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Pedipulate: Enabling Manipulation Skills using a Quadruped Robot’s Leg

Philip Arm, Mayank Mittal, Hendrik Kolvenbach, and Marco Hutter

Abstract— Legged robots have the potential to become vital
in maintenance, home support, and exploration scenarios. In
order to interact with and manipulate their environments,
most legged robots are equipped with a dedicated robot
arm, which means additional mass and mechanical complex-
ity compared to standard legged robots. In this work, we
explore pedipulation - using the legs of a legged robot for
manipulation. By training a reinforcement learning policy that
tracks position targets for one foot, we enable a dedicated
pedipulation controller that is robust to disturbances, has
a large workspace through whole-body behaviors, and can
reach far-away targets with gait emergence, enabling loco-
pedipulation. By deploying our controller on a quadrupedal
robot using teleoperation, we demonstrate various real-world
tasks such as door opening, sample collection, and pushing
obstacles. We demonstrate load carrying of more than 2.0 kg
at the foot. Additionally, the controller is robust to interaction
forces at the foot, disturbances at the base, and slippery
contact surfaces. Videos of the experiments are available at
https://sites.google.com/leggedrobotics.com/pedipulate.

I. INTRODUCTION

In recent years, the locomotion capabilities of legged

robots have greatly improved. Specifically, quadrupedal

robots are nowadays capable of traversing various indus-

trial and natural environments [1]–[4], facilitating their de-

ployment in inspection, exploration, and search-and-rescue

missions [5]–[10]. Although legged robots have reached

industrial maturity, their application range currently remains

limited to inspection tasks that require minimal interaction

with the environment. We need to improve and robustify

their manipulation capabilities to deploy legged robots in a

broader range of real-world scenarios, such as maintenance,

home support, and sample collection.

Recent works in legged mobile manipulation have mainly

focused on systems with a dedicated robotic arm for interac-

tive tasks such as door opening, fetching objects, and opening

valves [11]–[15]. However, such an additional arm increases

the robot’s mechanical complexity and power consumption.

Taking inspiration from quadrupedal animals [16], we hy-

pothesize that many manipulation tasks do not require the ad-

ditional dexterity and complexity of robotic arms and hands

but can be solved using the legs of quadrupedal robots. Using

the same limbs for locomotion and manipulation can reduce
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Fig. 1: Our foot target tracking controller enables a variety of real-world
manipulation tasks such as opening doors (A) and fridges (B), object
transport (C), pressing a button (D), pushing obstacles out of the way (E),
and collecting rock samples (F).

a robotic system’s mechanical complexity and cost, which is

especially beneficial in mass-constrained applications such

as space exploration.

We, therefore, seek to enable a broad range of manip-

ulation tasks using the legs of quadrupedal robots - so-

called pedipulation. By developing a versatile low-level

controller that can track foot target points, we investigate

how we can use pedipulation to enable real-world skills.

To this end, we use a deep reinforcement learning setup to

train a robust controller for foot target point tracking. We

additionally seek to enable the controller to approach far-

away targets with the foot in the air while using a tripod gait,

facilitating object transport. We investigate the controller’s

tracking performance and disturbance rejection capabilities

in simulation and hardware experiments and deploy it in

various real-world tasks through teleoperation. Specifically,

our key contributions are as follows:

• We design a reinforcement learning-based pedipulation

controller by training a policy that tracks foot position

targets.

• We investigate the achievable workspace of our con-

troller while standing and show that it reaches a large

local workspace through inherent whole-body motions.

• We enable the controller to adapt the robot’s stance and

locomote towards far-away targets via curriculum-based

command sampling.

https://sites.google.com/leggedrobotics.com/pedipulate


Fig. 2: Overview of our training and deployment setup. We first specify the commands in an inertial frame, namely the world frame in training and the
control frame during deployment. To make the policy agnostic to the used inertial frame, we transform the commands to the base frame before adding
them to the observations. The policy’s actions are interpreted as deviations from the current joint position.

• We demonstrate that the controller is robust to external

disturbances, such as interaction forces on the base and

foot, and slippery terrains.

• We show that through the above features, our learned

pedipulation controller enables numerous real-world

manipulation skills such as door opening, rock sample

collection, and pushing obstacles without task-specific

adaptions (Fig. 1).

II. RELATED WORK

Several works investigated manipulation using robotic legs

- or, more precisely, pedipulation - in recent years. We split

these works into three categories:

• Manipulation via locomotion: The robot moves objects

towards a goal by pushing them with its body while

walking.

