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Evelyn Mühlhofer

MSc ETH MTEC, ETH Zurich

born on 5 April 1994

accepted on the recommendation of

Prof. Dr. David N. Bresch

Prof. Dr. Elco E. Koks

Prof. Dr. Giovanni Sansavini

Prof. Dr. Erin Coughlan de Perez

2023





When the winds and the storms subsided, the sheer scale of the catastrophe was on
display. Glass shards littered the roads. Trees, entangled in electrical wires, obstructed

entrances to homes.†



† Jonathan Moens, Inside Climate News, March 22, 2022.

Hurricane Michael Hit the Florida Panhandle in 2018

With 155 MPH Winds. Some Black and Low-Income

Neighborhoods Still Haven’t Recovered

Figure: Infrastructure damages and healthcare service

disruptions from Hurricane Michael across the Florida

Panhandle. Shown are power lines, primary roads, hos-

pitals and population clusters. Computed using the in-

frastructure network module in CLIMADA.





Abstract

Critical infrastructure ensures essential functions in every-day life. It en-

ables access to power, healthcare, education, and other basic services, and

contributes to the attainment of all 17 Sustainable Development Goals.

However, while infrastructure investments have reached unprecedented lev-

els globally, infrastructure exposure to natural hazards has equally risen.

Climate-related direct damage to critical infrastructure surpasses 730 bil-

lion USD yearly, and is projected to increase in a changing climate. Risk to

critical infrastructure must be understood as risk to people’s well-being and

to sustainable development, and it is crucial to recognize challenges towards

climate-resilient infrastructures and services. While critical infrastructure is

ubiquitous, knowledge on locations, vulnerabilities, and potential exposure

to relevant natural hazards is not. Further, critical infrastructure com-

prises networked, interdependent systems, in which asset damages can lead

to cascading failures along these connections. Services may consequently be

disrupted far beyond physically affected areas. These disruptions may affect

different parts of society in different ways. Currently, practices in natural

hazard risk assessment, technical system understanding, and social vulner-

ability considerations do not interlink adequately, which hampers service-

centred and equitable adaptation of infrastructure to a changing climate.

This thesis aims to understand natural hazard-induced critical infrastruc-

ture risks at national scales, mindful of interdependencies between these

systems and their embedding in society. Conceptually, this is approached

in three stages: I first develop a harmonized modelling framework from

natural hazard impacts to interdependent critical infrastructure and basic

service disruptions. I then use this modelling framework for in-depth sin-

gle event and large-scale comparative studies in various world regions; to

explore drivers of service disruption risk and resilience by exposing mod-

els of real-world infrastructure systems to diverse hazards, and to evaluate

adaptation options under a service-centred perspective.

i



ii ABSTRACT

The central tool of this research, a flexible, spatially explicit infrastructure

risk modelling framework, integrates representations of interdependent in-

frastructure systems into the open-source natural hazard risk assessment

platform CLIMADA. The event-based computation engine simulates infras-

tructure damage from hazard, infrastructure asset and vulnerability data,

triggers failure cascades along network dependencies, and estimates result-

ing basic service disruptions experienced by the population. This modelling

framework relies on two major developments. First, I show that that in-

corporating high-resolution exposure data, for instance from crowd-sourced

data platforms such as OpenStreetMap, is a prerequisite for (direct) infras-

tructure risk assessments; it also opens doors for any multi-faceted climate

risk assessments beyond coarse-scale monetary asset and population lay-

ers. To facilitate access to this data universe, as a light-weight, Python-

based data extraction tool (OSM-flex) was developed for use within CLI-

MADA. Second, the modelling framework generically represents infrastruc-

ture and population as elements of an interdependent network, and incor-

porates book-keeping on infrastructure functionality and services delivered.

Drawing on infrastructure modelling approaches and graph theory, I de-

vised a set of simple logical and spatial heuristics to infer dependencies

between different infrastructure assets, and between end-users and infras-

tructures, from geo-spatial data. This allows to portray the same high-

resolution exposure layers used for risk assessments mutually as directed

topological networks with functional states, service sources, and service

sinks. The method requires comparatively little additional system knowl-

edge, and caters to efficient analyses at large spatial scales. A validated case

study on hurricane Michael across the Florida Panhandle demonstrated that

the hence-developed modelling framework reproduces important failure dy-

namics among infrastructure networks, can be re-calibrated with available

impact data, and provides a novel spatial population map of service disrup-

tions.

Large-scale trends from over 700 tropical cyclone and flood events in 30

countries indicate that physical infrastructure damages and directly exposed

population - core metrics of classic risk assessments - are insufficient pre-

dictors for service disruptions. I find that in 84% of floods and 65% of

tropical cyclones, service disruptions spread well beyond the area directly

affected by the hazard. These broader disruptions are shown to result from

functional failure cascades triggered by infrastructure interdependencies and
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physical access constraints. I further show that services in richer and more

infrastructure-dense regions tend to be more resilient, yet even there, certain

event constellations can trigger failure cascades.

Analyses also show that services are subjected to hazard-specific vulnerabil-

ities. These are based on infrastructure-specific vulnerabilities, but are fur-

ther amplified along system dependencies: floods particularly impact road-

access dependent services, strong winds power-dependent services. Resolv-

ing flood, surge and wind sub-hazards in a case study on tropical cyclone

Idai in Mozambique further revealed the importance of considering the joint

impacts of compound events on infrastructure systems, as system function-

ality thresholds or service access conditions may only jointly be surpassed.

The multiple, entangled constituents of infrastructure risks have implications

for devising resilience-enhancing strategies: Climate-proofing basic services

cannot solely focus on avoiding asset damages, as adaptation options which

avoid structural damage may not (linearly) translate into service resilience.

In a suggestion to visualize high-level strategic trade-offs, I show that ser-

vice resilience, contribution of indirect failures to disruptions, and base-line

service access rates may be considered to decide among investing in protect-

ing existing infrastructure, enhancing system redundancy, or building more

infrastructure.

This thesis shows the need to explicitly consider system interdependencies

and spatially resolved, real-world hazard and exposure data to adequately

comprehend service disruption risks, and provides a tested modelling frame-

work for doing so. By exploring impacts of natural hazard to basic services,

this research bridges academic silos, and contributes to a more holistic and

systemic focus on risk beyond monetary perspectives. The network-based

approach further allows for a deeper understanding of the failure-triggering

processes behind observed impacts, instead of purely aggregating loss met-

rics. This contributes a readily-applicable tool to scenario-based stress test-

ing principles for resilient infrastructures, and may enable decision-makers

to plan infrastructure investments with a priority on service resilience.





Zusammenfassung

Kritische Infrastrukturen sind essenziell für einen funktionierenden Alltag.

Sie stellen den Zugang zu Strom, Gesundheitsversorgung, Bildung und an-

deren Dienstleistungen der Grundversorgung sicher und tragen zum Errei-

chen aller 17 Ziele für Nachhaltige Entwicklung (engl.: Sustainable Develop-

ment Goals, SDGs) bei. Globale Infrastruktur Investitionen haben einen

Höchststand erreicht, was auch mit einer entsprechenden Exposition ge-

genüber Naturgefahren einhergeht. Klimabedingte Direktschäden an kriti-

schen Infrastrukturen überschreiten jährlich 730 Milliarden USD und werden

aufgrund des Klimawandels voraussichtlich weiter steigen. Infrastruktur Ri-

siken müssen als Risiken für menschliches Wohlergehen und nachhaltige Ent-

wicklung gesehen werden; ein besseres Verständnis der Herausforderungen

hinsichtlich Klima-resilienter Infrastrukturen und Grundversorgung ist da-

her unabdingbar. Kritische Infrastrukturen sind allgegenwärtig, das Wissen

um deren geografische Lage, Verwundbarkeit und potenzielle Gefährdung

jedoch nicht. Kritische Infrastrukturen bestehen zudem aus netzwerkarti-

gen, wechselseitig abhängigen (interdependenten) Systemen, innerhalb wel-

cher Schäden zu Kaskadenversagen führen können. Dadurch kann es zu

Störungen und Versorgungsengpässen in der Grundversorgung kommen, wel-

che weit über direkt betroffene Gebiete hinausgehen. Versorgungsengpässe

können wiederum unterschiedliche Auswirkungen für Betroffene verschiede-

ner Bevölkerungsschichten haben. In gegenwärtigen Vorgehensweisen zur Ri-

sikobeurteilung von Naturgefahren knüpft das technische Systemverständnis

jedoch nicht ausreichend an die Beurteilung von sozialen Verwundbarkeiten

an, was eine gerechte Anpassung von Infrastrukturen an den Klimawandel

erschwert.

Diese Arbeit hat zum Ziel, Naturgefahren bedingte Risiken kritischer In-

frastrukturen auf nationalen Skalen zu verstehen, unter Berücksichtigung

von Interdependenzen und deren Einbettung in die Gesellschaft. Konzep-

tuell wird dies in drei Abschnitten getan: Zunächst entwickle ich ein Rah-

menwerk für die harmonisierte Modellierung von Naturgefahren Auswirkun-

v
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gen auf interdependente kritische Infrastrukturen und Grundversorgungs-

ausfälle. Dieses Modell verwende ich dann für detaillierte Ereignisstudien so-

wie für grossangelegte Vergleichsstudien in unterschiedlichen Weltregionen;

einerseits, um Treiber von Risiko und Resilienz hinsichtlich der Grundver-

sorgung auszumachen, indem ich Modelle realer Infrastruktursysteme Na-

turgefahren aussetze, andererseits, um Anpassungsmassnahmen unter einem

Versorgungsblickwinkel zu evaluieren.

Das zentrale Werkzeug dieser Forschungsarbeit, ein flexibles, räumlich expli-

zites Infrastruktur Risikomodell, integriert Darstellungen von Infrastruktur-

systemen anhand komplexer Netzwerk Theorie in das öffentlich zugängliche

Naturgefahren Risikomodell CLIMADA. Das Ereignis-basierte Modell simu-

liert Infrastrukturschäden aus einer Kombination von Daten zu Gefährdung,

Exposition und Verletzlichkeit. Es setzt Störkaskaden entlang Abhängigkeiten

in Bewegung und berechnet daraus resultierende Ausfälle der Grundversor-

gung für die Bevölkerung. Diesem Modell liegen zwei nennenswerte Ent-

wicklungen zugrunde. Erstens zeige ich, dass die Berücksichtigung hochauf-

gelöster Expositionsdaten, etwa von Plattformen wie OpenStreetMap, eine

Vorbedingung für die Beurteilung von (direkten) Infrastruktur Risiken ist;

es öffnet zudem den Zugang zu facettenreichen Risikobeurteilungen für jeg-

liche Grössen jenseits grobaufgelöster monetärer und bevölkerungsbasierter

Grundraster. Um Daten effizient zu extrahieren und in CLIMADA zu ver-

wenden, wurde eigens ein Python-basiertes Tool (OSM-flex) entwickelt. Zwei-

tens stellt das Modell jegliche Infrastrukturen-und Bevölkerungsdaten als

zusammenhängendes Netzwerk dar, und führt Buchhaltung über Funktions-

und Versorgungszustände. Basierend auf Methoden in Infrastruktur For-

schung und Graphentheorie habe ich simple logische und räumliche Heuris-

tiken entwickelt, um Abhängigkeiten zwischen verschiedenen Infrastruktur

Komponenten und der Bevölkerung anhand derer Geo-Daten zu erschlies-

sen. Dies erlaubt es, dieselben Expositionsdaten, welche zur Risikobeurtei-

lung verwendet wurden, als topologische, gerichtete Netzwerke mit Funk-

tionalitäts-, Versorgungslieferung- und Versorgungsnachfrage Attributen zu

repräsentieren. Die Methode benötigt relativ wenig weiterführendes System-

wissen und eignet sich für effiziente Analysen über grosse räumliche Skalen.

In einer validierten Fallstudie zu Hurrikan Michael in Florida wurde auf-

gezeigt, dass das entwickelte Modell wichtige Ausfalldynamiken zwischen

Infrastruktur Netzwerken wiedergibt, mit verfügbaren Auswirkungsdaten
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re-kalibriert werden kann und neuartige räumliche Karten von Versorgungs-

ausfällen aufzeigt.

Eine Studie über 700 tropische Zyklone und Fluten in 30 Ländern veran-

schaulicht, dass physische Infrastrukturschäden und Anzahl Direktbetroffe-

ner - Kernzahlen in der klassischen Risikobeurteilung - unzulänglich sind, um

das Ausmass von Grundversorgungsstörungen hervorzusagen. Ich zeige auf,

dass in 84% aller Fluten und 65% aller tropischen Zyklone Versorgungs-

ausfälle über die direkt betroffene Region hinausgehen. Diese Störungen

können auf Kaskadenversagen und physische Zugangsbeschränkungen zurück-

geführt werden. Zudem zeige ich, dass die Grundversorgung in reicheren und

dichter bebauten Regionen in der Regel widerstandsfähiger ist, jedoch selbst

dort in gewissen Fällen Kaskadenversagen zu beobachten sind.

Resultate beleuchten zudem, dass verschiedene Basisdienstleistungen unter-

schiedlich stark verletzlich sind durch unterschiedliche Naturgefahren. Dies

beruht auf Gefährdungs-spezifischen Verletzlichkeiten gewisser Infrastruk-

tur Komponenten, welche durch Systemabhängigkeiten weiter verstärkt wer-

den: Fluten beeinträchtigen besonders Dienstleistungen, welche auf Strassen-

transport angewiesen sind, Stürme hingegen Dienstleistungen, welche Strom

benötigen. In einer Fallstudie zum tropischen Zyklon Idai in Mosambik,

in welcher Flut, Sturmflut und Sturm explizit behandelt wurden, wurde

zudem verdeutlicht, dass Untergefahren und Mehrfachgefahren signifikan-

te Auswirkungen auf Infrastruktursystem haben können, da diese potenzi-

ell nur unter gemeinsamer Betrachtung System-oder oder Zugangsschwellen

überschreiten.

Die verschiedentlichen und verwickelten Treiber von Infrastruktur Risiken

haben wichtige Implikationen für Strategien zur Resilienzverbesserung: Klima-

resiliente Grundversorgung kann nicht einzig auf strukturelle Anpassungen

zur Vermeidung physischer Infrastruktur Schäden zurückgreifen. In einem

Vorschlag zur Visualisierung von Trade-Offs zeige ich auf, dass die Resilienz

verschiedener Basisdienstleistungen, Anteil indirekter Kaskadenausfälle, und

Grundversorgungsrate zusammen betrachtet werden können, um zwischen

folgenden Strategieoptionen abzuwägen: Investition in den Schutz bestehen-

der Infrastruktur, Verbesserung der Netzwerkredundanz, Investition in neue

Infrastruktur.

Diese Arbeit zeigt die Notwendigkeit auf, Systemabhängigkeiten und räumlich

explizite, reale Naturgefahren-und Expositionsdaten zu berücksichtigen, um
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Grundversorgungsrisiken adäquat abzubilden. Hierfür wurde ein geteste-

tes Modell bereitgestellt. Durch die Ausleuchtung von Auswirkungen ver-

schiedener Naturgefahren auf unterschiedliche Basisdienstleistungen wurden

Brücken geschlagen zwischen akademischen Disziplinen, und ein Beitrag ge-

leistet zu einer ganzheitlichen Betrachtung von Risiko abseits monetärer

Blickwinkel. Die Netzwerk-basierte Methodik ermöglicht zudem, Störprozesse

hinter den beobachteten Auswirkungen zu verstehen, anstatt auf aggregier-

ten Schadenssummen zu verbleiben. Als ein einfach anwendbares Werkzeug

für Szenario-basierte Stress-Tests im Infrastrukturbereich kann es Entschei-

dungsträgern helfen, Infrastrukturinvestitionen mit einem Fokus auf resili-

entere Grundversorgung zu tätigen.
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CHAPTER 1

Introduction

1.1 Motivation

In July 2021, parts of Western Europe experienced a 1-in-400 years rainfall

event that led to severe flooding. It caused over 5 billion Euros in damage

to property and infrastructure, and over 200 fatalities (Kreienkamp et al.

2021). The severity of impacts took many local governments and citizens

by surprise, despite prior weather warnings (ibid.). Evacuations, emergency

response, and repairs were hampered due to power outages, telecommuni-

cation disruptions, and a dysfunctional transport systems, which left some

villages inaccessible for days (Koks, van Ginkel, et al. 2022). Restoration of

services proceeded slowly in the worst-hit area, with schools and hospitals

remaining closed, and gas supplies being cut for months (ibid.). Climate

change had made the occurrence of this event up to nine times more likely

compared to pre-industrial times (Kreienkamp et al. 2021).

This incident was drastic for the region. However, many similar accounts

across the globe contribute to a body of systematic evidence: As infrastruc-

ture investments are at an all-time high (Thacker, Adshead, et al. 2019),

infrastructure systems and services are more exposed than ever to natural

hazards. 25% of the world’s busiest airports are located at less than 10

metres above sea level (Yesudian and Dawson 2021); around 27% of all road

and railway assets, almost 95% of all ports, and power generation plants in

nearly every country of the world are exposed to at least one natural hazard

(Koks, Rozenberg, Zorn, et al. 2019; Nicolas et al. 2019; Verschuur, Koks,

and Hall 2022).

Global damages from natural hazards to infrastructure are considerable,

with average annual estimates around USD 3.1 - 22 bn (road and rail), 4 bn

(ports), 15 bn (power plants), and 732-845 bn (total) (Cardona et al. n.d.;

Koks, Rozenberg, Zorn, et al. 2019; Nicolas et al. 2019; Verschuur, Koks,

1
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and Hall 2022). By 2030, this risk is projected to increase for all sectors

in transportation, telecommunications, energy and water (McKinsey Global

Institute 2020).

As critical infrastructure provides society with basic services such as ac-

cess to power, healthcare, and education, they ensure the most essential

functions in every-day life and contribute to the attainment of all 17 Sus-

tainable Development Goals (SDGs) (Thacker, Adshead, et al. 2019). The

wider socio-economic consequences of critical infrastructure disruptions are

therefore even more detrimental. Future coastal and extreme flooding could

disrupt up to 20% of global flights and 66% of inter-urban road trips (Y. He

et al. 2022; Yesudian and Dawson 2021); unstable electricity supplies cost

firms in low and middle income countries nearly USD 200 bn (Rentschler et

al. 2019) and port disruptions put at least USD 122 bn of economic activity

at risk - each year.

Protecting critical infrastructure and ensuring continuous, high-quality ba-

sic services is of importance in policy-making on many levels: as a target of

the Sendai Framework for Disaster Risk Reduction (UNDRR 2015, §25 e, f),

within the the European Programme for Critical Infrastructure Protection

(European Commission 2008), as key representative risk and major accumu-

lator of global adaptation costs until 2050 in the IPCC’s latest assessment

report (O’Neill, van Aalst, et al. 2022; Thacker, Adshead, Daniel, et al.

2021), and within climate-resilient implementation principles of multilateral

donors such as the Green Climate Fund.

Significant challenges are on the way to climate-resilient infrastructure and

services. While infrastructure is ubiquitous, knowledge on locations, build-

ing quality, vulnerabilities and potential exposures to all relevant natural

hazards is unevenly distributed across the globe. Critical infrastructure con-

sists of networked systems, which depend on each other to provide services;

such interdependencies can enhance tolerance to failures if well managed

or lead to cascading failures, spilling beyond physically affected areas, and

hampering recovery (Guidotti et al. 2016; Nan and Sansavini 2017; Zorn,

Pant, et al. 2020). Yet, infrastructure interdependencies are often poorly

understood (cf. SWD(2013)318 2013) and systemic approaches for analysis

are encouraged (Bresch, Berghuijs, et al. 2014; Zio 2016), but constrained by
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silo-thinking in specialized (research) communities (Pant, Hall, and Blainey

2016). Even in civil protection, daily emergency management or humani-

tarian aid, awareness of the dependency on infrastructure services has been

hardly integrated into existing concepts (Fekete 2019). It is further not well

understood which differential impacts critical infrastructure failures may

have on different parts of the society, as the gap between technical system

understanding, social vulnerability and equity considerations remains large

(Garschagen and Sandholz 2018).

Risks to critical infrastructure are risks to basic services, and a deeply in-

tertwined socio-technical problem. Understanding the role of infrastructure

during natural disasters can only be done jointly, considering interdependen-

cies between infrastructure networks, their embedding within the natural

and built environment, and society (Thacker, Adshead, et al. 2019).
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1.2 Aim of this thesis

This thesis aims to

understand natural hazard-induced critical infrastructure risks,

mindful of the interdependent, networked nature of the systems,

and their consequences on society in which they are embedded.

By exploring spatially explicit risks from natural hazards to structural as-

sets, and evaluating those impacts on service disruptions experienced by the

population, in a globally consistent manner, this research contributes to an

enhanced understanding of how basic services can be made more resilient in

a world affected by climate change.

1.2.1 Research questions

RQ1 How to capture the impacts of natural hazards on interdependent criti-

cal infrastructure, and their consequences on basic service disruptions,

at national scales, in a globally consistent and open-source manner?

RQ 1.1 · · ·•
How do critical infrastructure components depend on each other
for delivery of basic services to end-users; can dependency
heuristics be devised?

RQ 1.2 · · ·•
Can complex network modelling and natural hazard risk modelling
be aptly combined to build an end-to-end framework from physical
infrastructure impacts to service disruptions?

RQ 1.3 · · ·•

How do resolution, quality, and spatial availability of data on
infrastructure assets, end-users, dependencies, hazard-specific
vulnerabilities, and functional performance affect the
representation of these socio-technical systems?

RQ2 What drives risk and resilience of basic services during natural hazard

events?

RQ 2.1 · · ·• Do spatial patterns of physical infrastructure impacts differ from
those of infrastructure failures and service disruptions?
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RQ 2.2 · · ·• Do different hazards, multi-hazards and sub-hazards cause distinct
impacts to interdependent critical infrastructure systems?

RQ 2.3 · · ·•
How does the interplay of specific infrastructure system
characteristics and hazard exposure influence the resilience of
basic services?

RQ3 How do social vulnerabilities and adaptation interventions modulate

basic service risks?

RQ 3.1 · · ·•
How can adaptation measures for interdependent infrastructure be
evaluated under a systemic lens, mindful of service resilience
outcomes?

RQ 3.2 · · ·• How are different population groups impacted by the consequences
of natural hazard-induced service disruptions?

1.2.2 Working hypotheses

In order to bridge research efforts across various communities, and to cater

to the criteria of global consistency, large geographic scales, and open-source

data and methods, three working hypotheses guided this research process:

Resolution hypothesis: A meaningful compromise can be found to recon-

cile the trade-off between model resolution demanded by the large scales at

which natural hazards occur and the degree of model sophistication needed

to represent the functional processes and interdependencies in critical in-

frastructure systems.

Interoperability hypothesis: Diverse layers of information, pertaining do dif-

ferent stages along a chain of impacts, can be tailored and harmonized to

deduce a single framework from hazards to service disruptions.

Consistency hypothesis: There is ‘sufficient’ open-source data and generic

enough heuristics to design a model which is coherent (standardized) in its

way of computing global impacts, yet locally meaningful.
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1.2.3 Data and Methods

The methodological centre-piece of this research consists of a multi-stage

risk modelling approach; spatially explicit physical risk computations are

performed on infrastructure assets, from which infrastructure failures and

service disruptions are then derived (Fig. 1.1). This framework is developed

and tailored in various alterations to the scales and problems posed in the

research questions above. All input data used and code produced within

this research are publicly available.

Figure 1.1: The methodological framework of this research, a multi-stage risk modelling
approach combining physical impact computations on infrastructure assets using the risk
modelling platform CLIMADA, and a complex-network based representation of interde-
pendent infrastructure systems and their users. Results are reported along a technical
(infrastructure functionality) dimension, and a people-centred (service disruption) dimen-
sion.

Physical risk computations. The open-source software CLIMADA

(CLImate ADAptation Aznar-Siguan and Bresch 2019) is a globally consis-

tent multi-hazard risk modelling platform which allows for spatially explicit,

event-based and probabilistic risk assessments in line with the IPCC’s defi-

nition of risk. Data on exposure - here, infrastructure assets and population

-, hazard and vulnerability can be ingested in a fully user-defined manner.

Risk (or impact) is computed as a convolution of these three layers, and ex-

pressed in the value metric assigned to the exposure (i.e., affected population

counts, fraction of assets damaged, etc.).
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Infrastructure failures, failure cascades and service disruption com-

putations. Within CLIMADA, a complex network-based module repre-

sents infrastructure systems, population, and dependencies between them

as hierarchical networks featuring nodes and edges. From this topological

representation, functional states of infrastructure components and service

access of end-users are computed. Physical damage calculations on infras-

tructure assets (see above) are fed into this module as disruption trigger,

from which infrastructure failures, failure cascades, and service disruptions

are simulated.

Data. This work is based on a plethora of different data, notably geo-spatial

data on hazards, infrastructure asset, and population counts; secondary data

on service quality, demand, and supply (e.g., road speeds, energy access,

power generation, etc.), academic literature on vulnerability curves and in-

frastructure dependencies; and unstructured print media accounts, utility

provider and government reports for verification purposes.
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1.3 Scientific Background

1.3.1 Definitions around critical infrastructure and basic ser-

vice risks

Critical infrastructure. Most governments and organizations have a

working definition of critical infrastructure which share important features

of the one provided by the European Commission:

Critical infrastructure is an asset or system which is essential

for the maintenance of vital societal functions. The damage to

a critical infrastructure, its destruction or disruption by natu-

ral disasters, terrorism, criminal activity or malicious behaviour,

may have a significant negative impact for the security of the EU

and the well-being of its citizens. - European Commission, 2023

Critical infrastructure systems secure essential functions in society, they

mitigate negative effects during adverse events, their failure is detrimental

to economic security, health and safety, and they are systems consisting

of physical assets, processes and people. Despite the absence of a unique

classification, and the fact that criticality of an infrastructure may vary

according to geographic scope and impact metric (Kröger and Zio 2011),

infrastructure sectors frequently considered critical are transportation, in-

formation and communication, energy, water, public health, public safety,

public administration, finances, food and agriculture, and waste disposal1.

Infrastructure interdependencies. (Inter-)dependencies refer to

(bi-)directional relationships between components of infrastructure systems

(Ouyang 2014)2. Interdependencies can be of different nature (e.g., physical,

logical, geographic and cyber, as categorized in the seminal work of Rinaldi

et al. 2001), strength, and coupling behaviour.

1cf. classifications from Switzerland (https://www.babs.admin.ch/
en/aufgabenbabs/ski/kritisch.html) and the United States (https://
www.cisa.gov/topics/critical-infrastructure-security-and-resilience/

critical-infrastructure-sectors) featuring 9 sectors with 27 sub-sectors and 16
sectors, resp.

2In the following, no strict distinction will be made with respect to the use of the word
(inter-)dependency for enhanced readability.

https://www.babs.admin.ch/en/aufgabenbabs/ski/kritisch.html
https://www.babs.admin.ch/en/aufgabenbabs/ski/kritisch.html
https://www.cisa.gov/topics/critical-infrastructure-security-and-resilience/critical-infrastructure-sectors
https://www.cisa.gov/topics/critical-infrastructure-security-and-resilience/critical-infrastructure-sectors
https://www.cisa.gov/topics/critical-infrastructure-security-and-resilience/critical-infrastructure-sectors
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Basic service (access). Basic services, also: essential services, refer to

“public service provision systems that meet human basic needs including

drinking water, sanitation, hygiene, energy, mobility, waste collection, health

care, education and information technologies. [. . .] Access to basic ser-

vices implies that sufficient and affordable service is reliably available with

adequate quality” (UNSTATS 2023). Sufficient and adequate are highly

context-specific characteristics, and many governments have their own tar-

get metrics; as a reference and starting point, the access criteria developed

for SDG indicator 1.4.1 (Proportion of population living in households with

access to basic services) may be considered.

Natural hazard risk. According to the IPCC, natural hazard risks emerge

through the interplay of weather and climate-related hazards, the exposure

of assets and people to those hazards, and their specific vulnerabilities (Field

et al. 2014). Risk is the convolution of severity and probability, and can be

expressed as an expected level of ’impacts’ associated with a certain return

period (Kaplan and Garrick 1981). Frequently, but less standardized, direct

risk refers to the expected physically caused impacts on the exposure, and

indirect risks is used as a collective term for of any secondary, cascading,

‘consequently resulting’ impacts.

Dimensions of critical infrastructure risk. Critical infrastructure sys-

tems are exposed to multi-faceted risks with diverse consequences. Efforts to

understand and mitigate these risks are equally diverse. Traditionally, criti-

cal infrastructure protection from natural hazards and man-made causes has

been the concern of governmental institutions3 (Fekete 2019). Informed by

advances in structural and civil engineering, critical infrastructure protec-

tion has retained a predominantly technical focus on reliability and system

performance, and notably on system interdependencies, with their potential

for failure cascades and knock-on effects (Ouyang 2014; Rinaldi et al. 2001).

In natural hazard risk management and risk modeling, risk assessments and

the appraisal of adaptation measures frequently feature an infrastructure

dimension, albeit at varying degrees of explicitness (Hallegatte et al. 2019;

3see, for instance, the European Commission’s framework - European Programme for
Critical Infrastructure Protection (EPCIP).
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Pant, Thacker, et al. 2018). Owed to the provision of services to people and

businesses and their consequences on livelihoods, the societal dimensions

of critical infrastructure risks have entered international policy frameworks

and evoked interest in economics, human geography, and sociology (Cutter

et al. 2006; Garschagen and Sandholz 2018; Thacker, Adshead, et al. 2019).

In an effort to systematize dimensions of critical infrastructure risks, Daw-

son et al. (2018) suggest a categorization into asset scale risks, stemming

from physical damages to individual infrastructure components, network

scale risks, referring to a reduction in service provision of an infrastructure

due asset damages, infrastructure (inter-)dependency risks, referring to a

reduction in service provision of other infrastructure due to dependencies on

damaged infrastructure, and systemic risks, stemming from revenue losses

incurred by industries due to supply chain disruptions, etc.

Hallegatte et al. (2019) suggest a people-centred and an economy-centred

view on impacts from critical infrastructure damages and service disruptions,

spanning direct and indirect dimensions: examples include repair costs, lost

sales, traffic congestion, immediate effects on health, education and liveli-

hood, and extensive consequences such as coping costs of forgone services,

market investment barriers, reduced competition and innovation, long term

economic prospects, quality of life, mortality and morbidity.

Distinct research communities in this interdisciplinary field rely on domain-

specific methodologies, terminologies and foci. The resulting silo-thinking

is increasingly criticized (Thacker, Pant, et al. 2017) and interdisciplinary

approaches which better cater to the complexities of the problem space are

encouraged (Zio 2016). The following paragraphs provide an overview on

research developments along the introduced dimensions of critical infras-

tructure risk with a predominant focus on natural hazard risk modelling;

research directions in civil engineering and social sciences are pointed out

where feasible and necessary for the scope of this work.
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1.3.2 Direct risks to critical infrastructure from natural haz-

ards

Empirical risk. Natural hazard-induced direct risk is frequently expressed

in metrics such as monetary damages to asset stocks or the number of dead

and affected people. Empirical loss and damage databases in (re-)insurance

and academia primarily report on these figures: for instance, Swiss Re’s

sigma explorer4, Munich Re’s NatCatSERVICE5, and the University of Lou-

vain’s EM-DAT (CRED / UCLouvain 2023). Analogous risk metrics for

critical infrastructure, i.e. damaged or exposed infrastructure components,

are increasingly monitored, for instance through respective indicators to

the Sendai Framework6. However, empirical data on infrastructure impacts

trails far behind more established economic loss and mortality records. This

reporting asymmetry reflected by similar tendencies in risk management and

research, where critical infrastructure is a comparatively new field (Fekete

2019), despite such knowledge being crucial for evaluation, funding alloca-

tion and operational planning.

Modelled risk. On the modelling side, risk assessment studies have com-

puted direct risk from various natural hazards to several infrastructure sec-

tors at sub-national (ibid.), national (Thacker, Pant, et al. 2017), regional

(van Ginkel et al. 2021), and even global (e.g. road, rail, ports and airports;

Koks, Rozenberg, Zorn, et al. 2019; Verschuur, Koks, S. Li, et al. 2023;

Yesudian and Dawson 2021) level. However, quantification of direct risk to

critical infrastructure assets faces bottlenecks along all components of the

risk equation (i.e., hazard, exposure and vulnerability), which contributes to

the scarcity of regional and global studies for a wider range of infrastructure

sectors.

Challenges and Gaps. Most critical infrastructure consists of diverse

structural assets. Geospatial location information, however, varies widely

depending on world region and infrastructure type. Primary roads, for in-

stance, are relatively well mapped globally on crowd-sourced platforms such

4https://www.sigma-explorer.com/
5https://www.munichre.com/en/solutions/for-industry-clients/

natcatservice.html
6sendaimonitor.unisdr.org

https://www.sigma-explorer.com/
https://www.munichre.com/en/solutions/for-industry-clients/natcatservice.html
https://www.munichre.com/en/solutions/for-industry-clients/natcatservice.html
sendaimonitor.unisdr.org
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as OpenStreetMap (Barrington-Leigh and Millard-Ball 2017) and through

advancements in remote sensing technologies (Lu et al. 2022). On the con-

trary, geospatial information on small-scale or under-ground infrastructure

such as water and sanitation assets (Stip et al. 2019), or on highly sensi-

tive infrastructure, such as power assets in high resolution, is scarce. Some

governments in predominantly wealthy regions provide official, publicly ac-

cessible infrastructure data7, while many lowest-income countries are reliant

on humanitarian mapping efforts following disasters (Herfort et al. 2021).

The high complexity of some infrastructure sectors which are made up of

numerous different components additionally complicates comprehensive risk

assessments8

Information on age, structural deterioration or design standards of infras-

tructure components significantly impact the vulnerability to natural haz-

ards, but are virtually absent at larger scales (Mahmoud et al. 2023). In-

creasing efforts are dedicated to collect, for instance, number of floors and

construction materials of healthcare facilities and schools9, or surface mate-

rial of roads, but this remains a laborious task . Even with significant asset

information, obtaining adequate vulnerability functions (impact functions,

fragility curves), which relate hazard intensities to the expected damage sus-

tained by infrastructure components, remains a challenge. While extensive

work has been done in structural engineering disciplines to devise such vul-

nerability functions for diverse infrastructure components, as for instance

within the widely used (US-specific) manuals from the FEMA’s Hazus Pro-

gram, limited empirical damage records for calibration, and doubtful trans-

ferrability, require assumptions and simplifications (Koks, Rozenberg, Zorn,

et al. 2019; Nicolas et al. 2019).

Lastly, globally available hazard models do not necessarily resolve highly

enough to adequately capture impacts on all critical infrastructure compo-

7e.g., the Swiss federal geoportal www.geo.admin.ch, or the US-American Homeland
Infrastructure Foundation-Level Data https://hifld-geoplatform.opendata.arcgis.

com/
8e.g., power and telecommunication infrastructure, consisting of numerous types of

power plants, substations, towers, poles, lines; submarine, fibre optic and co-axial cables,
data centres, cell towers, landlines, etc. (Nicolas et al. 2019; Sandhu and Raja 2019).

9cf. the World Bank’s Global Library for Schools Infrastructure https://gpss.

worldbank.org/en/glosi

www.geo.admin.ch
https://hifld-geoplatform.opendata.arcgis.com/
https://hifld-geoplatform.opendata.arcgis.com/
https://gpss.worldbank.org/en/glosi
https://gpss.worldbank.org/en/glosi
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nents. While for spatially extensive infrastructure such as roads or rails,

imprecision on damage computations from low-resolution hazard sets may

cancel out over larger stretches, this might not hold for sparse, local in-

frastructure components such as power substations. Further, infrastructure

components may be vulnerable only to certain sub-hazards, which is not

captured adequately when the entire hazard phenomenon is proxied by one,

even though dominant, sub-hazard (e.g. for tropical cyclones, wind is used

as a proxy for the subset of wind, surge and rain sub-hazards, which can

strain infrastructure components in a different manner). Further, research

on physical infrastructure impacts is often dominated by earthquakes (Mah-

moud et al. 2023), in spite of floods and tropical cyclones being similarly

damaging10.

1.3.3 Indirect risks of natural hazard-induced damages to

critical infrastructure

Modelling indirect infrastructure risks. To derive indirect infras-

tructure risks resulting from natural hazard events, researchers have coupled

direct infrastructure risk computations with a variety of models capturing

risk propagation: For instance, input-output and agent-based models for

supply chain and welfare losses from telecommunication interruptions (Colon

et al. 2019), bespoke maritime transport and input-output models for trade

and logistics disruptions from port interruptions (Verschuur, Koks, S. Li,

et al. 2023), flight routing data for flight disruptions and economic losses

(Yesudian and Dawson 2021), network models for trip delays and cancella-

tions (Y. He et al. 2022), and theoretical frameworks for infrastructure as

‘winnowing device’ to consider multi-hazard risks (Raymond et al. 2020).

While the importance of systems-thinking in natural hazard risk modelling

is increasingly recognized (Bresch, Berghuijs, et al. 2014), much academic

work at the intersection of critical infrastructure and natural hazards focuses

either on network scale risks (i.e., from within a single infrastructure net-

work), or on system scale risks (i.e., on coarse cross-sectoral impacts). The

middle ground, interdependency scale risks, (i.e., consequences of impacts to

10As a first orientation, global total damages between 2000 and 2023, as reported in the
EM-DAT database, amount to ∼ USD bn 5 000 (TC), 6 300 (FL) and 4 600 (EQ), resp.
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infrastructure assets as part of interdependent infrastructure systems), are

rarely treated in natural hazard risk modelling, despite interdependent in-

frastructure systems being a central element of research in many engineering

disciplines. The following paragraphs hence focus on this type of risk.

Identifying infrastructure interdependencies. With the recognition

of the existence and importance of interdependencies between infrastruc-

ture components, numerous typologies have been developed (e.g., Lee II et

al. 2007; Rinaldi et al. 2001; Zimmerman and Restrepo 2006). While they

may provide a common mental framework, utility of these classifications has

been debated in practical terms. To identify and quantify such infrastruc-

ture interdependencies, simple empirical approaches have counted occur-

rences of infrastructure disruptions from print media and outage databases,

and tracked which sectors were at initiating and receiving ends, resp. (Luiijf

et al. 2009; Zimmerman and Restrepo 2006). Other approaches have re-

lied on participatory methods (e.g. ‘Preliminary Interdependency Analysis’

(Bloomfield et al. 2017), expert surveys (Mitsova, Sapat, et al. 2020) and

focus group discussions (Schotten and Bachmann 2023a)), or conducted in-

depth case studies of past events (Chang, Pasion, et al. 2012; Gao et al.

2023). More quantitative approaches have deduced interdependencies from

critical infrastructure restoration curves after disasters (e.g. Cimellaro 2016;

Dueñas-Osorio and Kwasinski 2012; Zorn and Shamseldin 2016).

Network-based modelling of interdependent infrastructure. Ap-

proaches for modelling interdependent infrastructure systems are equally di-

verse as those for identifying interdependencies. A comprehensive overview

on the dominating approaches, including their benefits and shortcomings,

is provided in Ouyang (2014), who categorizes them into empirical, agent-

based, system dynamics-based, economic theory-based, network based, and

other approaches.

Critical infrastructure are large, spatially distributed, complex systems, and

share many typical attributes of complex networks (Kröger and Zio 2011).

While network-based approaches do not replace more detailed reliability

analysis methods, they offer a tool to represent systems at different levels

of complexity, are easily generalizable and transferable, and can serve as a
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first large-scale screening analysis to identify hot-spots for further in-depth

investigation (Pant, Hall, and Thacker 2017). Modelling interdependent

critical infrastructure as hierarchical networks is furthermore intuitive and

illustrative (Pant, Hall, and Blainey 2016). Due to the versatility of the

modelling approach, complexity and resolution between different network

model implementations varies considerably. Purely topological representa-

tions model infrastructure and their interdependencies as graphs consisting

in nodes and edges, while network flow models add supplies, demands, ca-

pacity constraints and flow rates to the graph elements, allowing to capture

and optimize the system’s performance at continuous levels (Guidotti et al.

2016; Lee et al. 2009).

Challenges and Gaps. As this thesis relies on a network modelling ap-

proach for interdependent infrastructure, a comprehensive literature review

was conducted on research at the intersection of interdependent critical in-

frastructure, network modelling approaches, and natural hazards, between

2005 and 2021 to scope for common challenges and gaps in the field. 80

relevant publications spanning the water, electricity, oil and gas, road, rail

and air transport, mobile, internet and land-line communication, education,

healthcare and emergency service sectors. Supplementary SM1 provides

search and inclusion criteria, and an information flow diagram according

to the PRISMA method. Fig. SM1.1 illustrates findings from the meta-

analysis, Table SM1.1 gives an overview on identified infrastructure interde-

pendencies.

Most network studies on interdependent critical infrastructure investigate

only two systems. The power system is most often studied, especially in

connection with the water or the telecommunication system. Healthcare

and education systems are nearly absent.

Most studies do not explicitly investigate natural hazards as disruptive sce-

narios. Frequently, disruption effects are studied from the removal of in-

dividual nodes and edges (component criticality studies), from the random

removal of an increasing amount of edges and nodes (percolation studies), or

from the failure of all infrastructure components within the area of stylized

polygons (e.g. Fang, Pedroni, et al. 2016; Jenelius and Mattsson 2012; D.
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Li et al. 2015; Mooney et al. 2018; Zorn, Pant, et al. 2020), within which

all infrastructure components are concurrently failed. The studies which

investigate real-world hazards often focus on earthquakes, and to a smaller

degree on floods, tropical cyclones and severe winds.

Most studies model systems at local scales, i.e. communities or districts.

The typical study object is a mid-sized city in the US, where all needed

infrastructure data is either available, or a similarly-sized test-bed environ-

ment which reproduces artificially generated, but representative conditions

(cf. ‘Clarc County’ in Loggins and Wallace (2015) or ‘Centerville’ in X.

He and Cha (2020)). Resolution of the modelled critical infrastructure is

typically inversely correlated with the geographic scale at which they are

studied. The few national-scale, real-world infrastructure system studies

are restricted to well-delimited islands, such as the UK and New Zealand

(Pant, Thacker, et al. 2018; Zorn, Pant, et al. 2020). Apart from few studies

in Korea, mainland China and Nigeria, no studies investigate on infrastruc-

ture systems in Asia, Africa or Latin America and the Caribbean.

Most studies evaluate impacts on a technical system performance level. Typ-

ical metrics are number of disrupted nodes in relation to the overall supply of

a system (e.g., number of generators vs. power remaining in the system) or

in relation to recovery times, sometimes evaluated against various network

configurations. Few studies look at economic impacts, such as monetary

loss, business interruption, and even fewer at impact on population, such as

number of people affected by disruption of a service.

1.3.4 Basic service disruptions and social vulnerability

As natural hazards affect the well-being of people (Dargin and Mostafavi

2020), various factors and characteristics among population groups can mod-

ulate the degree of severity of potential impacts (Cutter et al. 2006). While

research has been relatively conclusive on the broad variables contributing

to social vulnerability, such as demographics, socio-economic condition, liv-

ing situation, ethnicity and health status (ibid.), it is widely unclear how

critical infrastructure failures and service disruptions interact with social

vulnerability conditions, and how these differential impact patterns relate

to different hazard and crisis scenarios (Garschagen and Sandholz 2018).
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This lack of understanding is problematic as socially vulnerable population

groups tend to be more often exposed to natural hazards, and seem to ex-

perience more and longer-lasting resulting service disruptions (Liévanos and

Horne 2017; Mitsova, Esnard, et al. 2018; Yu et al. 2020). Understanding

such differential needs is crucial for adequate response in the instant after-

math of a disaster (Dargin and Mostafavi 2020), for equitable restoration,

and adaptation (Karakoc et al. 2020).

