
ETH Library

Generalizable User-Specific
Mobility Representation Learning
Using Autoencoders

Student Paper

Author(s):
Wicki, Juliette

Publication date:
2024-01-12

Permanent link:
https://doi.org/10.3929/ethz-b-000660086

Rights / license:
In Copyright - Non-Commercial Use Permitted

This page was generated automatically upon download from the ETH Zurich Research Collection.
For more information, please consult the Terms of use.

https://doi.org/10.3929/ethz-b-000660086
http://rightsstatements.org/page/InC-NC/1.0/
https://www.research-collection.ethz.ch
https://www.research-collection.ethz.ch/terms-of-use

MIE lab
Mobility Information Engineering
Lab at ETH Zurich

Generalizable User-Specific Mobility
Representation Learning Using Autoencoders

Master Project

Autumn Term 2023

Geomatics Master

Author: Juliette Wicki
wickij@ethz.ch

Supervisor: Prof. Dr. Martin Raubal
Dr. Yanan Xin
Dr. David Jonietz

Submission Date: 12.01.2024

Acknowledgement

I would like to extend my gratitude to my supervisors, Dr. Yanan Xin and Dr.
David Jonietz, for their valuable guidance, support, and dedication throughout
this project, including their efforts in organizing and conducting a workshop.
I am appreciative of the enduring support from my family and friends. Especially,
I want to thank my colleagues Oliver Heisel, Michelle Halbheer, Arno Rüegg, and
Fabian Meier for their invaluable machine learning insights and encouragement
during this project.

Abstract

Addressing the demand for sustainable travel solutions, Axon Vibe leverages a
smartphone-based platform to predict commuters’ travel patterns and encourage
eco-friendly alternatives. Understanding the pivotal factors shaping individual
travel trajectories stands as a key pursuit for the company.
This project focuses on extracting these critical factors and reconstructing travel
patterns by employing an Autoencoder (AE) architecture, integrating long short-
term memory (LSTM) layers. To enhance mode detection within the latent space,
the architecture incorporates a classification framework. The evaluation using t-
distributed stochastic neighbor embedding (t-SNE) confirms that the integration
of classification improves the intuitive clustering of transport modes within the
latent space.

Contents

List of Figures iii
List of Tables v
Acronyms vii
1 Introduction 1
2 Theory and Related Work 3

2.1 Autoencoder . 3
2.2 Classification . 4
2.3 t-SNE . 5

3 Methodology 7
3.1 Autoencoder . 7
3.2 Classification . 9
3.3 t-SNE . 11

4 Data 13
4.1 Data Structure . 13
4.2 Preprocessing . 15

5 Results 19
5.1 Autoencoder . 19
5.2 Classification . 20
5.3 t-SNE . 20

6 Discussion 25
6.1 Autoencoder . 25
6.2 Classification . 25
6.3 t-SNE . 26

7 Conclusion and Outlook 27
Bibliography 29
A Appendix 33

A.1 Hyperparameters . 33
A.2 Additional Results . 34

Declaration of Originality 37

i

List of Figures

1.1 CO2 emissions by sector (2018), (United Nations, 2021). 1

2.1 General architecture of an AE. 4

3.1 Model Architecture of the AE without classification. 8
3.2 Model Architecture of the AE with classification. 10

4.1 Illustration of sequencing and binning. 16
4.2 Illustration of data preprocessing; the main steps and outputs are

highlighted. 18

5.1 Training and validation loss of the AE model without classification. 19
5.2 One original sequence of the test set and its reconstruction with the

respective features as subplots. 21
5.3 Training and validation loss of the AE model with classification. . . 22
5.4 Confusion matrix of the test set. 22
5.5 Visualization of the latent space for the AE without classification

using t-SNE. 23
5.6 Visualization of the latent space for the AE with classification using

t-SNE. 23

A.1 Confusion matrix of the training set. 34
A.2 One original sequence of the training set and its reconstruction with

the respective features as subplots. 35

iii

List of Tables

3.1 General model summary of the implemented AE architecture. . . . 7
3.2 Overview of the layer structure used for the encoder. 8
3.3 Overview of the layer structure used for the decoder. 9
3.4 Model summary of the implemented AE architecture integrating the

classification. The dimension of the classifier is depending on the
data in use (see section 4.2). 9

3.5 Overview of the layer structure used for the classifier. 10

4.1 Summary of the data sets, their features of interest and usage within
the project. 13

4.2 Example of one-hot encoding for the detected modes in the motion
file; here the detected mode is walking. 16

A.1 Overview of hyperparameters and configurations. 33

v

Acronyms

AE Autoencoder.

LSTM long short-term memory.

MSE mean squared error.

NaN Not a Number.

RNN recurrent neural network.

SDG Sustainable Development Goal.

t-SNE t-distributed stochastic neighbor embedding.

UN United Nations.

WGS84 World Geodetic System 1984.

vii

1. Introduction

Climate change has become an undeniable force reshaping our world, emphasiz-
ing the urgency of global action. As nations grapple with its repercussions, the
United Nations (UN) set forth ambitious Sustainable Development Goals (SDGs)
to combat this crisis (United Nations, 2023b). Among these objectives, one pivotal
goal revolves around sustainable settlements, including transportation (United Na-
tions, 2023a). This goal emphasizes the need for sustainable solutions within cities,
encompassing transportation systems that are environmentally friendly, efficient,
and accessible, recognizing the profound impact of transport on urban landscapes
and the environment. Transport stands as a significant contributor to greenhouse
gas emissions, with a staggering fifth of global CO2 emissions attributed to this
sector alone (see Figure 1.1) (United Nations, 2021). Alarming as it is, an even
more concerning statistic emerges: three-quarters of these emissions stem from
road transport (Ritchie, 2020).