• Non-prehensile pedipulation: The robot manipulates ob-

jects with its legs without the capability to exert pulling

forces onto the objects.

• Prehensile pedipulation: The robot has a specialized

tool on one or multiple legs to grasp and manipulate

objects with pushing and pulling forces.

A. Manipulation via Locomotion

Manipulation via locomotion can enable robots to push

objects close to their body weight [17]. Scaling this strategy

to a multi-robot approach allows manipulating even larger

objects [18], [19]. In these works, the authors trained a

reinforcement learning policy to move large-scale objects

to a desired 2D pose. This approach can, for example, be

used to remove obstacles. However, it does not generalize

to dexterous tasks such as opening doors or pushing small

buttons, which we aim to tackle in this paper.

B. Non-prehensile Pedipulation

Non-prehensile pedipulation facilitates moving obstacles

out of the way [20], kicking or balancing balls [21], [22],

probing the environment [6], [23], or opening doors [24].

Some of the above approaches track pre-defined trajectories

with a tracking controller. Lu et al. [20] used an inverse

kinematics controller to track a heuristically defined Bézier

Curve to push objects on the ground. Kolvenbach et al. [6],

[23] executed a pre-defined trajectory with FreeGait, an API

for whole-body control [25] to haptically inspect the terrain.

Others trained a reinforcement learning policy on a single

task, for example, kicking balls [21] or balancing balls [22].

While many of these works show promising results in their

respective domain, our goal is to have a general controller

that can be used for multiple manipulation tasks.

Cheng et al. [26] showed a non-prehensile pedipulation

controller capable of generalizing to multiple tasks. In this

work, the authors used separately learned low-level manip-

ulation and locomotion policies and a high-level behavior

tree to synthesize skills such as kicking a ball or pushing

buttons. While the paper shows an impressive range of

skills, the low-level manipulation and locomotion policies

are separated, which implies that combined locomotion and

pedipulation maneuvers (loco-pedipulation) are not feasible.

Furthermore, the manipulation policy only tracks half-sine

trajectories near the robot’s nominal foot position. This

form of command sampling probably does not generalize

to arbitrary trajectories in the robot’s workspace. Both these

limitations prevent the application of the approach in more

complex scenarios, as considered in this work, like door

opening or object transport.

C. Prehensile Pedipulation

Integrating a gripper on the robot’s foot enables applica-

tions such as fetching objects or collecting samples [27]–

[30]. Both the Lauron robot [27], [28] and Mantis [29]

are hexapod robots where the integrated grippers can fetch

objects. These works show capable gripper concepts. How-

ever, they provide little detail on their manipulation control



approach and do not demonstrate robustness to external

disturbances. Tsvetkov and Ramamoorthy [30] introduced a

dactylus-style gripper for single-leg and two-leg manipula-

tion. In this work, the gripper concept is remarkable and

facilitates manipulating multiple objects and tools. However,

the operator can only command the robot’s target position in

joint space. The target position is converted into a trajectory

and tracked in an open-loop fashion. This approach requires

cumbersome command tuning and limits the robustness to

disturbances. In our work, we aim to overcome these issues

and develop a versatile controller which is useful for both

prehensile and non-prehensile pedipulation scenarios.

III. METHOD

We hypothesize that a hierarchical structure with a task-

specific high-level planner and a generic low-level controller

generalizes well to numerous pedipulation tasks. Here, we

focus on the required low-level controller that effectively

tracks foot position commands and is robust to disturbances.

Due to the recent success of reinforcement learning [1]–

[4], [31], we choose to use deep reinforcement learning to

train a neural network policy (Fig. 2). We train the policy to

track foot target points of the right front foot with minimal

additional rewards. During deployment, the user provides

the command in an inertial frame, and we expect high-level

planners to do the same. However, we want the policy to be

agnostic to the used inertial frame. Therefore, we internally

transform the command to the robot’s base frame before

adding it to the observation vector.

We use Isaac Gym as a simulation environment [32], [33] and

PPO as a deep reinforcement learning algorithm [34]. We use

MLPs for the actor and critic networks as in previous work

on locomotion [32] and rely on similar hyperparameters.

We randomize simulation friction parameters, add random

pushes to the robot’s base in simulation, and train on irregular

terrain to facilitate the sim-to-real transfer. We deployed

our controller on the quadrupedal robot ANYmal D by

ANYbotics [35].