To counter this gap, empirical research has screened print media accounts

to relate infrastructure failure mechanisms to social impacts (Chang, Mc-

Daniels, Mikawoz, et al. 2007), built a systematic database (Chang, Mc-

Daniels, and Beaubien 2009, though discontinued), and conducted surveys

on subjective well-being due to post-disaster service disruptions (Dargin and

Mostafavi 2020).

While modelling approaches have captured service disruptions and analysed

them with respect to certain social vulnerability metrics (e.g. Chang, Pasion,

et al. 2012; Karakoc et al. 2020; Lan et al. 2023; Tariverdi et al. 2023), a

recurring challenge lies in relating physical damages to service quality despite

lack of data on post-disaster service performance (Chang, Pasion, et al.

2012), which further complicates the task of capturing differential impacts

to differently vulnerable groups. The emerging discourse on implementing

minimum supply standards of services in situations of major infrastructure

failures is commendable, but has been found to neither link adequately to

a technical infrastructure dimension nor to a social vulnerability dimension

(Garschagen and Sandholz 2018).

1.3.5 Adapting critical infrastructure and basic services

As infrastructure damages and service disruptions take a toll on the well-

being of individuals and firms alike, investing in more resilient infrastructure

is not only critical from a humanitarian perspective, but in many cases even

profitable: Hallegatte et al. (2019) estimate that in lower and middle income

countries, every USD invested in infrastructure returns a four-fold benefit.

However, resources to implement resiliency measures are generally limited,

and indiscriminate expansion of infrastructure conflicts with environmental
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considerations, such that prioritization of options is indispensable (Trejo

and Gardoni 2023). While prioritization is often thought spatially, decisions

should essentially reflect on the type of resilience to be achieved (Lewin et al.

2023): of infrastructure assets, of infrastructure services, or of infrastructure

users (Hallegatte et al. 2019).

While resiliency measures can also target prevention, preparedness, recov-

ery, general risk management principles, and long-term adaptive capacity

(Almoghathawi and Barker 2019; Bresch, Berghuijs, et al. 2014; Pant, Zorn,

et al. 2018), (structural) adaptation option appraisal at asset-level is still the

traditional approach seen in most Economics of Climate Adaptation (ECA)

studies (Bresch 2016) and in large-scale studies on sectoral risks (e.g. Koks,

Rozenberg, Zorn, et al. 2019, for global road and rail assets): In line with

a direct risk perspective on infrastructure, adaptation measures are evalu-

ated in terms of their potential to avert infrastructure asset damages, and

contrasted against their implementation costs.

Enhancing service resilience and avoiding adaptation asynergies (de Ruiter

et al. 2021) requires multi-sectoral and multi-organizational commitments

and hence face challenges which usually span many interdependent infras-

tructure systems at once (Lewin et al. 2023; Pant 2022). More systemic ways

of thinking about infrastructure and service resilience are being taken up in

the discussions on minimum standards of service that are tolerable (Garscha-

gen and Sandholz 2018), on ‘chains of resilience’ (Lewin et al. 2023) and on

adaptive pathways (Koks, Le Bars, et al. 2023), which acknowledge the need

to include not only climate change, but also socio-economic developments

to plan and invest into the decade to century-long lifespan of infrastructure

assets.

Adaptation studies hence increasingly evaluate the response of entire infras-

tructure networks to a range of asset-level and network-level interventions,

as research has shown that investment in a few critical components may

have large impact on the overall network performance (Pant 2022). For in-

stance, physical hardening of individual critical assets or the effect of chang-

ing the network structure can both be evaluated in terms of avoided service

losses (Oh et al. 2019; Stürmer et al. 2023). Nevertheless, appraisal of con-

crete adaptation measures to natural hazards at asset-level, network-level or
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even interdependent networks-level for multiple interdependent infrastruc-

ture and services is scarce, despite considerable research on restoration and

recoverability of interdependent infrastructure systems (e.g. Almoghathawi

and Barker 2020; Almoghathawi, Barker, and Albert 2019).
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1.4 How to read

This cumulative thesis consists of four first-authored papers submitted to sci-

entific journals and conferences, which are included as stand-alone chapters.

Further co-authored papers and notes which organically add to the syn-

thesis of this research are included in the supplementary materials. Fig.1.2

provides an overview on the thesis structure in relation to the research ques-

tions.

Figure 1.2: Research content in relation to the posed research questions (RQs). Black -
main chapters, gray - not included or included in supplementary materials of this thesis.

Chapter 2 motivates the use of diverse, high-resolution exposure layers

for risk assessments, notably from crowd-sourced public databases such as

OpenStreetMap, thereby setting a necessary pre-condition for exploring in-

frastructure risks. It is accompanied by the open-source software OSM-flex,

which was developed as light-weight Python based tool to enable efficient

extraction of geo-spatial data from OpenStreetMap.

Mühlhofer, E., C. M. Kropf, L. Riedel, D. N. Bresch and E. E.
Koks, 2024: OpenStreetMap for multi-faceted climate risk as-
sessments. Environmental Research Communications, 6, 015005,
doi:10.1088/2515-7620/ad15ab
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Evelyn Mühlhofer, Elco Koks, Lukas Riedel, & Chahan M. Kropf.
(2023). osm-flex/osm-flex: v1.0.1 (v1.0.1). Zenodo.
https://doi.org/10.5281/zenodo.8083066

Chapter 3 develops the central methodology of this thesis, an end-to-end

framework from natural hazard impacts on interdependent critical infras-

tructure to basic service disruptions over large geographic scales. The method-

ology is accompanied by a network module within the open-source CLI-

MADA risk assessment software, which was developed to technically enable

this research and to provide useful tools to fellow researchers.

Mühlhofer, E., E. E. Koks, C. M. Kropf, G. Sansavini, and D. N.
Bresch, 2023: A generalized natural hazard risk modelling frame-
work for infrastructure failure cascades. Reliability Engineering
& System Safety, 234, 109 194, doi:10.1016/j.ress.2023.109194

Chapter 4 uses the developed methods and tools to explore impacts and

drivers of infrastructure failures and basic service disruptions from multiple

hazards, in diverse regions across the globe. By expanding the study horizon

to a global perspective, a comparative view on broad risk trends, failure

mechanisms and resilience-enhancing strategies is obtained.

Mühlhofer, E., D. N. Bresch and E. E. Koks, under review:
Climate-resilient basic services? Unravelling dynamics of nat-
ural hazard-induced infrastructure disruptions across the globe.
One Earth

Chapter 5 examines impacts from a single event in detail. It explores the

importance of considering sub-hazards for resolving all impact dynamics,

and evaluates trade-offs in adapting infrastructure systems under a holistic,

service-centred focus. In Supplementary SM4, a complementary study ex-

plores how large-scale infrastructure may lead to compounding impacts of

(un-)connect hazard events.

Mühlhofer, E., Z. Stalhandske, M. Sarcinella, J. Schlumberger,
D. N. Bresch, E. E. Koks, Supporting robust and climate-sensitive
adaptation strategies for infrastructure networks: A multi-hazard
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case study on Mozambique’s healthcare sector. 14th Interna-
tional Conference on Applications of Statistics and Probability
in Civil Engineering (ICASP14), Dublin, Ireland, 2023,
doi:10.25546/103336

Mühlhofer, E., E. E. Koks, and D. N. Bresch, 2022: Exploring
Compound Event Impacts on Critical Infrastructures, Cascading
Failures and Basic Service Disruptions, 61st ESReDA Seminar
On Technological disruptions triggered by natural events: identi-
fication, characterization, and management, September 22 – 23,
2022, Politecnico di Torino, Italy.

Chapter 6 synthesises the findings of this research along the initially posed

research questions. It further reflects on two cross-cutting issues: (i) the

heavy reliance on (unavailable) data and information throughout this re-

search, and the implications of replacing them with implicit and explicit as-

sumptions and heuristics; (ii) the trade-off between global consistency and

local specificity, and how this influences the adequacy of hence-obtained in-

sights for different decision-making contexts. It ends with an outlook for

future research.

The cross-cutting issue on data and information challenges was further ex-

panded upon in a collaborative reflection process with fellow researchers at

the intersection of critical infrastructure and natural hazard modelling, and

is provided as manuscript in Supplementary SM5.

Schotten, R., E. Mühlhofer, G. A. Chatzistefanou, D. Bachmann,
A. S. Chen, E. E. Koks, 2024: Data for Critical Infrastructure
Network Modelling of Natural Hazard Impacts: Needs and In-
fluence on Model Characteristics. Resilient Cities & Structures.
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OpenStreetMap for
multi-faceted climate risk
assessments

Evelyn Mühlhofer, Chahan M. Kropf, Lukas Riedel, David N. Bresch and

Elco E. Koks; published in Environmental Research Communications

Abstract. Natural hazards pose significant risks to human lives, in-
frastructure, and ecosystems. Understanding risks along all these di-
mensions is critical for effective adaptation planning and risk manage-
ment. However, climate risk assessments mostly focus on population,
economic asset values, and road or building infrastructure, because
publicly available data on more diverse exposures are scarce. The in-
creasing availability of crowd-sourced geospatial data, notably from
OpenStreetMap, opens up a novel means for assessing climate risk
to a large range of physical assets. To this end, we present a stand-
alone, lightweight, and highly flexible Python-based OpenStreetMap
data extraction tool: OSM-flex. To demonstrate the potential and
limitations of OpenStreetMap data for risk assessments, we couple
OSM-flex to the open-source natural hazard risk assessment platform
CLIMADA and compute winter storm risk and event impacts from
winter storm Lothar across Switzerland to forests, UNESCO heritage
sites, railways, healthcare facilities, and airports. Contrasting spa-
tial patterns of risks on such less conventional exposure layers with
more traditional risk metrics (asset damages and affected population)
reveals that risk hot-spots are inhomogeneously and distinctly dis-
tributed. For instance, impacts on forestry are mostly expected in
Western Switzerland in the Jura mountain chain, whereas economic
asset damages are concentrated in the urbanized regions around Basel
and Zurich and certain train lines may be most often affected in Cen-
tral Switzerland and alpine valleys. This study aims to highlight the
importance of conducting multi-faceted and high-resolution climate
risk assessments and provides researchers, practitioners, and decision-
makers with potential open-source software tools and data suggestions
for doing so.

23
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2.1 Introduction

Natural hazards affect humans, human-made structures, and nature. Im-

pacts and consequences of such events may therefore be as diverse as the

exposed assets. Understanding these multiple dimensions of disaster risk

across economic, social, health, educational, environmental, and cultural

heritage is also a main priority within the Sendai Framework for Disaster

Risk Reduction (UNDRR 2015, § 24 f). While capturing many facets of

risk incurred by natural hazard events can allow for better and more in-

formed risk management practices, capabilities to do so are often severely

constrained by data availability within all stages of the risk assessment chain

- not least on the exposure side.

The Sendai Framework, therefore, stresses the importance of access to reli-

able data, including geographic information systems (GIS), to “strengthen

technical and scientific capacity to capitalize on and consolidate existing

knowledge and to develop and apply methodologies and models to assess

disaster risks, vulnerabilities, and exposure to all hazards” (ibid.). As the

research community and decision-makers are urged to move towards more

diverse analyses of natural hazard-induced risks in a changing climate, open-

source tools are needed to facilitate these in an equitable manner that is

accessible to a wider range of stakeholders.

Responding to this need, models to capture risk—defined as the product

of hazard, exposure and vulnerability by the IPCC (Field et al. 2014)—are

increasingly developed in an open-source manner (e.g., Aznar-Siguan and

Bresch 2019; Koks 2022; Paulik et al. 2022). However, many off-the-shelf

input data sets for risk computations may not have global coverage, and

bespoke models frequently focus on a single component of the risk equation,

especially on the hazard side (cf. Bloemendaal, Haigh, et al. 2020; Lüthi et al.

2021; Pagani et al. 2022; Yamazaki et al. 2011). Moreover, interoperability

between models and data sets covering different risk components is often not

straightforward, reducing usability for non-experts despite their (theoretical)

availability.

Nevertheless, the advancement of remote sensing has greatly aided the de-

velopment of spatially explicit global exposure layer data, such as build-
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ing footprints (Microsoft 2023), population counts (Center for International

Earth Science Information Network (CIESIN), Columbia University 2017;

WorldPop 2020), land use and land cover (Potapov et al. 2022) or economic

asset value concentrations (Eberenz, Stocker, et al. 2020). While this offers

obvious potential for natural hazard risk assessments, the aspects of risk

which can be explored with these data sets are inherently constrained to

economic values and population numbers.

The increasing level of detail with which the visible environment is mapped

in OpenStreetMap (OSM) offers different and less conventional opportuni-

ties for natural hazard risk assessment (Nirandjan et al. 2022). As a freely

available and open-source resource for geo-referenced exposure data, OSM

has been used as an input layer in a number of studies in the wider area

of natural hazard risks, spanning direct damage assessments (Koks, Rozen-

berg, Zorn, et al. 2019), service disruptions (Mühlhofer, Koks, Kropf, et al.

2023), emergency response (Gultom et al. 2021) and adaptation planning

(Schotten and Bachmann 2023a). Many of them focus predominantly on

general building stocks (Bloemendaal and Koks 2022; Cerri et al. 2021) and

major transportation assets such as roads and railways (Koks, Rozenberg,

Zorn, et al. 2019; Mulholland and Feyen 2021; van Ginkel et al. 2021), and

to a lesser degree on other (critical) infrastructure assets such as airports

(Yesudian and Dawson 2021), social facilities (Mühlhofer, Koks, Kropf, et

al. 2023; Nirandjan et al. 2022) or power generation and distribution assets

(Nirandjan et al. 2022). However, as it is not limited to modern human-

made structures, the OSM data supports the study of other risk areas of

the built-up and natural environment, such as forests, agricultural land,

UNESCO heritage sites, and ecosystem services (Ruckelshaus et al. 2020).

Although a number of Python tools have been developed for the retrieval of

certain high-resolution exposure data from OSM (e.g., Boeing 2017; Tenka-

nen 2020), there is no versatile linkage to access the entire data universe and

efficiently perform natural hazard risk assessments on these data on a large

scale.

The aim of this study is thus three-fold: first, to bridge a data access gap by

presenting the lightweight, stand-alone, and highly flexible Python module

OSM-flex (Mühlhofer, Koks, Riedel, et al. 2023) that enables users to effi-
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ciently and consistently retrieve geospatial exposure data from OSM with

all available information; second, to demonstrate seamless integration within

the open-source natural hazard risk assessment platform CLIMADA (Aznar-

Siguan and Bresch 2019) to perform end-to-end risk assessments; and third,

to show that more diverse perspectives of natural hazard-induced risks, and

hence risk management strategies, may be explored when opening up to the

potentials of non-conventional exposure data.

Within a brief case study on winter storm impacts to railroads, hospitals,

UNESCO heritage sites, airports, and forests in Switzerland, yet without

loss of generality, we illustrate the major implementation steps, assump-

tions, limitations, and decision-making implications involved in computing

event impacts and natural hazard risks from high-resolution exposure data

obtained through OSM. By providing these open-source tools and perspec-

tives, we aim to raise awareness and broaden the means for exploring non-

monetary facets of climate risk.

2.2 Methods

2.2.1 Obtaining Geospatial Data from OSM with OSM-flex

Features can be extracted from OSM and converted into geographical tab-

ular format for use in Python in two ways: either by reading data directly

from the Overpass API1 or by downloading regional data dumps as Pro-

tocolbuffer Binary Format (PBF) files2 from dedicated online repositories

such as GeoFabrik (2023), from which the desired data can then be parsed.

Two well-known Python packages, Pyrosm (Tenkanen 2020) and OSMnx

(Boeing 2017), excel at opposite ends of this retrieval spectrum. Both

packages are well maintained and easily installable using standard pack-

age managers. While a core functionality of both packages is the selective

parsing of geographical features from OSM into Python-based tabular for-

mats, OSMnx features additional integration with graph-analysis packages

and common plotting libraries. Because OSMnx relies on API queries for

data retrieval, it is limited by restrictions on query sizes and requires a

1See https://overpass-api.de/
2See https://wiki.openstreetmap.org/wiki/PBF_Format

https://overpass-api.de/
https://wiki.openstreetmap.org/wiki/PBF_Format
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Figure 2.1: Schematic representation of a climate risk assessment workflow for OSM fea-
tures using the OSM-flex package and CLIMADA. Top panel: basic steps for OSM feature
extraction in the OSM-flex module: an OSM data dump is downloaded in *.osm.pbf for-
mat; optionally the area is clipped to an arbitrary polygon shape; the elements of interest
are extracted using pre-written or custom queries with OSM tags; the data is converted
into a GeoDataFrame. Bottom panel: integration of OSM data into the CLIMADA risk
assessment workflow. The helper modules within CLIMADA conveniently allow users to
directly derive point-based CLIMADA Exposures by accessing the OSM-flexmodule and
dissaggregating lines and polygons exposure elements to points. The obtained point ex-
posure can then be combined with the hazard and vulnerability models to compute point
impacts (risk). Finally, point-based impact and risk data can be re-aggregated to the
original OSM feature geometries.
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constant internet connection for this process. Pyrosm circumvents this by

parsing downloaded data dumps, yet relies on OSMnx in the background

for other functionalities. Both come with a range of non-standard package

dependencies and vary in customizability of the queries in terms of spatial

areas and specification of filtering attributes.

Here, we introduce the lightweight Python-based package OSM-flex

(Mühlhofer, Koks, Riedel, et al. 2023), which efficiently parses large sets of

OSM data based on user-specified queries from PBF data dumps within

arbitrary and fully user-defined geographical boundaries, such as cities,

states, multi-country regions or bounding boxes. This provides the com-

putational efficiency and user flexibility required to perform multi-faceted

risk analyses. Its availability on common software distribution channels

(PyPI and GitHub) and its low dependency requirements make it suitable

for integration within larger and more complex software packages such as

the CLIMADA risk assessment platform discussed in section 2.2.2. The

package repository features a test suite that is executed in an automated

testing pipeline. 2.A.2 provides an in-depth comparison of all three above-

mentioned packages to guide interested researchers in the selection process

for the most-suited tool given their research ambitions.

The general workflow of the OSM-flex package includes four steps, as illus-

trated in the upper panel of Fig. 2.1:

1. Download a country, regional or planet data dump (PBF file) from

an online repository

2. Clip the data dump to the area of interest (optional)

3. Extract the desired features from OSM into tabular format using the

OSM tagging syntax

4. Post-process the extracted data set (optional)

OSM-flex favors the one-time download of PBF data dumps over the direct

query of individual features from the Overpass API, as feature extraction

does not require a constant internet connection nor is constrained by query

size limitations. 2.A.1 provides details on what access points and (regional)

versions of data dumps are readily obtainable within OSM-flex.
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The optional step of clipping a larger data dump to specific bounding boxes

or (multi-)polygons is useful when dealing with regions or small islands

that are not available as dedicated files on one of the OSM data reposito-

ries, or when wanting to clip from, for example, the global level along own

predefined borders. It currently requires manual installation of the small

command-line executable osmconvert3 which facilitates the clipping com-

mands within OSM-flex. In future iterations of OSM-flex, this step may be

further simplified. See 2.A.1 for details on clipping options and these tools.

While OSM-flex is built to be lean and accessible, its use requires some

familiarization with the syntax of keys and values in OSM, that is, the at-

tributes that characterize geolocated data and allow it to be queried. For

increased user friendliness, common exposure data categories can also be

retrieved with pre-written extraction wrappers, such as road and railway

assets, healthcare and education facilities, or power infrastructure. Addi-

tional details are provided in 2.A.1.

The desired geospatial information with point-, line-, and polygon-based

object geometries and attribute columns is provided as a GeoDataFrame, a

data type defined by the GeoPandas Python package (Bossche et al. 2023).

After obtaining the data, further post-processing may be required, such as

filtering out very small, yet numerous polygons belonging to large natural ar-

eas, removing duplicates, or simplifying transportation network geometries.

See 2.A.1 for helpful post-processing resources and steps.

More extensive code documentation and detailed tutorials featuring us-

age examples are available at https://osm-flex.readthedocs.io to guide

users. Starting from the possibility of extracting a wide range of exposure

data from OSM, the following paragraph outlines how this data can be effi-

ciently integrated into a climate risk assessment workflow.

2.2.2 Using OSM Features in Climate Risk Assessments with

CLIMADA

CLIMADA is an open-source Python platform for natural hazard impact

computations, climate risk assessments, and adaptation option appraisal

3See https://wiki.openstreetmap.org/wiki/Osmconvert

https://osm-flex.readthedocs.io
https://wiki.openstreetmap.org/wiki/Osmconvert
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(Aznar-Siguan and Bresch 2019; Bresch and Aznar-Siguan 2021). It com-

putes risk according to the IPCC risk definition as the product of exposure,

vulnerability, and hazard (Pörtner et al. 2022). Hazard represents events

as spatially explicit footprints with an associated hazard-specific intensity

metric such as flood depth or wind speed. Each event can be assigned an

occurrence probability to form a probabilistic set. Exposures are a spatially

explicit representation of the elements potentially at risk, including their

(non-)monetary value such as population clusters with population counts

or infrastructure assets with their production capacity. Vulnerability is the

linking element between hazard and exposure, and is modeled as an impact

function relating the hazard intensity to the expected impact, expressed in

a ratio of exposure value.

Exposure data which represents the spatial distribution of monetary asset

values (Eberenz, Stocker, et al. 2020) or population counts most commonly

forms the basis of climate risk assessments. CLIMADA is flexible with

regard to input data, thus allowing arbitrary exposure inputs, vulnerability

function definitions, and hazard footprints.

To perform such a risk analysis on OSM features, exposure data must first

be extracted into a GeoDataFrame as described in Section 2.2.1. As CLI-

MADA’s engine is designed only for pointwise data, line- and polygon-based

data must be interpolated to points before the impact computations, and

re-aggregated afterwards, which can be done with a dedicated utility module

(see 2.A.3 for the logic of this helper module and (dis-)aggregation options).

Similarly, dedicated hazard and vulnerability data must be provided and

can be obtained via the CLIMADA data API for several hazards (Schmid

2023) or be ingested from users’ own resources.

2.3 Application: A Multi-Faceted View on Winter

Storm Risk

On December 26, 1999, winter storm Lothar swept across France, Germany

and Switzerland, leaving a trace of destruction. In Switzerland, the event is

among the top three most impactful winter storms, with significant tolls on

human lives, critical infrastructure, building damage, forest loss, and wildlife
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(Gaillard et al. 2003; Jordi 2019; Niemeyer and Albisser 2001).

In the following sections, the methodology presented above is explored by

computing the wind impacts of Lothar on OSM-extracted built-up and nat-

ural assets across Switzerland. The results are compared with more conven-

tional metrics such as the total value of physical assets damaged and the

number of people affected, and validated with event reports. Furthermore,

the average annual risk of winter storms to these exposures, obtained from

a probabilistic hazard set representing today’s climate, is reported.

2.3.1 Winter Storm Impact Calculations with OSM and CLI-

MADA

OSM Exposure Data Extraction

Using OSM-flex, OSM data from Switzerland was downloaded from https:

//geofabrik.de on March 13, 2023. Points, lines and polygon data were ex-

tracted into GeoPandas GeoDataFrames for 1155 major healthcare facilities

(hospitals, clinics, and doctors’ practices), 20 100 km of railways (individual

rails, incl. trams and narrow gauge rails), 15 airports, 12 500 km2 of forests,

and 11 UNESCO heritage sites, see Fig. 2.4. The exact queries (OSM tags)

are noted in Table 2.5. Geo-spatial data were post-processed to eliminate

very small areas (< 100m2) of forest, and duplicates for healthcare facilities

and airports.

Wind Impact

The wind field of storm Lothar was prepared by Welker et al. (2020) as the

maximum 3-second sustained wind speeds at a height of 10 m above ground

over 72 h at a spatial resolution of approximately 4.4 km, based on the

Windstorm Information Service (WISC) of the Copernicus Climate Change

Service. These data were obtained via the CLIMADA Data API and stored

as a CLIMADA Hazard object, see Fig. 2.3. OSM data were stored as

CLIMADA Exposure objects, together with a general asset value exposure

for Switzerland based on the product of nightlight intensity and popula-

tion count data at 30 arcsecond resolution (LitPop, (Eberenz, Stocker, et

al. 2020)), and a population exposure at the same resolution based on the

https://geofabrik.de
https://geofabrik.de
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SEDAC GPW v4.0 dataset (Center for International Earth Science Informa-

tion Network (CIESIN), Columbia University 2017); see Fig. 2.5). Impact

functions (vulnerability curves) relating hazard intensity to damage extent

were obtained from (Welker et al. 2020) for wind-induced general asset dam-

ages, which were calibrated to the Swiss context. For all other exposures,

step functions were employed that mirror warning categories issued by the

Swiss Federal Office of Meteorology and Climatology (Blass et al. 2022; Me-

teoSwiss 2023). For population, railways, healthcare facilities and airports,

wind intensities above 30.5 m/s (110 km/h, warning category 4) were con-

sidered critical based on the warning rationales provided by official sources,

whereas for forests, wind intensities above 38.9 m/s (140 km/h, warning

category 5) were considered more adequate to capture tree snapping (Virot

et al. 2016). See Fig. 2.6 for the plots of all impact functions used. Impacts

were computed for all exposures within the CLIMADA, whereby line and

polygon-based data (i.e. railways and forests) were interpolated to a 100 m

resolution and re-aggregated (by summation) afterwards into their original

shapes. The impact data are shown in Fig. 2.2.

Wind Risk

In addition to the extreme storm Lothar, we also considered the general

winter storm risk in Switzerland following the IPCC definition of risk as

the probability of occurrence of an event multiplied by its severity. To this

effect, we used the WISC probabilistic extension hazard event set, available

through the CLIMADA Data API (Röösli and Bresch 2020; Welker et al.

2020). This hazard set is based on historic records, but features an additional

29 synthetic hazards per historic hazard occurrence from 1940 to 2014. It

was calibrated on the years 1990–2010, which can be seen as representative of

climate conditions today. Furthermore, for the physical asset and population

exposure layers, we used the reference year 2020 instead of 1999.

2.3.2 Results

Table 2.1 summarizes the impacts of storm Lothar computed for different

exposures. Although affected by varying absolute and relative degrees, the

impacts are considerable across all studied dimensions. An important dis-
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Table 2.1: Impacts from winter storm Lothar (1999) across Switzerland for general asset
values, population counts, and five categories of OSM-retrieved exposures.

Exposure type Absolute Relative

Asset Valuesa US $179.4 mil. 0.01%
Populationa 4.17 mil. people 57.2%

Healthcare Facilitiesb 649 units 56.2%
Airports 6 units 40.0%
UNESCO Sites 3 sites 27.3 %
Railwaysc 6 951 km 50.4%
Forests 464.6 km2 3.7%

a reference year: 2000; b hospitals, clinics and doctors’ offices; c all individual lines counted
separately, also for parallel tracks.

tinction must be made with regards to what these impact figures stand for:

For forests and general asset values, physical losses and damages are mod-

elled; for the remaining exposure categories, the numbers of items exposed

to a certain hazard intensity are modelled without direct implications of the

extent of loss or damage, as no such impact functions were available in the

concrete case.

Comparison with print media accounts, official records, insurance reports,

and the compilation by Niemeyer and Albisser (2001) confirms the severity of

the event across many dimensions of (public) life and strengthens the picture

of multi-faceted impacts obtained from the computations presented in this

study: reported impact metrics tend to revolve around (insured) building

damages (in the case of Lothar, around CHF 600 mil.) and affected popu-

lation or fatalities (15 people died during the storm, and roughly the same

amount afterwards during clean-up and reconstruction efforts). The stan-

dard impact computations within CLIMADA capture these metrics as asset

damages (though under-estimated with US $179 mil. or CHF 113.3 mil. at

the time), and affected population (4.17 mil., a number that is inherently

difficult to track and verify, as reports tend to focus on the well-reported

number of fatalities instead). However, other dimensions of societal impor-

tance were equally captured, such as rail transportation - mapped here as

affected to roughly 50 % - was indeed interrupted on many lines across the

German-speaking part of Switzerland (covering approximately 65 % of Swiss

territory); estimated forest losses (amounting to CHF 750 mil. in economic

worth, and 4.3% of the Swiss forest area), is close to the modelled 3.7% of
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Table 2.2: Average annual risk from winter storms across Switzerland for general asset
values, population counts and five categories of OSM-retrieved exposures.

Exposure type Absolute Relative

Asset Valuesa US $4.8 mil. 0.0003%
Populationa 91’200 people 1.3%

Healthcare Facilitiesb 14.4 units 1.3%
Airports 0.5 units 1.2%
UNESCO Sites 0.08 sites 0.7%
Railwaysc 17.3 km 1.3%
Forests 9.83 km2 0.08%

a reference year: 2020; b hospitals, clinics and doctors’ practices; c all individual lines
counted separately, also for parallel tracks

the area. It was not possible to retrieve explicit reports on the impacts to

airports (apart from flight cancellations), healthcare facilities or UNESCO

heritage sites. Not modelled within the scope of this illustrative case-study,

but frequently mentioned in reports were impacts on the power grid and

road transportation (Niemeyer and Albisser 2001). While structural im-

pacts on the latter may be easily computed with the presented approach,

modelling systemic impacts on the energy sector is not only restrained by

power line mapping quality on OSM, but would also require consideration of

the cascades of failing infrastructures (Mühlhofer, Koks, Kropf, et al. 2023).

The results highlight that, when using multiple exposure layers, important

aspects of a natural hazard event beyond conventionally reported (undiffer-

entiated) asset damages can be captured relatively effortlessly, and guide

risk management efforts.

As introduced in Section 2.3.1, it may be insightful to consider probabilistic

risk metrics apart from single-hazard event impacts, to gauge the poten-

tial risk landscape and to adequately place the occurrence of historic events

therein. Various metrics may be relevant, such as the risk associated with a

one-in-a-hundred-year event or the average annual risk. Table 2.2 presents

the latter, modelled from the probabilistic winter storm set. Evidently, since

most winter storms are less extreme than Lothar (cf. Table 2.1), the aver-

age annual risk values are much lower (less than 1.5% of the total count

or value for all exposure categories). The extremes of Lothar’s impacts are

even more strikingly illustrated when locating these impact figures on return

period curves generated from the probabilistic hazard set (Fig. 2.7). With
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Figure 2.2: Geographical representation of all impacted elements by storm Lothar (c.f.
Table 2.1). For visual clarity, only asset value grid cells and population grid cells with
impacts above 10 000 $ and 1 000 persons, respectively, are shown. Note that in certain
areas (e.g. around the city of Zurich in the North-East) many impacts overlap.
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return periods between roughly 80 and 150 years depending on the choice of

exposure category, this highlights the potential for disastrous consequences

of tail risk events as compared to the average, in particular for non-monetary

elements. Furthermore, as shown in Fig. 2.8, the average annual expected

impacts are inhomogeneously distributed, with distinct patterns for the dif-

ferent exposure types. For instance, regular impact on forestry is mostly

expected in Western Switzerland in the Jura mountain chain, whereas as-

set damages are concentrated in the regions around Basel and Zurich, and

certain train lines in central Switzerland and alpine valleys may be often

affected.

Studies have also demonstrated that, under a rapidly changing climate, win-

ter storm risk, as measured in losses to general asset values, may increase

by up to 50% between 2020 and 2050, both for average events and for more

extreme events (Severino et al. 2023). This increase might bring significant

economic challenges, yet does not provide a full picture of the potential for

disruption of the railway system, or the losses to vital forest ecosystems and

irreplaceable cultural sites, which may hence be explored using the demon-

strated workflow.

2.4 Discussion

We showed how OSM-flex, a flexible OSM feature extraction package, can

be seamlessly integrated into the CLIMADA risk modelling framework, and

how this can provide a basis for multi-faceted natural hazard impact and cli-

mate risk assessments on a variety of exposure types. The case study, though

brief and mainly illustrative of the major steps and processes of using OSM

for climate risk assessments, demonstrated that the readily computed event

impacts from winter storm Lothar on rails and on forests in Switzerland

came remarkably close to the actual event estimates, which were collected

in meticulous survey work at the time (Niemeyer and Albisser 2001), hence

providing an efficient way to quickly estimate damages also to sectors which

are not closely and easily monitored. Probabilistic estimates for winter storm

risks further revealed that risk hot-spots differ spatially for different expo-

sure categories, which may hence guide more targeted adaptation planning.

Moreover, contrasting impacts derived from less conventional exposure lay-
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ers such as UNESCO world heritage sites and natural landscapes with more

traditional impact metrics on population and economic assets illustrated

that judgment on the severity of an event strongly depends on the exposure

considered.

However, the risk modelling approach based on OSM exposure data has

several limitations. The suitability of OSM for certain research purposes,

as well as OSM data quality and data completeness have been discussed

extensively (e.g., Zhang et al. 2022; Zheng et al. 2021). There is a large

disparity in OSM coverage between countries and world regions, and between

different types of assets (Herfort et al. 2023; Ludwig and Zipf 2019) and

attributes further describing these assets (Biljecki et al. 2023). Furthermore,

as a crowd-sourced project, not all entries are checked for their accuracy

(Xie et al. 2019; Q. Zhou et al. 2022). Even for Switzerland, the extracted

features are therefore by no means complete. While the rail network on OSM

is mostly congruent with the official geospatial records4 publicly provided

by the Swiss government, only 11 of the 13 UNESCO World Heritage Sites

in Switzerland were listed, and of the 58 prehistoric pile dwellings around

the Alps, only five were included.

There are no future projections or reliable tracking of past exposure changes

within OSM, which is predominantly a snap-shot of a moment in time. Thus,

an assessment of past events or future risks can only be made with respect

to current exposure or requires additional modeling techniques beyond the

OSM realm5. Hence, the quality of the risk analysis based on OSM exposure

data can vary significantly. Nevertheless, it is often the only freely available

resource, and its catalog is continuously growing and improving.

On the technical side, the disaggregation step from OSM polygons and lines

to CLIMADA point exposures, as well as the reaggregation of the impact val-

ues to these original polygon and line shapes, introduces imprecision owing

to the finite resolution of the interpolation algorithm. The uncertainty re-

4See https://geo.admin-thefederalgeoportal
5The Swiss Federal Office for Spatial Development, for instance, reports that settlement

and forest areas have grown by >10 % and >2 %, resp., between the early 1990s and
2004, with a slowdown thereafter, at the expense of agricultural land (Bundesamt für
Raumentwicklung ARE 2023). Those changes are moderate in absolute terms (e.g. for
settlements, an increase from 7% to 7.7% of total Swiss land area)

https://geo.admin-thefederalgeoportal
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lated to the resolution can be assessed using Monte Carlo approaches (Kropf

et al. 2022). The relative importance of this uncertainty with respect to all

other risk model uncertainties from unknowns in the hazard, exposure, and

vulnerability model must in general be assessed case by case and can be

quantified with sensitivity analysis. Note that it is not possible to make a

generic statement on the effect of resolution uncertainty on the risk model,

as this depends strongly on the purpose of the study, the chosen output

metrics, and the chosen set of modeled input uncertainties (Meiler, Ciullo,

et al. 2023).

Extracting features from OSM beyond the pre-written exposure category

wrappers in the OSM-flex module can be cumbersome, as the required

keys and values need to be identified, and often requires some back-and-

forth iterative consultation of the OSM wiki 6 or OSM taginfo databases
7. The extracted features may further need to be post-processed to elimi-

nate duplicates or simplify complex shapes. This may limit their wide use

to non-expert practitioners in the field of climate risk modelling. How-

ever, these difficulties are inherent also to the few other open-source and

well-maintained OSM feature extraction packages, of which we presented

advantages and drawbacks for the use of natural hazard risk assessments.

We showed that OSM-flex particularly excels for the use case of repeated,

large-scale and highly customized spatial feature extraction within complex

software environments where efficient dependency management is key.

Several other works seamlessly integrate OSM data for natural hazard risk

calculations. For example, Koks, Rozenberg, Zorn, et al. (2019) combined

state-of-the-art global hazard mapping of cyclones, floods and earthquakes

with approximately 50 mil. kilometer of transport network data included in

OSM to study multi-hazard infrastructure risk and the viability of protection

measures. And Nirandjan et al. (2022) extracted, categorized, and raster-

ized the world’s main critical infrastructure systems into a global database,

from which the Critical Infrastructure Spatial Index (CISI) is developed,

which expresses the global spatial intensity of critical infrastructure and is

used in several natural hazard risk studies ((e.g., Gnyawali et al. 2023) for

6See https://wiki.openstreetmap.org
7See https://taginfo.openstreetmap.org

https://wiki.openstreetmap.org
https://taginfo.openstreetmap.org
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landslides). Both studies draw on the extraction and processing source code

for OSM data presented in section 2.2.1, which is now packaged into the

OSM-flex module, and available to an even wider research audience.

More generally, this may open up complementary possibilities for areas of

study that traditionally rely on other types of data sources such as satel-

lite imagery (Stritih et al. 2021). In recent years, there has been a trend

towards more holistic, quantitative views of the consequences of extreme

weather events as opposed to focusing on monetary asset losses alone. Ex-

emplary studies investigate, e.g., displaced population (Kam et al. 2021)

or basic service disruptions (Mühlhofer, Koks, Kropf, et al. 2023). Wider

quantitative perspectives will allow decision-makers to not inherently priori-

tize monetary elements because of the absence of other quantifiable criteria.

Thus, the diverse indicators of natural hazard risk, towards which the here-

presented approach contributes, can form the basis of multi-criteria adapta-

tion decision frameworks (Bowen 2002; DiStefano and Krubiner 2020; Haque

2016; Velimirović et al. 2023), leveling the playground with economic inter-

ests and allowing us to tackle questions such as the role of social inequali-

ties, urban-land divides, and environmental justice (Gerber et al. 2012) in a

(semi-)quantitative way.

2.5 Conclusion

OSM is a potent data source for informing multi-faceted climate risk anal-

ysis, and can support decision making with respect to climate adaptation,

going beyond the common focus on (coarse-resolution) monetary asset values

and population counts. Despite the limitations inherent to crowd-sourced

open data, OSM can be used to freely retrieve a large variety of exposures

with world-wide coverage. In this manuscript, we showcase risk assessment

on healthcare facilities, railways, UNESCO World Heritage Sites, forests,

and airports, but OSM can be used to retrieve an even larger variety of fea-

tures: A non-exhaustive listing includes urban assets at single building scale;

different land uses such as agriculture, forestry, or pastures; assets for differ-

ent economic sectors such as mining, industrial manufacturing, commerce,

energy or tourism; culturally relevant sites and regions; road networks; crit-

ical infrastructures for, e.g., education, water management, communication,
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energy supply; and ecological regions important for ecosystem service pro-

vision, biodiversity preservation, and leisure. We present OSM-flex as light-

weight Python-based OSM extraction tool for any of these features. The

seamless integration of OSM-flex into the established open-source risk mod-

elling framework CLIMADA promises that the methodology is applicable

in academia, public institutions, the private sector, and the humanitarian

sector.

Acknowledgement

This project received funding from the European Union’s Horizon 2020 Re-

search and Innovation Program (grant agreement No 101003687). Elco

Koks received funding from the Dutch Research Council (NWO), Grant

No. VI.Veni.194.033.

The authors also thank Emanuel Schmid (ETH Zürich) for their generous
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2.A Appendix

2.A.1 OSM-flex module

The main steps in the OSM feature extraction process using the OSM-

flex package, introduced in section 2.2.1, are explained in more detail in the

following paragraphs. The OSM-flex package is available on GitHub (https:

//github.com/osm-flex/osm-flex) and as PyPI package (Mühlhofer, Koks,

Riedel, et al. 2023). The modules available within the OSM-flex package are

structured according to the previously introduced fours steps.

Download

OSM data is downloaded in Protocolbuffer Binary Format (PBF; see https:

//wiki.openstreetmap.org/wiki/PBF_Format for further description). Au-

tomated download options are currently available for the entire planet file

(retrieved from https://planet.openstreetmap.org/pbf/planet-latest.

osm.pbf), for world regions (Africa, Antarctica, Asia, Australia and Ocea-

nia, Central America, Europe, North America, South America) and for all

countries available on, for example, download.geofabrik.de. If the desired

region or country is not available via the download-API, it is recommended

to clip the desired area from a larger source file (see next step).

As OSM is a crowd-sourced and living project, mapped data constantly

evolves. To prevent data sources from becoming outdated when working on

them for a longer time span, it is recommended to update the source files

occasionally. Two options are conceivable: re-downloading the entire data

dump of concern (allowing for existing files to be overwritten in the respec-

tive command) or updating the already downloaded files on a recurring basis,

using diffs (*.osc.gz). Such diffs are provided at various timestamps from

different extract providers, for instance daily via download.geofabrik.de

or minutely via download.openstreetmap.fr.

Clip

This optional step of clipping (cutting) larger source files to any user-defined

area requires a one time installation of either osmconvert (Weber 2020) or

https://github.com/osm-flex/osm-flex
https://github.com/osm-flex/osm-flex
https://wiki.openstreetmap.org/wiki/PBF_Format
https://wiki.openstreetmap.org/wiki/PBF_Format
https://planet.openstreetmap.org/pbf/planet-latest.osm.pbf
https://planet.openstreetmap.org/pbf/planet-latest.osm.pbf
download.geofabrik.de
download.geofabrik.de
download.openstreetmap.fr
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osmosis (OpenStreetMap contributors 2023b). More command line executa-

bles for handling *.osm.pbf files exist, some of which are available via pip

and conda distribution channels, such as pyOsmium (Hoffmann and con-

tributors 2023; Topf 2023). However, not all of those currently support all

operating systems, which is why the OSM-flex package gives preference to

osmconvert and osmosis.

There are three ways to specify the area to which to clip: by passing a

bounding box (the corners of a geographical rectangle), passing a shapely

(multi-)polygon, or passing a Polygon filter file (*.poly; see https://wiki.

openstreetmap.org/wiki/Osmosis/Polygon_Filter_File_Format for fur-

ther description) containing the (multi-)polygon outline information.

Convenience functions are available to obtain country and admin-1 shapes

within the OSM-flex package, and there are several ways to obtain .poly files

externally (for example, https://github.com/jameschevalier/cities for

a good description of how to find and obtain them via http://polygons.

openstreetmap.fr/, and for a .poly file collection of many cities of the

world). It should be noted that clipping to (multi-)polygons requires the

creation of a temporary .poly file under the hood, and that OSM-flex pro-

vides a simplification method for complex shapes owing to file size restric-

tions. Clipping may take a while, and this process is faster if the source file

is smaller (e.g. when taking a region file instead of the entire planet file to

clip a contained sub-region).

Extract

There are two broad ways to extract OSM features into tabular (Geo)Pandas

(Jordahl et al. 2022) format: via predefined wrappers for some frequently-

used exposure categories, or via defining user-specific queries. Extraction

wrappers are currently available for assets of many critical infrastructure

sectors such as road, rail and air transportation, power, telecommunication,

gas, healthcare and education. For user-defined queries, keys, key-value pairs

or logic concatenations of these are allowed, together with a specification of

which additional attribute keys should be parsed as columns the output ta-

ble, and which geometry types should be considered. Finding suitable OSM

keys or key-value pairs can be challenging at first, yet useful information

https://wiki.openstreetmap.org/wiki/Osmosis/Polygon_Filter_File_Format
https://wiki.openstreetmap.org/wiki/Osmosis/Polygon_Filter_File_Format
https://github.com/jameschevalier/cities
http://polygons.openstreetmap.fr/
http://polygons.openstreetmap.fr/
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may be obtained via the OSM wiki map feature documentation (https://

wiki.openstreetmap.org/wiki/Map_features) or the OSM tag-info web-

page (https://taginfo.openstreetmap.org/). There are some particu-

larities when extracting uncommon features with may not yet be ”regis-

tered” in the osmconf.ini file, which comes with the distribution. In such

cases, the unknown keys must be manually added in the corresponding sec-

tions of the file.

