
ETH Library

Deep Compositional Denoising on
Frame Sequences

Conference Paper

Author(s):
Zhang, Xianyao ; Röthlin, Gerhard; Manzi, Marco; Gross, Markus; Papas, Marios

Publication date:
2023

Permanent link:
https://doi.org/10.3929/ethz-b-000655602

Rights / license:
Creative Commons Attribution 4.0 International

Originally published in:
https://doi.org/10.2312/SR.20231142

This page was generated automatically upon download from the ETH Zurich Research Collection.
For more information, please consult the Terms of use.

https://orcid.org/0000-0002-2823-3485
https://doi.org/10.3929/ethz-b-000655602
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.2312/SR.20231142
https://www.research-collection.ethz.ch
https://www.research-collection.ethz.ch/terms-of-use


Deep Compositional Denoising on Frame Sequences

Xianyao Zhang†1,2 , Gerhard Röthlin2, Marco Manzi1, Markus Gross1,2 and Marios Papas†2

1ETH Zürich, Switzerland
2DisneyResearch|Studios, Switzerland

Single frame Temporal (7-frame)
Temporal Compositional Input Compositional KPAL Compositional Reference

SMAPE 0.01238 0.01195 0.01117
DSSIM 0.01925 0.01958 0.01874

SMAPE 0.00848 0.00828 0.00808
DSSIM 0.00536 0.00561 0.00498

Figure 1: Visual results from the single-frame compositional denoiser [ZMV∗21], the multi-frame temporal kernel-predicting denoiser (KPAL
[VRM∗18]) and our multi-frame compositional denoiser, showcasing the improved detail reconstruction from the temporal compositional
denoiser over both counterparts. The first image was created by the Walt Disney Animation Studios (© Disney), and the second by Pixar
Animation Studios (© Disney / Pixar).

1. Introduction

Path tracing is the prevalent rendering algorithm in the animated
movies and visual effects industry, thanks to its simplicity and abil-
ity to render physically plausible lighting effects. However, we
must simulate millions of light paths before producing one final
image, and error manifests as noise during rendering. In fact, it can
take tens or even hundreds of CPU hours on a modern computer to
render a plausible frame in a recent animated movie. Movie pro-
duction and the VFX industry rely on image-based denoising algo-
rithms to ameliorate the rendering cost, which suppresses the noise
due to rendering by reusing information in the neighborhood of the
pixels both spatially and temporally.

The temporal reuse of information from neighboring frames in
a sequence is a critical part of a reliable and high-quality denoiser
suitable for use for final-quality frames in production. First, the use
of neighboring frames expands the neighborhood of each pixel, al-
lowing the denoiser to use a higher number of similarly distributed
neighbors to reduce noise. Second, the context from neighboring

frames helps suppress flickering artifacts and preserves the tempo-
ral coherence of the denoised frame sequence compared to denois-
ing each frame in isolation.

The single-frame compositional denoiser [ZMV∗21] decom-
poses the noisy input image into multiple easier-to-denoise com-
ponents, improving the quality of still-image denoising. A typical
choice of 4 components delivers a 20% to 25% reduction in the ren-
dering budget to match the denoising quality of a previous state-of-
the-art kernel-predicting neural denoiser, which we denote KPAL
in the description below [VRM∗18]. However, the compositional
denoiser does not support temporal denoising of frame sequences,
leading to artifacts. Extending the compositional denoiser to use
temporal information while denoising frame sequences presents
practical challenges. A naive extension can significantly increase
memory and runtime costs which become obstacles to the adoption
in production environments.

The original single-frame approach processes each frame in a se-
quence independently. It decomposes the frame into learned com-

Eurographics Symposium on Rendering (2023)
T. Ritschel and A. Weidlich (Editors)

© 2023 The Authors.
Proceedings published by Eurographics - The European Association for Computer Graphics.
This is an open access article under the terms of the Creative Commons Attribution License, which
permits use, distribution and reproduction in any medium, provided the original work is properly
cited.

