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A B S T R A C T

The widespread adoption of Machine Learning (ML) systems has ushered in an era
of unparalleled opportunities, transforming industries, healthcare, and society at large.
However, alongside these opportunities, ML faces formidable challenges that necessi-
tate comprehensive understanding and need to be adequately addressed. The inherent
complexity of ML systems renders them vulnerable to a wide spectrum of adversarial
attacks and uncertainties at different stages of an ML pipeline. These vulnerabilities
originate from the dynamic and unpredictable environments in which ML systems op-
erate, where subtle perturbations in input data can lead to catastrophic consequences.
Furthermore, the emergence of quantum computing and the eventual integration into
ML systems introduces additional vulnerabilities along a novel dimension. In conse-
quence, it is of paramount importance to develop methodologies that can guarantee
the resilience of ML systems. This thesis is dedicated to the development of probabilis-
tic robustness guarantees which address vulnerabilities arising at different stages of an
ML pipeline, encompassing both model development, including training and data cura-
tion, and model deployment. Moreover, these guarantees extend to both classical and
quantum computing frameworks, acknowledging the distinct challenges and opportu-
nities that quantum computing introduces into the ML landscape. The contributions of
this dissertation are threefold:

First, we focus on adversarial attacks that appear during the model development stage
and develop RAB, which is a provably robust training process against backdoor attacks,
a specific instance of a data poisoning attack. Our approach is an extension of the prob-
abilistic robustness guarantees derived from the Neyman-Pearson Lemma and is based
on smoothing a model over both training data and test instance. Next to this exten-
sion, we also propose several optimizations for specific model types that are needed for
our approach to be effective on common, large scale datasets. Next to the theoretical
development of the approach, we present extensive experimental results on both tabu-
lar data and computer vision datasets and show that our robust training pipeline not
only improves the empirical robustness, but also provides a probabilistic certificate that
guarantees that a backdoor attack has failed.

Second, we put our attention on the model deployment stage and consider input per-
turbations arising from semantic transformations, as well as shifts in the data distribu-
tion. Semantic transformations are typically governed by a low dimensional parameter
space (e. g., rotation angle) and incur large image corruptions in terms of ℓp norms. This
renders traditional probabilistic robustness guarantees, which provide bounds on the
perturbation magnitude, ineffective. To address this issue, we propose TSS, a robust-
ness certification framework for input corruptions arising from semantic perturbations.
TSS leverages the Neyman-Pearson approach of randomized smoothing and applies
smoothing over transformation parameters. In combination with novel techniques to
bound interpolation errors and several transformation-specific certification approaches,
TSS sets a new state-of-the-art for a large number of semantic transformations.
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Orthogonal to this line of work, we study the robustness of ML systems against shifts
in the data distribution and, in contrast to the previous results, take a population-based
view. Rather than guaranteeing the robustness at a specific instance, here we present
guarantees for the out-of-domain generalization by bounding the worst-case population
loss over any distribution within an ϵ-Ball around the training distribution. In contrast
to previous methods, our approach only requires blackbox access to the model function
and is thus scalable to large models such as EfficientNet-B7 and BERT. In diverse exper-
iments on both computer vision and natural language benchmarks, we show that our
bounds accurately capture the worst-case change in performance arising from shifts in
the data distribution.

Third, we develop robustness guarantees for quantum ML where we cover both the
adversarial case and input corruptions arising from natural noise and decoherence. To
that end, we first present a robustness guarantee for quantum classifiers where we
extend the Neyman-Pearson approach to the quantum domain. Interestingly, as a con-
sequence of the inherent probabilistic nature of readout from quantum circuits, this
guarantee holds as a general property of quantum classifiers and does not require to
actively inject noise for smoothing as is the case for classical ML models. Finally, at this
stage in the development of Noisy intermediate-scale Quantum (NISQ) algorithms, nat-
ural noise and decoherence is an obstacle of arguably even greater importance than the
adversarial scenario. As a last step, we consider approximations of an ideal quantum
state where the approximation error arises either from noise, or from algorithmic short-
comings such as limited expressibility of Ansätze. We then extend techniques based
on Quantum Hypothesis Testing (QHT) and on the non-negativity of Gram matrices in
order to derive bounds on the worst-case error of quantum expectation values. In nu-
merical simulations we study the Variational Quantum Eigensolver (VQE) and validate
our bounds on several problems related to quantum chemistry.
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Z U S A M M E N FA S S U N G

Die weitreichende Verbreitung von ML Systemen hat eine Ära beispielloser Möglich-
keiten eingeläutet, die das Potenzial haben verschiedenste Branchen, sowie die Gesell-
schaft insgesamt zu transformieren. Gleichzeitig steht ML jedoch erheblichen Herausfor-
derungen gegenüber, die ein umfassendes Verständnis und angemessene Massnahmen
erfordern. Die inhärente Komplexität von ML-Systemen macht sie anfällig für eine brei-
te Palette von Angriffen und Unsicherheiten in verschiedenen Phasen einer ML-Pipeline.
Diese Schwachstellen resultieren aus den dynamischen und unvorhersehbaren Umge-
bungen, in denen ML-Systeme operieren, in denen subtile Störungen in den Eingabeda-
ten zu schwerwiegenden Folgen führen können. Darüber hinaus führt die Entstehung
der Quantencomputing-Technologie und deren potenzielle Integration in ML-Systeme
zusätzliche Schwachstellen in einer neuen Dimension ein. Daher ist es von grosser
Bedeutung, Methoden zu entwickeln, die die Widerstandsfähigkeit von ML-Systemen
gewährleisten können. Diese Dissertation widmet sich der Entwicklung von probabi-
listischen Robustheitsgarantien, die Schwachstellen in verschiedenen Phasen einer ML-
Pipeline behandeln, einschliesslich Modellentwicklung, Training und Datenkuratierung
sowie Modellbereitstellung. Darüber hinaus erstrecken sich diese Garantien auf klassi-
sche und quantenbasierte Rechenmodelle und berücksichtigen die unterschiedlichen
Herausforderungen und Möglichkeiten, die Quantencomputing in die ML-Landschaft
einführt. Die Beiträge dieser Dissertation sind dreifach:

Erstens konzentriert sich die vorliegende Arbeit auf Schwachstellen, die während der
Modellentwicklung auftreten, und entwickeln RAB, einen Trainings-Algorithmus, der
Robustheitsgarantien gegen Backdoor Angriffe bietet. Solche Backdoor Angriffe sind
eine spezifische Form eines Data Poisoning Angriffs. Der präsentierte Ansatz erweitert
die probabilistischen Robustheitsgarantien, die aus dem Neyman-Pearson-Lemma ab-
geleitet sind, und basiert auf der Glättung eines Modells über Trainingsdaten und Tes-
tinstanzen. Neben dieser Erweiterung schlagen wir auch mehrere Optimierungen für
spezifische Modelltypen vor, die erforderlich sind, damit unser Ansatz auf gebräuchli-
chen, gross angelegten Datensätzen wirksam ist. Neben der theoretischen Entwicklung
des Ansatzes präsentieren wir umfangreiche experimentelle Ergebnisse sowohl für ta-
bellarische Daten als auch für Computer Vision-Datensätze und zeigen, dass unsere ro-
buste Trainings-Pipeline nicht nur die empirische Robustheit verbessert, sondern auch
eine probabilistische Garantie bietet, dass ein Backdoor Angriff gescheitert ist.

Zweitens konzentrieren wir uns auf die Phase der Modellbereitstellung und betrach-
ten Eingabestörungen, die aus semantischen Transformationen und Verschiebungen
in der Datenverteilung resultieren. Semantische Transformationen werden in der Re-
gel von einem niedrigdimensionalen Parameterbereich (z.B. Rotationswinkel) gesteuert
und führen zu grossen Veränderungen, gemessen in ℓp-Normen. Dies macht herkömm-
liche probabilistische Robustheitsgarantien, die die maximal tolerierbare Störungsma-
gnitude bestimmen, unwirksam. Um dieses Problem anzugehen, schlagen wir TSS
vor, ein Framework, welches Garantien bezüglich der Robustheit gegenüber semanti-
schen Transformationen liefert. TSS nutzt den Neyman-Pearson-Ansatz des Randomi-
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zed Smoothings und wendet Glättung über Transformationsparameter an. In Kombina-
tion mit neuartigen Techniken zur Begrenzung von Interpolationsfehlern und verschie-
denen transformationsbasierten Zertifizierungsansätzen, setzt TSS einen neuen state-of-
the-art für eine grosse Anzahl semantischer Transformationen.

Orthogonal zu diesem Thema untersuchen wir die Robustheit von ML-Systemen ge-
genüber Verschiebungen in der Wahrscheinlichkeitsverteilung von Daten, und nehmen,
im Gegensatz zu den vorherigen Ergebnissen, eine Populationsbasierte Sichtweise ein.
Statt die Robustheit für eine spezifische Instanz zu garantieren, präsentieren wir hier
Garantien für die Generalisierung ausserhalb der Verteilung der Trainingsdaten, in-
dem wir das maximale Risiko über jede Verteilung innerhalb eines ϵ-Bereichs um die
Trainingsverteilung begrenzen. Im Gegensatz zu früheren Methoden erfordert unser
Ansatz lediglich Blackbox-Zugriff auf die Modellfunktion und ist daher skalierbar auf
grosse Modelle wie EfficientNet-B7 und BERT. In vielfältigen Experimenten, sowohl
im Bereich Bilderkennung als auch in der Sprachverarbeitung, zeigen wir, dass unsere
Garantien die worst-case Veränderung der Leistung bei Verschiebungen in der Daten-
verteilung präzise erfassen.

Drittens entwickeln wir Robustheitsgarantien für das Quanten-Maschinenlernen, bei
denen wir sowohl das Angriffs-basierte Szenario, als auch Eingabestörungen durch
natürliches Rauschen und Dekohärenz, abdecken. Zu diesem Zweck präsentieren wir
zunächst eine Robustheitsgarantie für Quantenklassifikatoren, bei der wir den Neyman-
Pearson-Ansatz auf den Quantenbereich ausdehnen. Aufgrund der inhärenten proba-
bilistischen Natur des Auslesens von Quantenschaltkreisen, gilt diese Garantie als eine
allgemeine Eigenschaft von Quantenklassifikationsalgorithmen und erfordert keine ak-
tive Injektion von Rauschen zur Glättung, wie es bei klassischen ML-Modellen der Fall
ist. Auf dem gegenwärtigen Stand der Entwicklung von NISQ-Algorithmen, ist das na-
türliche Rauschen und die Dekohärenz ein Hindernis von sogar noch grösserer Bedeu-
tung als das Angriffs-basierte Szenario. Als letzten Schritt betrachten wir Approxima-
tionen eines idealen Quantenzustands, wobei der Approximationsfehler aus Rauschen
oder algorithmischen Mängeln wie der begrenzten Ausdrucksfähigkeit von Ansätzen
resultiert. Wir erweitern Techniken, die auf dem Quantenhypothesentesten und der
Nicht-Negativität von Gram-Matrizen basieren, um Grenzen für den worst-case Feh-
ler von quantenmechanischen Erwartungswerten abzuleiten. In numerischen Simula-
tionen untersuchen wir VQE, ein variationsbasierter Algorithmus zur Bestimmung von
Eigenwerten, und validieren unsere Robustheitsgarantien in Bezug auf verschiedene
Probleme im Bereich der Quantenchemie.
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1
I N T R O D U C T I O N

1.1 motivation & research scope

Over the last decade, the field of ML has revolutionized our ability to process and inter-
pret vast amounts of data, enabling applications ranging from image recognition and
autonomous driving to the recent success of natural language models and conversa-
tional AI assistants. However the wide-spread adoption of these technologies, especially
in security-critical scenarios, makes it paramount to understand how these systems op-
erate and to have a sound understanding of their limitations, risks and vulnerabilities.
In particular, ML systems are vulnerable to a vast array of threats originating from
the environments in which they operate, including malicious attacks by adversaries,
shifts in data distributions, and even naturally occurring noise, to name just a few. It is
thus crucial to develop methods that enable guarantees on the correctness, fairness and
safety of these ML systems as they are becoming ever more embedded in our everyday
lives.

However, ML systems are inherently complex and consist of a multitude of individual
stages, ranging from data collection and curation, to model design and development,
before being deployed and monitored in real-life applications. This introduces further
vulnerabilities and makes reasoning about guarantees on the robustness of these sys-
tems an exceedingly challenging task. Indeed, during development, ML systems are
susceptible to data poisoning attacks, where adversaries are able to interfere with the
data collection and model training process in order to bias the model towards certain
patterns and exploit such biases once the model has been deployed. During deploy-
ment, vulnerabilities present themselves in different forms and shapes such as manu-
ally crafted adversarial examples or even innocent semantic transformations and shifts
in the input distribution due to e. g., changing demographics, climate or of the broader
environment. Moreover, the emergence of quantum computing introduces a further di-
mension to these challenges. While Quantum Machine Learning (QML) leverages the
unique properties of quantum mechanics and promises to amplify the capabilities of
ML systems, it also introduces novel vulnerabilities presenting themselves in the form
of adversarial examples and, an obstacle of arguably even greater significance, natural
noise and decoherence inherent to quantum systems. These vulnerabilities can differ
profoundly from classical ML, making it imperative to address both frameworks com-
prehensively. The core question that this dissertation is attempting to answer is there-
fore:

How can we reason about robustness guarantees for different stages of an ML pipeline,
considering the unique nature of vulnerabilities inherent to those stages and accounting for the

presence of both classical and quantum computing frameworks?

In the remainder of this chapter, we break this question up into five research ques-
tions which we aim to answer in the main part of this dissertation. Keeping in mind
the natural flow of ML pipelines, we start by highlighting vulnerabilities present dur-
ing model development, and the kind of guarantees that we wish to obtain during this
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stage. Subsequently we put our attention on the model deployment stage, starting with
classical ML, before moving on to the quantum domain. Finally, we provide an overview
of the organization and the reading threads, and present the publications that have led
to the results outlined in this work.

1.1.1 Robustness Guarantees during Model Development

A core component in the initial cycles of any ML development pipeline concerns the
collection and curation of training data used to train ML models designed for a spe-
cific use case. Often, dataset creators harvest their dataset from public sources on the
web [172, 247], or by allowing outsiders the privilege to contribute data samples actively,
thereby opening the door for potential adversaries to interfere with the ML model devel-
opment process. Most notably, the feasibility of such attacks has been illustrated by the
manipulation of commercial spam filters [161] or the Tay chatbot [231], and dataset poi-
soning attacks have been shown to be a realistic threat to large language models and
web scale datasets [24, 232] among others. In response to these threats, the research
community has proposed several empirical methods to defend ML models against such
attacks [67, 76, 134, 234]. However, while these methods are empirically expected to im-
prove the robustness, they are not designed to provide a guarantee and can, in principle,
be bypassed by adaptive adversaries. In addition, while guarantees to defend against
test-time attacks have been relatively well studied, it is challenging to directly extend
these results to the data poisoning scenario, given that these threat models differ signif-
icantly. Indeed, only a relatively small number of methods have been proposed that are
able to provide robustness guarantees for various forms of data poisoning attacks [107,
131, 184]. Among the various forms of data poisoning attacks, in a backdoor attack, an
adversary poisons a dataset by adding a particular pattern to a subset of training in-
stances such that the resulting model is biased towards these patterns, thereby planting
a “backdoor” in the model. During deployment, the adversary can then exploit this
vulnerability by knowing the backdoor pattern and controlling model predictions to,
e. g., bypass malware filters or spam detection systems. It becomes apparent that, while
ML models are vulnerable against attacks on the development stage of an ML pipeline,
a sound and comprehensive understanding of corresponding robustness guarantees is
lacking. We thus formulate our first research question in an attempt to fill this gap.

Question 1: How can we develop certifiably robust ML models against backdoor attacks?

Randomised smoothing [39, 128] has been proposed as an approach to provide
probabilistic robustness guarantees against test-time adversarial attacks, scaling to Ima-
geNet [185] size neural networks. In this thesis, we explore the extension of randomised
smoothing to certify the robustness against backdoor attacks. Interestingly, other ap-
proaches have also used randomised smoothing to derive guarantees against label
flipping attacks [184], against ℓ0-norm feature- and label flipping attacks [276] and to
bound the maximum number of poisoned instances an ML model can support without
being successfully backdoored [131]. While the extension of randomised smoothing to
the data poisoning scenario is a first step, we also explore how these guarantees can
and, in fact, need to be optimized for specific model types such as neural networks or
K-nearest neighbour classifiers.
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1.1.2 Robustness Guarantees during Model Deployment

After an ML model has been fully developed and trained, it is being deployed in real-life
applications where users make decisions based on its predictions, or even fully allow
it to take control of actions, such as in autonomous driving scenarios. However, also
during this stage of the ML pipeline, models remain vulnerable to their environment,
be it in a malicious context, via the careful crafting of ℓp-norm bounded adversarial
examples [7, 29, 71, 212, 221, 254], semantic transformations [21, 59, 69, 70, 91, 98, 170,
256] or via naturally occurring shifts in the data distributions [3, 9, 44, 78, 113, 229]. It
is thus clear that ML models are subject to a plethora of vulnerabilities during deploy-
ment, which require careful analysis and understanding in order to safely and reliably
use those systems in real-life applications. In response to these risks, a multitude of
empirical defenses have been developed with the goal of improving the robustness
against adversarial examples [146, 189, 197] and semantic transformations [59, 91], or
by leveraging distributionally robust optimization techniques [10, 16, 52, 66, 121, 190] to
improve the robustness against distribution shifts. As is the case for empirical defenses
against vulnerabilities emerging during model development, while these test-time de-
fense methods can increase the ML model robustness, they fail to provide guarantees
and can either be evaded by adaptive adversaries, or by shifts in data distributions that
are unknown at training time. This state of affairs has sparked the development of cer-
tifiable defense methods which, in addition to improving the empirical robustness, also
provide a robustness guarantee. However, in the context of instance-level certification,
the majority of existing techniques is designed to certify the robustness against ℓp-norm
bounded perturbations [39, 74, 131, 177, 252], which poses a significant obstacle when
transformations are governed by a low dimensional parameter space which incurs a
large ℓp distance between clean and attacked test sample, as is the case for semantic
transformations like rotations, Gaussian blur, or scaling. While certified defenses in
this direction have been developed [65, 156, 202], they are either loose and computa-
tionally expensive [8, 156] or provide certification only against a relatively weaker set
of attacks [65]. This leaves a gap open which we wish to explore in this thesis. The first
question related to robustness during model deployment is therefore:

Question 2.1: How can we guarantee the robustness of ML models against input corruptions
arising from semantic transformations that incur large ℓp-norm perturbations?

To provide an answer to this question, in this thesis, we explore the extension of the
probabilistic guarantees provided by randomised smoothing to semantic transforma-
tions. Due to the large perturbation magnitude that such transformations incur, a direct
application of the ℓp-norm guarantees is inadequate and requires further adjustment ac-
counting for the unique properties of these transformations.

As highlighted previously, next to the instance-level perturbations, ML models are
also vulnerable to shifts occurring in the data distributions [113]. In this case, rather
than certifying a specific test instance, we are interested in bounds to population-level
metrics, such as accuracy or test loss, which enable the certification of the out-of-domain
generalization abilities of ML models. Existing methods that aim to provide such certifi-
cation typically do not scale to medium and large scale models [16, 42, 66, 198, 203, 205]
as they rely on properties of the models such as the Lipschitz constant and the model
smoothness which, in practice, are difficult to obtain accurately. This lack of guarantees
therefore motivates the next research question which we aim to answer in this thesis:
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Question 2.2 How can we certify the out-of-domain generalization abilities of ML models while
only allowing blackbox access to these models?

The crucial point is that we require only blackbox access to the model, allowing
certification of large scale models. To that end, in this thesis, we explore the application
of a technique pioneered by Weinhold [243], which provides lower bounds to quantum
expectation values in the context of quantum chemistry.

1.1.3 Robustness Guarantees for Quantum Machine Learning

QML is an emerging subfield of quantum computing that aims to exploit the unique
nature of quantum mechanics with the goal of enhancing capabilities of classical ML

models in the form of drastic speed-ups of classical algorithms [41, 63, 179, 278], im-
proved accuracy [1, 81, 140, 191] or robustness [50, 77, 125, 138, 141, 248]. With the
emergence of noisy, intermediate-scale quantum computers [174], the field of QML has
attracted increased interest in recent years [14, 55, 192]. With the eventual integration
of quantum computing components in ML systems, natural questions about their relia-
bility and safety arise, akin to the vulnerabilities present in current, purely classical ML

systems. Indeed, like their classical counterparts, quantum classifiers have been shown
just as vulnerable to adversarial examples [138, 141]. However, in the current NISQ era
of quantum computing [174], an arguably even more pressing concern is the level of
naturally occurring noise, inherent to current quantum computing systems, that these
QML algorithms can tolerate. In light of these challenges, and orthogonal to our work on
robustness guarantees for classical ML pipelines, in this thesis we also seek to explore
robustness guarantees for QML algorithms. In a first step, we consider quantum classi-
fication models which, in analogy to their classical counterparts, are trained to classify
data encoded as quantum states into a set of classes via optimization of parametrized
quantum circuits. While first steps in this direction have been made [138], a complete
and tight characterization of the robustness of QML models is lacking. Therefore, in this
thesis, we seek to answer the following question:

Question 3.1: How can we enable tight robustness guarantees for quantum classification
models, taking into account the unique nature of QML algorithms?

Typically, the prediction of a quantum classifier is formed by obtaining repeated mea-
surements of a quantum observable which are then aggregated into an expectation
value. In this thesis, we explore the probabilistic nature of such classifiers and seek to
get an understanding of how classical probabilistic robustness guarantees, in particu-
lar the Neyman-Pearson approach [39], can be used to derive robustness guarantees
inherent to quantum classifiers. Such a characterization would prove useful along at
least two axes. First, the worst-case nature of the guarantee, naturally covers quantum
adversarial examples as these can be considered a worst-case type of noise. In addition,
in the context of natural quantum noise, the exact characterization of noise models is
difficult in practice. The lack of such a model thus further motivates the need to derive
worst-case robustness guarantees for quantum classifiers.

While the preceding research question, in its core, seeks to explore conditions under
which the most likely measurement remains unaffected, we wish to take a further step
in this thesis and explore how shifts in quantum states affect more general quantum
algorithms whose outputs are based on expectation values of quantum observables.
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Here we move away from the adversarial scenario and study perturbations that occur
due to noise and decoherence, prevalent in NISQ era quantum devices, limited express-
ibility of Ansätze [160, 201], barren plateaus during optimization in variational hybrid
quantum-classical algorithms [150, 167, 236], measurement noise and decoherence, and
other experimental imperfections that occur frequently in practice [102, 241]. It is worth
pointing out that this topic is related, but orthogonal, to quantum error mitigation [22]
and quantum error correction [23, 199, 206] which aim to reduce or eliminate, rather than
characterize, errors in quantum algorithms. While it is clear that such errors exist and
can indeed be detrimental to quantum algorithms, an accurate characterization of er-
rors from such a multitude of sources has received relatively less attention. Inspired by
the early days of classical computing where errors stemming from faulty floating-point
operations, temperature and voltage fluctuations and other imprecisions were prevalent
and their magnitude estimated [230, 251], we explore the following, and final question:

Question 3.2: How can we characterize accurate error bounds on the output of quantum
algorithms arising from imperfect representations of an ideal quantum state?

In this thesis, we take a worst-case point of view, in the sense that we do not assume
any prior knowledge about how these imperfections may arise and only require bounds
on how large the approximation error between the approximate and ideal state can
possibly be. In other words, we explore bounds which only require blackbox access
to the quantum systems of interest and are independent of whether these imperfect
representations come from noise and decoherence or from algorithmic errors.

1.2 contributions

To address the research questions proposed in the previous section, this thesis makes
the following set of contributions.

C1 To defend against backdoor attacks, we propose an extension of randomised
smoothing [39, 128] which, together with our robust training pipeline, RAB, im-
proves robustness empirically while providing a rigorous robustness guarantee.
Next to contributions on the theoretical level, this also includes several practical
optimizations for specific model classes.

C2.1 To provide robustness guarantees against adversarial attacks in the form of seman-
tic transformations, we present TSS, a framework based on randomised smoothing,
that enables the certification of transformation parameters and overcomes the lim-
itations of classical ℓp-norm guarantees for certifying robustness against semantic
adversarial attacks.

C2.2 To certify the out-of domain generalization of ML models, we derive bounds on
the worst-case population loss over an uncertainty set of shifted distributions, ex-
pressed in terms of Hellinger distance balls around the source distribution. Since
our bounds only require blackbox access to the model, we show that the certifica-
tion scales to large-scale datasets and models.

C3.1 Exploiting the unique probabilistic nature of quantum classifiers, we make use
of the Neyman-Pearson approach to QHT and derive tight robustness bounds for
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Figure 1: Structure of the thesis and reading threads. The reading thread covering classical ML

is shown in green color, and the reading thread covering quantum ML is shown in red
color.

quantum classifiers. Next to the guarantees, this bound reveals intriguing links
between the characterization of robustness for quantum classifiers and hypoth-
esis testing. Namely, while hypothesis testing is concerned with discriminating
between quantum states, robustness is concerned with finding conditions under
which classifiers can not discriminate quantum states. We make this intuition pre-
cise in terms of error probabilities associated with QHT.

C3.2 Finally, we present tight bounds on quantum expectation values that allow for an
accurate characterization of the worst-case error of quantum algorithms stemming
from imperfect representations of an ideal quantum state. These bounds only
require knowledge of a bound on the similarity of approximate and ideal state
and are otherwise agnostic to the nature of the approximation error. We validate
our bounds in the context of the seminal VQE.

1.3 organization of the thesis

We have organized this thesis into four main parts, and have made the separation
largely based on whether a result is concerned with classical or quantum machine
learning. In this way, a reader more interested in the classical part of this thesis, can
follow the classical reading thread, while a reader more interested in the quantum part,
can follow the quantum reading thread. The conceptual organization of the thesis is
illustrated in Figure 1. In Part i, we introduce the background required for a sound un-
derstanding of the results introduced in this thesis. In Part ii, we present an overview
of the theoretical results we have derived in order to answer the research questions
outlined at the beginning of this thesis. We remark that these results are stated in the
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most general way possible so as to illustrate the general applicability to multiple topics
treated in this thesis. In addition, this generality also makes apparent the similarities
and differences between results obtained for classical and quantum machine learning.
In Part iii we present our work related to classical machine learning, covering robust-
ness guarantees for backdoor attacks (Chapter 6), semantic transformations (Chapter 7),
and out-of-domain generalization (Chapter 8). In Part iv, we present our results related
to the quantum side of this thesis. In Chapter 9, we derive robustness bounds for quan-
tum classifiers, and in Chapter 10 we present error bounds for quantum expectation
values arising from imperfect representations of ideal quantum states. We conclude in
Chapter 11 where we summarize the contributions and limitations of our work, and
outline the potentials for future work.

1.4 author’s publications

This dissertation is based on the following publications, presented in the order of ap-
pearance in this dissertation († indicates equal contribution):
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[2] Linyi Li†, Maurice Weber†, Xiaojun Xu, Luka Rimanic, Bhavya Kailkhura, Tao Xie,
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2
A D V E R S A R I A L M A C H I N E L E A R N I N G

We start this thesis by providing a brief review of the field of adversarial ML with an
emphasis on provable defenses. While the concepts outlined here are supposed to be
useful material to equip the reader with basic background on the field, this chapter
should also help the reader to accurately place the present work in the landscape of
adversarial ML.

2.1 attacks

As deep neural networks became increasingly integrated into real-life applications, the
security and reliability of these systems started to become a significant concern, espe-
cially in security-critical applications. It was first discovered in [212] that well-trained
neural networks are susceptible to adversarial attacks, with further analyses conducted
in [71]. Subsequently an abundance of attacks were discovered in the context of speech
recognition and voice control systems [25, 273], traffic signs [123], physical-world at-
tacks [61], and data poisoning attacks [34, 76, 263] to name just a few. More recently, at-
tacks against neural language models have been proposed via adversarial prompts [26,
242, 281] and dataset poisoning [232].

The different types of adversarial attacks on ML systems can broadly be divided into
three different categories:

(1) Evasion Attacks are among the most common attacks and try to evade a deployed
ML system by manipulating test instances.

(2) Poisoning Attacks, also known as contamination attacks, occur during the develop-
ment phase, where an adversary aims to poison the training data with the goal
of eliciting a specific behaviour in the trained model, which can, typically during
the deployment phase, be exploited.

(3) Exploratory Attacks do not assume access to the training data and aim to gain
knowledge about the underlying model, training process, or training data.

In this thesis, we primarily deal with evasion attacks (Chapter 7 and Chapter 9) and
poisoning attacks (Chapter 6).

2.2 empirical defenses

In response to the vulnerabilities outlined in the previous section, a multitude of de-
fenses were developed which have the goal to empirically improve the robustness against
adversarial attacks. Among the most prominent type of defenses is adversarial train-
ing [71, 124], which is based on the idea to mix adversarial examples into the training
set. The hope is that that this procedure ensures that the model will predict the same
class for benign and adversarial samples. In a different direction, based on the idea of
model distillation [93], Papernot et al. [168] proposed to use the technique of distilling
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a model as a defense. Further mechanisms to defend against evasion attacks based on
Generative Adversarial Network (GAN)s [189], feature squeezing [258, 260] and reduc-
ing the transferability of adversarial examples [97] have also been proposed. Similarly,
in the context of poisoning attacks, empirical defenses have been developed which in
the majority rely on detection of poisoned instances [33, 67, 223, 234] or on augmenting
the training process [144]

However, although these defense strategies have been shown effective against partic-
ular types of attacks, several challenges remain. Firstly, these defenses are not adaptive
in the sense that, while they may block a specific kind of attack, they leave open vul-
nerabilities against other types of attack which might be a priori unknown. In addition,
adversaries who know the defense strategies can bypass these by designing new at-
tacks [27]. Furthermore, these defenses can incur significant computational overhead
and degrade the predictive performance of ML models significantly. In particular the
former challenge has motivated the development of provable defenses, which we re-
view in the following section. This is also the central topic this thesis is concerned with.

2.3 provable defenses

Provable defenses are defense methods against adversarial attacks which provide a
guarantee for the robustness of an ML model under certain perturbation constraints,
typically expressed in terms of ℓp-norm bounds on the perturbation magnitude where
p is usually considered 1, 2, or ∞. Such certified robustness always serves as a lower
bound to the actual, empirical robustness and much work has gone into improving
such a lower bound by developing tight guarantees and training approaches favouring
robustness. A recent survey on provably robust ML by Li et al. [135] proposes a tax-
onomy of provable defense methods and categorizes these into complete and incomplete
defenses. A provable defense is considered to be complete if, whenever such a verifica-
tion outputs “not verified” for an input x0, then it is guaranteed that an adversarial x in
a neighbourhod of x0 exists. In contrast, a provable defense is considered incomplete,
if the verification is allowed to abstain from verifying an input. A further distinction is
then made between deterministic and probabilistic verification approaches. As the name
suggests, a verification is considered to be deterministic, if the statement “verified” for
an input x0 is deterministically true. The verification is called probabilistic, if this state-
ment only holds with high probability. It is worth remarking that, to the best of our
knowledge, all currently known probabilistic provable defense are incomplete, while
there are both complete and incomplete deterministic provable defenses known.

2.3.1 Deterministic Guarantees

Complete and deterministic approaches usually consider ℓ∞-norm perturbations and
support only feed-forward ReLU networks. In addition all these approaches have worst-
case expontential time complexity, what makes these methods difficult to scale to large
problem sizes (in terms of input dimension). Existing techniques in this category make
use of solver-based verification [35, 175, 218], the extended simplex method [110, 111],
or branch-and-bound techniques [64, 68, 237, 275]. It is worth pointing out that even
though these verification approaches have exponential worst-case time complexity, in
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practice they can still verify neural networks with up to 105 neurons, corresponding to
moderate-size CIFAR-10 models.

As a remedy against scaling barriers to complete deterministic verification approaches,
incomplete verification approaches via linear relaxations have been proposed [74, 153,
188, 202, 246, 252]. These approaches rely on the concept of ReLU polytopes and approx-
imate ReLU activation functions using their convex hull of different shapes. Among
these methods, interval bound propagation [74] has been shown to be the most scal-
able and can handle datasets up to Tiny ImageNet [259]. We refer the reader to the
comprehensive survey [135] for further details and a more in-depth treatment of these
methods.

2.3.2 Probabilistic Guarantees

Probabilistic guarantees sacrifice completeness and the deterministic nature of the pre-
vious approaches in exchange for scalability. Indeed, to the best of our knowledge, prob-
abilistic approaches are the only robustness guarantees which scale to large datasets like
ImageNet [135]. Probabilistic robustness guarantees are based on smoothed models and
are otherwise known as randomized smoothing approaches. Smoothed models are con-
structed from a base model h by randomizing the model predictions over its inputs,
where "input" can be understood in the most general sense. Formally, for a smoothing
distribution µ, the smoothed model is given by the expectation

g(x) =

∫
supp(µ)

h(x+ δ)dµ(δ). (1)

It is worth pointing out that the construction of such a smoothed model via an expec-
tation value is what makes guarantees based on this technique probabilistic, since the
integral can in general not be solved exactly and needs to be estimated via Monte Carlo
estimation. Intuitively, in the case of classifiers, the noise effectively makes the decision
boundaries smoother and suppresses regions with high curvature. Since adversarial ex-
amples aim to exploit precisely these high curvature regions, the vulnerability to such
attacks is expected to be reduced. We remark that while, for the sake of clarity, we have
considered additive noise in the definition of the smoothed model, this is in general
not necessary. As we will see in Chapter 6 and Chapter 7, generalizations of this frame-
work to other transformations are required in order to provide robustness guarantees
for more diverse threat models.

Among the tightest randomized smoothing guarantees are those which are based on
the Neyman-Pearson Lemma [39, 264], stemming from the optimality of the Neyman-
Pearson tests from statistical hypothesis testing. On an intuitive level, the Neyman-
Pearson approach determines the minimum perturbation x0 → xadv required such that
an optimal hypothesis test for distinguishing the distribution of x0+δ from xadv+δ has
a low error probability. In the context of robustness, this threshold precisely determines
the maximum perturbation a classifier can tolerate while still being guaranteed to make
a correct prediction.

The majority of robustness guarantees derived via the randomized smoothing frame-
work considers only zeroth-order information by directly querying predictions of the
smoothed model [40, 56, 128, 133, 264], but methods which take first-order informa-
tion into account also exist [132, 155]. Tightness improvements for these higher-order
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methods can mainly be observed for ℓ1 adversaries [135]. Finally, the choice of smooth-
ing distribution also affects the guarantees obtained via randomized smoothing where,
e. g., Gaussian noise leads to guarantees in ℓ2 norm and Laplacian smoothing leads to
guarantees in ℓ1 norm. In this thesis, we will further investigate this in Chapter 7.
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A P R I M E R O N Q U A N T U M M A C H I N E L E A R N I N G

In this section we provide a brief overview of quantum machine learning and present
some of the basic concepts from quantum information theory used in the chapter on
QML in this thesis. For a broader treatment of this topic we refer the reader to [14].

3.1 concepts

We start by outlining some of the basic concepts used in quantum information science,
and which are relevant to the quantum part of this thesis. This treatment essentially
corresponds to the three postulates of quantum mechanics, namely the definition of the
state space, the evolution of a quantum system, and measurements.

state space Associated to any isolated quantum mechanical system is a complex
vector space with an inner product that induces a complete metric, i. e., a Hilbert space
H. Throughout this thesis we work in finite dimensional Hilbert spaces. Any quantum
system is described by its state vector |ψ⟩ ∈ H. The simplest such system is the qubit
which has a two dimensional state space with basis vectors |0⟩, |1⟩ ∈ H, and can be
written as

|ψ⟩ = α|0⟩+β|1⟩, α, β ∈ C (2)

with the condition that the state is normalized,

|⟨ψ|ψ⟩|2 = |α|2 + |β|2 = 1. (3)

The qubit is the quantum counterpart to the classical bit as a carrier of information.
While a bit can only be in the state 0 or 1, a qubit can be in states other than |0⟩ or
|1⟩, i. e., in a superposition. Quantum states described by a state vector are called pure
states and live in isolated quantum systems. However, in practice, due to interactions
with the environment and other sources of noise, this assumption is often violated and
quantum states are mixed. Mixed states can be seen as a probabilistic mixture of pure
states,

ρ =
∑
i

pi|ψi⟩⟨ψi|, s.t.
∑
i

pi = 1 (4)

where ρ is called the density operator describing the state. In more abstract terms,
density operators are defined as positive semi-definite, Hermitian operators with trace
equal to 1. We use the notation S(H) for the space of density operators acting on the
Hilbert space H. The fidelity of two quantum states ρ and σ measures how similar the
states are and is defined as

F(ρ, σ) = Tr
[√√

ρσ
√
ρ

]2
(5)

which, in the case of pure states reduces to the squared overlap,

F(|ψ⟩⟨ψ|, |ϕ⟩⟨ϕ|) = |⟨ψ|ϕ⟩|2 . (6)

15
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An alternative to the fidelity is the trace distance which can be expressed as

T(ρ, σ) =
1

2
∥ρ− σ∥1 (7)

where ∥A∥1 = Tr
[√
A†A

]
is the Schatten-1 norm.

evolution The evolution of an isolated quantum system is described by a unitary
matrix U acting on states of the system,

|ψ⟩ 7→ U|ψ⟩. (8)

If the system is not isolated, then the evolution of a quantum system is described
by quantum channels which are defined as Completely positive and trace preserving
(CPTP) maps acting on density operators of a given state space. A map E : S(H)→ S(H)

is called positive if E(ρ) remains a positive operator and it is called completely positive
if the the map E⊗ 1n is a positive map for every n ∈ N and where 1n is the identity.
The map E is called trace preserving if Tr [E(ρ)] = Tr [ρ] where Tr denotes the trace
operator. For example, for any unitary matrix U the map

ρ 7→ UρU† (9)

is a CPTP map.

measurement To extract information from a quantum system, a measurement is
performed. Quantum measurements are described by a collection of measurement op-
erators {Mm} where the index m refers to the outcomes that can be measured using
that set of operators. In full generality, the set of operators {Mm} is a Positive Operator-
valued Measure (POVM), i. e., a set of positive semi-definite Hermitian matrices with

∑
m

Mm = 1. (10)

The probability with which measurement outcome m is observed is determined by the
Born rule via the identiy

p(m) = Tr [Mmρ] . (11)

When measuring a quantum system in state ρ, we change its state since we interfere
with the system. The state of the system, immediately after measuring it, is then given
by

ρ 7→ AmρA
†
m

Tr [Mmρ]
, Mm = A†

mAm. (12)

Properties of quantum systems are commonly expressed as the expectation value of
an observable describing the property of interest. In abstract terms, an observable A is
a Hermitian operator acting on the Hilbert space H. The expectation value of A for a
system in the state ρ is defined as

⟨A⟩ρ = Tr [Aρ] . (13)
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This expectation value can be written as

⟨A⟩ρ =
∑
i

λiTr [Piρ] , (14)

given the spectral decomposition A =
∑
i λiPi where λi are the (real) eigenvalues of A

and Pi are projections onto the associated eigenspaces.

3.2 quantum machine learning

The interplay between quantum computation and machine learning seeks to apply
quantum algorithms enhance classical machine learning with the goal of enabling
speed-ups of classical algorithms, or improve their accuracy. QML algorithms can be
broadly categorized by the type of input data they are processing, and the type of de-
vice they are running on. In this thesis, we focus on QML algorithms that take quantum
data, or classical data encoded in quantum states, as input. For other types of QML

algorithms we recommend the review presented in [14].
We define a K-class quantum classifier of states of the quantum system H as a map

A : S(H) → C which maps quantum states σ ∈ S(H) to class labels k ∈ C = {1, . . . , K}.
Any such classifier is described by a CPTP map E and a POVM {Mm}. Formally, a quan-
tum state σ is passed through the quantum channel E and subsequently the measure-
ment {Mk} is performed. Finally, the probability of measuring outcome m is identified
with the class probability ym(σ), i. e.

σ 7→ yk(σ) := Tr [ΠkE(σ)] . (15)

The final prediction is then given by the most likely class

A(σ) ≡ arg max
k

yk(σ). (16)

We remark that we can treat the POVM elements Mm as projections Mm = |m⟩⟨m|⊗
1d/K which determines whether the output is classified into class m. This can be done
without loss of generality by Naimark’s dilation since E is kept arbitrary and potentially
involves ancillary qubits and a general POVM element can be expressed as a projector on
the larger Hilbert space. Throughout this work, we refer to A as the classifier and to y as
the score function. In the context of QML, the input state σ can be an encoding of classical
data by means of, for example, amplitude encoding or other types of encodings [125,
277], or inherently quantum input data, while E can be realized, for example, by a
trained parametrized quantum circuit potentially involving ancillary registers [11].
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C L A S S I C A L E X P E C TAT I O N VA L U E S

The goal of this and the subsequent chapter is to introduce the theoretical tools used to
derive the core results presented in the five main chapters of this thesis. The common
denominator that lays the theoretical groundwork among these chapters is the differ-
ent ways in which expectation values can be bounded, under the assumption that we
have minimal knowledge of the random variable over which the expectation value is
taken. These observations apply to both the classical domain, where random variables
commute, and to the quantum domain where the analogue to random variables are
observables and probability distributions correspond to a density operator describing
the quantum system of interest. Here we introduce the theory for classical probability
spaces and present the results for quantum expectation values in Chapter 5.

To maintain generality, in this section we work in abstract probability spaces defined
as triplets (Ω, F, P) where Ω is the sample space, F is a σ-algebra over Ω and P is a
probability measure on Ω. We consider real-valued random variables, i. e., measurable
functions X : Ω→ R. The expected value of X is then defined as the Lebesgue integral

EX∼P[X] =

∫
Ω

XdP. (17)

In the following sections, we present two techniques that allow to quantify the shift
that occurs in the expected value EX∼P[X] when the probability measure P undergoes
a change P → Q.

4.1 bounds via hypothesis testing

The first technique that we employ is based on statistical hypothesis testing and, in
its core, is the technique used to derive the Neyman-Pearson based probabilistic ro-
bustness bounds [39, 264]. Hypothesis testing is a statistical problem that is concerned
with the question of whether or not some hypothesis about one or more probability
distributions is correct. A decision procedure for such a problem is called a statistical
hypothesis test. Formally, the decision is based on the value of a realization x for a ran-
dom variable X whose distribution is known to be either P, the null hypothesis, or Q,
the alternative hypothesis. Given a sample x ∈ X, a randomized test ϕ can be modeled
as a function ϕ : X→ [0, 1] which rejects the null hypothesis with probability ϕ(x) and
accepts it with probability 1−ϕ(x). The two central quantities of interest are the prob-
abilities of making a type I error, denoted by α(ϕ; P) and the probability of making a
type II error, denoted by β(ϕ; Q). The type I error corresponds to the situation where
the test ϕ decides that the alternative is true, when in fact the null hypothesis is true.
An error of type II occurs when the alternative is true but the test decides for the null.
Formally, α and β are defined as

α(ϕ; P) := EX∼P[ϕ(X)] (type-I error)

β(ϕ; Q) := EX∼Q[1−ϕ(X)] (type-II error)

21
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The problem is then to select the test ϕ which minimizes the probability of making
a type II error, subject to the constraint that the probability of making a type-I error
is below a given threshold α0. When testing the null hypothesis X ∼ P against the
alternative X ∼ Q, the Neyman-Pearson Lemma [162] states that a likelihood ratio test
ϕNP is optimal in the sense that it admits the smallest probability of making a type-II
error, among all tests which have type-I error probability bounded by α0. The likelihood
ratio test ϕNP is defined as

ϕNP(x) =


1 Λ(x) > t

q Λ(x) = t

0 Λ(x) < t

, with Λ(x) =
fQ(x)

fP(x)
(18)

where fP = dP
dµ and fQ = dQ

dµ are the probability density functions with respect to a
reference measure µ on X. The values of t and q are chosen such that

α(ϕNP; P) = qPX∼P[Λ(X) = t] + PX∼P[Λ(X) > t] = α0 (19)

Formally, optimality of the likelihood ratio test means that it is a solution to the opti-
mization problem

β∗(α0; P, Q) = inf {β(ϕ; Q) |α(ϕ; P) ⩽ α0} . (20)

In Section A.1, we explicitly show optimality and existence of a likelihood ratio test at a
specific significance level α0. We can now state the first bounds for expectation values.

Lemma 1. Let h : X → [0, 1] be a deterministic function and let P, Q be probability measures
on X. Let m,m ∈ [0, 1] such that

m ⩽ EX∼P[h(X)] ⩽ m. (21)

Then, we have

β∗(1−m; P, Q) ⩽ EX∼Q[h(X)] ⩽ 1−β
∗(m; P, Q). (22)

Proof. We first show the lower bound. By assumption, we have

EX∼P[1− h(X)] ⩽ 1−m (23)

and hence, by definition of β∗ and viewing h as a hypothesis test,

EX∼Q[h(X)] = β(1− h; Q) ⩾ β∗(1−m; P, Q). (24)

To show the upper bound, we proceed analogously. It follows directly from the assump-
tion and the definition of β∗ that

EX∼Q[h(X)] = 1−β(h; Q) ⩽ 1−β∗(m; P, Q). (25)

While Lemma 1 follows as a direct consequence of the Neyman-Pearson Lemmma [162],
many of the challenges arise when instantiating this result for specific distributions and
for specific applications. In Chapter 6 we will apply this result to certify the robustness
of ML models against backdoor attacks, where an instantiation using Gaussian noise
leads to a first robustness bound which, in practice, needs further modifications to
arrive at non-trivial robustness certificates. In Chapter 7, we instantiate Lemma 1 for
several distributions P and Q, and use it to certify robustness against a multitude of
semantic transformations like rotations, scaling, or Gaussian blur. Finally, in Section 5.1
we state the quantum analogue of Lemma 1.
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4.2 bounds via gram matrices

Here we introduce a second method to bound expectation values under shifts in the
underlying distribution. The technique was pioneered by Weinhold [243] where it was
used to derive bounds for expectation values of pure states in the context of quantum
chemistry. Here, we derive the classical version of this result, while in Section 5.2 we
present an extension of the original result for mixed quantum states.

Let Σ be the Borel σ-algebra and µ a measure on X, and consider the Hilbert space
L2(X, Σ, µ) of real-valued, square-integrable functions f : X → R, endowed with the
inner product

⟨f, g⟩ =
∫
X

fg dµ. (26)

We can identify any probability distribution P on X, which is absolutely continuous1

with respect to µ, with a unit vector in L2(X, Σ, µ), via the square root of its Radon-
Nikodym derivative,

ψP :=

√
dP

dµ
. (27)

With this, we can now define the Hellinger distance, which measures the similarity
between two probabilty measures P and Q and can be written in terms of the inner
product (26).

Definition 1 (Hellinger-distance). Let P, Q be probability measures on X that are absolutely
continuous with respect to a reference measure µ, P, Q≪ µ. The Hellinger distance between P
and Q is defined as

H(P, Q)2 :=
1

2

∫
X

(√
dP

dµ
−

√
dQ

dµ

)2
dµ = 1− ⟨ψP, ψQ⟩ (28)

The Hellinger distance is independent of the choice of the reference measure µ.

Let h ∈ L∞(X, Σ, µ) be any essentially bounded function. We can rewrite the expec-
tation as

EX∼P[h(X)] =

∫
X

hdP =

∫
X

h

√
dP

dµ

√
dP

dµ
dµ = ⟨ψP, h ·ψP⟩, (29)

where the product h ·ψP is defined as a pointwise multiplication. Similarly, the variance
can be written as

VX∼P[h(X)] = EX∼P[h(X)
2] − EX∼P[h(X)]

2 = ⟨ψP, f2 ·ψP⟩− ⟨ψP, f ·ψP⟩2. (30)

Let Q be a further probability measure on X and consider the Gram matrix G of the
elements ψQ, ψP, and h ·ψP,

G :=

 1 γ ⟨ψQ, h ·ψP⟩
γ 1 ⟨ψP, h ·ψP⟩

⟨h ·ψP, ψQ⟩ ⟨h ·ψP, ψP⟩ ⟨h ·ψP, h ·ψP⟩

 . (31)

1 We say that a measure ν on X is absolutely continuous with respect to another measure µ denoted by
ν≪ µ, if for any A ∈ Σ, µ(A) = 0⇒ ν(A) = 0.
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where we have set γ = ⟨ψQ, ψP⟩. Since the matrix G is positive semidefinite (see, e. g.,
Theorem 7.2.10 in [96]), its determinant is non-negative and is given by

det(G) = a · ⟨ψQ, h ·ψP⟩2 + b · ⟨ψQ, h ·ψP⟩+ c (32)

with coefficients

a = −1, b = 2 · γ · ⟨ψP, h ·ψP⟩
c = (1− γ2)⟨h ·ψP, h ·ψP⟩− ⟨h ·ψP, ψP⟩2.

(33)

In other words, the determinant det(G) is a second-degree polynomial π(x) evaluated
at x = ⟨ψQ, h ·ψP⟩. Its non-negativity then restricts the values which ⟨ψQ, h ·ψP⟩ can
take to be bounded within the roots of π,

b

2
−

√
b2

4
+ c ⩽ ⟨ψQ, h ·ψP⟩ ⩽

b

2
+

√
b2

4
+ c. (34)

For positive h ⩾ 0, applying the Cauchy-Schwarz inequality yields

b

2
−

√
b2

4
+ c ⩽ ⟨ψQ, h ·ψP⟩

⩽
√
⟨ψQ, h ·ψQ⟩ · ⟨ψP, h ·ψP⟩

=
√

EX∼P[h(X)] ·EX∼Q[h(X)]

(35)

Finally, under the condition that c ⩽ 0, we can square both sides of the inequality and
rearrange terms to get the lower bound

EQ[h(X)] ⩾ EP[h(X)]−2
√
γ2 (1− γ2)VP[h(X)]− (1−γ2)

[
EP[h(X)] −

VP[h(X)]

EP[h(X)]

]
(36)

It is worth noting that this bound is monotonically decreasing with decreasing γ and
expectation EP[h(X)], and it is decreasing as the variance VP[h(X)] gets larger. This
allows us to estimate this bound based on estimates of these quantities. An upper
bound can be obtained by applying the above reasoning to the function h̃ := Mh − h

where Mh = supx∈X |h(x)|. In summary, we have shown the following result:

Theorem 1. Let h : X → [0, M] be a deterministic, square-integrable function and let P be a
probability measure on X. Let m,m ∈ [0, M], and v ∈ [0, M2] such that

m ⩽ EX∼P[h(X)] ⩽ m, and VX∼P[h(X)] ⩽ v. (37)

Then, for any probability measure Q on X with H(P, Q) ⩽ ρ, and δ2 ⩽ 1−
√

v
v+m2 , we have

the lower bound

EX∼Q[h(X)] ⩾ m− 2
√
Cρ(1−Cρ)v−Cρ

m2 − v

m
(38)

where we have defined Cρ = ρ2(2− ρ2). Similarly, for ρ2 ⩽ 1−
√

v
v+(M−m)2

, we have the
upper bound

EX∼Q[h(X)] ⩽ m+ 2
√
Cρ(1−Cρ)v+Cρ

(M−m)2 − v

M−m
. (39)
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While this bound is stated in a generic manner here, we will use this technique
in Chapter 8 to derive guarantees for out-of-domain generalization of ML models. In
Section 5.2, we will see the quantum analogue of this Theorem and circle back to the
original derivation proposed by Weinhold in [243], before presenting a generalization.

It is worth pointing out the similarities and differences between this result, which we
have derived using the non-negativity of Gram matrices and the mapping of probabil-
ity measures to a suitable Hilbert space, and the result presented in Lemma 1 which
is based on the Neyman-Pearson Lemma. First, we notice that both results do not rely
on properties of the function h, apart from the expectation value and, in the case of
Theorem 1, the variance. These are both quantities which can be measured from obser-
vations and only require black-box access to the function. Second, both results rely on
a notion of statistical similarity and are faithful in the sense that as Q approaches P,
the bounds approach the expectation values of h under the distribution P. Finally, the
bounds based on the Neyman-Pearson Lemma only rely on the first moment of the dis-
tribution of h(X), while the Gramian bounds additionally rely on the second moment
of the distribution via its variance.





5
Q U A N T U M E X P E C TAT I O N VA L U E S

Similar to the classical case, here we derive bounds on expectation values of quan-
tum observables, the quantum counterpart to random variables. Specifically, let H be a
Hilbert space with finite dimension d = dim(H) < ∞, and let σ ∈ S(H) be a quantum
state. For an observable A ∈ L(H), its expectation under σ is then defined as

⟨A⟩σ = Tr [Aσ] (40)

In the following two sections, we present the quantum analogues of the bounds pre-
sented in Section 4.1 and Section 4.2, allowing us to bound the shift incurred to the
expectation ⟨A⟩σ when σ undergoes a change σ→ ρ.

5.1 bounds via quantum hypothesis testing

QHT is typically formulated in terms of state discrimination where several quantum
states have to be discriminated through a measurement [88]. In binary QHT, the aim is
to decide whether a given unknown quantum system is in one of two states correspond-
ing to the null and alternative hypothesis. Any such test is represented by an operator
0 ⩽ M ⩽ 1d, which corresponds to rejecting the null hypothesis in favor of the alter-
native hypothesis. Analogous to classical hypothesis testing, the two central quantities
of interest are the probabilities of making an error of type I or and error of type II.
The former corresponds to rejecting the null hypothesis when it is true, while the latter
occurs if the null is accepted when the alternative hypothesis is true. Specifically, for
density operators σ ∈ S(H) and ρ ∈ S(H) describing the null and alternative hypothe-
sis, the type-I error probability is defined as α(M; σ), and the type-II error probability
as β(M; ρ), so that

α(M; σ) := Tr [σM] (type-I error)

β(M; ρ) := Tr [ρ(1−M)] (type-II error)

Here we consider the Neyman-Pearson approach to QHT [90], where the two types of
errors are associated with a different cost.1 Given a maximal allowed probability for the
type I error, the goal is to minimize the probability of the type II error. Specifically, one
aims to solve the Semidefinite Programming (SDP) problem

β∗(α0; σ, ρ) := minimize β(M; ρ)

s.t. α(M; σ) ⩽ α0,

0 ⩽M ⩽ 1d.

(41)

Optimal tests can be expressed in terms of projections onto the eigenspaces of the
operator ρ− tσwhere t is a non-negative number. More specifically, for t ⩾ 0 let Pt,+ :=

1 In contrast, in the Bayesian setting, the hypotheses σ and ρ occur with some prior probabilities π0 and π1
and the goal is to find a test which minimizes the total error probability. A Bayes optimal test M is one
that minimizes the posterior probability π0 ·α(M) + π1 ·β(M).

27
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{ρ− tσ > 0}, Pt,− := {ρ− tσ < 0} and Pt,0 := 1− Pt,+ − Pt,− be the projections onto
the eigenspaces of ρ− tσ associated with positive, negative and zero eigenvalues. The
quantum analogue to the Neyman-Pearson Lemma [162] shows optimality of Helstrom
operators [88] which essentially correspond to likelihood ratio tests

Mt := Pt,+ +Xt, 0 ⩽ Xt ⩽ Pt,0. (42)

The choice of the scalar t ⩾ 0 and the operator Xt is such that the preassigned type-I
error probability α0 is attained. In Section B.1.1 we derive an explicit construction of
these operators and prove their optimality. We can now state bounds on expectation
values using QHT.

Lemma 2. Let A ∈ L(H) be a quantum observable with 0 ⩽ A ⩽ 1d, and let ρ, σ ∈ S(H) be
quantum states. Let m, m ∈ [0, 1] such that

m ⩽ ⟨A⟩σ ⩽ m. (43)

Then, we have

β∗(1−m; σ, ρ) ⩽ ⟨A⟩ρ ⩽ 1−β∗(m; σ, ρ). (44)

Proof. The proof of this result follows immediately from the definition of β∗. Indeed,
note that, by definition

β∗(1−m; σ, ρ) = inf {β(M; ρ) |α(M; σ) ⩽ 1−m}

⩽ β(1d −A; ρ) = ⟨A⟩ρ.
(45)

Similarly, the upper bound can be seen using

β∗(m; σ, ρ) = inf {β(M; ρ) |α(M; σ) ⩽ m}

⩽ β(A; ρ) = 1− ⟨A⟩ρ.
(46)

and thus

⟨A⟩ρ ⩽ 1−β∗(m; σ, ρ). (47)

This concludes the proof.

In analogy to the result based on classical hypothesis testing presented in Lemma 1,
this Lemma is a direct consequence of the optimality of the Helstrom operators. The
main challenge when using these bounds is to derive an operationally convenient form
that makes the dependence of the bounds on a distance between two quantum states
explicit. In the following Theorem, we establish the explicit form which presents itself
as a lower bound on the optimal type-II error probability β∗. It is interesting to note
that the distance that emerges here is the fidelity between quantum states which is
essentially the quantum analogue of the Hellinger distance seen in Section 4.2.

Lemma 3. Let σ, ρ ∈ S(Hd) be arbitrary quantum states, α0 ∈ [0, 1] and ϵ ∈ [0, 1− α0].
Suppose that F(ρ, σ) ⩾ 1− ϵ. Then

β∗(α0; ρ, σ) ⩾ α0(2ϵ− 1) + (1− ϵ) − 2
√
α0ϵ(1−α0)(1− ϵ) (48)

with equality if the states σ and ρ are pure and F(ρ, σ) = 1− ϵ.

The proof of this result is based on an explicit construction of the Helstrom oper-
ators (42). We state the full proof in Section B.1. In Chapter 9 we use these results to
establish a robustness guarantee for quantum classifiers, while in Chapter 10 we use the
result to bound expectation values of quantum observables in the context of naturally
occurring quantum noise.
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5.2 bounds via gram matrices

Here we present the quantum analogue to the technique presented in Section 4.2 which
is based on the non-negativity of Gram matrices. In contrast to the classical case, here
we don’t need to construct an explicit mapping of probability measures to a Hilbert
space since quantum expectation values are naturally expressed in terms of inner prod-
ucts. To provide intuition, we start with a review of the technique presented in [243] for
the case of pure states and provide the full proof for mixed states in Section B.2.

Consider a Hermitian operator A ∈ L(H) and pure states |ψ⟩ and |ϕ⟩. The Gram
matrix for the vectors |ψ⟩, |ϕ⟩, A|ϕ⟩ is given by

G =

 1 γ ⟨ψ|A|ϕ⟩
γ 1 ⟨ϕ|A|ϕ⟩

⟨ϕ|A|ψ⟩ ⟨ϕ|A|ϕ⟩ ⟨ϕ|A2|ϕ⟩

 (49)

where we have set γ = ⟨ψ|ϕ⟩ which, without loss of generality, is assumed to be real-
valued (otherwise multiply each state by a global phase). The Gram matrix G is positive
semidefinite, its determinant is non-negative and is given by

det(G) = a ·ℜ(⟨ψ|A|ϕ⟩)2 + b ·ℜ(⟨ψ|A|ϕ⟩) + c (50)

with coefficients

a = −1, b = 2γ⟨A⟩ϕ, c = (1− γ2)⟨A2⟩ϕ − ⟨A⟩2ϕ − ℑ(⟨ψ|A|ϕ⟩)2 (51)

and where ℜ(z) and ℑ(z) denote the real and imaginary parts of a complex number
z ∈ C. In analogy to the classical derivation, we view the determinant det(G) as a
second-degree polynomial π(x) evaluated at x = ℜ(⟨ψ|A|ϕ⟩). Due to its non-negativity,
the roots of π then bound the values which ℜ(⟨ψ|A|ϕ⟩) can take to

γ⟨A⟩ϕ −∆Aϕ
√
1− γ2 ⩽ ℜ(⟨ψ|A|ϕ⟩) ⩽ γ⟨A⟩ϕ +∆Aϕ

√
1− γ2 (52)

where we have taken into account that ℑ(⟨ψ|A|ϕ⟩)2 ⩾ 0 and defined the variance as

(∆Aϕ)
2 = ⟨A2⟩− ⟨A⟩2. (53)

For positive semidefinite operators A ⩾ 0, and γ ⩾ 1 −
⟨A⟩2ϕ
⟨A2⟩ϕ

the Cauchy-Schwarz
inequality yields the lower bound

⟨A⟩ψ ⩾ (2γ2 − 1)⟨A⟩ϕ − 2∆Aϕ

√
γ2(1− γ2) + (1− γ2)

⟨A2⟩ϕ
⟨A⟩2ϕ

. (54)

While this result only holds for pure states, we can extend this to mixed states by
making use of purifications and working in the enlarged Hilbert space. Here we state
the full result and provide a detailed derivation in Section B.2.

Lemma 4. Let σ, ρ ∈ S(Hd) be density operators with fidelity F(ρ, σ) ⩾ 1− ϵ for some ϵ ⩾ 0
and let A ⩾ 0 be an observable. Let m, v ⩾ 0 such that

⟨A⟩σ ⩾ m and ∆Aσ ⩽ v. (55)

For ϵ with ϵ ⩽ m2

m2+v2
, a lower bound of ⟨A⟩ρ can be expressed as

⟨A⟩ρ ⩾ (1− ϵ)m− 2v
√
ϵ(1− ϵ) + ϵ

v2

m
. (56)
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In Chapter 10 we apply this result in the context of the VQE and present bounds on
expectation values for specific observables relevant in quantum chemistry, as well as
lower and upper bounds on Eigenvalues of observables.
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P R O VA B L E R O B U S T N E S S A G A I N S T B A C K D O O R AT TA C K S

We start the classical part of this thesis at the early stages of any ML pipeline. At this
stage, next to important design decisions such as the choice of model and training
algorithm, ML practitioners and researchers alike build training datasets. These can
be contributed by outsiders and labelled by crowd workers, from publicly available
sources, such as the world wide web, or privately held data sources such as customer
data. If an adversary has access to this process, either directly or indirectly, they can
poison the dataset by manipulating training instances in ways that can be exploited
once the model has been deployed. It is the topic of this chapter to provide a means
to guarantee that such an attack fails, i. e., that the model is provably robust. In the
subsequent chapters, we will then focus on attacks to which the model is vulnerable
once it has been trained, during deployment.

6.1 introduction

6.1.1 Overview

Building ML algorithms that are robust to adversarial attacks has been an emerging
topic over the last decade. There are mainly two different types of adversarial attacks,
namely (1) evasion attacks, and (2) Data poisoning attacks. In the former, attackers
manipulate the test examples against a trained ML model, while in the latter, attackers
are allowed to perturb the training set. Here we focus on backdoor attacks, a particular
type of data poisoning attack while in the subsequent chapters we focus on evasion
attacks. To carry out a backdoor attack, an attacker adds small backdoor patterns to a
subset of training instances such that the trained model is biased toward test instances
with the same patterns [34, 75]. In this work, we present the first certification process,
referred to as RAB, which offers provable robustness for ML models against backdoor
attacks.

Both evasion and data poisoning attacks have attracted intensive interests from academia
as well as industry [71, 255, 263, 279]. In response, several empirical solutions have been
proposed as defenses against evasion attacks [27, 142, 260, 266]. For instance, adversar-
ial training has been proposed to retrain the ML models with generated adversarial
examples [146], and quantization has been applied to either inputs or neural network
weights to defend against potential adversarial instances [260]. However, recent studies
have shown that these defenses are not resilient against intelligent adversaries respond-
ing dynamically to the deployed defenses [7, 27].

As a result, one exciting line of research aims to develop certifiably robust algorithms
against evasion attacks, including both deterministic and probabilistic certification ap-
proaches [135]. In particular, among these certified robustness approaches, only ran-
domized smoothing and its variations are able to provide certified robustness against
evasion attacks on large-scale datasets such as ImageNet [39, 128, 265]. On a high level,
the randomized smoothing-based approaches are able to certify the robustness of a
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Figure 2: Given a poisoned dataset D ′ – generated by adding backdoor patterns ∆ to some
instances in the dataset D with clean features – RAB guarantees that, for all test exam-
ples x, AD ′(x) = AD(x), with high probability when the magnitude of the backdoor
pattern ∆ is within the certification radius.

smoothed classifier, by making a consistent prediction for an adversarial input as long
as the perturbation is within a certain radius. The smoothed classifier is obtained by tak-
ing the expectation over the possible outputs given a set of randomized inputs which
are generated by adding noise drawn from a smoothing distribution.

Despite these recent developments on certified robustness against evasion attacks, only
empirical studies have been conducted to defend against backdoor attacks [67, 76, 134,
234], and the question of how to improve and certify the robustness of given ML models
against backdoor attacks remains largely unanswered. To the best of our knowledge,
there is no certifiably robust strategy to deal with backdoor attacks yet. Naturally, we
ask: Can we develop certifiably robust ML models against backdoor attacks?

It is clear that extending existing certification methods against evasion attacks to at-
tacks that occur during training is challenging given these two significantly different
threat models. For instance, even certifying a label flipping training-time attack is non-
trivial as illustrated in [184], which proposes to certify against a label flipping attack
by setting a limit to how many labels in the training set may be flipped such that it
does not affect the final prediction. Similar to this work, [184] also leverages random-
ized smoothing. As backdoor attacks involve both label flipping and instance pattern
manipulations, providing certifications can be even more challenging.

6.1.2 Contributions

In this work, we present a certification process, referred to as RAB, which offers prob-
abilistic robustness guarantees for ML models against backdoor attacks. As shown in
Figure 2, our certification goal is to guarantee that a test instance, which may contain back-
door patterns, will be classified consistently, independent of whether the models were trained on
data with or without backdoors, as long as the embedded backdoor patterns are within an Lp-
ball of radius R. We formally define the corresponding threat model and our certification
goal in Section 6.1.5.

Our approach to achieving this is mainly inspired by randomized smoothing, a tech-
nique to certify robustness against evasion attacks [39], but goes significantly beyond
it due to the different settings. Our first contribution is to develop a theoretical frame-
work to generalize randomized smoothing to a much larger family of functions and
smoothing distributions. This allows us to support cases in which a classifier is a func-



6.1 introduction 35

tion that takes as input a test instance and a training set. With our framework, we can
(1) provide robustness certificates against both evasion and dataset poisoning attacks; (2) certify
any classifier which takes as input a tuple of test instance and training dataset and (3) prove
that the derived robustness bound is tight. Given this general framework, we can enable a
basic version of the proposed RAB framework. At a high level, as shown in Figure 3,
given a training set D, RAB generates N additional “smoothed" training sets D+ ϵi by
adding noise ϵi (i ∈ {1, . . . ,N}) drawn from a smoothing distribution. Then, for each
of these N training sets, a corresponding classifier is trained, resulting in an ensemble
of N different classifiers. These models are then aggregated to generate a “smoothed
classifier" for which we prove that its output will be consistent regardless of whether
there are backdoors added during training, as long as the backdoor patterns satisfy
certain conditions.

However, this basic version is not enough to provide satisfactory certified robustness
against backdoor attacks. When we instantiate our theoretical framework with a practi-
cal training pipeline to provide certified robustness against backdoor attacks, we need
to further develop nontrivial techniques to improve (1) the certification radius and (2)
the certification efficiency. Our second contribution consists of two non-trivial technical
optimizations. To improve the certification radius, we certify Deep Neural Network (DNN)
classifiers with a data augmentation scheme enabled by hash functions. This provides
additional guidance for improving the certified robustness against backdoor attacks
and we hope that it can inspire other research in the future. To improve the certification
efficiency, we observed that for certain families of classifiers, namely K-nearest neigh-
bor classifiers, we can develop an efficient algorithm to compute the smoothing result
exactly, eliminating the need to resort to Monte Carlo algorithms as for generic classifiers.

Finally, our third contribution is an extensive benchmark, evaluating our framework
RAB on multiple ML models and provide the first collection of certified robustness
bounds on a diverse range of datasets, namely MNIST, CIFAR-10, ImageNette, and on
spambase tabular data. We hope that these experiments and benchmarks can provide
future directions for improving the robustness of ML models against backdoor attacks.

In summary, in this work we make the following set of technical contributions:

• We propose a unified framework to certify the model robustness against both
evasion and backdoor attacks and prove that our robustness bound is tight.

• We provide the first certifiable robustness bound for general ML models against
backdoor attacks considering different smoothing noise distributions.

• We propose an exact and efficient smoothing algorithm for k-Nearest Neighbors
(KNN) models eliminating the need to sample random noise during training.

• We conduct extensive reproducible large-scale experiments and provide a bench-
mark for certified robustness against three representative backdoor attacks for
multiple types of models on diverse datasets. We also provide a series of abla-
tion studies to further analyze the factors that affect model robustness against
backdoor attacks.
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6.1.3 Related Work

backdoor attacks There have been several works developing optimal poison-
ing attacks against ML models such as SVM and logistic regression [15, 134]. Fur-
thermore, [159] proposes a similar optimization-based poisoning attack against neu-
ral networks that can only be applied to shallow MLP models. In addition to these
optimization-based poisoning attacks, the backdoor attacks are shown to be very effec-
tive against deep neural networks [34, 75]. The backdoor patterns can be either static or
generated dynamically [263]. Static backdoor patterns can be as small as one pixel, or
as large as an entire image [34].

empirical defenses against backdoor attacks Given the potentially severe
consequences caused by backdoor attacks, multiple defense approaches have been pro-
posed. NeuralCleanse [234] proposes to detect the backdoored models based on the
observation that there exists a “short path” to make an instance to be predicted as
a malicious one. [33] improves upon the approach by using model inversion to obtain
training data, and then applying GANs to generate the “short path” and apply anomaly
detection algorithm as in Neural Cleanse. Activation Clustering [32] leverages the ac-
tivation vectors from the backdoored model as features to detect backdoor instances.
Spectral Signature [223] identifies the “spectral signature” in the activation vector for
backdoored instances. STRIP [67] proposes to identify the backdoor instances by check-
ing whether the model will still provide a confident answer when it sees the backdoor
pattern. SentiNet [36] leverages computer vision techniques to search for the parts in
the image that contribute the most to the model output, which are very likely to be the
backdoor pattern. In [144], differential privacy has been leveraged as a defense against
poisoning attacks. Note that RAB can not guarantee that the trained models are dif-
ferentially private, although both aim to decrease the model sensitivity intuitively. A
further empirical defense against backdoor attacks is proposed in [82] using covariance
estimation with the aim of amplifying the spectral signature of backdoored instances.

certified defenses against poisoning attacks Another interesting applica-
tion of randomized smoothing is presented in [184] to certify the robustness against
label-flipping attacks and randomize the entire training procedure of the classifier by
randomly flipping labels in the training set. This work is orthogonal to ours in that we
investigate the robustness with respect to perturbations on the training inputs rather
than labels. BagFlip [276] proposes a robustness guarantee against both feature pertur-
bations and label flips by combining bagging and randomised smoothing. However,
the technique does not scale to large problem sizes due to the requirement of preparing
large lookup tables (O(N2)) for the computation of the certified radius during infer-
ence. In a further line of work on provable defenses against poisoning attacks, [131]
proposes an ensemble method, deep partition aggregation (DPA). Similar to our work,
DPA is related to randomized smoothing, however, in contrast to our work, the goal is
to certify the number of poisoned instances for which the prediction remains unaffected.
Similarly, [107] use an ensemble technique to certify robustness against poisoning at-
tacks. This is also orthogonal to ours as it certifies the number of poisoned instances,
rather than the trigger size. The same certification goal is considered in [108], but is
restricted to nearest neighbor algorithms and derives an intrinsic certificate by view-
ing them as ensemble methods. Drews et al. [49] provide data poisoning robustness
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guarantees for decision-trees by using techniques based on abstract interpretation. In
addition to these works aiming to certify the robustness of a single model, [267] pro-
vides a new way to certify the robustness of an end-to-end sensing-reasoning pipeline.
Finally, [257] propose a technique to certify robustness against backdoor attacks within
the federated learning framework by controlling the global model smoothness. Fur-
thermore, a technical report also proposes to directly apply the randomized smoothing
technique to certify robustness against backdoor attacks without any evaluation or anal-
ysis [233]. In addition, as we will show, directly applying randomized smoothing will
not provide high certified robustness bounds. Contrary to that, here, we first provide a
unified framework based on randomized smoothing, and then propose the RAB robust
training process to provide certified robustness against backdoor attacks based on the
framework. We provide the tightness analysis for the robustness bound, analyze differ-
ent smoothing distributions, and propose the hash function-based model deterministic
test-time augmentation approach to achieve good certified robustness. In addition, we
analyze different ML models with corresponding properties such as model smoothness
to provide guidance to further improve the certified robustness.

6.1.4 Background on Backdoor attacks

A backdoor attack aims to inject “backdoor" patterns into the training set and associate
such patterns with a specific adversarial target (i. e., label). As a result, during testing
time, any test instance with such a pattern will be misclassified as the preselected
adversarial target [34, 76]. ML models with injected backdoors are called backdoored
models and they are typically able to achieve performance similar to clean models on
benign data, making it challenging to detect whether the model has been backdoored.

There are several ways to categorize backdoor attacks. First, based on the adversarial
target design, the attacks can be characterized either as single target attacks or all-to-all
attacks. In a single target attack, the backdoor pattern will cause the poisoned classifier to
always return a designed target label. An all-to-all attack leverages the backdoor pattern
to permute the classifier results. The second categorization is based on different types of
backdoor patterns. There are region based and blending backdoor attacks. In the region based
attack, a specific region of the training instance is manipulated in a subtle way that will
not cause human notification [76, 279]. In particular, it has been shown that such back-
door patterns can be as small as only one or four pixels [223]. On the other hand, Chen
et al. [34] show that by blending the whole instance with a certain pattern such as a
fixed random noise pattern, it is possible to generate effective backdoors to poison the
ML models. In this work, we focus on certifying the robustness against general back-
door attacks, where the attacker is able to add any specific or uncontrollable random
backdoor patterns for arbitrary adversarial targets.

6.1.5 Method Overview

Here we first present the threat model, and then introduce the method overview, where
we define our robustness guarantee.

notation We write random variables as uppercase letters X and use the notation
PX to denote the probability measure induced by X and write fX to denote the prob-
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Figure 3: RAB robust training process. Given a poisoned training set D + ∆ and a training
process A vulnerable to backdoor attacks, RAB generates N smoothed training sets
{Di}i∈[N] and trains N different classifiers Ai.

ability density function. Realizations of random variables are written in lowercase let-
ters. For discrete random variables, we use lowercase letters to denote their probability
mass function, e.g. p(y) for distribution over labels. Feature vectors are taken to be d-
dimensional real vectors x ∈ Rd and the set of labels y for a C-multiclass classification
problem is given by C = {1, . . . , C}. A training set D consists of n (feature, label)-pairs
D = {(x1, y1), . . . , (xn, yn)}. For a dataset D and a collection of n feature vectors
d = {d1, . . . , dn}, we write D+ d to denote the set {(x1 + d1, y1), . . . , (xn + dn, yn)}.
We view a classifier as a deterministic function that takes as input a tuple with a test
instance x and training set D and returns a class label y ∈ C. Formally, given a dataset D
and a test instance x, a classifier h learns a conditional probability distribution p(y| x, D)

over class labels and outputs the label which is deemed most likely under the learned
distribution p:

h(x, D) = arg max
y
p(y| x, D). (57)

We omit the dependence on model parameters throughout this chapter and tacitly as-
sume that the model is optimized based on the training dataset D via some optimization
schemes such as stochastic gradient descent.

threat model An adversary carries out a backdoor attack against a classifier h
and a clean dataset D = {(xi,yi)}. The attacker has in mind a target backdoor pattern
Ωx and a target class ỹ and the adversarial goal is to alter the dataset such that, given a
clean test example x, adding the backdoor pattern to x (i.e., x+Ωx) will alter the classi-
fier output ỹwith high probability. In general, the attack can replace r training instances
(xi, yi) by backdoored instances (xi +Ωx, ỹi). We remark that the attacker could em-
bed distinct patterns to each instance and our result naturally extends to this case. Thus,
summarizing the backdoor patterns as the collection ∆(Ωx) := {δ1, . . . , δr, 0, . . . , 0}, we
formalize a backdoor attack as the transformation (D,Ωx, ỹ)→ DBD(Ωx, ỹ) with

DBD(Ωx, ỹ) = {(xi + δi, ỹi)}ri=1 ∪ {(xi,yi)}ni=r+1 (58)

We often write DBD(Ωx) instead of DBD(Ωx, ỹ) when our focus is on the backdoor
pattern Ωx instead of the target class ỹ. The backdoor attack succeeds on test example
x whenever

h(x+Ωx,DBD(Ωx)) = ỹ (59)
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certification goal One natural goal to defend against the above backdoor attack
is to ensure that the prediction of h(x+Ωx,DBD(Ωx)) is independent of the backdoor
patterns ∆(Ωx) which are present in the dataset, i.e.,

h(x+Ωx,DBD(Ωx)) = h(x+Ωx,DBD(∅)) (60)

where DBD(∅) is the dataset without any embedded backdoor patterns (δi = 0). When
this is true, the attacker obtained no additional information by knowing the pattern Ωx
embedded in the training set. That is to say, given a test instance which may contain
a backdoor pattern, its prediction stays the same, independent of whether the models
were trained with or without backdoors. We assume that the defender has full control
of the training process. See Section 6.6 for more discussions on the assumptions and
limitations of RAB.

robustness certification We aim to obtain a robustness bound R such that,
whenever the sum of the magnitude of backdoors is below R, the prediction of the back-
doored classifier is the same as when the classifier is trained on benign data. Formally, if
DBD(Ωx) denotes the backdoored training set, and D the training set containing clean
features, we say that a classifier is provably robust whenever√√√√ r∑

i=1

∥δi∥22 < R (61)

implies that h(x+Ωx, DBD(Ωx)) = h(x+Ωx, DBD(∅)). Our approach to obtaining the
aforementioned robustness guarantee is based on randomized smoothing, which leads
to the robust RAB training pipeline, as is illustrated in Figure 3. Given a clean dataset
D and a backdoored dataset DBD(Ωx), the goal of the defender is to make sure that the
prediction on test instances embedded with the pattern Ωx is the same as for models
trained with DBD(∅).