Post-process

The following is a non-exhaustive list of common post-processing tasks which

may be needed. Some are already part of this package, with more methods

in development:

• simplifying networked geo-data (e.g. roads, rails, power lines): see for

instance the ”trails” package (Koks, Dickens, et al. 2022)

• removing duplicates (same amenities with slightly different names) and

near-duplicates (e.g., amenities may be marked as points, but building-

shapes of the same amenities are also collected as multi-polygons): for

example GeoPandas sjoin with a certain buffer tolerance (e.g. 100m,

..)

• removing small multi-polygon shapes in large multi-polygon based re-

sults (e.g. forest outlines) by filtering polygon area (a built-in shapely

geometry attribute)

2.A.2 Comparison of OSM-flex with other OSM-based tools

A plethora of helper tools exist to handle OSM data. Low-level command

line tools such as osmosis (OpenStreetMap contributors 2023a), (Py)Osmium

(Hoffmann and contributors 2023; Topf 2023), and osmconvert (Weber 2020)

have basic functionalities for getting information about an OSM file, con-

verting OSM file formats (such as .xml, .pbf, and .o5m), merging change

files (diffs) or clipping geographical areas from an OSM file to a new OSM

file.

On the side of maintained, well-documented and user-friendly Python-based

parsing tools for OSM features, OSMnx and Pyrosm are two frequently used

https://wiki.openstreetmap.org/wiki/Map_features
https://wiki.openstreetmap.org/wiki/Map_features
https://taginfo.openstreetmap.org/
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packages. Table 2.3 presents a brief comparison between these and OSM-

flex, to guide potential users in selecting the adequate tool.

Table 2.3: Comparison of OSM-flex V1.0.1 with commonly used Python-based OSM
parsing tools Pyrosm V0.6.1 and OSMnx V1.6.0

OSM-flex Pyrosm OSMnx

Source of OSM data .osm.pbf data
dumps

.osm.pbf data
dumps

overpass API

Continuous integration &
testing

yes yes yes

Documentation yes yes yes

Active development yes noa yes

License GPL-3.0 MIT MIT

Distribution channels GitHub, pip GitHub, pipb,
conda

GitHub, pipb,
conda

Package dependencies Geopandas, car-
topy

Geopandas, Py-
geos, Cython,
Pyrobuf and
Cykhash,
OSMnx

Geopandas,
igraph, net-
workX, and
many others

Feature cleaning & simpli-
fication

yesc no yes

Graph analysis no nod yes

Parsing from bounding
boxes

yese yesf yes

Parsing from polygons yese no yes

Parsing from address no no yes

Suitable for large queries yes yes no

Suitable for queries on any
user-defined tags

yes yes yes

Availability of pre-written
common queries

yes (many infras-
tructure sectors)

yes (streets,
buildings, POIs,
landuse)

yes (buildings,
many road
classes)

Integration in risk model yesg no no

a no code development within past 365 days; b limited guarantee of success due to complex
package dependencies; c simple filtering and duplicate removal, d util functions for export
to igraph or networkX graphs via OSMnx available; e python-based wrappers requiring
pre-installation of osmosis or osmconvert; f inefficient for very large data sets; g seamless
integration with CLIMADA (Aznar-Siguan and Bresch 2019) and DamageScanner (Koks
2022).

OSM-flex is closer in its implementation logic to Pyrosm. Two main ad-
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vantages are the lower dependency requirements and the possibility to clip

arbitrary user-defined geographical shapes from the data dumps (i.e. pre-

perform a geographical filtering). Due to its implementation in Cython,

Pyrosm might on the other hand be slightly faster in parsing data where no

geographical filtering is applied. If only few OSM features are queried, or

(road) network analysis should be performed, OSMnx is likely the best tool

at hand.

2.A.3 Lines and Polygons utility module

This utility module disaggregates line and polygon geometries into points,

which, for instance, is necessary to spatially overlay (or, essentially, point-

match) hazard footprints and exposures in CLIMADA impact calculations.

The desired disaggregation resolution can be specified in units of either

the original coordinate reference system (crs) or in metres. In the latter

case, geometries are automatically re-projected to a metre-based cylindrical

projection centered around the object’s central coordinate, to minimize dis-

tortions from the re-projection. For polygons, a regular raster of the chosen

resolution is created and all points of the raster inside of a polygon are as-

signed to it. For polygons smaller than the raster resolution, at least one

single point inside the polygon is assigned (even if this point is not part

of the raster). Note that one does thus not have a common raster for all

polygons, but one raster per object (since each object uses its own centered

projection). Users that want to use a common raster can define one for

the disaggregation (the re-projection must then be performed by the user).

Lines are divided into segments equal in length in such a way that the to-

tal length of all lines is preserved. This is achieved by first computing the

number of points N per line by dividing the line length by the resolution

and rounding the result. The minimum number of points is one. Second,

the line is divided into corresponding N +1 equal-length segments, and the

points are placed in the middle of the segments.

More precisely, the number of points a line is divided in is

N = max [round[(l/r)− 1)], 1] (2.1)
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with l the total length of the line and r the resolution. The effective resolu-

tion of the line is then

re =
L

N
. (2.2)

These N points are then distributed on the line at fractions of the line

lengths starting from re/2

f1 = re/2 ; f2 = re ; f3 = 3re/2 , . . . . (2.3)

Several examples are listed in Table 2.4.

Table 2.4: Disaggregation examples for lines of varying lengths and target resolutions.

Length Resolution Number Points Effective resolution Fractions

l=1 r=2 N=1 re = 1 f1 = 0.5
l=1 r=0.8 N=1 re = 1 f1 = 0.5
l=1 r=0.6 N=2 r2 = 0.5 f1 = 0.25, f2 =

0.75
l=1 r=0.4 N=2 re = 0.25 f1 = 0.25, f2 =

0.75
l=1 r=0.2 N=5 re = 0.2 f1=0.1, f2=0.3,

f3=0.5, f4=0.7,
f5=0.9

The exposure value associated with each original line or polygon geometry

can then either be divided equally among all points or be assigned wholly

to each point. The former is typically used to disaggregate quantitative

values such as the number of people, or to compute relative affected areas

by disaggregating the value 1 over each geometry. The latter can be used to

assign the area of the corresponding raster cell to each raster point, or the

length of the corresponding line element to each line point, or to propagate

qualitative values such as an ecosystem type. Note that the disaggregation

leads to a certain distortion of the values, in particular, due to boundary

effects, and the user should carefully choose the resolution of the raster to

fit the purpose of the study. One way to check the approximation resulting

from the disaggregation step is to re-aggregate the values by geometry and

compare.
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2.A.4 Application: Input data and method details

OpenStreetMap queries

The exposures used for the impact computation reported in Table 2.1 and

2.2 were based on the GeoDataFrames retrieved with the OSM-flexmodule

using the OSM tags (keys and values) as described in Table 2.5. Note that

for the critical infrastructures ’Healthcare facilities’ and ’Airports’, a single-

line helper function is implemented within the CLIMADA OpenStreetMap

module, which facilitates common queries.

Table 2.5: OSM tags (keys and values) and geometry types, which were extracted from
the osm.pbf data dump for the respective exposure types, using the OSM-flexpackage

Exposure Type OSM Keys OSM Values Geometry Type

Healthcare ’amenity’ ’hospital’ or ’doctors’
facilities ’building’ ’hospital’ or ’clinic’ points,

’healthcare’ ’hospital’ or ’clinic’ or
’doctors’

multipolygons

Railways ’railway’ ’rail’ or ’tram’ or
’light rail’ or ’nar-
row gauge’

lines

Airports ’aeroway’ ’aerodrome’ multipolygons

UNESCO sites ’heritage operator’ ’whc’ points, multipoly-
gons

Forests ’landuse’ ’forest’ multipolygons

Hazard, Exposure, and Vulnerability Data

Fig. 2.3 displays the winter storm hazard footprints retrieved from the CLI-

MADA data API (Schmid 2023). Fig. 2.4 displays exposures for Switzer-

land, retrieved using the OSM-flex module, and fig. 2.5 asset value distri-

butions from LitPop (Eberenz, Stocker, et al. 2020) and gridded popula-

tion density (Center for International Earth Science Information Network

(CIESIN), Columbia University 2017). Fig 2.6 displays impact functions

(vulnerability curves) wind storm intensity to expected exposure impacts.
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Figure 2.3: Winter storm hazard footprints (maximum 1-minutes sustained wind speed
over 3-days) of Lothar (left) and of the WISC probabilistic extension hazard set for current
climate (right) from (Röösli and Bresch 2020; Welker et al. 2020).

Figure 2.4: Exposure data extracted with the OSM-flexmodule (UNESCO heritage sites,
forests, healthcare facilities, railways, airports) after post-processing (removal of dupli-
cates, removal of polygons with area below 1 000 m2)
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Figure 2.5: Exposure data often used for climate risk assessment: asset value distribu-
tions from LitPop (Eberenz, Stocker, et al. 2020), and gridded population density (Cen-
ter for International Earth Science Information Network (CIESIN), Columbia University
2017).

Figure 2.6: Impact functions employed for event impact and risk computations from win-
ter storms for asset damages (blue, based on (Welker et al. 2020)), for affected healthcare
facilities, UNESCO heritage sites, population and railways (green, based on the Federal
Office for Meteorology and Climatology’s warning category 4 wind-speed threshold (110
km/h or 30.5 m/s), and for forest loss (red, based on the warning category 5 wind-speed
threshold (140 km/h or 38.9 m/s)).
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Figure 2.7: Return period curves of winter storm impacts for all exposure data cate-
gories used in this work’s climate risk assessment, computed from the WISC probabilistic
extension hazard set for current climate from (Röösli and Bresch 2020; Welker et al. 2020).
Historic impacts from winter storm Lothar are indicated on the vertical axis, the corre-
sponding computed return period values of these impacts are indicated on the horizontal
axis.
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Figure 2.8: Normalized average expected annual impact derived from the probabilistic
winter storm set (c.f. Fig.2.3) for all exposures (c.f. Figs. 2.4, 2.5). For each exposure
type individually, the impacts are normalized by the maximum impact over all points.
The relative value highlights the impact hotspots for all exposure types.
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Abstract. Critical infrastructures are more exposed than ever to nat-
ural hazards in a changing climate. To understand and manage risk,
failure cascades across large, real-world infrastructure networks, and
their impact on people, must be captured. Bridging established meth-
ods in both infrastructure and risk modelling communities, we develop
an open-source modelling framework which integrates a network-based
interdependent infrastructure system model into the globally consis-
tent and spatially explicit natural hazard risk assessment platform
CLIMADA. The model captures infrastructure damages, triggers fail-
ure cascades and estimates resulting basic service disruptions for the
dependent population. It flexibly operates on large areas with pub-
licly available hazard, exposure and vulnerability information, for any
set of infrastructure networks, hazards and geographies of interest. In
a validated case study for 2018’s Hurricane Michael across three US
states, the model reproduced important failure dynamics among six
infrastructure networks, and provided a novel spatial map where peo-
ple were likely to experience disruptions in access to healthcare, loss of
power and other vital services. Our generalized approach allows for a
view on infrastructure risks and their social impacts also in areas where
detailed information and risk assessments are traditionally scarce, in-
forming humanitarian activities through hotspot analyses and policy
frameworks alike.
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3.1 Introduction

When natural hazards disrupt critical infrastructures (CIs), their failure

can be detrimental to public health, safety, security, well-being and eco-

nomic activities. Whether due to an earthquake in Japan, a flooding across

Western Europe or a hurricane hitting the US, lifeline disruptions are ubiq-

uitous: loss of power and telecommunication services may compound with

a dysfunctional transport system and damaged hospitals, preventing emer-

gency responders to intervene timely, rendering villages inaccessible for days,

cutting off evacuation routes, or leaving school children without access to

education for up to weeks (Bay District Schools 2022; Beven II et al. 2019;

Burlew 2018; Price and Glenn 2018).

As infrastructure investments are at an all-time high (Thacker, Adshead,

et al. 2019), CI systems around the globe are more than ever exposed to

natural hazards, a trend which is further exacerbated in a changing cli-

mate (McKinsey Global Institute 2020). This poses a threat to air, road

and rail transportation alike (Koks, Rozenberg, Zorn, et al. 2019; Yesudian

and Dawson 2021), puts power generation at risk (Nicolas et al. 2019) and

causes losses of billions of US dollars annually in several CI sectors (Koks,

Rozenberg, Zorn, et al. 2019; Nicolas et al. 2019).

Since societal impacts of CI failures tend to reach far beyond the techni-

cal sphere, managing resilient infrastructure has become a prime area of

concern for policy makers: CIs “directly or indirectly influence the attain-

ment of all of the SDGs” (Thacker, Adshead, et al. 2019) and may accrue

up to 88% of all climate adaptation costs until 2050 (Thacker, Adshead,

Daniel, et al. 2021). Reducing CIs damages and basic service disruptions

forms part of the agendas of the Sendai Framework for Disaster Risk Re-

duction, the European Commission’s Programme for Critical Infrastructure

Protection (EPCIP) and the 26th UN Climate Change Conference (COP26)

alike. Though different in scope and nature, three key challenges of CIs in

a socio-technical context are recurrent: Knowledge on the extent to which

CIs are exposed to natural hazards is insufficient, especially in the Global

South (cf. §25 e and f in UNDRR 2015); interdependences between different

CIs are often poorly understood, and cascading effects from CI failures are
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difficult to analyse and hence manage systematically (Rinaldi et al. 2001;

SWD(2013)318 2013); the experienced hardship from CI failures depends

on the degree and duration to which basic services are disrupted (Mitsova,

Esnard, et al. 2018), yet the link between infrastructure damages, resulting

service outages and affected population is not straightforward.

Capturing the response of interdependent CI systems to natural hazards, and

studying the impacts of their failures onto the population, is an endeavour

residing at the intersection of natural hazard (NH) risk modelling, infras-

tructure modelling and social vulnerability research. Traditionally, those

problems have been approached with community-specific research questions

and methods: NH risks emerge through the interplay of weather and climate-

related hazards, the exposure of (infrastructure) assets, goods and people to

those hazards and their specific vulnerabilities (IPCC 2014). Event-based

impact modelling therefore commonly relies on those three components to

calculate expectable asset damages to CIs as a proxy of direct risk (Group

2009). Efforts to capture risk levels for CIs globally are often challenged

by data availability (cf. Stip et al. 2019), yet have been undertaken for a

few hazards and CI sectors such as road, rail, airports and power generation

(Hallegatte et al. 2019; Koks, Rozenberg, Zorn, et al. 2019; Yesudian and

Dawson 2021). Despite acknowledging the importance to embrace a systems-

thinking approach for resilience (Bresch, Berghuijs, et al. 2014; Dawson et

al. 2018), NH risk modelers’ predominant focus on ‘asset scale risk’ (Dawson

et al. 2018) often runs short of capturing CI interdependencies and ‘network

scale risks’. As such, the community’s risk assessment methods are not yet

tailored to the specificities of CIs.

In infrastructure research, CI interdependences and failure cascades have

received much attention since the seminal work of Rinaldi et al. (2001) and

approaches to model them have converged to several state-of-the-art meth-

ods, comprehensively summarized in Ouyang (2014). Especially in studies

employing network (flow) approaches (cf. Lee et al. 2009), research on fail-

ure cascades is often motivated by NH events as triggers (Goldbeck et al.

2019; Loggins and Wallace 2015; Nan and Sansavini 2017; Pant, Hall, and

Blainey 2016; Pant, Thacker, et al. 2018; Zorn, Pant, et al. 2020). Yet,

most research in this domain shares some of the following tendencies: Inves-
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tigated systems are mostly small-scale, representative of mid-sized towns or

single community districts and illustrate dynamics for a sub-system of two

infrastructure types (Banerjee et al. 2018; Dueñas-Osorio, Craig, et al. 2007;

Goldbeck et al. 2019; Guidotti et al. 2016; Ouyang and Dueñas-Osorio 2011)

(see Pant, Hall, and Blainey 2016; Thacker, Pant, et al. 2017; Zorn, Pant,

et al. 2020, for counter-examples) where power, transport and telecommuni-

cation systems are investigated much more often than social facilities such

as schools or hospitals. CI data is frequently based on artificial, well-defined

test-beds (Guidotti et al. 2016; X. He and Cha 2020; Loggins and Wallace

2015; Masoomi et al. 2020) or tailored to the (sometimes proprietary) data

at hand, which is overwhelmingly based in the US, Europe and Oceania

(Hernandez-Fajardo and Dueñas-Osorio 2013; Ouyang and Dueñas-Osorio

2011; Tootaghaj et al. 2019; Zorn, Pant, et al. 2020). Failure scenarios often

focus on random or component-wise removals (Beyza et al. 2020; Fotouhi

et al. 2017; Thacker, Pant, et al. 2017) or feature stylized shapes in lack of

realistic hazard footprints (Masoomi et al. 2020; Zorn, Pant, et al. 2020).

Study scopes and trigger mechanisms in existing CI research are hence not

necessarily tailored to capture the magnitude and spatial extents of real-

world NH events and CI systems.

Lastly, the technical discourse on CI failures, where impact metrics focus pre-

dominantly on functional performance benchmarks, does not link adequately

to the domain of social vulnerabilities (Garschagen and Sandholz 2018).

Apart from empirical case-studies using print media accounts (Chang, Mc-

Daniels, Mikawoz, et al. 2007), only few modelling studies have explored

consequences of CI failures for (socio-economically different groups of) peo-

ple (Chang, Pasion, et al. 2012; Karakoc et al. 2020). Despite advances in

tackling this common problem space, silos persist which have inspired sev-

eral stylized and theoretical frameworks on systemic CI risks at a national

analysis level (Dawson et al. 2018; Pant, Hall, and Thacker 2017). Follow-

ing this logic, our aim is to practically implement a flexible and open-source

end-to-end impact model which estimates spatial patterns of people experi-

encing basic service disruptions caused by natural hazard-induced CI failure

cascades. In line with Zio (Zio 2016), who stresses the need to integrate dif-

ferent modelling perspectives to capture complexities of CI system failures,

we showcase how synergies can be yielded by combining established meth-
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ods and platforms used by CI researchers and NH risk modellers alike. The

design focus of this seamless impact model is put particularly on the rapid

analysis of large, interdependent, real-world infrastructure systems and the

dependent population in diverse geographical regions, which are exposed to

different types of natural hazards and where only limited process knowledge

and data may be available. Impact estimates produced with this approach

are hence thought to inform rapid hotspot assessments during emergency

responses, or as a cross-national, human-centric measure of risk for policy

purposes in international frameworks.

Section 3.2 describes the conceptual framework which was constructed to

meet above-mentioned design criteria and its concrete implementation as

a ‘system-of-systems’ (Pant, Hall, and Thacker 2017) formulation for in-

frastructure networks embedded in the open-source risk modelling platform

CLIMADA (Aznar-Siguan and Bresch 2019). Section 3.3 exemplarily il-

lustrates how the model can provide information services in the aftermath

of disaster using a real-world case study of Hurricane Michael hitting the

Florida Panhandle. A scenario analysis is performed and model outputs are

validated using official reports and print media accounts, to facilitate a wider

discussion on the merits and trade-offs of this approach in section 3.4, and

to examine its adequacy for use in risk assessments, emergency response,

adaptation planning and policy making.

3.2 Methods

The framework in Figure 3.1 illustrates the major conceptual stages de-

veloped to calculate basic service disruptions from natural hazard-induced

infrastructure failure cascades, with required inputs and main outputs.

In stage I an infrastructure system model calculates functional states of in-

terdependent critical infrastructures using georeferenced information on in-

frastructure components, dependent population, dependency heuristics and

supply and demand data. The employed modelling approach relies on a

‘system-of-systems’ formulation logic (cf. Pant, Hall, and Thacker 2017;

Thacker, Pant, et al. 2017; Zorn, Pant, et al. 2020), where CI systems are

treated as hierarchical topological networks interconnected through depen-



58 CHAPTER 3

Figure 3.1: Developed framework to model the population experiencing basic service
disruptions from natural hazard-induced infrastructure failure cascades. The four stages
are linked within a single platform and encompass infrastructure system modelling (I),
natural hazard risk modelling (II), and two spatially explicit results layers - impacts to
infrastructure components (III) and to the dependent population (IV). Main outputs of
each stage are in bold within a box.

dencies between each other. The reliance on complex network theory and

simpler flow calculations reduces the complexity of full-fletched physical

models, yet has been demonstrated as a versatile, illustrative and data-

efficient alternative capable of capturing large-scale dynamics across big

system scales (Zorn, Pant, et al. 2020). In stage II, structural damages

to infrastructure components are computed from spatially- explicit hazard

footprints and tailored vulnerability curves, using the risk assessment plat-

form CLIMADA, which was in turn chosen for its state-of-the art perfor-

mance in hazard modelling, global consistency and open-source character.

Stage III feeds results from structural damage calculations back into the

infrastructure system model, which triggers failures cascades along infras-

tructure dependencies. Results of this stage are technical failures at the

infrastructure systems level. In stage IV, technical impacts of CI failures
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are translated to human-centric impacts. Resulting disruptions to basic ser-

vice access are computed for all services provided by the CI systems under

study, for the dependent population.

The following sections describe the implementation details of the framework.

While emphasis is put on the conceptual choices that were made to unite

models from natural hazard risk and infrastructure modelling communities,

specific technical explanations referring to the practical open-source code

base implementation are provided where necessary. For a list of abbrevia-

tions used throughout the text and a condensed formal description of the

entire algorithm, see Appendix 3.A.1.

3.2.1 Stage I: Infrastructure System Model

Data Requirements: Infrastructure Components, Population, Sup-

ply and Demand

Geographic data of CI networks - henceforth referring to the spatial repre-

sentation of real-world infrastructures such as the location of schools, roads

or electrical power plants - and of population must be procured at compo-

nent (i.e. asset) level for the area of interest, such as a country, state or

greater metropolitan area. Within the modelling framework, user-provided

data sources may be ingested or high-resolution data can be obtained via au-

tomatized queries from open-source data providers such as OpenStreetMap

and the WorldPop project(WorldPop and Center for International Earth

Science Information Network (CIESIN), Columbia University 2020). A first

step of complexity reduction and standardization then consists in limiting

the diverse structural components per CI network to a few main building

blocks or components. For instance, the road network could be reduced

to intersections (nodes) and streets (edges), without differentiating further

between road types, bridges or tunnels (cf. Table 3.4 for a non-prescriptive

component selection example for six main types of CI networks at vari-

ous resolutions). Further, supply and demand data of the CI networks and

their end-users, e.g. electricity generation and consumption statistics for the

power network, as provided by the International Energy Agency (IEA), may

be collected as available. This is, however, not imperative for the presented

approach, as will be demonstrated throughout the method sections.
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As a stylized example throughout the remainder of the model description,

we consider the mobile communication (c), electric power (e) and health (h)

networks represented through their most crucial components (respectively,

cell towers, power plants, transmission lines, poles, and hospitals) and popu-

lation grid cells (p) representing end-users as illustrated in Figure 3.2, panel

BS.1. Fictitious power plant generation values and per capita electricity

consumption statistics are included to demonstrate a case of demand and

supply data availability, whereas such statistics are here supposed to be

unavailable for all other CI networks.

Graph Representations

Infrastructure components are hence transformed into directed graphs con-

sisting in nodes and edges. Within the modelling framework, corresponding

cleaning and conversion algorithms are provided. In our example, the power

network’s plant and poles are represented by nodes and power lines as edges,

while the graphs for communication and healthcare networks are made up

of nodes only (see Figure 3.2, panel BS.1 (centre)). These formal represen-

tations will henceforth be referred to as CI graph Gj , where j is the system

type (e.g. Ge for the electric power CI graph). In addition, geographical

location L, initial functional state F0 and the infrastructure-specific dam-

age threshold Dj are set as attributes for all elements (nodes and edges) in

each CI graph. F0 is set to 1 for all elements. Dj indicates the structural

damage fraction beyond which a component will lose its functionality and

is a simplifying concept to derive functional states from damages. Thresh-

olds are set arbitrarily in this example for purely illustrative purposes. The

population network similarly is represented by a node-containing graph with

people counts and geographical location as node attributes.

Dependency Heuristics

Departing from an extensive review on CI interdependence models, a list of

120 functional and logical dependencies between components of 11 different

CI networks was collected (see Supplementary SM2) and consolidated within

six generic rules, referred to as dependency heuristics:

i. Most CI networks depend on electric power supply, (cooling) water sup-
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ply and information and communications technology (ICT)

ii. People-hosting facilities (e.g. hospitals, schools, power plants) depend

on road access

iii. Dependencies can be categorized into either having redundant character,

where several sources can provide necessary support (e.g. telecommuni-

cation access from any reachable cell), or being unique, where support

is provided from a unique source (e.g. power from the single closest

power line).

iv. Dependencies are distance-constrained (e.g. a cell tower located 500 km

away will not provide relevant service, neither will a hospital which is

1500 km across the country).

v. Dependencies may entail a continuous, physical flow between source

and target (e.g. water, electricity), yet can be approximated through a

binary, logical connection.

vi. Population (end-users) depends on CIs for services, but not vice-versa.

These rules serve as a first starting point to identify sets of CI networks be-

tween which functional dependencies likely exist, and to sketch out a set of

variables which can be fed into a quantitative dependency-search algorithm:

source, target, distance threshold, redundancy, road access and flow. These

dependency-search variables, described in more detail in Table 3.1, can be

parametrized and manually adjusted to the case study at hand. The mod-

elling framework’s algorithm then places directed edges ejk (dependencies)

between any nodes of CI graph pairs (Gj ,Gk) which fulfil the dependency

conditions specified in the parametrizations of the described variables. In

the stylized example of Figure 3.2, panel BS.1 (‘Interdependent CI Graph’),

a dependency list indicates CI network pairs which are generally hypoth-

esized to exhibit dependencies (white underlaid). For instance, hospitals

(target) are likely dependent on electric power (source), which for hospital

node 6 is supplied uniquely from power node 3 (no redundancy), given that

the supply point was close enough (distance < distance threshold).

The dependency-search algorithm equally allows assignment of end-users to

CI networks in the absence of more detailed, yet often proprietary utility
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Table 3.1: Required variables for the dependency-search algorithm between CI graphs.
‘Source’ and ‘Target’ are CI network components of different systems, previously identified
from the heuristics explained above. Specific values for the variables may be filled in as
adequate for the case study at hand.

Variable Description

Source Supporting CI component
Target Dependent CI component
Distance
Threshold

The maximum distance for establishing a link between two nodes
is determined by a circle around the target with respective radius
if road access is not required, else the shortest path via road edges
connecting source and target nodes must not exceed the specified
threshold.

Redundancy Whether a target node is connected to all CI nodes of type source
within a specified distance threshold (TRUE) or only to the single
closest one (FALSE).

Road Access Whether a road path must exist between source and target.
Flow Whether the flow through the dependency edge is informed by a

physically informed, continuous variable (‘physical’, such as power
cluster capacity), or by a binary (‘logical’) variable, indicating if
supply can be provided or not based on the functional state of the
source.

providers’ customer data; the population graph is then the target of in-

frastructure - end user pairs (Gj ,Gp) for any relevant infrastructure type

j. The algorithm hence results in the creation of one interdependent CI

graph G from all CI graphs and the population graph. This is illustrated

in Figure 3.2, panel BS.1 (‘Interdependent CI Graph’); population cluster

node 12 (source), for instance, is dependent on any (redundancy) of the cell

towers (target) within the set distance threshold for the provision of mobile

communications, which is fulfilled by cell tower node 12.

Next, for each combination of source-target pair jk for which edges ejk were

created in the interdependent CI graph, the attributes capacity Cjk and ca-

pacity threshold T jk are assigned to all nodes. Cjk is initialized to discrete

values, depending on whether a node is a source (1), a sink (-1) or neither (0)

for the flow from CI network of type j to type k. T jk ([0,1]) indicates what

percentage of a standardized flow unit from j needs to arrive at a component

of type k for it to remain functional. Bespoke hospital node 6 in Figure 3.2,

panel BS.1 (‘Interdependent CI graph’) depends on electric power (e) and

telecommunications (c), and provides healthcare services to people (p), and

hence Ceh and Cch=-1, while Chp=1. For the hospital to remain functional
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in this example, it needs to receive at least 0.6 standardized units of power

through its dependency link(s) (T eh=0.6), 1 unit of telecommunications ac-

cess (T ch=1), and no unit of healthcare access, since it is the provider of

this service (T hp=0). Geographic dependencies (Ouyang 2014; Rinaldi et

al. 2001) are implicitly accounted for in the framework through the spatial

explicitness of all representations.

Flow Assignments and Infrastructure Functionality

Incorporating commodity flows in addition to a system’s topology has been

argued as crucial for capturing system performances adequately (Guidotti

et al. 2016). Yet, interdependent CI networks entail flows within individual

networks (e.g. power in the power grid), and across networks (e.g. power

to hospitals). Flows are furthermore of different natures, involving physical

commodities (water, electricity, etc.) as well as logical dependencies (con-

nectivity to mobile communications). To deal with this diversity, internal

flows in CI networks and flows along dependencies between CI networks are

treated separately. Results are then translated into binary functional states

and normalized capacity values for coherence across all networks. Formally,

those calculations are performed on subgraphs of the previously established

interdependent CI graph G, henceforth denominated as G′j and G′jk. Sub-

graphs span all elements of infrastructure type j, and of types j, k, and

linking edges ejk, respectively, yet also retain their reference to the overar-

ching graph G, which is hence updated. Figure 3.2, panel BS.2 provides a

visual illustration of such subgraphs.

Flows within networks For networks with internal flows between sources

and sink elements, infrastructure type-specific flow assignment algorithms,

flexibly tailored to the data and knowledge available, are employed to update

all capacity attributes Cjk on the corresponding subgraphs G′j (for examples

on flow calculation approaches, see (Gauthier et al. 2018) for road networks,

(Chmielewski et al. 2016) for water networks and (ibid.) for power networks).

Figure 3.2, panel BS.2 (left) illustrates this procedure for the power network,

which is the only network involving internal commodity flows in this styl-

ized example. In absence of further system knowledge apart from demand

(per capita consumption data), supply (power plant generation data) and
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Figure 3.2: Stylized illustration of the entire modelling chain for 3 CI systems, people and
a tropical cyclone event. Panels BS.1-4 (left) show the setup of the infrastructure systems
model given infrastructure data, population data and dependency heuristics (BS.1), flow
assignments and infrastructure functionality determination (BS.2), and basic service access
determination for the population (BS.3), which hence represents the base state of the
system (BS.4). Panels DS.1-4 (right) demonstrate the effects of structural damages caused
by a natural hazard event (DS.1) triggering CI failure cascades (DS.2) and causing basic
service disruptions to the population (DS.3). Roman numbers in brackets refer to the
corresponding stages in overview Figure 3.1. Detailed explanation is given in sections
3.2.1-3.2.4. For a list of abbreviations and formal treatment, see Appendix 3.A.1.
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network topology, a cluster approach is employed. For each cluster in G′e

(here there is only one cluster), the ratio of supply (28 GWh) to demand

(35 GWh) is computed, and assigned as a new relative capacity value Cek

(here 0.8) to all nodes in that cluster. This can be read as the power system

operating at C*100% of its required capacity. Functional states F of the

components remain unaltered in this mechanism.

Flows across networks The goal of this step is to determine the func-

tionality F of each dependent infrastructure node in the interdependent CI

graph based on the available capacities from other supporting infrastructure

nodes. For each unique type of dependencies jk (e.g., power-communication,

j=e, k=c) in G, subgraph G′jk is extracted. A received supply variable M jk

is computed for each node in G′jk. M jk amounts to the sum of capacities

Cjk received at target nodes k from functional source nodes j via an edge

ejk, and is hence 0 at nodes of type j. Technically, this flow propagation is

computed on the adjacency matrix using matrix multiplication only, which

is computationally efficient even for large networks. If M jk is smaller than

a previously set capacity threshold T jk, a node loses functionality (F =

0). Figure 3.2, panel BS.2 (right) illustrates this procedure formally (Eqs.

(1) and (2)) and graphically on the electric power-mobile communications

subgraph, which entails a physical, continuous variable flow, and on the mo-

bile communications-healthcare subgraph, approximated by a binary (logic)

variable flow: The cell tower node #7 receives a total of Mec = 0.8 nor-

malized units of power from the power sources it is connected to, which

is greater than the capacity threshold (here set to T ec = 0.6). It hence

remains functional (F = 1). Hospital node #1 receives M ch = 2 logical

units of supplies from both cell towers it is connected to. As this exceeds

the needed (logical) units of cell tower supply (T ch = 1), the hospital also

remains functional (F = 1).

Since dependency loops (inter-dependencies) can exist among CI networks,

internal and inter-network flow assignment procedures are iteratively re-

peated until there are no more functional variable changes across any ele-

ments in the interdependent CI graph G.
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3.2.2 Stage II: Natural Hazard Risk Model

While several platforms for natural hazard modelling exist, the open-source

and -access software CLIMADA (CLImate ADAptation) (Aznar-Siguan and

Bresch 2019) is the only globally consistent and spatially explicit tool which

is freely available to assess the risks of natural hazards and to support the

appraisal of adaptation options (Bresch and Aznar-Siguan 2021). The event-

based modelling approach of CLIMADA has been used, among others, to

conduct risk studies of tropical cyclones on assets across the globe (Eberenz,

Lüthi, et al. 2021), to discern impacts from river floods in a changing climate

(Sauer et al. 2021) and on people displacement (Kam et al. 2021), and in

the wider context of Economics of Climate Adaptation studies (Souvignet

et al. 2016). The framework allows for a fully probabilistic risk assessment

based on the IPCC risk definition (Field et al. 2014) as a function of hazard,

exposure and vulnerability.

Hazard

Hazard is a spatially explicit representation of the intensity of a natural

physical event, such as geo-referenced wind speed for storms or water height

for floods. Hazard footprints can, for instance, be based on historic records,

forecasts or climate projections, or be synthetically generated to create prob-

abilistic event sets. In CLIMADA, hazard modules are available for tropical

cyclones, floods, wildfires, earthquakes, landslides, avalanches and heatwaves

in different stages of maturity, yet can also be provided through user-ingested

raster or vector data.

Exposure

Exposure refers to the geo-referenced assets or population data that are

located in the area of interest. In CLIMADA, exposure modules are avail-

able to retrieve a global gridded asset dataset (LitPop Eberenz, Stocker, et

al. 2020), critical infrastructures from OpenStreetMap, and high-resolution

gridded population data out-of-the-box. User-provided data in raster or vec-

tor formats can equally be ingested. Exposures require a value assignment to

capture the value potentially at risk, such as pre-computed economic (Dol-

lar) values for LitPop, and lengths, areas or simply unity for infrastructure
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components (e.g. 100 m for a road section or 1 for ‘a’ healthcare facility).

Vulnerability

Vulnerability, also termed impact function or fragility curve, is an exposure-

specific mapping of hazard intensity to expectable damage extent. Vulnera-

bility curves for tropical cyclone winds on general economic asset stocks have

been calibrated in CLIMADA for nine world regions (Eberenz, Lüthi, et al.

2021), while the dedicated impact function module also allows to specify

hazard- and infrastructure-component specific functions taken from litera-

ture, such as the HAZUS technical manuals provided by the US Federal

Emergency Management Agency (FEMA).

Risk (Structural Damages)

Risk calculations are performed in CLIMADA by spatially overlaying hazard

and exposures and mapping impacts via the corresponding impact function.

Since most infrastructure exposures originally come in line or polygon for-

mats, such shapes are interpolated to centroids at user-defined resolutions,

and re-aggregated into their original shape after impact calculations. Here,

risk is hence measured in terms of estimated structural damage to all infras-

tructure exposures, which in turn is expressed according to the respective

value metric (either as damage fraction or total length/area affected). Com-

puted structural damage values are then assigned as attribute I (‘impact’)

to each corresponding element in the interdependent CI graph G. See Fig-

ure 3.2 panel DS.1 for an illustration of tropical cyclone risk calculations on

power lines, cell towers and healthcare facilities.

3.2.3 Stage III: Technical Impacts (Infrastructure Failures)

For each element in the interdependent graph, the impact to the corre-

sponding component computed with CLIMADA is assigned as attribute I.

Functional state F of an element is set to zero if the impact I exceeds the

damage threshold Dj as illustrated in Figure 3.2, panel DS.1.

This change in functional states can set off a failure cascade within the

graph, through both internal and dependency-induced flow changes. In or-

der to propagate the disruption, the capacities and functional attributes of
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all CI components are updated by applying the algorithm described in sec-

tion 3.2.1 iteratively until a new steady state is obtained. In our example

illustrated in panel DS.2 in Figure 3.2, several cascades occur: The power

graph is split into three clusters as a consequence of the initial failure of a

node and an edge element, whereby two clusters (Cl. 1 and Cl. 2) remain

without capacity as they are cut off from connection to the power plant

(Cek = 0). Interdependencies among CI networks further propagate those

disruptions (cell tower #7 is connected to a capacity-less power node, hence

becoming dysfunctional; hospital #1 still receives 1 unit of supply - instead

of previously 2 - from supporting cell towers, which prevents its failure).

3.2.4 Stage IV: Human-centric Impacts (Basic Service Ac-

cess & Disruptions)

The final step is to compute basic service access (and disruptions, corre-

spondingly) for a range of services at population nodes. Basic service ac-

cess, according to the United Nation’s definition , is ensured through the

confluence of two factors:

i. functionality of the CI (component) responsible for the provision of a

service

ii. a notion of accessibility to the CI (component)

Here, we define functionality through the functional states of the infrastruc-

ture graph elements. Accessibility is defined either through literal road path

availability between end-user and infrastructure (e.g. hospitals for health-

care services) or through coverage of an area around an infrastructure’s

location (e.g. cell towers for mobile communication services). A qualitative

summary of basic service access parametrizations for six services examined

in this work is given in Table 3.2.

The quantitative basic service access algorithm is implemented in analogy

to the flow assignment and functionality determination algorithm in the pre-

vious step. For each unique infrastructure-population pair combination jp,

for which dependency edges ejp exist in the interdependent CI graph G,

the subgraph G′jp spanning G′p, G′j and ejp is extracted. Received services

M jp are hence computed as the sum of capacities from source infrastructure
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Table 3.2: Examples for basic service access conditions which can be implemented in the
infrastructure system model.

Basic Service Description

Mobility Functional connection to an intact road element within a certain
distance threshold.

Power Functional connection to an intact power cluster which runs above
a certain capacity ratio.

Healthcare Existence of an intact road-path below a certain distance threshold
to a functioning facility.

Education Existence of an intact road-path below a certain distance threshold
to a functioning facility.

Mobile com-
munication

Functional connection to an intact cell tower within a certain dis-
tance threshold.

Drinking water Functional connection to an intact wastewater treatment plant
within a certain distance threshold.

nodes arriving at population nodes (see eqs. 3 and 4 in Figure 3.2, panel

BS.3). Each population (target) node is then assigned a service attribute

Sj , indicative of the service provided by CI type j. The service is accessible

(Sj = 1) if M jp exceeds the capacity threshold Tjp and, additionally, fulfils

the access conditions (c.f. Table 3.2), else Sj = 0. While the coverage-based

access conditions are implicitly accounted for through the (non-)existence of

a dependency edge, the literal (road-access) condition is checked for explic-

itly in the interdependent CI graph G through a shortest path algorithm,

calculating the distance of the path between population node and facility

node. Panel BS.3 in Figure 3.2 illustrates the procedure with the example

of electric power access, where population node #7 receives M ep = 0.8 nor-

malized units of power, which exceeds the capacity threshold (T ep = 0.6)

and hence the service is accessible (Se = 1).

The interdependent CI graph with functional state attributes F at infras-

tructure elements and service attributes S at population nodes hence defines

the base state. Panel BS.4 in Figure 3.2 illustrates this for the three infras-

tructure networks and the corresponding three service types at the popu-

lation network (electric power access Se, basic information access Sc and

healthcare access Sh).

Once CI component failures are determined, basic service access is re-computed

as hence described. See illustration in panel DS.3 in Figure 3.2 for the given

stylized example on population’s power access, leading to a new, disrupted



70 CHAPTER 3

Table 3.3: Drivers of model uncertainties throughout all stages in the modelling chain.

Stage Source Explanation

CI System Repre-
sentations

Choices on CI components included or excluded, simpli-
fications (for instance, no differentiation between trans-
mission lines of different voltages, approximating the
communication network by cell towers, water network by
water treatment plants)

Dependency
Identification

Choice of dependency rules (i.e., heuristics, between
which CI systems dependencies exist)

I
Dependency
Parametrization

Choice of conditions for dependency establishment
(i.e. distance thresholds between components identified
through heuristics, path requirements, etc.)

Hazard Footprint Resolution, spatial accuracy and representational valid-
ity, when in- or excluding sub-hazards (e.g. wind-fields,
storm surge and torrential rainfall for tropical cyclones)
or multi-hazard phenomena (compound events).

Vulnerability
Curves

Assumptions on (deterministic) relationship between
hazard intensity and component damages.

II
Damage-
Functionality
Thresholds

Assumptions on the (deterministic, threshold-based) re-
lationship between structural damages and resulting
component functionality levels.

III Cascading Algo-
rithm

Deterministic (strict) propagation of failures along de-
pendencies, assumption on target becoming strictly dys-
functional due to failure at source.

End-user Depen-
dencies

IV
Basic Service
Parametrization

Uncertainties are analogous to stage I.

state (panel DS.4 in Figure 3.2).

3.2.5 Model Uncertainties and Sensitivity Testing

Due to the amount of consecutive stages featured in the presented mod-

elling chain, model assumptions and representational choices in one stage

may greatly influence end-results. In order to allow for evaluation of such

sensitivities, Table 3.3 provides a brief discussion on the main points where

model uncertainties are introduced.

Owing to the complexity of the presented approach, a one-at-the-time anal-

ysis obtained by constructing scenarios, where only one set of parameters

are varied within plausible bounds at a time (such as parametrizations of
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dependency conditions, vulnerability curves and functional thresholds), is a

good starting point for identifying key sensitivities in the system responses.

More in-depth characterization of the uncertainties can then be carried-

out by focusing on the identified sensitivities (see Pianosi et al. (2016) for

a comprehensive discussion on best practices and recommendations, cater-

ing specifically to the field of environmental modelling, and (Tabandeh et

al. 2022)for an exemplary computational workflow designed for uncertainty

propagating in and multi-level sensitivity analysis of hierarchical systems,

particularly interdependent CI networks). Much can be done directly in

CLIMADA using the ‘unsequa’ module that provides readily usable methods

for state-of-the art global uncertainty quantification and sensitivity analy-

sis based on quasi-Monte Carlo sampling (Kropf et al. 2022). In addition,

the probabilistic hazard modelling approach may help estimating represen-

tational uncertainties on the trigger side.

3.3 Application: CI Failures and Basic Service Dis-

ruptions from Hurricane Michael

Tropical Cyclone Michael made landfall in the Florida Panhandle on the 7th

of October 2018, and caused severe impacts across Florida, Alabama and

Georgia, both in terms of direct asset damages (over US$ 25 billions) and

lives lost (at least 43) (Beven II et al. 2019), as well as in terms of CI fail-

ures (power and mobile communication outages affecting millions, among

others). It was selected for demonstration based on two reasons. Ample

documentation of the event permits result validation and provides a reality

check on quality and information content of the developed model. Further,

Michael’s severity was dominated by strong winds and storm surge as op-

posed to torrential rainfalls (Bloemendaal, Moel, et al. 2021). The hazard

can therefore be approximated by modelling only its wind-field, lending itself

as an illustrative, yet simple enough example.
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3.3.1 Model Demonstration

Stage I: Infrastructure System Model (Infrastructure Functional-

ity)

We delimit the system of study to the states of Florida, Alabama and Geor-

gia which were directly hit by hurricane-strength winds. Besides population,

infrastructure systems considered are main roads, transmission power lines,

power plants, cell towers, wastewater treatment plants, healthcare institu-

tions and public schools (see Figure 3.3 column ‘CIs’ for geographical maps

of the CI networks). Details on data sources, pre-processing and individual

CI graphs generation, can be found in Appendix 3.A.3. Generation sources

and demand sinks within the power network are obtained from power plant

generation and energy consumption statistics (Appendix 3.A.3). To gener-

ate the interdependent CI graph, twelve distinct dependencies are identified

in between CI networks (6) and between CI networks and population (6),

and parametrized as indicated in Appendix 3.A.3. The established interde-

pendent CI graph consists of nearly 80’000 nodes and 500’000 edges, with

dependencies making up the majority (59%) of links (see Figure 3.6for de-

tailed graph statistics). Network flows are computed and functional states

assigned to all infrastructure components in this pre-disaster configuration

(termed ‘base state’), resulting in all elements of the interdependent CI

graph being functional. Population’s basic service access rates surpass 99%

for all service types considered in the base state (access to mobility, power,

education, healthcare, mobile communications and drinking water).

