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Aerial Image-based Inter-day Registration for Precision Agriculture

Chen Gao*1, Franz Daxinger*1, Lukas Roth3, Fabiola Maffra1, Paul Beardsley2, Margarita Chli1, Lucas Teixeira1

Vision For Robotics Lab - ETH Zürich, Switzerland and the University of Cyprus1,
Unity Technologies2, Institute of Agricultural Sciences - ETH Zürich, Switzerland3

Abstract— Satellite imagery has traditionally been used to
collect crop statistics, but its low resolution and registration
accuracy limit agricultural analytics to plant stand levels and
large areas. Precision agriculture seeks analytic tools at near
single plant level, and this work explores how to improve
aerial photogrammetry to enable inter-day precision agriculture
analytics for intervals of up to a month.

Our work starts by presenting an accurately registered image
time series, captured up to twice a week, by an unmanned
aerial vehicle over a wheat crop field. The dataset is registered
using photogrammetry aided by fiducial ground control points
(GCPs). Unfortunately, GCPs severely disrupt crop manage-
ment activities. To address this, we propose a novel inter-day
registration approach that only relies once on GCPs, at the
beginning of the season.

The method utilises LoFTR [1], a state-of-the-art image-
matching transformer. The original LoFTR network was
trained using imagery of outdoor urban areas. One of our
contributions is to extend LoFTR’s training method, which
uses matching images of a static scene, to a dynamic scene of
plants undergoing growth. Another contribution is a thorough
evaluation of our registration method that integrates intra-
day crop reconstruction with earlier-day scans in a seven
degree-of-freedom alignment. Experimental results show the
advantage of our approach over other matching algorithms and
demonstrate the importance of retraining using crop scenes,
and a training method customised for growing crops, with an
average registration error of 27 cm across a season.

I. INTRODUCTION

Smart Farming is an invaluable development in agriculture.
Traditional agriculture has been facing challenges such as
soil erosion, nutrient runoff causing algal blooms and dead
zones in surrounding bodies of water, a fall in soil organic
carbon which affects fertility, and loss of biodiversity [2].
Smart Farming aims to address such challenges while still
maintaining economic food production [3], [4].

Examples of Smart Farming include autonomous robots
and drones for spraying, harvesting, and weeding, plus AI
for farm management such as recommending the dates for
irrigation and harvesting. Underpinning all of these technolo-
gies is the need for monitoring and automatic analysis of
crops. Traditionally, satellite imagery has been the dominant

This work has been partly funded by the European Research Council
(ERC), as part of the project SkEyes (Grant agreement no. 101089328)
and by Unity Technologies. Data collection was supported by Innosuisse
in the framework for the project ‘Trait spotting’ [Grant Number: KTI P-Nr
27059.2 PFLS-LS].

Code and Dataset: github.com/VIS4ROB-lab/interday_crop_registration
Video: https://youtu.be/RItJI8JfZsQ
*equal contribution

Fig. 1: Top left: an overview of the ETH plant research station in
Switzerland. Other images: The same location on three different days,
demonstrating the drastic changes in shape and appearance that happen in
agricultural environments under growth.

imaging modality [5], with a typical image resolution of
∼10 meters per pixel, producing crop analysis at the scale
of whole fields. Precision agriculture, a subdiscipline of
smart farming, works at a finer scale [6] and often utilises
aerial or ground imagery. A high spatial resolution is not
only important for targeted maintenance like spraying of
individual plants, but also because the recommended dates
for crop treatments and harvesting can vary by days across
the fields of even a relatively small farm of ∼50 Hectares.
This paper addresses the problem of analysing crop imagery
at the level of individual plants.

Unmanned Aerial Vehicles (UAVs) are an important and
affordable technology for Smart Farming, providing high
spatial resolution imagery. The challenge which arises is how
to match UAV imagery over time. A crop field contains self-
similar structures leading to ambiguity in matching image
features. Furthermore, growing plants exhibit changes in
shape, height, and appearance. In addition, there is envi-
ronmental change due to changing ambient lighting, and
changing soil appearance due to moisture or crop manage-
ment measures. Examples of environment visual changes
can be seen in Figure 1. Traditional descriptors fail to find
robust correspondences for such applications, and consumer-
grade UAVs’ GPS is not accurate enough for plant-level
registration.

To tackle these problems, we present a novel inter-day
registration framework to account for the growth of plants,



changes in appearance and the UAV GPS noise. In summary,
the contributions of this work are the following:

• The application of a state-of-the-art matching algorithm
LoFTR to agricultural imagery, including a demon-
stration of the value of retraining the network with
agricultural data using our height compensation method.

