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Abstract

Sequential decision-making in some complex and uncertain environments can be formalized
as optimizing a black-box function. For example, in drug design, the aim is to maximize
compound efficiency by sequentially searching through the vast space of molecules, or, in
tuning a particle accelerator, the aim is to maximize the particle beam energy. Interactions
with these environments can be costly or time-consuming, demanding decision-making
systems to work in small-data regimes. Bayesian optimization (BO) is a powerful data-
driven framework for global optimization that adaptively chooses actions to evaluate. Its
potential for impactful real-world applications is vast, from those mentioned above to
widespread automated machine learning (ML) services. There are, however, practical
challenges that impede its implementation or result in sub-optimal decisions.

This dissertation aims to advance the applicability of BO by addressing three cru-
cial points: risk-aversion, which ensures performance beyond the average only; query-
effectiveness, which aims at smart use of budgets covering evaluation costs; and problem-
adaptiveness, which leverages the structure of the decision space. To this end, we propose
novel approaches and examine them theoretically and empirically in real scenarios.

First, we tackle balancing high utility and low risk – a serious issue in high-stakes applica-
tions. For example, the accelerator’s maximum pulse energy must be stable to observe chem-
ical reactions; or in drug discovery, the drug must succeed for all individuals. Our approach
trades off mean and input-dependent aleatoric uncertainty (both learned on the fly during
optimization) and provides theoretical sample complexity results. Moreover, our empirical
study on tuning a particle accelerator and ML models shows the benefit of the approach.

Second, we aim at efficient budget allocation, enriching the practical performance
heavily dependent on the interaction cost and the available budget covering these costs.
For example, the success of a timely drug discovery depends on the smart use of the
resources at hand. We tackle two crucial questions of query efficiency in BO: (1) how
to use cheaper but less accurate evaluations, and (2) when to stop the optimization. We
leverage multi-fidelity optimization and incorporate the evaluation costs in a natural
information-theoretic manner. Moreover, our automatic termination approach for the BO
loop determines the minimal budget required for obtaining a high-quality solution.

Finally, the complex and non-continuous nature of the decision variables can make
applying Bayesian optimization in areas such as drug design or automated ML difficult.
Our approach for mixed-variable BO exploits the structure and interconnections within
the discrete subdomain, learning them on the fly during the optimization.

Our approaches make BO applicable to a wider range of critical applications while
combining practical simplicity with theoretically grounded reasoning.
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Kurzfassung

Sequentielle Entscheidungsprozesse in komplexen und unsicheren Umgebungen lassen sich
als Optimierung einer Black-Box-Funktion beschreiben. Zum beispiel, bei der Justierung
eines Teilchenbeschleunigers ist es das Ziel, die Energie des Teilchenstrahls zu maximieren.
Die Interaktion mit diesen Umgebungen kann kosten- und zeitintensiv sein, sodass von
Entscheidungssystemen erwartet wird, dass sie in datenarmen Szenarien funktionieren. Die
Bayessche Optimierung (BO) bietet einen effektiven datengetriebenen Rahmen für globale
Optimierungsverfahren, welcher adaptiv Handlungen zur Bewertung auswählt. Ihr Poten-
zial für praktische Anwendungen in der realen Welt ist enorm, von den bereits genannten
Beispielen bis zu weit verbreiteten automatisierten Machine-Learning-Dienstleistungen.
Dennoch bestehen praktische Herausforderungen, die ihre Umsetzung behindern oder zu
suboptimalen Entscheidungen führen können.

Das Ziel dieser Dissertation ist es, die Anwendbarkeit der BO zu erweitern, indem drei
Schlüsselaspekte verbessert werden: Risikoaversion, die eine Leistung über dem Durch-
schnitt sicherstellt; Abfrageeffizienz, die eine kluge Nutzung von Budgets zur Deckung der
Evaluierungskosten anstrebt; und Problemanpassungsfähigkeit, die sich die Struktur des
Entscheidungsraums zu Nutze macht. Wir schlagen in dieser Arbeit neue Verfahren vor
und prüfen diese sowohl theoretisch als auch empirisch in realen Szenarien.

Erstens befassen wir uns mit dem Gleichgewicht von hohem Nutzen und geringem
Risiko, welches insbesondere in hochriskanten Anwendungen von Bedeutung ist. Die
maximale Pulsenergie eines Beschleunigers muss beispielsweise stabil sein, um chemis-
che Reaktionen beobachten zu können, und bei der Arzneimittelentdeckung sollte das
Medikament für jeden Einzelnen erfolgreich sein. Unser Ansatz findet ein Gleichgewicht
zwischen Mittelwert und eingangsabhängiger aleatorischer Unsicherheit, die beide während
der Optimierung erlernt werden, und liefert theoretische Ergebnisse zur Stichprobenkom-
plexität. Darüber hinaus zeigt unsere empirische Untersuchung bei der Justierung von
Teilchenbeschleunigern und ML-Modellen den Vorteil dieses Ansatzes.

Zweitens zielen wir auf eine effiziente Budgetverteilung ab, wobei die tatsächliche
Leistung stark von den Interaktionskosten und dem zur Deckung dieser Kosten verfüg-
baren Budget abhängt. So hängt der Erfolg einer rechtzeitigen Medikamentenentdeckung
maßgeblich von der intelligenten Nutzung der verfügbaren Ressourcen ab. Wir stellen uns
zwei zentralen Fragen zur Abfrageeffizienz in BO: (1) Wie kann man kostengünstigere, aber
weniger genaue Evaluierungen verwenden? und (2) Wann sollte die Optimierung beendet
werden? Wir nutzen Multi-Fidelity-Optimierung und integrieren die Evaluierungskosten
auf eine natürliche, informationstheoretische Weise. Darüber hinaus bestimmt unser
automatisierter Abschlussansatz für den BO-Zyklus das für eine qualitativ hochwertige
Lösung erforderliche Mindestbudget.
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Abschließend kann die komplexe und unstetige Natur der Entscheidungsvariablen die
Anwendung der Bayesianischen Optimierung in Bereichen wie Arzneimitteldesign oder
automatisiertem ML erschweren. Unser Ansatz für die gemischte BO nutzt Struktur und
Zusammenhänge im diskreten Bereich, die während der Optimierung erlernt werden.

Unsere Ansätze erweitern die Anwendbarkeit der BO auf eine breitere Palette kri-
tischer Anwendungen und verbinden praktikable Einfachheit mit theoretisch fundierter
Argumentation.
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CHAPTER1
Introduction

1.1 Motivation and goals

Systems that interact with complex and uncertain environments, actively learn them, and
incorporate the acquired data for decision-making have experienced rapid development
over the last decade. Furthermore, machine learning applications in domains with sig-
nificant social impact are experiencing significant growth. For example, in drug discovery,
recent advancements in protein folding have the potential to accelerate the process greatly.
Some other vital examples of active learning would include materials discovery [Kor+19;
GH20], genetics [Gon+15; Mos+20] or reasoning tasks where we look for explanations
for the data, as well as causal discovery underlying data generation. This highlights the
need for theoretically grounded and widely practically applicable methods.

Examples such as drug discovery with navigating intricate space of molecules illustrate
problems with a clear optimization goal, e.g., maximizing drug efficiency. However, the
objective function that maps from the molecules’ space to drug efficiency is a black box that
can only be accessed through observations (see Figure 1.1). In these scenarios, a learner
sequentially interacts with the unknown objective function, observes a noise-perturbed
evaluation, and then navigates the interaction further. The objective function is expensive
to evaluate, and a constrained budget requires this sequential decision-making to be data-
efficient. Searching for optimal decision, the learner must balance exploring the unknown
with the exploitation of what is already known, the so-called exploration-exploitation
dilemma. The dilemma arises because the learner makes decisions under uncertainty :
actions increasing knowledge do not necessarily lead to the optimal function values.