Stage II: Natural Hazard Risk Model (Structural Damages)

Track data for tropical cyclone Michael is obtained from the International

Best Track Archive for Climate Stewardship (IBTrACS) project (Knapp,

Kruk, et al. 2010) . The wind field (see Figure 3.7) is computed from the

CLIMADA tropical cyclone module, according to the parametrization in

(Holland 2008). CI-type specific impact functions for structural damages

from winds are taken from literature (see Figure 3.8 in Appendix 3.A.3) and

ingested into CLIMADA for all infrastructures except power plants, which

are not designed to fail. All CI networks are converted to CLIMADA expo-

sure layers for impact calculations. Structural damages are computed using
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the CLIMADA impact module, yielding direct impact figures as displayed

in Figure 3.3, column ’Component Damages’.

Stage III: Technical Impacts (Infrastructure Failures)

Structural damages fractions of all infrastructure components are translated

into binary functionality states by applying infrastructure-specific threshold

values (Appendix 3.A.3). Component failures hence initiate the failure cas-

cade algorithm in the infrastructure systems module, both within individual

CI networks and along dependencies across CI networks. Under the given

system specifications, only the power network features an internal cascading

mechanism, as it contains designated source nodes (power plant), sink nodes

(power line nodes with customer demands) and transition nodes (all other

power line nodes). A cluster approach was chosen to capture this failure

behaviour, where all components in a remaining functional cluster become

dysfunctional once generation capacity falls below a certain fraction of de-

mand (here set to 60% for demonstrative purposes). Dependency-induced

failure cascades are experienced across all CI networks within the interde-

pendent CI graph. Results are displayed in Figure 3.3, ‘CI failures’, where

initial, structural damage-induced failures and cascaded failures are marked

with the respective colour code.

Stage IV: Human-centric Impacts (Basic Service Disruptions)

Following the failure cascade algorithm, access to basic services are com-

puted for all population nodes within the interdependent CI graph. For

road-path constrained dependencies (access to healthcare and education,

resp.), this involves re-calculation of path availability and travel distances.

Figure 3.3, ‘Basic Service Access’ shows the disruption results for access to

mobility, power, healthcare, education, mobile communication and drinking

water.

3.3.2 Scenario Analysis

To obtain first insights on how strongly results depend on assumptions along

the modelling chain, seven modelling scenarios are constructed (see Table

3.8). We explore the role of interdependencies, and of parametrization de-
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Figure 3.3: From natural hazard to basic service disruptions in four stages. Demonstra-
tion for Hurricane Michael ’18 hitting the Florida Panhandle: Asset data for 6 CIs across
FL, AL & GA used in the CI model (column ‘CIs’), wind-induced structural damages
calculated with CLIMADA (‘Component Damages’), CI failure cascades triggered by the
initial disruption, resulting in functional, dysfunctional and cascaded dysfunctional com-
ponents (‘CI failures’), population impacted from basic service disruptions following CI
failures (‘Basic service access’, a: access to mobility, b: power, c: healthcare, d: education,
e: mobile communication, f: drinking water. TC track and wind-field contour lines (m/s)
are plotted in columns 2 & 4 for reference.
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cisions for impact functions and for functionality thresholds on result out-

comes (see Table 3.9 for numeric results). The above presented case, referred

to as ‘original’ parametrization henceforth, is taken as a reference.

Results are greatly influenced by the inclusion of CI interdependencies: As

cascaded failures account for a significant part of all infrastructure failures

in the base scenario, the removal of this impact driver drastically reduces

component failures across all CI types but roads, with strong consequences

for projections of service disruptions. Numbers of affected people decrease

for all basic services apart from access to mobility (see Figure 3.4, gray).

While the inclusion of dependencies itself plays a great role in determin-

ing the magnitude of impacts, the exact parametrizations of establishment

conditions thereof (such as path distance thresholds) affect end results less

strongly (see Figure 3.4, blues). Parametrization of impact functions di-

rectly and strongly influences estimates of structural damages, which has

far-reaching consequences on the entire impact chain from immediate CI

failures over cascades to basic service disruptions. Shifting impact functions

by 15 m/s in either direction compared to the base scenario (i.e.same level of

structural damage at wind intensities of 15 m/s more or less, resp.) can lead

to a divergence in services disruption estimates between millions of people

and almost none (Figure 3.4, reds).

Due to the resolution of the hazard footprint (360 arcsec, ca. 11 km), which

exceeds most CI component lengths, results are less sensitive to the thresh-

old assumptions between structural damage fractions and functional perfor-

mance of components, since components are mostly entirely affected or not

at all (see Table 3.9). This may change and become increasingly important,

though, at higher hazard resolutions.

3.3.3 Validation

The aim of this validation is to collect evidence on whether the showcased

impact cascades - from CI damages to affected people - do happen, and

whether predicted impacts, even when drawing on coarse assumptions and

a set of heuristics, are in the right order of magnitude. The multiple impact

stages calculated within the underlying approach are reflected in the breadth

of validation sources taken into account, and span official government re-
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Figure 3.4: Number of people affected by basic service disruptions for seven scenarios,
relative to original parametrization presented in section 3.3.1. Blue: no CI interdepen-
dencies, blues: allowing for shorter and longer road travel paths to social facilities, reds:
higher and lower CI component vulnerability, purple: higher and lower structural damage
thresholds until reaching component dysfunctionality.

leases, utility providers’ reports and newspaper articles (see Supplementary

SM2 for a comprehensive overview).

Even for the case study region, where information sources after natural haz-

ard events are ample and accessible, documentation on the entire impact

cascade is incomplete: structural damages are only incidentally reported

across all infrastructure types, comprehensive functional outage reports are

limited to the power and telecommunication sector, while accounts on basic

service disruptions remain anecdotal. Figure 3.5 synthesizes this evidence,

contrasting quantitative outage statistics against model outputs (panels b

and e for power and telecom), and mapping qualitative service-related inci-

dents against areas of modelled access disruptions (panels a, c, d and f for

healthcare, education, mobility and drinking water).

Loss of power access is captured well, both in terms of impacted people (ca.

1.65 million reported vs. 1.22 million modelled), and in terms of spatial

distribution (compare Figure 3.3 and Figure 3.5 (a) for a more detailed visual

reference). Loss of mobile communication access is not reported as such, yet

documented occurrences of cell site outages coincide well with spatial model

predictions on failed cell towers (see Figure 3.5 (e), aggregated at county

level); most county predictions lie well within a 50% margin of error, even

though the impact severity is overestimated in hurricane-hit counties located
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further inland.

Documented incidents related to the loss of service access and infrastructure

damages, such as hospital evacuations, structural damages and fatalities due

to untimely care in the case of healthcare access, all lie within the modelled

area of concern (Figure 3.5). Yet, road damages and mobility-related inci-

dents were reported far less inland than model predictions (Figure 3.5 (a)),

a tendency which is less pronounced, yet shared for access to healthcare

and education (Figure 3.5 (c, d)), and most drastic for evidence on drink-

ing water issues (Figure 3.5 (f)). The divergence in projected and actual

disruptions to mobility confirms the importance of choosing adequate im-

pact functions, as pointed out also in the section on scenario analysis. The

road impact function used in this study was designed for disruptions from

tree blow-down, which may have provided an overly pessimistic picture on

(longer-lasting) structural damages.

Validation results for mobile communications, healthcare and education ac-

cess highlight the importance of incorporating dependencies and failure cas-

cade into the model, yet also show caveats of adequate parametrization: The

relatively accurate projection of people affected by cell site outages could

not have been reproduced without power interdependencies, as the scenario

analysis showed above. Similarly, several hospitals which were not directly

damaged reported evacuations due to water and power supply issues, while

many of the indirect deaths were linked to either patients or emergency

workers not getting physical access to healthcare facilities in time. This

confirms the general validity of incorporating such CI dependencies into in-

frastructure functionality calculations, and the importance of people’s road

path availability into bespoke service access computations. Such depen-

dency specifications can, however, also propagate errors and over-estimate

disruptions, as seen with access to education: The estimated 45’000 stu-

dents reported to be missing school due to closures (Price and Glenn 2018)

fall short of the approximately 145’000 projected by the model. This is

partly due to the non-redundancy between end-users and educational facil-

ities: Contrary to hospitals, where any facility within reach can be chosen,

people are assigned to one fixed school. When damages to such facilities

or their supporting CIs are hence over-estimated, this will transmit directly
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to over-estimations of education access disruptions throughout the entire

assignment surroundings.

Lastly, the case of water access disruptions demonstrates that a high degree

of system simplification can become problematic: In absence of better data,

the drinking water system was proxied by water treatment plants only. As a

consequence, the model projected large areas of disruption from a single fail-

ing facility, which seems not to be the behaviour observed in those real-world

water systems. Similarly, caution should be taken when approximating the

telecommunications network - consisting in more and more resilient sub-

networks than mobile communication structures only - through cell towers.

Despite the fact that some service disruptions were less extensive than mod-

elled, the integration of a hazard model and a CI model based on relatively

simple dependency heuristics and readily available open-source data allowed

to capture important failure dynamics within one interoperable calculation

chain. The model reproduces impacts in the correct order of magnitude, al-

lows to trace back impact drivers to parametrization decisions in each stage

of the impact cascade, and to re-calibrate mechanisms. It further gives a

social dimension to technical CI failures, mapping out areas of disruption

for basic services which are not consistently monitored by official sources.

While those are promising features, there is demand for an even more refined

picture, as remarked by a reporter in the aftermath of TC Michael: “While

the coastal devastation has become obvious, some disaster experts are most

concerned about the conditions farther inland. [. . . ] These are some of the

most socially vulnerable places in the entire country, low-income counties

with high proportions of older adults, and many people with disabilities and

chronic illnesses” (Fausset et al. 2018).

3.4 Discussion

The developed modelling framework was designed for interoperability, trans-

ferability and scale. Interoperability is achieved though the embedding of an

infrastructure system model into the risk assessment platform CLIMADA,

allowing for a streamlined workflow from natural hazards to social impacts.

The linkage to an event-based hazard simulation engine is a way forward
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Figure 3.5: Validation results for road blockages, structural damages and mobility in-
cidents (a), power outages (b), healthcare-access related incidents and hospital damages
(c), school closures (d), cell site outages (e) and water supply issues (f).
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from the use of stylized polygons in absence of physically-informed hazard

footprints (Jenelius and Mattsson 2012; Zorn, Pant, et al. 2020), hypotheti-

cal events (Loggins and Wallace 2015) or return period maps which are not

representative of individual events (Bruijn et al. 2016). Transferability is

ensured both theoretically and practically: While we provide readily avail-

able suggestions on infrastructure and population data sources, dependency

heuristics, impact functions and hazard models, the framework can handle

both proprietary and/or other open-source data (e.g. regional or national-

level developed data). This allows to investigate other infrastructure types,

hazards, dependencies and case study regions of interest to the user: For

instance, vulnerability functions may be altered to capture the important

effect of deterioration through ageing of infrastructures (Iannacone et al.

2022), or dependencies re-parametrized with different distance thresholds to

account for locally specific cell tower ranges (Holma et al. 2011) or travel

speeds (De Leonardis et al. 2018). The scale criterion is integrated in the

design of the infrastructure system model, which requires few technical spec-

ifications, and relies mainly on network topology and a set of heuristics for

dependency and flow assignment procedures, enabling the study of large

systems.

The results simulated must be interpreted as a first indicator on impact

hotspots and peak disruptions from the angle of people at risk. The sim-

plifying nature of network-based approaches has been recognized earlier as

a necessary trade-off against capturing large system scales at which natu-

ral hazards can occur (Bresch, Berghuijs, et al. 2014; Loggins and Wallace

2015). The merit of the developed system model’s approach therefore lies

in the possibility of working at a globally consistent basis with several in-

terdependent CI systems, yet does not replace specialized system models

(Gauthier et al. 2018; Guidotti et al. 2016; Ouyang, Hong, et al. 2009) for

detailed local analyses and individual infrastructure system optimizations.

The three information levels on infrastructure risk which the model provides

(structural component damages, failure cascades, and service disruptions),

align well with the highly diverse nature of real-world impact data, which

is often anecdotal and encompasses several of those risk layers. This offers

the versatility to calibrate and adjust parameters in the model based on
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evidence, such as tailoring impact functions to match print media cover-

age on structural damages, or amending dependency heuristics to fit utility

provider’s outage reports. To the best of our knowledge, only few quanti-

tative modelling studies (Zorn and Shamseldin 2016) incorporate such feed-

back possibility. Obtaining results on direct and cascading infrastructure

failures further allows to quantify the role of infrastructure dependencies in

causing wide-spread impacts: Validation in the presented case study em-

pirically confirmed that the extent of observed impacts could not be re-

produced without the inclusion of dependencies between infrastructure net-

works, which is in line with findings from other research on infrastructure

interdependencies (Luiijf et al. 2009; Zorn, Pant, et al. 2020).

The scenario analysis highlighted that structural damage functions and de-

pendency parametrizations are sources of considerable uncertainties in the

model. How to capture the diverse nature of interdependencies, which ad-

equately accounts for the varying ‘coupling strengths’ (Nan and Sansavini

2017; Rinaldi et al. 2001) between CI networks observed in reality, is a topic

of ongoing research. The presented use of capacities, capacity thresholds,

redundancies and road-path availability checks in the parametrization of

infrastructure dependencies (Appendix A) is a pragmatic compromise be-

tween elaborate mathematical frameworks with many conditionalities (for

instance (Sharma and Gardoni 2022)) and implementation feasibility for

large networks with limited process knowledge and data availability. We

refine commonly employed user-assignment procedures relying purely on

geospatial conditions (e.g. Voronoi tessellations) or on shortest path al-

gorithms without alternative targets (Poljansek et al. 2017; Thacker, Pant,

et al. 2017). Yet, modelling of back-ups for failing dependencies (such as gen-

erator availability for power-dependent components (Zorn and Shamseldin

2016)), changing demand patterns for infrastructure-related services among

end-users as a reaction to natural hazard occurrences (Naqvi and Monas-

terolo 2019; Otsuka 2019) or the reduction in functionality as opposed to

binary failures (Sharma and Gardoni 2022) upon dependency disruptions

may improve currently implemented cascading dynamics. Furthermore, the

threshold approach employed to relate structural damages to loss of compo-

nent functionality is a simplification for the notoriously challenging task of

developing consistent performance indicators (Ghosn et al. 2016; Nan and
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Sansavini 2017), for which research in the engineering community may lead

to future insights.

Our approach does not feature an explicit notion of time. Since the modelled

structural damages to infrastructures need to surpass a certain threshold

for the components to become dysfunctional, this implies that the model

captures rather longer-lasting disruptions. Yet, since impact severity is a

function of time and timing (Devanandham and Ramirez-Marquez 2012),

making it an explicit variable can be insightful: While for healthcare ac-

cess a few hours of disruptions in the immediate aftermath of a natural

hazard event may be extremely relevant, they may be less so for access to

schools, especially if occurring on a weekend. Introducing time could further

provide an informative indication on restoration and recovery dynamics (Al-

moghathawi, Barker, and Albert 2019; Lee II et al. 2007) when introducing

repair times and ‘snapshots’ of the interdependent CI network at various

moments, and capture oscillating or non-convergent functional behaviours

which interdependent systems can exhibit.

Lastly, our estimates of post-disaster basic service disruptions add an often-

neglected human-centric dimension to the discourse on infrastructure risks

(Hasan and Foliente 2015), which both academic models, utility providers

or government post-disaster reports do not usually capture systematically

(cf. Karakoc et al. (2020) as a rare exception); the holistic approach further

allows to include under-represented sectors in CI research such as healthcare

(Chang, Pasion, et al. 2012) and education. This can offer valuable informa-

tion to emergency responders with limited resources, and decision makers

facing multi-criteria investment decisions alike (Hasan and Foliente 2015;

Karakoc et al. 2020; Mitsova, Sapat, et al. 2020). However, and especially

as research on social vulnerability is still in its infancy (Garschagen and

Sandholz 2018), it will be important to take a closer look at the differential

impacts of basic service losses on different parts of the population, such as

the poor, the elderly or non-native speakers, which have repeatedly been

shown to dispose of fewer coping mechanisms (Cutter et al. 2006; Mitsova,

Esnard, et al. 2018).
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3.5 Conclusion

Critical infrastructures such as powerlines, roads, telecommunication and

healthcare systems across the globe are more exposed than ever to the risks

of extreme weather events in a changing climate. CI failure models often

operate at local scales with high data requirements and low transferability,

focusing on the technical performance side. Natural hazards are often not

explicitly modelled as a disruptive scenario therein. Natural hazard models,

in turn, frequently focus on direct damages to assets, which neglect the

networked and interdependent character inherent to critical infrastructure

systems.

To bridge those gaps between infrastructure modellers and natural hazard

risk modellers, we draw on well-established methods in both communities to

develop an interoperable, coherent and open-source modelling framework for

assessing spatially explicit, large-scale risks from infrastructure failure cas-

cades and their social impacts induced by natural hazards. Embedded into

the risk assessment platform CLIMADA, a state-of-the-art tool for natural

hazard impact calculations and adaptation options appraisal, we demon-

strate a network theory-based infrastructure systems model designed to re-

quire few technical details apart from commonly available asset location and

population data, which can handle many types of infrastructure networks

and captures interdependencies among them based on a set of heuristics.

The framework hence offers a three-layered view on infrastructure risks in

terms of on infrastructure component damages, technical failure cascades,

and human-centric basic service disruptions. It is readily transferable across

geographies, and can be tailored to include CI systems, interdependencies

and hazards of interest to the user.

The validated case study on Hurricane Michael across the US states of

Florida, Georgia and Alabama for six interdependent CI networks showed

that the established modelling chain captures impact hotspots and repro-

duces failure cascade dynamics, which could not be obtained when looking

at structural infrastructure damages alone. It also showed how real-world

impact data, such as outage reports and print-media accounts, can be used

to iteratively refine and calibrate the model. Projecting spatially explicit lo-
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cations of service disruptions experienced by the dependent population as a

result of infrastructure failures further adds a novel layer of risk information,

which is usually not available on the ground.

While we do not offer the one single “comprehensive methodological ap-

proach with a platform of linked models and data interoperability for mod-

elling infrastructure interdependencies for a range of different stakeholder

concerns and decision contexts” (Hasan and Foliente 2015) our approach

takes a step into this direction. We provide a tool apt for decision making-

contexts involving large geographic scope and the effects of several inter-

dependent CI systems’ responses to disruptions for the population: The

global consistency of the approach permits a comparative view of risk across

countries, relevant for international policy frameworks; adaptation planning

and infrastructure investments for resilience can be evaluated under their

aversion potential for different types of human-centric impacts and under

trade-offs amongst different CI sectors; post-disaster hotspot analyses can

lead to more targeted humanitarian relief and recovery activities.
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3.A Appendix

3.A.1 Formal treatment of the developed modelling chain

Gj graph of CI network j

nj
i ith node in Gj

ejmn directed edge from nj
m to nj

n

G interdependent CI graph, spanning all graphs Gj ,Gk,. . . of investigated
CI networks and all ejk

ejkmn directed dependency edge from nj
m to nk

n

G′j subgraph of G spanning all elements of Gj

G′jk subgraph of G, spanning all elements Gj , Gk and ejk

Ajk adjacency matrix of G′jk

Li geo-spatial location of graph element i (node and edge attribute)
Fi functional state (0,1,) of graph element i (node and edge attribute)
Ii structural damage (‘impact’) of graph element i (node and edge at-

tribute)
Ei exposure value of graph element i (node and edge attribute)
Di damage threshold of graph element i from which I Fi → 0 (node and

edge attribute)

Cjk
i capacity for node i for type of flow passing between CI types j and

k(node attribute)

T jk
i capacity threshold for node i for type of flow passing between CI types

j and k (node attribute)

M jk
i capacity supply at node i for type of flow passing between CI types j

and k (node attribute)

Sj
i service supply at node i for type of flow delivered by CI type j (node

attribute)
H(L) hazard intensity at geographic location L
V (H) hazard intensity-dependent vulnerability curve

Initialization

1. ∀ j create Gj with nj (nodes only) or nj , ej (nodes and edges) and set

attributes L,F (→ 1 ∀nj , ej ∈ Gj), D,E,X

2. Create interdependent CI graph G = ΣjG
j : ∀ (jk) in list of identified

CI dependencies:

(a) Create ejkmn between nj
m and nk

n if linking conditions (distance,

redundancy criterion, etc.) fulfilled

(b) Assign node attributes Cjk, T jk∀n ∈ G:

Cjk
i : (-1 if nj

i ; 1 if nk
i ; 0 else)

T jk
i : ([0,1] if nk

i ; 0 else)

Flow Assignment & Functional State Update
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3. ∀j where Gj ∈ nj , ej :

(a) extract G′j from G.

(b) perform internal flow calculations according to adequate algo-

rithm.

(c) update Cjk, F∀nj in G, where required.

4. ∀ combinations of (jk) where k ̸=’people’, extract G′jk from G; update

F∀nk:

M jk = (F · Cjk)T ∗Ajk;F = min(F,M jk ≥ T jk)

5. Repeat 3. and 4. until ∆F = 0

Basic Service Access Determination

6. ∀ combinations of (j,people), extract G′j,people from G. Assign at-

tribute Sj to npeople:

M j,people = (F · Cj,people)T ∗Aj,people

Sj = (M j,people ≥ T j,people)

Natural Hazard Impact Calculation & Functionality State Update

7. Assign structural damage attribute I ∀ n, e ∈ G:

I = H(L) ∗ V (H) ∗ E

8. Update F∀n, e ∈ G:

F = min(F, I ≤ D)

Cascade & Functional State Updates

9. Update Cjk, F ∀ n, e ∀(jk, k ̸= people) in G according to 3. - 5.

Basic Service Access Update

10. If road access is a linking condition for dependency combination (j, people):

Re-check path existence and length of path between nj , npeople ∀ej,people;
else delete ej,peoplefrom G

11. Update Sj ∀ npeople, ∀(j, people); see step 6.
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3.A.2 Modelling Choices for CI Networks

Table 3.4: CI networks and their components, in edges (E) and nodes (N). First column
suggests a simple sub-selection of network components to represent the systems in a stan-
dardized low-complexity setting, second column proposes additional components if data
is available.

CI system Simplified repre-
sentation

Extension possibilities

N: intersections N: tunnels, bridges
Road

E: streets E: -

N: power generation
plants

N: transmission & distribution substa-
tions, power polesElectric

Power E: transmission lines E: low-voltage distribution lines

N: cell towers N: internet exchange points, data centres,
central offices, base stations, polesTele-

communication E: - E: landlines, fibre-optic cables, submarine
transmission lines

N: water treatment
plants

N: wells, reservoirs, tanks, cisterns, pumps,
water bodiesWastewater &

Water Supply E: - E: water pipelines, water tunnels, rivers

N: hospitals, clinics N: doctors’ practices, dentists, pharmacies,
nursing homesHealthcare &

Emergency Serv. E: -

N: schools N: universities, childcare centres, kinder-
gartensEducational

Facilities E:

End-users
N: people clusters

E: -
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3.A.3 Case Study

Infrastructure System Model Inputs

Infrastructure Component Data

Infrastructure Source Data description, Pre-processing

Roads OpenStreetMap Data: Retrieved from data dump at geofab-

rik.de for states FL, AL, GA matching tags

highway= motorway, motorway link, trunk,

trunk link, primary, primary link using the

OpenStreetMap module in CLIMADA.

Pre-processing: Line merging, roundabout

cleaning, duplicate removal, linking uncon-

nected cluster

Hospitals HIFLD*: Hospi-

tals

Data: All amenities in states FL, AL, GA incl.

20kms buffer around outer borders

Pre-processing: -

Power lines HIFLD: Electric

Power Transmis-

sion Lines

Data: All lines in in states FL, AL, G

Pre-processing: Line merging, duplicate re-

moval, linking unconnected cluster

Power plants HIFLD: Power

Plants

Data: All amenities in states FL, AL, GA incl.

20 km buffer around outer borders

Pre-processing: -

Educational fa-

cilities

HIFLD: Public

Schools

Data: All amenities in states FL, AL, GA incl.

20 km buffer around outer borders

Pre-processing: -

Cell towers HIFLD: Cellular

Towers

Data: All amenities in states FL, AL, GA incl.

20 km buffer around outer borders

Pre-processing: -

Wastewater HIFLD: Wastew-

ater Treatment

Plants

Data: All amenities in states FL, AL, GA incl.

20 km buffer around outer borders

Pre-processing: -

People WorldPop Grid-

ded Population

Count

Data: United States of America, 1km UN-

adjusted, 2020.

Pre-processing: Re-gridded raster data on

population counts to resolution of 10 km x10

km, vectorized, cropped at outer borders of

states FL, AL, GA



A GENERALIZED NATURAL HAZARD RISK MODELLING
FRAMEWORK FOR INFRASTRUCTURE FAILURE CASCADES 89

Table 3.5: Geo-coded infrastructure asset data used in the case study, section 3.3. *)
HIFLD: Homeland Infrastructure Foundation-Level Data

Power Supply & Demand Data

Table 3.6: Population data, energy supply and demand data used for case study in
section 3.3.

Variable Source Data description

Supply HIFLD: Power Plants Same data source as for geo-location data
of power plants in the region of interest.
Electric energy supply taken from power
plants net annual generation, given in col-
umn NET GEN.

Demand International Energy
Agency (IEA) World
Energy Balances

Total electric energy consumption for entire
USA, all sectors, 2019.

Calculation of electric power demand per people cluster (cf. Table 3.5): To-

tal electric energy consumption / total US-population * population count of

cluster

Calculation of electric power supply per power plant (cf. Table 3.5): Di-

rectly taken from data source.

Supply / demand balancing in undisrupted state: Addition of an import/-

export element to the power plant data frame with supply amounting to

difference between total power plants supply in region of interest and total

energy consumption in region of interest.
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Dependencies

Table 3.7: Dependencies identified between CI networks (1-6) and between CI networks
and end-users (7-12). Dependency parametrizations are used to link individual CI graphs
and population graph into one interdependent CI graph. Decisions for certain parameter
settings are discussed in the paragraph below.

Dep Source Target Redun-
dancy

Road
access

Dep.
type

Flow
type

Func.
Thresh

Dist.
Thresh.
[m]

1 power
line

celltower TRUE FALSE funct. physical 0.6

2 power
line

education TRUE FALSE funct. physical 0.6

3 waste-
water

education TRUE FALSE funct. logical 1

4 power
line

health TRUE FALSE funct. physical 0.6

5 waste-
water

health TRUE FALSE funct. logical 1

6 power
line

waste-
water

TRUE FALSE funct. physical 0.6

7 cell-
tower

people FALSE FALSE end
user

logical 1 30000

8 education people TRUE TRUE end
user

logical 1 40000

9 health people FALSE TRUE end
user

logical 1 100000

10 power
line

people TRUE FALSE end
user

physical 0.6

11 road people FALSE FALSE end
user

logical 1 30000

12 waste-
water

people TRUE FALSE end
user

logical 1

Selection of distance thresholds: A combination of sophisticated guess (such

as 30 km being a generous diameter for cell tower reach (Holma et al. 2011)

or hospitals being at most 100 km from persons, which equals a travel time

of little more than the “golden hour” crucial in medical emergencies, when

considering average travel speeds on a highway (De Leonardis et al. 2018)),

and iterative refinements such that service access levels in stage IV were

>99% for all basic services across the area of investigation in a base state

simulation with undamaged CIs. For instance, setting cell tower ranges to 15

km would have resulted in 6.7 M customers without mobile communication

access in the base state, whereas the hence chosen range (30 km) resulted in

only a few hundred persons without coverage. For dependencies where no
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distance thresholds are set, target elements are linked to the closest element

of the respective source type, irrespective of its distance. This is the case

for all non-redundant dependencies where it is obvious that such a link must

exist (e.g. educational and healthcare facilities having power and water ac-

cess).

Selection of redundancy specification: Water and power are modelled to be

supplied through a single source per dependent target. Mobile communica-

tion is modelled to be provided from any source within distance thresholds,

as connectivity can be established through any reachable cell site. Health-

care can be provided from any reachable healthcare facility, but school enrol-

ments are usually fixed, hence each population clusters dispose of only one

non-substitutable education link. Road access is assumed to be provided by

any reachable road within the given distance threshold.

Selection of flow types and functionality thresholds: Physical variables for

power demand and supply across the modelled area were available and capac-

ity in the network is hence calculated as the ratio of power demand to power

supply in each network cluster. Functionality thresholds for power depen-

dencies could therefore be expressed as a continuous fraction with regard to

the capacity ratio. It was set here to 0.6 in absence of any component-specific

information, to interpreted as “if demand-to-supply ratio in the power net-

work cluster to which the dependent component is linked, drops below 0.6,

the component will turn dysfunctional”. All other dependencies are, in ab-

sence of physically informed flow metrics, logical dependencies. As such,

they either provide supply from a functional source, or they do not, if the

source is dysfunctional. Functionality thresholds for logical dependencies are

hence trivial and set to 1. Road paths between population nodes and social

facilities (hospitals, schools) were computed based on a Dijkstra’s shortest

path algorithm.
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Infrastructure Interdependent CI Graph Specifications

Figure 3.6: Specifications of node (1st bar plot) and edge elements (2nd bar plot) in the
interdependent CI graph, constructed for the case presented in section 3.1.

Natural Hazard Risk Model Inputs

Hazard Footprint

Figure 3.7: Map of Hurricane Michael wind-field intensity, computed with CLIMADA
from Michael’s hurricane track. Track data from IBTrACS, implemented wind field algo-
rithm from [85]
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Vulnerability Curves

Figure 3.8: Impact functions used for structural damage calculations from hurricane
wind field in section 3.3.1, for all CI types. Note that y-axis represents fraction of structural
damage to components for all CIs except power lines, for which it is failure probability.
Sources: power lines in (Pianosi et al. 2016), residential building and industrial building
(both for z=0.35) in [87], roads in (Koks, Rozenberg, Zorn, et al. 2019), cell towers: step
function taken from interview with cell tower provider stating they are “built to withstand
winds of up to 110 miles per hour”.

Scenario Analysis

Scenario Selection and Results Overview

Table 3.8: Scenarios to study the sensitivity of end results (number of people expe-
riencing basic service disruptions) to assumptions throughout the modelling chain. For
parameterizations details, see Supplementary SM2.

Scenario Description Stage

No CI inter-
dependencies

Removing any functional dependencies between CI
networks.

I

Longer path thresh-
old

Increasing allowed distance thresholds for end-user
travel paths

I / IV

Shorter path
threshold

Decreasing allowed distance thresholds for end-user
travel paths

I / IV

Low component
vulnerability

Shifting impact functions to withstand higher hazard
intensities.

II

High component
vulnerability

Shifting impact functions to withstand lower hazard
intensities.

II

Low functionality
threshold

Decreasing damage thresholds for component dys-
functionality.

II

High functionality
threshold

Increasing damage thresholds for component dysfunc-
tionality.

II
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Table 3.9: Results of scenario analysis: Amount of people experiencing service dis-
ruptions in each scenario due to hazard-induced failure cascades, relative to disruption
numbers in the originally chosen parametrization as described in section 3.3.1. The 7 se-
lected scenarios are described in Table 3.8 and discussed in section 3.3.2. Parametrizations
of the scenarios are listed in Supplementary SM2.

Access
to Basic
Service

original No CI
Inter-
dep.

Longer
path
thresh.

Shorter
path
thresh.

Low
vulner-
arbility

High
vulner-
ability

Low
funct.
thresh.

High
funct.
thresh.

Mobility 100 100 100 100 205 42 116 81
Power 100 88 95 90 238 37 96 66
Healthcare 100 48 97 142 196 48 115 80
Education 100 72 100 121 236 45 106 87
Mobile
Comms.

100 57 95 96 236 30 92 61

Water
Supply

100 45 100 103 232 24 100 100

Scenario Parametrizations

Provided in Supplementary SM2.

Validation Sources

Provided in Supplementary SM2.
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Climate-resilient basic
services?
Unravelling dynamics of
natural hazard-induced
infrastructure disruptions
across the globe

Evelyn Mühlhofer, David N. Bresch and Elco E. Koks; under review in One

Earth

Abstract. Critical infrastructure underpins daily societal function-
ing. However, severe weather events can inflict damages to infras-
tructure and cause basic service disruptions. Here we explore how
real-world infrastructure network designs, interdependencies, popu-
lation distribution, wealth, and hazard characteristics jointly drive
regional risk of disruptions to power, healthcare, education, mobil-
ity, and telecommunication services. We couple an open-source risk
model with a complex network-based infrastructure module to simu-
late spatially explicit service disruptions from 700 historic flood and
tropical cyclone hazards in 30 countries. We find that in 84% of flood
and 65% of tropical cyclone events, service disruptions spread beyond
the hazard footprint, impacting up to ten times the directly affected
population. 64-89% of all service disruptions stem from failure cas-
cades triggered by infrastructure interdependencies and physical ac-
cess constraints. Implications are that strategies for resilient, equitable
and climate-proof basic services must consider the dynamic interplay
of system interdependencies, spatially-resolved hazard and exposure
data, instead of merely avoiding asset losses

95
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4.1 Introduction

When natural hazards occur, access to healthcare, electricity, mobility, and

many other services may be severely compromised and threaten the func-

tioning of society (Tariverdi et al. 2023). Yet, the severity of an event, as well

as current and future risks from natural hazards, are often predominantly

judged based on actual or potential asset damages and fatalities (Fekete

2019). While such direct impact metrics form the core of classic risk assess-

ments, they render an incomplete picture of the wider impacts on people’s

livelihoods. Understanding how critical infrastructures cease to function

during disasters, and how this leads to loss of critical services, can uncover

complex systemic, socio-technical dimensions of natural hazard-induced risk.

It may explain economic losses incurred by firms through service-outage re-

lated business interruptions (Braese et al. 2019), guide more holistic adapta-

tion planning (Koks, Le Bars, et al. 2023; Schotten and Bachmann 2023a),

and pinpoint social (in-)equity and vulnerability (Garschagen and Sandholz

2018; Karakoc et al. 2020).

As both infrastructure investments and occurrences of extreme weather and

climate events are at an all-time high (Hallegatte et al. 2019; Thacker, Ad-

shead, et al. 2019), a plethora of (non-)governmental initiatives are pushing

for more climate-resilient infrastructure and critical services to mitigate so-

cietal risks. The Sendai Framework for Disaster Risk Reduction aims to

substantially reduce disaster damage to critical infrastructure and disrup-

tion of basic services (target D); the UN Sustainable Development Goals

explicitly aim to build resilient infrastructure (goal 9), and implicitly rely

on such for attainment of all 17 goals (Thacker, Adshead, et al. 2019);

the Intergovernmental Panel on Climate Change (IPCC) identified risk to

critical physical infrastructure and networks as a Representative Key Risk

in their Sixth Assessment Report (O’Neill, van Aalst, et al. 2022). Many

multi-stakeholder organisations, such as the Coalition for Disaster Resilient

Infrastructure (CDRI), the World Bank, and the Green Climate Fund ac-

tively build on these frameworks in their implementation agendas, driving

the need for actionable science. In response to this need, the UNDRR’s

Principles for Resilient Infrastructure hence propose a set of more concrete

principles, key actions, and guidelines to create national scale infrastructure
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resilience and improve the continuity of critical services (UNDRR 2022) -

starting with the goal to understand infrastructure and service resilience

within its interconnectedness between sectors, and its exposure to historic,

current and future (multi-)hazards (Principle #1).

Academic efforts have captured exposure of critical infrastructures to natural

hazards at various scales (Hallegatte et al. 2019; Koks, Rozenberg, Zorn, et

al. 2019; Mühlhofer, Kropf, et al. 2023; Nirandjan et al. 2022), and pointed

out the cost-effectiveness of implementing resilience-enhancing adaptation

measures in many cases (Hallegatte et al. 2019). The need to model criti-

cal infrastructures as interdependent systems is increasingly acknowledged

(Buldyrev et al. 2010; Rinaldi et al. 2001; Zio 2016), and the critical role

of system interdependencies has been recognized when evaluating the im-

pacts of natural hazard onto infrastructure failure cascades (Thacker, Pant,

et al. 2017; Zorn, Pant, et al. 2020), for recovery dynamics (Almoghathawi,

Barker, and Albert 2019; X. He and Cha 2020; Zorn and Shamseldin 2016),

and for adaptation and adaptive resilience (Espada et al. 2015; Koks, Le

Bars, et al. 2023; Prothi et al. 2023). As critical infrastructures are key

to the provision of basic services, an increasing number of studies are also

exploring the relationships between infrastructure destruction and critical

service disruptions. These often focus on mobility disruptions (Y. He et al.

2022; van Ginkel et al. 2021), inaccessibility of important sites - particularly,

healthcare and emergency services (Tariverdi et al. 2023; Yu et al. 2020;

Zhang et al. 2022), and on utility provision failures, such as telecom and

power outages (Zorn, Pant, et al. 2020). However, few studies (Mühlhofer,

Koks, Kropf, et al. 2023; Schotten and Bachmann 2023b) consistently cover

the entire impact chain, i.e. the evaluation of real-world hazard events onto

the behaviour of several interdependent infrastructure systems, and their

consequences for service provisions across the dependent population. To the

best of our knowledge, there is to date no study which systematically quan-

tifies and compares natural hazard-induced risk of basic service disruptions

from an infrastructure perspective across large and diverse regions.

Here we fill this gap with a comparative study on over 700 historic tropi-

cal cyclone and flood events in 30 countries and provinces. Using a high-

resolution network-based infrastructure model, integrated within the open-
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source risk modelling platform CLIMADA, we draw solely on publicly avail-

able data. We quantitatively explore the populations’ risk of losing access

to power, healthcare, education, mobile communications and mobility ser-

vices in a spatially-explicit manner. We examine how the interplay between

physical impacts to infrastructure assets, infrastructure system designs, and

socio-economic characteristics either contribute to failure cascades or en-

hance system resilience. By analysing multiple drivers behind service dis-

ruptions, we show that service disruption risks are hazard and place-specific,

and can substantially diverge from direct impacts due to infrastructure inter-

dependencies. We highlight geographic hotspots of service disruption risks,

and derive a framework for regionally tailored and service resilience-focused

adaptation planning. Providing such insights at national scales and in a

transferrable manner may contribute, for instance, towards the UNDRR’s

Principles for Resilient Infrastructure.

4.2 Results

4.2.1 Methods Summary

Figure 4.1 provides a flowchart of the modelling approach to compute basic

service access, and event-based infrastructure damages and service disrup-

tions. The approach, developed in (Mühlhofer, Koks, Kropf, et al. 2023),

combines network modelling and spatially explicit natural hazard risk mod-

elling. For each study region (mostly countries, see Supplementary SM3.1),

geo-spatial infrastructure and population data is transformed into topolog-

ical networks and combined into a single interdependent network based on

dependency heuristics between components of different infrastructure sys-

tems, and between end-users and infrastructure system components (see

section 4.4.1). Such network-based approaches have proven valuable for

capturing interdependencies between large-scale infrastructure systems and

their end-users, to compute population’s access to services, and to mimic

functional failure cascades and service disruptions from severe events (Pant,

Hall, and Thacker 2017). Structural damage computations from floods and

tropical cyclones are performed within the core part of the CLIMADA risk

assessment platform (Aznar-Siguan and Bresch 2019; Mühlhofer, Kropf, et
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al. 2023) by spatially overlaying hazard footprints, exposures (infrastructure

components), and respective vulnerability curves (see section 4.4.2). Result-

ing failure cascades from these disruptive events are propagated through the

network set-up and allow to model service disruptions at the population level

(see section 4.4.3), which forms the main metric of interest for event-based,

regional, and cross-regional risk and resilience analyses (see section 4.4.4).

Figure 4.1: Schematic of the workflow to compute infrastructure damages and service
disruptions in 30 countries / regions from historic records of tropical cyclones and floods.
In grey: Geo-located infrastructure and population data is fed into an infrastructure
network model, from which infrastructure functionality and population’s access to basic
services are modelled. In pink: Disruptive scenarios are introduced from structural dam-
ages computed using spatially explicit flood and tropical cyclone footprints, which perturb
the network model and cause functional failures, failure cascades, and service disruptions.
The computation chain strictly uses open-source and -access data and the CLIMADA risk
modelling platform.

4.2.2 Tropical cyclones and floods cause distinct patterns of

infrastructure damages and service disruptions

Floods and tropical cyclones result in distinct infrastructure damage pat-

terns. Figure 4.2 (left panel) shows that the average destruction magnitude

of a flood event across all computed events and regions is up to two orders

of magnitude lower than that of a tropical cyclone event. Many small-scale

flood events occur in scarcely populated and built-up areas; 36% of all stud-

ied floods caused no physical damage. This contrasts with the high intensity

and spatial extent typical tropical cyclone events, where 100% of the events
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directly impacted people or damaged infrastructure assets. Clear differences

emerge in which infrastructure sectors are most affected. Cell towers and

the power grid are particularly vulnerable to the impacts of tropical cyclone

winds (Figure 4.2, left panel) which often cause large-scale destruction to

lines and towers through snapping and toppling, respectively (see section

4.4.2). Substations and other power-generating elements may be inundated,

but as these components are more sparsely distributed, physical exposure

and hence damages from floods are less frequent. Roads on the contrary

are much more often exposed to flooding due to their spatial ubiquity and

density, and often sustain severe damage. Following the same line of argu-

mentation, roads are also highly spatially exposed to tropical cyclones, but

accumulation of debris and trees tends to cause relatively fewer modelled

physical damages than to other infrastructures.

Patterns of service disruption are also hazard-specific (see Figure 4.2, right

panel): Floods disrupt healthcare and mobility services most severely, whereas

tropical cyclones disrupt power and education access most frequently. These

cross-regionally observed damage and service disruption patterns can also

be observed at an individual study region scale (see Figure S4 of Supple-

mentary SM3.1, exemplarily selected for Great Britain, Serbia, Cambodia,

Puerto Rico and Florida). Tropical cyclone-induced service disruptions fur-

ther tend to affect 1-2 orders of magnitude more people than floods, which is

consistent with the typically larger structural damage magnitudes. However,

service disruption patterns do not fully correspond with physical damage

patterns of infrastructures; median rates of tropical cyclone-induced service

disruptions to healthcare, education, and mobile communications are, for

instance, much more similar to power disruption rates than physical dam-

age fractions of hospitals, schools and cell towers are to power line damage

rates. Further, for either hazard, shares of population affected by service dis-

ruptions mostly surpass shares of physically destroyed infrastructure assets.

This large-scale perspective on impact patterns underscores the complex

relationships between natural hazards, infrastructures and services.
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Figure 4.2: Impact patterns of flood and tropical cyclone events: Impact magnitude,
most affected infrastructures, and most disrupted basic services differ between both hazard
types. Left: Structural damages to infrastructure components ( in % of region’s assets).
Right: basic service disruptions (in % of population affected). Based on all tropical cyclone
(TC, red, N=479) and flood (FL, blue, N=242) events across all studied regions (N=30).
Share of directly affected population (physically exposed to a flood or TC-grade winds) is
included in the left panel for reference.

