
Johannes von Oswald

Interpretability of Learning Algorithms Encoded
in Deep Neural Networks

Diss. ETH No. 29862

johannes von oswald

I N T E R P R E TA B I L I T Y O F L E A R N I N G A L G O R I T H M S
E N C O D E D I N D E E P N E U R A L N E T W O R K S

diss . eth no. 29862

I N T E R P R E TA B I L I T Y O F L E A R N I N G
A L G O R I T H M S E N C O D E D I N D E E P N E U R A L

N E T W O R K S

A dissertation submitted to attain the degree of

doctor of sciences of eth zurich

(Dr. sc. ETH Zurich)

presented by

johannes von oswald

MSc., Technische Universität München

born on 28 September 1990

accepted on the recommendation of

Prof. Dr. Angelika Steger, examiner
Dr. João Sacramento, co-examiner
Dr. Razvan Pascanu, co-examiner

Prof. Dr. Guillaume Lajoie, co-examiner

2024

Johannes von Oswald: Interpretability of learning algorithms encoded in deep
neural networks , © 2024

doi: 10.3929/ethz-b-000660213

This thesis is dedicated to my parents
Anne & Moritz

A B S T R A C T

We are currently experiencing a revolution in artificial intelligence (AI).
Considerable improvements in generative AI and particular large language
models (LLMs) are driving this revolution. Yet powerful, these large-scale
AI systems are more difficult to understand. Once trained, their inner
workings remain a fascinating and potentially frightening mystery. The
question remains of how we, the creators of these systems, can understand
and control them and what drives their behavior.

In this thesis, I will present an attempt to understand certain characteris-
tics of deep neural networks with the tools of mechanistic interpretability (MI).
These tools are reminiscent of those used by a neuroscientist: 1) analyzing
the connectivity of brain cells (connectomics) 2) measuring and analyzing
neuronal activity and 3) measuring effects of active interventions in ongoing
computations. Although a rigorous understanding of large deep learning
models is out of reach, in this thesis, I will provide evidence of a possible
path towards this goal by iterative interpretability: an iterative process of
designing, training, and analyzing AI systems in which insights obtained
by MI lead to more capable and interpretable models.

First, I provide evidence that it is possible to gain an understanding of the
intriguing in-context learning characteristics of Transformers, the artificial
neural network architecture used in LLMs when studied in isolation. We
analyze, as a first step, the weights of small Transformer models trained on
few-shot regression data. By using the tools of MI, we can reverse engineer
the trained Transformers, equipped with linear self-attention layers, and
show that they implicitly learn internal models in their forward dynamics
based on gradient descent and the data given in context.

Second, I will address one important shortcoming of this simplistic setting
and move closer to LLMs by training autoregressive Transformers. Here,
we train models to predict the next element in a sequence of elements
obtained by linear dynamics instead of few-shot data. Again, with the tools
of a neuroscientist, we can reverse engineer these autoregressive models
and identify the model internally i) constructing optimization problems
and ii) solving them by gradient descent-based algorithms. This algorithm
hidden inside the weights of the model allows us to repurpose the model as
an in-context learner post-training. Based on these insights, we then close
the interpretability cycle and propose a novel self-attention layer that can

vii

solve the identified optimization problem within a single layer by design.
While offering better interpretability, we show improved performance in
our simplistic experiments as well as in language modeling.

Third, I will present another example of iterative interpretability in the
context of meta-learning and continual learning where we improve the per-
formance and interpretability of the prominent model-agnostic meta learning
(MAML) [1]. The goal of MAML is to learn a network initialization from
which the network can quickly adapt to new tasks. Based on prior insights
obtained through mechanistic interpretability, we propose sparse-MAML, a
MAML variant that additionally decides to actively stop learning particular
weights: it learns where to learn. Despite performance improvements in
common few-shot classification and continual learning benchmarks, sparse-
MAML provides another example of a successful interpretability cycle as
the learned solution allows for better interpretability by design.

viii

Z U S A M M E N FA S S U N G

Wir erleben derzeit eine Revolution der künstlichen Intelligenz (KI). Erheb-
liche Verbesserungen bei der generativen KI und insbesondere bei großen
Sprachmodellen (LLMs) treiben diese Revolution voran. Diese leistungs-
starken, groß angelegten KI-Systeme sind jedoch schwierig zu verstehen.
Einmal trainiert, bleibt ihr Innenleben ein faszinierendes und potenziell
beängstigendes Geheimnis. Es bleibt die Frage, wie wir, die Schöpfer dieser
Systeme, sie verstehen und kontrollieren können und was ihr Verhalten
steuert.

In dieser Arbeit werde ich versuchen, bestimmte Eigenschaften von tiefen
neuronalen Netzen mit den Werkzeugen der mechanistischen Interpretier-
barkeit (MI) zu verstehen. Diese Werkzeuge erinnern an diejenigen, die ein
Neurowissenschaftler verwendet: 1) Analyse der Konnektivität von Gehirn-
zellen (Connectomics), 2) Messung und Analyse der neuronalen Aktivität
und 3) Messung der Auswirkungen aktiver Eingriffe in laufende Berech-
nungen. Obwohl ein rigoroses Verständnis großer Deep-Learning-Modelle
noch in weiter Ferne liegt, werde ich in dieser Arbeit einen möglichen Weg
zu diesem Ziel aufzeigen: einen iterativen Prozess der Entwicklung, des
Trainings und der Analyse von KI-Systemen, bei dem die durch MI ge-
wonnenen Erkenntnisse zu leistungsfähigeren und besser interpretierbaren
Modellen führen.

Zunächst zeige ich, dass es möglich ist, ein Verständnis für die faszinie-
renden kontextbezogenen Lerneigenschaften von Transformers zu erlangen,
der künstlichen neuronalen Netzwerkarchitektur, die in LLMs verwendet
wird, wenn sie isoliert untersucht wird. In einem ersten Schritt analysieren
wir die Gewichte kleiner Transformer-Modelle, die auf Regressionsdaten
mit wenigen Schüssen trainiert wurden. Mit Hilfe der MI-Tools können wir
die trainierten Transformers, die mit linearen self-attention-Schichten ausge-
stattet sind, zurückentwickeln und zeigen, dass sie implizit interne Modelle
in ihrer Vorwärtsdynamik auf der Grundlage von Gradientenabstieg und
den im Kontext gegebenen Daten lernen.

Zweitens werde ich ein wichtiges Defizit dieser vereinfachten Einstellung
beheben und mich LLMs annähern, indem ich autoregressive Transformer
trainiere. Hier trainieren wir Modelle zur Vorhersage des nächsten Elements
in einer Sequenz von Elementen, die durch ein lineares dynamisches System
gewonnen werden. Auch hier können wir mit den Werkzeugen eines Neu-

ix

rowissenschaftlers diese autoregressiven Modelle zurückentwickeln und
interne Modelle identifizieren, die i) Optimierungsprobleme konstruieren
und ii) diese durch Algorithmen auf der Grundlage des Gradientenabstiegs
lösen. Dieser Algorithmus, der in den Gewichten des Modells versteckt
ist, ermöglicht es uns, das Modell nach dem Training als kontextabhän-
gigen Lerner neu zu verwenden. Auf der Grundlage dieser Erkenntnisse
schließen wir dann den Interpretierbarkeitszyklus und schlagen eine neuar-
tige self-attention-Schicht vor, die das identifizierte Optimierungsproblem
innerhalb einer einzigen Schicht lösen kann. Während wir eine bessere
Interpretierbarkeit bieten, zeigen wir auch verbesserte Leistung in unseren
vereinfachten Experimenten sowie in der Sprachmodellierung.

Drittens werde ich ein weiteres Beispiel für iterative Interpretierbarkeit im
Kontext von Meta-Lernen und kontinuierlichem Lernen vorstellen, bei dem
wir die Leistung und Interpretierbarkeit des prominenten model-agnostic
meta learning (MAML) [1] verbessern. Das Ziel von MAML ist es, eine Netz-
werkinitialisierung zu erlernen, von der aus sich das Netzwerk schnell an
neue Aufgaben anpassen kann. Basierend auf früheren Erkenntnissen, die
durch mechanistische Interpretierbarkeit gewonnen wurden, schlagen wir
sparse-MAML vor, eine MAML-Variante, die zusätzlich entscheidet, aktiv
mit dem Lernen bestimmter Gewichte aufzuhören: Sie lernt, wo sie lernen
soll. Trotz der Leistungsverbesserungen in den üblichen Benchmarks zur
Klassifizierung mit wenigen Schüssen und zum kontinuierlichen Lernen
bietet sparse-MAML ein weiteres Beispiel für einen erfolgreichen Interpre-
tierbarkeitszyklus, da die gelernte Lösung eine bessere Interpretierbarkeit
ermöglicht.

x

A C K N O W L E D G E M E N T S

This thesis is a collection of articles that I co-authored with amazing col-
leagues and friends. I am honored to have worked with and alongside
you over the course of my PhD. I am forever grateful and proud of the
dedication and love we all put into the scientific idea and the articles that
make up this thesis. None of this would have been possible without you
and I feel blessed to have witnessed your incredible excitement for science
and research of this thing called intelligence with me every day!

Out of this large group of companions there are some I need to single out:

Christian - You are an incredible role model for me and remind me what
it means to be kind, compassionate and a true friend.

Seijin - Thank you for everything, my friend! I am especially humbled
and blessed to have been able to work with you throughout my PhD.

Marc - Thank you for being this extraordinary person and friend that
forces me to always think, reflect and consider more.

João - Your excitement about science and life is breathtaking. I thank you
for everything and much more. This is just the beginning!

Angelika - You hopefully know what you are to us: A true leader and
role model, an admirable scientist full of integrity, belief and conviction to
do the right thing. The day you stood up for us is marked in my calendar
forever. I thank you from the bottom of my heart.

I also want to thank Eyvind Niklasson and Zeke Turner for valuable
feedback on this manuscript.

Finally, I want to share my deepest gratitude with regards to my parents,
my sisters, my family, all my friends and of course my Géraldine. This
thesis is a dedication to you all - the one love you are in my heart.

xi

C O N T E N T S

1 Introduction 1

2 Transformers Learn In-Context by Gradient Descent 15

2.1 Introduction 16

2.2 Linear self-attention can emulate GD on linear regression
tasks 19

2.3 Trained Transformers do mimic GD on linear regression
tasks 23

2.4 Do self-attention layers build regression tasks? 36

2.5 Discussion 39

2.6 Appendix 41

2.6.1 Proposition 2 and connections between gradient de-
scent, kernelized regression and kernel smoothing 41

2.6.2 Proof and discussion of Proposition 3 42

2.6.3 Linear mode connectivity between the weight con-
struction of Prop 1 and trained Transformers 43

2.6.4 Linear vs. softmax self-attention as well LayerNorm
Transformers 44

2.6.5 Dampening the self-attention layer 47

3 Uncovering Mesa-Optimization Algorithms in Transformers 49

3.1 Introduction 49

3.2 Preliminaries 51

3.3 Sequential prediction by least-squares mesa-optimization 53

3.4 An attention layer for optimal least-squares learning 55

3.5 Empirical Analysis 57

3.5.1 Prediction of linear dynamics by in-context learn-
ing 57

3.5.2 Simple autoregressive models become few-shot learn-
ers 64

3.5.3 Language models equipped with least-squares solvers 67

3.6 Discussion 70

3.7 Appendix 73

3.7.1 Mesa layer with forgetting factors 73

3.7.2 Mesa layer backward computation 75

3.7.3 Details: Mechanistic interpretability of Transform-
ers 80

xiii

xiv contents

3.7.4 Visualization of weights and attention maps of Trans-
formers 90

4 Learning where to learn: Gradient sparsity in meta and continual
learning 95

4.1 Introduction 95

4.2 From MAML to sparse-MAML 97

4.3 Few-shot learning 98

4.3.1 Gradient sparsity decreases with layer depth 100

4.3.2 Sparse learning prefers highly-plastic models 102

4.3.3 Sparse learning vs. more expressive gradient modu-
lation methods 102

4.3.4 Sparse learning improves performance in cross-domain
adaptation tasks 105

4.4 Continual learning 106

4.4.1 Gradient sparsity emerges when learning continually
with Look-ahead MAML 106

4.4.2 Sparse online learning 110

4.5 Discussion 111

4.6 Appendix 114

4.6.1 Derivation of the sparse-MAML update 114

5 Summary 117

Bibliography 121

1
I N T R O D U C T I O N

In this thesis I want to advocate for the use of the tools and insights of
an emerging research field termed mechanistic interpretability (MI). With
them I will study artificial neural networks and in particular their learning
mechanisms. To contextualize this thesis, in this introduction, I will attempt
to describe what mechanistic interpretability is and highlight its parallels
and major advantages concerning neuroscience. Based on these, I will
build on a framework I term iterative interpretability, a procedure that turns
insights derived from interpretability work into designing models with
improved interpretability by design. This design methodology could lead
to AI down the road which we can understand and control.

setting the stage The overarching goal of mechanistic interpretability
and the research presented in this thesis can be described as the dream
of understanding highly complex and capable artificial neural networks
— which are now undoubtedly changing our world as we know it. But
what does understanding in this context even mean? To try to formulate an
answer for this question it is important to realize both the inherent difficulty
but also our familiarity with the inquiry of understanding. Indeed, one
could argue that the scientific field as a whole is in pursuit of understanding.
In particular, most disciplines of quantitative sciences follow a path of
modeling with which, given some observations, one can predict the unknown.
Therefore it can be argued that the development of interpretable scientific
models, and the insights that come with them, increase our understanding
of the subject of study.

Nevertheless, even if successful, this form of understanding, while con-
stantly improving due to better data and tools as well as more clever (but
potentially less comprehensible) mathematics, might be fundamentally lim-
ited. Given the limited compute of our brains and their highly specialized
intelligence, we simply might not be able to formulate the right questions
let alone answer them. Even if allowed access to external compute which
we control and use in pursuit of these goals. This line of thinking awakens
visualizations of a trace left behind by a hopeless rabbit tottering into a
dark unpleasant hole — a path I choose not to follow.

1

2 introduction

I believe it is nevertheless of importance to note that even in the simplistic
problem settings studied in this thesis, my co-authors and I were quickly
confronted with the difficult question: What is it that we can study to
increase our understanding of the system at hand? It often seemed difficult
to even formulate a hypothesis that could lead, if verified, to an improved
understanding of the behavior of the complex neural networks at hand —
which are soon approaching trillions of parameters.

Despite this immense difficulty, one of the sources of hope that drove
me to do this research is finding my place within a large and rich research
community. In it, a small group of fascinating scientists laid the ground-
work and built tools with that we can hope to understand artificial neural
networks and AI. This kind of research has been termed mechanistic inter-
pretability which for their scientists can be described as the study of artificial
neural networks as, for example, neuroscience is the study of the biological
nervous system and the brain. My thesis is positioned within this young
research field and will build upon its parallels and, crucially as we will see
below, its advantages compared to neuroscience.

To end these introductory comments, I want to provide an in-complete,
optimistic, and hope-filled list of insights, very much inspired from [2],
motivating my pursuit of this field, and the field as a whole:

• Given the very scarce current understanding of AI as well as the
immaturity of the definitions, tools, and results in the field of MI,
it seems reasonable to assume that many low-hanging fruits await
researchers entering this field.

• Even if ultimately unsuccessful in the quest for the currently unreach-
able goal of fully understanding a highly complex system like large
neural networks, MI might offer explanations of smaller, less complex
phenomena along the way. These might have of immense impact on
their own and lead to, for example, improved trust towards an AI
system.

• Equipped with these results of improved understanding, it seems
possible to steer current deep learning research into building more
capable models with crucially baked-in interpretability. Therefore,
even if current systems might be impenetrable black boxes, future
systems might not be. This motivates iterative interpretability as one
path towards understanding neural networks proposed in this thesis.

introduction 3

Figure 1.1: Despite the main desire of good performance of a black-box ma-
chine learning model, mechanistic interpretability aims to provide
additional useful information to the user post training. Figure taken
from [3].

The research that makes up this thesis presents examples covering all
these three points and beyond. Therefore, I am filled with excitement to
pursue this research direction further in the coming years fueled by the
eagerness to discover and fill the immense gaps in our understanding of
AI.

mechanistic interpretability vs neuroscience At the core of
mechanistic interpretability is the desire to understand machine learning
models. As machine learning consists of a huge variety of subfields with
their respective tools and goals which again all use vastly different kinds
of models, including different types of neural network architectures, it
might not come as a surprise that the term mechanistic interpretability means
different things to different people. It lacks a clear definition [3]. The
field can be better described as a loose term that entails a collection of
many different ideas and goals and different techniques at their disposal.
Nevertheless, generally, MI refers to the task of obtaining additional useful
information concerning a black-box machine learning model, see Illustration
taken from [3] in Figure 1.1.

Deep neural networks are black-box machine learning models usually ob-
tained by optimization on huge amounts of data. Once optimized the neural
network model and its parameters describe a function that compresses the
input and output relationship of the data. Therefore interpretability work
encompasses all details of the training pipeline but is mainly influenced by
the training data. Nevertheless, MI usually only starts after the model is
assembled i.e. in a top-down or post hoc fashion. This poses huge difficulty

4 introduction

Figure 1.2: Illustration of the experimental setup of Hubel & Wiesel in 1954

leading to the discovery of single neurons responsive of distinct
visual features. Figure taken from [5].

to the interpretability work as the final complex system, the subject of study,
is a consequence of again itself a highly complex process. Therefore, causal
relationships between the final optimized model with e.g. training data,
the network architecture and other important factors such as the training
algorithm a hard very to infer [4].

In contrast, I stress here the difference to a hand-designed model for
which interpretability, arguably, is obtained bottom-up. As human design
and analyses, in the form of mathematical statements and proofs, were
necessary to design the model in the first place it required understanding
beforehand. Importantly, the design usually is not at all, only sparsely or
implicitly influenced by data. Therefore the model is not influenced by
the complicated, mathematically difficult to describe dependency of noisy
real-world data.

In this thesis, I will nevertheless show some first examples in which MI
was the major tool to obtain these rigorous mathematical statements about
models in a top-down fashion i.e. about models optimized on data. But
what should these mathematical statements address? I list here a few high-
level desiderata, summarized from [3], which motivate MI and research, in
general, that aims at understanding AI models.

• Trust: A user, despite obtaining a (possibly correct) prediction from a
model, should be able to trust it. This is related to the difficult problem
of calibration of the predictions as well as the possibility of a model
doing out-of-distribution detection [6]. Nevertheless, even if these
problems were solved it feels hard that users of an AI would be able
to trust a machine learning model to make e.g. life-critical decisions

introduction 5

without providing additional information. Although unclear, a pos-
sibly useful information spectrum could range from understanding
the inner workings of a model to less mechanistic information such
as additional self-generated explanations related to the basis of pre-
dictions. This again is an imprecise objective towards understanding
but I believe close to the heart of everyone who uses or will use AI in
the future.

• Causality: Related to understanding how a system forms its predictions
is the urge to understand how for example the training data as well
as features of the input causally relates to the model prediction. This
quest seems particularly difficult as it is widely known how difficult
the inference of causal relationships from observational data alone
is [7].

• Fair and Ethical Decision-Making: As machine learning models are
already used as a new interface between computers and humans
through chatbots, used in critical decision-making processes and be-
coming more and more autonomous, there has been a huge interest in
the controllability of these models. This is deeply connected, especially
in the context of large language models (LLMs), to the desire of their
alignment with certain values and understand biases which models
might posses [8]. Interpretability could be one tool to understand and
control this important and desirable AI feature [9].

Having listed some meaningful desiderata, I want to give a short overview
of the applicable MI tools useful for this thesis. These all have direct or
indirect relations to techniques that neuroscientists especially computa-
tional neuroscientists use to study biological neural networks (BNNs) since
decades [10, 11]. However, we will see that there are major advantages
when it comes to studying artificial neural networks [12]. These advantages
are fundamental and at the heart of iterative interpretability which I will
introduce below. Note that the techniques and tools of neuroscience might
not be sufficient to understand BNNs [13, 14].

Neural recordings: One of the most common techniques to study the
living brain of animals and humans is to measure and record neural activity,
often in response to given stimuli. Driven by the desire to understand how
these stimuli are processed and e.g. form memories or drive behavior,
neuroscientists have developed numerous techniques allowing for neural
recordings from single or large groups of neurons throughout the brain and

6 introduction

.

Figure 1.3: Striking similarities of the activation strength of neurons within opti-
mized convolutional neural networks and the spiking probability of
neurons within the visual pathway. This is indicative of the computa-
tional similarity (or optimality) of these two vastly different systems
when processing visual information. Figure taken from [15]

nervous system. In a landmark result, Hubel & Wiesel in 1954 were able
to show that neurons in the cat‘s visual cortex robustly responded when
presented with simple moving black bars of specific angles on a screen [16],
see Figure 1.2. These studies of correlating stimuli with neural activity have
been vastly improved, see for example [17] for an intriguing study of the
navigation system of the Drosophila, and is still a leading paradigm to
study the brain and how it drives behavior. These studies can therefore shed
light, for example, on where in the brain certain stimuli activate neurons
and furthermore how activity changes during learning.

I want to highlight the importance of these findings to machine learning.
Numerous studies in neuroscience were able to show that neurons along the
visual pathway, ranging from the retina deep into our brain, can be divided
into various brain areas with firing rates that correlate with different, more
complex features along its information stream. For example, giving rise
to the famous (debated) existence of celebrity neurons [18]. In a highly
celebrated article by Yamins & DiCarlo [15] were able to show that striking
similarities between these features in brains and optimized artificial neural
networks can be made, visualized in Figure 1.3. The analogy of artificial
neural networks with their biological ancestors seems therefore not only
inspirational but also functional as their activity patterns show similarities.

introduction 7

Figure 1.4: Feature visualization of neurons inside trained convolutional neural
networks, Figure taken from [19]. Top row: Real word images that lead
to strong activations of certain neurons inside the network. Bottom
row: Images obtained by optimization that again lead to strong firing
of the same neurons.

When moving to mechanistic interpretability, correlating the input stim-
uli with neural activity is again a common tool for understanding the
information processing in artificial neural networks. A prominent example
of this is the studies led by Christopher Olah [19–21], a notable figure in
interpretability research. Their work was able to identify families of neu-
ron activations, as in biological networks, strongly correlated with certain
stimuli. Furthermore, in a somewhat reversed fashion, the authors then
constructed images by optimization that target the same neurons to fire
particularly strongly. This led to images, by visual inspection, that can be
interpreted once more as detectors of these highly complex features related
to the ones found in the corresponding real-world images, see Figure 1.4.

Connectomics & Circuits: The study of how neurons are connected, and
form distinct brain areas and circuits is the study of connectomics. This
neuroscience field has made incredible advances both technologically and
on the data science side, also fuelled by the advances of machine learning.
Around the world, large-scale efforts towards obtaining precise brain atlases
of animals giving exact information of where neuron bodies and their

8 introduction

dendrites are positioned. It is even possible to image their connections and
their strength with other neurons by synapses. Although these connectomes
are obtained after the death of the animals and can therefore only give
limited answers about their role functionally [22], brain connectomics can
still provide insights into how information is processed inside the animal’s
highly complex neural systems. See an example of one of these fascinating
maps showing precisely the wiring of a Drosophila brain in Figure 1.5.

Although the inner workings of single cells and even single synapses
are highly complex and of large interest to study in neuroscience, usually
neurons in artificial networks are simplistic, and their mechanistic study
in isolation is of less importance. I focus therefore on the more relevant
study of their connections i.e. through the wiring defined by the strength
of the corresponding optimized neural network weights. Here, two inter-
connected directions of study are of importance:

First, it can be shown, within both biological and artificial networks, that
features of early processing layers, are combined in later layers leading to
more complex feature detectors. This, for example, can be the evolution
of features that correspond first to simple Gabor filters in early layers to
neurons that activate in response to highly complex features such as pose-
invariant dog heads in later layers [19, 23]. These feature combinations form
circuits of high complexity, including the branching into subnetworks as
well as the cancellation and competition between features influencing the
activation in later layers and finally the network’s prediction [24, 25]. Note
that the existence and combination of features and their circuits in artificial
neural networks is solely based on the optimization of the network for a
given task, for example, image classification leading to features visualized
in Figure 1.4, which changes the weights of the network by gradient descent
into a state of low loss.

Second, it is exactly the study of these weights, the program of the net-
work, in isolation that can provide interpretability. Here, the structure and
strength of the weights govern e.g. the combination of features, branching,
and the formation of larger-scale circuits. The study of weights in isolation
can lead to a surprising and insightful understanding of the network as
well [26]. We will see below that this will be of particular interest to this
thesis and one of our most useful tools for interpretability.

Interventions: Another interesting neuroscience technique I want to mo-
tivate for MI are interventions into ongoing computation. The techniques
developed here, in mechanistic interpretability as well as in neuroscience,

introduction 9

Figure 1.5: Part of a Drosophilia brain’s connectome, Image from [27].

all build on targeted disturbance of computation in artificial networks as
well as biological brains. In the latter case, neuroscientists have developed
highly creative and technically elaborate ways to influence the computation
in the brain by lesions or by electrical, chemical, and optical interventions.
This can lead to controlling the subject’s neural wiring as well as activity
and therefore influence the behavior of living animals [28, 29]. The major
advantage of this paradigm is to establish a causal link between behavior
and neural activity instead of relying on a correlation between these. In
mechanistic interpretability, these ideas find usability by again establishing
a causal relationship of computation between inputs, intermediate neurons,
and outputs. This can also include the study of causally linking between
the activations and prediction with the network weights.

To end this introduction to MI, I summarise notes of Christopher Olah [12]
and provide a list of major advantages of mechanistic interpretability when
compared to neuroscience with which I then will motivate iterative inter-
pretability below.

• Accessibility & Causality: Compared to the immense efforts one has
to put into attaining neural activity or carrying out intervention in
biological neural networks, the activities, as well as all the weights
of neural networks, are, if open sourced, accessible and available to
analyze, correlate and perturb causally without major difficulty. On a
negative note, this can be, as already mentioned, a burden due to the
immense amount of data available.

10 introduction

• Uniqueness & Reproducibility: The study of biological neural networks
suffers from reproducibility issues with numerous causes [30]. One
apparent advantage when studying artificial neural networks is that
the entire system can be transferred without problems offering the
study of a single network through many different independent scien-
tists. In principle, the reproducibility of any results in MI and deep
learning should be more simplistic and reliable compared to other lab
work.

• Active interventions: Research of biological neural networks assumes
that the subject of study e.g. an animal is given, although it can be
altered with tremendous efforts, see above. Artificial neural networks,
on the other hand, are crucially objects of our own creation and we
enjoy full freedom of their design and training objectives that have
seen dramatic changes since the time they were invented and studied.
Therefore, we are given full flexibility to design the subject of study
as we please, provided it is useful. It might therefore be that although
current models are not interpretable, we are able to design capable
models that allow for better interpretability bottom-up.

iterative interpretability in the context of learning algo-
rithms In this thesis, I strive to understand deep neural networks and
their algorithms within a common framework described in [31] that I term
iterative interpretability. It is an iterative process cycling over the following
three steps with the overarching goal of answering a specific hypotheses H:

1. Training of a deep neural network: Given the choices about the specific
neural network model, the dataset, the training algorithm, and an
optimization objective among other things, the result of this step is an
optimized neural network model.

2. Mechanistic interpretability to study H: Based on the previous deci-
sions, obtain evidence for or against H with the tools of MI through
studying for example correlations, causation, or the connectomics of
the neural network. These findings can be of considerable value in
isolation.

3. Design novel or alter parts of the deep learning pipeline: Given in-
sights in support of H obtained previously, this step aims to alter parts
of the training pipeline to obtain 1) a similar or more capable model
while 2) allowing for better interpretability bottom-up supporting H.

introduction 11

Various aspects of this pipeline are of course steps of scientific inquiry
generally. Nevertheless, I think it is of value to restate them here in the
context of AI research and specifically mechanistic interpretability. Other
aspects of this pipeline, especially the third step are somewhat unusual
for the empirical sciences and more closely related to engineering. This
highlights an interesting tension of iterative interpretability between the
science of understanding a complex system like deep neural networks
through mechanistic interpretability and, on the other hand, the engineering
of the subject of study in the first place: While the primary goal of the latter
is the development of more capable and therefore arguably more complex
models, the former aims towards understanding exactly these models. I,
therefore, stress that successful iterative interpretability should and often
can fulfill both seemingly orthogonal goals [31, 32]. Here, two arguments
come to mind:

First, the current AI and economic climate aims purely towards improved
capabilities that can be measured on benchmarks. Hence, a path toward
improved interpretability might be pursued more readily if it does not
entail sacrificing model performance. Furthermore, it might be useful for
a benchmark-driven community to accept interpretability as a valuable
benchmark that we can work towards. I thus advocate for the establishment
of benchmarks for interpretability that are currently missing.

Second, I believe that it is an explicit empirical verification of understand-
ing if active interventions in the model design when based on MI, lead
to performance improvements. I draw here parallels to designing models,
entirely by hand, that describe data better. Nevertheless, I stress again the
pressure to condition interpretability work and iterative interpretability
on model performance. This is necessary and prohibits fallacies since the
analyzed data and its complexity obtained by MI is directly dependent on
the training pipeline and hence under the control of the scientist as well.
These arguments are certainly up for debate.

In this thesis, I will showcase examples of successful iterative inter-
pretability focusing on specific hypotheses H related to the ability of neural
networks to quickly adapt to novel and small amounts of data. Deep neural
networks that learn-to-learn on different time scales are the subject of study
in AI and neural networks research at least since the late 1980s [33, 34]
and have seen substantial interest in the last deep learning decade [35].
Nevertheless, fast learning has now regained major interest as it is been
celebrated as arguably the most powerful characteristic of large language

12 introduction

models [36]. Although diverse use cases exist such as zero- or few-shot
learning and chain-of-thought prompting [37], all can be described as a way
to implicitly reprogram an LLM, and therefore alter its behavior, without
changing or access its weights. Intriguingly, this reprogramming is achieved
only with instructions by text and happens post-training, indicating that
LLMs generalize to these behaviors. These capabilities are currently among
if not the most celebrated features of LLMs and AI today.

This feature of LLMs, best known as in-context learning (ICL), is the
central subject of study in the next chapter. In it, inspired by [38], in-
context learning abilities of the Transformer architecture, the most common
neural network architecture currently used for natural language processing,
is studied in isolation. A Transformer model tθ(x1, y1, . . . , xN , yN , xtest),
provided a supervised dataset and an additional test point as input, is
trained to predict given the corresponding target ytest. For every sequence,
we sample a new teacher W with which we build the dataset yi = Wxi
presented as the sequence to the model. Simply studying the weights of
the Transformer, trained on this linear regression data, shows surprising
sparsity and offers precise interpretability, at least in some restricted cases.
In particular, when studying a single trained layer of linear self-attention, it
can be shown that by construction and in practice, the layer implements a
single step of gradient descent with an optimal learning rate on the squared
error regression loss. Key to these findings is actually a slightly different
tokenization of the data, see Chapter 2.

These results have been the subject of considerable interest in the research
community, reproduced numerous times, and studied in mathematical
rigor in multiple independent follow-up works [39–42]. These studies show
among other things that the solution found by optimization, i.e. a single step
of gradient descent, corresponds to the global optimum of the underlying
optimization problem explaining our findings.

When moving to deep Transformers, again by studying its weights,
we can identify that a single layer of self-attention implements a step of
GD while simultaneously iteratively pre-conditioning the input data. This
simple, possibly up-until-that-point unknown, gradient descent-based algo-
rithm that we term GD++ outperforms plain gradient descent considerably.
Although we can not perfectly relate the trained Transformer to GD++ by
studying its weights, we fall back to studying the correlations of neuron acti-
vations. Here, we analyze differences between the trained Transformer and
a Transformer implementing GD++ inside its weights show strong similari-

introduction 13

ties. We also provide evidence that our findings translate to Transformers
trained to learn non-linear regression in their forward dynamics.

Based on these results and related concurrent work, numerous follow-up
works have extended our findings and, for example, studied in similar vein
chain-of-thought prompting [43], multi-task in-context learning [44] or even
the implicit training of small Transformers in large Transformers [45].

Although all of these studies shed light on in-context learning abilities
and their relations to gradient descent from bottom-up i.e. by studying
toy problems in rather small models, there are major gaps towards these
findings and the original question of how in-context learning comes about
and it is implemented in LLMs. One of these shortcomings we address
in Chapter 3 where we move from training Transformer on in-context
few-shot data to an autoregressive training setting. Now, the Transformers
tθ(s1, . . . , st) are trained to predict the next token st+1 given a sequence of
elements obtained from a linear dynamical system st+1 = Wst. We find that
a similar 2-step algorithm as in the in-context learning setting is identifiable,
by means of neural activity correlation, weight, and circuit inspection as
well as causal interventions in the autoregressive models. This enables us to
understand, in this very simplistic model, post-training in-context learning
in autoregressive models — as the (approximate) least-squares solver that
is implemented inside the model to predict the next token can easily be
repurposed for ICL.

I want to stress that in these two chapters, we are able to, in certain
simplistic settings, reverse engineer identifiable algorithms, parametrized
with less than 99% parameters of the original Transformer model. These
findings show that Transformers, with linear self-attention, trained on
clean algorithmic data implement algorithms that we can fully interpret.
Once extracted from the trained models, the algorithms can be analyzed
and characterized with mathematical rigor. Although this very desirable
mechanistic interpretability precision can not be expected when training
models on more noisy data [13, 46], our work is an example of MI that offers
a particularly precise mathematical understanding of the inner workings of
the trained neural networks.

Given these insights, we furthermore propose in Chapter 3 a new at-
tention layer that we term mesa-layer that solves the underlying recursive
least-squares error optimization problem within a single layer. Equipped
with the mesa-layer, Transformers show improved performance in our
simplistic problems as well as language modeling. We therefore show a

14 introduction

compelling example of iterative interpretability where mechanistic inter-
pretability results led to insights that allowed designing more powerful and
interpretable neural network models from the bottom-up.

In Chapter 4, we provide another example of iterative interpretability.
This work diverges from our studies of Transformers and the study of
optimization algorithms implemented inside these models. Here we build
on prior mechanistic interpretability work of the well-known few-shot meta-
learning algorithm termed model-agnostic meta-learning (MAML) [1]. MAML
aims towards learning a deep neural network weight initialization, with
backpropagation through training, which can be quickly fine-tuned towards
a new task without overfitting. Prior work [47] showed that MAML tends
to find initializations of the network weights that, except the last layer,
can be kept fixed during fine-tuning without significant performance loss.
Inspired by this prior interpretability work, we, therefore, propose a MAML
variant, which we term sparse-MAML, where not only the initial weights
but also a binary 0-1 mask applied to the gradients used for fine-tuning
is meta-learned. Therefore, we allow MAML to explicitly decide which
parameters to adapt in the fine-tuning phase and allow the algorithm to
choose actively where to stop learning parameters [47]. Despite performance
gains in few-shot as well as few-shot continual learning tasks, we see that
sparse-MAML learns to drastically sparsify gradients as indicated by the
prior interpretability work. We therefore propose again a more performant
and crucially interpretable deep learning algorithm based on the tools of
mechanistic interpretability.