A. Observation and Action Space

The policy receives proprioceptive information about the

robot’s state and the foot position commands as observa-

tions (Table I). The scaled actions are interpreted as desired

deviations from the current joint positions. We tested two

action spaces: deviations from current joint positions and

nominal joint positions. However, we did not notice a rele-

vant difference in the achieved rewards and behaviors.

B. Rewards

We use two types of rewards; a task reward Re represent-

ing the main objective, and penalties Rn, which render the

behavior safe and physically feasible on the real system. The

total reward is R = Re +Rn.
1) Task Reward: We provide a single dense task reward

to encourage the foot to be close to the target point. The

reward function is defined as

Re = w1 · e
−

(

|| Brf−Br
∗
f
||

σ

)

, (1)

Fig. 3: Simulation setup in Isaac Gym. The initial and final sampling
space of the foot position commands are visualized in green and blue,
respectively. The command curriculum enables combined pedipulation and
tripod locomotion in a single policy. The figure shows one robot tracking
a close target point (left) and a robot approaching a far-range target point
using the tripod gait (right). The target points are visualized in yellow.

Observations

base linear velocity
B
vB R

3

base angular velocity
B
ωB R

3

projected gravity vector
B
g R

3

joint positions qj R
12

joint velocities q̇j R
12

foot position command
B
r
∗

f
R
3

last actions at−1 R
12

Actions

desired deviation from last joint positions ∆q
∗
j R

12

TABLE I: Observations and actions we use for our foot target tracking
policy. The actor and critic receive the same set of observations.

where
B
rf and

B
r
∗

f denote the measured and desired foot

position in the base frame, respectively. We use w1 = 15
and σ = 0.8m−1.

2) Normalization Rewards: To reduce jerky motions and

enable safe behaviors on the real robot, we add penalties

on quantities such as joint torques, joint velocities, and

collisions between robot links. The normalization reward is

defined as

Rn = w2||q̇j ||
2 + w3||q̈j ||

2 + w4||τ ||
2

+w5||at − at−1||
2 + w6 · nc + w7 · k,

(2)

where q̇j and q̈j denote the joint velocities and accelerations,

τ denotes the joint torques, at the action at time t and wi the

scaling factors. Additionally, we penalize collisions between

shanks and thighs, expressed by the number of collisions at

the current time step nc. Lastly, we add a termination penalty,

which is applied to the environments where a base collision

is registered, denoted by k ∈ {0, 1}, where k = 1 represents

a termination at the current time step. We use the manually

tuned reward scales

w2 = −5 · 10−2 w3 = −5 · 10−6

w4 = −2 · 10−5 w5 = −1 · 10−2

w6 = −2 w7 = −80.



Fig. 4: Our controller enables numerous real-world manipulation tasks: (A) The robot opens a push door. (B) The robot opens a fridge. (C) The robot lifts
a backpack and transports it to a box using a tripod-hopping gait. (D) The large workspace of the controller allows pressing a button far above the robot’s
base. (E) The controller can be used to push obstacles out of the way. (F) With an additional gripper, the robot can collect rock samples.

C. Terrain

We observed that training on flat terrain leads to behaviors

where stance feet slide across the ground to adapt the stance.

On the real robot, such policies are prone to stumbling on

terrain irregularities. To robustify the behavior, we train on

irregular terrain (Fig. 3). We uniformly sample a height field

between −0.08m and 0.08m on a grid with 0.2m resolution

to create the terrain.

D. Command Curriculum for Loco-Pedipulation

To enable tracking far-away targets that require the robot

to adapt the stance legs or walk on three legs, we im-

plemented a curriculum for adaptive command sampling.

Initially, commands are sampled uniformly in a box that is

reachable for the foot without moving the stance feet (green

box in Fig. 3). Once the agent learns to track the commands

with an average error of less than 0.06m, the command

sampling box is extended by 0.2m in the robot’s heading

direction and 0.2m in both lateral directions. We limit the

box to 2.2m x 3.0m x 1.3m (blue box in Fig. 3) and

let the training converge with this command range. The

command range does not limit the range of loco-pedipulation

maneuvers since we can still give a sequence of target points

to reach a further target.

