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Zusammenfassung

In dieser Arbeit untersuchen wir die Komplexität von schweren Problemen,
wenn zusätzliche Informationen gegeben sind. Zu diesem Zweck untersuchen
wir Reoptimierungsprobleme sowie Online-Probleme mit gegebenem Advice als
zwei mögliche Wege, zusätzlich gegebene Informationen in die Standard-Berech-
nungsmodelle zu integrieren.

Bei der Reoptimierung untersuchen wir das Szenario, in dem eine Instanz für
ein schweres Problem sowie eine optimale Lösung für diese Instanz gegeben ist.
Hierbei besteht das Problem darin, eine lokal veränderte Instanz für dasselbe
Problem zu lösen. Es wurde bereits für viele verschiedene schwere Probleme
gezeigt, dass entsprechende Reoptimierungsvarianten NP-schwer bleiben oder
dass es sogar schwer bleibt, sie zu approximieren. Oft können hier allerdings
bessere Approximationsgüten erreicht werden.

In dieser Arbeit beschäftigen wir uns mit der Reoptimierung von Steinerbäu-
men auf Graphen mit verschärfter β-Dreiecksungleichung. Wir betrachten dabei
als lokale Modifikation das Hinzufügen eines neuen Knotens zu einer gegebenen
Instanz sowohl als Nicht-Terminal als auch als Terminal. Für diese Variante
geben wir einen Linearzeit-Algorithmus an mit einer garantierten Approxima-
tionsgüte von (1/2+β). Darüber hinaus geben wir einen 2β-Approximationsal-
gorithmus für das klassische Steinerbaum-Problem an. Dieses Resultat verbes-
sert die bis dato bekannten Ergebnisse für Werte von β < 1/2+ln(3)/4 ≈ 0.775.

Ausserdem geben wir eine kurze Übersicht über die bereits bekannten Resul-
tate im Bereich der Reoptimierung und untersuchen eine Verallgemeinerung des
Konzepts der Reoptimierung, wobei mehr als nur eine optimale Lösung gegeben
ist. Wir zeigen für einige Varianten des Steinerbaum- sowie des Traveling-
Salesman-Problems, dass die bekannten Resultate zur Schwere auch für dieses
allgemeinere Konzept gelten. Zusätzlich zeigen wir am Beispiel des allgemeinen
Traveling-Salesman-Problems, dass es Klassen von Problemen gibt, bei denen
nicht einmal die Menge aller optimalen Lösungen hilft, die generelle Approx-
imierbarkeit zu verbessern. Das gilt sogar dann, wenn es sich dabei um expo-
nentiell viele optimale Lösungen handelt. Weiter zeigen wir, dass lokale Suche
für das allgemeine TSP auch dann nicht erfolgreich ist, wenn mehrere optimale
Lösungen gegeben sind.

Mit der Advice-Complexity eines Online-Problems beschreiben wir die zu-
sätzliche Information, die notwendig und ausreichend für einen Online-Algorith-
mus ist, um eine bestimmte Qualität zu erreichen. In unserem Modell kennt ein
Orakel die gesamte Eingabe, bevor sie dem Online-Algorithmus gegeben wird.
Abhängig von der Eingabe stellt das Orakel einen Advice-String zur Verfügung,
der vom Online-Algorithmus teilweise gelesen werden kann. Die Anzahl an
Advice-Bits, die ein Algorithmus liest, um eine gegebene Competitive Ratio zu
erreichen, gibt uns ein verfeinertes Mass für die Komplexität des Problems.

Im zweiten Teil der Arbeit untersuchen wir Online-Probleme mit Advice.
Wir beginnen mit dem Problem der Online-Färbung von Graphen, wobei der
Graph Knoten für Knoten online präsentiert wird. Hier befassen wir uns mit
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der gesamten Klasse der dreifärbbaren Graphen sowie deren Teilklassen der
chordalen und der maximal aussenplanaren Graphen. Wir zeigen, dass für
die ersten beiden Klassen grundsätzlich log2 3 Advice-Bits pro Knoten (BpK)
notwendig und hinreichend sind, um Graphen dieser Klasse optimal zu färben.
Für die Klasse der maximal aussenplanaren Graphen zeigen wir die Existenz
einer unteren Schranke von 1.0424 BpK und einer oberen Schranke von 1.2932
BpK. Anschliessend geben wir verschiedene Algorithmen an, um Graphen dieser
Graphklassen mit 4 Farben zu färben. Hierbei reichen 0.9865 BpK aus, um
chordale und maximal aussenplanare Graphen mit vier Farben zu färben, und
für generell dreifärbbare Graphen reichen weniger als 1.1583 BpK aus.

Ein weiterer Beitrag dieser Arbeit ist eine generelle Beweistechnik, um un-
tere Schranken für die Menge an Advice aufzuzeigen, die notwendig ist, um
eine angestrebte Qualität zu erreichen. Dafür untersuchen wir das String-
Rateproblem als ein generelles Problem und nutzen es, um eine untere Schranke
für die Advice-Komplexität des Online-Maximum-Clique-Problems anzugeben.
Darüber hinaus definieren wir eine formale Reduktion für Online-Minimierungs-
probleme und verbessern mit deren Hilfe die besten bekannten Resultate für das
Online-Set-Cover-Problem.
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Abstract

In this thesis, we investigate the complexity of hard problems when additional
information is given. For this, we consider the scenario of reoptimization and
online scenarios with advice as two different approaches to integrate certain
additional information into the standard computation models.

In reoptimization, we consider the following scenario: Given an instance of
a hard optimization problem together with an optimal solution for it, we want
to solve a locally modified instance of the problem. It has recently been shown
for several hard optimization problems that their corresponding reoptimization
variants remainNP-hard or even hard to approximate whereas they often admit
improved approximation ratios.

In this thesis, we deal with the local modification of integration a new vertex
as terminal and as non-terminal into instances of the Steiner tree problem in
graphs obeying a sharpened β-triangle inequality. For the upper bounds, for
these local modifications, we design linear-time (1/2 + β)-approximation algo-
rithms. As a building block for these algorithms, we employ a 2β-approximation
algorithm for the classical Steiner tree problem on such instances, which might
be of independent interest since it improves over the previously best known ratio
for any β < 1/2 + ln(3)/4 ≈ 0.775.

Additionally, we briefly survey the known results about reoptimization and
we investigate a generalization of the reoptimization concept where we are given
not only one optimal solution but multiple optimal solutions for an instance.
We prove, for some variants of the Steiner tree problem and the traveling sales-
man problem, that the known reoptimization hardness results carry over to this
generalized setting.

Furthermore, we use the traveling salesman problem as an example that,
even in the case where the set of all optimal solutions for an instance is available
for free, there exist problems for which this additional knowledge does not help
at all for improving the approximability. Moreover, we consider the performance
of local search strategies on reoptimization problems. We show that local search
does not work for solving TSP reoptimization, even in the presence of multiple
solutions.

The advice complexity of an online problem describes the additional informa-
tion both necessary and sufficient for online algorithms to compute solutions of
certain quality. In this model, an oracle inspects the input before it is processed
by an online algorithm. Depending on the input string, the oracle prepares
an advice bit string that may be accessed sequentially by the algorithm. The
number of advice bits that are read to achieve some specific competitive ratio
can then serve as a fine-grained complexity measure.

In the second part of the thesis, we study online algorithms with advice. We
start with the problem of coloring graphs which are presented online vertex by
vertex. Here, we consider the class of all 3-colorable graphs and its sub-classes
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of chordal and maximal outerplanar graphs, respectively. We show that, in the
case of the first two classes, for coloring optimally, essentially log2 3 advice bits
per vertex (bpv) are necessary and sufficient. In the case of maximal outerplanar
graphs, we show a lower bound of 1.0424 bpv and an upper bound of 1.2932
bpv. Finally, we develop algorithms for 4-coloring in these graph classes. The
algorithm for 3-colorable chordal and outerplanar graphs uses 0.9865 bpv, and
in case of general 3-colorable graphs, we obtain an algorithm using < 1.1583
bpv.

Another contribution of this thesis is to develop a powerful method for prov-
ing lower bounds on the number of advice bits necessary. To this end, we analyze
the string guessing problem as a generic online problem and show a lower bound
on the number of advice bits needed to obtain a small competitive ratio. We
use special reductions from string guessing to give a lower bound on the advice
complexity of the online maximum clique problem. Additionally, we define a
formal model of reduction for online minimization problems and improve the
best known lower bound for the online set cover problem.
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Chapter 1

Introduction

A lot of real-world problems, especially in the field of logistics are hard in the
sense that they are not optimally solvable within reasonable time. In operations
research, such problems are very essential and constitute a wide research field.
We are traditionally concerned with finding optimal solutions to practically
relevant problem instances about which nothing is known in advance. Unfor-
tunately, finding such optimal solutions is computationally hard in many cases,
and thus we have to use different approaches like heuristics or approximation
algorithms for computing good (but not necessarily optimal) feasible solutions.
But, in many cases, even computing a solution of a satisfactory approximation
quality remains a hard task.

When formalizing a real world problem as an instance of a computational
problem, we are usually left with a lot of additional information that was not
incorporated in the formal model. This information could be used to provide
better solutions to many types of hard problems. As an example, consider
the problem of finding an optimal train schedule (for some railway network,
objective function, and under some constraints). If we succeeded in computing
an optimal schedule, it is natural to expect that we can profit somehow from
this schedule when an additional railway station is opened and we have to find
a new optimal schedule.

In this thesis, we investigate two theoretical approaches to integrate certain
kinds of additional knowledge into our models. As a first approach, we analyze
approximation scenarios, where a very special kind of extra information is given,
namely optimal or near-optimal solutions for similar instances. The concept
of reoptimization formally describes the following approach: Given a problem
instance together with an optimal (or approximate) solution for it and a locally
modified new problem instance, what can we say about the optimal solution
for the new instance? Does the knowledge about the old optimal solution help
when computing a solution for the new instance? How much can it improve the
running time or the quality of the output? Even if many optimization problems

1
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are better approximable with information in form of optimal solutions for similar
instances, here, we highlight the limits of additional knowledge in this concept.
We will see that, for many reoptimization problems, even an exponential number
of given optimal solutions does not help.

In the second approach, we turn to a very general model of additional infor-
mation. Here, we are interested in measuring the amount of information that
is needed to compute an optimal (or near optimal) solution. We analyze this
concept in the context of online problems. Here, we deal with the natural situ-
ation that the input arrives piecewise. In contrast to the offline case, the online
algorithm must compute a part of the solution for the already given piece of
input at every time step. Once a part of the solution is computed, it cannot
be changed. In each step, the algorithm has to produce a part of the output
without knowing the whole instance. Here, the extra information is given by
an oracle that knows the future and writes helpful information onto an advice
”tape”.

The standard way to measure the quality of an online algorithm is the com-
petitive analysis. The quality of the solution computed by the online algorithm
is compared to the quality of the best possible solution computable offline, i.e.,
when knowing the whole input. Measuring the quality of an online algorithm by
comparing its output to an optimal offline solution gives an universally appli-
cable yardstick. However, it has the disadvantage that, for many problems, the
output of the best possible online algorithms is still far from the offline solutions.
To establish a more fine-grained measure of the hardness of online problems, one
introduces an advisor (an oracle that knows the whole input) that provides an
advice tape with an unlimited advice bit string to the online algorithm. For
any online algorithm with advice, the advice complexity measures the number
of bits read by the online algorithm. The advice complexity of a problem is
defined as the advice complexity of the best online algorithm (achieving a given
competitive ratio).

The advice complexity of an online problem describes the information con-
tent of an online problem, and thus a new measure for its hardness. This
measure might be used to give an insight into the gap between online and of-
fline algorithms even with unlimited computing power1. In this thesis, we focus
on online algorithms with advice which have a linear running time. In this
situation, the advice complexity might give us a new view on the hardness of
such problems. Note that every problem solvable in polynomial time using a
logarithmic number of advice bits is also solvable offline in polynomial time by
simulating the computation for each of the possible advice strings.

In Section 1.1 and 1.2, we give some additional information and explana-
tion about the reoptimization approach and the idea of online algorithms. The
common formal definitions needed in this thesis are given in Section 3.4.

1Due to the unlimited computing power of the advisor, the online algorithm may be used
on hard problems, provided that enough advice is used.
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1.1 Reoptimization Approach

The concept of reoptimization was mentioned for the first time in [73] in the
context of postoptimality analysis for a scheduling problem. In postoptimality
analysis, one studies the related question of how much a given instance of an
optimization problem may be altered without changing the set of optimal so-
lutions, see for example the paper by van Hoesel and Wagelmans [77]. Since
then, the concept of reoptimization has been investigated for several different
problems like the traveling salesman problem [2, 6, 7, 15, 27], the Steiner tree
problem [10, 17, 23, 43], knapsack problems [3], covering problems [13], and the
shortest common superstring problem [11, 12]. In these papers, it was shown
that, for some problems, the reoptimization variant is exactly as hard as the
original problem, whereas reoptimization can help a lot in improving the ap-
proximation ratio for other problems. For an overview of some results, see
also [4, 24, 81]. These results show that the reoptimization concept gives new
insight into the hardness of the underlying optimization problems and allows
for a more fine-grained complexity analysis. In this context, we usually measure
the quality of a solution in terms of the approximation ratio, i.e., the quotient
of the value of the computed solution and the optimal value.

While the reoptimization variants ofNP-hard optimization problems usually
remain NP-hard, the approximability might essentially improve in the reopti-
mization setting [24]. For example, the approximation ratio of the metric TSP
reoptimization, where the considered local modification consists of changing the
cost of a single edge, can be improved to 4/3 [7], whereas without reoptimization
the best known approximation ratio is 1.5 due to Christofides’ algorithm [35].
On the other hand, for some reoptimization problems, inapproximability results
have been proven [15, 16, 25, 27].

In Chapter 2, we give some positive results on the Steiner tree reoptimization
on graphs with sharpened triangle inequality. The Steiner tree problem is a very
prominent optimization problem with many practical applications, especially in
network design, see for example [54, 69]. The problem is known to be APX-
hard, even if the edge costs are restricted to 1 and 2 [8]. In [18], the hardness
of even more restricted input instances was shown. More precisely, cases where
the edge costs are restricted to the values 1 and 1 + γ, for any 0 < γ, were
considered. Also this restricted problem variant is known to be APX -hard [50].
In particular, restricting the edge costs in the described way also implies the
same hardness results for the class of Steiner tree problems where the edge-costs
satisfy the sharpened β-triangle inequality, i. e., where the cost function satisfies
the condition cost(v1, v2) ≤ β ·(cost(v1, v3) + cost(v3, v2)), for some 1/2 ≤ β < 1
and for all vertices v1, v2, and v3.

The graphs satisfying a sharpened triangle inequality form a subclass of the
class of all metric graphs. Intuitively speaking, for vertices that are points in
the Euclidean plane, a parameter value β < 1 prevents that three vertices can
be placed on the same line. For more details and motivation of the sharpened
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triangle inequality, see [19].

A minimum spanning tree on the terminal vertices (w. r. t. the metric closure
of the edge costs) is sufficient for achieving a 2-approximation (see, e. g., [69]),
and the best currently known approximation ratio for the Steiner tree problem
is 1.39 for general edge costs [33] and 1.28 for edge costs 1 and 2 [71].

To analyze how the transition from metric graphs (β = 1) to graphs with
sharpened β-triangle inequality influences the computational hardness of the
Steiner tree problem, we consider, in Chapter 2, the question whether additional
knowledge about the input is helpful to find a good solution [17, 18].

In Chapter 3, we first give a brief overview of known reoptimization results
showing that the answers to questions concerning the value of additional knowl-
edge are very dependent on the optimization problem and the type of local
modification. On the one hand, as already mentioned, there exist APX -hard
optimization problems where the knowledge of an optimal solution can help
to improve the achievable approximation ratio on a locally modified instance,
sometimes even to design a PTAS for the reoptimization variant of the problem.
On the other hand, there exist problems for which the reoptimization variant is
exactly as hard as the original problem.

In this thesis, we also consider a generalization of the reoptimization ap-
proach in Chapter 2. We assume that we are given not only one optimal solu-
tion for a locally modified problem instance, but the k best solutions for some k
which might even be exponentially large in the size of the input. We also study
a reoptimization situation where we are given a TSP instance together with the
set of all optimal solutions. As a local modification, the cost of one edge is
increased. We show that, even with this extra knowledge, it remains NP-hard
to compute a 2n-approximate solution. Furthermore, we consider TSP reopti-
mization, where, in addition to all optimal solutions, we are given exponentially
many near-optimal solutions. We prove that this multi-solution reoptimization
variant, even if all solutions are very different, is as hard to approximate as the
TSP itself.

Local search is another method which is often used for solving hard opti-
mization problems. In a classical paper, Papadimitriou and Steiglitz [67] have
shown that there exist instances of the general TSP that are very hard for local
search with respect to the neighborhood defined by exchanging up to k edges in
a Hamiltonian tour in the following sense: Their instances have a unique optimal
solution, but exponentially many second-best solutions of exponentially higher
cost which furthermore differ in many edges from the optimal solution. We ex-
tend their graph construction to prove an analogous result for the multi-solution
reoptimization variant of the problem [25, 26].
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1.2 Online Versions of NP-hard Problems with

Advice

Numerous computational problems arise in so-called online environments, where
the input arrives piecewise in successive time steps. An online algorithm has to
answer a query by a part of the final output without knowing anything about the
future requests (the rest of the input). The concept of competitive analysis was
introduced by Sleator and Tarjan in 1985 [76], for a more detailed introduction
we refer to the standard literature, e.g., [31, 52].

To adjust for the disadvantage that the output of the best possible online
algorithms is far from offline solutions, we provide additional information. We
ask how much additional information an online algorithm needs to close this gap,
respectively, which progress can be made with limited advice. Here, the advice
is provided as an infinite tape of advice bits from which the online algorithm
can read as many bits as it needs.

For this, we study the model of computing with advice. In order to better
understand and quantify this gap, the idea of online algorithms with advice was
introduced in [39] and has been further investigated for various online problems,
e.g., in [9, 28–30,41, 42, 46, 53, 61, 62, 70]. We follow the most general and exact
model from [53] in this thesis. For a detailed overview, we recommend [60].

Coloring vertices of a graph such that no two adjacent vertices get the same
color is a very well known and intensively studied problem which we address in
Chapter 4. For an online version, the following set-up can be studied: In every
step, a new vertex gets revealed, together with all edges to the previously re-
vealed vertices. Now, the newly revealed vertex has to be colored before the next
one is revealed. It turns out that online coloring is hard and no constant compet-
itive ratio is possible [64]. For the class of k-colorable graphs on n vertices, it has
been proven that any online coloring algorithm needs Ω

(
(log n/(4k))k−1

)
colors

in the worst case [78]. For an overview of classical online coloring see [58, 59].

A first study of a special case of online path coloring with advice was done
in [46]. Further studies of online coloring of bipartite graphs were done in [9]. In
Chapter 4, we study online coloring with advice on the class of all 3-colorable
graphs, and on its sub-classes of 3-colorable chordal and outerplanar graphs,
respectively. We want to know how much advice is necessary and sufficient in
order to color these graphs optimally. We also investigate how much advice can
be saved if we allow the use of a fourth color. The results mentioned above
imply that using only a constant number of colors is a big improvement over
coloring without advice. Furthermore, we show lower and upper bounds on the
advice complexity of online coloring of general 3-colorable graphs, 3-colorable
chordal graphs, and maximal outerplanar graphs. For the upper bounds, we
present polynomial-time online algorithms. It turns out that online 3-coloring
with advice in general is equally hard with respect to the advice complexity as
online 3-coloring of chordal graphs. Moreover, we analyze the advice needed
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for coloring 3-colorable graphs with a competitive ratio of 4/3 [74,75]. In other
words, we want to color 3-colorable graphs with four colors. Note that the offline
version of this problem is also known to be NP-hard [48, 57].

In Chapters 5 and 6, we are especially interested in lower bounds on the
advice complexity of optimization problems. Such lower bounds do not only
tell us something about the information content [53] of online problems, but
they also carry over to a randomized setting where they imply lower bounds on
the number of random decisions needed to compute a good solution [61]. But,
similar to most other computing models, lower bounds on the advice complexity
are hard to prove. Thus, it is desirable to have some generic proof methods for
establishing lower bounds. In Chapters 5 and 6, we take a first step towards
this goal by using a generic online problem and showing how to transfer lower
bounds on its advice complexity to lower bounds for other online problems.

In Chapter 5, we study the string guessing problem with respect to its nec-
essary advice for reaching a certain quality. As already mentioned, this problem
is very generic with respect to proving lower bounds on the advice complexity.
Here, a string of length n over an alphabet of size q has to be guessed. More
specifically, we define two versions of the problem where, in the first case, the
algorithm gets immediate feedback which decisions would have been correct up
to the current time step, and in the second case, this feedback is not supplied.
This problem is, of course, not NP-hard, but we can use it to improve the
known lower bound on the advice complexity of SetCover. First, we prove a
lower bound on the advice necessary to achieve some specific number of correct
guesses for both versions. Then, we show that the extra information of know-
ing the history, i.e., of the correct answers to the previous questions, does not
help much for this class of problems. Additionally, we analyze the size of the
advice depending on both n and q. Employing this result, we use the string
guessing problem as a technique to prove lower bounds for other well-studied
online problems in Chapter 6. It seems to be a promising approach to use string
guessing this way to prove the hardness of further online problems.

In Chapter 6, we analyze the advice complexity of the online maximum clique
problem (MaxClique) and of the online set cover problem (SetCover) in the
unweighted variant. In MaxClique, introduced by Demange et al. (see [38]),
in every time step, a vertex is given together with all edges to vertices that were
already revealed in previous time steps, and an online algorithm A has to decide
whether the newly revealed vertex becomes part of the solution or not.

SetCover was introduced by Alon et al. in [1]. At the beginning, a ground
set X and family S ⊆ Pot(X) with

⋃

S∈S S = X are given. In any step, one
element xi of X is given, and the online algorithm has to select a set Si ∈ S such
that xi gets covered, if xi is not yet covered by any already selected set. The
cost function measures the number of selected sets. Our result [21,22] closes an
exponential gap between the lower and upper bounds given in [62].
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1.3 Basic Definitions

Most problems in this thesis are formulated in terms of graphs. We use the
following graph-theoretic notation following the books by Brandstädt et al. [32]
and West [79]. Let G = (V,E) be a finite graph with |V | = n. We refer to the
edges and vertices of a graph G by E(G) and V (G). Two vertices u, v ∈ V (G)
are adjacent in G if there exists an edge {u, v} ∈ E(G). A vertex u is incident
to an edge e, if u ∈ e. A graph G′ = (V ′, E′) is a subgraph of G if V ′ ⊆ V
and E′ ⊆ E. A subgraph G′ of G is induced by V ′ if E′ = {{u, v} | {u, v} ∈
E and u, v ∈ V ′}. We denote such a subgraph by GV ′ . A path P in G is a
sequence P = x1, x2, . . . , xk of pairwise distinct vertices such that {xi, xi+1} ∈ E
for all i ∈ {1, . . . , k − 1}. For a path P = x1, . . . , xk, let V (P ) = {x1, . . . , xk}
denote the set of vertices of P and let E(P ) = {{xi, xi+1} | 1 ≤ i ≤ k − 1}
denote the set of edges of P . We usually identify a path P with the subgraph
(V (P ), E(P )). The length of a path is the number |E(P )| of its edges. A
Hamiltonian path in G is a path of length n− 1. A cycle H = x1, . . . , xk is a
path P = x1, . . . , xk for k ≥ 3, extended by an edge from the first vertex x1 to
the last vertex xk, E(H) = E(P )∪{xk, x1}. Analogous to Hamiltonian path, a
Hamiltonian cycle in G is a cycle on n vertices.

We call a graph G = (V,E) connected if, for each pair of vertices vi, vj ∈
V (G), there exists a path in G with vi and vj as its endpoints. A tree T = (V,E)
is a connected graph that contains no cycle.

A chord of a cycle H = x1, x2, . . . , xk is an edge {xi, xj}, that is no edge of
the cycle: {xi, xj} /∈ E(H). A cycle is chordless if it has no chords.

For any vertex v ∈ V, we denote by Neigh(v) = {w ∈ V | {v, w} ∈ E} the
set of neighbor vertices of v in G. If G is directed, E contains ordered pairs,
and the set of predecessors of v is Pred(v) = {w ∈ V | (w, v) ∈ E}.

An undirected graph G is called edge-weighted if there exists a cost func-
tion cost : E(G) → Q which defines the cost of every edge in G. For the cost of
an edge {x, y}, we use the notation cost(x, y) instead of cost({x, y}).

An edge-weighted graph G = (V,E, cost) satisfies a sharpened triangle
inequality, if its edge-costs satisfy the sharpened β-triangle inequality, i. e.,
if there exists a 1/2 ≤ β < 1, such that the cost function cost satisfies the
condition

cost(v1, v2) ≤ β · (cost(v1, v3) + cost(v3, v2)) , (1.1)

for all vertices v1, v2, and v3.

The graphs satisfying a sharpened triangle inequality form a subclass of the
class of all metric graphs (i.e., the graphs whose edge costs satisfy (1.1) with
β = 1). Intuitively speaking, for vertices that are points in the Euclidean plane,
a parameter value β < 1 prevents that three vertices can be placed on the
same line. For more details and further motivation of the sharpened triangle
inequality, see [20].
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Definition 1.1 (Steiner tree) Given a graph G = (V,E) and a subset S ⊆ V
of vertices, called terminals, a Steiner tree for (G,S) is a subtree T of G
spanning all terminals, i. e., T = (V (T ), E(T )) is a tree such that S ⊆ V (T ) ⊆ V
and E(T ) ⊆ E. The vertices in V \ S are called non-terminals.

Definition 1.2 (Coloring) Given a graph G = (V,E), a coloring function
col is a function that maps every vertex vi ∈ V to some color from {1, . . . , k},
for some k ∈ N, such that col(vi) 6= col(vj), for all vi, vj with {vi, vj} ∈ E(G).

Additionally, we deal with the graph classes of chordal and maximal outer-
planar graphs. Now, we give a formal definition.

Definition 1.3 A graph G is chordal if each cycle in G of length at least 4
has at least one chord.

Definition 1.4 (Planar graph) A graph G = (V,E) is called planar, if it
can be drawn in the plane such that no two edges intersect. Such a drawing of
a planar graph in the plane is called a planar embedding, or embedding for
short.

A planar graph G = (V,E) is maximal planar if, for every non-adjacent
pair of vertices vi, vj , the graph G′ = (V,E ∪ {vi, vj}) is not planar anymore.