• A novel approach to utilise LoFTR while also handling
temporal change and the demonstration of matching for
scans of wheat fields taken up to a month apart.

• We are publishing our code and the dataset of UAV
imagery for wheat fields across two growing seasons,
including meta-data for the camera pose and GCP
Ground Control Points, as an asset for the community.

II. RELATED WORK

Agricultural robots, ground-based and drones, are a route
to boosting productivity and reducing costs while also en-
abling the adoption of more sustainable agriculture without
requiring intensive and costly manpower to achieve it. Two
key technologies are visual localization and image matching,
allowing robots to capture and compare images of crops over
time. Both topics have been investigated extensively for man-
made environments but are still challenging for agricultural
environments.

Visual Localization for Precision Agriculture: The prob-
lem of matching images of a crop field across time is
addressed by Dong et al. [7]. Using a SLAM setup, they
fuse data from different sensors to obtain a 4D model of a
crop field and show that their approach is able to produce
accurate models as long as the visual appearance does not
change dramatically. Similarly, Marks et al. [8] use bundle
adjustment and template matching at the plant level. [9]
also use plant-level characteristics to perform registration.
Another interesting approach to generating correspondences
across time is presented by Chebrolu et al. [10]. To minimize
challenges arising from changes in the visual appearance of
the environment, they assume that crops are distinguishable
and planted in rows such that they are able to use the
field geometry and geometric feature descriptor. With this
approach, they can collect statistics on a single plant level.
The work by Kim et al. [11] introduces a methodology to
improve the geometric registration of multi-temporal digital
surface models without using Ground Control Points (GCPs).
To accurately register these models, they rely on elevation
invariant features, which can be found in areas next to
the crop field with no growth (e.g. streets). While these
approaches directly tackle the problem of localization and
matching in the agriculture context, they usually make strong
assumptions about the crops, making their use limited to very
specific scenarios.

Generic Visual Localization: State-of-the-art visual local-
ization approaches [12], [13], [14], [15], [16], [17] typically
rely on a 3D scene representation and 2D-3D matches
between a query image and the 3D representation to compute
a camera pose for the query using a PnP solver in a RANSAC
scheme. 2D-3D matches are commonly established using
local features, and while hand-crafted features, such as SIFT

[18], are widely used for matching images captured at similar
conditions, they consistently fail when the scene appearance
changes [19]. As such, deep features, such as SuperPoint [20]
and LoFTR [1] have been largely used to tackle the problem
of visual localization under extreme changes in appearance
(e.g. time of the day, weather, seasons as well as human
activity and occlusions) [13], [21]. Global descriptors, such
as NetVLAD [22], are commonly used in an image retrieval
step to improve the scalability of structure-based methods.
Sarlin et al. [13] propose a state-of-the-art hierarchical
approach for visual localization that leverages both global
descriptors and local features, and scales well with large
environments. The authors use NetVLAD and SuperPoint
to train a small network using multi-task distillation, while
feature matching is performed using SuperGlue [23]. More
recently, scene coordinate regression methods determine the
2D-3D correspondences using random forests [24] or CNNs
[25], [26]. In contrast, absolute pose regression methods [27]
forego 2D-3D matching and train a network to predict a
camera pose directly from an image.

All these methods typically assume that the scene is at
least partially static, and the same features can be re-detected
over time. However, crops grow over time, changing both
the geometry and appearance of a field of crop plants. Fur-
thermore, ambient light will vary anywhere between bright
sunlight and the diffuse illumination of an overcast day, while
field appearance is affected by dry versus wet conditions.
In this work, we analyse the performance of state-of-the-
art methods that were designed for static man-made scenes,
modifying and applying them to growing crops. Specifically,
we propose a geometrically correct training pipeline for re-
training a learning-based method, LoFTR.

III. METHOD

This section presents an overall approach for creating 3D
models of a crop field on different days and precisely align-
ing them between each other to enable precision agriculture
tasks. We describe the core of our alignment procedure,
which is a new training approach for enabling a state-of-
the-art transformer-based feature-matching algorithm to be
trained in a non-static agricultural environment.