DOI: 10.2312/sr.20231142 https://diglib.eg.orghttps://www.eg.org

https://orcid.org/0000-0002-2823-3485
https://orcid.org/0000-0001-7084-1831
https://doi.org/10.2312/sr.20231142


X. Zhang et al. / Deep Compositional Denoising on Frame Sequences

ponents, which are then denoised through kernel prediction and
combined into the final denoised image. Instead of discarding the
learned components for previous frames when denoising the next
frame, our method stores them in memory for later reuse, signif-
icantly reducing computation costs. As we progress through the
sequence of frames, the per-frame learned components in the tem-
poral window are regrouped into component temporal groups cen-
tered around the frame to be denoised. The component temporal
groups are then passed to a temporal denoising module for con-
text and kernel application with a multi-scale architecture similar
to KPAL [VRM∗18], which outputs one denoised component of the
frame to be denoised.

Furthermore, as storing the learned components in memory with
full 32-bit precision can exceed the memory capacity of current
hardware used in production, we propose an 8-bit quantization
scheme of the intermediate results, which halves the peak mem-
ory consumption. Our proposed quantization is carefully crafted to
avoid introducing any quantization artifacts.

In summary, we propose a novel extension for processing frame
sequences that provides context from neighboring frames while
avoiding redundant computation and a novel quantization approach
that reduces the memory overhead without introducing artifacts.
Our method achieves a significant improvement in denoising qual-
ity over KPAL and ameliorates temporal denoising artifacts from
the single-frame approach. This enables the use of the composi-
tional denoiser [ZMV∗21] in production settings. We would like
to note that all the denoising time and RAM consumption mea-
surements in this report are based on a multi-thread CPU imple-
mentation of the denoising methods, as CPUs form the majority
of computation power in today’s render farms. Nevertheless, our
optimizations, particularly the quantization to reduce RAM con-
sumption, could be translated to the GPU version of the temporal
compositional denoiser.

2. Method and implementation

In this section, we describe our three steps towards making the
compositional denoiser suitable for the production environment.
We start with introducing the temporal extension (Section 2.1) that
produces improved denoising quality but requires significant com-
putation costs. Then, to ameliorate the computation costs, we pro-
pose the caching and reuse of learned components (Section 2.2)
which greatly reduced the denoising time at the cost of increased
RAM consumption. Finally, we describe the 8-bit quantization
scheme (Section 2.3) that halves the peak RAM consumption and
makes the method more compatible with typical production envi-
ronments. We additionally provide implementation details in Sec-
tion 2.4.

2.1. Temporal extension of the compositional denoiser

Similar to the single-frame compositional denoiser [ZMV∗21], our
temporal compositional denoiser operates in two steps, decompo-
sition and denoising. Its core architecture consists of a decom-
position module, which decomposes and encodes a frame into 2
learned components, and a kernel-predicting denoising module,
which takes a temporal group of frames (including the frame to be

denoised, 3 previous frames, and 3 next frames) and corresponding
auxiliary features and outputs the denoised version of the frame to
be denoised. Both modules contain a U-Net [RFB15] as the back-
bone.

Figure 2 summarizes the workflow of the temporal composi-
tional denoiser. In the decomposition step, we run the decompo-
sition module a total of 3 times hierarchically to produce 4 learned
components for each frame independently, where each component
consists of the component color image, the component mask, and
the component learned features (see [ZMV∗21] for more details
on the decomposition step). The per-frame components are then
grouped into 4 separate temporal component groups, each pro-
cessed by the denoising module. The denoised components are
summed up to yield the final denoised frame.

2.2. Reusing learned components across frames

The compositional denoiser has a higher run time than the KPAL de-
noiser [VRM∗18] because of repeatedly running the decomposition
and denoising modules. This discrepancy is further amplified for
temporal denoising since the learned components for each frame
are needed for all frames in the temporal neighborhood. Our tem-
poral compositional denoiser allows caching and reusing per-frame
learned components for sequence denoising, significantly reducing
the overhead.

The key to enabling the reuse of components is delaying mo-
tion compensation (warping) until after decomposition, which is
also shown in the middle of Figure 2, as the circled “Regroup &
Warp” label. Motion compensation aligns the neighboring frames
with the frame to be denoised by following the renderer’s motion
vectors or optical flow. and it needs to be recomputed whenever
that frame changes. In our method, this motion compensation step
is performed after decomposition, and each component group is
processed individually using the same set of motion vectors. While
it is also possible to run the motion compensation before decompo-
sition, such an implementation would be more costly as it prevents
the reuse of learned components because the decomposition of a
neighboring frame will be dependent on the current frame to be
denoised.