E. Sim-to-Real Transfer, Training, and Deployment

We randomize the friction parameters in the simulation

and add noise to the observations. Additionally, we exert

random pushes onto the robot’s base every 3.0 s, which we

simulate by setting a random twist to the base link. Each twist

component is sampled in [−0.6, 0.6] m s−1 or [−0.6, 0.6]
rad s−1. Furthermore, we add a disturbance force at the feet

of up to 12N that is constant over an episode. Finally, we

use an actuator network to simulate the actuator dynamics as

in [36]. We train with an episode length of 12 s and resample

commands every 6 s. Training takes 5.5 h on an NVIDIA

GeForce RTX 2080 Ti for 8000 iterations.



During deployment, we define the command in a fixed

local control frame (
C
r
∗

F ). When our pedipulation controller

starts, it locks the control frame at the current base posi-

tion, and our SLAM solution [37] continuously updates the

transforms between the map, the control, and the base frame.

We define the command by the joystick or the GUI in the

control frame and transform it into the base frame (
B
r
∗

F )

before adding it to the policy observations. The control frame

allows the user to intuitively control the foot in a fixed frame

rather than having the behavior influenced by the current base

pose. The user can use the joystick to incrementally move

the target point or a GUI interface to directly command a

single far-away target point (Fig. 2).The policy and the PID

controller run at 50Hz and 400Hz, respectively.

IV. RESULTS AND DISCUSSION

A. Real-World Manipulation Skills

Tracking foot target points in a large workspace via whole-

body motions allows for solving various manipulation tasks

(Fig. 4). This section presents multiple manipulation skills

we achieved on the real system using our designed pedipula-

tion controller and teleoperation interface. The operator had

a direct line of sight to the robot in all experiments.

1) Door Opening: Door opening requires a controller

that is robust to interaction forces with the environment.

Additionally, reaching the door handle with the robot’s foot

requires a large workspace. Lastly, passing the door when it

is open requires a combined loco-pedipulation behavior.

The robot was able to open a push door with a resistive

spring-damper element at the hinge (Fig. 4A). We used the

joystick interface to push down the handle and then set a

target point behind the door using the GUI to move the robot

through the door using the tripod gait while simultaneously

pushing the door open with the pedipulating foot.

Similarly, we used our controller to open a fridge door

(Fig. 4B). The friction on the foot was sufficient to open

the pull door on the fridge. The interaction force at the door

did not destabilize the controller.

2) Transporting a Backpack: In this experiment, we col-

lected a 2.0 kg backpack by sliding the foot into one of

the shoulder straps and raising the foot using the joystick

interface (Fig. 4C). We then commanded a single target

point above a box using the GUI interface and lowered the

foot to release the backpack into the box with the joystick.

This experiment demonstrates the ability of our controller to

transport loads with the foot in the air thanks to the combined

loco-pedipulation capability.

3) Pressing a Hard-to-Reach Button: The robot can ex-

ploit the large workspace of our pedipulation controller to

reach and press a button of 0.03m x 0.05m at a height of

1.25m (Fig. 4D). The operator can move the target point

into the wall such that the foot exerts a small force on the

button without destabilizing the controller.

4) Moving an Obstacle: A common problem in legged

locomotion is moving obstacles out of the way in confined

spaces (Fig. 4C). Our pedipulation controller allows the user

to move obstacles out of the robot’s way to continue walking

Fig. 5: For close-range targets, the policy does not require a stance
adaptation (A) and the tracking error quickly converges to a steady state
value (C). For far-range targets, a tripod gait emerges (B), and the tracking
error oscillates in the slow-down maneuver before converging (D).

through a confined space. Again, robustness to unmodelled

forces is required. In this experiment, we used a box with a

mass of 2.6 kg.

5) Rock Sample Collection: By adding a gripper to the

foot, the robot can conduct prehensile pedipulation tasks

like collecting rock samples (Fig. 4D). This task is espe-

cially relevant in scenarios like planetary exploration, which

require capable robots with minimal mass and mechanical

complexity. We successfully collected rock samples of a size

of 0.08m and a mass of roughly 300 g. The controller proved

robust to the additional mass of the gripper and the rock.

B. Reachable Workspace and Tracking Performance

We investigated the reachable workspace of our pedipula-

tion controller and benchmarked the tracking performance.

In these experiments, we distinguish between two behaviors:

Close-range tracking and far-range tracking. Close-range

tracking refers to target points the robot can reach without

adapting its stance or walking to reach it. Far-range tracking

refers to target points the policy reaches via locomotion or

stance adaptation. Fig. 5 shows the respective behaviors.

Notably, the transition between the two is seamless. If the

target point moves outside the reachable range, the robot

automatically starts stepping to follow the target point.