Definition 1.5 (outerplanar graph) A graph G = (V,E) is called outer-
planar, if it has a planar embedding, such that no vertex is totally surrounded
by edges.

An outerplanar graph is maximal outerplanar if there are no two non-
adjacent vertices vi, vj such that the graph G′ = (V,E ∪ {vi, vj}) is still outer-
planar.

1.3.1 Optimization and Reoptimization Problems

In Chapter 2 and 3, we deal with a special variant of optimization problems,
the reoptimization problems. In the case of reoptimization, the input consists
of a problem instance together with a locally modified instance, according to
some type of local modification, and an optimal solution for the second one.
The analysis of reoptimization problems is concerned with the question how
useful this extra information can be. To this end, we give a formal definition
of an optimization problem and of a reoptimization problem. For more details,
see [51].

Definition 1.6 (optimization problem) An optimization problem is a 6-
tuple U = (ΣI ,ΣO, L,M, cost , goal), where

i. ΣI is an alphabet, called the input alphabet of U,
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ii. ΣO is an alphabet, called the output alphabet of U,

iii. L ⊆ Σ∗
I is the language of feasible problem instances,

iv. M is a function from L to Pot(Σ∗
O), where Pot(x) denotes the power set

of x, and, for every instance x ∈ L, M(x) is called the set of feasible
solutions for x,

v. cost is a cost function which, for every pair (u, x) with x ∈ L and every
u ∈ M(x), assigns a positive real number cost(u, x),

vi. goal ∈ {minimum,maximum} is the optimization goal.

For an instance x ∈ L, a feasible solution y ∈ M(x) is called an optimal
solution for x and U if

cost(y, x) = goal{cost(z, x) | z ∈ M(x)},

if this optimum exists. In the following, we denote the cost of an optimal solution
y ∈ M(x) for the instance x by OptU(x).

We say that an algorithm A solves U if, for every instance x ∈ L the output
of A satisfies A(x) ∈ M(x).

In this thesis, we deal with several types of optimization problems. Now, we
give a formal definition of them.

In Chapter 2 and 3, we analyze the minimum Steiner tree problem. The
minimum Steiner tree problem, Min-STP for short, is the following opti-
mization problem: Given an undirected complete graph G = (V,E) with a edge
cost function cost : E → Q>0 and a subset S ⊆ V of terminals, the goal is to
find a minimum-cost Steiner tree of G.

Additionally, in Chapter 3, we analyze several variants of the traveling sales-
man problem. The traveling salesman problem, TSP for short, is the prob-
lem to find a minimum-cost Hamiltonian cycle in a given undirected complete
graph G = (V,E) with an arbitrary edge-cost function cost : E → Q>0.

In Chapter 4, we analyze an online variant of the minimum vertex coloring of
graphs. Theminimum vertex coloring problem, Coloring for short, is the
problem to find a coloring of a given undirected unweighted graph G = (V,E)
with a minimum number of colors.

Finally, in Chapter 6, we analyze the online variants of the maximum clique
problem and the minimum set cover problem. The maximum clique prob-
lem, MaxClique for short, is the problem to find a clique, i.e., a complete
subgraph G′, of a given undirected unweighted graph G = (V,E) containing a
maximum number of vertices.

The minimum set cover problem, SetCover, is the following mini-
mization problem. Given a ground set X and a set family F ⊆ Pot(X) such
that X =

⋃

S∈F S, the problem is to find a family C ⊆ F of minimal size with
X =

⋃

S∈C S.
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Analogously to the classes P and NP for decision problems, there exist the
classes PO and NPO for optimization problems.

Definition 1.7 (NPO) The class NPO is the class of optimization problems
U = (ΣI ,ΣO, L,M, cost , goal) satisfying the following constraints:

i. L ∈ P.

ii. There exists a polynomial function pU , such that

(a) for each x ∈ L and each y ∈ M(x), |y| ≤ pU (|x|),
(b) there exists a polynomial-time algorithm that decides, for each y ∈ Σ∗

O

and for each x ∈ L with |y| ≤ pU (|x|), whether y ∈ M(x) or not, and

iii. the cost function is computable in polynomial time.

Morover, we can define the class PO as follows.

Definition 1.8 (PO) The class PO is the class of all optimization problems
U = (ΣI ,ΣO, L,M, cost , goal) ∈ NPO for which an algorithm exists, that
solves U in polynomial time.

For the classes PO and NPO, we have PO ( NPO, unless P = NP .
All problems from above, STP,TSP,Coloring,MaxClique,SetCover, are
contained in NPO \ PO, unless P = NP .

For a connection between optimization problems and decision problems, we
define the threshold language.

Definition 1.9 (Threshold language) We define the threshold language
for any optimization problem U = (ΣI ,ΣO, L,M, cost, goal) ∈ NPO as

LangU = {(x, a) ∈ L× Σ∗
bool | OptU (x) ≤ Number(a)}

if goal = minimum and

LangU = {(x, a) ∈ L× Σ∗
bool | OptU (x) ≥ Number(a)}

if goal = maximum, where Number(a) denotes the number represented by the
binary word a.

An optimization problem is called NP-hard if LangU is NP-hard.

One approach for dealing with NP-hard optimization problems are approx-
imation algorithms. Even if finding an optimal solution is hard, it can be much
easier to find an adequate good solution. We use the worst-case analysis of an
algorithm to give a lower bound on the quality of the solution of an algorithm.
To measure the quality of such a solution, we use the approximation ratio which
is defined in the following.
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Definition 1.10 (approximation ratio) Let U = (ΣI ,ΣO, L,M, cost,
goal) be an optimization problem. For each algorithm A that solves U and for
each x ∈ L, we define the approximation ratio RA(x) of A on x as

RA(x) = max

{
cost(A(x))

OptU (x)
,

OptU (x)

cost(A(x))

}

.

For all n ∈ N, the approximation ratio of A is defined as

RA(n) = max{RA(x) | x ∈ L ∩ (ΣI)
n}.

For any δ ∈ R>1, we call A a δ-approximation algorithm for U if RA(x) ≤
δ, for all x ∈ L.

For a function f : N → Q, we call A an f(n)-approximation algorithm
for U if RA(n) ≤ f(n), for all n ∈ N.

Additionally, there exist optimization problems inNPO for which there exist
approximation algorithms where an arbitrary ratio can be reached by increasing
the running time for the algorithm.

Definition 1.11 (PTAS, FPTAS) Let U = (ΣI ,ΣO, L,M, cost, goal) ∈
NPO be an optimization problem. An algorithm A is called a polynomial-
time approximation scheme (PTAS) for U , if, for every input pair (x, ε) ∈
L×R+, A computes a solution for U with an approximation ratio RA ≤ 1+ε and
T imeA(x) can be bounded by a function that is polynomial in |x| (but possibly
exponential in ε−1).

If T imeA(x) can be bounded by a function that is polynomial in both |x|
and ε−1, we say that A is a fully polynomial-time approximation scheme
(FPTAS) for U .

With this we can give a hierarchy of complexity classes. The first class
FPTAS contains all problems for which an FPTAS exists. One member of
this class is the knapsack problem (see [51]). The next class is PTAS which
contains all problems that allow a PTAS. Every problem in FPTAS lies also in
PTAS, but there exist some problems in PTAS where no FPTAS exists, unless
P = NP . The makespan scheduling problem (see [51]) is such a problem. We
also know the class APX , containing all problems for which a δ-approximation
algorithm exists, for some constant δ. Here, one prominent example is the ∆-
TSP. In the class LOGAPX , all optimization problems are contained, for which
an f(n)-approximation algorithm exists, for some function f(n) ∈ O(log n). The
problems SetCover and Coloring lie in this class. There remain problems
in NPO that are not in LOGAPX . The general TSP and MaxClique are
examples. Unless P = NP , we get the following order of the problem classes

PO ( FPTAS ( PTAS ( APX ( LOGAPX ( NPO.

In this thesis, we analyze NP-hard problems in scenarios where some extra
information is given. We start with the concept of reoptimization. Here, besides



Chapter 1. Introduction 12

the instance x, a local modification lm(x) of it, i.e., a slightly different instance,
together with its optimal solution, are given as a kind of extra information. In
the following, we give a formal definition of a reoptimization problem.

Definition 1.12 (reoptimization problem) Let U = (ΣI ,ΣO, L,M, cost ,
goal) be an optimization problem. For a local modification lm on the instances
of U, the reoptimimization problem lm-U is defined as:

Input: Two problem instances x and y where y is a local modification of x
according to lm, and an optimal solution sx for the instance x.

Problem: Find an optimal solution sy ∈ M(y) for the instance y.

In graph problems such local modification could be, e.g., the insertion and
deletion of vertices, or increasing or decreasing the cost of a single edge.

In Chapter 2, we deal with different reoptimization variants of the Steiner
tree problem. Now, we give a formal definition.

Definition 1.13 (Min-∆β-STP) Given is a connected, undirected, and edge-
weighted graph G = (V,E, cost) and a subset S ⊆ V of terminals. If the
cost function cost satisfies the β- triangle inequality, the minimum Steiner tree
problem on (G,S, cost) is called Min-∆β-STP. Similar to the Min-∆β-STP,
we consider the problem Min-(1, 1 + γ)-STP, where only edges of cost 1 and
1 + γ are allowed, for some constant γ with 0 < γ ≤ 1.

The relation of Min-∆β-STP and Min-(1, 1 + γ)-STP is as follows.

Lemma 1.1 (Böckenhauer et al. [18]) For any graph G = (V,E) and any
0 < γ, any cost function cost : E → {1, 1 + γ} satisfies the (1 + γ)/2-triangle
inequality.

Based on the Steiner tree variants Min-STP and Min-∆β-STP, we define the
following reoptimization variants.

Definition 1.14 (Reopt-STP-lm) The minimum Steiner tree reoptimi-
zation problem with the local modification lm (Reopt-STP-lm) is the
following optimization problem. The goal is to find a minimum Steiner tree
for an input instance (G′, S′, cost ′), given an optimal Steiner tree TOld for the
instance (G,S, cost), where (G′, S′, cost ′) = lm(G,S, cost). We consider the
following local modifications.

(AddNonTerm) When adding a non-terminal vNew, V (G′) = V (G)⊎{vNew},
S′ = S, and cost is the restriction of cost ′ to V (G).

(AddTerm) When adding a terminal vertex vNew, V (G′) = V (G) ⊎ {vNew},
S′ = S ⊎ {vNew}, and cost is the restriction of cost ′ to V (G).

The corresponding problem variants where the edge cost function cost ′ satisfies
the sharpened β-triangle inequality for some 1/2 < β ≤ 1, and the variant
with edge costs in {1, 1 + γ}, for γ > 0, are denoted by Reopt-∆β-STP-lm and
Reopt-(1, 1 + γ)-STP-lm, respectively.
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1.3.2 Online Algorithms and Advice Complexity

The second part of this thesis deals with online algorithms, where the algorithm
gets the input piecewise, and irrevocably produces, in every step, a part of the
output. To measure the quality of an online algorithm, we use the concept of an
adversary that produces the input corresponding to the deterministic online
algorithm, in order to force the algorithm to produce an as bad as possible
output. This concept relates to the idea of a worst-case analysis for optimization
problems. Our definitions follow the notation from [29, 53]. We start with the
formal definition of an online problem.

Definition 1.15 (online optimization problem) An online optimization
problem consists of a set I of inputs and a cost function. Every input I ∈ I is a
sequence of requests I = (x1, x2, . . . , xn). A feasible output O ∈ O is a sequence
of answers O = (y1, y2, . . . , yn) where, for every subsequence Ii = (x1, . . . , xi),
the corresponding output subsequence Oi = (y1, . . . , yi) is also a feasible answer.
The cost function cost : I ×O → Q>0 defines a positive real value cost(I, O) for
every pair of an input I and any feasible output O for I.

For an easier notation, when the input is clear from the context, we denote the
cost of (I, O) by cost(O).

An established measurement for the quality of an output of an online algo-
rithm is the competitive ratio [31,45,52,55]. Now, we give a formal definition
of an online algorithm and the competitive ratio, which can be defined analo-
gously to the approximation ratio.

Definition 1.16 (online algorithm, competitive ratio)
Let I = (x1, x2, . . . , xn) be an input of an online optimization problem. An
online algorithm A computes the output sequence A(I) = (y1, . . . , yn) such that
yi is computed from x1, . . . , xi. For some output sequence O, cost(O) denotes
the cost of O.

For all c ∈ R> 1, an algorithm A is c-competitive if there exists some
non-negative constant α such that, for every I,

cost(A(I)) ≤ c · cost(Opt(I)) + α

if I is an input of a minimization problem, and

cost(A(I)) ≥ 1

c
· cost(Opt(I))− α

if I is an input of a maximization problem. Here, Opt(I) denotes an optimal
solution for I. We call c the competitive ratio of A. If α = 0, then A is called
strictly c-competitive. A is optimal if it is strictly 1-competitive.

All algorithms we construct in Part II are analyzed with respect to strict
competitiveness. The given algorithm for our positive results from Chapter 4
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have polynomial running time. For the lower bounds, we neglect the runtime
of our online algorithms, as it is usually done [31, 55]. The concept of compet-
itive analysis was introduced by Sleator and Tarjan in 1985 [76], although is
was probably used for the first time implicitly by Yao in 1980 [80]. The term
competitive ratio was introduced by Karlin et al. [56].

The competitive analysis of online algorithms is a kind of worst-case analysis
in terms of the competitive ratio that an algorithm can guarantee. For the anal-
ysis, we use an assumed adversary denoted by Adv. The adversary constructs
the input using its knowledge about what the algorithm will do. Since we an-
alyze invariably deterministic algorithms, Adv can predict what the algorithm
will do.

If we can prove, for an online problem P, the existence of an adversary that
can produce, for every algorithm, an instance for which the algorithm cannot be
better than c-competitive, we say that c is a lower bound on the competitiveness
of P .

Similar to the concept of reoptimization, where extra information in the form
of an optimal solution for a locally modified instance is given, also in the online
environment, we investigate a scenario with extra information. Here, we assume
the existence of an oracle that knows the whole input from the beginning. The
oracle, called the advisor, produces an infinitely long advice tape. The online
algorithm with advice is allowed to read, during the online computation, advice
from the tape, in order to produce a better output. To measure the advice
complexity of an online algorithm, we analyze the number of advice bits read
by the algorithm. Now, we give a formal definition of online algorithms with
advice following [53].

Definition 1.17 (Online Algorithm with Advice) Let I be an input of an
online optimization problem with I = (x1, . . . , xn). An online algorithm A

with advice computes the output sequence Aφ(I) = (y1, . . . , yn) such that yi is
computed from φ, x1, . . . , xi, where φ is the content of the advice tape, i. e., an
infinite binary sequence. A is c- competitive with advice complexity b(n)
if, for every n and for each input sequence I of length at most n, there exists
some φ such that Aφ(I) is c-competitive and at most the first b(n) bits of φ have
been accessed during the computation of Aφ(I).

We can see an advice of b advice bits as a possibility for the algorithm to
choose from 2b different strategies. Here, the advice addresses which of the 2n

variants should be used. We say that c is a lower bound on the advice com-
plexity of P , if we can prove the existence of an adversary that can produce,
for any set of 2b deterministic algorithms, an instance for which none of the
algorithms can be better than c-competitive.
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Chapter 2

Reoptimization of the

Steiner Tree Problem

2.1 Introduction

The Steiner tree reoptimization problem in general weighted graphs was previ-
ously investigated in [10, 14, 18, 23, 43] for various types of local modifications.
For the APX -hard variant of the Steiner tree problem with edge costs restricted
to integers from a fixed interval, the corresponding reoptimization problem even
admits a polynomial-time approximation scheme [23].

Eight reoptimization variants (insertion and deletion of terminal or non-
terminal vertices, increasing and decreasing edge costs, and changing the status
of vertices from terminal to non-terminal and vice versa) been shown to be
NP-hard on graphs with edge costs restricted to 1 and 1 + γ [18]. The best
approximation algorithms for the four reoptimization variants considered in [10]
(a terminal becomes a non-terminal or vice versa; the cost of an edge increases
or decreases) achieve a constant approximation ratio in metric graphs. Addi-
tionally, on β-metric graphs, for any β < 1, all of these four cases permit, in
contrast to the non-reoptimization problem, a PTAS. When the local modifica-
tion, however, consists in removing vertices, that the Steiner tree reoptimization
is as hard to approximate as the original problem.

The two algorithmically most interesting reoptimization variants are the
addition of terminal and of nonterminal vertices. For these modifications, the
APX -hardness of the corresponding reoptimization variants has also been shown
in [18], which solves also the analogous open problem for reoptimization in
Steiner trees with arbitrary edge costs. We cite the corresponding theorems in
Section 2.2.

Escoffier et al. [43] designed simple linear-time algorithms for metric input
instances (β = 1) which achieve an approximation ratio of 3/2. Using the same

17
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algorithms, but a much more complex and technically involved analysis, we
prove a (1/2 + β)-approximation for graphs satisfying a sharpened β-triangle
inequality. Note that the ratio (1/2 + β) tends to 3/2 for β tending to 1 and
to 1 for β tending to 1/2. These proofs employ a 2β-approximation algorithm
for the classical non-reoptimization version of the Steiner tree problem in β-
metric graphs which may be of independent interest since it improves over the
previously best known ratio for any β < 1/2 + ln(3)/4 ≈ 0.775. These results
are also published in [17, 18].

2.2 Reoptimization Hardness

For the hardness analysis of the Reopt-(1, 1 + γ)-STP-lm for γ > 0 and the
Reopt-∆β-STP-lm for β > 1/2 and lm ∈ {AddTerm,AddNonTerm}, a special
variant of the SAT problem was used, namely Es-OCC-MaxEkSAT.

MaxSAT is the optimization problem of finding a variable assignment satis-
fying a maximum number of clauses in a given Boolean formula in conjunctive
normal form. By Es-OCC-MaxEkSAT, we denote the restriction of MaxSAT
to input formulas where all clauses contain exactly k literals and every variable
occurs exactly s times.

For showing the hardness of approximation of the (1, 1 + γ)-Steiner tree
reoptimization problem with adding vertices, a gap-preserving reduction from
Es-OCC-MaxEkSAT was used.

With this, showing the APX-hardness for adding vertices can be done by
using the APX -hardness of E5-OCC-MaxE3SAT [44]. For removing a terminal
or a non- terminal, a simple argumentation shows the corresponding reoptimiza-
tion problem to be as hard as the original problem. This leads to the following
two theorems, for details see [18].

Theorem 2.1 (Böckenhauer et al. [18]) The Reopt-(1, 1 + γ)-STP-lm for
any γ > 0 and the Reopt-∆β-STP-lm for lm ∈ {AddTerm,AddNonTerm}
and β > 1/2 are APX -hard.

Note that Theorem 2.1 implicitly provides an alternative proof for the APX -
hardness of the problems Min-(1, 1 + γ)-STP and Min-∆β-STP.

All reductions require a transformation of an instance of the satisfiability
problem into a (1, 1 + γ)-Steiner tree instance.

2.3 Approximation Algorithm

We start this section with an approximation algorithm for the Min-∆β-STP.
This algorithm, besides being interesting by itself, will be useful for some of the
subsequent approximation algorithms for reoptimization.
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In any instance (G,S, cost) consisting of terminals only, i. e., if S = V (G),
any minimum spanning tree is an optimal solution to the minimum Steiner tree
problem. Intuitively speaking, the minimum Steiner tree problem can be viewed
as the problem of finding a subset Y of non-terminals which minimizes the cost
of a minimum spanning tree on S ∪Y over all possible choices of Y . But also in
those graphs in which the optimal solutions contain non-terminal vertices, the
minimum spanning tree on the set of terminals gives a useful approximation of
the minimum Steiner tree. To estimate the quality of this approximation, we
need the following technical lemma for the subsequent approximability result.

Lemma 2.1 Given an input instance (G,S, cost) for Min-∆β-STP, for 1/2 ≤
β ≤ 1, and a minimum Steiner tree TOpt for this instance, let T1, . . . , Tk be the
maximal subtrees of TOpt consisting of non-terminals only. For any Ti, let N(Ti)
be the set of neighbors of Ti in TOpt. Then there exists a connected subgraph H
of G with the following properties:

(1) V (H) = S,

(2) H contains a cycle on the vertices of N(Ti) for all i ∈ {1, . . . , k}, and

(3) cost(H) ≤ 2β · cost(TOpt).

Proof. If there exists an optimal solution TOpt without non-terminals, then
H = TOpt is a minimum spanning tree and thus cost(H) = cost(TOpt) ≤
2β · cost(TOpt).

Let T1, . . . , Tk be the maximal subtrees of TOpt consisting of non-terminals
only. For all i ∈ {1, . . . , k}, let T ′

i be the subtree of TOpt containing exactly
the vertices V (Ti) ∪ N(Ti). Let Ci be the cycle on the vertices of N(Ti) as
ordered by a depth-first traversal of T ′

i (see Fig. 2.1). In T ′
i , there are no

neighboring terminals, which means that there do not exist any two terminals
v1, v2 ∈ V (T ′

i ) such that {v1, v2} ∈ E(T ′
i ). This implies that every edge in Ci is

a shortcut of at least two edges from TOpt. From this, and since the depth-first
traversal visits every edge exactly two times, the cost of Ci can be estimated by
cost(Ci) ≤ 2β · cost(T ′

i ).

Let Ecircus =
⋃

1≤i≤k E(Ci) be the set of all cycle edges and let Earbor =
EOpt −

⋃

1≤i≤k E(T ′
i ) be the set of all edges between terminals in TOpt. The

graph H is the union of the cycles Ci, for all i ∈ {1, . . . , k}, together with the
subtrees of TOpt which contain terminals only, i. e., V (H) = S and E(H) =
Ecircus ∪ Earbor. Thus, H satisfies the constraints (1) and (2). The graph H is
connected since the terminals inside the subtrees T ′

i are connected by the cycle
Ci. Moreover, the subtrees T ′

i are connected either by a common vertex or by
edges from Earbor.

We know that cost(TOpt) =
∑k

i=1 cost(T
′
i ) + cost((Earbor)). By defini-

tion of T ′
i , any two trees T ′

j , T
′
l are edge-disjoint, therefore cost(Ecircus) ≤
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Figure 2.1: The construction in the proof of Lemma 2.1

2β ·∑k
i=1 cost(T

′
i ). This implies

cost(H) = cost(Ecircus) + cost(Earbor)

≤ 2β ·
k∑

i=1

cost(T ′
i ) + cost(Earbor) ≤ 2β · cost(TOpt),

which proves that H also satifies constraint (3). �

Now, we are ready for the following theorem.

Theorem 2.2 Let G be graph with cost function cost satisfying the β- triangle
inequality for 1/2 ≤ β ≤ 1. Let S be a set of terminals. Then the minimum
spanning tree on S is a 2β-approximation of the minimum Steiner tree for the
instance (G,S, cost).

Proof. This follows directly from constraints (1), (2), and (3) of Lemma 2.1. �

2.4 Reoptimization Algorithms

Now, we consider the Steiner tree reoptimization problem with the local modi-
fications of adding a non-terminal and adding a terminal to the graph.
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Algorithm 2.1 Approximation algorithm for Reopt-∆β-STP-AddNonTerm

Input: (G = (V,E), S, cost), TOld, (GNew = (V ∪ vNew, E ∪ {{vNew, x} | x ∈
V }), S, cost)

1: Compute the minimum spanning tree TMST on the vertex set S ∪ {vNew}.
2: Compute the best solution TAlg between TOld and TMST.

Output: The Steiner tree TAlg.

2.4.1 Adding a Non-Terminal

First, we investigate the Steiner tree reoptimization problem with the local mod-
ification of adding a non-terminal. We assume that the new instance satisfies
the β-triangle inequality for the same β as the old instance. We design an algo-
rithm for Reopt-∆β-STP-AddNonTerm that outputs the better of the following
two feasible solutions: The first feasible solution is simply the given optimal
solution to the old instance, the second is obtained by computing a minimum
spanning tree on the terminals together with the newly inserted vertex. This
procedure is shown in Algorithm 2.1.

For analyzing the cost of TMST as computed in Algorithm 2.1, we want to
compare it to an optimal solution TOpt for the new instance. For this compari-
son, we deal with every subtree of TOpt rooted in a neighbor of vNew, together
with its connection to vNew, separately. For our estimations, we need the fol-
lowing technical lemma which is a generalization of Lemma 2.1.

Lemma 2.2 Let G be a graph and let S ⊆ V be a set of terminals in G. Let
T be a subtree of G rooted in some non-terminal vertex x of degree ≥ 2, and
let ST = S ∩ V (T ) be the set of terminals in T . Let vNew ∈ V − V (T ) be one
additional vertex. Let xfirst be the first and xlast be the last terminal in T as
found by a depth-first search starting from x. Then there exists a connected
subgraph H with V (H) = {vNew} ∪ ST with costs cost(H) ≤ β · cost(vNew, x) +
2β · cost(T )− β · cost(x, xlast).

Proof. According to Lemma 2.1, there exists a connected subgraph H ′ of G on
the vertices of ST satisfying cost(H ′) ≤ 2β · cost(T ).

There exists a maximal subtree Tx of T consisting of non-terminals only
which contains x as described in the proof of Lemma 2.1. Moreover, there
exists a cycle Cx on the neighbors of Tx such that the edge {xfirst, xlast} is
contained in Cx.

From Cx, we construct a path Px containing N(Tx) by deleting the edge
{xfirst, xlast}. The desired graph H is now obtained from H ′ by substituting Px

for Cx and adding the edge {vNew, xfirst} (see Fig. 2.2). It remains to show that
the cost of H satisfies the constraint of the lemma. By T ′

x we denote the subtree
of T on the vertices from V (Tx) ∪N(Tx).
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Figure 2.2: The construction in the proof of Lemma 2.2

As already shown in the proof of Lemma 2.1, analyzing a depth-first traversal
of T ′

x leads to cost(Cx) ≤ 2β ·cost(T ′
x). Without loss of generality, such a depth-

first traversal may start from vertex x. The vertices xfirst and xlast are the first
and the last terminals on the traversal path. This traversal path starts with a
simple path Px,xfirst

from x to xfirst and ends with a simple path Pxlast,x from
xlast to x.

In the proof of Lemma 2.1, we have seen that shortening the subpath of the
traversal path between two consecutive terminals on the traversal path generates
an edge whose cost can be bounded from above by β times the cost of the
corresponding subpath.

Summing over all these shortened edges on the path Px from xfirst to xlast

yields a cost of at most 2β · cost(T ′
x)− β · cost(Px,xfirst

)− β · cost(Pxlast,x), since
every edge of T ′

x is part of exactly two of the corresponding subpaths for the
complete cycle Cx, and only the edges on the paths Px,xfirst

and Pxlast,x are used
exactly once, since the cost of the edge from xlast to xfirst is not included in the
above sum.