Figure 1.1.: CO2 emissions by sector (2018), (United Nations, 2021).

In light of these critical challenges, companies worldwide are acknowledging their
role in fostering sustainable change. Setting their sights on mitigating this en-
vironmental impact, many organizations are taking proactive steps. One such
forward-thinking company, Axon Vibe, has made a conscientious commitment: to

1

Introduction

revolutionize traffic and make it more sustainable. This dedication aligns with
the broader objectives outlined by the UN’s sustainability goals, demonstrating a
collective effort towards a greener, more sustainable future.
Axon Vibe specializes in providing innovative mobility solutions. Their focus is on
leveraging technology to optimize and enhance the efficiency of public transport
systems. Axon Vibe’s core expertise is the development of intelligent software that
utilizes data-driven insights to improve the overall commuter experience. Their
smartphone-based platform aims to offer personalized, real-time travel informa-
tion, helping users navigate public transport networks seamlessly while promoting
sustainable and efficient mobility options within cities. Through their innovative
approach, Axon Vibe seeks to transform how people interact with and utilize pub-
lic transport systems, ultimately contributing to more sustainable and accessible
urban mobility. Their specific strategy includes not only traffic agencies and com-
muters but also third-party providers. (Axon Vibe, 2023)
Hence, it is of great interest to the company to learn the key factors driving in-
dividual mobility. This project aims to comprehend crucial features from travel
information and reduce storage size utilizing the latent space representation of an
Autoencoder (AE). In addition, the integration of a classification layer to differen-
tiate between various modes of transport within the latent space is investigated.
To unveil hidden insights within the data, the latent space representation with
and without classification are examined using t-distributed stochastic neighbor
embedding (t-SNE).
The following section (section 2) gives an insight in relevant fields of research and
techniques, whereas section 3 focuses on the implementation of the used meth-
ods. The data provided by Axon Vibe is presented in section 4. The obtained
results are listed and discussed in section 5 and 6 respectively. The last section
(section 7) focuses on concluding the paper and presenting an outlook for future
investigations.

2

2. Theory and Related Work

Previous studies have demonstrated that individual mobility traces are highly
unique and can be identified using only limited spatiotemporal points (Rákos,
Aradi, et al., 2020). Despite the increasing volume of mobility data, studies em-
phasize the potential to condense salient features into compact representations.
Such a compressed, lower-dimensional representation not only reduces memory
storage needs but also safeguards individual privacy. Furthermore, compressed
lower-dimensional representations can be used for various downstream tasks such
as maneuver classification (Rákos, Bécsi, et al., 2021), anomaly detection (Wu and
Liang, 2022) or synthetic trajectory data generation (Chen et al., 2021).
This paper aims to use representation learning with an Autoencoder to compre-
hend key factors driving individual mobility. The compressed representation is
examined to efficiently detect the mode of transport. Furthermore, the integration
of classification is analyzed to verify whether better mode detection is possible.

2.1. Autoencoder

Autoencoders (AEs) stand out as an effective technique for representation learn-
ing. Their primary goal is twofold: reconstructing input data while concurrently
learning a condensed representation. The unsupervised neural network model
comprises two fundamental components: the encoder and the decoder (Shah and
Ganatra, 2022). The encoder is responsible for compressing the input into a lower-
dimensional representation by extracting its essential features. Meanwhile, the de-
coder reconstructs the input using this condensed, encoded representation. This
lower-dimensional representation is commonly known as the latent space (Chen
et al., 2021).
The loss function serves as a measure of how well the AE model is able to recon-
struct its input data. It quantifies the difference between the input data and the
output generated by the AE (Sharma, 2023). By minimizing this loss function
during the training process, the AE adjusts its parameters to improve its ability
to reconstruct the input faithfully. Generally, the more effectively the AE is able
to reconstruct the input, the more meaningful the features in the latent space tend
to be. Therefore, the latent space representation can be used more effectively to
represent the input.

3

Theory and Related Work

The choice of the loss function is depending on the input type. Commonly used
loss functions for AE include mean squared error (MSE) to measure the average
squared difference between the input and the output or binary cross-entropy for
binary input and output values (Bandyopadhyay, 2021).

Encoder Decoder

latent
spaceinput reconstruction

Figure 2.1.: General architecture of an AE.

Figure 2.1 shows a typical architecture of an AE, featuring the encoder, the de-
coder and the latent space. There exist many extensions to this general network
structure for various input types and purposes, such as convolutional AE for im-
age data, denoising AE to remove noise or variational AE including a probabilistic
component (Sharma, 2023). For sequential data, AEs with LSTM-layers are widely
used (e.g. Graves (2013) and Chen et al. (2021)). The long short-term memory
(LSTM) concept, pioneered by Hochreiter and Schmidhuber (1996), can address
temporal characteristics, capturing long-term dependencies within time series data
by effectively combating vanishing or exploding gradients present in regular recur-
rent neural network (RNN) models.
The present project proposes an AE with LSTM-layers to learn the latent space
representation of individual travel data, described in section 4. Implementation
details are listed in section 3.1.

2.2. Classification

Classifying data in different categories is a fundamental task in data analysis and
machine learning. Classification algorithms generalize from known data patterns
to accurately classify new, unseen data. These classifications are categorical by
nature, representing discrete and usually unordered categories such as various types
of fruit, colors, or modes of transport. Classification enables automated decision-
making, enhances information retrieval, and aids in understanding complex data
structures by organizing them into meaningful categories. (Han et al., 2012)

4

Theory and Related Work

In the present project, classification is used to enrich the AE architecture (see
section 3.2). It is analyzed whether the integration of classification leads to more
distinct clustering in the latent space with respect to the different modes of trans-
port.