With a 7-frame temporal window, caching and reusing the per-
frame components save 60% to 70% of the total denoising time
for a long sequence, compared to a naive implementation, which
improves the practicality of our temporal compositional denoiser.

We measured the denoising time on CPU for a 7-frame sequence
of 1920×804 frames and all 3 passes (diffuse, specular and alpha)
on an AMD Ryzen 7 5800X 8-Core Processor with 16 threads. The
optimized implementation required 360 seconds which through
caching we can reduce to 105 seconds. For reference, the corre-
sponding denoising time for KPAL is 21 seconds. Though the com-
positional denoiser is slower than the baseline, the savings in the
render budget outweigh the additional denoising cost.

2.3. 8-bit quantization for memory consumption optimization

When learned components are cached, the temporal compositional
denoiser has a much higher RAM consumption compared to KPAL

© 2023 The Authors.
Proceedings published by Eurographics - The European Association for Computer Graphics.

140



X. Zhang et al. / Deep Compositional Denoising on Frame Sequences

D

Frame 0
Component 4

F0

Regroup
& Warp +

C4

C
om

po
ne

nt
 1 C1F1

Frame 1
Component 1

C1F0

Frame 0
Component 1

C1F-1

Frame -1
Component 1

C
om

po
ne

nt
 4 C4F1

Frame 1
Component 4

C4F0

Frame 0
Component 4

C4F-1

Frame -1
Component 4

C
om

po
ne

nt
 3 C3F1

Frame 1
Component 3

C3F0

Frame 0
Component 3

C3F-1

Frame -1
Component 3

C
om

po
ne

nt
 2 C2F1

Frame 1
Component 2

C2F0

Frame 0
Component 2

C2F-1

Frame -1
Component 2

Fr
am

e 
1

C1F1

Frame 1
Component 1

C4F1

Frame 1
Component 4

C3F1

Frame 1
Component 3

C2F1

Frame 1
Component 2

Fr
am

e 
0

C1F0

Frame 0
Component 1

C4F0

Frame 0
Component 4

C3F0

Frame 0
Component 3

C2F0

Frame 0
Component 2

Fr
am

e 
-1

C1F-1

Frame -1
Component 1

C4F-1

Frame -1
Component 4

C3F-1

Frame -1
Component 3

C2F-1

Frame -1
Component 2

Frame 1
Noisy Input

F1

Frame 0
Noisy Input

F0

Frame -1
Noisy Input

F-1

Per-frame
Decomposition

Per-frame
Decomposition

Per-frame
Decomposition

Per-component
Denoiser

D

Frame 0
Component 1

F0

Per-component
Denoiser

Per-component
Denoiser

D

Frame 0
Component 2

F0

Per-component
Denoiser

D

Frame 0
Component 3

F0

C1

C2

C3 D

Frame 0
Denoised Output

F0

Figure 2: Temporal compositional denoiser pipeline with per-frame decomposition and per-component denoising, using a 3-frame sequence,
indexed by −1, 0 and 1, as an example. The sharp rectangles represent data (images and/or feature maps), the round-corner rectangles
represent trainable modules, and circles represent non-trainable operations. Labels on the top-left and top-right corners of the rectangles
correspond to frame index and component index, respectively, and bottom-right shaded triangle with “D” distinguishes denoised images
from input ones.

[VRM∗18]. Additionally, the predicted per-component denoising
kernel weights need to be stored for efficiently denoising arbitrary
output variables (AOVs) such as per-light noisy images. To reduce
RAM consumption, we introduce an 8-bit quantization on these
intermediate tensors which are originally stored as 32-bit floats.

The quantization operates on each channel of the tensors, whose
shape can be denoted as H ×W ×C, where the three dimensions
represent the height, width, and channels, respectively. To quantize
one channel (a matrix of shape H ×W ), we store its minimum and
maximum values in 32-bit floats, normalize the channel to [−1,1]
using the minimum and maximum values, and quantize the result-
ing normalized tensor to 8-bit integers. Moreover, for the denois-
ing kernel weights and the per-component noisy images, a gamma
curve f (x) = x

1
2.5 is applied before the normalization to compress

the dynamic range and reduce the impact of outliers on quantization
results.