As already mentioned above, H is obtained by adding the edge {vNew, xfirst}
to Px. Thus,

cost(H) = cost(PT ) + cost(vNew, xfirst), moreover

cost(vNew, xfirst) ≤ β · (cost(vNew, x) + cost(Pxfirst,x)).
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From this, we have

cost(H) ≤2β · cost(T )− β · cost(Px,xfirst
)− β · cost(Pxlast,x)

+ β · (cost(vNew, x) + cost(Pxfirst,x))

≤2β · cost(T ) + β · cost(vNew, x)− β · cost(x, xlast) �

In the following, we estimate the approximation ratio of Algorithm 2.1.

Theorem 2.3 For any 1/2 ≤ β ≤ 1, Algorithm 2.1 is a linear-time
(
1
2 + β

)
-

approximation algorithm for Reopt-∆β-STP-AddNonTerm.

Proof. Constructing a spanning tree TMST can be done in linear time, where
the size of the input is measured in the number of edges.1 Let TOpt be an
optimal solution for the new instance (GNew, S, c), and let TAlg be the Steiner
tree computed by Algorithm 2.1. If vNew does not occur in TOpt, then TOld and
thus also TAlg is an optimal solution.

Thus, we assume that vNew ∈ V (TOpt). Let {x1, . . . xk} be the set of neigh-
bors of vNew in TOpt. By removing vNew from TOpt, we get a forest of k trees
T1, . . . , Tk, where Ti is rooted in xi. Let γ1 denote the cost of all edges adjacent
to vNew in TOpt, i. e., γ1 =

∑k
i=1 cost(vNew, xi), and let γ2 =

∑k
i=1 cost(Ti)

denote the sum of costs of all trees Ti. Thus, the cost of the optimal solution
satisfies cost(TOpt) = γ1 + γ2. We get a solution for the old instance by con-
necting the vertices x1 to xk by a path P = (x1, . . . , xk). The cost of this path
can be estimated as cost(P ) ≤ 2β · γ1. The path P together with the trees Ti

constitute a solution of cost greater than or equal to cost(TOld), this implies

cost(TOld) ≤ cost(P ) +
k∑

i=1

cost(Ti) ≤ 2β · γ1 + γ2. (2.1)

For each tree Ti, we can construct a graph Hi on the terminals of Ti together
with vNew as described in Lemma 2.2. If the vertex xi of Ti is a non-terminal,

cost(Hi) ≤ β · cost(vNew, xi) + 2β · cost(Ti) (2.2)

follows from Lemma 2.2, for all 1
2 ≤ β ≤ 1. If the root vertex xi is a terminal,

adding the edge {vNew, xi} to the graph constructed according to Lemma 2.1
yields

cost(Hi) ≤ cost(vNew, xi) + 2β · cost(Ti), (2.3)

for all 1
2 ≤ β ≤ 1. Note that (2.2) implies (2.3) also for the trees rooted in

a non-terminal.

1Note that the minimum spanning tree on a graph G = (V, E) can be computed in O(|E|+
|V | log |V |) [37]. We deal with complete graphs, so the size of the input is O(|E|) = O(|V |2).
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Algorithm 2.2 Approximation algorithm for Reopt-∆β-STP-AddTerm

Input: (G = (V,E), S, cost), TOld, (GNew = (V ∪ vNew, E ∪ {{vNew, x} | x ∈
V }), S ∪ {vNew}, cost)

1: Compute the minimum spanning tree TMST over the set of vertices S ∪
{vNew}.

2: Compute TOld+ from TOld by choosing the cheapest edge connecting vNew

with S.
3: Compute the best solution TAlg between TOld and TMST.

Output: The Steiner tree TAlg.

Let H be the union of the graphs H1, . . . , Hk as a subgraph of G, i. e.,
V (H) = S ∪ {vNew} and E(H) =

⋃k
i=1 E(Hi). Then

cost(TMST) ≤ cost(H) =

k∑

i=1

cost(Hi) ≤
k∑

i=1

(cost(vNew, xi) + 2β · cost(Ti))

≤
k∑

i=1

cost(vNew, xi) + 2β ·
k∑

i=1

cost(Ti)

≤ γ1 + 2β · γ2. (2.4)

Summing Equations (2.1) and (2.4) yields

2 · cost(TAlg) ≤ cost(TOld) + cost(TMST)

≤ 2β · γ1 + γ2 + γ1 + 2β · γ2
≤ (1 + 2β) · (γ1 + γ2) = (1 + 2β) · cost(TNew),

and thus cost(TAlg) ≤ 1+2β
2 · cost(TNew) =

(
1
2 + β

)
· cost(TNew). �

2.4.2 Adding a Terminal

Now, we consider the case where the inserted vertex is a terminal. Here, the
old optimal solution is not feasible for the new instance. Therefore, we analyze
two different candidates for a good feasible solution. The first candidate is
a minimum spanning tree for the new instance on all terminals including the
newly added one. The second candidate is obtained by connecting the inserted
terminal to a terminal in the old optimal solution by the cheapest edge possible.
This procedure is shown in Algorithm 2.2.

For analyzing the approximation ratio of Algorithm 2.2, we compare the
costs of the computed solutions TMST and TOld+ to the costs of an optimal solu-
tion for the new instance. We distinguish two cases for the proof, according to
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Figure 2.3: The structure of the new optimal solution in the proof of Theo-
rem 2.4

whether there exists a non-terminal among the neighbors of vNew in an optimal
solution TOpt for the new instance or not. The proof for the case where there is
a neighboring non-terminal will again make use of Lemma 2.2.

Theorem 2.4 For any 1
2 ≤ β ≤ 1, Algorithm 2.2 is a linear-time

(
1
2 + β

)
-ap-

proximation algorithm for Reopt-∆β-STP-AddTerm.

Proof. The construction of both TMST and TOld+ is obviously possible in linear
time. Let TOpt be an optimal solution of the new minimum Steiner tree instance.
As in the proof of Theorem 2.3, let TOld be the optimal solution of the old
instance and let TMST and TOld+ be the outputs of step 2 and step 3 of Algorithm
2.2, respectively. Let {x1, . . . , xk} be the neighbors of vNew in TOpt. By deleting
vNew from TOpt, we get a set of trees T1, . . . , Tk. In the following, we denote the
set of terminal neighbors of vNew in TOpt by ΓT and the set of non- terminal
neighbors by ΓN. We denote by γ1 the sum of the costs of edges connecting
vNew with a terminal in TOpt, i. e., γ1 =

∑

xi∈ΓT
cost(vNew, xi), and by γ2 the

sum of costs of edges connecting vNew with a non-terminal in TOpt, i. e., γ2 =
∑

xi∈ΓN
cost(vNew, xi). Let γ3 be the sum of the costs of all trees Ti where the

root xi ∈ ΓT, and let γ4 be the sum of the costs of all trees Tj where the root
xj ∈ ΓN (see Fig. 2.3). Hence, cost(TOpt) = γ1 + γ2 + γ3 + γ4.

We distinguish two cases according to the number of non-terminals adjacent
to vNew.

Case 1: |ΓN| = 0, (γ2 = γ4 = 0). First we look at the case where all vertices
xi in the neighbourhood of vNew are terminals. This implies cost(TNew) =
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γ1 + γ3. In the case where there is only one terminal x in the neighborhood of
vNew in TOpt, Algorithm 2.2 connects vNew by the edge {vNew, x} in step 3 and
finds the optimal solution. Thus, we may assume that |ΓT| ≥ 2. In order to
estimate cost(TMST), for each tree Ti, we first construct a graph Hi containing
the terminals of Ti. By connecting vNew to Hi by the edge {vNew, xi}, we get a
graph H which consists of all terminals in GNew, i. e., V (H) = S ∪ {vNew}. It
is obvious that the cost of TMST is smaller than cost(H). Now we can estimate
cost(TMST) as follows:

cost(TMST) ≤
k∑

i=1

cost(vNew, xi) +

k∑

i=1

cost(Hi). (2.5)

According to Lemma 2.1, the cost of Hi satisfies cost(Hi) ≤ 2β · cost(Ti),

and thus
∑k

i=1 cost(Hi) ≤ 2β · γ3. Together with Equation (2.5), we get

cost(TMST) ≤ γ1 + 2β · γ3. (2.6)

From this, we get cost(TOld+) = cost(TOld) + cost(vNew, xfirst), where
{vNew, xfirst} is the cheapest edge from vNew to a terminal in G. To estimate
TOld+ , we connect the terminals x1, . . . , xk by a path P . The union of P with
the trees Ti constitutes a feasible solution for the old instance. So we know that
the cost of the old optimal solution is at most the cost of the union of P and all
Ti, i. e., cost(TOld) ≤ cost(P ) +

∑k
i=1 cost(Ti). For the cost of P , this implies

cost(P ) ≤ 2β ·∑k
i=1 cost(vNew, xi)−β ·cost(vNew, xl)−β ·cost(vNew, xm), where

xl 6= xm, and thus cost(TOld) ≤ 2β ·γ1+γ3−β ·cost(vNew, xl)−β ·cost(vNew, xm).
Without loss of generality, let cost(vNew, xl) < cost(vNew, xm). Then we can es-
timate cost(TOld+) as

cost(TOld+) ≤ 2β · γ1 + γ3 − 2β · cost(vNew, xl) + cost(vNew, xl)

≤ 2β · γ1 + γ3. (2.7)

By adding (2.6) and (2.7), we get

2 · cost(TAlg) ≤ cost(TMST) + cost(TOld+) ≤ γ1 + 2β · γ3 + 2β · γ1 + γ3

≤ (1 + 2β) · (γ1 + γ3) = (1 + 2β) · cost(TNew),

and thus cost(TAlg) ≤ (1 + 2β)/2 · cost(TNew) = (1/2 + β) · cost(TNew).

Case 2: |ΓN| ≥ 1. Let ΓT = {x1, . . . , xf} and ΓN = {xf+1, . . . , xk} be the
sets of terminals and non-terminals in the neighborhood of vNew, respectively,
for some 0 ≤ f < k in TOpt. To estimate the cost of TMST, we first construct,
for each tree Ti with i ∈ {1, . . . , f}, a spanning graph as already described in
case 1. For each tree Tj with j ∈ {f +1, . . . , k}, we construct a spanning graph
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Figure 2.4: The two feasible solutions in case 2 of the proof of Theorem 2.4

connected with vNew as described in Lemma 2.2 (see Fig. 2.4(a)). This implies

cost(TMST) ≤ γ1 + 2βγ3 + βγ2 + 2β · γ4 −
k∑

j=f+1

βcost(xj , xlastj), (2.8)

where xlastj is the last terminal of a depth-first traversal of Tj as described in
Lemma 2.2, for j ∈ {f + 1, . . . , k}.

For estimating the cost of TOld+ (see Fig. 2.4(b)), we connect the vertices
x1, . . . , xk by a path P , analogously to case 1. The union of P and the trees Ti,
for i = 1, . . . , k, gives a feasible solution for the old instance. Thus, cost(TOld) ≤
cost(P ) + γ3 + γ4. The cost of P can be bounded from above by cost(P ) ≤
2β · (γ1 + γ2)− β · cost(vNew, xj), where xj ∈ {f + 1, . . . , k}.

From this, we get

cost(TOld+) ≤ 2β(γ1 + γ2) + γ3 + γ4 − β · cost(vNew, xi) + cost(vNew, xlasti)

≤ 2β(γ1 + γ2) + γ3 + γ4 − β · cost(vNew, xi)

+ β · (cost(vNew, xi) + cost(xi, xlasti))

≤ 2β(γ1 + γ2) + γ3 + γ4 + β · cost(xi, xlasti). (2.9)
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Adding (2.8) and (2.9) yields

2 · cost(TAlg) ≤ cost(TMST) + cost(TOld+)

≤ (2β + 1) · γ1 + 3β · γ2 + (2β + 1) · (γ3 + γ4)

+ β · cost(xi, xlasti)−
k∑

j=f+1

βcost(xj , xlastj)

≤ (1 + 2β)(γ1 + γ2 + γ3 + γ4) ≤ (1 + 2β) · cost(TNew),

and thus cost(TAlg) ≤ (1+2β)
2 cost(TNew) ≤ (1/2 + β) cost(TNew). �

2.5 Discussion

In the model of reoptimization, the approximation hardness of the Steiner tree
problem in graphs with sharpened triangle inequality heavily depends on the
considered local modification. For removing vertices from the graph, the reopti-
mization problem stays exactly as hard as the original Steiner tree problem and
adding a vertex leads to an APX-hard problem, whereas changing the status of
a vertex from terminal to a nonterminal or vice versa or changing the cost of an
edge leads to a PTAS. In the case of adding a vertex, we improved the constant
approximation ratio over that of the original Steiner tree problem. It remains
as an open problem whether the reoptimization variant of changing edge-costs
or the status of a vertex is APX-hard in general graphs.



Chapter 3

Hardness of Reoptimization

with Multiple Given

Solutions

3.1 Introduction

As the main result of this chapter, we prove an even stronger inapproximabil-
ity result. It is well known that the traveling salesman problem (TSP) is not
approximable with an approximation ratio of 2n in an n-vertex graph with ar-
bitrary edge weights [72], unless P = NP . Even the reoptimizations variant of
changing the cost of one edge is not approximable [15].

Here, we consider a generalization of the reoptimization approach. We as-
sume that we are given not only one optimal solution for a locally modified
problem instance, but the k best solutions for some k which might even be
exponentially large in the size of the input.

In Section 3.2, we give an overview of the reoptimization results and in
Section 3.3, we consider a reoptimization situation where we are given a TSP
instance together with the set of all optimal solutions. As a local modification,
the cost of one edge is increased. We show that, even with this extra knowledge,
it remains NP-hard to compute a 2n-approximate solution.

In Sections 3.6 and 3.7, we show that knowing all optimal solutions to a
locally modified TSP instance does not help for TSP reoptimization.

We also prove in Section 3.5 that the APX -hardness of Steiner tree reopti-
mization, where the local modification is the insertion of a new terminal vertex,
carries over to the case of exponentially many given solutions. The proof tech-
nique used here can be easily generalized for many other optimization problems
as well.

Then, in Section 3.6 and 3.7, we consider TSP reoptimization where, in

29
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addition to all optimal solutions, we are given exponentially many near-optimal
solutions. We prove that even this multi-solution reoptimization variant, even
if all solutions are very different, is as hard to approximate as the TSP itself.

3.2 Overview of Reoptimization Results

The results obtained in these chapter show that the hardness of reoptimization
problems varies a lot. Obviously, lm-Reopt-U might be an easier problem than
U , since we have access to an optimal solution for the original problem instance
for free. Nevertheless, in most cases, the reoptimization variant of an NP-hard
optimization problem remains NP-hard. This is due to the fact that, for most
problems, it is possible to transform any given instance into a trivially solvable
one by using a sequence of only polynomially many local modifications, see the
paper by Böckenhauer et al. [24] for more details.

For some optimization problems and some local modifications, the corre-
sponding reoptimization problem trivially admits a very good approximation
since the old optimal solution itself is a good approximate solution for the new
instance. For example, adding a single edge in an instance of a graph coloring
problem can increase the cost of an optimal solution by at most one.

Let ∆TSP denote the restriction of the TSP to complete edge-weighted
graphs where the edge-weights obey the triangle inequality, i. e., to instances
G = (V,E, cost) with

cost(u, v) ≤ cost(u,w) + cost(w, v)

for all u, v, w ∈ V . It is well known that the ∆TSP is APX -hard [68], and
the best known approximation algorithm for it is due to Christofides [35] and
achieves an approximation ratio of 3/2. We consider the local modification of
increasing the cost of a single edge in such a way that the triangle inequality
is still satisfied. We denote the resulting reoptimization problem by Inc-Edge-
Reopt-∆TSP. This reoptimization problem is NP-hard [15, 16], but it admits
an approximation algorithm which improves over the one from Christofides.

Theorem 3.1 (Böckenhauer et al. [15, 16]) There exists a polynomial-time
approximation algorithm for the Inc-Edge-Reopt-∆TSP with an approximation
ratio of 7/5.

The proof of this theorem is based on the following idea which can be used
for several other reoptimization problems as well. The algorithm considers two
possible solutions. One of these solutions is the given optimal solution for the
old instance, possibly adapted slightly to become feasible for the new instance.
The other solution is based on guessing (by exhaustive search) a small part of
the new optimal solution which can be proven to have relatively high costs and
to use some known approximation algorithm to approximate the rest of the new
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solution. Usually, it can be shown that the first solution is good if the local
modification does not change the cost of the optimal solution too much, and
the second solution can be proven to be good in the case that the value of the
optimal solution changes a lot after applying the local modification.

For some problems, the concept of reoptimization can help even more in
lowering the approximation ratio. There existAPX -hard optimization problems
for which some corresponding reoptimization problems admit a PTAS. As an
example, we consider the Steiner tree problem on graphs with bounded edge
weights. The Steiner tree problem (STP) is known to be APX -hard [8], even
if all edge costs are drawn from the set {1, 2, . . . , r} for some integer constant
r ≥ 2. By Inc-Term-Reopt-r-STP, we denote the reoptimization variant of the
STP on graphs with edge costs from {1, 2, . . . , r}, where a non-terminal vertex
of the graph becomes a terminal. The Inc-Term-Reopt-r-STP is NP-hard [24],
but it admits a PTAS.

Theorem 3.2 (Böckenhauer et al. [24]) Let r be an arbitrary positive in-
teger, r ≥ 2. There exists a polynomial-time approximation scheme for the
Inc-Term-Reopt-r-STP.

The proof of this theorem is based on the following idea. For a desired
approximation ratio of 1 + ε, the algorithm computes the number m = r ·
⌈1/ε⌉. If there are few terminals (i. e., less than m), then the optimal Steiner
tree can be computed using the Dreyfus-Wagner algorithm [40] whose running
time is exponential only in the number of terminals. Otherwise, in the case
of many terminals, just adding one edge from the new terminal to the old
optimal solution, if necessary, gives a solution which can be proven to be (1+ε)-
approximative.

On the other hand, for some problems, reoptimization does not help at all.
As an example, consider the TSP with arbitrary edge weights. As already
mentioned above, it is well known that the TSP is not approximable within a
polynomial approximation ratio [72]. This result generalizes to the Inc-Edge-
Reopt-TSP as follows.

Theorem 3.3 (Böckenhauer et al. [15, 16]) It is NP-hard to approximate
the Inc-Edge-Reopt-TSP with an approximation ratio which is polynomial in the
input size.

The proof of this theorem is based on a diamond graph construction similar
to the one used by Papadimitriou and Steiglitz for constructing instances of the
TSP that are hard for local search [67]. We will not go into detail here since
we will use a similar technique in the next section to prove an even stronger
inapproximability result.
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3.3 Knowing All Optimal Solutions

In this section, we consider a generalization of the reoptimization model. We
assume that we are not only given a single optimal solution for the old instance,
but that the set of all (possibly exponentially many) optimal solutions is avail-
able for free. We use the general TSP as an example to show that there exist
optimization problems for which even this additional knowledge does not help
at all for improving the approximability. We start with a formal definition of
this TSP reoptimization variant.

Definition 3.1 (Inc-Edge-ReoptALL-TSP) Let G = (V,E) be a graph. We
define Inc-Edge-ReoptALL-TSP as the problem given two edge weight func-
tions costold and costnew such that (G, costold) and (G, costnew) are both admis-
sible inputs for the TSP and such that costold and costnew coincide, except for
one edge echange ∈ E where costold(echange) < costnew(echange). Moreover, we
are given all optimal TSP solutions for (G, costold). The goal is to compute an
optimal TSP solution for (G, costnew).

We measure the size of an instance of Inc-Edge-ReoptALL-TSP by the size
of (G, costnew) only. The size needed for representing all (possibly exponentially
many) optimal solutions for (G, costold) is not taken into account.

For proving inapproximability, we give a reduction from the Hamiltonian cy-
cle problem (HC) to Inc-Edge-ReoptALL-TSP. The HC problem is the problem
to decide whether a given undirected unweighted graph G contains a Hamilto-
nian cycle or not.

For this reduction we employ a diamond graph construction similar to the
construction of Papadimitriou and Steiglitz [67].

We start with the definition of the diamond graph.

Definition 3.2 (diamond graph) The diamond graph D = (V, E) is
a graph with 8 vertices and 9 edges with V = {N,S,W,E, u, x, y, z} and E =
{{W,x}, {x,N}, {N, u}, {u, z}, {z, S}, {S, y}, {y, E}, {W, z}, {u,E}}, see also
Figure 3.1.

For our proof, we need the following lemma from Papadimitriou and Stei-
glitz [67], see also Hromkovič [51].

Lemma 3.1 (Papadimitriou and Steiglitz [67]) If the diamond graph D is
an induced subgraph of a graph G with a Hamiltonian cycle C, then C traverses
D in exactly one of the following two modes:

1. from north N to south S (or vice versa): . . . , N, x,W, z, u, E, y, S, . . . (see
Fig. 3.2(a)), or

2. from west W to east E (or vice versa): . . . ,W, x,N, u, z, S, y, E, . . . (see
Fig. 3.2(b)).
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Figure 3.1: Diamond graph

That is, if a cycle C enters the diamond from the north, it must leave it from
the south; and similarly with respect to the east-west vertices.
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Figure 3.2: (a) Traversal of a diamond in north-south direction (b) traversal of
a diamond in west-east direction

Theorem 3.4 Under the assumption of P 6= NP, there does not exist any
polynomial-time approximation algorithm with an approximation ratio of 2n for
Inc-Edge-ReoptALL-TSP, where n is the number of vertices in the instance.

Proof. For proving this theorem, we give a reduction from the Hamiltonian cycle
problem (HC) to the Inc-Edge-ReoptALL-TSP.

Let GHC be an input instance for HC with V (GHC) = {v1, . . . , vk} and
E(GHC) = {e1, . . . , em}. To construct an instance of Inc-Edge-ReoptALL-TSP,
we first build an unweighted graph GTSP . As a first step, we substitute every
vertex vi ∈ V (GHC), i ∈ {1, ..., k}, by a diamond graph Di with V (Di) =
{Ni, Si,Wi, Ei, ui, xi, yi, zi} as shown in Fig. 3.1.



Chapter 3. Reoptimization with Multiple Given Solutions 34

Secondly, we add edges from every S- and N-vertex of every diamond Di to
every S- and N-vertex of all other diamonds Dj , j 6= i (see Fig. 3.3(a)). Further-
more, for every edge ei = {vj , vk} ∈ E(GHC ), the corresponding diamonds Dj

and Dk are connected with two more edges: one between the W-vertexWj of Dj

and the E-vertex Ek of Dk and one edge between Wk and Ej (see Fig. 3.3(b)).

echange

eblock

. . .

W1

W2

Wk

E1

E2

Ek
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Wk
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Nj

Nk

Sj

Sk

(b)

Figure 3.3: (a) North-south connections in the graph GTSP (b) west-east con-
nections in the graph GTSP if {vj, vk} ∈ E(GHC )

Now we transform GTSP into an instance (GReopt, costold, costnew) of Inc-
Edge-ReoptALL-TSP. Let GReopt = (V,E) = K8k be the complete graph on 8k
vertices. We define costold as follows: The edge eblock = {N1, u1} plays a special
role in our argumentation, we set costold(eblock) = 1 + ε. For all other edges
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ej ∈ {{vl, vk} | vl, vk ∈ V (GTSP )}, ej 6= eblock, we define

costold(ej) =

{

1 if ej ∈ E(GTSP )− {eblock}
M otherwise,

where M = 29k.

We now consider the local modification of changing the cost of one edge in
costold, leading to the new TSP instance (GReopt, costnew). For this, we change
the cost of the edge echange = {W1, z1} in D1 from costold(echange) = 1 to
costnew(echange) = M .

In addition to (GReopt, costold, costnew), we have to specify the set of all
optimal solutions for (GReopt, costold). These are all the 2k · (k − 1)! many
Hamiltonian tours which traverse every diamond in north-south or south-north
direction.

In the graph GTSP , independently from the original graph GHC , there exist
2k · (k − 1)! many Hamiltonian cycles traversing all diamonds in north-south
or south-north direction: The order of the diamonds can be varied arbitrarily,
yielding (k− 1)! different possibilities, and all diamonds can be traversed either
in north- south or south-north direction which leads to (2k · (k − 1)!) different
Hamiltonian tours in north-south direction overall. Any of these Hamiltonian
cycles leads to an optimal solution in (GReopt, costold) with cost of 8 ·k because,
for all edges ei 6= eblock, ei ∈ E(GTSP ), costold(ej) = 1 holds and the edge eblock
is not traversed by a run through the diamond D1 in north-south direction.

Furthermore, if and only if there exists a Hamiltonian cycle in GHC , there
also exist one or more (exactly as many as in GHC) Hamiltonian cycles in GTSP

that traverse every diamond in west-east direction. These Hamiltonian cycles
lead to second-best solutions in GReopt of cost 8 · k + ε because every traversal
of the diamond D1 in west-east direction has to use the edge eblock. Note that
these west-east solutions do not use the edge echange. A Hamiltonian cycle in
GReopt traversing some diamonds in north-south direction and some other in
west-east direction uses at least two edges of cost M due to the construction,
leading to a cost of at least 8 · k − 2 + 2 ·M .

By increasing the edge cost of echange from costold(echange) = 1 to
costnew(echange) = M , all optimal solutions in (GReopt, costold) get a cost of
8 ·k−1+M in (GReopt, costnew). Therefore, in (GReopt, costnew) there exists an
optimal solution with cost of 8 ·k+ ε if and only if there is a Hamiltonian cycles
in GHC . Otherwise, the old optimal solutions in (GReopt, costold) stay optimal
in (GReopt, costnew).

Thus, an approximation algorithm with an approximation ratio smaller than
(M + 8 · k − 1)/(8 · k + ε) would solve the HC problem. Due to M = 29k, we
have

M + 8 · k − 1

8 · k + ε
> 28k
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for almost all values of k. Since the constructed graph GReopt has 8k vertices,
the claim follows. �

3.4 Reoptimization with k Given Solutions

We consider the following reoptimization variant of the STP with the local
modification lm (e. g., adding a terminal vertex to the graph). Several local
modifications have been considered in the literature, e. g., changing a terminal
to a non-terminal or vice versa, changing the cost of an edge, adding a terminal
or non-terminal, or removing a terminal or non-terminal. We will focus on
the addition of a terminal vertex (together with all its incident edges) here.
Formally, we consider the local modification lm = AddTerm, i. e., V (G′) =
V (G)∪{vNew}, for some vNew /∈ V (G), S′ = S ∪{vNew}, and c is the restriction
of c′ to V (G).