Different from randomized smoothing-based certification against evasion attacks,
here it is not enough to only smooth the test instances. Instead, in RAB, we will first add
noise vectors, sampled from a smoothing distribution, to the given training instances,
to obtain a collection of “smoothed" training sets. We subsequently train a model on
each training set and aggregate their final outputs together as the final “smoothed"
prediction. After this process, we show that it is possible to leverage the Neyman Pear-
son lemma to derive a robustness condition for this smoothed RAB training process.
Additionally, the connection with the Neyman Pearson lemma also allows us to prove
that the robustness bound is tight. Note that the RAB framework requires the train-
ing instances to be "smoothed" by a set of independent noises drawn from a certain
distribution.

additional challenges We remark that, within this RAB training and certifi-
cation process, there are several additional challenges. First, after adding noise to the
training data, the clean accuracy of the trained classifier typically drops due to the distri-
bution shift in the training data. To mitigate this problem, we add a deterministic value,
based on the hash of the trained model, to test instances (Section 6.4), which minimizes
the distribution shift and leads to improved accuracy scores. Second, considering differ-
ent smoothing distributions for the training data, we provide rigorous analysis and a
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robustness bound for both Gaussian and uniform smoothing distributions (Section 6.3).
Third, we note that the proposed training process requires sampling a large number of
randomly perturbed training sets. As this is computationally expensive, we propose an
efficient polynomial-time algorithm for KNN classifiers (Section 6.4).

outline The remainder of this chapter is organized as follows. Section 6.2 presents
the proposed general theoretical framework for certifying robustness against evasion
and poisoning attacks, the tightness of the derived robustness bound, and sheds light
on a connection between statistical hypothesis testing and certifiable robustness. Sec-
tion 6.3 explains the proposed approach, RAB, for certifying robustness against back-
door attacks under the general framework with Gaussian and uniform noise distribu-
tions. Section 6.4 analyzes the robustness properties of DNN and KNN classifiers and
presents algorithms to certify robustness for such models. Experimental results are pre-
sented in Section 6.5. Finally, Section 6.6 discusses the limitations of our work and
concludes this chapter.

6.2 unified framework for certified robustness

In this section, we propose a unified theoretical framework for certified robustness
against evasion and poisoning attacks for classification models. Our framework is based
on the intuition that randomizing the prediction or training process will “smoothen"
the final prediction and therefore reduce the vulnerability to adversarial attacks. This
principle has been successfully applied to certifying robustness against evasion attacks
for classification models [39]. We first formally define the notion of a smoothed classi-
fier where we extend upon previous work by randomizing both the test instance and
the training set. We then leverage the Neyman Pearson lemma to derive a generic ro-
bustness condition in Theorem 2 and show that this robustness condition is tight.

smoothed classifiers On a high level, a smoothed classifier g is derived from a
base classifier h by introducing additive noise to the input consisting of test and training
instances. In a nutshell, the intuition behind randomized smoothing classifiers is that
noise reduces the occurrence of regions with high curvature in the decision boundaries,
resulting in reduced vulnerability to adversarial attacks. Recall that a classifier h, here
serving as a base classifier, is defined as h(x, D) = arg maxy p(y| x, D) where p is
learned from a dataset D and defines a conditional probability distribution over labels
y. The final prediction is given by the most likely class under this learned distribution.
A smoothed classifier is defined by

q(y| x, D) = PX,D (h(x+X, D+D) = y) (62)

where we have introduced random variables X ∼ PX and D ∼ PD which act as smooth-
ing distributions and are assumed to be independent. We emphasize that D is a collec-
tion of n independent and identically distributed random variables D(i), each of which
is added to a training instance in D. The final, smoothed classifier then assigns the most
likely class to an instance x under this new, “smoothed" model q, so that

g(x, D) = arg max
y
q(y| x, D). (63)

Within this formulation of a smoothed classifier, we can also model randomized smooth-
ing for defending against evasion attacks by setting the training set noise to be zero, i.e.
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D ≡ 0. We emphasize at this point that the smoothed classifier g implicitly depends on
the choice of noise distributions PX and PD. In Section 6.3 we instantiate this classi-
fier with Gaussian noise and with uniform noise and show how this leads to different
robustness bounds.

a general condition for provable robustness We now derive a tight ro-
bustness condition by drawing a connection between statistical hypothesis testing and
the robustness of classification models subject to adversarial attacks. We allow adver-
saries to conduct an attack on either (i) the test instance x, (ii) the training set D or (iii) a
combined attack on test and training set. The resulting robustness condition is of a general
nature and is expressed in terms of the optimal type II errors for likelihood ratio tests.
We remark that this theorem is a more general version of the result presented in [39],
by extending it to general smoothing distributions and smoothing on the training set.
In Section 6.3 we will show how this result can be used to obtain robustness bound in
terms of Lp-norm bounded backdoor attacks. We show that smoothing on the training
set makes it possible for certifying the robustness against backdoors, and the general
smoothing distribution allows us to explore the robustness bound certified by different
smoothing distributions.

Theorem 2. Let q be the smoothed classifier as in (62) with smoothing distribution Z := (X, D)

with X taking values in Rd and D being a collection of n independent Rd-valued random
variables, D = (D(1), . . . , D(n)). Let Ωx ∈ Rd and let ∆ := (δ1, . . . , δn) for backdoor
patterns δi ∈ Rd. Let yA ∈ C and let pA, pB ∈ [0, 1] such that yA = g(x, D) and

q(yA| x, D) ⩾ pA > pB ⩾ max
y̸=yA

q(y| x, D). (64)

If the optimal type II errors, for testing the null Z ∼ P0 against the alternative Z+ (Ωx, ∆) ∼
P1, satisfy

β∗(1− pA; P0, P1) +β
∗(pB; P0, P1) > 1, (65)

then it is guaranteed that yA = arg maxy q(y| x+Ωx, D+∆).

Proof. The proof of this result is a direct consequence of Lemma 1 applied to the distri-
butions P0 and P1. To see this, note that

q(yA| x, D) = PX,D [h(x+X, D+D) = yA]

= EX,D [1{h(x+X, D+D) = yA}]

⩾ pA.

(66)

Thus, applying Lemma 1 to the function (X, D) 7→ 1{h(x+X, D+D) = yA} and setting
m = pA yields

q(yA| x+Ωx, D+∆) = EX,D [1{h(x+Ωx +X, D+∆+D) = yA}]

⩾ β∗(1− pA; P0, Pq)
(67)

Similarly, applying Lemma 1 to the function (X, D) 7→ 1{h(x+X, D+D) = y}, for any
y ̸= yA, and setting m = pB, yields

q(y| x+Ωx, D+∆) = EX,D [1{h(x+Ωx +X, D+∆+D) = yB}]

⩽ 1−β∗(pB; P0, P1).
(68)
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It follows that whenever

β∗(pB; P0, P1) +β
∗(1− pA; P0, Pq) > 1, (69)

it is guaranteed that yA = arg maxy q(y| x+Ωx, D+∆). This concludes the proof.

We now make some observations about Theorem 2 to get a better intuition on the
robustness condition (65):

• Different smoothing distributions lead to robustness bounds in terms of different
norms. For example, Gaussian noise yields a robustness bound in L2 norm while
Uniform noise leads to other Lp norms.

• The robustness condition (65) does not make any assumption on the underlying
classifier other than on the class probabilities predicted by its smoothed version.

• The random variable Z+ (Ωx, ∆) models a general adversarial attack including
evasion and backdoor attacks.

• If no attack is present, i.e., if (Ωx, ∆) = (0, 0), then we get the trivial condition
pA > pB.

• As pA increases, the optimal type II error increases for the given backdoor (Ωx, ∆).
Thus, in the simplified setup where pA + pB = 1 and the robustness condition
reads β∗(1 − pA; P0, P1) > 1/2, the distribution shift caused by (Ωx, ∆) can
increase. Thus, as the smoothed classifier becomes more confident, the robust
region becomes larger.

While the generality of Theorem 2 allows us to model a multitude of threat models,
it bears the challenge of how one should instantiate this theorem such that it is appli-
cable to defend against a specific adversarial attack. In addition to the flexibility with
regard to the underlying threat model, we are also provided with flexibility regarding
the smoothing distributions, resulting in different robustness guarantees. This again
begs the question, which smoothing distributions result in useful robustness bounds.
In Section 6.3, we will show how this theorem can be applied to obtain the robustness
guarantee against backdoor attacks described in Section 6.1.5.

Next, we show that our robustness condition is tight in the following sense. If (64) is
all that is known about the smoothed classifier g, then there is no perturbation (Ωx,∆)
that violates (65). On the other hand, if (65) is violated, then we can always construct a
smoothed classifier g∗ such that it satisfies the class probabilities (64) but is not robust
against this perturbation. We provide the proof of this result in Section 6.7.1.

Theorem 3. Suppose that 1 ⩾ pA + pB ⩾ 1− (C− 2) · pB where C is the number of classes.
If the adversarial perturbations (Ωx, ∆) violate (65), then there exists a base classifier h∗ such
that the smoothed classifer g∗ is consistent with the class probabilities (64) and for which g∗(x+
Ωx, D+∆) ̸= yA.

6.3 provable robustness against backdoor attacks

It is not straightforward to use the result from Theorem 2 to get a robustness certificate
against backdoor attacks in terms of Lp-norm bounded backdoor patterns. In this sec-
tion, we aim to answer the question: how can we instantiate this result to obtain robustness
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guarantees against backdoor attacks? In particular, we show that by leveraging Theorem 2,
we obtain the robustness guarantee defined in Section 6.1.5. To that end, we derive
robustness bounds for smoothing with isotropic Gaussian noise and we also illustrate
how to derive certification bounds using other smoothing distributions. Since isotropic
Gaussian noise leads to a better radius, we will use this distribution in our experiments
as a demonstration.

6.3.1 Method Outline

Suppose that we are given a base classifier that has been trained on a backdoored dataset
that contains r training samples which are infected with backdoor patterns ∆(Ωx). Our
goal is to derive a condition on the backdoor patterns ∆(Ωx) such that the prediction
for x+Ωx with a classifier trained on the backdoored dataset DBD(∆(Ωx)) is the same
as the prediction (on the same input) that a smoothed classifier would have made, had
it been trained on a dataset without the backdoor triggers, DBD(∅). In other words,
we obtain the guarantee that an attacker can not achieve their goal of systematically leading
the test instance with the backdoor pattern to the adversarial target, meaning they will al-
ways obtain the same prediction as long as the added pattern δ satisfies the robustness
conditions (i. e., bounded magnitude).

6.3.1.1 Gaussian Smoothing

We obtain this certificate by instantiating Theorem 2 in the following way. Suppose
an attacker injects backdoor patterns ∆(Ωx) = {δ1, . . . , δr} ⊂ Rd to r ⩽ n training
instances of the training set D, yielding the backdoored training set DBD(∆(Ωx)). We
then train the base classifier on this poisoned dataset, augmented with additional noise
on the feature vectors DBD(∆(Ωx)) +D, where D is the smoothing noise added to
the training features. We obtain a prediction of the smoothed classifier g by taking
the expectation with respect to the distribution of the smoothing noise D. Suppose
that the smoothed classifier obtained in this way predicts a malicious instance x +
Ωx to be of a certain class with probability at least pA and the runner-up class with
probability at most pB. Our result tells us that, as long as the introduced patterns
satisfy condition (65), we get the guarantee that the malicious test input would have
been classified equally as when the classifier had been trained on the dataset with
clean features DBD(∅). In the case where the noise variables are isotropic Gaussians
with standard deviation σ, the condition (65) yields a robustness bound in terms of the
sum of L2-norms of the backdoors.

Corollary 1 (Gaussian Smoothing). Let ∆ = (δ1, . . . , δn) and Ωx be Rd-valued backdoor
patterns and let D be a training set. Suppose that for each i, the smoothing noise on the training

features is D(i) iid∼ N(0, σ21d). Let yA ∈ C such that yA = g(x+Ωx, D+ ∆) with class
probabilities satisfying

q(yA| x+Ωx, D+∆) ⩾ pA > pB ⩾ max
y̸=yA

q(y| x+Ωx, D+∆). (70)

Then, if the backdoor patterns are bounded by√√√√ n∑
i=1

∥δi∥22 <
σ

2

(
Φ−1(pA) −Φ

−1(pB)
)

, (71)
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it is guaranteed yA = g(x+Ωx, D) = g(x+Ωx, D+∆).

This result shows that, whenever the norms of the backdoor patterns are below a
certain value, we obtain the guarantee that the classifier makes the same prediction on
the test data with backdoors as it does when trained without embedded patterns in the
training set. We can further simplify the robustness bound in (71) if we can assume that
an attacker poisons at most r ⩽ n training instances with one single pattern δ. In this
case, the bound (71) is given by

∥δ∥2 <
σ

2
√
r

(
Φ−1(pA) −Φ

−1(pB)
)

. (72)

We see that, as we know more about the capabilities of an attacker and the nature of
the backdoor patterns, we are able to certify a larger robustness radius, proportional to
1/
√
r.

6.3.2 Other Smoothing Distributions

Given the generality of our framework, it is possible to derive certification bounds us-
ing other smoothing distributions. However, different smoothing distributions lead to
vastly different performance and a comparative study among different smoothing dis-
tributions is interesting future work. Here, we will illustrate one example of smoothing
using a uniform distribution.

Corollary 2 (Uniform Smoothing). Let ∆ = (δ1, . . . , δn) and Ωx be Rd valued backdoor
patterns and let D be a training set. Suppose that for each i, the smoothing noise on the training

features is D(i) iid∼ U([a, b]). Let yA ∈ C such that yA = g(x +Ωx, D + ∆) with class
probabilities satisfying

q(yA| x+Ωx, D+∆) ⩾ pA > pB ⩾ max
y̸=yA

q(y| x+Ωx, D+∆). (73)

Then, if the backdoor patterns satisfy

1−

(
pA − pB

2

)
<

n∏
i=1

 d∏
j=1

(
1−

|δi,j|

b− a

)
+

 (74)

where (x)+ = max{x, 0}, it is guaranteed that yA = g(x+Ωx, D) = g(x+Ωx, D+∆).

As in the Gaussian case, the robustness bound in (74) can again be simplified in a
similar fashion, if we assume that an attacker poisons at most r ⩽ n training instances
with one single pattern δ. In this case, the bound (74) is given by

1−

(
pA − pB

2

)
<

 d∏
j=1

(
1−

∣∣δj∣∣
b− a

)
+

r . (75)

We see again that, as the number of infected training samples r gets smaller, this corre-
sponds to a larger bound since the RHS of (75) gets larger. In other words, if we know
that the attacker injects fewer backdoors, then we can certify a backdoor pattern with a
larger magnitude.
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Algorithm 1 DNN-RAB for training certifiably robust DNNs.

Require: Poisoned training dataset D = {(xi + δi, ỹi)ni=1}, noise scale σ, model number
N

1: for k = 1, . . . ,N do

2: Sample ϵk,1, . . . , ϵk,n
iid
∼ N(0,σ21d).

3: Dk = {(xi + δi + ϵk,i, ỹi)ni=1}.
4: hk = train_model(Dk).
5: Sample uk from N(0,σ21d) deterministically with random seed based on

hash(hk).
6: end for
7: return Model collection {(h1, u1), . . . , (hN, uN)}

discussion. We emphasize that we focus on protecting the system against attackers
who aim to trigger a targeted error with a specific backdoor pattern. The system can
still be vulnerable to other types of poisoning attacks. One such example is the label
flipping attack, in which one flips the labels of a subset of examples while keeping
the features untouched. Interestingly, one concurrent work explored the possibility of
using randomized smoothing to defend against label flipping attacks [184]. Developing
a single framework to be robust against both backdoor and label flipping attacks is
an exciting future direction, and we expect it to require nontrivial extensions of both
approaches to achieve non-trivial certified accuracy. Furthermore, while we focus the
experiments on Gaussian smoothing and L2-norm guarantees, it is in principle possible
to certify other Lp-norms with different smoothing distributions. Indeed, for evasion
attacks, in Chapter 7, we use exponential smoothing noise with certificates in L1-norm.

6.4 instantiating the framework with specific ml models

In the preceding sections, we presented our approach to certifying robustness against
backdoor attacks. Here, we will analyze and provide detailed algorithms for the RAB
training pipeline for two types of ML models: deep neural networks and K-nearest
neighbor classifiers. The success of backdoor poisoning attacks against DNNs has caused
a lot of attention recently. Thus, we first aim to evaluate and certify the robustness of
DNNs against backdoor attacks. Secondly, given the fact that KNN models have been
widely applied in different applications, either based on raw data or on trained embed-
dings, it is of great interest to know about the robustness for this type of ML models.
Specifically, we are inspired by a result from [109] and develop an exact efficient smooth-
ing algorithm for KNN models, such that we do not need to draw a large number of
random samples from the smoothing distribution for these models. This makes our ap-
proach considerably more practical for KNNs since it avoids the expensive training of a
large number of models, as is required with generic classification algorithms including
DNNs.

6.4.1 Deep Neural Networks

In this section, we consider smoothed models which use DNNs as base classifiers. For
a given test input xtest, the goal is to calculate the prediction of g on (xtest,D+ ∆)
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Algorithm 2 Certified inference with RAB-trained models.

Require: Test sample x, noise scale σ, models {(hk, uk)}Nk=1, backdoor magnitude ∥δ∥2,
number of poisoned training samples r

1: counts = |{k : hk(x+ uk, D+ ϵk) = y}| for y = 1, . . . , C
2: yA, yB = top two indices in counts

3: nA, nB = counts[yA], counts[yB]
4: pA,pB = calculate_bound(nA,nB,N,α).
5: if pA > pB then
6: R = σ

2
√
r

(
Φ−1(pA) −Φ

−1(pB)
)

7: if R ⩾ ∥δ∥2 then
8: return prediction yA, robust radius R.
9: end if

10: end if
11: return ABSTAIN

according to Corollary 1 and the corresponding certified bound given in the right hand
side of Eq. (71). In the following, we first describe the training process and then the
inference algorithm.

6.4.1.1 RAB Training for DNNs

First, we draw N samples d1, . . . , dN from the distribution of

D ∼

n∏
i=1

N(0, σ21d). (76)

Given the N samples of training noise (each consisting of |D| = n noise vectors), we
train N DNN models on the datasets D + dk for k = 1, . . . , N and obtain classifiers
h1, . . . , hN. Along with each model hk, we draw a random noise uk from N(0, σ21d)
with a random seed based on the hash of the trained model file. This noise vector is
stored along with the model parameters and added to each test input during inference.
The reason for this is that, empirically, we observed that inputting test samples without
this additional augmentation leads to poor prediction performance since the ensemble
of models {h1, . . . , hN} has to classify an input that has not been perturbed by Gaussian
noise, while it has only “seen“ noisy samples, leading to a mismatch between training
and test distributions. Algorithm 1 shows the pseudocode describing RAB-training for
DNN models.

6.4.1.2 Inference

To get the prediction of the smoothed classifier on a test sample xtest we first compute
the empirical majority vote as an unbiased estimate

q̂(y| x, D) =
|{k : hk(xtest + uk, D+ dk) = y}|

N
(77)

of the class probabilities and where uk is the (model-) deterministic noise vector sam-
pled during training in Algorithm 1. Second, for a given error tolerance α, we compute
pA and pB using one-sided (1−α) lower confidence intervals for the binomial distribu-
tion with parameters nA and nB andN samples. Finally, we invoke Corollary 1 and first
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compute the robust radius according to Eq. (72), based on pA, pB the smoothing noise
parameter σ and the number of poisoned training samples r. If the resulting radius
R is larger than the magnitude of the backdoor samples δ, the prediction is certified,
i.e. the backdoor attack has failed on this particular sample. Algorithm 2 shows the
pseudocode for the DNN inference with RAB.

6.4.1.3 Model-deterministic Test-time Augmentation

One caveat in directly applying Equation (77) is the mismatch of the training and test
distribution — during training, all examples are perturbed with sampled noise, whereas
the test example is without noise. In practice, we see that this mismatch significantly
decreases the test accuracy. One natural idea is to also add noise to the test examples,
however, this requires careful design (e.g., simply drawing k independent noise vectors
and applying them to (77) will lead to a less powerful bound). We thus modify the
inference function given a learned model hk in the following way. Instead of directly
classifying an unperturbed input xtest, we use the hash value of the trained hk model
parameters as the random seed and sample uk ∼ Nhash(hk)(0,σ

21d). In practice, we
use SHA256 hashing[249] of the trained model file. In this way, the noise we add is
a deterministic function of the trained model, which is equivalent to altering the in-
ference function in a deterministic way, h̃k(xtest) = hk(xtest + uk). We show in the
experiments that this leads to significantly better prediction performance in practice.
Note that the reason for using a hash function instead of random sampling every time
is to ensure that the noise generation process is deterministic, so the choice of different
hash functions is flexible.

6.4.2 K-Nearest Neighbors

If the base classifier h is a K-nearest neighbor classifier, we can evaluate the correspond-
ing smoothed classifier exactly and efficiently, in polynomial time, if the smoothing
noise is drawn from a Gaussian distribution. In other words, for this type of model,
we can eliminate the need to approximate the expectation value via Monte Carlo sam-
pling and evaluate the classifier exactly. Finally, it is worth remarking that bypassing
the need to do Monte Carlo sampling ultimately results in a considerable speed-up as it
avoids the expensive training of independent models as is required for generic models
including DNNs.

A KNN classifier works in the following way: Given a training set D = {(xi, yi)ni=1}
and a test example x, we first calculate the similarity between x and each xi, si :=

κ(xi, x) where κ is a similarity function. Given all these similarity scores {si}i, we choose
the K most similar training examples with the largest similarity score {xσi}

K
i=1 along

with corresponding labels {yσi}
K
i=1. The final prediction is made according to a majority

vote among the top-K labels.
Similar to DNNs, we obtain a smoothed KNN classifier by adding Gaussian noise to

training points and evaluate the expectation with respect to this noise distribution

q(y| x, D) = P (KNN(x, D+D) = y) (78)

where D = (D(1), . . . , D(n)) ∼
∏n
i=1N(0, σ21d). The next theorem shows that (78) can

be computed exactly and efficiently when we measure the similarity with euclidean
distance quantized into finite number similarity of levels.



48 provable robustness against backdoor attacks

Theorem 4. Given n training instances, a C-multiclass KNN classifier based on quantized
euclidean distance with L similarity levels, smoothed with isotropic Gaussian noise can be eval-
uated exactly with complexity O(K2+C ·n2 · L ·C).

Proof (sketch). The first step to computing (78) is to notice that we can summarize all
possible arrangements {xσi +D

(σi)}Ki=1 of top-K instances leading to a prediction by
using tally vectors γ ∈ [K]C. A tally vector has as its k-th element the number of
instances in the top-K with label k, γk = #{yσi = k}. In the second step, we partition
the event that a tally vector γ occurs into events where an instance i with similarity
β is in the top-K but would not be in the top-(K− 1). These first two steps result in a
summation over O(KC · n · L · C) terms. In the last step, we compute the probabilities
of the events {tallyγ ∧ κ(xi +D

(i), x) = β} with dynamic programming in O(n · K2)
steps, resulting in a final time complexity of O(K2+C ·n2 · L ·C).

If K = 1, an efficient algorithm can even achieve time complexity linear in the number
of training samples n. We refer the reader to Section 6.7.4 for details and the algorithm.

6.5 experiments

In this section, we present an extensive experimental evaluation of our approach and
provide a benchmark for certified robustness for DNN and KNN classifiers on differ-
ent datasets. In addition, we consider three different types of backdoor attack patterns,
namely one-pixel, four-pixel, and blending-based attacks. The attack patterns are illus-
trated in Figure 4 which shows that these patterns can be hard to spot by a human,
in particular for the one-pixel pattern on high-resolution images. At a high level, our
experiments reveal the following set of observations: 1

• RAB is able to achieve comparable robustness on benign instances compared with
vanilla trained models, and achieves non-trivial certified accuracy under a range of
realistic backdoor attack settings.

• There is a gap between the certified accuracy provided by RAB and empirical
robust accuracy achieved by the state-of-the-art empirical defenses against back-
door attacks without formal guarantees, which serves as the upper bound of the
certified accuracy; however, such a gap is reasonably small and we are optimistic
that future research can further close this gap.

• RAB’s efficient KNN algorithm provides a very effective solution for tabular data.

• Simply applying randomized smoothing to RAB is not effective and careful opti-
mizations (e.g., deterministic test-time augmentation) are necessary.

6.5.1 Experiment Setup

We follow the popular transfer learning setting for poisoning attacks [76, 186, 193, 196,
280] in our experiments, specifically [194]. We first use models initialized with pre-
trained weights obtained from a clean dataset, and then finetune the model with a
subset of training data containing backdoored instances. Preliminary experiments and

1 Our code is available at https://github.com/AI-secure/Robustness-Against-Backdoor-Attacks

https://github.com/AI-secure/Robustness-Against-Backdoor-Attacks
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existing work [238] showed that it is difficult to successfully inject backdoors if only
a subset of parameters is finetuned. As a result, we always finetune the entire set of
model parameters.

datasets and model We consider four different datasets, namely the MNIST
dataset [127] consisting of 60,000 images of handwritten digits from 0-9, the CIFAR-
10 dataset[120] which includes 50,000 images of 10 different classes of natural objects
such as horse, airplane, automobile, etc. Furthermore, we perform evaluations on the
high-resolution ImageNette dataset [99] which is a 10-class subset of the original large-
scale ImageNet dataset [47]. Finally, we evaluate the KNN model on a tabular dataset,
namely the UCI Spambase dataset [51], which consists of bag-of-words feature vectors
on E-mails and determines whether the message is spam or not. The dataset contains
4,601 data cases, each of which is a 57-dimensional input. We use 0.1% of the MNIST
and CIFAR-10 training data to finetune our models; on ImageNette and Spambase,
we use 1% for finetuning. For evaluations on DNNs, we choose the CNN architecture
from [75] on MNIST and the ResNet used in [39] on CIFAR-10, whereas for ImageNette,
we use the standard ResNet-18 [85] architecture.

training protocol We set the number of sampled noise vectors (i.e. augmented
datasets) to N = 1, 000 on MNIST and CIFAR, and N = 200 on ImageNette, leading
to an ensemble of 1, 000 and 200 models, respectively. The added smoothing noise is
sampled from the Gaussian distribution with location parameter µ = 0 and scale σ = 0.5
for MNIST and Spambase. For CIFAR-10 and ImageNette we use µ = 0 and set the scale
to σ = 0.2. The impact of different σ is shown in Section 6.5.2.4. The confidence intervals
for the binomial distribution are calculated with an error rate of α = 0.001. For the KNN

models, we use K = 3 neighbors and set the number of similarity levels to L = 200,
meaning that the similarity scores according to euclidean distance are quantized into
200 distinct levels.

baselines of empirical backdoor removal based defenses Since this is
the first work providing rigorous certified robustness against backdoor attacks, there
is no baseline that allows a fair comparison of the certified accuracy. We remark that
a technical report [233] directly applies the randomized smoothing technique to cer-
tify robustness against backdoors without evaluation or analysis. However, as we will
show in Section 6.5.2.5, directly applying randomized smoothing without determinis-
tic test-time augmentation does not provide high certified robustness. We will, on the
other hand, compare our empirical robust accuracy with the state-of-the-art empirical
defenses. We briefly review these defenses in the following.

Activation clustering (AC) [32] extracts the activation of the last hidden layer of a
trained model and uses clustering analysis to remove training instances with anoma-
lies. We use the default parameter setting provided in the Adversarial Robustness Tool-
box (ART) [165]. Spectral Signature (Spectral) [223] uses matrix decomposition on the
feature representations to detect and remove training instances with anomalies. We
again use the default parameter setting provided in ART. Sphere [207] performs di-
mensionality reduction and removes instances with anomalies in the lower dimensions.
The top-15% anomaly instances are removed. Neural Cleanse (NC) [234] first reverse-
engineers a “pseudo-trigger” for each class. Then, to detect and remove anomaly in-
stances, the distances between each instance with and without the pseudo-trigger are
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compared, and the most similar ones are recognized as anomaly instances. We use
pixel-level distance as the distance metric, 100 epochs for trigger generation, and an
initial λ = 0.01 for MNIST and λ = 0.0001 for CIFAR and ImageNette. Statistical Con-
tamination Analyzer (SCAn) [215] first performs an expectation minimization algorithm
to decompose two subgroups over a small clean dataset. Then, for each class in the
train set, the parameters of a mixture model for all the data are estimated, before we
calculate the likelihood for anomaly detection. To identify the backdoored instances, we
recognize the smaller set in the most anomalous class as the backdoored instances. For
Mixup [18], following their data augmentation technique, we use a 4-way mixup train-
ing algorithm to train the model over the train set. The convex coefficients are drawn
from a Dirichlet distribution with α = 1.0.

The initial goal of all these approaches, with the exception of Mixup, is to detect
backdoored instances, i.e., to determine whether there exists a trigger. To apply them
as a defense (i.e., to train a clean model despite the existence of backdoored data), we
make adaptations either following the original paper (AC, Spectral, Sphere and NC) or
by our design (SCAn) so that we remove training data with anomalies detected by these
approaches and retrain a clean model. Some detection cannot be adapted to the defense
task, such as [262], and are not included in the comparison.

evaluation metrics We evaluate the model accuracy trained on the backdoored
dataset with vanilla training and RAB training strategies. In particular, we evaluate
both the model performance on benign instances (benign accuracy) and backdoored
instances for which the attack was successful against the vanilla model (empirical ro-
bust accuracy). With RAB, we are also able to calculate the certified accuracy, which
means that the RAB model not only certifies that the prediction is the same as if it were
trained on the clean dataset, but also that the prediction is equal to the ground truth.
The certified accuracy is defined below.

Certified Acc. =
1

n
|{xi : Ri > ∥δ∥2 ∧ ŷi = yi}| (79)

where Ri is the robus radius according to (71), ŷi is the predicted label, and yi is the
ground truth for input xi.

We emphasize that we only evaluate the backdoored test instances for which the
attack is successful against the vanilla trained models, which is why the vanilla mod-
els always have 0% empirical robust accuracy on these backdoored instances in Table 1.
This is to evaluate against the effective backdoor attacks and better illustrate the compar-
ison between RAB-trained models with vanilla and baseline backdoor defense models
(empirical robust accuracy). Such empirical robust accuracy of different methods serves
as an upper bound for the certified accuracy.

backdoor patterns We evaluate RAB against three representative backdoor at-
tacks, namely a one-pixel pattern in the middle of the image, a four-pixel pattern, and
blending a random, but fixed, noise pattern to the entire image [34]. We visualize all
backdoor patterns on different datasets in Figure 4. We control the perturbation mag-
nitude of the attack via the L2-norm of the backdoor patterns, setting ∥δ∥2 = 0.1 for
all attacks where δ is the backdoor pattern. On MNIST, we inject 10% backdoored in-
stances and 5% for CIFAR and ImageNette respectively. If not described differently, the
attack goal is to fool the model into predicting 0 on MNIST, airplane on CIFAR and
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Figure 4: Illustrations of the applied backdoor patterns.

Table 1: Evaluation on DNNs with different datasets. We use σ = 0.5 for MNIST and σ = 0.2 for
CIFAR-10 and ImageNette. Vanilla denotes DNNs without RAB training and RAB-cert
is the certified accuracy of RAB. The highest empirical robust accuracies are bolded.
The robust accuracy scores are evaluated only on successfully backdoored instances.

Backdoor
Pattern

Acc. on Benign Instances Empirical Robust Acc. Certified Robust Acc.

Vanilla RAB Vanilla RAB AC [32] Spectral [223] Sphere [207] NC [234] SCAn [215] Mixup [18] RAB-cert

MNIST
One-pixel 92.7% 92.6% 0% 41.2% 64.3% 3.4% 3.1% 76.2% 45.6% 34.5% 23.5%

Four-pixel 92.7% 92.6% 0% 40.7% 56.9% 2.8% 2.1% 79.9% 45.4% 33.2% 24.1%

Blending 92.9% 92.6% 0% 39.6% 63.6% 3.0% 1.8% 63.0% 44.7% 28.3% 23.1%

CIFAR-10

One-pixel 59.9% 56.7% 0% 42.9% 31.4% 31.2% 16.5% 15.7% 12.9% 26.5% 24.5%

Four-pixel 59.4% 56.8% 0% 42.8% 28.9% 31.4% 15.0% 16.8% 16.5% 31.8% 24.1%

Blending 60.5% 56.8% 0% 42.8% 27.4% 28.0% 16.5% 16.6% 15.8% 30.0% 24.1%

ImageNette
One-pixel 93.0% 91.6% 0% 38.6% 44.7% 47.8% 29.6% 69.9% 35.2% 55.1% 15.9%

Four-pixel 93.7% 91.5% 0% 38.4% 54.2% 52.8% 42.1% 67.9% 49.7% 51.6% 12.6%

Blending 94.8% 91.8% 0% 29.9% 46.3% 18.4% 31.0% 66.7% 33.3% 56.3% 9.2%

tench on ImageNette. In Section C.1, we also consider an all-to-all attack goal [75] so
that the fooled model will change its prediction conditioned on the original label.

It is possible to use different backdoor patterns via optimization and other approaches.
However, since our goal is to provide certified robustness against backdoor attacks, a
task that is by definition agnostic to the specific backdoor pattern but only depends
on the magnitude of the pattern and the number of backdoored training instances, we
mainly focus on these representative backdoor patterns. In addition, we only evaluate
the backdoor attack to poison the dataset, while other attacks that interfere with the
training process are not evaluated [180], as RAB is a robust training pipeline against
training data manipulation based poisoning attacks.

6.5.2 Deep Neural Networks

In this section we evaluate RAB against backdoor attacks on different models and
datasets. We present both the certified robust accuracy of RAB, as well we the em-
pirical robust accuracy comparison between RAB and baseline defenses. Furthermore,
we also present several ablation studies to further explore the properties of RAB.
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Table 2: Evaluation on KNNs with K = 3 on the UCI Spambase tabular dataset. We use σ = 0.5
for Spam. Vanilla denotes DNNs without RAB training and RAB-cert is the certified ac-
curacy of RAB. The highest empirical robust accuracies are bolded. The robust accuracy
scores are evaluated only on successfully backdoored instances.

Backdoor
Pattern

Accuracy on Benign Instances Empirical Robust Acc. Certified Robust Acc.

Vanilla RAB Vanilla RAB AC [32] Spectral [223] Sphere [207] SCAn [215] RAB-cert

UCI Spambase
One-pixel 98.7% 98.4% 0% 54.6% 9.0% 9.6% 2.4% 10.5% 36.4%

Four-pixel 98.7% 98.4% 0% 50.0% 9.6% 9.6% 3.0% 11.2% 33.3%

Blending 98.7% 98.4% 0% 58.3% 8.1% 8.1% 1.7% 9.9% 41.7%

6.5.2.1 Certified Robustness with RAB

We first evaluate the certified robustness of RAB on DNNs against different backdoor
patterns on different datasets. We also present the performance of RAB on benign in-
stances and backdoored instances empirically. Table 1 lists the benchmark results on
MNIST, CIFAR-10, and ImageNette, respectively. From the results, we can see that RAB
achieves significantly non-trivial certified robust accuracy against backdoor attacks at
a negligible cost of benign accuracy; while there are no certified results for any other
method. The slight drop in benign accuracy results from training on noisy instances.
However, this loss in benign accuracy is less than 3% in most cases and is clearly out-
weighed by the achieved certified robust accuracy. In particular, RAB achieves over 23%
certified accuracy on the backdoored instances for MNIST and CIFAR-10, and around
12% for ImageNette. In other words, we can successfully certify for these instances that
our model predicts the same result as if it were trained on the clean training set. We run
the experiment multiple times and show in Section C.3 that the standard deviation is
less than 1% in most cases. We also show the abstain rate of certification in Section C.3
and observe that it is generally low. If the abstain rate is high, we can perform in a
similar way as in [39] to obtain a variation of our theorem to certify the radius by some
margin.

6.5.2.2 Empirical Robustness: without RAB vs. with RAB

In addition to the certificates that RAB can provide, the RAB training process also pro-
vides good robust accuracy empirically, without theoretical guarantees. In Table 1, the
“RAB" column reports the empirical robust accuracy — how often can a malicious input
that successfully attacks a vanilla model trick RAB? We can see that, RAB achieves high em-
pirical robust accuracy, and such empirical robust accuracy achieved by either RAB or
other methods serves as an upper bound for the certified robust accuracy provided by
RAB under the “RAB-certified" column. It is shown that RAB achieves around 40% em-
pirical robust accuracy on the backdoored instances for MNIST and CIFAR-10, and over
30% for ImageNette. In Section C.1, we also evaluate an empirical adversarial attack on
the RAB model and observe a similar behavior as for vanilla models.

6.5.2.3 Comparison with State-of-the-art Empirical Backdoor Defenses

Another line of research is to develop empirical methods to automatically detect and
remove backdoored training instances. How does RAB compare with these methods? We
empirically compare the robustness of RAB with other state-of-the-art baseline meth-
ods introduced in Section 6.5.1, as shown in Table 1. we observe that although RAB is
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not specifically designed for empirical defense, it achieves comparable empirical robust
accuracy compared with these baseline methods. RAB outperforms about half of the
baselines methods on MNIST and ImageNette and all the baselines on CIFAR-10. In-
terestingly, our approach performs better on CIFAR-10 than on other tasks while other
baselines usually perform badly on CIFAR-10. We attribute this observation to the fact
that the benign accuracy on CIFAR-10 is comparably low, so that the baselines based on
analyzing feature representations or on model reverse engineering are largely affected
and the performance is thus worse. By comparison, RAB only needs to add noise to
smooth the training process without analyzing model properties, and is hence less af-
fected by the model itself (similarly, the performance of Mixup is less affected too).

In Section C.1, we additionally evaluate the defenses against a more challenging
all-to-all attack where many baseline approaches fail, and RAB still achieves good per-
formance. We also show that our approach can be applied to an SVM model for three
tabular datasets in Section C.2, while existing approaches cannot work well since there
is no distinct “activation layer” in a simple SVM model. Furthermore, for very large
attack perturbations, the certification will fail as shown in Section C.1; however, RAB
still achieves non-trivial empirical robustness.

6.5.2.4 Certified Accuracy Under different Radii

We further discuss how different certified radii affect the certified accuracy. In Figure 5,
we present the certified accuracy as a function of the robust radius given different
values for the smoothing parameter σ against blending attack. The conclusions on other
backdoor patterns are similar.

In the figures, we plot the certified accuracy of all test cases (instead of only on
successfully attacked cases) so that the overall trend can be seen. We can see that the
certified accuracy decreases with increased radii and, at a certain point, it suddenly
goes to zero, which aligns with existing observations on certified robustness against
evasion attacks [39]. Furthermore, stronger noise harms the certified accuracy at a small
radius, while improving it at a larger robust radius. It is thus essential to choose an
appropriate smoothing noise magnitude according to the task. The certified accuracy
of KNN is comparatively low due to its simple structure, but it achieves non-trivial
certified accuracy at a larger radius as we do not need Monte Carlo sampling which
would result in a finite sampling error that decreases the certified robustness.

6.5.2.5 Ablation Study: Impact of Deterministic Test-time Augmentation

We compare the certification accuracy of RAB with and without deterministic test-time
augmentation in Figure 6. We plot the certified accuracy of all test cases instead of
only on successfully attacked cases to show the comparison on the entire dataset. We
observe that the certified accuracy significantly improves with the proposed hash func-
tion based deterministic test-time augmentation, especially at small certification radii
and with a particularly large gap on ImageNette dataset — without the augmentation,
the certified accuracy is only around 20%, while it increases to around 80% with the
augmentation. This shows that it is important to include the test-time augmentation
during inference, and directly adopting randomized smoothing may not provide sat-
isfactory certified accuracy. The detailed empirical and certified robust accuracies are
shown in Section C.3.
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Figure 5: Certified accuracy of DNN and KNN at different radii with different smoothing param-
eters σ against blending attack.

6.5.3 K-Nearest Neighbors

Here we present the benchmarks based on our proposed efficient algorithm for KNN

models. We perform experiments on the UCI spambase tabular datasets and show the
results for K = 3 in Table 2. The NC baseline relies on gradient-based reverse engi-
neering, while Mixup relies on mixing label information during training, so these two
methods are not included here. The other baselines use intermediate feature vectors in
DNN models, which do not exist in KNN models. Therefore, we use the output prediction
vector as the feature vector. From the results, we see that for KNN models, RAB achieves
good performance for both empirical and certified robustness and outperforms all the
baselines, indicating its advantages for specific domains.

This comparison might seem unfair at first glance, since the considered baselines
are based on deep feature representations, which are absent in the KNN case. However,
firstly, we emphasize that none of the approaches, including RAB, use deep features for
this comparison and have hence access to the same amount of information. Secondly,
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Figure 6: Comparison of the certified accuracy at different radii with and without the proposed
deterministic test-time augmentation. The accuracy is evaluated against blending at-
tack with smoothing parameter σ = 0.2.
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Figure 7: RAB runtime analysis.

this comparison reveals an important property of our approach: while the baselines
struggle to handle ML models beyond DNN, RAB is applicable to a wider range of
models and still yields non-trivial empirical and certified robust accuracy. To enable
a comparison for KNN models which is more favorable to the baselines, we consider
kernel KNN with a CNN as the kernel function. From the table in Section C.2, we see
that for this scenario, some baselines indeed outperform RAB.

Figure 7 illustrates the runtime of the exact algorithm for KNN vs. the sampling-based
method of DNN. We observe that for certifying one input on KNN with K = 3 neighbors,
using the proposed exact certification algorithm takes only 2.5 seconds, which is around
2-3 times faster than the vanilla RAB on MNIST and 6-7 times faster on CIFAR-10. In
addition, the runtime is agnostic to the input size but related to the size of the training
set. It would be interesting future work to design similar efficient certification algo-
rithms for DNNs. Nevertheless, the KNN algorithm remains slower than the algorithm
without certification (which is 1000 times faster than the RAB DNN pipeline), and the
improvement of running time is an important future direction.

6.6 conclusion

In this chapter, we have provided theoretical results and practical techniques to certify
robustness against backdoor attacks. These results were first enabled by an instantia-
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tion of Lemma 1, and required careful further analysis and modifications to provide
non-trivial guarantees in practice. Based on these modifications, we have proposed the
RAB pipeline, enabling both a heuristic and certified defense mechanism against back-
door attacks. We have validated this pipeline for DNN and KNN models and provided
comprehensive benchmarks of certified model robustness against backdoor attacks on
diverse datasets.

While these contributions provide first steps towards provable robustness during
the model development stage, and answered our first research question in the affir-
mative, the approach is not without its limitations. Indeed, perhaps the most signifi-
cant limitation of RAB is that it introduces non-negligible compute requirements. To
certify the robustness, we need to train and evaluate multiple models (here, 1000 for
MNIST/CIFAR-10 and 200 for ImageNette), which is expensive despite the fact that
it is parallelizable and can be accelerated with multiple GPUs. Nevertheless, with our
polynomial-time KNN algorithm, we have shown a first step towards mitigating the com-
putational cost and leave further endeavors in this direction as future work. Another
limitation is the defender’s knowledge of the attack. Indeed, to certify the robustness,
the defender needs to know 1) an upper bound on the backdoor trigger magnitude (in
terms of an Lp norm), 2) an upper bound on the number of poisoned training instances,
and, 3) control over the training process. However, to use RAB only as a defense (i.e.
without any certificate), the defender only needs to control the training process while
1) and 2) are not needed. The assumption 3) restricts RAB to be a robust training al-
gorithm given an untrusted dataset. In other words, RAB cannot be used to defend
against backdoor attacks that interfere with the training process (e.g., [180]).

6.7 proofs

Here we provide the proofs for the results stated in the previous sections. We write
α(ϕ) = α(ϕ; P0) and β(ϕ) = β(ϕ; P0, P1) for type-I and -II error probabilities.

6.7.1 Proof of Theorem 3

Proof. We show tightness by constructing a base classifier h∗, such that the smoothed
classifier is consistent with the class probabilities (64) for a given (fixed) input (x0, D0)
but whose smoothed version is not robust for adversarial perturbations (Ωx, ∆) that
violate (65). Let ϕA and ϕB be two likelihood ratio tests for testing the null Z ∼ P0

against the alternative Z+ (Ωx, ∆) ∼ P1 and let ϕA be such that α(ϕA) = 1− pA and
ϕB such that α(ϕB) = pB. Since (Ωx, ∆) violates (65), we have that β(ϕA) +β(ϕB) ⩽ 1.
Let p∗ be given by

p∗(y| x, D) =


1−ϕA(x− x0, D−D0) y = yA

ϕB(x− x0, D−D0) y = yB
1−p∗(yA|x,D)−p(yB|x,D)

C−2 o.w.

(80)

where the notation D−D0 denotes subtraction on the features but not on the labels.
Note that for binary classification, C = 2 we have that ϕA = ϕB and hence p∗ is well
defined since in this case, by assumption pA + pB = 1. If C > 2, note that it follows
immediately from the definition of p∗ that

∑
k p

∗(y| x, D) = 1. Not that we have (point-
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wise) ϕA ⩾ ϕB provided that pA + pB ⩽ 1. It follows that for y ̸= yA, yB we have
p∗(y| x, D) ∝ ϕA−ϕB ⩾ 0. Thus, p∗ is a well defined (conditional) probability distribu-
tion over labels and h∗(x, D) := arg maxy p∗(y| x, D) is a base classifier. Furthermore,
to see that the corresponding smoothed classifier q∗ is consistent with the class proba-
bilities (64), consider

q∗(yA| x0, D0) = E(1−ϕA(X, D)) = pA (81)

and

q∗(yB| x0, D0) = E(ϕB(X, D)) = α(ϕB) = pB. (82)

In addition, for any y ̸= yA, yB, we have q∗(y| x0, D0) = (1 − pA − pB)/(C − 2) ⩽
pB since by assumption pA + pB ⩾ 1 − (C − 2) · pB. Thus, q∗ is consistent with the
class probabilities (64) In addition, note that q∗(yA| x0 +Ωx, D0 +∆) = 1−β(ϕA) and
β(ϕB) = q

∗(yB| x0 +Ωx, D0 +∆). Since by assumption 1−β(ϕA) < β(ϕB) we see that
indeed yA ̸= g∗(x0 +Ωx, D0 +∆).

6.7.2 Proof of Corollary 1

Proof. We prove this statement by direct application of Theorem 2. Let Z = (X, D)

be the smoothing distribution for q and let Z̃ := (Ωx, ∆) + Z and Z̃ ′ := (0, −∆) + Z̃.
Correspondingly, let q̃(y| x, D) = q(y| x +Ωx, D + ∆). By assumption, we have that
q̃(yA| x, D) ⩾ pA and maxy̸=yA q̃(y| x, D) ⩽ pB. We will now apply Theorem 2 to the
smoothed classifier q̃. There exist likelihood ratio tests ϕA and ϕB for testing Z̃ against
Z̃ ′ such that, if

β(ϕA) +β(ϕB) > 1 (83)

then it follows that yA = arg maxy q̃(y| x, D − ∆). The statement then follows, since
q̃(y| x, D−∆) = arg maxy q̃(y| x+Ωx, D+∆). We will now construct the corresponding
likelihood ratio tests and show that (83) has the form (71). Note that the likelihood ratio
between Z̃ and Z̃ ′ at z = (x, d) is given by

Λ(z) = exp

(
n∑
i=1

⟨di, −δi⟩Σ +
1

2
⟨δi, δi⟩Σ

)
(84)

where Σ = σ21d and ⟨a, b⟩Σ :=
∑n
i=1 aibi/σ

2. Thus, since singletons have probability
0 under the Gaussian distribution, any likelihood ratio test for testing Z̃ against Z̃ ′ has
the form

ϕt(z) =

1, Λ(z) ⩾ t.

0, Λ(z) < t.
(85)

For p ∈ [0, 1], let

tp := exp(Φ−1(p)

√√√√ n∑
i=1

⟨δi, δi⟩Σ −
1

2

n∑
i=1

⟨δi, δi⟩Σ) (86)
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and note that α(ϕtp) = 1− p since

α(ϕtp) = 1−Φ(
log(tp) + 1

2

∑n
i=1⟨δi, δi⟩Σ√∑n

i=1⟨δi, δi⟩Σ
) (87)

where Φ is the CDF of the standard normal distribution. Thus, the test ϕA ≡ ϕtA with
tA ≡ tpA satisfies α(ϕA) = 1− pA and the test ϕB ≡ ϕtB with tB ≡ t1−pB satisfies
α(ϕB) = pB. Computing the type II error probability of ϕA yields

β(ϕA) = Φ(Φ−1(pA) −

√√√√ n∑
i=1

⟨δi, δi⟩Σ). (88)

and, similarly, the type II error probability of ϕB is given by

β(ϕB) = Φ(Φ−1(1− pB) −

√√√√ n∑
i=1

⟨δi, δi⟩Σ). (89)

Finally, we see that β(ϕA) +β(ϕB) > 1 is satisfied if and only if√√√√ n∑
i=1

∥δi∥22 <
σ

2
(Φ−1(pA) −Φ

−1(pB)). (90)

6.7.3 Proof of Corollary 2

Proof. We proceed analogously to the proof of Corollary 1 but with a uniform distri-
bution on the feature vectors D ∼ U([a, b]) and construct the likelihood ratio tests in
the uniform case. Denote by S :=

∏n
i=1 Si, Si :=

∏d
j=1[a+ δij, b+ δij] the support of

D̃ := ∆+D and by S ′ :=
∏n
i=1[a, b]d the support of D̃ ′ := D. Note that the likelihood

ratio between Z̃ against Z̃ ′ at z = (x, w, v) for any w ∈ S∪ S ′ is given by

Λ(z) =
fZ̃ ′(z)

fZ̃(z)
=
fW̃ ′(w)

fW̃(w)
=


0 w ∈ S \ S ′,
1 w ∈ S∩ S ′,
∞ w ∈ S ′ \ S.

(91)

and that any likelihood ratio test for testing Z̃ against Z̃ ′ has the form (299). We now
construct such likelihood ratio tests ϕA, ϕB with α(ϕA) = 1 − pA and α(ϕB) = pB.
Specifically, we compute qA, tA such that these type I error probabilities are satisfied.
Notice that

p0 := P(W̃ ∈ S \ S ′) = 1−
n∏
i=1

(

d∏
j=1

(1−

∣∣δij∣∣
b− a

)+) (92)

where (x)+ = max{x, 0}. For t ⩾ 0 we have P(Λ(Z̃) ⩽ t) = p0 if t < 1 and 1 otherwise.
Thus tp := inf{t ⩾ 0 : P(Λ(Z) ⩽ t) ⩾ p} is given by tp = 0 if p ⩽ p0 and tp = 1 if
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p > p0. We notice that, if pA ⩽ p0, then tA ≡ tpA = 0. This implies that the type II
error probability of the corresponding test ϕA is 0 since in this case

β(ϕA) = 1− P
(
Λ(Z̃ ′) > 0

)
− qA ·P

(
Λ(Z̃ ′) = 0

)
(93)

= 1− P
(
D̃ ′ ∈ S ′

)
− qA ·P

(
D̃ ′ ∈ S \ S ′

)
= 0. (94)

Similarly, if 1− pB ⩽ p0 then tB ≡ tpB = 0 and we obtain that the corresponding test
ϕB satisfies β(ϕB) = 0. In both cases β(ϕA) +β(ϕB) > 1 can never be satisfied and we
find that pA > p0 and 1− pB > p0 is a necessary condition. In this case, we have that
tA = tB = 1. Let qA and qB be defined as

qA :=
P(Λ(Z̃) ⩽ 1) − pA

P(Λ(Z̃) = 1)
=
1− pA
1− p0

, (95)

qB :=
P(Λ(Z̃) ⩽ 1) − (1− pB)

P(Λ(Z̃) = 1)
=
1− (1− pB)

1− p0
. (96)

Clearly, the corresponding likelihood ratio tests ϕA and ϕB have significance 1− pA
and pB respectively. Furthermore, notice that

P
(
D̃ ′ ∈ S ′ \ S

)
= P

(
D̃ ∈ S \ S ′

)
= p0 (97)

P
(
D̃ ′ ∈ S ′ ∩ S

)
= P

(
D̃ ∈ S ′ ∩ S

)
= 1− p0 (98)

and hence β(ϕA) is given by

β(ϕA) = 1− P
(
Λ(Z̃ ′) > 1

)
− qA ·P

(
Λ(Z̃ ′) = 1

)
(99)

= 1− p0 − qA · (1− p0) (100)

= pA − p0. (101)

and similarly

β(ϕB) = 1− P
(
Λ(Z̃ ′) > 1

)
− qB ·P

(
Λ(Z̃ ′) = 1

)
(102)

= 1− p0 − qB · (1− p0) (103)

= 1− pB − p0. (104)

Finally, the statement follows, since β(ϕA) +β(ϕB) > 1 if and only if

1−

(
pA − pB

2

)
<

n∏
i=1

 d∏
j=1

(
1−

∣∣δij∣∣
b− a

)
+

 . (105)

6.7.4 Proof of Theorem 4

We first formalize KNN classifiers which use quantizeed Euclidean distance as a notion
of similarity. Specifically, let B1 = [0, b1), . . . ,BL := [bL−1,∞) be similarity buckets
with increasing b1 < b2 < . . . ,bL−1 and associated similarity levels β1 > β2 > . . . > βL.
Then for x, x ′ ∈ Rd we define their similarity as κ(x, x ′) :=

∑L
l=1 βl1Bl(∥x− x ′∥

2
2)
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where 1Bl is the indicator function of Bl. Given a dataset D = (xi, yi)ni=1 and a test
instance x, we define the relation

xi ⪰ xj ⇐⇒

κ(xi, x) > κ(xj, x) if i > j

κ(xi, x) ⩾ κ(xj, x) if i ⩽ j
(106)

which says that the instance xi is more similar to x, if either it has strictly larger sim-
ilarity or, if it has the same similarity as xj, then xi is more similar if i < j. With
this binary relation, we define the set of K nearest neighbours of x as IK(x, D) :=

{i :
∣∣{j ̸= i : xj ⪰ xi}∣∣ ⩽ K− 1} ⊆ [n] and summarize the per class votes in IK as a la-

bel tally vector γk(x, D) := #{i ∈ IK(x, D) : yi = k}. The KNN prediction is given by
KNN(x, D) = arg maxk γk(x, D).

Proof. Our goal is to show that we can compute the smoothed classifier q with Z =

(0, D), D ∼
∏n
i=1N(0, σ21d) and defined by the probability

q(y| x, D) = PD (KNN(x, D+D) = y) (107)

in time O(K2+C · n2 · L ·C). For ease of notation, let Xi := xi +D
(i) and Si := κ(Xi, x)

and note that

pli := P (Si = βl) = Fd,λi

(
bl
σ2

)
− Fd,λi

(
bl−1
σ2

)
(108)

where Fd,λi is the CDF of the non-central χ2-distribution with d degrees of freedom
and non-locality parameter λi = ∥xi + δi − x∥22 /σ2. Note that we can write (107) equiv-
alently as

PD

(
arg max

k ′
γk ′(x, D+D)) = y

)
(109)

and thus

q(y| x, D) =
∑
γ∈Γy

PD (γ(x, D+D) = γ) (110)

where Γy := {γ ∈ [K]C : arg maxk ′ γk ′ = y}. Next, we notice that the event that a tally
vector γ occurs, can be partitioned into the events that lead to the given γ and for
which instance i has similarity βl and is in the top-K but not in the top-(K− 1). We
define these to be the boundary events

Bli(γ) := {∀c : #{j ∈ Ic : Xj ⪰ Xi} = γc, Si = βl} (111)

where Ic = {i : yi = c}. The probability that a given tally vector γ occurs is thus given
by

PD (γ(x, D+D) = γ) =

n∑
i=1

L∑
l=1

P
(
Bli(γ)

)
. (112)

For fixed i we notice that the for different classes, the events {#{j ∈ Ic : Xj ⪰ Xi} = γc}
are pairwise independent, conditioned on {Si = βl}. Writing Plc(i, γ) for the conditional
probability

P (#{i ∈ Ic : yi = c} = γc|Si = βl) (113)
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yields

P
(
Bli(γ)

)
= pli ·

C∏
c=1

Plc(i, γ) (114)

and hence

q(y| x, D) =
∑
γ∈Γy

n∑
i=1

L∑
l=1

pli ·
C∏
c=1

Plc(i, γ) (115)

which requires O(KC ·n · L ·C) evaluations of Plc. The next step is to compute the prob-
abilities Plc. For that purpose, we need to open up the binary relation ⪰. Suppose first
that yi ̸= c. Then the event that exactly γc instances of class c satisfy Xj ⪰ Xi is the
same as the event that for some r ⩽ γc exactly r instances with index larger than i have
similarity strictly larger than Xi and exactly γc− r instances with an index smaller than
i have similarity larger or equal than Xi. Now suppose that yi = c. Then, the event that
exactly γc instances of the same class c satisfy Xj ⪰ Xi is the same as the event that for
some r ⩽ γc exactly r instances with an index larger than i have similarity strictly larger
than Xi and exactly γc − r− 1 instances with an index smaller than i have similarity
larger or equal than Xi. This reasoning allows us to write Plc in terms of functions

Rlc(i, r) := P
(
|{j ∈ Ic : Sj > βl, j > i}| = r

)
(116)

Qlc(i, r) := P
(
|{j ∈ Ic : Sj ⩾ βl, j < i}| = r

)
(117)

as

Plc(i, γ) =


∑γc
r=0 R

l
c(i, r) ·Qlc(i,γc − r) yi ̸= c∑γc−1

r=0 Rlc(i, r) ·Qlc(i,γc − r− 1) yi = c.

The functions Rcl and Qcl exhibit a recursive structure that we wish to exploit to get an
efficient algorithm. Specifically, we write

αli := P(Si ⩽ βl) =
L∑
s=l

pli, (118)

and ᾱli := 1−α
l
i and use the following recursion

Rcl (i− 1, r) =

Rlc(i, r) yi ̸= c
ᾱli · Rlc(i, r− 1) +αli · Rlc(i, r) yi = c

starting at i = n and r = 0 and with initial values Rlc(i, −1) = 0, Rcl (n, 0) = 1 and
Rcl (n, r) = 0 for r ⩾ 1. Similarly,

Qlc(i+ 1, r) =


Qlc(i, r) yi ̸= c
ᾱl+1i ·Qlc(i, r− 1)

+αl+1i ·Qlc(i, r)
yi = c

(119)

starting the recursion at i = 1 and r = 0 and with initial values Qlc(i, −1) = 0,
Qlc(1, 0) = 1 and Qlc(1, r) = 0 for r ⩾ 1. Evaluating Plc requires O(K) calls to Rlc
and Qlc each. The computation of Rlc and Qlc can be achieved in O(n · K) if the values
αli are computed beforehand and stored separately (requiring O(n · L) computations).
The entire computation has complexity O(KC+2 ·n2 · L ·C).





7
T R A N S F O R M AT I O N - S P E C I F I C S M O O T H I N G F O R R O B U S T N E S S
C E RT I F I C AT I O N

In the previous chapter we have focused on vulnerabilities of ML systems at the train-
ing stage and presented theoretical as well as empirical results which provide guidance
on the certification of robustness against backdoor attacks, a particular type of data
poisoning attack. In this and the subsequent chapters, we focus our attention on vul-
nerabilities to which ML systems are prone to during deployment. Specifically, here
we study the certification of robustness against instance-level input perturbations aris-
ing from semantic transformations such as rotations, changes in contrast or Gaussian
blur. In the subsequent chapter we will take a population based view and study the
certification of robustness against distribution shifts.

7.1 introduction

7.1.1 Overview

Recent advances in ML have enabled a plethora of applications in diverse tasks such as
image recognition [84], game playing [157, 200] and natural language processing [20, 48,
220]. Despite all of these advances, ML systems are also found exceedingly vulnerable
to adversarial attacks – image recognition systems can be adversarially misled [71, 212,
254], and malware detection systems can be evaded easily [219, 261]. In response, recent
research has attempted to provide answers to the implied risks and developed empirical
defense techniques [143, 222], as well as certified defenses [39, 136, 218, 252, 259].

While empirical defenses are prone to being broken by adaptive attackers [7, 60, 71,
256], certified defenses take a more conservative view and provide robustness condi-
tions under which an ML model is guaranteed to be robust. Such certification techniques
usually follow the pattern that the ML model is provably robust against arbitrary ad-
versarial attacks, as long as the perturbation magnitude is below a certain threshold,
measured in an ℓp norm. However, certifying robustness only against ℓp perturbations
is not sufficient for attacks based on semantic transformations. For instance, image
rotation, scaling, and other semantic transformations are able to mislead ML models
effectively [59, 69, 70, 256]. These transformations are both common and practical [21,
91, 170]. For example, it has been shown [98] that brightness and contrast attacks can
achieve 91.6% attack success on CIFAR-10, and 71%-100% attack success rate on Ima-
geNet [91]. In practice, brightness- and contrast-based attacks have been demonstrated
to be successful in autonomous driving [170, 217]. These types of transformations in-
cur large ℓp-norm differences and are thus beyond the reach of existing certifiable de-
fenses [17, 83, 122, 188] which can only certify relatively small magnitudes. To address
these shortcomings, here we attempt to provide robustness guarantees against semantic
transformations which incur large changes when measured in ℓp norm.

63
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Figure 8: TSS, a general robustness certification framework for diverse semantic transformations.
We develop a range of different transformation-specific smoothing protocols and var-
ious techniques to provide substantially better certified robustness bounds than state-
of-the-art approaches on large-scale datasets.

vulnerabilities to semantic transformations Beyond adversarial ℓp per-
turbations, a realistic threat model is given by transformations that preserve the under-
lying semantics of a given test instance. Examples for these types of transformations
include changes to contrast or brightness levels, or rotation of the entire image. These
attacks have the following three characteristics in common:

1. The perturbation stemming from a successful semantic attack typically has higher
ℓp norm compared to the attacks which are only constrained by bounded ℓp-norm.
However, these attacks still preserve the underlying semantics: if an image of a
car is rotated by 10◦ it remains an image of a car.

2. These attacks are governed by a low-dimensional parameter space. For example,
the rotation attack chooses a one-dimensional rotation angle.

3. Some of these transformations lead to high interpolation errors (e. g., rotations),
which incurs additional challenges for certification.

As has been shown [91, 98], these types of attacks can cause significant damage and
pose realistic threats for practical ML applications such as autonomous driving [170].
We remark that our proposed framework can be extended to certify robustness against
other attacks that share these characteristics even beyond the image domain, such as
GAN-based attacks against ML based malware detection [100, 239], where a limited
dimension of features of the malware can be manipulated in order to preserve the
malicious functionalities. Such perturbations usually incur large ℓp differences for the
generated instances.

7.1.2 Contributions

In this work, we present theoretical and empirical analyses to certify the ML robustness
against a wide range of semantic transformations which go beyond ℓp-norm bounded
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perturbations. The theoretical analysis studies different properties of the transforma-
tions and proposes transformation-specific certification techniques. Our empirical re-
sults set the new state-of-the-art robustness certification for a wide range of seman-
tic transformations, exceeding existing work by a large margin. Our framework TSS is
based on randomised smoothing [39, 128] and provides certified robustness for ML

models against a wide range of adversarial transformations (Figure 8). Within our
framework, we categorize semantic transformations as either resolvable or differentially
resolvable. As a first building block, we provide certified robustness against resolvable
transformations, which include brightness, contrast, translation, Gaussian blur, and
their composition. In a second step, we build on the techniques for resolvable trans-
formations and develop novel certification techniques for differentially resolvable trans-
formations (e. g., rotation and scaling).

For resolvable transformations, we leverage the framework to jointly reason about
(1) function smoothing under different smoothing distributions and (2) the properties
inherent to each specific transformation. To our best knowledge, this is the first time that
the interplay between smoothing distribution and semantic transformations has been
analyzed. Indeed, existing work [39, 133, 264] that studies different smoothing distri-
butions considers only ℓp perturbations. Based on this analysis, we find that against
certain transformations such as Gaussian blur, exponential distribution is better than
Gaussian smoothing, which is commonly used in the ℓp-case.

For differentially resolvable transformations, such as rotation, scaling, and their com-
position with other transformations, the common challenge is that they naturally in-
duce interpolation errors. Existing work [8, 65] can provide robustness guarantees but
it cannot rigorously certify robustness for ImageNet-scale data. We develop a collection
of novel techniques, including stratified sampling and Lipschitz bound computation to
provide a tighter and sound upper bound for the interpolation error. We integrate these
novel techniques into TSS and further propose a progressive-sampling-based strategy to
accelerate the robustness certification. We show that these techniques comprise a scal-
able and general framework for certifying robustness against differentially resolvable
transformations.

We conduct extensive experiments to evaluate the proposed certification framework
and show that our framework significantly outperforms the state-of-the-art on differ-
ent datasets including the large-scale ImageNet against a series of practical semantic
transformations. In summary, we make the following set of contributions:

• We propose a function smoothing framework, TSS, to certify ML robustness against
general semantic transformations.

• We categorize common adversarial semantic transformations in the literature into
resolvable and differentially resolvable transformations and show that our framework
is general enough to certify both types of transformations.

• We theoretically explore different smoothing strategies by sampling from differ-
ent distributions including non-isotropic Gaussian, uniform, and Laplace distribu-
tions. We show that for specific transformations, such as Gaussian blur, smoothing
with exponential distribution is better.

• We propose a pipeline, TSS-DR, including a stratified sampling approach, an effec-
tive Lipschitz-based bounding technique, and a progressive sampling strategy to
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provide rigorous, tight, and scalable robustness certification against differentially
resolvable transformations such as rotation and scaling.

• We conduct extensive experiments and show that our framework TSS can pro-
vide significantly higher certified robustness compared with the state-of-the-art
approaches, against a range of semantic transformations and their composition
on MNIST, CIFAR-10, and ImageNet.

• We show that TSS also provides much higher empirical robustness against adap-
tive attacks and unforeseen corruptions such as CIFAR-10-C and ImageNet-C.

7.1.3 Related Work

certified robustness against ℓp perturbations With the seminal works
that opened up research on adversarial vulnerability of neural networks [71, 212], there
has emerged a rich body of research on evasion attacks [7, 29, 221, 254] and empir-
ical defenses [146, 189, 197]. To provide robustness certification, different robustness
training and verification approaches have been proposed. In particular, interval bound
propagation [74, 274], linear relaxations [153, 246, 252, 253, 259], and semidefinite pro-
gramming [45, 177] have been applied to certify the robustness of ML models. Recently,
robustness certification based on randomized smoothing was shown to be scalable and
leads to tight robustness guarantees [39, 128, 133]. With improvements on optimizing
the smoothing distribution [56, 216, 264] and better training mechanisms [30, 106, 187,
271], the verified robustness of randomized smoothing is further improved. A recent
survey summarizes certified robustness approaches [135].

semantic attacks against neural networks Recent work has shown that
semantic transformations are able to mislead ML models [69, 98, 256]. For instance, im-
age rotations and translations can attack ML models with 40% - 99% degradation on
MNIST, CIFAR-10, and ImageNet on both vanilla models and models that are robust
against ℓp-bounded perturbations [59]. Brightness/contrast attacks can achieve 91.6%
attack success on CIFAR-10, and 71%-100% attack success rate on ImageNet [91]. Our
evaluation on empirical robust accuracy (Table 5) for undefended models also confirms
these observations. Moreover, brightness attacks have been shown to be of practical con-
cern in autonomous driving [170]. Empirical defenses against semantic transformations
have been investigated in [59, 91].

certified robustness against semantic transformations While heuris-
tic defenses against semantic attacks have been proposed, provable robustness requires
further investigation. Existing certified robustness against transformations is based on
heuristic enumeration, interval bound propagation, linear relaxation, or smoothing. Ef-
ficient enumeration in VeriVis [171] can handle only discrete transformations. Interval
bound propagation has been used to certify common semantic transformations [8, 65,
202]. To tighten the interval bounds, linear relaxations are introduced. DeepG [8] opti-
mizes linear relaxations for given semantic transformations, and Semantify-NN [156]
encodes semantic transformations by neural networks and applies linear relaxations for
neural networks [246, 274]. However, linear relaxations are loose and computationally
intensive compared to our TSS. Recently, Fischer et al [65] have applied a smoothing



7.2 method overview 67

Resolvable 
Transformations

Differentially Resolvable Transformations

Discrete

Translation

Gaussian Blur

Brightness Contrast

Brightness
& Contrast

Rotation Scaling

Rotation 
& Brightness

Scaling 
& Brightness

Other Compositions

Continuous

Figure 9: Overview of the categorization of resolvable and differentially resolvable transforma-
tions. These two categories cover common adversarial semantic transformations.

scheme to provide provable robustness against transformations but on the large Ima-
geNet dataset, it can provide certification only against random attacks that draw trans-
formation parameters from a pre-determined distribution. More details are available in
Section D.6.4.

outline The remainder of this chapter is organized as follows. In Section 7.2, we
introduce the threat model, certification goal, and provide an overview of the method
presented in this chapter. We then introduce TSS, our general framework for certify-
ing robustness against semantic transformations, in Section 7.3 before treating resolv-
able transformations in Section 7.4 and differentially resolvable transformations in Sec-
tion 7.5. We validate our method experimentally in Section 7.6 and conclude in Sec-
tion 7.7. Proofs for the main Theorems are provided in Section 7.8 and proofs for further
result can be found in the supplementary materials (Appendix D).

7.2 method overview

In this section, we first introduce the notations. We then define the threat model, the
defense goal and outline the challenges for certifying the robustness against semantic
transformations. Finally, we provide a brief overview of the TSS certification framework.

notation We denote the space of inputs as X ⊆ Rd and the set of labels as Y =

{1, . . . , C} (where C ⩾ 2 is the number of classes). The set of transformation parameters
is given by Z ⊆ Rm (e.g., rotation angles). We use the notation PX to denote the
probability measure induced by the random variable X and write fX for its probability
density function. For a set S, we denote its probability by PX(S). A classifier is defined
to be a deterministic function h mapping inputs x ∈ X to classes y ∈ Y. Formally, a
classifier learns a conditional probability distribution p(y| x) over labels and outputs
the class that maximizes p, i.e., h(x) = arg maxy∈Y p(y| x).

7.2.1 Threat Model

semantic transformations We model semantic transformations as determinis-
tic functions ϕ : X× Z → X, transforming an image x ∈ X with a Z-valued parameter
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α. For example, we use ϕR(x,α) to model a rotation of the image x by α degrees
counter-clockwise with bilinear interpolation. We further partition semantic transfor-
mations into two different categories, namely resolvable and differentially resolvable
transformations. We will show that these two categories could cover commonly known
semantic attacks. This categorization depends on whether or not it is possible to write
the composition of the transformation ϕ with itself as applying the same transforma-
tion just once, but with a different parameter, i.e., whether for any α, β ∈ Z there exists
γ such that ϕ(ϕ(x, α), β) = ϕ(x, γ). Precise definitions are given in Section 7.4 and
Section 7.5. Figure 9 presents an overview of the transformations considered in this
work.

threat model We consider an adversary that launches a semantic attack, a type of
data evasion attack, against a given classification model h by applying a semantic trans-
formation ϕ with parameter α to an input image x → ϕ(x, α). We allow the attacker
to choose an arbitrary parameter α within a predefined (attack) parameter space S. For
instance, a naìve adversary who randomly changes brightness from within ±40% is
able to reduce the accuracy of a state-of-the-art ImageNet classifier from 74.4% to 21.8%
(Table 5). While this attack is an example of a random adversarial attack, our threat
model also covers other types of semantic attacks and we provide the first taxonomy
for semantic attacks (i.e., resolvable and differentially resolvable) in detail in Section 7.4
and Section 7.5.

7.2.2 Certification Goal

Since the only degree of freedom that a semantic adversary has are the transformation
parameters, our goal is to characterize a set of parameters for which the model under
attack is guaranteed to be robust. Formally, we wish to find a set Sadv ⊆ Z such that,
for a classifier h and adversarial transformation ϕ, we have

h(x) = h(ϕ(x, α)) ∀α ∈ Sadv. (120)

challenges Certifying ML robustness against semantic transformations is nontriv-
ial and requires careful analysis. We identify the following two main challenges that we
aim to address in this work:

(C1) The absolute difference between semantically transformed images in terms of ℓp-
norms is typically high. This factor causes existing certifiable defenses against ℓp
bounded perturbations to be inapplicable [17, 83, 122, 188].

(C2) Certain semantic transformations incur additional interpolation errors. To derive
a robustness certificate, it is required to bound these errors, an endeavour that
has been proven to be hard both analytically and computationally. This challenge
applies to transformations that involve interpolation, such as rotation and scaling.

We remark that it is in general not feasible to use brute-force approaches such as grid
search to enumerate all possible transformation parameters (e.g., rotation angles) since
the parameter spaces are typically continuous. Given that different transformations
have their own unique properties, it is crucial to provide a unified framework that takes
into account transformation-specific properties in a general way.
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Figure 10: A conceptual overview of TSS.

To address these challenges, we generalize randomized smoothing via our proposed
function smoothing framework to certify arbitrary input transformations via different
smoothing distributions, paving the way to robustness certifications that go beyond
ℓp perturbations. This result addresses challenge (C1) in a unified way. Based on this
generalization and depending on specific transformation properties, we address chal-
lenge (C2) and propose a series of smoothing strategies and computing techniques that
provide robustness certifications for a diverse range of transformations.

We next introduce our generalized function smoothing framework and show how it
can be leveraged to certify semantic transformations. We then categorize transforma-
tions as either resolvable transformations (Section 7.4) such as Gaussian blur, or differen-
tially resolvable transformations (Section 7.5) such as rotations.

7.2.3 Framework Overview

An overview of our proposed framework TSS is given in Figure 10. We propose the
function smoothing framework, a generalization of randomized smoothing, to provide
robustness certifications under general smoothing distributions (Section 7.3). This gen-
eralization enables us to smooth the model on specific transformation dimensions. We
then consider two different types of transformation attacks. For resolvable transforma-
tions, using the function smoothing framework, we adapt different smoothing strategies
for specific transformations and propose Transformation-Specific Smoothing for Resolv-
able Transformations (TSS-R) in Section 7.4. We show that some smoothing distributions
are more suitable for certain transformations. For differentially resolvable transformations,
to address the interpolation error, we combine function smoothing with the proposed
stratified sampling approach and a novel technique for Lipschitz bound computation to
compute a rigorous upper bound of the error. We then develop a progressive sampling
strategy to accelerate the certification. This pipeline is termed TSS-DR, and we provide
details and the theoretical groundwork in Section 7.5.

7.3 tss : transformation specific smoothing

In this section, we extend randomized smoothing and propose TSS for certifying robust-
ness against semantic transformations. This framework constitutes the main building
block for TSS-R and TSS-DR against specific types of adversarial transformations.

Given an arbitrary base classifier h, we construct a smoothed classifier g by randomly
transforming inputs with parameters sampled from a smoothing distribution. Specifi-
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cally, given an input x, the smoothed classifier g predicts the class that h is most likely
to return when the input is perturbed by some random transformation. We formalize
this intuition in the following definition.

Definition 2 (ε-Smoothed Classifier). Let ϕ : X× Z → X be a transformation, ε ∼ Pε a
random variable taking values in Z and let h : X → Y be a base classifier. We define the ε-
smoothed classifier g : X → Y as g(x; ε) = arg maxy∈Y q(y| x; ε) where q is given by the
expectation with respect to the smoothing distribution ε, i.e.,

q(y| x; ε) := E(p(y|ϕ(x, ε))). (121)

A key to certifying robustness against a specific transformation is the choice of trans-
formation ϕ in the definition of the smoothed classifier (121). For example, if the goal is
to certify the Gaussian blur transformation, a reasonable choice is to use the same trans-
formation in the smoothed classifier. However, for other types of transformations this
choice does not lead to the desired robustness certificate, and a different approach is re-
quired. In Section 7.4 and Section 7.5, we derive approaches to overcome this challenge
and certify robustness against a broader family of semantic transformations.

general robustness certification Given an input x ∈ X and a random vari-
able ε taking values in Z, suppose that the base classifier h predicts ϕ(x, ε) to be of
class yA with probability at least pA and the second most likely class with probabil-
ity at most pB (123). Our goal is to derive a robustness certificate for the ε-smoothed
classifier g, i. e., we aim to find a set of perturbation parameters Sadv depending on
pA, pB, and smoothing parameter ε such that, for all possible parameters α ∈ Sadv, it is
guaranteed that

g(ϕ(x, α); ε) = g(x; ε) (122)

In other words, the prediction of the smoothed classifier can never be changed by ap-
plying the transformation ϕ with parameters α that are in the robust set Sadv. The fol-
lowing theorem provides a generic robustness condition that we will subsequently use
to obtain conditions on transformation parameters. In particular, this result addresses
the first challenge (C1) for certifying semantic transformations since this result allows
to certify robustness beyond additive perturbations.

Theorem 5. Let ε0 ∼ P0 and ε1 ∼ P1 be Z-valued random variables with probability density
functions f0 and f1 with respect to a measure µ on Z and let ϕ : X× Z → X be a semantic
transformation. Suppose that yA = g(x; ε0) and let pA, pB ∈ [0, 1] be bounds to the class
probabilities, i.e.,

q(yA| x, ϵ0) ⩾ pA > pB ⩾ max
y̸=yA

q(y| x, ϵ0). (123)

For t ⩾ 0, let St, St ⊆ Z be the sets defined as St := {f1/f0 < t} and St := {f1/f0 ⩽ t} and
define the function ξ : [0, 1]→ [0, 1] by

ξ(p) := sup{P1(S) : Sτp ⊆ S ⊆ Sτp}
where τp := inf{t ⩾ 0 : P0(St) ⩾ p}.

