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Abstract

The �rst main topic of this thesis, considered in Chapters I and II, is the study of

the mean�variance hedging problem in the rough Heston model. Rough volatility

models have become quite popular recently, but the question of hedging in such

models is still underexplored. Previous work has focused on perfect hedging in

a complete market and on approximate hedging under the risk-neutral measure.

We use instead a mean�variance hedging approach under the historical measure,

which is more natural for the purposes of risk management. Because the rough

volatility process is neither Markovian nor a semimartingale, the rough Heston

model poses di�culties to classical techniques in stochastic optimal control. By

using the a�ne structure of the model, we obtain explicit formulas for the op-

timal mean�variance hedging strategies for a wide class of European-type payo�s,

including vanilla call and put options, that can be implemented in practice. We

then use those results to �nd optimal semistatic trading strategies in the under-

lying asset and a basket of derivatives.

The second part of the thesis, developed in Chapters III and IV, pertains to

quadratic market equilibria in continuous time. Many classical results on the

existence and uniqueness of Radner equilibria such as the capital asset pricing

model (CAPM) require the assumption of a complete market. The study of

equilibria in incomplete setups is more challenging due to the absence of Pareto

optimality. We obtain an explicit equilibrium in an incomplete semimartingale

setup with quadratic utilities by using the linearity properties of mean�variance

hedging. We then extend our results to mean�variance preferences and �nd an

explicit solution in the linear case. More generally, we show the stability of the

mean�variance hedging problem with respect to the quadratic equilibrium price

process by using a novel result on the stability of quadratic backward stochastic

di�erential equations under a BMO condition on the stochastic driver and in a

continuous �ltration. This yields su�cient conditions for the existence of an equi-

librium for general mean�variance utility functions via a �xed-point argument.
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Kurzfassung

Das erste Hauptthema dieser Arbeit, das in den Kapiteln I und II behandelt

wird, ist das Mean�Variance Hedging (MVH)-Problem im Rough Heston-Modell.

Sogenannte Rough Volatility-Modelle sind in letzter Zeit populär geworden, aber

das Thema des Hedgings in solchen Modellen ist noch unzureichend erforscht.

Frühere Studien konzentrierten sich auf perfektes Hedging in einem vollständigen

Markt und auf approximatives Hedging unter einem Martingalmass. Wir versu-

chen, das MVH-Problem unter einem Semimartingalmass zu lösen, was aus Sicht

des Risikomanagements natürlicher ist. Da der Volatilitätsprozess weder Mar-

kovsch noch ein Semimartingal ist, können klassische Methoden der stochasti-

schen Kontrolle nicht direkt zur Lösung des Problems angewendet werden. Dank

der a�nen Struktur des Rough Heston-Modells erhalten wir explizite Formeln

für die optimalen Hedging-Strategien einer breiten Klasse europäischer Optio-

nen, einschliesslich Call- und Put-Optionen, die in der Praxis umgesetzt werden

können. Anschliessend nutzen wir diese Ergebnisse, um optimale semistatische

Handelsstrategien für den Basiswert und einen Korb von Optionen zu �nden.

Der zweite Teil der Arbeit, der in den Kapiteln III und IV entwickelt wird,

befasst sich mit quadratischen Gleichgewichtsmodellen in stetiger Zeit. Viele klas-

sische Ergebnisse zur Existenz und Eindeutigkeit von Radner-Gleichgewichten

wie das Capital Asset Pricing Model (CAPM) erfordern die Annahme eines voll-

ständigen Finanzmarktes. Aufgrund des Fehlens der Pareto-Optimalität ist die

Untersuchung von Gleichgewichten im unvollständigen Fall schwieriger. Wir nut-

zen die Linearität des MVH-Problems, um ein explizites Gleichgewicht in ei-

nem unvollständigen Semimartingal-Markt mit quadratischen Nutzenfunktionen

zu erhalten. Anschliessend erweitern wir unsere Ergebnisse auf Mean-Variance-

Präferenzfunktionen und �nden eine explizite Lösung im linearen Fall. Allgemei-

ner zeigen wir die Stabilität des MVH-Problems in Bezug auf den quadratischen

Gleichgewichtspreisprozess. Dafür beweisen wir ein neues Ergebnis zur Stabilität

von quadratischen stochastischen Rückwarts-Di�erentialgleichungen unter einer
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BMO-Bedingung für den stochastischen Treiber und in einer stetigen Filtrati-

on. Zusammen mit einem Fixpunkt-Argument liefert dies hinreichende Bedin-

gungen für die Existenz eines Gleichgewichts mit allgemeinen Mean-Variance-

Präferenzfunktionen.
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Chapter 0

Introduction

Optimal portfolio selection and the pricing and hedging of contingent claims are

two of the central problems in mathematical �nance. Simply put, portfolio selec-

tion consists of choosing a portfolio with an optimal risk-reward tradeo�, whereas

for pricing and hedging a claim H, one looks for a portfolio of underlying assets

that replicates or at least approximates H. In mathematical terms, consider a

�nancial market with time horizon T > 0 consisting of a riskless asset with con-

stant price 1 and a risky asset with semimartingale price process S = (St)0≤t≤T .

By self-�nancing trading with initial wealth x ∈ R and a strategy ϑ = (ϑt)0≤t≤T

from a set Θ, an agent achieves the �nal wealth

VT (x, ϑ) = x+

∫ T

0

ϑtdSt.

In the optimal portfolio selection problem, the agent wants for a given x to max-

imise pro�ts and minimise risk. Under preferences described by a utility function

U on R, the goal is thus to

maximise E
[
U
(
VT (x, ϑ)

)]
over all ϑ ∈ Θ. (0.1)

On the other hand, the agent might want to buy or sell a contingent claim with a

random payo� H and hedge it by trading in the underlying assets. In a complete

market, the pricing and hedging problem for H consists of �nding xH ∈ R and

ϑH ∈ Θ such that H = VT (x
H , ϑH). In that case, xH is the unique arbitrage-free

price for H and ϑH the corresponding replicating strategy. But if the �nancial

market is incomplete, such a representation does not exist in general. One can
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consider instead an approximate version of the problem where the agent looks to

minimise E
[
ℓ
(
H − VT (x, ϑ)

)]
over all x ∈ R, ϑ ∈ Θ, (0.2)

where ℓ is a loss function on R. Depending on the application, x may be part

of the control as in (0.2), or �xed a priori so that the minimisation is only over

ϑ ∈ Θ.

In much of the mathematical �nance literature, the problems (0.1) and (0.2)

are studied separately, often with di�erent techniques and di�erent sets of assump-

tions. The present thesis focuses instead on a setting where both U and ℓ are

quadratic. One of the most appealing features of the resulting quadratic problems

is that they are closely related to each other and can be solved within the same

framework. To see why, consider an agent with quadratic utility U(x) = x− 1
2γ
x2

for some γ > 0. The portfolio selection problem is then to

maximise E
[
VT (x, ϑ)−

1

2γ
V 2
T (x, ϑ)

]
over all ϑ ∈ Θ,

and completing the square yields the equivalent problem to

minimise E
[(
γ − VT (x, ϑ)

)2] over all ϑ ∈ Θ.

The latter is a hedging problem of the form (0.2) with a constant payo�H ≡ γ and

the loss function ℓ(y) = y2. Thus we have converted the original portfolio selection

problem into a mean�variance hedging (MVH) problem, that is, a problem of the

form (0.2) with a quadratic ℓ. Conversely, a MVH problem can be rewritten as

a portfolio selection problem with quadratic utility, where the agent receives the

random endowment γ −H at time T in addition to the initial wealth x.

The quadratic utility and mean�variance hedging or portfolio selection ap-

proaches have some well-known shortcomings; these include the existence of a

�bliss point� where maximal utility is attained, and the inability to take into ac-

count higher-order moments and heavy-tailed distributions. Nevertheless, these

approaches are widely used in practice because of their tractability, which some-

times yields simple and explicit solutions where other approaches fail to do so.

This doctoral thesis comprises two main topics that showcase applications of

the quadratic utility and MVH approaches. The �rst is presented in Chapters

I and II, which are based on joint work with Christoph Czichowsky. They are

devoted to the study of the mean�variance hedging problem in the so-called rough
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Heston model. We obtain for a wide class of European-type payo�s explicit

solutions to the MVH problem that can be implemented in practice. The second

topic is studied in Chapters III and IV, which are based on joint work with

Christoph Czichowsky and Martin Herdegen. We �rst �nd an explicit formula for

the Radner market equilibrium of agents with quadratic utility in an incomplete

market in continuous time. This analysis is then extended to show the existence of

an equilibrium under generalised mean�variance preferences. Finally, Appendix A

provides some technical results on the existence of solutions to nonlinear Volterra

equations that are used in Chapters I and II.

1 Quadratic hedging in the rough Heston model

In the �rst part of the thesis, we study mean�variance hedging in a speci�c

model with a rough stochastic volatility process. Rough volatility models have

become quite popular recently, as they capture both the fractional scaling of the

time series of historic volatility (Gatheral et al. [55]) and the asymptotics of the

implied volatility surface (Bayer et al. [15], Fukasawa [54]) remarkably well. In

these models, S has a volatility process Y that satis�es a stochastic Volterra

equation with a fractional kernel that is singular at 0. This leads to a process

Y that has rougher paths (i.e., paths of lower Hölder regularity) than Brownian

motion, and is no longer a Markov process nor a semimartingale. Hence these

models fall outside of the scope of standard techniques in stochastic analysis and

present new mathematical challenges.

The problem of pricing under rough volatility has been considered in Bayer

et al. [15, 16], and the hedging problem for a complete market with continuous

trading in forward variance swaps has been studied in El Euch/Rosenbaum [45].

However, as pointed out in Bayer et al. [15], forward variance swaps are often

illiquid and costly to trade. If only the underlying asset S can be traded, the

market is incomplete, and the problem of hedging in that setting has so far only

been studied in Horvath et al. [66, 67] under a risk-neutral measure. From the

point of view of risk management, it is more natural to work under the historical

measure P , especially since the risk-neutral measure is not unique. We thus use

an approach based on mean�variance hedging (see Schweizer [111] for a recent

overview), where we study (0.1) for ℓ(y) = y2 and hence we minimise the expected

squared di�erence under P between the claim H and the �nal wealth VT (x, ϑ) of

the hedging strategy.
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We focus on the rough Heston model of El Euch/Rosenbaum [45] which gener-

alises the classical Heston model by including a fractional kernel in the dynamics

of the volatility process Y . Like the classical Heston model, this rough model

is a�ne in the sense that the characteristic function of the log-price admits an

exponentially a�ne representation. However, since Y is not Markovian, it is re-

placed as a state variable by the in�nite-dimensional so-called forward variance

curve, and the associated coe�cient in the above representation no longer solves

a Riccati ODE, but rather a Riccati�Volterra equation. Thus the volatility in the

rough Heston model is a so-called a�ne Volterra process (Abi Jaber et al. [1]).

This a�ne structure preserves the tractability of the classical Heston model and

allows the pricing of European options by Fourier transform techniques as shown

in [45] for the case of a complete market. We show how to combine these tech-

niques with the mean�variance hedging approach to obtain similar results in the

case of an incomplete market.

Our main results provide semi-explicit formulas for the mean�variance hedging

strategies for a wide range of European-type payo�s, including vanilla call and

put options. The formulas are given in terms of the underlying S and the forward

variance curve, with deterministic coe�cients that solve one-dimensional Riccati�

Volterra equations. These equations do not admit closed-form solutions but can

be integrated numerically, so that our formulas are implementable in practice. In

order to solve the mean�variance hedging problem and obtain these formulas, we

follow the approach in �erný/Kallsen [25] and proceed in two steps.

The �rst step is the subject of Chapter I and consists of solving the so-called

pure investment problem, i.e., (0.2) for ℓ(y) = y2, x = 0 and H ≡ 1. This is

equivalent to Markowitz portfolio selection (see Fontana/Schweizer [48]), which

has also been recently studied for the rough Heston model in Abi Jaber et al. [2]

and Han/Wong [61]. We show an alternative way to solve this via a martingale

distortion technique as in Fouque/Hu [49, 50] and give a formula for a generalised

moment-generating function in the rough Heston model. This yields formulas for

the solution to the pure investment problem and the so-called variance-optimal

martingale measure (VOMM) Q⋆.

The second step, which is done in Chapter II, is to �nd for a claim H the mean

value process de�ned by V H
t = EQ⋆ [H | Ft] and the pure hedging coe�cient ΞH

which appears as the integrand in the Galtchouk�Kunita�Watanabe decomposi-

tion of V H under Q⋆. Because the rough Heston model retains its a�ne structure

under Q⋆ (even though its dynamics are now time-inhomogeneous), we are able

to obtain explicit formulas for the moment-generating function of the log-price
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under Q⋆. By linearity, this yields formulas for V H and ΞH for payo�s H that can

be representated as Mellin transforms, and the mean�variance hedging strategies

are then determined via a feedback equation as in �erný/Kallsen [25].

2 Mean�variance equilibrium in continuous time

The second part of the thesis studies equilibria for mean�variance preferences

in continuous time and for general semimartingale models in an incomplete set-

ting. The study of market equilibria is a key area of research in economic and

mathematical �nance theory. The main idea is to model market prices indirectly

as outcomes of the interaction between market participants and other exogenous

factors. Since every transaction of an asset involves a buyer and a seller, the total

number of units bought by some market participants is always equal to the total

number of units sold by other participants. This is the so-called market clearing

condition. In turn, the trading decisions of agents are determined by their own

preferences, the market price, and their views about other participants and exo-

genous economic factors. Thus in an equilibrium, there is a feedback loop between

prices, which in�uence the individual strategies, and agents, which set prices via

the market clearing condition. The study of equilibria yields insights into why

markets display certain behaviours, and can be used to extrapolate the e�ects of

regulatory, �scal or other large-scale structural changes on �nancial markets.

Here we work with the well-known concept of a Radner [103] equilibrium.

We consider a �nancial market consisting of one riskless asset with constant

price 1 and d risky assets with a d-dimensional semimartingale price process

S = (St)0≤t≤T . Each agent k = 1, . . . , K has initial wealth xk ∈ R and receives

a random endowment Ξk at time T . Via self-�nancing trading in (1, S) with a

portfolio ϑk = (ϑkt )0≤t≤T , agent k achieves the �nal wealth

V k
T (ϑ

k) = xk +

∫ T

0

ϑkt dSt + Ξk.

Each agent k has preferences Uk on L0(FT ) and seeks to

maximise Uk
(
V k
T (ϑ

k)
)
over all ϑk.

Then (1, S) is an equilibrium market if each agent has a unique optimal strategy

ϑ̂k and the market clears, i.e.,
∑K

k=1 ϑ̂
k ≡ 0. In addition to the market clearing

condition, we impose exogenous constraints on the assets, which we divide into
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productive and �nancial assets as in Karatzas et al. [76]. Our goal is then to look

for equilibrium markets (1, S) satisfying those constraints.

In Chapter III, we consider preferences given by expected quadratic utility,

Uk(V ) = E

[
V − 1

2γk
V 2

]
, (2.1)

for some risk tolerance parameter γk > 0. In Chapter IV, we consider more

general mean�variance preferences of the form

Uk(V ) = Uk
(
E[V ],

√
Var[V ]

)
(2.2)

for a mean�variance utility function Uk on R×R+. If the market is complete, it

is well known that the capital asset pricing model (CAPM) gives the equilibrium

prices in both cases. That classical result is in line with much of the research on

Radner equilibria (see Karatzas/Shreve [78, notes to Chapter IV] for an overview),

where it is assumed that the market is complete, or at least that the endowments

of the agents can be perfectly hedged.

However, as argued in Kardaras et al. [79], the completeness assumption is

not always justi�ed, and it is relevant to study the behaviour of equilibrium mar-

kets in which the endowments cannot be perfectly hedged. The main challenge

is that equilibria need not to satisfy Pareto optimality in an incomplete market,

and so the well-known method of using a representative agent does not work.

Despite this di�culty, some positive results on incomplete market equilibria have

been obtained in Basak/Cuoco [14], Cheridito et al. [28], Guasoni/Weber [60],

Kardaras et al. [79], Koch-Medina/Wenzelburger [85] and �itkovi¢ [122], among

others. Most relevant for us is [85], where a CAPM equilibrium is found for a

discrete-time incomplete market in one period with general mean�variance pref-

erences.

Our results in Chapters III and IV extend to continuous time the existence res-

ults of [85] for incomplete market equilibria. So far, results on incomplete market

equilibria in continuous time have only been obtained under speci�c �ltrations,

such as Brownian ones. In contrast, our results in Chapter III allow general se-

mimartingale price processes with jumps, while the main results in Chapter IV

assume only a continuous �ltration. To the best of our knowledge, we thus give

the �rst results on equilibria in incomplete markets with general semimartingale

dynamics in continuous time.

In Chapter III, we �nd an explicit formula for the equilibrium under quadratic
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utilities (2.1). This is done by exploiting the fact that (as seen in the introduction)

the individual optimisation problems of the agents are equivalent to certain mean�

variance hedging (MVH) problems. The linearity of MVH allows us to deduce

that the aggregate demand for the risky assets is equal to the optimal strategy

for a nonstandard representative agent, i.e., a �ctional agent that aggregates the

endowments and preferences of the individual agents. We use this insight to

obtain a pricing measure for the equilibrium prices, which then yields an explicit

formula for the latter.

The next step, which is the subject of Chapter IV, is to extend those res-

ults to the case of mean�variance preferences (2.2) by relating them to quadratic

utilities (2.1). We show that any equilibrium for mean�variance preferences is

also an equilibrium for quadratic utility. At �rst glance, it may appear that this

directly gives the existence of an equilibrium; but it is merely the starting point

because the relationship between the quadratic utility and mean�variance pref-

erence problems (2.1) and (2.2) depends implicitly on the price process S, which

is not known a priori. Surprisingly, in the case of linear mean�variance prefer-

ences, we are nevertheless able to obtain an explicit formula for the equilibrium.

In the general case, we prove that for some choice of risk tolerance parameters

γ1, . . . , γK , the equilibrium market with respect to the quadratic utilities (2.1) is

also an equilibrium market for the original mean�variance preferences. We then

obtain the existence of an equilibrium via a �xed-point argument on (γk)
K
k=1.

Because we work in continuous time, this is technically challenging and involves

studying the dependence on their parameters of a class of BSDEs.
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Chapter I

The pure investment problem for

the rough Heston model

1 Introduction

Our goal in Chapters I and II is to solve the mean�variance hedging (MVH)

problem for the rough Heston model, as explained in the global introduction

from Chapter 0. The present chapter thus plays a supporting role to Chapter II

by introducing and de�ning the rough Heston model, as well as proving several

auxiliary results that are needed to tackle the MVH problem. The main subject

of this chapter is the so-called pure investment problem of �erný/Kallsen [25],

de�ned as the MVH problem for x = 0 and the constant payo� H ≡ 1. Writing

ϑ •S =
∫
ϑdS for brevity, one thus looks to

minimise E[(1− ϑ •ST )
2] over all ϑ ∈ ΘT (S),

where the price process S = (St)0≤t≤T satis�es the rough Heston model and ΘT (S)

is the set of L2-admissible strategies on [0, T ] (see Section 3.1 for the de�nition).

It is well known that the solution ϑ⋆ determines the set of mean�variance e�cient

portfolios, and hence this problem is equivalent to classical Markowitz portfolio

selection; see Fontana/Schweizer [48]. In this chapter, we obtain an explicit

solution to the pure investment problem in the rough Heston model. We also �nd

the solution Q⋆ to the dual problem, which is to

minimise E[(dQ/dP )2] over all Q ∈ Q2
T (S),
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where Q2
T (S) is the set of equivalent martingale measures Q for S on [0, T ] such

that E[(dQ/dP )2] < ∞. The measure Q⋆ is the so-called variance-optimal mar-

tingale measure (VOMM) for S on [0, T ], and it plays a key role in solving the

MVH problem (Schweizer [110]).

As in �erný/Kallsen [25] and Czichowsky/Schweizer [32], we solve the pure

investment problem by determining the opportunity process L = (Lt)0≤t≤T , which

is the reduced-form value process given by

Lt = ess infϑ∈Θt,T (S)E[(1− ϑ •ST )
2 | Ft], 0 ≤ t ≤ T,

where Θt,T (S) is the set of strategies ϑ ∈ ΘT (S) such that ϑ1J0,tK = 0. It is

well known (see e.g. Bobrovnytska/Schweizer [21]) that L satis�es a backward

stochastic di�erential equation (BSDE) with a driver determined by the dynamics

of S. Thus our approach is to �nd a solution L̂ to that BSDE via a martingale

distortion technique as in Fouque/Hu [49, 50] and then use a veri�cation result

of �erný/Kallsen [25] to show that L̂ = L is the true opportunity process. The

dynamics of L then yield the solution to the pure investment problem as well as

a formula for the variance-optimal martingale measure Q⋆.

In preparation for the study of the pure investment problem, we also prove

a useful result on a generalised moment-generating function in the rough Heston

model. This generalisation of El Euch/Rosenbaum [46, Theorem 4.1] allows us

to include changes of measure that preserve the a�ne structure of the model.

We use this result throughout this Chapters I and II, where it yields formulas

for conditional expectations under Q⋆. We note, however, that the moment-gen-

erating function can be well de�ned not for all time horizons, but only up to

a positive time. The same therefore applies to our subsequent results on the

solution to the pure investment problem. This issue cannot be avoided, since

moment explosion is inherent to the rough Heston and other stochastic volatility

models (Andersen/Piterbarg [10], Gerhold et al. [57], Keller-Ressel [82]).

This chapter, based on joint work with Christoph Czichowsky, is structured

as follows. We introduce in Section 2.1 the rough Heston model and its basic

properties. In Section 2.2, we prove the formula for the generalised moment-

generating function. Section 3 is then dedicated to solving the pure investment

problem for the rough Heston model. After introducing the problem in Section

3.1, we �nd in Sections 3.2 and 3.3 a martingale distortion representation and an

explicit formula, respectively, for the candidate opportunity process L̂. In Section

3.4, we prove our main result where we verify that the candidate opportunity
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process is the true one, i.e., L. We also obtain a formula for the variance-optimal

martingale measure. Finally, in Section 3.5, we compare our results to the closely

related ones in �erný/Kallsen [27], Abi Jaber et al. [2] and Han/Wong [61].

2 The rough Heston model

2.1 De�nition and �rst properties

We begin by recalling the classical Heston model with drift. We consider a fric-

tionless �nancial market with a �nite time horizon T ∈ (0,∞), consisting of one

riskless asset with constant price equal to 1 and one risky asset. The price process

(St)0≤t≤T of the risky asset is described by the stochastic di�erential equations
dSt
St

= µYtdt+ σ
√
YtdWt,

dYt = λ(θ − Yt)dt+ ζ
√
YtdBt

(2.1)

for t ∈ [0, T ], where W and B are Brownian motions with constant correlation

ϱ ∈ (−1, 1), and the parameters S0 > 0, Y0 > 0, µ ∈ R, σ > 0, λ > 0, θ > 0,

ζ > 0 and ϱ ∈ (−1, 1) are �xed constants. The parameters µ and σ are related to

the rate of return and volatility of S, whereas θ is the long-term mean volatility,

λ is the speed of mean reversion of Y , ζ is related to the volatility of Y (�vol of

vol�), and ϱ describes the instantaneous correlation between S and Y .

The rough Heston model, introduced in El Euch/Rosenbaum [46], is a gener-

alisation of the classical Heston model where the stochastic volatility process Y

is replaced by a process that is rougher than Brownian motion. Rough volatility

models have become quite popular recently, as they capture both the fractional

scaling of the time series of the historic volatility (Gatheral et al. [55]) and the

implied volatility surface (Fukasawa [54], Bayer et al. [15]) remarkably well. One

can model a rough volatility process Y by introducing a convolution kernel with

a singularity at 0. This is analogous to the construction of the Riemann�Liouville

fractional Brownian motion, de�ned for a Hurst parameter h ∈ (0, 1) as

W
(h)
t =

∫ t

0

(t− s)h−
1
2

Γ(h+ 1
2
)
dWs,

where W is a Brownian motion and Γ : (0,∞) → R+ is the well-known gamma

function. The resulting process is then Hölder-continuous of any order strictly
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smaller than h, and thus rougher than Brownian motion in the case h < 1
2
.

In order to properly de�ne the rough Heston model, we �rst give some de�n-

itions related to the convolution operation.

Notation 2.1. Consider a Borel subset E ⊆ [0,∞), some constant p ∈ [1,∞)

and let F = Rn or Cn for some n ∈ N. We say that a Borel-measurable function

f : E → F belongs to Lp(E;F ) if
∫
E
|f(t)|pdt < ∞, and it belongs to Lploc(E;F )

if
∫
E∩[0,T ] |f(t)|

pdt <∞ for all T > 0. We say that a map ν :
⋃
T≥0 B([0, T ]) → R

is a σ-�nite signed local measure on [0,∞) if its restriction to B([0, T ]) is a �nite

signed measure for each T > 0. We say that ν : B([0, T ]) → C is a �nite complex

measure on [0, T ] if ν = ν1+iν2 for two �nite signed measures ν1 and ν2 on [0, T ].

Similarly, the map ν :
⋃
T≥0 B([0, T ]) → C is a σ-�nite complex local measure on

[0,∞) if ν = ν1 + iν2 for two σ-�nite signed local measures ν1 and ν2.

A σ-�nite signed local measure on R+ can be thought of as the di�erence of

two σ-�nite measures on R+, in the following sense.

Lemma 2.2. A map ν :
⋃
T≥0 B([0, T ]) → R is a σ-�nite signed local meas-

ure if and only if there exist mutually singular σ-�nite measures ν+, ν− on

([0,∞),B([0,∞))) such that

ν(B) = ν+(B)− ν−(B) (2.2)

for each B ∈
⋃
T≥0 B([0, T ]).

Proof. We start with the �only if� statement. As ν|[0,T ] is a �nite signed measure

for any T ≥ 0, we have by the Jordan decomposition theorem (Klenke [83, Co-

rollary 7.44]) that there exist unique mutually singular �nite measures νT+ and νT−
on ([0, T ],B([0, T ])) such that ν(B) = νT+(B) − νT−(B) for each B ∈ B([0, T ]).
By the uniqueness of the construction, it is clear that νT

′
± |B([0,T ]) = νT± for

T ′ ≥ T ≥ 0, i.e., the measures (νT±)T≥0 are consistent. We can thus construct

functions ν± :
⋃
T≥0 B([0, T ]) → R+ by ν±(B) = νT±(B) for each B ∈ B([0, T ]);

this is well de�ned by the consistency of the measures (νT±)T≥0.

Now let A =
⋃
m∈NAm ∈

⋃
T≥0 B([0, T ]) for some family of disjoint sets

(Am)m∈N in
⋃
T≥0 B([0, T ]). There exists some T ≥ 0 such that [0, T ] ⊇ A ⊇ Am

for each m ∈ N, and hence

ν±(A) = νT±(A) =
∑
m∈N

νT±(Am) =
∑
m∈N

ν±(Am).
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Thus we have shown that ν± is a pre-measure on the ring
⋃
T≥0 B([0, T ]). As

ν±([0, T ]) = νT±([0, T ]) < ∞ for each T ≥ 0, ν± is σ-�nite. By Carathéodory's

extension theorem, ν± can thus be uniquely extended to a σ-�nite measure on

([0,∞),B([0,∞))).

As νT+ and νT− are mutually singular for each T = n ∈ N, there exist disjoint
sets An+, A

n
− ∈ B([0, n]) such that νn± is supported on An±. By the consistency of

the measures (νn±)n∈N, we may assume without loss of generality that An+1
± ⊇ An±

for each n ∈ N. If we de�ne A± :=
⋃
n∈NA

n
±, then A+ and A− are disjoint, since

A+ ∩ A− =
⋃
n∈N

(A+ ∩ A− ∩ [0, n]) =
⋃
n∈N

(An+ ∩ An−) = ∅.

We have ν±(B) = ν±(A
n
± ∩ B) = ν±(A± ∩ B) for any B ∈ B([0, n]) so that the

measures ν± and B 7→
∫
B
1A±dν± coincide on the ring

⋃
T≥0 B([0, T ]), and hence

they are equal by the uniqueness of the Carathéodory extension. This implies

that ν± is supported on A±, so that ν+ and ν− are mutually singular. Moreover,

for each B ∈
⋃
T≥0 B([0, T ]), we have

ν(B) = ν|B([0,T ])(B) = νT+(B)− νT−(B) = ν+(B)− ν−(B),

and this shows (2.2).

For the �if� statement, let ν+ and ν− be σ-�nite measures on ([0,∞),B([0,∞))).

The equation (2.2) de�nes a unique map ν :
⋃
T≥0 B([0, T ]) → R, and we have

ν|B([0,T ]) = ν+|B([0,T ]) − ν−|B([0,T ])

for each T ≥ 0. As ν+ and ν− are σ-�nite, this implies that ν|B([0,T ]) is a �nite

signed measure on [0, T ] for each T ≥ 0, and thus ν is a σ-�nite signed local

measure.

As a motivation for this notion of a σ-�nite signed local measure, consider the

fact that any nonnegative function f ∈ L1
loc([0,∞);R) induces a σ-�nite measure

A 7→
∫
A
f(s)ds on ([0,∞),B([0,∞))), but this need not yield a well-de�ned signed

measure if f is allowed to take both positive and negative values. This is not an

issue on each bounded interval [0, T ], however, so that A 7→
∫
A
f(s)ds can be

seen as a σ-�nite signed local measure. One may extend this map to [0,∞) by

A 7→
∫
A
f+(s)ds −

∫
A
f−(s)ds for any set A ∈ B([0,∞)) such that this is well

de�ned, i.e., if at least one of the integrals is �nite, which is the case for any

bounded set A.
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We next give the de�nition of the convolution operation, which plays a key

role in rough volatility models such as the rough Heston model. In the following

(as well as in Appendix A), we use the textbook by Gripenberg et al. [59] as the

main reference on the topic of convolutions and convolution equations.

De�nition 2.3. For any pair of functions f, g ∈ L1
loc([0,∞);C), we de�ne the

convolution f ∗ g ∈ L1
loc([0,∞);C) by

(f ∗ g)(t) :=
∫ t

0

f(t− s)g(s)ds =

∫ t

0

f(s)g(t− s)ds, t ≥ 0.

The fact that f ∗ g is well de�ned and belongs to L1
loc([0,∞);C) follows from

[59, Theorem 2.2.2(i)]. It is clear that the convolution has a causality property,

i.e., the restriction of f ∗ g to [0, t] only depends on the restrictions of f and g to

[0, t] for each t ≥ 0. Some additional properties of the convolution are listed in [59,

Section 2.2]. For instance, if either f or g is a continuous function on [0,∞), then

so is f ∗ g, i.e., there exists a continuous representative of f ∗ g ∈ L1
loc([0,∞);C),

and it moreover satis�es (f ∗ g)(0) = 0. We always choose such a continuous

representative for f ∗ g if it exists, although we note that such a representative

need not satisfy (f ∗ g)(0) = 0 in general. We usually consider functions f and

g that are continuous on (0,∞) but may have an integrable singularity at 0; in

that case, there likewise exists a version of f ∗g that is continuous on (0,∞) with

possibly an integrable singularity at 0. Another notable property is the well-

known Young convolution inequality, given in Lemma A.1.5 in the Appendix.

De�nition 2.4. We say that Rk ∈ L1
loc([0,∞);C) is the resolvent of the second

kind (or simply resolvent) of a function k ∈ L1
loc([0,∞);C) if it holds that

(k ∗Rk)(t) = k(t)−Rk(t), for Lebesgue-a.a. t ≥ 0.

A σ-�nite complex local measure Lk on [0,∞) is the resolvent of the �rst kind of

k if it holds that

(k ∗ Lk)(t) :=
∫
[0,t]

k(t− s)Lk(ds) = 1, for Lebesgue-a.a. t ≥ 0.

Any k ∈ L1
loc([0,∞);C) has a resolvent of the second kind, by [59, Theorem

2.3.1]. On the other hand, a resolvent of the �rst kind does not always exist. Both

kinds of resolvents Rk and Lk for k are unique if they exist, by [59, Theorems

2.3.1 and 5.5.2], and they are real-valued if k is. We also note that if k is locally
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square-integrable, then this property is inherited by Rk, which follows by applying

[59, Theorem 2.3.5] in the special case f = k there. Some other properties such

as continuity and local boundedness can also be inherited by Rk from k, by the

same argument.

Remark 2.5. The resolvents of the �rst and second kind allow us to solve linear

Volterra equations of the �rst and second kind, respectively. Given functions

f, k ∈ L1
loc([0,∞);C), the Volterra equation of the �rst kind

(k ∗ x)(t) = f(t), t ≥ 0, (2.3)

has the solution x = d
dt
(Lk∗f), if the resolvent of the �rst kind Lk exists. Likewise,

the Volterra equation of the second kind

x(t) + (k ∗ x)(t) = f(t), t ≥ 0, (2.4)

has the solution x = f −Rk ∗ f ; see [59, Theorems 2.3.5 and 5.5.3] for references.

In such a context, we refer to the function k ∈ L1
loc([0,∞);C) as a kernel. This

does not impose any additional conditions on k, but rather is a term used in

the literature to describe the role of k in convolution equations such as (2.3) and

(2.4). Likewise, we refer to the functions κ and κ̂ (that we de�ne later) as kernels

to emphasise their role in the rough Heston model.

Remark 2.6. The connections between the convolution operation, the resolvents

and the Laplace transform are also noteworthy; see [59, Theorem 2.2.7 and Sec-

tions 2.3 and 5.5] for references. For f ∈ L1
loc([0,∞);C), de�ne the Laplace

transform

f̂(ρ) :=

∫ ∞

0

e−ρsf(s)ds

for any ρ ∈ [0,∞) such that the integral exists. Then for each f, g ∈ L1
loc([0,∞);C)

and ρ ∈ [0,∞) such that f̂(ρ) and ĝ(ρ) exist, we have that f̂ ∗ g(ρ) exists and
is given by f̂(ρ)ĝ(ρ). Moreover, suppose that k ∈ L1

loc([0,∞);C) admits the

resolvents Lk and Rk of the �rst and second kind, respectively. Then we have

L̂k(ρ) =
1

ρk̂(ρ)
and R̂k(ρ) =

k̂(ρ)

1 + k̂(ρ)
(2.5)

for any ρ such that the Laplace transforms exist, where in the de�nition of L̂k,

we replace the integrand f(s)ds with Lk(ds). We shall use the formula for R̂k

below in the proof of Lemma 2.12.
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The rough Heston model di�ers from the classical Heston model due to the

introduction of a convolution kernel, which we denote by κ, in the de�nition of the

volatility process Y . We impose some assumptions on the kernel κ : (0,∞) → R+,

the �rst three of which ensure the wellposedness of the rough Heston model, while

the fourth is helpful for obtaining some additional properties, such as Lemma 2.12.

We note that κ may (and often does, as in the examples below) have a singularity

at 0, where limt↘0 κ(t) = ∞. However, such a singularity must be su�ciently

integrable, as speci�ed in the following assumptions.

Assumption 2.7. We assume that the kernel κ ∈ L2
loc([0,∞);R+) satis�es each

of the conditions 1)�4).

1) There exists some γ ∈ (0, 2] such that
∫ T
0
(κ(t+ h)− κ(t))2dt = O(hγ) and∫ h

0
κ(t)2dt = O(hγ) for every T ∈ (0,∞) and small h > 0.

2) The function κ : (0,∞) → R+ is not identically zero, nonincreasing and

continuous on (0,∞).

3) κ admits a resolvent of the �rst kind Lκ that is a nonnegative and nonin-

creasing measure on [0,∞), i.e., the map s 7→ Lκ([s, s + t]) ≥ 0 is nonneg-

ative and nonincreasing in s for all t ≥ 0.

4) For each λ ≥ 0, the resolvent Rλκ of the rescaled kernel λκ is nonnegative.

We note that although it is natural to impose the condition 4) for all λ ≥ 0,

we only use the fact that Rλκ is nonnegative for the particular choice of λ > 0

introduced later in the de�nition (2.8) of the rough Heston model.

It is pointed out in Abi Jaber et al. [1] (which we use as a reference for

properties of the rough Heston model) that the conditions 2)�4) of Assumption 2.7

can be replaced with the stronger but simpler condition of complete monotonicity,

which may be more convenient for practical applications. We say that a kernel

κ : (0,∞) → R+ is completely monotone if it is in�nitely di�erentiable and it holds

that (−1)jκ(j)(t) ≥ 0 for all t ∈ (0,∞) and j ∈ N0, where κ(j) denotes the j-th

derivative. In particular, any completely monotone kernel κ ∈ L1
loc([0,∞);R+)

that is not identically zero satis�es the conditions 2)�4), which follow by the

de�nition and [59, Theorems 5.5.4 and 5.3.1]. In this case, we even obtain that

λκ and thus Rλκ are also completely monotone by [59, Theorem 5.3.1] for each

λ ≥ 0, and hence Rλκ also satis�es the conditions 2)�4). We also note that

by Lemma A.3.3, Rλκ always satis�es condition 1) of Assumption 2.7 if κ does.

Some notable properties related to complete monotonicity include the fact that
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sums and products of completely monotone functions are completely monotone,

as well as Bernstein's theorem [59, Theorem 5.2.5] which states that a function is

completely monotone if and only if it is the Laplace transform of a nonnegative

measure on [0,∞).

Example 2.8. We consider the fractional (Riemann�Liouville) kernel

κ(t) =
th−1/2

Γ(h+ 1/2)
, t ≥ 0, (2.6)

as our main example, where Γ : (0,∞) → R+ is the well-known gamma function

and h ∈ (0, 1/2] a roughness parameter, similar to the Hurst parameter for frac-

tional Brownian motion. As they are completely monotone, the fractional kernel,

as well as the more general gamma kernel given by

κ(t) =
βh+1/2th−1/2e−βt

Γ(h+ 1/2)
, t ≥ 0,

for some parameter β ≥ 0, satisfy Assumption 2.7 with γ = 2h. As we will see

in (2.8), the fractional kernel with h = 1/2, so that κ ≡ 1, corresponds to the

classical Heston model. The resolvents of the �rst and second kind are given

explicitly in [1, Table 1] for fractional and gamma kernels. In the case of the

fractional kernel (2.6), we have the resolvent of the second kind

Rλκ(t) = λtα−1Eα,α(−λtα), t ≥ 0, (2.7)

for each λ ≥ 0, where α = h + 1/2 and Eα,β : [0,∞) → R+ is the generalized

Mittag-Le�er function; see Podlubny [101, Chapter 1] or Haubold et al. [63]

for the de�nition and properties of Eα,β. In this case, the resolvent Rλκ can

also be seen as the density of a Mittag-Le�er distribution (see [63, Equation

(19.1.2)] in the case λ = 1), and in particular it is a nonnegative function with∫∞
0
Rλκ(t)dt = 1.

We are now ready to introduce the rough Heston model. Consider a �nan-

cial market with �nite time horizon T ∈ (0,∞), consisting of one riskless asset

with constant price equal to 1 and one risky asset. The price process (St)0≤t≤T
of the risky asset is de�ned from the unique in law nonnegative weak solution
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(Ω,F , (Ft)0≤t≤T , P,W,B, S, Y ) to the Volterra stochastic di�erential equations
dSt
St

= µYtdt+ σ
√
YtdWt,

Yt = Y0 +

∫ t

0

κ(t− s)
(
λ(θ − Ys)ds+ ζ

√
YsdBs

) (2.8)

for t ∈ [0, T ], where (Wt)0≤t≤T and (Bt)0≤t≤T are two Brownian motions with

constant instantaneous correlation ϱ ∈ (−1, 1). The parameters S0 > 0, Y0 > 0,

µ ∈ R, σ > 0, λ > 0, θ > 0, ζ > 0 and ϱ ∈ (−1, 1) are �xed constants,

whereas κ : (0,∞) → R+ is a �xed kernel satisfying Assumption 2.7. Given

a weak solution (Ω,F , (Ft)0≤t≤T , P,W,B, S, Y ) to (2.8) such that S, Y ≥ 0, we

say as a shorthand that (S, Y ) satis�es the rough Heston model on [0, T ]. We

sometimes also consider the Brownian motion W⊥ := B−ϱW√
1−ϱ2 , so that we have the

orthogonal decomposition B = ϱW +
√
1− ϱ2W⊥. We note that the existence

and uniqueness of a nonnegative weak solution (S, Y ) to (2.8) follows from Abi

Jaber et al. [1, Theorems 3.6 and 7.1] for any kernel κ satisfying the conditions

1)�3) of Assumption 2.7.

The roughness of the volatility process Y is justi�ed by [1, Lemma 2.4 and

Theorem 7.1], i.e., we have that Y is Hölder-continuous of any order strictly

smaller than γ/2. This may in general be rougher than Brownian motion: for

instance, if κ is the fractional kernel (2.6) with parameter h ∈ (0, 1/2], then Y is

only Hölder-continuous of order up to γ/2 = h, similarly to Riemann�Liouville

fractional Brownian motion. The remaining parameters µ, σ, λ, θ, ζ and ϱ have

broadly similar interpretations as in the classical Heston model. Although it is

not always true in general that the process Y reverts to a mean θ, we show in

Lemma 2.12 that the long-term expectation of Y does converge to θ if we have∫∞
0
κ(t)dt = ∞, which is the case for the fractional kernels of the form (2.6). A

more general result on the long-term behaviour of the volatility process is shown

in Friesen/Jin [53, Theorem 1.3].

We next introduce the forward variance curve. This is a key object that has

been used in the literature to deal with the main challenges posed by the rough

Heston model: namely, the fact that the rough volatility process Y is in general

neither Markov nor a semimartingale. It can be seen as an in�nite-dimensional

Markovian lift of the volatility process; see Cuchiero/Teichmann [30].

De�nition 2.9. The forward variance curve on [0, T ] is the stochastic process
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(ξt(u))0≤t≤u≤T de�ned by

ξt(u) = E[Yu | Ft], 0 ≤ t ≤ u ≤ T.

Occasionally, it is convenient to extend ξ to [0, T ]× [0, T ] by setting

ξt(u) = E[Yu | Ft] =

E[Yu | Ft], 0 ≤ t < u ≤ T,

Yu, 0 ≤ u ≤ t ≤ T.
(2.9)

The fact that Yu is integrable for each u ≥ 0 is shown in [1, Lemma 4.2]; so the

process (ξt(u))0≤t≤u is a martingale for any �xed u, by the de�nition.

Although the properties of the rough Heston model pose challenges for tradi-

tional pricing and hedging methods, we can make use of the fact that the process

Y inherits some of the linear structure of the classical Heston model, and in par-

ticular is an a�ne Volterra process (in the sense of [1]). This means that the

characteristic function of the log-price Xt = logSt can be computed in semi-

explicit form as an exponentially a�ne function of the forward variance curve

and is given by

E[exp(iuXt)] = exp

(
iuX0 +

∫ t

0

giu(t− s)ξ0(s)ds

)
(2.10)

for t ≥ 0 and u ∈ R, where giu : [0, T ] → C is a deterministic function satisfying

the Riccati�Volterra equation

giu(t) = iuµ+
σ2(−u2 − iu)

2
+
((κ̂ ∗ giu)(t))2

2
+iuϱσ(κ̂∗giu)(t), 0 ≤ t ≤ T, (2.11)

and we set

κ̂(t) :=
ζ

λ
Rλκ(t), t ≥ 0. (2.12)

The kernel κ̂ appears in many of our results, and its role is shown in the following

Lemma 2.10. Equations such as (2.11) are the main topic of Appendix A, and

they feature prominently in several results in this chapter as well.

Our main goal in this section is to obtain a considerably more general ver-

sion of the characteristic function (2.10), which we do in Theorem 2.17. This

generalised moment-generating function for the rough Heston model is then used

repeatedly in several proofs towards solving the pure investment problem in the

next section. In order to prove the theorem, we �rst need some probabilistic

lemmas related to the forward variance curve, as well as some results related to
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(deterministic) Riccati�Volterra equations, which are given in Appendix A.

In the next lemma, we give a formula for the dynamics of t 7→ ξt(u) in terms

of the resolvent of the second kind of λκ. This is well known in the literature,

and also given in [1, Lemma 4.2]. Since the forward variance curve is one of our

main tools for working with the rough Heston model, this is a key result, and it

also emphasises the role of the kernel κ̂.

Lemma 2.10. For any �xed u ∈ [0, T ], the process (ξt(u))0≤t≤u is a continuous

martingale on [0, u] with the dynamics

dξt(u) = κ̂(u− t)
√
YtdBt, 0 ≤ t ≤ u,

where κ̂ := ζ
λ
Rλκ and Rλκ : (0,∞) → R is the resolvent of the second kind of λκ.

Moreover, we have the initial and terminal values

ξ0(u) = Y0 +
λ(θ − Y0)

ζ

∫ u

0

κ̂(s)ds and ξu(u) = Yu, for each u ∈ [0, T ].

(2.13)

This lemma is a particular case of [1, Lemma 4.2], where in their notation we

identify b0 := λθ, RB := Rλκ and

EB := κ−RB ∗ κ =
1

λ

(
λκ−Rλκ ∗ (λκ)

)
=
Rλκ

λ
=
κ̂

ζ
,

by the de�nitions of Rλκ and κ̂. We give an outline of the proof (using our

notation) in order to illustrate the main idea.

Proof of Lemma 2.10 (sketch). For a �xed u ∈ [0, T ], we have by (2.8) that

Yu = Y0 +

∫ u

0

κ(u− s)
(
λ(θ − Ys)ds+ ζ

√
YsdBs

)
.

Assuming that the local martingaleMt :=
∫ t
0
κ(u−s)

√
YsdBs is a true martingale

on [0, u] and that the �nite variation term is integrable, we can formally take con-

ditional expectations with respect to Ft and use the conditional Fubini theorem

to obtain

ξt(u) = Y0 +

∫ u

0

κ(u− s)λ
(
θ − ξt(s)

)
ds+ ζ

∫ t

0

κ(u− s)
√
YsdBs, 0 ≤ t, u ≤ T,

(2.14)

where we consider the extended forward variance curve with ξt(s) = Ys for t ≥ s.



2 The rough Heston model 21

We can then rearrange (2.14) in the form

ξt(u) +

∫ u

0

λκ(u− s)ξt(s)ds = Y0 +

∫ u

0

λθκ(u− s)ds+ ζ

∫ t

0

κ(u− s)
√
YsdBs.

Using the convolution notation, we can rewrite this as

ξt(u) + λ(κ ∗ ξt)(u) = Y0 + λθ(κ ∗ I)(u) + ζ

∫ t

0

κ(u− s)
√
YsdBs, 0 ≤ t, u ≤ T,

where I denotes the constant function I(s) = 1. Fixing t ∈ [0, T ], this can be seen

as a Volterra equation of the second kind for (ξt(u))u∈[0,T ] in the sense of (2.4),

where k = λκ. Therefore, this equation can be solved by taking a convolution

with Rλκ, which leads to the result after some simpli�cations. Some care is still

needed in order to deal with the stochastic integral; see [1, Lemma 4.2].

Note that by Lemma 2.10, the initial value of the forward variance curve

(ξ0(u))0≤u≤T is continuous in u, and the map t 7→ ξt(u) is continuous for each

�xed u. It also follows by [1, Theorem 3.4] that the diagonal map t 7→ ξt(t) = Yt

is continuous in t. Thus it is not di�cult to show that ξ admits a version that

is continuous in each variable t and u separately. Next, we show that the map

(t, u) 7→ ξt(u) is jointly continuous and even has the same Hölder regularity

as Y , as given in [1, Lemma 2.4]. In particular, this implies that the entire

curve (ξt(u))0≤t≤u≤T is bounded a.s., which will be useful later. After proving

Proposition 2.11, we shall always take a continuous version of (ξt(u))0≤t≤u≤T .

Proposition 2.11. For each ν ∈ (0, γ/2), there exists a version of the forward

variance curve (ξt(u))0≤t≤u≤T that is a.s. Hölder-continuous of order ν in (t, u).

Proof. We use the d-dimensional Kolmogorov continuity criterion for the con-

struction; see Revuz/Yor [105, Theorem I.2.1]. Fix 0 ≤ t1 ≤ u1 ≤ T and

0 ≤ t2 ≤ u2 ≤ T , and assume without loss of generality that t2 ≥ t1. By

Lemma 2.10, we have

ξt2(u2)− ξt1(u1) = U1 +

∫ t2

0

κ̂(u2 − s)
√
YsdBs −

∫ t1

0

κ̂(u1 − s)
√
YsdBs

= U1 + U2 + U3, (2.15)
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where, using the convention
∫ u2
u1

= −
∫ u1
u2

in the case u1 > u2, we set

U1 := ξ0(u2)− ξ0(u1) =
λ(θ − Y0)

ζ

∫ u2

u1

κ̂(s)ds, (2.16)

U2 :=

∫ t1

0

(
κ̂(u2 − s)− κ̂(u1 − s)

)√
YsdBs, (2.17)

U3 :=

∫ t2

t1

κ̂(u2 − s)
√
YsdBs. (2.18)

We consider these terms one at a time. Recall that by part 1) of Assumption

2.7, we have
∫ h
0
κ2(s)ds = O(hγ) and

∫ T
0
(κ(s+ h)− κ(s))2ds = O(hγ). Since κ is

nonnegative and nonincreasing by Assumption 2.7.2), we also have∫ t+h

t

κ2(s)ds ≤
∫ h

0

κ2(s)ds = O(hγ)

uniformly in t ∈ [0, T ]. Hence by parts 2) and 3) of Lemma A.3.3 and the

de�nition (2.12) of κ̂, there exist some constants cκ̂, γ, δ > 0 such that

max

(
sup
t∈[0,T ]

∫ t+h

t

κ̂2(s)ds,

∫ T

0

(
κ̂(s+ h)− κ̂(s)

)2
ds

)
≤ cκ̂h

γ (2.19)

for all h ∈ [0, δ]. Thus for any p ≥ 1, we have by (2.16) that

|U1|p =
λp|θ − Y0|p

ζp

∣∣∣∣ ∫ u2

u1

κ̂(s)ds

∣∣∣∣p
≤ λp|θ − Y0|p

ζp
|u2 − u1|p/2

∣∣∣∣ ∫ u2

u1

|κ̂(s)|2ds
∣∣∣∣p/2

≤ λp|θ − Y0|p

ζp
c
p/2
κ̂ |u2 − u1|p(1+γ)/2. (2.20)

For U2, (2.17) and the Burkholder�Davis�Gundy inequality yield the bound

E[|U2|p] ≤ cpE

[(∫ t1

0

(
κ̂(u2 − s)− κ̂(u1 − s)

)2
Ysds

)p/2]
≤ cpE

[
sup

0≤t≤T
Y
p/2
t

](∫ t1

0

(
κ̂(u2 − s)− κ̂(u1 − s)

)2
ds

)p/2
(2.21)

for each p ≥ 1 and some constant cp > 0. Since the coe�cients in the equation

(2.8) for Y satisfy a linear growth condition, we have by [1, Lemma 3.1] that

sup0≤t≤T E[Y
q
t ] < ∞ for every q ≥ 0. Also by (2.8), the processes (at)0≤t≤T and
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(bt)0≤t≤T appearing in the statement of [1, Lemma 2.4] are given by at = ζ2Yt

and bt = λ(θ − Yt), respectively. Thus [1, Lemma 2.4] with α = 0 lets us swap

the supremum and the expectation so that cY (q) := E[sup0≤t≤T Y
q
t ] < ∞ for q

large enough (and hence for all q ≥ 1). Returning to (2.21), by (2.19) we get

E[|U2|p] ≤ cpcY (p/2)c
p/2
κ̂ |u2 − u1|pγ/2. (2.22)

In a similar way, (2.18), (2.19) and the Burkholder�Davis�Gundy inequality yield

E[|U3|p] ≤ cpE

[(∫ t2

t1

κ̂(u2 − s)2Ysds

)p/2]
≤ cpE

[
sup

0≤t≤T
Y
p/2
t

](∫ u2−t1

u2−t2
κ̂(t)2dt

)p/2
≤ cpcY (p/2)c

p/2
κ̂ |t2 − t1|pγ/2. (2.23)

Combining (2.20), (2.22) and (2.23) with (2.15) then yields

E[|ξt2(u2)− ξt1(u1)|p] ≤ 3p−1(|U1|p + E[|U2|p] + E[|U3|p]

≤ Cp|(t2, u2)− (t1, u1)|pγ/2∞ (2.24)

for all p ≥ 1 and 0 ≤ ti ≤ ui ≤ T such that h := |(t2, u2) − (t1, u1)|∞ ∈ [0, δ],

where the constant

Cp := 3p−1c
p/2
κ̂

(
λp|θ − Y0|p

ζp
+ 2cpcY (p/2)

)
does not depend on (ti, ui). With (2.24), we are now �nally ready to apply the

Kolmogorov continuity criterion; note that the proof of [105, Theorem I.2.1] only

requires that the inequality hold for pairs (t1, u1) and (t2, u2) that are close to

each other. Then by taking p large enough so that pγ/2 > 2, [105, Theorem I.2.1]

yields that there exists a version of (ξt(u))0≤t≤u≤T that is Hölder-continuous of

any order ν ∈ (0, γ
2
− 2

p
). By taking p→ ∞, it follows that (ξt(u))0≤t≤u≤T admits

a ν-Hölder-continuous version for any ν ∈ (0, γ
2
).

As mentioned in Example 2.8, we have the explicit formula (2.7) for Rλκ for a

fractional kernel κ given by (2.6), in which case we have
∫∞
0
Rλκ(t)dt = 1, which

together with the de�nition (2.12) of κ̂ yields
∫∞
0

λ
ζ
κ̂(t)dt = 1. Hence by Lemma

2.10 and taking u→ ∞ in the forward variance curve ξ0(u) at time 0, we obtain

the limit ξ0(u) → θ as u→ ∞. This justi�es the interpretation of the parameter
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θ > 0 as the long-term volatility in this case. More generally, we show in the

following lemma that we have the equality
∫∞
0

λ
ζ
κ̂(s)ds =

∫∞
0
Rλκ(s)ds = 1 if

κ satis�es the additional assumption that
∫∞
0
κ(s)ds = ∞ (which holds in the

fractional case), so that θ can be seen as the long-term volatility for any such

choice of κ. We defer the details of the proof to Appendix A; see Lemma A.3.2.

Lemma 2.12. Let κ ∈ L1
loc([0,∞),R) be a kernel satisfying Assumption 2.7 such

that
∫∞
0
κ(t)dt = ∞. Then the resolvent of the second kind Rλκ is integrable for

each λ ≥ 0 with
∫∞
0
Rλκ(s)ds = 1.

Proof. By Assumption 2.7, κ is nonnegative and nonincreasing, and moreover

Rλκ is nonnegative for each λ ≥ 0. Thus the result follows by Lemma A.3.2

applied to k := λκ.

Now that we have established some basic properties of the forward variance

curve, we return to the study of the rough Heston model (2.8). To that end,

we often consider processes that depend linearly on the forward variance curve,

such as the integral term that appears in the characteristic function (2.10). The

following two lemmas show how to obtain semimartingale decompositions for two

types of processes. In Lemma 2.13, we consider a linear functional of the forward

variance curve as well as the past (realised) curve, while in Corollary 2.14, we

consider a functional of the forward curve alone.

Lemma 2.13. Let ν be a �nite complex measure on ([0, T ],B([0, T ])). Then there

exists a continuous local martingale (Mt)0≤t≤T such that

Mt =

∫
[0,t]

Yuν(du) +

∫
(t,T ]

ξt(u)ν(du) for each 0 ≤ t ≤ T, (2.25)

and it admits the decomposition

Mt =M0 +

∫ t

0

(∫
[s,T ]

κ̂(u− s)ν(du)

)√
YsdBs, 0 ≤ t ≤ T. (2.26)

Proof. The main idea is to apply the stochastic Fubini theorem of Veraar [118,

Theorem 2.2] together with the martingale dynamics given in Lemma 2.10. Recall

from (2.9) that ξt(u) = Yu for u ≤ t. We start by taking (2.26) as the de�nition

for M , where we set the initial value as

M0 :=

∫
[0,T ]

ξ0(u)ν(du), (2.27)
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so that (2.25) is satis�ed at t = 0. Note that (2.27) is well de�ned since the map

u 7→ ξ0(u) is continuous a.s. and the complex measure ν is �nite by assumption.

We want to show that M is well de�ned by the stochastic integral and is a

continuous local martingale. Note that we have the bound

∫
[0,T ]

(∫ u∧T

0

κ̂(u− s)2Ysds

) 1
2

dν(u) ≤
∫
[0,T ]

(
∥κ̂∥L2(0,T ) sup

s∈[0,T ]

√
|Ys|
)
d|ν|(u)

≤ |ν|([0, T ])∥κ̂∥L2(0,T ) sup
s∈[0,T ]

√
|Ys|

<∞ (2.28)

almost surely, where |ν|([0, T ]) is the total variation of ν on [0, T ] (see Rudin [108,

Chapter 6]), since Y is a continuous process, hence a.s. bounded on [0, T ], ν is

�nite by assumption and κ̂ is locally square-integrable. We can then apply [118,

Theorem 2.2] with A = 0, X = [0, T ] and ψ(u, t, ω) = κ̂(u − s)
√
Ys(ω)1[0,u](t),

since we have shown in (2.28) that the bound in [118, Equation (2.1)] is satis�ed.

Thus it follows from [118, Theorem 2.2(2)] that the process M de�ned by (2.26)

is a continuous local martingale.

Now we want to show that (2.25) is satis�ed. Recall from Lemma 2.10 that

ξt(u) = ξ0(u) +

∫ u∧t

0

κ̂(u− s)
√
YsdBs, 0 ≤ t, u ≤ T.

We again consider the forward variance curve (ξt(u))0≤t,u≤T in the extended sense,

so that we have ξt(u) = Yu1[0,t)(u) + ξt(u)1[t,T ](u), and we can rewrite∫
[0,T ]

ξt(u)ν(du) =

∫
[0,t]

Yuν(du) +

∫
(t,T ]

ξt(u)ν(du). (2.29)

Using the dynamics for the forward variance curve from Lemma 2.10, we have

the formal computation∫
[0,T ]

(
ξt(u)− ξ0(u)

)
dν(u) =

∫
[0,T ]

(∫ u∧t

0

κ̂(u− s)
√
YsdBs

)
dν(u)

=

∫ t

0

(∫
[s,T ]

κ̂(u− s)dν(u)

)√
YsdBs

=Mt −M0, 0 ≤ t ≤ T, (2.30)

assuming that the integrals can be interchanged from the �rst line to the second.

Plugging in (2.29) as well as the initial value (2.27) for M0, this implies (2.25).
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The interchanging of the integrals from the �rst to the second line is justi�ed

by [118, Theorem 2.2(3)] since we only need the same bound (2.28) as before.

Therefore the equality (2.25) follows from (2.30).

Corollary 2.14. For any function g ∈ L1([0, T ];C), there exists a continuous

semimartingale (Y g
t )0≤t≤T such that

Y g
t =

∫ T

t

g(T − u)ξt(u)du for each 0 ≤ t ≤ T, (2.31)

so that in particular Y g
T = 0, and it has the decomposition

Y g
t = Y g

0 + At +Mt, 0 ≤ t ≤ T, (2.32)

where the continuous �nite-variation process (At)0≤t≤T and the continuous local

martingale (Mt)0≤t≤T are respectively given by

At = −
∫ t

0

g(T − s)Ysds, Mt =

∫ t

0

(κ̂ ∗ g)(T − s)
√
YsdBs, 0 ≤ t ≤ T, (2.33)

where we write A,M rather than Ag,M g for ease of notation.

Proof. Similarly to the proof of Lemma 2.13, we want to take (2.32) and (2.33)

as the de�nition for Y g, A and M , setting the initial value to be

Y g
0 =

∫ T

0

g(T − u)ξ0(u)du,

which is well de�ned as u 7→ ξ0(u) is continuous and g is integrable by assumption.

It is also clear that the process A is continuous and has �nite variation, since

Y is continuous (hence a.s. bounded on [0, T ]) and
∫ T
0
|g(T − s)|ds < ∞ as g is

integrable. We now check thatM is well de�ned by applying Lemma 2.13. De�ne

the complex measure ν(dt) := g(T − t)dt on [0, T ] and note that ν is �nite as g

is integrable. Thus we have the identity

(κ̂ ∗ g)(T − s) =

∫ T−s

0

g(T − s− u)κ̂(u)du

=

∫ T

s

g(T − u)κ̂(u− s)du =

∫ T

s

κ̂(u− s)ν(du)
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for s ∈ [0, T ], and hence we have

Mt =

∫ t

0

(κ̂ ∗ g)(T − s)
√
YsdBs =

∫ t

0

(∫ T

s

κ̂(u− s)ν(du)

)√
YsdBs.

We can apply Lemma 2.13 to the latter integral, keeping in mind that in this case

M0 = 0. By that lemma, M is well de�ned as a continuous local martingale, and

we obtain moreover from (2.30) and the de�nition of ν that

Mt =

∫ T

0

g(T − u)ξt(u)du−
∫ T

0

g(T − u)ξ0(u)du, 0 ≤ t ≤ T. (2.34)

So far, we have shown that the processes A and M are well de�ned, so that

Y g is a continuous semimartingale satisfying (2.32) by construction. It remains

to show the equality (2.31) and that Y g
T = 0. By adding

At = −
∫ t

0

g(T − u)Yudu = −
∫ t

0

g(T − u)ξt(u)du

and Y g
0 =

∫ T
0
g(T − u)ξ0(u)du to both sides of (2.34), we obtain that

Y g
t = Y g

0 + At +Mt =

∫ T

t

g(T − u)ξt(u)du, 0 ≤ t ≤ T,

which shows (2.31). Taking t↗ T and changing variables u 7→ T − u, we get∣∣∣∣ ∫ T

t

g(T − u)ξt(u)du

∣∣∣∣ ≤ ∫ T−t

0

|g(u)|du sup
0≤s≤u≤T

ξs(u) −→ 0 as t↗ T,

since the forward variance curve is continuous (hence a.s. bounded) due to Pro-

position 2.11 and by the dominated convergence theorem, as g is an integrable

majorant for the family (1[0,T−t]g)0≤t≤T of integrable functions on [0, T ]. Since

the semimartingale Y g is continuous, we then obtain that Y g
T = 0 by taking the

limit in (2.31) as t↗ T .

2.2 Generalised moment-generating function for the rough

Heston model

In order to show in the next section some of our results regarding the pure invest-

ment problem, we need an explicit formula for several conditional expectations

related to the rough Heston model. This formula is given in Theorem 2.17, and it
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can be seen as a generalised conditional moment-generating function of the form

E[exp(z⊤X̃T ) | Ft], where z ∈ Cn, t ∈ [0, T ] and X̃ is an n-dimensional complex-

valued semimartingale whose dynamics depend on the volatility process Y in a

linear way. As an immediate application, we can take n = 1 and X̃ = X = logS

to be the log-price. We give in Corollary 2.19 some other natural applications,

and we use the general statement in the next section, as it also allows us to

consider certain changes of measure.

In preparation for Theorem 2.17, we start by giving two Novikov-type criteria

for the martingale property of a stochastic exponential. The second version,

given in Lemma 2.16, can be applied for stochastic exponentials of complex-

valued martingales. This is part of what we need in order to show that the local

martingales appearing in Theorem 2.17 are actually true martingales.

Lemma 2.15. Let T ∈ (0,∞) and (Mt)0≤t≤T be a real-valued continuous local

martingale. Suppose that there exists some δ ∈ (0, T ) such that

E

[
exp

(
[M ]t+δ − [M ]t

2

)]
<∞

for all t ∈ [0, T − δ]. Then the stochastic exponential E(M) is a martingale on

[0, T ].

Proof. This follows easily from the Novikov criterion, by subdividing [0, T ] into

smaller intervals of length at most δ and inductively showing that E(M) is a

martingale on each interval; see Karatzas/Shreve [77, Corollary 3.5.14] for a proof.

(While that corollary is only given for an Itô martingale, the proof here is the

same.)

Next, we give a version of the classic Novikov criterion for the stochastic

exponential of a complex-valued continuous local martingale M̃ , as well as a

localised version in which we assume that the terminal value E(M̃)T is integrable.

This assumption is needed in the complex case, unlike in Lemma 2.15, since the

absolute value |E(M̃)| of the stochastic exponential is in general neither a local

martingale nor a supermartingale. This is in contrast to the real case, where we

have these properties and hence integrability a priori.

Lemma 2.16. Let T ∈ (0,∞) and consider the complex-valued process (M̃t)0≤t≤T

given by M̃t =Mt+iNt, where (Mt)0≤t≤T and (Nt)0≤t≤T are continuous real-valued
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local martingales null at 0. De�ne the stochastic exponential (Zt)0≤t≤T of M̃ by

Zt = E(M̃)t = exp

(
Mt + iNt −

[M ]t
2

− i[M,N ]t +
[N ]t
2

)
, 0 ≤ t ≤ T,

and let p, q ∈ (1,∞) be Hölder conjugates, i.e., such that 1/p+ 1/q = 1.

1) If E[exp(p[M ]T
2

+ q[N ]T
2

)] <∞, then Z is a martingale on [0, T ].

2) Suppose that E[|ZT |] = E[exp(MT − [M ]T
2

+ [N ]T
2

)] < ∞ and there exists

δ ∈ (0, T ) such that

E

[
exp

(
p
(
[M ]t+δ − [M ]t

)
2

+
q
(
[N ]t+δ − [N ]t

)
2

)]
<∞, 0 ≤ t ≤ T − δ.

Then Z is a martingale on [0, T ].

Proof. 1) It follows by Itô's formula that

dZt = Zt(dMt + idNt), 0 ≤ t ≤ T, (2.35)

using the fact that [M+iN ] = [M ]+2i[M,N ]−[N ], so that Z is a complex-valued

local martingale; see also [71, Theorem I.4.61]. To show that Z is a uniformly

integrable martingale, it is thus enough to check that the absolute value process

|Zt| = exp

(
Mt −

1

2
[M ]t +

1

2
[N ]t

)
, 0 ≤ t ≤ T,

is of class (D), i.e., the set C := {|Zτ | : τ ≤ T a stopping time} is uniformly

integrable. Fix A ∈ F and a stopping time τ ≤ T . Noting that q(p − 1) = p, it

follows by the Hölder inequality that

E[|Zτ |1A] = E

[
exp

(
Mτ −

1

2
[M ]τ +

1

2
[N ]τ

)
1A

]
= E

[
exp

(
Mτ −

p

2
[M ]τ

)
exp

(
p− 1

2
[M ]τ +

1

2
[N ]τ

)
1A

]
≤
(
E

[
exp

(
pMτ −

p2[M ]τ
2

)]) 1
p
(
E

[
exp

(p[M ]τ
2

+
q[N ]τ
2

)
1A

]) 1
q

≤
(
E
[
E(pM)τ

]) 1
p

(
E

[
exp

(p[M ]T
2

+
q[N ]T
2

)
1A

]) 1
q

.

Since E(pM) is a nonnegative local martingale and hence a supermartingale on
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[0, T ], we get that E[E(pM)τ ] ≤ 1 and thus

E[|Zτ |1A] ≤
(
E

[
exp

(p[M ]T
2

+
q[N ]T
2

)
1A

]) 1
q

.

Taking A = Ω and using the assumption that exp(p[M ]T
2

+ q[N ]T
2

) is integrable, we

obtain that C is bounded in L1 as the bound is uniform in τ . Moreover, for any

ϵ > 0, there exists some δ > 0 such that

E[|Zτ |1A] ≤
(
E

[
exp

(p[M ]T
2

+
q[N ]T
2

)
1A

]) 1
q

< ϵ

for all sets A ∈ F with P [A] < δ, since the singleton {p[M ]T
2

+ q[N ]T
2

} is uniformly

integrable. This implies that C is uniformly integrable by the ϵ-δ-criterion for

uniform integrability; see Klenke [83, Theorem 6.24]. Thus we have shown that

the process |Z| is of class (D), and so we conclude that Z is a true martingale

on [0, T ].

2)We want to show that Z is a martingale on [0, T ] by induction, going back-

wards starting from time T . By the assumption, we have that Z is a martingale

on the trivial interval [T, T ] = {T}, as ZT is integrable. For each t ≥ δ, we show

that if Z is a martingale on [t, T ], then it is a martingale on [t− δ, T ]. For each

s ∈ [t− δ, t], observe that we have

E

[
exp

(
p[1(s,t]

•M ]T
2

+
q[1(s,t]

•N ]T
2

)]
=E

[
exp

(
p
(
[M ]t − [M ]s

)
2

+
q
(
[N ]t − [N ]s

)
2

)]
<∞

by the assumption in 2), so that E(1(s,t]
•M̃) is a uniformly integrable martingale

on [0, T ] by part 1). By the properties of the stochastic exponential, we can write

Zt = E
(
1(0,t]

•M̃
)
t
= E

(
1(0,s]

•M̃
)
t
E
(
1(s,t]

•M̃
)
t
= Zs E

(
1(s,t]

•M̃
)
t
.

Since Zt is integrable by the inductive hypothesis, we have that

E[|Zt|] = E
[
E
[
|Zs E(1(s,t]

•M̃)t|
∣∣ Fs

]]
= E

[
|Zs|E

[
|E(1(s,t]

•M̃)t|
∣∣ Fs

]]
≥ E[|Zs|],

since E[|E(1(s,t]
• M̃)t| | Fs] ≥ |E[E(1(s,t]

• M̃)t | Fs]| = 1 as E(1(s,t]
• M̃) is a
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martingale on [0, T ]. Thus Zs is integrable, and likewise we obtain

E[Zt | Fs] = E[ZsE(1(s,t]
•M̃)t | Fs] = Zs.

It follows that if Z is a martingale on [t, T ] for t ∈ [0, T ], then it is a martingale

on [t − δ, T ], as claimed. Therefore the result follows by induction, as we can

extend the martingale property to the entire interval [0, T ].

We now proceed to show the �rst main result in this section, where we give

a formula for the conditional moment-generating function E[exp(z⊤X̃T ) | Ft] for

the terminal values of certain semimartingales X̃ related to the rough Heston

model. Namely, we want to show that

E[exp(z⊤X̃T ) | Ft] = exp

(
z⊤X̃t+

∫ T

t

gz,T (T −u)ξt(u)du
)
, 0 ≤ t ≤ T, (2.36)

for some deterministic function gz,T that depends on the semimartingale X̃, and

recalling from De�nition 2.9 the forward variance curve (ξt(u))0≤t≤u≤T associated

with the rough Heston model. We then provide some applications as a corollary.

Theorem 2.17 improves in some ways on Abi Jaber et al. [1, Theorems 4.3

and 7.1(b)] in the case of the rough Heston model, since we do not assume but

rather show that the formula (2.36) produces a true martingale, nor do we impose

restrictions on the coe�cients to ensure integrability. However, this comes at the

cost of restricting to a smaller time interval, since in general such conditional

expectations need not be �nite for a given time horizon. This is true even in the

classical Heston and other popular stochastic volatility models; see e.g. Keller-

Ressel [82]. Probabilistically, this has to do with moment explosions in both the

classical and rough Heston models, which also correspond to �nite-time explosions

in the solutions to Riccati ODEs and Riccati�Volterra equations, respectively.

Since we consider a range of possible time horizons T > 0, we �x in the

following some upper bound T̄ ∈ (0,∞) and let (S, Y ) satisfy the rough Heston

model on [0, T̄ ]. Recall from Lemma 2.10 the kernel κ̂ and forward variance

curve (ξt(u))0≤t≤u≤T̄ associated with Y , as well as the orthogonal decomposition

B = ϱW+
√

1− ϱ2W⊥ given with the de�nition (2.8) of the rough Heston model.

Theorem 2.17. Fix T̄ > 0. Let X̃ = (X̃
(1)
t , . . . , X̃

(n)
t )0≤t≤T̄ be a Cn-valued

semimartingale that satis�es the decomposition

X̃
(k)
t = X̃

(k)
0 +

∫ t

0

(
µ(k)(s)Ysds+ σ(k)(s)

√
YsdWs + σ̃(k)(s)

√
YsdW

⊥
s

)
(2.37)
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for all t ∈ [0, T̄ ] and k = 1, . . . , n, some constants X̃(1)
0 , . . . , X̃

(n)
0 ∈ C and de-

terministic functions µ ∈ L1([0, T̄ ];Cn) and σ, σ̃ ∈ L2([0, T̄ ];Cn).

1) Fix C > 0 and let B̄C(0) ⊆ Cn be the closed ball of radius C. Then there

exists some positive time T̃ = T̃ (µ, σ, σ̃, C) ∈ (0, T̄ ] such that for every T ∈ (0, T̃ ]

and z ∈ B̄C(0), there is a unique solution gz,T ∈ L1([0, T ];C) to the equation

gz,T (t) = z⊤µ(T − t) + f
(
(κ̂ ∗ gz,T )(t); z⊤σ(T − t), z⊤σ̃(T − t)

)
, 0 ≤ t ≤ T,

(2.38)

where the function f : C× C× C → C is de�ned by

f(x;h, h̃) =
h2 + h̃2 + x2

2
+ (ϱh+

√
1− ϱ2h̃)x. (2.39)

Moreover, it holds that E[ | exp(z⊤X̃T )| ] <∞, and we have for 0 ≤ t ≤ T that

E[exp(z⊤X̃T ) | Ft] = exp

(
z⊤X̃t +

∫ T

t

gz,T (T − u)ξt(u)du

)
. (2.40)

2) Conversely, �x z ∈ C and T ∈ (0, T̄ ]. If E[ | exp(z⊤X̃T )| ] <∞ and if there

exists a solution gz,T ∈ L1([0, T ];C) to (2.38), then (2.40) holds for 0 ≤ t ≤ T .

As a matter of fact, we directly prove a more general version of Theorem

2.17; that generalisation will be useful in the next chapter. Indeed, we may view

z⊤X̃T as the terminal value of the process (z⊤Xt)0≤t≤T which is parametrised by

z ∈ B̄C(0). By taking the product of z with (2.37), we obtain the dynamics of

z⊤X in terms of z⊤µ, z⊤σ and z⊤σ̃. We may then ask whether Theorem 2.17

can be extended to a general family of processes (X̃φ)φ∈Φ that is parametrised

by an indexing set Φ instead of B̄C(0), where the dynamics of X̃φ are given in

terms of some families of functions (µφ)φ∈Φ, (σφ)φ∈Φ and (σ̃φ)φ∈Φ on [0, T̄ ]. The

following result gives a positive answer to that question. We �rst state the result

and show how it implies Theorem 2.17, and then move on to the main task of

proving Theorem 2.18.

Theorem 2.18. Let T̄ > 0, Φ be an indexing set, (µφ)φ∈Φ a family of functions

in L1([0, T̄ ];C) and (σφ)φ∈Φ, (σ̃φ)φ∈Φ two families of functions in L2([0, T̄ ];C).
For each φ ∈ Φ, let x̃φ ∈ C be a constant and de�ne (X̃φ

t )0≤t≤T̄ by

X̃φ
t = x̃φ +

∫ t

0

(
µφ(s)Ysds+ σφ(s)

√
YsdWs + σ̃φ(s)

√
YsdW

⊥
s

)
, 0 ≤ t ≤ T̄ .

(2.41)
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1) Suppose that the families (µφ)φ∈Φ, (|σφ|2)φ∈Φ and (|σ̃φ|2)φ∈Φ are uniformly

integrable. Then there exists some positive time T̃ ∈ (0, T̄ ] (that depends on (µφ),

(σφ) and (σ̃φ)) such that for every T ∈ (0, T̃ ] and φ ∈ Φ, there is a unique

solution gφ,T ∈ L1([0, T ];C) to the equation

gφ,T (t) = µφ(T − t) + f
(
(κ̂ ∗ gφ,T )(t);σφ(T − t), σ̃φ(T − t)

)
, 0 ≤ t ≤ T,

(2.42)

where the function f is de�ned by (2.39). Moreover, E[ | exp(X̃φ
T )| ] <∞ and we

have for 0 ≤ t ≤ T that

E[exp(X̃φ
T ) | Ft] = exp

(
X̃φ
t +

∫ T

t

gφ,T (T − u)ξt(u)du

)
. (2.43)

2) Conversely, �x φ ∈ Φ and T ∈ (0, T̄ ]. If E[ | exp(X̃φ
T )| ] < ∞ and if there

exists a solution gφ,T ∈ L1([0, T ];C) to (2.42), then (2.43) holds for 0 ≤ t ≤ T .

Proof of Theorem 2.17. Consider the families of functions (µφ)φ∈Cn , (σφ)φ∈Cn and

(σ̃φ)φ∈Cn de�ned by aφ(t) = φ⊤a(t) for a ∈ {µ, σ, σ̃} and t ∈ [0, T̄ ]. Then for

each φ ∈ Cn, we obtain by taking the product of both sides of (2.37) with z = φ

that the process X̃φ := φ⊤X̃ = z⊤X̃ satis�es the dynamics (2.41). We thus

obtain part 2) of Theorem 2.17 directly from part 2) of Theorem 2.18, since the

equation (2.42) for gφ,T reduces to (2.38) after plugging in z = φ and aφ = φ⊤a

for a ∈ {µ, σ, σ̃}. If we now consider the indexing set Φ = B̄C(0), it is clear that

the families (µφ)φ∈B̄C(0), (|σφ|2)φ∈B̄C(0) and (|σ̃φ|2)φ∈B̄C(0) on [0, T̄ ] are uniformly

integrable by the ϵ-δ-criterion for uniform integrability (see Klenke [83, Theorem

6.24]), since Φ is bounded, µ ∈ L1([0, T̄ ];Cn) and σ, σ̃ ∈ L2([0, T̄ ];Cn). Thus part

1) of Theorem 2.17 likewise follows from part 1) of Theorem 2.18.

It now remains to show Theorem 2.18. Since the proof is quite technical, we

�rst give an overview of the main ideas. Indeed, the proof is conceptually simple:

using Corollary 2.14 and Itô's formula, it is straightforward to check that the

expression on the right-hand side of (2.43) matches the terminal value exp(X̃φ
T )

for any integrable function gφ,T , and that it is a local martingale if and only if

gφ,T satis�es the Riccati�Volterra equation (2.42). We then have to show that

there exists a solution to that equation and that the resulting process is a true

martingale, which is technically more challenging. We use Lemma 2.16 for this

task, as well as some of the results in Appendix A on Riccati�Volterra equations.

The main challenge stems from the fact that our results on the existence of
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solutions to Riccati�Volterra equations ensure this existence only locally, i.e., up

to some positive time. Thus it may happen that a solution gφ,T only exists up to

some smaller time T ′ < T , so that the expression (2.43) is not well de�ned on all

of [0, T ]. We might then hope to show that (2.43) holds with T ′ in place of T .

However, this could still fail, since the formula for that conditional expectation is

given in terms of the solution gφ,T ′ to a new Riccati�Volterra equation, for which

a solution may in turn only exist up to an even smaller time T ′′ < T ′, and so

on. Instead, we take the approach of looking for solutions gφ,T to (2.42) for all

(parameter) values of T simultaneously, with the goal of showing that there exists

some small enough T ′ > 0 such that for each T ∈ [0, T ′], there is a solution gφ,T
on [0, T ]. For this, we make use of results from Appendix A on the existence of

solutions to a family of Riccati�Volterra equations on a common time interval,

subject to some uniform bounds on the inputs to the equations. Those results

also allow us to show the result simultaneously for all φ ∈ Φ. In this way, we

address the issue of showing the existence of solutions gφ,T on [0, T ] for small

enough T .

Once we have obtained the existence of a solution gφ,T to (2.42) on the interval

[0, T ], we still have to show that the expression on the right-hand side of (2.43)

gives a true martingale, and this need not be true in general. Instead, we show

that there exists some smaller time T̃ ∈ (0, T ′] such that for T ∈ [0, T̃ ], there

is a solution g̃φ,T on [0, T ] to an auxiliary Riccati�Volterra equation (see (2.60)

below). We can then use Lemma 2.15 to show that the right-hand side of (2.43)

is a true martingale if T ∈ [0, T̃ ]. As it turns out, the main issue here is to check

that the terminal value exp(X̃φ
T ) is actually integrable, and the second restriction

on the time horizon ensures that this is the case. If we know a priori that exp(X̃φ
T )

is integrable, this second step is not needed, and we show in the proof of part 2)

that the existence of gφ,T is su�cient. For instance, this can be applied in the

setup of Theorem 2.17 if we have X̃φ = z⊤X̃, where φ = z ∈ (iR)n and X̃ is

real-valued, i.e., for calculating the characteristic function of X̃T .

Proof of Theorem 2.18. 1) This proof is rather lengthy and goes over several

steps.

1a) We �rst show the existence of some T ′ > 0 such that there are solutions

gφ,T to the equations (2.42) for all φ ∈ Φ and T ∈ (0, T ′] (later, we further restrict

to a smaller time T̃ ≤ T ′). Note that (2.42) depends on T both via the index in

gφ,T and the time horizon in 0 ≤ t ≤ T . To eliminate the second dependence,
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de�ne for T ∈ (0, T̄ ] the functions µφ,T , σφ,T , σ̃φ,T : [0, T̄ ] → C by

aφ,T (t) = aφ(T − t)1[0,T ](t) for a ∈ {µ, σ, σ̃}. (2.44)

By assumption, the family (aφ)φ∈Φ is uniformly integrable for a ∈ {µ, |σ2|, |σ̃2|}.
Since the indicator functions in (2.44) are bounded, the ϵ-δ-criterion for uniform

integrability (see Klenke [83, Theorem 6.24]) yields that for a ∈ {µ, |σ2|, |σ̃2|},
the family {aφ,T : φ ∈ Φ, T ∈ (0, T̄ ]} is also uniformly integrable.

We now consider for T ∈ (0, T̄ ] and φ ∈ Φ the extended equation

gφ,T (t) = µφ,T (t) + f
(
(κ̂ ∗ gφ,T )(t);σφ,T (t), σ̃φ,T (t)

)
(2.45)

for 0 ≤ t ≤ T̄ . These equations now all have the same time horizon T̄ , and

depend on T only through the T -indexed coe�cients µφ,T , σφ,T and σ̃φ,T . By

construction, if gφ,T is a solution to (2.45), then its restriction to [0, T ] is also

a solution to (2.42). Indeed, once we restrict to [0, T ], the indicator 1[0,T ] in

(2.44) can be omitted, and the restriction of the convolution κ̂∗gφ,T to [0, T ] only

depends on the restriction of gφ,T to [0, T ], due to the causality property of the

convolution, as pointed out after De�nition 2.3. So plugging (2.44) into (2.45)

shows that we have

gφ,T (t) = µφ,T (t) + f
(
(κ̂ ∗ gφ,T )(t);σφ,T (t), σ̃φ,T (t)

)
= µφ(T − t) + f

(
(κ̂ ∗ gφ,T )(t);σφ(T − t), σ̃φ(T − t)

)
, 0 ≤ t ≤ T,

which is exactly (2.42).

The extended equations (2.45) need not admit solutions on the whole interval

[0, T̄ ] in general. Nevertheless, we show in the next step that there exists some

T ′ ∈ (0, T̄ ] such that (2.45) admits a solution gφ,T ∈ L1([0, T ′];C) on [0, T ′] for

all φ ∈ Φ and T ∈ (0, T̄ ]. Restricting as above from [0, T ′] to [0, T ] then yields

solutions to (2.42), for T ≤ T ′.

1b) Consider the extended indexing set J := Φ×(0, T̄ ] and index j := (φ, T ).

Write yφ,T = µφ,T , hφ,T = (σφ,T , σ̃φ,T ) and kφ,T = κ̂, the latter of which does not

depend on φ or T , and set p = q = a = 2, m = 2, n = 1 and f as given by (2.39).

We now want to apply part 2) of Corollary A.2.7 with respect to these functions

and parameters, and so we check its conditions. De�ne the increasing functions
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k̄, ȳ, h̄ : [0, T̄ ] → [0,∞) by k̄(t) := ∥κ̂∥L2(0,t) and

ȳ(t) := sup
φ∈Φ

T∈(0,T̄ ]

∥µφ,T∥L1(0,t), h̄(t) := sup
φ∈Φ

T∈(0,T̄ ]

(∥σφ,T∥L2(0,t) + ∥σ̃φ,T∥L2(0,t)). (2.46)

Note that κ̂ inherits the local square-integrability from κ as pointed out before

Remark 2.5, and so κ̂ ∈ L2([0, T̄ ];R+), i.e., the singleton {1[0,T̄ ]|κ̂2|} is uniformly

integrable. Likewise, we have shown in 1a) the uniform integrability of (µφ,T ),

(|σφ,T |2) and (|σ̃φ,T |2). It then follows by the uniform integrability of these families

and the ϵ-δ-criterion for uniform integrability that ā(T̄ ) < ∞ and ā(t) ↘ 0 as

t↘ 0 for ā ∈ {k̄, ȳ, h̄}. Moreover, f satis�es the quadratic bound

|f(x;h, h̃)| ≤ |h|2 + |h̃|2 + |x|2

2
+
∣∣ϱh+

√
1− ϱ2h̃

∣∣|x|
≤ (1 + ϱ2)|h|2 + (2− ϱ2)|h̃|2 + 3x2

2
, (2.47)

thanks to the quadratic inequality |ϱh1||x| ≤ ϱ2|h|2
2

+ |x|2
2
, and likewise for h̃.

Therefore, by part 2) of Corollary A.2.7, there exists some T ′ ∈ (0, T̄ ] such that

there are solutions gφ,T ∈ L1([0, T ′];C) to (2.45) on a common interval [0, T ′] for

all φ ∈ Φ and T ∈ (0, T̄ ]. For later use, we note here that part 2) of Corollary

A.2.7 also yields

sup
φ∈Φ

T∈(0,T ′]

∥gφ,T∥L1(0,T ′) <∞ and lim
t↘0

sup
φ∈Φ

T∈(0,T ′]

∥gφ,T∥L1(0,t) = 0. (2.48)

As argued at the end of step 1a), we deduce by restricting to [0, T ] that gφ,T is

also a solution to (2.42) for each φ ∈ Φ and T ∈ (0, T ′]. The uniqueness of the

solution gφ,T to (2.42) follows by part 4) of Corollary A.2.7, since f satis�es the

Lipschitz-type bound

∣∣f(x;h, h̃)− f(x′;h, h̃)
∣∣ ≤ |x2 − (x′)2|

2
+
(
ϱh+

√
1− ϱ2h̃

)
|x− x′|

≤ |x− x′|
(
1

2
(|x|+ |x′|) + |ϱh|+

√
1− ϱ2|h̃|

)
.

1c) Now �x φ ∈ Φ, T ∈ (0, T̄ ], take the corresponding solution gφ,T of (2.42)

and de�ne the process Z = (Zt)0≤t≤T by

Zt := exp

(
X̃φ
t +

∫ T

t

gφ,T (T − u)ξt(u)du

)
, 0 ≤ t ≤ T. (2.49)
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Because gφ,T ∈ L1([0, T ];C), the integral term vanishes for t = T by Corollary

2.14 so that

ZT = exp(X̃φ
T ). (2.50)

Moreover, Corollary 2.14 also gives the semimartingale decomposition

d

(∫ T

t

gφ,T (T − u)ξt(u)du

)
= −gφ,T (T − t)Ytdt+ (κ̂ ∗ gφ,T )(T − t)

√
YtdBt.

Recalling the dynamics (2.41) for X̃, we apply Itô's formula to (2.49) and collect

the �nite variation terms to obtain the decomposition

dZt = Zt

(√
Yt
(
σφ(t)dWt + σ̃φ(t)dW

⊥
t

)
+ (κ̂ ∗ gφ,T )(T − t)

√
YtdBt

+
(
−gφ,T (T − t) + µφ(t) + f

(
(κ̂ ∗ gφ,T )(T − t);σφ(t), σ̃φ(t)

))
Ytdt

)
.

(2.51)

Because gφ,T satis�es (2.42), the dt-integral in (2.51) vanishes, and so Z is a local

martingale. If we can show that it is a true martingale, we obtain from (2.50)

and (2.49) that

E[exp(X̃φ
T ) | Ft] = Zt = exp

(
X̃φ
t +

∫ T

t

gφ,T (T − u)ξt(u)du

)
, (2.52)

for 0 ≤ t ≤ T , which is precisely (2.43). Moreover, ZT is then also integrable,

which means by (2.50) that E[| exp(X̃φ
T )|] <∞.

1d) To complete the proof of 1), it remains to show that the local martingale

Z from (2.49) is a true martingale. More precisely, we claim that there exists

some T̃ ∈ (0, T ′] such that for each φ ∈ Φ and T ∈ (0, T̃ ], the corresponding

process Z (or rather Z = Zφ,T , but we omit the parameters for readability) is a

martingale on [0, T ]. To that end, �x for now φ and T and let M and N be the

real-valued local martingales in the decomposition dZ = Z(dM + idN). From

(2.51), we can identify M and N as

dMt =
√
Yt

(
Re
(
σφ(t)

)
dWt +Re

(
σ̃φ(t)

)
dW⊥

t

)
+
(
κ̂ ∗ Re(gφ,T )

)
(T − t)

√
YtdBt, 0 ≤ t ≤ T,

dNt =
√
Yt

(
Im
(
σφ(t)

)
dWt + Im

(
σ̃φ(t)

)
dW⊥

t

)
+
(
κ̂ ∗ Im(gφ,T )

)
(T − t)

√
YtdBt, 0 ≤ t ≤ T. (2.53)
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With the identity (Rex)2 + (Imx)2 = |x|2 for x ∈ C, this yields

[M ]T + [N ]T =

∫ T

0

ψφ,T (T − u)Yudu, (2.54)

where the coe�cient ψφ,T : [0, T ] → R is given by

ψφ,T (t) :=
∣∣σφ(T − t) + ϱ(κ̂ ∗ gφ,T )(t)

∣∣2
+
∣∣σ̃φ(T − t) +

√
1− ϱ2(κ̂ ∗ gφ,T )(t)

∣∣2, 0 ≤ t ≤ T. (2.55)

By part 1) of Lemma 2.16 with p = q = 2, the process Z from (2.49) is a true

martingale if we can show that

U := exp([M ]T + [N ]T ) is integrable. (2.56)

We show (2.56) in steps 1e) and 1f) below. The main idea is to construct a local

martingale Ẑ ≥ 0 of a similar form as Z with the property that ẐT = U . Because

Ẑ is a supermartingale, hence integrable, (2.56) will then follow.

1e) To prepare for the construction of Ẑ, we start by obtaining some bounds

on ψφ,T that are uniform in φ ∈ Φ and T ∈ (0, T ′]. First, (2.55) and the Cauchy�

Schwarz inequality give

|ψφ,T (s)| ≤ 2
(
|σφ(T − s)|2 + |σ̃φ(T − s)|2

)
+ 2(ϱ2 + 1− ϱ2)|(κ̂ ∗ gφ,T )(s)|2

= 2
(
|σφ(T − s)|2 + |σ̃φ(T − s)|2

)
+ 2|(κ̂ ∗ gφ,T )(s)|2, 0 ≤ s ≤ T.

Taking the L1-norm on (0, t) and using Lemma A.1.5 thus gives

∥ψφ,T∥L1(0,t) ≤ 2
(
∥σφ,T∥2L2(0,t) + ∥σ̃φ,T∥2L2(0,t)

)
+ 2∥κ̂∥2L2(0,t)∥gφ,T∥2L1(0,t)

≤ 2
(
h̄2(t) + k̄2(t)∥gφ,T∥2L1(0,t)

)
, (2.57)

for each t ∈ (0, T ], where we use the coe�cients σφ,T , σ̃φ,T from (2.44) and recall

the increasing functions h̄ and k̄ from (2.46). We have shown in step 1b) that h̄

and k̄ are �nite on [0, T̄ ] with h̄(t) ↘ 0 and k̄(t) ↘ 0 as t↘ 0. Together with the

�rst part of (2.48), we obtain by setting t = T ≤ T ′ and taking the supremum

over φ and T that

sup
φ∈Φ

T∈(0,T ′]

∥ψφ,T∥L1(0,T ) ≤ 2

(
h̄2(T ′) + k̄2(T ′) sup

φ∈Φ
T∈(0,T ′]

∥gφ,T∥2L1(0,T ′)

)
<∞. (2.58)
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From (2.57) and the second part of (2.48), we also obtain

lim
t↘0

sup
φ∈Φ

T∈(0,T ′]

∥ψφ,T∥L1(0,t∧T ) ≤ lim
t↘0

2

(
h̄2(t) + k̄2(t) sup

φ∈Φ
T∈(0,T ′]

∥gφ,T∥2L1(0,t∧T )

)
= 0.

(2.59)

Now consider the auxiliary Riccati�Volterra equation

g̃φ,T (t) = 1[0,T ](t)ψφ,T (t) +
1

2

(
(κ̂ ∗ g̃φ,T )(t)

)2
, (2.60)

for 0 ≤ t ≤ T ′. As in step 2b), we once again check the conditions in order to

apply part 2) of Corollary A.2.7 to (2.60) with the indexing set J = Φ × [0, T ′]

and index j = (φ, T ). Set m = 0, n = 1, p = q = a = 2 and

kφ,T := k := κ̂, ỹφ,T := 1[0,T ]ψφ,T , f̃(x) :=
x2

2

(note that h and h̄ in Corollary A.2.7 are not needed here, since f̃ depends only on

x). The quadratic bound on f̃(x) = x2

2
is trivial, and we showed in step 1b) that

k̄(t) := ∥κ̂∥L2(0,t) <∞ and k̄(t) ↘ 0 as t↘ 0. Moreover, for ȳaux : [0, T ′] → [0,∞)

de�ned by

ȳaux(t) := sup
φ∈Φ

T∈(0,T ′]

∥ỹφ,T∥L1(0,t), 0 ≤ t ≤ T ′,

we obtain by plugging ỹφ,T = 1[0,T ]ψφ,T into the corresponding bounds (2.58) and

(2.59) for ψφ,T that ȳaux(T ′) < ∞ and ȳaux(t) ↘ 0 as t ↘ 0. Hence by part 2)

of Corollary A.2.7, there exists some T̃ ∈ (0, T ′] such that (2.60) has a solution

g̃φ,T ∈ L1([0, T̃ ];C) for all T ∈ (0, T ′] and φ ∈ Φ. In particular, for T ∈ (0, T̃ ],

the restriction of gφ,T to [0, T ] satis�es the equation

g̃φ,T (t) = ψφ,T (t) +
1

2

(
(κ̂ ∗ g̃φ,T )(t)

)2
, 0 ≤ t ≤ T, (2.61)

as the indicator 1[0,T ] can be removed from (2.60). Moreover, ψφ,T is real-valued

for all φ ∈ Φ and T ∈ (0, T ′] by its de�nition (2.55), and κ̂ = ζ
λ
Rλκ is real-valued

because κ is; see before Remark 2.5. As pointed out in Remark A.2.1, the solution

g̃φ,T to (2.60) is therefore also real-valued.

1f) We are now ready to construct a local martingale Ẑ ≥ 0 with ẐT = U

from (2.56). This will complete the proof of 1) as seen at the end of steps 1d) and

1c). De�ne ĝφ,T (t) := g̃φ,T (t) − ψφ,T (t) for t ∈ [0, T ], where g̃φ,T is the solution
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to (2.60) from step 1e). Then like g̃φ,T and ψφ,T , the function ĝφ,T is real-valued

and in L1([0, T ];R), and plugging into (2.61) shows that it solves the equation

ĝφ,T (t) =
1

2

((
κ̂ ∗ (ψφ,T + ĝφ,T )

)
(t)
)2
, 0 ≤ t ≤ T. (2.62)

De�ne X̂ = (X̂t)0≤t≤T by

X̂t :=

∫ T

0

ψφ,T (T − u)ξt(u)du

=

∫ t

0

ψφ,T (T − u)Yudu+

∫ T

t

ψφ,T (T − u)ξt(u)du, (2.63)

where we recall from De�nition 2.9 that ξt(u) = Yu for t ≥ u. In particular,

X̂T =

∫ T

0

ψφ,T (T − u)Yudu = [M ]T + [N ]T = logU

by (2.54) and (2.56). Then de�ne Ẑ = (Ẑt)0≤t≤T by

Ẑt := exp

(
X̂t +

∫ T

t

ĝφ,T (T − u)ξt(u)du

)
. (2.64)

Note that because ĝφ,T is integrable, Corollary 2.14 implies that

ẐT = exp(X̂T ) = U,

as required. Moreover, both ψφ,T and ĝφ,T are integrable and u 7→ ξ0(u) is

bounded because ξ is continuous by Proposition 2.11, and hence X̂0 and Ẑ0 are

�nite. We also have that ψφ,T , ĝφ,T and u 7→ ξ0(u) are nonrandom (the latter due

to (2.13)), so that X̂0 and Ẑ0 are nonrandom as well. It only remains to argue

that Ẑ is a local martingale, and this is similar to step 1c). By (2.63) and Lemma

2.13 with the measure ν(du) = ψ(T − u)du, we have the decomposition

X̂t =

∫ T

0

ψφ,T (T − u)ξt(u)du = X̂0 +

∫ t

0

(∫ T

s

ψφ,T (T − u)κ̂(u− s)du

)√
YsdBs

=

∫ T

0

ψφ,T (T − u)ξt(u)du = X̂0 +

∫ t

0

(κ̂ ∗ ψφ,T )(T − s)
√
YsdBs,
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for t ∈ [0, T ]. By Corollary 2.14, we also have the dynamics

d

(∫ T

t

ĝφ,T (T − u)ξt(u)du

)
= −ĝφ,T (T − t)Ytdt+ (κ̂ ∗ ĝφ,T )(T − t)

√
YtdBt.

Thus by Itô's formula, we obtain from (2.64) the decomposition

dẐt

Ẑt
=
(
κ̂ ∗ (ψφ,T + ĝφ,T )

)
(T − t)

√
YtdBt

−
(
ĝφ,T (T − t)− 1

2

((
κ̂ ∗ (ψφ,T + ĝφ,T )

)
(T − t)

)2)
Ytdt

for 0 ≤ t ≤ T . But the dt-integral vanishes because ĝφ,T satis�es (2.62); so Ẑ is

indeed a local martingale, and the proof of 1) is complete.

2) The proof of the second part is likewise divided into steps 2a)�2d), which

are similar to the steps 1c)�1f). We do not need to replicate the steps 1a) and

1b), as the existence of a solution gφ,T ∈ L1([0, T ];C) to (2.42) is assumed.

2a) As in step 1c), consider the process (Zt)0≤t≤T de�ned by

Zt := exp

(
X̃φ
t +

∫ T

t

gφ,T (T − u)ξt(u)du

)
, 0 ≤ t ≤ T.

By the same calculation as in (2.51) using Corollary 2.14 and Itô's formula, Z is

a local martingale as the �nite variation part vanishes. As gφ,T ∈ L1([0, T ];C),
we also get from Corollary 2.14 that the integral term vanishes at t = T and

hence ZT = exp(X̃φ
T ). Thus if we show that Z is a true martingale on [0, T ], the

statement likewise follows by (2.52).

2b) As in step 1d), the idea is to use Lemma 2.16 to show that Z is a true

martingale on [0, T ]. The di�erence in this case is that we cannot restrict the

time interval as T is given, and thus we apply part 2) of the lemma instead of

part 1).

We start by once again decomposing Z = Z0E(M + iN) for real-valued con-

tinuous local martingales M and N , which are given by the same formula (2.53)

as before. Replacing T with t and t+δ in (2.54) and taking di�erences, we obtain

the equation

[M ]t+δ − [M ]t + [N ]t+δ − [N ]t =

∫ t+δ

t

ψφ,T (T − u)Yudu (2.65)

for each δ ∈ [0, T ] and t ∈ [0, T − δ], where ψφ,T is de�ned in (2.55), which we
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recall here; it reads

ψφ,T (t) =
∣∣σφ(T − t) + ϱ(κ̂ ∗ gφ,T )(t)

∣∣2
+
∣∣σ̃φ(T − t) +

√
1− ϱ2(κ̂ ∗ gφ,T )(t)

∣∣2, 0 ≤ t ≤ T.

By part 2) of Lemma 2.16 with p = q = 2, Z is a true martingale on [0, T ] if

there exists some δ > 0 such that

U t,δ := exp
(
[M ]t+δ − [M ]t + [N ]t+δ − [N ]t

)
∈ L1 for each 0 ≤ t ≤ T − δ, (2.66)

since the terminal value ZT = exp(X̃φ
T ) is integrable by assumption. Similarly

to the proof of 1), we want to show (2.66) by constructing local martingales

Ẑt,δ ≥ 0 with the property that Ẑt,δ
T = U t,δ for each 0 ≤ t ≤ T − δ. Then Ẑt,δ is

a supermartingale, hence integrable, and (2.66) will follow.

2c) For δ > 0 and t ∈ [0, T − δ], consider the Riccati�Volterra equation

g̃t,δφ,T (s) = 1[T−t−δ,T−t](s)ψφ,T (s) +
1

2

(
(κ̂ ∗ g̃t,δφ,T )(s)

)2
, 0 ≤ s ≤ T. (2.67)

This equation is similar to (2.60), but we need a di�erent approach since T is

�xed a priori, and hence it is not su�cient to �nd a solution to (2.67) on a smaller

time interval. Instead, we show that δ > 0 can be chosen small enough so that

(2.67) admits a solution on [0, T ] for each t ∈ [0, T − δ].

We use Proposition A.2.8 and its Corollary A.2.9 to show the existence of a

solution to (2.67). The equation (2.67) is of the form (A.2.30), with coe�cients

a = 1[T−t−δ,T−t]ψφ,T , b = 0, c = 1
2
and k = κ̂; note that only a depends on δ.

We also �x the constants T̂ = T , B = 0, C = 1
2
and some arbitrary ϵ > 0. By

Corollary A.2.9, there exist large enough γ > 0 and small enough A = A(γ) > 0

such that if

∥1[T−t−δ,T−t]ψφ,T∥L1(0,T ) ≤ A, (2.68)

then (2.67) admits a solution gt,δφ,T ∈ L1([0, T ];R); the fact that gt,δφ,T is real-valued

like a, b, c and κ follows as in Remark A.2.1. Since ψφ,T ∈ L1([0, T ];R) as shown
in (2.57), we have

lim
δ↘0

sup
t∈[0,T−δ]

∥1[T−t−δ,T−t]ψφ,T∥L1(0,T ) = 0

by the ϵ-δ-criterion for uniform integrability applied to the singleton {ψφ,T}. Thus
there exists some δ > 0 such that (2.68) holds for each 0 ≤ t ≤ T − δ. For that
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choice of δ, we get by Corollary A.2.9 a solution gt,δφ,T ∈ L1([0, T ];R) to (2.67) for

each 0 ≤ t ≤ T − δ.

2d) The last step is now very similar to 1f). Fix δ as in 2c) and some

t ∈ [0, T − δ], and de�ne

ĝt,δφ,T (s) = g̃t,δφ,T (s)− 1[T−t−δ,T−t](s)ψφ,T (s), (2.69)

where g̃t,δφ,T is the solution to (2.67). Then like g̃t,δφ,T and ψφ,T , the function ĝt,δφ,T
is real-valued and in L1([0, T ];R). Plugging into (2.60), we see that it solves the

equation

ĝt,δφ,T (s) =
1

2

((
κ̂ ∗ (1[T−t−δ,T−t]ψφ,T + ĝt,δφ,T )

)
(s)
)2
, 0 ≤ s ≤ T. (2.70)

Similarly to (2.63), we de�ne X̂ t,δ = (X̂ t,δ
s )0≤s≤T by

X̂ t,δ
s :=

∫ t+δ

t

ψφ,T (T − u)ξs(u)du, (2.71)

where we recall from De�nition 2.9 that ξt(u) = Yu for t ≥ u. In particular,

X̂ t,δ
T =

∫ t+δ

t

ψφ,T (T − u)Yudu

= [M ]t+δ − [M ]t + [N ]t+δ − [N ]t = logU t,δ (2.72)

by (2.65) and (2.66). Then de�ne Ẑt,δ = (Ẑt,δ
t )0≤t≤T by

Ẑt,δ
t := exp

(
X̂ t,δ
t +

∫ T

t

ĝt,δφ,T (T − u)ξt(u)du

)
. (2.73)

Since ĝt,δφ,T is integrable, Corollary 2.14 implies that

Ẑt,δ
T = exp(X̂ t,δ

T ) = U t,δ,

as required. Moreover, ψt,δφ,T and ĝt,δφ,T are integrable and u 7→ ξ0(u) is bounded

because it is continuous, and hence X̂ t,δ
0 and Ẑt,δ

0 are �nite. We also have that

ψt,δφ,T , ĝ
t,δ
φ,T and u 7→ ξ0(u) are nonrandom (the latter due to (2.13)), so that X̂ t,δ

0

and Ẑt,δ
0 are nonrandom as well. It remains to show that Ẑt,δ is a local martingale.
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By (2.71) and Lemma 2.13 with ν(du) := 1[t,t+δ](u)ψφ,T (T − u)du, we have

X̂ t,δ
s = X̂ t,δ

0 +

∫ t

0

(∫ t+δ

t

ψφ,T (T − u)κ̂(u− s)du

)√
YsdBs

= X̂ t,δ
0 +

∫ t

0

(
κ̂ ∗ (1[T−t−δ,T−t]ψφ,T )

)
(T − s)

√
YsdBs,

for s ∈ [0, T ]. By Corollary 2.14, we also have the dynamics

d

(∫ T

t

ĝt,δφ,T (T − u)ξt(u)du

)
= −ĝt,δφ,T (T − t)Ytdt+ (κ̂ ∗ ĝt,δφ,T )(T − t)

√
YtdBt.

Thus by Itô's formula, we obtain from (2.73) the decomposition

dẐt,δ
t

Ẑt,δ
t

=
(
κ̂ ∗ (1[T−t−δ,T−t]ψφ,T + ĝt,δφ,T )

)
(T − t)

√
YtdBt

−
(
ĝt,δφ,T (T − t)− 1

2

((
κ̂ ∗ (1[T−t−δ,T−t]ψφ,T + ĝt,δφ,T )

)
(T − t)

)2)
Ytdt

for 0 ≤ t ≤ T . But the dt-integral vanishes because ĝt,δφ,T satis�es (2.70); so Ẑt,δ

is indeed a local martingale for each t ∈ [0, T − δ]. Thus the integrability (2.66)

follows due to (2.72), as argued at the end of 2b). As in 2a) and 2b), we can then

apply part 2) of Lemma 2.16 to show that Z is a true martingale on [0, T ], which

concludes the proof of 2).

We collect in the next corollary some examples of conditional moment-gener-

ating functions that can be calculated using Theorem 2.17. In the following, we

�x the complex parameter z ∈ C for simplicity, but one could also use Theorem

2.17 to obtain the result for all z ∈ B̄C(0) simultaneously, for some C > 0. We

also note that the coe�cients that we obtain here do not depend on T ; so we

omit it from the notation. This simpli�cation is possible because the coe�cients

µ, σ, σ̃ below depend on t only indirectly, via the time to maturity T − t.

Corollary 2.19. Fix z ∈ C and let X = logS, where (S, Y ) satis�es the rough

Heston model (2.8). There exists some T̂ > 0 such that for all T ∈ (0, T̂ ], we

have for 0 ≤ t ≤ T that

E[ezXT | Ft] = exp

(
zXt +

∫ T

t

g1,z(T − u)ξt(u)du

)
,

E[ezYT | Ft] = exp

(
zξt(T ) +

∫ T

t

g2,z(T − u)ξt(u)du

)
,
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E
[
ez

∫ T
0 Xsds

∣∣ Ft

]
= exp

(
z
(∫ t

0

Xsds+ (T − t)Xt

)
+

∫ T

t

g3,z(T − u)ξt(u)du

)
,

E
[
ez

∫ T
0 Ysds

∣∣ Ft

]
= exp

(
z
(∫ t

0

Ysds+

∫ T

t

ξt(u)du
)
+

∫ T

t

g4,z(T − u)ξt(u)du

)
,

(2.74)

where g1,z, g2,z, g3,z, g4,z ∈ L1([0, T ];C) are the unique solutions to the equations

g1,z(t) = zµ+
σ2

2
(z2 − z) + ϱzσ(κ̂ ∗ g1,z)(t) +

1

2

(
(κ̂ ∗ g1, z)(t)

)2
,

g2,z(t) =
1

2

(
zκ̂(t) + (κ̂ ∗ g2,z)(t)

)2
,

g3,z(t) = zµt+
σ2

2
(z2t2 − zt) + ϱztσ(κ̂ ∗ g3,z)(t) +

1

2

(
(κ̂ ∗ g3,z)(t)

)2
,

g4,z(t) =
1

2

(
z

∫ t

0

κ̂(s)ds+ (κ̂ ∗ g4,z)(t)
)2

(2.75)

for 0 ≤ t ≤ T . Moreover, g1,z, g3,z and g4,z are continuous and hence bounded on

[0, T ].

Proof. Fix some time horizon T̄ > 0 and consider the semimartingales (X̃(i)
t )0≤t≤T̄

for i = 1, 2, 3, 4 de�ned by

X̃
(1)
t = Xt = logSt, X̃

(2)
t = ξt(T ),

X̃
(3)
t =

∫ t

0

Xsds+ (T − t)Xt, X̃
(4)
t =

∫ t

0

Ysds+

∫ T

t

ξt(u)du.