2.3. t-SNE

Since the introduction of t-distributed stochastic neighbor embedding (t-SNE) by
Maaten and Hinton (2008), the technique gained popularity in machine learning
and data visualization. It is based on dimensionality reduction, aiming to preserve
the significant, high-dimensional structure as good as possible (Maaten and Hin-
ton, 2008). It is particularly effective for visualizing high-dimensional data in a
lower-dimensional space (usually 2D or 3D) while preserving the local structure
and relationships, such as clusters, between data points.
To visualize whether integrating classification in the model architecture leads to
enhanced clustering in the latent space, t-SNE is applied in this project to the
derived latent spaces.

5

3. Methodology

The following sections describe the implementation of the techniques introduced
previously (see section 2). The code is written in Python using the packages
NumPy (Harris et al., 2020) for general operations, keras (Chollet et al., 2015)
and TensorFlow (Abadi et al., 2015) for the model architecture, scikit-learn
(Pedregosa et al., 2011) for t-SNE as well as matplotlib (Hunter, 2007) for visu-
alizations.

3.1. Autoencoder

As mentioned in section 2.1, an AE with LSTM-layers is implemented. The LSTM
can effectively learn temporal characteristics and is therefore suitable for the mo-
bility data at hand. Individual travel data is split into fixed length sequences (see
section 4 for insights in the data structure and preprocessing) to train and test
the model. The model architecture is mainly inspired by the following sources:
Oliveira (2020) and TensorFlow (2023).
As Figure 2.1 shows, the AE is built of two parts, the encoder and the decoder (see
Figure 3.1). They are implemented as distinct sequential models, facilitating the
potential extension to a variational AE. The total trainable parameters amount
to 62’722, with the encoder comprising 32’376 parameters and the decoder 30’346
parameters (see Table 3.1).

Model (type) Output shape Number of parameters

encoder (sequential) (None, 5, 5) 32’376
decoder (sequential) (None, 5, 10) 30’346

Table 3.1.: General model summary of the implemented AE architecture.

The encoder incorporates three LSTM-layers (see Table 3.2), each configured to
return sequences due to the requisite format for the LSTM-input of the subse-
quent layer. Meanwhile, the decoder employs two LSTM-layers alongside a time
distributed layer (see Table 3.3). The time distributed layer enables the consistent
application of a dense layer, with identical weights, across every time step in the
sequence (Brownlee, 2019).

7

Methodology

Encoder Decoder

latent
space

input
sequences

reconstructed
sequences

t-SNE

Autoencoder

Figure 3.1.: Model Architecture of the AE without classification.

Layer ID Layer type Output shape Number of parameters

1 LSTM-Layer (None, 5, 64) 19’200
2 LSTM-Layer (None, 5, 32) 12’416
3 LSTM-Layer (None, 5, 5) 760

Table 3.2.: Overview of the layer structure used for the encoder.

Regarding the different output shapes listed in Table 3.1, 3.2 and 3.3, the first
dimension indicates sequential processing of individual samples, respectively fixed
length sequences. The number of time steps per sequence is denoted by the second
dimension. The third dimension depends on the choice of hidden units or the
latent space and output dimension. The last is represented by the decoder output
and matches the input size to fulfill the reconstruction task. The determination of
the number of hidden units and the latent space dimension is based on empirical
selection.
Employing the Adam optimizer with a learning rate of 0.0001, the model undergoes
a maximum of 5’000 epochs during training, incorporating a validation split of 0.1.
Training is designed to cease if the loss diminishes or encounters a NaN (Not a
Number) value. The MSE serves as the chosen loss function for this model. To
expedite the training process and optimize efficiency, a batch size of 128 is set.
Table A.1 in the appendix A.1 provides an overview of all hyperparameters and

8

Methodology

Layer ID Layer type Output shape Number of parameters

1 LSTM-Layer (None, 5, 32) 4’864
2 LSTM-Layer (None, 5, 64) 24’832
3 Time Distributed

Dense Layer
(None, 5, 10) 650

Table 3.3.: Overview of the layer structure used for the decoder.

configurations used.
The outcomes produced by this model, specifically the plot of the loss function
across the epochs and the plot comparing an input sequence to its reconstruction,
are listed in section 5.1. They allow assessing the performance of the model.

3.2. Classification

A second model architecture is designed, building upon the same encoder and
decoder configuration employed in the initial AE. This augmented architecture
integrates a classifier following the AE (see Table 3.4 and Figure 3.2). Hence, the
total parameters for the encoder and decoder remain consistent with the previous
AE model. The classification segment introduces 7’818 parameters additionally,
resulting in a combined total of 70’540 trainable parameters.

Model (type) Output shape Number of parameters

encoder (sequential) (None, 5, 5) 32’376
decoder (sequential) (None, 5, 10) 30’346
classifier (sequential) (Number of sequences, 10) 7’818

Table 3.4.: Model summary of the implemented AE architecture integrating the
classification. The dimension of the classifier is depending on the data
in use (see section 4.2).

The classifier comprises two dense layers, separated by a dropout layer set at a
rate of 0.5 (see Table 3.5). The first dense layer contains 128 hidden units, while
the subsequent dense layer consists of 10 units to align with the input data. These
parameters are set based on empirical evaluation. The labels for this classification
task are derived from the modes of transport found in the vehicle truth file (see
section 4).
The hyperparameters for this model architecture mirror those used in the AE
without the classifier, maintaining uniformity in configurations. One disparity

9

Methodology

Encoder Decoder

latent
space

input
sequences

reconstructed
sequences

t-SNE

Autoencoder

Classifier

Classification

classified
sequences

Figure 3.2.: Model Architecture of the AE with classification.