Our quantization reduces the peak RAM consumption of the
temporal compositional denoiser by more than 50%. For instance,
when denoising a 7-frame sequence of three-channel 2560× 1440
images, the peak RAM consumption dropped from 124.9 GiB to
59.8 GiB after quantization. These savings enable the application of
our denoiser on images at this widely-used resolution on machines
with 64 GiB memory, a common case for today’s workstations. For
reference, KPAL requires 40.8 GiB of memory. A breakdown of
the memory utilization is provided in Figure 3 This optimization is
crucial in making the temporal compositional denoiser practical in
the current production environment, since for final-quality render-
ings, an increase in the denoiser’s run time can be more tolerated
than one in its RAM usage, because the latter is a hard constraint
depending on the machine specifications at each studio.

Float
32-bit

Quantized
8-bit

0

32

64

96

128

Pe
ak

M
em

or
y

(G
iB

)

KPAL (7-frame): 40.8 GiB

Compositional Denoiser Memory Distribution (7-frame)

Intra Network Tensors
Kernels & Weights
Learned Components

Figure 3: Breakdown of peak memory usage when denoising a
2560×1440 7-frame sequence in 3 passes (diffuse, specular and al-
pha) with our temporal compositional denoiser. The memory of ker-
nels, multi-scale reconstruction weights and learned components is
reduced by 4× yielding a total reduction of more than 50%.

2.4. Implementation details

We train and evaluate our model on renderings from WDAS (Hy-
perion renderer [BAC∗18]) and Pixar Animation Studios (Render-
Man [CFS∗18]), and compare our method with the KPAL denoiser
[VRM∗18] as the baseline. In addition to the 7-frame versions,
we also train the original single-frame compositional denoiser and
the baseline kernel-predicting denoiser to evaluate the difference in
the compositional denoiser’s improvements. The compositional de-
noisers use 4 learned components. The multi-frame denoisers use 4
scales in their U-Nets and multi-scale reconstruction modules, and
the single-frame denoisers use 5 scales.

© 2023 The Authors.
Proceedings published by Eurographics - The European Association for Computer Graphics.

141



X. Zhang et al. / Deep Compositional Denoising on Frame Sequences

We use SMAPE [VRM∗18] as the training loss, and the denois-
ers are trained to process the diffuse and specular components of
each image separately. Note that for denoising different compo-
nents (“passes”), the same denoiser model is run multiple times
with the different component in the place for “color” input; this
is the same for all four methods listed above. We train the meth-
ods with the Adam optimizer [KB14] until 2.88M iterations, per-
forming learning rate decay with a factor of 10 three times, at
2.09M, 2.36M and 2.62M iterations, respectively. The training is
performed on an NVIDIA RTX 2080ti GPU and requires approxi-
mately 30 days to complete. The methods are trained on 128×128
patches, with the baselines using batch size 4 and the compositional
denoisers batch size 1 due to their increased RAM consumption.

3. Results and discussion

We compare our temporal compositional denoiser with the KPAL
baseline [VRM∗18] on a test set of 34 production-level scenes at
various noise levels. Results show that, in the multi-frame scenario,
the compositional denoiser shows improvement on almost all eval-
uation images over the KPAL baseline, according to the SMAPE
criterion, and on average provides a 5% reduction of SMAPE and
6% of DSSIM (1-SSIM [WBSS04]) error. Similar improvements
are found in the comparison between the single-frame composi-
tional and KPAL denoisers. Notably, the 8-bit quantization reduces
the RAM consumption without producing any noticeable artifacts
on our evaluation dataset.

In Figure 1, we showcase the denoising result improvement from
the temporal compositional denoiser over the single-frame compo-
sitional denoiser and the temporal baseline KPAL. We could observe
that the compositional denoiser preserves the most details among
the three methods, and the improvement is especially visible when
compared with KPAL which does not use learned decomposition.