(124)

Then, if the condition

ξ(pA) + ξ(1− pB) > 1 (125)

is satisfied, then it is guaranteed that g(x; ε1) = g(x; ε0).
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A detailed proof for this statement is provided in Section 7.8.1. At a high level, the
condition (123) defines a family of classifiers based on class probabilities obtained
from smoothing the input x with the distribution ε0. Based on the Neyman Pearson
Lemma [162] from statistical hypothesis testing, shifting ε0 → ε1 results in bounds to
the class probabilities associated with smoothing x with ε1. For class yA, the lower
bound is given by ξ(pA), while for any other class, the upper bound is given by
1 − ξ(1 − pB), leading to the the robustness condition ξ(pA) > 1 − ξ(1 − pB). It is a
more general version of what is proved by Cohen et al. [39], and its generality allows
us to analyze a larger family of threat models. Notice that it is not immediately clear
how one can obtain the robustness guarantee (122) and deriving such a guarantee from
Theorem 5 is nontrivial. We will therefore explain in detail how this result can be in-
stantiated to certify semantic transformations in Section 7.4 and Section 7.5.

Remark 1. We remark that this result is essentially an instantiation of Lemma 1 applied to the
(parameter) smoothing distributions P0 and P1, and to functions of the form h ◦ϕ, where h
corresponds to the base classifier and ϕ is the semantic transform. In addition, in the formulation
presented here, we use the level sets St and St corresponding to acceptance regions of likelihood
ratio tests.

7.4 tss-r : resolvable transformations

In this section, we define resolvable transformations and then show how Theorem 5 is
used to certify this class of semantic transformations. We then proceed to providing a
robustness verification strategy for each specific transformation. In addition, we show
how the generality of our framework allows us to reason about the best smoothing
strategy for a given transformation, which is beyond the reach of related randomized
smoothing based approaches [65, 264]. Intuitively, we call a semantic transformation
resolvable if we can separate transformation parameters from inputs with a function
that acts on parameters and satisfies certain regularity conditions.

Definition 3 (Resolvable transform). A transformation ϕ : X× Z → X is called resolvable
if for any α ∈ Z there exists a resolving function γα : Z → Z that is injective, continuously
differentiable, has non-vanishing Jacobian and for which

ϕ(ϕ(x, α), β) = ϕ(x, γα(β)) x ∈ X, β ∈ Z. (126)

Furthermore, we say that ϕ is additive, if γα(β) = α+β.

The following result provides a more intuitive view on Theorem 5, expressing the
condition on probability distributions as a condition on the transformation parameters.

Corollary 3. Suppose that the transformation ϕ in Theorem 5 is resolvable with resolving
function γα. Let α ∈ Z and set ε1 := γα(ε0) in the definition of the function ξ. Then, if α
satisfies condition (125), it is guaranteed that g(ϕ(x,α); ε0) = g(x; ε0).

This corollary implies that for resolvable transformations, after we choose the smooth-
ing distribution for the random variable ε0, we can infer the distribution of ε1 = γα(ε0).
Then, by using ε0 and ε1 in Theorem 5, we can derive an explicit robustness condition
from (125) such that for any α satisfying this condition, we can certify the robustness.
In particular, for additive transformations we have ϵ1 = γα(ϵ0) = α+ ϵ0. For common
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smoothing distributions ϵ0 along with additive transformation, we derive the robust-
ness conditions in Section D.1.

In the next section, we focus on specific resolvable transformations. For certain trans-
formations, this result can be applied directly. However, for some transformations, e.g.,
the composition of brightness and contrast, more careful analysis is required. We re-
mark that this corollary also serves as a stepping stone to certifying more complex
transformations that are in general not resolvable, such as rotations as we will present
in Section 7.5.

7.4.1 Certifying Specific Transformations

Here we build on our theoretical results from the previous section and provide ap-
proaches to certifying a range of different semantic transformations that are resolvable.
We state all results here and provide proofs in Section D.2.

7.4.1.1 Gaussian Blur

This transformation is widely used in image processing to reduce noise and image
detail. Mathematically, applying Gaussian blur amounts to convolving an image with
a Gaussian function

Gα(k) =
1√
2πα

exp
(
−k2/(2α)

)
(127)

where α > 0 is the squared kernel radius. For x ∈ X, we define Gaussian blur as the
transformation ϕB : X×R⩾0 → X where

ϕB(x, α) = x ∗ Gα (128)

and ∗ denotes the convolution operator. The following lemma shows that Gaussian
blur is an additive transform. Thus, existing robustness conditions for additive transfor-
mations shown in D.1 are directly applicable.

Lemma 5. The Gaussian blur transformation is additive, i.e., for any α, β ⩾ 0, we have
ϕB(ϕB(x, α), β) = ϕB(x, α+β).

We notice that the Gaussian blur transformation uses only positive parameters. We
therefore consider uniform noise on [0, a] for a > 0, folded Gaussians and exponential
distribution for smoothing.

7.4.1.2 Brightness and Contrast

This transformation first changes the brightness of an image by adding a constant value
b ∈ R to every pixel, and then alters the contrast by multiplying each pixel with a
positive factor ek, for some k ∈ R. We define the brightness and contrast transformation
ϕBC : X×R2 → X as

(x, α) 7→ ϕBC(x, α) := ek(x+ b), α = (k, b)T (129)
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where k, b ∈ R are contrast and brightness parameters, respectively. We remark that
ϕBC is resolvable; however, it is not additive and applying Corollary 3 directly using
the resolving function γα leads to analytically intractable expressions. On the other
hand, if the parameters k and b follow independent Gaussian distributions, we can
circumvent this difficulty as follows. Given ε0 ∼ N(0, diag(σ2, τ2)), we compute the
bounds pA and pB to the class probabilities associated with the classifier g(x; ε0), i.e.,
smoothed with ε0. In the next step, we identify a distribution ε1 with the property that
we can map any lower bound p of q(y| x; ε0) to a lower bound on q(y| x; ε1). Using
ϵ1 as a bridge, we then derive a robustness condition, which is based on Theorem 5,
and obtain the guarantee that g(ϕBC(x, α); ε0) = g(x; ε0) whenever the transformation
parameters satisfy this condition. The next lemma shows that the distribution ε1 with
the desired property (lower bound to the classifier smoothed with ε1) is given by a
Gaussian with transformed covariance matrix.

Lemma 6. Let x ∈ X, k ∈ R, and suppose that

ε0 ∼ N(0, diag(σ2, τ2)) and ε1 ∼ N(0, diag(σ2, e−2kτ2)). (130)

Suppose that q(y| x; ε0) ⩾ p for some p ∈ [0, 1] and y ∈ Y. Let Φ be the cumulative density
function of the standard Gaussian. Then

q(y| x; ε1) ⩾

2Φ
(
ekΦ−1

(
1+p
2

))
− 1 k ⩽ 0

2
(
1−Φ

(
ekΦ−1(1− p

2 )
))

k > 0.
(131)

Now suppose that g(·; ε0) makes the prediction yA at x with probability at least pA.
Then, the preceding lemma tells us that the prediction confidence of g(·; ε1) satisfies the
lower bound (131) for the same class. Based on these confidence levels, we instantiate
Theorem 5 with the random variables ε1 and α+ ε1 to get a robustness condition.

Lemma 7. Let ε0 and ε1 be as in Lemma 6 and suppose that

q(yA| x; ε1) ⩾ p̃A > p̃B ⩾ max
y̸=yA

q(y| x; ε1). (132)

Then it is guaranteed that yA = g(ϕBC(x, α); ε0) as long as α = (k, b)T satisfies√
(k/σ)2 + (b/(e−kτ))

2
<
1

2

(
Φ−1 (p̃A) −Φ

−1 (p̃B)
)

. (133)

In practice, we apply this lemma by replacing p̃A and p̃B in (133) with the bound
computed from (131) based on the class probability bounds pA and pB associated with
the classifier g(x; ε0). In addition, instead of certifying a single pair (k, b), in practice
we certify the robustness against a set of transformation parameters

Sadv = {(k, b)|k ∈ [−k0, k0],b ∈ [−b0, b0]}, (134)

which stands for any contrast change within ek0 and brightness change within b0. Since
it is not feasible to check every (k, b) ∈ Sadv, we relax the robustness condition in
Lemma 7 to√

(k/σ)2 + (b/(min{e−k, 1}τ))2 <
1

2

(
Φ−1 (p̃A) −Φ

−1 (p̃B)
)

. (135)
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Table 3: Summary of the robustness certification strategies for resolvable transformations. The
confidence bounds pA and pB are computed using Monte-Carlo sampling.

Transformation Strategy

Gaussian Blur Apply Corollary 9 (Section D.1)

Brightness Apply Corollary 8 (Section D.1)

Translation Apply Corollary 8 (Section D.1)

Brightness and Contrast
Compute p̃A using Lemma 6,

then apply Lemma 7

Gaussian Blur, Brightness,
Contrast and Translation

Compute p̃A using Corollary 13,
then apply Lemma 21 (Section D.2.4)

Thus, we only need to verify the condition (135) for (k0, b0) and (−k0, b0) to certify the
robustness for any (k, b) in (134). This is because the LHS of (135) is monotonically in-
creasing w.r.t. |k| and |b|, and the RHS of (135) is equal toΦ−1(p̃A) that is monotonically
decreasing w.r.t. |k|. Throughout the experiments, we use this strategy for certification
of brightness and contrast.

7.4.1.3 Translation

Let ϕ̄T : X×Z2 → X be the transformation moving an image k1 pixels to the right and
k2 pixels to the bottom with reflection padding. In order to handle continuous noise
distributions, we define the translation transformation ϕT : X×R2 → X as ϕT (x, α) =
ϕ̄T (x, [α]) where [·] denotes rounding to the nearest integer, applied element-wise. We
note that ϕT is an additive transform, allowing us to directly apply Corollary 3 and
derive robustness conditions. We note that if we use black padding instead of reflection
padding, the transformation is not additive. However, since the number of possible
translations is finite, another possibility is to use a simple brute-force approach that can
handle black padding, which has already been studied extensively [156, 171].

7.4.1.4 Composition of Gaussian Blur, Brightness, Contrast, and Translation

Interestingly, the composition of all these four transformations is still resolvable. Thus,
we are able to derive the explicit robustness condition for this composition based on
Corollary 3, as shown Section D.2.4. Based on this robustness condition, we compute
practically meaningful robustness certificates as we will present in experiments in Sec-
tion 7.6.

7.4.1.5 Robustness Certification Strategies

With these robustness conditions, for a given clean input x, a transformation ϕ, and a set
of parameters Sadv, we certify the robustness of the smoothed classifier gwith two steps:
1) estimate pA and pB (see eq. (123)) with Monte-Carlo sampling and high-confidence
bound following [39]; and 2) leverage the robustness conditions to obtain the certificate.
A summary for each transformation including the used robustness conditions is shown
in Table 3.
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Figure 11: Robust radius comparison for different one-dimensional noise distributions, each
with unit variance.

7.4.2 Properties of Smoothing Distributions

The robustness condition in Theorem 5 is generic and leaves a degree of freedom in
regard to which smoothing distribution should be used. Previous work mainly provides
results for cases in which this distribution is Gaussian [39, 271], while it is nontrivial
to extend it to other distributions. Here, we aim to answer this question and provide
results for a range of distributions, and discuss their differences. As we will see, for
different scenarios, different distributions behave differently and can certify different radii. We
instantiate Theorem 5 with an arbitrary transformation ϕ and with ε1 := α+ ε0 where
ε0 is the smoothing distribution and α is the transformation parameter. The robust
radius is then derived by solving condition (125) for α.

Figure 11 illustrates robustness radii associated with different smoothing distribu-
tions, each scaled to have unit variance. The bounds are derived in Section D.1 and
summarized in Table 4. We emphasize that the contribution of this work is not merely
these results on different smoothing distributions but, more importantly, the joint study
between different smoothing mechanisms and different semantic transformations. To compare
the different radii for a fixed base classifier, we assume that the smoothed classifier g(·; ε)
always has the same confidence pA for noise distributions with equal variance. Finally, we pro-
vide the following conclusions and we will verify them empirically in Section 7.6.3.1.

1. Exponential noise can provide larger robust radius. We notice that smoothing with
exponential noise generally allows for larger adversarial perturbations than other
distributions. We also observe that, while all distributions behave similarly for low
confidence levels, it is only non-uniform noise distributions that converge toward
+∞ when pA → 1 and exponential noise converges quickest.

2. Additional knowledge can lead to larger robust radius. When we have additional infor-
mation on the transformation, e.g., all perturbations in Gaussian blur are positive,
we can take advantage of this additional information and certify larger radii. For
example, under this assumption, we can use folded Gaussian noise for smoothing
instead of a standard Gaussian, resulting in a larger radius.
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Table 4: Comparison of certification radii with pA + pB = 1. The variance and noise dimension
are set to 1 for each distribution.

Distribution Domain Robust Radius

Gaussian(0, 1) R Φ−1(pA)

Laplace(0, 1/
√
2) R − log(2− 2pA)/

√
2

Uniform[−
√
3, −
√
3] R 2

√
3 · (pA − 1/2)

Exponential(1) R⩾0 − log(2− 2pA)

FoldedGaussian(0,
√

π
π−2) R⩾0

√
π
π−2 ·

(
Φ−1

(
1+pA
2

)
−Φ−1

(
3
4

))

7.5 tss-dr : differentially resolvable transformations

As we have seen, our proposed function smoothing framework can directly deal with
resolvable transformations. However, due to their use of interpolation, some important
transformations do not fall into this category, including rotation, scaling, and their
composition with resolvable transformations. In this section, we show that they belong
to the more general class of differentially resolvable transformations. To address challenge
(C2), we propose TSS-DR to provide rigorous robustness certification using our function
smoothing framework as a central building block.

Common semantic transformations such as rotations and scaling do not fall into the
category of resolvable transformations due to their use of interpolation. To see this
issue, consider the rotation transformation denoted by ϕR. As shown in Figure 12b,
despite being very similar, the image rotated by 30◦ is different from the image rotated
separately by 15◦ and then again by 15◦. The reason for this is the bilinear interpolation
occurring during the rotation. Therefore, if the attacker inputs ϕR(x, 15), the smoothed
classifier defined in Section 7.4 outputs

g(ϕR(x, 15); ε) = arg max
y∈Y

E (p(y|ϕR(ϕR(x, 15), ε))) , (136)

which is a weighted average over the predictions of the base classifier on the randomly
perturbed set {ϕR(ϕR(x, 15),α) : α ∈ Z}. However, in order to use Corollary 3 and to
reason about whether this prediction agrees with the prediction on the clean input (i.e.,
the average prediction on {ϕR(x,α) : α ∈ Z}), we need ϕR to be resolvable. As it turns
out, this is not the case for transformations that involve interpolation such as rotation
and scaling. To address these challenges, we define a transformation ϕ to be differentially
resolvable, if it can be written in terms of a resolvable transformation ψ and a parameter
mapping δ.

Definition 4 (Differentially resolvable transform). Let ϕ : X×Zϕ → X be a transformation
with noise space Zϕ and letψ : X×Zψ → X be a resolvable transformation with noise space Zψ.
We say that ϕ can be resolved by ψ if for any x ∈ X there exists function δx : Zϕ × Zϕ → Zψ
such that for any α ∈ Zϕ and any β ∈ Zϕ,

ϕ(x, α) = ψ(ϕ(x, β), δx(α, β)). (137)
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Figure 12: (a) High-level illustration of our robustness certification pipeline TSS-DR for differen-
tially resolvable transformations; (b) interpolation error.

This definition leaves open a certain degree of freedom on the choice of the resolv-
able transformation ψ. For example, we can choose the resolvable transformation cor-
responding to additive noise

ψ : X×X→ X, (x, δ) 7→ x+ δ, (138)

which lets us write any transformation ϕ as ϕ(x, α) = ϕ(x, β) + (ϕ(x, α) −ϕ(x, β)) =
ψ(ϕ(x, β), δ) with δ = (ϕ(x, α) − ϕ(x, β)). In other words, ϕ(x,α) can be viewed as
first being transformed to ϕ(x,β) and then to ϕ(x,β) + δ.

7.5.1 Overview of TSS-DR

Here, we derive a general robustness certification strategy for differentially resolvable
transformations. Suppose that our goal is to certify the robustness against a transfor-
mation ϕ that can be resolved by ψ and for transformation parameters from the set
S ⊆ Zϕ. To that end, we first sample a set of parameters {αi}

N
i=1 ⊆ S, and transform

the input, with those sampled parameters. This yields the set of transformed inputs
{ϕ(x,αi)}Ni=1. In the second step, we compute the class probabilities for each trans-
formed input ϕ(x, αi) with the classifier smoothed with the resolvable transformation
ψ. Finally, the intuition is that, if every α ∈ S is close enough to one of the sampled
parameters, then the classifier is guaranteed to be robust against parameters from the
set S. In the next theorem, we show the existence of such a “proximity set” for general
δx.

Theorem 6. Let ϕ : X×Zϕ → X be a transformation that is resolved by ψ : X×Zψ → X. Let
ε ∼ Pε be a Zψ-valued random variable and suppose that the smoothed classifier g : X → Y

given by q(y| x; ε) = E(p(y|ψ(x, ε))) predicts g(x; ε) = yA = arg maxy q(y| x; ε). Let
S ⊆ Zϕ and {αi}

N
i=1 ⊆ S be a set of transformation parameters such that for any i, the class

probabilities satisfy

q(yA|ϕ(x, αi); ε) ⩾ p
(i)
A ⩾ p(i)B ⩾ max

y̸=yA
q(y|ϕ(x, αi); ε). (139)

Then there exists a set ∆∗ ⊆ Zψ with the property that, if for any α ∈ S, ∃αi with δx(α, αi) ∈
∆∗, then it is guaranteed that

q(yA|ϕ(x, α); ε) > max
y̸=yA

q(y|ϕ(x, α); ε). (140)
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In Theorem 6, the smoothed classifier g(·; ε) is based on the resolvable transformation
ψ that serves as a starting point to certify the target transformation ϕ. To certify ϕ
over its parameter space S, we input N transformed samples ϕ(x,αi) to the smoothed
classifier g(·; ε). Then, we get ∆∗, the certified robust parameter set for the resolvable
transformation ψ. This ∆∗ means that for any ϕ(x,αi), if we apply the transformation
ψ with any parameter δ ∈ ∆∗, the resulting instance ψ(ϕ(x,αi), δ) is robust for g(·; ε).
Since ϕ is resolvable by ψ, i.e., for any α ∈ S, there exists an αi and δ ∈ ∆∗ such that
ϕ(x,α) = ψ(ϕ(x,αi), δ), we can assert that for any α ∈ S, the output of g(·; ε) on ϕ(x,α)
is robust.

The key of using this theorem for a specific transformation is to choose the resolv-
able transformation ψ that can enable a tight calculation of ∆∗ under a specific way of
sampling {αi}

N
i=1. First, we observe that a large family of transformations including ro-

tation and scaling can be resolved by the additive transformation ψ : X×X→ X defined
by (x, δ) 7→ x+ δ. Indeed, any transformation whose pixel value changes are continu-
ous (or with finite discontinuities) with respect to the parameter changes are differ-
entially resolvable—they all can be resolved by the additive transformation. Choosing
isotropic Gaussian noise ε ∼ N(0, σ21d) as smoothing noise then leads to the condition
that the maximum ℓ2-interpolation error between the interval S = [a, b] (which is to be
certified) and the sampled parameters αi must be bounded by a radius R. This result is
shown in the next corollary, which is derived from Theorem 6.

Corollary 4. Let ψ(x, δ) = x+ δ and let ε ∼ N(0, σ21d). Furthermore, let ϕ be a transfor-
mation with parameters in Zϕ ⊆ Rm and let S ⊆ Zϕ and {αi}

N
i=1 ⊆ S. Let yA ∈ Y and

suppose that for any i, the ε-smoothed classifier defined by q(y| x; ε) := E(p(y| x+ ε)) has class
probabilities that satisfy

q(yA|ϕ(x, αi); ε) ⩾ p
(i)
A ⩾ p(i)B ⩾ max

y̸=yA
q(y|ϕ(x, αi); ε). (141)

Then it is guaranteed that ∀α ∈ S : yA = arg maxy q(y|ϕ(x, α); ε) if the maximum interpola-
tion error

MS := max
α∈S

min
1⩽i⩽N

∥ϕ(x, α) −ϕ(x, αi)∥2 (142)

satisfies

MS < R :=
σ

2
min
1⩽i⩽N

(
Φ−1

(
p
(i)
A

)
−Φ−1

(
p
(i)
B

))
. (143)

In a nutshell, this corollary shows that if the smoothed classifier classifies all samples
of transformed inputs {ϕ(x,αi)}Ni=1 consistent with the original input and the smallest
gap between confidence levels p(i)A and p(i)B is large enough, then it is guaranteed to
make the same prediction on transformed inputs ϕ(x,α) for any α ∈ S.

The main challenge now lies in computing a tight and scalable upper boundM ⩾MS.
Given this bound, a set of transformation parameters S can then be certified by comput-
ing R in (143) and checking that R > M. With this methodology, we address challenge
(C2) and provide means to certify transformations that incur interpolation errors. Fig-
ure 12a illustrates this methodology on a high level for the rotation transformation as
an example. In the following, we present the general methodology that provides an
upper bound of the interpolation error MS and provide closed form expressions for



7.5 tss-dr : differentially resolvable transformations 79

Interval to Certify𝑎 𝑏

𝛼! 𝛼" 𝛼# 𝛼#$! 𝛼%⋯ ⋯ First-Level Sampling𝛼%&!

𝑀! 𝑀# 𝑀%&!
Maximum Interpolation Error 
upper bounds 𝑀𝒮:

𝑀:= max
)*+*,-)

𝑀+ ≥ 𝑀𝒮𝛼# 𝛼#$!
Second-Level Sampling

𝑔#(𝛼)

𝑔#$!(𝛼)0

Slope 𝐿

Slope 𝐿

𝛾#,) 𝛾#,)$!

Upper bound for max
(!,#$($(!,#$%

𝑔"(𝛾)
Upper bound for max

(!,#$($(!,#$%
𝑔")#(𝛾)

Bounding 𝐌𝐢 from second-level sampling and Lipschitz constant:
𝑀" = max

#$%$*'#
min{Upper bound for max

(!,#$($(!,#$%
𝑔"(𝛾) ,Upper bound for max

(!,#$($(!,#$%
𝑔")#(𝛾)}

𝛾#,! 𝛾#,,

Figure 13: An overview of our interpolation error bounding technique based on stratified sam-
pling and Lipschitz computation.

rotation and scaling. In Section D.3, we provide proofs and further extend this method-
ology to certify transformation compositions such as rotation, brightness change and
ℓ2 perturbations.

We remark that dealing with the interpolation error has already been tried before [8,
65]. However, these approaches either leverage explicit linear or interval bound propa-
gation – techniques that are either not scalable or not tight enough. Therefore, on large
datasets such as ImageNet, they can provide only limited certification (e.g., against
certain random attack instead of any attack).

7.5.2 Upper Bounding the Interpolation Error

Here, we present the general methodology to compute a rigorous upper bound of the
interpolation error introduced in Corollary 4. The methodology presented here is based
on stratified sampling and is of a general nature; an explicit computation is shown for
the case of rotation toward the end of this subsection.

Let S = [a, b] be an interval of transformation parameters that we wish to certify and
let {αi}Ni=1 be parameters dividing S uniformly, i.e.,

αi = a+ (b− a) · i− 1
N− 1

, i = 1, . . . , N. (144)

The set of these parameters corresponds to the first-level samples in stratified sampling.
With respect to these first-level samples, we define the functions gi : [a, b]→ R⩾0 as

α 7→ gi(α) := ∥ϕ(x,α) −ϕ(x,αi)∥22 (145)
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corresponding to the squared ℓ2 interpolation error between the image x transformed
with α and αi, respectively. For each first-level interval [αi, αi+1] we look for an upper
bound Mi such that

Mi ⩾ max
αi⩽α⩽αi+1

min{gi(α), gi+1(α)}. (146)

It is easy to see that max1⩽i⩽N−1Mi ⩾M2
S and hence setting

√
M := max

1⩽i⩽N−1

√
Mi (147)

is a valid upper bound to MS. The problem has thus reduced to computing the upper
bounds Mi associated with each first-level interval [αi, αi+1]. To that end, we now
continue with a second-level sampling within the interval [αi, αi+1] for each i. Namely,
let {γi,j}nj=1 be parameters dividing [αi, αi+1] uniformly, i.e.,

γi,j = αi + (αi+1 −αi) ·
j− 1

n− 1
, j = 1, . . . , n. (148)

Now, suppose that L is a global Lipschitz constant for all functions {gi}Ni=1. By definition,
for any 1 ⩽ i ⩽ N− 1, L satisfies

L ⩾ max
{

max
c,d∈[αi,αi+1]

∣∣∣∣gi(c) − gi(d)c− d

∣∣∣∣ , max
c,d∈[αi,αi+1]

∣∣∣∣gi+1(c) − gi+1(d)c− d

∣∣∣∣} . (149)

In the following, we will derive explicit expressions for L for rotation and scaling. Given
the Lipschitz constant L, one can show the following closed-form expression for Mi:

Mi =
1

2
max

1⩽j⩽n−1

(
min

{
gi(γi,j) + gi(γi,j+1),

gi+1(γi,j) + gi+1(γi,j+1)
} )

+ L · b− a

(N− 1)(n− 1)
.

(150)

An illustration of this bounding technique using stratified sampling is shown in Fig-
ure 13. We notice that, as the number N of first-level samples is increased, the interpola-
tion error Mi becomes smaller by shrinking the sampling interval [αi,αi+1]; similarly,
increasing the number of second-level samples nmakes the upper bound of the interpo-
lation errorMi tighter since the term L(b−a)/ ((N− 1)(n− 1)) decreases. Furthermore,
it is easy to see that as N→∞ or n→∞ we have M→M2

S, i.e., our interpolation error
estimation is asymptotically tight. Finally, this tendency also highlights an important ad-
vantage of our two-level sampling approach: without stratified sampling, it is required
to sample N× n αi’s in order to achieve the same level of approximation accuracy. As
a consequence, these N× n αi’s in turn require to evaluate the smoothed classifier in
Corollary 4 N×n times, compared to just N times in our case.

It thus remains to find a way to efficiently compute the Lipschitz constant L for dif-
ferent transformations. In the following, we derive closed form expressions for rotation
and scaling transformations.

7.5.3 Computing the Lipschitz Constant

Here, we derive a global Lipschitz constant L for the functions {gi}
N
i=1 defined in (145),

for rotation and scaling transformations. In the following, we define K-channel images



7.5 tss-dr : differentially resolvable transformations 81

Center Pixel
(𝑐! , 𝑐")

𝛼#
𝛼#$%

𝒫&,(: 
covered 
grids

(𝑟, 𝑠)

Image Canvas

𝑖, 𝑗
0.4

𝑖 + 1, 𝑗
0.8

𝑖, 𝑗 + 1
0.7

𝑖 + 1, 𝑗 + 1
0.5

-𝑚 𝑥, Blue, 𝑖, 𝑗 = 0.8
𝑚) 𝑥, Blue, { 𝑖, 𝑗 } = 0.8 − 0.4 = 0.4

𝐺#,*

Figure 14: An illustration of the grid pixel generator Gi,j, color extractors m̄ and m∆ (take blue
channel as example), and the set Pr,s.

of width W and height H to be tensors x ∈ RK×W×H and define the region of valid
pixel indices as Ω := [0, W− 1]× [0, H− 1]∩N2. Furthermore, for (r, s) ∈ Ω, we define
dr,s to be the ℓ2-distance to the center of an image, i.e.,

dr,s =

√
(r− (W − 1)/2)2 + (s− (H− 1)/2)2. (151)

For ease of notation we make the following definitions that are illustrated in 14.

Definition 5 (Grid Pixel Generator). For pixels (i, j) ∈ Ω, we define the grid pixel generator
Gij as

Gij := {(i, j), (i+ 1, j), (i, j+ 1), (i+ 1, j+ 1)}. (152)

Definition 6 (Max-Color Extractor). We define the operator that extracts the channel-wise
maximum pixel wise on a grid S ⊆ Ω as the map m : RK×W×H × {0, . . . ,K− 1}× 2Ω → R

with

m(x, k, S) := max
(i,j)∈S

( max
(r,s)∈Gij

xk,r,s). (153)

Definition 7 (Max-Color Difference Extractor). We define the operator that extracts the
channel-wise maximum change in color on a grid S ⊆ Ω as the map m∆ : RK×W×H ×
{0, . . . ,K− 1}× 2Ω → R with

m∆(x, k, S) := max
(i,j)∈S

( max
(r,s)∈Gij

xk,r,s − min
(r,s)∈Gij

xk,r,s). (154)

rotation The rotation transformation is defined as rotating an image by an angle
α counter-clock wise, followed by bilinear interpolation I. Clearly, when rotating an
image, some pixels may be padded that results in a sudden change of pixel colors. To
mitigate this issue, we apply black padding to all pixels that are outside the largest
centered circle in a given image (see Figure 12a for an illustration). We define the ro-
tation transformation ϕR as the (raw) rotation ϕ̃R followed by interpolation and the
aforementioned preprocessing step P so that ϕR = P ◦ I ◦ ϕ̃R and refer the reader to
Section D.4 for details. We remark that our certification is independent of different ro-
tation padding mechanisms, since these padded pixels are all refilled by black padding
during preprocessing. The following Lemma provides a closed form expression for L
in (150) for rotation. A detailed proof is given in Section D.4.
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Lemma 8. Let x ∈ RK×W×H be a K-channel image and let ϕR = P ◦ I ◦ ϕ̃R be the rotation
transformation. Then, a global Lipschitz constant L for the functions {gi}Ni=1 is given by

Lr = max
1⩽i⩽N−1

K−1∑
k=0

∑
r,s∈V

2dr,s ·m∆(x,k,P(i)
r,s) ·m(x, k, P(i)

r,s) (155)

where V =
{
(r, s) ∈N2|dr,s <

1
2(min {W,H}− 1)

}
. The set P(i)

r,s is given by all integer grid
pixels that are covered by the trajectory of source pixels of (r, s) when rotating from angle αi to
αi+1.

scaling Computing the Lipschitz bound for the scaling transformation is similar to
rotations. We provide details for scaling and the certification technique in Section D.4.

computational complexity We provide pseudo-code for computing the bound
M in Section D.5. The algorithm is composed of two main parts, namely the computa-
tion of the Lipschitz constant L, and the computation of the interpolation error bound
M based on L. The former is of computational complexity O(N · KWH), and the lat-
ter is of O(NR · KWH), for both scaling and rotation. We note that Pr,s contains only
a constant number of pixels since each interval [αi,αi+1] is small. Thus, the bulk of
costs come from the transformation operation. We improve the speed by implementing
a fast and fully-parallelized C kernel for rotation and scaling of images. As a result,
on CIFAR-10, the algorithm takes less than 2 s on average with 10 processes for rota-
tion with N = 556 and n = 200 and the time for scaling is faster. We refer readers to
Section 7.6 for detailed experimental evaluation. Also, we remark that the algorithm is
model-independent. Thus, we can precompute M for test set and reuse for any models
that need a certification.

7.5.4 Discussion

Here, we briefly summarize the computation procedure of robustness certification, in-
troduce an acceleration strategy—progressive sampling—and discuss the extensions
beyond rotation and scaling.

7.5.4.1 Computation of Robustness Certification

With the methodology mentioned above, for differentially resolvable transformations
such as rotation and scaling, computing robustness certification follows four steps:

(1) Compute the interpolation error bound M.

(2) Generate transformed samples {ϕ(x,αi)}Ni=1.

(3) Compute p(i)A and p(i)B for each sample i.

(4) Verify whether MS < R holds for each sample according to Corollary 4.

7.5.4.2 Acceleration: Progressive Sampling

In step (3) above, we need to estimate p(i)A and p(i)B for each sample ϕ(x,αi) to check
whether MS < R. In the brute-force approach, to obtain a high-confidence bound on
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p
(i)
A and p(i)B , we typically sample ns = 10, 000 or more [39] then apply the binomial

statistical test. In total, we thus need to sample the classifier’s prediction N×ns times,
which is computationally expensive.

To accelerate the computation, we design a progressive sampling strategy from the fol-
lowing two insights: (1) we only need to check whether R > MS, but are not required
to compute R precisely; (2) for any sample ϕ(x,αi) if the check fails, the model is
not certifiably robust and there is no need to proceed. Based on (1), for the current
ϕ(x, αi), we sample ns samples in batches and maintain high-confidence lower bound
of R based on existing estimation. Once the lower bound exceeds MS we proceed to the
next ϕ(x, αi+1). Based on (2), we terminate early if the check R > MS for the current
ϕ(x, αi) fails. More details are provided in Section D.5.

7.5.4.3 Extension to More Transformations

For other transformations that involve interpolation, we can similarly compute the in-
terpolation error bound using intermediate results in our above lemmas. For the com-
position of transformation, we extend our certification pipeline for the composition of
(1) rotation/scaling with brightness, and (2) rotation/scaling with brightness and ℓp-
bounded additive perturbations. These compositions simulate an attacker who does
not precisely perform the specified transformation. We present these extensions in Sec-
tion D.3.2 and Section D.3.3 in detail. In Section D.4.4 we discuss possible new transfor-
mations and extend TSS to provide the certification.

7.6 experiments

Here, we validate our framework TSS by certifying the robustness over semantic trans-
formations experimentally. We compare with state of the art for each transformation,
highlight our main results, and present our findings and ablation studies.

7.6.1 Experimental Setup

7.6.1.1 Dataset

Our experiments are conducted on three classical image classification datasets: MNIST,
CIFAR-10, and ImageNet. For all images, the pixel color is normalized to [0, 1]. We fol-
low common practice to resize and center cropping the ImageNet images to 224× 224
size [39, 106, 176, 264]. To our best knowledge, we are the first to provide rigorous certi-
fiable robustness against semantic transformations on the large-scale standard ImageNet
dataset.

7.6.1.2 Model

The undefended model is very vulnerable even under simple random semantic attacks.
Therefore, we apply existing data augmentation training [39] combined with consis-
tency regularization [106] to train the base classifiers. We then use the introduced
smoothing strategies, to obtain the models for robustness certification. On MNIST and
CIFAR-10, the models are trained from scratch while on ImageNet, we either finetune
undefended models in torchvision library or finetune from state-of-the-art certifiably
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robust models against ℓ2 perturbations [187]. Details are available in Section D.6.1. We
remark that our framework focuses on robustness certification and did not fully explore
the training methods for improving the certified robustness or tune the hyperparame-
ters.

7.6.1.3 Implementation and Hardware

We implement our framework TSS based on PyTorch. We improve the running efficiency
by tensor parallelism and embedding C modules. Details are available in Section D.6.2.
All experiments were run on 24-core Intel Xeon Platinum 8259CL CPU and one Tesla
T4 GPU with 15GB RAM.

7.6.1.4 Evaluation Metric

On each dataset, we uniformly pick 500 samples from the test set and evaluate all re-
sults on this test subset following Cohen et al [39]. In line with related work [39, 106, 187,
264], we report the certified robust accuracy which is defined as the fraction of samples
(within the test subset) that are both certified robust and classified correctly, and set the
certification confidence level to p = 0.1%. We use ns = 105 samples to obtain a confi-
dence lower bound pA for resolvable transformations, and ns = 104 samples to obtain
each pA(i) for differentially resolvable transformations. Due to progressive sampling
(algorithm 4), the actual samples used for differentially resolvable transformations are
usually far fewer than ns. In addition, we report the benign accuracy in Section D.6.5.1
defined as the fraction of correctly classified samples when no attack is present, and
the empirical robust accuracy, defined as the fraction of samples in the test subset that
are classified correctly under either a simple random attack (following [8, 65]) or two
adaptive attacks (namely Random+ Attack and PGD Attack). We introduce all these
attacks in Section D.6.3 and provide a detailed comparison in Section D.6.5.3. Note
that the empirical robust accuracy under any attacks is lower bounded by the certified
accuracy.

7.6.1.5 Notations for Robust Radii

In the tables, we use these notations: α for squared kernel radius for Gaussian blur;√
∆x2 +∆y2 for translation distance; b and c for brightness shift and contrast change

respectively as in x 7→ (1+ c)x+b; r for rotation angle; s for size scaling ratio; and ∥δ∥2
for ℓ2 norm of additional perturbations.

7.6.1.6 Vanilla Models and Baselines

We compare with vanilla (undefended) models and baselines from related work. The
vanilla models are trained to achieve high accuracy only on clean data. For fairness,
on all datasets we use the same model architectures as in our approach. On the test
subset, the benign accuracy of vanilla models is 98.6%/88.6%/74.4% on MNIST/CIFAR-
10/ImageNet. We also report their empirical robust accuracy under attacks in Table 5.
Since vanilla models are not smoothed, we cannot have certified robust accuracy for
them. In terms of baselines, we consider the approaches that provide certification
against semantic transformations: DeepG [8], Interval [202], VeriVis [171], Semantify-
NN [156], and DistSPT [65]. In Section D.6.4, we provide more detailed discussion and
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comparison with these baseline approaches, and list how we run these approaches for
fair comparison.

7.6.2 Main Results

Here, we present our main results from five aspects: (1) certified robustness compared
to baselines; (2) empirical robustness comparison; (3) certification time statistics; (4) em-
pirical robustness under unforeseen physical attacks; (5) certified robustness under at-
tacks exceeding the certified radii.

7.6.2.1 Certified Robustness Compared to Baselines

Our results are summarized in Table 5. For each transformation, we ensure that our
setting is either the same as or strictly stronger than all other baselines.1 When our
setting is strictly stronger, the baseline setting is shown in corresponding parentheses,
and our certified robust accuracy implies a higher or equal certified robust accuracy in
the corresponding baseline setting. To our best knowledge, we are the first to provide
certified robustness for Gaussian blur, brightness, composition of rotation and bright-
ness, etc. Moreover, on the large-scale standard ImageNet dataset, we are the first to
provide nontrivial certified robustness against certain semantic attacks. Note that Dist-
SPT [65] is theoretically feasible to provide robustness certification for the ImageNet
dataset. However, its certification is not tight enough to handle ImageNet and it pro-
vides robustness certification for only a certain random attack instead of arbitrarily
worst-case attacks [65, Section 7.4]. We observe that, across transformations, our frame-
work significantly outperforms the state of the art, if present, in terms of robust accuracy.
For example, on the composition of contrast and brightness, we improve the certified
robust accuracy from 74% to 97.6% on MNIST, from 0.0% (failing to certify) to 82.4%
on CIFAR-10, and from 0% (absence of baseline) to 61.4% on ImageNet. On the rota-
tion transformation, we improve the certified robust accuracy from 92.48% to 97.4% on
MNIST, from 49.37% to 63.6% on CIFAR-10 (rotation angle within 30◦), and from 16%
against a certain random attack to 30.4% against arbitrary attacks on ImageNet. Some
baselines are able to provide certification under other certification goals and the readers
can refer to Section D.6.4 for a detailed discussion.

7.6.2.2 Comparison of Empirical Robust Accuracy

In Table 5, we report the empirical robust accuracy for both (undefended) vanilla mod-
els and trained TSS models. The empirical robust accuracy is either evaluated under
random attack or two adaptive attacks–Random+ and PGD attack. When it is under
adaptive attacks, we report the lower accuracy to evaluate against stronger attackers.

1. For almost all settings, TSS models have significantly higher empirical robust ac-
curacy, which means that TSS models are also practical in terms of defending
against existing attacks. The only exception is rotation and scaling on ImageNet.
The reason is that a single rotation/scaling transformation is too weak to attack
even an undefended model. At the same time, our robustness certification comes

1 The only exception is Semantify-NN [156] on brightness and contrast changes, where Semantify-NN con-
siders these changes composed with clipping to [0, 1] while we consider pure brightness and contrast
changes to align with other baselines. We refer the reader to Section D.6.4 for a detailed discussion.
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at the cost of benign accuracy, which also affects the empirical robust accuracy.
This exception is eliminated when rotation and scaling are composed with other
transformations.

2. Similar observations arise when comparing the empirical robust accuracy of the
vanilla model with the certified robust accuracy of ours. Hence, even compared to
empirical metrics, our certified robust accuracy is nontrivial and guarantees high
accuracy.

3. Our certified robust accuracy is always lower or equal compared to the empirical
one, verifying the validity of our robustness certification. The gaps range from
∼ 2% on MNIST to ∼ 10% - 20% on ImageNet. Since empirical robust accuracy is
an upper bound of the certified accuracy, this implies that our certified bounds
are usually tight, particularly on small datasets.

4. The adaptive attack decreases the empirical accuracy of TSS models slightly, while
it decreases that of vanilla models significantly. Taking contrast and brightness on
CIFAR-10 as example, TSS accuracy decreases from 86% to 85.8% while the vanilla
model accuracy decreases from 21.0% to 9.6%. Thus, TSS is still robust against
adaptive attacks. Indeed, TSS has robustness guarantee against any attack within
the certified radius.

7.6.2.3 Certification Time Statistics

Our robustness certification time is usually less than 100 s on MNIST and 200 s on
CIFAR-10; on ImageNet it is around 200 s - 2000 s. Compared to other baselines, ours
is slightly faster and achieves much higher certified robustness. For fairness, we give
1000 s time limit per instance when running baselines on MNIST and CIFAR-10. Note
that other baselines cannot scale up to ImageNet. Our approach is scalable due to the
blackbox nature of smoothing-based certification, the tight interpolation error upper
bound, and the efficient progressive sampling strategy. Details on hyperparameters
including smoothing variance and average certification time are given in Section D.6.5.2.

7.6.2.4 Generalization to Unforeseen Common Corruptions

Are TSS models still more robust when it comes to potential unforeseen physical attacks? To
answer this question, we evaluate the robustness of TSS models on the realistic CIFAR-
10-C and ImageNet-C datasets [91]. These two datasets are comprised of corrupted
images from CIFAR-10 and ImageNet. They apply around 20 types of common corrup-
tions to model physical attacks, such as fog, snow, and frost. We evaluate the empirical
robust accuracy against the highest corruption level (level 5) to model the strongest phys-
ical attacker. We apply TSS models trained against a transformation composition attack,
Gaussian blur + brightness + contrast + translation, to defend against these corruptions.
We select two baselines: vanilla models and AugMix [92]. AugMix is the state of the art
model on CIFAR-10-C and ImageNet-C [43].

The results are shown in Table 6. The answer is yes—TSS models are more robust than
undefended vanilla models. It even exceeds the state of the art, AugMix, on CIFAR-10-
C. On ImageNet-C, the empirical accuracy of the TSS model is between vanilla and
AugMix. We emphasize that in contrast to TSS, both vanilla and AugMix fail to provide
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Table 6: Comparison of empirical accuracy of different models under physical corruptions
(CIFAR-10-C and ImageNet-C) and certified accuracy against composition of transfor-
mations. TSS achieves higher or comparable empirical accuracy against unforeseen cor-
ruptions and significantly higher certified accuracy (under attack radii in Table 5).

CIFAR-10 ImageNet

Vanilla AugMix [92] TSS Vanilla AugMix [92] TSS

Empirical Accuracy
on CIFAR-10-C and ImageNet-C

53.9% 65.6% 67.4% 18.3% 25.7% 21.9%

Certified Accuracy against
Composition of Gaussian Blur,

Translation, Brightness, and Contrast
0.0% 0.4% 58.2% 0.0% 0.0% 32.8%

(a) MNIST (b) CIFAR-10 (c) ImageNet

Figure 15: Certified accuracy for different smoothing distributions for Gaussian blur. On
MNIST/CIFAR-10/ImageNet the noise std. is 10/5/10.

robustness certification. Details on evaluation protocols and additional findings are in
Section D.6.5.4.

7.6.2.5 Evaluation on Attacks Beyond Certified Radii

The semantic attacker in the physical world may not constrain itself to be within the
specified attack radii. In Section D.6.5.5 we present a thorough evaluation of TSS’s ro-
bustness when the attack radii go beyond the certified ones. We show, for example, for
TSS model defending against ±40% brightness change on ImageNet, when the radius
increases to 50%, the certified accuracy only slightly drops from 70.4% to 70.0%. In
a nutshell, there is no significant or immediate degradation on both certified robust
accuracy and empirical robust accuracy when the attack radii go beyond the certified
ones.

7.6.3 Ablation Studies

Here, we provide two ablation studies: (1) Comparison of different smoothing distribu-
tions; (2) Comparison of different smoothing variances. In Section D.6.5.7, we present
another ablation study on different numbers of samples for differentially resolvable
transformations, which reveals a tightness-efficiency trade-off.
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Table 7: Study of the impact of different smoothing variance levels on certified robust accuracy
and benign accuracy on ImageNet for TSS. The attack radii are consistent with Table 5.
Dist. refers to both training and smoothing distribution.

Transformation Attack
Radii

Certified Accuracy and Benign Accuracy

under Different Variance Levels

Gaussian Blur α ⩽ 36

Dist. of α Exp(1/5) Exp(1/10) Exp(1/20)

Cert. Rob. Acc. 0.0% 51.6% 48.4%

Benign Acc. 63.4% 59.2% 53.2%

Translation
(Reflection Pad.)

√
∆x2 +∆y2

⩽ 100

Dist. of (∆x,∆y) N(0, 202I) N(0, 302I) N(0, 402I)

Cert. Rob. Acc. 0.0% 50.0% 55.4%

Benign Acc. 70.0% 72.6% 70.0%

Brightness b± 40%
Dist. of (c,b) N(0, 0.32I) N(0, 0.42I) N(0, 0.52I)

Cert. Rob. Acc. 70.2% 70.0% 67.6%

Benign Acc. 73.2% 72.2% 69.4%

Contrast c± 40%
Dist. of (c,b) N(0, 0.32I) N(0, 0.42I) N(0, 0.52I)

Cert. Rob. Acc. 58.4% 63.6% 65.0%

Benign Acc. 72.8% 71.4% 68.6%

Rotation r± 30◦
Dist. of ϵ N(0, 0.252I) N(0, 0.502I) N(0, 1.002I)

Cert. Rob. Acc. 9.8% 30.4% 20.0%

Benign Acc. 55.6% 46.2% 32.2%

Scaling s± 30%
Dist. of ϵ N(0, 0.252I) N(0, 0.502I) N(0, 1.002I)

Cert. Rob. Acc. 7.2% 26.4% 17.4%

Benign Acc. 58.8% 50.8% 33.8%

7.6.3.1 Comparison of Smoothing Distributions

To study the effects of different smoothing distributions, we compare the certified ro-
bust accuracy for Gaussian blur when the model is smoothed by different smooth-
ing distributions. We consider three smoothing distributions, namely exponential (blue
line), uniform (green line), and folded Gaussian (red line). On each dataset, we adjust
the distribution parameters such that each distribution has the same variance. All other
hyperparameters are kept the same throughout training and certification. As shown in
Figure 15, we notice that on all three datasets, the exponential distribution has the high-
est average certified radius. This observation is in line with our theoretical reasoning in
Section 7.4.2.

7.6.3.2 Comparison of Different Smoothing Variances

The variance of the smoothing distribution is a hyperparameter that controls the accuracy-
robustness trade-off. In Table 7, we evaluate different smoothing variances for several
transformations on ImageNet and report both the certified accuracy and benign accu-
racy. The results on MNIST and CIFAR-10 and more discussions are in Section D.6.5.6.
From these results, we observe that usually, when the smoothing variance increases,
the benign accuracy drops and the certified robust accuracy first rises and then drops.
This tendency is also observed in classical randomized smoothing [39, 264]. However,
the range of acceptable variance is usually wide. Thus, even without carefully tuning
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the smoothing variances, we are able to achieve high certified and benign accuracy as
reported in Table 5 and Table 18.

7.7 conclusion

In this chapter, in light of the second research question governing this thesis, we have
provided a unified framework, TSS, to certify the robustness against semantic adversar-
ial transformations which incur large ℓp-norm perturbations and can thus not be han-
dled by standard additive smoothing approaches. In extensive experiments, we have
shown that TSS significantly outperforms the state of the art or, if no previous work
exists, sets new baselines. Since the approach is based on randomized smoothing, it
incurs the known computational overhead for estimating expectation via Monte-Carlo
sampling. In addition, while we have provided efficient implementations, the computa-
tion of the Lipschitz constant of transformations incurs additional computational bur-
den. We believe that optimizing these approaches for efficiency and tightness is fruitful
ground for future research. This could, for example, also involve the exploration of
further transformation-specific smoothing strategies.

7.8 proofs

7.8.1 Proof of Theorem 5

Let us recall the following definition from Section 7.3:

Definition 2 (restated). Let ϕ : X× Z → X be a transformation, ε ∼ Pε a random variable
taking values in Z and let h : X → Y be a base classifier. We define the ε-smoothed classifier
g : X→ Y as g(x; ε) = arg maxy∈Y q(y| x; ε) where q is given by the expectation with respect
to the smoothing distribution ε, i.e.,

q(y| x; ε) := E(p(y|ϕ(x, ε))). (156)

Here, we additionally define the notion of level sets separately. These sets originate
from statistical hypothesis testing and correspond to rejection regions of likelihood ratio
tests.

Definition 8 (Lower level sets). Let ε0 ∼ P0, ε1 ∼ P1 be Z-valued random variables with
probability density functions f0 and f1 with respect to a measure µ. For t ⩾ 0 we define lower
and strict lower level sets as

St := {z ∈ Z : Λ(z) < t} , St := {z ∈ Z : Λ(z) ⩽ t} , where Λ(z) :=
f1(z)

f0(z)
. (157)

Lemma 9. Let ε0 and ε1 be random variables taking values in Z and with probability density
functions f0 and f1 with respect to a measure µ. Let h : Z → [0, 1] be a determinstic function.
Then, for any t ⩾ 0 the following implications hold:

(i) For any S ⊆ Z with St ⊆ S ⊆ St the following implication holds:

E[h(ε0)] ⩾ P0(S)⇒ E[h(ε1)] ⩾ P1(S). (158)
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(i) For any S ⊆ Z with St
c ⊆ S ⊆ Stc the following implication holds:

E[h(ε0)] ⩽ P0(S)⇒ E[h(ε1)] ⩽ P1(S). (159)

Proof. We first prove (i). For that purpose, consider

E[h(ε1)] − P1(S) =

∫
hf1 dµ−

∫
S

f1 dµ (160)

=

∫
Sc
hf1 dµ−

(∫
S

(1− h)f1 dµ

)
(161)

=

∫
Sc
hΛf0 dµ−

(∫
S

(1− h)Λf0 dµ

)
(162)

⩾ t ·
∫
Sc
hf0 dµ− t ·

(∫
S

(1− h)f0 dµ

)
(163)

= t ·
(∫
hf0 dµ−

∫
S

f0 dµ

)
(164)

= t · (E[h(ε0)] − P0(S)) ⩾ 0. (165)

The inequality in (163) follows from the fact that whenever z ∈ Sc, then f1(z) ⩾ t · f0(z)
and if z ∈ S, then f1(z) ⩽ t · f0(z) since S is a lower level set. Finally, the inequality
in (165) follows from the assumption. The proof of (ii) is analogous and omitted here.

Theorem 5 (restated). Let ε0 ∼ P0 and ε1 ∼ P1 be Z-valued random variables with probability
density functions f0 and f1 with respect to a measure µ on Z and let ϕ : X× Z → X be a
semantic transformation. Suppose that yA = g(x; ε0) and let pA, pB ∈ [0, 1] be bounds to the
class probabilities, i.e.,

q(yA| x, ϵ0) ⩾ pA > pB ⩾ max
y̸=yA

q(y| x, ϵ0). (166)

For t ⩾ 0, let St, St ⊆ Z be the sets defined as St := {f1/f0 < t} and St := {f1/f0 ⩽ t} and
define the function ξ : [0, 1]→ [0, 1] by

ξ(p) := sup{P1(S) : Sτp ⊆ S ⊆ Sτp}
where τp := inf{t ⩾ 0 : P0(St) ⩾ p}.

(167)

Then, if the condition

ξ(pA) + ξ(1− pB) > 1 (168)

is satisfied, then it is guaranteed that g(x; ε1) = g(x; ε0).

Proof. For ease of notation, let ζ be the function defined by

t 7→ ζ(t) := P0(St) (169)

and notice that τp = ζ−1(p) where ζ−1 denotes the generalized inverse of ζ. Fur-
thermore, let τA := τpA , τB := τ1−pB , SA := S(τA), SB := S(τB), SA := S(τA) and
SB := S(τB). We first show that q(yA| x, ε1) is lower bounded by ξ(τA). For that pur-
pose, note that by Lemma 12 we have that ζ(τA) = P0(SA) ⩾ pA ⩾ P0(SA). Thus, the
collection of sets

SA := {S ⊆ Z : SA ⊆ S ⊆ SA, P0(S) ⩽ pA} (170)
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is not empty. Pick some A ∈ SA arbitrary and note that, since by assumption g(·; ε0) is
(pA, pB)-confident at x it holds that

E(p(yA|ϕ(x, ε0))) = q(yA| x; ε0) ⩾ pA ⩾ P0(A). (171)

Since SA ⊆ A ⊆ SA we can apply part (i) of Lemma 9 and obtain the lower bound

q(yA| x, ε1) = E(p(yA|ϕ(x, ε1))) ⩾ P1(A). (172)

Since A ∈ SA was arbitrary, we take the sup over all A ∈ SA and obtain

q(yA| x; ε1) ⩾ sup
A∈SA

P1(A) = ξ(pA) (173)

We now show that for any y ̸= yA the prediction q(y| x; ε1) is upper bounded by
1− ξ(1−pB). For that purpose, note that by Lemma 12 we have that ζ(τB) = P0(SA) ⩾
1− pB ⩾ P0(SB). Thus, the collection of sets

SB := {S ⊆ Z : SB ⊆ S ⊆ SB, P0(S) ⩽ 1− pB} (174)

is not empty. Pick some B ∈ SA arbitrary and note that, since by assumption g(·; ε0) is
(pA, pB)-confident at x it holds that

E(p(y|ϕ(x, ε0))) = q(y| x; ε0) ⩽ pB
= 1− (1− pB) ⩽ 1− P0(B).

(175)

Since ScB ⊆ Bc ⊆ S
c
B we can apply part (ii) of Lemma 9 and obtain the upper bound

q(y| x; ε1) = E(p(y|ϕ(x, ε1))) ⩽ 1− P1(B). (176)

Since B ∈ SB was arbitrary, we take the inf over all B ∈ SB and obtain

q(y| x; ε1) ⩽ inf
B∈SB

(1− P1(B)) = 1− ξ(1− pB). (177)

Combining together (177) and (173), we find that, whenever

ξ(pA) + ξ(1− pB) > 1 (178)

it is guaranteed that

q(yA| x; ε1) > max
y̸=yA

q(y| x; ε1) (179)

what concludes the proof.

7.8.2 Proof of Theorem 6

Here we provide the proof for Theorem 6, which is the foundation for the techniques
to certify differentially resolvable transformations. First, let us recall the definition of
differentially resolvable transformations.

Definition 4 (restated). Let ϕ : X× Zϕ → X be a transformation with noise space Zϕ and
let ψ : X× Zψ → X be a resolvable transformation with noise space Zψ. We say that ϕ can
be resolved by ψ if for any x ∈ X there exists function δx : Zϕ × Zϕ → Zψ such that for any
β ∈ Zϕ

ϕ(x, α) = ψ(ϕ(x, β), δx(α, β)). (180)
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Theorem 6 (restated). Let ϕ : X× Zϕ → X be a transformation that is resolved by ψ : X×
Zψ → X. Let ε ∼ Pε be a Zψ-valued random variable and suppose that the smoothed classifier
g : X→ Y given by q(y| x; ε) = E(p(y|ψ(x, ε))) predicts g(x; ε) = yA = arg maxy q(y| x; ε).
Let S ⊆ Zϕ and {αi}

N
i=1 ⊆ S be a set of transformation parameters such that for any i, the class

probabilities satisfy

q(yA|ϕ(x, αi); ε) ⩾ p
(i)
A ⩾ p(i)B ⩾ max

y̸=yA
q(y|ϕ(x, αi); ε). (181)

Then there exists a set ∆∗ ⊆ Zψ with the property that, if for any α ∈ S, ∃αi with δx(α, αi) ∈
∆∗, then it is guaranteed that

q(yA|ϕ(x, α); ε) > max
y̸=yA

q(y|ϕ(x, α); ε). (182)

Proof. We prove the theorem by explicitly constructing a region ∆∗ with the desired
property by applying Theorem 5. For that purpose let δ ∈ Zψ and denote by γδ : Zψ →
Zψ the resolving function of ψ, i.e.,

ψ(ψ(x, δ), δ ′) = ψ(x, γδ(δ ′)). (183)

Let Pγ be the distribution of the random variable γ := γδ(ε) with density function fγ
and let

St = {z ∈ Zψ : Λ(z) < t}, St = {z ∈ Zψ : Λ(z) ⩽ t} (184)

where Λ(z) =
fγ(z)

fε(z)
. (185)

Furthermore, recall the definition of the function ζ : R⩾0 → [0, 1] that is given by t 7→
ζ(t) := Pε(St) with generalized inverse ζ−1(p) := inf{t ⩾ 0 : ζ(t) ⩾ p}. For t ⩾ 0 and
the function ξ : [0, 1]→ [0, 1] is given by by

ξ(p) := sup{Pγ(S) : Sζ−1(p) ⊆ S ⊆ S
−1
ζ (p), Pε(S) ⩽ p}. (186)

By assumption, for every i = 1, . . . , n, the ε-smoothed classifier g is (p(i)A , p(i)B )-confident
at ϕ(x, αi). Identify ∆i ⊆ Zψ with the set of perturbations that satisfy the robustness
condition (125) in Theorem 5, i.e.,

∆i ≡ {δ ∈ Zψ : 1− ξ(1− p
(i)
B ) < ξ(p

(i)
A )}. (187)

Thus, by Theorem 5, we have that for any δ ∈ ∆i
q(yA|ψ(ϕ(x, αi), δ); ε) > max

y̸=yA
q(y|ψ(ϕ(x, αi), δ); ε). (188)

Finally, note that for the set

∆∗ ≡
N⋂
i=1

∆i (189)

it holds that, if for α ∈ S there exists αi with δx(α, αi) ∈ ∆∗, then in particular
δx(α, αi) ∈ ∆i and hence, by Theorem 5 it is guaranteed that

q(yA|ϕ(x, α); ε) = q(yA|ψ(ϕ(x, αi), δx(α, αi)); ε) (190)

> max
y̸=yA

q(y|ψ(ϕ(x, αi), δx(α, αi)); ε) (191)

= max
y̸=yA

q(y|ϕ(x, α); ε) (192)

what concludes the proof.
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C E RT I F Y I N G O U T- O F - D O M A I N G E N E R A L I Z AT I O N

In the preceding two chapters, we have taken an instance-level view on robustness cer-
tification and presented techniques to certify the robustness for specific test instances.
In the case of backdoor certification (Chapter 6) we considered an instance to be com-
posed of a training set and a test sample and showed a robustness certificate based on
the magnitude of the backdoor pattern. For the certification of perturbations arising
from semantic transformations (Chapter 7), an instance is considered to be a single test
sample that has been perturbed using transformations such as rotations, Gaussian blur,
and others.

In this chapter, we take a different view and certify the distributional robustness of
ML models. In other words, in contrast to certifying the robustness for a specific test
sample x, here we are interested in how performance measures based on the entire
population of possible inputs behave when the underlying distribution changes. In its
most general form, here we are interested in studying the behaviour of expectation
values EZ∼P[ℓ(Z)] under shifts to the distribution P → Q. In the context of ML, this shift
can for example model changes in training and testing distributions, or changes in the
distribution of subpopulations. Here we focus on the former and develop theoretical
tools to certify out-of-domain generalization.

8.1 introduction

8.1.1 Overview

The wide application of machine learning models in the real world brings an emerging
challenge of understanding the performance of an ML model under different data distri-
butions — ML systems operating autonomous vehicles which are trained based on data
collected in the northern hemisphere might fail when deployed in desert-like environ-
ments or under different weather conditions [44, 229], while recognition systems have
been shown to fail when deployed in new environments [9]. Similar concerns also apply
to many mission-critical applications such as medicine and cyber-security [3, 78, 113].
In all these applications, it is imperative to have a sound understanding of the model’s
robustness and possible failure cases in the presence of a shift in the data distribution,
and to have corresponding guarantees on the performance.

Recently, this problem has attracted intensive interest under the umbrella of distribu-
tional robustness [10, 16, 52, 66, 121, 190]. Specifically, let P be a joint data distribution
over features X ∈ X and labels Y ∈ Y, and let hθ : X→ Y be an ML model parameterized
by θ. For a loss function ℓ : Y× Y→ R, we hope to compute

Rθ(UP) := sup
Q∈UP

E(X,Y)∼Q[ℓ(hθ(X), Y)] (193)

where UP ⊆ P(Z) is a set of probability distributions on Z, called the uncertainty set.
Intuitively, this measures the worst-case risk of hθ when the data distribution drifts from
P to another distribution in UP.

95
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Table 8: Current landscape of certified distributional robustness.

Ref. Assumptions on ℓ Assumption on h Distance Largest Dataset

Gao et al. [66] Generalised Lipschitz Continuity Wasserstein –

Sinha et al. [203] Bounded, Smoothness Smoothness Wasserstein MNIST

Staib et al. [205] Bounded, Continuous Kernel Methods MMD –

Shafieezadeh-Abadeh et al. [198] Lipschitz Continuity Wasserstein –

Blanchet et al. [16] Bounded, Smoothness Smoothness Wasserstein –

Cranko et al. [42] Generalised Lipschitz Continuity Wasserstein –

Ours Bounded any Blackbox Hellinger ImageNet

Providing a technical solution to this problem has gained increased attention over
the years, as summarized in Table 8. However, most — if not all — existing approaches
impose strong constraints such as bounded Lipschitz gradients on both h and ℓ and rely
on expensive certification methods such as direct minimax optimization. As a result,
these methods have been applied only to small-scale datasets and ML models.

8.1.2 Contributions

Here, we consider the case that both h and ℓ can be non-convex and non-smooth — h can
be a full-fledged neural network, e.g., ImageNet-scale EfficientNet-B7 [214], and ℓ can
be a general non-smooth loss function such as the 0-1 loss. We provide, to our best
knowledge, the first practical method for blackbox functions that scales to real-world,
ImageNet-scale neural networks and datasets. Our key innovation is a novel framework
that arises from bounding inner products between elements of a suitable Hilbert space.
Specifically, we can characterize the upper bound of the performance of h on any Q
within the uncertainty set as a function of the Hellinger distance, a specific type of
f-divergence, and the expectation and variance of the loss of h on P.

We then apply our framework to the problem of certifying the out-of-domain gen-
eralization performance of a given classifier, taking advantage of its scalability and
flexibility. Specifically, let P be the in-domain distribution, and hθ a classifier. Then, to
reason about the performance of hθ on shifted distributions Q, we provide a certificate
in the following form:

∀Q : dist(Q,P) ⩽ ρ =⇒ E(X,Y)∼Q[ℓ(h(X), Y)] ⩽ Cℓ(ρ, P) (194)

where Cℓ is a bound which depends on the distance ρ and the distribution P. This
requires several nontrivial instantiations of our framework with careful practical con-
siderations. To this end, we first develop a certification algorithm that relies only on a
finite set of samples from the in-domain distribution P. Moreover, we also instantiate
it with different domain drifting models such as label drifting and covariate drifting,
connecting the general Hellinger distance to the degree of domain drifting specific to
these scenarios. We then consider a diverse range of loss functions, including JSD loss,
0-1 loss, and AUC. To the best of our knowledge, we provide the first certificate for
such diverse realistic scenarios, which is able to scale to large problems.

Last but not least, we conduct extensive experiments verifying the efficiency and
effectiveness of our result. Our method is able to scale to datasets and neural networks
as large as ImageNet and full-fledged models like EfficientNet-B7 and BERT. We further
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apply our method on smaller-scale datasets, in order to compare with strong, state-of-
the-art methods. We show that our method provides much tighter certificates.

Our contributions can be summarized as follows:

• We present a novel framework which provides a non-vacuous, computationally
tractable bound to the distributionally robust worst-case risk Rθ(UP) for general
bounded loss functions ℓ and models h.

• We apply this framework to the problem of certifying out-of-domain generaliza-
tion for blackbox functions and provide a means to certify distributional robust-
ness in specific scenarios such as label and covariate drifts.

• We provide an extensive experimental study of our approach on a wide range of
datasets including the large scale ImageNet [185] dataset, as well as NLP datasets
with complex models.

8.1.3 Related Work

Distributionally robust optimization first appeared in the context of inventory man-
agement [190] and has since been discovered by the machine learning community as
a useful tool to train machine learning models which generalize better to new distri-
butions [10, 66, 198]. The uncertainty set occurring in the distributionally robust loss
has been studied in terms of Wasserstein balls in [16, 37, 42, 66, 121, 129, 198, 203],
and f-divergence balls in [10, 52–54, 126]. From a more general viewpoint, [103] con-
nects integral probability metrics with distributional robustness in general and provides
links with generative adversarial networks. In another vein, maximum mean discrep-
ancy measures have been investigated in [205] for generalization in Kernel methods.
[203] propose a method to certify generalization by using the dual formulation of the
Wasserstein worst-case risk. However, their approach requires the model and loss func-
tion to be smooth and relies on an estimate of the Lipschitz constant of gradients,
which quickly becomes vacuous for large problem sizes. Related techniques based on
Wasserstein distances [16, 42, 66, 121, 198] make similarly prohibitive assumptions and
generally fail to provide scalable alternatives. In contrast, we study uncertainty sets ex-
pressed as Hellinger balls and provide a model-specific distributional robustness guar-
antee which only makes minimal assumptions on the loss (namely, boundedness) and
thus scales to large problems. The authors in [208] consider distributionally robust op-
timization under fine-grained shifts in the marginal distributions, and reason about the
worst-case risk on subpopulations in the data distribution. Orthogonal to our work is
the topic of certified robustness at the instance level [27, 39, 56, 128, 213, 253]. This line
of research seeks to reason about robustness against adversarial attacks at the instance
level, while here we aim to bound the worst-case population-level risk over a set of
distributions.

8.2 distributional robustness for blackbox functions

In this section, we present the main results of this chapter, namely, a computationally
tractable upper bound to the worst-case risk (193) for uncertainty sets expressed in
terms of Hellinger balls around the data-generating distribution P. The result follows
as a direct consequence of Theorem 1 where we have shown lower and upper bounds
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to expectation values using properties of Gram matrices in an appropriately chosen
Hilbert space structure. Here we instantiate this generic Theorem in the context of
bounding loss and score functions of ML models under distribution shifts.

For the remainder of this section, to simplify notation and maintain generality, we
consider loss functions ℓ : Z → R+ which include the model h and take inputs from
an input space Z. For example in the context of supervised learning, Z = X× Y can
be the product space of features and labels and the loss ℓ(z) = ℓ̃(hθ(x), y) can be
seen as a composition of the loss function ℓ̃ and the model hθ. We denote the set of
probability measures on the space Z by P(Z). For two measures µ, ν on Z, we say that
ν is absolutely continuous with respect to µ, denoted ν ≪ µ, if µ(A) = 0 implies that
ν(A) = 0 for any measurable set A ⊆ Z. Among the plethora of distances between
probability measures, such as total variation and Wasserstein distance, a particularly
popular choice is the family of f-divergences which has been extensively studied in the
context of distributionally robust optimization [10, 52, 54, 126]. Here we focus on the
Hellinger distance, a particular f-divergence, as it emerges naturally from the derivation
of the bounds.

Definition 9 (Hellinger-distance). Let P, Q ∈ P(Z) be probability measures on Z that are
absolutely continuous with respect to a reference measure µ with P, Q ≪ µ. The Hellinger
distance between P and Q is defined as

H(P, Q) :=

√
1

2

∫
Z

(√
p(z) −

√
q(z)

)2
dµ(z) (195)

where p = dP
dµ and q = dQ

dµ are the Radon-Nikodym derivatives of P and Q with respect to µ.
The Hellinger distance is independent of the choice of the reference measure µ.

The Hellinger distance is bounded with values in [0, 1], with H(P, Q) = 0 if and
only if P = Q and the maximum value of 1 attained when P and Q have disjoint
support. Furthermore, H defines a metric on the space of probability measures and
hence satisfies the triangle inequality. In the following Theorem, we state our main
result as an upper bound to the worst-case risk (193) and refer the reader to Section E.2
for the analogous lower bound.

Theorem 7. Let ℓ : Z → R+ be a loss function and suppose that supz∈Z |ℓ(z)| ⩽ M for some
M > 0. Then, for any probability measure P on Z and ρ > 0 we have

sup
Q∈Bρ(P)

EQ[ℓ(Z)] ⩽ EP[ℓ(Z)] + 2
√
Cρ(1−Cρ)VP[ℓ(Z)]

+Cρ

[
EP[M− ℓ(Z)]2 − VP[ℓ(Z)]

M− EP[ℓ(Z)]

] (196)

where Cρ = ρ2(2− ρ2) and Bρ(P) = {Q ∈ P(Z) : H(P, Q) ⩽ ρ} is the Hellinger ball of radius
ρ centered at P. The radius ρ is required to be small enough such that

ρ2 ⩽ 1−

√
VP[ℓ(Z)]

VP[ℓ(Z)] + EP[M− ℓ(Z)]2
. (197)

Proof. For ease of notation, let m = EP[ℓ(Z)] and v = VP[ℓ(Z)]. Let ρ ⩾ 0 such that

ρ2 ⩽ 1−
√

v

v+ (M−m)2
. (198)
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Then, for arbitrary Q ∈ Bρ(P), it follows as a direct consequence of Theorem 1 that

EX∼Q[h(X)] ⩽ m+ 2
√
Cρ(1−Cρ)v+Cρ

(M−m)2 − v

M−m
. (199)

Since the right hand side of (199) does not depend on the choice of Q, we can take the
supremum over the left hand side. This completes the proof.

We now make some general observations about this result. The bound (196) presents
a pointwise guarantee in the sense that it upper bounds the distributional worst-case
risk for a particular model ℓ(·). This is in contrast to bounds which hold uniformly
for an entire model class and introduce complexity measures such as covering num-
bers and VC-dimension which are hard to compute for many practical problems. Other
techniques which yield a pointwise robustness certificate of the form (196), typically
express the uncertainty set as a Wasserstein ball around the distribution P [16, 42, 198,
203], and require the model ℓ to be sufficiently smooth. For example, the certificate pre-
sented in [203] can only be tractably computed for small neural networks for which one
can upper bound their smoothness by bounding the Lipschitz constant of their gradi-
ents. For more general and large-scale neural networks, these bounds quickly become
intractable and/or lead to vacuous certificates. For example, it is known that computing
the Lipschitz constant of neural networks with ReLU activations is NP-hard [227]. Sec-
ondly, we emphasize that our bound (196) is “faithful”, in the sense that, as the radius
approaches zero, ρ → 0, the bound converges towards the true expectation EP[ℓ(Z)].
This is of course desirable for any such bound as it indicates that any intrinsic gap
vanishes as the covered distributions become increasingly closer to the reference distri-
bution P. A third observation is that the bound (196) is monotonically increasing in the
variance, indicating that low-variance models exhibit better generalization properties,
which can be seen in light of the bias-variance trade-off. More specifically, from the
form our bound (196) takes, we see that minimizing the variance-regularized objective
L(θ) = EZ∼P[ℓθ(Z)] + λVZ∼Pℓθ(Z), effectively amounts to minimizing an upper bound
on the worst-case risk. Indeed, various recent works have highlighted the connection
between variance regularization and generalization [54, 72, 126, 148] and our result
provides further evidence for this observation.

8.3 certifying out-of-domain generalization

Taking advantage of our weak assumptions on the loss functions and models, we now
apply our framework to the problem of certifying the out-of-domain generalization per-
formance of a given classifier, when measured in terms of different loss functions. In
practice, one is typically only given a finite sample Z1, . . . , Zn from the in-domain dis-
tribution P and the bound (196) needs to be estimated empirically. To address this prob-
lem, our next step is to present a finite sampling version of the bound (196) which holds
with arbitrarily high probability over the distribution P. Second, we instantiate our re-
sults with specific distribution shifts, namely, shifts in the label distribution, and shifts
which only affect the covariates. Finally, we highlight specific loss and score functions
and show how our result can be applied to certify the out-of-domain generalization of
these functions.
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8.3.1 Finite Sample Results

Let Z1, . . . , Zn
iid
∼ P be an independent and identically distributed sample from the

in-domain distribution P. One immediate way to use our bound would be to construct
the empirical distribution P̂n and consider the worst-case risk over distributions Q ∈
Bρ(P̂n), while computing the bound on the right hand side of (196) with the empirical
mean and unbiased sample variance. However, for ρ < 1, the Hellinger ball Bρ(P̂n)
will in general only contain distributions with discrete support since any continuous
distribution Q has distance 1 from P̂n. We therefore seek another path and make use
of concentration inequalities for the population variance and mean, in order to get
statistically sound guarantees which hold with arbitrarily high probability. To achieve
this, we bound the expectation value via Hoeffding’s inequality [94], and the population
variance via a bound presented in [148]. In the second step, we use the union bound as
a means to bound both variance and expectation simultaneously with high probability.
We leave the derivation and proof to Section E.1. These ingredients lead to the finite
sampling-based version of Theorem 7, which we state in the following Corollary.

Corollary 5 (Finite-sampling bound). Let Z1, . . . , Zn be independent random variables
drawn from P and taking values in Z. For a loss function ℓ : Z→ [0, M], let L̂n := 1

n

∑n
i=1 ℓ(Zi)

be the empirical mean and S2n := 1
n(n−1)

∑n
1⩽i<j⩽n(ℓ(Zi)− ℓ(Zj))

2 be the unbiased estimator
of the variance of the random variable ℓ(Z), Z ∼ P. Then, for any δ ∈ (0, 1), with probability at
least 1− δ

sup
Q∈Bρ(P)

EQ[ℓ(Z)] ⩽ L̂n + 2
√
Cρ(1−Cρ)S2n +∆n,ρ

+Cρ

[
M− L̂n +

S2n + 2M
√
S2nϵn,δ +M

2ϵn,δ

L̂n −M

(
1−

√
n−1
4n ϵn,δ

) ]
(200)

where

ϵn,δ =
2 ln 2/δ
n− 1

, ∆n,ρ =M
√
ϵn,δ

(
2
√
Cρ(1−Cρ) −

Cρ

2

√
n− 1

n

)
(201)

and Cρ = ρ2(2− ρ2). The radius ρ is required to be small enough such that

ρ2 ⩽ 1−

1+
 L̂n −M

(
1−

√
ln2/δ
2n

)
√
S2n +M

√
2 ln1/δ
n−1


2

−1/2

. (202)

Thus, we have derived a certificate for out-of-domain generalization for general
bounded loss functions and models h which can be efficiently estimated from finite
data sampled from the distribution P.

8.3.2 Specific Distribution Shifts

We now consider specific distribution shifts and discuss our main results in light of
shifts in the distributions of labels and covariates.



8.3 certifying out-of-domain generalization 101

8.3.2.1 Label Distribution Shifts

Shifts in the label distribution occur when, during deployment, an ML-system operates
in an environment where the relative frequency of certain classes increases or decreases,
compared to the training environment, or, as is common in practical applications, in-
stances of previously unseen classes appear. This can potentially harm the model per-
formance dramatically and can have severe implications, in particular in the context of
fairness and ethics in machine learning. To investigate this type of distribution shift, we
follow the common practice to assume that the distribution over covariates, conditioned
on the labels, stays constant. Formally, here, we consider the distribution shift P → Q

expressed via

p(x, y) = π(x|y)p(y) 7→ q(x, y) = π(x|y)q(y) (203)

where π(x|y) is given by a fixed distribution over covariates, conditioned on labels. In
this case, it can be shown that the Hellinger distance is equal to the L2 norm between
the square roots of the (label) probability vectors p = (p(1), . . . , p(K))T ∈ RK and
q = (q(1), . . . , q(K))T ∈ RK where K is the number of classes, so that

H(P, Q) =
1√
2
∥√p−√q∥2 (204)

where the square root is applied to each element in the respective probability vector.

8.3.2.2 Covariate Distribution Shifts

In contrast to label distribution shifts, here we consider shifts to the distribution of co-
variates. This models scenarios where the relative frequency of labels stays constant, but
environments change, for example the shift from day to night in autonomous driving
or wildlife surveillance. Formally, we consider the shift P → Q with

p(x, y) = π(y| x)p(x) 7→ q(x, y) = π(y| x)q(x) (205)

where π(y| x) is given by a fixed distribution on labels, conditioned on the covariates. In
this scenario, the Hellinger distance between P and Q reduces to the distance between
the marginals

H(P, Q) =

√
1

2

∫
X

(√
p(x) −

√
q(x)

)2
dx. (206)

In principle, this quantity could be estimated from unlabeled samples of a target dis-
tribution Q, enabling one to reason about distributional robustness of a given model,
by evaluating our bounds from Theorem 7 and Corollary 5. However, in practice, it is
generally difficult to estimate f-divergences, and in particular the Hellinger distance,
from data for practically relevant problem instances. Although first steps in this direc-
tion have been made [163, 164, 204], it remains largely an open problem and a potential
solution would give our approach additional ounces of practical significance. We view
this problem as orthogonal to certifying out-of-domain generalization and believe that
research efforts towards such an end-to-end solution pose an exciting future research
direction.
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discussion. We notice that when considering label- or covariate distribution shifts,
we are effectively interested in a subset of all probability distributions with a given
predefined Hellinger distance. In other words, if the shift P → Q models the label
distribution shift with distance H(P, Q) ⩽ ρ, then applying the certificate (196) with
radius ρ also covers every other type of distribution shift bounded by ρ and hence
gives a more conservative view than desired. This is because, in general,

sup
Q:H(P,Q)⩽ρ
q(·|y)≡p(·|y)

EQ[ℓ(Z)] ⩽ sup
Q:H(P,Q)⩽ρ

EQ[ℓ(Z)] (207)

arising from the additional constraint that q(x|y) = p(x|y) for all x ∈ X. A similar
argument can be made for covariate shifts. Naturally, this leads to an intrinsic gap
between the actual and certified robustness, which we also observe in our experiments.
Finally, it is worth pointing out the connection with generalization from finite amounts
of data which can be seen as a specific instantiation of the worst-case risk (193) where
the in-domain distribution corresponds to the empirical distribution P̂n and the radius
ρ decays as O(1/n). In this sense, the distribution shift originates from the transition
from the empirical to the true data distribution. This type of distribution shift has
been analyzed in [54] where further links to variance-based regularization have been
established.