Allowing the presence of more than one solution for the old instance leads
to the multiple-solution variant of STP reoptimization which can be defined as
follows.

Definition 3.3 (k-Sol-Reopt-STP-lm) The minimum Steiner tree k-so-
lution reoptimization problem with the local modification lm, k-Sol-Reopt-
STP-lm for short, is the following optimization problem. The input consists of

a STP instance (G,S, cost), a sequence of the k best Steiner trees T
(1)
Old, . . . , T

(k)
Old

for it (with ties broken arbitrarily), and a locally modified STP instance (G′, S′,
cost ′), with respect to the local modification lm. The goal is to find a minimum
Steiner tree for (G′, S′, cost ′).

We also allow the number of given solutions to depend on the size n of the
input graph, in this case we call the problem f(n)-Sol-Reopt-STP-lm, for
some non-decreasing function f : N → N.

Also for the TSP, we consider a multiple-solution reoptimization variant.

Definition 3.4 (k-Sol-Reopt-TSP-lm)The k-solution reoptimization
TSP with the local modification lm, k-Sol-Reopt-TSP-lm for short, is the fol-
lowing optimization problem. The input consists of a TSP instance (G, costold),
a sequence of the k best Hamiltonian tours in G (with ties broken arbitrar-
ily), and a locally modified TSP instance (G′, costnew), with respect to the lo-
cal modification lm. The goal is to find a minimum-cost Hamiltonian tour for
(G′, costnew).

We again allow the number of given solutions to depend on the size n of
the input graph, in this case we call the problem f(n)-Sol-Reopt-TSP-lm, for
some non-decreasing function f : N → N.

Also for TSP reoptimization, various different local modifications have been
considered in the literature, like adding or deleting a vertex or changing the
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cost of an edge. Here, we will focus on the modification of increasing the cost
of a single edge echange, we write lm = IncEdge. Formally, for G = (V,E) and
echange ∈ E, we define G′ = G and costnew(e) = costold(e) for all e 6= echange
and costnew(echange) > costold(echange).

Note that we explicitly allow the function f to be exponential. Nevertheless,
we do not count the size of the representation of the given solutions as a part of
the input size. This is justified by the observation that the set of given solutions
often can be given in a compact representation.

3.5 Approximating the Multiple-Solution Steiner

Tree Reoptimization Problem is Hard

In this section, we establish an inapproximability result for k-Sol-Reopt-STP-
AddTerm. It was shown in [18] that Reopt-STP-AddTerm is APX -hard. This
means that there does not exist any polynomial-time approximation scheme for
Reopt-STP-AddTerm, unless P 6= NP. For an introduction to the theory of
approximation hardness, we refer to the books [5,51]. We use a reduction from
Reopt-STP-AddTerm to prove that, for any k, the problem k-Sol-Reopt-STP-
AddTerm is exactly as hard to approximate.

For any (multiple-solution) Reopt-STP-AddTerm instance, let n denote the
number of vertices of the old graph, i. e., of the graph for which the optimal
solution is given.

Theorem 3.5 The nn−2-Sol-Reopt-STP-AddTerm is APX -hard.

Proof. We prove the claim by an AP-reduction from the Min-STRP-
AddTerm, i. e., by a polynomial-time reduction preserving the approximation
ratio (see [5,51] for a formal definition of AP-reductions). Consider an arbitrary
Reopt-STP-AddTerm instance I = (G = (V,E), S, c, TOld, G

′ = (V ′, E′), S′, c′)
where V ′ = V ∪{xnew} for some xnew /∈ V , S′ = S∪{xnew}, E′ = E∪{{xnew, v} |
v ∈ V } and c is a restriction of c′ to the edges from E. From this, we construct
a nn−2-Sol-Reopt-STP-AddTerm instance and prove that any α-approximative
solution for it can be re-transformed into an α-approximative solution for the
Reopt-STP-AddTerm instance.

The idea of the construction is to substitute one terminal z of G (but not
the newly added one) by a clique of n terminals which are very close to each
other. Then many optimal solutions for this new graph can be computed by
just replacing z by an arbitrary spanning tree on the newly introduced vertices.
Since the overall structure of the graph does not change by this transformation,
the knowledge of all of these exponentially many optimal solutions does not help
to solve the new instance.

Formally, the constructed nn−2-Sol-Reopt-STP-AddTerm instance Î can be
described as follows. The given old instance consists of a graph Ĝ = (V̂ , Ê), a



Chapter 3. Reoptimization with Multiple Given Solutions 38

terminal set Ŝ and an edge-cost function ĉ. Here, V̂ = (V \ {z}) ∪ {z1, . . . , zn}
for some z ∈ S and new vertices z1, . . . , zn /∈ V , Ŝ = (S \ {z}) ∪ {z1, . . . , zn},
and

ˆcost(e) =







cost(e) for all e ∈ E such that z1, . . . , zn /∈ e

cost(z, x) for e = {zi, x}, i ∈ {1, . . . , n}, x ∈ V \ {z}
0 for e = {zi, zj}, i, j ∈ {1, . . . , n}

According to Cayley’s formula [34], there are nn−2 different trees on n distin-
guishable vertices. Let k = nn−2. We construct k different optimal Steiner trees
for Ĝ by substituting z in the given optimal Steiner tree TOld for G by each of

the k spanning trees on {z1, . . . , zn}. We call the resulting trees T̂
(1)
old , . . . , T̂

(k)
old .

The new instance is given by Ĝ′ = (V̂ ′, Ê′), a terminal set Ŝ′ and an edge-
cost function ĉ′. Here, V̂ ′ = V̂ ∪ {xnew}, Ŝ′ = Ŝ ∪ {xnew}, and

ˆcost
′
(e) =







ˆcost(e) for all e ∈ Ê

cost ′(e) for all e ∈ E′

cost ′({z, xnew}) for e = {zi, xnew}, i ∈ {1, . . . , n}

A graphical illustration of this construction is given in Fig. 3.4.

0

0

0

0

1
1

3
3

4
4

5
5

66

8
8

non-terminal

terminal

Figure 3.4: The construction from the proof of Theorem 3.5. An optimal Steiner
tree is drawn in bold.

We first prove that the cost of an optimal solution for Î equals the cost of an
optimal solution for I. By construction, any spanning tree on z1, . . . , zn has zero
cost. Thus, replacing z in a solution for I by any such tree yields a valid Steiner
tree for Î with the same cost. This implies that the costs of an optimal solution
for Î are at most the costs of an optimal solution for I. On the other hand,
consider an arbitrary Steiner tree for Ĝ′. Contracting the vertices z1, . . . , zn into
one vertex z does not change the cost and yields a substructure of G′ that spans
all terminals from T ′. This spanning substructure might contain some cycles,
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but deleting some edges to break the cycles does not increase the cost. This
means that, for any feasible solution for Î, we can construct a feasible solution
for I of at most the same cost. Hence, the costs of an optimal solution for Î are
at least as high as those of an optimal solution for I.

Now consider some α-approximative solution T̂approx for Î. Following the

argument above, we can transform T̂approx into a feasible solution Tapprox for I

without increasing the cost. Let Opt(I) and Opt(Î) denote the costs of optimal
solutions for I and Î, respectively. Then, we have

cost(Tapprox) ≤ cost(T̂approx) ≤ α ·Opt(Î) = α ·Opt(I),

meaning that also Tapprox is α-approximative. �

Note that the edges of cost 0 in the above proof could be also replaced by
edges of positive cost, as long as their total cost does not exceed the cost of one
of the other edges. This construction can also easily be generalized to the other
local modifications that were considered in [18].

The used technique of substituting one vertex by a large but cheap subgraph
can also been applied to extend reoptimization hardness results to the multiple-
solution case for other problems besides the STP.

3.6 Multi-Dimensional Diamond Graphs

We have seen in Section 3.3 that, knowing all optimal solutions to a locally mod-
ified instance, TSP is also hard to approximate, furthermore, we have seen an
example in Section 3.5 where a large number of given optimal or near-optimal
solutions does not help to improve the approximability of a reoptimization prob-
lem. But all the exponentially many given solutions in this example were quite
similar in their global structure. Now, we will give some examples showing that
also a large number of rather different solutions does not necessarily improve
the solvability of a reoptimization problem.

As a prerequisite, we need an extension of the diamond graph construction
from Papadimitriou and Steiglitz [67] as described in Definition 3.2 to what
we call multi-dimensional diamond graphs. Using these multi-dimensional dia-
mond graphs as building blocks, we will show in the following sections that the
multiple-solution reoptimization TSP is neither approximable nor tractable by
local search according to the well-known exchange neighborhood.

The main property of a diamond graph (see Lemma 3.1) is that, whenever
it is a subgraph of a graph G with a Hamiltonian cycle and this cycle enters the
diamond via the vertex Ii, then it has to traverse the diamond on the unique
Hamiltonian path from Ii to Oi in D, for i ∈ {1, 2}. We call this a traversal
of D in dimension i (see Fig. 3.2(a) for a traversal of D in dimension 1 and
Fig. 3.2(b) for a traversal of D in dimension 2, were I1 = N,O1 = S, I2 = W,
and O2 = E. ).
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We now extend the notation of a diamond graph to more than two dimen-
sions. We call a graph D a k-dimensional diamond graph if there are k pairs of
input and output vertices in D such that, if D is a subgraph of a Hamiltonian
graphG, the Hamiltonian cycle C has to enterD via an input vertex, traverse all
vertices in D and leave D via the corresponding output vertex. More precisely,
we define the diamond graph property as follows.

Definition 3.5 (k-dimensional diamond graph) Let D = (V,E) be a sub-
graph of a graph G which contains a Hamiltonian cycle C. Let ID = {I1, . . . , Ik}
⊂ V (D) be a set of k vertices called input vertices, and let OD = {O1, . . . , Ok}
⊆ V (D), where ID ∩ OD = ∅, be a set of k vertices called output vertices.
Assume that D is connected to G − D only via ID and OD. The graph D is
called a k-dimensional diamond graph, if D has the following properties:

(i) For every pair (Ik, Ok), there exists exactly one Hamiltonian path Hk from
Ik to Ok in D.

(ii) Every Hamiltonian cycle C in G that enters D via a vertex Ik ∈ ID has
to follow Hk and to leave D via Ok.

We now want to construct a 2i-dimensional diamond graph Di for every
i ≥ 1. We define Di recursively as follows. The graph D1 is the two-dimensional
diamond from Definition 3.2. The graphDi includes a graphDi−1 as a subgraph
for i ≥ 2. As an example, D2 is shown in Fig. 3.5, including D1 as a subgraph.
Formally, we define Di as follows.
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Figure 3.5: The 4-dimensional diamond graph D2.
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Definition 3.6 The graph Di = (Vi, Ei), for i ≥ 2, contains 2i+2 vertices in
an external cycle and a copy of Di−1 as a subgraph in the middle, connected by
2i edges to the external cycle.

The external cycle contains 2i input vertices Ii1, . . . , I
i
2i , 2

i output vertices
Oi

1, . . . , O
i
2i and 2i+1 intermediate vertices m1,2,m2,3, . . . ,m2i,1, n1,2, . . . , n2i,1.

In the external cycle, there are 2i+2 edges {I1,m1,2}, {m1,2, I2},
{I2,m2,3}, . . . , {I2i ,m2i,1}, {m2i,1, O1},{O1, n1,2},. . . ,{O2i , n2i,1},{ni,1, I1}.

Furthermore, there are edges for every odd j ∈ {1, 3, . . . , 2i−1}, from nj,j+1

to the input vertex Ii−1
(j+1)/2 of the Di−1 in the middle and from mj,j+1 to the

output vertex Oi−1
(j+1)/2of the Di−1 in the middle, called cross edges.

We now count the number of vertices and edges of Di.

Observation 3.1 For i ≥ 1, the graph Di contains 2i+3 − 8 vertices.

Proof. We prove the claim by induction. Obviously, |V (D1)| = 8 = 24 − 8. By
the induction hypothesis, |V (Di)| = 2i+3−8. We know that the graph Di+1 has
2 · 2i+1 + 2i+2 = 2i+3 vertices on the external cycle and |V (Di)| vertices in the
middle. This yields |V (Di+1)| = 2i+3+ |V (Di)| = 2i+3+2i+3− 8 = 2i+4− 8. �

Observation 3.2 For any i ≥ 1, the graph Di contains 2
i+3 +2i+1− 11 edges.

Proof. We prove the claim by induction. The graph D1 has 9 = 24 + 22 − 11
edges. By the induction hypothesis, |E(Di)| = 2i+3 + 2i+1 − 11. We know that
Di+1 has 2i+3 edges in the external cycle and 2i+1 cross edges plus the edges of
Di. This yields

|E(Di+1)| = 2i+3 + 2i+1 + |E(Di)|
= 2i+3 + 2i+1 + 2i+3 + 2i+1 − 11 = 2 · 2i+3 + 2 · 2i+1 − 11

= 2i+4 + 2i+2 − 11. �

We now prove that Di indeed is a 2i-dimensional diamond graph.

Lemma 3.2 The graph Di is a 2i-dimensional diamond graph with I = {Iik |
k ∈ {1, . . . , 2i}} and O = {Oi

k | k ∈ {1, . . . , 2i}}.

Proof. We prove the claim inductively. We know that the claim holds in the
case i = 1 due to [67]. We assume in the following that it holds for Di−1. Let
Di, for i ≥ 2, be a subgraph of a graph G with a Hamiltonian cycle C, such
that D is connected to G−D only via vertices from I and O. The cycle C can
enter Di only in one of the input or output vertices Ij , Oj , for j ∈ {1, . . . , 2i}.

We call an edge e = {x, y} of Di active with respect to some path P in Di,
if both P and e can be used in C. In particular, every edge incident to an inner
vertex of P (but not in E(P )) is inactive since every vertex has degree 2 in C.
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Figure 3.6: An example of a Hamiltonian path in D2.

The active degree of a vertex x with respect to path P is the number of active
edges incident to x.

If C enters Di in the vertex Iik (without loss of generality, assume k ∈
{2, 4, . . . , 2i − 2}, the other cases can be handled symmetrically), there are
only two reachable vertices, namely mk−1,k and mk,k+1. The vertex mk,k+1 has
degree 2. Because of this, C has to proceed to this vertex, otherwise it cannot
pass through it later.

The vertex mk−1,k has active degree 2, since the edge {mk−1,k, I
i
k} is not

active with respect to C since C already uses two other edges incident to Iik.

It follows that the vertex mk−1,k lies on a path from the vertex Oi−1
⌈k/2⌉ of

the inner diamond to Iik−1. Thus, from the induction hypothesis, it follows that

this path has to pass through the inner diamond Di−1 to the vertex Ii−1
⌈k/2⌉. This

means that all cross edges in Di from the external cycle to the inner diamond
except for {Ii−1

⌈k/2⌉, n
i
k−1,k} are not active with respect to Hi−1

k/2 .

Then, all the intermediate vertices mi
k,k+1, . . . ,m

i
2i,1, n1,2, . . . , n

i
k−1,k and

ni
k+1,k+2, . . . , n

i
2i,1,m1,2, . . . ,m

i
k−2,k−1 have active degree 2. Hence, C has to

use the paths from Iik to Oi
k−1 and from Oi

k to Iik−1 on the external cycle to
visit all of these vertices. The edge {ni

k−1,k, O
i
k} cannot be part of C, since it

closes a cycle together with the paths from Oi
k to Iik−1 on the external cycle and

the path from mk−1,k to nk−1,k via Di−1, both of which have to be parts of C
as seen above. Thus, C has to use the edge {Oi

k−1, n
i
k−1,k}.

This leads to the unique Hamiltonian path Hi
k = Iik, . . . , O

i
k−1, n

i
k−1,k, I

i−1
⌈k/2⌉,

Hi−1
k/2 , O

i−1
⌈k/2⌉, mk−1,k, I

i
k−1, . . . , O

i
k from Iik to Oi

k in Di (see Fig. 3.6 for an
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example), proving condition (i) of the diamond graph definition. Condition
(ii) also follows immediately from the above discussion since entering Di twice
would necessarily leave one of the intermediate vertices on the external cycle
unvisited. �

The proof of Lemma 3.2 directly implies the following observation.

Observation 3.3 Let Di be a diamond with the sets Ii and Oi of input and
output vertices. Let the diamond Di−1 be a subgraph of Di with the sets Ii−1

and Oi−1 of input and output vertices. Then, the path Hi−1
⌈j/2⌉ is a subpath of

Hi
j. �

Note that Definition 3.6 does not provide the only possible construction of a
multi-dimensional diamond graph. Independently, another definition of multi-
dimensional diamonds was given by Freiermuth and Stewénius [47], where the
authors constructed multi-dimensional diamonds for every possible dimension
k ≥ 3 and additionally tried to minimize their size.

In the following, we analyze in how many edges two Hamiltonian paths Hp

and Hr differ. We first define a measurement of distance between two input
vertices. For two input vertices Iip and Iir let ∆i(I

i
p, I

i
r) = |r − p|.

Observation 3.4 Let Iip, I
i
r ∈ ID, for p < r, be two input vertices in Di.

Let Hi
p and Hi

r be the corresponding Hamiltonian paths in Di. Let Oi−1
⌈p/2⌉ and

Ii−1
⌈p/2⌉ be the first and last vertex of the diamond Di−1 on the path Hi

p and let

the vertices Oi−1
⌈r/2⌉ and Ii−1

⌈r/2⌉ be the first and last vertex of Di−1 on the path

Hi
r. If ∆i(I

i
p, I

i
r) = k, then ∆i−1(I

i−1
s , Ii−1

t ) ≥ ⌊k
2 ⌋.

Proof. Let be ∆i

(
Iip, I

i
r

)
= k, then an easy calculation shows, that

∆i−1

(

Ii−1
⌈p/2⌉, I

i−1
⌈r/2⌉

)

=
∣
∣
⌈
p
2

⌉
−
⌈
r
2

⌉∣
∣ ≥

⌊
k
2

⌋
. �

We now compare two Hamiltonian paths in D starting from two different
input vertices. In the following observation, we analyze the first part of the
compared paths from the input vertex to the input vertex of the inner diamond.

Observation 3.5 Let Hi
p and Hi

r be two Hamiltonian paths in the diamond Di

starting from two input vertices Iip and Iir (without loss of generality, assume

p < r). Let P i
p denote the union of the two subpaths in Hi

p −Hi−1
⌈p/2⌉, i. e., the

parts of Hi
p outside Di−1, let P i

r analogously denote the parts of Hi
r outside

Di−1.The subgraphs P i
p and P i

r differ in 2 edges if p is an odd number and
r = p+ 1, or in 4 edges in all other cases.

Proof. All edges from the external cycle of Di except the two edges e1,p, e2,p are
included in P i

p (see Fig. 3.7), where
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e1,p =

{
{Ip,mp−1,p} if p is even
{Ip,mp,p+1} else

and

e2,p =

{
{Op, np−1,p} if p is even
{Op, np,p+1} else.

In both cases, e1,p 6= e1,r and e2,p 6= e2,r if r 6= p.
If p is an odd number and r = p + 1, both paths P i

r and P i
p use the edges

{np,r, I
i−1
r2 } and {mp,r, O

i−1
r2 }. Otherwise, P i

r and P i
p differ also in the cross

edges from the external cycle to the inner diamond Di−1. �
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Figure 3.7: Two Hamiltonian paths in the 16-dimensional diamond graph D4.
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Lemma 3.3 Let Iip, I
i
r ∈ IDi

, p, r ∈ {2, 4, 6, . . . , 2i}, p < r, be two input vertices

in Di with ∆i(p, r) = r − p = 2j. Then, the corresponding Hamiltonian paths
Hi

p and Hi
r differ in at least 4(j − 1) + 2 edges.

Proof. Let Iip, I
i
r ∈ IDi

, p, r ∈ {2, 4, 6, . . . , 2i}, p < r, be 2 input vertices in the

diamond Di with ∆i = 2j(p, r), and let Hi
p and Hi

r be the two corresponding

Hamiltonian paths. We know from Observation 3.3 that the path Hi−1
⌈p/2⌉ is a

subpath of Hi
p and that Hi−1

⌈r/2⌉ is a subpath of Hi
r. Obviously, the distance

decreases in every step from Dl to Dl−1 by at most the half, for 1 < l ≤ i.
At earliest after step j, both paths Hi

p and Hi
r enter the diamond Di−j

via the same vertex. It follows that the distance between the input vertices of
Di−j+1 on Hi

p and Hi
r is 1. Because of this, both paths differ in 4 edges in each

step from Dl to Dl−1 for i ≥ l ≥ i− j + 2 and in at least 2 edges from Di−j+1

to Di−j . Overall, the paths differ in at least (i− 1) · 4 + 2 edges. �

We can now use Lemma 3.3 to exhibit a large set of pairwise distant Hamil-
tonian paths.

Lemma 3.4 In the diamond graph Di2 , there are 2
i different Hamiltonian paths

which differ pairwise in at least 4 · (i− 1) + 2 edges.

Proof. Consider the graph Di2 . We denote the vertex Ii
2

1+s·2i by Îs for all

s ∈ {0, . . . , 2i}. The set ÎD = {Îs | s ∈ {1, . . . , 2i}} is the new set of input
vertices.

There are 2i many paths P i2

1+s·2i for s ∈ {0, 1, . . . , 2i}, starting from the

points Îs.
For two starting points Îs, Ît ∈ ÎD, s, t ∈ {1, . . . , 2i}, for s 6= t, the distance is

∆i2(Îs, Ît) ≥ 2i. It follows by Lemma 3.3 that the two paths P i2

1+s·2i , P
i2

1+t·2i , s 6=
t, differ in at least 4 · (i − 1) + 2 edges. �

A diamond Di2 restricted to the 2i input vertices with distance i2 leads us
to the definition of a new class of multi-dimensional diamonds D̂i.

Definition 3.7 For i ≥ 1, D̂i denotes the diamond graph Di2 , where the set
of input vertices is restricted to ÎD̂i

= {Îs = Ii
2

1+s·2i | s ∈ {1, . . . , 2i}} and the

set of output vertices is restricted to ÔD̂i
= {Ôs = Oi2

1+s·2i | i ∈ {1, . . . , 2i}}.
Furthermore, we denote the Hamiltonian cycle Hi2

p starting in the input vertex

p ∈ ÎD̂i
by Ĥp.

It is obvious that also D̂i is a diamond graph in the sense of Definition 3.5.

Observation 3.6 For any dimension p, there exists an edge enotp in D̂i that
is contained in the Hamiltonian paths of all other dimensions except in that of
dimension p in D̂i.
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Proof. Let Ĥp be the unique Hamiltonian path in D̂i in dimension p, i. e., start-

ing in the input vertex p ∈ ÎD̂i
. The edge from the input vertex Îp = Ii

2

1+p·2i to

the right neighbor vertex on the external cycle, ep = {Ii21+p·2i , n1+p·2i,1+p·2i+1},
is not part of Ĥp but a part of all other Hamiltonian cycles Ĥr, for r ∈
{1, . . . , 2i}, r 6= p, see also Fig. 3.7. �

3.7 Multiple-Solution Reoptimization of TSP is

Hard to Approximate

In this section, we prove that ⌊2
√
n · (√n)!⌋-Sol-Reopt-TSP-IncEdge is not ap-

proximable within a ratio of 2n. For this, we generalize the proof technique
used in Section 3.3 by using the multi-dimensional diamond graphs defined in
the previous section.

In Section 3.3, it was proven that the reoptimization variant of TSP, where
the cost of a single edge is increased and all optimal solutions to the old in-
stance are given, is not approximable within a ratio of 2n on input graphs with
n vertices. The proof was done using a reduction from the well-known NP-
hard Hamiltonian cycle problem (HC), which asks to decide whether a given
undirected graph has a Hamiltonian cycle or not. From an HC instance G, a
TSP reoptimization instance G′ was constructed by replacing every vertex of G
by a 2- dimensional diamond. By using an extension of this idea and replac-
ing the vertices by higher-dimensional diamonds, we prove that even knowing
additionally all near-optimal solutions does not help for approximating this re-
optimization variant of TSP.

Theorem 3.6 Let β = ⌊2
√
n · (√n)!⌋. Under the assumption of P 6= NP, there

does not exist any polynomial-time approximation algorithm with an approxima-
tion ratio of 2n for β-Sol-Reopt-TSP-IncEdge, where n is the number of vertices
in the instance.

Proof. We prove the claim by giving a reduction from the Hamiltonian cycle
problem (HC) to the β-Sol-Reopt-TSP-IncEdge.

Let GHC be an input instance for HC with V (GHC ) = {v1, . . . , vk}. To
construct an instance of β-Sol-Reopt-TSP-IncEdge, we first build an unweighted
graph GTSP . As a first step, we substitute every vertex vi ∈ V (GHC), i ∈
{1, ..., k}, by a copy D(i) of the diamond graph Dz+1 of dimension z + 1 for
some value of z that will be chosen later. We denote the set of all edges from
D(1), . . . , D(k) by EDia.

Then, we add a set Ez+1 = EHC of edges. Here, for every edge ei =
{vl, vm} ∈ E(GHC), we add two edges between the corresponding diamonds

D(l) and D(m) in dimension z + 1: one between the vertex I
(l)
z+1 and O

(m)
z+1 and

one between the vertex O
(l)
z+1 and I

(m)
z+1.
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Figure 3.8: Connections in the graph GTSP in dimension 1

Furthermore, for every other dimension g ∈ {1, . . . , z}, we add a set Eg of

edges from every I
(i)
g and O

(i)
g vertex of every diamond D(i) to every I

(j)
g and

O
(j)
g vertex of all other diamonds D(j) for j 6= i.
We call an edge e an edge of dimension d, if it is a connection between input

and output vertices in dimension d, i. e., if e ∈ Ed. We say that a Hamiltonian
cycle H in GTSP lies in dimension d if, for all edges e of H , we have e ∈
EDia ∪ Ed. In other words, it contains only edges inside the diamonds and
edges of dimension d.

Now, we transform GTSP into an instance (GReopt, costold, costnew) of β-
Sol-Reopt-TSP-IncEdge. Let GReopt = (V,E) be a complete graph with V =
V (GTSP ) on z′ · k vertices, where z′ = 2⌈log2(z+1)⌉+3 − 8 denotes the number of
vertices of one (z + 1)-dimensional diamond. We define costold as follows:

All edges in the set EDia get cost 1, all edges of set Eg get cost of g, for
g ∈ {1, . . . , z}, and the edges of set EHC get cost of z + 1. All other edges get
cost of M = 22z

′·k.
We now consider the local modification of increasing the cost of one edge in

costold, leading to the new TSP instance (GReopt, costnew). For this, we change
the cost of the edge echange= enot(z+1) in the diamondD1 from costold(echange) =
1 to costnew(echange) = M .

