians could 
be expanded, at each location, to incorporate information on other factors affecting access to 
care such as price, training level, number of personnel, disease burden (GBAD), etc. 
Assembling this information must necessarily take place through a multi-stakeholder approach: 
via international organization, but also potentially by involving individual practitioners in data 
gathering and validation. The tentative goal of this work is to provide the backbone to seed this 
process and illustrate the value of high-resolution data for capacity building in animal health. 
 
In HIC, the predictions of veterinarians derived from web-scraped data mirrored past research 
from the United States, Canada, and France (42–44), showing that veterinarians predominantly 
cluster in affluent urban areas thereby reflecting the growing trend for specialization in pet care 
(80-95%) over food animal care (5-20%) (45). In contrast, in LMICs our predictions suggest 
that the proportion of food animal veterinarians is higher (25-50%) but their number is limited, 
and their geographic distribution is highly heterogenous leading to >93% of coldspots of access 
to care being in LMICs. Potential causes for limited access to care include insufficient number 
of veterinarians but also insufficient training and equipment for diagnostic laboratories (46), 
comparatively low salaries (47), and low standard of living in rural areas (48). The original 
data from LMICs supporting this assessment is currently limited: of the web-scraped veterinary 
register just 33.6% were from LMIC although these make up 79.8% of the global food 
production. In this context, our maps can provide a first (publicly available) baseline for 
increasing veterinary capacities but also a starting point for better documenting the veterinary 
workforce at a sub-national scale. For example, in China, the largest animal producer in the 
world, public data on the geographic distribution of veterinarians could not be identified for 
this study, and even national estimates of the number of veterinarians could only be found via 
press articles (49). 

Limitations 
 
As for any modeling study, our analysis and datasets come with limitations. First, our study 
focused on veterinarians – holders of a university degree in veterinary medicine – and did not 
include “paravets” who are semi-autonomous professionals predominantly present in LMICs 
whose qualifications vary considerably between countries. Unlike veterinarians, paravets were 
not systematically inventoried on online platforms and were therefore not included in these 
analyses. Second, the uncertainty associated with spatial interpolations of the veterinarians’ 
maps is reflected in confidence interval maps (fig. S5). These uncertainty levels reflect the 
spatial cross-validation procedure used to prevent regional overfitting. However, these do not 
reflect a comparison with independent field surveys since all data sources identified were 
included in the model training and cross-validation to produce the most accurate maps possible.  
Third, the distribution of coldspots in countries undergoing a rapid growth in intensive farming 
systems, such as those for cattle in Brazil (50), could be overestimated. This could be attributed 
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to the fact that large intensive farms, in contrast to extensive farms, could rely on private 
veterinarians to manage the health of food animals (Supplementary Materials). Therefore, such 
veterinarians might have no incentive in being present in the online platforms we web-scraped, 
resulting in a biased distribution of coldspots. Fourth, estimates of the number of veterinary 
graduates were collected in each country for comparison with our maps. However, these did 
not account for veterinarians working in a country different from the country of graduation. 
Finally, for high-income countries such as Australia, our travel time analysis did not account 
for the fact that veterinarians may occasionally travel via airplane to reach remote farms (51). 

Perspective 
 
Web-scrapable data such as online registers of veterinarians’ addresses vary considerably in 
completeness between countries. However, when supplemented with adequate predictive 
models, our analysis shows that it also carries considerable benefits to address questions at a 
spatial scale that are not covered by existing databases that document veterinary capacities. 
 
This first attempt at mapping the global veterinary workforce can help outline two priorities 
for action. First, within-country disparities in access to care are considerable, and these should 
focus the attention of national and international funders. Second, maps of veterinarians can 
serve as advocacy material beyond the veterinary realm to strengthen surveillance against 
pathogens that can emerge in animals but affect humans. Considerable attention has been 
devoted to identifying regions at risk of new emerging pathogens but comparatively less 
emphasis has been placed on documenting the state of the veterinary workforce in these 
regions, and thus our ability to rapidly detect and control these pathogens. Our maps offer a 
starting to address these challenges. 
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Supplementary materials 
 
Collecting national estimates and addresses of veterinarians 
 
Between March 2020 and June 2021, we conducted an online sampling campaign on a global 
scale to collect data about veterinarians. We searched for addresses of veterinarians to 
investigate their global distribution and for their national estimates as a reference for the 
comparison with our country-level predictions. Concretely, in each country, we searched for:  
 

A. National estimates of the number of veterinarians. 
 

B. Annual estimates of the number of graduates from veterinary schools. 
 

C. Addresses or geographic coordinates of veterinary hospitals, clinics, and private 
practices. 

 
D. Information about the animals treated in these veterinary practices, i.e., companion 

animals (cats, dogs, other pets) or food animals. 
 
A. National estimates of veterinarians 
 
In this phase, we consulted websites of international organizations such as the World 
Organization for Animal Health (WOAH), the Food and Agriculture Organization (FAO), the 
World Veterinary Association (WVA), and the World Small Animal Veterinary Association 
(WSAVA). In Europe, we retrieved data from the website of the European Board of Veterinary 
Specialization (EBVS) and the 2019 survey of the veterinary profession in Europe (1) compiled 
by the Federation of Veterinarians of Europe (FVE). For the rest of the world, we consulted 
websites of national associations and universities, governmental reports, and estimates by 
statistical agencies. We also searched national estimates on scientific reports, peer-reviewed 
publications, and online newspapers.  
In addition, we sent 309 emails to veterinary associations and governmental agencies to request 
national estimates (response rate of 16.8%). From this search, we found 117 national-level 
estimates of the number of veterinarians from across 79 countries. We collected 79 estimates 
from international organizations and national associations, 13 from governmental agencies, 20 
from online newspapers and blogs, and 8 from scientific literature (table S3). 
 
B. Estimates of graduates from veterinary schools 
 
We estimated the number of graduates who may still be practicing veterinary medicine in the 
year 2022 as the upper threshold for comparing the number of veterinarians we predicted at the 
national level. First, we defined a global list of veterinary schools available from the WOAH 
questionnaires on the veterinary educational establishments (2) and Wikipedia (3). In addition, 
we sent 659 emails to veterinary schools (response rate of 4.7%) and consulted the WOAH 
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questionnaires to collect school-specific data about the range of graduates per year and the 
average number of years required to obtain a degree in veterinary medicine. Also, we collected 
the foundation year of each school and the retirement age per country (4). For calculating the 
number of graduates, we made the following assumptions: 
 

• 10% of students graduate each year from a veterinary school. 
 

• Older schools have a bigger range of graduates per year than newer schools. 
 

• The first valid year considered to estimate the number of graduates is given by the 
foundation date of the school plus the years required to obtain the degree. 

 
• The last valid year considered for graduation is 2022.  

 
• Veterinarians who are now retired based on a country’s retirement age were excluded 

from the number of graduates estimated. 
 
Then, for each school, we calculated the number of graduates, NG, as follows: 
 

𝑁𝐺 =∑10% ∙ 𝐺𝑀𝐴𝑋 + (𝑛 − 1) ∙ (
𝐺𝑀𝐴𝑋 − 𝐺𝑀𝐼𝑁

𝑌𝐴 − 1 )
𝑌𝐴

𝑛=1

 

 
Where YA is the number of years, net of the retirement age, in which students graduated from 
the school, and GMAX and GMIN are, respectively, the maximum and minimum number of 
graduates per year. Finally, we summed NG for each national veterinary school, estimating the 
national-level number of graduates from 680 veterinary schools out of the 719 sampled across 
120 countries. 
 
C. - D. Addresses and specialization of veterinarians 
 
For assembling the global database of veterinarians’ addresses, we first identified the types of 
online sources listing their addresses or coordinates. We prioritized the data collection from: 
 

i. Online platforms specifically designed to search veterinarians by postcode (e.g., 
https://findavet.rcvs.org.uk/home/). 

 
ii. Websites of national phonebooks, like countries’ Yellow Pages. 

 
iii. Websites of national veterinary associations and governmental agencies as the 

ministries of agriculture. 
 

iv. Open-access web maps like OpenStreetMap and Google Maps. 
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We retrieved websites of data sources listed in points (i) to (iii) by querying internet browsers 
both in English and the main country language. The key search string we used to identify 
platforms listing veterinarians’ addresses combined the country name with terms such as “find 
a veterinarian”, “veterinarians near me”, “veterinarians by address”, and “veterinarians by 
postcode”. For finding national phonebooks, we combined the country name with the terms 
“national phonebook”, “yellow pages”, and “white pages”, and used the list of World’s Yellow 
Pages websites available from Wikipedia (5). Finally, for the websites of veterinary 
associations and governmental agencies, we combined the country name with the terms 
“veterinary association”, “veterinary union”, “veterinary council”, “ministry of agriculture”, 
and “national statistics institute”. In addition, we used generic queries like “list of 
veterinarians” followed by the country name to find data potentially present in online sources 
not considered.  
Next, we defined the key search terms to use on each online data source to display 
veterinarians’ addresses. Specifically: 
 

i. For online platforms listing veterinarians by postcode, we searched the complete list of 
veterinarians in the country, without specifying a city or a postcode in the website’s 
search box. 

 
ii. For national phonebooks, we obtained webpages containing lists of addresses through 

the search terms “veterinarian”, “veterinarians”, “vet”, “veterinary clinic”, “veterinary 
hospital”, and “veterinary practice”. 

 
iii. For the websites of veterinary councils, we collected the online list or the downloadable 

PDF of the veterinarians registered. 
 

iv. When sampling veterinarians’ addresses through OpenStreetMap (6), we used the 
dedicated Application Programming Interface (API) available in the R package 
osmdata (7) to query the OpenStreetMap database one country at a time. As reported 
by the OpenStreetMap glossary, we built the API query by using the term “amenity” to 
subset the group of services listed on the database and the term “veterinary” as the key 
to refine the search. According to the glossary, a query built with these tags gives in 
return “places where a veterinary surgeon, also known as a veterinarian or vet, 
practices” (8). 
In contrast, the API to query the Google Maps database, available in the R package 
googleway (9), allowed for only three queries per zone, which are too few to list 
veterinarians in a country. For this reason, we defined multiple country-level queries 
for every city listed on the opendatasoft database (10) through strings containing the 
term “veterinarian” followed by the city and the country name. In addition, we restricted 
the search only to places offering veterinary care using the tag “veterinary_care” in the 
function to query Google’s database, as reported in the API’s user manual (11). 

 
Each query of Google Maps always returned the names and addresses of veterinarians complete 
with geographic coordinates. In contrast, every OpenStreetMap query returned entries with 
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geographic coordinates, but only 37.7% of them were complete with names and addresses of 
veterinarians. Every other online source inspected provided only the addresses of veterinarians, 
and, where available, their name and specialization, as text strings. Therefore, we used different 
means to extract such information from PDFs and web pages: 
 

• For PDFs, we used the R package tabulizer (12) to extract the file’s tables containing 
the addresses of veterinarians. 

 
• When addresses were only available on web pages, we sampled them through web-

scraping (13). Specifically, we coded web-scraping software in the R and python 
programming languages through the packages rvest (14) and BeautifulSoup (15). In 
addition, we used the selenium WebDriver package (16) to automate web navigation 
through web-crawlers to visualize and sample data in multiple web pages of the same 
website. This practice was also used with websites embedding applications displaying 
data only upon users’ interaction with specific buttons. 

 
Finally, we used every address sampled as input for the Google’s geocoding API (17) to 
retrieve its geographic coordinates if not already available (detailed point pattern examples in 
fig. S9). 
 
Data curation of the addresses of veterinarians  
 
Addresses of veterinarians from diverse sources led to collecting duplicated addresses or 
entries not specifically related to the veterinary medical profession. Therefore, assembling a 
database with unique geographic entries of veterinarians required screening for: 
 

i. Duplicated addresses of veterinarians sampled from different online data sources. 
 
ii. Entries related to the broader field of veterinary care where the presence of veterinarians 

is not required (e.g., veterinary pharmacies). 
 
iii. Entries wrongly geocoded by Google’s API because of missing information inside the 

text strings of the addresses. 
 
For step (i), we first combined the database’s strings reporting the name, the address, and the 
geographic coordinates of each entry. Then, we calculated the pairwise strings’ similarity 
through the Levenshtein similarity (18). For this first screening, we set a threshold of 90% 
similarity to consider two strings as duplicates and remove one of them from the database. 
However, we also identified duplicates when two or more online data sources reported a 
veterinarian’s name and address in different ways. For example, several websites reported 
strings with truncated addresses, buildings’ numbers placed before the street name or vice 
versa, or missing addresses’ names, as for data collected especially from OpenStreetMap. For 
this reason, we performed a second screening using geographic coordinates of sampled data 
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and classified an observation as duplicate if falling within an area of ~10 m radius built around 
another veterinary practice (fig. S10A). 
 
In step (ii) we removed entries related to facilities different from veterinary practices. Hence, 
we first restricted the screening to entries where a facility’s name didn’t imply the presence of 
a veterinarian working in that facility (e.g., the store “Budget Pet Supplies” in England). Next, 
we used Google’s language API (19) to translate more than 100 words (e.g., “pet shop”, “pet 
supplies”, “pet food”, “kennel”, “veterinary pharmacies”, etc.) in every language available in 
the Google database. Then, we screened the remaining entries for patterns in the facilities’ 
names matching the translated words and removed the matching entries from the database. 
Nevertheless, online data sources often list facilities that are different from veterinary practices 
but whose name doesn’t contain information on the type of service they provide (e.g., the dogs’ 
training center “Pets with Problems” in England). For this reason, we combined web-crawling 
and web-scraping software to perform automatic Google searches using names and addresses 
of the remaining veterinary practices to collect information on the service they provide, listed 
in the webpage of the Google results (fig. S10B). Then, we removed entries not corresponding 
to veterinarians. Since Google also lists the status of a facility, with this method we could 
identify veterinary practices permanently closed, excluding them from the database. 
 
Step (iii) of data curation concerned entries of veterinarians’ addresses wrongly geocoded by 
the Google API. Hence, for each country, we overlayed their shapefiles to spatial points of 
sampled addresses and retained in the database only the ones falling within the boundaries of 
the shapefiles. 
 
Predicting the global distribution of veterinarians 
 
We aggregated the geocoded addresses of veterinarians in pixels of 0.08333 decimal degrees, 
or approximately 10x10 km2 at the equator. As a result, we obtained counts of veterinarians 
per pixel that we modeled through a geospatial analysis to predict the distribution of 
veterinarians at the global level. 
 

Step 1. Selection of spatial covariates. We selected spatial covariates potentially related 
to the distribution of veterinarians. Previous country-level studies showed that 
veterinarians’ distribution depends on the high population density and income levels of a 
region (20, 21), and opportunities to share practices for early graduates (22). For this 
reason, we selected spatial covariates that could correctly represent this observed tendency 
of veterinarians to aggregate in urban areas. Specifically, we included in our stack maps 
of population density, Gross Domestic Product (GDP), and travel time to cities with more 
than 50,000 inhabitants (hereafter referred to as “major cities”). Besides socio-economic 
indicators, we also selected agricultural covariates potentially useful to represent the 
separation of veterinarians between rural and urban areas. Hence, we included the 
proportion of areas used for croplands and pastures, and the density of cattle, chickens, 
pigs, and sheep available from the 4th version of the Gridded Livestock of the World 
database (GLW4). All covariates, except the proportion of areas used for croplands and 
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pastures, were log10-transformed and all of them were resampled at the 10x10 km2 
resolution. Plots, measure units, and references of these covariates and support maps used 
in this study are available in fig. S11 and table S1. 
 
Before incorporating covariates in the models, we quantified their correlation through a 
version of the Variance Inflation Factor (VIF) adapted for spatial objects (23). As for the 
VIF used in linear regression, we used a threshold of 10 to exclude correlated covariates 
(24) (VIF values in table S4). Furthermore, in a similar approach used to create gridded 
maps of the human population (25–27), we used the 10x10 km2 resolution map of the 
world settlement footprint (WSF) (28) to outline areas where there are human settlements. 
We used such areas to identify the pixels for constraining both the modeling analysis and 
the predictions of veterinarians. 

 
Step 2. Geospatial model. We modeled the counts of veterinarians as a Poisson variable 
using environmental and anthropogenic covariates as fixed effects. In addition, we used a 
Gaussian Random Field (GRF), discretized to finite elements called mesh through the 
Stochastic Partial Different Equation method (SPDE) (29, 30), as a random effect to 
account for spatial autocorrelation (31, 32). A statistical model with these characteristics 
is called Log-Gaussian Poisson Regression model (33) (LGPR). Given the global scale of 
the study, we fitted the LGPR models through the Integrated Nested Laplace 
Approximation algorithm (INLA) for computational efficiency (33–36). 

 
Step 3. Definition of areas for training models. We defined the geographic areas where 
to train and validate the accuracy of LGPR models. Specifically, we divided the world into 
subregions according to the division proposed by the United Nations (37). However, we 
divided the “Europe and North America” subregion into three different subregions to have 
a comparable number of subregions based on high-income (HICs) and low- and middle-
income countries (LMICs) as classified by the World Bank. As a result, from West to East, 
we defined 9 subregions: North America, Latin America, Europe, the Middle East, Sub-
Saharan Africa, Russia, Central Asia, Eastern Asia, and Oceania (fig. S12).  

 
Step 4. Mesh definition. In each subregion, we initialized the SPDE model by creating 
the mesh and assigning priors to the function used to capture the spatial autocorrelation of 
data. First, we used subregions’ shapefiles to define the mesh reticulate where to apply the 
SPDE algorithm. As suggested by Lindgren et al., we defined a regular mesh inside the 
whole study area where we sampled data (36). Also, we defined a 2.5-decimal degree 
buffer zone outside the shapefile borders to capture spatial autocorrelation of data present 
along borders while avoiding issues related to the edge effect (38). Then, we defined the 
mesh resolution of the study area (inner mesh) by setting a maximum length of the triangle 
vertices of 0.15 decimal degrees. In contrast, for the mesh in the buffer zone (outer mesh), 
we allowed for a maximum length of 10 decimal degrees since this area doesn’t influence 
predictions’ accuracy (39). Finally, we set the minimum length of triangle vertices of the 
inner mesh to 0.01 decimal degrees to cover every part of the study area. 
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Step 5. Covariance function. We applied a Matérn covariance function to the mesh to 
capture the spatial autocorrelation of data by specifying its hyperparameters. Since we 
lacked information about spatial dependence among veterinarians, we assigned Penalized-
Complexity priors (40) to the hyperparameters of the covariance function by setting a 
probability lower than 0.01 both for the range and its standard deviation of being higher, 
respectively, than 0.2 and 0.05 decimal degrees. 

 
Step 6. Importance of spatial covariates. We used INLA to fit different LGPR models 
by including in the formula, besides the SPDE, one spatial covariate at the time. For each 
model, we calculated the Deviance Information Criterion (DIC) (41, 42), whose lower 
values suggest better model performances (43). If a covariate didn’t decrease the DIC, we 
excluded it from the LGPR formula. Then, of all the covariates selected, we retained in the 
final formula just the ones whose 95% credible intervals of their posterior means didn’t 
cross zero (44). Once we identified the subregional LGPR model with the lowest DIC, we 
reran the models removing one covariate at a time to calculate the change in the DIC and 
identify the covariates with the highest effect on the outcome. Second, we compared the 
DIC of each best subregional LGPR model with and without the SPDE model to 
understand if adding a random effect to capture spatial autocorrelation to the models’ 
formula decreased the DIC (45). 
 
The models trained in the nine subregions with spatial covariates, in combination with the 
SPDE model, showed lower values of the DIC compared to models with covariates only, 
which suggests that accounting for spatial autocorrelation led to better model performances 
(fig. S13). According to their 95% credible intervals, travel time to major cities and GDP 
were significant in every subregional model, while population density in six of them (fig. 
S14 and table S5). In all models, travel time to major cities and GDP showed an inverse 
and direct relationship with the response, respectively. The proportion of areas used for 
croplands was significant in the models of seven subregions and had an inverse 
relationship with the response. Finally, the covariates of the density of food animals were 
selected in almost half of the subregional models but didn’t show a clear relationship with 
the response. 
 
For each subregion, the covariates resulting in the highest DIC decrease were population 
density, travel time to major cities, and GDP (table S2). When significant, population 
density always accounted for the highest share of the DIC decrease produced by a full 
model. In subregions where population density was discarded, travel time to major cities 
was the most influential covariate. As for the effects of spatial autocorrelation, the range 
of each SPDE model was always lower than 0.2 decimal degrees, except for the models 
trained in Sub-Saharan Africa and Central Asia, with ranges respectively of 0.285 and 
0.254 decimal degrees. 

 
Step 7. Accuracy of predictions. We assessed the accuracy of LGPR models by 
comparing values of predicted vs observed counts of veterinarians through the adjusted 
Coefficient of Determination based on the deviance residuals of the model (𝑅𝐷𝐸𝑉2 ) (46–
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48). We validated the predictions’ accuracy of every subregional LGPR model by 
computing the 𝑅𝐷𝐸𝑉2  between the predicted and the observed counts of veterinarians per 
pixel both in the subregions where we trained the models and in all external subregions. 
 
The spatial cross-validation showed that each subregional model produced the most 
accurate predictions in the same subregion it was trained (𝑅𝐷𝐸𝑉2  range: 0.68-0.96), fig. S5). 
In addition, models trained in North America, Europe, and Oceania showed moderate 
accuracy (49) when predicting veterinarians in each of the same high-income subregions 
(𝑅𝐷𝐸𝑉2  range: 0.58-0.69). Other models showed moderate performances in adjacent 
subregions, such as the model of North America predicting in Latin America (𝑅𝐷𝐸𝑉2 : 0.56) 
and the models of Central and Eastern Asia predicting in Russia (𝑅𝐷𝐸𝑉2 : 0.70). The model 
trained in the Middle East produced the best performances in Eastern Asia (𝑅𝐷𝐸𝑉2 : 0.56) 
and Oceania (𝑅𝐷𝐸𝑉2 : 0.58), while the one trained in Sub-Saharan Africa was accurate only 
in the same subregion. Similarly, all subregional models performed poorly in Sub-Saharan 
Africa (𝑅𝐷𝐸𝑉2  < 0.33). 
For each subregion we quantified the uncertainty of predictions by mapping their standard 
deviation and 95% confidence intervals (43). The global map of the standard deviation of 
predictions (fig. S4B) showed values lower than 1 in 81.5% of the pixels. Pixels with the 
highest uncertainty of predictions were identified in Mexico, Saudi Arabia, and China. 

 
Step 8. Assembling the global map of veterinarians’ distribution. Once assessed the 
accuracy of the LGPR models, we used the predictions obtained by each subregional 
model that returned the highest 𝑅𝐷𝐸𝑉2  to assemble the global map of the distribution of 
veterinarians, regardless their specialization. 

 
Step 9. Validating predictions against national census of veterinarians. We furtherly 
verified the goodness of our geospatial analysis by checking the agreement between the 
national estimates of veterinarians and their country-level numbers aggregated from the 
pixel-level predictions. Specifically, for each country, we summed the pixel-level 
predictions of the number of veterinarians and compared the result with veterinarians’ 
national estimates sampled from veterinary associations, governmental agencies, peer-
reviewed literature, and online newspapers, and with the estimated number of graduates 
from veterinary schools. 

 
Investigating preferential sampling of addresses 
 
In our study, we only used online data sources to collect the addresses of veterinarians. 
However, if veterinarians register online only in certain areas to compete for a pool of patients, 
our sampling campaign could be preferential. 
Although preferential sampling can lead to biased predictions of the response (50), works have 
shown that the inclusion of spatial covariates and a random effect accounting for spatial 
autocorrelation can typically account for this bias (51–53). Hence, we selected five countries 
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(Austria, Belgium, Denmark, Netherlands, and Switzerland) as study areas to inspect for the 
presence of preferentially sampled addresses of veterinarians using two methods: 
 

i. A joint model proposed by Pennino et al. based on a Log-Gaussian Cox Process (LGCP) 
to account for preferential sampling (50, 51). Then, we used the 𝑅𝐷𝐸𝑉2  to compare the 
accuracy of the predictions of the LGCP with the accuracy obtained through the LGPR 
models fitted in the same study areas. 

 
ii. A Monte Carlo test that targets the excess of clustered sampling locations in areas of 

high or low spatial autocorrelation of data by using the K-Nearest Neighbors algorithm 
(54, 55). 

 
The LGCP models accounting for preferential sampling showed a lower accuracy of 
predictions when compared to the LGPR models used to predict veterinarians’ counts (fig. 
S15). This means that including the spatial covariates was sufficient to account for possible 
bias in our sampling. 
This found confirmation also in the results obtained through the Monte Carlo test for 
preferential sampling (table S6). When considering a spatial autocorrelation field based only 
on the sampling locations, the test showed that, in each country, data were sampled in areas of 
high spatial autocorrelation (p-value < 0.05). However, when including a covariate such as 
population density to capture the structure of the sampling pattern, the correlation between the 
sampling locations and the resulting spatial field, calculated considering different neighbors 
for each sampled location (K), were less strong and their distribution was close to a randomly 
generated point pattern (range of the p-values for different values of K > 0.05). 
 
Predicting the proportion of veterinarians specialized in food animals 
 
We used the available information about the specialization of veterinarians to investigate the 
separation between veterinarians specialized in treating food animals and veterinarians 
specialized in treating companion animals, with the purposes of: 
 

i. Modeling the distribution of the proportion of veterinarians specialized in treating food 
animals and predicting it in areas where we didn’t find information about veterinarians’ 
specialization. 

 
ii. Understanding the effect of the covariates used to predict the global distribution of 

veterinarians on the proportion of food vs companion animals’ veterinarians. 
 

Step 1. Data preparation. We separated spatial points of veterinarians specialized in 
treating food animals from the rest of the veterinarians sampled. We found this 
information, only through governmental agencies and online platforms listing 
veterinarians by postcode in Mexico, Argentina, Chile, Great Britain, Belgium, 
Switzerland, Italy, South Africa, and Iran. Next, we aggregated these points in pixels with 
a resolution of 10x10 km2 and calculated, for each pixel, the ratio between the count of 
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food animals’ veterinarians and the other veterinarians sampled. Since 80.1% of the ratios 
computed was between 0 and 1, we used this share of values to predict the proportion of 
veterinarians specialized in food animals. 
 
Step 2. Generalized linear model specification. We used the beta regression model 
(BRM) (56) to predict the proportion of food animals’ veterinarians at the 10x10 km2 
resolution and to investigate its relationship with the spatial covariates selected in this 
study. 
 
Step 3. Model selection. First, we used the best subset selection method (57) to compute 
BRMs with every possible combination of covariates. From the batch of BRMs, we 
extracted just the ones where every covariate was significantly related to the response 
according to the z-test on the regression coefficients (p-value < 0.05). Second, we 
identified the best BRM as the one with the lowest AIC value and analyzed plots of its 
residuals, which showed to be normally distributed and evenly spread around zero (fig. 
S16A and fig. S16B). 
 
Step 4. Effect of covariates. The proportion of veterinarians specialized in food animals 
was related to the spatial covariates used to produce the global map of the distribution of 
veterinarians. However, their effect on the response was different from their effect on the 
distribution of all veterinarians. The proportion of food animals’ veterinarians was highly 
related to the human population density and GDP (p-values respectively < 0.01 and < 
0.001). However, their regression coefficients showed that these covariates had an inverse 
relationship with the proportion of veterinarians who specialized in food animals (table 
S7). In addition, also high values of the proportion of areas used for croplands were 
inversely related to the response, while high values of chickens and sheep density had a 
positive effect on it. Finally, the density of cattle was the only covariate that, although 
significant and typical of agricultural environment, was inversely related to the proportion 
of veterinarians who specialized in food animals. 
 