2
T R A N S F O R M E R S L E A R N I N - C O N T E X T B Y G R A D I E N T
D E S C E N T

This chapter’s content was published and awarded an oral presentation at the Proceedings of the 40th

International Conference on Machine Learning and can be found online in an extended form including

all experimental details which we omit here for clarity. The original publication is authored by Johannes

von Oswald, Eyvind Niklasson, Ettore Randazzo, João Sacramento, Alexander Mordvintsev, Andrey

Zhmoginov, Max Vladymyrov [48].

At present, the mechanisms of in-context learning in Transformers are
not well understood and remain mostly an intuition. In this chapter, we
suggest that training Transformers on auto-regressive objectives is closely
related to gradient-based meta-learning formulations. We start by pro-
viding a simple weight construction that shows the equivalence of data
transformations induced by 1) a single linear self-attention layer and by 2)
gradient-descent (GD) on a regression loss. Motivated by that construction,
we show empirically that when training self-attention-only Transformers on
simple regression tasks either the models learned by GD and Transformers
show great similarity or, remarkably, the weights found by optimization
match the construction. Thus we show how trained Transformers become
mesa-optimizers i.e. learn models by gradient descent in their forward
pass. This allows us, at least in the domain of regression problems, to
mechanistically understand the inner workings of in-context learning in
optimized Transformers. Building on this insight, we furthermore identify
how Transformers surpass the performance of plain gradient descent by
learning an iterative curvature correction and learn linear models on deep
data representations to solve non-linear regression tasks. Finally, we discuss
intriguing parallels to a mechanism identified to be crucial for in-context
learning termed induction-head [49] and show how it could be understood
as a specific case of in-context learning by gradient descent learning within
Transformers.

15

https://proceedings.mlr.press/v202/von-oswald23a.html

16 transformers learn in-context by gradient descent

Figure 2.1: Illustration of our hypothesis: gradient-based optimization and
attention-based in-context learning are equivalent. Left: Learning a
neural network output layer by gradient descent on a dataset Dtrain.
The task-shared meta-parameters θ are obtained by meta-learning
with the goal that after adjusting the neural network output layer,
the model generalizes well on unseen data. Right: Illustration of a
Transformer that adjusts its query prediction on the data given in-
context i.e. tθ(xquery; Dcontext). The weights of the Transformer are
optimized to predict the next token yquery.

2.1 introduction

In recent years Transformers [TFs; 50] have demonstrated their superiority
in numerous benchmarks and various fields of modern machine learning,
and have emerged as the de-facto neural network architecture used for
modern AI [51–54]. It has been hypothesised that their success is due in
part to a phenomenon called in-context learning [36, 55]: an ability to flexibly
adjust their prediction based on additional data given in context (i.e. in
the input sequence itself). In-context learning offers a seemingly different
approach to few-shot and meta-learning [36], but as of today the exact
mechanisms of how it works are not fully understood. It is thus of great
interest to understand what makes Transformers pay attention to their
context, what the mechanisms are, and under which circumstances, they
come into play [49, 56].

In this chapter, we aim to bridge the gap between in-context and meta-
learning, and show that in-context learning in Transformers can be an
emergent property approximating gradient-based few-shot learning within
its forward pass, see Figure 2.1. For this to be realized, we show how
Transformers (1) construct a loss function dependent on the data given in
sequence and (2) learn based on gradients of that loss. We will first focus
on the latter, the more elaborate learning task, in sections 2.2 and 2.3, after
which we provide evidence for the former in section 2.4.

2.1 introduction 17

We summarize our contributions as follows1:

• We construct explicit weights for a linear self-attention layer that in-
duces an update identical to a single step of gradient descent (GD)
on a mean squared error loss. Additionally, we show how several
self-attention layers can iteratively perform curvature correction im-
proving on plain gradient descent.

• When optimized on linear regression datasets, we demonstrate that
linear self-attention-only Transformers either converge to our weight
construction and therefore implement gradient descent, or generate
linear models that closely align with models trained by GD, both in
in- and out-of-distribution validation tasks.

• We resolve the dependency on the specific token construction by
providing evidence that learned Transformers first encode incoming
tokens into a format amenable to the in-context gradient descent
learning that occurs in the later layers of the Transformer.

These findings allow us to connect learning Transformer weights and the
concept of meta-learning a learning algorithm [34, 57–65]. In this extensive
research field, meta-learning is typically regarded as learning that takes
place on various time scales namely fast and slow. The slowly changing pa-
rameters control and prepare for fast adaptation reacting to sudden changes
in the incoming data by e.g. a context switch. Notably, we build heavily
on the concept of fast weights [34] which has shown to be equivalent to
linear self-attention [66] and show how optimized Transformers implement
interpretable learning algorithms within their weights.

Another related meta-learning concept, termed MAML [67], aims to meta-
learn a deep neural network initialization which allows for fast adaptation
on novel tasks. It has been shown that in many circumstances, the solution
found can be approximated well when only adapting the output layer
i.e. learning a linear model on a meta-learned deep data representations
[47, 67–72]. In section 2.3, we show the equivalence of this framework to
in-context learning implemented in a common Transformer block i.e. when
combining self-attention layers with a multi-layer-perceptron.

In the light of meta-learning we show how optimizing Transformer
weights can be regarded as learning on two time scales. More concretely,

1 Main experiments can be reproduced with notebooks provided under the follow-
ing link: https://github.com/google-research/self-organising-systems/tree/master/

transformers_learn_icl_by_gd

https://github.com/google-research/self-organising-systems/tree/master/transformers_learn_icl_by_gd
https://github.com/google-research/self-organising-systems/tree/master/transformers_learn_icl_by_gd

18 transformers learn in-context by gradient descent

we find that solely through the pressure to predict correctly Transformers
discover learning algorithms inside their forward computations, effectively
meta-learning a learning algorithm. Recently, this concept of an emergent
optimizer within a learned neural network, such as a Transformer, has
been termed “mesa-optimization” [73]. We find and describe one possible
realization of this concept and hypothesize that the in-context learning
capabilities of language models emerge through mechanisms similar to the
ones we discuss here.

Transformers come in different “shapes and sizes”, operate on vastly
different domains, and exhibit varying forms of phase transitions of in-
context learning [74, 75], suggesting variance and significant complexity of
the underlying learning mechanisms. As a result, we expect our findings
on linear self-attention-only Transformers to only explain a limited part of
a complex process, and it may be one of many possible methods giving rise
to in-context learning. Nevertheless, our approach provides an intriguing
perspective on, and novel evidence for, an in-context learning mechanism
that significantly differs from existing mechanisms based on associative
memory [76], or by the copying mechanism termed induction heads identified
by [49]. We, therefore, state the following

Hypothesis 1 (Transformers learn in-context by gradient descent) When train-
ing Transformers on auto-regressive tasks, in-context learning in the Transformer
forward pass is implemented by gradient-based optimization of an implicit auto-
regressive inner loss constructed from its in-context data.

We acknowledge work done in parallel, investigating the same hypoth-
esis. Akyürek et al. [77] puts forward a weight construction based on a
chain of Transformer layers (including MLPs) that together implement a
single step of gradient descent with weight decay. Similar to work done
by Garg et al. [78], they then show that trained Transformers match the
performance of models obtained by gradient descent. Nevertheless, it is not
clear that optimization finds Transformer weights that coincide with their
construction.

Here, we present a much simpler construction that builds on Schlag,
Irie & Schmidhuber [66] and only requires a single linear self-attention layer
to implement a step of gradient descent. This allows us to (1) show that
optimizing self-attention-only Transformers finds weights that match our
weight construction (Proposition 1), demonstrating its practical relevance,
and (2) explain in-context learning in shallow two layer Transformers
intensively studied by Olsson et al. [49]. Therefore, although related work

2.2 linear self-attention can emulate gd on linear regression tasks 19

0 20 40
GD Steps / Transformer Layers

0.0

0.1

0.2

Lo
ss

Gradient descent
Trained Transformer

Figure 2.2: Evidence for our hypothesis: gradient-based optimization and
attention-based in-context learning are equivalent. Our results, par-
ticular circumstances, confirm the hypothesis that learning with K
steps of gradient descent matches trained Transformers with K linear
self-attention layers when given Dtrain as in-context data Dcontext.

provides comprehensive empirical evidence that Transformers indeed seem
to implement gradient descent based learning on the data given in-context,
we will in the following present mechanistic verification of this hypothesis
and provide compelling evidence that our construction, which implements
GD in a Transformer forward pass, is found in practice.

2.2 linear self-attention can emulate gradient descent on

a linear regression tasks

We start by reviewing a standard multi-head self-attention (SA) layer
with parameters θ. A SA layer updates each element ej of a set of tokens
{e1, . . . , eN} according to

ej ← ej + SAθ(j, {e1, . . . , eN})
= ej + ∑

h
PhVhsoftmax(KT

h qh,j)
(2.1)

with Ph, Vh, Kh the projection, value and key matrices, respectively, and qh,i
the query, all for the h-th head. To simplify the presentation, we omit bias
terms here and throughout. The columns of the value Vh = [vh,1, . . . , vh,N]
and key Kh = [kh,1, . . . , kh,N] matrices consist of vectors vh,i = Wh,Vei and
kh,i = Wh,Kei; likewise, the query is produced by linearly projecting the
tokens, qh,j = Wh,Qej. The parameters θ = {Ph, Wh,V , Wh,K, Wh,Q}h of a SA
layer consist of all the projection matrices, of all heads.

The self-attention layer described above corresponds to the one used in
the standard Transformer model. Following Schlag, Irie & Schmidhuber [66],

20 transformers learn in-context by gradient descent

we now introduce our first (and only) departure from the standard model,
and omit the softmax operation in equation 2.1, leading to the linear self-
attention (LSA) layer ej ← ej + LSAθ(j, {e1, . . . , eN}) = ej + ∑h PhVhKT

h qh,j
We next show that with some simple manipulations we can relate the
update performed by an LSA layer to one step of gradient descent on a
linear regression loss.

Data transformations induced by gradient descent

We now introduce a reference linear model y(x) = Wx parameterized by
the weight matrix W ∈ RNy×Nx , and a training dataset D = {(xi, yi)}N

i=1
comprising of input samples xi ∈ RNx and respective labels yi ∈ RNy . The
goal of learning is to minimize the squared-error loss:

L(W) =
1

2N

N

∑
i=1
∥Wxi − yi∥2. (2.2)

One step of gradient descent on L with learning rate η yields the weight
change

∆W = −η∇W L(W) = − η

N

N

∑
i=1

(Wxi − yi)xT
i . (2.3)

Considering the loss after changing the weights, we obtain

L(W + ∆W) =
1

2N

N

∑
i=1
∥(W + ∆W)xi − yi∥2

=
1

2N

N

∑
i=1
∥Wxi − (yi − ∆yi)∥2

(2.4)

where we introduced the transformed targets yi − ∆yi with ∆yi = ∆Wxi.
Thus, we can view the outcome of a gradient descent step as an update
to our regression loss (equation 2.2), where data, and not weights, are
updated. Note that this formulation is closely linked to predicting based on
nonparametric kernel smoothing, see Appendix 2.6.1 for a discussion.

Returning to self-attention mechanisms and Transformers, we consider an
in-context learning problem where we are given N context tokens together
with an extra query token, indexed by N + 1. In terms of our linear regres-
sion problem, the N context tokens ej = (xj, yj) ∈ RNx+Ny correspond to
the N training points in D, and the N+1-th token eN+1 = (xN+1, yN+1) =

2.2 linear self-attention can emulate gd on linear regression tasks 21

(xtest, ŷtest) = etest to the test input xtest and the corresponding prediction
ŷtest. We use the terms training and in-context data interchangeably, as well
as query and test token/data, as we establish their equivalence now.

Transformations induced by gradient descent and a linear self-attention layer can
be equivalent

We have re-cast the task of learning a linear model as directly modifying the
data, instead of explicitly computing and returning the weights of the model
(equation 2.4). We proceed to establish a connection between self-attention
and gradient descent. We provide a construction where learning takes place
simultaneously by directly updating all tokens, including the test token,
through a linear self-attention layer. In other words, the token produced
in response to a query (test) token is transformed from its initial value
W0xtest, where W0 is the initial value of W, to the post-learning prediction
ŷ = (W0 + ∆W)xtest obtained after one gradient descent step.

Proposition 1 Given a 1-head linear attention layer and the tokens ej = (xj, yj),
for j = 1, . . . , N, one can construct key, query and value matrices WK, WQ, WV as
well as the projection matrix P such that a Transformer step on every token ej is iden-
tical to the gradient-induced dynamics ej ← (xj, yj) + (0,−∆Wxj) = (xj, yj) +

P VKTqj such that ej = (xj, yj − ∆yj). For the test data token (xN+1, yN+1) the
dynamics are identical.

We provide the weight matrices in block form: WK = WQ =

(
Ix 0

0 0

)
with Ix and Iy the identity matrices of size Nx and Ny respectively. Further-

more, we set WV =

(
0 0

W0 −Iy

)
with the weight matrix W0 ∈ RNy×Nx of

22 transformers learn in-context by gradient descent

the linear model we wish to train and P = η
N I with identity matrix of size

Nx + Ny. With this simple construction we obtain the following dynamics(
xj

yj

)
←
(

xj

yj

)
+

η

N

N

∑
i=1

WV

(
xi

yi

)
⊗
(

WQ

(
xi

yi

))
WK

(
xj

yj

)

=

(
xj

yj

)
+

η

N
I

N

∑
i=1

(
0

W0xi − yi

)
⊗
(

xi

0

)(
xj

0

)
(2.5)

=

(
xj

yj

)
+

η

N
I

N

∑
i=1

(
0 0

(W0xi − yi)xT
i 0

)(
xj

0

)
(2.6)

=

(
xj

yj

)
+

(
0

−∆Wxj

)
. (2.7)

for every token ej = (xj, yj) including the query token eN+1 = etest =
(xtest,−W0xtest) which will give us the desired result. We denote the corre-
sponding self-attention weights by θGD.

Below, we provide some additional insights on what is needed to imple-
ment the provided LSA-layer weight construction, and further details on
what it can achieve:

• Full self-attention. Our dynamics model training is based on in-
context tokens only, i.e., only e1, . . . , eN are used for computing key
and value matrices; the query token eN+1 (containing test data) is
excluded. This leads to a linear function in xtest as well as to the
correct ∆W, induced by gradient descent on a loss consisting only of
the training data. This is a minor deviation from full self-attention.
In practice, this modification can be dropped, which corresponds to
assuming that the underlying initial weight matrix is zero, W0 ≈ 0,
which makes ∆W in equation 2.5 independent of the test token even
if incorporating it in the key and value matrices. In our experiments,
we see that these assumptions are met when initializing the attention
weights θ to small values.

• Reading out predictions. When initializing the y-entry of the test-
data token with −W0xN+1, i.e. etest = (xtest,−W0xtest), the test-data
prediction ŷ can be easily read out by simply multiplying again by
−1 the updated token, since −yN+1 + ∆yN+1 = −(yN+1 − ∆yN+1) =
yN+1 + ∆WxN+1. This can easily be done by a final projection matrix,
which incidentally is usually found in Transformer architectures. Im-
portantly, we see that a single head of self-attention is sufficient to

2.3 trained transformers do mimic gd on linear regression tasks 23

transform our training targets as well as the test prediction simultane-
ously.

• Uniqueness. We note that the construction is not unique; in particular,
it is only required that the products PWV as well as WKWQ match
the construction. Furthermore, since no nonlinearity is present, any
rescaling s of the matrix products, i.e., PWVs and WKWQ/s, leads to
an equivalent result. If we correct for these equivalent formulations,
we can experimentally verify that weights of our learned Transformers
indeed match the presented construction.

• Meta-learned task-shared learning rates. When training self-attention
parameters θ across a family of in-context learning tasks τ, where
the data (xτ,i, yτ,i) follows a certain distribution, the learning rate
can be implicitly (meta-)learned such that an optimal loss reduction
(averaged over tasks) is achieved given a fixed number of update steps.
In our experiments, we find this to be the case. This kind of meta-
learning to improve upon plain gradient descent has been leveraged
in numerous previous approaches for deep neural networks [79–83].

• Task-specific data transformations. A self-attention layer is in princi-
ple further capable of exploiting statistics in the current training data
samples, beyond modeling task-shared curvature information in θ.
More concretely, a LSA layer updates an input sample according to a
data transformation xj ← xj + ∆xj = (I + P(X)V(X)K(X)TWQ)xj =
Hθ(X)xj, with X the Nx × N input training data matrix, when ne-
glecting influences by target data yi. Through Hθ(X), a LSA layer can
encode in θ an algorithm for carrying out data transformations which
depend on the actual input training samples in X. In our experiments,
we see that trained self-attention learners employ a simple form of
H(X) and that this leads to substantial speed ups in for GD and TF
learning.

2.3 trained transformers do mimic gradient descent on lin-
ear regression tasks

We now experimentally investigate whether trained attention-based models
implement gradient-based in-context learning in their forward passes. We
gradually build up from single linear self-attention layers to multi-layer
nonlinear models, approaching full Transformers. In this section, we follow

24 transformers learn in-context by gradient descent

0 2000 4000
Training steps

0.20

0.25

0.30

0.35

0.40

Lo
ss

GD
Trained TF

0.80

0.85

0.90

0.95

1.00

Co
sin

e
sim

Model cos

0 1000 2000 3000 4000 5000
Training steps

0.0

0.5

1.0

1.5

2.0

2.5

L2
 N

or
m

Preds diff
Model diff

0.5 1.0 1.5 2.0
 where x U(,)

10 1

100

Lo
ss

Test on larger inputs
GD
Interpolated
Trained TF

Figure 2.3: Comparing one step of GD with a trained single linear self-
attention layer. Upper left: Trained single LSA layer performance
is identical to the one of gradient descent. Upper right: Almost per-
fect alignment of GD and the model generated by the SA layer after
training, measured by cosine similarity and the L2 distance between
models as well as their predictions. Lower right: Identical loss of GD,
the LSA layer model as well as the model obtained by interpolating
between the construction and the optimized LSA layer weights for
different N = Nx. Lower right: The trained LSA layer, gradient de-
scent and their interpolation show identically loss (in log-scale) when
provided input data different than during training i.e. with scale of 1.
We display the mean/std. or the single runs of 5 seeds.

2.3 trained transformers do mimic gd on linear regression tasks 25

the assumption of Proposition 1 tightly and construct our tokens by con-
catenating input and target data, ej = (xj, yj) for 1 ≤ j ≤ N, and our query
token by concatenating the test input and a zero vector, eN+1 = (xtest, 0).
We show how to lift this assumption in the last section of the chapter. The
prediction ŷθ({eτ,1, . . . , eτ,N}, eτ,N+1) of the attention-based model, which
depends on all tokens and on the parameters θ, is read-out from the y-entry
of the updated N + 1-th token as explained in the previous section.

The objective of training, visualized in Figure 2.1, is to minimize the
expected squared prediction error, averaged over tasks

min
θ

Eτ [||ŷθ({eτ,1, . . . , eτ,N}, eτ,N+1)− yτ,test||2]. (2.8)

. We achieve this by minibatch online minimization (by Adam [84]): At
every optimization step, we construct a batch of novel training tasks and
take a step of stochastic gradient descent on the loss function:

L(θ) = 1
B

B

∑
τ=1
||ŷθ({eτ,i}N

i=1, eτ,N+1)− yτ,test||2 (2.9)

where each task (context) τ consists of in-context training data Dτ =
{(xτ,i, yτ,i)}N

i=1 and test point (xτ,N+1, yτ,N+1), which we use to construct
our tokens {eτ,i}N+1

i=1 as described above. We denote the optimal parameters
found by this optimization process by θ∗. In our setup, finding θ∗ may be
thought of as meta-learning, while learning a particular task τ corresponds
to simply evaluating the model ŷθ({eτ,1, . . . , eτ,N}, eτ,N+1). Note that we
therefore never see the exact same training task twice during training.

We focus on solvable tasks and similarly to Garg et al. [78] generate data
for each task using a teacher model with parameters Wτ ∼ N (0, I). We
then sample xτ,i ∼ U(−1, 1)nI and construct targets using the task-specific
teacher model, yτ,i = Wτxτ,i. In the majority of our experiments we set the
dimensions to N = nI = 10 and nO = 1. Since we use a noiseless teacher
for simplicity, we can expect our regression tasks to be well-posed and
analytically solvable as we only compute a loss on the Transformers last
token, which stands in contrast to usual autoregressive training and the
training setup of Garg et al. [78].

One-step of gradient descent vs. a single trained self-attention layer

Our first goal is to investigate whether a trained single, linear self-attention
layer can be explained by the provided weight construction that implements

26 transformers learn in-context by gradient descent

GD. To that end, we compare the predictions made by a LSA layer with
trained weights θ∗ (which minimize equation 2.9) and with constructed
weights θGD (which satisfy Proposition 1).

Recall that a LSA layer yields the prediction

ŷθ(xtest) = eN+1 + LSAθ({e1, . . . , eN}, eN+1) = ∆Wθ,Dxtest (2.10)

, which is linear in xtest. We denote by ∆Wθ,D the matrix generated by the
LSA layer following the construction provided in Proposition 1, with query
token eN+1 set such that the initial prediction is set to zero, ŷtest = 0. We
compare ŷθ(xtest) to the prediction of the control LSA ŷθGD(xtest), which
under our token construction corresponds to a linear model trained by one
step of gradient descent starting from W0 = 0. For this control model, we
determine the optimal learning rate η by minimizing L(η) over a training
set of 104 tasks through line search, with L(η) defined analogously to
equation 2.9.

More concretely, to compare trained and constructed LSA layers, we
sample Tval = 104 validation tasks and record the following quantities, aver-
aged over validation tasks: (1) the difference in predictions measured with
the L2 norm, ∥ŷθ(xτ,test)− ŷθGD(xτ,test)∥, (2) the cosine similarity between

the sensitivities
∂ŷθGD

(xτ,test)

∂xtest
and ∂ŷθ(xτ,test)

∂xtest
as well as (3) their difference

∥ ∂ŷθGD
(xτ,test)

∂xtest
− ∂ŷθ(xτ,test)

∂xtest
∥ again according to the L2 norm, which in both

cases yields the explicit models computed by the algorithm. We show the
results of these comparisons in Figure 2.3. We find an excellent agreement
between the two models over a wide range of hyperparameters. We note
that as we do not have direct access to the initialization of W in the attention-
based learners (it is hidden in θ), we cannot expect the models to agree
exactly.

Although the above metrics are important to show similarities between
the resulting learned models (in-context vs. gradient-based), the underlying
algorithms could still be different. We therefore carry out an extended set
of analyses:

1. Interpolation. We take inspiration on recent work [85, 86] that showed
approximate equivalence of models found by SGD after permuting
weights within the trained neural networks. Since our models are
deep linear networks with respect to xtest we only correct for scaling
mismatches between the two models – in this case the construction
that implements GD and the trained weights. As shown in Figure 2.3,
we observe (and can actually inspect by eye, see Appendix Figure

2.3 trained transformers do mimic gd on linear regression tasks 27

1 2 3 4 5 6 7 8 9 1011

1
2
3
4
5
6
7
8
9

10
11

Weights of WT
KWV

1 2 3 4 5 6 7 8 9 1011

1
2
3
4
5
6
7
8
9

10
11

Weight of PWV

1.0

0.5

0.0

0.5

1.0

1.0

0.5

0.0

0.5

1.0

1 2 3 4 5 6 7 8 9 1011

1
2
3
4
5
6
7
8
9

10
11

Weights of WT
KWV

1 2 3 4 5 6 7 8 9 1011

1
2
3
4
5
6
7
8
9

10
11

Weight of PWV

1

0

1

1

0

1

Figure 2.4: Visualizing the weight matrices of trained Transformers. Upper Left
& upper right: Weight matrix products of a trained single linear self-
attention layer. We see (after scalar correction) a perfect resemblance
of our construction. Lower right & outer left: Weight matrix products of
a trained 3-layer recurrent linear self-attention Transformer. Again, we
see (after scalar correction) a perfect resemblance of our construction
and an additional curvature correction i.e. diagonal values in PWV
of the same magnitude except the last entry that functions as the
learning rate.

28 transformers learn in-context by gradient descent

2.4) that a simple scaling correction on the trained weights is enough
to recover the weight construction implementing GD. This leads to
an identical loss of GD, the trained Transformer and the linearly
interpolated weights θI = (θ + θGD)/2. See details in Appendix 2.6.3
on how our weight correction and interpolation is obtained.

2. Out-of-distribution validation tasks. To test if our in-context learner
has found a generalizable update rule, we investigate how GD, the
trained LSA layer and its interpolation behave when providing in-
context data in regimes different to the ones used during training. We
therefore visualize the loss increase when (1) sampling the input data
from U(−α, α)Nx or (2) scaling the teacher weights by α as αW when
sampling validation tasks. For both cases, we set α = 1 during training.
We again observe that when training a single linear self-attention
Transformer, for both interventions, the Transformer performs equally
to gradient descent outside of this training setups, see Figure 2.3. Note
that the loss obtained through gradient descent also starts degrading
quickly outside the training regime. Since we tune the learning rate
for the input range [−1, 1] and one gradient step, tasks with larger
input range will have higher curvature and the optimal learning rate
for smaller ranges will lead to divergence and a drastic increase in
loss also for GD.

3. Repeating the LSA update. Since we claim that a single trained
LSA layer implements a GD-like learning rule, we further test its
behavior when applying it repeatedly, not only once as in training.
After we correct the learning rate of both algorithms, i.e. for GD
and the trained Transformer with a dampening parameter λ = 0.75
(details in Appendix 2.6.5), we see an identical loss decrease of both
GD and the Transformer, see Figure 2.2.

To conclude, we present evidence that optimizing a single LSA layer to
solve linear regression tasks finds weights that (approximately) coincide
with the LSA-layer weight construction of Proposition 1, hence implement-
ing a step of gradient descent, leading to the same learning capabilities on
in- and out-of-distribution tasks.

Multiple steps of gradient descent vs. multiple layers of self-attention

We now turn to deep linear self-attention-only Transformers. The construc-
tion we put forth in Proposition 1, can be immediately stacked up over K lay-

2.3 trained transformers do mimic gd on linear regression tasks 29

0 1000 2000 3000
Training steps

0.10

0.15

0.20

0.25

0.30

0.35

0.40

Lo
ss

GD
GD+ +

Trained TF

0.5

0.6

0.7

0.8

0.9

1.0

Co
sin

e
sim

GD vs trained TF
Model cos

0 1000 2000 3000
Training steps

0.0

0.5

1.0

1.5

2.0

2.5

L2
 N

or
m

Preds diff
Model diff

0.5

0.6

0.7

0.8

0.9

1.0

Co
sin

e
sim

GD+ + vs trained TF
Model cos

0 1000 2000 3000
Training steps

0.0

0.5

1.0

1.5

2.0

2.5

L2
 N

or
m

Preds diff
Model diff

0.5 1.0 1.5 2.0
 where x U(,)

10 1

100

101

102

103

104

Lo
ss

Test on larger inputs
GD
GD+ +

Interpolated
Trained TF

Figure 2.5: Comparing two steps of gradient descent with trained recurrent
two-layer Transformers. Top left: The trained TF performance sur-
passes standard GD but matches GD++, our GD variant with simple
iterative data transformation. On both cases, we tuned the gradient
descent learning rates as well as the scalar γ which governs the data
transformation H(X). Top right & lower left: We measure the alignment
between the GD as well as the GD++ models and the trained TF. In
both cases the TF aligns well with GD in the beginning of training
but aligns much better with GD++ after training. Lower right: TF per-
formance (in log-scale) mimics the one of GD++ well when testing
on OOD tasks (α ̸= 1).

30 transformers learn in-context by gradient descent

0 20000 40000
Training steps

0.1

0.2

0.3

0.4

Lo
ss

GD
GD+ + 5 steps
Trained TF

0.80

0.85

0.90

0.95

1.00

1.05

Co
sin

e
sim

GD vs trained TF
Model cos

0 20000 40000
Training steps

0.0

0.5

1.0

1.5

2.0

L2
 N

or
m

Preds diff
Model diff

0.80

0.85

0.90

0.95

1.00

1.05

Co
sin

e
sim

GD+ + vs trained TF
Model cos

0 20000 40000
Training steps

0.0

0.5

1.0

1.5

2.0

L2
 N

or
m

Preds diff
Model diff

0.5 1.0 1.5 2.0
 where x U(,)

10 2

10 1

100

101

Lo
ss

Test on larger inputs
GD
GD+ +

Trained TF

Figure 2.6: Comparing five steps of gradient descent with trained five-layer
Transformers. Top left: The trained TF performance surpasses standard
GD but matches GD++, our GD variant with simple iterative data
transformation. On both cases, we tuned the gradient descent learning
rates as well as the scalar γ which governs the data transformation
H(X). Top right & lower left: We measure the alignment between the
GD as well as the GD++ models and the trained TF. In both cases
the TF aligns well with GD in the beginning of training but aligns
much better with GD++ after training. Lower right: TF performance
(in log-scale) mimics the one of GD++ well when testing on OOD
tasks (α ̸= 1).

2.3 trained transformers do mimic gd on linear regression tasks 31

ers; in this case, the final prediction can be read out from the last layer as be-
fore by negating the y-entry of the last test token: −yN+1 + ∑K

k=1 ∆yk,N+1 =
−(yN+1 − ∑K

k=1 ∆yk,N+1) = yN+1 + ∑K
k=1 ∆WkxN+1, where yk,N+1 are the

test token values at layer k, and ∆yk,N+1 the change in the y-entry of the test
token after applying the k-th step of self-attention, and ∆Wk the k-th implicit
change in the underlying linear model parameters W. When optimizing
such Transformers with K layers, we observe that these models generally
outperform K steps of plain gradient descent, see Figure 2.5. Their behavior
is however well described by a variant of gradient descent, for which we
tune a single parameter γ defined through the transformation function
H(X) which transforms the input data according to xj ← H(X)xj, with
H(X) = (I − γXXT). We term this gradient descent variant GD++ which
we analyze it in the next section.

To analyze the effect of adding more layers to the architecture, we first
turn to the arguably simplest extension of a single SA layer and analyze a
recurrent or looped 2-layer LSA model. Here, we simply repeatably apply the
same layer (with the same weights) multiple times i.e. drawing the analogy
to learning an iterative algorithm that applies the same logic multiple times.

Somewhat surprisingly, we find that the trained model surpasses plain
gradient descent, which also results in decreasing alignment between the
two models (see center left column), and the recurrent Transformer realigns
perfectly with GD++ while matching its performance on in- and out-of
distribution tasks. Again, we can interpolate between the Transformer
weights found by optimization and the LSA-weight construction with
learned η, γ, see Figure 2.5.

We next consider deeper, non-recurrent 5-layer LSA-only Transformers,
with different parameters per layer (i.e. no weight tying). We see that a
different GD learning rate as well as γ per step (layer) need to be tuned to
match the Transformer performance. This slight modification leads again to
almost perfect alignment between the trained TF and GD++ with in this case
10 additional parameters and loss close to 0, see Figure 2.5. Nevertheless,
we see that the naive correction necessary for model interpolation used in
the aforementioned experiments is not enough to interpolate without a loss
increase. We leave a search for better weight corrections to future work. We
further study Transformers with different depths for recurrent as well as
non-recurrent architectures with multiple heads and equipped with MLPs,
and find qualitatively equivalent results.

Additionally, we provide results obtained when using softmax-SA layers
as well as LayerNorm, thus essentially retrieving the standard Transformer

32 transformers learn in-context by gradient descent

architecture. We again observe and are able to explain (after slight architec-
tural modifications) good learning performance and as well as alignment
with the construction of Proposition 1, though worse than when using
linear self-attention. These findings suggest that the in-context learning abil-
ities of the standard Transformer with these common architecture choices
can be explained by the gradient-based learning hypothesis explored here.
Our findings also question the ubiquitous use of softmax attention, and
suggest further investigation is warranted into the performance of linear
vs. softmax SA layers in real-world learning tasks, as initiated by Schlag,
Irie & Schmidhuber [66].

details of gd
++

We give here a precise construction showing how to implement in a single
head, a step of GD and the discussed data transformation, resulting in
GD++. Recall again the linear self-attention operation with a single head

ej ←ej + PWV ∑
i

ei ⊗ eiWT
K . (2.11)

We provide again the weight matrices in block form of the construction of
Prop. 1 but now enabling additionally our described data transformation:

WK = WQ =

(
Ix 0

0 0

)
with Ix the identity matrix of size Nx, Iy od size

Ny resp. Furthermore, we set WV =

(
Ix 0

W −Iy

)
with the weight matrix

W ∈ RNy×Nx of the linear model we wish to train and P =

(
−γIx 0

0 η
N

)
.

This leads to the following update

(
xj

yj

)
←
(

xj

yj

)
+

(
−γIx 0

0 η
N

)
N

∑
i=1

((
Ix 0

W −Iy

)(
xi

yi

))
⊗
(

xi

0

)(
xj

0

)

=

(
xj

yj

)
+

(
−γIx 0

0 η
N

)
N

∑
i=1

(
xi

Wxi − yi

)
⊗
(

xi

0

)(
xj

0

)
(2.12)

=

(
xj

yj

)
+

(
−γXXTxj

−∆Wxj

)
. (2.13)

2.3 trained transformers do mimic gd on linear regression tasks 33

Figure 2.7: GD++ analyses. Left: We visualize the change of the eigenspec-
trum induced by the input data transformation of GD++ for dif-
ferent γ observed in practice. Center: Given we know the maximum
and minimum of eigenvalues λ1, λn of the loss Hessian XXT with
X = (x0, . . . , xN) for different N, we compare the original condition
number (depicted by *’s at γ = 0) and the condition number (in log
scale) of the GD++ altered loss Hessian when varying γ. We plot in
dotted lines the γ values that we observe in practice which are close
the optimal ones i.e. the local minimum derived through our analysis.
Right: ForN = 25, we plot for different γ values the distribution of
condition numbers κ = λ1/λn for 10000 tasks and observe favorable
κ values close to 1 when approaching the γ = 0.099 value was found
in practice. The κ values quickly explode for γ > 0.1.

for every token ej = (xj, yj) including the query token eN+1 = etest =
(xtest, 0) which will give us the desired result.

Why does GD++ perform better? We give here one possible explanation
of the superior performance of GD++ compared to GD. Note that there
is a close resemblance of the GD transformation and a heavily truncated
Neuman series approximation of the inverse XXT . However, we provide
here a more heuristic explanation for the observed acceleration.

Given γ ∈ R, GD++ transforms every input according to

xi ← xi − γXXTxi = (I − γXXT)xi. (2.14)

We can therefore look at the change of squared regression loss L(W) =
1
2 ∑N

i=0(Wxi − yi)
2 induced by this transformation i.e.

L++(W) =
1
2

N

∑
i=0

(W(I−γXXT)xi− yi)
2 =

1
2
(W(I−γXXT)X−Y)2 (2.15)

34 transformers learn in-context by gradient descent

which in turn leads to a change of the loss Hessian from ∇2L = XXT to

∇2L++ = (I − γXXT)X((I − γXXT)X)T (2.16)

.
Given the original Hessian and it’s diagonalization H = XXT = UΣUT

with it’s set of sorted eigenvalues {λ1, . . . , λn} and λi ≥ 0 on the diagonal
matrix Σ we can express the new Hessian through U, Σ i.e.