4.2.3 Physical impacts are not indicative of the severity of

service disruptions

Hazard events which cause higher infrastructure damages tend to also cause

larger service disruptions, but we find outlier events across most study re-

gions and hazard types (see Figures S5 and S6 in Supplementary SM3.1). In

study regions belonging to the US and the Caribbean (Florida, Louisiana,

Texas, Cuba, Puerto Rico, Antigua and Barbuda) correspondence between

damage rank and disruption rank of tropical cyclone events is generally very

high (Spearman rank correlation coefficient > 0.9), whereas in other regions

(e.g., Mozambique, the Philippines, Vietnam and Hainan (CHN)), up to 60%

of all events cause significantly larger (or smaller, resp.) service disruptions

than expected given the rank of physical damages. In some study regions

which are exposed to floods and to tropical cyclones, the outlier effect is

much more pronounced for one hazard type (e.g., only for tropical cyclones

in the Philippines and Vietnam).

We further observe that in 65% of all tropical cyclone events and in 84% of

all flood events, at least on type of service is disrupted for more people than

those which are physically affected. However, this ‘multiplier effect’ strongly

depends on the type of service, regional characteristics, magnitude and type

of the hazard (see upper panels of Figure 4.3 and S7 (Supplementary SM3.1)
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for tropical cyclones and for floods, resp.). For instance, tropical cyclone-

induced power and mobile communication disruptions often spread beyond

the impacted population, but flood-induced disruptions do not. Mobility

and healthcare disruptions tend to affect less people than those physically

affected by floods and tropical cyclones, but only in wealthy regions.

Similarly, the extent of physical infrastructure damage is not highly indica-

tive of the service disruption extent (see lower panels of Figure 4.3 and

S7 (Supplementary SM3.1) for tropical cyclones and floods, resp.). This

non-correspondence between asset damages and service disruptions is par-

ticularly pronounced for education and healthcare services, which depend

on other services to function (i.e., power and road access), and power, which

has many internal power-grid dependencies and localized supply clusters.

Only mobility disruptions, as the only service modelled without significant

road network-internal or external dependencies, correlates with the number

of damaged roads.

4.2.4 Drivers of service resilience are regional, systemic, and

hazard-specific

To gain an understanding of what drives above-seen patterns and tenden-

cies of service disruptions in different study regions, we examine spatially-

resolved and coarse averaged region characteristics, processes behind disrup-

tions retrieved from the graph-based modelling approach, and an in-depth

case study for selected events.

Quantifying the spread of service disruptions. We quantify above-

mentioned multiplier effects of physically impacted to ‘service-disrupted’

population per study region and basic service, by means of resilience fac-

tors (RF) and spatial cascade factors (SF) (see section 4.4.4 for method

details and Figures S8 and S9 in Supplementary SM3.1 for results). The

RF measures the spread of service disruptions relative to directly impacted

population, and incorporates awareness to locally specific pre-disaster ser-

vice access rates. This is crucial in regions with low service access rates,

as services can only be disrupted to those who were served . The SF mea-

sures the degree of spatial containment of disruptions within (or beyond)
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Figure 4.3: Disruptions to power, telecom, education, healthcare and mobility access are
not concurrent with physical impacts. Upper panel: Directly affected population (located
within the tropical cyclone-hit area) vs. population without access to the respective
service, split by income / geographic groups. Lower panel: Destroyed assets vs. population
without access to the respective service, for all events and regions. Colour shades represent
point density. Normalizations (frac.) are with respect to the corresponding study regions’
total populations or assets.
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the directly affected region.

Services in wealthy, densely built-up, and small regions tend to be resilient

(RF s<1): In Louisiana, Florida, and Texas (USA), for instance, median

RF s across all tropical cyclone events are between 0.2 and 0.8 for all ser-

vices, meaning only about 20-80% of the physically affected population tends

to experience service disruptions. Analogously, services in poor and sparsely

built-up study regions tend to be non-resilient; in Mozambique, services are

frequently disrupted for a ten-fold larger number of people than directly

impacted (RF s>10). However, the spread of service disruption in poorer

regions also varies much more strongly between events; as observed through

the large interquartile ranges of RF s in Haiti, Mozambique and Madagas-

car. Due to (very) low baseline service access rates in poor regions and the

stark spatial concentration of infrastructure assets and service availability

to confined, urbanized areas, we observe a ‘hit-or-miss dynamic’ for service

disruptions: Non-serviced areas cannot be disrupted, and failure of infras-

tructure assets in the few serviced areas may cause large disruptions. This

highlights the sensitivity towards the exact location of the hazard occur-

rence for causing service disruptions impacts. The importance of spatially

resolved access statistics in predicting service disruptions also explains why

regionally-averaged metrics such as population density, infrastructure den-

sity per capita, and income class have limited explanatory power for RF s of

most regions’ services (see Figures S9 - S11 in Supplementary SM3.1). Fig-

ure 4.4 exemplifies these results for Louisiana (USA) and Madagascar; the

separate documents in Supplementary SM3.1, providing spatially explicit

maps of baseline service access rates and disruption patterns for each study

region.

Mechanistic drivers of service disruptions. Harnessing the graph-

based modelling approach, the analysis of functionality, damage, and service

access attributes in the network representation of the study regions allows to

infer the mechanisms leading to service disruptions in each simulated event.

We distinguish four mechanisms: direct damages (services are disrupted

due to sufficient physical damage of service-providing core infrastructure

asset, e.g. hospitals for healthcare), access disruption (services could not be

accessed due to physical access path constraints), cascading failures (services
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Figure 4.4: Spatial distribution of healthcare disruptions relative to physical tropical
cyclone exposure in Louisiana (USA, panel A) and in Madagascar (panel B). ‘More dis-
rupted’ refers to services being lost in areas not directly impacted, ‘less disrupted’ to
services being retained despite physical impact. Scale normalized to hypothetical maxi-
mum number of disruptions (i.e. total number of events).

are disrupted due to loss of another supporting infrastructure functionality)

and capacity failures (for power only; the shut-down of services after falling

below a certain supply capacity).

Figure 4.5 shows population-averaged statistics of disruption mechanisms

per study region and type of basic service, for tropical cyclones (upper panel)

and floods (lower panel). For tropical cyclone-induced disruptions, physical

damages are important (causing 14(+/-14) % of healthcare, 27(+/-22) %

of education, 36(+/-27) % of mobile communications, and 23(+/-17) % of

power disruptions, resp.). However, the main driver of service losses for

tropical cyclone-induced services losses are cascading failures (83(+/-15) %

of healthcare, 73(+/-23) % of education, and 64(+/-27) % of mobile com-

munications disruptions) and capacity failures (power, 71(+/-20) %), which

render the undamaged service-providing infrastructure dysfunctional. Re-

markably, the drivers differ starkly for flood-induced service disruptions.

Restriction of physical access, i.e. blockage or unmanageable prolongation

of paths, is a major driver of healthcare and education disruptions (36(+/-

36) % and 89(+/-23) %, resp.). For education, physical damages of school
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facilities further play a more prominent role than damages to healthcare

facilities for healthcare access: Healthcare services may be sought from any

functioning facility, but schools are allocated uniquely. It is hence less likely

that all hospitals within a reasonable distance are damaged by (mostly lo-

calized) floods. However, as the average journey to a hospital is often longer

than to a school, access paths are more likely to be disrupted. Functional

failure cascades, the dominant driver for most tropical cyclone-induced ser-

vice disruptions, play a minor role, owed to the fact that the power system,

which initiates most of these cascades, is generally less affected by floods.

Drivers of service disruptions are also sensitive to event size and to infras-

tructure network density/redundancy: Event-wise analysis of mechanisms

reveals that failure cascades are crucial for a wide range of ‘medium-sized’

events. For small events, damage to local access roads (i.e. physical access-

based disruptions) or the occasional destruction of a core infrastructures

drives destructions. For large events, wide-reaching physical damage to

most infrastructure assets is enough to drive disruptions. In dense net-

works, access-related disruptions and failure cascades are reduced. These

observations are substantiated by service disruptions in smaller and wealth-

ier regions being more influenced by direct damages (cf. small-island states

in upper panel of Figure 4.5) compared to larger and less affluent regions.

Case study deep-dive. We exemplarily select the study regions of Hainan,

province of China, and Florida, USA, to examine intermediary modelling

outputs of the service disruption computation chain from two tropical cy-

clones each, which were similar in hazard strength but had very different

consequences on the respective regions. Further, Supplementary SM3.2 con-

tains many of the intermediary outputs discussed in the following for all 30

study regions.

Hainan is highly exposed to tropical cyclones, with 40 records in the studied

40-year period. The region’s area is relatively small (∼ 33k km2), urbanisa-

tion rate low (58%), and access to most basic services relatively high (com-

puted baseline access rates range between 84% for healthcare access and

100% for power access). Florida is equally exposed to tropical cyclones (31

storm records). The region’s area is considerably larger (∼ 170 km2), urban-
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Figure 4.5: Population-weighted service disruption drivers of tropical cyclone (above)
and flood (below) induced healthcare, education, mobility and mobile communication
disruptions across all events, per study region. Empty bars: no disruptions.
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isation rate high (91%), and baseline access rates to all services near 100%.

In Hainan, modelled service disruptions are distinctly grouped into events

where disruptions are either significantly worse given the extent of physical

damages, or vice-versa. In Florida, event ranks ordered by service disrup-

tion severity mostly coincide with event ranks of physical damage severity

(see Figure S5 (Supplementary SM3.1) for the respective rank plots).

Panels A in Figure 4.6 and S13 (Supplementary SM3.1) display the aggre-

gate spatial service disruption patterns for the populations of Hainan and

Florida, resp., over all events. In Florida, direct impact patterns spatially

coincide over wide areas with service disruptions, whereas in Hainan the

North-Eastern half of the island suffers over-proportionally from disrup-

tions. Panels C-E in Figure4.6 and S13 (Supplementary SM3.1) illustrate

these dynamics on four individual events: Typhoon Lois and hurricane Mitch

hit 12.5% and 17% of the populations in Hainan and Florida, resp., typhoon

Vera and hurricane Charley hit 49% and 53% of the population. Despite

its lower physical impact, typhoon Lois caused much larger service disrup-

tions in Hainan, while the contrary applies to hurricane Mitch in Florida.

Analysing the disruption causes (see panel E of Figure 4.6), it is evident that

failure cascades, induced by large-scale power grid failures, are responsible

for the majority of the wide-spread service disruptions during typhoon Lois.

Reasons for the extensive power outage in the physically less destructive

event become evident in the structural damage and power grid failure com-

putations illustrated in panel D of Figure 4.6: In Hainan, power-generating

assets are concentrated in the South-West of the island; damages in the

North (e.g., typhoon Vera) hence remain geographically contained, whereas

damages in the South (e.g., typhoon Lois) spread across the entire island

due to the non-resilient grid design. In Florida, power assets are distributed

across the entire state and many power clusters hence retain functionality

even if others are lost. Further, a generally higher infrastructure density

in Florida (for instance, of healthcare facilities) creates redundancy even in

the case of blackouts and physical destruction, and leads to less pronounced

disruptions than in Hainan at similar hazard intensities.

While it is not feasible to perform in-depth validation of more than 700 in-

dividual events and multiple modelled result layers from physical asset dam-
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ages to service disruption impacts , the case studies on Hainan and Florida

provide opportunities for anecdotal comparison with real-world evidence.

While reports specifically for typhoons Vera and Lois were difficult to ob-

tain in English language, print media, technical reports and scientific studies

unanimously confirm the low power supply security and high risk of massive

outages of Hainan’s energy infrastructure, which is driven by a combination

of exposure to tropical cyclones and, until recently, its insufficiently back-

upped and weak power grid structures which are isolated from the Chinese

mainland (X. Zhou and Yan 2008). Our model captures the non-resilient

power grid architecture as well as the frequent exposure of assets to tropi-

cal cyclones. Many of the modelled damage and disruption dynamics were

also confirmed in event reports of hurricane Charley’s aftermath in Florida:

Power pole toppling and line snapping caused power outages for more than

2 mio. residents, fallen trees and debris resulted in extensive road block-

ages and isolated some communities, public schools closured in the counties

where our model predicted heaviest education disruptions (FEMA 2005).

Real-world evidence further provides interesting aspects for future studies:

Power outages affected the supply of clean drinking water in the aftermath

of Hurricane Charley (Messina 2004). Due to insufficient data availabil-

ity of water and sewage assets at global scale, these infrastructure systems

were not included in the current model runs, but have been considered in

a US-specific study (Mühlhofer, Koks, Kropf, et al. 2023). Pre-emptive

action may influence the extent of structural damages and propagation of

failure cascades (in southern Cuba, for example, the power grid was shut

down in the wake of Charley to avoid accidents (Messina 2004). Adapta-

tion, socio-economic development, and infrastructure system changes may

drastically alter an interdependent infrastructure system’s exposure and re-

silience to natural hazards: For instance, in Hainan, strong population and

GDP growth, the increase in power transmission capacity, and the shift to a

decentralized, renewables-based power grid are projected for the near future

(De Zotti 2020; XinhuaNet 2019).

4.2.5 Quantifying services-at-risk

Natural hazard-induced risks are predominantly expressed in terms of asset

value damages or economic losses, derived the product of likelihood and
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Figure 4.6: Case study on the drivers of tropical-cyclone induced service disruption pat-
terns in Hainan, Province of China. A - spatial distribution of modelled service disruptions
and direct impact patterns on the population based on historic hazard events (<0: # dis-
ruptions experienced by population cluster during study period; 1: undisrupted service;
0: population cluster generally has no access to service). B - event rank plots of service
disruptions vs. damages (from Fig. S5, Supplementary SM3.1). C - service disruption
numbers and directly impacted population statistics for case study events; D - physical
destruction of the power grid (in metres of power lines destroyed), functional failures of
the power grid (according to driving mechanisms of failure), and resulting power disrup-
tion map for population clusters; E - Population clusters experiencing service disruptions,
according to disruption driver.
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consequences of events (Kaplan and Garrick 1981). Our results allow us to

express services-at-risk in terms of expected annual percentage of population

affected. For tropical cyclone-exposed study regions, relative average annual

power disruption risk is largest in Hainan, province of China (67% of the

population) and the Philippines (62% of the population), but also Florida,

USA, carries a considerable risk (11%). Healthcare disruption risks are

similar (67% in Hainan) to considerably lower (52% and 6%, resp.). Figure

S14 (Supplementary SM3.1), left panel, details the complete risk statistics

for all services and study regions. The spatial explicitness of the approach

further allows to consider service disruption risk at the level of individual

population clusters, which reveals large inner-regional disparities (see risk

maps as in Figure S14 (Supplementary SM3.1), right panel). In Mexico, for

instance, service disruption risks are concentrated around the coast-line, and

in the Philippines, the Northern island of Luzon, where Manila is located,

is more at risk of disruptions than the Southern island of Mindanao.

While the availability of over 40 years of tropical cyclone records allows es-

timation of regional risks by attributing event frequencies to hazard records,

incomplete event records and attribution of occurrence frequencies to (sparse)

historic events are common challenges involved in risk quantification. The

flood hazard data used throughout this study is a prime example, as the

hazard footprints are based on a short time record of less than 15 years,

and events are not consistently captured due to the inherent shortcomings

of remote-sensing based event detection (see Tellman et al. 2021, for de-

tails). We hence refrain from risk computations in the classic sense for

flood-induced service disruptions.

4.3 Discussion

Studies which explore systemic impacts on critical infrastructures and ser-

vices across large geographic areas mostly focus on the transportation sec-

tor. Y. He et al. (2022) demonstrate in a global study on road transport

disruptions from flooding that the number of interrupted routes correlates

positively with direct impact and negatively with network density, a trend

which we equally observed. While high percentages of built-up area are

often found to reduce transport disruptions (Koks, Rozenberg, Tariverdi,
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et al. 2023), we showed that direct impacts and asset density nevertheless

have limited explanatory power for actual service disruption magnitudes -

phrased differently, the “underlying relationship between failure rate and

potential causal factors is complex and varies across space” (Y. He et al.

2022). Findings that South-East Asian, Central African and Latin Amer-

ican are particularly vulnerable to transport disruption even during low-

intensity events (ibid.) are consistent with our results: Vietnam, Cambodia,

Haiti, Cuba, Mozambique and Madagascar are amongst the regions with

lowest mobility resilience to flooding, often due to critical road crossings in

the country with few alternatives (Hallegatte et al. 2019; Koks, Rozenberg,

Tariverdi, et al. 2023).

Studies which examine the response of more than two interdependent in-

frastructure systems to (natural) hazard events commonly focus on spatial

scales at community or province level (Lan et al. 2023; Montoya-Rincon et

al. 2023; Tariverdi et al. 2023). To the best of our knowledge, we provide

the first comparative study involving many country-level systems. Several

single country-level studies with a similar network-based approach observe

similar larger trends in failure cascade dynamics as we presented: In a New

Zealand-based study, Zorn, Pant, et al. (2020) find that the electricity grid

is particularly vulnerable, leads to largest-scale user disruptions and trig-

gers most frequent failure cascades among all infrastructure system (31%),

while the road network initiates much fewer (9%) of the combined average

disruptions. These figures and the finding that indirect failures constitute

a majority of all service disruptions experienced by end users (46% of dis-

ruptions ibid.) are comparable with similarly wealthy and built-up regions

in our study, such as Florida, Texas or Puerto Rico.

While service risk and resilience patterns have been broadly identified ac-

cording to hazard type and region income class, many of our results em-

phasize the need to consider the intricacies of interdependent infrastructure

and population networks with the spatial and mechanistic specificities of the

triggering hazard on a case-by-case basis: Generally, failure cascades con-

tribute substantially towards service disruptions, though not in very large-

scale events which anyways cause ‘sufficient’ physical damage; this behaviour

was also observed in a study on regional failure cascades from flood impacts
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(Lan et al. 2023). In regions with very low baseline access rates to services,

disruption patterns largely mirror urban population, as services are mostly

only available - and disrupted - there (e.g., tropical cyclones in Madagas-

car). In regions with very high baseline access rates to services, disruptions

patterns often mirror overall population patterns (e.g., tropical cyclones in

Florida). However, we also find cases of disruptions concentrating on the pe-

ripheries of urban agglomerates rather than on the urban areas themselves,

single ‘unfortunate’ areas, or entire physically unaffected regions which are

affected through the spread of failure cascades due to non-resilient infras-

tructure designs. This leave us to conclude that no simple, univariate spatial

rules of thumb can be derived to predict largest disruption potentials.

4.3.1 A tiered, process-oriented perspective on service dis-

ruption risk

Adding service disruption to the conception of natural hazard-induced risks

yields a picture which is not necessarily congruent with a focus on direct,

physical asset damages. Packaging this impact layer into commonly used

risk metrics, such as expected annual service disruptions per population, al-

lows for regional comparability and coarse screening of risk hotspots. While

such aggregate metrics can guide first directions of in-depth investigation,

we argue that the systemic, multi-stage and event-based nature of our model

provides the largest advancement, as this allows to gain an in-depth under-

standing of the responses of interdependent infrastructure systems under

stress.

As the underlying network modelling approach is computationally intense,

its use for probabilistic risk calculations is limited; rather, it lends itself par-

ticularly to complementary approaches such as story-lines (Ciullo, Martius,

et al. 2021; Koks, Le Bars, et al. 2023; Shepherd et al. 2018), where proba-

bilistic hazard sets are either unavailable, or where the focus lies explicitly

in evaluating a broad scope of complex and multi-faceted consequences de-

rived from carefully selected scenarios. The case studies on Florida and

Hainan, for instance, helped to understand how in the two study regions,

despite both being hotspots for service disruptions at an aggregate level,

impacts were driven mostly by extreme physical exposure in the one, and
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by a non-resilient infrastructure design in the other instance.

This scenario-based thinking and process-understanding forms a vital com-

ponent of tiered risk and resilience approaches (Linkov et al. 2018), where

after a coarse screening of risk hotspots, one may delve into the intricacies

of iteratively understanding the drivers behind potentially vulnerable sys-

tems. This staged process is encouraged for stress testing not least by the

UNDRR’s Resilient Infrastructure Tool (UNDRR 2023).

4.3.2 Informing adaptation strategies for resilient basic ser-

vices

The identification of risks in a socio-technical system and the understand-

ing of the drivers behind these, provide crucial foundations into guiding

adaptation strategies. Given financial constraints and significant environ-

mental impacts of infrastructure construction (Hallegatte et al. 2019; Trejo

and Gardoni 2023), resilience-enhancing measures must be prioritized on a

spatial dimension and on the type of resilience which should be achieved:

the resilience of infrastructure assets, of infrastructure services, or of infras-

tructure users (Hallegatte et al. 2019).

Concurrent with the different levels of service risk perspectives presented

above, we suggest that higher and lower-level adaptation strategies can be

derived from our study results: As our first quantitative basis is a physical

impact layer, asset-level prioritizations are easily derived following structural

damage hotspots. One might, for instance, allocate funds for structural

reinforcements of roads in central Cambodia due to frequent flood-exposure,

or suggest wind-proofing of the hospitals in northern Philippines due to

frequent physical damage from tropical cyclones. However, harnessing the

result layers on functional failures of infrastructure systems and on end-

user service disruptions, adaptation strategies may be guided along these

components of resilience.

As Hallegatte et al. (ibid.) suggest that skilful prioritization may come at a

tenth of the expenditures of a system-wide strengthening, considering these

layers makes not only a strong case from a humanitarian and a sustainability

perspective, but also from an economic one. High-level adaptation strategies
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have been devised in earlier system-spanning studies (Hallegatte et al. 2019;

Koks, Rozenberg, Tariverdi, et al. 2023; Zorn, Pant, et al. 2020) and often

revolve around the following actions: Maintaining or hardening specific key

infrastructures, decreasing system dependencies through diversification, de-

centralization or back-ups and increasing redundancy in the systems, usually

by increasing infrastructure density.

Based on these considerations, we can derive a qualitative decision frame-

work for adaptation strategy planning which is informed by baseline service

access computations, resilience factor computations and failure mechanisms

analyses. Figure 4.7 illustrates this on the tropical cyclone-exposed study

regions, exemplified on healthcare access resilience.

Figure 4.7: Qualitative decision framework for devising high-level adaptation strategies
which focus on enhancing systemic service-resilience. Different quadrants indicate different
adaptation priorities, derived from service resilience to disruptions (x-axis), contribution
of indirect failures to disruptions (y-axis) and baseline access rates (marker size).

If resilience of a service is high, and indirect failures contribute little to

the disruptions (blue shaded quadrant), it may be most effective to invest in

better protecting the already existing most hazard-exposed service-providing

key infrastructure (in this case, hospitals). However, in case of low baseline

access rates (as in Madagascar), this measure would do little to the popula-
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tion already left out of the system; such equity considerations in adaptation

decisions are an important component in achieving sustainable development

and are crucial to make explicit. If service resilience is generally high, but

failures are mostly driven by the failure of supporting infrastructures (red

shaded quadrant), it may be most beneficial to reinforce existing highly ex-

posed secondary infrastructure, such as power lines in a particular area. The

green quadrant shows regions where service cover is generally low, services

are not resilient and disruptions are strongly driven by failing support in-

frastructure. In such cases, a combined approach of investing into more key

infrastructure (building hospitals) and decentralizing and diversifying sup-

porting infrastructures (architecture of the power grid), may help increase

baseline accessibility and strengthen the resilience to failure cascades. The

case of Hainan has been discussed earlier and illustrate this scenario well.

For regions affected by several hazard types, potential asynergies (de Ruiter

et al. 2021) might arise when priority strategies to avoid wind-induced dis-

ruptions do not align with avoidance strategies for flood-induced disrup-

tions. For instance, in Bangladesh flood-induced healthcare disruptions

would mostly be avoided by reducing access path disruptions, i.e., investing

in better roads, whereas wind-induced healthcare disruptions would be best

avoided by wind-proofing existing healthcare facilities. Both the spatial res-

olution of this approach and the impact computations may help resolve such

conflicts, since these strategies may affect entirely different sub-regions, or

be orders of magnitude apart in terms of absolute risk and hence priority.

4.3.3 The importance of locally specific, spatially explicit,

and physically consistent data

In our study we examine impacts based on real-world natural hazard foot-

prints. Several comparative studies point out the added value of physi-

cally consistent hazards for infrastructure network studies: Loreti et al.

(2022) demonstrate that for understanding the resilience of transportation

networks, a realistic high-resolution flood simulation may provide differ-

ent criticality judgements of certain road sections than the commonly used

framework of percolation. Wang et al. (2019) conclude that floods are more

locally destructive and more strongly affect a community than random dam-
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age and are more globally destructive than localized damage because they

can affect entire river basins, which may further lead to prioritization of dif-

ferent adaptation strategies. According to our best knowledge, no compara-

tive studies exist between service disruption outcomes of explicitly simulated

tropical cyclones and such employing percolation theory or generic hazard

cells. As the geographic and spatial characteristics of tropical cyclone occur-

rences are arguably vastly different from such approaches, we suggest that

our results yield novel insights into the actual spatial extent and magnitude

of cyclone-induced service disruptions.

A growing body of evidence on the nature of dependencies between infras-

tructure systems, and between infrastructure systems and end-users suggests

that certain relationships are ubiquitous but locally specific in its manifesta-

tion. While healthcare facilities for instance generally require power, backup

generator requirements and factual generator availability may be highly site-

type and region specific (Chawla et al. 2018); similarly, patients choice

preferences may be an important factor in adequately capturing health-

care accessibility (Tariverdi et al. 2023; Zhang et al. 2022), and travel times

considered “adequate” may equally vary. In our approach, we incorporate

locally-specific knowledge as far as available at the globally consistent basis

required by the scope of our research, such as terrain-dependent driving and

walking speeds and global power production estimates, yet also make neces-

sary simplifications compared with specialized, mono-thematic engineering

fields (e.g. patient surge and demand models (Mahmoud et al. 2023) or

power flow analyses (Beyza et al. 2020). While an extensive discussion is

out of scope here, Supplementary SM3.1 provides details on the rationales

behind our heuristics.

Similarly, deriving tailored vulnerability functions and high-resolution ex-

posure data are recurring concerns not only when relying on crowd-sourced

data such as OpenStreetMap where quality and coverage are known to be un-

known for certain types of infrastructure and regions (Herfort et al. 2023).

While for local adaptation implementation designs it is crucial to iterate

this type of analysis with increased contextual knowledge, we argue that at

the presented level of analysis, where the goal is to identify large-scale risk

hotspots and to compare dynamics and patterns of regions relative to each
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other, those are necessary trade-offs.

4.3.4 Conclusion

In this study we quantified structural damages, infrastructure failure cas-

cades, and service disruptions on a range of critical infrastructure sectors

across 30 countries and provinces due to historical tropical cyclone and

flood events, computed risk metrics and discussed high-level adaptation

strategies for service resilience, leveraging publicly accessible data and a

high-resolution network-based infrastructure model integrated into the open-

source risk modelling platform CLIMADA.

We demonstrated that distinct hazard-specific destruction and service dis-

ruption patterns exist, where tropical cyclones have a major impact on power

and power-dependent services across expansive areas that surpass the direct

hazard footprint, and floods predominantly disrupt road access-dependent

services and remote but smaller areas. However, relationships between phys-

ical destruction and service disruptions cannot be narrowed down to simple

spatial rules; outlier events emerged in all examined regions, and neither

asset damages, exposed population or economic wealth are satisfactory pre-

dictors of modelled disruption impacts, as disruptions are often driven by

failure cascades through system interdependencies. Our results underscore

the complex interplay of event size, network density, hazard type, baseline

access rates and service category which drives disruptions and hence the im-

portance to consider systems in their contextual embedding, using spatially

explicit exposure and hazard data, to understand service risks.

By transitioning from a physical-impact to a service-resilience centred view

on natural hazard risks, we highlight disparities within regions that may

else remain concealed. We showed how understanding drivers of service

risk can form the basis for more systemically-informed adaptation strategies

to enhance service resilience. Our derived qualitative decision framework

offers a first suggestion on ways forward, which could also incorporate equity

implications of such strategies. As our approach is based on open-source

code, it can easily be applied to other study regions and hazards, and may

guide future risk and adaptation studies at various spatial scales and levels

of detail across the globe.
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4.4 Experimental Procedures

The employed modelling set-up is illustrated in the flow chart of Figure

4.1, and based largely on the generalized modelling framework developed

in Mühlhofer, Koks, Kropf, et al. (2023), which is hence scaled up to cover

diverse regions and natural hazard types. We additionally develop novel

metrics to capture cascading behaviour and resilience indicators of (national)

interdependent infrastructure systems and service disruption potential in a

condensed format.

4.4.1 Modelling Infrastructure Interdependencies and Basic

Service Access

Infrastructure and Population Data. 30 study regions (25 coun-

tries, 3 US states and 2 Chinese provinces) which are either affected by

floods, tropical cyclones, or both hazards, were chosen such as to cover all

continents, all World Bank income classes, and wide ranges of population

density (20 people/km2 - 1’265 people/km2), urbanisation rate (3% - 95%),

and region area (27’000 km2 - 2’000’000 km2). See Table S4, Supplemen-

tary SM3.1 for the full list. For all study regions, gridded population count

data was retrieved from the WorldPop project (WorldPop 2020) and geospa-

tial data was obtained for roads, healthcare facilities, educational facilities,

power plants, high-and medium voltage transmission lines, and cell towers

from OpenStreetMap (OSM) and other publicly available data sources. Sec-

tion S1 of Supplementary SM3.1 provides details on extraction queries from

OSM, data sources, and post-processing of geospatial exposure data.

Dependence Heuristics for Infrastructures and Service Access. Crit-

ical infrastructures frequently depend on other critical infrastructures (de-

pendencies), or even mutually depend on each other (interdependencies),

to ensure their functionality (Rinaldi et al. 2001). Similarly, end-users de-

pend on the (simultaneous) usage of a range of critical infrastructures to

obtain access to the services which they deliver. Capturing these (inter-

)dependencies is therefore essential to adequately map the functionality and

disruption of the systems under study. While the identification, parametriza-

tion and quantification of infrastructure (inter-)dependencies is at the centre
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of investigation of numerous studies (e.g. Chou and Tseng 2010; Cimellaro

2016; Gao et al. 2023; Hernandez-Fajardo and Dueñas-Osorio 2013), there

is no universally applicable approach which reliably predicts dependencies

at component level with scarce data. We therefore use a heuristics-based

approach (see Figure 4.8, explained in depth in Mühlhofer, Koks, Kropf, et

al. (2023), which combines a set of regionally adjustable rules and (spatial)

data to infer where components of one infrastructure system may depend

on support the component of another infrastructure system. Similarly, such

rule sets are employed to infer where population clusters depend on the pro-

vision of which (jointly) functioning infrastructure systems to obtain certain

basic services.

Figure 4.8: Based on geo-spatial infrastructure and population data, and using a set
of dependency heuristics, a complex network-based graph is formed representing assets,
end-users, and dependencies as edges and nodes.

Formally, these infrastructure dependence heuristics rely on a set of vari-

ables to quantitatively express and code them, such as the source (sup-

porting infrastructure type) and target (dependent infrastructure type), the

redundancy (whether a component can rely on several support sources) and

the flow type (whether the dependency is manifested as a physical trans-

mitting discrete, physical goods, or whether it is of a logical, binary type).

For dependencies between end-users and infrastructures, which mimic the

way how people access basic services, the same formal rules are applied, yet

include further conditionalities to capture distinct aspects of service access:

functional access, physical access and socio-economic access.

• Functional accessibility: The service-providing infrastructure must be

in a (sufficiently) functioning state to do so.

• Physical accessibility: The service-providing infrastructure must be

physically accessible (e.g. schools).
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• Socio-economic accessibility: Even if physical and functional access

are provided, socio-economic hurdles may prevent the effective access

to a service (e.g. in low-income countries, physical distance to power

infrastructure over-predicts actual electrification rates, and must be

corrected for by using socio-economic proxies)

In this study, heuristics were applied to capture 8 distinct infrastructure

dependencies as well as service access dependencies between the power grid,

healthcare and educational facilities, the mobile communication infrastruc-

ture, the road network and population clusters. They are qualitatively de-

scribed in Table 4.1. In-depth explanations of the applied dependency infer-

ence heuristics, data sources and data usage are provided in Supplementary

SM3.1, section S2.

Graph Creation and Service Access Baseline Computation. Geospa-

tial infrastructure and population data are transformed into directed topo-

logical graphs consisting in nodes and edges, where all prior attributes such

as geographic location, element length and area, infrastructure type and pop-

ulation counts are retained as attributes. The above-described dependence

inference heuristics are quantitatively implemented within a search algo-

rithm across all graphs, which places directed dependence edges along their

elements if respective conditions are fulfilled, creating a single multi-layered

interdependent graph per study region. Upon completion, all infrastructure

graph elements are checked for the existence of their required supporting

dependences (resulting in a functional state), and all population graph el-

ements are checked for the fulfilment of their service access dependences.

Hence-computed basic service access rates for access to power, healthcare,

education, mobile communications and mobility in the undisrupted (base-

line) scenario are indicated in the region overview of Supplementary SM3.1,

Table S4. The formal treatment of this algorithm is further described in

Mühlhofer, Koks, Kropf, et al. (ibid.).
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Table 4.1: Heuristics used in this study to infer infrastructure dependencies and service
access rules. Data usage refers to secondary data (apart from geo-spatial information on
infrastructures and population clusters) used to feed the search algorithm. An in-depth
explanation of and justification for the applied dependency inference heuristics, and data
usage is provided in section S2 of Supplementary SM3.1.

Infrastructure Dependencies

Internal power
grid dependences

Heuristic: Power plants connect
to nearest substation; clusters
must be running at a certain ca-
pacity

Data usage: power plant gener-
ation statistics (WRI), electric-
ity consumption statistics (IEA)

Power-
dependence
of schools, cell
towers

Heuristic: Nearest power sub-
station to the facility must be
running at a certain capacity

Data usage: power plant gener-
ation statistics (WRI), electric-
ity consumption statistics (IEA)

End-user Dependencies (Basic Service Access)

Access to electric-
ity

Heuristic: Nearest power sub-
station must be running at a
certain capacity and population
cluster must lie in an electrified
area.

Data usage: night-light data-
based electrification targets
(Arderne et al. 2020), electrifi-
cation rates (World Bank open
data platform)

Access to health-
care

Heuristic: A functioning facil-
ity must be reachable within a
certain time threshold by foot
or road at terrain-dependent
speed.

Data usage: global walking-
only friction surfaces for non-
motorized transport (Weiss et
al. 2020); national mean road
travel speeds (Moszoro and Soto
2022)

Access to educa-
tion

Heuristic: The assigned facility
must be reachable within a cer-
tain time threshold by foot or
road at local speed.

Data usage: ibid.

Access to mobile
communication

Heuristic: At least one cell
tower must be located within
coverage range.

Data usage: ibid.

Access to roads Heuristic: Road section must
be located within a certain dis-
tance threshold, depending on
the road type.

Data usage: ibid.



CLIMATE-RESILIENT BASIC SERVICES? 123

4.4.2 Computing Infrastructure Damages from Floods and

Tropical Cyclones

Impact computations were performed within the core modules of the CLI-

MADA risk assessment platform (Aznar-Siguan and Bresch 2019; Bresch

and Aznar-Siguan 2021), which computes event-based damages according

to the IPCC’s risk definition as a convolution of hazard, exposure and vul-

nerability. CLIMADA is a spatially explicit, globally consistent open-source

and open-access tool, and has been used in numerous risk assessment and

climate adaptation studies (e.g. Ciullo, Strobl, et al. 2023; Lüthi et al. 2021;

Meiler, Vogt, et al. 2022).

Hazard Data. Tropical cyclone wind fields were retrieved from the public

CLIMADA data API at a 150 arcsec resolution, which are pre-computed

based on IBTrACS track records (Knapp, H. J. Diamond, et al. 2018;

Knapp, Kruk, et al. 2010) and the wind field computation algorithm by

Holland (2008), for all events between January 1, 1980 and December 31,

2020 making landfall in the selected study regions. Events without any wind

speed records above 30m/s were dropped. Flood extent data was obtained

from the Global Flood Database (Tellman et al. 2021). 913 original events

between 2002 and 2018 were downloaded and post-processed to regional

hazard files. Minor events with fewer than 10 flooded grid cells a region area

were dropped from the analysis. Number of event records hence obtained

per region and hazard type is provided in the region overview of Table S4

(Supplementary SM3.1).

Exposure Data. Exposure refers to the assets and people potentially at

risk, and their value. In this case, geospatial data of all previously ob-

tained infrastructure systems were stored as CLIMADA Exposure objects.

Since CLIMADA operates based on points (centroids), line-, raster- and

polygon-based data (e.g. roads, large buildings and population grids) were

interpolated to 500m resolution. Population centroids were valuated at their

respective people count, and infrastructures at their segment length (500m)

or area, respectively.

Vulnerability Data. Impact functions (fragility curves) which relate haz-
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ard intensities to structural damage fractions were obtained from literature

review for all relevant combinations of infrastructure components and haz-

ards. An overview is given in Supplementary SM3.1, section S3. Curves

were stored as CLIMADA ImpactFunc objects.

Structural Damage Computations. Impact computations were per-

formed for all exposures and events, returning structural damage fractions

per infrastructure component and natural hazard event, stored as CLI-

MADA Impact objects. Impacts for interpolated objects were re-aggregated

to their original shapes.

4.4.3 Computing Damage-induced Infrastructure Failure Cas-

cades and Service Disruptions

After performing impact computations, resulting infrastructure damages

were evaluated against pre-defined functionality thresholds, beyond which

the components were defined to be dysfunctional. Those thresholds are dif-

ficult to quantify as no consensus exists in literature, yet were generally set

at 50% structural damage. Functionality states of the infrastructure com-

ponents were hence inserted into the interdependent infrastructure network

model described above, initiating failure cascades along dependency edges

throughout the multi-layered graph. This failure propagation was contin-

ued until obtaining a steady-state with regards to functionality states of all

graph elements, after which service access states were re-evaluated for the

population elements according to the specified access rules.

For each event and study region, structural damage fractions for all exposed

infrastructures, infrastructure functionality states as well as access statistics

to all basic service types for population clusters were hence computed and

stored.

4.4.4 Analysing Regional Risk Patterns, Risk Drivers and

Resilience Metrics

Event-based, region-wise analysis. Region-wise event statistics were

analysed with respect to tendencies and correlations between spatial hazard

event magnitudes (directly exposed populations), damage extents of infras-
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Figure 4.9: Physical damage computations on the infrastructure layer are introduced
into the network model, which hence propagates functional failures along system interde-
pendencies in the abstracted graph. Service access disruptions are computed analogously,
as population clusters form part of the graph.

tructures, and service disruption magnitudes, according to service type and

hazard type. Rank statistics of structural impacts and service impacts were

computed, and contrasted. Regions where rank statistics were poorly cor-

related or had remarkable outliers were analysed further.

Resilience metrics definitions. To investigate the correlation between

static region characteristics (such as income class, infrastructure density,

etc.) and disruption dynamics, event-based cascade metrics were defined

and aggregated, and hence examined for their explanatory power.

RFS =
P ̸S(t)

PX
S (t0)

, SFS =
P̸S(t)

PX
̸S (t)

Resilience factor for service S (RFS), Spatial cascade factor (SFS), total population (P ),

population with access to service S (PS), population without access to service S (P ̸S),

directly hit area (X), post-disaster (t), pre-disaster (t0).

The resilience factor (RF) captures overall levels of containment (or spread)

of service disruption impacts. Values > 1 (service disruption impacts are

larger than the number of people served within the directly hit area before

the event) indicate cascading effects, values < 1 indicate resilience effects

(less people observed disruptions than were directly hit by a hazard and

previously had access to a service in that directly affected region). The

spatial cascade factor (SF) focuses on the spatial containment aspect of

the impacts, i.e. whether those impacts which occurred, occurred outside
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the area directly hit (values above 1), or whether they were all within the

affected area.

Inference of failure mechanisms. Failure mechanisms for service

disruptions were inferred from the graph-based information stored after ser-

vice disruption computations; for all population nodes where a service-state

was marked as disrupted, the service-providing nodes were checked for their

internal damage state and total functional state, implying either direct dam-

age, failure cascades or road-access to be the cause of disruption.

Deriving a service resilience-focused adaptation framework. Me-

dian RF -values for healthcare disruptions in tropical cyclone-affected study

regions were grouped into quartiles (service resilience axis); population-

weighted shares of indirect failure mechanisms leading to healthcare disrup-

tions (i.e., failure cascades and physical access restrictions) were grouped

into quartiles (indirect failure contribution axis). Baseline access rates to

healthcare services were grouped into quartiles (size of markers).
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Supporting robust and
climate-sensitive adaptation
strategies for infrastructure
networks: A multi-hazard
case study on Mozambique’s
healthcare sector
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14th International Conference on Applications of Statistics and Probability

in Civil Engineering (ICASP14)

Abstract. As climate change causes more intense and frequent nat-
ural hazard events, decision makers are tasked to climate-proof vital
infrastructure systems against these challenges. Adaptation studies
often evaluate benefits of different options in face of single types of
natural hazards, and on their damage aversion potential to individ-
ual infrastructure components. In a proof of concept, we use the
healthcare sector in Mozambique, which is highly affected by tropi-
cal cyclone winds and concurrent flooding, to showcase how packages
of adaptation measures may be evaluated in their effectiveness on a
systemic level, to mitigate basic service disruptions from multiple haz-
ards, across various interdependent infrastructure networks. Using the
open-source risk modeling platform CLIMADA on 2019’s tropical cy-
clone Idai, we simulate five stylized adaptation strategies and their
effects in reducing direct damages from wind and flooding to roads,
power lines and healthcare facilities, their overall aversion of people’s
healthcare access losses, and synergies or trade-offs with other basic
service supplies. ...

129
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ctnd. Results illustrate the importance of considering multi-hazard
phenomena and interdependencies between infrastructure systems in
adaptation appraisals. We further provide an outlook on how to inte-
grate probabilistic and climate-scenario driven hazard modeling into
robust adaptation planning.

5.1 Introduction

Mozambique is among the countries most affected by weather extremes,

and in 2019 suffered from two category 4 tropical cyclones (TC) Idai and

Kenneth. Healthcare facilities were strongly damaged by wind and flood-

ing and access was further hindered due to interrupted roads (Petricola et

al. 2022). Since critical infrastructure components are usually embedded

in a network of supporting infrastructure systems, structural damages can

have unexpected and significant cascading impacts on the service levels pro-

vided by these infrastructures, as studies have shown in several countries

on the African continent (Hallegatte et al. 2019). Despite this, healthcare

infrastructures, their exposure to natural hazards, and their dependence on

other critical infrastructure, have long been under-researched. This is in

spite of the fact that resilient healthcare infrastructure is a critical compo-

nent in achieving many health-related sustainable development goals (e.g.

SDG indicators 1.4.1 and 3 Thacker, Adshead, et al. 2019), and that re-

ducing damages to critical infrastructures and avoiding disruptions to basic

services in general, is also a key goal of the Sendai Framework for Disas-

ter Risk Reduction (UNDRR 2015). Adaptation strategies towards resilient

infrastructure are shown to have multiple co-benefits, making them cost-

effective in many cases (Hallegatte et al. 2019). To create robust adaptation

strategies, it is however necessary to consider the effects and trade-offs on

the entire interdependent infrastructure system and the service levels they

maintain, as well as their effectiveness in mitigating threats from multiple

hazard types.

While some studies have assessed the structural impacts caused by tropical

cyclones on healthcare facilities (Deltares 2021), few have considered the

potential for indirect impacts to lead to cascading failures (Petricola et al.
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2022). Additionally, previous adaptation studies focused on the costs and

benefits of different measures, yet only for mitigating structural impacts,

neglecting the synergies and trade-offs across infrastructure systems. Fur-

thermore, it is common for adaptation studies to look at single hazards,

without accounting for the influence of compound events or sub-hazards

(cf. Eilander, Couasnon, Sperna Weiland, et al. (2022) for a rare counter-

example).