Step 5. Mapping the proportion of veterinarians specialized in food animals. We used 
covariates values’ and the BRM with the lowest AIC to predict the proportion of food 
animals’ veterinarians in every other 10x10 km2 pixel where we predicted the presence of 
veterinarians at the global level. 
 
Step 6. Comparing veterinarians’ distribution with food animals’ density and 
antimicrobial resistance. The map of the proportion of food vs companion animals’ 
veterinarians was multiplied for the map of the distribution of veterinarians to obtain the 
map of the distribution of food animals’ veterinarians. This map was used to identify pixels 
where food animals outnumber food animals’ veterinarians. Therefore, we compared the 
global distributions of food animals’ veterinarians and food animals raised in extensive 
farm systems. Conversely to intensive farm systems, where food animals are housed in 
confined spaces that facilitate the regular monitoring of their health, extensive farm 
systems may involve less frequent contacts with veterinarians, who might rely more on 
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visual inspections during routine checks or when specific health concerns arise (58). For 
this task, we expressed the 10x10 km2 resolution density maps of food animals raised 
extensively (59) in livestock units (LSUs), which is a mean to compare different food 
animals’ productions according to the Eurostat glossary (60); for the conversion we used 
the coefficients of 0.014 for chickens, and 0.5 for pigs. Then, we summed the LSUs pixels’ 
values for each species into a single layer, divided it for the global map of the distribution 
of veterinarians, and produced a 10x10 km2 resolution global map of the geographic 
distribution of LSUs of extensively raised food animals per veterinarian. 
In addition, we investigated if pixels with high LSUs of extensively raised food animals 
per veterinarian could be related to the distribution of antimicrobial resistance (AMR) in 
food animals. Therefore, we calculated the Pearson correlation between the distribution of 
LSUs of extensively raised food animals per food animals veterinarian and the distribution 
of AMR in cattle, chickens, and pigs available for LMICs (61). However, this analysis 
returned a Pearson correlation coefficient of 0.25. 

 
Identification of coldspots of veterinary capacity in food animals 
 
In the human population, the “golden hour” is defined as the hour immediately after a traumatic 
injury during which there is the highest probability that a prompt medical care can maximize 
chances of survival (62). Comparably, we defined a veterinarian coldspot as a pixel of 10x10 
km2 where cattle, chickens, and pigs, which together represent 84.2% of the biomass of animals 
farmed worldwide (63), are farther than 1 hour of motorized travel time (TTM) from the nearest 
veterinarian. 
 
For each country, we intersected the GLW4 maps at 1 km2 resolution with the map of food 
animals’ veterinarians disaggregated at a resolution of 1 km2. Through this step, we identified 
pixels with cattle, chickens, and pigs but no veterinarians. We called these pixels “isolated 
farms” (IF) if they contained, according to the GLW4, at least 1 cattle head, 1 pig, and 10 
chickens (since 1 chicken is present almost everywhere in the world). The IF map of cattle in 
Kenya is reported in fig. S17A; we will refer to this country throughout the manuscript to show 
small-scale examples of our results. Next, we defined the starting points of veterinarians that 
travel to IF as the centroids of the pixels with predicted veterinarians and we used a friction 
surface to calculate the cumulative cost, in hours, to travel from these centroids to every pixel 
of the map. For this study, we used the 2020 version of the global friction surface at 1 km2 
resolution produced by The Malaria Atlas Project (64, 65) (table S1 and fig. S17B). This 
friction surface combines areas where it is only possible to walk with an average speed of 5 
km/h with areas where the road networks allow for the use of motorized vehicles (“walking + 
motorized friction surface”). Then, through the R package gdistance (66, 67), we combined 
veterinarians’ coordinates, IF, and the friction surface to obtain a TTM map of veterinarians 
traveling to every pixel of a country and extracted only IF where TTM was higher than 1 hour 
(fig. S18A). We computed these maps separately for each country to exclude potential 
veterinarians traveling across national borders. Then, we aggregated these country-level maps 
at 10x10 km2 resolution and assembled them to obtain global maps of coldspots of veterinary 
capacity for cattle, chickens, and pigs. The aggregation of coldspots maps from the 1 km2 
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resolution (i.e., the resolution of the friction surface) to the 10x10 km2 resolution caused a 1% 
area loss for cattle coldspots, 5% for chickens coldspots, and 7% for pigs coldspots. 
 
In addition, we subset the GLW4 maps through the coldspots maps to quantify the number of 
food animals still living inside coldspots. Hereafter, we will refer to such animals as “isolated 
animals” (IA). Then, we weighted the TTM of every coldspot based on its IA value. The metric, 
calculated for cattle, chickens, and pigs coldspots in each country, was defined as: 
 

𝑇𝑇̅̅̅̅ 𝐼𝐴 =
∑ (𝑇𝑇𝑖𝑀 ∙ 𝐼𝐴𝑖)
𝑁𝐶
𝑖

∑ 𝐼𝐴𝑖
𝑁𝐶
𝑖

 

 
Where i represents the i-pixel of the coldspots map and NC the number of pixels with coldspots. 
We computed this metric with three maximum TTM thresholds of 6, 4, and 2 hours for each 
coldspot. The reason was to understand if extreme TTM values (e.g., TTM > 24 h) could affect 
the sensitivity of 𝑇𝑇̅̅̅̅ 𝐼𝐴. 
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Fig. S1. Workflow used to map the coldspots of veterinary capacity. 
Boxes blues report the main steps used to produce the outputs of this study. Boxes in oranges 
report the type of data collected and the analyses performed in each step. Coldspots were 
defined as 10x10 km2 pixels where food animals were farther than 1 hour of motorized travel 
time from the nearest veterinarian. 
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Fig. S2. Curation process for building an address book of veterinarians. 
The orange boxes report the original number of addresses of veterinarians sampled from online 
sources and the number of duplicates, facilities different from veterinary practices, and 
veterinary practices wrongly geocoded identified in the data curation phase. The blue boxes 
report the number of addresses of veterinarians retained in the database and group them by the 
online sources where they were sampled. 
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Fig. S3. Number of veterinarians sampled per country grouped by the online sources 
listing their addresses. We grouped countries with less than 300 sampled addresses of 
veterinarians in the category “Others”. The image above the bars shows the webpage of the 
platforms of the Royal College of Veterinary Surgeons, in the United Kingdom (68), which is 
one of the online sources identified that allows users to search for the nearest veterinarians 
according to a postcode/address. 
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Fig. S4. Global maps of the distribution of veterinarians at the 10x10 km2 resolution. 
(A) Global distribution of predicted veterinarians, regardless their specialization, (B) standard 
deviation of predictions, and (C) 95% confidence intervals of predictions. 
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Fig. S5. Deviance R2 to assess the predictions’ accuracy of subregional models. 
The matrix reports the values of the Deviance R2 (𝑅𝐷𝐸𝑉2 ) (46) computed for the cross-validation 
of every subregional Log-Gaussian Poisson Regression model. Values on the diagonal 
represent the accuracy of predictions computed in the same subregion of the data used to train 
the models, while all other values represent the accuracy of predictions computed in external 
subregions. 
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Fig. S6. Predictions and national estimates of veterinarians. 
Predicted number of veterinarians aggregated at the country-level (red dots), national estimates 
of veterinarians from the Federation of Veterinarians of Europe (medium blue dots) and from 
governmental agencies, literature, and veterinary associations (light blue dots), and the 
estimated number of graduates from all veterinary schools of a country (dark blue dots). We 
reported the comparisons for countries with at least 1,000,000 inhabitants and where we 
retrieved both national estimates and the number of veterinary graduates. 
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Fig. S7. Proportion of veterinarians specialized in food animals at 10x10 km2 resolution. 
The proportion of veterinarians specialized in food animals was predicted through beta 
regression models in the same pixels where we predicted the global distribution of veterinarians 
(fig. S4). 
  



 88 

 
Fig. S8. Country-level average travel time per animal in coldspots based on two maximum 
travel time thresholds. 
The barplots are equivalent to the ones shown in Fig. 2. However, in each computed coldspots, 
i.e., 10x10 km2 pixels where food animals were farther than 1 hour of motorized travel time 
from the nearest veterinarian, we set a maximum threshold of motorized travel time of 4 hours 
(A) and 2 hours (B). 
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Fig. S9. Geocoded addresses of veterinarians. 
The dots represent the geocoded addresses of veterinary practices (hospitals, clinics, private 
studies, etc.) in Brazil (A), France (B), South Africa (C), and India (D). We sampled these 
practices through online platforms listing veterinarians by postcode (68), online national 
phonebooks, websites of veterinary councils, and querying the databases of Google Maps and 
OpenStreetMap. 
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Fig. S10. Identification of duplicates and wrongly sampled addresses of veterinarians. 
(A) Google Earth Pro’s window shows the “Clifton Veterinary Practice”, in England. We 
sampled information about this veterinary practice from two online sources: the Royal College 
of Veterinary Surgeons and the British national phonebook. The vignettes contain the name 
and address of each veterinary practice as reported online, and their geographic coordinates 
obtained from Google’s geocoding API. Once assembled this information in two text strings, 
we calculated their affinity through the Levenshtein similarity (18). Although both strings point 
to the same veterinary practice, we obtained only 74% of similarity (lower than the 90% 
threshold we set to remove duplicates), because the sources report names of addresses in two 
different ways. 
(B) Google’s search page shows information about a dog training center in England which was 
sampled from the online national phonebook. If considering only its name as reported online 
(i.e., “Pets with Problems”), it is trivial to understand that this facility is different from a 
veterinary practice. Hence, we used web-crawling to perform Google searches using the name 
and address of sampled data to capture information about the type of service each facility 
provides (red box) and exclude the ones different from veterinary practices. 
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Fig. S11. Global maps of anthropogenic and agricultural covariates at 10x10 km2 
resolution. 
Pixels’ values of global maps of population density (A), travel time to major cities (B), gross 
domestic product (C), and density of food animals (F, G, H, I) were Log10-transformed. Pixels’ 
values of the global maps of croplands (D) and pastures (E) represent a proportion. Pixels of 
the World Settlement Footprint (J) represent areas where there are human settlements. 
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Fig. S12. World subregions used to train Log-Gaussian Poisson Regression models and 
to validate predictions of veterinarians’ distribution. 
The division into subregions, and the colors used to represent them, refers to the scheme that 
the United Nations used in their official reports (37). However, in our study, we further divided 
the subregion of “Europe and North America” into the subregions of North America, Europe, 
and Russia. 
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Fig. S13. Comparison between Deviance Information Criterion (DIC) values. 
The DIC values derive from the subregional Log-Gaussian Poisson Regression models that 
returned the highest predictions’ accuracy of the counts of veterinarians aggregated in 10x10 
km2 pixels (fig. S5). For each model, the DIC was computed with and without the random 
effect used to capture the spatial autocorrelation of the counts of veterinarians. 
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Fig. S14. Posterior means of covariates, range of random effect, and 95% credible 
intervals. 
Posterior means and the 95% credible intervals of the spatial covariates, and the range of the 
random effect (for spatial autocorrelation), computed through each subregional Log-Gaussian 
Poisson Regression model that returned the highest predictions’ accuracy of the counts of 
veterinarians aggregated in 10x10 km2 pixels (fig. S5). The red dashed line at 0 shows that the 
credible interval of each covariate doesn’t include zero and hence they are significant in 
predicting the distribution of veterinarians.  
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Fig. S15. Comparison of predictions’ accuracy among geospatial models. 
Values of the Deviance R2 (𝑅𝐷𝐸𝑉2 ) (46) to assess the predictions’ accuracy of counts of 
veterinarians aggregated in 10x10 km2 pixels. The 𝑅𝐷𝐸𝑉2  was computed through a Log-
Gaussian Poisson Regression model fitted only with spatial covariates (yellow), a model 
including covariates and the random effect to capture spatial autocorrelation (red), and a Log-
Gaussian Cox Process model accounting for preferential sampling (blue) (50, 51). The models 
were applied in five countries where we sampled addresses of veterinarians. 
  



 96 

 
Fig. S16. Diagnostics plots of the beta regression’s residuals. 
From the beta regression model used to predict the proportion of veterinarians specialized in 
food animals we extracted the deviance residuals (69) of each fitted observation to inspect (A) 
their values and (B) compare their distribution with a theoretical normal distribution. 
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Fig. S17. Cattle’s isolated farms and the friction surface of Kenya. 
(A) Isolated farms represent pixels where we didn’t predict veterinarians but where the density 
of cattle and pigs is higher than 1 per km2 and the density of chickens is higher than 10 per 
km2. Pixels in light blue represent areas where food animals are within 1 hour of motorized 
travel time from a veterinarian, while pixels in grey represent areas where the density of food 
animals is less than 1 per km2. (B) The friction surface used in this study is a 1 km2 resolution 
map that reports, for each pixel, the seconds to cross 1 meter through motorized vehicles (65). 
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Fig. S18. Coldspots map of cattle in Kenya. 
Coldspots of veterinary capacity were defined as 10x10 km2 pixels where food animals were 
farther than 1 hour of motorized travel time from the nearest veterinarian. The map report 
coldspots of cattle identified in Kenya. Pixels where motorized travel time is less than 1 hour 
are represented in grey. 
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Table S1. Anthropogenic and agricultural covariates used to predict the distribution of 
veterinarians and map veterinary coldspots. Veterinary coldspots were defined as 10x10 
km2 pixels where food animals were farther than 1 hour of motorized travel time from the 
nearest veterinarian. 
 
Name Original resolution Year Unit  Reference  
  
Population  0.083333 decimal 2015 Log10[(inh./10x10 km2)+1] Center for International Earth Science 
density degrees   Information Network (CIESIN) (70)  
Travel time to 0.083333 decimal 2015 Log10[(minutes)+1] Weiss et al., 2018 (71)  
major cities  degrees      
Gross domestic 0.083333 decimal 2015 Log10[(US $)+1] Kummu et al., 2018 (72) 
product degrees    
Area used for 0.083333 decimal 2000 Proportion Ramankutty et al., 2008 (73)  
croplands degrees     
Area used for 0.083333 decimal 2000 Proportion Ramankutty et al., 2008 (73) 
pastures degrees    
Population       
density of  0.083333 decimal 2015 Log10[(animals/10x10 km2)+1] Gilbert et al., 2018 (74, 75)  
cattle, chickens, degrees     
pigs, and sheep      
World Settlement 0.083333 decimal 2015 Proportion Marconcini et al., 2020 (28) 
Footprint degrees    
Motorized 0.0083333 decimal 2020 seconds/meter The Malaria Atlas Project, 2020 (65) 
friction surface degrees     
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Table S2. DIC decrease after the addition of the significant spatial covariates. 
For each subregional model with the highest accuracy in predicting the distribution of 
veterinarians (fig. S5), the table reports the proportional decrease of the Deviance Information 
Criterion obtained by including each significant spatial covariate (i.e., whose posterior mean 
was included in their 95% credible intervals) to the models with only the intercept. 
 
 North Europe Russia Oceania Latin Middle Sub-Saharan Central Eastern  
 America    America East Africa Asia Asia 
Population 88.87% 78.73% 94.01%   89.71%  86.49% 90.43%  
density          
Travel time 10.92% 19.35% 4.04% 93.84% 98.67% 8.06% 95.79% 10.11% 8.2%  
to major cities           
Gross domestic 0.02% 1.79% 1.12% 5.82% 1.12% 1.17% 3.01% 0.82% 1.02% 
product          
Area used for  0.14% 0.35%  0.04% 0.12% 1.2% 1.57% 0.25%  
croplands           
Area used for 0.04%  0.09%  0.01% 0.18%   0.05% 
pastures          
Cattle density   0.15% 0.21%    0.94% 0.01%  
Chickens’ density 0.01%   0.12% 0.16% 0.29%  0.08% 0.05% 
Pigs’ density      0.07%     
Sheep density 0.14%  0.23%  0.02% 0.4%    
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Table S3. Websites of veterinarians’ addresses and national-level data. 
The table reports names, URLs, and references of online data sources. The column “Websites 
with addresses” reports the online data sources used for sampling addresses of veterinarians 
(excluding OpenStreetMap and Google Maps). The columns “Associations”, “Governmental 
agencies”, and “Literature, newspapers”, report the sources used to identify national estimates 
of veterinarians. 
 
ISO3 Websites with addresses Associations Governmental agencies Literature, newspapers 
AFG    AVMA 
ALB Bujqesia FVE    
AND Andorra Telecom    
ARE    Gulf News  
ARG SENASA  FAO  
AUT Herold FVE, EBVS    
AUS Yellow Pages AVA (76)  PetKeen 
 VET VOICE    
BEL Trouver un vétérinaire FVE, EBVS    
 Pages d'or     
BGD   Bangladesh Veterinary Board   
BGR Golden Pages FVE, EBVS    
BRA    Germiniani, 2004 (77)  
CAN canada411 CVMA  Whiting, 2021 (78) 
 VCA animal hospitals     
CHE Société des Vétérinaires Suisses FVE, EBVS    
 Local.ch     
CHL Servicio Agrícola y Ganadero  USDA   
CHN    The Guardian  
COL    El Tiempo  
CUB Páginas Amarillas AVMA   
CYP Yellow Pages     
CZE Zlaté Stránky FVE, EBVS   
DEU GoYellow FVE, EBVS  Vets Online  
 TIERARTZ     
DNK Netdyredoktor FVE, EBVS, DVA   
 De Gule Sider    
EGY Yellow Pages   Arabmedicare  
ESP Páginas Amarillas FVE, EBVS   
EST Yellow Pages FVE, EBVS    
ETH    Mayen, 2006 (79) 
FIN finder.fi FVE, EBVS University of Helsinki   
FRA Ordre National des vétérinaires FVE, EBVS    
 Pages Jaunes    
GBR Royal College of Veterinary Surgeons FVE, EBVS  Statista  
 Yell    
GRC VRISKO FVE, EBVS University of Thessaly   
 Greek Yellow Pages     
GMB  WTG    
GTM Paginas Amarillas     
GUY Veterinary Board of Guyana     
HKG VSBHK HKVA    
HRV Yellow Pages FVE, EBVS    
HUN Arany Oldalak FVE, EBVS    
IDN   Universitas Gadjah Mada  
IRL Golden Pages FVE, EBVS  That’s farming  
 Veterinary Council     
IRN Ministry of Agriculture   Hakimemehr 
IRQ    Khamas, 2004 (80)  
ISL Jà FVE   
IND  IVA    
ISR  IVMA   
ITA FNOVI FVE, EBVS    
 Pagine Bianche     
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 Pagine Gialle     
 Federazione Europea Ornitologi     
JAM Jamaica Veterinary Board JVMA   
JPN Business directory   Pet Hospital  
KAZ  KVA   
KEN    Otieno et al., 2016 (81)  
KHM   FAO   
KOR Korean Veterinary Medical Association KVMA    
LKA Sri Lanka Veterinary Association    
 Sri Lanka Veterinary Council    
LIE Yellow Pages  Federal Veterinary Office   
 Welcome.li     
LSO    Boipabolo Temong 
LTU info.lt FVE, EBVS    
LUX yellow.lu FVE, EBVS   
LVA Viss FVE, EBVS    
MAR veterinaire.ma    
MDA Yellow Pages     
MEX DENUE   Statista 
MKD Food and Veterinary Agency FVE    
MLT Yellow    
MMR    Statista  
MYS   Federal Legislation Portal Statista 
NAM Veterinary Association of Namibia     
NPL    Wikipedia 
NGA    Daily Trust  
NLD Dierenarts kliniek FVE, EBVS   
 Gouden Gids    
NOR Gules Ider FVE, EBVS    
NZL Yellow Pages  New Zealand Government   
PER petID  ESAN   
PHL Bureau of animal industry PVMA    
POL Yellow Pages FVE, EBVS    
 Panorama Firms     
PRT Página Amarelas FVE, EBVS   
QAT Yellow Pages Qatar     
ROU Colegiul Medicilor Veterinari FVE, EBVS   
RUS Veterinarka FVE    
RWA    allAfrica  
SDN   Sudan Veterinary Council   
SGP Singapore Veterinary Association   CN Asia 
SOM    Catley et al., 1997 (82)  
SRB 11811 FVE, EBVS   
SVK Zlaté Stránky FVE, EBVS    
SVN Rumenstrani FVE, EBVS   
SWE Eniro FVE, EBVS    
THA  WSAVA    
TLS  WOAH    
TUN veterinaire.tn   Leaders 
 Pages Jaunes    
TUR  WVA    
TWN    Wenxuan et al., 2021 (83) 
UGA  WTG    
UKR UA.REGION.INFO  Encyclopedia of Modern Ukraine  
URY Páginas Amarellas   Laport et al., 2017 (84)  
 NATIVACABAL    
USA Yellow Pages AVMA  VIN News  
ZAF South African Veterinary Association   Farmers Weekly 
 South African Veterinary Council    
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Table S4. Variance Inflation Factor (VIF) of spatial covariates used to predict the 
distribution of veterinarians. 
 
 Population GDP Travel time Area used Area used Cattle Chickens Pigs Sheep 
 density  to major cities for croplands for pastures density density density density 
VIF 3.22 3.08 2.9 1.46 1.36 2.11 2.48 1.72 1.69 
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Table S5. Posterior means of the covariates’ coefficients and range of the random effect. 
For each subregion, the table reports the posterior means and standard deviation (in brackets) 
of each spatial covariate selected by each subregional Log-Gaussian Poisson Regression 
model. The last row reports the range and standard deviation of the random effect used to 
capture the spatial autocorrelation of the observed data. 
 
 North Europe Russia Oceania Latin Middle Sub-Saharan Central Eastern  
 America    America East Africa Asia Asia 
Intercept -1.351 -1.971 2.588 -1.919 0.206 1.244 3.364 5.246 -2.177 
 (0.346) (0.125)  (0.424) (0.374) (0.211) (0.394) (0.47) (0.206) (0.31) 
Population 0.264 0.22 0.125   -0.215  0.336 0.165  
density (0.053) (0.019) (0.037)   (0.043)  (0.028) (0.035)  
Travel time -0.165 -0.135 -0.645 -0.396 -0.662 -0.433 -0.45 -0.805 -0.296 
To major cities (0.017) (0.018) (0.051) (0.04) (0.03) (0.059) (0.058) (0.035) (0.039) 
Gross domestic 0.841 0.94 0.506 0.986 0.857 0.75 0.334 0.16 0.968  
product (0.052) (0.016) (0.043) (0.037) (0.021) (0.04) (0.05) (0.018) (0.031)  
Area used for  -0.185 -0.467  -0.201 -0.27 -0.494 -0.53 -0.43 
croplands  (0.022) (0.104)  (0.057) (0.07) (0.113) (0.044) (0.064) 
Area used for 0.147  -0.794  -0.134 -0.333   -1.353  
pastures (0.045)  (0.204)  (0.057) (0.104)   (0.438)  
Cattle density   -0.368 0.152    -0.251 0.088  
   (0.05) (0.028)    (0.018) (0.024)  
Chickens’ density -0.052   -0.045 -0.133 -0.133  0.048 -0.105  
 (0.006)   (0.013) (0.008) (0.008)  (0.011) (0.015)  
Pigs’ density      -0.145     
      (0.035)     
Sheep density 0.113  0.269  0.068 0.068     
 (0.015)  (0.046)  (0.016) (0.016)     
SPDE model 0.08 0.12 0.158 0.178 0.156 0.143 0.285 0.254 0.164  
range (0.004) (0.005) (0.017) (0.024) (0.009) (0.009) (0.054) (0.02) (0.011)  
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Table S6. Results of the “Fast Monte Carlo test for preferential sampling”. 
The table reports the ranges of the p-values of each preferential sampling test (85) performed 
on five countries to inspect the relationship between the sampling pattern and the spatial 
autocorrelation of data. 
 
 Austria Belgium Denmark Netherlands
 Switzerland   
Intercept <0.05 <0.05 <0.05 <0.05 <0.05  
Population density 0.1 – 0.7 0.2 – 0.85 0.5 – 0.95 0.15 – 0.4 0.9 – 1
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Table S7. Coefficients, standard error, and z-statistics significance of each spatial 
covariate used in the beta regression model to predict the proportion of veterinarians 
specialized in food animals. 
 
Covariate Estimate Std. Error p-value (z-statistics) 
Population density -0.14873 0.04672 0.001455  
Gross domestic product -0.46963 0.05700 <2.0-16  
Area used for croplands -0.27617 0.08885 0.001883  
Cattle density -0.13423 0.04140 0.001187  
Chickens’ density 0.08807 0.01752 5.0-7 
Sheep density 0.11030 0.02878 0.000127  
  



 107 

References 
 
1.  Federation of Veterinarians of Europe. Survey of the veterinary profession in Europe 

(2019). Available at: https://fve.org/cms/wp-
content/uploads/FVE_Survey_2018_WEB.pdf. Accessed: 01/04/2020.  

2.  World Organisation for Animal Health. Veterinary Educational Establishments in OiE 
Member Countries (2013). Available at: 
https://www.woah.org/fileadmin/Home/eng/Support_to_OIE_Members/vee/en_vee_list.
php. Accessed: 01/05/2022.  

3.  Wikipedia. List of schools of veterinary medicine (2023). Available at: 
https://en.wikipedia.org/wiki/List_of_schools_of_veterinary_medicine. Accessed: 
01/05/2022.  

4.  Wikipedia. Retirement age (2023). Available at: 
https://en.wikipedia.org/wiki/Retirement_age. Accessed: 01/05/2023.  

5.  Wikipedia. List of yellow pages (2023). Available at: 
https://en.wikipedia.org/wiki/List_of_yellow_pages. Accessed: 15/09/2020.  

6.  OpenStreetMap Foundation. OpenStreetMap (2023). Available at: 
https://www.openstreetmap.org. Accessed: 01/12/2021.  

7.  M. Padgham, R. Lovelace, M. Salmon, B. Rudis. Osmdata. The Journal of Open Source 
Software 2, 305 (2017). doi:10.21105/joss.00305 

8.  OpenStreetMap Foundation. OpenStreetMap glossary - Tag:amenity=veterinary (2023). 
Available at: https://wiki.openstreetmap.org/wiki/Tag:amenity%3Dveterinary. Accessed: 
01/12/2021.  

9.  D. Cooley. googleway: Accesses Google Maps APIs to Retrieve Data and Plot Maps 
(2022). Available at: https://cran.r-project.org/package=googleway. Accessed: 
15/01/2021.  

10.  opnedatasoft. Geonames - All Cities with a population higher than 1000 (2023). 
Available at: https://public.opendatasoft.com/explore/dataset/geonames-all-cities-with-a-
population-1000/table/?disjunctive.cou_name_en&sort=name. Accessed: 01/03/2021.  

11.  Google Maps Platform. Place Types (2023). Available at: 
https://developers.google.com/maps/documentation/places/web-service/supported_types. 
Accessed: 01/03/2021.  