8.3.3 Specific Loss and Score Functions

We now turn our attention to specific loss functions and discuss, in particular, the
Jensen-Shannon divergence loss, the classification error, and the AUC score.

8.3.3.1 Jensen-Shannon Divergence

The Jensen-Shannon Divergence is a particular type of loss function for classification
models, and serves as a symmetric alternative to other common losses such as cross
entropy. It has been observed that the JSD loss and its generalizations have favorable
properties compared to the standard cross entropy loss, as it is bounded, symmetric,
and its square root is a distance and hence satisfies the triangle inequality. In [58] it
has been observed that JSD loss can be seen as an interpolation between cross-entropy
and mean absolute error and is particularly well suited for classification problems with
noisy labels. Formally, the Jensen-Shannon divergence is defined as

DJS(P, Q) :=
1

2

(
DKL(P∥µ) +DKL(Q∥µ)

)
(208)

where DKL is the Kullback-Leibler divergence and µ = 1
2(P+Q). Since it is a bounded

loss function, it is straightforward to apply our results to certify the out-of-domain
generalization for the JSD loss and, due to its smoothness, allows for a principled com-
parison between our bound and the Wasserstein distance certificates proposed in [42,
203].

8.3.3.2 Classification Error

The classification error is among the most popular choices for measuring the perfor-
mance of classification models and serves as a means to assess how accurate a classifier



8.4 experiments 103

is on a given data distribution. As it is a non-smooth function, existing approaches
cannot in general certify distributional robustness for this function. In contrast, one can
immediately instantiate our Theorem 7 (or the finite sampling version from Corollary 5)
with this loss. Indeed, for a fixed model h : X → Y, let ϵP := P(X,Y)∼P[h(X) ̸= Y] and
analogously ϵQ. Then, in the infinite sampling regime, we immediately get an upper
bound on the worst-case classification error from Theorem 7. Namely, for a sufficiently
small radius ρ2 ⩽ 1−

√
ϵP, we have

sup
Q∈Bρ(P)

ϵQ ⩽ ϵP + 2
√
Cρ(1−Cρ)ϵP(1− ϵP) +Cρ(1− 2ϵP) (209)

where Cρ = ρ2(2− ρ2).

8.3.3.3 AUC Score

Among other uses, the Area under the ROC (AUC) score [38, 79] is a metric to measure
the performance of binary classification models. Unlike the classification error, which
captures the ability to classify a single randomly chosen instance, the AUC score pro-
vides a means to quantify the ability to correctly assigning to any positive instance a
higher score than to a randomly chosen negative instance. For a binary classification
model h : X → R that outputs the score of the positive class, the AUC score is defined
as

AUC(h) = P
[
h(X) ⩾ h(X ′)|Y = 1, Y ′ = −1

]
(210)

where (X, Y) and (X ′, Y ′) are independent and identically distributed according to P.
By introducing the notation X± := X|Y = ±1, we can equivalently write the AUC score
as an expectation value over the joint (conditional) distribution of Z := (X+, X−)

AUC(h) = E(X+,X−)∼PZ [1{h(X+)⩾h(X−)}]. (211)

We notice that only distribution shifts on the covariates have an impact on the AUC
score. For this reason, we consider a setting similar to the covariate shift setting of
Section 8.3.2.2, although we consider shifts in the conditional distribution p(x|y) 7→
q(x|y) for each y ∈ {±1} in contrast to shifts in the marginals. Due to independence, the
probability density function of Z ∼ PZ can be written as

pZ(x+, x−) = p(x|y = +1)p(x|y = −1) (212)

and similarly for the shifted distribution Q. Thus, assuming that for both negative and
positive samples a distribution drift with H(PX|Y=y, QX|Y=y) ⩽ ρ occurs, the squared
Hellinger distance between PZ and QZ is bounded by

H2(PZ, QZ) ⩽ ρ2(2− ρ2). (213)

Thus, for certifying out-of-domain generalization for the AUC score, we can apply our
bound by instantiating it with Hellinger distance

√
ρ2(2− ρ2). We remark that for the

AUC score, one is typically interested in lower bounding it under distribution shifts. To
that end, we present a lower bound version of our Theorem 7 in Section E.2.
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Figure 16: Distributional robustness certificates for generic distribution shifts on vision and NLP
datasets for JSD loss and classification error.

8.4 experiments

We now experimentally validate our theoretical findings on a diverse collection of
datasets and scenarios. We first provide certificates considering generic distribution
shifts P → Q and then provide detailed analysis on the two specific scenarios described
in Section 8.3.2.1 and Section 8.3.2.2, namely, shifts in the label and in the covariate dis-
tributions. Finally, we construct a synthetic example that allows for a fair comparison
of our bounds with the Wasserstein certificate of [203], which indicates that in addi-
tion to favorable scalability properties, our bounds are also considerably tighter. We
remark that all our bounds are computed using the finite sampling bounds presented
in Corollary 5 and hold with 99% probability (δ = 0.01).1

datasets We certify out-of-domain generalization on two standard vision datasets:
ImageNet-1k [185] containing objects of 1,000 different classes; and CIFAR-10 [119],
which contains natural images of 10 different classes. We also conduct experiments
on the standard natural language processing (NLP) datasets Yelp [31] and SNLI [19].
We follow Lin et al. [137] to sample 2, 000 examples for the Yelp test set and 10, 000
examples for the SNLI test set.

models For classification on ImageNet-1k, we use the EfficientNet-B7 [214] archi-
tecture which we initialize with pre-trained weights; we use DenseNet-121 [101] for
CIFAR-10. On Yelp, we use BERT [48] and on SNLI we use a DeBERTa architecture [86].

settings for auc scores When we consider AUC scores, we further constrain
all multiclass datasets into a binary version. To this end, on ImageNet, we randomly
choose two classes and train a ResNet-152 architecture to discriminate between the
two Synsets n01601694 and n04330267 (corresponding to the classes ‘water ouzel’ and
‘stove’). Similarly, on CIFAR-10 we also pick two classes at random and train a ResNet-
110 classifier for the two classes ‘bird’ and ‘horse’.

1 Our code is publicly available at https://github.com/DS3Lab/certified-generalization.

https://github.com/DS3Lab/certified-generalization
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Figure 17: Certified Generalization for AUC against generic distribution shifts on binary Ima-
geNet and CIFAR datasets.

Figure 18: Certified Generalization for label distribution shifts. Each gray point corresponds to
a randomly sampled label distribution with corresponding Hellinger distance and
empirical loss.

8.4.1 Certifying specific Distribution Shifts

Figure 16 and Figure 17 illustrate the certificates that we provide on a diverse range
of datasets, considering three different scores: classification error, JSD loss, and AUC
score. In all these figures, the x-axis corresponds to the degree of distribution drift, and
the Gramian Certificate curves correspond to the lower and upper bound of these scores
under distribution drifts. To our best knowledge, this is the first time that nonvacuous
certificates are obtained on this diverse range of datasets, scores, and large-scale models.

8.4.1.1 Label Distribution Shifts

To get a better indication of how well our certificates capture the true risk under la-
bel distribution shifts, we randomly generate 100,000 shifted class distributions on the
CIFAR-10 and Yelp datasets by 1) subsampling existing classes, 2) removing the counts
of existing classes, and 3) including new "unseen" classes. This allows us to empiri-
cally compute both the classification error and the Hellinger distance and enables us to
compare the certificates to the actual loss on the shifted distribution. We can see from
Figure 18 that our certificates indeed provide a valid upper and lower bound. Note
that, given that all shifted class distributions are randomly sampled, we might not hit
the true worst-case scenario, explaining the clear gap between the generalization certifi-
cates and the scores obtained from the randomly generated label distributions. Another



106 certifying out-of-domain generalization

reason for the gap can be attributed to the intrinsic gap for label and covariate shifts,
discussed in Section 8.3.2. We refer the reader to Section E.6 for analogous figures with
a larger set of model architectures on the CIFAR-10 dataset. Finally, we point out the dif-
ficulty in sampling these class distributions for datasets with a large number of classes
and include analogous figures for ImageNet and the SNLI dataset in Section E.6.
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Figure 19: Certified Generalization for covariate shift on colored MNIST.

8.4.1.2 Covariate Distribution Shifts.

We now investigate our certificates in light of changes in the distribution of the co-
variates and consider the scenario described in Section 8.3.2.2. In this experiment, we
use the binary Colored MNIST dataset [4, 112], which is constructed from the MNIST
dataset by coloring the digits 0-4 in green and 5-9 in red for the training set, while
flipping the coloring in the test set. The classifier is then trained to classify the digits
into the two groups {0, 1, 2, 3, 4} and {5, 6, 7, 8, 9}. In this setting, the classifier learns to
perfectly distinguish the two classes in the training set, but fails on the testing set since
the color is a stronger predictor than the shape of the digits. To investigate the space be-
tween these two extreme cases, we generate mixture distributions between training and
test distribution in the following way. We set P to be the training distribution and Q the
testing distribution (containing digits with flipped colors). Guided by a mixing param-
eter γ, we mix P and Q to obtain the mixture distribution Πγ := γ · P+ (1−γ) ·Q. Since
P and Q have disjoint support, we compute the Hellinger distance between P and Πγ as
H(P, Πγ) =

√
1−
√
γ as shown in Section E.5. Figure 19 illustrates our robustness cer-

tificates for the 0-1 loss and the AUC Score, as well as the empirical losses EΠγ [ℓ(X, Y)]
for different values of the mixture parameter γ. We see from the figure that our tech-
nique provides quite tight certificates for both classification error and AUC score.

8.4.2 Comparison with Wasserstein Certificates

We now construct a synthetic example that enables a fair comparison with two base-
line certificates based on the Wasserstein distance. Namely, we compare our approach
with 1) the certificate which uses the Lipschitz constant of the ML model, presented
in [42]; and 2) with the pointwise robustness certificate derived in [203] from the dual
formulation of the worst-case risk. We remark that these certificates cannot be applied
to our previous examples because of their prohibitive assumptions. To make the three
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Figure 20: Comparison of our approach with the Wasserstein-based certificates from [42, 203]
for varying levels of model complexity.

techniques comparable, we consider a Gaussian mixture model and certify the Jensen-
Shannon divergence loss, while modeling distribution shifts as dislocations, X 7→ X+ δ

for a fixed perturbation vector δ. This allows us to parameterize the distribution shift
via the L2-norm of δ and obtain a one-to-one correspondence between our Hellinger dis-
tance and the Wasserstein distance, and enables a principled comparison. We describe
the details of this synthetic dataset in Section E.3. To investigate how the techniques
scale with increased model complexity, we use fully connected feedforward neural net-
works with varying depths and widths. In addition, to accommodate [203]’s assump-
tions on smoothness, we use ELU activation functions on all layers. We remark that the
bound in [203] requires one to solve a complex maximization problem, which requires
the composition of the loss function and the network to be sufficiently smooth. Further-
more, the concavity of the maximization problem hinges on knowledge of the Lipschitz
constant of the gradient. For small examples, this Lipschitz constant can be obtained, as
we show in Section E.4 for the JSD loss function. As can be seen in Figure 20, all bounds
converge to the expected loss EP[ℓ(X, Y)] as the perturbation goes to zero, ∥δ∥2 → 0.
However, the certificate from [203] quickly becomes vacuous as the perturbation magni-
tude increases. In addition, both baseline bounds become loose with increasing model
complexity, while our bound is virtually agnostic to the model architecture as it only
depends on the variance and expected loss on the distribution P.

8.5 conclusion

In this chapter, we have focused on a further aspect of the robustness during the deploy-
ment stage of an ML pipeline and studied the problem of certifying the out-of-domain
generalization while only allowing for blackbox access to the model. To that end, we
have presented bounds on the worst-case population risk over an uncertainty set of
probability distributions given by a Hellinger ball. In contrast to existing approaches,
our framework is scalable since it treats the loss function together with the model as a
blackbox and thus requires virtually no knowledge about the internals of, e.g., neural
networks. We have provided experimental evidence that our technique can handle large
models and datasets and provides, to the best of our knowledge, the first non-vacuous
out-of-domain generalization bounds for problems as large as ImageNet with a full-
fledged EfficientNet-B7. While our techniques provide a means to certify robustness
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against general distribution shifts, future research directions can potentially extensively
study more specific distribution shifts in order to close the gap stemming from the gen-
eral nature of the uncertainty set. Perhaps the most significant limitation from a prac-
tical point of view, is the difficulty of estimating the Hellinger distance from general
real-life data samples. We believe that investigating problems where such an estimate
can be efficiently obtained, is fruitful grounds for future research as it provides our
guarantees with further operational significance.
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C E RT I F I E D R O B U S T N E S S V I A Q U A N T U M H Y P O T H E S I S T E S T I N G

In this part of the thesis, Part iv, we switch our attention to a different model of com-
putation. In the part on classical machine learning, Part iii, information is stored as
bits, and the state of the system of computation is deterministically known. Here we
move away from this model of computation and consider information stored in qubits,
resulting in an inherently probabilistic way in which computations are executed and
information is extracted from a system. In this chapter, we first focus on certifying the
robustness of quantum classification models by generalizing the robustness guarantees
based on the Neyman-Pearson Lemma [39] to the quantum domain. Next to robustness
against adversarial attacks, quantum ML models are just as vulnerable to natural noise
occurring in quantum computing systems, and we unify these two notions by viewing
adversarial attacks as a worst-case form of noise. In the subsequent chapter, we take a
further step and consider not only classification models, but more general algorithms
whose output is computed via the estimation of expectation values.

9.1 introduction

9.1.1 Overview

The flourishing interplay between quantum computation and machine learning has in-
spired a wealth of algorithmic invention in recent years [14, 55, 192]. Among the most
promising proposals are quantum classification algorithms which aspire to leverage
the exponentially large Hilbert space uniquely accessible to quantum algorithms to ei-
ther drastically speed up computational bottlenecks in classical protocols [41, 63, 179,
278], or to construct quantum-enhanced kernels that are prohibitive to compute clas-
sically [81, 140, 191]. Although these quantum classifiers are recognised as having the
potential to offer quantum speedup or superior predictive accuracy, they are shown to
be just as vulnerable to input perturbations as their classical counterparts [71, 138, 141,
211]. These perturbations can occur either due to imperfect implementation which is
prevalent in the NISQ era [174], or, more menacingly, due to adversarial attacks where
a malicious party aims to fool a classifier by carefully crafting practically undetectable
noise patterns which trick a model into misclassifying a given input.

In order to address these short-comings in reliability and security of QML, several
protocols in the setting of adversarial quantum learning, i.e. learning under the worst-
case noise scenario, have been developed [50, 77, 138, 141, 248]. More recently, data
encoding schemes are linked to robustness properties of classifiers with respect to dif-
ferent noise models in [125]. The connection between provable robustness and quantum
differential privacy is investigated in [50], where naturally occurring noise in quantum
systems is leveraged to increase robustness against adversaries. A further step towards
robustness guarantees is made in [77] where a bound is derived from elementary prop-
erties of the trace distance. These advances, though having accumulated considerable
momentum toward a coherent strategy for protecting QML algorithms against adversar-
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ial input perturbations, have not yet provided an adequate framework for deriving a
tight robustness condition for any given quantum classifier. In other words, the known
robustness conditions are sufficient but not, in general, necessary.

Thus, a major open problem remains which is significant on both the conceptual and
practical levels. Conceptually, adversarial robustness, being an intrinsic property of the
classification algorithms under consideration, is only accurately quantified by a tight
bound, the absence of which renders the direct robustness comparison between dif-
ferent quantum classifiers implausible. Practically, an optimal robustness certification
protocol, in the sense of being capable of faithfully reporting the noise tolerance and
resilience of a quantum algorithm can only arise from a robustness condition which
is both sufficient and necessary. Here we set out to confront both aspects of this open
problem by generalising the state-of-the-art classical wisdom on certifiable adversarial
robustness into the quantum realm.

The pressing demand for robustness against adversarial attacks is arguably even
more self-evident under the classical setting in the present era of wide-spread indus-
trial adaptation of machine learning [61, 71, 211]. Many heuristic defence strategies
have been proposed but have subsequently been shown to fail against suitably power-
ful adversaries [6, 28]. In response, provable defence mechanisms that provide robust-
ness guarantees have been developed. One line of work, interval bound propagation,
uses interval arithmetic [73, 153] to certify neural networks. Another approach makes
use of randomizing inputs and adopts techniques from differential privacy [128] and,
to our particular interest, statistical hypothesis testing [39, 240] which has a natural
counter-part in the quantum domain. Since the pioneering works by Helstrom [88] and
Holevo [95], the task of QHT has been well-studied and regarded as one of the foun-
dational tasks in quantum information, with profound linkages with topics ranging
from quantum communication [147, 235], estimation theory [90], to quantum illumina-
tion [139, 250].

9.1.2 Contributions

In this work, we lay bare a fundamental connection between quantum hypothesis test-
ing and the robustness of quantum classifiers against unknown noise sources. The meth-
ods of QHT enable us to derive a robustness condition which, in contrast to other meth-
ods, is both sufficient and necessary and puts constraints on the amount of noise that a
classifier can tolerate. Due to tightness, these constraints allow for an accurate descrip-
tion of noise-tolerance. Absence of tightness, on the other hand, would underestimate
the true degree of such noise tolerance. Based on these theoretical findings, we provide
(1) an optimal robustness certification protocol to assess the degree of tolerance against
input perturbations (independent of whether these occur due to natural or adversarial
noise), (2) a protocol to verify whether classifying a perturbed (noisy) input has had
the same outcome as classifying the clean (noiseless) input, without requiring access to
the latter, and (3) tight robustness conditions on parameters for amplitude and phase
damping noise. In addition, we will also consider randomizing quantum inputs, what
can be seen as a quantum generalisation to randomized smoothing, a technique that has
recently been applied to certify the robustness of classical machine learning models [39].
The conceptual foundation of our approach is rooted in the inherently probabilistic na-
ture of quantum classifiers. Intuitively, while QHT is concerned with the question of
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Table 9: Summary of Results. Robustness conditions where the tightness result from Theorem 9 applies are highlighted in bold font.

Input States
Quantum

Differential Privacy
Hölder
Duality

Quantum Hypothesis Testing

SDP Problema Fidelity Bures Metric Trace Distance

No Smoothing
Pure

— Lemma 11
b Theorem 8 Theorem 10 Eq. (240)

Eq. (236)

Mixed Lemma 11

Depolarization
Smoothing

Pure
Lemma 2 in [50] Eq. (266) Theorem 8 — —

Corollary 7 (single-qubit)

Mixed —

a Robustness condition expressed in terms of type-II error probabilities β∗ associated with an optimal quantum hypothesis test.
b Independently discovered in [77].

how to optimally discriminate between two given states, certifying adversarial robust-
ness aims at giving a guarantee for which two states can not be discriminated. These
two seemingly contrasting notions go hand in hand and, as we will see, give rise to
optimal robustness conditions fully expressible in the language of QHT. Furthermore,
while we focus on robustness in a worst-case scenario, our results naturally cover nar-
rower classes of known noise sources and can potentially be put in context with other
areas such as error mitigation and error tolerance in the NISQ era. Finally, while we treat
robustness in the context of QML, our results in principle do not require the decision
function to be learned from data. Rather, our results naturally cover a larger class of
quantum algorithms whose outcomes are determined by the most likely measurement
outcome. Our robustness conditions on quantum states are then simply conditions un-
der which the given measurement outcome remains the most likely outcome.

The remainder of this chapter is organized as follows. We introduce the notations
and terminologies in Section 9.2, where we also formally define quantum classifiers
and the assumptions on the threat model. In Section 9.3, we present our main results
on provable robustness from quantum hypothesis testing. Additionally, in Section 9.4,
these results are demonstrated and visualised with a simple toy example. In Section 9.5
we present an algorithm for robustness certification and study the robustness against
specific noise models in detail. We conclude this chapter in Section 9.6 with a higher-
level view on our findings and layout several related open problems with an outlook
for future research.

9.2 preliminaries

notation Let H be a Hilbert space of finite dimension d := dim(H) < ∞ corre-
sponding to the quantum system of interest. The space of linear operators acting on H

is denoted by L(H) and the identity operator on H is written as 1. If not clear from
context, the dimensionality is explicitly indicated through the notation 1d. The set of
density operators (i.e. positive semi-definite trace-one Hermitian matrices) acting on H,
is denoted by S(H) and elements of S(H) are written in lowercase Greek letters. The
Dirac notation will be adopted whereby Hilbert space vectors are written as |ψ⟩ and
their dual as ⟨ψ|. We will use the terminology density operator and quantum state in-
terchangeably. For two Hermitian operators A, B ∈ L(H) we write A > B (A ⩾ B) if
A− B is positive (semi-)definite and A < B (A ⩽ B) if A− B is negative (semi-)definite.
For a Hermitian operator A ∈ L(H). with spectral decomposition A =

∑
i λiPi, we

write {A > 0} :=
∑
i : λi>0

Pi (and analogously {A < 0} :=
∑
i : λi<0

Pi) for the projection
onto the eigenspace of A associated with positive (negative) eigenvalues. The Hermitian
transpose of an operator A is written as A† and the complex conjugate of a complex
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Figure 21: Adversarial attack. a A quantum classifier correctly classifies the (toxic) mushroom
as poisonous. b An adversary perturbs the image to fool the classifier into believing
that the mushroom is edible.

number z ∈ C as z̄. For two density operators ρ and σ, the trace distance is defined as
T(ρ, σ) := 1

2
∥ρ− σ∥1 where ∥·∥1 is the Schatten 1-norm defined on L(H) and given by

∥A∥1 := Tr [|A|] with |A| =
√
A†A. The Uhlmann fidelity between density operators ρ

and σ is denoted by F and defined as F(ρ, σ) := Tr
[√√

ρσ
√
ρ
]2 which for pure states re-

duces to the squared overlap F(|ψ⟩, |ϕ⟩) = |⟨ψ|ϕ⟩|2. Finally, the Bures metric is denoted
by dB and is closely related to the Uhlmann fidelity via dB(ρ, σ) = [2(1−

√
F(ρ, σ))]

1
2 .

quantum adversarial machine learning Adversarial examples are attacks
on classification models where an adversary aims to induce a wrong prediction using
imperceptible modifications of a benign input example. Specifically, given a quantum
classifier A, as defined in Section 3.2, and a benign input state σ, an adversary can
craft a small perturbation σ→ ρ which results in a flipped prediction, i.e. A(ρ) ̸= A(σ).
An illustration for this threat scenario is given in Figure 21. In this work, we seek
a worst-case robustness guarantee against any possible attack: as long as ρ does not
differ from σ by more than a certain amount, we aim to guarantee that A(σ) = A(ρ),
independently of how the adversarial state ρ has been crafted. Formally, suppose the
quantum classifier A takes as input a benign quantum state σ ∈ S(H) and produces a
measurement outcome denoted by the class k ∈ C with probability yk(σ) = Tr [ΠkE(σ)].
Recall that the prediction of A is taken to be the most likely class kA = arg maxk yk(σ).
An adversary aims to alter the output probability distribution in order to change the
most likely class by applying a quantum operation EA : S(H)→ S(H) to σwhich results
in the adversarial state ρ = EA(σ). Finally, we say that the classifier y is provably robust
around σ with respect to the robustness condition R, if for any ρ which satisfies R, it is
guaranteed that A(ρ) = A(σ). It is the goal of this work to determine a tight robustness
condition R.

9.3 certified robustness via quantum hypothesis testing

In this section, we derive a robustness condition R for quantum classifiers by using the
QHT bounds on expectation values presented in Lemma 2, which provides a guarantee
for the outcome of a computation being unaffected by the worst-case input noise or
perturbation under a given set of constraints. In the regime where the most likely class
is measured with probability lower bounded by pA > 1/2 and the runner up class
is less likely than pB = 1 − pA, we prove tightness of the robustness bound, hence
demonstrating that the QHT condition is at least partially optimal. The QHT robustness
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condition, in its full generality, has a formulation as an SDP problem in terms of the
optimal type-II error probabilities. Based on the closed form solution of the optimal
type-II error probability presented in Lemma 3, we then simplify this condition and
derive robustness bounds in terms of Uhlmann fidelity, Bures metric and trace distance
between benign and adversarial inputs. The robustness bounds expressed in terms of
fidelity and Bures metric are shown to be sufficient and necessary for general states and
in the same regime where the QHT formulation is proven to be tight. In the case of trace
distance, this can be claimed for pure states, while the bound for mixed states occurs to
be weaker. These results are then compared with an alternative approach which directly
applies Hölder duality to trace distances to obtain a sufficient robustness condition. The
different robustness bounds and robustness conditions are summarized in Table 9.

Let us first recall that quantum hypothesis testing is concerned with the question of
finding measurements that optimally discriminate between two states. A measurement
is said to be optimal if it minimizes the probabilities of identifying the quantum system
to be in the state σ, corresponding to the null hypothesis, when in fact it is in the
alternative state ρ, and vice versa. When considering robustness guarantees, on the
other hand, one aims to find a neighbourhood around a benign state σ where the
class which is most likely to be measured is constant or, expressed differently, where
the classifier can not discriminate between states. It becomes thus clear that quantum
hypothesis testing and QML robustness aim to achieve a similar goal, although viewed
from opposite directions. Indeed, as it turns out, QHT determines the robust region
around σ to be the set of states (i.e. alternative hypotheses) for which the optimal type-
II error probability β∗ is larger than 1/2.

To establish this connection more formally, we identify the benign state with the
null hypothesis σ and the adversarial state with the alternative ρ. We note that, in the
Heisenberg picture, we can identify the score function y of a classifier A with a POVM

{Πk}k. For kA = A(σ), the operator 1 − ΠkA (and thus the the classifier A) can be
viewed as a hypothesis test discriminating between σ and ρ. Note that, for pA ∈ [0, 1]
with ykA(σ) = Tr [ΠkAσ] ⩾ pA, the operator 1d −ΠkA is feasible for the SDP problem
β∗(1− pA : σ, ρ) in (41) and hence

ykA(ρ) = β(1d −ΠkA ; ρ) ⩾ β∗(1− pA; σ, ρ). (214)

Thus, it is guaranteed that kA = A(ρ) for any ρ with β∗(1 − pA; σ, ρ) > 1/2. The
following theorem makes this reasoning concise and extends to the setting where the
probability of measuring the second most likely class is upper-bounded by pB.

Theorem 8 (QHT robustness bound). Let σ, ρ ∈ S(H) be benign and adversarial quantum
states and let A be a quantum classifier with score function y. Suppose that for kA ∈ C and
pA, pB ∈ [0, 1], the score function y satisfies

ykA(σ) ⩾ pA > pB ⩾ max
k̸=kA

yk(σ). (215)

Then, it is guaranteed that A(ρ) = A(σ) for any ρ with

β∗(1− pA; σ, ρ) +β∗(pB; σ, ρ) > 1 (216)

To get a more intuitive understanding of Theorem 8, we first note that for pB =

1− pA, the robustness condition (216) simplifies to

β∗(1− pA; σ, ρ) > 1/2 (217)
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With this, the relation between quantum hypothesis testing and robustness becomes
more evident: if the optimal hypothesis test performs poorly when discriminating the
two states, then a classifier will predict both states to belong to the same class. In other
words, viewing a classifier as a hypothesis test between the benign input σ and the
adversarial ρ, the optimality of the Helstrom operators implies that the classifier y is
a worse discriminator and will also not distinguish the states, or, phrased differently,
it is robust. This result formalizes the intuitive connection between quantum hypothe-
sis testing and robustness of quantum classifiers. While the former is concerned with
finding operators that are optimal for discriminating two states, the latter is concerned
with finding conditions on states for which a classifier does not discriminate. In the
following, we state the full proof for Theorem 8.

Proof. We prove this theorem by utilizing the bounds on expectation values presented
in Lemma 2. Note that, in the Heisenberg picture, we can write the score function y of
the classifier A as

yk(σ) = Tr
[
E† (Πk)σ

]
= Tr [Ekσ] (218)

where Ek := E†(Πk). Since E is a CPTP map, its dual is completely positive and unital
and thus 0 ⩽ Ek ⩽ 1 and∑

k

Ek =
∑
k

E†(Πk) = E†(1) = 1. (219)

Applying Lemma 2 to the operator Ek and setting m ≡ pA, we have the lower bound

ykA(ρ) = ⟨Ek⟩ρ ⩾ β∗(1− pA; σ, ρ). (220)

Similarly, for any k ̸= kA, we apply Lemma 2 to the operator Ek and set m ≡ pB and
find the upper bound

yk(ρ) = ⟨Ek⟩ρ ⩽ 1−β∗(pB; σ, ρ). (221)

Since the RHS does not depend on k, we can take the maximum over all k ̸= kA in the
LHS and find that

kA = arg max
k

yk(ρ) (222)

whenever

β∗(1− pA; σ, ρ) +β∗(pB; σ, ρ) > 1. (223)

This concludes the proof.

9.3.1 Optimality

The robustness condition (216) from QHT is provably optimal in the regime of pA+pB =

1, which covers binary classifications in full generality and multi-class classification
where the most likely class is measured with probability larger than pA > 1

2 . The
robustness condition is tight in the sense that, whenever condition (216) is violated,
then there exists a classifier A⋆ which is consistent with the class probabilities (215)
on the benign input but which will classify the adversarial input differently from the
benign input. The following theorem demonstrates this notion of tightness by explicitly
constructing the worst-case classifier A⋆.
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Theorem 9 (Tightness). Suppose that pA + pB = 1. Then, if the adversarial state ρ violates
condition (216), there exists a quantum classifier A⋆ that is consistent with the class probabili-
ties (215) and for which A⋆(ρ) ̸= A⋆(σ).

The main idea of the proof relies on the explicit construction of a “worst-case” classi-
fier with Helstrom operators and which classifies ρ differently from σ while still being
consistent with the class probabilities (215). In the following, we formalize this intuition
and provide the proof of Theorem 9.

Proof. Note that, since pB = 1−pA by assumption, the robustness condition (216) reads

β∗(1− pA; σ, ρ) > 1/2. (224)

Let M⋆
A be an optimizer of the corresponding SDP problem (41) such that α(M⋆

A; σ) =
1− pA and

β(M⋆
A; ρ) = β∗(1− pA, σ, ρ). (225)

Consider the classifier A⋆ with score function y⋆ defined by the POVM {1−M⋆
A, M⋆

A, 0}
where the number of 0 operators is such that y has the desired number of classes. The
score function y⋆ is consistent with the class probabilities (215) since

y⋆
kA

(σ) = α(1−M⋆
A; σ) = pA (226)

and

y⋆
kB

(σ) = α(M⋆
A; σ) = 1− pA = pB. (227)

Furthermore, if ρ violates (224), then we have

ykA(ρ) = β(M
⋆
A; ρ) ⩽ 1/2 (228)

and thus, in particular A⋆(ρ) ̸= kA = A⋆(σ).

Whether or not the QHT robustness condition is tight for pA + pB < 1 is an interest-
ing open question for future research. It turns out that a worst-case classifier which is
consistent with pA and pB for benign input but leads to a different classification on
adversarial input upon violating condition (216), if exists, is more challenging to con-
struct for these cases. If such a tightness result for all class probability regimes would
be proven, there would be a complete characterization for the robustness of quantum
classifiers.

9.3.2 Closed form robustness conditions

Although Theorem 8 provides a general condition for robustness with provable tight-
ness, it is formulated as a semidefinite program in terms of type-II error probabilities
of QHT. To get a more intuitive and operationally convenient perspective, we wish to
derive a condition for robustness in terms of a meaningful notion of difference between
quantum states. Specifically, based on Theorem 8, and using the closed form type-II er-
ror probability presented in Lemma 3, here we derive robustness conditions expressed
in terms of Uhlmann’s fidelity F, Bures distance dB and the trace distance T . To that
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end, we first focus on pure state inputs and will then extend these bounds to mixed
states. Finally, we show that expressing robustness in terms of fidelity or Bures distance
results in a tight bound for both pure and mixed states, while for trace distance, the
same can only be claimed in the case of pure states.

9.3.2.1 Pure States

We first assume that both the benign and the adversarial states are pure. This assump-
tion allows us to first write the optimal type-II error probabilities β∗

α(ρ, σ) as a function
of α and the fidelity between ρ and σ. This leads to a robustness bound on the fidelity
and subsequently to a bound on the trace distance and on the Bures distance. Finally,
since these conditions are equivalent to the QHT robustness condition (216), Theorem 9

implies tightness of these bounds. We formalize this result in the following Lemma.

Lemma 10. Let |ψσ⟩, |ψρ⟩ ∈ H and let A be a quantum classifier. Suppose that for kA ∈ C

and pA, pB ∈ [0, 1], we have kA = A(ψσ) and suppose that the score function y satisfies (215).
Then, it is guaranteed that A(ψρ) = A(ψσ) for any ψρ with

|⟨ψσ|ψρ⟩|2 >
1

2

(
1+

√
g(pA, pB)

)
, (229)

where the function g is given by

g(pA, pB) = 1− pB − pA(1− 2pB) + 2
√
pApB(1− pA)(1− pB). (230)

This condition is equivalent to (216) and is hence both sufficient and necessary whenever pA +

pB = 1.

Proof. It follows from Theorem 8 that kA = A(ψρ) as long as

β∗(1− pA; σ, ρ) +β∗(pB; σ, ρ) > 1. (231)

Since here both ρ and σ are pure states, it follows from Lemma 3 that

β∗(1− pA; σ, ρ) = (1− pA)(1− 2γ) + γ− 2
√
γ(1− γ)pA(1− pA) (232)

where we have set γ = |⟨ψσ|ψρ⟩|2. Similarly, we have

β∗(pB; σ, ρ) = pB(1− 2γ) + γ− 2
√
γ(1− γ)pB(1− pB) (233)

The claim now follows directly by solving (231) for γ.

Lemma 10 thus provides a closed form robustness bound which is equivalent to the
SDP formulation in condition (216) and is hence sufficient and necessary in the regime
pA + pB = 1. We remark that, under this assumption, the robustness bound (229) has
the compact form

|⟨ψσ|ψρ⟩|2 >
1

2
+
√
pA(1− pA). (234)

Due to its relation with the Uhlmann fidelity, it is straight forward to obtain a robust-
ness condition in terms of Bures metric. Namely, the condition

dB(|ψρ⟩, |ψσ⟩) <
[
2−

√
2(1+

√
g(pA, pB))

] 1
2

(235)
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is equivalent to (216). Furthermore, since the states are pure, we can directly link (229)
to a bound in terms of the trace distance via the relation T(|ψρ⟩, |ψσ⟩)2 = 1− |⟨ψσ|ψρ⟩|2,
so that

T(|ψρ⟩, |ψσ⟩) <
[
1

2

(
1−

√
g(pA, pB)

)] 12
(236)

is equivalent to (216). Due to the equivalence of these bounds to (216), Theorem 9 ap-
plies and it follows that both bounds are sufficient and necessary in the regime where
pA + pB = 1. In the following, we will extend these results to mixed states and show
that both the fidelity and Bures metric bounds are tight.

9.3.2.2 Mixed States

Reasoning about the robustness of a classifier if the input states are mixed, rather than
just for pure states, is practically relevant for a number of reasons. Firstly, in a real-
istic scenario, the assumption that an adversary can only produce pure states is too
restrictive and gives an incomplete picture. Secondly, if we wish to reason about the re-
silience of a classifier against a given noise model (e. g., amplitude damping), then the
robustness condition needs to be valid for mixed states as these noise models typically
produce mixed states. Finally, in the case where we wish to certify whether a classifica-
tion on a noisy input has had the same outcome as on the noiseless input, a robustness
condition for mixed states is also required. For these reasons, and having established
closed form robustness bounds which are both sufficient and necessary for pure states,
here we aim to extend these results to the mixed state setting. The following theorem
extends the fidelity bound (229) for mixed states. As for pure states, it is then straight
forward to obtain a bound in terms of the Bures metric.

Theorem 10. Let σ, ρ ∈ S(H) and let A be a quantum classifier. Suppose that for kA ∈ C

and pA, pB ∈ [0, 1], we have kA = A(σ) and suppose that the score function y satisfies (215).
Then, it is guaranteed that A(ρ) = A(σ) for any ρ with

F(ρ, σ) >
1

2

(
1+

√
g(pA, pB)

)
=: rF (237)

where g is defined as in (230). This condition is both sufficient and necessary if pA + pB = 1.

Proof. To show sufficiency of (237), we notice that y can be rewritten as

yk(σ) = Tr [ΠkE(σ)] (238)

= Tr [Πk(E ◦ TrE)(|ψσ⟩⟨ψσ|)] (239)

where |ψσ⟩ is a purification of σ with purifying system E and TrE denotes the partial
trace over E. We can thus view y as a score function on the larger Hilbert space which
admits the same class probabilities for σ and any purification of σ (and equally for ρ). It
follows from Uhlmann’s Theorem that there exist purifications |ψσ⟩ and |ψρ⟩ such that
F(ρ, σ) = |⟨ψσ|ψρ⟩|2. Robustness at ρ then follows from (237) by (238) and Lemma 10.
To see that the bound is necessary when pA + pB = 1, suppose that there exists some
r̃F < rF such that F(σ, ρ) > r̃F implies that A(ρ) = A(σ). Since pure states are a subset
of mixed states, this bound must also hold for pure states. In particular, suppose |ψρ⟩
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is such that r̃F < |⟨ψρ|ψσ⟩|2 ⩽ rF. However, this is a contradiction, since |⟨ψρ|ψσ⟩|2 ⩾ rF

is both sufficient and necessary in the given regime, i.e. by Theorem 9, there exists a
classifier A⋆ whose score function satisfies (215) and for which A⋆(ψσ) ̸= A⋆(ψρ). It
follows that r̃F ⩾ rF and hence the claim of the theorem.

Due to the close relation between Uhlmann fidelity and the Bures metric, we arrive
at a robustness condition for mixed states in terms of dB, namely

dB(ρ, σ) <
[
2−

√
2(1+

√
g(pA, pB))

] 1
2

(240)

which inherits the tightness properties of the fidelity bound (237). In contrast to the
pure state case, here it is less straight forward to obtain a robustness bound in terms of
trace distance. However, we can still build on Lemma 10 and the trace distance bound
for pure states (236) to obtain a sufficient robustness condition. Namely, when assuming
that the benign state is pure, but the adversarial state is allowed to be mixed we have
the following result.

Corollary 6 (Pure Benign & Mixed Adversarial States). Let σ, ρ ∈ S(H) and suppose
that σ = |ψσ⟩⟨ψσ| is pure. Let A be a quantum classifier and suppose that for kA ∈ C and
pA, pB ∈ [0, 1], we have kA = A(σ) and suppose that the score function y satisfies (215).
Then, it is guaranteed that A(ρ) = A(σ) for any ρ with

T(ρ, σ) < δ(pA, pB)
(
1−

√
1− δ(pA, pB)2

)
(241)

where δ(pA, pB) = [12 (1− g(pA,pB))]
1
2 .

We provide a proof for this result in Section F.1.1. Intuitively, condition (241) is de-
rived by noting that any convex mixture of robust pure states must also be robust, thus
membership of the set of mixed states enclosed by the convex hull of robust pure states
(certified by equation (236) is a natural sufficient condition for robustness. As such, the
corresponding robustness radius in condition (241) is obtained by lower-bounding, with
triangle inequalities, the radius of the maximal sphere centered at σ within the convex
hull. However, the generalization from Lemma 10 and equation (236) to Corollary 6,
mediated by the above geometrical argument, results in a sacrifice of tightness. How or
to what extent such loosening of the explicit bound in the cases of mixed states may
be avoided or ameliorated remains an open question. In the following, we compare the
trace distance bounds from QHT with a robustness condition derived from an entirely
different technique.

We note that a sufficient condition can be obtained from a straightforward application
of Hölder duality for trace norms:

Lemma 11 (Hölder duality bound). Let σ, ρ ∈ S(H) be arbitrary quantum states and let A
be a quantum classifier. Suppose that for kA ∈ C and pA, pB ∈ [0, 1], we have kA = A(σ) and
the score function y satisfies (215). Then, it is guaranteed that A(ρ) = A(σ) for any ρ with

1

2
∥ρ− σ∥1 <

pA − pB
2

. (242)

Proof. Let δ := 1
2∥ρ− σ∥1 = sup0⩽P⩽I Tr [P(ρ− σ)], which follows from Hölder duality.

We have that ykA(σ) − ykA(ρ) ⩽ δ and that ykA(σ) ⩾ pA, hence ykA(ρ) ⩾ pA − δ. We
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Figure 22: Comparison between robustness bounds in terms of trace distance. a Difference rQ −

rH between the pure state bound derived from QHT rQ, given in Eq. (236) and the
Hölder duality bound rH from Lemma 11. b Difference rH − r̃Q between the Hölder
duality bound rH and the bound r̃Q derived from the convex hull approximation to
the QHT robustness condition from Theorem 8 for mixed adversarial states. It can be
seen that the pure state bound rQ is always larger than rH which in turn is always
larger than the convex hull approximation bound r̃Q.

also have, for k ′ such that yk ′(ρ) = maxk̸=kA yk(ρ), that yk ′(ρ) − yk ′(σ) ⩽ δ and that
yk ′(σ) ⩽ pB, hence maxk̸=kA yk(ρ) ⩽ pB + δ. Thus 12 ∥ρ− σ∥1 <

pA−pB
2 ⇐⇒ pA − δ >

pB + δ =⇒ ykA(ρ) > maxk̸=kA yk(ρ).

We acknowledge the above robustness bound from Hölder duality was indepen-
dently discovered in Lemma 1 in [77]. For intuitive insights, it is worth remarking that
the condition (242) stems from comparing the maximum probability of distinguishing σ
and ρ with the optimal measurement (Hölder measurement) with the gap between the
first two class probabilities on σ. Since no classifier can distinguish σ and ρ better than
the Hölder measurement by definition, (242) is clearly a sufficient condition. However,
the Hölder measurement on σ does not necessarily result in class probabilities consis-
tent with equation (215). Without additional constraints on desired class probabilities
on the benign input, the robustness condition (242) from Hölder duality is stronger
than necessary. In contrast, the QHT bound from Theorem 8, albeit implicitly written
in the language of hypothesis testing, naturally incorporates such desired constraints.
Hence, as expected, this gives rise to a tighter robustness condition.

In summary, the closed form solutions in terms of fidelity and Bures metric com-
pletely inherit the tightness of Theorem 8, while for trace distance, tightness is inherited
for pure states, but partially lost in Corollary 6 for mixed adversarial states. The numer-
ical comparison between the trace distance bounds from QHT and the Hölder duality
bound is shown in a contour plot in Figure 22.
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9.4 toy example with single-qubit pure states

We now present a simple example to highlight the connection between quantum hy-
pothesis testing and classification robustness. We consider a single-qubit system which
is prepared either in the state σ or ρ described by

|σ⟩ = |0⟩, (243)

|ρ⟩ = cos(θ0/2)|0⟩+ sin(θ0/2)eiϕ0 |1⟩ (244)

with θ0 ∈ [0, π) and ϕ0 ∈ [0, 2π). The state σ corresponds to the null hypothesis in the
QHT setting and to the benign state in the classification setting. Similarly, ρ corresponds
to the alternative hypothesis and adversarial state. The operators which are central to
both QHT and robustness are the Helstrom operators (42) which are derived from the
projection operators onto the eigenspaces associated with the non-negative eigenvalues
of the operator ρ− tσ. For this example, the eigenvalues are functions of t ⩾ 0, and we
have

η1 =
1

2
(1− t) + R > 0, (245)

η2 =
1

2
(1− t) − R ⩽ 0 (246)

R =
1

2

√
(1− t)2 + 4t(1− |γ|2) (247)

where γ is the overlap between σ and ρ and given by γ = cos(θ0/2). For t > 0, the
Helstrom operators are then given by the projection onto the eigenspace associated
with the eigenvalue η1 > 0. The projection operator is given by Mt = |η1⟩⟨η1| with

|η1⟩ = (1− η1)A1|0⟩− γA1|ρ⟩ (248)

|A1|
−2 = 2R

∣∣η1 − sin2(θ0/2)
∣∣ (249)

where A1 is a normalization constant ensuring that ⟨η1|η1⟩ = 1. Given a preassigned
probability α0 for the maximal allowed type-I error probability, we determine t such
that α(Mt; σ) = α0.

Hypothesis testing view. In QHT, we are given a specific alternative hypothesis ρ and
error probability α0 and are interested in finding the minimal type-II error probability.
In this example, we pick θ0 = π/3, ϕ0 = π/6 for the alternative state and set the type-I
error probability to α0 = 1− pA = 0.1. These states are graphically represented on the
Bloch sphere in Figure 23. We note that, for this choice of states, we obtain an expression
for the eigenvector |η1⟩ given by

|η1⟩ =
9−
√
3√

30
|0⟩− 3

√
2

5
|ρ⟩. (250)

which yields the type-II error probability

β∗(1− pA; σ, ρ) =β(Mt; ρ) = 1− |⟨η1|ρ⟩|2 ≈ 0.44 < 1/2. (251)

We thus see that the optimal hypothesis test can discriminate σ and ρ with error prob-
abilities less than 1/2 since on the Bloch sphere they are located far enough apart.
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Figure 23: Example classifier for single-qubit quantum states. The decision boundary is rep-
resented by the grey disk passing through the origin of the Bloch sphere. The ro-
bust region around σ is indicated by the dark spherical cap. States belonging to
different classes are marked with + and − and are color red if not classified cor-
rectly. The colorbar indicates different values for the optimal type-II error probability
β∗(1−pA; σ, ρ). We see that, for the given classifier, the state ρ is not contained in the
robust region around σ since the optimal type-II error probability is less than 1/2 as
indicated by the colorbar. The state ρ is thus not guaranteed to be classified correctly
by every classifier with the same class probabilities. In the asymmetric hypothesis
testing view, an optimal discriminator which admits 0.1 type-I error probability for
testing σ against ρ has type-II error probability 0.44.

However, since β(Mt; ρ) ≯ 1/2, Theorem 8 implies that ρ is not guaranteed to be classi-
fied equally as σ by a classifier which makes a prediction on σ with confidence at least
0.9. In other words, the two states are far enough apart to be easily discriminated by
the optimal hypothesis test but too far apart to be guaranteed to be robust.

Classification robustness view. In this scenario, in contrast to the QHT view, we are not
given a specific adversarial state ρ, but rather aim to find a condition on a generic ρ
such that the classifier is robust for all configurations of ρ that satisfy this condition.
Theorem 8 provides a necessary and sufficient condition for robustness, expressed in
terms of β∗, which, for pB = 1− pA and pA > 1/2, reads

β∗(1− pA; σ, ρ) > 1/2 (252)

Recall that the probability and pA > 1/2 is a lower bound to the probability of the
most likely class and in this case we set pB = 1 − pA to be the upper bound to the
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probability of the second most likely class. For example, as the QHT view shows, for
α0 = 1 − pA = 0.1 we have that β∗(1 − pA; σ, ρ) ≈ 0.44 < 1/2 for a state ρ with
θ0 = π/3. We thus see that it is not guaranteed that every quantum classifier, which
predicts σ to be of class kA with probability at least 0.9, classifies ρ to be of the same
class. Now, we would like to find the maximum θ0, for which every classifier with
confidence greater than pA is guaranteed to classify ρ and σ equally. Using the fidelity
bound (237), we find the robustness condition on θ0

|⟨ρ|σ⟩|2 = cos2(θ0/2) >
1

2
+
√
pA(1− pA)

⇐⇒ θ0 < 2 · arccos

√
1

2
+
√
pA(1− pA).

(253)

In particular, if pA = 0.9, we find that angles θ0 < 2 · arccos(
√
0.8) ≈ 0.93 < π/3 are

certified. Figure 23 illustrates this scenario: the dark region around σ contains all states
ρ for which is guaranteed that A(ρ) = A(σ) for any classifier A with confidence at least
0.9.

Classifier example. We consider a binary quantum classifier A which discriminates
single-qubit states on the upper half of the Bloch sphere (class +) from states on the
lower half (class −). Specifically, we consider the dichotomic POVM {Πθ,ϕ, 12 − Πθ,ϕ}

defined by the projection operator Πθ,ϕ = |ψθ,ϕ⟩⟨ψθ,ϕ| where

|ψθ,ϕ⟩ := cos(θ/2)|0⟩+ sin(θ/2)eiϕ|1⟩ (254)

with θ = 2 · arccos(
√
0.9) ≈ 0.644 and ϕ = π/2. Furthermore, for the rest of this sec-

tion, we assume that pA + pB = 1 so that pB is determined by pA via pB = 1− pA.
An illustration of this classification problem is given in Figure 23, where the decision
boundary of A is represented by the grey disk crossing the origin of the Bloch sphere.
The states marked with a black + correspond to + states which have been classified cor-
rectly, states marked with a black − sign correspond to data points correctly classified
as − and red states are misclassified by A. It can be seen that, since the state ρ has been
shown to violate the robustness condition (i.e. β∗(1− pA; σ, ρ) ≈ 0.44 < 1/2), it is not
guaranteed that ρ and σ are classified equally. In particular, for the example classifier
A we have A(ρ) ̸= A(σ).

In summary, as pA → 1
2 , the robust radius approaches 0. In the QHT view, this can

be interpreted in the sense that if the type-I error probability α0 approaches 1/2, then
all alternative states can be discriminated from σ with type-II error probability less
than 1/2. As pA → 1, the robust radius approaches π/2. In this regime, the QHT view
says that if the type-I error probability α0 approaches 0, then the optimal type-II error
probability is smaller than 1/2 only for states in the lower half of the Bloch sphere.

9.5 robustness certification

The theoretical results in Section 9.3 provide conditions under which it is guaranteed
that the output of a classification remains unaffected if the adversarial (noisy) state and
the benign state are close enough, measured in terms of the fidelity, Bures metric, or
trace distance. Here, we show how this result can be put to work and make concrete
examples of scenarios where reasoning about the robustness is relevant. Specifically,
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we first present a protocol to assess how resilient a quantum classifier is against input
perturbations. Secondly, in a scenario where one is provided with a potentially noisy or
adversarial input, we wish to obtain a statement as to whether the classification of the
noisy input is guaranteed to be the same as the classification of a clean input without
requiring access to the latter. Thirdly, we analyse the robustness of quantum classifiers
against known noise models, namely phase and amplitude damping.

9.5.1 Robustness against Adversarial Inputs

In security critical applications, such as for example the classification of medical data or
home surveillance systems, it is critical to assess the degree of resilience that machine
learning systems exhibit against actions of malicious third parties. In other words, the
goal is to estimate the expected classification accuracy, under perturbations of an input
state within 1− ε fidelity. In the classical machine learning literature, this quantity is
called the certified test set accuracy at radius r, where distance is typically measured in
terms of ℓp-norms, and is defined as the fraction of samples in a test set which has
been classified correctly and with a robust radius of at least r (i.e. an adversary can
not change the prediction with a perturbation of magnitude less than r). We can adapt
this notion to the quantum domain and, given a test set consisting of pairs of labelled
samples T = {(σi, yi)}

|T|
i=1, the certified test set accuracy at fidelity 1− ε is given by

1

|T|

∑
(σ,y)∈T

1{A(σ) = y ∧ rF(σ) ⩽ 1− ε} (255)

where rF(σ) is the minimum robust fidelity (237) for sample σ and 1 denotes the in-
dicator function. To evaluate this quantity, we need to obtain the prediction and to
calculate the minimum robust fidelity for each sample σ ∈ T as a function of the class
probabilities yk(σ). In practice, in the finite sampling regime, we have to estimate these
quantities by sampling the quantum circuit N times. To that end, we use Hoeffding’s
inequality so that the bounds hold with probability at least 1− α. Specifically, we run
the following steps to certify the robustness for a given sample σ:

1. Apply the quantum circuit N times to σ and perform the |C|-outcome measure-
ment {Πk}

|C|
k=1 each time. Store the outcomes in variables nk for every k ∈ C.

2. Determine the most frequent measurement outcome kA and set p̂A = nkA/N−√
− ln(α)/2N.

3. If p̂A > 1/2, set p̂B = 1− p̂A and calculate the minimum robust fidelity rF accord-
ing to (237) and return (kA, rF); otherwise abstain from certification.

Executing these steps for a given sample σ returns the true minimum robust fidelity
with probability 1−α, which follows from Hoeffding’s inequality

Pr
[nk

N
− ⟨Λk⟩σ ⩾ δ

]
⩽ exp{−2Nδ2} (256)

with Λk = E†(Πk) and setting δ =
√
− ln(α)/2N. In Section F.2, this intuition is shown

in detail in Algorithm 5.
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9.5.2 Certifying Robustness for noisy Inputs

In practice, inputs to quantum classifiers are typically noisy. This noise can occur either
due to imperfect implementation of the state preparation device, or due to an adversary
which interferes with state or gate preparation. Under the assumption that we know
that the state has been prepared with fidelity at least 1− ε to the noiseless state, we
would like to know whether this noise has altered our prediction, without having access to
the noiseless state. Specifically, given the classification result, which is based on the noisy
input, we would like to have the guarantee that the classifier would have predicted the
same class, had it been given the noiseless input state. This would allow the conclusion
that the result obtained from the noisy state has not been altered by the presence of
noise. To obtain this guarantee, we leverage Theorem 10 in the following protocol. Let
ρ be a noisy input with F(ρ, σ) > 1− ε where σ is the noiseless state and let A be a
quantum classifier with quantum channel E and POVM {Πk}k. Similar to the previous
protocol, we again need to take into account that in practice we can sample the quantum
circuit only a finite number of times. Thus, we again use Hoeffding’s inequality to
obtain estimates for the class probability pA which holds with probability at least 1−α.
The protocol then consists of the following steps:

1. Apply the quantum circuit N times to the (noisy) state ρ and perform the |C|-
outcome measurement {Πk}

|C|
k=1 each time. Store the outcomes in variables nk for

every k ∈ C.

2. Determine the most frequent measurement outcome kA and set p̂A = nkA/N−√
− ln(α)/2N.

3. If p̂A > 1/2, set p̂B = 1− p̂A and calculate the minimum robust fidelity rF accord-
ing to (237) using p̂A; otherwise, abstain from certification.

4. If 1− ε > rF, it is guaranteed that A(ρ) = A(σ).

Running these steps, along with a classification, allows to certify that the classification
has not been affected by the noise, i.e. that the same classification outcome would have
been obtained on the noiseless input state.

9.5.3 Robustness for known Noise Models

Now, we analyse the robustness of a quantum classifier against known noise models
which are parametrized by a noise parameter γ. Specifically, we investigate robustness
against phase damping and amplitude damping. Using Theorem 10, we calculate the
fidelity between the clean input σ and the noisy input Nγ(σ) and rearrange the ro-
bustness condition (237) such that it yields a bound on the maximal noise which the
classifier tolerates.

9.5.3.1 Phase Damping

Phase damping describes the loss of quantum information without loosing energy. For
example, it describes how electronic states in an atom are perturbed upon interacting
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with distant electrical charges. The quantum channel corresponding to this noise model
can be expressed in terms of Kraus operators which are given by

K0 =

(
1 0

0
√
1− γ

)
, K1 =

(
0 0

0
√
γ

)
(257)

where γ is the noise parameter. From this description alone, we can see that a system
which is in the |0⟩ or |1⟩ state is always robust against all noise parameters in this model
as it acts trivially on |0⟩ and |1⟩. Any such behaviour should hence be reflected in the
tight robustness condition we derive from QHT. Indeed, for a pure state |ψ⟩ = α|0⟩+β|1⟩,
Theorem 10 leads to the robustness condition γ ⩽ 1 if α = 0 or β = 0 and, for any
α,β ̸= 0,

γ < 1−

(
max

{
0, 1+

rF − 1

2 |α|2 |β|2

})2
(258)

where rF = 1
2(1+

√
g(pA, pB)) is the fidelity bound from Theorem 10 and pA, pB are

the corresponding class probability bounds. This bound is illustrated in Figure 24 as a
function of |α|2 and pA. The expected behaviour towards the boundaries can be seen
in the plot, namely that when |α|2 → {0, 1}, then the classifier is robust under all noise
parameters γ ⩽ 1.

9.5.3.2 Amplitude Damping

Amplitude damping models effects which occur due to the loss of energy from a quan-
tum system (energy dissipation). For example, it can be used to model the dynamics of
an atom which spontaneously emits a photon. The quantum channel corresponding to
this noise model can be written in terms of Kraus operators

K0 =

(
1 0

0
√
1− γ

)
, K1 =

(
0
√
γ

0 0

)
, (259)

where γ is the noise parameter and can be interpreted as the probability of losing a
photon. It is clear from the Kraus decomposition that the |0⟩ state remains unaffected.
This again needs to be reflected by a tight robustness condition. For a pure state |ψ⟩ =
α|0⟩+ β|1⟩, Theorem 10 leads to the robustness condition γ ⩽ 1 if |α| = 1 and, for any
α,β ̸= 0,

γ < 1−

[
|α|2

|α|2 − |β|2
·
(
1−

√
1−

|α|2 − |β|2

|α|2 |β|2
· max{0, rF − |α|2}

|α|2

)]2
(260)

where again rF = 1
2(1 +

√
g(pA, pB)) is the fidelity bound from Theorem 10. This

bound is illustrated in Figure 24 as a function of |α|2 and pA. It can be seen again that
the bound shows the expected behaviour, namely that when |α|2 → 1, then the classifier
is robust under all noise parameters γ ⩽ 1.

We remark that, in contrast to the previous protocol, here we assume access to the
noiseless state σ and we compute the robustness condition on the noise parameter
based on the classification of this noiseless state. This can be used in a scenario where a
quantum classifier is developed and tested on one device, but deployed on a different
device with different noise sources.
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Figure 24: Robustness against known noise models. Both plots show the maximal noise param-
eter γ for which the classifier A is still guaranteed to be robust, for a phase damping
and b amplitude damping, when classifying a pure state input |ψ⟩ = α|0⟩+β|1⟩. In a,
we can see that for states |0⟩ and |1⟩, the classifier is robust against any γ ⩽ 1, while
for b the same holds if the input state is |1⟩.

9.5.4 Randomized inputs with depolarization smoothing

In the previous section, we looked at robustness of quantum classifiers against certain
types of noise, either with respect to a known noise model, or with respect to unknown,
potentially adversarial, noise. Here we take a different viewpoint, and investigate how
robustness against unknown noise sources can be enhanced by harnessing depolariza-
tion noise. This is led by the intuition that noise can be exploited to increase robustness
and privacy. We first present provable robustness in terms of trace distance which is
equivalent to the robustness condition (216) from Theorem 8 but with depolarized in-
puts. The bound is then compared numerically with the Hölder duality bound from
Lemma 11 and with a result obtained recently from quantum differential privacy [50].

Quantum channel smoothing: depolarization. Consider depolarization noise which maps
a state σ onto a linear combination of itself and the maximally mixed state

σ 7→ E
dep
p (σ) := (1− p)σ+

p

d
1d (261)

where p ∈ (0, 1) is the depolarization parameter and d is the dimensionality of the
underlying Hilbert space. In single-qubit scenarios, this can geometrically be inter-
preted as a uniform contraction of the Bloch sphere parametrized by p, pushing quan-
tum states towards the completely mixed state. Analogously to classical randomized
smoothing, we apply a depolarization channel to inputs before passing them through
the classifier in order to artificially randomize the states and increase robustness against
adversarial attacks. We then obtain a robustness guarantee by instantiating Theorem 8

in the following way. Let σ be a benign input state and suppose that the classifier A

with score function y satisfies

ykA(E
dep
p (σ)) ⩾ pA > pB ⩾ max

k̸=kA
yk(E

dep
p (σ)). (262)
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Then A is robust at Edep
p (ρ) for any adversarial input state ρ which satisfies the robust-

ness condition (216), where β∗ is the optimal type-II error probability for testing E
dep
p (σ)

against E
dep
p (ρ). In particular, if σ and ρ are single-qubit pure states and in the case

where we have pA + pB = 1, the robustness condition can be equivalently expressed
in terms of the trace distance. We formalize this result in the following Corollary and
provide a proof in Section F.1.2.

Corollary 7 (Depolarised single-qubit pure states). Let |ψσ⟩, |ψρ⟩ ∈ C2 be single-qubit
pure sates and let E

dep
p be a depolarising channel with noise parameter p ∈ (0, 1). Then, if

pA > 1/2 and pB = 1 − pA, the robustness condition (216) for E
dep
p (σ) and E

dep
p (ρ) is

equivalent to

1

2
∥|ψσ⟩⟨ψσ|− |ψρ⟩⟨ψρ|∥1 < rQ(p) (263)

where

rQ(p) =


√
1
2 −

√
g(p,pA)
1−p , pA <

1+3(1−p)2

2+2(1−p)2√
p·(2−p)·(1−2pA)2
8(1−p)2·(1−pA)

, pA ⩾ 1+3·(1−p)2
2+2·(1−p)2

(264)

with g(p, pA) = 1
2

(
2pA(1− pA) − p(1−

p
2 )
)

.

The Hölder bound from Lemma 11 can also be adapted to the noisy setting. Specifi-
cally, since for two states σ and ρ, the trace distance obeys

T(E
dep
p (ρ), Edep

p (σ)) = (1− p) · T(ρ, σ), (265)

Lemma 11 implies robustness given that the trace distance is less than T(ρ, σ) < rH(p)

where

rH(p) =
2pA − 1

2(1− p)
. (266)

It has been shown in [50] that naturally occurring noise in a quantum circuit can be
harnessed to increase the robustness of quantum classification algorithms. Specifically,
using techniques from quantum differential privacy, a robustness bound expressible
in terms of the class probabilities pA and the depolarization parameter p has been
derived. Written in our notation and for single-qubit binary classification, the bound
can be written as

rDP(p) =
p

2(1− p)

(√
pA

1− pA
− 1

)
(267)

and robustness is guaranteed for any adversarial state ρ with T(ρ, σ) < rDP(p). The
three bounds are compared graphically in Figure 25 for different values of the noise
parameter p, showing that the QHT bound gives rise to a tighter robustness condition
for all values of p.

It is worth remarking that although the QHT robustness bounds can be, as shown
here for the case of applying depolarization channel, enhanced by active input ran-
domization, it already presents a valid, non-trivial condition with noiseless (without
smoothing) quantum input (Theorems 8, 10, Corollary 6 and Lemma 11). This contrasts
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Figure 25: Comparison of Robustness bounds for single-qubit pure states derived from quan-
tum hypothesis testing rQ(p) , Hölder duality rH(p) and quantum differential pri-
vacy rDP(p) [50] with different levels of depolarization noise p.

with the deterministic classical scenario, where the addition of classical noise sources
to the input state is necessary to generate a probability distribution corresponding to
the input data, from which an adversarial robustness bound can be derived [39]. This
distinction between the quantum and classical settings roots in the probabilistic nature
of measurements on quantum states, which of course applies to both pure and mixed
state inputs.

9.6 conclusion

In this chapter of the thesis, we have investigated our fourth research question and
sought to derive robustness guarantees for ML systems which are based on quantum
machine learning. To that end, we have seen how a fundamental connection between
adversarial robustness of quantum classifiers and QHT can be leveraged to provide a
powerful framework for deriving tight conditions for robustness certification. The ro-
bustness condition is provably tight when expressed in the SDP formulation in terms of
optimal error probabilities for binary classifications or, more generally, for multiclass
classifications where the probability of the most likely class is greater than 1/2. The cor-
responding closed form expressions arising from the SDP formulation are proved to be
tight for general states when expressed in terms of fidelity and Bures distance, whereas
in terms of trace distance, tightness holds only for pure states. These bounds give rise
to (1) a practical robustness protocol for assessing the resilience of a quantum classifier
against adversarial and unknown noise sources; (2) a protocol to verify whether a clas-
sification given a noisy input has had the same outcome as a classification given the
noiseless input state, without requiring access to the latter, and (3) conditions on noise
parameters for amplitude and phase damping channels, under which the outcome of
a classification is guaranteed to remain unaffected. Furthermore, we have shown how
using a randomized input with depolarization channel enhances the QHT bound, con-
sistent with previous results, in a manner akin to classical randomized smoothing.

A key difference between the quantum and classical formalism is that quantum states
themselves have a naturally probabilistic interpretation, even though the classical data
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that could be embedded in quantum states do not need to be probabilistic. Our quan-
tum adversarial robustness bound can be shown independently of randomized input,
even though it can be enhanced by it, like through a depolarization channel. In con-
trast, currently known classical probabilistic robustness guarantees rely on active input
randomization what induces further challenges such as specific training protocols and
degraded clean accuracy.

Our tight robustness guarantees and the connection to quantum hypothesis testing
also provide a first step towards more rigorously identifying the limitations of quan-
tum classifiers in their power of distinguishing quantum states. Our formalism hints
at an intimate relationship between these fundamental limitations in the accuracy of
distinguishing between different classes of states and robustness. This could shed light
on the robustness and accuracy trade-offs observed in classification protocols [224] and
is an important direction of future research. It is also of independent interest to explore
possible connections between tasks that use quantum hypothesis testing, such as quan-
tum illumination [250] and state discrimination [195], with accuracy and robustness in
quantum classification.





10
R O B U S T N E S S I N T E RVA L S F O R Q U A N T U M E X P E C TAT I O N
VA L U E S

In the previous chapter we have focused on establishing robustness guarantees for
quantum classifiers. In other words, we derived conditions, under which the predicted
class of a quantum state remains constant. Here we take a different view and charac-
terize the error when estimating expectation values of quantum observables when the
underlying quantum states are perturbed. In essence, this approach is very similar to
the results presented in Chapter 8 where we have bounded the change of expectation
values due to shifts in the underlying data distributions. Indeed, the core technique
used to derive the results in Chapter 8 is a special case of the Gramian technique used
in this chapter, and introduced in Section 5.2.

10.1 introduction

10.1.1 Overview

Today’s quantum computers are characterized by a low count of noisy qubits perform-
ing imperfect operations in a limited coherence time. In this era of quantum comput-
ing, the NISQ era [174], researchers and practitioners alike strive to heuristically harness
limited quantum resources in order to solve classically difficult problems and also to
benchmark and potentially develop new quantum subroutines. A typical pattern of
these NISQ algorithms [12], exemplified by the seminal VQE [173] and quantum approx-
imate optimization algorithm [62], consists of the preparation of ansatz states with a
parameterized unitary circuit followed by useful classical output being extracted by
means of quantum measurements, more generally as expectation values of quantum
observables through repeated measurements.

The promising potential of these NISQ algorithms spans across a wide spectrum of
applications, ranging from quantum chemistry, many-body physics, and machine learn-
ing to optimization and finance [12]. However, as a consequence of their heuristic na-
ture and the prevalent imperfections in near-term implementation, NISQ algorithms in
practice typically produce outputs deviating from the exact and ideal setting. This un-
fortunate hindrance practically arises from various sources such as circuit noise and
decoherence [174], limited expressibility of Ansätze [160, 201], barren plateaus during
optimization in variational hybrid quantum-classical algorithms [150, 167, 236], mea-
surement noise and other experimental imperfections [102, 241]. To determine the use-
fulness of a given NISQ application, it is thus crucial to quantify the error on the final
output in the presence of a multitude of the aforementioned sources of imperfection.

10.1.2 Contributions

In this work, we endeavour to systematically certify the reliability of quantum algo-
rithms by deriving robustness bounds for expectation values of observables on ap-

133
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proximations of a target state. To that end, based on analytical solutions to an SDP

problem, we present lower and upper bounds to expectation values of quantum ob-
servables which depend only on the fidelity with the target state and post-processing
of previously obtained measurement results. Furthermore, we take into account higher
statistical moments of the observable by generalizing the Gramian method for pure
states [243] to generic density operators, thus extending its application to bounding
output errors resulting from noisy circuits. Although the focus of our investigation is
on errors arising from circuit imperfection, the underlying techniques are also valid
for other sources of errors such as algorithmic shortcomings. Finally, we apply these
bounds to numerically obtain robustness intervals on simulated noisy and noiseless
VQE for ground state energy estimation of electronic structure Hamiltonians of several
molecules. The robustness certification protocol resulting from this work is integrated
with the open source Tequila [114] library.

The remainder of this chapter is organised as follows. In Section 10.2, we present
our main results, namely, the bounds based on the SDP formulation and the Gramian
method. In Section 10.3, we present numerical simulations and explain the applicabil-
ity of our bounds in the context of VQE. Section 10.3.2 highlights the implementation
in Tequila and concluding remarks are given in Section 10.4.

10.2 robustness intervals

The goal of this work is to provide techniques to compute intervals which are guaran-
teed to contain the expectation value of an observable A under an ideal, but unavailable,
target state ρ. Any such interval is referred to as a robustness interval. More formally,
instead of having access to the state ρ, we assume access to the approximate state σ,
which is further assumed to have at least fidelity 1− ϵ with the target state ρ. Given
these assumptions, we define a robustness interval to be an interval I = [χ, χ] ⊆ R for
which it is guaranteed that

χ(ϵ, σ, A) ⩽ Tr [Aρ] ⩽ χ(ϵ, σ, A) (268)

and which is a function of the infidelity ϵ, the observable A, and the state σ.

notation The Hilbert space corresponding to the quantum system of interest is
denoted by H ≡ Cd with dimension d = 2n. We use the Dirac notation for quantum
states, i.e. elements of H are written as kets |ψ⟩ ∈ H with the dual written as a bra ⟨ψ|.
The space of linear operators acting on elements of H is denoted by L(H) and elements
thereof are written in capital letters A ∈ L(H). The set of density operators on H is
written as S(H) ⊂ L(H) and lower case greek letters are used to denote its elements
σ ∈ S(H) which are positive semidefinite and have trace equal to 1. For an element
A ∈ L(H) we write A ⩾ 0 if it is positive semidefinite, AT stands for its transpose,
and A† is the adjoint. We also use the Loewner partial order on the space of Hermitian
operators, i.e. for two Hermitian operators A, B ∈ L(H), we write A ⩾ B if and only
if A − B ⩾ 0. Expectation values of observables, i.e. Hermitian operators A ∈ L(H),
are written as ⟨A⟩σ = Tr [Aσ] for some σ ∈ S(H). The variance of an observable is
given by (∆Aσ)

2 = ⟨A2⟩σ − ⟨A⟩2σ. We write ∥A∥1 = Tr [|A|] with |A| =
√
A†A for the

trace norm of an operator A ∈ L(H). The fidelity between quantum states σ, ρ ∈ S(H)

is defined as F(ρ, σ) = maxψρ,ψσ |⟨ψρ|ψσ⟩|2 where the maximum is taken over all
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Figure 26: Bond dissociation curves and robustness interval (RI) for Lithium Hydride in a basis-
set-free approach [117, 118]. The exact, theoretical energies are shown in black, the
energy estimates provided by a noisy VQE with a UpCCGSD Ansatz [130] is shown in
blue. The robustness interval is guaranteed to contain the true ground state energy
and is based on the Gramian eigenvalue bounds for mixed states (Theorem 12).

purifications of ρ and σ. For pure states, the fidelity reduces to the squared overlap
F(|ψ⟩⟨ψ|, |ϕ⟩⟨ϕ|) = |⟨ψ|ϕ⟩|2. Finally, the real part of a complex number z ∈ C is written
as ℜ(z) and the imaginary part as ℑ(z).

summary of technical results In this chapter, we apply the techniques intro-
duced in Chapter 5 to the problem of providing an interval guarantee for quantum
algorithms whose output relies on measurements of expectation values of quantum ob-
servables. The first technique is essentially based on the formulation of lower and upper
bounds as SDP problems and makes use of the closed form solution of optimal type-II
error probabilities from QHT presented in Lemma 3. The second technique, presented
in Lemma 4 is based on the non-negativity of the determinant of Gram matrices for
a suitable collection of vectors. This second technique was initially proposed by Wein-
hold [243] in the context of pure states. Using Uhlmann’s Theorem [225], which relates
the fidelity between two mixed states to the trace norm, we have extend these results to
mixed states. This ultimately enables their applicability in the current NISQ era, where
the assumption of a closed quantum system is violated and one needs to make use of
the density operator formalism to accurately model these states and their evolutions.

In Table 10, we summarize our results, together with the conditions under which they
apply and the quantities that are covered. Figure 26 shows the ground state energies
of molecular Lithium Hydride in the basis-set-free approach of [117, 118], with energy
estimates provided by VQE with an UpCCGSD ansatz. The lower and upper bounds on
the true energy are obtained via the Gramian method from Theorem 12.
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Table 10: Overview of bounds for the true expectation values and eigenvalues of a Hermitian
operator A, with ρ the target state and σ the approximation. For the eigenvalue bound,
ρ = |ψ⟩⟨ψ| is the density operator corresponding to the eigenstate |ψ⟩ with eigenvalue
λ = ⟨ψ|A|ψ⟩. We remark that the SDP lower and upper bounds are valid for fidelities
with F(ρ, σ) ⩾ 1 − ϵ for ϵ ⩾ 0 such that ϵ ⩽ 1

2 (1 + ⟨A⟩σ) and ϵ ⩽ 1
2 (1 − ⟨A⟩σ),

respectively. The Gramian lower bound for expectation values is valid for ϵ ⩾ 0 with√
(1− ϵ)/ϵ ⩾ ∆Aσ/⟨A⟩σ.

SDP Gramian

Expectation ⟨A⟩ρ Expectation ⟨A⟩ρ Eigenvalue λ

Lower Bound (1− 2ϵ)⟨A⟩σ − 2
√
ϵ(1− ϵ)(1− ⟨A⟩2σ) (1− 2ϵ)⟨A⟩σ − 2

√
ϵ(1− ϵ)∆Aσ +

ϵ⟨A2⟩σ
⟨A⟩σ ⟨A⟩σ −∆Aσ

√
ϵ
1−ϵ

Upper Bound (1− 2ϵ)⟨A⟩σ + 2
√
ϵ(1− ϵ)(1− ⟨A⟩2σ) — ⟨A⟩σ +∆Aσ

√
ϵ
1−ϵ

Assumptions −1 ⩽ A ⩽ 1 A ⩾ 0 σ = |ψ⟩⟨ψ| ∧ A|ψ⟩ = λ|ψ⟩

10.2.1 Bounds via Semidefinite Programming

Here we derive a robustness interval which is based on expressing lower and upper
bounds as a semidefinite program which we express in terms of optimal type-II error
probabilities for binary QHT. We remark that the reasoning presented here largely fol-
lows the proof of Lemma 2, although it is valid for observables −1 ⩽ A ⩽ 1 which
cover the important Pauli operators.

10.2.1.1 Robustness Interval

Consider a bounded observable −1 ⩽ A ⩽ 1 and let σ be the approximate state, cor-
responding to the alternative hypothesis, and let ρ be the target state, corresponding
to the null hypothesis. We can express lower and upper bounds to ⟨A⟩ρ as semidefi-
nite programs which take into account measurements of σ. Namely, we have the upper
bound

⟨A⟩ρ ⩽ sup
−1⩽Λ⩽1

{⟨Λ⟩ρ : ⟨Λ⟩σ = ⟨A⟩σ} (269)

and the lower bound

⟨A⟩ρ ⩾ inf
−1⩽Λ⩽1

{⟨Λ⟩ρ : ⟨Λ⟩σ = ⟨A⟩σ}. (270)

It is straight forward to see that these optimization problems are indeed valid lower
and upper bounds to ⟨A⟩ρ by noting that the operator A is feasible. In addition, as
shown in Section 10.2.1.2, the tightness of the bounds is an immediate consequence of
the formulation of the robustness interval as an SDP. We can rewrite these SDPs and
express them in terms of optimal type-II error probabilities, so that the upper bound
reads

⟨A⟩ρ ⩽ sup
−1⩽Λ⩽1

{⟨Λ⟩ρ : ⟨Λ⟩σ = ⟨A⟩σ}

= 1− 2β∗
(
1+ ⟨A⟩ρ

2
; σ, ρ

) (271)
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and, similarly, for the lower bound

⟨A⟩ρ ⩾ inf
−1⩽Λ⩽1

{⟨Λ⟩ρ : ⟨Λ⟩σ = ⟨A⟩σ}

= 2β∗
(
1− ⟨A⟩ρ

2
; σ, ρ

)
− 1.

(272)

These robustness bounds formalize the intuition that states which are hard to discrimi-
nate, i.e., which admit higher error probabilities, will have expectation values which are
closer together. Furthermore, this connection also has the interesting interpretation that,
if the approximate expectation ⟨A⟩σ is close to the extreme −1, a statistical hypothesis
test is restricted to have type-I error probability close to 0. This makes it harder for the
corresponding optimal type-II error probability β∗ to be low and hence ⟨A⟩ρ will gener-
ally be closer to ⟨A⟩σ. Finally, since Lemma 3 provides a closed form solution to the SDP
β∗, which only depends on the fidelity between ρ and σ, we can establish a robustness
interval of the form (268). This result is summarized in the following Theorem.

Theorem 11. Let σ, ρ ∈ S(Hd) be density operators with F(ρ, σ) ⩾ 1− ϵ for some ϵ ⩾ 0.
Let A be an observable with −1 ⩽ A ⩽ 1 and with expectation value ⟨A⟩ρ under ρ. For
ϵ ⩽ 1

2(1+ ⟨A⟩σ), the lower bound of ⟨A⟩ρ can be expressed as

⟨A⟩ρ ⩾ (1− 2ϵ)⟨A⟩σ − 2
√
ϵ(1− ϵ)(1− ⟨A⟩2σ). (273)

Similarly, for ϵ ⩽ 1
2(1− ⟨A⟩σ), the upper bound of ⟨A⟩ρ becomes

⟨A⟩ρ ⩽ (1− 2ϵ)⟨A⟩σ + 2
√
ϵ(1− ϵ)(1− ⟨A⟩2σ). (274)

In practice, it is typically not feasible to measure the exact value of ⟨A⟩σ due to finite
sampling errors, measurement noise, and other experimental imperfections. For this
reason, one needs to rely on confidence intervals which contain the exact value of ⟨A⟩σ
with high probability. This can be accounted for in the bounds from Theorem 11 by
noting that they are monotonic in ⟨A⟩σ, what allows us to replace the exact value by
bounds which hold with high probability. Finally, it is worth noting that, if one has
access to an estimate of the fidelity, i.e. some ϵ > 0 with F(ρ, σ) ⩾ 1− ϵ, this interval
can be calculated by post-processing previous measurement results, and hence does not
cause any computational overhead. We now state the proof of this result which follows
directly from applying the bound the optimal type-II error probability presented in
Lemma 3 in Section 5.1.