One prominent framework for addressing the uncertainty in learning problems is
Bayesian inference. The main idea behind Bayesian inference is to model the unknown
quantity of interest using probability distribution and update it as we observe evaluations.
This results in conditional probabilities defining the relationship between the unknown
value and observations and allows for predicting the unobserved values while quantifying
and propagating the predictions’ uncertainty.

This dissertation contributes to Bayesian optimization – a powerful tool for global
optimization of an unknown costly black-box function. Bayesian optimization adaptively
chooses actions in a query-efficient manner to find the optimal one by adopting the
Bayesian perspective. The performance of such sequential optimization can be evaluated
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Figure 1.1: Examples of black-box optimization. In drug discovery (left), we want to navigate the
intricate space of molecules to maximize drug efficiency. The objective function that maps from the
molecules’ space to drug efficiency is a black box, i.e., it can only be accessed through observations.
Another example is tuning complex systems, such as an accelerator: to maximize some objective, e.g.,
the pulse energy, we can vary the parameters, e.g., the beam positions, and after observing the objective
realizations, choose the next promising parameter candidates.

by how quickly the queried decisions converge to an optimal one. It is measured by regret,
which is a suboptimality in the function value by virtue of not knowing the optimum in
advance. Non-zero regret is inevitable since the learner needs to take non-optimal actions
to learn the unknown; however, in the long run, we are interested in the convergence rate
guarantees for the accumulated regret. Thereby, the performance of Bayesian optimiza-
tion methods is studied from two perspectives: empirical performance and theoretical
guarantees. Bayesian optimization is applied to many scientific domains, from robotics
[BKS16; Cal+16; Mar+16] to hyperparameter tuning of complex learning systems [Kir+19;
Che+18; SLA12a]. However, many important applications, such as materials design and
drug discovery, are out of the reach of standard approaches or suffer from suboptimal
decisions. This happens due to the complex domain structure of the applications and
real-world solution requirements that current methods do not consider.

The goals of this dissertation are threefold, addressing three crucial requirements for
Bayesian optimization: (i) risk-aversion, which ensures performance beyond the average
only; (ii) query-effectiveness, which aims at smart use of budgets available for function
evaluations; and (iii) problem- adaptiveness, which leverages the structure of the decision
space. To this end, we propose novel approaches and examine them theoretically and
empirically in real-world scenarios. Our contributions toward the first goal include con-
sidering input-dependent aleatoric uncertainty studied in Chapter 3. Our contributions
toward the second goal include the automatic termination of the Bayesian optimization
loop and the multi-fidelity approach studied in Chapter 4. Finally, our contributions
toward the third goal include the Bayesian optimization over domains with discrete and
continuous variables, i.e., mixed-variable domains, studied in Chapter 5. Following these,
Chapter 6 concludes the dissertation and discusses the potential for future work. Below,
we provide a more detailed thesis outline covering the contributions.
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1.2 Outline and contributions

In the following, we present a summary and outline of each chapter.

1.2.1 Chapter 2

In this chapter, we provide the necessary background related to our work. In particular,
we briefly introduce Bayesian optimization and its main components, such as probabilistic
modeling, acquisition functions, performance metrics, and convergence guarantees. To
this end, we present two settings: (i) Bayesian setting with an assumption of a function
sampled from a Gaussian process and (ii) frequentist setting with reproducing Hilbert
space assumption. We discuss the relationship between both settings and how they are
used in Bayesian optimization.

1.2.2 Chapter 3

In this chapter, we study how aleatoric uncertainty affects risk-averse decision-making.
Black-box optimization tasks frequently arise in high-stakes applications such as drug and
material discovery, genetics, robotics, and hyperparameter tuning of complex learning
systems, to name a few. In many of these applications, there is often a trade-off between
achieving high utility and minimizing risk. Moreover, uncertain and costly evaluations
are an inherent part of black-box optimization tasks, and modern learning methods
need to handle these aspects when balancing the previous two objectives. Classical
Bayesian optimization approaches are typically risk-neutral as they only seek to optimize
the expected function value. In practice, however, two solutions might attain similar
expected function values, but one might produce significantly noisier realizations. This is of
significant importance when it comes to deploying the found solutions. For example, when
selecting hyperparameters of a machine learning algorithm, we might prefer configurations
that lead to slightly higher test errors but, at the same time, lead to smaller variance, thus
making them reliable to apply across different datasets sampled from the data distribution.
In this chapter, we consider risk-averse Bayesian optimization.

Overview of contributions

• While the focus of standard Bayesian optimization approaches is mainly on trading-
off exploration vs. exploitation and optimizing for the expected performance, in this
work, we additionally focus on the risk involved when working with noisy objectives.

• We generalize Bayesian optimization to trade the mean and input-dependent variance
of the objective, both of which we assume to be unknown a priori. We show that, in
general, the solutions to risk-neutral and risk-averse settings do not coincide.

• We propose a novel risk-averse heteroscedastic Bayesian optimization algorithm
(RAHBO). RAHBO aims to identify a solution with high return and low noise
variance while learning the noise distribution on the fly.
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• We theoretically study the convergence guarantees and demonstrate the effectiveness
of RAHBO on both synthetic benchmarks and real hyperparameter tuning tasks.

1.2.3 Chapter 4

The efficiency with respect to the function queries is a crucial concern in practical settings,
where data collection takes time and can be expensive. This chapter studies these cost-wise
aspects of Bayesian optimization from two practical perspectives.

First, we study the automatic termination of the Bayesian optimization loop in a
practical application of hyperparameter optimization of ML models (HPO). While the
final performance after Bayesian optimization heavily depends on the provided budget, it
is hard to pre-specify an optimal value in advance. In Section 4.1, we propose an effective
and intuitive termination criterion for Bayesian optimization that automatically stops
the procedure if it is sufficiently close to the global optimum. Our key insight is that
the discrepancy between the true objective (predictive performance on test data) and
the computable target (validation performance) suggests stopping once the statistical
estimation error dominates the suboptimality in optimizing the target.

Second, we study the multi-fidelity setting where we can access the cheaper but noisier
objective approximations correlated with the objective of interest. In Section 4.2.2, we
show how the optimization can be adapted to parallel evaluations and accommodate
different levels of approximations.

Overview of contributions

• We propose an effective and intuitive termination criterion for Bayesian optimization.
We empirically study the approach across various real-world HPO problems and
baselines. The results show that our method has a better trade-off between the test
performance and optimization time.

• We propose an information-theoretic method for multi-fidelity Bayesian optimization.
We empirically demonstrate its effectiveness in calibrating key parameters of an
agent-based transport simulation and how to scale the method to higher dimensions.

1.2.4 Chapter 5

Traditionally, Bayesian optimization methods have focused on objectives with entirely
continuous domains. More recently, the focus has expanded to address problems with
solely discrete domains, such as those found in food safety monitoring and model sparsi-
fication within multi-component systems [BP18]. However, many real-world optimization
problems spanning applied mathematics, engineering, and the natural sciences are of
mixed-variable nature, involving both continuous and discrete input variables, and exhibit
complex constraints. For example, tuning the hyperparameters of a convolutional neu-
ral network involves both continuous variables, e.g., learning rate and momentum, and
discrete ones, e.g., kernel size, stride, and padding. In addition, these hyperparameters
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impose validity constraints, e.g., combinations of kernel size, stride, and padding lead to
invalid networks. Further examples of mixed-variable, potentially constrained optimization
problems include sensor placement [KSG08], drug discovery [NFP11], a configuration of
optimization solvers [HHL10], and many others. This work introduces an algorithm that
can efficiently optimize mixed-variable functions subject to known constraints.

Overview of contributions

• We introduce MiVaBo, a novel algorithm for efficiently optimizing mixed-variable
functions subject to known integer linear and quadratic constraints.