12.  T. L. Jeeper. tabulizer: Bindings for Tabula PDF Table Extractor Library. (2022). 
13.  M. A. Khder. Web scraping or web crawling: State of art, techniques, approaches and 

application. International Journal of Advances in Soft Computing and its Applications 
13, 144–168 (2021). doi:10.15849/ijasca.211128.11 

14.  H. Wickham. rvest: Easily Harvest (Scrape) Web Pages. (2022). 
15.  Richardson, L. Beautiful Soup Documentation (2007). Available at: https://beautiful-

soup-4.readthedocs.io/en/latest/. Accessed: 15/01/2021.  
16.  Software Freedom Conservacy. Selenium WebDriver (2023). Available at: 

https://www.selenium.dev/documentation/. Accessed: 15/05/2021.  
17.  D. Kahle, H. Wickham. ggmap: Spatial visualization with ggplot2. The R Journal 5, 

144–161 (2013). doi:10.32614/rj-2013-014 



 108 

18.  V. I. Levenshtein. Binary codes capable of correcting deletions, insertions, and reversals. 
Doklady Akademii Nauk SSSR  pp 845–848. (1965). doi:10.1016/S0074-7742(08)60036-
7 

19.  M. Edmondson. googleLanguageR: Call Google’s ‘Natural Language’ API, ‘Cloud 
Translation’ API, ‘Cloud Speech’ API and ‘Cloud Text-to-Speech’ API. (2020). 

20.  J. M. Richards. An Ecological Analysis of the Geographic Distribution of Veterinarians 
in the United States. Journal of Vocational Behavior 11, 216–231 (1977). 
doi:10.1016/0001-8791(77)90008-2 

21.  M. R. Olfert, M. Jelinski, D. Zikos, J. Campbell. Human capital drift up the urban 
hierarchy: Veterinarians in Western Canada. Annals of Regional Science 49, 551–570 
(2012). doi:10.1007/s00168-011-0448-2 

22.  S. Truchet, N. Mauhe, M. Herve. Veterinarian shortage areas: what determines the 
location of new graduates? Review of Agricultural, Food and Environmental Studies 98, 
255–282 (2017). doi:10.1007/s41130-018-0066-9 

23.  B. Naimi, N. A. S. Hamm, T. A. Groen, A. K. Skidmore, A. G. Toxopeus. Where is 
positional uncertainty a problem for species distribution modelling? Ecography 37, 191–
203 (2014). doi:10.1111/j.1600-0587.2013.00205.x 

24.  A. Field, J. Miles, Z. Field. Discovering statistics using R. SAGE Publications Ltd  
(2012). 

25.  WorldPop methods - Mapping Settlements. Available at: 
https://www.worldpop.org/methods/. Accessed: 01/12/2021. (2023). 

26.  F. J. Reed, A. E. Gaughan, F. R. Stevens, G. Yetman, A. Sorichetta, A. J. Tatem. 
Gridded population maps informed by different built settlement products. Data 3, (2018). 
doi:10.3390/data3030033 

27.  F. R. Stevens, A. E. Gaughan, J. J. Nieves, A. King, A. Sorichetta, C. Linard, A. J. 
Tatem. Comparisons of two global built area land cover datasets in methods to 
disaggregate human population in eleven countries from the global South. International 
Journal of Digital Earth 13, 78–100 (2020). doi:10.1080/17538947.2019.1633424 

28.  M. Marconcini, A. Metz-Marconcini, S. Üreyen, D. Palacios-Lopez, W. Hanke, F. 
Bachofer, J. Zeidler, T. Esch, N. Gorelick, A. Kakarla, et al. Outlining where humans 
live, the World Settlement Footprint 2015. Scientific Data 7, 1–14 (2020). 
doi:10.1038/s41597-020-00580-5 

29.  F. Lindgren, H. Rue. An explicit link between Gaussian fields and Gaussian Markov 
random fields : the stochastic. 423–498 (2011). 

30.  D. L. Miller, R. Glennie, A. E. Seaton. Understanding the Stochastic Partial Differential 
Equation Approach to Smoothing. Journal of Agricultural, Biological, and 
Environmental Statistics 25, 1–16 (2020). doi:10.1007/s13253-019-00377-z 

31.  H. Rue, L. Held. Gaussian Markov Random Fields - Theory and Applications. CRC 
Press  (2005). 

32.  D. Simpson, J. B. Illian, F. Lindgren, S. H. Sørbye, H. Rue. Going off grid: 
Computationally efficient inference for log-Gaussian Cox processes. Biometrika 103, 
49–70 (2015). doi:10.1093/biomet/asv064 

33.  F. E. Bachl, F. Lindgren, D. L. Borchers, J. B. Illian. inlabru: an R package for Bayesian 
spatial modelling from ecological survey data. Methods in Ecology and Evolution 10, 



 109 

760–766 (2019). doi:10.1111/2041-210X.13168 
34.  H. Rue, S. Martino, N. Chopin. Approximate Bayesian inference for latent Gaussian 

models by using integrated nested Laplace approximations. Journal of the Royal 
Statistical Society. Series B: Statistical Methodology 71, 319–392 (2009). 
doi:10.1111/j.1467-9868.2008.00700.x 

35.  R. S. Bivand, V. Gómez-Rubio, H. Rue. Spatial data analysis with R-INLA with some 
extensions. Journal of Statistical Software 63, 1–31 (2015). doi:10.18637/jss.v063.i20 

36.  F. Lindgren, H. Rue. Bayesian Spatial Modelling with R-INLA. Journal Of Statistical 
Software 63, 1–25 (2015). doi:10.18637/jss.v063.i19 

37.  World regions in the SDG framework of the United Nations. Available at: 
https://unstats.un.org/sdgs/indicators/regional-groups/. Accessed: 08/12/2022. (2021). 

38.  F. Gao, W. Kihal, N. Meur, M. Souris, S. Deguen. Does the edge effect impact on the 
measure of spatial accessibility to healthcare providers? International Journal of Health 
Geographics 16, 1–16 (2017). doi:10.1186/s12942-017-0119-3 

39.  A. J. Righetto, C. Faes, Y. Vandendijck, P. J. Ribeiro. On the choice of the mesh for the 
analysis of geostatistical data using R-INLA. Communications in Statistics - Theory and 
Methods 49, 203–220 (2020). doi:10.1080/03610926.2018.1536209 

40.  G. A. Fuglstad, D. Simpson, F. Lindgren, H. Rue. Constructing Priors that Penalize the 
Complexity of Gaussian Random Fields. Journal of the American Statistical Association 
114, 445–452 (2019). doi:10.1080/01621459.2017.1415907 

41.  A. Berg, R. Meyer, J. Yu. Deviance Information Criterion for Comparing Stochastic 
Volatility Models. Journal of Business and Economic Statistics 22, 107–120 (2004). 
doi:10.1198/073500103288619430 

42.  A. Van Der Linde. DIC in variable selection. Statistica Neerlandica 59, 45–56 (2005). 
doi:10.1111/j.1467-9574.2005.00278.x 

43.  N. Lezama-Ochoa, M. G. Pennino, M. A. Hall, J. Lopez, H. Murua. Using a Bayesian 
modelling approach (INLA-SPDE) to predict the occurrence of the Spinetail Devil Ray 
(Mobular mobular). Scientific Reports 10, 1–11 (2020). doi:10.1038/s41598-020-73879-
3 

44.  P. Moraga. Geospatial Health Data Modeling and Visualization with R-INLA and Shiny. 
Chapman & Hall/CRC Biostatistics Series  (2019). doi:10.1201/9780429341823 

45.  V. Gómez-Rubio. Bayesian Inference with INLA. Chapman & Hall/CRC Press  (2020). 
46.  A. C. Cameron, F. A. G. Windmeijer. R-squared measures for count data regression 

models with applications to health-care utilization. Journal of Business and Economic 
Statistics 14, 209–220 (1996). doi:10.1080/07350015.1996.10524648 

47.  M. Mittlböck. Calculating adjusted R2 measures for Poisson regression models. 
Computer Methods and Programs in Biomedicine 68, 205–214 (2002). 
doi:10.1016/S0169-2607(01)00173-0 

48.  M. Mohebbi, R. Wolfe, A. Forbes. Disease mapping and regression with count data in 
the presence of overdispersion and spatial autocorrelation: A Bayesian model averaging 
approach. International Journal of Environmental Research and Public Health 11, 883–
902 (2014). doi:10.3390/ijerph110100883 

49.  D. S. Moore, W. Notz, M. A. Flinger. The basic practice of statistics. (2013). 
50.  M. G. Pennino, I. Paradinas, J. B. Illian, F. Muñoz, J. M. Bellido, A. López-Quílez, D. 



 110 

Conesa. Accounting for preferential sampling in species distribution models. Ecology 
and Evolution 9, 653–663 (2019). doi:10.1002/ece3.4789 

51.  P. B. Conn, J. T. Thorson, D. S. Johnson. Confronting preferential sampling when 
analysing population distributions: diagnosis and model-based triage. Methods in 
Ecology and Evolution 8, 1535–1546 (2017). doi:10.1111/2041-210X.12803 

52.  A. Lee, A. Szpiro, S. Y. Kim, L. Sheppard. Impact of preferential sampling on exposure 
prediction and health effect inference in the context of air pollution epidemiology. 
Environmetrics 26, 255–267 (2015). doi:10.1002/env.2334 

53.  A. E. Gelfand, S. K. Sahu, D. M. Holland. On the effect of preferential sampling in 
spatial prediction. Environmetrics 23, 565–578 (2012). doi:10.1002/env.2169 

54.  J. Watson. A fast Monte Carlo test for preferential sampling. arXiv 1–34 (2020). 
55.  T. T. Zhao, Y. Feng, P. N. Doanh, S. Sayasone, V. Khieu, C. Nithikathkul, M. B. Qian, 

Y. T. Hao, Y. S. Lai. Model-based spatial-temporal mapping of opisthorchiasis in 
endemic countries of Southeast Asia. eLife 10, 1–21 (2021). doi:10.7554/eLife.59755 

56.  F. Cribari-Neto, A. Zeileis. Beta Regression in R. Journal of Statistical Software 34, 
(2010). doi:10.18637/jss.v034.i02 

57.  R. R. Hocking, R. N. Leslie. Selection of the Best Subset in Regression Analysis. 
Technometrics 9, 531–540 (1967). doi:10.1080/00401706.1967.10490502 

58.  D. Temple, X. Manteca. Animal Welfare in Extensive Production Systems Is Still an 
Area of Concern. Frontiers in Sustainable Food Systems 4, (2020). 
doi:10.3389/fsufs.2020.545902 

59.  M. Gilbert, G. Conchedda, T. P. Van Boeckel, G. Cinardi, C. Linard, G. Nicolas, W. 
Thanapongtharm, L. D’Aietti, W. Wint, S. H. Newman, et al. Income disparities and the 
global distribution of intensively farmed chicken and pigs. PLoS ONE 10, 1–14 (2015). 
doi:10.1371/journal.pone.0133381 

60.  Eurostat. Livestock Unit (2022). Available at: https://ec.europa.eu/eurostat/statistics-
explained/index.php?title=Glossary:Livestock_unit_(LSU). Accessed: 15/12/2022.  

61.  T. P. Van Boeckel, J. Pires, R. Silvester, C. Zhao, J. Song, N. G. Criscuolo, M. Gilbert, 
S. Bonhoeffer, R. Laxminarayan. Global trends in antimicrobial resistance in animals in 
low- and middle-income countries. Science 365, eaaw1944 (2019). 
doi:10.1126/science.aaw1944 

62.  American College of Surgeon. ATLS - Advanced Trauma Life Support Program for 
Doctors. American College of Surgeons  (2008). 

63.  FAOSTAT. Crops and Livestock Products (2020). Available at: 
https://www.fao.org/faostat/en/#data/QCL. Accessed: 10/05/2023.  

64.  D. J. Weiss, A. Nelson, C. A. Vargas-Ruiz, K. Gligorić, S. Bavadekar, E. Gabrilovich, A. 
Bertozzi-Villa, J. Rozier, H. S. Gibson, T. Shekel, et al. Global maps of travel time to 
healthcare facilities. Nature Medicine 26, 1835–1838 (2020). doi:10.1038/s41591-020-
1059-1 

65.  The Malaria Atlas Project. Accessibility to Healthcare - Motorized friction surface 
(2020). Available at: https://malariaatlas.org/project-resources/accessibility-to-
healthcare/. Accessed: 01/10/2022.  

66.  J. van Etten. R Package gdistance: Distances and Routes on Geographical Grids. Journal 
of Statistical Software 76, (2017). doi:10.18637/jss.v076.i13 



 111 

67.  E. W. Dijkstra. A Note on Two Problems in Connexion with Graphs. Numerische 
Mathematik 1, 269–271 (1959). doi:10.1007/BF01386390 

68.  Royal College of Veterinary Surgeons. Find A Vet (2023). Available at: 
https://findavet.rcvs.org.uk/home/. Accessed: 10/02/2020.  

69.  A. C. Davison, A. Gigli. Deviance residuals and normal scores plots. Biometrika 76, 
211–221 (1989). doi:10.1093/biomet/76.2.211 

70.  Gridded Population of the World, Version 4 (GPWv4): Population Density, Revision 11. 
Available at: https://doi.org/10.7927/H49C6VHW. Accessed: 01/03/2022. (2015). 

71.  D. J. Weiss, A. Nelson, H. S. Gibson, W. Temperley, S. Peedell, A. Lieber, M. Hancher, 
E. Poyart, S. Belchior, N. Fullman, et al. A global map of travel time to cities to assess 
inequalities in accessibility in 2015. Nature 553, 333–336 (2018). 
doi:10.1038/nature25181 

72.  M. Kummu, M. Taka, J. H. A. Guillaume. Gridded global datasets for Gross Domestic 
Product and Human Development Index over 1990-2015. Scientific Data 5, 1–15 (2018). 
doi:10.1038/sdata.2018.4 

73.  N. Ramankutty, A. T. Evan, C. Monfreda, J. A. Foley. Farming the planet: 1. Geographic 
distribution of global agricultural lands in the year 2000. Global Biogeochemical Cycles 
22, 1–19 (2008). doi:10.1029/2007GB002952 

74.  M. Gilbert, G. Nicolas, G. Cinardi, T. P. Van Boeckel, S. O. Vanwambeke, G. R. W. 
Wint, T. P. Robinson. Global distribution data for cattle, buffaloes, horses, sheep, goats, 
pigs, chickens and ducks in 2010. Scientific Data 5, 1–11 (2018). 
doi:10.1038/sdata.2018.227 

75.  G. Cinardi, D. Da Re, M. Gilber, T. P. Robinson, W. G. R. Wint. Gridded Livestock of 
the World - 2015 (GLW4). Harvard Dataverse  (2022). doi:10.7910/DVN/LHBICE 

76.  Australian Veterinary Association. Australian veterinary workforce survey 2018. (2019). 
77.  C. B. G. De Lourdes. Veterinary education in Brazil: Past history, current issues. Journal 

of Veterinary Medical Education 31, 28–31 (2004). doi:10.3138/jvme.31.1.28 
78.  T. L. Whiting. Veterinary Practice — The Canadian multinational veterinary workforce. 

Canadian Veterinary Journal 62, 1195–1201 (2021). 
79.  F. Mayen. A status report of veterinary education in Ethiopia: Perceived needs, past 

history, recent changes, and current and future concerns. Journal of Veterinary Medical 
Education 33, 244–247 (2006). doi:10.3138/jvme.33.2.244 

80.  W. A. Khamas, A. Y. M. Nour. Veterinary medical education in Iraq. Journal of 
Veterinary Medical Education 31, 301–309 (2004). doi:10.3138/jvme.31.4.301 

81.  M. Bwana Otieno, J. Orungo Onono. Current Trends in the Sectors of Interest for 
Veterinary Medicine Students and Job Placements of Veterinarians in Kenya Drugs. 
Journal of Dairy, Veterinary & Animal Research 3, 73–78 (2016). 
doi:10.15406/jdvar.2016.03.00075 

82.  A. Catley, M. Said, M. Farah, I. Handule. Veterinary Services in the Somali National 
Regional State, Ethiopia: A Situation Analysis. (1997). 

83.  Wenxuan, C. Veterinarian So Easy? Discussion on the Current Situation of the Lack of 
Large Animal Veterinary Talents (2021). Available at: 
http://www.cqvip.com/qk/94496x/201710/673305493.html. Accessed: 10/08/2021.  

84.  Malvina M., Prieto L., Pablo E., S. Cánen. Animal Welfare in the Uruguayan Veterinary 



 112 

Profession Field. Journal of Agricultural Science and Technology A 7, 357–362 (2017). 
doi:10.17265/2161-6256/2017.05.008 

85.  J. Watson. A fast Monte Carlo test for preferential sampling. 1–34 (2020). 
  



 113 

 



 114 

Chapter 4 

Quantifying travel time to healthcare: a case study with clinical 
laboratories and veterinarians 
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Abstract 
 
In humans and animals, access to healthcare is essential for treating, monitoring, and 
preventing infectious diseases, including antimicrobial resistance. In low- and middle-income 
countries, the limited availability of laboratories with antimicrobial susceptibility testing 
capacities (AST) precludes healthcare professionals from collecting bacterial samples and 
understanding trends in antimicrobial resistance. Similarly, lack of access to veterinary services 
limits the availability of treatment for food animals and systematic monitoring of their health. 
This, in turn, affects disease detection and threatens the livelihood of those relying on animals 
for subsistence. This study focuses on improving the accessibility to health services under a 
hypothetical 5% scale-up of capacities. The first case study explores increasing the number of 
AST laboratories in Senegal, Sierra Leone, Gabon, Burkina Faso, and Malawi. Our findings 
indicated that a 5% scale-up in the number of health facilities to be equipped for AST, if 
geographically targeted, could increase the population living within 1 hour of travel time from 
AST laboratories by 28%. Our second case study focuses on veterinary services globally. Here 
we showed that a geographically targeted 5% increase in the workforce of veterinarians would 
reduce the number of food animals living more than 1 hour away from a veterinarian worldwide 
by 32.6%. 

Introduction 
 
Timely access to healthcare is essential to facilitate the early detection of disease outbreaks and 
help contain their spread (1–4). However, in low- and middle-income countries (LMICs), 
limited road networks and infrastructures (bridges, tunnels, etc.) (5, 6) as well as the inadequate 
distribution of health facilities (7), can seriously challenge access to healthcare services. 
Recently, a review by Kelly and colleagues showed that high travel time to healthcare was 
associated with adverse health outcomes in 77% of cases (8), including increased mortality in 
women giving birth (9) and in infants in need of primary care (10). 
 
In LMICs, poor accessibility to health services also affects surveillance of diseases of global 
importance. A key example is antimicrobial resistance (AMR) (11). Sub-Saharan Africa has 
the highest mortality rate from AMR infections, with 24 deaths per 100,000 attributable to 
AMR (12), more than those attributable to the human immunodeficiency virus (HIV) (13). One 
of the key actions to decrease this burden is to track temporal AMR trends across the continent. 
However, this objective is challenged by the very limited number of health facilities equipped 
with laboratories that can perform antimicrobial susceptibility testing (AST) (13). 
 
Parallels can also be drawn with food animals. An extended network of health services, in this 
case represented by veterinarians, is crucial to providing prompt access to care for animals, 
preserving their health, and ensuring food security. This is essential for the sustainability of the 
food animal sector which currently contributes to nearly 40% of the total agricultural output in 
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high-income countries (HICs) and about 20% in LMICs (14), as well as for supporting the 
livelihood of 1.3 billion people active in this sector worldwide (15). 
 
However, until recently, little attention has been drawn to improving accessibility to AST 
laboratories and to improving access to veterinarians from the perspective of geographic 
distance. Improving access to these health services could be addressed through a scale-up in 
their national capacities. Nevertheless, the distribution of the human population, veterinarians, 
and animals is highly heterogeneous within countries. Therefore, geographically targeted 
approaches to scale-up health services may carry the greatest benefits in terms of improved 
access to care for the populations of humans and animals (16). 
 
Maximizing the population using health services within a certain travel time threshold can be 
formalized mathematically as a maximal coverage location problem (MCLP) (17, 18). These 
approaches have been applied in different public health contexts: for improving access to HIV-
testing laboratories in South Africa (19), to maximize access to primary healthcare throughout 
Sub-Saharan Africa (7), or to enable access to antivenoms used against snakebites in Nepal 
(20). However, MCLP approaches are often associated with a prohibitive computational cost 
typical of the class of NP-hard problems (21). Therefore, previous analyses have focused on 
identifying approximations of MCLP to address this challenge while attempting to improve 
access to health services (22) or for integrating additional factors to physical distance such as 
the capacity for treatment of each facility (23). 
 
In this study, we used two MCLP-based approaches to identify the optimal locations that would 
maximize the population living within 1 hour of travel time from health services under an 
increase in their capacities. Specifically, we increased by 5% the national health facilities to be 
equipped for AST and performed a 5% scale-up of national veterinary capacities. In the first 
case study, we focused on maximizing the population with access to AST laboratories in five 
African countries (Senegal, Sierra Leone, Gabon, Burkina Faso, and Malawi) (13) using 
AccessMod, a dedicated accessibility software developed by the GeoHealth group (University 
of Geneva) and the World Health Organization (24). For the second case study, we focused on 
improving access to veterinarians caring for food animals worldwide. Given the global scale 
of this second dataset (Chapter 3), we developed an approximation of the MCLP based on 
catchment radii to overcome the computational barriers. We used Kenya, Panama, Ecuador, 
Liberia, Eritrea, Honduras, Nicaragua, Costa Rica, and Cambodia as “test countries” to 
evaluate the validity of this approximation and show that it can produce meaningful results 
within a fraction of the computation time of the exact solution. 

Methods 
 
Data collection 
 
Laboratories for antimicrobial susceptibility testing 
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We identified health facilities currently equipped with AST laboratories in Senegal, Sierra 
Leone, Gabon, Burkina Faso, and Malawi (25). Specifically, for each country, we obtained the 
2022 reports of the “Mapping Antimicrobial Resistance and Antimicrobial Use Partnership” 
(MAAP) (26–30) published in July 2023 by the African Society for Laboratory Medicine (31). 
From these reports, we sampled the addresses of health facilities equipped for AST and 
retrieved their longitude and latitude (in decimal degrees) using Google’s geocoding 
Application Programming Interface (API) available from the R package ggmap (32). 
 
Next, for each country, we used the OpenStreetMap (OSM) database (33) to sample the 
coordinates of the health facilities that are currently not equipped with AST laboratories. These 
health facilities were necessary to select the potential candidates that, once equipped for AST, 
would maximize the human population with access to AST laboratories within 1 hour of travel 
time (hereafter referred to as “population covered”); we chose the threshold of 1 hour for 
consistency with the MAAP reports, that indicated the population currently covered by existing 
AST laboratories. Then, we used the R package osmdata (34) to query the OSM database and 
collect the locations of current health facilities able to perform AST: hospitals and clinical 
diagnostic laboratories (35). The country shapefiles downloaded from the Database of Global 
Administrative Areas (GADM) (36) were used to define the geographical extent of the areas 
where to query OSM. Then, for each area, we performed queries using the key string 
“healthcare” and the filtering string “laboratory” and “infectious diseases”. Another query was 
performed using the key string “amenity” and the filtering string “hospital”. These health 
facilities are hereafter referred to as “candidates”. 
 
Next, country-level maps at the ~100 m2 resolution were collected to perform accessibility 
analysis in AccessMod. Firstly, Digital Elevation Model maps (DEM) (37) were used to initiate 
every analysis in AccessMod (mandatory requirement) (38). Secondly, maps of land cover 
categories (39) were used to produce friction surfaces, i.e., maps that express the cost to travel 
across each of its pixels (for example in seconds per meter traveled). Land cover maps were 
provided by the GeoHealth group (University of Geneva) (40), which merged them with the 
rasterized network of roads and rivers downloaded from OSM (41). Then, we collected tables 
of motorized travel speeds to associate with each category of the merged land cover maps. 
These tables were provided by Weiss et al. (42) and adapted for the African countries by 
Hierink et al. (43). In this way, we obtained friction surfaces that combine areas where it is 
only possible to walk with an average speed of 5 km/h (42) with areas where the road networks 
allow for the use of motorized vehicles (“walking + motorized” friction surface). This friction 
surface represents a scenario where people have to walk to the closest roads where it is possible 
to use motorized vehicles (e.g., public transport, cars), also assuming that such vehicles would 
be available without delay when reaching the roads (20). Finally, we quantified the increase in 
the population covered when equipping candidates for AST using national maps of the human 
population count (44). 
 
Veterinarians 
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The data used to scale up national veterinary capacities were presented in Chapter 3. 
Specifically, we used the coldspots maps to select countries where supplementary veterinarians 
were needed. Coldspots were defined as 10x10 km2 resolution maps reporting areas where 
cattle, chickens, and pigs are farther than 1 hour of travel time from the nearest veterinarians. 
In this case, we used the threshold of 1 hour of travel time for consistency with the concept of 
the “golden hour” used in human medicine, which represents the time when patients have the 
highest chance of survival if they receive medical care (45). 
In addition, we used the World Settlement Footprint map (WSF) (46) to identify pixels where 
there are human settlements but currently no veterinarians. These 10x10 km2 pixels represented 
the potential locations to select for scaling up the veterinarians in a country. Therefore, for 
consistency with the case study about AST laboratories, we will refer also to these pixels as 
“candidates”. 
Next, we computed travel time maps for each supplementary veterinarian allocated using the 
1x1 km2 resolution “walking + motorized” friction surface, available from the Malaria Atlas 
Project (47, 48). From each of these travel time maps, we quantified the animal population 
covered by each supplementary veterinarian using density maps of cattle, chickens, and pigs 
available from the 4th version of the Gridded Livestock of the World (49, 50). 
 
Travel time analyses 
 
Laboratories for antimicrobial susceptibility testing 
 
AccessMod (version 5.8) (51, 52) was used to identify the 5% of national candidates to be 
equipped for AST. Firstly, AccessMod was used to correct country-level maps of the human 
population. This step aimed at identifying if some map pixels corresponded to pixels of the 
merged land cover representing physical barriers where humans could not be found (e.g., 
rivers). Therefore, AccessMod was used to translate population counts found at physical 
barriers to their closest neighbors where it is more reasonable to find humans (e.g., pixels 
categorized as “built-up” (53)). Secondly, AccessMod was used to produce country-level 
friction surfaces by associating the merged land cover maps with the tables of travel time 
scenarios defined for each land cover typology. Once all the input files for AccessMod were 
ready, four different analyses were performed for each country: 
 

1. Initial accessibility evaluation: we computed 100 m2 resolution maps of travel time to 
reach the existing AST laboratories. Specifically, we calculated the cumulative time 
required to cross each friction surface pixel to reach existing AST laboratories. This 
calculation was done using the eight-directional least-cost path algorithm (54). 
Furthermore, no corrections were made for the slopes (isotropic movement), since this 
is usually applied to pedestrians and cyclists (43). These aspects were equally 
considered for the case study about veterinarians. 

 
2. Zonal statistics: zonal descriptive statistics were produced to evaluate the regional 

coverage of the existing AST laboratory. The input files for AccessMod used in this 



 119 

step were the travel time maps computed in Step 1 and the GADM shapefiles of the 
regional division for each country (36). 

 
3. Geographic coverage: this step produced travel time maps (Step 1) for each candidate 

and returned their catchment area. The catchment area is defined as the area around a 
facility that reports population information (e.g., number of people) using its services 
(55, 56). Along with the shapefiles of the catchment areas, AccessMod also returned 
the population covered by each candidate to potentially equip for AST. 

 
4. Scaling up analysis: this analysis used the catchment areas computed in Step 3 to 

maximize the population covered using a recursive exhaustive approach (REA) that 
tests iteratively every candidate. The algorithm then chooses 5% of the supplementary 
candidates to be equipped for AST which cover the highest cumulative population. 

 
After performing these analyses in each country we calculated i) the spatial distribution of the 
5% supplementary candidates to be equipped for AST using kernel density (KDE) maps (57), 
ii) the population covered by each supplementary laboratory, iii) the number of supplementary 
candidates to be equipped for AST necessary to cover at least 95% of the population, iv) and 
identified regions with the highest number of supplementary laboratories allocated. 
 