A. Registration Pipeline

Figure 2 shows our overall registration approach. Our ap-
proach assumes that a UAV has been used to perform flights
capturing GPS-tagged images suitable for photogrammetry-
based 3D reconstruction. This means that a continuous
sequence of images with high frontal and lateral overlap
without blur was captured. We also assume that the vehicle
has standard onboard GPS, which means that direct align-
ment using GPS coordinates is not possible, unlike when a
more accurate RTK-GPS is onboard.

Firstly, each set of images from the same day, i.e. intra-
day, is reconstructed using any photogrammetry software. We
use COLMAP [28] for this task. It uses a traditional pipeline
using SIFT features, RANSAC and incremental reconstruc-
tion. It works when the images are taken within an hour with
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Fig. 2: The registration pipeline - Intra-day 3D reconstruction is performed
individually for each day and after an inter-day alignment is deployed to
enable analysis on the plants in the ground, the number of days between
flights is application dependent. Here we show an example of ten days
between flights.

very similar illumination conditions. The resulting model is
roughly geo-referenced, but this is potentially several meters
off and non-metric.

In order to allow smart farming analytics [29], the first
flight of the growing season, from day t0, can be refined
using human tuning and ground measurements, such as scalar
constraints and ground control points [29]. Using a different
UAV with RTK-GPS only for this flight is also an alternative.
The flights in the next days after t0, do not need human
tuning or ground measurements. Our inter-day alignment
approach is used instead. We indicate the day that the flight
was performed as tn. In this notation, the index n is the
number of days since t0.

This inter-day alignment assumes that the two models,
target and source, to be aligned are at least roughly geo-
registered. So for every image in the source, the feature
matching is computed for the 10 closest images from the
target. These matching are collectively used to compute the
pose of the source image in the target model, following the
approach in [13]. The poses of the source model images
at the target model are used for the 7D alignment, i.e.,
translation, rotation and scale, using the method in [30].

At the core of our method is the inter-day feature matching
that is detailed in the next section.

B. Inter-day feature matching

Our inter-day matching is done using a state-of-the-art
matching transformer [1], LoFTR. Instead of sequentially
performing image feature detection, description, and match-
ing, LoFTR first establishes coarse-level pixel-wise dense
matches and later refines them at a finer level using Trans-
former’s self and cross attention layers. This enables LoFTR
to produce dense matches even in low-texture areas where
conventional feature detectors struggle to produce repeat-
able interest points. This out-of-the-box matching algorithm
is trained on ScanNet [31], an indoor RGBD dataset, or
MegaDepth [32], a large dataset of outdoor touristic places in
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Fig. 3: Generation of ground truth matching pairs across time with height
change. For a particular 2D feature ps on an image from ts, its ground
truth (GT) match, pt, on a certain image from tt is found.

the work built using photogrammetry. However, both datasets
picture little to no natural environments. Therefore, we
retrain LoFTR using a new dataset that will be presented in
the next section. Unfortunately, the original training method
cannot be directly applied, as it assumes a static scene, which
is not suitable for our dynamic agricultural application. As a
result, we introduce a refined training pipeline. Specifically,
we introduce a new supervision method for creating ground
truth matches during training to account for dynamic changes
such as crop growth.

Our updated training pipeline assumes the availability of
RGB images, high-quality poses, and a 3D mesh of the area
for each dataset captured on different days. First, we compute
a metric depth map for each RGB image using a custom
Vulkan-based renderer. A height map of the whole area is
also computed for the whole area for later use.

Figure 3 illustrates the procedure for generating ground-
truth matches during training for 2D features. For every 2D
feature ps in the source image from day ts, its corresponding
3D landmark Ps(xs, ys, zs) is computed using camera intrin-
sics, extrinsics, and the depth in the same pixel location in
the associated depth map. We then replace the z-component
of the landmark with the height value zt, which is obtained
from the height map of the target dataset at day tt at the
same x and y coordinates (xs, ys). This compensates for the
height changes in the crop over time. The resulting adjusted
3D landmark Pt is then projected onto the target image from
tt, yielding a reliable ground truth correspondence pt.

In summary. our method of retraining LoFTR adapts to
the dynamic agricultural environment, whereas the original
training focused on static scenes. This is achieved via a
unique dataset and a custom training pipeline that accounts
for height variations between different days, enabling accu-
rate inter-day feature matching.

IV. DATASET

A. Agricultural experiment

The presented dataset is from flight campaigns conducted
in 2018-2019 at the ETH plant research station in Eschikon-



Lindau, Switzerland (47.449°N, 8.682°E, 520 m.a.s.l.). Each
flight campaign consists of a sequence of mapping flights
that are used to monitor an agricultural experiment (35
x 40 m) over the entire growing season (from sowing
to harvest). The experiments were breeding-related winter
wheat experiments, which are further described in [33], [4].