• We present two alternatives to optimize the resulting acquisition function that can
incorporate known linear and quadratic constraints (Section 5.2.3). To our knowledge,
this makes MiVaBo the first Bayesian optimization method to handle constraints
over discrete variables.

• We provide the first convergence analysis of a mixed-variable Bayesian optimization
algorithm.

• Finally, we demonstrate the effectiveness of MiVaBo on complex hyperparameter
optimization tasks, such as deep generative model tuning, where it outperforms
state-of-the-art methods and performs comparably to human expert tuning.

1.3 Publications

This thesis contains a selected collection of results from the studies as a Ph.D. candidate.
The work presented in the thesis is published in the following series of papers.

[Mak+21a] “Automatic Termination for Hyperparameter Optimization”, A. Makarova, Huibin
Shen, Valerio Perrone, Aaron Klein, Jean Baptiste Faddoul, Andreas Krause,
Matthias Seeger, Cedric Archambeau, International Conference on Automated
Machine Learning (AutoML Conf), 2022;

[Mak+21b] “Risk-averse Heteroscedastic Bayesian Optimization”, A. Makarova, I.Usmanova,
I.Bogunovic, A. Krause, International Conference on Neural Information Processing
Systems (NeurIPS), 2021;

[Dax+20] “Mixed-Variable Bayesian Optimization”, E. Daxberger*, A. Makarova*1, M.Turchetta,
A. Krause; International Joint Conference on Artificial Intelligence (IJCAI), 2020;

[Tur+18] “Multi-fidelity Bayesian optimization for calibration of transport system simulations”,
A. Makarova, M.Turchetta, S. Horl, S. Beyeler, A. Krause; 18th Swiss Transport
Research Conference (STRC 2018)

1* indicates equal contribution.
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Other publications

The following papers were published during the doctoral studies but are not included in
the thesis.

[SMK23] “Model-based Causal Bayesian Optimization”, S.Sussex, A. Makarova, A. Krause,
International Conference on Machine Learning (ICLR), 2023;

[Sus+23] “Adversarial Causal Bayesian Optimization”, S.Sussex, P.G.Sessa, A. Makarova, A.
Krause, 2023;

[Koe+23] “Safe Risk-averse Bayesian Optimization for Controller Tuning”, M. Ozols, C. Konig,
A. Makarova, Efe C. Balta, A. Krause, A. Rupenyan, 2022;

[Usv+21] “Cherry-Picking Gradients: Learning Low-Rank Embeddings of Visual Data via
Differentiable Cross-Approximation”, M. Usvyatsov, A. Makarova, R. Ballester-
Ripoll, M. Rakhuba, A. Krause, K. Schindler, International Conference on Computer
Vision (ICCV), 2021;

[Dha+20] “Hierarchical Image Classification using Entailment Cone Embeddings”, A. Dhall,
A. Makarova, O. Ganea, D. Pavllo, M. Greeff, A. Krause, CVPR Workshop on
Differential Geometry (DiffCVML), 2020.
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CHAPTER2
Background and Related Work

We study how one can actively learn about an unknown quantity of interest and optimize
it. This chapter provides the necessary mathematical background and a review of the
related literature.

In the first part of the chapter, we provide a short introduction to the machinery and
intuitions relevant throughout the thesis. Section 2.1 covers Bayesian inference and types of
uncertainties important for reasoning about the unknown. Section 2.2 introduces the Gaus-
sian processes, a stochastic process widely used in statistical modeling of unknown functions.
Section 2.3 covers the non-Bayesian approach, introduces reproducing kernel Hilbert spaces,
a space of smooth functions that are possible to learn, and connects to the functions
sampled from a Gaussian process with the same kernel. Section 2.4 discusses the notion
of information capacity that measures the difficulty of learning the unknown function.

The second part of the chapter Section 2.5 describes how to solve global optimization
problems using Bayesian optimization. We introduce the main building blocks of Bayesian
optimization and the most common performance metrics. We give a summary of the main
existing theoretical results and open challenges of the most relevance for this thesis. To
start, let us state the general problem we are interested to tackle.

Figure 2.1: Illustration of the interaction with the unknown function at the iteration t. Throughout the
thesis, we use variations of this visualization adapted to problems considered in the thesis chapters.

Problem Let X be a given compact set of inputs (X ⊂ Rd for some d ∈ N). We consider
a problem of sequentially interacting with an unknown objective function f : X → R.
Consider the example from the previous section, in which f(x) represents the compound
efficiency of some drug x from a vast space X of possible compounds. At every round t of
this sequential procedure, the agent selects an action xt ∈ X , and obtains an observation
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perturbed by some, possibly input-dependent noise ξ(xt), ξ : X → R:

yt = f(xt) + ξ(xt). (2.1)

Figure 2.1 provides a schematic visualization of such an interaction. That results in obser-
vations denoted y1:t = [y1, . . . , yt]

⊤ and the dataset of pairs Dt = {(x1, y1), . . . , (xt, yt)}.
As in the example, the agent aims to find the most effective drug compound, i.e., finding

x that would maximize the unknown function f while learning f on the fly. Efficient
solving of the learning problem requires further assumptions on the unknown function
f(x) and noise process ξ(x): what can we say about the function f and its smoothness
prior to observing evaluations? How much do we already know about the noise ξ, and
how much should we learn?

When learning an unknown quantity from evaluations, we can consider two perspectives:
Bayesian and frequentist approaches.1 At their core, these two points of view differ in the
base postulates and consider different classes of functions. The Bayesian approach assumes
the unknown function to be random and operates with probabilities to describe the degree
of belief. In contrast, the non-Bayesian, frequentist, approach assumes the function to be
fixed and refers to probabilities as a limiting frequency, i.e., if we repeat the evaluation,
then the probability is the frequency of the outcome. Both approaches have a notion of
uncertainty allowing one to reason about the unknown quantity of interest. Though this
uncertainty is based on different definitions of probability, the approaches share some
common notions, such as confidence intervals, and have cross-connections, such as kernel
regression and Gaussian process regression. In this thesis, we use Bayesian machinery
for modeling unknown functions. This chapter examines approaches and conditions for
Bayesian modeling and optimization.

We start with the inference problem, that is, estimating functional dependency based
on the collected data, and in Section 2.5, we return to the optimization and introduce
it formally.

2.1 Bayesian Inference

Bayesian inference is a fundamental framework to reason about the quantity of interest,
i.e., the function f , based on data Dt by adopting a Bayesian perspective. At its core, it
requires three ingredients. First, f is assumed to be random, and the learner encodes prior
belief about f through a prior distribution over a given function space, p(f). Second, the
learner indicates how the observed data is related to the function f through the likelihood
function, p(Dt|f). Finally, applying the Bayes theorem, the learner gets the posterior
probability distribution over the function given the data as follows:

p(f |Dt) =
p(Dt|f)p(f)

p(Dt)
. (2.2)

1Which one to choose depends on the particular problem at hand and the philosophy of the learner. For a
deeper understanding, we refer the reader to [Was10].
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Bayesian inference offers a natural framework for the regression, i.e., estimating func-
tional dependence between the action x and output y, and decision problems, i.e., deciding
on the next actions x to be taken. Endowing the unknown function with a prior distribution
allows not only making predictions of the unobserved function values but also quantifying
and propagating the uncertainty of these predictions. This uncertainty further helps a
learner decide on the next actions to pursue a goal. Particularly, it enables the learner to
navigate the so-called exploration-exploitation trade-off, that is balancing what could be
learned by exploring the unknown with what is already known. We return to the theory of
decision, which is the focus of this dissertation, later in the introduction in Section 2.5 and,
by now, focus on the regression problem. To this end, we start with the simplest example
of Bayesian linear regression to write down the three components of Bayesian inference,
i.e., prior, likelihood, and posterior, and introduce notions useful later in the thesis.