Veterinarians 
 
In each country with coldspots of veterinary capacities (Chapter 3), we added 5% veterinarians 
(compared to the country’s total) such as to minimize the number of animals living in coldspots 
(IA). As for the scaling up of AST laboratories, a recursive exhaustive approach (REA) that 
adds veterinarians in every possible candidate will bring the highest number of IA within 1 
hour of travel time from a veterinarian (hereafter referred to as “animal population covered”). 
Since the candidates to test in this study were >250,000, we used the R package gdistance (58) 
to develop an approximation of the REA to decrease its computational time. 
 
First, we selected nine “small” countries (Kenya, Panama, Ecuador, Liberia, Eritrea, Honduras, 
Nicaragua, Costa Rica, and Cambodia) to quantify the animal population covered using the 
REA. This was done by recording the IA decrease for each supplementary veterinarian of the 
additional 5% capacity added. Then, we developed a scaling up approach to allocate the same 
5% of veterinarians in less time when compared to REA, while aiming for a comparable animal 
population covered. This approximation was called the “contiguity approach”. 
 
We defined the contiguity approach by sampling properties in the proximity area around each 
candidate. These properties can vary across countries since they depend on i) the density of IA, 
ii) the distribution of existing veterinarians, and iii) local values of the friction surface, due to 
the characteristics of the territory and traveling speed limits. These properties were used as a 
guide in the contiguity approach to choose the candidates where the supplementary 5% of 
veterinarians could cover a similar animal population covered by the REA. The steps to 
perform the contiguity approach were the following: 
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1. We randomly selected 100 candidates and allocated the 1st veterinarian in one of these 

pixels, re-computed the coldspots map, and compared it with the initial one to extract 
the catchment area, i.e., where the travel time decreased to <1 hour due to the presence 
of a new veterinarian (fig. S1A). 

 
2. We calculated the average catchment area radius based on the distance of the allocated 

veterinarian, starting from each point of the catchment area perimeter (fig. S1A). 
 

3. We repeated step (2) independently for all the randomly selected candidates to calculate 
an average radius of the catchment areas specific to each country. 

 
4. For the 1st veterinarian to permanently allocate in the country, we defined a circle 

around every candidate available based on the average radius calculated in step (3). 
 

5. In this circle, we sampled a) IA, calculated intersecting maps of food animals’ density 
with the coldspot map b) the number of pixels classified as coldspots (NC), c) the 
minimum distance of the candidate from other veterinarians already available in the 
country, and d) the average travel time. Property (a) prioritizes candidates where 
catchment area IA is the highest. Property (b) and (c) identify candidates that are far 
from other veterinarians and hence where a new allocation will not create clusters of 
veterinarians. Property (d) allows the identification of candidates where travel time in 
their catchment areas is the lowest; this permits a newly allocated veterinarian to travel 
farther and reach more coldspots. 

 
6. For each candidate, we categorized the values of property (a) to (c) in five different 

groups by building an ordinal variable based on numerical ranges of equal width. 
 

7. We assembled each variable in a database and sorted its rows starting with the groups 
of property (a), i.e., prioritizing allocation in candidates with a high IA (7). Then, the 
sorting of the rows corresponding to candidates surrounded by the highest IA continued 
based on the groups of the highest NC values. The group of rows corresponding to 
candidates with high values of IA and NC was then sorted based on their highest 
minimum distance from existing veterinarians (fig. S1B). Finally, among the sorted 
rows, which correspond to candidates with the highest IA, NC, and farthest from 
existing veterinarians, we selected for the allocation the one whose catchment area 
presented the minimum average TTM. 

 
8. We allocated an additional veterinarian to this candidate, excluded it from the batch of 

candidates, and re-computed the coldspots maps. Then, we recorded the updated IA. 
 

9. We repeated steps (4) to (8) for all the remaining veterinarians to allocate in the country 
by using each time the updated version of the coldspots map. 
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Furthermore, in the nine countries inspected, we compared the results of scaling up 
veterinarians using the REA and the contiguity approach (i.e., approaches that re-compute 
coldspots iteratively) with two supplementary approaches that allocate all veterinarians at once. 
We based the first approach on the administrative division of a country, prioritizing the 
allocation in regions with the highest number of IA (“administrative approach”). The second 
approach assigned veterinarians randomly within a country (“random approach”). For the 
random approach, we repeated the scaling up for 100 Monte Carlo simulations to avoid 
selecting the candidates minimizing IA by chance. 
 
For each approach, including the 100 Monte Carlo allocations of the random approach, we 
calculated its performance in terms of isolated animals’ coverage (IAC) as follows: 
 

𝐼𝐴𝐶 (%) =
𝐼𝐴 − 𝐼𝐴𝐴𝑝𝑝𝑟𝑜𝑎𝑐ℎ

𝐼𝐴 − 𝐼𝐴𝑅𝐸𝐴
∙ 100 

 
Where IAREA is the number of isolated animals living in coldspots after allocating veterinarians 
through the REA, while IAApproach is the number of isolated animals living in coldspots after 
allocating veterinarians through the contiguity, the administrative, or the random approach. 
Then, we inspected the results of each approach through 10x10 km2 resolution KDE maps 
computed from the geographic coordinates of the supplementary veterinarians. Based on the 
results of these comparisons, we selected the fastest approach to achieving results like the REA 
and applied it in every country with coldspots of cattle, chickens, and pigs. 

Results 
 
AST Laboratories 
 
Between 2016 and 2018, less than 24 AST laboratories were in operation across Senegal, Sierra 
Leone, Gabon, Burkina Faso, and Malawi (Table 1 and fig. S2). Malawi was the country with 
the least AST laboratories per million inhabitants (0.8 lab /1,000,000), while Gabon was the 
one with the best coverage (8.5 labs / 1,000,000). The proportion of the population living more 
than 1 hour away from an AST laboratory was 72.2% in Sierra Leone, 65.9% in Burkina Faso, 
42.9% in Malawi, 34.5% in Senegal, and 33.9% in Gabon (fig. S3). The regions where this 
proportion was the highest (>99%) were Kédougou (Senegal), Northern (Sierra Leone), 
Ogooué-Ivindo (Gabon), Sahel (Burkina Faso), and Kasungu (Malawi). For candidates to be 
equipped with AST laboratories, the queries of the OSM database returned 354 candidates in 
Gabon, 944 in Sierra Leone, 1,129 in Senegal, 1,315 in Malawi, and 1,718 facilities in Burkina 
Faso (fig. S4). Of these candidates, more than 97% in each country were classified as hospitals. 
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Table 1. Yellow columns report the existing laboratories for antimicrobial susceptibility 
testing and the initial population living within 1 hour of travel time from these 
laboratories. Orange columns report the 5% additional health facilities to be equipped 
with laboratories and the supplementary population that this increase would cover. 
Green columns report the total number of laboratories after increasing their numbers 
and the total population covered in the country. Percentages next to the number of 
laboratories represent the proportion of health facilities in the country equipped for 
antimicrobial susceptibility testing. 
 
Country Existing Initial Supplementary Supplementary Total Total   
 laboratories population covered laboratories (5%) population covered laboratories population covered 
Senegal 22 (1.98%) 10,947,489 (65.5%) 55 (4.96%) 3,346,472 (20%) 77 (6.94%) 14,293,961 (85.5%) 
Sierra Leone 7 (0.74%) 2,213,817 (27.8%) 47 (4.99%) 3,493,234 (43.9%) 54 (5.73%) 5,707,051 (71.7%) 
Gabon 17 (4.7%) 1,464,855 (66.1%) 18 (4.97%) 137,061 (6.2%) 35 (9.67%) 1,601,916 (72.3%) 
Burkina Faso 23 (1.35%) 7,134,605 (34.1%) 85 (4.97%) 6,917,820 (33.2%) 108 (6.32%) 14,052,425 (67.3%) 
Malawi 15 (1.13%) 10,925,221 (57.1%) 66 (4.96%) 7,111,551 (37.2%) 81 (6.09%) 18,036,772 (94.3%) 

 
The analyses performed in AccessMod led to identifying the 5% of candidates to be equipped 
for AST covering the highest proportion of the population. The geographic distribution of these 
candidates varied among countries (Fig. 1A). 
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Fig. 1. Where to increase access to laboratories for antimicrobial susceptibility testing? 
(A) Locations of the existing health facilities with antimicrobial susceptibility testing 
laboratories (green dots) and the locations of the 5% of candidates (see “Methods”) to be 
equipped for antimicrobial susceptibility testing to maximize access to them within 1 hour of 
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travel time (gray dots). In addition, the maps report the density per km2 of all the laboratories 
(including the ones available before equipping additional candidates). (B) Cumulative 
population that obtained access to laboratories within 1 hour of travel time under a 5% increase 
in candidates to be equipped for antimicrobial susceptibility testing. The green area represents 
95% of the population with access to laboratories within 1 hour of travel time after equipping 
5% of candidates for antimicrobial susceptibility testing. The red line indicates the number of 
health facilities necessary to reach this target. The red area represents the remaining 5% of the 
population that obtained access to the laboratories. 
 
In Senegal, the highest density of supplementary health facilities to be equipped for AST was 
identified in the Western part of the country. In Sierra Leone and Burkina Faso, the highest 
density was in the Central part of the countries, while for Malawi and Gabon in the Southern 
and Southwestern parts, respectively. The regions with the highest candidates to be equipped 
for AST were Saint-Louis and Tambacounda (Senegal), Northern and Eastern (Sierra Leone), 
Haut-Ogooué and Ngounié (Gabon), Boucle du Mouhoun and Centre-Nord (Burkina Faso), 
and Mzimba and Lilongwe (Malawi) (fig. S5). The regions with the highest population covered 
were Tambacounda (Senegal), Northern (Sierra Leone), Ngounié (Gabon), Boucle du 
Mouhoun (Burkina Faso), and Kasungu (Malawi).  
 
Overall, a 5% increase in candidates to be equipped for AST increased the population covered 
by 43.9% in Sierra Leone, 37.2% in Malawi, 33.2% in Burkina Faso, 20% in Senegal, and 
6.2% in Gabon (Table 1). In absolute terms, this increase ranges from the ~130,000 people 
covered in Gabon to the ~7 million covered in Malawi. Across all countries, the resulting 
population covered was ~21 million, comparable to the population of Zambia. 
In addition, we tried to understand if selecting fewer candidates than the national 5% could 
cover at least 95% of the population covered with the whole 5% of candidates. This translates 
into saving resources when the gains in population covered with supplementary laboratories 
are small. For this reason, we inspected the cumulative population covered by each of the 
candidates selected by the REA. Specifically, increasing the proportion of candidates to be 
equipped for AST by 2.8% in Senegal, 2.4% in Sierra Leone, 2.3% in Gabon, 3.2% in Burkina 
Faso, and 1.7% in Malawi, was sufficient to cover 95% of the population covered using the 
whole 5% of supplementary candidates to be equipped for AST (Fig. 1B). For each country, 
this translated in saving an average of 26.8 candidates to be equipped for AST. 
 
Veterinarians 
 
The contiguity, the administrative, and the random allocation approaches were applied in the 
nine countries (Kenya, Panama, Ecuador, Liberia, Eritrea, Honduras, Nicaragua, Costa Rica, 
and Cambodia) and compared with the “optimal solution”, the REA (Fig. 2). The contiguity 
approach performed best and reached >90% of the animal population covered by the REA 
when scaling up the number of veterinarians by 5%. In addition, the contiguity approach was, 
on average across each country, 20 times faster than the REA (Fig. 2 and Table S1). In contrast, 
the administrative and the random approach covered, on average, 35.1% and 42.5% of the 
animal population covered by the REA (average range of this value across all the MC 
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simulations for the random approach: 23.3%-63.4%). Furthermore, in the nine countries 
selected, the KDE maps values computed from the veterinarians allocated by each approach 
showed that the administrative and the random approach allocated veterinarians to candidates 
different from the ones selected by the REA. In contrast, the patterns of the veterinarians 
allocated through the contiguity approach corresponded to the ones of the REA (fig. S6). As a 
result, the average Pearson correlation coefficient computed between the values of each KDE 
map of the REA and the contiguity approach was 0.96 (95% bootstrapped CIs: [0.94, 0.97]). 
Therefore, the contiguity approach was applied to all countries with coldspots to generate a 
global map of supplementary veterinarians (fig. S7). 



 
Fig. 2. Comparison of allocation approaches for veterinarians between different countries and food animal species. The curves represent 
the decrease of food animals living in coldspots for each additional veterinarian allocated to a country through the recursive exhaustive approach 
(red dots) and the contiguity approach (orange dots). Since the administrative and the random approaches are not iterative, the graphs report a 
single dot (administrative) and a boxplot (because of the 100 Monte Carlo simulations of the random approach) to represent their performance. 
The performance of each approach for improving access to care (IAC, see “Methods”) is reported in brackets, and it represents the percentage of 
food animals brought within 1 hour of travel time from a veterinarian out of the total brought by the recursive exhaustive approach. 



Globally, a 5% increase in the number of veterinarians through the contiguity approach could 
reduce the coldspots area by 6,600,000 km2 (comparable to 85% of the size of Australia, fig. 
S8) and reduce the number of animals in coldspots by 26.9% for cattle, 34% for chickens, and 
44% for pigs (fig. S9). Together, these food animals correspond to 89% of the LSUs of Mexico. 
The continents where the contiguity approach removed the highest number of food animals 
from coldspots were Asia (11%) and Latin America (8.6%). Furthermore, for each species, all 
the allocations performed at the national level were merged into a unique dataset and the 
coordinates of the top 1,000 veterinarians that covered the highest animal population were 
extracted. The geographic pattern of these supplementary veterinarians showed the areas where 
to prioritize the increase of veterinary capacities (Fig. 3A). 
 

 
Fig. 3. Where to increase veterinary capacities. (A) Global maps of the regions that 
concentrate a 5% global increase in veterinarians to reduce coldspots of veterinary care (see 
“Methods”) for cattle, chickens, and pigs. (B) Countries where veterinarians could be added to 
maximize the number of animals living within 1 hour of veterinary care, grouped by continent. 
 
Countries that would concentrate the increase (5%) in the global number of veterinarians if 
these were targeted geographically were China (39.2%), Brazil (20.2%), Myanmar (5.6%), 
Venezuela (4%), and Russia (3.8%) (Fig. 3B). At the sub-national level, the regions that would 
concentrate the increase in the global number of veterinarians for cattle (fig. S10) were Mato 
Grosso, Rio Grande do Sul, Pará, and Goiás (Brazil), Xizang, Qinghai, and Yunnan (China), 
Mahajanga (Madagascar), Central Darfur (Sudan), Zinder (Niger), Kalmyk and Orenburg 
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(Russia), and Queensland and Northern Territory (Australia). For chickens (fig. S11), the 
regions identified were Mato Grosso (Brazil), Cochabamba and Santa Cruz (Bolivia), Durango 
(Mexico), Jilin, Yunnan, Nei Mongol, and Guangxi (China), Antsiranana (Madagascar), 
Northern Cape (South Africa), Zinder (Niger), Stavropol and Leningrad (Russia), New South 
Wales (Australia) and West Coast (New Zealand). For pigs (fig. S12) the regions were Mato 
Grosso and Parà (Brazil), Sonora (Mexico), Yunnan, Guizhou, Sichuan, and Guangxi (China), 
Gaza and Tete (Mozambique), and Omsk and Tatarstan (Russia). 

Discussion 
 
In this study, we estimated travel times to AST laboratories and veterinarians. The aim was to 
calculate the impact of a hypothetical 5% increase in the national health facilities to be 
equipped for AST and in the national veterinary capacities on the population living within 1 
hour of travel time from these health services. First, the 5% threshold aimed at evaluating the 
positive impact of a modest increase in resources (a common situation in LMICs) on the 
population brought within reach of health services. Second, considering a 1-hour timeframe 
was a convenient benchmark for its easy interpretability and its comparability with the “golden 
hour” used in human medicine. However, while a 1-hour timeframe has been used in the 
context of trauma care for humans, it is important to note that this is not a universally 
recognized standard. The optimal timeframe for intervention can vary significantly based on 
the specific medical condition (59). For example, it is suggested that patients with severe 
hemorrhage require surgical intervention within 20 minutes from the event causing the 
hemorrhage (60), while a 2-hour timeframe is a commonly acknowledged critical time for 
obstetric emergencies (61). Another example is represented by people in need of antivenoms 
for snakebites. In their study, Ochoa and colloeagues used travel time intervals to access 
facilities with antivenoms of 0-30 minutes, 30-60 minutes, and >60 minutes if the neurotoxic 
effects of snakes’ venom have, respectively, severe, moderate, and mild risk of mortality (20). 
Our choice of a 1-hour timeframe is therefore an initial attempt to evaluate the lack of access 
to health services, which might differ for specific health issues of the populations considered 
in this study. 
 
Travel time scenarios can also change based on the directionality of movements, influenced by 
the topography of the areas considered for the accessibility analyses. In our case studies, we 
focused on people traveling toward AST laboratories and veterinarians traveling toward 
animals, assuming in both cases an isotropic movement. This implies that we did not 
incorporate DEM maps into our accessibility models in either case. This choice depends on the 
nature of the friction surfaces used in our study, which assume walking as the primary mode 
of transportation only up to the nearest roads where motorized vehicles are available, without 
time delays in accessing such vehicles (20). Therefore, for motorized traveling, variations in 
slopes caused by natural and artificial hills, as well as other physical barriers, are assumed to 
have no impact on the overall travel time when heading towards a health service or the 
population to be served. Further investigations, including DEM models for areas where 
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walking is the sole movement option for long distances, could enhance the precision of our 
travel time maps. 
 
In addition, the population coverage could differ based on the choice of the friction surface. 
For instance, in the study for scaling up veterinary capacities, we used a global friction surface 
at the resolution of 1 km2 (48) to estimate travel time between veterinarians and food animals. 
An area of 1 km2 could include more than one road with different traveling speeds that are 
consequently merged to obtain a single value of time cost to cross each pixel. Generally, this 
cost is associated with the one of the paths that can be traveled the fastest (62). However, a 
limitation of this approach is the underestimation of the time required to reach populations 
reachable only through roads with traveling speeds lower than the one assigned to a friction 
surface pixel containing also high-speed roads. For this reason, different research groups 
produce their friction surfaces for the specific objectives of their accessibility analyses, for 
example at the resolutions of 100 m2, 30 m2, and 20 m2 (20, 63, 64). Friction surfaces with 
these resolutions can produce catchment areas whose shape matches the one of the road 
networks, leading to more precise travel time maps. Similarly, high-resolution friction surfaces 
can better represent areas where walking is the only traveling option, and also adapt walking 
scenarios for a specific analysis, as shown by Watmough and colleagues for parents walking 
with children that are slower than the average walking pace (5 km/h) (63). Since the case study 
about AST laboratories was focused on a national-level, we could use the high-resolution 
friction surfaces available for the countries investigated. However, to the best of our 
knowledge, high-resolution global friction surfaces to be used in the case study about 
veterinarians are not yet available, and they might be associated with prohibitive computational 
costs if they did exist on a global scale. Future research efforts could focus both on producing 
high-resolution friction surfaces for every country and speeding-up the calculation of travel 
times to produce coldspots maps associated with detailed catchment areas. 
 
For identifying the health facilities to be equipped for AST, we used the software AccessMod 
to test every candidate and then select the ones covering the largest population (REA, see 
“Methods”). This approach was instrumental to understanding when the marginal benefits of 
increasing access to AST laboratories plateaued (Fig. 1B). In every country analyzed (Senegal, 
Sierra Leone, Gabon, Burkina Faso, and Malawi) the REA showed that, on average, increasing 
the number of health facilities to be equipped for AST by 2.5% would account for 95% of the 
population covered under a 5% increase in health facilities equipped for AST (Fig. 1B). This 
could have important implications in countries where resources are limited, and help decision-
makers to allocate them in high-priority areas (65). Nevertheless, the REA can be 
computationally expensive when the scale of the study increases. For increasing health 
facilities to be equipped for AST, only 5,460 candidates across five countries were tested.  
 
In contrast, scaling up of veterinary capacities required to evaluate >250,000 candidates, 
~42,000 of which were just in China and Brazil. For this reason, we developed an 
approximation of the REA to increase the number of veterinarians in each country with 
coldspots. As with the REA, the contiguity approach prioritizes candidates where a 
supplementary veterinarian covers the highest animal population. However, this approach 
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samples information about food animals that are lacking access to care directly in areas in the 
proximity of each candidate. For this reason, we could avoid calculating the catchment areas 
for each candidate and the population they can serve, making the scaling up through the 
contiguity approach faster than the scaling up using the REA. 
Although this approach could be helpful to support the scaling-up of veterinarians during time-
sensitive health issues, veterinarians are rarely involved in emergency medicine where travel 
time is critical for the survival of food animals. While travel times lower than 1 hour can be 
used as a proxy to evaluate the degree of access to care, it is worth mentioning that most 
veterinary interventions are of  preventive nature. Therefore, understanding the broader context 
of veterinary care and its predominantly preventive focus is essential in guiding the 
implementation of scaling-up strategies. 
 
As a result, the contiguity approach covered a similar animal population of the REA, but it was, 
on average, 20 times faster across the countries where we compared the two approaches (Fig. 
2 and Table S1). Furthermore, scaling up approaches that are geographically targeted as the 
REA and the contiguity approach showed that small increases in the national health services 
can result in a high proportion of the population covered (Table 1). This finding can help 
identify regions that could carry a high “return on investment” to limit the number of people 
living far from AST laboratories and food animals living far from veterinarians. In addition, 
both case studies provided evidence that increasing health services evenly by administrative 
division can lead to less population covered than using geographic approaches targeting 
directly the population not covered (66). For example, in Kasungu (Malawi), only 2 candidates 
(out of 66 available) were chosen to be equipped for AST. However, they were sufficient for 
covering the highest population among all country regions. A similar situation was observed 
in Tambacounda (Senegal). This result was also confirmed in the case study about 
veterinarians, where the administrative approach always covered fewer food animals than the 
contiguity approach. 
 
Investigation into individual animal species showed that the contiguity approach removed 
26.9% of the world’s cattle, 34% of chickens, and 44% of pigs living in veterinary coldspots. 
This result is a low-hanging fruit to improve the livelihood of the 1.3 billion people who rely 
on food animals for sustenance (67), improve animal welfare (68), and strengthen surveillance 
against potentially pandemic pathogens. East and Southeast Asia are the regions that would 
benefit the most from increased access to veterinary care for chickens and pigs. Such regions 
were prioritized by the contiguity approach because, according to the GLW4, they are among 
the ones with the highest density of chickens and pigs in the world (50). For cattle, Brazil 
resulted to be the country with the highest priority for supplementary veterinarians. However, 
a lack of access to care for the animals in this country could also depend on an overall lack of 
incentives for health workers to move to rural areas (69), rather than a shortage of veterinary 
capacities. 
 
Unlike for veterinarians, the increase in AST laboratories showed that the distribution of the 
initial supplementary laboratories (Fig. 1, black dots) was not concentrated in specific regions. 
This underscores the widespread shortage of AST laboratories in many African countries (13, 
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70). Therefore, the first health facilities selected by the REA to be equipped for AST 
established a first robust network of laboratories, rather than simply enhancing an existing one. 
This is confirmed also by the population covered in some regions (fig. S3 and S5). For instance, 
in Burkina Faso, the Est region has ~500,000 more inhabitants than the Sahel region. However, 
in the Est region, fewer candidates were equipped for AST, and fewer people were covered 
than in the Sahel region, suggesting that the Est region has fewer candidates to evaluate for the 
scaling up analysis. Although beyond the scope of our study, these results suggest that efforts 
of international funders should also be directed to strengthening the overall network of health 
facilities available in Africa before equipping them for AST (7). When dealing with 
accessibility, this means considering also other aspects of the multifaceted challenge of access 
to care. In this context, travel time represents only one of its dimensions, which are represented 
by the costs to equip new laboratories, the availability of trained personnel, and regulatory 
hurdles. 

Limitations 
 
As for any modeling study, our analysis comes with limitations. First, due to restrictions on the 
granularity of the data shared by the African Society for Laboratory Medicine, the number of 
AST tests conducted by each laboratory could not be considered to assign them different 
“treatment capacities”. Similarly, for veterinarians, we could not access the number of 
veterinarians sharing the same practice location and being able to travel to multiple coldspots. 
Second, addresses of veterinarians working exclusively for government or private companies 
might not be available on online platforms, which could result in an underestimation of the true 
number of veterinarians, and hence a different distribution of veterinary coldspots. In addition, 
all locations of veterinarians used to calculate coldspots have been predicted through geospatial 
models, and hence such predictions are associated with a degree of uncertainty (see Chapter 
3). Third, the need for supplementary veterinarians for cattle in Brazil (Fig. 3) might depend 
on their limited presence on online registries that we used to outline their distribution (see 
Chapter 3). This could depend on the fact that veterinarians who have as sole clients a single 
large farm – a common business structure in Brazil (71) – may have little incentive to register 
on online platforms. Finally, the population covered by increasing the number of AST 
laboratories may vary depending on the source used for the human population map. In such a 
context, Hierink and colleagues showed that differences in accessibility could exceed 70% in 
large and sparsely populated administrative units (43). Therefore, future research efforts could 
compare the accessibility to AST laboratories when using population maps provided by 
services different from WorldPop, like LandScan (72) and Gridded Population of the World 
(73). Similarly, for countries where high-resolution friction surfaces (e.g., ≤100 m2) are 
available, comparing the travel time maps that can be calculated through such friction surfaces 
could highlight differences in terms of population coverage and support the development of 
more accurate and harmonized friction surfaces. 
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Supplementary materials 
 

 
Fig. S1. Intermediate steps of the contiguity approach. (A) We defined a catchment area 
(74, 75) by subtracting from the initial map of coldspots, i.e., 10x10 km2 pixels where food 
animals were farther than 1 hour of travel time from the nearest veterinarian, the updated map 
of coldspots obtained after the allocation of 1 supplementary veterinarian (white dot). The blue 
area left shows the extension of the catchment area affected by a reduction in travel time. By 
considering the external perimeter of the catchment area we calculated its average radius (𝑟̅, 
white segment) and repeated this operation for 100 catchment areas defined from randomly 
selected candidates. 
(B) The map of existing veterinarians reports two supplementary veterinarians that can be 
selected for a new allocation through the contiguity approach. Besides prioritizing areas with 
a high number of food animals living in coldspots, the approach also evaluates which 
veterinarian to allocate is the farthest from veterinarians already present in the country. For this 
reason, the approach calculates the minimum distance of each candidate from predicted 
veterinarians and then gives priority to the one for which this distance is the highest. In our 
example, the minimum distance D1 is bigger than D2 and hence the veterinarian in the North 
of Kenya (D1) will have allocation priority on the one in the South. 
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Fig. S2. Distribution of health facilities in 5 African countries. The dots represent health 
facilities (hospitals and diagnostic laboratories) equipped (green dots) and not equipped 
(yellow dots) for perform antimicrobial susceptibility testing in (A) Senegal, (B) Sierra Leone, 
(C) Gabon, (D) Burkina Faso, and (E) Malawi. The coordinates of the equipped health facilities 
were downloaded from the 2023 country reports produced within the “Mapping Antimicrobial 
Resistance and Antimicrobial Use” (MAAP) project (25), while the coordinates of not 
equipped health facilities were downloaded from OpenStreetMap (OSM) (41). 
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Fig. S3. Population with access to existing laboratories. Green dots represent the health 
facilities with laboratories for antimicrobial susceptibility testing in Senegal, Sierra Leone, 
Gabon, Burkina Faso, and Malawi, as reported by the 2023 country reports of the “Mapping 
Antimicrobial Resistance and Antimicrobial Use Partnership” project (25). The blue shades 
represent the proportion of the human population, grouped by region, with access to such 
laboratories within 1 hour of travel time. 
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Fig. S4. Typology of health facilities. Typologies of health facilities that can be equipped with 
laboratories for antimicrobial susceptibility testing (i.e., hospitals and diagnostic laboratories) 
downloaded from OpenStreetMap (41). 
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Fig. S5. Supplementary laboratories and population covered per region. Shades of green 
correspond to the proportion of health facilities equipped for antimicrobial susceptibility 
testing out of the 5% supplementary health facilities to be equipped in each country. 
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Fig. S6. Kernel Density Estimation maps of the allocated veterinarians. 
The maps show the coordinates of the veterinarians allocated in the countries reported in Fig. 
2. For each country-level panel, the dots represent the 5% of the supplementary veterinarians 
present in a country and allocated through the administrative approach (upper-left), random 
approach (upper-right), contiguity approach (bottom-left), and exhaustive approach (bottom-
right). For the definition of each approach, see “Methods”. The red patterns represent the 
density of supplementary veterinarians at each grid cell of ~10x10 km2. The sets of dots chosen 
for the allocations performed with the random approach correspond to the Monte Carlo 
simulations that returned the median value of the proportion of food animals brought within 1 
hour of travel time from a veterinarian with every simulation. 
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Fig. S7. Veterinarians allocated through the contiguity approach. Example of two 
countries with coldspots, i.e., 10x10 km2 pixels where food animals were farther than 1 hour 
of travel time from the nearest veterinarian, where we compared the point pattern of 
veterinarians observed (green, see Chapter 3), veterinarians predicted (pink, see Chapter 3), 
and the 5% of supplementary veterinarians allocated through the contiguity approach (dark red, 
see “Methods”). 
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Fig. S8. Change of global coldspots upon the allocation of veterinarians. The maps report 
the change of countries’ coldspots, i.e., 10x10 km2 pixels where food animals were farther than 
1 hour of travel time from the nearest veterinarian (see Chapter 3 for the initial coldspots maps). 
Red areas represent the coldspots removed by a 5% scaling up of the veterinarians available 
per country through the contiguity approach (see “Methods”).  