In addition to (GReopt, costold, costnew), we have to specify a set of given
solutions for (GReopt, costold). For this, we take all Hamiltonian tours in the
first z dimensions.

In the graph GTSP , independent of the original graph GHC , there exist
z · (2k · (k − 1)!) many Hamiltonian cycles traversing all diamonds in the first
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z dimensions: In every dimension g ∈ {1, . . . , z}, the order of the diamonds
can vary arbitrarily, yielding (k − 1)! different possibilities in this dimension,
and every diamond Di can be traversed in dimension g either from Ii,g to Oi,g

or vice versa which leads to (2k · (k − 1)!) different Hamiltonian tours in each
dimension g and thus to z · (2k · (k − 1)!) different tours overall. Furthermore,
if and only if there exists a Hamiltonian cycle in GHC , there also exist one or
more (exactly as many as in GHC) Hamiltonian cycles in GTSP traversing all
diamonds in dimension z + 1.

Any of the Hamiltonian cycles in dimension 1 lead to an optimal solution
in (GReopt,costold) with cost of z′ · k because, for all edges ei ∈ E(GTSP ),
costold(ej) = 1 holds. With the same argument, we see that every Hamiltonian
cycle in dimension g leads to a g-best solution in (GReopt,costold) with cost of
(z′ + g − 1)k, for all g ∈ {1, . . . , z}, because it traverses all of the k diamonds
with overall cost z′, and every edge in dimension g from one diamond to another
has cost g.

If there exists a Hamiltonian cycle in GHC , this cycle leads to one solution
with cost (z′ + z) · k.

A Hamiltonian cycle in GReopt traversing some diamonds in dimension b and
some other in dimension c with b 6= c uses at least two edges of cost M due to
the construction, leading to a cost of at least z′ · k − 2 + 2 ·M .

By increasing the edge cost of echange from costold(echange) = 1 to
costnew(echange) = M , all z-best solutions in (GReopt, costold) get a cost of
at least z′ ·k−1+M in (GReopt, costnew). Therefore, in (GReopt, costnew), there
exists an optimal solution with cost of (z′+ z) ·k if and only if there is a Hamil-
tonian cycle in GHC . Otherwise, the old optimal solutions in (GReopt, costold)
stay optimal in (GReopt, costnew).

Thus, an approximation algorithm with an approximation ratio smaller than

z′ · k − 1 +M

(z′ + z) · k

would solve the HC problem. Due to M = 22z
′k, we have

z′ · k − 1 +M

(z′ + z) · k > 2z
′k = 2n, (3.1)

for almost all values of k.
To prove our claim, we now have to specify a value for z. The value of z+1

should be a power of two, since we only defined 2i-dimensional diamond graphs
and it has to satisfy the inequality

z · 2k · (k − 1)! ≥
⌊(√

n
)
! · 2

√
n
⌋

(3.2)

We know that n = k · z′ and z′ = 2⌈log2(z+1)⌉+3 − 8, thus (3.2) is equivalent
to
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z · 2k · (k − 1)! ≥
⌊(√

(
2⌈log2(z+1)⌉+3 − 8

)
· k
)

! · 2
√

(2⌈log2(z+1)⌉+3−8)·k
⌋

≥
⌊(√

8 · z · k
)

! · 2
√
8·z·k

⌋

(3.3)

An easy calculation shows that z = 1
8k− 1

4 satisfies (3.3), thus choosing z+1
as the largest power of 2 that is smaller or equal to z − 1 proves the claim. �

Note that (3.1) additionally proves that also a variant of multiple-solution
TSP reoptimization, where we are given all optimal and all near-optimal solu-
tions starting from the z-best ones, is equally hard to approximate.

3.8 Local Search Does Not Work for Multiple-

Solution TSP Reoptimization

We now give an example of an instance for the multiple-solution TSP reopti-
mization which shows the hardness of local search with respect to the exchange
neighborhood. According to the old cost function, the instance has exponen-
tially many optimal solutions, all of which can be given. The new instance has
a unique optimal solution and exponentially many second-best solutions, which
differ from the unique optimal solution in many edges.

Theorem 3.7 Let β = 2
√

n+8
√
n ·
(√

n+ 8
√
n
)

!, let n be such that k = 2
√
n

and z =
√

log2 (
1
16

√
n+ 1) − 1 are integers. Then n = k · z′, where z′ =

2(z+1)2+3 − 8. Furthermore, let M = 2n. Then there exists an instance (Kn,
costold, costnew) for β-Sol-Reopt-TSP-IncEdge with n vertices with the following
properties.

(i) There exists a set HOpt of optimal Hamiltonian cycles in (Kn, costold) of
size z ·2k · (k−1)!, where each cycle H ∈ HOpt has cost costold(H) = z′ ·k.

(ii) The set of HOpt can be partitioned into subsets Z1, Z2, . . . , Zz ⊆ HOpt with
|Z1| = |Z2| =, . . . ,= |Zz| = 2k · (k − 1)! where two solutions Hi ∈ Zi and
Hj ∈ Zj, for i 6= j, differ in at least (4z + 3) · k edges.

(iii) In the modified instance (Kn, costnew), all solutions in HOpt become second-
best solutions of cost z′ · k − 1 +M .

(iv) There is a new unique optimal solution in the modified instance
(Kn, costnew) of cost (z

′+1)k which differs from every Hamiltonian cycle
Hi ∈ HOpt in at least (4z + 3) · k edges.



Chapter 3. Reoptimization with Multiple Given Solutions 50

Proof. An easy calculation shows that indeed n = k · z′. To construct the
instance (Kn, costold, costnew), we first construct a graph GTSP with several
different Hamiltonian tours, and then extend it to a complete graph by defining
the cost functions costold and costnew. We build GTSP as a graph consisting of

k diamonds D̂
(i)
z+1 for i ∈ {1, . . . , k}. The vertices of each diamond are connected

as described in Definition 3.7. We denote the set of these vertices by EDia.
In the next step, we build a cycle through the k diamonds in the first dimen-

sion. For this, we connect the diamonds D(l) und D(l+1), for l ∈ {1, . . . , k− 1},
by edges {{O(l)

1 , I
(l+1)
1 } | l ∈ {1, . . . , k − 1}} and close the cycle with the edge

{O(k)
1 , I

(1)
1 }. Let E1 denote the set of these edges from dimension 1 (see Fig-

ure 3.9).
Furthermore, we add, for every other dimension g ∈ {2, . . . , z +1}, a set Eg

of edges from every I
(i)
g and O

(i)
g vertex of every diamond D(i) to every I

(j)
g and

O
(j)
g vertex of all other diamonds D(j), for j 6= i.
Now, we transform GTSP into an instance (GReopt, costold, costnew) of Inc-

Edge-ReoptALL-TSP. For this let GReopt = (V,E) = Kz′·k be the complete
graph on z′ · k vertices.

All edges in the set EDia get cost 1, all edges of set Eg for g ∈ {2, . . . , z+1}
get cost of 1 and the edges of set E1 get cost of 2. All other edges get cost of
M .

The local modification of changing the cost of one edge in costold leads
to the new TSP instance (GReopt, costnew). Here, we change the cost of the
edge echange = enot1 in the diamond D1 (according to Observation 3.6) from
costold(echange) = 1 to costnew(echange) = M .

Additionally, we have to specify the set of all optimal solutions in
(GReopt, costold). In each dimension g ∈ {2, . . . , z + 1} in GTSP , there are
2k · (k − 1)! many Hamiltonian cycles. Summing up, there are z · (2k · (k − 1)!)
Hamiltonian tours in the z dimensions.

Any of these Hamiltonian tours leads to an optimal solution in
(GReopt, costold) with cost z′k because it traverses any of the k diamonds with
cost z′ and the connecting edges from one diamond to an other have cost 1 as
well. Overall there are z · 2k · (k − 1)! optimal solutions.

Furthermore, there is one Hamiltonian tour in dimension 1 in GTSP . This
tour leads to the second best solution in (GReopt, costold) with cost (z′ +1)k. It
traverses all diamonds with cost z′ each and the connection from one diamond
to another in dimension 1 has cost 2. This Hamiltonian tour differs from all
optimal solutions by at least (4z+3) · k edges: The Hamiltonian paths through
a diamond differ in at least (4z+2) edges per diamond to the other Hamiltonian
paths according to and the k edges in between the diamonds differ to all optimal
solutions as well.

Note that a tour that leaves a diamond in one dimension and enters another
dimension has to take at least two edges of cost M .

By increasing the cost of echange to costnew(echange) = M , all optimal solu-
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tions in (GReopt, costold) get cost of z
′k − 1 +M and therefore become second-

best solutions. The new unique optimal solution is the Hamiltonian tour in
dimension 1 with cost (z′ + 1)k.

To prove the correctness of our claim, it remains to show that the parameters
β, k and z are properly chosen.

The instance contains z · 2k · (k − 1)! optimal Hamiltonian cycles according
to costold. It is easy to verify that

z · 2k · (k − 1)! ≥ β = 2
√

n+8
√
n ·
(√

n+ 8
√
n

)

!

holds for almost all n, thus proving our claim. �
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Figure 3.9: The Hamiltonian tour in GTSP in dimension 1 in the proof of
Theorem 3.7

Theorem 3.7 immediately implies that it is hard for a local search algorithm
to escape from a local minimum for (GReopt, costnew) when using a neighborhood
that is defined by exchanging less than (4z+3) ·k edges of a Hamiltonian tour.

3.9 Discussion

In this chapter, we have given some examples where the presence of multiple
optimal or near-optimal solutions does not help to improve the solvability of
reoptimization problems. It would be interesting to use the proof techniques
to extend these hardness results also to other optimization problems. Another
important question is whether these hardness results can be complemented by
some examples of problems that become easier to solve within this generalized
framework of reoptimization.
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Part II

Online Computation with

Advice

53





Chapter 4

Online Coloring of

3-Colorable Graphs with

Advice

4.1 Introduction

In this chapter, we analyze the advice needed for coloring 3- colorable graphs
with a competitive ratio of 4/3. In other words, we want to color 3-colorable
graphs with four colors. Note that the offline version of this problem is also
known to be NP-hard [48, 57]. Here, we show how to obtain a 4-coloring for
any 3-colorable graph with 1.1583 advice bits per vertex.

Additionally, we develop an algorithm to color 3-colorable chordal graphs
with four colors by using less than one bit (0.9865) advice per vertex. An
overview of our results is shown in Table 4.1.

Table 4.1: Overview of the results on the number of bits per vertex for online
coloring.

number of bits per vertex lower bounds upper bounds
3-coloring 3-coloring 4-coloring

3-colorable graphs log2 3− ε2 1.5863 1.1583
3-colorable chordal graphs log2 3− ε 1.5863 0.9865
maximal outerplanar graphs 1.0424 1.2932 0.9865

2log2 3 ≥ 1.5849

55
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4.2 Preliminaries

We use the following notation for online algorithms analogous to [29], for coloring
graphs, and for the problem at hand, respectively.

Definition 4.1 (OColA) The Online Coloring Problem with Advice, in
Vertex-Revealing Mode (OColA) is the following online problem: The input
is an unweighted, undirected graph G = (V,E) with |V (G)| = n and an order ≺
of revealing on the set of vertices. The goal is to find a minimum-cost coloring
function c : V → {1, . . . , n} for the vertices in G.

In each time step i, the next vertex vi ∈ V (in the order ≺) is revealed,
together with all edges {{vi, vj} | j < i}, and the online algorithm has to decide
which color c(vi) the vertex vi gets. To this end, it can read a certain number
of advice bits.

For every instance I = (G,≺), where G = (V,E), we get a directed graph
G≺ = (V,E′) by giving a direction on every edge e ∈ E depending on the order
of revealing the vertices. Every edge e = {vi, vj} ∈ E is directed from vi to vj ,
i.e., (vi, vj) ∈ E′, iff vi is revealed before vj .

For developing algorithms to color a 3-colorable graph optimally, we need a
method to read a one-out-of-three decision from a Boolean advice string. For
this, we use the following lemma.

Lemma 4.1 Reading several one-out-of-three decisions from a bit string costs
46/29 < 1.5863 ≈ log2 3 bits on average.

Proof. When the first one-out-of-three decision is necessary, 46 bits get read
from the advice string. By these 46 bits and the corresponding 246 different
possible bit allocations, 29 three-way decisions can be encoded, because 246 ≥
329. With this, for the first three-way decision, the algorithm gets the results of
the next 28 three-way decisions at the same time and keeps them in its memory.
This leads to an average of the information needed for a three-way decision of
46/29 < 1.5863 ≈ log2 3 bits. In general, if n one-out-of-three decisions have
to be done, this costs at most 1.5863(n− 1) + 46 = 1.5863n+ d bits, for some
constant d. �

4.3 Lower Bounds on the Advice Complexity

In this section, we first turn to the lower bounds. We will show that more than
one bit of advice per vertex is necessary to color a maximal outerplanar graph
optimally, i.e., by three colors.

Theorem 4.1 For any k ∈ N, there exists a set Gk of maximal outerplanar
graphs G(u, v, w, x, y, z) on 4k + 9 vertices for k = u + v + w + x + y + z
such that every deterministic online algorithm for OColA on Gk needs at least
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1
2 ·
(
log2 3 +

1
2

)
· n − 12 > 1.0424 · n − 12 advice bits to generate an optimal

coloring.

Proof. We prove the claim by constructing a class Ghard of hard input instances.
For every 6-tuple of numbers (u, v, w, x, y, z) ∈ N6, we construct an outerplanar
graph G(u, v, w, x, y, z) with 4 ·(u+v+w+x+y+z)+9 vertices (see Figure 4.1).

Vertices, where log2 3 advice bits are necessary

Vertices, where 1 advice bit is necessary

4u 4v
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4y4z
v(1,a) v(1,b)
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vD1

vD2

vD3
                                             















Figure 4.1: Example of a hard instance for the parameters u = v = w = x =
y = z = 2.

For an easier notation, we use t = u+v+w+x+y+z. At first, we describe
the graph G for a given tuple (u, v, w, x, y, z). The graph G of an input instance
in Ghard contains three paths P1, P2, P3. The path P1 = v(1,1), v(1,2), . . . , v(1,4u),
v(1,4u+1), . . . , v(1,4u+4v) contains 4 · (u + v) vertices, the path P2 = v(2,1), . . . ,
v(2,4w+4x) contains 4 · (w + x) vertices and P3 = v(3,1), . . . , v(3,4y+4z) contains
4 · (y + z) many vertices.

Every path Pi, for i ∈ {1, 2, 3}, is, at the beginning, extended by one vertex
vDi

(see Figure 4.1). The three vertices vD1 , vD2 and vD3 are connected to each
other and form a triangle. Additionally, every vertex in a path Pi is connected
to one of the two vertices v(i,a), v(i,b). The vertex v(1,4u) (resp. v(2,4w), v(3,4y))
is connected to both vertices v(1,a) and v(1,b) (resp. v(2,a) and v(2,b), v(3,a) and
v(3,b)).

Additionally, the vertex v(1,a) (resp. v(2,a), v(3,a)) is also connected to vD1

and vD2 (resp. vD2 , vD3 or vD3 , vD1).
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We can see that such a graph is maximal outerplanar, because the subgraph
GV (P+

i
) which is induced by the vertices V (P+

i ) = V (Pi)∪{v(i,a), v(i,b)} is max-

imal outerplanar on its own. The triangle vD1 , vD2 , vD3 is maximal outerplanar
and the three extended paths GV (P+

i
) are connected to the triangle twice and

planar, hence the whole graph is maximal outerplanar. In Figure 4.1, also an
optimal coloring of G is shown. A maximal outerplanar graph is chordal [63].
Because of this, in every maximal outerplanar graph, the coloring is unique up
to permutations of the colors.

Now, we consider the set of problem instances of graph coloring that are
all based on Gk and they differ in the choice of the numbers u, v, w, x, y, z and
in the order in which the vertices of Gk are revealed. We do not consider all
permutations of the 4k+9 vertices of the graphs in Gk, but only 32t · 2t special
ones.

For counting the numbers of instances which need a different advice string,
we separate the input into three phases. In the first phase, every second ver-
tex v(i,2), v(i,4), . . . of every path Pi is revealed as an isolated vertex. In the
second phase, when all 2t isolated vertices have been revealed, for every pair
(v(i,4·c−2), v(i,4·c)) for c ∈ {1, . . . , u + v} and i ∈ {1, 2, 3}, the vertex v(i,4·c−1)

connected to both is revealed. Overall, there are t such pairs of isolated vertices.
In the last step, the remaining vertices connecting the already revealed subpaths
of length 3, as well as the vertices v(i,a), v(i,b) and vDi

are revealed. Additionally,
between the first vertex v(i,2) of each path and the vertex of the middle triangle
vDi

the vertex v(i,1) is revealed to connect the path and the triangle. In the
example in Figure 4.1, the vertices which are revealed as isolated vertices are
marked by a square, and the vertices revealed in the second step are marked by
a circle.

Now, we count the number of instances which need a different advice string,
such that a deterministic algorithm can be guaranteed to be optimal.

The instance has 2(u + v + w + x + y + z) = 2t isolated vertices. In every
optimal solution, 2(u + v) many vertices (v(1,2), v(1,4), . . . , v(1,4u+4v)) have to
be colored with the same color, 2(w + x) isolated vertices have to be colored
with the same color, but different to the first color, and 2(y + z) many isolated
vertices have to be colored with the third color.

This isolated vertices build t pairs (v(1,2), v(1,4)), (v(1,6), v(1,8)), . . . , and each
pair gets connected by a vertex v(1,3), v(1,5), . . . . In this situation, there are u+v
pairs of vertices in one color and u pairs become connected by vertices which
have to get the same color and v pairs get connected by vertices, which have all
to be colored in the other color. This coloring of the vertices in the middle is
unique and determined by the connection to v(i,a) respectively v(i,b), but these
two vertices are revealed later.

These means that there are, in any possible input instance, 2t many isolated
vertices and each vertex can be located in any of the three paths and thus
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requires exactly one of the three colors. This leads to

32t many possibilities.

The optimal coloring is unique up to permutations of the colors. For the
necessary advice, we have to calculate that 6 optimal colorings can use the
same advice due to the 6 possibilities of renaming colors. Thus, we need 32t · 1

6
different advice strings for an optimal coloring of the 2t isolated vertices.

The 2t isolated vertices are combined to t pairs. There exist t different pairs
of isolated vertices, u + v pairs of vertices with color 1, w + x pairs with color
2 and y + z pairs of color 3.

In the second step, these t pairs get connected by one vertex in the middle
each. For every vertex in the middle of a pair, there are two possible colors to
choose from, but only one color leads to an optimal coloring of G. So there are
u+ v pairs with color one, where, in u pairs, the vertex in the middle has to be
colored with 2 and, in v pairs, the vertex in the middle has to be colored with
3 to obtain an optimal coloring. The respective statements hold for the w + x
pairs colored with 2 and for the y + z pairs colored with 3.

We now count the number of possible variations of the order in which the
vertices in the middle of isolated vertices of color 1 are revealed. There are u+v
many pairs where, in the middle of u pairs, the revealed vertex has to be colored
with color 2 and v revealed vertices which have to be colored with color 3. The
two values u and v can be chosen arbitrarily and thus there exist

u+v∑

i=0

(
u+ v

i

)

= 2u+v

many different continuations for each instance from the first phase. Considering
all groups of pairs, we get

2u+v · 2w+x · 2y+z = 2t

many different continuations for any input string of the first phase, which all
need different advice strings. This leads to

32t · 2t

many different input strings for a graph from the class of graphs with 4t + 9
vertices overall.

For the 32t · 2t many different instances, at least 32t · 2t · 1
6 many different

advice strings are necessary.

Now we show that, for an instance of n = 4t + 9 vertices, at least
1
2 ·
(
log2 3 +

1
2

)
· n − 12 > 1.0424 · n − 12 many advice bits are needed to be

optimal. We have
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log2

(

32t · 2t · 1
6

)

= log2
(
32t
)
+ t+ log2

1

6

= 2t · log2 3 + t− log2 6

= t · (2 log2 3 + 1)− log2 3− 1

=
n− 9

4
· (2 log2 3 + 1)− log2 3− 1

=
n

2
·
(

log2 3 +
1

2

)

− 9

2
log2 3−

9

4
− log2 3− 1

=
n

2
·
(

log2 3 +
1

2

)

−
(
11

2
log2 3 +

13

4

)

>
1

2
· n ·

(

log2 3 +
1

2

)

− 11.9673

>
1

2
· n ·

(

log2 3 +
1

2

)

− 12

> 1.0424 · n− 12. �

Additionally, we want show that log2 3 bits per vertex are necessary for
coloring any 3-colorable graph online optimally. For this, we prove the following
theorem.

Theorem 4.2 For any k ∈ N, there exists a 3-colorable graph G on n = k + 3
vertices and an ordering ≺ such that every deterministic online algorithm for
OColA on (G,≺) needs at least log2 3 · (k − 1)− 1 = log2 3 · (n− 4)− 1 advice
bits to be optimal.

Proof. We prove the claim by constructing a class Ggen of input instances. For
every 3-tuple of numbers (u, v, w) ∈ N3, we define a graph G with u+ v+w+3
vertices (see Figure 4.2).

For an easier notation, we use k = u+ v+w. At first, we describe the graph
G for a given tuple (u, v, w). The graph G of an input instance in Ggen contains
three sets of vertices Vc1, Vc2, Vc3, with |Vc1| = u, |Vc2| = v, and |Vc3| = w
vertices, and three more vertices v1, v2, and v3, which build a triangle. All
vertices of Vc1 are connected to v2 and v3, the vertices of Vc2 are connected to
v1 and v3, and the vertices in Vc3 are connected to v1 and v2 (see Figure 4.2).

For every instance G ∈ Ggen, there is only one optimal coloring, except for
renaming of the colors. For the three vertices v1, v2 and v3, the coloring is
unique, because they build a triangle and the color of all vertices in Vci for
i ∈ {1, 2, 3} is determined by this.

For counting the numbers of instances which need a different advice string,
we separate the input into two phases. In the first phase, every vertex from
Vc1, Vc2, and Vc3 is revealed as an isolated vertex.
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Vertices, where log2 3 bits are necessary

v1 v2

v3
Vc1Vc2

Vc3

Figure 4.2: Example of a hard instance for the tuple (u, v, w) = (5, 6, 7).

In the second phase, the vertex v1 is revealed, connected to all vertices from
Vc2 and Vc3, the vertex v2 is revealed, connected to v1 and all vertices from Vc1

and Vc3, and v3 is revealed, connected to v1, v2 and all vertices from Vc1 and Vc2.
In the example in Figure 4.2, the vertices that are revealed as isolated vertices
are marked by a square.

Now, we count the number of instances which need a different advice string,
such that a deterministic algorithm can be guaranteed to be optimal.

In the first phase, u+ v + w = k many isolated vertices are revealed, which
can be colored in one of the possible colors 1, 2, 3. Every isolated vertex has
three possibilities to belong to one of the three sets Vci. The variables u, v, w
can get arbitrary values with the constraint u+ v + w = k.
This leads to

3k

many possible input strings. Since we have k isolated vertices and there are
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three colors possible for every position.
In the second phase, there are 6 possibilities for revealing the last three

vertices, but here, no advice is needed, because, for an optimal coloring, the
colors of the three vertices v1, v2 and v3 are determined by the edges given
when the vertices are revealed.

On the other hand, we have to calculate that the 6 optimal colorings, coming
up by color renaming, can use the same advice.

Thus, we need 3k · 1
6 different advice strings for an optimal coloring of the k

isolated vertices. Thus, we need

log2

(

3k · 1
6

)

= k · log2 3 + log2

(
1

6

)

= (k − 1) · log2 3− 1

= (n− 4) · log2 3− 1

advice bits. �

4.4 Online Algorithms for the Coloring of

3-Colorable Graphs

Now we are ready to investigate several algorithms for coloring graphs online
with given advice. Let G be a graph with an order ≺ of vertices of G, and let
G≺ be the corresponding directed graph. Depending on the direction of the
edges in G≺, we define the function p : V (G) → {1, 2, 3} for all vertices in G≺,
where p(v) = i describes which position v has in a triangle.

Every vertex vx, that was revealed as isolated, i.e., has outgoing edges only,
is the first vertex of any triangle it belongs to. Such a vertex gets the label one,
that is p(vx) = 1. Every vertex vy that is connected to one or more already
revealed vertices, but not closing a triangle, has p(vy) = 2. (In any triangle,
there is at most one ingoing edge). Finally, every vertex vz which closes one
or more triangles (has two ingoing edges in one triangle) gets p(vz) = 3. That
way, we partition the vertices of a given input instance G≺ into three classes
Vi = {v ∈ V (G) | p(v) = i}, for i ∈ {1, 2, 3}. For an example showing the
different types of vertices, see Figure 4.3.

In every step of the coloring algorithm, when a new vertex v occurs, there
exists a set of colors by which v may be colored. We denote, for every vertex
v, the set of allowed colors by Cv = {1, . . . , i} \ {c(w) | w ∈ Neigh(v)}, with
i ∈ {3, 4} corresponding to a coloring in i colors. Note that, since we use an
ordered set of colors, we may speak of a ’smallest’ color in Cv.

We start with Algorithm 4.1, which colors an arbitrary 3-colorable graph G
online with 3 colors, where G is revealed according to an order ≺. For this, we
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Vertex from V1

Vertex from V2

Vertex from V3

v1 v2

v3 v5

v4

Figure 4.3: Vertices of different types.

need 1.5863 advice bits per vertex on average.
The idea of the first algorithm is quite simple. For every isolated vertex

v ∈ V1, the algorithm asks for the optimal color (one out of three). For every
vertex w ∈ V2 connected to an already colored vertex, the algorithm asks for
the correct color from the the remaining colors Cw (at most one out of two),
and every vertex x ∈ V3 gets colored by the only remaining color. This leads to
the following lemma.

Lemma 4.2 Let G be a graph with χ(G) = 3, and let G≺ be an input instance
for the OColA. Algorithm 4.1 colors G optimally with at most (n− 3) one-out-
of-three or one-out-of-two decisions and at most one additional one-out-of-two
decision. With this, Algorithm 4.1 uses less than 1.5863 · (n − 3) + 1 + 45 =
1.5863 · n+ d advice bits1.

Proof. Let G≺ be an input instance of a graphG with χ(G) = 3 with |V (G)| = n
vertices. In the worst case, G≺ contains n − 2 vertices in V1. Otherwise, G
could not contain a cycle, and it would be a forest and thus two-colorable.
Algorithm 4.1 does not use information for the first vertex, because here the
coloring can be arbitrary.