Simple example Let us assume linear generative process f(x) = ω⊤x parameterized by
the unknown weights vector ω ∈ Rd. Further, assume the noise is i.i.d zero-mean Gaussian
noise ξ ∼ N (0, σ2

ξ ). By now, we assume the noise is equally distributed for all x ∈ X ,
so-called homoscedastic noise. Later in the thesis, we also study heteroscedastic noise the
distribution of which depends on the input, e.g., through the input-dependent variance
of the normal distribution ξ(x) ∼ N (0, σ2

ξ (x)). We aim to solve the regression problem,
i.e., predict the value y = f(x) + ξ for some new input x. To this end, we use Bayesian
inference with prior, likelihood, and posterior components as follows.

The likelihood of observed data is a Normal distribution p(y|ω) = N (ω⊤x, σ2
ξ ). As the

learner collects t evaluations x1:t ∈ Rt×d and y1:t ∈ Rt, the likelihood takes the form of
p(y1:t|ω) = N (x1:tω, σ

2
ξI). Before observing the evaluations, we assume the weight vector

ω follows a zero-mean isotropic Gaussian p(ω|σ) = N (0, σ2I). Then as we incorporate the
evaluations, we derive the posterior distribution of ω following Bayes’ rule:

p(ω|y1:t) = N
(
σ−2
ξ Σ−1

t x⊤
1:ty1:t︸ ︷︷ ︸

µt∈Rd

, σ−2
ξ x⊤

1:tx1:t + σ2I︸ ︷︷ ︸
Σ−1

t ∈Rd×d

)
. (2.3)

Intuitively, we consider various plausible explanations of how the initial data y1:t was
generated. Due to the chosen generative process and the prior, they follow a normal
distribution with the posterior µt and Σ−1

t . And then, we make predictions for a new
input x using all possible regression parameters ω weighed by their posterior probability:

p(y|x,D1:t, σ, σξ) =

∫
p(ω|y1:t)p(y|x, ω)dω (2.4)

= N (µ⊤
t x︸︷︷︸

µpred

,x⊤Σx+ σ2
ξ︸ ︷︷ ︸

σ2
pred

). (2.5)

Thus, the Bayesian approach models all the possibilities for the prediction y, i.e.,
predictive posterior distribution, which follows a normal distribution here. This lets
us quantify uncertainty in the predictions and observe its changes as we acquire more
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evaluations. Given this predictive distribution for a simple linear regression example, let
us now introduce two notions of uncertainty.

Sources of uncertainty The variance σ2
pred(x) in Eq. (2.5) accounts for two types of

uncertainty. First, so-called epistemic uncertainty x⊤Σ−1x, covers the uncertainty about
the model due to the data scarcity. Second, so-called aleatoric uncertainty, σ2

ξ covers the
uncertainty about the value y given f(x), originating from the inherent randomness. The
epistemic uncertainty incorporates any knowledge about the function that we could know
but do not know a priori, and it disappears as we interact with the function and collect
data. The aleatoric uncertainty does not disappear due to the irreducible noise that can
be known or unknown, depending on the problem, and thus should be learned.

Both types of uncertainties are important throughout the thesis. On the one hand,
in high-stakes applications such as drug design, where avoiding unreliable actions is
highly important, it is crucial to consider noise: two different actions might attain similar
expected function values, but one might produce significantly noisier realizations. This
risk awareness is associated with aleatoric uncertainty. On the other hand, well-calibrated
bounds of epistemic uncertainty quantify what we do not know and allow sequentially
decide on the evaluation budget for further exploration of the environment and improving
our incomplete understanding of it. Failure to accurately quantify the uncertainty in
high-risk decisions can lead to severe consequences [HW21; Dep19; Dep+18].

The following section shows how these uncertainties are quantified and propagated in
the two common function models, a linear model over non-linear feature mappings and
Gaussian processes. While here we assume the aleatoric uncertainty to be known and
fixed, later Chapter 3 studies aleatoric uncertainty in the context of risk-aware sequential
decision-making.

2.2 Probabilistic model

A probabilistic function model encodes the belief about f based on the observations fol-
lowing the Bayesian inference. This section briefly overviews two approaches for regression
problems: Bayesian linear regression with feature mapping and Gaussian processes. We
refer to [DFO20; RW06] for a more in-depth introduction.

Any probabilistic model aims at balancing two conflicting goals: the model expres-
siveness versus the feasibility of Bayesian inference. Linear models defined over non-linear
feature mappings, f(x) = ω⊤ϕ(x) with features ϕ : X → RM and weights ω ∈ RM , are
a class of flexible parametric models that strike a good tradeoff between model capacity,
interpretability and ease of use through the definition of the features. While the com-
plexity of the model is controlled by the number of features, M , its capacity depends
on their definition. Bayesian linear regression in Eq. (2.5) is a particular example, and
similarly, we can write the three components of the probabilistic modeling in the case of
arbitrary, possibly non-linear, features. These are likelihood p(yt|ω) = N (ω⊤ϕ(xt), σ

2
ξ ),

the weights prior pi(wi|α), i ∈ [M ], parametrized by some α > 0 and the posterior
p(ω|y1:t, α) ∝ p(y1:t|ω)p(ω|α). In the case of the weights prior N (0, σ2) that takes the
form of Eq. (2.3) but with the feature vector ϕ(x) instead of the vector x. In a general

10



case, the inference difficulty crucially depends on the choice of the prior potentials.
In this dissertation, we consider Gaussian and sparse priors. By a sparse prior, we mean

distributions that set some of the components wi of the vector ω a priori to zero, which
results in non-zero coefficients for features defined over small subsets of the input variables.
We discuss it in Chapter 5 in the context of mixed-variable Bayesian optimization. There,
the key is that only low-order interactions, represented as some polynomial features,
between the variables, contribute significantly to the objective function. The sufficiency
of low-order interactions was shown to be the case for many practical problems [Hoa+18;
Rol+18; MK18], including hyperparameter tuning of deep neural networks [HKY17]. Thus,
a large portion of possible features can be discarded a priori, simplifying the design space.

To conclude, we find the posterior distribution on the weights vector ω and use it
to derive the predictive distribution on the unobserved function values. In contrast, the
following section considers inference directly in the function space.

2.2.1 Gaussian processes

One way to work directly in the function space is a stochastic process. A stochastic process
is a collection of random variables {f(x)}x∈X indexed by some deterministic variable
in a given set X . A stochastic process can be interpreted as a random element in a
function space, intuitively generalizing the concept of standard random vectors to vectors
with infinitely many components. That allows for using stochastic processes to describe
probability distribution over a space of functions. This section introduces a special class
of stochastic processes, Gaussian processes, and their two main building components:
its kernel function encoding the process smoothness and computation of the posterior,
allowing to perform regression.

A Gaussian process (GP) is a stochastic process for which any finite set of random
function values {f(xi)}ni=1 follows a joint normal distribution. Any GP is fully specified
by a mean function µ : X → R, and a covariance function, or kernel, κ : X ×X → R. For
every input x ∈ X , f(x) is Gaussian random variable with mean E[f(x)] = µ(x) and
variance E[(f(x) − µ(x))2] = σ2(x) = κ(x,x). GPs are a rich class of non-parametric
models, where the mean and the kernel specify the prior belief about the unknown f ,
denoted as f ∼ GP(µ, κ). The kernel function is an important notion that encodes the
expressiveness of a Gaussian process, and we provide more details about it below.