1) Close-Range Target Tracking: To evaluate the

workspace our controller covers without locomotion, we

deployed it in Isaac Gym and uniformly sampled commands

in the robot’s vicinity. After each episode, we discarded

targets if the robot broke contact with one of the desig-

nated stance legs or if the tracking error was higher than

0.05m. As shown in Fig. 6, the whole-body behavior of the

controller allows the robot to reach a large workspace, even

without adapting its stance. Note that this workspace does



not coincide with the theoretical limits reachable through

whole-body motions in stance. The robot stretches almost to

the kinematic limits but starts stepping early to reach a more

favorable configuration. These samples are discarded in this

evaluation.

Additionally, we evaluated the tracking performance in the

close-range workspace by sampling points within a box of

0.3m x 0.4m x 0.2m both in simulation and on the real

robot. We compared the foot target position with the ground

truth position in the simulation and the estimated position

from the state estimator on the real robot. In simulation,

the controller reached an average error of 0.037m, while

on the real robot, the average error was 0.057m. We use a

fixed-base inverse kinematics controller as a baseline, which

reached an average error of 0.041m in simulation on the

reachable range.

2) Far-Range Target Tracking: To evaluate the tracking

performance of the controller on target points the policy

reaches by stepping or walking, we evaluated the tracking

error on the full training range (2.2m x 2.7m x 1.3m) in

Isaac Gym. We uniformly sampled commands on this range

and logged the tracking error at the end of each episode. Our

controller reaches an average tracking error of 0.043m.

C. Robustness against Disturbances

To evaluate the controller’s ability to generalize to different

environmental conditions, we deployed it on ANYmal D

standing on a wet whiteboard with extremely low friction.

Although the stance legs slip during operation, the robot

does not fall. Even when applying disturbance forces at the

foot, which causes the stance legs to slip, the robot remains

standing (Fig. 7A).

Additionally, we disturbed the robot’s base while the con-

troller was tracking a constant target point while standing

on a flat floor. Thanks to the whole-body behavior of the

controller, it can compensate for disturbances on the base.

We applied disturbances of up to 132N. We estimated the

force on the base by summing the contact forces on the

stance legs we obtained from the state estimator via the

joint torque measurements. The disturbance force resulted in

a base displacement of up to 0.1m along the heading axis.

Despite this disturbance, the tracking error only increased by

0.06m (Fig. 7C). Interestingly, the controller can compensate

for disturbances in the negative heading direction better than

for those in the positive heading direction.

If we disturb the base further, interesting behaviors emerge: If

required, the stance feet adapt, and the robot steps to remain

stable. The accompanying video shows this behavior.

V. CONCLUSION AND FUTURE WORK

In this work, we developed a deep reinforcement learning

policy to track end-effector target points with a quadrupedal

robot’s foot. We showed that such a controller enables

solving numerous real-world tasks via pedipulation: Using

our controller, we could teleoperate the robot to successfully

open doors, transport objects, press buttons, push obsta-

cles, and collect rock samples. These skills are enabled by

Fig. 6: Thanks to the whole-body behavior, the robot reaches a large
workspace even without the need to adapt its stance. The blue dots represent
sampled commands the controller tracks without changing the stance
configuration and with a tracking error below 0.05m, shown in top view
(A) and side view (B). For reference, the orange dots are reachable samples
for a fixed-base inverse kinematics controller with the same sampling space.

Fig. 7: (A): The controller can react to disturbances, even on slippery
surfaces like whiteboards. (B): When the robot’s base is disturbed, the
controller compensates for the base motion. (C): Evolution of the tracking
error over time when the base is disturbed.

the controller’s large workspace, achieved through inherent

whole-body behaviors, its loco-pedipulation capability, and

its robustness to disturbances.

While the controller is helpful in teleoperation scenarios,

future work should move towards autonomous pedipulation.

For such autonomy, a hierarchical approach, successfully

used for other tasks [17], could be a valid strategy. A

hierarchical controller could contain our pedipulation policy

as a low-level policy and combine it with task-specific

perceptive high-level policies that output the foot targets.

Additionally, we did not explicitly model interaction forces.

Tracking interaction forces could extend the range of admis-

sible manipulation tasks, such as haptic interaction or heavy

payload transportation.

Our work shows that numerous manipulation tasks can be

solved by only doing pedipulation with quadrupedal robots.

This insight will be relevant for future works on the design

and control of legged mobile manipulators.
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