Layer ID Layer type Output shape Number of parameters

1 Dense (Number of sequences, 128) 6’528
2 Dropout (Number of sequences, 128) 0
3 Dense (Number of sequences, 10) 1’290

Table 3.5.: Overview of the layer structure used for the classifier.

lies in the choice of the loss function; here, the categorical cross-entropy loss is
employed specifically for the classification task (see Table A.1 in the appendix
A.1). Furthermore, class weighting is applied to cope with the imbalanced data
as the number of sequence of certain modes highly outnumbers the sequences of
other modes (Igareta, 2021).

Besides plotting the loss function across the epochs, a confusion matrix is produced
to evaluate the performance of this model (Kulkarni et al., 2020). It allows to
understand the performance of the model by presenting a summary of the predicted
classes versus the occurrence of the respective classes. The generated figures are
listed in section 5.2.

10

Methodology

3.3. t-SNE

To illustrate the impact of integrating classification in the model architecture, t-
SNE is applied to the latent space derived by both models. Hence, the model
architecture depicted in Figure 3.1 is applicable to the AE without classification,
while Figure 3.2 represents the model architecture for the AE with classification.

11

4. Data

The company Axon Vibe collects user-specific mobility data using a smartphone-
based platform (Axon Vibe, 2023). The corresponding data structure and neces-
sary preprocessing for this project are described in this section. As the data is
confidential, it is not shared together with this report.

4.1. Data Structure

For the present project, only quality assured data, so-called field tests, provided
by Axon Vibe, are used. However, the structure described hereafter is valid for
the data without quality assurance as well.
For each field test, four different data sets exist. One of the data sets contains
general information about the tracked journeys, which is used to filter and extract
the data in the other files. The other data sets store recorded sensor data and
are used to train and test the model architecture. Table 4.1 and the following
subsections give a brief overview of the files and their data used within this project.

Data set Features Usage

Vehicle Truth Identification code, start and end
time of trip, true mode label

Extraction of sensor data,
true labels for classification

Pedometer Number of steps Training and testing the ar-
chitecture

Motion Detected mode label Training and testing the ar-
chitecture

Location Latitude, longitude, horizontal
accuracy

Training and testing the ar-
chitecture

Table 4.1.: Summary of the data sets, their features of interest and usage within
the project.

13

Data

4.1.1. Vehicle Truth

This file has one record per tracked journey, revealing the general information of
one trip, called leg by Axon Vibe. Namely information about the user, the start
and end time, start and end location, the operating system of the smartphone
in use, as well as the true vehicle type are stored. The last one is a categorical
variable with ten possible values: ferry, subway, rail, car, tram, cycle, walking,
funicular, bus or other. The user information, or more precisely the information
of the device, as one user can have multiple devices, is encoded in an identification
code. Together with the start and end time of the journey, this code is used
during preprocessing to filter the sensor data (see section 4.2). The true vehicle
type serves as the label utilized for classification (see section 3.2). In general, the
operating system is not used for this project but reveals interesting insight into
the data collection of the various devices.

4.1.2. Pedometer

The data recorded with the pedometer sensor is stored in this file. The pedometer
counts the number of steps within a certain interval. Besides the number of steps
and the interval, the identification code and the operating system of the device are
tracked. However, the sampling rate, and therefore the interval, is irregular and
strongly depending on the operating system. Apple devices record the counted
steps every minute if the sensor is active. Android devices, on the other hand,
sample with a higher frequency, approximately every 5 seconds, if the sensor is
active. If no steps are tracked, both type of devices have a lower sampling rate,
sampling approximately every 3 minutes.

4.1.3. Motion

The motion file contains information provided by the device about the detected
mode as Boolean values. The devices can state whether one is stationary, walking,
running, cycling, automotive or whether the method of locomotion is unknown.
Furthermore, it stores the confidence level in percentage, the timestamp, the iden-
tification code and the operating system of the device.

14

Data

4.1.4. Location

The location tracked by the device is stored in another separate file. It provides
information about various aspects such as latitude and longitude, horizontal and
vertical accuracy, speed, bearing and altitude. For this project, only the latitude
and longitude in WGS84 and the horizontal accuracy in meters are of interest.
The identification code, the operating system of the device and the timestamp are
recorded as well.

4.2. Preprocessing

Preprocessing is a pivotal step aimed at transforming the raw data into the format
which aligns with the requirements of the model architecture. Besides extracting
and merging information from the four different data sets, the data must be split
into sequences of fixed length and normalized for stability. Hereafter, the prepro-
cessing is described for one field test composed of four files as described in section
4.1. If the preprocessing, and hence the training and testing of the architecture,
should be done with several field tests, the procedure must be repeated for each
individual field test. It is not recommended to combine field tests across different
geographical regions due to the distinct regional characteristics that may introduce
complexities impeding the model’s learning process.
Figure 4.2 summarizes the preprocessing, implemented in a Python script using the
packages NumPy (Harris et al., 2020), pandas (McKinney, 2010) and scikit-learn
(Pedregosa et al., 2011), graphically.