In this study on 2019’s tropical cyclone Idai in Mozambique, we provide a

proof-of-concept on how to simulate wind and flood-induced disruptions to

the healthcare infrastructure, due to direct impacts and due to cascading

failures from supporting infrastructure systems, taking on a service-level

centered, multi-hazard perspective. We explore the mitigation potential of

a set of stylized structural and system-changing adaptation measures aimed

at reducing healthcare access disruptions. We discuss how to refine this

end-to-end, generically applicable framework, which is based on open-source

software and data. Finally, we provide insights on the challenges and ways

forward for incorporating probabilistic event scenarios and climate change

signals into more robust and systemic adaptation strategy planning.

5.2 Methods and Data

5.2.1 Risk Modeling Framework

The open-source and -access software CLIMADA is a globally consistent and

spatially explicit tool to assess the risks of natural hazards and to support the

appraisal of adaptation options (Bresch and Aznar-Siguan 2021). Its event-

based modeling approach allows for a fully probabilistic risk assessment

based on the IPCC risk definition as a function of hazard, exposure and

vulnerability.

‘Hazard’ is a spatial representation of an intensity measure for the respec-

tive physical event. In this study, track data of Tropical Cyclone Idai was

obtained from IBTrACS and wind fields were computed over Mozambique

using CLIMADA’s TropCyclone module based on the wind-field algorithm

of Holland (2008) at a resolution of 150 arcsec. The flood footprint of

the event, including the contributions from storm surge as well as fluvial
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Figure 5.1: Schematic of the computation chain within CLIMADA. Gray - inputs to the
systemic risk assessment and adaptation appraisal for Mozambique’s healthcare sector,
including six infrastructure and population exposure layers, flood and wind hazards from
TC Idai, and various adaptation option parametrizations. Light blue - outputs metrics
are structural damages to infrastructure components, functional infrastructure failures,
and spatially explicit patterns service disruptions to the Mozambican population.

and pluvial flooding, was modeled based on Sentinel-1 SAR imagery. An

automated-threshold classification (Otsu 1979) was applied to retrieve a bi-

nary surface water extent (flooded or not flooded) at a resolution of 10m.

Hazard footprints are displayed in Fig. 5.1, left.

‘Exposure’ represents the geo-located critical infrastructures at component

level which are potentially at risk, and their associated value (see Fig. 5.1,

left). Data was obtained from OpenStreetMap for healthcare facilities, main

roads, power plants, cell towers and school facilities. High and medium

voltage power lines were obtained from the gridfinder project (Arderne et

al. 2020); cell towers from an OpenCellID based rasterized map from the

World Bank open data platform. Power towers were inferred and substation-

locations were inferred along power lines. Gridded population count data

was obtained from the WorldPop project (Center for International Earth

Science Information Network (CIESIN), Columbia University 2017).

’Vulnerability’ is a hazard- and infrastructure component specific function,

relating hazard intensity to the degree of expectable structural damage.

Vulnerability curves were obtained from literature for wind stress impacts
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on roads, power lines, power towers, cell towers, healthcare facilities and

schools. Vulnerability curves for flood are constructed as binary step func-

tions (damaged when flooded), and were applied to roads, substations,

healthcare facilities and schools. Power plants are not designed to fail and

hence not modeled as susceptible to either hazard.

The product thereof, ‘direct risk’ or ‘impact’, is measured in terms of the

structural damages incurred by the infrastructure components. Direct im-

pacts were computed for all exposures under three base scenarios (referring

to the settings without adaptation assumptions): two single-hazard events,

i.e. only flood and only wind, and one compound hazard event, where im-

pacts from both flood and wind were summed on each exposure and capped

at 100% of the respective values.

5.2.2 Failure Cascades and Service Disruptions Module

Indirect impacts - functional failures of infrastructure systems, failure cas-

cades, and basic service disruptions - were computed using an interdepen-

dent infrastructure network model (Mühlhofer, Koks, Kropf, et al. 2023).

The graph-based approach transforms spatial data of above-mentioned in-

frastructures and population clusters into directed edges and nodes. A set of

rule-based and data-supported heuristics infer functional dependency links

between components of different infrastructure systems, and service provi-

sion links between end-users and infrastructures. Qualitative examples of

these link types and their generation approach are given below.

Functional infrastructure dependences

• power supply - A targeted edge is placed from the nearest substation

node to hospital and school nodes. Functionality is upheld if the power

grid runs at 60% or more of its normal capacity, else the dependent

nodes fail. Not applicable to major hospitals (we assume generators

to be available).

Service access dependences

• access to healthcare - Targeted edges are placed from healthcare

facility nodes to population cluster nodes if they are reachable via
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functioning roads within one hour of driving at average speed, or if

they are reachable by walking as the crow flies, at terrain-dependent

speed, for less than one hour. Healthcare access is disrupted if no

functioning facility is accessible according to those rules.

• access to mobile communication - Targeted edges are placed from

cell tower nodes to population cluster nodes if they are located within

a distance representative of typical rural cell site ranges. The service

is disrupted if no single functioning link remains.

Structural damages from the previous risk computation stage introduce dis-

ruptions into the interdependent network, which may hence lead to func-

tional infrastructure component failures upon surpassing design thresholds,

which can cascade further across the systems along dependency links, lead-

ing to eventual service disruptions at population nodes.

5.2.3 Adaptation Appraisal

Adaptation measure packages for the healthcare sector were conceptualized

in two categories: Structural adaptation measures (SAMs), reinforcing exist-

ing infrastructure components to withstand higher hazard intensities; and

network adaptation measures (NAMs), reconfiguring the topology of the

interdependent infrastructure network. Five different packages were param-

eterized.

Structural Adaptation Measures (SAMs)

• SAM1 - Wind-and flood proofing of healthcare facilities (through

roof-reinforcements and flood protections). This package acts only

on the healthcare infrastructure itself, and is parametrized by shifting

healthcare impact functions for flood and wind towards higher inten-

sities in the Sofala province.

• SAM2 - Flood proofing of primary and secondary roads, hardening of

power infrastructure. This package acts only on supporting infrastruc-

tures, and is parametrized by shifting road, power line, power tower

and substation impact functions for flood and wind towards higher

intensities in the Sofala province.
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• SAM3 - Combination of SAM1 and SAM2, at a financial trade-off of

implementing both measures only on half of the infrastructures in the

Sofala province. Components receiving this measure were randomly

sampled.

Network adaptation measures (NAMs)

• NAM1 - Increasing primary healthcare facility density by 50% across

the Sofala region. Six geo-located points were randomly sampled

within the Sofala province to mimic newly constructed facilities.

• NAM2 - Ramping up of generator capacities for all types of health-

care facilities within the Sofala province. This was implemented by

removing the power dependence heuristic in the region.

To evaluate the effect of SAMs, structural impact calculations were per-

formed with adjusted impact functions, and resulting failure cascades and

service disruptions were re-computed on the interdependent infrastructure

network as explained above. To evaluate the effect of NAMs, new interde-

pendent infrastructure networks were computed, as these measures changed

the topology of the initial graph, by introducing new network nodes (ad-

ditional healthcare facilities) and by modifying dependency links. Direct

impacts and cascades were simulated accordingly. All adaptation measure

packages were evaluated under all three hazard scenarios (TC wind only,

flood only and compound wind-and-flooding).

5.3 Results

5.3.1 Structural Damages and Service Disruptions

Fig. 5.2 shows simulation results for numbers of people experiencing basic

service disruptions under non-adapted (“initial”) conditions, per hazard sce-

nario. It is evident that wind-induced disruptions are the dominant cause

for most types of experienced service disruptions (apart from access to mo-

bility), and that service disruptions tend to spread well beyond areas which

are directly (physically) affected by hazard impacts, cf. dashed lines for

reference.
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Further, certain services are comparatively more prone to be disrupted by

flooding than by winds, and vice-versa (cf. mobility and power, which are

most and least affected depending on the sub-hazard). Lastly, the compound

impact scenario reveals that sub-hazard impacts at the service level are not

simply additive, but show escalating as well as redundant effects.

Fig. 5.3 explores these dynamics for healthcare disruptions in more detail:

For each population cluster, the failure-causing hazard scenario is marked.

While some clusters experience disruptions due to either wind or flooding

(orange and blue, resp.), others experience disruptions in both scenarios

(pink, ‘TC & FL’). Interestingly, some clusters only suffer from service dis-

ruptions in the compound hazard scenario (yellow, ‘TCFL’), i.e. the inter-

dependent system only fails to deliver services under joint impacts of both

sub-hazards.

Figure 5.2: Share of Mozambique’s population affected by service disruptions, depending
on the sub-hazards considered. Share of directly affected population marked in dashed
lines for reference. Wind-induced disruptions dominate in magnitude over flood-induced
disruptions, yet are not fully additive under a compound-event scenario.

5.3.2 Evaluating Adaptation Measure Packages

Fig. 5.4 shows the effectiveness in reducing the number of people experienc-

ing healthcare access disruptions according to measure and hazard scenario.

Large differences are evident depending on which (sub-)hazard is considered:

While package SAM2 (flood-proofing of roads and hardening of power in-
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Figure 5.3: Population clusters experiencing healthcare access disruptions, according to
responsible (sub-)hazard scenario which causes the failure. TC & FL refers to each sub-
hazard independently causing access disruptions, whereas TCFL refers to the scenario in
which only joint occurrence is significant enough to cause disruptions. avail. refers to
undisrupted population clusters, inavail. to clusters which never had access to the service
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frastructure), for instance, works well in reducing flood-induced healthcare

disruptions by reducing road access disruptions, it is the least effective one

to mitigate wind-induced disruptions. Addition of more healthcare facilities

(NAM1) proved futile without any further structural or systemic resilience-

enhancing measures, as half of these facilities were directly damaged, while

access ways were blocked to the remaining ones. Removing minor healthcare

facilities’ dependence on the main power grid (NAM2), in contrast, consis-

tently showed positive effects. Yet, all measures decrease in effectiveness

when considering the ‘real’ compound wind & flooding event as opposed to

single sub-hazard scenarios.

Fig. 5.5 demonstrates that some measures may feature substantial co-

benefits in reducing other basic service disruptions (cf. SAM2 and SAM3,

which have positive impacts on electricity and mobility). Lastly, the differ-

ence in aversion extents between Fig. 5.5 a) (structural damages) and Fig.

5.5 b) (service disruptions) highlight that, while adaptation measures may

substantially reduce physical damages, this may not translate linearly into

resilience at the service provision level. The opposite holds for network-based

adaptation measures (NAMs), which have the potential to avert service dis-

ruptions, but do not reduce any physical damages.

Figure 5.4: Reduction of healthcare access disruptions through implementation of struc-
tural adaptation measures (SAM1-3) and network adaptation measures (NAM 1 & 2),
compared to a no-adaptation scenario, under different (sub-)hazard scenarios.
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Figure 5.5: a) Co-benefits of the implementation of structural adaptation measure pack-
ages (SAM1-3), under the compound wind and flooding scenario: reduction of structural
damages (%) to critical infrastructure components across Mozambique, compared to the
no-adaptation scenario. b) - Co-benefits of the implementation of structural adaptation
measure packages (SAM1-3), under the compound wind and flooding scenario: reduction
of other basic service disruptions across Mozambique’s population (%) compared to the
no-adaptation scenario. SAM2 has most co-benefits, yet is not the most effective one in
mitigating healthcare disruptions (cf. Fig. 5.4)

5.4 Discussion

This study provides us with some key insights in the modelling of systematic

impacts of extreme events, based on the example of TC Idai in Mozambique.

First, we find that most direct and indirect damages can be attributed to

wind. However, some geographic areas are only affected by infrastructure

failure when considering flood, and others only when considering the com-

pounding effect of flood and wind. This demonstrates the importance of

considering sub-hazards. Second, we find that system interdependences may

lead to a different impact footprint of the event, with people losing access to

healthcare infrastructure even in areas where no direct damage is observed.

Third, we find that adaptation measures fare differently in mitigating direct

and systemic (service-level) impacts. To protect the access to healthcare

services, reducing facilities’ dependence on the power system through gener-

ators seems to bring more benefits than flood and wind-proofing healthcare

facilities, though latter fares better in reducing structural damages.

While interesting and unexpected dynamics can already be observed in this

modeling prototype, three essential steps are required to make this frame-
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work suitable for robust decision-making: (1) Verifying the model assump-

tions and heuristics, (2) assessing the impacts of more events that better

span the possibility space of current and future climate regimes and (3)

considering the length of the disruption in the modelling.

As the results of this study are highly dependent on the heuristics used

in the modelling, the first step would be to verify those. For example,

we assume that smaller healthcare facilities do not have generators, which

results in large disruption due to power failures. Reviewing event reports

would allow us to compare modeled and observed impacts, and reverse-

engineer some of the heuristics. Yet, while damage reporting on various

infrastructure sectors was exceptional in the particular case of TC Idai (cf.

Mutasa 2022; Williamson et al. 2023; Zimba et al. 2020), under- and non-

reported impact dimensions, and impacts in remote locations, are difficult

to verify. Consultations with stakeholders who have experienced the event,

or the reconstruction phase would be crucial to verify and adapt some of

the less observable modeling assumptions (Zischg et al. 2021).

The second step involves moving from analyzing one historical event to con-

sidering probabilistic event sets driven by different climatic conditions. Sev-

eral methodologies allow for the creation of synthetic tracks for current or

future climate. The TC module in CLIMADA creates a chosen number of

tracks from historical tracks by applying a direct random-walk process to

those and simulating future climates by modifying frequencies and inten-

sities (Bresch and Aznar-Siguan 2021). Alternatively, the fully statistical

STORM model can also provide present and future tracks (Bloemendaal,

Haigh, et al. 2020). However, as demonstrated in the results for TC Idai,

this is not sufficient to assess infrastructure risk, as a significant portion of

people losing access to healthcare can be explained by flooding. A glob-

ally applicable framework has recently been developed to simulate storm

compounds surge and river flood caused by a specific storm, using a local

high-resolution 2D hydrodynamic flood model (Eilander, Couasnon, Leijnse,

et al. 2022).

Finally, the time duration of the (partial) disruptions should be considered,

as people may for instance temporarily lose access to healthcare facilities due

to flooding of roads, yet experience longer lasting restrictions from destroyed
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facilities.

5.5 Conclusion

In this study, we examined the impacts of a compound wind and flood event

(TC Idai) on critical infrastructure components (roads, power grid, health-

care facilities and schools), system functionality, and service provision levels

in Mozambique. We highlighted the importance of considering all relevant

sub-hazards of a disaster, as well as system interdependencies, to capture

the potential for cross-system failure cascades and differential vulnerability

patterns. Focusing on improving resilience of the healthcare sector, we eval-

uated several structural and network-changing adaptation measure packages

in their effectiveness to reduce physical infrastructure damages as well as the

number of people who experience service disruptions.

Results indicate that some measures may have substantial co-benefits in

terms of reducing other service disruptions, yet that often, structural dam-

age aversions fall short of translating linearly into service disruption aver-

sion. We discussed pitfalls of our stylized proof of concept, and laid out an

agenda to use the presented open-source model for probabilistic and hence

more comprehensive adaptation measure appraisals which are capable of

integrating climate change signals to support the development of robust

adaptation strategies.
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Conclusion

6.1 Synthesis

This research aimed to better understand risk and resilience of basic services,

as they are exposed to natural hazards and embedded in complex socio-

technical constructs of interdependent critical infrastructures and people.

This aim was approached through what may conceptually be split into three

stages: Making the system, breaking the system and fixing the system1.

‘Making’ an adequate system representation required conceptual work to

understand how natural, technical and social systems interact, and technical

work to translate this rich understanding into a simpler, transferable model

which nonetheless retains spatial explicitness and some contextual knowl-

edge, balancing computational and representational demands (RQ1; section

6.1.1). ‘Breaking’ the system, i.e., obtaining an understanding of service

disruption risks, required exposing these interdependent critical infrastruc-

tures to diverse natural hazards, allowing to study how physical impacts

are propagated through multi-layered networks systems to their end-users

(RQ2; section 6.1.2). ‘Fixing’ the system, abstractly, demanded a better

understanding of the variables which contribute to services in some systems

withstanding disruptions better than in others, and concretely, was explored

along the disruption mitigation potential of specific local adaptation mea-

sures; both perspectives must be regarded with caution on representational

limits of and necessary extensions for just and equitable interventions (RQ3;

section 6.1.3).

1Thanks to Dr. Raghav Pant (University of Oxford) for this useful problem framing
suggestion.
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6.1.1 Modelling societal consequences of natural hazard-induced

infrastructure failure cascades

Interdependencies between assets of different infrastructure systems are ubiq-

uitous and numerous, and failure cascades along these dependencies have

empirical consequences on services; infrastructure dependencies on (electric)

power, (cooling) water and information and communication technology are

particularly pronounced (chapters 1 and SM1). To infer where interdepen-

dencies may exist between infrastructure networks on which this informa-

tion is not readily available, generic heuristics were devised. These consist

in a set of logical and geo-spatial rules which are based on infrastructure

asset pairs identified from literature, distance constraints, redundancy con-

straints, physical access constraints, and capacity constraints (sections 3.2.1

and SM3.1). Basic service demands from end-users can be approximated

using similar heuristics, but may be further constrained by socio-economic

and regionally specific criteria (sections 3.2.4 and SM3.1).

The hence-developed modelling framework (chapter 3) captures people-centred

consequences of natural hazard-induced infrastructure failure cascades, and

is designed for interoperability, transferability and large geographic scales.

Embedding a complex network-based infrastructure system model into the

risk assessment platform CLIMADA allows for a single, streamlined and

spatially explicit workflow from physically-informed natural hazard repre-

sentations to basic service disruptions. Based on open-source code and data,

and allowing user-defined, flexible inputs on infrastructures, hazards, depen-

dencies and study regions, the modelling framework is readily transferable

to diverse infrastructure systems, spatial scales and geographical regions.

It further offers the versatility to calibrate and adjust parameters based

on evidence (section 3.3.3). The choice of representing interdependent in-

frastructures as topological networks requires comparatively few technical

specifications and heuristics, which is advantageous for the study of multiple

large systems.

Problem design criteria, data, and information availability invariably influ-

ence the dynamics captured by the developed modelling framework: Trans-

lating physical infrastructure damages into infrastructure functionality, and
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lastly into end-users’ service disruptions, is a cross-disciplinary venture be-

tween natural hazard risk modelling, engineering disciplines and social sci-

ences. Breaking silos among disciplines requires conscious assumptions, sim-

plifications and translations. The resulting compromise may not always

cater to the (isolated) disciplines’ state-of-the-art, but is indispensable. For

instance, network-based approaches do not replace specialized system mod-

els for detailed local analyses and individual infrastructure system optimiza-

tions, but are a convenient means to reduce complexity. Similarly, reasons

for which people do or do not seek healthcare and educational services may

be multi-faceted and individual, but rule-based heuristics focusing on dis-

tance and facility availability provide a useful first estimate to model service

access for entire countries.

Anecdotal case studies of individual events, drawing, among others, on print

media accounts, typically focus on local to single-asset scales and people-

centred impacts. This has proven a valuable complement to the generic mod-

elling framework, as such insights allow to judge the plausibility of modelled

heuristics, enriching this coarse-scale, mechanistic view2.

Data and information scarcity are limiting factors in such a data-intense

modelling approach. Advances in crowd-sourced data platforms such as

OpenStreetMap have, nonetheless, proven valuable for high-resolution risk

modelling (chapter 2). In a field where data protection is of great security

concerns (Rinaldi et al. 2001), this is a common complication for researchers

at the intersection of critical infrastructure and natural hazard modelling, as

Supplementary SM5 shows: Lack of data has repercussions on the resolution,

adequacy, communicability, and reproducibility of results. Systematizing

a workflow, where commonly encountered stages in critical infrastructure

network modelling of natural hazard impacts were classified, has helped to

break down the data and information needs, can facilitate reaching out to

potential providers of data, and has created a starting point for interacting

with fellow academics through shared terminology in this relatively novel

2cf. a supervised thesis on healthcare impacts from Hurricane Irma (2017) in Florida
(Wiher 2021) revealed that backup generators in hospitals may fail, justifying the modelled
dependence of health facilities on the main power grid; similarly, surveys revealed that
acceptable walking time to schools in Mozambique is up to six times as long as in Florida
(USA), motivating flexible time thresholds to define access to certain services.
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field.

Lastly, how much must be known of a problem before it can be modelled is

deeply entangled with the purpose, societal context and ethical uncertain-

ties involved in the consequences of the research output; for instance, an

academic assessment of regional risk hot-spots may need to satisfy different

standards in this regard than the planning of flood-protection measures of

a provincial hospital.

6.1.2 Drivers of basic service risks and resilience to natural

hazards

Economic wealth, physical damages, and exposed populations - core met-

rics of classic risk assessments - are insufficient for capturing the extent of

service disruptions (section 4.2.3). Service impacts often spread beyond the

physically affected area; disruptions frequently stem from failure cascades

through system interdependencies rather than from direct damages, and re-

sulting impact patterns are a complex interplay of hazard intensity, type,

and location, network density, baseline access rates and service type (section

4.2.4). Wealthy and densely built-up regions tend to be less severely affected

by service disruptions. However, rules of thumb do not sufficiently capture

outlier events, which were omnipresent in all studied regions.

This incongruity between service disruptions and physical impacts makes

a strong case for including more systemic risk assessment approaches into

the concept of natural hazard risk modelling; the absence of simple, uni-

variate predictors of service impacts further underscores the importance of

considering systems in their contextual embedding, using spatially explicit

exposure and hazard data.

Infrastructures and services are subjected to hazard-specific vulnerabilities,

and dominant failure mechanisms strongly depend on the disruptive mecha-

nism of the hazard: services reliant on road access are particularly vulnera-

ble to floods, and power-dependent services are predominantly impacted by

strong winds (section 4.2.4).

Resolving sub-hazards of an event, such as concurrent storm surge and plu-

vial flooding during a tropical cyclone, was shown as critical in estimating
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service impacts adequately: different infrastructure systems respond differ-

ently to the sub-hazards, and compound service disruption patterns do not

always add up to the sum of their separate sub-hazard impacts, as infrastruc-

ture functionality thresholds or service access conditions may only jointly

be surpassed (chapter 5).

A case study on whether spatially extensive, interdependent infrastructures

may foster the occurrence of connected events (Raymond et al. 2020), tested

on spatially compounding floods and tropical cyclones (SM4), showed that

impacts do not necessarily escalate. However, as the occurrence of com-

pound events - for instance, a devastating heatwave during tropical cyclone-

induced power outages (a temporally compounding event, Feng et al. 2022)

- are projected to become more frequent (Wu et al. 2022), the framework is

adequate for further investigating the connection of events across the impact

space, enhanced through (human-made) exposures.

For sufficiently long event records, service disruption impacts can be trans-

lated into risk metrics readily employed in risk management, such as ex-

pected annual fraction of population experiencing service disruptions or the

disruption level associated with a 1-in-X year return period (section 4.2.5).

Together with a quantification of the ‘multiplier effect’ (i.e., the service

disruption spread, section 4.4.3) which can serve as a metric for service re-

silience, such aggregate figures allow for regional comparability and coarse

screening of risk hot-spots with a service- and people-centred dimension.

However, as the developed network-based model allows to back-trace failure

mechanisms on a per-event basis, this offers a richer understanding of the

systemic drivers behind computed impacts. This caters to many scenario-

based approaches, such as stress-testing procedures in tiered risk assessments

(Linkov et al. 2018), climate story-lines (Shepherd et al. 2018) and downward

counterfactual thinking, which promote in-depth investigations of single or

few selective physically-consistent events to reveal “factors responsible for

system failure, thus allowing the identification of robust decision options”

(Ciullo, Martius, et al. 2021).
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6.1.3 Understanding social vulnerabilities and adaptation po-

tentials to basic service disruptions

Resilience-enhancing measures, and adaptation interventions in particular,

are often cost-effective, but constrained resources require prioritization on

the type of resilience which should be achieved, and where to implement

options (Hallegatte et al. 2019; Trejo and Gardoni 2023). In this work,

adaptation to natural hazards focused on high-level strategies from a basic

service-perspective. Contrasting general service resilience, contribution of

(indirect) failure cascades to service disruptions, and baseline service access

rates across countries can inform a framework to prioritise actions: rang-

ing between reinforcements of existing core and supporting infrastructures,

management of dependencies and infrastructure network configurations, or

the need for investing into more infrastructure (section 4.3.2).

Chapter 5 showed that adaptation strategies designed to reduce structural

damages to infrastructure assets may not mitigate service disruptions, at

least not to the same degree. Adaptation strategies which reduce service

disruptions conversely may still incur substantial structural damages. Any

strategy has the potential to feature substantial co-benefits on various ser-

vices.

Adaptation asynergies (de Ruiter et al. 2021) may consequently be fur-

ther amplified when considering not only structural, but also more systemic

impact layers such as services protected (or disrupted). Service resilience-

centred adaptation planning must cater to the interdependencies between

infrastructures which deliver a service, bearing in mind the potentially dif-

ferential vulnerabilities of supporting infrastructure systems. While high-

level adaptation strategies derived from an interdependent infrastructure

modelling approach can be useful to raise awareness on asynergies, and to

shift the discourse from a purely structural to a service-oriented one, adap-

tation measures are implemented locally, and decision-making, depending

on the ownership structure of the infrastructure sector (e.g., private or

public), may effectively lie at individual sector or even single asset level

(SM5). Constraints for systemic adaptation planning may hence not be

solely knowledge-driven, but rather practically through sectoral silos and

political aspects.
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Adaptation strategies which reinforce the status quo may be far from eq-

uitable, as those left out of the system before will not experience any im-

provement afterwards; while obvious in theory, computing and mapping not

only disruption potential, but also service access levels at baseline, allows to

cover these blind spots (section 4.3.2). Even for those members of society

covered by services, disruptions may have differential consequences depend-

ing on compounding social vulnerabilities. Adaptation strategies may want

to include these in their devising. While not explicitly incorporated here,

case studies have mirrored mainly what is already known from research on

general social vulnerabilities: the elderly, the poor, those with medical needs

and those without social and legal ties (e.g. (illegal) immigrants) are often

most gravely impacted by the loss of services (Wiher 2021).

6.2 Implications of this research

Despite the aim of this work to bridge methods in classic natural hazard

risk modelling and infrastructure systems modelling to derive basic service

disruptions, there can be no one-stop-shop for the many conceivable prob-

lems and research questions at this intersection. The following paragraphs

reflect upon a few of the fields to which this work may contribute in various

manners.

Academia. This research adds knowledge to the academic literature on

natural hazard-induced infrastructure risks, and also has contributed as an

entry point for researchers in either risk modelling or engineering-related

fields who seek to acquaint themselves with methods in the respective other

field. Devising an interdisciplinary, conceptual framework can only approxi-

mate the complexity of the challenges which interdependent infrastructures

pose, but similar approaches are gaining much traction as the increase in

recent publications demonstrates (e.g., Brunner et al. 2024; Lan et al. 2023;

Montoya-Rincon et al. 2023; Pittore et al. 2023).

Further, this work has greatly profited from the availability of open-source

code and software, such as the CLIMADA project for facilitating direct risk

computations, code for many general geo-spatial operations, network gen-

eration, simplification and data parsing. By equally providing much of the
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code developed in this research in an open-source, peer-reviewed and tested

manner, within CLIMADA or as standalone OSM-flex, means that (net-

work) risk studies can easily be performed on diverse exposure layers across

the globe by fellow researchers, which is already done in various projects3.

International donor funds & multilateral organisations. Large

international donor funds, such as the Green Climate Fund (GCF) or the

World Bank, fund infrastructure (adaptation) projects around the globe.

Well-informed funding allocation decisions require screening at large geo-

graphic scales and for large portfolios. The global applicability and the

focus on risk hot-spots of the developed approach may provide an apt tool

which aligns with the needs for a relatively simple, yet systemic and co-

herent risk screening method4. Similarly, it aligns with Principle 1.4 of the

Principles for Resilient Infrastructure (UNDRR 2023)5.

Early warning & climate information services. Developing impact-

based forecasts, i.e., shifting from forecasts and warnings about what the

weather will be to what the weather will do, is currently of high priority

in many National Hydrometeorological Services (Met Office et al. 2020).

Many of the projects being developed under such premises revolve around

impacts with an infrastructure dimension, such as the Met Office (UK) on

wind and heavy precipitation on transportation (Hemingway and Robbins

2020), Météofrance (FR) on winter storms to power lines6, the Bureau of

Meteorology (AUS) on effects of East Coast Lows on built environment

(Richter et al. 2018). While it is a matter of individual offices’ decisions how

3cf. a global multi-hazard risk study on healthcare and education facilities, which finds
that 48-93 % of buildings in all world regions are affected by at least one hazard (Ammann
2023)

4See, for instance, the implementation principles of the GCF result area
on Infrastructure & Built Environment: ”Deploy an infrastructure systems ap-
proach –a holistic approach reviewing investments that go beyond climate-proofing
of assets by detecting potential for cascading failures affecting community re-
silience; Conduct climate risk assessments” (https://www.greenclimate.fund/results/
infrastructure-built-environment, accessed 26.09.23)

5It recommends tiered stress-testing approaches using complex models which consider
interdependent (sub-)systems and real (historic) hazards to generate knowledge on the
performance of infrastructure systems and services under stress.

6cf. WIRE (winter risk for energy), https://services.meteofrance.com/

wire-prevision-de-neige-et-de-givre-sur-les-cables, accessed 06.10.23

https://www.greenclimate.fund/results/infrastructure-built-environment
https://www.greenclimate.fund/results/infrastructure-built-environment
https://services.meteofrance.com/wire-prevision-de-neige-et-de-givre-sur-les-cables
https://services.meteofrance.com/wire-prevision-de-neige-et-de-givre-sur-les-cables
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far on the systemic impact side such forecasts need to be, a flexible impact

computation pipeline that can be user-tailored to the respective needs and

data availability may add to this area of interest.

Humanitarian activities. Humanitarian organisations, such as the In-

ternational Federation of Red Cross and Red Crescent Societies (IFRC), are

moving towards anticipatory action, i.e., actions taken before a crisis hits

(such as forecast-based financing, Coughlan de Perez et al. 2015). Those

decisions are based on forecasts or predictions to prevent or reduce po-

tential disaster impacts (IFRC 2022), and frequently rely on impact-based

forecasts in collaboration with National Hydrometeorological Services, as

discussed above. However, also in the aftermath of a disaster, it is crucial

to rapidly estimate impacts on critical infrastructures. Currently, the IFRC

Disaster Briefs7 report on impacted critical infrastructure such as health-

care and educational facilities, roads, water and power utilities with varying

degree of specificity, frequently based on surveys and remote sensing tech-

niques. It does not automatically link to the number of people which might

experience service disruption. A risk modelling approach on physical in-

frastructure damages and service disruptions may contribute such a first,

rapidly available information layer.

7see the IFRC GO platform: https://go.ifrc.org/

https://go.ifrc.org/
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6.3 Outlook for future research

A selection of ways forward, and of tangential, yet important research chal-

lenges are discussed in this loosely structured collection.

Time and timing. The generalized framework for infrastructure failure

cascades presented in this work does not feature an explicit time component.

However, recovery duration may greatly influence the severity of an event.

In general, relations between structural damages and restoration times defy

simple rules, owed to interdependencies and limited resources for reconstruc-

tion. Ample research has been conducted on restoration of services featuring

network approaches (Fang and Sansavini 2019; González et al. 2016), albeit

with similar gaps regarding scale and scope as discussed in section 1.3. It is

further questionable whether network modelling is necessarily the most ade-

quate tool to capture some of the crucial drivers of recovery (e.g. repair crew

availability, institutional processes, funds, pre-emptive actions, community

organisation, etc., Burkhardt 2022; Wiher 2021).

Equally, timing of the event may be crucial, as demand and supply patterns

for services have daily, weekly, or seasonal cycles - such as power outages

during heat waves in summer or cold waves in winter, transportation dis-

ruptions during morning commutes, or school interruptions during semester

breaks. Whether such highly resolved and data-demanding time-awareness

needs to be included in a globally applicable model or whether these con-

sideration should rather be kept as pre-conditioning, situational awareness

(‘aggravating factors’ in downward counterfactual thinking, Ciullo, Martius,

et al. 2021) will depend on the final approach taken.

As infrastructures are built to last long time-spans of decades to centuries,

the (co-)evolution of infrastructure degradation, population, and the built

environment may be critical factors to bear in mind when thinking about risk

and resilience in the future. While socio-economic and population projec-

tions (for instance, via via shared socio-economic pathways (SSPs), O’Neill,

Kriegler, et al. 2014) are increasingly available also at sub-national resolu-

tions (e.g. urbanisation trends, Merkens et al. 2016), projections for the

built environment are scarce.
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Social vulnerability and adaptation. Spatially resolved socio-economic

population characteristics might improve predictions on baseline service ac-

cess, as in this work, spatial distance to critical infrastructure assets served

as the main proxy. While an important input factor into the computation

chain for service disruption risk, it is a challenging task and area of research

in itself (cf. Arderne et al. 2020; Mbungu et al. 2023, for power access).

Differentiating population exposure by socio-economic criteria can further

elucidate if vulnerable people are disproportionately affected by the conse-

quences of infrastructure failures, both in frequency and in severity. How-

ever, transitioning from differentiated exposures to differentiate vulnerabil-

ities requires more research into variables contributing to coping capacities

and resilience specifically for basic service disruptions (Cutter et al. 2006;

Mitsova, Esnard, et al. 2018; Mitsova, Sapat, et al. 2020). Spatially explicit

datasets on (potentially) relevant variables of vulnerability to basic service

disruptions are scarce, and mostly confined to the United States (e.g. the

SoVI, Cutter et al. (2003), or the CDC SVI8). The development of global

datasets (e.g. the GlobE-SoVI, Reimann et al. 2023) may be a way for-

ward, but urban inequality - an important locator of vulnerable people - is

typically not resolved.

The importance of including social vulnerability variables for equitable (in-

frastructure) adaptation is generally recognized9. However, more work is

required to include these equity considerations systematically, and to better

connect them to current justice goals and policy discourses where policy-

makers could access them as concrete planning support10.

Probabilistic vs. scenario-based modelling for interdependent in-

frastructure risks. To quantify risk increments from climate change, and

risk reduction from the implementation of adaptation measures, classical

8https://www.atsdr.cdc.gov/placeandhealth/svi/data_documentation_

download.html, accessed 02.10.23
9Karakoc et al. (2020) investigate equitable restoration of infrastructure assets which

are weighted according to importance determined from 8 variables of the SoVI; Montoya-
Rincon et al. (2023) evaluate hurricane adaptation measures to the interdependent power
and water system based on a social vulnerability index built on the CDC SVI

10A good discussion is provided in Lonergan, Suter, et al. (2023) specifically on justice
in energy transitions, but many parallels can be drawn to the problem-setting presented
here.

https://www.atsdr.cdc.gov/placeandhealth/svi/data_documentation_download.html
https://www.atsdr.cdc.gov/placeandhealth/svi/data_documentation_download.html
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natural hazard risk modelling - and (re-)insurance practices - commonly ap-

ply probabilistic approaches, where impacts are computed over large num-

bers of hazard events, representing a ‘satisfactory’ range of future event

realisations (Bresch and Aznar-Siguan 2021; Lonergan, Greco, et al. 2023).

For a computationally expensive network model, as presented in this work,

this currently pushes the limits of feasibility.

Aggravatingly, probabilistic event sets for compound, multi-hazard, or sub-

hazards, which were shown to have significant impact on service disruption

outcomes, are not yet available with sufficient geographic coverage and spa-

tial resolution, despite considerable advances in this field (e.g., Claassen et

al. 2023; Eilander, Couasnon, Sperna Weiland, et al. 2022).

Along a similar line, ‘thorough’ uncertainty and sensitivity quantification

approaches often employ Markov Chain Monte Carlo methods which sample

large numbers of parameter spaces. Despite mathematical frameworks being

designed specifically for hierarchical interdependent networks (Sharma and

Gardoni 2022), the ease of applicability and computational burden remains

challenging.

It hence remains to be explored how scenario-based approaches can ‘ad-

equately’ incorporate effects of climate change or adaptation in a non-

probabilistic manner, as the probabilistic approach is no longer entirely

suitable. While not yet entirely state-of-the-art in practice, scenario-based

approaches may cater better to the intricacies of models designed for sys-

temic risk and resilience, as they emphasise system performance in the face

of a given challenge, and lend naturally to the exploration of particular

system configurations where the data needed to conduct probabilistic as-

sessments is sparse-to-unavailable (as, for instance, in mentioned context of

multi-hazard threats) (Lonergan, Greco, et al. 2023).

Local knowledge and better data. As amply discussed, many of the

current gaps are owed to a lack of data or information. A non-exhaustive

list of items in which data scarcity is particularly pronounced, includes:

identification and quantification of infrastructure dependencies, incomplete

exposure data, simplistic damage-functionality relationships, lack of post-

event validation data on infrastructure functionality and service levels. As a
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remedy, referring back to the conclusions in Supplementary SM5, more com-

prehensive impact data collection efforts beyond insured losses and fatali-

ties, as driven, for instance, by the Sendai Monitor11, data sharing platforms

among critical infrastructure operators, and stakeholder interactions for in-

formation sharing - as a less problematic alternative to data sharing -, are

conceivable future options, while maintaining good practices in sensitivity

analyses, stocktaking of assumptions and, at least, anecdotal validations.

Modelling infrastructure system performance. The infrastructure

model within the presented framework relies on a topological representation

of infrastructure networks, i.e., on assets and their connections. This leads

to a limited number of options for representing their functionality: mainly,

internal functionality loss due to structural damages or functionality loss

due to loss of supporting connections. Inclusion of flow models, represent-

ing physically informed metrics of supplies (sources), demands (sinks), and

capacity constraints, or even bespoke system models, would allow to increase

the granularity with which infrastructure system functionality is captured.

The modular architecture of the framework allows for this incorporation,

but most approaches would certainly not be feasible in a globally consistent

manner.

11https://sendaimonitor.undrr.org/, accessed 06.10.23

https://sendaimonitor.undrr.org/
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6.4 Concluding remarks

This research took interdependent critical infrastructure networks as a lens

to study how natural hazard risks are transmitted and escalate through

systemic connections and ‘indirect’ layers of impacts. However, systems

thinking approaches cater to many other phenomena in our environment,

such as supply chains, ecosystems or migration flows.

In an interconnected world, problem solving strategies cannot be devised in

silos - neither academically nor in practice. This is easier said than done,

as connections are often far from obvious, and even once they have become

salient, challenges lie in the readiness to compromise among methods and

aims. Further, the obstacles encountered when intellectually motivating the

need to act through large-scale, agnostic models, may differ vastly from the

challenges encountered when practically deciding to act based on context-

specific, local knowledge and real-world constraints. As both are needed,

translational work between these worlds is a task that increasingly transdis-

ciplinary projects may reconcile.

Lastly, while paradigms and problem frames are necessary preconditions for

any (intellectual) activity, it is worth bearing in mind that

“[s]ometimes the best way to make an infrastructure resilient is

not to build it.” (Hallegatte et al. 2019)
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SM1 Supplementary 1

Literature Review

Web of Science 
TS=(infrastructure*) AND TS=(dependen* OR 

inter-
dependen* OR interdependen*) AND TS=(water
 OR power OR electricity OR energy OR teleco
m* OR sanitation OR transport) AND TS=(net

work OR "system of systems" OR system-of-
systems) AND TS=(disruption OR "cascading fa

ilure" OR "failure cascade")  
 

Google Scholar 
infrastructure AND ((interdependency OR 

interdependence OR dependence OR dependency 
OR interdependent OR dependent) AND 

(disruption OR "cascading failure" OR "failure ca
scade") AND 

(network OR "system of systems" OR system-of-
systems)  AND (water OR energy OR power OR 
electricity OR!telecom OR telecommunications 

OR sanitation)) 
 

# of records screened: 182+100 

# of full-text articles assessed for eligibility: 147 

# of studies included in quantitative synthesis (meta-analysis): 82 

2005-2021 or before 2005 with > 100 citations; min. 2 infrastructure systems; infrastructure 
components explicitly treated (no coarse sectoral view); network-based approach!
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Figure SM1.1: Meta analysis of commonly analysed problems in research on network
modelling approaches to natural hazard-induced impacts on interdependent critical infras-
tructures.

A collection of infrastructure dependencies

Table SM1.1: Dependencies between different infrastructure sectors (and components),
as retrieved from an evidence research in literature.

source target flow

sector component sector component

electric power substation education school electricity

electric power substation emergency ser-

vice

police electricity

electric power substation food retail electricity

electric power substation food distribution

center

electricity

electric power substation gas pumps electricity

electric power substation gas storage electricity

electric power substation gas SCADA electricity

electric power substation gas electric com-

pressors

electricity
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electric power battery;

backup gener-

ator

gas n/a electricity

electric power battery;

backup gener-

ator

healthcare hospitals electricity

electric power substation healthcare hospitals electricity

electric power substation oil pumps electricity

electric power substation oil compressors electricity

electric power substation oil SCADA electricity

electric power substation oil storage electricity

electric power substation oil retail petrol

stations

electricity

electric power substation telecom fibre-optics

backbone

electricity

electric power substation telecom fixed lines electricity

electric power substation telecom mobile service

network

electricity

electric power substation telecom switches electricity

electric power substation telecom router electricity

electric power substation telecom fibre links electricity

electric power substation telecom switching

office

electricity

electric power substation telecom base station electricity

electric power substation telecom central office electricity

electric power battery;

backup gener-

ator

telecom both wired

and wireless

networks

electricity

electric power substation telecom server electricity

electric power substation telecom cell tower electricity

electric power substation telecom transmitter electricity

electric power substation transport road electricity

electric power substation transport rail electricity
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electric power substation transport rail electricity

electric power substation transport rail electricity

electric power substation transport airport electricity

electric power substation waste water plants electricity

electric power substation waste water pumps electricity

electric power substation water supply pumps electricity

electric power substation water supply SCADA electricity

electric power substation water supply treatment

plants

electricity

electric power substation water supply reservoirs electricity

electric power substation water supply controlling

system

electricity

electric power substation water supply pumps electricity

electric power battery;

backup gener-

ator

water supply wells and

pump stations

electricity

natural gas n/a electric power generator natural gas

natural gas pipeline Electric power gas-fired

power plant

natural gas

natural gas n/a transport rail natural gas

oil petrol backup

supply

electric power emergency

generator

oil

oil retail petrol

stations

electric power emergency ve-

hicles

oil

oil n/a electric power generator oil

oil retail petrol

stations

healthcare hospitals fuel

oil bulk petrol

stations

oil retail petrol

stations

petrol

oil petrol bulk

supply

transport ferry petrol

oil petrol bulk

supply

transport airport petrol

oil n/a transport rail petrol
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oil retail petrol

stations

transport road petrol

telecom cell tower electric power generator

SCADA

data

telecom n/a electric power SCADA data

telecom router electric power substation

SCADA

data

telecom n/a emergency ser-

vice

Police data

telecom n/a food retail data

telecom n/a gas SCADA data

telecom n/a healthcare hospitals data

telecom n/a healthcare emergency ve-

hicles

data

telecom n/a oil SCADA data

telecom n/a transport rail data

transport air electric power transmission

lines

data

transport roads electric power employees people (work-

ers)

transport roads electric power employees people

(repair crew)

transport roads electric power n/a physical com-

ponents

transport roads electric power emergency

generator

oil, gas

transport rail electric power employees people (work-

ers)

transport rail electric power employees people

(repair crew)

transport rail electric power n/a physical com-

ponents

transport rail electric power emergency

generator

oil, gas

transport air electric power employees people
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transport air electric power n/a physical com-

ponents

transport rail food retail groceries

transport roads food retail groceries

transport rail gas n/a train; gas

transport roads gas n/a truck; gas

transport roads gas n/a people (work-

ers)

transport roads gas n/a people

(repair crew)

transport roads healthcare hospitals people (pa-

tients)

transport roads healthcare hospitals medication

transport roads healthcare emergency ve-

hicles

emergency ve-

hicles

transport roads healthcare n/a people (work-

ers)

transport roads healthcare n/a people

(repair crew)

transport roads natural gas n/a gas

transport rail natural gas n/a gas

transport roads oil n/a oil

transport rail oil n/a oil

transport marine oil n/a oil

transport roads oil n/a people (work-

ers)

transport roads oil n/a people

(repair crew)

transport roads port n/a people (work-

ers)

transport roads power power plant;

substation

people (work-

ers)

transport roads power power plant;

substation

people

(repair crew)
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transport roads solid waste n/a waste

transport roads solid waste landfills waste

transport roads solid waste transfer sta-

tion

waste

transport roads solid waste n/a people (work-

ers)

transport roads solid waste n/a people

(repair crew)

transport roads telecom n/a people (work-

ers)

transport roads telecom n/a people

(repair crew)

transport roads transport, air airport people (work-

ers)

transport roads transport, air airport people

(repair crew)

transport roads waste water n/a wastewater

transport roads waste water plants wastewater

transport roads water supply n/a people (work-

ers)

transport roads water supply n/a people

(repair crew)

waste water n/a healthcare hospitals wastewater

water supply n/a education school water

water supply tanks, pumps electric power n/a water

water supply n/a electric power n/a water

water supply n/a food retail

water supply n/a food distribution

center

water

water supply backup supply gas vaporizers and

fire suppres-

sion processes

water

water supply pumping sta-

tion

healthcare hospitals water
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water supply n/a oil n/a water

water supply tank telecom switching

office

water

water supply tank telecom central office water

water supply n/a transport rail water
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SM2 Supplementary 2

SM2.1 Infrastructure Dependencies

This file is provided in the online version of the manuscript, which can be re-

trieved at https://ars.els-cdn.com/content/image/1-s2.0-S0951832023001096-mmc1.

xlsx. Table SM1.1 shows a simplified version.