Proof of Theorem 11. We first formulate the robustness bounds as SDP problems which
take into account the first moment of A under σ and the assumption that −1 ⩽ A ⩽ 1.
This is then connected to the SDP problem (41) from QHT for which we have established
a closed form lower bound in Lemma 3. We start with the upper bound. Consider the
optimization problem

max {Tr [Λρ] |Tr [Λσ] = Tr [Aσ] , −1 ⩽ Λ ⩽ 1} (275)
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which is an upper bound to ⟨A⟩ρ since the operator A is feasible. We can rewrite this
as

max {Tr [Λρ] |Tr [Λσ] = Tr [Aσ] , −1 ⩽ Λ ⩽ 1}

= −1+ 2max
{

Tr
[
Λ̃ρ
]
|Tr
[
Λ̃σ
]
=
1

2
(1+ Tr [Aσ]), 0 ⩽ Λ̃ ⩽ 1

}
= 1− 2β∗

(
1

2
(1+ Tr [Aσ]); σ, ρ

) (276)

where the second equality follows from the fact that replacing the equality with an
inequality in the constraint of the SDP problem (41) leads to the same solution. It then
follows from Lemma 3 that

⟨A⟩ρ ⩽ (1− 2ϵ)⟨A⟩σ + 2
√
ϵ(1− ϵ)(1− ⟨A⟩2σ) (277)

for ϵ ⩾ 0 with 1−ϵ ⩾ 1
2(1+ ⟨A⟩σ). To show the lower bound, consider the optimization

problem

min {Tr [Λρ] |Tr [Λσ] = Tr [Aσ] , −1 ⩽ Λ ⩽ 1} (278)

which is a lower bound to ⟨A⟩ρ since the operator A is feasible. Analogous to the
derivation of the upper bound, we rewrite this as

min {Tr [Λρ] |Tr [Λσ] = Tr [Aσ] , −1 ⩽ Λ ⩽ 1}

= 2min
{

Tr
[
(1− Λ̃)ρ

]
|Tr
[
Λ̃σ
]
=
1

2
(1− Tr [Aσ]), 0 ⩽ Λ̃ ⩽ 1

}
− 1

= 2β∗
(
1

2
(1− Tr [Aσ]); σ, ρ

)
− 1

(279)

and again use Lemma 3 and obtain the lower bound

⟨A⟩ρ ⩾ (1− 2ϵ)⟨A⟩σ − 2
√
ϵ(1− ϵ)(1− ⟨A⟩2σ) (280)

for ϵ ⩾ 0 with 1− ϵ ⩾ 1
2(1− ⟨A⟩σ). This concludes the proof.

10.2.1.2 Tightness

Stemming from the formulation as an SDP, the bounds in Theorem 11 are tight for
pure states in the sense that, for each bound, there exists an observable A with expecta-
tion ⟨A⟩σ under σ, and whose expectation under ρ saturates the bound. Here we give
a formal, constructive proof of this statement for pure states and in the case where
F(ρ, σ) = 1− ϵ. Let us first consider the upper bound and recall that in the proof of
Theorem 11 we have shown

⟨A⟩ρ ⩽ 1− 2β∗
(
1

2
(1+ Tr [Aσ]); σ, ρ

)
⩽ (1− 2ϵ)⟨A⟩σ + 2

√
ϵ(1− ϵ)(1− ⟨A⟩2σ)

(281)

where the last inequality follows from Lemma 3. Additionally, for pure states, this
inequality is indeed an equality. That is, we have shown that for pure states we have

β∗(α0; σ, ρ) = α0(2ϵ− 1) + (1− ϵ) − 2
√
ϵα0(1− ϵ)(1−α0) (282)
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for 1 − ϵ ⩾ α0 for arbitrary α0 ∈ [0, 1]. Let M0 be a Helstrom operator such that
Tr
[
ρ(1−M⋆

0)
]
= β∗(α0; σ, ρ) and α0 = Tr [M0σ], and let A⋆ := 2M0−1. The Helstrom

operator M0 exists and is well-defined as we have shown in Section B.1.1. Note that

⟨A⋆⟩ρ = Tr [ρ(2M0 − 1)]

= 1− 2Tr [ρ(1−M0)]

= 1− 2β∗ (Tr [M0σ]); σ, ρ)

(283)

which shows that the bound is saturated for the observable A⋆ and hence tight. Tight-
ness of the lower bound can be shown analogously.

10.2.2 Bounds via non-negativity of the Gramian

Here we study the bounds based on the Gramian technique, presented in Lemma 4 in
Section 5.2, and adapt these bounds to the case where the target state is an eigenstate
of the observables leading to a significant tightening of the bounds for these cases. As
highlighted in Section 5.2, the Gramian technique was pioneered by Weinhold [243] in
the context of pure states and problems related to quantum chemistry. However, this
restriction to pure states hinders the applicability of this method in practice and, in
particular, in the current NISQ era, where one often has to deal with noisy states that
are expressed as mixed states. This motivates us to extend the result to the mixed state
case, the result of which we restate here for completeness.

Lemma 4 (restated). Let σ, ρ ∈ S(Hd) be density operators with fidelity F(ρ, σ) ⩾ 1− ϵ for
some ϵ ⩾ 0 and let A ⩾ 0 be an observable. Let m, v ⩾ 0 such that

⟨A⟩σ ⩾ m and ∆Aσ ⩽ v. (284)

For ϵ with ϵ ⩽ m2

m2+v2
, a lower bound of ⟨A⟩ρ can be expressed as

⟨A⟩ρ ⩾ (1− ϵ)m− 2v
√
ϵ(1− ϵ) + ϵ

v2

m
. (285)

In the case where the target state σ is an eigenstate of an observable A, the Gramian
method allows to derive a further bound. While the assumptions here are stronger, this
bound is particularly useful in applications such as the variational quantum eigensolver
and when the observable of interest commutes with a Hamiltonian H for which the
target state is an eigenstate. Formally, we have the following result:

Theorem 12 (Eigenvalues). Let σ ∈ S(Hd) be a density operator and let A be an arbitrary
observable with eigenstate |ψ⟩ and eigenvalue λ, A|ψ⟩ = λ|ψ⟩. Suppose that ϵ ⩾ 0 is such that
F(σ, |ψ⟩) = ⟨ψ|σ|ψ⟩ ⩾ 1− ϵ. Then, lower and upper bounds for λ can be expressed as

⟨A⟩σ −∆Aσ
√

ϵ

1− ϵ
⩽ λ ⩽ ⟨A⟩σ +∆Aσ

√
ϵ

1− ϵ
. (286)

Proof. Recall that in the proof of Lemma 4 we have shown that a slight modification
of the Gramian inequalities from (52) also holds for mixed states. Specifically, we have
shown that√

F(ρ, σ)⟨A⟩σ −∆Aσ
√
1−F(ρ, σ) ⩽ ℜ(⟨A√ρ,

√
σU⟩HS)

⩽
√
F(ρ, σ)⟨A⟩σ +∆Aσ

√
1−F(ρ, σ).

(287)
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where ⟨·, ·⟩HS denotes the Hilbert-Schmidt inner product and U is a unitary such that
F(ρ, σ) = |⟨Φ|Ψ⟩|2 with

|Ψ⟩ ≡ (
√
ρ⊗ 1)|Ω⟩, |Φ⟩ ≡ (

√
σ⊗UT )|Ω⟩. (288)

Here, by assumption ρ = |ψ⟩⟨ψ| is pure with |ψ⟩ an eigenstate of A with eigenvalue λ,
A|ψ⟩ = λ|ψ⟩. Note that in this case

⟨A√ρ,
√
σU⟩HS = λ ⟨√ρ,

√
σU⟩HS

= λ Tr
[√
ρ
√
σU
]

= λ ⟨Ω|(
√
ρ
√
σU⊗ 1)|Ω⟩

= λ ⟨Ω|(
√
ρ
√
σ⊗UT )|Ω⟩

= λ ⟨Ψ|Φ⟩

(289)

where |Φ⟩ and |Ψ⟩ are the purifications of σ and ρ given in the proof of Lemma 4 in (405).
Without loss of generality, we assume that ⟨Ψ|Φ⟩ is real and positive, since otherwise
each state can be multiplied by a global phase. Dividing each side in (287) by ⟨Ψ|Φ⟩ and
noting that

√
F(ρ, σ) = ⟨Ψ|Φ⟩ yields

⟨A⟩σ −∆Aσ

√
1−F(ρ, σ)
F(ρ, σ)

⩽ λ ⩽ ⟨A⟩σ +∆Aσ

√
1−F(ρ, σ)
F(ρ, σ)

. (290)

Since the RHS (LHS) of this inequality is monotonically increasing (decreasing) as
F(ρ, σ) decreases, we can replace the exact fidelity by an upper bound and still get
valid bounds. That is, for ϵ ⩾ 0 with F(ρ, σ) ⩾ 1− ϵ, we have

⟨A⟩σ −∆Aσ
√

ϵ

1− ϵ
⩽ λ ⩽ ⟨A⟩σ +∆Aσ

√
ϵ

1− ϵ
. (291)

which is the desired result.

10.2.3 Comparison of the bounds

We have seen three different methods to derive robustness intervals. Namely, the inter-
val based on SDP given in Theorem 11, the expectation value lower bound based on the
Gramian method from Lemma 4, and the robustness interval for eigenvalues from The-
orem 12, which is also based on the Gramian method. As a first observation, we notice
that the SDP bounds are dependent only on the first moment of the observable, while
the bounds derived from the Gramian method take into account the second moment
via the variance. In principle, this hints at a trade-off between accuracy and efficiency.
That is, by taking into account higher moments, which comes at a higher computational
cost, one can hope for an improvement in accuracy as more information is included. On
the other hand, the SDP bounds can be calculated as a postprocessing step and thus do
not require to measure additional statistics. However, as less information is included,
this typically comes at the cost of lower accuracy.

On the practical side, one needs to consider that for the SDP bounds to be applicable,
it is required that the observable lies between −1 and 1. In practice, however, this is not
always the case and the observable needs to be appropriately rescaled, e.g. by using its
eigenvalues. As the exact eigenvalues might not be available, one needs to use lower
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and upper bounds on these, which results in a loss of tightness. This is because the set
of feasible points in the SDP problem from (270) and (269) becomes larger and hence
loosens the bounds. A similar issue emerges in the lower bound for expectation values
based on the Gramian method where the observable needs to be positive semidefinite.
If this assumption is violated, one again needs to apply an appropriate transformation
of the observable, leading to a potentially looser bound. Instead of scaling, one can
decompose the observable into individual terms, each satisfying the constraints, and
then bound each term separately and aggregate the bounds over the decomposition. In
Section 10.3 we consider such a decomposition in the context of VQE. Specifically, we de-
compose the underlying Hamiltonian into groups of mutually commuting Pauli terms
and bound the expectation of each group separately. In contrast, the eigenvalue bound
based on the Gramian method does not suffer from these issues and it is applicable for
general observables. It is worth remarking that this comes at the cost of less generality
in the sense that the bound only applies to eigenvalues rather than general expectation
values.

Assuming that the observable A = P is a projection, satisfying P2 = P, we can directly
compare the bounds. Note that, in this case, the variance is fully determined by the first
moment via (∆Pσ)

2 = ⟨P⟩σ − ⟨P⟩2σ and we expect that the Gramian Expectation bound
should not be tighter than the SDP bound. First, we incorporate the knowledge that P is
a projection in the SDP lower bound by applying it to the observable 2P − 1 so that we
have the bound

⟨P⟩ρ ⩾ (1− 2ϵ)⟨P⟩σ + ϵ− 2
√
ϵ(1− ϵ)(⟨P⟩σ − ⟨P⟩2σ) (292)

which is exactly the same as the lower bound derived via the Gramian method in
Lemma 4 when applied to the projection P. We can also compare this bound to the
Gramian eigenvalue bound from Theorem 12. Since the latter is less general, in the
sense that it only holds for target states which are eigenstates, we expect this to be
tighter than the expectation value bound. As can be seen from Figure 27, this is indeed
the case.

Finally, we notice that all of the above bounds are faithful in the sense that, as the
approximation error vanishes ϵ→ 0, the bounds converge to the true expectation value
⟨A⟩ρ. To compare the rate of convergence, consider the case of pure states with the
target state given by ρ = |ψ⟩⟨ψ| and the approximation state σ = |ϕ⟩⟨ϕ| with |ϕ⟩ =√
1− ϵ|ψ⟩+√ϵ|ψ⊥⟩ where |ψ⊥⟩ is orthogonal to |ψ⟩ so that F(ρ, σ) = 1− ϵ. With this,

one can explicitly show that the error between each bound and the true expectation
⟨A⟩ρ scales with O(

√
ϵ) as ϵ → 0. For values of ϵ close to 1 on the other hand, we

remark that both expectation value bounds tend towards the trivial bounds, namely 0
for the expectation value bound, and ±1 for the SDP bounds. This ultimately stems
from the underlying assumptions required for the bounds to hold. In contrast, the
Gramian eigenvalue bound has no assumptions on the observable A and the bounds
diverge as ϵ approaches 1.

10.2.4 Fidelity estimation

All bounds presented so far have in common that they depend on the fidelity with the
target state ρ. However, in many practical settings, it is not possible to access the target
state and thus difficult to obtain even a lower bound to the true fidelity. Here we seek
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Figure 27: Difference between the SDP bounds from Theorem 11 and the Gramian eigenvalue
bound from Theorem 12 as a function of the infidelity ϵ and the expectation value
⟨P⟩ρ. The observable is assumed to be a projection P and the target state is an eigen-
state of the observable. The difference is calculated by subtracting the SDP bound from
the Gramian bound. a) shows the difference between lower bounds, b) shows the dif-
ference between the upper bounds. As can be seen from the figures, the Gramian
eigenvalue bound is always more accurate than the expectation bound. Note that
the Gramian expectation value lower bound (Lemma 4) equals the SDP lower bound
under these assumptions.

to address this topic and present lower bounds on the true fidelity for the case where
the target state is the ground state of a Hamiltonian H.

Let H be a Hamiltonian with eigenvalues λ0 ⩽ λ1 ⩽ . . . ⩽ λd and assume that λ0 has
geometric multiplicity 1 so that the corresponding ground state |ψ0⟩ is unique. Let σ
be a possibly mixed state approximation of |ψ0⟩. If both λ0 and λ1 are known, one can
make use of Eckart’s criterion [57] to bound the fidelity via

F(|ψ0⟩⟨ψ0|, σ) = ⟨ψ0|σ|ψ0⟩ ⩾
λ1 − ⟨H⟩σ
λ1 − λ0

. (293)

In scenarios where knowledge of the lowest lying eigenvalues λ0 and λ1 is available,
one can thus directly lower-bound the fidelity and use (293) in the computation of
the robustness intervals. In scenarios where one does not have full knowledge of these
eigenvalues (or, in the least, corresponding bounds), Eckart’s criterion cannot be directly
applied. However, we can still use the inequality if less knowledge about the spectrum
of H is available. If it is known that the energy estimate ⟨H⟩σ is closer to λ0 than to λ1
then, as an immediate consequence of Eckart’s criterion, one finds that

⟨ψ0|σ|ψ0⟩ ⩾
1

2
. (294)

We remark that substituting (294) into the Gramian eigenvalue bounds from Theo-
rem 12 yields the mixed state extension of the Weinstein bounds [145, 245] in the
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non-degenerate case. If, in addition, a lower bound δ on the spectral gap is known
such that λ1 − λ0 ⩾ δ, then we have the bound derived in Ref. [151],

⟨ψ0|σ|ψ0⟩ ⩾ 1−
∆Hσ

δ
, (295)

which is a nontrivial lower bound whenever the variance is small enough such that
∆Hσ ⩽ δ. With a similar technique, one obtains a further tightening of the bound:

⟨ψ0|σ|ψ0⟩ ⩾
1

2

1+
√
1−

(
∆Hσ

δ/2

)2 , (296)

for variances with ∆Hσ ⩽ δ/2. We note that this bound has also been reported in [46,
244] and we provide an alternative proof in Section G.1. In practice, the bound δ on
the spectral gap can also be estimated via classical methods, as for example truncated
classical configuration interaction or density-matrix renormalization group techniques.
In principle, also non-variational methods like truncated coupled-cluster (and the as-
sociated equation-of-motion or linear-response variants for the excited state energies)
could be applied. In either case, the idea is to use these classical methods to compute
the ground state and the first excited state energies to get an estimate of the spectral
gap which can then be used for the fidelity estimation. The classical method which is
the best to choose will generally depend on the system of interest and the available
computational time. We refer the reader to [87] for a detailed treatment over some of
those methods.

The above bounds hold for HamiltoniansHwhose lowest eigenvalue is non-degenerate.
In Section G.1 we consider the degenerate case and show that when the approximate
state σ is pure, then there always exists a state |ψ⟩which is an element of the eigenspace
associated with the lowest (possibly degenerate) eigenvalue, and for which the above
fidelity lower bounds hold. However, if σ is a mixed state, this cannot be said in full
generality, as is shown in the appendix with a counterexample. In summary, when the
approximate state σ is allowed to be mixed, then the fidelity bounds are applicable only
when the underlying Hamiltonian has a non-degenerate ground state. If, on the other
hand, σ is pure, then the bounds also hold in the degenerate case. Finally, we remark
that these fidelity bounds all require varying degrees of knowledge about the ground
state and Hamiltonian in question. They thus can only partially address the topic of
fidelity estimation in scenarios where such knowledge is not available.

At this point we would like to point out an interesting connection to Variational
Quantum Time Evolution (VarQTE). In general, VarQTE is a technique to find the ground
state of a Hamiltonian H [149, 158, 270] by projecting the time evolution of the initial
state to the evolution of the ansatz parameters. VarQTE typically comes with an approx-
imation error, stemming from a limited expressibility of the Ansatz state or from noise.
In [282], this approximation error is quantified in terms of an upper bound on the
Bures distance between the evolved state and the true ground state. Since there is a
one-to-one correspondence between Bures distance and fidelity, these error bounds can
be converted to a lower bound on the latter. This in turn can then be used to calculate
the eigenvalue and expectation bounds presented in this work.
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10.3 applications

In this section, we put into practice the theoretical results presented in the previous
sections and calculate the robustness intervals for ground state energies of electronic
structure Hamiltonians when the approximation of the ground state is provided by VQE.
We remark that, while VQE serves as an example application, our results are not limited
to ground state energies but can be used in a more general context where the goal is
to calculate error bounds for expectation values. Consider a Hamiltonian H with Pauli
decomposition

H =

n∑
j=1

ωjPj (297)

and let σ be an approximation to the true ground state |ψ0⟩. Given ϵ ⩾ 0 such that
⟨ψ0|σ|ψ0⟩ ⩾ 1− ϵ, and an estimate of the variance ⟨H2⟩σ − ⟨H⟩2σ, it is straightforward
to evaluate the Gramian eigenvalue bounds from Theorem 12. In contrast, for the ex-
pectation value bounds derived via SDP and the Gramian method from Theorem 11

and Lemma 4), one needs to be more careful since the Hamiltonian H might violate
the underlying assumptions. To evaluate the latter, we can account for this by adding a
sufficiently large constant c such that H̃ := H+ c1 ⩾ 0 and calculate the bound for H̃,
before reversing the translation in order to get the desired bound for H. Clearly, a valid
choice for c is given by −λ0 where λ0 is the lowest eigenvalue of H. However, it is not al-
ways clear which constant c leads to the tightest lower bound. Similarly, to evaluate the
SDP bounds, we need to apply Theorem 11 to operators which are bounded between ±1.
If the full spectrum of H was known, one could normalize H using these eigenvalues.
However, in the context of VQE, the spectrum is not a priori known as this is precisely
the task that VQE is designed to solve, and we need a different approach for the ex-
pectation value bounds. The idea is to partition the terms in the Pauli decomposition
from (297) into groups so that each term corresponding to a group can be normalized.
To this end, we first partition H into groups of mutually qubit-wise commuting terms

H =

M∑
k=1

Hk, Hk =
∑
j

ω
(k)
j P

(k)
j , [P

(k)
i , P(k)j ] = 0. (298)

Given such a representation, the spectrum of each of the Hk can be calculated classically
in order to scale Hk → H̃k appropriately such that the assumptions for the bounds are
satisfied. One can then compute the bounds for each of the terms in the summation
and get the final bounds by aggregating the individual bounds. We further make use
of the approach presented in [226, 269] where one applies a unitary transform Uk to
each of the Hk terms so that single-qubit measurement protocols can be used. Specifi-
cally, instead of measuring Hk under the state σ, one measures Ak = UkHkU

†
k under

the unitarily transformed UkσU
†
k. One can then scale each Ak appropriately by classi-

cally computing its eigenvalues and apply the expectation value bounds (Theorem 11

and Lemma 4) to each term separately before aggregating. It is also worth noting the
generality of Theorem 11. Although in the preceding demonstration, the matrix A is
generally taken to be a Pauli observable for measuring the output of a quantum circuit,
the condition −1 ⩽ A ⩽ 1 is satisfied much more generally (e. g., by Fermionic opera-
tors). The application of this theorem in settings without explicit Pauli decomposition
would be a fruitful ground for future research.



10.3 applications 145

0.5 1.0 1.5 2.0 2.5
Bond Distance (Å)

1.0

0.5

0.0

0.5

En
er

gy

exact
VQE (1-UpCCGSD)

RI (Gramian Eigenvalue)
LB (Gramian Expectation)

RI (SDP)

(a)

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
Bond Distance (Å)

8.0

7.5

7.0

6.5

En
er

gy

exact
VQE (1-UpCCGSD)

RI (Gramian Eigenvalue)
LB (Gramian Expectation)

RI (SDP)

(b)

Figure 28: Comparison of the different lower bounds (LB) and robustness intervals (RI) pre-
sented in Section 10.2 for bond dissocation curves of H2(2, 4) and LiH(2, 4). The
approximation states are provided by VQE with an UpCCGSD ansatz. Both the VQE

optimization and the evaluation of the bounds were simulated with bit flip and de-
polarization noise with 1% error probability.

10.3.1 Numerical simulations

Here, we numerically investigate the different robustness bounds for the ground state
energies for a set of electronic structure Hamiltonians, namely H2, LiH and BeH2
molecules where the qubit Hamiltonians are obtained within the basis-set-free ap-
proach of [118] using directly determined pair-natural orbitals on MP2 level [117].1

All our experiments have been implemented in the Tequila [114] library using the
qubit encodings from openfermion [152], optimizers from scipy [228], madness [80]
as chemistry backend, qulacs [210] as the simulation backend for noiseless simulations
and qiskit [283] for simulations which include noise. We model noise as a combination
of bitflip channels acting on single qubit gates with 1% error probability, and depolar-
izing noise acting on two qubit gates, also with an error probability of 1%.

For a given Hamiltonian H, we first approximate its ground state |ψ0⟩ via VQE. That
is, for an Ansatz state σθ with parameters θ one minimizes the objective ⟨H⟩σθ and
obtains optimal parameters θ∗ = arg minθ ⟨H⟩ρθ . It follows from the Rayleigh-Ritz
variational principle [178, 182] that the expectation ⟨H⟩σ∗

θ
is an upper bound to the

true ground state energy λ0. The such obtained ground state approximation σθ∗ is
then used to evaluate the bounds by computing the relevant statistics, i.e. expectation
values and variances of observables under this state. We notice that the quality of this
state in terms of a distance to the true ground state is not easily obtainable without
having some prior knowledge over the system of interest (see also Section 10.2.4 in
this regard). For this reason and in order to investigate and compare the bounds, here
we assume knowledge of the true fidelity with the ground state. In practice, this is of
course not realistic and, as discussed previously, one needs to approximate the true
fidelity. Given the ground state approximation σθ∗ and the fidelity F(σθ∗ , |ψ0⟩⟨ψ0|), we
then estimate the expectation values and variances under σθ∗ in order to evaluate the
bounds. In the noiseless scenario, these statistics can be calculated exactly, whereas in

1 The code for the simulations presented in this chapter is available at https://github.com/DS3Lab/

robustness-intervals-quantum-measurements.

https://github.com/DS3Lab/robustness-intervals-quantum-measurements
https://github.com/DS3Lab/robustness-intervals-quantum-measurements
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Figure 29: Bond dissociation curves and robustness intervals (RI) for eigenvalues based on the
Gramian method (Theorem 12) for H2(2, 4), LiH(2, 4) and BeH2(4, 8). Both the VQE

optimization and the evaluation of the bounds are done under a combination of bit
flip and depolarization noise with 1% error probability.
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Figure 30: Bond dissociation curves, robustness interval (RI) for eigenvalues based on the
Gramian method (Theorem 12) for LiH(2, 4)and BeH2(4, 8). Here, an ideal scenario
without noise is simulated and the approximation errors stem from the limited ex-
pressibility of the Ansatz state.

the noisy scenario they need to be estimated due to finite sampling errors. Thus, in
the noisy case, we repeat the calculation of the bounds 20 times and report one-sided
99%-confidence intervals.

In Figure 28, we consider the noisy scenario and compare the different types of
bounds for H2(2, 4) and LiH(2, 4) with approximation states provided by VQE with
an UpCCGSD Ansatz [130] and optimized fermionic gradients [115]. For both molecules,
we notice that the Gramian eigenvalue bound is the tightest, while the expectation
value bounds are less tight. However, this is not surprising, as the eigenvalue bound is
more suited for this task, compared to the other bounds which hold more generally for
expectation values. In Figure 29, we again consider the noisy scenario and compare the
Gramian eigenvalue bounds for approximation states obtained via the SPA Ansatz [116]
and via the UpCCGSD Ansatz for H2(2, 4), LiH(2, 4) and BeH2(4, 8). We first notice that
the SPA Ansatz is generally less vulnerable to noise, which stems from the associated
shallow circuits, compared to the UpCCGSD Ansatz. In particular, SPA and UpCCGSD have
the same expressibility for H2 but, since SPA uses more efficient compiling, its energy
estimates and lower bounds are more accurate compared to UpCCGSD. In Section G.2
we show robustness intervals for the LiH(2, 4) molecule with the error rate increased
to 10%. For the SPA ansatz, even with this error rate, the ground state fidelities vary
between 0.51 and 0.65 while the UpCCGSD states have low ground state fidelities in the
range 0.1. In other words, UpCCGSD fails to converge to states which are close to the
true ground state. It is interesting to note that for lowest ground state fidelities, the
expectation value bounds reduce to trivial bounds and the eigenvalue bound starts to
diverge. In Figure 30 we consider the noiseless scenario with an SPA ansatz for LiH and
BeH2. In contrast to the noisy scenario, here the bounds based on the UpCCGSD Ansatz
are tigther, compared to the ones based on the SPA Ansatz for large bond distances.
This is due to the fact that SPA generally has more difficulties in approximating ground
states for far stretched bond distances and hence results in lower ground state fidelities.
Finally, it is worth remarking that these bounds are obtained under the assumption of
having complete knowledge of the true ground state fidelity, an assumption which is
idealistic and typically violated in practice.
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10.3.2 Implementation

All our robustness intervals are implemented in the open source Tequila [114] library.
In the following example, we run VQE for the H2 Hamiltonian in a minimal representa-
tion (4 qubits), before computing the lower and upper bounds based on the optimized
circuit, using the function robustness_interval:

import tequila as tq

from tequila.apps.robustness import robustness_interval

geom = ’H .0 .0 .0\nH .0 .0 .75’

mol = tq.Molecule(geom, n_pno=1)

H = mol.make_hamiltonian()

U = mol.make_upccgsd_ansatz()

E = tq.ExpectationValue(H=H, U=U)

result = tq.minimize(E)

lower_bound, energy, upper_bound, _ = robustness_interval(U, H, fidelity,

variables=result.variables)

Used in this way, the function calculates the robustness interval for all three methods
and returns the tightest bounds. Alternatively, one can specify the type of bound via
the keywords kind and method where the former stands for which kind of interval is
desired, that is expectation or eigenvalue, and the latter stands for the method used to
obtain the bound (Gramian or SDP). For example, calculating a robustness interval for
eigenvalues using the Gramian method, can be implemented as

robustness_interval(..., kind="eigenvalue", method="gramian").

In general, any type of expectation value can be used. Note that our implementation is
agnostic with respect to the molecular representation, so that replacing n_pno=1 with
basis_set="sto-3g" will lead to a 4 qubit Hamiltonian in a traditional basis set.

10.4 conlusion

The current experimental stage of quantum computation offers the possibility to ex-
plore the physical and chemical properties of small systems and novel quantum algo-
rithms are being developed to extract the most from this first generation of quantum
devices. However, this potential for computational advantage, compared to classical
methods, comes at a price of noisy and imperfect simulations stemming from low qubit
counts and thus the lack of quantum error correcting qubits. The VQE is the canonical
example of these NISQ algorithms that allow us to obtain an approximation of Hamilto-
nian eigenstates by exploiting the variational principle of quantum mechanics. Besides
the broad applications and promising results of this approach [5, 151, 173], its perfor-
mance guarantees should be studied and understood.

In this last of the five core chapters of this thesis, we have made first progress in this
direction and have derived robustness intervals for quantum measurements of expec-
tation values. For a target state ρ, these intervals are guaranteed to contain the true
expectation value ⟨A⟩ρ of an observable A when we only have access to an approxi-
mation σ. Based on resource constraints, accuracy requirements, and depending on the
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task, we have seen three different types of robustness intervals. Firstly, based on the
formulation of robustness bounds as SDPs, we have derived upper and lower bounds
to ⟨A⟩ρ which take into account only the first moment of the observable A and can
thus be obtained by post-processing measurements of ⟨A⟩σ together with the fidelity
with the target state F(ρ, σ). Secondly, we have revisited the Gramian method [243] to
take into account higher statistical moments of A and extended this technique to mixed
states, thereby enabling their applicability in noisy scenarios which are prevalent in the
NISQ era. This has led to a further lower bound to expectation values and, additionally,
to lower and upper bounds on eigenvalues of observables. We have also implemented
our bounds in the open source Tequila [114] library. Furthermore, we have validated
our results with numerical simulations of noisy and noiseless scenarios with VQE as
an example application to calculate robustness intervals for ground state energies of
electronic structure Hamiltonians of H2, LiH and BeH2. For the molecules considered
in these experiments, we have observed that the robustness intervals provide accurate
estimates of the errors incurred by noise, in particular when the ground state approxi-
mation is close enough to the true ground state in terms of fidelity.

The main requirement of the bounds obtained is the knowledge of the fidelity be-
tween the target state and its approximation. Although such a quantity is not always
experimentally accessible and hence poses a challenge in the practical applicability of
these bounds, there exist algorithms, such as within the variational quantum imaginary
time evolution [282] framework, which allow for a quantification of the required ap-
proximation error in terms of distances between the target and the approximate state.
Nonetheless, our aim is to provide a formal framework to study the robustness of
broadly used approaches as are the Variational Quantum Algorithms. There are still
many questions around the applicability of these quantum algorithms and its robust-
ness against noise. Within this work, we seek to unravel the uncertainties around these
state-of-the-art quantum algorithms with the goal of improving its performance and
applicability.





11
C O N C L U S I O N

The topic of safety and reliability of machine learning has gained substantial interest
over the recent years and its importance is only increasing as ML systems become more
integrated into our lives. Among the plethora of sub-fields of safe and reliable ML, this
thesis was concerned with probabilistic robustness guarantees and took a holistic view
on ML systems, covering different stages of an ML pipeline, and considering both clas-
sical and quantum computing frameworks. We have addressed several open questions
related to robustness guarantees for data poisoning attacks, semantic transformations,
and presented bounds to certify the out-of-domain generalization. We have further de-
veloped robustness guarantees for quantum machine learning and presented bounds
on quantum expectation values with applications to NISQ algorithms.

11.1 summary

The core subject around which this thesis has revolved concerns the question of how we
can provide robustness guarantees for different stages of an ML system. We divided this
question up into five smaller parts, which we have treated in the different chapters of
this thesis and have made progress towards building certifiably robust ML systems. Fol-
lowing the natural flow of an ML pipeline, we first set out to derive provable robustness
against backdoor attacks in Chapter 6, and treated the first question:

Question 1: How can we develop certifiably robust ML models against backdoor attacks?

To address this question, we have built on the Neyman-Pearson approach of certifying
robustness via randomised smoothing [39, 264], and developed a robust training algo-
rithm that provides a robustness certificate against backdoor attacks. Specifically, given
that our model was trained on a poisoned training set, the certificate guarantees that
the prediction would have been the same, if the model was trained on the clean training
set (i. e., with the backdoor pattern removed). This in turn implies that the adversary
does not gain any advantage by knowing the backdoor pattern. As we have seen, the
main limitation of the approach is the computational cost, arising from the method
being based on an ensemble of models. Nevertheless, we believe that this result is an
important first step towards provable robustness against backdoor attacks.

In the second question, which was the focus of Chapter 7, we were concerned with
certifying robustness against a specific type of input perturbations, namely those arising
from semantic transformations:

Question 2.1: How can we guarantee the robustness of ML models against input corruptions
arising from semantic transformations that incur large ℓp-norm perturbations?

Similar to the approach we used in the treatment of the previous question, we have
built on the Neyman Pearson approach to probabilistic robustness guarantees. To that
end, we have developed a framework, TSS, that performs smoothing of a classifier over
parameters of semantic transformations (e. g., rotation angle). Rather than a guarantee
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on the absolute error between inputs, here we certify the transformation parameters
since such transformations incur large ℓp norm distances which cannot be handled by
classical additive smoothing approaches. Using this framework, we were able to certify
a large number of different semantic transformations and set new state of the art on
certified robustness for this type of perturbations.

In the third question, treated in Chapter 8, we moved away from instance-level robust-
ness and focused our attention on how population-level metrics change due to changes
in the data distributions:

Question 2.2 How can we certify the out-of-domain generalization abilities of ML models while
only allowing blackbox access to these models?

To address this question, we have adapted a technique to bound quantum expectation
values which is based on the non-negativity of Gram matrices and which was pio-
neered by Weinhold [243]. The such derived bounds take into account both variance
and the expectation of the source distribution and, since they only require blackbox ac-
cess to model predictions, can be efficiently estimated from data, in contrast to existing
bounds. In our experimental validation, we have shown that this method can certify
the out-of-domain generalization of diverse models which are as large as a full-fledged
EfficientNet-B7 and BERT.

In Part iv of this thesis, we considered ML systems which make use of quantum
computing components, and focused our attention on deriving robustness guarantees
for quantum classifiers in Chapter 9, and more general quantum algorithms which rely
on the readout of expectation values (Chapter 10). We started this investigation with
the following question:

Question 3.1: How can we enable tight robustness guarantees for quantum classification
models, taking into account the unique nature of QML algorithms?

Stemming from the observation that quantum circuits, and thus quantum classifiers, are
naturally probabilistic, we presented a quantum analogue of the robustness guarantees
based on the Neyman-Pearson Lemma. In addition, due to optimality of the Neyman-
Pearson tests (i. e., Helstrom operators), this result was shown to be tight. Finally, as
we have seen, due to the probabilistic nature of quantum classifiers, this result has
revealed an intrinsic robustness guarantee which, in contrast to classical models, does
not require smoothing over inputs, although it can be enhanced by it.

While the previous question addresses quantum algorithms whose output relies on
the most likely measurement outcome, the final step in this thesis was to take a broader
view and derive robustness intervals for quantum expectation values, when the pre-
pared state is only an approximation to the ideal state. Inspired by the early days of
computing [230, 251], we asked the following question:

Question 3.2: How can we characterize accurate error bounds on the output of quantum
algorithms arising from imperfect representations of an ideal quantum state?

To answer this question, we have adapted two techniques to derive bounds on the
worst-case error in quantum expectation values arising from approximations of an ideal
quantum state. The first type of bounds relies on quantum hypothesis testing and is
essentially an application of the Neyman-Pearson robustness guarantees presented in
Chapter 9. In the second approach, we have extended the Gramian technique, whose
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classical counterpart we have used to certify out-of-domain generalization in Chapter 8,
to the mixed state formalism. This extension ultimately enables the applicability of
this technique in the NISQ er of quantum computing. Finally, we have validated these
bounds in the context of the Variational Quantum Eigensolver. While these bounds
allow for an accurate characterization of the error and do not require knowledge of
specific noise or state preparation models, the main limitation is that they do require
knowledge, or, in the least, an approximation of the quantum state fidelity between
approximate and ideal quantum state.

11.2 research outlook

In this thesis, we have provided answers to five central open questions related to prov-
ably robust ML systems and, throughout every chapter, made extensive use of proba-
bilistic approaches to robustness certification. While these results equip us with a better
understanding and novel robustness certification techniques, we have only scratched
the surface of designing provably robust ML systems. Many other types of vulnerabili-
ties remain open, and optimizing these certificates in light of computational efficiency
and tightness will be important cornerstones for their adoption in practice. In addition,
with the current pace of integration of ML systems into everyday applications, we be-
lieve that new challenges related to reliable ML will emerge and require further careful
analysis.

Many of the results presented in the five main chapters of this thesis share common
limitations which, to a large extent, arise from current limitations of probabilistic robust-
ness guarantees, and provide fruitful grounds for future research. Specifically, random-
ized smoothing based certification approaches usually suffer from the computational
overhead caused by the requirement of estimating expectation values via Monte-Carlo
methods. This limitation is perhaps most pronounced in our proposed approach to cer-
tifying robustness against backdoor attacks. Indeed the formulation of smoothing over
the training data leads to the requirement of training an ensemble of models in order to
estimate the associated expectation value, which is of course computationally expensive.
Nevertheless, as we have shown in the context of KNN-classifiers, there exist problem
instances where this limitation can be alleviated, giving hope that in the future, more
algorithms which improve the efficiency of probabilistic guarantees will be discovered.
We believe that such improvements in computational efficiency of probabilistic robust-
ness guarantees will become even more important as models grow in size such as in the
context of large language models where inference cost becomes a bottleneck for many
applications. In addition, since we have developed probabilistic robustness guarantees,
even if they hold with high probability (e. g., 99.9%), this still leaves the possibility of
errors when a large number of predictions need to be certified. Therefore, especially in
highly security-critical scenarios, developing deterministic guarantees for ML systems
is paramount.

From the operational point of view, a further central limitation of the results pre-
sented in this thesis, is posed by the challenge of estimating statistical distances and
distances between quantum states. In the classical case, this limitation is most pro-
nounced in the context of the results on certifying out-of-domain generalization pre-
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sented in Chapter 8. While the robustness guarantees presented scale to large models
and datasets, the operational significance is currently hindered by a lack of techniques
to accurately estimate the distribution drift in terms of the Hellinger distance, especially
for high dimensional data. Indeed, such a result would enable to continuously estimate
a worst-case drop in model performance and provide a signal when models need to
be adapted to new data distributions. In the context of our robustness guarantees for
quantum machine learning, a similar challenge exists. While our bounds are intrinsic
guarantees of quantum classifiers and are independent of the underlying model archi-
tecture, they still depend on estimates of a notion of similarity between quantum states.
Estimating these measures, like the fidelity to an ideal, but unavailable quantum state,
without having access to it, is a challenging task in practice and developing such meth-
ods is needed.

Finally, while in this thesis we have provided results for individual components of an
ML system, the interplay between guarantees for different components and vulnerabil-
ities of such intelligent systems needs to be thoroughly understood in order to build
ML systems with provable end-to-end robustness. Promising endeavours in this direc-
tion have already been made [268], giving fruitful grounds for further research in this
direction.
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P R O O F S F O R B O U N D S O N C L A S S I C A L E X P E C TAT I O N VA L U E S

In this chapter, we provide proofs for the results presented in Chapter 4.

a.1 likelihood ratio tests

Recall the definition of a likelihood ratio test for testing the null hypothesis X ∼ P

against the alternative X ∼ Q, given in Section 4.1,

ϕNP(x) =


1 Λ(x) > t

q Λ(x) = t

0 Λ(x) < t

, with Λ(x) =
fQ(x)

fP(x)
(299)

where fP = dP
dµ and fQ = dQ

dµ are the probability density functions with respect to a
reference measure µ on X. For a fixed significance level α0 ∈ [0, 1], the value of t is
chosen according to

t = inf{s ⩾ 0 |PX∼P[Λ(X) ⩽ s] ⩾ 1−α0} (300)

and q is then set to

q =

0 if PX∼P[Λ(X) = t] = 0,
α0−PX∼P[Λ(X)>t]

PX∼P[Λ(X)=t] otherwise.
(301)

This choice ensures that

α(ϕNP; P) = qPX∼P[Λ(X) = t] + PX∼P[Λ(X) > t] = α0. (302)

The following Lemma ensures that q ∈ [0, 1] and that the resulting likelihood ratio test
is well defined.

Lemma 12. Let P and Q be two probability measures with densities fP and fQ with respect
to a measure µ and denote by Λ the likelihood ratio Λ(x) = fQ(x)/fP(x). For p ∈ [0, 1] let
tp := inf{t ⩾ 0 : PX∼P[Λ(X) ⩽ t] ⩾ p}. Then it holds that

PX∼P [Λ(X) < tp] ⩽ p ⩽ PX∼P[Λ(X) ⩽ tp]. (303)

Proof. We first show the RHS of inequality (303). This follows directly from the defini-
tion of tp if we show that the function t 7→ PX∼P[Λ(X) ⩽ t] is right-continuous. Let t ⩾ 0
and let {tn}n be a sequence in R⩾0 such that tn ↓ t. Define the sets An := {x : Λ(x) ⩽ tn}
and note that PX∼P[Λ(X) ⩽ tn] = PX∼P[X ∈ An]. Clearly, if x ∈ {x : Λ(x) ⩽ t}

then ∀n : Λ(x) ⩽ t ⩽ tn and thus x ∈ ∩nAn. If on the other hand x ∈ ∩nAn then
∀n : Λ(x) ⩽ tn → t as n → ∞. Hence, we have that ∩nAn = {x : Λ(x) ⩽ t} and thus
limn→∞ PX∼P [Λ(X) ⩽ tn] = PX∼P [Λ(X) ⩽ t] since limn→∞ PX∼P [X ∈ An] = PX∼P[X ∈
∩nAn] for An+1 ⊆ An. We conclude that t 7→ PX∼P [Λ(X) ⩽ t] is right-continuous and
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in particular PX∼P [Λ(X) ⩽ tp] ⩾ p. We now show the LHS of inequality (303). For that
purpose, consider the set Bn := {x : Λ(x) < tp −

1
n } and let B := {x : Λ(x) < tp}. Clearly,

if x ∈ ∪nBn, then ∃n such that Λ(x) < tp − 1
n < tp and hence x ∈ B. If on the other

hand x ∈ B, then we can choose n large enough such that Λ(x) < tp − 1
n and thus

x ∈ ∪nBn. It follows that B = ∪nBn. Furthermore, by the definition of tp and since
for any n ∈N we have that PX∼P [X ∈ Bn] = PX∼P

[
Λ(X) < tp −

1
n

]
< p it follows that

PX∼P [Λ(X) < tp] = limn→∞ PX∼P [X0 ∈ Bn] ⩽ p since Bn ⊆ Bn+1. This concludes the
proof.

The next Lemma is essentially the Neyman-Pearson Lemma [162] and establishes
optimality of the likelihood ratio test.

Lemma 13. Let P and Q be two probability measures with densities fP and fQ with respect to
a measure µ and denote by Λ the likelihood ratio Λ(x) = fQ(x)/fP(x) and denote by ϕNP be
the likelihood ratio test defined in (299). Then, for any deterministic function ϕ : X→ [0, 1] the
following holds:

i) α(ϕ; P) ⩾ 1−α(ϕNP;P)⇒ 1−β(ϕ; Q) ⩾ β(ϕNP; Q)

ii) α(ϕ; P) ⩽ α(ϕNP; P)⇒ β(ϕ; Q) ⩾ β(ϕNP; Q)

Proof. We first show (i). We have

1−β(ϕNP; Q) −β(ϕ; Q) =

∫
Λ>t

ϕdQ+

∫
Λ⩽t

(ϕ− 1)dQ+ q

∫
Λ=t

dQ

=

∫
Λ>t

ϕΛdP+

∫
Λ⩽t

(ϕ− 1)︸ ︷︷ ︸
⩽0

ΛdP+ q

∫
Λ=t

ΛdP

⩾ t ·

 ∫
Λ>t

ϕdP+

∫
Λ⩽t

(ϕ− 1)dP+ q

∫
Λ=t

dP


= t · [α(ϕ; P) − (1−α(ϕNP; P))] ⩾ 0

(304)

with the last inequality following from the assumption and t ⩾ 0. Thus, (i) follows; (ii)
can be proved analogously.
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In this chapter, we provide proofs for the results presented in Chapter 5.

b.1 proof of lemma 3

Lemma 3 constitutes one of the core theoretical results required to derive the robustness
bounds for quantum classifiers (Chapter 9) and for the robustness intervals presented
in Chapter 10. We start with a quick review of the central definitions related to QHT

and an outline of the proof. We then proceed to constructing Helstrom operators and
proving their optimality. Finally, we conclude with the proof of Lemma 3.

preliminaries Throughout this section, the null hypothesis is described by the
density operator σ ∈ S(H), while the alternative hypothesis is denoted by ρ ∈ S(H).
A quantum hypothesis test is a positive semi-definite operator 0 ⩽ M ⩽ 1d and the
type-I and type-II error probabilities associated with M are denoted by α and β and
are defined by

α(M; σ) := Tr [σM] (type-I error)

β(M; ρ) := Tr [ρ(1−M)] (type-II error)

Throughout this section we will omit the explicit dependence on σ and ρ whenever it is
clear from context. For two Hermitian operators A and B, we write A ⩾ B (A ⩽ B) if A−

B is positive (negative) semi-definite and A > B (A < B) if A− B is positive (negative)
definite. For a Hermitian operator A with spectral decomposition A =

∑
i λiPi with

eigenvalues {λi}i and orthogonal projections onto the associated eigenspaces {Pi}i, we
write

{A > 0} :=
∑

i : λi>0

Pi, {A < 0} :=
∑

i : λi<0

Pi (305)

for the projections onto the eigenspaces associated with positive and negative eigenval-
ues respectively. Finally, for t ⩾ 0 define the operators

Pt,+ := {ρ− tσ > 0},

Pt,− := {ρ− tσ < 0},

Pt,0 := 1− Pt,+ − Pt,−.

(306)

Helstrom operators are the quantum counterpart of likelihood ratio tests from classical
hypothesis testing and are defined as

Mt := Pt,+ +Xt, 0 ⩽ Xt ⩽ Pt,0. (307)

Finally, in the Neyman-Pearson approach to QHT, an optimal hypothesis test is an op-
erator that solves the SDP problem

β∗(α0; σ, ρ) := minimize β(M; ρ)

s.t. α(M; σ) ⩽ α0,

0 ⩽M ⩽ 1d.

(308)

159
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for some predefined threshold α0 ∈ [0, 1].

proof outline The first step in the proof is to make an explicit construction of
Helstrom operators (307), and show that these are optimal hypothesis tests for the
SDP (308). In a subsequent we will use this construction to derive a lower bound to (308),
which in the case of pure states becomes an equality.

b.1.1 Construction of Helstrom Operators and Optimality

The first step is to show that if a sequence of bounded Hermitian operators An con-
verges in operator norm to a bounded Hermitian operator A from above (below), then
the projections {An < 0} and {An > 0} converge to {A < 0} and {A > 0}, respectively,
in operator norm. This subsequently allows us to show that the function t 7→ α(Pt,+)

is non-increasing and continuous from the right, and that t 7→ α(Pt,+ + Pt,0) is non-
increasing and continuous from the left. As a consequence, for α0 ∈ [0, 1], the quantity

τ(α0) := inf{t ⩾ 0 : α(Pt,+) ⩽ α0} (309)

is well defined. This implies the chain of inequalities

α
(
Pτ(α0),+

)
⩽ α0 ⩽ α

(
Pτ(α0),+ + Pτ(α0),0

)
. (310)

Based on these, we can construct a Helstrom operator Mτ(α0) according to

Mτ(α0) := Pτ(α0),+ + q0Pτ(α0),0, (311)

where

q0 :=


α0−α(Pτ(α0),+)

α(Pτ(α0),0)
if α

(
Pτ(α0),0

)
̸= 0,

0 otherwise.
(312)

which attains the preassigned type-I error probability α0. Finally, we will show that
these Helstrom operators are optimal for the SDP problem (308), so that

β∗(α0; σ, ρ) = β(Mτ(α0); ρ). (313)

Lemma 14. Denote by B(H) the space of bounded linear operators acting on the finite di-
mensional Hilbert space H, d := dim(H) < ∞. Let A ∈ B(H) and {An}n∈N ⊂ B(H) be
Hermitian operators and suppose that ∥An −A∥op

n→∞−−−−→ 0. Then, it holds that

(i) A−An ⩽ 0 ⇒ ∥{An < 0}− {A < 0}∥op
n→∞−−−−→ 0, (314)

(ii) A−An ⩾ 0 ⇒ ∥{An > 0}− {A > 0}∥op
n→∞−−−−→ 0. (315)

Proof. We first show that convergence in operator norm implies that the eigenvalues of
An converge towards the eigenvalues A. For a linear operator M let λk(M) denote its
k-th largest eigenvalue, λ1(M) ⩾ . . . ⩾ λq(M), where q ⩽ d is the number of distinct
eigenvalues of M. By the minimax principle (e.g. [13], chapter 3), we can compute λk
for any Hermitian operator M according to

λk(M) = max
V⊆H

dim(V)=k

min
ψ∈V

∥ψ∥=1

⟨ψ|M|ψ⟩. (316)
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Now let ε > 0 and let n ∈N large enough such that ∥An −A∥op < ε. Let |ψ⟩ ∈ H be a
normalized state and note that by the Cauchy-Schwartz inequality we have

|⟨ψ|(An −A)|ψ⟩| ⩽ ∥(An −A)ψ∥ ∥ψ∥ ⩽ ∥An −A∥op ∥ψ∥2 < ε (317)

and thus

⟨ψ|A|ψ⟩− ε < ⟨ψ|An|ψ⟩ < ⟨ψ|A|ψ⟩+ ε. (318)

Hence, for any fixed k ⩾ 1 and any subspace V ⊂ H with dim(V) = k, we have

min
ψ∈V

∥ψ∥=1

⟨ψ|A|ψ⟩− ε < min
ψ∈V

∥ψ∥=1

⟨ψ|An|ψ⟩ < min
ψ∈V

∥ψ∥=1

⟨ψ|A|ψ⟩+ ε (319)

and thus, from (316), we see that

λk(A) − ε < λk(An) < λk(A) − ε⇒ |λk(A) − λk(An)| < ε (320)

and hence

λk(An)
n→∞−−−−→ λk(A), k = 1, . . . , q. (321)

Alternatively, this can be seen from Weyl’s Perturbation Theorem (e.g. [13], ch. 3):
namely, since A and An are Hermitian, it follows immediately from

|λk(A) − λk(An)| ⩽ max
k

|λk(A) − λk(An)| ⩽ ∥A−An∥op (322)

that eigenvalues converge provided that ∥An −A∥op → 0. We will now make use of
function theory and the resolvent formalism to show the convergence of the positive
and negative eigenprojections. Let M ∈ B(H) be Hermitian, let σ(M) denote the spec-
trum of M and, for λ ∈ C \ σ(M), let

Rλ(M) := (M− λ1)−1 = −

∞∑
k=0

λ−(k+1)Mk (323)

be the resolvent of the operator M. The sum is the Neumann series and converges for
λ ∈ C \ σ(M). Since M is Hermitian, we can write its spectral decomposition in terms
of contour integrals over the resolvent

M =

q∑
k=1

λk(M)Pk with Pk =
1

2πi

∮
(γk,−)

Rλ(M)dλ, and
q∑
k=1

Pk = 1 (324)

where Pk is the orthogonal projection onto the k-th eigenspace and the integration is
to be understood element-wise. The symbol (γk,−) indicates that the contour encircles
λk(M) once negatively, but does not encircle any other eigenvalue of M. We refer the
reader to [181] for a detailed derivation.

We now show part (i) of the Lemma. For ease of notation, let λk denote the k-th
eigenvalue of A and λk,n the k-th eigenvalue of An. Since An and A are Hermitian
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operators, we can write the eigenprojections {An < 0} and {A < 0} in terms of the
resolvent as

{A < 0} =
1

2πi

∑
k : λk<0

∮
(γk,−)

Rλ(A)dλ,

{An < 0} =
1

2πi

∑
k : λk,n<0

∮
(γk,n,−)

Rλ(An)dλ

(325)

where the symbols (γk,−) and (γk,n,−) indicate that the contours encircle only λk
and λk,n once negatively and no other eigenvalues of A and An respectively. Since by
assumption An ⩾ A and An, A are Hermitian, it follows from Weyl’s Monotonicity
Theorem that λk,n ⩾ λk. Let λK be the largest negative eigenvalue of A, that is λ1 ⩾
λ2 ⩾ . . . λK−1 ⩾ 0 > λK ⩾ . . . ⩾ λq. Note that if A is positive semidefinite, then so is
An and the statement follows trivially from {An < 0} = {A < 0} = 0. Thus, without
loss of generality, we can assume that at least one eigenvalue of A is negative. Since
λk,n ⩾ λk, and in particular λK−1,n ⩾ λK−1 ⩾ 0, there exists N0 ∈ N large enough
such that λK−1,n ⩾ 0 > λK,n for all n ⩾ N0. Let r0 be the smallest distance between
two eigenvalues of A

r0 := min
k

|λk − λk+1| (326)

and let 0 < ε < r0
2 . Choose N1 ⩾ N0 large enough such that

max
k⩾K

|λk,n − λk| < ε/2. (327)

Let 0 < δ < r0
2 − ε and for k ⩾ K let Bkδ+ε := Bδ+ε(λk) be the open ball of radius δ+ ε

centered at λk. Note that ∂Bkδ+ε encircles both λk,n and λk. Then, for k ⩾ K and n ⩾ N1,
the mappings

λ 7→ Rλ(A), λ ∈ Bkδ+ε \ {λk}, (328)

λ 7→ Rλ(An), λ ∈ Bkδ+ε \ {λk,n} (329)

are holomorphic functions of λ and each has an isolated (simple) singularity at λk and
λk,n respectively. Let γk,n be a contour around λk,n encircling no other eigenvalue of
An. Note that the contours γk,n and ∂Bkδ+ε are homotopic (in Bkδ+ε \ {λk,n}). Thus, for
all k ⩾ K and n ⩾ N1, Cauchy’s integral Theorem yields∮

γk,n

Rλ(An)dλ =

∮
∂Bkδ+ε

Rλ(An)dλ. (330)

With this, we see that for n ⩾ N1

{An < 0}− {A < 0} =
1

2πi

q∑
k=K

(∮
∂Bkδ+ε

Rλ(A)dλ−

∮
γk,n

Rλ(An)dλ

)
(331)

=
1

2πi

q∑
k=K

(∮
∂Bkδ+ε

(Rλ(A) − Rλ(An)) dλ

)
(332)
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and thus, by the triangle inequality

∥{An < 0}− {A < 0}∥op ⩽
1

2π

q∑
k=K

∥∥∥∥∥
∮
∂Bkδ+ε

(Rλ(A) − Rλ(An)) dλ

∥∥∥∥∥
op

(333)

⩽
1

2π

q∑
k=K

sup
λ∈∂Bkδ+ε

∥Rλ(A) − Rλ(An)∥op · 2π · (δ+ ε) (334)

⩽ (q− (K− 1)) · (δ+ ε) ·max
k⩾K

 sup
λ∈∂Bkδ+ε

∥Rλ(A) − Rλ(An)∥op

 . (335)

Furthermore, for any k and λ ∈ ∂Bkδ+ε, the second resolvent identity yields

∥Rλ(A) − Rλ(An)∥op = ∥Rλ(A)(A−An)Rλ(A)∥op
⩽ ∥A−An∥op · ∥Rλ(A)∥op ∥Rλ(An)∥op .

(336)

We now show that the supremum over λ ∈ ∂Bkδ+ε in the right hand side of (336) is
bounded. Since both A and An are Hermitian, it follows that their resolvent is normal
and bounded for λ ∈ C \ σ(An) and λ ∈ C \ σ(A) respectively. The operator norm is
thus given by the spectral radius,

∥Rλ(A)∥op = max
k

|λk(Rλ(A))| (337)

and

∥Rλ(An)∥op = max
k

|λk(Rλ(An))| . (338)

Note that the eigenvalues of Rλ(A) are given by (λk(A) − λ)
−1. To see this, let λ ∈

C \ σ(A) and consider

det (Rλ(A) − µ1) = det
(
(A− λ1)−1 (1− (A− λ1)µ1)

)
(339)

∝ det (1− (A− λ1)µ1) (340)

= (−µ)mdet
(
A− (µ−1 + λ)1

)
. (341)

Since det(Rλ(A)) ̸= 0 it follows that µ = 0 can not be an eigenvalue. Thus, eigenvalues
of Rλ(A) satisfy

1

µ
+ λ = λk(A)⇒ µ =

1

λk(A) − λ
. (342)

The same reasoning yields an expression for eigenvalues of Rλ(An). Thus

∥Rλ(A)∥op = max
k

1

|λk(A) − λ|
(343)

and

∥Rλ(An)∥op = max
k

1

|λk(An) − λ|
. (344)

Note that, by the definition of δ, for λ ∈ ∂Bkδ+ε, the eigenvalue of A which is nearest to
λ is given by λk(A). Since this is exactly the center of the ball Bδ+ε, it follows that

sup
λ∈∂Bkδ+ε

∥Rλ(A)∥op =
1

δ+ ε
<∞. (345)
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Similarly, for λ ∈ ∂Bkδ+ε, the eigenvalue of An which is nearest to λ is given λk(An)
since n was chosen large enough such that |λk(An) − λk(A)| < ε and ε < r0/2. Since
δ < r0

2 − ε, it follows that the smallest distance from ∂Bkδ+ε to λk(An) is exactly δ and
thus

sup
λ∈∂Bkδ+ε

∥Rλ(An)∥op =
1

δ
<∞. (346)

Hence, we find that the RHS in (336) is bounded by
∥An−A∥op

(δ+ε)δ for λ ∈ ∂Bkδ+ε. Finally,
this yields

∥{An < 0}− {A < 0}∥op ⩽ (347)

⩽ (δ+ ε)(q− (K− 1))max
k⩾K

 sup
λ∈∂Bkδ+ε

∥Rλ(A) − Rλ(An)∥op

 (348)

⩽ (δ+ ε)(q− (K− 1)) ∥An −A∥op
1

δ+ ε

1

δ
(349)

=
q− (K− 1)

δ
∥An −A∥op

n→∞−−−−→ 0. (350)

In an analogous way we can show that

∥{An > 0}− {A > 0}∥op ⩽
R

δ
∥An −A∥op

n→∞−−−−→ 0 (351)

where R denotes the index of the smallest positive eigenvalue of A. This concludes the
proof.

Lemma 15. The functions t 7→ α(Pt,+) and t 7→ α(Pt,+ + Pt,0) are non-increasing.

Proof. Let 0 ⩽ s < t. We need to show that

Tr [σPs,+] ⩾ Tr [σPt,+] and Tr [σ(Ps,+ + Ps,0)] ⩾ Tr [σ(Pt,+ + Pt,0)] . (352)

Note that for any Hermitian operator A on and for any Hermitian operator 0 ⩽ T ⩽ 1

we have

Tr [A{A ⩾ 0}] = Tr [A{A > 0}] ⩾ Tr [A · T ] (353)

We first show Tr [σPs,+] ⩾ Tr [σPt,+]. Write Ts := ρ− sσ and Tt := ρ− tσ and note that
the eigenprojections are Hermitian and satisfy

0 ⩽ {Ts > 0} ⩽ 1, and 0 ⩽ {Tt > 0} ⩽ 1 (354)

It follows that

Tr [Tt{Tt > 0}] ⩾ Tr [Tt{Ts > 0}] (355)

and similarly

Tr [Ts{Ts > 0}] ⩾ Tr [Ts{Tt > 0}] . (356)

Combining (355) and (356) yields

t · (Tr [σ{Ts > 0}] − Tr [σ{Tt > 0}]) ⩾ s · (Tr [σ{Ts > 0}] − Tr [σ{Tt > 0}]) . (357)

Since s < t it follows that Tr [σ{Ts > 0}] ⩾ Tr [σ{Tt > 0}] and thus α(Ps,+) ⩾ α(Pt,+). The
other statement follows analogously by replacing {Tt > 0} and {Ts > 0} by {Tt ⩾ 0} and
{Ts ⩾ 0}. This concludes the proof.
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Lemma 16. The function t 7→ α(Pt,+) is continuous from the right.

Proof. Let t ⩾ 0 and let {tn}n∈N ⊆ [0, ∞) be a sequence such that tn ↓ t (i.e. tn
converges to t from above). We show that limn→∞ α(Ptn,+) = α(Pt,+). Let us define the
operators

An := ρ− tnσ, (358)

and

A := ρ− tσ (359)

and note that

∥An −A∥op = |tn − t| · ∥σ∥op
n→∞−−−−→ 0. (360)

Since, in addition, both An and A are Hermitian and A−An = (tn− t)σ ⩾ 0, it follows
from the second part of Lemma 14 that

∥{An > 0}− {A > 0}∥op
n→∞−−−−→ 0 (361)

and thus

α(Ptn,+) = Tr [σ{An > 0}]
n→∞−−−−→ Tr [σ{A > 0}] = α(Pt,+) (362)

since operator norm convergence implies convergence in the weak operator topology.
This concludes the proof.

Lemma 17. The function t 7→ α(Pt,+ + Pt,0) is continuous from the left.

Proof. Let {tn}n∈N ⊂ [0,∞) be a sequence of non-negative real numbers such that tn ↑ t
(i.e. tn converges to t from below). Let An and A be the Hermitian operators defined
by

An := ρ− tnσ, A := ρ− tσ (363)

and note that A−An = (tn − t)σ ⩽ 0 and ∥An −A∥op → 0 as n→∞. It follows from
the first part of Lemma 14 that

∥{An < 0}− {A < 0}∥op
n→∞−−−−→ 0 (364)

and thus, since operator norm convergence implies convergence in the weak operator
topology, we have

α(Ptn,++Ptn,0) = Tr [σ(1− {An < 0})]
n→∞−−−−→ Tr [σ(1− {A < 0})] = α(Pt,++Pt,0). (365)

This concludes the proof.

Lemma 18. For α0 ∈ [0, 1] we have the chain of inequalities

α
(
Pτ(α0),+

)
⩽ α0 ⩽ α

(
Pτ(α0),+ + Pτ(α0),0

)
. (366)

where τ(α0) := inf{t ⩾ 0 : α(Pt,+) ⩽ α0}.
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Proof. Recall that τ(α0) := inf{t ⩾ 0 : α(Pt,+) ⩽ α0}. Since, by Lemmas 15 and 16 the
function t 7→ α(Pt,+) is non-decreasing and right-continuous, the left hand side of the
inequality follows directly from the definition of τ(α0).

We now show the right hand side of the inequality. Note that if t := τ(α0) = 0, then
Pt,− = {ρ < 0} = 0 and thus Pt,+ + Pt,0 = 1 and α(Pt,+ + Pt,0) = Tr [σ] = 1 ⩾ α0.
Suppose that τ(α0) > 0 and let {tn}n∈N ⊂ [0,∞) be a sequence of non-negative real
numbers such that tn ↑ τ(α0). Note that, since tn < τ(α0) for all n and t 7→ α(Pt,+) is
non-increasing and right-continuous by Lemmas 15 and 16, we have

Tr [σPtn,+] = α(Ptn,+) > α0 (367)

by definition of τ(α0). Furthermore, since the projection Ptn,0 is positive semidefinite,
it follows that

α(Ptn,+ + Ptn,0) = Tr [σ(Ptn,+ + Ptn,0)] ⩾ Tr [σPtn,+] = α(Ptn,+) > α0. (368)

The Lemma now follows since by Lemma 17 the function t 7→ α(Pt,+ + Pt,0) is continu-
ous from the left and hence

α(Pτ(α0),+ + Pτ(α0),0) = lim
n→∞α(Ptn,+ + Ptn,0) ⩾ α0 (369)

which concludes the proof.

b.1.1.1 Optimality

With these results, we can now see that the construction of Helstrom operators pre-
sented in the beginning of this section in (307) is well defined. Given α0 ∈ [0, 1], it
follows from Lemma 18 that firstly α0 −α

(
Pτ(α0),+

)
⩾ 0, and secondly, since

α0 −α
(
Pτ(α0),+

)
⩽ α

(
Pτ(α0),+ + Pτ(α0),0

)
−α

(
Pτ(α0),+

)
(370)

we have

α0 −α
(
Pτ(α0),+

)
α
(
Pτ(α0),0

) ∈ [0, 1] (371)

if α
(
Pτ(α0),0

)
̸= 0. It follows that, for any α0 ∈ [0, 1], the Helstrom operator with type-I

error probability α0 is given by

Mτ(α0) := Pτ(α0),+ + q0Pτ(α0),0, (372)

where

q0 :=


α0−α(Pτ(α0),+)

α(Pτ(α0),0)
if α

(
Pτ(α0),0

)
̸= 0,

0 otherwise.
(373)

is well defined. To see that Mτ(α0) indeed has type-I error probability α0, note that if
q0 ̸= 0 then

α(Mτ(α0)) = Tr
[
σMτ(α0)

]
= Tr

[
σPτ(α0),+

]
+ q0Tr

[
σPτ(α0),0

]
= α0. (374)

If on the other hand q0 = 0, then, by Lemma 18, we have α0 = α(Pτ(α0),+) = α(Mτ(α0)).
The following lemma shows optimality of the Helstrom operators, i.e. equation (313):
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Lemma 19 (Optimality). Let t ⩾ 0 and let Mt := Pt,+ +Xt for 0 ⩽ Xt ⩽ Pt,0 be a Helstrom
operator. Then, for any quantum hypothesis test 0 ⩽ M ⩽ 1 for testing the null σ against the
alternative ρ, the following implications hold

(i) α(M) ⩽ α(Mt) ⇒ β(M) ⩾ β(Mt)

(ii) α(M) ⩾ 1−α(Mt) ⇒ 1−β(M) ⩾ β(Mt)

Proof. Let
∑
i λiPi be the spectral decomposition of the operator ρ− tσ with orthogonal

projections {Pi}i and associated eigenvalues {λi}i. Recall that

Pt,+ :=
∑

i : λi>0

Pi,

Pt,− :=
∑

i : λi<0

Pi,

Pt,0 := 1− Pt,+ − Pt,−.

(375)

We notice that for any 0 ⩽ Xt ⩽ Pt,0 we have

Tr [(ρ− tσ)Xt] = Tr [(ρ− tσ)Pt,+Xt] + Tr [(ρ− tσ)Pt,−Xt]

⩽ Tr [(ρ− tσ)Pt,+Pt,0]

= 0

(376)

and

Tr [(ρ− tσ)Xt] = Tr [(ρ− tσ)Pt,+Xt] + Tr [(ρ− tσ)Pt,−Xt]

⩾ Tr [(ρ− tσ)Pt,−Pt,0]

= 0

(377)

and thus Tr [(ρ− tσ)Pt,0] = Tr [(ρ− tσ)Xt] = 0. For the sequel, let M̄t := 1−Mt and
M̄ := 1−M.

We first show part (i) of the statement. Multiplying with the identity yields

M−Mt = (M̄t +Mt)M−Mt(M̄+M)

= M̄tM−MtM̄
(378)

and adding zero yields

ρ(M−Mt) = (ρ− tσ)(M−Mt) + tσ(M−Mt)

= (ρ− tσ)(M̄tM−MtM̄) + tσ(M̄tM−MtM̄).
(379)

We need to show that β(Mt) −β(M) = Tr [ρ(M−Mt)] ⩽ 0. Notice that

Tr
[
(ρ− tσ)M̄tM

]
= −Tr [(ρ− tσ)−M] ⩽ 0 (380)

and similarly

Tr
[
(ρ− tσ)MtM̄

]
= Tr

[
(ρ− tσ)+M̄

]
⩾ 0 (381)

where the inequalities follow from 1 ⩾M ⩾ 0. Finally, we see that

Tr [ρ(M−Mt)] = Tr
[
(ρ− tσ)(M̄tM−MtM̄)

]
+ t · Tr

[
σ(M̄tM−MtM̄)

]
⩽ t · Tr

[
σ(M̄tM−MtM̄)

]
= t · Tr [σ(M−Mt)]

= t · (α(M) −α(Mt))

⩽ 0

(382)
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where the last inequality follows from the assumption and t ⩾ 0.
Part (ii) now follows directly from part (i) by noting that 0 ⩽M ′ := 1−M ⩽ 1 and

α(M) ⩾ 1−α(Mt)⇒ α(M ′) ⩽ α(Mt)
(i)
=⇒β(Mt) ⩽ β(M

′) = 1−β(M). (383)

This concludes the proof.

b.1.2 Main Proof

Lemma 3 (restated). Let σ, ρ ∈ S(Hd) be arbitrary quantum states, α0 ∈ [0, 1] and ϵ ∈
[0, 1−α0]. Suppose that F(ρ, σ) ⩾ 1− ϵ. Then

β∗(α0; ρ, σ) ⩾ α0(2ϵ− 1) + (1− ϵ) − 2
√
α0ϵ(1−α0)(1− ϵ) (384)

with equality if the states σ and ρ are pure and F(ρ, σ) = 1− ϵ.

Proof. Let M0 be a Helstrom operator such that α(M0; σ) = α0, i.e.

M0 := Pt0,+ + q0 · Pt0,0, with (385)

where t0 := inf{t ⩾ 0|Tr [Pt,+ρ] ⩽ α0} and

q0 =


α0−α(Pt0 ,+;ρ)
α(Pt0 ,0;ρ) , α(Pt0,0; ρ) = 0

0 o.w.
(386)

In addition, as an immediate consequence of part (i) of Lemma 19, for any t ⩾ 0, we
have optimality, i. e.,

β∗(α0; ρ, σ) = β(M0; σ). (387)

We will now derive an explicit formula for the quantity β(Λt0 ; σ) for pure states
ρ = |ϕ⟩⟨ϕ| and σ = |ψ⟩⟨ψ|, and subsequently extend it to the general case for den-
sity matrices with arbitrary rank. For the sequel, let γ = ⟨ψ|ϕ⟩. Since M0 is a linear
combination of the projections onto the eigenspaces of σ− tρ, consider the eigenvalue
problem

(σ− tρ)|η⟩ = η|η⟩. (388)

Since here σ and ρ are projections of rank one, the operator σ− tρ has rank at most
two and there exist at most two eigenstates |η0⟩, |η1⟩ corresponding to non-vanishing
eigenvalues . In addition, they are linear combinations of |ψ⟩, |ϕ⟩ so that we can write

|ηk⟩ = zk,ψ|ψ⟩+ zk,ϕ|ϕ⟩, k = 0, 1 (389)

with constants zk,ψ, zk,ϕ. Thus, solving the eigenvalue problem in (388) amounts to
solving the problem(

1 γ

−tγ̄ −t

)
·
(
zk,ψ

zk,ϕ

)
= ηk

(
zk,ψ

zk,ϕ

)
, (390)
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for which we find eigenvalues

η0 =
1

2
(1− t) − Rt, η1 =

1

2
(1− t) + Rt (391)

with

Rt =

√
1

4
(1− t)2 + t(1− |γ|2). (392)

The corresponding eigenvectors |η0⟩, |η1⟩ are determined by their coefficients zk,ψ, zk,ϕ

for k = 0, 1, for which we find

zk,ψ = −γAk, zk,ϕ = (1− ηk)Ak, |Ak|
−2 = 2Rt

∣∣∣ηk − 1+ |γ|2
∣∣∣ (393)

where the coefficient Ak arises from requiring the eigenvectors |ηk⟩ to be normalized
(see [89], Section 8). Note that ∀t ⩾ 0 we have η0 ⩽ 0 and η1 > 0 so that Pt,+ = |η1⟩⟨η1|.
Recall that we defined t0 to be the positive number t0 := inf{t ⩾ 0 : Tr [Pt,+ρ] ⩽ α0}. It
follows that

Tr [Pt,+ρ] = |⟨ϕ|η1⟩|2 =
1

2

1− 1+ t− 2 |γ|2√
(1+ t)2 − 4t |γ|2

 (394)

and notice that the right hand side is continuous in t over [0, ∞) whenever |γ| < 1. Since
t 7→ Tr [Pt,+ρ] is non-increasing, it’s maximum is attained at t = 0 so that Tr [Pt,+ρ] ⩽
|γ|2 and hence t0 = 0 if α0 > |γ|2. In this case, we obtain β∗(α0; ρ, σ) = 0. If, on the other
hand, α0 ⩽ |γ|2, then we solve the equation Tr [Pt,+ρ] = α0 and obtain the expression
for t0

t0 = 2 |γ|
2 − 1− (2α0 − 1)

√
|γ|2 (1− |γ|2)

α0(1−α0)
. (395)

For t = t0 we have η0 < 0 and η1 > 0 so that Λt0 = |η1⟩⟨η1| and |η1⟩ = −γA1|ψ⟩+ (1−

η1)A1|ϕ⟩. Hence

β(M0; σ) = 1− |⟨η1|ψ⟩|2

= 1− |A1|
2
|γ|2 η21.

(396)

Plugging t0 into the expressions above yields

β∗(α0; ϕ, ψ) = β(M0; σ)

= α0 · (1− 2 |γ|2) + |γ|2 − 2

√
(1−α0)(1− |γ|2) |γ|2 α0.

(397)

Since the right hand side of (397) is monotonically decreasing in |γ|2 and |γ|2 ⩾ 1−

ϵ, the claim follows for pure states. To see that the above expression is also a valid
lower bound for mixed states, let |Ψ⟩ and |Φ⟩ be arbitrary purifications of σ and ρ

respectively, both with purifying system HE. It is well known that β∗ is monotonically
increasing under the action of any completely positive and trace preserving map E, i.e.
β∗(α0;σ, ρ) ⩽ β∗(α0;E[σ], E[ρ]) for any α0 ∈ [0, 1]. Since the partial trace TrE [·] is itself
a CPTP map, we have the inequality

β∗(α0; ρ, σ) = β∗(α0; TrE [|Φ⟩⟨Φ|] , TrE [|Ψ⟩⟨Ψ|])
⩾ β∗(α0; Φ, Ψ)

= α0 · (1− 2 |⟨Ψ|Φ⟩|2) + |⟨Ψ|Φ⟩|2 − 2
√
(1−α0)(1− |⟨Ψ|Φ⟩|2) |⟨Ψ|Φ⟩|2 α0

(398)
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where TrE [·] denotes the partial trace over the purifying system. It follows from Uhlmann’s
Theorem that we can choose Ψ, Φ such that |⟨Ψ|Φ⟩|2 = F(ρ, σ). The claim now follows
from the observation that the RHS of (398) is monotonically decreasing in |⟨Ψ|Φ⟩|2. This
completes the proof.

b.2 proof of lemma 4

Lemma 4 (restated). Let σ, ρ ∈ S(Hd) be density operators with fidelity F(ρ, σ) ⩾ 1− ϵ for
some ϵ ⩾ 0 and let A ⩾ 0 be an observable. Let m, v ⩾ 0 such that

⟨A⟩σ ⩾ m and ∆Aσ ⩽ v. (399)

For ϵ with ϵ ⩽ m2

m2+v2
, a lower bound of ⟨A⟩ρ can be expressed as

⟨A⟩ρ ⩾ (1− ϵ)m− 2v
√
ϵ(1− ϵ) + ϵ

v2

m
. (400)

Proof. Let us recall that for any two pure states |ψ⟩ and |ϕ⟩, the Gramian inequalities,
derived in Section 5.2, read

|⟨ψ|ϕ⟩| ⟨A⟩ϕ −∆Aϕ

√
1− |⟨ψ|ϕ⟩|2 ⩽ ℜ(⟨ψ|A|ϕ⟩)

⩽ |⟨ψ|ϕ⟩| ⟨A⟩ϕ +∆Aϕ

√
1− |⟨ψ|ϕ⟩|2.

(401)

The first step is to show that these inequalities also hold for mixed states. Uhlmann’s
Theorem [225] states that for any two mixed states ρ and σ, we have

F(ρ, σ) =
∥∥√ρ√σ∥∥2

1
. (402)

The trace norm in its variational form is given by ∥S∥1 = maxU |Tr [US]| for arbitrary
S ∈ L(Hd) and where the maximization is taken over all unitaries. It follows that there
exists U such that

F(ρ, σ) =
∣∣Tr
[
U
√
σ
√
ρ
]∣∣2 (403)

Let |Ω⟩ = ∑d
k=1|k⟩ ⊗ |k⟩ be the unnormalized maximally entangled state on Hd ⊗Hd

and note that the trace in the RHS of (403) can be rewritten as

Tr
[
U
√
σ
√
ρ
]
=

∑
k

⟨k|U
√
σ
√
ρ|k⟩

=
∑
k,l

⟨k|U
√
σ
√
ρ|l⟩⟨k|l⟩

=
∑
k,l

⟨k|⊗ ⟨k|(U
√
σ⊗ 1)(√ρ⊗ 1)|l⟩ ⊗ |l⟩

= ⟨Ω|(
√
σ⊗ (UT )†)(

√
ρ⊗ 1)|Ω⟩

(404)

where the last equality follows from the definition of |Ω⟩ and the fact that (1⊗U)|Ω⟩ =
(UT ⊗ 1)|Ω⟩. Define the (pure) states

|Ψ⟩ ≡ (
√
ρ⊗ 1)|Ω⟩, |Φ⟩ ≡ (

√
σ⊗UT )|Ω⟩ (405)
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and note that these states are purifications of σ and ρ respectively and F(ρ, σ) =

|⟨Ψ|Φ⟩|2. Furthermore, we have

⟨A⊗ 1⟩Ψ = ⟨Ω|(
√
ρ⊗ 1)(A⊗ 1)(√ρ⊗ 1)|Ω⟩

= Tr [
√
ρA
√
ρ]

= ⟨A⟩ρ
(406)

and similarly

⟨A⊗ 1⟩Φ = ⟨Ω|(
√
σ⊗ (UT )†)(A⊗ 1)(

√
σ⊗UT )|Ω⟩

= ⟨Ω|(
√
σA
√
σ⊗ (UU†)T )|Ω⟩

= Tr
[√
σA
√
σ
]

= ⟨A⟩σ

(407)

Replacing A with A2, we find

(∆(A⊗ 1)Φ)2 = ⟨A2 ⊗ 1⟩Φ − ⟨A⊗ 1⟩2Φ
= ⟨A2⟩σ − ⟨A⟩2σ
= (∆Aσ)

2.