Recall the orthogonal decomposition B = ϱW +
√
1− ϱ2W⊥ introduced after

(2.8). By Lemmas 2.10 and 2.13 together with the dynamics (2.8) for the rough

Heston model, we have the semimartingale decompositions

dX̃
(1)
t =

(
µ− σ2

2

)
Ytdt+ σ

√
YtdWt,

dX̃
(2)
t = κ̂(T − t)

√
Yt(ϱdWt +

√
1− ϱ2dW⊥

t ),

dX̃
(3)
t = (T − t)

(
µ− σ2

2

)
Ytdt+ (T − t)σ

√
YtdWt,

dX̃
(4)
t =

(∫ T

t

κ̂(u− t)du

)√
Yt(ϱdWt +

√
1− ϱ2dW⊥

t ),

for 0 ≤ t ≤ T̄ . Each of these dynamics has the form (2.37), where we identify the

coe�cients µ(1) ≡ µ − σ2

2
, σ(1) ≡ σ and σ̃(1) ≡ 0 for X(1), and likewise for X(2),
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X(3) and X(4). Note that µ(i), σ(i) and σ̃(i) are continuous for i = 1, 3, 4. Indeed,

this is trivial for i = 1, 3, and the continuity of σ(4) and σ̃(4) follows since∫ T

t

κ̂(u− t)du =

∫ T−t

0

κ̂(s)ds

is continuous in t by the dominated convergence theorem; recall that κ̂ is square-

integrable as it inherits the local square-integrability from κ, as noted before

Remark 2.5. In the case i = 2, we have that µ(2) ≡ 0 and σ(2), σ̃(2) are square-

integrable on [0, T̄ ] as κ̂ is. Thus the coe�cients have the required integrability

to apply part 1) of Theorem 2.17, which gives some T̃ ∈ (0, T̄ ] such that for

T ∈ (0, T̃ ], there exist solutions gi,z to (2.38) on [0, T ] for each i = 1, 2, 3, 4;

the equation (2.38) yields (2.75) by plugging in the respective coe�cients for

i = 1, 2, 3, 4. Moreover, Theorem 2.17 also gives (2.74) for all 0 ≤ t ≤ T ≤ T̃ .

By Corollary A.2.6, there exists some (possibly smaller) T̂ ∈ (0, T̃ ] such that

the Riccati�Volterra equations (2.75) for g1,z, g3,z and g4,z admit continuous solu-

tions on [0, T̂ ], since the respective coe�cients are continuous as well. Since

Theorem 2.17 gives that the solutions to those equations are unique, we conclude

that g1,z, g3,z and g4,z are continuous on [0, T̂ ].

Finally, we generalise part 1) of Theorem 2.18 by replacing the exponential

term on the left-hand side of (2.40) with a product between an exponential and a

linear term; this will be useful later in the proof of Lemma 3.3 and in Chapter II. In

the proof, we use the identity d
dδ
exp((a+δ)x)|δ=0 = x exp(ax) to approximate the

linear term by an exponential one for which (2.40) holds. It then remains to show

that both sides of (2.40) converge for the resulting approximation, which requires

some care. In principle, the result could be further extended to polynomial terms

rather than linear ones, but such a generalisation is not necessary for our purposes.

We show the result directly for the generalised setup of Theorem 2.18, and then

apply it to the setup of Theorem 2.17 as a corollary.

Proposition 2.20. Let Φ be an indexing set, (µφ)φ∈Φ a family of functions in

L1([0, T̄ ];C) and (σφ)φ∈Φ, (σ̃φ)φ∈Φ two families of functions in L2([0, T̄ ];C) such
that (µφ)φ∈Φ, (|σφ|2)φ∈Φ and (|σ̃φ|2)φ∈Φ are uniformly integrable. For each φ ∈ Φ,

let x̃φ ∈ C be a constant and de�ne (X̃φ
t )0≤t≤T̄ by (2.41). Then there exists some

T̃ ∈ (0, T̄ ] (which depends on (µφ), (σφ) and (σ̃φ)) such that for all φ1, φ2 ∈ Φ

and T ∈ (0, T̃ ], there is a unique solution gφ1,T ∈ L1([0, T ];C) to (2.42) (with
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φ = φ1) as well as a unique solution g̃φ1,φ2,T ∈ L1([0, T ];C) to the equation

g̃φ1,φ2,T (t) = µφ2(T − t) + f̃
(
(κ̂ ∗ g̃φ1,φ2,T )(t); (κ̂ ∗ gφ1,T )(t), σφ1(T − t),

σ̃φ1(T − t), σφ2(T − t), σ̃φ2(T − t)
)

(2.76)

for a.a. t ∈ [0, T ], where f̃ : C6 → C is de�ned by

f̃(x; y, h1, h̃1, h2, h̃2) = (h1 + ϱy)(h2 + ϱx)

+ (h̃1 +
√
1− ϱ2y)(h̃2 +

√
1− ϱ2x). (2.77)

Moreover, it holds for 0 ≤ t ≤ T that

E[exp(X̃φ1

T )X̃φ2

T | Ft] = exp

(
X̃φ1
t +

∫ T

t

gφ1,T (T − u)ξt(u)du

)
×
(
X̃φ2
t +

∫ T

t

g̃φ1,φ2,T (T − u)ξt(u)du

)
. (2.78)

Proof. We divide the proof into three steps.

a) Since (µφ)φ∈Φ, (|σφ|2)φ∈Φ and (|σ̃φ|2)φ∈Φ are uniformly integrable, it follows

by the ϵ-δ-criterion for uniform integrability (see Klenke [83, Theorem 6.24]) that

each of the families

{µφ1 + δµφ2
: φ1, φ2 ∈ Φ, δ ∈ B̄1(0)},

{|σφ1 + δσφ2 |2 : φ1, φ2 ∈ Φ, δ ∈ B̄1(0)},

{|σ̃φ1 + δσ̃φ2 |2 : φ1, φ2 ∈ Φ, δ ∈ B̄1(0)}

is uniformly integrable as well, where B̄1(0) is the closed unit ball in C. For

φ1, φ2 ∈ Φ and δ ∈ B̄1(0), de�ne X̃φ1,φ2,δ by (2.41), where we substitute aφ by

aφ1 + δaφ2 for a ∈ {µ, σ, σ̃}. Then by applying part 1) of Theorem 2.18 to the

family of processes (X̃φ1,φ2,δ)(φ1,φ2,δ)∈Φ2×B̄1(0), we obtain that there exists some

T̃ > 0 such that for all φ1, φ2 ∈ Φ, δ ∈ B̄1(0) and T ∈ (0, T̃ ], there is a unique

solution gφ1,φ2,δ,T ∈ L1([0, T ];C) to (2.42) on [0, T ] (where we substitute aφ1 by

aφ1 + δaφ2 for a ∈ {µ, σ, σ̃}), and it holds that exp(X̃φ1,φ2,δ
T ) is integrable with

E[exp(X̃φ1,φ2,δ
T ) | Ft] = exp

(
X̃φ1,φ2,δ
t +

∫ T

t

gφ1,φ2,δ,T (T−u)ξt(u)du
)
, 0 ≤ t ≤ T.

(2.79)

By setting δ = 0, this already ensures the existence of gφ1,T = gφ1,φ2,0,T for any

φ1 ∈ Φ and T ∈ (0, T̃ ]. We now �x T ∈ (0, T̃ ], φ1, φ2 ∈ Φ and set aδ := aφ1+δaφ2
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for a ∈ {µ, σ, σ̃} and δ ∈ [0, 1]. We also write X̃δ := X̃φ1,φ2,δ = X̃φ1 + δX̃φ2 and

gδ := gφ1,φ2,δ,T so that g0 = gφ1,T . Plugging into (2.79) yields

EP [Z
(δ)
T | Ft] = Z̃

(δ)
t , 0 ≤ t ≤ T, (2.80)

where we de�ne (Z
(δ)
t )0≤t≤T and (Ẑ

(δ)
t )0≤t≤T by

Z
(δ)
t := exp(X̃δ

t ) = exp(X̃φ1
t + δX̃φ2

t ),

Ẑ
(δ)
t := Z

(δ)
t exp

(∫ T

t

gδ(T − u)ξt(u)du

)
, 0 ≤ t ≤ T. (2.81)

Our goal is to di�erentiate (2.81) and then (2.80) with respect to δ at δ = 0, which

requires us to di�erentiate gδ in an appropriate sense. To that end, consider

the function yδ := (gδ − g0)/δ for δ > 0. After some simpli�cations, plugging

gδ = g0 + δyδ into (2.42) and collecting the terms that are linear and quadratic

in δ yields

gδ(t) = µδ(T − t) + f
(
(κ̂ ∗ gδ)(t);σδ(T − t), σ̃δ(T − t)

)
= g0(t) + δµφ2(T − t)

+ δf̃
(
(κ̂ ∗ yδ)(t); (κ̂ ∗ g0)(t), σφ1(T − t), σ̃φ1(T − t), σφ2(T − t), σ̃φ2(T − t)

)
+ δ2f

(
(κ̂ ∗ yδ)(t);σφ2(T − t), σ̃φ2(T − t)

)
, 0 ≤ t ≤ T,

where we recall the de�nitions (2.39) and (2.77) of f and f̃ , respectively. Sub-

tracting g0 from both sides and dividing by δ yields for 0 ≤ t ≤ T that

yδ(t) = f̃
(
(κ̂ ∗ yδ)(t); (κ̂ ∗ g0)(t), σφ1(T − t), σ̃φ1(T − t), σφ2(T − t), σ̃φ2(T − t)

)
+ µφ2(T − t) + δf

(
(κ̂ ∗ yδ)(t); z⊤2 σ(T − t), z⊤2 σ̃(T − t)

)
. (2.82)

Although we have de�ned yδ only for δ ∈ (0, 1], note that (2.82) with δ = 0

coincides with (2.76), where we have g̃φ1,φ2,T in place of y0 and gφ1,T = g0.

b) Next, we want to show that there exists a solution y0 to (2.82) with δ = 0,

and moreover that yδ → y0 in L1([0, T ];C) as δ ↘ 0. By plugging in the de�ni-

tions (2.39) and (2.77) of f and f̃ and collecting powers of κ̂ ∗ yδ, we re-express
(2.82) in the form

yδ(t) = aδ(t) + bδ(t)(κ̂ ∗ yδ)(t) + cδ(t)
(
(κ̂ ∗ yδ)(t)

)2
, (2.83)



2 The rough Heston model 49

where aδ, bδ, cδ : [0, T ] → C are de�ned by cδ ≡ δ
2
and

aδ(t) = µφ2(T − t) + σφ1(T − t)σφ2(T − t) + σ̃φ1(T − t)σ̃φ2(T − t)

+
(
ϱσφ2(T − t) +

√
1− ϱ2σ̃φ2(T − t)

)
(κ̂ ∗ g0)(t)

+
δ

2

(
σ2
φ2
(T − t) + σ̃2

φ2
(T − t)

)
, (2.84)

bδ(t) = ϱ
(
σφ1(T − t) + δσφ2(T − t)

)
+
√

1− ϱ2
(
σ̃φ1(T − t) + σ̃φ2(T − t)

)
+ (κ̂ ∗ g0)(t). (2.85)

Due to the uniform integrability of (µφ), (|σφ|2) and (|σ̃φ|2), we have

C := sup
φ∈Φ

max{∥µφ∥L1 , ∥σφ∥L2 , ∥σ̃φ∥L2} <∞,

where we write ∥·∥Lp as a shorthand for ∥·∥Lp(0,T ). Moreover, κ̂ inherits the local

square-integrability from κ (see before Remark 2.5) so that κ̂ ∈ L2([0, T ];R), and
we also have g0 = gφ1,T ∈ L1([0, T ];C) by construction. By Young's convolution

inequality (A.1.2), we thus have

∥κ̂ ∗ g0∥L2 ≤ ∥κ̂∥L2∥g0∥L1 <∞.

Hence the Cauchy�Schwarz inequality, (2.84) and (2.85) yield the bounds

∥aδ∥L1 ≤ C + 3C2 + ∥κ̂∥2L2∥g0∥2L1 <∞,

∥bδ∥L2 ≤ 4C + ∥κ̂∥L2∥g0∥L1 <∞,

∥cδ∥L∞ = δ/2 <∞

for 0 ≤ δ ≤ 1 so that aδ ∈ L1([0, T ];C), bδ ∈ L2([0, T ];C) and cδ ∈ L∞([0, T ];C).
Note in particular that c0 ≡ 0 for δ = 0, i.e., (2.83) is linear in the case δ = 0

and thus of the form (A.2.39) with y0 in place of x. Hence by Corollary A.2.10,

there exists a unique solution y0 ∈ L1([0, T ];C) to (2.83) with δ = 0. As pointed

out at the end of step a), it follows that g̃φ1,φ2,T := y0 is also the unique solution

to (2.76).

We now want to show that yδ → y0 in L1. Note that (2.84) and (2.85) yield

aδ(t)− a0(t) =
δ

2

(
σ2
φ2
(T − t) + σ̃2

φ2
(T − t)

)
,

bδ(t)− b0(t) = δ
(
ϱσφ2(T − t) +

√
1− ϱ2σ̃φ2(T − t)

)
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for 0 ≤ t ≤ T , and hence

∥aδ − a0∥L1 ≤ C2δ −→ 0 and ∥bδ − b0∥L2 ≤ 2Cδ −→ 0

as δ ↘ 0, and likewise ∥cδ∥L∞ = δ
2
→ 0. Hence we have aδ

L1

→ a0, bδ
L2

→ b0 and

cδ
L∞
→ 0 as δ ↘ 0. It then follows by applying Proposition A.2.11 to (2.83) that

yδ
L1

→ y0 as δ ↘ 0.

c) We return to (2.80) and (2.81), which read EP [Z
(δ)
T | Ft] = Ẑ

(δ)
t and

Z
(δ)
t := exp(X̃φ1

t + δX̃φ2
t ),

Ẑ
(δ)
t := Z

(δ)
t exp

(∫ T

t

gδ(T − u)ξt(u)du

)

for 0 ≤ t ≤ T . We start by di�erentiating Z(δ)
T at δ = 0. It is clear that we have

U (δ) :=
Z

(δ)
T − Z

(0)
T

δ
−→ exp(X̃φ1

T )X̃φ2

T P -a.s. as δ ↘ 0. (2.86)

Using the elementary inequalities ex − 1 ≤ xex and x ≤ ex for x ≥ 0, we get for

0 < δ ≤ 1
4
that

|U (δ)| ≤ | exp(X̃φ1

T )| exp(δ|X̃
φ2
t |)− 1

δ

≤ | exp(X̃φ1

T )| |X̃φ2
t | exp(δ|X̃φ2

t |)

= | exp(X̃φ1

T )| (1/2− δ)|X̃φ2
t |

1/2− δ
exp(δ|X̃φ2

t |)

≤ | exp(X̃φ1

T )| exp((1/2− δ)|X̃φ2
t |)

1/2− δ
exp(δ|X̃φ2

t |)

≤ 4| exp(X̃φ1

T )| exp(|X̃φ2
t |/2). (2.87)

This gives a bound on U (δ) that is uniform in δ ∈ (0, 1/4]. In order to show the

integrability of the last term on the right-hand side, we should like to take the

absolute value outside the exponential. Note that for every x ∈ C, we have

exp(|x|) ≤ exp
(
|Re(x)|

)
exp

(
|Im(x)|

)
≤
(
| exp(x)|+ | exp(−x)|

)(
| exp(ix)|+ | exp(−ix)|

)
=

3∑
ℓ=0

∣∣ exp (iℓ(1 + i)x
)∣∣.
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Plugging into (2.87) yields

|U (δ)| ≤ 4
3∑
ℓ=0

∣∣ exp (X̃φ1

T + iℓ(1 + i)X̃φ2

T /2
)∣∣ =: Ū .

Since we have |iℓ(1 + i)/2| = 1 for ℓ = 0, . . . , 3, it follows from the integrability

of exp(X̃φ1

T + δX̃φ2

T ) for all φ1, φ2 ∈ Φ and δ ∈ B̄1(0), see before (2.79), that

Ū is integrable. Hence by the dominated convergence theorem for conditional

expectations with majorant Ū , we obtain from (2.86) that as δ ↘ 0,

1

δ
E[Z

(δ)
T − Z

(0)
T | Ft] = E[U (δ) | Ft] −→ E[exp(X̃φ1

T )X̃φ2

T | Ft] P -a.s. (2.88)

and thus also in probability.

We now consider Ẑ(δ)
t . By (2.81), we have

Ẑ
(δ)
t

Ẑ
(0)
t

= exp

(
δX̃φ2

t + δ

∫ T

t

yδ(T − u)ξt(u)du

)
, 0 ≤ t ≤ T, (2.89)

where we recall that gδ = g0 + δyδ for δ > 0 by the de�nition of yδ. As shown in

step b), we have yδ → y0 = g̃z1,z2,T in L1 as δ ↘ 0 so that∣∣∣∣ ∫ T

t

(
yδ(T − u)− y0(T − u)

)
ξt(u)du

∣∣∣∣ ≤ ∥yδ − y0∥L1 sup
u∈[t,T ]

ξt(u) −→ 0 P -a.s.

as δ ↘ 0, since u 7→ ξt(u) is by Proposition 2.11 continuous, hence bounded, a.s.

Since y0 = g̃φ1,φ2,T , we deduce that

d

dδ

(
δ

∫ T

t

yδ(T − u)ξt(u)du

)∣∣∣∣
δ=0

=

∫ T

t

g̃φ1,φ2,T (T − u)ξt(u)du P -a.s.

Combining with (2.89) yields

V (δ) :=
Ẑ

(δ)
t /Ẑ

(0)
t − 1

δ
=

exp(δX̃φ2
t + δ

∫ T
t
yδ(T − u)ξt(u)du)− 1

δ

−→ X̃φ2
t +

∫ T

t

g̃φ1,φ2,T (T − u)ξt(u)du P -a.s. (2.90)

as δ ↘ 0. Finally, by using (2.80) in the de�nition (2.86) of U (δ) and then using

the �rst equality in (2.90), we have

EP [U
(δ) | Ft] = Ẑ

(0)
t V (δ)
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for each δ ∈ (0, 1/4). In the limit δ ↘ 0, we get by (2.88) and (2.90) that

EP [exp(X̃
φ1

T )X̃φ2

T | Ft] = Z̃
(0)
t

(
X̃φ2
t +

∫ T

t

g̃φ1,φ2,T (T − u)ξt(u)du

)
,

which is precisely (2.78). This concludes the proof.

The following result follows from Proposition 2.20 as in the proof of Theorem

2.17 by setting Φ = B̄C(0), φ = z, µφ = z⊤µ, σφ = z⊤σ and σ̃φ = z⊤σ̃.

Corollary 2.21. Let the process (X̃t)0≤t≤T̄ be given by (2.37) for some functions

µ ∈ L1([0, T̄ ];Cn) and σ, σ̃ ∈ L2([0, T̄ ];Cn). Fix C > 0 and let B̄C(0) ⊆ Cn be

the closed ball of radius C. Then there exists some T̃ = T̃ (µ, σ, σ̃, C) ∈ (0, T̄ ]

such that for every T ∈ (0, T̃ ] and z1, z2 ∈ B̄C(0), there is a unique solution

gz1,T ∈ L1([0, T ];C) to (2.38) (with z = z1) on [0, T ] as well as a unique solution

g̃z1,z2,T ∈ L1([0, T ];C) to the equation

g̃z1,z2,T (t) = f̃z1,z2
(
(κ̂ ∗ g̃z1,z2,T )(t); (κ̂ ∗ gz1,T )(t), µ(T − t), σ(T − t), σ̃(T − t)

)
(2.91)

for a.a. t ∈ [0, T ], where f̃z1,z2 : C5 → C is de�ned by

f̃z1,z2(x; y, b, h1, h2) = z⊤2 b+ (z⊤1 h1 + ϱy)(z⊤2 h1 + ϱx)

+ (z⊤1 h2 +
√

1− ϱ2y)(z⊤2 h2 +
√

1− ϱ2x). (2.92)

Moreover, it holds for 0 ≤ t ≤ T that

E[exp(z⊤1 X̃T )z
⊤
2 X̃T | Ft] = exp

(
z⊤1 X̃t +

∫ T

t

gz1,T (T − u)ξt(u)du

)
×
(
z⊤2 X̃t +

∫ T

t

g̃z1,z2,T (T − u)ξt(u)du

)
. (2.93)

3 The pure investment problem

3.1 Setup and auxiliary results

Our goal in this section is to study the pure investment problem for the rough

Heston model (2.8). The pure investment problem (de�ned below in (3.1)) is a

portfolio selection problem closely related to the well-known Markowitz mean�

variance portfolio selection problem, and thus interesting in its own right. For our
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purposes, the study of the pure investment problem serves mainly as a stepping

stone for tackling the mean�variance hedging problem, which we introduce and

study in Chapter II for the rough Heston model. This is also the approach taken

in �erný/Kallsen [25, 27] for mean�variance hedging in a general semimartingale

setup and for obtaining explicit results for the classical Heston model.

Although the Markowitz problem has been recently solved for the rough He-

ston model in Han/Wong [62] and Abi Jaber et al. [2], our contribution here is

twofold. By using a martingale distortion formula as in Fouque/Hu [49] to solve

the pure investment problem, we get some additional insight into the structure

of the solution to the latter. In particular, this allows us to explain why a relat-

ively simple solution can be obtained for the rough Heston model. Secondly, we

connect our results with the general theory developed in [25], and this allows us

to obtain results that can later be used for solving the mean�variance hedging

problem for the rough Heston model.

Notation 3.1. For a semimartingale X = (Xt)0≤t≤T , we denote by LT (X) or

L(X) the set of predictable X-integrable processes on [0, T ]; see Jacod/Shiryaev

[71, III.6.17]. We say that a predictable process (At)0≤t≤T is P -integrable on [0, T ]

if
∫ T
0
|At|dt <∞ P -a.s. We generally omit P and T if they are unambiguous.

Let (S, Y ) satisfy the rough Heston model (2.8) with time horizon T > 0. We

consider the classical setup of frictionless trading in the asset S, and assume that

there is a risk-free asset with constant price 1, i.e., that the interest rate is 0. This

means that an agent with initial capital x ∈ R may trade in a self-�nancing way

with a trading strategy ϑ ∈ L(S) to generate the wealth process (Vt(x, ϑ))0≤t≤T

given by

Vt(x, ϑ) := x+

∫ t

0

ϑs dSs =: x+ ϑ •St, 0 ≤ t ≤ T.

We do not impose any constraints on the agent's positions at a given point in time,

so that leverage and short-selling are allowed, but we do specify an admissibility

condition on the strategy ϑ to prevent doubling-type behaviour. We thus focus

on a subset ΘT (S) ⊆ L(S) of admissible trading strategies, which we take to be

the set of L2-admissible strategies introduced in �erný/Kallsen [25], de�ned as

follows. We say that (ϑt)0≤t≤T is a simple integrand if ϑ =
∑m−1

i=1 ξi1Kσi,σi+1K for

some m ∈ N, an increasing sequence of stopping times 0 ≤ σ1 ≤ · · · ≤ σm ≤ T

such that the stopped process Sσm is bounded, and bounded Fσi-measurable

random variables ξi. Then we de�ne ΘT (S) as the set of integrands ϑ ∈ L(S) for
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which there exists a sequence (ϑk)k∈N of simple integrands such that we have

1) ϑk •ST
L2
P−→ ϑ •ST and 2) ϑk •St

P−→ ϑ •St for all t ∈ [0, T ].

An explanation of why this class of strategies is economically reasonable and

mathematically useful can be found in [25].

We can now de�ne the pure investment problem as the minimisation problem

given by

EP [|1− VT (0, ϑ)|2] = EP

[∣∣∣∣1− ∫ T

0

ϑtdSt

∣∣∣∣2] −→ min
ϑ∈ΘT (S)

! (3.1)

In words, an agent starting with initial capital 0 seeks to trade with an admissible

strategy ϑ in order to attain the target wealth 1. This may be interpreted as an

attempt to �nd an arbitrage opportunity in the market, which would be achieved

if the mean squared error is equal to 0, since in that case
∫ T
0
ϑtdSt = 1 P -a.s. If

that is not possible, then the agent looks instead for a strategy that is closest to

achieving that goal, in the sense of a low mean squared error.

We start by introducing some notation. One of our goals is to �nd an optimal

pure investment strategy, i.e., a solution ϑ⋆ to the optimisation problem (3.1) with

time horizon T , if it exists. In order to �nd such a strategy, the main step is to

compute the opportunity process (Lt)0≤t≤T , which is de�ned as the reduced-form

value process for the dynamic problem

Lt = ess inf
ϑ∈ΘT (S)

EP

[(
1−

∫ T

t

ϑudSu

)2 ∣∣∣∣ Ft

]
, 0 ≤ t ≤ T. (3.2)

More precisely, we say that L is an opportunity process with time horizon T if

L is a strictly positive càdlàg submartingale, bounded above by 1, and for each

t ∈ [0, T ] satis�es (3.2) P -a.s. If such a process L exists, then by (3.2) and the

càdlàg property, it is unique up to indistinguishability. We omit the time horizon

T when it is clear from the context.

It is also useful to consider the dual problem to (3.1). As is well known in

the literature, this leads to the problem of �nding a variance-optimal martingale

measure on [0, T ], or VOMM for short, which is de�ned as a solution Q⋆ = Q⋆(T )

to the minimisation problem

EP

[(
dQ

dP

)2]
−→ min

Q∈Q̄2
T (S)

! (3.3)
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where Q̄2
T (S) is the set of signed measures Q ≈ P such that the density dQ/dP

is square-integrable under P and Q is a local martingale measure for (St)0≤t≤T ,

meaning that ZQ
0 = 1 and ZQS is a local P -martingale for the density process ZQ

of Q, de�ned as a càdlàg version of the P -martingale given by ZQ
t = EP [

dQ
dP

| Ft]

for 0 ≤ t ≤ T . We also de�ne the subset

Q2
T (S) := {Q ∈ Q̄2

T (S) : Q is a probability measure and Q ≈ P}.

If a VOMM exists, then it is unique; this follows from the strict convexity of

the problem (3.3) and the fact that Q̄2
T (S) is a convex set. The existence of the

VOMM is shown in [25, Proposition 3.13] under the assumption that Q2
T (S) ̸= ∅

(see [25, Assumption 2.1]), which can be seen as a no-arbitrage condition on S.

Under this condition, there exists by [25, Lemma 3.2 and Corollary 3.4] an oppor-

tunity process L with time horizon T . We also have by Delbaen/Schachermayer

[36, Theorem 1.3] that Q⋆ ∈ Q2
T (S) because S is continuous, so that we may

replace Q̄2
T (S) in (3.3) by Q2

T (S) for the rough Heston model. We refer to Q⋆

simply as the VOMM (without reference to T ) when it is clear from the context.

Given an optimal pure investment strategy ϑ⋆ ∈ ΘT (S), we note that the

terminal value ϑ⋆ •ST of the wealth process generated by ϑ⋆ with initial wealth 0

is also the L2-projection of the random variable 1 onto the set of attainable gains,

given by

GT (S) := {ϑ •ST : ϑ ∈ ΘT (S)} ⊆ L2
P (FT ). (3.4)

Since ΘT (S) and thus GT (S) are vector spaces, the projection is unique, i.e., for

any two optimal pure investment strategies ϑ1 and ϑ2, we have ϑ1 •ST = ϑ2 •ST

P -a.s. Under the assumption that Q2
T (S) ̸= ∅, we have by [25, Lemma 2.11] that

the processes ϑ1 • S and ϑ2 • S are indistinguishable, and so we say that ϑ1 and

ϑ2 are S-equivalent or ϑ1 =S ϑ
2. Thus we have under this assumption that the

optimal pure investment strategy ϑ⋆ is unique up to S-equivalence.

The main step in our strategy is to �nd the opportunity process, since this

allows us to solve the pure investment problem in a relatively straightforward

manner by using results from [25]. As is well known in the literature, from

e.g. [25], Hu et al. [68], Jeanblanc et al. [72] and Mania/Tevzadze [91], the oppor-

tunity process L can be characterised as the solution to a backward stochastic

di�erential equation (BSDE). Equivalently, L may also be characterised by an

equation (given below in (3.5)) in terms of its di�erential characteristics, which

are de�ned below for the case of an Itô process. Our approach is to �nd an expli-
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cit solution to (3.5), and then to check the additional conditions that are needed

in order to show that this solution is indeed the opportunity process.

In preparation for equation (3.5), we brie�y de�ne di�erential characteristics

in the simple case of an Itô process with values in Rd; see [71, Proposition II.2.9]

for the general case, and note that R can be replaced by C everywhere in the

following de�nition. If (Zt)0≤t≤T is an Itô process taking values in Rd, then there

exist predictable integrable processes (bZt )0≤t≤T and (cZt )0≤t≤T with values in Rd

and Rd×d respectively such that the process Z −
∫
bZdt is a local martingale

and we have that [Z] =
∫
cZdt. In that case, we say that Z has di�erential

characteristics (bZ , cZ). Given two Itô processes Z and Z ′ with values in Rd

and Rd′ respectively, we also de�ne the di�erential characteristic cZ,Z
′
as the

predictable integrable process with values in Rd×d′ such that [Z,Z ′] =
∫
cZ,Z

′
dt.

Note that bZ , cZ and cZ,Z
′
are unique up to (P ⊗ dt)-nullsets.

As previously mentioned, the main step in order to solve the pure investment

problem is to �nd the opportunity process L. Suppose that Q2
T (S) ̸= ∅ so that

the opportunity process L exists. We make the ansatz that L is an Itô process,

which is justi�ed later in Lemma 3.3 and Theorem 3.8; this allows us to use the

simpli�ed de�nition above for the di�erential characteristics of L. If this ansatz

holds, we have by [25, Lemma 3.19] that the di�erential characteristics of L satisfy

the equation

bLt =
Lt
cRt

(
bRt +

cRLt
Lt

)2

, 0 ≤ t ≤ T, (3.5)

LT = 1,

where the returns process (Rt)0≤t≤T is de�ned by dRt =
dSt

St
= µYtdt+ σ

√
YtdWt

and R0 = 0. In particular, we have that bRt = µYt and cRt = σ2Yt.

Our goal is now to solve the equation (3.5), and then to show that the result-

ing solution is indeed the opportunity process. To that end, we say that (L̂t)0≤t≤T
is a candidate opportunity process (for S with time horizon T ) if it is a strictly

positive Itô process bounded above by 1 such that L̂T = 1 and its di�erential

characteristics satisfy (3.5), where we replace L with L̂. Naturally, the (true)

opportunity process is also a candidate opportunity process, but there may be

multiple candidate opportunity processes. Thus we need some additional condi-

tions in order to conclude that a candidate opportunity process is the true one.

These conditions are given explicitly in the proof of Theorem 3.8 below.

Given the di�erential characteristics of the opportunity process L, one can
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compute the adjustment process a, which is a predictable process given by

at =
1

StcRt

(
bRt +

cRLt
Lt

)
, 0 ≤ t ≤ T. (3.6)

Note that a is predictable because S and, by our ansatz, L are both continu-

ous. For convenience, we take (3.6) as the de�nition for the adjustment process,

whereas it is de�ned in [25, De�nition 3.8] via the optimal strategy ϑ⋆ for the

pure investment problem. This is justi�ed since a given by (3.6) is an adjustment

process in the sense of [25, De�nition 3.8] by [25, Theorem 3.25], and conversely,

any other adjustment process in the sense of [25, De�nition 3.8] is S-equivalent

to a by [25, Lemma 3.7]. By replacing L with L̂ in (3.6), we can also de�ne the

candidate adjustment process â associated with L̂.

Finding a candidate opportunity process L̂ is done in two parts. First, we give

a martingale distortion formula that gives a process L̂ in terms of a conditional

expectation. This formula is designed in such a way that its output L̂ can be

shown to be a candidate opportunity process; we show below how one can reverse-

engineer (3.5) to arrive at this formula, and then give a rigorous proof in Lemma

3.2. The next step is to obtain an explicit formula for L̂ as an exponentially a�ne

function of the forward variance curve.

Given a candidate opportunity process L̂, we then need a veri�cation result to

show that it is the true opportunity process, for which we need some additional

integrability conditions, given explicitly in [25, Theorem 3.25] and recalled in

the proof of Theorem 3.8. These essentially serve to ensure that the candidate

adjustment and opportunity processes lead to a candidate optimal strategy that

is admissible, and also that the corresponding candidate density process for the

variance-optimal martingale measure is a true martingale.

3.2 Martingale distortion

We now start to work towards �nding a candidate opportunity process L̂. The ap-

proach we use was �rst developed in Zariphopoulou [120] and Tehranchi [116], and

more recently applied in Frei/Schweizer [52] to an indi�erence valuation problem

under exponential utility, as well as in Fouque/Hu [49, 50] for portfolio optimisa-

tion under a rough stochastic environment. It relies on a martingale distortion

formula to express the value function to a stochastic control problem (in our case,

the pure investment problem) as a power of an expectation under an equivalent

measure. The result we obtain is similar to [50, Proposition 2.2], but we cannot
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assume that the market price of risk (i.e., the ratio µYt
σ
√
Yt

= µ
√
Yt
σ

between the drift

and volatility of S) is bounded, as that is not the case in the rough Heston model.

The change of measure de�ned in (3.12) is also used in Han/Wong [61, Equation

(2.1)] in order to solve the Markowitz problem for the rough Heston model by a

completion-of-squares technique.

We start by giving an intuitive explanation of how the martingale distortion

technique can be applied to our problem, and then �ll in the details in Lemma 3.2.

Recall the de�nition (2.8) of the rough Heston model, as well as the orthogonal

decomposition

B = ϱW +
√

1− ϱ2W⊥ (3.7)

and the returns process (Rt)0≤t≤T given by

Rt =

∫ t

0

dSs
Ss

=

∫ t

0

(µYsds+ σ
√
YsdWs), 0 ≤ t ≤ T. (3.8)

We make the ansatz that there exists a candidate opportunity process L̂ that is

an Itô process with a local martingale part driven by the Brownian motion B,

i.e.,

dL̂t = bL̂t dt+ ηtdBt, 0 ≤ t ≤ T, (3.9)

for some unknown predictable integrable process (bL̂t )0≤t≤T and predictable integ-

rand η ∈ L(B). This assumption allows us to �nd a solution L̂, but it is ad hoc at

this point. We check (3.9) a posteriori in Lemma 3.3, where we �nd a candidate

opportunity process L̂ explicitly and show that it satis�es (3.9). The assumption

is motivated by the fact that the market price of risk µ
σ

√
Yt depends only on the

process Y , which is driven by the Brownian motion B and does not depend on

W or S; we might then expect that the same is true of the opportunity process,

and so it makes sense to look for a candidate opportunity process of this type. If

L̂ satis�es (3.9), then bL̂ and cL̂ = η2 are the di�erential characteristics of L̂. As

the returns process satis�es (3.8), we have that bRt = µYt and cRt = σ2Yt. Noting

that d[R, L̂]t = ϱσ
√
Ytηtdt by (3.7), we also obtain the di�erential characteristic
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cRL̂t = ϱσ
√
Ytηt. Plugging into (3.9) and using (3.5) for bL̂ then yields the BSDE

dL̂t = bL̂t dt+ ηtdBt

=
L̂t
cRt

(
bRt +

cRL̂t

L̂t

)2

dt+ ηtdBt

=
L̂t
σ2Yt

(
µYt +

ϱσηt
√
Yt

L̂t

)2

dt+ ηtdBt

=
L̂t
σ2

(
µ2Yt + 2

ϱµσηt
√
Yt

L̂t
+
ϱ2σ2η2t

L̂2
t

)
dt+ ηtdBt, 0 ≤ t ≤ T,

with terminal condition L̂T = 1 and where L̂ and the integrand η ∈ L(B) are

unknown. The technique then consists of �nding an explicit solution to this BSDE

by a change of measure and applying a power function. This takes advantage of

the fact that the driver is a quadratic polynomial in ηt. We �rst want to remove

the linear middle term of the driver. As shown later in Lemma 3.2, we can de�ne

a new measure P̄ ≈ P such that dB̄t = dBt +
2ϱµ

√
Yt

σ
dt is a Brownian motion

under P̄ . Hence we can remove the cross term to obtain under P̄ the BSDE

dL̂t = L̂t

(
µ2Yt
σ2

+
ϱ2η2t

L̂2
t

)
dt+ ηtdB̄t, 0 ≤ t ≤ T.

In order to also remove the quadratic term in ηt, we apply a power function to L̂

with the exponent β = 1− 2ϱ2, which is chosen in order to remove this term. By

Itô's formula and using β−1
2

= −ϱ2, we then obtain

d(L̂βt ) = βL̂βt

(
µ2Yt
σ2

+
ϱ2η2t

L̂2
t

)
dt+

β(β − 1)

2
L̂β−2η2t dt+ βηtdB̄t

=
βµ2

σ2
L̂βt Ytdt+ βηtdB̄t, 0 ≤ t ≤ T. (3.10)

This is a linear BSDE for the process L̂β, and it is well known how to solve such

equations explicitly; see e.g. Zhang [121, Proposition 4.1.2]. Together with the

terminal condition L̂βT = 1 and under suitable integrability conditions, we can

�nd the explicit solution L̂β as the conditional expectation

L̂βt = EP̄

[
exp

(
− βµ2

σ2

∫ T

t

Yudu

) ∣∣∣∣ Ft

]
, 0 ≤ t ≤ T. (3.11)

This gives a formula for L̂ by taking the power 1/β on both sides. We note that

(3.10) does not give any information in the critical case β = 1− 2ϱ2 = 0, and so
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the procedure above does not yield a solution in that case. However, by taking a

logarithm instead of a power function, we can obtain an explicit formula for the

critical case as well, as we see later in Lemma 3.2. That case can also be formally

obtained by using the well-known limit E[Xβ|H]1/β → exp(E[logX|H]) as β → 0

(i.e., the power mean converges to the geometric mean as β → 0), for a σ-algebra

H and a strictly positive random variable X such that E[Xβ + X−β] < ∞ for

some β > 0.

We now want to prove that the ansatz (3.11) indeed yields a candidate op-

portunity process L̂. We �rst need to show that there exists such an equivalent

measure P̄ and that the formula (3.11) is well de�ned, which is nontrivial in the

case β < 0. It then remains to check that L̂ satis�es the assumption (3.9), and �-

nally that L̂ is a candidate opportunity process, e�ectively reversing the previous

calculations to show that the BSDE is satis�ed. Except for checking (3.9), these

steps are done in Lemma 3.2, using Theorem 2.17 as our main tool for showing

integrability properties. The fact that the resulting process L̂ has the form (3.9)

is shown later in Lemma 3.3.

In the proof of Lemma 3.2 as well as in some subsequent proofs, we apply

Theorem 2.17 to show that certain statements hold for any choice of time horizon

T ∈ (0, T ′) up to some positive upper bound T ′, and this T ′ will generally be

di�erent for each of the statements. The overall bound, such as T ⋆1 in the case of

Lemma 3.2, should then be interpreted as the minimum of these (�nitely many)

times, so that all considered statements hold simultaneously up to T ⋆1 . This is

made explicit in the proof. When applying Theorem 2.17 to a semimartingale with

dynamics of the form (2.37), we do not always identify the respective coe�cients

µ, σ and σ̃ explicitly unless that is needed. We also note that Lemma 3.2 gives

the candidate opportunity process L̂ for a �xed value of T (if T is small enough),

but L̂ depends on the choice of T , and so does P̄ de�ned in part 1); one could

make the dependence explicit by writing L̂ = L̂(T ).

Lemma 3.2. There exists some T ⋆1 > 0 such that the following statements hold

for each choice of time horizon T ∈ (0, T ⋆1 ]:

1) The process (Z P̄
t )0≤t≤T de�ned by

Z P̄
t = E

(
−2µ

σ

√
Y •W

)
t

, 0 ≤ t ≤ T, (3.12)

is a strictly positive P -martingale on [0, T ], and it is the density process for an

equivalent measure P̄ ≈ P de�ned by dP̄
dP

:= Z P̄
T .
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2) Suppose that β := 1 − 2ϱ2 ̸= 0. Then there exists a semimartingale

(L̂t)0≤t≤T such that

L̂t =

(
EP̄

[
exp

(
− βµ2

σ2

∫ T

t

Yudu
) ∣∣∣∣ Ft

])1/β

for each t ∈ [0, T ]. (3.13)

If L̂ is an Itô process of the form

L̂t = L̂0 +

∫ t

0

(bL̂s ds+ ηsdBs), 0 ≤ t ≤ T, (3.14)

for some integrable predictable process bL̂ and integrand η ∈ L(B), then L̂ is a

candidate opportunity process for S with time horizon T .

3) If 1− 2ϱ2 = 0, there exists a semimartingale (L̂t)0≤t≤T such that

L̂t = exp

(
−EP̄

[
µ2

σ2

∫ T

t

Yudu

∣∣∣∣ Ft

])
for each t ∈ [0, T ]. (3.15)

If L̂ is an Itô process of the form (3.14) for some integrable predictable process

bL̂ and integrand η ∈ L(B), then L̂ is a candidate opportunity process for S with

time horizon T .

Proof. In the following, we write ψ := µ2

σ2 for readability.

1) The process Z P̄ de�ned in (3.12) is the density process of a probability

measure P̄ ≈ P if it is a strictly positive martingale on [0, T ]. Since Y is continu-

ous, hence a.s. bounded on [0, T ], we have that N̄ := −2µ
σ

√
Y •W is a continuous

local martingale on [0, T ] and [N̄ ]T =
∫ T
0
4ψYtdt < ∞ a.s. Thus N̄ and [N̄ ] are

�nite almost surely on [0, T ], and so the stochastic exponential Z P̄ is strictly

positive. To apply Novikov's criterion to Z P̄ , we need to show that exp(1
2
[N̄ ]T )

is P -integrable. We can write

EP

[
exp

(
[N̄ ]T
2

)]
= EP

[
exp

(∫ T

0

2ψYsds

)]
= EP [exp(X̃

(1)
T )], (3.16)

where we let X̃(1)
t :=

∫ t
0
2ψYsds. Then the process X̃(1) is a semimartingale

of the type considered in Theorem 2.17, taking the functions µ(t) = 2ψ and

σ(t) = σ̃(t) = 0, where µ is integrable and σ, σ̃ are square-integrable as they are

all constant. It then follows from part 1) of Theorem 2.17 that there exists some
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T1 > 0 such that for all T ∈ (0, T1], we have

EP

[
exp

(
[N̄ ]T
2

)]
= EP [exp(X̃

(1)
T )] <∞.

So by Novikov's criterion, it follows that Z P̄ is a strictly positive P -martingale

on [0, T ]. Hence P̄ = P̄ (T ) is an equivalent measure for any choice of T ∈ (0, T1].

2) Suppose that β = 1 − 2ϱ2 ̸= 0. We �rst want to show that the process L̂

is well de�ned if T is small enough, and we start by showing that the random

variable exp(−βψ
∫ T
0
Ysds) is P̄ -integrable for small values of T > 0. This is

clearly the case if β > 0, as the rest of the exponent is nonpositive, but we also

consider the case β < 0. Plugging in the density for P̄ , we obtain that

EP̄

[
exp

(
−βψ

∫ T

0

Ysds

)]
= EP

[
dP̄

dP
exp

(
−βψ

∫ T

0

Ysds

)]
= EP [exp(X̃

(2)
T + βX̃

(3)
T )],

where we set X̃(2)
t =

∫ t
0
(−2µ

σ

√
YsdWs− 2ψYsds) and X̃

(3)
t = −

∫ t
0
ψYsds. As in 1),

we apply part 1) of Theorem 2.17 with C =
√
2 to the process (X̃(2), X̃(3)), and

since all coe�cients of X̃(2) and X̃(3) are constant, we get that there exists some

T ⋆1 ∈ (0, T1] such that for each T ∈ (0, T ⋆1 ] and β ∈ [−1, 1], we have

EP̄

[
exp

(
− βψ

∫ T

0

Ysds

)]
= EP [exp(X̃

(2)
T + βX̃

(3)
T )] <∞. (3.17)

Noting that β = 1− 2ϱ2 ∈ [−1, 1] for any ϱ ∈ [−1, 1], this shows the integrability

of exp(−βψ
∫ T
0
Ysds) for each T ∈ (0, T ⋆1 ].

Now �x T ∈ (0, T ⋆1 ]. By (3.17), we can de�ne the P̄ -martingale (Mt)0≤t≤T by

Mt = EP̄

[
exp

(
−βψ

∫ T

0

Ysds

) ∣∣∣∣ Ft

]
, 0 ≤ t ≤ T.

The exponential is strictly positive a.s. as Y is a.s. bounded, and so Mt > 0 for

each t ∈ [0, T ]. Thus we may also de�ne the process (L̂t)0≤t≤T by

L̂t = (Mt)
1/β exp

(
ψ

∫ t

0

Ysds

)
, 0 ≤ t ≤ T. (3.18)
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It is then clear that L̂ satis�es (3.13), since we have

L̂βt = EP̄

[
exp

(
−βψ

∫ T

0

Ysds

) ∣∣∣∣ Ft

]
exp

(
βψ

∫ t

0

Ysds

)
= EP̄

[
exp

(
−βψ

∫ T

t

Ysds

) ∣∣∣∣ Ft

]
, 0 ≤ t ≤ T. (3.19)

Moreover, it follows by (3.18) and Itô's formula that L̂ is a strictly positive

semimartingale.

So far we have shown that L̂ from (3.18) is well de�ned and a semimartingale,

although it is not clear at this point whether L̂ orM are continuous. We now want

to show that L̂ is a candidate opportunity process under the assumption (3.14), by

using the de�nition (3.18) to �nd a more explicit semimartingale decomposition.

Note that both L̂ and exp(ψ
∫ ·
0
Ysds) are strictly positive and continuous, by the

assumption (3.14) on L̂. Since the exponent 1/β is nonzero, we get from (3.18)

that the P̄ -martingale M is continuous. Applying Itô's formula to (3.18) and

using (3.14), we obtain

bL̂t dt+ηtdBt = dL̂t =
L̂t
βMt

dMt+
( 1
β
− 1)L̂t

2βM2
t

d[M ]t+ψL̂tYtdt, 0 ≤ t ≤ T. (3.20)

Recall that [B,W ]t = ϱt by (3.7). Thus by Girsanov's theorem and the de�nition

of P̄ , we obtain a P̄ -Brownian motion B̄ by setting dB̄t = dBt +
2ϱµ
σ

√
Ytdt.

Plugging this into (3.20) gives

bL̂t dt+ ηtdB̄t−
2ϱµηt

√
Yt

σ
dt =

L̂t
βMt

dMt+
( 1
β
− 1)L̂t

2βM2
t

d[M ]t+ψL̂tYtdt, 0 ≤ t ≤ T.

Since B̄ and M are continuous P̄ -martingales and the remaining terms are con-

tinuous and have �nite variation, it follows from this equality that dMt = ηMt dB̄t,

where the predictable integrand ηM is given by ηMt = βMtηt
L̂t

and is hence in

L(B) like η. Note that L(B̄) is the same as L(B), since χ ∈ L(B) or L(B̄) if∫ T
0
χ2
tdt < ∞ P -a.s. or P̄ -a.s., respectively, and P̄ ≈ P . Thus we can rewrite

(3.20) as

dL̂t = L̂t

(
ηMt
βMt

dB̄t + ψYtdt+
( 1
β
− 1)(ηMt )2

2βM2
t

dt

)
= L̂t

(
ηMt
βMt

dBt +
2ϱµ

√
Ytη

M
t

βσMt

dt+ ψYtdt+
( 1
β
− 1)(ηMt )2

2βM2
t

dt

)
, (3.21)
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for 0 ≤ t ≤ T . We use this semimartingale decomposition for L̂ to �nd its

characteristics. Recalling the de�nition (3.8) of R and (3.7), we can compute the

quadratic covariation

d[R, L̂]t =
L̂tϱσ

√
Ytη

M
t

βMt

dt. (3.22)

From (3.21) and (3.22), we then obtain the di�erential characteristics bL̂ and cRL̂

under P as

bL̂t = L̂t

(
2ϱµ

√
Ytη

M
t

βσMt

+ ψYt +
( 1
β
− 1)(ηMt )2

2βM2
t

)
, cRL̂t =

L̂tϱσ
√
Ytη

M
t

βMt

,

for 0 ≤ t ≤ T .

We are now ready to check that the di�erential characteristics of L̂ satisfy

(3.5). Note that bRt = µYt and 1
β
− 1 = 2ϱ2

β
because β = 1− 2ϱ2. Thus we get by

plugging into the equation for bL̂ that

bL̂t = L̂t

(
ψYt +

2ϱµ
√
Ytη

M
t

βσMt

+
( 1
β
− 1)(ηMt )2

2βM2
t

)
=

L̂t
σ2Yt

(
µ2Y 2

t +
2ϱσµYt

√
Ytη

M
t

βMt

+
ϱ2σ2Yt(η

M
t )2

β2M2
t

)
=

L̂t
σ2Yt

(
µYt +

ϱσ
√
Ytη

M
t

βMt

)2

=
L̂t
cRt

(
bRt +

cRL̂t

L̂t

)2

, 0 ≤ t ≤ T,

which shows that L̂ satis�es (3.5). We have already seen that L̂ is strictly positive,

it is clear from (3.13) that L̂T = 1, and so it only remains to show that L̂ is

bounded above by 1. Indeed, if β > 0, then exp(−βψ
∫ T
t
Yudu) ≤ 1 and hence

L̂ ≤ 1 by (3.13). If instead β < 0, then exp(−βψ
∫ T
t
Yudu) ≥ 1 and again L̂ ≤ 1

by (3.13), noting that we take a negative power 1/β < 0 of the expectation. This

shows that if T ∈ (0, T ⋆1 ], then L̂ is a candidate opportunity process with time

horizon T for β ̸= 0.

3) If 1 − 2ϱ2 = 0, the proof is similar as for 2). Using x ≤ ex and recalling

from the proof of 2) the processes X̃(2) and X̃(3), we start by noting the inequality

EP̄

[ ∫ T

0

ψYsds

]
≤ EP

[
dP̄

dP
exp

(∫ T

0

ψYsds

)]
≤ EP [exp(X̃

(2)
T + X̃

(3)
T )] <∞

for T ∈ (0, T ⋆1 ], due to (3.17) (with β = 1 there). Fixing some T ∈ (0, T ⋆1 ], we
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can therefore de�ne the P̄ -martingale (Mt)0≤t≤T by

Mt = −EP̄
[ ∫ T

0

ψYsds

∣∣∣∣ Ft

]
, 0 ≤ t ≤ T.

We also de�ne the process (L̂t)0≤t≤T as

L̂t = exp

(
Mt +

∫ t

0

ψYsds

)
= exp

(
EP̄

[
−
∫ T

t

ψYsds

∣∣∣∣ Ft

])
, 0 ≤ t ≤ T, (3.23)

which is a semimartingale by Itô's formula.

The rest of the argument is completely analogous to the case 1 − 2ϱ2 ̸= 0.

First, L̂ is strictly positive by (3.23) and as Y is pathwise bounded. Under the

assumption (3.14), which implies in particular that L̂ is continuous, it follows

from (3.23) that M is continuous as well. We then apply Itô's formula and (3.14)

to (3.23) to obtain

bL̂t dt−
2ϱµηt

√
Yt

σ
dt+ ηtdB̄t = dL̂t = L̂t

(
dMt + ψYtdt+

1

2
d[M ]t

)
, 0 ≤ t ≤ T,

recalling the P̄ -Brownian motion dB̄t = dBt +
2ϱµ
σ

√
Ytdt. Comparing the local

P̄ -martingale parts gives dM = ηMdB̄, where the integrand ηM given by ηMt = ηt
L̂t

is in L(B) = L(B̄). Plugging in, we get the decomposition

dL̂t = L̂t

(
ηMt dBt +

2ϱµ
√
Ytη

M
t

σ
dt+ ψYtdt+

(ηMt )2

2
dt

)
, 0 ≤ t ≤ T,

under P , and so we obtain the di�erential characteristics of L̂ as

bL̂t = L̂t

(
2ϱµ

√
Ytη

M
t

σ
+ ψYt +

(ηMt )2

2

)
, cRL̂t = L̂tϱσ

√
Ytη

M
t , 0 ≤ t ≤ T.

We can then check that (3.5) is satis�ed. Indeed, as ϱ2 = 1
2
in this case, we have

bL̂t = L̂t

(
ψYt +

2ϱµ
√
Ytη

M
t

σ
+

(ηMt )2

2

)
=

L̂t
σ2Yt

(
µ2Y 2

t + 2ϱσµYt
√
Ytη

M
t + ϱ2σ2Yt(η

M
t )2

)
=
L̂t
cRt

(
bRt +

cRL̂t

L̂t

)2

for 0 ≤ t ≤ T so that (3.5) holds. Finally, we obtain the bound L̂ ≤ 1 and
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the terminal condition L̂T = 1 directly from (3.15), and so L̂ is a candidate

opportunity process with time horizon T for β = 0.

3.3 Explicit formula for the opportunity process

In Lemma 3.2, we have found a candidate opportunity process L̂, given by a mar-

tingale distortion formula in terms of a conditional expectation under P̄ involving

the volatility process Y . Thanks to this formula, we shall obtain an explicit ex-

pression for L̂ in Lemma 3.3. This is possible because the volatility process retains

the structure of an a�ne Volterra process under P̄ (see Abi Jaber et al. [1]), so

that the conditional expectation (3.13) can be expressed in an exponentially a�ne

form in terms of the forward variance curve (ξt(u)) as well as the solution g⋆ to a

Riccati�Volterra equation (3.24) below. A similar representation can be found in

Han/Wong [61, Equations (4.13) and (4.14)], where (3.13) is computed in terms

of a modi�ed forward variance curve ξP̄t (u) := EP̄ [Yu | Ft] calculated under P̄ .

In Lemma 3.3, we compute the conditional expectations from (3.13) if we

have 1 − 2ϱ2 ̸= 0, and from (3.15) for 1 − ϱ2 = 0. In the �rst case, this can be

done by a relatively straightforward application of Theorem 2.17. This does not

quite work the critical case 1 − 2ϱ2 = 0 since we need to calculate a conditional

expectation involving an exponential and a linear term, for which we use Corollary

2.21 instead. As it turns out, both cases yield the same �nal formula for L̂.

We recall the forward variance curve (ξt(u))0≤t≤u≤T as well as the kernel κ̂

from De�nition 2.9 and (2.12).

Lemma 3.3. There exists some T ⋆2 ∈ (0, T ⋆1 ] such that for each time horizon

T ∈ (0, T ⋆2 ], there is a unique continuous solution g⋆ : [0, T ] → R to the equation

g⋆(t) = −µ
2

σ2
− 2ϱµ

σ
(κ̂ ∗ g⋆)(t) + 1

2
(1− 2ϱ2)

(
(κ̂ ∗ g⋆)(t)

)2
, 0 ≤ t ≤ T, (3.24)

and the process (L̂t)0≤t≤T given in (3.19) resp. (3.23) satis�es

L̂t = exp

(∫ T

t

g⋆(T − u)ξt(u)du

)
, 0 ≤ t ≤ T. (3.25)

The process L̂ is an Itô process with the dynamics

dL̂t = L̂t

(
(κ̂∗g⋆)(T−t)

√
YtdBt−g⋆(T−t)Ytdt+

1

2

(
(κ̂∗g⋆)(T−t)

)2
Ytdt

)
(3.26)
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for 0 ≤ t ≤ T . In consequence, L̂ is a candidate opportunity process.

Remark 3.4. We note that although L̂ depends on the time horizon T , the

solution g⋆ to (3.24) does not. More precisely, if T ′ > T and there exists a

continuous solution g′ : [0, T ′] → R to (3.24) with time horizon T ′, then we have

g⋆(t) = g′(t) for all t ∈ [0, T ], by uniqueness of the solution g⋆ on [0, T ].

Proof of Lemma 3.3. We want to apply Theorem 2.17 to compute the conditional

expectations in (3.19) and (3.23) in the cases 1 − 2ϱ2 ̸= 0 and 1 − 2ϱ2 = 0,

respectively; this is done in steps 1) and 2) below. We then show the dynamics

(3.26) at the end, in step 3). The last assertion then follows from Lemma 3.2,

since (3.26) ensures that L̂ is an Itô process satisfying (3.14).

1) Recall the constant ψ = µ2

σ2 introduced in the proof of Lemma 3.2. Consider

the process (X̃t)0≤t≤T = (Ỹt, N̄t, [N̄ ]t)0≤t≤T , where Ỹt :=
∫ t
0
Ysds and N̄ is the

stochastic logarithm of the density process Z P̄ de�ned in Lemma 3.2; so

Ỹt =

∫ t

0

Ysds, N̄t =

∫ t

0

−2µ

σ

√
YsdWs, [N̄ ]t =

∫ t

0

4ψYsds, 0 ≤ t ≤ T.

(3.27)

Note that the coe�cients µỸ ≡ 1, σN̄ ≡ −2µ
σ
and µ[N̄ ] ≡ 4ψ are constant, hence

bounded.

In the case β = 1− 2ϱ2 ̸= 0, we have by the Bayes rule that

EP̄

[
exp

(
−βψ

∫ T

t

Yudu

)∣∣∣∣Ft

]
= EP̄

[
exp

(
− βψ(ỸT − Ỹt)

)∣∣Ft

]
= E(N̄)−1

t exp(βψỸt)EP [E(N̄)T exp(−βψỸT ) | Ft].

(3.28)

In terms of the components of X̃, the term in the conditional expectation can be

written as

E(N̄)T exp(−βψỸT ) = exp

(
N̄T − [N̄ ]T

2
− βψỸT

)
.

By part 1) of Theorem 2.17 applied to X̃, there exists some T̃ ⋆2 ∈ (0, T ⋆1 ] such

that for T ∈ (0, T̃ ⋆2 ], there is a unique solution xβ ∈ L1([0, T ];C) to the equation

xβ(t) = −βψ − 2µϱ

σ
(κ̂ ∗ xβ)(t) +

1

2

(
(κ̂ ∗ xβ)(t)

)2
, 0 ≤ t ≤ T, (3.29)
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and it holds that

EP [E(N̄)T exp(−βψỸT ) | Ft] = E(N̄)t exp

(
−βψỸt +

∫ T

t

xβ(T − u)ξt(u)du

)
.

(3.30)

In particular, the conditional expectation on the left-hand side of (3.30) is well

de�ned. Plugging this into (3.28) and using the formula (3.19) for L̂ yields

L̂t = exp

(
1

β

∫ T

t

xβ(T − u)ξt(u)du

)
, 0 ≤ t ≤ T. (3.31)

To bring this into the form (3.25), we note that for T ∈ (0, T̃ ⋆2 ], the function

g⋆ := xβ/β ∈ L1([0, T ];C) is a solution to (3.24) since for 0 ≤ t ≤ T ,

g⋆(t) =
xβ(t)

β
= −ψ − 2µϱ

βσ
(κ̂ ∗ xβ)(t) +

1

2β

(
(κ̂ ∗ xβ)(t)

)2
= −ψ − 2µϱ

σ
(κ̂ ∗ g⋆)(t) + β

2

(
(κ̂ ∗ g⋆)(t)

)2
= −ψ − 2µϱ

σ
(κ̂ ∗ g⋆)(t) + 1

2
(1− 2ϱ2)

(
(κ̂ ∗ g⋆)(t)

)2
. (3.32)

Conversely, if g⋆ is a solution to (3.24) on [0, T ], we similarly get that xβ := βg⋆

solves (3.29). Since the solution xβ to (3.29) is unique due to Theorem 2.17, it

follows that the solution g⋆ to (3.24) is unique as well. Plugging into (3.31), we

therefore obtain (3.25).

It remains to argue that g⋆ is continuous and real-valued. To see the latter,

note that κ̂ and all of the constants in (3.24) are real-valued, and hence the

complex conjugate g⋆ is also a solution to (3.24). Thus g⋆ = g⋆ by the uniqueness

so that g⋆ is real-valued. To show the continuity, note that (3.24) is of the form

(A.2.17), where we replace x with g⋆ and set y ≡ 0 and

f(z, s) := −µ
2

σ2
− 2ϱµ

σ
z +

1

2
(1− 2ϱ2)z2.

As f and y are continuous, it follows by Corollary A.2.6 that there exists some

(possibly smaller) T ⋆2 ∈ (0, T̃ ⋆2 ] such that there is a unique continuous solution

g̃⋆ to (3.24) on the interval [0, T ⋆2 ]. Note that for any choice of time horizon

T ∈ (0, T ⋆2 ], the restriction of g̃⋆ to [0, T ] is also a solution to (3.24) on the interval

[0, T ]; this follows by the causality property of the convolution mentioned after

De�nition 2.3. Since g⋆ is the unique solution in L1([0, T ];R) to (3.24), we have
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by uniqueness that g⋆ = g̃⋆ on [0, T ] and thus it is continuous.

2) The case 1 − 2ϱ2 = 0 can be checked similarly to step 1). Recall the

process (X̃t)0≤t≤T = (Ỹt, N̄t, [N̄ ]t)0≤t≤T with dynamics given by (3.27). In this

case, we need to compute the conditional expectation of ψỸT under P̄ ; we use

Corollary 2.21 to deal with the linear term. Consider the equation (2.38) with

z = z1 := (0, 1,−1/2). Since the terms that are constant in gz1,T vanish, it

follows that gz1,T = 0 is the unique solution. Thus by Corollary 2.21, there

exists some T̃ ⋆2 ∈ (0, T ⋆1 ] such that for T ∈ (0, T̃ ⋆2 ], there exists a unique solution

g̃ ∈ L1([0, T ];R) to the equation

g̃(t) = ψ − 2ϱµ

σ
(κ̂ ∗ g̃)(t), 0 ≤ t ≤ T, (3.33)

which corresponds to (2.91) with z1 = (0, 1,−1/2), z2 = (1, 0, 0) and gz1,T = 0;

the fact that g̃ is real-valued follows by the same argument as at the end of step

1) for g⋆. Moreover, Corollary 2.21 also gives that

EP [E(N̄)TψỸT | Ft] = E(N̄)t

(
ψỸt +

∫ T

t

g̃(T − u)ξt(u)du

)
, 0 ≤ t ≤ T. (3.34)

The equation (3.33) does not exactly match (3.24) with 1−2ϱ2 = 0, since it lacks a

minus sign next to the constant term ψ = µ2/σ2. However, it is clear by plugging

g⋆ := −g̃ into (3.33) that g⋆ is a solution to (3.24) in this case. Conversely, any

solution to (3.24) yields a solution to (3.33) by changing the sign, and hence the

solution g⋆ to (3.24) is unique. By the same argument as in step 1), there exists

some T ⋆2 ∈ (0, T̃ ⋆2 ] such that for any T ∈ (0, T ⋆2 ], g
⋆ is the unique continuous

(rather than L1) solution to (3.24) on [0, T ]. Plugging g⋆ into (3.34) yields

EP [E(N̄)TψỸT | Ft] = E(N̄)t

(
ψỸt −

∫ T

t

g⋆(T − u)ξt(u)du

)
, 0 ≤ t ≤ T,

and hence

EP̄

[
ψ

∫ T

t

Yudu

∣∣∣∣ Ft

]
= EP̄ [ψ(ỸT−Ỹt) | Ft] = −

∫ T

t

g⋆(T−u)ξt(u)du, 0 ≤ t ≤ T.

Plugging into (3.15) directly yields (3.25).

3) It remains to show the dynamics (3.26) for L̂. Note that Corollary 2.14
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gives the semimartingale decomposition

d

(∫ T

t

g⋆(T − u)ξt(u)du

)
= −g⋆(T − t)Ytdt+ (κ̂ ∗ g⋆)(T − t)

√
YtdBt.

Applying Itô's formula to L̂t = exp(
∫ T
t
g⋆(T − u)ξt(u)du) from (3.25), we then

obtain that

dL̂t = L̂t

(
−g⋆(T − t)Ytdt+ (κ̂ ∗ g⋆)(T − t)

√
YtdBt +

1

2

(
(κ̂ ∗ g⋆)(T − t)

)2
Ytdt

)
for 0 ≤ t ≤ T , and this is (3.26). As argued at the beginning of the proof,

this ensures that L̂ is an Itô process satisfying (3.14) and hence a candidate

opportunity process by Lemma 3.2.

For a �xed time horizon T ∈ (0, T ⋆2 ], we de�ne h
⋆ : [0, T ] → R by

h⋆(t) = (κ̂ ∗ g⋆)(t) =
∫ t

0

κ̂(t− s)g⋆(s)ds. (3.35)

The function h⋆ inherits continuity from g⋆, as mentioned after De�nition 2.3.

Like g⋆ in Remark 3.4, also h⋆ does not depend on the choice of T because the

causality property given after De�nition 2.3 says that h⋆(t) = (κ̂ ∗ g⋆)(t) only

depends on the values taken by g⋆ on [0, t].

With the notation h⋆, we can directly read o� from (3.26) and (3.8) the

di�erential characteristics of L̂ as

bL̂t = L̂t

(
−g⋆(T − t)Yt +

(
h⋆(T − t)

)2
Yt

)
, cRL̂t = L̂tϱσh

⋆(T − t)Yt,

for 0 ≤ t ≤ T . This makes it straightforward to �nd the candidate adjustment

process â.

Corollary 3.5. For any T ∈ (0, T ⋆2 ], the candidate adjustment process (ât)0≤t≤T
corresponding to the candidate opportunity process from Lemma 3.3 is given by

ât =
1

σSt

(
µ

σ
+ ϱh⋆(T − t)

)
, 0 ≤ t ≤ T. (3.36)

Proof. Plugging bL̂ and cRL̂ into the de�nition (3.6) for â gives

ât =
1

StcRt

(
bRt +

cRL̂t

L̂t

)
=

1

σ2StYt

(
µYt+ ϱσh⋆(T − t)Yt

)
=

1

σSt

(µ
σ
+ ϱh⋆(T − t)

)
.



3 The pure investment problem 71

3.4 Veri�cation

Using the martingale distortion technique and by exploiting the a�ne structure

of the model, we have found in Lemma 3.3 a candidate opportunity process L̂

as a solution to the BSDE (3.5) on [0, T ]. It now remains to be shown that L̂

is the true opportunity process, which is done in Theorem 3.8. As mentioned

after (3.6), this follows from �erný/Kallsen [25, Theorem 3.25] after checking

that certain conditions are satis�ed, as we explain in more detail below.

Given L̂ and the candidate adjustment strategy â computed in Corollary 3.5,

we obtain a candidate pure investment strategy ϑ̂⋆ := âE(−â • S) and a candidate

variance-optimal martingale measure Q̂⋆ with density dQ̂⋆/dP = E(−â • S)T/L̂0.

The density process ZQ̂⋆
for Q̂⋆ is given below in Lemma 3.6, and we later show

in (3.42) in the proof of Theorem 3.8 that we indeed have ZQ̂⋆

T = E(−â • S)T/L̂0.

If L̂ and â are the true opportunity and adjustment processes, respectively, then

ϑ̂⋆ and Q̂⋆ are the true pure investment strategy and VOMM, respectively, by

results of [25] and as we see later in Corollary 3.9.

Conversely, given a candidate opportunity process L̂, we can use [25, Theorem

3.25] to show that L̂ is the true opportunity process. For this, we need to check

some conditions involving the candidate processes â, ϑ̂⋆ and ZQ̂⋆
associated with

L̂; namely, that the strategy ϑ̂⋆ is admissible and the measure Q̂⋆ is an equivalent

martingale measure. More precisely, we also need to show a dynamic version of

these properties on each stochastic interval Kτ, T K for a stopping time τ ≤ T ;

the exact conditions are given in the proof of Theorem 3.8. Before proving that

theorem, we �rst show two technical results in Lemmas 3.6 and 3.7.

In the following, let (S, Y ) satisfy the rough Heston model and T ⋆2 and g⋆ be

as given in Lemma 3.3. We also recall the function h⋆ := κ̂ ∗ g⋆ de�ned in (3.35).

Lemma 3.6. There exists some T ⋆3 ∈ (0, T ⋆2 ] such that for each T ∈ (0, T ⋆3 ], the

process (ZQ̂⋆

t )0≤t≤T de�ned as the stochastic exponential

ZQ̂⋆

= E
(√

1− ϱ2
(
h⋆(T − ·)

√
Y
)

•W⊥ − µ

σ

√
Y •W

)
(3.37)

is a strictly positive square-integrable P -martingale on [0, T ]. Then the measure

Q̂⋆ de�ned by the density dQ̂⋆/dP = ZQ̂⋆

T belongs to Q2
T (S), i.e., it is an equivalent

local martingale measure for S such that EP [(dQ̂⋆/dP )2] <∞.
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Proof. As h⋆ and Y are continuous, ZQ̂⋆
is a strictly positive local P -martingale.

The stochastic logarithm N Q̂⋆
of ZQ̂⋆

is given by

dN Q̂⋆

t =
√
1− ϱ2

(
h⋆(T − t)

√
Yt
)
dW⊥

t − µ

σ

√
YtdWt, 0 ≤ t ≤ T.

Since the Brownian motions W and W⊥ are orthogonal and ψ = µ2

σ2 , we have

EP

[
exp

(
1

2
[N Q̂⋆

]T

)]
= EP

[
exp

(
1

2

∫ T

0

Ys

(
(1− ϱ2)

(
h⋆(T − s)

)2
+ ψ

)
ds

)]
≤ EP

[
exp

(
X̃

(4)
T

2

)]
, (3.38)

where we de�ne (X̃
(4)
t )0≤t≤T by

X̃
(4)
t =

(
(1− ϱ2)h̄2 + ψ

) ∫ t

0

Ysds

for h̄ := supt∈[0,T ] |h⋆(t)|. As the coe�cient (1 − ϱ2)h̄2 + ψ is constant (hence

bounded), we can apply Theorem 2.17 to the process X̃(4) so that there exists

some T̃ ⋆3 > 0 such that EP [exp(12X̃
(4)
T )] < ∞ for T ∈ (0, T̃ ⋆3 ]. By Novikov's

criterion and (3.38), ZQ̂⋆
is thus a P -martingale on [0, T ] for any such T .

To show that ZQ̂⋆
is square-integrable, we estimate

EP [(Z
Q̂⋆

T )2] = EP
[
exp(2N Q̂⋆

T − [N Q̂⋆

]T )
]
= EP

[
exp(2N Q̂⋆

T − 4[N Q̂⋆

]T + 3[N Q̂⋆

]T )
]

≤ EP [E(4N Q̂⋆

)T ]
1/2EP

[
exp(6[N Q̂⋆

]T )
]1/2 ≤ EP

[
exp(6[N Q̂⋆

]T )
]1/2

by using the Cauchy�Schwarz inequality and the fact that E(4N Q̂⋆
) is a posit-

ive local martingale, hence a supermartingale. Note that as in (3.38), we have

6[N Q̂⋆
]T ≤ 6X̃

(4)
T . Thus again applying Theorem 2.17 to X̃(4), there exists some

T ⋆3 ∈ (0, T̃ ⋆3 ] such that for each T ∈ (0, T ⋆3 ], we have

EP [(Z
Q̂
T )

2] ≤ EP
[
exp(6[N Q̂⋆

]T )
]1/2

<∞.

Hence, ZQ̂ is a square-integrable martingale on [0, T ] for any such T and Q̂⋆ is a

probability measure equivalent to P with EP [(dQ̂⋆/dP )2] <∞.

It remains to show that Q̂⋆ is a local martingale measure for S on [0, T ]

for any T ∈ (0, T ⋆3 ]. By Girsanov's theorem and (3.37), (W ⋆
t )0≤t≤T de�ned by



3 The pure investment problem 73

W ⋆
t = Wt +

∫ t
0
µ
σ

√
Ysds is a Q̂⋆-Brownian motion on [0, T ]. Since

dSt = St(µYtdt+ σ
√
YtdWt) = Stσ

√
YtdW

⋆
t , 0 ≤ t ≤ T,

and S, Y are both continuous, S is indeed a Q̂⋆-local martingale.

Lemma 3.7. Let T ⋆3 be as given in Lemma 3.6 and â de�ned by (3.36). There

exists some T ⋆ ∈ (0, T ⋆3 ] such that EP [exp([â • S]T )] <∞ for each T ∈ (0, T ⋆].

Proof. We recall the formula (3.36) for â as well as the dynamics (2.8) for S.

They are

ât =
1

σSt

(
µ

σ
+ ϱh⋆(T − t)

)
and

dSt
St

= µYtdt+ σ
√
YtdWt, 0 ≤ t ≤ T.

By plugging in, we thus get

EP
[
exp([â • S]T )

]
= EP

[
exp

(∫ T

0

(µ
σ
+ ϱh⋆(T − s)

)2
Ysds

)]
≤ EP [exp(X̃

(5)
T )],

where we de�ne the process (X̃(5)
t )0≤t≤T by X̃(5)

t =
∫ t
0
( |µ|
σ
+ ϱh̄)2Ysds, and recall

h̄ := supt∈[0,T ] |h⋆(t)| as used in the proof of Lemma 3.6. By Theorem 2.17

applied to X̃(5), there exists some T ⋆ ∈ (0, T ⋆3 ] such that E[exp(X̃(5)
T )] < ∞ for

each T ∈ (0, T ⋆]. This gives the result.

We are now ready to move on to the main theorem.

Theorem 3.8. Let T ⋆ be as given in Lemma 3.7. For each T ∈ (0, T ⋆], the

opportunity process L = (Lt)0≤t≤T for S with time horizon T is given by

Lt = L̂t = exp

(∫ T

t

g⋆(T − u)ξt(u)du

)
, 0 ≤ t ≤ T, (3.39)

where g⋆ : [0, T ] → R is the unique continuous solution to the equation (3.24).

Proof. We already showed in Lemma 3.3 that (3.24) has a unique solution up to

some T ⋆2 ≥ T ⋆ > 0. We now show that L is the true opportunity process for any

time horizon T ∈ (0, T ⋆]. We claim that this is implied by the conditions (a)�(c)

below:

(a) There exists an equivalent local martingale measure for S on [0, T ] with

square-integrable density.

(b) For each stopping time τ ≤ T , the process E((−â1Kτ,T K) •S)L̂ is of class (D).
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(c) For each stopping time τ ≤ T , the strategy

ϑ̂(τ) = âE
(
(−â1Kτ,T K) •S

)
1Kτ,T K (3.40)

belongs to ΘT (S), i.e., is admissible.

Indeed, the implication follows by �erný/Kallsen [25, Theorem 3.25]. The condi-

tion (a) is a standing assumption in [25], while (b) and (c) correspond to condition

4. in that theorem. The remaining conditions 1., 2. and 3. in [25, Theorem 3.25]

are satis�ed since L̂ is a candidate opportunity process (as de�ned after (3.5)),

and hence that theorem ensures that L̂ is the true opportunity process under

conditions (a)�(c). It now remains to show that the conditions hold.

We have shown (a) in Lemma 3.6 for T ∈ (0, T ⋆] ⊆ (0, T ⋆3 ]. We also get

(b) as a consequence of Lemma 3.6, by the same proof as in �erný/Kallsen [27,

Proposition 3.2, Step 1]. To see this, note that Itô's formula together with the

dynamics (3.26) for L̂ gives

d(E(−â •S)tL̂t)

E(−â •S)tL̂t
=
(
− µâtSt − g⋆(T − t) +

(
h⋆(T − t)

)2 − âtStϱσh
⋆(T − t)

)
Ytdt

− âtStσ
√
YtdWt + h⋆(T − t)

√
YtdBt.

Plugging in (3.36) for ât and h⋆ = κ̂ ∗ g⋆ by (3.35), we obtain the dt-integrand(
− µ2

σ2
− 2µϱ

σ
h⋆(T − t) + (1− ϱ2)

(
h⋆(T − t)

)2 − g⋆(T − t)

)
Ytdt = 0

because g⋆ satis�es (3.24). By using again (3.36) for ât and the orthogonal de-

composition (3.7) for B, we get

d(E(−â •S)tL̂t)

E(−â •S)tL̂t
= −âtStσ

√
YtdWt + h⋆(T − t)

√
YtdBt

=
√

1− ϱ2 h⋆(T − t)
√
YtdW

⊥
t − µ

σ

√
YtdWt

=
dZQ̂⋆

t

ZQ̂⋆

t

(3.41)

and therefore
E(−(â1Kτ,T K) •S)L̂

L̂τ
=
ZQ̂⋆

ZQ̂⋆

τ

on Jτ, T K; (3.42)

note that the numerator on the left-hand side equals L̂τ at time τ . Hence the



3 The pure investment problem 75

condition (b) is equivalent to the statement that for each stopping time τ ≤ T ,

the process L̂τZ
Q̂⋆

τ∨·/Z
Q̂⋆

τ is of class (D). As L̂τ is bounded above by 1, it su�ces

to show that ZQ̂⋆

τ∨·/Z
Q̂⋆

τ is of class (D). But ZQ̂⋆

τ∨·/Z
Q̂⋆

τ is a positive local martingale

by the construction of ZQ̂⋆
and hence also a supermartingale that takes the value

1 on J0, τK. Since E[ZQ̂⋆

T /ZQ̂⋆

τ |Fτ ] = 1 as ZQ̂⋆
is a martingale, it follows that

ZQ̂⋆

τ∨·/Z
Q̂⋆

τ is also a martingale on [0, T ] and thus of class (D).

Finally, (c) follows from Lemma 3.7 by the same argument as in [27, Propos-

ition 3.2, Step 2]. To see this, �x T ∈ (0, T ⋆] and recall the set Q2
T (S) of all

equivalent local martingale measures for S on [0, T ] that have a square-integrable

density. For any Q ∈ Q2
T (S), the Cauchy�Schwarz inequality gives

EQ

[
exp

(
[â • S]T

2

)]
≤

√
EP
[
exp([â • S]T )

]
EP

[(
dQ

dP

)2]
<∞.

Since S is a local Q-martingale on [0, T ], it follows by the Novikov criterion that

E(−(1Kτ,T Kâ) •S) is a Q-martingale on [0, T ] for each stopping time τ with values

in [0, T ]. Note that the wealth process generated by the strategy ϑ̂(τ) from (3.40)

is given by

ϑ̂(τ) •S =
(
â1Kτ,T KE

(
(−â1Kτ,T K) •S

))
•S

= E
(
(−â1Kτ,T K) •S

)
•
(
(â1Kτ,T K) •S

)
= 1− E(−1Kτ,T Kâ) •S,

using the property E(M) •M = E(M)− 1. As E(−(1Kτ,T Kâ) •S) is a Q-martingale

on [0, T ], so is then ϑ̂(τ) •S. Since this holds for any Q ∈ Q2
T (S), it follows by [27,

Corollary 2.5] that ϑ̂(τ) is admissible. This concludes the proof of the conditions

(a)�(c) and hence of Theorem 3.8.

As a corollary, we can now collect several formulas that follow from Theorem

3.8 by results of �erný/Kallsen [25] since we have shown that L̂ from (3.39)

is the true opportunity process; this includes a formula for the optimal pure

investment strategy ϑ⋆. Thus with the formulas in Corollary 3.9, we have solved

the pure investment problem for the rough Heston model, which was our original

goal. Looking ahead, in the next chapter, we mostly use the variance-optimal

martingale measure Q⋆ given by 4) below since it is useful for solving the general

mean�variance hedging problem.

In the following, recall the orthogonal decomposition (3.7) for B.
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Corollary 3.9. Fix a time horizon T ∈ (0, T ∗], where T ⋆ is as in Theorem 3.8,

and let (S, Y ) satisfy the rough Heston model (2.8) on [0, T ]. Then the following

statements hold:

1) The adjustment process a = (at)0≤t≤T is given by

at =
µ+ ϱσh⋆(T − t)

σ2St
. (3.43)

2) The wealth process (V ⋆
t )0≤t≤T corresponding to the optimal strategy (ϑ⋆t )0≤t≤T

for the pure investment problem is given by

V ⋆
t = (ϑ⋆ •S)t = 1− E(−a • S)t

= 1− E
(∫ (

− µ

σ
+ ϱh⋆(T − s)

)(µYs
σ
ds+

√
YsdWs

))
t

.

3) The optimal strategy for the pure investment problem is given by

ϑ⋆t = (1− V ⋆
t )at = at E(−a • S)t.

4) The density process (ZQ⋆

t )0≤t≤T for the variance-optimal martingale measure

Q⋆ is given by

ZQ⋆

t = E
(∫ √

Ys

(√
1− ϱ2 h⋆(T − s)dW⊥

s − µ

σ
dWs

))
t

. (3.44)

Proof. Since L̂ = L is the true opportunity process by Theorem 3.8, it follows

from [25, Theorem 3.25] that the candidate adjustment process â de�ned in (3.6)

is the true adjustment process; we then get (3.43) by Corollary 3.5. The strategy

ϑ⋆ is given directly in terms of a in [25, Lemma 3.7], which yields 3), and then

we also obtain the expression for V ⋆ = ϑ⋆ • S in 2). The density process ZQ⋆
is

given in [25, Proposition 3.13] as

ZQ⋆

=
LE(−a •S)

L0

,

and so we get (3.44) by the previous calculations in (3.41), which shows 4).

Remark 3.10. By Girsanov's theorem, we have the Q⋆-Brownian motions W ⋆
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and B⋆ de�ned by

W ⋆
t = Wt +

∫ t

0

µ

σ

√
Ysds,

B⋆
t = Bt +

∫ t

0

ϱµ

σ

√
Ysds−

∫ t

0

(1− ϱ2)h⋆(T − s)
√
Ysds.

Thus by plugging into the dynamics (2.8) for the rough Heston model, we get

that the dynamics under Q⋆ are given by

dSt = σSt
√
YtdW

⋆
t ,

Yt = Y0 +

∫ t

0

κ(t− s)

((
θλ−

(
λ+

ζϱµ

σ
− ζ(1− ϱ2)h⋆(T − s)

)
Ys

)
ds

+ ζ
√
YsdB

⋆
s

)
.

This is similar to the original dynamics under P , with the notable di�erence that

the linear term in the drift of Y now has a time-dependent coe�cient h⋆. Under

Q⋆, the process Y can be seen as a time-inhomogeneous a�ne Volterra process

in the sense of Ackermann et al. [5].

3.5 Comparison to the literature

In this section, we relate Theorem 3.8 to two results found in the literature. We

start by considering �erný/Kallsen [27], where the pure investment problem is

solved for the classical Heston model. We want to show that the opportunity

process we obtain in Theorem 3.8 for the rough Heston model coincides with the

one given in [27, Proposition 3.1] in the classical case (where the kernel κ ≡ 1 is

trivial), as this is not clear at a �rst glance. In [27], the opportunity process is

given as an exponentially a�ne function of the spot volatility by

Lt = exp
(
κ0(t) + κ1(t)Yt

)
, 0 ≤ t ≤ T, (3.45)

where the functions κ0,κ1 : [0, T ] → R are the solutions to the two ordinary

Riccati di�erential equations (3.47) and (3.48) below. In these equations, we also

include our parameter σ, which is set to 1 in [27], as we can see by comparing

(2.8) with [27, (1.1) and (1.2)]. The formula (3.45) for L involves only the spot

volatility instead of the forward variance curve, which makes sense as unlike the

rough Heston, the classical Heston model is Markovian. Nevertheless, (3.45)
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yields the same opportunity process as (3.39), and we show the equivalence in

the following lemma. To that end, we use the fact that the forward variance curve

can be given explicitly as a function of the spot volatility Yt in this case, which

leads to a simpli�cation in the formula for the opportunity process.

Lemma 3.11. Suppose that the kernel κ ≡ 1 is trivial, so that the process (S, Y )

satis�es the classical Heston model (2.8), and there exists a continuous solution

g⋆ : [0, T ] → R to (3.24). Then we have∫ T

t

g⋆(T − u)ξt(u)du = κ0(t) + κ1(t)Yt, 0 ≤ t ≤ T, (3.46)

where the functions κ0,κ1 : [0, T ] → R are continuously di�erentiable and satisfy

the Riccati di�erential equations

−κ′
0(t) = λθκ1(t), 0 ≤ t ≤ T, (3.47)

−κ′
1(t) = −µ

2

σ2
−
(
λ+

2ϱζµ

σ

)
κ1(t) +

ζ2(1− 2ϱ2)

2
κ2

1(t), 0 ≤ t ≤ T, (3.48)

with terminal conditions κ0(T ) = κ1(T ) = 0.

Proof. As mentioned before, the reason for the simpler formula (3.46) in the

classical Heston model is that the forward variance curve (ξt(u))0≤t≤u≤T can be

given as a function of the spot volatility Yt. The formula for the forward variance

curve in the Heston model is well known, but for the sake of completeness, we

calculate it here using Lemma 2.10. Recall the de�nition (2.12) of the kernel

κ̂ = ζ
λ
Rλκ, where Rλκ is the resolvent of λκ. Since the kernel κ ≡ 1 is trivial, we

have Rλκ(t) = λe−λt by Abi Jaber et al. [1, Table 1], so that κ̂(t) = ζe−λt. Thus

by Lemma 2.10, the forward variance curve has the initial value

ξ0(u) = Y0 +
λ(θ − Y0)

ζ

∫ u

0

ζe−λsds

= Y0 + (θ − Y0)(1− e−λu) = θ + e−λu(Y0 − θ), 0 ≤ u ≤ T.

Based on this calculation, we make the ansatz that ξt(u) = θ + e−λ(u−t)(Yt − θ)

for 0 ≤ t ≤ u ≤ T . For a �xed u, the ansatz matches the initial value ξ0(u) at

t = 0, and by using Itô's formula and the dynamics (2.8) for Y in the classical

Heston model, we obtain for 0 ≤ t ≤ u that

d
(
θ+e−λ(u−t)(Yt−θ)

)
= e−λ(u−t)

(
dYt−λ(Yt−θ)dt

)
= e−λ(u−t)ζdBt = κ̂(u−t)dBt.
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Since this matches the dynamics of the forward variance curve ξt(u) given in

Lemma 2.10, we deduce that the ansatz holds, i.e., we have

ξt(u) = θ + e−λ(u−t)(Yt − θ), 0 ≤ t ≤ u ≤ T. (3.49)

To show (3.46), we can now plug in (3.49) to obtain that∫ T

t

g⋆(T − u)ξt(u)du =

∫ T

t

g⋆(T − u)
(
θ + e−λ(u−t)(Yt − θ)

)
du

= κ0(t) + κ1(t)Yt, 0 ≤ t ≤ T,

where we de�ne κ0,κ1 : [0, T ] → R by

κ0(t) =

∫ T

t

θg⋆(T − u)(1− e−λ(u−t))du, κ1(t) =

∫ T

t

g⋆(T − u)e−λ(u−t)du. (3.50)

Thus we have (3.46), and it remains to show that κ0 and κ1 satisfy the respective

di�erential equations (3.47) and (3.48). As the integrands are continuous, we

get from (3.50) the terminal conditions κ0(T ) = κ1(T ) = 0. By the Leibniz

integral rule, κ0 and κ1 are di�erentiable in t since the exponentials are, and

their derivatives are given by

κ′
0(t) =

∫ T

t

−λθg⋆(T − u)e−λ(u−t)du− θg⋆(T − t)(1− eλ(t−t))

= −λθκ1(t), 0 ≤ t ≤ T, (3.51)

which already shows (3.47), and

κ′
1(t) =

∫ T

t

λg⋆(T − u)e−λ(u−t)du− g⋆(T − t)eλ(t−t)

= λκ1(t)− g⋆(T − t), 0 ≤ t ≤ T. (3.52)

In particular, (3.51) and (3.52) show that κ0 and κ1 are continuously di�erentiable

as g⋆ is continuous by Lemma 3.3. We also have ζκ1(t) = (κ̂ ∗ g⋆)(T − t) as

κ̂(t) = ζe−λt and by the de�nition of κ1 in (3.50). Plugging the Riccati�Volterra
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equation (3.24) for g⋆ into (3.52) yields

κ′
1(t) = λκ1(t) +

µ2

σ2
+

2ϱµ

σ
(κ̂ ∗ g⋆)(T − t)− 1

2
(1− 2ϱ2)

(
(κ̂ ∗ g⋆)(T − t)

)2
=
µ2

σ2
+

(
2ϱµζ

σ
+ λ

)
κ1(t)−

ζ2(1− 2ϱ2)

2
κ1(t)

2, 0 ≤ t ≤ T,

which shows (3.48) and concludes the proof.

The second result we consider is given in Abi Jaber et al. [2], where the

Markowitz problem is solved for a general multivariate a�ne Volterra model.

That class of models includes the rough Heston model as a particular case. In

[2, Lemma 4.2], they give a formula for a process (there denoted by Γ) which

coincides with the opportunity process, as we show below, although they do not

identify it as such nor relate it to the pure investment problem. Instead, their

process Γ is obtained in [2, Lemma 4.2] as part of a linear�quadratic control for

the Markowitz problem. In our setup with a zero interest rate, it is given by

Γt = L̃t := exp

(∫ T

t

g̃⋆(T − u)ξ̃t(u)du

)
, 0 ≤ t ≤ T, (3.53)

where the adjusted forward variance curve (ξ̃t(u))0≤t≤u≤T is de�ned by

ξ̃t(u) = EP

[
Yu + λ

∫ u

t

κ(u− s)Ysds

∣∣∣∣ Ft

]
, 0 ≤ t ≤ u ≤ T, (3.54)

and in our notation, g̃⋆ satis�es the Riccati�Volterra equation, for 0 ≤ t ≤ T ,

g̃⋆(t) = −µ
2

σ2
−
(
2µϱζ

σ
+ λ

)
(κ ∗ g̃⋆)(t) + ζ2(1− 2ϱ2)

2

(
(κ ∗ g̃⋆)(t)

)2 (3.55)

(this follows from [2, Equations (4.6) and (4.7)], where we replace Fi(ψ) with

g̃⋆). Our goal is now to show in Lemma 3.12 below that the formulas (3.53)

and (3.39) for the opportunity process coincide. We note that (3.53) is written

in terms of (ξ̃t(u)), which di�ers from the forward variance curve due to the

additional integral term. Moreover, (3.55) is given in terms of the original kernel

κ for the rough Heston model (2.8), as opposed to κ̂.

We start by �nding a relationship between the two forward variance curves ξ

and ξ̃. By the conditional Fubini theorem, we have

ξ̃t(u) = ξt(u) + λ

∫ u

t

κ(u− s)ξt(s)ds, 0 ≤ t ≤ u ≤ T. (3.56)
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Interestingly, in the case of the classical Heston model, we have by plugging in

(3.49) and the trivial kernel κ ≡ 1 that

ξ̃t(u) = θ + e−λ(u−t)(Yt − θ) + λ

∫ u

t

(
θ + e−λ(s−t)(Yt − θ)

)
ds

= λθ(u− t) + Yt, (3.57)

so that the adjusted forward variance ξ̃t(u) di�ers from the spot volatility Yt only

by a deterministic term λθ(u − t). Assume for now that L̃ = L, as we show

below. For the classical Heston model, we have shown in Lemma 3.11 that L is

also given by (3.45). Plugging (3.57) into (3.53), we get in this case that

log L̃t = Yt

∫ T

t

g̃⋆(T − u)du+ λθ

∫ T

t

g̃⋆(T − u)(u− t)du.

Comparing the term linear in Y with (3.45), we then deduce that

κ1(t) =

∫ T

t

g̃⋆(T − u)du =

∫ T−t

0

g̃⋆(s)ds = (κ ∗ g̃⋆)(T − t),

since κ ≡ 1 for the classical Heston model, and we also get κ′
1(t) = −g̃⋆(T − t).

These relationships between κ1 and g̃⋆ in the classical case explain the similarity

(up to a change of sign) between the equations (3.48) and (3.58).

We now move on to the main result of showing that the two formulas for the

opportunity process coincide. In the following, let T ∈ (0,∞) and (S, Y ) satisfy

the rough Heston model (2.8) on [0, T ], and recall the forward and adjusted

forward variance curves on [0, T ] from De�nition 2.9 and (3.54), respectively.

Lemma 3.12. There exists a unique continuous solution g⋆ : [0, T ] → R to (3.24)

if and only if there exists a unique continuous solution g̃⋆ : [0, T ] → R to (3.55)

on [0, T ]. In that case, we have∫ T

t

g⋆(T − u)ξt(u)du =

∫ T

t

g̃⋆(T − u)ξ̃t(u)du, 0 ≤ t ≤ T, (3.58)

and thus the formulas (3.39) and (3.53) for the opportunity process coincide.

Proof. Let g⋆ : [0, T ] → R be a continuous solution to (3.24). We claim that

g̃⋆ := g⋆ − λ

ζ
κ̂ ∗ g⋆ (3.59)

is a solution to (3.55) on [0, T ]. Note that g̃⋆ is continuous like g⋆, as continuity
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is preserved by the convolution; see Gripenberg et al. [59, Theorem 2.2.2]. We

use a resolvent of the second kind in order to invert the Volterra equation of the

second kind (3.59), as explained after (2.4), so that g⋆ is given in terms of g̃⋆.

We show this explicitly here. Recall that λ
ζ
κ̂ = Rλκ by the de�nition (2.12) of κ̂,

where the resolvent Rλκ satis�es the equality λκ ∗Rλκ = Rλκ ∗λκ = λκ−Rλκ by

De�nition 2.4. Taking a convolution with λκ, we obtain from (3.59) that

g̃⋆ + λκ ∗ g̃⋆ = g⋆ −Rλκ ∗ g⋆ + λκ ∗ (g⋆ −Rλκ ∗ g⋆)

= g⋆ −Rλκ ∗ g⋆ + λκ ∗ g⋆ − λκ ∗ g⋆ +Rλκ ∗ g⋆ = g⋆, (3.60)

using the commutativity and associativity of the convolution; see [59, Corollary

2.2.3]. It also follows that

λ

ζ
κ̂ ∗ g⋆ = g⋆ − g̃⋆ = λκ ∗ g̃⋆,

by rearranging (3.60) and (3.59). Thus by plugging into (3.24), we obtain for

0 ≤ t ≤ T that

g̃⋆(t) + λ(κ ∗ g̃⋆)(t) = −µ
2

σ2
− 2ϱµζ

σ
(κ ∗ g̃⋆)(t) + ζ2(1− 2ϱ2)

2

(
(κ ∗ g̃⋆)(t)

)2
,

(3.61)

so that g̃⋆ is a solution to (3.55).

Conversely, let g̃⋆ : [0, T ] → R be a continuous solution to (3.55) on [0, T ] and

set g⋆ := g̃⋆ + λκ ∗ g̃⋆. Once again it follows that g⋆ is continuous on [0, T ] as g̃⋆

is, and similarly to (3.60), we can solve for g̃⋆ to obtain

g⋆ − λ

ζ
κ̂ ∗ g⋆ = g̃⋆ + λκ ∗ g̃⋆ −Rλκ ∗ (g̃⋆ + λκ ∗ g̃⋆)

= g̃⋆ + λκ ∗ g̃⋆ −Rλκ ∗ g̃⋆ − λκ ∗ g̃⋆ +Rλκ ∗ g̃⋆ = g̃⋆. (3.62)

We also get λ
ζ
κ̂ ∗ g⋆ = g⋆ − g̃⋆ = λκ ∗ g̃⋆ once again. Plugging into (3.55), we

obtain for 0 ≤ t ≤ T that

g⋆(t)− λ

ζ
(κ̂ ∗ g⋆)(t) = −µ

2

σ2
−
(
2ϱµ

σ
+
λ

ζ

)
(κ ∗ g̃⋆)(t) + 1− 2ϱ2

2

(
(κ ∗ g̃⋆)(t)

)2
,

so that g⋆ solves (3.24). Thus a solution to either one of the equations (3.24) or

(3.55) yields a solution to the other.

To see that the uniqueness is preserved, consider two solutions g̃⋆1 and g̃⋆2 to
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(3.55) on [0, T ], and suppose that the solution g⋆ to (3.24) on [0, T ] is unique. By

uniqueness, we then must have

g̃⋆1 + λκ ∗ g̃⋆1 = g⋆ = g̃⋆2 + λκ ∗ g̃⋆2,

since each g̃⋆i is a solution to (3.24), as argued above in (3.61). These two equalities

are Volterra equations of the second kind for g̃⋆1 and g̃⋆2 respectively, and hence

by repeating the steps in (3.62) we obtain

g̃⋆1 = g⋆ −Rλκ ∗ g⋆ = g̃⋆2.

Therefore, the uniqueness of the solution to (3.24) implies the uniqueness for

(3.55). The proof of the converse statement is analogous.

Finally, we want to show the equality (3.58). This can be done by using the

same techniques related to convolutions and resolvents, this time applied to the

forward variance processes ξ and ξ̃. For each t ∈ [0, T ], we de�ne the shifted curves

(∆tξ̃(s))0≤s≤T−t and (∆tξ(s))0≤s≤T−t by ∆tξ̃(s) = ξ̃t(t+s) and ∆tξt(s) = ξt(t+s).

Thus (3.56) can be rewritten as

∆tξ̃ = ∆tξ + λκ ∗∆tξ, 0 ≤ t ≤ T. (3.63)

Similarly to (3.62), we obtain by taking a convolution of (3.63) with Rλκ that

∆tξ̃ −Rλκ ∗ (∆tξ̃) = ∆tξ + λκ ∗ (∆tξ)−Rλκ ∗ (∆tξ + λκ ∗∆tξ)

= ∆tξ. (3.64)

We recall that Rλκ = λ
ζ
κ̂, so that (3.64) can be written explicitly as

ξt(u) = ξ̃t(u)−
λ

ζ

∫ u

t

κ̂(u− s)ξ̃t(s)ds, 0 ≤ t ≤ u ≤ T.

Plugging into the left-hand side of (3.58) yields for 0 ≤ t ≤ T that∫ T

t

g⋆(T − u)ξt(u)du =

∫ T

t

g⋆(T − u)

(
ξ̃t(u)−

λ

ζ

∫ u

t

κ̂(u− s)ξ̃t(s)ds

)
du. (3.65)

By Fubini's theorem and as s 7→ ξt(s) is a.s. continuous, hence bounded, we can
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rewrite the double integral as∫ T

t

g⋆(T − u)

(∫ u

t

κ̂(u− s)ξ̃t(s)ds

)
du =

∫ T

t

(∫ T

s

g⋆(T − u)κ̂(u− s)du

)
ξ̃t(s)ds

=

∫ T

t

(κ̂ ∗ g⋆)(T − s)ξ̃t(s)ds.

Plugging into (3.65) then yields∫ T

t

g⋆(T − u)ξt(u)du =

∫ T

t

(
g⋆(T − u)− λ

ζ
(κ̂ ∗ g⋆)(T − u)

)
ξ̃t(u)du

=

∫ T

t

g̃⋆(T − u)ξ̃t(u)du,

where g̃⋆ := g⋆− λ
ζ
κ̂ ∗ g⋆, which shows (3.58). By the same argument given in the

�rst part of the proof, we have that g̃⋆ is a continuous solution to (3.55). The

conclusion follows immediately by plugging (3.58) into (3.39) and (3.53).

Finally, we also mention Han/Wong [61], where the Markowitz problem is

solved for the rough Heston model as well. Once again, the opportunity process

shows up as the process M from [61, Equation (4.6)], up to the factor 2. The

fact that M
2
coincides with the opportunity process L follows from [61, Equation

(4.13)] with zero interest rate, since that is equivalent to the martingale distortion

formula (3.13) for L in the case 1− 2ϱ2 ̸= 0. We note, however, that the formula

[61, Equation (4.6)] for M is given in terms of yet another modi�ed forward

variance curve (ξP̄t (u))0≤t≤u≤T de�ned by ξP̄t (u) = EP̄ [Yu | Ft] under the measure

P̄ given in (3.12), as opposed to (ξt(u)), which we use here.



Chapter II

Mean�variance hedging in the

rough Heston model

1 Introduction

The derivation of the Black�Scholes formula is one of the most celebrated results

in mathematical �nance. It shows how to perfectly hedge a European call option

by trading in the underlying, in the case where the asset price process is given by

geometric Brownian motion. However, such a perfect replication of a claim by a

self-�nancing portfolio is only possible in a complete market. In order to hedge

in an incomplete market, one must drop either the requirement of a self-�nancing

portfolio or that of a perfect hedge. We use the mean�variance hedging (MVH)

criterion, where we look to approximate a claim H in L2 by a self-�nancing

portfolio. This natural approach has been widely studied in the literature (see

Schweizer [111] for a recent overview). Its main advantage is that it is tractable,

i.e., it often provides explicit solutions that can be implemented in practice.

This chapter is the continuation of Chapter I. Our goal is to �nd explicit

solutions to the MVH problem for the rough Heston model; the pure investment

problem was considered in the previous chapter. As explained in the introduction

from Chapter 0, we consider the MVH problem under the historical measure P ,

which is natural for risk management. The problem is more di�cult under P

than under a risk-neutral measure Q, since the solution under Q is given directly

by the Galtchouk�Kunita�Watanabe decomposition for H. Practical applications

of the MVH criterion have often been done under Q for this reason, but explicit

solutions have also been obtained for some speci�c semimartingale models under

P ; examples include Biagini et al. [20], �erný/Kallsen [27], Hubalek et al. [69],
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Kallsen et al. [73] and Kallsen/Vierthauer [75].

Our results in this chapter add the rough Heston model to this list, as we

obtain explicit solutions to the MVH problem for European vanilla call and put

options and other European-type payo�s including spot volatility and geometric

Asian options. We also calculate the hedging errors for European vanilla call

and put options. We then extend the analysis to a semistatic setup where in

addition to the underlying S, one may also trade at time 0 derivatives that must

then be held to maturity. Setups of this type have been studied recently in

Acciaio/Larsson [3], Acciaio et al. [4], Di Tella et al. [38, 39] and Nutz et al. [99]

because they allow for the introduction of derivative or exotic assets that are too

illiquid and/or costly to trade on a continuous basis. We show conceptually how

to solve the Markowitz portfolio selection and mean�variance hedging problems in

the semistatic setup, and also give explicit formulas when the traded derivatives

are European call options.

To obtain explicit solutions to the MVH problem for a claim H, we need

to calculate the mean value process V H , i.e., the successive conditional expect-

ations of H under the VOMM Q⋆ that was obtained in Chapter I. We do this

via the Fourier transform method of Raible [104], which has worked well for

solving mean�variance hedging problems under a�ne stochastic volatility models

(Hubalek et al. [69], Kallsen/Pauwels [74]). We recall that in the rough Heston

model, the volatility Y is an a�ne Volterra process (Abi Jaber et al. [1]) under P ,

and a time-inhomogeneous a�ne Volterra process (Ackermann et al. [5]) under

Q⋆ as we show in Chapter I. Thus the Fourier transform approach also works well

in this case, where the usual Riccati equations are replaced by Riccati�Volterra

equations. Although the latter do not admit closed-form solutions, they are de-

terministic equations on R that can be solved numerically (for instance, by using

the fractional Adams method of Diethelm et al. [40, 41]).

This chapter, based on joint work with Christoph Czichowsky, is structured

as follows. In Section 2.1, we recall the rough Heston model together with the

relevant results from Chapter I and the literature on MVH. In Section 2.2, we

introduce the class of payo�s that we consider and calculate the characteristic

function of the log-price under Q⋆. Our main results are given in Section 2.3,

where we solve the MVH problem and calculate the mean squared hedging error

for the European call and put options. In Section 3, we introduce the semistatic

setup and show how to solve the Markowitz and MVH problems. Finally, in

Section 4, we prove a result on the global existence of solutions to nonlinear

Volterra equations. This result is used to ensure that the formulas for the optimal



2 Mean�variance hedging 87

hedges in Section 2.3 hold on a nontrivial time interval. This is needed due to

the issue of moment explosion; see the introduction to Chapter I.

2 Mean�variance hedging

2.1 Preliminaries

In this chapter, we study the mean�variance hedging problem (de�ned below)

for the rough Heston model, as well as some applications to semistatic portfolio

optimisation. This concludes the study of the rough Heston model initiated in

Chapter I, and provides a natural application of the results obtained therein.

We start with the same setup as in Chapter I. We �x a time horizon T > 0

and a nonnegative weak solution (Ω,F , (Ft)0≤t≤T , P,W,B, S, Y ) to the Volterra

stochastic di�erential equations (I.2.8), which we recall here as
dSt
St

= µYtdt+ σ
√
YtdWt,

Yt = Y0 +

∫ t

0

κ(t− s)
(
λ(θ − Ys)ds+ ζ

√
YsdBs

) (2.1)

for t ∈ [0, T ], where (Wt)0≤t≤T and (Bt)0≤t≤T are two Brownian motions with

constant instantaneous correlation ϱ ∈ (−1, 1), the parameters S0 > 0, Y0 > 0,

µ ∈ R, σ > 0, λ > 0, θ > 0 and ζ > 0 are �xed constants, and κ : (0,∞) → R+

is a �xed kernel satisfying Assumption I.2.7. For simplicity, we also assume that

F0 is P -trivial. We also recall the forward variance curve (ξt(u))0≤t≤u≤T given by

ξt(u) = E[Yu | Ft]. By Lemma I.2.10, ξ has the dynamics

dξt(u) = κ̂(u− t)
√
YtdBt, 0 ≤ t ≤ u, (2.2)

where κ̂ := ζ
λ
Rλκ and Rλκ : (0,∞) → R+ is the resolvent of the second kind of

λκ in the sense of De�nition I.2.4. The kernel κ̂ is locally square-integrable and

nonnegative due to Assumption I.2.7 and Gripenberg et al. [59, Theorem 2.3.5],

as mentioned before Remark I.2.5.

We consider a �nancial market with time horizon T , a riskless asset with

constant value 1 as well as a risky asset with price process S. We assume that an

agent with initial wealth x ∈ R may trade frictionlessly in a self-�nancing way
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with a strategy ϑ ∈ ΘT (S), which generates the wealth process

Vt(x, ϑ) = x+ ϑ •St = x+

∫ t

0

ϑrdSr, 0 ≤ t ≤ T.

The set ΘT (S) of L2-admissible strategies is de�ned in �erný/Kallsen [25, De�n-

ition 2.2] and also given in the introduction of Section I.3.

Consider a contingent claim or random payo� at time T , which can be de-

scribed by an FT -measurable random variable H. A classical question in math-

ematical �nance is whether one can perfectly hedge or replicate H, i.e., express

H as the terminal wealth VT (x, ϑ) attained by some self-�nancing strategy ϑ with

initial wealth x. This is always possible in so-called complete markets, whereas in

incomplete markets, it is generally impossible to perfectly replicate a claim H in

this way. Given this limitation, several di�erent approaches have been introduced

in the literature in order to obtain a partial or approximate hedge for a claim H.

One natural approach is to consider the mean�variance hedging (MVH) problem,

which seeks to approximate H in an L2-sense by the terminal wealth attained by

some self-�nancing strategy. In other words, for a payo� H ∈ L2
P (FT ), one seeks

to minimise the mean squared hedging error

ε2(x,H) := inf
ϑ∈ΘT (S)

EP
[(
H − VT (x, ϑ)

)2]
= inf

ϑ∈ΘT (S)
EP

[(
H − x−

∫ T

0

ϑudSu

)2]
, (2.3)

so that the terminal wealth VT (x, ϑ) is (on average) close to H. This approach has

a long history, and has been widely studied in the literature in increasing levels

of generality (Du�e/Richardson [43], Schweizer [109, 110], Delbaen et al. [34],

Rheinländer/Schweizer [106], Gourieroux et al. [58], Bertsimas et al. [19], Kohl-

mann/Tang [86], �erný [23], �erný/Kallsen [25], Mania/Tevzadze [91], Jeanblanc

et al. [72], Czichowsky/Schweizer [32], �erný/Czichowsky [24], among others; see

also Schweizer [111] for a recent overview). Its main advantage is that it is of-

ten tractable and leads to explicit formulas in a number of models, such as the

exponential Lévy models studied in Hubalek et al. [69] and the classical Heston

model in �erný/Kallsen [27].

Our main goal in this chapter is to �nd explicit formulas for the optimal

hedging strategies associated with a large class of payo�s H ∈ L2
P (FT ) in the

rough Heston model. The MVH problem (2.3) is particularly simple to solve when
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P is a risk-neutral martingale measure for S, since it then reduces to calculating

the Galtchouk�Kunita�Watanabe decomposition for H in terms of S. However, it

does not necessarily make sense to measure the hedging error under a risk-neutral

measure. For that reason, we consider a semimartingale (or historical) measure

P , which explains the presence of a drift term in (2.1). In that case, the study of

the MVH problem becomes more involved, but we can still tackle this problem

by using some of the results from the literature cited above, namely [25], which

we use as a reference.

We now brie�y recall the introduction of Section I.3. The �rst step towards

tackling the mean�variance hedging problem (2.3) is to solve the pure investment

problem (I.3.1), which reads

EP [|1− VT (0, ϑ)|2] = EP

[∣∣∣∣1− ∫ T

0

ϑtdSt

∣∣∣∣2] −→ min
ϑ∈ΘT (S)

! (2.4)

and is also the mean�variance hedging problem (2.3) with initial wealth 0 and

constant payo� 1. In connection with (2.4), we also studied in Section I.3 the

so-called opportunity process (Lt)0≤t≤T , adjustment process (at)0≤t≤T , variance-

optimal martingale measure Q⋆ and optimal pure investment strategy (ϑ⋆t )0≤t≤T

(which is the solution to (2.4)). Namely, we showed that in the rough Heston

model (2.1), there is some T ⋆ > 0 such that for T ∈ (0, T ⋆], all those quantities are

well de�ned on (0, T ] with explicit formulas that we recall below in Theorem 2.3.

Thus if T ∈ (0, T ⋆], we have a variance-optimal martingale measure Q⋆ for S

in the sense of equation (I.3.3); in particular, there exists an equivalent local mar-

tingale measure for S on [0, T ] with square-integrable density, namely Q⋆ itself.

As discussed in the introduction to Section I.3, the existence of such a measure is

a necessary no-arbitrage-type condition; without it, the MVH problem (2.3) for

a given H ∈ L2
P (FT ) may admit multiple or no solutions. Due to the existence

of a VOMM on [0, T ] (at least for small T > 0), we can apply general results

on the mean�variance hedging problem, including those from �erný/Kallsen [25]

which we use as our main reference on this topic. It is known from [25, Corollary

2.9] that the existence of an ELMM for S on [0, T ] with square-integrable density

ensures the closedness of the space of terminal gains

GT (S) := {ϑ •ST : ϑ ∈ ΘT (S)}

in L2
P (FT ). Since the MVH problem (2.3) can be seen as an L2-projection onto

GT (S), the closedness already ensures the existence of a unique projection and
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hence a unique solution ϑ ∈ ΘT (S) to (2.3) for every initial wealth/payo� pair

(x,H) ∈ R × L2
P (FT ). As mentioned above, the existence of an ELMM for S

with square-integrable density can be seen as a no-arbitrage condition for S in

an L2-sense. One can then use an argument based on absence of arbitrage to

show that the terminal wealth VT (x, ϑ) = x + ϑ •ST attained by a self-�nancing

portfolio uniquely determines the wealth process (Vt(x, ϑ))0≤t≤T ; see [25, Lemma

2.11]. Recall from Section I.3 that we identify strategies in ΘT (S) if they are S-

equivalent, i.e., ϑ1 =S ϑ
2 if (ϑ1 •St)0≤t≤T and (ϑ2 •St)0≤t≤T are indistinguishable.