4.2.1. Loading Data

The data preprocessing starts with loading the respective four files of a single
field test. While loading, the fields containing timestamps are converted to a date
format to simplify the filtering later on. The detected modes in the motion file
are switched from Boolean values to 0 and 1 so that one-hot encoding applies.
In general, one-hot encoding is used to represent categorical values numerically.
It generates for each possible category a new binary feature which is set to 1 if
the present data point belongs to this category (see Table 4.2 for an example)
(Manai et al., 2023). Additionally, one-hot encoding is implemented on the true
vehicle types from the vehicle truth file to create one-hot encoded labels. It must
be considered that maybe not all possible vehicle types are represented in the
selected field test which is why the one-hot encoding is based on a master list
containing all possible types.

15

Data

stationary walking running cycling automotive unknown

0 1 0 0 0 0

Table 4.2.: Example of one-hot encoding for the detected modes in the motion file;
here the detected mode is walking.

4.2.2. Sequencing and Binning

As mentioned in section 4.1, the vehicle truth file has one entry per recorded leg.
The legs vary in duration, which is why they are split into fixed length sequences of
five minutes. The constructed sequences overlap as the start of the next sequence
is shifted by one minute to generate more data. Within the sequences, bins of one
minute are created to simulate a regular sampling rate. If one leg is shorter than
five minutes, it is prolonged using default values to still fulfill the requirement of
fixed length sequences. Figure 4.1 visualizes the sequencing and binning of the
legs. The duration of the sequences and bins are chosen empirically and may need
to be adapted for other use cases.

Leg longer than 5 minutes

Leg shorter than 5 minutes

minutes

...
leg

sequence

bin

0 5 10 15 20

minutes
0 5 10 15 20

Figure 4.1.: Illustration of sequencing and binning.

4.2.3. Data Extraction

For each sequence, respectively bin, the data is extracted from the other three files.
Since the sensors continuously record data, irrespective of an ongoing leg, filtering
this sensor data becomes necessary. To filter the data, the identification code and
the start and end time of the sequence are used. Depending on the sensor data,
different additional steps are required, outlined below.

16

Data

For the pedometer data, the number of steps are extracted and summed within
one bin. If no data is available for one bin, the default value 0 is assigned. The
beginning and end of a leg are treated specially to include important walking
activities closely preceding and following a trip. As such, a five-minute window
before and after the leg is averaged and incorporated into the initial and final bins
of the first and last sequences, respectively.
Regarding the motion data, the one-hot encoded mode with the highest confidence
level is chosen for each bin. In cases where a bin lacks data, a default vector
comprising zeros is employed.
To aggregate the location information per bin, the median is taken. If data is
unavailable, a default vector consisting of zeros is utilized.
The extracted data from the three sensor files, also called features, are merged
if they not only contain default values. This results in a 3-dimensional matrix
with dimensions delineating the number of sequences, bins, and features. The
count of sequences varies depending on the number and duration of legs in a
field test. Conversely, the count of bins remains constant at 5, attributed to
the segmentation of 5-minute sequences into 1-minute bins. Correspondingly, the
number of features stands at a constant value of 10, arising from distinct sensor
data aspects. Among these, one feature corresponds to the pedometer output
denoting steps, while six features stem from motion data, encapsulated via one-
hot encoding representing detected modes. The remaining three features pertain
to location data encompassing latitude, longitude, and horizontal accuracy.

4.2.4. Label Generation

The previously one-hot encoded vehicle type of the leg is repeated to get a label
for each sequence, resulting in a 2-dimensional matrix. The dimensions are based
on the number of sequences and labels. The first dimension should align the first
dimension of the extracted data. The number of labels is constantly 10, mirroring
the ten possible labels.

4.2.5. Normalization and Splitting

The outlined process needs to be repeated for all field tests of interest.
In a next step, all features which are not one-hot encoded, namely the ones derived
by the pedometer and location files, are normalized using a min-max scaler. To
evaluate and validate the model’s performance, the preprocessed data and labels
are split into a training and test set. These sets are then stored separately, enabling
their reuse without the necessity of rerunning the entire process.

17

Data

load data

select one field test

Field Tests of Interest

convert timestamps
to date format

convert timestamps
to date format

convert timestamps
to date format

convert timestamps
to date format

select one leg

one-hot encoding
of vehicle type

one-hot encoding
of detected mode

Vehicle Truth Pedometer Motion Location

create sequences of
fixed length

extract data in
sequence using bins

extract data in
sequence using bins

extract data in
sequence using bins

sum number of steps
per bin

average 5-minute
window before and

after leg

take the mode with
the highest confidence

per bin
take the median

per bin

default value: 0

default value: vector of
zeros

default value: vector of
zeros

add to

merge features

extracted pedometer
features

extracted motion
 features

extracted location
features

discard features

repeat for next leg

repeat for next field test

extracted data

add to

repeated labels

generate labels per
sequence

normalize features,
excluding one-hot

encoded ones

split in training and test
set

normalised data

training set test set

yes no

check if only default
values

all labels

Figure 4.2.: Illustration of data preprocessing; the main steps and outputs are
highlighted. 18

5. Results

Both models described in section 3 are trained utilizing the dedicated training
set, and their performance is subsequently evaluated using the separate test set
comprising unseen data. The forthcoming sections unveil the outcomes achieved by
these models, shedding light on their respective performances and insights derived
from the evaluation process. The obtained results are subject to slight variations
across different runs of the model due to the stochastic nature of the training
procedure.

5.1. Autoencoder

The model evaluation revolves around two key aspects: the loss function analysis
and visual comparison between original samples and their reconstructed counter-
parts.
The loss function is decaying both for the training and the validation set, as can
be seen in Figure 5.1.

Figure 5.1.: Training and validation loss of the AE model without classification.