B. Flight campaigns

On average, 40 mapping flights were performed per grow-
ing season using a DJI Matrice 600 Pro drone equipped with
a Sony ILCE-9 camera with a full-frame sensor of 6000 ×
4000 pixels. The flight height was 28 m, the flight speed
was 1.8 m/s, the end overlap was 92%, and the side overlap
was 75%. Ground sampling distance (GSD) was below 3
mm/pixel. The raw data can be found [34]

C. Ground reference for evaluation

Fields were prepared with crosswise ground control point
(GCP) arrangements, and GCP positions were measured us-
ing a GNSS differential global position system (Trimble R10)
with swipos-GIS/GEO RTK (real-time kinematic) correction,
resulting in an accuracy of 8 mm horizontally and 15 mm
vertically. At the four corners of the field, coded round GCPs
with a 0.5 m diameter were used. At all other positions,
uncoded squared GCPs sized 0.2 × 0.2 m were placed.

D. Preprocessing

Images were processed per mapping flight with the
structure-from-motion (SfM) software Agisoft PhotoScan
and Metashape. For the sparse point cloud processing, the
keypoint limit was set to 40,000. Automatic GCP detection
was used in an automated two-step process: first, coded
GCPs were detected and matched with known coordinates
using coded names, leading to a roughly georeferenced point
cloud. Second, uncoded GCPs were detected and matched
with the known coordinates of the closest uncoded GCPs,
resulting in a precisely georeferenced point cloud. The SfM
process was continued with dense point cloud processing
to get a digital surface model. The digital elevation model
(DEM) was generated using a GSD of 3 mm [29].

V. EXPERIMENTS

This section presents practical and experimental aspects
of our research. First, we present the implementation details
of retraining LoFTR using our proposed supervision method
for inter-day feature matching on the crop dataset in Section
IV. We then compare the retrained LoFTR against state-
of-the-art feature-matching algorithms in different temporal
distances between query and reference flight data. Finally, we
experiment with the full proposed registration pipeline over
the whole season, considering the cumulative error while
variating the matching algorithm.

A. Implementation details of retraining LoFTR on the crop
dataset

We select a total of 12 dates from the 2018 dataset, spaced
approximately 10 days apart, covering the entire growing
season from March 22, 2018, to July 4, 2018. Images are

cropped to 3000 × 2000 pixels around the original image
center. To generate ground truth image pairs for training, for
each image in the selected dataset, we created pairs with
others that were less than 23 days apart temporally and had
an overlap greater than 50% spatially on the covered ground
area. This results in images from each date being typically
paired with images from three target dates: the source date
itself, a date roughly 10 days later, and another around 20
days later. We generate 15,910 image pairs, using 80% for
training and the remaining 20% for validation.

The generated image pairs then undergo LoFTR’s training
pipeline, utilizing ground truth matches as supervision. We
employed two versions of supervision: one following the
original approach of LoFTR [1], where ground truth match-
ing pairs were generated by directly projecting 3D landmarks
associated with 2D features into the target image frame,
and the other implementing the method described in Section
III-B, which replaced the z-component of the 3D landmark
with corresponding height from the height map of the target
dataset. The height map we use is created using the dense
point cloud. It has a resolution of 6000 × 6000 pixels, where
each pixel represents 1 cm × 1 cm on the ground.

Based on these ground truth matches, we trained two
LoFTR models with both versions of supervision respec-
tively, with training conducted on an NVIDIA Titan X. We
initiated training using outdoor weights trained with the dual
softmax technique. All images are further resized to 360 ×
240 to accommodate a batch size of 4. Training consists
of 30 epochs for both versions, and the weights from the
epoch achieving the highest precision on the validation set
were used for subsequent testing. All not specified settings
followed the original paper [1].

B. Evaluation of Inter-Day Feature Matching Algorithms

In this section, we assess the effectiveness of our retrained
LoFTR model as an inter-day feature matcher. Specifically,
we evaluate its capacity to align a query model, which
possesses only rough geo-referencing with a potential error
of several meters, with a reference model refined through
ground truth image positions. To provide a comprehensive
evaluation, we compare our LoFTR retrained with both
versions of supervision against three state-of-the-art feature
matching algorithms:

1) SIFT+NN: SIFT feature extractor [18] (resized to
1600 pixels), with Nearest Neighbor matcher (mutual
check, ratio threshold 0.8).