(408)

Finally, we have

⟨Ψ|(A⊗ 1)|Φ⟩ = ⟨Ω|(
√
ρA
√
σU⊗ 1)|Ω⟩

= Tr
[√
ρA
√
σU
]

= ⟨A√ρ,
√
σU⟩HS

(409)

where ⟨·, ·⟩HS denotes the Hilbert-Schmidt inner product. Without loss of generality,
we assume that ⟨Φ|Ψ⟩ is real and non-negative since otherwise we can multiply each
purificiation by a global phase. Applying the Gramian inequalities to the observable
A⊗ 1 and the purifications |Ψ⟩, |Φ⟩, we find

√
F(ρ, σ)⟨A⟩σ −∆Aσ

√
1−F(ρ, σ) = ⟨Φ|Ψ⟩⟨A⊗ 1⟩Φ −∆(A⊗ 1)Φ

√
1− |⟨Φ|Ψ⟩|2

⩽ ℜ(⟨Ψ|(A⊗ 1)|Φ⟩)
= ℜ(⟨A√ρ,

√
σU⟩HS)

⩽ ⟨Φ|Ψ⟩⟨A⊗ 1⟩Φ +∆(A⊗ 1)Φ
√
1− |⟨Φ|Ψ⟩|2

=
√
F(ρ, σ)⟨A⟩σ +∆Aσ

√
1−F(ρ, σ).

(410)

Thus, we have shown that inequalities similar to (401) also hold for mixed states. To
finish the proof, note that by assumption A ⩾ 0 and hence A has a square root A =

A1/2A1/2. The Cauchy-Schwarz inequality yields

ℜ(⟨A√ρ,
√
σU⟩HS) ⩽

∣∣⟨A√ρ,
√
σU⟩HS

∣∣
=
∣∣∣⟨A1/2√ρ, A1/2

√
σU⟩HS

∣∣∣
⩽
∣∣∣⟨A1/2√ρ, A1/2

√
ρ⟩HS

∣∣∣1/2 × ∣∣∣⟨A1/2√σU, A1/2
√
σU⟩HS

∣∣∣1/2
= |Tr [Aρ]|1/2 × |Tr [Aσ]|1/2 .

(411)
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Dividing the lower bound in (410) by |Tr [Aσ]|1/2 leads to

|Tr [Aρ]|1/2 ⩾
√
F(ρ, σ)

√
⟨A⟩σ −

∆Aσ√
⟨A⟩σ

√
1−F(ρ, σ) (412)

Under the condition that
√

F(ρ, σ)/(1−F(ρ, σ)) ⩾ ∆Aσ/⟨A⟩σ, we can square both
sides of the inequality

⟨A⟩ρ ⩾

(√
F(ρ, σ)

√
⟨A⟩σ −

∆Aσ√
⟨A⟩σ

√
1−F(ρ, σ)

)2
= F(ρ, σ)⟨A⟩σ − 2∆Aσ

√
F(ρ, σ)(1−F(ρ, σ)) +

1−F(ρ, σ)
⟨A⟩σ

(∆Aσ)
2.

(413)

Note that the RHS is monotonically decreasing as F(ρ, σ) decreases. Hence, we can
replace the true fidelity by a lower bound to it. In particular, for ϵ ⩾ 0 with F(ρ, σ) ⩾
1− ϵ and

√
(1− ϵ)/ϵ ⩾ ∆Aσ/⟨A⟩σ we get

⟨A⟩ρ ⩾ (1− ϵ)⟨A⟩σ − 2
√
ϵ(1− ϵ)∆Aσ + ϵ

(∆Aσ)
2

⟨A⟩σ
. (414)

Finally since this bound is also monotonically decreasing as ⟨A⟩σ decreases and ∆Aσ
increases, we can replace these quantities by m and v and obtain

⟨A⟩ρ ⩾ (1− ϵ)m− 2v
√
ϵ(1− ϵ) + ϵ

v2

m
(415)

whenever

ϵ ⩽
m2

m2 + v2
(416)

which is the desired result.



C
A D D I T I O N A L R E S U LT S I N P R O VA B L E R O B U S T N E S S A G A I N S T
B A C K D O O R AT TA C K S

c.1 evaluation against additional attacks

all-to-all attacks Here, we consider all-to-all attacks which aim to trick the
model such that it changes its prediction from the i-th class to the ((i+ 1)%C)-th class,
where C is the number of classes. Different from the previous goal, here the model
has to recognize both the image and the trigger to make a malicious prediction. Thus,
intuitively, defenses like NC, which assume that the backdoored model only reacts to
the backdoor trigger, are expected to perform worse.

The results of the all-to-all attack are shown in Table 11. We observe that our approach
achieves a similar performance for empirical and certified robustness. The performance
on MNIST and ImageNette is slightly better compared to the standard attack, while on
CIFAR-10 it decreases slightly. We can observe that the performance of Mixup is also
consistent with that on the standard attack. This is expected as Mixup also performs
defense by processing the input and does not rely on model analysis. By comparison,
the other baseline approaches based on model analysis do not achieve good perfor-
mance here. We attribute this to the observation that in all-to-all attacks, the trained
model needs to focus on both the original image and the trigger pattern, what makes it
more difficult to detect the backdoors via model analysis compared to standard attacks
where the model only focuses on the trigger pattern.

larger perturbations Here we consider a larger perturbation consisting of a
4× 4 trigger pattern with poison rate 20% and perturbation scale ||δi|| = 4.0 on MNIST
and ||δi|| = 4

√
3 on CIFAR-10 and ImageNette (the

√
3 here comes from the fact that

we add perturbation on all 3 channels). The results are shown in Table 12. We can see
that such strong perturbation is too large to be within our certification radius, which
is a limitation of our work. Therefore, the certified robust accuracy is 0. Nevertheless,

Table 11: Evaluation on DNNs with different datasets with an all-to-all attack goal. We use
σ = 0.5 for MNIST and σ = 0.2 for CIFAR-10 and ImageNette. Vanilla denotes DNNs
without RAB training and RAB-cert presents certified accuracy of RAB. The highest
empirical robust accuracies are bolded.

Backdoor
Pattern

Acc. on Benign Instances Empirical Robust Acc. Certified Robust Acc.

Vanilla RAB Vanilla RAB AC [32] Spectral [223] Sphere [207] NC [234] SCAn [215] Mixup [18] RAB-cert

MNIST
One-pixel 91.5% 90.2% 0% 51.2% 17.3% 3.0% 2.8% 28.4% 4.9% 37.1% 24.4%

Four-pixel 91.6% 91.3% 0% 60.3% 16.1% 2.7% 1.8% 30.0% 1.8% 38.7% 39.9%

Blending 91.5% 91.2% 0% 59.7% 15.4% 3.0% 1.8% 30.1% 4.7% 34.6% 39.1%

CIFAR-10

One-pixel 58.4% 52.2% 0% 24.9% 26.7% 5.7% 18.2% 13.2% 10.1% 19.7% 10.5%

Four-pixel 57.5% 52.1% 0% 25.1% 11.2% 17.8% 18.3% 17.0% 13.3% 18.7% 11.6%

Blending 58.3% 52.1% 0% 24.8% 10.0% 17.7% 15.9% 12.5% 10.7% 17.0% 10.9%

ImageNette
One-pixel 92.5% 93.0% 0% 43.1% 32.8% 19.6% 41.2% 23.5% 23.5% 49.2% 7.8%

Four-pixel 93.6% 93.0% 0% 37.5% 18.8% 18.8% 43.8% 26.3% 21.7% 58.3% 18.7%

Blending 95.0% 92.9% 0% 44.9% 46.9% 22.9% 34.7% 21.0% 14.3% 49.0% 16.3%

173
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Table 12: Evaluation on DNNs with different datasets with a large attack perturbation. We use
σ = 0.5 for MNIST and σ = 0.2 for CIFAR-10 and ImageNette. Vanilla denotes DNNs
without RAB training and RAB-cert presents certified accuracy of RAB. The highest
empirical robust accuracies are bolded.

Backdoor
Pattern

Acc. on Benign Instances Empirical Robust Acc. Certified Robust Acc.

Vanilla RAB Vanilla RAB AC [32] Spectral [223] Sphere [207] NC [234] SCAn [215] Mixup [18] RAB-cert

MNIST Large 86.8% 86.5% 0% 42.3% 65.5% 8.1% 0.6% 70.9% 11.9% 20.4% 0%

CIFAR-10 Large 52.1% 44.8% 0% 27.2% 20.88% 16.34% 11.96% 25.5% 8.6% 2.4% 0%

ImageNette Large 84.7% 81.6% 0% 46.4% 62.6% 36.3% 1.5% 74.9% 55.5% 59.5% 0%

Table 13: Evaluation on Kernel KNN with different datasets. We use σ = 0.5 for MNIST and σ =

0.2 for CIFAR-10 and ImageNette. Vanilla denotes DNNs without RAB training and
RAB-cert presents certified accuracy of RAB. The highest empirical robust accuracies
are bolded.

Backdoor
Pattern

Acc. on Benign Instances Empirical Robust Acc. Certified Robust Acc.

Vanilla RAB Vanilla RAB AC [32] Spectral [223] Sphere [207] NC [234] SCAn [215] Mixup [18] RAB-cert

MNIST
One-pixel 88.5% 78.2% 0% 35.7% 45.4% 53.0% 48.2% 53.0% 55.8% 59.5% 18.0%

Four-pixel 88.5% 78.1% 0% 36.6% 50.6% 53.6% 48.3% 69.9% 55.6% 52.2% 18.8%

Blending 88.4% 78.4% 0% 36.6% 44.8% 52.4% 47.4% 51.5% 55.8% 52.9% 18.8%

CIFAR-10

One-pixel 49.7% 46.5% 0% 21.6% 9.0% 24.9% 15.6% 16.5% 12.9% 25.1% 11.3%

Four-pixel 49.5% 46.6% 0% 21.9% 15.9% 21.7% 22.7% 13.4% 15.0% 19.2% 11.7%

Blending 49.8% 46.6% 0% 20.6% 17.0% 19.6% 15.1% 14.7% 16.8% 21.8% 10.5%

ImageNette
One-pixel 90.1% 88.6% 0% 35.3% 56.8% 22.2% 28.4% 40.9% 19.3% 31.3% 8.8%

Four-pixel 90.7% 88.5% 0% 32.0% 52.2% 29.6% 41.5% 34.0% 30.8% 27.7% 7.6%

Blending 91.5% 88.5% 0% 32.1% 33.3% 17.2% 2.5% 23.0% 13.8% 21.8% 7.6%

we can still achieve some non-trivial empirical robustness which is comparable with
baseline approaches. This shows that our approach can be applied empirically to defend
against strong backdoors with larger perturbation magnitude.

adversarial attacks on rab models In [209], the authors show that if they
smooth a backdoored model, the defended version will still be broken (i. e., with obvi-
ous adversarial pattern). We replicate the experiments on the RAB model by performing
adversarial attacks against the RAB model. In order to perform the attack, we use the
PGD attack where the gradient is calculated by aggregating the gradient on all the
trained models. In Figure 31, We show the results on ImageNette with ε = 60 so that
the pattern is the most clear. We observe that the adversarial examples look similar
with those of unsmoothed model in [209]. Thus, the RAB pipeline is different from the
smoothing process; rather, it is similar with a vanilla model.

One-Pixel Four-Pixel Blending

Figure 31: Adversarial examples against the backdoored RAB model.
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Table 14: Evaluation on Support Vector Machine (SVM) with different tabular datasets. We use
σ = 0.5 for Spam and σ = 0.2 for Adult and Mushroom. Vanilla denotes DNNs without
RAB training and RAB-cert presents certified accuracy of RAB. The highest empirical
robust accuracies are bolded.

Backdoor
Pattern

Acc. on Benign Instances Empirical Robust Acc. Certified Robust Acc.

Vanilla RAB Vanilla RAB AC [32] Spectral [223] Sphere [207] SCAn [215] RAB-cert

Spam
One-pixel 91.8% 88.4% 0% 49.1% 0% 18.3% 4.8% 12.9% 33.3%

Four-pixel 91.2% 88.6% 0% 48.2% 0% 6.6% 7.4% 11.5% 32.1%

Blending 92.0% 89.2% 0% 44.7% 0% 5.8% 5.8% 11.5% 29.8%

Adult
One-pixel 79.0% 77.2% 0% 50.7% 6.3% 15.3% 32.2% 8.4% 17.1%

Four-pixel 77.4% 73.1% 0% 53.0% 5.4% 12.8% 14.4% 7.1% 21.5%

Blending 78.8% 76.4% 0% 55.9% 8.0% 5.0% 11.6% 4.7% 26.1%

Mushroom
One-pixel 87.5% 82.0% 0% 42.5% 16.9% 0% 6.4% 17.3% 23.5%

Four-pixel 86.6% 80.1% 0% 42.2% 14.2% 0% 2.8% 13.9% 22.5%

Blending 87.4% 81.4% 0% 43.5% 13.1% 0% 11.1% 14.2% 24.0%

c.2 evaluation for additional models

kernel-knn We evaluate the defense on KNNs with a kernel function. The kernel
function is learned with the convolution neural network trained on the supervised task
and uses the hidden representation of the last layer before output as the kernel output.
Note that in this case, our exact KNN certification algorithm cannot be applied since the
output with Gaussian variable cannot be analyzed with the kernel function. Therefore,
we use the same evaluation algorithm as in the case of DNNs to evaluate the certification
performance. As shown in Table 13, our approach achieves worse performance than on
DNNs, which is understandable since KNN models are known to usually underperform
DNN models. On the other hand, we observe that many baselines actually have a better
performance than DNN. We believe that the reason for this is that the baselines are
based on the detection-and-removal algorithm. We found that the detection will only
remove a subset of backdoored instances, so a trained DNN model remains backdoored;
however, any removal of backdoored training data will help the performance of KNN

since fewer backdoored instances will be viewed as a neighborhood, so the performance
may improve. By comparison, RAB will not detect and remove instances and thus will
not have a better performance on KNN.

svm-based model on tabular data As our certification for DNN can be ap-
plied to any ML model, we now evaluate RAB on three tabular data - UCI Spambase
dataset (Spambase) [51], and Adult and Agaricus_lepiota (Mushroom) in the Penn
ML Benchmarks (PMLB) datasets[183]. These datasets are all binary classification tasks.
Spambase contains 4,601 data points, with 57-dimensional input; Adult contains 48,842

data points with 14-dimensional input; Mushroom contains 8,145 data points with 22-
dimensional input. We train a support vector machine (SVM) with RBF kernel using the
default setting in scikit-learn toolkit [169]. As for the baselines where activation vectors
are required, we use the output prediction vector as its representation, since there are
no hidden activation layers in an SVM model.

The result of the SVM dataset is shown in Table 14. NC is not evaluated because it
relies on anomaly detection among different classes, and therefore cannot be applied
on these binary classification tasks; Mixup is not evaluated because it cannot be ap-
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Table 15: Robustness of RAB on DNNs with and without test-time augmentation.

Backdoor
Pattern

With Aug Without Aug

RAB RAB-cert RAB RAB-cert

MNIST
One-pixel 41.2% 23.5% 27.0% 12.7%

Four-pixel 40.7% 24.1% 27.4% 12.8%

Blending 39.6% 23.1% 26.2% 12.1%

CIFAR-10

One-pixel 42.9% 24.5% 26.9% 15.2%

Four-pixel 44.4% 25.7% 28.4% 16.4%

Blending 42.8% 24.1% 27.8% 15.8%

ImageNette
One-pixel 38.6% 15.9% 22.7% 5.1%

Four-pixel 38.4% 12.6% 22.6% 8.2%

Blending 29.9% 9.2% 18.7% 4.1%

plied in the SVM training algorithm. We can see that our approach still achieves good
robustness both empirically and certifiably. In contrast, the baseline approaches do not
perform well as they are designed specifically for deep neural networks. In the SVM
case, where they use the output as the representation vector, the detection performance
is not favourable.

c.3 ablations

test-time augmentation Table 15 shows the comparison of empirical and cer-
tified robustness with and without test-time augmentation. We see that the test-time
augmentation indeed helps with the model robustness both empirically and certifiably.

Table 16: The abstain rate of the certification on DNNs.

Backdoor Pattern Abstain Rate

MNIST
One-pixel 3.32%

Four-pixel 3.21%

Blending 3.02%

CIFAR-10

One-pixel 5.59%

Four-pixel 6.00%

Blending 5.29%

ImageNette
One-pixel 3.89%

Four-pixel 4.08%

Blending 1.90%
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abstain rate Table 16 shows the abstain rate of RAB against attacks. We see that
in general, the abstain rate is relatively low and will not be a serious concern in the
pipeline. Note that if the denial-of-service attack is indeed a concern, we can proceed in
a similar way as in [39] to prove a certified radius in which we can certify our defense
rather than abstaining the input.

Table 17: The mean and standard deviation of the RAB robustness on DNNs with 5 runs.

Backdoor Pattern RAB RAB-cert

MNIST
One-pixel 40.79±0.72% 23.36±0.52%

Four-pixel 40.27±0.87% 24.37±0.49%

Blending 40.72±0.65% 23.58±0.88%

CIFAR-10

One-pixel 42.66±0.29% 24.35±0.31%

Four-pixel 42.56±0.32% 25.25±0.37%

Blending 42.89±0.21% 23.95±0.17%

ImageNette
One-pixel 38.64±0.80% 15.45±0.94%

Four-pixel 37.23±0.69% 12.45±0.82%

Blending 28.74±1.15% 9.20±1.40%

stability To see the stability of RAB, we run our algorithm 5 times and report the
mean and standard deviation in Table 17. We can see that the standard deviation is
relatively small, indicating that our algorithm is stable.





D
A D D I T I O N A L R E S U LT S F R O M T R A N S F O R M AT I O N - S P E C I F I C
S M O O T H I N G F O R R O B U S T N E S S C E RT I F I C AT I O N

d.1 derivations of robustness bounds

Here, we instantiate Theorem 5 with different smoothing distributions and solve the
robustness condition (125) for the case where the distribution of ε1 results from shifting
the distribution of ε0, i.e., ε1 = α+ ε0. For ease of notation, let ζ : R⩾0 → [0, 1] be the
function defined by

t 7→ ζ(t) := P0
(
St
)

(417)

where P0 is the distribution of ε0 and St is a lower level set; recall that the definitions
of lower level sets is

St := {z ∈ Z : Λ(z) < t} , St := {z ∈ Z : Λ(z) ⩽ t} ,

where Λ(z) :=
f1(z)

f0(z)
.

(418)

Note that the generalized inverse of ζ corresponds to τp, i.e.,

ζ−1(p) = inf{t ⩾ 0| ζ(t) ⩾ p} = τp (419)

and the function ξ is correspondingly given by

ξ(p) = sup{P1(S)|S(ζ−1(p)) ⊆ S ⊆ S(ζ−1(p))} (420)

Finally, we make the following definition in order to reduce clutter and simplify the
notation. This definition will be used throughout the proofs presented here.

Definition 10 ((pA,pB)-Confident Classifier). Let x ∈ X, yA ∈ Y and pA, pB ∈ [0, 1] with
pA > pB. We say that the ε-smoothed classifier q is (pA, pB)-confident at x if

q(yA| x; ε) ⩾ pA ⩾ pB ⩾ max
y̸=yA

q(y| x; ε). (421)

d.1.1 Gaussian Smoothing

Corollary 8. Suppose Z = Rm, Σ := diag(σ21, . . . ,σ2m), ε0 ∼ N(0, Σ) and ε1 := α+ ε0 for
some α ∈ Rm. Suppose that the ε0-smoothed classifier g is (pA, pB)-confident at x ∈ X for
some yA ∈ Y. Then, it holds that q(yA| x; ε1) > maxy̸=yA q(y| x; ε1) if α satisfies√√√√ m∑

i=1

(
αi
σi

)2
<
1

2

(
Φ−1(pA) −Φ

−1(pB)
)

. (422)

Proof. By Theorem 5 we know that if ε1 satisfies

ξ(pA) + ξ(1− pB) > 1, (423)

179
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then it is guaranteed that

q(yA| x; ε1) > max
y̸=yA

q(y| x; ε1). (424)

The proof is thus complete if we show that (423) reduces to (422). For that purpose,
denote by f0 and f1 density functions of ε0 and ε1, respectively. Let A := Σ−1 and note
that the bilinear form (z1, z2) 7→ zT1Az2 =: ⟨z1, z2⟩A defines an inner product on Rm.
Let z ∈ Rm and consider

Λ(z) =
f1(z)

f0(z)
=

exp
(
−12⟨z−α, z−α⟩A

)
exp

(
−12⟨z, z⟩A

) (425)

= exp
(
⟨z, α⟩A −

1

2
⟨α, α⟩A

)
(426)

and thus

Λ(z) ⩽ t ⇐⇒ ⟨z, α⟩A ⩽ log(t) +
1

2
⟨α, α⟩. (427)

Let Z ∼ N(0, 1) and notice that

⟨ε0, α⟩A√
⟨α, α⟩A

d
= Z

d
=
⟨ε1, α⟩A − ⟨α, α⟩A√

⟨α, α⟩A
. (428)

Let ∂t := St \ St = {z : Λ(z) = t} and notice that P0 (∂t) = P1 (∂t) = 0 and P0(St) =

P0(St). Similarly, it holds that P1(St) = P1(St). The function p 7→ ξ(p) is thus given by

ξ(p) = P1

(
Sζ−1(p)

)
. (429)

We compute ζ as

ζ(t) = P (Λ(ε0) ⩽ t)

= P

(
⟨ε0, α⟩A ⩽ log(t) +

1

2
⟨α, α⟩A

)
= Φ

(
log(t) + 1

2⟨α, α⟩A√
⟨α, α⟩A

) (430)

and for p ∈ [0, 1] its inverse is

ζ−1(p) = exp
(
Φ−1(p)

√
⟨α, α⟩A −

1

2
⟨α, α⟩A

)
. (431)

Thus

P
(
Λ(ε1) ⩽ ζ

−1(p)
)
= P

(
⟨ε1, α⟩A − ⟨α, α⟩A√

⟨α, α⟩A
⩽

log(ζ−1(p)) − 1
2⟨α, α⟩A√

⟨α, α⟩A

)

= Φ


(
Φ−1(p)

√
⟨α, α⟩A − 1

2⟨α, α⟩A
)
− 1
2⟨α, α⟩A√

⟨α, α⟩A


= Φ

(
Φ−1(p) −

√
⟨α, α⟩A

)
.

(432)
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Finally, algebra shows that

Φ
(
Φ−1(pA) −

√
⟨α, α⟩A

)
+Φ

(
Φ−1(1− pB) −

√
⟨α, α⟩A

)
> 1 (433)

is equivalent to√√√√ m∑
i=1

(
αi
σi

)2
<
1

2

(
Φ−1(pA) −Φ

−1(pB)
)

(434)

what concludes the proof.

d.1.2 Exponential Smoothing

Corollary 9. Suppose Z = Rm⩾0, fix some λ > 0 and let ε0,i
iid
∼ Exp(1/λ), ε0 := (ε0,1, . . . , ε0,m)T

and ε1 := α+ ε0 for some α ∈ Rm⩾0. Suppose that the ε0-smoothed classifier g is (pA, pB)-
confident at x ∈ X for some yA ∈ Y. Then, it holds that q(yA| x; ε1) > maxy̸=yA q(y| x; ε1)
if α satisfies

∥α∥1 < −
log(1− pA + pB)

λ
. (435)

Proof. By Theorem 5 we know that if ε1 satisfies

ξ(pA) + ξ(1− pB) > 1, (436)

then it is guaranteed that

q(yA| x; ε1) > max
y̸=yA

q(y| x; ε1). (437)

The proof is thus complete if we show that (436) reduces to (435). For that purpose,
denote by f0 and f1 density functions of ε0 and ε1, respectively, and note that

f1(z) =

λ · exp(−λ∥z−α∥1), mini(zi −αi) ⩾ 0,

0, otherwise,
(438)

f0(z) =

λ · exp(−λ∥z∥1), mini(zi) ⩾ 0,

0, otherwise,
(439)

and ∀i, zi −αi ⩽ zi and hence f0(z) = 0⇒ f1(z) = 0. Thus

Λ(z) =
f1(z)

f0(z)
=

exp (λ · ∥α∥1) mini(zi −αi) ⩾ 0,

0, otherwise.
(440)
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Let S0 := {z ∈ Rm⩾0 : mini(zi −αi) < 0} and note that due to independence

P0 (S0) = P

(
m⋃
i=1

{ε0,i < αi}

)
(441)

= 1− P

(
m⋂
i=1

{ε0,i ⩾ αi}

)
(442)

= 1−

m∏
i=1

P (ε0,i ⩾ αi) (443)

= 1−

m∏
i=1

(1− (1− exp (−λαi))) (444)

= 1− exp (−λ∥α∥1) . (445)

Let tα := exp(λ∥α∥1) and compute ζ as

ζ(t) = P (Λ(ε0) ⩽ t) (446)

= P

(
1{min

i
(ε0,i −αi) ⩾ 0} ⩽ t · exp (−λ∥α∥1)

)
(447)

=

1− exp (−λ∥α∥1) t < tα,

1 t ⩾ tα.
(448)

Recall that ζ−1(p) := inf{t ⩾ 0 : ζ(t) ⩾ p} for p ∈ [0, 1] and hence

ζ−1(p) =

0 p ⩽ 1− exp(−λ∥α∥1),
exp(λ∥α∥1) p > 1− exp(−λ∥α∥1).

(449)

In order to evaluate ξ we compute the lower and strict lower level sets at t = ζ−1(p).
Recall that St = {z ∈ Rm⩾0 : Λ(z) < t} and St = {z ∈ Rm⩾0 : Λ(z) ⩽ t} and consider

Sζ−1(p) =
(
Sc0 ∩

{
z ∈ Rm⩾0 : exp(λ∥α∥1) < ζ−1(p)

})
∪
(
S0 ∩

{
z ∈ Rm⩾0 | 0 < ζ

−1(p)
}) (450)

=

∅ p ⩽ 1− exp(−λ∥α∥1),
S0 p > 1− exp(−λ∥α∥1)

(451)

and

Sζ−1(p) =
(
Sc0 ∩

{
z ∈ Rm⩾0 : exp(λ∥α∥1) ⩽ ζ−1(p)

})
∪̇
(
S0 ∩

{
z ∈ Rm⩾0 : 0 ⩽ ζ

−1(p)
}) (452)

=

S0 p ⩽ 1− exp(−λ∥α∥1),
Rm+ p > 1− exp(−λ∥α∥1).

(453)

Suppose that p ⩽ 1− exp(−λ∥α∥1). Then we have that Sζ−1(p) = ∅ and Sζ−1(p) = S0
and hence

p ⩽ 1− exp(−λ∥α∥1) ⇒ ξ(p) = sup{P1(S) : S ⊆ S0 ∧ P0(S) ⩽ p} = 0. (454)
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Condition (436) can thus be satisfied only if pA > 1 − exp(−λ∥α∥1) and 1 − pB >

1− exp(−λ∥α∥1). In this case Sζ−1(p) = S0 and Sζ−1(p) = Rm⩾0 . For p ∈ [0, 1] let Sp =

{S ⊆ Rm⩾0 : S0 ⊆ S ⊆ Rm⩾0, P0(S) ⩽ p}. Then

p > 1− exp(−λ∥α∥1) ⇒ ξ(p) = sup
S∈Sp

P1(S). (455)

We can write any S ∈ Sp as the disjoint union S = S0 ∪̇ T for some T ⊆ Rm⩾0 such
that P0(S0 ∪̇ T) ⩽ p. Note that P1 (S0) = 0 and since S0 ∩ T = ∅ any z ∈ T satisfies
0 ⩽ mini (zi −αi) ⩽ mini zi and hence Λ(z) = exp(λ∥α∥1). Thus

P1 (S) = P1 (T)

=

∫
T

f1(z)dz

=

∫
T

exp(λ∥α∥1)f0(z)dz

= exp(λ∥α∥1) ·P0 (T) .

(456)

Thus, The supremum of the left hand side over all S ∈ Sp equals the supremum of the
right hand side over all T ∈ {T ′ ⊆ Sc0 : P0(T

′) ⩽ 1− P0(S0)}

sup
S∈Sp

P1 (S) = exp(λ∥α∥1) · sup {P1(T
′) : T ′ ⊆ Sc0, P0(T

′) ⩽ p− P0(S0)}

= exp(λ∥α∥1) · (p− P0(S0)).
(457)

Computing ξ at pA thus yields

ξ(pA) = sup
S∈SpA

P1 (S)

= exp(λ∥α∥1) · (pA − P0 (S0))

= exp(λ∥α∥1) · (pA − (1− exp (−λ∥α∥1)))
= exp(λ∥α∥1) · (pA + exp (−λ∥α∥1) − 1)

(458)

where the third equality follows from (445). Similarly, computing ξ at 1− pB yields

ξ(1− pB) = sup
S∈S1−pB

P1 (S) (459)

= exp(λ∥α∥1) · (1− pB − P0 (S0)) (460)

= exp(λ∥α∥1) · (1− pB − (1− exp (−λ∥α∥1))) (461)

= exp(λ∥α∥1) · (−pB + exp (−λ∥α∥1)) . (462)
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Finally, condition (436) is satisfied whenever α satisfies

exp(λ∥α∥1) · (pA + exp (−λ∥α∥1) − 1)
+ exp(λ∥α∥1) · (−pB + exp (−λ∥α∥1)) > 1

(463)

⇐⇒
exp(−λ∥α∥1) + pB − exp(−λ∥α∥1)

< pA + exp (−λ∥α∥1) − 1
(464)

⇐⇒
1− pA + pB < exp (−λ∥α∥1) (465)

⇐⇒

∥α∥1 < −
log(1− pA + pB)

λ
(466)

what completes the proof.

d.1.3 Uniform Smoothing

Corollary 10. Suppose Z = Rm, and ε0 ∼ U([a, b]m) for some a < b. Set ε1 := α+ ε0 for
α ∈ Rm. Suppose that the ε0-smoothed classifier g is (pA, pB)-confident at x ∈ X for some
yA ∈ Y. Then, it holds that q(yA| x; ε1) > maxy ̸=yA q(y| x; ε1) if α satisfies

1−

(
pA − pB

2

)
<

m∏
i=1

(
1−

|αi|

b− a

)
+

(467)

where (x)+ := max{x, 0}.

Proof. By Theorem 5 we know that if ε1 satisfies

ξ(pA) + ξ(1− pB) > 1, (468)

then it is guaranteed that

q(yA| x; ε1) > max
y̸=yA

q(y| x; ε1). (469)

The proof is thus complete if we show that (468) reduces to (467). For that purpose,
denote by f0 and f1 density functions of ε0 and ε1, respectively, and let I0 = [a, b]m

and I1 :=
∏m
i=1[a+αi, b+αi] bet the support of ε0 and ε1. Consider

f0(z) =

(b− a)−m z ∈ I0,

0 otherwise
(470)

f1(z) =

(b− a)−m z ∈ I1,

0 otherwise.
(471)

Let S0 := I0 \ I1. Then, for any z ∈ I0 ∪ I1

Λ(z) =
f1(z)

f0(z)
=


0 z ∈ S0,

1 z ∈ I0 ∩ I1,

∞ z ∈ I1 \ I0.

(472)
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Note that

P0 (S0) = 1− P0 (I1) (473)

= 1−

m∏
i=1

P (a+αi ⩽ ε0,i ⩽ b+αi) (474)

= 1−

m∏
i=1

(
1−

|αi|

b− a

)
+

(475)

where (x)+ = max{x, 0}. We then compute ζ for t ⩾ 0

ζ(t) = P (Λ(ε0) ⩽ t) =

P0 (S0) t < 1,

P0 (I0) t ⩾ 1.
(476)

=

1−
∏m
i=1

(
1−

|αi|
b−a

)
+

t < 1,

1 t ⩾ 1.
(477)

Recall that ζ−1(p) := inf{t ⩾ 0 : ζ(t) ⩾ p} for p ∈ [0, 1] and hence

ζ1(p) =


0 p ⩽ 1−

∏m
i=1

(
1−

|αi|
b−a

)
+

,

1 p > 1−
∏m
i=1

(
1−

|αi|
b−a

)
+

.
(478)

In order to evaluate ξ, we compute the lower and strict lower level sets at t = ζ−1(p).
Recall that St = {z ∈ Rm⩾0 : Λ(z) < t} and St = {z ∈ Rm⩾0 : Λ(z) ⩽ t} and consider

Sζ−1(p) =


∅ p ⩽ 1−

∏m
i=1

(
1−

|αi|
b−a

)
+

,

S0 p > 1−
∏m
i=1

(
1−

|αi|
b−a

)
+

(479)

and

Sζ−1(p) =


S0 p ⩽ 1−

∏m
i=1

(
1−

|αi|
b−a

)
+

,

I0 p > 1−
∏m
i=1

(
1−

|αi|
b−a

)
+

(480)

Suppose p ⩽ 1−
∏m
i=1

(
1−

|αi|
b−a

)
+

. Then Sζ−1(p) = ∅ and Sζ−1(p) = S0 and hence

p ⩽ 1−
m∏
i=1

(
1−

|αi|

b− a

)
+

⇒ ξ(p) = sup{P1(S) : S ⊆ S0, P0(S) ⩽ p} = 0.

(481)

Condition (468) can thus be satisfied only if pA > 1−
∏m
i=1

(
1−

|αi|
b−a

)
+

and 1− pB >

1 −
∏m
i=1

(
1−

|αi|
b−a

)
+

. In this case Sζ−1(p) = S0 and Sζ−1(p) = I0. For p ∈ [0, 1] let

Sp = {S ⊆ Rm : S0 ⊆ S ⊆ I0, P0(S) ⩽ p}. Then

p > 1−

m∏
i=1

(
1−

|αi|

b− a

)
+

⇒ ξ(p) = sup
S∈Sp

P1(S). (482)
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We can write any S ∈ Sp as the disjoint union S = S0 ∪̇ T for some T ⊆ I0 ∩ I1 such that
P0(S0 ∪̇ T) ⩽ p. Note that P1 (S0) = 0 and for any z ∈ T , we have f0(z) = f1(z). Hence

P1 (S) = P1(T) = P0(T) (483)

⩽ p− P0(S0) = p−

(
1−

m∏
i=1

(
1−

|αi|

b− a

)
+

)
. (484)

Thus, The supremum of the left hand side over all S ∈ Sp equals the supremum of the
right hand side over all T ∈ {T ′ ⊆ I0 ∩ I1 : P0(T

′) ⩽ 1− P0(S0)}

sup
S∈Sp

P1 (S) = sup {P1(T
′) : T ′ ⊆ I0 ∩ I1,

P0(T
′) ⩽ p− P0(S0)}

(485)

= p−

(
1−

m∏
i=1

(
1−

|αi|

b− a

)
+

)
. (486)

Hence, computing ξ at pA and 1− pB yields

ξ(pA) = pA −

(
1−

m∏
i=1

(
1−

|αi|

b− a

)
+

)
, (487)

ξ(1− pB) = 1− pB −

(
1−

m∏
i=1

(
1−

|αi|

b− a

)
+

)
. (488)

Finally, condition (468) is satisfied whenever α satisfies

1−

(
1− pB −

(
1−

m∏
i=1

(
1−

|αi|

b− a

)
+

))
< pA −

(
1−

m∏
i=1

(
1−

|αi|

b− a

)
+

)
(489)

⇐⇒

pB + 1−

m∏
i=1

(
1−

|αi|

b− a

)
+

< pA − 1+

m∏
i=1

(
1−

|αi|

b− a

)
+

(490)

⇐⇒

2− pA + pB < 2 ·
m∏
i=1

(
1−

|αi|

b− a

)
+

(491)

⇐⇒

1−

(
pA − pB

2

)
<

m∏
i=1

(
1−

|αi|

b− a

)
+

(492)

what concludes the proof.

d.1.4 Laplacian Smoothing

Corollary 11. Suppose Z = R and ε0 ∼ L(0, b) follows a Laplace distribution with mean
0 and scale parameter b > 0. Let ε1 := α + ε0 for α ∈ R. Suppose that the ε0-smoothed
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classifier g is (pA, pB)-confident at x ∈ X for some yA ∈ Y. Then, it holds that q(yA| x; ε1) >
maxy̸=yA q(y| x; ε1) if α satisfies

|α| <


−b · log (4 pB (1− pA))

(pA =
1

2
∧ pB <

1

2
)

∨ (pA >
1

2
∧ pB =

1

2
),

−b · log (1− pA + pB) pA >
1
2 ∧ pB <

1
2 .

(493)

Proof. By Theorem 5 we know that if ε1 satisfies

ξ(pA) + ξ(1− pB) > 1, (494)

then it is guaranteed that

q(yA| x; ε1) > max
y̸=yA

q(y| x; ε1). (495)

The proof is thus complete if we show that (494) reduces to (493). For that purpose
denote by f0 and f1 density functions of ε0 and ε1, respectively, and consider

f0(z) =
1

2b
exp

(
−
|z|

b

)
, f1(z) =

1

2b
exp

(
−
|z−α|

b

)
. (496)

Due to symmetry, assume without loss of generality that α ⩾ 0. Then for z ∈ R

Λ(z) =
f1(z)

f0(z)
= exp

(
−
|z−α|− |z|

b

)
(497)

=


exp

(
−αb
)

z < 0,

exp
(
2z−α
b

)
0 ⩽ z < α,

exp
(
α
b

)
z ⩾ α.

(498)

Note that the CDFs for ε0 and ε1 are given by

F0(z) =

1
2 exp

(
z
b

)
z ⩽ 0,

1− 1
2 exp

(
− zb
)
z > 0,

(499)

F1(z) =

1
2 exp

(
z−α
b

)
z ⩽ α,

1− 1
2 exp

(
−z−αb

)
z > α.

(500)

Note that for exp
(
−αb
)
⩽ t < exp

(
α
b

)
we have

P0

(
exp

(
2ε0 −α

b

)
⩽ t ∧ 0 ⩽ ε0 < α

)
= P0

(
exp

(
−
α

b

)
⩽ exp

(
2ε0 −α

b

)
⩽ t

) (501)

= P0

(
0 ⩽ ε0 ⩽

b log(t) +α
2

)
(502)

= F0

(
b log(t) +α

2

)
− F0(0) (503)

=
1

2
−
1

2
exp

(
−
1

b

(
b log(t) +α

2

))
(504)

=
1

2
−

1

2
√
t

exp
(
−
α

2b

)
. (505)
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Computing ζ yields

ζ(t) = P (Λ(ε0) ⩽ t) (506)

= P
(

exp
(
−
α

b

)
⩽ t ∧ ε0 < 0

)
+ P

(
exp

(α
b

)
⩽ t ∧ ε0 ⩾ α

)
+ P

(
exp

(
2ε0 −α

b

)
⩽ t ∧ 0 ⩽ ε0 < α

) (507)

=


0 t < exp

(
−αb
)

,

1− 1
2
√
t

exp
(
− α
2b

)
exp

(
−αb
)
⩽ t < exp

(
α
b

)
,

1 t ⩾ exp
(
α
b

)
.

(508)

The inverse is then given by

ζ−1(p) =


0 p < 1

2 ,
1

4(1−p)2
exp

(
−αb
)

1
2 ⩽ p < 1− 1

2 exp(−αb ),

exp
(
α
b

)
p ⩾ 1− 1

2 exp(−αb ).

(509)

In order to evaluate ξ, we compute the lower and strict lower level sets at t = ζ−1(p).
Recall that St = {z ∈ R : Λ(z) < t} and St = {z ∈ R : Λ(z) ⩽ t} and consider

Sζ−1(p) =


∅ p ⩽ 1

2 ,(
−∞, b · log

(
1

2(1−p)

))
1
2 < p < 1−

1
2 exp

(
−αb
)

,

(−∞, α] , p ⩾ 1− 1
2 exp

(
−αb
) (510)

and

Sζ−1(p) =


∅ p < 1

2 ,(
−∞, b · log

(
1

2(1−p)

)]
1
2 ⩽ p < 1− 1

2 exp
(
−αb
)

,

R p ⩾ 1− 1
2 exp

(
−αb
)

.

(511)

Suppose p < 1/2. Then Sζ−1(p) = Sζ−1(p) = ∅ and hence ξ(p) = 0 and condition (494)
cannot be satisfied. If p = 1/2, then Sζ−1(p) = ∅ and Sζ−1(p) = (−∞, 0]. Note that
for z ⩽ 0 we have f1(z) = f0(z) exp(−α/b) and hence for any S ⊆ Sζ−1(1/2) we have
P1(S) = exp(−α/b) ·P0(S). We can thus compute ξ at 1/2 as

p =
1

2

⇒ ξ (1/2) = sup
{

P1(S) : S ⊆ (−∞, 0], P0(S) ⩽
1

2

}
=
1

2
.

(512)

Now suppose 1/2 < p < 1− 1/2 exp(−α/b). In this case, Sζ−1(p) = (−∞, b · log(1/2(1−p)))
and Sζ−1(p) = (−∞, b · log (1/2(1−p))]. Since the singleton {b · log(1/2(1−p))} has no prob-



D.1 derivations of robustness bounds 189

ability mass under both P0 and P1, the function ξ is straight forward to compute: if
1
2 < p < 1−

1
2 exp(−αb ), then

ξ(p) = P

(
ε1 ⩽ b · log

(
1

2(1− p)

))
(513)

=
1

2
exp

b · log
(

1
2(1−p)

)
−α

b

 (514)

=
1

4(1− p)
exp

(
−
α

b

)
. (515)

Finally, consider the case where p ⩾ 1− 1/2 exp(−α/b). Then Sζ−1(p) = (−∞, α] and
Sζ−1(p) = R. Any (−∞, α] ⊆ S ⊆ R can then be written as S = (−∞, α] ∪̇ T for some
T ⊆ (α, ∞). Hence

P1(S) = P(ε1 ⩽ α) + P1(T) =
1

2
+ exp

(α
b

)
P0(T), (516)

P0(S) = P(ε0 ⩽ α) + P0(T) = 1−
1

2
exp(−

α

b
) + P0(T). (517)

Thus, if p ⩾ 1− 1
2 exp(−αb ), then

ξ (p) = sup {P1(S) : (−∞, α] ⊆ S ⊆ R, P0(S) ⩽ p} (518)

=
1

2
+ sup

{
P1(T) : T ⊆ (α, ∞),

P0(T) ⩽ p− 1+
1

2
exp

(
−
α

b

)} (519)

=
1

2
+ exp

(α
b

)(
p− 1+

1

2
exp

(
−
α

b

))
(520)

= 1− exp
(α
b

)
(1− p) . (521)

In order to evaluate condition (494), consider

1− ξ (1− pB) =



1 pB >
1
2

1
2 pB = 1

2

1− 1
4pB

exp
(
−αb
)

1
2 > pB > exp

(
−αb
)

exp
(
α
b

)
pB exp

(
−αb
)
⩾ pB,

(522)

ξ (pA) =



0 pA <
1
2

1
2 pA = 1

2
1

4(1− pA)
exp

(
−
α

b

)
1
2 < pA < 1−

1
2 exp(−αb )

1− exp
(α
b

)
(1− pA) pA ⩾ 1− 1

2 exp(−αb ).

(523)
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Note that the case pB > 1/2 can be ruled out, since by assumption pA ⩾ pB. If pA = 1/2,
then we need pB < 1/2. Thus, if pA = 1/2, then condition (494) is satisfied if pB < 1/2

and

max
{
1−

1

4pB
exp

(
−
α

b

)
, exp

(α
b

)
· pB

}
<
1

2
(524)

⇐⇒ pB · exp
(α
b

)
<
1

2
(525)

⇐⇒ α < −b · log (2pB) . (526)

Now consider the case where pA > 1/2. If pB = 1/2, then condition (494) is satisfied if

1

2
< min

{
1

4(1− pA)
exp

(
−
α

b

)
, 1− exp

(α
b

)
(1− pA)

}
(527)

⇐⇒ 1

2
< 1− exp

(α
b

)
(1− pA) (528)

⇐⇒ α < −b · log (2(1− pA)) . (529)

If on the other hand, pA > 1/2 and pB < 1/2, condition (494) is satisfied if

max
{
1−

1

4pB
exp

(
−
α

b

)
, exp

(α
b

)
· pB

}
<

min
{

1

4(1− pA)
exp

(
−
α

b

)
, 1− exp

(α
b

)
(1− pA)

} (530)

⇐⇒
pB · exp

(α
b

)
< 1− exp

(α
b

)
(1− pA) (531)

⇐⇒
α < −b · log (1− pA + pB) . (532)

Finally, we get that condition (494) is satisfied, if

|α| <


−b · log (4 pB (1− pA))

(pA =
1

2
∧ pB <

1

2
)

∨ (pA >
1

2
∧ pB =

1

2
)

−b · log (1− pA + pB) pA >
1
2 ∧ pB <

1
2

(533)

what concludes the proof.

d.1.5 Folded Gaussian Smoothing

Corollary 12. Suppose Z = R⩾0, ε0 ∼ |N(0, σ)| and ε1 := α+ ε0 for some α > 0. Suppose
that the ε0-smoothed classifier g is (pA, pB)-confident at x ∈ X for some yA ∈ Y. Then, it
holds that q(yA| x; ε1) > maxy̸=yA q(y| x; ε1) if α satisfies

α < σ ·
(
Φ−1

(
1+ min{pA, 1− pB}

2

)
−Φ−1

(
3

4

))
. (534)

Proof. By Theorem 5 we know that if ε1 satisfies

ξ(pA) + ξ(1− pB) > 1, (535)
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then it is guaranteed that

q(yA| x; ε1) > max
y̸=yA

q(y| x; ε1). (536)

The proof is thus complete if we show that (535) reduces to (534). For that purpose
denote by f0 and f1 density functions of ε0 and ε1, respectively, and consider

f0(z) =

 2√
2πσ

exp
(
− z2

2σ2

)
z ⩾ 0

0 z < 0

(537)

f1(z) =

 2√
2πσ

exp
(
−

(z−α)2

2σ2

)
z ⩾ α

0 z < α.
(538)

Then, for z ⩾ 0,

Λ(z) =
f1(z)

f0(z)
=

0 z < α,

exp
(
zα
σ2

− α2

2σ2

)
z ⩾ α.

(539)

Let tα := exp
(
α2

2σ2

)
and suppose t < tα. Then

ζ(t) = P (Λ(ε0) ⩽ t] = P (ε0 < α) (540)

=

∫α
0

2√
2πσ

exp
(
−
z2

2σ2

)
dz (541)

= 2 ·
∫α/σ
0

1√
2π

exp
(
−
s2

2

)
ds = 2 ·Φ

(α
σ

)
− 1. (542)

If t ⩾ tα, then

ζ(t) = P (Λ(ε0) ⩽ t) (543)

= P

(
ε0 α

σ2
−
α2

2σ2
⩽ log(t) ∧ ε0 ⩾ α

)
+ P (ε0 < α) (544)

= P

(
ε0 ⩽

σ2

α
log(t) +

1

2
α

)
(545)

= 2 ·Φ
(σ
α

log(t) +
α

2σ

)
− 1 (546)

and hence

ζ(t) =

2 ·Φ
(
α
σ

)
− 1 t < tα

2 ·Φ
(
σ
α log (t) + α

2σ

)
− 1 t ⩾ tα.

(547)

Note that ζ(tα) = 2 ·Φ
(
α
σ

)
− 1 and let pα := ζ(tα). Recall that ζ−1(p) := inf{t ⩾

0 : ζ(t) ⩾ p}, which yields

ζ−1(p) =

0 p ⩽ pα

exp
(
α
σΦ

−1
(
1+p
2

)
− α2

2σ2

)
p > pα.

(548)
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In order to evaluate ξ we compute the lower and strict lower level sets at t = ζ−1(p).
Recall that St = {z ∈ R⩾0 : Λ(z) < t} and St = {z ∈ R⩾0 : Λ(z) ⩽ t}. Let S0 := [0, α)
and note that if p ⩽ pα, we have ζ−1(p) = 0 and hence Sζ−1(p) = ∅ and Sζ−1(p) = S0.
If, on the other hand p > pα, then

Sζ−1(p) =
{
z ⩾ 0 : Λ(z) < ζ−1(p)

}
(549)

= S0 ∪
{
z ⩾ α :

zα

σ2
−
α2

2σ2
<
α

σ
Φ−1

(
1+ p

2

)
−
α2

2σ2

}
(550)

= S0 ∪
{
z ⩾ α : z < σ ·Φ−1

(
1+ p

2

)}
(551)

= S0 ∪
[
α, σ ·Φ−1

(
1+ p

2

))
(552)

and

Sζ−1(p) =
{
z ⩾ 0 : Λ(z) ⩽ ζ−1(p)

}
(553)

= S0 ∪
{
z ⩾ α :

zα

σ2
−
α2

2σ2
⩽
α

σ
Φ−1

(
1+ p

2

)
−
α2

2σ2

}
(554)

= S0 ∪
{
z ⩾ α : z ⩽ σ ·Φ−1

(
1+ p

2

)}
(555)

= S0 ∪
[
α, σ ·Φ−1

(
1+ p

2

)]
(556)

= Sζ−1(p) ∪
{
σ ·Φ−1

(
1+ p

2

)}
. (557)

In other words

Sζ−1(p) =

∅ p ⩽ pα,

S0 ∪
[
α, σ ·Φ−1

(
1+p
2

))
p > pα,

(558)

Sζ−1(p) =

S0 p ⩽ pα,

S0 ∪
[
α, σ ·Φ−1

(
1+p
2

)]
p > pα.

(559)

Let Sp := {S ⊆ R⩾0 : Sζ−1(p) ⊆ S ⊆ Sζ−1(p), P0(S) ⩽ p} and recall that ξ(p) =

supS∈Sp
P1(S). Note that for p ⩽ pα, we have Sp = {S ⊆ R⩾0 : S ⊆ S0 ∧ P0(S) ⩽ p}

and for S ⊆ S0, it holds that P1(S) = 0. Hence

p ⩽ pα ⇒ ξ (p) = sup
S∈Sp

P1(S) = 0. (560)

If p > pα, then

Sp =

{
S ⊆ R⩾0 : S0 ∪

[
α, σ ·Φ−1 (1+p/2)

)
⊆ S

⊆ S0 ∪
[
α, σ ·Φ−1 (1+p/2)

]
, ∧P0(S) ⩽ p

}
.

(561)
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Since the singleton
{
σ ·Φ−1

(
1+p
2

)}
has no mass under both P0 and P1, we find that

if p > pα, then

ξ (p) = P

(
0 ⩽ ε1 ⩽ σ ·Φ−1

(
1+ p

2

))
(562)

= P

(
0 ⩽ ε0 ⩽ σ ·Φ−1

(
1+ p

2

)
−α

)
(563)

= 2 ·Φ
(
Φ−1

(
1+ p

2

)
−
α

σ

)
− 1. (564)

Condition (535) can thus be satisfied only if pB < pA and

2 ·Φ
(α
σ

)
− 1 < min{pA, 1− pB}

∧ ξ (pA) + ξ (1− pb) > 1
(565)

that is equivalent to

α < σ ·Φ−1

(
1+ min{pA, 1− pB}

2

)
∧ Φ

(
Φ−1

(
1+ (1− pB)

2

)
−
α

σ

)
+Φ

(
Φ−1

(
1+ pA
2

)
−
α

σ

)
>
3

2
.

(566)

Thus, the following is a sufficient condition for the two inequalities in (566) and hence (535)
to hold

α < σ ·
(
Φ−1

(
1+ min{pA, 1− pB}

2

)
−Φ−1

(
3

4

))
(567)

what completes the proof.

d.2 proofs for resolvable transformations

Here, we state the proofs and technical details concerning our results for resolvable
transformations. Let us start by recalling the definition of resolvable transformations.

Definition 3 (restated). A transformation ϕ : X×Z→ X is called resolvable if for any α ∈ Z

there exists a resolving function γα : Z → Z that is injective, continuously differentiable, has
non-vanishing Jacobian and for which

ϕ(ϕ(x, α), β) = ϕ(x, γα(β)) x ∈ X, β ∈ Z. (568)

Furthermore, we say that ϕ is additive, if γα(β) = α+β.

d.2.1 Proof of Corollary 3

Corollary 3 (restated). Suppose that the transformation ϕ in Theorem 5 is resolvable with
resolving function γα. Let α ∈ Z and set ε1 := γα(ε0) in the definition of the functions ζ and
ξ. Then, if α satisfies condition (125), it is guaranteed that g(ϕ(x,α); ε0) = g(x; ε0).
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Proof. Since ϕ is a resolvable transformation, by definition γα is injective, continuously
differentiable and has non-vanishing Jacobian. By Jacobi’s transformation formula (see
e.g., [105]), it follows that the density of ε1 vanishes outside the image of γα and is
elsewhere given by

f1(z) = f0(γ
−1
α (z))|det(Jγ−1

α (z))| for any z ∈ Im(γα) (569)

where Jγ−1
α (z) is the Jacobian of γ−1α (z). Since f1 is paramterized by α, it follows from

Theorem 5 that if α satisfies (125) it is guaranteed that arg maxy q(y| x, ε1) = arg maxy q(y| x, ε0).
The statement of the corollary then follows immediately from the observation that for
any y ∈ Y we have

q(y| x; ε1) = E(p(y|ϕ(x, ε1)))

= E(p(y|ϕ(x, γα(ε0))))

= E(p(y|ϕ(ϕ(x, α), ε0)))

= q(y|ϕ(x, α); ε0).

(570)

d.2.2 Proofs for Gaussian Blur

Recall that the Gaussian blur transformation is given by a convolution with a Gaussian
kernel

Gα(k) =
1√
2πα

exp
(
−
k2

2α

)
(571)

where α > 0 is the squared kernel radius. Here we show that the transformation x 7→
ϕB(x) := x ∗ G is additive.

Lemma 5 (restated). The Gaussian blur transformation is additive, i.e., for any α, β ⩾ 0, we
have ϕB(ϕB(x, α), β) = ϕB(x, α+β).

Proof. Note that associativity of the convolution operator implies that

ϕB(ϕB(x, α), β) = (ϕB(x, α) ∗ Gβ)
= ((x ∗ Gα) ∗ Gβ)
= (x ∗ (Gα ∗ Gβ)).

(572)

The claim thus follows, if we can show that (Gα ∗ Gβ) = Gα+β. Let F denote the
Fourier transformation and F−1 the inverse Fourier transformation and note that by
the convolution theorem (Gα ∗ Gβ) = F−1{F(Gα) ·F(Gβ)}. Therefore we have to show
that F(Gα) ·F(Gβ) = F(Gα+β). For that purpose, consider

F(Gα)(ω) =

∫∞
−∞ Gα(y) exp(−2 πiωy)dy (573)

=

∫∞
−∞

1√
2πα

exp
(
−
y2

2α

)
exp (−2 πiωy) dy (574)

=
1√
2πα

∫∞
−∞ exp

(
−
y2

2α

)
(cos (2πωy) + i sin (2πωy)) dy (575)

(i)
=

1√
2πα

∫∞
−∞ exp

(
−
y2

2α

)
cos (2πωy) dy (576)

(ii)
= exp

(
−ω2π22α

)
, (577)
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where (i) follows from the fact that the second term is an integral of an odd func-
tion over a symmetric range and (ii) follows from

∫∞
−∞ exp

(
−ay2

)
cos (2πωy) dy =√

π
a exp(−(πω)2

a ) with a = 1
2α (see p. 302, eq. 7.4.6 in [2]). This concludes our proof

since

(F(Gα) ·F(Gβ))(ω) = exp
(
−ω2π22α

)
· exp

(
−ω2π22β

)
(578)

= exp
(
−ω2π22(α+β)

)
(579)

= F(Gα+β)(ω) (580)

and hence

(Gα ∗ Gβ) = F−1{F(Gα) ·F(Gβ)} (581)

= F−1{F(Gα+β)} (582)

= Gα+β. (583)

Remark 2. We notice that the preceding theorem naturally extends to higher dimensional Gaus-
sian kernels of the form

Gα(k) =
1

(2πα)
m
2

exp
(
−
∥k∥2
2α

)
, k ∈ Rm. (584)

Consider

F(Gα)(ω) =

∫
Rm
Gα(y) exp (−2πi⟨ω, y⟩) dy (585)

=
1

(2πα)
m
2

∫
Rm

exp

(
−
∥y∥22
2α

− 2πi⟨ω, y⟩
)
dy (586)

=

m∏
j=1

(
1√
2πα

∫
R

exp

(
−
y2j

2α
− 2πiωjyj

)
dyj

)
(587)

= exp
(
− ∥ω∥22 π22α

)
(588)

that leads to (Gα ∗Gβ) = Gα+β, and hence additivity.

d.2.3 Proofs for Brightness and Contrast

Recall that the brightness and contrast transformation is defined as

ϕBC : X×R2 → X, (x, α) 7→ eα1(x+α2). (589)

Lemma 6 (restated). Let x ∈ X, k ∈ R, and suppose that

ε0 ∼ N(0, diag(σ2, τ2)) and ε1 ∼ N(0, diag(σ2, e−2kτ2)). (590)

Suppose that q(y| x; ε0) ⩾ p for some p ∈ [0, 1] and y ∈ Y. Let Φ be the cumulative density
function of the standard Gaussian. Then

q(y| x; ε1) ⩾

2Φ
(
ekΦ−1

(
1+p
2

))
− 1 k ⩽ 0

2
(
1−Φ

(
ekΦ−1(1− p

2 )
))

k > 0.
(591)
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Proof. Note that ε0 ∼ N(0, Σ) and ε1 = Aε0 ∼ N(0, A2 Σ) where

A =

(
1 0

0 e−k

)
, Σ =

(
σ2 0

0 τ2

)
(592)

and denote by f0 and f1 the probability density functions of ε0 and ε1, respectively, and
denote by P0 and P1 the corresponding probability measures. Recall the Definition of
Lower Level sets (Definition 8: for t ⩾ 0, (strict) lower level sets are defined as

St := {z ∈ Z : Λ(z) < t} , St := {z ∈ Z : Λ(z) ⩽ t} ,

where Λ(z) :=
f1(z)

f0(z)
.

(593)

Furthermore, recall that the function ζ is given by

t 7→ ζ(t) := P0
(
St
)

(594)

where P0 is the distribution of ε0 and note that the generalized inverse of ζ corresponds
to τp, i.e.,

ζ−1(p) = inf{t ⩾ 0| ζ(t) ⩾ p} = τp (595)

and the function ξ is correspondingly given by

ξ(p) = sup{P1(S)|S(ζ−1(p)) ⊆ S ⊆ S(ζ−1(p))}. (596)

By assumption we know that E(p(y|ϕ(x, ε0))) = q(y| x; εo) ⩾ p. Note that by
Lemma 12, for any p ∈ [0, 1] we have that

P0(Sζ−1(p)) ⩽ p. (597)

Let S ⊆ Z be such that Sζ−1(p) ⊆ S ⊆ Sζ−1(p) and P0(S) ⩽ p. Then, from part (i) of
Lemma 9, it follows that E(p(y|ϕ(x, ε1))) = q(y| x; ε1) ⩾ P1(S). Note that

Λ(z) =
f1(z)

f0(z)
(598)

=

(
(2π)2|A2 Σ|

)− 1
2 exp(−12(z

T (A2Σ)−1z))

((2π)2|Σ|)
− 1
2 exp(−12(z

T (Σ)−1z))
(599)

=
1

|A|
exp

(
−
1

2
zT ((A2 Σ)−1 − Σ−1) z

)
(600)

= exp
(
k−

z22
2τ2

(
e2k − 1

))
. (601)
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Note that, if k = 0, then ε1 = ε0 and hence the statement holds in this case. Suppose
that k > 0 and consider

ζ(t) = P0
(
St
)
= P

(
exp

(
k−

ε20,2

2τ2

(
e2k − 1

))
⩽ t

)
(602)

= 1− P

((ε0,2

τ

)2
⩽ 2 · k− log(t)

e2k − 1

)
(603)

= 1− Fχ2

(
2 · k− log(t)

e2k − 1

)
(604)

=


0 t = 0,

1− Fχ2
(
2 · k−log(t)

e2k−1

)
0 < t < ek,

1 t ⩾ ek,

(605)

where Fχ2 denotes the CDF of the χ2-distribution with one degree of freedom. Note
that for any t ⩾ 0 we have that P0(St) = P0(St) and thus the inverse ζ−1(p) = inf{t ⩾
0 : ζ(t) ⩾ p} is given by

ζ−1(p) =


0 p = 0

exp
(
k− F−1

χ2
(1− p) · e2k−12

)
0 < p < 1

ek p = 1.

(606)

Thus, for any p ∈ [0, 1], we find that

P0(Sζ−1(p)) = P0(Sζ−1(p)) = ζ(ζ
−1(p)) = p (607)

and

E0(p(y|ϕ(x, ε0))) = q(y| x; ε0) ⩾ p = P0(Sζ−1(p)). (608)

Part (i) of Lemma 9 implies that q(y| x; ε1) ⩾ P1(Sζ−1(p)). Computing P1(Sζ−1(p))

yields

q(y| x; ε1) ⩾ P1(Sζ−1(p)) (609)

= 1− P

((ε1,2

τ2

)2
⩽ (k− log(ζ−1(p)))

2

e2k − 1

)
(610)

= 1− P

((ε0,2

τ2

)2
⩽ (k− log(ζ−1(p)))

2e2k

e2k − 1

)
(611)

= 1− Fχ2

(
(k− log(ζ−1(p)))

2e2k

e2k − 1

)
(612)

= 1− Fχ2

((
k−

(
k−

e2k − 1

2
F−1
χ2

(1− p)

))
2e2k

e2k − 1

)
(613)

= 1− Fχ2
(
e2kF−1

χ2
(1− p)

)
. (614)
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If, on the other hand, k < 0, then

ζ(t) = P0
(
St
)

(615)

= P

(
exp

(
k+

ε20,2

2τ2

∣∣e2k − 1∣∣) ⩽ t

)
(616)

= P

((ε0,2

τ

)2
⩽ 2 · log(t) − k

|e2k − 1|

)
(617)

= Fχ2

(
2 · log(t) − k

|e2k − 1|

)
(618)

=

0 t ⩽ ek,

Fχ2
(
2 · log(t)−k

|e2k−1|

)
t > ek.

(619)

A similar computation as in the case where k > 0 leads to an expression for the inverse
ζ−1(p) = inf{t ⩾ 0| ζ(t) ⩾ p}

ζ−1(p) =


0 p = 0,

exp
(
k+ F−1

χ2
(p) · |e

2k−1|
2

)
p > 0.

(620)

Thus, for any p ∈ [0, 1], we find that

P0(Sζ−1(p)) = P0(Sζ−1(p)) = ζ(ζ
−1(p)) = p (621)

and

E(p(y|ϕ(x, ε0))) = q(y| x; ε0) ⩾ p = P0(Sζ−1(p)). (622)

Part (i) of Lemma 9 implies that gε1c (x) ⩾ P1(Sζ−1(p)). Computing P1(Sζ−1(p)) yields

q(y| x; ε1) ⩾ P1(Sζ−1(p)) (623)

= P

((ε1,2

τ

)2
⩽ 2 · log(ζ−1(p)) − k

|e2k − 1|

)
(624)

= P

((ε0,2

τ

)2
⩽ 2e2k · log(ζ−1(p)) − k

|e2k − 1|

)
(625)

= Fχ2

(((
k+ F−1

χ2
(p)

|e2k − 1|

2

)
− k

)
2 e2k

|e2k − 1|

)
(626)

= Fχ2
(
e2kF−1

χ2
(p)
)

. (627)

Finally, note the following relation between the χ2(1) and the standard normal distri-
bution. Let Z ∼ N(0, 1) and denote by Φ the CDF of Z. Then, for any z ⩾ 0, Fχ2(z) =

P(Z2 ⩽ z) = P(−
√
z ⩽ Z ⩽

√
z) = Φ(

√
z) −Φ(−

√
z) = 2Φ(

√
z) − 1 and the inverse is

thus given by F−1
χ2

(p) = (Φ−1(1+p2 ))2. It follows that

q(y|, x; ε1) ⩾

2Φ
(
ekΦ−1

(
1+p
2

))
− 1 k ⩽ 0,

2
(
1−Φ

(
ekΦ−1(1− p

2 )
))

k > 0,
(628)

what concludes the proof.
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The following Lemma establishes another useful property of the distribution of ε1.

Lemma 20. Let ε0 ∼ N(0, diag(σ2, τ2)), α = (k, b)T ∈ R2 and ε1 ∼ N(0, diag(σ2, e−2kτ2)).
Then, for all x ∈ X, it holds that g(ϕBC(x, α); ε0) = g(x; α+ ε1).

Proof. Let x ∈ X, and write εi = (εi,1, εi,2)T for i = 0, 1. Note that

ϕBC(ϕBC(x, α), ε0) = eε0,1 (ϕBC(x, α) + ε0,2) = e
ε0,1
(
ek (x+ b) + ε0,2

)
(629)

= eε0,1+k
(
x+

(
b+ e−kε0,2

))
= ϕBC(x,α+ ε̃0) (630)

where ε̃0 = (ε0,1, e−kε0,2)
T . Note that ε̃0 follows a Gaussian distribution since

ε̃0 = A · ε0, A =

(
1 0

0 e−k

)
(631)

and hence E (ε̃0) = A ·E (ε0) = 0 and

Cov (ε̃0) = E
(
ε0AA

T εT0
)
= A2 ·

(
σ2 0

0 τ2

)
=

(
σ2 0

0 e−2kτ2

)
. (632)

The choice ε1 ≡ ε̃0 ∼ N(0, diag(σ21, e−2kσ22)) shows that for any y ∈ Y

q(y|ϕBC(x, α); ε0) = E (p(y|ϕ(ϕ(x, α), ε0)) (633)

= E (p(y|ϕ(x, α+ ε1)) (634)

= q(y| x; α+ ε1) (635)

what concludes the proof.

These observations, together with the Gaussian robustness bound from Corollary 8

allow us to prove Lemma 7.

Lemma 7 (restated). Let ε0 and ε1 be as in Lemma 6 and suppose that

q(yA| x; ε1) ⩾ p̃A > p̃B ⩾ max
y̸=yA

q(y| x; ε1). (636)

Then it is guaranteed that yA = g(ϕBC(x, α); ε0) as long as α = (k, b)T satisfies√(
k

σ

)2
+

(
b

e−kτ

)2
<
1

2

(
Φ−1 (p̃A) −Φ

−1 (p̃B)
)

. (637)

Proof. Since ε1 ∼ N(0, diag(σ2, e−2kτ2)), it follows from Corollary 8 that whenever
α = (k, b)T satisfies√(

k

σ

)2
+

(
b

e−kτ

)2
<
1

2

(
Φ−1 (p̃A) −Φ

−1 (p̃B)
)

, (638)

then it is guaranteed that yA = g(x; ε1). The statement now directly follows from
Lemma 20.
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d.2.4 Composition of Gaussian Blur, Brightness, Contrast, and Translation

d.2.4.1 Certification Strategy

The certification generally follows the same procedure as in certifying brightness and
contrast. In the following, we first provide a formal definition of this transformation
composition. Specifically, the transformation ϕBTBC is defined as:

ϕBTBC(x,α) := ϕB(ϕT (ϕBC(x,αk,αb),αTx,αTy),αB), (639)

where ϕB, ϕT and ϕBC are Gaussian blur, translation, and brightness and contrast
transformations respectively as defined before; α := (αk,αb,αTx,αTy,αB)T ∈ R4 ×
R⩾0 is the transformation parameter.

Our certification relies on the following key results:

Corollary 13. Let x ∈ X, k ∈ R and let ϵ0 := (ϵa0 , ϵb0 )
T be a random variable defined as

ϵa0 ∼ N(0, diag(σ2k, σ2b, σ2T , σ2T )) and ϵb0 ∼ Exp(λB). (640)

Similarly, let ϵ1 := (ϵa1 , ϵb1 ) be a random variable with

ϵa1 ∼ N(0, diag(σ2k, e−2kσ2b, σ2T , σ2T )) and ϵb1 ∼ Exp(λB). (641)

For either random variable (denoted as ϵ), recall that q(y|x; ϵ) := E(p(y|ϕBTBC(x, ϵ))). Sup-
pose that q(y|x; ϵ0) ⩾ p for some p ∈ [0, 1] and y ∈ Y. Then q(y|x; ϵ1) satisfies (131).

Lemma 21. Let ϵ0 and ϵ1 be as in 13 and suppose that

q(yA|x; ε1) ⩾ p̃A > p̃B ⩾ max
y ̸=yA

q(y|x; ε1). (642)

Then it is guaranteed that yA = g(ϕBTBC(x, α); ε0) as long as p ′
A > p

′
B, where

p ′
A =


0, if p̃A ⩽ 1− exp(−λBαB),

Φ
(
Φ−1 (1− (1− p̃A) exp(λBαB))

−
√
α2k/σ2k + α

2
b/(e−2αkσ2b)+ (α2Tx+α

2
Ty)/σ2T

) otherwise
(643)

and

p ′
B =


1, if p̃B ⩾ exp(−λBαB),

1−Φ
(
Φ−1 (1− p̃B exp(λBαB))

−
√
α2k/σ2k + α

2
b/(e−2αkσ2b)+ (α2Tx+α

2
Ty)/σ2T

)
.

otherwise
(644)

The ϵ0 specified by (640) is the smoothing distribution. Similar as in brightness and
contrast certification, we first obtain pA, a lower bound of q(yA| x, ε0) by Monte-Carlo
sampling. For a given transformation parameter α := (αk, αb, αTx, αTy, αB)T , we then
trigger 13 to get p̃A, a lower bound of q(yA| x, ε1) and set p̃B = 1− p̃A. Finally, we use
the explicit condition in 21 to obtain the certification. Indeed, with p̃B = 1− p̃A, 21 can
be simplified to the following corollary.
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Corollary 14. Let ϵ0 and ϵ1 be as in 13 and suppose that

q(yA|x; ε1) ⩾ p̃A. (645)

Then it is guaranteed that yA = g(ϕBTBC(x, α); ε0) as long as

p̃A > 1− exp(−λBαB)

(
1−Φ

√α2k
σ2k

+
α2b

e−2αkσ2b
+
α2Tx +α

2
Ty

σ2T

). (646)

To certify against a set of transformation parameters

Sadv ={(αk, αb, αTx, αTy, αB)T |

αk ∈ [−k0, k0],αb ∈ [−b0, b0],

∥(αTx,αTy)∥2 ⩽ T ,αB ⩽ B0},

(647)

we relax the robust condition in (646) to

p̃A > 1− exp(−λBαB)

(
1−

Φ

√α2k
σ2k

+
α2b

min{e−2αk , 1}σ2b
+
α2Tx +α

2
Ty

σ2T

).

(648)

The LHS of 648 is monotonically decreasing w.r.t. |αk| and the RHS is monotonically in-
creasing w.r.t. |αk|, |αb|, ∥(αTx,αTy∥2, and |αB|, and the RHS is symmetric w.r.t. αb and
∥(αTx,αTy)∥2. As a result, we only need to check the condition for (−k0, b0, T , 0, B0)
and (k0, b0, T , 0, B0) to certify the entire set Sadv. Throughout the experiments, we use
this strategy for certification.

d.2.4.2 Proofs

Recall that the composition of Gaussian Blur, with brightness, contrast and translation
is defined as

ϕBTBC(x,α) := ϕB(ϕT (ϕBC(x,αk,αb),αTx,αTy),αB), (649)

where ϕB, ϕT and ϕBC are Gaussian blur, translation, and brightness and contrast
transformations respectively as defined before and α := (αk,αb,αTx,αTy,αB)T ∈
R4 ×R⩾0 is the transformation parameter. It is easy to see that this transformation
composition satisfies the following properties:

• (P1) For arbitrary α(1),α(2) ∈ R4 ×R⩾0,

ϕBTBC(ϕBTBC(x,α(1)),α(2)) = ϕBTBC(x,α) (650)

where

α =
(
α
(1)
k +α

(2)
k ,α(1)

b +α
(2)
b /eα

(1)
k ,

α
(1)
Tx +α

(2)
Tx ,α(1)

Tx +α
(2)
Tx ,α(1)

B +α
(2)
B

)
. (651)
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• (P2) For an arbitrary α ∈ R4 ×R⩾0, define the parameterized operators:

ϕαB := ϕB(·;αB), ϕαT := ϕT (·;αTx,αTy),

ϕαBC := ϕBC(·;αk,αb)
(652)

and let ϕα1 ,ϕα2 ,ϕα3 be an arbitrary permutation of the above three operators. Then,
we have that

ϕBTBC(x,α) = ϕα1 ◦ϕα2 ◦ϕα3 (x). (653)

The property (P1) states that ϕBTBC is almost additive where the exception happens
only on the brightness dimension (αb). The brightness dimension is subject to the same
contrast effect implied. The property (P2) states that all the three transformations ϕB,
ϕT , and ϕBC are commutative. The reason is that: (1) ϕBC is a per-pixel color shift and
independent of ϕB and ϕT ; (2) ϕB, Gaussian blur, relies on relative position of pixels
and the translation with reflection padding, ϕT , does not change it.

Based on these two properties, we prove the key results as follows.

Proof of Corollary 13. According to the commutative property (P2), we can view q(y|x; ϵ)
as

q(y|x, ϵ) = Eϵp(y|ϕBTBC(x, ϵ)) (654)

= Eϵk,ϵb EϵTx,ϵTy,ϵBp(y|ϕBC(ϕT (ϕB(x, ϵB), ϵTx, ϵTy), ϵk, ϵb))︸ ︷︷ ︸
=:q ′(y|x;ϵk,ϵb)

. (655)

Notice that q ′(y|x; ϵk, ϵb) is a deterministic value in [0, 1]. Its value is dependent on
the distribtuion of ϵTx, ϵTy, ϵB and the underlying base classifier. Luckily, the random
variables ϵ0 and ϵ1 have the same distribution over the components ϵTx, ϵTy and ϵB.
Thus, they share the same q ′ and we write q(y|x; ϵ0) and q(y|x; ϵ1) as

q(y|x; ϵ0) = E
(ϵk,ϵb)∼N(0,diag(σ2k,σ2b))

q ′(y|x; ϵk, ϵb), (656)

q(y|x; ϵ1) = E
(ϵk,ϵb)∼N(0,diag(σ2k,e−2kσ2b))

q ′(y|x; ϵk, ϵb). (657)

Now, we directly apply Lemma 6 and the desired lower bound for q(y|x; ϵ1) follows.

Proof. Proof of Lemma 21 We notice that for any y ∈ Y,

q(y|ϕBTBC(x, α); ϵ0) = Eϵ0p(y|ϕBTBC(ϕBTBC(x, α), ϵ0)) (658)
(a.)
= Eϵ0p

(
y
∣∣x; α+ ((ϵ0)k, (ϵ0)b/eαk , (ϵ0)Tx, (ϵ0)Ty, (ϵ0)B)T

)
(659)

(b.)
= Eϵ1p (y|x;α+ ϵ1) . (660)

The step (a.) uses the property (P1) of transformation ϕBTBC, and the step (b.) fol-
lows the definition of ε1 in 13 (we define k := αk hereinafter for simplicity). Thus,
g(ϕBTBC(x, α); ϵ0) = g(x;α+ϵ1), and the robustness condition is equivalent to g(x;α+
ϵ1) = g(x; ϵ1) = yA.
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According to 5, to prove the robustness, we only need to show that ξ(p̃A) + ξ(1−
p̃B) > 1 given p ′

A > p
′
B. Note that in the definition of ξ, the density functions f0 and f1

are for distributions of ϵ1 ∼ P0 and (α+ ϵ1) ∼ P1 respectively.
In the proof below, we will compute the closed-form solution of ξ(p) for any 0 ⩽ p ⩽

1, and show that ξ(p̃A) + ξ(1− p̃B) > 1 given p ′
A > p

′
B. To begin with, we write down

f0 and f1.

f0(z) =
λB

(2π)2σkσbσ
2
T

exp
(
−λBzB − (z2Tx+z

2
Ty)/2σ2T

−z2k/2σ2k − z
2
b/2e−2kσ2b

)
, (661)

f1(z) =



λB exp(λBαB)
(2π)2σkσbσ

2
T

exp (−λBzB

− (zTx−αTx)
2/2σ2T − (zTy−αTy)

2/2σ2T

−(zk−αk)
2/2σ2k − (zb−αb)

2/2e−2kσ2b
)

,

if zB ⩾ αB,

0, otherwise,

(662)

where z = (zk, zb, zTx, zTy, zB)T ∈ R4×R⩾0. As a result, function Λ = f1/f0 in 5 writes
as

Λ(z) =



exp

(
λBαB −

α2Tx
2σ2T

−
α2Ty

2σ2T
−
α2k
2σ2k

−
α2b

2e−2kσ2b

+
αTxzTx

σ2T
+
αTyzTy

σ2T
+
αkzk

σ2k
+

αbzb

e−2kσ2b

)
,

if zB ⩾ αB,

0 otherwise.