For the second revealed vertex, even if it is revealed as isolated, only one
bit of advice is necessary for knowing whether it gets the same color as the
first vertex or a different one. For all further vertices, except the last one, a
one-out-of-three decision might be necessary. Summing up, Algorithm 4.1 needs
at most (n − 3) one-out-of-three and one one-out-of two decisions. We know
from Lemma 4.1 that a one-out-of-three decision needs less than 1.5863 bits on
average. This leads to less than 1.5863 · (n − 3) + 1 + 45 = 1.5863 · n + d bits
overall. �

Now, we observe that, since vertices in V1 have outgoing edges only, no two
of them can be connected.

Observation 4.1 Let G≺ be the directed graph resulting from G and the order
≺ of revealing. Then V1 is an independent set in G≺, respectively in G.

1The constant 45 is a result of Lemma 4.1.
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Algorithm 4.1 Optimal online 3-coloring

Input: Online input instance G≺.
1: for every revealed vertex v do
2: if v is the first revealed vertex then
3: Define c(v) := 1
4: else if v is the second revealed vertex then
5: if v is connected to v1 then
6: Define c(v) := 2
7: else
8: Read one bit b from the advice tape
9: if b = 0 then

10: Define c(v) := 1
11: else
12: Define c(v) := 2
13: end if
14: end if
15: Decide of which type v is
16: if v ∈ V1 then
17: Ask for a one-out-of-three decision from the advice tape cv ∈ {1, 2, 3}

and define c(v) := cv (< 1.5863 bits)
18: else if v ∈ V2 then
19: Determine the remaining colors Cv

20: if |Cv| = 1 then
21: define c(v) := cv ∈ Cv

22: else {(|Cv| = 2)}
23: Ask for a one-out-of-two decision from the advice tape cv ∈ Cv and

define c(v) := cv (1 bit)
24: end if
25: else {(v ∈ V3)}
26: Determine the remaining color cv ∈ Cv and define c(v) := cv.
27: end if
28: end if
29: end for
Output: The coloring function c
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This leads us to the following lemma, which holds for general chordal graphs.

Lemma 4.3 Let G be a chordal graph, (G,≺) be an input instance for OColA,
and let G≺ be the corresponding directed graph. For the set A = V1 ∪ V2, the
subgraph G≺

A is a forest.

Proof. If G≺
A is not a forest, it contains at least one cycle. This cycle has to

be extended by edges to triangles because G is chordal. Hence, such a cycle
contains at least three vertices from A which form a triangle. The vertex vl
from this triangle, that is revealed last, has two incoming edges in G≺

A and is
consequently an element of V3 (see Figure 4.4(a),(b)), which is a contradiction
to the assumption. �

(a) A hypothetical cycle in G≺

Vertex from V1

Vertex from V2

Vertex from V3

(b) Types of the vertices when all edges are in-
cluded

Figure 4.4: Example of a cycle in a chordal graph

In the following, we analyze OColA on the class of outerplanar graphs.
Therefore, we need some observations and lemma for this class of graphs. The
following observations holds for input instances for OColA in general.

Lemma 4.4 Let G be an outerplanar graph with χ(G) = 3 on n vertices and let
G≺ be an input instance for OColA. For the set V1 of vertices that are revealed
as isolated, |V1| ≤ 1/2 · n.

Proof. Let G be an outerplanar graph and let G≺ be a corresponding input
instance. This implies that all vertices in G lie on an outer cycle. We know
from Lemma 4.1 that all vertices of type V1 are independent in G. This implies
that, between two vertices v, w ∈ V1, there has to be at least one vertex x ∈ V2

to connect them. This yields |V2| ≥ |V1|−1. Additionally, at least at the end one
vertex y ∈ V3 is necessary to close the cycle, otherwise G would be 2-colorable.
�
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Using Lemma 4.4, we can analyze Algorithm 4.1 with the following result.

Lemma 4.5 Let G be a maximal outerplanar graph with V (G) = n, and let G≺

be a corresponding input instance for the OColA. Then Algorithm 4.1 colors G
optimally, using less than 1.29315 · n+ 45 advice bits.

Proof. Let G be a maximal outerplanar graph with V (G) = n, and let G≺

be a corresponding input instance for the OColA. Let V1, V2, and V3 be the
corresponding sets of vertices. According to Lemma 4.4, |V1| ≤ |V2| + |V3|.
Together with Lemma 4.3, it leads to the following inequalities: |V1|

n ≤ 0.5 and
|V1|
n + |V2|

n < 1.
For the number of advice bits per vertex ABpV for Algorithm 4.1, we have

ABpV ≤ |V1|
n

· 1.5863 + |V2|
n

. (4.1)

We maximize the right-hand side of (4.1) by setting |V1|
n = 0.5. This implies

|V2|
n ≤ 0.5, and thus ABpV ≤ 0.5 · 1.5863 + 0.5 = 1.2931.
For the upper bound on the number of advice bits used by Algorithm 4.1,

this means: Ab ≤ 1.29315 · n+ d where d ≤ 45 is the number of bits needed to
encode the last ≤ 28 one-out-of-three decisions. �

In addition to the results for an optimal coloring, we now give an alter-
native online algorithm, which colors an arbitrary 3-colorable graph G with 4
colors. The idea is to color all vertices of V1, which are revealed as isolated,
with an additional color 4 and to ask for every revealed vertex from V2 and V3

for advice according to an optimal coloring of G using the colors {1, 2, 3} (see
Algorithm 4.2).

Following this strategy, advice is only necessary for vertices of V2 (1.5863
bits) and for vertices of V3 (1 bit). So this strategy is efficient for instances with
a high number of isolated vertices.

This leads us to Algorithm 4.3, which combines the strategies of Algo-
rithm 4.1 and Algorithm 4.2. With it, we can color all 3-colorable graphs with
at most four colors. To know what to do, the algorithm reads at the beginning
the first bit of the advice tape and, depending on this bit, it decides which of
the two strategies it follows.

The following lemma shows that Algorithm 4.3 colors G optimally if, for the
vertices of G≺, |V1|/n · 1.5863 + |V3|/n ≤ 1.15822. Otherwise it colors G with
four colors. In both cases, it needs at most 1.1582196 · n+ d advice bits.

Lemma 4.6 Let G be a graph with V (G) = n and χ(G) = 3, and let G≺ be a
corresponding input instance for the OColA. There exists an advice tape with
which Algorithm 4.3 colors G with four colors, using at most 1.1582196 · n+ 46
bits.
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Algorithm 4.2 Online 4-coloring

Input: Online input instance G≺, with χ(G) = 3.
1: for every revealed vertex v ∈ V (G) do
2: if v ∈ V1 {isolated vertex} then
3: Define c(v) := 4
4: else if v ∈ V2 {connected to at least one already colored vertex} then
5: Define Cv to be the set of possible colors for v in a 4-coloring
6: if |Cv| = 1 {only one color remains} then
7: Define c(v) := cv ∈ C(V )
8: else if |Cv| = 2 {two of the colors {1, 2, 3} are possible} then
9: Ask for a one-of-two decision from the advice tape cv ∈ Cv and define

c(v) := cv {1 bit}
10: else
11: Ask for a one-of-three decision from the advice tape cv ∈ {1, 2, 3}

and define c(v) := cv {< 1.5863 bits}
12: end if
13: else {v ∈ V3}
14: Define Cv to be the set of possible colors for v in a 4-coloring
15: if |Cv| = 1 then
16: Define c(v) := cv ∈ C(V )
17: else {|Cv| = 2}
18: Ask for a one-of-two decision cv ∈ Cv and define c(v) := cv {1 bit}
19: end if
20: end if
21: end for
Output: The coloring function c

Algorithm 4.3 Online graph coloring

Input: Online input instance G≺, with χ(G) = 3.
1: Read the first bit b1 of the advice tape
2: if b1 = 0 then
3: Use Algorithm 4.1
4: else
5: Use Algorithm 4.2
6: end if

Output: The coloring function c
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Proof. There exists a 4-coloring for G, where all vertices revealed as isolated
have the same color, because χ(G) = 3 and the vertices from set V1 are inde-
pendent (see Lemma 4.1). In such a coloring, the algorithm needs a one-out-of-
three decision for every vertex from V2 and a one-out-of-two decision for every
vertex from V3, because it is already connected to at least one already colored
vertex from V2.

Now, we compute the maximum of advice bits used, by combining both
algorithms. Algorithm 4.1 uses ≤ |V1| · 1.5863 + |V2| bits, and Algorithm 4.2
uses ≤ |V2| · 1.5863+ |V3| many bits. This leads to a maximal number of advice

bits per vertex at |V1|
n = 0.26986, |V2|

n = 0.73014 and thus to at most 1.1582196
bits per vertex. This leads to an upper bound of 1.1582196 · n+ d bits overall,
for every 3-colorable graph of n vertices. �

For giving the idea of the next algorithm, we analyze, for a chordal graph
G, the graph G′ which is obtained from G by edge contraction.

Lemma 4.7 Let G be a chordal graph with χ(G) = c. For every graph G′, that
is obtained by contracting an edge of G, G′ is chordal and χ(G′) ≤ c.

Proof. Assume that G is a chordal graph with χ(G) = c and G′ is obtained
by contracting the edge {a, b} in G. Assume that G′ contains a vertex-induced
cycle of length > 3 containing x, where x is the vertex contracted from edge
{a, b}. Let be x, v, w, · · · , z, x this cycle, then either a, v, w, · · · , z, a is also a
cycle of length > 3 in G or a, v, w, · · · , z, b, a is a cycle of length > 4 in G. Both
alternatives are a contradiction to our assumption. It follows that G′ is chordal
as well.

Now we show that χ(G′) ≤ χ(G). Assume χ(G′) > χ(G). We have that
x is in a clique C = {x, vi, v2, · · · , vc} of size > χ(G). But the clique size of
{a, vi, v2, · · · , vc} and {b, vi, v2, · · · , vc} is at most χ(G). Thus there exists i, j
with {a, vi} 6∈ E(G) and {b, vj} 6∈ E(G). If i = j, then C would not be a clique
of size > χ(G). Thus a, vi, vj , b is a vertex-induced cycle of length 4 in G, which
is a contradiction. �

Now, we present an algorithm for coloring 3-colorable chordal graphs with
4 colors. For this, we separate the vertices V (G) into two sets A := V1 ∪ V2 and
B := V3. We know that, for every chordal graph G, the graph GA restricted to
the vertices in A is a forest (see Lemma 4.3).

The idea is to color each tree of GA by a pair of colors (i, 4), for some
i ∈ {1, 2, 3}. The remaining vertices in V3 will be colored using only colors
{1, 2, 3}. We will show later that such a coloring always exists.

Before we can describe Algorithm 4.4, we have to move a few vertices inside
A. It might happen that a vertex v from V2 is revealed as the first one of a tree
in GA. This can occur when all its predecessors in G≺ are in V3 (see v7, v8 in
Figure 4.5). However, in this case, we note that v cannot have a neighbor in
V1. Such a neighbor w would be revealed after v, and consequently the edge
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Algorithm 4.4 Online chordal graph coloring

Input: Online input instance G≺, with χ(G) = 3.
1: for every revealed vertex v ∈ V (G) do
2: if x ∈ V ′

1 {x has only predecessors in V3} then
3: Ask from the advice tape for a one-out-of-three decision, by which pair

px ∈ {(1, 4), (2, 4), (3, 4)} the tree containg x gets colored, and for a one-out-
of-two decision, by which color cx ∈ px this vertex gets colored, and define
c(x) := cx (2.5863 bits).

4: else if y ∈ V ′
2 {connected to at least one revealed vertex x ∈ V ′

1} then
5: Identify the tree x belongs to and the pair p(x) for this tree from

Pred(x ).
6: Define Cy ∈ px \ c(x), and define py := px.
7: else {z ∈ V3}
8: Define Cz {Set of possible colors for z in a 4-coloring without color 4.}
9: if |Cz = 2| then

10: Ask for a one-of-two decision cz ∈ Cz and define c(z) := cz {1 bit}
11: else {|Cz = 1}
12: Define c(z) := cz ∈ Cz {0 bit}
13: end if
14: end if
15: end for
Output: The coloring function c

orientation would be (v, w), an ingoing edge for w, thus w 6∈ V1. Therefore, we
can define

V21 = {v ∈ V2 | Pred(v) ⊆ V3},
and move V21 to V1, more precisely V ′

1 = V1 ∪ V21 and V ′
2 = V2 \ V21, while still

preserving independence of V ′
1 .

Looking again at Algorithm 4.2, we observe that all it needs from V1 is that
it is an independent set since all vertices from V1, and only those, are colored
by color 4. Consequently, the algorithm works the same when using V ′

1 instead
of V1. Let us call this variant Algorithm 4.2′.2

We are now ready to describe Algorithm 4.4. Here, V ′
1 contains exactly those

vertices from A which are revealed without a predecessor from A, while, for all
vertices in V ′

2 , such a predecessor exists. Consequently, Algorithm 4.4 asks, for
every vertex x ∈ V1, for two pieces of advice. First, it wants to know which
pair of colors (i, 4) will be used to color the tree x belongs to. Secondly, it asks
which of the two colors x gets itself.

There are three possible pairs of colors. This leads to a combination of a
one-out-of-three and a one-out-of-two decision. Thus, at most 2.5863 bits are

2 Algorithm 4.2′ results from Algorithm 4.2 by substituting V ′

1 and V ′

2 for V1 and V2,
respectively.
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Figure 4.5: Vertices of type V21.

needed for every vertex from V1.
With this information, obviously the algorithm is able to color all vertices

x ∈ V ′
1 . Also, all vertices from V ′

2 can be colored because, at the moment a
vertex v from V ′

2 is revealed, it has a predecessor w in A, and, for w, the color
pair of the tree both belong to is known as well as the color w gets. Hence, v
is colored by the other color from that pair without further advice. Inside the
trees of GA, such a coloring is clearly possible, but we still have to show later
that this way a correct coloring of the whole graph is constructed.

Finally, for every vertex z ∈ V3, which closes one or more triangles, the
algorithm asks for a one-out-of-two decision, because such vertices have to be
connected to at least two already colored and connected vertices (x, y), with
different colors and so, in the worst case, there remain two possible colors for z
(|Cz | ≤ 2). The new algorithm needs at most |V ′

1 | · 2.5863 + |V3|+ const many
bits.

To prove that such a coloring exists for every 3-colorable chordal graph, we
give a further algorithm, which describes how an oracle can find the related
coloring and with this the right advice tape.

Again, we use A = V1∪V2 and B = V3. We build the graph G′ by subsuming
every connected component of GA in one vertex. When G is a 3-colorable
chordal graph, the graph G′ is 3-colorable as well (see Lemma 4.7). Thus, we
use a 3-coloring c′ of G′.

The 4-coloring c for G can be derived from c′ in the following way. For
a vertex v′ ∈ V (G′), we distinguish two cases. If v′ was constructed by an
edge contraction, we color the contracted tree in G with the colors {c′(v′), 4},
and if v′ corresponds directly to a vertex v ∈ V (G) we define c(v) := c(v′).
With this procedure, we get an coloring which satisfies the needed properties
for Algorithm 4.4. With the corresponding advice tape, Algorithm 4.4 needs
|V1|
n ·2.5863+ |V3|

n bits of advice per vertex. This leads us to the following lemma.

Lemma 4.8 Let G = (V,E) be a 3-colorable chordal graph and let G≺ be the
corresponding input instance for OColA. There exists a coloring c : V (G) →
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{1, 2, 3, 4} and with this an advice tape such that Algorithm 4.4 can color G≺

with the coloring function c.

For proving the claim, we give the algorithm to find such a coloring and
prove that, for every 3-colorable chordal graph, such a coloring will be found.

Proof. Let G≺ be the given input instance. From the order of the vertices,
we can build three sets of vertices V1, V2 and V3. We build from this two sets
A = V1∪V2 and B = V3. We know that the graphGA is a forest (see Lemma 4.3).
Each tree of GA is two-colorable. In the following, we will color each tree of GA

with two colors, where one of the two colors will be 4 for all trees. To find the
corresponding color for each tree, we have to determine a coloring, which fits
with a coloring for the vertices in B.

For finding such a coloring, we build the graph G′ from G by contraction of
edges between vertices of A. This leads us to a surjective function m : V (G) →
V (G′). If Ti ⊂ A is a tree in GA, then for all tj , tk ∈ V (Ti), j 6= k, we have
m(tj) = m(tk).

We know that G′ is 3-colorable and chordal as well as G (see Lemma 4.7),
so we can find an optimal coloring c′ for G′ with three colors, because G is a
3-colorable chordal graph.

We extend the coloring function c′ to c for G by coloring all vertices v ∈
B ⊂ V (G) which are also vertices in G′ with c(v) := c′(v). For all vertices
wi ∈ A ⊂ V (G) which are represented by one vertex x ∈ V (G′), with m(wi) = x
we color the corresponding tree alternatingly in (c′(x), 4).

It is obvious that the coloring c needs at most 4 colors because c′ was a
coloring with 3 colors and the color 4 is used additionally. The new coloring
is proper for G because no two vertices with color 4 are connected to each
other, and each tree Ti in GA is colored properly with the two colors (c′(x), 4).
If the vertex x represents a tree Tx in GA, it follows that all vertices in G
which are connected to the tree Tx represented by x are connected to x in G′.
If c′ is a proper coloring for G′, it follows that c′(y) 6= c′(x), for all vertices
y ∈ NeighG′ (x ). If now the tree which is represented by x in G′ is colored only
with c(x) and 4, it follows that c is a proper coloring. �

Putting everything together, we can combine the previous algorithms into a
final one, Algorithm 4.5. This algorithm uses the first two advice bits to decide
which of the Algorithms 4.1, 4.2’, 4.4 it shall use. Consequently, it always makes
use of the best possible advice-per-vertex ratio among those three. This results
in the following analysis.

Theorem 4.3 Let G = (V,E) be a 3-colorable chordal graph with |V (G)| = n
and let G≺ be the corresponding input instance for OColA. Algorithm 4.5 colors
G≺ with 4 colors using at most 0, 9865 · n+ 47 advice bits.

Proof. We have seen before that there exists an advice tape for any of the three
Algorithms 4.1, 4.2’, 4.4. Now, we show that, in any case, there is one of the
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Algorithm 4.5 Online graph coloring

Input: Online input instance G≺, with χ(G) = 3.
1: Read the first two bits b1, b2 of the advice tape
2: if b1 = 1 then
3: Use Algorithm 4.1
4: else if b1 = 0, b2 = 1 then
5: Use Algorithm 4.2
6: else
7: Use Algorithm 4.4
8: end if

Output: The coloring function c

three strategies that colors G using 0, 9865 · n + 47 advice bits. Let z1 = |V1|
n ,

z′1 =
|V ′

1 |
n , z2 = |V2|

n , z′2 =
|V ′

2 |
n and z3 = |V3|

n .
For the needed advice bits A1 for Algorithm 4.1, A2 for Algorithm 4.2’, and

A4 for Algorithm 4.4, we have (with z1 + z2 = z′1 + z′2, z1 ≤ z′1)

A1 ≤ 1.5863 · z1 + z2 ≤ 1.5863 · z′1 + z′2
A2 ≤ 1.5863 · z′2 + z3

A4 ≤ 2.5863 · z′1 + z3

Additionally, z′1+z′2+z3 = 1. The corresponding convex space has its maximum
at z′1 = 0.30667, z′2 = 0.5, and z3 = 0.19333, and there it needs Ag = 0.98647 ·n
bits.

The additive constant 47 consists of the two bits read at the beginning and
the usual 45 bits that can remain in each of the sub-algorithms from the block
of bits read for one-out-of-three decisions. �

4.5 Discussion

We introduced first research results for online coloring algorithms with advice
for 3-colorable graphs. For planar, chordal and general 3-colorable graphs we
presented nearly matching lower and upper bounds on the number of advice
bits for the 3-coloring. We also gave 4-coloring online algorithms with advice
for those graph classes (see Table 4.1). It remains to extend the lower bounds
to the 4-coloring. The extension to other graph classes, k-coloring, and general
coloring is also very interesting.



Chapter 5

Bounds on the Advice

Complexity of a Generic

Online Problem

5.1 Introduction

The concept of advice complexity, as we have seen it in Chapter 4, enables us to
perform a much more fine-grained analysis of the hardness of online problems
than using the classical competitive analysis. We are especially interested in
lower bounds on the advice complexity. Such lower bounds do not only tell
us something about the information content [53] of online problems, but they
also carry over to a randomized setting where they imply lower bounds on
the number of random decisions needed to compute a good solution [61]. But,
similar to most other computing models, lower bounds on the advice complexity
are hard to prove. Thus, it is desirable to have some generic proof methods
for establishing lower bounds. This and the next chapter, we take a first step
towards this goal by using a generic online problem to show how to transfer lower
bounds on its advice complexity to lower bounds for other online problems.

In this chapter, we study the string guessing problem with respect to its
advice complexity (Section 5.2). This problem is very generic with respect to
proving lower bounds on the advice complexity. Here, a string of length n over
an alphabet of size q has to be guessed. More specifically, we define two versions
of the problem where, in the first case, the algorithm gets immediate feedback
which decisions would have been correct up to the current time step and, in
the second case, this feedback is not supplied. This problem is similar to the
generalized matching pennies problem that was introduced in [31]. But the string
guessing problem uses a more general cost function that enables reductions from
different online problems to it.

73
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First, we prove a lower bound on the advice necessary to achieve some specific
number of correct guesses for both versions. Thus, we show that the extra
information of knowing the history does not help a lot for this class of problems.
Additionally, we analyze the size of the advice depending on both n and q.

Employing this result, we use the string guessing problem as a technique
to prove lower bounds for other well-studied online problems in Chapter 6. It
seems to be a promising approach to use string guessing this way to show the
hardness of further online problems.

5.2 The String Guessing Problem

In many online problems, the question arises whether knowing the history, i. e.,
the parts of an optimal solution that correspond to the input known at a specific
time step, has an effect on the additional information necessary to achieve a
certain competitive ratio. We compare these two scenarios on a very generic
online problem, called the string guessing problem. In the first variant, the
algorithm has to guess a character from some fixed alphabet, then, in the next
step, it is told what would have been the correct answer and is asked for the
next character. In the second variant, the algorithm also has to guess character
by character, but it gets no feedback about whether its answer was correct or
not, until the very end of the request sequence. In both cases, the length n
of the string is given as the first request and the algorithm then has to guess
n characters step by step.

Let us begin by defining the two variants of the string guessing problem
formally.

Definition 5.1 (String Guessing with Known History) We define the
string guessing problem with known history over an alphabet Σ of size
q ≥ 2 (q-SGKH) is the following online problem. The input I = (n, d1, d2,
. . . , dn) consists of a natural number n and the characters d1, d2, . . . , dn, di ∈
Σ, that are revealed one by one. The online algorithm A computes the out-
put sequence A(I) = y1y2 . . . yn, where yi = f(n, d1, . . . , di−1) ∈ Σ, for some
computable function f . The cost of a solution A(I) is the number of wrongly
guessed characters, i. e., the Hamming distance Ham(d, A(I)) between A(I) and
d = d1d2 . . . dn.

Definition 5.2 (String Guessing with Unknown History) We define the
string guessing problem with unknown history over an alphabet Σ
of size q ≥ 2 (q-SGUH) as the following online problem. The input I =
(n, ?2, . . . , ?nd), for d = d1, . . . , dn ∈ Σn, consists of the input size n in the first
request and n − 1 subsequent requests “?” carrying no extra information. In
each of the first n time steps, the online algorithm A is required to output one
character from Σ, forming the output sequence A(I) = y1y2 . . . yn. In the last
request, the string d is revealed. The algorithm is not required to respond with
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any output in this time step. The cost of a solution A(I) is again the Hamming
distance between A(I) and d.

For simplicity, we sometimes speak about the input string d = d1d2 . . . dn
when we mean the input sequence I = (n, d1, d2, . . . , dn) or I = (n, ?2, ?3, . . . ,
?n, d) with n = |d|. Also, we write A(d) instead of A(I).

Since the cost of an optimal solution for any string guessing instance is
always 0, it is not meaningful to consider the competitive ratio as a measure for
these problems. We will therefore restrict our analysis to the number of errors
produced by an algorithm. Our goal is to minimize this number of errors.

5.2.1 Some Special Cases

First, we give some results for algorithms without advice, for the necessary
advice to be optimal, and for the case where a constant-size advice is given. It is
easy to see that, for every online algorithm without advice, there exists an input
string of length n such that the algorithm produces n mistakes. This holds for
any alphabet of arbitrary size q ≥ 2. To see this, consider an adversary Adv that,
in each step, produces an input character αi differing from the deterministic
output yi = f(n, α1, . . . , αi−1) of the algorithm. Obviously, no deterministic
online algorithm gains anything by knowing the history as its decision, in any
case, is purely deterministic also if it is based on the correct answers of previous
time steps.

We now consider online algorithms with advice as introduced in Defini-
tion 1.17. Let us first look at the number of advice bits sufficient to guess
all characters correctly. We can interpret each character as a number and the
number obtained by concatenating all correct characters of the n requests as a
q-ary number with n digits. An upper bound of ⌈n log2 q⌉ can easily be achieved
by writing this number of all correct characters in a binary encoding onto the
advice tape. We now show that this bound is tight for both problems.

Theorem 5.1 Every online algorithm A with advice for q-SGKH needs to read
at least ⌈n log2 q⌉ advice bits to be optimal on any input of length n.

Proof. Assume A reads m < ⌈n log2 q⌉ advice bits. There are qn possible dif-
ferent input strings, but only 2m ≤ 2⌈n log2 q⌉−1 < 2n log2 q = qn different
advices. Thus, at least two different input strings I1 = (n, d1, . . . , dn) and
I2 = (n, d′1, . . . , d

′
n) of length n get the same advice. There is one position in

the string where d = d1d2 . . . dn and d′ = d′1d
′
2 . . . d

′
n differ for the first time.

The algorithm A makes a deterministic decision in the corresponding time step
that is optimal for at most one of the two inputs and Adv can always choose the
other one. �

Next, we consider the version of the problem where all decisions have to
be made without getting feedback after every time step. Obviously, all lower
bounds for q-SGKH directly carry over to q-SGUH.
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Theorem 5.2 Every online algorithm with advice for q-SGUH needs to read
at least ⌈n log2 q⌉ advice bits to be optimal on any input of length n.

Together with our observation preceding Theorem 5.1, the above bounds are
tight. Now we analyze the situation that we are given an advice of constant
size. Here, we get the following upper bound for q-SGUH which immediately
carries over to q-SGKH.