SM2.2 Scenario parametrizatios and validation sources

https://ars.els-cdn.com/content/image/1-s2.0-S0951832023001096-mmc1.xlsx
https://ars.els-cdn.com/content/image/1-s2.0-S0951832023001096-mmc1.xlsx


Case study scenario parametrizations 
i. Scenario Specifications ‘Higher and lower component 

vulnerabilities’ 

 
Figure1 Impact functions used for base case (grey, solid), low vulnerability scenario (black, 
dotted) and high vulnerability scenario (black, dashed). x-axes: hurricane wind strength 
(m/s), y-axes: failure probability (power lines), structural damage fraction (all other CIs). 
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ii. Scenario Specifications ‘Damage-Functionality Thresholds’ 

Table 1 Threshold of structural component damage (averaged over length of section for 
edge-type CIs such as powerlines & roads), which leads to an assignment of internal 
functional level of 0. 

Scenario Base Low High 

Threshold 0.05 (power lines) 
0.5 (roads) 
0.3 (all others) 

0.01 (power 
lines) 
0.3 (roads) 
0.15 (all others) 

0.1 (power lines) 
0.7 (roads) 
0.5 (all others) 

 

 

 

iii. Scenario Specifications ‘No CI interdependencies’ 

Table 2 Dependency conditions used in the scenario w/o inter-CI links. 

D
ep 

Sour-
ce 

Tar-
get 

Redun-
dancy 

Road 
access 

Dep.  
type  

Flo
w 
type 

FuncTh
resh 

Dist. 
Thresh. 
[m] 

7 celltow
er 

peopl
e 

FALSE FALSE end 
user 

logic
al 

1 40000 

8 educati
on 

peopl
e 

TRUE TRUE end 
user 

logic
al 

1 40000 

9 health peopl
e 

FALSE TRUE end 
user 

logic
al 

1 100000 

10 power 
line 

peopl
e 

TRUE FALSE end 
user 

physi
cal 

0.6 
 

11 road peopl
e 

FALSE FALSE end 
user 

logic
al 

1 30000 

12 wastew
ater 

peopl
e 

TRUE FALSE end 
user 

logic
al 

1 
 

 

iv. Scenario Specifications ‘Lower & higher distance thresholds  

Table 3 Dependency conditions for scenario with modified parametrizations compared to 
base case (lower and higher distance thresholds). 

D
ep 

Sour-
ce 

Tar-
get 

Redun-
dancy 

Road 
access 

Dep.  
type  

Flow 
type 

Func. 
Thresh 

Dist. 
Thresh. 
[m] 

1 power 
line 

cellto
wer 

TRUE FALSE functi
onal 

physic
al 

0.6 
 

2 power 
line 

educat
ion 

TRUE FALSE functi
onal 

physic
al 

0.6 
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3 waste
water 

educat
ion 

TRUE FALSE functi
onal 

logical 1 
 

4 power 
line 

health TRUE FALSE functi
onal 

physic
al 

0.6 
 

5 waste
water 

health TRUE FALSE functi
onal 

logical 1 
 

6 power 
line 

waste
water 

TRUE FALSE functi
onal 

physic
al 

0.6 
 

7 cellto
wer 

people FALSE FALSE end 
user 

logical 1 40’000 

8 educat
ion 

people TRUE TRUE end 
user 

logical 1 25'000 / 
40’000 

9 health people FALSE TRUE end 
user 

logical 1 70'000 / 
130’000 

10 power 
line 

people TRUE FALSE end 
user 

physic
al 

0.6 
 

11 road people FALSE FALSE end 
user 

logical 1 30’000 

12 waste
water 

people TRUE FALSE end 
user 

logical 1 
 

 
 
Case study validation material  
The following paragraphs provide detailed information on the evidence used for validation of 
the case study results. Official government resources are available for power and 
telecommunication impacts, in all other cases print media accounts were considered. Search 
efforts focused both on retrieving information on infrastructure impacts (i.e. structural 
damages, outages, etc.) and basic service impacts (i.e. healthcare incidents, mobility 
impairment, etc.).  
Structural damages to infrastructure components are only incidentally reported in newspapers 
and in the National Weather Service’s Post-Tropical Cyclone Report, for all studied sectors. 
Utility outages are documented on county-level for power and mobile communication by the 
respective government offices (Office of Cybersecurity, Energy Security, and Emergency 
Response and Federal Communications Commission), yet unavailable for the water and 
transport sectors. Hospital closures are documented, while school closures are less complete. 
People suffering from basic service disruptions can only be inferred indirectly for power and 
mobile communications based on outage statistics, and are anecdotally reported in newspaper 
articles for all other services, such as communities being supplied by freshwater tanks or being 
cut off due to collapsed roadways. 
 
Healthcare facilities impacted and incidents related to inaccessibility of 
emergency services & healthcare 
 
Universal Health Services' Emerald Coast Behavioral Hospital, Fort Walton Beach; 
Encompass Health Rehabilitation Hospital, Panama City; George E. Weems Memorial 
Hospital in Apalachicola; Bay Medical Sacred Heart in Panama City; Calhoun Liberty 
Hospital in Blountstown; Gulf Coast Regional Medical Center in Panama City; Jackson 
Hospital in Marianna; Sacred Heart Hospital on the Gulf in Port St. Joe; HCA Healthcare's 
Gulf Coast Regional Medical Center (Retrieved from 
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https://www.modernhealthcare.com/article/20181012/NEWS/181019944/eight-hospitals-
evacuate-patients-in-wake-of-hurricane-michael , 
https://www.medscape.com/viewarticle/903327, last accessed: 08. Feb ’22) 
 
• Springfield: “When is anybody coming to do something?” said Trenisa Smith, 48, a 

school bus driver in Springfield who had been giving herself insulin treatments in the 
back of her car.  

• Gadsden County: Another was found unresponsive by family members during the storm. 
They called 911 but were told no one could respond. 3. Charles Ash Sr., 71. Unable to 
receive dialysis treatment due to the storm. 

• Liberty county: 4. Man, 78. Complained of chest pain/shortness of breath during the 
storm. EMS was unable to respond. Pronounced dead at scene several hours later. 

• Bay county: 12. Timothy Clark, 64. Working in yard after storm, collapsed, EMS 
unable to respond.13. Robert Whitney, 43. After onset of strong winds from storm. 
Working in yard to secure property, collapsed, EMS unable to respond. 15. Jose Golazo, 
52. Complicated medical history, unable to access dialysis due to power outage/ 
transportation. 16. Judith Cooley, 79. Hospice; complicated medical history which 
required use of powered devices, no power, no generator. 17. James Stukey, 81. Hospice; 
complicated medical history which required use of powered devices, no power, no 
generator. 21. Paul Gilday, 77. Extensive natural disease, found deceased in home after 
storm, no power. 25. Kurt Bennett, 67. Medical conditions which required use of 
powered respiratory devices, no power. 28. Dorothy Lawrence, 94. Natural disease, no 
power, home health less accessible. 

 
Retrieved from https://www.nytimes.com/2018/10/12/us/hurricane-michael-live-updates-
florida.html,  https://eu.tallahassee.com/story/news/2018/11/29/43-and-counting-
deconstructing-death-toll-hurricane-michael/2124902002/, last accessed: 08. Feb ‘22 
 

Power outages 
Retrieved from Hurricane Michael Situation Reports, 
https://www.energy.gov/ceser/downloads/hurricane-michael-situation-reports-october-2018 , 
last accessed 08. Mar ’22.  
County-wise outage statistics are only graphically available, see Figure 2, detailed numbers 
are reported on a state-basis as displayed in Table 4, from which validation numbers were 
taken. 
 
 
Table 4 Number of affected people (col. 3) is estimated by multiplying population census 
data with % of affected customers (col. 1), since number of affected customers refers to 
subscribers, not people per household. 

State 
% 
affected 

# customers 
affected 

Estimated # people 
affected 

Alabama 
3.09% 87,706 150’000 

Florida 
3.68% 400,666 780’000 

Georgia 
6.44% 424,744 676’000 
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Figure 2 Outage map per county, from Hurricane Michael event summary # 4, for the 
afternoon of October 11, 2018 

 
Telecommunication impacts 
Fractions of cell sites out-of-service per county were reported in the Hurricane Michael 
Communications Status Reports provided by the Federal Communications Commission, 
https://www.fcc.gov/michael,  accessed 08. Feb ’22. 
For comparison with the results in this study, fractions of dysfunctional cell towers were 
aggregated on county levels as defined by TIGER/Line shapefiles provided by the US 
Census Bureau, Department of Commerce, and contrasted with reported figures. It is to be 
noted that cell sites and cell towers are not exactly analogous, and county naming was 
ambiguous in a few cases. 

Road and mobility incidents 

• Wakulla County : "We had well over a 1000 trees just on lines," Savary said. 
"We stopped counting after a while." Trees knocked out communications, blocked roads 
and entangled power lines, cutting power.  

• Calhoun & Liberty: Unaccustomed to the destructive rage of hurricanes, inland 
communities like Calhoun and Liberty counties were cut off for days – roads were 
blocked and all communication was cut off. Downed trees and debris littered or blocked 
all the roads. Rural residents were trapped behind their long dirt driveways. 

• Jackson County: A big challenge was clearing blocked roads and convincing local 
motorists to say off the roads to allow the cleanup to proceed more quickly.  Jackson 
County Fire and Rescue Chief Mark Foreman reported a lot of vehicle crashes and 
injuries at night.   

• Eastside, FL: Returning wasn't always easy. Parts of U.S. Highway 98, the coastal 
highway, was washed out.   "It could take several weeks. We're still cleaning roads. A 
lot of roads have been damaged. There's extensive damage by water and some are 
washed out. 

Retrieved from https://eu.tallahassee.com/story/news/hurricane/2018/10/14/hurricane-
michael-arc-ruin-trail-destruction-florida-panhandle-big-bend/1614787002/, accessed 08. Feb 
‘22 
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Water supply incidents 

• When Hurricane Michael tore through Florida’s panhandle, the vicious category 4 
hurricane toppled the water tower in Mexico Beach.  

• Nearby, Bay Medical Center in Panama City was still running on partial electricity 
provided by generators, but the facility’s toilets were filling up, and they had no water.  

• the U.S. Army Corps of Engineers in restoring drinking water and wastewater service to 
communities in Bay County affected by Hurricane Michael.  As communities in Florida 
and Georgia began to rebuild after Hurricane Michael, Anheuser-Busch said it would be 
shutting down some of its beer lines to get more than 300,000 cans of drinking water to 
people in need. 

• Counter-example:  As Hurricane Michael churns toward the Florida Panhandle, 
Tallahassee residents can rest easy that their drinking water is safe and they don't need 
to amass bottled water. The city has an abundant, safe water supply drawn from the 
Floridan Aquifer deep in the ground, with enough redundancies built into it that it is 
unlikely to fail or become contaminated during a hurricane, a city official said Monday. 

Retrieved from https://www.meco.com/hurricane-season-impact/, 
https://response.epa.gov/site/site_profile.aspx?site_id=13982 , accessed 08. Feb ’22 
 
School access incidents 

“Until further notice, schools are closed in eight counties across the Panhandle, 
including Bay, Calhoun, Franklin, Gadsden, Gulf, Jackson, Liberty and Washington 
counties, displacing around 45,000 students.”  

Retrieved from https://eu.pnj.com/story/news/2018/10/17/hurricane-michael-closes-schools-
florida/1660289002/ , accessed 08. Feb. ’22 
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SM3 Supplementary 3

SM3.1 Supplementary Material 1



Modelling Assumptions 
S.1 Geo-Spatial Exposure Data: Infrastructure and Population 

Table S 1 Data sources for infrastructure component and population data used throughout 
the study. 

Exposure  Source Details 

population WorldPop 

- gridded population count data, 1km2 resolution, 
UN adjusted.  

Post-processing: To decrease memory consumption on 
the networks, “very sparse” population clusters were 
dropped. A country-specific population density cut-off 
was determined such that at most  10% of the 
population was dropped (see Figure S 1). This 
reduced the amount of population nodes in the 
network by up to 55%. 

roads OpenStreetMap 

- main roads: tags matching highway = motorway, 
motorway_link, trunk, trunk_link, primary, 
primary_link, secondary, secondary_link, 
tertiary, tertiary_link 

- all roads: main roads plus tags matching highway 
= residential, road, unclassified 

For computational reasons during network 
construction and shortest path searches, preferentially 
only main roads were taken. However, if a high share 
(>20%) of road tags were unclassified, all roads were 
included. In 2 cases of very large and dense main road 
networks (Italy and Japan), tertiary roads were 
excluded, too, with no impact on base rate 
accessibility.  

hospitals OpenStreetMap 

- Primary healthcare facilities: tags matching 
amenity = hospital, clinic, doctors, health_post; 
healthcare = hospital, clinic, doctors; building = 
hospital, clinic  

schools OpenStreetMap 
- Primary education facilities: tags matching 

amenity = school, college; building = school, 
college; education = school 

cell towers OpenCellID / 
WorldBank 

- Cell sites from the OpenCellID, gridded by the 
World Bank Open Data to a 1km2 resolution 

Post-processing: Re-gridded to 5kmx5km resolution. 
power lines Gridfinder - Global high and medium voltage lines.  

power plants 
World Resource 
Institute / 
OpenStreetMap 

- WRI power plant database 
- OSM tags matching power= plant, generator  
In cases of no hits in the WRI data base, power plant 
locations were queried from OSM. Generator locations 
from OSM were taken as a last resort if this did not 
yield any hits, either. 

power 
substations 

None / 
(Gridfinder) 

OSM was not used for extracting substations due to 
inconsistent mapping (see Figure S 2). Instead, 
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substations locations were inferred by taking end 
points of power lines, and power line nodes with 
degrees > 2 (line bifurcations) as proxy. 

power poles None / 
(Gridfinder 

Due to sparse mapping results on OSM, power pole 
(tower) locations were inferred along the transmission 
lines, assuming one every 500 m. 

Figure S 1 Population density vs. cumulative population histograms for Mozambique 
(left) and Switzerland (right). The red line (at 10% of the population) determines the 
cut-off value below which population clusters were dropped from the analysis (20 
people/km2 and 100 people/km2, resp.) 

Figure S 2 - left: Population clusters (white) in rural Mozambique (avg. electrification rate 
is 38%): 10km distance thresholds from power lines (shaded orange) would over-predict 
access; continuously expanded electrification targets (red) are the best-guess estimate. 
right: Population clusters (white) in CHE (100% electrification rate): Consideration of 
electrification targets (red) would unnecessarily under-predict population’s access to 
electricity. 
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S.2 Dependence Inference Heuristics 
Explanation on parametrization decisions 
 
Table S 2 Parametrization of infrastructure and end-user dependencies used within the 
network model.  

De
p 

source target single 
link 

road 
access 

dependen
cy type 

flow 
type 

function
al 
threshol
d 

distance 
threshol
d [m] 

 conditions 

1 power 
line 

cell 
tower 

TRU
E 

FALS
E 

functional physic
al 

0.6 inf  

2 power 
line 

school TRU
E 

FALS
E 

functional physic
al 

0.6 inf  

3 power 
line 

hospit
al 

TRU
E 

FALS
E 

functional physic
al 

0.6 inf  

4 cell 
tower 

people FALS
E 

FALS
E 

end-user logical 1 20’000  

5 school people TRU
E 

TRU
E 

end-user logical 1 *  

6 hospit
al 

people FALS
E 

TRU
E 

end-user logical 1 *  

7 power 
line 

people TRU
E 

FALS
E 

end-user physic
al 

0.6 * electrified=Tr
ue 

8 road people FALS
E 

FALS
E 

end-user logical 1 10’000 
/ 2’000 

 

 
No. 1-3: power dependence of cell towers, hospitals and schools: Since those 
infrastructures need electricity for their functioning, they are assumed to be 
connected to the single closest node in the power network, irrespective of the 
resulting link distance. The link fails if power grid capacity falls below 60% of 
the initial supply level. 
 
No. 4: End-user dependence on cell towers for mobile communication services. 
Coverage range limits of cell towers vary widely depending on tower design, 
technology standards and characteristics of the surroundings, with maximal 
coverage distances reaching up to 26 km (rural cell site range of 4G cells in the 
US (Holma et al. 2011), yet often revolve around 10km (written communication 
of an expert in the field). We reverted to a compromise of 20 km, from which 
end-users can receive mobile phone coverage of any cell tower. The links are 
binary and fail upon failure of the source. 
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No. 5: End-user dependence on schools for provision of educational services. 
People are assigned one single, non-substitutable school at most, as allocations 
can normally not be switched arbitrarily within a semester. While schools have 
to be physically reachable to provide service, literature finds that acceptable 
travel distances to educational facilities vary depending on various factors such 
as access modality (motorized private and public transport modes tend to be 
longer than walking (Liao and Dai 2022)), income level (affecting access modality 
choices) (Malone and Rudner 2011), rural-urban divides (inhabitants of rural 
areas experience longer travel distances) (Easton and Ferrari 2015), and country 
standards (Malone and Rudner 2011). Literature agrees, however, that 
acceptable travel time to educational facilities rarely surpasses 45 minutes across 
most settings . To account for such large variability, a link between people and 
an educational facility was established for the closest facility satisfying at least 
one of the two constraints: 

i) it is reachable within 60 minutes at terrain-dependent walking 
speed, when walking as the crow flies. 

ii) it is reachable within 60 minutes of driving over functioning roads 
using country-specific average road speeds. 

Terrain-dependent walking speeds were obtained from the friction surface 
provided in the supplementary of (Weiss et al. 2020), at a resolution of 1km2. 
Road speeds were obtained from tables provided in (Moszoro and Soto 2022). 
 
No. 6: End-user dependence on hospitals for provision of healthcare services. 
People are linked to all healthcare facilities located within an acceptable travel 
distance, reflecting a certain level of substitutability among healthcare service 
providers. As in the case of access to education, typical travel modalities and 
acceptable travel distances to obtain healthcare service are highly variable. 
Literature finds a that beyond 30 minutes of travel time and 3 miles of travel 
distance, respectively, selection attractiveness of healthcare facilities in the US 
sharply decays (Guagliardo 2004), whereas medical recommendations in Sub-
Saharan African countries are to have 80% of the population within a 2-hour 
travel time radius (Meara et al. 2015). The WHO tends to report people further 
away than 5 km from a healthcare facility (WHO, 2019). Several studies for 
effective healthcare access report access thresholds from between 30 minutes up 
to 6 hours (Hierink et al. 2020; Petricola et al. 2022). Since there is no finite 
consensus on what defines effective healthcare access, but there is agreement that 
for emergency healthcare incidents, a critical ‘golden hour’ of survival chances 
exist (Hu et al. 2020), we establish links between all healthcare facilities and 
population that satisfy at least one of the two constraints: 

i) it is reachable within 60 minutes at terrain-dependent walking 
speed, when walking as the crow flies. 

ii) it is reachable within 60 minutes of driving over functioning roads 
using country-specific average road speeds. 
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Speeds were obtained as mentioned above for educational service links. 
 
No. 7: End-user dependence on power infrastructure for provision of electricity. 
In absence of reliable data on the power distribution network (i.e., substations 
and low-voltage distribution lines), and without global electricity access maps 
matching the high resolution of gridded population data used in this study, 
dependence links were established using a two-stage heuristic: For countries with 
electrification rates of 90% or more (as reported by the World Bank Open Data, 
indicator EG.ELC.ACCS.ZS Access to electricity (% of population),  all 
population clusters were connected to the respective single closest nodes in the 
high-and medium voltage transmission line network, irrespective of the resulting 
link length. For all other countries with low electrification rates, a pre-selection 
was made on where population clusters with likely electricity access are located. 
To this end, an electrification target map, estimating locations where people have 
access (Arderne et al. 2020), was spatially overlaid with population clusters. As 
these estimates were frequently too conservative, the overlay was consecutively 
expanded until hence-predicted electrification rates matched the World Bank 
country statistics. Those population clusters were then linked to the respective 
single closest nodes in the power network, irrespective of the resulting link length. 
 
No. 8: End-user dependence on roads for access to transport. 
The UN SDG indicator 9.1.1 tracks access to transport in rural areas using the 
Rural Access Index (RAI), which is computed based on the population living 
within 2 km of an all-season road. Access to transport in an urban context is 
frequently related to availability of public transport options, which, however, 
surpasses the scope of this study. We hence implemented the distance-based 
approach and established a single link between population clusters and the closest 
road point which is located at most 2 km away, for cases where all roads in a 
country were considered (i.e., whenever the fraction of ‘unclassified’ roads on 
OpenStreetMap surpassed 20%), and between population clusters and road 
points at most 10 km apart for cases where only main roads in a country were 
considered (i.e. less than 20% unclassified roads in OpenStreetMap). Reverting 
to main roads was preferred for computational reasons, yet the distance threshold 
had to be set larger than the 2 km RAI-threshold as fewer parts of the road 
network are hence considered. 10 km was judged to be a reasonable limit, as in 
Ireland (a country with high levels of access to transport), for instance, maximum 
average residential distance to the main road network  is 6.7 km (CSO - Central 
Statistics Office 2019).  
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S.3 Impact Functions (Fragility Curves) 
 
Table S3 provides an overview on which infrastructure components were 
considered to be vulnerable to which types of natural hazards, including sources 
of the impact functions and further explanations where necessary. 
Figure S 3  graphically displays the employed curves. 
 
Table S 3 Overview on infrastructure vulnerabilities to different natural hazard types, as 
modelled in this study. 

Infrastructure 
Component 

Flood Winds Sources & Details 

Power Lines - x 

Failure probability of line snapping due to wind 
stress (Guo et al. 2020). 
Binary failures are randomly sampled from the 
resulting probabilities. 

Power Poles - x 

Failure probability of tower blow-down due to wind 
stress (Panteli et al. 2017). 
Binary failures are randomly sampled from the 
resulting probabilities.  

Power 
Substations x - Binary step function for flooding. 

Power Plants - - Not designed to fail, hence no impact functions. 

Roads x x 
Binary step function for flooding. 
Wind impact function for damages from tree and 
debris blow-down according to (Koks et al. 2019) 

Hospitals x x 

Binary step function for flooding. 
Wind impact function for structural damages from 
HAZUS Tropical Cyclone technical manual for 
industrial buildings (FEMA, 2021) 

Schools x x 

Binary step function for flooding. 
Wind impact function for structural damages from 
HAZUS Tropical Cyclone technical manual for 
residential buildings (FEMA, 2021) 

Cell Towers x x 

Binary step function for flooding. 
Binary step function for wind impacts, assuming a 
withstand speed of 110 mph (manufacturer 
interview). 
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Figure S 3 Impact functions used for structural damage computations on CIs due to wind impacts (left) and 
flood impacts (right) 
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Part 2 - Detailed Results 
S.4 Selected Regions Overview 
 
Table S 4 Overview on study regions, including geographic area (NAM - North America; 
LAC - Latin America and the Caribbean, ECA - Europe and Central Asia; EAP East Asia 
& Pacific; SA - South Asia; SSA - Sub-Saharan Africa), region statistics from the World 
Bank Open Data repository, Social Vulnerability Risk Index From the WorldRiskReport 21, 
and access rates to electricity, healthcare, education, telecom and roads in undisrupted base 
states according to model calculations. Hazard event counts refer to number of events per 
region which were available from historic records based on IBTrACS for TCs (1980-2020) 
and the cloud-to-street database for floods (~2002-2018). 

Study 
Region 

G
eographic A

rea 

W
B

 Inc. G
roup  

P
op. D

ensity (ppl/km
2) 

%
 U

rban  

Size (‘
000 km

2) 

W
orldR

isk Index 21 

electr. access 

healthc. access  

educ. access 

tele. access  

road access 

T
C

 E
vent C

ount 

Flood E
vent C

ount 

USA - 
Florida 

NA
M 1 136 91.

5 170 13
3 100 100 100 100 100 31 4 

USA - 
Texas 

NA
M 1 43 84.

7 695 13
3 100 100 100 100 100 14 8 

USA - 
Louisiana 

NA
M 1 41 73.

2 135 13
3 100 100 100 100 100 17 0 

Mexico LAC  2 66 80.
7 

200
0 94 100 99.

4 
99.

6 
99.

5 
99.

7 49 5  

Haiti LAC  4 414 57.
1 28 21 51 97.

6 
96.

7 
95.

7 
94.

6 7 11 

Puerto Rico LAC  1 360 93.
6 9 n/

a 100 100 100 100 100 7 1 

Cuba LAC  2 109 77.
2 110 10

5 100 99.
1 

99.
2 

98.
4 99 17 6 

Chile LAC  1 26 87.
7 

125
0 33 99.

3 99 99.
1 

99.
3 

99.
8 0 1 

Guatemala LAC  2 167 51.
4 108 10 100 97.

6 98 99.
9 

98.
2 2 3 

Uruguay LAC  1 20 95.
4 176 27 100 99.

4 
99.

5 
99.

9 
99.

2 0 10 

Antigua & 
Barbuda LAC  1 223 24.

4 0 2 100 100 100 100 100 7 0 

Switzerland ECA 1 219 73.
9 41 17

0 100 100 100 100 100 0 2 

Netherlands ECA 1 518 92.
2 49 66 100 99.

8 
99.

9 100 99.
8 0 1 

UK ECA 1 277 83.
9 250 14

0 100 97.
6 

97.
6 100 97.

6 0 11 

Serbia  ECA 2 79 56.
5 88 11

1 100 99.
5 

99.
7 100 99.

4 0 4 
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Hungary  ECA 2 107 71.
3 93 11

4 100 100 100 100 100 0 13 

Greece ECA 1 83 79.
7 131 82 100 99.

9 
99.

9 100 99.
9 0 18 

Georgia ECA 2 65 59.
5 

70 10
8 

100 99.
5 

99.
5 

99.
8 

99.
5 

0 1 

Tajikistan ECA 3 67 28 141 99 100 90.
2 

93.
2 

92.
2 94 0 5 

China - 
Hainan EAP 2 276 58 33 95 100 83.

7 
92.

6 
96.

6 
92.

2 40 0 

China - 
Fujian 

EAP 2 349 64.
8 

121 95 100 99.
7 

100 97.
5 

100 35 4 

Philippines EAP 3 376 48 300 8 98.
9 

97.
9 

98.
4 

98.
1 

98.
9 

12
8 41 

Viet Nam  EAP 3 313 38 331 43 100 97.
1 

98.
7 

99.
8 

99.
6 49 33 

Cambodia EAP 3 95 23.
8 

181 15 91.
2 

80.
4 

83.
7 

99.
8 

80.
1 

1 17 

Bangladesh SA 4 126
5 

38.
2 148 13 100 85.

2 
66.

3 
99.

9 
83.

4 14 13 

Sri Lanka SA 3 354 18.
7 65 75 100 100 100 100 100 1 8 

Pakistan SA 3 387 37.
2 

880 85      1 2 

Madagascar SSA 4 48 38.
5 587 39 34.

2 
47.

1 
51.

6 
56.

1 
54.

4 45 4 

Mozambiqu
e SSA 4 40 37.

1 801 50 31.
6 

63.
5 56 66.

1 
60.

5 14 9 

Burundi SSA 4 463 13.
7 

27 40 18.
9 

99 60.
6 

95 98.
1 

0 7 

 
 
S.5 General findings on service disruption patterns, per hazard type 
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Figure S 4 Top: Typical disruption patterns from tropical cyclone events, for Puerto Rico 
and Florida. Bottom: Typical disruption patterns from flood events, for Cambodia and 
Serbia. Notable is Great Britain. Figures exemplarily taken from respective study region files 

of SM2. 

 
S.6 Contrasting event severity and service disruption patterns 

Figure S 5 Event rank plots of structural impact severity (measured in total amount of critical 
infrastructure components damaged) vs. service disruption impact severity (measured in total 
amount of people experiencing at least one type of service disruption) for tropical cyclone 
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events across all study regions. Generally, events which cause more structural destruction also 
cause more service disruptions, but significant individual outliers (here defined as >20% rank 
difference between structural and service impacts, plotted as red diamonds) and larger-scale 
patterns of outliers are present in many regions. 

 

 
Figure S 6 Event rank plots of structural impact severity (measured in total amount of critical 
infrastructure components damaged) vs. service disruption impact severity (measured in total 
amount of people experiencing at least one type of service disruption) for flood events across 
all study regions. Generally, events which cause more structural destruction also cause more 
service disruptions, but significant individual outliers (here defined as >20% rank difference 
between structural and service impacts, plotted as red diamonds) and larger-scale patterns of 
outliers are present in many regions 
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Figure S 7 Disruptions to power, telecom, education, healthcare and mobility access are not 
concurrent with physical impacts. Upper panel: Fraction of directly affected population 
(located within the flooded area) vs. fraction of population without access to the respective 
service, split by income groups; events in sub-Sahara Africa (all income class 4) plotted 
explicitly. Lower panel: Fraction of destroyed core assets vs. fraction of population without 
access to the respective service, for all events and region 
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S.8 Region variables and system resilience 
 

 
Figure S 10 -Correlations between average resilience cascade factors per service and region’s 
infrastructure density (measured in units or km per capita) 

 
Figure S 11 - Average resilience cascade factors per service, by region’s World Bank Income 
classification (1 - high, 4 - low) 
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Figure S 12 - Correlations between average resilience cascade factors per service and region’s 
population density (population count / km2). 
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S.8 Case Study on Florida - Results  

Figure S 13 Case study on the drivers of tropical-cyclone induced service disruption 
patterns in Florida, United States; analogous to Figure 6 of the manuscript. 
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S.9 Towards systemic risk metrics: population at risk of basic service 
disruptions from tropical cyclones 

Figure S 14 Service disruption risks from tropical cyclones, by service and study region. Expressed as 
average annual population (left) and spatially explicit as number of people per cluster (right). 
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Exploring Compound Event Impacts on Critical Infrastruc-

tures, Cascading Failures and Basic Service Disruptions

Evelyn Mühlhofer, Elco E. Koks, David N. Bresch; published in JRC Pub-

lications Repository: Proceedings of the 61st ESReDA seminar

Abstract. Critical infrastructures such as power lines, roads,
telecommunication and healthcare systems are essential for a society’s
daily functioning. Yet they are also more exposed than ever to the
risks of extreme weather events in a changing climate. Damages to
interdependent infrastructure systems often lead to failure cascades,
and result in catastrophic, yet poorly studied impacts when people
are cut off from basic service access. The large spatial extents of in-
frastructure systems make them a natural target of compound events,
and may further even connect seemingly unconnected hazard events,
potentially amplifying impacts. We present a consistent and trans-
ferable way to study the effects of (spatio-)temporally compounding
hazard events on such infrastructure systems and their impacts on
disruptions of basic services. Building on an open-source modelling
framework which embeds a network-based infrastructure model into
the globally consistent and spatially explicit natural hazard risk mod-
elling platform CLIMADA, we simulate failure cascades across power,
mobile communications, roads, healthcare and educational infrastruc-
tures and the respective service disruptions in Bangladesh from two
historic compound flood and tropical cyclone events (Typhoon Sidr
2007 with concurrent storm surges and pluvial floods, and Typhon
Giri 2010 followed by a flood). We show that cascading failures are
substantial with respect to final impacts, and that the consideration
of sub-hazards such as flooding and wind are of utmost importance re-
garding impact magnitudes. Yet, we find that compound events may
not necessarily escalate the level of impact further than if they had oc-
curred in temporally well separated instances, especially if the events
are spatially disjoint. The hypothesis remains, however, that such
escalations may well happen for more spatially close events and/or
high-impact events capable of ‘tipping’ system performance thresh-
olds.We discuss implications for future connected event research and
propose ways forward.



 

1 Introduction 

Critical infrastructures (CIs) such as powerlines, roads, telecommunication and 
healthcare systems across the globe are more exposed than ever to the risks of 
extreme weather events in a changing climate [1]. Natural hazard-induced damages 
to CIs often lead to failure cascades with catastrophic impacts for the population 
which faces access disruptions for basic services such as energy, mobility and 
healthcare [8]. Being able to represent the spatial exposure of real-world CI systems 
to relevant hazards in a realistic manner, to model direct structural impacts of such 
events, and to capture the dependencies within and between the systems [9], is hence 
crucial for understanding the risk associated with failure cascades and basic service 
disruptions at large scales.  
Research on CI interdependences has made much progress throughout the last years 
[10], and especially network (flow) modelling approaches have been demonstrated to 
lend themselves as illustrative means for hotspot analyses at large system scales (such 
as entire countries) [7] at which many natural hazards may typically occur.   
Within the natural hazard research community, much energy has recently been 
dedicated to the inquiry of ‘compound weather and climate events’, which are an 
“integral part of almost all climate-related risks and pose significant challenges to 
many risk-reduction measures” [2]. Within their seminal paper, Zscheischler et al. [2] 
proposed a typology that identifies four distinct categories of compound events - 
preconditioned, multivariate, temporally compounding and spatially compounding - 
which when occurring, may aggravate the impacts of a hazard compared to its 
isolated treatment, and potentially drive maladaptation.  
Developing this predominantly hazard-focused concept of compound events further, 
Raymond et al. [3] coined the term of “connected events”,  incorporating 
“‘interacting’, ‘cascading’ or ‘multi-risk’ natural hazards; and systemic risks and 
complexity science”. Applied to the lens of critical infrastructures, it is suggested that 
“[c]onnected extremes can exert forces on these [infrastructure] systems beyond their 
design specifications, making it imperative to understand and incorporate such effects 
into infrastructure planning and risk assessments. The relevant interactions are 
typically poorly constrained, despite the large investments involved, due to the great 
complexities of the systems and the numerous and widely disparate actors with 
jurisdiction over them.” 
Our goal is to showcase a practical platform and means to quantitatively study such 
- often conceptually remaining - compound event phenomena under the aspect of 
interdependent critical infrastructure systems, and their connections within the 
(human-centric) impact space. Drawing on an end-to-end risk modelling and 
infrastructure failure framework, we start out on two case studies in Bangladesh, one 
of the most vulnerable countries to multiple hazards, involving tropical cyclones and 
flooding. We explore how temporally, yet not necessarily spatially compounding 
events may induce failure cascades and disrupt basic services. Using a generalized 
framework, we aim to draw preliminary conclusions on the adequacy of the approach 
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as such to advance connected event research,  and highlight insights, limitations and 
extension methods for the future. 

2 Methods 

2.1 Modelling framework - Overview 

Critical infrastructure (CI) failure models often operate at local scales, with high 
data requirements and low transferability. The focus frequently lies on a technical 
performance side, and (natural) hazards are often not explicitly modelled as a 
physically consistent disruptive scenario. To handle the scales at which natural 
hazards occur, and to enable a coherent, transferrable assessment of CI risks and 
their social impacts, we developed an end-to-end framework [5] that employs a 
network modelling approach for interdependent CI systems, embedded into the 
natural hazard risk assessment platform CLIMADA [6], a state-of-the-art tool for 
impact calculations and adaptation options appraisal. CI component damages are 
computed from hazard footprints within the natural hazard risk module of the 
framework,  which then initiate CI failure cascades within the CI systems module  of 
the framework, which propagate along dependencies between the different CI 
systems. Result layers are computed both on a technical (functional) CI systems level 
and translated into human-centric impacts (basic service disruptions) for the 
dependent population. The framework is spatially explicit, fully open-source and 
open-access, allowing for the analysis of geographical regions, CI systems and hazards 
of interest. 

2.1.1 Natural Hazard Risk Modelling with CLIMADA 

While several platforms for natural hazard modelling exist, the open-source and -
access software CLIMADA (CLImate ADAptation) is the only globally consistent 
and spatially explicit tool which is freely available to assess the risks of natural 
hazards and to support the appraisal of adaptation options [6, 14]. The event-based 
modelling approach of CLIMADA allows for a fully probabilistic risk assessment 
based on the IPCC risk definition as a function of hazard, exposure and vulnerability. 
‘Hazard’ is a spatial representation of an intensity measure for the respective physical 
event, such as a wind field computed from the track records of a tropical cyclone, or 
the flood depth at certain locations within a region. ‘Exposure’ represents the geo-
located critical infrastructures at component level which are potentially at risk (e.g. 
power plants and power lines, cell towers, etc.), and their associated value (such as 
Dollars, length or area). ‘Vulnerability’ is a hazard and infrastructure component-
specific function, relating hazard intensity to the degree of expectable structural 
damage. Risk is computed efficiently in CLIMADA by overlaying these three layers, 
and obtaining structural damage fractions for each infrastructure component. While 
data curation is automated for many layers (such as downloading infrastructure 
shapes from OpenStreetMap, or hazard footprints for several types of natural hazards 
from a dedicated data API), user-specific data of many geospatial formats can readily 
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be ingested into the platform. More details on the approach can be found in [5] and 
[6].  

2.1.2 Infrastructure Systems Modelling within a System-of-
Systems Formulation 

CI graphs with directed edges and nodes are generated from the same geo-located 
component data as used in the risk calculations for each CI system. The individual 
graphs are combined into one interdependent CI graph through dependencies. 
Dependencies between components of different CI systems are inferred through a 
dependency-search algorithm described further in [5]. Population data equally forms 
part of the interdependent CI graph, where dependencies (representing demand for 
basic services such as access to power, mobile communication, healthcare, education 
and mobility) are similarly inferred via the search algorithm, yet additionally involve 
checking for availability of road access to schools and healthcare facilities. CI failure 
cascades are triggered through the computed component damages as described above 
and propagated along CI dependencies in the graph representation of the 
interdependent CI system until reaching a steady state.  Basic service disruptions for 
the dependent population are calculated accordingly. More details on the approach 
can be found in [5]. 

 

2.2 Case Selection - Two Compound Tropical Cyclone and 
Flood Events in Bangladesh 

Bangladesh was selected due to its frequent exposure to a multitude of hazards, 
particularly floods and tropical cyclones (TCs). Desk research and data availability 
revealed two explorative case study combinations: Typhoon Giri in 2010, which 
brought about strong winds, and was followed by a major flood two weeks later (also 
termed case A henceforth), and typhoon Sidr in 2007, which brought about strong 
winds, storm surge and flooding due to torrential rainfalls (also termed case B 
henceforth). Impacts were explored for the interdependent power, mobile 
communications, road, healthcare and educational infrastructure systems, both on a 
functional basis and in terms of service disruptions to the dependent population. To 
study the possible increased effects of temporally compounding events, two types of 
simulations were performed: Once, impact and cascading failure calculations were 
run separately per hazard (i.e. once per TC wind and once per flooding), following a 
single-event logic, and once, structural damages on components were first combined 
from both winds and floods, and then propagated through the failure cascade module. 

2.2.1 Data  

— Infrastructure component data within Bangladesh is collected for  power plants, 
high-and medium voltage power lines, cell towers, main roads, hospitals and 
schools (see Figure 1). Data is taken from gridfinder [11], World Bank Open Data 
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and OpenStreetMap. Gridded population count data is extracted from WorldPop 
[12] at a 1km2 resolution. 

— Supply and demand data were obtained for the power sector (electricity 
generation and per capita electricity consumption) from the International Energy 
Agency IEA. 

— Hazard source data is taken from IBTrACS, the International Best Track 
Archive for Climate Stewardship project [13], providing time and location of TC 
tracks for typhoons Giri (storm-ID 2010280N17085) and Sidr (storm-ID 
2007314N10093). Flood footprints are obtained from the Cloud To Street 
database, for the two events with identifiers DFO 3713 and DFO 3226. See figure 
2. 

— Impact functions (also termed vulnerability curves or fragility functions), relating 
hazard intensity to structural damage extent are taken from FEMA’s Hazus MH 
manuals and literature, as detailed in [5]. 

 

 
Source: OpenStreetMap, 2022; gridfinder, 2018; World Bank OpenData, 2019. 

Figure 1. Critical infrastructure systems within Bangladesh considered in case studies A 
and B. 
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Source: authors, with source data from Cloud to Street flood database and  IBTrACS [13].  

Figure 2. Hazard pairs considered in compound event computations:  A - consecutive TC 
wind (Giri 2010) and flood event (DFO 3713), B - concurrent TC wind (Sidr 2007) and flood 

sub-hazards from storm surge and torrential rainfalls (DFO 3226). 

 

 

3 Results 

Figure 3 summarizes the spatial results in terms of people being affected by basic 
service disruptions due to infrastructure failure cascades induced by temporally 
compounding hazard events. As visible in the hazard figures in Section 2, the flooding 
and wind footprints were spatially disjoint, without any geographic overlap in case 
A. Particularly in this case (Figure 2, left), impacts are clearly attributable to either 
of the two hazard events - the flooding for disruptions in the northern part of the 
country, and some minor disruptions due to winds in the southern part of the 
country. Similar, yet not as pronounced, is case B (Figure 3, right), with flood-
induced impacts in the north-east and east part, and wind-induced impacts in the 
south of the country.  

 

 

Flood footprint TC wind field 
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Result tables 1 and 2 confirm the visual impression quantitatively by detailing the 
number of people affected by service disruptions due to either the wind hazard or 
the flood hazard individually, following a single-event logic, and for the compound-
event logic in comparison: The sums of people experiencing disruptions per individual 
hazard type (columns ‘min-sum’), result in the same impact figures as for the 
compound event computations (columns ‘compound’), without bigger, escalating 
effects in the latter.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

Source: authors’ calculations, 2022 

Figure 3. Maps of population estimated to experience service disruptions in access to 
telecommunications, education, healthcare, power and roads, due to (cascading) 

infrastructure failures induced by compound hazard events as presented above: panel A 
(consecutive TC Giri and flood events)  and panel B (compound TC Sidr and surge/pluvial 
flooding event). Green - population cluster has access to respective service, red - population 

cluster lost access to respective service, grey - population cluster never had access to 
respective service. 

A B 

Mobile communications access Mobile communications access Education access Education access 

Healthcare access Healthcare access Power access Power access 

Road access Road access 
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Table 1. Total population estimated to experience disruption in access to the respective 
services from event pair A (TC Giri and a consecutive flood event). Wind Only - disruption 
scenario computed only from the tropical cyclone wind field; Flooding Only -  disruption 
scenario computed only from the flood footprint; Compound -  disruption scenario computed 
from wind and flood being treated as a single, co-occurring hazard event; Min-Sum -  Sum of 
separately computed disruption scenarios Wind Only and Flooding Only, avoiding double-
counting of potential population clusters which are affected by both scenarios. 

 Wind Only Flooding 
Only  

Compound 
(1) 

Min-Sum 
(2) 

mobile 
comm’s. 