 145 

 

 
Fig. S9. Food animals removed from coldspots through the contiguity approach. The bars 
correspond to the Log10 number of cattle, chickens, and pigs removed from coldspots, i.e., 
10x10 km2 pixels where food animals were farther than 1 hour of travel time from the nearest 
veterinarian, by allocating a supplementary 5% of the available veterinarians per country 
through the contiguity approach (see “Methods”) 
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Fig. S10. Top 100 regions with the highest number of cattle removed from coldspots. The 
bars represent the top 100 regions, grouped by continent, with the highest number of cattle 
removed from coldspots, i.e., 10x10 km2 pixels where food animals were farther than 1 hour 
of travel time from the nearest veterinarian, after the allocation of supplementary veterinarians 
through the contiguity approach (see “Methods”). The ISO3 of the countries to which each 
region belongs is reported in brackets. 
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Fig. S11. Top 100 regions with the highest number of chickens removed from coldspots. 
The bars represent the top 100 regions, grouped by continent, with the highest number of 
chickens removed from coldspots, i.e., 10x10 km2 pixels where food animals were farther than 
1 hour of travel time from the nearest veterinarian, after the allocation of supplementary 
veterinarians through the contiguity approach (see “Methods”). The ISO3 of the countries to 
which each region belongs is reported in brackets. 
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Fig. S12. Top 100 regions with the highest number of pigs removed from coldspots. The 
bars represent the top 100 regions, grouped by continent, with the highest number of pigs 
removed from coldspots, i.e., 10x10 km2 pixels where food animals were farther than 1 hour 
of travel time from the nearest veterinarian, after the allocation of supplementary veterinarians 
through the contiguity approach (see “Methods”). The ISO3 of the countries to which each 
region belongs is reported in brackets. 
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Table S1. Run times of the approaches for scaling up veterinarians. Run time, in hours, of 
the scaling up approaches defined for the case study about the accessibility to veterinarians. 
Each approach was compared in nine countries (see “Methods” and Fig. 2). 
Country REA Contiguity Administrative Random REA/Contiguity 
Kenya 26.6 0.394 0.0057 0.009 67.5 
Ecuador 12.3 0.283 0.0051 0.04 43.5 
Cambodia 7 0.237 0.0007 0.02 29.5 
Nicaragua 1.7 0.103 0.0007 0.02 16.5 
Liberia 1.1 0.226 0.0003 0.01 4.9 
Honduras 0.7 0.143 0.0005 0.02 4.9 
Panama 0.2 0.026 0.0008 0.02 7.7 
Eritrea 0.2 0.081 0.0033 0.05 2.5 
Costa Rica 0.1 0.031 0.0151 0.02 3.2 
Average 5.5 1.7 0.003 0.03 20 
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Chapter 5 

Open-access approaches during the COVID-19 pandemic: 
mapping healthcare resources and hotspots of infections 
 
During the COVID-19 pandemic, it became evident that ensuring open-access to health data 
was crucial to support scientific advice for decision-making. As a member of the Health 
Geography and Policy Group (HEGEP), with a primary focus on mapping infectious diseases 
at a global scale, my work took a significant shift during this period. In recognition of the 
urgency and importance of the situation, from March 2020 until November 2020 I halted my 
ongoing projects to contribute to scientific outputs to inform decisions makers in Switzerland. 
The following paragraphs explain my contribution to the two scientific papers presented in this 
chapter. 

Online platform to forecast intensive care units occupancy 
 
One of my initial contributions involved collaborating with my research group to develop the 
open-access platform icumonitoring.ch. The objective of the platform was to map the intensive 
care unit (ICU) occupancy in Switzerland at the regional-, cantonal-, and hospital-level. It was 
programmed in the R language, using the functions of the shiny package (1), which translates 
the R code into HyperText Markup language (HTML) to be displayed on every internet 
browser. JavaScript and CSS languages were used to curate the aesthetics of the platform and 
format it into a dashboard. icumonitoring.ch was conceived to automatically display the regular 
updates of statistical models forecasting ICU occupancy, COVID-19-related deaths, positive 
COVID-19 cases, hospitalizations, and availability of ventilators. These outputs were 
displayed through geographical choropleth using the functions of the R package leaflet (2) for 
an instant overview of hospitals, cantons, and regions with a saturation of ICUs. 
 
Since all these outputs had to be updated on a bi-weekly basis, the architecture of the platform 
was developed to automatically access databases stored remotely on cloud services. 
Specifically, icumonitoring.ch constantly communicated with two cloud services for accessing 
and storing data on remote servers: 
 

1. polybox. This cloud service is maintained by the IT department of the ETH Zürich. 
Access to polybox is available (and encrypted) for every member of the university. 
During the pandemic, access was granted also to the members of the Information and 
Operation System (IES) that inventoried restricted-access datasets (updated twice a 
day) containing information about the ICU occupancy of every Swiss hospital. In 
addition, polybox was also used to store open-access data updated on the online 
repository OpenZH (3), which provided information on COVID-19 cases, deaths, 
hospitalizations, and availability of ventilators at the cantonal level. These datasets 
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were then used as inputs for the statistical models developed by other HEGEP 
members to produce bi-weekly forecasts of these same variables. 

 
2. Amazon storage service (S3). The cloud service of Amazon can communicate with 

platforms developed using the R programming language through the R package 
aws.s3 (4). The S3 service was used to store all the information that could be displayed 
online, as the tables and figures produced by the statistical models used for the 
forecasts. These outputs were automatically updated on S3 and accessed each time 
icumonitoing.ch was launched by the users. In this way, the platform could operate 
autonomously, loading only the most updated tables and figures available inside S3. 

 
In addition, icumonitoring.ch was equipped with an authentication system to keep the hospital-
level data provided by IES confidential. This measure ensured that the relevant authorities 
retained control over patient flow management in each hospital, preventing platform users from 
choosing where to be hospitalized, and potentially contribute to the imbalance in ICU 
occupancy. For this reason, in the user interface of icumonitoring.ch, we included a panel to 
input username and password. Upon the input of credentials, this information unlocked the 
download of hospital-level data from the encrypted remote storage service (S3) and displayed 
them in the user interface of the platform. 
 
Once operational, icumonitoring.ch was updated on the cloud service provided by 
shinyapps.io, which is one of the products available within the R environment. This service 
allowed us to customize settings for the expected performance and scalability of the platform. 
Specifically, we defined settings to provide simultaneous access to the platform and enable 
navigation up to >2,500 users (at peak, the platform received 7,818 visitors in one day). After 
the development stage, icumonitoring.ch was supported by armasuisse, the procurement branch 
of the Swiss Armed Forces (5), and it was used daily for managing ICU occupancy in 
Switzerland until March 2022. The platform in presented in the first publication of this chapter.  

Daily geocodings of COVID-19 hotspots 
 
At the request of the FOPH, I was involved in another project to produce daily hotspots maps 
of COVID-19 cases in Switzerland. For this task, I used the R programming language to 
develop a script for geocoding new daily cases of COVID-19 in the country using Google’s 
geocoding Application Programming Interface (API) available from the R package ggmap (6). 
As for the icumonitoring.ch project, a database of COVID-19 cases was updated daily inside 
the polybox storage service by members of the FOPH. Then, using the cronjobs functionalities 
of a Linux-based operative system (7), the R script was scheduled to run on our local server 
twice per day. At each run, the script automatically mixed the database with addresses of new 
COVID-19 cases with a database of random addresses of shops and restaurants sampled all 
over Europe through OpenStreetMap. This step, known as “anonymization by dilution” was 
crucial to prevent potential hacks in the Google API framework to rebuild the databases of 
COVID-19 patients in Switzerland. This daily routine enabled us to obtain precise coordinates 
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(longitude and latitude expressed in decimal degrees) of COVID-19 positive cases. The 
database was a foundational component in the creation of daily national maps to identify 
COVID-19 hotspots across Switzerland. This information, summarized in reports that my 
supervisor (Prof. Thomas Van Boeckel) disseminated with members at the FOPH (8), was used 
to monitor and identify areas at high risk of new infections, thereby facilitating targeted public 
health interventions and resource allocation (if deemed necessary by the competent 
authorities). 
 
My work in geocoding COVID-19 cases did not stop at the identification of hotspots of 
COVID-19 infections. All the geocodings we performed were included in a database of >2.5 
million COVID-19 tests performed in Switzerland between March 2020 and February 2021. 
This database was used in a broader study that assessed the number of hospitalizations, ICU 
admissions, deaths, and the number of COVID-19 tests performed across different 
socioeconomic strata of the Swiss population (Swiss-SEP) (9). This analysis led by Dr. Julien 
Riou and Prof. Matthias Egger at the University of Bern highlighted socioeconomic disparities 
in healthcare outcomes during the pandemic, underscoring the pressing need to enhance them 
in the poorest neighborhoods of the country. The findings of this analysis, to which I 
contributed geocoded COVID-19 cases, is presented in the second paper of this chapter. 

Contribution remarks 
 
My involvement in these two projects was mostly dedicated to operational support in 
developing and maintaining a framework to openly share outputs that would support decision-
makers during the pandemic. Although these projects were conceived to run automatically, 
their architecture had to be constantly updated and reviewed throughout the whole pandemic 
to address new incoming requests from the FOPH, the Swiss Armed Forces, and the Swiss 
National COVID-19 Task Force. For example, the formats of the databases used as inputs for 
both icumonitoring.ch and the geocoding routine of new COVID-19 cases were changed over 
time. This implied a parallel and rapid adaptation of all the scripts used to produce the outputs 
described in this chapter. 
 
However, the continuous updates made to the branches of these projects were essential in 
ensuring the relevance of the information provided to public health authorities throughout the 
pandemic. As a result, the daily forecasts provided by icumonitoring.ch and the maps of 
COVID-19 hotspots were widely disseminated, reaching not only the panel of scientific experts 
and decision-makers but also various media channels, such as the Swiss Radio and Television 
(SRF) (10, 11), and regional (12) and national newspapers (13), to inform a broader audience. 
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Abstract 
 
In Switzerland, the COVID-19 epidemic is progressively slowing down owing to ‘social 
distancing’ measures introduced by the Federal Council on March 16th. However, the gradual 
ease of these measures may initiate a second epidemic wave, for which length and intensity are 
difficult to anticipate. In this context, hospitals must prepare for a potential increase of patient 
admissions with acute respiratory distress syndrome in intensive care units. Here, we introduce 
icumonitoring.ch, a platform providing hospital-level projections for intensive care unit 
occupancy. We combined current data on the number of beds and ventilators with canton-level 
projections of COVID-19 cases from two S-E-I-R models. We disaggregated epidemic 
projection in each hospital in Switzerland for the number of COVID-19 cases, hospitalizations, 
hospitalizations in ICU, and ventilators in use. The platform is updated every 3-4 days and can 
incorporate projections from other modelling teams to inform decision makers with a range of 
epidemic scenarios for future hospital occupancy. 

Introduction 
 
The COVID-19 epidemic currently affecting Switzerland seems to progressively slow down. 
The inflection point of the epidemic curve of deaths [1] was passed on 06.04.2020, and thus 
far, the number of COVID-19 cases with acute respiratory distress syndrome (ARDS) needing 
an intensive care unit (ICU) admission or mechanical ventilation has not exceeded the ad hoc 
increase in ICU bed capacity and ventilator availability. However, the gradual ease of the 
lockdown measures that have been in place since 17.03.2020 [2] may initiate a second epidemic 
wave. As in other countries, there is currently considerable uncertainty about the true 
prevalence [3], [4] of COVID-19 in the Swiss population, and thus also about whether the 
country might achieve herd-immunity and if so, when. The absence of specific therapies against 
the SARS-CoV-2 virus responsible for COVID-19 and the difficulty to anticipate the effect of 
lifting lockdown measures on movement intensity [5], and future infection prevalence 
estimates [6] further contribute to this uncertainty. In this context, hospitals must prepare for a 
potential secondary increase in ICU admissions of unknown magnitude and duration. 
 
Since the onset of the COVID-19 outbreak, disease modelers have tried to anticipate the 
trajectory of the COVID-19 epidemic in Switzerland. Some have focused on long-term policies 
at the national scale [7–9] while others focused on capturing and forecasting the dynamics of 
COVID-19 in individual Cantons [6]. However, thus far, little attention has been placed on 
generating forecasts at the spatial level where most intervention can take place: hospitals, and 
specifically ICUs. During the same period, hospitals, health care facilities, government 
agencies, and the Swiss Armed Forces have reacted to the COVID-19 outbreak on a day-to-
day basis. For example, their actions consisted in expanding bed capacities [10], building 
stocks of personal protection equipment [11], or dispatching medical troops in support of 
hospitals [12]. Their actions have been guided by multiple surveillance efforts conducted in 
parallel by federal and cantonal authorities and professional health care societies. Amongst 
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these is the IES system managed by the Coordinated Sanitary Service (CCS). This system 
should provide bi-daily reports of the occupancy of emergency departments and hospital beds 
across the country. However, its use as a monitoring platform during the COVID-19 outbreak 
has proven difficult, due to slow, incomplete, and uneven reporting across hospitals. On 
14.03.2020, just 15 hospitals did effectively report their bed occupancy, as compared with 156 
hospitals on the 03.05.2020, after several measures were taken by the CCS in collaboration 
with the Swiss Society of Intensive Care Medicine (SSICM). In the coming weeks, resources 
available to attend to COVID-19 patients with ARDS will need to be optimally deployed 
(within and between ICU) to minimize the risk of overflow. 
 
At least three challenges must be addressed to generate reliable hospital-level projections that 
could help ICU managers to anticipate the need for additional resources. First, the IES system 
needs to be accurately and regularly documented. Second, projections from national and 
cantonal epidemic models must be downscaled at the hospital-level by making reasonable 
assumptions that reflect the situation experienced by clinicians. Third, the output of epidemic 
models must be summarized and rapidly transferred to clinicians in a format that is 
straightforward to inform management decisions in hospitals. 
Addressing the first challenge belongs to individual hospitals, which should ensure and control 
accuracy of IES collected data: models can inform decisions, but only reliable data can help 
modelers helping hospitals. For the second challenge, tools from the field of spatial analysis 
can be used to disaggregate information generated in polygons (Cantons) to individual 
hospitals (latitude/longitude coordinates) while accounting for the respective ‘catchment areas’ 
of these hospitals. These approaches have been used extensively in spatial epidemiology to 
study the treatment-seeking behavior of HIV patients on antiretroviral therapy [13], the 
allocation of bed nets against malaria [14], and access to emergency maternal care [15]. For 
the third challenge, the recent development of web-based applications enables a rapid display 
and update of model outputs using a simple web-browser. In particular, Shiny apps give users 
the possibility to query regions/hospitals interactively, and thus represent an improvement from 
static maps in ‘one-off’ publications. 
 
Here, we introduce icumonitoring.ch a platform of ICU bed occupancy forecasting for 
individual hospitals in Switzerland based on projections from two Canton-level epidemic 
models. Our framework is flexible, and projections from other modeling groups can be 
integrated using a ‘forecast template’. Due to confidentiality reasons, this article only presents 
aggregated results at the Canton-level. Access to projections for individual hospitals in 
icumonitoring.ch are available upon request to the communicating author; the password will 
be automatically issued for ICU healthcare workers. 

Methods 
 
Data 
Time series of hospitalization in intensive care units (ICU) in Switzerland as reported in the 
IES system were provided by the Swiss Armed Forces. This dataset consists in reports of ICU 
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bed occupancy for COVID19 and non-COVID19 patients in adults, and children. This 
database, which is updated twice a day, reports the number of patients in ICU beds, and the 
number of these beds equipped with ventilators. The number of Extracorporeal Membrane 
Oxygenation (ECMO) is comprised in the number of beds with ventilators. Importantly, this 
database contains an estimate of the number of SSMIC-certified ICU beds, as well as the 
number of ad hoc beds since the start of the COVDI19 outbreak. In some hospitals, the number 
of COVID-19 patients entered in the IES system was higher than the number total number of 
patients. Similarly, in some hospitals the number of ventilated COVID-19 patients was higher 
than the total numbers of COVID-19 patients. As these situations are de facto impossible, we 
assumed that the person who entered the data points considered COVID-19 not to be part of 
the pool of all patients, which it should. These inputs were corrected such as if the number of 
COVID-19 patients was higher than the total number of patients then the total number of 
patients was calculated as the sum the number of COVID-19 patients reported and the number 
of patients reported. If the number of ventilated COVID-19 patients was higher than the number 
of COVID-19 patients then the number or COVID-19 patients was calculated as the sum of the 
number of COVID-19 patients reported, and the number of ventilated COVID-19 patients 
reported. For hospitals that did not report on 03.05.2020, we used numbers (beds, patients, 
ventilators) provided for the last date of reporting available. 
 
Near real-time data on ICU length of stay, mortality has been collected using the RIsk 
Stratification in COVID-19 patients in the Intensive Care Unit (RISC-19-ICU) registry, a 
collaborative effort with the participation of a majority of the Swiss ICUs to provide a basis 
for decision support during the ongoing public health crisis. The registry was deemed exempt 
from the need for additional ethics approval and patient informed consent by the ethics 
committee of the University of Zurich (KEK 2020-00322, ClinicalTrials.gov Identifier: 
NCT04357275). The data were collected using a secure REDCap infrastructure provided by 
the Swiss Society of Intensive Care Medicine. As of 03.05.2020, 68.5% of critically ill patients 
with COVID-19 admitted to an ICU in Switzerland have entered the registry had already been 
dismissed from the ICU or have died. 
 
This analysis accounts for ‘patient disappearance’ from the IES system in Ticino (131 patients 
on 28.03.2020) at Clinica Luganese Moncucco and Ospedale Regionale di Lugano (42 patients 
on 01.04.2020), as well as in Vaud (148 patients on 25.03.2020) at Hôpital Riviera-Chablais, 
Centre hospitalier de Rennaz. These institutions seem to have either stopped reporting or 
transferred all of their patients on the dates mentioned above. In these hospitals, patients were 
removed from the IES system and did not reappear in other hospitals in the Canton. Media 
sources referred to only a very small number of patients from Ticino that were hosted in the 
German-speaking part of the country. We have attempted to gather information from ‘Clinica 
Luganese Moncucco’, but they declined to answer our questions regarding the number of 
patients in their ICU. We accounted for ‘patient disappearance’ by creating a ‘Hospital X’ in 
the two Cantons concerned. This adjustment is meant as a way to account for all active acute 
COVID-19 cases. 
 
Epidemic forecasting 
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CZ Model (adapted from Althaus et al.). We used an S-E-I-R model developed by Althaus and 
colleagues ([8], accessed April 24th, 2020) to model epidemics of COVID-19 in Swiss 
Cantons. The model assumed constant uncontrolled transmission until the soft lockdown 
measures on 17.03.2020 [16]. The basic reproduction number and the reduction in transmission 
after the soft lockdown were estimated using a maximum likelihood framework. Following the 
announcement from the Federal Council to ease lockdown measures from the 27th of April 
[17], the model assumes that contact would resume to 50% of their pre-lock level form that 
date.  The model was fitted to the reported numbers of deaths in 18 Cantons, where enough 
data on times series of death was available for parameter inference. The inference was done 
using Maximum Likelihood with the Nelder & Mead algorithm implemented in the function 
optim in the R statistical Software.The number of deaths until 28.04.2020 per Canton was 
retrieved at 21:00, 02.05.2020 from OpenZH [1]. The number of deaths on 03.05.2020 was 
incomplete and subject to future modifications and was therefore not used for the epidemic 
modeling. For each Canton, the model predictions included five categories: infected cases (IF), 
hospitalized cases (HS), ICU cases (IC), immune cases (IM), and death cases (DE). Infected 
cases were calculated as the sum of exposed cases, infectious cases, hospitalized cases, and 
ICU cases. In the remaining eight cantons (AI, GL, JU, NW, OW, SH, UR, ZG), models could 
not be fitted due to the lower number of deaths. There we calculated the model predictions in 
proportion to the number of COVID-19 cases reported in each of these Canton, in the last eight 
days. The model predictions in each Canton were adjusted, such that they summed up to the 
model predictions at the national level. The final outcome of the epidemic model prediction 
was an estimation of the number of IF, HS, IC, IM, and DE for each day in each Canton, as 
well as the 95% confidence intervals of the predictions. 
 
The equations used in the CZ model are listed below, with the descriptions and values of the 
notations in Table 1, and the descriptions of compartments listed in Table 2: 
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Table 1. Parameters descriptions, and values in CZ model. 
*Obtained for patients (n=382) included in the RISC-19-ICU registry supported by Swiss 
Society of Intensive Care Medicine (https://www.sgi-ssmi.ch). 
Parameters Description Value 

 Basic reproduction number fitted 
 Percentage of  after lockdown fitted 

 Serial interval 1/2.6 days [18] 

 Duration from onset of symptoms to hospitalization 1/5 days [19] 

 Initial hospitalization 1/6 days [19] 

 Additional days of hospitalization until recovery/death 1/10 days [19] 

 Additional days in ICU until recovery 1/11.2 days* 

 Additional days in ICU until death 1/10.5 days* 
 Rate of  admission of infected 3.5%4,5 [20, 21] 

 Hospitalized cases requiring critical care in ICU 30% [19] 

 Death outside of ICU 35%6 [8] 

 Death rate from ICU 23%* 

 
Table 2. States variables in model CZ, and model BT (epidemic compartments). 
Variable (model CZ) Variable (BT model) Description 
S S Susceptible 
E E Exposed 
I I  Infected 
H  H1 + H2 Hospitalized patients 
- H1 Initial hospitalization until transfer to ICU 
- H2 Addit. hospitalization until recovery/death 
U U ICU patients 
D D deaths 
R R Recovered 
C C cumulative number of infected 
- P infected but not yet hospitalized  
 
BT model. The second model used was an extended SEIR model which additionally includes 
the hospitalized and ICU patients. In the BT model, people who are infected by the virus are 
assumed to develop symptoms in 2 to 3 days but may be infectious in the community for 
another 2 to 3 days, adding up to a generation time of between 4 to 6 days (Ganyani et al. 
assumes 5.2 days). People who become sick are hospitalized at a proportion ranging between 
1% to 15%, where they are isolated, and thus are considered as non-infectious to the 
community. People who are admitted to the hospital are assumed to stay at the ward for 6-18 
days, and an additional 2-11 days if they need to stay in the ICU, which is the case for 30-80% 
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of hospitalized patients. The death rate in the ICU is assumed to be between 30-80%. The effect 
of the lockdown is assumed to vary between 60-80%. We assume a combined probability of 
positive diagnosis and detection for the infected patients to make use of the reported case data, 
and this probability varies between 0.05 to 0.35 (5%-35% of the total infected). Four different 
time series (number of daily deaths, number of daily reported cases, number of people at the 
hospital ward, and number of people at the ICU, obtained from OpenZH [1]) are used 
simultaneously to do the model fitting for each Canton separately. We used Hamiltonian 
Markov Chain Monte Carlo (MCMC) for model inference, as implemented in RStan [22]. 
Hundred chains with random initial parameter vectors are used with 10,000 jumps in total. The 
first 5000 jumps were considered for the ‘burn in period’, we used Geweke statistics on each 
chain to assess convergence, and chains were thinned with a sampling rate of 100 samples. As 
for the CZ model, the change in contact patterns resulting from the lockdown measures 
(16.03.2020), and their subsequent release (27.04.2020) are accounted for through a parameter 
reducing infection rates rlock. This parameter varied across Cantons from 0.57 (SZ) to 0.76 (BL) 
during the lockdown period (17.03.2020 – 27.04.2020). 
 
To calculate the time series output of the fitting, we include the mean values of the posterior 
distributions of 50% of the chains with the best likelihood output among the ones which have 
converged. Chains that haven't converged are omitted and not used in the analysis. Due to the 
high dimensionality of the parameter space, we used a mixed sampling approach: first, we 
determine the likelihood of each chain among the chains that have converged. Second, we 
sample from the posterior distributions of these chains proportional to the mean likelihood 
value they have converged to. Confidence intervals of the results are calculated for each time 
point over the population outputs. By allowing model parameters to vary in between these 
ranges, we have more freedom to fit our model to the number of daily deaths, number of people 
in the hospital ward, and the number of ICU patients simultaneously, in a Canton specific 
manner. This is especially important due to the differences in the treatment and ICU transfer 
policies of different Cantons and hospitals. As an example, restricting the ICU length of stay 
to a value that is necessarily smaller or larger than the length of hospital ward stay might not 
apply for all Cantons in question. For both models, the number of hospitalizations on 
03.05.2020 was estimated by back-casting from the model's output. 
 
The equations used in BT model are listed as following, with the descriptions and values of the 
notations in Table 3, and the descriptions of compartments listed in Table 2: 
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Table 3. Parameters descriptions, and values in BT model. All parameters fitted (except N). 
Parameters Description Value 

 Basic reproduction number 2-3 
 Time-dependent reduction in infectiousness 60-80% 

 Incubation period 1/2-3 days 
 Duration of infection of I  1/2-3 days 

 Duration of hospital ward stay 1/6-18 days 
 Duration of  stay 1/2-11 days 
 Rate of direct  admission of infected 1-15% 

 Transfer rate from  to  30-80% 
 Death rate from  30-80% 
 Diagnosis rate 5-35% 

N Population size by canton fixed 
 

 
Fig. 1. Canton-level fit of epidemic model CZ and BT in Vaud on 03.05.2020. Black shades 
describe 95% confidence interval, red dots are ICU occupancy as reported in the IES systems, 
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and blue dots are ICU occupancy as reported by OpenZH. The BT model is fitted to deaths and 
ICU occupancy times series from OpenZH, while the CZ models is fitted only to deaths. 
 