19

Results

To plot the original sequence and the reconstruction, each of the ten features is
represented in a separate subplot. Given the normalization of data, all values fall
within the range of 0 to 1. Figure 5.2 shows an original sequence from the test set
juxtaposed with its reconstruction. This comparison allows for a direct observation
of the model’s ability to recreate the original sequence, serving as a visual gauge
for its performance.
The reconstruction of a sequence from the training set is included in the appendix
(see Figure A.2 in the appendix A.2).

5.2. Classification

Similar to the model without classification, the assessment of model performance
relies on the loss function as a primary measure. The loss, including the training
and validation loss, is generally decreasing (see Figure 5.3).
Additionally, a confusion matrix is employed to compare predicted and actual
classes. Within this matrix, numbers accompanied by colors represent the oc-
currence of various combinations, offering a visual and quantitative insight into
the model’s predictive accuracy. Row-standardization of this matrix provides a
clear depiction of the classification’s efficacy, showcasing how well the model dis-
cerns and predicts different classes. In Figure 5.4, the confusion matrix illustrates
the distribution of predictions against actual classes within the test set. For the
confusion matrix pertaining to the training set, kindly refer to Figure A.1 in the
appendix A.2.

5.3. t-SNE

As mentioned in section 3.3, t-SNE is used to visualize the latent space derived
by the models. Figure 5.5 displays the latent space visualization for the model
without classification, while Figure 5.6 shows the latent space representation for
the model incorporating classification.

20

Results

Figure 5.2.: One original sequence of the test set and its reconstruction with the
respective features as subplots.

21

Results

Figure 5.3.: Training and validation loss of the AE model with classification.

Figure 5.4.: Confusion matrix of the test set.

22

Results

Figure 5.5.: Visualization of the latent space for the AE without classification using
t-SNE.

Figure 5.6.: Visualization of the latent space for the AE with classification using
t-SNE.

23

6. Discussion
This chapter focuses on the interpretations, implications, and significance of the
findings listed in section 5.

6.1. Autoencoder

As both the training and validation losses decrease and converge to a stable value
(see Figure 5.1), it generally suggests that the model is learning the underlying
patterns in the data without overfitting. This scenario is ideal as it indicates that
the model has learned to generalize from the training data to new, unseen data in
the validation set.
Additionally, the early stopping criteria, determined by the loss function, is satis-
fied as the model converges in fewer than 5’000 epochs. This convergence further
supports the model’s ability to learn efficiently within a reasonable training period.
The model’s capacity to generalize is further evidenced in its reconstruction ca-
pabilities. It is able to reconstruct sequences within the test set (see Figure 5.2),
showing its adaptability across different features – even accommodating uncon-
ventional data like the latitude information of this specific sequence. Notably, the
model showcases proficiency in learning the combination of normalized and the
one-hot encoded features.
Therefore, the AE model with LSTM-layers adeptly learns a latent space represen-
tation that accurately captures the essence of the original mobility data, suitable
for subsequent reconstruction purposes.

6.2. Classification

The loss function in the model, when compared to the AE without classification,
demonstrates similarity. Both training and validation losses display a consistent
reduction (see Figure 5.3), indicating a strong model performance in learning and
generalizing from the data. Additionally, the model’s behavior exhibits slightly
more fluctuations than a sole focus on reconstruction, representing its ability to
escape a local minimum.
During training fewer epochs are required, which shows that classification is sig-
nificantly easier than reconstruction.

25

Discussion

Further evaluation through the confusion matrix reaffirms the effectiveness of the
classification aspect (see Figure 5.4). Although some misclassifications persist, the
model’s accuracy exceeds 60 percent for half of the classes. However, the model
faces challenges in learning classes with fewer samples, such as tram and bus in
this specific field test. Trams are often misclassified as buses, whereas buses tend
to be misclassified as rail or car. Meanwhile, mispredictions between car and rail
occur at a relatively similar frequency. Despite these nuances, a majority of the
predictions tend to align along the diagonal, indicating accurate classifications.

6.3. t-SNE

t-SNE is applied to the latent space representation of both models to visualize
whether classification yields clearer clustering in the latent space regarding the
modes of transport.
The initial hypothesis posits that integrating classification into the architecture
would not enhance clustering within the latent space. However, upon examining
Figures 5.5 and 5.6, this hypothesis is disproven. Figure 5.5, showcasing the AE
without classification, lacks evident clustering within the latent space. In contrast,
Figure 5.6, while not displaying distinct cluster boundaries, exhibits relatively
clearer and more intuitive clustering. Points of the same color, denoting the same
mode of transport, tend to cluster more prominently. This observation leads to
the falsification of the initial hypothesis, indicating that integrating classification
indeed yields a more clustered latent space representation compared to using only
the AE.

26

7. Conclusion and Outlook

This project delves into the potential of AEs when applied to mobility data, ex-
ploring their efficacy in representation learning. Especially, the inclusion of clas-
sification within the AE architecture to cluster the latent space unveils distinct
benefits. The study establishes a foundational understanding, demonstrating the
feasibility of employing AEs for both reconstruction and effective representation
learning. The incorporation of classification, enhancing clustering within the latent
space, underscores the potential of this model architecture.
While the focus of this study primarily centers on a specific field test, it sets the
stage for broader investigations in this domain. An analysis aimed at determin-
ing the suitability of different devices for collecting the data presents a promising
avenue for exploration. Moreover, future endeavors could expand the model’s
application to different regions featuring diverse spatial characteristics. Enhance-
ments to the architecture, particularly to enable real-time data processing, stand
as a crucial prospect for future research projects.
As a next step, adapting the existing architecture or combining proposed models
offers an intriguing trajectory. One avenue involves leveraging a weighted loss
framework, integrating MSE for reconstruction and categorical cross-entropy for
classification, thereby fine-tuning the model’s performance. An adaptation towards
a supervised AE model (see Le et al. (2018)) by implementing classification directly
from the latent space while regulating both losses presents an exciting refinement.
Furthermore, extending the model to a variational AE by introducing a sampling
layer after the encoder could significantly augment its capabilities. The visual
inspection of the latent space using t-SNE could be complemented with a clustering
approach.
These adaptations of the model architecture, whether implemented in their current
state or refined further, hold significant promise for efficient mode detection of
new samples. This prospect is particularly appealing for Axon Vibe, showcasing
high potential for the company’s interests in efficient mobility data representation
and mode detection. This work lays a strong foundation for future research and
practical applications in the realm of mobility data analysis.