(663)

It turns out that for any t > 0,

St = {f1/f0 < t}

=
{
(ẑkσk, ẑbe−kσb, ẑTxσT , ẑTyσT )T

| α̂TxẑTx + α̂TyẑTy + α̂kẑk + α̂bẑb

< ln t+ α̂2Tx/2+ α̂
2
Ty/2+ α̂

2
k/2+ α̂

2
b/2− λBαB

}
× [αB,+∞)

∪R4 × [0,αB), (664)

St = {f1/f0 ⩽ t}

=
{
(ẑkσk, ẑbe−kσb, ẑTxσT , ẑTyσT )T

| α̂TxẑTx + α̂TyẑTy + α̂kẑk + α̂bẑb

⩽ ln t+ α̂2Tx/2+ α̂
2
Ty/2+ α̂

2
k/2+ α̂

2
b/2− λBαB

}
× [αB,+∞)

∪R4 × [0,αB), (665)

where α̂Tx = αTx/σT , α̂Ty = αTy/σT , α̂k = αk/σk, α̂b = αb/(e
−kσb). When t = 0,

St = ∅ and St = R4 × [0,αB). Then, the probability integration shows that

τp = inf{t ⩾ 0 : P0(St) ⩾ p}

=


0, if p ⩽ 1− exp(−λBαB),

exp
(
λBαB + ∥α̂:−1∥Φ−1 (1− exp(λBαB)(1− p)) − 1/2∥α̂:−1∥2

)
,

otherwise,

(666)
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where ∥α̂:−1∥ =
√
α̂2Tx + α̂

2
Ty + α̂

2
k + α̂

2
b. Now we are ready to compute

ξ(p) = sup{P1(S) : Sτp ⊂ S ⊂ Sτp}. (667)

When p ⩽ 1− exp(−λBαB), we have S ⊂ R4 × [0,αB) and P1(S) = 0 because P1 has
zero mass for any zB < αB (see (662)). When p > 1− exp(−λBαB), τp > 0. Again, from
probability integration, we get

P1(Sτp) = P1(Sτp) = Φ

(
ln τp − λBαB
∥α̂:−1∥

−
1

2
∥α̂:−1∥

)
. (668)

We inject the closed-form solution of τp in (666) and yield

ξ(p) = P1(S) = Φ
(
Φ−1 (1− (1− p) exp(λBαB)) − ∥α̂:−1∥

)
(669)

for any S satisfying Sτp ⊂ S ⊂ Sτp . We summarize the above equations and write down
the closed-form solution of ξ(p) as such:

ξ(p) =

{
0, if p ⩽ 1− exp(−λBαB),

Φ
(
Φ−1 (1− (1− p) exp(λBαB)) − ∥α̂:−1∥

)
, otherwise.

(670)

We can easily observe that p ′
A in lemma statement (643) is indeed ξ(p̃A), and p ′

B (644)
is indeed 1− ξ(1− p̃B). Therefore,

ξ(p̃A) + ξ(1− p̃B) > 1 ⇐⇒ p ′
A > p

′
B (671)

and using Theorem 5 concludes the proof.

Proof. Proof of Corollary 14 Since q(yA|x; ε1) ⩾ p̃A, according to the complement rule,
maxy̸=yA q(y|x; ε1) < 1 − p̃A =: p̃B. Use the p̃A and p̃B in Lemma 21 we find that
p ′
A + p ′

B = 1 always hold. Therefore, p ′
A > 0.5 guarantees that p ′

A > p
′
B and thus the

robustness. Indeed, from simple algebra, p ′
A > 0.5 ⇐⇒ (646).

d.3 proofs for differentially resolvable transformations

d.3.1 Proof of Corollary 4

Corollary 4 (restated). Let ψ(x, δ) = x+ δ and let ε ∼ N(0, σ21d). Furthermore, let ϕ be a
transformation with parameters in Zϕ ⊆ Rm and let S ⊆ Zϕ and {αi}

N
i=1 ⊆ S. Let yA ∈ Y

and suppose that for any i, the ε-smoothed classifier defined by q(y| x; ε) := E(p(y| x+ ε)) has
class probabilities that satisfy

q(yA|ϕ(x, αi); ε) ⩾ p
(i)
A ⩾ p(i)B ⩾ max

y̸=yA
q(y|ϕ(x, αi); ε). (672)

Then it is guaranteed that ∀α ∈ S : yA = arg maxy q(y|ϕ(x, α); ε) if the maximum interpola-
tion error

MS := max
α∈S

min
1⩽i⩽N

∥ϕ(x, α) −ϕ(x, αi)∥2 (673)

satisfies

MS < R :=
σ

2
min
1⩽i⩽N

(
Φ−1

(
p
(i)
A

)
−Φ−1

(
p
(i)
B

))
. (674)
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Proof. Since the resolvable transformation ψ is given by ψ(x, δ) = x+ δ we can write

ϕ(x, α) = ϕ(x, αi) + (ϕ(x, α) −ϕ(x, αi))︸ ︷︷ ︸
=:δx(α,αi)

. (675)

Furthermore, by assumption ε ∼ N(0, σ21d) and g(·; ε) is (p
(i)
A , p(i)B )-confident at

ϕ(x, αi) for yA and for all i. Thus, by Corollary 8, if δ satisfies

∥δ∥2 < Ri :=
σ

2

(
Φ−1

(
p
(i)
A

)
−Φ−1

(
p
(i)
B

))
(676)

then it is guaranteed that yA = arg maxy q(y|ϕ(x, αi) + δ; ε). Let ∆i := BRi(0) and
notice that R ≡ mini Ri and thus

N⋂
i=1

BRi(0) = BR(0) = ∆
∗. (677)

To see that ∆∗ has the desired property, consider

∀α ∈ S∃αi : δx(α, αi) ∈ ∆∗ (678)

⇐⇒ ∀α ∈ S∃αi : ∥ϕ(x, α) −ϕ(x, αi)∥2 < R. (679)

Since R ⩽ Ri it follows that for δi = ϕ(x, α) −ϕ(x, αi) it is guaranteed that

yA = arg max
y

q(y|ϕ(x, αi) + δi; ε) (680)

= arg max
y

q(y|ϕ(x, α); ε). (681)

Thus, the set ∆∗ has the desired property. In particular, since

∀α ∈ S∃αi : ∥ϕ(x, α) −ϕ(x, αi)∥2 < R (682)

⇐⇒ max
α∈S

min
1⩽i⩽N

∥ϕ(x, α) −ϕ(x, αi)∥2 < R (683)

the statement follows.

d.3.2 Composition of Rotation and Scaling with Brightness

To certify the composition of scaling and brightness or rotation and brightness, we
follow the same methodology as certifying scaling or rotation alone and reuse the
computed interpolatation error MS. We only make the following two changes: (1) al-
ter the smoothing distribution from additive Gaussian noise ψ(x, δ) = x + δ where
δ ∼ N(0,σ21d) to additive Gaussian noise and Gaussian brightness change ψ(x, δ, δb) =
x+ δ+ b · 1d where δ ∼ N(0,σ21d),b ∼ N(0,σ2b); (2) change the robustness condition

from R > MS in Corollary 4 to R >
√
M2

S + (σ2/σ2b)b
2
0.

Corollary 15. Let ψB(x, δ, b) = x + δ + b · 1d and let ε ∼ N(0, σ21d), εb ∼ N(0, σ2b).
Furthermore, let ϕ be a transformation with parameters in Zϕ ⊆ Rm and let S ⊆ Zϕ
and {αi}

N
i=1 ⊆ S. Let yA ∈ Y and suppose that for any i, the (ε, εb)-smoothed classifier

q(y| x; ε, εb) := E(p(y|ψB(x, ε, εb)) satisfies

q(yA| x; ε, εb) ⩾ p
(i)
A > p

(i)
B ⩾ max

y̸=yA
q(y| x; ε, εb). (684)
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for each i. Let

R :=
σ

2
min
1⩽i⩽N

(
Φ−1

(
p
(i)
A

)
−Φ−1

(
p
(i)
B

))
(685)

Then, ∀α ∈ S and ∀b ∈ [−b0,b0] it is guaranteed that yA = arg maxy q(y|ϕ(x,α) + b ·
1d; ε, εb) as long as

R >

√
M2

S +
σ2

σ2b
b20, (686)

where MS is defined as in 4.

Proof. Since the resolvable transformation ψB is given by

ψB(x, δ, b) = x+ δ+ b · 1d, (687)

we can write

ϕ(x, α) + b · 1d = ϕ(x, αi) + (ϕ(x, α) −ϕ(x, αi)) + b · 1d︸ ︷︷ ︸
=:δx((α,b), (αi,0))

. (688)

Furthermore, by assumption ε ∼ N(0,σ21d), εb ∼ N(0,σ2b) and g(·; ε, εb) is (p
(i)
A ,p(i)B )-

confident at ϕ(x,αi) for yA and all i. Thus, by Corollary 8, if δ and b satisfy√
∥δ∥22
σ2

+
b2

σ2b
<
1

2

(
Φ−1(p

(i)
A ) −Φ−1(p

(i)
B )
)

, (689)

then it is guaranteed that

yA = arg max
y

q(y|ϕ(x,αi) + δ+ b · 1d; ε, εb). (690)

Let

Ri :=
σ

2

(
Φ−1(p

(i)
A ) −Φ−1(p

(i)
B )
)

(691)

and note that without loss of generality we can assume that Ri > σ/σbb0, because
otherwise the robustness condition is violated. Rearranging terms in (689) leads to the
condition

∥δ∥2 <
√
R2i −

σ2

σ2b
b2 (692)

that can be turned into a sufficient robustness condition holding for any b ∈ [−b0, b0]
simultaneously

∥δ∥2 <
√
R2i −

σ2

σ2b
b20 (693)

Note that, without loss of generality For each i let ∆i be the set defined as

∆i :=

{
δ+ b · 1d ∈ Rd : ∥δ∥2 <

√
R2i −

σ2

σ2b
b20, |b| ⩽ b0

}
(694)
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and note that

∆∗ :=

N⋂
i=1

∆i (695)

=

{
δ+ b · 1d ∈ Rd : ∥δ∥2 <

√
R2 −

σ2

σ2b
b20, |b| ⩽ b0

}
(696)

with R := mini Ri. Clearly, if ∀α ∈ S, ∀b ∈ [−b0, b0] ∃i such that

δx((α,b), (αi, 0)) ∈ ∆∗ (697)

then it is guaranteed that

yA = arg max
y

q(y|ϕ(x,αi) + δx((α,b), (αi, 0))) (698)

= arg max
y

q(y|ϕ(x, α) + b · 1d). (699)

We can thus reformulate the robustness condition as

∀α ∈ S, ∀b ∈ [−b0, b0] ∃i s.t. δx((α,b), (αi, 0)) ∈ ∆∗ (700)

⇐⇒

∀α ∈ S, ∀b ∈ [−b0, b0] ∃i s.t. ∥ϕ(x, α) −ϕ(x, αi)∥2 <
√
R2 −

σ2

σ2b
b20 (701)

⇐⇒

max
α∈S

min
1⩽i⩽N

∥ϕ(x, α) −ϕ(x, αi)∥2 <
√
R2 −

σ2

σ2b
b20 (702)

that, written in terms of the maximum ℓ2 interpolation error MS, is equivalent to

R >

√
M2

S +
σ2

σ2b
b20 (703)

what concludes the proof.

d.3.3 Composition of Scaling and Rotation with Brightness and ℓ2 Perturbations

We use the same smoothing distribution as above, and the following corollary directly
allows us to certify the robustness against the composition of scaling/rotation, bright-
ness, and an additional ℓ2-bounded perturbations—we only need to change the robust-

ness condition from R >
√
M2

S + (σ2/σ2b)b
2
0 to R >

√
(MS + r)2 + (σ2/σ2b)b

2
0.

Corollary 16. Under the same setting as in 15, for ∀α ∈ S, ∀b ∈ [−b0,b0] and ∀δ ∈ Rd such
that ∥δ∥2 ⩽ r, it is guaranteed that yA = arg maxk q(y|ϕ(x,α) + b · 1d + δ; ε, εd) as long
as

R >

√
(MS + r)2 +

σ2

σ2b
b20, (704)

where MS is defined as in 4.
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Proof. Note that we can write the transformed input as

ϕ(x,α)+b · 1d + δ
=ϕ(x,αi) + (ϕ(x,α) −ϕ(x,αi) + δ) + b · 1d︸ ︷︷ ︸

=:δx((α,b,δ), (αi,0,0))

. (705)

Since we use the same smoothing protocol as in 15, the general proof idea is similar to
15 — we use the same resolvable transformation ψB and define the same set ∆i, namely

∆i :=

{
δ ′ + b · 1d + δ ∈ Rd :

∥δ ′ + δ∥2 <
√
R2i −

σ2

σ2b
b20, |b| ⩽ b0, ∥δ∥2 ⩽ r

}
.

(706)

and set

∆∗ :=

N⋂
i=1

∆i (707)

=

{
δ ′ + b · 1d + δ ∈ Rd :

∥δ ′ + δ∥2 <
√
R2 −

σ2

σ2b
b20, |b| ⩽ b0, ∥δ∥2 ⩽ r

} (708)

with R := mini Ri. Clearly, if ∀α ∈ S, ∀b ∈ [−b0, b0], ∥δ∥2 ⩽ r∃i such that

δx((α,b, δ), (αi, 0)) ∈ ∆∗ (709)

then it is guaranteed that

yA = arg max
y

q(y|ϕ(x,αi) + δx((α,b), (αi, 0))) (710)

= arg max
y

q(y|ϕ(x, α) + b · 1d). (711)

We can thus reformulate the robustness condition as

∀α ∈ S, ∀b ∈ [−b0, b0], ∥δ∥2 ⩽ r∃i s.t. δx((α,b, δ), (αi, 0, 0)) ∈ ∆∗ (712)

⇐⇒
∀α ∈ S, ∀b ∈ [−b0, b0], ∥δ∥2 ⩽ r

∃i s.t. ∥ϕ(x, α) −ϕ(x, αi) + δ∥2 <
√
R2 −

σ2

σ2b
b20

(713)

⇐⇒

max
α∈S

min
1⩽i⩽N

∥ϕ(x, α) −ϕ(x, αi) + δ∥2 <
√
R2 −

σ2

σ2b
b20. (714)

Note that by the triangle inequality have

max
α∈S

min
1⩽i⩽N

∥ϕ(x, α) −ϕ(x, αi) + δ∥2 ⩽MS + ∥δ∥2 ⩽MS + r (715)
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and thus, robustness is implied by

R >

√
(MS + r)2 +

σ2

σ2b
b20 (716)

what concludes the proof.

d.4 proofs for scaling and rotation transformations

In this section we state the proofs for the theoretical results governing our approach to
certifying rotations and scaling transformations using randomized smoothing. We first
define the maximum ℓ2 interpolation error. First, let us recall the following definitions
from the main part of this thesis.

Definition 11 (ℓ2 interpolation error). Let x ∈ X, ϕ : X× Z → X a transformation, S =

[a, b], N ∈N and suppose {αi}Ni=1 ⊆ S. The maximum ℓ2 interpolation error is defined as

MS := max
a⩽α⩽b

min
1⩽i⩽N

∥ϕ(x, α) −ϕ(x, αi)∥2. (717)

Definition 5 (restated). For pixels (i, j) ∈ Ω, we define the grid pixel generator Gij as

Gij := {(i, j), (i+ 1, j), (i, j+ 1), (i+ 1, j+ 1)}. (718)

Definition 6 (restated). We define the operator that extracts the channel-wise maximum pixel
wise on a grid S ⊆ Ω as the map m : RK×W×H × {0, . . . ,K− 1}× 2Ω → R with

m(x, k, S) := max
(i,j)∈S

(
max

(r,s)∈Gij
xk,r,s

)
(719)

Definition 7 (restated). We define the operator that extracts the channel-wise maximum
change in color on a grid S ⊆ Ω as the map m∆ : RK×W×H × {0, . . . ,K − 1} × 2Ω → R

with

m∆(x, k, S) := max
(i,j)∈S

(
max

(r,s)∈Gij
xk,r,s − min

(r,s)∈Gij
xk,r,s

)
(720)

The following auxiliary lemma is used for both rotation and scaling:

Lemma 22. Let x ∈ RK×W×H, −∞ < t1 < t2 <∞ and suppose ρ : [t1, t2]→ [0, W − 1]×
[0, H− 1] is a curve of class C1. Let

ψk : [t1, t2]→ R, ψk(t) := Qx(k, ρ1(t), ρ2(t)) (721)

where k ∈ ΩK and Qx denotes bilinear interpolation. Then ψk is Lk-Lipschitz continuous with
constant

Lk = max
t∈[t1,t2]

(√
2 ∥ρ̇(t)∥2 ·m∆(x, k, ⌊ρ(t)⌋)

)
(722)

Proof. Note that the function t 7→ ⌊ρ(t)⌋ is piecewise constant and let t1 =: u1 < u2 <

. . . < uN0 := t2 such that ⌊ρ(t)⌋ is constant on [ui, ui+1) for all 1 ⩽ i ⩽ N0 − 1 and
∪̇N0i=1 [ui, ui+1) = [t1, t2). We notice that ψk is a continuous real-valued function since
it is the composition of the continuous Qx and C1-curve ρ. Lk-Lipschitz continuity
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on [t1, t2) thus follows if we show that ψk is Lk-Lipschitz on each interval in the
partition. For that purpose, let 1 ⩽ i ⩽ N0 be arbitrary and fix some t ∈ [ui, ui+1). Let
(w, h) := ⌊ρ(t)⌋ and γ(t) := ρ(t) − ⌊ρ(t)⌋ and notice that γ(t) ∈ [0, 1)2. Let

V1 := xk,w,h, V2 := xk,w,h+1, (723)

V3 := xk,w+1,h, V4 := xk,w+1,h+1, (724)

Then, for any u ∈ [ui, ui+1)

ψk(u) = Qx(k, ρ1(u), ρ2(u)) (725)

= (1− γ1(u)) · ((1− γ2(u)) · V1 + γ2(u) · V2)
+ γ1(u) · ((1− γ2(u) · V3 + γ2(u) · V4).

(726)

Let m∆ := m∆(x, k ⌊ρ(t)⌋) and notice that by definition

m∆ = max
i
Vi − min

i
Vi (727)

and in particular∣∣Vi − Vj∣∣ ⩽ m∆ ∀ i, j. (728)

Since Vi is constant for each i and γ is differentiable, ψk is differentiable on [ui, ui+1)
and hence

ψ̇k(u) = (γ̇1(u)γ2(u) + γ1(u)γ̇2(u))(V1 − V2 − V3 + V4) (729)

+ γ̇1(u)(V3 − V1) + γ̇2(u)(V2 − V1). (730)

Note that the derivative ψ̇k is linear in γ1 and γ2 and hence its extreme values are
bounded when evaluated at extreme values of γ, that is (γ1, γ2) ∈ {0, 1}2. We treat
each case separately:

• γ1 = γ2 = 0. Then,∣∣ψ̇k∣∣ ⩽ |γ̇1(V3 − V1) + γ̇2(V2 − V1)| (731)

⩽ |γ̇1| · |V3 − V1|+ |γ̇2| · |V2 − V1| (732)

⩽ m∆(|γ̇1|+ |γ̇2|) (733)

• γ1 = γ2 = 1. Then,∣∣ψ̇k∣∣ ⩽ |γ̇1(V4 − V2) + γ̇2(V4 − V3)| (734)

⩽ |γ̇1| · |V4 − V2|+ |γ̇2| · |V4 − V3| (735)

⩽ m∆(|γ̇1|+ |γ̇2|) (736)

• γ1 = 0, γ2 = 1. Then,∣∣ψ̇k∣∣ ⩽ |γ̇1(V4 − V2) + γ̇2(V2 − V1)| (737)

⩽ |γ̇1| · |V4 − V2|+ |γ̇2| · |V2 − V1| (738)

⩽ m∆(|γ̇1|+ |γ̇2|) (739)
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• γ1 = 1, γ2 = 0. Then,∣∣ψ̇k∣∣ ⩽ |γ̇1(V3 − V1) + γ̇2(V4 − V3)| (740)

⩽ |γ̇1| · |V3 − V1|+ |γ̇2| · |V4 − V3| (741)

⩽ m∆(|γ̇1|+ |γ̇2|) (742)

Hence, for any u ∈ [ui, ui+1), the modulus of the derivative is bounded by m∆(|γ̇1|+
|γ̇2|). We can further bound this by observing the following connection between ℓ1 and
ℓ2 distance

∀ x ∈ Rn : ∥x∥1 = |⟨|x| , 1⟩| ⩽ ∥x∥2 ∥1∥2 =
√
n ∥x∥2 (743)

and hence ∀u ∈ [ui, ui+1)

|ψk(u)| ⩽ m∆ ∥γ̇(u)∥1 (744)

⩽ m∆
√
2 ∥γ̇(u)∥2 (745)

= m∆
√
2 ∥ρ̇(u)∥2 . (746)

Since ψk is differentiable on [ui, ui+1), its Lipschitz constant is bounded by the maxi-
mum absolute value of its derivative. Hence

max
u∈[ui,ui+1)

m∆
√
2 ∥ρ̇(u)∥2

= max
u∈[ui,ui+1)

m∆(x, k, ⌊ρ(u)⌋)
√
2 ∥ρ̇(u)∥2

(747)

⩽ max
u∈[t1, t2)

m∆(x, k, ⌊ρ(u)⌋)
√
2 ∥ρ̇(u)∥2 = Lk (748)

is a Lipschitz constant for ψk on [ui, ui+1). Note that Lk does not depend on i. Further-
more, i was chosen arbitrarily and hence Lk is a Lipschitz constant for ψk on [t1, t2)
and due to continuity on [t1, t2], concluding the proof.

d.4.1 Bilinear Interpolation

Let ΩK := {0, . . . , K− 1} and Ω := [0, W − 1]× [0, H− 1]. We define bilinear interpo-
lation to be the map Q : RK×W×H → L2(ΩK ×R2, R), x 7→ Q(x) =: Qx where Qx is
given by

(k, i, j) 7→ Qx(k, i, j) :=


0 (i, j) /∈ Ω
xk,i,j (i, j) ∈ Ω∩N2

x̃k, i, j (i, j) ∈ Ω \ N2.

(749)

and where

x̃k,i,j := (1− (i− ⌊i⌋)) ·
(
(1− (j− ⌊j⌋)) · xk,⌊i⌋,⌊j⌋

+(j− ⌊j⌋) · xk,⌊i⌋,⌊j⌋+1
)

+ (i− ⌊i⌋) ·
(
(1− (j− ⌊j⌋)) · xk,⌊i⌋+1,⌊j⌋

+ (j− ⌊j⌋) · xk,⌊i⌋+1,⌊j⌋+1
)

.

(750)
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d.4.2 Rotation

The rotation transformation is denoted as ϕR : RK×W×H ×R → RK×W×H and acts
on an image in three steps that we will highlight in greater detail. First, it rotates the
image by α degrees counter-clockwise. After rotation, pixel values are determined using
bilinear interpolation (749). Finally, we apply black padding to all pixels (i, j) whose
ℓ2-distance to the center pixel is larger than half of the length of the shorter side, and
denote this operation by P. Let cW and cH be the center pixels

cW :=
W − 1

2
, cH :=

H− 1

2
. (751)

and

di,j =

√
(i− cW)2 + (j− cH)

2,

gi,j = arctan2 (j− cH, i− cW) .
(752)

We write ϕ̃R for the rotation transformation before black padding and decompose ϕR
as ϕR = P ◦ ϕ̃R, where ϕ̃R : RK×W×H ×R→ RK×W×H is defined by

ϕ̃R(x, α)k,i,j := Qx(k, cW + di,j cos(gi,j −α),

cH + di,j sin(gi,j −α))
(753)

and P : RK×W×H → RK×W×H by

f 7→ P(f)k,i,j =

f(k, i, j) di,j < min {cW , cH}

0 otherwise
. (754)

The rotation transformation in practice may use different padding mechanisms. For
example, the rotation in the physical world may fill in boundary pixels with real ele-
ments captured by the camera. We remark that our TSS against the transformation ϕR
implies the defense against rotation with any other padding mechanisms, because we
first apply black-padding P to any such rotated input and then feed into TSS models
so that TSS models always receive black-padded inputs. We now prove the following
result:

Lemma 8 (restated). Let x ∈ RK×W×H be a K-channel image and let ϕR = P ◦ I ◦ ϕ̃R be the
rotation transformation. Then, a global Lipschitz constant L for the functions {gi}

N
i=1 is given

by

Lr = max
1⩽i⩽N−1

K−1∑
k=0

∑
r,s∈V

2dr,s ·m∆(x,k,P(i)
r,s) ·m(x, k, P(i)

r,s) (755)

where V =
{
(r, s) ∈N2|dr,s <

1
2(min {W,H}− 1)

}
. The set P(i)

r,s is given by all integer grid
pixels that are covered by the trajectory of source pixels of (r, s) when rotating from angle αi to
αi+1.

Proof. Recall that ϕR acts on images x ∈ RK×W×H and that gi is defined as

gi(α) = ∥ϕR(x, α) −ϕR(x, αi)∥22

=

K−1∑
k=0

W−1∑
r=0

H−1∑
s=0

(ϕR(x, α)k,r,s −ϕR(x, αi)k,r,s)
2

(756)
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Let cW and cH denote the center pixels

cW :=
W − 1

2
, cH :=

H− 1

2
. (757)

and recall the following quantities from the definition of ϕR (D.4.2):

dr,s =

√
(r− cW)2 + (s− cH)

2,

gr,s = arctan 2 (s− cH, r− cW)
(758)

Note that

dr,s ⩾ min{cW , cH} ⇒ ϕR(x, α)k,r,s = 0. (759)

We thus only need to consider pixels that lie inside the centered disk. We call the
collection of such pixels valid pixels, denoted by V:

V :=
{
(r, s) ∈N2 | dr,s < min{cW , cH}

}
. (760)

Let fr,s
1 : R→ R and fr,s

2 : R→ R be functions defined as

fr,s
1 (α) = cW + dr,s cos(gr,s −α),

fr,s
2 (α) = cH + dr,s sin(gr,s −α).

(761)

Then for any valid pixel (r, s) ∈ V , the value of the rotated image ϕR(x, α) is given by

ϕR(x, α)k,r,s = Qx(k, fr,s
1 (α), fr,s

2 (α)) (762)

where Qx denotes bilinear interpolation. We define the shorthand

gk,r,s
i (α) := (ϕR(x, α)k,r,s −ϕR(x, αi)k,r,s)

2 (763)

and denote by Lk,r,s
i and Lk,r,s

i+1 the Lipschitz constants of gk,r,s
i and gk,r,s

i+1 on [αi, αi+1].
We can write (756) as

gi(α) =

K−1∑
k=0

∑
(r,s)∈V

gk,r,s
i (α),

gi+1(α) =

K−1∑
k=0

∑
(r,s)∈V

gk,r,s
i+1 (α)

(764)

and note that Lipschitz constants of gi and gi+1 on [αi, αi+1] are given by

max
c,d∈[αi,αi+1]

|gi(c) − gi(d)|

|c− d|
⩽

K−1∑
k=0

∑
(r,s)∈V

Lk,r,s
i

 =: Li (765)

max
c,d∈[αi,αi+1]

|gi+1(c) − gi+1(d)|

|c− d|
⩽

K−1∑
k=0

∑
(r,s)∈V

Lk,r,s
i+1

 =: Li+1 (766)

We can hence determine L according to equation (149) as

L = max
i

{max {Li, Li+1}} . (767)
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Without loss of generality, consider Lk,r,s
i and note that

max
c,d∈[αi,αi+1]

∣∣∣∣∣gk,r,s
i (c) − gk,r,s

i (d)

c− d

∣∣∣∣∣ (768)

= max
c,d∈[αi,αi+1]

∣∣∣∣ϕR(x, c)k,r,s −ϕR(x, d)k,r,s

c− d

∣∣∣∣
· |ϕR(x, c)k,r,s +ϕR(x, d)k,r,s − 2ϕR(x, αi)k,r,s|

(769)

⩽ max
c,d∈[αi,αi+1]

∣∣∣∣ϕR(x, c)k,r,s −ϕR(x, d)k,r,s

c− d

∣∣∣∣︸ ︷︷ ︸
(I)

· 2 max
θ∈[αi,αi+1]

|ϕR(x, θ)k,r,s −ϕR(x, αi)k,r,s|︸ ︷︷ ︸
(II)

.
(770)

To compute a Lipschitz constant for gk,r,s
i on the interval [αi, αi+1] we thus only need

to compute a Lipschitz constant for ϕR(x, ·) on [αi, αi+1] and an upper bound on (II).
For that purpose, note that ϕR takes only positive values and consider

(II) ⩽ max
θ∈[αi,αi+1]

{ϕR(x, θ)k,r,s, ϕR(x, αi)k,r,s} (771)

= max
θ∈[αi,αi+1]

ϕR(x, θ)k,r,s (772)

Notice that now both Lk,r,s
i and Lk,r,s

i+1 share the same upper bound. Recall (762), i.e.,

ϕR(x, θ)k,r,s = Qx(k, fr,s
1 (θ), fr,s

2 (θ)). (773)

Now, we upper bound (771) by finding all integer grid pixels that are covered by the
trajectory (fr,s

1 (θ), fr,s
2 (θ)). Specifically, let

P
(i)
r,s :=

⋃
θ∈[αi,αi+1]

(
⌊fr,s
1 (θ)⌋, ⌊fr,s

2 (θ)⌋
)

. (774)

Since ϕR is interpolated from integer pixels, we can consider the maximum over P
(i)
r,s

in order to upper bound (771):

max
θ∈[αi,αi+1]

ϕR(x, θ)k,r,s =

max
θ∈[αi,αi+1]

Qx(k, fr,s
1 (θ), fr,s

2 (θ))
(775)

⩽ max
(i,j)∈Pr,s

max
{
x(k, i, j), x(k, i+ 1, j),

x(k, i, j+ 1), x(k, i+ 1, j+ 1)
} (776)

= m̄(x, k, P(i)
r,s). (777)
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We now have to find an upper bound of (I), that is, a Lipschitz constant of ϕR(x, ·)k,r,s

on the interval [αi, αi+1]. For that purpose, consider the following. Note that the curve
ρ : [αi, αi+1]→ R2, ρ(t) := (fr,s

1 (t), fr,s
2 (t)) is of class C1 and

dfr,s
1 (t)

dt
=
d

dt
(cW + dr,s cos(gr,s − t)) (778)

= dr,s sin(gr,s − t) (779)

dfr,s
2 (t)

dt
=
d

dt
(cH + dr,s sin(gr,s − t)) (780)

= −dr,s cos(gr,s − t) (781)

and hence

∥ρ̇(t)∥2 =

√(
dfr,s
1 (t)

dt

)2
+

(
dfr,s
2 (t)

dt

)2
=
√
2 dr,s. (782)

By Lemma 22 a Lipschitz constant for the function ϕR(x, ·)k,r,s is thus given by

max
c,d∈[αi,αi+1]

∣∣∣∣ϕR(x, c)k,r,s −ϕR(x, d)k,r,s

c− d

∣∣∣∣
⩽ 2 dr,s ·m∆(x, k, P(i)

r,s).
(783)

We can thus upper bound (I) and (II) in (770) yielding a Lipschitz constant for gk,r,s
i

and gk,r,s
i+1 on [αi, αi+1]

max
c,d∈[αi,αi+1]

∣∣∣∣∣gk,r,s
i (c) − gk,r,s

i (d)

c− d

∣∣∣∣∣
⩽ 2 dr,s ·m∆(x, k, P(i)

r,s) · m̄(x, k, P(i)
r,s)

(784)

= Lk,r,s
i (= Lk,r,s

i+1 ). (785)

Finally, we can compute Lr as

L = max
1⩽i⩽N−1

K−1∑
k=0

∑
(r,s)∈V

Lk,r,s
i

= max
1⩽i⩽N−1

K−1∑
k=0

∑
r,s∈V

2dr,s ·m∆(x,k,P(i)
r,s) ·m(x, k, P(i)

r,s))

(786)

what concludes the proof.

d.4.3 Scaling

The scaling transformation is denoted as ϕS : RK×W×H ×R → RK×W×H. Similar to
rotations, ϕS acts on an image in three steps. First, it stretches height and width by a
fixed ratio α ∈ R. Second, we determine missing pixel values with bilinear interpola-
tion. Finally, we apply black padding to regions with missing pixel values if the image
is scaled by a factor smaller than 1. Let cW and cH be the center pixels

cW :=
W − 1

2
, cH :=

H− 1

2
. (787)
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We notice that black padding is naturally applied during bilinear interpolation in cases
where the scaling factor is smaller than 1 (that is, when we make images smaller). We
can thus write the scaling operation as ϕS : RK×W×H ×R>0 → RK×W×H, (x, α) 7→
ϕ(x, α) where

ϕS(x, α)k,i,j := Qx

(
k, cW +

i− cW
α

, cH +
j− cH
α

)
. (788)

When the scaling transformation in practice uses different padding mechanisms, we
can simply apply black padding to the outer pixels during preprocessing. For example,
if we know the semantic attacker could choose 0.7 as the smallest scaling ratio, we can
apply black padding to all pixels that are out of canvas after 0.7 scaling. Therefore,
we overwrite all different padding mechanisms and ensure the generalizability. As a
trade-off, the classifier has a narrower reception field that affects the clean accuracy.

Due to black padding, the functions gi (145) may contain discontinuities. To circum-
vent this issue, we enumerate all these discontinuities as D. It can be shown that D

contains at most H+W elements. Hence, for large enough N, the interval [αi, αi+1]
contains at most one discontinuity. We thus modify the upper bounds Mi in (150) as

Mi :=


max

αi⩽α⩽αi+1
min{gi(α), gi+1(α)} [αi, αi+1]∩D = ∅

max
{

max
αi⩽α⩽ti

gi+1(α), max
ti⩽α⩽αi+1

gi(α)

}
[αi, αi+1]∩D = {ti}

(789)

In either case, the quantity Mi can again be bounded by a Lipschitz constant. With
this definition, the following lemma provides a closed form expression for the Lipschitz
constant L in (150) for scaling.

Lemma 23. Let x ∈ RK×W×H be a K-channel image and let ϕS be the scaling transformation.
Then, a global Lipschitz constant L for the functions {gi}Ni=1 is given by

Ls = max
1⩽i⩽N−1

K−1∑
k=0

∑
r,s∈Ω∩N2

√
2dr,s

a2
·m∆(x,k,P(i)

r,s) ·m(x, k, P(i)
r,s) (790)

where Ω = [0, W − 1]× [0, H− 1] and a is the lower boundary value in S = [a, b]. The set
P
(i)
r,s is given by all integer grid pixels that are covered by the trajectory of source pixels of (r, s)

when scaling with factors from αi+1 to αi.

Proof. Recall the Definition of the Scaling transformation ϕS given by ϕS : RK×W×H ×
R→ RK×W×H, where

ϕS(x, α)k,r,s := Qx

(
k, cW +

r− cW
s

, cH +
s− cH
s

)
. (791)

Recall that the set Ω is given by Ω = [0, W − 1]× [0, H− 1] = {1, . . . , K} and let

ΩN := Ω∩N2 (792)

be the set of integers in Ω. Let fr1 : [a, b]→ R and fr,s
2 : [a, b]→ R be functions defined

as

fr1(α) := cW +
r− cW
α

,

fs2(α) := cH +
s− cH
α

.
(793)
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Then, the value of the scaled image ϕS(x, α) is given by

ϕS(x, α)k,r,s = Qx(k, fr1(α), f
s
2(α)) (794)

where Qx denotes bilinear interpolation. Let

ψk : [a, b]→ R, α 7→ Qx(k, fr1(α), f
s
2(α)). (795)

We notice that, in contrast to rotations, ψk is not continuous at every α ∈ R>0. Namely,
when considering scaling factors in (0, 1), bilinear interpolation applies black padding
to some (r, s) ∈ Ω resulting in discontinuities of ψk. To see this, consider the following.
The interval [αi+1, αi] contains a discontinuity of ψk, if

αi+1 <
r− cW
cW

< αi, r > cW ,

αi+1 <
cW − r

cW
< αi, r < cW ,

(796)

because then ∃α0 ∈ [αi+1, αi] such that fr1(α0) ∈ {0, W − 1} ⊆ Ω and hence

ϕS(x, α0)k,r,s ̸= 0 (797)

but, for r > cW ,

ϕS(x, α0 + ε)k,r,s = 0 ∀ε > 0 (798)

or, when r < cW ,

ϕS(x, α0 − ε)k,r,s = 0 ∀ε > 0. (799)

A similar reasoning leads to a discontinuity in the s-coordinates. We can thus define
the set of discontinuities of ψk as

D :=

(
W−1⋃
r=0

Dr1

)
∪
(
H−1⋃
s=0

Ds2

)
(800)

where

Dr1 := {α0 ∈ [a, b] | fr1(α0) ∈ {0, W − 1}}

Ds2 := {α0 ∈ [a, b] | fs2(α0) ∈ {0, H− 1}} .
(801)

We notice that |D| ⩽ H +W and hence for large enough N, each interval [αi, αi+1]
contains at most 1 discontinuity.

Due to these continuities, we need to modify the general upper bound M of the
interpolation error MS Recall that for a < b and {αi}

N
i=1, the maximum L2-sampling

error Ma,b is given by

MS := max
a⩽α⩽b

min
1⩽i⩽N

||ϕS(x, α) −ϕS(x, αi)||2 . (802)

In order to compute an upper bound on (802) for scaling, we are interested in finding
M ⩾ 0 such that

M2
S ⩽M (803)
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For scaling, similar as in the case for rotations, we sample αi uniformly from [a, b]:

αi = a+
b− a

N− 1
(i− 1) for 1 ⩽ i ⩽ N. (804)

and note that α1 = b and αN = a. For 1 ⩽ i ⩽ N Let gi be the functions gi : [a, b] →
R⩾0 defined by

gi(α) := ∥ϕS(x, α) −ϕS(x, αi)∥22 . (805)

Note that ∀α ∈ [a, b], ∃ i such that α ∈ [αi+1, αi]. Suppose that N is large enough such
that ∀ i : |D ∩ [αi+1, αi]| ⩽ 1 and denote the discontinuity in interval [αi+1, αi] by ti if
it exists. Let

Mi :=


max

αi⩽α⩽αi+1
min{gi(α), gi+1(α)} [αi, αi+1]∩D = ∅

max
{

max
αi⩽α⩽ti

gi+1(α), max
ti⩽α⩽αi+1

gi(α)

}
[αi, αi+1]∩D = {ti}

(806)

Similarly as in the case for rotations, we find

M2
S ⩽ max

1⩽i⩽N−1
Mi. (807)

For simplicity, we assume for the sequel that D = ∅. The case where discontinuities
exist can be treated analogously. We further divide each interval [αi, αi+1] by sampling
n ∈N points {γi,j}

n
j=1 according to

γi,j := αi +
αi+1 −αi
n− 1

(j− 1) for 1 ⩽ j ⩽ n (808)

and define

mi,j := max
γi,j⩽γ⩽γi,j+1

min {gi(γ), gi+1(γ)} . (809)

We can thus upper bound each Mi by

Mi ⩽ max
1⩽j⩽n−1

mi,j. (810)

In order to find an upper bound on M2
S, we thus need to find an upper bound on mi,j

and can proceed analogously to rotations. Namely, setting

M := max
1⩽i⩽N−1

{
max

1⩽j⩽n−1

{
1

2
·
(
min

{
gi(γi,j) + gi(γi,j+1),

gi+1(γi,j) + gi+1(γi,j+1)
})

+ L · γi, j+1 − γi, j
2

}} (811)

yields a computable upper bound of the maximum ℓ2 interpolation error. Computing
a Lipschitz constant for gi and gi+1 is also analogous to rotations. The difference lies
only in computing a Lipschitz constant for ϕS what we will explain in greater detail.

Recall that Lemma 22 provides a Lipschitz constant for the function t 7→ ψk(t) :=

Qx(k, ρ1(t), ρ2(t)) where ρ is a differentiable curve with values in R2. Namely, a Lips-
chitz constant for ψk is given by

Lk = max
t∈[t1,t2]

(√
2 ∥ρ̇(t)∥2 ·m∆(x, k, ⌊ρ(t)⌋)

)
. (812)



D.4 proofs for scaling and rotation transformations 219

Consider the curve

ρ(t) := (fr1(t), f
s
2(t)), t > 0 (813)

and note that it is differentiable with derivatives

dfr1(t)

dt
=
d

dt

(
cW +

r− cW
t

)
=
cW − r

t2
(814)

dfs2(t)

dt
=
d

dt

(
cH +

s− cH
t

)
=
cH − s

t2
(815)

and

∥ρ̇(t)∥2 =
1

t2

√
(cW − r)2 + (cH − s)2. (816)

A Lipschitz constant for ϕS(x, ·)k,r,s is thus given by

Lr,s
k = max

t∈[t1, t2]

(√
(cW − r)2 + (cH − s)2

t2
·
√
2m∆(x, k, ⌊ρ(t)⌋)

)
(817)

⩽

√
(cW − r)2 + (cH − s)2

t21
·
√
2 ·m∆(x, k, Pr,s) (818)

⩽

√
(cW − r)2 + (cH − s)2

a2
·
√
2 ·m∆(x, k, Pr,s) (819)

where

Pr,s =
⋃

α∈[t1, t2]

{(⌊fr1(t)⌋, ⌊fs2(t)⌋)}. (820)

Finally, setting

Lk,r,s
i := Lr,s

k · m̄(x, k, P(i)
r,s) (821)

and

Ls = max
1⩽i⩽N−1

K−1∑
k=0

∑
(r,s)∈ΩN

Lk,r,s
i

= max
1⩽i⩽N−1

K−1∑
k=0

∑
r,s∈Ω∩N2

√
2dr,s

a2
·m∆(x,k,P(i)

r,s) ·m(x, k, P(i)
r,s)

(822)

yields the desired Lipschitz constant.

d.4.4 Discussion on More Transformations and Compositions

Since the TSS framework is not limited to specific transformations, here we briefly dis-
cuss how to extend TSS to new transformations or to new compositions.

For a new transformation, we first identify the parameter space Z, with the restriction
that the parameter is required to completely and deterministically determine the output
after the transformation for any given input. Then, we use 3 to check whether the
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transformation is resolvable. If so, we can write down the function γα. In the next step,
we choose a smoothing distribution, i.e., the distribution of the random variable ε0,
and identify the distribution of ε1 = γα(ε0). Finally, we use Theorem 5 to derive the
robustness certificates and follow the two-step template outlined in Section 7.4.1.5 to
compute the robustness certificate.

If the transformation is not resolvable, we identify a dimension in Z for which the
transformation is resolvable. For example, the composition of rotation and brightness
has a rotation and a brightness axis, where the brightness axis is itself resolvable. As
a result, we can write the parameter space as Cartesian product of non-resolvable sub-
space and resolvable subspace: Z := Zno-resolve × Zresolve. We perform smoothing on the
resolvable subspace and sample enough points in the non-resolvable subspace. Next,
we bound the interpolation error between sampled points and arbitrary points in the
non-resolvable subspace, using either ℓp difference as we did for rotation and scaling
or other regimes. Specifically, Lemma 22 presented in Section D.4 is a useful tool to
bound the ℓp difference stemming from interpolation errors. Finally, we instantiate 6 to
compute the robustness certificate.

Theoretically, we can certify against the composition of all the discussed transforma-
tions: Gaussian blur, brightness, contrast, translation, rotation, and scaling. However, as
justified in [92, Figure 3], the composition of more than two transformations leads to
unrealistic images that are even hard to distinguish by humans. Moreover, if the com-
position contains too many transformations, the parameter space would no longer be
low dimensional. Therefore, there would be much more axes that are differentially re-
solvable (instead of resolvable). As a consequence, much more samples are required to
obtain a small bound on the interpolation error (which is necessary for a nontrivial ro-
bustness certification). Therefore, we focus on evaluating either single transformations,
or the composition of two transformations to simulate a practical attack.

d.5 algorithm for differentially resolvable transformations

In Algorithm 3 we present pseudo-code describing the computation of the interpola-
tion error M, for rotations. This algorithm corresponds to to the description outlined in
Section 7.5.2. In Algorithm 4 we present pseudo-code for progressive sampling, which
was described in Section 7.5.4.2. We remark that in practice, we sample in mini-batches
with batch size B. We set the error tolerance T to MS (143) for rotation and scaling.
For the composition of rotation or scaling with brightness within [−b0, b0], then error
tolerance T is set to√

M2
S + σ2/σ2b · b20. (823)

Finally, for the composition of rotation or scaling, brightness change [−b0, b0], and ℓ2
bounded perturbations within r, the error tolerance T is set to√

(MS + r)2 + σ2/σ2b · b20 (824)

Jointly, these two algorithms make up the pipeline TSS-DR for certifying robustness
against differentially resolvable transformations as shown in Figure 12a.
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Algorithm 3 Interpolation Error M Computation for Rotation Transformation.
Input: clean input image x;
interval of rotation angle to certify [a, b];
number of first-level samples N;
number of second-level samples n
Output: rotation angle samples {αi}

N
i=1;

upper bound M of squared ℓ2-interpolation error

M2S = arg max
α∈[a,b]

min
1⩽i⩽N

∥ϕ̃R(x,α) − ϕ̃R(x,αi)∥22.

/* Compute Lipschitz constant Lr (155) */
α1 ← a

for i = 1, . . . ,N− 1 do
αi+1 ← a+ (b− a) · i

N−1 (144)
for all (r, s) ∈ V do

/* V and P
(i)
r,s are defined in 8 */

Compute trajectory covered grid pixels P
(i)
r,s

for k = 0, . . . ,K− 1 do
Compute 2dr,s ·m∆(x,k,P(i)

r,s) · m̄(x,k,P(i)
r,s) (155)

end for
end for
Lr,i ←

∑K−1
k=0

∑
(r,s)∈V 2dr,s ·m∆(x,k,P(i)

r,s) · m̄(x,k,P(i)
r,s).

end for
Lr ← max1⩽i⩽N−1 Lr,i (155)
/* Compute interpolation error bound M (147) from stratified sampling */
for i = 1, . . . ,N− 1 do

for j = 1, . . . ,n do
/* Second-level sampling */
γi,j ← αi + (αi+1 −αi) · j−1n−1 (148)

end for
Mi ← 0

for j = 1, . . . ,n− 1 do
Compute gi(γi,j), gi(γi,j+1), gi+1(γi,j), and gi+1(γi,j+1) (145)
Mi ← max

{
Mi, min

{
gi(γi,j) + gi(γi,j+1),

gi+1(γi,j) + gi+1(γi,j+1)
}}

end for
Mi ← 1

2Mi + L · b−a
(N−1)(n−1) (150)

end for
Return: M← max1⩽i⩽N−1Mi (147)
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Algorithm 4 Progressive Sampling for Certification.

Input: clean input image x with true class kA; first-level parameter samples {αi}
N
i=1; pertur-

bation random variable ε with variance σ2; ℓ2 error tolerance T ; batch size B; sampling size
limit ns; confidence level p.
Output: with probability 1− p, whether g(·; ε) is certifiably robust at ϕ(x, α).
for i = 1, . . . ,N do
x(i) ← ϕ(x,αi)
j← 0

while j ⩽ ns do
Sample B instances of ϕ(x(i), ε), and use them to update empirical mean q̂(yA| x(i); ε).
j← j+B.
/* Lower confidence interval bound with these j samples */
pA

(i) = LowerConfBound(q̂(yA| x(i); ε), j, 1− p/N).

if Ri = σΦ−1
(
pA

(i)
)
> T then

/* Already get the certification that Ri > T , break */
Break

end if
end while
if Ri = σΦ−1

(
pA

(i)
)
⩽ T then

/* Cannot ensure that Ri > T . So cannot ensure that R = minRi > T . Early halt */
Return: false

end if
end for
Return: true

d.6 additional details about experiments

Here we provide additional details about the experiment setup, implementations, base-
lines, evaluation protocols, results, findings, and analyses.

d.6.1 Model Preparation and Hyperparameters

As previous work shows, an undefended model is very vulnerable even under sim-
ple random semantic attacks. Therefore, to obtain nontrivial certified robustness, we
require the model itself to be trained to be robust against semantic transformations. We
apply data augmentation training [39] combined with Consistency regularization [106]
to train the base classifiers. The data augmentation training randomly transforms the
with the specified transformation using parameters drawn from the specified smooth-
ing distribution/strategy. Consistency regularization further enhances the consistency
of the base classifiers’ prediction among the drawn parameters. Then, the base clas-
sifiers are used to construct smoothed classifiers by the specified smoothing distribu-
tion/strategy, and we compute its robustness certification with our approach.

On the relatively small datasets MNIST and CIFAR-10, the models are trained from
scratch. On MNIST, we use a Convolutional Neural Network (CNN) composed of four
convolutional layers and three fully connected layers. On CIFAR-10, we use ResNet-110,
a 110-layer ResNet model [85]. These model architectures are the same as in the litera-
ture [39, 187, 264], enabling a direct comparison. On MNIST, we train for 100 epochs;
on CIFAR-10, we train for 150 epochs. The batch sizes (B) are 400 and 256 on MNIST
and CIFAR-10, respectively. The learning rate on both datasets is initialized to 0.01, and
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after every 50 epochs, the learning rate is multiplied by 0.1. For resolvable transforma-
tions, the data augmentation usually uses the same smoothing distribution/strategy
as we will use to construct the smoothed classifier. In particular, for brightness and
contrast transformation, we empirically observe that a larger variance during inference
time helps to improve the certified accuracy under large attack radius. For the compo-
sition of Gaussian blur, brightness, contrast, and translation, we additionally add small
additive Gaussian noise to improve the ability to defend against other unforeseen at-
tacks. For differentially resolvable transformations, since Gaussian noise is required in
constructing the smoothed classifier, the data augmentation jointly combines additive
Gaussian noise and the transformation to certify against. The detailed hyperparameters
such as distribution type and variance are listed in Table 19 and Table 20. The weight
of Consistency regularization is set to 10 throughout the training.

On the large ImageNet dataset, we finetune the existing trained models. For resolv-
able transformations, we finetune from the ResNet-50 model available in the torchvision
library [176]. For differentially resolvable transformations, since the base classifier should
also be robust under Gaussian noise, we finetune from the Resnet-50 model in [187]
that achieves state-of-the-art robustness under Gaussian noise. In either case, we follow
the same data augmentation scheme as on MNIST and CIFAR-10, and we finetune for
two epochs with batch size (B) 128, learning rate 0.001, and Consistency regulariza-
tion weight 10. During certification (e.g., Algorithm 4), we use the same batch sizes as
during training on these datasets.

Channel-wise normalization is used for all models on these three datasets as in [39,
187]. On all three datasets, in each training epoch, we feed the entire training dataset
without random shuffling.

We remark that, since our approach focuses on robustness certification and the smooth-
ing strategy to improve certified robustness, we did not fully explore the potential of
improving certified robustness from the training side, nor did we conduct any hyperpa-
rameter tuning. Therefore, even though we already achieved the state of the art using
our robustness certification and smoothing strategies, we believe the results can poten-
tially be further improved by more effective training approaches.

d.6.2 Implementation Details

Our implementation, including the training scripts is based on PyTorch. For resolvable
transformations, we extend the smoothing module from [39] to accommodate various
smoothing strategies and smoothing distributions. The predict and certify modules are
kept the same. For differentially resolvable transformations, since the stratified sam-
pling requires N×n transformations to compute the interpolation error bound (where
N is the number of first-level samples and n the number of second-level samples), we
implement a fast C module and integrate it in our Python-based tool. Empirically, this
implementation achieves a 3− 5x speedup compared to the OpenCV[166]-based transfor-
mations. For Lipschitz upper bound computation, since the loop in Python is slow, we
reformulate the computation using loop-free tensor computations in numpy. This em-
pirically achieves 20− 40x speedups compared to the plain loop-based implementation.
The full implementation of TSS along with all trained models is publicly available at
https://github.com/AI-secure/semantic-randomized-smoothing.

https://github.com/AI-secure/semantic-randomized-smoothing
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d.6.3 Attack Details

To evaluate the empirical robust accuracy of both TSS models and undefended models
we use Random Attack, Random+ Attack, and PGD Attack. The Random Attack is used
in previous work [8, 65] but does not consider the intrinsic characteristics of semantic
transformations. Thus, we propose Random+ Attack and PGD Attack as alternatives
since they are adaptively designed for our smoothed TSS models and also consider the
intrinsic characteristics of these transformations.

d.6.3.1 Random Attack

The random attack is used to evaluate the empirical robust accuracy, which is an upper
bound of the certified robust accuracy. The random attack reads the clean input, and
uniformly samples N parameters from the predefined transformation parameter space
to transform the input. If the model makes a wrong prediction on any of these N
transformed inputs, we treat this sample as being successfully attacked; otherwise, the
sample counts toward the empirical robust accuracy. We denote by N the “number of
initial starts”. In the main experiments, we set N = 100, while in the ablation study
presented in Section D.6.5.3, we also compare the behaviors of the three attacks under
N = 10/20/50.

For transformations with a hyper-rectangle parameter space, including brightness,
contrast, scaling, rotation, Gaussian blur, and their compositions, we uniformly sam-
ple transformation parameters for each coordinate. For transformations with a discrete
parameter space, such as translation, we draw the parameter with equal probability.
When the transformation is composed with ℓp-bounded perturbations, we additionally
generate the perturbation vector using FGSM attack [212], where the precise gradient
is used for vanilla models, and the empirical mean gradient over 100 samples is used
for smoothed TSS models.

d.6.3.2 Random+ adaptive Attack

The Random+ attack follows the same procedure as the Random attack, with the dif-
ference that, instead of using uniform distribution for sampling transformation param-
eters, we use the Beta distribution Beta(0.5, 0.5).

Formally, suppose the transformation space is [a,b]. In the Random attack, the attack
parameter ε is generated according to

ε ′ ∼ Unif(0, 1), ε← a+ (b− a)× ε ′. (825)

In contrast, in the Random+ attack, we generate the attack parameter δ randomly ac-
cording to

δ ′ ∼ Beta(0.5, 0.5), δ← a+ (b− a)× δ ′. (826)

We choose the Beta distribution because, intuitively, an adversarial example would be
more likely to exist at the boundary, i.e., closer to a or b, making the attack more
powerful. For example, suppose that a rotation attacker can use angles in [−r, r]. Then,
successful adversarial examples are more likely to have large rotation angle. As shown
in Figure 32, the Beta distribution assigns more probability mass on to the boundaries,
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Figure 32: Comparison of probability density of Random and Random+ attack when attacking
the rotation transformation with rotation angle between −10◦ and +10◦.

compared to the uniform distribution. Choosing other Beta distribution hyperparame-
ters could control the trade-off on sampling weights over the boundary or over center,
and we empirically find Beta(0.5, 0.5) already works very well as shown in additional
experiments in Section D.6.5.3.

d.6.3.3 PGD adaptive Attack

To get a more powerful attack, here we propose the semantic transformation version of
PGD attack in the following procedure.

(1) Initialize the transformation parameter following the same process as in the Ran-
dom+ Attack.

(2) Suppose the current parameter is (α1, · · · ,αz). The attack slightly perturbs each
coordinate from αi to αi± τi where τi = li/10 and li is the length of the specified
interval on the i-th coordinate. This yields 2z perturbed candidates.

(3) Clip each coordinate to be within the specified range, and choose the candidate
that yields the largest increase in cross-entropy loss (for vanilla models) or empir-
ical mean cross-entropy loss (for TSS models) to update the current parameter.

(4) Repeat steps (2) and (3) for 10 iterations for each sample obtained in step (1).

Finally, if the transformation is composed with ℓp-bounded perturbations, we addition-
ally generate the perturbation vector in the same way as in Random attack.

Note that, for each sample generated in Step (1) we would have one output and
resulting in a total of N outputs. If any of these outputs fool the target model, we treat
this sample as being successfully attacked; otherwise, the sample counts toward the
empirical robust accuracy. Note that since the translation transformation has a discrete
parameter space, the PGD attack is not applicable.

We refer to the attack as the semantic transformation version of PGD attack because:
(1) It involves multiple initial starts; (2) It leverages the local landscape information
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to maximize the loss function iteratively. (3) It clips (i.e., “projects”) the parameters
to be within the perturbation range. Compared to the classical PGD attack under ℓp-
norm constraint, we use coordinate-wise perturbations to probe the local landscape
to circumvent the hardness of obtaining the gradient with respect to transformation
parameters.

d.6.4 Baseline Details

Here we provide additional about the baselines used in the comparison with TSS.
DeepG [8] is based on linear relaxations. The code is open-sourced, and we utilize

it to provide a direct comparison. The code provides trained models on MNIST and
CIFAR-10, while on ImageNet the method is too slow and memory-consuming to run.
On both MNIST and CIFAR-10, we use the provided trained models from the code. In
terms of computation time, since our approach uses far less than 1000 s for certification
per input on MNIST and CIFAR-10, we tune the hyperparameters to let the code spend
roughly 1000 s for the certification.

Interval [202] is based on interval bound propagation. We also utilize the open-source
code to provide a direct comparison. The settings are the same as in DeepG.

VeriVis [171] provides an enumeration-based solution when the number of possible
transformation parameters or the number of possible transformed images is finite. In
our evaluation, only translation satisfies this property. Therefore, as the baseline, we
implement the enumeration-based robustness certification algorithm for our trained
robust models.

Semantify-NN [156] proposes to insert a preprocessing layer with the goal of re-
ducing the problem of verification against semantic transformations to the problem of
verification against classical ℓp noise. To our knowledge, the code has not been open-
sourced yet. Therefore, we directly compare with the numbers reported in their paper.
Since they report the average of certified robust magnitude, we apply Markov’s in-
equality to obtain an upper bound of their certified robust accuracy. For example, they
report 46.24 degrees as the average certified robust rotation angles. This means that
P[r ⩾ 50◦] ⩽ E[r]/50 = 92.48%, i.e., the certified robust accuracy is no larger than
92.48% when fixing the rotation angle to be 50◦. For brightness and contrast changes,
Semantify-NN considers first applying the change and then clipping to [0, 1], while our
TSS considers only brightness and contrast changes. This makes a one-to-one compar-
ison with [156] difficult, but since other baselines (e.g., [8]) consider the same setting
as we do, and to align with most baselines, we slightly sacrifice comparability in this
special case. For interested readers who would like to have an absolutely fair compar-
ison with Semantify-NN on brightness and contrast changes, they can extend our TSS

by modeling Semantify-NN’s tranformation by ϕBC(x, (b, c)) ◦ ϕclip(x, tl, th), where
ϕclip clips the pixel intensities lower than tl and higher than th. Applying TSS-R on
transformation parameters (b, c, tl, th) then derives the robustness certification under
the same threat model as Semantify-NN.

DistSPT [65] combines randomized smoothing and interval bound propagation to
provide certified robustness against semantic transformations. Concretely, the approach
leverages interval bound propagation to compute the upper bound of interpolation er-
ror and then applies randomized smoothing. On small datasets such as MNIST and
CIFAR-10, the approach is able to provide nontrivial robustness certification. Neverthe-
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less, the certified robust accuracy is lower than TSS as shown in Table 5. We use their
reported numbers in [65, Table 4] for DistSPTx for comparison, since the certification
goal and evaluation protocol are the same as ours. On ImageNet, as described in [65,
Section 7.4], the interval bound propagation is computationally expensive and loose.
Therefore, they use sampling to estimate the interpolation error, which makes the ro-
bustness certification no longer hold against arbitrary attacks but just a certain random
attack (“worst-of-10” attack).

IndivSPT [65] provides a different certification goal from the above approaches. At a
high level, the approach uses a transformed image as the input where the transforma-
tion parameter is within a predefined threshold. Then the approach certifies whether
the prediction for the transformed image and the prediction for the original image are
the same. In contrast, TSS and other baseline approaches take the original image as
the input and certify whether there exists no transformed image that can mislead the
model. Due to these different certification goals, TSS is not comparable with IndivSPT.

d.6.5 Additional Results

d.6.5.1 Benign Accuracy

In Table 18 we show the benign accuracy of our models corresponding to Table 5. For
comparison, the vanilla trained models have benign accuracy 98.6% on MNIST, 88.6%
on CIFAR-10, and 74.4% on ImageNet. We observe that, even though the trade-off be-
tween accuracy and (certified) robustness is widely reported both theoretically [154,
264, 272] and empirically (e.g., [39, 106, 271]) for the classical ℓp threat models, this
trade-off does not always exist in the semantic defense setting. Specifically, for resolv-
able transformations, we do not observe an apparent loss of benign accuracy for our
certifiably robust models; while for differentially resolvable transformations (i. e., those
involving scaling and rotation), there is no loss in accuracy on MNIST, slight losses on
CIFAR-10, and apparent losses on ImageNet. In cases where there does exist a trade-off
between benign accuracy and certified robust accuracy, we show in Section D.6.5.6 that
this is largely controlled by the smoothing variance.

d.6.5.2 Smoothing Distributions and Running Time Statistics

In Table 19 and Table 20, we present the smoothing distributions with specific param-
eters and average certification computing time per sample. This accompanies the re-
sults present in Table 5. In the tables, α corresponds to the squared kernel radius for
Gaussian blur; ∆x and ∆y correspond to translation displacement on horizontal and
vertical direction; b and c are for brightness shift and contrast change respectively as in
x 7→ (1+ c)x+ b; r is for rotation angle; s is for size scaling ratio; ε is for additive noise
vector; and ∥δ∥2 for ℓ2 norm of permitted additional perturbations. Specifically, “Train-
ing Distribution” corresponds to the distributions used for data augmentation during
training of the base classifiers; “Smoothing Distribution” on the other hand stands for
the distributions used for the smoothed classifiers during certification. We select these
distributions according to the principles outlined in Section D.6.1.
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Table 18: Benign accuracy of our TSS models corresponding to those in Table 5. Certified robust
accuracy shown as reference.

Transformation Dataset Attack Radius
Certified Robust

Accuracy
Benign

Accuracy

Gaussian Blur
MNIST Squared Radius α ⩽ 36 90.6% 96.8%

CIFAR-10 Squared Radius α ⩽ 16 63.6% 76.2%

ImageNet Squared Radius α ⩽ 36 51.6% 59.2%

Translation
(Reflection Pad.)

MNIST
√
∆x2 +∆y2 ⩽ 8 99.6% 99.6%

CIFAR-10

√
∆x2 +∆y2 ⩽ 20 80.8% 87.0%

ImageNet
√
∆x2 +∆y2 ⩽ 100 50.0% 73.0%

Brightness
MNIST b± 50% 98.2% 98.2%

CIFAR-10 b± 40% 87.0% 87.8%

ImageNet b± 40% 70.0% 72.2%

Contrast
and

Brightness

MNIST c± 50%,b± 50% 97.6% 98.0%

CIFAR-10 c± 40%,b± 40% 82.4% 86.8%

ImageNet c± 40%,b± 40% 61.4% 72.2%

Gaussian Blur,
Translation, Bright-
ness, and Contrast

MNIST α ⩽ 1, c,b± 10%,
√
∆x2 +∆y2 ⩽ 5 90.2% 98.2%

CIFAR-10 α ⩽ 1, c,b± 10%,
√
∆x2 +∆y2 ⩽ 5 58.2% 77.6%

ImageNet α ⩽ 10, c,b± 20%,
√
∆x2 +∆y2 ⩽ 10 32.8% 61.6%

Rotation

MNIST r± 50◦ 97.4% 99.4%

CIFAR-10

r± 10◦ 70.6% 83.2%

r± 30◦ 63.6% 82.6%

ImageNet r± 30◦ 30.4% 46.2%

Scaling
MNIST s± 30% 99.0% 99.4%

CIFAR-10 s± 30% 58.8% 79.8%

ImageNet s± 30% 26.4% 50.8%

Rotation
and

Brightness

MNIST r± 50◦,b± 20% 97.0% 99.4%

CIFAR-10

r± 10◦,b± 10% 70.2% 83.0%

r± 30◦,b± 20% 61.4% 82.6%

ImageNet r± 30◦,b± 20% 26.8% 45.8%

Scaling
and

Brightness

MNIST s± 50%,b± 50% 96.6% 99.4%

CIFAR-10 s± 30%,b± 30% 54.2% 79.6%

ImageNet s± 30%,b± 30% 23.4% 50.8%

Rotation,
Brightness,

and ℓ2

MNIST r± 50◦,b± 20%, ∥δ∥2 ⩽ .05 96.6% 99.4%

CIFAR-10

r± 10◦,b± 10%, ∥δ∥2 ⩽ .05 64.2% 83.0%

r± 30◦,b± 20%, ∥δ∥2 ⩽ .05 55.2% 82.6%

ImageNet r± 30◦,b± 20%, ∥δ∥2 ⩽ .05 26.6% 45.8%

Scaling,
Brightness,

and ℓ2

MNIST s± 50%,b± 50%, ∥δ∥2 ⩽ .05 96.4% 99.4%

CIFAR-10 s± 30%,b± 30%, ∥δ∥2 ⩽ .05 51.2% 79.6%

ImageNet s± 30%,b± 30%, ∥δ∥2 ⩽ .05 22.6% 50.8%
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Table 19: Detailed smoothing distributions and running time statistics for TSS. N(µ,Σ) is the
normal distribution, exp(λ) is the exponential distribution, U([a,b]) is the uniform
distribution. The random variable ϵ is elementwise noise as in Corollary 4. “Cert.”
means certification.

Transformation Dataset Attack Radius Training Distribution Smoothing Distribution
Avg. Cert.

Time per Sample

Gaussian Blur
MNIST Squared Radius α ⩽ 36 α ∼ Exp(1/10) 7.9 s

CIFAR-10 Squared Radius α ⩽ 16 α ∼ Exp(1/5) 30.9 s

ImageNet Squared Radius α ⩽ 36 α ∼ Exp(1/10) 45.7 s

Translation
(Reflection Pad.)

MNIST
√
∆x2 +∆y2 ⩽ 8 (∆x,∆y) ∼ N(0, 102I) 10.2 s

CIFAR-10

√
∆x2 +∆y2 ⩽ 20 (∆x,∆y) ∼ N(0, 152I) 39.4 s

ImageNet
√
∆x2 +∆y2 ⩽ 100 (∆x,∆y) ∼ N(0, 302I) 161.9 s

Brightness
MNIST b± 50% b ∼ N(0, 0.62) 2.1 s

CIFAR-10 b± 40% b ∼ N(0, 0.32) 4.4 s

ImageNet b± 40% b ∼ N(0, 0.42) 45.1 s

Contrast
and

Brightness

MNIST c± 50%,b± 50% (c,b) ∼ N(0, 0.62I) (c,b) ∼ N(0, 1.02I) 9.8 s

CIFAR-10 c± 40%,b± 40% (c,b) ∼ N(0, 0.42I) (c,b) ∼ N(0, 0.62I) 45.0 s

ImageNet c± 40%,b± 40% (c,b) ∼ N(0, 0.42I) 325.6 s

Gaussian Blur,
Translation, Bright-
ness, and Contrast

MNIST
α ⩽ 5, c,b± 10%,√
∆x2 +∆y2 ⩽ 5

α ∼ Exp(1/10)
α ∼ Exp(1/10)

(∆x,∆y) ∼ N(0, 102I)
(c,b) ∼ N(0, 0.32I)

12.9 s
(∆x,∆y) ∼ N(0, 102I)

(c,b) ∼ N(0, 0.32I)

ϵ ∼ N(0, 0.052I)

CIFAR-10

α ⩽ 1, c,b± 10%,√
∆x2 +∆y2 ⩽ 5

α ∼ Exp(1)
α ∼ Exp(1)

(∆x,∆y) ∼ N(0, 102I)
(c,b) ∼ N(0, 0.32I)

43.1 s
(∆x,∆y) ∼ N(0, 102I)

(c,b) ∼ N(0, 0.32I)

ϵ ∼ N(0, 0.012I)

ImageNet
α ⩽ 10, c,b± 20%,√
∆x2 +∆y2 ⩽ 10

α ∼ Exp(1/5)
α ∼ Exp(1/5)

(∆x,∆y) ∼ N(0, 202I)
(c,b) ∼ N(0, 0.42I)

238.1 s
(∆x,∆y) ∼ N(0, 202I)

(c,b) ∼ N(0, 0.42I)

ϵ ∼ N(0, 0.012I)
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Table 20: Detailed smoothing distributions and running time statistics for TSS. N(µ,Σ) is the
normal distribution, exp(λ) is the exponential distribution, U([a,b]) is the uniform
distribution. The random variable ϵ is elementwise noise as in Corollary 4. “Cert.”
means certification.

Transformation Dataset Attack Radius Training Distribution Smoothing Distribution
Avg. Cert.

Time per Sample

Rotation
and

Brightness

MNIST r± 50◦,b± 20%
r ∼ U([−55, 55])

ϵ ∼ N(0, 0.122I)
b ∼ N(0, 0.22)

31.4 sϵ ∼ N(0, 0.122I)

b ∼ N(0, 0.22)

CIFAR-10

r± 10◦,b± 10%
r ∼ U([−12.5, 12.5])

ϵ ∼ N(0, 0.052I)
b ∼ N(0, 0.22)

62.3 sϵ ∼ N(0, 0.052I)

b ∼ N(0, 0.22)

r± 30◦,b± 20%
r ∼ U([−35, 35])

ϵ ∼ N(0, 0.052I)
b ∼ N(0, 0.22)

157.0 sϵ ∼ N(0, 0.052I)

b ∼ N(0, 0.22)

ImageNet r± 30◦,b± 20%
r ∼ U([−35, 35])

ϵ ∼ N(0, 0.52I)
b ∼ N(0, 0.22)

2475.6 sϵ ∼ N(0, 0.52I)

b ∼ N(0, 0.22)

Scaling
and

Brightness

MNIST s± 50%,b± 50%
s ∼ U([0.45, 1.55])

ϵ ∼ N(0, 0.122I)
b ∼ N(0, 0.52)

74.9 sϵ ∼ N(0, 0.122I)

b ∼ N(0, 0.52)

CIFAR-10 s± 30%,b± 30%
s ∼ U([0.65, 1.35])

ϵ ∼ N(0, 0.122I)
b ∼ N(0, 0.32)

44.5 sϵ ∼ N(0, 0.122I)

b ∼ N(0, 0.32)

ImageNet s± 30%,b± 30%
s ∼ U([0.65, 1.35])

ϵ ∼ N(0, 0.52I)
b ∼ N(0, 0.32)

1401.6 sϵ ∼ N(0, 0.52I)

b ∼ N(0, 0.32)

Rotation

MNIST r± 50◦
Same as

Rotation and
Brightness

ϵ ∼ N(0, 0.122I) 20.1 s

CIFAR-10

r± 10◦ ϵ ∼ N(0, 0.052I) 52.8 s

r± 30◦ ϵ ∼ N(0, 0.052I) 141.0 s

ImageNet r± 30◦ ϵ ∼ N(0, 0.52I) 2358.1 s

Scaling
MNIST s± 30% Same as

Scaling and
Brightness

ϵ ∼ N(0, 0.122I) 17.7 s

CIFAR-10 s± 30% ϵ ∼ N(0, 0.122I) 42.2 s

ImageNet s± 30% ϵ ∼ N(0, 0.52I) 1201.2 s

Rotation,
Brightness,

and ℓ2

MNIST r± 50◦,b± 20%, ∥δ∥2 ⩽ .05
Same as

Rotation and
Brightness

Same as
Rotation and

Brightness

35.1 s

CIFAR-10

r± 10◦,b± 10%, ∥δ∥2 ⩽ .05 132.5 s

r± 30◦,b± 20%, ∥δ∥2 ⩽ .05 520.2 s

ImageNet r± 30◦,b± 20%, ∥δ∥2 ⩽ .05 3463.8 s

Scaling,
Brightness,

and ℓ2

MNIST s± 50%,b± 50%, ∥δ∥2 ⩽ .05 Same as
Scaling and
Brightness

Same as
Scaling and
Brightness

75.1 s

CIFAR-10 s± 30%,b± 30%, ∥δ∥2 ⩽ .05 50.0 s

ImageNet s± 30%,b± 30%, ∥δ∥2 ⩽ .05 1657.7 s
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d.6.5.3 Comparison of Random Attack and Adaptive Attacks

In Table 5, we compare the empirical robust accuracy of vanilla models and TSS models
under random attacks and two adaptive attacks: Random+ and PGD. However, in the
main table, we have omitted the empirical accuracy of each adaptive attack and only
presented the minimum empirical accuracy among them. In Table 21, Table 22, Table 23,
Table 24, and Table 25, Table 26, we present the detailed empirical accuracy for each at-
tack under different number of initial starts N = 10, 20, 50, and 100. The results are
shown for all transformations on MNIST, CIFAR-10, and ImageNet. Note that Table 5

shows the empirical accuracy with N = 100 for all attacks. From these three tables, we
cross-validate the findings shown in the main part of this thesis. Namely, the adaptive
attack decreases the empirical accuracy of TSS models slightly, while it decreases that
of vanilla models more. Moreover, when comparing these three attacks, we find that
with a small number of initial starts (e.g., N = 10), the PGD attack is typically the most
powerful. However, with a large number of initial starts (e.g., N = 100), the Random+
attack sometimes becomes better. We conjecture that the optimization goal of the PGD
attack—maximization of cross-entropy loss—might be sub-optimal in terms of increas-
ing the misclassification rate. Thus, with a small number of initial starts, PGD is better
than Random/Random+ attack due to the iterative ascending. However, with a large
number of initial starts, both PGD and Random+ attack can sufficiently explore the ad-
versarial region, and PGD may be misled by the optimization goal to a benign region.
We believe it is interesting future work to study these intriguing properties of semantic
attacks.

d.6.5.4 Empirical Robustness on CIFAR-10-C and ImageNet-C

In Section 7.6.2.4, we have shown that TSS generalizes to defend against unknown phys-
ical attacks by evaluating on CIFAR-10-C and ImageNet-C. Here, we first introduce the
detailed evaluation protocol, then a breakdown of the result in Table 6 and show the
empirical accuracy on each type of corruption.

evaluated models On either CIFAR-10-C and ImageNet-C, we choose three mod-
els for evaluation: the vanilla model, the AugMix [92] trained model, and our TSS

model for defending the composition of Gaussian blur, translation, brightness, and
contrast. The vanilla models and TSS models are the same models as used in the main
experiments. AugMix is the state-of-the-art empirical defense on the CIFAR-10-C and
ImageNet-C dataset according to [43]. For AugMix, on CIFAR-10-C, since the model
weights are not released, we use the official implementation of AugMix 1 and extend
the code to support our used model architecture (ResNet-110) for a fair comparison. We
run the code with the suggested hyperparameters and achieve similar performance as
reported in their paper. On ImageNet-C, we directly use the officially released model
weights. The model has the same architecture (ResNet-50) as ours so the comparison
is naturally fair. Note that all these models are trained only on the clean CIFAR-10 or
ImageNet training set.

empirical accuracy computation We compute the empirical accuracy (on
CIFAR-10-C/ImageNet-C) as the ratio of correctly predicted samples among the test

1 See https://github.com/google-research/augmix

https://github.com/google-research/augmix
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Table 21: Comparison between empirical robust accuracy against random and adaptive attacks
and certified robust accuracy on MNIST. The attack radii are consistent with Table 5.
The most powerful attack in each setting is highlighted in bold font. Random+ and
PGD attacks are adaptive. Note that PGD attack cannot apply to translation transfor-
mation because the parameter space is discrete.

Transformation Attack
Radius Model Attack

Empirical Robust Accuracy Certified
robust Accuracy

N = 10 N = 20 N = 50 N = 100

Gaussian
Blur

Squared
Radius
α ⩽ 36

TSS
Random 93.2% 92.2% 92.0% 91.4%

90.6%Random+ 92.4% 92.2% 91.2% 91.2%

PGD 91.6% 91.6% 91.6% 91.6%

Vanilla
Random 14.0% 12.4% 12.2% 12.2%

-Random+ 12.4% 12.4% 12.2% 12.2%

PGD 12.2% 12.2% 12.2% 12.2%

Translation
(Reflection Pad.)

√
∆x2 +∆y2

⩽ 8

TSS
Random 99.6% 99.6% 99.6% 99.6%

99.6%Random+ 99.6% 99.6% 99.6% 99.6%

PGD - - - -

Vanilla
Random 0.0% 0.0% 0.0% 0.0%

-Random+ 0.0% 0.0% 0.0% 0.0%

PGD - - - -

Brightness b± 50%

TSS
Random 98.2% 98.2% 98.2% 98.2%

98.2%Random+ 98.2% 98.2% 98.2% 98.2%

PGD 98.2% 98.2% 98.2% 98.2%

Vanilla
Random 97.2% 96.6% 96.6% 96.6%

-Random+ 96.8% 96.6% 96.6% 96.6%

PGD 96.6% 96.6% 96.6% 96.6%

Contrast
and

Brightness

c± 50%,
b± 50%

TSS
Random 98.0% 98.0% 98.0% 98.0%

97.6%Random+ 98.0% 98.0% 98.0% 98.0%

PGD 98.0% 98.0% 98.0% 98.0%

Vanilla
Random 96.8% 95.8% 95.0% 94.6%

-Random+ 95.8% 94.4% 93.8% 93.6%

PGD 93.6% 93.4% 93.2% 93.2%

Gaussian Blur,
Translation
Contrast,

and Brightness

α ⩽ 5,
c± 10%,
b± 10%,√
∆x2 +∆y2

⩽ 5

TSS
Random 97.6% 97.6% 97.6% 97.2%

90.2%Random+ 97.6% 97.2% 97.0% 97.0%

PGD 97.4% 97.4% 97.2% 97.0%

Vanilla
Random 10.0% 4.4% 1.4% 0.4%

-Random+ 6.8% 2.4% 1.2% 0.4%

PGD 7.0% 1.4% 0.8% 0.4%

Rotation r± 50◦

TSS
Random 98.6% 98.4% 98.2% 98.4%

97.4%Random+ 98.6% 98.6% 98.4% 98.2%

PGD 98.2% 98.4% 98.4% 98.2%

Vanilla
Random 27.2% 17.4% 13.8% 12.2%

-Random+ 15.4% 13.0% 11.0% 11.0%

PGD 16.4% 15.6% 15.4% 15.2%
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Table 22: Comparison between empirical robust accuracy against random and adaptive attacks
and certified robust accuracy on MNIST. The attack radii are consistent with Table 5.
The most powerful attack in each setting is highlighted in bold font. Random+ and
PGD attacks are adaptive. Note that PGD attack cannot apply to translation transfor-
mation because the parameter space is discrete.