Hence it already follows from general results that there exists a unique solution

ϑH(x) to (2.3) for every x ∈ R and H ∈ L2
P (FT ).

It is also well known in the literature that the optimal mean�variance hedging

strategy can be found as the solution to the feedback equation (2.9) given in

[25, Lemma 4.9] and repeated below in Proposition 2.1. However, it can be

challenging in practice to obtain explicit formulas for the processes that enter

into that feedback equation in particular models, and thus to calculate the mean�

variance hedging strategy. We seek to derive such explicit formulas for the rough

Heston model and a large class of payo�s H.

Before moving on, we give here some general results from [25] that we later

apply to the rough Heston model. Note that we can generalise the mean�variance

hedging problem (2.3) by starting at the initial time t ∈ [0, T ] with (random)

wealth xt ∈ L2
P (Ft), which leads to the problem

ε2t (xt, H) = ess infϑ∈Θt,T (S)EP

[(
H−xt−

∫ T

t

ϑudSu

)2 ∣∣∣∣ Ft

]
, 0 ≤ t ≤ T, (2.5)

where Θt,T (S) := {ϑ ∈ ΘT (S) : ϑ1J0,tK = 0}. We denote the corresponding

optimal strategy by (ϑHu (xt, t))u∈[t,T ], or more simply ϑH(x) if t = 0 and x ∈ R as

considered previously in (2.3).

Given a claim H ∈ L2
P (FT ), we de�ne the mean value process (V H

t )0≤t≤T by

V H
t = EQ⋆ [H | Ft], 0 ≤ t ≤ T, (2.6)

where Q⋆ is the variance-optimal martingale measure. We also de�ne the pure

hedge coe�cient (ΞHt )0≤t≤T as the Radon�Nikodým derivative

ΞHt =
d[V H , S]t
d[S]t

, 0 ≤ t ≤ T. (2.7)

Since S and V H are local martingales under Q⋆ with S continuous, the pure hedge



2 Mean�variance hedging 91

coe�cient ΞH can be seen as the integrand in the Galtchouk�Kunita�Watanabe

decomposition

V H = V H
0 + ΞH •S +M⊥ (2.8)

of V H under Q⋆, where M⊥ is some local Q⋆-martingale that is strongly ortho-

gonal to S under Q⋆. Indeed, given such a decomposition, we must have

d[V H , S]t = ΞHt d[S]t + d[M⊥, S]t = ΞHt d[S]t, 0 ≤ t ≤ T,

where [M⊥, S] = ⟨M⊥, S⟩Q⋆
= 0 by the orthogonality and the continuity of S.

We note that the mean value process V H corresponds to that of [25, Lemma

4.1], since the process (Nt)0≤t≤T de�ned in [25, De�nition 3.12] is the stochastic

logarithm of the density process ZQ⋆
of Q⋆ so that E(N) = ZQ⋆

. Likewise, the

pure hedge coe�cient corresponds to that of [25, De�nition 4.6], since the ratio

of modi�ed characteristics (see [25, Equation (1.2)]) simpli�es to (2.7) in the case

where S is continuous.

The mean value process and pure hedge coe�cient play a key role in the

mean�variance hedging problem, since we can express the optimal mean�variance

hedging strategy as the solution to a feedback equation involving V H and ΞH ,

together with the adjustment process a. This is recalled in the following result,

which is [25, Theorem 4.10].

Proposition 2.1. Let H ∈ L2
P (FT ), t ∈ [0, T ] and xt ∈ L2

P (Ft). Suppose that

there exists an equivalent local martingale measure with square-integrable dens-

ity for (St)0≤t≤T . Then there exists a unique mean�variance hedging strategy

ϑH(xt, t) ∈ Θt,T (S) starting at time t with initial wealth xt, and ϑH(xt, t) satis�es

the feedback equation

ϑHu (xt, t) = ΞHu + au

(
V H
u − xt −

∫ u

t

ϑHr (xt, t)dSr

)
, t ≤ u ≤ T, (2.9)

where a is the adjustment process and V H , ΞH are the mean value process and

pure hedge coe�cient for H, respectively.

Intuitively, this equation can be interpreted as follows. First of all, we note

that by [25, Theorem 4.10.2] (and as is clear from the following Proposition 2.2),

the mean value process represents the optimal initial wealth in the mean�variance

hedging problem. In other words, if one modi�es (2.5) so that the initial wealth

xt is also part of the control, then the minimal value is achieved for xt = V H
t .

Hence the second term in (2.9) can be seen as a mean-reversion strategy where
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the agent seeks to reach V H
u from her current wealth

Vu
(
xt, ϑ

H(xt, t)
)
= xt +

∫ u

t

ϑHr (xt, t)dSr, t ≤ u ≤ T.

In other words, if the current wealth Vu(xt, ϑH(xt, t)) is not at the optimal level

V H
u , the agent seeks to compensate by trading with the adjustment process a

(which is closely related to the pure investment strategy ϑ⋆; see [25, Lemma 3.7])

in proportion to the di�erence V H
u − Vu(xt, ϑ

H(xt, t)). This helps the agent to

�catch up� to V H if V H
u − Vu(xt, ϑ

H(xt, t)) is positive, or �catch down� otherwise.

On the other hand, the pure hedge term ΞHu in (2.9) tries to match the forwards

dynamics (2.8) of V H by trading only in S. In the case where P is a martingale

measure for S, we have a = 0 so that the pure hedge coe�cient is the mean�

variance hedging strategy for H starting from any t ∈ [0, T ] and xt ∈ L2
P (Ft).

Although (2.9) gives the optimal strategy only in feedback form, we note that

one can also obtain ϑH(xt, t) in closed form. Indeed, by integrating (2.9) against

S, we obtain

ϑH(xt, t) •S =

(
1Kt,T K

(
ΞH + a

(
V H − xt − ϑH(xt, t) •S

)))
•S

on [t, T ], which is a linear stochastic di�erential equation for ϑH(xt, t) • S with

driver −(1Kt,T Ka) • S. By standard arguments (see e.g. Protter [102, Theorem

V.52]), we obtain the explicit solution

ϑH(xt, t) •S = tΓ

(
1Kt,T K(Ξ

H + (V H − xt)a)
tΓ

• (S + a • [S])

)
(2.10)

on [t, T ], where we de�ne (tΓu)t≤u≤T by tΓu := E(−(1Kt,T Ka) • S)u. The formula

(2.10) is also given in [25, Corollary 4.11]. After plugging into the right-hand side

of (2.9), we obtain a closed formula for ϑH(xt, t). Alternatively, by integrating

(2.9) against S and adding xt to both sides, we get the equation

V
(
xt, ϑ

H(xt, t)
)
= xt +

(
1Kt,T K

(
ΞH + a

(
V H − V

(
xt, ϑ

H(xt, t)
))))

•S,

which by [102, Theorem V.52] has the explicit solution

V
(
x, ϑH(xt, t)

)
= tΓ

(
xt +

1Kt,T K(Ξ
H + V Ha)
tΓ

• (S + a • [S])

)
(2.11)
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on [t, T ]. Once again, this can be plugged into (2.9) to obtain another equivalent

formula for ϑH(xt, t). One can directly see the equivalence of (2.10) and (2.11)

by adding xt to (2.10) and checking that

1− tΓ

(
1Kt,T Ka
tΓ

• (S + a • [S])

)
= tΓ

holds on [t, T ], which follows from the fact that (tΓ)−1 = E((1Kt,T Ka) • (S+a • [S]))

by the de�nition of tΓ.

In [25, Theorem 4.10] the formula (2.12) below is given for the optimal mean

squared hedging error ε2t (x,H) attained by ϑH(x, t). The error can be expressed

in terms of V H , ΞH as well as the opportunity process L.

Proposition 2.2. Let H ∈ L2
P (FT ). Suppose that there exists an equivalent

local martingale measure with square-integrable density for (St)0≤t≤T . Then the

optimal mean squared hedging error for H starting at time t and initial wealth

xt ∈ L2
P (Ft) is given by

ε2t (x,H) = Lt(xt − V H
t )2 + EP

[ ∫ T

t

Lud[V
H − ΞH •S]u

∣∣∣∣ Ft

]
. (2.12)

Finally, we restate here the main results from Chapter I that will be useful

in our subsequent analysis. The following is a combination of Theorem I.3.8,

Corollary I.3.9 and Remark I.3.10; we refer to Section I.3 for the de�nitions and

discussion of L, a, ϑ⋆ and Q⋆.

Theorem 2.3. Let (S, Y ) satisfy the rough Heston model (2.1), where κ satis�es

Assumption I.2.7. Then there exists some T ⋆ > 0 such that for any T ∈ (0, T ⋆],

the following statements hold:

1) The opportunity process (Lt)0≤t≤T for S with time horizon T is given by

Lt = exp

(∫ T

t

g⋆(T − u)ξt(u)du

)
, 0 ≤ t ≤ T, (2.13)

where g⋆ : [0, T ] → R is the unique continuous solution to

g⋆(t) = −µ
2

σ2
− 2ϱµ

σ
(κ̂∗g⋆)(t)+ 1

2
(1−2ϱ2)

(
(κ̂∗g⋆)(t)

)2
, 0 ≤ t ≤ T. (2.14)
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2) The adjustment process a = (at)0≤t≤T is given by

at =
µ+ ϱσh⋆(T − t)

σ2St
, (2.15)

where h⋆ := κ̂ ∗ g⋆.

3) The wealth process (V ⋆
t )0≤t≤T corresponding to the optimal strategy (ϑ⋆t )0≤t≤T

for the pure investment problem is given by

V ⋆
t = (ϑ⋆ •S)t = 1− E(−a • S)t

= 1− E
(∫ (

− µ

σ
+ ϱh⋆(T − s)

)(µYs
σ
ds+

√
YsdWs

))
t

.

4) The optimal strategy for the pure investment problem is given by

ϑ⋆t = (1− V ⋆
t )at = at E(−a • S)t.

5) The density process (ZQ⋆

t )0≤t≤T for the variance-optimal martingale measure

Q⋆ is given by

ZQ⋆

t = E
(∫ √

Ys

(√
1− ϱ2 h⋆(T − s)dW⊥

s − µ

σ
dWs

))
t

. (2.16)

6) The dynamics of (S, Y ) under Q⋆ are given by

dSt = σSt
√
YtdW

⋆
t , 0 ≤ t ≤ T,

Yt = Y0 +

∫ t

0

κ(t− s)

((
θλ−

(
λ+

ζϱµ

σ
− ζ(1− ϱ2)h⋆(T − s)

)
Ys

)
ds

+ ζ
√
YsdB

⋆
s

)
, 0 ≤ t ≤ T,

where (W ⋆
t )0≤t≤T and (B⋆

t )0≤t≤T are Q⋆-Brownian motions de�ned by

W ⋆
t = Wt +

∫ t

0

µ

σ

√
Ysds, 0 ≤ t ≤ T,

B⋆
t = Bt +

∫ t

0

ϱµ

σ

√
Ysds−

∫ t

0

(1− ϱ2)(κ̂ ∗ g⋆)(T − s)
√
Ysds, 0 ≤ t ≤ T.

The following two results are Theorem I.2.17 and Proposition I.2.20, which

provide formulas for conditional expectations related to the rough Heston model.
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Theorem 2.4. Fix T̄ > 0 and let X̃ = (X̃
(1)
t , . . . , X̃

(n)
t )0≤t≤T̄ be a Cn-valued

semimartingale that satis�es the decomposition

X̃
(j)
t = X̃

(j)
0 +

∫ t

0

(
µ(j)(s)Ysds+ σ(j)(s)

√
YsdWs + σ̃(j)(s)

√
YsdW

⊥
s

)
(2.17)

for all t ∈ [0, T̄ ] and j = 1, . . . , n, some constants X̃(1)
0 , . . . , X̃

(n)
0 ∈ C and determ-

inistic functions µ ∈ L1([0, T̄ ];Cn) and σ, σ̃ ∈ L2([0, T̄ ];Cn). Fix C > 0 and let

B̄C(0) ⊆ Cn be the closed ball of radius C. Then the following statements hold:

1)There exists some positive time T̃ = T̃ (µ, σ, σ̃, C) ∈ (0, T̄ ] such that for

every T ∈ (0, T̃ ] and z ∈ B̄C(0), there is a unique solution gz,T ∈ L1([0, T ];C) to
the equation

gz,T (t) = z⊤µ(T − t) + f
(
(κ̂ ∗ gz,T )(t); z⊤σ(T − t), z⊤σ̃(T − t)

)
(2.18)

for 0 ≤ t ≤ T, where the function f : C× C× C → C is de�ned by

f(x;h1, h2) =
h21 + h22 + x2

2
+ (ϱh1 +

√
1− ϱ2h2)x. (2.19)

Moreover, it holds that E[ | exp(z⊤X̃T )| ] <∞, and we have for 0 ≤ t ≤ T that

E[exp(z⊤X̃T ) | Ft] = exp

(
z⊤X̃t +

∫ T

t

gz,T (T − u)ξt(u)du

)
. (2.20)

2) Conversely, �x z ∈ C and T ∈ (0, T̄ ]. If E[ | exp(z⊤X̃T )| ] <∞ and if there

exists a solution gz,T ∈ L1([0, T ];C) to (2.18), then (2.20) holds for 0 ≤ t ≤ T .

Proposition 2.5. Let T̄ > 0, Φ be an indexing set, (µφ)φ∈Φ a family of functions

in L1([0, T̄ ];C) and (σφ)φ∈Φ, (σ̃φ)φ∈Φ two families of functions in L2([0, T̄ ];C)
such that (µφ), (|σφ|2) and (|σ̃φ|2) are uniformly integrable. For each φ ∈ Φ, let

x̃φ ∈ C be a constant and de�ne (X̃φ
t )0≤t≤T̄ by

X̃φ
t = x̃φ +

∫ t

0

(
µφ(s)Ysds+ σφ(s)

√
YsdWs + σ̃φ(s)

√
YsdW

⊥
s

)
, 0 ≤ t ≤ T̄ .

(2.21)

Then there exists some T̃ ∈ (0, T̄ ] such that for all φ1, φ2 ∈ Φ and T ∈ (0, T̃ ], the

following statements hold:

1) There is a unique solution gφ1,T ∈ L1([0, T ];C) to

gφ1,T (t) = µφ1(T − t) + f
(
(κ̂ ∗ gφ1,T )(t);σφ1(T − t), σ̃φ1(T − t)

)
(2.22)
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for a.a. t ∈ [0, T ], where the function f : C× C× C → C is de�ned by

f(x;h, h̃) =
h2 + h̃2 + x2

2
+ (ϱh+

√
1− ϱ2h̃2)x. (2.23)

2) There is a unique solution g̃φ1,φ2,T ∈ L1([0, T ];C) to the equation

g̃φ1,φ2,T (t) = µφ2(T − t) + f̃
(
(κ̂ ∗ g̃φ1,φ2,T )(t); (κ̂ ∗ gφ1,T )(t), σφ1(T − t),

σ̃φ1(T − t), σφ2(T − t), σ̃φ2(T − t)
)

(2.24)

for a.a. t ∈ [0, T ], where f̃ : C6 → C is de�ned by

f̃(x; y, h1, h̃1, h2, h̃2) = (h1 + ϱy)(h2 + ϱx) + (h̃1 +
√
1− ϱ2y)(h̃2 +

√
1− ϱ2x).

(2.25)

3) For 0 ≤ t ≤ T , we have

E[exp(X̃φ1

T )X̃φ2

T | Ft] = exp

(
X̃φ1
t +

∫ T

t

gφ1,T (T − u)ξt(u)du

)
×
(
X̃φ2
t +

∫ T

t

g̃φ1,φ2,T (T − u)ξt(u)du

)
. (2.26)

Finally, we recall Lemma I.2.13 and Corollary I.2.14, which give the dynamics

of linear functionals of the forward variance curve.

Lemma 2.6. 1) Let ν be a �nite complex measure on ([0, T ],B([0, T ])). Then

there exists a continuous local martingale (ξt(ν))0≤t≤T such that

ξt(ν) =

∫
[0,t]

Yuν(du) +

∫
(t,T ]

ξt(u)ν(du) for each 0 ≤ t ≤ T, (2.27)

and it admits the decomposition

ξt(ν) = ξ0(ν) +

∫ t

0

(∫
[s,T ]

κ̂(u− s)ν(du)

)√
YsdBs, 0 ≤ t ≤ T. (2.28)

2) For any function g ∈ L1([0, T ];C), there exists a continuous semimartingale

(Y g
t )0≤t≤T such that

Y g
t =

∫ T

t

g(T − u)ξt(u)du for each 0 ≤ t ≤ T, (2.29)
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so that in particular Y g
T = 0, and Y g has the decomposition

Y g
t = Y g

0 + At +Mt, 0 ≤ t ≤ T, (2.30)

where the continuous �nite-variation process (At)0≤t≤T and the continuous local

martingale (Mt)0≤t≤T are respectively given by

At = −
∫ t

0

g(T − s)Ysds, Mt =

∫ t

0

(κ̂ ∗ g)(T − s)
√
YsdBs, 0 ≤ t ≤ T. (2.31)

2.2 Setup and moment-generating function under Q⋆

Fix a time horizon T ∈ (0, T ⋆) and consider a payo� H ∈ L2
P (FT ). In view of

the discussion above, our main task is to �nd the mean value process V H , from

which we also obtain the pure hedge coe�cient ΞH and then the optimal MVH

strategy for H via Proposition 2.1. Since the mean value process is given by the

conditional expectation V H
t = EQ⋆ [H | Ft], we want to �nd an explicit formula

for V H by applying Theorem 2.4, which gives a generalised moment-generating

function for the rough Heston model (more precisely, for the log-price X = logS

and forward variance curve ξ). As we have seen in some of the proofs in Section

I.3, Theorem 2.4 can also deal with some changes of measure, and that includes

Q⋆. As we show below in Corollary 2.16, it is relatively straightforward to �nd

the mean value process for payo�s H of the power type

H = SrT = exp(zXT )

for some z ≥ 0 such that E[H2] < ∞, and indeed, that calculation can be (at

least formally) extended to complex-valued payo�s where z ∈ C. By taking linear
combinations of such payo�s, this leads us to consider a class of European payo�s

H = f(ST ), where f can be represented as a Mellin transform of a measure on

C. An equivalent formulation is H = g(XT ), where g can be represented as a

Laplace transform.

Assumption 2.7. We assume that H = fH(ST ) ∈ L2
P (FT ) for some measurable

function fH : R → R that can be expressed as the Mellin transform

fH(s) =

∫
C
szπH(dz) for s ∈ R (2.32)
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of a complex-valued bounded variation measure1 πH on (C,B(C)). Moreover, we

suppose that ∫
C
EP [S

2Re(z)
T ]|πH |(dz) <∞. (2.33)

Sometimes we require additional integrability: We say that H satis�es Assump-

tion 2.7+ if there exists some δ > 0 such that∫
C
EP [S

(2+δ)Re(z)
T ]|πH |(dz) <∞. (2.34)

Remark 2.8. We note that (2.32) and (2.33) already imply that H is square-

integrable; indeed, since πH has bounded variation, we get

EP [H
2] ≤ E

[(∫
C
S
Re(z)
T |πH |(dz)

)2]
≤ E

[(∫
C
S
2Re(z)
T |πH |(dz)

)
|πH |(C)

]
≤ |πH |(C)

∫
C
EP [S

2Re(z)
T ]|πH |(dz) <∞

by the Cauchy�Schwarz inequality and Fubini's theorem.

Assumption 2.7 gives the basic setup considered in Hubalek et al. [69], which

we use as a reference regarding the Mellin transform approach and where the

mean�variance hedging problem is studied for an exponential Lévy price process.

As is standard with Fourier pricing and hedging techniques, it is useful to con-

sider a complex-valued integral even though H and fH are real-valued. Under

Assumption 2.7, we can write

H =

∫
C
SzTπ

H(dz),

and we want to �nd the conditional expectation of H under Q⋆ by taking the

conditional expectation inside the integral. As we shall see later in Proposition

2.15 and Corollary 2.16, we are able to use the structure of the rough Heston

model to obtain explicit formulas for the conditional expectation of terms of the

form SzT = exp(zXT ). This is due to the fact that although (X, Y ) is no longer an

a�ne Volterra process in the sense of Abi Jaber et al. [1] under Q⋆, it retains the

structure of a so-called time-inhomogeneous a�ne Volterra process in the sense

of Ackermann et al. [5] by the dynamics given in part 6) of Theorem 2.3. This
1We say that πH : B(C) → C is a complex-valued measure if πH = π1 + iπ2 for some (real)

signed measures π1 and π2, and it has bounded variation if |π1|(C) + |π2|(C) < ∞.
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allows us to obtain formulas that are given in terms of the solutions to certain

time-inhomogeneous Riccati�Volterra equations such as (2.60) below.

Our main examples of interest are the vanilla European call and put options

on the underlying. These can be represented in the form (2.32) since by [69,

Lemma 4.1], we have the formulas (2.35) and (2.36) below.

Example 2.9 (European vanilla call and put options). Consider the payo�s

CK,T := (ST −K)+ and PK,T := (K − ST )
+ with strike K > 0 and maturity T .

We have the Mellin transform representations

(s−K)+ =
1

2πi

∫ a1+i∞

a1−i∞
sz

K1−z

z(z − 1)
dz =

∫
C
szπK,a1(dz), (2.35)

(K − s)+ =
1

2πi

∫ a2+i∞

a2−i∞
sz

K1−z

z(z − 1)
dz =

∫
C
szπK,a2(dz) (2.36)

for all s > 0 and any choice of a1 ∈ (1,∞) and a2 ∈ (−∞, 0), where for each

a ∈ R \ {0, 1}, we de�ne the complex-valued measure πK,a on (C,B(C)) by

πK,a(dz) =
K1−z

2πz(z − 1)
λa(dz), (2.37)

and λa is the Lebesgue measure on the vertical line (a−i∞, a+i∞). We note that

the dz-integrals in the middle expressions in (2.35) and (2.36) should be inter-

preted as complex line integrals, whereas πK,a(dz) refers to Lebesgue integration.

Curiously, the representations of the put and call payo�s have identical formulas

but di�erent domains of integration. By the above, these payo�s have the form

(2.32), and may satisfy Assumptions 2.7 or 2.7+ depending on the time hori-

zon T and the choice of a1, a2 in the representations (2.35) and (2.36); su�cient

conditions for Assumption 2.7+ are given below in Corollary 2.19.

The setup from Assumption 2.7 is quite �exible and allows us to consider many

types of payo�s that depend only on the terminal value ST ; several examples

such as binary options are given in [69, Section 4]. As it turns out, we can use

a similar approach to tackle an even wider class of European options, which we

now introduce, that may also depend on YT and even the paths of S and Y . Once

again, the key is to represent H in some sense as a linear combination of simpler

payo�s to which we can apply Theorem 2.4. As we shall see, this allows us to

derive an explicit formula for the mean value process V H .

Let M([0, T ]) be the set of complex-valued bounded variation measures on

([0, T ],B([0, T ])), equipped with the topology of weak convergence. For measures
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ν1, ν2 ∈ M([0, T ]), de�ne the processes (Xt(ν1))t∈[0,T ] and (ξt(ν2))t∈[0,T ] by

Xt(ν1) =

∫
[0,T ]

Xs∧tν1(ds) =

∫
[0,t)

Xsν1(ds) +Xtν1([t, T ]), (2.38)

ξt(ν2) =

∫
[0,T ]

ξt(s)ν2(ds) =

∫
[0,t]

Ysν1(ds) +

∫
(t,T ]

ξt(u)ν2(du). (2.39)

We consider simple payo�s of the form exp(XT (ν1) + ξT (ν2)) for some measures

ν1, ν2 ∈ M([0, T ]). As an example and justi�cation for this choice of notation,

note that we have Xt(δT ) = Xt and ξt(δT ) = ξt(T ) for 0 ≤ t ≤ T , where δT is the

Dirac mass at {T}. Hence we can write

SzT = exp(zXT ) = exp
(
zXT (δT )

)
= exp

(
XT (zδT )

)
, (2.40)

so that the power payo�s SzT belong to this class of simple payo�s. We now

consider claims H that can be represented in terms of simple payo�s. Concretely,

we suppose that H can be given as an integral involving a family of simple payo�s

exp(X̃T (z)) parametrised by z := (z1, . . . , zk) ∈ Ck, where we set

X̃t(z) := Xt(ν
z
1) + ξt(ν

z
2) (2.41)

and z 7→ (νz1 , ν
z
2) is a continuous map from Ck to M([0, T ])2.

Assumption 2.10. We assume that H = fH(ST ) ∈ L2
P (FT ) is real-valued and

has the form

H =

∫
Ck

exp
(
X̃T (z)

)
πH(dz) (2.42)

for some complex-valued bounded variation measure πH on (Ck,B(Ck)) and X̃

given by (2.41) for some continuous map z 7→ (νz1 , ν
z
2) from Ck to M([0, T ])2.

Moreover, we suppose that∫
Ck

EP

[
exp

(
2Re

(
X̃T (z)

))]
|πH |(dz) <∞. (2.43)

We say that H satis�es Assumption 2.10+ if there exists some δ > 0 such that∫
Ck

EP

[
exp

(
(2 + δ)Re

(
X̃T (z)

))]
|πH |(dz) <∞. (2.44)

Remark 2.11. In our examples, we often consider k = 1 so that z ∈ C; how-
ever, a higher-dimensional parameter is needed in order to represent more exotic

options. Indeed, it may be possible to generalise this setup even further by elimin-
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ating the parameter z entirely, and instead considering a measure πH directly on

the space M([0, T ])2 together with an appropriate notion of in�nite-dimensional

integration.

By setting (νz1 , ν
z
2) := (zδT , 0) for z ∈ C (which is continuous in z with respect

to the topology of weak convergence), it is clear by (2.40) that Assumption 2.10

is weaker than Assumption 2.7, i.e., it allows for a larger class of payo�s. The

integrability condition (2.43) is also the natural generalisation of (2.33). We now

give some examples of exotic payo�s that can be represented in the form (2.42).

Example 2.12 (European call and put options on spot volatility). Consider the

payo�s CY
K,T := (YT −K)+ and P Y

K,T := (K − YT )
+ with maturity T and strike

K > 0. Setting (νz1 , ν
z
2) := (0, zδT ) for z ∈ C so that X̃T (z) = zYT by (2.39), we

have for any a1 > 0 and a2 < 0 that

CY
K,T = (YT −K)+ =

∫
C
exp

(
X̃T (z)

)
πYK,a1(dz), (2.45)

P Y
K,T = (K − YT )

+ =

∫
C
exp

(
X̃T (z)

)
πYK,a2(dz), (2.46)

where πYK,a is the complex-valued measure on (C,B(C)) given by

πYK,a(dz) :=
e−Kz

2πz2
λa(dz), (2.47)

and λa is the Lebesgue measure on the vertical line (a− i∞, a+ i∞).

Note that these formulas are not analogous to those of Example 2.9 because

we require a representation of the function y 7→ (y−K)+ as a Laplace transform

with respect to y, rather than Mellin (which is a Laplace transform in terms of

log y). Depending on the particular choice of T , a1 and a2, the payo�s CY
K,T and

P Y
K,T may or may not satisfy Assumptions 2.10 or 2.10+. Su�cient conditions for

Assumption 2.10+ to be satis�ed are given below in Corollary 2.20.

Proof of (2.45) and (2.46). Let g(y) = (y−K)+ for y ∈ R. Integrating by parts,

we obtain the two-sided Laplace transform

g̃(z) :=

∫ ∞

−∞
g(y)e−zydy =

∫ ∞

K

(y −K)e−zydy =
e−Kz

z2

for Re(z) > 0. Hence the Bromwich inversion integral (see Hubalek et al. [69,
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Theorem A.1]) yields the representation

g(y) = (y −K)+ =
1

2πi

∫ a1+i∞

a1−i∞
ezy

e−Kz

z2
dz, y ∈ R,

for any choice of a1 ∈ (0,∞). In an analogous way, we obtain

(K − y)+ =
1

2πi

∫ a2+i∞

a2−i∞
ezy

e−Kz

z2
dz, y ∈ R,

for any a2 ∈ (−∞, 0). Plugging in y = YT yields (2.45) and (2.46), using the

fact that X̃T (z) = zYT and dz = iλa(dz) when integrating over the vertical line

(a− i∞, a+ i∞).

Example 2.13 (Geometric Asian call and put options). Consider the payo�s

CA
K,T := (SAT −K)+ and PA

K,T := (K − SAT )
+ with maturity T and strike K > 0,

where

SAT := exp

(
1

T

∫ T

0

Xtdt

)
= exp

(
1

T

∫ T

0

logStdt

)
(2.48)

is the geometric mean of the price process (St)t∈[0,T ]. Setting νz1(dt) =
z
T
dt and

νz2 = 0 for z ∈ C so that X̃T (z) =
z
T

∫ T
0
Xtdt by (2.38), we have

CA
K,T = (SAT −K)+ =

∫
C
exp

(
X̃T (z)

)
dπK,a1(dz), (2.49)

PA
K,T = (K − SAT )

+ =

∫
C
exp

(
X̃T (z)

)
dπK,a2(dz) (2.50)

for any a1 > 1 and a2 < 0, where πK,a de�ned by (2.37) is the same as for the

vanilla European call and put options. The payo�s CA
K,T and PA

K,T may or may

not satisfy Assumptions 2.10 or 2.10+, depending on the particular choice of T ,

a1 and a2. Su�cient conditions for Assumption 2.10+ to be satis�ed are given

below in Corollary 2.21.

Proof of (2.49) and (2.50). Plugging in s = SAT into the Mellin transform repres-

entations (2.35) and (2.36) and using the fact that exp(X̃T (z)) = (SAT )
z directly

yields (2.49) and (2.50).

As a more general example, we can also consider claims that depend on the

values of S and Y at discrete time points and can be represented in the form of

a Laplace transform.
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Example 2.14. Consider the claim H = f(Xt1 , Yt1 , . . . , Xtk , Ytk) ∈ L2
P (FT ), for

some sequence of discrete times 0 ≤ t1 < t2 < · · · < tk ≤ T and where the

function f : R2k → R can be represented as the Laplace transform

f(x1, y1, . . . , xk, yk) =

∫
Ck

e
∑k

j=1 zjxj+
∑k

j=1 z̃jyjπH(dz)

of some complex-valued bounded variation measure πH on (C2k,B(C2k)). We

denote z = (z1, z̃1, . . . , zk, z̃k) and set

νz1 =
k∑
j=1

zjδtj and νz2 =
k∑
j=1

z̃jδtj , (2.51)

so that X̃T (z) =
∑k

j=1 zjXtj +
∑k

j=1 z̃jYtj . Then we have

H = f(Xt1 , Yt1 , . . . , Xtk , Ytk) =

∫
Ck

exp
(
X̃T (z)

)
πH(dz).

Depending on t1, . . . , tk and the choice of measure πH , the payo� H may or

may not satisfy Assumptions 2.10 or 2.10+. For example, both assumptions are

satis�ed if πH is �nite and supported on (iR)2k.

As previously discussed, by considering claims H that satisfy Assumption

2.10, we are able to �nd explicit formulas for the mean value process V H . This

approach relies on the following result, where we use Theorem 2.4 to �nd the

conditional expectations of simple payo�s in terms of the solution to a time-

dependent Riccati�Volterra equation. For the following, we recall g⋆, h⋆ := κ̂∗g⋆,
T ⋆ and Q⋆ from Theorem 2.3.

Proposition 2.15. Let ν1 and ν2 be complex-valued bounded variation measures

on ([0, T ⋆],B([0, T ⋆])). Then there exists some T ⋆ν1,ν2 ∈ (0, T ⋆] such that for all

T ∈ [0, T ⋆ν1,ν2 ], there is a unique solution g⋆ν1,ν2,T ∈ L1([0, T ];C) to the equation

g⋆ν1,ν2,T (t) = f ⋆
(
(κ̂∗g⋆ν1,ν2,T )(t), h

⋆(t), ν1([T − t, T ]),
∫
[T−t,T ]

κ̂
(
u− (T − t)

)
ν2(du)

)
(2.52)

for 0 ≤ t ≤ T , where the quadratic function f ⋆ : C4 → C is de�ned by

f ⋆(x, h, y1, y2) =
σ2(y21 − y1)

2
+

(
ϱσy1 −

µϱ

σ
+ (1− ϱ2)h

)
(x+ y2)

+
(x+ y2)

2

2
. (2.53)
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Moreover, for each T ∈ (0, T ⋆ν1,ν2), it holds that e
XT (ν1)+ξT (ν2) is integrable and

EQ⋆ [eXT (ν1)+ξT (ν2) | Ft] = exp

(
Xt(ν1) + ξt(ν2) +

∫ T

t

g⋆ν1,ν2,T (T − u)ξt(u)du

)
(2.54)

for all t ∈ [0, T ].

Proof. By the de�nition (2.38), we can express Xt(ν1) as

Xt(ν1) =

∫
[0,T ]

Xs∧tν1(ds)

=

∫
[0,T ]

(
X0 +

∫ t

0

1[0,s](r)dXr

)
ν1(ds)

= ν1([0, T ])X0 +

∫
[0,T ]

(∫ t

0

1[0,s](r)dXr

)
ν1(ds), 0 ≤ t ≤ T. (2.55)

Recall the dynamics dXr = d(logSr) = (µ − σ2

2
)Yrdr + σ

√
YrdBr. Note that we

have ∫
[0,T ]

(∫ T

0

σ2Yrdr

)
|ν1|(ds) ≤ |ν1|([0, T ])Tσ2 sup

r∈[0,T ]
|Yr| <∞

and ∫
[0,T ]

(∫ T

0

∣∣∣∣µ− σ2

2

∣∣∣∣Yrdr)|ν1|(ds) ≤ |ν1|([0, T ])T
∣∣∣∣µ− σ2

2

∣∣∣∣ sup
r∈[0,T ]

|Yr| <∞

P -a.s., since Y is continuous (hence a.s. bounded) and ν1 has bounded variation.

Hence it follows by the stochastic Fubini theorem (see Veraar [118, Theorem

2.2]) that we can swap the integrals in (2.55); to be more precise, this follows by

applying [118, Theorem 2.2] separately to each of the positive and negative parts

of the real and imaginary parts of ν1. Hence we get

Xt(ν1) = ν1([0, T ])X0 +

∫ t

0

(∫
[0,T ]

1[0,s](r)ν1(ds)

)
dXr

= ν1([0, T ])X0 +

∫ t

0

(∫
[0,T ]

1[r,T ](s)ν1(ds)

)
dXr

= ν1([0, T ])X0 +

∫ t

0

ν1([r, T ])dXr, 0 ≤ t ≤ T.

Di�erentiating this equality and plugging in the dynamics of X yields

dXt(ν1) = ν1([t, T ])

(
µ− σ2

2

)
Ytdt+ ν1([t, T ])σ

√
YtdWt, 0 ≤ t ≤ T. (2.56)
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Likewise, the de�nition (2.39) of ξt(ν2) and part 1) of Lemma 2.6 yield the dy-

namics

dξt(ν2) =

(∫
[t,T ]

κ̂(u− t)ν2(du)

)√
YtdBt, 0 ≤ t ≤ T. (2.57)

Finally, recall from (2.16) that the density process of the VOMM is given by

ZQ⋆
= E(NQ⋆

), where

dNQ⋆

t =
√
Yt

(√
1− ϱ2h⋆(T − t)dW⊥

t − µ

σ
dWt

)
, 0 ≤ t ≤ T, (2.58)

so that

d[NQ⋆

]t = Yt

(
(1− ϱ2)

(
h⋆(T − t)

)2
+
µ2

σ2

)
dt, 0 ≤ t ≤ T. (2.59)

Setting (X̃(1), X̃(2), X̃(3), X̃(4)) := (X(ν1), ξ(ν2), N
Q⋆
, [NQ⋆

]), we thus have from

(2.56)�(2.59) that the dynamics of each process X̃(i) has the form (2.17). Next, we

check the integrability conditions required in order to apply part 1) of Theorem

2.3. We note that ν1 and ν2 have bounded variation, κ̂ is locally square-integrable

(see after (2.2)) and h⋆ is bounded. Moreover, we have by the Cauchy�Schwarz

inequality and Fubini's theorem that∫ T

0

(∫
[t,T ]

κ̂(u− t)ν2(du)

)2

dt ≤ |ν2|([0, T ])
∫ T

0

∫
[t,T ]

κ̂2(u− t)ν2(du)dt

= |ν2|([0, T ])
∫
[0,T ]

(∫ u

0

κ̂2(u− t)dt

)
ν2(du)

≤
(
|ν2|([0, T ])

)2∥κ̂∥2L2(0,T ) <∞,

so that the map t 7→
∫
[t,T ]

κ̂(u − t)ν2(du) belongs to L2([0, T ],C). It is then

clear that the coe�cients in the dynamics (2.56)�(2.59) satisfy the integrability

conditions required by Theorem 2.3. Thus by part 1) of Theorem 2.3, there

exists some T ⋆ν1,ν2 ∈ (0, T ⋆] such that for all T ∈ [0, T ⋆ν1,ν2 ], there is a unique

solution g⋆ν1,ν2,T ∈ L1([0, T ];C) to the equation (2.18). Plugging the dynamics of
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(X(νz1), ξ(ν2), N
Q⋆
, [NQ⋆

]) with z = (1, 1, 1,−1
2
) into (2.18) yields

g⋆ν1,ν2,T (t) =

(
µ− σ2

2

)
ν1([t, T ])−

(1− ϱ2)(h⋆(T − t))2

2
− µ2

2σ2

+
((κ̂ ∗ g⋆ν1,ν2,T )(t))

2

2
+

(σν1([t, T ]) + ϱ
∫
[t,T ]

κ̂(u− t)ν2(du)− µ
σ
)2

2

+
(1− ϱ2)(

∫
[t,T ]

κ̂(u− t)ν2(du) + h⋆(T − t))2

2

+ ϱ

(
σν1([t, T ]) + ϱ

∫
[t,T ]

κ̂(u− t)ν2(du)−
µ

σ

)
(κ̂ ∗ g⋆ν1,ν2,T )(t)

+ (1− ϱ2)

(∫
[t,T ]

κ̂(u− t)ν2(du) + h⋆(T − t)

)
(κ̂ ∗ g⋆ν1,ν2,T )(t),

which is equivalent to (2.52) after some simpli�cations. Theorem 2.3 also gives

the conditional expectation, for 0 ≤ t ≤ T ,

E

[
exp

(
XT (ν1) + ξT (ν2) +NQ⋆

T − [NQ⋆
]T

2

) ∣∣∣∣ Ft

]
= exp

(
Xt(ν1) + ξt(ν2) +NQ⋆

t − [NQ⋆
]t

2
+

∫ T

t

g⋆ν1,ν2(T − u)ξt(u)du

)
.

Since ZQ⋆
= E(NQ⋆

), dividing both sides by ZQ⋆

t gives

EQ⋆ [eXT (ν1)+ξT (ν2) | Ft] = exp

(
Xt(ν1) + ξt(ν2) +

∫ T

t

g⋆ν1,ν2,T (T − u)ξt(u)du

)
,

as claimed.

As a corollary, we obtain a simpler formula for the classical setup from As-

sumption 2.7.

Corollary 2.16. For each z ∈ C, there exists some T ⋆z ∈ (0, T ⋆] such that there

is a unique continuous solution g⋆z : [0, T
⋆
z ] → C to the equation

g⋆z(t) = f ⋆z
(
(κ̂ ∗ g⋆z)(t), h⋆(t)

)
, 0 ≤ t ≤ T ⋆z , (2.60)

where the quadratic function f ⋆z : C2 → C is de�ned by

f ⋆z (x, h) =
σ2(z2 − z)

2
+

(
ϱσz − µϱ

σ

)
x+ (1− ϱ2)xh+

x2

2
.
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Moreover, for any T ∈ [0, T ⋆z ], e
zXT is integrable and we have

EQ⋆ [ezXT | Ft] = exp

(
zXt +

∫ T

t

g⋆z(T − u)ξt(u)du

)
, 0 ≤ t ≤ T. (2.61)

Proof. By plugging in ν1 = zδT ⋆ and ν2 = 0 into Proposition 2.15 and setting

g⋆z,T := g⋆zδT⋆ ,0,T , we get that there exists some T ⋆z := T ⋆zδT ,0 ∈ (0, T ⋆] such that,

for each T ∈ [0, T ⋆z ], there is a unique solution g
⋆
z,T ∈ L1([0, T ];C) to the Riccati�

Volterra equation (2.52), which simpli�es to

g⋆z,T (t) = f ⋆z
(
(κ̂ ∗ g⋆z,T )(t), h⋆(t)

)
, 0 ≤ t ≤ T.

By the uniqueness of the solution g⋆z,T and since none of the inputs for this

equation depends explicitly on T , it follows that g⋆z,T = g⋆z,T ⋆
z
on [0, T ] for each

T ∈ [0, T ⋆z ]. Setting g
⋆
z := g⋆z,T ⋆

z
, we thus have a unique solution g⋆z ∈ L1([0, T ⋆z ];C)

to (2.60). Moreover, Proposition 2.15 also gives the equality (2.54), which likewise

simpli�es into (2.61) since in this case we have Xt(ν1) = zXt and ξt(ν2) = 0.

It remains to show the continuity of g⋆z , which is not given by Proposition

2.15. Recall that g⋆ is continuous by Theorem 2.3 and hence so is h⋆ := κ̂ ∗ g⋆, so
that each of the inputs to (2.60) is continuous. Therefore by the uniqueness of g⋆

and part 1) of Proposition A.2.2, we can choose some (possibly smaller) T ⋆z > 0

such that the solution g⋆z to (2.60) is continuous on [0, T ⋆z ]. This concludes the

proof.

2.3 Mean�variance hedging strategies

Thanks to Proposition 2.15, we are now ready to compute the mean value process

(V H
t )0≤t≤T for a payo� H satisfying Assumption 2.10 (or the more restrictive

Assumption 2.7).

Proposition 2.17. Let T ∈ (0, T ⋆] and suppose that H ∈ L2
P (FT ) satis�es As-

sumption 2.10. Moreover, suppose that

T ≤ inf{T ⋆νz1 ,νz2 : z ∈ supp(πH)}, (2.62)

where T ⋆ν1,ν2 is given by Proposition 2.15. Then the mean value process (V H
t )t∈[0,T ]

is given by

V H
t =

∫
Ck

Ṽ z
t π

H(dz), 0 ≤ t ≤ T, (2.63)
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where (Ṽ z
t )0≤t≤T is de�ned by

Ṽ z
t := exp

(
X̃t(z) +

∫ T

t

g⋆νz1 ,νz2 ,T (T − u)ξt(u)du

)
, 0 ≤ t ≤ T, (2.64)

for z ∈ supp(πH).

Proof. Due to (2.54) and (2.62), we have for each z ∈ supp(πH) that the process

Ṽ z given by (2.64) is well de�ned and a Q⋆-martingale on [0, T ], which yields

Ṽ z
t = EQ⋆ [eX̃T (z) | Ft] for 0 ≤ t ≤ T . By Assumption 2.10 and the Cauchy�

Schwarz inequality, we also have the bound∫
Ck

EQ⋆ [eRe(X̃T (z))]|πH |(dz)

≤ EP

[(
dQ⋆

dP

)2]1/2 ∫
Ck

EP [e
2Re(X̃T (z))]1/2|πH |(dz)

≤ EP

[(
dQ⋆

dP

)2]1/2(∫
Ck

EP [e
2Re(X̃T (z))]|πH |(dz)

)1/2

|πH |(C)1/2 <∞. (2.65)

Hence the conditional Fubini theorem yields

V H
t = EQ⋆ [H | Ft] =

∫
Ck

EQ⋆ [eX̃T (z) | Ft]π
H(dz) =

∫
Ck

Ṽ z
t π

H(dz)

since Ṽ z is a Q⋆-martingale on [0, T ] for z ∈ supp(πH). This shows (2.63).

Now that we have determined the mean value process V H , we are able to calcu-

late the pure hedge coe�cient (ΞHt )0≤t≤T under the slightly stronger Assumption

2.10+ (or 2.7+).

Proposition 2.18. Let T ∈ (0, T ⋆] and suppose that H ∈ L2
P (FT ) satis�es As-

sumption 2.10 +. Moreover, suppose that (2.62) holds, where T ⋆ν1,ν2 is given by

Proposition 2.15. Then the pure hedge coe�cient (ΞHt )0≤t≤T for H is given by

ΞHt =
1

σSt

∫
Ck

Ξ̃ztπ
H(dz), 0 ≤ t ≤ T, (2.66)

where (Ξ̃zt )0≤t≤T is de�ned by

Ξ̃zt := Ṽ z
t

(
σνz1([t, T ]) + ϱ

∫
[t,T ]

κ̂(u− t)
(
νz2(du) + g⋆νz1 ,νz2 ,T (T − u)du

))
(2.67)

and Ṽ z is given by (2.64) for z ∈ supp(πH).
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Proof. By Proposition 2.17, we have

V H
t =

∫
Ck

Ṽ z
t π

H(dz), 0 ≤ t ≤ T. (2.68)

In view of the de�nition (2.7) of ΞH , we want to compute the dynamics of Ṽ z

and V H . For the former, we start by di�erentiating the integral term in (2.64).

By part 2) of Lemma 2.6, we have the dynamics

d

(∫ T

t

g⋆νz1 ,νz2 ,T (T − u)ξt(u)du

)
= −g⋆νz1 ,νz2 ,T (T − t)Ytdt+ (κ̂ ∗ g⋆νz1 ,νz2 ,T )(T − t)

√
YtdBt, 0 ≤ t ≤ T,

for z ∈ supp(πH). Recall also that X̃t(z) = Xt(ν
z
1) + ξt(ν

z
2), where X(νz1) and

ξ(νz2) have the dynamics (2.56) and (2.57), respectively. Hence Itô's formula

applied to (2.64) yields that the dynamics of Ṽ z is given by

dṼ z
t = Ṽ z

t

√
Yt
(
νz1([t, T ])σdWt + φztdBt

)
+ dAt, 0 ≤ t ≤ T, (2.69)

for some �nite variation process (At)0≤t≤T that is absolutely continuous with

respect to dt and a deterministic coe�cient (φzt )0≤t≤T given by

φzt :=

∫
[t,T ]

κ̂(u− t)
(
νz2(du) + g⋆νz1 ,νz2 ,T (T − u)du

)
, 0 ≤ t ≤ T. (2.70)

Since Ṽ z is also a Q⋆-martingale, it follows from (2.69) that

dṼ z
t = Ṽ z

t

√
Yt
(
νz1([t, T ])σdW

⋆
t + φztdB

⋆
t

)
, (2.71)

where W ⋆ and B⋆ are the Q⋆-Brownian motions derived from W and B by

Girsanov's theorem with respect to Q⋆, as given in part 6) of Theorem 2.3.

Next, we want to �nd the dynamics of V H . By a similar calculation as in

(2.65), Assumption 2.10+ yields∫
Ck

EQ⋆ [|Ṽ z
T |1+δ/2]|πH |(dz) =

∫
Ck

EQ⋆ [eRe((1+δ/2)X̃T (z))]|πH |(dz)

≤ C1C2

(∫
Ck

EP [e
(2+δ)Re(X̃T (z))]|πH |(dz)

)1/2

<∞, (2.72)
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where C1 := EP [(dQ
⋆/dP )2]1/2 and C2 := |πH |(C)1/2 are �nite. As 1 + δ/2 > 1,

there exists by the Burkholder�Davis�Gundy and Doob maximal inequalities

some cδ > 0 such that for every real-valued Q⋆-martingale M on [0, T ],

EQ⋆

[
[M ]

(2+δ)/4
T

]
≤ cδEQ⋆

[
|M |1+δ/2T

]
.

Consider nowM =M r+iM i for some real-valued Q⋆-martingales (M r
t )0≤t≤T and

(M i
t )0≤t≤T so that [M,M ] = [M r] + [M i]. It follows by considering M r and M i

separately that

EQ⋆

[
[M,M ]

(2+δ)/4
T

]
≤ cδEQ⋆

[
|M |1+δ/2T

]
. (2.73)

for some (possibly larger) choice of cδ > 0. Note that by (2.71), we have

d[Ṽ z, Ṽ z]t = ψzt dt, where (ψzt )0≤t≤T is a nonnegative process given by

ψzt = |Ṽ z
t |2Yt

(
|νz1([t, T ])σ + ϱφzt |2 + (1− ϱ2)|φzt |2

)
, 0 ≤ t ≤ T. (2.74)

Hence by Hölder's inequality with p = 1+ δ/2 and q = 1+2/δ, Fubini's theorem,

(2.73) and (2.72), we obtain

EQ⋆

[∫
Ck

(∫ T

0

ψzt dt

)1/2

|πH |(dz)
]
≤ C

δ
2+δ

2 EQ⋆

[∫
Ck

(∫ T

0

ψzt dt

) 2+δ
4

|πH |(dz)
] 2

2+δ

≤ C
δ

2+δ

2

(
cδ

∫
Ck

EQ⋆ [|Ṽ z
T |1+δ/2]|πH |(dz)

) 2
2+δ

<∞.

In particular, since Q⋆ ≈ P ,∫
Ck

(∫ T

0

ψzt dt

)1/2

|πH |(dz) <∞ P -a.s.

This corresponds to the inequality in Veraar [118, Equation (2.1)]. Hence the

stochastic Fubini theorem [118, Theorem 2.2] together with (2.71) and (2.68)

yields that the dynamics of V H are given by

dV H
t =

∫
Ck

Ṽ z
t

√
Yt
(
νz1([t, T ])σdW

⋆
t + φztdB

⋆
t

)
πH(dz)

=

(∫
Ck

Ṽ z
t ν

z
1([t, T ])π

H(dz)

)
σ
√
YtdW

⋆
t

+

(∫
Ck

Ṽ z
t φ

z
tπ

H(dz)

)√
YtdB

⋆
t , 0 ≤ t ≤ T. (2.75)
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Note that by (2.67) and (2.70), we have

Ṽ z
t σν

z
1([t, T ]) + ϱṼ z

t φ
z
tπ

H(dz) = Ξ̃zt , 0 ≤ t ≤ T.

Hence by combining (2.75) with the dynamics dSt = Stσ
√
YtdW

⋆
t from part 6) of

Theorem 2.3, we obtain

ΞHt =
d[V H , S]t
d[S, S]t

=
1

σSt

∫
Ck

Ξ̃ztπ
H(dz), 0 ≤ t ≤ T.

This shows (2.66) and concludes the proof.

Given a time horizon T ∈ (0, T ⋆) and a claim H ∈ L2
P (Ft) satisfying the

conditions of Proposition 2.18, we have obtained the formulas (2.63) and (2.66)

for the mean value process V H and ΞH , respectively, up to solving the family

of Riccati�Volterra equations (2.52), where we set ν1 = νz1 and ν2 = νz2 for each

z ∈ supp(πH). While a closed-form solution to (2.52) is not available, one can

use numerical methods to solve this (deterministic) equation on [0, T ] for each z.

As discussed after Proposition 2.1, by plugging the formulas for V H and ΞH

into (2.9) together with the adjustment process a given by (2.15), we thus obtain

the mean�variance hedging strategy ϑH(x, t) semi-explicitly as the solution to

a feedback equation. In principle, one may even use (2.10) or (2.11) to obtain

ϑH(x, t) in a fully explicit form. Therefore, Propositions 2.17 and 2.18 e�ectively

solve the mean�variance hedging problem for claims H that satisfy the assump-

tions of Proposition 2.18.

While Propositions 2.17 and 2.18 give the solution in a general setup, the

associated equations and formulas can often be simpli�ed in practice; we show

how to do this for the claims considered in Examples 2.9 and 2.12�2.14.

Corollary 2.19 (European vanilla call and put options). Suppose that a1 > 1,

a2 < 0 and T ∈ (0, T ⋆] are such that

E[S2a1+δ
T ], E[S2a2−δ

T ] <∞ and T ≤ inf
{
T ⋆z : z ∈ {a1, a2}+ iR

}
for some δ > 0, where T ⋆z is given by Corollary 2.16. Then the European call and

put options CK,T and PK,T from Example 2.9 satisfy Assumption 2.7+, and the

mean value processes V CK,T , V PK,T and pure hedge coe�cients ΞCK,T , ΞPK,T are
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given by

V
CK,T

t =

∫
C
Ṽ z
t πK,a1(dz), Ξ

CK,T

t =
1

σSt

∫
C
Ξ̃ztπK,a1(dz),

V
PK,T

t =

∫
C
Ṽ z
t πK,a2(dz), Ξ

PK,T

t =
1

σSt

∫
C
Ξ̃ztπK,a2(dz) (2.76)

for 0 ≤ t ≤ T, where πK,a is given by (2.37), the processes (Ṽ z
t )0≤t≤T , (Ξ̃

z
t )0≤t≤T

are de�ned by

Ṽ z
t = exp

(
zXt +

∫ T

t

g⋆z(T − u)ξt(u)du

)
, (2.77)

Ξ̃zt =
(
zσ + ϱ(κ̂ ∗ g⋆z)(T − t)

)
Ṽ z
t , (2.78)

and g⋆z : [0, T ] → C is the continuous solution to (2.61) for z ∈ {a1 + a2}+ iR.

Proof. For ℓ ∈ {1, 2}, the measure πK,aℓ(dz) =
K1−z

2πz(z−1)
λaℓ(dz) (which is supported

on (aℓ − i∞, aℓ + i∞)) has bounded variation on C since it decays quadratically

as z → aℓ± i∞. Thus by assumption, we have for ℓ ∈ {1, 2} and δ̃ℓ := δ/|aℓ| that∫
C
EP [S

(2+δ̃ℓ)Re(z)
T ]|πK,aℓ |(dz)

= EP [S
2aℓ+(−1)ℓ−1δ
T ]|πK,aℓ|

(
(aℓ − i∞, aℓ + i∞)

)
<∞,

which shows (2.34). Hence CK,T and PK,T satisfy Assumption 2.7+. As shown

in (2.40), Assumption 2.7+ can be seen as a special case of Assumption 2.10+

with νz1 = zδT and νz2 = 0. Since T ⋆z = T ⋆zδT ,0 by de�nition (see the proof of

Corollary 2.16), we also have by the choice of T that (2.62) is satis�ed. Thus by

applying Propositions 2.17 and 2.18 to CK,T and PK,T , we obtain (2.76). Recall

that we have X̃t(z) = zXt in the case νz1 = zδT and νz2 = 0, so that (2.64)

simpli�es into (2.77). We also have g⋆z = g⋆νz1 ,νz2 ,T for this choice of νz1 and νz2 , by

the construction given in the proof of Corollary 2.16. Plugging this into (2.67)

together with νz1([t, T ]) = z for t ∈ [0, T ] and νz2 = 0 yields (2.78).

Corollary 2.20 (European call and put options on spot volatility). Suppose that

a1 > 0, a2 < 0 and T ∈ (0, T ⋆] are such that

E[e(2a1+δ)YT ], E[e(2a2−δ)YT ] <∞ and T ≤ inf
{
T ⋆0,zδT : z ∈ {a1, a2}+ iR

}
for some δ > 0, where T ⋆ν1,ν2 is given in Corollary 2.16. Then the spot volatility

options CY
K,T and P Y

K,T from Example 2.12 satisfy Assumption 2.10+, and the
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mean value processes V CY
K,T , V PY

K,T and pure hedge coe�cients ΞC
Y
K,T , ΞP

Y
K,T are

given by

V
CY

K,T

t =

∫
C
Ṽ z,Y
t πYK,a1(dz), Ξ

CY
K,T

t =
1

σSt

∫
C
Ξ̃z,Yt πYK,a1(dz),

V
PY
K,T

t =

∫
C
Ṽ z,Y
t πYK,a2(dz), Ξ

PY
K,T

t =
1

σSt

∫
C
Ξ̃z,Yt πYK,a2(dz) (2.79)

for 0 ≤ t ≤ T, where πYK,a is given by (2.47), the processes (Ṽ z,Y
t )0≤t≤T , (Ξ̃

z,Y
t )0≤t≤T

are de�ned by

Ṽ z,Y
t = exp

(
zξt(T ) +

∫ T

t

g⋆z,Y (T − u)ξt(u)du

)
, (2.80)

Ξ̃z,Yt = ϱ
(
zκ̂(T − t) + (κ̂ ∗ g⋆z,Y )(T − t)

)
Ṽ z,Y
t , (2.81)

and g⋆z,Y ∈ L1([0, T ];C) is the unique solution to the equation

g⋆z,Y (t) = f ⋆z,Y
(
(κ̂ ∗ g⋆z,Y )(t), h⋆(t), κ̂(t)

)
, 0 ≤ t ≤ T, (2.82)

for z ∈ {a1, a2}+ iR, where f ⋆z,Y : C3 → C is given by

f ⋆z,Y (x, h, k) := (x+ zk)

(
−µϱ
σ

+ (1− ϱ2)h+
x+ zk

2

)
.

Proof. For ℓ ∈ {1, 2} the measure πYK,aℓ(dz) :=
e−Kz

2πz2
λaℓ(dz), which is supported

on (aℓ − i∞, aℓ + i∞), has bounded variation on C since it decays quadratically

as z → a± i∞. Setting νz1 = 0 and νz2 = zδT for z ∈ C, we thus have∫
C
EP

[
exp

(
(2 + δ̃ℓ)Re

(
X̃T (z)

))]
|πYK,aℓ |(dz)

= EP

[
exp

((
2aℓ + (−1)ℓ−1δ

)
YT

)]
|πYK,aℓ |

(
(a− i∞, a+ i∞)

)
<∞

by assumption for ℓ ∈ {1, 2} and δ̃ℓ := δ/|aℓ| > 0, which shows (2.44). Thus CY
K,T

and P Y
K,T satisfy Assumption 2.10+. Since (2.62) also holds by the choice of T , we

may apply Propositions 2.17 and 2.18 to CY
K,T and P Y

K,T , and this yields (2.79).

To show the remaining equations, note that X̃t(z) = zξt(T ) in the case νz1 = 0

and νz2 = zδT , and hence (2.64) simpli�es to (2.80). Likewise, (2.52) simpli�es

into the form (2.82); note that the third argument of f ⋆ is not needed because

νz1 = 0. As none of the inputs to (2.82) depends explicitly on T , we may omit

the parameter T from g⋆z,Y by the same uniqueness argument used in the proof of
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Corollary 2.16. Plugging g⋆z,Y into (2.67) together with νz2 = zδT yields (2.81).

Corollary 2.21 (Geometric Asian call and put options). Suppose that a1 > 1,

a2 < 0 and T ∈ (0, T ⋆] are such that

E[(SAT )
2a1+δ], E[(SAT )

2a2−δ] <∞ and T ≤ inf
{
T ⋆νz1 ,0 : z ∈ {a1, a2}+ iR

}
for some δ > 0, where νz1(dt) =

z
T
dt, SA is the geometric mean of S de�ned in

(2.48) and T ⋆ν1,ν2 is given in Corollary 2.16. Then the geometric Asian options

CA
K,T and PA

K,T from Example 2.13 satisfy Assumption 2.10+, and the mean value

processes V CA
K,T , V PA

K,T and pure hedge coe�cients ΞC
A
K,T , ΞP

A
K,T are given by

V
CA

K,T

t =

∫
C
Ṽ z,A
t πK,a1(dz), Ξ

CA
K,T

t =
1

σSt

∫
C
Ξ̃z,At πK,a1(dz), 0 ≤ t ≤ T,

V
PA
K,T

t =

∫
C
Ṽ z,A
t πK,a2(dz), Ξ

PA
K,T

t =
1

σSt

∫
C
Ξ̃z,At πK,a2(dz), 0 ≤ t ≤ T, (2.83)

where πK,a is given by (2.37), (Ṽ z,A
t )0≤t≤T , (Ξ̃

z,A
t )0≤t≤T are de�ned by

Ṽ z,A
t = exp

(
z

T

(∫ t

0

Xsds+ (T − t)Xt

)
+

∫ T

t

g⋆z,A(T − u)ξt(u)du

)
, (2.84)

Ξ̃z,At =

(
σz(T − t)

T
+ ϱ(κ̂ ∗ g⋆z,A)(T − t)

)
Ṽ z,A
t , (2.85)

and g⋆z,A,T ∈ L1([0, T ];C) is the unique solution to the equation

g⋆z,A,T (t) = f ⋆z,A,T
(
(κ̂ ∗ g⋆z,A,T )(t), h⋆(t), t

)
, 0 ≤ t ≤ T, (2.86)

for z ∈ {a1, a2}+ iR, where f ⋆z,A,T : C3 → C is given by

f ⋆z,A,T (x, h, t) :=
σ2

2

(
z2t2

T 2
− zt

T

)
+

(
ϱσ
zt

T
− µϱ

σ

)
x+ (1− ϱ2)xh+

x2

2
.

Proof. We already argued in the proof of Corollary 2.19 that πK,a(dz) has bounded

variation on C. Setting νz1(dt) = z
T
dt and νz2 = 0 for z ∈ C, we have∫

C
EP
[(
(SAT )

aℓ
)2+δ̃ℓ]|πYK,aℓ|(dz)

= EP [(S
A
T )

2aℓ+(−1)ℓ−1δ]|πYK,aℓ |
(
(aℓ − i∞, aℓ + i∞)

)
<∞

by assumption for ℓ ∈ {1, 2} and δ̃ℓ := δ/|aℓ| > 0, which shows (2.43). Thus

CA
K,T and PA

K,T satisfy Assumption 2.10+ so that by applying Propositions 2.17
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and 2.18 to CA
K,T and PA

K,T , we have (2.83). Since (2.38) and (2.48) yield

X̃t(z) = Xt(ν
z
1) =

z

T

∫ t

0

Xsds+
z(T − t)Xt

T
, 0 ≤ t ≤ T,

it follows that (2.64) simpli�es to (2.84). Moreover, the equation (2.52) simpli�es

into the form (2.90) after plugging in νz2 = 0 (so that the fourth argument of f ⋆

is not needed) and νz1([T − t, T ]) = zt/T . Plugging this into (2.67) together with

νz1([t, T ]) = z(T − t)/T and νz2 = 0 yields (2.85).

Corollary 2.22 (Options on discrete-time observations). Suppose that T ∈ (0, T ⋆]

and the complex-valued bounded variation measure πH on (C2k,B(C2k)) satisfy the

conditions T ≤ inf{T ⋆νz1 ,νz2 : z ∈ supp(πH)} as well as

E

[ ∫
Ck

exp

(
(2 + δ)

k∑
j=1

Re(zj)Xtj + (2 + δ)
k∑
j=1

Re(z̃j)Ytj

)
|πH |(dz)

]
<∞

for some δ > 0, where νz1 and νz2 are de�ned by (2.51) and T ⋆ν1,ν2 is given in

Corollary 2.16. Then the mean value process V H and pure hedge coe�cient ΞH

for the payo� H from Example 2.14 are given by

V H
t =

∫
Ck

Ṽ z,H
t πH(dz) and ΞHt =

1

σSt

∫
Ck

Ξ̃z,Ht πH(dz) (2.87)

for 0 ≤ t ≤ T , where the processes (Ṽ z,H
t )0≤t≤T , (Ξ̃

z,H
t )0≤t≤T are de�ned by

Ṽ z,H
t = exp

( k∑
j=1

zjXt∧tj +
k∑
j=1

z̃jξt(tj) +

∫ T

t

g⋆z,H,T (T − u)ξt(u)du

)
, (2.88)

Ξ̃z,Ht =

(
σ

k∑
j=1

zj1[0,tj ](t) + ϱ
k∑
j=1

zj1[0,tj ](t)κ̂(tj − t) + ϱ(κ̂ ∗ g⋆z,H,T )(T − t)

)
Ṽ z,H
t ,

(2.89)

and g⋆z,H,T ∈ L1([0, T ];C) is the unique solution to the equation

g⋆z,H,T (t) = f ⋆
(
(κ̂ ∗ g⋆z,H,T )(t), h⋆(t),

k∑
j=1

zj1[0,tj ](T − t),
k∑
j=1

zj1[0,tj ](t)κ̂(tj − t)

)
(2.90)

for 0 ≤ t ≤ T and z ∈ supp(πH), where f ⋆ is given by (2.53).
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Proof. De�nition (2.51) yields for 0 ≤ t ≤ T that

νz1([t, T ]) =
k∑
j=1

zj1[0,tj ](t) and
∫
[t,T ]

κ̂(u− t)νz2(du) =
k∑
j=1

zj1[0,tj ](t).

Thus the result follows directly by plugging into Propositions 2.17 and 2.18.

Thanks to Propositions 2.17 and 2.18, we have thus been able to obtain explicit

formulas for several di�erent payo�s such as the ones considered in Examples

2.9 and 2.12�2.14. However, the results are somewhat unsatisfactory from a

theoretical point of view since the assumption (2.62) that

T ≤ inf{T ⋆νz1 ,νz2 : z ∈ supp(πH)}

can in principle be quite restrictive. Indeed, for a general payo� H, measure πH

and associated map z 7→ (νz1 , ν
z
2), it is unclear whether this in�mum is nonzero.

In the case where πH is supported on a compact subset of Ck, one can strengthen

Proposition 2.15 by using Theorem 2.4 (which applies simultaneously for all z

belonging to a ball B ⊆ Ck) in order to ensure that (2.54) holds for the measures

νz1 , ν
z
2 on a common interval [0, T ′] for some T ′ and all z ∈ B. In this way, we

can ensure that the in�mum is strictly positive if the support of πH is compact

and hence contained in a ball. However, this approach fails if the support of πH

is unbounded, as is the case for European vanilla call and put options, where πH

is supported on a vertical line of the form a+ iR ⊆ C.
One partial workaround is to approximate H by truncating the domain of

integration. For instance, consider the European call option CK,T = (ST −K)+.

By truncating (2.35), we de�ne the approximate payo�

Cm
K,T :=

1

2πi

∫ a1+im

a1−im

SzT
K1−z

z(z − 1)
dz (2.91)

for m ∈ N and some �xed a1 > 1. If T > 0 is small enough so that E[S2a1
T ] <∞,

it follows by Fubini's theorem (in a similar way as in the proof of Corollary

2.19) that Cm
K,T ∈ L2

P (FT ) and Cm
K,T

L2

→ CK,T as m → ∞. As discussed in the

introduction to this chapter, it follows by the general theory of MVH that for

each t ∈ [0, T ] and xt ∈ L2
P (Ft), there exist unique optimal hedging strategies

ϑC
m
K,T (xt, t), ϑ

Cm
K,T (xt, t) ∈ Θt,T (S) for Cm

K,T and CK,T , respectively. Since the

MVH problem can be seen as an L2-projection problem, which is continuous on

L2
P (FT ), we also have (ϑC

m
K,T (x, t) •S)T

L2

→ (ϑCK,T (x, t) •S)T asm→ ∞. Moreover,



2 Mean�variance hedging 117

since the segment a1 + i[−m,m] is bounded, there exists by the argument above

some Tm > 0 such that (2.60) admits for each z ∈ a1 + i[−m,m] a solution g⋆z on

[0, Tm]. As in (2.76), this yields

V
Cm

K,T

t =

∫ a1+im

a1−im

Ṽ z
t πK,a1(dz), Ξ

Cm
K,T

t =
1

σSt

∫ a1+im

a1−im

Ξ̃ztπK,a1(dz), 0 ≤ t ≤ T,

if T ∈ (0, Tm], and hence we derive a formula for ϑC
m
K,T (xt, t) by plugging into the

feedback equation (2.9). However, the resulting formula only holds if T ∈ (0, Tm],

and in principle it could be the case that Tm → 0 as m → ∞. Therefore, even

though ϑC
m
K,T (xt, t) approximates ϑCK,T (xt, t) on [0, T ], the explicit formula for

ϑC
m
K,T (xt, t) may only hold on a small interval that vanishes as m → ∞, so that

the limit does not yield an explicit formula for ϑCK,T (xt, t) for any T > 0.

Tackling these issues in the general setup of Assumption 2.10 remains a topic

for future study. We focus now on the case of European call and put options

with the goal of relaxing the assumptions of Corollary 2.19. In the following, we

denote by a a �xed a1 > 1 or a2 < 0 corresponding to the call and put options,

respectively. Our strategy is to use the particular structure of (2.60) to show that

it admits a solution for all z ∈ a + iR on a common interval; this is the main

topic of Section 4 and leads to the following theorem.

Theorem 2.23. Let a ∈ R, �x T ⋆a ∈ (0, T ⋆] as given by Corollary 2.16 and

suppose that the kernel κ : (0,∞) → R+ in (2.1) is completely monotone. Then

there exists a unique continuous solution g⋆z : [0, T ⋆a ] → C to (4.14) for each

z ∈ a+ iR.

The proof is deferred to Theorem 4.10. The requirement that κ is completely

monotone (in addition to satisfying Assumption I.2.7) is discussed after the state-

ment of Theorem 4.10.

We now use Theorem 2.23 to strengthen Corollaries 2.16 and 2.19. Even

though we can solve (2.60) for all z ∈ a+ iR on a common time interval, we note

that the choice of T ⋆z in Corollary 2.16 not only needs to ensure the existence of

a solution g⋆z to (2.60), but also that (2.61) holds, i.e., that the right-hand side of

(2.61) is a true martingale. Thus in principle, even if (2.60) admits a solution g⋆z
on [0, T ], (2.61) need not hold. However, by using the second part of Theorem

2.4, we show in the following lemma that (2.61) also holds on a common time

interval for all z ∈ a+ iR.

Lemma 2.24. Let a ∈ R and �x T ⋆a ∈ (0, T ⋆] as given by Corollary 2.16. Then

(2.61) holds for all 0 ≤ t ≤ T ≤ T ⋆a and all z ∈ a+ iR.
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Proof. Fix T ∈ [0, T ⋆a ] and z ∈ a+ iR. Note that

U := exp

(
zXT +NQ⋆

T − [NQ⋆
]T

2

)
= ZQ⋆

T ezXT ,

where we recall the process NQ⋆
as well as the dynamics (2.58) and (2.59) from

the proof of Proposition 2.15. In particular, we have

E[|U |] = E[|ZQ⋆

T ezXT |] = EQ⋆ [|ezXT |] = EQ⋆ [eaXT ] <∞

since T ≤ T ⋆a , so that U is integrable. We have already shown in the proofs

of Proposition 2.15 and Corollary 2.16 that the equation (2.18) associated with

U simpli�es in this case to (2.60). By Theorem 2.23, there exists a solution

g⋆z : [0, T ⋆a ] → C to (2.60) on [0, T ⋆a ] for each z ∈ a + iR. Thus since U is

integrable, part 2) of Theorem 2.4 yields

E[U | Ft] = exp

(
zXt +

∫ T

t

g⋆z(T − u)ξt(u)du

)
, 0 ≤ t ≤ T,

which is precisely (2.61).

We are now ready to relax the assumptions of Corollary 2.19.

Proposition 2.25. Suppose that T ∈ (0, T ⋆], a1 > 1 and a2 < 0 are such that

T ≤ min{T ⋆a1 , T
⋆
a2
, T ⋆a1+δ, T

⋆
a2−δ} (2.92)

for some δ > 0, where T ⋆z is given by Corollary 2.16. Then the mean value

processes V CK,T , V PK,T and pure hedge coe�cients ΞCK,T , ΞPK,T for the European

call and put options CK,T and PK,T from Example 2.9 are given by (2.76).

Proof. Since T ≤ min{T ⋆a1+δ, T
⋆
a2−δ}, S

a1+δ
T and Sa2−δT are integrable by Corollary

2.16. Moreover, by Theorem 2.23 and Lemma 2.24, we may set T ⋆a+ib = T ⋆a

for a ∈ {a1, a2} and b ∈ R so that the conclusion of Corollary 2.16 still holds.

Therefore infb∈R T
⋆
a+ib = T ⋆a for a ∈ {a1, a2} and the assumptions of Corollary

2.16 are satis�ed, which yields (2.76).

With Proposition 2.25, we have achieved our goal of proving for the European

call and put options that the formulas in (2.76) hold on a nontrivial time interval,

since each of the constants on the right-hand side of (2.92) is strictly positive.

We conclude this section by using Proposition 2.2 to obtain an explicit formula

for the mean squared hedging error associated with European call and put options.
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Calculating this error is of independent interest, but also useful for the application

to semistatic portfolio problems that we consider in the next section. We start by

showing an auxiliary result on the conditional expectation of terms of the form

LuṼ
z1
u Ṽ z2

u Yu for 0 ≤ u ≤ T and z1, z2 ∈ C.

Proposition 2.26. For z1, z2 ∈ C, there exists T̃z1,z2 ∈ (0, T ⋆z1 ∧ T ⋆z2 ] such that

for all 0 ≤ u ≤ T ≤ T̃z1,z2, there exist unique solutions g̃u,Tz1,z2 , h̃
u,T
z1,z2

∈ L1([0, u];C)
to the equations

g̃u,Tz1,z2(t) = f̃ gz1,z2
(
(κ̂ ∗ g̃u,Tz1,z2)(t); (∆tκ̂ ∗ g⋆z1,z2)(T − u)

)
, (2.93)

h̃u,Tz1,z2(t) = f̃hz1,z2
(
(κ̂ ∗ h̃u,Tz1,z2)(t); (κ̂ ∗ g̃uz1,z2)(t), (∆tκ̂ ∗ g⋆z1,z2)(T − u), κ̂(t)

)
(2.94)

for 0 ≤ t ≤ u, where g⋆z1,z2 = g⋆z1 + g⋆z2 + g⋆ for g⋆z and g⋆ given by Corollary

2.16 and part 1) of Theorem 2.3, respectively, ∆tκ̂ : (0,∞) → R+ is de�ned by

∆tκ̂(s) = κ̂(t+ s), and f̃ gz1,z2 : C
2 → C and f̃hz1,z2 : C

4 → C are de�ned by

f̃ gz1,z2(y;w) = (z1 + z2)

(
µ+

(z1 + z2 − 1)σ2

2
+ ϱσ(y + w)

)
+

(y + w)2

2
,

f̃hz1,z2(x; y, w, ℓ) =
(
(z1 + z2)ϱσ + w + y

)
(ℓ+ x).

Moreover, for any T ∈ (0, T̃z1,z2 ] and u ∈ [0, T ], it holds that LuṼ z1
u Ṽ z2

u Yu is

integrable and

EP [LuṼ
z1
u Ṽ z2

u Yu | Ft] = Zu,T,z1,z2
t := Z̃u,T,z1,z2

t ξu,T,z1,z2t , 0 ≤ t ≤ u, (2.95)

where (Z̃u,T,z1,z2
t )0≤t≤T and (ξu,T,z1,z2t )0≤t≤T are de�ned by

Z̃u,T,z1,z2
t = Sz1+z2t exp

(∫ T

u

g⋆z1,z2(T − r)ξt(r)dr +

∫ u

t

g̃u,Tz1,z2(u− r)ξt(r)dr

)
,

ξu,T,z1,z2t = ξt(u) +

∫ u

t

h̃u,Tz1,z2(u− r)ξt(r)dr, 0 ≤ t ≤ T.

Remark 2.27. Although it may seem at �rst glance that the left-hand side of

(2.95) does not depend on T , note that the opportunity process L and the process

Ṽ z (which may be seen as the mean value process for H := SzT ) implicitly depend

on the time horizon T ; this becomes apparent from (2.14) and (2.77). On the

other hand, the solutions g⋆ and g⋆z to (2.14) and (2.60), respectively, do not

depend on T .

Remark 2.28. Since g⋆z1,z2 , f̃
g
z1,z2

and f̃hz1,z2 are symmetric in (z1, z2), it follows by
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the uniqueness of the solutions to (2.93) and (2.94) that g̃u,Tz1,z2 and h̃
u,T
z1,z2

are also

symmetric in (z1, z2), i.e., we have g̃u,Tz1,z2 = g̃u,Tz2,z1 and h̃u,Tz1,z2 = h̃u,Tz2,z1 . Therefore,

Z̃u,T,z1,z2 , ξu,T,z1,z2 and Zu,T,z1,z2 are also symmetric in (z1, z2). This observation

will be useful later for the proof of Proposition 3.15.

Proof of Proposition 2.26. Fix z1, z2 ∈ C and write T̄ := T ⋆z1 ∧ T
⋆
z2
. Consider the

indexing set

Φ :=
{
(u, T, j) : 0 ≤ u ≤ T ≤ T̄ , j ∈ {1, 2}

}
with index φ = (u, T, j). For now, we only view u and T as parameters. For each

φ ∈ Φ, consider the process (X̃φ
t )0≤t≤T̄ de�ned for 0 ≤ t ≤ T̄ by

X̃u,T,1
t =

∫ T

u

g⋆z1,z2(T − r)ξt∧u(r)dr + (z1 + z2)Xt∧u,

X̃u,T,2
t = ξt(u). (2.96)

It is clear that the processes X̃u,T,1 and X̃u,T,2 are constant on [u, T̄ ]. Moreover,

due to (2.1), (2.2) and part 1) of Lemma 2.6 with ν(dr) = g⋆z1,z2(T −r)1[u,T ](r)dr,

they have on [0, u] the dynamics

dX̃u,T,1
t =

(∫ T

u

g⋆z1,z2(T − r)κ̂(r − t)dr

)√
YtdBt

+ (z1 + z2)

((
µ− σ2

2

)
Ytdt+ σ

√
YtdWt

)
, 0 ≤ t ≤ u,

and

dX̃u,T,2
t = κ̂(u− t)

√
YtdBt, 0 ≤ t ≤ u.

Thus the dynamics of X̃φ on [0, T̄ ] can be written in the form

dX̃φ
t = µφ(t)Ytdt+ σφ(t)

√
YtdWt + σ̃φ(t)

√
YtdW

⊥
t , 0 ≤ t ≤ T̄ ,

where we de�ne µφ, σφ, σ̃φ : [0, T̄ ] → C by µu,T,2 ≡ 0 and

µu,T,1(t) = (z1 + z2)

(
µ− σ2

2

)
1[0,u](t),

σu,T,1(t) =

(
(z1 + z2)σ + ϱ

∫ T

u

g⋆z1,z2(T − r)κ̂(r − t)dr

)
1[0,u](t),

σu,T,2(t) = ϱκ̂(u− t)1[0,u](t),
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σ̃u,T,1(t) =
√
1− ϱ21[0,u](t)

∫ T

u

g⋆z1,z2(T − r)κ̂(r − t)dr,

σ̃u,T,2(t) =
√
1− ϱ2κ̂(u− t)1[0,u](t). (2.97)

It is clear that the family (µφ)φ∈Φ is bounded in L∞ and hence uniformly in-

tegrable. Since κ̂ is locally square-integrable (see after (2.2)) and hence in

L2([0, T̄ ];R+), we get by the ϵ-δ-criterion for uniformly integrability (see Klenke

[83, Theorem 6.24]) that (|σu,T,2|2)0≤u≤T≤T̄ and (|σ̃u,T,2|2)0≤u≤T≤T̄ are uniformly

integrable as the indicator functions are bounded. Moreover, since g⋆z1,z2 is con-

tinuous (see Corollary 2.16 and part 1) of Theorem 2.3), hence bounded on [0, T̄ ],

we have ∣∣∣∣ ∫ T

u

g⋆z1,z2(T − r)κ̂(r − t)dr

∣∣∣∣ ≤ ∥g⋆z1,z2∥L∞(0,T̄ )∥κ̂∥L1(0,T̄ ) <∞

for all t ∈ [0, u] and all 0 ≤ u ≤ T ≤ T̄ . Thus the families (|σu,T,1|2)0≤u≤T≤T̄ and

(|σ̃u,T,1|2)0≤u≤T≤T̄ are uniformly bounded in L∞([0, T̄ ];C), and hence uniformly

integrable. Therefore, we may apply Proposition 2.5 with respect to the indexing

set Φ and families (µφ), (σφ) and (σ̃φ). This yields some T̃z1,z2 ∈ (0, T ⋆z1 ∧ T ⋆z2 ]

such that for all φ ∈ Φ and T ′ ∈ (0, T̃z1,z2 ], statements 1)�3) of Proposition 2.5

hold (with T ′ in place of T ). Now �x 0 ≤ u ≤ T ≤ T̃z1,z2 and set

(φ1, φ2, T
′) :=

(
(u, T, 1), (u, T, 2), u

)
∈ Φ× Φ× [0, T̃z1,z2 ].

Since a change of variables yields∫ T

u

g⋆z1,z2(T − r)κ̂(r − t)dr =

∫ T−u

0

g⋆z1,z2(r
′)κ̂
(
u− t+ (T − u)− r′

)
dr′

= (∆u−tκ̂ ∗ g⋆z1,z2)(T − u), 0 ≤ t ≤ u,

we have after plugging in (2.97) and some simpli�cations that the equations (2.22)

and (2.24) for gφ1,u =: g̃u,Tz1,z2 and g̃φ1,φ2,u =: h̃u,Tz1,z2 are equivalent to (2.93) and

(2.94), respectively; we note that the indicator functions in the de�nition (2.97)

of (µφ), (σφ) and (σ̃φ) do not appear in (2.93) and (2.94) since we have restricted

the equations to the interval [0, u]. This shows the existence and uniqueness of

the solutions to (2.93) and (2.94).
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To conclude, we note that setting t = T ′ = u in (2.96) yields

X̃φ1
u =

∫ T

u

g⋆z1,z2(T − r)ξu(r)dr + (z1 + z2)Xu,

X̃φ2
u = Yu

for φℓ = (u, T, ℓ) as before. Thus we have

exp(X̃φ1
u )X̃φ2

u = exp

(∫ T

u

g⋆z1,z2(T − r)ξu(r)dr + (z1 + z2)Xu

)
Yu

= LuṼ
z1
u Ṽ z2

u Yu

due to (2.13), (2.77) and the de�nition of g⋆z1,z2 = g⋆z1 + g⋆z2 + g⋆. Therefore (2.95)

follows directly from (2.26) (with time horizon T ′ = u in place of T ).

We can now apply Proposition 2.26 together with the general result in Pro-

position 2.2 to obtain an explicit formula for the mean squared hedging error

associated with European vanilla call and put options. We note that the same

issues discussed after Corollary 2.22 apply to the formulas below. That is, the

in�mum on the right-hand side of (2.98) could a priori be equal to 0 in some

cases, so that the result becomes vacuously true. While that issue was resolved

in Proposition 2.25 for the mean value processes and pure hedge coe�cients as-

sociated with European vanilla call and put options, the question remains open

for the hedging error.

Theorem 2.29. Suppose that T ∈ (0, T ⋆], a1 > 1 and a2 < 0 are such that

T ≤ min{T ⋆a1 , T
⋆
a2
, T ⋆a1+δ, T

⋆
a2−δ} ∧ inf

{
T̃z1,z2 : z1, z2 ∈ {a1, a2}+ iR

}
(2.98)

for some δ > 0, where T ⋆z is given by Corollary 2.16 and T̃z1,z2 by Proposition

2.26. Then for any t ∈ [0, T ] and initial wealth xt ∈ L2
P (Ft), the mean squared

hedging errors for the call and put options with strike K are given by

ε2t (xt, C
K
T ) = Lt(V

CK
T

t − xt)
2 + ε2t (C

K
T ),

ε2t (xt, P
K
T ) = Lt(V

PK
T

t − xt)
2 + ε2t (P

K
T ),
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where we de�ne

ε2t (C
K
T ) := (1− ϱ2)

∫ T

t

(∫∫
(a1+iR)2

( ∏
m=1,2

h⋆zm(T − u)
)
Zu,z1,z2
t π⊗2

K,a1
(dz1, dz2)

)
du,

ε2t (P
K
T ) := (1− ϱ2)

∫ T

t

(∫∫
(a2+iR)2

( ∏
m=1,2

h̃⋆zm(T − u)
)
Zu,z1,z2
t π⊗2

K,a2
(dz1, dz2)

)
du

for h⋆zm := κ̂ ∗ g⋆zm, π
⊗2
K,aℓ

:= πK,aℓ ⊗ πK,aℓ and Z
u,z1,z2 given by (2.95).

Proof. Let H1 := CK
T and H2 := PK

T . Recall that the European call and put

options can be represented in terms of the Mellin transforms (2.35) and (2.36)

so that due to (2.40), they are of the form (2.42) with νz1 := zδT , νz2 := 0 and

πHℓ = πK,aℓ . By Proposition 2.25 and due to the assumption (2.98), Proposition

2.18 applies to Hℓ for ℓ ∈ {1, 2}. After plugging in these particular choices of νz1 ,

νz2 and πHℓ together with g⋆νz1 ,νz2 = g⋆z (see the beginning of the proof of Corollary

2.16), (2.70) and (2.75) simplify to φzt = h⋆z(T − t) and

dV Hℓ
t =

√
Yt

(
σ

∫
aℓ+iR

zṼ z
t πK,aℓ(dz) dW

⋆
t +

∫
aℓ+iR

h⋆z(T − t)Ṽ z
t πK,aℓ(dz) dB

⋆
t

)

for ℓ ∈ {1, 2} and 0 ≤ t ≤ T . By (2.78), we also have Ξ̃zt = (zσ + ϱh⋆z(T − t))Ṽ z
t .

Recalling that dSt = σSt
√
YtdW

⋆
t by Theorem 2.3, it follows that

d[V Hℓ − ΞHℓ •S]t = (1− ϱ2)

(∫
aℓ+iR

h⋆z(T − t)Ṽ z
t πK,aℓ(dz)

)2

dt, 0 ≤ t ≤ T,

for ℓ ∈ {1, 2}. By Proposition 2.2 with t = 0, we have that
∫ T
0
Ltd[V

Hℓ −ΞHℓ •S]t

is integrable. Hence by the conditional Fubini theorem, we deduce that

EP

[ ∫ T

t

Lud[V
Hℓ − ΞHℓ •S]u

∣∣∣∣ Ft

]
= (1− ϱ2)

∫ T

t

EP

[
Lu

(∫
aℓ+iR

h⋆z(T − u)Ṽ z
u πK,aℓ(dz)

)2 ∣∣∣∣ Ft

]
du.

After rewriting the inner integral as(∫
aℓ+iR

h⋆z(T−u)Ṽ z
u πK,aℓ(dz)

)2

=

∫∫
(aℓ+iR)2

( ∏
m=1,2

h⋆zm(T−u)Ṽ
zm
u

)
π⊗2
K,aℓ

(dz1, dz2),
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the conditional Fubini theorem yields

EP

[ ∫ T

t

Lud[V
Hℓ − ΞH •S]u

∣∣∣∣ Ft

]
= (1− ϱ2)

∫ T

t

∫∫
(aℓ+iR)2

( ∏
m=1,2

h⋆zm(T − u)
)
EP [LuṼ

z1
u Ṽ z2

u Yu | Ft]π
⊗2
K,aℓ

(dz1, dz2)du.

By plugging in (2.95), we obtain

E

[ ∫ T

t

Lud[V
Hℓ − ΞHℓ •S]u

∣∣∣∣ Ft

]
= ε2t (Hℓ),

and hence the result follows by Proposition 2.2.

Since we already have the formulas (2.13) for L and (2.76) for V CK
T and V PK

T ,

Theorem 2.29 can therefore be used to calculate the hedging errors associated

with european call and put options in a semi-explicit form.

3 An application to semistatic portfolio problems

As an application of our previous results on the optimal mean�variance hedging of

claims in the rough Heston model, we now consider the problems of mean�variance

portfolio optimisation and mean�variance hedging in a semistatic setup which we

de�ne below. We start by studying those problems in a general semimartingale

model, and then show how to obtain explicit formulas in the case of the rough

Heston model.

Consider a �ltered probability space (Ω,F , (Ft)0≤t≤T , P ) satisfying the usual

conditions with time horizon T > 0; for simplicity, we assume that F0 is P -trivial.

As before, we assume that there exist a riskless asset with constant price 1 as

well as a risky asset with price process (St)0≤t≤T , where S is a semimartingale

that we assume to be continuous, which is the case in the rough Heston model.

As in �erný/Kallsen [25, Assumption 2.1], we also make the following standing

assumption for this section.

Assumption 3.1. There exists an equivalent local martingale measure Q for S

with square-integrable density dQ/dP .

By Delbaen/Schachermayer [36, Theorem 1.3] and as explained in Section

I.3.1, it follows from the continuity of S that there exists a variance-optimal

martingale measure Q⋆ ≈ P for S. Assumption 3.1 holds for the rough Heston
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model with any time horizon T ∈ (0, T ⋆], where T ⋆ > 0 is given in Theorem 2.3,

so that Q⋆ given by (2.16) is the variance-optimal martingale measure on [0, T ].

By results of [25] and as discussed in the introduction of the chapter, Assumption

3.1 ensures that the space

GT (S) = {ϑ •ST : ϑ ∈ ΘT (S)} ⊆ L2
P (FT )

of attainable gains is closed in L2
P (FT ), and also that for every payo�H ∈ L2

P (FT )

and x ∈ R, there exists a unique mean�variance hedging strategy ϑH(x).

In order to introduce semistatic portfolios, we consider an enlargement of the

�nancial market where in addition to the underlying asset S, we suppose that

an agent may trade in a basket B⃗ = (B1, . . . , BJ) of �nancial derivatives with

terminal values2 Bj ∈ L2
P (FT ) and prices pj ∈ R at time 0 for j = 1, . . . , J ;

we likewise write p⃗ = (p1, . . . , pJ). Whereas the agent may trade in S with a

�dynamic� strategy ϑ ∈ ΘT (S) as before, we assume that she may take only

�static� positions in the derivatives Bj, i.e., they can be bought or sold at time 0

and are subsequently held to maturity T . Since we assume that F0 is P -trivial,

the static part of the strategy is represented by a vector w ∈ RJ , which denotes

the number of units of each derivative bought or sold at time 0. By trading in a

self-�nancing way with a semistatic strategy (w, ϑ) ∈ RJ ×ΘT (S), an agent with

initial wealth x ∈ R attains the terminal wealth

VT (x,w, ϑ) = x+ w⊤(B⃗ − p⃗ ) + ϑ •ST . (3.1)

We refer to this enlarged market as the semistatic market (or �semistatic

setup�), and to the original market as the dynamic market. While Assumption 3.1

implies the absence of arbitrage in the dynamic market, there may a priori exist

arbitrage opportunities using semistatic strategies. We do not need to assume

the absence of arbitrage in the enlarged market, but we do require the following

standing assumption, which rules out the existence of arbitrage opportunities

that attain a nonzero terminal wealth with zero variance.

Assumption 3.2. For any pair (w, ϑ) ∈ RJ × ΘT (S) such that VT (0, w, ϑ) = c

P -a.s. for some c ∈ R, we have c = 0.

Note that for w = 0, Assumption 3.2 implies in particular that 1 ̸∈ GT (S);
2The notation for the basket of claims B⃗ = (B1, . . . , BJ) is unrelated to the Brownian

motion B underlying the rough Heston model (2.1); this distinction will always be clear from
the context.
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this also follows already from Assumption 3.1. We obtain in Lemma 3.10 below

an equivalent condition to Assumption 3.2 that can be stated explicitly in terms

of quantities related to S and B⃗. Since the derivatives B⃗ can only be traded at

time 0, Assumptions 3.1 and 3.2 imply that the so-called law of one price (see

�erný/Czichowsky [24]) holds for the market (S, B⃗). Indeed, it may be possible

to weaken Assumption 3.1 by imposing only the law of one price ([24, De�nition

2.5]; see also (i)⇔(v) in [24, Theorem 3.1]) to the dynamic market generated by

S, but we do not pursue this further.

The topic of hedging with semistatic strategies has received some attention in

recent years; see e.g. Acciaio et al. [4], Acciaio/Larsson [3] and Nutz et al. [99].

Particularly relevant for us are Di Tella et al. [38, 39], where the problem of

mean�variance hedging with semistatic strategies has been studied for general

stochastic volatility models under a risk-neutral measure. The restriction of tak-

ing only static positions is justi�ed in markets characterised by low liquidity or

high transaction costs, such as certain over-the-counter markets, where frequent

rebalancing may be impossible or too costly. The latter point is further emphas-

ised in [39], where the problem of constructing a sparse portfolio is considered,

i.e., one that only takes nonzero positions in a small subset of the derivatives (for

instance, in order to reduce trading costs).

3.1 Semistatic portfolio optimisation

Since our study of the rough Heston model is done under a semimartingale meas-

ure P , we are interested in the mean�variance portfolio optimisation problem as

well as mean�variance hedging. Thus our �rst goal is to characterise the strategies

(w, ϑ) ∈ RJ ×ΘT (S) that are mean�variance e�cient in the semistatic setup, in

the following sense.

De�nition 3.3. Let (w, ϑ) ∈ RJ ×ΘT (S) be a semistatic strategy. We say that

ϑ is mean�variance e�cient with respect to w if there does not exist any other

ϑ̃ ∈ ΘT (S) such that we have the inequalities{
EP [VT (0, w, ϑ̃)] ≥ EP [VT (0, w, ϑ)],

VarP [VT (0, w, ϑ̃)] ≤ VarP [VT (0, w, ϑ)],
(3.2)

where at least one of the inequalities is strict. Likewise, we say that the pair

(w, ϑ) ∈ RJ ×ΘT (S) is mean�variance e�cient if there does not exist any other
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pair (w̃, ϑ̃) ∈ RJ ×ΘT (S) such that we have the inequalities{
EP [VT (0, w̃, ϑ̃)] ≥ EP [VT (0, w, ϑ)],

VarP [VT (0, w̃, ϑ̃)] ≤ VarP [VT (0, w, ϑ)],
(3.3)

where at least one of the inequalities is strict.

The concept of mean�variance e�ciency is classic, and it is based on the prin-

ciple that a strategy is �good� (from a mean�variance point of view) if it attains

a terminal wealth with high expected value and low variance. In particular, since

the strategy (0, 0) attains a terminal wealth with zero variance, it must be mean�

variance e�cient due to Assumption 3.2. More generally, if (w, ϑ) ∈ RJ ×ΘT (S)

is such that VT (0, w, ϑ) = 0 P -a.s., then (w, ϑ) is mean�variance e�cient as well.

There are a number of equivalent de�nitions for mean�variance e�ciency,

some of which will be useful later in order to calculate the candidate mean�

variance e�cient strategies and prove that they are indeed e�cient. We refer to

Eberlein/Kallsen [44, Rule 10.43] for some of those conditions; in our setup, the

�rst four equivalent conditions given in the rule read as follows.

Lemma 3.4. Let (w, ϑ) ∈ RJ ×ΘT (S). Then the following statements are equi-

valent:

(∗) (w, ϑ) is mean�variance e�cient.

(a) Either VT (0, w, ϑ) = 0 P -a.s., or EP [VT (0, w, ϑ)] > 0 and (w, ϑ) maximises

EP [VT (0, w̃, ϑ̃)] among all pairs (w̃, ϑ̃) ∈ RJ ×ΘT (S) such that

VarP [VT (0, w̃, ϑ̃)] ≤ VarP [VT (0, w, ϑ)].

(b) (w, ϑ) minimises VarP [VT (0, w̃, ϑ̃)] among all pairs (w̃, ϑ̃) ∈ RJ × ΘT (S)

such that

EP [VT (0, w̃, ϑ̃)] ≥ EP [VT (0, w, ϑ)].

(c) For some m ≥ 0, (w, ϑ) minimises EP [(m− VT (0, w̃, ϑ̃))
2] among all pairs

(w̃, ϑ̃) ∈ RJ ×ΘT (S).

(d) Either VT (0, w, ϑ) = 0 P -a.s., or (w, ϑ) maximises the Sharpe ratio

SR(w̃, ϑ̃) :=
EP [VT (0, w̃, ϑ̃)]

(VarP [VT (0, w̃, ϑ̃)])1/2
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among all pairs (w̃, ϑ̃) ∈ RJ ×ΘT (S), where we set 0/0 = 0.

Proof. We can show the equivalence of (a)�(d) by the same proof as in [44, Rule

10.43]; this is possible due to the fact that the terminal wealth VT (0, w, ϑ) is linear

in (w, ϑ) and the set of admissible strategies RJ × ΘT (S) is a cone (in our case,

it is even a vector space). Two more comments are needed in order to make the

reasoning fully precise. First, we note that Assumption 3.2 is necessary in the

proof of (d)⇒ (a), since otherwise a Sharpe ratio equal to∞ is attainable and one

cannot assume that a competitor (w̃, ϑ̃) satis�es VarP [VT (0, w̃, ϑ̃)] > 0. Second,

the converse direction (a) ⇒ (d) in [44] only holds with this modi�ed version

of (a), where we deal separately with the case EP [VT (0, w, ϑ)] = 0. Otherwise,

the implication would not hold in the case where EP [VT (0, w̃, ϑ̃)] = 0 for all

(w̃, ϑ̃) ∈ RJ ×ΘT (S) (i.e., if P is a martingale measure for the extended market).

In that case, all strategies satisfy the original statement of [44, Rule 10.43(a)],

but the only mean�variance e�cient strategies are those that attain the terminal

wealth 0. With these additional remarks, the proof of [44, Rule 10.43] goes

through and gives the equivalence of (a)�(d).

It remains to show that (a)�(d) are equivalent to (∗). If (w, ϑ) is a mean�

variance e�cient strategy in the sense of De�nition 3.3, then it clearly satis�es

condition (a), so (∗) ⇒ (a). Conversely, suppose that (w, ϑ) satis�es both (a)

and (b). We consider two cases depending on which of the conditions in (a)

is satis�ed. If EP [VT (0, w, ϑ)] > 0, it is clear from the assumptions (a) and

(b) that (w, ϑ) is mean�variance e�cient by de�nition. On the other hand, if

VT (0, w, ϑ) = 0, we have by Assumption 3.2 that there does not exist a competitor

(w̃, ϑ̃) such that EP [VT (0, w̃, ϑ̃)] > 0 and VarP [VT (0, w̃, ϑ̃)] = 0; hence (w, ϑ) is

mean�variance e�cient also in this case. Since we had already shown (a) ⇔ (b),

we obtain (∗) ⇒ (a) ⇔ (a)∧(b) ⇒ (∗) so that (∗) is equivalent to (a)�(d), and

this concludes the proof.

Similarly, we also obtain equivalent conditions for the mean�variance e�ciency

of ϑ ∈ ΘT (S) with respect to w = 0; such a strategy can be seen as mean�variance

e�cient in the purely dynamic market. By the equivalence of the conditions (a)�

(e) in [44, Rule 10.43] and the same argument as for (w, ϑ), we get the following.

Lemma 3.5. Let ϑ ∈ ΘT (S). Then the following statements are equivalent:

(∗) ϑ is mean�variance e�cient with respect to w = 0.

(a) Either VT (0, 0, ϑ) = 0 P -a.s., or EP [VT (0, 0, ϑ)] > 0 and ϑ maximises
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EP [VT (0, 0, ϑ̃)] among all strategies ϑ̃ ∈ ΘT (S) such that

VarP [VT (0, 0, ϑ̃)] ≤ VarP [VT (0, 0, ϑ)].

(b) ϑ minimises VarP [VT (0, 0, ϑ̃)] among all strategies ϑ̃ ∈ ΘT (S) such that

EP [VT (0, 0, ϑ̃)] ≥ EP [VT (0, 0, ϑ)].

(c) For some m ≥ 0, ϑ minimises EP [(m − VT (0, 0, ϑ̃))
2] among all strategies

ϑ̃ ∈ ΘT (S).

(d) Either VT (0, 0, ϑ) = 0 P -a.s., or ϑ maximises the Sharpe ratio

SR(0, ϑ̃) =
EP [VT (0, 0, ϑ̃)]

(VarP [VT (0, 0, ϑ̃)])1/2

among all strategies ϑ̃ ∈ ΘT (S), where we set 0/0 = 0.

(e) ϑ =S mϑ⋆ for some m ≥ 0, where ϑ⋆ denotes the solution to the pure

investment problem

E[(1− ϑ̃ •ST )
2] −→ min

ϑ̃∈ΘT (S)
!

We note that condition (e) of Lemma 3.5 is equivalent to that of [44, Rule

10.43] in our setup, since by Assumption 3.1 and �erný/Kallsen [25, Corollary

2.5], ϑ • ST = 0 implies that ϑ =S 0 = 0ϑ⋆. Condition (e) of Lemma 3.5 is

particularly useful when we consider only dynamic strategies. Indeed, we have

already studied the pure investment problem for the rough Heston model in the

previous chapter and obtained an explicit formula for ϑ⋆; see Theorem 2.3. Thus

condition (e) in Lemma 3.5 parametrises the set of strategies ϑ ∈ ΘT (S) that are

mean�variance e�cient with respect to w = 0.

In order to �nd explicit formulas for the mean�variance e�cient strategies

in the semistatic market, our approach is to �rst determine the mean�variance

e�cient dynamic strategies ϑ ∈ ΘT (S) with respect to a �xed static strategy

w ∈ RJ , and then to �nd the static strategies w that correspond to a mean�

variance e�cient pair (w, ϑ). For the �rst part, we rely on well-known results on

mean�variance hedging, whereas the second part reduces to a �nite-dimensional

optimisation problem that can be solved explicitly. This approach is also similar



130 II Mean�variance hedging in the rough Heston model

to that of Di Tella et al. [38, 39], where the mean�variance hedging problem

is decomposed into �inner� and �outer� problems that determine the dynamic

and static parts of the optimal strategy, respectively. Our analysis also �ts into

the general framework of Fontana/Schweizer [48], from which we obtain more

explicit results by using the particular structure of the set of terminal gains that

are attainable by semistatic strategies.

We start by giving a decomposition of the derivatives Bj in L2
P (FT ) that

is helpful to our task. This is analogous to the Galtchouk�Kunita�Watanabe

(GKW) decomposition for Bj under P considered in [39, Equation (7)], in the

case where P is a risk-neutral measure. In general, the decomposition can be

obtained by solving a mean�variance hedging problem. We point out for later

use that the following result does not require Assumption 3.2, since for now we

work only with the dynamic market.

Lemma 3.6. Every payo� H ∈ L2
P (FT ) admits a unique decomposition

H = c+ ϑ •ST +H⊥ (3.4)

for some c ∈ R, ϑ ∈ ΘT (S) and H⊥ ∈ L2
P (FT ) such that

EP [H
⊥] = EP [H

⊥(ϑ̃ •ST )] = 0 (3.5)

for all ϑ̃ ∈ ΘT (S). Moreover, c = EQ⋆ [H] and ϑ = ϑH(c) is the mean�variance

hedging strategy for H starting from time 0 and initial capital c.

Proof. We consider the space of terminal gains attainable by dynamic strategies

de�ned by

GT (S) = {ϑ •ST : ϑ ∈ ΘT (S)} ⊆ L2
P (FT ).

Assumption 3.1 and �erný/Kallsen [25, Corollary 2.5.2] yield R ∩ GT (S) = {0},
which can be seen as a form of absence of arbitrage. Thus the space L2

P (FT ) can

be decomposed as the direct sum

L2
P (FT ) = R⊕ GT (S)⊕

(
R⊕ GT (S)

)⊥
. (3.6)

This yields for any H ∈ L2
P (FT ) a unique decomposition of the form

H = c+HS +H⊥ (3.7)

where c ∈ R, HS ∈ GT (S) and H⊥ ∈ (R ⊕ GT (S))⊥. Thus we have HS = ϑ •ST
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for some ϑ ∈ ΘT (S), and because H⊥ ∈ (R⊕GT (S))⊥, the condition (3.5) on H⊥

is satis�ed. Hence we have obtained a decomposition of the form (3.4) for H.

Note that the choices of c, HS and H⊥ in (3.7) are unique. It remains to

determine c and ϑ, and to show the uniqueness of ϑ. To see the latter, suppose

that ϑi •ST = HS for ϑ1, ϑ2 ∈ ΘT (S). Since there exists an ELMM Q⋆ for S with

square-integrable density, we get by the same argument as in the proof of [25,

Lemma 2.11] that the processes ϑ1 • S and ϑ2 • S are indistinguishable as their

terminal values coincide. Thus up to S-equivalence, there is a unique choice of

ϑ ∈ ΘT (S) such that ϑ •ST = HS.

To determine c and ϑ, note that c + ϑ • ST is the L2-projection of H onto

R ⊕ GT (S) by the decomposition (3.6). This implies that the pair (c, ϑ) attains

the in�mum

inf
(c,ϑ)∈R×ΘT (S)

E[(H − c− ϑ •ST )
2] = inf

c∈R
inf

ϑ∈ΘT (S)
E[(H − c− ϑ •ST )

2].

The inner in�mum on the right-hand side consists of a mean�variance hedging

problem forH with initial wealth c, and hence we must have ϑ = ϑH(c). Moreover,

it follows from [25, Theorem 4.10.2] (see also Proposition 2.2) that the minimiser

of the outer in�mum is c = V H
0 = EQ⋆ [H].

We return to the main problem of �nding mean�variance e�cient semistatic

portfolios. To that end, we introduce some notation. Lemma 3.6 yields for each

derivative Bj the decomposition

Bj = cBj + ϑBj •ST +B⊥
j , (3.8)

and we denote c⃗ := (cB1 , . . . , cBJ ), ϑ⃗ = (ϑB1 , . . . , ϑBJ ) and B⃗⊥ := (B⊥
1 , . . . , B

⊥
J ).

Thus by (3.1), we can decompose the terminal wealth attained by a strategy

(w, ϑ) ∈ RJ ×ΘT (S) as

VT (0, w, ϑ) =
J∑
j=1

wj(c
Bj − pj + ϑBj •ST +B⊥

j ) + ϑ •ST

= w⊤(c⃗− p⃗) + (w⊤ϑ⃗+ ϑ) •ST + w⊤B⃗⊥. (3.9)

We also recall the so-called opportunity process (Lt)0≤t≤T that was introduced in

the previous chapter. The de�nition of L can be found in (I.3.2), and (2.13) gives

an explicit formula for L in the rough Heston model. For this application, we

need only the initial value L0, which takes values in (0, 1] by �erný/Kallsen [25,
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Lemma 3.10]. Moreover, in the special case L0 = 1, we have by [25, Corollary 3.4]

that ϑ⋆ =S 0 and L ≡ 1. In that case, the so-called adjustment process (at)0≤t≤T

is also null by [25, Lemma 3.7], and hence S is a local P -martingale due to [25,

Proposition 3.13]. It also follows by [25, Lemma 3.2, part 3] that EP [ϑ •ST ] = 0

for every ϑ ∈ ΘT (S). For this reason, we sometimes need to consider the case

L0 = 1 separately.

Since it appears in condition (e) of Lemma 3.5, the pure investment strategy

ϑ⋆ ∈ ΘT (S) plays a role in determining the mean�variance e�cient strategies,

and so we now compute the mean and variance of VT (0, 0, ϑ⋆) in terms of L0.

Lemma 3.7. It holds that

EP [ϑ
⋆ •ST ] = 1− L0 and VarP [ϑ

⋆ •ST ] = L0(1− L0).

Proof. By [25, Corollary 3.4], we have the two equalities

L0 = EP [1− ϑ⋆ •ST ] = EP [(1− ϑ⋆ •ST )
2]. (3.10)

This immediately yields EP [ϑ∗ •ST ] = 1− L0, and we also get

EP [(ϑ
⋆ •ST )

2] = L0 + 2EP [ϑ
⋆ •ST ]− 1 = 1− L0,

so that VarP [ϑ⋆ •ST ] = EP [(ϑ
⋆ •ST )

2]− EP [ϑ
⋆ •ST ]

2 = L0(1− L0).

In order to calculate the mean and variance of the terminal wealth attained

by semistatic portfolios, the last quantity that we need is the covariance matrix

ΣB of the residuals B⃗⊥ de�ned by

ΣB = (ΣB
ij)

J
i,j=1 := CovP (B⃗

⊥) =
(
CovP (B

⊥
i , B

⊥
j )
)J
i,j=1

.

The matrix ΣB encodes the correlation structure of the unhedgeable parts of the

derivatives Bj; we return later to the question of how to compute ΣB explicitly

for the rough Heston model. For any pair (w, ϑ) ∈ RJ × ΘT (S), we obtain from

(3.9) that

EP [VT (0, w, ϑ)] = EP
[
w⊤(c⃗− p⃗ ) + (ϑ+ w⊤ϑ⃗ ) •ST + w⊤B⃗⊥]

= w⊤(c⃗− p⃗ ) + EP [(ϑ+ w⊤ϑ⃗ ) •ST ], (3.11)

VarP [VT (0, w, ϑ)] = VarP [(ϑ+ w⊤ϑ⃗ ) •ST ] + VarP [w
⊤B⃗⊥], (3.12)
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where the last equality follows by (3.5) since

CovP (ϑ̂ •ST , B⃗
⊥) = EP [(ϑ̂ •ST )B⃗

⊥] = 0

for ϑ̂ := ϑ + w⊤ϑ⃗. Given a static portfolio w ∈ RJ , we can now use (3.11) and

(3.12) to �nd the set of strategies ϑ ∈ ΘT (S) that are mean�variance e�cient

with respect to w; as it turns out, it consists of linear combinations of the pure

investment strategy ϑ⋆ and mean�variance hedging strategies ϑBj .

Lemma 3.8. The following statements hold for each w ∈ RJ .

1) A strategy ϑ ∈ ΘT (S) is mean�variance e�cient with respect to w if and

only if

ϑ =S −w⊤ϑ⃗+ βϑ⋆ (3.13)

for some β ≥ 0. In that case, the terminal wealth

VT (0, w, ϑ) = w⊤(B⃗ − p⃗ ) + ϑ •ST

attained by (w, ϑ) has expectation and variance given byEP [VT (0, w, ϑ)] = (1− L0)β + (c⃗− p⃗ )⊤w,

VarP [VT (0, w, ϑ)] = L0(1− L0)β
2 + w⊤ΣBw.

(3.14)

2) For any ϑ ∈ ΘT (S), there exists some strategy ϑ̃ ∈ ΘT (S) which is mean�

variance e�cient with respect to w and such that both inequalities in (3.2)

are satis�ed.

Proof. 1) For any pair (w, ϑ) ∈ RJ×ΘT (S), (3.11) and (3.12) give the expectation

and variance of VT (0, w, ϑ). Note that the terms w⊤(c⃗ − p⃗ ) and Var[w⊤B⃗⊥] on

the right-hand side of those equations do not depend on ϑ. Thus by (3.11) and

(3.12), ϑ is mean�variance e�cient with respect to w if and only if ϑ̂ := ϑ+w⊤ϑ⃗

is mean�variance e�cient with respect to 0, i.e., in the pure investment sense.