H++ = (I − γXXT)X((I − γXXT)X)T (2.17)

= (I − γUΣUT)UΣUT(I − γUΣUT)T (2.18)

.
We can simplify H++ further as

H++ = (I − γUΣUT)UΣUT(I − γUΣUT)T (2.19)

= U(Σ− γΣ2)UTU(I − γΣ)UT (2.20)

= U(Σ− 2γΣ2 + γ2Σ3)UT (2.21)

Given the eigenspectrum {λ1, . . . , λn} of H, we obtain an (unsorted)
eigenspecturm for H++ with {λ1 − 2γλ2

1 + γ2λ3
1, . . . , λn − 2γλ2

n + γ2λ3
n}

which we visualize in Figure 2.7 for different γ observed in practice. We
hypotheses that the Transformer chooses γ in a way that on average, across
the distribution of tasks, the data transformation (iteratively) decreases the
condition number λ1/λn leading to accelerated learning. This could be
achieved, for example, by keeping the smallest eigenvalue λn ≈ λ++

n fixed
and choosing γ such that the largest eigenvalue of the transformed data
λ++

1 is reduced, while the original λ1 stays within [λ++
1 , λ++

n].
To support our hypotheses empirically, we computed the minimum

and maximum eigenvalues of XXT across 10000 tasks while changing
the number of datapoints N ∈ [10, 25, 50, 100] i.e. X = (x0, . . . , xN) lead-
ing to better conditioned loss Hessians i.e. [1e−10, 0.097, 0.666, 2.870] and
[4.6, 7.712, 10.845, 17.196] as the minimum and maximum eigenvalues of
XXT across all tasks where we cut the smallest eigenvalue for N = 10
at 1e−10. Furthermore, we extract the γ values from the weights of opti-
mized recurrent 2-layer Transformers trained on different task distributions
and obtain γ values of [0.179, 0.099, 0.056, 0.029], see again Figure 2.7. Note
that the observed eigenvalues stay within [0, 1/γ] i.e. the two roots of
f (λ, γ) = λ− 2γλ2 + γ2λ3.

Given the derived function of eigenvalue change f (λ, γ), we compute
the condition number of H++ by dividing the novel maximum eigenvalues

2.3 trained transformers do mimic gd on linear regression tasks 35

λ++
1 = f (1/(3γ), γ) where λ = 1/(3γ) as the local maximum of f (λ, γ), for

fixed γ, and the novel minimum eigenvalue λ++
n = min(f (λ1, γ), f (λn, γ)).

Note that with too small γ, we move the original λn closer to the root of
f (λ, γ) i.e. λ = 1/γ and therefore can change the smallest eigenvalue.

Given the task distribution and its corresponding eigenvalue distribution,
we see that choosing γ reduces the new condition number κ++ = λ++

1 /λ++
n

which leads to better conditioned learning, see center plot of Figure 2.7.
Note that the optimal γ based on our derivation above is based on the
maximum and minimum eigenvalue across all tasks and does not take
the change of the whole eigenvalue distribution into account. We argue
therefore that the simplicity of the arguments above does not capture the
task statistics and distribution shifts entirely. Therefore we obtain a slightly
larger γ as the value observed in practice. We furthermore visualize the
condition number change for N = 25 and 10000 tasks in the right plot of
Figure 2.7 and observe the distribution moving to desirable κ values close
to 1. For γ values larger than 0.1 the distribution quickly exhibits exploding
condition numbers.

Transformers solve nonlinear regression tasks by gradient descent on deep data
representations

It is unreasonable to assume that the astonishing in-context learning flexi-
bility observed in large Transformers is explained by gradient descent on
linear models. We now show that this limitation can be resolved by incor-
porating one additional element of fully-fledged Transformers: preceding
self-attention layers by MLPs enables learning linear models by gradient
descent on deep representations which motivates our illustration in Fig-
ure 2.1. Empirically, we demonstrate this by solving non-linear sine-wave
regression tasks, see Figure 2.8. We state

Proposition 2 Given a Transformer block i.e. a MLP m(e) which transforms
the tokens ej = (xj, yj) followed by an attention layer, we can construct weights
that lead to gradient descent dynamics descending 1

2N ∑N
i=1 ||Wm(xi) − yi||2.

Iteratively applying Transformer blocks therefore can solve kernelized least-squares
regression problems with kernel function k(x, y) = m(x)⊤m(y) induced by the
MLP m(·).

A detailed discussion on this form of kernel regression as well as kernel
smoothing w/wo softmax nonlinearity through gradient descent on the
data can be found in Appendix section 2.6.1. The way MLPs transform data

36 transformers learn in-context by gradient descent

in Transformers diverges from the standard meta-learning approach, where
a task-shared input embedding network is optimized by backpropagation-
through-training to improve the learning performance of a task-specific
readout [e.g., 47, 70, 87]. On the other hand, given our token construction
in Proposition 1, MLPs in Transformers intriguingly process both inputs
and targets. The output of this transformation is then processed by a single
linear self-attention layer, which, according to our theory, is capable of
implementing gradient descent learning. We compare the performance
of this Transformer model, where all weights are learned, to a control
Transformer where the final LSA weights are set to the construction θGD
which is therefore identical to training an MLP by backpropagation through
a GD updated output layer.

Intriguingly, both obtained functions show again surprising similarity
on (1) the initial (meta-learned) prediction, read out after the MLP, and (2)
the final prediction, after altering the output of the MLP through GD or
the self-attention layer. This is again reflected in our alignment measures
that now, since the obtained models are nonlinear w.r.t. xtest, only represent
the two first parts of the Taylor approximation of the obtained functions.
Our results serve as a first demonstration of how MLPs and self-attention
layers can interplay to support nonlinear in-context learning, allowing to
fine-tune deep data representations by gradient descent. Investigating the
interplay between MLPs and SA-layer in deep TFs is left for future work.

2.4 do self-attention layers build regression tasks?

The construction provided in Proposition 1 and the previous experimental
section relied on a token structure where both input and output data
are concatenated into a single token. This design is different from the
way tokens are typically built in most of the related work dealing with
simple few-shot learning problems as well as in e.g. language modeling.
We therefore ask: Can we overcome the assumption required in Proposition
1 and allow a Transformer to build the required token construction on its
own? This motivates

Proposition 3 Given a 1-head linear or softmax attention layer and the token
construction e2j = (xj), e2j+1 = (0, yj) with a zero vector 0 of dim Nx − Ny
and concatenated positional encodings, one can construct key, query and value
matrix WK, WQ, WV as well as the projection matrix P such that all tokens ej are
transformed into tokens equivalent to the ones required in Proposition 1.

2.4 do self-attention layers build regression tasks? 37

4 2 0 2 4
x

0.4

0.2

0.0

0.2

0.4

0.6

y

GT
Data

GD init
GD step 1

Tr. TF init
Tr. TF step 1

0 20000 40000
Training steps

0.000

0.001

0.002

0.003

0.004

0.005

0.006

Lo
ss

GD
Trained TF

0.5

0.6

0.7

0.8

0.9

1.0

Co
sin

e
sim

Partial cosine

0 20000 40000
Training steps

0.00

0.02

0.04

0.06

0.08

L2
 N

or
m

Preds diff
Partial diff

Figure 2.8: Sine wave regression: comparing trained Transformers with meta-
learned MLPs for which we adjust the output layer with one step
of gradient descent. Left: Plots of the learned initial functions as well
as the adjusted functions through either a layer of self-attention or a
step of GD. We observe similar initial functions as well as solutions
for the trained TF compared fine-tuning a meta-learned MLP. Center:
The performance of the trained Transformer is matched by meta-
learned MLPs. Left: We observe strong alignment when comparing
the prediction as well as the partial derivatives of the the meta-learned
MLP and the trained Transformer.

38 transformers learn in-context by gradient descent

0 10000 20000 30000 40000
Training steps

0.20

0.25

0.30

0.35

0.40

0.45

0.50

0.55

Lo
ss

GD 1 step
TF 2 layers

0 10000 20000 30000 40000
Training steps

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

No
rm

 p
ar

t.
de

riv
at

iv
es

t(ej)/ ej

t(ej)/ ej + 1

t(ej)/ eother

Figure 2.9: Training a two layer SA-only Transformer using the standard token
construction. Left: The loss of trained TFs matches one step of GD,
not two, and takes an order of magnitude longer to train. Right: Norm
of the partial derivatives of the output of the first self-attention layer
w.r.t. input tokens. Before the Transformer performance jumps to the
one of GD, the first layer becomes highly sensitive to the next token.

The construction and its discussion can be found in Appendix section 2.6.2.
To provide evidence that copying is performed in trained Transformers,
we optimize a two-layer self-attention circuit on in-context data where
alternating tokens include input or output data i.e. e2j = (xj) and e2j+1 =
(0, yj). We again measure the loss as well as the mean of the norm of the
partial derivative of the first layer’s output w.r.t. the input tokens during
training, see Figure 2.9. First, the training speeds are highly variant given
different training seeds, also reported in Garg et al. [78]. Nevertheless, the
Transformer is able to match the performance of a single (not two) step
gradient descent. Interestingly, before the Transformer performance jumps
to the one of GD, token ej transformed by the first self-attention layer
becomes notably dependant on the neighboring token ej+1 while staying
independent on the others which we denote as eother in Figure 2.9.

We interpret this as evidence for a copying mechanism of the Trans-
former’s first layer to merge input and output data into single tokens
as required by Proposition 1. Then, in the second layer the Transformer
performs a single step of GD. Notably, we were not able to train the Trans-
former with linear self-attention layers, but had to incorporate the softmax
operation in the first layer. These preliminary findings support the study of
Olsson et al. [49] showing that softmax self-attention layers easily learn to
copy; we confirm this claim, and further show that such copying allows the

2.5 discussion 39

Transformer to proceed by emulating gradient-based learning in the second
or deeper attention layers.

We conclude that copying through (softmax) attention layers is the second
crucial mechanism for in-context learning in Transformers. This operation
enables Transformers to merge data from different tokens and then to
compute dot products of input and target data downstream, allowing for
in-context learning by gradient descent to emerge.

2.5 discussion

Transformers show remarkable in-context learning behavior. Mechanisms
based on attention, associative memory and copying by induction heads are
currently the leading explanations for this remarkable feature of learning
within the Transformer forward pass. In this chapter, we put forward the hy-
pothesis, similar to Garg et al. [78] and Akyürek et al. [77], that Transformer’s
in-context learning is driven by gradient descent, in short – Transformers
learn to learn by gradient descent based on their context. Viewed through the
lens of meta-learning, learning Transformer weights corresponds to the
outer-loop which then enables the forward pass to transform tokens by
gradient-based optimization.

To provide evidence for this hypothesis, we build on Schlag, Irie &
Schmidhuber [66] that already provide a linear self-attention layer variant
with (fast-)inner loop learning by the error-correcting delta rule [88]. We
diverge from their setting and focus on (in-context) learning where we
specifically construct a dataset by considering neighboring elements in
the input sequence as input- and target training pairs, see assumptions of
Proposition 1. This construction could be realized, for example, due to the
model learning to implement a copying layer, see section 2.4 and proposition
3, and allows us to provide a simple and different construction to Schlag,
Irie & Schmidhuber [66] that solely is built on the standard linear, and
approximately softmax, self-attention layer but still implements gradient
descent based learning dynamics. We, therefore, are able to explain gradient
descent based learning in these standard architectures. Furthermore, we
extend this construction based on a single self-attention layer and provide
an explanation of how deeper K-layer Transformer models implement
principled K-step gradient descent learning, which deviates again from
Schlag et al. and allows us to identify that deep Transformers implement
GD++, an accelerated version of gradient descent.

40 transformers learn in-context by gradient descent

We highlight that our construction of gradient descent and GD++ is not
suggestive but when training multi-layer self-attention-only Transformers
on simple regression tasks, we provide strong evidence that the construction
is actually found. This allows us, at least in our restricted problems settings,
to explain mechanistically in-context learning in trained Transformers and
its close resemblance to GD observed by related work. Further work is
needed to incorporate regression problems with noisy data and weight
regularization into our hypothesis. We speculate aspects of learning in
these settings are meta-learned – e.g., the weight magnitudes to be encoded
in the self-attention weights. Additionally, we did not analyze logistic
regression for which one possible weight construction is already presented
in Zhmoginov, Sandler & Vladymyrov [89].

Our refined understanding of in-context learning based on gradient de-
scent motives us to investigate how to improve it. We are excited about
several avenues of future research. First, to exceed upon a single step of
gradient descent in every self-attention layer it could be advantageous to in-
corporate so called declarative nodes [90–93] into Transformer architectures.
This way, we would treat a single self-attention layer as the solution of a
fully optimized regression loss leading to possibly more efficient architec-
tures. Second, our findings are restricted to small Transformers and simple
regression problems. We are excited to delve deeper into research trying to
understand how further mechanistic understanding of Transformers and
in-context learning in larger models is possible and to what extend. Third,
we are excited about targeted modifications to Transformer architectures,
or their training protocols, leading to improved gradient descent based
learning algorithms or allow for alternative in-context learners to be imple-
mented within Transformer weights, augmenting their functionality, as e.g.
in Dai et al. [94]. Finally, it would be interesting to analyze in-context learn-
ing in HyperTransformers [89] that produce weights for target networks
and already offer a different perspective on merging Transformers and
meta-learning. There, Transformers transform weights instead of data and
could potentially allow for gradient computations of weights deep inside
the target network lifting the limitation of GD on linear models analyzed
here.

2.6 appendix 41

2.6 appendix

We present here some additional results to complement the main results
discussed in the previous sections.

2.6.1 Proposition 2 and connections between gradient descent, kernelized regres-
sion and kernel smoothing

Let’s consider the data transformation induced by an MLP m̃(x) and a
residual connection commonly used in Transformer blocks i.e. ej ← ej +
m̃(ej) = (xj, yj) + (m̃(xj), 0) = (m(xj), yj) with m(xj) = xj + m̃(xj) and
m̃ not changing the targets y. When simply applying Proposition 1, it is
easy to see that given this new token construction, a linear self-attention
layer can induce the token dynamics ej ← (m(xj), yj)+ (0,−∆Wm(xj)) with
∆W = −η∇L(W) given the loss function L(W) = 1

2N ∑N
i=1 ||Wm(xi)− yi||2.

Interestingly, for the test token etest = (xtest, 0) this induces, after a
multiplication with −1, an initial prediction after a single Transformer
block given by

ŷ = ∆Wm(xtest) = −η∇W L(0)m(xtest) (2.22)

=
N

∑
i=1

yim(xi)
Tm(xtest) =

N

∑
i=1

yik(xi, xtest) (2.23)

with m(xi)
Tm(xtest) = k(xi, xtest) ∈ R interpreted as a kernel function. Con-

cluding, we see that the combination of MLPs and a single self-attention
layer can lead to dynamics induced when descending a kernelized regres-
sion (squared error) loss with a single step of gradient-descent.

Interestingly, when choosing W0 = 0, we furthermore see that a single
self-attention layer or Transformer block can be regarded as doing non-
parametric kernel smoothing ŷ = ∑N

i=1 yik(xi, xtest) based on the data given
in-context [95, 96]. Note that we made a particular choice of kernel function
here and that this view still holds when m(xj) = I i.e. consider Transform-
ers without MLPs or leverage the well-known view of softmax self-attention
layer as a kernel function used to measure similarity between tokens [e.g.
97, 98].

Thus, implementing one step of gradient descent through a self-attention
layer (w/wo softmax nonlinearity) is equivalent to performing kernel
smoothing estimation. We however argue that this nonparametric kernel
smoothing view of in-context learning is limited, and arises from looking

42 transformers learn in-context by gradient descent

only at a single self-attention layer. When considering deeper Transformer
architectures, we see that multiple Transformer blocks can iteratively trans-
form the targets based on multiple steps of gradient descent leading to
minimization of a kernelized squared error loss L(W). One way to obtain a
suitable construction is by neglecting MLPs everywhere except in the first
Transformer block.

2.6.2 Proof and discussion of Proposition 3

We state here again Proposition 3, provide the necessary construction and a
short discussion.

Proposition 3 Given a 1-head linear- or softmax attention layer and the token
construction e2j = (xj), e2j+1 = (0, yj) with a zero vector 0 of dim Nx − Ny
and concatenated positional encodings, one can construct key, query and value
matrix WK, WQ, WV as well as the projection matrix P such that all tokens ej are
transformed into tokens equivalent to the ones required in proposition 1.

To get a simple and clean construction, we choose wlog xj ∈ R2N+1 and
(0, yj) ∈ R2N+1 as well as model the positional encodings as unit vectors
pj ∈ R2N+1 and concatenate them to the tokens i.e. ej = (xj/2, pj). We wish
for a construction that realizes

ej ←
(

xj/2

pj

)
+ PVKTWQ

(
xj/2

pj

)
(2.24)

=

(
xj/2

pj

)
+

(
0

yj/2+1 − pj

)
. (2.25)

This means that a token replaces its own positional encoding by coping the
target data of the next token to itself leading to ej = (xj/2, 0, yj/2+1), with
slight abusive of notation. This can simply be realized by (for example) set-

ting P = I, WV =

(
0 0

Ix −Ix,o f f

)
, WK =

(
0 0

0 Ix

)
and WQ =

(
0 0

0 IT
x,o f f

)
with Ix,o f f the lower diagonal identity matrix fo size Nx. Note that then
simply KTWQej = pj+1 i.e. it chooses the j + 1 element of V which stays
pj+1 if we apply the softmax operation on KTqj. Since the j + 1 entry of V
is (0, yj/2+1 − pj) we obtain the desired result.

For the (toy-)regression problems considered in this chapter, the pro-
vided result would give N/2 tokens for which we also copy (parts) of

2.6 appendix 43

xj underneath yj. This is desired for modalities such as language where
every two tokens could be considered an in-and output pair for the implicit
autoregressive inner-loop loss. These tokens do not have be necessarily
next to each other, see for this behavior experimental findings presented
in [49]. For the experiments conducted here, one solution is to zero out
these tokens which could be constructed by a two-head self-attention layer
that given uneven j simply subtracts itself resulting in a zero token. For all
even tokens, we use the construction from above which effectively coincides
with the token construction required in Proposition 1.

2.6.3 Linear mode connectivity between the weight construction of Prop 1 and
trained Transformers

In order to interpolate between the construction θGD and the trained weights
of the Transformer θ, we need to correct for some scaling ambiguity. For
clarification, we restate here the linear self-attention operation for a single
head

ej ←ej + PWV ∑
i

ei ⊗ eiWT
K WQej (2.26)

= ej + WPV ∑
i

ei ⊗ eiWKQej (2.27)

Now, to match the weight construction of Prop. 1 we have the aim for the
matrix product WKQ to match an identify matrix (except for the last diagonal
entry) after re-scaling. Therefore we compute the mean of the diagonal of the
matrix product of the trained Transformer weights WKQ which we denote by
β. After resealing both operations i.e. WKQ ← WKQ/β and WPV ← WPV β
we interpolate linearly between the matrix products of GD as well as these
rescaled trained matrix products i.e. WI,KQ = (WGD,KQ + WTF,KQ)/2 as
well as WI,PV = (WGD,PV + WTF,PV)/2. We use these parameters to obtain
results throughout the chapter denote with Interpolated. We do so for GD
as well as GD++ when comparing to recurrent Transformers. Note that for
non-recurrent Transformers, we face more ambiguity that we have to correct
for since e.g. scalings influence each other across layer. We also see this
in practice and are not able (only for some seeds) to interpolate between
weights with our simple correction from above. We leave the search for
more elaborate corrections for future work.

44 transformers learn in-context by gradient descent

1 2 3 4 5 6 7 8 9 1011

1
2
3
4
5
6
7
8
9

10
11

1W1, KQ

1 2 3 4 5 6 7 8 9 1011

1
2
3
4
5
6
7
8
9

10
11

2W2, KQ

4

2

0

2

4

4

2

0

2

4

1 2 3 4 5 6 7 8 9 1011

1
2
3
4
5
6
7
8
9

10
11

1W1, KQ + 2W2, KQ

4

2

0

2

4

Figure 2.10: Visualizing the correction to the softmax operation when training
Transformers on regression tasks. The left and center plot show the
matrix product WKQ = WT

K WQ including its scaling by η induced
through PWV of the two heads of the trained softmax self-attention
layer. We observe that both of the matrices are approximate diagonal
almost perfect sign reversed values on the off-diagonal terms. After
adding the matrices (right plot), we observe a diagonal matrix and
therefore to much improved approximation of our construction and
therefore gradient descent dynamics.

2.6.4 Linear vs. softmax self-attention as well LayerNorm Transformers

Although linear Transformers and their variants have been shown to be com-
petitive with their softmax counterpart [99], the removal of this nonlinearity
is still a major departure from classic Transformers and more importantly
from the Transformers used in related studies analyzing in-context learning.
In this section we investigate whether and when gradient-based learn-
ing emerges in trained softmax self-attention layers, and we provide an
analytical argument to back our findings.

First, we show, see Figure 2.11, that a single layer of softmax self-attention
is not able to match GD performance. We tuned the learning rate as well
as the weight initialization but found no significant difference over the
hyperparameters we used througout this study. In general, we hypothesize
that GD is an optimal update given the limited capacity of a single layer of

2.6 appendix 45

(single-head) self-attention. We therefore argue that the softmax induces (at
best) a linear offset of the matrix product of training data and query vector

softmax(KTqj) = (ekT
1 qj , . . . , ekT

N qj)T/(∑
i

ekT
i qj) (2.28)

= (exT
1 WKQxj , . . . , exT

NWKQxj)T/(∑
i

exT
i WKQxj) (2.29)

≈ (1 + xT
1 WKQxj, . . . , 1 + xT

NWKQxj)
T/(∑

i
1 + xT

i WKQxj)

(2.30)

∝ KTqj + ϵ (2.31)

proportional to a factor dependent on all {xτ,i}N+1
i=1 . We speculate that

the dependency on the specific task τ, for large Nx vanishes or that the
x-dependent value matrix could introduce a correcting effect. In this case
the softmax operation introduces an additive error w.r.t. to the optimal
GD update. To overcome this disadvantageous offset, the Transformer can
(approximately) introduce a correction with a second self-attention head by
a simple subtraction i.e.

P1V1softmax(KT
1 WQxj) + P2V2softmax(KT

2 WQxj) (2.32)

≈PV((1 + xT
1 W1,KQxj, . . . , 1 + xT

NW1,KQxj) (2.33)

− (1 + xT
1 W2,KQxj, . . . , 1 + xT

NW2,KQxj)) (2.34)

= PV(xT
1 (W1,KQ −W2,KQ)xj, . . . , xT

N(W1,KQ −W2,KQ)xj) (2.35)

∝ PVKTqj. (2.36)

Here we assume that PV 1) subsumes the dividing factor of the softmax
and that 2) is the same (up to scaling) for each head. Note that if (W1,KQ −
W2,KQ) is diagonal, and WP and WV chosen as in the Proposition 1, we
recover our gradient descent construction.

We base this derivation on empirical findings, see Figure 2.11, that, first
of all, show the softmax self-attention performance increases drastically
when using two heads instead of one. Nevertheless, the self-attention
layer has difficulties to match the loss values of a model trained with
GD. Furthermore, this architecture change leads to a very much improved
alignment of the trained model and GD. Second, we can observe that when
training a two-headed softmax self-attention layer on regression tasks the
correction proposed above is actually observed in weight space, see Figure
2.10. Here, we visualize the matrix product within the softmax operation

46 transformers learn in-context by gradient descent

(a) Softmax one-headed self-attention layer.

0 2000 4000
Training steps

0.20

0.25

0.30

0.35

0.40

Lo
ss

GD
Trained TF

0.0

0.2

0.4

0.6

0.8

1.0

Co
sin

e
sim

Model cos

0 1000 2000 3000 4000 5000
Training steps

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5
L2

 N
or

m
Preds diff
Model diff

0.5 1.0 1.5 2.0
 where x U(,)

10 1

100

Lo
ss

Test on larger inputs
GD
Trained TF

(b) Softmax two-headed self-attention layer.

0 2500 5000 7500 10000
Training steps

0.20

0.25

0.30

0.35

0.40

Lo
ss

GD
Trained TF

0.0

0.2

0.4

0.6

0.8

1.0
Co

sin
e

sim
Model cos

0 2000 4000 6000 8000 10000
Training steps

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

L2
 N

or
m

Preds diff
Model diff

0.5 1.0 1.5 2.0
 where x U(,)

10 1

100

Lo
ss

Test on larger inputs
GD
Trained TF

Figure 2.11: Comparing trained two-headed and one-headed single-layer soft-
max self-attention with 1 step of gradient descent on linear regres-
sion tasks. Left column: Softmax self-attention is not able to match
gradient descent performance with hand-tuned learning rate, but
adding a second attention head significantly reduces the gap, as
expected by our analytical argument. Center column: The alignment
suffers significantly for single-head softmax SA. We observe good
but not as precise alignment when compared to linear Transformers
for the two-headed softmax SA layer. Right column: The two-headed
self-attention compared to the single-head layer shows similar robust
out-of-distribution behavior compared to gradient descent.

2.6 appendix 47

Rolling out experiment with different dampening strength

0 10 20 30 40 50
GD Steps / Transformer Layers

0.0

0.1

0.2

Lo
ss

Dampening = 1
GD
Trained TF

0 10 20 30 40 50
GD Steps / Transformer Layers

0.0

0.1

0.2

Lo
ss

Dampening = 0.875
GD
Trained TF

0 20 40
GD Steps / Transformer Layers

0.0

0.1

0.2

Lo
ss

Dampening = 0.75
GD
Trained TF

Figure 2.12: Roll-out experiments: applying a trained single linear self-
attention layer multiple times. We observe that different dampening
strengths affect the generalization of both methods with slightly bet-
ter robustness for GD which matching performance for 50 steps
when λ = 0.75.

Wh,KQ per head which we scale with the last diagonal entry of PhWh,V which
we denote by ηh = PhWh,V(−1,−1). Intriguingly, this results in an almost
perfect cancellation (right plot) of the off-diagonal terms and therefore in
sum to an improved approximation of our construction, see the derivation
above.

We would like to reiterate that the stronger inductive bias for copying
data of the softmax layer remains, and is not invalidated by the analysis
above. Therefore, even for our shallow and simple constructions they indeed
fulfill an important role in support for our hypotheses: The ability to merge
or copy input and target data into single tokens allowing for their dot
product computation necessary for the construction in Proposition 1, see
Section 2.4 in the main text.

We conclude that common architecture choices like softmax (and Lay-
erNorm, see full paper online) seem sup-optimal for the constructed in-
context learning settings when comparing to GD or linear self-attention.
Nevertheless, we speculate that the potentially small performance drops of
in-context learning are negligible when turning to deep and wide Trans-
formers for which these architecture choices have empirically proven to be
superior.

2.6.5 Dampening the self-attention layer

As an additional out-of-distribution experiment, we test the behavior when
repeating a single LSA-layer trained to lower our objective, see equation 2.9,
with the aim to repeat the learned learning/update rule. Note that GD as

48 transformers learn in-context by gradient descent

well as the self-attention layer were optimized to be optimal for one step. For
GD we line search the optimal learning rate η on 10.000 task. Interestingly,
for both methods we observe quick divergence when applied multiple times,
see left plot of Figure 2.12. Nevertheless, both of our update functions are
described by a linear self-attention layer for which we can control the
norm, post training, by a simple scale which we denote as λ. This results
in the new update ytest + λ∆Wxtest for GD and ytest + λPVKTWQxtest for
the trained self-attention layer which effectively re-tunes the learning rate
for GD and the trained self-attention layer. Intriguingly, both methods do
generalize similarly well (or poorly) on this out-of-distribution experiment
when changing λ, see again Figure 2.12. We show in Figure 2.1 the behavior
for λ = 0.75 for which we see both methods steadily decreasing the loss
within 50 steps.

3
U N C O V E R I N G M E S A - O P T I M I Z AT I O N A L G O R I T H M S I N
T R A N S F O R M E R S

This chapter’s content can be found online in an extended form including all experimental details

which we omit here for clarity. The original publication is authored by Johannes von Oswald∗, Eyvind

Niklasson∗, Maximilian Schlegel∗, Seijin Kobayashi, Nicolas Zucchet, Nino Scherrer, Nolan Miller,

Mark Sandler, Blaise Agüera y Arcas, Max Vladymyrov, Razvan Pascanu, João Sacramento [100].

⋆ These authors contributed equally.

Transformers have become the dominant model in deep learning, but
the reason for their superior performance is poorly understood. Here,
we hypothesize that the strong performance of Transformers stems from
an architectural bias towards mesa-optimization, a learned process run-
ning within the forward pass of a model consisting of the following two
steps: (i) the construction of an internal learning objective, and (ii) its cor-
responding solution found through optimization. To test this hypothesis,
we reverse-engineer a series of autoregressive Transformers trained on
simple sequence modeling tasks, uncovering underlying gradient-based
mesa-optimization algorithms driving the generation of predictions. More-
over, we show that the learned forward-pass optimization algorithm can be
immediately repurposed to solve supervised few-shot tasks, suggesting that
mesa-optimization might underlie the in-context learning capabilities of
large language models. Finally, we propose a novel self-attention layer, the
mesa-layer, that explicitly and efficiently solves optimization problems spec-
ified in context. We find that this layer can lead to improved performance in
synthetic and preliminary language modeling experiments, adding weight
to our hypothesis that mesa-optimization is an important operation hidden
within the weights of trained Transformers.

3.1 introduction

Transformers [101] and especially large language models (LLMs) are known
to strongly adjust their predictions and learn based on data given in-context
[102]. Recently, a number of works have studied this phenomenon in detail
by meta-learning Transformers to solve few-shot tasks, providing labeled

49

https://arxiv.org/abs/2309.05858

50 uncovering mesa-optimization algorithms in transformers

Transformer

1) 2)

Layer-wise

Mesa-Optimization

M
es

a-
Lo

ss

 by copying

Head 1 Head 2

?

Autoregressive Transformer

 (i) Create mesa-dataset
 → select input-output pairs
 predictive of the future

layerwise

mesa-optimization
 (ii) Define mesa-objective
 → learn internal model
 based on

 (iii) Mesa-optimize
 → improves over sequence
 length and layer depth

Self-attention m
ap

Figure 3.1: Illustration of our hypothesis: Optimizing the weights θ of an autore-
gressive Transformer fθ gives rise to mesa-optimization algorithms
implemented in the forward pass of the model. As a sequence of
inputs s1, . . . , st is processed up to timestep t, the Transformer (i)
creates an internal training set consisting of pairs of input-target
associations, (ii) defines an internal objective function through the
resulting dataset, used to measure the performance of an internal
model with weights W, (iii) optimizes this objective and uses the
learned model to generate a prediction ŝt+1 of the future.

training sets in context. These studies discovered that Transformers imple-
ment learning algorithms that either closely resemble or exactly correspond
to gradient-based optimizers [38–42, 48, 103, 104].

However, it remains unclear how well these findings on meta-trained
Transformers translate to models that are autoregressively-trained on sequen-
tial data, the prevalent LLM training setup. Here, we address this question
by building on the theoretical construction of von Oswald et al. [48], and
show how Transformers trained on sequence modeling tasks predict using
gradient-descent learning based on in-context data. Thus, we demonstrate
that minimizing a generic autoregressive loss gives rise to a subsidiary
gradient-based optimization algorithm running inside the forward pass of a
Transformer. This phenomenon has been recently termed mesa-optimization
[105]. Moreover, we find that the resulting mesa-optimization algorithms
exhibit in-context few-shot learning capabilities, independently of model
scale. Our results therefore complement previous reports characterizing the
emergence of few-shot learning in large-scale LLMs [102, 106].

Our contributions are as follows:

3.2 preliminaries 51

• We generalize the construction introduced in the previous chapter [48]
and show how, in theory, Transformers can autoregressively predict
the next element of a sequence by optimizing internally-constructed
objectives with gradient-based methods.

• Experimentally, we reverse-engineer Transformers trained on simple
sequence modeling tasks, and find strong evidence that their forward
pass implements two-step algorithms: (i) early self-attention layers
construct internal training datasets by grouping and copying tokens,
and therefore implicitly define internal objective functions, (ii) deeper
layers optimize these objectives to generate predictions.

• Similarly to LLMs, we show that these simple autoregressively-trained
models become in-context learners, and that prompt-tuning, crucial
to improve in-context learning in LLMs, also improves performance
in our setting.

• Motivated by our findings that attention layers are attempting to
implicitly optimize internal objective functions, we introduce the mesa-
layer, a novel attention layer that efficiently solves a least-squares
optimization problem, instead of taking just a single gradient step
towards an optimum. We show that a single mesa-layer outperforms
deep linear and softmax self-attention Transformers on simple sequen-
tial tasks while offering more interpretability.

• We carry out preliminary language modeling experiments replac-
ing standard self-attention layers with the mesa-layer, and obtain
promising results demonstrating strong in-context learning capabili-
ties enabled by the layer.

3.2 preliminaries

self-attention. We study causally-masked, autoregressive Transform-
ers [101] where self-attention [107] is the elementary building block. Given
a sequence of t input tokens Et = (et′)

t
t′=1, representing the first t time

steps, a self-attention layer with H heads and parameters θ updates the
current token et ∈ RDe as follows:

∆esoftmax
t (Et, θ) =

H

∑
h=1

PhVh,t softmax(K⊤h,tqh,t), (3.1)

52 uncovering mesa-optimization algorithms in transformers

where qh,t = Wh,qet ∈ RDa is referred to as a query, each column kh,t′ =

Wh,ket′ ∈ RDa of matrix Kh,t ∈ RDa×t as a key, and each column vh,t′ =
Wh,vet′ ∈ RDv of matrix Vh,t ∈ RDv×t as a value. The nonlinear function
softmax(a) applied to vector a ∈ Rt returns an attention vector with entries
[softmax(a)]i =

exp(ai)

∑t
t′=1 exp(at′)

. We absorb bias terms and assume here for

conciseness that all heads are equally sized. The parameters θ of this
layer are the projection matrices {(Ph, Wh,q, Wh,k, Wh,v)}H

h=1 for all heads.
Transformers include other layers that we do not review here, notably
multi-layer perceptrons (MLPs) and layer normalization (LayerNorm) units.

We also consider linear attention models [e.g., 108–111], which simply
omit the softmax nonlinearity:

∆elinear
t (Et, θ) =

H

∑
h=1

PhVh,tK⊤h,tqh,t =
H

∑
h=1

PhŴlinear
h,t qh,t. (3.2)

Above, we rewrite this equation using a weight matrix Ŵlinear
h,t = ∑t

t′=1 vh,t′k⊤h,t′ .
The size of this weight matrix does not scale with time, but it encodes infor-
mation from all past tokens (et′)

t
t′=1, allowing inference at constant memory

cost. For this reason, there is at present considerable interest in linear
attention [112, 113].

linear self-attention can implement one step of gradient

descent. Our starting point is the main result of von Oswald et al.
[48], who showed that one such attention layer can implement one step of
gradient descent (GD) on a quadratic cost function evaluated on in-context
data. Therefore, multi-layer Transformers can, in theory, minimize the loss
down to an arbitrary desired level through multiple steps of GD. In this
chapter, we extend this result to the autoregressive setting. First, we review
the original model and task setting.

In the setup of the previous chapter i.e. as in von Oswald et al. [48],
the goal is to meta-learn the parameters θ of a linear self-attention layer
such that it learns to solve supervised learning tasks, similarly to related
work [38–42, 103, 104]. Each task τ is specified in-context by a training set
Dτ = {(xτ,i, yτ,i)}N

i=1 and a test input xτ,test. The goal of meta-learning is
then minθ Eτ

[
∥yτ,test − f (xτ,test,Dτ , θ)∥2], where yτ,test is the correct out-

put revealed during meta-learning,
f (xτ,test,Dτ , θ) denotes the actual output of the linear self-attention layer,
and the expectation is taken over a distribution of linear regression tasks.