2) SP+SG: Superpoint feature extractor [20] (4096 key-
points, NMS radius 3, resized to 1024 pixels), with
SuperGlue matcher [23] (outdoor model).

3) LoFTR (outdoor): Dense feature matching with the
out-of-the-box LoFTR [1] (outdoor model, dual soft-
max, resized to 1024 pixels).

4) LoFTR (retrained w/o HC): Our retrained LoFTR
without height change (resized to 1024 pixels).

5) LoFTR (retrained w/ HC): Our retrained LoFTR with
height change (resized to 1024 pixels).
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Fig. 4: Comparison of our inter-day feature matching method against state-of-the-art approaches at varying time intervals between the query and reference
models. Lower values indicate superior performance. Following the convention from previous model alignment tasks like [35], we use Error-Recall graphs
to display the mean error between the 2D GCP locations of the aligned query model and the ground truth. The legend is presented solely on the middle
plot to enhance readability, and consistent colors are used across all plots for method identification.

Error of GCP locations, 3D [m] Error of GCP locations, 2D [m]

SIFT+NN SP+SG
LoFTR

(outdoor)
LoFTR

(retrained w/o HC)
LoFTR

(retrained w/ HC) SIFT+NN SP+SG
LoFTR

(outdoor)
LoFTR

(retrained w/o HC)
LoFTR

(retrained w/ HC)

t0 - t16 0.147±0.032 0.047±0.013 0.178±0.029 0.161±0.027 0.166±0.026 0.100±0.040 0.039±0.014 0.079±0.031 0.075±0.028 0.077±0.030
t16 - t33 0.183±0.073 0.393±0.064 0.115±0.031 0.079±0.028 0.058±0.023 0.170±0.085 0.200±0.094 0.075±0.031 0.058±0.032 0.048±0.022
t33 - t49 0.318±0.059 0.590±0.068 0.421±0.122 0.190±0.062 0.168±0.056 0.268±0.052 0.306±0.120 0.246±0.100 0.136±0.049 0.124±0.043
t49 - t65 0.832±0.156 0.700±0.072 0.931±0.154 0.363±0.075 0.402±0.097 0.651±0.237 0.418±0.178 0.904±0.178 0.347±0.087 0.342±0.093
t65 - t82 - 0.957±0.140 1.009±0.135 1.128±0.243 0.783±0.173 - 0.708±0.230 0.963±0.144 0.764±0.375 0.750±0.178
t82 - t96 - 1.099±0.132 1.099±0.290 1.261±0.241 0.275±0.132 - 0.781±0.314 1.035±0.318 0.937±0.428 0.273±0.130
t96 - t114 - 1.200±0.116 1.179±0.281 1.425±0.230 0.309±0.103 - 0.868±0.296 1.009±0.353 0.974±0.444 0.266±0.119
mean - 0.712 0.705 0.658 0.308 - 0.474 0.616 0.470 0.269

TABLE I: Evaluation of our time-sequential registration pipeline, starting with the initial model constructed from images on t0 (March 13, 2019), geo-
registered using ground truth image locations. Subsequent model alignments rely exclusively on our inter-day alignment method, with the previously aligned
model serving as the reference. Reported are the mean 3D and 2D errors of GCP locations for the aligned models. ’-’ indicates when an algorithm fails
in the respective registration task.

Given that we trained our models on the 2018 dataset,
we aim to evaluate their performance on a different year.
To achieve this, we assess the registration performance by
varying the time intervals between the query and reference
models, utilizing the crop dataset captured in 2019. The
process for constructing the testing data is as follows:

1) Randomly select 21 query dates from the 2019 dataset.
2) For each query date, reconstruct a query model from

the available images, which is then geo-referenced
using GPS locations. As true GPS data from flights is
unavailable, we simulate GPS locations by introducing
random Gaussian noise (with a variance of 5 meters
and a zero mean) to the 3D coordinates of the ground
truth image locations provided in the dataset.

3) For each query model, create three reference recon-
structions, each corresponding to a specific time frame
relative to the query date, approximately 5 days, 15
days, and 30 days before the query date, respectively.
For each time frame, select a reference date with a
difference to the query date within the range of k ± 2
days (k = 5, 15, 30), and construct a reference model
using images from that date.

4) Apply the registration pipeline to align the query and
reference models.

To assess the performance of our inter-day feature match-
ing method, we calculated the mean errors of Ground Control
Points (GCPs), specifically the 2D error (xy-component of

the GCP location error), for each aligned query model against
the ground truth.