27

Bibliography

Abadi, M. et al. (2015). TensorFlow: Large-Scale Machine Learning on Heteroge-
neous Systems. url: https://www.tensorflow.org/.

Axon Vibe (2023). Axon Vibe - Proposition. url: https://axonvibe.com/what-
we-do.

Bandyopadhyay, H. (06/2021). Autoencoders in Deep Learning: Tutorial & Use
Cases [2023].

Brownlee, J. (08/2019). How to Use the TimeDistributed Layer in Keras. url:
https://machinelearningmastery.com/timedistributed-layer-for-long
-short-term-memory-networks-in-python/.

Chen, X. et al. (03/2021). “TrajVAE: A Variational AutoEncoder model for tra-
jectory generation”. In: Neurocomputing 428, pp. 332–339. doi: 10.1016/j.
neucom.2020.03.120.

Chollet, F. et al. (2015). Keras. https://keras.io.
Graves, A. (08/2013). “Generating Sequences With Recurrent Neural Networks”.

In.
Han, J., Kamber, M., and Pei, J. (2012). “8 - Classification: Basic Concepts”. In:

Data Mining (Third Edition). Ed. by J. Han, M. Kamber, and J. Pei. Third
Edition. The Morgan Kaufmann Series in Data Management Systems. Morgan
Kaufmann, pp. 327–391. doi: https://doi.org/10.1016/B978-0-12-381479-
1.00008-3. url: https://www.sciencedirect.com/science/article/pii/
B9780123814791000083.

Harris, C. R. et al. (09/2020). “Array programming with NumPy”. In: Nature
585(7825), pp. 357–362. doi: 10.1038/s41586-020-2649-2.

Hochreiter, S. and Schmidhuber, J. (1996). “LSTM can Solve Hard Long Time
Lag Problems”. In: Advances in Neural Information Processing Systems. Ed. by
M. C. Mozer, M. Jordan, and T. Petsche. Vol. 9. MIT Press. url: https:
//proceedings.neurips.cc/paper_files/paper/1996/file/a4d2f0d23dcc
84ce983ff9157f8b7f88-Paper.pdf.

Hunter, J. D. (2007). “Matplotlib: A 2D graphics environment”. In: Computing in
Science & Engineering 9(3), pp. 90–95. doi: 10.1109/MCSE.2007.55.

Igareta, A. (06/2021). Dealing with Imbalanced Data in TensorFlow: Class Weights.
url: https://towardsdatascience.com/dealing-with-imbalanced-data-
in-tensorflow-class-weights-60f876911f99.

29

https://www.tensorflow.org/
https://axonvibe.com/what-we-do
https://axonvibe.com/what-we-do
https://machinelearningmastery.com/timedistributed-layer-for-long-short-term-memory-networks-in-python/
https://machinelearningmastery.com/timedistributed-layer-for-long-short-term-memory-networks-in-python/
https://doi.org/10.1016/j.neucom.2020.03.120
https://doi.org/10.1016/j.neucom.2020.03.120
https://doi.org/https://doi.org/10.1016/B978-0-12-381479-1.00008-3
https://doi.org/https://doi.org/10.1016/B978-0-12-381479-1.00008-3
https://www.sciencedirect.com/science/article/pii/B9780123814791000083
https://www.sciencedirect.com/science/article/pii/B9780123814791000083
https://doi.org/10.1038/s41586-020-2649-2
https://proceedings.neurips.cc/paper_files/paper/1996/file/a4d2f0d23dcc84ce983ff9157f8b7f88-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/1996/file/a4d2f0d23dcc84ce983ff9157f8b7f88-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/1996/file/a4d2f0d23dcc84ce983ff9157f8b7f88-Paper.pdf
https://doi.org/10.1109/MCSE.2007.55
https://towardsdatascience.com/dealing-with-imbalanced-data-in-tensorflow-class-weights-60f876911f99
https://towardsdatascience.com/dealing-with-imbalanced-data-in-tensorflow-class-weights-60f876911f99

Bibliography

Kulkarni, A., Chong, D., and Batarseh, F. A. (2020). “Foundations of data imbal-
ance and solutions for a data democracy”. In: Data Democracy. Elsevier, pp. 83–
106. doi: 10.1016/B978-0-12-818366-3.00005-8.

Le, L., Patterson, A., and White, M. (2018). “Supervised autoencoders: Improving
generalization performance with unsupervised regularizers”. In: 32nd Conference
on Neural Information Processing Systems.

Maaten, L. van der and Hinton, G. E. (2008). “Visualizing Data using t-SNE”. In:
Journal of Machine Learning Research 9(86), pp. 2579–2605.

Manai, E., Mejri, M., and Fattahi, J. (07/2023). “Impact of Feature Encoding on
Malware Classification Explainability”. In.