Theorem 5.3 There exists an online algorithm for q-SGUH that guesses at
least ⌈n/q⌉ positions correctly on an input string of size n using ⌈log2 q⌉ advice
bits.

Proof. In every input string of length n over an alphabet of size q, there is at
least one character that occurs at least ⌈n/q⌉ times. With ⌈log2 q⌉ bits, this
character can be selected, and so an algorithm that outputs this character in
every step guesses at least ⌈n/q⌉ positions correctly. �

In the remainder of this section, we will estimate the number of advice bits
necessary and sufficient to reach a specific cost. We start with lower bounds on
the advice complexity.

5.2.2 Lower Bounds

As we have seen, on the one hand, both problems are arbitrary bad when no
advice is given. On the other hand, for both problems, ⌈n log2 q⌉ advice bits are
necessary and sufficient to be optimal. Indeed, as long as we consider purely
deterministic strategies, it is easy to see that knowing the history does not help
at all. As stated above, the decisions of the online algorithm are deterministic
and it does not matter on what they actually depend. In any case, the adversary
knows these decisions in advance. However, as soon as an oracle is involved,
the situation changes. In this case, it might be possible that the oracle’s advice
depends on the history and that this fact is used to compress the advice string
in some way.

First, we investigate a lower bound on the number of advice bits necessary
to guarantee at most a specific number of wrong answers for q-SGUH. Consider
an online algorithm A using b advice bits. This can be seen as a collection of
2b different deterministic algorithms. Since all possible inputs look the same on
the first n requests, the behavior of these algorithms can only depend on the
advice.

For each of the qn possible inputs, the oracle can choose between 2b different
algorithms, each of which produces a fixed output string. The oracle has to
construct a set of 2b such strings, which we call center strings, in such a way
that the maximum distance of any input string to the nearest of these center
strings is minimized. This is exactly the task of constructing a so-called covering
code. A covering code Kq(n, r) for an alphabet Σ of size q of the strings of
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length n with radius r is defined as a set of code words (elements of Σn) with
the property that every string in Σn has a distance smaller than or equal to r
to at least one code word in Kq(n, r). For an overview of covering codes, we
recommend [36]. Thus, the minimum size of a covering code Kq(n, r) gives us
the number of different advice strings we need to make sure that the worst-case
error over all inputs for q-SGUH is at most r.

To get a simple lower bound on the size of a covering code Kq(n, r), we
consider the Hamming balls of radius r around the center strings. A Hamming
ball of radius r around a string s in Σn consists of all strings t with Ham(s, t) ≤
r. Due to the symmetry of the Hamming distance, the size of a Hamming
ball of radius r around some string s does not depend on s. We denote it by
Volq(n, r). Assume that the Hamming balls of radius r around all center strings
were pairwise disjoint. Then the number b of advice bits to make sure that no
error greater than r occurs for any input string has to satisfy the condition

2b ·Volq(n, r) ≥ qn. (5.1)

The volume of a Hamming ball is given by

Volq(n, r) =

r∑

i=0

(
n

i

)

(q − 1)i (5.2)

and can be estimated as follows.

Lemma 5.1 (Guruswami et al. [49]) Let p ∈ R, 0 < p ≤ 1 − 1/q. For
sufficiently large n, we obtain Volq(n, pn) ≤ qHq(p)n, where Hq(p) = p logq(q −
1)− p logq p− (1− p) logq(1− p) is the q-ary entropy function.

Proof. The following proof is taken from [49].

1 = (p+ (1− p))n

=

n∑

i=0

(
n

i

)

pi(1− p)n−i

≥
pn
∑

i=0

(
n

i

)

pi(1− p)n−i

=

pn
∑

i=0

(
n

i

)

(q − 1)i
(

p

q − 1

)i

(1− p)n−i

=

pn
∑
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n
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)

(q − 1)i(1 − p)n
(

p

(q − 1)(1− p)

)i

≥
pn
∑

i=0

(
n

i

)

(q − 1)i(1 − p)n
(
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(q − 1)(1− p)

)pn
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=

pn
∑

i=0

(
n

i

)

(q − 1)i

︸ ︷︷ ︸

Volq(0,pn)

(
p

q − 1

)pn

(1− p)(1−p)n.

Together with q−Hq(P )n =
(

p
q−1

)

(1− p)(1−p)n we get

1 ≥ Volq · q−Hq(P )n.

The calculation immediately yields

Volq(n, pn) ≤ qHq(p)n =

(
q − 1

p

)pn (
1

1− p

)(1−p)n

, (5.3)

which concludes the proof. �

This observation leads to the following lower bound for q-SGUH.

Theorem 5.4 Consider an input string of length n for q-SGUH, for some
n ∈ N. The minimum number of advice bits that can guarantee some online
algorithm to be correct in more than αn characters, for 1/q ≤ α < 1, is
(

1 + (1− α) logq

(
1− α

q − 1

)

+ α logq α

)

n log2 q = (1−Hq(1 − α))n log2 q.

Proof. Guessing at least αn characters correctly means there can be at most
(1− α)n errors. We know from (5.1) and (5.2) that, in order to guarantee that
the algorithm makes less than r errors, we need at least b advice bits such that

qn

2b
≤

r∑

i=0

(
n

i

)

(q − 1)i.

To give a lower bound on b, we define α′ = 1 − α, substitute r by α′n and,
together with (5.3), we get

qn

2b
≤

α′n∑

i=0

(
n

i

)

(q − 1)i ≤
(
q − 1

α′

)α′n(
1

1− α′

)(1−α′)n

.

After taking the logarithm with base q on both sides, we get

n− logq 2
b ≤ α′n logq

(
(q − 1)n

α′n

)

+ (n− α′n) logq

(
n

n− α′n

)

⇐⇒ −b logq 2 ≤ −α′n logq(α
′n) + α′n logq(q − 1) + α′n logq(n− α′n)

− n− n logq(n− α′n) + n logq n

⇐⇒ b logq 2 ≥ α′n(logq(α
′n)− logq(q − 1)− logq(n− α′n))

+ n(1 + logq(n− α′n)− logq n)

⇐⇒ b ≥
(
1 + α′ logq(α

′n) + (1 − α′) logq(n− α′n)− logq n

−α′ logq(q − 1)
)
n log2 q.
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We now resubstitute α′ and finally obtain

b ≥ (1 + (1− α) logq((1− α)n) + (1− (1− α)) logq(n− (1− α)n)− logq n

− (1− α) logq(q − 1))n log2 q

≥ (1 + (1− α) logq(1− α) + (1 − α) logq n+ α logq(αn) − logq n

− (1− α) logq(q − 1))n log2 q

≥
(
1 + (1− α) logq(1− α) + α logq α− (1− α) logq(q − 1)

)
n log2 q

≥
(

1 + (1− α) logq

(
1− α

q − 1

)

+ α logq α

)

n log2 q

= (1−Hq(1− α))n log2 q.

Thus, we have established a lower bound on b to guarantee at least αn correct
characters or, in other words, a maximal error of (1− α)n. �

The above argument heavily relies on the fact that, in case of q-SGUH,
the output of a deterministic algorithm is unambiguously determined by the
given advice. In the case of q-SGKH, this is no longer true. A deterministic
algorithm might base its output on the history and thus might output different
strings while reading the same advice. In the following we show that, despite this
complication, the same lower bound as in Theorem 5.4 also holds for q-SGKH.

For the analysis, we use the q-ary tree Tn of depth n as a representation of
the set Σn of all input strings of length n over the alphabet Σ (see Figure 5.1).
For 0 ≤ i ≤ qn− 1, the leaf v(0,i) represents the ith string in lexicographic order

in Σn and every inner vertex v(h,i) represents all 2
h strings of the leaves of the

subtree rooted in v(h,i).
Let A be an online algorithm for q-SGKH that uses at most b advice bits

for any input instance of length n. Due to the pigeonhole principle, at least
one advice string is used for at least ⌈qn/2b⌉ different input instances. For a
given advice string s of length b, we now take a closer look at the set Is of
input strings for which A gets the advice string s. A is not able to distinguish
between any two strings in Is at the beginning of the computation. However,
this situation can change during the computation since A gets the additional
information of what would have been the correct output in every time step.

For the analysis, we investigate how large Is can maximally be such that
A can guarantee a maximal error of r. We can view every computation of an
online algorithm as a path in Tn from the root down to a leaf. In every time
step, the algorithm decides which subtree to enter. In the following step, it is
revealed which direction would have been correct. If instances in more than
one subtree of some vertex are represented by the given advice, the algorithm
cannot know which subtree is correct.

For any vertex v in Tn, let F (v) denote the maximal number of errors the
adversary Adv can enforce in the partial input string inside the subtree rooted
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Figure 5.1: Binary tree Tn representing all input instances of size n for q = 2.

at v, in addition to the errors already made on the way from the root to v.
Moreover, let Φ: N × N → N be a function such that Φ(h, r) measures how
many strings in Is can at most be represented by a vertex at depth h such that
the enforceable error is at most r. We are interested in the value Φ(n, r) which
gives us the desired lower bound. The function Φ(h, r) can be computed as
follows.

Lemma 5.2 For 0 ≤ r ≤ h ≤ n, we have Φ(h, r) =
∑r

i=0

(
h
i

)
(q − 1)i =

Volq(h, r).

From Lemma 5.2 for h = n together with Theorem 5.4, we immediately get
the same lower bound on the advice complexity for q-SGKH.

Proof. The function F can be computed recursively as follows. Let v ∈ V be a
vertex in Tn such that the subtree rooted at v contains at least one vertex from
Is and max{F (u) | u is a child of v} = m. Then,

F (v) =

{

m+ 1 if there is another child w of v with F (w) = m,

m else.
(5.4)

To prove (5.4), we distinguish two cases. In the first case, there are two or more
subtrees with the same maximal value of F . In the second case, there exists
exactly one subtree with maximal error.

Case 1. There are at least two children u and w of v with F (u) = F (w) = m.
Thus, it does not matter which subtree the algorithm chooses, because
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Adv will choose another subtree with maximal error and thus enforce one
error in the current time step as well as the m errors in the corresponding
subtree.

Case 2. There is exactly one child u of v with F (u) = m and, for all other
children w of v, F (w) < m. The algorithm should choose the subtree
rooted at u and accept an error of m. Otherwise, Adv would choose the
subtree rooted at u and thus enforce one error in the current time step
and overall m+ 1 errors in the subtree rooted in v.

We now show that the function Φ(h, r) satisfies the recurrence relation

Φ(h, 0) = 1, (5.5)

Φ(h, h) = qh, and (5.6)

Φ(h, r) = Φ(h− 1, r) + (q − 1) · Φ(h− 1, r − 1), for 0 < r < h. (5.7)

To prove (5.5), assume there are two input strings represented by two leaves
in Th. These two leaves have a lowest common ancestor v(g,j), with 1 ≤ g ≤ h.
When the algorithm comes to v(g,j), it has to choose one of the q successors. It
does not matter which subtree the deterministic algorithm takes, Adv can always
choose another one, i. e., another possible input string, and hence enforce one
error. Thus, Φ(h, 0) = 1.

It is obvious that, if there are h errors allowed, it does not matter what the
algorithm does at depth h because, in the worst case, the algorithm makes one
error per step and comes to at most h errors. In other words, a subtree at depth
h with h allowed mistakes can represent qh strings, i. e., Φ(h, h) = qh, proving
(5.6).

Additionally, we know from (5.4) that, for a vertex v at depth h with a
maximally enforceable error of r, the maximal error in all q subtrees of v cannot
be larger than r. Furthermore, we know that no two subtrees can have an error
of r. To maximize the number of errors in the subtree rooted at v, one child is
assigned an error of r and all others an error of r − 1. The maximal number of
instances represented by a tree of depth h when r mistakes are allowed is thus
Φ(h, r) = Φ(h− 1, r) + (q − 1) · Φ(h− 1, r − 1), which proves (5.7).

Using this recurrence, we are now able to prove the claim of this lemma
by induction on h. We already know that Φ(1, 0) = 1 =

∑0
i=0

(
1
i

)
(q − 1)i and

Φ(1, 1) = q =
∑1

i=0

(
1
i

)
(q − 1)i. Now we prove the statement for h > 1 and

0 ≤ r ≤ h.
As induction hypothesis, assume that

Φ(h, r) =
r∑

i=0

(
h

i

)

(q − 1)i. (5.8)

Note that Φ(h + 1, r) = Φ(h, r) + (q − 1) · Φ(h, r − 1) holds due to (5.7) and
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recall that
(
n
k

)
+
(

n
k−1

)
=
(
n+1
k

)
. We get

Φ(h+ 1, r) = Φ(h, r) + (q − 1) · Φ(h, r − 1)

=

r∑

i=0

(
h

i

)

(q − 1)i + (q − 1)

r−1∑

i=0

(
h

i

)

(q − 1)i (by (5.8))

=

(
h

0

)

(q − 1)0 +

r∑

i=1

(
h

i

)

(q − 1)i +

r−1∑

i=0

(
h

i

)

(q − 1)i+1

=

(
h

0

)

(q − 1)0 +

r∑

i=1

(
h

i

)

(q − 1)i +

r∑

i=1

(
h

i− 1

)

(q − 1)i

=

(
h

0

)

(q − 1)0 +
r∑

i=1

((
h

i

)

+

(
h

i− 1

))

(q − 1)i

=

(
h+ 1

0

)

(q − 1)0 +

r∑

i=1

(
h+ 1

i

)

(q − 1)i

=
r∑

i=0

(
h+ 1

i

)

(q − 1)i.

It follows that

Φ(h+ 1, h+ 1) =

h+1∑

i=0

(
h+ 1

i

)

(q − 1)i = qh+1,

where the last equation holds due to the binomial theorem. With this, the claim
follows for all values of Φ(h+ 1, i), for 0 ≤ i ≤ h+ 1. �

Therefore, Lemma 5.2 gives us the same lower bound for q-SGKH as we
have already shown for q-SGUH.

Theorem 5.5 Consider an input string of length n for q-SGKH, for some
n ∈ N. The minimum number of advice bits for any online algorithm that can
guarantee to be correct in more than αncharacters, for 1/q ≤ α < 1, is
(

1 + (1 − α) logq

(
1− α

q − 1

)

+ α logq α

)

n log2 q = (1−Hq(1− α))n log2 q. �

Let us give the following useful corollary for the bit string guessing problem
(i. e., for q = 2) which directly follows from Theorem 5.4.

Corollary 5.1 Consider as input a bit string of length n for 2-SGKH. Every
deterministic algorithm that can guarantee to be correct in more than αn bits,
for 1/2 ≤ α < 1, needs to read at least

(1 + (1− α) log2(1− α) + α log2α)n

many advice bits. �
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5.2.3 Upper Bounds

To give an upper bound on the advice complexity of q-SGUH on strings of
length n with maximal error r, we analyze the minimal size of a covering code
of length n with radius r.

Lemma 5.3 (Moser and Scheder [66]) Let n ∈ N>0, q ∈ N>1, r ∈ N. On
any alphabet Σ of size q, there exists a covering code of length n of covering
radius r of size at most

⌈
n · ln q · qn
Volq(n, r)

⌉

=

⌈

n · ln q · qn
∑r

i=0

(
n
i

)
(q − 1)i

⌉

.

Proof. For completeness, we repeat the probabilistic proof here. Let m := ⌈(n ·
ln q ·qn)/(∑r

i=0

(
n
i

)
(q−1)i)⌉. We show that a set ofm points chosen uniformly at

random and independently from {1, . . . , q}n builds a covering code C of radius
at most r with a probability greater than zero. Let s be a fixed string from
{1, . . . , q}n. The event s ∈ Ball (t, r) that the string s belongs to a Hamming
ball Ball (t, r) of radius r around a randomly chosen element t ∈ {1, . . . , q}n
has a probability of

Volq(n,r)
qn . The probability of the complementary event is

therefore

P (s /∈
⋃

t∈C

Ball (t, r)) =

(

1− Volq(n, r)

qn

)|C|
< e−|C|·Volq(n,r)/q

n

.

For |C| =
⌈

n·ln q·qn
Volq(n,r)

⌉

, this yields

P (s /∈
⋃

t∈C

Ball (t, r)) < e−|C|·Volq(n,r)/q
n ≤ e−n ln q = q−n.

By the union bound, the probability that there is any u ∈ {1, . . . , q}n not covered
by the covering code |C| with radius r is at most qn times P (s /∈ ⋃

t∈C

Ball (t, r))

and thus smaller than 1. Hence, there is a positive probability that C is a
covering code with radius r. �

To estimate the upper bound on the advice to guarantee a certain number
of correct characters, we need a lower bound on the volume of the Hamming
ball of a given radius r.

Lemma 5.4 Let p ∈ R, 0 ≤ p ≤ 1 − 1/q, such that pn ∈ N. For sufficiently

large n, Volq(n, pn) ≥ qHq(p)·n− 1
2 logq(2n), where

Hq(p) = p logq(q − 1)− p logq p− (1− p) logq(1− p)

is the q-ary entropy function.
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Proof. We know from [65] that

(
n

pn

)

≥ 1
√

8np(1− p)
· 2H2(p)·n.

It follows that

Volq(n, pn) =

pn
∑

i=0

(
n

i

)

(q − 1)i

≥
(
n

pn

)

· (q − 1)pn ≥ 1
√

8np(1− p)
· 2H2(p)·n · (q − 1)pn.

Together with the simple fact that 2H2(p)·n · (q − 1)pn = qHq(p)·n, we get

Volq(n, pn) ≥
qHq(p)·n

√

8np(1− p)
≥ qHq(p)·n

√
2n

= qHq(p)·n− 1
2 logq(2n). �

Now we are ready to prove an upper bound on the number of advice bits
sufficient to guarantee αn correctly guessed characters.

Theorem 5.6 Consider all inputs of length n for q-SGUH, for some n ∈ N.
There is an online algorithm that is correct in more than αn characters for each
input of q-SGUH of length n, for 1/q ≤ α < 1, and needs at most

⌈(1−Hq(1 − α))n log2 q + (3 log2 n)/2 + log2(ln q) + 1/2⌉
many advice bits.

Proof. Guessing at least αn characters correctly means there can be at most
α′n errors for α′ = 1 − α. To guarantee that there are at most α′n errors, we
need to cover the strings of Σn with Hamming balls of radius at most α′n. We
know from Lemma 5.3 that there exists such a covering with at most

⌈
n · ln q · qn
Volq(n, α′n)

⌉

balls.
Such a covering leads to an algorithm that can guarantee that there are at

most α′n errors and that uses b advice bits such that b is the smallest integer
satisfying

2b ≥
⌈

n · ln q · qn
Volq(n, α′n)

⌉

. (5.9)

From Lemma 5.4, we know that

Volq(n, α
′n) ≥ qHq(α

′)·n− 1
2 logq(2n)

(5.3)
=

(
q − 1

α′

)α′n(
1

1− α′

)(1−α′)n

· 1√
2n

.
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Thus, it is sufficient for b to satisfy

n · ln q · qn
2b

≤
(
q − 1

α′

)α′n(
1

1− α′

)(1−α′)n

· 1√
2n

.

After taking the logarithm to the base q on both sides, we get

logq n+ n+ logq(ln q)− logq
(
2b
)
≤ α′n logq

(
(q − 1)n

α′n

)

+ (n− α′n) logq

(
n

n− α′n

)

− 1

2
logq(2n)

which is equivalent to

−b logq 2 ≤ −α′n logq(α
′n) + α′n logq(q − 1) + α′n logq(n− α′n)− n

− n logq(n− α′n) + n logq n− 1

2
logq(2n)− logq(ln q)− logq n.

Dividing by − logq 2 yields

b ≥ α′n log2(α
′n)− α′n log2(q − 1)− α′n log2(n− α′n) + n

+ n log2(n− α′n)− n log2 n+
1

2
log2(2n) + log2(ln q) + log2 n

≥ (1 + α′ logq(α
′n) + (1− α′) logq(n− α′n)− logq n

− α′ logq(q − 1))n log2 q +
1

2
log2(2n) + log2(ln q) + log2 n

=
(
1 + α′ logq α

′ + (1 − α′) logq(1 − α′)− α′ logq(q − 1)
)
n log2 q

+
1

2
log2(n) + log2(ln q) +

1

2
+ log2 n

=
(
1 + α′ logq α

′ + (1 − α′) logq(1 − α′)− α′ logq(q − 1)
)
n log2 q

+
3

2
log2 n+ log2(ln q) +

1

2

=

(

1 + α′ logq

(
α′

q − 1

)

+ (1− α′) logq(1− α′)

)

n log2 q +
3

2
log2 n

+ log2(ln q) +
1

2

= (1−Hq(α
′))n log2 q +

3

2
log2 n+ log2(ln q) +

1

2
.

We now resubstitute α′ by 1− α and finally get

b ≥ (1−Hq(1− α))n log2 q +
3

2
log2 n+ log2(ln q) +

1

2
.
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Because we wanted to find the minimum value for b such that (5.9) is satisfied,
we choose

b =

⌈

(1−Hq(1− α))n log2 q + (3 log2 n)/2 + log2(ln q) +
1

2

⌉

. �

Hence, we now have an upper bound on the number b of advice bits necessary
for an algorithm to guarantee at least αn correctly guessed characters.

Corollary 5.2 Consider as input a bit string of length n for 2-SGUH. There
is an online algorithm reading at most

⌈

(1 + (1− α) log2 (1− α) + α log2 α)n+ (3 log2 n)/2 + log2(ln 2) +
1

2

⌉

advice bits and producing outputs that are correct in more than αn bits, for
1/2 ≤ α < 1. �



Chapter 6

String Guessing as a

Method to Prove Lower

Bounds on the Advice

Complexity

6.1 Introduction

Employing the result from Chapter 5, we use the string guessing problem as
a technique to prove lower bounds for other well-studied online problems. It
seems to be a promising approach to use string guessing this way to show the
hardness of further online problems.

Our first application, discussed in Section 6.2, deals with an online version
of the maximum clique problem where the vertices of the underlying graph
arrive consecutively. In every time step, the online algorithm has to decide
whether the current vertex belongs to the solution or not. We give a lower
bound on the number of advice bits necessary for optimality or reaching a given
competitive ratio. These lower bounds are linear in the number of vertices. In
Section 6.3, we give a formal definition of an advice-preserving reduction and
use this reduction in Section 6.4 to give a lower bound on the online version of
the set cover problem as introduced in [1]. We show how to use the results on
the string guessing problem to give a lower bound that closes an exponential
gap between the lower and upper bounds given in [62] and prove a linear lower
bound for arbitrary competitive ratios.

87
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6.2 The Online Maximum Clique Problem

In the following section, we analyze the online maximum clique problem
(MaxClique, see [38]). In MaxClique, in every time step, a vertex is given
together with all edges to vertices that were already revealed in previous steps,
and an online algorithm A has to decide whether the newly revealed vertex
becomes part of the solution or not.

For designing a reasonable cost function, we briefly give some considerations.
First, assume there is a maximum clique of size n in the input graph G and the
algorithm finds a clique of size n− 1. Then, intuitively, the cost of the solution
should be n− 1, irrespective of how many vertices of the found clique are also
part of the largest clique in G. On the other hand, assume the algorithm selects
a vertex that is not connected to any vertex revealed afterwards. Unless this
is the only vertex A takes, A does not output a clique (i. e., its solution is not
feasible). Never the less, we do not want to put such hard restriction onto the
output of an algorithm, it should be allowed to give an output, different to the
situation in [38], where not all selected vertices are part of a clique. Even if A
gives an output in which many vertices form a large or even a maximum clique,
but one additional vertex is selected, the output is indeed no clique, but very
close to a relatively good or even optimal solution. Thus, this solution should
have almost optimal cost. Then again, we should clearly prevent the algorithm
from simply selecting all vertices that are given.

Therefore, we consider, for an output A(I), the maximum clique CA(I) in the
graph GA(I) restricted to the selected vertices A(I). Then, the solution becomes
better the larger the maximum clique in GA(I) is, and it becomes worse the more
vertices are selected that are not part of CA(I). All in all, we propose the cost
function given in the following definition.

Definition 6.1 (MaxClique) The online maximum clique problem,
MaxClique for short, is the following online problem. The input is a graph
G = (V,E) and the goal is to find a clique C ⊆ V in G of maximum size. In
each time step i, one vertex vi ∈ V is revealed together with all edges {{vi, vj} ∈
E | j < i}, and the online algorithm A has to decide whether vi ∈ C or not. Let
A(I) be the set of vertices selected by A and let CA(I) be a maximum clique in the

graph GA(I). The cost function is defined by cost(A(I)) =
∣
∣CA(I)

∣
∣
2
/ |A(I)|.

Clearly, for the optimal solution Opt(I) of a graph with a maximum clique

Copt, we have cost(Opt(I)) =
|Copt|
|Opt(I)| · |Copt| = |Copt|, thus, the competitive

ratio c of A on I can be computed as c = cost(Opt(I))
cost(A(I)) = |A(I)|

|CA(I)| ·
|Copt|
|CA(I)| . In other

words, the quality of the algorithm is given by the product of the two ratios
|A(I)|/|CA(I)| and |Copt|/|CA(I)|. The first ratio measures how many useless
vertices the algorithm has taken and the second ratio measures how many correct
vertices the algorithm did not take.
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v(1,0) v(6,0)

v(6,1)

Figure 6.1: The graph G00101 constructed from the string guessing instance
s = 00101.

In order to give a lower bound on the advice complexity of MaxClique,
we use our results for 2-SGKH. To this end, we investigate the following
subclass of instances, where every instance corresponds to a particular bit
string. Let s = s1s2 . . . sn′ be a bit string of length n′, for some n′ ∈ N.
We construct an input instance Is for MaxClique corresponding to s as fol-
lows. Consider the graph GIs = (V (Is), E(Is)) with n = 2n′ + 2 vertices.
Let V (Is) = {v(1,0), v(1,1), v(2,0), v(2,1), . . . , v(n′+1,0), v(n′+1,1)} and let V ′(Is) =
{v(i,si) | 1 ≤ i ≤ n′} be the set of the n′ vertices that correspond to the string
s. Moreover, let

E(Is) = {{v(i,si), v(j,k)} | 1 ≤ i < j ≤ n′, k ∈ {0, 1}}
∪ {{v, v(n′+1,0)}, {v, v(n′+1,1)} | v ∈ V ′(Is)}
∪ {{v(n′+1,0), v(n′+1,1)}}.

Clearly, the vertices from V ′(Is) plus the vertices v(n′+1,0) and v(n′+1,1) form
a unique optimal solution for Is of size n′ + 2. Although the vertices v(i,0) and
v(i,1) are revealed separately, for the analysis, we combine them to one pair.
After the first pair is revealed, the vertices of the second pair (v(2,0), v(2,1)) are
given and so on. An example for the string s = 00101 of length 5 is given in
Figure 6.1.