3.3 sequential prediction by least-squares mesa-optimization 53

A standard approach for solving a linear regression task is to resort
to a linear model fW(x) = Wx with parameters W ∈ RDy×Dx learned by
gradient descent on the squared error loss

L(W,Dτ) =
N

∑
i=1

1
2
∥yτ,i − fW(xτ,i)∥2 (3.3)

. Starting from an initial parameter W0, a gradient-descent learner up-
dates it by taking a step ∆W0 of size η along the negative of the gradient,
∇L = ∑N

i=1(yτ,i −W0xτ,i)x⊤τ,i. The main result of von Oswald et al. [48]
is a theoretical construction showing that a linear self-attention layer can
implement exactly one such gradient descent step. We briefly sketch this
result now.

First, we construct a set of tokens ET , with T = N, such that et =
(yτ,i, xτ,i), with yτ,i and xτ,i concatenated. Additionally, we create a query
token eT+1 = (−W0xτ,test, xτ,test) not contained within the set Dτ , where
we place the test input for which a prediction should be made. Under
this token construction and using the symbol Ix to denote the identity

matrix of size dim(x), if all bias terms are zero and W⊤k Wq =

(
0 0

0 Ix

)
, and

PWv =

(
−η Iy ηW0

0 0

)
, the query token eT+1, after one such layer, becomes

(−(W0 + ∆W0)xτ,test), xτ,test). The y-component of this token contains the
(negative) of the prediction obtained by a linear model that underwent
one step (∆W0) of gradient descent. Therefore, this self-attention layer
implicitly constructs a least-squares optimization problem and takes one
step of mesa-gradient descent towards solving it. This layer can be directly
stacked to implement multiple steps of GD, cf. Appendix 3.7.3.2. The term
mesa reinforces that this optimization occurs within the forward attention
dynamics, without any actual change to the parameters of the attention
layer itself [105]. We stress the necessary assumption of having xτ,i and yτ,i
concatenated within a single token.

3.3 sequential prediction by least-squares mesa-optimization

The construction reviewed above is designed to solve few-shot supervised
learning problems. As we see next, moving to a general autoregressive
modeling setting requires minimal change. However, the spirit of what
follows is markedly different: we no longer ask whether an attention layer

54 uncovering mesa-optimization algorithms in transformers

can solve few-shot supervised learning problems that are presented in-
context. Instead, we ask whether Transformers can rely on mesa-gradient
descent to predict future inputs.

We therefore move to the case where a self-attention layer has to learn
sequentially as some inputs s1:T are gradually unveiled. The goal at time t
is now to minimize the autoregressive loss:

Lt(W) =
t−1

∑
t′=1

1
2
∥st′+1 −Wst′∥2, (3.4)

where st′+1 serves as the label for st′ . As in the previous section, we assume
that the model always starts from the same initial weights W0, and that
learning corresponds to taking only a single gradient step; this appears
sub-optimal. We address this concern in the next section.

As is usually done in autoregressive modeling we apply causal masking,
and at time t we update token et using the in-context data available in Et.
To adapt to the autoregressive setting, we adapt the token construction
to a three-channel code, et = (−W0st, st, st−1), to include an additional
separate first channel to be filled with the prediction ŝt+1 of future inputs at
every time step t, alongside channels for the previous and current sequence
element, with the latter playing the role of target in the construction of
von Oswald et al. [48]. Note that by providing neighboring elements st, st−1
within one token et, self-attention is able to compute dot products of targets
and inputs of the loss Lt(W) necessary to compute ∇Lt, see Eq. 3.4. Then,
to update the first channel of such a token with the prediction of a linear
model learned with one step of gradient descent, it suffices to set

PWv =

 0 −η Is ηW0

0 0 0

0 0 0

 , and W⊤k Wq =

 0 0 0

0 0 0

0 Is 0

 . (3.5)

We refer to this result (Eq. 3.5) as the one-step mesa-gradient descent
construction.

multi-layer mesa-optimizers . We next move to the case of deep
networks comprising stacked linear self-attention layers. While it is natural
to hypothesize that K layers simply implement K steps of mesa-gradient
descent, as in the few-shot learning (non-autoregressive) case reviewed
above, this picture might be too simple to explain actual trained autore-
gressive Transformers. A first hint towards this view being too narrow lies

3.4 an attention layer for optimal least-squares learning 55

in the fact that stacking the one-step mesa-gradient descent construction
(Eq. 3.5) over multiple layers does not yield vanilla gradient descent, as
explained in Appendix 3.7.3.2. Instead, we obtain an unconventional online
gradient-based optimizer, that is expected to behave worse than vanilla
gradient descent. This observation, together with a mathematical analysis
of the resulting optimization algorithm, can be found in a study arguing
for the disadvantages of causally-masked attention for few-shot in-context
learning [114]. One may thus wonder if Transformers can implement more
efficient mesa-optimizers.

Here, we provide an alternative mesa-optimizer that is also based on
causally-masked self-attention layers. The novel optimizer operates in two
stages. In a first stage, comprising one or more self-attention layers, the algo-
rithm implements an iterative preconditioning procedure. The result of this
stage is a regularized mesa-objective L̄t(W) = ∑t−1

t′=1
1
2∥st′+1 −WHtst′∥2 +

1
2λ ||W||

2
F, with improved condition number compared to Lt(W). Above,

Ht is a preconditioning matrix and the scalar λ−1 ≥ 0 controls the regu-
larization strength. This preconditioning procedure has the property that
in the many-layer limit and under some mild conditions, Ht converges to
H∗t = (St−1S⊤t−1 + 1/λI)−1, with St the data matrix whose columns are
(st′)

t
t′=1. In a second stage, a final self-attention layer takes a single gradient

descent step on the preconditioned mesa-objective L̄t(W).
The two-stage algorithm described here is theoretically justified: when

Ht = H∗t , the regression problem is solved in a single step, starting from a
zero-weight initialization W0 = 0. In Appendix 3.7.3.2, we provide a simple
weight and input token construction to implement this algorithm. Our
novel construction leverages the truncated Neumann series to iteratively
approximate the required inverse-matrix-vector products H∗t−1st in parallel
for all t = 2, . . . , T, and compactly, without ever explicitly representing any
of the Ht matrices.

In Section 3.5 we show empirically that training a Transformer on autore-
gressive tasks can lead to the solutions presented above. But first, in the
next section, we assume that mesa-optimization is a desirable feature for
a model to have, and we discuss an architectural modification that makes
this behavior built-in by default within a Transformer.

3.4 an attention layer for optimal least-squares learning

Here we introduce the mesa-layer: a novel self-attention layer that fully
solves a layer-specific optimization problem, such as the minimization of

56 uncovering mesa-optimization algorithms in transformers

Eq. 3.4, instead of only descending a loss function with a single gradient
step. The layer we propose is closely related to the Delta-Net model of
Schlag, Irie & Schmidhuber [110], which is hardwired to do one gradient
descent step per time point. We focus on causally-masked autoregressive
problems, while noting that the insights remain the same for other strategies
such as BERT-style masking [115].

Given again a sequence of tokens Et, we design a layer that changes the
tokens following the update

∆emesa
t (Et, θ) =

H

∑
h=1

PhŴmesa
h,t qh,t, (3.6)

with Ŵmesa
h,t = arg min

W

{
1
2

t

∑
t′=1
||vh,t′ −Wkh,t′ ||2 +

1
2λh
||W||2F

}
. (3.7)

Above, the scalar λ−1
h > 0 controls the strength of a regularizer added to

improve generalization, and key, value and query vectors are the usual
learned head-specific affine transformations of the tokens, as before. How-
ever, through Eq. 3.7 these vectors are now assigned a precise, interpretable
role: value vectors specify targets to which an internal model with param-
eters W should map training and test inputs, represented by keys and
queries, respectively. The minimizer of a regularized version of Eq. 3.4 can
be immediately mapped to Eq. 3.7 under the token construction discussed
in Section 3.3 by appropriately setting the projection matrices Wh,v, Wh,k
and Wh,q.

At any given time step t = 1, . . . , T computing ∆emesa
t requires solv-

ing a regularized least squares problem per head. To efficiently solve this
sequence of T optimization problems, we will leverage the recursive de-
pendency of the solutions of these consecutive problems which can be
expressed in closed-form as

Ŵmesa
h,t = Vh,tK⊤h,tRh,t =

t

∑
t′=1

vh,t′k
⊤
h,t′

(
t

∑
t′=1

kh,t′k
⊤
h,t′ + 1/λh I

)−1

. (3.8)

Note that if we drop the inverted matrix Rh,t, we recover a standard linear
self-attention layer, cf. Eq. 3.2. A recent study has also shown that the
solution of a least-squares problem can be expressed as a generalized
attention layer [116].

We now use the Sherman & Morrison [117] formula to obtain the inverse
at time t from the inverse at the previous time step t − 1. This iterative

3.5 empirical analysis 57

update is possible because we only change the inverse by a rank-one update.
This solution scheme is known as recursive least squares [118]. We obtain
through Sherman-Morrison the recursion

Rh,t = Rh,t−1 −
Rh,t−1kh,tk⊤h,tRh,t−1

1 + k⊤h,tRh,t−1kh,t
(3.9)

with Rh,0 = λh I. With this, we can (causally in time) compute

∆emesa
t (Et, θ) =

H

∑
h=1

PhVh,tK⊤h,tRh,tqh,t (3.10)

which requires 2 additional vector-matrix and 2 vector-vector multiplica-
tions per step compared to the standard self-attention operation. Note
that since our intermediates consist of matrices of dimension Da × Da
across the timesteps, naive backward gradient computation requires stor-
ing them in memory. Fortunately, this memory overhead can be avoided
using the Sherman-Morrison formula in reverse during the backward pass,
cf. Appendix 3.7.2.1, enabling memory-efficient gradient computation of
the output of the mesa-layer w.r.t. its inputs. We further note that while the
implementation described here has a desirable O(1) inference memory cost
like standard linear self-attention, it is not parallelizable across time during
training. This is a disadvantage for training on contemporary hardware
shared with recurrent neural networks, but not with standard softmax
or linear self-attention. As discussed in Appendix 3.7.2.1, in practice this
significantly slows down our experiments.

We demonstrate the expressivity and performance of the mesa-layer
in reverse-engineerable sequence learning tasks as well as in language
modeling in the next sections.

3.5 empirical analysis

3.5.1 Prediction of linear dynamics by in-context learning

We now attempt to reverse-engineer Transformers trained on simple syn-
thetic autoregressive tasks. We have two main goals. First, we want to under-
stand whether autoregressively-trained Transformers use mesa-optimization
algorithms to predict future inputs. We use the constructions presented
in Section 3.3 to guide our reverse-engineering analyses. Our second goal
is to determine if introducing the mesa-layer improves the performance

58 uncovering mesa-optimization algorithms in transformers

of standard Transformers, by subsuming multiple attention layers that are
otherwise needed to go beyond one mesa-gradient descent step.

generative model . We focus on fully-observed linear dynamical sys-
tems. For all experiments described in this section, we use the following gen-
erative model. To create a sequence s1:T we first draw a random groundtruth
Ds × Ds weight matrix W∗ as well as a random initial state s1 ∼ N (0, Is);
subsequent states for t = 2, . . . , T are then generated according to the rule
st+1 = W∗st + ϵt, where ϵt ∼ N (0, σ2

s Is) introduces Gaussian noise. We
take W∗ to be a random orthogonal matrix1. The generation of W∗ anew
for each sequence avoids the memorization solution that stores W∗ in θ,
and corresponds to a highly simplified toy model meant to capture the
diversity present in real-world data. A similar in spirit design choice may
be found in the hierarchical generative model of Xie et al. [119]. Under such
an assumed groundtruth dynamics, the standard way of predicting future
states from a given past sequence s1:T is to use a linear model, st+1 = Wst,
where the weights W are learned by minimizing Lt(W), Eq. 3.4, possibly
with an added regularizer.

training and in-context learning objectives . Here, we an-
alyze various configurations of Transformers trained through stochastic
online minimization of the autoregressive loss

L(θ) = Es

[
T−1

∑
t=1
Lt(s1:t, θ)

]
= Es

[
1
2

T−1

∑
t=1
∥st+1 − ft(s1:t, θ)∥2

]
, (3.11)

where the expectation is taken under the sequence distribution described
above, ft(s1:t, θ) denotes the output of the Transformer model using st as
query and s1:t as context, and θ are the Transformer parameters, which
vary depending on the exact architecture being trained. To avoid confusion
with mesa-optimization, we refer to the minimization of L(θ) as the base-
optimization process.

Here and throughout, to measure in-context learning performance we
take the per-timestep loss Lt(s1:t, θ) and monitor its evolution as a function
of context size t. Thus, we simply measure how future-input predictions
improve as more context is provided to the model. This corresponds to the
operational definition of in-context learning proposed by Kaplan et al. [106].

1 This detail turns out to be important; we found that converging linear dynamics led to different
inference algorithms.

3.5 empirical analysis 59

hypothesis statement. The hypothesis we pursue is that
base-optimization of L(θ) gives rise to a mesa-optimization process in
charge of generating predictions ft(s1:t, θ), as illustrated in Figure 3.2A.
More concretely, for our linear generative model, we hypothesize that
learning yields Transformers that predict future inputs by implicitly, and
entirely within their forward dynamics: (i) representing a linear model
with mesa-parameters W, (ii) constructing the least-squares mesa-objective
Lt(W), cf. Eq. 3.4, using in-context data s1:t, (iii) learning W by minimizing
the mesa-objective, and (iv) applying W to predict the next token st+1. We
note that, according to our hypothesis, the mesa-objective Lt(W) governing
the forward pass of our Transformer coincides with the base-objective
L(θ), but now defined w.r.t. an implicit linear autoregressive model with
mesa-parameters W.

single self-attention layer . We begin by verifying our hypothesis
on single-layer, linear-attention-only Transformers, using the token con-
struction of Section 3.3, et = (0, st, st−1). We hypothesize that feeding the
Transformer with input-target pairs provides an inductive bias towards
mesa-gradient descent. Using this token construction, we then train by
online mini-batch gradient descent on L(θ), generating new sequences at
each base optimization step according to the process described above.

We are able to perfectly identify the algorithm (RevAlg-1) that this single-
layer Transformer uses to generate predictions. Visual inspection of the
projection matrices is revealing, cf. Figure 3.10: we see that the dominant
pattern coincides with our one-step mesa-gradient descent construction,
Eq. 3.5, plus some identification noise. We verify quantitatively that the layer
is indeed implementing a step of mesa-gradient descent by (i) comparing the
loss reached by the trained layer with a linear autoregressive model learned
through one step of gradient descent, and by (ii) studying an interpolated
model, obtained by averaging directly in parameter space learned and
constructed weights. We find that we can perfectly fit our trained layer
when using all degrees of freedom in our construction, including not only
a learned learning rate η, but also a learned set of initial weights W0,
reminiscent of the model-agnostic meta-learning method of Finn, Abbeel &
Levine [67].

Importantly, as shown in Figure 3.2, the resulting learned one-step algo-
rithm is still vastly outperformed by a single mesa-layer. We note that under
a simple setting of its weights, easily discovered by base-optimization, this

60 uncovering mesa-optimization algorithms in transformers

A

> Construct mesa-objective

> Create mesa-dataset

Autoregressive Transformer

> Mesa-optimize

A

> Construct mesa-objective

> Create mesa-dataset

Autoregressive Transformer

> Mesa-optimize

1 2000
Training steps

0.0

0.5

1.0

1.5

Te
st

 L
os

s

B
RevAlg-1
Interpolation
Mesa
linear-SA

0 20 40
Sequence length t

0.0

0.5

1.0

1.5

M
SE

C
GDexact-1
Mesa
linear-SA

Figure 3.2: Reverse-engineering a trained linear self-attention layer. (A) Trans-
formers mesa-optimize an internal linear model and use it to pre-
dict the future state of a linear dynamical system. (B) A trained
2-head linear self-attention layer (linear-SA) is perfectly described by
a reverse-engineered mesa-gradient descent algorithm (RevAlg-1; see
Eq. 3.56). We show also the performance achieved by an interpolation
model, obtained by averaging the parameters θ of the trained model
and those expected from our reverse-engineered construction. (C)
In-context learning loss after training: next-input st+1 mean squared
prediction error (MSE) as a function of sequence length. The trained
linear-SA layer is very well described by a linear model learned by
one step of gradient descent with a tuned learning rate (GDexact-1).
Linear-SA is greatly outperformed by a single mesa-layer, which opti-
mally solves the autoregressive learning problem at every time point
t, reaching minimal mean-squared prediction error after observing
enough examples. By contrast, one-step GD runs into capacity is-
sues, exhibiting non-monotonic MSE as a function of sequence length.
Averages over 5 different seeds; shaded area represents standard
deviation.

layer can optimally solve the task studied here. This result demonstrates
the advantage of hardcoded inductive biases in favor of mesa-optimization.

multiple self-attention layers . Armed with our theoretical in-
sights for the multi-layer case, cf. Section 3.3, we now analyze deep linear
and softmax attention-only Transformers. We format our inputs accord-
ing to a 4-channel construction, et = (0, st, st, st−1), which corresponds to
choosing W0 = 0. This makes it possible to implement both multi-step
mesa-optimization and our iterative preconditioning algorithm, as well as
hybrid variants mixing both, as discussed in Appendix section 3.7.3.2.

3.5 empirical analysis 61

Like with single-layer models, we see clean structure in the weights of
the trained models, see Figures 3.12 and 3.11. As a first reverse-engineering
analysis, we exploit this structure and construct an algorithm (RevAlg-d,
where d denotes layer number) comprising 16 parameters (instead of 3200)
per layer head. We find that this compressed, albeit convoluted, expression
can describe a trained model. In particular, it allows interpolating between
actual Transformer and RevAlg-d weights in an almost lossless fashion,
cf. Figure 3.3A.

1 1000
Training steps

0.2

0.4

0.6

0.8

Te
st

 L
os

s

A
Mesa
Interpolation
LSA-6
RevAlg-6

1 20 40
Sequence length t

0.1

0.0
1

1

M
SE

(f(d
)

t
,s

t+
1)

B

d = 1
d = 2
d = 3

d = 4
d = 5
d = 6

1 20 40
Sequence length t

0.1

0.0
1

M
SE

(f(d
)

t
,(

S t
1S

T t
1

+
1/

I)
1 s

t) C
d = 1
d = 2
d = 3

d = 4
d = 5
d = 6

Figure 3.3: Reverse-engineering multi-layer Transformers trained on con-
structed token inputs. We report results for a 6-layer linear-self-
attention-only Transformer. (A) As training proceeds, this multi-
layer linear model (LSA-6) is again perfectly described by a reverse-
engineered algorithm (RevAlg-6), described in Appendix 3.7.3. Note
that the model is still outperformed by a single trained mesa-layer. (B
& C) We linearly regress the activations of each layer against (B) final
targets (target probing) over the d layers as well as (C) the precondi-
tioned inputs (St−1S⊤t−1 + 1/λI)−1st predicted by our theory (inverse
probing), observing an improvement in linear decoding performance
across layers. Averages computed over 5 different seeds; shaded area
represents standard deviation.

While the RevAlg-d expression explains a trained multi-layer Transformer
with a small number of free parameters, it is difficult to interpret it as a
mesa-optimization algorithm. We, therefore, resort to a linear regression
probing analysis [103, 120] to look for signatures of our hypothesized
mesa-optimization algorithms. In particular, we seek evidence both for
the stacked multi-layer gradient descent construction, which should bring
the outputs of intermediate layers closer to the desired targets; and for
our novel iterative preconditioning algorithm, which should bring layer
outputs closer to H∗t st. We therefore carry out our probing analysis taking
as targets for regression (i) the future state to be predicted st+1 used as the

62 uncovering mesa-optimization algorithms in transformers

target to train the Transformer, which we term the target probe; and (ii) the
preconditioned current input, (St−1S⊤t−1 + 1/λI)−1st, which we term the
inverse probe, and that would allow for solving the least-squares problem in
a single gradient descent step as discussed above.

As shown in Figure 3.3 for deep self-attention Transformers we see that
both probes can be linearly decoded, with decoding performance increasing
with sequence length and network depth. Base-optimization has therefore
discovered a hybrid algorithm that descends over layers the original mesa-
objective Lt(W) while simultaneously improving the condition number of
the mesa-optimization problem. This leads to a fast descent of the mesa-
objective Lt(W), Eq. 3.4. Moreover, we find that performance strongly
improves with depth, cf. Figure 3.3, with a 6-layer model coming close to
but still not matching a single mesa-layer.

Our probing analysis results therefore support our hypothesis that a fast
descent on the autoregressive mesa-objective Lt(W) is achieved through
mesa-optimization on progressively (across layers) better preconditioned
data. We point to Figures 3.13 for an additional confirmation of this effect,
showing that when taking regressed inverse probes as inputs to a linear
model (instead of raw inputs st), the performance of single-step learning
significantly improves.

full-fledged transformers . To finish our synthetic data experi-
ments, we relax all previous architectural simplifications and turn to train-
ing standard Transformers that use positional encodings, input and output
projections, and which need to process raw tokens et = st. We hypothesize
that after autoregressive training these models operate in two stages. In a
first stage, they use positional information to re-create our token construc-
tion in the first softmax self-attention layer through a copying mechanism,
essentially identical to first stage of the induction heads discovered by
Olsson et al. [121]. This effectively corresponds to an internal specification
of a mesa-optimization problem. Since the states are Markovian, i.e. only
depend (linearly) on the immediate previous state, a simple next-token
copying mechanism suffices in our toy model. The second part of our hy-
pothesis is that subsequent layers implement a mesa-optimizer that solves
the self-constructed least-squares problem. For this second part, we again
use our two candidate constructions – mesa-gradient descent steps and
iterative preconditioning – to guide our analyses.

Following this hypothesis, we compare three model families, namely,
softmax-only Transformers, and hybrid models that have a first softmax

3.5 empirical analysis 63

0 20 40
Sequence length t

0.00

0.05

0.10

0.15

M
SE

A Softmax-Hy
Linear-Hy
Mesa-Hy

0 5000
Training steps

0.0

0.5

1.0

1.5

2.0

s t
′f(1

)
50

B t ′ = 50
t ′ = 49
t ′ = 48
t ′ = 47
t ′ = 46
t ′ < 45

1 20 40
Sequence length t

1

0.1

0.0
1

M
SE

(f(d
)

t
,s

t+
1)

C

d = 0
d = 1
d = 2
d = 3

d = 4
d = 5
d = 6
d = 7

1 20 40
Sequence length t

0.1

0.0
1

0.0
03M

SE
(f(d

)
t

,(
S t

1S
T t

1
+

1/
I)

1 s
t) D d = 0

d = 1
d = 2
d = 3

d = 4
d = 5
d = 6
d = 7

Figure 3.4: Reverse engineering full-fledged trained Transformers. We study
2-layer hybrid-mesa, 7-layer hybrid-linear, and 7-layer softmax-only
Transformers. (A) After training, the hybrid-mesa Transformer slightly
outperforms the deep hybrid-linear and softmax-only models in terms
of autoregressive loss. In (B & C & D), we show results for a softmax-
only model. (B) The first softmax layer groups together neighboring
tokens. This can be seen in the high sensitivity to the current and
previous tokens of the outputs of the first layer of a softmax-only
Transformer (with even more clean next-token copying behavior for
hybrid-linear and hybrid-mesa Transformers; see also complementary
attention map visualizations in Appendix 3.7.4). (B & C) We linearly
regress the activations of each layer against final targets (C) as well as
(St−1S⊤t−1 + 1/λI)−1st, the preconditioned inputs (D) predicted by
our theory. Compared to our more constructed models of Figure 3.3,
here we observe a rather harsh transition in the last layer when
measuring target probing (C) while observing a gradual performance
increase for early layers when probing for curvature-corrected inputs
(D). These results are well aligned with our hypothesized two-stage
mesa-optimizer. Averages computed over 5 different seeds; shaded
area represents standard deviation.

64 uncovering mesa-optimization algorithms in transformers

layer followed by either linear or mesa layers. First, we verify that Trans-
formers of all three types learn copy layers when trained on linear dynamics
by (i) computing the sensitivity norm ∥∇st′ f (1)t (s1:t, θ)∥ of the output of
the first layer for all t′ ≤ t, and by (ii) inspecting attention maps. We use
f (d)t (s1:t, θ) to denote the intermediate output of the d-th layer of a Trans-
former, including the residual (skip connection) value. Both experiments
provide evidence that after the first layer, every token mostly depends on
itself and on the preceding token, as shown in Figure 3.4B.

We now turn to the post-copying behavior of the models. Although
some interpretable identity structure can be observed in the weight matrix
products W⊤K WQ, PWV of the Transformers, cf. Figures 3.12, we speculate
that the initial embedding layer introduces too much ambiguity on how the
input data is represented and processed by the subsequent attention layers,
complicating reverse-engineering a clean algorithm. We therefore build
on insights extracted from our previous analyses and probe hidden layer
activations using the same simple linear regression analysis. Even for this
more complex model, we find that again hidden activations gradually (over
depth) become more predictive for both the target as well as the inverse
probes. Interestingly, we observe a hard-transition-like behavior at the last
layer in terms of target decoder performance, in line with our constructed
two-stage mesa-optimizer, which first preconditions, and then takes an
optimization step in the last layer, see Figure 3.4C&D and remarkably clear
in Figure 3.8 for softmax resp. linear self-attention Transformers.

Taken together, these findings provide evidence that realistic deep Trans-
formers trained autoregressively on simple linear dynamics implement
prediction algorithms based on mesa-optimization principles. These itera-
tive algorithms allow a standard Transformer to harness depth to almost
match the performance of a learned mesa-layer, which achieves optimality
for the task considered here.

3.5.2 Simple autoregressive models become few-shot learners

In the previous section, we established a close connection between autoregressively-
trained Transformers to gradient-based mesa-optimization. It is therefore
natural to ask whether these models can be repurposed to learn in-context
when presented with few-shot regression data. Here, we pursue this ques-
tion experimentally by changing the generation of the sequences after
training, from a linear dynamical system to a linear regression task. We
illustrate our findings in Figure 3.5A.

3.5 empirical analysis 65

A

> Construct mesa-objective

> Create mesa-dataset

Autoregressive Transformer

> Mesa-optimize

A

> Construct mesa-objective

> Create mesa-dataset

Autoregressive Transformer

> Mesa-optimize

0 20 40 60
Datapoints (xi, yi) in sequence

0.5

1.0

1.5

2.0

M
SE

B Few-Shot Regression
Base
Base+EOS
Base+EOS+P
LSQ

0 20 40 60
Datapoints (xi, yi) in sequence

1.0

1.5

2.0

2.5

M
SE

C Continual Few-Shot Regression
Base
Base+EOS
Base+EOS+P
LSQ

Figure 3.5: Autoregressively-trained Transformers solve supervised few-shot
regression problems. (A) In-context learning by autoregressive mesa-
optimization. (B) The mesa-optimization algorithm acquired by train-
ing on autoregressive linear dynamics tasks allows softmax Trans-
formers to learn supervised tasks in-context, i.e., the mean-squared
error ⟨(f (xi; θ)− yi)

2⟩ decreases gradually and significantly with the
number of labeled examples. When prompted with a special EOS

token after each pair (xi, yi) or a prefix-prompt P at the beginning
of an input sequence, which we fine-tune for this regression task
on a held-out training set, the performance improves considerably,
highlighting the usefulness of prompt-tuning already in this very
simple setting. (C) Autoregressive Transformers already display some
continual in-context learning capabilities, being able to learn two
tasks consecutively. Here, we show the results for the full-fledged
softmax-only transformer. Averages computed over 5 different seeds;
shaded area represents standard deviation.

66 uncovering mesa-optimization algorithms in transformers

few-shot task generative model . To generate our few-shot tasks
we still sample a groundtruth W∗ as a random orthogonal matrix as done
during training, but now use this groundtruth model to generate a labeled
training set {xi, yi}N

i=1, with inputs xi ∼ N (0, Ix) and targets yi = W∗xi. We
then present this dataset to our autoregressively-trained Transformers as a
sequence of tokens, efew-shot = [x1, y1, . . . , xN , yN] of length T = 2N, cf. Fig-
ure 3.5. As the sequence unfolds, and more training data is presented, we
measure in-context learning performance through the mean squared error
between the Transformer output fθ(e2i−1; efew-shot

1:2i−1) and the corresponding
target yi = e2i. We emphasize that both the sequence generative model
and loss function differ from the ones used during training; compare the
task performance metric Lfew-shot = 1

2 ∑N
i=1 ∥e2i − fθ(e2i−1; efew-shot

1:2i−1)∥2 used
to evaluate in-context learning performance in this section with the actual
loss used to train the Transformer, Eq. 3.11.

autoregressive transformers are capable of few-shot learn-
ing . Although never trained on this setting, we observe that the loss
of the Transformer decreases with sequence length, see Figure 3.5B for
results obtained when taking the exact same 7-layer softmax Transformer
model analyzed in Figure 3.4, repurposing it for in-context linear regression.
The model can thus learn in-context, making use of additional in-context
training data to improve its predictions. As a control, we further report the
performance reached by the least-squares solution (LSQ) obtained on the
dataset Dmesa

N = {(xi, yi)}N
i=1 ∪ {(yi, xi+1)}N−1

i=1 , and observe a similar de-
crease in loss. This dataset, where half of the associations consist of wrong
input-output pairs Dspurious

N = {(yi, xi+1)}N−1
i=1 as illustrated in Figure 3.5A,

corresponds to the training set an autoregressive Transformer imbued with
the mesa-optimizers uncovered in the previous section learns from. In this
sense, our models achieve a few-shot learning performance that is not far
from optimal. Thus, our results show that training Transformers on simple
autoregressive tasks can give rise to in-context few-shot learning, com-
plementing previous evidence for this phenomenon in large-scale models
[102].

prompt tuning improves in-context learning performance .
To mitigate the influence of wrongly-constructed inputs (yi, xi+1) in a se-
quence, we fine-tune a single token, which we refer to as the EOS token, to
improve the in-context-learned predictions. Prompt (or prefix) tuning has
been shown to lead to significant performance improvements when applied

3.5 empirical analysis 67

to large language models [122, 123]; here we investigate the effectiveness of
this technique on our mechanistically-understood models. When presenting
data sequentially as [x1, y1, EOS, x2, y2, . . . , EOS, xN , yN] we observe a con-
siderable performance improvement after prompt-tuning, see Figure 3.5B.
Furthermore, to ‘guide’ the model for few-shot tasks, we learn a single
prefix-prompt P which we append at the beginning of a sequence with EOS

tokens. This appears to further improve the few-shot performance for early
data-pairs.

continual in-context learning . Lastly, we demonstrate the ca-
pability of our trained Transformers to learn multiple tasks in a row. We
study the minimal setup where the model has to learn two tasks, generated
from two distinct groundtruth linear models with parameters W∗,1, W∗,2

sampled as described above, resulting in a sequence of data of the form
[x1

1, y1
1, . . . , x1

N , y1
N , x2

1, y2
1, . . . , x2

N , y2
N]. We plot the performance when using

EOS tokens (constructed as before) and prefix prompts P, as well. In Fig-
ure 3.5C we see that the trained Transformer has the capability to overwrite
the first and learn a second task in-context, even though it was never
explicitly trained to solve such sequential learning problems.

a toy model for in-context learning . We conclude that Trans-
formers trained to predict the next element in a sequence can be naturally
repurposed as in-context learners due to the similarity of the algorithms im-
plemented within their forward pass. This allows studying in a controlled
setting interesting properties of in-context learning, such as the advantages
of prompt tuning and the ability to learn continually. Our toy models
could serve as a test bed for future work investigating the shortcomings
and various particularities of in-context learning observed in LLMs [e.g.,
124–126].

3.5.3 Language models equipped with least-squares solvers

We now move beyond synthetic tasks and provide results on autoregressive
language modeling, a problem domain Transformers have revolutionized in
recent years. Because reverse-engineering the ensuing models to the degree
of our previous analyses is difficult, we base our claims on performance
comparisons between standard Transformers, and new variants based on the
mesa-layer. Our hypothesis is that the mesa-layer will improve the in-context
learning and working memory capabilities of a Transformer, in particular

68 uncovering mesa-optimization algorithms in transformers

Figure 3.6: Language modeling experiments on the Pile. We observe improved
perplexity and in-context learning scores across all our language mod-
eling experiments when switching from standard linear self-attention
to the mesa-layer. When comparing loss values for longer time hori-
zons, we still observe a performance gap between softmax and mesa,
possibly pointing towards memory issues over long sequences. As
hypothesized, we confirm that in all models various copying heads
can be found in the first softmax layer, see Appendix 3.7.4 for visual-
izations of the attention heads. (A&B) 2-layer Transformers without
MLPs and first layers softmax self-attention and second layer either
softmax, mesa or linear. (C&D) 4-layer Transformers with MLPs and
first layers softmax self-attention and rest of the layers either all soft-
max, mesa or linear.

of the linear kind. We further hypothesize that this in turn translates to
language modeling improvements, based on the high correlation between
in-context learning and actual autoregressive loss reported by Kaplan et al.
[106]. We therefore quantify performance along two axes: the next-token
prediction loss, the actual objective of base-optimization; and the ability
to learn in-context, measured as the difference in loss calculated over two
timepoints within a sequence, as defined by Kaplan et al. [106] and Olsson
et al. [121].

We train Transformers with various architectural configurations on the
Pile [127], a large compilation of various English text datasets including
parts of Wikipedia, arXiv, and code. We always model the first layer using
softmax self-attention in all experiments. This decision is based on insights
from our previous experiments, where base-optimization consistently at-
tributed a mesa-objective creation role to this layer. We then compare pure
softmax-only Transformers to two types of hybrid models, where the sub-
sequent layers are either linear or mesa. We vary the depth of our models,
from 2-layer attention-only to deeper 4-attention-layer models endowed
with tokenwise MLPs which are present by default in standard Trans-
formers. By transforming the data nonlinearly, MLP layers allow solving

3.5 empirical analysis 69

Figure 3.7: Single-layer Transformers trained on the Pile with key-shifts. We
observe improved (A) perplexity and (B) in-context learning scores
when comparing one linear to one mesa layer with different DPFP
sizes ν ∈ {0, 1, 2, 3}, corresponding inversely to color fade. Mesa lay-
ers consistently outperform linear layers, catching up with softmax.

nonlinear regression problems by mesa-gradient descent. Following this
reasoning, we further adopt in our hybrid-linear and hybrid-mesa Trans-
formers the deterministic parameter-free projection (DPFP, size denoted
by ν) due to Schlag, Irie & Schmidhuber [110], a non-learned and simple
to compute nonlinear transformation of keys and queries. We found that
this significantly improved the performance of non-softmax attention layers.
Finally, to represent discrete input symbols as real-valued vectors, we learn
a vocabulary of real-valued vectors using the standard GPT-2 tokenizer. We
note that all models have an (almost) identical number of parameters.