Transformation Attack
Radius Model Attack

Empirical Robust Accuracy Certified
robust Accuracy

N = 10 N = 20 N = 50 N = 100

Scaling s± 30%

TSS
Random 99.2% 99.2% 99.2% 99.2%

97.2%Random+ 99.2% 99.2% 99.2% 99.2%

PGD 99.2% 99.2% 99.2% 99.2%

Vanilla
Random 92.0% 91.4% 90.2% 90.2%

-Random+ 90.0% 89.4% 89.2% 89.2%

PGD 90.4% 90.2% 90.2% 90.2%

Rotation
and

Brightness

r± 50%,
b± 20%

TSS
Random 98.8% 98.4% 98.2% 98.2%

97.0%Random+ 98.6% 98.2% 98.0% 98.2%

PGD 98.2% 98.0% 98.0% 98.0%

Vanilla
Random 28.8% 17.8% 12.6% 11.0%

-Random+ 16.6% 11.6% 10.4% 10.4%

PGD 13.4% 13.6% 13.0% 12.6%

Scaling
and

Brightness

s± 50%,
b± 50%

TSS
Random 98.6% 98.6% 98.4% 97.8%

96.6%Random+ 98.4% 98.0% 97.8% 97.8%

PGD 98.2% 97.8% 97.8% 97.8%

Vanilla
Random 57.4% 46.0% 31.0% 24.8%

-Random+ 40.4% 28.0% 19.8% 15.6%

PGD 29.0% 25.2% 25.0% 24.0%

Rotation,
Brightness,

and ℓ2

r± 50%,
b± 20%,
∥δ∥2 ⩽ .05

TSS
Random 98.2% 97.8% 97.6% 97.6%

96.6%Random+ 98.4% 98.0% 97.8% 97.6%

PGD 97.6% 97.6% 97.6% 97.4%

Vanilla
Random 27.6% 17.2% 11.4% 10.8%

-Random+ 15.2% 11.2% 9.4% 9.0%

PGD 13.4% 11.8% 12.0% 11.8%

Scaling,
Brightness,

and ℓ2

s± 50%,
b± 50%,
∥δ∥2 ⩽ .05

TSS
Random 98.4% 98.4% 97.6% 97.6%

96.4%Random+ 97.8% 97.8% 97.6% 97.6%

PGD 97.8% 97.6% 97.6% 97.6%

Vanilla
Random 50.4% 38.2% 28.2% 22.2%

-Random+ 34.4% 23.2% 13.4% 12.2%

PGD 23.4% 22.0% 21.6% 20.8%



234 additional results from transformation-specific smoothing for robustness certification

Table 23: Comparison between empirical robust accuracy against random and adaptive attacks
and certified robust accuracy on CIFAR-10. The attack radii are consistent with Table 5.
The most powerful attack in each setting is highlighted in bold font. Random+ and
PGD attacks are adaptive. Note that the PGD attack cannot apply to translation trans-
formation because the parameter space is discrete.

Transformation Attack
Radius Model Attack

Empirical Robust Accuracy Certified
robust Accuracy

N = 10 N = 20 N = 50 N = 100

Gaussian
Blur

Squared
Radius
α ⩽ 16

TSS
Random 66.4% 66.4% 65.8% 65.8%

63.6%Random+ 66.8% 66.0% 65.8% 65.8%

PGD 65.8% 65.8% 65.8% 65.8%

Vanilla
Random 4.8% 4.2% 3.4% 3.4%

-Random+ 4.6% 4.0% 3.6% 3.4%

PGD 3.4% 3.4% 3.4% 3.4%

Translation
(Reflection Pad.)

√
∆x2 +∆y2

⩽ 20

TSS
Random 86.2% 86.0% 86.2% 86.2%

80.8%Random+ 86.4% 86.0% 86.0% 86.0%

PGD - - - -

Vanilla
Random 8.0% 7.0% 4.4% 4.2%

-Random+ 8.2% 7.2% 4.2% 4.2%

PGD - - - -

Brightness b± 40%

TSS
Random 87.2% 87.2% 87.4% 87.2%

87.0%Random+ 87.0% 87.0% 87.0% 87.4%

PGD 87.4% 87.4% 87.4% 87.4%

Vanilla
Random 57.8% 51.2% 45.8% 44.4%

-Random+ 49.8% 44.2% 42.8% 42.6%

PGD 52.4% 51.0% 50.8% 50.8%

Contrast
and

Brightness

c± 40%,
b± 40%

TSS
Random 86.2% 86.2% 86.2% 86.0%

82.4%Random+ 85.8% 86.2% 86.0% 85.8%

PGD 85.8% 85.8% 85.8% 85.8%

Vanilla
Random 48.0% 40.0% 27.2% 21.0%

-Random+ 32.0% 23.2% 14.8% 9.6%

PGD 17.0% 13.0% 12.2% 11.8%

Gaussian Blur,
Translation,

Contrast,
and Brightness

α ⩽ 1,
c± 10%,
b± 10%,√
∆x2 +∆y2

⩽ 5

TSS
Random 71.0% 69.2% 68.0% 67.6%

58.2%Random+ 70.6% 69.8% 68.4% 67.8%

PGD 69.8% 69.8% 69.0% 68.0%

Vanilla
Random 21.2% 16.6% 12.0% 9.6%

-Random+ 18.6% 14.2% 9.0% 7.2%

PGD 12.8% 9.8% 6.8% 5.6%

Rotation

r± 10◦

TSS
Random 78.0% 77.0% 76.8% 76.6%

70.6%Random+ 77.4% 76.8% 76.4% 76.4%

PGD 76.8% 76.8% 76.8% 76.6%

Vanilla
Random 69.2% 68.0% 65.6% 65.6%

-Random+ 68.4% 67.2% 66.0% 65.6%

PGD 66.4% 66.0% 65.6% 65.4%

r± 30◦

TSS
Random 71.8% 70.2% 69.8% 69.2%

63.6%Random+ 71.0% 69.4% 69.2% 69.4%

PGD 70.4% 70.0% 70.0% 69.8%

Vanilla
Random 31.6% 27.4% 22.6% 21.6%

-Random+ 32.2% 27.2% 23.8% 21.4%

PGD 25.2% 23.8% 23.2% 23.2%
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Table 24: Comparison between empirical robust accuracy against random and adaptive attacks
and certified robust accuracy on CIFAR-10. The attack radii are consistent with Table 5.
The most powerful attack in each setting is highlighted in bold font. Random+ and
PGD attacks are adaptive. Note that the PGD attack cannot apply to translation trans-
formation because the parameter space is discrete.

Transformation Attack
Radius Model Attack

Empirical Robust Accuracy Certified
robust Accuracy

N = 10 N = 20 N = 50 N = 100

Scaling s± 30%

TSS
Random 69.6% 67.8% 67.8% 67.2%

58.8%Random+ 69.2% 68.4% 67.4% 67.0%

PGD 67.8% 67.6% 67.2% 67.0%

Vanilla
Random 60.0% 54.6% 52.8% 51.6%

-Random+ 56.6% 53.8% 52.2% 51.2%

PGD 53.2% 52.4% 52.0% 52.0%

Rotation
and

Brightness

r± 10◦,
b± 10%

TSS
Random 77.2% 76.8% 77.0% 76.6%

70.6%Random+ 77.2% 76.6% 76.4% 76.0%

PGD 76.6% 76.6% 76.4% 76.4%

Vanilla
Random 67.2% 64.8% 60.6% 59.4%

-Random+ 66.0% 63.0% 59.4% 57.8%

PGD 57.8% 57.6% 57.0% 56.8%

r± 30◦,
b± 20%

TSS
Random 72.0% 70.2% 68.8% 68.4%

61.4%Random+ 70.6% 68.8% 68.0% 68.2%

PGD 69.2% 68.6% 68.6% 68.6%

Vanilla
Random 26.6% 20.2% 15.8% 13.0%

-Random+ 18.8% 16.0% 11.6% 9.4%

PGD 12.2% 10.4% 9.2% 9.0%

Scaling
and

Brightness

s± 30%,
b± 30%

TSS
Random 68.6% 68.6% 67.4% 67.2%

54.2%Random+ 68.4% 68.0% 67.0% 66.8%

PGD 67.4% 67.4% 66.8% 66.8%

Vanilla
Random 39.2% 30.6% 20.0% 17.4%

-Random+ 30.4% 19.4% 15.4% 11.6%

PGD 16.0% 14.4% 13.0% 13.0%

Rotation,
Brightness,

and ℓ2

r± 10◦,
b± 10%,
∥δ∥2 ⩽ .05

TSS
Random 74.2% 72.8% 71.8% 71.6%

64.2%Random+ 72.8% 72.2% 71.8% 71.2%

PGD 71.6% 71.6% 71.6% 71.6%

Vanilla
Random 40.4% 35.8% 34.4% 31.8%

-Random+ 36.4% 34.6% 30.8% 29.6%

PGD 36.0% 35.0% 34.6% 34.6%

r± 30◦,
b± 20%,
∥δ∥2 ⩽ .05

TSS
Random 67.6% 66.2% 64.8% 65.2%

55.2%Random+ 65.6% 65.6% 65.2% 64.4%

PGD 65.2% 64.6% 64.0% 64.0%

Vanilla
Random 7.6% 5.4% 2.6% 0.8%

-Random+ 3.8% 2.4% 1.2% 0.4%

PGD 1.2% 0.6% 0.6% 0.6%

Scaling,
Brightness,

and ℓ2

s± 30%,
b± 30%,
∥δ∥2 ⩽ .05

TSS
Random 67.6% 66.8% 65.2% 65.0%

51.2%Random+ 66.0% 66.2% 64.6% 64.4%

PGD 64.2% 62.2% 61.8% 61.8%

Vanilla
Random 15.6% 11.4% 5.8% 4.4%

-Random+ 8.2% 5.0% 2.0% 2.0%

PGD 3.8% 2.8% 2.8% 2.6%
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Table 25: Comparison between empirical robust accuracy against random and adaptive attacks
and certified robust accuracy on ImageNet. The attack radii are consistent with Table 5.
The most powerful attack in each setting is highlighted in bold font. Random+ and
PGD attacks are adaptive. Note that PGD attack cannot apply to translation transfor-
mation because the parameter space is discrete.

Transformation Attack
Radius Model Attack

Empirical Robust Accuracy Certified
robust Accuracy

N = 10 N = 20 N = 50 N = 100

Gaussian
Blur

Squared
Radius
α ⩽ 36

TSS
Random 53.2% 52.8% 52.8% 52.8%

51.6%Random+ 53.2% 52.8% 52.8% 52.8%

PGD 52.8% 52.8% 52.8% 52.6%

Vanilla
Random 9.6% 8.6% 8.4% 8.4%

-Random+ 8.8% 8.2% 8.2% 8.2%

PGD 8.4% 8.2% 8.2% 8.2%

Translation
(Reflection Pad.)

√
∆x2 +∆y2

⩽ 100

TSS
Random 70.0% 69.6% 69.2% 69.2%

50.0%Random+ 69.4% 69.2% 69.2% 69.2%

PGD - - - -

Vanilla
Random 55.8% 53.4% 48.8% 46.6%

-Random+ 57.2% 54.6% 50.6% 46.2%

PGD - - - -

Brightness b± 40%

TSS
Random 70.8% 70.4% 70.4% 70.4%

70.0%Random+ 70.4% 70.4% 70.4% 70.4%

PGD 70.4% 70.4% 70.4% 70.4%

Vanilla
Random 31.6% 26.6% 21.6% 19.6%

-Random+ 22.8% 19.8% 18.4% 18.4%

PGD 22.0% 22.4% 21.8% 21.8%

Contrast
and

Brightness

c± 40%,
b± 40%

TSS
Random 70.4% 69.2% 68.4% 68.4%

61.4%Random+ 69.2% 68.8% 68.4% 68.4%

PGD 68.4% 68.4% 68.4% 68.4%

Vanilla
Random 20.8% 10.4% 3.6% 1.2%

-Random+ 8.0% 2.0% 0.4% 0.0%

PGD 1.8% 0.2% 0.0% 0.0%

Gaussian Blur,
Translation
Contrast,

and Brightness

α ⩽ 10,
c± 20%,
b± 20%,√
∆x2 +∆y2

⩽ 10

TSS
Random 51.8% 50.2% 49.2% 48.8%

32.8%Random+ 51.4% 49.6% 48.0% 48.2%

PGD 49.6% 49.6% 48.2% 47.4%

Vanilla
Random 20.6% 17.4% 12.0% 9.4%

-Random+ 15.2% 12.8% 7.8% 6.6%

PGD 11.2% 8.0% 6.0% 4.0%

Rotation r± 30%

TSS
Random 40.2% 38.4% 38.4% 37.8%

30.4%Random+ 39.0% 38.6% 38.0% 37.8%

PGD 40.4% 39.8% 39.8% 39.4%

Vanilla
Random 47.8% 44.4% 41.4% 40.0%

-Random+ 45.0% 43.6% 40.6% 38.8%

PGD 39.6% 38.4% 37.8% 37.0%
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Table 26: Comparison between empirical robust accuracy against random and adaptive attacks
and certified robust accuracy on ImageNet. The attack radii are consistent with Table 5.
The most powerful attack in each setting is highlighted in bold font. Random+ and
PGD attacks are adaptive. Note that PGD attack cannot apply to translation transfor-
mation because the parameter space is discrete.

Transformation Attack
Radius Model Attack

Empirical Robust Accuracy Certified
robust Accuracy

N = 10 N = 20 N = 50 N = 100

Scaling s± 30%

TSS
Random 40.2% 38.0% 37.4% 37.4%

26.4%Random+ 38.8% 37.2% 36.8% 36.4%

PGD 39.0% 37.8% 37.6% 37.8%

Vanilla
Random 55.2% 53.0% 51.2% 50.0%

-Random+ 55.6% 52.8% 50.6% 50.0%

PGD 50.6% 49.8% 49.4% 49.8%

Rotation
and

Brightness
r± 30◦
b± 20%

TSS
Random 38.8% 38.0% 37.2% 37.4%

26.8%Random+ 39.0% 38.2% 37.0% 36.8%

PGD 39.6% 39.4% 38.6% 38.8%

Vanilla
Random 40.4% 35.4% 29.2% 22.4%

-Random+ 35.2% 31.2% 25.2% 21.2%

PGD 25.0% 23.2% 22.2% 21.4%

Scaling
and

Brightness

s± 30%,
b± 30%

TSS
Random 40.2% 38.0% 36.4% 36.4%

23.4%Random+ 38.0% 37.0% 36.6% 36.0%

PGD 37.0% 37.0% 36.6% 36.6%

Vanilla
Random 34.4% 26.2% 19.4% 16.0%

-Random+ 21.0% 15.0% 12.4% 8.8%

PGD 17.6% 15.2% 13.8% 13.4%

Rotation,
Brightness,

and ℓ2

r± 30◦,
b± 20%,
∥δ∥2 ⩽ .05

TSS
Random 39.4% 38.2% 37.8% 37.0%

26.6%Random+ 38.2% 37.8% 36.6% 36.4%

PGD 38.8% 38.8% 38.4% 38.0%

Vanilla
Random 26.0% 23.2% 19.8% 17.6%

-Random+ 21.4% 18.4% 16.0% 14.4%

PGD 16.6% 14.6% 14.2% 14.0%

Scaling,
Brightness,

and ℓ2

s± 30%,
b± 30%,
∥δ∥2 ⩽ .05

TSS
Random 40.2% 38.2% 37.2% 36.0%

22.6%Random+ 38.0% 36.4% 35.8% 35.6%

PGD 36.8% 36.4% 36.4% 36.0%

Vanilla
Random 24.4% 17.2% 11.4% 7.4%

-Random+ 13.8% 8.4% 5.8% 4.8%

PGD 9.8% 8.8% 7.4% 7.4%
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Table 27: Comparison of Empirical Accuracy for each corruption evaluated from the highest
severity level (5) of CIFAR-10-C and ImageNet-C.

Corruption CIFAR-10 ImageNet

Category Type Vanilla AugMix [92] TSS Vanilla AugMix [92] TSS

Weather Snow 68.2% 75.6% 69.4% 16.0% 22.6% 13.8%

Fog 63.4% 65.4% 62.0% 24.0% 22.2% 18.0%

Frost 59.2% 67.8% 73.8% 21.6% 24.8% 22.6%

Brightness 82.4% 82.4% 71.8% 56.8% 56.6% 35.8%

Blur Zoom Blur 52.6% 70.8% 75.2% 21.4% 31.0% 20.4%

Glass Blur 46.6% 50.2% 72.2% 8.0% 14.0% 13.8%

Motion Blur 54.8% 68.6% 70.2% 14.2% 25.2% 11.4%

Defocus Blur 49.0% 72.2% 75.6% 14.0% 22.6% 25.6%

Noise Impulse Noise 29.8% 51.0% 46.2% 4.0% 9.8% 12.0%

Gaussian Noise 34.8% 56.4% 62.8% 4.4% 9.6% 12.8%

Shot Noise 43.0% 63.4% 62.6% 4.0% 13.0% 14.0%

Digital Pixelate 42.0% 59.0% 76.0% 19.6% 39.2% 55.6%

Elastic Transform 71.4% 65.2% 74.4% 14.8% 23.8% 23.6%

Contrast 23.8% 26.0% 49.8% 4.2% 11.6% 5.0%

JPEG Compression 70.8% 73.0% 71.8% 33.6% 45.4% 31.6%

Extra Saturate 79.6% 83.4% 63.6% 41.6% 43.4% 25.8%

Spatter 72.8% 82.0% 69.0% 22.4% 30.6% 17.6%

Speckle Noise 45.2% 64.0% 58.8% 11.4% 27.4% 23.6%

Gaussian Blur 34.6% 67.4% 75.8% 11.2% 15.2% 33.0%

Average 53.89% 65.46% 67.42% 18.27% 25.68% 21.89%
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samples, where the test samples are all corrupted at the highest severity level (level 5)
to model the strongest unforeseen semantic attacker. For each corruption type, there
is a full test set generated by 1-to-1 mapping from the original clean test set samples
processed with the corruption. Being consistent with the main experiment protocol, for
each corruption type, we uniformly pick 500 samples from the corresponding test set.
Then, we compute the average empirical accuracy among all 19 corruptions and report
it in Table 6 in main text. For reference, we also include their certified accuracy against
the composition of Gaussian blur, brightness, contrast, and translation. Since TSS pro-
vides robustness certification only for smoothed models, we apply the same smoothing
strategy as our TSS models, hoping for providing robustness certificates for baseline
models. As shown in Table 6, only TSS models can be certified with nontrivial certified
robust accuracy.

breakdown In Table 27, we show the breakdown of empirical accuracy for all mod-
els evaluated in Table 6. Note that the TSS models are trained using only four of these 19

corruptions (brightness, contrast, Gaussian blur, and additive Gaussian noise). Almost
on all the corruptions, TSS has higher accuracy than vanilla models and sometimes
higher than the state-of-the-art defense—AugMix. Interestingly, we find TSS models
have different generalization abilities on these corruptions. The additive Gaussian noise
has the best generalization ability, because TSS model also achieves much higher accu-
racy against impulse noise and shot noise than all the baselines. The Gaussian blur also
generalizes well, because we can see significantly higher accuracy of TSS models against
zoom blur, glass blur, motion blur, and defocus blur especially on CIFAR-10-C. Finally,
brightness and contrast, even though they seem to be among the simplest transforma-
tions, have the poorest generalization ability. For example, under severe corruptions,
the empirical accuracy of brightness is even below than that of vanilla models. Manual
inspection of the corrupted images showed that corrupted brightness or contrast images
are severely altered so that they are hard to be distinguished even by humans, giving a
hint for possible reasons for the poor performance on these images. We thus conjecture
that overly severe corruption could be the reason, and we think that it would be an
interesting future direction to study these different generalization abilities in depth.

d.6.5.5 Certified Accuracy for larger Certification Radii

In Figure 33 and Figure 34, on MNIST and CIFAR-10, the purple vertical dotted lines
stand for the predefined certified radii that the models aim to defend, and the blue
curves show the certified robust accuracy (y axis) with respect to attack radii (x axis).
The figures show that the TSS models that aim to defend against transformations within
certain thresholds still maintain high certified accuracy when the transformation pa-
rameters go even far beyond the preset thresholds. In Table 28, Table 29, and Table 30,
we further show the empirical robust accuracy of TSS and vanilla models when the
attacker goes beyond the predefined certified radius. The empirical robust accuracy is
computed as the minimum among all three attacks: Random, Random+, and PGD. We
observe that the empirical robust accuracy follows the same tendency. For example, on
the CIFAR-10 dataset, the TSS model is trained to defend against the rotation transfor-
mation within 30◦ where it achieves 69.2%/63.6% empirical/certified accuracy. When
the rotation angle goes up to 60◦ the model still preserves 46.8%/37.4% empirical/cer-
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Table 28: Empirical and certified robust accuracy on MNIST when attack radii go beyond the
predefined one. The predefined certified radii are consistent with 5. For the contrast
transformation we allow additional ±50% brightness change since a single Contrast
attack is not powerful enough.

Beyond Predefined Radius

Gaussian
Blur

Radius: 36 40 44 48

TSS
Empirical 91.2% 90.8% 90.4% 89.2%

Certified 90.6% 90.0% 89.6% 88.8%

Vanilla Empirical 12.2% 11.8% 11.2% 11.2%

Translation
(Reflection Pad.)

Radius: 8 10 12 14

TSS
Empirical 99.6% 99.6% 99.6% 99.6%

Certified 99.6% 99.6% 99.4% 99.0%

Vanilla Empirical 0.0% 0.0% 0.0% 0.0%

Brightness

Radius: 50% 52% 55% 60%

TSS
Empirical 98.2% 98.2% 98.2% 98.2%

Certified 98.2% 98.2% 98.2% 98.2%

Vanilla Empirical 96.6% 96.2% 95.6% 94.4%

Contrast*

Radius: 50% 52% 55% 60%

TSS
Empirical 98.0% 98.0% 98.0% 98.0%

Certified 97.6% 97.2% 96.8% 96.2%

Vanilla Empirical 93.2% 93.2% 93.2% 93.0%

Rotation

Radius: 50◦ 52◦ 55◦ 60◦

TSS
Empirical 98.2% 98.2% 98.2% 97.8%

Certified 97.4% 97.4% 97.4% 96.6%

Vanilla Empirical 11.0% 9.8% 8.4% 7.2%

Scaling

Radius: 30% 35% 40% 50%

TSS
Empirical 99.2% 98.8% 98.8% 98.6%

Certified 97.2% 96.8% 96.8% 96.0%

Vanilla Empirical 89.2% 82.6% 72.8% 45.4%
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Table 29: Empirical and certified robust accuracy on CIFAR-10 when the attack radii go beyond
the predefined one. The predefined certified radii are consistent with Table 5. For
the contrast transformation we allow additional 40% brightness change since a single
Contrast attack is not powerful enough.

Beyond Predefined Radius

Gaussian
Blur

Radius: 16 20 24 28

TSS
Empirical 65.8% 63.4% 61.2% 56.4%

Certified 63.6% 60.8% 56.0% 52.6%

Vanilla Empirical 3.4% 3.2% 3.0% 2.8%

Tranlation
(Reflection Pad.)

Radius: 20 25 30 35

TSS
Empirical 86.0% 86.0% 85.8% 85.8%

Certified 80.8% 77.4% 74.8% 70.6%

Vanilla Empirical 4.2% 3.6% 3.6% 2.8%

Brightness

Radius: 40% 45% 50% 55%

TSS
Empirical 87.2% 87.0% 87.0% 87.0%

Certified 87.0% 87.0% 87.0% 87.0%

Vanilla Empirical 42.6% 32.8% 21.2% 14.0%

Contrast*

Radius 40% 45% 50% 55%

TSS
Empirical 85.8% 85.8% 85.4% 85.2%

Certified 82.4% 80.8% 79.2% 71.8%

Vanilla Empirical 9.6% 7.8% 5.6% 4.8%

Rotation

Radius: 30◦ 40◦ 50◦ 60◦

TSS
Empirical 69.2% 64.0% 57.8% 46.8%

Certified 63.6% 57.6% 48.2% 37.4%

Vanilla Empirical 21.4% 8.8% 5.0% 3.2%

Scaling

Radius: 30% 35% 40% 50%

TSS
Empirical 67.0% 65.0% 60.6% 54.8%

Certified 58.8% 53.6% 51.0% 43.4%

Vanilla Empirical 51.2% 43.0% 34.8% 21.2%
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Table 30: Empirical and certified robust accuracy on ImageNet when attack radii go beyond the
predefined one. The predefined certified radii are consistent with Table 5. For Con-
trast/Rotation/Scaling we allow additional ±40%/±20%/±30% brightness change
since a single Contrast/Rotation/Scaling attack is not powerful enough.

Beyond Predefined Radius

Gaussian
Blur

Radius: 36 40 44

TSS
Empirical 52.6% 51.2% 49.8%

Certified 51.6% 50.0% 48.8%

Vanilla Empirical 8.2% 7.2% 6.2%

Translation
(Reflection Pad.)

Radius: 100 105 110

TSS
Empirical 69.2% 69.2% 69.0%

Certified 50.0% 49.4% 46.8%

Vanilla Empirical 46.2% 37.6% 36.6%

Brightness

Radius: 40% 45% 50%

TSS
Empirical 70.4% 70.2% 70.0%

Certified 70.0% 69.8% 69.6%

Vanilla Empirical 18.4% 10.0% 5.2%

Contrast*

Radius: 40% 45% 50%

TSS
Empirical 68.4% 68.2% 67.6%

Certified 61.4% 55.8% 45.0%

Vanilla Empirical 0.0% 0.0% 0.0%

Rotation*

Radius: 30◦ 35◦ 45◦

TSS
Empirical 36.8% 36.4% 33.4%

Certified 26.8% 26.2% 21.8%

Vanilla Empirical 21.2% 19.4% 16.2%

Scaling*

Radius: 30% 40% 50%

TSS
Empirical 36.0% 32.4% 26.6%

Certified 23.4% 18.4% 11.6%

Vanilla Empirical 8.8% 8.8% 7.0%
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Figure 33: The blue curves show the certified robust accuracy on MNIST. The predefined certi-
fied radii are shown as purple vertical dotted lines. We observe no significant degra-
dation after exceeding the predefined radii. For the Contrast transformation, we allow
additional 50% brightness change.
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Figure 34: The blue curves show the certified robust accuracy on CIFAR-10. The predefined
certified radii are shown as purple vertical dotted lines. We observe no significant
degradation after exceeding the predefined certified radii. For the contrast transfor-
mation, we allow additional 40% brightness change.

tified accuracy. On the contrary, the vanilla model’s empirical accuracy is reduced from
21.4% (30◦ rotation) to 3.2% (60◦ rotation).

d.6.5.6 Additional Smoothing Variance Levels

In Section 7.6.3.2 we have shown the study on smoothing variance levels on ImageNet
(Table 7). Here, we present further results with additional smoothing variance levels on
MNIST and CIFAR-10 in Table 31 and Table 32 respectively. The smoothing variances
shown in the two tables are for both training and inference-time smoothing. Except for
smoothing variance, all other hyperparameters for training and certification are kept
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Table 31: Study of the impact of different smoothing variance levels on certified robust accuracy
and benign accuracy on MNIST for TSS. The attack radii are consistent with Table 5.
The “Dist.” refers to both training and smoothing distribution.

Transformation Attack
Radius

Certified Accuracy and Benign Accuracy

under Different Variance Levels

Gaussian Blur α ⩽ 36

Dist. of α Exp(1/5) Exp(1/10) Exp(1/20)

Cert. Rob. Acc. 90.4% 90.6% 89.2%

Benign Acc. 97.0% 96.8% 93.4%

Translation
(Reflection Pad.)

√
∆x2 +∆y2

⩽ 8

Dist. of (∆x,∆y) N(0, 52I) N(0, 102I) N(0, 152I)

Cert. Rob. Acc. 99.0% 99.6% 99.4%

Benign Acc. 99.6% 99.6% 99.6%

Brightness b± 50%
Dist. of (c,b) N(0, 0.52I) N(0, 0.62I) N(0, 0.72I)

Cert. Rob. Acc. 98.4% 98.2% 98.4%

Benign Acc. 98.4% 98.4% 98.4%

Contrast c± 50%
Dist. of (c,b) N(0, 0.52I) N(0, 0.62I) N(0, 0.72I)

Cert. Rob. Acc. 0.0% 98.0% 98.4%

Benign Acc. 98.4% 98.4% 98.4%

Rotation r± 50◦
Dist. of ϵ N(0, 0.052I) N(0, 0.122I) N(0, 0.202I)

Cert. Rob. Acc. 97.6% 97.4% 97.6%

Benign Acc. 99.2% 99.4% 99.2%

Scaling s± 30%
Dist. of ϵ N(0, 0.052I) N(0, 0.122I) N(0, 0.202I)

Cert. Rob. Acc. 96.6% 97.2% 96.0%

Benign Acc. 99.4% 99.4% 99.0%



D.6 additional details about experiments 245

Table 32: Study of the impact of different smoothing variance levels on certified robust accuracy
and benign accuracy on CIFAR-10 for TSS. The attack radii are consistent with Table 5.
The “Dist.” refers to both training and smoothing distribution.

Transformation Attack
Radius

Certified Accuracy and Benign Accuracy

under Different Variance Levels

Gaussian Blur α ⩽ 16

Dist. of α Exp(1/5) Exp(1/10) Exp(1/20)

Cert. Rob. Acc. 63.6% 60.6% 53.0%

Benign Acc. 76.2% 68.0% 57.4%

Translation
(Reflection Pad.)

√
∆x2 +∆y2

⩽ 20

Dist. of (∆x,∆y) N(0, 102I) N(0, 152I) N(0, 202I)

Cert. Rob. Acc. 76.2% 80.8% 74.4%

Benign Acc. 89.0% 87.0% 84.6%

Brightness b± 40%
Dist. of (c,b) N(0, 0.22I) N(0, 0.32I) N(0, 0.42I)

Cert. Rob. Acc. 87.4% 87.0% 86.2%

Benign Acc. 87.8% 87.8% 86.4%

Contrast c± 40%
Dist. of (c,b) N(0, 0.22I) N(0, 0.32I) N(0, 0.42I)

Cert. Rob. Acc. 0.0% 82.4% 82.4%

Benign Acc. 87.8% 87.8% 86.4%

Rotation r± 30◦
Dist. of ϵ N(0, 0.052I) N(0, 0.092I) N(0, 0.122I)

Cert. Rob. Acc. 63.6% 62.0% 59.0%

Benign Acc. 82.0% 78.6% 72.2%

Scaling s± 30%
Dist. of ϵ N(0, 0.052I) N(0, 0.092I) N(0, 0.122I)

Cert. Rob. Acc. 59.0% 59.4% 58.8%

Benign Acc. 85.4% 81.6% 79.2%
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the same and consistent with the results shown in Table 5. As we can observe, the same
conclusion still holds. Usually, when the smoothing variance increases, the benign ac-
curacy drops and the certified robust accuracy first rises and then drops. The reason is
that larger smoothing variance makes the input more severely transformed so that the
benign accuracy becomes smaller. On the other hand, larger smoothing variance makes
the robustness easier to be certified as we can observe in various robustness conditions
in Section 7.4.2, where the required lower bound of pA becomes smaller. This is the
reason for the “first rise” on certified accuracy. However, when the smoothing variance
becomes too large, the benign accuracy becomes too low, and according to our defini-
tion, the certified accuracy is upper bounded by the benign accuracy (precondition of
robustness is correctness). This is the reason for the “then drop” on certified accuracy.
We again observe that the range of acceptable variance is usually wide. For example,
on CIFAR-10, for rotation transformation, the certified robust accuracy is 63.6% / 62.0%
/ 59.0% across a wide range of smoothing variance: 0.05, 0.09, 0.12. Thus, even in the
presence of such trade-off, without fine-tuning the smoothing variances, we can still
obtain high certified robust accuracy and high benign accuracy as reported in Table 5

and Table 18 respectively.

d.6.5.7 Tightness-Efficiency Trade-Off

We notice that as we increase the number of samples when estimating the interpolation
error in Eq. (147) and Eq. (150), the interpolation error MS and the upper bound

√
M ⩾

MS become smaller and the certification becomes tighter, leading to higher certified
robust accuracy. However, the computation time is also increased, resulting in a trade-
off between speed and accuracy. In Table 33 and Table 34, we illustrate this trade-off on
two differentially resolvable transformations: composition of rotation and brightness
on CIFAR-10, and composition of scaling and brightnes on MNIST. From the tables,
we find that, for these compositions, as the sample numbers N and n increase, the
interpolation error decreases and computing time increases (linearly with N and n).
As a consequence, if using a large number of samples, we can decrease the smoothing
noise level σ and achieve both higher certified accuracy and higher benign accuracy at
the cost of larger computation time.



D.6 additional details about experiments 247

Table 33: Average interpolation upper bound
√
M (147), average computation time, and “Certi-

fied accuracy (average certification time)” for varying number of samples and smooth-
ing noise levels. Results on CIFAR-10 against the composition of rotation ±10◦ and
brightness change ±10%.

Number of Samples Interpolation Smoothing Noise Level σ

First-Level Second-Level Avg.
√
M Avg. Comp. Time 0.05 0.09 0.12

N = 556 n = 2, 000 0.050 22.50 s
70.2% 65.2% 61.2%

(62.32 s) (86.60 s) (53.73 s)

N = 556 n = 200 0.131 1.97 s
42.0% 59.2% 60.4%

(490.21 s) (93.19 s) (86.60 s)

N = 56 n = 2, 000 0.322 1.90 s
1.2% 12.6% 29.2%

(6.18 s) (16.64 s) (25.77 s)

N = 56 n = 200 0.499 0.27 s
0.0% 1.2% 3.4%

(5.22 s) (5.68 s) (8.49 s)

Benign Accuracy: 83.0% 79.2% 79.6%

Table 34: Average interpolation upper bound
√
M (147), average bound computation time, and

“Certified robust accuracy (average certification time)” when using different number
of samples and various smoothing noise levels. Data is collected on MNIST dataset
against the composition of scaling ±50% and brightness change ±50%.

Number of Samples Interpolation Smoothing Noise Level σ

First-Level Second-Level Avg.
√
M Avg. Comp. Time 0.05 0.09 0.12

N = 2, 500 n = 500 0.064 10.52 s
97.2% 97.4% 96.6%

(92.36 s) (76.25 s) (67.44 s)

N = 2, 500 n = 50 0.163 0.90 s
18.8% 97.0% 95.0%

(157.48 s) (217.97 s) (97.91 s)

N = 250 n = 500 0.441 0.74 s
0.0% 6.0% 16.2%

(0.80 s) (4.91 s) (12.48 s)

N = 250 n = 50 0.641 0.13 s
0.0% 0.0% 0.6%

(0.79 s) (0.71 s) (1.60 s)

Benign Accuracy: 99.4% 99.6% 99.4%
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A D D I T I O N A L R E S U LT S I N C E RT I F Y I N G O U T- O F - D O M A I N
G E N E R A L I Z AT I O N

e.1 finite sampling errors

Here we explain the reasoning behind the finite-sampling version of our main Theorem
stated in Corollary 5. Let us first recall a version of Hoeffding’s inequality, formulated
in terms of our setting.

Theorem 13 ([94]). Let Z1, . . . , Zn be independent random variables drawn from P and taking
values in Z. Let ℓ : Z → [0, M] be a loss function and let L̂n := 1

n

∑n
i=1 ℓ(Zi) be the mean

under the empirical distribution P̂n. Then, for δ > 0, with probability at least 1− δ,

EP[ℓ(Z)] ⩽ L̂n +M

√
ln 1/δ
2n

. (827)

We remark that one could in principle different concentration inequalities at this stage
which can potentially improve upon Hoeffding’s inequality. For example, [148] present
a finite sampling version of Bennett’s inequality which is known to be an improvement
over Hoeffding’s inequality in the low variance regime. We leave such considerations
for interesting future work. Recall that the certificate (196) is monotonically increasing
in the variance. For this reason, we are interested in an upper bound on the population
variance which can be computed from finite samples. To achieve this, we use the vari-
ance bound presented in Theorem 10 in [148] which we state here for completeness and
adapt it to our use case.

Theorem 14 ([148], Theorem 10). Let Z1, . . . , Zn be independent random variables drawn
from P and taking values in Z. For a loss function ℓ : Z→ [0, M], let S2n := 1

n(n−1)

∑n
1⩽i<j⩽n(ℓ(Zi)−

ℓ(Zj))
2 be the unbiased estimator of the variance of the random variable ℓ(Z), Z ∼ P. Then, for

δ > 0, with probability at least 1− δ,

√
VP[ℓ(Z)] ⩽

√
S2n +M

√
2 ln 1/δ
n− 1

(828)

Finally, we employ the union bound to upper bound both expectation and variance
simultaneously with high probability. Thus, for any δ > 0, we have with probability at
least 1− δ

EP[ℓ(Z)] ⩽ L̂n +M

√
ln 2/δ
2n

,√
VP[ℓ(Z)] ⩽

√
S2n +M

√
2 ln 2/δ
n− 1

.

(829)

Finally, plugging in these upper bounds for the population quantities in Theorem 7

leads to the desired finite sampling bound. Getting the finite sampling version of the
lower bound in Theorem 15 is analogous by using the corresponding lower bound
variant of Hoeffding, but still the same upper bound for the variance.

249
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e.2 a lower bound version of theorem 7

Given the proof of Theorem 7, it is straightforward to adapt it to get a lower bound on
expectation values using Theorem 1. By following the analogous reasoning as in the
proof of Theorem 7, we obtain the following result.

Theorem 15 (Lower bound). Let ℓ : Z → R+ be a non-negative function taking values in Z.
Then, for any probability measure P on Z and ρ > 0 we have

inf
Q∈Bρ(P)

EQ[ℓ(Z)] ⩾ EP[ℓ(Z)] − 2Cρ
√

VP[ℓ(Z)]

− ρ2(2− ρ2)

[
EP[ℓ(Z)] −

VP[ℓ(Z)]

EP[ℓ(Z)]

] (830)

where Cρ =
√
ρ2(1− ρ2)2(2− ρ2) and Bρ(P) = {Q ∈ P(Z) : H(P, Q) ⩽ ρ} is the Hellinger

ball of radius ρ centered at P. The radius ρ is required to be small enough such that

ρ2 ⩽ 1−

[
1+

EP[ℓ(Z)]
2

VP[ℓ(Z)]

]−1/2
. (831)

e.3 synthetic dataset

We consider a binary classification task with covariates X ∈ R2 and labels Y ∈ ±1,
where the data is distributed according to the Gaussian mixture

X|Y = y ∼ N(y · µ, 12). (832)

with p(y) = 1/2 and µ = (2, 0)T ∈ R2. When considering the distribution shift P → Q

arising from perturbations X 7→ X+ δ for a fixed δ ∈ R2, both the Wasserstein distance
and Hellinger distance can be evaluated as functions of the L2-norm of the perturbation:

W2(P, Q) = ∥δ∥2 , H(P, Q) =

√
1− e−∥δ∥22/8. (833)

For our classification model, we use a small neural network with ELU activations and
2 hidden layers of size 4 and 2. The ELU activations, in combination with spectral
normalization of the weights, enforce the model to be smooth and hence satisfy the
assumptions required for the certificate from [203].

e.4 lipschitz constant for gradients of neural networks with jensen-
shannon divergence loss

Let us first recall the dual reformulation of the Wasserstein worst-case risk, which is the
central result that underpins the distributional robustness certificate presented in [203].

Proposition 1 ([203], Proposition 1). Let ℓ : Θ×Z→ R and c : Θ×Z→ R+ be continuous,
and let ϕγ(θ; z0) := supz∈Z{ℓ(θ; z) − γc(z, z0)}. Then, for any distribution P and any ρ > 0,

sup
Q :Wc(P,Q)⩽ρ

EQ[ℓ(θ; Z)] = inf
γ⩾0

{γρ+ EP[ϕγ(θ; Z)]}. (834)

whereWc(P, Q) := infπ∈Π(P,Q)

∫
Z c(z, z

′)dπ(z, z ′) is the 1-Wasserstein distance between P
and Q.
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From this result, [203] derive a robustness certificate which can be instantiated to hold
uniformly over a function of families parametrized by θ ∈ Θ, but also a certificate that
holds pointwise, that is, for a single model ℓ(θ0; ·). One requirement for this certificate
to be tractable is that the surrogate function ϕγ be concave in z. As shown in [203], this
is the case when γ is larger than the Lipschitz constant L of the gradient of ℓwith respect
to z. Thus one needs to compute L and choose γ ⩾ L so that the inner maximization
in (834) is guaranteed to converge and hence a robustness certificate can be calculated.

Here, we present the calculation of the Lipschitz constant for the gradient of the
Jensen-Shannon divergence loss with respect to input features. For the remainder of this
section, we set Z = X× Y with a binary label space |Y| = C = 2. We will always write
vectors in bold roman letters, for example p = (p1, . . . , pC) ∈ RC and ey ∈ RC denotes
a standard basis vector with zeros everywhere except 1 at position y. We consider a
feedforward neural network with L layers and ELU activation functions, denoted by σ:

FL(θ; x) := σ(θl · σL−1(θL−1 · · ·σ(θ1 · x) · · · )) (835)

and we are interested in calculating L > 0 such that∥∥∇ℓ(FL(θ; x), y) −∇ℓ(FL(θ; x ′), y)
∥∥
∗ ⩽ L

∥∥x− x ′∥∥
2

(836)

where the gradient is taken with respect to x and where ℓ is the Jensen-Shannon diver-
gence. To achieve this, we apply Proposition 5 in [203] which states that the Jacobian of
FL is βL(θ)-Lipschitz with respect to the operator norm induced by ∥·∥2 with

βl(θ) = αl(θ)

l∑
j=1

{
L1j

(L0j )
2
αj(θ)

}
, αl(θ) =

l∏
j=1

L0j
∥∥θj∥∥op . (837)

where L0j is the Lipschitz constant of each activation function σj and L1j is the Lipschitz
constant of its Jacobian. It is useful to write this recursively as

αl+1(θ) = L
0
l+1 ∥θl+1∥op αl(θ),

βl+1(θ) = L
0
l+1 ∥θl+1∥op βl(θ) + L1l+1 ∥θl+1∥2op αl(θ)2

(838)

In our case, since we have ELU activations, we have L0j = L1j = 1 for all j ([203],
example 3). Finally, viewing ℓ(p, ey) as an L + 1 layer neural network with a single
output dimension, we have that ∇zℓ(p(x), y) is L∗-Lipschitz continuous with constant

L∗ = L0L+1βL(θ) + L
1
L+1αL(θ)

2 (839)

where we have used that ∥θL+1∥op = ∥1∥op = 1 and where L0L+1 is the Lipschitz
constant of the function z 7→ ℓ(p(z), y) and L1L+1 is the Lipschitz constant of z 7→
∇zℓ(p(z), y) and p(z) is the softmax probability vector

p(z) =

(
ez1∑
j e
zj

, . . . ,
ezC∑
j e
zj

)T
∈ RC. (840)

We now show the calculation of L0L+1 and L1L+1. Fix z ∈ RC and y ∈ Y, and let eyRK

be the one hot encoded label vector with zero everywhere except at position y. The
Jensen-Shannon divergence loss between a vector of predicted class probabilities p and
the class label ey is given by

ℓ(p, ey) =
1

2
(DKL(p∥m) +DKL(ey∥m)) (841)
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with m = 1
2(p + ey). The Kullback Leibler divergences are

DKL(p∥m) = 1+ py log
(

py

1+ py

)
DKL(ey∥m) = 1+ log

(
1

1+ py

) (842)

where log = log2 is the logarithm with base 2. The Jensen-Shannon divergence loss is
thus given by

ℓ(p, ey) = 1+
1

2
(py log(py) − (1+ py) log(1+ py)) . (843)

The gradient ∇zℓ(p̂, ey) of the loss with respect to the input x is given by

∇zℓ(p, ey) =
1

2
∇z (py log(py) − (1+ py) log(1+ py))

=
1

2
∇z (py log(py)) −

1

2
∇z ((1+ py) log(1+ py))

=
1

2
(1+ log(py))∇zpy −

1

2
(1+ log(1+ py))∇zpy

(844)

Noting that

∇zpy(x) = py(ey − p) (845)

yields the expression

∇zℓ(p, ey) =
1

2
log
(

py

1+ py

)
py(ey − p). (846)

Thus,

L0L+1 = sup
z

∥∇zℓ(p, ey)∥2 =
1

2
sup
z

(
log
(
1+ py
py

)
py ∥ey − p∥2

)
= sup

z

∥∇zℓ(p, ey)∥2 =
1√
2

sup
z

(
log
(
1+ py
py

)
py(1− py)

)
≈ 0.314568.

(847)

We will now calculate L1L+1 = supx ∥J∥2 where J ≡ Jℓ(p,ey), is the Jacobian of ℓ(p, ey)
and ∥J∥2 is given by the largest singular value of J. For ease of notation, let fi(x) ≡
(∇zℓ)i and recall that J is defined by

J =


∇Tz f1

...

∇Tz fC

 . (848)

Note that

∇zfi = ∇z
1

2
log
(

py

1+ py

)
py(δiy − pi)

=
1

2

(
1+ py
py

[ ∇zpy
1+ py

−
py

(1+ py)2
∇zpy

])
py(δiy − pi)+

+
1

2
log
(

py

1+ py

)
(δiy − pi)∇zpy −

1

2
log
(

py

1+ py

)
py∇zpi

=
1

2

(
1

1+ py
+ log

(
py

1+ py

))
(δiy − pi)∇zpy −

1

2
log
(

py

1+ py

)
py∇zpi

(849)
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and hence, using ∇zpy = py(ey − p),

∇zfi =
1

2

(
py

1+ py
+ py log

(
py

1+ py

))
(δiy − pi)(ey − p)

−
1

2
py log

(
py

1+ py

)
pi(ei − p)

(850)

It follows that the Jacobian is given by

J =
1

2

(
py

1+ py
+ py log

(
py

1+ py

))
(ey − p) · (ey − p)T

+
1

2
py log

(
1+ py
py

)
(diag(p) − p · pT ).

(851)

Since we are only interested in the binary case C = 2, we see that

A := (ey − p) · (ey − p)T = (1− py)
2

(
1 −1

−1 1

)
(852)

with spectrum σ(A) = {0, 2(1 − py)2}. The eigenvalues of diag(p) are pi and hence
λ(diag(p)) ⊆ [0, 1], and σ(p · pT ) = {0, ∥p∥22}. It follows that σ(diag(p) − p · pT ) ⊆
[− ∥p∥22 , 1]. Thus, by Weyl’s inequality and noting that the term in front of (ey − p) ·
(ey − p)T is always negative, we have for any eigenvalue λ of J that

(1− py)
2

(
py

1+ py
+ py log

(
py

1+ py

))
−
1

2
py log

(
1+ py
py

)
∥p∥22

⩽ λ ⩽
1

2
py log

(
1+ py
py

) (853)

Note that J is symmetric, and hence its largest singular value is given by the largest
absolute value of its eigenvalues. Taking the infimum (supremum) of the LHS (RHS)
with respect to z yields the bounds

−
1

2
⩽ λ ⩽

1

2
(854)

and hence

L1L+1 = sup
z

∥J∥2 ⩽
1

2
. (855)

It follows that ∇xℓ(p(FL(θ; x)), y) is L∗-Lipschitz with

L∗ = L0L+1βL(θ) +
1

2
αL(θ)

2 (856)

and L0L+1 = 0.314568. Finally, choosing γ ⩾ L∗ in (834) makes the objective in the
surrogate loss ϕγ concave and hence enables the certificate

sup
Q :Wc(P,Q)⩽ρ

EQ[ℓ(θ; Z)] ⩽ γρ+ EP[ϕγ(θ; Z)]

= γρ+ E(X,Y)∼P[sup
x∈X

ℓ(FL(θ; x), Y) − γ ∥x−X∥22].
(857)
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e.5 hellinger distance for mixtures of distributions with disjoint

support

Consider two joint (feature, label)-distributions P, Q ∈ P(X× Y) with densities fP and
fQ with respect to a suitable measure. P and Q have disjoint support if

∀ x ∈ X, y ∈ Y : fQ(x, y) > 0 ⇐⇒ fP(x, y) = 0. (858)

In this case, for γ ∈ (0, 1), we define the mixture measure as Πγ := γP+ (1− γ)Q with
density

πγ(x, y) = γfP(x, y) + (1− γ)fQ(x, y). (859)

We can calculate the squared Hellinger distance between P and Πγ as

H2(P, Πγ) = 1−
∫ ∫

X×Y

√
fP(x, y)

√
γfP(x, y) + (1− γ)fQ(x, y)dxdy

= 1−
√
γ

∫ ∫
fp>0

fP(x, y)

√
1+

1− γ

γ

fQ(x, y)
fP(x, y)

dxdy

= 1−
√
γ

∫ ∫
fp>0

fP(x, y)dxdy

= 1−
√
γ.

(860)

e.6 additional experiments

Here, we present results for a diverse set of model architectures and loss functions.
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(a) DenseNet-169 (b) GoogleNet

(c) Inception-V3 (d) MobileNet-V2

(e) ResNet-18 (f) ResNet-50

Figure 35: Certified classification error with label distribution shifts on CIFAR-10.

(a) VGG11-BN (b) VGG19-BN

Figure 36: Certified classification error with label distribution shifts on CIFAR-10.
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(a) DenseNet-121 on CIFAR-10 (b) BERT on Yelp

Figure 37: Certified JSD Loss with label distribution shifts.

(a) EfficientNet-B7 on ImageNet-1k (b) DeBERTa on SNLI

Figure 38: Certified JSD Loss with label distribution shifts.

(a) EfficientNet-B7 on ImageNet-1k (b) DeBERTa on SNLI

Figure 39: Certified classification error with label distribution shifts.
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Figure 40: Certified Jensen-Shannon divergence loss for the colored MNIST dataset.
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f.1 proofs

Here, we provide the proofs for Corollary 6 and Corollary 7.

f.1.1 Proof of Corollary 6

Corollary 6 (restated). Let σ, ρ ∈ S(H) and suppose that σ = |ψσ⟩⟨ψσ| is pure. Let A be a
quantum classifier and suppose that for kA ∈ C and pA, pB ∈ [0, 1], we have kA = A(σ) and
suppose that the score function y satisfies (215). Then, it is guaranteed that A(ρ) = A(σ) for
any ρ with

T(ρ, σ) < δ(pA, pB)
(
1−

√
1− δ(pA, pB)2

)
(861)

where δ(pA, pB) = [12 (1− g(pA,pB))]
1
2 .

Proof. We denote the convex hull enclosed by the set of robust pure states as C :=

Conv({|ψ⟩⟨ψ| : ∥|ψ⟩⟨ψ| − σ∥1 < δ(PA,PB)}). Observe that any convex mixture ρ =∑
i pi|ψi⟩⟨ψi| with

∑
i pi = 1 of any sets of robust pure states {|ψi⟩⟨ψi|} ∈ C must

also be robust. Thus it suffices to prove condition (241) implies ρ ∈ C. Note that the
boundary consisting of non-extreme points (which correspond to mixed-states) of C

interfaces with the set C∗ = Conv({|ψ∗⟩⟨ψ∗| : ∥|ψ∗⟩⟨ψ∗|− σ∥1 = δ(PA,PB)}). Thus, it
suffices to compute the shortest distance r from σ to C∗, such that r = minρ∗ ∥ρ∗ − σ∥1
where ρ∗ ∈ C∗, then ∥ρ− σ∥1 < r guarantees robustness. Further note that for every
ρ∗, ∃Dσρ∗D†

σ ∈ C∗, where Dσ = 2σ− 1, such that ∥ρ∗ − σ∥1 = ∥Dσρ∗D†
σ − σ∥1, and

∥p1ρ∗ + p2Dσρ∗D†
σ − σ∥1 < ∥ρ∗ − σ∥1 for p1 + p2 = 1, and p1 ̸= 0, p2 ̸= 0. Therefore

to minimise the distance to σ, it suffices to require ρ∗ = Dσρ
∗D†
σ, a valid of which is

ρ∗ = 1
2(|ψ

∗⟩⟨ψ∗|+Dσ|ψ
∗⟩⟨ψ∗|D†

σ). As such we have

r = ∥σ− 1
2
(|ψ∗⟩⟨ψ∗|+Dσ|ψ

∗⟩⟨ψ∗|D†
σ)∥1

= ∥|ψ∗⟩⟨ψ∗|− σ+ 2|⟨ψσ|ψ∗⟩|2σ− ⟨ψσ|ψ∗⟩|ψσ⟩⟨ψ|− ⟨ψ|ψσ⟩|ψ⟩⟨ψσ|∥1 (862)

Note that we have ∥|ψ∗⟩⟨ψ∗|− σ∥1 = δ(PA,PB) by definition and that

∥2|⟨ψσ|ψ∗⟩|2σ− ⟨ψσ|ψ∗⟩|ψσ⟩⟨ψ|− ⟨ψ|ψσ⟩|ψ⟩⟨ψσ||1 =
= |⟨ψσ|ψ∗⟩|Tr [|ψσ⟩⟨ψσ|+ |ψ∗⟩⟨ψ∗|− ⟨ψσ|ψ∗⟩|ψσ⟩⟨ψ∗|− ⟨ψ∗|ψσ⟩|ψ∗⟩⟨ψσ|]
= |⟨ψσ|ψ∗⟩|Tr

[
(σ− |ψ∗⟩⟨ψ∗|)(σ− |ψ∗⟩⟨ψ∗|)†

]
= |⟨ψσ|ψ∗⟩|∥|ψ∗⟩⟨ψ∗|− σ∥1

= δ(PA,PB)

√
1−

δ(PA,PB)2

4
.

(863)

257
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Applying the reversed triangle inequality, we finally arrive at

r ⩾
∣∣∥σ− |ψ∗⟩⟨ψ∗|∥1 − ∥2|⟨ψσ|ψ∗⟩|2σ− ⟨ψσ|ψ∗⟩|ψσ⟩⟨ψ|− ⟨ψ|ψσ⟩|ψ⟩⟨ψσ||1

∣∣
= δ(PA,PB)

(
1−

√
1−

δ(PA,PB)2

4

)
. (864)

f.1.2 Proof of Corollary 7

Corollary 7 (restated). Let |ψσ⟩, |ψρ⟩ ∈ C2 be single-qubit pure sates and let E
dep
p be a

depolarising channel with noise parameter p ∈ (0, 1). Then, if pA > 1/2 and pB = 1− pA,
the robustness condition (216) for Edep

p (σ) and E
dep
p (ρ) is equivalent to

1

2
∥|ψσ⟩⟨ψσ|− |ψρ⟩⟨ψρ|∥1 < rQ(p) (865)

where

rQ(p) =


√
1
2 −

√
g(p,pA)
1−p , pA <

1+3(1−p)2

2+2(1−p)2√
p·(2−p)·(1−2pA)2
8(1−p)2·(1−pA)

, pA ⩾ 1+3·(1−p)2
2+2·(1−p)2

(866)

with g(p, pA) = 1
2

(
2pA(1− pA) − p(1−

p
2 )
)

.

Proof. In order to prove the corollary, we proceed in a manner analogous to the proof
of Lemma 10. Specifically, we show that the condition on the trace distance in eq. (865)
is equivalent to the SDP robustness condition (216) from Theorem 8 expressed in terms
of type-II error probabilities. Let σ = |ψσ⟩⟨ψσ|, ρ = |ψρ⟩⟨ψρ| and recall that the type-I
and type-II error probabilities are given by

α(M; Edep
p (σ)) = Tr

[
ME

dep
p (σ)

]
, β(M;Edep

p (ρ)) = Tr
[
(1−M)E

dep
p (ρ)

]
(867)

with 0 ⩽ M ⩽ 1d. Let σ ′ := E
dep
p (σ) and ρ ′ := E

dep
p (ρ) and recall that a Helstrom

operator for testing the null σ ′ against the alternative ρ ′ with type-I error probability
α0 takes the form (372)

Mτ(α0) := Pτ(α0),+ + q0Pτ(α0),0, q0 :=


α0−α(Pτ(α0),+)

α(Pτ(α0),0)
ifα

(
Pτ(α0),0

)
̸= 0,

0 otherwise.
(868)

where τ(α0) := inf{t ⩾ 0 : α(Pt,+) ⩽ α0}. Let M⋆
A := Mτ(1−pA) and M⋆

B := Mτ(pB)

and note that by assumption pB = 1− pA and hence M⋆
A = M⋆

B. The SDP robustness
condition then simplifies to β∗

1−pA
(σ ′, ρ ′) > 1/2. We now proceed as follows. We first

compute the spectral decomposition of the operator ρ ′− tσ ′ as a function of t and relate
it to the fidelity between σ and ρ. With this, we derive an expression for α(Pt,+) and
subsequently compute τ(α0). This yields an expression for the Helstrom operator with
type-I error probability 1− pA which can then be used to solve inequality (216) for the
fidelity. We thus start by solving the eigenvalue problem

(ρ ′ − tσ ′)|µ⟩ = µ|µ⟩ (869)
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which can be rewritten as(
(1− p) · (ρ− tσ) + p(1− t)

2
12

)
|η⟩. (870)

We notice that the operators ρ ′ − tσ ′ and ρ − tσ share the same set of eigenvectors.
Furthermore, if η is an eigenvalue of ρ− tσwith eigenvector |η⟩, then the corresponding
eigenvalue µ of ρ ′ − tσ ′ is given by

µ = (1− p)η+
p · (1− t)

2
. (871)

From the proof of Lemma 10, we know that the eigenvalues of ρ− t · σ are given by

η0 =
1

2
(1− t) + R > 0, η1 =

1

2
(1− t) − R ⩽ 0

R =

√
1

4
(1− t)2 + t(1− |γ|2), γ = ⟨ψρ|ψσ⟩

(872)

with eigenvectors

|η0⟩ = −γA0|ψρ⟩+ (1− η0)A0|ψσ⟩, |η2⟩ = −γA2|ψρ⟩+ (1− η2)A2|ψσ⟩
|Ak|

−2 = 2R
∣∣∣ηk − 1+ |γ|2

∣∣∣ . (873)

With this, we can compute the eigenvalues µk and eigenprojections Pk of ρ ′ − tσ ′ as

µ0 = (1− p)η0 + p ·
1− t

2
, µ1 = (1− p)η1 + p ·

1− t

2
,

P0 = |η0⟩⟨η0|, P1 = |η1⟩⟨η1|.
(874)

Since η0 > 0 ⩾ η1 for any t ⩾ 0, we have µ0 ⩾ µ1 and furthermore, the eigenvalues are
monotonically decreasing functions of t for |γ|2 < 1. To see this, consider

dR

dt
=

1+ t− 2 |γ|2

2

√
(1+ t)2 − 4t |γ|2

(875)

and thus for ∀ t ⩾ 0 and |γ|2 < 1

dµ0
dt

=
dR

dt
−
1

2
< 0 and

dµ1
dt

= −
dR

dt
−
1

2
< 0. (876)

Hence, since both eigenvalues are strictly positive at t = 0, there exists exactly one ξk
such that µk vanishes at ξk, k = 0, 1. Algebra shows that these zeroes are given by

ξ0 = 1+
2(1− |γ|2)(1− p)2

p(2− p)

(
1+

√
1+

p(2− p)

(1− |γ|2)(1− p)2

)
> 1,

ξ1 = 1+
2(1− |γ|2)(1− p)2

p(2− p)

(
1−

√
1+

p(2− p)

(1− |γ|2)(1− p)2

)
< 1.

(877)
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We define the functions

g0(t) := ⟨η0|σ ′|η0⟩ =
1

2

1+ (1− p)(2 |γ|2 − 1− t)√
(1+ t)2 − 4t |γ|2

 , (878)

g1(t) := ⟨η1|σ ′|η1⟩ =
1

2

1− (1− p)(2 |γ|2 − 1− t)√
(1+ t)2 − 4t |γ|2

 , (879)

f0(t) := ⟨η0|ρ ′|η0⟩ =
1

2

1+ (1− p)(1+ t · (1− 2 |γ|2)√
(1+ t)2 − 4t |γ|2

 , (880)

f1(t) := ⟨η0|ρ ′|η0⟩ =
1

2

1− (1− p)(1+ t · (1− 2 |γ|2)√
(1+ t)2 − 4t |γ|2

 . (881)

With this, we now compute t 7→ α(Pt,+) as

α(Pt,+) = Tr
[
σ ′Pt,+

]
=


1 0 ⩽ t < ξ1

g0(t) ξ1 ⩽ t < ξ0

0 ξ0 ⩽ t

(882)

For α0 ∈ [0, 1], we compute τ(α0) := inf{t ⩾ 0 : α(Pt,+) ⩽ α0} as

τ(α0) =



ξ0 0 ⩽ α0 ⩽ g0(ξ0)

g−10 (α0) g0(ξ0) < α0 < g0(ξ1)

ξ1 g0(ξ1) ⩽ α0 < 1

0 α0 = 1

(883)

where

g−10 (α0) = 2 |γ|
2 − 1+ 2(1− 2α0)

√
|γ|2 (1− |γ|2)

p(2− p) − 4α0(1−α0)
. (884)

To solve condition (216) we now have to distinguish different cases, depending on
which interval 1 − pA falls into. Firstly, if 1 − pA = 1, then τ(1 − pA) = 0 and thus
β(M⋆

A) = 0 in which case the condition can not be satisfied. If 1 − pA ∈ [g0(ξ1), 1),
then we have τ(1− pA) = ξ1. In this case, it holds that µ0 > 0 and µ1 = 0 and the
Helstrom operator is given by

M⋆
A = |η0⟩⟨η0|+

1− pA − g0(ξ1)

g1(ξ1)
|η1⟩⟨η1| (885)

and the robustness condition reads

β(M⋆
A) = 1− f0(ξ1) −

1− pA − g0(ξ1)

g1(ξ1)
f1(ξ1) >

1

2
(886)

which cannot to be satisfied simultaneously with 1− pA ∈ [g0(ξ1), 1). If, on the other
hand 1 − pA ∈ (g0(ξ0), g0(ξ1)), then τ(1 − pA) = g−10 (1 − pA) and µ0 > 0 > µ1.
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The Helstrom operator then is given by M⋆
A = |η0⟩⟨η0| which leads to the robustness

condition

1− f0(g
−1
0 (1− pA)) >

1

2
(887)

which, together with 1− pA ∈ (g0(ξ0), g0(ξ1)), is equivalent to

|γ|2 >
1

2

(
1+

√
4pA(1− pA) − p(2− p)

(1− p)2

)
,
1

2
⩽ pA ⩽

4− 6p+ 3p2

4− 4p+ 2p2
. (888)

In the last case where 1− pA ⩽ g0(ξ0), we have τ(1− pA) = ξ0 and thus µ0 = 0 >

µ1. The Helstrom operator is then given by 1−pA
g0(ξ0)

|η0⟩⟨η0|, leading to the robustness
condition

1−
1− pA
g0(ξ0)

f0(ξ0) >
1

2
. (889)

Together with 1− pA ⩽ g0(ξ0) this is equivalent to

|γ|2 >


4pA(1−pA)−p(2−p)

(1−p)2(4(1−pA)−p(2−p))
, if 1+(1−p)2

2 < pA ⩽ 4−6p+3p2

4−4p+2p2

(4−3p−2pA(2−p))(2−p(3−2pA))
8(1−p)2(1−pA)

, if 4−6p+3p
2

4−4p+2p2
< pA ⩽ 4−3p

4−2p ,

0, ifpA >
4−3p
4−2p .

(890)

Finally, combining together conditions (888) and (890) leads to

|γ|2 >


1
2

(
1+

√
4pA(1−pA)−p(2−p)

(1−p)2

)
, if 12 < pA ⩽ 4−6p+3p2

4−4p+2p2

(4−3p−2pA(2−p))(2−p(3−2pA))
8(1−p)2(1−pA)

, if 4−6p+3p
2

4−4p+2p2
< pA ⩽ 4−3p

4−2p ,

0, ifpA >
4−3p
4−2p .

(891)

Since by assumption ρ and σ are pure states the proof is completed by noting that we
have

T(ρ, σ) =
√
1− F(ρ, σ) (892)

by the Fuchs-van de Graaf inequality.

f.2 pseudocode for robustness certification

Here we provide pseudocode for the algorithm presented in Section 9.5.1 for certifying
robustness.
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Algorithm 5 Robustness Certification(σ, N,α, A)

Require: Quantum state σ ∈ S(H), number of measurement shots N, error tolerance α,
a quantum classifier A = (E, {Πk}k∈C).

Ensure: Predicted class kA, prediction score pA and robust radius rF according to
Eq. (237) in terms of fidelity.

1: Set counter nk ← 0 for every k ∈ C.
2: for k = 1, . . . N do
3: Apply quantum circuit E to initial state σ.
4: Perform |C|-outcome measurement {Πk}k∈C on the evolved state E(σ).
5: Record measurement outcome k by setting nk ← nk + 1.
6: end for
7: Calculate empirical probability distribution ŷ(N)

k ← nkN−1.
8: Extract the most likely class kA ← arg maxk ŷ(N)

k .

9: Set pA ← ŷ(N)
kA

(σ) −

√
− log(α)
2N .

10: if pA > 1/2 then
11: Calculate robust radius rF ← 1

2 +
√
pA(1− pA).

12: return prediction kA, class score pA, robust radius rF.
13: else
14: return ABSTAIN
15: end if
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g.1 fidelity estimation

Here we give proofs for the fidelity lower bounds reported in Section 10.2.4. In the
sequel, let H be a Hamiltonian with spectral decomposition

H =

m∑
i=0

λiΠi (893)

where λi are the eigenvalues (in increasing order), Πi is the projections onto the eigenspace
associated with λi and m is the number of distinct eigenvalues. We write EigH(λi) for
the space spanned by eigenvectors of H with eigenvalue λi. In the following we first
consider the non-degenerate case, that is when EigH(λ0) is of dimension 1 and treat the
degenerate case separately.

g.1.1 The non-degenerate Case

We first consider the non-degenerate case, in which case Π0 = |ψ0⟩⟨ψ0|.

eckart’s criterion. Eckart’s criterion [57] is a method to lower bound the fidelity
of an approximate state σ with one of the ground states of the Hamiltonian H. We
include the proof here for completeness. For general H and σ, note that

⟨H− λ01d⟩σ =

m∑
n=1

(λi − λ0)Tr [Πiσ] (894)

⩾ (λ1 − λ0)(1− ⟨ψ0|σ|ψ0⟩) (895)

and thus

⟨ψ0|σ|ψ0⟩ ⩾
λ1 − ⟨H⟩σ
λ1 − λ0

. (896)

bounds from (295) & (296). The fidelity bound from (295) has been shown in [151]
for pure states. Here, we extend this to mixed states and will discuss the degenerate
case in the next section. Recall that δ is a lower bound on the spectral gap, λ1 − λ0 ⩾ δ.
Note that

⟨H⟩σ = λ0⟨ψ0|σ|ψ0⟩+
m∑
i=1

λiTr [Πiσ] (897)

⩾ λ0⟨ψ0|σ|ψ0⟩+
m∑
i=1

(λ0 + δ)Tr [Πiσ] (898)

= λ0⟨ψ0|σ|ψ0⟩+ (λ0 + δ)(1− ⟨ψ0|σ|ψ0⟩) (899)

= λ0 + δ(1− ⟨ψ0|σ|ψ0⟩). (900)
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Since by assumption λ0 is non-degenerate and ⟨H⟩σ ⩽ 1
2(λ0 + λ1) it follows from

Eckart’s condition that ⟨ψ0|σ|ψ0⟩ ⩾ 1
2 . By plugging this lower bound into the Gramian

eigenvalue bound (Theorem 12), we recover Weinstein’s lower bound [245] for mixed
states

λ0 ⩾ ⟨H⟩σ −∆Hσ (901)

where (∆Hσ)
2 is the variance of H. Using this to lower bound λ0 in (900) and rearrang-

ing terms leads to the bound in (295)

⟨ψ0|σ|ψ0⟩ ⩾ 1−
∆Hσ

δ
. (902)

If, on the other hand, we lower bound λ0 in (295) by the Gramian eigenvalue lower
bound (Theorem 12), we obtain the inequality

⟨ψ0|σ|ψ0⟩− 1+
∆Hσ

δ

√
1

⟨ψ0|σ|ψ0⟩
− 1 ⩾ 0. (903)

The left hand side can be rewritten as a cubic polynomial in ⟨ψ0|σ|ψ0⟩. Under the as-
sumption that ⟨H⟩σ ⩽ 1

2(λ0+λ1) we again use Eckart’s condition to find that ⟨ψ0|σ|ψ0⟩ ⩾
1
2 . It then follows that the inequality is satisfied if

⟨ψ0|σ|ψ0⟩ ⩾
1

2

1+
√
1−

(
∆Hσ

δ/2

)2 (904)

which is the bound given in (296).

g.1.2 The degenerate Case

If λ0 is degenerate, then Π0 =
∑d0
j=0|ψ0,j⟩⟨ψ0,j| where d0 denotes the dimensionality of

the eigenspace associated with λ0. In the following, we first show that if σ is a pure state,
then there exists an element |ψ⟩ ∈ EigH(λ0) for which each of the fidelity bounds holds.
If, on the other hand, σ is allowed to be mixed, we construct a simple counterexample
for which the fidelity bounds are violated.

pure states Suppose that σ is a pure state σ = |ϕ⟩⟨ϕ|. For Eckart’s criterion, an
analogous calculation leads to

d0∑
j=0

∣∣⟨ψ0,j|ϕ⟩
∣∣2 ⩾ λ1 − ⟨H⟩σ

λ1 − λ0
. (905)

Consider the state

|ψ⟩ = Γ−1/2
∑
i

⟨ψ0,i|ϕ⟩|ψ0,i⟩, Γ =
∑
i

|⟨ψ0,i|ϕ⟩|2 (906)

and note that ⟨ψ|ψ⟩ = 1 and |ψ⟩ ∈ EigH(λ0). Furthermore, we have

|⟨ψ|ϕ⟩|2 =
d0∑
j=0

∣∣⟨ψ0,j|ϕ⟩
∣∣2 (907)
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and hence

|⟨ψ|ϕ⟩|2 ⩾ λ1 − ⟨H⟩σ
λ1 − λ0

. (908)

so that Eckart’s criterion holds in the degenerate case for this particular choice of eigen-
state |ψ⟩ and for pure approximation states |ϕ⟩. Using again analogous calculations, we
also obtain the extensions of the bounds (295) and (296) for pure approximation state
|ϕ⟩ in the degenerate case and for the same choice of eigenstate |ψ⟩.

counterexample for mixed states If the approximation state σ is allowed to
be arbitrarily mixed, the above fidelity bounds do not hold in general. Indeed, consider
the Hamiltonian

H = U ·

λ 0 0

0 λ 0

0 0 µ

 ·U† (909)

for arbitrary λ, µ ∈ R with λ < µ and some arbitrary unitary U. Furthermore, let σ be
the maximally mixed state σ = 1

313 and note that ⟨H⟩σ = 2λ+µ
3 . Thus, for any |ψ⟩ we

find that

⟨ψ|σ|ψ⟩ = 1

3
<
2

3
=
µ− ⟨H⟩σ
µ− λ

(910)

in violation of Eckart’s criterion. To see that we can also construct a counterexample for
the other two bounds, we calculate the variance

(∆Hσ)
2 = ⟨H2⟩σ − ⟨H⟩2σ =

2(µ− λ)2

9
(911)

and notice that

⟨ψ|σ|ψ⟩ = 1

3
< 1−

√
2

3
= 1−

∆Hσ

δ
(912)

and similarly

⟨ψ|σ|ψ⟩ = 1

3
<
2

3
=
1

2

1+
√
1−

(
∆Hσ

δ/2

)2 . (913)
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Figure 41: Bond dissociation curves and robustness interval (RI) for H2 in a basis-set-free ap-
proach [117, 118], using the noise model of the 5-Qubit ibmq_vigo processor, one of
the IBM Quantum Canary processors [104].

Table 35: Noisy simulations of VQE for ground state energies of LiH(2, 4) with an SPA Ansatz.
The noise model consists of bitflip on single qubit gates and depolarization error on
two qubit gates. The error probability for both noise channels is set to 10%.

Bond
Distance (Å)

E0
VQE

(SPA)
Fidelity

Gramian Eigenvalue Gramian Expectation SDP

lower bound upper bound lower bound lower bound upper bound

0.50 −7.21863 −6.88805 0.642 −7.25193 −6.52475 −7.32715 −7.34604 −5.78115

0.75 −7.70845 −7.29597 0.643 −7.74638 −6.84531 −7.83840 −7.86084 −5.93280

1.00 −7.90403 −7.49060 0.645 −7.94329 −7.03703 −8.03507 −8.05745 −6.10197

1.25 −7.97808 −7.57789 0.642 −8.01822 −7.13739 −8.10760 −8.12808 −6.23202

1.40 −7.99541 −7.61078 0.645 −8.03193 −7.18843 −8.12397 −8.14492 −6.30208

1.50 −8.00062 −7.62723 0.645 −8.03743 −7.21626 −8.12843 −8.14912 −6.34578

1.60 −8.00251 −7.63936 0.646 −8.03613 −7.24368 −8.12772 −8.14878 −6.40143

1.70 −8.00213 −7.65290 0.644 −8.03798 −7.26681 −8.12450 −8.14473 −6.45257

1.75 −8.00127 −7.65684 0.646 −8.03181 −7.28154 −8.12101 −8.14171 −6.49063

2.00 −7.99319 −7.68221 0.644 −8.02412 −7.34029 −8.10203 −8.12208 −6.63209

2.25 −7.98161 −7.69596 0.639 −8.01110 −7.38116 −8.08242 −8.10091 −6.75887

2.50 −7.96941 −7.70682 0.634 −7.99792 −7.41511 −8.06577 −8.08292 −6.85437

2.75 −7.95765 −7.71482 0.632 −7.98661 −7.44292 −8.04982 −8.06660 −6.94268

3.00 −7.94669 −7.71586 0.624 −7.97520 −7.45615 −8.06343 −8.07915 −6.96150

3.25 −7.93706 −7.72211 0.623 −7.96702 −7.47666 −8.09013 −8.11182 −6.95623

3.50 −7.92842 −7.72265 0.613 −7.96128 −7.48390 −8.10708 −8.13833 −6.94904

3.75 −7.92096 −7.72526 0.606 −7.95586 −7.49476 −8.11762 −8.16116 −6.94122

4.00 −7.91490 −7.72740 0.597 −7.95494 −7.50039 −8.13010 −8.18053 −6.93847

4.25 −7.90968 −7.72717 0.583 −7.95372 −7.50055 −8.14249 −8.19643 −6.93280

4.50 −7.90590 −7.72953 0.568 −7.95324 −7.50594 −8.15344 −8.21024 −6.92201

4.75 −7.90306 −7.73045 0.551 −7.95891 −7.50178 −8.16757 −8.22021 −6.92056

5.00 −7.90106 −7.72925 0.527 −7.96652 −7.49266 −8.18161 −8.22696 −6.91288

5.25 −7.89982 −7.73207 0.516 −7.96729 −7.49630 −8.18806 −8.23073 −6.91086
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Table 36: Noisy simulations of VQE for ground state energies of LiH(2, 4) with an UpCCGSD

Ansatz. The noise model consists of bitflip on single qubit gates and depolarization
error on two qubit gates. The error probability for both noise channels is set to 10%.

Bond
Distance (Å)

E0
VQE

(UpCCGSD)
Fidelity

Gramian Eigenvalue Gramian Expectation SDP

lower bound upper bound lower bound lower bound upper bound

0.50 −7.21863 −6.66418 0.118 −7.71356 −5.61455 −7.34604 −7.34604 −5.48348

0.75 −7.70845 −6.99642 0.120 −8.30129 −5.69055 −7.86084 −7.86084 −5.55101

1.00 −7.90403 −7.17549 0.122 −8.49462 −5.85839 −8.05745 −8.05745 −5.71484

1.25 −7.97808 −7.27489 0.121 −8.56334 −5.98558 −8.12808 −8.12808 −5.85695

1.40 −7.99541 −7.30592 0.107 −8.61254 −6.00004 −8.14492 −8.14492 −5.93376

1.50 −8.00062 −7.34297 0.117 −8.56754 −6.12004 −8.14912 −8.14912 −5.99011

1.60 −8.00251 −7.37233 0.120 −8.53701 −6.20478 −8.14878 −8.14878 −6.05390

1.70 −8.00213 −7.39912 0.120 −8.52712 −6.26860 −8.14473 −8.14473 −6.12434

1.75 −8.00127 −7.41376 0.121 −8.51673 −6.31010 −8.14171 −8.14171 −6.16141

2.00 −7.99319 −7.47053 0.120 −8.46034 −6.48104 −8.12208 −8.12208 −6.34924

2.25 −7.98161 −7.51937 0.120 −8.41918 −6.62024 −8.10091 −8.10091 −6.51810

2.50 −7.96941 −7.55501 0.118 −8.38562 −6.72552 −8.08292 −8.08292 −6.65920

2.75 −7.95765 −7.58323 0.116 −8.36295 −6.80337 −8.06660 −8.06660 −6.77282

3.00 −7.94669 −7.60655 0.116 −8.33990 −6.87168 −8.07915 −8.07915 −6.81481

3.25 −7.93706 −7.62472 0.115 −8.32053 −6.92821 −8.11182 −8.11182 −6.82651

3.50 −7.92842 −7.64013 0.115 −8.31261 −6.96878 −8.13833 −8.13833 −6.83591

3.75 −7.92096 −7.65034 0.103 −8.33392 −6.96726 −8.16116 −8.16116 −6.84353

4.00 −7.91490 −7.66562 0.111 −8.31035 −7.02064 −8.18053 −8.18053 −6.85062

4.25 −7.90968 −7.68425 0.089 −8.34869 −7.01927 −8.19643 −8.19643 −6.85685

4.50 −7.90590 −7.69349 0.089 −8.35523 −7.03175 −8.21024 −8.21024 −6.86264

4.75 −7.90306 −7.70511 0.090 −8.35773 −7.05194 −8.22021 −8.22021 −6.86835

5.00 −7.90106 −7.70031 0.098 −8.36531 −7.03541 −8.22696 −8.22696 −6.87387

5.25 −7.89982 −7.70455 0.077 −8.45740 −6.95222 −8.23073 −8.23073 −6.87932
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