By Lemma 3.5 (∗) ⇔ (e), this holds if and only if ϑ̂ = βϑ⋆ for some β ≥ 0, which

is equivalent to (3.13). Thus ϑ is mean�variance e�cient if and only if it is given

by (3.13) for some β ≥ 0. By plugging ϑ̂ =S βϑ
⋆ into (3.11) and (3.12) and using

Lemma 3.7, we obtain

EP [VT (0, w, ϑ)] = w⊤(c⃗− p⃗ ) + EP [βϑ
⋆ •ST ] = (1− L0)β + (c⃗− p⃗ )⊤w,

VarP [VT (0, w, ϑ)] = VarP [βϑ
⋆ •ST ] + Var[w⊤B⃗⊥] = L0(1− L0)β

2 + w⊤ΣBw,
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which shows (3.14).

2) Fix some ϑ ∈ ΘT (S). By (3.12), we obtain

VarP [VT (0, w, ϑ)] ≥ VarP [w
⊤B⃗⊥] = w⊤ΣBw.

First suppose that L0 ∈ (0, 1) and set

β :=

√
VarP [VT (0, w, ϑ)]− w⊤ΣBw

L0(1− L0)
≥ 0.

It follows by the second part of (3.14) that the strategy ϑ̃ := −w⊤ϑ⃗+βϑ⋆ satis�es

VarP [VT (0, w, ϑ̃)] = VarP [VT (0, w, ϑ)]. Because ϑ̃ is mean�variance e�cient with

respect to w by part 1), we must also have EP [VT (0, w, ϑ̃)] ≥ EP [VT (0, w, ϑ)], and

this concludes the proof in this case. Suppose now that L0 = 1. As argued before

Lemma 3.7, we have EP [ϑ̂ •ST ] = 0 for all ϑ̂ ∈ ΘT (S). Then by (3.11), we have

EP [VT (0, w, ϑ)] = w⊤(c⃗− p⃗ ). Setting ϑ̃ := −w⊤ϑ⃗, (3.12) and (3.14) yield

EP [VT (0, w, ϑ)] = w⊤(c⃗− p⃗ ) = EP [VT (0, w, ϑ̃)],

VarP [VT (0, w, ϑ)] ≥ w⊤ΣBw = VarP [VT (0, w, ϑ̃)].

Since ϑ̃ is mean�variance e�cient with respect to w by part 1) with β = 0, this

concludes the proof.

Lemma 3.8 already gives a good intuition about the structure of the mean�

variance portfolio selection problem in the semistatic setup. Indeed, by inspecting

(3.13), we conclude that there are two relevant types of investment opportunities.

The �rst is given by the pure investment strategy ϑ⋆, which is an optimal strategy

in the purely dynamic setup. By investing in β ≥ 0 units of the strategy ϑ⋆, the

agent attains the terminal wealth ϑ •S⋆ and a risk-reward ratio determined by the

initial value L0 of the opportunity process; see Lemma 3.7. The other relevant

investment opportunities are the hedged derivatives, i.e., where the agent buys a

unit of Bj and o�sets it with the strategy −ϑBj in the underlying. Due to (3.8),

the terminal wealth attained by this strategy is cBj − pj + B⊥
j , with expected

value equal to the di�erence between cBj and the price pj. Due to Lemma 3.6,

cBj = EQ⋆ [Bj] may be interpreted as a �fair value� for Bj under the VOMM Q⋆

for S. Moreover, the hedged payo�s are uncorrelated from ϑ⋆ • ST due to (3.5),

and their correlation matrix is given by ΣB.

Thus the problem e�ectively reduces to a one-period model with �nitely many
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assets, where an agent may only buy or sell the payo� ϑ⋆ • ST or the hedged

derivatives cBj − pj + B⊥
j . Indeed, due to (3.13), it would be suboptimal (from

a mean�variance point of view) to use any other type of strategy. In line with

Lemma 3.8, we denote the strategies in this reduced market by (β, w) ∈ R+×RJ .

The discussion above suggests that any mean�variance e�cient strategy (w, ϑ) in

the original market corresponds via (3.13) to a mean�variance e�cient strategy

(β, w) in the reduced market. We now make a precise statement of this idea.

Lemma 3.9. Let (w, ϑ) ∈ RJ ×ΘT (S). The following statements are equivalent:

(a) (w, ϑ) is mean�variance e�cient.

(b) Either VT (0, w, ϑ) = 0 P -a.s., or there exists some β ≥ 0 such that (3.13)

holds and the pair (β, w) satis�es (1−L0)β+(c⃗− p⃗ )⊤w > 0 and maximises

(1− L0)β̃ + (c⃗− p⃗ )⊤w̃ among all pairs (β̃, w̃) ∈ R+ × RJ such that

L0(1− L0)β̃
2 + w̃⊤ΣBw̃ ≤ L0(1− L0)β

2 + w⊤ΣBw. (3.15)

Proof. �(a) ⇒ (b)�: Suppose that (w, ϑ) is mean�variance e�cient. Then it is

clear by De�nition 3.3 that ϑ is mean�variance e�cient with respect to w, and

so (3.13) holds for some β ≥ 0. If VT (0, w, ϑ) is not 0, we have by Assumption

3.2 that VarP [VT (0, w, ϑ)] > 0. Because (w, ϑ) is mean�variance e�cient, we

obtain by comparing with (0, 0) that EP [VT (0, w, ϑ)] > 0, and hence (3.14) yields

(1− L0)β + (c⃗− p⃗ )⊤w > 0. Now suppose for a contradiction that there exists a

pair (β̃, w̃) ∈ R+ × RJ such that (3.15) holds and

(1− L0)β̃ + (c⃗− p⃗ )⊤w̃ > (1− L0)β + (c⃗− p⃗ )⊤w.

De�ne ϑ̃ by (3.13) with w̃ and β̃ in place of w and β. Then by (3.14) and the

assumptions on (β̃, w̃), we have

EP [VT (0, w̃, ϑ̃)] > EP [VT (0, w, ϑ)] and VarP [VT (0, w̃, ϑ̃)] ≤ VarP [VT (0, w, ϑ)],

which contradicts the mean�variance e�ciency of (w, ϑ). Hence there exists no

such pair (β̃, w̃), and (β, w) maximises (1− L0)β̃ + (c⃗− p⃗ )⊤w̃ subject to (3.15).

This shows (a) ⇒ (b).

�(b) ⇒ (a)�: this is immediate if VT (0, w, ϑ) = 0 due to Assumption 3.2, so

we exclude that case without loss of generality. Suppose for a contradiction that

(w, ϑ) is not mean�variance e�cient. Note that by (3.14) and the assumption,
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we also have

EP [VT (0, w, ϑ)] = (1− L0)β + (c⃗− p⃗ )⊤w > 0.

Thus by the equivalence (a)⇔ (e) in Lemma 3.4, there exists (w̃, ϑ̃) ∈ RJ×ΘT (S)

such that

EP [VT (0, w̃, ϑ̃)] > EP [VT (0, w, ϑ)] and VarP [VT (0, w̃, ϑ̃)] ≤ VarP [VT (0, w, ϑ)].

Due to part 2) of Lemma 3.8, we may assume without loss of generality that ϑ̃

is mean�variance e�cient with respect to w̃, and hence given by (3.13) for some

β̃ ≥ 0 and with w̃ in place of w. Then the assumption on (w̃, ϑ̃) and (3.14) yield

that (3.15) holds and

(1− L0)β̃ + (c⃗− p⃗ )⊤w̃ > (1− L0)β + (c⃗− p⃗ )⊤w,

which contradicts the optimality of (β, w). Thus the pair (w, ϑ) must be mean�

variance e�cient.

Before we proceed to the main result, we take a brief detour and use Lemma 3.8

to characterise Assumption 3.2 explicitly in terms of the matrix ΣB. As we shall

see, this condition arises naturally as a necessary condition when using Lemma 3.9

to �nd the mean�variance e�cient strategies. Of course, in the following result,

we temporarily lift Assumption 3.2, and thus we must be careful to avoid using

previous results that require that assumption when proving the �if� statement.

Lemma 3.10. Suppose that Assumption 3.1 holds. Then Assumption 3.2 also

holds if and only if c⃗− p⃗ ∈ RanΣB.

Proof. To show the �only if� statement, suppose that c⃗ − p⃗ ̸∈ RanΣB for a

contradiction. As ΣB is a symmetric positive-semide�nite matrix, it admits an

orthogonal basis of eigenvectors so that KerΣB = (RanΣB)⊥. We can thus

decompose c⃗− p⃗ = w+w⊥, where w ∈ KerΣB and w⊥ ∈ RanΣB are orthogonal,

and we have w ̸= 0 as c⃗ − p⃗ ̸∈ RanΣB. Consider now the semistatic portfolio

(bw, bϑ), where b > 0 and ϑ = −w⊤ϑ⃗. Then by Lemma 3.8, ϑ is mean�variance

e�cient with respect to w and we have

EP [VT (0, bw, bϑ)] = bw⊤(c⃗− p⃗ ) = bw⊤(w + w⊥) = b|w|2 > 0,

VarP
[
VT (0, bw, bϑ)

]
= b2w⊤ΣBw = 0,

so that VT (0, bw, bϑ) = b|w|2 > 0 a.s., which contradicts Assumption 3.2.
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For the �if� statement, let (w, ϑ) ∈ ΘT (S) be such that VarP [VT (0, w, ϑ)] = 0.

We note that Assumption 3.2 is not needed for the proof of Lemma 3.6, and so

the calculations in (3.11) and (3.12) still hold. Thus we have

0 = VarP [(ϑ+ w⊤ϑ⃗ ) •ST ] + VarP [w
⊤B⃗⊥]

so that each of the terms on the right-hand side is null. By Assumption 3.1, the

�rst term can be null only if (ϑ+w⊤ϑ⃗ ) •ST = 0 P -a.s. Moreover, the second term

is equal to w⊤ΣBw so that w ∈ KerΣB. Since c⃗ − p⃗ ∈ RanΣB by assumption

and KerΣB = (RanΣB)⊥ as ΣB is symmetric, it follows that (c⃗− p⃗ )⊤w = 0. But

then both terms in the last line of (3.11) are null, and hence EP [VT (0, w, ϑ)] = 0,

i.e., we must have VT (0, w, ϑ) = 0 P -a.s. This concludes the proof.

With Lemma 3.9, we have reduced the problem of �nding the mean�variance

e�cient semistatic strategies (w, ϑ) ∈ RJ ×ΘT (S) to that of solving a quadratic

optimisation problem in R+ × RJ . The latter can also be seen as a classical

Markowitz mean�variance portfolio selection problem in the reduced market, as

discussed after Lemma 3.8. We are now almost ready to �nd explicit formulas

for the mean�variance e�cient strategies in the semistatic setup. The last step

before giving the main result is to recall how to solve the type of linear�quadratic

optimisation problem considered in Lemma 3.9 in an abstract sense. In the

following, we denote by A−1 the Moore�Penrose inverse (or pseudoinverse) of a

square matrix A; see Albert [6, Chapter III] for the de�nition and basic properties.

Lemma 3.11. Let Σ̄ ∈ Rd×d be a positive-semide�nite symmetric matrix, σ2 > 0

and D := {w̄ ∈ Rd : w̄⊤Σw̄ ≤ σ2}. Then for any v̄ ∈ Ran Σ̄ \ {0}, the set of

solutions w̄ ∈ Rd to the problem

v̄⊤w̄ −→ max
w̄∈D

!

is given by ŵ +Ker Σ̄, where

ŵ :=
σΣ̄−1v̄

(v̄⊤Σ̄−1v̄)1/2
∈ Ran Σ̄.

Proof. First, suppose that w̄ is a maximiser. Since ∇w̄(v̄
⊤w̄) = v̄ ̸= 0, w̄ cannot

belong to the interior of D, and hence w̄⊤Σ̄w̄ = σ2. By the Lagrange multiplier

method, we must also have v̄ = λΣ̄w̄ for some λ > 0; note that λ ̸= 0 as v̄ ̸= 0.
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Since v̄ ∈ Ran Σ̄, we have v̄ = Σ̄Σ̄−1v̄ (see [6, Equation (III.3.9.2)]) and thus

0 = v̄ − λΣ̄w̄ = Σ̄(Σ̄−1v̄ − λw̄),

i.e., Σ̄−1v̄ − λw̄ ∈ Ker Σ̄. By rearranging, this yields w̄ ∈ Σ̄−1v̄/λ+Ker Σ̄. Since

w̄ satis�es the boundary constraint and λ > 0, it follows that λ = (v̄⊤Σ̄−1v̄)1/2/σ,

and hence w̄ ∈ ŵ+Ker Σ̄. As Σ̄ is symmetric, we have by [6, Equation (III.3.8.1)]

that Σ̄−1 = (Σ̄2)−1Σ̄, and hence ŵ ∈ RanΣ̄.

To show that any such w̄ is a maximiser, note that Σ̄ induces a (true) metric

on Ran Σ̄ so that D∩Ran Σ̄ is compact. Thus there exists at least one maximiser

of the continuous function w̄ 7→ v̄⊤w̄ in D∩Ran Σ̄, and by the same argument as

above, the only possible maximiser is ŵ. Since v̄ ∈ Ran Σ̄ = (Ker Σ̄)⊥, we have

v̄⊤w̃ = 0 and w̃⊤Σ̄w̃ = 0 for all w̃ ∈ Ker Σ̄. It then follows trivially that ŵ is

also a maximiser of v̄⊤w̄ on D = (D ∩ Ran Σ̄)⊕Ker Σ̄, and so is any element of

ŵ +Ker Σ̄.

We are now ready to state and prove the main result. In the following, we

write w̄ := (β, w) and v̄ := (1− L0, c⃗− p⃗ ) for the strategies and expected values

of the payo�s in the reduced market introduced after Lemma 3.8, with payo�s

ϑ⋆ • ST and cBj − pj + B⊥
j . Likewise, we consider the covariance matrix of the

payo�s and its inverse, given by

Σ⋆,B :=

(
L0(1− L0) 0

0 ΣB

)
, (Σ⋆,B)−1 =

(
1{L0∈(0,1)}L

−1
0 (1− L0)

−1 0

0 (ΣB)−1

)

due to Lemma 3.7 and (3.5). For notational convenience, we index these vectors

and matrices by {0, . . . , J} rather than {1, . . . , J + 1}. As in previous results,

some care is still needed in order to include both cases L0 = 1 and L0 ∈ (0, 1).

Proposition 3.12. The portfolio (w, ϑ) ∈ RJ×ΘT (S) is mean�variance e�cient

if and only if

w ∈ L0β (Σ
B)−1(c⃗− p⃗ ) + KerΣB and ϑ =S −w⊤ϑ⃗+ βϑ⋆ (3.16)

for some β ≥ 0. In that case, the terminal wealth attained by the portfolio (w, ϑ)

has mean and varianceEP [VT (0, w, ϑ)] = β
(
1− L0 + L0(c⃗− p⃗ )⊤(ΣB)−1(c⃗− p⃗ )

)
,

VarP [VT (0, w, ϑ)] = L0β
2
(
1− L0 + L0(c⃗− p⃗ )⊤(ΣB)−1(c⃗− p⃗ )

)
.

(3.17)
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Proof. �If�: Let (w, ϑ) be given by (3.16) for some β ≥ 0. We note that (3.17)

follows directly by plugging the �rst part of (3.16) into (3.14). We now want to

show that (w, ϑ) is mean�variance e�cient. Due to (3.17), we have VT (0, w, ϑ) = 0

P -a.s. if and only if either β = 0, or if both L0 = 1 and c⃗ − p⃗ = 0. In those

cases, we immediately have by Lemma 3.9 that (w, ϑ) is mean�variance e�cient.

Otherwise, we can henceforth assume that

β > 0 and at least one of {1− L0, c⃗− p⃗ } is nonzero (3.18)

so that VT (0, w, ϑ) is not 0. Our goal is to check that (β, ϑ) satis�es the conditions

of statement (b) in Lemma 3.9, since that will immediately yield the mean�

variance e�ciency. First, note that equation (3.13) is the same as the second

part of (3.16). By (3.18) and the �rst part of (3.16), we also obtain

(1− L0)β + (c⃗− p⃗ )⊤w = β
(
(1− L0) + (c⃗− p⃗ )⊤(ΣB)−1(c⃗− p⃗ )

)
> 0.

It remains to show the maximality condition on w̄ = (β, w), i.e., that w̄ maximises

v̄⊤w̄′ over all w̄′ ∈ RJ+1 such that (w̄′)⊤Σ⋆,Bw̄′ ≤ σ2, where

σ2 := w̄⊤Σ⋆,Bw̄ = L0β
2
(
1− L0 + L0(c⃗− p⃗ )⊤(ΣB)−1(c⃗− p⃗ )

)
. (3.19)

By the �rst part of (3.16) and (3.18), we have σ2 > 0. Next, we note that Assump-

tion 3.2 and Lemma 3.10 yield c⃗− p⃗ ∈ RanΣB. Moreover, we have v̄0 = 0 if and

only if Σ⋆,B
00 = 0, and hence v̄ ∈ RanΣ⋆,B. We also have v̄ ̸= 0 by (3.18). Thus by

applying Lemma 3.11 to this maximisation problem, we obtain that w̄ is a solu-

tion if and only if w̄ ∈ ŵ +KerΣ⋆,B, where ŵ := (v̄⊤(Σ⋆,B)−1v̄)−1/2(σ(Σ⋆,B)−1v̄).

It remains to check that w̄ belongs to this set.

We now distinguish two cases. If L0 = 1 so that Σ⋆,B
00 vanishes, then the

condition w̄ ∈ ŵ +KerΣ⋆,B does not impose any constraint on β. Moreover, the

formula in (3.19) for σ2 and the �rst part of (3.16) yield

w ∈ σ(ΣB)−1(c⃗− p⃗ )

((c⃗− p⃗ )⊤(ΣB)−1(c⃗− p⃗ ))1/2
+KerΣB,

and hence w̄ ∈ ŵ + KerΣ⋆,B in this case. Likewise, if L0 ∈ (0, 1), we have by
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(3.19) and the �rst part of (3.16) that

w̄ ∈ σ√
1−L0

L0
+ (c⃗− p⃗ )⊤(ΣB)−1(c⃗− p⃗ )

(
L−1
0

(ΣB)−1(c⃗− p⃗ )

)
+ {0} ×KerΣB

= ŵ +KerΣ⋆,B.

Therefore in both cases, it follows by Lemma 3.9 that (w, ϑ) is mean�variance

e�cient, which proves the �if� statement.

�Only if�: Suppose that (w, ϑ) is mean�variance e�cient and hence satis�es

condition (b) in Lemma 3.9. If VT (0, w, ϑ) = 0 P -a.s., we have by (3.12) that

VarP [(ϑ+ w⊤ϑ⃗ ) •ST ] = VarP [w
⊤B⃗⊥] = 0.

In that case, w⊤ΣBw = 0 so that w ∈ KerΣB, and due to Assumption 3.1,

ϑ + w⊤ϑ⃗ =S 0. Hence in the case VT (0, w, ϑ) = 0 P -a.s., (w, ϑ) must satisfy

(3.16) with β = 0. Thus we may assume VT (0, w, ϑ) ̸≡ 0, and hence Lemma

3.9 yields the second part of (3.16) for some β ≥ 0. We recall v̄ and Σ⋆,B and

consider once again w̄ = (β, w) for this choice of β and w. As before, we have

v̄ ∈ RanΣ⋆,B. Due to condition (b) of Lemma 3.9, we have v̄⊤w̄ > 0 so that v̄ ̸= 0.

Since v̄ ∈ RanΣ⋆,B, the inequality v̄⊤w̄ > 0 also implies that σ2 := w̄⊤Σ⋆,Bw̄ > 0.

Condition (b) of Lemma 3.9 also gives that w̄ maximises v̄⊤w̄′ over all w̄′ ∈ RJ+1

such that (w̄′)⊤Σ⋆,Bw̄′ ≤ σ2. Since we have checked its conditions, we may

apply Lemma 3.11 to this problem, which yields that w̄ ∈ ŵ + KerΣ⋆,B, where

ŵ := (v̄⊤(Σ⋆,B)−1v̄)−1/2σ(Σ⋆,B)−1v̄.

We once again distinguish the two cases L0 = 1 and L0 ̸= 1. If L0 = 1, then

the condition w̄ ∈ ŵ+KerΣ⋆,B does not give any information on β. On the other

hand, it yields for w that

w ∈ σ(ΣB)−1(c⃗− p⃗ )

((c⃗− p⃗ )⊤(ΣB)−1(c⃗− p⃗ ))1/2
+KerΣB.

Then the �rst part of (3.16) holds if we replace β with

β̃ :=
σ√

(c⃗− p⃗ )⊤(ΣB)−1(c⃗− p⃗ )
.

By the choice of β ≥ 0, we also have that the second part (3.16) holds for the

original β. However, since ϑ⋆ = 0 in this case as argued after (3.8), the second

part of (3.16) also holds if we replace β with β̃, and so we conclude that both
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parts of (3.16) are satis�ed for β̃.

If L0 ∈ (0, 1), we have Σ⋆,B
00 ̸= 0, and hence the condition w̄ ∈ ŵ + KerΣ⋆,B

yields

w̄ ∈ σ(Σ⋆,B)−1v̄√
v̄⊤(Σ⋆,B)−1v̄

+ {0} ×KerΣB

=
σ√

1−L0

L0
+ (c⃗− p⃗ )⊤(ΣB)−1(c⃗− p⃗ )

(
L−1
0

(ΣB)−1(c⃗− p⃗ )

)
+ {0} ×KerΣB.

By rearranging, we obtain

β =
σL−1

0√
1−L0

L0
+ (c⃗− p⃗ )⊤(ΣB)−1(c⃗− p⃗ )

and w ∈ L0β(Σ
B)−1(c⃗− p⃗ ) +KerΣB

(3.20)

so that w satis�es the �rst part of (3.16). The second part of (3.16) also holds

by the choice of β, and therefore (w, ϑ) satis�es (3.16). This completes the proof

of the equivalence.

In the process of showing Proposition 3.12, we have already solved the Marko-

witz problem in this setup, namely the version related to condition (a) of Lemma

3.4, where we seek to maximise the expectation of the terminal wealth under

a constraint on the variance. Other versions of the Markowitz problem can be

solved in a similar way; see Fontana/Schweizer [48]. It is now also straightforward

to �nd the optimal Sharpe ratio in this setup.

Corollary 3.13. Suppose that c⃗− p⃗ ∈ RanΣB with c⃗ ̸= p⃗ or L0 ̸= 1. The optimal

Sharpe ratio for the semistatic portfolio optimisation problem, de�ned by

SRS,B⃗
:= sup

(w,ϑ)∈RJ×ΘT (S)
VarP [VT (0,w,ϑ)]>0

SR(w, ϑ) = sup
(w,ϑ)∈RJ×ΘT (S)
VarP [VT (0,w,ϑ)]>0

EP [VT (0, w, ϑ)]

(VarP [VT (0, w, ϑ)])1/2
,

is given by

SRS,B⃗ =
√
SR2

S + (c⃗− p⃗ )⊤(ΣB)−1(c⃗− p⃗ ), (3.21)

where SRS =
√

1−L0

L0
is the optimal Sharpe ratio attainable by trading only in S.

Proof. By Lemma 3.4 (e) ⇒ (d), it su�ces to calculate the Sharpe ratio of any

mean�variance e�cient strategy (w, ϑ) with VT (w, ϑ) ̸≡ 0. Due to Proposition

3.12, we may consider the strategy (w, ϑ) given by (3.16) for an arbitrary choice
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of β > 0. We note that VarP [VT (0, w, ϑ)] > 0 due to (3.17) and the assumptions.

Then the optimal Sharpe ratio is

SRS,B⃗ = SR(w, ϑ) =

√
1− L0

L0

+ (c⃗− p⃗ )⊤(ΣB)−1(c⃗− p⃗ ) (3.22)

independently of β > 0 due to (3.17). Applying this formula in the case J = 0

yields that the optimal Sharpe ratio attainable by trading only in S is given by

SRS =
√

1−L0

L0
; this result for the dynamic case can also be found in �erný/Kallsen

[25, Proposition 3.6]. Plugging into (3.22) then yields (3.21).

We now summarise the main conclusions from the previous results. Under

Assumption 3.2, which is equivalent to c⃗− p⃗ ∈ RanΣB = Ran (ΣB)−1 by Lemma

3.10, we have (c⃗− p⃗ )⊤(ΣB)−1(c⃗− p⃗ ) > 0 if and only if c⃗− p⃗ ̸= 0. Thus by (3.21),

the additional possibility of taking static positions in the derivatives B1, . . . , BJ

provides a bene�t in comparison to being able to trade only S if and only if

c⃗ ̸= p⃗, i.e., if some of the market prices pj do not coincide with the constants

cBj = EQ⋆ [Bj] given by Lemma 3.6. One may interpret the constants cBj as the

�fair values� of Bj under the variance-optimal martingale measure Q⋆ for S. Thus

if there are discrepancies between the prices and fair values of the derivatives Bj,

then (3.16) yields semistatic strategies that achieve a higher Sharpe ratio than

what is achievable by trading in S alone. On the other hand, if c⃗ = p⃗ and L0 < 1,

then by (3.16) it is optimal (from a mean�variance standpoint) to not take any

static positions in the derivatives. Finally, consider the case c⃗ = p⃗ and L0 = 1

that is excluded in the assumptions of Corollary 3.13. As argued after (3.8), we

have that P is a local martingale measure for S and hence also the VOMM for S,

i.e., P = Q⋆, and we have EP [ϑ •ST ] = 0 for any ϑ ∈ ΘT (S). Moreover, Lemma

3.6 yields

p⃗ = c⃗ = EQ⋆ [B⃗] = EP [B⃗]

so that P is also a martingale measure for the static payo�s and a local martingale

measure for the enlarged market (S, B⃗). In that case, it is not possible to achieve

a nonzero expected return with any admissible strategy (w, ϑ) ∈ RJ × ΘT (S),

and hence it is optimal to not trade in either S or B⃗.

3.2 Semistatic hedging

We now introduce the problem of mean�variance hedging in the semistatic mar-

ket, which is more closely related to the one considered in Di Tella et al. [38, 39].
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We start with the same setup as before, i.e., a risky asset with continuous se-

mimartingale price process (St)0≤t≤T and a basket B⃗ of claims Bj ∈ L2
P (FT )

(j = 1, . . . , J) that may be bought or sold at time 0 for a price pj ∈ R. We also

make the same Assumptions 3.1 and 3.2. We are interested in solving the mean�

variance hedging problem for a claim H ∈ L2
P (FT ) over the set of semistatic

portfolios (w, ϑ) ∈ RJ ×ΘT (S), i.e., we consider the problem

ε2semi(x,H) = inf
(w,ϑ)∈RJ×ΘT (S)

EP
[(
H − VT (x,w, ϑ)

)2]
, (3.23)

where x ∈ R is the (�xed) initial wealth and VT (x,w, ϑ) is given by (3.1). In

other words, we extend the original MVH problem (2.3) by allowing the use of

static strategies w ∈ RJ . We show below that there exists a unique solution

(wH(x), ϑ̂H(x)) to (3.23), where we write ϑ̂ instead of ϑ in order to distinguish it

from the solution to the MVH problem (2.3) for H in the dynamic market.

As done previously in (3.8) for the portfolio selection problem, we start by

using Lemma 3.6 to decompose Hj and H̄ as

Bj = cBj + ϑj •ST +B⊥
j ,

H = cH + ϑH •ST +H⊥, (3.24)

where cBj , cH ∈ R, ϑBj , ϑH ∈ ΘT (S) and B⊥
j , H

⊥ ∈ L2
P (FT ) are such that

EP [B
⊥
j ] = EP [B

⊥
j (ϑ̃ •ST )] = EP [H

⊥] = EP [H
⊥(ϑ̃ •ST )] = 0 (3.25)

for all ϑ̃ ∈ ΘT (S). As before, let ΣB = CovP (B⃗
⊥) be the covariance matrix of

the residuals B⃗⊥ = (B⊥
1 , . . . , B

⊥
J ). We also consider the covariance matrix of the

concatenation, given by

ΣH,B = (ΣH,B
ij )Ji,j=0 = CovP

(
(H⊥, B⃗⊥)

)
=

(
Σ̄H,B

00 ΣH,B
0·

ΣH,B
·0 ΣB

)
, (3.26)

where ΣH,B
00 = VarP [H

⊥] and

Σ̄H,B
0j = Σ̄H,B

j0 = CovP (B
⊥
j , H

⊥), for j = 1, . . . , J.

Henceforth we assume for simplicity that ΣH,B is positive-de�nite, i.e., invertible.

Similarly to Proposition 3.12, one could also consider the case where ΣH,B is

singular, in which case the optimal hedge would not be unique.
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Proposition 3.14. Suppose that ΣH,B is positive-de�nite. Then there exists a

unique solution (wH(x), ϑ̂H(x)) ∈ RJ ×ΘT (S) to (3.23). It is given by

wH(x) = Σ̃−1Σ̃0(x), (3.27)

ϑ̂H(x) = ϑH −
(
wH(x)

)⊥
ϑ⃗+

(
cH − x− (c⃗− p⃗ )⊤wH(x)

)
ϑ⋆, (3.28)

where Σ̃ := ΣB + L0(c⃗ − p⃗ )(c⃗ − p⃗ )⊤ and Σ̃0(x) := ΣH,B
·0 + L0(c

H − x)(c⃗ − p⃗ ).

Moreover, the mean squared error (3.23) attained by (wH(x), ϑ̂H(x)) is given by

ε2semi(x,H) = ΣH,B
00 + L0(c

H − x)2 −
(
Σ̃0(x)

)⊤
Σ̃−1Σ̃0(x). (3.29)

Proof. For any semistatic portfolio (w, ϑ) ∈ RJ ×ΘT (S), we have by (3.24) that

EP
[(
H − VT (x,w, ϑ)

)2]
= EP

[(
cH − x− w⊤(c⃗− p⃗ ) + (ϑH − w⊤ϑ⃗− ϑ) •ST +H⊥ − w⊤B⃗⊥)2].

By the orthogonality properties (3.25) of H⊥ and H⃗⊥, we can decompose this as

VarP [H
⊥ − w⊤B⃗] + EP

[(
cH − x− w⊤(c⃗− p⃗ ) + (ϑH − w⊤ϑ⃗− ϑ) •ST

)2]
,

(3.30)

where the �rst term does not depend on ϑ, and hence we only need to minimise

the second term over ϑ ∈ Θ(S). For a �xed w ∈ RJ , note that the problem

EP
[(
cH − x− w⊤(c⃗− p⃗ )− ϑ̃ •ST

)2] −→ min
ϑ̃∈ΘT (S)

! (3.31)

is a mean�variance hedging problem for the payo� cH − x − w⊤(c⃗ − p⃗ ) in the

dynamic market. By linearity and since the payo� is constant, (3.31) is (up to a

scalar factor) equivalent to the pure investment problem (2.4). Thus the optimiser

is a multiple of the pure investment strategy, i.e., ϑ̃ = (cH − x − w⊤(c⃗ − p⃗ ))ϑ⋆,

and by (3.10), we have

EP
[(
cH − x− w⊤(c⃗− p⃗ )− ϑ̃ •ST

)2]
=
(
cH − x− w⊤(c⃗− p⃗ )

)2
EP [(1− ϑ⋆ •ST )

2]

=
(
cH − x− w⊤(c⃗− p⃗ )

)2
L0. (3.32)

Hence by linearity, ϑ ∈ ΘT (S) minimises the second term in (3.30) if and only if
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−ϑH + w⊤ϑ⃗+ ϑ = ϑ̃ is a minimiser for (3.31), which yields

ϑ = ϑH − w⊤ϑ⃗+
(
cH − x− w⊤(c⃗− p⃗ )

)
ϑ⋆.

Thus any solution to (3.23) must satisfy (3.28). Plugging (3.32) into (3.30), it

remains to solve over w the minimisation problem

VarP [H
⊥ − w⊤B⃗⊥] + L0

(
cH − x− w⊤(c⃗− p⃗ )

)2 −→ min
w∈RJ

!

Recall that we have L0 = EP [(1− ϑ⋆ •ST )
2] by (3.10). Together with the ortho-

gonality properties from (3.25), we can rewrite the problem as

EP

[(
H⊥ − w⊤B⃗⊥ +

(
cH − x− w⊤(c⃗− p⃗ )

)
(1− ϑ⋆ •ST )

))2]
−→ min

w∈RJ
!

Collecting the constant and linear terms in w, we obtain

EP

[(
H⊥+(cH−x)(1−ϑ⋆ •ST )−w⊤(B⃗⊥+(c⃗−p⃗ )(1−ϑ⋆ •ST )

))2]
−→ min

w∈RJ
! (3.33)

This is a linear regression problem in L2
P (FT ) of the form

E[(Û − w⊤Ũ)2] −→ min
w∈RJ

!,

where Ũ := B⃗⊥ + (c⃗− p⃗ )(1− ϑ⋆ •ST ) and Û := H⊥ + (cH − x)(1− ϑ⋆ •ST ). Note

that by (3.10) and (3.25), we have

EP [Ũ Ũ
⊤] = EP

[(
B⃗⊥ + (c⃗− p⃗ )(1− ϑ⋆ •ST )

)(
B⃗⊥ + (c⃗− p⃗ )(1− ϑ⋆ •ST )

)⊤]
= ΣB + L0(c− p)(c− p)⊤ = Σ̃, (3.34)

and hence EP [Ũ Ũ⊤] is positive-de�nite like ΣB since L0(c⃗− p⃗ )(c⃗− p⃗ )⊤ is positive-

semide�nite. Therefore (3.33) admits the unique minimiser

wH(x) = (EP [Ũ Ũ
⊤])−1EP [Û Ũ ] (3.35)

with minimum error

ε2semi(x,H) = EP [Û
2]− (EP [Û Ũ ])

⊤(EP [Ũ Ũ
⊤])−1EP [Û Ũ ]. (3.36)
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Similarly to (3.34), we also have

EP [Û Ũ ] = EP
[(
H⊥ + (cH − x)(1− ϑ⋆ •ST )

)(
B⃗⊥ + (c⃗− p⃗ )(1− ϑ⋆ •ST )

)]
= ΣH,B

·0 + L0(c
H − x)(c⃗− p⃗ ) = Σ̃0.

Plugging into (3.35) together with (3.34) yields (3.27). Therefore, the unique

solution (wH(x), ϑ̂H(x)) ∈ RJ × ΘT (S) to (3.23) is given by (3.27) and (3.28).

Note that we also obtain from (3.25) that

EP [Û
2] = EP

[(
H⊥ + (cH − x)(1− ϑ⋆ •ST )

)2]
= ΣH,B

00 + L0(c
H − x)2,

and plugging into (3.36) yields (3.29). This concludes the proof.

3.3 European vanilla options in the rough Heston model

Finally, we return to the question of how to obtain explicit formulas in the rough

Heston model. As discussed at the beginning of the section, we consider a time

horizon T ∈ (0, T ⋆], where T ⋆ > 0 is given by Theorem 2.3 so that the variance-

optimal martingale measure Q⋆ is well de�ned. For simplicity, we consider a

basket of European call options Bj = (ST −Kj)
+ with strikes 0 < K1 < · · · < KJ

and prices p1 > p2 > · · · > pJ > 0. Under the assumption that c⃗ − p⃗ ∈ RanΣB,

the mean�variance e�cient semistatic portfolios (w, ϑ) have by Proposition 3.12

the form

w = L0β (Σ
B)−1(c⃗− p⃗) and ϑ = −w⊤ϑ⃗+ βϑ∗,

for some β ≥ 0. Hence we should like to have explicit formulas for L0, ϑ
⋆, cBj , ϑBj

and ΣB. We already have most of those: for instance, we have explicit formulas

for ϑ⋆ and L from Theorem 2.3. Likewise, under some assumptions, Corollary 2.19

gives a formula for cBj = EQ⋆ [Bj] = V
Bj

0 . The hedging strategies ϑBj = ϑBj(cBj)

can also be determined by solving the feedback equation (2.9) in Proposition 2.1,

since we have formulas for each of the inputs. Therefore, the only missing element

is the covariance matrix ΣB. In fact, we already have an explicit formula for the

diagonal of ΣB, since

ΣB
jj = EP [(B

⊥
j )

2] = EP [(Bj − cBj − ϑBj •ST )
2] = ε2(cBj , HBj),

where ε2(cBj , HBj) is the mean squared hedging error for Bj in the dynamic

market de�ned in (2.3), which we can calculate with Theorem 2.29. As we show
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in the following result, the rest of the matrix ΣB can be obtained by polarisation.

We note that although the discussion above applies to the mean�variance

portfolio optimisation problem, the mean�variance hedging problem for another

European call option of the form H = (ST −K)+ can be handled in a similar way.

By Lemma 3.14, it su�ces to additionally determine cH , ϑH ,ΣH,B
·0 and ΣH,B

00 . Once

again, we obtain formulas for cH and ϑH from Corollary 2.19 and Proposition 2.1,

and the result below can also be used to compute the extended matrix ΣH,B from

(3.26), which yields ΣH,B
·0 and ΣH,B

00 .

Proposition 3.15. Suppose that T ∈ (0, T ⋆], a1 > 1 and a2 < 0 are such that

T ≤ min{T ⋆a1 , T
⋆
a2
, T ⋆a1+δ, T

⋆
a2−δ} ∧ inf

{
T̃z1,z2 : z1, z2 ∈ {a1, a2}+ iR

}
for some δ > 0, where T ⋆z is given by Corollary 2.16 and T̃z1,z2 by Proposition

2.26. Then for Bj := (ST −Kj)
+ with strikes 0 < K1 < · · · < KJ , the covariance

matrix ΣB of the residuals B⊥
j is given by

ΣB
jk = (1− ϱ2)

∫ T

0

(∫∫
C2

( ∏
m=1,2

h⋆zm(T − u)
)
Zu,T,z1,z2

0 πKj ,a(dz1)πKk,a(dz2)

)
du

(3.37)

for j, k ∈ {1, . . . , J}, where πKj ,a is given by (2.37), Zu,T,z1,z2 is de�ned in (2.95)

and h⋆zm = κ̂ ∗ g⋆zm, where g
⋆
zm is the solution to (2.60) with z = zm.

Proof. As noted above, the diagonal term ΣB
jj corresponds to the mean squared

hedging error associated with Bj with initial wealth cj = V Bj , and hence by

Theorem 2.29 is given by

ΣB
jj = (1− ϱ2)

∫ T

0

(∫∫
C2

( ∏
m=1,2

h⋆zm(T − u)
)
Zu,T,z1,z2

0 π⊗2
Kj ,R

(dz1, dz2)du,

which immediately yields (3.37) for j = k. We can obtain the rest of the covari-

ance matrix by polarisation, since we have

ΣB
jk = EP [B

⊥
j B

⊥
k ] =

EP [(B
⊥
j +B⊥

k )
2]− EP [(B

⊥
j −B⊥

k )
2]

4
(3.38)

for j, k ∈ {1, . . . , J}. Recall that by (3.4), B⊥
j is the projection of Bj onto

(R ⊕ GT (S))⊥. Thus by linearity, B⊥
j + B⊥

k is the projection of Bj + Bk onto

(R⊕ GT (S))⊥, and hence

EP [(B
⊥
j +B⊥

k )
2] = ε20(Bj +Bk),
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where we recall that Bj = (ST −Kj)
+. By (2.35), we can express

(s−Kj)
+ + (s−Kk)

+ =

∫
C
szπ+

j,k(dz),

where we set π+
j,k := πKj ,a + πKk,a for ease of notation. Hence by replacing πK,a1

with π+
j,k in the proof of Theorem 2.29, we obtain that the mean squared hedging

error ε20((ST −Kj)
+ + (ST −Kk)

+) is given by

(1− ϱ2)

∫ T

0

(∫∫
C2

( ∏
m=1,2

h⋆zm(T − u)
)
Zu,T,z1,z2

0 (π+
j,k)

⊗2(dz1, dz2)

)
du. (3.39)

By an analogous argument, E[(B⊥
j −B⊥

k )
2] = ε20

(
(ST−Kj)

+−(ST−Kk)
+
)
equals

(1− ϱ2)

∫ T

0

(∫∫
C2

( ∏
m=1,2

h⋆zm(T − u)
)
Zu,T,z1,z2

0 (π−
j,k)

⊗2(dz1, dz2)

)
du, (3.40)

where π−
j,k := πKj ,R − πKk,R. Since we have

(π+
j,k)

⊗2 = π⊗2
Kj ,a

+ πKj ,a ⊗ πKk,a + πKk,a ⊗ πKj ,a + π⊗2
Kk,a

,

(π−
j,k)

⊗2 = π⊗2
Kj ,a

− πKj ,a ⊗ πKk,a − πKk,R ⊗ πKj ,a + π⊗2
Kℓ,a

,

it follows that

(π+
j,k)

⊗2 − (π−
j,k)

⊗2 = 2πKj ,a ⊗ πKk,a + 2πKk,a ⊗ πKj ,a.

Hence by plugging (3.39) and (3.40) into (3.38) and taking di�erences, we obtain

ΣB
jk =

1− ϱ2

2

∫ T

0

(∫∫
C2

( ∏
m=1,2

h⋆zm(T − u)
)
Zu,T,z1,z2

0 πKj ,a(dz1)πKk,a(dz2)

)
du

+
1− ϱ2

2

∫ T

0

(∫∫
C2

( ∏
m=1,2

h⋆zm(T − u)
)
Zu,T,z1,z2

0 πKk,a(dz1)πKj ,a(dz2)

)
du.

(3.41)

Finally, we note that the product
∏

m=1,2 h
⋆
zm(T −u) is symmetric in (z1, z2), and

so is Zu,T,z1,z2
0 as noted in Remark 2.28. Hence the two integrals in (3.41) are

equal, which yields (3.37).

As discussed above, we have with Proposition 3.15 all of the elements that we

need to obtain explicit formulas for the mean�variance portfolio optimisation and
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hedging problems in the case of European call options via Propositions 3.12 and

3.14, respectively. It is straightforward to obtain an analogous result for European

put options. In principle, these results can be extended to other cases such as

the ones considered in Examples 2.12�2.14, provided that one can calculate the

mean squared hedging errors as in Theorem 2.29, and thus obtain an analogue of

Proposition 3.15. As mentioned after Assumption 3.1, it would also be interesting

to study whether Propositions 3.12 and 3.14 hold under the weaker assumptions

in �erný/Czichowsky [24]. We leave such generalisations to future research.

4 Global existence of solutions to nonlinear Vol-

terra equations

Our goal in this section is twofold. First, we seek to obtain su�cient conditions

for the existence of a global solution x : I → Rn to a nonlinear Volterra equation

of the form

x(t) = x0 +

∫ t

0

k(t− s)f
(
x(s), s

)
ds, t ∈ I, (4.1)

for given n ∈ N, x0 ∈ Rn, k ∈ L1
loc(I;R+) (that we refer to as a kernel) and

f : Rn × I → Rn, where I is an interval of the form [0, T̄ ] or [0, T̄ ) for some

T̄ > 0 (which may be ∞ if I is right-open). Our second goal is to use this result

to show Theorem 2.23, i.e., that if there exists a solution to (2.60) on [0, T̄ ] for

z = a ∈ R for some T̄ > 0, then there is a unique solution to (2.60) on [0, T̄ ] for

all z ∈ a+ iR. This can be achieved by modifying (2.60) into the form (4.1) and

then applying the result from the �rst part. As argued in Section 2, the existence

of solutions to (2.60) on a common time interval for all z ∈ a+iR shows that the

Mellin transform approach can be used for solving the mean�variance hedging

problem for vanilla European call and put options in the rough Heston model.

4.1 Global existence result

We now outline the strategy for the �rst part. From Proposition A.2.2 in the

Appendix, we know that there exists a continuous solution x to (4.1) at least

locally on some small time interval [0, T ]. As pointed out in Remark A.2.3,

such a solution can be extended into a noncontinuable solution to (4.1), i.e., a

continuous solution x : [0, T̂ ) → Rn to (4.1) on [0, T̂ ) for some T̂ ∈ (0, T̄ ] such

that either T̂ = T̄ or x blows up at T̂ in the sense that lim supt↗T̂ |x(t)| = ∞.

Thus if we can ensure that such a noncontinuable solution does not blow up, it
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follows that there exists a global solution to (4.1).

A classic way to prevent such a blow-up is to look for an invariant set D

that �traps� solutions to (4.1), i.e., such that any solution x stays in D forever if

x0 ∈ D. If D is also compact, hence bounded, it follows that a solution to (4.1)

cannot blow up, so that any noncontinuable solution is also a global solution.

Thus we look for su�cient conditions that ensure that a given set D ⊆ Rn traps

solutions to (4.1), which we now brie�y explain.

As in the case of an ordinary di�erential equation (where k ≡ 1), we look for

a set D such that f �pushes� x inwards at all points of the boundary ∂D. This

boundary condition is not su�cient to ensure the invariance of D in general, as

discussed below in (4.5). Indeed, although f pushes x back towards the interior

of D whenever x approaches the boundary, the path-dependent �drift� caused by

the convolution with k may outweigh f and push x out of D. However, under

some additional assumptions on k, we can show that the path-dependent �drift�

is mean-reverting towards a weighted mean of the past trajectory of x. Hence

this drift can never push x out if D is convex, so that D is an invariant set.

To prove that the conditions mentioned above imply the invariance of D, we

rely on some key observations from the proof of Abi Jaber et al. [1, Theorem

3.6]. There, su�cient conditions are given for the existence of a weak solution,

taking values in Rn
+, to a stochastic Volterra equation. Our insight is that those

observations can be extended to �nd an invariant set to (4.1) that need only

be convex, rather than an orthant Rn
+ or a convex cone. This generalisation is

useful because we need a bounded invariant set D in order to ensure the global

existence. More generally, the set D can be replaced with an increasing family

of sets (Dt)t≥0 in order to deal with the time-dependence of f in a more �exible

way; this is also given in the main Theorem 4.9 below. After the proof of that

theorem, we compare it with a related recent result by Alfonsi [7].

We now start our analysis of the equation (4.1). In this section, the resolvent

of the �rst of kind of k shall play a key role, and so we recall its de�nition (which

is also given in De�nition I.2.4).

De�nition 4.1. Let k ∈ L1
loc(I;R+). A measure Lk on (I,B(I)) is a resolvent of

the �rst kind for k if it holds that

(k ∗ Lk)(t) :=
∫
[0,t]

k(t− u)Lk(du) = 1 for Lebesgue-a.a. t ∈ I.

We say that Lk is nonincreasing if the map s 7→ Lk([s, s + h]) is nonincreasing
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on Ih for each h ∈ (0, T̄ ), where we write Ih := [0, T̄ − h] if I is right-closed and

Ih := [0, T̄ − h) if I is right-open.

As mentioned after De�nition I.2.4, if k admits a resolvent of the �rst kind Lk,

then it is unique by Gripenberg et al. [59, Theorem 5.5.2]. We can now introduce

the following standing assumptions on the kernel k, which are the same as the

conditions imposed in [1, Theorem 3.6]. We note that the assumptions allow for

k to blow up at 0, which is the case for kernels of the fractional type k(t) ∝ tα−1

for α ∈ (0, 1).

Assumption 4.2. Throughout this section, we �x a kernel k ∈ L1
loc(I;R+)

satisfying the following conditions:

1) k is not identically zero, nonincreasing and continuous on I \ {0}.

2) k admits a resolvent of the �rst kind Lk that is a nonnegative and nonin-

creasing measure on I.

We recall from Chapter I that a kernel k : (0,∞) → R+ is completely mono-

tone if it is in�nitely di�erentiable and (−1)m∂mk ≥ 0 for each m ∈ N; see

after Assumption I.2.7. We argued there that if k is completely monotone, then

it satis�es conditions 2)�4) of Assumption I.2.7, and by [59, Theorem 5.5.4], it

also satis�es Assumption 4.2. Completely monotone kernels (which include frac-

tional kernels) are our main examples of interest, but the weaker conditions in

Assumption 4.2 are su�cient for our results here.

We now start to work towards a proof of the main Theorem 4.9. The key

idea is explained below in (4.5) and Lemma 4.5, where we show that for a kernel

k satisfying Assumption 4.2, the path-dependent �drift� of a solution to (4.1)

caused by the convolution with k is mean-reverting towards the past trajectory

of x. To that end, we follow along the lines of the proof of [1, Theorem 3.6], by

using Assumption 4.2 to deduce some further properties of k and some related

functions. In the following, we de�ne the function φh : Ih → R+ by

φh = ∆hk ∗ Lk, (4.2)

where ∆hk : Ih → R+ is the shifted kernel de�ned by ∆hk(t) = k(t+ h).

Lemma 4.3. For any h ∈ (0, T̄ ), φh is right-continuous, nonnegative, non-

decreasing and bounded above by 1.
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Proof. Since ∆hk and Lk are nonnegative by Assumption 4.2, so is φh = ∆hk∗Lk.
It is shown in the proof of [1, Theorem 3.6], speci�cally in [1, (3.9) and (3.10)],

that φh is nondecreasing and bounded above by 1 under Assumption 4.2 on k.

To show that φh is right-continuous, �x some t ∈ [0, T̄ ). Since k is continuous on

I \ {0} by Assumption 4.2, we have for each s ≥ 0 that

1[0,t′](s)k(t
′ + h− s) −→ 1[0,t](s)k(t+ h− s)

as t′ ↘ t. Note that both sides above are bounded by k(h) < ∞, as k is non-

negative and nonincreasing by Assumption 4.2. It thus follows by the dominated

convergence theorem that

lim
t′↘t

φh(t
′) = lim

t′↘t

∫
[0,t′]

k(t′ + h− s)Lk(ds)

=

∫
[0,t]

k(t+ h− s)Lk(ds) = φh(t).

Next, we show how φh can be used to construct for each t ∈ I a cer-

tain probability measure µh,t supported on [0, t]. The construction involves the

Lebesgue�Stieltjes measure associated with φh, which is well de�ned as φh is

right-continuous and increasing. The observation that µh,t is not just a non-

negative measure but a probability measure is a key one, since this is what later

allows us to consider invariant sets that are only convex, rather than convex cones

as in [1]. The connection between µh,t and (4.1) will be shown in Lemma 4.5.

Lemma 4.4. Fix h ∈ (0, T̄ ) and t ∈ Ih. There exists a probability measure µh,t
on (I,B(I)) given by

µh,t(A) =
(
1− φh(t)

)
1A(0) + φh(0)1A(t) +

∫
(0,t]

1A(t− s)dφh(s) (4.3)

for each A ∈ B(I). Moreover, µh,t is supported on [0, t], and for any bounded

measurable function x : I → Rn, it holds that∫
I

x(s)dµh,t(s) =
(
1− φh(t)

)
x(0) + φh(0)x(t) +

∫
(0,t]

x(t− s)dφh(s). (4.4)

Proof. We have from Lemma 4.3 that φh is nonnegative, bounded above by 1

and nondecreasing. From these properties and the de�nition of µh,t, we obtain

µh,t(A) ≥ 0 for all A ∈ B(I) since each of the summands in (4.3) is nonnegative.

To show that µh,t is a measure, consider a sequence (An) of pairwise disjoint
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sets in B(I), so that 1⋃
n∈N An =

∑
n∈N 1An . As 1⋃

n∈N An ≤ 1, it follows by the

dominated convergence theorem that∫
(0,t]

1⋃
n∈N An(t− s)dφh(s) =

∫
(0,t]

∑
n∈N

1An(t− s)dφh(s)

=
∑
n∈N

∫
(0,t]

1An(t− s)dφh(s).

Thus we have µh,t(
⋃
n∈NAn) =

∑
n∈N µh,t(An), so that µh,t is a (nonnegative)

measure on [0, T̄ ). It is also clear that µh,t is supported on [0, t], since each of the

terms in (4.3) vanishes if A ∩ [0, t] = ∅. Moreover, we have

µh,t([0, t]) =
(
1− φh(t)

)
+ φh(0) +

∫
(0,t]

dφh(s) = 1,

so that µh,t([0, T̄ )) = µh,t([0, t]) = 1 and µh,t is a probability measure. Finally,

note that (4.4) follows immediately from the de�nition (4.3) if x = 1A for some

A ∈ B(I). By the dominated convergence theorem, (4.3) then extends to any

bounded measurable x : I → R. We also get (4.3) if x takes values in Rn by

considering each component separately.

We are now ready to introduce the key idea for the proof of the main result.

As motivation, consider a simple integral equation of the form

x(t) = x0 +

∫ t

0

y(s)ds, t ≥ 0,

so that x′(t) = y(t). For small h > 0, we have the decomposition

x(t+ h) = x(t) +

∫ t+h

t

y(s)ds.

Thus in order to �trap� x within a set D, we need to ensure that whenever x(t)

is close to the boundary ∂D, the �drift term�
∫ t+h
t

y(s)ds pushes x away from the

boundary. Now consider instead a convolution equation of the form

x(t) = x0 +

∫ t

0

k(t− s)y(s)ds, t ≥ 0.
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Proceeding in a similar way, we obtain the decomposition

x(t+ h) = x0 +

∫ t+h

0

k(t+ h− s)y(s)ds

= x0 +

∫ t

0

k(t+ h− s)y(s)ds+

∫ t+h

t

k(t+ h− s)y(s)ds

= x̂h(t) +

∫ h

0

k(s)y(t+ h− s)ds, (4.5)

where

x̂h(t) := x0 + (∆hk ∗ y)(t) = x0 +

∫ t

0

k(t+ h− s)y(s)ds

now takes the place of x(t). By analogy, the term
∫ h
0
k(s)y(t+h−s)ds in (4.5) can

be viewed as a �drift� induced by y that pushes x away from ∂D. On the other

hand, the �past term� x̂h(t) now also depends on h, and this can cause issues if

x̂h(t) exits D as h increases, i.e., if the path-dependent �drift� x̂h(t)− x(t) moves

towards ∂D and is able to outweigh the e�ect of y.

Under Assumption 4.2 on k, we now show that x̂h(t) belongs to the convex

hull conv({x(s) : s ∈ [0, t]}) for all h. This is the key idea that allows us to

�nd convex invariant sets D for (4.1), since it ensures that x̂h(t) cannot leave the

convex hull of the past trajectory of x and thus stays within D. On the other

hand, if D is not convex, then the term x̂h(t) may pull x outside of D even if

the �local term� pushes in the opposite direction; this is unlike the classical case

where x(t) ∈ D by construction.

Lemma 4.5. Let x0 ∈ Rn and y : I → Rn be a continuous function. De�ne

x : I → Rn and x̂h : I → Rn by

x(t) = x0 +

∫ t

0

k(t− s)y(s)ds,

x̂h(t) := x0 + (∆hk ∗ y)(t), t ∈ I.

Then for any h > 0 and t ∈ I, it holds that

x̂h(t) =

∫
[0,t]

x(s)µh,t(ds) (4.6)

so that x̂h(t) belongs to the convex hull conv({x(s) : s ∈ [0, t]}).

Proof. Fix h > 0. We want to apply [1, Lemma 2.6], where we set K := k,

L := Lk, Z :=
∫ ·
0
y(s)ds, F := ∆hk and X := x in their notation. Note that the
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(deterministic) process

K ∗ dZ = k ∗ y = x− x0 = X −X0

is continuous, where the convolution with respect to dZ = y dt is interpreted in

the sense of [1, Equation (2.1)]. Recalling the de�nition (4.2), we also have that

F ∗ L = ∆hk ∗ Lk = φh

is right-continuous, bounded and nondecreasing by Lemma 4.3. Then [1, Equa-

tion (2.15)] gives that (in our notation)

(∆hk ∗ y)(t) = φh(0)x(t)− φh(t)x(0) +

∫
[0,t]

x(t− s)dφh(s), t ∈ I.

The equality holds for all t ∈ I since ∆hk ∗ y is continuous like y; see Gripenberg
et al. [59, Theorem 2.2.2(i)]. By adding x0 = x(0) to both sides and plugging in

(4.4), we obtain (4.6). By Lemma 4.4, µh,t is a probability measure on [0, t] and

hence

x̂h(t) =

∫
[0,t]

x(s)µh,t(ds) ∈ conv({x(s) : s ∈ [0, t]}),

as claimed. (Note that by Dudley [42, Theorem 10.2.6], the integral indeed be-

longs to the convex hull, not just its closure.)

We are now almost ready for the main result. Before proceeding, we need

to introduce some additional notions from convex geometry on Rn that help to

formalise the intuition that both of the �drift terms� in (4.5) push x away from

the boundary of a convex set D.

De�nition 4.6. Let D ⊆ Rn be a compact convex set with nonempty interior.

For any p ∈ ∂D, a unit vector n is outward normal to D at p if (x− p)⊤n ≤ 0 for

all x ∈ D. We say that p ∈ ∂D is a regular boundary point of D if there exists a

unique unit vector np that is outward normal to D at p.

The following technical lemma gives a useful property of any regular bound-

ary point p with outward normal np. In words, we have for each circular cone

with apex p and axis −np pointing �inwards� towards D that a small tip of that

cone (except for p itself) is contained in the interior D◦. We note that c below

parametrises the angle between −np and the generatrix of the cone, so that the

extreme case c = 1 corresponds to a ray from p in the direction −np, whereas
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c = 0 corresponds to the closed half-space de�ned by the hyperplane through

p with outward normal np. This is helpful for dealing with the case where the

initial value x0 of (4.1) belongs to the boundary of D.

Lemma 4.7. Let D ⊆ Rn be a closed convex set with nonempty interior. Fix a

regular boundary point p with a unique outward normal np to D at p. Then for

every c ∈ (0, 1], there exists ϵ > 0 such that{
y ∈ Bϵ(p) \ {p} :

(y − p)⊤np
|y − p|

≤ −c
}

⊆ D◦.

Proof. For contradiction, suppose that the statement does not hold for some

c > 0. Then for each m ∈ N, there exists some ym ∈ B1/m(p) \ {p} such that
(ym−p)⊤np

|ym−p| ≤ −c and ym ̸∈ D◦. De�ne the unit vectors um := ym−p
|ym−p| . By compact-

ness of the unit sphere, we can assume (by taking a subsequence) that um → u

as m → ∞, for some unit vector u. Since u⊤mnp ≤ −c for each m, it also holds

that u⊤np ≤ −c.
We claim that the ray Rp,u := {p + γu : γ ≥ 0} does not intersect D◦. We

also show this claim by contradiction, and then return to the main statement.

Suppose that p + γu ∈ D◦ for some γ ≥ 0. We can thus �nd an open ball

Bδ(p+ γu) ⊆ D◦ for some δ > 0. Using the convexity property of D with respect

to p and all points in Bδ(p+ γu), it follows that

{p+ γ′u′ : γ′ ∈ [0, γ], u′ ∈ Bδ(u)} ⊆ D.

By taking the interior of both sets, we deduce that p+γ′u′ ∈ D◦ for all γ′ ∈ (0, γ)

and u′ ∈ Bδ(u). Note that we have ym = p + |ym − p|um for each m ∈ N, where
um → u and |ym − p| ≤ 1/m → 0 as m → ∞. Hence we get um ∈ Bδ(u) and

0 < |ym − p| < γ for m large enough, so that ym ∈ D◦. This contradicts the con-

struction of ym as we assumed that ym ̸∈ D◦. Thus we must have Rp,u ∩D◦ = ∅.
We can now conclude the main argument by contradiction. Since D◦ and

Rp,u are convex and we have shown that they are disjoint, by the hyperplane

separation theorem (see Rockafellar [107, Theorems 11.1 and 11.3]), there exists

a unit vector ñp such that

sup
q∈D◦

ñ⊤
p q = sup

q∈D
ñ⊤
p q ≤ inf

q∈Rp,u

ñ⊤
p q ≤ ñ⊤

p p. (4.7)
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Hence ñp is outward normal at p (as p ∈ Rp,u). We have

inf
q∈Rp,u

n⊤
p q = n⊤

p p+ inf
γ≥0

γn⊤
p u = −∞

as n⊤
p u ≤ −c < 0 by the construction of u. Thus ñp ̸= np since np cannot satisfy

(4.7). As np and ñp are both outward normal at p, this contradicts the fact that

p is a regular boundary point.

We are now ready to move on to the �rst main theorem, from which we �nally

obtain as a corollary su�cient conditions for the global existence of a solution to

(4.1) Recall that we �x the time interval I = [0, T̄ ] or [0, T̄ ) as well as a kernel

k ∈ L1
loc(I;R+) satisfying Assumption 4.2.

Theorem 4.8. Let x0 ∈ Rn and f : Rn × I → Rn be continuous. Let T̂ ∈ I and

suppose that x : [0, T̂ ] → Rn is a continuous solution to the equation

x(t) = x0 +

∫ t

0

k(t− s)f
(
x(s), s

)
ds, 0 ≤ t ≤ T̂ . (4.8)

Let D ⊆ Rn be a closed convex set with nonempty interior such that x0 ∈ D is

either an interior point (x0 ∈ D◦) or a regular boundary point of D. Moreover,

suppose that for each boundary point p ∈ ∂D, there exists a unit vector np that is

outward normal to D at p and such that f(p, t)⊤np < 0 for all t ∈ [0, T̂ ]. Then

x(t) ∈ D◦ for all t ∈ (0, T̂ ].

Proof. It su�ces to prove that

τ := inf{t ∈ (0, T̂ ] : x(t) ̸∈ D◦}

is equal to ∞. Note that we exclude t = 0 as x may start at a regular boundary

point. Suppose for a contradiction that τ < ∞; we assume for now that τ > 0.

As x is continuous by assumption, we have x(τ) ∈ ∂D, whereas x(s) ∈ D◦ for

0 < s < τ . By assumption, there exists an outward normal np at p := x(τ) such

that f(p, τ)⊤np < 0. Hence by the continuity of x and f , there exists h ∈ (0, τ)

such that f(x(s), s)⊤np < 0 for all s ∈ [τ − h, τ ]. Since x is a solution to (4.8), it

follows by (4.5) with y := f(x(·), ·) and t := τ − h that

p = x(τ) = x̂h(τ − h) +

∫ h

0

k(s)f
(
x(τ − s), τ − s

)
ds. (4.9)
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Moreover, Lemma 4.5 with t = τ − h yields

x̂h(τ − h) =

∫
[0,τ−h]

x(s)dµh,τ−h(s) ∈ conv({x(s) : s ∈ [0, τ − h]})

so that x̂h(τ − h) ∈ D since D is convex and x(s) ∈ D for all s ∈ [0, τ ] by the

de�nition of τ . Thus we have (p − x̂h(τ − h))⊤np ≥ 0 by De�nition 4.6 because

np is outward normal to D at p. By taking the inner product of (4.9) with np

and rearranging, we obtain∫ τ

τ−h
k(τ − s)f

(
x(s), s

)⊤
npds =

∫ h

0

k(s)f
(
x(τ − s), τ − s

)⊤
npds

=
(
p− x̂h(τ − h)

)⊤
np ≥ 0.

But this leads to a contradiction, since f(x(s), s)⊤np < 0 for s ∈ [τ − h, τ ] by

the choice of h, and k is nonnegative, nonincreasing and not identically 0 by

Assumption 4.2. Thus we cannot have τ ∈ (0, T̂ ].

We now return to the case τ = 0. By continuity of x, this is only possible if

x0 ∈ ∂D, and by assumption, p := x0 must then be a regular boundary point ofD.

Let np be the unique unit vector that is outward normal to D at p. Since p ∈ ∂D,

the boundary condition gives f(p, 0)⊤np < 0 and in particular f(p, 0) ̸= 0. By

continuity of f and x, we can �nd h > 0, C > 0 and c > 0 such that

C ≥ |f(x(s), s)| ≥ c and
f(x(s), s)⊤np
|f(x(s), s)|

≤ −c for all s ∈ [0, h]. (4.10)

By Lemma 4.7, there exists ϵ > 0 such that

D̃ :=

{
y ∈ Bϵ(p) \ {p} :

(y − p)⊤n0

|y − p|
≤ −c

}
⊆ D◦. (4.11)

We now want to show that there exists some h′ ∈ (0, h) such that x(t) ∈ D̃ for

all t ∈ (0, h′]; namely, we need to check that |x(t)− p| < ϵ, x(t) ̸= p and that x(t)

satis�es the inequality in (4.11) for small enough t > 0. To show this claim, note

that (4.8) and the �rst part of (4.10) yield

|x(t)− p| =
∣∣∣∣ ∫ t

0

k(t− s)f
(
x(s), s

)
ds

∣∣∣∣ ≤ ∫ t

0

k(t− s)
∣∣f(x(s), s)∣∣ds

≤ C

∫ t

0

k(s)ds
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for t ∈ (0, h), so that |x(t) − p| < ϵ if
∫ t
0
k(s)ds < ϵ/C. Since

∫ h′
0
k(s)ds ↘ 0 as

h′ ↘ 0 by the dominated convergence theorem, we can choose h′ small enough so

that |x(t) − p| < ϵ for all t ∈ (0, h′]. This shows the �rst condition. By the last

inequality in (4.10), we also get

(
x(t)− p

)⊤
np =

∫ t

0

k(t− s)f
(
x(s), s

)⊤
npds

≤ −c
∫ t

0

k(t− s)
∣∣f(x(s), s)∣∣ds, 0 ≤ t ≤ h. (4.12)

Thus for 0 ≤ t ≤ h we have

(
x(t)− p

)⊤
np ≤ −c

∫ t

0

k(t− s)
∣∣f(x(s), s)∣∣ds ≤ −c2

∫ t

0

k(s)ds.

Since k is nonnegative, nonincreasing and not identically 0 on (0,∞) by Assump-

tion 4.2, we have
∫ t
0
k(s)ds > 0 and hence x(t) ̸= p for t ∈ (0, h]. This shows the

second condition. Returning to (4.12), plugging in (4.8) yields the bound

(
x(t)− p

)⊤
np ≤ −c

∫ t

0

k(t− s)
∣∣f(x(s), s)∣∣ds

≤ −c
∣∣∣∣ ∫ t

0

k(t− s)f
(
x(s), s

)
ds

∣∣∣∣ = −c|x(t)− p|, 0 ≤ t ≤ h.

Rearranging, we thus get

(x(t)− p)⊤np
|x(t)− p|

≤ −c, 0 < t ≤ h.

Hence we have x(t) ∈ D̃ for t ∈ (0, h′], as we have checked each of the conditions

in the de�nition of D̃. Since D̃ ⊆ D◦ by (4.11), this contradicts the assumption

that τ = 0. Thus we have obtained a contradiction in both cases τ = 0 and

τ ∈ (0, T̂ ], so that τ = ∞ as claimed, and this concludes the proof.

As a corollary, we obtain the existence of a global solution to (4.1). As men-

tioned at the beginning of the section, we generalise slightly by considering an

increasing family (Dt)t∈I such that Dt �traps� the solution up to time t; this

generalisation can be useful when I is open on the right.

Theorem 4.9. Let x0 ∈ Rn and f : Rn × I → Rn be continuous. Suppose

that (Dt)t∈I is an increasing family of compact convex sets in Rn with nonempty

interior such that x0 ∈ D0 is either an interior point (x0 ∈ D◦
0) or a regular
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boundary point of D0. Suppose moreover that for each t ∈ I and boundary point

p ∈ ∂Dt, there exists a unit vector np,t that is outward normal to Dt at p and such

that f(s, p)⊤np,t < 0 for all s ∈ [0, t]. Then there exists a continuous solution

x : I → Rn to the equation

x(t) = x0 +

∫ t

0

k(t− s)f
(
x(s), s

)
ds, t ∈ I. (4.13)

Proof. By Gripenberg et al. [59, Theorem 12.1.1] (see also Proposition A.2.2),

there is a continuous noncontinuable solution x to (4.13). That is, either there

exists a continuous global solution x : I → Rn to (4.13), or there exists T̃ ∈ (0, T̄ )

(or T̃ ∈ (0, T̄ ] if I is right-closed) and a continuous solution x : [0, T̃ ) → Rn

to (4.13) on [0, T̃ ) ⊊ I such that lim supt↗T̃ |x(t)| = ∞. Suppose that there

exists a solution of the latter type on [0, T̃ ). If we can show that this leads to a

contradiction, then there must exist a global solution on I instead, and that will

conclude the proof.

First, we note that if x(0) = x0 is an interior point of D0, then it is also an

interior point of Dt ⊇ D0 for each t ∈ I. On the other hand, if x0 is a regular

boundary point of D0, we claim that it is also an interior or regular boundary

point of Dt for each t ∈ I. Suppose otherwise; since x0 ∈ D0 ⊆ Dt, we must have

that x0 ∈ Dt \D◦
t = ∂Dt and x0 is not a regular boundary point of Dt for some

t ∈ I. By De�nition 4.6, there exist at least two unit vectors that are outward

normal to Dt at x0. But since D0 ⊆ Dt, those vectors must also be outward

normal to D0 at x0, which leads to a contradiction since x0 is a regular boundary

point of D0.

We have shown that x(0) is an interior or regular boundary point of DT̂ for

each T̂ ∈ [0, T̃ ), and we now return to the main argument. Since the other

conditions in Theorem 4.8 are satis�ed by assumption, we apply Theorem 4.8 to

(4.13) on [0, T̂ ] with D = DT̂ to obtain that x(t) ∈ DT̂ for all t ∈ [0, T̂ ]. Taking

a union over all T̂ ∈ [0, T̃ ), it follows that x(t) ∈ DT̃ for all t ∈ [0, T̃ ), and hence

x is bounded on [0, T̃ ) as DT̃ is compact. But this leads to a contradiction with

the assumption that lim supt↗T̃ |x(t)| = ∞. Therefore, T̃ = T̄ and there exists a

continuous global solution to (4.13), as claimed.

As noted at the beginning of this section, Theorem 4.8 is closely related to the

recent result in Alfonsi [7, Theorem 3.2]. In addition to deterministic Volterra

equations such as (4.13), [7, Theorem 3.2] also covers stochastic Volterra equations

(SVEs) driven by a Brownian motion, and likewise gives su�cient conditions for
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a closed and convex set D to be invariant. The proof of [7, Theorem 3.2] is

based on constructing an approximation to the solution of the SVE and using

the fact that completely monotone kernels preserve monotonicity in the sense of

[7, De�nition 2.1] due to [7, Theorem 2.3]. The latter property is used to ensure

that the approximate solution is trapped by D, which implies by taking a limit

that the true solution stays in D as well.

On the other hand, Theorem 4.8 does have some weaker assumptions: namely,

the time interval is not assumed to be [0,∞), f in (4.8) is allowed to depend on

t, and the kernel k need only satisfy Assumption 4.2. The latter condition is

weaker than requiring that k be completely monotone (see Abi Jaber et al. [1,

Example 3.7]), although completely monotone kernels are our main example of

interest. It is an open question whether Assumption 4.2 implies that k preserves

monotonicity in the sense of [7, De�nition 2.1].

4.2 Application to g⋆z

As mentioned at the beginning of the section, our motivating goal for the �rst part

is to show Theorem 2.23, i.e., the existence of solutions to the Riccati�Volterra

equations (2.60) with z = a+ ib for some �xed a ∈ R and all b ∈ R on a common

time interval. We recall here that (2.60) reads

g⋆z(t) = f ⋆z
(
(κ̂ ∗ g⋆z)(t), h⋆(t)

)
(4.14)

for t ≥ 0, where f ⋆z : C× R+ → C is de�ned by

f ⋆z (x, h) =
(z2 − z)σ2

2
+

(
zσϱ− µϱ

σ

)
x+ (1− ϱ2)hx+

x2

2
(4.15)

for (x, h) ∈ C×R, and h⋆ = κ̂∗g⋆, where g⋆ satis�es the Riccati�Volterra equation

g⋆(t) = −µ
2

σ2
− 2ϱµ

σ
(κ̂ ∗ g⋆)(t) + 1

2
(1− 2ϱ2)

(
(κ̂ ∗ g⋆)(t)

)2
. (4.16)

We now state the main result; the proof is postponed to the end of the section.

Theorem 4.10. Suppose that κ : (0,∞) → R+ is a completely monotone kernel

satisfying Assumption I.2.7. Moreover, suppose that for some T̄ > 0, there exist

continuous solutions g⋆ : [0, T̄ ] → R and g⋆a : [0, T̄ ] → R to (4.16) and (4.14)

with z = a ∈ R, respectively. Then there exists a unique continuous solution

g⋆z : [0, T̄ ] → C to (4.14) for each z ∈ a+ iR.
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We note that the complete monotonicity of κ is inherited by κ̂ due to Gripen-

berg et al. [59, Theorem 5.3.1] and the de�nition (I.2.12) of κ̂. This is key, since

by [59, Theorem 5.5.4], it follows that κ̂ satis�es Assumption 4.2, which allows

us to apply our results from the �rst part of this section.

We also remark that Theorem 4.10 is not vacuous, i.e., there exists some

T̄ > 0 such that both equations (4.16) and (4.14) with z = a ∈ R can be solved

simultaneously. Indeed, (4.16) can be solved on [0, T ⋆], where T ⋆ > 0 is given

in Theorem I.3.8. Then by Corollary 2.16, the equation (4.14) with z = a ∈ R
admits a solution on a smaller interval [0, T̄ ], where T̄ := T ⋆a > 0. As noted

in Remark A.2.1 in the Appendix, the solutions g⋆ and g⋆a to (4.16) and (4.14)

with z = a ∈ R are real-valued, since each of the inputs to the equations are

real-valued; this follows by the uniqueness of the solutions to (4.16) and (4.14).

Our strategy to prove Theorem 4.10 is to �rst transform (4.14) into a suitable

form for the application of Theorem 4.9, and then to check that the modi�ed

equation satis�es the conditions required by the theorem. The �rst part is done

in the following lemma by a straightforward transformation: we start by taking a

convolution with κ̂ to switch between the two types of Riccati�Volterra equations

as explained before Corollary A.2.6, and then we subtract the solution for z = a.

Indeed, the equation (4.14) can be rewritten in terms of h⋆z := κ̂ ∗ g⋆z as

h⋆z(t) =

∫ t

0

κ̂(t− s)g⋆z(s)ds =

∫ t

0

κ̂(t− s)f ⋆z
(
h⋆z(s), h

⋆(s)
)
ds, 0 ≤ t ≤ T̄ . (4.17)

For z = a+ib, we make the ansatz h⋆z(t) = h⋆a(t)+h̃a,b(t) for some suitable function

h̃a,b : [0, T̄ ] → C (which is not related to the functions de�ned in Proposition 2.26).

For h⋆z to satisfy (4.17), h̃a,b must satisfy the equation

h̃a,b(t) = h⋆z(t)− h⋆a(t) =

∫ t

0

κ̂(t− s)f̃a,b
(
h̃a,b(s), s

)
ds, 0 ≤ t ≤ T̄ , (4.18)

where

f̃a,b
(
h̃a,b(s), s

)
= f ⋆z

(
h⋆z(s), h

⋆(s)
)
− f ⋆a

(
h⋆a(s), h

⋆(s)
)

= f ⋆a+ib

(
h⋆a(s) + h̃a,b(s), h

⋆(s)
)
− f ⋆a

(
h⋆a(s), h

⋆(s)
)
.

We now reverse this argument, i.e., we show that a solution h̃a,b to (4.18) yields

a solution to the original equation (4.14).

Lemma 4.11. Consider the setup of Theorem 4.10 and �x b ∈ R. Suppose that
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there exists a continuous solution h̃a,b : [0, T̄ ] → C to (4.18) on [0, T̄ ], where

f̃a,b : C× [0, T̄ ] → C is given by

f̃a,b(x, t) =
(−b2 + i(2ab− b))σ2

2
+ ibσϱh⋆a(t)

+

(
(a+ ib)σϱ− µϱ

σ
+ (1− ϱ2)h⋆(t) + h⋆a(t)

)
x+

x2

2
. (4.19)

Then the function g⋆a+ib : [0, T̄ ] → C de�ned by

g⋆a+ib(t) := f ⋆a+ib

(
h⋆a(t) + h̃a,b(t), h

⋆(t)
)

is a continuous solution to (4.14) on [0, T̄ ] with z = a+ ib.

Proof. The continuity of g⋆a+ib follows immediately from that of f̃a,b, h⋆a and h̃a,b.

To check that g⋆a+ib satis�es (4.14), note that we obtain

f ⋆a+ib

(
h⋆a(s) + h̃a,b(s), h

⋆(s)
)

=
((a+ ib)2 − a− ib)σ2

2
+

(
(a+ ib)σϱ− µϱ

σ

)(
h⋆a(s) + h̃a,b(s)

)
+ (1− ϱ2)h⋆(s)

(
h⋆a(s) + h̃a,b(s)

)
+

(h⋆a(s) + h̃a,b(s))
2

2

= f̃a,b
(
h̃a,b(s), s

)
+ f ⋆a

(
h⋆a(s), h

⋆(s)
)
, 0 ≤ s ≤ T̄

after collecting the terms corresponding to each function. Thus by (4.17) and

(4.18), we have

h⋆a(t) + h̃a,b(t) =

∫ t

0

κ̂(t− s)
(
f̃a,b
(
h̃a,b(s), s

)
+ f ⋆a

(
h⋆a(s), h

⋆(s)
))
ds

=

∫ t

0

κ̂(t− s)f ⋆a+ib

(
h⋆a(s) + h̃a,b(s), h

⋆(s)
)
ds.

Applying f ⋆a+ib(·, h⋆(t)) to both sides, we obtain

g⋆a+ib(t) := f ⋆a+ib

(
h⋆a(t) + h̃a,b(t), h

⋆(t)
)

= f ⋆a+ib

(∫ t

0

κ̂(t− s)f ⋆a+ib

(
h⋆a(s) + h̃a,b(s), h

⋆(s)
)
ds, h⋆(t)

)
= f ⋆a+ib

(∫ t

0

κ̂(t− s)g⋆a+ib(s)ds, h
⋆(t)

)
, 0 ≤ t ≤ T̄ ,

so that g⋆a+ib satis�es (4.14) on [0, T̄ ] with z = a+ ib, as claimed.
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The second and more challenging step is to use Theorem 4.9 to deduce the

existence of a global solution h̃a,b to (4.18) on [0, T̄ ]. The main task is to �nd a

suitable �trapping� set D. For an intuitive way to �nd such a set, note that the

leading order term in (4.19) is simply x2/2; so we consider the (ordinary) Riccati

equation z′(t) = z2(t) and the vector �eld f(z) = z2 on C. For any starting point

on the imaginary axis, the solution to the equation starts by moving to the left

before curving towards the x-axis and then to the right towards 0; this is also

clear from the explicit solution z(t) = (1/z(0) − t)−1. Thus the solution to that

equation can be trapped between the imaginary axis and and a suitable curve

that encloses part of the half-space {Re(z) < 0}; the hexagon D de�ned below

is one possible choice. By making the hexagon large enough, we can ensure that

only the leading order term in (4.19) plays a role in the behaviour of f̃a,b along

∂D. The exception to that is the vertical axis, which we cannot scale up away

from 0, and hence a �ner analysis is needed to make sure that the boundary

condition holds there. Luckily, that is the case due to the transformation from

Lemma 4.11. Indeed, by subtracting h⋆a from h⋆a+ib, we have removed the terms

that would push the solution to the right starting from the imaginary axis, as can

be seen by comparing the real parts of the 0-order terms in (4.15) and (4.19).

Lemma 4.12. Consider the setup of Theorem 4.10 and �x b ∈ R \ {0}. For

C > 0, de�ne the closed hexagon D ⊆ C (sketched below) by the six vertices

p1(t) := iC, p2(t) := −C + 2iC, p3(t) := −3C + 2iC,

p4(t) := −3C − 2iC, p5(t) := −C − 2iC, p6(t) := −iC.

Then D is a compact convex set such that 0 ∈ D is a regular boundary point.

Moreover, if C > 0 is large enough, then for each p ∈ ∂D, there exists an outward

normal vector np to D at p such that n⊤
p f̃a,b(p, t) < 0 for all t ∈ [0, T̄ ], where f̃a,b

is de�ned by (4.19) and the inner product is taken with respect to the Euclidean

metric on R2 ∼= C.

Proof. For any choice of C > 0, the boundary ∂D consists of six edges between

the points p1, p2, p3, p4, p5, p6, p1, which we take in this order (counterclockwise).

Denote the respective edges, without the endpoints, by E1, E2, E3, E4, E5, E6 (i.e,
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E1 = (p1, p2), etc.). We de�ne a family of unit vectors (np)p∈∂D by

np :=



1√
2
(1 + i), p ∈ E1 ∪ {p1},

i, p ∈ E2 ∪ {p2},

−1, p ∈ E3 ∪ {p3},

−i, p ∈ E4 ∪ {p4},
1√
2
(1− i), p ∈ E5 ∪ {p5},

1, p ∈ E6 ∪ {p6},

p6

p1

p2
p3

p4
p5

so that np is an outward normal vector at p for each p ∈ ∂D. It is also clear that

D is compact and convex with 0 ∈ ∂D a regular boundary point.

Note that the inner product (p1, p2) 7→ p⊤1 p2 on R2 is given by Re(p1p2) when

we identify R2 ∼= C. Thus we need to check that for C > 0 large enough, we have

Re(f̃a,b(p, t)np) < 0 for all t ∈ [0, T̄ ] and p ∈ ∂D. We now consider each edge of

D separately, including one vertex in each case. Note that the functions h⋆ and

h⋆a in (4.19) are continuous and hence bounded on [0, T̄ ]. Thus by considering the

asymptotic behaviour as C → ∞, we show that the inequality holds for each edge

if C > 0 large enough. As it turns out, for E1�E5, we only need to consider the

asymptotic behaviour of order C2, so that only the term x2/2 in (4.19) plays a

role in those cases (the remaining terms are linear or constant in C). The analysis

is more delicate in the case of E6.

E1: We can parametrise p ∈ E1 ∪ {p1} by p = (−γ + (1 + γ)i)C for some

γ ∈ [0, 1), so that

f̃a,b(p, t) =
p2

2
+O(C) =

C2

2

(
− 1− 2γ − 2(γ + γ2)i

)
+O(C).

Thus we have

Re
(
f̃a,b(p, t)np

)
=

C2

2
√
2
Re
((

− 1− 2γ − 2(γ + γ2)i
)
(1− i)

)
+O(C)

=
(−1− 4γ − 2γ2)C2

2
√
2

+O(C),

where

−1− 4γ − 2γ2 ≤ −1 < 0 for all γ ∈ [0, 1].

E2: We can parametrise p ∈ E2 ∪ {p2} by p = (−γ + 2i)C for some γ ∈ [1, 3),
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so that

f̃a,b(p, t) =
p2

2
+O(C) =

C2

2
(γ2 − 4− 2γi) +O(C).

Thus we have

Re
(
f̃a,b(p, t)np

)
=
C2

2
Re
(
(γ2 − 4− 2γi)(−i)

)
+O(C)

= −γC2 +O(C),

where

−γ ≤ −1 < 0 for all γ ∈ [1, 3].

E3: We can parametrise p ∈ E3∪{p3} by p = (−3+2γi)C for some γ ∈ (−1, 1],

so that

f̃a,b(p, t) =
p2

2
+O(C) =

C2

2
(9− 4γ2 − 6γi) +O(C).

Thus we have

Re
(
f̃a,b(p, t)np

)
=
C2

2
Re
(
(9− 4γ2 − 6γi))(−1)

)
+O(C)

=
(−9 + 4γ2)C2

2
+O(C),

where
−9 + 4γ2

2
≤ −5

2
< 0 for all γ ∈ [−1, 1].

E4: This case is analogous to E2, up to taking the complex conjugate.

E5: This case is analogous to E1, up to taking the complex conjugate.

E6: This is the most delicate case. As usual, we parametrise p ∈ E6 ∪ {p6} by

p = γCi for some γ ∈ [−1, 1). Since np = 1, it is enough to calculate the

real part Re(f̃a,b(p, t)). We also recall that h⋆ and h⋆a are real-valued by the

assumptions in Theorem 4.10. By plugging x = p = γCi into (4.19) and

gathering the real terms, we have

Re
(
f̃a,b(p, t)

)
=

−b2σ2

2
− bσϱγC − γ2C2

2
.

Here, it is not enough to consider the terms of higher order in C, since both
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vanish at γ = 0. Nevertheless, we have the inequality

−b2σ2

2
− bσϱγC − γ2C2

2
= −(γC + bσϱ)2

2
− b2σ2(1− ϱ2)

2
< 0

for all t ∈ [0, T̄ ], γ ∈ [−1, 1] and b ∈ R\{0}, since ϱ ∈ (−1, 1) by assumption.

Because we have also assumed that b ̸= 0, this concludes the proof.

The proof of Theorem 4.10 is almost complete; it now follows directly from

the previous results and concludes this section.

Proof of Theorem 4.10. Since κ is completely monotone by assumption, so is κ̂

by Gripenberg et al. [59, Theorem 5.3.1] and the de�nition (I.2.12). Thus by [59,

Theorem 5.5.4], κ̂ satis�es Assumption 4.2. We may then apply Theorem 4.9 to

(4.18) with x0 = 0, f = f̃a,b and Dt = D as given in Lemma 4.12; indeed, the

required boundary condition is also checked in Lemma 4.12. Hence we obtain for

each b ∈ R \ {0} a continuous solution h̃a,b : [0, T̄ ] → C ∼= R2 to (4.18). In the

case b = 0, it is clear that h̃a,b ≡ 0 is a solution to (4.18) by plugging into (4.19).

Therefore the existence of a solution g⋆a+ib to (4.14) follows by Lemma 4.11 for

each b ∈ R. Finally, since f ⋆z is quadratic in x and h and hence satis�es the

Lipschitz-type condition (A.2.22), the uniqueness follows by part 4) of Corollary

A.2.7 with y = 0, k = κ̂, h = h⋆ and f = f ⋆z as well as p = q = “a” = 2 (the

latter is unrelated to the constant a �xed by the statement of Theorem 4.10).
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Chapter III

Existence and uniqueness of

mean�variance equilibria in general

semimartingale markets

1 Introduction

The capital asset pricing model (CAPM) of Treynor [117], Sharpe [112], Lintner

[89, 90] and Mossin [95] is one of the �rst general equilibrium models for �nan-

cial markets. Despite its limitations, it is still one of the cornerstones of modern

�nancial theory and widely used in practice; see [88] for a recent overview. While

the early papers focused on the �nancial implications and shortcomings of the

CAPM (see e.g. Banz [13] for an early critique), the existence of an equilibrium

was always assumed. The rigorous study of existence and uniqueness of CAPM

equilibria was only initiated two decades later by Nielsen [96, 97, 98] and Alling-

ham [8], with more recent important contributions by Berk [18], Dana [33], Hens

et al. [64], Wenzelburger [119] and Koch-Medina/Wenzelburger [85], and has so

far been mainly considered in one-period models. This strand of literature, with

the notable exception of [18], does not study equilibria for preferences described

by expected utility but rather by mean-variance functionals, i.e., functionals of

the form U(µ, σ), where U is quasiconcave, increasing in the mean µ and decreas-

ing in the volatility σ. This is because without distributional assumptions on

the returns, the only utility functions that are compatible with the CAPM (more

precisely, the two-fund separation theorem) are quadratic utility functions; see

the discussion in Berk [18, after Corollary 3.2]. For expected quadratic utility,

existence and uniqueness of CAPM equilibria in one period (and under suitable
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assumptions) seem to have been regarded as folklore knowledge from early on.

In most of the literature, CAPM equilibria have been studied under the as-

sumption of a complete market. This implies the existence of a so-called repres-

entative agent, which simpli�es the task of showing existence and uniqueness of

an equilibrium. In the complete case, every agent chooses to hedge her idiosyn-

cratic risk and own a fraction of the market portfolio; but this is not possible

in an incomplete market. In Koch-Medina/Wenzelburger [85], a similar CAPM-

type equilibrium is studied for an incomplete one-period market in discrete time.

They �nd that in the incomplete case, each agent still hedges her individual en-

dowment as best as possible, even though this cannot be done perfectly. Unlike

in the complete case, the asset prices are now determined by the so-called exten-

ded market portfolio, i.e., the aggregate endowment of all agents, given by the

terminal value of the market portfolio together with the unhedgeable parts of the

endowments. Our work extends the study of CAPM equilibria to a continuous-

time setup with an incomplete market driven by a general semimartingale, where

the agents receive unhedgeable endowments at the terminal time T .

We show that analogous results to those of [85] also hold in continuous time.

In this chapter, this is done for expected quadratic utility; the more general

setup of mean�variance utility functions is studied in Chapter IV. Our proof of

existence and uniqueness of an equilibrium is based here on the construction of

a nonstandard type of representative agent, i.e., a �ctional agent that aggregates

the preferences and endowments of the K agents. We show that the market clears

if and only if the representative agent does not trade, and this observation yields

a pricing measure for the equilibrium market.

A challenge in moving from the one-period setup of [85] to multi-period and

continuous time is that for the latter, one needs to impose integrability condi-

tions on the admissible trading strategies. These conditions can preclude the

existence of an equilibrium. Indeed, we exhibit an example where the only can-

didate equilibrium is such that the buy-and-hold strategy for the risky asset is

not admissible. If the asset has positive net supply, one of the agents must by

linearity use an inadmissible strategy; therefore, this cannot be an equilibrium

market. We give su�cient conditions to ensure that the required integrability

conditions are satis�ed, so that this issue is prevented and an equilibrium exists.

This chapter, which is based on joint work with Christoph Czichowsky and

Martin Herdegen, is structured as follows. In Section 2, we introduce the model

and give the de�nition of equilibrium in our setup. We also prove some folklore

results on mean�variance hedging (MVH) that are used to show the main results.
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In Section 3.1, we demonstrate the connection between the quadratic utility and

MVH problems of the individual agents. This is used in Section 3.2 to show

that the aggregate demand for the risky assets can obtained via a representative

agent. In Section 3.3, we obtain the main result on existence and uniqueness of

an equilibrium, as well as an explicit formula. In Section 3.4, we give su�cient

conditions for the integrability required by the main result. Finally, in Section 3.5,

we provide more general existence results for CAPM equilibria in �nite discrete

time where the equilibrium markets are not unique and may admit arbitrage

opportunities.

2 Model and preliminary results

2.1 Financial market

We work on a �ltered probability space (Ω,F ,F = (Ft)0≤t≤T , P ) with a �xed

�nite time horizon T ∈ (0,∞). We assume that the �ltration F satis�es the usual

conditions of right-continuity and completeness, and also that F0 is P -trivial and

FT = F .

The �nancial market consists of 1+d = 1+d1+d2 assets. The �rst asset, with

price process S0, serves as numéraire and we assume that (S0
t )0≤t≤T ≡ 1. In addi-

tion, we consider d1 �nancial assets with price processes S(1) = (S1
t , . . . , S

d1
t )0≤t≤T

and d2 productive assets (sometimes also referred to as real assets) with price

processes S(2) = (Sd1+1
t , . . . , Sd1+d2t )0≤t≤T . These risky assets are collectively

expressed as S := (S(1), S(2)). In the following, we likewise use the notation

x = (x(1), x(2)) for each x ∈ Rd1+d2 with x(i) ∈ Rdi . We also write L2 = L2(P )

where the probability measure is unambiguous.

Our goal is to study a setup where the price processes S(1) and S(2) are not

given a priori, but rather determined by a Radner equilibrium between K agents

trading in the market according to their individual utility-maximising strategies.

In such an equilibrium, that we de�ne precisely later in De�nition 2.5, the asset

prices should be set in such a way that the total demand for the assets, which is

induced by the optimal strategies of the individual agents, equals the total (�xed)

supply at all times. The primitives for this problem are the utility functions and

endowments for the individual agents, introduced later in Section 2.3, as well as

some partial information about the price processes that is given a priori, so that

a unique equilibrium price process can be obtained. The �nancial and productive

assetsare distinguished by the type of constraint imposed on their price processes,
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as detailed below.

We assume that the initial value and volatility structure of the �nancial assets

are predetermined and known by the market participants, i.e., for j ∈ {1, . . . , d1},
we have

Sjt = Sj0 +M j
t + Ajt , 0 ≤ t ≤ T, (2.1)

where Sj0 ∈ R and the local martingale part M j ∈ M2
0,loc are given a priori. The

predictable �nite-variation process Aj ∈ FV0 null at time 0 is to be determined

in equilibrium. We write S(1) = S
(1)
0 +M (1) + A(1). The �nancial assets may

be regarded as securities constructed by the market participants to enable the

trading of short-term risks, determined implicitly by the dynamics of M (1), at

appropriate prices set by the market, which are re�ected in the dynamics of A(1).

We assume that each productive asset j ∈ {d1 + 1, . . . , d1 + d2} with price

process Sj entitles the owner to a random terminal dividend Dj ∈ L2 at time T .

In other words, Sj satis�es the terminal condition

SjT = Dj, (2.2)

and the rest of the price process (Sj)0≤t<T is to be determined by the market in

equilibrium. We write S(2)
T = D(2). The random variable D(2) : Ω → Rd2 is �xed

and known to the agents.

Finally, we also assume that each asset Sj is a local L2-semimartingale for

j ∈ {1, . . . , d}. This means that there exists a localising sequence of stop-

ping times (τn)n∈N such that each stopped process Sj,τn = (Sjτn∧t)0≤t≤T is an

L2-semimartingale, in the sense that

sup
{
E[(Sj,τnσ )2] : σ stopping time

}
<∞; (2.3)

see Delbaen/Schachermayer [35] and �erný/Kallsen [25] for details. We refer to

this property by calling (1, S) a local L2-market. Note that by [25, Lemma A.2],

a stochastic process is a local L2-semimartingale if and only if it is a special

semimartingale whose local martingale part is locally square-integrable. As a

consequence, in view of (2.1), this is only a condition on the productive assets.

Thus we summarise the market setup as follows. Suppose that (Ω,F ,F, P ),
T ∈ (0,∞), S(1)

0 ∈ Rd1 , M (1) ∈ M2
0,loc and D

(2) ∈ L2 are given. Our goal is to

study the set of price processes S = (S(1), S(2)) that satisfy (2.1), (2.2) and (2.3),

while also leading to an equilibrium between K agents that we introduce below.

We formalise the notion of an equilibrium market later in De�nition 2.5.
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2.2 Admissible strategies

In order to describe trading in the market (1, S), we need to specify which

strategies are considered admissible. To this end, we follow a two-step approach

as in �erný/Kallsen [25], where more details on the rationale can be found.

De�nition 2.1. Let (1, S) be a local L2-market. A simple integrand for S is a

process of the form ϑ =
∑m−1

i=1 ξi1Kσi,σi+1K, where m ∈ N, 0 ≤ σ1 ≤ · · · ≤ σm are

[0, T ]-valued stopping times, and each ξi is a bounded Fσi-measurable random vec-

tor, such that each stopped process Sj,σm = (Sjσm∧t)0≤t≤T is an L2-semimartingale

for j = 1, . . . , d. We denote by Θsimple(S) the linear space of all simple integrands

for S. We also let L(S) be the set of predictable S-integrable processes on [0, T ];

see Jacod/Shiryaev [71, III.6.17].

De�nition 2.2. Let (1, S) be a local L2-market. Then ϑ ∈ L(S) is called

L2-admissible for S if ϑ •ST ∈ L2 and there exists a sequence (ϑn)n∈N in Θsimple(S)

such that

1) ϑn •ST
L2

−→ ϑ •ST ,

2) ϑn •Sτ
P−→ ϑ •Sτ for all [0, T ]-valued stopping times τ ,

where ϑ • S = (ϑ • St)0≤t≤T denotes the stochastic integral ϑ • St =
∫ t
0
ϑrdSr for

t ∈ [0, T ]. The set of all L2-admissible trading strategies is denoted by Θ(S).

Remark 2.3. (a) Our de�nition of L2-admissible strategies slightly di�ers from

the original one given in [25], because we stipulate 2) for all stopping times τ

and not only for deterministic times t ∈ [0, T ]. However, under [25, Assumption

2.1], i.e., if there exists an equivalent local martingale measure (ELMM) Q for S

with dQ
dP

∈ L2(P ), both de�nitions coincide. The reason for this change is that it

allows us to use dynamic programming arguments even if there does not exist an

ELMM Q for S with dQ
dP

∈ L2(P ), as in Czichowsky/Schweizer [32].

(b) As usual, we assume that market participants choose self-�nancing port-

folios (ϑ0
t , ϑt)0≤t≤T , where ϑ

0 is a predictable process, ϑ ∈ Θ(S) and the self-

�nancing condition ϑ0
t + ϑ⊤

t St = ϑ0
0 + ϑ⊤

0 S0 + ϑ •St, P -a.s. for all t ∈ [0, T ], is sat-

is�ed. Since we shall include the initial wealth of the agents into their endow-

ments, as we explain in the �rst paragraph of Section 2.3 below, we have ϑ0
0 = 0

so that a self-�nancing portfolio can be parametrised in terms of ϑ ∈ Θ(S) alone.

We denote by (ejt)0≤t≤T ≡ (0, . . . , 0, 1, 0, . . . , 0) ∈ Rd the buy-and-hold strategy

of the j-th risky asset, where 1 is in the j-th position. In general, this strategy
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will not be L2-admissible for S because we only assume Sj to be a local L2-

semimartingale. However, if Sj is an L2-semimartingale, then automatically

ej ∈ Θsimple(S) ⊆ Θ(S). Given a vector η ∈ Rd, we sometimes denote the

constant strategy
∑d

j=1 η
jej simply by η.

2.3 Agents and endowments

Consider K ≥ 1 agents participating in the �nancial market. We assume that

each agent k ∈ {1, . . . , K} owns a traded endowment at time 0, consisting of

ηk,j ∈ R units of the asset j ∈ {0, . . . , d1 + d2}, and is also entitled to receive a

non-traded endowment at time T , which consists of a random income Ξk,n ∈ L2.

Because we assume zero interest rates and there are no liquidity constraints

on the portfolios of the agents, it does not matter whether a �xed amount of

cash is received via the traded or non-traded endowment. Thus we may assume

that each agent starts with zero cash. We also make the assumption that the

�nancial assets are in zero net supply, i.e., that these assets are created and traded

internally between the agents so that any long and short positions in the �nancial

assets must net out between the agents, that is,
∑K

k=1 η
k,j = 0. Since the initial

prices S0
0 , . . . , S

d1
0 are known a priori, each agent is indi�erent between receiving

an endowment consisting of units of the �nancial assets or the corresponding

cash value via the non-traded endowment. We may thus assume without loss of

generality that ηk,j = 0 for j ∈ {0, . . . , d1} and k ∈ {1, . . . , K}.
On the other hand, the agents may have a nontrivial endowment consisting

of productive assets. We set ηk := (0, ηk,(2)) ∈ Rd1+d2 and denote the value

of the traded endowment (in the productive assets) of agent k at time T by

Ξk,t := ηk,(2)
⊤
D(2) ∈ L2. The total endowment of agent k at time T is then given

by

Ξk = Ξk,t + Ξk,n. (2.4)

Each agent k ∈ {1, . . . , K} interacts with the market by buying and selling

assets according to an L2-admissible strategy ϑ ∈ Θ(S), which includes the ori-

ginal endowment ηk,(2) of productive assets. Since the agent does not own riskless

or �nancial assets at time 0, her initial wealth is ηk,(2)
⊤
S
(2)
0 , which is the initial

value of her traded endowment. Agent k can then generate the wealth process

ηk,(2)
⊤
S
(2)
0 + ϑ • S by trading with the strategy ϑ in a self-�nancing way. Since

she additionally receives the non-traded endowment Ξk,n at time T , her terminal

wealth at time T is given by ηk,(2)
⊤
S
(2)
0 + ϑ • ST + Ξk,n. Note that the traded
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endowment has the terminal value

Ξk,t = ηk,(2)
⊤
D(2) = ηk,(2)

⊤
S
(2)
T = ηk,(2)

⊤
S
(2)
0 + ηk •ST ,

since ηk = (0, ηk,(2)) is constant. Thus the terminal wealth of agent k at time T

can be equivalently written as

ηk,(2)
⊤
S
(2)
0 + ϑ •ST + Ξk,n = Ξk,t − ηk •ST + ϑ •ST + Ξk,n = (ϑ− ηk) •ST + Ξk

(2.5)

in terms of the total endowment de�ned in (2.4).

From the right-hand side of (2.5), we see that the total wealth at time T

consists of the total endowment as well as any gains or losses generated by the

strategy ϑ−ηk. This di�erence may be interpreted as a discretionary strategy that

is employed by the agent in addition to the �xed endowment ηk. The left-hand

side of (2.5) gives an alternative interpretation. Instead of keeping the traded

endowment, agent k may immediately sell it for the price of ηk,(2)
⊤
S
(2)
0 and then

trade with the strategy ϑ; the non-traded endowment Ξk,n is then added to the

wealth at time T . However, we note that the price S(2)
0 is not known a priori, but

rather determined by the equilibrium. Thus the right-hand side of (2.5) is more

useful for solving the equilibrium problem, since the total endowment Ξk is �xed

by the primitives, so that only the stochastic integral term (ϑ− ηk) •ST depends

on the dynamics of S.

Each agent k ∈ {1, . . . , K} has preferences over terminal wealth at time T

described by a functional Uk : L0(P ) → R. We consider two types of functionals:

the case of a quadratic utility function is the subject of Section 3, and a (gener-

alised) mean�variance functional is considered in Chapter IV. Agent k seeks to

maximise utility from terminal wealth at time T , i.e., to solve the problem

Uk
(
(ϑ− ηk) •ST + Ξk

)
−→ max

ϑ∈Θ(S)
! (2.6)

When considering the uniqueness of a solution to the maximisation problem

(2.6), we need to view uniqueness on the level of stochastic integrals ϑ •S, rather

than on the level of strategies ϑ. To this end, we introduce the following equival-

ence relation.

De�nition 2.4. Let (1, S) be a local L2-market. Then ϑ, ϑ′ ∈ Θ(S) are called

S-equivalent if ϑ • S and ϑ′ • S are indistinguishable. In this case, we write
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ϑ =S ϑ′; see Czichowsky/Schweizer [31] for more details on how to represent

di�erent equivalent classes via the so-called projection onto the predictable range.

2.4 Equilibrium

We can now formulate the key notion of an equilibrium market, which we ad-

apt from the classical concept of a Radner equilibrium. We take the primitives

S
(1)
0 ,M (1), D(2), ηk and Ξk,n de�ned in Sections 2.1 and 2.3 as given.

De�nition 2.5. A local L2-market (1, S(1), S(2)) is called an equilibrium market

if it satis�es (2.1) and (2.2) as well as the following conditions:

1) For each agent k ∈ {1, . . . , K}, the maximisation problem (2.6) has a solu-

tion ϑ̂k ∈ Θ(S) that is unique up to S-equivalence.

2) The market clears, i.e., for t ∈ [0, T ],

K∑
k=1

ϑ̂k,jt =S η̄
j :=

0, if j ∈ {1, . . . , d1},∑K
k=1 η

k,j, if j ∈ {d1 + 1, . . . , d1 + d2}.
(2.7)

3) ej ∈ Θ(S) for j ∈ {d1 + 1, . . . , d1 + d2}, i.e., the buy-and-hold strategies of

the productive assets are L2-admissible.

The only slightly non-standard requirement in De�nition 2.5 is 3). It ensures

that each ηk is L2-admissible, i.e., just keeping the traded endowment corresponds

to an L2-admissible strategy for each agent, which is a natural condition that

the traded endowment should satisfy. Moreover, it is important to ensure that

ϑ̂k ∈ Θ(S) if and only if ϑ̂k − ηk ∈ Θ(S), since we later show the existence of the

optimal strategies ϑ̂k by �rst solving for ϑ̂k − ηk.

Our overall goal is to �nd an equilibrium market (1, S(1), S(2)) corresponding

to the primitives. More precisely, we look for conditions on the primitives that

ensure the existence and uniqueness of a corresponding equilibrium market, and

we seek to characterise that market. We start by studying the individual op-

timisation problems for the agents, and then show how the individual decisions

of the agents can be aggregated by the concept of a representative agent. To

that end, we �rst consider the mean�variance hedging problem, and then show

the relevant connections to the quadratic utility problem de�ned below in (3.2),

which corresponds to (2.6) in the case where the preference functional Uk is given
by expected quadratic utility.
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2.5 Preliminaries on mean�variance hedging

The maximisation problem (2.6) for the quadratic utility or (generalised) mean�

variance preferences we study later is closely linked to the so-called mean�variance

hedging problem; see Schweizer [111] for a recent overview. We introduce here

the mean�variance hedging problem, as well as some related results that will be

useful later. For a given payo� H ∈ L2,

� the mean�variance hedging (MVH) problem is given by

E
[
(ϑ •ST −H)2

]
−→ min

ϑ∈Θ(S)
! (2.8)

� the extended mean�variance hedging (exMVH) problem is given by

E
[
(c+ ϑ •ST −H)2

]
−→ min

(c,ϑ)∈R×Θ(S)
! (2.9)

Mathematically, the minimisation problems (2.8) and (2.9) are best approx-

imation problems in L2 for H with respect to the linear subspaces

GT (S) := {ϑ •ST : ϑ ∈ Θ(S)} and R+ GT (S) := {c+ ϑ •ST : c ∈ R, ϑ ∈ Θ(S)}

of L2, respectively. Because L2 is a Hilbert space, the terminal values attained by

the solutions to (2.8) and (2.9) are given by the orthogonal projections of H onto

GT (S) and R+GT (S), which exist provided that GT (S) and R+GT (S) are closed
in L2, respectively. If they exist, we denote those terminal values by ϑ(H) • ST

and c(H)+ϑex(H) •ST , respectively, for some c(H) ∈ R and ϑ(H), ϑex(H) ∈ Θ(S)

such that the corresponding terminal values are attained. In that case, one is also

interested in whether the choices of ϑ(H) and (c(H), ϑex(H)) corresponding to

these terminal values are unique in the respective spaces. Speci�cally, we say that

(2.8) has a unique solution if ϑ1 =S ϑ
2 for any two solutions ϑ1, ϑ2 ∈ Θ(S); we

use the same convention for the maximisation problem (2.6). Likewise, we say

that (2.9) has a unique solution if c1 = c2 and ϑ1 =S ϑ
2 for any two solutions

(c1, ϑ
1), (c2, ϑ

2) ∈ R×Θ(S).

From the interpretation of the MVH and exMVH problems as orthogonal

projections, we easily deduce that these problems are linear, in the following

sense.

Lemma 2.6. Let H1, H2 ∈ L2 and λ ∈ R.
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1) Suppose there exist solutions ϑ(H1), ϑ(H2) ∈ Θ(S) to (2.8) for H1 and H2,

respectively. Then ϑ(H1)+λϑ(H2) is a solution to (2.8) for the payo� H1+λH2.

2) Suppose there exist solutions (c(H1), ϑ
ex(H1)), (c(H2), ϑ

ex(H2)) ∈ R×Θ(S)

to (2.9) for H1 and H2, respectively. Then (c(H1) + λc(H2), ϑ
ex(H1) + λϑex(H2))

is a solution to (2.9) for the payo� H1 + λH2.

Proof. 1) For any H ∈ L2, ϑ ∈ Θ(S) solves (2.8) for H if and only if

E[(ϑ •ST −H)(ϑ̃ •ST )] = 0 (2.10)

for all ϑ̃ ∈ Θ(S); this follows from the formulation of the MVH problem as an

orthogonal projection. Note that we have

E
[((

ϑ(H1) + λϑ(H2)
)

•ST −H1 − λH2

)
(ϑ̃ •ST )

]
= E

[(
ϑ(H1) •ST −H1

)
(ϑ̃ •ST )

]
+ λE

[(
ϑ(H2)) •ST −H2

)
(ϑ̃ •ST )

]
= 0

for all ϑ̃ ∈ Θ(S), since ϑ(H1) and ϑ(H2) solve (2.8) for H1 and H2, respectively.

Therefore ϑ(H1) + λϑ(H2) solves (2.8) for H1 + λH2, as claimed.

2) Similarly, for any H ∈ L2, (c, ϑ) ∈ R×Θ(S) solves (2.9) if and only if

E[(c+ ϑ •ST −H)(c̃+ ϑ̃ •ST )] = 0 (2.11)

for all (c̃, ϑ̃) ∈ R×Θ(S). We have

E
[(
c(H1) + λc(H2) +

(
ϑex(H1) + λϑex(H2)

)
•ST −H1 − λH2

)
(c̃+ ϑ̃ •ST )

]
= E

[(
c(H1) + ϑex(H1) •ST −H1

)
(c̃+ ϑ̃ •ST )

]
+ λE

[(
c(H2) + ϑex(H2) •ST −H2

)
(c̃+ ϑ̃ •ST )

]
= 0

for all (c̃, ϑ̃) ∈ R × Θ(S), since (c(H1), ϑ
ex(H1)) and (c(H2), ϑ

ex(H2)) solve (2.9)

for H1 and H2, respectively. Thus (c(H1) + λc(H2), ϑ
ex(H1) + λϑex(H2)) solves

(2.9) for H1 + λH2, as claimed.

If S admits an equivalent local martingale measure (ELMM) with square-

integrable density, then GT (S) and R + GT (S) are closed and the solutions in

Θ(S) and R×Θ(S) are unique; this follows by �erný/Kallsen [25, Lemma 2.11].

However, without that extra assumption, both closedness of GT (S) and R+GT (S)
as well as uniqueness of the solutions in Θ(S) and R+Θ(S) (if they exist) do not
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hold in general.

In order to deal with the uniqueness issue, it is useful to introduce the notions

of uniqueness of gains processes and uniqueness of value processes associated with

a price process S.

De�nition 2.7. Let (1, S) be a local L2-market. It is said to satisfy

� uniqueness of gains processes if for any two trading strategies ϑ1, ϑ2 ∈ Θ(S),

the equality ϑ1 •ST = ϑ2 •ST P -a.s. implies that ϑ1 =S ϑ
2.

� uniqueness of value processes if for any two trading strategies ϑ1, ϑ2 ∈ Θ(S)

and initial values c1, c2 ∈ R, the equality c1 + ϑ1 •ST = c2 + ϑ2 •ST P -a.s.

implies that c1 = c2 and ϑ1 =S ϑ
2.

We have the following two equivalent characterisations of uniqueness of gains

and value processes. They follow immediately from the linear structure of the

(extended) mean�variance hedging problems given in Lemma 2.6, as well as the

fact that for H = 0, the problems of MVH (2.8) and exMVH (2.9) admit as

solutions ϑ = 0 and (c, ϑ) = (0, 0), respectively.