Kernel function The kernel κ(·, ·) indicates how function values at different locations
co-vary with each other, and, thus, it expresses our belief about the smoothness of f . An
arbitrary function of input pairs does not necessarily define a valid kernel, and to do so,
it should meet the following requirements. The function κ : X × X → R is a kernel if
and only if there exists a Hilbert space Hκ induced by κ and a feature map ϕ : X → Hκ

such that the value κ(x,x′) for x,x′ ∈ X is an inner product in Hκ of the feature
maps κ(x,x′) = ⟨ϕ(x), ϕ(x′)⟩. The feature map ϕ(x) exists if and only if κ is a positive
semi-definite function (PSD function, see Definition 9). The function must be symmetric,
i.e., κ(x,x′) = κ(x′,x). The covariance matrix K is the Gram matrix for the kernel κ,
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i.e., a matrix with entries κij = κ(xi,xj) for xi,xj from some finite set of points. It allows
judging the validity of the kernel: Particularly, if the Gram matrix is a positive semi-definite
matrix (PSD matrix, see Definition 8) for every finite set of data points, κ is a kernel.

An important class of kernels is stationary kernels. These kernels are functions of
∥x− x′∥, i.e., invariant to translation in the input space, and the dependence on x,x′

can be written as κ(x,x′) = κs(∥x − x′∥). A common stationary kernel is a squared
exponential kernel, also known as Gaussian kernel:

κSE(x,x
′) = σ2

s exp

(
− ∥x− x′∥2

2l

)
. (2.6)

l is the so-called length-scale that carries the function smoothness per dimension in Rd

and σ2
s is the signal variance that determines the variation of function values from the

mean. We can conclude several facts about the Gaussian kernel from Eq. (2.6). First, the
covariance function decays with ∥x − x′∥ → ∞, i.e., intuitively, the further the points
are, the less their function values correlate. Second, it is infinitely differentiable; thus, it
imposes a strong smoothness assumption on the modeled function. Such strong smooth-
ness assumptions might be unrealistic in practice, and another example of a stationary
kernel imposing weaker assumptions is Matérn kernel [RW06] widely applied in practice.
Formally, Matérn kernel with smoothness parameters ν is defined as follows:

κMat(x,x
′) =

21−ν

Γ(ν)

(√
2ν
∥x− x′∥

l

)ν

Kν

(√
2ν
∥x− x′∥

l

)
, (2.7)

where l again denotes the length-scale, Γ and Kν denote the gamma and modified Bessel
function, respectively. Intuitively, the larger parameter ν results in smoother functions,
and in its limit, i.e., as ν →∞, the Matérn kernel coincides with the squared exponential
kernel. Beyond Euclidean spaces, kernels can be defined over various structured domains
such as spaces of graphs, groups, and lists [Bor+21; Hut+21; Bor+22].

Gaussian process posterior In the general case of arbitrary stochastic processes, com-
putation of the posterior distribution such as in Eq. (2.5) is not possible. GPs are an
exception allowing the posterior to be computed in the closed form we derive below.
Without loss of generality, let us assume that the prior mean of a GP is zero everywhere.
This is a common assumption, though practical knowledge of a problem might moti-
vate a particular choice. Let us also assume the observation model from Eq. (2.1) with
i.i.d. noise ξ ∼ N (0, σ2

ξ ) and Dt = {(x1, y1), . . . , (xt, yt)} be a dataset of noise-perturbed
function evaluations. Then, the posterior distribution of f(x) is a Gaussian distribution,
N (µt(x), σ

2
t (x)), with mean, variance and covariance defined as follows:

µt(x) = kt(x)
T(Kt + σ2

ξI)
−1y1:t, (2.8)

σ2
t (x) = κt(x,x), (2.9)
κt(x,x

′) = κ(x,x′)− kt(x)
⊤(Kt + σ2

ξI)
−1kt(x

′). (2.10)
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Here kt(x) = [κ(x1,x), . . . , κ(xt,x)]
⊤, Kt = [κ(x,x′)]x,x′∈Dt and I ∈ Rt×t are the covari-

ance and identity matrices, respectively.
The posterior distribution above concludes the main components of the GP regression

for a given kernel κ. Essentially, GP regression can be viewed as a Bayesian linear
regression with a possibly infinite number of features. Particularly, following the definition,
we have κ(x,x′) = ⟨ϕ(x), ϕ(x′)⟩ that defines a way to go from the explicit computation of
the feature vectors ϕ(·) and their inner product to the implicit computation of κ(·, ·), and
back. In order to construct a set of features corresponding to some kernel, one can use
Mercer’s theorem of eigenfunction expansion for the kernel. Replacing the inner product
of features with a kernel function is known as kernel trick, and it allows the modeled
function to be represented in some infinite-dimensional Hilbert space while requiring only
a finite amount of computation. We discuss the connection to the Hilbert spaces in more
detail in Section 2.3.

Credible intervals

“It ain’t what you do not know that gets you into
trouble. It is what you know for sure that just ain’t
so."

— Mark Twain

In the Bayesian setting, we quantify uncertainty by a range of values from the posterior
probability distribution that covers, for example, 95% of the probability – this is called
a 95% credible interval. For example, a 95% credible interval at a time t and some
point x can be computed based on the posterior Gaussian distribution in Eq. (2.5). So
far, we have considered regression only, and later in the thesis, we focus on sequential
decision-making where the learner’s decision to acquire the subsequent evaluation depends
on past observations and the obtained probabilistic model. This requires the credible
intervals to be valid for a random stopping time, i.e., anytime valid, which is in contrast
to being valid at a single moment of time. To this end, time-uniform concentration
inequalities have been used, resulting in sequences of valid time-uniform confidence sets.

This section introduces the notion of calibrated credible intervals and an example
of setting it up. In literature, some particular examples of applying it to sub-Gaussian
families include [Abb12] for linear bandits, [DMP18] for kernel regression, and [KK18]
in bandits with heteroscedastic noise. Deriving anytime valid confidence intervals is an
actively developing area, e.g., [WR20; Cho+22].

Consider an unknown function f(x) modeled by a GP as introduced in Section 2.2.1.
Intuitively, the model is said to be calibrated if it covers the function f jointly over
the whole domain of x ∈ X with high probability. Formally, we say the model with
the posterior mean µt(x) and variance σ2

t (x) is well-calibrated with respect to f if the
corresponding credible intervals are well-calibrated as defined below:

Definition 1 (Calibrated credible intervals). Let µt−1(x) and σt−1(x) be the posterior
mean and posterior standard deviation of the predictive distribution for the function f(x).
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We say that the credible interval [µt−1(x)− βtσt−1(x), µt−1(x) + βtσt−1(x)] is calibrated
with δ ∈ (0, 1) with respect to f over input set X , if there exist a sequence {βt}t≥0 with
βt = βt(δ) and βt ∈ R≥0, such that jointly ∀t ≥ 0 and ∀x ∈ X we have

P
(
|µt−1(x)− f(x)| ≤ βtσt−1(x)

)
≥ 1− δ. (2.11)

The definition above states that one should provide a sequence of {βt} to build an
anytime-valid calibrated model. This sequence depends on both the input domain X , δ,
and the assumption on the function f . As an example, consider the following lemma for
a function f(x) being a GP sample:

Lemma 1 ([Sri+10]). Let X be finite and δ ∈ (0, 1). For each t define βt =
√

2 log(|X |πt/δ)
where

∑
t≥1 π

−1
t = 1, πt > 0. Then, with probability at least 1− δ, for all x ∈ X and t ≥ 1

we have |µt−1(x)− f(x)| ≤ βtσt−1(x).

Lemma 1 gives an example of how the sequence of calibrated credible intervals looks.
Later in the thesis, in Chapter 3, this lemma is the key to obtaining convergence guarantees
for Bayesian optimization, and we discuss it in more detail later.