Figure 4 illustrates the Error-Recall graphs for all three
time frames. We select a threshold of 0.25 meters, consid-
ering the average planting spacing of winter wheat, which
falls approximately within the range of 17.5-35 cm [36].
When the query model and reference model were closely
spaced (3-7 days apart), all algorithms achieved relatively
low ground error within the 0.25-meter threshold. Notably,
our LoFTR retrained without height change exhibited a slight
advantage, likely because the plant heights exhibited minimal
appearance and height change during this period.

As the time interval increased to around 15 days, a
noticeable disparity in performance emerged. SIFT+NN, for
example, primarily looking for invariant features related to
field geometry, struggled to achieve only approximately 50%
recall at the 0.25-meter ground error threshold. In contrast,
our retrained LoFTR with height change excelled, achieving
approximately 85% recall—more than 10% higher than the
second-best performer. Furthermore, our method consistently
maintained lower errors for most recall levels below 0.25
m, indicating its effectiveness in achieving minimal errors
at comparable recall rates. We believe that this advantage
is because, during a period of around 15 days, the visual
appearance changes moderately, allowing our method to
capitalize on its height-aware matching approach. It strikes
a balance, achieving accurate inter-day feature matching



without being hindered by excessive changes or underutilized
when changes are minimal, making it the most effective
choice for this critical time frame.

As the time interval increased to approximately one
month, all methods experienced a significant drop in recall
rates, falling below 50%. While our retrained model with
height-compensated still outperformed others, the recall rate
dropped to a point where the registration effectiveness may
be compromised. Additionally, the gap between LoFTR
with and without height change remained relatively small,
possibly due to significant appearance changes hindering the
establishment of correspondences between 2D features of a
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(e) LoFTR (retrained w/ HC)

Fig. 5: Matching between image pairs taken 15 days apart using different
algorithms.

3D landmark.
Figure 5 showcases matching results for all five algorithms

using example image pairs taken 15 days apart with signif-
icant appearance changes. SIFT+NN, SP+SG, and the out-
of-the-box LoFTR identified relatively few matches, while
our LoFTR retrained on the crop dataset found significantly
more matches. Notably, the model considering height change
found even denser matches, demonstrating its ability to
handle considerable appearance variations.

C. Evaluation of sequential registration across the season

In this section, we leverage our proposed inter-day feature
matching method within the pipeline outlined in Figure 2,
which is equivalent to actual use in precision agriculture
throughout a crop-growing season. We sequentially execute
the registration pipeline, refining only the first model with
human interference, specifically GCP. The remaining days
rely on our inter-day alignment approach.

For simplicity, we denote the first date, March 13, 2019,
as t0, and subsequent flight days as tn, where n represents
the number of days since t0. We consider intervals between
flights of approximately 16 days, which align with the
time frame where our retrained LoFTR exhibited optimal
performance in the previous subsection.

We report the 3D and 2D error of GCP locations of
the aligned models in Table I. Results reveal that apart
from the initial alignment at t0-t16, where our method was
outperformed by SP+SG, our approach consistently excelled,
or fell within one standard deviation of the best-performing
algorithm’s error in most cases. Importantly, our approach
does not rely on specific field geometries, as demonstrated
by our choice of training set from 2018 and testing set from
2019, where field geometry varied. This demonstrates the
potential to train our method on data from a given year
and apply it to subsequent years, enabling continuous plant
monitoring for smart farming.

VI. CONCLUSION

This paper has described feature matching over time
in a wheat field captured from a UAV camera resolving
features in the millimetre range. The matching problem is
challenging because of the self-similarity of single plants and
the changing appearance of the environment and plant stands
over time, hence matching ambiguity. We utilised LoFTR for
matching and demonstrated an improvement in accuracy by
retraining the original network with crop imagery.

While our approach contributes to improved performance
in various scenarios, we acknowledge the need for further
investigation and refinement to enhance the model’s ef-
fectiveness in handling more prolonged temporal changes,
extending beyond a month. Furthermore, experiments were
done on imagery of a wheat crop as a starting point. For other
crops, the visual appearance and morphological changes with
time will differ. Specific management parameters such as
sowing density and row spacing may introduce additional
variation. Consequently, adapting the methodology to new
crops will be required. Another area for improvement is



distinguishing features on the ground from those on the
plant canopy level to enhance the registration in the vertical
direction, thereby allowing for tracking of the plant’s size.
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