Proposition 2.8. Let (1, S) be a local L2-market. The following are equivalent:

(a) (1, S) satis�es uniqueness of gains processes.

(b) For some H ∈ L2, the MVH problem (2.8) admits a unique solution.

(c) For each H ∈ L2 for which the MVH problem (2.8) admits a solution, the

solution is unique.

Proof. (a) ⇒ (b): For the particular payo� H = 0, we claim that ϑ(H) = 0 is

the unique solution to (2.8). Indeed, it is a solution as the hedging error is 0.

Moreover, any other solution ϑ ∈ Θ(S) must satisfy ϑ •ST = 0 = 0 •ST a.s., and

thus ϑ =S 0 by the uniqueness of gains processes.

(b) ⇒ (c): For a contradiction, suppose that the MVH problem for H admits

two solutions ϑ1, ϑ2 ∈ Θ(S). As we assume (b), there exists some H̃ ∈ L2 such

that the solution ϑ(H̃) to the MVH problem for H̃ is unique. By Lemma 2.6,

ϑ(H̃) + (ϑ1 − ϑ2) is a solution to (2.8) for H̃ + H − H = H̃. Thus we have by

uniqueness that ϑ(H̃) + (ϑ1 − ϑ2) =S ϑ(H̃), so that ϑ1 =S ϑ
2. This shows that

the solution to (2.8) for H is also unique, as claimed.

(c) ⇒ (a): Suppose that ϑ1, ϑ2 ∈ Θ(S) are such that ϑ1 • ST = ϑ2 • ST .

By De�nition 2.2 and as ϑ1 ∈ Θ(S), we have H := ϑ1 • ST ∈ L2. Note that
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both strategies ϑ1 and ϑ2 solve the MVH problem for H, as the hedging error

generated by either strategy is 0. By (c), we thus get ϑ1 =S ϑ
2, so that (1, S)

satis�es uniqueness of gains processes.

Proposition 2.9. Let (1, S) be a local L2-market. The following are equivalent:

(a) (1, S) satis�es uniqueness of value processes.

(b) For some H ∈ L2, the exMVH problem (2.9) admits a unique solution.

(c) For each H ∈ L2 for which the exMVH problem (2.9) admits a solution, the

solution is unique.

Proof. The proof is almost identical to that of Proposition 2.8.

(a) ⇒ (b): We claim that (c(0), ϑex(0)) = (0, 0) is the unique solution to (2.9)

for the particular payo� H = 0. Indeed, it is a solution as the hedging error is 0.

Moreover, any other solution (c, ϑ) ∈ R × Θ(S) must satisfy c + ϑ •ST = 0 a.s.,

and thus c = 0 and ϑ =S 0 by the uniqueness of value processes.

(b) ⇒ (c): For a contradiction, suppose that the exMVH problem for H

admits two solutions (c1, ϑ1), (c2, ϑ
2) ∈ R×Θ(S). As we assume (b), there exists

some H̃ ∈ L2 such that the solution (c(H̃), ϑex(H̃)) to the exMVH problem for

H̃ is unique. By Lemma 2.6, we have that

(c̃, ϑ̃) :=
(
c(H̃) + c1 − c2, ϑ(H̃) + (ϑ1 − ϑ2)

)
is a solution to (2.8) for H̃ +H −H = H̃, so that (c̃, ϑ̃) = (c(H̃), ϑex(H̃)) by the

uniqueness of the solution. Thus c(H̃) + c1 − c2 = c(H̃) so that c1 = c2, and also

ϑ(H̃) + (ϑ1 − ϑ2) =S ϑ(H̃) so that ϑ1 =S ϑ
2. This shows that the solution to

(2.9) for H is unique, as claimed.

(c) ⇒ (a): Suppose that (c1, ϑ1), (c2, ϑ
2) ∈ R×Θ(S) are such that

c1 + ϑ1 •ST = c2 + ϑ2 •ST =: H.

By De�nition 2.2 and as ϑ1 ∈ Θ(S), we haveH ∈ L2. Note that both pairs (c1, ϑ1)

and (c2, ϑ
2) solve the exMVH problem for H, as the hedging error generated by

either strategy is 0. As we assume that (c) holds, we thus get that c1 = c2 and

ϑ1 =S ϑ
2, and so (1, S) satis�es uniqueness of value processes.

The following two results show that uniqueness of value processes implies

uniqueness of gains processes and link the MVH problem (2.8) and the extended

exMVH problem (2.9).
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Proposition 2.10. Let (1, S) be a local L2-market satisfying uniqueness of value

processes. Then (1, S) satis�es uniqueness of gains processes. Moreover, if the

MVH problem (2.8) for H = 1 has a solution ϑ(1), then E[(ϑ(1) •ST − 1)2] > 0.

Proof. Since ϑ ≡ 0 is a solution to (2.8) for H = 0 with hedging error 0, any

solution to (2.8) for 0 is also a solution to (2.9) for 0 with c = 0. Thus the

�rst assertion follows from Propositions 2.8 and 2.9, using the fact that if the

MVH problem (2.8) for 0 does not have a unique solution, then a fortiori the

exMVH problem (2.9) for 0 cannot have a unique solution. The second assertion

follows from the fact that if E[(ϑ(1) • ST − 1)2] = 0, then the exMVH problem

(2.9) for 0 would have two solutions (−1, ϑ(1)) and (0, 0), which would lead to a

contradiction due to Proposition 2.9.

Corollary 2.11. Let (1, S) be a local L2-market satisfying uniqueness of value

processes. Suppose that the MVH problems (2.8) for H and 1 have solutions ϑ(H)

and ϑ(1), respectively. Then the exMVH problem (2.9) for H has the solution

(c(H), ϑex(H)) := (c(H), ϑ(H)− c(H)ϑ(1)), where

c(H) :=
E[H(1− ϑ(1) •ST )]

E[(1− ϑ(1) •ST )2]
. (2.12)

Proof. By Lemma 2.6, for �xed c ∈ R, the MVH problem (2.8) for H − c has the

(unique) solution ϑ(H)− cϑ(1). Moreover, as E[ϑ(H) •ST (1− ϑ(1) •ST )] = 0 by

the �rst-order condition of MVH, it follows that

E
[(
c+

(
ϑ(H)− cϑ(1)

)
•ST −H

)2]
= c2E

[(
1− ϑ(1) •ST

)2]
+ E

[(
H − ϑ(H) •ST

)2]− 2cE
[
H
(
1− ϑ(1) •ST

)]
.

(2.13)

As a quadratic function of c, the right-hand side of (2.13) has the unique minim-

iser c(H) given by (2.12).

The following result gives simple su�cient conditions for uniqueness of gains

and value processes and for the existence of solutions to the MVH and exMVH

problems (2.8) and (2.9) in terms of a signed local martingale measure for S.

The assumption that such a signed measure exists is not necessary for the ex-

istence of solutions to the MVH and exMVH problems, but it is a weaker as-

sumption than the existence of an equivalent local martingale measure for S. By

�erný/Czichowsky [24, Theorem 2.2], the conditions in part (b) are equivalent

to the economic assumption of the so-called law of one price.
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Proposition 2.12. Let (1, S) be a local L2-market and Z = (Zt)0≤t≤T a square-

integrable martingale such that ZSj is a local martingale for all j ∈ {1, . . . , d}.
Then Z(ϑ •S) is a P -martingale for each ϑ ∈ Θ(S). Moreover:

1) If Zt ̸= 0 P -a.s. for each t ∈ [0, T ], then (1, S) satis�es uniqueness of value

processes.

2) If Zt ̸= 0 and Zt− ̸= 0 for all t ∈ [0, T ] P -a.s., then the MVH problem (2.8)

and exMVH problem (2.9) have unique solutions for each H ∈ L2.

Proof. As Z is a martingale and ZSj is a local martingale for all j ∈ {1, . . . , d},
we have that ZSτ is a local P -martingale on [0, T ] for any stopping time τ .

Moreover, let σ be another stopping time with values in [0, T ] and A ∈ F . By

the Cauchy�Schwarz inequality, we have

E
[
1A|ZτSτσ |

]
≤ E

[
1A|Zτ |2

]1/2
E
[
|Sτσ |2

]1/2
≤ E

[
1A sup

t∈[0,T ]
|Zt|2

]1/2
sup

{
E[|Sτσ′|2] : σ′ stopping time

}1/2
.

Note that the bound on the right-hand side is �nite, as Sτ is an L2-semimartingale

and Z is a square-integrable martingale. Since supt∈[0,T ] |Zt| is square-integrable,
so that the singleton {supt∈[0,T ] |Zt|2} is uniformly integrable, it follows by the

ε-δ-criterion for uniform integrability that the right-hand side converges to 0 as

P [A] → 0. Since the bound on the right-hand side is independent of σ, we

have thus shown that the set {ZσSτσ : σ stopping time} is uniformly integrable,

i.e., ZSτ is of class (D). Therefore, ZSτ is a true P -martingale on [0, T ] for any

stopping time τ such that S is an L2-semimartingale. We deduce that Z(ϑ • S)

is a P -martingale on [0, T ] for any strategy of the form ϑ = 1K0,τK. By linearity,

this martingale property extends to Z(ϑ •S) for all ϑ ∈ Θsimple(S).

We now show the same martingale property for ϑ ∈ Θ(S). By the de�nition of

Θ(S), there is a sequence (ϑn)n∈N of simple strategies such that ϑn •ST
L2

−→ ϑ •ST

and ϑn • Sτ
P−→ ϑ • Sτ for any [0, T ]-valued stopping time τ . By the Cauchy�

Schwarz inequality, it follows that ZT (ϑn • ST )
L1

−→ ZT (ϑ • ST ). By the L1-

continuity of conditional expectations and the fact that convergence in L1 implies

convergence in probability, we obtain

E[ZT (ϑ
n •ST ) | Ft]

P−→ E[ZT (ϑ •ST ) | Ft]

for 0 ≤ t ≤ T as n→ ∞. Since ϑn is a simple strategy, Z(ϑn •S) is a P -martingale
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on [0, T ] so that E[ZT (ϑn •ST ) | Ft] = Zt(ϑ
n •St) and

Zt(ϑ
n •St)

P−→ E[ZT (ϑ •ST ) | Ft]

as n → ∞. But we also have Zt(ϑn • St)
P−→ Zt(ϑ • St) as n → ∞ by the

construction of (ϑn), which implies that E[ZT (ϑ • ST ) | Ft] = Zt(ϑ • St) for

0 ≤ t ≤ T , i.e., Z(ϑ •S) is a P -martingale for all ϑ ∈ Θ(S). This shows the �rst

statement, and we now proceed to show 1) and 2).

1) Fix c1, c2 ∈ R and ϑ1, ϑ2 ∈ Θ(S) such that c1 +ϑ1 •ST = c2 +ϑ2 •ST P -a.s.

Then Z(c1 + ϑ1 •S) and Z(c2 + ϑ2 •S) are both P -martingales. Since they agree

at the terminal time, they are indistinguishable. Since each Zt ̸= 0 P -a.s., this

implies that c1 + ϑ1 •St = c2 + ϑ2 •St P -a.s. for each t ∈ [0, T ], whence c1 + ϑ1 •S

and c2 + ϑ2 • S are indistinguishable. For t = 0, this implies that c1 = c2, and

subtracting the constants yields that ϑ1 •S and ϑ2 •S are indistinguishable.

2) It su�ces to argue existence, as uniqueness follows from part 1) together

with Proposition 2.9. By the assumptions on Z, we have Z = Z0 E(N) for some

local martingale N = (Nt)0≤t≤T ; this is due to Jacod [70, Exercise 6.1] and given

in a concise form in Choulli et al. [29, Proposition 2.2]. Hence S is a local

E-martingale and E(N) = Z/Z0 is a square-integrable martingale and so-called

regular (since Tn = T for n ≥ 1; see [29, De�nitions 3.4, 3.6 and 3.11]). Existence

of a solution to the MVH problem (2.8) then follows from Czichowsky/Schweizer

[32, Theorem 2.16]. Finally, the existence of a solution to the exMVH problem

(2.9) follows from part 1) and Corollary 2.11.

We close this section by linking the zero solution of an MVH problem to a

local martingale-type condition for S.

Lemma 2.13. Let (1, S) be a local L2-market and H ∈ L2. De�ne the square-

integrable martingale Z = (Zt)0≤t≤T by Zt := E[H | Ft]. The following are equi-

valent:

(a) 0 ∈ Θ(S) solves the MVH problem (2.8).

(b) ZSj is a local P -martingale for all j ∈ {1, . . . , d}.

Proof. (a) ⇒ (b): Since 0 ∈ Θ(S) is a solution to (2.8), it follows as in (2.10)

that H is orthogonal to GT (S), i.e., we have E[(ϑ •ST )H] = 0 for any ϑ ∈ Θ(S).

Now �x j ∈ {1, . . . , d} and let σ be a stopping time. Since (1, S) is a local L2-

market, there exists a localising sequence of stopping times (τn)n∈N such that for

each n ∈ N, the stopped process Sj,τn is an L2-semimartingale. Fix n ∈ N. Then
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the strategy ej,σ,n := (0, . . . , 0,1K0,σ∧τnK, 0, . . . , 0), where the indicator process is at

the j-th position, belongs to Θsimple(S) ⊆ Θ(S). The fact that Z is a P -martingale

with ZT = H and E[(ej,σ,n •ST )H] = 0 yield

E[Sjσ∧τnZσ∧τn − Sj0Z0] = E[(Sjσ∧τn − Sj0)ZT ] = E[(ej,σ,n •ST )H] = 0.

Since σ was arbitrary, it follows that (ZSj)τn is a P -martingale. As (τn) is a

localising sequence, we conclude that ZSj is a local P -martingale.

(b) ⇒ (a): Fix ϑ ∈ Θ(S). By Proposition 2.12, Z(ϑ • S) is a P -martingale,

and hence

E[(ϑ •ST −H)2] = E[H2]− 2E[(ϑ •ST )ZT ] + E[(ϑ •ST )
2]

= E[H2] + E[(ϑ •ST )
2]

≥ E[(H − 0 •ST )
2].

Thus 0 ∈ Θ(S) solves the MVH problem (2.8).

3 Equilibria for quadratic utilities

In this section, we focus on the case where the preferences of the agents are

described by expected utility with a quadratic utility function. More precisely,

the preferences of each agent k ∈ {1, . . . , K} are characterised by the expected

utility of terminal wealth at time T , with the quadratic utility function

Uk(x) = x− 1

2γk
x2, x ∈ R, (3.1)

where γk > 0 denotes the risk tolerance of agent k. Recall from (2.5) the terminal

wealth generated by a strategy ϑ ∈ Θ(S) together with the traded and non-traded

endowments for each agent. Thus the maximisation problem (2.6) of agent k takes

the form

E
[
Uk
(
(ϑ− ηk) •ST + Ξk

)]
→ max

ϑ∈Θ(S)
! (3.2)

The quadratic utility function Uk is concave and increasing for x ≤ γk, so that

γk > 0 can also be seen as a bliss point for agent k. The fact that Uk is decreasing

for x ≥ γk is economically unreasonable, as it implies that the agent would prefer

to be less wealthy beyond that point; this is a well-known issue associated with
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the choice of a quadratic utility function. Nevertheless, this can be a useful model

provided that γk is large enough, so that it is unlikely that an agent can reach

that amount of wealth. A key point in favour of quadratic utility is that it often

leads to tractable problems where explicit results can be obtained.

3.1 Individually optimal strategies

We begin by making some observations on the individual maximisation problem

(3.2) for a �xed local L2-market (1, S). More precisely, we link (3.2) to an MVH

problem for the payo�Hk := γk−Ξk. This is the di�erence between the bliss point

and the total endowment for agent k, and may be interpreted as the additional

wealth that the agent would like to obtain in order to reach the bliss point.

Lemma 3.1. Let (1, S) be a local L2-market and assume that ηk ∈ Θ(S). Then

the following are equivalent:

(a) The optimisation problem (3.2) of agent k has a unique solution ϑ̂k ∈ Θ(S).

(b) The MVH problem

E[(ϑ •ST −Hk)2] → min
ϑ∈Θ(S)

! (3.3)

has a unique solution ϑ(Hk) ∈ Θ(S).

In either case, it holds that ϑ̂k =S η
k+ϑ(Hk), and the market satis�es uniqueness

of gains processes.

Proof. Let ϑ ∈ Θ(S) and set ϑ̃ := ϑ − ηk ∈ Θ(S). Plugging the de�nition of Uk
into (3.2) and rewriting (3.1) as Uk(x) = − 1

2γk
(x− γk)

2 + γk
2
yields

E
[
Uk
(
(ϑ− ηk) •ST + Ξk

)]
= E[Uk(ϑ̃ •ST + Ξk)]

= − 1

2γk
E[(ϑ̃ •ST + Ξk − γk)

2] +
γk
2

= − 1

2γk
E[(ϑ̃ •ST −Hk)2] +

γk
2
.

Because Θ(S) is a vector space, this shows that ϑ is a solution to the maximisation

problem (3.2) if and only if ϑ̃ is a solution to the MVH problem (3.3), and

therefore the two problems are equivalent under the assumption that ηk ∈ Θ(S).

In particular, (3.2) has a unique solution ϑ̂k if and only if (3.3) has a unique

solution ϑ(Hk), in which case we have the relationship ϑ̂k =S η
k+ϑ(Hk) between

the solutions. Finally, if (3.3) has a unique solution, then the market satis�es

uniqueness of gains processes by Proposition 2.8.
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We proceed to decompose the optimal strategy ϑ̂k into a hedging and a pure

investment part by considering two problems:

� The hedging problem of agent k is the exMVH problem

E[(c+ ϑ •ST − Ξk)2] → min
c∈R,ϑ∈Θ(S)

! (3.4)

� The pure investment problem is the MVH problem

E[(ϑ •ST − 1)2] → min
ϑ∈Θ(S)

! (3.5)

If the market satis�es uniqueness of value processes and there exist (unique)

solutions to both (3.2) and the pure investment problem (3.5), then we can de-

compose the optimal strategy of agent k as follows.

Proposition 3.2. Let (1, S) be a local L2-market satisfying uniqueness of value

processes. Assume that ηk ∈ Θ(S) and the pure investment problem (3.5) has a

solution ϑ(1). Then the individual optimisation problem (3.2) of agent k has a

unique solution ϑ̂k ∈ Θ(S) if and only if the exMVH problem (2.9) for Ξk has a

unique solution (c(Ξk), ϑex(Ξk)) ∈ R×Θ(S). In this case, ϑ̂k is given by

ϑ̂k =S η
k +

(
γk − c(Ξk)

)
ϑ(1)− ϑex(Ξk). (3.6)

Proof. Suppose that the exMVH problem (2.9) for Ξk has a (unique) solution

(c(Ξk), ϑex(Ξk)) ∈ R×Θ(S). Then the MVH problem (2.8) with payo� Ξk−c(Ξk)
has the unique solution ϑ(Ξk−c(Ξk)) =S ϑ

ex(Ξk). Hence by Lemma 2.6, the MVH

problem (2.8) for the payo�

Hk = γk − Ξk = γk −
(
Ξk − c(Ξk)

)
− c(Ξk)

has the unique solution

ϑ(Hk) =S

(
γk−c(Ξk)

)
ϑ(1)−ϑ(Ξk−c(Ξk)) =S

(
γk−c(Ξk)

)
ϑ(1)−ϑex(Ξk). (3.7)

Thus (3.6) follows by Lemma 3.1.

Conversely, if the individual optimisation problem (3.2) of agent k has a

(unique) solution ϑ̂k ∈ Θ(S), then by Lemma 3.1, the MVH problem (2.8) for

Hk = γk − Ξk has a unique solution ϑ(Hk). Hence by Lemma 2.6, the MVH

problem (2.8) for Ξk has a unique solution ϑ(Ξk) =S γkϑ(1) − ϑ(Hk). It now
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follows from Corollary 2.11 that the exMVH problem (2.9) for Ξk has a unique

solution (c(Ξk), ϑex(Ξk)) ∈ R×Θ(S), where ϑex(Ξk) = ϑ(Ξk)− c(Ξk)ϑ(1).

3.2 The representative agent

In order to study equilibrium markets in the case of a quadratic utility func-

tion, we use the standard idea from �nancial economics to consider a repres-

entative agent that holds the aggregate endowment of all agents, i.e., the rep-

resentative agent owns both η̄ =
∑K

k=1 η
k units of the assets, where we recall

η̄ = (η̄1, . . . , η̄d1+d2) = (0, η̄(2)) from (2.7), as well as the sum of the non-traded

endowments of the agents. Equivalently, the representative agent receives the

total endowment Ξ̄ =
∑K

k=1 Ξ
k. By the same argument as in (2.5), the repres-

entative agent can attain the terminal wealth (ϑ− η̄) •ST + Ξ̄ by trading with a

strategy ϑ ∈ Θ(S).

The utility function of the representative agent is de�ned by

Ūλ(x) = sup

{ K∑
k=1

λkUk(xk) : x1, . . . , xK ∈ Rd,
k∑
k=1

xk = x

}
,

where λ = (λ1, . . . , λK) ∈ RK
+ is a �xed set of Negishi weights summing up to K.1

We make the ansatz of equal weights λ1 = · · · = λK := 1 and write Ū := Ū1. In

this case, denoting by γ̄ :=
∑K

k=1 γk the aggregate risk tolerance, it is not di�cult

to check that

Ū(x) = sup

{ K∑
k=1

(
xk −

1

2γk
x2k

)
: x1, . . . , xK ∈ Rd,

K∑
k=1

xk = x

}

=
K∑
k=1

(
xγk
γ̄

− 1

2γk

(xγk
γ̄

)2)
= x− 1

2γ̄
x2,

so that the utility function of the representative agent is of the same form as the

utility function of the individual agents. The representative agent then solves the

maximisation problem

E
[
Ū
(
(ϑ− η̄) •ST + Ξ̄

)]
→ max

ϑ∈Θ(S)
! (3.8)

From a mathematical perspective, (3.8) has exactly the same structure as the
1Usually, the convention in the literature is that the Negishi weights sum up to 1, but in our

context, the total weight of K leads to neater formulas. Of course, both parametrisations lead
to the same set of preferences.
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individual maximisation problem (3.2). Thus we get an analogue of Lemma 3.1

for the representative agent. In the following, we set H̄ = γ̄ − Ξ̄. Similarly to

Hk, the random variable H̄ may be interpreted as the aggregate shortfall, i.e.,

the additional wealth that the agents would (collectively) like to obtain in order

to reach the aggregate bliss point γ̄.

Lemma 3.3. Let (1, S) be a local L2-market and assume that η̄ ∈ Θ(S). Then

the following are equivalent:

(a) The optimisation problem (3.8) has a unique solution ϑ̄ ∈ Θ(S).

(b) The MVH problem

E[(ϑ •ST − H̄)2] → min
ϑ∈Θ(S)

! (3.9)

has a unique solution ϑ(H̄) ∈ Θ(S).

In either case, it holds that ϑ̄ =S η̄ + ϑ(H̄), and the market satis�es uniqueness

of gains processes.

Analogously to Proposition 3.2, we can also decompose the optimal strategy

ϑ̂ of the representative agent into a hedging and a pure investment part, where

the hedging problem of the representative agent is the (extended) MVH problem

E
[(
c+ ϑ •ST − Ξ̄

)2]→ min
c∈R,ϑ∈Θ(S)

! (3.10)

and the pure investment problem is the MVH problem (3.5).

Proposition 3.4. Let (1, S) be a local L2-market satisfying uniqueness of value

processes. Assume that η̄ ∈ Θ(S) and the pure investment problem (3.5) has a

unique solution ϑ(1). Then the optimisation problem (3.8) of the representative

agent has a unique solution ϑ̄ ∈ Θ(S) if and only if the exMVH problem (2.9) for

Ξ̄ has a unique solution (c(Ξ̄), ϑex(Ξ̄)) ∈ R×Θ(S), and ϑ̄ is then given by

ϑ̄ =S η̄ +
(
γ̄ − c(Ξ̄)

)
ϑ(1)− ϑex(Ξ̄). (3.11)

The following result shows that the optimal strategy for the representative

agent is given by the sum of the strategies of the individual agents. This result

gives a characterisation of the aggregate demand for the risky assets, which is the

key to �nding a market equilibrium.
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Lemma 3.5. Let (1, S) be a local L2-market. Assume that η1, . . . , ηK ∈ Θ(S)

and for each agent k ∈ {1, . . . , K}, the individual optimisation problem (3.2) has

a unique solution ϑ̂k. Then the optimisation problem (3.8) of the representative

agent has a unique solution ϑ̄ satisfying

ϑ̄ =S

K∑
k=1

ϑ̂k. (3.12)

Proof. By the implication (b)⇒ (c) in Proposition 2.8, the mapH 7→ ϑ(H) is well

de�ned for all H such that a solution ϑ(H) to (2.8) exists, since such a solution

is unique up to S-equivalence. We also have by Lemma 2.6 that H 7→ ϑ(H) is

linear where it is de�ned.

Because η1, . . . , ηK ∈ Θ(S), we get from Lemma 3.1 that the MVH problem

(2.8) for Hk has the unique solution ϑ(Hk) = ϑ̂k − ηk for each k ∈ {1, . . . , K}.
Hence there is a unique solution to (2.8) for H̄ =

∑K
k=1H

k, which is given by

ϑ(H̄) =S

K∑
k=1

(
ϑ(Hk)− ηk

)
= ϑ̄− η̄. (3.13)

Thus by Lemmas 3.3 and 3.1, we have

ϑ̄ =S ϑ(H̄) + η̄ =S

K∑
k=1

(
ϑ(Hk) + ηk

)
=S

K∑
k=1

ϑ̂k,

which shows (3.12) and concludes the proof.

3.3 Existence and uniqueness of equilibria

So far, we have used the linear structure of the quadratic and MVH problems

of the individual agents to characterise the aggregate demand in terms of a rep-

resentative agent. With this insight, we can now proceed to our main results

on the existence and uniqueness of equilibrium markets. We start by giving a

characterisation of equilibria from which we will later obtain an explicit formula.

Lemma 3.6. Suppose that (1, S) = (1, S(1), S(2)) is an equilibrium market and

let (Z̄t)0≤t≤T be the (square-integrable) P -martingale given by Z̄t = E[H̄ | Ft] so

that Z̄T = H̄ P -a.s. Then for each j ∈ {1, . . . , d1 + d2}, the process (Z̄tS
j
t )0≤t≤T

is a local P -martingale.

Proof. Denote by ϑ̂1, . . . , ϑ̂K ∈ Θ(S) the unique individually optimal strategies.
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Then by Lemma 3.5, ϑ̄ :=
∑K

k=1 ϑ̂
k ∈ Θ(S) is the unique solution to the optim-

isation problem (3.8) of the representative agent. Moreover, the market clearing

condition (2.7) yields ϑ̄ =S η̄, so that by Lemma 3.3, 0 is the unique solution to

the MVH problem (2.8) for H̄. Thus Lemma 2.13 yields that (Z̄tS
j
t )0≤t≤T is a

local P -martingale for each j ∈ {1, . . . , d1 + d2}, as claimed.

Lemma 3.6 shows that the process Z̄ plays a key role, since any equilibrium

market S must satisfy the condition that Z̄S is a local P -martingale. We obtain

from this insight necessary and su�cient conditions for the existence of a unique

equilibrium under the assumption that the process Z̄ does not hit 0; for instance,

this assumption holds if Z̄T = H̄ > 0 so that Z̄ is strictly positive. In that case,

H̄/E[H̄] is the density of an equivalent local martingale measure for S. It is

economically reasonable to assume that the shortfall H̄ is strictly positive, since

it means that the agents always want to increase their wealth (in aggregate).

Nevertheless, for the sake of generality, we allow Z̄ to take negative as well as

positive values.

Before we proceed to the �rst main result, it is useful to introduce the Galtchouk�

Kunita�Watanabe decomposition of Z̄ with respect to M (1) under P , i.e.,

Z̄t = Z̄0 + ξ̄(1) •M
(1)
t +M Z̄

t , 0 ≤ t ≤ T, (3.14)

where ξ̄(1) ∈ L2(M (1)) and M Z̄ is a square-integrable P -martingale strongly or-

thogonal to M (1). As we will see, the integrand ξ̄(1) plays an important role in

the price dynamics of the �nancial assets in an equilibrium market.

Remark 3.7. The choice of ξ̄(1) in (3.14) is only unique up to M (1)-equivalence.

Because the components of M (1) may be linearly dependent, the components

ξ̄i • M i need not be uniquely (or well) de�ned, but we can choose a particular

integrand ξ̄(1) = (ξ̄1, . . . , ξ̄d1) as follows. Applying the Gram�Schmidt algorithm

to (M1, . . . ,Md1 , Z̄) ∈ M2
0,loc yields a unique decomposition of the form

Z̄t = Z̄0 +

d1∑
i=1

ξ̄i •M i
t +M Z̄

t , 0 ≤ t ≤ T,

where
∑I

i=1 ξ̄
i • M i is strongly orthogonal to

∑d1
i=I+1 ξ̄

i • M i + M Z̄ for each

I ∈ {1, . . . , d1}. This orthogonality property and the square-integrability of Z̄

yield that
∑I

i=1 ξ̄
i • M i is a square-integrable martingale for each I, and hence

so is ξ̄i • M i. For this choice of ξ̄(1) := (ξ̄1, . . . , ξ̄d1) and as M (1) is a locally
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square-integrable martingale by assumption, the predictable quadratic variation

⟨ξ̄i •M i,M j⟩ = ξ̄i
⊤
• ⟨M i,M j⟩

is well de�ned for each j ∈ {1, . . . , d1} and ξ̄i⊤• ([M i,M j] − ⟨M i,M j⟩) is a local

P -martingale. In particular, the process

⟨ξ̄(1) •M (1),M j⟩ =
d1∑
i=1

ξ̄i • ⟨M i,M j⟩ (3.15)

is well de�ned. Although we choose ξ̄(1) as above, note that the martingale

ξ̄(1) • M (1) is independent of that choice due to (3.14). Hence the right-hand

side of (3.15) is also independent of any choice of ξ̄(1) such that the individual

summands are well de�ned. Likewise, the �nite-variation part in (3.16) below

also does not depend on the choice of ξ̄(1).

Theorem 3.8. Assume that Z̄t ̸= 0 and Z̄t− ̸= 0 for all t ∈ [0, T ] P -a.s. If

there exists an equilibrium market (1, S(1), S(2)) that satis�es (2.1) and (2.2), it

is unique and explicitly given by

Sjt = Sj0 +M j
t −

∫ t

0

d⟨Z̄,M j⟩s
Z̄s−

= Sj0 +M j
t −

d1∑
i=1

∫ t

0

ξ̄is
Z̄s−

d⟨M i,M j⟩s, j ∈ {1, . . . , d1}, (3.16)

Sjt =
E[H̄Dj | Ft]

Z̄t
=
E[Z̄TD

j | Ft]

Z̄t
, j ∈ {d1 + 1, . . . , d1 + d2}, (3.17)

and (Z̄tS
j
t )0≤t≤T is a local P -martingale for each j ∈ {1, . . . , d1 + d2}. Con-

versely, (1, S) = (1, S(1), S(2)) de�ned by (3.16) and (3.17) is an equilibrium mar-

ket if and only if S(2) is a local L2-semimartingale such that ej ∈ Θ(S) for each

j ∈ {d1 + 1, . . . , d1 + d2}.

Proof of Theorem 3.8. (a) We start by showing that any equilibrium market

(1, S) is given by (3.16) and (3.17). By Lemma 3.6, Z̄Sj is a local P -martingale

for each j ∈ {1, . . . , d1 + d2}. We �rst consider j ∈ {1, . . . , d1}. Recall the de-

composition (3.14) for Z̄ and the dynamics (2.1) for Sj. Applying the product
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formula to Z̄Sj and rearranging terms, we obtain

Z̄tS
j
t − Z̄− •M j

t − Sj− • Z̄t −
d1∑
i=1

ξ̄i •
(
[M i,M j]− ⟨M i,M j⟩

)
t

= Z̄− •Ajt +

d1∑
i=1

ξ̄i • ⟨M i,M j⟩t (3.18)

for 0 ≤ t ≤ T . Note that Z̄Sj, M j, Z̄ and ξ̄i • ([M i,M j] − ⟨M i,M j⟩) are

local P -martingales (for the latter, this is shown in Remark 3.7), whereas Aj

and ξ̄i • ⟨M i,M j⟩ are predictable �nite-variation processes. Thus both sides of

(3.18) must vanish, as they are null at 0. By assumption, we have Z̄t ̸= 0 and

Z̄t− ̸= 0 for all t ∈ [0, T ] P -a.s. Since Z̄ is also càdlàg, this implies that 1/Z̄−

is �nite-valued and càglàd, thus locally bounded. Integrating 1/Z̄− against the

right-hand side of (3.18), which vanishes as we have shown, yields (3.16).

Next, consider j ∈ {d1 + 1, . . . , d1 + d2}. By (2.2) and as Z̄T = H̄, we have

Z̄TS
j
T = H̄Dj. Since ej ∈ Θ(S) and Z̄ is a square-integrable martingale, it

follows from Proposition 2.12 that Z̄Sj = Z̄Sj0 + Z̄(ej •S) is a P -martingale, so

that Z̄tS
j
t = E[H̄Dj | Ft]. Since Z̄t ̸= 0 P -a.s., this yields (3.17). We have thus

shown that any equilibrium must satisfy (3.16) and (3.17).

(b) Next, we show the converse statement. De�ne (1, S) = (1, S(1), S(2)) by

(3.16) and (3.17) and assume that S(2) is a local L2-semimartingale and ej ∈ Θ(S)

for j ∈ {d1 + 1, . . . , d1 + d2}. We claim that (1, S) is an equilibrium market. It

is clear from (3.16) and (3.17) that S(1) and S(2) satisfy (2.1) and (2.2), re-

spectively. Note that S(1) is a a special semimartingale and the local martingale

part M (1) is locally square-integrable, by assumption. Thus by �erný/Kallsen

[25, Lemma A.2], S(1) is also a local L2-semimartingale so that (1, S(1), S(2)) is

a local L2-market. Next, we want to show that Z̄Sj is a local P -martingale for

j ∈ {1, . . . , d1+d2}. This is clear for j ∈ {d1+1, . . . , d1+d2} by the construction

(3.17). For j ∈ {1, . . . , d1}, we use a result on local E-martingales as in the proof

of part 2) of Proposition 2.12. Indeed, the assumptions on Z̄ yield Z̄ = Z̄0 E(N̄)

for some local P -martingale N̄ = (N̄t)0≤t≤T , namely, N̄ = (1/Z̄−) • Z̄. Since for

j ∈ {1, . . . , d1}, we have

d1∑
i=1

ξ̄it
Z̄t−

d⟨M i,M j⟩t =
1

Z̄t−
d⟨Z̄,M j⟩t = d⟨N̄ ,M j⟩t,

we obtain that Sj given by (3.16) is a local E-martingale by Choulli et al. [29,
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Corollary 3.16] (which generalises Girsanov's theorem to local E-martingales).

Thus by [29, De�nition 3.11] with n = 0, Z̄Sj is a local P -martingale.

Now note that Z̄t ̸= 0 and Z̄t− ̸= 0 for all t ∈ [0, T ] P -a.s. by the assumptions

on Z̄, and Z̄Sj is a local P -martingale for j ∈ {1, . . . , d1 + d2} as shown above.

Hence for each agent k ∈ {1, . . . , K}, the MVH problem (2.8) for Hk has a unique

solution ϑ(Hk) by part 2) of Proposition 2.12. Since moreover ηk ∈ Θ(S) by the

assumption on S(2), it follows by Lemma 3.1 that the individual optimisation

problem (3.2) for agent k has a unique solution ϑ̂k. This shows condition 1)

in De�nition 2.5 of an equilibrium market. Moreover, the strategy 0 solves the

MVH problem (2.8) for H̄ by Lemma 2.13. Thus Lemmas 3.3 and 3.5 yield∑K
k=1 ϑ̂

k = ϑ̄ = η̄, i.e., the market clears and condition 2) is satis�ed. Finally,

condition 3) is satis�ed by assumption, and thus (1, S) is an equilibrium market.

3.4 Su�cient conditions for the existence of equilibria

Next, we give su�cient conditions on the primitives to ensure the existence of

an equilibrium market; these conditions are generally simpler to check for con-

crete models than the assumptions of Theorem 3.8. We start by looking at the

assumption that Z̄t ̸= 0 and Z̄t− ̸= 0 for all t ∈ [0, T ] P -a.s. Since Z̄ is con-

structed as the martingale Z̄t = E[H̄ | Ft], this condition holds automatically if

H̄ is P -a.s. positive or P -a.s. negative, i.e., if we impose a one-sided boundedness

condition on the total endowment H̄. As previously mentioned, the most natural

case is H̄ = γ̄− Ξ̄ > 0 P -a.s., where the aggregate endowment Ξ̄ does not exceed

the bliss point γ̄. The case H̄ < 0 P -a.s. is less signi�cant from an economic

point of view, but mathematically, it can be dealt with in the same way.

The remaining assumptions of Theorem 3.8 are that the process (S
(2)
t )0≤t≤T

de�ned by (3.17) is a local L2-semimartingale, and also that ej ∈ Θ(S) for each

j ∈ {d1 + 1, . . . , d1 + d2}. Both of these conditions hold under the stronger as-

sumption that S(2) is an L2-semimartingale, which yields ej ∈ Θsimple(S) ⊆ Θ(S)

for j ∈ {d1+1, . . . , d1+d2}. We now give su�cient (but not necessary) conditions

for S(2) to be an L2-semimartingale in the case H̄ > 0 P -a.s.

Lemma 3.9. Suppose that H̄ > 0 P -a.s. Then the process (S(2)
t )0≤t≤T de�ned by

(3.17) is an L2-semimartingale if any of the following conditions holds:

(a) Dj ∈ L∞(P ) for j ∈ {d1 + 1, . . . , d1 + d2}.

(b) H̄, H̄−1 ∈ L∞(P ).
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(c) H̄ ∈ L1−p1(P )∩Lp2(P ) and Dj ∈ L2q1q2(P ) for all j ∈ {d1+1, . . . , d1+d2},
where p1, p2 ∈ [1,∞] and 1/pi + 1/qi = 1 for i ∈ {1, 2}.2

Proof. (a) This is (c) for p1 = 1 and p2 = 2, so that q1 = ∞ and q2 = 2.

(b) This is (c) for p1 = p2 = ∞.

(c) We only consider the case that p1, p2 ∈ (1,∞). The arguments for the

other cases are very similar and therefore omitted. Fix j ∈ {d1 + 1, . . . , d1 + d2}
and de�ne Q̄ ≈ P by

dQ̄

dP
=

H̄

E[H̄]
=: ZQ̄

T ∈ L1−p1(P ) ∩ Lp2(P ).

By (3.17) and the Bayes rule, Sj is a (true) Q̄-martingale with SjT = Dj. Thus

the inequalities of Hölder and Doob (with constant Cq1) give

EP

[
sup
t∈[0,T ]

|Sjt |2
]
= EQ̄

[
1

ZQ̄
T

sup
t∈[0,T ]

|Sjt |2
]
≤ EQ̄

[(
1

ZQ̄
T

)p1]1/p1
EQ̄

[
sup
t∈[0,T ]

|Sjt |2q1
]1/q1

≤ EP

[(
1

ZQ̄
T

)p1−1]1/p1
Cq1EQ̄[(D

j)2q1 ]1/q1

= Cq1EP
[
(ZQ̄

T )
1−p1

]1/p1EP [ZQ̄
T (D

j)2q1
]1/q1

≤ Cq1EP
[
(ZQ̄

T )
1−p1

]1/p1EP [(ZQ̄
T

)p2]1/(q1p2)EP [(Dj)2q1q2 ]1/(q1q2)

<∞

by the assumptions. This implies that Sj is an L2-semimartingale.

3.5 The case of �nite discrete time

Theorem 3.8 provides necessary and su�cient conditions for the existence and

uniqueness of an equilibrium under the assumption that Z̄ does not hit 0. Al-

though that is an appealing result, the assumption can be relaxed in general. We

now study what happens if this assumption is lifted in the case of �nite discrete

time t ∈ {0, . . . , T} for T ∈ N. As we shall see, if Z̄ is allowed to hit 0 then

the equilibrium problem becomes ill-posed, leading to issues of nonexistence or

nonuniqueness of equilibria.

In the following, we recall the primitives S(1)
0 , (M

(1)
t )t∈{0,...,T} and D(2) as

well as H̄ = γ̄ − Ξ̄, where Ξ̄ is the aggregate endowment. As in Theorem 3.8, we

de�ne the (square-integrable) P -martingale (Z̄t)t∈{0,...,T} by Z̄t = E[H̄ | Ft] so that

2Note that we can always choose p2 ≥ 2 as H̄ is square-integrable by assumption.
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Z̄T = H̄ P -a.s. We also consider the Galtchouk�Kunita�Watanabe decomposition

of Z̄ with respect to M (1) under P , i.e.,

Z̄t = Z̄0 +
t∑

k=1

d1∑
i=1

ξ̄ik∆M
i
k +M Z̄

t , t ∈ [0, T ], (3.19)

where ξ̄(1) ∈ L2(M (1)) and (M Z̄
t )t∈{0,...,T} is a square-integrable P -martingale

strongly orthogonal to M (1) under P . As usual, ∆Xk = Xk − Xk−1 denotes

the increment at time k of a stochastic process X in discrete time.

We start by giving necessary conditions for the existence of an equilibrium

that are weaker than the assumption that the process Z̄ does not hit 0.

Lemma 3.10. An equilibrium market (1, S) can only exist if both of the conditions

{Z̄t−1 = 0} ⊆ {ξ̄it∆⟨M i⟩t = 0} for i ∈ {1, . . . , d1} and t ∈ {1, . . . , T}, (3.20)

{Z̄t = 0} ⊆ {E[H̄Dj | Ft] = 0} for j ∈ {d1 + 1, . . . , d2} and t ∈ {0, . . . , T − 1}
(3.21)

hold up to P -null sets.

Proof. Assume that an equilibrium market (1, S) exists. For a contradiction,

suppose that (3.20) is not satis�ed, i.e., there exist some i ∈ {1, . . . , d1} and

t ∈ {1, . . . , T} such that

P [Z̄t−1 = 0, ξ̄it∆⟨M i⟩t ̸= 0] > 0. (3.22)

By Lemma 3.6, (Z̄tSt)t=0,...,T is a local P -martingale so that 1{Z̄t−1=0}∆(Z̄Si)t is

the increment of a local martingale. We decompose

1{Z̄t−1=0}∆(Z̄Si)t = 1{Z̄t−1=0}(Z̄t−1∆S
i
t + Sit−1∆Z̄t +∆Z̄t∆S

i
t)

= 1{Z̄t−1=0}S
i
t−1∆Z̄t + 1{Z̄t−1=0}∆Z̄t∆S

i
t

= 1{Z̄t−1=0}S
i
t−1∆Z̄t + 1{Z̄t−1=0}(∆[Z̄, Si]t −∆⟨Z̄, Si⟩t)

+ 1{Z̄t−1=0}ξ̄
i
t∆⟨M i⟩t,

where the last equality follows since ∆⟨Z̄, Si⟩t = ξ̄it∆⟨M i⟩t by (3.19). Like the

left-hand side, the �rst two terms in the last expression of the right-hand side are

increments of local martingales, since Z̄ is a martingale and [Z̄, Si] − ⟨Z̄, Si⟩ a
local martingale. It follows that the last term 1{Z̄t−1=0}ξ̄

i
t∆⟨M i⟩t must also be the

increment of a local martingale. However, this term is also Ft−1-measurable, and
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hence null P -a.s. This leads to a contradiction with (3.22) so that (3.20) must

hold.

Similarly, suppose that (3.21) does not hold, i.e.,

P
[
Z̄t = 0, E[H̄Dj | Ft] ̸= 0

]
> 0 (3.23)

for some j ∈ {d1 + 1, . . . , d1 + d2} and t ∈ {0, . . . , T − 1}. Since Z̄Sj is a local

P -martingale and 1 ∈ Θ̄(Sj) by condition 3) of De�nition 2.5, Proposition 2.12

yields that Z̄Sj is a true P -martingale. In particular, we have

Z̄tS
j
t = E[H̄Dj | Ft] P -a.s.

This contradicts (3.23), and therefore (3.21) must hold.

Lemma 3.10 shows what can go wrong when Z̄ is allowed to hit 0. To under-

stand (3.20) and (3.21) more clearly, consider the simple setup of a one-period

model with T = 1 where F0 is P -trivial, and suppose that d1 = 0 and d2 = 1.

Thus, there exists a single productive asset S with terminal value S1 = D1 = D

and unknown initial value S0 ∈ R. Suppose that (3.21) is not satis�ed, so that

Z̄0 = 0 and E[H̄D] ̸= 0. In this case, there does not exist any value of S0 ∈ R such

that Z̄S is a martingale, since Z̄0S0 = 0 regardless of that choice. On the other

hand, if Z̄0 = E[H̄D] = 0, then Z̄S is a martingale for any choice of S0 ∈ R, and
one can check that (1, S) de�nes an equilibrium. This also illustrates the issue

of nonuniqueness: namely, if Z̄t = E[H̄D | Ft] = 0 for some t ∈ {0, . . . , T − 1},
then the price St in equilibrium can be set in an arbitrary way.

The issue is similar for the �nancial assets. Consider now a one-period model

with d1 = 1 and d2 = 0 so that there exists a single �nancial asset S with

S1 = S0 + ∆A1 + ∆M1, where ∆A1 ∈ R is unknown and ∆M1 is the jump of a

martingale. If (3.20) does not hold, then Z̄S is not a martingale for any choice

of A ∈ R, since Z̄ is a martingale and hence

E[Z1(S0 +∆A1 +∆M1)] = E[Z1∆M1] = ξ1∆⟨M⟩1 ̸= 0 = Z0S0.

On the other hand, if ξ1∆⟨M⟩1 = 0 then Z̄S is a martingale for any value of

∆A1. Thus if Zt = 0 and (3.20) is satis�ed, then we would expect that the value

∆At+1 is arbitrary.

As it turns out, (3.20) and (3.21) are the only signi�cant requirements for

the existence of an equilibrium (other than integrability conditions, as we show
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later in Example 3.12). We now show that if these conditions hold, then there

exists an equilibrium which need not be unique. We use the fact that Z̄S is a

local martingale, by Lemma 3.6, in order to construct an explicit equilibrium. In

comparison to the proof of Theorem 3.8, the construction is here more di�cult

because N̄ is no longer well de�ned as a stochastic logarithm (1/Z̄−) • Z̄. Instead,

we de�ne (N̄t)t∈{0,...,T} recursively by N̄0 := 0 and

N̄t := N̄t−1 +
Z̄t − Z̄t−1

Z̄t−1

1{Z̄t−1 ̸=0}, t ∈ {1, . . . , T}, (3.24)

i.e., we arbitrarily set the increment ∆N̄t to 0 whenever Z̄t−1 = 0. For each

s ∈ {0, . . . , T}, we also de�ne the local martingale sE(N̄) = (sE(N̄)t)t∈{s,...,T} by

sE(N̄)t :=
t∏

k=s+1

(1 + ∆N̄k) (3.25)

In the case where Z̄ does not hit 0, we have sE(N̄)t = Z̄t/Z̄s for each s ≤ t. In

other words, we may view sE(N̄) as �restarting� Z̄ at time s (in a multiplicative

way) with sE(N̄)s = 1. The general case is similar, with the important di�erence

that sE(N̄) is absorbed at 0 whenever Z̄ hits 0 from a nonzero value. Thus each

process sE(N̄) reproduces the dynamics of Z̄ until the latter hits 0. We note

once again that the value of ∆Nt may be chosen arbitrarily whenever Z̄t−1 = 0.

Because we set ∆Nt = 0 in that case by (3.24), the equilibrium constructed below

defaults to behaving as a local martingale whenever Z̄ hits 0.

In the following, we recall the Galtchouk�Kunita�Watanabe decomposition

(3.19) for Z̄ as well as the conditions (3.20) and (3.21) from Lemma 3.10.

Theorem 3.11. Assume that sE(N̄) is a square-integrable martingale for each

s ∈ {0, . . . , T} and that (3.20) and (3.21) hold up to P -null sets. De�ne the

process (St)t∈{0,...,T} by

Sjt := Sj0 +M j
t +

t∑
k=1

d1∑
i=1

(
− ξ̄ik
Z̄k−1

1{Z̄k−1 ̸=0}∆⟨M i,M j⟩k
)
, j ∈ {1, . . . , d1},

(3.26)

Sjt := E[tE(N̄)TD
j | Ft], j ∈ {d1 + 1, . . . , d1 + d2}. (3.27)

If (S(2)
t )t∈{0,...,T} is square-integrable, then (1, S) = (1, S(1), S(2)) is an equilibrium

market.
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Proof. We show in the steps (a)�(d) below that the process (1, S) de�ned by

(3.26) and (3.27) is an equilibrium market. In step (a), we check the conditions

required by De�nition 2.5 except for 1) and 2). In steps (b) and (c), we show

that (sE(N̄)tS
j
t )t∈{s,...,T} and (Z̄tS

j
t )t∈{0,...,T}, respectively, are local P -martingales

for each s ∈ {0, . . . , T − 1} and j ∈ {1, . . . , d1 + d2}. These results are then used

in step (d) to check that conditions 1) and 2) are satis�ed.

(a) We start by checking (2.1) and (2.2). For j ∈ {1, . . . , d1}, the process

(Ajt)t∈{0,...,T} of Sj given by

Ajt :=
t∑

k=1

d1∑
i=1

(
− ξ̄ik
Z̄k−1

1{Z̄k−1 ̸=0}∆⟨M i,M j⟩k
)
, (3.28)

is predictable, so that by the de�nition (3.26), S(1) satis�es (2.1). Moreover,

plugging t = T into (3.27) yields (2.2) since TE(N̄)T = 1.

We also have to check that (1, S) is a local L2-market. As argued in the

proof of Theorem 3.8, S(1) is a local L2-semimartingale as M (1) is locally square-

integrable and by �erný/Kallsen [25, Lemma A.2]. On the other hand, S(2) is an

L2-semimartingale as it is square-integrable by assumption and the set {0, . . . , T}
of times is �nite. The fact that S(2) is an L2-semimartingale also implies that

condition 3) of De�nition 2.5 of an equilibrium market is satis�ed.

(b) We �rst show that (sE(N̄)tS
j
t )t∈{s,...,T} is a local P -martingale for each

j ∈ {1, . . . , d1} and s ∈ {0, . . . , T −1}. We use a similar argument as in the proof

of part 2) of Proposition 2.12. Consider the setup of Choulli et al. [29, Section

3] with the family E = (sE(N̄))s∈{0,...,T}. Since for j ∈ {1, . . . , d1}, we have

d1∑
i=1

ξ̄it
Z̄t−1

1{Z̄t−1 ̸=0}∆⟨M i,M j⟩t =
1{Z̄t−1 ̸=0}

Z̄t−1

∆⟨Z̄,M j⟩t = ∆⟨N̄ ,M j⟩t,

we obtain that Sj given by (3.26) is a local E-martingale by [29, Corollary 3.16],

i.e., sE(N̄)Sj is a local P -martingale for each s ∈ {0, . . . , T}.
For j ∈ {d1 + 1, . . . , d1 + d2}, we use the de�nition (3.27) and the square-

integrability of sE(N̄) and Dj to obtain for t ∈ {s, . . . , T} that

sE(N̄)tS
j
t =

sE(N̄)tE[
tE(N̄)TD

j | Ft] = E[sE(N̄)TD
j | Ft],

and hence sE(N̄)Sj is a true P -martingale for each s ∈ {0, . . . , T}.
(c) Next, we show that Z̄Sj is a local P -martingale for j ∈ {1, . . . , d1 + d2}.
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For j ∈ {1, . . . , d1} and t ∈ {1, . . . , T}, we have by (3.24) that

∆(Z̄Sj)t = Z̄t−1∆S
j
t + Sjt∆Z̄t

= Z̄t−1∆S
j
t + Sjt

(
1{Z̄t−1 ̸=0}Z̄t−1∆N̄t + 1{Z̄t−1=0}∆Z̄t

)
= 1{Z̄t−1 ̸=0}Z̄t−1(∆S

j
t + Sjt∆N̄t) + 1{Z̄t−1=0}S

j
t∆Z̄t, (3.29)

where we use Z̄t−1 = 1{Z̄t−1 ̸=0}Z̄t−1 for the last equality. Note that we have
t−1E(N̄)t−1 = 1 and

∆
(
t−1E(N̄)

)
t
= t−1E(N̄)t−1∆N̄t = ∆N̄t.

By plugging in, this yields

∆
(
t−1E(N̄)Sj

)
t
= ∆Sjt + Sjt−1∆N̄t +∆Sjt∆N̄t = ∆Sjt + Sjt∆N̄t.

Since we have already shown in step (b) that sE(N̄)Sj is a local P -martingale for

each s ∈ {0, . . . , T}, this implies that ∆Sjt + Sjt∆N̄t is the increment of a local

P -martingale, and hence so is the �rst term in the right-hand side of (3.29). We

now consider the second term. Since ∆Z̄t = ∆M Z̄
t on {Z̄t−1 = 0} by (3.19) and

the assumption (3.20), we get

1{Z̄t−1=0}S
j
t∆Z̄t = 1{Z̄t−1=0}(S

j
t−1 +∆Ajt +∆M j

t )∆M
Z̄
t .

This is the increment of a local P -martingale, as M Z̄ and M j are strongly ortho-

gonal local P -martingales, whereas Sjt−1+∆Ajt is Ft−1-measurable. Returning to

(3.29), we have thus shown that Z̄Sj is a local P -martingale for j ∈ {1, . . . , d1}.
On the other hand, for j ∈ {d1 + 1, . . . , d1 + d2}, we claim that Z̄Sj is even a

true P -martingale. We use backward induction to show this statement, starting

with t = T . Since Z̄T = H̄ and SjT = Dj are square-integrable, we get that Z̄TS
j
T

is integrable so that Z̄Sj is a martingale on {T}. For the inductive step, we claim
that if Z̄Sj is a martingale on {t + 1, . . . , T} for some t ∈ {0, . . . , T − 1}, then
E[Z̄t+1S

j
t+1 | Ft] = Z̄tS

j
t P -a.s. so that Z̄Sj is a P -martingale on {t, . . . , T}. To

show this claim, note that the de�nitions (3.24) and (3.25) yield

Z̄t+11{Z̄t ̸=0} = Z̄t

(
1 +

∆Z̄t+1

Z̄t

)
1{Z̄t ̸=0} = Z̄t(1 + ∆N̄t+1)1{Z̄t ̸=0}

= Z̄t
tE(N̄)t+11{Z̄t ̸=0}.
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By plugging in and recalling that tE(N̄)Sj is a true P -martingale and tE(N̄)t = 1,

we get

E[Z̄t+1S
j
t+1 | Ft] = Z̄tE[

tE(N̄)t+1S
j
t+1 | Ft]1{Z̄t ̸=0} + E[Z̄t+1S

j
t+1 | Ft]1{Z̄t=0}

= Z̄tS
j
t 1{Z̄t ̸=0} + E[Z̄t+1S

j
t+1|Ft]1{Z̄t=0}. (3.30)

By the inductive hypothesis and the assumption (3.21), we obtain

E[Z̄t+1S
j
t+1 | Ft]1{Z̄t=0} = E[Z̄TS

j
T | Ft]1{Z̄t=0} = E[H̄Dj | Ft]1{Z̄t=0} = 0.

Plugging into (3.30) yields

E[Z̄t+1S
j
t+1 | Ft] = Z̄tS

j
t 1{Z̄t ̸=0} = Z̄tS

j
t .

It follows by backward induction that Z̄Sj is a true P -martingale on {0, . . . , T}
for each j ∈ {d1 + 1, . . . , d1 + d2}, as claimed. This also concludes the proof that

Z̄Sj is a local P -martingale for all j ∈ {1, . . . , d1 + d2}.
(d) We are now ready to show that (1, S) satis�es conditions 1) and 2) of

De�nition 2.5. We �rst show that (1, S) satis�es uniqueness of value processes.

To that end, suppose that c1 + ϑ1 • ST = c2 + ϑ2 • ST for some c1, c2 ∈ R and

ϑ1, ϑ2 ∈ Θ(S). Recall from (b) that sE(N̄)Sj is a local P -martingale on {s, . . . , T}
for each s ∈ {0, . . . , T − 1}. Since sE(N̄) is square-integrable by assumption, it

follows by Proposition 2.12 that sE(N̄)(c1+ϑ
1 •S) and sE(N̄)(c2+ϑ

2 •S) are true

P -martingales on {s, . . . , T}. Because sE(N̄)s = 1, this yields

c1 + ϑ1 •Ss = E[sE(N̄)T (c1 + ϑ1 •ST ) | Fs]

= E[sE(N̄)T (c2 + ϑ2 •ST ) | Fs] = c2 + ϑ2 •Ss.

In particular, taking s = 0 gives c1 = c2. As s ∈ {0, . . . , T} is arbitrary, ϑ1 • S

and ϑ2 •S are indistinguishable, so that ϑ1 =S ϑ
2 and (1, S) satis�es uniqueness

of value processes.

Next, we show the existence of solutions to the MVH problem (2.8) for each

H ∈ L2. As in step (b), consider once again the family E = (sE(N̄))s∈{0,...,T},

which is square-integrable by assumption. Let τ be a stopping time taking values

in {0, . . . , T}. Since sE(N̄) is a martingale by assumption for any s ∈ {0, . . . , T},
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so is 1 + 1{τ=s}(
sE(N̄)− 1) as sE(N̄)− 1 = 0 on {0, . . . , s}. Thus we obtain that

τE(N̄) = 1 +
T∑
s=0

1{τ=s}
(
sE(N̄)− 1

)
is a martingale. As this holds for any stopping time τ , the family E is so-called

regular; see [29, De�nitions 3.4 and 3.6]. Thus by Czichowsky/Schweizer [32,

Theorem 2.16], the set GT (S) is closed in L2. This implies the existence of a

solution to the MVH problem (2.8) for any payo� H ∈ L2, since it can be seen

as a projection problem in L2. The uniqueness of value processes (and thus of

gains processes) together with Proposition 2.8 yields that the solution to (2.8) is

unique for each H ∈ L2. Since ηk ∈ Θ(S) by condition 3) of De�nition 2.5, which

we already showed in step (a), it follows from Proposition 3.1 that there exists

a unique solution ϑ̂k to (3.2) for each k ∈ {1, . . . , K}, and thus condition 1) is

satis�ed.

It remains to check that (1, S) satis�es condition 2) of De�nition 2.5, for which

we use the same argument as in the proof of Theorem 3.8. By Lemma 2.13 and

since Z̄Sj is a local P -martingale for each j ∈ {1, . . . , d1 + d2}, the strategy 0

solves the MVH problem (2.8) for H̄. Thus
∑K

k=1 ϑ̂
k = ϑ̄ = η̄ by Lemmas 3.3

and 3.5, so that the market clears. This concludes the proof that (1, S) is an

equilibrium market.

3.6 Non-existence of equilibria

Finally, we give an example of a setup where an equilibrium market (in the sense

of De�nition 2.5) fails to exist due to integrability issues, and not because the

process Z̄ hits 0 as in Section 3.5. We consider the very simplest case of a market

with no �nancial and one productive asset, i.e., d1 = 0 and d2 = 1. The setup is

based on the counterexample in �erný/Kallsen [26], which in turn is inspired by

the well-known counterexample of Delbaen/Schachermayer [37].

The key point is that the candidate equilibrium price process of the productive

asset does not have su�cient integrability for the buy-and-hold strategies to be

admissible. In that case, Lemma 3.1 cannot be applied, so that the existence of

a solution to the optimisation problem (3.2) is not equivalent to the existence of

a solution to the MVH problem (3.3). By part (b) of the proof of Theorem 3.8,

there still exists in this case a unique solution to the MVH problem (3.3) for each

agent k, but it is unclear whether (3.2) admits a solution.
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Example 3.12. After rescaling the time interval [0,∞] to [0, T ], there exists by

[26, Lemma 2.2] a �ltered probability space (Ω,F ,F = (Ft)0≤t≤T , P ) supporting

two probability measures Q̄, Q′ and a continuous process (Xt)0≤t≤T null at 0 with

the following properties:

1) The measures Q̄, Q′ are equivalent to P , with dQ̄
dP
, dQ′

dP
∈ L2(P ).

2) The process X is a uniformly integrable martingale under Q̄, and a strict

local martingale under Q′. Moreover, XT ∈ L2(P ).

Fix now some γ̄ > 0, and suppose that d1 = 0, d2 = 1, D1 := XT and

Ξ̄ := γ̄ − dQ̄
dP
, so that H̄ = dQ̄

dP
> 0 P -a.s. Then it follows from Theorem 3.8 that

if an equilibrium market exists, it must satisfy S1
t = EQ̄[XT | Ft] = Xt. However,

since X = 1 • X is not a Q′-martingale, the strategy e1 ≡ 1 is not admissible

by �erný/Kallsen [25, Corollary 2.5]. Therefore, an equilibrium market does not

exist in this setup.

The �ltered probability space (Ω,F ,F = (Ft)0≤t≤T , P ) in the example above

can be chosen in such a way that the �ltration is continuous, that is, every local

martingale is continuous. On such a probability space, Example 3.12 is generic

in the following sense. Consider the general setup with d1 �nancial assets and d2
productive assets, and suppose that F is continuous and H̄ > 0 P -a.s. If an equi-

librium market fails to exist, then one can construct a triplet (Q̄, Q′, X) with the

properties 1) and 2) of Example 3.12. In other words, any such example of a setup

where an equilibrium market does not exist corresponds to a counterexample of

the type considered in [26, Lemma 2.2].

To see this, consider the processes S(1) and S(2) given in (3.16) and (3.17).

Note that we must have d2 ≥ 1, as otherwise Theorem 3.8 ensures the existence

of an equilibrium. Since S(2) is automatically a local L2(P )-semimartingale by

the continuity of the �ltration, the last assumption for Theorem 3.8 must fail to

hold, i.e., there must exist j ∈ {d1 + 1, . . . , d1 + d2} such that ej /∈ Θ(S). Note

that there exists an ELMM for S with square-integrable density, namely Q̄ ≈ P

de�ned by dQ̄
dP

= H̄
E[H̄]

, by the construction of S and as H̄ is strictly positive and

square-integrable. By [25, Corollary 2.5] and because ej /∈ Θ(S), there must exist

an ELMM Q′ ≈ P for S with square-integrable density such that Sj = Sj0 + e
j •S

is a strict local Q′-martingale.

Now we set X := Sj. Note that the measures Q̄, Q′ ≈ P have square-

integrable densities, and X is continuous and a strict local martingale under
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Q′. Moreover, since Z̄X is a uniformly integrable P -martingale by the de�nition

(3.17), it follows by the Bayes formula that X is a uniformly integrable martingale

under Q̄, since the density process of Q̄ is given by Z̄/E[H̄]. Thus we recover

(Q̄, Q′, X) satisfying the properties 1) and 2) in Example 3.12, as claimed.
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Chapter IV

Equilibrium under general

mean�variance preferences

1 Introduction

As in the previous chapter, we want to �nd mean�variance equilibria for an

incomplete market in continuous time. In Chapter III, we found an explicit for-

mula for the equilibrium prices under quadratic utility preferences of the form

E[V − V 2/γk], where V denotes the �nal wealth and γk > 0 is the risk tol-

erance parameter of agent k. We now look to extend our results to the case

of mean�variance preferences of the form Uk(E[V ],
√

Var[V ]) for mean�variance

utility functions Uk on R × R+. At �rst, this may seem like a simple task. In-

deed, Koch-Medina/Wenzelburger [85] study the same equilibrium problem for

the one-period model directly under mean�variance preferences, but the exten-

sion becomes considerably more involved in continuous time. In one period, the

unknown time-0 prices are constant, and hence the set of random variables that

can be replicated by a self-�nancing portfolio (x, ϑ) ∈ R × Θ is known a priori.

In the continuous-time case, the price process is both random and unknown, so

that the intertemporal dynamics of equilibrium prices play a bigger role.

Our approach is to relate the mean�variance preference and quadratic utility

problems in order to apply the results from Chapter III. Both problems are ver-

sions of classical Markowitz portfolio selection, and hence any solution to either

must be a mean�variance e�cient strategy. Thus for a �xed mean�variance pref-

erence maximisation problem, there exist risk tolerance parameters (γk)
K
k=1 for

the K agents such that each quadratic utility problem with risk tolerance γk
admits the same solution as the original one. This argument yields that any
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mean�variance equilibrium is also a quadratic equilibrium. However, �nding the

equilibrium prices is more involved. Since the choice of (γk)Kk=1 depends implicitly

on the dynamics of the equilibrium, which is unknown, we cannot directly ap-

ply our previous results. The only exception is the case of linear mean�variance

preferences, where the structure of the quadratic equilibrium yields an explicit

formula for the mean�variance equilibrium.

For the general case, we show the existence of an equilibrium via a �xed-point

argument. For a set of parameters (γk)Kk=1, Theorem III.3.8 gives the quadratic

equilibrium price process S(γ̄) which depends only on the aggregate risk tolerance

γ̄ =
∑K

k=1 γk. Given S(γ̄), there exist implicit parameters γ̃k such that for each

agent k, the mean�variance and quadratic utility problems with respect to S(γ̄)

have the same solutions. Thus S(γ̄) is a mean�variance equilibrium if and only if

γk = γ̃k for all k; this can be written as a �xed-point condition γ̄ = Ψ(γ̄) on the

aggregate risk tolerance. We prove su�cient conditions for the existence of such

a �xed point, and hence of an equilibrium.

We show that a �xed point exists by proving the continuity of Ψ and obtaining

bounds on its output. The hardest step is to show that the γ̃k depend continu-

ously on S(γ̄), which can be seen as a stability result for the Markowitz and

mean�variance hedging problems with respect to the price process. For utility

maximisation problems, some recent results of this type are given in Bayraktar

et al. [17], Kardaras/�itkovi¢ [80], Larsen/�itkovi¢ [87] and Mocha/Westray [94].

Most relevant for us are the results of [94], where the stability of utility maxim-

isation is shown via stability results for BSDEs based on Mocha/Westray [93].

As in [94], we assume that the �ltration is continuous. The di�erence to our work

is that we cannot assume that all exponential moments of the so-called mean�

variance tradeo� process are �nite. Instead, we obtain new results on the stability

of mean�variance hedging and quadratic BSDEs under a BMO condition, which

can be ensured to hold via assumptions on the model primitives.

This chapter, based on joint work with Christoph Czichowsky and Martin

Herdegen, is structured as follows. In Section 2, we recall the basic setup and

show the �rst results on the relationship between quadratic and mean�variance

equilibria. This provides a characterisation of mean�variance equilibria in terms

of a �xed-point problem. In Section 3, we show how to �nd an explicit solution

in the case of linear mean�variance preferences. In Section 4, we state and prove

our main results on the existence of a solution of a �xed point and thus of a

mean�variance equilibrium. In particular, we prove in Section 4.2 our results on

the continuity of the mean�variance hedging problem. The proofs of some results
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used in Section 4 are deferred to Sections 5 and 6 which are self-contained. In

Section 5, we analyse mean�variance preference functions as well as an abstract

mean�variance optimisation problem. Finally, in Section 6, we show the stability

of quadratic BSDEs under a BMO bound on the stochastic driver.

2 Setup and connections to quadratic equilibria

2.1 Setup

We start with the same basic setup as in Chapter III, which we brie�y recall here;

a more extended discussion can be found in Section III.2 and at the beginning

of Section III.3. Fix a time horizon T > 0 and a �ltered probability space

(Ω,F , (Ft)0≤t≤T , P ), where (Ft)0≤t≤T satis�es the usual conditions, F = FT and

F0 is P -trivial. We consider a market consisting of a risk-free asset with constant

value 1, as well as d1 �nancial assets and d2 productive (or real) assets. The

prices of the risky assets are determined as equilibrium prices, as we shall explain

below. We start by imposing some conditions that the price processes must satisfy

irrespective of any equilibrium considerations. First, we assume that the price

processes of the �nancial assets satisfy the semimartingale decomposition

Sjt = Sj0 + Ajt +M j
t , 0 ≤ t ≤ T, (2.1)

for j ∈ {1, . . . , d1}, where Sj0 ∈ R and (M j
t )0≤t≤T ∈ M2

0,loc are �xed, whereas

the predictable �nite-variation parts (Ajt)0≤t≤T ∈ FV0 are to be determined in

equilibrium. On the other hand, the real assets satisfy the terminal condition

SjT = Dj (2.2)

for j ∈ {d1 + 1, . . . , d1 + d2}, i.e., the terminal values are given by a random

dividend Dj ∈ L2; the rest of the price process (Sjt )0≤t<T is to be determined in

equilibrium. We denote the prices of the �nancial assets by S(1) = (S1, . . . , Sd1)

and those of the productive assets by S(2) = (Sd1+1, . . . , Sd1+d2) so that the prices

of all assets are given by (1, S) = (1, S(1), S(2)). In the following, we likewise use

the notation x = (x(1), x(2)) for each x ∈ Rd1+d2 with x(i) ∈ Rdi . We say that a

semimartingale (St)0≤t≤T is an L2-semimartingale if for j ∈ {1, . . . , d1 + d2},

sup{E[|Sjσ|2] : σ ≤ T a stopping time} <∞, (2.3)
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and that (1, S) is a local L2-market if S is a local L2-semimartingale. We impose

the condition that any equilibrium market (1, S) must be a local L2-market.

We suppose that the market consists of K agents who trade with each other

continuously on the time interval [0, T ]. Each agent k ∈ {1, . . . , K} receives a

traded endowment Ξk,t = (ηk,(2))⊤S
(2)
T = (ηk,(2))⊤D(2) consisting of ηk,(2) ∈ Rd2

units of the productive assets and a non-traded endowment Ξk,n ∈ L2 at time

T , so that the total endowment is Ξk := Ξk,t + Ξk,n. It is natural from an

economic point of view to make the following standing assumption about the

endowments that will be useful later in this chapter (see Lemma 2.25 below).

We note that the assumption depends only on the �xed quantities ηk,(2), D(2) and

Ξk,n, and not on the (unknown) equilibrium prices.

Assumption 2.1. The total endowment Ξk of each agent k is bounded, nonneg-

ative and not identically 0.

In addition to receiving an endowment, each agent trades in a frictionless and

self-�nancing way with an admissible strategy ϑ ∈ Θ(S), where the set Θ(S) of

admissible strategies is the one considered in �erný/Kallsen [25, De�nition 2.2]

and De�nition III.2.2, that we restate below as De�nition 2.3.

De�nition 2.2. Let (1, S) be a local L2-market. A simple integrand for S is a

process of the form ϑ =
∑m−1

i=1 ξi1Kσi,σi+1K, where m ∈ N, 0 ≤ σ1 ≤ · · · ≤ σm are

[0, T ]-valued stopping times and each ξi is a bounded Fσi-measurable random vec-

tor, such that each stopped process Sj,σm = (Sjσm∧t)0≤t≤T is an L2-semimartingale

for j = 1, . . . , d1 + d2. We denote by Θsimple(S) the set of all simple integrands

for S.

For a semimartingaleX, we denote by L(X) the set of predictable X-integrable

processes on [0, T ]; see Jacod/Shiryaev [71, III.6.17]. Note that we identify in-

tegrands up to X-equivalence, i.e., for η1, η2 ∈ L(X), we write η1 =X η2 if the

processes η1 •X and η2 •X are indistinguishable.

De�nition 2.3. Let (1, S) be a local L2-market. A strategy ϑ ∈ L(S) is called

L2-admissible for S if ϑ •ST ∈ L2 and there exists a sequence (ϑn)n∈N in Θsimple(S)

such that

1) ϑn •ST
L2

−→ ϑ •ST ,

2) ϑn •Sτ
P−→ ϑ •Sτ for all [0, T ]-valued stopping times τ ,
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where ϑ • S = (ϑ • St)0≤t≤T denotes the stochastic integral ϑ • St =
∫ t
0
ϑudSu for

t ∈ [0, T ]. The set of all L2-admissible trading strategies is denoted by Θ(S), and

we identify L2-admissible strategies for S up to S-equivalence.

As shown in (III.2.5), agent k attains the terminal wealth

V k
T (ϑ) = (ϑ− ηk) •ST + Ξk (2.4)

by receiving the total endowment Ξk and trading with a strategy ϑ ∈ Θ(S),

where we write ηk for the constant strategy (0, ηk,(2)). We note that the assump-

tion that S is a local L2-semimartingale does not ensure that ηk ∈ Θ(S), i.e.,

holding the traded endowment without any additional trading activity need not

be an admissible strategy for agent k. For this reason, we impose the additional

assumption that ej ∈ Θ(S) for each j ∈ {d1 + 1, . . . , d1 + d2}, where ej is the
constant strategy that buys and holds one unit of asset j from time 0. Since the

agents do not receive an endowment of �nancial assets, this assumption is not

required for j ∈ {1, . . . , d1}.
We suppose that the agents consume their wealth at the terminal time T ,

so that each agent k trades with the goal of maximising the utility from her

terminal consumption. In general, each agent's preferences may be described by a

functional Uk : L0(P ) → R that assigns higher values to more desirable outcomes.

The strategy chosen by the agent k is then the solution to the problem

Uk
(
(ϑ− ηk) •ST + Ξk

)
−→ max

ϑ∈Θ(S)
! (2.5)

We view S
(1)
0 , M (1) and D(2) together with the endowments Ξk,t, Ξk,n and prefer-

ence functionals Uk as being exogenously determined and �xed a priori; we refer

to these as the primitives. We now recall De�nition III.2.5 of an equilibrium

market with respect to these primitives.

De�nition 2.4. A local L2-market (1, S(1), S(2)) is called an equilibrium market

if it satis�es (2.1) and (2.2) as well as the following conditions:

1) For each agent k ∈ {1, . . . , K}, the maximisation problem (2.5) has a solu-

tion ϑ̂k ∈ Θ(S) that is unique up to S-equivalence.

2) The market clears, i.e.,

K∑
k=1

ϑ̂k,j =S η̄
j :=

0, if j ∈ {1, . . . , d1},∑K
k=1 η

k,j, if j ∈ {d1 + 1, . . . , d1 + d2}.
(2.6)
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3) ej ∈ Θ(S) for j ∈ {d1 + 1, . . . , d1 + d2}, i.e., the buy-and-hold strategies of

the productive assets are L2-admissible.

In both Chapter III and the present one, our goal is to study the equilibrium

markets, i.e., the family of price processes (1, St)0≤t≤T that satisfy De�nition

2.4 for a given set of primitives. In particular, we should like to know whether

an equilibrium market exists and if it is unique. The di�erence between the

previous chapter and the current one lies in the choice of preference functionals Uk.
Previously, we assumed that the preferences are described by expected quadratic

utility, i.e., that

Uk(V ) := E[UQ
k (V )]

for V ∈ L2 and k ∈ {1, . . . , K}, where UQ
k : R → R is the quadratic utility

function given by

UQ
k (x) := x− x2

2γk
(2.7)

for x ∈ R and some risk tolerance γk ∈ (0,∞). Thus each agent k would solve

the maximisation problem (III.3.2), which reads

E
[
UQ
k

(
(ϑ− ηk) •ST + Ξk

)]
−→ max

ϑ∈Θ(S)
! (2.8)

In contrast to Chapter III, we suppose here that the preferences of the agents are

described by so-called mean�variance utility functions, de�ned as follows.

De�nition 2.5. A function U : R × R+ → R is called a mean�variance utility

function if it is strictly quasiconcave, strictly increasing in the �rst variable µ,

strictly decreasing in the second variable σ, twice continuously di�erentiable and

nondegenerate in the sense that |∇U(µ, σ)| > 0 for all µ ∈ R and σ ≥ 0.

We note that U is actually de�ned as a function of the standard deviation σ

rather than the variance σ2; we use this convention for consistency with Koch-

Medina/Wenzelburger [85]. This choice also leads to a slightly more general

de�nition because the strict quasiconcavity and di�erentiability conditions with

respect to σ are weaker than those with respect to σ2. From a notational point

of view, we nevertheless refer to U as a mean�variance utility function. If U is

given by

U(µ, σ) = µ− σ2

2λ
, (µ, σ) ∈ R× R+, (2.9)

for some λ > 0, then we say that U is a linear mean�variance utility function.

These linear U play a special role in Section 3 below. Other examples of mean�
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variance utility functions can be constructed by setting U(µ, σ) = f(µ) − g(σ),

where f : R → R and g : R+ → R are twice continuously di�erentiable functions

with f ′(µ) > 0, f ′′(µ) < 0, g′(σ) > 0 and g′′(σ) > 0 for all µ ∈ R and σ ≥ 0.

We assume that each agent has an associated mean�variance utility function

Uk so that the preference functional Uk is given by

Uk(V ) := Uk(E[V ],
√

Var[V ])

for V ∈ L2 and k ∈ {1, . . . , K}. Thus by (2.4), agent k seeks to solve the problem

Uk
(
E[(ϑ− ηk) •ST + Ξk],

√
Var[(ϑ− ηk) •ST + Ξk]

)
−→ max

ϑ∈Θ(S)
! (2.10)

A similar setup has been studied in Koch-Medina/Wenzelburger [85] for a one-

period market, but the problem becomes substantially more challenging in mul-

tiperiod markets. Note that for a one-period equilibrium, one only needs to

determine the initial price S(2)
0 of the real assets and the predictable increment

∆A
(1)
1 for the �nancial assets, both of which are deterministic as F0 is P -trivial.

Thus even before any equilibrium considerations, the primitives determine the

price process S up to a deterministic shift in the price increment ∆S1 (more pre-

cisely, a deterministic shift in S
(1)
1 for the �nancial assets and S

(2)
0 for the real

assets). Since any admissible strategy ϑ is in this case uniquely determined by

ϑ1, which is F0-measurable and hence constant, it follows that the set of attain-

able payo�s depends only on the primitives. By the same argument, the variance

of the terminal gain ϑ1∆S1 attained by a given strategy ϑ is also determined

uniquely by the primitives, unlike the expected return, which is sensitive to a

deterministic shift in the increment ∆S1.

The latter observation is used in [85] to show that every equilibrium in the

sense of De�nition 2.4 corresponds to an equilibrium in a so-called market for

risk (see [85, De�nition 2]) and vice versa, which results in a simpli�cation of

the problem. In the multiperiod case, Var[ϑ •ST ] depends on equilibrium prices

(St)0≤t≤T that are not known a priori, and not just on the primitives. Thus a

di�erent approach is needed. Our main idea is to exploit the relationship between

the mean�variance utility maximisation problem (2.10) and the quadratic utility

maximisation problem (2.8).

De�nition 2.6. A local L2-market (1, S(1), S(2)) is called a mean�variance equi-

librium market (with respect to the mean�variance utility functions U1, . . . , UK)

if it is an equilibrium market in the sense of De�nition 2.2, where the problem
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(2.5) has the particular form (2.10). Likewise, (1, S(1), S(2)) is called a quadratic

equilibrium market (with risk tolerances γ1, . . . , γK > 0) if it is an equilibrium

market in the sense of De�nition 2.2, where (2.5) is given by (2.8).

We recall that Theorem III.3.8 in the previous chapter gives su�cient condi-

tions for the existence and uniqueness of a quadratic equilibrium, as well as ex-

plicit formulas for the equilibrium market. We occasionally also use results from

Section III.2.5 on the mean�variance hedging problem (de�ned below in (2.14)).

Throughout this chapter, we consider the mean�variance utility functions Uk
to be �xed, whereas the risk tolerances γk in the de�nition (2.7) of UQ

k may vary.

By showing that a mean�variance equilibrium is a quadratic equilibrium and vice

versa (under some assumptions), we are able to obtain su�cient conditions for

the existence of mean�variance equilibria and to characterise them.

More precisely, the overall strategy is as follows. First, we study the individual

optimisation problem (2.10) for agent k with respect to a �xed price process S.

As we shall see in Proposition 2.13, the maximiser of (2.10) for a given mean�

variance utility function Uk is also optimal for the quadratic utility problem (2.8)

for a suitable choice of risk tolerance γk > 0 that depends on Uk as well as S.

We can use this observation to show that a mean�variance equilibrium market

is also a generalised quadratic equilibrium (see De�nition 2.21 below) for some

risk tolerances γ1, . . . , γK . Our goal is then to reverse this procedure, i.e., to

use Theorem III.3.8 to construct a generalised quadratic equilibrium S for some

choice of parameters γ1, . . . , γK such that S is also a mean�variance equilibrium.

This is still challenging, however, since the correct choice of parameters γ1, . . . , γK
depends not only on the mean�variance utility functions Uk but also (implicitly)

on the equilibrium price process S, which is unknown.

We show in Section 2.3 that the quadratic equilibrium with risk tolerances

γ1, . . . , γK is a mean�variance equilibrium if and only if the aggregate risk toler-

ance γ̄ :=
∑K

k=1 γk > 0 solves a �xed point problem on R. We then consider two

cases. First, if each Uk is linear of the form (2.9), we show that the �xed point

problem can be solved explicitly for γ̄, so that we can identify the mean�variance

equilibrium as the quadratic equilibrium with aggregate risk tolerance γ̄. We then

consider the general case. By studying the �xed point problem, we �nd su�cient

conditions for the existence of a solution γ̄, although we do not obtain an explicit

formula in this case. The existence of a �xed point γ̄ then ensures the existence

of a mean�variance equilibrium.
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2.2 Individual optimisation problems

Our �rst goal is to study the individual optimisation problem (2.10) for each

agent k with respect to a �xed price process (St)0≤t≤T , and to relate it to the

quadratic optimisation problem (2.8). We note that strictly speaking, the quad-

ratic optimisation problem (2.8) is not a mean�variance optimisation problem.

Indeed, for a quadratic utility function UQ
k of the form (2.7), we have

E[UQ
k (V )] = E

[
V − V 2

2γk

]
= E[V ]− E[V ]2

2γk
− Var[V ]

2γk

for all V ∈ L2. The problem (2.8) could thus be written in the form (2.10), where

Ũk(µ, σ) := µ− µ2

2γk
− σ2

2γk
, (µ, σ) ∈ R× R+.

However, Ũk is not a mean�variance utility function in the sense of De�nition 2.5

since it is not increasing in µ due to the middle term. In particular, this means

that the quadratic utility problem (2.8) is not equivalent to the problem for linear

mean�variance utility (2.9), despite the apparent similarity.

Remark 2.7. The fact that mean�variance utility functions are strictly increas-

ing in µ means that agents always prefer to increase their wealth. Thus mean�

variance utility can be considered to be more natural than quadratic utility from

an economic point of view. However, mean�variance utility functions do not

completely preclude economically irrational behaviour, since an agent may still

reject a positive random endowment (a �free lunch�) if the increase in volatility

outweighs the higher expected return.

We �x a price process (St)0≤t≤T satisfying the following standing assump-

tion for the remainder of this section, which is a necessary condition for S to be

an equilibrium in the sense of De�nition 2.4.

Assumption 2.8. We suppose that S is a �xed local L2-semimartingale such

that ej ∈ Θ(S) for each j ∈ {d1 + 1, . . . , d1 + d2}.

In order to solve (2.10), we start by considering three related problems. The

�rst is the classic Markowitz portfolio optimisation problem, where an agent seeks

to achieve the highest possible expected return for a certain level of risk (repres-

ented by the variance), or conversely, to achieve a certain expected return with

the minimum possible variance. One classic way to express the Markowitz prob-

lem is in terms of so-called mean�variance e�cient strategies that we now de�ne
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for our setup; we refer to Eberlein/Kallsen [44, Rule 10.43] for some equivalent

de�nitions.

De�nition 2.9. A strategy ϑ ∈ Θ(S) is mean�variance e�cient with respect to

the endowment H ∈ L2 if there does not exist any other strategy ϑ′ ∈ Θ(S) such

that both of the following inequalities hold, with one of them strict:

E[ϑ′ •ST +H] ≥ E[ϑ •ST +H], (2.11)

Var[ϑ′ •ST +H] ≤ Var[ϑ •ST +H]. (2.12)

We say that ϑ is mean�variance e�cient for agent k if ϑ − ηk is mean�variance

e�cient with respect to H = Ξk. The mean�variance e�cient frontier for agent

k is de�ned as the set

Ek :=
{(
E[V k

T (ϑ)],
√

Var[V k
T (ϑ)]

)
: ϑ ∈ Θ(S) is mean-variance e�cient

for agent k
}
⊆ R× R+, (2.13)

where we recall the formula (2.4) for V k
T (ϑ).

Lemma 2.10. If ϑ̂k ∈ Θ(S) is a solution to (2.10), then ϑ̂k is mean�variance

e�cient for agent k.

Proof. Suppose by way of contradiction that ϑ̂k is not mean�variance e�cient for

agent k. Then there exists some ϑ′ ∈ Θ(S) satisfying

E[ϑ′ •ST + Ξk] ≥ E[(ϑ̂k − ηk) •ST + Ξk],

Var[ϑ′ •ST + Ξk] ≤ Var[(ϑ̂k − ηk) •ST + Ξk],

where one of the inequalities is strict. Since Uk is strictly increasing in µ and

strictly decreasing in σ by De�nition 2.5, we have

Uk

(
E[(ϑ̂k − ηk) •ST + Ξk],

(
Var[(ϑ̂k − ηk) •ST + Ξk]

)1/2)
< Uk

(
E[(ϑ̃− ηk) •ST + Ξk],

(
Var[(ϑ̃− ηk) •ST + Ξk]

)1/2)
,

where ϑ̃ := ϑ′+ηk ∈ Θ(S), and this contradicts the optimality of ϑ̂k for (2.10).

In view of Lemma 2.10, it is su�cient to consider mean�variance e�cient

strategies for agent k when looking for candidate solutions to (2.10). As we

shall see, the mean�variance e�cient strategies for the agents can be given in
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terms of the solutions to certain mean�variance hedging (MVH) and extended

mean�variance hedging (exMVH) problems, which are de�ned as follows (see

also Section III.2.5, where a more detailed discussion can be found). For a claim

H ∈ L2, we consider the MVH and exMVH problems

ε2(H) := inf
ϑ∈Θ(S)

E[(ϑ •ST −H)2], (2.14)

ε2ex(H) := inf
c∈R

ϑ∈Θ(S)

E[(c+ ϑ •ST −H)2], (2.15)

respectively, i.e., we want to �nd the minimisers for the right-hand side of (2.14)

and (2.15) as well as the mean squared hedging errors ε2(H) and ε2ex(H). Later,

we shall sometimes write ε2(H;S) and ε2ex(H;S) to specify the price process S in

(2.14) and (2.15), respectively. In order to apply classical results on MVH (for

which we use �erný/Kallsen [25] as a reference), we make for the remainder of

this section the following standing assumption on S. In our existence results

for equilibrium prices below, we provide su�cient conditions on the primitives to

ensure that Assumption 2.11 is satis�ed for the equilibrium price.

Assumption 2.11. We suppose that there exists an equivalent local martingale

measure (ELMM) Q ≈ P for S with density dQ/dP ∈ L2(P ).

Assumption 2.11 can be seen as a no-free-lunch condition in an L2-sense; see

Stricker [115, Théorème 2]. It is well known that if Assumption 2.11 is satis�ed,

there exist unique (up to S-equivalence) minimisers ϑMVH(H) ∈ Θ(S) for (2.14)

and (c(H), ϑex(H)) ∈ R×Θ(S) for (2.15); see e.g. [25, Lemma 2.11]. An important

instance of the MVH problem is the so-called pure investment problem, which is

(2.14) with H ≡ 1. In that case, we say that ϑMVH(1) is the pure investment

strategy and denote the mean squared hedging error by ℓ := ε2(1), i.e.,

ℓ = inf
ϑ∈Θ(S)

E[(1− ϑ •ST )
2] = E

[(
1− ϑMVH(1) •ST

)2]
. (2.16)

We choose this notation since ℓ = L0 is also the initial value of the so-called

opportunity process (Lt)0≤t≤T from [25, De�nition 3.3] that we introduce in Sec-

tion 3 below. Under Assumption 2.11, we have ℓ ∈ (0, 1] by [25, Lemma 3.10].

Note that by (2.16) and the uniqueness of the solution ϑMVH(1), we have ℓ = 1 if

and only if ϑMVH(1) =S 0. By Lemma III.2.13 with H ≡ 1, both properties are

equivalent to the statement that S is a local martingale.

The following lemma shows the relationship between the pure investment
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strategy ϑMVH(1) and the set of mean�variance e�cient strategies with respect

to H ≡ 0. This is a kind of folklore result with several versions appearing in the

literature; see e.g. �erný/Kallsen [25, Lemma 3.10] and Fontana/Schweizer [48,

Proposition 3.6] with Y ≡ 1. We use this later to �nd the mean�variance e�cient

strategies for the agents.

Lemma 2.12. A strategy ϑ ∈ Θ(S) is mean�variance e�cient with respect to

H ≡ 0 if and only if ϑ =S yϑ
MVH(1) for some y ≥ 0. In that case, we have

E[ϑ •ST ] = y(1− ℓ) and Var[ϑ •ST ] = y2ℓ(1− ℓ). (2.17)

Proof. Since a strategy is mean�variance e�cient if and only if it satis�es the

equivalent conditions (a) and (b) of Eberlein/Kallsen [44, Rule 10.43], the �rst

assertion follows directly from the equivalence with condition (e) in [44, Rule

10.43]. Then (2.17) is given by [44, Rule 10.47].

We now return to the task of �nding the mean�variance e�cient strategies

for the agents. For each k, let (c(Ξk), ϑex(Ξk)) be the unique solution to the

exMVH problem (2.15) with H = Ξk, and denote ck := c(Ξk) and ε2k := ε2ex(Ξ
k).

We start by using the structure of the mean�variance hedging problem to obtain

more explicit formulas for the expectation and variance of the terminal wealth

attained by an arbitrary strategy ϑ ∈ Θ(S). Indeed, since (ck, ϑ
ex(Ξk)) is the

unique solution to the exMVH problem (2.15) with H = Ξk, we have by (III.2.11)

that ck + ϑex(Ξk) •ST is the orthogonal projection of Ξk onto the set

{x+ ϑ •ST : x ∈ R, ϑ ∈ Θ(S)} ⊆ L2,

which is closed in L2 by �erný/Kallsen [25, Lemma 2.9] and Assumption 2.11.

Thus we obtain an orthogonal decomposition of the form

Ξk = ck + ϑex(Ξk) •ST + Ξ̃k (2.18)

where Ξ̃k ∈ L2 is such that E[Ξ̃k] = E[(ϑ̃ •ST )Ξ̃
k] = 0 for all ϑ̃ ∈ Θ(S). Moreover,

we have by (2.15) that

Var[Ξ̃k] = ε2ex(Ξ
k) = ε2k.
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For any ϑ ∈ Θ(S), plugging (2.18) into the formula (2.4) for V k
T (ϑ) yields

E[V k
T (ϑ)] = E[(ϑ− ηk) •ST + ck + ϑex(Ξk) •ST + Ξ̃k]

= ck + E
[(
(ϑ− ηk + ϑex(Ξk)

)
•ST

]
, (2.19)

Var[V k
T (ϑ)] = Var[(ϑ− ηk) •ST + ck + ϑex(Ξk) •ST + Ξ̃k]

= Var
[(
ϑ− ηk + ϑex(Ξk)

)
•ST

]
+ ε2k. (2.20)

In the following result, we use these formulas to show that a mean�variance

e�cient strategy ϑ for agent k is also the solution to the quadratic utility problem

(2.8) for some choice of risk tolerance γk ≥ ck, and that ϑ can be represented

as a linear combination of ϑMVH(1) and ϑex(Ξk). In the subsequent corollary, we

obtain an explicit parametrisation for the mean�variance e�cient frontier Ek (see
(2.13)) in terms of the triplet (ℓ, ck, ε2k) ∈ (0, 1]× R× R+.

Proposition 2.13. For ϑ ∈ Θ(S), the following statements are equivalent:

(a) ϑ is mean�variance e�cient for agent k.

(b) ϑ =S ϑ
k(y) for some y ≥ 0, where ϑk(y) := yϑMVH(1) + ηk − ϑex(Ξk).

(c) ϑ − ηk is the unique solution to the MVH problem (2.14) for the payo�

Hk(γk) := γk − Ξk for some γk ≥ ck.

The constants y and γk in (b) and (c) can be chosen so that y+ck = γk. Moreover,

statement (c) holds for some γk > 0 if and only if

(d) ϑ is the unique solution to the quadratic utility problem (2.8) with risk

tolerance γk.

Proof. (a) ⇔ (b): Since ck and ε2k do not depend on the choice of ϑ, it follows by

(2.19) and (2.20) together with De�nition 2.9 that ϑ is mean�variance e�cient

for agent k if and only if ϑ− ηk + ϑex(Ξk) is mean�variance e�cient with respect

to 0. By Lemma 2.12, the latter statement is equivalent to

ϑ− ηk + ϑex(Ξk) = yϑMVH(1)

for some y ≥ 0. Thus we have (a) ⇔ (b).

(b) ⇔ (c): Since (ck, ϑ
ex(Ξk)) is the unique solution to the exMVH problem

(2.15) with payo� Ξk, it follows by �xing ck that ϑex(Ξk) is also the unique solution

to the MVH problem (2.14) with payo� Ξk− ck so that ϑex(Ξk) = ϑMVH(Ξk− ck).
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Then by the linearity of MVH (see Lemma III.2.6), we have for any y ≥ 0 that

ϑk(y) = yϑMVH(1) + ηk − ϑex(Ξk) = ϑMVH(y + ck − Ξk) + ηk,

and hence

ϑk(y)− ηk = ϑMVH(γk − Ξk), (2.21)

where γk := y + ck ≥ ck. Thus by (2.21), we have for a strategy ϑ ∈ Θ(S) that

ϑ = ϑk(y) if and only if ϑ− ηk is the unique solution to the MVH problem (2.14)

with payo� Hk(γk) = γk − Ξk. This shows (b) ⇔ (c), where the constants γk and

y are related by γk = y + ck.

(c) ⇔ (d): By Lemma III.3.1, ϑ is a solution to the quadratic utility problem

(2.8) with risk tolerance γk > 0 if and only if ϑ − ηk is a solution to the MVH

problem (2.14) for Hk(γk) = γk−Ξk; in particular, the solution to (2.8) is unique

by the uniqueness of the solution to (2.14). This shows (c) ⇔ (d) for γk > 0.

Remark 2.14. Let Q⋆ be the so-called variance-optimal martingale measure

for S; see the de�nition above Schweizer [110, Lemma 1] or in Equation (2.38)

below. Note that S satis�es Assumption 2.11 and hence [110, Assumption (1.2)]

so that Q⋆ exists. Then by [110, Proposition 2], ck = c(Ξk) = EQ⋆ [Ξk]. If the

asset prices Sj are continuous, we have Q⋆ ≈ P by Delbaen/Schachermayer [36,

Theorem 1.3] so that ck > 0 due to Assumption 2.1. Therefore, the assumption

γk > 0 for part (d) of Proposition 2.13 is automatically satis�ed in the case of

continuous asset prices. However, Q⋆ may in general be a signed measure for a

right-continuous price process satisfying Assumption 2.11 (see [110, Example 3]),

and so Assumption 2.1 does not imply ck > 0 in general.

Due to Proposition 2.13, it is now straightforward to identify the mean�

variance e�cient frontier for agent k.

Corollary 2.15. The mean�variance e�cient frontier for agent k is given by

Ek =
{(
µk(y), σk(y)

)
=
(
ck + (1− ℓ)y,

√
ε2k + ℓ(1− ℓ)y2

)
: y ≥ 0

}
. (2.22)

Proof. By the equivalence (a) ⇔ (b) in Proposition 2.13, we have

Ek =
{(
E
[
V k
T

(
ϑk(y)

)]
,
√

Var
[
V k
T

(
ϑk(y)

)])
: y ≥ 0

}
,
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where ϑk(y) := yϑMVH(1) + ηk − ϑex(Ξk). Then (2.17), (2.19) and (2.20) yield

E
[
V k
T

(
ϑk(y)

)]
= ck + E[yϑMVH(1) •ST ] = ck + (1− ℓ)y = µk(y), (2.23)

Var
[
V k
T

(
ϑk(y)

)]
= Var[yϑMVH(1) •ST ] + ε2k = ε2k + ℓ(1− ℓ)y2 = σ2

k(y), (2.24)

which shows (2.22).

We are �nally ready to tackle the individual optimisation problem (2.10). As

shown in Lemma 2.10, any solution to (2.10) must be mean�variance e�cient for

agent k. Hence by Proposition 2.13, an optimal strategy for (2.10) (if it exists) is

of the form ϑ̂k = ϑk(ŷk) for some ŷk ≥ 0 and is also the solution to the quadratic

utility problem (2.8) with risk tolerance γk = ŷk + ck. In the following result, we

prove the stronger statement that a strategy maximises (2.10) over all strategies

if and only if it maximises (2.10) over the set of mean�variance e�cient strategies

for agent k. In other words, we discard all other strategies not only as candidate

solutions to (2.10), but also as competitors to a candidate solution. Thus the

in�nite-dimensional problem (2.10) reduces to the one-dimensional problem of

�nding the values of y ≥ 0 such that ϑk(y) is a solution to (2.10).

Corollary 2.16. A strategy ϑ̂k ∈ Θ(S) is a solution to the maximisation problem

(2.10) if and only if ϑ̂k = ϑk(ŷk), where ŷk ≥ 0 is a maximiser for the problem

Uk
(
µk(y), σk(y)

)
−→ max

y≥0
! (2.25)

and µk and σk are given in (2.22).

Proof. We �rst claim that for any strategy ϑ ∈ Θ(S), there exists a mean�variance

e�cient strategy ϑ′ ∈ Θ(S) for agent k such that

E[V k
T (ϑ

′)] ≥ E[V k
T (ϑ)], (2.26)

Var[V k
T (ϑ

′)] ≤ Var[V k
T (ϑ)]. (2.27)

Indeed, we note that (2.19) and (2.20) hold for any ϑ ∈ Θ(S). Thus in the case

ℓ ∈ (0, 1), we have by (2.20) and (2.24) that the mean�variance e�cient strategy

ϑ′ = ϑk(y) for agent k with

y :=

√
Var[(ϑ− ηk + ϑex(Ξk)) •ST ]

ℓ(1− ℓ)

satis�es Var[V k
T (ϑ

′)] = Var[V k
T (ϑ)]. Thus ϑ

′ must also satisfy (2.26) because it is
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mean�variance e�cient. In the case ℓ = 1, i.e., if 0 ∈ Θ(S) is a solution to the

pure investment problem (2.16), we have by Lemma III.2.13 that S is a local P -

martingale, and hence (ϑ− ηk+ϑex(Ξk)) •S is a P -martingale due to Proposition

III.2.12. Then the second term on the right-hand side of (2.19) is null so that by

(2.19), (2.20), (2.23) and (2.24), we get (2.26) and (2.27) for the mean�variance

e�cient strategy ϑ′ = ϑk(0) = ηk − ϑex(Ξk). This shows the claim.

By the above and because each mean�variance utility function Uk is strictly

increasing in µ and strictly decreasing in σ by De�nition 2.5, we deduce that a

strategy ϑ̂k ∈ Θ(S) is a solution to the problem (2.10) if and only if it maximises

(2.10) among all mean�variance e�cient strategies for agent k. Then the result

follows by plugging (2.23) and (2.24) into (2.10).

The next step is to solve (2.25), which is a one-dimensional problem involving

the mean�variance utility function Uk and the triplet (ℓ, ck, ε2k) ∈ (0, 1]×R×R+.

We note that ℓ = 1 leads to a degenerate case since the functions µk and σk are

then constant and every y ≥ 0 is a solution to (2.25). Since we also have here

ϑMVH(1) = 0, it follows by Proposition 2.13 that the only mean�variance e�cient

strategy is ϑ̂k = ηk − ϑex(Ξk), and hence this is the unique solution to (2.10).

We now consider (2.25) in the nontrivial case ℓ ∈ (0, 1). More precisely,

we begin by studying an abstract version of (2.25) as follows. Given constants

(ℓ, c, ε2) ∈ (0, 1) × R × R+ and a mean�variance utility function U , we consider

the optimisation problem

U
(
c+ (1− ℓ)y,

√
ε2 + ℓ(1− ℓ)y2

)
−→ max

y≥0
! (2.28)

Aside from a generic choice of U , the main di�erence between (2.28) and (2.25)

is that we consider arbitrary constants (ℓ, c, ε2) ∈ (0, 1)×R×R+, as opposed to

the constants (ℓ, ck, ε2k) de�ned before Proposition 2.13 for the given price process

S and payo� Ξk. This allows us to study not only the existence and uniqueness

of a solution ŷU to (2.28), but also whether ŷU depends continuously on (ℓ, c, ε2).

Although it is not necessary for solving the individual optimisation problems with

respect to S, the continuity of ŷU will play a crucial role when we later study the

equilibrium problem for the K agents, since S is not known a priori and hence

neither are the parameters (ℓ, ck, ε2k).

In order to tackle (2.28), we �rst introduce some standard notions related

to mean�variance utility functions; see Koch-Medina/Wenzelburger [85, Section
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3.3]. For a mean�variance utility function U , we denote by

IU(µ, σ) := {(µ′, σ′) ∈ R× R+ : U(µ′, σ′) = U(µ, σ)}

the indi�erence curve through (µ, σ). We also de�ne SU : R× R+ → R+ by

SU(µ, σ) = −∂σU(µ, σ)
∂µU(µ, σ)

, (2.29)

so that SU(µ, σ) denotes the slope of IU(µ, σ) at (µ, σ). As in [85], we switch the

order of the coordinates for the geometric interpretation of the �slope�. That is,

we plot IU on the σ-µ-plane with σ on the horizontal and µ on the vertical axis,

as is customary in the literature on mean�variance analysis. We now show the

existence and uniqueness of a solution to (2.28) given suitable bounds on SU .

Proposition 2.17. Let U be a mean�variance utility function. Suppose there

exist constants λmin, λmax ∈ (0,∞) such that

σ

λmax
≤ SU(µ, σ) ≤

σ

λmin
for all (µ, σ) ∈ R× R+. (2.30)

Then there exists a continuous map ŷU : (0, 1)×R×R+ → R+ such that ŷU(ℓ, c, ε2)

is the unique solution to (2.28) for each (ℓ, c, ε2) ∈ (0, 1) × R × R+ → R+.

Moreover, the map ŷU satis�es the bounds

λmin

ℓ
≤ ŷU(ℓ, c, ε

2) ≤ λmax

ℓ
for all (ℓ, c, ε2) ∈ (0, 1)× R× R+. (2.31)

Proof. The proof is deferred to the end of Section 5.

Remark 2.18. The existence, uniqueness and continuity of the solution ŷU to

(2.25) hold under weaker conditions than (2.28); this is explained in more detail

in Section 5 (see Corollary 5.4). However, we need the extra condition (2.30) in

order to obtain the bounds (2.31) which are used later.

We now return once again to the individual optimisation problem (2.10). To

apply Proposition 2.17, we make the following standing assumption on the

mean�variance utility functions Uk.

Assumption 2.19. For each k ∈ {1, . . . , K}, there exist constants λmin
k , λmax

k > 0

such that
σ

λmax
k

≤ SUk
(µ, σ) ≤ σ

λmin
k

for all (µ, σ) ∈ R× R+. (2.32)
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We note that Assumption 2.19 is somewhat restrictive on the choice of Uk, and

indeed, it is not necessary for the existence of an equilibrium in the one-period

model; see Koch-Medina/Wenzelburger [85, Theorem 3]. It remains an open

question whether this assumption can be removed or relaxed in our subsequent

results for the multiperiod case. In any case, Assumption 2.19 still allows for

some �exibility in the choice of utility functions for the agents. Most notably,

(2.32) holds for linear mean�variance utility functions of the form (2.9), which

reads

Uk(µ, σ) = µ− σ2

2λk

for some λk ≥ 0 with λmin
k = λmax

k = λk. By analogy with the linear case (2.9), the

ratio σ
SU (µ,σ)

may in general be interpreted as the local risk tolerance at (µ, σ).

Therefore, (2.32) assumes that the local risk tolerance is bounded within the

range [λmin
k , λmax

k ].

Under Assumption 2.19, we can now combine our previous results to yield the

existence and uniqueness of solutions to (2.10) for each agent k.

Theorem 2.20. Let (St)0≤t≤T be a �xed price process satisfying Assumptions 2.8

and 2.11. For each k ∈ {1, . . . , K}, de�ne the triplet (ℓ, ck, ε2k) ∈ (0, 1]×R×R+

by ℓ := ε2(1), ck := c(Ξk) and ε2k := ε2ex(Ξ
k).

1) Suppose that ℓ = 1. Then for each k ∈ {1, . . . , K}, the unique solution to

(2.10) is ϑ̂k = ηk − ϑex(Ξk).

2) Suppose that ℓ ∈ (0, 1) and Assumption 2.19 holds. Then for k ∈ {1, . . . , K},
the unique solution to the individual optimisation problem (2.10) is

ϑ̂k := ϑk
(
ŷUk

(ℓ, ck, ε
2
k)
)
= ŷUk

(ℓ, ck, ε
2
k)ϑ

MVH(1) + ηk − ϑex(Ξk), (2.33)

where the map ŷUk
: (0, 1)×R×R+ → R+ is given by Proposition 2.17. Moreover,

we have the bounds
λmin
k

ℓ
≤ ŷUk

(ℓ, ck, ε
2
k) ≤

λmax
k

ℓ
(2.34)

for each k ∈ {1, . . . , K}, and ϑ̂k − ηk is the unique solution to the MVH problem

(2.14) with payo� Hk(γk) = γk − Ξk, where γk := ck + ŷUk
(ℓ, ck, ε

2
k). If γk > 0,

then ϑ̂k is the unique solution to the quadratic utility problem (2.8) with risk

tolerance γk.

Proof. 1) This follows from the discussion after Corollary 2.16.

2) By Proposition 2.17, ŷUk
(ℓ, ck, ε

2
k) is the unique solution to the problem

(2.25) and satis�es the bounds (2.34). Thus by Corollary 2.16, the strategy
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ϑ̂k ∈ Θ(S) de�ned by (2.33) is the unique solution to (2.10). By combining

(2.33) with (b) ⇔ (c) ⇔ (d) in Proposition 2.13 (the latter of which holds for

γk > 0), we obtain the last two statements.

2.3 Characterisation of the equilibrium as a �xed point

So far, we have analysed the individual optimisation problem (2.10) and shown

that it is related to the quadratic utility problem (2.8). Namely, by Proposition

2.13, a solution to the former is also a solution to the latter for some risk tolerance

γk, and so it should follow that a mean�variance equilibrium is also a quadratic

equilibrium for some parameters (γ1, . . . , γK).

To make this argument fully precise, we need to take care with the assumption

γk > 0 in Proposition 2.13, especially in view of Remark 2.14. A convenient way

to circumvent this is to bypass the quadratic utility problem (2.8) by directly

working with the MVH problem (2.14) for the payo� Hk(γk) := γk − Ξk. By

Lemma III.3.1 and as noted in the proof of Proposition 2.13, that MVH problem

is equivalent to (2.8) for any γk > 0, but the MVH problem is well posed even if

γk is nonpositive. Note that by the linearity of MVH, ϑ − ηk solves (2.14) with

payo� Hk(γk) if and only if ϑ solves (2.14) with payo� Hk(γk) + ηk • ST . This

leads to the following extension of De�nition 2.6.

De�nition 2.21. A local L2-market (1, S(1), S(2)) is called a generalised quad-

ratic equilibrium market (with risk tolerances γ1, . . . , γK ∈ R and aggregate risk

tolerance γ̄ =
∑K

k=1 γk) if it is an equilibrium market in the sense of De�nition

2.2, where for each k ∈ {1, . . . , K}, (2.5) is replaced by the MVH problem (2.14)

for the payo� Hk(γk) + ηk •ST .

From the previous discussion, we directly get the following result.

Corollary 2.22. For any γ1, . . . , γK > 0, the market (1, S) is a quadratic equi-

librium with risk tolerances γ1, . . . , γK if and only if it is a generalised quadratic

equilibrium with risk tolerances γ1, . . . , γK.

We also note that the only di�erence in the De�nitions 2.6 and 2.21 of mean�

variance and generalised quadratic equilibria, respectively, is that the optimal

strategies for the agents are required to solve di�erent utility maximisation prob-

lems. For later reference, this observation can be formulated as the following

simple result.
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Lemma 2.23. 1) Suppose that (1, S) is a mean�variance equilibrium market and

for each k, there exists some γk ∈ R such that the unique solution ϑ̂k ∈ Θ(S)

to (2.10) is also the unique solution to (2.14) with payo� Hk(γk) + ηk •ST . Then

(1, S) is a generalised quadratic equilibrium market with risk tolerances γ1, . . . , γK.

2) Conversely, suppose that (1, S) is a generalised quadratic equilibrium mar-

ket with risk tolerances γ1, . . . , γK. If for each k, the unique solution to (2.14)

with payo� Hk(γk) + ηk •ST is also the unique solution ϑ̂k ∈ Θ(S) to (2.10), then

(1, S) is a mean�variance equilibrium market.

Proof. 1) Since (1, S) is a mean�variance equilibrium market, we have by De�n-

itions 2.6 and 2.4 that (1, S) is a local L2-market and ej ∈ Θ(S) for each

j ∈ {d1 + 1, . . . , d1 + d2}. Moreover, by assumption, there exists a unique solu-

tion ϑ̂k to (2.14) with payo� Hk(γk) + ηk •ST , and since (1, S) is a mean�variance

equilibrium market with the same optimal strategies, the market clears, i.e., (2.6)

holds. Therefore (1, S) is a generalised quadratic equilibrium because we have

checked all conditions in De�nition 2.4 as required by De�nition 2.6.

2) The proof of the converse statement is completely analogous.

We are now ready to formalise the argument above to show that a mean�

variance equilibrium (1, S) is a generalised quadratic equilibrium, even in the

case where it is not a quadratic equilibrium due to issues related to Remark 2.14.

Lemma 2.24. Let U1, . . . , UK be mean�variance utility functions. Suppose that

(St)0≤t≤T satis�es Assumption 2.11 and (1, S) is a mean�variance equilibrium

market with respect to U1, . . . , UK. Then there exist parameters γ1, . . . , γK ∈ R
such that (1, S) is also a generalised quadratic equilibrium market with respect to

the risk tolerances γ1, . . . , γK.