Uncertainty and forecasting capacities 
For the CZ model, we simulated 10,000 R0 and kappa values, from a multivariate normal 
distribution with mean values equal to the fitted values of R0 and kappa, and a covariance 
matrix estimated from the maximum likelihood estimation. The confidence interval for 
predictions in each canton was estimated, with the 2.5% and 97.5% quantiles of the 10,000 
predictions. The mean values of the cantonal predictions in the CZ model were adjusted, by 
multiplying with an adjustment ratio, such that they sum up to the model predictions at the 
national level. The upper and lower bounds of confidence intervals for each canton were 
adjusted, by multiplying with the same adjustment ratio that were applied to the mean values 
of model predictions in each canton. For the BT model, similarly, confidence intervals were 
calculated using the converged MCMC parameter estimates (posteriors) and extracting the 
2.5% and 97.5% quantiles of the predictions generated with these parameters’ values. 
 
Confidence intervals at the hospital-level were estimate from the cantonal-level 95% CI in a 
two-step procedure. First, we calculate the percentage of deviation between the upper/lower 
bound of the 95% CI and the mean number of cases, hospitalization, ICU hospitalizations, and 
deaths. Second these percentages of deviation were applied to the estimates of the same outputs 
downscaled at the hospital level based on population density and travel times (next section).  
For example, a hospital where 10 ICU beds were projected to be occupied and that is located 
in a Canton where the total number of ICU bed was 100 [95% CI 90-120] would have a 95% 
CI between 9 and 12 beds. 
 
The ability of our epidemic models to temporal projections 4 days ahead – the update frequency 
of icumonitoring.ch- was evaluated at the cantonal level by comparing projections and 
observations for the number of deaths and COVID-19 patients in ICU on the 03.04.2020 using 
a model calibrated on the 29.05.2020. The metrics used to evaluate the accuracy of projections 
the number of deaths, and the number of ICU cases were the spearman correlation coefficient 
between projections, and observations, as well as the average percentage deviation between 
projections and observation across Cantons. 
 
Geographic downscaling of epidemic projections in hospital 
In each hospital, we estimated the bed occupancy on 02.05.2020 as the sum of:  (i) the number 
of beds in use by non-COVID-19 patients, which was assumed to be stable since 29.04.2020, 
(ii) the number of ICU beds in use by COVID-19 patients that were admitted before 03.05.2020 
that remained in the ICU by 06.05.2020, and (iii) the number of new COVID-19 patients who 
required a bed in an ICU between 03.04.2020 and 06.05.2020. For (ii), we assumed an 
exponential survival function with a discharge rate equal to: α x LOSdeaths + (1-α) x LOSrecovered, 
where α is the mortality rate of COVID-19 patients in ICU (0.23), LOSdeaths is the length of 
stay for deceased COVID-19 patients (10.5 days), and LOSrecovered is the length of stay of 
patients that recover (11.2 days). For (iii), we spatially disaggregated the total number of ICU 
cases projected by Canton (see epidemic forecasting) minus (ii). Each future COVID-19 patient 
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requiring care in an ICU (iii) was assigned a latitude and longitude in each Canton via stratified 
random sampling inside the corresponding Canton. The weighting factor for the stratification 
was population density. Each case was assigned to the ‘nearest’ hospital, measured in travel 
time (minutes). We used a friction surface [23] to estimate travel times to hospitals. Based on 
each location, each case was assigned to a nearby hospital using a gravity model. The 
probability of having attended a hospital from any given pixel was given by: log10(ICU 
beds)/(travel timepixel->H), for hospital ‘H’. Each patient was assigned to the hospital with the 
higher probability of attendance.  This process was repeated 10 times through Monte Carlo 
simulations. The hospital that was selected with the highest frequency across the 10 simulations 
was designated as the hospital likely attended by a patient in the future. The number of patients 
on ventilators on 03.05.2020 was estimated by applying the current rate of ventilation of 
COVID-19 patients in an ICU (76%) to the future number of COVID-19 patients admitted in 
an ICU. 
 
Online platform 
All epidemic model outputs at the cantonal- and hospital-level are uploaded to an online 
platform icumonitoring.ch twice per week Sunday and Thursday evening. The platform is a 
‘Shiny’ [24] interactive application developed in the open-access R programming language 
[25] inside the RStudio Environment. In addition, we used JavaScript actions and CSS code to 
adjust aesthetic features of the platform into a dashboard. In its current version, 
icumonitoring.ch relies on the following dependencies: aws.s3 (0.3.21), grDevices (3.6.3), 
htmlwidgets (1.5.1), leaflet (2.0.3), RColorBrewer (1.1-2), readr (1.3.1), rgdal (1.4-4), shiny 
(1.4.0.2), shinydashboard (0.7.1), shinyjs (1.1), and tidyverse (1.3.0). icumonitoring.ch is 
hosted on a password-protected shinyapps.io server. The databases and model outputs 
displayed on the platform are stored on an encrypted storage service of ETH Zürich (polybox). 

Results 
 
As of 03.04.2020, the number of patients requiring an ICU bed in Switzerland was 713. This 
estimate is below the effective ad hoc ICU bed capacity in Switzerland (1,275). The number 
of patients requiring ICU beds (for COVID-19 and non-COVID-19 causes) is decreasing and 
unlikely to exceed the effective capacity in the next week. By 06.05.2020, we project that the 
need for ICU beds could range between 739 [CI 95% 669 - 871] (model CZ) and 761 [CI 95% 
541 - 1164] (model BT). As of 03.05.2020, 367 patients were ventilated in ICU, out of 1,064 
ventilators available. Assuming a ventilation rate of 76% for ICU COVID-19 patients, as 
reported on 03.05.2020, the number of ventilators required by 06.05.2020 could be 398 [CI 
95% 365 - 466] (CZ model) or 416 [CI 95% 295 - 658] (BT model). 
 
For the number of COVID-19 ICU cases, on 03.05.2020, the correlation between projections 
(4 days ahead) and observations by canton was 0.62, and 0.86 for the CZ and BT model 
respectively. The percentage deviation between projection and observation for the number 
COVID-19 ICU cases was   --16.7% for the CZ and -14.4% for the BT model. For the number 
of deaths, on 03.05.2020, the correlation between projections (4 days ahead) and observations 

file:///C:/Users/zhaoc/Dropbox/swiss_covid19/manuscript/icumonitoring.ch
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by canton was 0.99 for the CZ and the BT. The percentage deviation between projection and 
observation for the number of deaths was +2.14% for the CZ model and -0.4% for the BT 
model. 
 

 
Fig 2. Canton-level ICU occupancy, colors in other Cantons indicate ICU bed occupancy 
compared to the number of beds in service. Pop-up windows indicate the situation in the 
Canton of Bern as reported in icumonitoring.ch for 03.05.2020 and projected for 06.05.2020.  
 

 
Fig 3. Hospitals with ICU (yellow), and without ICU (grey). bed occupancy in individual 
hospitals set to 0 artificially but available upon request to the corresponding author (bottom). 
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Icumonitoring.ch disaggregates these findings by Canton, and by hospital. It is an interactive 
web application that displays Intensive Care Units (ICU) occupancy. Each geographic element 
(i. e. hospitals or cantons) can be interrogated via a pop-up window. The pop-up window shows 
the number of deaths attributed to COVID-19; the number of estimated COVID-19 infections 
(Cases); the number of ventilators available and used; the number of COVID-19 patients in 
ICU, and beds available; the total number of COVID-19 patients hospitalized (including ICU). 
Projections for these quantities are available 3-4 days in advance (02.05.2020) and re-calibrated 
every 3-4 days based on epidemic data. At the cantonal level, the pop-up window also provides 
a visual of the epidemic model fit to the time series of deaths in each Canton. The data presented 
in this article are aggregated at the Canton-level, but access to hospital-level information is 
available to healthcare workers upon request to the communicating author. icumonitoring.ch 
also provides a comparative summary of current and future bed occupancy, ventilators 
occupancy, and hospitalizations in each canton. 
 

 
Fig 4. Projection for ICU bed occupancy on 06.05.2020 ranked by Regions and Cantons 
(model CZ). 
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Table 4. On 06.05.2020, the number of hospitalizations, and ICU hospitalizations for COVID-
19 was projected to grow in 5 cantons and decline in 21 Cantons compared to 03.05.2020. On 
03.05.2020, the number of ICU hospitalizations was projected to grow in 7 cantons and decline 
in 19 Cantons compared to 03.05.2020. On 03.05.2020 the number of ventilators needed was 
projected to grow in 6 cantons and decline in 20 Cantons compared to 03.05.2020. 
 
 COVID-19 COVID-19 ICU Beds ICU Beds ICU Beds Ventilators Ventilators Ventilators 
Canton Hospitalizations Hospitalizations In service In use projected In service In use projected 
 03.05.2020 06.05.2020 03.05.2020 03.05.2020 06.05.2020 03.05.2020 03.05.2020 06.05.2020 
AG 39 36 57 28 29 56 15 16 
AI 0 0 0 0 0 0 0 0 
AR 2 0 10 2 0 6 2 1 
BE 47 39 118 52 51 104 17 19 
BL 5 5 14 7 8 6 1 2 
BS 13 9 52 34 32 28 12 10 
FR 12 10 24 14 14 24 8 7 
GE 62 28 84 80 55 82 33 21 
GL 31 35 9 5 10 4 2 5 
GR 9 3 26 15 10 23 9 4 
JU 7 3 8 5 1 8 3 1 
LU 14 3 66 49 39 55 19 13 
NE 9 8 13 4 5 13 3 3 
NW 1 1 6 3 3 6 0 0 
OW 1 1 0 0 0 0 0 0 
SG 11 10 55 32 33 49 9 9 
SH 3 1 8 6 4 5 4 2 
SO 14 11 18 11 9 14 7 4 
SZ 14 15 11 7 10 6 1 3 
TG 15 10 42 13 9 42 7 4 
TI 57 30 93 44 26 90 28 9 
UR 3 4 6 3 4 2 0 1 
VD 74 53 119 74 69 112 34 31 
VS 33 30 31 17 21 31 13 15 
ZG 3 3 10 3 3 8 1 1 
ZH 35 18 395 205 193 290 139 131 

Discussion 
 
icumonitoring.ch is a tool to support decision-makers anticipate ICU occupancy during the 
COVID-19 outbreak. Ultimately, its goal is to prevent hospital overflow [26,27], such as in 
Italy or Spain by projecting when capacities may need to be expanded, or the transfer of patients 
has to be considered such as in France [28]. Conversely, this tool can also be used to 
progressively reduce costly expansion of nominal hospital capacities [29] and request for 
additional medical staff [30]. 
 
The accuracy of the projections available in icumoniroting.ch relies on epidemic models, but 
also on the completeness of the data reported in the IES system. In normal times, the IES system 
is seldom maintained, without apparent consequences. However, these are not normal times. 
While acknowledging that healthcare workers face unprecedented demand in the clinic, we 
urge them to maintain the IES system up-to-date as to help us helping them. This may require 
additional personnel/training. The ‘epidemiology community’ would welcome a display of 
leadership from the competent authorities in empowering hospital managers with the 
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appropriate resources to maintain the IES. What cannot be measured cannot be managed, let 
alone projected in the future. 
 
As with any modeling study, the projection presented in icumonitoring.ch comes with a series 
of limitations. The development of icumonitoring.ch started on 10.04.2020 and remains a 
‘work-in-progress’. In particular, the following adjustments will be considered in the future. 
First, the number of non-ICU beds in hospitals reported in the IES system remains inaccurate 
(personal communication) and is therefore not displayed on the platform at this stage. Second, 
the two epidemic models used for projection do not yet account for the age structure of the 
population. Given the strong dependency of the case- fatality rate of COVID-19 on age [31], 
this would need to be included in a future iteration of our models. Third, the epidemic model 
used here show deviations between projection (4 days ahead) and observations for a given day. 
For the projections of the number of deaths – on which both models are fitted – these deviations 
are minimal (~2%). However, for the number of the number of COVID-19 case requiring ICU 
beds – 16.7% for the CZ model, and -14.4% for the BT model, respectively. The BT thus model 
slightly outperform the CZ model. From a hospital management perspective, the 
underestimation of the number of ICU cases by both models could make our projections seen 
as a conservative minimal threshold for hospital managers to consider before downscaling the 
ad-hoc capacities currently in place. The reasons for the underestimation of the capacity may 
be associated with current estimate of the length of stay in ICU. Here we attempted to include 
the most up-to-date estimates of LOS from the RISC-19-ICU registry to which >30 Swiss ICU 
units are contributing. However, it should be acknowledged that 31.5% of patients with acute 
COVID-19 are still currently in ICU and may have longer than average LOS due to the severity 
of their infections. This may artificially decrease the LOS used in this analysis which are 
calculated from patients that have already been discharged or are deceased. Similarly, another 
potential source of bias for LOS in the ICU in is the limitation of therapy due to a patient's 
wishes. These decisions do not necessarily correlate to disease severity but could be motivated 
by a patient's previous health status, advance directive, or substitute directives. Fourth, the 
geographic downscaling is based on population density. We thus implicitly make the 
hypothesis that a future patient is equally likely to have contracted the disease in cities or in 
rural settings. This may lead to an underestimation of the clustering of cases in cities where 
contact rates may be higher than in the countryside. Fourth, uncertainty in epidemic model lies 
in the ability to infer transmission parameters but also the intrinsic formulation of a model in 
different epidemic compartments [32]. Here we attempt to address this concern by using two 
epidemic models with different inference methods, and compartmental structures as to capture 
the uncertainty inherent to the model structure. The objective of our platform is also to include 
projection from other modelling group with a forecast template such as to allow further 
comparison between models that may have radically different structure, such as agent-based 
model [9,33]. The authors would also welcome suggestions from the intensive medicine 
community for relevant parameters to be added to icumonitoring.ch that can help guide hospital 
management decisions. 
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Hirslanden Klinik Im Park, Zürich (Tomislav Gaspert, MD; Marija Jovic, MD); 
Intensivmedizin & Intermediate Care, Kantonsspital Olten, Olten (Michael Studhalter, MD); 
Institut für Anaesthesiologie und Intensivmedizin, Klinik Hirslanden, Zurich (Christoph 
Haberthuer, MD; Roger F. Lussman, MD); Anaesthesie Intensivmedizin Schmerzmedizin, 
Spital Schwyz, Schwyz (Daniela Selz, MD; Didier Naon, MD); Dipartimento Area Critica, 
Clinica Luganese Moncucco, Lugano (Romano Mauri, MD; Samuele Ceruti, MD); Institut für 
Anaesthesiologie Intensivmedizin & Rettungsmedizin, See-Spital Horgen & Kilchberg, 
Horgen (Julien Marrel, MD; Mirko Brenni, MD); Klinik für Operative Intensivmedizin, 
Kantonsspital Aarau, Aarau (Rolf Ensner, MD); Intensivstation, Kantonsspital Schaffhausen, 
Schaffhausen (Nadine Gehring, MD); Intensivstation, Spital Simmental-Thun-Saanenland AG, 
Thun (Antje Heise, MD), Division of Intensive Care, University Hospitals of Geneva, Geneva 
(Sara Cereghetti, MD; Filippo Boroli, MD; Jerome Pugin, MD, PhD). 
  



 171 

References 
 
1. openZH/covid_19 [Internet]. Specialist Unit for Open Government Data Canton of 

Zurich; 2020 [cited 2020 Apr 18]. Available from: https://github.com/openZH/covid_19 
2. Federal Council to gradually ease measures against the new coronavirus [Internet]. [cited 

2020 Apr 18]. Available from: https://www.admin.ch/gov/en/start/documentation/media-
releases/media-releases-federal-council.msg-id-78818.html 

3. Streeck H, Hartmann G, Exner M, Schmid M. Vorläufiges  Ergebnis  und  
Schlussfolgerungen der  COVID-19  Case-Cluster-Study (Gemeinde Gangelt). 
University of Bonn. 

4. COVID-19 Antibody Seroprevalence in Santa Clara County, California | medRxiv 
[Internet]. [cited 2020 Apr 18]. Available from: 
https://www.medrxiv.org/content/10.1101/2020.04.14.20062463v1 

5. Entwicklung des Mobilitätsverhaltens während der COVID-19-Krise [Internet]. [cited 
2020 Apr 18]. Available from: 
https://statistik.zh.ch/internet/justiz_inneres/statistik/de/aktuell/mitteilungen/2020/covid_
mobilitaetsverhalten.html 

6. Monitoring COVID-19 spread in Switzerland [Internet]. [cited 2020 Apr 18]. Available 
from: https://bsse.ethz.ch/cevo/research/sars-cov-2/real-time-monitoring-in-
switzerland.html 

7. Lemaitre J, Perez-Saez J, Azman A, Rinaldo A, Fellay J. Switzerland COVID-19 
Scenario Report. École Polytechnique Fédérale de Lausanne; 2020. 

8. Real-time modeling and projections of the COVID-19 epidemic in Switzerland 
[Internet]. [cited 2020 Apr 18]. Available from: https://ispmbern.github.io/covid-
19/swiss-epidemic-model/ 

9. COVID-19 Epidemic in Switzerland: Growth Prediction and Containment Strategy 
Using Artificial Intelligence and Big Data | medRxiv [Internet]. [cited 2020 Apr 18]. 
Available from: https://www.medrxiv.org/content/10.1101/2020.03.30.20047472v2 

10. Suisse romande: Les soins intensifs ne manquent pas de lits - News Suisse: Suisse 
romande - 24heures.ch [Internet]. [cited 2020 Apr 18]. Available from: 
https://www.24heures.ch/suisse/suisse-romande/soins-intensifs-manquent-
lits/story/20067350 

11. Pelda K. L’armée mène une opération secrète pour importer des masques par millions. 
TDG [Internet]. 2020 Apr 15 [cited 2020 Apr 18]; Available from: 
https://www.tdg.ch/suisse/armee-mene-operation-secrete-importer-masques-
millions/story/12405340 

12. Coronavirus: la Suisse mobilise l’armée. Le Temps [Internet]. 2020 Mar 16 [cited 2020 
Apr 18]; Available from: https://www.letemps.ch/suisse/coronavirus-suisse-mobilise-
larmee 

13. Houben RM, Van Boeckel TP, Mwinuka V, Mzumara P, Branson K, Linard C, et al. 
Monitoring the impact of decentralised chronic care services on patient travel time in 
rural Africa-methods and results in Northern Malawi. International journal of health 
geographics. 2012;11(1):1. 

https://github.com/openZH/covid_19
https://www.admin.ch/gov/en/start/documentation/media-releases/media-releases-federal-council.msg-id-78818.html
https://www.admin.ch/gov/en/start/documentation/media-releases/media-releases-federal-council.msg-id-78818.html
https://www.medrxiv.org/content/10.1101/2020.04.14.20062463v1
https://statistik.zh.ch/internet/justiz_inneres/statistik/de/aktuell/mitteilungen/2020/covid_mobilitaetsverhalten.html
https://statistik.zh.ch/internet/justiz_inneres/statistik/de/aktuell/mitteilungen/2020/covid_mobilitaetsverhalten.html
https://bsse.ethz.ch/cevo/research/sars-cov-2/real-time-monitoring-in-switzerland.html
https://bsse.ethz.ch/cevo/research/sars-cov-2/real-time-monitoring-in-switzerland.html
https://ispmbern.github.io/covid-19/swiss-epidemic-model/
https://ispmbern.github.io/covid-19/swiss-epidemic-model/
https://www.medrxiv.org/content/10.1101/2020.03.30.20047472v2
https://www.24heures.ch/suisse/suisse-romande/soins-intensifs-manquent-lits/story/20067350
https://www.24heures.ch/suisse/suisse-romande/soins-intensifs-manquent-lits/story/20067350
https://www.tdg.ch/suisse/armee-mene-operation-secrete-importer-masques-millions/story/12405340
https://www.tdg.ch/suisse/armee-mene-operation-secrete-importer-masques-millions/story/12405340
https://www.letemps.ch/suisse/coronavirus-suisse-mobilise-larmee
https://www.letemps.ch/suisse/coronavirus-suisse-mobilise-larmee


 172 

14. Macharia PM, Odera PA, Snow RW, Noor AM. Spatial models for the rational allocation 
of routinely distributed bed nets to public health facilities in Western Kenya. Malaria 
Journal. 2017 Sep 12;16(1):367. 

15. Myers BA, Fisher RP, Nelson N, Belton S. Defining Remoteness from Health Care: 
Integrated Research on Accessing Emergency Maternal Care in Indonesia. AIMS Public 
Health. 2015 Jul 1;2(3):257–73. 

16. Coronavirus: Federal Council declares ‘extraordinary situation’ and introduces more 
stringent measures [Internet]. [cited 2020 Apr 18]. Available from: 
https://www.admin.ch/gov/en/start/documentation/media-releases.msg-id-78454.html 

17. FOPH FO of PH. New coronavirus: Measures, ordinance and explanations [Internet]. 
[cited 2020 Apr 30]. Available from: 
https://www.bag.admin.ch/bag/en/home/krankheiten/ausbrueche-epidemien-
pandemien/aktuelle-ausbrueche-epidemien/novel-cov/massnahmen-des-bundes.html 

18. Estimating the generation interval for COVID-19 based on symptom onset data | 
medRxiv [Internet]. [cited 2020 Apr 29]. Available from: 
https://www.medrxiv.org/content/10.1101/2020.03.05.20031815v1 

19. Report 9 - Impact of non-pharmaceutical interventions (NPIs) to reduce COVID-19 
mortality and healthcare demand [Internet]. Imperial College London. [cited 2020 Apr 
29]. Available from: http://www.imperial.ac.uk/medicine/departments/school-public-
health/infectious-disease-epidemiology/mrc-global-infectious-disease-analysis/covid-
19/report-9-impact-of-npis-on-covid-19/ 

20. Estimates of the severity of coronavirus disease 2019: a model-based analysis - The 
Lancet Infectious Diseases [Internet]. [cited 2020 Apr 29]. Available from: 
https://www.thelancet.com/journals/laninf/article/PIIS1473-3099(20)30243-7/fulltext 

21. Estimating clinical severity of COVID-19 from the transmission dynamics in Wuhan, 
China | Nature Medicine [Internet]. [cited 2020 Apr 29]. Available from: 
https://www.nature.com/articles/s41591-020-0822-7 

22. R Interface to Stan [Internet]. [cited 2020 May 3]. Available from: https://mc-
stan.org/rstan/ 

23. Weiss DJ, Nelson A, Gibson HS, Temperley W, Peedell S, Lieber A, et al. A global map 
of travel time to cities to assess inequalities in accessibility in 2015. Nature. 
2018;553(7688):333. 

24. Shiny [Internet]. [cited 2020 Apr 18]. Available from: https://shiny.rstudio.com/ 
25. R: The R Project for Statistical Computing [Internet]. [cited 2020 Apr 20]. Available 

from: https://www.r-project.org/ 
26. Wynne A. Horrifying images show coronavirus patients in Madrid hospital [Internet]. 

Mail Online. 2020 [cited 2020 Apr 19]. Available from: 
https://www.dailymail.co.uk/news/article-8142013/Horrifying-images-coronavirus-
patients-lying-floor-packed-Madrid-hospital.html 

27. Hume T. Coronavirus Has Northern Italy’s Hospitals on the Brink of Collapse [Internet]. 
Vice. 2020 [cited 2020 Apr 19]. Available from: 
https://www.vice.com/en_us/article/k7ex4a/coronavirus-has-northern-italys-hospitals-on-
the-brink-of-collapse 

https://www.admin.ch/gov/en/start/documentation/media-releases.msg-id-78454.html
https://www.bag.admin.ch/bag/en/home/krankheiten/ausbrueche-epidemien-pandemien/aktuelle-ausbrueche-epidemien/novel-cov/massnahmen-des-bundes.html
https://www.bag.admin.ch/bag/en/home/krankheiten/ausbrueche-epidemien-pandemien/aktuelle-ausbrueche-epidemien/novel-cov/massnahmen-des-bundes.html
https://www.medrxiv.org/content/10.1101/2020.03.05.20031815v1
http://www.imperial.ac.uk/medicine/departments/school-public-health/infectious-disease-epidemiology/mrc-global-infectious-disease-analysis/covid-19/report-9-impact-of-npis-on-covid-19/
http://www.imperial.ac.uk/medicine/departments/school-public-health/infectious-disease-epidemiology/mrc-global-infectious-disease-analysis/covid-19/report-9-impact-of-npis-on-covid-19/
http://www.imperial.ac.uk/medicine/departments/school-public-health/infectious-disease-epidemiology/mrc-global-infectious-disease-analysis/covid-19/report-9-impact-of-npis-on-covid-19/
https://www.thelancet.com/journals/laninf/article/PIIS1473-3099(20)30243-7/fulltext
https://www.nature.com/articles/s41591-020-0822-7
https://mc-stan.org/rstan/
https://mc-stan.org/rstan/
https://shiny.rstudio.com/
https://www.r-project.org/
https://www.dailymail.co.uk/news/article-8142013/Horrifying-images-coronavirus-patients-lying-floor-packed-Madrid-hospital.html
https://www.dailymail.co.uk/news/article-8142013/Horrifying-images-coronavirus-patients-lying-floor-packed-Madrid-hospital.html
https://www.vice.com/en_us/article/k7ex4a/coronavirus-has-northern-italys-hospitals-on-the-brink-of-collapse
https://www.vice.com/en_us/article/k7ex4a/coronavirus-has-northern-italys-hospitals-on-the-brink-of-collapse


 173 

28. Keohane D. France’s TGV speeds Covid-19 patients to spare hospital beds [Internet]. 
2020 [cited 2020 Apr 19]. Available from: https://www.ft.com/content/619bd7b0-7424-
11ea-95fe-fcd274e920ca 
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Abstract 
 
The inverse care law states that disadvantaged populations need more health care than 
advantaged populations but receive less. Gaps in COVID-19 related health care and infection 
control are not well understood at present. We examined inequalities in health and health care 
from testing for SARS-CoV-2 infection to COVID-19-related hospitalisation, ICU admission 
and death in Switzerland, a wealthy country that was strongly affected by the pandemic. 
We used surveillance data reported to the Federal Office of Public Health from 1 March 2020 
to 4 February 2021. We geocoded residential addresses of notifications to determine the Swiss 
neighbourhood index of socioeconomic position (Swiss-SEP). The index describes 1.27 
million small neighbourhoods of about 50 households, based on rent per square meter, 
education and occupation of household heads, and crowding. We used negative binomial 
regression models to calculate incidence rate ratios (IRR) with 95% credible intervals [CrI] of 
the association between ten groups of the Swiss-SEP index defined by deciles (1=lowest, 
10=highest) and outcomes. Models were adjusted for sex, age, canton, and wave of the 
epidemic (before or after June 8, 2020). We used three different denominators: the general 
population, the number of tests, and the number of positive tests. 
Analyses were based on 2,548,638 tests, 423,656 positive tests, 17,762 hospitalisations, 1,785 
ICU admissions and 6,060 deaths. Comparing the highest with the lowest Swiss-SEP group, 
and using the general population as the denominator, more tests were performed among people 
living in neighbourhoods of the highest socioeconomic position (adjusted IRR 1.21; 95%CrI 
1.05-1.40). Among tested people, test positivity was lower (adjusted IRR 0.77; 0.71-0.84) in 
neighbourhoods of the highest socioeconomic position. Among people testing positive, the 
corresponding IRRs for hospitalisation, ICU admission and death were 0.67 (0.61-0.74), 0.50 
(0.38-0.66) and 0.84 (0.71-1.01). The associations between neighbourhood socioeconomic 
position and outcomes were stronger in younger age groups, and there was heterogeneity 
between cantons.  
The inverse care law and socioeconomic inequalities are evident in Switzerland throughout the 
care cascade. People living in neighbourhoods of low socioeconomic position were less likely 
to be tested, but more likely to test positive, be hospitalised, or die. It is essential to continue 
to monitor testing for SARS-CoV-2 infection, access and uptake of COVID-19 vaccination and 
outcomes of COVID-19. The Government and health care systems should take measures to 
reduce health inequalities in response to the SARS-CoV-2 pandemic. 