In line with our synthetic experiments, we observe stable learning across
all model types of copying layers, indicated by the constant attention to
tokens in direct or close proximity, as shown in Figure 3.9. We therefore
reproduce the findings of Olsson et al. [121], extending them to models
that include other forms of attention. This phenomenon is predicted by
the mesa-optimization theory presented here, where copy layers serve the
purpose of constructing internal mesa-objective functions. We note that,
in contrast to our previous synthetic linear prediction tasks, the Pile is no
longer Markovian of order 1. This is reflected in the more complicated
attention maps, indicating more involved copying behavior. Additionally,
we run an ablation where we compare to a single-layer control model
whose first softmax layer is removed and replaced by a hardcoded one-
step key-shift operator. Interestingly, such an operator can be found in
previous work [121, 128]. Again, we verify the findings of [121] and observe
strong in-context learning scores, within a single layer, with the mesa-layer
performing on-par with softmax, see Figure 3.7. As in [110], DPFP features

70 uncovering mesa-optimization algorithms in transformers

substantially improve performance; we fix ν = 3 for the linear as well as
the mesa layer for all other language modeling experiments.

We find that the hybrid-mesa Transformers dominate their hybrid-linear
counterparts in terms of performance, across all configurations, essentially
matching (for 2-layer models) or coming closer (for 4-layer models with
MLPs) to pure-softmax Transformers, cf. Figure 3.6. We leave for future work
studying the mesa-layer equipped with forgetting factors, see Appendix
3.7.2.1, which could further improve upon our results here. This is reflected
both in terms of perplexity and in-context learning scores. Strictly speaking,
these results are not sufficient to make claims on whether mesa-optimization
is occurring within standard Transformers. However, the high performance
achieved by the hybrid-mesa models, which operate on mesa-optimization
principles by design, suggests that mesa-optimization might be happening
within conventional Transformers. More reverse-engineering work is needed
to add weight to this conjecture.

3.6 discussion

We presented evidence that Transformer models are capable of developing
gradient-based inference algorithms when trained on sequence prediction
tasks under a standard autoregressive objective. We therefore confirmed that
recent results obtained under a multi-task, meta-learning setup translate
to the conventional self-supervised LLM training setup. Moreover, we
have seen that the resulting autoregressive inference algorithms can be
repurposed without retraining to solve supervised in-context learning
tasks, thus explaining the aforementioned results within a single, unified
framework.

It should be noted that our reverse-engineering findings are for now
restricted to simple linear prediction tasks. More work is needed to un-
derstand how and if our findings translate to the nonlinear setting, and
more generally to determine the conditions that lead some base optimiza-
tion process to pick solutions corresponding to gradient-based in-context
learning algorithms. It seems unlikely that the internal construction and
gradient-based solution of least-squares problems is a universal mechanistic
explanation of trained Transformers. An interesting future work direction
is to attempt to reverse-engineer and describe through mesa-optimization
models trained on problems of a radically different kind than those con-
sidered here, such as algorithmic reasoning [129].

3.6 discussion 71

The idea that a Transformer generates its predictions by solving one or
more internal optimization problems has ties to many different lines of
thinking in machine learning. One closely related line of work explores the
concept of a declarative node: a differentiable layer whose output is defined
implicitly as the solution of an optimization problem [90, 92, 93]. The mesa-
layer is an example of such a node. Summarizing the operation of an entire
chain of layers with thousands of parameters by a single declarative node
is not only potentially more efficient, but also more interpretable. We thus
join a line of interesting recent work exploring the advantages of including
declarative nodes within attention-based models [116, 130].

Our reverse-engineering analyses brought a surprising revelation: gradient-
based base-optimization of an autoregressive loss discovered such a declara-
tive node, at least when the underlying sequence was generated by a linear
dynamics. This discovery or selection of an optimization algorithm through
learning has been termed mesa-optimization [105], a notion that we have
adopted throughout this chapter. While we do not wish to comment here
on the possible risks associated with mesa-optimization, we point out that
our results may be of interest to the artificial intelligence safety community,
by providing a simple mesa-optimization toy model.

The mesa-layer can also be seen as a locally-optimal fast weight pro-
grammer from the perspective of Schmidhuber [131]. In his seminal work,
Schmidhuber [131] proposed to dynamically reprogram the weights of
a feedforward neural network using a Hebbian rule. As pointed out by
Schlag, Irie & Schmidhuber [110] and as can be seen from Eq. 3.2, this is
precisely what a linear self-attention layer does: it generates predictions
using an effective weight matrix that is learned during a forward pass by
taking outer products of values and keys, a Hebbian associative rule [132].
In this work, we instead frame fast weight learning as an optimization
problem, that is efficiently and optimally solved at every moment in time
by the mesa-layer. This form of optimal fast learning is strictly superior to
Hebb’s rule, both in terms of generalization and memory capacity [133].
The mesa-layer is therefore also closely related to the Delta-Net of Schlag,
Irie & Schmidhuber [110], which uses the delta rule [134] for fast weight
learning. Unlike the mesa-layer which is optimal at every time step, this
rule requires multiple steps to converge, but it is cheaper to implement.

When using mesa-layers in an autoregressive Transformer, the base-
optimization process becomes explicitly a meta-learning algorithm [61].
This algorithm should however be distinguished from the end-to-end su-
pervised meta-learning approaches that are currently highly popular in

72 uncovering mesa-optimization algorithms in transformers

machine learning [e.g., 67, 135, 136]. In our models, everything is ultimately
driven by the pressure to predict the future, the signal that drives the slow
autoregressive base-optimization process. This process ultimately dictates
the objectives each layer must optimize. Moreover and also unusually for
meta-learning, each mesa-layer is a greedy supervised local learner, which
does not use backpropagation or any other kind of global error information.
Instead, each mesa-layer has its own local objective functions specified
through the corresponding key and value matrices.

Seen from this angle, our work has an unexpected connection to research
on local learning rules, a question of great interest in theoretical neuro-
science [14]. Decomposing a global supervised learning problem into a
sequence of local quadratic optimization problems, as we do here, is at the
heart of the target propagation [137], predictive coding [138] and control-
based [139] theories of learning in the brain, and previous studies have
proposed greedy layerwise learning algorithms that do not require global
error information [140–144]. Our study introduces greedy local learning
algorithms, which only use bottom-up information, to the fast timescale of
inference. It is interesting that our models achieve strong performance in
natural tasks without any top-down feedback at fast timescales, at odds
with canonical predictive coding theories [145, 146].

We finish by sharing our excitement about future research directions
that aim at analyzing simple autoregressively-trained sequence models like
Transformers and in particular in-context learning within by reverse engi-
neering. We hope our work motivates further studies trying to describe the
emergence of single, multiple or mixture of expert models mesa-optimized
in simple trained Transformers [147] which we hypothesize could illicit
inference reminiscent to world models [148, 149]. Furthermore, the insights
we gained in our controlled setting could motivate studying limitations and
particularities of in-context learning [125, 126] and its powerful variants
such as chain-of-thought prompting [37, 43, 150] as well as the fascinating
interplay between in-weights and in-context learning [151].

3.7 appendix 73

3.7 appendix

We present here some additional results to complement the main results
discussed in the previous sections.

3.7.1 Mesa layer with forgetting factors

Here, we revisit the mesa-layer forward pass introduced in Section 3.4, with
an added forget factor Γh,t = (γh,t′)

t
t′=1, where γh,t′ ∈ (0, 1].

Although we leave an empirical investigation of the forget gate for future
work, we hypothesize that a token-dependent forget gate can benefit the
performance of the layer by allowing selective memory retention and for-
getting. Nevertheless, we stress potential initialization and numerical issues
as well as training instabilities when computing the necessary products of
factors across time.

Given again a set of tokens Et, the generalized mesa-layer changes the
tokens as follows:

∆emesa
t =

H

∑
h=1

PhŴmesa
h,t qh,t, (3.12)

with Ŵmesa
h,t = arg min

W

{
1
2

t

∑
t′=1

(
t

∏
t′′=t′+1

γh,t′′

)
||Wkh,t′ − vh,t′ ||2 (3.13)

+
∏t

t′′=1 γh,t′′

2λh
||W||2F

}
. (3.14)

This is known as the recursive least squares problem with forgetting
and is widely used in the online learning literature [152]. For notational
simplicity we drop the subscript in h and ignore the sum over the heads in
the following derivation. It can be shown that the analytical solution of the
optimization problem is

Ŵmesa
t =

(
t

∑
t′=1

(
t

∏
t′′=t′+1

γt′′

)
vt′k
⊤
t′

)(
t

∑
t′=1

(
t

∏
t′′=t′+1

γt′′

)
kt′k
⊤
t′ +

∏t
t′′=1 γt′′

λ
I

)−1

We will now see how ∆emesa
t can be efficiently computed in a forward pass.

3.7.1.1 Computing the inverse term within Ŵmesa
t

Computing the full-fledged inverse at every timestep is computationally
too expensive. As in Section 3.4, we resort to using the Sherman-Morrison

74 uncovering mesa-optimization algorithms in transformers

formula to efficiently compute the inverse term for all timestep sequentially
in time. We redefine

Rt =

(
t

∑
t′=1

(
t

∏
t′′=t′+1

γt′′

)
kt′k
⊤
t′ +

∏t
t′′=1 γt′′

λ
I

)−1

. (3.15)

It satisfies the recursive formula

Rt+1 =
(

γtR−1
t + kt+1k⊤t+1

)−1
(3.16)

with R0 = λI, and the Sherman-Morrison formula thus gives

Rt+1 = γ−1
t+1

(
R−1

t + γ−1
t+1kt+1k⊤t+1

)−1
(3.17)

= γ−1
t+1

(
Rt −

γ−1
t+1Rtkt+1k⊤t+1Rt

1 + γ−1
t+1k⊤t+1Rtkt+1

)
(3.18)

= γ−1
t+1

(
Rt −

Rtkt+1k⊤t+1Rt

γt+1 + k⊤t+1Rtkt+1

)
. (3.19)

Note that we recover Eq. 3.9 by setting all γt to 1.

3.7.1.2 Computing ∆emesa
t

Given Rh,t for all heads, we can rewrite the token update as

∆emesa
t =

H

∑
h=1

Ph

(
t

∑
t′=1

(
t

∏
t′′=t′+1

γh,t′′

)
vh,t′k

⊤
h,t′

)
Rh,tqh,t (3.20)

=
H

∑
h=1

PhVh

(It′≤t

t

∏
t′′=t′+1

γh,t′′

)⊤
t′=1

⊙ K⊤h q̃h,t

 (3.21)

=
H

∑
h=1

PhVh

(
M:,t ⊙ K⊤h q̃h,t

)
(3.22)

where q̃h,t = Rh,tqh,t and Mt′ ,t := Irt′≤t ∏t
t′′=t′+1 γh,t′′ . Note that we apply

some form causal masking here: we take the key Kh ∈ RDa×T and value
matrices Vh ∈ RDa×T with all the sequence timesteps and select the entries
occurring before time t. The main difference with the usual causal mask
(It′≤t)t′ ,t is the inclusion of the forget factors. It can be efficiently computed
leveraging partial products. We conclude by remarking that the same mask
can be applied to softmax attention layers, applying it to the key-queries
products before the softmax.

3.7 appendix 75

3.7.2 Mesa layer backward computation

3.7.2.1 Mesa layer computation backward pass via Sherman-Morrison

In this section, we detail how to compute the backward pass of the mesa
layer with forget factor detailed in Section 3.7.1. Recall that the forward
pass of the Mesa layer is computed recursively following

Rh,t+1 = γ−1
h,t+1

(
Rh,t −

Rh,tkh,t+1k⊤h,t+1Rh,t

γh,t+1 + k⊤h,t+1Rh,tkh,t+1

)
(3.23)

∆et,mesa =
H

∑
h=1

PhVh

(
M:,t ⊙ K⊤h q̃h,t

)
(3.24)

with Rh,0 = λh I.
The forward pass can be decomposed into 3 steps:

1. First, the matrices Rt,h are computed sequentially.

2. Then, for all t and h, the transformed queries q̃h,t = Rh,tqh,t are
computed.

3. Finally, using the transformed queries Q̃h = (q̃h,t)t as the queries,
a standard cross-attention operation is computed from (Vh, Kh, Q̃h)
using the causal mask M that includes forgetting rates.

While the backward pass of 2 and 3 can be computed easily with auto-
matic differentiation tools without much overhead compared to standard
attention layers, the same thing cannot be said about 1. We will here discuss
how the backward pass of the computation of Q̃h can be computed in a
memory-efficient way. Without loss of generality, we drop the subscript h
for notational simplicity.

the issue with automatic differentiation out of the box .
For all time t, q̃t = Rtqt depends on qt, but also Kt, Γt and λ through the
variable Rt.

In the backward pass, we are given as input the gradient of the loss
function w.r.t. Q̃, namely dL

dq̃t
for all t. The goal is then to compute the

gradient of the loss w.r.t. the input of Q̃, namely dL
dkt

, dL
dγt

, dL
dqt

and dL
dλ , which

can be achieved via the chain rule.

76 uncovering mesa-optimization algorithms in transformers

While using automatic differentiation out of the box would take care of
this computation, it would require in particular the storing of all intermedi-
ate variables Rt, which can be prohibitively expensive.

memory efficient custom backward pass . Instead, we will show
that storing the matrices K, Γ, Q as well as RT where T is the last time step
of the training sequence, is sufficient to exactly compute the backward pass.
Indeed, given the aforementioned inputs, all Rt can be recomputed in linear
complexity w.r.t. T, which means we can reconstruct recursively the inputs
of q̃t at all time steps.

By noticing that Rt−1 = γt(R−1
t − ktk⊤t)

−1, we can apply the Sherman-
Morrison formula backwards to obtain Rt−1 as

Rt−1 = γt

(
Rt −

Rt(−kt)k⊤t Rt

1 + (−kt)⊤Rtkt

)
(3.25)

= γt

(
Rt −

Rtktk⊤t Rt

k⊤t Rtkt − 1

)
(3.26)

We will now show how accumulating the right error signal and leveraging
the vector-jacobian product trick together with automatic differentiation
tools is sufficient for computing the full backward pass recursively.

Firstly, given the error signal and reconstructed Rt allows the computation
of dL

dqt
via

dL
dqt

=
dL
dq̃t

dq̃t

dqt
=

dL
dq̃t

St (3.27)

Secondly, we rewrite q̃t as a function of kt, γt, Rt−1 and qt, i.e.

q̃t = Rforward(Rt−1, kt, γt)qt (3.28)

Since L depends on kt only via both q̃t and Rt, we can then rewrite

dL
dkt

=
dL
dq̃t

dq̃t

dkt
+

dL
dRt

dRt

dkt
(3.29)

=
dL
dq̃t

∂q̃t

∂kt
+

dL
dRt

∂Rt

∂kt
(3.30)

where, provided Rt−1, kt, γt and qt,
∂q̃t
∂kt

can be computed easily using e.g. au-
tomatic differentiation tools. Similarly, we have,

dL
dγt

=
dL
dq̃t

∂q̃t

∂γt
+

dL
dRt

∂Rt

∂γt
(3.31)

3.7 appendix 77

Notice that dL
dRt

can be computed recursively following the chain rule

dL
dRt−1

=
dL
dRt

∂Rt

∂Rt−1
+

dL
dq̃t

∂q̃t

∂Rt−1
(3.32)

where again, provided Rt−1, kt, γt and qt, both terms can be computed
efficiently with standard automatic differentiation tools coupled with the
well known vector-Jacobian product trick given the quantities dL

dRt
and dL

dq̃t
.

Thirdly, we can show that

dL
dλ

= Tr
[

dL
dR0

]
(3.33)

Combining everything, we can now implement the backward computa-
tion recursively via the following equations:

Rt−1 = γt

(
Rt −

Rtktk⊤t Rt

k⊤t Rtkt − 1

)
(3.34)

dL
dRt−1

=
dL
dRt

∂Rt

∂Rt−1
+

∂L
∂q̃t

∂q̃t

∂Rt−1
(3.35)

dL
dkt

=
dL
dq̃t

∂q̃t

∂kt
+

dL
dRt

∂Rt

∂kt
(3.36)

dL
dγt

=
dL
dq̃t

∂q̃t

∂γt
+

dL
dRt

∂Rt

∂γt
(3.37)

dL
dqt

=
dL
dq̃t

Rt (3.38)

dL
dλ

= Tr
[

dL
dR0

]
(3.39)

RT is assumed to be given and dL
dRT

= 0. The above equations only require

the storage of dL
dRt

, dL
dRt−1

, Rt, Rt−1 at all time, and computes the backward
pass in a similar time and memory complexity as for the forward pass. The
derivation is identical without forgetting factors, by setting all γ to 1.

Comment on runtime. We highlight that, although this implementation of
the mesa-layer reduces the memory footprint of the forward and backward
pass substantially, the layer still runs forward (and backward) in time. This
prevents the computation of all mesa-layer outputs in parallelization during
training, a crucial advantage of softmax as well as linear attention. On
the other hand, during test time, the mesa-layer benefits from the same
advantages of linear self-attention or RNNs and predicts the next token

78 uncovering mesa-optimization algorithms in transformers

without the necessity to store and attend to the past. In the next section, we
present one potential avenue to improve the training time by approximating
the necessary inversions by a Neumann series running in parallel.

3.7.2.2 Alternative derivation through the implicit function theorem

We here present an alternative way of deriving the gradients presented
above that leverages the implicit function theorem. The key here is to remark
that Ŵmesa

t satisfies that the gradient of the least-square regression loss L
is 0. For simplicity, we restrict ourselves to the case in which the output
dimension of Ŵmesa

t is one, that is Ŵmesa
t = ŵ⊤t for ŵt some column vector,

and remark that we have to repeat the same operation over all rows of
Ŵmesa

t to obtain the full gradient, as all output coordinates are independent
in the least-square regression problem. Therefore, we w defined through
the implicit function

dL
dw

(ŵt) =
t

∑
t′=1

Mt′ ,t(ŵ
⊤
t kt′ − vt′)k

⊤
t′ +

M1,t

λ
ŵ⊤t = 0. (3.40)

We can then use the implicit function theorem and compute the derivative
of w with respect to any quantity · through

dŵt

d · = −
(

d2Lt

dw2 (wt)

)−1 d2Lt(ŵt)

d · dw
(3.41)

= −Rt
d2Lt(ŵt)

d · dw
. (3.42)

For example, this yields
dŵt

dvt′
= Mt′ ,tRtkt′ . (3.43)

Finally, we can recover the desired gradient by combining the previous
equation with the chain rule.

3.7.2.3 Parallel backward pass through Neumann series approximation

Note: We present this section for the sake of completeness – no experiments pre-
sented in this chapter use this approximation.

Although the previous custom backward gradient computation allows
for dramatic memory savings during training, the underlying recursive
least squares computation still suffers from linear scaling in time, similar

3.7 appendix 79

to recurrent neural networks, as we cannot parallelize computation across
time dimension.

Here, we discuss an alternative forward pass that can be used when one
can afford storing all intermediate matrices Rh,t in time. This forward pass
leverages a K-step truncated Neumann series to approximate the inverses
in parallel, and is compatible with automatic differentiation tools out of
the box. Interestingly, we can do this by simply repeating (with the same
weights) a slightly altered linear self-attention layer K times.

Our goal is now to efficiently compute the terms q̃t := Rtqt = (KtK⊤t +
1
λ I)−1qt for all time steps in parallel. Indeed, once give these vectors, one
can leverage Equation 3.22 and efficient dot-product attention (DPA) layers
implementations2. Note that we here ignore the forgetting factors, but their
partial products can easily be integrated in one of the Kt in KtK⊤t to recover
the version with forget rates described above.

Given an invertible matrix X with operator norm less than 1, the truncated
Neumann series approximates its inverse by

X−1 ≈ X̃−1
(K) :=

K

∑
k=0

(I − X)k. (3.44)

When multiplying a vector from the right, we see that

x̃(K) := X̃−1
(K)x =

K

∑
k=0

(I − X)kx (3.45)

=
K

∑
k=1

(I − X)kx + x (3.46)

= (I − X)
K−1

∑
k=0

(I − X)kx + x (3.47)

= (I − X)x̃(K−1) + x (3.48)

An advantage of the truncated Neumann series compared to other approxi-
mate inverse techniques such as Newton-Iteration is that we can compute
more series elements without passing intermediate matrices across algorith-
mic steps – which in turn makes it memory efficient and straightforward
to use in the light of automatic differentiation. We only need to keep the
original matrix we wish to invert in memory at all times and store the
intermediate vectors x̃(k) for the backward pass.

2 See https://flax.readthedocs.io/en/latest/_modules/flax/linen/attention.html for
an implementation of DPA in JAX [153].

https://flax.readthedocs.io/en/latest/_modules/flax/linen/attention.html

80 uncovering mesa-optimization algorithms in transformers

We now look at the quantities we wish to compute, that is q̃t = (KtK⊤t +
1
λ I)−1qt, and approximate it by q̃(K)t , obtained by multiplying qt to the
K-step truncated Neumann series approximating the inverse term (KtK⊤t +
1
λ I)−1. Note that a normalization by the operator norm of the matrix inside
the inverse is necessary for the approximation to hold.

Then, q̃(K)t can be computed recursively as

q̃(k+1)
t =

(
I −

(
KtK⊤t +

1
λ

I
))

q̃(k)t + qt (3.49)

= qt +

(
1− 1

λ

)
q̃(k)t − KtK⊤t q̃(k)t (3.50)

and thus by denoting Q̃(k)
t := (q̃(k)t′)

t
t′=1, we have

Q̃(k+1)
k+1 = Qt +

(
1− 1

λ

)
Q̃(k)

t − KtK⊤t Q̃(k)
t (3.51)

which is the sum of simple terms with a DPA computed between Kt, Kt, Q̃(k)
t .

After obtaining Q̃(K)
t to approximate Q̃t, we compute the approximate

least-squares solution as described above. Note that other implementations
could save us from effectively recomputing (KtK⊤t) at every iteration of
Equation 3.51 by simply pre-computing these terms before running the
Neumann approximation. We nevertheless observe the former version to be
faster when timing for forward and backward computation and speculate
the reason being the highly optimized implementation of DPA as the
backbone of the self-attention layer. Note that a simple byproduct of the
derivations here is the insight that chaining linear self-attention layers
can actually easily implement truncated Neumann series computation
– especially if the goal is an inverse multiplied by a known vector. See
Section 3.7.3.2 for a more in-depth analysis.

3.7.3 Mechanistic interpretability of Transformers trained on linear dynaimcs

3.7.3.1 Single-layer mesa-gradient descent

We state here for completion the training objective of Transformers trained
on sequences with initial state s1 ∼ N (0, I) with subsequent states t =
1, . . . , T generated according to the rule st = W∗st−1 + ϵt, where ϵt ∼
N (0, σ2

s I) introduces uncorrelated Gaussian noise. We take W∗ to be a

3.7 appendix 81

random orthogonal matrix. The Transformer models tθ are trained by
stochastic online minimization of the autoregressive loss L(θ), cf. Eq. 3.11.

After training, we obtain structured matrix products W⊤K WQ, PWV per
layer which we visualize in Figure 3.10 for a single linear self-attention
Transformer and in Figure 3.11 for the multi-layer case. When inspecting
the trained weight matrix products, one observes stable values across block-
diagonals of the input size across all layers.

We start by analyzing the simpler single layer Transformer computation
and reduce it to

et ← et + LSA(et; (et′)
t
t′=1)

=
H

∑
h=1

ϕt
1(d

PV
h , dKT Q

h)st + ϕt
2(d

PV
h , dKT Q

h)st−1, (3.52)

where LSA(et; (et′)
t
t′=1) denotes the linear self-attention operation with

context (et′)
t
t′=1 and query et, and with d·· inputs to the functions ϕ defined

as follows:

ϕt
M(dPV , dKT Q) =

t

∑
t′=1

dKT QM1 ·
(

dPV1 st′ s
⊤
t′ + dPV2 st′−1s⊤t′

)
+ dKT QM2 ·

(
dPV1 st′ s

⊤
t′−1 + dPV2 st′−1s⊤t′−1

)
.

Here dPV , dKQ corresponds to the 4 (the lower right square of size 2d× 2d
of KTQ) resp. 2 (the upper right rectangle of size d× 2d of PV) non-zero
off-diagonal values that we observe in the trained weight products per head
i.e.

W⊤k Wq =

· · ·
· dKT Q1,1 Is dKT Q1,2 Is

· dKT Q2,1 Is dKT Q2,2 Is

 (3.53)

as well as

PWv =

· dPV1 Is dPV2 Is

· · ·
· · ·

 . (3.54)

.
We extract the values from the trained models by computing the mean

of the block diagonal matrices. Note that we allow for all combinations
between temporally accumulated block matrices and the current token
inputs et = [0, 0, st, st−1]

⊤ with specific strengths controlled through the

82 uncovering mesa-optimization algorithms in transformers

parameters. In all of our experiments, we observe a performance increase
when changing from single-head to two-head attention layers (more than
two heads do not alter performance). This can be explained by the improved
flexibility of scaling the different terms individually as can be seen by
comparing the formulas for one and two heads.

Following equation 3.52, the prediction of a two-head single layer Trans-
former with our construction of et = [0, st, st−1] is given by

ŝt+1 = 0 +
2

∑
h=1

ϕt
1(d

PV
h , dKT Q

h)st + ϕt
2(d

PV
h , dKT Q

h)st−1

=
(

ϕt
1(d

PV
1 , dKT Q

1) + ϕt
1(d

PV
2 , dKT Q

2)
)

︸ ︷︷ ︸
A

st

+
(

ϕt
2(d

PV
1 , dKT Q

1) + ϕt
2(d

PV
2 , dKT Q

2)
)

︸ ︷︷ ︸
B

st−1

with

A =
t

∑
t′=1

dKT Q11
1 ·

(
dPV1

1 st′ s
⊤
t′ + dPV2

1 st′−1s⊤t′
)

+ dKT Q12
1 ·

(
dPV1

1 st′ s
⊤
t′−1 + dPV2

1 st′−1s⊤t′−1

)
+ dKT Q11

2 ·
(

dPV1
2 st′ s

⊤
t′ + dPV2

2 st′−1s⊤t′
)

+ dKT Q12
2 ·

(
dPV1

2 st′ s
⊤
t′−1 + dPV2

2 st′−1s⊤t′−1

)
=

t

∑
t′=1

λA,1st′ s
⊤
t′ + λA,2st′−1s⊤t′ + λA,3st′ s

⊤
t′−1 + λA,4st′−1s⊤t′−1. (3.55)

after summarizing by combining factors in front of the same outerproducts.
(B) is computed accordingly. Here, every outer product combination of st′

and st′−1, is weighted by a product of two factors, before summarizing, that
are co-dependent within one head. Therefore we indeed need a minimum
of two heads to obtain independent λi. However, adding further heads does
not increase performance as no further expressivity is gained. See for a
visualization of the corresponding weight matrix products and factors that
we extract from the block diagonals Figure 3.10. The extracted mean values
of our trained Transformer block diagonals are reported in Table 3.1.

We now aim to interpret this parametrized algorithm and motivate it by
gradient descent on a particular regression loss. Since the parametrizations

3.7 appendix 83

Seed λ λ·,1 λ·,2 λ·,3 λ·,4 L Lreduc Lablat LGD

1 λA 0.000620 0.000254 -0.033142 0.000149
0.892 0.901 1.728 0.915

1 λB 0.003644 0.000034 -0.000978 -0.000129

2 λA -0.001648 0.000089 -0.033428 0.001809
0.893 0.904 1.735 0.908

2 λB 0.003974 -0.000215 -0.000423 0.000023

3 λA -0.003381 0.000776 -0.033751 0.006270
0.894 0.941 1.764 0.908

3 λB 0.002756 -0.000444 -0.002846 0.000625

4 λA 0.001905 0.000270 -0.033858 -0.002946
0.893 0.909 1.742 0.902

4 λB 0.003851 0.000285 0.000873 0.000225

5 λA -0.001676 0.000324 -0.033557 0.001557
0.893 0.905 1.722 0.914

5 λB 0.002450 -0.000028 -0.000027 0.000441

Table 3.1: Understanding the algorithm parametrization of Transformers trained
on linear dynamics. To test the significance of the λ values derived
in Eq. 3.55, we set almost all values i.e. λ·,1 = λ·,2 = λB = 0 - we
call this loss Lreduced. This coincides as shown to gradient descent on
a meta-learned initial prediction and learning rate (see Eq. 3.56). To
show the influence of the λ values corresponding to GD, we compute
the algorithms performance when only setting λA,3/4 = 0 and observe
a drastic loss increase, we denote this loss as Lablation and also report
the loss of one step of GD as LGD.

remain constant across a sequence, we speculate that the Transformer has
two principles by which it aims to predict the next token: gradient descent,
and past-token averaging. The latter becomes especially useful for quickly
contracting dynamics after convergence since simply copying over the last
token can be one optimal and simple-to-implement solution even when
aiming to obtain low loss on the entire sequence. We thus hypothesize that
past-token averaging is a simple way to overcome the sub-optimality of
taking only one step of gradient descent.

Consider again the squared error loss from Eq. 3.4, which we hypothesize
is internally optimized inside a single layer of self-attention

Lself-attention
t (W) =

1
2

t−1

∑
t′=1
∥st′ −Wst′−1∥2,

84 uncovering mesa-optimization algorithms in transformers

We now compute and evaluate the gradient of the loss evaluated at the
initial W = λ̃1 I leading to an initially scaled prediction of the current s i.e.
ŝt+1 = λ̃1st,

∇W Lself-attention
t (λ̃1 I) = −

t−1

∑
t′=1

(st′ − λ̃1st′−1)s
⊤
t′−1.

The prediction after a gradient step can be computed by

ŝt+1 = (λ̃1 I − η1∇W Lself-attention
t)st

= λ̃1st − η1

t−1

∑
t′=1

(st′ − λ̃1st′−1)s
⊤
t′−1st

= λ̃1st + (
t−1

∑
t′=1

λC,3st′ s
⊤
t′−1 + λC,4st′−1st′−1)

⊤st. (3.56)

Note that this is a stripped down version of the derivation above, see
equation 3.55. We now simply compare the final MSE loss when setting
λA,1 = λA,2 = λB = 0 and observe minimal loss degradation, see Table 3.1.
Given this robustness, we are confident that almost all of the behavior and
performance of the trained Transformer in this setting can be explained by
simply descending the mesa-objective of Eq. 3.4 by gradient descent. We
also see that empirically using an initial prediction and therefore a non-zero
implicit initial weight has some influence on the final performance. Note
that to realize full expressivity in λA,3 = λA,4 it requires 6 parameters
coming from both heads.

3.7.3.2 Multi-layer accelerated mesa-gradient descent

We now return to the mesa-optimization algorithms presented in Section 3.3
– stacked mesa-gradient descent layers, and preconditioned mesa-gradient
descent – and present them in full detail, in the context of the linear
dynamics prediction problems studied in the main text.

Review: d-layers of self-attention can implement d steps of gradient
descent in the few-shot setting. We start by repeating the multi-layer con-
struction provided in von Oswald et al. [48] which allows a Transformer,
without causal masking, and applied to the few-shot regression setting.
This construction performs a gradient descent step per layer while simul-
taneously constructing a prediction on some final input. Compared to
Section 3.2, we slightly change notation to easily bridge the gap to the au-

3.7 appendix 85

toregressive case in the next paragraph. Recall the squared error regression
loss given T − 1 data pairs (st′ , st′+1)

L(W(0)) =
1
2

T−1

∑
t′=1

(W(0)st′ − st′+1)
2,

with the gradient given by

∇W L(W(0)) =
T−1

∑
t′=1

(W(0)st′ − st′+1)s
⊤
t′

inducing a change in the weights ∆W(0) = −η∇W L(W(0)). We now evaluate
the the loss again at W(1) = W(0) + ∆W(0):

L(W(1)) = L(W(0) + ∆W(1)) =
1
2

T−1

∑
t′=1

((W(0) + ∆W(1))st′ − st′+1)
2

=
1
2

T−1

∑
t′=1

(W(0)st′ − (st′+1 − ∆W(1)))2

=
1
2

T−1

∑
t′=1

(W(0)st′ − s̃(1)t′+1)
2

with s̃(1)t′+1 = st′+1 − ∆W(1). Note that when repeating this algorithm, we
descend the regression loss after d steps of gradient descent by transforming
the targets instead of updating the weights. Note that we are here not
learning weights which we could use for test predictions. Nevertheless,
when using the induced target transformation on some novel data point
sT+1 while simultaneously transforming the targets of our dataset, we see
that after a −1 correction i.e. ŝT+1 = W(0)sT+1 +−1 ∑d−1

l=0 −∆W(d))sT+1) =

W(d)sT+1, we obtain an equivalent prediction to the one of standard gradient
descent. Note that the linear self-attention weight matrices provided in the
main text for the single-step case directly implement this multi-step case
when we restrict the attention to the first T − 1 datapoints.

To implement this d-step algorithm in a Transformer, if all bias terms

are zero, W⊤k Wq =

(
0 0

0 Is

)
, and PWv =

(
−η Is ηW0

0 0

)
, and the to-

ken at initialization is e(0)t = (st+1, st) for the training data and e(0)T+1 =
(−W0sT+1, sT+1) for the test point, after d such layers, the last token in
which we compute the test data prediction is transformed into e(d)T+1 =

86 uncovering mesa-optimization algorithms in transformers

(−W0sT+1 + ∑d−1
l=0 −∆W(d))sT+1, sT+1). The y-component of this token con-

tains again the (negative) of the prediction obtained by a linear model that
underwent d steps of gradient descent. Therefore, configured as such, our d
self-attention layers take d steps of mesa-gradient descent toward solving
a least-squares problem. Note that in this construction the lower half of
the tokens e(l)t = (·, st) ∀l keep unchanged throughout the Transformer
forward pass.

d-layers of causally-masked self-attention can implement d steps of
online gradient descent.

To transfer the previous multi-layer construction to the autoregressive
setting, we make two observations: (i) we now wish to make a prediction at
every time step which will require more token space, and (ii) introducing
causal masking will affect the computations carried out by the layer of
von Oswald et al. [48] reviewed above, leading to T different models learned
in parallel by an unusual variant of gradient descent.

To see (i), we note that at every point in time the Transformer needs to
keep in memory throughout its forward pass not only the inputs but also
the targets, (st′ , st′+1) for t′ ∈ {1, . . . , T}. This is the case as we need both to
transform some target st′ through gradient descent dynamics to implicitly
keep updating the learned linear model, but also to use that same target
st′ now as input to the implicitly learned model to construct a final output.
This observation motivates the token construction et = (−W0st, st, st, st−1),
where the last two entries are kept unchanged throughout the Transformer

3.7 appendix 87

forward pass. This token construction suggests the following weight config-
uration for a 2-headed linear self-attention layer:

W⊤k,1Wq,1 =

0 0 0 0

0 0 0 0

0 0 0 0

0 0 Is 0

 ,

P1Wv,1 =

0 −η Iy 0 ηW0

0 0 0 0

0 0 0 0

0 0 0 0

 ,

W⊤k,2Wq,2 =

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 Is

 ,

P2Wv,2 =

0 0 0 0

0 −η Iy 0 ηW0

0 0 0 0

0 0 0 0

 .

The dynamics induced by these two heads are equivalent but are evaluated
in head 1 at the current st′ which we use to make the next token prediction
and at 2 at the training data input st′−1, to change the moving targets based
on our previously discussed gradient-based transformation of the targets.