McKinney, W. (2010). “Data Structures for Statistical Computing in Python”. In:
pp. 56–61. doi: 10.25080/Majora-92bf1922-00a.

Oliveira, D. (2020). Time-series forecasting with LSTM autoencoders. url: https:
//www.kaggle.com/code/dimitreoliveira/time-series-forecasting-
with-lstm-autoencoders.

Pedregosa, F. et al. (2011). “Scikit-learn: Machine Learning in Python”. In: Journal
of Machine Learning Research 12, pp. 2825–2830.

Rákos, O., Aradi, S., Bécsi, T., and Szalay, Z. (09/2020). “Compression of Vehi-
cle Trajectories with a Variational Autoencoder”. In: Applied Sciences 10(19),
p. 6739. doi: 10.3390/app10196739.

Rákos, O., Bécsi, T., and Aradi, S. (07/2021). “Adversarial Autoencoder for trajec-
tory generation and maneuver classification”. In: 2021 IEEE 25th International
Conference on Intelligent Engineering Systems (INES). IEEE, pp. 000013–000018.
doi: 10.1109/INES52918.2021.9512929.

Ritchie, H. (2020). “Cars, planes, trains: where do CO2 emissions from transport
come from?” In: Our World in Data.

Shah, N. and Ganatra, A. (12/2022). “Comparative Study of Autoencoders-Its
Types and Application”. In: 2022 6th International Conference on Electronics,
Communication and Aerospace Technology. IEEE, pp. 175–180. doi: 10.1109/
ICECA55336.2022.10009387.

Sharma, A. (07/2023). Introduction to Autoencoders. url: https://pyimagesea
rch.com/2023/07/10/introduction-to-autoencoders/.

TensorFlow (2023). Introduction to Autoencoders. url: https://www.tensorflo
w.org/tutorials/generative/autoencoder.

United Nations (2021). SUSTAINABLE TRANSPORT, SUSTAINABLE DEVEL-
OPMENT INTERAGENCY REPORT I SECOND GLOBAL SUSTAINABLE
TRANSPORT CONFERENCE. Tech. rep. Department of Economic and Social
Affairs.

United Nations (2023a). Make cities and human settlements inclusive, safe, re-
silient and sustainable. url: https://sdgs.un.org/goals/goal11.

30

https://doi.org/10.1016/B978-0-12-818366-3.00005-8
https://doi.org/10.25080/Majora-92bf1922-00a
https://www.kaggle.com/code/dimitreoliveira/time-series-forecasting-with-lstm-autoencoders
https://www.kaggle.com/code/dimitreoliveira/time-series-forecasting-with-lstm-autoencoders
https://www.kaggle.com/code/dimitreoliveira/time-series-forecasting-with-lstm-autoencoders
https://doi.org/10.3390/app10196739
https://doi.org/10.1109/INES52918.2021.9512929
https://doi.org/10.1109/ICECA55336.2022.10009387
https://doi.org/10.1109/ICECA55336.2022.10009387
https://pyimagesearch.com/2023/07/10/introduction-to-autoencoders/
https://pyimagesearch.com/2023/07/10/introduction-to-autoencoders/
https://www.tensorflow.org/tutorials/generative/autoencoder
https://www.tensorflow.org/tutorials/generative/autoencoder
https://sdgs.un.org/goals/goal11

Bibliography

United Nations (2023b). The 17 Goals. url: https://sdgs.un.org/goals#.
Wu, L. and Liang, J. (11/2022). “Anomaly detection based on temporal convolu-

tion Autoencoders”. In: Journal of Physics: Conference Series 2366(1), p. 012041.
doi: 10.1088/1742-6596/2366/1/012041.

31

https://sdgs.un.org/goals#
https://doi.org/10.1088/1742-6596/2366/1/012041

A. Appendix

A.1. Hyperparameters

Hyperparameter / configuration Definition

Optimizer Adam
Learning rate 0.0001
Loss function for AE without classifica-
tion

MSE

Loss function for AE with classification Categorical cross-entropy
Maximum number of epochs 5’000
Batch size 128
Hidden units of LSTM-layers in AE 64 and 32, in reversed order for the de-

coder
Latent space dimension 5
Hidden units of dense layers in classifier 128 and 10

Table A.1.: Overview of hyperparameters and configurations.

33

Appendix

A.2. Additional Results

Figure A.1.: Confusion matrix of the training set.

34

Appendix

Figure A.2.: One original sequence of the training set and its reconstruction with
the respective features as subplots.

35

Declaration of Originality

Declaration of originality

The signed declaration of originality is a component of every semester paper, Bachelor’s thesis,
Master’s thesis and any other degree paper undertaken during the course of studies, including the
respective electronic versions.

Lecturers may also require a declaration of originality for other written papers compiled for their
courses.

__

I hereby confirm that I am the sole author of the written work here enclosed and that I have compiled it
in my own words. Parts excepted are corrections of form and content by the supervisor.

Title of work (in block letters):

Authored by (in block letters):

For papers written by groups the names of all authors are required.

Name(s): First name(s):

With my signature I confirm that

− I have committed none of the forms of plagiarism described in the ‘Citation etiquette’ information
sheet.

− I have documented all methods, data and processes truthfully.

− I have not manipulated any data.

− I have mentioned all persons who were significant facilitators of the work.

I am aware that the work may be screened electronically for plagiarism.

Place, date Signature(s)

 For papers written by groups the names of all authors are

required. Their signatures collectively guarantee the entire
content of the written paper.

Generalizable User-Specific Mobility Representation Learning Using Autoencoders

Wicki Juliette

 Zurich, 12.01.24

37