Introduction 
 
The pandemic of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) 
infections has created unprecedented challenges for society and healthcare systems worldwide. 
With almost 40 million cases and over 1 million deaths as of mid-April 2021, Europe has been 
heavily affected by the pandemic.1 Compared with neighbouring countries, Switzerland had 
the highest rate of confirmed COVID-19 cases, higher than France, Austria and Italy and over 
double the rate in Germany.2 Similarly, there was substantial excess mortality in Switzerland 
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during the first wave and the highest excess mortality among neighbouring countries during 
the second wave3. 
Published in 1971, the inverse care law states that "the availability of good medical care tends 
to vary with the need for it in the population served".4,5 Inequalities in health have been a 
concern for over 50 years in many regions, including in Europe.6–8 In Switzerland, life 
expectancy varies between neighbourhoods, depending on the neighbourhood's socioeconomic 
position.9 Health inequalities and inequities may also influence the outcomes of the COVID-
19 pandemic.10 In the UK Biobank cohort, testing positive for SARS-CoV-2 infection was 
related to area-level socioeconomic deprivation, lower educational level and non-white 
ethnicity.11 The REal-time Assessment of Community Transmission-2 (REACT-2) study 
showed a higher prevalence of people with SARS-CoV-2 antibodies in neighbourhoods with 
high levels of social disadvantage and among minority ethnic communities.12 Studies in the 
USA showed that patients from neighbourhoods or counties with lower median income or 
higher deprivation were more likely to require intensive care, and more likely to die.13 14  
Inequalities and inequities in health care and infection control should be described and 
documented at the population level along the COVID-19 cascade, i.e. from testing and testing 
positive to medical care and clinical outcomes. We analysed nationwide surveillance data from 
the Swiss Federal Office of Public Health (SFOPH) to examine the impact of neighbourhood 
socioeconomic position on testing for SARS-CoV-2 infection, testing positive, hospitalisation, 
intensive care unit (ICU) admission and death.  

Methods 
 
Data sources 
We used mandatory notifications for SARS-CoV-2 and COVID-19, received at the SFOPH 
between Mar 1, 2020, and Feb 4 2021.15 The data consisted of individual-level information 
about tests and test results, hospitalisations, ICU admissions and deaths, together with age, sex 
and residential addresses. Data on negative tests were systematically collected from May 23, 
2020, onwards. We excluded notifications with missing or invalid information on the 
residential address. We obtained geocoded general population data from the Swiss Statistical 
Office (STATPOP, 2018 edition).16 We used the most recent (2018) directory of retirement 
and nursing homes to identify individuals living in such institutions.17  
 
Index of neighbourhood socioeconomic position  
The Swiss neighbourhood index of socioeconomic position (Swiss-SEP) is based on the 
national house-to-house census of the year 2000.18 It includes 1.27 million neighbourhoods of 
about 50 households centred on the corresponding residential building, with overlapping 
boundaries. We used the median rent per square metre, the proportion of households headed 
by a person with primary education or less, the proportion headed by a person in manual or 
unskilled occupation and the mean number of persons per room (crowding) to characterise 
neighbourhoods. No data on household income are collected in the Swiss census. The index 
was constructed using principal component analysis and validated using independent data on 
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households' financial situation.18 It was standardised to range from 0 (lowest socioeconomic 
position) to 100 (highest position). 
 
Geocoding and linkage to Swiss-SEP 
Geocoding of the residential addresses was done using the publicly available geodata from the 
Swiss Federal Office of Topography. Swiss-SEP index values were aggregated into ten groups 
using deciles as cut-offs. Where a post code only was available, we used the Swiss-SEP value 
corresponding to the centroid of the area. Data were aggregated by canton (26 groups), sex (2 
groups), age (9 groups, from 0-9 to 70-79 and 80 years and older), Swiss-SEP (10 groups) and 
epidemic wave (2 groups, before June 8, 2020, 14 weeks or after, 35 weeks) at the FOPH. June 
8, 2020, was the nadir of case counts. The dataset consisted of aggregated data only. No ethical 
approval was required, in line with the Swiss Human Research Act.  
 
Statistical analysis 
We examined the association between Swiss-SEP group and counts of SARS-CoV-2 tests, 
positive tests, hospitalizations, ICU admissions, and deaths in negative binomial regression 
models to account for unknown overdispersion.19 We considered three different denominators: 
the general population, the total number of tests and the number of positive tests. Denominators 
were included as offsets in each model. In a first univariate model, we estimated the incidence 
rate ratio (IRR) per increase in Swiss-SEP group for each outcome and denominator. The model 
assumes that the association with Swiss-SEP is linear on the logarithmic scale. We tested this 
assumption by comparing this model with one where each group was included separately. In a 
second model, we estimated the IRR adjusted for age group, sex, canton and epidemic wave. 
The adjustment for canton included a random intercept and slope by canton, allowing for 
interaction between Swiss-SEP group and canton. In a third model, we assessed two-way 
interactions between Swiss-SEP, and age group, sex and epidemic wave. We used the leave-
one-out cross-validation information criterion (LOOIC) for model selection.20 
In sensitivity analyses, we replicated the analyses after i) excluding all cases geocoded with 
the post code and not the full address and ii) excluding cases with an address corresponding to 
one of 1,586 retirement or nursing homes. All analyses were conducted using Stan21 in R 
version 4.0.4,22 with package 'rstanarm'.23 We used weakly informative prior distributions for 
all model parameters.20 The supplementary appendix provides more information.  

Results 
 
Notifications and geocoding 
During the study period (May 23 2020 to Feb 4 2021 for the number of reported tests, Mar 1 
2020 to Feb 4 2021 for all other outcomes), the following were notified (Fig. 1): 2,895,139 
SARS-CoV-2 test results, 488,531 positive SARS-CoV-2 tests (16.9% of all tests), 20,070 
COVID-19 hospitalisations (9.9% of positive cases), 1,983 COVID-19 ICU admissions (0.4% 
of positive cases) and 7,628 deaths from COVID-19 (for a case fatality rate of 1.6%). 
Geocoding was successful for 2,548,638 (88.0%) tests, 423,656 (86.7%) positive tests, 17,762 
(88.5%) hospitalisations, 1,785 (90.0%) ICU admissions and 6,060 (79.4%) deaths. In over 
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90% of geocoded notifications, geocoding was based on the exact address (Table S1). Few 
geocodes corresponded to retirement or nursing homes, ranging from 1.5% for people admitted 
to ICU to 3.8% for people admitted to hospital. For deaths, 1,864 notifications (30.8%) were 
associated with such institutions (Table S1).  
Table 1 shows the observed distribution of geocoded notifications and the size of the 2018 
general population across age, sex, epidemic wave and Swiss-SEP group. About 40% of the 
Swiss population is aged 50 years or older. This age group accounted for a third of all SARS-
CoV-2 tests (32.7%) and for 39.5% of positive tests, but for 90.0% of hospitalisations, 92.3% 
of ICU admissions and 99.4% of deaths. Women contributed more tests (53.1% of all tests) 
and more positive tests (52.5%) than men. Men accounted for most hospitalisations (57.9%), 
ICU admissions (72.7%) and deaths (55.8%). The group of lowest socioeconomic position 
accounted for 13.4% of positive tests, 15.2% of hospitalisations, 15.7% of ICU admissions and 
13.2% of deaths and the highest for 7.4%, 5.8%, 5.1% and 6.3%, respectively. In the general 
population, the number of people living in neighbourhoods of lower socioeconomic position is 
higher than in neighbourhoods of higher position. Most of the data were from the second wave, 
which lasted longer and was more severe than the first: 81.7% of deaths were from the second 
wave (Table 1). 
The rates of SARS-CoV-2 tests per population increased with Swiss-SEP group (Fig. 2), 
whereas they decreased for positive tests, hospitalisations, ICU admissions and deaths. The 
slopes for positive tests, hospitalisations and ICU admissions were steeper when rates were 
calculated per test rather than by population, and somewhat less steep when expressed per 
positive test.   
 
Model fit 
Modelling Swiss-SEP groups as a continuous variable led to a similar or better model fit 
compared to discrete variables (Table S2). Adjusting for age, sex, epidemic wave, and canton 
improved the fit further. Visual comparison of model predictions and observed data from the 
latter model illustrates the good fit, with most observed data points within the 95% credible 
interval of model estimates (Fig. S1). One exception was the higher number of tests among 
people living in neighbourhoods in the highest Swiss-SEP group, which was not captured well. 
Also, several data points were outside the credible interval for positive tests per population. 
The fit improved for positive tests when stratifying the data by epidemic wave (Fig. S8). 
 
Analyses of Swiss-SEP groups, age, and sex  
Both in unadjusted and adjusted analyses, each increase in Swiss-SEP group was associated 
with an increase in SARS-CoV-2 testing per population (Fig. 3). The adjusted rate ratio (IRR) 
was 1.02 (95% CrI 1.01-1.04) per one group increase, corresponding to 21% (95% CrI 5-40%) 
more tests in the highest compared to the lowest group (Table 2). There was no association 
with positive tests. A decreasing trend in positive tests was found with increasing Swiss-SEP 
group when expressing rates per number of tests rather than by population (adjusted IRR 0.97, 
95% CrI 0.96-0.98), corresponding to a 23% (95% CrI 16-29) lower test positivity in the 
highest compared to the lowest socioeconomic group. The greater uptake of testing in 
neighbourhoods of higher socioeconomic position masked the higher number of positive tests 
among individuals from lower socioeconomic position neighbourhoods. Rates of 
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hospitalisations and ICU admissions decreased with higher socioeconomic position. Estimates 
were similar in the unadjusted and adjusted analyses, and similar with different denominators 
(Table 2, Fig. 3). 
COVID-19 related mortality declined with increasing socioeconomic position of 
neighbourhoods (Table 2). The association became stronger when excluding residents of 
retirement or nursing homes (Fig. 4A). After excluding residents, the adjusted IRRs per 
increase in Swiss-SEP group were 0.96 (95% CrI 0.93-0.99) for COVID-19 deaths per 
population, 0.94 (95% CrI 0.92-0.97) for deaths among those tested and 0.98 (95% CrI 0.96-
1.0) for deaths among those testing positive. These estimates translated into 34% (95% CrI 10-
50%), 41% (95% CrI 24-52%) and 19% (95% CrI 3-31%) lower mortality, respectively, 
comparing the highest with the lowest group. 
Testing intensity, positive tests and the clinical outcomes were also associated with age and 
sex (Fig. S2). Testing per 100,000 population was less intense, and positive tests less frequent 
in children 0 to 9 years. The risk of hospitalisation increased with age, and ICU admissions and 
mortality increased from age 50 years onwards. Testing and positive tests were about as 
frequent among men and women, but the rates of hospitalisations, ICU admissions, and 
mortality were all lower in women than in men. For all outcomes, there was heterogeneity 
across cantons (Fig. S3 and S4). 
 
Interactions 
We examined two-way interactions between Swiss-SEP group and age, sex, epidemic wave, 
and canton. The associations between socioeconomic position and outcomes became weaker 
with increasing age (Fig. S7, Table S8). The interaction with age is illustrated in Fig. 4B for 
mortality in those testing positive. The association with neighbourhood socioeconomic position 
becomes weaker moving from age group 0-49 years to older age groups and disappears in age 
group 80 years and older. There was little evidence of interactions with sex or epidemic wave 
(Fig. S7). There was also heterogeneity across cantons, particularly for testing and positive 
tests. The canton of Geneva was an outlier, with a stronger positive association of Swiss-SEP 
group with testing and a stronger negative association with test positivity. Associations with 
testing and test positivity were also somewhat stronger for the cantons of Bern, Obwalden, and 
Uri, and weaker or absent for other cantons (Fig. S5 and S6, Table S9).  

Discussion 
 
In this analysis of the Swiss COVID-19 surveillance data we found that people living in areas 
with higher socioeconomic position were more likely to get tested for SARS-CoV-2 infection 
but less likely to test positive, be admitted to hospital or the ICU, and less likely to die. 
Associations with neighbourhood socioeconomic position were similar during the first and 
second wave, but they were more pronounced in some cantons than others. Our analysis also 
showed that testing was less intense and positive tests less frequent in children. The risk of 
hospitalisation increased continuously with age, and ICU admissions and mortality increased 
from age 50 years onwards, in line with previous studies.24 Testing and positive tests were 
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about as frequent among men and women, but the rates of hospitalisations, ICU admissions, 
and mortality were all higher in men than in women, again confirming previous findings.25,26  
Using national data reflecting one country and its health system, our analysis covered the entire 
cascade from testing for SARS-CoV-2 infection to testing positive, the need for hospital care 
and death. The coverage of both the first and second wave of the COVID-19 epidemic. Another 
strength is the availability of the Swiss-SEP index, which has criterion validity, with mean 
household income continuously increasing from the lowest to highest socioecnomic position 
group,18 based on data from more than one million small neighbourhoods centred on 
individuals' residences ('ego-centred neighbourhoods')18. 
 
The national datasets allowed us to examine the association with neighbourhood 
socioeconomic position in three different populations, the whole of the general population, the 
population tested for SARS-CoV-2 infection, and the group with positive test results. 
Associations with socioeconomic position were consistent across the three populations, except 
for the rate of positive tests in the population. The greater uptake of testing in higher SEP 
neighbourhoods masked the higher number of positive tests among individuals of lower 
socioeconomic position. There are also weaknesses of the data that limit interpretation. The 
data about tests are limited by the absence of complete data on reasons for testing. For example, 
the lower test positivity among children under ten years of age could reflect that children were 
more likely to be tested within the context of infection control measures rather than because of 
symptoms. Alternatively, the lower test positivity could indicate a lower susceptibility to 
SARS-CoV-2 infection in this age group. Not all notifications could be geocoded due to 
incomplete addresses, and selection bias may thus have been introduced. Also, the Swiss-SEP 
index of retirement and nursing homes might not reflect the neighbourhood where residents 
spent most of their lives, thus misclassifying their socioeconomic position. This might explain 
why the association with the index of socioeconomic position became stronger when excluding 
deaths in residents of these institutions. 
 
Strengths and weaknesses in relation to other studies 
Data on indicators of socioeconomic position are often not collected in clinical studies or 
routine surveillance systems. Khalatbari-Soltani et al.10 observed that, up to April 2020, no 
study about COVID-19 had reported data on socioeconomic indicators such as educational 
level, income or housing conditions.10 Since then, several studies have found associations 
between area-level deprivation and SARS-CoV-2 infection, more severe COVID-19 disease, 
and mortality.11–14 In common with these, our study used a small area-based measure of 
socioeconomic position. Area-based measures are more readily available than individual 
measures and have the advantage of capturing effects at the level of the individual and the 
place. A seroprevalence study in the canton of Geneva, Switzerland did not find strong 
associations with individual level indicators of social position, other than becoming 
unemployed. However, the study was not representative of the population of Geneva, including 
many more individuals with tertiary education, fewer with mandatory school only, and fewer 
non-Swiss nationals.27,28 A Swedish study used individual-level data from population-based 
registers to show that people with lower income and level of education, and immigrants from 
low- or middle-income countries were at higher risk of death from COVID-19.29 Data on 
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immigrant status are not recorded in the Swiss surveillance system. A unique strength of the 
present study is that it covers the entire cascade from testing to mortality at the national level. 
Furthermore, previous studies were often based on population surveys, with unequal 
participation across socioeconomic and ethnic groups,11,12,27,28 excluded children,11,12 or were 
restricted to selected hospitals or cities13,30. 
 
Meaning and implications 
Fifty years ago, Tudor Hart proposed the "inverse care law", which stipulates that "the 
availability of good medical care tends to vary inversely with the need for it in the population 
served." 4 Similarly, the "inverse equity hypothesis" proposed in 2000 by Victora and 
colleagues31 states that newly introduced health interventions would be initially adopted by the 
wealthier segments of a population, who likely had the least need for such interventions. Both 
hypotheses were borne out in the present study, in the unique setting of a pandemic and of 
infection control. Early diagnosis of SARS-CoV-2 infections and adequate initial management 
may improve the prognosis of COVID-19, whereas prognosis is worse in patients diagnosed 
late, with low oxygen saturation and signs of pneumonia. Rapid diagnosis and rapid isolation 
are the key to preventing transmission: communities with higher testing levels will benefit from 
lower rates of transmission. The SARS-CoV-2 tests were a new technology and testing capacity 
was limited in Switzerland, particularly during the first wave of the pandemic. In both waves, 
testing was less intense in neighbourhoods of lower socioeconomic position. It is possible that 
people living in areas of lower socioeconomic position had less access to test centres, because 
of poorer access to private transport or inability to take time off work. Greater availability of 
testing and conditions that eased uptake in these areas could have improved outcomes and 
reduced transmission. 
 
The higher rate of positive tests in neighbourhoods of lower socioeconomic position might 
reflect higher risks of SARS-CoV-2 infection at work and at home. People in manual 
occupations are unable to work from home and might have more unprotected contacts with 
others, on building sites or in factories. At home, living conditions might also be more crowded. 
A study from the USA used mobile phone data to show that the adoption of social distancing 
was lower in counties with higher proportions of people below the poverty level.32 Detailed 
maps of the socioeconomic position of Swiss neighbourhoods have been published.18,33 Health 
policy measures should consider the vulnerability of different communities and prevent 
inequities in health and infection control. The Swiss National COVID-19 Science Taskforce 
recommended that, in this unpredictable crisis, the state should assume the role of insurer and 
cushion the negative effects with appropriate economic and social policies.34 Without such 
support, it is understandable that those affected will not be in favour of control measures that 
threaten their livelihoods. 
 
Switzerland is one of the wealthiest countries globally,35 with wealth more unequally 
distributed than in other European countries: the Gini coefficient is estimated at 0.86 based on 
2015 tax data.36 Switzerland has a well-developed health care system and universally mandated 
health insurance, which in principle guarantees access to care for all. The Swiss health care 
system has been described as providing a good balance between individual responsibility and 
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community solidarity,37 but there is evidence that high out of pocket payments, including co-
payments and deductibles, may prompt some not to seek care. A survey in the canton of 
Geneva38 showed that depending on income, up to 31% of respondents reported having 
foregone healthcare for economic reasons. In our study, Geneva was the canton with the 
strongest association between neighbourhood socioeconomic position and testing. It is also the 
canton with the highest Gini index for wealth (0.92). 
 
In conclusion, this nationwide study found that people living in neighbourhoods of higher 
socioeconomic position are more likely to be tested in Switzerland but less likely to test 
positive, be hospitalised, or die. The higher incidence of SARS-CoV-2 infections, combined 
with a higher prevalence of co-morbidities in neighbourhoods of lower socioeconomic position 
will have contributed to worse outcomes,39,40 including the higher risk of hospitalisation and 
death.41,42  At the time of writing, vaccination coverage was still low in Switzerland, but the 
government has gradually been easing measures.43 It is essential to continue to monitor testing 
for SARS-CoV-2 infection, access and uptake of COVID-19 vaccination and outcomes of 
COVID-19. Government and health care systems should take measures to reduce health 
inequalities in their response to the SARS-CoV-2 pandemic. 
 
Table 1. Distribution of study data across age, sex, and neighbourhood index of socioeconomic 
position (SEP).  
Variable Total tests* 

(%) 
Positive tests 
(%) 

Hospitalisations 
(%) 

ICU admissions 
(%) 

Deaths 
(%) 

Population 
(%) 

Total 2,548,638* 423,656  17,762 1,785  6,060 8,225,085 

Age (years)       

  0-9 70,557 (2.8%) 4,918 (1.2%) 184 (1.0%) 9 (0.5%) 7 (0.1%) 850,653 (10.3%) 

  10-19 281,535 (11.0%) 36,614 (8.6%) 104 (0.6%) 4 (0.2%) 0 (0.0%) 816,438 (9.9%) 

  20-29 489,337 (19.2%) 74,586 (17.6%) 274 (1.5%) 12 (0.7%) 2 (0.0%) 1,017,953 (12.4%) 

  30-39 484,283 (19.0%) 72,577 (17.1%) 462 (2.6%) 35 (2.0%) 6 (0.1%) 1,181,590 (14.4%) 

  40-49 388,318 (15.2%) 67,572 (15.9%) 930 (5.2%) 77 (4.3%) 22 (0.4%) 1,170,915 (14.2%) 

  50-59 352,170 (13.8%) 71,328 (16.8%) 2,063 (11.6%) 229 (12.8%) 103 (1.7%) 1,240,120 (15.1%) 

  60-69 208,943 (8.2%) 40,947 (9.7%) 3,082 (17.4%) 462 (25.9%) 398 (6.6%) 899,148 (10.9%) 

  70-79 137,956 (5.4%) 26,631 (6.3%) 4,584 (25.8%) 642 (36.0%) 1,232 (20.3%) 675,678 (8.2%) 

  80+ 135,539 (5.3%) 28,483 (6.7%) 6,079 (34.2%) 315 (17.6%) 4,290 (70.8%) 372,590 (4.5%) 

Sex       

  Men 1,194,479 (46.9%) 201,270 (47.5%) 10,293 (57.9%) 1,297 (72.7%) 3,383 (55.8%) 4,083,429 (49.6%) 

  Women 1,354,159 (53.1%) 222,386 (52.5%) 7,469 (42.1%) 488 (27.3%) 2,677 (44.2%) 4,141,656 (50.4%) 

COVID-19 wave       

  First wave 32,660 (1.3%) 22,742 (5.4%) 2,856 (16.1%) 386 (21.6%) 1,110 (18.3%) - 

  Second wave 2,515,978 (98.7%) 400,914 (94.6%) 14,906 (83.9%) 1,399 (78.4%) 4,950 (81.7%) - 

Neighbourhood index of       
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SEP (group) 

  1 (lowest) 273,223 (10.7%)* 56,603 (13.4%) 2,691 (15.2%) 280 (15.7%) 799 (13.2%) 983,462 (12.0%) 

  2 265,271 (10.4%)* 48,692 (11.5%) 2,261 (12.7%) 251 (14.1%) 717 (11.8%) 885,738 (10.8%) 

  3 250,009 (9.8%)* 45,297 (10.7%) 2,031 (11.4%) 224 (12.5%) 681 (11.2%) 843,178 (10.3%) 

  4 246,696 (9.7%)* 42,620 (10.1%) 1,904 (10.7%) 190 (10.6%) 614 (10.1%) 827,815 (10.1%) 

  5 252,454 (9.9%)* 42,255 (10.0%) 1,799 (10.1%) 178 (10.0%) 662 (10.9%) 825,729 (10.0%) 

  6 245,782 (9.6%)* 41,730 (9.8%) 1,741 (9.8%) 162 (9.1%) 656 (10.8%) 813,863 (9.9%) 

  7 254,675 (10.0%)* 39,794 (9.4%) 1,555 (8.8%) 141 (7.9%) 553 (9.1%) 809,535 (9.8%) 

  8 247,772 (9.7%)* 38,146 (9.0%) 1,431 (8.1%) 138 (7.7%) 551 (9.1%) 792,051 (9.6%) 

  9 246,265 (9.7%)* 37,238 (8.8%) 1,317 (7.4%) 130 (7.3%) 447 (7.4%) 759,312 (9.2%) 

  10 (highest) 266,491 (10.5%)* 31,281 (7.4%) 1,032 (5.8%) 91 (5.1%) 380 (6.3%) 684,402 (8.3%) 

SEP, socioeconomic position; first wave, before Jun 8, 2020; second wave, from Jun 8, 2020. 
* Data on total tests relate to the period May 23, 2020, to Feb 4, 2021, rather than the full study 
period from Mar 1, 2020 to Feb 4, 2021. 
 
Table 2. Association of group of neighbourhood index of socioeconomic position (SEP) with 
five outcomes related to SARS-CoV-2 surveillance and care: total tests, positive tests, 
hospitalisations, intensive care unit (ICU) admissions and deaths. Three denominators are 
considered accordingly: population, total tests and positive tests. 

Outcome Denominator Unadjusted IRR per Swiss-
SEP group  
increase  
(95% CrI) 

Adjusted IRR per  
Swiss-SEP group increase 
(95% CrI) 

Adjusted IRR comparing 
highest and lowest  
Swiss-SEP group  (95%CrI) 

Total tests* Per population 1.02 (1.01-1.03) 1.02 (1.01-1.04) 1.21 (1.05-1.40) 

Positive tests Per population 0.99 (0.98-1.00) 1.00 (0.99-1.02) 1.03 (0.88-1.20) 

 Per total test* 0.97 (0.97-0.98) 0.97 (0.96-0.98) 0.77 (0.71-0.84) 

Hospitalizations Per population 0.94 (0.93-0.96) 0.94 (0.93-0.96) 0.59 (0.50-0.71) 

 Per total test* 0.94 (0.92-0.96) 0.92 (0.91-0.94) 0.49 (0.43-0.57) 

 Per positive test 0.97 (0.95-0.98) 0.96 (0.95-0.97) 0.67 (0.61-0.74) 

ICU admissions Per population 0.91 (0.89-0.94) 0.90 (0.86-0.94) 0.39 (0.27-0.57) 

 Per total test* 0.90 (0.87-0.93) 0.89 (0.87-0.93) 0.37 (0.27-0.50) 

 Per positive test 0.92 (0.90-0.95) 0.93 (0.90-0.96) 0.50 (0.38-0.66) 

Deaths Per population 0.97 (0.94-1.00) 0.97 (0.92-1.02) 0.75 (0.49-1.17) 

 Per total test* 0.97 (0.94-1.01) 0.95 (0.93-0.98) 0.66 (0.54-0.85) 

 Per positive test 0.98 (0.95-1.01) 0.98 (0.96-1.00) 0.84 (0.71-1.01) 

* Data on total tests relate to the period May 23, 2020, to Feb 4, 2021, rather than the full study 
period from Mar 1, 2020, to Feb 4, 2021. 
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Fig. 1. From testing to mortality: evolution of notifications to the Federal Office of Public 
Health during the COVID-19 pandemic in Switzerland from Mar 1 2020 to Feb 4 2021. The 
counts of total tests were available only from May 23 2020. The dashed line shows the date 
chosen for the separation between the first and second waves, Jun 8 2020. 
 