Proof. Since (1, S) is a mean�variance equilibrium in the sense of De�nition 2.6,

there exists for each agent k ∈ {1, . . . , K} a unique solution ϑ̂k to (2.10). By

Lemma 2.10, ϑ̂k is mean�variance e�cient for agent k so that by Proposition 2.13

and the linearity of MVH (see Lemma III.2.6), ϑ̂k is also the unique solution to

the MVH problem (2.14) with payo� Hk(γk) + ηk •ST for some γk ≥ ck. Then by

part 1) of Lemma 2.23, (1, S) is also a generalised quadratic equilibrium.

Lemma 2.24 already gives a good characterisation of mean�variance equilib-

ria that satisfy Assumption 2.11 since it tells us that they are also generalised

quadratic equilibria. We have already studied quadratic equilibria in the previ-

ous chapter, and so we now want to apply Theorem III.3.8. This gives explicit
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formulas for quadratic equilibria that depend only on the aggregate risk tolerance

γ̄ =
∑K

k=1 γk, but not directly on the individual tolerances γk. More precisely,

note that due to Assumption 2.1, we have

0 < γ̄0 := ess sup Ξ̄ <∞. (2.35)

Thus for γ̄ > γ̄0, the process (Z̄t(γ̄))0≤t≤T de�ned by Z̄t(γ̄) = γ̄ − E[Ξ̄ | Ft] is

a strictly positive bounded martingale with terminal value H̄(γ̄) := γ̄ − Ξ̄. For

the following result, we recall from the previous chapter that Lemma III.3.9 gives

su�cient conditions to ensure that the candidate price process for the productive

assets is an L2-semimartingale.

Lemma 2.25. For γ̄ > γ̄0, the process (1, St(γ̄))0≤t≤T de�ned by

Sjt (γ̄) := Sj0 +M j
t −

∫ t

0

d⟨Z̄(γ̄),M j⟩s
Z̄s−(γ̄)

, j ∈ {1, . . . , d1}, (2.36)

Sjt (γ̄) :=
E[H̄(γ̄)Dj | Ft]

Z̄t(γ̄)
, j ∈ {d1 + 1, . . . , d1 + d2}, (2.37)

is the unique generalised quadratic equilibrium market with respect to any choice of

parameters γ1, . . . , γK ∈ R such that
∑K

k=1 γk = γ̄; for short, we say that (1, S(γ̄))

is the generalised quadratic equilibrium with aggregate risk tolerance γ̄. Moreover,

S(γ̄) satis�es Assumptions 2.8 and 2.11, S(2)(γ̄) is an L2-semimartingale, and

the measure Q(γ̄) ≈ P with bounded density dQ(γ̄)/dP (γ̄) = H(γ̄)/Z0(γ̄) is a

local martingale measure for S(γ̄).

Proof. First, we note that Theorem III.3.8 still holds for γ1, . . . , γK ∈ R if we

replace �quadratic equilibrium� with �generalised quadratic equilibrium�. Indeed,

by Lemma III.3.6 (the proof of which relies on Lemma III.3.5), Z̄S is a local P -

martingale for any quadratic equilibrium market (1, S). It is clear from the proof

of Lemma III.3.5 that its conclusion still follows if we only assume that ϑ̂k − ηk

solves the MVH problem with payo� Hk(γk), and so the claim that Z̄S is a local

P -martingale still holds. The rest of the �rst part of the proof of Theorem III.3.8

is unchanged if we consider a generalised quadratic equilibrium. Likewise, in the

proof of the converse direction that (III.3.16) and (III.3.17) de�ne a quadratic

equilibrium market, we already show that the optimal strategies ϑ̂k are such that

ϑ̂k − ηk solves the MVH problem with payo� Hk(γk); that argument still holds if

the γk are allowed to be nonpositive. Therefore Theorem III.3.8 can be extended

to generalised quadratic equilibria.

Now �x γ̄ > γ̄0. Note that we have the bounds γ̄ − γ̄0 ≤ H̄(γ̄) ≤ γ̄, and
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that (2.36) and (2.37) are the same as (III.3.16) and (III.3.17) with Z̄(γ̄) in the

place of Z̄. Because condition (b) in Lemma III.3.9 is satis�ed, S(2)(γ̄) is an L2-

semimartingale. As discussed before Lemma III.3.9, this implies that each buy-

and-hold strategy ej belongs toΘ(S(γ̄)) for j ∈ {d1+1, . . . , d1+d2}, as required by
Theorem III.3.8. We also note that the process Z̄(γ̄) is strictly positive and hence

never hits 0. Therefore by Theorem III.3.8 (extended as above to generalised

quadratic equilibria), S(γ̄) is the unique generalised quadratic equilibrium with

respect to any choice of parameters γ1, . . . , γK such that
∑K

k=1 γk = γ̄. Theorem

III.3.8 also gives that Z̄(γ̄)S(γ̄) is a local P -martingale. Thus Q(γ̄) is a local

martingale measure for S(γ̄) such that Q(γ̄) ≈ P , and dQ(γ̄)/dP is bounded

because Z̄(γ̄) is strictly positive and bounded. This also implies that S(γ̄) satis�es

Assumption 2.11, and Assumption 2.8 follows since (1, S(γ̄)) is a local L2-market

by the de�nition of a generalised quadratic equilibrium.

By Lemma 2.24, we know that a mean�variance equilibrium is also a gen-

eralised quadratic equilibrium for some parameters (γ1, . . . , γK), and if we have

γ̄ :=
∑K

k=1 γk > γ̄0, then the mean�variance equilibrium is (1, S(γ̄)) with S(γ̄)

given by (2.36) and (2.37). However, it is still not straightforward to �nd a mean�

variance equilibrium or determine whether it is unique since we cannot determine

the parameters γk or γ̄ directly from the primitives. To circumvent this issue, a

natural approach is to �try� every possible value of γ̄ > γ̄0 and check whether

S(γ̄) produces the desired equilibrium. Thus our next goal is to characterise the

values of γ̄ > γ̄0 that generate a mean�variance equilibrium (1, S(γ̄)).

Before moving on, we want to deal with the case ℓ = 1 since it requires special

treatment in several results in Section 2.2. In particular, it is useful to determine

the values of γ̄ > γ̄0 such that ℓ(γ̄) = 1, where ℓ(γ̄) is the constant ℓ = ε2(1)

taken with respect to S(γ̄); see (2.14). We start by considering the asymptotic

behaviour of ℓ as γ̄ → ∞.

Lemma 2.26. We have ℓ(γ̄) → 1 as γ̄ → ∞.

Proof. For each γ̄ > γ̄0, de�ne Q(S(γ̄)) as the set of absolutely continuous meas-

ures Q≪ P such that the density process (ZQ
t )0≤t≤T is a square-integrable mar-

tingale with ZQ
0 = 1 and ZQS(γ̄) is a local P -martingale. By Lemma 2.24, Q(γ̄)

is an equivalent local martingale measure for S(γ̄) with bounded density. Thus

Q(γ̄) ∈ Q(S(γ̄)) so that Q(S(γ̄)) is nonempty and Assumption (1.2) of Schweizer

[110] is satis�ed. Hence there exists a variance-optimal martingale measure Q⋆(γ̄)
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for S(γ̄), which is de�ned as the unique solution to the problem

EP

[(
dQ

dP

)2]
−→ inf

Q∈Q(S(γ̄))
! (2.38)

By part (b) of [110, Lemma 1], we have

dQ⋆(γ̄)

dP
=

1− (ϑMVH(1;S(γ̄)) •S(γ̄))T
1− EP [(ϑMVH(1;S(γ̄)) •S(γ̄))T ]

, (2.39)

where we de�ne ϑMVH(1;S(γ̄)) as the unique solution to the MVH problem (2.14)

with H ≡ 1 and S = S(γ̄). Due to (2.17) with y = 1, we obtain

EP

[(
dQ⋆(γ̄)

dP

)2]
=
EP [(1− (ϑMVH(1;S(γ̄)) •S(γ̄))T )

2]

EP [1− (ϑMVH(1;S(γ̄)) •S(γ̄))T ]2

=
ℓ2(γ̄) + ℓ(γ̄)(1− ℓ(γ̄))

ℓ2(γ̄)
=

1

ℓ(γ̄)
.

On the other hand, since Q(γ̄) ∈ Q(S(γ̄)), we have by the optimality of Q⋆(γ̄)

and the de�nition of Q(γ̄) that

EP

[(
dQ⋆(γ̄)

dP

)2]
≤ EP

[(
dQ(γ̄)

dP

)2]
= 1 +

VarP [H̄(γ̄)]

(γ̄ − EP [Ξ̄])2
= 1 +

VarP [Ξ̄]

(γ̄ − EP [Ξ̄])2
,

and hence

ℓ(γ̄) =
1

EP [(dQ⋆(γ̄)/dP )2]
≥
(
1 +

VarP Ξ̄

(γ̄ − EP [Ξ̄])2

)−1

−→ 1

as γ̄ → ∞. Since ℓ(γ̄) ≤ 1 for each γ̄ > γ̄0, the result follows.

We now return to the question of determining for which (�nite) values of

γ̄ > γ̄0 we have ℓ(γ̄) = 1. The following result provides a conclusive answer,

namely, that it holds either on the empty set or on the whole set (γ̄0,∞). To

show this, we de�ne the square-integrable martingale (Z̄0
t )0≤t≤T by

Z̄0
t := Z̄t(γ̄0) = E[H̄(γ̄0) | Ft] = γ̄0 − E[Ξ̄ | Ft], 0 ≤ t ≤ T,

as well as the martingales (MD,j
t )0≤t≤T by

MD,j
t := E[Dj | Ft], 0 ≤ t ≤ T, j ∈ {d1, . . . , d1 + d2},

and set MD,(2) := (MD,d1+1, . . . ,MD,d1+d2). In the following, we write M ⊥ N if



228 IV Equilibrium under general mean�variance preferences

M , N are two strongly orthogonal local martingales.

Lemma 2.27. The following statements are equivalent:

(a) There exists some γ̄′ > γ̄0 such that S(γ̄′) is a local martingale.

(b) There exists some γ̄′ > γ̄0 such that ℓ(γ̄′) = 1.

(c) It holds for all γ̄ > γ̄0 that ℓ(γ̄) = 1.

(d) It holds that M j ⊥ Z̄0 for each j ∈ {1, . . . , d1} and MD,j ⊥ Z̄0 for each

j ∈ {d1 + 1, . . . , d1 + d2}.

(e) It holds for all γ̄ > γ̄0 that S(γ̄) = (S
(1)
0 +M (1),MD,(2)).

Proof. We show (b) ⇒ (a) ⇒ (d) ⇒ (e) ⇒ (c) ⇒ (b) in this order.

(b) ⇒ (a): Suppose that ℓ(γ̄′) = 1. Then ϑMVH(1;S(γ̄′)) = 0 is a minimiser

for (2.16) with respect to S = S(γ̄′). It follows from Lemma III.2.13 with H ≡ 1

that S(γ̄′) is a local martingale.

(a) ⇒ (d): Suppose that S(γ̄′) is a local martingale. By Lemma 2.25, S(2)(γ̄)

is also an L2-semimartingale, and hence it is of class (D) and a true martingale

on [0, T ]. Thus (2.1) and (2.2) yield

Sjt (γ̄
′) = Sj0 +M j

t , j ∈ {1, . . . , d1}, (2.40)

Sjt (γ̄
′) = E[Dj | Ft] =MD,j

t , j ∈ {d1 + 1, . . . , d1 + d2}. (2.41)

Since Z̄(γ̄′) is a martingale by construction and Z̄(γ̄′)S(γ̄′) is a local martin-

gale by Lemma 2.25, (M (1),MD,(2)) and Z̄(γ̄′) are strongly orthogonal. Thus

(M (1),MD,(2)) and Z̄0 are also strongly orthogonal because Z̄0 = γ̄0 − γ̄′ + Z̄(γ̄′),

which shows (d).

(d) ⇒ (e): Let γ̄ > γ̄0. By assumption, we have (M (1),MD,(2)) ⊥ Z̄0 and

hence (M (1),MD,(2)) ⊥ Z̄(γ̄). Plugging into (2.36) directly yields

Sjt (γ̄) = Sj0 +M j
t , j ∈ {1, . . . , d1}. (2.42)

Moreover, for each j ∈ {d1 +1, . . . , d1 + d2}, Z̄0MD,j is a local martingale by the

strong orthogonality. Since H̄(γ̄0) is bounded and Dj ∈ L2, we have that Z̄0 is

a bounded martingale and MD,j is an L2-martingale, so that Z̄0MD,j is a true

martingale and hence

Z̄0
tM

D,j
t = E[H̄(γ̄0)D

j | Ft], 0 ≤ t ≤ T.
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Thus we have

E[H̄(γ̄)Dj | Ft] = E
[(
γ̄ − γ̄0 + H̄(γ̄0)

)
Dj | Ft

]
= (γ̄ − γ̄0)M

D,j
t + Z̄0

tM
D,j
t

= Z̄t(γ̄)M
D,j
t , 0 ≤ t ≤ T.

Plugging this equality into (2.37) yields

Sjt (γ̄) =MD,j
t , j ∈ {d1 + 1, . . . , d1 + d2}. (2.43)

Together with (2.42), this shows (e).

(e) ⇒ (c): Because S(γ̄) is a local martingale, it follows as explained after

(2.16) that ℓ(γ̄) = 1 for each γ̄ > γ̄0.

(c) ⇒ (b): This is trivial.

With the characterisation from Lemma 2.27, we can now show the existence

of a solution to the mean�variance equilibrium problem in the case ℓ = 1.

Corollary 2.28. Suppose that (M (1),MD,(2)) ⊥ Z̄0 and de�ne the price process

(St)0≤t≤T by S := (S
(1)
0 +M (1),MD,(2)). Then (1, S) is a mean�variance equilib-

rium for any choice of mean�variance utility functions Uk for k = 1, . . . , K.

Proof. Fix some γ1, . . . , γK such that γ̄ :=
∑K

k=1 γk > γ̄0. Then by Lemma 2.27,

we have S = S(γ̄) so that (1, S) is a generalised quadratic equilibrium with respect

to the parameters γ1, . . . , γK . Let ϑ̂k ∈ Θ(S) be the unique solution to the MVH

problem (2.14) with payo�Hk(γk) + ηk •ST . Since S is a local martingale, we have

ℓ = 1 and ϑMVH(1) = 0 with respect to the price process S. Then the equivalences

(a) ⇔ (b) ⇔ (c) in Proposition 2.13 yield that ϑ̂k = ηk − ϑex(Ξk) is the unique

mean�variance e�cient strategy for agent k. Thus by part 1) of Theorem 2.20,

ϑ̂k is also the unique solution to the mean�variance utility problem (2.10), and

hence by part 2) of Lemma 2.23, (1, S) is a mean�variance equilibrium.

We note that Corollary 2.28 does not give uniqueness for the mean�variance

equilibrium, and it may indeed not be unique in general. One could try to argue

the uniqueness as follows. By Lemma 2.24, any mean�variance equilibrium mar-

ket (1, S) is also a generalised quadratic equilibrium for some γ1, . . . , γK ∈ R, and
if γ̄ :=

∑K
k=1 γk > γ̄0, then Lemma 2.27 yields S = S(γ̄) = (S

(1)
0 +M (1),MD,(2)).

However, the case γ̄ ≤ γ̄0 is also possible, in which case Theorem III.3.8 and

Lemma 2.27 need not apply since the process Z̄(γ̄) can hit 0. In general, there may
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exist multiple or no (generalised) quadratic equilibria for parameters (γ1, . . . , γK)

such that γ̄ ≤ γ̄0, as discussed after Theorem III.3.11 for the discrete-time setup.

In particular, such an equilibrium cannot exist if γ̄ and the primitives violate

either of the conditions in Lemma III.3.10.

Due to the previous considerations, we do not fully address the issue of

uniqueness for the mean�variance equilibrium. Instead, we focus on the nar-

rower question of whether there exists some γ̄ > γ̄0 such that S(γ̄) is a mean�

variance equilibrium, and if so, whether γ̄ is unique. Under the assumption

(M (1),MD,(2)) ⊥ Z̄0, we have that every γ̄ > γ̄0 produces the same mean�variance

equilibrium (M (1),MD,(2)) by Lemma 2.27 and Corollary 2.28. Thus in this case,

we have existence of a mean�variance equilibrium by Corollary 2.28 and unique-

ness in the sense explained above. We can henceforth exclude this trivial case

with the following standing assumption.

Assumption 2.29. We suppose that the local martingales (M (1),MD,(2)) and

Z̄0 are not strongly orthogonal.

We now focus on the nontrivial case where Assumption 2.29 holds; by Lemma

2.27, we have ℓ(γ̄) < 1 for all γ̄ > γ̄0. We also get the following corollary to

Lemma 2.27, which shows that the map γ̄ 7→ S(γ̄) is injective.

Corollary 2.30. Suppose that Assumption 2.29 holds. Then for all γ̄ > γ̄0 and

γ̄′ ∈ R, S(γ̄) is a generalised quadratic equilibrium with aggregate risk tolerance

γ̄′ if and only if γ̄ = γ̄′. In particular, for γ̄′ > γ̄0, we have S(γ̄) = S(γ̄′) if and

only if γ̄ = γ̄′.

Proof. By Lemma 2.25, S(γ̄) is the unique generalised quadratic equilibrium with

aggregate risk tolerance γ̄ and Z̄(γ̄)S(γ̄) is a local martingale. This shows the

�if� statement. To prove the converse, suppose for a contradiction that S(γ̄) is a

generalised quadratic equilibrium with respect to some risk tolerances γ1, . . . , γK
such that

∑K
k=1 γk =: γ̄′ ̸= γ̄. As argued at the beginning of the proof of Lemma

2.25, the conclusion of Lemma III.3.6 still holds for generalised quadratic equilib-

ria, and thus the process Z̄(γ̄′)S(γ̄) is also a local martingale. Taking di�erences

yields that (
Z̄(γ̄′)− Z̄(γ̄)

)
S(γ̄) = (γ̄′ − γ̄)S(γ̄)

is a local martingale as well, and so is S(γ̄) because γ̄′ ̸= γ̄. Thus the implication

(a) ⇒ (d) in Lemma 2.27 contradicts Assumption 2.29, so that γ̄′ ̸= γ̄ cannot

hold. This concludes the proof of the �rst statement. The second statement
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follows immediately from the �rst since S(γ̄′) is the unique generalised quadratic

equilibrium with aggregate risk tolerance γ̄′ in the case γ̄′ > γ̄0.

We now return to the idea of �trying� values of γ̄ in order to �nd an equi-

librium. It is useful to express this procedure in more concrete terms. In our

previous results, we have implicitly used the four maps ψi de�ned below, where

we denote by S(Rd1+d2) the set of Rd1+d2-valued semimartingales on [0, T ].

De�nition 2.31. We de�ne the maps ψ1, ψ2, ψ3, ψ4 and Ψ as follows:

• ψ1 : (γ̄0,∞) → S(Rd1+d2) is de�ned by

ψ1(γ̄) :=
(
St(γ̄)

)
0≤t≤T , γ̄ > γ̄0, (2.44)

where S(γ̄) is the generalised quadratic equilibrium price process with aggregate

risk tolerance γ̄, given by (2.36) and (2.37) which read

Sjt (γ̄) := Sj0 +M j
t −

∫ t

0

d⟨Z̄(γ̄),M j⟩s
Z̄s−(γ̄)

, 0 ≤ t ≤ T, j ∈ {1, . . . , d1},

Sjt (γ̄) :=
E[H̄(γ̄)Dj | Ft]

Z̄t(γ̄)
, 0 ≤ t ≤ T, j ∈ {d1 + 1, . . . , d1 + d2}.

• ψ2 : Ranψ1 → (0, 1)× (R× R+)
K is de�ned by

ψ2

(
(St)0≤t≤T

)
:=
(
ℓ, (ck, ε

2
k)
K
k=1

)
, (2.45)

where we de�ne ℓ, ck and ε2k as in (2.14) and (2.15) in terms of S by

ℓ(S) := ε2(1;S) = min
ϑ∈Θ(S)

E[(1− ϑ •ST )
2], (2.46)

ε2k(S) := ε2ex(Ξ
k;S) = min

c∈R
ϑ∈Θ(S)

E[(Ξk − c− ϑ •S)2], (2.47)

ck(S) = c(Ξk;S), (2.48)

and (c(Ξk;S), ϑex(Ξk;S)) is the unique minimiser to (2.47).

• ψ3 : (0, 1)× (R× R+)
K → RK is de�ned by

ψ3

(
ℓ, (ck, ε

2
k)
K
k=1

)
:= (γk)

K
k=1 :=

(
ck + ŷUk

(ℓ, ck, ε
2
k)
)K
k=1

, (2.49)

where ŷUk
: (0, 1) × R × R+ → R+ is the function given by Proposition 2.17 so

that ŷUk
(ℓ, ck, ε

2
k) is the unique maximiser to the problem

Uk
(
ck + (1− ℓ)y,

√
ε2k + ℓ(1− ℓ)y2

)
−→ max

y≥0
!
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• ψ4 : RK → R is de�ned by

ψ4(γ1, . . . , γK) :=
K∑
k=1

γk. (2.50)

• Ψ : (γ̄0,∞) → R is the composition

Ψ := ψ4 ◦ ψ3 ◦ ψ2 ◦ ψ1. (2.51)

We note that ψ2 is well de�ned since S(γ̄) satis�es Assumptions 2.8 and 2.11

for γ̄ > γ̄0 by Lemma 2.25, and because ℓ(γ̄) ̸= 1 under Assumption 2.29 due to

Lemma 2.27. We also have that ψ3 is well de�ned under Assumption 2.19 due to

Proposition 2.17. The maps ψ1, ψ2 and ψ3 are studied more closely in Sections 4.1,

4.2 and 5, respectively. Nevertheless, we can already prove the �rst main result

which states that γ̄ > γ̄0 yields a mean�variance equilibrium if and only if γ̄ is a

�xed point of Ψ. Intuitively, we may interpret γ̃ := Ψ(γ̄) as the aggregate risk

tolerance that is implied by the optimal strategies of the agents with respect to

S(γ̄) and Uk, when we instead view those strategies as the solutions to quadratic

utility problems of the form (2.8). Thus the implied aggregate risk tolerance γ̃

should equal γ̄ if and only if S(γ̄) is a mean�variance equilibrium, and this is

what we prove now.

Before giving the main result, some bookkeeping is in order regarding the

assumptions. We do not need Assumptions 2.8 and 2.11 any more; those as-

sumptions were imposed on a general price process S, but they are automatically

satis�ed by S(γ̄) for γ̄ > γ̄0 due to Lemma 2.25. On the other hand, we still

require Assumptions 2.1, 2.19 and 2.29; note that these are conditions only on

the primitives and not on the equilibrium prices.

Theorem 2.32. Suppose that the primitives S(1)
0 ,M (1), D(2), ηk and Ξk,n (for

k = 1, . . . , K) are such that Assumptions 2.1, 2.19 and 2.29 hold, and let γ̄ > γ̄0.

Then (1, S(γ̄)) is a mean�variance equilibrium if and only if γ̄ = Ψ(γ̄).

Proof. For a �xed γ̄ > γ̄0, de�ne S(γ̄) = ψ1(γ̄) as well as the constants(
ℓ(γ̄),

(
ck(γ̄), ε

2
k(γ̄)

)K
k=1

)
:= ψ2 ◦ ψ1(γ̄) (2.52)

associated with the MVH problems with respect to S(γ̄), where we use the short-

hand ℓ(γ̄) = ℓ(S(γ̄)), etc. By Lemma 2.25, S(γ̄) satis�es Assumptions 2.8 and

2.11, and hence we may apply our results from Section 2.2 with respect to S(γ̄).

We start by proving �only if�. If (1, S(γ̄)) is a mean�variance equilibrium,

there exists a unique solution ϑ̂k ∈ Θ(S) to the mean�variance utility problem
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(2.10) for each k ∈ {1, . . . , K}. By part 2) of Theorem 2.20, ϑ̂k is also the unique

solution to the MVH problem (2.14) with payo� Hk(γk) = γk − Ξk, where

γk(γ̄) = ck(γ̄) + ŷUk

(
ℓ(γ̄), ck(γ̄), ε

2
k(γ̄)

)
.

Thus by part 1) of Lemma 2.23, S(γ̄) is a generalised quadratic equilibrium with

risk tolerances γ1(γ̄), . . . , γK(γ̄), where (2.52) and the de�nition of ψ3 yield(
γ1(γ̄), . . . , γK(γ̄)

)
= ψ3 ◦ ψ2 ◦ ψ1(γ̄).

However, by Lemma 2.25, the unique generalised quadratic equilibrium with risk

tolerances γ1(γ̄), . . . , γK(γ̄) is S(γ̃), where

γ̃ :=
K∑
k=1

γk(γ̄) = ψ4

(
γ1(γ̄), . . . , γK(γ̄)

)
= Ψ(γ̄).

Thus we must have S(γ̄) = S(Ψ(γ̄)). By Corollary 2.30, this implies Ψ(γ̄) = γ̄

which proves the �only if� statement.

To show the �if� statement, let γ̄ be a �xed point of Ψ and set

(
γ1(γ̄), . . . , γK(γ̄)

)
= ψ3 ◦ ψ2 ◦ ψ1(γ̄).

Then by part 2) of Theorem 2.20, there exists a unique optimal strategy ϑ̂k to

(2.10) with respect to S(γ̄) for each k ∈ {1, . . . , K}, and ϑ̂k − ηk is the unique

solution to the MVH problem (2.14) with payo� Hk(γk(γ̄)). By the linearity of

MVH (see Lemma III.2.6), ϑ̂k is also the unique solution to (2.14) with payo�

Hk(γk(γ̄)) + ηk •ST . On the other hand, we have by assumption that

K∑
k=1

γk(γ̄) = ψ4

(
γ1(γ̄), . . . , γk(γ̄)

)
= Ψ(γ̄) = γ̄

so that by Lemma 2.25, (1, S(γ̄)) is the unique generalised quadratic equilibrium

market with risk tolerances γ1(γ̄), . . . , γK(γ̄). We have already shown that the

problems (2.10) and (2.14) with payo� Hk(γk(γ̄)) + ηk •ST have the same unique

solution ϑ̂k for each k ∈ {1, . . . , K}. Therefore, it follows by part 2) of Lemma

2.23 that (1, S(γ̄)) is a mean�variance equilibrium market.
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3 The linear case

In the previous section, we have introduced the problem of �nding a mean�

variance equilibrium for a given set of primitives S(1)
0 ,M (1), D(2), ηk, Ξk,n and

mean�variance utility functions Uk as in De�nition 2.3. We have shown in The-

orem 2.32 that the generalised quadratic equilibrium market (1, S(γ̄)) is also a

mean�variance equilibrium market if and only if γ̄ ∈ (γ̄0,∞) is a �xed point of

the map Ψ = ψ4 ◦ ψ3 ◦ ψ2 ◦ ψ1. We now study the existence and uniqueness of

such a �xed point in the case of linear mean�variance utility (2.9), which reads

Uk(µ, σ) = µ− σ2

2λk
, (µ, σ) ∈ R× R+, (3.1)

for some λk > 0. As it turns out, there exists in this case at most one �xed point

γ̄ for which we even obtain an explicit formula. In order to study the mean�

variance equilibria in the linear case, the �rst step is to use the particular form

(3.1) of Uk to solve the optimisation problems (2.25) for each k ∈ {1, . . . , K}. By
doing so, we obtain a relatively simple formula for the map ψ3.

Lemma 3.1. Suppose that each Uk has the form (3.1). Then we have

ψ3

(
ℓ, (ck, ε

2
k)
K
k=1

)
=

(
ck +

λk
ℓ

)K
k=1

(3.2)

for all (ℓ, (ck, ε2k)
K
k=1) ∈ (0, 1)× (R× R+)

K.

Proof. We start by considering the abstract mean�variance problem (2.28), i.e.,

U
(
c+ (1− ℓ)y,

√
ε2 + ℓ(1− ℓ)y2

)
−→ max

y≥0
!

for some (ℓ, c, ε2) ∈ (0, 1)×R×R+. Plugging in U(µ, σ) := µ− σ2

2λ
for some λ > 0

yields the problem

c+ (1− ℓ)y − ε2 + ℓ(1− ℓ)y2

2λ
−→ max

y≥0
!

This is elementary, and the unique minimiser is given by

ŷU(ℓ, c, ε
2) =

λ

ℓ
> 0.
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Hence by plugging into De�nition 2.31, we obtain

ψ3

(
ℓ, (ck, ε

2
k)
K
k=1

)
=
(
ck + ŷUk

(ℓ, ck, ε
2
k)
)K
k=1

=

(
ck +

λk
ℓ

)K
k=1

,

as claimed.

Lemma 3.1 shows part of the reason why �nding an equilibrium is simpler in

the linear case: (3.2) yields a simple explicit formula for ψ3 which is not available

in general. In particular, ψ3 does not depend on the hedging errors ε2k in this

case. However, that is not the full story. To see why, �x γ̄ > γ̄0 and write(
ℓ(γ̄),

(
ck(γ̄), ε

2
k(γ̄)

)K
k=1

)
:= (ψ2 ◦ ψ1)(γ̄).

Then by (3.2) and De�nition 2.31, γ̄ is a �xed point of Ψ if and only if it satis�es

the equation

γ̄ =
K∑
k=1

(
ck(γ̄) +

λk
ℓ(γ̄)

)
. (3.3)

Although this simpli�es the �xed point condition, it is still not obvious how to

solve (3.3) for γ̄. At �rst glance, it looks as though we need to study the maps

γ̄ 7→ ℓ(γ̄) and γ̄ 7→ ck(γ̄), as we do in the next section for the case of general

mean�variance utility functions. However, this turns out not to be necessary

here, due to a relationship (given below) between ℓ(γ̄) and c̄(γ̄) :=
∑K

k=1 ck(γ̄)

that arises from the probabilistic structure of the problem. Surprisingly, that

relationship even allows us to �nd an explicit solution to (3.3).

In preparation for the main results, we �rst recall some notions from the theory

of mean�variance hedging; we use �erný/Kallsen [25] as a reference. By Lemma

2.25, S(γ̄) admits an equivalent local martingale measure Q(γ̄) with bounded

density so that [25, Assumption 2.1] is satis�ed. We introduce the opportunity

process L(γ̄) given by

Lt(γ̄) = ess infϑ∈Θt,T (S(γ̄))E
[(

1−
(
ϑ •S(γ̄)

)
T

)2 ∣∣∣ Ft

]
, 0 ≤ t ≤ T, (3.4)

where Θt,T (S(γ̄)) ⊆ Θ(S(γ̄)) is the set of admissible strategies ϑ such that

ϑ1J0,tK = 0. We have by [25, Corollary 3.4 and Lemma 3.10] that L(γ̄) is an

(0, 1]-valued submartingale with LT (γ̄) = 1. Setting t = 0 in (3.4) together with

(2.46) yields L0(γ̄) = ℓ(γ̄). By [25, Lemma 3.1], there exists for each t ∈ [0, T ] a

unique optimal strategy ϑ(t)(1;S(γ̄)) ∈ Θt,T (S(γ̄)) to (3.4); we say that it is the
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optimal pure investment strategy started at time t.

Next, we introduce the mean value process (V̄t(γ̄))0≤t≤T for H̄(γ̄) = γ̄ − Ξ̄ in

the sense of [25, De�nition 4.2]. By [25, Lemmas 3.7 and 4.1 and Proposition

3.13.1], V̄ (γ̄) is the unique semimartingale such that

V̄t(γ̄) =
1

Lt(γ̄)
E

[
H̄(γ̄)

(
1−

(
ϑ(t)
(
1;S(γ̄)

)
•S(γ̄)

)
T

) ∣∣∣∣ Ft

]
, 0 ≤ t ≤ T.

In particular, V̄T (γ̄) = H̄(γ̄). Moreover, [25, Lemma 4.1] also gives that the

process (V̄s(γ̄)M
(t)
s (γ̄))t≤s≤T is a P -martingale on [t, T ] for any t ∈ [0, T ], where

(M
(t)
s (γ̄))t≤s≤T is a P -martingale (see [25, Lemma 3.2]) de�ned by

M (t)
s (γ̄) := Ls(γ̄)

(
1−

(
ϑ(t)
(
1;S(γ̄)

)
•S(γ̄)

)
s

)
, 0 ≤ t ≤ s ≤ T. (3.5)

The key property from our point of view is that V̄t(γ̄) satis�es the inequality

ess infϑ∈Θt,T (S(γ̄))E
[(
H̄(γ̄)− V̄t(γ̄)−

(
ϑ •S(γ̄)

)
T

)2 ∣∣∣ Ft

]
≤ ess infϑ∈Θt,T (S(γ̄))E

[(
H̄(γ̄)− U −

(
ϑ •S(γ̄)

)
T

)2 ∣∣∣ Ft

]
for any Ft-measurable random variable U ; this follows by [25, Theorem 4.10.2].

In particular, V̄0(γ̄) is the �rst component of the solution to the exMVH problem

(2.15) for H̄(γ̄), and hence V̄0(γ̄) = c(H̄(γ̄);S(γ̄)) = γ̄ − c(Ξ̄;S(γ̄)).

Remark 3.2. As pointed out in Remark 2.14, the variance-optimal martingale

measure Q⋆(γ̄) for S(γ̄) (see (2.38) for the de�nition) is equivalent to P if S(γ̄)

is continuous. In that case, the process V̄ (γ̄) can be written more simply as

V̄t(γ̄) = EQ⋆(γ̄)[H̄(γ̄) | Ft] by [25, Equation (4.1)].

We are now ready to state and prove the property of S(γ̄) that allows us to

solve (3.3). For a more intuitive explanation of why we obtain (3.8) below, we

�rst consider the continuous case so that

V̄t(γ̄) = EQ⋆(γ̄)[H̄(γ̄) | Ft] =
EP [Z

Q⋆

T (γ̄)H̄(γ̄) | Ft]

ZQ⋆

t (γ̄)
, 0 ≤ t ≤ T, (3.6)

where (ZQ⋆

t (γ̄))0≤t≤T is the density process of Q⋆(γ̄) with respect to P . For read-

ability, we temporarily omit the parameter γ̄ below and write ϑ(t) as a shorthand
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for ϑ(t)(1;S(γ̄)). By [25, Lemma 3.7 and Proposition 3.13], we have the formula

ZQ⋆

t =
M

(0)
t

M
(0)
0

=
Lt(1− ϑ(0) •St)

L0

, 0 ≤ t ≤ T,

so that dQ⋆/dP = (1− ϑ(0) •ST )/L0. By Bayes' rule, plugging into (3.6) yields

V̄t =
EP [(1− ϑ(0) •ST )H̄ | Ft]

Lt(1− ϑ(0) •St)

=
EP [H̄ | Ft]

Lt
− EP [H̄(ϑ(0) •ST − ϑ(0) •St) | Ft]

Lt(1− ϑ(0) •St)
, 0 ≤ t ≤ T. (3.7)

So far, these calculations hold for the mean value process V̄ of any payo� H̄ ∈ L2.

However, by the construction of S = S(γ̄) as a generalised quadratic equilibrium,

we also know that H̄ = H̄(γ̄) is bounded and (up to a scalar factor) the density

of an equivalent local martingale measure for S. Since ϑ(0) ∈ Θ(S), the second

term on the right-hand side of (3.7) vanishes by Proposition III.2.12, and hence

V̄t(γ̄)Lt(γ̄) = EP [H̄(γ̄) | Ft] = Zt(γ̄), 0 ≤ t ≤ T.

Thus in the continuous case, (3.8) below follows from the fact that the payo�

H̄(γ̄) = γ̄ − Ξ̄ also induces an equivalent local martingale measure for S(γ̄).

We now give the proof for the general case. This is somewhat more tech-

nical because the variance-optimal martingale measure Q⋆(γ̄) can in general be

a signed measure, and so we do not work with it directly. Here we do not ob-

tain an analogue of the decomposition (3.7) which holds for all payo�s, but we

nevertheless arrive at the same formula in the end.

Proposition 3.3. For γ̄ > γ̄0, we have

Z̄t(γ̄) = V̄t(γ̄)Lt(γ̄), 0 ≤ t ≤ T. (3.8)

In particular, t = 0 yields γ̄ −EP [Ξ̄] = (γ̄ − c̄(γ̄))ℓ(γ̄), where c̄(γ̄) =
∑K

k=1 ck(γ̄).

Proof. As above, we �x γ̄ > γ̄0 and drop it for readability, and write ϑ(t) as a

shorthand for ϑ(t)(1;S(γ̄)). Recall that Z̄S is a local P -martingale by Lemma

2.25, where Z̄ is a bounded and strictly positive P -martingale. Fix t ∈ [0, T ].

Since ϑ(t) ∈ Θ(S), it follows by Proposition III.2.12 that Z̄(ϑ(t) • S) is a true

P -martingale, and hence so is Z̄(1 − ϑ(t) •S). We also know that (V̄sM
(t)
s )t≤s≤T
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is a P -martingale. By (3.5) and as LT = 1, we have

V̄TM
(t)
T = H̄LT

(
1− (ϑ(t) •S)T

)
= Z̄T

(
1− (ϑ(t) •S)T

)
.

Thus by taking conditional expectations EP [ · | Fs], we obtain

V̄sM
(t)
s = Z̄s

(
1− (ϑ(t) •S)s

)
, t ≤ s ≤ T.

Then (3.8) follows immediately by taking s = t becauseM (t)
t = Lt by (3.5). Since

L0(γ̄) = ℓ(γ̄), setting t = 0 in (3.8) yields

γ̄ − EP [Ξ̄] = Z̄0(γ̄) = V̄0(γ̄)L0(γ̄) = c
(
H̄(γ̄);S(γ̄)

)
ℓ(γ̄),

where

c
(
H̄(γ̄);S(γ̄)

)
= c
(
γ̄ − Ξ̄;S(γ̄)

)
= γ̄ − c

(
Ξ̄;S(γ̄)

)
.

This implies that γ̄ − EP [Ξ̄] = (γ̄ − c(Ξ̄;S(γ̄)))ℓ(γ̄). By the linearity of exMVH

(see Lemma III.2.6) and (2.48), we have

c
(
Ξ̄;S(γ̄)

)
=

K∑
k=1

c
(
Ξk;S(γ̄)

)
=

K∑
k=1

ck(γ̄) = c̄(γ̄),

and this concludes the proof.

Finally, we use Proposition 3.3 to obtain a unique solution to (3.3) and hence

a mean�variance equilibrium via Theorem 2.32. In order to apply the latter,

we retain Assumptions 2.1 and 2.29 from the previous section. On the other

hand, Assumption 2.19 is automatically satis�ed for linear mean�variance utility

functions given by (3.1) and thus not needed here.

Theorem 3.4. Suppose that Assumptions 2.1 and 2.29 hold, and that Uk has the

form (3.1) for each k ∈ {1, . . . , T} and some λ1, . . . , λK > 0. De�ne

γ̄ :=
K∑
k=1

λk + EP [Ξ̄]. (3.9)

Then Ψ admits a �xed point if and only if γ̄ > γ̄0. In that case, γ̄ is the unique

�xed point and S(γ̄) is a mean�variance equilibrium.
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Proof. Let γ̃ > γ̄0 and write(
ℓ(γ̃),

(
ck(γ̃), ε

2
k(γ̃)

)K
k=1

)
:= (ψ2 ◦ ψ1)(γ̃).

As explained after Lemma 3.1, γ̃ is a �xed point if and only if (3.3) holds with

γ̃ in place of γ̄. Note that ℓ(γ̃) < 1 by Assumption 2.29 and Lemma 2.27. Hence

by rearranging (3.3), γ̃ is a �xed point of Ψ if and only if

(
γ̃ − c̄(γ̃)

)
ℓ(γ̃) =

K∑
k=1

λk. (3.10)

Moreover, Proposition 3.3 gives

γ̃ − EP [Ξ̄] =
(
γ̃ − c̄(γ̃)

)
ℓ(γ̃). (3.11)

By plugging (3.11) into (3.10), we conclude that γ̃ ∈ (γ̄0,∞) is a �xed point if

and only if γ̃ − EP [Ξ̄] =
∑K

k=1 λk, i.e., if and only if γ̃ = γ̄. Therefore γ̄ is the

only possible �xed point of the map Ψ, and it is indeed a �xed point if γ̄ > γ̄0;

otherwise, γ̄ cannot be a �xed point since ψ1 is only de�ned on (γ̄0,∞). If γ̄ > γ̄0,

then S(γ̄) is a mean�variance equilibrium by Theorem 2.32.

With Theorem 3.4, we conclude that there exists at most one mean�variance

equilibrium of the form S(γ̄) for γ̄ > γ̄0, and γ̄ is explicitly given by (3.9). Note

that the constants λk in (3.1) can be seen as risk tolerance parameters for the

agents, and the condition γ̄ > γ̄0 in Theorem 3.4 is equivalent to

K∑
k=1

λk > ess sup Ξ̄− EP [Ξ̄]. (3.12)

Thus there exists an equilibrium if and only if the aggregate risk tolerance∑K
k=1 λk is larger than the uncertainty of the aggregate endowment Ξ̄ as measured

by ess sup Ξ̄−EP [Ξ̄] ≥ 0. We note that (3.12) is not necessary for the one-period

model considered in Koch-Medina/Wenzelburger [85]. We include it here because

as argued after Corollary 2.28, it is di�cult to characterise (generalised) quadratic

equilibria with aggregate risk tolerance γ̄ ≤ γ̄0 in continuous time. For the same

reason, we do not claim in Theorem 3.4 that the mean�variance equilibrium is

unique, but rather that it is unique among the set of generalised quadratic equi-

libria S(γ̄) for γ̄ > γ̄0. Nevertheless, since the quadratic equilibria with γ̄ > γ̄0

are the most meaningful from an economic point of view (as can be seen from
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the results in Section III.3.5 for �nite discrete time), this is still a satisfactory

uniqueness result. This concludes our analysis of the linear case (3.1), and we

now turn to the general case.

4 The general case

We return to the case of general mean�variance utility functions Uk and seek

su�cient conditions for the existence of a mean�variance equilibrium in the sense

of De�nition 2.6, where each agent k = 1, . . . , K solves the mean�variance utility

problem (2.10). Our main tool is Theorem 2.32 which states that for γ̄ > γ̄0,

a generalised quadratic equilibrium of the form S(γ̄) (see (2.36) and (2.37)) is

also a mean�variance equilibrium if and only if γ̄ is a �xed point of the map Ψ

introduced in De�nition 2.31. Thus we want to show the existence of such a �xed

point γ̄ under suitable assumptions.

The overall strategy is as follows. The �rst step is to show the continuity of

the composition Ψ = ψ4 ◦ ψ3 ◦ ψ2 ◦ ψ1 by considering each map ψi individually.

The continuity of ψ4 is trivial, and that of ψ3 follows from Proposition 2.17. We

postpone the proof of the latter to Section 5 because it requires a careful study

of the abstract mean�variance optimisation problem (2.28) that is self-contained

and may be of independent interest for other mean�variance utility problems.

On the other hand, the question of the continuity of ψ1 and ψ2 is more in-

volved; these two maps are studied in more detail in Sections 4.1 and 4.2, respect-

ively. Whereas ψ1 is indeed continuous, as we shall see in Lemma 4.4 below, we

cannot expect ψ2 to be continuous in general; see Example 4.5. To overcome this

issue, we note that the continuity of ψ2◦ψ1 is su�cient for our purposes, even if ψ2

itself is not continuous. We show the continuity of the composition by refactoring

it as ψ2 ◦ ψ1 = ψ̃2 ◦ ψ̃1, where ψ̃1 can be seen as an �enriched� version of ψ1 that

maps γ̄ to the coe�cients (ξ(γ̄), λ(γ̄)) associated with a structure-condition-type

(SC) decomposition for S(γ̄) of the form

dSt(γ̄) = ξ⊤t (γ̄)d⟨M̄⟩tξt(γ̄)λt(γ̄) + ξt(γ̄)dM̄t, 0 ≤ t ≤ T

for a �xed local martingale M̄ that does not depend on γ̄. The existence of

such a decomposition is shown below in Lemma 4.11 and precise de�nitions for

ψ̃1 and ψ̃2 are given below in De�nitions 4.12 and 4.24, respectively. The maps

ψ1, ψ2, ψ̃1, ψ̃2 are represented by the following diagram:
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S (ξ, λ)

γ̄ (ℓ, (ck, ε
2
k)
K
k=1)

ψ2 ψ̃2ψ1

ψ̃1

(4.1)

Although the map (ξ, λ) 7→ S (de�ned below by (4.16)) is injective and hence

admits on its range an inverse map (represented by the dashed arrow in (4.1)), the

latter is not continuous in general. Thus the continuity of ψ̃2 does not imply that

of ψ2; indeed, the discontinuity of S 7→ (ξ, λ) turns out to be the main obstacle

to the continuity of ψ2. We show in Theorem 4.18 and Corollary 4.23 below

that ξ(γ̄) and λ(γ̄) (and hence ψ̃1) depend continuously on γ̄ in an appropriate

sense, and this allows us to sidestep the dashed arrow to obtain the continuity of

ψ̃2 ◦ ψ̃1. More speci�cally, we show that ψ̃1 is continuous by obtaining an explicit

decomposition for S(γ̄) and using the fact that S(γ̄) admits an equivalent local

martingale measure satisfying the so-called reverse Hölder inequality R2(P ) (see

De�nition 4.8 below). We then express the outputs ℓ, ck and ε2k of ψ̃2 as the initial

values of solutions to a certain set of quadratic backward stochastic di�erential

equations (BSDEs) with stochastic coe�cients that depend on ξ and λ; see (4.56)�

(4.58) below. This allows us to show the continuity of ψ̃2 in Theorem 4.26 via a

stability result (Theorem 6.6) for a certain class of BSDEs. Similarly to the study

of the map ψ3, this BSDE stability result can be shown in an abstract setting and

may be of independent interest for other applications, and hence we postpone its

statement and proof to Section 6.

So far, we have outlined how to show the continuity of the map Ψ. The

second element that we need in order to �nd a �xed point is a bound on its

range. Indeed, if there exist constants γ̄2 ≥ γ̄1 > γ̄0 such that Ψ(γ̄1) ≥ γ̄1

and Ψ(γ̄2) ≤ γ̄2, then the existence of a �xed point follows immediately by the

intermediate value theorem. In order to obtain such a condition on Ψ, we �rst

consider the range of ψ4◦ψ3. We already have bounds on the outputs of ψ3 under

Assumption 2.19 by Proposition 2.17. Since ψ4 is just a sum, those bounds pass

trivially to the output of ψ4 ◦ ψ3 and can then be applied to the map Ψ.

We now proceed to the main work of de�ning the maps ψ̃1 and ψ̃2 and showing

their continuity. At the end of the section, we then combine these results to show

the existence of mean�variance equilibria. We note once again that the subsequent

Sections 5 and 6 are self-contained and do not rely on any results from this section,

and therefore we may use here some of the results proven therein.
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4.1 Continuity of ψ̃1

Our �rst main goal is to show that the generalised quadratic equilibrium S = S(γ̄)

given in Theorem III.3.8 depends continuously on the aggregate risk tolerance γ̄,

i.e., that the maps ψ1 and ψ̃1 (the latter of which is still to be de�ned) are

continuous in an appropriate sense.

We start by introducing some notation related to multidimensional stochastic

integration. In this section, we always work with column vectors and thus identify

Rn = Rn×1; in particular, we use the conventional de�nition of a vector stochastic

integral ξ •X for Rn×1-valued processes ξ and X. We then extend this notation

to matrix-valued integrands by considering Rm×1-valued stochastic integrals of

the form ξ •X for Rn×m-valued ξ and Rn×1-valued X.

Notation 4.1. Let T > 0, n ∈ N and (Ω,F , (Ft)0≤t≤T , P ) be a stochastic basis

satisfying the usual conditions. We denote by S(Rn), M2(Rn), M2
loc(Rn) and

P(Rn) the sets of Rn-valued semimartingales, L2-martingales, local L2-martingales

and predictable processes on [0, T ], respectively. For X ∈ S(Rn), we denote by

L(X) = L(X;Rn) the set of Rn×1-valued predictable processes (ξt)0≤t≤T that are

X-integrable in the sense of Jacod/Shiryaev [71, III.6.17]. We also de�ne for

m ∈ N the set

L(X;Rn×m) = {ξ = (ξ1, . . . , ξm) : ξ1, . . . , ξm ∈ L(X)},

and for ξ ∈ L(X;Rn×m), we write ξ • X = (ξ1 • X, . . . , ξm • X)⊤ with values in

Rm×1. We identify ξ(1), ξ(2) ∈ L(X;Rn×m) if they are X-equivalent, i.e., if ξ(1) •X

and ξ(2) •X are indistinguishable; we write in that case ξ(1) =X ξ(2).

With this notation, we have for all processes X(1) ∈ S(Rn1), X(2) ∈ S(Rn2),

ξ(1) ∈ L(X(1);Rn1×m1) and ξ(2) ∈ L(X(2);Rn2×m2) that the quadratic covariation

[ξ(1) •X(1), ξ(2) •X(2)] takes values in Rm1×m2 and satis�es

d[ξ(1) •X(1), ξ(2) •X(2)]t = (ξ
(1)
t )⊤d[X(1), X(2)]tξ

(2)
t , 0 ≤ t ≤ T. (4.2)

Moreover, we have for ξ(3) ∈ L(ξ(1) •X(1),Rm1×m3) the associative property

ξ(3) • (ξ(1) •X(1)) = (ξ(1)ξ(3)) •X(1). (4.3)

We also introduce the Émery distance on S(Rn). For two semimartingales

X, Y ∈ S(Rn), we write

dS(X, Y ) = sup{E[1 ∧ |η •XT − η •YT |] : η ∈ P(Rn), ∥η∥∞ ≤ 1}.
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By Émery [47, Lemme 7], the space S(Rn) is a complete topological vector space

under dS . The topology induced by dS is the so-called semimartingale topology.

We denote convergence in the semimartingale topology by � S→�.

Recall the de�nitions and assumptions related to the agents k ∈ 1, . . . , K

as well as the �nancial and real assets introduced in Section 2.1 (including As-

sumption 2.1). We de�ne the local martingale M̄ := (M (1),MD,(2), Π̄, Z̄0), where

(M
(1)
t )0≤t≤T is the local martingale part of S(1) (see (2.2)) and (M

D,(2)
t )0≤t≤T ,

(Π̄t)0≤t≤T and (Z̄0
t )0≤t≤T are square-integrable martingales de�ned by

M
D,(2)
t = E[D(2) | Ft], Π̄t = E[(γ̄0 − Ξ̄)D(2) | Ft], Z̄0

t = E[γ̄0 − Ξ̄ | Ft] (4.4)

for 0 ≤ t ≤ T , where we recall γ̄0 := ess sup Ξ̄ (see (2.35)) so that Z̄0 ≥ 0. We

note that M (1) takes values in Rd1 , MD,(2) and Π̄ in Rd2 and Z̄0 in R, so that

M̄ takes values in Rd̄ for d̄ := d1 + 2d2 + 1. The local martingale M̄ plays an

important role in the representation of the martingale part of S(γ̄) since it is

de�ned directly in terms of the primitives and does not depend on γ̄. We also

make the following standing assumption.

Assumption 4.2. The �ltration F = (Ft)0≤t≤T is continuous, i.e., every F-
adapted martingale admits a continuous version.

Assumption 4.2 is somewhat restrictive, and it remains an open question

whether one can relax it in our subsequent results. As we shall see, its inclu-

sion eases the task of showing the continuity of ψ̃1 and ψ̃2. This assumption

automatically holds in setups where the �ltration is generated by a Brownian

motion since the continuity of F is ensured there by the Itô representation the-

orem. Under Assumption 4.2, we may and always do take a continuous version of

any martingale or local martingale. In particular, Assumption 4.2 implies that M̄

is continuous. Moreover, for local martingales, we can replace the square brackets

[·, ·] by the sharp brackets ⟨·, ·⟩.
For some �xed aggregate risk tolerance γ̄ > γ̄0, we recall the generalised

quadratic equilibrium S(γ̄) given in (2.36) and (2.37) by

Sjt (γ̄) := Sj0 +M j
t −

∫ t

0

d⟨Z̄(γ̄),M j⟩s
Z̄s(γ̄)

, j ∈ {1, . . . , d1}, (4.5)

Sjt (γ̄) :=
E[H̄(γ̄)Dj | Ft]

Z̄t(γ̄)
, j ∈ {d1 + 1, . . . , d1 + d2} (4.6)
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for 0 ≤ t ≤ T , where the martingale (Z̄t(γ̄))0≤t≤T de�ned by

Z̄t(γ̄) := E[H(γ̄) | Ft] = γ̄ − γ̄0 + Z̄0
t , 0 ≤ t ≤ T, (4.7)

is bounded and strictly positive by Assumption 2.1. Note that Z̄(γ̄) is continuous

by Assumption 4.2, so that we have Z̄s(γ̄) = Z̄s−(γ̄) in the integrand of (4.5). We

now want to study the map ψ1 : (γ̄0,∞) → S(Rd1+d2), γ̄ 7→ S(γ̄), and the �rst

step is to rewrite (4.5) and (4.6) in terms of the components of M̄ ; recall (4.4).

Lemma 4.3. For each γ̄ > γ̄0, we have the decompositions

S
(1)
t (γ̄) = S

(1)
0 +M

(1)
t + A

(1)
t (γ̄), 0 ≤ t ≤ T, (4.8)

S
(2)
t (γ̄) = S

(2)
0 (γ̄) +M

(2)
t (γ̄) + A

(2)
t (γ̄), 0 ≤ t ≤ T, (4.9)

S
(2)
0 (γ̄) =

(γ̄ − γ̄0)M
D,(2)
0 + Π̄0

γ̄ − γ̄0 + Z̄0
0

, (4.10)

where the local martingale M (2)(γ̄) ∈ M2
loc(Rd2) is given by

M
(2)
t (γ̄) =

∫ t

0

(
(γ̄ − γ̄0)dM

D,(2)
s + dΠ̄s

γ̄ − γ̄0 + Z̄0
s

− ((γ̄ − γ̄0)M
D,(2)
s + Π̄s)dZ̄

0
s

(γ̄ − γ̄0 + Z̄0
s )

2

)
(4.11)

for 0 ≤ t ≤ T, and the �nite-variation processes (A(1)
t (γ̄))0≤t≤T and (A

(2)
t (γ̄))0≤t≤T

which take values in Rd1 and Rd2, respectively, are given by

A
(1)
t (γ̄) = −

∫ t

0

d⟨M (1), Z̄0⟩s
γ̄ − γ̄0 + Z̄0

s

and A
(2)
t (γ̄) = −

∫ t

0

d⟨M (2)(γ̄), Z̄0⟩s
γ̄ − γ̄0 + Z̄0

s

(4.12)

for 0 ≤ t ≤ T .

Proof. The decomposition (4.8) for S(1), where A(1)(γ̄) is given by (4.12), fol-

lows directly by plugging (4.7) into (4.5). Likewise, plugging the decomposition

H̄(γ̄) = γ̄ − γ̄0 + γ̄0 − Ξ̄ together with (4.4) and (4.7) into (4.6) yields

S
(2)
t (γ̄) =

(γ̄ − γ̄0)M
D,(2)
t + Π̄t

γ̄ − γ̄0 + Z̄0
t

, 0 ≤ t ≤ T.

Setting t = 0 yields (4.10). By Itô's formula, we obtain the semimartingale
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decomposition

dS
(2)
t (γ̄) =

(γ̄ − γ̄0)dM
D,(2)
t + dΠ̄t

γ̄ − γ̄0 + Z̄0
t

− ((γ̄ − γ̄0)M
D,(2)
t + Π̄t)dZ̄

0
t

(γ̄ − γ̄0 + Z̄0
t )

2

− d⟨(γ̄ − γ̄0)M
D,(2) + Π̄, Z̄0⟩t

(γ̄ − γ̄0 + Z̄0
t )

2
+

((γ̄ − γ̄0)M
D,(2)
t + Π̄t)d⟨Z̄0⟩t

(γ̄ − γ̄0 + Z̄0
t )

3
(4.13)

for 0 ≤ t ≤ T. By separating the local martingale and �nite variation parts, we

obtain (4.11). Moreover, the �nite variation part is given by

dA
(2)
t (γ̄) = −d⟨(γ̄ − γ̄0)M

D,(2) + Π̄, Z̄0⟩t
(γ̄ − γ̄0 + Z̄0

t )
2

+
((γ̄ − γ̄0)M

D,(2)
t + Π̄t)d⟨Z̄0⟩t

(γ̄ − γ̄0 + Z̄0
t )

3

= −d⟨M
(2)(γ̄), Z̄0⟩t

γ̄ − γ̄0 + Z̄0
t

,

which yields the second part of (4.12), and then (4.9) follows from (4.13).

The decompositions (4.8) and (4.9) already let us show the continuity of ψ1.

Lemma 4.4. The map ψ1 : (γ̄0,∞) → S(Rd1+d2), γ̄ 7→ S(γ̄) is continuous with

respect to the semimartingale topology on S(Rd1+d2).

Proof. Fix a sequence (γ̄n)n∈N in (γ̄0,∞) with limn→∞ γ̄n = γ̄∞ > γ̄0. By

Lemma 4.3, it su�ces to show that S(2)
0 (γ̄n) → S

(2)
0 (γ̄∞), A(1)(γ̄n)

S→ A(1)(γ̄∞),

M (2)(γ̄n)
S→M (2)(γ̄∞) and A(2)(γ̄n)

S→ A(2)(γ̄∞) as n→ ∞. The �rst convergence

follows from (4.10) because γ̄∗ := infn∈N γ̄n > γ̄0 and Z̄0 ≥ 0, so that

S
(2)
0 (γ̄n) =

(γ̄n − γ̄0)M
D,(2)
0 + Π̄0

γ̄n − γ̄0 + Z̄0
0

−→ (γ̄∞ − γ̄0)M
D,(2)
0 + Π̄0

γ̄∞ − γ̄0 + Z̄0
0

= S
(2)
0 (γ̄∞).

Using (4.12) together with the elementary inequality | 1
a
− 1

b
| ≤ |a− b|/(γ̄∗ − γ̄0)

2

for a, b ≥ γ̄∗ − γ̄0 > 0 yields

sup
η∈P(Rn)
∥η∥∞≤1

∣∣∣(η •
(
A(1)(γ̄n)− A(1)(γ̄∞)

))
T

∣∣∣
≤ sup

η∈P(Rn)
∥η∥∞≤1

∫ T

0

∣∣∣∣ 1

γ̄n − γ̄0 + Z̄0
s

− 1

γ̄∞ − γ̄0 + Z̄0
s

∣∣∣∣|ηs||d⟨M (1), Z̄0⟩s|

≤ |γ̄n − γ̄∞|
(γ̄∗ − γ̄0)2

∫ T

0

|d⟨M (1), Z̄0⟩s| −→ 0 P -a.s. as n→ ∞

so that A(1)(γ̄n)
S→ A(1)(γ̄∞). For the martingale parts, we decompose (4.11) in
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the form

M (2)(γ̄n)−M (2)(γ̄∞) = X1,n +X2,n +X3,n, (4.14)

where X1,n, X2,n, X3,n ∈ M2
loc(Rd2) are de�ned by

X1,n :=

(
γ̄n − γ̄0

γ̄n − γ̄0 + Z̄0
− γ̄∞ − γ̄0
γ̄∞ − γ̄0 + Z̄0

)
•MD,(2),

X2,n :=

(
1

γ̄n − γ̄0 + Z̄0
− 1

γ̄∞ − γ̄0 + Z̄0

)
• Π̄,

X3,n :=

(
(γ̄n − γ̄0)M

D,(2) + Π̄

(γ̄n − γ̄0 + Z̄0)2
− (γ̄∞ − γ̄0)M

D,(2) + Π̄

(γ̄∞ − γ̄0 + Z̄0)2

)
• Z̄0.

Let γ̄∗ := supn∈N γ̄n <∞. For each n, we have the inequality

|(γ̄n − γ̄0)M
D,(2)
s + Π̄s|

(γ̄n − γ̄0 + Z̄0
s )

2
≤ (γ̄∗ − γ̄0)|MD,(2)

s |+ |Π̄s|
(γ̄∗ − γ̄0 + Z̄0

s )
2

=: φs, 0 ≤ s ≤ T,

where (φt)0≤t≤T is continuous P -a.s., and hence
∫ T
0
φ2
sd⟨Z̄0⟩s < ∞ P -a.s. Thus

the dominated convergence theorem yields that

⟨X3,n⟩T =

∫ T

0

(
(γ̄n − γ̄0)M

D,(2)
s + Π̄s

(γ̄n − γ̄0 + Z̄0
s )

2
− (γ̄∞ − γ̄0)M

D,(2)
s + Π̄s

(γ̄∞ − γ̄0 + Z̄0
s )

2

)2

d⟨Z̄0⟩s −→ 0

P -a.s. as n → ∞. We obtain by similar arguments that ⟨X1,n⟩T , ⟨X2,n⟩T → 0

P -a.s. as n→ ∞. Hence (4.14) and the Cauchy�Schwarz inequality yield

⟨M (2)(γ̄n)−M (2)(γ̄∞)⟩T −→ 0 P -a.s. (4.15)

as n→ ∞. By Émery [47, Lemma 6], this implies that M (2)(γ̄n)
S→M (2)(γ̄∞).

Finally, note that (4.12), the Kunita�Watanabe inequality and (4.15) yield

sup
η∈P(Rn)
∥η∥∞≤1

∣∣∣(η •
(
A(2)(γ̄n)− A(2)(γ̄∞)

))
T

∣∣∣
≤
∫ T

0

∣∣∣∣ 1

γ̄n − γ̄0 + Z̄0
s

− 1

γ̄∞ − γ̄0 + Z̄0
s

∣∣∣∣|d⟨M (2)(γ̄∞), Z̄0⟩s|

+

∫ T

0

∣∣∣∣ 1

γ̄n − γ̄0 + Z̄0
s

∣∣∣∣|d⟨M (2)(γ̄n)−M (2)(γ̄∞), Z̄0⟩s|

≤ |γ̄n − γ̄∞|
(γ̄∗ − γ̄0)2

∫ T

0

|d⟨M (2)(γ̄∞), Z̄0⟩s|+
⟨M (2)(γ̄n)−M (2)(γ̄∞)⟩1/2T ⟨Z̄0⟩1/2T

γ̄∗ − γ̄0
−→ 0

P -a.s. as n→ ∞, so that A(2)(γ̄n)
S→ A(2)(γ̄∞). This concludes the proof.
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Lemma 4.4 gives a continuity result for ψ1. However, it is insu�cient for our

original purpose of showing the continuity of ψ2 ◦ ψ1, since ψ2 is in general not

continuous with respect to the semimartingale topology.

Example 4.5. Recall from (2.45) that ℓ(S) = ε2(1;S) is the �rst component of

ψ2(S). Consider the sequence of semimartingales (Sn)n∈N on [0, T ] de�ned by

Snt = (t + Wt)/n so that Sn S→ S∞ ≡ 0 as n → ∞. For n ∈ N ∪ {∞}, let
ℓn := ε2(1;Sn) ∈ (0, 1]. Then we have ℓ∞ = 1 as argued after (2.16) since S∞

is a martingale. On the other hand, ℓ1 = ℓ2 = · · · ̸= 1 since S1 is not a local

martingale and the set of wealth processes attainable by trading Sn is the same

for all n ∈ N. Hence we cannot have ψ2(S
n) → ψ2(S

∞) as n→ ∞.

In view of the counterexample above, we need further insight into the structure

of S(γ̄) and its dependence on γ̄ in order to prove the continuity of ψ2 ◦ψ1. First,

we rewrite the martingale decomposition in Lemma 4.3 more explicitly in terms

of M̄ . This already gives the �rst output ξ(γ̄) of the map ψ̃1 that we de�ne below.

Lemma 4.6. For each γ̄ > γ̄0, there exists a unique (up to M̄-equivalence) process

ξ(γ̄) ∈ L2
loc(M̄ ;Rd̄×(d1+d2)) such that

M(γ̄) :=
(
M (1),M (2)(γ̄)

)
= ξ(γ̄) •M̄. (4.16)

Moreover, the family {ξ(γ̄) : γ̄ > γ̄0} can be chosen such that

P
[
lim
γ̄′→γ̄

ξt(γ̄
′) = ξt(γ̄) for all 0 ≤ t ≤ T and γ̄ > γ̄0

]
= 1, (4.17)

P [ξt(γ̄) has full rank for all 0 ≤ t ≤ T and γ̄ > γ̄0] = 1. (4.18)

Proof. We construct (ξt(γ̄))0≤t≤T explicitly by setting each entry (ξt(γ̄))ij to

1, 1 ≤ i = j ≤ d1,

(γ̄ − γ̄0)/Z̄t(γ̄), d1+ 1 ≤ i = j ≤ d1+ d2,

1/Z̄t(γ̄), d1+ d2+ 1 ≤ i ≤ d1+ 2d2, j = i− d2,

−
(
(γ̄ − γ̄0)(M

D,(2)
t )i−d1+ (Π̄t)i−d1)/(Z̄t(γ̄)

)2
, i = d̄, d1+ 1 ≤ j ≤ d1+ d2,

0, otherwise.

(4.19)

Visually, ξt(γ̄) can be represented as a d̄ × (d1 + d2) block matrix of the shape(
A 0
0 B
0 C
0 v

)
, where A ∈ Rd1×d1 andB,C ∈ Rd2×d2 are diagonal matrices and v ∈ R1×d2

is a row vector. Then (4.16) follows directly by plugging into (4.11); the fact that
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ξ(γ̄) satis�es (4.16) immediately implies the uniqueness up to M̄ -equivalence.

Because Z̄0 is nonnegative and continuous, we have P [E] = 1, where

E := {Z̄0
t ≥ 0 for all 0 ≤ t ≤ T}.

On the set E, we have that (Z̄t(γ̄))
−1 = (γ̄ − γ̄0 + Z̄0

t )
−1 is well de�ned for all

t ∈ [0, T ] and γ̄ > γ̄0. Hence by (4.7) and the construction (4.19), it is clear that

limγ̄′→γ̄ Zt(γ̄
′) = Zt(γ̄) and limγ̄′→γ̄ ξt(γ̄

′) = ξt(γ̄) for all 0 ≤ t ≤ T and γ̄ > γ̄0 on

E; this shows (4.17). We also have on E that the �rst d1 + d2 rows of ξt(γ̄) are

linearly independent for all t ∈ [0, T ] and γ̄ > γ̄0, since the submatrix formed by

these columns has nonzero entries along the diagonal and null entries elsewhere.

Thus (4.18) holds.

The next step is to study the ELMM Q(γ̄) ≈ P for S(γ̄) given by Lemma

2.25. Namely, we show that Q(γ̄) satis�es the so-called reverse Hölder inequality

R2(P ). The following de�nitions are given in Delbaen et al. [34, De�nitions 2.8

and 2.11]; note that [34, De�nitions 2.8 and 2.9] are equivalent in our setup since

all martingales are continuous due to Assumption 4.2.

De�nition 4.7. We say that a martingaleM ∈ M2(R) belongs to BMO if there

exists a constant CM ≥ 0 such that

E[⟨M⟩T − ⟨M⟩τ | Fτ ] ≤ CM

for every stopping time τ that takes values in [0, T ]. We write ∥M∥BMO :=
√
C∗
M ,

where C∗
M is the in�mum of all such constants CM . The set of BMO martingales

null at 0 is a Banach space with norm ∥ · ∥BMO (see Protter [102, Section IV.4]),

whereas the latter is only a seminorm on the space of all BMO martingales.

De�nition 4.8. We say that a strictly positive martingale Z ∈ M2(R) satis�es
the reverse Hölder inequality R2(P ) if there exists a constant CZ ≥ 1 such that

E

[(
ZT
Zt

)2 ∣∣∣∣ Ft

]
≤ CZ , 0 ≤ t ≤ T. (4.20)

Similarly, we say that an equivalent measure Q ≈ P satis�es the reverse Hölder

inequality R2(P ) if the density process (ZQ)0≤t≤T of Q satis�es R2(P ).

Lemma 4.9. For each γ̄ > γ̄0, the process (Z̄t(γ̄))t∈[0,T ] satis�es R2(P ) and the
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stochastic logarithm (N̄t(γ̄))0≤t≤T de�ned by

N̄(γ̄) :=
1

Z̄(γ̄)
• Z̄(γ̄) (4.21)

belongs to BMO. Moreover, for each γ̄∗ > γ̄0, the family (N̄(γ̄))γ̄≥γ̄∗ is bounded

in BMO and there exists some constant C = Cγ̄∗ > 0 such that for every γ̄ ≥ γ̄∗,

the process Z̄(γ̄) satis�es R2(P ) with constant C on the right-hand side of (4.20).

Proof. Since 0 ≤ Z̄0 ≤ γ̄0 due to Assumption 2.1 and the de�nitions (2.35) and

(4.4) of γ̄0 and Z̄0, we have by (4.7) that γ̄ − γ̄0 ≤ Z̄(γ̄) ≤ γ̄ and hence

E

[(
Z̄T (γ̄)

Z̄t(γ̄)

)2 ∣∣∣∣ Ft

]
≤ γ̄2

(γ̄ − γ̄0)2
<∞, 0 ≤ t ≤ T,

so that Z̄(γ̄) satis�es R2(P ). Since the function γ̄ 7→ γ̄2/(γ̄ − γ̄0)
2 is decreasing

on (γ̄0,∞), we can set Cγ̄∗ = γ̄2∗/(γ̄∗ − γ̄0)
2 so that for every γ̄ ≥ γ̄∗, Z̄(γ̄)

satis�es (4.20) with the constant Cγ̄∗ . Thus by Delbaen et al. [34, Lemma 4.2],

the stochastic logarithm N̄(γ̄) belongs to BMO. We can rewrite (4.21) as

N̄(γ̄) =
1

Z̄(γ̄)
• Z̄(γ̄) =

1

γ̄ − γ̄0 + Z̄0
• (γ̄ − γ̄0 + Z̄0) =

1

γ̄ − γ̄0 + Z̄0
• Z̄0. (4.22)

Thus for 0 ≤ s ≤ t ≤ T and γ̄′ ≤ γ̄, we have

⟨N(γ̄)⟩t − ⟨N(γ̄)⟩s =
∫ t

s

1

(γ̄ − γ̄0 + Z̄0
u)

2
d⟨Z̄0⟩u

≤
∫ t

s

1

(γ̄′ − γ̄0 + Z̄0
u)

2
d⟨Z̄0⟩u = ⟨N(γ̄′)⟩t − ⟨N(γ̄′)⟩s. (4.23)

Thus for any γ̄ ≥ γ̄∗ > γ̄0, the increments of ⟨N(γ̄)⟩ are bounded by those of

⟨N(γ̄∗)⟩ so that ∥N(γ̄)∥BMO ≤ ∥N(γ̄∗)∥BMO and (N̄(γ̄))γ̄≥γ̄∗ is bounded in BMO.

The following lemma is well known and helps to explain why the reverse

Hölder inequality R2(P ) for Q(γ̄) gives important information about S(γ̄): it

implies that the sets Θ(S(γ̄)) and Θ(S(γ̄)) of admissible strategies of Schweizer

[109] and �erný/Kallsen [25], respectively, coincide in this case. Recall that the

latter is the one we use throughout this chapter; see De�nition 2.3.

Lemma 4.10. Let (St)0≤t≤T be a continuous semimartingale with canonical de-

composition S = S0 + M + A, where M is a local martingale and A a �nite-
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variation process. De�ne the set Θ(S) := L2(M)∩L2(A). If there exists an equi-

valent local martingale measure Q for S that satis�es R2(P ), then Θ(S) = Θ(S)

and the set of attainable gains GT (Θ(S)) := {ϑ •ST : ϑ ∈ Θ(S)} is closed in L2.

Proof. Because Q satis�es R2(P ), the implication (2) ⇒ (1) in Delbaen et al. [34,

Theorem 4.1] gives that GT (Θ(S)) is closed in L2. Thus by �erný/Kallsen [25,

Corollary 2.9], GT (Θ(S)) = GT (Θ(S)). By Proposition III.2.12, the terminal gain

ϑ •ST of a strategy ϑ ∈ Θ(S) uniquely determines ϑ up to S-equivalence. Thus

the equality GT (Θ(S)) = GT (Θ(S)) implies that Θ(S) = Θ(S).

We are now ready to de�ne the second output λ(γ̄) of ψ̃1 via the so-called (SC)

decomposition (4.24) of S(γ̄). We prove the existence of such a decomposition by

using Lemma 4.9 together with results of Delbaen et al. [34].

Lemma 4.11. For each γ̄ > γ̄0, there exists a process λ(γ̄) ∈ L2(M(γ̄);Rd1+d2)

(which is unique up to M(γ̄)-equivalence) such that

St(γ̄) = S0(γ̄) +

∫ t

0

(
d⟨M(γ̄)⟩sλs(γ̄) + dM(γ̄)s

)
(4.24)

= S0(γ̄) +

∫ t

0

(
ξ⊤s (γ̄)d⟨M̄⟩sξs(γ̄)λs(γ̄) + ξs(γ̄)dM̄s

)
, 0 ≤ t ≤ T. (4.25)

Proof. Since Q(γ̄) has the density process (Zt(γ̄))0≤t≤T and S(γ̄) is continuous,

Lemmas 2.25 and 4.9 yield that Q(γ̄) is an equivalent local martingale measure

for S(γ̄) and satis�es R2(P ). Hence by Lemma 4.10, GT (Θ(S(γ̄))) is closed in

L2. Thus because Q(γ̄) is an equivalent local martingale measure for S(γ̄) with

square-integrable density, we obtain from Delbaen et al. [34, Theorem 3.7] that

S(γ̄) satis�es the so-called inequality D2(P ). Since the martingale part of S(γ̄) is

M(γ̄) = (M (1),M (2)(γ̄)) by Lemma 4.3, we obtain from [34, Lemma 3.1] a process

λ(γ̄) ∈ L2(M(γ̄);Rd1+d2) such that

A(γ̄) =

∫ ·

0

d⟨M(γ̄)⟩sλs(γ̄), (4.26)

and hence the (SC) decomposition (4.24) for S(γ̄) is satis�ed. By plugging

M(γ̄) = ξ(γ̄) • M̄ (see (4.16)) and (4.2) into (4.24), we obtain (4.25). To show

the uniqueness of λ(γ̄), note that due to (4.24), λ(γ̄) is unique P ⊗ ⟨M(γ̄)⟩-
a.e. Since M(γ̄) is a local martingale, this implies the uniqueness up to M(γ̄)-

equivalence.

We are �nally ready to formally de�ne the map ψ̃1.
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De�nition 4.12. We de�ne ψ̃1 : (γ̄0,∞) → L2
loc(M̄ ;Rd̄×(d1+d2))× P(Rd1+d2) by

ψ̃1(γ̄) :=
(
ξ(γ̄), λ(γ̄)

)
, (4.27)

where ξ(γ̄) and λ(γ̄) are given in Lemmas 4.6 and 4.11.

We now want to show an integrability condition on (ξ(γ̄), λ(γ̄)), namely that

λ(γ̄) • M(γ̄) = λ(γ̄) • (ξ(γ̄) • M̄) belongs to BMO. This follows by Lemma 4.9

together with the next (folklore) result which we state in a general form for later

use, where we bound the increments of ⟨λ(γ̄) •M(γ̄)⟩ by those of ⟨N̄(γ̄)⟩.

Lemma 4.13. Let (St)0≤t≤T be a continuous semimartingale of the form

St = S0 +

∫ t

0

d⟨M⟩sλs +Mt, 0 ≤ t ≤ T,

where M is a local martingale and λ ∈ L2
loc(M). If there exists an equivalent

local martingale measure Q for S with continuous density process Z = E(N) for

some local martingale (Nt)0≤t≤T , then the local martingales M and N +λ •M are

strongly orthogonal, and it holds for all 0 ≤ s ≤ t ≤ T that

⟨λ •M⟩t − ⟨λ •M⟩s ≤ ⟨N⟩t − ⟨N⟩s. (4.28)

Proof. Because Q is an equivalent local martingale measure for S, we obtain by

Girsanov's theorem that

d⟨M,N⟩t = −d⟨M⟩tλt = −d⟨M,λ •M⟩t, 0 ≤ t ≤ T.

Hence we �nd ⟨M,N + λ •M⟩ ≡ 0, which shows the strong orthogonality. We

thus have the orthogonal decomposition N = −λ •M + (N + λ •M) which yields

for all 0 ≤ s ≤ t ≤ T that

⟨λ •M⟩t − ⟨λ •M⟩s + ⟨N + λ •M⟩t − ⟨N + λ •M⟩s = ⟨N⟩t − ⟨N⟩s,

and this implies (4.28).

The next step is to study the continuity of λ(γ̄) in γ̄. For that, we consider the

semimartingale characteristics of M̄ ; see Jacod/Shiryaev [71, De�nition II.2.6].

Since M̄ is a continuous local martingale, only the characteristic (CM̄
t )0≤t≤T given

by CM̄
t = ⟨M̄⟩t is nonzero. De�ne the predictable increasing process (It)0≤t≤T

by It = tr⟨M̄⟩t for 0 ≤ t ≤ T . We may and do choose versions of CM̄ and I
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such that P -a.s., we have for all 0 ≤ s ≤ t ≤ T that CM̄
t − CM̄

s is symmetric

and positive semide�nite with tr (CM̄
t − CM̄

s ) = It − Is. Since ∥C∥op ≤ trC for

any symmetric positive semide�nite matrix C, where ∥ · ∥op denotes the operator
norm on Rd̄×d̄, we obtain

P [∥CM̄
t − CM̄

s ∥op ≤ It − Is for all 0 ≤ s < t ≤ T ] = 1. (4.29)

Hence there exists a Radon�Nikodým derivative for CM̄ with respect to I, i.e., a

predictable process (cM̄t )0≤t≤T with values in the set of d̄× d̄ symmetric positive

semide�nite matrices such that

CM̄
t = ⟨M̄⟩t =

∫ t

0

cM̄s dIs, 0 ≤ t ≤ T. (4.30)

The choice of cM̄ is unique P ⊗ I-a.e. Moreover, we have∫ t

0

dIs = It = tr⟨M̄⟩t =
∫ t

0

(tr cM̄s )dIs, 0 ≤ t ≤ T,

so that tr cM̄ = 1 P⊗I-a.e. Thus we may and do choose a version of cM̄ such that

P [tr cM̄t = 1 for all t ∈ [0, T ]] = 1. The process cM̄ can be seen as a di�erential

characteristic of M̄ with respect to I; see Eberlein/Kallsen [44, Section 4.4]. We

now show the continuity of the map γ̄ 7→ λ(γ̄) (in the sense of (4.31) below)

under the assumption that cM̄ is P ⊗ I-a.e. invertible.

Lemma 4.14. 1) Let γ̄ > γ̄0 and suppose that ξ⊤(γ̄)cM̄ξ(γ̄) is P ⊗ I-a.e. invert-

ible. Then λ(γ̄′) → λ(γ̄) P ⊗ I-a.e. as γ̄′ → γ̄ and

lim
γ̄′→γ̄

〈
λ(γ̄′) •

(
ξ(γ̄′) •M̄

)
− λ(γ̄) •

(
ξ(γ̄) •M̄

)〉
T
= 0 P -a.s. (4.31)

2) If cM̄t is P ⊗ I-a.e. invertible, then ξ⊤(γ̄)cM̄ξ(γ̄) is P ⊗ I-a.e. invertible for

all γ̄ > γ̄0.

Proof. 1) Since ⟨M̄, Z̄0⟩ ≪ ⟨M̄⟩ ≪ I, there exists an I-integrable predictable

process (cM̄,Z̄0

t )0≤t≤T such that d⟨M̄, Z̄0⟩ = cM̄,Z̄0
dI. Thus (4.16) yields

d⟨M̄(γ̄), Z̄0⟩ = ξ⊤(γ̄)cM̄,Z̄0

dI
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as well as d⟨M̄(γ̄)⟩ = ξ⊤(γ̄)cM̄ξ(γ̄). By plugging into (4.12), we get

dAt(γ̄) = −ξ
⊤
t (γ̄)c

M̄,Z̄0

t dIt
γ̄ − γ̄0 + Z̄0

t

, 0 ≤ t ≤ T.

It thus follows from (4.26), (4.16) and the invertibility assumption that

λ(γ̄) = −
(
ξ⊤(γ̄)cM̄ξ(γ̄)

)−1 ξ⊤(γ̄)cM̄,Z̄0

γ̄ − γ̄0 + Z̄0
P ⊗ I-a.e. (4.32)

Fix now γ̄ > γ̄0. Note that by (4.24), we have ξt(γ̄′) → ξt(γ̄) as γ̄′ → γ̄ for all

0 ≤ t ≤ T P -a.s. For any sequence of square matrices (Cn)n∈N that converge

to an invertible limit C, it holds that C†
n → C† = C−1 (see e.g. Stewart [114,

Equation (1.5)]), where C†
n denotes the Moore�Penrose inverse of Cn; see Albert

[6, Chapter III] for the de�nition and basic properties. Hence it follows from

(4.32) and the invertibility of ξ⊤(γ̄)cM̄ξ(γ̄) that

λ(γ̄′) −→ λ(γ̄) P ⊗ I-a.e. as γ̄′ → γ̄. (4.33)

Since Z̄0 is a component of M̄ so that ⟨Z̄0⟩ ≪ I, there exists a predictable

process (cZ̄
0

t )0≤t≤T such that d⟨Z̄0⟩ = cZ̄
0
dI. Indeed, cZ̄

0
can be taken to be the

(d̄, d̄)-entry of cM̄ . Now �x some γ̄∗ ∈ (γ̄0, γ̄) and recall N̄(γ̄∗) =
1

Z̄(γ̄∗)
• Z̄(γ̄∗) as

in (4.21). Then by applying the inequalities (4.23) and (4.28) (for the latter with

λ = λ(γ̄∗), M = M(γ̄∗) = λ(γ̄∗) • (ξ(γ̄∗) • M̄), and N = N(γ̄∗)), we obtain for

γ̄′ ≥ γ̄∗ and 0 ≤ s ≤ t ≤ T that

〈(
ξ(γ̄′)λ(γ̄′)

)
•M̄
〉
t
−
〈(
ξ(γ̄′)λ(γ̄′)

)
•M̄
〉
s
≤ ⟨N̄(γ̄∗)⟩t − ⟨N̄(γ̄∗)⟩s.

Di�erentiating with respect to I and plugging in the dynamics (4.22) yields

0 ≤ λ⊤(γ̄′)ξ⊤(γ̄′)cM̄ξ(γ̄′)λ(γ̄′) ≤ cZ̄
0

(γ̄∗ − γ̄0 + Z̄0)2
P ⊗ I-a.e. (4.34)

for γ̄′ ≥ γ̄∗. Since we have∫ T

0

cZ̄
0

t

(γ̄∗ − γ̄0 + Z̄0
t )

2
dIt ≤

⟨Z̄0⟩T
(γ̄∗ − γ̄0)2

<∞,
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it follows by (4.33), (4.34) and the dominated convergence theorem that∫ T

0

(
λ⊤t (γ̄

′)ξ⊤t (γ̄
′)− λ⊤t (γ̄)ξ

⊤
t (γ̄)

)
cM̄t
(
ξt(γ̄

′)λt(γ̄
′)− ξt(γ̄)λt(γ̄)

)
−→ 0

P -a.s. as γ̄′ → γ̄; this shows (4.31).

2) Suppose that cM̄ is invertible and hence positive de�nite, P ⊗ I-a.e. Thus

on a set of full P ⊗ I-measure, we have for all x ∈ Rd1+d2 that

ξ⊤(γ̄)cM̄ξ(γ̄)x = 0 =⇒ x⊤ξ⊤(γ̄)cM̄ξ(γ̄)x = 0 =⇒ ξ(γ̄)x = 0,

and hence ker ξ⊤(γ̄)cM̄ξ(γ̄) = ker ξ(γ̄) P ⊗ I-a.e. On the other hand, ξt(γ̄) has

full rank for all 0 ≤ t ≤ T P -a.s. by Lemma 4.6. Since ξ(γ̄) has dimensions

d̄× (d1 + d2) with d̄ > d1 + d2, it follows that

ker ξ⊤(γ̄)cM̄ξ(γ̄) = ker ξ(γ̄) = {0} P ⊗ I-a.e.

Since ξ⊤(γ̄)cM̄ξ(γ̄) is a square matrix, it is thus invertible P ⊗ I-a.e.

In order to apply part 2) of Lemma 4.14, we henceforth assume that cM̄ is

invertible. This standing assumption will also be helpful later for showing the

continuity of ψ̃2; see Lemma 4.30 below.

Assumption 4.15. We suppose that {(ω, t) : cM̄t (ω) is singular} is P ⊗ I-null.

We can interpret Assumption 4.15 as a requirement that d⟨M̄⟩ have full rank,
so that any integrand ξ ∈ L2

loc(M̄) satis�es ξ •M̄ = 0 if and only if ξ = 0 P⊗I-a.e.
Like Assumption 4.2, this assumption is somewhat restrictive, and it remains an

open question whether our main results still hold if it is removed or relaxed. In

the case of a Brownian �ltration, one can in principle ensure that Assumption 4.15

is satis�ed by perturbing each component of M̄ with an independent Brownian

motion. We note that due to the de�nition of M̄ (see (4.4)), this assumption

depends only on the primitives. Assumption 4.15 (together with (4.18)) prevents

degenerate situations where the components of the martingale parts of the of S(γ̄)

become correlated for some value of γ̄ > γ̄0, which can lead to a discontinuity as

in Example 4.5.

Under Assumptions 4.2 and 4.15, we have shown the continuity of the map

γ̄ 7→ (ξ(γ̄), λ(γ̄)) in the sense of (4.17) and (4.31). We now want to translate our

results into more explicit statements on the range of continuity of ψ̃1. We �rst

de�ne a set D(M̄) that contains the range of ψ̃1 (as we show below), and will also
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serve as the domain for the map ψ̃2.

De�nition 4.16. We de�ne D(M̄) ⊆ L2
loc(M̄ ;Rd̄×(d1+d2))×P(Rd1+d2) as the set

of pairs (ξ, λ) such that ξ has full rank P ⊗ I-a.e., λ ∈ L2
loc(ξ • M̄) and for some

S0 ∈ R, the process (St(ξ, λ))0≤t≤T de�ned by the (SC) decomposition

St(ξ, λ) =

∫ t

0

(ξ⊤s d⟨M̄⟩sξsλs + ξsdM̄s), 0 ≤ t ≤ T (4.35)

admits an equivalent local martingale measure Q = Q(ξ, λ) that satis�es R2(P ).

For C ≥ 1, we also de�ne the set DC(M̄) of pairs (ξ, λ) ∈ D(M̄) such that there

exists at least one such measure Q(ξ, λ) that satis�es R2(P ) with constant C on

the right-hand side of (4.20).

By comparing (4.25) and (4.35), we obtain

S(γ̄) = S0(γ̄) + S
(
ξ(γ̄), λ(γ̄)

)
. (4.36)

Thus up to the initial value S0(γ̄), (4.35) allows us to reconstruct the price process

ψ1(γ̄) = S(γ̄) in terms of ψ̃1(γ̄) = (ξ(γ̄), λ(γ̄)). We leave out S0(γ̄) in order to

simplify the notation and because a constant shift in the asset prices does not

a�ect the MVH and exMVH problems (2.14) and (2.15).

For later use, we show that any (ξ, λ) ∈ D(M̄) satis�es a BMO bound that

depends only on the constant in the inequality R2(P ) for Q(ξ, λ); this is a folklore

result on the (SC) decomposition.

Lemma 4.17. For any (ξ, λ) ∈ D(M̄), we have λ • (ξ • M̄) = (ξλ) • M̄ ∈ BMO.

Moreover, there exists an increasing function f : (0,∞) → (0,∞) such that

∥λ • (ξ •M̄)∥BMO ≤ f(C), (4.37)

where C is the constant on the right-hand side of the inequality R2(P ) (4.20) for

the density process Z(ξ, λ) of Q(ξ, λ).

Proof. Fix (ξ, λ) ∈ D(M̄) and write S = S(ξ, λ); likewise for Q and Z. Let

(Nt)0≤t≤T be the stochastic logarithm of Z. Then Delbaen et al. [34, Lemma

4.2] gives that N belongs to BMO, and an inspection of its proof reveals that

∥N∥BMO is bounded by f(C) for some increasing function f : (0,∞) → (0,∞).

By (4.28) with M = ξ • M̄ , the increments of ⟨λ • (ξ • M̄)⟩ are bounded by those

of N , and this yields (4.37).
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We now collect our main results so far on the range and continuity of ψ̃1.

Theorem 4.18. Suppose that Assumptions 2.1, 4.2 and 4.15 hold. Then the map

ψ̃1 satis�es the following properties:

1) The range of ψ̃1 is contained in D(M̄).

2) For any sequence (γ̄n)n∈N in (γ̄0,∞) such that γ̄n → γ̄∞ > γ̄0, it holds that

(i) P [limn→∞ ξt(γ̄n) = ξt(γ̄∞) for all 0 ≤ t ≤ T ] = 1.

(ii) limn→∞⟨λ(γ̄n) • (ξ(γ̄n) •M̄)− λ(γ̄∞) • (ξ(γ̄∞) •M̄)⟩T = 0 P -a.s.

3) For each γ̄∗ > γ̄0, the family {λ(γ̄) • (ξ(γ̄) • M̄) : γ̄ ≥ γ̄∗} is bounded in

BMO. Moreover, there exists a constant C = Cγ̄∗ > 0 such that ψ̃1(γ̄) ∈ DC(M̄)

for all γ̄ ≥ γ̄∗.

Proof. 1) This follows since ξ(γ̄) has full rank by (4.18), Q(γ̄) is an equivalent

local martingale measure for S(γ̄) with density process Z̄(γ̄) due to Lemma 2.25,

and Z̄(γ̄) satis�es R2(P ) by Lemma 4.9.

2) The assertions (i) and (ii) were shown in Lemmas 4.6 and 4.14, respectively.

3) For all γ̄ ≥ γ̄∗ and stopping times τ taking values in [0, T ], we have by

(4.28) with λ = λ(γ̄), M = ξ(γ̄) •M̄ and N = N̄(γ̄) and Lemma 4.9 that

E[⟨λ(γ̄) • (ξ(γ̄) •M̄)⟩T − ⟨λ(γ̄) • (ξ(γ̄) •M̄)⟩τ | Fτ ]

≤ E[⟨N̄(γ̄)⟩T − ⟨N̄(γ̄)⟩τ | Fτ ]

≤ E[⟨N̄(γ̄∗)⟩T − ⟨N̄(γ̄∗)⟩τ | Fτ ] ≤ ∥N̄(γ̄∗)∥2BMO P -a.s.

and hence ∥λ(γ̄) • (ξ(γ̄) • M̄)∥BMO ≤ ∥N̄(γ̄∗)∥BMO. Lemma 4.9 also gives that

Q(γ̄) satis�es R2(P ) with constant Cγ̄∗ for every γ̄ ≥ γ̄∗. Together with part 1),

this yields ψ̃1(γ̄) ∈ DC(M̄) for all γ̄ ≥ γ̄∗ and completes the proof of 3).

We conclude the study of ψ̃1 by restating part 2) of Theorem 4.18 more pre-

cisely as the statement that ψ̃1 is continuous in an appropriate sense; for that pur-

pose, we �rst need to de�ne a topology on D(M̄). We do this by inducing a met-

ric on D(M̄) via the function fD(M̄) : D(M̄) → L2
loc(M̄ ;Rd̄×(d1+d2))×M2(Rd1+d2)

given by

fD(M̄)(ξ, λ) :=
(
ξ, λ • (ξ •M̄)

)
. (4.38)

By Lemma 4.17, λ • (ξ • M̄) ∈ BMO ⊆ M2 for (ξ, λ) ∈ D(M̄) so that fD(M̄) is

well de�ned.
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De�nition 4.19. We endow the space L2
loc(M̄ ;R(d1+d2)×d̄) × M2(Rd1+d2) with

the metric d′ de�ned by

d′
(
(ξ1,M1), (ξ2,M2)

)
= E

[∫ T
0
(1 ∧ ∥ξ1t − ξ2t ∥)dIt

IT + 1

]
+ E[⟨M1 −M2⟩]1/2 (4.39)

for (ξ1,M1), (ξ2,M2) ∈ L2
loc(M̄ ;Rd̄×(d1+d2))×M2(Rd1+d2), where ∥ · ∥ denotes the

Frobenius norm on Rd̄×(d1+d2). We endow D(M̄) with the pseudometric1 dD(M̄)

induced by d′ and fD(M̄), i.e.,

dD(M̄)

(
(ξ1, λ1), (ξ2, λ2)

)
= d′

(
fD(M̄)(ξ

1, λ1), fD(M̄)(ξ
2, λ2)

)
(4.40)

for (ξ1, λ1), (ξ2, λ2) ∈ D(M̄), as well as the pseudometric topology on D(M̄) gen-

erated by the open balls

Br(ξ
1, λ1) =

{
(ξ2, λ2) ∈ D(M̄) : dD(M̄)

(
(ξ1, λ1), (ξ2, λ2)

)
< r
}

for r > 0 and (ξ1, λ1) ∈ D(M̄).

We note that d′ is indeed a metric, since it is a combination of the M2-norm

and the L0(P ⊗ I)-metric on L2
loc(M̄ ;Rd̄×(d1+d2)), where we include the factor

(IT + 1)−1 to ensure �niteness. Thus it is clear by the construction that dD(M̄)

is a pseudometric. In general, dD(M̄) is not a true metric because fD(M̄) is not

injective on D(M̄).

Remark 4.20. One could convert dD(M̄) into a true metric on the quotient space

of D(M̄) with respect to ξ • M̄ -equivalence, i.e., where (ξ1, λ1) ∼ (ξ2, λ2) if and

only if ξ1 =M̄ ξ2 and λ1 =ξ1 •M̄ λ2. Indeed, the map induced by fD(M̄) is injective

on that space, and we are only interested in λ only up to ξ • M̄ -equivalence (see

Lemma 4.13).

Remark 4.21. Replacing M2 and its associated norm in De�nition 4.19 with

BMO and ∥ · ∥BMO would result in a stronger topology on D(M̄). However, in

that case, the continuity of ψ̃1 would not follow from part 2) of Theorem 4.18, even

with the uniform BMO bound given by part 3), as illustrated in the following

example.

Example 4.22. Let T = 2 and X be an unbounded (but �nite) nonnegative

random variable that is F1-measurable. Consider a Brownian motion (Wt)0≤t≤2

1We say that a map d : A × A → R+ on a set A is a pseudometric if it satis�es all of the
axioms for a metric except positivity, i.e., there may exist x ̸= y such that d(x, y) = 0.
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and the family of martingales (Nn)n∈N on [0, 2] de�ned by

Nn
t := 1{X≥n}1[1,2](t)(Wt −W1), 0 ≤ t ≤ 2.

Then E[⟨Nn⟩2] = P [X ≥ n] → 0 as n → ∞, so that Nn → 0 in M2 as n → ∞.

On the other hand, we have

1 ≥ ∥Nn∥BMO ≥ ess supE[⟨Nn⟩2 − ⟨Nn⟩1 | F1] = ess sup1{X≥n} = 1,

i.e., ∥Nn∥BMO = 1 for each n ∈ N. Thus the sequence (Nn)n∈N is bounded in

BMO, but Nn ̸→ 0 in BMO as n→ ∞.

Now that we have de�ned a pseudometric and a topology on D(M̄), we can

restate parts 1) and 2) of Theorem 4.18 as follows.

Corollary 4.23. Suppose that Assumptions 2.1, 4.2 and 4.15 hold. Then the

map ψ̃1 : (γ̄0,∞) → D(M̄) is continuous.

Proof. By part 1) of Theorem 4.18, the range of ψ̃1 is contained inD(M̄). To show

the continuity, consider a sequence (γ̄n)n∈N in (γ̄0,∞) such that γ̄n → γ̄∞ > γ̄0.

We want to show that ψ̃1(γ̄n) converges to ψ̃1(γ̄∞) with respect to dD(M̄). Recall

the de�nitions (4.38)�(4.40) of fD(M̄), d′ and dD(M̄), respectively. Thus we need

to show that fD(M̄)(ψ̃1(γ̄n)) = (ξ(γ̄n), λn • (ξ(γ̄n) • M̄)) converges with respect to

d′. We start by considering the �rst component. Let γ̄∗ := infn∈N γ̄n > γ̄0. Recall

that by part 2)(i) of Theorem 4.18, we have

P
[
lim
n→∞

ξt(γ̄n) = ξt(γ̄∞) for all 0 ≤ t ≤ T
]
= 1.

Then by twice applying the dominated convergence theorem with respect to∫ T
0
· dI and E[ · ] with majorant 1 in both cases, we obtain

E

[
1

IT + 1

∫ T

0

(
1 ∧ ∥ξt(γ̄n)− ξt(γ̄∞)∥

)
dIt

]
−→ 0 as n→ ∞. (4.41)

For the second component, note that the family {λ(γ̄) • (ξ(γ̄) • M̄) : γ̄ ≥ γ̄∗} is

bounded in BMO by part 3) of Theorem 4.18. Hence by well-known results on

BMO martingales (see Corollary 6.8 below, which is based on results of Kazamaki

[81]), the set {⟨λ(γ̄) • (ξ(γ̄) • M̄)⟩T : γ̄ ≥ γ̄∗} is uniformly integrable. Thus the

bound ⟨M −N⟩ ≤ 2⟨M⟩+ 2⟨N⟩ for local martingales M and N yields that

{〈
λ(γ̄n) •

(
ξ(γ̄n) •M̄

)
− λ(γ̄∞) •

(
ξ(γ̄∞) •M̄

)〉
T
: n ∈ N

}
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is also uniformly integrable. Recall that by part 2)(ii) of Theorem 4.18, we have

lim
n→∞

〈
λ(γ̄n) •

(
ξ(γ̄n) •M̄

)
− λ(γ̄∞) •

(
ξ(γ̄∞) •M̄

)〉
T
= 0 P -a.s.

so that taking expectations yields

lim
n→∞

E
[〈
λ(γ̄n) •

(
ξ(γ̄n) •M̄

)
− λ(γ̄∞) •

(
ξ(γ̄∞) •M̄

)〉
T

]
= 0.

In other words, we have λ(γ̄n) • (ξ(γ̄n) •M̄)
M2

→ λ(γ̄∞) • (ξ(γ̄∞) •M̄) as n→ ∞. By

combining this with (4.41), we obtain fD(M̄)(ψ̃1(γ̄n))
d′→ fD(M̄)(ψ̃1(γ̄∞)) as n→ ∞

so that ψ̃1(γ̄n)
dD(M̄)→ ψ̃1(γ̄∞) as n→ ∞, and therefore ψ̃1 is continuous.

4.2 Continuity of ψ̃2

In the following, we retain the standing Assumptions 2.1, 4.2 and 4.15 and

recall the processes M̄ , I and cM̄ as well as the set D(M̄); see (4.4), (4.30) and

De�nition 4.16. We are now ready to de�ne the map ψ̃2 on D(M̄) and to study

its continuity. Fix (ξ, λ) ∈ D(M̄) as well as S = S(ξ, λ) and Q = Q(ξ, λ) as

given by De�nition 4.16. Then S satis�es Assumption 2.11 and as discussed in

Section 2.2, it follows that the MVH and exMVH problems (2.14) and (2.15)

for any H ∈ L2 with respect to S admit unique solutions. Thus we can de�ne

ℓ = ε2(1;S), ck = c(Ξk;S) and ε2k = ε2ex(Ξ
k;S) for k = 1, . . . , K with respect to

S = S(ξ, λ) in the same way as in (2.46)�(2.48).

De�nition 4.24. We de�ne the map ψ̃2 : D(M̄) → (0, 1]× (R× R+)
K by

ψ̃2(ξ, λ) =

(
ε2
(
1;S(ξ, λ)

)
,
(
c
(
Ξk;S(ξ, λ)

)
, ε2ex

(
Ξk;S(ξ, λ)

))K
k=1

)
(4.42)

for (ξ, λ) ∈ D(M̄).

As explained at the beginning of the section (see Diagram 4.1), we have con-

structed the maps ψ̃1 and ψ̃2 with the goal of refactoring the original composition

ψ2 ◦ ψ1 as ψ̃2 ◦ ψ̃1. Recall that by De�nition 2.31, we have for γ̄ > γ̄0 that

ψ2 ◦ ψ1(γ̄) =

(
ε2
(
1;S(γ̄)

)
,
(
c
(
Ξk;S(γ̄)

)
, ε2ex

(
Ξk;S(γ̄)

))K
k=1

)
. (4.43)

We now show that the two compositions ψ2 ◦ ψ1 and ψ̃2 ◦ ψ̃1 are indeed equal.

Lemma 4.25. We have ψ̃2 ◦ ψ̃1 = ψ2 ◦ ψ1.
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Proof. Let γ̄ ∈ (γ̄0,∞). Since ψ̃1(γ̄) = (ξ(γ̄), λ(γ̄)) (see (4.27)), ψ̃2◦ψ̃1(γ̄) is given

by the right-hand side of (4.42) with ξ = ξ(γ̄) and λ = λ(γ̄). So it su�ces to show

that ε2(1;S(γ̄)) = ε2(1;S(ξ(γ̄), λ(γ̄))), and likewise for the other components in

(4.42) and (4.43). By (4.36), the price processes S(γ̄) and S(ξ(γ̄), λ(γ̄)) di�er only

by a constant shift S0(γ̄) which does not a�ect the MVH problems because they

depend only on stochastic integrals with respect to the price process. Therefore,

the constants on the right-hand side of (4.43) and (4.42) with (ξ, λ) = ψ̃1(γ̄) are

equal so that ψ̃2 ◦ ψ̃1(γ̄) = ψ2 ◦ ψ1(γ̄) for all γ̄ > γ̄0.

We now proceed to study the continuity of ψ̃2 with respect to the pseudometric

dM̄ given in De�nition 4.19. More precisely, we claim that for each C ≥ 1, ψ2

is continuous on the set DC(M̄) ⊆ D(M̄) which we recall from De�nition 4.16.

This is the main theorem on ψ̃2 that we prove in this section.

Theorem 4.26. Suppose that Assumptions 2.1, 4.2 and 4.15 are satis�ed. Then

ψ̃2 : D(M̄) → (0, 1]× (R× R+)
K is continuous on DC(M̄) for each C ≥ 1.

The proof of Theorem 4.26 is postponed to the end of the section. Given

Theorem 4.26, we can already connect it with our previous results on ψ̃1 to show

the continuity of the composition ψ̃2 ◦ ψ̃1.

Corollary 4.27. Suppose that Assumptions 2.1, 4.2 and 4.15 are satis�ed. Then

the map ψ̃2 ◦ ψ̃1 = ψ2 ◦ ψ1 is continuous on (γ̄0,∞).

Proof. We have ψ̃2 ◦ ψ̃1 = ψ2 ◦ ψ1 by Lemma 4.25 and ψ̃1 : (γ̄0,∞) → D(M̄)

is continuous by Corollary 4.23. By part 3) of Theorem 4.18, we have for every

γ̄∗ > γ̄0 that ψ̃1((γ̄0,∞)) ⊆ DC(M̄) for some C > 0. Since ψ̃2 is continuous on

DC(M̄) by Theorem 4.26, it follows that ψ̃2 ◦ ψ̃1 is continuous on [γ̄∗,∞), and

γ̄∗ > γ̄0 is arbitrary.

Our goal is now to prove Theorem 4.26 by studying the dependence of the

MVH and exMVH problems (2.46) and (2.47) on ξ and λ. Instead of directly

considering the continuity of ψ̃2, it is notationally more convenient to start by

studying the continuity in (ξ, λ) (via the asset prices S = S(ξ, λ)) of the generic

MVH problems (2.14) and (2.15) for a given payo� H. We can then apply these

�ndings to H = Ξk for each k ∈ {1, . . . , K}.
To that end, let C > 0, (ξn, λn) → (ξ∞, λ∞) in DC(M̄) as n → ∞ and write

Sn = S(ξn, λn) and Zn = Z(ξn, λn). We also write ℓ̂n = ε2(1;Sn), ĉn = c(H;Sn)

and ε̂2n = ε2ex(H;Sn), where the accents are used to distinguish from the notation

for the K agents. We want to show that (ℓ̂n, ĉn, ε̂2n) → (ℓ̂∞, ĉ∞, ε̂
2
∞). To achieve
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this, the main idea is to relate ℓ̂n, ĉn and ε̂2n to the initial values of the solutions to

a certain family of backward stochastic di�erential equations (BSDEs) and show

the convergence of the solutions by using a BSDE stability result given later in

Section 6. We do this via some results from the analysis of mean�variance hedging

via dynamic programming, for which we use Jeanblanc et al. [72] as a reference.

We de�ne for t ∈ [0, T ] and xt ∈ L2(Ft) the dynamic version of (2.14) as

ε2(t,H − xt;S
n) := ess infϑ∈Θt,T (Sn)E[(H − xt − ϑ •SnT )

2 | Ft], (4.44)

where Θt,T (S
n) := {ϑ ∈ Θ(Sn) : ϑ1J0,tK = 0}. We note that the set of admissible

strategies considered in [72] is Θ(Sn) (and Θt,T (S
n), respectively); by Lemma

4.10, this coincides with Θ(Sn) because De�nition 4.16 gives an ELMM Qn for

Sn that satis�es R2(P ). Thus the conditions of [72, Theorem 1.4] are satis�ed

(see also the Remark before [72, Lemma 1.5]), and [72, Equation (1.6)] yields

ε2(t,H − xt;S
n) = x2t Ŷ

(2),n
t − 2xtŶ

(1),n
t + Ŷ

(0),n
t (4.45)

for all 0 ≤ t ≤ T and xt ∈ L2(Ft), where Ŷ (2),n, Ŷ (1),n and Ŷ (0),n are semimartin-

gales that do not depend on xt; moreover, Ŷ (2),n also does not depend on H. To

see the relationship between Ŷ (i),n and (ℓ̂n, ĉn, ε̂
2
n), note that by the linearity of

the MVH problem (see Lemma III.2.6), we have

ε2(0, 0− x;Sn) = x2ε2(0, 0− 1;Sn) = x2ε2(0, 1− 0;Sn) = x2ℓ̂n

for x ∈ R. Since the Ŷ (i),n in (4.45) do not depend on x, we obtain

ℓ̂n = ε2(0, 1− 0;Sn) = Ŷ
(2),n
0 . (4.46)

Next, recall that ĉn = c(H;Sn), where (c(H;Sn), ϑex(H;Sn)) is the minimiser of

the exMVH problem (2.15) so that

ĉn = argmin
c∈R

inf
ϑ∈Θ(Sn)

E[(H − c− ϑ •SnT )
2].

By (4.44), the in�mum on the right-hand side is equal to ε2(0, H−c;Sn). Thus by
plugging in the right-hand side of (4.45) and minimising this quadratic function

over c ∈ R, we obtain

ĉn =
Ŷ

(1),n
0

Ŷ
(2),n
0

=
Ŷ

(1),n
0

ℓ̂n
. (4.47)
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Finally, we have by the de�nitions of ε̂2n and ĉn that

ε̂2n = ε2ex(H;Sn) = inf
c∈R

inf
ϑ∈Θ(Sn)

E[(H − c− ϑ •SnT )
2] = ε2(0, H − ĉn;S

n)

and hence (4.45) and (4.47) yield

ε̂2n = Ŷ
(0),n
0 − (Ŷ

(1),n
0 )2

Ŷ
(2),n
0

= Ŷ
(0),n
0 − ℓ̂nĉ

2
n. (4.48)

Thus if Ŷ (i),n
0 → Ŷ

(i),∞
0 as n → ∞ for i = 0, 1, 2, we have by (4.46)�(4.48) that

(ℓ̂n, ĉn, ε̂
2
n) → (ℓ̂∞, ĉ∞, ε̂

2
∞) as n → ∞. Therefore we want to study the processes

Ŷ (i),n, and we prove later in Proposition 4.32 that they converge as n→ ∞ if H

is bounded as in Assumption 2.1.

In the following, we also assume that H is strictly positive and bounded

away from 0; we note that this additional assumption can be made without

loss of generality. That is because for any bounded payo� H, there exists some

constant b > 0 such that H̃ := H + b is bounded away from 0. Then the

decomposition (4.45) for the hedging error associated with H can be converted

into a decomposition for the hedging error associated with H̃ and vice versa.

Indeed, if we write Ŷ (i),n(H̃) and Ŷ (i),n(H) for the processes given by [72, Equation

(1.6)] for H̃ and H, respectively, we have by (4.45) that

Ŷ
(2),n
t (H) = Ŷ

(2),n
t (H̃) = Ŷ

(2),n
t , 0 ≤ t ≤ T, (4.49)

Ŷ
(1),n
t (H) = Ŷ

(1),n
t (H̃)− bŶ

(2),n
t , 0 ≤ t ≤ T, (4.50)

Ŷ
(0),n
t (H) = Ŷ

(0),n
t (H̃)− 2bŶ

(1),n
t (H̃) + b2Ŷ

(2),n
t , 0 ≤ t ≤ T. (4.51)

Therefore, we can work with the payo� H̃ > 0, and the convergence of the

processes Ŷ (i),n(H̃) is equivalent to that of the processes Ŷ (i),n(H).

In view of the discussion above, the next (and main) step in proving the

continuity of ψ̃2 is to show the convergence of the processes Ŷ (i),n associated with

a strictly positive bounded payo� H. We now �x the setup for the remainder

of Section 4.2 until we return to the proof of Theorem 4.26. Namely, we �x

C ≥ 1 and a sequence (ξn, λn) in DC(M̄) with (ξn, λn)
dD(M̄)→ (ξ∞, λ∞) ∈ DC(M̄)

as n→ ∞, as well as a payo� H > 0 that is bounded above and below away from

0. Our goal is to show that the processes Ŷ (i),n (i = 0, 1, 2) given by (4.44) and

(4.45) with respect to H and Sn := S(ξn, λn) converge as n → ∞. We start by

showing bounds on the sequence (ξn, λn) and the processes Ŷ (i),n.
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Lemma 4.28. The sequence (λn • (ξn •M̄))n∈N∪{∞} is bounded in BMO.