The following two sections consider the following questions: (1) Can we go beyond
the Bayesian assumption? and (2) How can we measure the complexity of learning the
function? Particularly, so far, we assumed that f is a random function sampled from a
GP (0, κ), i.e., the Bayesian setting. Section 2.3 considers the frequentist setting in which
one assumes that f is an arbitrary fixed function. In any of the two settings, we naturally
expect that as we acquire more evaluations, the confidence bounds shrink, i.e., as t→∞:
|µt(x)− f(x)| → 0, ∀x ∈ X . Section 2.4 introduces the measure of information gain that
quantifies how much we can reduce the uncertainty in the model from a finite sample set.
Later, we use the information gain in convergence guarantees in sequential decision-making.

2.3 Non-Bayesian setting: Reproducing kernel Hilbert spaces

This section considers the frequentist setting in which the unknown function f is an
arbitrary fixed function estimated from the observed data. Without further assumptions,
inferring a reasonable underlying function from the data is impossible. The frequentist
approach looks at the regression problem from a regularization perspective, i.e., penalizing
the complexity of the function. For example, the least squares estimator with regularization
R(f) over data {xi, yi}ti=1 is defined as follows:

f̂t = argmin
f∈F

t∑
i=0

(
f(xi)− yi

)2
+R(f). (2.12)

This section introduces the complexity defined by the value of the function norm in
a reproducing kernel Hilbert spaces. In short, reproducing kernel Hilbert spaces are a
particularly useful and rich family of hypothesis spaces that allow for elegant and efficient
learning problems. The section discusses the close connection between RKHSs and GPs,
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where the latter is used as a model, and how the credible intervals obtained from Bayesian
posterior match frequentist confidence intervals.

Let F(X ) be a vector space of real-valued functions over a compact set X . A Hilbert
space H(X ) ⊂ F(X ) is a vector space endowed with an inner product ⟨·, ·⟩ : H×H → R
that is complete with respect to the norm defined by the inner product ∥f∥ = ⟨f, f⟩1/2.
Hilbert spaces allow us to apply finite-dimensional linear algebra for infinite-dimensional
spaces of functions, e.g., completeness of the space guarantees convergence of some al-
gorithms. Reproducing kernel Hilbert spaces (RKHS, [RW06; Wah90]) is of particular
interest and is formally defined as follows:

Definition 2 (RKHS). A Hilbert space Hκ(X ) ⊂ F(X ) with inner product ⟨·, ·⟩κ is called
reproducing kernel Hilbert space (RKHS) if two properties hold: (i) existence of the rep-
resenter κ(x,x′) ∈ Hκ(X ) ∀x′ ∈ X ; (ii) reproducing property ⟨f, κ(·,x)⟩κ = f(x), ∀f ∈
Hκ(X ).

Intuitively, the definition says that for any x, there exists a function κx living in the
space Hκ, so-called representer of Hκ, such that evaluating any f from that space at x

corresponds to the inner product with the representer. Importantly, any RKHS uniquely
defines a reproducing kernel and vice versa, i.e., a kernel defines a unique RKHS. For
more details, we refer to Section A.2.

The induced RKHS norm measures the smoothness, or complexity, of a function
f ∈ Hκ(X ), which the following reasoning can intuitively explain. Since any function
can be expanded as f(x) =

∑∞
i=0 αiκ(x,xi), αi ∈ R,x,xi ∈ X , its norm can be written

as ∥f∥2κ = ⟨f, f⟩κ =
∑∞

i=1 αiαjκ(xi,xj). Then, intuitively, the complexity of f and the
value of its norm are related through the coefficients {αi}∞i=0 as how fast αi values should
converge to zero as i→∞.

With such an intuition on the RKHS norm, we can write the regularized problem
Eq. (2.12) over the hypothesis space f ∈ Hk with a kernel-dependent penalization
R(f) = ∥f∥κ. Similar to kernels that impose smoother samples from a GP in the Bayesian
setup, a larger penalty ∥ · ∥κ corresponds to RKHS with smoother functions in the
frequentist setup. But how do we find a solution for such a regularized problem? The
representer theorem [SHS01] provides a way to find a (unique) solution for Eq. (2.12) in the
(potentially) infinite-dimensional RKHS in a compact and computable way: representing
the function via the finite sum over the training points, i.e., f̂t(x) =

∑t
i=0 αiκ(x,xi).

Intuitively, we represent the minimizer f̂ ∈ Hκ as a finite linear combination of the kernel
terms living in Hκ.

The following Section 2.3.1 explains how this minimizer relates to the GP posterior,
allowing the use of the same Bayesian posterior updates (2.8) and (2.9)for modeling an
unknown function f ∈ Hκ. In addition, the latter allows for setting valid confidence
bounds for the function based on the GP posterior, which we discuss in Section 2.3.2.

2.3.1 Relation between RKHS and Gaussian processes

We would like to model a function f ∈ Hκ with a prior GP(0, κ) and use the nice machinery
of GPs introduced so far in Section 2.2.1. There is, however, a trick when using them for
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RKHS functions. On the one hand, the assumption of f being a sample from a GP , i.e.,
f ∼ GP (0, κ), leads to (almost surely) unbounded norm ∥f∥κ ([Wah90]). On the other
hand, the smoothness assumption on f in RKHS is imposed via the fixed value of the norm
in RKHS ∥f∥κ ≤ B,B > 0. That leads to the fact that the function sets under a-priori
Bayesian assumption and frequentist assumptions do not intersect. However, GP posterior
mean is, in fact, κ-norm bounded, and thus, both the Bayesian and frequentist smoothness
assumptions reflect similar smoothness properties of the kernel. That allows modeling
unknown f ∈ Hκ with prior f ∼ GP (0, κ) though the prior is actually misspecified. This
relation between RKHS and GPa is used in proofs in the thesis. Below, we provide the
norm bounds for the samples and the mean that explain the gap.

RKHS norm for the samples. First, we show the unbounded RKHS norm for the GP
samples. Let the function be a sample from a GP f ∼ GP (0, κ). Following Mercer’s
theorem, the kernel κ of the prior can be represented via eigenfunctions expansion
{ϕi}∞i=0 as κ(x,x′) =

∑∞
i=0 λiϕi(x)ϕi(x

′). Then, the function f can be represented as
f =

∑∞
i=0 fiϕi(x) with the coefficients fi ∼ N (0, λi). Then, the expectation of the function

norm can be written as

E∥f∥2κ = E⟨f, f⟩κ =
∞∑
i=0

Ef 2
i

λi
=

∞∑
i=0

λi
λi

and it is unbounded for any kernel with an infinite number of non-zero eigenvalues. Since
the norm ∥f∥κ equals to ∞ almost surely, the function f sampled from a GP does not
belong to the space Hκ. Intuitively, it states that the sample paths from GPs are rougher
than RKHS functions.

RKHS norm for the mean. In contrast to the samples, the GP posterior mean has a
bounded norm. In particular, we can show that for the optimization problem Eq. (2.12)
with the RKHS norm regularization, the posterior µt(x) in Eq. (2.8) coincides with
the estimator f̂t. Following the representer theorem, let’s write the solution as f̂t(x) =∑t

i=0 αiκ(x,xi) and reformulate the problem in terms of the multipliers {αi}ti=0. Then
solving the problem leads to the minimizer

α̂ = (κt + σξI)
−1y1:t.

This solution coincides with GP the posterior mean. Since the representation sum for f̂t
is finite, µt resides in Hκ and allows for modeling a function f ∈ Hκ with Gaussian prior
GP(0, κ).

2.3.2 Confidence intervals

The described relation between the RKHS and GP kernels allows for building frequentist
confidence intervals for the unknown f . Since the estimator f̂t in Eq. (2.12) coincides with
the posterior mean, the key is to set the confidence parameter βt in Eq. (2.11) to ensure
that f remains within the confidence bounds f̂t(x)± βt+1σt(x) for any t ≥ 0. Similar to
the Bayesian setting, below, we provide an example for the sequence of βt to build an
anytime-valid calibrated model.
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Lemma 2 ([Sri+10]). Let δ ∈ (0, 1). For each t define βt = 2∥f∥2k +300γt ln
3(t/δ). Then,

with probability at least 1− δ, for all x and t we have |µt−1(x)− f(x)| ≤ βtσt−1(x).