 
Fig. 2. Counts of notified SARS-CoV-2 tests, positive tests, hospitalisations, intensive care 
unit (ICU) admissions and deaths across groups of socioeconomic position (SEP) per 100,000 
population, tests, or positive tests. Higher SEP groups correspond to neighbourhoods of higher 
SEP. The study period was Mar 1, 2020, to Feb 4, 2021, except for total tests which only 
covered the period May 23, 2020, to Feb 4, 2021. 
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Fig. 3. Unadjusted and adjusted incidence rate ratios (IRR) per increase in group of 
neighbourhood socioeconomic position (SEP) for the counts of SARS-CoV-2 tests, positive 
tests, hospitalisations, ICU admissions and mortality per population, tests, or positive tests. 
Median posteriors and 95% credible interval are shown in each case. IRR estimates higher than 
1 correspond to a positive association with Swiss-SEP groups, estimates lower than 1 
correspond to a negative association. Adjusted estimates are adjusted for age, sex, canton, and 
epidemic wave. The study period was Mar 1, 2020, to Feb 4, 2021, except for total tests which 
covered May 23, 2020, to 4 February 2021. 
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Fig. 4. (A) Adjusted incidence rate ratio (IRR) per increase in group of neighbourhood 
socioeconomic position (SEP) for COVID-19 deaths per population, per test or per positive 
test in the baseline analysis or in sensitivity analyses: 1) excluding all cases geocoded from the 
ZIP code only and 2) excluding cases with a residential address corresponding to retirement or 
nursing homes. (B) Adjusted IRR for COVID-19 deaths per positive test by age group, sex and 
epidemic wave. 
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Chapter 6 

Discussion 
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Summary of findings 
 
In this doctoral thesis, we investigated the means to centralize, disseminate, and use open-
access data to generate outputs that help decision-makers in defining policies to control 
infectious diseases. Specifically, we focused on furthering the evidence base on antimicrobial 
resistance (AMR) in food animals and global veterinary capacities, and on providing short-
term projections to control the COVID-19 pandemic in Switzerland. 
 
In Chapter 2, we presented the open-access platform resistancebank.org. When launched in 
September 2019, this platform was conceived as a repository to centralize PPS from LMICs to 
evaluate AMR prevalence estimates of four pathogens in food animals: Escherichia coli, non-
typhoidal Salmonella spp., Staphylococcus aureus, and Campylobacter spp. Two years later, 
the platform was expanded to include PPS on AMR in fisheries and aquaculture. As of October 
2023, resistancebank.org contains 2,045 PPS, making the platform – to the best of our 
knowledge – the largest open-access repository of PPS on AMR in food animals. Besides 
centralizing PPS, resistancebank.org is also the first platform providing freely available high-
resolution maps to investigate the spatial granularity of AMR trends, as well as country-level 
reports available for download. Implementing these resources within an intuitive user interface 
was essential to allow people without technical knowledge of Geographic Information Systems 
(GIS) to easily navigate our platform and access its resources. 
 
In Chapter 3, we presented a global address book of veterinarians, showing how data not 
primarily intended for public health can be used to identify areas where food animals lack 
access to veterinary care. Similarly for the database of PPS openly disseminated by 
resistancebank.org (Chapter 2), this database of veterinarians is – to the best of our knowledge 
– the first database centralizing >300,000 veterinary practices across 115 countries, reporting 
their geographic information at a finer scale than the national level. The experience acquired 
while working with the database of resistancebank.org was crucial for the management of such 
a large database and supported the development of the methods used for data curation. 
Assembling a database of veterinarians as comprehensively as possible was essential to train 
and validate geospatial models to produce robust predictions of veterinary densities in areas 
where addresses could not be obtained. As a result, we produced the very first map of 
veterinarians’ distribution at 10x10 km2. We could show that >93% of the areas where food 
animals are further than 1 hour of motorized travel time from veterinarians (i.e., “veterinary 
coldspots”) are in LMICs. The biomass of food animals in coldspots amounts to 189 million 
livestock units (LSUs), which is equivalent to 1.2 times the biomass of all animals raised for 
food in the U.S. In addition, by mapping veterinary coldspots at a fine-scale resolution, this 
study provides for the first time a detailed distribution of areas lacking veterinary capacities at 
a sub-regional level, rather than only at a national or regional one. 
 
The content of Chapter 4 was strictly linked to that of Chapter 3. The increased proficiency in 
manipulating geographic objects and the acquired familiarity with algorithms for facility 
location analysis and for computing travel time maps formed the cornerstone of every aspect 
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presented in this chapter. Specifically, we investigated ways to improve accessibility to health 
services (HS) to support the surveillance of AMR and the health of food animals. We quantified 
the population brought within 1 hour of motorized travel time from HS (i.e., “population 
covered”) under a hypothetical 5% increase in each country’s national capacities. The first case 
study focused on a network of laboratories for antimicrobial susceptibility testing (AST) across 
five African countries. Using a geographically targeted approach we allocated new laboratories 
in areas where the largest population lacks access to care and showed that ~21 million people 
could be brought under 1 hour of travel time from AST laboratories under an increase of 271 
laboratories across five countries. However, almost half of these laboratories (143) were 
sufficient to cover 95% of the whole population covered. The second case study considered the 
increase in the veterinary workforce for food animals in coldspots (see Chapter 3). For this, a 
scaling up approach that targeted areas with the highest population of food animals in coldspots 
was used to place a supplementary 5% of veterinarians in each country. However, the global 
scale of the study required the development of an approximation for the exact solution to the 
computational challenge. By targeting locations with a high number of food animals in 
coldspots, far from existing veterinarians, and with a low travel time, we developed an 
approach that was, on average across nine countries tested, 20 times faster than those that tested 
every location, reaching at least 90% of its animal population coverage. Once applied at the 
global scale, the 5% increase in national veterinarians ensured access to veterinary care for 
26.9% of cattle, 34% of chickens, and 44% of pigs currently living in coldspots. 
 
Finally, in Chapter 5, we presented two applications for using open-access data during the 
COVID-19 pandemic in Switzerland. First, the open-access platform icumonitoring.ch was 
presented. Its aims were focused on supporting decision-makers with bi-weekly forecasts of 
ICU occupancy, deaths, hospitalizations, and availability of ventilators in Swiss hospitals, to 
try to prevent hospital overflow (1, 2). The unique contribution of icumonitoring.ch is that it 
used epidemic models to produce forecasts of ICU occupancy as a proxy for monitoring the 
evolution of the pandemic, given the absence of SARS-CoV-2 tests during its early stage. In 
addition to forecasts at the hospital-level (with restricted access), forecasts were also 
aggregated at the cantonal- and regional-level to provide a more general picture of the ICU 
capacity available in different administrative areas of Switzerland. All forecasts from 
icumonitoring.ch were regularly communicated directly to the Swiss Armed Forces and the 
Federal Office of Public Health (FOPH) to plan interventions and prevent maximum occupancy 
of ICUs. It is worth noting that much of the expertise used in developing icumonitoring.ch was 
acquired during the development of resistancebank.org. Without the work described in Chapter 
2, it would have been impossible to develop icumonitoring.ch in a timeframe of almost one 
month. The knowledge gained from resistancebank.org, especially familiarizing with services 
for remote data storage, significantly contributed to the effective design and implementation of 
icumonitoring.ch, highlighting how important it is the transferability of skills across different 
projects. 
A second contribution we made during the pandemic was the daily geocoding of COVID-19 
cases to map new hotspots of infections. These maps were meant to inform decision-makers 
on where to prioritize interventions for containing the virus’ spread. Furthermore, these 
geocodings were included in a large database of >2.5 million COVID-19 tests performed in 
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Switzerland between March 2020 and February 2021. This database, along with that of 
hospitalizations, ICU admissions, and deaths, was useful to emphasize that the Swiss 
population living in neighborhoods of a higher socioeconomic position (Swiss-SEP) performed 
more COVID-19 tests, had a lower positivity to such tests, and had lower hospitalization and 
death rate than the population in the poorest neighborhoods of Switzerland. 

Open-access data for enhancing existing surveillance 
 
Infectious diseases present health challenges that transcend conventional boundaries. The focus 
of this thesis on AMR, veterinarians, and COVID-19 underscores some of the threats affecting 
both human and animal health. Therefore, effective measures against infectious diseases 
require collaborative strategies across each public sector. Along with the initiatives we 
presented in this work, other existing strategies using open-access data have been launched, 
each targeting the unique challenges within its respective sector. 
 
In addressing the critical issue of antimicrobial resistance (AMR), the World Health 
Organization (WHO) has taken a significant step with the introduction of the Global 
Antimicrobial Resistance and Use Surveillance System (GLASS), providing open-access data 
on AMR in humans at the country-level (3). While such efforts exist for human health, a 
comparable initiative in the context of food animals, where the majority of globally sold 
antibiotics are used (4), has not yet been developed by international organizations focusing on 
food animals like the Food and Agriculture Organization. Recognizing this gap, the creation of 
resistancebank.org emerged as an essential response to potential deficiencies in AMR 
surveillance within the domain of animal health in LMICs. Our platform not only addresses 
this gap but also distinguishes itself by offering – to the best of our knowledge – a resource 
currently unavailable on other web-based platforms focused on AMR in humans: spatial 
granularity. resistancebank.org stands out by providing 10x10 km2 resolution maps that allow 
users to investigate AMR trends at the sub-regional level. The integration of such maps within 
systems provided with functions to zoom in and navigate these maps empowers researchers 
and individuals unfamiliar with GIS tools to promptly identify specific areas for planning 
interventions against AMR. 
 
Our work about veterinarians arises from the need to get insights into their capacities at a finer 
scale than a national or regional one. Specifically, this work can supplement existing efforts 
monitoring the capacities of each actor involved in the veterinary sector. The most notable of 
these efforts is led by the World Organisation for Animal Health (WOAH) (5). In countries 
where it has not been possible for these organizations to obtain detailed numbers of 
veterinarians – for example, due to the lack of field officers – our national estimations, albeit 
incomplete, are some of the first that are available about veterinary capacities. In addition, 
WOAH has established guidelines to evaluate the national performances in veterinary services 
(PVS) (6); to date, more than 140 countries have engaged in the PVS pathway. This consists 
of a standardized global methodology that every country can use to i) evaluate the status of its 
national veterinary services, ii) identify its strengths and weaknesses, and iii) plan workforce 
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development. In this context, the methodology underlying the PVS pathway could be 
supplemented with additional criteria for the evaluation. One example could be the abundance, 
within a country, of the areas we classified as veterinary coldspots. 
 
Similarly, additional outcomes of our studies can help inform other initiatives of international 
organizations. For example, one of the main objectives of the Fleming Fund – the United 
Kingdom program to improve AMR surveillance in LMICs – is to equip countries to collect 
and use data on drug resistance (7). Using our accessibility maps produced for the scaling up 
of AST laboratories, they can be supported in deciding which health facility has the priority to 
be equipped for AST. 
Furthermore, resistancebank.org could serve as a valuable resource for funding organizations, 
aiding them in determining which research groups working on AMR should have priority for 
fund allocation based on the possibility of performing more PPS in a specific area. For example, 
a region displayed on our maps that shows limited PPS indicates heightened uncertainty in the 
spatial predictions of AMR prevalence estimates in that region. Consequently, research groups 
that have conducted PPS in these regions should be given priority in funding assignments to 
increase the number of PPS conducted in such areas, share their results on resistancebank.org, 
and ultimately help us reduce the uncertainty of our maps. 
 
Another way to enhance existing surveillance is to use veterinary capacities predicted at the 
fine-scale resolution in combination with existing country-level capacities systematically 
inventoried in high-income countries (HICs). First, fine-scale predictions could be aggregated 
at the country-level and compared – as shown in Chapter 3 – with national estimates as an 
additional means to validate predictions of our geospatial models. Second, country-level 
capacities collected systematically – a common situation in HICs – are more reliable than the 
addresses of veterinarians to inform about the total national capacities available in a country. 
However, the addresses bring spatial information that country-level estimates lack. Therefore, 
such estimates can be disaggregated at the fine-scale resolution and incorporated within the 
geographic pattern represented by the addresses to get precise information about the national 
capacities available, but also strong predictions about their spatial availability. Third, national 
estimations collected in different years could be used to associate a temporal trend with the 
distribution of veterinarians. In this way, models could be improved to predict in which sub-
national areas a possible growth (or shortage) of veterinarians is likely to happen. 
 
As concerns the surveillance of the COVID-19 pandemic, several user-friendly platforms were 
developed to track disease spread. At the global-level, Johns Hopkins University developed the 
“COVID-19 dashboard” to track cases in real-time (8), displaying locations of new infections 
through an interactive web map. In addition, Google and UNESCO created similar versions of 
these platforms, aiming to disseminate COVID-19 information to a wider audience (9, 10). In 
Switzerland, icumonitoring.ch was one of the first open-access platforms developed, thanks 
also to the support of the Swiss Armed Forces which needed a resource to understand how to 
distribute ventilators and health workforce upon potential requests of the cantons. 
In addition, these efforts pushed the development of other platforms focusing on the monitoring 
of COVID-19 cases in Switzerland, like corona-data.ch (11) and the official platform provided 
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by the FOPH (12). However, in contrast to these platforms, icumonitoring.ch used ICU 
occupancy as a proxy for disease surveillance, providing information not only at the regional 
or national levels but also at the hospital-level. 
 
In addition to enhancing existing surveillance methods, the projects presented in this thesis 
share a common goal: complementing broader One Health surveillance initiatives. One Health 
represents an integrated approach aimed at optimizing the health of humans, animals, and the 
environment by fostering collaborations of experts within these interconnected fields. 
Recognizing the close links among such fields can help develop innovative surveillance and 
disease control methods (13). The WHO and its partner organizations are actively promoting 
the adoption of the One Health approach in national, regional, and international health policies. 
This involves strengthening country capacities and monitoring risks, as well as preparing for 
early detection and response to emerging pathogens. 
In the case of AMR, the maps of resistancebank.org can be incorporated within the GLASS 
framework and highlight areas where antibiotics are losing effectiveness in food animals. This 
can support the funding of alternatives to antibiotics, which is essential for limiting the 
resources necessary for developing new antibiotics and preventing resistant bacteria from 
carrying AMR genes within ecosystems. Similarly, the study on veterinarians exemplifies a 
surveillance approach aligning with the principles of One Health. Including maps of 
deforestation in our models of accessibility to veterinarians could highlight areas requiring 
increased surveillance, particularly those where recent agricultural expansion has occurred. 
This approach could help prevent potential cross-species transmission of infectious diseases in 
areas where interactions between wild animals that lost their habitat and food animals could be 
more frequent (14). 

Policy implications 
 
Enhancing global collaboration in animal health 
 
Our work with open-access data and platforms allowed us to identify geographic regions where 
interventions could be targeted. These include hotspots of AMR in food animals, coldspots of 
veterinary capacities, and coldspots of AST laboratories. While this could guide decision-
makers on how to optimize public health spending, many LMICs may lack the necessary 
resources for such investment. Particularly, the COVID-19 pandemic caused increases in 
hunger and poverty (15), further straining limited resources. The resources provided by our 
work can help in reducing the costs associated with disease surveillance through targeted 
approaches. For example, maps on resistancebank.org could guide researchers to perform new 
PPS only in areas where they haven’t been performed yet, as it was investigated in China by 
Zhao and colleagues (16). 
 
Nevertheless, the need for international assistance from high-income countries (HICs) to 
support LMICs in strengthening their capacities against infectious diseases should remain a 
priority. According to the Organisation for Economic Cooperation and Development, in 2018, 
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half of international health aid went to purchasing medicines from industries in the donor 
country, and over half of the aid was targeted at reducing HIV/AIDS, malaria, and tuberculosis 
(17). For sustained progress in public health within LMICs, global funders should also increase 
their investments in improving health systems, finance training programs to create a stronger 
workforce of veterinarians prepared to work in remote areas (18), and use our maps to guide 
the strategic enforcement of HS in underserved areas, like when members of the Fleming Fund 
approached our group to consult the AMR maps displayed on resistancebank.org. 
 
Informing strategies to improve accessibility to health services 
 
In this doctoral thesis, we also explored the drivers behind the geographic patterns of HS. The 
first important information that was evident from our findings is that geographic approaches 
aiming at increasing HS capacities need to be targeted towards areas with the highest 
population lacking prompt access to care. Specifically, what our findings clearly show is that 
scaling up HS equally among administrative divisions is far from optimal because the 
distribution of animal and human populations is generally heterogeneous within a country. 
Therefore, geographically approaches that focus primarily on populations lacking access to 
care can target specifically this heterogeneity to maximize the HS coverage. 
 
An additional insight refers to the creation of incentives to improve the coverage of HS. For 
example, from the global distribution of veterinarians, we could identify that a low travel time 
to cities was an important driver for a high presence of veterinarians. This enforces previous 
findings showing that veterinarians prefer to work in urban areas, where there is a higher pool 
of patients, a higher possibility to share a studio (thereby saving funds for rents and essential 
veterinary equipment), and likely more appealing social and living conditions than in remote 
areas (19, 20). Therefore, decision-makers could use our maps primarily to identify areas to 
prioritize for increasing the veterinary workforce, and then for improving the benefits for 
veterinarians working in remote areas. For example, incentives could be i) competitive salaries 
and bonuses, ii) financial support for continuing education and training, iii) job placement 
assistance for partners and family members, and iv) programs for engagement and integration 
in rural communities. 
 
Raising public awareness 
 
Platforms sharing open-access data present an intuitive way to let the public quickly grasp the 
severity of health issues like AMR or COVID-19. This is reflected, for instance, in the number 
of users that accessed icumonitoring.ch between May 2020 and August 2021. In this period, 
>175,000 unique users visited the platform (>10,000 users per month). Therefore, a significant 
portion of the platform’s user base likely comprised ordinary citizens who sought to stay 
informed about the progression of the pandemic, rather than members of authorities directly 
involved in COVID-19 management. The heightened visibility of the platform can be attributed 
to extensive coverage by Swiss press outlets such as SRF, swissinfo.ch, Blick, and The Local 
(21–23). Additionally, its inclusion in SRF’s evening news broadcasts on February 15th, 2021, 
and October 24th, 2021, contributed substantially to the increase in the number of users. 
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While this is crucial for increased dissemination of data that can serve for disease surveillance, 
it is also fundamental to enhance public awareness. When health-related data are summarized 
into outputs easily understandable by the public, they can become incentives to follow and 
respect preventive measures aimed at limiting the spread of diseases. For example, press 
articles sharing icumonitoring.ch forecasts that pointed at reaching the maximum capacity of 
ICUs (24) can represent incentives for the public to follow hygiene measures, social distancing, 
and the use of masks to avoid potential hospitalizations. 
 
Promoting scientific collaboration 
 
An implication of working with open-access data is the improvement of scientific collaboration 
among different sectors. Firstly, providing access to centralized databases of PPS and health 
services such as veterinarians can support other research groups in using these resources to 
produce further scientific knowledge on topics of global importance for human and animal 
health. This can have important impacts, especially for researchers in LMICs, where 
publication and subscription fees for scientific journals are barriers to accessing up-to-date 
research findings. Another example is represented by the country reports available from 
resistancebank.org. These outputs synthesize scientific findings that are easily interpretable by 
decision-makers, thereby promoting swift communication between the scientific and 
governmental sectors. 
 
Secondly, the open dissemination of our resources can represent a way to encourage data 
sharing from the government and/or private agencies. For instance, one of the strategies used 
to build the address book of veterinarians (see Chapter 3) was to directly request databases of 
addresses by sending emails to veterinary associations and governmental agencies. The first 
outcome of this process was a low response rate (16.8%). Second, in countries such as Brazil, 
we received negative answers due to privacy policies. In such a context, three different 
scenarios could manifest after we produced maps of veterinarians using open-access data. 
Specifically, organizations that did not collaborate with our study could 1) acknowledge our 
work but show no interest in being involved in it, 2) recognize that our estimations of national 
veterinary capacities differ from the ones they have recorded, and 3) show interest in our work 
and decide to supplement our open-access data with theirs, hence providing further detailed 
information about veterinary capacities to strengthen our findings. 
Scenario n° 1 would not change the amount of open-access data about veterinary capacities 
that we centralized and proposed as a proxy of animal health surveillance. This could also be 
the case for Scenario n° 2 unless these organizations decide to show that their data lead to 
different estimations of capacities than the ones we provided, thereby disseminating previously 
restricted data. In Scenario n° 3, their restricted data will be openly available to the public after 
the dissemination of our work. Therefore, the chances of a potential dissemination of these data 
are higher than in the case that no study using open-access data is conducted. 
 
An example that can represent the situation described in Scenario n° 3 refers to the integration 
of data available from the Information and Operation Systems (IES) of Switzerland in the 
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forecasts of ICU occupancies during the pandemic of COVID-19. These data were restricted, 
and upon our initial interest in using open-access data provided by the platform OpenZH, the 
Swiss Armed Forces decided to establish a collaboration with our research group to provide us 
with detailed data about ICU occupancies. Such data were useful to supplement data from 
OpenZH used in the epidemic models defined to forecast COVID-19 cases. 
 
A way to increase situations like those described in Scenario n° 3 is asking for support from 
international organizations involved in health capacity building. For example, although a 
formal collaboration has not yet been established, we have initiated connections with members 
of WOAH by presenting our work on veterinarians at scientific conferences. Additional efforts 
to reach more organizations are represented by publishing our findings in open-access journals 
and reaching organizations to request possible meetings and webinars to introduce our work. 
If such organizations agree to disseminate our findings within their extensive network of 
national collaborators who may possess restricted data about HS capacities, they could 
facilitate the establishment of new partnerships and the potential release of restricted data. 

Limitations and future directions 
 
The projects explored in this doctoral thesis come with limitations and possibilities for future 
improvements. For resistancebank.org, although the platform was originally conceived to 
collect AMR data as well as share them, it has so far received <10 PPS submitted directly by 
researchers. This could be due to two reasons. Firstly, researchers working on AMR might be 
reluctant to share their surveys because they do not see being exposed to our platform as a 
short-term advantage. As an incentive, we ensured that their contribution would have been 
available on the user interface of the platform, with the possibility for their work to gain 
increased attention in the AMR community. However, additional incentives might be required. 
One possibility could be represented by using a monthly newsletter sharing updates and 
information about resistancebank.org, informing subscribers about new PPS uploaded, thus 
improving the dissemination of other people’s work, and sending reminders underlying the 
importance of increasing the existing database of PPS we centralized. Secondly, it could be 
that resistancebank.org is not yet recognized as the focal point for AMR data in food animals. 
This would mean increasing the visibility of the platform by advertising it at future scientific 
conferences and establishing collaboration with other research groups working on AMR. Also, 
it might be important to hire press agencies specialized in advertising our work to people active 
in this field. Another option would be to submit requests to organizations funding AMR 
research (e.g., Fleming Fund, Wellcome Trust, Bill & Melissa Gates Foundation, etc.) and 
establish partnerships with journal editors to encourage researchers performing phenotypic 
AMR surveys to upload their data on open-access repositories like ours. This system would be 
similar to the ones requiring researchers performing genomic surveys to upload complete 
genomic data into a public repository (25). 
 
Another current limitation of resistancebank.org is the limited number of visitors from LMICs. 
From September 2019 to October 2023, 10,271 visitors (206 per month) accessed the platforms 



 201 

from 146 countries (Fig. 1). However, only 28.4% of these visitors were from LMICs. This 
could be explained by a limited knowledge of resistacebank.org in these countries, which could 
depend on factors like poor internet connectivity and low availability of computers. Therefore, 
it could be necessary to promote the use of the platform by establishing partnerships with 
universities and research centers in LMICs, hiring national officers to travel to these institutes, 
and informing researchers and decision-makers about resistancebank.org. I would have 
personally embarked on some of these field trips after the platform was published, but COVID-
19 disrupted these plans. 
 

 
Fig. 1. Users of resistancebank.org by country from September 2019 to October 2023. 
 
Additional limitations concern the accessibility to HS such as AST laboratories and 
veterinarians. For our analyses, we considered only one dimension of accessibility: travel time, 
using 1 hour as a threshold value. This definition provides a clear interpretability of the 
definition of “coldspots” of HS. However, there are other important aspects to consider. For 
example, 1 hour of traveling does not mean the same actual expenses for traveling among 
different countries/regions. Traveling to remote areas by different means might be more 
expensive for certain categories of people than for others. Therefore, our accessibility models 
could be expanded to incorporate covariates as the gross domestic product to produce travel 
time maps weighted for a measure of income related to the financial costs of traveling. 
Similarly, additional covariates to incorporate in these models could also assess the HS 
performance such as i) their capacity in terms of services provided per day/week, ii) the level 
of training of their personnel, and iii) the quality of care provided based on standards certified 
by competent agencies. 
 
A common limitation that applies to multiple case studies is represented by the difference in 
the rates of open-access data reported within countries. This is related, for instance, to the PPS 
available in the literature or the number of veterinarians’ addresses (and platforms) used to 
sample them. One solution to leverage these differences relies on the use of geospatial models 
in combination with spatial covariates, training them in data-rich regions to make reasonable 
predictions in data-poor regions. However, an additional solution could be necessary to 
increase the amount of data available to train such models and reduce uncertainty. This could 
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be represented by establishing a network of scientific collaborators spanning several countries 
to overcome language and cultural barriers that could prevent foreigners from identifying 
useful literature and/or online resources containing additional open-access data. 
 
Another avenue to improve our maps and get additional insights into accessibility to HS is to 
consider different travel time thresholds. For example, a sensitivity analysis could be conducted 
on the threshold value of 1 hour to understand how the human and animal population served 
by HS changes when considering longer times of traveling. In addition, these thresholds could 
be adjusted according to specific medical and veterinary emergencies. Considering human 
obstetric emergencies, a 2-hour travel time threshold is a commonly acknowledged critical time 
from postpartum hemorrhage to death in the absence of medical intervention (26). Therefore, 
accessibility maps could be calculated when considering potential animals in danger after 
giving birth. Similarly, this travel time threshold could be applied also to AST laboratories 
since the collection of bacteriological samples is not a life-threatening emergency. The results 
of these sensitivity analyses could help in assigning to each health facility a standard travel 
time limit that represents the urgency in providing their unique service to a population. This 
could be helpful for decision-makers when planning interventions of capacity building. 
In addition, although our maps suggested locations where a scale-up in HS could carry the 
highest benefits for the human and animal populations, we did not explore mechanisms on how 
this could be achieved in practice. Therefore, field surveys could be conducted to get additional 
information about the specific needs of farmers and people in remote areas who travel to HS. 
 
In conclusion, this doctoral thesis focused on the potential of using open-access data to limit 
the burden of infectious diseases. The focal point of our studies was to show how data created 
for public health purposes and data not primarily intended for public health can both be used 
to define a similar resource: proxies of surveillance that LMICs can adopt when official 
systems are still in development. However, it is challenging to provide short-term evaluations 
of the impacts that our work could have on enhancing surveillance systems. As a temporary 
proxy, we can affirm that the number of users that our platforms have received is encouraging. 
A high number of users (including the >30 still accessing resistancebank.org daily) is giving 
us hope, because it could mean that researchers and organizations all over the world are 
potentially building new AMR knowledge based on the resources we openly disseminated, in 
a constant effort to understand more about AMR and try to limit its future burden. Similarly, 
as concerns the impacts of our studies on the accessibility of HS such as veterinarians, we can 
so far rely only on the positive feedback received by our colleagues during workshops and 
conferences. What is certain, is that we contributed to centralizing open-access data with a 
great potential for application in public health that was not previously considered for this 
purpose. In this way, we can at least affirm that we produced a new resource highlighting 
potential challenges for food animals in LMICs that require the attention of international 
funders and decision-makers.  
 
In the context of a shortage of resources, the public health challenges we explored in this thesis 
pose competing priorities for investments. However, before identifying such priorities, there is 
one key message that emerges from these years of work: it is essential to create and support 
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initiatives aimed at increasing the availability of open-access data. The more data that will be 
openly accessible in the future (with appropriate anonymization when applicable), the more 
accurate evidence-based surveillance systems can become, increasing the amount of 
knowledge available for reducing the negative health outcomes of infectious diseases. 
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