Assume that A knows that one vertex of each pair is part of the optimal
solution. Additionally, we assume that A knows how long the instance is. Hence,
it knows when the last two vertices v(n′+1,1), v(n′+1,2) are revealed and selects
both of them.

Then, we can see MaxClique as guessing one vertex per pair. Similar
to guessing a string s, also when trying to find the correct vertex in a pair
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(v(i,0), v(i,1)) in GIs , the correct decision can only depend on the input known
so far, the history, and the given advice. However, in general, an algorithm has
four options in every time step. These are to take the first vertex, the second
one, both, or none. As a next step, we show that, for any online algorithm with
advice, it is the best strategy to take both vertices of any pair for which no
advice is used. In this way, we derive an upper bound on the cost of solutions
of online algorithms with a restricted advice.

Lemma 6.1 Let s be an instance of length n′ for 2-SGKH and let B be the best
online algorithm for 2-SGKH that reads b advice bits. Let the number of bits
that B guesses correctly be at most αn′, where 0 ≤ α ≤ 1. Then, for all online
algorithms A for a corresponding MaxClique instance Is that read b advice
bits, we have

cost(A(Is)) ≤
(αn+ 2 + (1− α)n′)2

αn′ + 2 + 2 · (1− α)n′ .

Furthermore, for any online algorithm A for Is, an online algorithm A∗ that
correctly guesses the same pairs as A and takes both vertices for all remaining
pairs satisfies ((αn+ 2 + (1− α)n′)2)/(αn′ +2+2 · (1−α)n′) ≥ cost(A∗(Is)) ≥
cost(A(Is)).

Proof. First we prove, by a reduction from the string guessing problem, that no
algorithm for MaxClique can correctly guess more than αn′ pairs when using
at most b advice bits. Consider any algorithm A forMaxClique such that α̃n′ is
the number of pairs (v(i,0), v(i,1)) of vertices in GIs that A guessed correctly. For
the sake of contradiction, suppose α̃ > α and consider the following reduction to
solve 2-SGKH with α̃n′ correctly guessed bits. Every time step in 2-SGKH can
be transformed into two time steps of MaxClique by the above transformation.
We then create an online algorithm A′ for 2-SGKH as follows. According to
the output of A in the two time steps that are associated with one pair, A′ gives
the output 0 if A takes the first vertex and 1 otherwise. Thus, A′ is an online
algorithm with advice for 2-SGKH that guesses more than αn′ bits correctly
while using b advice bits and that is hence strictly better than B, which is a
contradiction to our assumption.

It follows that α̃ ≤ α. We may thus assume that A guesses exactly αn′ pairs
correctly for MaxClique, which is, by the above reasoning, the best A can do.
Additionally, we may assume that A also knows where these αn′ pairs lie in the
instance Is. For the rest of the (1 − α)n′ requests, suppose that A takes, for
a fraction of β, both vertices of the corresponding pair, for a fraction of γ the
wrong one, and, for the remainder, no vertex at all. Thus, A outputs a solution
of size αn′ +2+2(1−α)βn′ +(1−α)γn′ while there is a clique CA(Is) in GA(Is)

of size αn′ + 2 + (1− α)βn′ yielding

cost(A(Is)) =
(αn′ + 2 + (1− α)βn′)2

αn′ + 2 + (1− α)(2β + γ)n′ .
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We immediately observe that this term does not depend on the number of pairs
for which A chooses no vertex and that it decreases with increasing γ. We
therefore set γ to 0 and verify that the remaining term increases with β. To this
end, let us substitute X = αn′ +2 and Y = (1−α)n′ and consider the function

f(β) =
(αn′ + 2 + (1 − α)βn′)2

αn′ + 2 + (1− α)2βn′ =
(X + Y β)2

X + 2Y β
.

Since the derivative

f ′(β) =
2Y (X + Y β)(X + 2Y β)− 2Y (X + Y β)2

(X + 2Y β)2

is positive for all values of α and β between 0 and 1, we may set β to 1. In
other words, the best algorithm A∗ is the one that makes the right decisions on
exactly the same set of pairs as A takes both vertices for all remaining pairs. �

In order to give a lower bound on the advice complexity, we analyze an on-
line algorithm with advice that gets a sufficiently large number of advice bits
to know αn pairs and, following Lemma 6.1, takes both vertices for all un-
known positions. Using our results from Section 5.2, we can prove the following
theorem.

Theorem 6.1 For any 1 ≤ c ≤ 1.5 and for any ε > 0, any (c− ε)-competitive
online algorithm A for MaxClique needs at least

(1 + (c− 1) log2(c− 1) + (2− c) log2(2− c))
n− 2

2

advice bits.

Proof. Let n′ = (n − 2)/2. As above, assume that A reads a sufficiently large
number of advice bits to correctly guess αn′ pairs. In order to give a lower
bound, we again assume that A also knows where these αn′ pairs lie in the
instance and that, according to Lemma 6.1, A takes both vertices for all pairs
where the corresponding bit is unknown. Thus,

cost(A(I)) =
(αn′ + 2 + (1− α)n′)2

αn′ + 2 + 2(1− α)n′ =
n′2 + 2n′ + 4

2n′ − αn′ + 2
=

n′ + 2 + 4
n′

2− α+ 2
n′

.

For the competitive ratio, we therefore get

c =
cost(Opt(I))

cost(A(I))
=

(n′ + 2)(2− α+ 2
n′ )

n′ + 2 + 4
n′

>
n′(2− α)

n′ + 2 + 4
n′

=
(2− α)

1 + 2
n′ +

4
n′2

.

For any α and any ε, there exists an n0 such that

(2− α)

1 + 2
n′ +

4
n′2

≥ (2− α− ε),
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for all n′ ≥ n0. In other words, A has to guess at least αn′ characters correctly
to reach a competitive ratio of 2 − α − ε. Using Corollary 5.1, we get a lower
bound on the number of advice bits necessary to reach a competitive ratio of c
of

(1 + (1− (2− c)) log2(1− (2− c)) + (2− c) log2(2− c))n′

= (1 + (c− 1) log2(c− 1) + (2− c) log2(2 − c))n′

= (1 + (c− 1) log2(c− 1) + (2− c) log2(2 − c))
n− 2

2

as we claimed. �

Note that, without advice, an online algorithm for MaxClique can reach a
competitive ratio of (n′ + 2)/((n′ + 2)2/(2n′ + 2)) = (2n′ + 2)/(n′ + 2) ≈ 2 in
these instances by just taking every vertex.

6.3 Advice-Preserving Reductions

In order to use Theorem 5.4 for giving lower bounds on the number of advice
bits necessary to achieve a specific competitive ratio, we give a definition of an
advice-preserving reduction of online minimization problems.

Definition 6.2 (A-Reduction) Let U1 and U2 be two online problems and let
I1 and I2 be the sets of possible input instances for U1 and U2, respectively.
Furthermore, let each I ∈ I1 and each I ′ ∈ I2 have the form I = (x1, . . . , xn)
and I ′ = (x′

1, . . . , x
′
m), respectively, for some n,m ∈ N and some requests xi and

x′
j . Let O1(I) be the set of feasible outputs for some input I of U1. O1(I) has the

form (y1, . . . , yn). The set O1 =
⋃

I∈I1
O1(I) is the set of all possible outputs

for U1. For U2, we use an analogous notation. Additionally, we define, for
every instance I = (x1, . . . , xn), the set of all prefixes Pref(I) = {(x1, . . . , xj) |
1 ≤ j ≤ n)}. Furthermore, we denote by Pref(I) = ⋃I∈I Pref(I) the set of all
prefixes of all instances in I ∈ {I1, I2}. The set Pref(O) is defined analogously,
for O ∈ {O1,O2}.

We say that U1 is A-reducible to U2, U1 ≤AU2 for short, with param-
eters u, v, w for u ∈ N+ and v, w ∈ Q+, if there exist two functions

F : Pref(I1) → Pref(I2) and
H : Pref(O2) → Pref(O1)

such that, for any I = (x1, . . . , xn) ∈ I1,

1. • F (x1, . . . , xn) = (x′
1, . . . , x

′
un) = I ′ ∈ I2 and

• F (x1, . . . , xk) = (x′
1, . . . , x

′
uk) ∈ Pref(I ′), for all 1 ≤ k ≤ n;

and such that, for any Y2 = (y′1, . . . , y
′
un) ∈ O2,
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2. • H(Y2) = H(y′1, . . . , y
′
un) = Y1 = (y1, . . . , yn) ∈ O1 and

• H(y′1, . . . , y
′
uk) = (y1, . . . , yk) ∈ Pref(Y1), for all 1 ≤ k ≤ n;

Furthermore, F and H have to satisfy the following properties:

3. • F and H are computable deterministically,

• H(F (I)) ∈ O1(I) is a feasible output, for all I ∈ I1,
• for every instance I ∈ I1, cost(Opt(I)) = cost(H(Opt(F (I)))), and

• if Y2 is an output for F (I) = I ′ with cost(Y2) = c, computed by an

algorithm A
φ
2 using b bits of advice, then there is an algorithm A

φ
1

that, also using b advice bits, computes the solution H(A2(F (I))) for
I with cost(H(A2(F (I)))) = v · c+ w.

The scheme of this reduction is shown in Fig.6.2.

I ∈ U1

|I| = n

I ′ = F (I) ∈ U2,

|I ′| = un

Y ′ ∈ O2

(|Y ′| = un)

Y ∈ O1

(|Y | = n)

F, u, v, w

H, u, v, w

A1(I) = H(A2(F (I)) A2(F (I))

Figure 6.2: Construction of an algorithm A1 by using the reduction to A2

If U1 ≤A U2 with parameters u, v, w, then we know that, if there exists an
algorithm A2 that solves U2 with cost c2 there also exists an algorithm that
solves U1 with cost c1 = v · c2 + w using the same number of advice bits.

Thus, such a reduction is a powerful instrument to give lower bounds on the
number of advice bits that are necessary to reach a certain competitive ratio.
If we can show that the string guessing problem is A-reducible to a problem
U2 (i.e., if q-SGKH ≤A U2) with parameters u, v, w, this implies for the cost
function

cost(H(A2(I
′))) = u · cost(A2(I ′)) + w.
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We want to employ this reduction for proving lower bounds. More precisely, we
want to show that there does not exist any algorithm A2 for U2 using b advice bits
that can guarantee an output with cost(A2(I

′)), where
u · cost(A2(I ′)) + w is smaller than any known lower bound on the cost(A1(I))
with b advice bits.

It is easy to see that this reduction is transitive. In other words, from
U1 ≤A U2 with parameters u, v, w and U2 ≤A U3 with parameters u′, v′, w′, it
follows, that U1 ≤A U3 with parameters u′′ = u′·u, v′′ = v′·v, and w′′ = v·w′+w.

6.4 The Online Set Cover Problem

In this section, we study the advice complexity of the unweighted online set
cover problem (SetCover). This problem was introduced in [1] and is defined
as follows.

Definition 6.3 (Online Set Cover Problem)Given a ground set X = {1, 2,
. . . , n} of size n, a sequence of requests X ′ that are elements from X, and a set
family S ⊆ Pot(X) of size m, without loss of generality ∅ 6∈ S, a feasible solution
for the online set cover problem (SetCover) is any subset {S1, . . . , Sk} of
S such that

k⋃

i=1

Si ⊇ X ′.

The aim is to minimize k, i. e., to use as few sets as possible. In the online
version of this problem, the set X and the family S are known beforehand, but
the elements of X ′ arrive successively one by one in consecutive time steps. An
online algorithm A solves SetCover if, immediately after each yet uncovered
request j, it specifies a set Si ∈ S such that j ∈ Si.

We may assume, without loss of generality, that no set in S is the subset of
another set in S.

First, we use Theorem 5.4 to give a lower bound on the number of advice
bits necessary to achieve a specific competitive ratio that improves over the best
known lower bound of c. For this, we first show that the string guessing problem
can be reduced to SetCover.

Lemma 6.2 For any q ≥ 2, q-SGKH ≤A SetCover, with parameters u =
1, v = 1, w = 0.

Proof. Let q ≥ 2. For proving q-SGKH ≤A SetCover, we construct an
algorithm A1 solving q-SGKH that uses an algorithm A2 for solving SetCover.
For an easier notation, we denote the set of q-SGKH instances of length k by
(k, q)-SGKH .
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For the reduction, we set the parameters u = 1, v = 1, w = 0 and construct
a function F that transforms an instance IB from Σ∗ with |Σ| = q for (k, q)-
SGKH into an instance I ′ for SetCover. For the first request k, i.e., the
length of the string, we construct the sets X and S, i.e., the ground set and the
set family for our set cover instance, depending on k and q as follows:

X = {xs | s is a possibly empty string over Σ of length at most k}

Thus, X contains |X | =∑k
i=0 q

i = qk+1−1
q−1 elements. Furthermore,

S = {tr(s) | s ∈ Σk},
where tr(s) = {Xs′ | s′ is a prefix of s}

= {xλ, xs1 , xs1s2 , . . . , xs1...sk}, for all s = s1 . . . sk ∈ Σk,

is the transformation of the string s. Here, λ denotes the empty string. Each
set tr(s) contains | tr(s)| = k + 1 elements, and S consists of |S| = qk sets.

An instance ISG = (k, e1, e2, . . . , ek), for (k, q)-SGKH , where k ∈ N, and
ei ∈ Σ, 1 ≤ i ≤ k, is transformed into an instance ISC = (xλ, xe1 , . . . , xek) for
SetCover by

F (k) = X,S, xλ,

F (k, e1, . . . , ej) = F (k, e1, . . . , ej−1), xej .

For each request xei , the algorithm A2 has to select one set of S that covers
the element xei . Each element of S that contains xei corresponds to one possible
continuation of the input. As long as the further elements of the continuation
cover the following requests, no new set has to be selected. As soon one request
was answered incorrectly, all other elements of the selected sets cannot be re-
quested, and in the next step a new set has to be taken. As long as the last
selected set tr(s′) covers the new element xei , the answer of the next character
request ei+1 corresponds to the next element xei+1 in tr(s′).

Now, we present the function H . For every request xej , we have to distin-
guish two cases.

First, we consider the case where the request has already been solved by the
set that was selected in the step before. Assume that the last set output by A2
on the input F (k, e1, . . . , ej−2), xej−1 was tr(s′), for

s′ = s′1s
′
2 . . . s

′
j−1s

′
js

′
j+1 . . . s

′
k

= e1e2 . . . ej−1eje
′
j+1 . . . e

′
k, for some e′j+1, . . . , e

′
k

Here, the output for ISG is

H(A2(F (k, e1, . . . , ej−1), xej )) = e′j+1.

In the second case, the output A2(F (k, e1, . . . , ej−2), xej−1 ) was tr(s
′) for
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s′ = s′1s
′
2 . . . s

′
j−1s

′
js

′
j+1 . . . s

′
k

= e1e2 . . . ej−1e
′
je

′
j+1 . . . e

′
k,

for some e′j , . . . , e
′
k where e′j 6= ej . Note that from sj 6= ej follows, by con-

struction, sl 6= el, for all j ≤ l ≤ k.

In this case, the output in step j is

A2(F (k, e1, . . . , ej−1), xej ) = tr(s′′),

where

s′′ = e1 . . . eje
′′
j+1 . . . e

′′
k.

Here, the output for ISG is H(A2(F (k, e1, . . . , ej−1), xej )) = e′′j+1.

For each request for A1, the function F computes one request for A2, this
corresponds to the parameter u = 1.

It remains to show that this is an A-reduction with the parameters u = 1,
v = 1, and w = 0. The length of the input for A1 has the same length as
the input for A2. Additionally, A1 will make as many errors on the original
instance as A2 makes on the transformed instance. A2 has to select at least
one set. An optimal solution for an instance s′ for q-SGKH has cost 0 and
corresponds to the selection of the set tr(s′) ∈ S with cost 1. It follows that
cost(A2(F (I))) = 1 · cost(H(A2(F (I)))) + 0. With this, the claim follows. �

The reduction above helps us to establish an improved lower bound on the
advice complexity of SetCover. But first, we have to show that it is equally
hard to guess a percentage of α characters over one string of length rk, as to
guess the same percentage over r strings of length k over an alphabet of the
same size. First, we formally define the problem of guessing r strings of size
k. To this end, we use the notion ◦ for the concatenation of two instances
with same length. Concatenating the two instances I1 = (k, d(1,1) . . . , d(1,k))
and I2 = (k, d(2,1) . . . , d(2,k)) of length k + 1 yields the instance I1 ◦ I2 =
((2, k), d(1,1) . . . , d(1,k), d(2,1) . . . , d(2,k)) of length 2k + 1.

Definition 6.4 ((r,k,q)-multiple string guessing) We define the (r,k,q)-
multiple string guessing problem with known history over an alphabet
Σ of size q ≥ 2, (r, k, q)-MultSGKH for short, as a model of the q-SGKH

on r strings I1, . . . , Ir of length k over an alphabet of size q.

The input is I = I1 ◦ · · · ◦ Ir, where Ii = (k, d(i,1), . . . , d(i,n)). Thus, I =
((r, k), d(1,1), . . . , d(1,k), d(2,1), . . . , d(r,k)) is an instance of length r · k + 1. The
last request d(i,k) of the string i has to be answered by the first bit of string i+1,
for all i ∈ {1, . . . , r− 1} The cost of a solution A(I) is sum of the costs of the r
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strings analogous to q-SGKH,

cost(A(I)) =

r∑

i=1

cost(A(Ii)).

The following lemma states that as many advice bits are necessary to guess
αrk characters of a string of length rk over an alphabet of size q correctly as
for correctly guessing αrk characters of an instance for (r, k, q)-MultSGKH.

Lemma 6.3 Let (rk, q)-SGKH be the q-SGKH on a string of length rk. Then

(rk, q)-SGKH ≤A (r, k, q)-MultSGKH.

Proof. The reduction is straightforward. Let I = (rk, d(1,1), . . . , d(1,k), d(2,1), . . . ,
d(r,k)) be an instance for the (rk, q)-SGKH. The first request rk gets mapped
onto the first request (r, k) of the instance I1, and the following requests d(i,j)
get mapped on d(i,j) of (r, k, q)-MultSGKH for all i ∈ {1, . . . , r} and j ∈
{1, . . . , k}. It follows

(rk, q)-SGKH ≤A (r, k, q)-MultSGKH

with parameters u = 1, v = 1, w = 0. �

Now we are ready for the main theorem of this section.

Theorem 6.2 For any k ∈ N>0, any constant c < k+1, and any q ∈ N≥2, any
online algorithm with advice for SetCover that is c-competitive needs to read
at least

G(c, k, q) · k · log2 q
qk

·m

or

G(c, k, q) · k(q − 1) log2 q

qk+1 − 1
n

advice bits, where n = |X | ,m = |S| and

G(c, k, q) = 1 +

(
c− 1

k

)

logq

(
c− 1

k(q − 1)

)

+

(
k − c+ 1

k

)

logq

(
k − c+ 1

k

)

.

Proof. In order to prove the claim, for every instance of (r, k, q)-MultSGKH,
we give a corresponding instance of SetCover and a reduction from the mul-
tiple string guessing problem to this ((r, k, q)-MultSGKH ≤A SetCover).
Together with the reduction from Lemma 6.3, this yields

(rk, q)-SGKH ≤A SetCover.

The given instance is a set {s1, . . . , sr} of r strings of length |si| = k for i ∈
{1, . . . , r} over an alphabet of size q. This corresponds to a set {Is1 , . . . , Isr} of
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(k, q)-SGKH instances and thus to an instance Is1 ◦ · · · ◦ Isr for the (r, k, q)-
MultSGKH. Analogous to the construction in the proof of Theorem 6.2, we
construct r sub-instances of SetCover, where all sets of variables are pairwise
disjoint and join the corresponding sets to one SetCover instance.

We now start with the formal construction of the instance. For each string
si, we build an instance (Xi,Si, Ii) for SetCover, such that the sets Xi are
pairwise disjoint.

For the whole instance, we build the disjoint union of the subsets of the
sub-instances. This gives

X =

r⋃

i=1

Xi,

S =

r⋃

i=1

Si, and

I = I1 ◦ I2 ◦ · · · ◦ Ir.

In this instance, there is an optimal solution of size r, because, for each
of the sub-instances (Xi,Si, Ii), there exist an optimal solution of size 1. All
the sets are disjoint, so the optimal solution for the whole instance consists
of all optimal solutions of the sub-instances. For the size of the set, we have

|X | = qk+1−1
q−1 · r = n and |S| = qk · r = m.

For an algorithm A that reads as many advice bits as are necessary to guess
α · rk bits correctly, it follows that

cost(A) = r + (1− α) · rk.

The competitive ratio that A reaches is

c =
r + (1− α) · rk

r
= 1 + (1− α) · k

and thus,

α = 1− c− 1

k
.

Therefore, we can directly apply Theorem 5.4 for α = 1− c−1
k yielding that at
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least
(

1 +

(

1−
(

1− c− 1

k

))

logq

(

1−
(
1− c−1

k

)

q − 1

)

+

(

1− c− 1

k

)

logq

(

1− c− 1

k

))

· rk log2 q

=

(

1 +

(
c− 1

k

)

logq

(
c− 1

k(q − 1)

)

+

(
k − c+ 1

k

)

logq

(
k − c+ 1

k

))

· rk log2 q

=G(c, k, q) · rk log2 q

advice bits are necessary to reach a competitive ratio of c.
To measure the competitive ratio in |S| = m and in |X | = n, we calculate

r = k
qk ·m, and r = k·(q−1)

qk+1−1 · n, and, finally, this leads to

G(c, k, q) · k · log2 q
qk

·m

or

G(c, k, q) · k · (q − 1) · log2 q
qk+1 − 1

· n,

which concludes the proof. �

Note that, in [62], a lower bound on achieving a competitive ratio of c was
shown that is merely logarithmic in m. Thus, for constant values of c (i. e.,
for c ≤ 2), Theorem 6.2 exponentially improves over the best known result.
Figure 6.3 and 6.4 illustrate the lower bound for k = 1(c ≤ 2) and k = 2(c ≤ 2).

6.5 Discussion

We used string guessing as a generic online problem and gave two reductions
from it to the online maximum clique problem (MaxClique) as a maximization
problem and to the the online set cover problem (SetCover) as a minimization
problem, in order to transfer a lower bound on the advice complexity. For
SetCover, we introduced a formal model of advice-preserving reduction that
works for online minimization problems.

We gave a first formal reduction among online problems in order to prove
lower bounds on the advice complexity. It remains as an open problem to extend
the reduction to work also for for maximization problems. The string guessing
problem might be a starting point for a sequence of reductions among online
problems with respect to their advice complexity.
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Figure 6.3: The number of advice bits per time step that is necessary for the
online set cover problem for k = 1.
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Figure 6.4: The number of advice bits per time step that is necessary for the
online set cover problem for k = 2.
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Here, e. g., a more detailed analysis of MaxClique should be possible. The
extension to other online problems and a partition of online problems into advice
complexity classes would also be very interesting.
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Chapter 7

Conclusion

In this thesis, we investigated two theoretical approaches to integrate several
kinds of extra knowledge into standard computational models. In the first ap-
proach, the extra information was given in the special form of one or more opti-
mal solutions to a similar instance. In Chapter 2, we presented a reoptimization
algorithm for the minimum Steiner tree problem on graphs with sharpened tri-
angle inequality, with the local modification of adding a vertex as a non-terminal
or as a terminal. Here, we were able to improve the known approximation ratio
for the general problem and to reach an approximation ratio of 1

2 + β.

Even though the given information of an optimal solution to a similar in-
stance seems to be a strong aid, we have seen in Chapter 3 that, for some prob-
lems, information about one or more solutions does not help at all. Moreover, if
exponentially many solutions for a similar instance are given, the approximation
ratio cannot be significantly improved. Furthermore, for the general TSP, all
this strong extra information is not helpful in order to achieve a better local
search algorithm.

In the second approach devoted to online algorithms, the information is
given in a more generic way as a bit string on an extra input tape. Here,
we gave first results for online coloring algorithms with advice for 3-colorable
graphs. We presented nearly matching lower and upper bounds on the number
of advice bits for the 3-coloring of planar chordal and general 3-colorable graphs.
Additionally, we gave 4-coloring online algorithms with advice for those graph
classes (see Table 4.1). One remarkable point is that the lower and upper bounds
of 3-coloring for chordal graphs are equal to the bounds for 3-coloring of general
3-colorable graphs, even though the first problem lies in P and 3- coloring in
general is known to be NP-hard. The first difference in the advice complexity of
the two problems of color chordal graphs and general 3-colorable graphs arises
for online algorithms for finding a 4-coloring for these graphs. Unfortunately,
no lower bounds on the advice complexity are known in this cases, leaving room
for further research.

103
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Furthermore, we used string guessing as a generic online problem and gave
two reductions to the online maximum clique problem (MaxClique) and to
the online set cover problem (SetCover), in order to transfer a lower bound
on the advice complexity. A formal model of advice-preserving reductions that
works for online minimization problems was given. Here, a generalization to
maximization problems would be interesting. Furthermore, it would be very
helpful to have a more precise analysis of the advice needed for string guessing
to achieve a given quality. Here, it would be interesting to analyze the difference
between the two cases with and without knowing the history.

With this, also some of the first research results for reductions among online
problems in order to prove lower bounds on the advice complexity could be
embedded into a formal framework. In the end, the string guessing problem
might be a starting point for a sequence of reductions among online problems
with respect to their advice complexity. The extension to other online problems
and a partition of online problems into advice complexity classes would also be
very interesting.
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based approximation for Steiner tree. In Proc. of the 42st Annual ACM
Symposium on Theory of Computing (STOC 2010), pages 583–592. ACM,
2010.

[34] A. Cayley. A theorem on trees. In Quart. J. Math. 23, pages 376–378,
1889.

[35] N. Christofides. Worst-case analysis of a new heuristic for the travelling
salesman problem. Technical Report 388, Graduate School of Industrial
Administration, Carnegie-Mellon University, 1976.

[36] G. Cohnen, I. Honkala, S. Litsyn, and A. Lobstein. Covering Codes. Else-
vier Science Publishers Ltd., 1997.

[37] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to
Algorithms. MIT Press, 3rd edition, 2009.



109 Bibliography

[38] M. Demange, X. Paradon, and V. T. Paschos. On-line maximum-order
induced hereditary subgraph problems. In V. Hlavác, K. G. Jeffery, and
J. Wiedermann, editors, Proc. of the 27th Annual Conference on Current
Trends in Theory and Practice of Computer Science (SOFSEM 2000), vol-
ume 1963 of Lecture Notes in Computer Science, pages 327–335. Springer-
Verlag, 2000.
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