Proof. By assumption, (ξn, λn) ∈ DC(M̄) for each n ∈ N∪{∞} so that S(ξn, λn)

admits an ELMM Q(ξn, λn) that satis�es R2(P ) with a constant C which is

independent of n. The result then follows by Lemma 4.17.

Lemma 4.29. For all n ∈ N ∪ {∞} and 0 ≤ t ≤ T , we have the inequalities

0 < C−1 ≤ Ŷ
(2),n
t ≤ 1, (4.52)

0 < C−1 ess infH ≤ Ŷ
(1),n
t ≤ ess supH, (4.53)

0 ≤ Ŷ (0),n ≤ ess supH2. (4.54)

Proof. Because each Qn satis�es R2(P ) with constant C, Jeanblanc et al. [72,

Lemmas 1.5 and 2.1] gives δ ≤ Ŷ (2),n ≤ 1, where the explicit lower bound δ = C−1

is given at the end of the proof of [72, Lemma 2.1]. This shows (4.52). Moreover,

the remark after [72, Proposition 2.6] yields for each n ∈ N ∪ {∞} that

Ŷ
(1),n
t = Ŷ

(2),n
t EQ⋆,n [H | Ft], 0 ≤ t ≤ T, (4.55)

where Q⋆,n is the variance-optimal martingale measure (VOMM) for Sn (see

(2.38)). Since Sn = S(ξn, λn) given by (4.35) is continuous, the VOMM is equival-

ent to P (as opposed to being a signed measure) by Delbaen/Schachermayer [36,

Theorem 1.3]. SinceH is bounded above and below away from 0, (4.49) and (4.55)

yield (4.53). Finally, note that (4.45) with xt = 0 gives Ŷ (0),n
t = ε2(t,H;Sn) for

0 ≤ t ≤ T which immediately gives the lower bound in (4.54). The upper bound

then follows by plugging the (suboptimal) strategy ϑ ≡ 0 into the right-hand side

of (4.44) for ε2(t,H;Sn).

In order to show the convergence of the processes Ŷ (i),n, we characterise them

as solutions to BSDEs. Fix some n ∈ N, which we temporarily omit from the

notation for readability so that S = Sn, etc. Note that dSn = d⟨Mn⟩λn + dMn

by (4.35), where M = Mn := ξn • M̄ . Thus by [72, Theorem 3.1] (see also

Mania/Tevzadze [92, Theorem 4.1]), the processes Ŷ (i) satisfy the BSDEs

dŶ
(2)
t =

1

Ŷ
(2)
t

(Ŷ
(2)
t λt + ψ̂

(2)
t )⊤d⟨M⟩t(Ŷ (2)

t λt + ψ̂
(2)
t ) + ψ̂

(2)
t dMt + dN̂

(2)
t , (4.56)

dŶ
(1)
t =

1

Ŷ
(2)
t

(Ŷ
(2)
t λt + ψ̂

(2)
t )⊤d⟨M⟩t(Ŷ (1)

t λt + ψ̂
(1)
t ) + ψ̂

(1)
t dMt + dN̂

(1)
t , (4.57)

dŶ
(0)
t =

1

Ŷ
(2)
t

(Ŷ
(1)
t λt + ψ̂

(1)
t )⊤d⟨M⟩t(Ŷ (1)

t λt + ψ̂
(1)
t ) + ψ̂

(0)
t dMt + dN̂

(0)
t (4.58)
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for 0 ≤ t ≤ T with terminal conditions Ŷ (2)
T = 1, Ŷ (1)

T = H and Ŷ
(0)
T = H2,

where ψ̂(i) ∈ L2
loc(M) and N̂ (i) is a local martingale strongly orthogonal to M for

i = 0, 1, 2. Note that N̂ (i) is continuous for i ∈ {0, 1, 2} due to Assumption 4.2,

and hence so is Ŷ (i), as pointed out in the remark before [72, Lemma 2.3].

The equations (4.56)�(4.58) are partially coupled BSDEs where the solution

to (4.56) appears in (4.57) and (4.58), and the solution to (4.57) appears in (4.58).

Thus it makes sense to study the equations in this order. At a glance, we observe

that the driver (i.e., the drift term) of (4.56) grows quadratically with ψ̂(2) and

depends on the exogenous stochastic parameter λ. Although the term 1

Ŷ (2) could

in principle cause some issues, we know a priori that the process Ŷ (2) bounded

away from 0 due to (4.52); so this is not a concern. The next BSDE (4.57) is

linear in Ŷ (1) and ψ̂(1) with stochastic parameters λ, Ŷ (2) and ψ̂(2), of which the

latter two are determined by the solution to (4.56). Finally, (4.58) can be solved

explicitly by taking a conditional expectation, since the driver does not depend

at all on Ŷ (0) or ψ̂(0).

We leave (4.58) aside for the moment. In order to study the stability of (4.56)

and (4.57) in n ∈ N, we transform the equations into a more amenable form.

The �rst step is to take a logarithm in order to remove the dependence of the

drivers on Ŷ (2) and Ŷ (1), respectively. Because Ŷ (2) and Ŷ (1) are strictly positive

by Lemma 4.29, we may de�ne Y (i) = log Ŷ (i) for i = 1, 2, and Itô's formula yields

dY
(i)
t =

dŶ
(i)
t

Ŷ
(i)
t

− d⟨Ŷ (i)⟩t
2(Ŷ

(i)
t )2

, 0 ≤ t ≤ T.

Plugging into (4.56) and (4.57) yields the BSDEs

dY
(2)
t = (λt + ψ

(2)
t )⊤d⟨M⟩t(λt + ψ

(2)
t )− (ψ

(2)
t )⊤d⟨M⟩tψ(2)

t + d⟨Ñ (2)⟩t
2

+ ψ
(2)
t dMt + dÑ

(2)
t , 0 ≤ t ≤ T, (4.59)

dY
(1)
t = (λt + ψ

(2)
t )⊤d⟨M⟩t(λt + ψ

(1)
t )− (ψ

(1)
t )⊤d⟨M⟩tψ(1)

t + d⟨Ñ (1)⟩t
2

+ ψ
(1)
t dMt + dÑ

(1)
t , 0 ≤ t ≤ T, (4.60)

with Y (2)
T = log 1 = 0 and Y (2)

T = logH, where ψ(i) := ψ̂(i)/Ŷ (i) ∈ L2
loc(M) and

Ñ (i) := 1

Ŷ (i)
• N̂ (i) is a local martingale orthogonal to M for i = 1, 2.

This change of variables makes it simpler to show the stability of (4.59) and

(4.60) in comparison to (4.56) and (4.57) since the drivers do not depend on Y (i).

We now reintroduce the superscript n, i.e., we write Ŷ (i),n, Y (i),n, and so on, for
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the processes corresponding to (Sn, ξn, λn). We want to show Y
(i),n
0 → Y

(i),∞
0

as n → ∞ for i = 1, 2. In comparison to classical results on quadratic BSDEs

such as those in Kobylanski [84], (4.59) and (4.60) present two main di�culties.

The �rst is that the exogenous coe�cients λn are not bounded; instead, we have

by Lemma 4.28 that λn •Mn = λn • (ξn • M̄) is a BMO-martingale. The issues

related to the stochastic coe�cient are discussed and dealt with in Section 6,

where we show in Theorem 6.6 a stability result for a class of quadratic BSDEs

with a stochastic exogenous parameter satisfying a BMO condition. We later

use Theorem 6.6 to show the convergence of the processes Ŷ (i),n.

Before we proceed, we need to deal with the second main di�culty, which is

that the local martingales Mn := ξn •M̄ depend on n ∈ N; recall that in (4.56)�

(4.60), we have written M instead of Mn to alleviate the notation. This causes

di�culties because the orthogonality requirement Ñ (i),n ⊥ Mn also depends on

n ∈ N, which is nonstandard for BSDE stability results. Some results in this

direction were obtained recently in Papapantoleon et al. [100], but only under

the assumption of a Lipschitz bound on the driver, which does not hold for (4.59)

and (4.60). Our next step is thus to reexpress (4.59) and (4.60) in terms of

M̄ rather than Mn. For i = 1, 2, we have the Galtchouk�Kunita�Watanabe

decomposition for ψ(i),n •Mn + Ñ (i),n in terms of M̄ given by

ψ(i),n •Mn + Ñ (i),n = ζ(i),n •M̄ +N (i),n (4.61)

for some ζ(i),n ∈ L2
loc(M̄) and a local martingale N (i),n which is strongly ortho-

gonal to M̄ and thus also to Mn = ξn •M̄ . We recall that M̄ and Mn take values

in Rd̄×1 and R(d1+d2)×1, respectively, while the integrands ξn, ψ(i),n and ζ(i),n take

values in Rd̄×(d1+d2), R(d1+d2)×1 and Rd̄×1, respectively, so that equation (4.61) is

real-valued. In order to eliminate ψ(i),n from the drivers in (4.59) and (4.60), we

need to express ψ(i),n in terms of ζ(i),n. Since both N (i),n and Ñ (i),n are strongly

orthogonal to M̄ , ψ(i),n is determined uniquely by ζ(i),n because (4.61) yields the

Galtchouk�Kunita�Watanabe decomposition

ζ(i),n •M̄ = ψ(i),n •Mn + Ñ (i),n −N (i),n

of ζ(i),n •M̄ with respect to Mn. In the next result, we show how to �nd ξnψ(i),n

explicitly via a predictable Rd̄×d̄-valued process (πn)0≤t≤T that gives the ortho-

gonal projection onto the (random) range of cM̄ζn in Rd̄ with respect to the metric

induced by cM̄ . In the following, we denote the Moore�Penrose inverse of a mat-

rix C by C† (see Albert [6, Chapter III] for the de�nition and basic properties);
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it coincides with the usual inverse if C is square and invertible.

Lemma 4.30. There exist for n ∈ N∪ {∞} predictable processes (πnt )0≤t≤T with

values in Rd̄×d̄ such that each of the following statements holds P ⊗ I-a.e.:

1) (πn)⊤cM̄ = cM̄πn = (πn)⊤cM̄πn for n ∈ N ∪ {∞}.

2) y⊤(πn)⊤cM̄πny ≤ y⊤cM̄y for all y ∈ Rd̄ and n ∈ N ∪ {∞}.

3) ξnψ(i),n = πnζ(i),n for n ∈ N ∪ {∞} and i = 1, 2.

4) πn → π∞ as n→ ∞.

Proof. By Assumption 4.15, the predictable process (cM̄t )0≤t≤T takes values in the

set of d̄×d̄ symmetric positive de�nite matrices P⊗I-a.e. By Ando/van Hemmen

[11, Proposition 3.2], the map C 7→ C1/2 is continuous and hence measurable

on the set of symmetric positive de�nite matrices (equipped with the Borel σ-

algebra). Thus the process ((cM̄t )1/2)0≤t≤T is predictable and takes values P ⊗ I-

a.e. in the set of symmetric positive de�nite d̄× d̄ matrices. Now �x n ∈ N∪{∞}
and recall from De�nition 4.16 that ξn takes values in Rd̄×(d1+d2). The map

C 7→ C−1 is continuous (and thus measurable) on the set of invertible matrices;

see e.g. Stewart [114, Equation (1.5)]. For a (possibly nonsquare) m× n matrix

A, the construction in Albert [6, Theorem 3.4] gives

A† = lim
δ↘0

(A⊤A+ δ2 id)−1A⊤,

where id is the n× n identity matrix. Because the inversion map is measurable,

it follows that A 7→ A† is measurable on the set of all m× n matrices. Hence we

can de�ne the predictable process (((cM̄t )1/2ξnt )
†)0≤t≤T with values in Rd̄×(d1+d2)

as the Moore�Penrose inverse of (cM̄)1/2ξn. Moreover, by [6, Corollary 3.5], the

orthogonal projection on the range of (cM̄)1/2ξn with respect to the Euclidean

metric is given P ⊗ I-a.e. by the predictable process (π̃nt )0≤t≤T de�ned as

π̃n := (cM̄)1/2ξn
(
(cM̄)1/2ξn

)†
. (4.62)

Finally, we construct the predictable process (πnt )0≤t≤T by

πn = (cM̄)−1/2π̃n(cM̄)1/2 = ξn
(
(cM̄)1/2ξn

)†
(cM̄)1/2. (4.63)

It remains to check that (πn)n∈N∪{∞} satis�es conditions 1)�4).
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1) The �rst equality follows since P ⊗ I-a.e.,

(πn)⊤cM̄ = (cM̄)1/2π̃n(cM̄)−1/2cM̄ = (cM̄)1/2π̃n(cM̄)1/2 =: ãn,

cM̄πn = cM̄(cM̄)−1/2π̃n(cM̄)1/2 = ãn.

As π̃n is a projection, π̃nπ̃n = π̃n P ⊗ I-a.e., and hence we also have

(πn)⊤cM̄πn = (cM̄)1/2π̃n(cM̄)−1/2cM̄(cM̄)−1/2π̃n(cM̄)1/2

= (cM̄)1/2π̃nπ̃n(cM̄)1/2 = ãn, P ⊗ I-a.e.

2) Since π̃n is by construction P⊗I-a.e. an orthogonal projection with respect

to the Euclidean metric, we have x⊤x ≥ x⊤π̃nx for all x ∈ Rd̄ P ⊗ I-a.e. Setting

x = (cM̄)1/2y then yields that P ⊗ I-a.e., we have for all y ∈ Rd̄

y⊤(πn)⊤cM̄πny = y⊤ãny =
(
(cM̄)1/2y

)⊤
π̃n
(
(cM̄)1/2y

)
= x⊤π̃nx ≤ x⊤x = y⊤cM̄y.

3) Since Ñ (i),n and N (i),n are strongly orthogonal toMn, taking the quadratic

covariation of (4.61) with Mn = ξn •M̄ yields(
ξnψ(i),n

)⊤
cM̄ξn = (ζ(i),n)⊤cM̄ξn P ⊗ I-a.e.

By taking di�erences, it follows that the predictable process (dnt )0≤t≤T de�ned by

dn := (cM̄)1/2(ξnψ(i),n − ζ(i),n)

satis�es (dn)⊤(cM̄)1/2ξn = 0 P ⊗ I-a.e. Since π̃n is the Euclidean projection on

the range of (cM̄)1/2ξn, we thus have π̃ndn = 0, i.e.,

π̃n(cM̄)1/2ζ(i),n = π̃n(cM̄)1/2ξnψ(i),n P ⊗ I-a.e.

As (cM̄)1/2ξnψ(i),n belongs to the range of (cM̄)1/2ξn, it is by (4.62) invariant under

π̃n, and hence we may omit π̃n from the right-hand side. Expressing π̃n by (4.63)

in terms of πn on the left-hand side then yields

(cM̄)1/2πnζ(i),n = (cM̄)1/2ξnψ(i),n P ⊗ I-a.e.

The result follows immediately by the invertibility of (cM̄)1/2.

4) By assumption, ξn → ξ∞ P ⊗I-a.e. as n→ ∞. Moreover, by the de�nition

of D(M̄), each ξn has P⊗I-a.e. full rank d1+d2, and so does (cM̄)1/2ξn as (cM̄)1/2
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is invertible. Hence by Stewart [114, Theorem 4.3], we have

lim
n→∞

(
(cM̄)1/2ξn

)†
=
(
(cM̄)1/2ξ∞

)†
P ⊗ I-a.e.

Thus (4.62) and (4.63) yield π̃n → π̃∞ and πn → π∞ P ⊗ I-a.e. as n→ ∞.

Now that we have de�ned the processes (πn)n∈N, we can return to (4.59), (4.60)

and the orthogonal decomposition (4.61). The latter allows us to replace the local

martingale parts in (4.59) and (4.60), and we can use the identity Mn = ξn • M̄

together with part 3) of Lemma 4.30 to reexpress the �rst term on the right-hand

side of (4.59) and (4.60) in terms of ζ(i),n and M̄ . For the second term in (4.59)

and (4.60), taking the quadratic variation of (4.61) yields

(ψ
(i),n
t )⊤d⟨Mn⟩tψ(i),n

t + d⟨Ñ (i),n⟩t = d⟨ψ(i),n •M̄ + Ñ (i),n⟩t
= d⟨ζ(i),n •M̄ +N (i),n⟩t
= (ζ

(i),n
t )⊤d⟨M̄⟩t(ζ(i),nt ) + d⟨N (i),n⟩t

for 0 ≤ t ≤ T . Inserting these into (4.59) and (4.60) yields the BSDEs

dY
(2),n
t =

(
(λ̃nt + πnt ζ

(2),n
t )⊤cM̄t (λ̃nt + πnt ζ

(2),n
t )− (ζ

(2),n
t )⊤cM̄ζ

(2),n
t

2

)
dIt

− d⟨N (2),n⟩t
2

+ ζ
(2),n
t dM̄t + dN

(2),n
t , 0 ≤ t ≤ T, (4.64)

dY
(1),n
t =

(
(λ̃nt + πnt ζ

(2),n
t )⊤cM̄t (λ̃nt + πnt ζ

(1),n
t )− (ζ

(1),n
t )⊤cM̄ζ

(1),n
t

2

)
dIt

− d⟨N (1),n⟩t
2

+ ζ
(1),n
t dM̄t + dN

(1),n
t , 0 ≤ t ≤ T, (4.65)

with Y (2),n
T = log 1 = 0 and Y (1).n

T = logH, where N (i),n ⊥ M̄ and λ̃n := ξnλn.

We write (4.64) and (4.65) in the form

dY
(2),n
t = f

(2),n
t (ζ

(2),n
t , λ̃nt )dIt − ϱtd⟨N (2),n⟩t + ζ

(2),n
t dM̄t + dN

(2),n
t , (4.66)

dY
(1),n
t = f

(1),n
t (ζ

(1),n
t , ζ

(2),n
t , λ̃nt )dIt − ϱtd⟨N (1),n⟩t + ζ

(1),n
t dM̄t + dN

(1),n
t (4.67)

for 0 ≤ t ≤ T , where we de�ne ϱ ≡ 1
2
and f (2),n : Ω× [0, T ]× Rd̄ × Rd̄ → R and

f (1),n : Ω× [0, T ]× Rd̄ × Rd̄ × Rd̄ → R as the predictable functions given by

f
(2),n
t (ζ2, λ̃) = (λ̃+ πnt ζ2)

⊤cM̄t (λ̃+ πnt ζ2)−
ζ⊤2 c

M̄
t ζ2
2

, (4.68)



4 The general case 269

f
(1),n
t (ζ1, ζ2, λ̃) = (λ̃+ πnt ζ2)

⊤cM̄t (λ̃+ πnt ζ1)−
ζ⊤1 c

M̄
t ζ1
2

(4.69)

for 0 ≤ t ≤ T and ζ1, ζ2, λ̃ ∈ Rd̄. Our goal is now to show the stability of the

BSDEs (4.66) and (4.67), i.e., to show that Y (i),n → Y (i),∞ in a suitable sense as

n→ ∞ for i = 1, 2; at the end, we return to i = 0.

We start with some observations about (4.66) and (4.67). Thanks to our trans-

formations, we have obtained two relatively standard quadratic BSDEs where the

drivers f (i),n grow quadratically in ζ(i),n and do not depend on Y (i),n. However,

as mentioned after (4.59) and (4.60), the stochastic coe�cients λ̃n = ξnλn are

not bounded. Instead, λn • (ξn • M̄) = λ̃n • M̄ is a BMO martingale by Lemma

4.28. This is the key condition that allows us to show the stability of (4.66)

despite the unboundedness of the stochastic coe�cient. We show below that

ζ(i),n • M̄ also belongs to BMO, as is typically true of solutions to quadratic

BSDEs. Thus there is a certain symmetry in that the exogenous coe�cient λ̃n

and the endogenous coe�cients ζ(i),n all satisfy the same condition χ •M̄ ∈ BMO

for χ ∈ {λ̃n, ζ(2),n, ζ(1),n}. This is particularly relevant for ζ(2),n which is both en-

dogenous for (4.66) and exogenous for (4.67).

The BMO properties allow us to establish in Theorem 6.6 a stability result

for quadratic BSDEs of this form, as well as an a priori bound in Proposition 6.2.

We postpone further discussion of BSDEs of this type to Section 6 and now de-

duce the stability of (4.66) and (4.67) by checking the conditions of Theorem 6.6,

which we state below for the convenience of the reader. In the following, we write

|x|C := (x⊤Cx)1/2 and ∥A∥C := tr(A⊤CA)1/2 for x ∈ Rd̄, A ∈ Rd̄×m and symmet-

ric positive semide�nite C ∈ Rd̄×d̄. Denoting the rows of A by x1, . . . , xm ∈ Rd̄×1,

we have by elementary linear algebra that A⊤CA = (x⊤i Cxj)
m
i,j=1 and hence

∥A∥2C = tr(A⊤CA) =
m∑
i=1

|xi|2C . (4.70)

Theorem 6.6. Suppose that (Y n)n∈N∪{∞} is a sequence of continuous semi-

martingales on [0, T ] such that Y n for n ∈ N ∪ {∞} satis�es the equation

dY n
t = fnt (ζ

n
t , χ

n
t )dIt − ϱtd⟨Nn⟩t + ζnt dM̄t + dNn

t , 0 ≤ t ≤ T, (6.14)

Y n
T = Gn,

where Nn is a continuous local martingale orthogonal to M̄ , χn ∈ L2
loc(M̄ ;Rd̄×m)

and ζn ∈ L2
loc(M̄ ;Rd̄) are predictable integrands, (ϱt)0≤t≤T is a bounded predictable



270 IV Equilibrium under general mean�variance preferences

process, Gn ∈ L∞(FT ) and fn : Ω × [0, T ] × Rd̄ × Rd̄×m → R is a predictable

function. Suppose that the following conditions hold:

(a) CY := supn∈N∪{∞} ∥ supt∈[0,T ] |Y n
t |∥∞ <∞.

(b) The processes χn •M̄ are BMO martingales for each n ∈ N ∪ {∞} with

sup
n∈N∪{∞}

∥χn •M̄∥BMO <∞.

Moreover, tr ⟨(χn − χ∞) •M̄⟩T
P→ 0 as n→ ∞.

(c) For some Cf , Lf > 0, the functions fn satisfy P ⊗ I-a.e. for all n ∈ N
and x̃1, x̃2 ∈ Rd̄ × Rd̄×m = Rd̄×(m+1) the bounds

|fn(x̃1)| ≤ Cf∥x̃1∥2cM̄ , (6.7)

|fn(x̃1)− fn(x̃2)| ≤ Lf (∥x̃1 − x̃2∥cM̄ )(∥x̃1∥cM̄ + ∥x̃2∥cM̄ ). (6.8)

(d) For any z ∈ Rd̄ and x ∈ Rd̄×m, it holds that

lim
n→∞

fn(z, x) = f∞(z, x) P ⊗ I-a.e.

(e) Gn P→ G∞ as n→ ∞.

Then the families of martingales (ζn • M̄)n∈N∪{∞} and (Nn)n∈N∪{∞} are bounded

in BMO, and it holds as n→ ∞ that

sup
t∈[0,T ]

|Y n
t − Y ∞

t | P−→ 0, (6.15)

⟨(ζn − ζ∞) •M̄⟩T + ⟨Nn −N∞⟩T
P−→ 0. (6.16)

We now show how to use Theorem 6.6 together with our previous results to

deduce the convergence of the processes Y (i),n. We also obtain a uniform bound

on the BMO-norms of the martingale parts of Y (2),n and Y (1),n; this will be useful

later to show the convergence of Ŷ (0),n.

In the following, we recall the setup that we have introduced so far: as men-

tioned after (4.51), we �x some C ≥ 1 and a sequence (ξn, λn) in DC(M̄) (see

De�nition 4.19) such that (ξn, λn)
dD(M̄)→ (ξ∞, λ∞) ∈ DC(M̄). We then de�ne the

processes Ŷ (i),n by (4.45) and Y (i),n = log Ŷ (i),n, as well as λ̃n := ξnλn and the

coe�cients ζ(i),n and N (i),n via the BSDEs (4.64) and (4.65).
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Theorem 4.31. We have as n→ ∞ that ⟨(λ̃n − λ̃∞) •M̄⟩T
P→ 0 and

sup
t∈[0,T ]

|Y (i),n
t − Y

(i),∞
t | P−→ 0, (4.71)

⟨(ζ(i),n − ζ(i),∞) •M̄⟩T + ⟨N (i),n −N (i),∞⟩T
P−→ 0, (4.72)

for i = 2, and the sequences (λ̃n • M̄)n∈N, (ζ(2),n • M̄)n∈N and (N (2),n)n∈N are

bounded in BMO. If H is a bounded payo� with ess infH > 0, then (4.71) and

(4.72) also hold as n → ∞ for i = 1, and the sequences (ζ(1),n • M̄)n∈N and

(N (1),n)n∈N are bounded in BMO.

Proof. 1) We start by considering Y (2),n which does not depend on H as noted

after (4.45). The BSDE (4.66) is of the form (6.14) with χn := λ̃n and Gn := 0.

By (4.52), we have − logC ≤ Y
(2),n
t ≤ 0 for all t ∈ [0, T ] and n ∈ N ∪ {∞} so

that condition (a) of Theorem 6.6 is satis�ed. By Lemma 4.28, (λ̃n • M̄)n∈N∪{∞}

is bounded in BMO because λ̃n = ξnλn. Then because (ξn, λn) → (ξ∞, λ∞) in

D(M̄), we have ξn → ξ∞ P ⊗I-a.e. and (λ̃n− λ̃∞) •M̄
M2

→ 0 as n→ ∞. The latter

convergence yields ⟨(λ̃n− λ̃∞) •M̄⟩T → 0 P -a.s. so that condition (b) in Theorem

6.6 is satis�ed. Condition (e) also holds because Gn = 0 for all n ∈ N ∪ {∞}.
Next, we show that the sequence of predictable functions (f (2),n)n∈N∪{∞} sat-

is�es conditions (c) and (d) in Theorem 6.6. By part 4) of Lemma 4.30, πn → π∞

P -a.e. so that plugging into (4.68) yields (d). It remains to show (c). By (4.68),

the triangle inequality and part 2) of Lemma 4.30, we have the bound

|f (2),n(ζ, λ̃)| ≤ |λ̃+ πnζ|2
cM̄

+
1

2
|ζ|2

cM̄
≤ 2|λ̃|2

cM̄
+

5

2
|ζ|2

cM̄
P ⊗ I-a.e.

for all ζ, λ̃ ∈ Rd̄ and n ∈ N ∪ {∞}, which is of the form (6.7) by (4.70). In the

following, we use for two variables x, x′ the notation xd := x−x′ and xs := x+x′.

The Cauchy�Schwarz inequality x⊤cM̄x′ ≤ |x|cM̄ |x′|cM̄ and the identity

x⊤cM̄x′ − (x′)⊤cM̄x = (x− x′)⊤cM̄(x+ x′) = x⊤d c
M̄xs, x, x′ ∈ Rd̄,

together with part 2) of Lemma 4.30, give P ⊗ I-a.e. for ζ, ζ ′, λ̃, λ̃′ ∈ Rd̄ that

|f (2),n(ζ, λ̃)− f (2),n(ζ ′, λ̃′)| ≤ |λ̃d + πnζd|cM̄ |λ̃s + πnζs|cM̄ +
1

2
|ζd|cM̄ |ζs|cM̄

≤ (|λ̃d|cM̄ + |ζd|cM̄ )(|λ̃s|cM̄ + |ζs|cM̄ ) +
1

2
|ζd|cM̄ |ζs|cM̄

≤ 3

2
(|λ̃d|cM̄ + |ζd|cM̄ )(|λ̃s|cM̄ + |ζs|cM̄ ).
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This is a bound of the form (6.8), and hence condition (c) in Theorem 6.6 is

satis�ed. So all the conditions of Theorem 6.6 are satis�ed by (4.66), and therefore

(4.71) holds for i = 2, and (ζ(2),n •M̄)n∈N and (N (2),n)n∈N are bounded in BMO.

2) Suppose now that H > 0 is bounded above and away from 0. We likewise

check for Y (1),n that the conditions of Theorem 6.6 are satis�ed by (4.67) with

χn := (ζ(2),n, λ̃n) and Gn := logH. Condition (a) is satis�ed due to the uniform

bound (4.53) on Ŷ (1),n which yields a uniform bound on the logarithms Y (1),n. We

have already checked that condition (b) is satis�ed by the component (λ̃n •M̄)n∈N,

and it is also satis�ed by (ζ(2),n • M̄)n∈N by step 1). Condition (e) holds because

Gn = logH for all n ∈ N, and condition (d) once again follows immediately

because πn → π∞ by part 4) of Lemma 4.30. To show condition (c), note that

by part 2) of Lemma 4.30 and (4.69), we have the bound

|f (1),n(ζ1, ζ2, λ̃)| ≤ |λ̃+ πnζ2|cM̄ |λ̃+ πnζ1|cM̄ +
1

2
|ζ1|2cM̄

≤ 1

2

(
|λ̃+ πnζ2|2cM̄ + |λ̃+ πnζ1|2cM̄ + |ζ1|2cM̄

)
≤ 2|λ̃|2

cM̄
+

3

2
|ζ1|2cM̄ + |ζ2|2cM̄ P ⊗ I-a.e.

for ζ1, ζ2, λ̃ ∈ Rd̄, which has the form (6.8). We also have for ζ1, ζ2, ζ ′1, ζ
′
2, λ̃, λ̃

′ ∈ Rd̄

that

(λ̃+ πnζ2)
⊤cM̄(λ̃+ πnζ1)− (λ̃′ + πnζ̃ ′2)

⊤cM̄(λ̃′ + πnζ ′1)

= (λ̃d + πnζ2,d)
⊤cM̄(λ̃+ πnζ1) + (λ̃′ + πnζ ′2)

⊤cM̄(λ̃d + πnζ1,d) P ⊗ I-a.e.

Combining this with part 2) of Lemma 4.30 and (4.69) yields that

|f (1),n(ζ1, ζ2, λ̃)− f (1),n(ζ ′1, ζ
′
2, λ̃

′)|

≤ |λ̃d + πnζ2,d|cM̄ |λ̃+ πnζ1|cM̄ + |λ̃d + πnζ1,d|cM̄ |λ̃′ + πnζ ′2|cM̄ +
|ζ1,d|cM̄ |ζ1,s|cM̄

2

≤ (|λ̃d|cM̄ + |ζ1,d|cM̄ + |ζ2,d|cM̄ )(|λ̃|cM̄ + |λ̃′|cM̄ + |ζ1|cM̄ + |ζ ′2|cM̄ ) +
|ζ1,d|cM̄ |ζ1,s|cM̄

2

holds P ⊗ I-a.e, and this is a bound of the form (6.8). So all the conditions of

Theorem 6.6 are satis�ed by (4.66), and therefore (4.71) holds for i = 1 as well,

and (ζ(1),n •M̄)n∈N and (N (1),n)n∈N are bounded in BMO.

We are now ready to show the convergence of the original processes Ŷ (i),n

for i = 0, 1, 2. This follows directly from Theorem 4.31 for i = 1, 2 because
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Ŷ (i),n = exp(Y (i),n). In the case i = 0, some work is still required to show the

stability of the BSDE for Ŷ (0),n, where we likewise add the superscript n to each

of the processes on the right-hand side of (4.58) to obtain

dŶ
(0),n
t =

(Ŷ
(1),n
t λnt + ψ̂

(1),n
t )⊤d⟨Mn⟩t(Ŷ (1),n

t λnt + ψ̂
(1),n
t )

Ŷ
(2),n
t

+ ψ̂
(0),n
t dMn

t + dN̂
(0),n
t

(4.73)

with terminal condition Ŷ (0),n
T = H2 for each n. Note that the drift term in (4.73)

does not depend on Ŷ (0),n or ψ̂(0),n, and hence one could solve (4.73) explicitly.

Nevertheless, it is convenient to once again use Theorem 6.6 to show the stability

of (4.73), since that avoids some of the work otherwise needed to obtain suitable

bounds for Ŷ (0),n (which would mimic parts of the proof of Theorem 6.6).

Since the driver of the equation (4.73) does not explicitly depend on the solu-

tion Ŷ (0),n (unlike (4.56) and (4.57)), we do not need to a take a logarithm as for

Ŷ (2),n and Ŷ (1),n. On the other hand, we again have the issue that the martingale

driver Mn = ξn •M̄ depends on n. As in (4.61), we have the Galtchouk�Kunita�

Watanabe decomposition

ψ(0),n •Mn + N̂ (0),n = ζ(0),n •M̄ +N (0),n (4.74)

for some ζ(0),n ∈ L2
loc(M̄) and a local martingale N (0),n strongly orthogonal to M̄ .

Plugging in λ̃n = ξnλn (see after (4.65)), ψ̂(1),n = Ŷ (1),nψ(1),n (see after (4.60))

and ξnψ(1),n = πnζ(1),n due to part 3) of Lemma 4.30, we can thus rewrite (4.73)

in the form

dŶ
(0),n
t = f

(0),n
t (ζ

(1),n
t , λ̃nt )dIt + ζ

(0),n
t dM̄t + dN

(0),n
t , 0 ≤ t ≤ T, (4.75)

with Ŷ
(0),n
T = H2, where f (0),n : Ω × [0, T ] × Rd̄ × Rd̄ → R is the predictable

function de�ned by

f
(0),n
t (ζ1, λ̃) =

(Ŷ
(1),n
t )2(λ̃+ πnt ζ1)

⊤cM̄t (λ̃+ πnt ζ1)

Ŷ
(2),n
t

(4.76)

for 0 ≤ t ≤ T and ζ1, λ̃ ∈ Rd̄. Since (4.75) is in the form (6.6), we can apply

Theorem 6.6 to show its stability. Because we consider the original processes

Ŷ (i),n and not their logarithms Y (i),n, we can now remove the assumption that

H > 0 as explained in (4.49)�(4.51).

Proposition 4.32. Let C ≥ 1. For any sequence (ξn, λn) in DC(M̄) such that
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(ξn, λn)
dD(M̄)→ (ξ∞, λ∞) ∈ DC(M̄), it holds that

sup
t∈[0,T ]

|Ŷ (i),n
t − Ŷ

(i),∞
t | P−→ 0 as n→ ∞ (4.77)

for i = 2 as n→ ∞. If H is a bounded payo�, then (4.77) also holds for i = 0, 1.

Proof. The statement for i = 2 follows immediately from Theorem 4.31 since

Ŷ (2),n = exp(Y (2),n) and the exponential is continuous. Now let H be bounded;

by the argument in (4.49)�(4.51), we may assume without loss of generality that

ess infH > 0. Then (4.77) for i = 1 likewise follows immediately from Theorem

4.31. We now consider Ŷ (0),n. The BSDE (4.75) is of the form (6.14) (where f (0),n

does not depend on ζ(0),n, so we omit that argument) with χn := (ζ(1),n, λ̃n), ϱ ≡ 0

and Gn := H2 for each n. Thus condition (e) of Theorem 6.6 is trivially satis�ed.

By the bounds in (4.54), condition (a) of Theorem 6.6 is also satis�ed, and so is

condition (b) due to Theorem 4.31.

It remains to show that the predictable functions (f (0),n)n∈N∪{∞} de�ned by

(4.76) satisfy conditions (c) and (d) in Theorem 6.6. Condition (d) follows imme-

diately from part 4) of Lemma 4.30 together with (4.77), which we already showed

for i = 1, 2. Next, recall that by (4.52) and (4.53), we have Ŷ (2),n ≥ C−1 and

|Ŷ (1),n| ≤ ess supH for all n ∈ N ∪ {∞}. Thus by (4.76), the triangle inequality

and part 2) of Lemma 4.30, we have with a := C ess supH2 that

|f (0),n(ζ, λ̃)| ≤ a|λ̃+ πnζ|2
cM̄

≤ 2a|λ̃|2
cM̄

+ 2a|ζ|2
cM̄

P ⊗ I-a.e.

for all ζ, λ̃ ∈ Rd̄ and n ∈ N ∪ {∞}, which is a bound of the form (6.7) by (4.70).

We write once again xd = x − x′ and xs = x + x′ for variables x, x′. By the

Cauchy�Schwarz inequality for | · |cM̄ , the identity x⊤cM̄x− (x′)⊤cM̄x′ = x⊤d c
M̄xs

and part 2) of Lemma 4.30, we have P ⊗ I-a.e. for ζ, ζ ′, λ̃, λ̃′ ∈ Rd̄ that

|f (0),n(ζ, λ̃)− f (0),n(ζ ′, λ̃′)| ≤ a|λ̃d + πnζd|cM̄ |λ̃s + πnt ζs|cM̄
≤ a(|λ̃d|cM̄ + |ζd|cM̄ )(|λ̃s|cM̄ + |ζs|cM̄ ).

This is a bound of the form (6.8), and hence condition (c) in Theorem 6.6 is

satis�ed. So (4.75) satis�es all the conditions of Theorem 6.6, and therefore

(4.77) holds for i = 0.

We are �nally ready to complete the proof of Theorem 4.26, which states that

ψ̃2 is continuous. This now follows straightforwardly from Proposition 4.32.



4 The general case 275

Proof of Theorem 4.26. Let C > 0. Since the topology of DC(M̄) is generated

by a pseudometric dD(M̄), we have by Arkhangel'skii/Pontryagin [12, Proposition

I.2.9 and De�nitions I.1.9, I.2.4] that the space DC(M̄) is sequential, and hence

by [12, Proposition I.3.3], it su�ces to check that ψ̃2 is sequentially continuous.

Suppose that (ξn, λn) → (ξ∞, λ∞) in DC(M̄) and de�ne Sn := S(ξn, λn) by

(4.35) with Sn0 = 0. By Assumption 2.1, Ξk is bounded for each k ∈ {1, . . . , K}.
Denote by Ŷ (i),n,k the process Ŷ (i),n given by (4.45) for the payo� Ξk. Then by

Proposition 4.32, Ŷ (i),n,k
0 → Ŷ

(i),∞,k
0 pointwise as n → ∞, since we assumed at

the beginning of Section 2 that F0 is P -trivial. It follows by (4.46)�(4.48) that

ε2(1;Sn) → ε2(1;S∞), c(Ξk;Sn) → c(Ξk;S∞) and ε2ex(Ξ
k;Sn) → ε2ex(Ξ

k;S∞) as

n → ∞ for each k = 1, . . . , K. Thus ψ̃2(ξ
n, λn) → ψ̃2(ξ

∞, λ∞) by the de�nition

(4.42) so that ψ̃2 is sequentially continuous and hence continuous on DC(M̄).

4.3 Existence of a mean�variance equilibrium

We are �nally ready to state and prove su�cient conditions for the existence

of a mean�variance equilibrium in the sense of De�nition 2.6 for general mean�

variance utility functions Uk. In addition to our previous results on ψ̃1 and ψ̃2,

we also use the continuity of the map ψ3. Under Assumption 2.19, the latter is

ensured by Proposition 2.17, the proof of which is postponed to Section 5. We

also recall Assumption 2.29 which excludes the trivial case ℓ(γ̄) = 1 for all γ̄ > γ̄0

that was already considered in Corollary 2.28.

As outlined at the beginning of the section, we can now combine these results

to show the existence of an equilibrium. We note that the bounds in (4.78) below

can be seen as the analogue of (3.9) for the linear case since λmin
k = λmax

k = λk

for mean�variance utility functions Uk of the linear form (3.1). In the following,

recall De�nition 2.31 of the maps ψ1, ψ2, ψ3, ψ4 and Ψ, as well as De�nitions 4.12

and 4.24 of ψ̃1 and ψ̃2, respectively.

Theorem 4.33. Suppose that Assumptions 2.1, 2.19, 2.29, 4.2 and 4.15 hold

and de�ne the constants γ̄2 ≥ γ̄1 by

γ̄1 = EP [Ξ̄] +
K∑
k=1

λmin
k , γ̄2 = EP [Ξ̄] +

K∑
k=1

λmax
k . (4.78)

Then any �xed point of Ψ : (γ̄0,∞) → R is contained in the interval [γ̄1, γ̄2].

Moreover, if γ̄1 > γ̄0, then Ψ admits a �xed point γ̄ ∈ [γ̄1, γ̄2] and (1, S(γ̄)) is a

mean�variance equilibrium market.
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Proof. We want to �nd a �xed point of Ψ = ψ4 ◦ ψ3 ◦ ψ2 ◦ ψ1 : (γ̄0,∞) → R,
where γ̄0 = ess sup Ξ̄; see (2.35). By Assumption 2.19 and Proposition 2.17,

each map ŷUk
is well de�ned and continuous on (0, 1) × R × R+, and hence

ψ3 : (0, 1)× (R× R+)
K → RK given by

ψ3

(
ℓ, (ck, ε

2
k)
K
k=1

)
=
(
ck + ŷUk

(ℓ, ck, ε
2
k)
)K
k=1

is also well de�ned and continuous, and so is ψ4 : RK → R, (γk)Kk=1 7→
∑K

k=1 γk.

Moreover, under Assumptions 2.1, 4.2 and 4.15, we have by Corollary 4.27 that

ψ2 ◦ ψ1 = ψ̃2 ◦ ψ̃1 : (γ̄0,∞) → (0, 1]× (R× R+)
K → RK

is continuous as well. Due to Assumption 2.29 and Lemma 2.27, we have ℓ(γ̄) ̸= 1

for γ̄ > γ̄0, where ℓ(γ̄) = ℓ(S(γ̄)) is the �rst component of ψ2 ◦ ψ1(γ̄). Thus the

range of ψ2 ◦ψ1 is contained in (0, 1)× (R×R+)
K → RK which is the domain of

ψ3. Therefore, the composition Ψ : (γ̄0,∞) → R is well de�ned and continuous.

We next show some bounds on the range of the composition. Fix some arbit-

rary (ℓ, (ck, ε
2
k)
K
k=1) ∈ (0, 1)× (R× R+)

K → RK and let

(γ1, . . . , γK) := ψ3

(
ℓ, (ck, ε

2
k)
K
k=1

)
.

Then by Assumption 2.19 and Proposition 2.17, we have

ck +
λmin
k

ℓ
≤ γk := ck + ŷUk

(ℓ, ck, ε
2
k) ≤ ck +

λmax
k

ℓ

for k ∈ {1, . . . , K}. Summing over k yields with c̄ :=
∑K

k=1 ck that

c̄+
K∑
k=1

λmin
k

ℓ
≤

K∑
k=1

γk ≤ c̄+
K∑
k=1

λmax
k

ℓ
.

Since
∑K

k=1 γk = (ψ4 ◦ ψ3)(ℓ, (ck, ε
2
k)
K
k=1), we thus have

c̄+
K∑
k=1

λmin
k

ℓ
≤ (ψ4 ◦ ψ3)

(
ℓ, (ck, ε

2
k)
K
k=1

)
≤ c̄+

K∑
k=1

λmax
k

ℓ
(4.79)

for all (ℓ, (ck, ε2k)
K
k=1) ∈ (0, 1)× (R× R+)

K → RK . For γ̄ > γ̄0, we set(
ℓ(γ̄),

(
ck(γ̄), ε

2
k(γ̄)

)K
k=1

)
:= (ψ2 ◦ ψ1)(γ̄).
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Then by Proposition 3.3, we have

c̄(γ̄) :=
K∑
k=1

ck(γ̄) = γ̄ − γ̄ − EP [Ξ̄]

ℓ(γ̄)
.

By plugging into (4.79) and recalling that Ψ = ψ4 ◦ ψ3 ◦ ψ2 ◦ ψ1, we obtain

γ̄ − γ̄ − EP [Ξ̄]−
∑K

k=1 λ
min
k

ℓ(γ̄)
≤ Ψ(γ̄) ≤ γ̄ − γ̄ − EP [Ξ̄]−

∑K
k=1 λ

max
k

ℓ(γ̄)
. (4.80)

Then if γ̄ is a �xed point of Ψ, we must have

γ̄ − EP [Ξ̄]−
K∑
k=1

λmax
k ≤ 0 ≤ γ̄ − EP [Ξ̄]−

K∑
k=1

λmin
k ,

which implies that γ̄ ∈ [γ̄1, γ̄2] by the de�nition (4.78). To show the existence

statement, suppose that γ̄2 ≥ γ̄1 > γ̄0. We have the inequalities Ψ(γ̄1) ≥ γ̄1

and Ψ(γ̄2) ≤ γ̄2 by plugging (4.78) into the left and right bounds in (4.80),

respectively. Therefore, the function γ̄ 7→ Ψ(γ̄) − γ̄ is continuous and changes

sign between γ̄1 and γ̄2. By the intermediate value theorem, there exists some

γ̄ ∈ [γ̄1, γ̄2] such that Ψ(γ̄)−γ̄ = 0, i.e., γ̄ is a �xed point of Ψ. Therefore (1, S(γ̄))

is a mean�variance equilibrium market by Theorem 2.32.

The following two sections complete the proof of Theorem 4.33 by showing the

results so far given without proof. Namely, it still remains to prove Proposition

2.17, which is related to the continuity of ψ3, as well as the BSDE results in

Theorem 6.6 that was used to obtain the continuity of ψ̃2. Both of these topics

are studied in abstract settings, since they have some independent interest beyond

their role in proving Theorem 4.33. So that there are no circular arguments, those

results are proven without using any of the results from the previous sections.

5 An abstract mean�variance problem

The main goal of this section is to study the abstract mean�variance optimisation

problem de�ned in (2.28), which reads

U
(
c+ (1− ℓ)y,

√
ε2 + ℓ(1− ℓ)y2

)
−→ max

y≥0
! (5.1)
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for a mean�variance utility function U and constants (ℓ, c, ε2) ∈ (0, 1)×R×R+.

We refer to Section 2 for a �nancial interpretation of this problem. In particular,

we want to prove Proposition 2.17 which we now recall.

Proposition 2.17. Let U be a mean�variance utility function. Suppose that there

exist constants λmin, λmax ∈ (0,∞) such that

σ

λmax
≤ SU(µ, σ) ≤

σ

λmin
for all (µ, σ) ∈ R× R+. (2.30)

Then there exists a continuous map ŷU : (0, 1)×R×R+ → R+ such that ŷU(ℓ, c, ε2)

is the unique solution to (5.1) for each (ℓ, c, ε2) ∈ (0, 1)×R×R+ → R+. Moreover,

the map ŷU satis�es the bounds

λmin

ℓ
≤ ŷU(ℓ, c, ε

2) ≤ λmax

ℓ
for all (ℓ, c, ε2) ∈ (0, 1)× R× R+. (2.31)

On the way to proving Proposition 2.17, we show some basic properties of

general mean�variance utility functions U and study the existence and uniqueness

of solutions to (5.1) for a �xed parameter θ := (ℓ, c, ε2). The next step is to study

the subset of parameters θ ∈ (0, 1)× R× R+ such that a unique solution exists,

and to show that it depends continuously on θ. We then prove the bounds (2.31)

on the solution to (5.1), and this yields Proposition 2.17 (see after Lemma 5.6

below). Finally, we discuss how these results may be applied to the equilibrium

problem of Section 2 under weaker assumptions, i.e., in the absence of the bounds

(2.30) on the mean�variance utility functions of the agents.

We note that some of our results in this section are well known/folklore in the

economics literature. In particular, condition (c) in Theorem 5.3 below, which

is equivalent to the existence and uniqueness of solutions to (5.1), is already

given in Koch-Medina/Wenzelburger [85, Proposition 1]. We nevertheless give

full proofs of these results in order to keep this section self-contained. This also

yields auxiliary results that are helpful for proving our results on the continuity

of the solution map θ 7→ ŷU(θ); the latter (starting from Proposition 5.5 below)

are new to the best of our knowledge.

We begin by recalling some notions related to mean�variance utility functions,

with the same notation as in [85]; note that we always write R+ = [0,∞). Recall

that by De�nition 2.5, U : R×R+ → R is a mean�variance utility function if it is

strictly quasiconcave, strictly increasing in the �rst variable, strictly decreasing

in the second variable, twice continuously di�erentiable and nondegenerate in

the sense that |∇U(µ, σ)| > 0 for all µ ∈ R and σ ≥ 0. As introduced before
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Proposition 2.17, the indi�erence curve through (µ, σ) ∈ R× R+ is given by

IU(µ, σ) := {(µ̃, σ̃) ∈ R× R+ : U(µ̃, σ̃) = U(µ, σ)},

and the slope of IU(µ, σ) is given by the function SU : R× R+ → R+, where

SU(µ, σ) = −∂σU(µ, σ)
∂µU(µ, σ)

. (5.2)

This is the usual notion of the slope of IU(µ, σ) when it is viewed on a plane

with σ on the horizontal and µ on the vertical axis. We show below that ∂µU

is strictly positive so that SU is well de�ned and nonnegative on R × R+. On

the other hand, ∂σU can take the value 0 at σ = 0; indeed, this must hold for

mean�variance utility functions that satisfy the bound on the right-hand side of

(2.30) including linear ones (2.9) of the form U(µ, σ) = µ− 1
2λ
σ2. Finally, we also

de�ne the limiting slope of IU(µ, σ) by

ρU(µ, σ) := sup
{
SU(µ̃, σ̃) : (µ̃, σ̃) ∈ IU(µ, σ)

}
. (5.3)

The following technical result gives a characterisation of the indi�erence curves

associated with a mean�variance utility function.

Lemma 5.1. Let U : R × R+ → R be a mean�variance utility function. The

following statements hold:

1) ∂µU(µ, σ) > 0 for all (µ, σ) ∈ R × R+. Hence SU is well de�ned and

nonnegative.

2) For each µ0 ∈ R, there exist σ∗(µ0) ∈ (0,∞] and fµ0 : [0, σ∗(µ0)) → R
such that the indi�erence curve through (µ0, 0) is given by

IU(µ0, 0) =
{(
fµ0(σ), σ

)
: σ ∈

[
0, σ∗(µ0)

)}
. (5.4)

Moreover, fµ0 is strictly convex, strictly increasing, twice continuously di�erenti-

able and satis�es fµ0(0) = µ0 and fµ0(σ) ↗ ∞ as σ ↗ σ∗(µ0).

3) Every indi�erence curve for U has the form (5.4) for some µ0 ∈ R.
4) SU(fµ0(σ), σ) = f ′

µ0
(σ) for each µ0 ∈ R and σ ∈ [0, σ∗(µ0)). As a con-

sequence, SU(µ, σ) > 0 for all µ ∈ R and σ ∈ R+ \ {0}.
5) For µ1 > µ2, it holds that σ∗(µ1) ≤ σ∗(µ2) and fµ1(σ) > fµ2(σ) for all

σ ∈ [0, σ∗(µ1)).

6) The map µ 7→ ρU(µ, 0) = limσ↗σ∗(µ) f
′
µ(σ) takes strictly positive values,



280 IV Equilibrium under general mean�variance preferences

is nondecreasing and left-continuous. If U is concave, then the map is constant,

i.e., ρU(µ, σ) = ρU for some ρU ∈ (0,∞] and all (µ, σ) ∈ R× R+.

Proof. 1) Fix (µ, σ) ∈ R× R+ and some arbitrary µ′ > µ. Because U is strictly

increasing in µ, we have U(µ′, σ) > U(µ, σ). By continuity of U , there exists

some small δ > 0 such that U(µ′, σ + δ) > U(µ, σ). On the other hand, we have

U(µ, σ + δ) < U(µ, σ) since U is strictly decreasing in σ. Thus, we have the

bounds

U(µ, σ + δ) < U(µ, σ) < U(µ′, σ + δ).

The intermediate value theorem yields µ̃ ∈ (µ, µ′) such that U(µ̃, σ+δ) = U(µ, σ).

By the quasiconcavity of U , we have

U
(
λµ̃+ (1− λ)µ, σ + λδ

)
≥ U(µ, σ)

for all λ ∈ [0, 1]. Di�erentiating with respect to λ at λ = 0, we obtain

(µ̃− µ)∂µU(µ, σ) + δ∂σU(µ, σ) ≥ 0. (5.5)

Note that ∂µU ≥ 0 and ∂σU ≤ 0 by the monotonicity properties of U . From

the nondegeneracy assumption, we know that ∂µU(µ, σ) and ∂σU(µ, σ) cannot

both be zero. Hence if ∂µU(µ, σ) = 0, then we must have ∂σU(µ, σ) < 0, which

together with δ > 0 contradicts (5.5). Therefore, we must have ∂µU(µ, σ) > 0 so

that SU is well de�ned and nonnegative on R× R+.

2) As U is twice continuously di�erentiable, it follows that SU is continuously

di�erentiable and in particular locally Lipschitz. Thus we can �nd a unique local

solution fµ0 to the ordinary di�erential equationf ′
µ0
(σ) = SU

(
fµ0(σ), σ

)
, σ ≥ 0,

fµ0(0) = µ0.
(5.6)

This gives a continuous solution fµ0 on a a maximal domain [0, σ∗(µ0)), where

σ∗(µ0) ∈ (0,∞]. Since SU is nonnegative, fµ0 is increasing. Hence if σ
∗(µ0) <∞,

we must have limσ↗σ∗(µ0) fµ0(σ) = ∞; otherwise, fµ0 could be extended continu-

ously to [0, σ∗(µ0)] and then to a larger open interval [0, σ̃) as a solution to (5.6),

contradicting the maximality of σ∗(µ0).
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To show (5.4), we �rst note that (5.6) and the de�nition of SU yield

d

dσ
U
(
fµ0(σ), σ

)
= f ′

µ0
(σ)∂µU

(
fµ0(σ), σ

)
+ ∂σU

(
fµ0(σ), σ

)
= S

(
fµ0(σ), σ

)
∂µU

(
fµ0(σ), σ

)
+ ∂σU

(
fµ0(σ), σ

)
= 0 (5.7)

for σ ∈ [0, σ∗(µ0)), so that U is constant on Ĩµ0 := {(fµ0(σ), σ) : σ ∈ [0, σ∗(µ0))},
and this gives the inclusion �⊇� in (5.4). To show �⊆� , suppose for a contradiction
that (µ, σ) ∈ IU(µ0, 0) \ Ĩµ0 . If σ < σ∗(µ0), then we have

U(µ, σ) ̸= U
(
fµ0(σ), σ

)
= U(µ0, 0)

as µ ̸= fµ0(σ) and U is strictly increasing in µ, so that (µ, σ) cannot belong to

IU(µ0, 0). If σ ≥ σ∗(µ0), we must have σ∗(µ0) < ∞ and limσ↗σ∗(µ0) fµ0(σ) = ∞
so that there exists σ′ < σ∗(µ0) such that µ′ := fµ0(σ

′) > µ. Since µ′ > µ and

σ′ < σ∗(µ0) ≤ σ, we obtain U(µ′, σ′) > U(µ, σ). Observing that

U(µ′, σ′) = U
(
fµ0(σ

′), σ′) = U(µ0, 0) = U(µ, σ)

since (µ, σ) ∈ IU(µ0, 0), this leads to a contradiction. So (5.4) holds.

It remains to prove the properties of fµ0 . By 1) and since U is twice continu-

ously di�erentiable, SU is continuously di�erentiable. Thus di�erentiating (5.6)

with the chain rule yields that fµ0 is twice continuously di�erentiable. The initial

value fµ0(0) = µ0 is given by (5.6). To show that fµ0 is strictly convex, take

λ ∈ (0, 1) and σ1, σ2 ∈ [0, σ∗(µ0)). By (5.4), we have with λ := 1− λ that

U
(
fµ0(σ1), σ1

)
= U

(
fµ0(σ2), σ2

)
= U

(
fµ0(λσ1 + λσ2), λσ1 + λσ2

)
.

The strict quasiconcavity of U then yields

U
(
λfµ0(σ1) + λfµ0(σ2), λσ1 + λσ2

)
> U

(
fµ0(λσ1 + λσ2), λσ1 + λσ2

)
(5.8)

so that λfµ0(σ1) + λfµ0(σ2) > fµ0(λσ1 + λσ2) as U is strictly increasing in µ.

Since σ1, σ2 ∈ [0, σ∗(µ0)) are arbitrary, this shows that fµ0 is strictly convex.

Since fµ0 is also increasing as seen above, we deduce that it is strictly increasing

with limσ→∞ fµ0(σ) = ∞ in the case σ∗(µ0) = ∞. Since we have already shown

that limσ→σ∗(µ0) fµ0(σ) = ∞ for σ∗(µ0) <∞, this concludes the proof of 2).

3) Fix (µ̃, σ̃) ∈ R × R+ and consider the indi�erence curve IU(µ̃, σ̃). We
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consider the backward di�erential equationg′(σ) = SU
(
g(σ), σ

)
, σ ≤ σ̃,

g(σ̃) = µ̃.
(5.9)

Similarly to (5.6), (5.9) admits a solution on a maximal open interval (σ∗, σ̃]

for some σ∗ ∈ [0, σ̃). Moreover, since g′ ≥ 0 so that g is increasing, we must

have by maximality that limσ↘σ∗ g(σ) = −∞ if σ∗ > 0. As in the proof of 2),

we note that Ĩ(µ̃,σ̃) := {(g(σ), σ) : σ ∈ (σ∗, σ̃]} is contained in IU(µ̃, σ̃) since
d
dσ
U(g(σ), σ) ≡ 0 by the same calculation as in (5.7). Likewise as in (5.8), it

follows by the quasiconcavity of U that g is convex on (σ∗, σ̃]. Hence the derivative

g′(σ) = SU(g(σ), σ) is nonnegative and increasing on (σ∗, σ̃] with a maximum at

σ̃. Thus we have 0 ≤ g′(σ) ≤ g′(σ̃) for σ ∈ (σ∗, σ̃] and g(σ̃) = µ̃, which yields

µ̃− g′(σ̃)(σ̃ − σ) ≤ g(σ) ≤ µ̃

for each σ ∈ (σ∗, σ̃]. The left-hand side is bounded below by µ̃ − g′(σ̃)σ̃ inde-

pendently of σ so that g is bounded. Since limσ↘σ∗ g(σ) = −∞ cannot hold, we

must have σ∗ = 0. Because g is bounded and increasing, it can thus be extended

continuously to the closed interval [0, σ̃) and we likewise have (g(0), 0) ∈ IU(µ̃, σ̃).
Thus for µ0 := g(0), we have U(µ0, 0) = U(µ̃, σ̃) and IU(µ0, 0) = IU(µ̃, σ̃) by the

de�nition of the indi�erence curve IU . Hence part 2) yields

IU(µ̃, σ̃) = IU(µ0, 0) =
{(
fµ0(σ), σ

)
: σ ∈

[
0, σ∗(µ0)

)}
,

and this proves 3).

4) The fact that SU(fµ0(σ), σ) = f ′
µ0
(σ) for all σ ≥ 0 follows by the construc-

tion of fµ0 as a solution to (5.6). Fix now some µ ∈ R and σ > 0. By 3), there

exists some µ0 ∈ R such that

IU(µ, σ) = IU(µ0, 0) =
{(
fµ0(σ), σ

)
: σ ∈

[
0, σ∗(µ0)

)}
.

Since U(µ, σ) = U(fµ0(σ), σ), the monotonicity of U yields µ = fµ0(σ) so that

SU(µ, σ) = f ′
µ0
(σ). Since fµ0 is increasing, we have f ′

µ0
≥ 0 and in particular

f ′
µ0
(0) ≥ 0. Since f ′

µ0
is strictly increasing as fµ0 is strictly convex, we obtain

SU(µ, σ) = f ′
µ0
(σ) > 0.
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5) Fix µ1 > µ2. By 2) and as U is strictly increasing in µ, we have

U
(
fµ1(σ), σ

)
= U(µ1, 0) > U(µ2, 0) = U

(
fµ2(σ), σ

)
, (5.10)

so that fµ1(σ) > fµ2(σ) for all σ ∈ [0, σ∗(µ1)∧σ∗(µ2)). Assume for a contradiction

that σ∗(µ1) > σ∗(µ2). Note that (5.10) yields

lim
σ↗σ∗(µ2)

fµ1(σ) ≥ lim
σ↗σ∗(µ2)

fµ2(σ) = ∞.

This leads to a contradiction since fµ1 is continuous and �nite on the interval

[0, σ∗(µ2)] ⊆ [0, σ∗(µ1)). Hence we must have σ∗(µ1) ≤ σ∗(µ2). In that case, we

have already shown with (5.10) that fµ1(σ) > fµ2(σ) for all σ ∈ [0, σ∗(µ1)), which

concludes the proof.

6) Let µ ∈ R. By (5.3), (5.4), 4) and since fµ is convex by 2), we have

ρU(µ, 0) = sup
σ∈[0,σ∗(µ))

SU
(
fµ(σ), σ

)
= sup

σ∈[0,σ∗(µ))

f ′
µ(σ) = lim

σ↗σ∗(µ)
f ′
µ(σ). (5.11)

Choosing an arbitrary σ ∈ (0, σ∗(µ)), we have by 4) that f ′
µ(σ) > 0 so that

ρU(µ, 0) ≥ f ′
µ(σ) > 0, i.e., ρU takes strictly positive values.

To show that µ 7→ ρU(µ, 0) is increasing, we �x µ1 > µ2 and claim that

ρU(µ1, 0) ≥ ρU(µ2, 0). If σ∗(µ1) < ∞, then limσ↗σ∗(µ1) fµ1(σ) = ∞ so that f ′
µ1

cannot be bounded above. In that case, we have ρU(µ1, 0) = ∞ ≥ ρU(µ2, 0) and

the claim holds. Thus we may assume σ∗(µ1) = ∞ so that σ∗(µ2) = ∞ by 5).

Suppose now for a contradiction that ρU(µ2, 0) > ρU(µ1, 0). By (5.11), we have

f ′
µ2
(σ)− f ′

µ1
(σ) → ρU(µ2, 0)− ρU(µ1, 0) as σ → ∞. This yields

f ′
µ2
(σ)− f ′

µ1
(σ) ≥ 1

2

(
ρU(µ2, 0)− ρU(µ1, 0)

)
> 0

for all large enough σ; in words, fµ2 must grow asymptotically faster that fµ1 .

Integrating this inequality, we deduce that fµ2(σ) > fµ1(σ) for large enough

σ > 0, which leads to a contradiction due to 5). Therefore, the map µ 7→ ρU(µ, 0)

is increasing, as claimed.

To show the left-continuity, consider an increasing sequence (µn)n∈N such that

µn ↗ µ∞. Thus U(µn, 0) ↗ U(µ∞, 0) as n → ∞ by the continuity and mono-

tonicity of U . For small δ > 0, we can �nd by (5.11) some σ′ ∈ [0, σ∗(µ∞)) such
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that f ′
µ∞(σ′) ≥ ρU(µ∞, 0)− δ. Setting µ′ := fµ∞(σ′), it follows by (5.4) that

U
(
fµn(σ

′), σ′) = U(µn, 0) ↗ U(µ∞, 0) = U(µ′, σ′)

as n → ∞ and hence fµn(σ′) ↗ µ′ since U is continuous and strictly increasing

in µ. Combining this with the �rst equality in (5.11), the continuity of SU and

the choice of (µ′, σ′) ∈ IU(µ∞, 0) yields

lim
n→∞

ρU(µn, 0) ≥ lim
n→∞

SU
(
fµn(σ

′), σ′) = SU(µ′, σ′) ≥ ρU(µ∞, 0)− δ.

Therefore limn→∞ ρU(µn, 0) ≥ ρU(µ∞, 0) as δ > 0 is arbitrary. Since we have

already shown that µ 7→ ρU(µ, 0) is increasing, this proves the left-continuity.

Finally, suppose that U is concave (not just quasiconcave) and �x some

(µ, σ) ∈ R × R+. By part 3), there exists some µ0 ∈ R such that the indif-

ference curve through (µ, σ) is given by (5.4). Since U is strictly increasing in

the �rst variable and strictly decreasing in the second variable, it follows that the

closed superlevel set of U at the level U(µ, σ) is the convex set given by

SLU(µ, σ) := {(µ′, σ′) ∈ R× R+ : U(µ′, σ′) ≥ U(µ, σ)}

= {(µ′, σ′) ∈ R× R+ : σ′ < σ∗(µ0) and µ′ ≥ fµ0(σ
′)}.

We know that f ′
µ0
is nondecreasing with limσ↗σ∗(µ0) f

′
µ0
(σ) = ρU(µ0, 0) = ρU(µ, σ).

Thus a vector of the form (1, a) belongs to the asymptotic cone of SLU(µ, σ) (see

Hiriart-Urruty/Lemaréchal [65, Section III.2.2] for the de�nition) if and only if

a ≥ ρU(µ, σ) (including in the case ρU(µ, σ) = ∞). On the other hand, since

U is concave (i.e., −U is convex), we have by [65, Proposition IV.3.2.5] that the

asymptotic cone of the superlevel set SLU(µ, σ) does not depend on the choice

of (µ, σ). Therefore the map ρU is constant, as claimed.

We now return to the abstract mean�variance optimisation problem (5.1).

The following result provides a �rst-order condition for a solution to (5.1), which

later allows us to obtain necessary and su�cient conditions for the existence of a

unique solution. For now, we �x a mean�variance utility function U and a triplet

(ℓ, c, ε2) ∈ (0, 1)× R× R+. We also de�ne µ : R+ → R and σ : R+ → R+ by

µ(y) := c+ (1− ℓ)y, σ2(y) := ε2 + ℓ(1− ℓ)y2, y ≥ 0. (5.12)

We note the change of notation: henceforth, µ and σ2 are no longer constants as
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in Lemma 5.1, but rather the �mean� and �variance� (as implied in the statement

of (5.1)) that are achieved by y ≥ 0 for a given triplet (ℓ, c, ε2).

In the following, we de�ne the function s : R+ → [0,∞] by

s(y) =


σ(y)
ℓy
, y > 0,

∞, y = 0 and ε2 > 0,√
1−ℓ
ℓ
, y = 0 and ε2 = 0.

(5.13)

It follows straightforwardly from (5.12) that s(y) → s(0) as y ↘ 0. The function

s : R+ → [0,∞] represents the slope of the curve {(σ(y), µ(y)) : y ≥ 0} in the σ-µ-
plane because s(y) = µ′(y)/σ′(y) for y > 0. It will also be helpful to reparametrise

µ(y) in terms of σ(y) rather than y. By solving the second equation in (5.12) for

y and plugging into the �rst equation, we obtain for y ≥ 0 that

y =

√
σ2(y)− ε2

ℓ(1− ℓ)
and µ(y) = c+

√
(1− ℓ)(σ2(y)− ε2)

ℓ
=: g

(
σ(y)

)
, (5.14)

where g : [ε,∞) → R has the derivative

g′(σ) =



√
1−ℓ
ℓ

σ√
σ2−ε2 , σ > ε,

∞, σ = ε > 0,√
1−ℓ
ℓ
, σ = ε = 0.

Thus by plugging in the �rst part of (5.14), we obtain that the slope of the

mean�variance e�cient frontier E := {(g(σ), σ) : σ ≥ ε} at (µ(y), σ(y)) (in the

σ-µ-plane) is given in all cases by

g′
(
σ(y)

)
= s(y), y ≥ 0. (5.15)

In order to �nd a solution to the problem (5.1), we obtain a �rst-order condition

by comparing the slopes SU (see (5.2)) and s of the indi�erence curve and the

mean�variance e�cient frontier, respectively, at the point (µ(y), σ(y)) for y ≥ 0.

Proposition 5.2. Fix y ≥ 0. If SU(µ(y), σ(y)) ≥ s(y), then

U
(
µ(y), σ(y)

)
> U

(
µ(ỹ), σ(ỹ)

)
(5.16)
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for all ỹ > y. If SU(µ(y), σ(y)) ≤ s(y), then

U
(
µ(y), σ(y)

)
> U

(
µ(ỹ), σ(ỹ)

)
(5.17)

for all ỹ < y. In particular, if SU(µ(y), σ(y)) = s(y), then y is the unique solution

to (5.1).

Proof. Fix y ≥ 0 and write σy := σ(y) and µy := µ(y) = g(σy). By part 3) of

Lemma 5.1, there exists some µ0 ∈ R such that (µy, σy) = (fµ0(σy), σy). Then

the indi�erence curve through (µy, σy) is given by {(fµ0(σ), σ) : σ ∈ [0, σ∗(µ0))}.
We now compare fµ0 and g in the vicinity of σy. Note that fµ0(σy) = g(σy) = µy

and fµ0 is strictly convex by part 2) of Lemma 5.1, whereas g is concave by its

de�nition in (5.14). If y = 0 and s(y) = ∞, both statements (5.16) and (5.17)

are vacuously true since neither ỹ < y nor SU(µ(y), σ(y)) ≥ s(y) can hold. Thus

we need only consider the case where s(y) is �nite, and SU is always �nite by

part 1) of Lemma 5.1.

First, SU(µ(y), σ(y)) ≥ s(y) implies f ′
µ0
(σy) ≥ g′(σy) by (5.15) and part 4) of

Lemma 5.1. As fµ0 is strictly convex and g is concave (so that f ′′
µ0
> 0 ≥ g′′), we

have f ′
µ0
(σ̃) > g′(σ̃) for all σ̃ ∈ (σ, σ∗(µ0)). Together with fµ0(σy) = g(σy) = µy,

it follows that fµ0(σ̃) > g(σ̃) for all σ̃ ∈ (σy, σ
∗(µ0)). Since U is strictly increasing

in µ, we deduce that

U(µy, σy) = U
(
fµ0(σ̃), σ̃

)
> U

(
g(σ̃), σ̃

)
, σ̃ ∈ (σy, σ

∗(µ0)). (5.18)

Consider now some σ̃ ≥ σ∗(µ0). Since fµ0(σ̂) ↗ ∞ as σ̂ ↗ σ∗(µ0) by part 2) of

Lemma 5.1, there exists some σ̂ < σ∗(µ0) such that fµ0(σ̂) > g(σ̃). We then have

U(µy, σy) = U
(
fµ0(σ̂), σ̂

)
> U

(
g(σ̃), σ̃

)
by the monotonicity properties of U , since fµ0(σ̂) > g(σ̃) and σ̂ < σ∗(µ0) ≤ σ̃.

Together with (5.18), we have thus shown U(µy, σy) > U(g(σ̃), σ̃) for all σ̃ > σy.

As σ is strictly increasing in y, this is equivalent to (5.16) for all ỹ > y.

Similarly, SU(µ(y), σ(y)) ≤ s(y) yields f ′
µ0
(σy) ≤ g′(σy), and we also have

µy = fµ0(σy) = g(σy) and f ′′
µ0

> 0 ≥ g′′. Since f ′
µ0

is strictly increasing and

g′ is decreasing, we deduce that f ′
µ0
(σ̃) < g′(σ̃) and hence fµ0(σ̃) > g(σ̃) for all

σ̃ ∈ [0, σy). Since U is strictly increasing in µ, we then have

U(µy, σy) = U
(
fµ0(σ̃), σ̃

)
> U

(
g(σ̃), σ̃

)
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for all σ̃ ∈ [0, σ). Rewriting this in terms of y with σ̃ = σ(ỹ) yields (5.17).

Finally, if SU(µ(y), σ(y)) = s(y), both (5.16) and (5.17) hold so that we have

U(µ(y), σ(y)) > U(µ(ỹ), σ(ỹ)) for all ỹ ̸= y. Therefore y is the unique solution to

(5.1).

Proposition 5.2 provides a �rst-order condition to identify a solution to (5.1),

and the inequalities (5.16) and (5.17) ensure that such a solution must be unique.

However, Proposition 5.2 does not say whether there exists a solution to (5.1) (or,

equivalently, to the �rst-order condition). The question of existence is answered

by the following result, where the equivalence (a) ⇔ (c) below is also given in

[85, Proposition 1]. We give the proof in full for the sake of completeness. We

also show the equivalence to condition (b) below, which will be useful for the

subsequent results. As before, we �x the triplet (ℓ, c, ε2) ∈ (0, 1)×R×R+ as well

as the functions µ, σ de�ned by (5.12).

Theorem 5.3. The following statements are equivalent:

(a) There exists a solution ŷ to (5.1).

(b) There exists some y > 0 such that

SU
(
µ(y), σ(y)

)
>
σ(y)

ℓy
.

(c) It holds that

sup
y>0

ρU
(
µ(y), σ(y)

)
>
√

(1− ℓ)/ℓ.

If any of the assertions (a)�(c) holds, then the solution ŷ to (5.1) is unique.

Proof. In order to show (a) ⇔ (b), we distinguish three cases:

1) ε2 = 0 and SU(c, 0) ≥
√

1−ℓ
ℓ
.

2) ε2 = 0 and SU(c, 0) <
√

1−ℓ
ℓ
.

3) ε2 > 0.

The proof is structured in steps A)�C). In step A), we prove (a) ⇔ (b) in case 1).

In step B), we show (5.19) below for both cases 2) and 3); this allows us to prove

(a) ⇔ (b) for 2) and 3) simultaneously. In step C), we show (b) ⇔ (c), where we

no longer need to distinguish the cases.

A) We start by considering case 1), where by (5.12) and (5.13), we have

SU
(
µ(0), σ(0)

)
= SU(c, 0) ≥

√
1− ℓ

ℓ
= s(0),
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and hence (5.16) gives U(µ(0), σ(0)) > U(µ(ỹ), σ(ỹ)) for all ỹ > 0. Thus ŷ = 0 is

the unique solution to (5.1) so that (a) always holds in this case and the solution

is unique. Moreover, we must have SU(µ(y), σ(y)) > σ(y)
ℓy

for all y > 0 since

otherwise (5.17) would contradict the optimality of ŷ = 0. Thus (b) always holds

in this case as well. So (a) and (b) always hold and hence (a) ⇔ (b) in case 1).

B) In case 3), we have σ(0) > 0 so that s(y) = σ(y)
ℓy

→ ∞ as y ↘ 0. Since

µ, σ and SU are continuous (the latter due to part 1) of Lemma 5.1), we obtain

SU
(
µ(y), σ(y)

)
< s(y) (5.19)

for small enough y ≥ 0. In case 2), we have s(0) =
√

1−ℓ
ℓ
< SU(µ(0), σ(0)) so

that the assumption and the continuity of µ, σ and SU also yield (5.19) for small

y. We can now show (a) ⇔ (b) in both cases 2) and 3) simultaneously since we

have (5.19) in both cases.

(b) ⇒ (a): Suppose that (b) holds for some y > 0. By the continuity of

SU and the intermediate value theorem together with (5.19), there exists some

ŷ ∈ (0, y) such that

SU
(
µ(ŷ), σ(ŷ)

)
=
σ(ŷ)

ℓŷ
= s(ŷ). (5.20)

By Proposition 5.2, ŷ is the unique solution to (5.1), and this shows (a) as well

as the uniqueness of ŷ.

(a) ⇒ (b): Suppose that ŷ ≥ 0 is a solution to (5.1). We have by (5.19) and

(5.17) (for a small y > 0) that 0 cannot be a solution to (5.1), and hence ŷ > 0.

We claim that

SU
(
µ(y′), σ(y′)

)
>
σ(y′)

ℓy′
= s(y′) (5.21)

holds for all y′ > ŷ. To show this, suppose for a contradiction that (5.21) does

not hold for some y′ > ŷ. Then (5.17) in Proposition 5.2 (with y := y′) yields

U
(
µ(y′), σ(y′)

)
> U

(
µ(ŷ), σ(ŷ)

)
,

and this contradicts the optimality of ŷ. Thus (5.21) holds for all y′ > ŷ, and this

shows (b).

C) We have now shown (a) ⇔ (b) in all cases 1)�3), and it remains to show

(b) ⇔ (c) for which we no longer need to distinguish the cases.
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(b) ⇒ (c): Suppose that (b) holds for some y > 0. Then we have

sup
y′≥0

ρU
(
µ(y′), σ(y′)

)
≥ SU

(
µ(y), σ(y)

)
>
σ(y)

ℓy
≥
√

1− ℓ

ℓ
,

since σ(y) ≥
√
ℓ(1− ℓ)y by the de�nition (5.12); this shows (c).

(c) ⇒ (b): If (c) holds, then for some y > 0, we have

ρU
(
µ(y), σ(y)

)
>
√

(1− ℓ)/ℓ.

If SU(µ(y), σ(y)) > σ(y)
ℓy

, there is nothing to prove. If SU(µ(y), σ(y)) = σ(y)
ℓy

, then

(a) holds by Proposition 5.2, and we have already shown (a) ⇔ (b). Thus we

may suppose without loss of generality that

SU
(
µ(y), σ(y)

)
<
σ(y)

ℓy
. (5.22)

Recall the function g de�ned by (5.14) and the function fµ0 that corresponds to

IU(µ(y), σ(y)) by part 2) of Lemma 5.1, so that

g
(
σ(y)

)
= fµ0

(
σ(y)

)
= µ(y).

Moreover, note that (5.22) can be written as f ′
µ0
(σ(y)) < g′(σ(y)) by part 4) of

Lemma 5.1 and (5.15), so that fµ0(σ(y + δ)) < g(σ(y + δ)) for some small δ > 0.

On the other hand, note that by the assumption (c), part 6) of Lemma 5.1 and

(5.15), we have

lim
σ′↗σ∗(µ0)

f ′
µ0
(σ) = ρU

(
µ(y), σ(y)

)
>
σ(y)

ℓy
= lim

y′→∞
g′µ0
(
σ(y′)

)
.

Hence if σ∗(µ0) = ∞, then fµ0(σ(·)) grows asymptotically faster than g(σ(·)).
Thus by the intermediate value theorem, there exists some y′ > y + δ with

fµ0(σ(y
′)) = g(σ(y′)). The same is true if σ∗(µ0) <∞ as limσ′→σ∗(µ0) fµ0(σ

′) = ∞
by part 2) of Lemma 5.1 so that fµ0(σ(·)) must cross g(σ(·)). In either case, fµ0 is

strictly convex and g is concave, and they meet at both points σ(y) < σ(y′). By

the convexity and concavity, respectively, it follows that f ′
µ0
(σ(y′)) > g′(σ(y′)) at

the larger crossing point. Using part 4) of Lemma 5.1 and (5.15) once again, this

means that SU(µ(y′), σ(y′)) > σ(y′)
ℓy′

, and therefore (b) holds. This concludes the

proof of (c) ⇒ (b).
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By combining Proposition 5.2 and Theorem 5.3, we now obtain a character-

isation of the solution to (5.1). This will be useful later to show that the solution

depends continuously on the parameters (ℓ, c, ε2).

Corollary 5.4. The following statements hold:

1) If ε2 = 0 and SU(c, 0) ≥
√

1−ℓ
ℓ
, then ŷ = 0 is the unique solution to (5.1).

2) Suppose any of the conditions (a)�(c) in Theorem 5.3 holds and that either

ε2 > 0, or ε2 = 0 and SU(c, 0) <
√

1−ℓ
ℓ
. Then there exists a unique solution ŷ > 0

to (5.1), and ŷ is also the unique solution to the �rst-order condition

SU
(
µ(y), σ(y)

)
=
σ(y)

ℓy
. (5.23)

Moreover, in both cases, it holds that

SU
(
µ(y), σ(y)

)
≷
σ(y)

ℓy
(5.24)

for 0 < y ≷ ŷ, respectively.

Proof. 1) The assumptions are those of case 1) in the proof of Theorem 5.3, and

we already showed in step A) of that proof that ŷ = 0 is the unique solution and

(5.24) holds for y > 0.

2) By the assumption, we have one of the cases 2) or 3) of the proof of Theorem

5.3. We showed in step B) for both cases that if a solution exists, then it is unique,

strictly positive and satis�es the �rst-order condition (5.23) due to (5.20). It

remains to show (5.24). For a contradiction, suppose that there exists y > ŷ with

SU(µ(y), σ(y)) ≤ σ(y)
ℓy

= s(y). Then (5.17) holds for ỹ = ŷ, and this contradicts

the optimality of ŷ. Likewise, if 0 < y < ŷ with SU(µ(y), σ(y)) ≥ σ(y)
ℓy

= s(y),

then (5.16) holds with ỹ = ŷ and contradicts the optimality of ŷ. Therefore (5.23)

holds in this case, and this concludes the proof.

Theorem 5.3 and Corollary 5.4 provide necessary and su�cient conditions

for the existence of a unique solution to (5.1), and we can in principle �nd the

solution by solving the �rst-order condition (5.23) for ŷ. This concludes our study

of the problem (5.1) for a �xed parameter θ = (ℓ, c, ε2) ∈ (0, 1)× R× R+.

Our next goal is to study the set of parameters θ for which a solution ŷ = ŷU(θ)

to (5.1) exists, and whether the map θ 7→ ŷU(θ) is continuous. We show that ŷU
is well de�ned and continuous on a nonempty open subset V ⊆ (0, 1) × R × R+

which depends on the choice of mean�variance utility function U . In the following,
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we de�ne µ(·) = µ(· ; θ) and σ2(·) = σ2(· ; θ) as before by (5.12), where the

dependence on the underlying parameter θ = (ℓ, c, ε2) is now made explicit.

Proposition 5.5. Let U be a mean�variance utility function. Then the set

V := {θ = (ℓ, c, ε2) ∈ (0, 1)× R× R+ : a solution ŷU(θ) to (5.1) exists}

is a nonempty open subset of (0, 1)× R× R+ (with the relative topology), and it

is given by

V =

{
θ ∈ (0, 1)× R× R+ : sup

y>0
ρU
(
µ(y; θ

)
, σ
(
y; θ)

)
>

√
1− ℓ

ℓ

}
. (5.25)

Moreover, the map θ 7→ ŷU(θ) is continuous on V .

Proof. By Theorem 5.3, a solution ŷU(θ) to (5.1) exists if and only if there is

some y > 0 such that

SU
(
µ(y; θ), σ(y; θ)

)
>
σ(y; θ)

ℓy
.

Thus V is the projection on (0, 1)× R× R+ of the set

Ṽ := {(y, ℓ, c, ε2) ∈ (0,∞)× (0, 1)× R× R+ : d(y; ℓ, c, ε2) > 0},

where the map d : (0,∞)× (0, 1)× R× R+ → R is de�ned by

d(y; θ) = SU
(
µ(y; θ), σ(y; θ)

)
− σ(y; θ)

ℓy
.

Note that d is a composition of continuous functions and hence continuous on

(0,∞)× (0, 1)× R× R+. Thus Ṽ is an open subset of (0,∞)× (0, 1)× R× R+

with the relative topology. Since the projection is an open map, it follows that

V ⊆ (0, 1)× R× R+ is open in the relative topology.

The alternative description (5.25) follows immediately from the equivalence

(a) ⇔ (c) in Theorem 5.3. To show that V is nonemtpy, �x some arbitrary

(c, ε2) ∈ R × R+. By part 6) of Lemma 5.1, we have ρU(c,
√
ε2 + 1) > 0. Note

that the map µ 7→ ρU(µ, σ) is increasing for any σ ≥ 0, since for µ1 > µ2, we have

ρU(µ1, σ) = ρU(µ̃1, 0) > ρU(µ̃2, 0) = ρU(µ2, 0)

for some µ̃1 > µ̃2 by parts 2), 3) and 6) of Lemma 5.1. Hence for any ℓ ∈ (0, 1)
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and setting y := 1√
ℓ(1−ℓ)

, we have by (5.12) that

ρU
(
µ(
√
ℓ(1− ℓ)

−1
; θ), σ(

√
ℓ(1− ℓ)

−1
; θ)
)
= ρU

(
µ(
√
ℓ(1− ℓ)

−1
; θ),

√
ε2 + 1

)
> ρU(c,

√
ε2 + 1) > 0.

It follows that

sup
y>0

ρU
(
µ(y; ℓ, c, ε2

)
, σ
(
y; ℓ, c, ε2)

)
> ρU(c,

√
ε2 + 1) > 0

for all ℓ ∈ (0, 1). On the other hand, we have
√

(1− ℓ)/ℓ→ 0 as ℓ↗ 1 so that

sup
y>0

ρU
(
µ(y; ℓ, c, ε2

)
, σ
(
y; ℓ, c, ε2)

)
>
√

(1− ℓ)/ℓ (5.26)

for ℓ close enough to 1. Thus by (5.25), there exists for any (c, ε2) ∈ R × R+

some ℓ ∈ (0, 1) such that (ℓ, c, ε2) ∈ V . Thus the projection of V on R × R+ is

R× R+, which implies in particular that V is nonempty.

It remains to prove the continuity of ŷ. Fix a sequence (θn)n∈N in V with

θn → θ∞ ∈ V as n → ∞. Writing yn := ŷU(θn) for n ∈ N ∪ {∞}, we want to

show that yn → y∞ as n→ ∞. Equation (5.24) yields

SU
(
µ(y∞ + δ; θ∞), σ(y∞ + δ; θ∞)

)
>
σ(y∞ + δ; θ∞)

ℓ∞(y∞ + δ)

for each δ > 0. By the continuity of SU , µ and σ, it follows that

SU
(
µ(y∞ + δ; θn), σ(y∞ + δ; θn)

)
>
σ(y∞ + δ; θn)

ℓn(y∞ + δ)
(5.27)

for δ > 0 and all large enough n ∈ N. By applying (5.24) with parameter θn,

we deduce from (5.27) that yn < y∞ + δ for n large enough. Thus since δ > 0 is

arbitrary, we have lim supn→∞ yn ≤ y∞. If y∞ = 0, this already shows yn → y∞

as n→ ∞. If y∞ > 0, we use the left inequality in (5.24) at y∞ − δ to obtain

SU
(
µ(y∞ − δ; θ∞), σ(y∞ − δ; θ∞)

)
<
σ(y∞ − δ; θ∞)

ℓ∞(y∞ − δ)

so that by the continuity of SU , µ and σ, we have

SU
(
µ(y∞ − δ; θn), σ(y∞ − δ; θn)

)
<
σ(y∞ − δ; θn)

ℓn(y∞ − δ)
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for n large enough. Hence yn > y∞−δ for n large enough due to (5.24). Therefore

lim infn→∞ yn ≥ y∞ as δ > 0 is arbitrary, and hence yn → y∞ as n → ∞. This

proves the continuity of ŷU .

With Proposition 5.5 we have shown the continuity of ŷU and characterised its

domain V . We are now almost ready to prove Proposition 2.17; it only remains

to show how each of the bounds in (2.32) yields information about the map ŷk.

The result will then follow by combining both bounds.

Lemma 5.6. Let U be a mean�variance utility function. Then the following

statements hold:

1) If there exists λmin ∈ (0,∞) such that

SU(µ, σ) ≤
σ

λmin
(5.28)

for all (µ, σ) ∈ R× R+, then we have

ŷU(ℓ, c, ε
2) ≥ λmin

ℓ
> λmin (5.29)

for all (ℓ, c, ε2) ∈ V , where V is given by (5.25).

2) If there exists λmax ∈ (0,∞) such that

SU(µ, σ) ≥
σ

λmax
(5.30)

for all (µ, σ) ∈ R× R+, then V = (0, 1)× R× R+ and

ŷU(ℓ, c, ε
2) ≤ λmax

ℓ
(5.31)

for all (ℓ, c, ε2) ∈ (0, 1)× R× R+.

Proof. 1) Let θ := (ℓ, c, ε2) ∈ V so that ŷU(θ) is well de�ned by the de�nition of

V . Note that part 2) of Corollary 5.4 applies to θ even for ε2 = 0 since (5.28)

yields SU(c, 0) = 0 <
√

1−ℓ
ℓ
. Thus we have ŷU(θ) > 0, and rearranging (5.23)

yields

ŷU(θ) =
σ(ŷU(θ); θ)

ℓSU(µ
(
ŷU(θ); θ), σ

(
ŷU(θ); θ

)) ≥ λmin

ℓ
> λmin

by (5.28) and as ℓ < 1. This shows (5.29).
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2) Fix θ := (ℓ, c, ε2) ∈ (0, 1)× R× R+. By (5.30), we have

SU
(
µ(y; θ), σ(y; θ)

)
≥ σ(y; θ)

λmax
>
σ(y; θ)

ℓy
(5.32)

for any y > λmax

ℓ
so that condition (b) in Theorem 5.3 is satis�ed. Thus ŷU(θ) is

well de�ned, and since θ is arbitrary, it follows that V = (0, 1)× R× R+. Then

(5.24) and (5.32) yield ŷU(θ) < y for any y > λmax

ℓ
, and this shows (5.31).

We now collect our results to show Proposition 2.17; the statement is given

at the beginning of the section.

Proof of Proposition 2.17. Since (2.30) gives both bounds (5.28) and (5.30), it

follows from Lemma 5.6 that V = (0, 1)×R×R+ and we have the bounds (2.31).

By Proposition 5.5, ŷU is well de�ned and continuous on (0, 1)×R×R+, and by

de�nition, ŷU(ℓ, c, ε2) is a solution to (5.1) for each (ℓ, c, ε2). The uniqueness of

the solution follows from Theorem 5.3.

Our last goal in this section is to show how these results may be applied to the

equilibrium problem of Section 2 in a more general setting. Consider K agents

with mean�variance utility functions Uk : R × R+ → R, k = 1, . . . , K. In the

previous sections, we worked under Assumption 2.19 which we now recall.

Assumption 2.19. We suppose that for each k ∈ {1, . . . , K}, there exist con-

stants λmin
k , λmax

k ∈ (0,∞) such that

σ

λmax
k

≤ SUk
(µ, σ) ≤ σ

λmin
k

for all (µ, σ) ∈ R× R+. (2.32)

Assumption 2.19 can be interpreted in terms of the indi�erence curves for Uk.

By parts 3) and 4) of Lemma 5.1, Assumption 2.19 is satis�ed if and only if

σ

λmax
k

≤ f ′
k,µ0

(σ) ≤ σ

λmin
k

for all µ0 ∈ R, σ ∈
[
0, σ∗

k(µ0)
)
,

where IUk
(µ0, 0) = {(fk,µ0(σ), σ

)
: σ ∈

[
0, σ∗

k(µ0))} is the indi�erence curve for

Uk through (µ0, 0). For λmin
k = λmax

k , the indi�erence curves are thus parabolas;

this is the case of linear mean�variance utility (2.9). In general, the curves can be

sandwiched between parabolas, but their precise shape may di�er. For example,

consider for ak > bk > 0 the function gk : R+ → R given by

g(x) =
akx

2

2
− bke

−x(x+ 1), x ≥ 0,
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so that g′k(x) = x(ak − bke
−x) > 0 and g′′(x) = ak − bke

−x + bkxe
−x > 0 for

x > 0. Thus gk is strictly increasing and strictly convex, and it is straightforward

to check that the function Uk : R× R+ → R given by

Uk(µ, σ) := µ− gk(σ), (µ, σ) ∈ R× R+ (5.33)

is a mean�variance utility function as in De�nition 2.5. Moreover, we have

SUk
(µ, σ) = −∂σUk(µ, σ)

∂µUk(µ, σ)
= σ(ak − bke

−σ), (µ, σ) ∈ R× R+,

and hence Uk satis�es (2.32) with λmin
k = 1

ak
and λmax

k = 1
ak−bk

. Other examples of

mean�variance utility functions of the semilinear form (5.33) can be constructed

for suitable choices of gk : R+ → R.
So while Assumption 2.19 is rather restrictive on the choice of functions Uk,

it still allows some �exibility. We now discuss the consequences of omitting it.

Recall from De�nition 2.31 the map ψ3 given by

ψ3

(
ℓ, (ck, ε

2
k)
K
k=1

)
:= (γk)

K
k=1 :=

(
ck + ŷUk

(ℓ, ck, ε
2
k)
)K
k=1

.

In De�nition 2.31, the map ψ3 has the domain (0, 1)×(R×R+)
K . This is justi�ed

because Assumption 2.19 and Proposition 2.17 yield that each map ŷUk
is well

de�ned on (0, 1)×R×R+. However, without Assumption 2.19, the map ψ3 may

not be de�ned on the whole set (0, 1)× (R×R+)
K , and this would pose problems

for the techniques used in Section 4.

The following result shows that in general, ψ3 is at least well de�ned and

continuous on a nonempty set. Indeed, by Proposition 5.5 (which holds in gen-

eral), there exists a unique solution ŷk(ℓ, ck, ε
2
k) to (5.1) with Uk in place of U

if and only if (ℓ, ck, ε2k) ∈ Vk, where Vk ⊆ (0, 1) × R × R+ is given as in (5.25).

Moreover, the solution ŷk depends continuously on (ℓ, ck, ε
2
k). In order to de�ne

the maps ŷk on a common domain for all k = 1, . . . , K, we consider the set

V (K) ⊆ (0, 1)× (R× R+)
K given by

V (K) =
{(
ℓ, (ck, ε

2
k)
K
k=1

)
∈ (0, 1)×(R× R+)

K : (ℓ, ck, ε
2
k) ∈ Vk for k = 1, . . . , K

}
.

We can now de�ne ψ3 on V (K) without Assumption 2.19.



296 IV Equilibrium under general mean�variance preferences

Corollary 5.7. The map ψ3 : V
(K) → RK

+ de�ned by

ψ3

(
ℓ, (ck, ε

2
k)
K
k=1

)
:=
(
ck + ŷk(ℓ, ck, ε

2
k)
)K
k=1

(5.34)

is well de�ned and continuous on V (K) ̸= ∅. Moreover, the projection of the set

V (K) ⊆ (0, 1)× (R×R+)
K on (R×R+)

K is surjective, so that V (K) is nonempty.

Proof. Fix (ck, ε
2
k)
K
k=1 ∈ (R × R+)

K . By the argument used in the proof of Pro-

position 5.5 to show that V is nonempty (see after (5.26)), there exists for each

k = 1, . . . , K some ℓ∗,k ∈ (0, 1) such that (ℓ, ck, ε2k) ∈ Vk for all ℓ ≥ ℓ∗,k. Thus we

must have (ℓ, (ck, ε2k)
K
k=1) ∈ V (K) for ℓ ≥ maxk ℓ∗,k so that V (K) is nonempty. Since

(ck, ε
2
k)
K
k=1 is arbitrary, we also obtain that the projection of V (K) on (R× R+)

K

is surjective. Finally, Proposition 5.5 yields that for each k = 1, . . . , K, the map

(ℓ, (ck, ε
2
k)
K
k=1) 7→ ŷk(ℓ, ck, ε

2
k) is well de�ned and continuous on V (K). Thus ψ3 is

continuous by the de�nition (5.34).

In order to apply these results in the proof of Theorem 4.33, the main re-

quirement is the continuity of ψ3 which holds in full generality due to Corollary

5.7. Thus it may indeed be possible to weaken or omit Assumption 2.19; this is

supported by the fact that such an assumption is not necessary in the one-period

model, as shown in Koch-Medina/Wenzelburger [85]. However, one has to deal

with the fact that ψ3 may be de�ned on a proper subset V (K) ⊆ (0, 1)×R×R+,

and so it is no longer clear whether the map Ψ = ψ4 ◦ψ3 ◦ψ2 ◦ψ1 is well de�ned.

One also lacks the a priori bounds (2.31) on the output of ψ3. One approach

to circumvent these issues would be study the range of the map ψ2 ◦ ψ1, pos-

sibly under stronger assumptions on the primitives of the model. If this range is

contained in V (K), one may then be able to extend the proof of Theorem 4.33.

However, this seems challenging in the general case.

6 A stability result for quadratic BSDEs

6.1 BSDE stability

We now turn to the study of the stability of quadratic BSDEs of the type con-

sidered in Section 4.2. The results that we obtain here are stated in a general form

and are therefore of independent interest. For our purposes, they are used in the

proofs of Theorem 4.31 and Proposition 4.32 to obtain the continuity of ψ̃2. Al-

though we consider an abstract setting in this section, we retain a similar notation
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to Section 4.2 for the sake of consistency. We impose the standing Assumption

4.2 on the �ltration, that is, we �x a probability space (Ω,F ,F = (Ft)0≤t≤T , P )

such that F0 is P -trivial and F satis�es the usual assumptions and is continu-

ous. We also �x a (continuous) local martingale (M̄t)0≤t≤T taking values in Rd̄

for some d̄ ∈ N, and de�ne the increasing process (It)0≤t≤T by It = tr ⟨M̄⟩t. As

after (4.29), we introduce a predictable process (cM̄t )0≤t≤T taking values in the

set of d̄ × d̄ symmetric positive semide�nite matrices such that d⟨M̄⟩t = cM̄t dIt;

moreover, we may and do assume that tr cM̄t = 1 for all t ∈ [0, T ] P -a.s. Assump-

tion 4.15 is not necessary for the results in this section, i.e., cM̄ need not be

invertible.

For m ∈ N, we call a function f : Ω × [0, T ] × Rd̄×m → R predictable if it is

measurable with respect to P⊗B(Rd̄×m), where P is the predictable σ-algebra on

Ω× [0, T ]. We denote by | · | and ∥ · ∥ the Euclidean and Frobenius norms on Rd̄

and Rd̄×m, respectively. For a symmetric positive semide�nite matrix C ∈ Rd̄×d̄,

x ∈ Rd̄ and A ∈ Rd̄×m, we write

|x|C := (x⊤Cx)1/2 and ∥A∥C := tr(A⊤CA)1/2 (6.1)

so that | · |C and ∥ · ∥C can be seen as the seminorm and Frobenius seminorm,

respectively, under the pseudometric induced by C. Since tr cM̄t = 1, we have

| · |cM̄t ≤ | · | and ∥ · ∥cM̄t ≤ ∥ · ∥ for 0 ≤ t ≤ T . In the following, we shall sometimes

refer to results given in Section 6.2 below; these are well-known and folklore

results on BMO martingales, for which we use Kazamaki [81] as a reference.

We consider the backward stochastic di�erential equation (BSDE)

dYt = ft(ζt, χt)dIt − ϱtd⟨N⟩t + ζtdM̄t + dNt, 0 ≤ t ≤ T, (6.2)

YT = G

for a given G ∈ L∞, a predictable bounded process (ϱt)0≤t≤T , a predictable

function f : Ω× [0, T ]×Rd̄×Rd̄×m → R with quadratic growth (see (6.4) below),

and an exogenous predictable process χ ∈ L2(M̄ ;Rd̄×m) for some m ∈ N such

that χ •M̄ ∈ BMO. We say that (Y, ζ,N) is a solution to the BSDE (6.2) if Y is

a bounded semimartingale, ζ ∈ L2(M̄ ;Rd̄) and N is a continuous local martingale

strongly orthogonal to M̄ such that (6.2) and the terminal condition are satis�ed.

Our goal is to show su�cient conditions for the stability of solutions to (6.2).

Equation (6.2) is a BSDE where the driver has quadratic growth in ζ and an

unbounded stochastic parameter χ. BSDEs of this type have been studied in Frei



298 IV Equilibrium under general mean�variance preferences

et al. [51], Briand/Hu [22] and Mocha/Westray [93] for a continuous �ltration; in

the latter two, the stochastic parameter is replaced by a stochastic bound on the

driver. However, each of the Assumptions [51, 2.3], [22, (A.2)(iv)] and [93, 1(i)]

implies for (6.2) that the random variable

K := tr⟨χ •M̄⟩T =

∫ T

0

tr(χ⊤
t c

M̄
t χt)dIt

admits exponential moments of all positive orders. Under our assumption that

χ • M̄ ∈ BMO, K admits by Lemma 6.7 below an exponential moment of some

positive order, but not necessarily all. It turns out that weakening this condition

has signi�cant implications for the study of (6.2). Indeed, whereas existence

results are obtained in [51, 22, 93], our assumption does not ensure the existence

of a solution to (6.2) as shown in the following example.

Example 6.1. Fix a process χ ∈ L2(M̄) such that χ •M̄ ∈ BMO. Suppose that

for some a > 0, there exists a solution (Yt)0≤t≤T to the BSDE

dYt = −aχ⊤
t c

M̄
t χtdIt − ζ⊤t c

M̄
t ζtdIt + ζtdM̄t, 0 ≤ t ≤ T, (6.3)

with YT = 0 for some ζ ∈ L2
loc(M̄), where we drop N for simplicity (i.e., in this

example, we assume that M̄ has the martingale representation property for F
so that any local martingale strongly orthogonal to M̄ is constant). Since the

�rst term on the right-hand side of (6.3) does not depend on Y or ζ, we can set

Ỹt := Yt +
∫ t
0
aχ⊤

s c
M̄
s χsdIs so that Ỹ satis�es the BSDE

dỸt = −ζ⊤t cM̄t ζtdIt + ζtdM̄t, 0 ≤ t ≤ T,

with ỸT = aK, where K :=
∫ T
0
χ⊤
t c

M̄
t χtdIt. Itô's formula yields

d(exp(2Ỹt))

exp(2Ỹt)
= −2ζ⊤t c

M̄
t ζtdIt + ζtdM̄t + 2d⟨ζ •M̄⟩t = ζtdM̄t, 0 ≤ t ≤ T,

and hence exp(2Ỹ ) is a nonnegative local martingale with terminal value exp(2aK)

and some �nite initial value exp(2Y0), which is deterministic as F0 is P -trivial.

Thus the existence of a solution to (6.3) implies that exp(2Ỹ ) is a supermartingale

and E[exp(2aK)] <∞. Conversely, a solution to (6.3) cannot exist if χ ∈ L2(M̄)

is such that exp(2aK) is not integrable. The condition that χ •M̄ ∈ BMO is not

su�cient to ensure the �niteness of all exponential moments of K, and thus it

does not guarantee the existence of a solution to (6.3) for all a > 0.
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Example 6.1 shows why the �niteness of a large enough exponential moment

of K is typically needed to obtain the well-posedness of (6.2), and that condition

does not hold in our setup. As we shall see in Theorem 6.6, we can still show the

stability of equations of the form (6.2) without this assumption, but circumventing

it comes with some tradeo�s. First, in (6.2) we have assumed that the driver does

not explicitly depend on Y ; this is also the reason why it was necessary to take

the logarithms of the original processes Ŷ (i) to obtain (4.59) and (4.60) in Section

4.2. More importantly, we assume rather than show the existence of a solution

to (6.2) for some given inputs χ, M̄ , f , ϱ and G. Finally, we obtain only a partial

a priori bound in Proposition 6.2 below, in the following sense. Typically, one

would like to obtain bounds on ∥Y ∥∞, ∥ζ •M̄∥BMO and ∥N∥BMO that depend only

on the inputs. Instead, we show in Proposition 6.2 how to bound ∥ζ • M̄∥BMO

and ∥N∥BMO in terms of the inputs as well as ∥Y ∥∞, but we do not obtain a

bound for Y . While the latter bounds are less satisfactory, they su�ce for our

main goal of showing the stability of (6.2).

We now give the partial a priori bound, which in particular ensures that the

martingale parts of a solution Y to (6.2) belong to BMO if Y is bounded and f

satis�es a quadratic growth condition. The main idea of the proof is standard;

we want to use (6.2) to construct a certain nonnegative submartingale so that

a moment estimate on its terminal value yields a corresponding estimate on the

whole process. We do this along similar lines as in part (ii) of the proof of Zhang

[121, Theorem 7.2.1]; we do not require part (i) because we do not give an a priori

bound on ∥Y ∥∞. We need some additional care since the exogenous coe�cient

χ is not bounded and we include an orthogonal part N which we only assume

to be a continuous local martingale. The �rst issue turns out not to make a

signi�cant di�erence in the resulting bounds, and the second can be dealt with

by constructing a nonnegative local submartingale (rather than a true one).

Proposition 6.2. Let G ∈ L∞(FT ), χ ∈ L2(M̄ ;Rd̄×m), (ϱt)0≤t≤T be a bounded

predictable process and f : Ω × [0, T ] × Rd̄ × Rd̄×m → R a predictable function.

Suppose that (Y, ζ,N) is a solution to (6.2), where (Yt)0≤t≤T is a bounded semi-

martingale, ζ ∈ L2
loc(M̄ ;Rd̄) and N is a continuous local martingale orthogonal

to M̄ . Moreover, suppose that χ •M̄ ∈ BMO and that f satis�es the inequality

|f(z, x)| ≤ Cf (|z|cM̄ + ∥x∥cM̄ )2 P ⊗ I-a.e. (6.4)

for some constant Cf > 0 and all z ∈ Rd̄ and x ∈ Rd̄×m. Then ζ • M̄ and N are
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BMO martingales with

max(∥ζ •M̄∥BMO, ∥N∥BMO) < C,

where C depends only on Cf , ∥ϱ∥∞, ∥Y ∥∞ and ∥χ •M̄∥BMO.

Proof. De�ne X̃t := exp(aYt), 0 ≤ t ≤ T , for some a > 0 to be chosen later. By

Itô's formula,

dX̃t

X̃t

= aft(ζt, χt)dIt − aϱtd⟨N⟩t +
a2(ζ⊤t c

M̄
t ζtdIt + d⟨N⟩t)

2

+ aζtdM̄t + adNt (6.5)

for 0 ≤ t ≤ T . We claim that the process (Xt)0≤t≤T de�ned by

Xt = X̃t + 2aCf

∫ t

0

X̃s∥χs∥2cM̄s dIs − δ

∫ t

0

X̃s|ζs|2cM̄s dIs − δ(X̃ • ⟨N⟩)t (6.6)

is a local submartingale for some a > 0 and δ > 0. It su�ces to show that

the �nite-variation part of X is increasing. We �rst consider the dI-component,

which by (6.5) and (6.6) is given by(
aft(ζt, χt) + 2aCf∥χt∥2cM̄t +

(a2 − 2δ)

2
|ζt|2cM̄t

)
X̃tdIt, 0 ≤ t ≤ T.

If we choose a and δ such that a > 4Cf and 0 < δ <
a2−4aCf

2
, then (6.4) yields

aft(ζt, χt) + 2aCf∥χt∥2cM̄t +
(a2 − 2δ)

2
|ζt|2cM̄t

≥ −2aCf (|ζt|2cM̄t + ∥χt∥2cM̄t ) + 2aCf∥χt∥2cM̄t +
(a2 − 2δ)

2
|ζt|2cM̄t

=
1

2
(a2 − 4aCf − 2δ)|ζt|2cM̄t ≥ 0, 0 ≤ t ≤ T.

Thus the dI-component of X is increasing, and the conditions on a and δ depend

only on Cf . We now consider the d⟨N⟩-component of X which by (6.5) and (6.6)

is given by (
a2

2
− aϱt − δ

)
X̃td⟨N⟩t, 0 ≤ t ≤ T.

This is nonnegative if a > 2∥ϱ∥∞ and δ < a2

2
− a∥ϱ∥∞. Thus we may �x some

large a > 0 and small δ > 0 that depend only on Cf and ∥ϱ∥∞ such that X is a

local submartingale. Let (τn)n∈N be a localising sequence of stopping times such
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that Xτn is a submartingale for each n ∈ N. Then for any stopping time τ with

values in [0, T ], we have E[Xτn | Fτ ] ≥ Xτ∧τn . By rearranging (6.6), we obtain

δE

[ ∫ τn

τ∧τn
X̃s|ζs|2cM̄s dIs +

∫ τn

τ∧τn
X̃sd⟨N⟩s

∣∣∣∣ Fτ

]
≤ E

[
X̃τn − X̃τ∧τn + 2aCf

∫ τn

τ∧τn
X̃s∥χs∥2cM̄s dIs

∣∣∣∣ Fτ

]
for n ∈ N. Since X̃ = exp(aY ), we have ∥X̃∥∞ ≤ exp(a∥Y ∥∞) so that

E

[∫ τn

τ∧τn
X̃s|ζs|2cM̄s dIs+

∫ τn

τ∧τn
X̃sd⟨N⟩s

∣∣∣∣ Fτ

]
≤ 2 exp(a∥Y ∥∞)(1 + aCf∥χ •M̄∥2BMO)

δ

for n ∈ N. Taking n → ∞, the conditional monotone convergence theorem and

the lower bound inf0≤t≤T X̃t ≥ exp(−a∥Y ∥∞) yield

E

[∫ T

τ

|ζs|2cM̄s dIs + ⟨N⟩T − ⟨N⟩τ
∣∣∣∣ Fτ

]
≤ 2 exp(2a∥Y ∥∞)(1 + Cf∥χ •M̄∥2BMO)

δ
.

As this holds for any stopping time τ , it follows that ζ • M̄,N ∈ BMO and the

bounds depend only on Cf , ∥ϱ∥∞, ∥Y ∥∞ and ∥χ •M̄∥BMO.

Before proceeding to the main result on the stability of (6.2), we �rst give

two technical lemmas.

Lemma 6.3. Let (Xn)n∈N, (Yn)n∈N be sequences of nonnegative random variables

such that XnYn
P→ 0 as n→ ∞ and

Cκ̃ := sup
n∈N

E[X−κ̃
n ] <∞

for some κ̃ > 0. Then Yn
P→ 0 as n→ ∞.

Proof. By the Markov inequality, P [Xn ≤ ϵ] = P [X−κ̃
n ≥ ϵ−κ̃] ≤ Cκ̃ϵ

κ̃ for all

ϵ > 0 and n ∈ N. Since XnYn
P→ 0 as n→ ∞, we obtain for any δ, ϵ > 0 that

lim sup
n→∞

P [Y n > δ] ≤ lim sup
n→∞

(P [XnYn > ϵδ] + P [Xn ≤ ϵ]) ≤ Cκ̃ϵ
κ̃.

Hence because ϵ > 0 is arbitrary, P [Y n > δ] → 0 and Y n P→ 0 as n→ ∞.

We now introduce some notation in order to state the next lemma and the

main result in Theorem 6.6.
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De�nition 6.4. Let m ∈ N. We say that a family (fn)n∈N∪{∞} of predictable

functions fn : Ω× [0, T ]× Rd̄×m → R satis�es a uniform quadratic growth bound

(with respect to M̄) if there exists a constant Cf > 0 such that

|fn(x)| ≤ Cf∥x∥2cM̄ P ⊗ I-a.e. (6.7)

for n ∈ N∪{∞} and x ∈ Rd̄×m. We say that (fn)n∈N∪{∞} satis�es a uniform local

Lipschitz bound (with respect to M̄) if there exists a constant Lf > 0 such that

|fn(x1)− fn(x2)| ≤ Lf (∥x1 − x2∥cM̄ )(∥x1∥cM̄ + ∥x2∥cM̄ ) P ⊗ I-a.e. (6.8)

for n ∈ N ∪ {∞} and x1, x2 ∈ Rd̄×m.

We now show that the pointwise convergence of predictable functions fn sat-

isfying the bounds (6.7) and (6.8) implies the convergence of the stochastic pro-

cesses generated by replacing the spatial coordinate x of fn with a predictable

process (χt)0≤t≤T .