Given these weights in layer l, we obtain the following change in the
tokens

et+1 = et + ∆e(l)t = (ŝ(l)t+1, s̃(l)t , st, st−1) + (−∆W(l)
t st,−∆W(l)

t st−1, 0, 0)

= (ŝ(l)t+1, s̃(l)t , st, st−1) + (∆ŝ(l)t+1, ∆s̃(l)t , 0, 0)

with ∆W(l)
t = −η ∑t

t′=1(W0st′−1 − s̃(l)t−1)s
⊤
t′−1 and ŝ(0)t+1 = −W0st, s̃(0)t = st.

Note that now in the causally-masked setting, the sum only runs to element
t for the token et and that therefore the transformed targets each follow
their own dynamics instead of the gradient summed across the sequence,
as in the few-shot regression case. The above construction is equivalent to

88 uncovering mesa-optimization algorithms in transformers

the few-shot setting, for which we would want to make a prediction based
on d steps of gradient descent for the test as well as the training data, i.e.,
at all points in time.

Furthermore, we can motivate this token update as the gradient of the
time-dependent loss Lt(W0) =

1
2 ∑t

t′=1(W0st′−1− s̃(l)t−1)
2 for which again the

targets at time step t change throughout the layers based on their specific
target transformation mechanism. This online gradient descent algorithm
was proved to be sub-optimal w.r.t. conventional (full-batch) gradient de-
scent by Ding et al. [114]. They show that, in the limit of infinitely many
layers, this construction implements online gradient descent, which does
not coincide with the optimal (recursive) least-squares solution. Addition-
ally, stochastic gradient descent with non-vanishing learning rates does not
converge so the effective weight does not converge to the optimal solution
when given infinitely many samples.

In the next section we will show how, at least in theory, multi-layer self-
attention can implement a different algorithm which can lead to the desired
result, even in the causally-masked setting. We end by noting that the
aforementioned weight construction, despite being potentially sub-optimal,
motivates our token construction et = (0, st, st, st−1) which we use through-
out all experiments when training deep Transformers, i.e., whenever the
model has more than one self-attention layer. Note that −W0st = 0 since
we assume an W0 = 0. Finally, we stress that until now it is not clear how
to incorporate common L2 regularization into the (online) gradient descent
dynamics. This however is now in the autoregressive case of particular im-
portance: In the beginning of the sequence the causally masked Transformer
is forced to solve an under-constrained learning problem, dependent on the
input data dimension and data generation. The following paragraph will
again provide a simple solution to this problem.

d-layers of causally-masked self-attention can approximate optimal
preconditioned gradient descent. Our results are influenced by the GD++
algorithm presented by von Oswald et al. [48], which can lead to accelerated
optimization by applying a whitening transform to input data. We restate
the goal of the autoregressive Transformer, namely, to solve the underlying
least-squares problem for all time steps simultaneously. This amounts
to computing StS⊤t−1(St−1S⊤t−1 +

1
λ I)−1st ∀t, a (recursive) least squares

solution, where time-shifted (by one) sequence elements play the role of
inputs and desired outputs in a dataset, with inputs St−1, targets St, and
test input st.

3.7 appendix 89

With the limited expressivity of one layer, we have already established
that Transformers can, and do, in various settings, implement a single
gradient step on the corresponding regression problem ∑t−1

t′=1(st′+1−Wst′)
2

both in theory and in practice. We now diverge from the previous section
which generalized a single mesa-gradient descent step to the multi-layer
case. Instead, we argue here that the Transformer could solve the problem
differently. Our key observation is that given a preconditioning matrix
Ht = (St−1S⊤t−1 +

1
λ I)−1 which changes the loss as ∑t−1

t′=1 ∥st′+1 −WHtst′∥2,
a gradient descent dynamics would converge in a single step to the regular-
ized least-squares solution. This way, we do not apply several gradient steps,
thereby circumventing the potential problems arising from causally-masked
gradient descent dynamics on the targets discussed in the previous section.

Based on these insights, we provide a theoretical construction that shows
how Transformers can approximate (St−1S⊤t−1 +

1
λ I)−1qt layer by layer

in their forward pass, leading to improved single-step gradient descent
performance. To do so, we build on the derivations of Section 3.7.2.3,
where we showed how to implement an approximation of s̃t := (St−1S⊤t−1 +
1
λ I)−1st efficiently, and for all time steps t in parallel. We achieved this
result with the help of the dot-product-attention (DPA) operation at the
heart of linear and softmax self-attention layers, and by resorting to the
truncated Neumann series.

First, we recall from Section 3.7.2.3 that we can approximate s̃t by s̃K
t ,

obtained when multiplying st to the K-step truncated Neumann series
approximating the inverse term (St−1S⊤t−1 +

1
λ I)−1, modulo normalization

of the matrix, see 3.7.2.3. Then, we observe that the s̃K
t satisfy the following

recursive relationship:

s̃k+1
t =

(
I − (St−1S⊤t−1 +

1
λ

I)
)

s̃k
t + st

= st + (1− 1
λ
)s̃k

t − St−1S⊤t−1 s̃k
t . (3.57)

We now see how, if (s̃k
t , st, st−1) is present in the activations at layer k at time

point t, then s̃k+1
t can be computed for the next layer. In particular, the last

term in eq 3.57, can be obtained by one head of linear self-attention from the

input (s̃k
t , st, st−1) when W⊤k Wq =

 0 0 0

0 0 0

Ix 0 0

, and PWv =

0 0 −Ix

0 0 0

0 0 0

.

The other terms are simple scaled additions to s̃k
t of s̃k

t itself and s̃t for

90 uncovering mesa-optimization algorithms in transformers

which many constructions exist. The latter information is also available at
all times if not overwritten otherwise. Note that this weight construction
strictly speaking only requires 3 channels i.e. et = (st, st, st−1) in which
we update the first by the just provided Neumann series computation.
Nevertheless, in practice we still use et = (0, st, st, st−1), i.e. tokens with
additional memory. We observe in practice that both constructions e.g.
et = (0, 0, st, st−1) or et = (0, st, st−1) reach similar performance but observe
more training difficulties and instabilities for the more compact one. We also
stress that the derivation presented here is one out of possibly many ways of
how Transformers could implement and approximate the desired inverses
(St−1S⊤t−1 + 1/λI)−1st in parallel. This is the main reason we resorted to
the probing analyses presented in the main text.

0 5000 10000
Train steps

0.0

0.1

0.2

0.3

0.4

0.5

s t
′f(1

)
50

A
t ′ = 50
t ′ = 49
t ′ = 48
t ′ = 47
t ′ = 46
t ′ < 45

1 20 40
Sequence length t

1

0.1

0.0
1

M
SE

(f(d
)

t
,s

t+
1)

B

d = 0
d = 1
d = 2
d = 3

d = 4
d = 5
d = 6
d = 7

1 20 40
Sequence length t

0.1

0.0
1

0.0
01

M
SE

(f(d
)

t
,(

S t
1S

T t
1

+
1/

I)
1 s

t)

C
d = 0
d = 1
d = 2
d = 3

d = 4
d = 5
d = 6
d = 7

Figure 3.8: Reverse-engineering full-fledged Transformers: Linear-Hybrid 1+6-
layer model (A) The first softmax layer groups together neighboring
tokens. This can be seen in the high sensitivity to the current and
previous tokens of the outputs of the first layer of a hybrid-linear
Transformer. (B & C) We linearly regress the activations of each
layer against final targets (C) as well as (St−1S⊤t−1 + 1/λI)−1st, the
curvature-corrected inputs (D) predicted by the provided theory. We
observe a harsh phase transition in the last layer when measuring
target probing (B) while observing an intriguingly stable and gradual
probing for curvature-corrected inputs (C), except for the last layer,
where we hypothesize that the worse probing loss is explained by
the computation of the actual predictions. Averages computed over 5

different seeds; shaded area represents standard deviation.

3.7.4 Visualization of weights and attention maps of Transformers

3.7 appendix 91

0 63
token idx

0

63

to
ke

n
id

x

0 63
token idx

0

63

to
ke

n
id

x

0 63
token idx

0

63

to
ke

n
id

x

0 63
token idx

0

63

to
ke

n
id

x

0 63
token idx

0

63

to
ke

n
id

x

0 63
token idx

0

63

to
ke

n
id

x

0 63
token idx

0

63

to
ke

n
id

x

0 63
token idx

0

63

to
ke

n
id

x

0 63
token idx

0

63

to
ke

n
id

x

0 63
token idx

0

63

to
ke

n
id

x

0 63
token idx

0

63

to
ke

n
id

x

0 63
token idx

0

63

to
ke

n
id

x

0.0

0.2

0.4

0.6

0.8

1.0

Figure 3.9: Softmax attention maps of the 2-layer softmax-only Transformer
trained on the Pile. We average the attention maps of the first softmax-
attention layer over a batch of size 256 and observe stable off diagonals
with different offsets and widths indicating clean copying behavior
based on positional encodings in multiple heads.

0 10 20

0

10

20

WT
KWQ Head 1

0 10 20

0

10

20

PWV Head 1

0 10 20

0

10

20

WT
KWQ Head 2

0 10 20

0

10

20

PWV Head 2

0.2

0.1

0.0

0.1

0.2

Figure 3.10: Mesa-optimization in a trained linear self-attention layer. We in-
spect the parameters of a two-headed, linear self-attention layer
trained to predict the future state of a linear dynamical system. The
dominant pattern obtained after learning corresponds to our mesa-
gradient descent construction described in Section 3.3. The faint
additional structure can be further reverse-engineered, and results
from a modified mesa-objective function, Eq. 3.56, discovered by
base-optimization of Eq. 3.11. Please compare to the similar structure
of the weight matrix products of our construction.

92 uncovering mesa-optimization algorithms in transformers

0 10 20 30

0

10

20

30

WT
KWQ

0 10 20 30

0

10

20

30

WT
KWQ

0 10 20 30

0

10

20

30

WT
KWQ

0 10 20 30

0

10

20

30

WT
KWQ

0 10 20 30

0

10

20

30

PWV

0 10 20 30

0

10

20

30

PWV

0 10 20 30

0

10

20

30

PWV

0 10 20 30

0

10

20

30

PWV

0.02

0.01

0.00
0.01
0.02
0.03

W
T K
W

Q

0.02

0.00

0.02

PW
V

0 10 20 30

0

10

20

30

WT
KWQ

0 10 20 30

0

10

20

30

WT
KWQ

0 10 20 30

0

10

20

30

WT
KWQ

0 10 20 30

0

10

20

30

WT
KWQ

0 10 20 30

0

10

20

30

PWV

0 10 20 30

0

10

20

30

PWV

0 10 20 30

0

10

20

30

PWV

0 10 20 30

0

10

20

30

PWV

0.05

0.00

0.05

W
T K
W

Q

0.05

0.00

0.05

0.10

PW
V

Figure 3.11: Weights of the deep 6-layer linear Transformers trained on con-
structed tokens et = (0, st, st, st−1). We observe clear structure in
the trained Transformer weight products W⊤K WQ as well as PWV .
Note that this structure seems to be sufficient to approximate
(St−1S⊤t−1 + 1/λI)−1st, see probing experiment in the main text,
Section 3.7.2.3 and Section 3.7.3. We show here all 4 heads (f.l.t.r.) of
the first (top 2 rows) and the second (last 2 rows) linear layer.

3.7 appendix 93

0 10 20 30

0

5

10

15

20

25

30

35

WT
KWQ

0 10 20 30

0

5

10

15

20

25

30

35

WT
KWQ

0 10 20 30

0

5

10

15

20

25

30

35

WT
KWQ

0 10 20 30

0

5

10

15

20

25

30

35

WT
KWQ

0 10 20 30

0

5

10

15

20

25

30

35

PWV

0 10 20 30

0

5

10

15

20

25

30

35

PWV

0 10 20 30

0

5

10

15

20

25

30

35

PWV

0 10 20 30

0

5

10

15

20

25

30

35

PWV

0.100

0.075

0.050

0.025

0.000

0.025

0.050

0.075

0.100

W
T K
W

Q

0.100

0.075

0.050

0.025

0.000

0.025

0.050

0.075

0.100

PW
V

0 10 20 30

0

5

10

15

20

25

30

35

WT
KWQ

0 10 20 30

0

5

10

15

20

25

30

35

WT
KWQ

0 10 20 30

0

5

10

15

20

25

30

35

WT
KWQ

0 10 20 30

0

5

10

15

20

25

30

35

WT
KWQ

0 10 20 30

0

5

10

15

20

25

30

35

PWV

0 10 20 30

0

5

10

15

20

25

30

35

PWV

0 10 20 30

0

5

10

15

20

25

30

35

PWV

0 10 20 30

0

5

10

15

20

25

30

35

PWV

0.10

0.05

0.00

0.05

0.10

W
T K
W

Q

0.10

0.05

0.00

0.05

0.10

PW
V

Figure 3.12: Weights of the deep 1+6-layer linear-hybrid Transformers trained
on unconstructed tokens et = st. We observe some diagonal struc-
ture in the trained Transformer weight products W⊤K WQ as well as
PWV . Note that this structure seems to be sufficient to approximate
(St−1S⊤t−1 + 1/λI)−1st, see probing experiment in the main text, Sec-
tion 3.7.2.3 and Section 3.7.3. We show here all 4 heads (f.l.t.r.) of the
first (top 2 rows) and the second (last 2 rows) linear layer after the
first softmax layer.

94 uncovering mesa-optimization algorithms in transformers

0 10 20 30 40 50
Sequence length t

10 1

2 × 10 1

M
SE

(g
(d

)
t

,s
t+

1)

A
GDexact-1
d = 0
d = 1
d = 2
d = 3

d = 4
d = 5
d = 6
d = 7

0 10 20 30 40 50
Sequence length t

10 1

M
SE

(g
(d

)
t

,s
t+

1)

B
GDexact-1
d = 0
d = 1
d = 2
d = 3

d = 4
d = 5
d = 6
d = 7

Figure 3.13: Implicit target probing for full-fledged Transformers. To further
support the hypothesis that trained multi-layer Transformers first
precondition constructed optimization problems by computing an,
for example, an approximation of a truncated Neumann series of
the required inverses before solving the optimization problems, we
provide another probing analysis: For each layer, starting with the
embedding layer at d = 0, we linearly regress the activations against
the preconditioned inputs (St−1S⊤t−1 + 1/λI)−1st and multiply these
probes with ηStS⊤t−1 to compute a least-squares prediction approxi-
mation. We measure therefore measure the possibility to implicitly
predict the target st+1 from the hidden activations of the model. (A)
For full-fledged softmax-only Transformers, we observe as expected,
a gradual increase in probing performance across layers as expected
at first, where we are able to outperform a step of gradient descent.
(B) For the hybrid model, we find similar results: The probing per-
formance gradually increases across layers and decreases for the last
layer, were we hypothesize that the Transformer performs an update
step of gradient descent to solve the well-conditioned optimization
problem. Note that again, we are able to outperform a step of gradi-
ent descent. Averages computed over 5 different seeds; shaded area
represents standard deviation.

4
L E A R N I N G W H E R E T O L E A R N : G R A D I E N T S PA R S I T Y I N
M E TA A N D C O N T I N UA L L E A R N I N G

This chapter’s content was published in the Proceedings of the Conference on Neural Information Pro-

cessing Systems (2021) and can be found online in an extended form including all experimental details

which we omit here for clarity. The original publication is authored by Johannes von Oswald∗, Dominic

Zhao∗, Seijin Kobayashi, Simon Schug, Massimo Caccia, Nicolas Zucchet, João Sacramento [154].

⋆ These authors contributed equally.

Finding neural network weights that generalize well from small datasets
is difficult. A promising approach is to learn a weight initialization such
that a small number of weight changes results in low generalization error.
We show in the following that this form of meta-learning can be improved
by letting the learning algorithm decide which weights to change, i.e., by
learning where to learn. We find that patterned sparsity emerges from this
process, with the pattern of sparsity varying on a problem-by-problem basis.
This selective sparsity results in better generalization and less interference
in a range of few-shot and continual learning problems. Moreover, we
find that sparse learning also emerges in a more expressive model where
learning rates are meta-learned. Our results shed light on an ongoing debate
on whether meta-learning can discover adaptable features and suggest that
learning by sparse gradient descent is a powerful inductive bias for meta-
learning systems.

4.1 introduction

Meta-learning holds the promise of discovering inductive biases that im-
prove the performance of a primary learning process. Such a set of assump-
tions can materialize in various elements of the learner. The well-known
model-agnostic meta-learning [MAML; 67] algorithm aims to learn a neural
network initialization that generalizes well to new learning tasks. More
sophisticated meta-learners augment this procedure by additionally modu-
lating the inner-loop learning dynamics [79, 80, 82, 83, 155, 156].

It has been recently shown that applying MAML while adapting only
last-layer weights leads to almost no decrease in performance in standard

95

https://arxiv.org/abs/2110.14402

96 lw2l : gradient sparsity in meta and continual learning

few-shot learning benchmarks. Our study builds upon the surprising ef-
fectiveness of this form of meta-learning, known as almost no inner-loop
training [ANIL; 47]. Here, instead of deciding which weights to freeze a
priori, we endow the meta-learner with the possibility to explicitly stop
changing certain weights in the inner-loop learning process. We do this by
introducing an adjustable binary mask which is elementwise multiplied
with gradient updates. This can be understood as a simple form of learned
gradient modulation that induces sparsity. Overfitting can thus be pre-
vented and learning sped up by focusing adaptation to a sparse parameter
subset, discovered by meta-learning.

We find that our sparse-MAML algorithm recovers a behavior that is
reminiscent of ANIL. It induces high gradient sparsity in earlier layers
of the network while allowing for adaptation in deeper layers including
the network’s output. Despite this reduction in the number of adaptable
parameters, the sparse learning patterns formed by sparse-MAML do not
overly specialize to the family of tasks observed during meta-learning;
both ANIL and MAML are outperformed by the resulting sparse learners
in cross-adaptation problems involving a shift in task distribution [157,
158]. Furthermore, sparsity adapts intuitively to the number of inner-loop
gradient steps as well as its learning rate, few-shot dataset size, and network
specifications. This leads to a robust and interpretable variant of MAML
that improves generalization by self-regularizing the parameters that the
model should learn.

An exciting avenue of meta-learning research concerns continual learn-
ing. Learning tasks sequentially by gradient descent generally leads to
poor results, as past tasks tend to be rapidly forgotten due to interfering
weight updates. Such interference can be reduced with online meta-learning
methods which optimize the base learning algorithm using both present
and past data, kept in a replay buffer [159, 160]. Our findings translate to
this setting. We analyze the state-of-the-art look-ahead MAML algorithm
[La-MAML; 160] which introduces per-parameter meta-learned learning
rates and find that sparse learning emerges, as a large fraction of learning
rates drops to zero. Notably, similarly high performance can be reached
when meta-learning binary gradient masks only. Moreover, performance
improves after endowing a version of MAML adapted for online learn-
ing [161] with binary gradient masks. Thus, sparse learning can improve
generalization, accelerate future learning, and reduce forgetting, and these
benefits can be realized within online meta-learning.

4.2 from maml to sparse-maml 97

4.2 from maml to sparse-maml

maml . The MAML algorithm seeks neural network weights θ from
which only a few gradient descent steps suffice to reach high performance
on a given task τ, that is assumed to be drawn from a certain distribution
p(τ). Formally, a task is defined by an outer loss function Lout

τ and an inner
loss function Lin

τ . We will later make explicit the form the two loss functions
can take depending on the problem being solved. The result of the inner
loss minimization is evaluated by the outer loss leading to the following
optimization problem:

min
θ

Eτ∼p(τ)
[
Lout

τ (ϕτ,K(θ))
]

s.t. ϕτ,k+1 = ϕτ,k − α∇ϕLin
τ (ϕτ,k) and ϕτ,0 = θ,

with ϕτ,k denoting the task-specific weights after k steps of gradient descent,
α the inner-loop learning rate and K the inner-loop length. The initialization
θ is then obtained by iterative updating, using

θ ← θ − γθ Eτ∼p(τ)
[
dθ Lout

τ (ϕτ,K(θ))
]
, (4.1)

with γθ the outer-loop learning rate. Note that we need the total deriva-
tive dθ in Eq. 4.1 and not the partial derivative ∇θ due to the complex
relationship between ϕτ,k and θ. In practice, the expectations over the task
distribution that appear above are estimated by Monte Carlo integration.
The updates in θ therefore correspond to stochastic gradient descent on the
expected outer loss.

In MAML, the total derivative w.r.t. to θ is obtained by backpropagating
through the inner optimization, a resource-intensive procedure. First-order
MAML (FOMAML) drastically reduces the computational cost by setting
to zero the second-order derivatives that appear when differentiating the
inner-loop update.

learning the learning rates . Some variants of MAML focus on
learning the learning rate and consider inner-loop updates of the following
form:

ϕτ,k+1 = ϕτ,k − α M∇ϕLin
τ (ϕτ,k), (4.2)

for some learnable preconditioning matrix M, that is optimized similarly to
the initialization θ. Through M, these algorithms learn some information
on the geometry of the loss with the hope of faster inner-loop optimization.

98 lw2l : gradient sparsity in meta and continual learning

Meta-SGD [79] considers a diagonal M, i.e., learnable learning rates, meta-
curvature [81] considers a block matrix, while vanilla MAML corresponds
to the M = Id case.

sparse-maml . In line with these approaches, we introduce sparse-
MAML. Together with an initial set of weights θ, our algorithm dynamically
learns the parameters which will be updated and the ones that will not.
Hence, sparse-MAML learns where to learn. To do so, we use a vector
m (instead of a matrix M) that modulates the gradient in the inner-loop
update in the following way:

ϕτ,k+1 = ϕτ,k − α
(
1m≥0 ◦ ∇ϕLin

τ (ϕτ,k)
)

, (4.3)

with 1·≥0 : Rn → {0, 1}n the step function that is applied elementwise to
the underlying parameter vector m ∈ Rn and ◦ the pointwise multiplication.
We differentiate the step function by considering it linear: this method is
called the straight-through estimator [162] and it was recently used for
similar large-scale masking [163]. Following FOMAML, we ignore second-
order derivatives. This leads to the update

m← m + α γm Eτ∼p(τ)

[
∇ϕLout

τ (ϕτ,K) ◦
K−1

∑
k=0
∇ϕLin

τ (ϕτ,k)

]
. (4.4)

A detailed derivation of the mask update, alongside the presentation of the
initialization update, can be found in the supplementary material (SM).

Our mask update depends on the alignment between the outer-loss gradi-
ent gout

τ := ∇ϕLout
τ (ϕτ,K) and the inner loss gradient g in

τ := ∑K−1
k=0 ∇ϕLin

τ (ϕk)
accumulated over the inner loop trajectory. Learning tends to be shut
off on coordinates i for which these two quantities are of opposing sign,

Eτ

[
gout

τ,i g in
τ,i

]
< 0. Such freezing of learning when parameter updates are

conflicting on the training and validation sets can decrease negative inter-
ference across tasks, which can in turn improve generalization performance
[159, 164].

4.3 few-shot learning

Finding a network that performs well when trained on few samples of un-
seen data can be formulated as a meta-learning problem. We study here the
supervised few-shot learning setting where tasks comprise small labelled
datasets. A loss function L(ϕ,D) measures how much the predictions of a

4.3 few-shot learning 99

0 200 400
Epochs

0

50

100

S
pa

rs
ity

(%
) Init: 100%

Init: 75%
Init: 50%
Init: 25%
Init: 0%

0 200 400
Epochs

40

60

80

S
pa

rs
ity

(%
) Layer 1

Layer 2
Layer 3
Layer 4
Output

0 20 50 80 100
Initial sparsity (%)

64.0

64.5

65.0

Te
st

se
t(

%
)

sparse-MAML
MAML

20

40

60

80

Fi
na

lS
pa

rs
ity

(%
)

Sparsity

Figure 4.1: Gradient sparsity emerges in 5-shot, 5-way miniImageNet classifica-
tion, standard ConvNet model. Results averaged over 5 seeds ± std.
Left: Averaged gradient sparsity adapts for different sparsity initial-
izations. Center: Different levels of gradient sparsity for convolutional
and output layer weights emerge, with gradually less sparsity from
earlier to deeper layers, while all being initialized at ∼ 50% sparsity.
Right: Sparse-MAML reaches higher test set accuracy for higher initial
levels of gradient sparsity.

network parameterized by ϕ deviate from the ground truth labels on dataset
D. During meta-learning, the data of a given task τ is split into training
and validation datasets, Dt

τ and Dv
τ , respectively. The sparse-MAML formu-

lation of few-shot learning then consists in optimizing the meta-parameters
θ and m that, given the training set, in turn yield parameters ϕ that improve
validation set performance:

min
θ

Eτ∼p(τ)[L(ϕτ,K(θ, m),Dv
τ)]

s.t. ϕτ,k+1 = ϕτ,k − α1m≥0 ◦ ∇ϕL
(
ϕτ,k,Dt

τ

)
and ϕτ,0 = θ,

(4.5)

This corresponds to setting the outer- and inner-loop loss functions intro-
duced in Section 4.2 to Lout

τ (ϕ) = L(ϕ,Dv
τ) and Lin

τ (ϕ) = L(ϕ,Dt
τ).

We apply sparse-MAML to the standard few-shot learning benchmark
based on the miniImageNet dataset [165]. Our main purpose is to under-
stand whether our meta-learning algorithm gives rise to sparse learning
by shutting off weight updates, and if the resulting sparse learners achieve
better generalization performance. Furthermore, we analyze the patterns
of sparsity discovered by sparse-MAML over a range of hyperparameter
settings governing the meta-learning process.

Our experimental setup1 follows refs. [67, 166] unless stated otherwise.
In particular, by default, our experimental results are obtained using the
standard 4-convolutional-layer neural network (ConvNet) model that has

1 Source code available at: https://github.com/Johswald/learning_where_to_learn

https://github.com/Johswald/learning_where_to_learn

100 lw2l : gradient sparsity in meta and continual learning

Method 1-shot 5-shot

MAML [67] 48.07
±1.75

63.15
±0.91

ANIL [47] 46.70
±0.40

61.50
±0.50

BOIL [158] 49.61
±0.16

66.45
±0.37

Meta-SGD [79] 50.47
±1.87

64.03
±0.94

MT-net [80] 51.70
±1.84 —

MC (+data aug.) [81] 54.23
±0.88

68.47
±0.69

Shrinkage [156] 47.7±0.5 —

exp-MAML 48.38
±0.45

65.21
±0.62

sparse-ReLU-MAML 49.84
±0.49

66.80
±0.43

sparse-MAML 50.35
±0.39

67.03
±0.74

sparse-MAML+
51.04

±0.59
68.05

±0.84

Table 4.1: 5-way few-shot classification accuracy (%) on miniImageNet, standard
ConvNet model. We report mean ± std. over 5 seeds. All results
except ours taken from the respective papers (we use the symbol ’—’
to indicate missing results). The results for meta-curvature (MC) are
not directly comparable as additional data augmentation was used.

been intensively used to benchmark meta-learning algorithms. As is also
conventional, we consider two data regimes: 5-shot 5-way, and 1-shot 5-way
(the term ‘shot’ denotes the number of examples per class, and ‘way’ the
number of classes). As we vary the hyperparameters of our algorithms,
we monitor few-shot learning performance and the gradient sparsity level,
defined for a parameter group or the entire network as ∥1m<0∥2/dim(m).
All experimental details can be found in the SM.

4.3.1 Gradient sparsity decreases with layer depth

Our first finding validates and extends the phenomena described by Raghu
et al. [47] and Chen et al. [156]. As shown in Figure 4.1, sparse-MAML
dynamically adjusts gradient sparsity across the network, with very differ-
ent values over the layers. As an example, we show the average gradient
sparsity of the four convolutional weight matrices and the output layer
during training. The same trend is observed for other parameter groups in
the network except the output bias (for which sparsity is always high; see
SM). Sparsity clearly correlates with depth and gradually increases towards
the early layers of the network, despite the similar value before training
(around 50%), i.e., sparse-MAML suppresses inner-loop updates of weights

4.3 few-shot learning 101

5 15 25
Gradient steps

61

63

65

Te
st

se
t(

%
)

sparse-MAML
MAML

45

50

Fi
na

ls
pa

rs
ity

(%
)

Sparsity

10−2 10−1 100

Inner loop learning rate

62

64

66

Te
st

se
t(

%
)

sparse-MAML MAML

20

40

60

80

Fi
na

ls
pa

rs
ity

(%
)

Sparsity

Figure 4.2: Sparse learning algorithms found by sparse-MAML work best in
combination with highly-plastic models. Both gradient sparsity and
generalization performance increase with number of inner-loop learn-
ing steps (left) and learning rate (right). Standard MAML, which
does not employ sparse learning, requires more careful learning rate
tuning and does not benefit as much from large learning rates. In
all experiments, gradient sparsity is initially ∼ 50%. The inner-loop
learning rate is set to 0.1 when varying the number of steps. Results
are for 5-shot, 5-way miniImageNet, averaged over 5 seeds ± std.

in earlier layers while allowing deeper layers to adjust to new tasks. This
effect is robust across different sparsity initializations, with final few-shot
learning performance correlating with sparsity, cf. Figure 4.1.

These findings validate that our method can discover sparse learning
algorithms. Moreover, they show that the level of sparsity is anti-correlated
with depth. This result can be interpreted in the light of neural network
models with human-engineered patterns of frozen features, which freeze
layers of features based on their depth (in combination with MAML, see
e.g. ANIL and BOIL, [47, 158]). Our method justifies these approaches, while
outperforming them, cf. Table 4.1, suggesting that it might be preferable to
meta-learn which features to freeze. We note that another related method
for automatic discovery of task-shared weights based on learning per-
parameter L2 regularization strengths [Shrinkage, 156] yields a similar
trend of high freezing for lower-level features, without however improving
performance against standard MAML. Our findings hold when applying
our method to a deeper and wider residual neural network (ResNet-12)
model, see Tables 4.2 , where we observe the same trend of decreasing
gradient sparsity with depth emerge.

102 lw2l : gradient sparsity in meta and continual learning

4.3.2 Sparse learning prefers highly-plastic models

We hypothesize that restricting learning to an appropriate parameter subset
allows for longer training and larger changes without overfitting, beyond
meta-learning initial parameter values. To verify this hypothesis we scan
over different inner-loop learning rates and lengths and compare the result-
ing test set performances of MAML and sparse-MAML.

First, we test three different inner-loop durations (5, 15 or 25 gradient
steps, see Figure 4.2, left). We find that neither MAML nor sparse-MAML
exhibit overfitting for the duration range considered here (for reference, the
original study of MAML applied 5 inner-loop steps during meta-training).
In contrast to MAML, the solutions found by sparse-MAML generalize
significantly better for longer adaptation phases. This improvement in
generalization performance is accompanied by an increase in gradient
sparsity. Furthermore, applying sparse-MAML in the very-low data regime
of 1-shot learning results in higher levels of gradient sparsity, even though
the exact same model and training setup is used for both 1- and 5-shot
learning experiments.

We further investigate if increasing the learning rate can result in im-
proved generalization performance in combination with sparse learning.
We scan the inner-loop learning rate over a large range, cf. Figure 4.2 (right),
and find a clear trend towards gradient sparsity going along with better test-
set accuracy for larger learning rates. Interestingly, similar effects have been
reported in standard (non-meta-learned) neural network training where
both freezing layers throughout training [167, 168] and the use of large
learning rates [169] seem to improve generalization performance.

4.3.3 Sparse learning vs. more expressive gradient modulation methods

Sparse-MAML can be understood as a binary gradient modulation method.
Second-order methods such as meta-curvature [81] modulate gradients by
meta-learning pre-conditioning matrices; in meta-SGD [79], these matrices
are restricted to be diagonal; sparse-MAML further restricts the diagonal
values to be binary. From this point of view, sparse-MAML is the least
expressive form of gradient modulation. Surprisingly, we find that despite
its reduced expressiveness, sparse-MAML recovers the performance im-
provements achieved by the more sophisticated alternatives, significantly
improving the performance of standard MAML (cf. Table 4.1). We point
out that sparse-MAML uses a first-order update (Eq. 4.4), while all three

4.3 few-shot learning 103

Method 1-shot 5-shot

MetaOptNet 51.13 70.88

MAML 53.91
±0.61

69.36
±1.23

ANIL 55.25
±0.33

70.03
±0.58

BOIL — 70.50
±0.28

sparse-MAML 55.02
±0.46

70.02
±1.12

sparse-ReLU-MAML 56.39
±0.38

73.01
±0.24

Table 4.2: 5-way few-shot classification accuracy (%) on miniImageNet with a
ResNet-12 model. We report mean ± std. over 3 seeds. We report
MetaOptNet [70] figures when no additional regularization techniques
are applied. Results from BOIL and MetaOptNet are taken from the
respective papers.

Method 1-shot 5-shot

sparse-ReLU-MAML 77.53
±0.73

73.53
±0.85

sparse-MAML 79.04
±1.61

74.98
±0.10

sparse-MAML+
78.05

±1.67
76.66

±1.13

Table 4.3: Average gradient sparsity levels (%) after meta-learning on 5-way
miniImageNet few-shot tasks, standard ConvNet model. Mean ±
std. over 5 seeds.

gradient modulation methods we compare to (meta-SGD, meta-curvature
and MT-nets) use second-order derivatives that are more costly to evaluate.

sparse learning emerges when meta-learning learning rates .
We also implement a variant of meta-SGD which uses rectified learning
rates (sparse-ReLU-MAML). Concretely, we replace the step function 1m≥0
in the inner-loop dynamics (Eq. 4.3) by the positive part of m, (m)+ :=
1m≥0 m. Then, we learn the underlying learning rate parameter m using
our first-order straight-through update of Eq. 4.4 to prevent learning rates
from getting stuck at zero. Besides standard meta-SGD, which allows
learning rates to go negative, we compare this method to an alternative
exponential learning rate parameterization [170], exp m, which like sparse-
ReLU-MAML enforces non-negativity while avoiding permanently frozen
updates (exp-MAML, Table 4.1). It is, however, harder to reach sparse

104 lw2l : gradient sparsity in meta and continual learning

learning rate distributions under this parameterization, as the meta-gradient
dm L becomes exponentially small as m approaches zero.

We analyze the distributions of learning rates that sparse-ReLU-MAML
yields on miniImageNet and observe that gradient sparsity once more
emerges, cf. Table 4.3. We find that the levels of gradient sparsity and
generalization performance when meta-learning binary (sparse-MAML) or
rectified learning rates (sparse-ReLU-MAML) are approximately the same,
with both methods outperforming exp-MAML on both 1-shot and 5-shot
tasks. These results support the hypothesis that shutting off weight updates
is one of the essential gradient modulation operations in few-shot learning.
We note that while sparse-MAML and sparse-ReLU-MAML quickly disable
learning in a large fraction of weights, exp-MAML tends to push learning
rates down, in particular for layers close to the input, but at a much slower
pace; increasing the meta-learning rate γm cannot compensate for this
slowdown as learning becomes unstable (data not shown).

This picture changes for the the deeper and larger ResNet-12 model,
cf. Table 4.2. When using this more complex architecture, we find that
sparse rectified learning rates (sparse-ReLU-MAML) are beneficial over
binary gradient masks (sparse-MAML). In particular, the combination of
sparse learning with learning rate modulation found by sparse-ReLU-
MAML outperforms all other methods, including standard (dense-learning)
MAML, as well as methods based on manually freezing layers in the
inner-loop: BOIL [158], ANIL [47], and the closely-related MetaOptNet [70]
method. Like ANIL, MetaOptNet only adapts the final classification layer
in the inner-loop, but it uses a more sophisticated solver instead of a few
steps of gradient descent to learn task-specific solvers. Thus, once more,
learning by sparse gradient descent is an effective strategy to improve the
generalization performance of a few-shot learner.

stochastic gradient masking . We further investigate whether
stochastic binary gradient masks can improve few-shot learning perfor-
mance. Our interest in studying stochastic masks is two-fold: as a way
to improve meta-optimization based on our straight-through estimator;
and to determine if stochastic masking is beneficial at meta-test time. We
thus investigate sparse-MAML+, a variant of our algorithm in which gra-
dient masks are generated from a low-dimensional Gaussian vector, with
noise intensity determined by meta-learning (see SM). As before, we ad-
just meta-parameters using a first-order update. We find that this mask
generation method does result in improved performance, cf. Table 4.1.