Lemma 2 uses an essential notion of information gain γt – a measure that quantifies
the speed at which we learn about f and directly relates to the complexity of the kernel
function κ. We talk about this notion in the following section below.

2.4 Information gain

We are interested in how fast the uncertainty about f is reducing from revealing the
evaluations. To measure this, we rely on information theory, which studies how to quantify
information about the unknown value one can gain from observing another correlated
value. That leads to the notion of information gain, which becomes a measure of the
complexity of learning the unknown function from its noisy evaluations.

The amount of uncertainty about a random variable can be expressed by the information-
theoretic measure, its entropy, denoted as H(·). Consider H(·) for a set of random function
values f1:t = [f(x1), . . . , f(xt)]

⊤. Formally, the definition of entropy for a joint probability
density function p(·) is given as follows:

H(f1:t) = E[− log p(f1:t)]. (2.13)

Conditional entropy H(f1:t|y1:t) conditioned on the evaluations y1:t is defined in the same
spirit. Intuitively, it expresses the amount of uncertainty about f1:t left after observing
their realizations; in other words, what y1:t does not tell about f1:t. These two measures,
H(f1:t) and H(f1:t|y1:t), allow quantifying the amount of information one can gain about
the function values f1:t once observing the corresponding noisy evaluations y1:t, which is
known as information gain. Particularly, it is measured by mutual information I(y1:t, f1:t)

([CT06]) defined as follows:

I(y1:t, f1:t) ≜ H(f1:t)−H(f1:t|y1:t). (2.14)

Mutual information is a symmetric function that can also be rewritten the other way
around as I(y1:t, f1:t) ≜ H(y1:t)−H(y1:t|f1:t). This general information-theoretic measure
is valid in both the Bayesian (f is a sample from a GP) and frequentist (f lives in an
RKHS) settings; however, its further computation depends on the model choice. In the
case of modeling f with a Gaussian process with posterior GP(µt−1(x), σ

2
t−1(x)) defined

in (2.8) and (2.9) under Gaussian homoscedastic noise, ξ i.i.d∼ N (0, σ2
ξ ), the information

gain can be expressed in terms of the predictive variances:

I(y1:t, f1:t) =
1

2
log det(I+ σ−1

ξ Kt)
1

2
=

t∑
i=1

log(1 + σ−2
ξ σ2

t−1(xi)). (2.15)

Intuitively, the resulting value reveals the informativeness of points x1:t since the value of
I(y1:t, f1:t) depends only on the inputs x1:t but not on the corresponding evaluations.

The complexity of learning the unknown function f with a given GP(0, κ) is then
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quantified by the maximum amount of information that we could get about the function
from a set x1:t of evaluations:

γt := max
x1:t⊂X

I(y1:t, f1:t). (2.16)

We refer to γt as the maximum information gain. It is a problem-dependent quantity
relying on the properties of both the choice of kernel κ and the input space X . The
scaling of maximum information gain is known under both the Bayesian and frequentist
settings. In case of X ∈ Rd and homoscedastic noise, the upper bounds on γt for widely
used kernels are provided in [Sri+10] and typically scale sublinearly in t, e.g., for linear
kernel γt = O(d log t), and in case of squared exponential kernel γt = O(d logd+1 t). We
make use of these bounds in the thesis. In case of the non-standard settings with other
data-generating assumptions, such as heteroscedasticity in noise [Mak+21b], or new
kernels, such as neural tangent kernel [KK21], these bounds should be shown separately.
We discuss how to prove the bounds in the case of risk-aware heteroscedastic Bayesian
optimization in Chapter 3.

The quantity of maximum information gain will be particularly interesting in the next
section, where we introduce Bayesian optimization. In the following, we are interested not
only in performing inference (regression) for the unknown function f but also in iteratively
deciding about the next inputs to evaluate the function on.

2.5 Bayesian Optimization

In this section, we focus on Bayesian optimization and online decision-making. In online
learning problems, an agent needs to learn on the fly how to choose optimal actions. The
crux of these problems is the explore-exploit trade-off: the agent needed to balance increas-
ing the knowledge about the unknown and maximizing performance based on the collected
knowledge. In this section, we introduce Bayesian optimization – a well-established
paradigm for such problems that can naturally incorporate the exploration-exploitation
trade-off.

Bayesian optimization (BO; [Moč75]) refers to a family of sequential model-based
optimization methods for costly-to-evaluate, complex, black-box objectives. The unknown
function is a black box providing no information about gradients and is only accessible
through point evaluations. Moreover, the functions are usually complex, meaning they are
non-convex and multimodal. Finally, each point evaluation comes with a price, measured
in time or budget, motivating for methods effective under small dataset settings. BO is a
well-established paradigm successfully applied to many scientific domains, such as drug
and material discovery [Kor+19; GH20; NFP11], genetics [Gon+15; Mos+20], robotics
[BKS16; Cal+16; Mar+16], hyperparameter tuning of complex learning systems [Kir+19;
Che+18; SLA12a], to name a few.

BO algorithms leverage two components: (i) a probabilistic function model, that encodes
the belief about f based on the observations available, and (ii) an acquisition function that
helps to navigate the queries of new inputs. Intuitively, the acquisition function expresses
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the informativeness of any input x ∈ X about the location of the optimizer x∗. Thus, based
on the probabilistic model of f , we query the best input measured by the acquisition func-
tion, then update the model with the observation and repeat this procedure. Algorithm 1
describes a generic loop for implementing BO. The effectiveness of such a sequential pro-
cedure is measured by some performance metric. In the following, we describe these three
building blocks: the probabilistic model, acquisition function, and performance metrics.

Algorithm 1 Generic Bayesian optimization
Input: Objective f , prior model p(f), acq. function α(·), budget T
Initialize data D0 = ∅
for t = 1, . . . , T do

Select input xt = argmaxx∈X α(x|Dt−1)
Acquire output yt = f(xt) + ξ(xt)
Augment data Dt = Dt−1 ∪ {(xt, yt)}
Compute posterior p(f |Dt)

end for
Output: reported solution x̂T

2.5.1 Probabilistic model

Using prior knowledge about the objective function to design a model specifically tailored
to the problem can lead to faster convergence in Bayesian optimization. This is because
a very general, non-parametric function class has a larger hypothesis space, which can
make it more difficult to find the optimal function. On the other hand, using a simpler,
parametric function class can make the optimization process more efficient. This is
because Occam’s Razor, a principle in statistics, suggests that the simplest model that is
sufficiently accurate for the problem should be used. Therefore, it is important to carefully
consider the statistical model chosen for optimization, as it can be more influential on the
efficiency of the process than the acquisition function [Sha+16].

Gaussian processes

The most common option is to use a Gaussian process prior f ∼ GP(0, κ) for some
pre-defined kernel κ. One main reason for using a GP model is the ability to conveniently
perform probabilistic inference that we discuss in detail in Section 2.2.1.

In addition to the inference, in practice, one has to decide on the hyperparameters of
the GP, e.g., length-scale in Gaussian kernel Eq. (2.6). Let us denote the set of parameters
as θ. From the Bayesian perspective, it seems natural to introduce prior distributions
over the hyperparameters, so-called hyper-prior p(θ). Following the Bayesian inference,
as given the collected data x1:t,y1:t, we can write down the posterior distribution over
the hyperparameters as

p(θ|y1:t,x1:t) =
p(y1:t, |x1:t, θ)p(θ)

p(y1:t, |x1:t)
. (2.17)
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Given this hyper-posterior, one can consider two approaches: being fully Bayesian, i.e.,
incorporating the hyper-posterior further in the predictive distribution for y, or using a
point estimate of the hyperparameters. The latter is usually more pragmatic from the
computational reasons than fully Bayesian. A common practical choice for hyperparame-
ters estimation is the maximum a posteriori (MAP) estimate computed by maximizing the
numerator of Eq. (2.17). Alternatively, one can use Markov Chain Monte Carlo (MCMC)
methods to draw the samples from the hyper-posterior.