Lemma 6.5. Let fn : Ω× [0, T ]× Rd̄×m → R be a predictable function for each

n ∈ N ∪ {∞} and some m ∈ N. Suppose that (fn)n∈N∪{∞} satis�es the uniform

quadratic growth and local Lipschitz bounds (6.7) and (6.8), and that

lim
n→∞

fn(x) = f∞(x) P ⊗ I-a.e. (6.9)

for each x ∈ Rd̄×m. Then for any predictable process (χt)0≤t≤T ∈ L2
loc(M̄ ;Rd̄×m),

it holds that

lim
n→∞

∫ T

0

|fnt (χt)− f∞
t (χt)|dIt = 0 P -a.s. (6.10)

Proof. We start by approximating the process χ by a simple process χ̃ with values

in Rd̄×m, and for that we partition the latter space into hypercubes. Fix some

δ > 0 and consider the partition (D̃z)z∈Zd̄×m of Rd̄×m, where D̃z is the hypercube

given by
∏d̄×m

j=1 [zj, zj + 1). For each z ∈ Zd̄×m, we then further partition D̃z into

qd̄×mz smaller hypercubes of side length 1/qz, where

qz :=

⌈
supx∈D̃z

|x|
(md̄)1/2δ

⌉
.

Thus if we enumerate the resulting family of smaller hypercubes by (Di)i∈N in

some arbitrary order, it follows that the Di form a partition of Rd̄×m. Moreover,



6 A stability result for quadratic BSDEs 303

let i ∈ N and take z ∈ Zd̄×m such that Di ⊆ D̃z. Then we have the inequality

diam(Di) sup
x∈Di

|x| ≤ (d̄m)1/2

qz
sup
x∈D̃z

|x| ≤ δ (6.11)

by the choice of qz; this holds for all i ∈ N.
We can now use the partition (Di) to show (6.10). Without loss of generality,

we may assume that f∞ = 0. For each i ∈ N, pick an arbitrary element xi ∈ Di.

By (6.7) and since ∥ · ∥cM̄t ≤ ∥ · ∥, we have for i ∈ N that |fn(xi)| ≤ Cf∥xi∥2

P ⊗ I-a.e. for all n ∈ N, where∫ T

0

Cf∥xi∥2dIt = Cf∥xi∥2tr ⟨M̄⟩T <∞ P -a.s. for i ∈ N.

Thus (6.9) with f∞ = 0 and the dominated convergence theorem with majorant

Cf∥χi∥2 for each i yield

P

[
lim
n→∞

∫ T

0

|fnt (xi)|dIt = 0,∀i ∈ N
]
= 1. (6.12)

Now �x a process χ ∈ L2
loc(M̄ ;Rd̄×m). Consider the random sets

Ai := {(ω, t) ∈ Ω× [0, T ] : χt(ω) ∈ Di}, i ∈ N,

and de�ne the process χ̃ :=
∑

i∈N 1Ai
xi. By construction, we have on Ai that

χ ∈ Di and χ̃ = xi ∈ Di. Then by (6.7), (6.8) and (6.11), we have P ⊗ I-a.e. that

|fn(χ)| ≤ Cf∥χ∥2cM̄ ,

|fn(χ)− fn(χ̃)| ≤ Lf (∥χ− χ̃∥cM̄ )(∥χ∥cM̄ + ∥χ̃∥cM̄ )

≤
∑
i∈N

Lf1Ai
(∥χ− xi∥)(∥χ∥+ ∥xi∥) ≤ 2Lfδ. (6.13)

In particular, |fn(χ̃)| ≤ Cf∥χ∥2cM̄ + 2Lfδ so that

yi,n :=

∫ T

0

1Ai
|fnt (χ̃i)|dIt ≤

∫ T

0

1Ai
(Cf∥χt∥2cM̄t + 2Lfδ)dIt =: ȳi P -a.s.

for each i ∈ N and uniformly in n ∈ N, where the majorant de�ned by the map
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i 7→ ȳi is summable since

∑
i∈N

ȳi =

∫ T

0

(Cf∥χt∥2cM̄t + 2Lfδ)dIt = Cf tr ⟨χ •M̄⟩T + 2Lfδtr ⟨M̄⟩T <∞ P -a.s.

Thus by (6.12) and the dominated convergence theorem with respect to the count-

ing measure on N, we have

lim
n→∞

∫ T

0

|fnt (χ̃t)|dIt = lim
n→∞

∑
i∈N

yi,n

=
∑
i∈N

lim
n→∞

yi,n =
∑
i∈N

lim
n→∞

∫ T

0

1Ai
|fnt (xi)|dIt = 0 P -a.s.

Hence (6.13) yields

lim sup
n→∞

∫ T

0

|fnt (χt)|dIt ≤
∫ T

0

2δdIt + lim
n→∞

∫ T

0

|fnt (χ̃t)|dIt ≤ 2δtr ⟨M̄⟩T P -a.s.

As we assumed f∞ = 0 and δ > 0 is arbitrary, (6.10) follows by taking δ ↘ 0.

We are now ready to give a stability result for equations of the form (6.2),

where we replace the inputs f, χ and G with sequences (fn)n∈N∪{∞}, (χ
n)n∈N∪{∞}

and (Gn)n∈N∪{∞} such that fn → f∞, χn → χ∞ and Gn → G∞ as n → ∞ in

the sense of (d), (b) and (e) below. As discussed after Example 6.1, we assume

that solutions (Y n, ζn, Nn) to the corresponding equations are given a priori.

Additionally, we suppose that the sequence of solutions (Y n)n∈N is uniformly

bounded in L∞; this is needed since Proposition 6.2 does not provide an a priori

bound for Y n. In addition to the previous results, we also use in the proof some

well-known facts about continuous BMO martingales that are given afterwards

in Section 6.2 for convenience.

We follow the basic structure of the proof of Zhang [121, Theorem 7.3.4]:

namely, we obtain a BSDE for Y n − Y ∞ and simplify it by a change of measure.

More precisely, we �nd the dynamics of Zn(Y n − Y ∞) for a suitable positive

martingale Zn started at 1, which by Girsanov's theorem is equivalent to �nding

the dynamics of Y n−Y ∞ under the equivalent measure with density Zn
T . We can

then obtain bounds for |Y n − Y ∞| as well as for the di�erences of the martin-

gale parts. The change of measure is here more delicate than in [121] since the

coe�cients that de�ne Zn are not bounded in this case, and hence more care is

required to obtain the subsequent bounds.
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Theorem 6.6. Suppose that (Y n)n∈N∪{∞} is a sequence of continuous semi-

martingales on [0, T ] such that Y n for n ∈ N ∪ {∞} satis�es the equation

dY n
t = fnt (ζ

n
t , χ

n
t )dIt − ϱtd⟨Nn⟩t + ζnt dM̄t + dNn

t , 0 ≤ t ≤ T, (6.14)

Y n
T = Gn,

where Nn is a continuous local martingale orthogonal to M̄ , χn ∈ L2(M̄ ;Rd̄×m)

and ζn ∈ L2
loc(M̄ ;Rd̄) are predictable integrands, (ϱt)0≤t≤T is a bounded predictable

process, Gn ∈ L∞(FT ) and fn : Ω × [0, T ] × Rd̄ × Rd̄×m → R is a predictable

function. Suppose that the following conditions hold:

(a) CY := supn∈N∪{∞} ∥ supt∈[0,T ] |Y n
t |∥∞ <∞.

(b) The processes χn •M̄ are BMO martingales for each n ∈ N ∪ {∞} with

sup
n∈N∪{∞}

∥χn •M̄∥BMO <∞.

Moreover, tr ⟨(χn − χ∞) •M̄⟩T
P→ 0 as n→ ∞.

(c) (fn)n∈N∪{∞} satis�es the uniform quadratic growth and local Lipschitz

bounds (6.7) and (6.8) (with (z, x) ∈ Rd̄×(m+1) in place of x).

(d) For any z ∈ Rd̄ and x ∈ Rd̄×m, it holds that

lim
n→∞

fn(z, x) = f∞(z, x) P ⊗ I-a.e.

(e) Gn P→ G∞ as n→ ∞.

Then the families of martingales (ζn • M̄)n∈N∪{∞} and (Nn)n∈N∪{∞} are bounded

in BMO, and it holds as n→ ∞ that

sup
t∈[0,T ]

|Y n
t − Y ∞

t | P−→ 0, (6.15)

⟨(ζn − ζ∞) •M̄⟩T + ⟨Nn −N∞⟩T
P−→ 0. (6.16)

Proof. (i) We �rst derive a BSDE for δnY := Y n−Y ∞. In the following, we also

write δnX := Xn −X∞ and σnX := Xn +X∞ for X ∈ {ζ,N, χ,G, f}. Taking
di�erences in (6.14) yields for each n ∈ N and 0 ≤ t ≤ T the BSDE

dδnYt =
(
fnt (ζ

n
t , χ

n
t )− f∞

t (ζ∞t , χ
∞
t )
)
dIt − ϱtd⟨δnN, σnN⟩t

+ δnζtdM̄t + dδnNt (6.17)
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with terminal condition δnYT = δnG. We decompose the drift term as

fnt (ζ
n
t , χ

n
t )− f∞

t (ζ∞t , χ
∞
t ) = δnft(ζ

∞
t , χ

∞
t ) +

(
fnt (ζ

∞
t , χ

n
t )− fnt (ζ

∞
t , χ

∞
t )
)

+
(
fnt (ζ

n
t , χ

n
t )− fnt (ζ

∞
t , χ

n
t )
)
, 0 ≤ t ≤ T. (6.18)

De�ne the predictable processes (αnt )0≤t≤T , (β
n
t )0≤t≤T for 0 ≤ t ≤ T as

αnt := 1{|δnζt|
cM̄t

̸=0}
fnt (ζ

n
t , χ

n
t )− fnt (ζ

∞
t , χ

n
t )

|δnζt|cM̄t
, (6.19)

βnt := 1{∥δnχt∥
cM̄t

̸=0}
fnt (ζ

∞
t , χ

n
t )− fnt

(
ζ∞t , χ

∞
t

)
∥δnχt∥cM̄t

(6.20)

so that by (6.8), we have

max(|αn|, |βn|) ≤ 2Lf (|ζn|cM̄ + |ζ∞|cM̄ + ∥χn∥cM̄ + ∥χ∞∥cM̄ ) P ⊗ I-a.e. (6.21)

By plugging (6.19) and (6.20) into (6.18), we can rewrite (6.17) as

dδnYt =
(
δnft(ζ

∞
t , χ

∞
t ) + βnt ∥δnχt∥cM̄t + αnt |δnζt|cM̄t

)
dB̄t

− ϱtd⟨δnN, σnN⟩t + dMY,n
t , 0 ≤ t ≤ T, (6.22)

where we de�ne (MY,n
t )0≤t≤T by

MY,n := δnζ •M̄ + δnN. (6.23)

Next, we want to remove the drift terms from (6.22) involving δnζ and δnN . To

that end, consider the stochastic exponential (Zn
t )0≤t≤T given by Zn := E(MZ,n),

where we de�ne the local martingale (MZ,n
t )0≤t≤T by

MZ,n := −
(

αn

|δnζ|cM̄
δnζ

)
•M̄ + ϱ •σnN (6.24)

for n ∈ N. For later use, we also de�ne the local martingales (MZ,Y,n
t )0≤t≤T and

(M̂Z,Y,n
t )0≤t≤T by

MZ,Y,n := δnY •MZ,n +MY,n, (6.25)

M̂Z,Y,n := δnY •MZ,Y,n + δnY •MY,n. (6.26)

We now check that MY,n,MZ,n,MZ,Y,n and M̂Z,Y,n are martingales that are
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bounded in BMO over n ∈ N ∪ {∞}. Note that the sequence (χn •M̄)n∈N∪{∞} is

bounded in BMO by assumption (b). Thus by Proposition 6.2 and the uniform

bounds in (a), (b) and (c), the sequences (ζn • M̄)n∈N∪{∞} and (Nn)n∈N∪{∞} are

also bounded in BMO; this already shows the �rst statement of the theorem.

Hence (MY,n)n∈N is bounded in BMO since each of the terms in (6.23) is. For

MZ,n, with α̃n := − αn

|δnζ|
cM̄
δnζ, the bound (6.21) yields

d⟨α̃n •M̄⟩t =
|αnt |2(δnζt)⊤cM̄t δnζt

|δnζt|2cM̄t
dIt

= |αnt |2dIt
≤ 16L2

f (|ζnt |2cM̄t + |ζ∞t |2
cM̄t

+ ∥χnt ∥2cM̄t + ∥χ∞
t ∥2

cM̄t
)dIt (6.27)

for 0 ≤ t ≤ T . Since we have for any φ ∈ L2
loc(M̄) that

⟨φ •M̄⟩T − ⟨φ •M̄⟩t =
∫ T

t

(φu)
⊤cM̄u φudIu =

∫ T

t

|φu|2cM̄u dIu, 0 ≤ t ≤ T, (6.28)

it follows from (6.27) that the increments of ⟨α̃n • M̄⟩ are bounded by a linear

combination of the increments of ⟨ζn •M̄⟩, ⟨ζ∞ •M̄⟩, ⟨χn •M̄⟩ and ⟨χ∞ •M̄⟩, and
so α̃n ∈ L2(M̄) and α̃n • M̄ is also a BMO martingale. Since the constant 16L2

f

in (6.27) is independent of n, also (α̃n •M̄)n∈N is bounded in BMO. Likewise, ϱ

is bounded and (σnN)n∈N is bounded in BMO so that (ϱ •σnN)n∈N is bounded in

BMO, and hence so is (MZ,n)n∈N by (6.24). Finally, (MZ,Y,n)n∈N and (M̂Z,Y,n)n∈N

are bounded in BMO like (MY,n)n∈N and (MZ,n)n∈N by (6.25) and (6.26) because

(Y n)n∈N is uniformly bounded by assumption (a).

Returning to (6.22), the orthogonality Nn, N∞ ⊥ M̄ and (6.24) yield

d⟨MZ,n, δnY ⟩t = − αnt
|δnζt|cM̄t

(δnζt)
⊤cM̄t δ

nζtdIt + ϱtd⟨δnN, σnN⟩t

= −αnt |δnζt|cM̄t dIt + ϱtd⟨δnN, σnN⟩t, 0 ≤ t ≤ T. (6.29)

By the product rule, plugging (6.24) and (6.29) into (6.22) yields

d(Zn
t δ

nYt)

Zn
t

=
(
βnt ∥δnχt∥cM̄t + δnft(ζ

∞
t , χ

∞
t )
)
dIt + dMZ,Y,n

t , 0 ≤ t ≤ T, (6.30)

where we recall MZ,Y,n from (6.25). For later use, we also derive a BSDE for
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Zn
t (δ

nYt)
2. By (6.23)�(6.25), we have

d⟨MY,n,MZ,Y,n⟩t = δnYtd⟨MY,n,MZ,n⟩t + d⟨MY,n⟩t
= −δnYt

(
αnt |δnζt|cM̄t dIt − ϱtd⟨δnN, σnN⟩t

)
+ d⟨MY,n⟩t.

Thus by applying the product rule to (6.22) and (6.30), we get

d(Zn
t (δ

nYt)
2)

Zn
t

= δnYt

(
d(Zn

t δ
nYt)

Zn
t

+ dδnYt

)
+ d⟨MY,n,MZ,Y,n⟩t

= 2δnYt
(
βnt ∥δnχt∥cM̄t + δnft(ζ

∞
t , χ

∞
t )
)
dIt

+ d⟨MY,n⟩t + dM̂Z,Y,n
t , 0 ≤ t ≤ T, (6.31)

where we recall M̂Z,Y,n from (6.26).

(ii) Next, we show that Zn • MZ,Y,n is a true martingale in order to take

conditional expectations in (6.30). By Lemma 6.9 below and since (MZ,n)n∈N is

bounded in BMO, each Zn = E(MZ,n) is a strictly positive martingale on [0, T ]

satisfying the bound

sup
t∈[0,T ]

E

[
sup
u∈[t,T ]

∣∣∣∣Zn
u

Zn
t

∣∣∣∣1+κ ∣∣∣∣ Ft

]
≤ CZ (6.32)

for n ∈ N ∪ {∞} and some constants κ > 0, CZ > 0 independent of n. Since

MZ,Y,n ∈ BMO, we have by (6.32) and Lemma 6.11 below with γ = Zn that

Zn •MZ,Y,n is a (true) P -martingale on [0, T ]. Taking conditional expectations in

(6.30) and recalling the terminal condition δnYT = δnG, we thus obtain

Zn
t δ

nYt = E

[
Zn
T δ

nG−
∫ T

t

Zn
u

(
βnu∥δnχu∥cM̄u + δnfu(ζ

∞
u , χ

∞
u )
)
dIu

∣∣∣∣ Ft

]
for 0 ≤ t ≤ T and n ∈ N ∪ {∞}. Dividing by Zn

t yields

δnYt = E

[
Zn
T δ

nG

Zn
t

−
∫ T

t

Zn
u

Zn
t

(
βnu∥δnχu∥cM̄u + δnfu(ζ

∞
u , χ

∞
u )
)
dIu

∣∣∣∣ Ft

]
(6.33)

for 0 ≤ t ≤ T . Taking absolute values in (6.33), we obtain the bound

|δnYt| ≤ E

[
Zn,∗
t,T

(∣∣δnG∣∣+ ∫ T

t

(
|βnu |∥δnχu∥cM̄u +

∣∣δnfu(ζ∞u , χ∞
u )
∣∣)dIu) ∣∣∣∣ Ft

]
(6.34)
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for 0 ≤ t ≤ T , where Zn,∗
t,T := supu∈[t,T ] |Zn

u/Z
n
t |.

(iii) We now use (6.34) to show the convergence of the sequence (δnY ) as

n → ∞. By (6.32), (Zn,∗
t,T )n∈N is bounded in L1+κ. Due to assumptions (a) and

(e), (δnG)n∈N is uniformly bounded with δnG P→ 0 as n → ∞. Next we consider

the integral terms in (6.34). By the Cauchy�Schwarz inequality,

∫ T

0

|βnu |∥δnχu∥cM̄u dIu ≤
(∫ T

0

|βnu |2dIu
)1/2(∫ T

0

∥δnχu∥2cM̄u dIu
)1/2

. (6.35)

We want to show that the �rst factor on the right-hand side of (6.35) is bounded

in Lp uniformly in n ∈ N and the second converges to 0 as n→ ∞. Note that by

(6.21) and (6.7), we have for each φn ∈ {βn, δnf(ζ∞, χ∞)} that∫ T

t

|φnu|2dIu ≤ C

∫ T

t

(|ζnu |2cM̄u + |ζ∞u |2
cM̄u

+ ∥χnu∥2cM̄u + ∥χ∞
u ∥2

cM̄u
)dIu

for some constant C > 0 that does not depend on n. Combining this with (6.28)

and since (ζn •M)n∈N∪{∞} and (χn •M)n∈N∪{∞} are bounded in BMO, we obtain

sup
n∈N

sup
t∈[0,T ]

E

[ ∫ T

t

|φnu|2dIu
∣∣∣∣ Ft

]
<∞.

Hence by Corollary 6.8 below and because (δnχ •M)n∈N is bounded in BMO with

tr d⟨δnχ •M⟩u = ∥δnχu∥2cM̄u dIu, the sets{∣∣∣∣ ∫ T

0

|φnu|2dIu
∣∣∣∣p : n ∈ N

}
and

{∣∣∣∣ ∫ T

0

∥δnχu∥2cM̄u dIu
∣∣∣∣p : n ∈ N

}
(6.36)

are uniformly integrable for each p ∈ [1,∞) and φn ∈ {βn, δnf(ζ∞, χ∞)}. Moreover,

by assumption (b), we have∫ T

0

∥δnχu∥2cM̄u dIu =
∫ T

0

tr
(
δnχuc

M̄
u (δnχu)

⊤)dIu = tr ⟨δnχ •M̄⟩T
P−→ 0

as n→ ∞, and hence we obtain∫ T

0

∥δnχu∥2cM̄u dIu
Lp

−→ 0 as n→ ∞ for each p ∈ [1,∞). (6.37)

Returning to (6.35), it follows from (6.36) for φn = βn, (6.37) and Hölder's
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inequality that∫ T

0

|βnu |∥δnχu∥cM̄u dIu
Lp

−→ 0 as n→ ∞ for each p ∈ [1,∞). (6.38)

For the second term inside the integral in (6.34), assumption (d) and Lemma 6.5

yield ∫ T

0

|δnfu(ζ∞u , χ∞
u )|dIu

P−→ 0 as n→ ∞.

Together with (6.36) for φn = δnf(ζ∞, χ∞), this yields∫ T

0

|δnfu(ζ∞u , χ∞
u )|dIu

Lp

−→ 0 as n→ ∞ for each p ∈ [1,∞). (6.39)

We can now return to (6.34). By Hölder's inequality, we have

sup
t∈[0,T ]

|δnYt| ≤ sup
t∈[0,T ]

E[(Zn,∗
t,T )

1+κ | Ft]
1

1+κ sup
t∈[0,T ]

E
[
G̃

κ+1
κ

n

∣∣ Ft

] κ
κ+1 , (6.40)

where we recall Zn,∗
t,T := supu∈[t,T ] |Zn

u/Z
n
t | and κ > 0 from (6.32) and de�ne

G̃n := |δnG|+
∫ T

0

(
|βnu |∥δnχu∥cM̄u + |δnfu(ζ∞u , χ∞

u )|
)
dIu. (6.41)

Since (δnG)n∈N is uniformly bounded by assumption (a) and δnG P→ 0 as n→ ∞,

we also have by the dominated convergence theorem that δnG Lp

→ 0 as n→ ∞ for

each p ≥ 1. Combining with (6.38) and (6.39) yields

G̃n
Lp

−→ 0 as n→ ∞ for each p ∈ [1,∞). (6.42)

Equivalently, G̃
κ+1
κ

n
Lp

→ 0 as n → ∞ for each p ≥ 1. Doob's Lp-inequality then

yields

sup
0≤t≤T

E[G̃
κ+1
κ

n | Ft] −→ 0 as n→ ∞

in Lp for each p ≥ 1 as well as in probability. Plugging into (6.40) and using

the fact that the �rst term on the right-hand side there is uniformly bounded by

(6.32), we �nally obtain (6.15), i.e., supt∈[0,T ] |Y n
t − Y ∞

t | P→ 0 as n→ ∞.

(iv) It remains to show (6.16), i.e., that the martingale parts ζn •M̄ and Nn

converge. To that end, recall the BSDE (6.31) for Zn(δnY )2. We want to take

conditional expectations in (6.31) similarly to (6.30). Since M̂Z,Y,n ∈ BMO by

(6.26), we have by (6.32) and Lemma 6.11 below with γ = Zn that Zn • M̂Z,Y,n
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is a (true) P -martingale on [0, T ]. We can then take conditional expectations in

(6.31) with (δnYT )
2 = (δnG)2 to obtain

(δnYt)
2 = E

[
Zn
T

Zn
t

(δnG)2 − 2

∫ T

t

Zn
u

Zn
t

δnYu
(
βnu∥δnχu∥cM̄u + δnfu(ζ

∞
u , χ

∞
u )
)
dIu

−
∫ T

t

Zn
u

Zn
t

d⟨MY,n⟩u
∣∣∣∣ Ft

]
, 0 ≤ t ≤ T.

Taking t = 0 and rearranging yields

E

[ ∫ T

0

Zn
ud⟨MY,n⟩u

]
= −E

[
2

∫ T

0

Zn
u δ

nYu
(
βnu∥δnχu∥cM̄u + δnfu(ζ

∞
u , χ

∞
u )
)
dIu

]
+ E[Zn

T (δ
nG)2]− (δnY0)

2. (6.43)

The last term on the right-hand side converges to 0 as n→ ∞ by (6.15). Recalling

the de�nitions (6.41) of G̃n and Zn,∗
0,T := supu∈[0,T ] |Zn

u |, we have by assumption

(a), Hölder's inequality and (6.32) that

E

[
2

∫ T

0

Zn
u |δnYu|

∣∣βnu∥δnχu∥cM̄u + δnfu(ζ
∞
u , χ

∞
u )
∣∣dIu]+ E[Zn

T (δ
nG)2]

≤ 4CYE

[
Zn,∗

0,T

∫ T

0

∣∣βnu∥δnχu∥cM̄u + δnfu(ζ
∞
u , χ

∞
u )
∣∣dIu]+ 2CYE[Z

n,∗
0,T |δ

nG|]

≤ 4CYE[Z
n,∗
0,T G̃n] ≤ 4CYC

1
1+κ

Z E
[
G̃

κ+1
κ

n

] κ
κ+1 .

Plugging into (6.43), we obtain due to (6.42) that

E

[ ∫ T

0

Zn
ud⟨MY,n⟩u

]
−→ 0 as n→ ∞. (6.44)

The �nal step is to remove the integrand Zn from (6.44) to show that ⟨MY,n⟩T
converges to 0. Note that

Zn
T ⟨MY,n⟩T =

∫ T

0

Zn
ud⟨MY,n⟩u +

∫ T

0

⟨MY,n⟩udZn
u (6.45)

by the product rule. We also recall that MY,n,MZ,n ∈ BMO as shown after

(6.28). Thus by (6.32), Corollary 6.8 below and Hölder's inequality with p = 1+κ
1+κ/2

and q = 1+κ
κ/2

, we obtain

E
[
sup
t∈[0,T ]

(|Zn
t |⟨MY,n⟩t)1+κ/2

]
≤ E[(Zn,∗

0,T )
1+κ]1/pE[⟨MY,n⟩q(1+κ/2)T ]1/q <∞.
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By combining this bound with the de�nition Zn = E(MZ,n), Lemma 6.11 with

γ = Zn⟨MY,n⟩ and (6.32), we obtain that ⟨MY,n⟩ •Zn = (Zn⟨MY,n⟩) •MZ,n is a

true martingale. After taking expectations in (6.45), (6.44) gives

E[Zn
T ⟨MY,n⟩T ] = E

[ ∫ T

0

Zn
ud⟨MY,n⟩u

]
−→ 0 as n→ ∞.

In particular, we have Zn
T ⟨MY,n⟩T

P→ 0 as n → ∞. Moreover, since (MZ,n)n∈N is

bounded in BMO, Lemma 6.10 below gives for some constants κ̃, Cκ̃ > 0 that

E[(Zn
T )

−κ̃] ≤ Cκ̃ for all n ∈ N.

Thus applying Lemma 6.3 to the random variables Zn
T and ⟨MY,n⟩T yields that

⟨MY,n⟩T
P→ 0 as n → ∞. Finally, by the de�nition (6.23) of MY,n and since

Nn, N∞ ⊥ M̄ , we have

⟨MY,n⟩T = ⟨δnζ •M̄⟩T + ⟨δnN⟩T
P−→ 0 as n→ ∞,

which shows (6.16) and completes the proof, since we have shown after (6.26)

that (ζn • M̄)n∈N∪{∞} and (Nn)n∈N∪{∞} are bounded in BMO, and (6.15) was

proven at the end of step (iii).

6.2 Lemmas on BMO martingales

We collect here some useful results on BMO martingales that are well known in

the literature and needed for the proof of Theorem 6.6; we use Kazamaki [81] as

a reference.

Lemma 6.7. Let (Mt)0≤t≤T be a continuous BMO martingale. Then there exist

constants α,Cα > 0 that depend only on ∥M∥BMO such that

ess supt∈[0,T ]E
[
exp

(
α(⟨M⟩T − ⟨M⟩t)

) ∣∣ Ft

]
≤ Cα. (6.46)

Proof. Choose α > 0 such that α∥M∥BMO = ∥αM∥BMO < 1. Then by applying

[81, Theorem 2.2] to αM and all (constant) stopping times t ∈ [0, T ], we obtain

(6.46) for the constant Cα = 1
1−α2∥M∥2BMO

<∞.

Corollary 6.8. Let (Mn)n∈N be a sequence of continuous martingales on [0, T ]

that is bounded in BMO. Then the set {⟨Mn⟩pT : n ∈ N} is uniformly integrable

for each p ∈ [1,∞).
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Proof. Fix p ≥ 1. Note that Lemma 6.7 yields (6.46) simultaneously for all

Mn with constants α,Cα > 0 that depend only on supn∈N ∥Mn∥BMO. By the

elementary inequality x ≤ exp(cx)/c with c = α/(p+ 1) > 0, we have

E[⟨Mn⟩p+1
T ] ≤

(
p+ 1

α

)p+1

E[exp(α⟨Mn⟩T )] ≤
(
p+ 1

α

)p+1

Cα.

As ⟨Mn⟩p+1 = (⟨Mn⟩pT )
p+1
p , the set {⟨Mn⟩pT : n ∈ N} is bounded in L

p+1
p and

hence uniformly integrable.

Lemma 6.9. Let (Mt)0≤t≤T be a continuous BMO martingale. Then E(M) is a

uniformly integrable martingale on [0, T ] and there exist constants κ,Cκ > 0 that

depend only on ∥M∥BMO such that

sup
t∈[0,T ]

E

[
sup
u∈[t,T ]

E(M)1+κu

E(M)1+κt

∣∣∣∣ Ft

]
≤ Cκ. (6.47)

Proof. By [81, Theorem 2.3], E(M) is a uniformly integrable martingale. As

pointed out in [81, after Equation (3.4)], the function Φ in [81, Theorem 3.1] is

continuous and decreasing on (1,∞) with limp↘1Φ(p) = ∞. Thus there exists

κ > 0 that depends only on ∥M∥BMO such that Φ(1+ κ) > ∥M∥BMO, and hence

[81, Theorem 3.1 and De�nition 3.1] yield (6.47) for some Cκ > 0. By inspecting

[81, Equation (3.5)] and the last equation in the proof of [81, Theorem 3.1], we

see that Cκ depends only on ∥M∥BMO and the choice of κ > 0.

Lemma 6.10. Let (Mt)0≤t≤T be a continuous BMO martingale. Then there exist

constants κ̃, Cκ̃ > 0 that depend only on ∥M∥BMO such that

sup
t∈[0,T ]

E

[
E(M)−κ̃T
E(M)−κ̃t

∣∣∣∣ Ft

]
≤ Cκ̃. (6.48)

Proof. For α, κ > 0 given by Lemmas 6.7 and 6.9, de�ne the constants

p :=
α + 1 + κ

α
> 1, q :=

α + 1 + κ

1 + κ
> 1, κ̃ :=

α(1 + κ)

α + 1 + κ
> 0,

so that 1
p
+ 1

q
= 1 with κ̃p = 1 + κ and κ̃q = α. Note that

E(M)−1
T

E(M)−1
t

=
E(−M)T
E(−M)t

exp(⟨M⟩T − ⟨M⟩t).
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Then by Hölder's inequality, we have

E

[
E(M)−κ̃T
E(M)−κ̃t

∣∣∣∣ Ft

]
≤ E

[
E(−M)κ̃pT
E(−M)κ̃pt

∣∣∣∣ Ft

]1/p
E
[
exp

(
κ̃q(⟨M⟩T − ⟨M⟩t)

) ∣∣ Ft

]1/q
= E

[
E(−M)1+κT

E(−M)1+κt

∣∣∣∣ Ft

]1/p
E
[
exp

(
α(⟨M⟩T − ⟨M⟩t)

) ∣∣ Ft

]1/q
≤ C1/p

κ C1/q
α =: Cκ̃

for 0 ≤ t ≤ T , which shows (6.48).

Lemma 6.11. Let (Mt)0≤t≤T be a continuous BMO martingale and (γt)0≤t≤T a

predictable process such that E[supt∈[0,T ] |γt|1+δ] <∞ for some δ > 0. Then γ •M

is an H1-martingale on [0, T ].

Proof. Set γ∗ := supt∈[0,T ] |γt|. By the assumption, Corollary 6.8 and Hölder's

inequality, we have

E[⟨γ •M⟩1/2T ] = E

[(∫ T

0

γ2t d⟨M⟩t
)1/2]

≤ E[γ∗⟨M⟩1/2T ]

≤ E[(γ∗)1+κ]
1

1+κE[⟨M⟩
κ+1
2κ
T ]

κ
κ+1 <∞.

Hence by the Burkholder�Davis�Gundy inequality, we have

E
[
sup
t∈[0,T ]

|γ •Mt|
]
≤ CE[⟨γ •M⟩1/2T ] <∞

for some C > 0 so that γ •M is an H1-martingale on [0, T ].



Appendix A

Volterra equations

In this appendix, we give some results on the existence and uniqueness of solutions

to convolution equations, particularly of Riccati�Volterra type. These results

are used in Chapter I for proving Theorem I.2.17, which is needed in several

proofs related to the mean�variance hedging problem for the rough Heston model.

Throughout this appendix, we use the textbook by Gripenberg et al. [59] as the

main reference for results related to this topic.

We start by citing three well-known theorems: the Kolmogorov�Riesz com-

pactness criterion, the Schauder �xed point theorem and Young's convolution in-

equality. The latter is included in Lemma 1.5, where we show a slightly stronger

result. We also give an auxiliary result in Lemma 1.6. The main results in this

section are then Propositions 2.2 and 2.4, which give general conditions for the

existence and uniqueness of solutions x : [0, T ] → Cn to a convolution equation

of the form x = k ∗ f(x), for a given nonlinear function f and kernel k. These

two propositions give the existence of continuous and Lp-integrable solutions,

respectively. In Corollaries 2.6 and 2.7, we show the existence and uniqueness

of solutions to equations of the alternative form x = f(k ∗ x), which we use

most often in Chapters I and II. We also give explicit bounds for the solutions of

Riccati�Volterra equations as well as a stability result. Finally, we conclude with

the proofs of two results directly related to Chapter I.

1 Preliminaries

We recall the de�nition of the convolution operation.

Notation 1.1. In the following, we generally work with the spaces Lq([0, T ];C)
or Lq([0, T ];Cn) for T > 0, q ∈ [1,∞) and n ∈ N, where the integrability is
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de�ned with respect to the Lebesgue measure on [0, T ]. For ease of notation, we

denote the norms of either space by ∥ · ∥Lq(0,T ), ∥ · ∥Lq or ∥ · ∥q, when it is clear

from the context. Given T ∈ (0,∞], we also consider the space Lqloc([0, T );Cn) of

measurable functions f : [0, T ) → Cn such that ∥f∥Lq(0,t) <∞ for each t ∈ (0, T ).

De�nition 1.2. For T ∈ (0,∞), we de�ne the convolution k ∗ y of two functions
k ∈ L1([0, T ];C) and y ∈ L1([0, T ];Cn) by

(k ∗ y)(t) :=
∫ t

0

k(t− s)y(s)ds =

∫ t

0

k(s)y(t− s)ds, 0 ≤ t ≤ T, (1.1)

so that k ∗ y ∈ L1([0, T ];Cn) (see below). Alternatively, if k ∈ L1
loc([0, T );C) and

y ∈ L1
loc([0, T );Cn), then we de�ne k ∗ y by (1.1) for t ∈ [0, T ), and in this case

k ∗ y ∈ L1
loc([0, T );Cn).

The fact that k ∗ y is well de�ned, measurable and belongs to L1([0, T ];Cn)

or L1
loc([0, T );Cn), respectively, follows from [59, Theorem 2.2.2(i)]; this can also

be shown using Fubini's theorem and the Young convolution inequality that we

give later in Theorem 1.5, with p = q = r = 1. De�nition 1.2 di�ers slightly from

De�nition I.2.3, as we allow n > 1 and �x a terminal time T , which is convenient

for the type of results that we consider here. Note that the convolution has a

causality property, i.e., (k ∗ y)1[0,T ] only depends on k1[0,T ] and y1[0,T ] by the

de�nition (1.1). Thus the convolution k ∗ y does not depend on the terminal

time, in the sense that (k ∗ y)(t) is the same for any choice of time horizon T ≥ t.

We start by giving two well-known theorems from functional analysis that

are helpful for proving the subsequent results; see Alt/Nürnberg [9, Theorem

4.16] and Gripenberg et al. [59, Theorem 12.1.4], respectively, for references. The

�rst is a compactness criterion for Lp-spaces on Rn, analogous to the Arzelà�

Ascoli theorem for spaces of continuous functions, and the second is a �xed point

theorem that we use for showing the existence of solutions to Volterra equations.

Theorem 1.3 (Kolmogorov�Riesz compactness criterion). Let p ∈ [1,∞) and

n,m ∈ N. Then a subset D ⊆ Lp(Rn;Rm) is relatively compact (i.e., the closure

D ⊆ Lp(Rn;Rm) is compact) with respect to the Lp-norm-topology if and only if

the following conditions hold:

1) D is bounded, i.e., supf∈D ∥f∥Lp(Rn) <∞.

2) D is equicontinuous, i.e., limh↘0 supf∈D ∥f(·+ h)− f(·)∥Lp(Rn) = 0.

3) D is equitight, i.e., limR→∞ supf∈D ∥1Rn\BR(0)f∥Lp(Rn) = 0.
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Theorem 1.4 (Schauder �xed point theorem). Let B be a Banach space and

D ⊆ B a closed, bounded and convex subset. If Φ : D → D is a continuous

function such that Φ(D) ⊆ B is compact, then Φ has a �xed point in D.

We now give the well-known Young convolution inequality, together with an

additional statement on the compactness of the convolution map on Lp-spaces.

This is useful for the proofs of the subsequent propositions on the existence and

uniqueness of solutions to Volterra equations, and generalises [59, Theorem 2.2.5]

in the case where p, q > 1.

Lemma 1.5. Fix n ∈ N, T̄ ∈ (0,∞) and p, q, r ∈ [1,∞) such that 1
p
+ 1

q
= 1+ 1

r
.

For all k ∈ Lp([0, T̄ ];C) and y ∈ Lq([0, T̄ ];Cn), it holds that

∥k ∗ y∥Lr(0,T̄ ) ≤ ∥k∥Lp(0,T̄ )∥y∥Lq(0,T̄ ), (1.2)

and hence k ∗ y ∈ Lr([0, T̄ ];Cn). Moreover, for �xed k ∈ Lp([0, T̄ ];C), the linear

map y 7→ k ∗ y from Lq([0, T̄ ];Cn) to Lr([0, T̄ ];Cn) is compact, i.e., the set

D̃ := k ∗D := {k ∗ y : y ∈ D} ⊆ Lr([0, T̄ ];Cn)

is relatively compact for any bounded subset D ⊆ Lq([0, T̄ ];Cn).

Proof. The inequality (1.2) is Young's convolution inequality; see Sogge [113,

Theorem 0.3.1]. Since we need a slightly more general version of (1.2) in order

to show the compactness, we also give here a full proof. We start by de�ning the

constants

b =
p

r
, c =

q

r
, a = 1− b, d = 1− c. (1.3)

Since p, q, r ≥ 1 and 1
p
+ 1

q
= 1 + 1

r
by assumption, we must have r ≥ max(p, q),

and thus we get a, b, c, d ∈ [0, 1]. We also have the equality

a

p
+

1

r
+
d

q
=

(
1

p
− 1

r

)
+

1

r
+

(
1

q
− 1

r

)
=

1

p
+

1

q
− 1

r
= 1. (1.4)

Now recall the generalisation of Hölder's inequality to n functions on a measure

space (Ω,A, µ) (see Alt/Nürnberg [9, Theorem 3.18]), which gives that∥∥∥∥ n∏
j=1

fj

∥∥∥∥
L1(Ω,µ)

≤
n∏
j=1

∥fj∥Lpj (Ω,µ)

for functions fj ∈ Lpj(Ω, µ) and constants pj ∈ [1,∞] such that
∑

j
1
pj

= 1. In

particular, we can apply Hölder's inequality for three functions on [0, T̄ ] with
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powers p
a
, r and q

d
, due to (1.4). Recalling also (1.3), we can bound k ∗ y by

|(k ∗ y)(t)| =
∣∣∣∣ ∫ t

0

k(t− s)y(s)ds

∣∣∣∣ ≤ ∫ t

0

|k(t− s)|a|k(t− s)|b|y(s)|c|y(s)|dds

≤
(∫ t

0

|k(t− s)|pds
)a

p
(∫ t

0

|k(t− s)|p|y(s)|qds
) 1

r
(∫ t

0

|y(t− s)|qds
) d

q

≤ ∥k∥aLp(0,T̄ )∥y∥
d
Lq(0,T̄ )

(∫ t

0

|k(t− s)|p|y(s)|qds
) 1

r

,

for each t ∈ [0, T̄ ]. Now consider a subset E ⊆ [0, T̄ ] with Lebesgue measure

ℓ := |E| ∈ [0, T̄ ]. Integrating the previous inequality on E, we obtain by Fubini's

theorem that

∥1E(k ∗ y)∥Lr(0,T̄ ) ≤ ∥k∥aLp(0,T̄ )∥y∥
d
Lq(0,T̄ )

(∫
E

∫ t

0

|k(t− s)|p|y(s)|qdsdt
) 1

r

= ∥k∥aLp(0,T̄ )∥y∥
d
Lq(0,T̄ )

(∫ T̄

0

|y(s)|q
(∫

E∩[s,T̄ ]
|k(t− s)|pdt

)
ds

) 1
r

≤ ∥k∥aLp(0,T̄ )∥y∥
d
Lq(0,T̄ )

(∫ T̄

0

|y(s)|qds
) 1

r (
nk(ℓ)

) p
r

= ∥k∥aLp(0,T̄ )∥y∥Lq(0,T̄ )

(
nk(ℓ)

) p
r , (1.5)

using that d+ q
r
= d+ c = 1 and where we de�ne nk : (0, T̄ ] → [0,∞) by

nk(ℓ) := sup
{
∥k1E′∥Lp(0,T̄ ) : E

′ ⊆ [0, T̄ ], |E ′| ≤ ℓ
}
. (1.6)

Indeed as |E| = ℓ, the inner integral in the second line is taken over a set of

measure at most ℓ, so that it can be bounded by (nk(ℓ))
p. In the particular case

E = [0, T̄ ], so that ℓ = T̄ and nk(T̄ ) = ∥k∥Lp(0,T̄ ), we obtain (1.2) by plugging

into (1.5), since a+ p
r
= a+ b = 1.

We have thus shown Young's convolution inequality (1.2), and so the map

y 7→ k ∗ y is linear and continuous. It remains to show that it is compact. For a

given kernel k ∈ Lp([0, T̄ ];C), we need to show that the set

D̃ := k ∗D := {k ∗ y : y ∈ D} ⊆ Lr([0, T̄ ];Cn)

is relatively compact for any bounded set D ⊆ Lq([0, T̄ ];Cn). In the following,

we embed Lr([0, T̄ ];Cn) into Lr(R;Cn) by setting functions to 0 on R \ [0, T̄ ],

and denote the norm in Lr(R;Cn) by ∥ · ∥Lr . We also de�ne the shift operator
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∆δ : Lr(R;Cn) → Lr(R;Cn) by (∆δz)(t) = z(t + δ) for δ > 0. Note that each

z ∈ D̃ is supported on [0, T̄ ], so that

∆δz(t)− z(t) =



z(t+ δ), t ∈ [−δ, 0),

z(t+ δ)− z(t), t ∈ [0, T̄ − δ),

z(t), t ∈ [T̄ − δ, T̄ ],

0, t ∈ R \ [−δ, T̄ ].

Hence we get the equality

∥∆δz − z∥Lr =
(
∥z(1[0,δ] + 1[T̄−δ,T̄ ])∥Lr + ∥(∆δz − z)1[0,T̄−δ]∥Lr

)
(1.7)

for each z ∈ D̃. Our goal is now to show that supz∈D̃ ∥∆δz − z∥Lr → 0 as δ ↘ 0,

for which we use (1.7).

To show the convergence, �x y ∈ D, z := k ∗ y ∈ D̃ and δ > 0. Considering

the last term in (1.7), we have for 0 ≤ t ≤ T̄ − δ that

|∆δz(t)− z(t)| =
∣∣∣∣ ∫ t+δ

0

k(t+ δ − s)y(s)ds−
∫ t

0

k(t− s)y(s)ds

∣∣∣∣
=

∣∣∣∣ ∫ t+δ

t

k(t+ δ − s)y(s)ds+

∫ t

0

(
k(t+ δ − s)− k(t− s)

)
y(s)ds

∣∣∣∣
≤
∣∣∣∣ ∫ t+δ

t

k(t+ δ − s)y(s)ds

∣∣∣∣+ ∣∣((∆δk − k) ∗ y
)
(t)
∣∣. (1.8)

Taking the absolute value inside the integral, we can bound the �rst term on the

right-hand side of (1.8) by∣∣∣∣ ∫ t+δ

t

k(t+ δ − s)y(s)ds

∣∣∣∣ = ∣∣∣∣ ∫ δ

0

k(s)y(t+ δ − s)ds

∣∣∣∣
≤
∫ t+δ

0

∣∣k(s)y(t+ δ − s)1[0,δ](s)
∣∣ds

=
(
|k1[0,δ]| ∗ |y|

)
(t+ δ). (1.9)

Hence taking the Lr-norm on [0, T̄ − δ], we obtain from (1.8), (1.9) and Young's
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convolution inequality (1.2) that

∥∥(∆δz − z)1[0,T̄−δ]
∥∥
Lr ≤

∥∥|k1[0,δ]| ∗ |y|
∥∥
Lr + ∥(∆δk − k) ∗ y∥Lr

≤
(
∥k1[0,δ]∥Lp + ∥∆δk − k∥Lp

)
∥y∥Lq

≤
(
nk(δ) + ∥∆δk − k∥Lp

)
∥y∥Lq , (1.10)

where we recall the de�nition (1.6) of nk. Returning to (1.7) and considering now

the �rst term, the inequality (1.5) yields the bound

∥z(1[0,δ] + 1[T̄−δ,T̄ ])∥Lr ≤ ∥k∥1−
p
r

Lp ∥y∥Lqnk(2δ)
p
r . (1.11)

Then by plugging in the two bounds (1.10) and (1.11) into (1.7), we obtain

∥∆δz − z∥Lr ≤
(
∥k∥1−

p
r

Lp nk(2δ)
p
r + nk(δ) + ∥∆δk − k∥Lp

)
∥y∥Lq (1.12)

for z = k ∗ y. Since the singleton {k} ∈ Lp is compact and hence equicontinuous

by the Kolmogorov�Riesz compactness criterion, we have limδ↘0 ∥∆δk−k∥Lp = 0.

We also have that as δ ↘ 0,

nk(δ) = sup
{
∥k1E′∥Lp(0,T̄ ) : E

′ ⊆ [0, T̄ ], |E ′| ≤ δ
}
↘ 0

since the singleton {|k|p} is uniformly integrable and by the ϵ-δ-criterion for

uniform integrability; see Klenke [83, Theorem 6.24]. Because supy∈D ∥y∥Lq <∞
and the remaining terms in (1.12) are independent of y and converge to 0, we

obtain from (1.12) that

sup
y∈D

∥∆δ(k ∗ y)− k ∗ y∥Lr −→ 0 as δ ↘ 0.

This shows the equicontinuity of D̃. Note that D̃ is also equitight as all ele-

ments of D̃ vanish outside of [0, T̄ ] by construction, and it is bounded by Young's

convolution inequality (1.2), as ∥y∥Lq(0,T̄ ) is uniformly bounded, and hence so

is ∥k ∗ y∥Lr(0,T̄ ) ≤ ∥k∥Lp(0,T̄ )∥y∥Lq(0,T̄ ). It then follows by the Kolmogorov�Riesz

compactness criterion that D̃ is relatively compact. Since this holds for any choice

of bounded set D, we conclude that the map y 7→ k∗y is compact, as claimed.

The following result is also well known, and it shows that any continuous

function f : Cm → Cn satisfying a power growth condition induces by composition

a continuous map on Lp-spaces. This is used in the proof of Proposition 2.4.
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Although we only need this result for Lp-spaces on intervals of real numbers

equipped with Lebesgue measure, we note that this result would also hold on any

�nite measure space (Ω,F , µ).

Lemma 1.6. Fix m,n ∈ N, T̄ ∈ (0,∞) and a, q ∈ [1,∞) such that a ≤ q. Let

f : Cm → Cn be a continuous function and suppose that it satis�es the growth

condition |f(x̃)| ≤ C(1 + |x̃|a) for some C > 0 and all x̃ ∈ Cm. Then the map

x 7→ f ◦ x is continuous from Lq([0, T̄ ];Cm) to Lq/a([0, T̄ ];Cn).

Proof. We note that the map is well de�ned into Lq/a([0, T̄ ];Cn), since

∥f ◦ x∥Lq/a(0,T̄ ) ≤ ∥C(1 + |x|a)∥Lq/a(0,T̄ ) ≤ C
(
T̄ a/q + ∥x∥aLq(0,T̄ )

)
<∞.

To show the continuity, let (xn)n∈N be a sequence converging to some x in

Lq([0, T̄ ];Cm) and pick an arbitrary subsequence (xnk
)k∈N . Then we claim that

there exist a further subsequence (xnkℓ
)ℓ∈N and some x̄ ∈ Lq([0, T̄ ];Cm) such that

xnkℓ
→ x a.s. as ℓ → ∞ and max(|xnkℓ

|, |x|) ≤ x̄ a.s. for each ℓ ∈ N. To see

this, we �rst use the Lq-convergence to �nd a subsequence of (xnk
)k∈N that con-

verges to x almost surely and in Lq. Then, we �nd a rapidly convergent further

subsequence (xnkℓ
)ℓ∈N so that ∥xnkℓ+1

− xnkℓ
∥Lq(0,T̄ ) ≤ 2−ℓ for each ℓ ∈ N. By

construction, we still have that xnkℓ
→ x a.s. as ℓ→ ∞, and we also have a ma-

jorant x̄ := |xnk1
|+
∑∞

ℓ=1 |xnkℓ+1
− xnkℓ

|. Note that the triangle inequality yields

|xnkℓ
| ≤ x̄ a.s. for each ℓ, and by taking pointwise limits we obtain |x| ≤ x̄ a.s. As

we can bound the Lq-norm of x̄ by a geometric series, we have x̄ ∈ Lq([0, T̄ ];Cm).

Thus by the continuity of f , we have f ◦ xnkℓ
→ f ◦ x almost surely as ℓ → ∞.

We can bound

∣∣f(xnkℓ
(t)
)
− f

(
x(t)

)∣∣q/a ≤ (C(2 + ∣∣xnkℓ
(t)
∣∣a + |x(t)

∣∣a))q/a
≤
(
2C
(
1 + |x̄(t)|a

))q/a
,

where the right-hand side belongs to L1([0, T̄ ];Cm) since |x̄|a ∈ Lq/a([0, T̄ ];Cm).

It follows by the dominated convergence theorem that f ◦ xnkℓ
→ f ◦ x in

Lq/a([0, T̄ ];Cn) as ℓ→ ∞. Therefore, as every subsequence (xnk
)k∈N has a further

subsequence (xnkℓ
)ℓ∈N such that f ◦ xnkℓ

→ f ◦ x in Lq/a([0, T̄ ];Cn) as ℓ → ∞,

we must also have f ◦ xn → f ◦ x in Lq/a([0, T̄ ];Cn) as n → ∞ for the original

sequence. This shows the continuity of the map x 7→ f ◦ x.
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2 Existence and uniqueness results

We are now ready to prove the following two results about the existence of solu-

tions to convolution equations. The �rst version is a particular case of Gripenberg

et al. [59, Theorem 12.1.1], and it gives su�cient conditions for the existence of

a continuous solution on a small time interval. In Proposition 2.4, we show a

version of this result for existence in an Lq-space. In both cases, we also obtain

uniqueness under a suitable Lipschitz condition.

Remark 2.1. In the following results, namely Propositions 2.2, 2.4 and 2.8 as

well as Corollaries 2.6 and 2.7, we have that the solutions to the corresponding

Volterra equations are real-valued if all the inputs are real-valued. This can be

seen by replacing C with R in all statements and proofs.

Proposition 2.2. Fix n ∈ N, T̄ ∈ (0,∞] and k ∈ L1
loc([0, T̄ );C), and suppose

that y : [0, T̄ ) → Cn and f : Cn × [0, T̄ ) → Cn are continuous functions. Then

the following statements hold:

1) There exists a positive time T̂ = T̂ (k, y, f) ∈ (0, T̄ ) such that there is a

continuous solution x : [0, T̂ ] → Cn to the equation

x(t) = y(t) +

∫ t

0

k(t− s)f
(
x(s), s

)
ds, (2.1)

for 0 ≤ t ≤ T̂ .

2) If T̂ < T̄ and x : [0, T̂ ] → Cn is a continuous solution to the equation

(2.1) on [0, T̂ ], then there exists some τ > 0 such that x can be extended to a

continuous solution to (2.1) on the interval [0, T̂ + τ ]. That is, there exists a

continuous solution x̂ : [0, T̂ + τ ] → Cn to (2.1) for 0 ≤ t ≤ T̂ + τ such that

x̂(t) = x(t) for all t ∈ [0, T̂ ].

3) Suppose that for all B ∈ R+, there exists some L(B) > 0 such that

sup

{
|f(x1, t)− f(x2, t)|

|x1 − x2|
: |x1|, |x2| ≤ B, x1 ̸= x2, t ∈ [0, T̄ −B−1]

}
≤ L(B),

(2.2)

i.e., f is locally Lipschitz-continuous with respect to the �rst variable. Then for

each T̂ > 0, there is at most one bounded solution to (2.1) on [0, T̂ ].

Remark 2.3. By 1) and a repeated application of 2) (see also Gripenberg et

al. [59, Theorem 12.1.1]), one can �nd a noncontinuable solution to (2.1), i.e., a

solution x that cannot be extended to any larger interval. Such a noncontinuable
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solution x takes values on an interval of the form [0, T̂ ) for some T̂ ∈ (0, T̄ ], and

it satis�es (2.1) for 0 ≤ t < T̂ . Moreover, if T̂ < T̄ , then lim supt↗T̂ |x(t)| = ∞,

i.e., the solution blows up at the terminal time T̂ .

Proof. 1), 2) The existence and continuability of solutions to (2.1) follow dir-

ectly from Gripenberg et al. [59, Theorem 12.1.1], by identifying Cn ∼= R2n and

replacing k with the kernel k̃(t, s) := k(t − s)1[0,t](s), as this does not change

the equation (2.1). The fact that k̃ is a Volterra kernel of continuous type in

the sense of [59, De�nition 9.5.2] follows from the remark after that de�nition,

since k̃ is a convolution kernel. Hence [59, Theorem 12.1.1] gives 1) and 2). If we

consider the real case as mentioned in Remark 2.1, we can apply [59, Theorem

12.1.1] directly in Rn to obtain a real-valued solution.

3) To show the uniqueness, suppose that x and x′ are two bounded solutions

to (2.1) on [0, T̂ ]. De�ne the constant

B = sup
t∈[0,T̂ ]

(|x(t)| ∨ |x′(t)|) ∨ (T̄ − T̂ )−1 <∞.

The equation (2.1) and the Lipschitz condition (2.2) imply that

|x(t)− x′(t)| =
∣∣∣∣ ∫ t

0

k(t− u)
(
f
(
x(u), u

)
− f

(
x′(u), u

))
du

∣∣∣∣
≤
∫ t

0

L(B)|k(t− u)| |x(u)− x′(u)|du, 0 ≤ t ≤ T̂ , (2.3)

as |x(u)|, |x′(u)| ≤ B and u ≤ T̄ − B−1 for u ∈ [0, T̂ ] by the construction of B.

Note that for β ∈ R and y, z ∈ L1
loc([0, T̄ );C), we have the identity

e−βt(y ∗ z)(t) =
∫ t

0

e−β(t−s)y(t− s)e−βsz(s)ds

=
(
(e−β·y) ∗ (e−β·z)

)
(t), 0 ≤ t < T̄ .

Setting ϕ := |x− x′| in (2.3) and multiplying with e−βt, we obtain the bound

∥e−β ·ϕ∥L1(0,T̂ ) ≤ L(B)∥|e−β ·k| ∗ |e−β ·ϕ|∥L1(0,T̂ )

≤ L(B)∥e−β ·k ∥L1(0,T̂ )∥e
−β ·ϕ∥L1(0,T̂ ), (2.4)

using Young's convolution inequality (1.2) with p = q = 1 for the second inequal-

ity. Since limβ→∞ ∥e−β ·k ∥L1(0,T̂ ) = 0 by the dominated convergence theorem,

we can choose β > 0 large enough so that L(B)∥e−β ·k ∥L1(0,T̂ ) < 1. Thus, (2.4)
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implies that ∥e−β ·ϕ∥L1(0,T̂ ) = 0 for large β > 0, and hence ϕ = 0 a.e. on [0, T̂ ].

Therefore we get x = x′ a.e. on [0, T̂ ], and so the solution is unique.

Next, we give a version of Proposition 2.2 for Lq-spaces, which is for us the

main setup of interest. In comparison to Proposition 2.2, we give here an addi-

tional statement on the simultaneous solvability of a family of equations of this

type. That is given in the second part of the following result, which generalises

the �rst part. This additional result is particularly relevant in Chapter I for the

proof of Theorem I.2.17, where we solve such a family of equations on a �xed

time interval.

Proposition 2.4. Fix m ∈ N0, n ∈ N and T̄ ∈ (0,∞). Suppose that p, q ∈ [1,∞)

and a ∈ [1, q] are such that 1
p
+ a−1

q
= 1. Let k ∈ Lp([0, T̄ ];C), y ∈ Lq([0, T̄ ];Cn),

h ∈ Lq([0, T̄ ];Cm) and suppose that f : Cn+m → Cn is a continuous function

satisfying the growth condition |f(x̃, h̃)| ≤ C(1 + |x̃|a + |h̃|a) for some C > 0 and

all x̃ ∈ Cn and h̃ ∈ Cm. Then the following statements hold:

1) There exists some positive time T̂ ∈ (0, T̄ ] such that there is a solution

x ∈ Lq([0, T̂ ];Cn) to the equation

x(t) = y(t) +

∫ t

0

k(t− s)f
(
x(s), h(s)

)
ds (2.5)

for a.a. t ∈ [0, T̂ ].

2) Consider an indexing set J and families of functions (kj)j∈J in Lp([0, T̄ ];C),
(yj)j∈J in Lq([0, T̄ ];Cn) and (hj)j∈J in Lq([0, T̄ ];Cm). De�ne the functions

k̄, ȳ, h̄ : (0, T̄ ] → [0,∞] by

k̄(t) = sup
j∈J

∥kj∥Lp(0,t), ȳ(t) = sup
j∈J

∥yj∥Lq(0,t), h̄(t) = sup
j∈J

∥hj∥Lq(0,t) (2.6)

for 0 ≤ t ≤ T̄ . Suppose that we have

k̄(T̄ ), ȳ(T̄ ), h̄(T̄ ) <∞ and lim
t↘0

k̄(t) = lim
t↘0

ȳ(t) = lim
t↘0

h̄(t) = 0.

Then there exists some time T̂ ∈ (0, T̄ ] such that for each j ∈ J , the equation

xj(t) = yj(t) +

∫ t

0

kj(t− s)f
(
xj(s), hj(s)

)
ds for a.a. t ∈ [0, T̂ ] (2.7)
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admits a solution xj ∈ Lq([0, T̂ ];Cn). Moreover, we have

sup
j∈J

∥xj∥Lq(0,T̃ ) <∞ and lim
t↘0

sup
j∈J

∥xj∥Lq(0,t) = 0. (2.8)

3) If T̂ < T̄ and x ∈ Lq([0, T̂ ];Cn) is a solution to the equation (2.5) on [0, T̂ ],

then there exists some τ > 0 such that x can be extended to a solution to (2.5)

on the interval [0, T̂ + τ ], i.e., there is a solution x̂ on Lq([0, T̂ + τ ];Cn) to (2.5)

on [0, T̂ + τ ] such that x = x̂|[0,T̂ ] a.s.
4) If f satis�es the local Lipschitz-type condition

|f(x̃2, h̃)− f(x̃1, h̃)| ≤ L
(
1 + |x̃1|a−1 + |x̃2|a−1 + |h̃|a−1

)
|x̃1 − x̃2| (2.9)

for some L > 0 and all x̃1, x̃2 ∈ Cn and h̃ ∈ Cm, then there exists at most one

solution to (2.5) in Lq([0, T̂ ];Cn).

Remark 2.5. Similarly to Remark 2.3, it follows by 3) that any solution to (2.5)

can either be extended to the whole interval [0, T̄ ], or to a maximal solution

x ∈ Lqloc([0, T̂ );Cn) for some T̂ ∈ (0, T̄ ] such that ∥x∥Lq(0,T̂ ) = ∞.

Proof of Proposition 2.4. 1) This follows as a special case of 2) (shown below)

by setting J to be a singleton and kj = k, yj = y and hj = h. Indeed, note that

the functions k̄(t) := ∥k∥Lp(0,t), ȳ(t) := ∥y∥Lq(0,t) and h̄(t) := ∥h∥Lq(0,t) are �nite

on [0, T̄ ] by the integrability of k, y and h. We also get that k̄(t), ȳ(t), h̄(t) → 0

as t ↘ 0 by the dominated convergence theorem, where we use k, y and h as

majorants for k1(0,t), y1(0,t) and h1(0,t), respectively. Thus 2) applies and we get

the existence of a solution on [0, T̂ ] for some T̂ ∈ (0, T̄ ].

2) We construct solutions to the equations (2.7) by a �xed point argument.

For B > 0 and T̂ ∈ (0, T̄ ] to be speci�ed later, consider the closed ball

D :=
{
x ∈ Lq([0, T̂ ];Cn) : ∥x∥Lq(0,T̂ ) ≤ B

}
(2.10)

and de�ne the maps Φj : D → Lq([0, T̂ ];Cn) by Φj(x) = yj + kj ∗ f(x(·), hj(·)).
Then each Φj is well de�ned since for x ∈ D, we can bound

∥Φj(x)∥Lq(0,T̂ ) ≤ ∥yj∥Lq(0,T̂ ) +
∥∥kj ∗ f(x(·), hj(·))∥∥Lq(0,T̂ )

≤ ∥yj∥Lq(0,T̂ ) + ∥kj∥Lp(0,T̂ )

∥∥f(x(·), hj(·))∥∥Lq/a(0,T̂ )

≤ ∥yj∥Lq(0,T̂ ) + ∥kj∥Lp(0,T̂ )C
(
T̂ a/q + ∥x∥a

Lq(0,T̂ )
+ ∥hj∥aLq(0,T̂ )

)
≤ ȳ(T̂ ) + Ck̄(T̂ )

(
T̂ a/q +Ba + h̄(T̂ )a

)
<∞ (2.11)
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by using Young's convolution inequality (1.2), the growth condition on f and the

de�nition (2.6) of k̄, ȳ and h̄. Thus Φj(x) ∈ Lq([0, T̂ ];Cn) for each j ∈ J and

x ∈ D.

Fix some arbitrary B > 0. Since k̄(t), ȳ(t), h̄(t) → 0 as t ↘ 0, we can �nd

T̂ > 0 small enough (depending on B) so that the bound from (2.11) satis�es

ȳ(T̂ ) + Ck̄(T̂ )
(
T̂ a/q + h̄(T̂ )a +Ba

)
≤ B. (2.12)

For this choice of B > 0 and T̂ > 0, we have by (2.11) and the de�nition (2.10)

that Φj(x) ∈ D for all x ∈ D and j ∈ J , and thus Φj(D) ⊆ D. Note that D is

a closed convex set and each Φj is a continuous map, since it is the composition

of the maps x 7→ f(x(·), hj(·)) and x 7→ yj + kj ∗ x which are continuous by

Lemmas 1.6 and 1.5, respectively. Moreover, the image of D under the map

x 7→ f(x(·), hj(·)) is bounded in Lq/a([0, T̂ ];Cn) due to the growth condition on

f . Since the map x 7→ yj+kj ∗x is compact by Lemma 1.5, it follows that Φj(D)

is relatively compact. Therefore by Theorem 1.4 applied to Φj : D → D, there

exists a �xed point xj ∈ D ⊆ Lq([0, T̂ ];Cn) of Φj. By the de�nition of Φj, the

�xed point xj = Φj(xj) is a solution to (2.5).

Since xj belongs to D, we have ∥xj∥Lq(0,T̂ ) ≤ B; so we get a bound on

∥xj∥Lq(0,T̂ ) that is uniform in j ∈ J . This gives the �rst part of (2.8). Repeating

the estimate (2.11) with t in place of T̂ and using the fact that ∥xj∥Lq(0,T̂ ) ≤ B,

we also obtain the bound

∥xj∥Lq(0,t) = ∥Φj(xj)∥Lq(0,t) ≤ ȳ(t) + Ck̄(t)
(
ta/q + h̄(t)a +Ba

)
−→ 0

uniformly in j ∈ J as t↘ 0. This shows the second part of (2.8).

3) To show that a solution x ∈ Lq([0, T̂ ];Cn) can be extended, consider the

new convolution equation

x′(s) = y′(s) +
(
k ∗ f(x′, h′)

)
(s), (2.13)

for 0 ≤ s ≤ T̄ − T̂ , where we omit the arguments in x′ = x′(·) and h′ = h′(·) for
readability and for 0 ≤ s ≤ T̄ − T̂ de�ne

h′(s) = h(T̂ + s), y′(s) = y(T̂ + s) +
(
k ∗
(
1[0,T̂ ]f(x, h)

))
(T̂ + s). (2.14)

Note that h′ ∈ Lq([0, T̄ − T̂ ];Cm) by the Lq-integrability of h. Likewise, by

Young's convolution inequality (1.2), the growth bound on f and as we have
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x ∈ Lq([0, T̂ ];Cn) and y ∈ Lq([0, T̄ ];Cn) by assumption, we get

∥y′∥Lq(0,T̄−T̂ ) ≤ ∥y∥Lq(0,T̄ ) +
∥∥k ∗ (1[0,T̂ ]f(x, h)

)∥∥
Lq(0,T̄ )

≤ ∥y∥Lq(0,T̄ ) + ∥k∥Lp(0,T̄ )∥1[0,T̂ ]f(x, h)∥Lq/a(0,T̄ )

≤ ∥y∥Lq(0,T̄ ) + ∥k∥Lp(0,T̄ )C
(
T̂ a/q + ∥x∥Lq(0,T̂ ) + ∥h∥Lq(0,T̂ )

)
<∞,

so that y′ ∈ Lq([0, T̄ − T̂ ];Cn). Hence we can apply the existence result 1) to

(2.13) and get a solution x′ ∈ Lq([0, τ ];Cn) for some τ > 0. We can then extend

x to [0, T̂ +τ ] by setting x(T̂ +s) := x′(s) for s ∈ [0, τ ]. It is clear by construction

that x ∈ Lq([0, T̂ + τ ];Cn), and we need to check that x is a solution to (2.5) on

[0, T̂ + τ ]. By the de�nition (2.12) of h′ and the construction of x on [T̂ , T̂ + τ ],

we have

(
k ∗ f(x′, h′)

)
(s) =

∫ s

0

k(s− u)f
(
x(T̂ + u), h(T̂ + u)

)
du

=

∫ T̂+s

T̂

k(T̂ + s− u)f
(
x(u), h(u)

)
du

=

∫ T̂+s

0

1[T̂ ,T̂+τ ](u)k(T̂ + s− u)f
(
x(u), h(u)

)
du

=
(
k ∗
(
1[T̂ ,T̂+τ ]f(x, h)

))
(T̂ + s), 0 ≤ s ≤ τ.

Hence by the construction of x on [T̂ , T̂ + τ ], the de�nition (2.14) of y′ and h′

and the equation (2.13) for x′, we get

x(T̂+s) = x′(s) = y′(s) +
(
k ∗ f(x′, h′)

)
(s)

= y(T̂+s) +
(
k ∗
(
1[0,T̂ ]f(x, h)

))
(T̂+s) +

(
k ∗
(
1[T̂ ,T̂+τ ]f(x, h)

))
(T̂+s)

= y(T̂+s) +
(
k ∗ f(x, h)

)
(T̂+s), 0 ≤ s ≤ τ,

using the linearity of the convolution to obtain the last line. Therefore, x satis�es

(2.5) on [T̂ , T̂ + τ ]. Since x also satis�es (2.5) on [0, T̂ ] by assumption, this

concludes the proof of 3).

4) Suppose that the condition (2.9) holds. Let x1, x2 ∈ Lq([0, T̂ ];Cn) be two

solutions to (2.5) on [0, T̂ ] and set

ϕ := x1 − x2 =
(
y + k ∗ f(x1, h)

)
−
(
y + k ∗ f(x2, h)

)
= k ∗

(
f(x1, h)− f(x2, h)

)
.
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We note the identity e−β ·(y ∗ z) = (e−β ·y) ∗ (e−β ·z) for any β ∈ R, which was

also used in the proof of part 3) in Proposition 2.2. This yields

e−β·ϕ = (e−β·k) ∗
(
e−β·

(
f(x1, h)− f(x2, h)

))
. (2.15)

Recall that 1
p
+ a−1

q
= 1 by the assumption on a, so that

q =
p(a− 1)

p− 1
and

1

p
+
a(p− 1)

p(a− 1)
=

1

p
+
a

q
= 1 +

1

q
. (2.16)

Thus by Young's convolution inequality (1.2) with powers p, p(a−1)
a(p−1)

and q, we

obtain from (2.15) that

∥e−β·ϕ∥q =
∥∥∥(e−β·k) ∗ (e−β·(f(x1, h)− f(x2, h)

))∥∥∥
q

≤ ∥e−β·k∥p
∥∥e−β·(f(x1, h)− f(x2, h)

)∥∥
p(a−1)
a(p−1)

.

By the local Lipschitz condition (2.9) and Hölder's inequality with powers a and
a
a−1

, we get

∥e−β·ϕ∥q ≤ ∥e−β·k∥p ∥C(e−β·|ϕ|)(1 + |x1|a−1 + |x2|a−1 + |h|a−1)∥ p(a−1)
a(p−1)

≤ C∥e−β·k∥p ∥e−β·ϕ∥ p(a−1)
p−1

∥∥1 + |x1|a−1 + |x2|a−1 + |h|a−1
∥∥

p
p−1

≤ C∥e−β·k∥p ∥e−β·ϕ∥q
(
1 + ∥x1∥a−1

q + ∥x2∥a−1
q + ∥h∥a−1

q

)
<∞,

once again recalling (2.16) to obtain the last inequality. By the dominated con-

vergence theorem, we can make ∥e−β·k∥p arbitrarily small by choosing β large

enough. This leads to a contradiction in the inequality above, unless we have

∥e−β·ϕ∥q = 0 for large β, so that ϕ = 0 a.e. on [0, T̂ ]. This shows that x1 = x2

a.e., and hence the uniqueness.

It is well known that equations of the form x = k ∗ f(x) as in Propositions

2.2 and 2.4 can be converted into equations of the form y = f(k ∗ y), and vice

versa, by setting x = k ∗ y and y = f(x); see e.g. Gatheral/Keller-Ressel [56,

Theorem A.5 and Corollary A.7]. We show this equivalence in the following two

corollaries, which give the existence of solutions to equations of the latter type.

We start by giving a result in the continuous setting of Proposition 2.2, where

we only need the analogue of part 1) in Proposition 2.2, although one could also

give corresponding versions for parts 2) and 3). We then give a full analogue of
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Proposition 2.4 for this type of equation in the Lq-setting.

Corollary 2.6. Fix n ∈ N, T̄ ∈ (0,∞] and k ∈ L1
loc([0, T̄ );C), and suppose that

y : [0, T̄ ) → Cn and f : Cn × [0, T̄ ) → Cn are continuous functions. Then there

exists a positive time T̂ = T̂ (k, y, f) ∈ (0, T̄ ) such that there is a continuous

solution x : [0, T̂ ] → Cn to the equation

x(t) = y(t) + f

(∫ t

0

k(t− s)x(s)ds, t

)
, 0 ≤ t ≤ T̂ . (2.17)

Proof. By Proposition 2.2, there exists a positive time T̂ = T̂ (k, y, f) ∈ (0, T̄ )

such that there is a continuous solution x̂ : [0, T̂ ] → Cn to the equation

x̂(t) = ŷ(t) +

∫ t

0

k(t− s)f
(
x̂(s), s

)
ds, 0 ≤ t ≤ T̂ , (2.18)

where ŷ := k ∗ y is continuous like y; see Gripenberg et al. [59, Section 2.2].

De�ning x : [0, T̂ ] → Cn by x(t) := y(t)+f(x̂(t), t), note that x is also continuous

as y, f and x̂ are, and the de�nition of x yields

x(t) = y(t) + f
(
x̂(t), t

)
= y(t) + f

(
ŷ(t) +

∫ t

0

k(t− s)f
(
x̂(s), s

)
ds, t

)
= y(t) + f

(∫ t

0

k(t− s)
(
y(s) + f

(
x̂(s), s

))
ds, t

)
= y(t) + f

(∫ t

0

k(t− s)x(s)ds, t

)
, 0 ≤ t ≤ T̂ ,

using the de�nition of ŷ. Thus x is a solution to (2.17) on [0, T̂ ].

We now consider the Lq-case as in Proposition 2.4 and give analogues to

each of the statements 1)�4). Note that the assumptions are largely the same,

except that we make here the weaker assumption that y is Lq/a-integrable, and

the solution is likewise only Lq/a-integrable. The reason for these di�erences will

be apparent from the way in which the two equations are related.

Corollary 2.7. Fix m ∈ N0, n ∈ N and T̄ ∈ (0,∞). Suppose that p, q ≥ 1 and

a ∈ [1, q] are such that 1
p
+ a−1

q
= 1. Let k ∈ Lp([0; T̄ ];C), y ∈ Lq/a([0, T̄ ];Cn),

h ∈ Lq([0, T̄ ];Cm) and f : Cn+m → Cn be a continuous function satisfying the

growth condition |f(x̃, h̃)| ≤ C(1 + |x̃|a + |h̃|a) for some C > 0 and all x̃ ∈ Cn

and h̃ ∈ Cm. Then the following statements hold:
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1) There exists some T̂ ∈ (0, T̄ ] such that there is a solution x ∈ Lq/a([0, T̂ ];Cn)

to the equation

x(t) = y(t) + f
(
(k ∗ x)(t), h(t)

)
(2.19)

for a.a. t ∈ [0, T̂ ].

2) Consider an indexing set J and families of functions (kj)j∈J in Lp([0, T̄ ];C),
(yj)j∈J in Lq/a([0, T̄ ];Cn) and (hj)j∈J in Lq([0, T̄ ];Cm). Suppose that the func-

tions k̄, ȳ, h̄ : (0, T̄ ] → [0,∞], de�ned for 0 ≤ t ≤ T̄ by

k̄(t) = sup
j∈J

∥kj∥Lp(0,t), ȳ(t) = sup
j∈J

∥yj∥Lq/a(0,t), h̄(t) = sup
j∈J

∥hj∥Lq(0,t),

are �nite and satisfy the limits k̄(t), ȳ(t), h̄(t) → 0 as t ↘ 0. Then there exists

some time T̂ ∈ (0, T̄ ] such that for each j ∈ J , the equation

xj(t) = yj(t) + f
(
(kj ∗ xj)(t), hj(t)

)
, (2.20)

for a.a. t ∈ [0, T̂ ], admits a solution xj ∈ Lq/a([0, T̂ ];Cn). Moreover, we have

sup
j∈J

∥xj∥Lq/a(0,T̂ ) <∞ and lim
t↘0

sup
j∈J

∥xj∥Lq/a(0,t) = 0. (2.21)

3) If T̂ < T̄ and x ∈ Lq/a([0, T̂ ];Cn) is a solution to (2.19), then there exists

some τ > 0 such that x can be extended to a solution to the equation (2.19) on

the interval [0, T̂ + τ ].

4) If f satis�es the local Lipschitz-type condition

|f(x̃1, h̃)− f(x̃2, h̃)| ≤ L
(
1 + |x̃1|a−1 + |x̃2|a−1 + |h̃|a−1

)
|x̃1 − x̃2| (2.22)

for some L > 0 and all x̃1, x̃2 ∈ Cn and h̃ ∈ Cm, then there exists at most one

solution to (2.19) in Lq/a([0, T̂ ];Cn).

Proof. 1) This follows from 2) by taking J to be a singleton, by the same argu-

ment as in the proof of statement 1) of Proposition 2.4.

2) For each j ∈ J , consider the modi�ed equation

x̂j(t) = ŷj(t) +
(
kj ∗ f(x̂j, hj)

)
(t), 0 ≤ t ≤ T̂ , (2.23)

where ŷj := kj ∗ yj and we omit the argument in hj = hj(·) and x̂j = x̂j(·) for
readability. We want to show the existence of solutions x̂j to (2.23), and then

use these to construct solutions xj to the original equations (2.20). Note that we
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have

ȳ′(t) := sup
j∈J

∥ŷj∥Lq(0,t) = sup
j∈J

∥kj ∗ yj∥Lq(0,t) ≤ k̄(t)ȳ(t)

by Young's convolution inequality (1.2), so that ȳ′ is �nite with ȳ′(t) → 0 as

t↘ 0. Thus we can apply part 2) of Proposition 2.4 to (2.23), since the required

assumptions on k̄, ȳ′ and h̄ are satis�ed. This shows the existence of solutions

x̂j ∈ Lq([0, T̂ ];Cn) to (2.23). We also get that

sup
j∈J

∥x̂j∥Lq(0,T̃ ) <∞ and lim
t↘0

sup
j∈J

∥x̂j∥Lq(0,t) = 0. (2.24)

Now de�ne the functions xj : [0, T̂ ] → Cn by xj := yj + f(x̂j(·), hj(·)). By the

de�nitions of k̄, ȳ and h̄ and the growth condition on f , we have the bound

sup
j∈J

∥xj∥Lq/a(0,t) ≤ ȳ(t) + C
(
ta/q + sup

j∈J
∥x̂j∥aLq(0,t) + h̄(t)

)
. (2.25)

Setting t = T̂ , we see that the xj are uniformly bounded in Lq/a([0, T̂ ];Cn) by

the �rst part of (2.24). Letting t ↘ 0, we get supj∈J ∥xj∥Lq/a(0,t) → 0 by the

assumptions on ȳ and h̄ and the second part of (2.24). This shows (2.21).

It remains to check that xj satis�es the original equation (2.20). Plugging in

(2.23) and the de�nition ŷj = kj ∗ yj, we obtain

xj(t) = yj(t) + f
(
x̂j(t), hj(t)

)
= yj(t) + f

(
ŷj(t) +

(
kj ∗ f(x̂j, hj)

)
(t), hj(t)

)
= yj(t) + f

((
kj ∗

(
yj + f(x̂j, hj)

))
(t), hj(t)

)
= yj(t) + f

(
(kj ∗ xj)(t), hj(t)

)
, 0 ≤ t ≤ T̂ . (2.26)

Thus each xj ∈ Lq/a([0, T̂ ];Cn) is a solution to (2.19), as claimed.

3) Suppose that x ∈ Lq/a([0, T̂ ];Cn) is a solution to (2.19). De�ning x̂ := k∗x,
we have x̂ ∈ Lq([0, T̂ ];Cn) by Young's convolution inequality (1.2). Similarly to

(2.26), x̂ satis�es the equation

x̂(t) = (k ∗ x)(t) =
(
k ∗
(
y(t) + f(k ∗ x, h)

))
(t)

= ŷ(t) +
(
k ∗ f(x̂, h)

)
(t), 0 ≤ t ≤ T̂ , (2.27)

where ŷ := k ∗ y ∈ Lq([0, T̂ ];Cn) by Young's convolution inequality (1.2). Thus

it follows from part 3) of Proposition 2.4 that the solution x̂ to (2.27) can be
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extended to a larger interval [0, T̂ + τ ] for some τ > 0. We can then extend x by

setting x(t) := y(t)+ f(x̂(t), h(t)) for t ∈ [0, T̂ + τ ]. Note that this coincides with

the original x on [0, T̂ ] since

y(t) + f
(
x̂(t), h(t)

)
= y(t) + f

(
(k ∗ x)(t), h(t)

)
= x(t), 0 ≤ t ≤ T̂ .

We also have x ∈ Lq/a([0, T̂ + τ ];Cn) by the same bound as in (2.25), and x is a

solution to (2.19) by repeating the steps in (2.26). Thus we have extended x to

a solution to (2.19) on [0, T̂ + τ ].

4) Suppose that (2.22) holds and let x1 and x2 be two solutions to (2.19) on

[0, T̂ ]. Once again by plugging in, we obtain that x̂1 := κ∗x1 and x̂2 := κ∗x2 are
two solutions to (2.27), and x̂1, x̂2 ∈ Lq([0, T̂ ];Cn) by Lemma 1.5. We also have

xi = f(k ∗ xi, h) = f(x̂i, h).

Since we must have x̂1 = x̂2 a.e. by the uniqueness in part 4) of Proposition 2.4,

it follows that x1 = f(x̂1, h) = f(x̂2, h) = x̂2 a.e. This shows the uniqueness.

We can obtain a version of Corollary 2.7 with improved bounds for the par-

ticular case of a Riccati�Volterra equation, that is, when the nonlinear function

f is quadratic. This is done in the following proposition. Later, we shall use

these bounds to obtain weaker conditions under which the solution to a Riccati�

Volterra equation of the form (2.19) is small in the L1-norm, as well as a result

on the stability of solutions to Riccati�Volterra equations. For simplicity, we

consider only the one-dimensional case.

Proposition 2.8. Let a, b, c, k : [0,∞) → C be measurable functions. Let T̂ > 0,

γ ∈ R and A,B,C,K ∈ [0,∞) be constants such that

∥e−γ·a∥L1(0,T̂ ) ≤ A, ∥c∥L∞(0,T̂ ) ≤ C,

∥b∥L2(0,T̂ ) ≤ B, ∥e−γ·k∥L2(0,T̂ ) ≤ K, (2.28)

and suppose that T̂ , γ, A,B,C and K satisfy the inequalities

BK < 1 and (1−BK)2 ≥ 4eγT̂ACK2. (2.29)

Then there exists a unique solution x ∈ L1([0, T̂ ];C) to the equation

x(t) = a(t) + b(t)(k ∗ x)(t) + c(t)
(
(k ∗ x)(t)

)2
for a.a. t ∈ [0, T̂ ], (2.30)
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and x satis�es the bound

∥e−γ·x∥L1(0,T̂ ) ≤
2A

1−BK +
√

(1−BK)2 − 4eγT̂ACK2
. (2.31)

Proof. To show the existence, we proceed similarly as in the proof of Proposition

2.4, by using a �xed point argument to �nd a solution to (2.30) (more precisely,

we �rst solve a modi�ed version of the equation). Assume for the moment that

C > 0, K > 0. De�ne the set

D := {x ∈ L1([0, T̂ ];C) : ∥x∥L1(0,T̂ ) ≤ r−}, (2.32)

where we choose r− ≥ 0 as the smallest real root of the quadratic function

g(r) := CeγT̂K2r2 − (1−BK)r + A, r ∈ R, (2.33)

which is given explicitly by

r− =
1−BK −

√
(1−BK)2 − 4eγT̂ACK2

2CeγT̂K2
,

so that g(r−) = 0. It follows from (2.29) that r− is real-valued and nonnegative

as claimed, since

1−BK =
√

(1−BK)2 ≥
√

(1−BK)2 − 4eγT̂ACK2 ≥ 0.

Now consider the map Φ : D → L1([0, T̂ ];C) de�ned by

Φ(x̂) = e−γ·a+ b
(
(e−γ·k) ∗ x̂

)
+ e−γ·c

(
(e−γ·k) ∗ x̂

)2
. (2.34)

In the following, we abbreviate Lp(0, T̂ ) to Lp for readability, as the time horizon T̂

is �xed. By Young's convolution inequality (1.2), the Cauchy�Schwarz inequality

and the de�nition (2.33) of g, we obtain

∥Φ(x̂)∥L1 ≤ ∥e−γ·a∥L1 + ∥b∥L2∥(e−γ·k) ∗ x̂∥L2 + eγT̂∥c∥∞∥(e−γ·k) ∗ x̂∥2L2

≤ ∥e−γ·a∥L1 + ∥b∥L2∥e−γ·k∥L2∥x̂∥L1 + eγT̂∥c∥∞∥e−γ·k∥2L2∥x̂∥2L1

≤ A+BKr− + CeγT̂K2r2−

= g(r−) + r− = r− (2.35)

for each x̂ ∈ D, so that Φ(x̂) ∈ D. Thus the map Φ is well de�ned and we have
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Φ(D) ⊆ D. It is clear that D is a closed and convex set. As in the proof of

Proposition 2.4, Φ is continuous as the composition of the map x 7→ a+ bx+ cx2,

which is continuous from L2([0, T̂ ];C) to L1([0, T̂ ];C) by Lemma 1.6, with the map

x 7→ k ∗x, which is continuous and compact from L1([0, T̂ ];C) to L2([0, T̂ ];C) by
Lemma 1.5. Hence Φ(D) is also compact. Therefore by Theorem 1.4, we obtain

a �xed point x̂ = Φ(x̂) ∈ D.

The �xed point x̂ is not yet a solution to (2.30), but rather to the modi�ed

equation

x̂(t) = Φ(x̂)(t) = e−γta(t) + b(t)(e−γ·k ∗ x̂)(t) + eγtc(t)
(
(e−γ·k ∗ x̂)(t)

)2
.

Setting now x = eγ·x̂, we have x ∈ L1([0, T̂ ];C) because x̂ ∈ D ⊆ L1([0, T̂ ];C)
and eγ· is bounded on [0, T̂ ]. Moreover, by using that e−γ·(y ∗ z) = (e−γ·y ∗ e−γ·z)
and plugging into the equation above, we have

x = eγ·x̂ = a+ beγ·(e−γ·k ∗ e−γ·x) + ce2γ·(e−γ·k ∗ e−γ·x)2

= a+ b(k ∗ x) + c(k ∗ x)2. (2.36)

Therefore, there exists a solution x ∈ L1([0, T̂ ];C) to (2.30). We can obtain the

bound (2.31) for x by noting that

∥e−γ·x∥L1 = ∥x̂∥L1 ≤ r− =
1−BK −

√
(1−BK)2 − 4eγT̂ACK2

2CeγT̂K2

=
(1−BK)2 − ((1−BK)2 − 4eγT̂ACK2)(

1−BK +
√

(1−BK)2 − 4eγT̂ACK2
)
2CeγT̂K2

=
2A

1−BK +
√

(1−BK)2 − 4eγT̂ACK2
,

as claimed. Thus, we have shown the existence of a solution and the bound (2.31)

under the assumption that both C and K are strictly positive.

We now return to the cases K = 0 and C = 0. The case K = 0 is straightfor-

ward, since we must have k = 0 a.e. and thus the only solution to (2.30) is x = a

a.e. In that case, we have ∥xe−γ·∥L1(0,T̂ ) = ∥ae−γ·∥L1(0,T̂ ) = A, which precisely

corresponds to the bound (2.31) after plugging in K = 0.

Finally, we suppose that C = 0 and may now assume that K > 0. The

existence in this case follows by reproducing the proof for the case C > 0 with

minor adjustments. We set C = 0 in (2.33), so that g is linear, and replace the

root with r− = A
1−BK ≥ 0 by (2.29). We then de�ne D and Φ in the same way by
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(2.32) and (2.34) and obtain the same bound (2.35) with C = 0. Hence Theorem

1.4 gives a �xed point x̂ to Φ by the same argument as before. It then follows

that x := eγ·x̂ is a solution to (2.30) by (2.36) and satis�es the bound

∥e−γ·x∥L1 = ∥x̂∥L1 ≤ r− =
A

1−BK
.

Once again, this precisely matches the bound (2.31) in the case C = 0. Thus we

have shown the existence of a solution as well as the bound (2.31) in all cases.

It only remains to show the uniqueness of the solution, which also follows by

a similar argument as in the proof of Proposition 2.4. Let x1, x2 ∈ L1([0, T̂ ];C)
be two solutions to (2.30) and set ϕ := x1−x2. By taking the di�erence in (2.30),

ϕ satis�es the equation

ϕ = b(k ∗ ϕ) + c(k ∗ ϕ)
(
(k ∗ (x1 + x2)

)
.

Thus by the property e−β·(y∗z) = (e−β·y∗e−β·z), the Cauchy�Schwarz inequality
and Young's convolution inequality (1.2) with p = 2 and q = r = 1, we obtain

∥e−β·ϕ∥L1 =
∥∥∥e−β·(b(k ∗ ϕ) + c(k ∗ ϕ)

(
(k ∗ (x1 + x2)

))∥∥∥
L1

=
∥∥((e−β·k) ∗ (e−β·ϕ))b+ ((e−β·k) ∗ (e−β·ϕ))c((k ∗ (x1 + x2)

)∥∥
L1

≤ ∥(e−β·k) ∗ (e−β·ϕ)∥L2

(
∥b∥L2 + ∥c∥∞∥k ∗ (x1 + x2)∥L2

)
≤ ∥e−β·k∥L2∥e−β·ϕ∥L1

(
∥b∥L2 + ∥c∥∞∥k∥L2∥x1 + x2∥L1

)
for any β ∈ R. Note that ∥x1 + x2∥L1 < ∞ by the assumption on the solutions,

and we have ∥k∥L2 < eγT̂K < ∞ by the assumption on k. Since ∥e−β·k∥L2 → 0

as β → ∞ by the dominated convergence theorem, the above inequality leads to

a contradiction unless ϕ = 0 a.s. Therefore, we have x1 = x2 a.s. and this shows

the uniqueness.

As a corollary, we deduce from Proposition 2.8 that a solution x to (2.29) is

small if a is small, in the following sense.

Corollary 2.9. Fix T̂ , B, C, ϵ > 0 as well as a kernel k ∈ L2([0, T̂ ];C). Then

there exist a large enough γ > 0 and a small enough A > 0 so that for any

functions a ∈ L1([0, T̂ ],C), b ∈ L2([0, T̂ ],C) and c ∈ L∞([0, T̂ ],C) such that

∥e−γ·a∥L1(0,T̂ ) ≤ A, ∥b∥L2(0,T̂ ) ≤ B and ∥c∥L∞(0,T̂ ) ≤ C, (2.37)



336 A Volterra equations

there exists a solution x ∈ L1([0, T̂ ];C) to (2.30), and it holds that

∥x∥L1(0,T̂ ) ≤ eγT̂∥e−γ·x∥L1(0,T̂ ) ≤ ϵ. (2.38)

In particular, the �rst bound in (2.37) holds if ∥a∥L1(0,T̂ ) ≤ A, since we have

∥e−γ·a∥L1(0,T̂ ) ≤ ∥a∥L1(0,T̂ ).

Proof. We have ∥e−γ·k∥L2(0,T̂ ) → 0 as γ → ∞ by the dominated convergence

theorem. Thus we can choose γ > 0 large enough so that K := ∥e−γ·k∥L2(0,T̂ )

satis�es the inequality BK < 1, which is the �rst inequality in (2.29). If we now

�x γ and K in addition to T̂ , B, C and ϵ, note that the right-hand side of the

second inequality in (2.29) converges to 0 as A↘ 0, and thus we can choose some

A = A(B,C,K, γ, T̂ , ϵ) > 0 small enough so that the second inequality in (2.29)

holds as well. By choosing A to be possibly even smaller, we can also ensure that

the right-hand side in (2.31) is smaller than e−γT̂ ϵ.

With these choices of constants, Proposition 2.8 directly gives the existence

of a solution x ∈ L1([0, T̂ ];C) to (2.30) for any functions a, b, c satisfying (2.37),

since the inequalities (2.29) hold. The bound (2.38) also follows directly from

(2.31) and the choice of A, since we get ∥e−γ·x∥L1(0,T̂ ) ≤ e−γT̂ ϵ.

In the next corollary to Proposition 2.8, we show that if (2.30) is linear in x,

i.e., if c ≡ 0, then (2.30) admits a solution on [0,∞).

Corollary 2.10. For any given functions a ∈ L1
loc([0,∞);C), b ∈ L2

loc([0,∞);C)
and k ∈ L2

loc([0,∞);C), there exists a unique solution x ∈ L1
loc([0,∞);C) to the

equation

x(t) = a(t) + b(t)(k ∗ x)(t), t ≥ 0. (2.39)

Proof. Fix some arbitrary T > 0 and setB := ∥b∥L2(0,T ). Since k ∈ L2
loc([0,∞);C),

we have ∥e−γ·k∥L2(0,T ) → 0 as γ → ∞ by the dominated convergence theorem

with majorant |k|. Thus we may choose some γ > 0 large enough so that BK < 1,

where K := ∥e−γ·k∥L2(0,T ). We �x this choice of γ and set A := ∥e−γ·a∥L1(0,T̂ ).

Hence the �rst inequality in (2.29) is satis�ed, and the second inequality auto-

matically holds because C := ∥c∥∞ = 0. It then follows from Proposition (2.8)

that there exists a unique solution xT ∈ L1
loc([0,∞);C) to (2.39) on [0, T ].

By varying the choice of T > 0, we obtain a family of solutions (xT )T≥0 to

(2.39) on each interval [0, T ]. By the uniqueness of the solutions, we have that

xT is equal to the restriction of xT ′ to [0, T ] for each 0 ≤ T ≤ T ′. Thus we can

de�ne x(t) =
∑∞

n=1 1t∈[n−1,n)xn, and it is clear that the restriction of x to [0, T ] is
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equal to xT for any T ≥ 0. Hence x ∈ L1
loc([0,∞);C) and x is a solution to (2.39).

Conversely, any solution to (2.39) must coincide with xT on [0, T ] for T ≥ 0 due

to the uniqueness of the solutions, and therefore x is the unique solution.

Finally, as a useful application of Corollary 2.9, we give a stability result for

equations of the form (2.30). Note that we only assume the existence of solutions

to the perturbed equations (2.40) below. This may be ensured with Proposition

2.8 if the inequalities in (2.29) hold, but the latter are not necessary conditions.

Proposition 2.11. Fix T ∈ (0,∞) and k ∈ L2([0, T ];C). For each n ∈ N∪{∞},
let an ∈ L1([0, T ];C), bn ∈ L2([0, T ];C) and cn ∈ L∞([0, T ];C), and suppose that

there exists a solution xn ∈ L1([0, T ];C) to the equation

xn(t) = an(t) + bn(t)(k ∗ xn)(t) + cn(t)
(
(k ∗ xn)(t)

)2
for a.a. t ∈ [0, T ]. (2.40)

Moreover, suppose that an
L1

→ a∞, bn
L2

→ b∞ and cn
L∞
→ c∞ as n → ∞. Then

xn
L1

→ x∞ as n→ ∞.

Proof. Consider the di�erences f̃n := fn−f∞ for f = a, b, c, x. Taking di�erences

in (2.40) and using the linearity of the convolution yields

x̃n(t) = ãn(t) + b̃n(t)(k ∗ x∞)(t) + bn(t)(k ∗ x̃n)(t) + c̃n(t)
(
(k ∗ x∞)(t)

)2
+ cn(t)

(
2(k ∗ x∞)(t) + (k ∗ x̃n)(t)

)
(k ∗ x̃n)(t) for a.a. t ∈ [0, T ].

Collecting the powers of k ∗ x̃n, this can be rewritten as

x̃n(t) = ân(t) + b̂n(t)(k ∗ x̃n)(t) + cn(t)
(
(k ∗ x̃n)(t)

)2 for a.a. t ∈ [0, T ], (2.41)

where we de�ne the coe�cients ân and b̂n by

ân(t) := ãn(t) + b̃n(t)(k ∗ x∞)(t) + c̃n(t)
(
(k ∗ x∞)(t)

)2
,

b̂n(t) := bn(t) + 2cn(t)(k ∗ x∞)(t), 0 ≤ t ≤ T.

Recall that by Young's convolution inequality (1.2), we have ∥k∗x̃∥L2 ≤ ∥k∥L2∥x̃∥L1 .

Thus the Cauchy�Schwarz inequality yields

∥ân∥L1 ≤ ∥ãn∥L1 + ∥b̃n∥L2∥k∥L2∥x∞∥L1 + ∥c̃n∥L∞∥k∥2L2∥x∞∥2L1 , (2.42)

∥b̂n∥L2 ≤ ∥bn∥L2 + 2∥cn∥L∞∥k∥L2∥x∞∥L1 . (2.43)
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The sequences (bn)n∈N and (cn)n∈N are bounded in L2 and L∞, respectively, since

bn
L2

→ b∞ and cn
L∞
→ c∞ as n → ∞. This implies C := supn∈N ∥cn∥L∞ < ∞, and

by (2.43), we also have B := supn∈N ∥b̂n∥L2 < ∞. Fix now some arbitrary ϵ > 0,

and let A > 0 and γ > 0 be given by Corollary 2.9 with respect to T,B,C, ϵ and

k. Recall that ∥ãn∥L1(0,T ) → 0, ∥b̃n∥L2(0,T ) → 0 and ∥c̃n∥L∞(0,T ) → 0 as n → ∞
by assumption, and hence ân

L1

→ 0 as n → ∞ by (2.42). Thus there exists some

N ∈ N such that

∥e−γ·ãn∥L1(0,T ) ≤ ∥ãn∥L1(0,T ) ≤ A

for all n ≥ N . Since the last two inequalities in (2.37) are also satis�ed by bn and

cn for each n ≥ N by the choice of B and C, it follows by Corollary 2.9 that the

solution x̃n to (2.41) satis�es ∥x̃n∥L1(0,T ) ≤ ϵ for n ≥ N . Since ϵ > 0 is arbitrary,

it follows that x̃n = xn − x∞
L1

→ 0 as n→ ∞, and this concludes the proof.

3 Auxiliary results for Chapter I

Finally, we give two technical results involving convolutions and Volterra equa-

tions that are used directly in Chapter I. First, we show that the solution g⋆ to

the equation (3.1) below takes nonpositive values. This equation is the same as

(I.3.24) from Chapter I, after plugging in the particular kernel k = κ̂ de�ned in

(I.2.12). Thus the following result yields that the function g⋆ from Theorem I.3.8

is nonnegative.

Lemma 3.1. Let T > 0 and k : [0, T ] → [0,∞) be continuous, nonnegative

and nonincreasing. Suppose that g⋆ : [0, T ] → R is a continuous solution to the

equation

g⋆(t) = f
(
(k ∗ g⋆)(t)

)
, 0 ≤ t ≤ T, (3.1)

where f : R → R is given by

f(x) = −µ
2

σ2
− 2ϱµx

σ
+

1

2
(1− 2ϱ2)x2 (3.2)

for �xed constants µ ∈ R, σ > 0 and ϱ ∈ [−1, 1]. If µ ̸= 0, then g⋆ takes strictly

negative values on [0, T ]. If µ = 0, then g⋆ ≡ 0.

Proof. The quadratic function f satis�es the Lipschitz-type condition

|f(x1)− f(x2)| ≤
(
2|ϱ| |µ|
σ

+
1

2
(1− 2ϱ2)(|x1|+ |x2|)

)
|x1 − x2|, x1, x2 ∈ R.
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Note that (3.1) is of the form (2.19) with g⋆ in place of x, where we set the

constants p = q = a = 1, y ≡ 0, n = 1 and m = 0, so that h is absent. Hence by

part 4) of Corollary 2.7, there is at most one integrable solution to (3.1). Since

g⋆ is continuous by assumption, it is thus the unique continuous solution. In the

case µ = 0, we have that the constant function 0 is a solution to (3.1), so that

g⋆ ≡ 0 as claimed. Henceforth we assume without loss of generality that µ ̸= 0.

Since k is integrable and g⋆ is continuous, we have by Gripenberg et al. [59,

Theorem 2.2.2] that k ∗ g⋆ is continuous. We also have the limit

|(k ∗ g⋆)(t)| ≤
∫ t

0

|k(t− s)||g(s)|ds ≤ ∥g∥∞∥k∥L1(0,t) −→ 0

as t ↘ 0 by the dominated convergence theorem with majorant k. This implies

that (k ∗ g⋆)(0) = 0, and hence g⋆(0) = f(0) = −µ2

σ2 < 0 by (3.1) and the

assumption that µ ̸= 0. Now we consider two cases depending on the shape

of the quadratic de�ned by f : either f(x) < 0 for all x ≤ 0, or there exists a

negative root x− of f , so that f(x−) = 0. If such a negative root is not unique,

we take x− to be the larger one, i.e., the one closer to 0.

In the �rst case where f(x) < 0 for all x ≤ 0, de�ne the (deterministic) time

τ = inf{t ∈ [0, T ] : g⋆(t) ≥ 0}.

As g⋆(0) < 0, we have τ > 0. If τ ≤ T , then g⋆(τ) = 0 by continuity of g⋆, and

we also have g⋆ < 0 on [0, τ). As k ≥ 0, we obtain (k ∗ g⋆)(τ) ≤ 0, and hence

0 = g⋆(τ) = f
(
(k ∗ g⋆)(τ)

)
< 0,

which leads to a contradiction. Thus τ = ∞, so that g⋆ takes strictly negative

values on [0, T ], as claimed.

In the second case, let x− be the negative root. If 1−2ϱ2 ≥ 0, then f is convex

by the de�nition (3.2), and it is clear that x− is the unique negative root in this

case as f(0) = −µ2

σ2 < 0. We thus have checked the conditions in Gatheral/Keller-

Ressel [56, Assumption A.1], where we set a ≡ 0, κ = k, H = f and g = g⋆ in

their notation, and let w∗ = x− and wmax = 0. We also have that a ≡ 0 = wmax

is nondecreasing, and the kernel k is nonnegative, nondecreasing and continuous

on [0, T ] by assumption. Thus by applying [56, Corollary A.7(a')] to f and g⋆,

we get that g⋆(t) < 0 for t ∈ [0, T ].

If instead 1 − 2ϱ2 < 0 so that f is concave, we de�ne the new functions
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ḡ(t) = −g⋆(t) and f̄(x) = −f(−x). Plugging in yields that ḡ satis�es the equation

ḡ = −g⋆ = −f(κ̂ ∗ g⋆) = f̄(κ̂ ∗ ḡ)

on [0, T ]. In this case, f̄ is a convex quadratic function with f̄(0) = µ2

σ2 > 0 and

a positive root −x−. By convexity, it follows that any other root of f̄ must also

be positive, since f̄ is decreasing on (−∞, 0]. Therefore, [56, Corollary A.7(c)]

applies to f̄ and ḡ with a ≡ 0 and w∗ = −x− > 0, so that ḡ(t) > 0 for t ∈ [0, T ].

Returning to the original function, we get g⋆(t) = −ḡ(t) < 0 for t ∈ [0, T ], as

claimed.

Next, we show a result that is used in Chapter I to justify the interpretation of

the parameter θ as the long-term volatility in the rough Heston model; see Lemma

I.2.12. By de�nition, for k ∈ L1
loc([0,∞);R) we say that Rk ∈ L1

loc([0,∞);R) is
the resolvent of the second kind of k if

(k ∗Rk)(t) = k(t)−Rk(t) for a.a. t ≥ 0. (3.3)

By [59, Theorem 2.3.1], such a resolvent of the second kind Rk exists for each

k ∈ L1
loc([0,∞);R).

Lemma 3.2. Let k ∈ L1
loc([0,∞);R) be a nonnegative and nonincreasing kernel

such that
∫∞
0
k(t)dt = ∞, and suppose that the resolvent of the second kind Rk

is integrable, i.e.,
∫∞
0

|Rk(t)|dt < ∞. Then it holds that
∫∞
0
Rk(t)dt = 1. In

particular, Rk is integrable if it is nonnegative.

Proof. Since k is nonnegative, nonincreasing and k ∈ L1
loc([0,∞);R), we have

k̃(ρ) :=

∫ ∞

0

e−ρtk(t)dt ≤
∫ 1

0

k(t)dt+ k(1)

∫ ∞

0

e−ρtdt <∞

for each ρ > 0, i.e., the (one-sided) Laplace transform k̃ of k is well de�ned on

(0,∞). Moreover, the assumption
∫∞
0
k(t)dt = ∞ implies that limρ↘0 k̃(ρ) = ∞

by the monotone convergence theorem. If Rk is integrable, then its (one-sided)

Laplace transform R̃k is well de�ned and continuous on R+ + iR. As given in a

remark after Gripenberg et al. [59, Theorem 2.3.5], the Laplace transform R̃k is

given in terms of k̃ by

R̃k(ρ) :=

∫ ∞

0

e−ρtRk(t)dt =
k̃(ρ)

1 + k̃(ρ)
, ρ > 0,
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as both sides are well de�ned for ρ > 0. Since R̃k is continuous on R+, taking

the limit as ρ↘ 0 yields∫ ∞

0

Rk(t)dt = R̃k(0) = lim
ρ↘0

k̃(ρ)

1 + k̃(ρ)
= 1,

as claimed.

Assume now that Rk is nonnegative, and for a contradiction suppose that∫∞
0
Rk(t)dt = ∞. Thus, there exists some T0 > 0 such that

∫ T
0
Rk(t)dt ≥ 2 for

all T ≥ T0. Recall from (3.3) that we have

Rk(t) = k(t)− (k ∗Rk)(t), t ≥ 0.

Since Rk is nonnegative by assumption, this yields the inequality

(k ∗Rk)(t) = k(t)−Rk(t) ≤ k(t), t ≥ 0. (3.4)

By the assumption on Rk and as k is nonincreasing, we can bound

(k ∗Rk)(t) =

∫ t

0

k(t− s)Rk(s)ds ≥
∫ t

0

k(t)Rk(s)ds ≥ 2k(t), t ≥ T0.

Since k is locally integrable, nonnegative, nonincreasing and
∫∞
0
k(t)dt = ∞, we

must have k(t) > 0 for all t ≥ 0. But then we have

(k ∗Rk)(t) ≥ 2k(t) > k(t)

for t ≥ T0, which contradicts (3.4). Thus the assumption that
∫∞
0
Rk(t)dt = ∞

cannot hold, which shows that Rk is integrable.

Finally, we show that the resolvent of the second kind Rk inherits the con-

tinuity property in Assumption I.2.7.1) (which we repeat below) from k. This is

a simple consequence of Lemma 1.5 together with some auxiliary results shown

in the proof of that lemma.

Lemma 3.3. Let p ≥ 1, γ > 0 and k ∈ Lploc([0,∞;R)).

1) If
∫ h
0
|k(t)|pdt = O(hγ) for small h > 0, then

∫ h
0
|Rk(t)|pdt = O(hγ) for

small h > 0.

2) If 1) holds and additionally
∫ T
0
|k(t+ h)− k(t)|pdt = O(hγ) for each T > 0

and small h > 0, then
∫ T
0
|Rk(t + h) − Rk(t)|pdt = O(hγ) for each T > 0
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and small h > 0.

3) If
∫ t+h
t

|k(t)|pdt = O(hγ) for small h > 0 uniformly in t ∈ [0, T ], then∫ t+h
t

|Rk(t)|pdt = O(hγ) for small h > 0 uniformly in t ∈ [0, T ].

Proof. 1) By Gripenberg et al. [59, Theorem 2.3.1], the resolvent of the second

kind Rk for k exists and belongs to L1
loc([0,∞);R). Fix some T > 0 and let

C := ∥Rk∥L1(0,T ) < ∞. By the de�nition (3.3) of Rk, we have Rk = k − k ∗ Rk.

Thus by applying Lemma 1.5 with q = 1 and r = p, we obtain

∥Rk∥Lp(0,h) ≤ ∥k∥Lp(0,h) + ∥k∥Lp(0,h)∥Rk∥L1(0,h) ≤ (C + 1)∥k∥Lp(0,h)

for small h > 0 so that the assumption yields

∥Rk∥pLp(0,h) ≤ (C + 1)p∥k∥pLp(0,h) = O(hγ).

2) Fix some T > 0 and de�ne C := ∥Rk∥L1(0,T+1) < ∞ and z := k ∗ Rk. By

(1.8) and (1.9) with y := Rk and δ := h, we obtain the bound

|z(t+ h)− z(t)| ≤
(
|k1[0,h]| ∗ |Rk|

)
(t+ h) +

(
(∆hk − k) ∗Rk

)
(t) (3.5)

for t ≥ 0 and h > 0, where we de�ne ∆hf ∈ L1
loc([0,∞);R) by ∆hf(t) = f(t+ h)

for f ∈ L1
loc([0,∞);R). Then as in the �rst two lines of (1.10), integrating (3.5)

yields by Young's convolution inequality (1.2) with q = 1 that

∥∆hz − z∥Lp(0,T ) ≤ ∥|k1[0,h]| ∗ |Rk|∥Lp(0,T+h) + ∥(∆hk − k) ∗Rk∥Lp(0,T )

≤ ∥k1[0,h]∥Lp(0,T+h)∥Rk∥L1(0,T+h) + ∥∆hk − k∥Lp(0,T )∥Rk∥L1(0,T )

≤ C(∥k∥Lp(0,h) + ∥∆hk − k∥Lp(0,T )) (3.6)

for h ∈ (0, 1). Once again by the de�nition (3.3), we have

∆hR
k(t)−Rk(t) = ∆hk(t)− k(t) + ∆hz(t)− z(t)

for t > 0 and h > 0. Integrating on [0, T ] and plugging in (3.6) yields

∥∆hR
k −Rk∥pLp(0,T ) ≤ (∥∆hk − k∥Lp(0,T ) + ∥∆hz − z∥Lp(0,T ))

p

≤ (C + 1)p(∥k∥Lp(0,h) + ∥∆hk − k∥Lp(0,T ))
p

≤ 2p−1(C + 1)p(∥k∥pLp(0,h) + ∥∆hk − k∥pLp(0,T )) = O(hγ)
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for h > 0 by the assumption on k; this concludes the proof of 2).

3) Once again, set C := ∥Rk∥L1(0,T+1) <∞. We claim that we have the bound

∥k ∗Rk∥Lp(t,t+h) ≤ Cñk(h), (3.7)

where ñk(h) := sup{∥k∥Lp(t,t+h) : t ∈ [0, T ]}. Indeed, (3.7) essentially follows by

(1.5) with y = Rk, q = 1, r = p, a = 0 and E = [t, t + h]. More precisely, note

that ñk is smaller than the nk de�ned in (1.6), since we only take the supremum

over intervals rather than all sets with Lebesgue measure h. However, (3.7) still

follows as in (1.5) because E is an interval, and hence the inner integral in the

second line of (1.5) is taken over an interval in this case. This shows (3.7) so that

∥k ∗Rk∥pLp(t,t+h) ≤ Cñpk(h) ≤ CC̃hγ

for some C̃ > 0, small h > 0 and all t ∈ [0, T ] by the assumption. Thus by (3.3)

and the assumption, we get

∥Rk∥pLp(t,t+h) ≤ (∥k∥Lp(t,t+h) + ∥k ∗Rk∥Lp(t,t+h))
p ≤ 2p−1(C + 1)pC̃phγ

for small h > 0 and all t ∈ [0, T ]; this concludes the proof.
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