4.3 few-shot learning 105

Problem Method TieredImageNet CUB Cars

1-shot

MAML 51.61
±0.20

40.51
±0.08

33.57
±0.14

ANIL 52.82
±0.29

41.12
±0.15

34.77
±0.31

BOIL 53.23
±0.41 44.20±0.15

36.12
±0.29

sparse-ReLU-MAML 53.18
±0.52

41.86
±0.95

35.46
±0.67

sparse-MAML 53.47
±0.53

41.37
±0.73

35.90
±0.50

sparse-MAML+ 53.91±0.67
43.43

±1.04 37.14±0.77

5-shot

MAML 65.76
±0.27

53.09
±0.16

44.56
±0.21

ANIL 66.52
±0.28

55.82
±0.21

46.55
±0.29

BOIL 69.37
±0.23

60.92
±0.11

50.64
±0.22

sparse-ReLU-MAML 69.06
±0.28

59.55
±1.23

51.21
±0.89

sparse-MAML 68.83
±0.65

60.58
±1.10

52.63
±0.56

sparse-MAML+ 69.92±0.21 62.02±0.78 53.18±0.44

Table 4.4: Few-shot classification accuracy (%) when meta-learning on miniIma-
geNet but meta-testing on TieredImageNet, CUB and Cars. Mean ±
std. over 5 seeds.

Interestingly, mask randomness is entirely suppressed by meta-learning;
eventually, σ → 0, and we recover a single deterministic mask m. The
performance improvements observed on few-shot learning therefore stem
from improvements to the meta-optimization process, likely related to the
challenges of optimizing binary variables with (pseudo)gradient-based
methods.

4.3.4 Sparse learning improves performance in cross-domain adaptation tasks

We now investigate whether the patterns of gradient sparsity discovered by
our method overfit to the particular task family where they were obtained,
namely, to few-shot miniImageNet classification tasks. This is an important
question, since excessive parameter freezing may prevent adaptation to
tasks that are too different from those presented during meta-learning.

We therefore move our analysis of few-shot learning to a cross-domain
adaptation setting. In cross-domain adaptation problems, the family of
tasks presented post-meta-learning to evaluate our algorithms is shifted
by sampling classes from a different dataset. In particular, we train our
meta-learner on the miniImageNet dataset and then evaluate learning per-
formance on the TieredImageNet, CUB and Cars datasets. It has previously

106 lw2l : gradient sparsity in meta and continual learning

been demonstrated that manually freezing either the head (BOIL) or the
body (ANIL) during meta-testing improves performance in this setting [158],
compared to letting all weights adapt (MAML). In Table 4.4 we compare the
performance of our method to these baselines. We find that meta-learning
the freezing pattern with sparse-MAML as opposed to manually selecting
it consistently improves cross-domain adaptation.

4.4 continual learning

We now turn to a continual learning setting, where tasks must be learned
sequentially. A successful continual learner is able to learn similar tasks
faster, as in the few-shot learning case, while retaining high performance
on previously seen tasks. We conjecture that sparse learning can improve
memory retention and accelerate future learning by reducing interference
with past updates.

4.4.1 Gradient sparsity emerges when learning continually with Look-ahead
MAML

We investigate the benefits of sparse gradients in the recently proposed
La-MAML algorithm [160]. This algorithm combines online meta-learning
in conjunction with a small replay buffer which holds representative ex-
amples from the past in memory. Standard replay methods [171], define a
joint objective using present and buffered data and directly optimize this
objective. La-MAML follows a technique known as meta-experience replay
[159] and introduces a bi-level optimization problem. The outer loss Lout

is the multi-task objective optimized with standard replay methods, while
the inner loss Lin is evaluated on the new incoming data only. Riemer et al.
[159] have shown that such meta-learning promotes gradient alignment
over tasks, which is a way to reduce interference [172].

Like the variants of MAML reviewed in Section 4.2, La-MAML introduces
meta-learned per-parameter learning rates. We now briefly review a single
iteration of the algorithm; complete pseudocode is provided in the SM.
Each iteration of La-MAML consists of processing a new batch of data B as
follows: (i) starting from ϕ0 = θ taking an inner-loop step on each sample
k in B, with Lin

k (ϕk) = L(ϕk,Bk); (ii) defining an outer-loss Lout(ϕK,B ∪R)
on both new data B and a batch of past data R sampled from the replay
buffer; (iii) taking an outer-loop step on the learning rate parameter using a
first-order update followed by an outer-loop step (using the newly updated

4.4 continual learning 107

0 5 10 15 20
Tasks

0

50

100

S
pa

rs
ity

(%
)

b1

b2

b3

W 1

W 2

W 3

0 5 10 15 20
Tasks

0

50

100

S
pa

rs
ity

(%
)

b1

b2

b3

W 1

W 2

W 3

20 50 100 250 500
Layer size

60

70

80

R
et

ai
ne

d
ac

c
(%

)

0

10

20

30

Fi
na

ls
pa

rs
ity

(%
)

Accuracy

Sparsity

Figure 4.3: Gradient sparsity when learning MNIST rotations with the La-MAML
and sparse-La-MAML algorithms. Results averaged over 3 seeds ±
std. Left: Sparsity emerges on the original La-MAML algorithm across
the three layer network and monotonically increases with the number
of tasks and with depth for both weight (W1, W2, W3) and bias param-
eters (b1, b2, b3). Center: A similar behavior is observed when replacing
meta-learned learning rates by meta-learned binary gradient masks
(sparse-La-MAML). Right: Overall sparsity of sparse-La-MAML de-
creases with increased network capacity accompanied with higher
retained accuracy (RA). Network capacity is varied by changing the
number of neurons in the two hidden layers simultaneously.

learning rate) on the neural network parameters θ; (iv) re-populating the
replay buffer with data in B. The sequence of inner-loop updates is given
by

ϕk+1 = ϕk − (α)+ ◦ ∇ϕLin
k (ϕk), s.t. ϕ0 = θ, (4.6)

where α is a vector of learning rates whose components are constrained to
be non-negative by elementwise application of the positive part function.
We note that while the main text of ref. [160] presents an inner-loop learning
rate parameter that is allowed to go negative, the implementation for the
experiments reported in ref. [173] uses rectified learning rates. In this
implementation, a learning rate that is updated below zero will never
recover, which can lead to dead coordinates and promote sparsity. The
inner loss Lin

k (ϕ) is defined on a different data sample on each step k. A
first-order update is applied to θ, again modulated by the adaptive learning
rate:

θ ← θ − (α)+ ◦ ∇ϕLout(ϕK). (4.7)

sparse-la-maml . Our sparse-MAML can be readily applied to contin-
ual learning problems by modifying the inner- and outer-loop updates of
La-MAML. We replace the meta-learned learning rates in equations 4.6-4.7
by meta-learned binary gradient masks, α = α0 1m≥0, with α0 ∈ R+ some

108 lw2l : gradient sparsity in meta and continual learning

0 1 2 3 4 5
Tasks

0

50

S
pa

rs
ity

(%
)

b1

b2

b3

W 1

W 2

W 3

Figure 4.4: Structured sparsity emerges and tends to converge within a task in
multi-pass continual learning. Results shown for La-MAML after
training on MNIST rotations, averaged over 3 seeds ± std., for weight
layers (W1, W2, W3) and bias parameters (b1, b2, b3). Sparsity increases
with depth.

scalar (fixed) learning rate value. To learn the underlying parameter m, we
again resort to our first-order update (equation 4.4).

sparse learning improves continual learning . We hypoth-
esize that a large fraction of learning rates approaches zero when the
hyperparameters of La-MAML and sparse-La-MAML are tuned for best
continual learning performance. To test this hypothesis, we follow the exact
same setup as in the original study of La-MAML [160]. We perform a grid
search over the learning rates α0 and γm, and search for best continual learn-
ing performance, not sparsity (cf. SM). The remaining hyperparameters are
kept to the values provided in [160].

We study the three MNIST [174] continual learning problems rotations,
permutations and many permutations using a single-headed network using
the code accompanying ref. [160]. Task information is not given to the
network, and each data point is seen only once, unless noted otherwise.
Full details as well as additional experiments using the CIFAR-10 [175]
dataset are provided in the SM.

We verify that our initial hypothesis is correct: La-MAML shuts off learn-
ing in many coordinates (cf. Figure 4.3) reaching even higher levels of
sparsity than sparse-La-MAML. This can be explained by the fact that dead
coordinates can arise in La-MAML, which can lead to excess sparsity. By
contrast, our straight-through update dynamically and continually adjusts
the pattern of sparsity allowing previously frozen parameters to be un-
frozen. This results in matching or slightly improved performances when
using our binary gradient mask across all three MNIST variants, see Ta-
ble 4.5, both in terms of final retained accuracy (RA) and backward-transfer

4.4 continual learning 109

Method Rotations Permutations Many permutations

RA BTI RA BTI RA BTI

Baseline 53.38
±1.53 -5.44±1.70

55.42
±0.65 -13.76

±1.19
32.62

±0.43 -19.06
±0.86

GEM 67.38
±1.75 -18.02

±1.99
55.42

±1.10 -24.42
±1.10

32.14
±0.50 -23.52

±0.87

MER 77.42
±0.78 -5.60

±0.70
73.46

±0.45 -9.96
±0.45

47.40
±0.35 -17.78

±0.39

La-M 77.42
±0.65 -8.64

±0.40
74.34

±0.67 -7.60±0.51
48.46

±0.45 -12.96±0.07

sp-LaM 77.77±0.58 -8.16
±0.61 76.88±0.72 -8.39

±0.63 50.81±0.79 -13.73
±0.73

Table 4.5: Retained accuracy (RA) and backward-transfer and interference (BTI)
for three different MNIST continual learning problems: rotations, per-
mutations and many permutations. We report mean ± std. over 5

seeds. Negative BTI values closer to zero imply less forgetting and
are therefore better. Results of related work are taken from [160]; for
completeness we include the GEM [172] and MER [159] methods next
to a stochastic gradient descent baseline. Although sparse-La-MAML
(sp-LaM) is strictly less expressive than the original La-MAML algo-
rithm, it shows competitive performance across all variants and both
metrics. The lower baseline BTI values can be explained by lower over-
all accuracies achieved by La-MAML.

and interference (BTI; the change in accuracy measured at the end of the
experiment minus just after learning a task, averaged over tasks). Moreover,
the patterns of sparsity adjust to the capacity of the network, decreasing
and eventually vanishing for larger models (Figure 4.3), as retained accu-
racy goes up, indicating that the task is not sufficiently difficult to create
interference on large capacity models.

As in our few-shot learning experiments, structured sparsity emerges
across the different parameter groups of the network (cf. Figure 4.3). We
observe that now sparsity is highest closest to the output layer, the exact
opposite of the trend found in our few-shot learning experiments. This
provides evidence that online meta-learning can discover how to rewire
low-level features without interference in order to accommodate different
tasks that share high-level structure. We further investigate a multi-pass
setting, where the examples from each task are visited multiple times (10

epochs instead of 1) before proceeding to the next task. In this setting, it can
be seen that sparsity levels (displayed in Figure 4.4) tend to converge within
tasks and then raise again when tasks switch, presumably to preserve past
memories via gradient sparsification. Taken together, our results support
the hypothesis that gradient sparsity is beneficial for continual learning and

110 lw2l : gradient sparsity in meta and continual learning

Method p = 0.98 p = 0.9

Online Adam [176] 73.9±2.2
23.8±1.2

Fine-tuning 72.7±1.7
22.1 ±1.1

MAML [67] 84.5±1.7
75.5±0.7

ANIL [47] 75.3±2.0
69.1±0.8

BGD [177] 87.8±1.3
63.4±0.9

MetaCOG [178] 88.0±1.0
63.6±0.9

MetaBGD [178] 91.1±2.6
74.8±1.1

C-MAML 92.8±0.6
83.3±0.4

sparse-C-MAML 94.2±0.4
86.3±0.4

sparse-ReLU-C-MAML 93.5±0.5
86.1±0.2

Table 4.6: Sparse learning improves continual-MAML performance. Cumulative
online accuracy on Omniglot-MNIST-FashionMNIST benchmark. Tasks
switch with probability 1− p. Results from previous work taken from
[161]. Mean ± std. over 5 seeds.

that appropriate patterns of sparsity can be discovered by simple online
gradient-based meta-learning.

4.4.2 Sparse online learning

We finally consider another online learning setting in which the underlying
task is concealed from the learner and can randomly change at each step,
potentially going back to previously seen tasks [161, 178, 179]. At each time
step t, the data Dt is an i.i.d. sample from a stationary distribution that only
depends on the current task. The learner, whose current state is denoted by
ϕt, is evaluated whenever new data is presented and modifies its behavior
accordingly. The goal is then to minimize the cumulative loss ∑T

t=1 L(ϕt, Dt)
measuring the performance before adaptation takes place.

This online learning protocol differs from the one adopted in the pre-
vious section, where tasks were visited only once and only the final loss
∑T

t=1 L(ϕT ,Dt) evaluated at ϕT mattered. The cumulative loss criterion
emphasizes fast learning and adaptability while memory is still needed to
avoid re-learning, since tasks can be re-encountered. Recently, it has been
shown that a simple modification of MAML [continual-MAML; 161] can
outperform a number of algorithms specifically tailored for this setting as
well as plain stochastic gradient descent [180]. Briefly, continual-MAML

4.5 discussion 111

extends MAML by introducing a task-switch detection mechanism based on
changes in loss; data is buffered until a switch is detected. When this occurs,
the buffered data is used to perform a meta-parameter update; the buffer is
reset; and the inner-loop optimization restarts. Here, we merge continual-
MAML with sparse-MAML, and modulate inner-loop gradients according
to equation 4.3. We present complete pseudocode for the algorithm in the
SM.

We reproduce the experiments of [161] in which a sequence of 10000

examples from the Omniglot [181], MNIST [174] and FashionMNIST [182]
datasets is presented for online learning to a single-headed neural network,
using the code provided by the authors. We carry out a grid search to tune
the inner-loop learning rate α0 and the mask learning rate γm introduced by
sparse-MAML for best performance, not sparsity (see SM). We observe again
structured (layer-dependent) gradient sparsity emerge when using this
algorithm (sparse-C-MAML) and an increase in cumulative online learning
accuracy over the original continual-MAML algorithm (cf. Table 4.6). Finally,
we observe the same qualitative behavior (see SM for sparsity levels) and
obtain similar performance when replacing our binary masks by rectified
learning rates (sparse-ReLU-C-MAML) meta-learned with our straight-
through update. These findings once more support the hypothesis that
sparse learning, and not learning rate modulation, lead to the improved
performance reported here.

4.5 discussion

We studied gradient-based meta-learning systems with the ability of learn-
ing where to learn. This was modeled by adding binary variables which
masked gradients on a per-parameter basis, therefore determining which
parameters are allowed to change. We observed gradient sparsity emerge
in standard few-shot and continual learning problems, without introduc-
ing an explicit bias towards sparsity. This form of sparse learning, which
may be understood as sparse gradient descent, was accompanied by over-
all improvements in generalization, as well as reduced interference and
forgetting.

Previous work on gradient modulation has focused on estimating task-
shared loss geometry to precondition the optimization procedure [79, 80,
82, 83, 155]. In addition, a stochastic variant of gradient masking was
featured in the MT-net algorithm [80] as part of a more complex model.
Our approach differs from these previous studies in its simplicity. We

112 lw2l : gradient sparsity in meta and continual learning

restrict gradient modulation to be binary and deterministic and use an
inexpensive first-order update to learn the gradient masks. In contrast to
traditional methods for inducing sparsity via regularization [183] (here,
gradient regularization) our approach does not require evaluating second
derivatives, which would result from differentiating gradient regularizers.
Despite these simplifications, we find competitive performance on our
experiments. These results point towards sparse gradient descent as a
powerful learning principle.

The idea of meta-learning learning rates can be traced back to the seminal
work of Sutton [170], who proposed to estimate learning rate meta-gradients
online using forward-mode automatic differentiation, and to use consec-
utive batches of data to define inner- and outer-loop loss functions. This
approach, known as stochastic meta-descent (SMD), was extended to non-
linear models by Schraudolph [184] using fast Hessian-vector product
techniques. Using SMD to optimize neural network models is an ongoing
area of research [185–188]. It is an interesting question whether gradient
sparsity emerges when applying SMD to online learning problems that are
not clearly structured in tasks, as considered here. Furthermore, this line of
work suggests that it might be possible to obtain finer binary gradient mask
updates in an online fashion using forward-mode automatic differentiation.

A recent study has put into question whether any useful adaptation still
takes place when MAML few-shot learners are presented with a novel
task after meta-learning [47]. Our findings shed light on this question, by
demonstrating that few-shot learning performance can be improved when
learning an adequate small subset of parameters. The additional plasticity
of our meta-learned sparse learners led to a significant performance in-
crease over handwired schemes based on frozen layers, in particular when
encountering tasks drawn from a different family of problems than that
used for meta-learning. This finding complements recent work showing
that modular recurrent networks with sparse updating mechanisms hold
great promise in improving out-of-distribution generalization performance
[189, 190].

Our results may be of special interest to the design of neuromorphic
hardware. Updating weights on-chip implies a significant power overhead
whose cost scales with the number of plastic weights [191]. Reducing the
number of plastic weights can therefore result in immediate improvements
in energy efficiency and scalability. Likewise, synaptic plasticity is costly in
biological neural networks. Given the high energy demands of the brain
there has likely been selective pressure to reduce costs associated with

4.5 discussion 113

synaptic change [192]. It is therefore conceivable that the brain developed
mechanisms to restrict learning to an appropriate subset of synapses to
save energy. Our study presents further evidence in favor of sparse synaptic
change, given its potential benefits in the biologically-relevant scenarios of
few-shot and continual learning investigated here.

114 lw2l : gradient sparsity in meta and continual learning

4.6 appendix

We present here some additional results to complement the main results
discussed in the previous sections.

4.6.1 Derivation of the sparse-MAML update

Here, we derive the sparse-MAML update rules on the initialization θ and
on the underlying mask parameter m, that are given by

θ ← θ − γθ Eτ∼p(τ)
[
∇ϕ Lout

τ (ϕτ,K)
]

(4.8)

m← m + α γm Eτ∼p(τ)

[
∇ϕ Lout

τ (ϕτ,K) ◦
K−1

∑
k=0
∇ϕ Lin

τ (ϕτ,k)

]
. (4.9)

update of the initialization We first start by deriving the θ-update.
To update θ with gradient descent we need the total derivative dθ Lout

τ (ϕτ,K).
Using the chain rule, it is equal to

dθ Lout
τ (ϕτ,K) = ∇ϕ Lout

τ (ϕτ,K) dθ ϕτ,K.

The last term of the right hand side of the previous equation requires back-
propagating through the training procedure as modifying the initialization
changes the entire trajectory of ϕ. By using the recursive formulation of
ϕτ,K, we have

dθ ϕτ,K = dθ

[
ϕτ,K−1 − α1m≥0 ◦ ∇ϕ Lin

τ (ϕτ,K−1)
]

= dθ ϕτ,K−1 − α1m≥0 ◦
(
∇2

ϕ Lin
τ (ϕτ,K−1) dθ ϕτ,K−1

)
.

In sparse-MAML, we use a first-order approximation that consists in zeroing
out all the second order derivatives to keep the computations as simple as
possible, while keeping the benefits of meta-learning. It follows that

dθ ϕτ,K ≈ dθ ϕτ,0

= dθ θ

= Id

and
dθ Lout

τ (ϕτ,K) ≈ ∇ϕ Lout
τ (ϕτ,K),

4.6 appendix 115

leading to the update presented in Eq. 4.8 once the derivative approximation
is inserted in a gradient descent update.

In our online continual learning setting, we additionally apply the mask
to the θ-update.

update of the mask The derivation of the underlying mask parameter
m update can be done similarly to the one of the θ-update. We first apply
the chain rule and get

dm Lout
τ (ϕτ,K) = ∇ϕ Lout

τ (ϕτ,K) dmϕτ,K.

We then compute the derivative of ϕτ,K with respect to m:

dm ϕτ,K = dm ϕτ,K−1 − α dm

[
1m≥0 ◦ ∇ϕ Lin

τ (ϕτ,K−1)
]
.

As for the θ-update, we do not take in account second-order derivatives,
we thus consider first-order derivatives to be constant. The following terms
remain

dm ϕτ,K ≈ dm ϕτ,K−1 − α dm [1m≥0] diag
(
∇ϕ Lin

τ (ϕτ,K−1)
)

.

We approximate dm1m≥0 using straight-through estimation, which consists
in taking this derivative equal to the identity, thus having

dm ϕτ,K ≈ dmϕK−1 − α diag
(
∇ϕLin

τ (ϕτ,K−1)
)

and

dm ϕτ,K ≈ −α
K−1

∑
k=0

diag
(
∇ϕLin

τ (ϕτ,k)
)

.

Combining everything into a gradient descent update yields the update of
Eq. 4.9.

Note that the updates for θ and m differ in their structure although both
are obtained using first-order approximations. This is because θ only enters
the first update step of ϕ, while m consistently appears along the whole
trajectory of ϕ.

5
S U M M A RY

In this thesis, I strive to use the tools of mechanistic interpretability to
uncover the internal mechanism of how neural networks learn. With numer-
ous tools pioneered in Neuroscience, mechanistic interpretability provided
us with ideas and techniques to analyze, interpret, and whiten the artificial
neural network black-box. This thesis can be positioned in a larger research
field that works towards the goal of understanding how deep learning
models work.

In particular, with a detailed analysis of the model’s weights, the neuron’s
activations while processing information as well and computational inter-
ventions, we 1) shed light on learning mechanisms of deep neural networks
and 2) used the insights obtained through mechanistic interpretability to
develop novel algorithms. These novel algorithms while more powerful
crucially offer more interpretability by design. In this thesis, I present two
instances of an iterative framework which enables developing more inter-
pretable models bottom-up. I argue that this repetitive procedure might be
a path towards better controllability of AI models in the future.

In Chapters 2 & 3, I present MI work with particularly strong inter-
pretability results focusing on in-context learning of Transformer models.
Here, we were able to extract algorithms from the extremely sparse weights
of Transformer models when trained on clean data and simplistic prob-
lems. In certain circumstances, our analyses led to a precise mathematical
understanding of the inner workings of optimized models. Although this
rigor seems unrealistic to obtain in models trained on real-world data, I be-
lieve these results present a fruitful path for interpretability research which
first obtains a precise understanding of simplistic models and problems
and translates these insights to developing capable but interpretable AI by
design. Indeed, based on our MI work, in Chapter 3 we also present the
mesa-layer which is a novel self-attention layer that is designed in support
of Transformers implementing a least-squares solver in their forward pass
observed in practice. This layer while leading to improved performance
also offers better interpretability by design.

In Chapter 4, we propose a better interpretable variation of MAML, a
prominent few-shot meta-learning algorithm. We build on previous MI work
which identified that MAML, which seeks to find network weights that

117

118 summary

allow quick adaptability to new tasks, finds a solution where only adapting
the output layer of the model suffices, without significant accuracy loss.
These findings suggest that MAML, without pressure to do so, finds a
network initialization where only a few parameters should be updated
when training on a novel task. Therefore, we propose to equip MAML
with a learnable binary gradient mask and observe that indeed our new
method termed sparse-MAML seeks to replicate MAML´s behaviour: sparse
MAML induces high gradient sparsity for most network parameters while
outperforming MAML in few-shot classification and continual learning
benchmarks. We therefore again present a successful example of iterative
interpretability. Here, we based our study on previous interpretability
work [47] but again propose an algorithm change that leads to improved
performance while offering better interpretability.

I end by pointing towards important shortcomings motivating future
work and focus on more recent work presented Chapters 2 & 3.

• Moving closer to LLMs with interpretable simplistic settings . Vari-
ous experimental decision in our simplistic problems studied deviates
in various ways from how LLMs are set up and trained: LLMs are
trained 1) to predict the correct next token i.e. on classification and 2)
on highly complex data which requires to infer latent variables impor-
tant to predict the most likely next token. Future work would address
both of these shortcomings while, if possible, allow for interpretability.

• Reverse engineering of LLMs. It is unclear if our findings and in-
terpretations, mostly obtained by studying small models trained on
simplistic data, translate to the language domain. I believe that at least
the mechanisms of in-context learning within small language models
can be described to good extend by our insights. It remains neverthe-
less open if and how with larger size these mechanism might change.
One direction could be to do extensively conduct interpretability work
on pretrained open-source LLMs.

• The tension between in-weights and in-context learning. We focused
in most settings on pure in-context learning behavior and not on tasks
where global knowledge cloud be useful to be encoded in the weights.
This tension is already discussed in [56] and poses the question how
predictions, given a query, change due to the information given in-
context. Although it is important to study this tension in simplistic
setting, this direction has important implications for AI safety as it

summary 119

is important and an open question if and how one can overwrite a
models behaviour purely by information provided in context.

• Studying other LLM characteristics. The original motivation of the
work presented in Chapters 2 & 3 is to understand the in-context
learning capabilities of LLMs. This motivates the question if, with
similar tools we used to study this LLM feature in isolation, other char-
acteristics such as Chain-of-Thought prompting, reasoning abilities,
instruction following and zero-shot performance can be studied.

• More iterations of iterative interpretability. In Chapter 3, we propose
the mesa-layer based on our interpretability work. Note that this is
not the only insight we could turn successful into an instance of
iterative interpretability. For example, we could take our insights that
Transformers implement fine-tuning algorithms literally. Here, future
work could test how well simple deep networks fine-tuned with
gradient descent on data given in-context behave and how similar
these sequence dependent fine-tuned models to Transformers are.

Although the route of iterative interpretability seems a fruitful path to
consider, it feels probable that we will quickly encounter limits to the simple
interpretability techniques here [46, 193, 194]. Nevertheless, I am optimistic
that mechanistic interpretability remains an exciting and highly valuable
research direction for the coming years.

B I B L I O G R A P H Y

1. Finn, C. & Levine, S. Meta-Learning and Universality: Deep Representa-
tions and Gradient Descent can Approximate any Learning Algorithm in
International Conference on Learning Representations (2018).

2. Olah, C. Interpretability dreams (2023).

3. Lipton, Z. C. The Mythos of Model Interpretability: In Machine Learn-
ing, the Concept of Interpretability is Both Important and Slippery.
(2018).

4. Grosse, R., Bae, J., Anil, C., Elhage, N., Tamkin, A., Tajdini, A., Steiner,
B., Li, D., Durmus, E., Perez, E., Hubinger, E., Lukošiūtė, K., Nguyen,
K., Joseph, N., McCandlish, S., Kaplan, J. & Bowman, S. R. Study-
ing Large Language Model Generalization with Influence Functions.
arXiv (2023).

5. Snodgrass, L. Sensation and Perception (2001).

6. Henning, C. Knowledge uncertainty and lifelong learning in neural systems
PhD thesis (ETH Zurich, 2022).

7. Pearl, J. Causality 2nd ed. (Cambridge University Press, 2009).

8. Scherrer, N., Shi, C., Feder, A. & Blei, D. M. Evaluating the Moral Beliefs
Encoded in LLMs 2023.

9. Anthropic. Core Views on AI Safety (2023).

10. Sussillo, D. & Barak, O. Opening the black box: low-dimensional
dynamics in high-dimensional recurrent neural networks. Neural
Computation 25, 626 (3 2013).

11. Marschall, O. & Savin, C. Probing learning through the lens of
changes in circuit dynamics. bioRxiv (2023).

12. Olah, C. Interpretability vs Neuroscience. Colah’s blog (2021).

13. Jonas, E. & Kording, K. P. Could a Neuroscientist Understand a
Microprocessor? PLOS Computational Biology 13, 1 (2017).

14. Lillicrap, T. P., Santoro, A., Marris, L., Akerman, C. J. & Hinton, G.
Backpropagation and the brain. Nature Reviews Neuroscience 21, 335

(2020).

121

122 bibliography

15. Yamins, D. L. K. & DiCarlo, J. J. Using goal-driven deep learning
models to understand sensory cortex. Nature neuroscience (2016).

16. Hubel, D. H. & Wiesel, T. N. Receptive fields of single neurones in
the cat’s striate cortex. The Journal of physiology 148, 574 (1959).

17. Lyu, C., Abbott, L. F. & Maimon, G. Building an allocentric travelling
direction signal via vector computation. Nature 601, 92 (2021).

18. Khamsi, R. Jennifer Aniston strikes a nerve. Nature (2005).

19. Olah, C., Mordvintsev, A. & Schubert, L. Feature Visualization. Distill
(2017).

20. Goh, G., †, N. C., †, C. V., Carter, S., Petrov, M., Schubert, L., Radford,
A. & Olah, C. Multimodal Neurons in Artificial Neural Networks.
Distill (2021).

21. Cammarata, N., Goh, G., Carter, S., Schubert, L., Petrov, M. & Olah, C.
Curve Detectors. Distill (2020).

22. Holler, S., Köstinger, G., Martin, K. A., Schuhknecht, G. F. & Stratford,
K. J. Structure and function of a neocortical synapse. Nature 591, 111

(2021).

23. Krizhevsky, A., Sutskever, I. & Hinton, G. E. ImageNet Classification
with Deep Convolutional Neural Networks in Advances in Neural Infor-
mation Processing Systems (eds Pereira, F., Burges, C., Bottou, L. &
Weinberger, K.) 25 (Curran Associates, Inc., 2012).

24. Olah, C., Cammarata, N., Schubert, L., Goh, G., Petrov, M. & Carter, S.
Zoom In: An Introduction to Circuits. Distill (2020).

25. Voss, C., Goh, G., Cammarata, N., Petrov, M., Schubert, L. & Olah, C.
Branch Specialization. Distill (2021).

26. Petrov, M., Voss, C., Schubert, L., Cammarata, N., Goh, G. & Olah, C.
Weight Banding. Distill (2021).

27. Xu, C. S. et al. A Connectome of the Adult Drosophila Central Brain.
bioRxiv (2020).

28. Deisseroth, K. Optogenetics: 10 years of microbial opsins in Neuro-
science. Nature Neuroscience 18, 1213 (2015).

29. Vaidya, A. R., Pujara, M. S., Petrides, M., Murray, E. A. & Fellows,
L. K. Lesion studies in contemporary neuroscience. Trends in Cognitive
Sciences 23, 653 (2019).

bibliography 123

30. Button, K. S., Ioannidis, J. P., Mokrysz, C., Nosek, B. A., Flint, J.,
Robinson, E. S. & Munafò, M. R. Power failure: Why small sam-
ple size undermines the reliability of neuroscience. Nature Reviews
Neuroscience 14, 365 (2013).

31. Murdoch, W. J., Singh, C., Kumbier, K., Abbasi-Asl, R. & Yu, B. Defi-
nitions, methods, and applications in interpretable machine learning.
Proceedings of the National Academy of Sciences (2019).

32. Zhang, Y., Tino, P., Leonardis, A. & Tang, K. A Survey on Neural
Network Interpretability. IEEE Transactions on Emerging Topics in Com-
putational Intelligence (2021).

33. Schmidhuber, J. Evolutionary Principles in Self-Referential Learning. On
Learning now to Learn: The Meta-Meta-Meta...-Hook Diploma Thesis
(Technische Universitat Munchen, Germany, 1987).

34. Schmidhuber, J. Learning to Control Fast-Weight Memories: An Al-
ternative to Dynamic Recurrent Networks. Neural Computation 4, 131

(1992).

35. Hospedales, T., Antoniou, A., Micaelli, P. & Storkey, A. Meta-Learning
in Neural Networks: A Survey. arXiv (2020).

36. Brown, T. B., Mann, B., Ryder, N., Subbiah, M., Kaplan, J., Dhariwal,
P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., Agarwal, S.,
Herbert-Voss, A., Krueger, G., Henighan, T., Child, R., Ramesh, A.,
Ziegler, D. M., Wu, J., Winter, C., Hesse, C., Chen, M., Sigler, E.,
Litwin, M., Gray, S., Chess, B., Clark, J., Berner, C., McCandlish,
S., Radford, A., Sutskever, I. & Amodei, D. Language Models are
Few-Shot Learners. arXiv preprint arXiv:2005.14165 (2020).

37. Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi,
E., Le, Q. & Zhou, D. Chain-of-thought prompting elicits reasoning in large
language models in Advances in Neural Information Processing Systems
35 (2022).

38. Garg, S., Tsipras, D., Liang, P. S. & Valiant, G. What can transformers
learn in-context? A case study of simple function classes in Advances in
Neural Information Processing Systems 35 (2022).

39. Zhang, R., Frei, S. & Bartlett, P. L. Trained transformers learn linear
models in-context. arXiv preprint arXiv:2306.09927 (2023).

40. Mahankali, A., Hashimoto, T. B. & Ma, T. One step of gradient descent
is provably the optimal in-context learner with one layer of linear
self-attention. arXiv preprint arXiv:2307.03576 (2023).

124 bibliography

41. Ahn, K., Cheng, X., Daneshmand, H. & Sra, S. Transformers learn to
implement preconditioned gradient descent for in-context learning.
arXiv preprint arXiv:2306.00297 (2023).

42. Li, Y., Ildiz, M. E., Papailiopoulos, D. & Oymak, S. Transformers as algo-
rithms: Generalization and stability in in-context learning in International
Conference on Machine Learning (2023).

43. Li, Y., Sreenivasan, K., Giannou, A., Papailiopoulos, D. & Oymak,
S. Dissecting chain-of-thought: a study on compositional in-context
learning of MLPs. arXiv preprint arXiv:2305.18869 (2023).

44. Raventós, A., Paul, M., Chen, F. & Ganguli, S. Pretraining task di-
versity and the emergence of non-Bayesian in-context learning for
regression. arXiv (2023).

45. Panigrahi, A., Malladi, S., Xia, M. & Arora, S. Trainable Transformer
in Transformer. arXiv (2023).

46. Lillicrap, T. P. & Kording, K. P. What does it mean to understand a
neural network? arXiv (2019).

47. Raghu, A., Raghu, M., Bengio, S. & Vinyals, O. Rapid Learning or
Feature Reuse? Towards Understanding the Effectiveness of MAML in
International Conference on Learning Representations (2020).

48. Von Oswald, J., Niklasson, E., Randazzo, E., Sacramento, J., Mordvint-
sev, A., Zhmoginov, A. & Vladymyrov, M. Transformers learn in-context
by gradient descent in International Conference on Machine Learning
(2023).

49. Olsson, C., Elhage, N., Nanda, N., Joseph, N., DasSarma, N.,
Henighan, T., Mann, B., Askell, A., Bai, Y., Chen, A., Conerly, T.,
Drain, D., Ganguli, D., Hatfield-Dodds, Z., Hernandez, D., Johnston,
S., Jones, A., Kernion, J., Lovitt, L., Ndousse, K., Amodei, D., Brown,
T., Clark, J., Kaplan, J., McCandlish, S. & Olah, C. In-context Learning
and Induction Heads. arXiv preprint arXiv:2209.11895 (2022).

50. Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez,
A. N., Kaiser, L. & Polosukhin, I. Attention Is All You Need 2017.

51. Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X.,
Unterthiner, T., Dehghani, M., Minderer, M., Heigold, G., Gelly, S.,
Uszkoreit, J. & Houlsby, N. An Image is Worth 16x16 Words: Transform-
ers for Image Recognition at Scale in International Conference on Learning
Representations (2021).

bibliography 125

52. Yun, S., Jeong, M., Kim, R., Kang, J. & Kim, H. J. Graph Transformer
Networks in Advances in Neural Information Processing Systems (eds
Wallach, H., Larochelle, H., Beygelzimer, A., dÁlché-Buc, F., Fox, E. &
Garnett, R.) (2019).

53. Carion, N., Massa, F., Synnaeve, G., Usunier, N., Kirillov, A. &
Zagoruyko, S. End-to-End Object Detection with Transformers in Com-
puter Vision – ECCV 2020 (Springer International Publishing, 2020).

54. Gulati, A., Qin, J., Chiu, C.-C., Parmar, N., Zhang, Y., Yu, J., Han, W.,
Wang, S., Zhang, Z., Wu, Y. & Pang, R. Conformer: Convolution-
augmented Transformer for Speech Recognition. arXiv preprint
arXiv:2005.08100 (2020).

55. Liu, P., Yuan, W., Fu, J., Jiang, Z., Hayashi, H. & Neubig, G. Pre-train,
Prompt, and Predict: A Systematic Survey of Prompting Methods in
Natural Language Processing. arXiv preprint arXiv:2107.13586 (2021).

56. Chan, S. C. Y., Santoro, A., Lampinen, A. K., Wang, J. X., Singh, A.,
Richemond, P. H., McClelland, J. & Hill, F. Data Distributional Prop-
erties Drive Emergent In-Context Learning in Transformers. Advances
in Neural Information Processing Systems (2022).

57. Schmidhuber, J. Evolutionary principles in self-referential learning, or on
learning how to learn Diploma thesis (Institut für Informatik, Technis-
che Universität München, 1987).

58. Hinton, G. E. & Plaut, D. C. Using fast weights to deblur old memories in
(1987).

59. Bengio, Y., Bengio, S. & Cloutier, J. Learning a synaptic learning rule
tech. rep. (Université de Montréal, Département d’Informatique et de
Recherche opérationnelle, 1990).

60. Chalmers, D. J. in Connectionist Models (eds Touretzky, D. S., Elman,
J. L., Sejnowski, T. J. & Hinton, G. E.) 81 (Morgan Kaufmann, 1991).

61. Thrun, S. & Pratt, L. Learning to learn (Springer US, 1998).

62. Hochreiter, S., Younger, A. S. & Conwell, P. R. Learning to Learn Using
Gradient Descent in Artificial Neural Networks — ICANN 2001 (eds
Dorffner, G., Bischof, H. & Hornik, K.) (Springer Berlin Heidelberg,
Berlin, Heidelberg, 2001), 87.

63. Andrychowicz, M., Denil, M., Gomez, S., Hoffman, M. W., Pfau, D.,
Schaul, T., Shillingford, B. & de Freitas, N. Learning to learn by gradient
descent by gradient descent in Advances in Neural Information Processing
Systems (2016).

126 bibliography

64. Ba, J., Hinton, G. E., Mnih, V., Leibo, J. Z. & Ionescu, C. Using Fast
Weights to Attend to the Recent Past in Advances in Neural Information
Processing Systems 29 (2016).

65. Kirsch, L. & Schmidhuber, J. Meta Learning Backpropagation And Im-
proving It in Advances in Neural Information Processing Systems (eds
Beygelzimer, A., Dauphin, Y., Liang, P. & Vaughan, J. W.) (2021).

66. Schlag, I., Irie, K. & Schmidhuber, J. Linear Transformers Are Secretly
Fast Weight Programmers in ICML (2021).

67. Finn, C., Abbeel, P. & Levine, S. Model-agnostic meta-learning for fast
adaptation of deep networks in International Conference on Machine Learn-
ing (2017).

68. Finn, C. & Levine, S. Meta-Learning and Universality: Deep Representa-
tions and Gradient Descent can Approximate any Learning Algorithm in
International Conference on Learning Representations (2018).

69. Gordon, J., Bronskill, J., Bauer, M., Nowozin, S. & Turner, R. Meta-
Learning Probabilistic Inference for Prediction in International Conference
on Learning Representations (2019).

70. Lee, K., Maji, S., Ravichandran, A. & Soatto, S. Meta-Learning With
Differentiable Convex Optimization in IEEE/CVF Conference on Computer
Vision and Pattern Recognition (2019).

71. Rusu, A. A., Rao, D., Sygnowski, J., Vinyals, O., Pascanu, R., Osindero,
S. & Hadsell, R. Meta-Learning with Latent Embedding Optimization in
International Conference on Learning Representations (2019).

72. Von Oswald, J., Zhao, D., Kobayashi, S., Schug, S., Caccia, M., Zucchet,
N. & Sacramento, J. Learning where to learn: Gradient sparsity in meta
and continual learning in Advances in Neural Information Processing
Systems (2021).

73. Hubinger, E., van Merwijk, C., Mikulik, V., Skalse, J. & Garrabrant, S.
Risks from Learned Optimization in Advanced Machine Learning
Systems. arXiv [cs.AI] (2019).

74. Kirsch, L., Harrison, J., Sohl-Dickstein, J. & Metz, L. General-Purpose
In-Context Learning by Meta-Learning Transformers in Sixth Workshop on
Meta-Learning at the Conference on Neural Information Processing Systems
(2022).

75. Chan, S. C. Y., Dasgupta, I., Kim, J., Kumaran, D., Lampinen, A. K. &
Hill, F. Transformers generalize differently from information stored
in context vs in weights. arXiv preprint arXiv:2210.05675 (2022).

bibliography 127

76. Ramsauer, H., Schäfl, B., Lehner, J., Seidl, P., Widrich, M., Adler, T.,
Gruber, L., Holzleitner, M., Pavlović, M., Sandve, G. K., Greiff, V.,
Kreil, D., Kopp, M., Klambauer, G., Brandstetter, J. & Hochreiter, S.
Hopfield Networks is All You Need. arXiv preprint arXiv:2008.02217
(2020).

77. Akyürek, E., Schuurmans, D., Andreas, J., Ma, T. & Zhou, D. What
learning algorithm is in-context learning? Investigations with linear models
in The Eleventh International Conference on Learning Representations
(2023).

78. Garg, S., Tsipras, D., Liang, P. & Valiant, G. What Can Transformers
Learn In-Context? A Case Study of Simple Function Classes in Advances
in Neural Information Processing Systems (eds Oh, A. H., Agarwal, A.,
Belgrave, D. & Cho, K.) (2022).

79. Li, Z., Zhou, F., Chen, F. & Li, H. Meta-SGD: Learning to Learn
Quickly for Few Shot Learning. arXiv preprint arXiv:1707.09835 (2017).

80. Lee, Y. & Choi, S. Gradient-based meta-learning with learned layerwise
metric and subspace in International Conference on Machine Learning
(2018).

81. Park, E. & Oliva, J. B. Meta-Curvature in Advances in Neural Information
Processing Systems (2019).

82. Zhao, D., von Oswald, J., Kobayashi, S., Sacramento, J. & Grewe, B. F.
Meta-Learning via Hypernetworks in NeurIPS Workshop on Meta-Learning
(2020).

83. Flennerhag, S., Rusu, A. A., Pascanu, R., Visin, F., Yin, H. & Hadsell, R.
Meta-Learning with Warped Gradient Descent in International Conference
on Learning Representations (2020).

84. Kingma, D. P. & Ba, J. Adam: A Method for Stochastic Optimization 2014.

85. Benzing, F., Schug, S., Meier, R., von Oswald, J., Akram, Y., Zucchet,
N., Aitchison, L. & Steger, A. Random initialisations performing
above chance and how to find them. OPT2022: 14th Annual Workshop
on Optimization for Machine Learning (2022).

86. Entezari, R., Sedghi, H., Saukh, O. & Neyshabur, B. The Role of
Permutation Invariance in Linear Mode Connectivity of Neural Net-
works. arXiv preprint arXiv:2110.06296 (2021).

87. Bertinetto, L., Henriques, J. F., Torr, P. H. S. & Vedaldi, A. Meta-
learning with differentiable closed-form solvers in International Conference
on Learning Representations (2019).

128 bibliography

88. Widrow, B. & Hoff, M. E. Adaptive Switching Circuits in 1960 IRE
WESCON Convention Record, Part 4 (IRE, New York, 1960), 96.

89. Zhmoginov, A., Sandler, M. & Vladymyrov, M. HyperTransformer:
Model Generation for Supervised and Semi-Supervised Few-Shot Learning
in Proceedings of the 39th International Conference on Machine Learning
(eds Chaudhuri, K., Jegelka, S., Song, L., Szepesvari, C., Niu, G. &
Sabato, S.) 162 (PMLR, 2022), 27075.

90. Amos, B. & Kolter, J. Z. Optnet: Differentiable optimization as a layer in
neural networks in International Conference on Machine Learning (2017).

91. Bai, S., Kolter, J. Z. & Koltun, V. Deep equilibrium models. Advances
in Neural Information Processing Systems (2019).

92. Gould, S., Hartley, R. & Campbell, D. J. Deep declarative networks.
IEEE Transactions on Pattern Analysis and Machine Intelligence (2021).

93. Zucchet, N. & Sacramento, J. Beyond backpropagation: bilevel opti-
mization through implicit differentiation and equilibrium propaga-
tion. Neural Computation 34 (2022).

94. Dai, D., Sun, Y., Dong, L., Hao, Y., Ma, S., Sui, Z. & Wei, F. Why
Can GPT Learn In-Context? Language Models Implicitly Perform Gradient
Descent as Meta-Optimizers in ICLR 2023 Workshop on Mathematical and
Empirical Understanding of Foundation Models (2023).

95. Nadaraya, E. A. On estimating regression. Theory of Probability & its
Applications 9, 141 (1964).

96. Watson, G. S. Smooth regression analysis. Sankhyā: The Indian Journal
of Statistics, Series A, 359 (1964).

97. Choromanski, K. M., Likhosherstov, V., Dohan, D., Song, X., Gane,
A., Sarlos, T., Hawkins, P., Davis, J. Q., Mohiuddin, A., Kaiser, L.,
Belanger, D. B., Colwell, L. J. & Weller, A. Rethinking Attention with
Performers in International Conference on Learning Representations (2021).

98. Zhang, A., Lipton, Z. C., Li, M. & Smola, A. J. Dive into Deep Learning.
arXiv preprint arXiv:2106.11342 (2021).

99. Irie, K., Schlag, I., Csordás, R. & Schmidhuber, J. Going Beyond
Linear Transformers with Recurrent Fast Weight Programmers. CoRR
abs/2106.06295 (2021).

100. Von Oswald, J., Niklasson, E., Schlegel, M., Kobayashi, S., Zucchet, N.,
Scherrer, N., Miller, N., Sandler, M., y Arcas, B. A., Vladymyrov, M.,
Pascanu, R. & Sacramento, J. Uncovering mesa-optimization algorithms
in Transformers

bibliography 129

101. Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez,
A. N., Kaiser, L. & Polosukhin, I. Attention is all you need in Advances
in Neural Information Processing Systems 30 (2017).

102. Brown, T. B., Mann, B., Ryder, N., Subbiah, M., Kaplan, J., Dhariwal,
P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., Agarwal, S.,
Herbert-Voss, A., Krueger, G., Henighan, T., Child, R., Ramesh, A.,
Ziegler, D. M., Wu, J., Winter, C., Hesse, C., Chen, M., Sigler, E.,
Litwin, M., Gray, S., Chess, B., Clark, J., Berner, C., McCandlish, S.,
Radford, A., Sutskever, I. & Amodei, D. Language models are few-shot
learners in Advances in Neural Information Processing Systems 33 (2020).

103. Akyürek, E., Schuurmans, D., Andreas, J., Ma, T. & Zhou, D. What
learning algorithm is in-context learning? Investigations with linear models
in International Conference of Learning Representations (2023).

104. Kirsch, L., Harrison, J., Sohl-Dickstein, J. & Metz, L. General-purpose
in-context learning by meta-learning transformers in Sixth Workshop on
Meta-Learning at the Conference on Neural Information Processing Systems
(2022).

105. Hubinger, E., van Merwijk, C., Mikulik, V., Skalse, J. & Garrabrant,
S. Risks from learned optimization in advanced machine learning
systems. arXiv preprint 1906.01820 (2019).

106. Kaplan, J., McCandlish, S., Henighan, T., Brown, T. B., Chess, B.,
Child, R., Gray, S., Radford, A., Wu, J. & Amodei, D. Scaling laws for
neural language models. arXiv preprint arXiv:2001.08361 (2020).

107. Bahdanau, D., Cho, K. & Bengio, Y. Neural machine translation by jointly
learning to align and translate in International Conference of Learning
Representations (2015).

108. Katharopoulos, A., Vyas, A., Pappas, N. & Fleuret, F. Transformers are
RNNs: fast autoregressive transformers with linear attention in Interna-
tional Conference on Machine Learning (2020).

109. Wang, S., Li, B. Z., Khabsa, M., Fang, H. & Ma, H. Linformer:
self-attention with linear complexity. arXiv preprint arXiv:2006.04768
(2020).

110. Schlag, I., Irie, K. & Schmidhuber, J. Linear transformers are secretly
fast weight programmers in International Conference on Machine Learning
(2021).

130 bibliography

111. Choromanski, K., Likhosherstov, V., Dohan, D., Song, X., Gane, A.,
Sarlos, T., Hawkins, P., Davis, J., Mohiuddin, A., Kaiser, L., Belanger,
D., Colwell, L. & Weller, A. Rethinking attention with performers in
International Conference of Learning Representations (2021).

112. Fournier, Q., Caron, G. M. & Aloise, D. A practical survey on faster
and lighter transformers. ACM Computing Surveys 55 (2023).

113. Treviso, M., Lee, J.-U., Ji, T., Aken, B. v., Cao, Q., Ciosici, M. R.,
Hassid, M., Heafield, K., Hooker, S., Raffel, C., Martins, P. H., Martins,
A. F. T., Forde, J. Z., Milder, P., Simpson, E., Slonim, N., Dodge, J.,
Strubell, E., Balasubramanian, N., Derczynski, L., Gurevych, I. &
Schwartz, R. Efficient methods for natural language processing: a
survey. Transactions of the Association for Computational Linguistics 11
(2023).

114. Ding, N., Levinboim, T., Wu, J., Goodman, S. & Soricut, R. CausalLM
is not optimal for in-context learning. arXiv preprint arXiv:2308.06912
(2023).

115. Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. BERT: Pre-training
of Deep Bidirectional Transformers for Language Understanding in Proceed-
ings of NAACL-HLT (2019).

116. Garnelo, M. & Czarnecki, W. M. Exploring the space of key-value-
query models with intention. arXiv preprint arXiv:2305.10203 (2023).

117. Sherman, J. & Morrison, W. J. Adjustment of an inverse matrix corre-
sponding to a change in one element of a given matrix. The Annals of
Mathematical Statistics 21, 124 (1950).

118. Gauss, C. F. Theoria combinationis observationum: erroribus minimis
obnoxiae (Societas Regia Scientiarum Gottingensis, 1821).

119. Xie, S. M., Raghunathan, A., Liang, P. & Ma, T. An explanation of in-
context learning as implicit Bayesian inference in International Conference
of Learning Representations (2022).

120. Alain, G. & Bengio, Y. Understanding intermediate layers using linear
classifier probes in International Conference of Learning Representations
(2017).

bibliography 131

121. Olsson, C., Elhage, N., Nanda, N., Joseph, N., DasSarma, N.,
Henighan, T., Mann, B., Askell, A., Bai, Y., Chen, A., Conerly, T.,
Drain, D., Ganguli, D., Hatfield-Dodds, Z., Hernandez, D., Johnston,
S., Jones, A., Kernion, J., Lovitt, L., Ndousse, K., Amodei, D., Brown,
T., Clark, J., Kaplan, J., McCandlish, S. & Olah, C. In-context learning
and induction heads. Transformer Circuits Thread (2022).

122. Li, X. L. & Liang, P. Prefix-tuning: optimizing continuous prompts for
generation in Proceedings of the 59th Annual Meeting of the Association
for Computational Linguistics (2021).

123. Lester, B., Al-Rfou, R. & Constant, N. The power of scale for parameter-
efficient prompt tuning in Proceedings of the 2021 Conference on Empirical
Methods in Natural Language Processing (2021).

124. Chan, S. C. Y., Dasgupta, I., Kim, J., Kumaran, D., Lampinen, A. K. &
Hill, F. Transformers generalize differently from information stored
in context vs in weights. arXiv preprint arXiv:2210.05675 (2022).

125. Min, S., Lyu, X., Holtzman, A., Artetxe, M., Lewis, M., Hajishirzi, H.
& Zettlemoyer, L. Rethinking the role of demonstrations: what makes in-
context learning work? in Proceedings of the 2022 Conference on Empirical
Methods in Natural Language Processing (2022).

126. Kossen, J., Rainforth, T. & Gal, Y. In-context learning in large language
models learns label relationships but is not conventional learning.
arXiv preprint arXiv:2307.12375 (2023).

127. Gao, L., Biderman, S., Black, S., Golding, L., Hoppe, T., Foster, C.,
Phang, J., He, H., Thite, A., Nabeshima, N., Presser, S. & Leahy, C.
The pile: an 800GB dataset of diverse text for language modeling.
arXiv preprint arXiv:2101.00027 (2020).

128. Fu, D. Y., Dao, T., Saab, K. K., Thomas, A. W., Rudra, A. & Ré, C.
Hungry hungry hippos: towards language modeling with state space models
in International Conference of Learning Representations (2023).

129. Liu, B., Ash, J. T., Goel, S., Krishnamurthy, A. & Zhang, C. Trans-
formers learn shortcuts to automata. arXiv preprint arXiv:2210.10749
(2023).

130. Martins, A., Farinhas, A., Treviso, M., Niculae, V., Aguiar, P. &
Figueiredo, M. Sparse and continuous attention mechanisms in Advances
in Neural Information Processing Systems 33 (2020).

132 bibliography

131. Schmidhuber, J. Learning to control fast-weight memories: an al-
ternative to dynamic recurrent networks. Neural Computation 4, 131

(1992).

132. Hebb, D. O. The Organization of Behavior: A Neuropsychological Theory
(Wiley, New York, 1949).

133. Hertz, J., Palmer, R. G. & Krogh, A. S. Introduction to the Theory of
Neural Computation 1st (Perseus Publishing, 1991).

134. Widrow, B. & Hoff, M. E. Adaptive switching circuits in IRE WESCON
convention record 4 (1960).

135. Ravi, S. & Larochelle, H. Optimization as a model for few-shot learning
in International Conference on Learning Representations (2017).

136. Hochreiter, S., Younger, A. S. & Conwell, P. R. Learning to learn using
gradient descent in Artificial Neural Networks — ICANN 2001 (2001).

137. Lee, D.-H., Zhang, S., Fischer, A. & Bengio, Y. Difference target propa-
gation in Joint European Conference on Machine Learning and Knowledge
Discovery in Databases (2015).

138. Whittington, J. C. R. & Bogacz, R. An approximation of the error
backpropagation algorithm in a predictive coding network with local
Hebbian synaptic plasticity. Neural Computation 29, 1229 (2017).

139. Meulemans, A., Zucchet, N., Kobayashi, S., von Oswald, J. & Sacra-
mento, J. The least-control principle for local learning at equilibrium in
Advances in Neural Information Processing Systems 35 (2022).

140. Hinton, G., Osindero, S. & Teh, Y. W. A Fast Learning Algorithm for
Deep Belief Nets. Neural Computation 18, 1527 (2006).

141. Nøkland, A. & Eidnes, L. H. Training neural networks with local error
signals in International Conference on Machine Learning (2019).

142. Belilovsky, E., Eickenberg, M. & Oyallon, E. Greedy layerwise learning
can scale to ImageNet in International Conference on Machine Learning
(2019).

143. Löwe, S., O’Connor, P. & Veeling, B. Putting an end to end-to-end:
Gradient-isolated learning of representations in Advances in Neural Infor-
mation Processing Systems 32 (2019).

144. Hinton, G. The forward-forward algorithm: Some preliminary inves-
tigations. arXiv preprint arXiv:2212.13345 (2022).

145. Mumford, D. On the computational architecture of the neocortex.
Biological Cybernetics 66, 241 (1992).

bibliography 133

146. Rao, R. P. N. & Ballard, D. H. Predictive coding in the visual cortex: a
functional interpretation of some extra-classical receptive-field effects.
Nature Neuroscience 2, 79 (1999).

147. Bai, Y., Chen, F., Wang, H., Xiong, C. & Mei, S. Transformers as
statisticians: provable in-context learning with in-context algorithm
selection. arXiv preprint arXiv:2306.04637 (2023).

148. Ha, D. & Schmidhuber, J. World models. arXiv preprint arXiv:1803.10122
(2018).

149. Werbos, P. J. Learning how the world works: Specifications for predic-
tive networks in robots and brains in Proceedings of IEEE International
Conference on Systems, Man and Cybernetics, NY (1987).

150. Giannou, A., Rajput, S., Sohn, J.-y., Lee, K., Lee, J. D. & Papailiopou-
los, D. Looped transformers as programmable computers in International
Conference on Machine Learning (2023).

151. Chan, S. C. Y., Santoro, A., Lampinen, A. K., Wang, J. X., Singh, A.,
Richemond, P. H., McClelland, J. & Hill, F. Data distributional prop-
erties drive emergent in-context learning in transformers. Advances in
Neural Information Processing Systems 35 (2022).

152. Johnstone, R. M., Richard Johnson, C., Bitmead, R. R. & Anderson,
B. D. O. Exponential convergence of recursive least squares with
exponential forgetting factor. Systems & Control Letters 2, 77 (1982).

153. Bradbury, J., Frostig, R., Hawkins, P., Johnson, M. J., Leary, C., Maclau-
rin, D., Necula, G., Paszke, A., VanderPlas, J., Wanderman-Milne, S. &
Zhang, Q. JAX: composable transformations of Python+NumPy programs
2018.

154. Von Oswald, J., Zhao, D., Kobayashi, S., Schug, S., Caccia, M., Zucchet,
N. & Sacramento, J. Learning where to learn: Gradient sparsity in meta
and continual learning in Advances in Neural Information Processing
Systems (2021).

155. Zintgraf, L., Shiarli, K., Kurin, V., Hofmann, K. & Whiteson, S. Fast
Context Adaptation via Meta-Learning in International Conference on
Machine Learning (2019).

156. Chen, Y., Friesen, A. L., Behbahani, F., Budden, D., Hoffman, M. W.,
Doucet, A. & de Freitas, N. Modular Meta-Learning with Shrinkage in
Advances in Neural Information Processing Systems (2020).

134 bibliography

157. Chen, W.-Y., Liu, Y.-C., Kira, Z., Wang, Y.-C. F. & Huang, J.-B. A
closer look at few-shot classification in International Conference on Learning
Representations (2019).

158. Oh, J., Yoo, H., Kim, C. & Yun, S.-Y. BOIL: Towards representation change
for few-shot learning in International Conference of Learning Representa-
tions (2021).

159. Riemer, M., Cases, I., Ajemian, R., Liu, M., Rish, I., Tu, Y. & Tesauro, G.
Learning to learn without forgetting by maximizing transfer and minimiz-
ing interference in International Conference on Learning Representations
(2019).

160. Gupta, G., Yadav, K. & Paull, L. La-MAML: Look-ahead meta learning for
continual learning in Advances in Neural Information Processing Systems
(2020).

161. Caccia, M., Rodriguez, P., Ostapenko, O., Normandin, F., Lin, M.,
Page-Caccia, L., Laradji, I. H., Rish, I., Lacoste, A., Vázquez, D. &
Charlin, L. Online Fast Adaptation and Knowledge Accumulation
(OSAKA): a New Approach to Continual Learning. Advances in Neural
Information Processing Systems (2020).

162. Bengio, Y., Léonard, N. & Courville, A. Estimating or propagating
Gradients Through Stochastic Neurons for Conditional Computation.
arXiv preprint arXiv:1308.3432 (2013).

163. Ramanujan, V., Wortsman, M., Kembhavi, A., Farhadi, A. & Rastegari,
M. What’s Hidden in a Randomly Weighted Neural Network? in IEEE
Conference on Computer Vision and Pattern Recognition (2020).

164. Nichol, A., Achiam, J. & Schulman, J. On First-Order Meta-Learning
Algorithms. CoRR abs/1803.02999. _eprint: 1803.02999 (2018).

165. Ravi, S. & Larochelle, H. Optimization as a model for few-shot learning
in International Conference on Learning Representations (2017).

166. Vinyals, O., Blundell, C., Lillicrap, T., Kavukcuoglu, K. & Wierstra,
D. Matching Networks for One Shot Learning in Advances in Neural
Information Processing Systems (2016).

167. Raghu, M., Gilmer, J., Yosinski, J. & Sohl-Dickstein, J. SVCCA: Singular
Vector Canonical Correlation Analysis for Deep Learning Dynamics and
Interpretability in Advances in Neural Information Processing Systems
(2017).

bibliography 135

168. Brock, A., Lim, T., Ritchie, J. M. & Weston, N. FreezeOut: Ac-
celerate Training by Progressively Freezing Layers. arXiv preprint
arXiv:1706.04983 (2017).

169. Lewkowycz, A., Bahri, Y., Dyer, E., Sohl-Dickstein, J. & Gur-Ari, G.
The large learning rate phase of deep learning: the catapult mecha-
nism. arXiv preprint arXiv:2003.02218 (2020).

170. Sutton, R. S. Adapting bias by gradient descent: An incremental version of
delta-bar-delta in AAAI Conference on Artificial Intelligence (1992).

171. Robins, A. Catastrophic forgetting, rehearsal and pseudorehearsal.
Connection Science 7, 123 (1995).

172. Lopez-Paz, D. & Ranzato, M. Gradient episodic memory for continual
learning in Advances in Neural Information Processing Systems (2017).

173. Gupta, G., Yadav, K. & Paull, L. Official La-MAML repository Down-
loaded from: https://github.com/montrealrobotics/La- MAML/
blob/main/model/lamaml.py. Accessed: 2020-05-25. 2020.

174. LeCun, Y. The MNIST database of handwritten digits. Available at
http://yann. lecun. com/exdb/mnist (1998).

175. Krizhevsky, A. Learning multiple layers of features from tiny images tech.
rep. (2009).

176. Kingma, D. P. & Ba, J. Adam: a method for stochastic optimization in
International Conference on Learning Representations (2015).

177. Zeno, C., Golan, I., Hoffer, E. & Soudry, D. Task Agnostic Continual
Learning Using Online Variational Bayes with Fixed-Point Updates.
arXiv preprint arXiv:010.00373 (2020).

178. He, X., Sygnowski, J., Galashov, A., Rusu, A. A., Teh, Y. W. & Pascanu,
R. Task agnostic continual learning via meta learning. arXiv preprint
arXiv:1906.05201 (2019).

179. Ritter, S., Wang, J., Kurth-Nelson, Z., Jayakumar, S., Blundell, C.,
Pascanu, R. & Botvinick, M. Been there, done that: Meta-learning with
episodic recall in International Conference on Machine Learning (2018).

180. Bottou, L. in On-line Learning in Neural Networks 9 (Cambridge Uni-
versity Press, 1998).

181. Lake, B. M., Salakhutdinov, R., Gross, J. & Tenenbaum, J. B. One shot
learning of simple visual concepts in Proceedings of the Annual Meeting of
the Cognitive Science Society (2011).

https://github.com/montrealrobotics/La-MAML/blob/main/model/lamaml.py
https://github.com/montrealrobotics/La-MAML/blob/main/model/lamaml.py

136 bibliography

182. Xiao, H., Rasul, K. & Vollgraf, R. Fashion-MNIST: a novel image
dataset for benchmarking machine learning algorithms. arXiv preprint
arXiv:1708.07747 (2017).

183. Tibshirani, R. Regression shrinkage and selection via the lasso. Journal
of the Royal Statistical Society: Series B (Methodological) 58, 267 (1996).

184. Schraudolph, N. N. Local gain adaptation in stochastic gradient descent
in International Conference on Artificial Neural Networks (1999).

185. Veeriah, V., Zhang, S. & Sutton, R. S. Crossprop: Learning representations
by stochastic meta-gradient descent in neural networks in Machine Learning
and Knowledge Discovery in Databases (2017).

186. Wu, Y., Ren, M., Liao, R. & Grosse, R. Understanding short-horizon bias
in stochastic meta-optimization in International Conference on Learning
Representations (2018).

187. Jacobsen, A., Schlegel, M., Linke, C., Degris, T., White, A. & White,
M. Meta-descent for online, continual prediction in AAAI Conference on
Artificial Intelligence (2019).

188. Kearney, A., Veeriah, V., Travnik, J., Pilarski, P. M. & Sutton, R. S.
Learning feature relevance through step size adaptation in temporal-
difference learning. arXiv preprint arXiv:1903.03252 (2019).

189. Goyal, A., Lamb, A., Hoffmann, J., Sodhani, S., Levine, S., Bengio,
Y. & Schölkopf, B. Recurrent independent mechanisms in International
Conference on Learning Representations (2021).

190. Madan, K., Ke, R. N., Goyal, A., Schölkopf, B. & Bengio, Y. Fast
and slow learning of recurrent independent mechanisms in International
Conference on Learning Representations (2021).

191. Park, J., Lee, J. & Jeon, D. A 65-nm neuromorphic image classification
processor with energy-efficient training through direct spike-only
feedback. IEEE Journal of Solid-State Circuits 55, 108 (2019).

192. Li, H. L. & van Rossum, M. C. Energy efficient synaptic plasticity.
eLife 9, e50804 (2020).

193. Conmy, A., Mavor-Parker, A. N., Lynch, A., Heimersheim, S. &
Garriga-Alonso, A. Towards Automated Circuit Discovery for Mecha-
nistic Interpretability. arXiv (2023).

194. Gurnee, W., Nanda, N., Pauly, M., Harvey, K., Troitskii, D. & Bertsi-
mas, D. Finding Neurons in a Haystack: Case Studies with Sparse
Probing. arXiv (2023).

C U R R I C U L U M V I TA E

personal data

Name Johannes von Oswald
Date of Birth September 28, 1990

Place of Birth Berlin, Germany
Citizen of Germany

education

2018 – 2023 Institute of Theoretical Computer Science, ETH
Zürich, Switzerland
Final degree: PhD

2014 – 2017 Technische Universität München
München, Germany
Final degree: Master of Science in Mathematics

2016 ETH Zürich
Zürich, Switzerland
Semester Abroad

2015 Hong Kong University of Science and Technology
Hongkong
Semester Abroad

2011 – 2014 Technische Universität Berlin
Berlin, Germany
Final degree: Bachelor of Science in Mathematics

2010 Werner-von-Siemens-Gymnasium
Berlin, Germany
Final degree: Abitur (university entrance diploma)

137

138 bibliography

employment (selection)

2023 - Research Scientist
Google
Zürich, Switzerland

Summer 2023 PhD Intern
Google
Seattle, USA

2022-2023 Research Student
Google
Zürich, Switzerland

2012-2014 Bartender & Co-Owner
Nice Bar
Berlin, Germany

2009-2011 Co-Founder & CTO
Rovo Agency
Berlin, Germany & Porto, Portugal

S E L E C T I O N O F R E L E VA N T O W N P U B L I C AT I O N S

Preprints:

1. Von Oswald, J., Niklasson, E., Schlegel, M., Kobayashi, S., Zucchet, N.,
Scherrer, N., Miller, N., Sandler, M., y Arcas, B. A., Vladymyrov, M.,
Pascanu, R. & Sacramento, J. Uncovering mesa-optimization algorithms
in Transformers

Conference and workshop contributions:

2. Von Oswald, J., Niklasson, E., Randazzo, E., Sacramento, J., Mord-
vintsev, A., Zhmoginov, A. & Vladymyrov, M. Transformers Learn
In-Context by Gradient Descent in Proceedings of the 40th International
Conference on Machine Learning (PMLR, 2023).

3. Von Oswald, J., Zhao, D., Kobayashi, S., Schug, S., Caccia, M., Zucchet,
N. & Sacramento, J. Learning where to learn: Gradient sparsity in meta
and continual learning in Advances in Neural Information Processing
Systems (2021).

4. Zhao, D., von Oswald, J., Kobayashi, S., Sacramento, J. & Grewe, B. F.
Meta-Learning via Hypernetworks in NeurIPS Workshop on Meta-Learning
(2020).

5. Von Oswald, J., Henning, C., Grewe, B. F. & Sacramento, J. Contin-
ual learning with hypernetworks in International Conference on Learning
Representations (2020).

6. Zucchet, N., Schug, S., Oswald, J. V., Zhao, D. & Sacramento, J.
A contrastive rule for meta-learning in Advances in Neural Information
Processing Systems (2022).

139

	Abstract
	Zusammenfassung
	Acknowledgements
	Contents
	1 Introduction
	2 Transformers Learn In-Context by Gradient Descent
	2.1 Introduction
	2.2 Linear self-attention can emulate GD on linear regression tasks
	2.3 Trained Transformers do mimic GD on linear regression tasks
	2.4 Do self-attention layers build regression tasks?
	2.5 Discussion
	2.6 Appendix
	2.6.1 Proposition 2 and connections between gradient descent, kernelized regression and kernel smoothing
	2.6.2 Proof and discussion of Proposition 3
	2.6.3 Linear mode connectivity between the weight construction of Prop 1 and trained Transformers
	2.6.4 Linear vs. softmax self-attention as well LayerNorm Transformers
	2.6.5 Dampening the self-attention layer

	3 Uncovering Mesa-Optimization Algorithms in Transformers
	3.1 Introduction
	3.2 Preliminaries
	3.3 Sequential prediction by least-squares mesa-optimization
	3.4 An attention layer for optimal least-squares learning
	3.5 Empirical Analysis
	3.5.1 Prediction of linear dynamics by in-context learning
	3.5.2 Simple autoregressive models become few-shot learners
	3.5.3 Language models equipped with least-squares solvers

	3.6 Discussion
	3.7 Appendix
	3.7.1 Mesa layer with forgetting factors
	3.7.2 Mesa layer backward computation
	3.7.3 Details: Mechanistic interpretability of Transformers
	3.7.4 Visualization of weights and attention maps of Transformers

	4 Learning where to learn: Gradient sparsity in meta and continual learning
	4.1 Introduction
	4.2 From MAML to sparse-MAML
	4.3 Few-shot learning
	4.3.1 Gradient sparsity decreases with layer depth
	4.3.2 Sparse learning prefers highly-plastic models
	4.3.3 Sparse learning vs. more expressive gradient modulation methods
	4.3.4 Sparse learning improves performance in cross-domain adaptation tasks

	4.4 Continual learning
	4.4.1 Gradient sparsity emerges when learning continually with Look-ahead MAML
	4.4.2 Sparse online learning

	4.5 Discussion
	4.6 Appendix
	4.6.1 Derivation of the sparse-MAML update

	5 Summary
	 Bibliography
	Curriculum Vitae
	Publications