To measure the impact of the temporal compositional denoiser
on rendering time, we estimate the sampling budget savings by
our method over the KPAL baseline [VRM∗18], similar to Figure
8 by Zhang et al. [ZMV∗21]. More specifically, we calculate the
estimated input sample count for our method to reach the same
SMAPE error as the baseline. Starting from a set of available sam-
ple count levels for a scene, we use linear interpolation in the log-
log space to create a smoother spp–SMAPE curve. Then, given the
SMAPE value at a certain sample count for the baseline, we use
the spp–SMAPE curve from our method to find the sample count at
which our method reaches that error value. The difference between
these two sample count levels provides an estimate on our method’s
capability of reducing render time. When averaged across the avail-
able sample count levels and the scenes in our test set, the temporal
compositional denoiser delivers roughly a 20%–25% reduction in
sampling budget to reach the same denoising quality of the tem-
poral KPAL method, similar to the improvement on single-frame
denoising.

4. Summary and conclusion

In this report, we described our method for extending the com-
positional denoiser [ZMV∗21] to process frame sequences while

also meeting practical requirements from production. For the neu-
ral network architecture, we use per-frame decomposition and ex-
tend the denoising module to handle frame sequences, which shows
improved results over the temporal neural denoiser but is computa-
tionally intensive. We reuse the per-frame learned components by
caching them in memory and recomputing motion compensation
whenever the denoised frame changes, saving around two-thirds of
the computation cost when denoising a long sequence. Finally, to
combat the RAM consumption issue resulting from caching, we
apply an 8-bit quantization on the cached tensors, which halves the
peak RAM consumption and makes this high-quality denoiser prac-
tical for use in production environments.

References
[BAC∗18] BURLEY B., ADLER D., CHIANG M. J.-Y., DRISKILL H.,

HABEL R., KELLY P., KUTZ P., LI Y. K., TEECE D.: The design and
evolution of disney’s hyperion renderer. ACM Trans. Graph. 37, 3 (July
2018). URL: https://doi.org/10.1145/3182159, doi:10.
1145/3182159. 3

[CFS∗18] CHRISTENSEN P., FONG J., SHADE J., WOOTEN W., SCHU-
BERT B., KENSLER A., FRIEDMAN S., KILPATRICK C., RAMSHAW
C., BANNISTER M., ET AL.: Renderman: An advanced path-tracing ar-
chitecture for movie rendering. ACM Transactions on Graphics (TOG)
37, 3 (2018), 1–21. 3

[KB14] KINGMA D. P., BA J.: Adam: A method for stochastic optimiza-
tion. CoRR abs/1412.6980 (2014). arXiv:1412.6980. 4

[RFB15] RONNEBERGER O., FISCHER P., BROX T.: U-Net: Convo-
lutional networks for biomedical image segmentation. In Medical Im-
age Computing and Computer-Assisted Intervention - 18th International
Conf. (2015), Springer, pp. 234–241. 2

[VRM∗18] VOGELS T., ROUSSELLE F., MCWILLIAMS B., RÖTHLIN
G., HARVILL A., ADLER D., MEYER M., NOVÁK J.: Denoising with
kernel prediction and asymmetric loss functions. ACM Transactions
on Graphics (Proceedings of SIGGRAPH 2018) 37, 4 (2018), 124:1–
124:15. doi:10.1145/3197517.3201388. 1, 2, 3, 4

[WBSS04] WANG Z., BOVIK A., SHEIKH H., SIMONCELLI E.: Image
quality assessment: From error visibility to structural similarity. IEEE
Transactions on Image Processing 13, 4 (April 2004), 600–612. 4

[ZMV∗21] ZHANG X., MANZI M., VOGELS T., DAHLBERG H.,
GROSS M., PAPAS M.: Deep Compositional Denoising for High-quality
Monte Carlo Rendering. Computer Graphics Forum 40, 4 (2021), 1–13.
doi:10.1111/cgf.14337. 1, 2, 4

© 2023 The Authors.
Proceedings published by Eurographics - The European Association for Computer Graphics.

142

https://doi.org/10.1145/3182159
https://doi.org/10.1145/3182159
https://doi.org/10.1145/3182159
http://arxiv.org/abs/1412.6980
https://doi.org/10.1145/3197517.3201388
https://doi.org/10.1111/cgf.14337