5’368 - 5’368 5’368 

education 50’953 4’569’298 4’620’251 4’620’251 

healthcare 30’878 4’799’014 4’829’892 4’829’892 

power 243’593 - 243’593 243’593 

road 16’129 653’864 669’993 669’993 

Source: Authors’ calculations. 

Table 2. Total population estimated to experience disruption in access to the respective 
services from event pair B (concurrent TC wind and flood sub-hazards of Typhoon Sidr, 
2007).  Columns are as explained in caption of Table 1. 

 Wind Only Flooding 
Only  

Compound 
(1) 

Min-Sum 
(2) 

mobile 
comm’s. 

- 1’981’026 1’981’026 1’981’026 

education 2’475’998 14’265’789 16’741’787 16’741’787 

healthcare 2’579’788 15’398’783 17’978’571 17’978’571 

power - 4’672’555 4’672’555 4’672’555 

road 1’717’565 4’536’270 6’253’836 6’253’836 

Source: Authors’ calculations. 

It is important to point out that failure cascades were still triggered due to the 
networked character of the infrastructure systems under study and their 
dependencies between each other, and that they are a dominant factor in healthcare 
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and education access disruptions. Cascades did, however, not spread beyond their 
single-event extent. 

The non-occurrence of any detectable ‘connections’ magnifying impacts beyond their 
initial scopes for the cases studied here may be attributable to two factors: Firstly, 
due to the different spatial patterns of the wind and flooding occurrence, those 
hazards were not acting on the same infrastructure components, and hence would 
not contribute to a joint failure (such as winds weakening a structure, which is 
rendered fully dysfunctional through the onset of a flood). Secondly, no ‘system 
thresholds’ were surpassed that would have led to a system-wide failure (such as the 
power network falling below a certain capacity, which then results in a full blackout). 
However, the occurrence of such scenarios would in general lie within the ranges of 
possibility, for instance through the occurrence of more intense or more spatially 
compounding hazard events. 

Lastly, looking particularly at case B, where a tropical cyclone event entailed several 
compounding sub-hazards (wind, and storm surge and torrential rainfalls producing 
flooding), the importance of explicitly capturing those becomes obvious despite any 
secondary escalating effects: While strong winds did cause some basic service 
disruptions, the resulting floods were the main drivers of impacts. This would have 
been neglected when proxying the event through the wind field only, as is frequently 
done.  

4 Conclusions and Outlook 

In this contribution, we demonstrated a flexible approach to study the systemic 
impacts of compound events interacting with interdependent critical infrastructure 
systems. The approach was demonstrated on two tropical cyclone wind and flooding 
compound events in Bangladesh, for five infrastructure systems and basic services. It 
demonstrated that an event connection, i.e. the modification of impacts through the 
multiple interplay of system interdependencies and compounding hazards, may not 
necessarily occur: If events, though temporally compounding, are spatially disjoint 
enough, and if the sum of individual impacts are not grave enough to tip the system 
towards a larger failure scenario (such as a wide-spread blackout), compound events 
may be considered as multiple single events. Vice-versa, this leaves many possibilities 
for such magnifying impact scenarios to occur Further to that, the present approach 
lends itself to explore more extreme counterfactual events in future studies, either be 
magnifying the intensity of the constituent (sub-)hazards and/or the connections 
between the systems studied – not least with respect to the appraisal of potentially 
robust measures to strengthen system resilience [14]. 

The flexibility of the framework to readily study other regions and hazard pairs 
allows to explore more such events and their impact characteristics. Further, historic 
case studies which are known for their escalating behaviour due to compound event 
impacts (such as Hurricane Harvey 2017 in Texas and Louisiana) could serve as a 
model calibration and validation source. 

202 SUPPLEMENTARY MATERIALS



 

 

Acknowledgements 

This project has received funding from the European Union’s Horizon 2020 research 
and innovation programme under grant agreement No 821010 and under grant 
agreement No 820712.  

References 

1. Thacker, S. et al. (2019) “Infrastructure for sustainable development”. Nature 
Sustainability, https://doi.org/10.1038/s41893-019-0256-8.  

2. Zscheischler, J., Martius, O., Westra, S. et al. A typology of compound weather 
and climate events. Nat Rev Earth Environ 1, 333–347 (2020). 
https://doi.org/10.1038/s43017-020-0060-z  

3. Raymond, C., Horton, R.M., Zscheischler, J. et al. Understanding and managing 
connected extreme events. Nat. Clim. Chang. 10, 611–621 (2020). 
https://doi.org/10.1038/s41558-020-0790-4  

4. Hillier, J.K., Matthews, T., Wilby, R.L. et al. Multi-hazard dependencies can 
increase or decrease risk. Nat. Clim. Chang. 10, 595–598 (2020). 
https://doi.org/10.1038/s41558-020-0832-y  

5. Mühlhofer, E., E. E. Koks, C. M. Kropf, G.  Sansavini and D. N. Bresch. (in 
review). “A Generalized Natural Hazard Risk Modelling Framework for 
Infrastructure Failure Cascades.” https://doi.org/10.31223/X54M17   

6. Aznar-Siguan, G. and D.N. Bresch (2019) CLIMADA v1: A Global Weather 
and Climate Risk Assessment Platform. Geoscientific Model Development 2 
(7): 3085–9. https://doi.org/10.5194/gmd- 12-3085-2019   

7. Thacker, S., R. Pant, and J. W. Hall. 2017. “System-of-Systems Formulation 
and Disruption Analysis for Multi-Scale Critical National Infrastructures.” 
Reliability Engineering & System Safety, 167 (November): 30–41. 

8. Zio, Enrico. 2016. “Challenges in the Vulnerability and Risk Analysis of Critical 
Infrastructures.” Reliability Engineering & System Safety 152 (August): 137–50. 

9. Rinaldi, S. M., J. P. Peerenboom and T. K. Kelly, "Identifying, understanding, 
and analyzing critical infrastructure interdependencies", IEEE Control Systems 
Magazine, vol. 21, no. 6, pp. 11-25, Dec. 2001, doi: 
https://doi.org/10.1109/37.969131. 

10. Ouyang, Min. “Review on modeling and simulation of interdependent critical 
infrastructure systems”, Reliability Engineering & System Safety, Volume 121, 
2014, Pages 43-60, https://doi.org/10.1016/j.ress.2013.06.040. 

SUPPLEMENTARY 4 203



 

11. Arderne, C., Zorn, C., Nicolas, C. et al. “Predictive mapping of the global 
power system using open data”. Sci Data 7, 19 (2020). 
https://doi.org/10.1038/s41597-019-0347-4  

12. WorldPop (www.worldpop.org - School of Geography and Environmental 
Science, University of Southampton; Department of Geography and 
Geosciences, University of Louisville; Departement de Geographie, Universite 
de Namur) and Center for International Earth Science Information Network 
(CIESIN), Columbia University (2018). Global High Resolution Population 
Denominators Project - Funded by The Bill and Melinda Gates Foundation 
(OPP1134076). https://dx.doi.org/10.5258/SOTON/WP00671  

13. Knapp, K. R., H. J. Diamond, J. P. Kossin, M. C. Kruk, C. J. Schreck, 2018: 
International Best Track Archive for Climate Stewardship (IBTrACS) Project, 
Version 4. NOAA National Centers for Environmental 
Information. doi:10.25921/82ty-9e16 [accessed 20.08.2022]. 

14. Bresch, D. N. and Aznar-Siguan, G., 2021: CLIMADA v1.4.1: towards a globally 
consistent adaptation options appraisal tool, Geosci. Model Dev., 14, 351-
363, https://doi.org/10.5194/gmd-14-351-2021 

 

 

List of abbreviations and definitions 

CI Critical Infrastructure 

NH Natural Hazard 

TC Tropical Cyclone 

204 SUPPLEMENTARY MATERIALS



SUPPLEMENTARY 5 205

SM5 Supplementary 5

Data for Critical Infrastructure Network Modelling of Natural

Hazard Impacts: Needs and Influence on Model Characteris-

tics
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Abstract. Natural hazards impact the interdependent infrastructure
networks that keep a modern society functional. A variety of critical
infrastructure network (CIN) modelling approaches are available to
represent CI networks on different scales and analyse the impacts of
natural hazards. A recurring challenge for all modelling approaches
is the availability and accessibility of sufficiently high-quality input
and validation data. The resulting data gaps often require modellers
to make a plethora of assumptions for specific technical parameters,
functional relationships and system behaviours. In other cases, expert
knowledge from one sector is extrapolated to other sectoral structures
or even cross-sectorally applied to fill data gaps. Those assumptions
and extrapolations lead to uncertainty and can undermine the out-
comes of valuable CIN modelling approaches aimed at increasing in-
frastructure resilience. How to overcome data availability challenges
in CIN modelling, and how this influences the quality of results, re-
mains questionable. To approach this challenge, a generic modelling
workflow is devised featuring six modelling stages commonly encoun-
tered in CIN models. Data requirements of each stage are hence sys-
tematically defined, and literature on potential sources is reviewed to
enhance data collection and raise awareness of the issue. The work-
flow represents model generation and validation as well as natural
hazard impact assessment, recovery and mitigation. Using this work-
flow, three case studies on CIN impacted by natural hazards, albeit
with different modelling purposes, are assessed for data availability
challenges. From this, a generalised reflection on the relation between
data availability, model purposes, model performance, and aptness of
the approach is derived. Finally, there is a brief discussion of how to
overcome the challenges of data scarcity, including the use of partici-
patory methods, anonymized data-sharing platforms for CI operators,
and event-based impact datasets.



 

 

Introduction 

Critical infrastructures (CIs) are responsible for the supply of essential services 
and goods. They are organised in sectors which have intra- and inter-sectoral 
dependencies. Due to such dependencies within (intra-sectoral) and across 
(intersectoral) components of different critical infrastructure sectors, critical 
infrastructure networks (CINs) are formed. Disruptions in one sector can lead to 
impacts in other sectors and cause chain effects [1, 2]. The role of CIs for society's 
safety and security receives increasing acknowledgement due to an increasing number 
of threats such as extreme natural events, military conflicts, global pandemics or 
cyberattacks. 

The purposes that CIs are serving are versatile, and societies’ reliance on them is 
not conceived easily due to complex arrangements and dependencies between CI 
sectors. This especially applies to densely populated urban environments which 
sustain themselves due to an equally dense CIN. One way to capture CIs' supply of 
essential services and goods is utilising models. Invariably, representing the 
multifaceted purposes of CIs results in similarly multifaceted modelling approaches, 
on which comprehensive overviews can be found in literature [1 ,3 ,4]. Such CIN 
models may analyse direct disruptions, caused for instance by natural hazards, as 
well as indirect disruptions caused by cascading effects transmitted through 
dependencies [5]. Next to the analysis of disruptions, CIN models are used to develop 
and quantify measures for every step of the disaster risk reduction cycle [6 – 8]. 

Invariably, CIN modelling approaches rely on a range of data and information 
inputs. Data acquisition for modelling inputs poses a challenge, which is also 
identified by the United Nations [9]. The challenge of gathering input data hinders 
the potential utility of CIN modelling techniques in contributing to the evaluation 
and management of resilience in urban environments facing natural hazards. There 
are several reasons in the lacking availability or accessibility of this data, such as 
data protection of CI users, data confidentiality of CI operators, sensitivity of CI and 
their essential services during conflicts or unawareness for the benefits and data needs 
of CIN models. Despite the challenge in data and information availability and 
accessibility, CIN modelling approaches are becoming a popular tool for capturing 
larger-scale interdependent infrastructures, disruption and cascading effects. Lacking 
data and information is often complemented by assumptions in all stages and data 
types of the modelling process, which may compromise the quality of the output and 
thus the reliability of the decision made based on the CIN model outputs. First 
component for a solution is to bridge the gap of missing data and information. 
Categorisation of the data types needed for CIN models is the fundamental step 
required for filling the gap. [10] and [11] outlined the needs of data and methods to 
support empirical and predictive assessments for CI resilience. But currently very 
few systematic reviews are available on the types of data needed. Secondly, a 
discussion about the implications of data availability and accessibility on model 
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characteristics is needed. Model characteristics are further defined as capabilities, 
attributes and reliability of CIN modelling approaches and their output. Discussions 
about the impacts of data scarcity on models in general are given such as [12]. Very 
few discussions focus on how those assumptions are made to overcome data scarcity 
and how they affect the quality and aptness of CIN model characteristics to make 
actual judgements. Those exchanges may lead to more thorough data acquisition 
practices and enable the dialog with potential data providers and lead to better 
assessment of CIN model results. 

The presented work provides a categorisation and explanation of data input types 
for a more systematic way of thinking about data needs and assumption implications. 
For each data input type a definition is given as well as literature references to 
existing data sets if available or approaches in need of this data type. The 
categorisation is made based on individual stages within CIN modelling workflow. 
The presented work is delimited in two important dimensions: The purpose that CIN 
models fulfil define the specific needs for data. As an example: The vulnerability of 
CIN to cyber attacks and the identification of maintenance needs of infrastructures 
requires different information and data. In the presented work the  limitation is to 
only consider extreme natural events as impacts to CIN. The various techniques to 
derive the features of natural hazards such as numerical modelling, data-driven or 
empirical methods are not outlined in this work, since the focus is on the impact of 
extreme natural events on the exposed CIN.  Another limitation is to focus explicitly 
on CIN modelling approaches conventionally termed “network-based approaches” [3] 
or “graph-based modelling approaches” for the gathering of data needs. The 
represented modelling approaches are  further on referred to as CIN modelling 
approaches. Those approaches have sub-categories such as flow-based network 
models, which treat the flow of commodities through the CIN as the driving 
characteristics. Another sub-category which is also included in this work are 
topology-based network modelling approaches, which concentrate on the 
functionality of CI assets considering their location in the network as defining 
characteristics. Other sub-categories for CIN modelling approaches, such as agent-
based or system-dynamics-based approaches must be mentioned in this context but 
are not considered explicitly further on due to their more specific data needs. 

In the introduction chapter, the background and motivation of this work were 
outlined and a short review of literature was presented. The main purpose of the 
paper is to provide an overview of data needs for CIN modelling. Therefore, a 
generalised modelling approach is defined and elaborated in stages. Based on every 
stage, the required input data types are categorised and literature is presented for 
each data type. It is not intended to represent a risk management framework but 
only to concentrate on the modelling workflow and the risk analysis. Subsequently 
arguments are collected on why the data is important for CIN modelling techniques: 
Three case studies are introduced with a focus on one missing input dataset per 
category, the assumptions that are necessary due to the missing data and the 
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resulting effects on the model characteristics. The presented work is then discussed 
and concluded (cf. section 4 & 5). 

 

CIN Modelling Stages & Data 

2.1 A Generalised CIN Modelling Process in Stages 
As previously mentioned, a wide range of data needs may be encountered 

throughout different CIN modelling approaches. To capture these in a systematic 
manner, a broadly formulated and generic multi-stage modelling process is defined, 
inspired by work stages frequently encountered in studies about CIN network 
modelling [1, 3, 7]. Each of the stages form a category which is examined separately 
for their data needs (cf. section 2.2). It is noted that this categorisation is not 
exhaustive but serves as a starting point for the development of CIN modelling 
studies. Figure 1 shows those six stages as well as the two overarching stances. The 
definition of the model purpose drives every single stage in the beginning of the 
modelling assignment and is not necessarily driven by data but drives the data need. 
The stage of validation, calibration and plausibility evaluation overarches the entire 
process as well since it can be applied to all modelling stages as well. Validation and 
model purpose thus have a distinctive role in the graphical representation of Figure 
1 pointing to every other modelling stage. Additionally, Figure 1 displays that a 
model can be compiled already by only following the stages until the stage of Impacts 
of natural hazards, the two stages hereafter are only optional. This is indicated by 
an additional arrow branching from the path described by the arrows. 

Models are by definition a simplified representation of nature or systems. Thus, 
the first stage of the modelling is outlining the model purpose, which is defined by 
the intention that applies to CIN modelling efforts. Rather than requiring much data 
per se, the purpose of each study focuses on the choice of modelling approach and, 
consequently, data requirements. The purpose frames expectations on the usability 
and types of results which the model should eventually provide (for instance decision 
support for strategic planning, information for disaster management, creation of 
knowledge, awareness building) and specifies users and target groups (such as 
academic researchers, utility providers, regulators, etc.). All in all, the model purpose 
is determining other model characteristics such as system boundaries, potential 
output and the target group. An in-depth discussion on the relation between model 
purpose, data needs, data availability and model characteristics is given in section 3. 

The next stage is defined as the mapping of infrastructures assets. The intention 
of this stage is to set up a network representation of the CI under study, considering 
their topological characteristics. This includes the transformation of information on 
physical infrastructure components into network elements such as nodes and links or 
vertices and edges. Nodes represent individual entities and links represent the 
dependencies between those entities. 
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Consecutive to the asset mapping is the quantification of dependencies. In this 
stage, dependencies within CIN (intra-sectoral) and in between different 
infrastructure networks (inter-sectoral) are identified, quantified, and included as 
explicit network model elements.  

The next step is the quantification of CI services for the network assembled. The 
objective of this stage is to obtain a quantifiable extent of the service levels provided 
by the CIs under study, including information on the service area, recipients of the 
services, and demand patterns for these services. 

In the stage of impacts of natural hazards, the exposure of infrastructure assets to 
natural hazards, and their consequences, are considered. Knowledge is needed on the 
area and type of natural hazards causing structural damages, as well as on the 
impact-functionality relationships linking infrastructure damage to their ability to 
provide their services.  

The successive stage deals with the appraisal of adaptation measures. The target 
of this stage is to evaluate the effect of measures (designed for adaptation, mitigation, 
or other purposes), implemented at any potential level of the system under study 
(i.e. at infrastructure network components, at dependencies, at the network 
structure, etc.), on a specified target metric. 

Approximating the steps of the disaster risk reduction cycle, is done in the 
following stage determination of response and recovery. The objective of this stage 
is to analyse post-disruption behaviour of the modelled system, and its trajectory 
until reaching a certain performance state (such as pre-disaster service levels, or a 
new status quo). Not considering a response and recovery will lead to an inaccurate 
representation of disruptions and ultimately an incomplete representation of CINs 
under the impact of natural extreme events. 
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The final stage is the validation, calibration and plausibility evaluation stage of 
the individual stages before and refers to the examination of the system behaviour 
with sufficient accuracy. The stage can consist of the calibration of input parameters, 
the checking for plausibility or the verification of input and output data [13, 14]. 
Several model validation approaches exist [15, 16], which entail different data 
requirements. Usually, it is carried out by comparing field or experimental data to 
the model output, referring to the same (or a sufficiently similar) scenario. Finally, 
it must be noted that model validation should also be carried out according to the 
purpose of the model, rather than aiming to achieve a perfect representation of the 
studied systems. 

 
  

Figure 1: Generalised stages of critical infrastructure network modelling for hazard assessments 
including overarching stances of model purpose and validation. 
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2.2 Data Needs Derived from CIN Modelling Process Stages 

Grounded in the stages of the generalised modelling process defined in section 2.1, 
an in-depth literature review is taken to collect frequently occurring data needs, types 
and if available show potential data sources. Those data types are introduced for 
every modelling stage as seen in Figure 2. Every icon indicates a type of data and 
information that can be relevant for the CIN modelling. 

 
2.2.1. Mapping of Infrastructure Assets 
Spatially explicit modelling studies start out with a need for geospatial information 

on CI component locations as point elements and occasionally as polygons as well. 
Depending on the spatial scale and geographical region of interest, availability of 
such information is highly varied: While infrastructure location data may be readily 
accessible, curated and openly provided through official (e.g. governmental) sources 
- as by the Homeland Infrastructure Foundation-Level Open Data of the U.S. 
Department of Homeland Security [17] or by the GeoPortal of the Swiss Federal 
Administration [18], the only way to obtain infrastructure data in less affluent regions 
may be reliance on crowd-sourced mapping platforms such as OpenStreetMap, with 
often unknown quality and completeness ratings [19]. Besides regional differences in 
data availabilities, certain infrastructure sectors are notorious for data scarcity: Road 
infrastructure, for instance, is relatively well mapped and available [20] since the 
availability of its location is a prerequisite for its usage. Many sub-terrain components 
tend to have mapping gaps, which impedes large-scale risk analysis, as for instance 
common in the water sector [21]. Further data scarcity concerns arise from resolution 
issues, i.e. when detailed sub-components of infrastructure networks are required for 
analyses, as opposed to a more simplistic reliance on high-level components. For 
instance, when representing the power grid through different types of power plants, 

Figure 2: Data types for critical infrastructure network hazard modelling categorised by modelling stages. 

SUPPLEMENTARY 5 211



 

 

substations, transformers, high-and medium voltage transmission lines, power towers, 
low-voltage distribution lines, poles, etc. instead of mapping simply the most 
important transmission lines and plants. In case of missing data sources workarounds 
are applied depending on the model purpose. In case a model is generated to develop 
and test a modelling framework e.g. the generation of synthetic infrastructure data 
has been used among others in [22, ]23], machine-learning based inference of 
infrastructure data for the global power transmission grid [24], or even omission from 
the scope of study [21]. 

2.2.2. Quantification of Dependencies 
Since the seminal work of [1] on the importance of dependencies among critical 

infrastructures, many frameworks on categorising dependencies have been developed 
[3, 4]. However, data is needed to identify dependencies in the first place and enable 
the consideration of potential chain reactions. Empirical approaches have focused on 
a range of methods such as expert judgement and media coverage [25, 26], yet to 
date no comprehensive dependency databases exist which thoroughly document these 
(cf. [27] for a European-wide effort to build one). The level of detail for such 
identification efforts is often limited by the resolution at which utility providers share 
data [28]. Deductions of dependencies often remain at a sectoral scale [29, 30], which 
does not link appropriately to the resolution of many CIN modelling approaches. 
Further, quantification of the hence-identified dependencies is often summarised 
under terms such as “coupling behaviour” [1] or “coupling strength”. Ideally 
dependencies should incorporate a notion of input quantities at the supporting side 
which relate to output quantities at the dependent side, and of the degree to which 
certain impacts on a dependency source propagate down to a dependency target. 
Quantification efforts have proven data-intensive, relying on time-dependent 
disruption and restoration data [28, 31]. While such coupling behaviours are 
sometimes implicitly quantified through (lack of) redundancy in the network 
topology, or through failure tolerance threshold attributes, deterministic and binary 
dependency formulations still prevail due to a lack of refined enough data to capture 
more elaborate dependency relationships. 

2.2.3. Quantification of CI Services 
Per definition, CIs provide essential services to a number of end-users, including 

population, businesses or other infrastructure. The performance provided by 
infrastructures can be expressed not only in terms of services but also in terms of 
goods. However, in presented work, only services will be mentioned. As CIN 
modelling is usually concerned with impact estimation, a multitude of data regarding 
CI services are necessary. Firstly, knowledge about the characteristics of the 
population, including their number, socio-economic status and vulnerabilities, served 
from a particular infrastructure asset is required. Moreover, data about the 
characteristics of businesses and other infrastructure assets served could also be 
needed. In the absence of detailed data, a number of substitute techniques are 
commonly employed, such as the estimation of a service area using geometric 
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methods e.g. Voronoi decompositions or shortest path algorithms, [32 – 35]. Voronoi 
polygons can also be used for the dependency quantification as done in [7]. Other 
options the use of surveys [36], or the use of aggregated customer and census data 
[37]. Additionally, service demand pattern data may also be required both for asset 
functionality determination as well as for impact estimation [23], especially when 
examining societal impacts of disruptions [38]. While sufficiently accurate estimations 
exist for certain CI services such as water distribution networks [39, 40], they may 
be more difficult to obtain for other CI services such as emergency services or the 
financial sector. CI service data as defined herein are usually difficult to obtain either 
due to legislative restrictions, economic competition or general absence. As a result, 
most studies in the scientific literature resort to a number of assumptions and 
inference approaches. 

2.2.4. Impacts of Natural Hazards 
From a CIN modelling perspective, it is important to capture when and how 

individual infrastructure assets subject to natural hazards fail and translate this 
direct asset-level failure to system-level indirect failures. It is noted that failure does 
not necessarily imply a binary state as commonly used [41], but can also refer to 
reduced functionality. Asset damage or failure is a product of complex interactions 
between the characteristics of the asset as well as those of the hazard considered [42], 
making failure identification a data-intensive task. In practice, asset damage is 
usually linked to certain hazard parameters (e.g. via appropriate curves) according 
to the type of asset examined. These parameters may vary according to the 
infrastructure or hazard considered. For example, in the case of flooding a range of 
hydrological characteristics can be considered [43], including whether the asset is 
flooded or not [44], inundation depth [45], water velocity [46], flood duration [47] or 
water chemical composition, although inundation depth is the most commonly used 
parameter in practice [48]. In the case of earthquakes, fragility curves linking element 
damages to ground motion parameters such as peak ground acceleration (PGA), peak 
ground velocity and peak ground displacement among others [49] are commonly 
employed. Additionally, insights on how damages translate to service or functionality 
reduction are needed. Next to the identified hazard failure mechanisms also storms 
and fire have to be mentioned. Several functionality mechanisms are being considered 
in practice, such as binary functionality states [50], discrete functionality states [51, 
52] or continuous functionality [53]. These mechanisms are infrastructure and hazard 
specific. A binary state realistically represents the failure of electric power assets 
under a flood scenario, while a transportation network requires a continuous 
functionality representation. Consequential is the consideration of multi-hazards 
which may complicate infrastructure response further [54]. A simple superposition of 
the previously mentioned response attributes may not suffice for multi-hazard 
environments since a compound event could either have more severe impacts on the 
disruption or also be the same compared to a singular event. The disruption functions 
thus have to be generated individually for each multi-hazard-sector combination. 
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Finally, the exposure to natural hazards may not be described deterministically only, 
but under consideration of extrinsic uncertainties e.g. meteorologic uncertainties and 
intrinsic uncertainties e.g. resulting from a system’s inherent variability. Currently, 
a lack of comprehensive datasets regarding infrastructure failure under a multitude 
of hazards is a bottleneck for risk and resilience analyses. 

2.2.5. Determination of Response & Recovery 
Modelling the response and recovery process of interdependent CIs naturally relies 

on most of the aforementioned data to represent the interdependent infrastructure 
system itself, yet requires various additional data: component repair times [55]; 
quantitative relationships between repair state of components and service provision 
levels [56] - conceptually the inverse of the damage-functionality relationship 
mentioned above-; data on response actions including work capacities and repair 
priorities or the rerouting of CI supply flows [57]. In general, this refers to the 
transformability of infrastructure assets under the stress of natural hazards. 
Frequently used component repair time tables are partly available through the 
technical manuals of FEMA’s Hazus Program [58], or from ATC-13 data [59] for a 
wider range of buildings pertaining to different social function classes. Such tables 
deliver a partial insight  in terms of infrastructure components covered and may not 
always be directly transferable to regions other than the US for which they were 
designed. Given the complexity of the task, many recovery studies tend to remain at 
sectoral level rather than at infrastructure component levels, and do not incorporate 
the multitude of uncertainties involved in these processes [60]. 

2.2.6. Appraisal of Adaptation Measures 
Commonly, the viability of adaptation measures is evaluated by trading off 

benefits against costs, requiring data on either side and at various scales of a network. 
Multi-criteria analyses and most commonly cost-benefit analyses are generally 
performed for many types of hazards and individual infrastructure sectors [61 – 63]. 
As measures may act on different aspects of the risk chain, such as reducing a 
component’s vulnerability or exposure to a certain hazard, or on the hazard intensity 
itself, data is needed to parametrise the working mechanism and hence quantify risk 
aversion benefit adequately. Evaluating measures with regards to their co-benefits 
and costs on other CI sectors require adequate parametrisation of the above-
mentioned dependency relationships. The latter is particularly crucial when 
evaluating the effect of system-level adaptation measures [56]. These measures for 
instance aim at enhancing resilience through modifying dependency relationships 
instead of fortifying individual components. Examples for system-level adaptation 
measures are increasing redundancies, reducing failure propagation behaviour, etc.), 
or modification of end-user demands and response capacities. Drawing on the level 
of destruction and disruption from real-world extreme events, it may however be 
concluded that the performance of adaptation measures is still rarely evaluated at a 
system-level, nor do measures tend to target system-level adaptation [55]. 
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2.2.7. Validation, Calibration & Plausibility Evaluation 
In the context of modelling CI response under hazard scenarios, studies focus on 

collecting field data from past events. Such data might include print-media and social 
media or infrastructure and disruption damage and disruption reports of past events 
[35], utility providers’ service outage statistics and restoration timelines [28, 64] and 
reports of response measures taken [65]. Methodologies requiring data collected from 
expert and stakeholder elicitation processes may also be employed [66]. It is 
important that these datasets are of sufficient quality in terms of reliability, 
consistency, completeness and detail, which in turn requires additional verification. 
In general, there is a lack of established CI model validation approaches in the 
scientific literature and validation of CI models is rarely comprehensive due to the 
unavailability of relevant, homogeneous data.  

Data Scarcity Influencing CIN Model Characteristics 

3.1. Introduction of Case Studies with Varying Model Purposes 
Three specific case studies are introduced which represent the experience from the 

authors and will be used to discuss the effect of data scarcity on CIN models. The 
CIN model case studies are defined by four model characteristics in Table 1:  

The first case study briefly summarised in Table 1 concerns a continental-level 
earthquake risk assessment for Europe with the aim of identifying vulnerable 
geographical hotspots and to quantify the vulnerabilities that are induced by 
dependencies between CI sectors. Similar case studies are present in the scientific 
literature [67]. While CI networks are represented at an asset-level, simplifications 
regarding the detailed structures of the various networks are made. Similar 
simplifications are made regarding the ways that the various CI sectors are connected 
and how their disruptions influence the population. 

The model purpose of the second case study is to identify the flood risk as 
population time disrupted per year for CIs next to other tangible flood consequences 
such as economic damages and the population affected or endangered. The analysis 
is based on a CIN model based on [68] and is additionally used to compare the 
benefits of potential mitigation measures and allow for an improved decision making. 
The specific model purpose of flood risk management could be generalised by being 
applied to other natural hazards such as droughts, storms, bushfire etc. Thus, the 
generalised model purpose would be defined as hazard risk management. In terms of 
abstraction from the real complexity of CIN, this type is more differentiated with 
regard to the sectors than the first case study, but has a smaller spatial boundary. 

The third case study is a sectoral adaptation study, designed to decrease 
healthcare access disruptions across the population in the face of multi-hazard 
(particularly strong winds and flooding) events [69]. The analysis is based on an 
integrated natural hazard risk and CIN modelling approach [35], and evaluates five 
adaptation measure packages, which are either focused on resilience-enhancing 
measures to a single CI type, target multiple CIs at once, or modify the dependency 
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relationships among CIs. While real-world data is used to map the interdependent 
CI systems and hazards, the stylised parametrisation of adaptation measures intends 
to exemplify trade-offs and benefits of component level against system-level measure 
packages to prevent service disruptions. 

 
 

3.2. Repercussions of Data Scarcity for Every Modelling Stage in the presented 
Case Studies 

Exemplifying the introduced modelling stages (cf. section 2.1) and data 
requirements (cf. section 2.2) on the presented case studies (cf. section 3.1), Table 2 
briefly illustrates typical repercussions of data scarcity for the corresponding three 
generalised model purposes. Table 2 does not claim that the collected repercussions 
always occur for the generalized model purpose types. It merely serves to highlight 
that this is one of the possible repercussions. For brevity, only one instance of lacking 
data and its consequence for the modelling process is discussed per stage and case 
study. Additionally, it is noted that the three given model purpose types are not a 
complete picture of all possible model purpose types but only three possibilities. A 
brief overview is given on the content of Table 2 for every modelling stage. In the 
stage of assets mapping all case studies receive incomplete or partial information 
about specific CI sectors. This leads to a coarse representation of the network and 
its sectoral hierarchy as well as higher uncertainty of the results. In the stage of 
dependency quantification, the general issue is missing information about 
dependencies. This materializes in assumptions that need to be made and overlooked 

Table 1: Three exemplary case studies using CIN modelling, featuring a wide range of model 
purposes, system boundaries and outputs. Those case studies serve for the further examination of data 
scarcity implications on modelling qualities. 
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redundancies that should not be disregarded. For the stage of quantification of CI 
services, the level of detail of the input that is necessary for the specific model 
purposes is a challenge. Additional challenge is to retrieve the same metric for 
different CI sectors, resulting in challenges for the comparability of scenario 
calculations.  

For all case studies different problems occur in the stage of natural hazard and 
operational limits and the type of challenges are determined by the model 
characteristics. First case study mentions that no functionality-impact relation is 
available for the earthquakes. Second case study is missing sector specific flood-depth-
functionality relations and the third case study is missing a combined flood depth 
and wind speed functionality relation. All missing information are resulting in 
assumptions that lead to a potential over- or underestimation of the final results. In 
the response and recovery stage desired metrics are missing to quantify the recovery 
after a CI disruption. But also the initial information about the mere presence of 
emergency structures is missing and thus the response is also not represented 
appropriately. For the measure appraisal stage, the issue concerns the identification 
of potential measures alone. But in case those measures are identified, as in the 
second case study, the metrics to quantify the potential costs are missing. For all 
three case studies the validation stage was hindered by data availability 
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3.3. Influence of data scarcity on CIN model characteristics 
As the compilation in Table 2 illustrates, absence of data impacts model inputs 

and potential outputs. This invariably affects a range of model characteristics, which 
should be carefully evaluated under consideration of the model purpose, to critically 
reflect its fitness for the intended purpose. Without claim of completeness, a few 
crucial model characteristics and the implications of data scarcity onto those are 
discussed below, extending the mathematically driven characteristics of networks as 
introduced by [70]. 

Table 2: Repercussions of data scarcity in every modelling stage, illustrated on three different model purposes, generalised from 
exemplary case study experiences in Table 1.. 
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The granularity describes how fine or coarse a network model resembles the details 
of CI supply systems. Figure 3 provides an illustration demonstrating one possible 
scale from low to high granularity for the electricity sector. The figure does not depict 
the exclusive approach to coarse granularity; for instance, dynamics encompassed by 
a coarser granularity can also be cross-sectoral. The granularity is intricately linked 
to the accuracy and complexity of CIN models. Invariably, the amount of data and 
information available influences how accurate and complex a model can be and how 
granular it may or should be resolved. The granularity is adjusted on a precision 
scale according to the model objectives. Thus, models of type A tend to attain their 
model purpose using a coarser granularity than e.g. models of type C, which generally 

Figure 3: Amount of data and information available affects the resolution (granularity) with which CIs, 
CI dependencies and services can be modelled. 

Figure 4: Types of failure mechanisms or chain reactions, which can propagate through disrupted CINs, adapted from 
definitions in [69]. Depending on data availability, different failure mechanisms / chain reaction types may be captured. 
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may require a finer granularity. When comparing the examples in cell 1A and 1C 
Table 2 this is underlined as well. 

Another CIN model characteristic linked to the granularity as well as the accuracy 
is the ability to resemble chain reactions. The German Federal Office of Civil 
Protection and Disaster Assistance (BBK) suggests a scale of three types of chain 
reactions which are elaborated in Figure 4 [71]: First type of chain reaction refers to 
the domino effect where disruptions are propagated through critical infrastructure 
assets through their dependencies. Cascading effects describe a type of chain reaction 
similar to the domino effect but underline the progressiveness of the consequences of 
the disruption. The last type of chain reaction features interdependencies, which refer 
to the mutual reliance or connection between different CI assets. Depending on the 
granularity as well as the level of detail of dependency information those different 
chain reaction levels are representable in CIN models. Table 2 introduced in cell 2A 
the fact that all of those dependencies had to be assumed and thus have a lot of 
uncertainty. The resemblance of chain reaction might thus be inaccurate. 

The communicability of CIN models describes the ability to transfer the 
methodology as well as potential outputs to the desired target group. Absence of 
information and data often leads to the replacement through assumptions and 
heuristics - which often happen implicitly or may not be kept close track of. More 
assumptions may lead to lower communicability of how a model was set up and 
reduce trust in its outputs. This is one factor hindering the process of testing 
measures in the CIN model environment as described in Table 2 cell 6B. 

Existence of many assumptions due to data scarcity may hamper reproducibility 
of a modelling approach by other researchers. Further, data availability and 
assumptions for certain geographic or system boundaries, for which a model was 
initially designed, may not extend to other regions and systems, limiting its 
transferability. Some modelling approaches may be more versatile and flexible with 
respect to underlying premises than others, which feature a higher level of hard-coded 
assumptions or which are calibrated against specific, non-widely available datasets. 

Discussion & Outlook 

Current CIN modelling techniques can already supply advice for the consequence 
assessment and mitigation planning, but the more accurate, complete, relevant, 
consistent and accessible data is, the better model results can become. The added 
value of this work lies in collecting the data requirements of CIN models. This is 
achieved through the systematic division of data categories and associated data types 
based on modelling stages. Further possibilities of categorisation, for example based 
on sectors or importance for models, are conceivable. These new categories have the 
potential to elicit further data types that have not been considered so far. Therefore, 
this work does not claim to be a complete collection of data needs but is intended as 
a propulsion for the discourse about data availability of CIN models. 
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Wording remains a challenge in the field of hazard modelling for CIN models since 
two fields of expertise (impact modelling and engineering of CIs) meet and do not 
share the same established terminology. Although the network models considered in 
this work have been limited to the area of graph-based CIN models it remains an 
issue to identify the right terminology for the interaction of data scarcity and CIN 
models. The characteristics previously defined are a first approach to describe the 
interface of those fields under consideration of the CIN models capabilities and 
limitations. More efforts need to be invested in defining a generally accepted 
terminology for a range of network characteristics such as fidelity, granularity, 
sensitivity or the representation of cascading effects to close the gap between impact 
modelling and CIN modelling. 

In the surrounding of this work, the category of CIN model purposes has been 
defined and filled with three examples along a scale from (1) hazard vulnerability 
hotspot assessment to (2) hazard risk management to (3) sectoral adaptation. These 
examples seek the representation of network models on a scale comparable to a 
spatial scale (global, national, regional and local) suggested by [72] for flood risk 
assessments including typical model characteristics for each scale level. In the future, 
scales like these need to be defined as well for the other CIN model characteristics 
with a clear division of levels as well. The definition of these levels is not about 
setting a better or worse value but about being able to accommodate the subdivisions 
defined by model purposes and to enable differentiation of the characteristics. 

One concomitant of data scarcity are assumptions made by CIN modellers. Those 
assumptions can be supported by from CI operators and scientists alike through 
expert knowledge. Nevertheless, assumptions influence the network model’s 
characteristics in their performance. Although commonly used in CIN models, 
current studies often lack sufficient communication or quantification of the 
uncertainty resulting from assumptions, unlike other fields where such practices are 
more prevalent [73]. A range of possibilities are available to modellers to quantify or 
counter uncertainties, beginning with uncertainty analysis [74], sensitivity analysis, 
anecdotal verification with expert knowledge or at the least an overview of made 
assumptions as done in [35]. It must, however, be noted that uncertainty and 
sensitivity analyses often in turn also rely on more input data, for instance for 
validation and setting of plausible bounds for the tested parameters as an input. The 
additional communication and quantification of uncertainties have the potential to 
enhance trust in CIN model results and, consequently, strengthen CIN modelling 
methods as a whole. When it comes to presenting the results, uncertainties must be 
communicated appropriately to establish trust with the intended recipients and allow 
for robust decision making [75]. In the case studies that were presented, CI 
stakeholders, particularly CI operators, were involved as recipients or the least CI 
operators are key partners in the development and implementation of measures. In 
any case, trust is of significance to ensure sufficient eagerness. An early and ongoing 
participation of CI stakeholders in the process of the CIN hazard assessments can be 
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beneficial in all stages of the modelling process [26, 56]. Not only will this create a 
greater identification and trust in the potential results but additionally has a huge 
potential of acquiring qualitative information or sometimes even quantitative 
information, in perspective: data. 

An issue that persists and needs to be addressed as well in participatory settings 
is the manner in which data is conveyed or provided. A range of options have been 
tested by US Federal National Laboratories (e.g. Sandia Lab, Los Alamos Lab etc.) 
but the knowledge is not publicly accessible for security reasons. Opposite to these 
options is the openness to share most of its infrastructure data as done in New 
Zealand for example [76]. Therefore it seems that the willingness to share data varies 
a lot and discussion is ongoing. The question remains whether the sharing of data or 
information itself is proven to cause more disruptions on CIN due to physical or 
cyber-attacks compared to disruptions from natural hazards that cannot yet be 
recorded or recorded inadequately due to a lack of data exchange. 

Even though some data sources were compiled in this work, gaps remain. One 
suggestion is to collect more impact data in the direct aftermath of disaster events 
either in person or through social media. Another suggestion is to establish platforms 
for CIN datasets accessible for research including a range of prerequisites from users 
and providers: (1) consideration of previously defined data types needed, (2) 
awareness for the level of detail that needs to be published if this data is used by 
CIN modellers, (3) sensibility for privacy of CI users. Despite the strong case for 
more and better data and information in CIN modelling, it is paramount to critically 
reflect on the need for complexity and detail, depending on the purpose for which a 
model is built. In many cases, the unavailability of detailed data does not hamper 
the purpose of the developed CIN models. Whether a model aims to create new 
knowledge (models for understanding), or to create new capabilities within its user-
space (models for action) may require different levels of upfront data availability, 
since in the latter scenario users may provide those themselves on-the-fly, as deemed 
necessary. Further, societal context and ethical uncertainties may influence data 
requirements - some societies and studied problems may require higher levels of 
resolution and certainty to justify action than others. 

Conclusion 

CIN modelling offers approaches to better assess and manage natural hazards. 
Data inputs limit and determine the value of CI modellers’ “offerings” to specific 
assignments. This work identifies overarching similarities in the modelling process 
and defines eight stages and associates each stage with data types. The typification 
of those data needs has been documented and the potential data sources for all data 
types are pinpointed, or if unavailable, gaps are identified. Three purpose-driven 
classes of CIN models have been distinguished, setting it apart from the pure size-
driven classification (e.g. local, regional, national, global). For the model purpose 
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type case studies of CIN models have qualitatively shown the influence of data 
scarcity and the resulting assumptions at each modelling stage. 

This work increased the level of understanding regarding CIN modelling and the 
difficulties faced by both CI operators and CI modelling experts alike. The modelling 
stages and data types defined enhance the possibility to communicate about the data 
needs and assumptions in participatory settings. On the other hand, an orientation 
is provided for network modellers at an early stage of a model setup including 
potential data sources. Additionally, CIN modellers are encouraged to disclose 
uncertainties in their methods by delivering examples on how data scarcity influences 
network characteristics. In the end, this contribution is advancing the potential of 
CIN models to be utilised mutually by research and practice. 

The work provided, enhances CIN modelling techniques by clearly outlining their 
data needs based on modelling workflow stages and provides a literature review that 
identifies potential data sources or examples in practise or research. Ultimately, this 
leads to the enhancement of analyses and evaluation methods for a resilience-based 
planning of urban environments under consideration of CI services. 
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Relevance to Resilience 

Impacts on critical infrastructure (CI) assets cascade through their dependencies 
from and to other CI assets. CI network modelling methods are one viable tool to 
consider these cascading effects. 

When addressing the resilience of infrastructure, it is essential to consider the 
dependencies within a network. Different measures, each with a variety of operating 
principles, need to be tested for their potential to increase resilience. CIN (Critical 
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Infrastructure Network) modelling methods have proven to be valuable tools for 
quantifying CI response, reconstruction, protection, and adaptation measures. 

This work contributes to unlocking the potential of CIN modelling methods by 
classifying and identifying data needs and discussing the implications of data scarcity 
on model performance. 
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Mühlhofer, Evelyn, Elco E. Koks, Chahan M. Kropf, Giovanni Sansavini,

and David N. Bresch (June 1, 2023). “A Generalized Natural Hazard Risk

Modelling Framework for Infrastructure Failure Cascades”. In: Reliability

Engineering & System Safety 234, p. 109194. issn: 0951-8320. doi: 10.

1016/j.ress.2023.109194.
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