The main drawback of GPs is their computational complexity since the posterior
inference scales cubically with the number of collected evaluations d. Particularly, this
complexity is caused by the inversion of the covariance matrix perturbed by noise variance
Eq. (2.10). On the one hand, this inversion time might be neglected compared to the
time-consuming evaluation of the objective function. On the other hand, we might be
interested in faster inference, especially in cases where we can collect more function
evaluations at a descent time cost. For example, in Chapter 4, we apply BO for functions
that can be evaluated at different fidelities, so-called multi-fidelity BO, where we can
access less accurate but less time-consuming function evaluations.

In contrast, Bayesian linear regression Eq. (2.3) and consequently the Bayesian linear
regression with features ϕ(x) ∈ Rm, scales in the number of features m. Random Fourier
features (RFF) are a way to return from the kernel representation to the feature representa-
tion, i.e., finding the feature map ϕ(x) : X → Rm such that κ(x,x′) ≈ ϕ(x)⊤ϕ(x′). RFFs
are proven to be effective for large-scale kernel methods and have also been successfully
applied in BO [Jen+17; Per+17].

Neural networks

One of BO’s main challenges is to develop more scalable and flexible methods while
still accurately accounting for model uncertainties. This is necessary because BO relies
on a principled treatment of model uncertainties. GP models perform well in small-
scale settings, are well-studied, and have proven to enjoy guarantees for calibration,
concentration, and learning complexity rates. In contrast, models based on probabilistic
neural networks are less theoretically understood but often perform better at a larger
scale.

To address the small-scale limitation, alternative methods that adaptively learn the
feature expansion in a data-driven fashion were proposed, for example, DNGO [SLA12b]
and BOHAMIANN [Spr+16]. They have a more efficient computational complexity in
terms of data set size compared to traditional GP models. Specifically, the computational
cost of inference scales linearly with the number of data points for both models. DNGO
is a Bayesian linear model with features learned by a feed-forward neural network. BO-
HAMIANN follows fully Bayesian neural network computing the predictive distribution by
marginalizing the weights with stochastic Hamiltonian Monte Carlo sampling (sampling
from the weights posterior). The uncertainty estimates, however, produced by GPs are
generally better, and both methods can be interpreted as approximations of a GP.

Some recent uncertainty estimation techniques for deep neural networks include en-
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semble methods, heteroscedastic regression, and concrete dropout [LPB17; GG16], where
the focus is on variance as a proxy of epistemic uncertainty. Alternatively, Jain, Lahlou,
Nekoei, Butoi, Bertin, Rector-Brooks, Korablyov, and Bengio [Jai+22] propose a direct
estimation of epistemic uncertainty by training a secondary learner to predict the model’s
generalization error and subtracting an estimate of aleatoric uncertainty. When the
models need to be re-calibrated after training, a simple re-calibration of Bayesian and
non-Bayesian models was proposed by Kuleshov, Fenner, and Ermon [KFE18].

Common assumptions for probabilistic models in BO The vast majority of previous
BO works assume (sub-) Gaussian and homoscedastic noise (i.e., input independent and of
some known fixed level). Both assumptions can be restrictive in practice. For example, as
demonstrated in [Cow+21], most hyperparameter tuning tasks exhibit heteroscedasticity.
A few works relax the first assumption and consider, e.g., heavy-tailed noise models
[RG19a], and adversarially corrupted observations [BKS20]. The second assumption
is typically generalized via heteroscedastic Gaussian process (GP), allowing an explicit
dependence of the noise distribution on the evaluation points [BGL18; Bog+16; Bin+19;
KK18]. Similarly, in Chapter 3, we consider heteroscedastic GP models, but unlike the
previous works, we specifically focus on the risk associated with querying and reporting
noisy points.

2.5.2 Acquisition functions

The goal of the acquisition function is to simultaneously learn about inputs that are
likely to be optimal and about poorly explored regions of the input space, i.e., to trade-
off exploitation against exploration. Thus, BO reduces the original hard black-box
optimization problem to a series of cheaper problems

xt ∈ argmax
x∈X

αt(x). (2.18)

A great number of different acquisition functions have been developed over the years,
including a significant number of variants of popular algorithms such as GP-UCB [Sri+10],
Expected Improvement [Moč75], and Thompson Sampling [CG17]. Below, we discuss
these methods in more detail.

Optimism in the face of uncertainty

Optimism in the face of uncertainty ([LR85b]) is a general paradigm for many stochastic
online learning problems, e.g., various bandit problems, Bayesian optimization, and online
reinforcement learning problems ([Abb12; Sri+10]). The principle tackles the exploration-
exploitation dilemma by maintaining a confidence set for the unknown value of interest
and choosing an action based on the optimistic estimate.

Bayesian methods use the multi-armed bandit problem formulation and exploit the
notion of confidence bounds around the posterior mean to define a region that includes f
with high probability. These are celebrated methods for regret minimization, including
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the class of Gaussian process upper confidence bound (GP-UCB) algorithms [Sri+10],
which suggests selecting the point with the highest upper confidence bound, i.e.,

αGP-UCB
t (x) = µt−1(x) + βtσt−1(x). (2.19)

Thus, the exploration-exploitation dilemma is implemented by balancing the posterior
mean and posterior variance. Particularly, the strategy is to favor a point xt that max-
imizes both expected value based on the current belief of f , µ(xt), which promotes
exploitation, and the uncertainty in the outcome, posterior variance σ2(xt), which en-
courages exploration. The parameter βt > 0 optimally balances the trade-off between
exploration and exploitation to minimize cumulative regret.

Improvement-based acquisition

Improvement-based approaches rely on the concept of making progress towards the optimal
solution and use the notion of improvement over the current optimum. Two common
policies in this category are the probability of improvement (PI; [Kus64]) and expected
improvement (EI; [Moč75]). Let the current best solution found among all previously
evaluated points Dt be denoted as f(x∗

t ) and defined by

x∗
t = argmax

x∈Dt

f(x) . (2.20)

PI suggests maximizing the probability of improving over the current best, i.e.,

αPI
t (x) = P (f(x) ≥ f(x∗

t−1)) = Φ

(
µt(x)− f(x∗

t−1)

σt(x)

)
(2.21)

where Φ(·) denotes the Gaussian cumulative distribution function. One major limitation
is that PI focuses solely on exploitation, which may lead to being stuck at local maxima
because it lacks an exploration component. Some variations of PI address this issue by
introducing a trade-off parameter [BCD10] to balance exploitation and exploration.
EI is an alternative to PI, which estimates the value of the improvement instead of the
probability:

αEI
t (x) = E[max{0, f(x)− f(x∗

t )}|Dt−1] = (µt(x)− f(x∗
t )) Φ(Z) + σt(x)ϕ(Z)

with Z ≜ µt(x)−f(x∗
t )

σt(x)
and where Φ(·) and ϕ(·) denote the Gaussian cumulative distribution

function and probability distribution function, respectively. Intuitively, EI is high for the
inputs expected to yield a high payoff and for those with high predicted uncertainty. This
allows for a balance between exploitation and exploration. The EI criterion can also be mod-
ified by including a parameter that controls the exploration/exploitation trade-off [BCD10].

Information-theoretic acquisition

Information-theoretic approaches aim at reducing as much as possible the entropy of the
distribution over the optimizer/optimum of the objective, respectively. In other words,
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they aim to identify the input that maximizes the corresponding expected information
gain Eq. (2.14). These approaches include entropy search (ES) [HS12] and predictive
entropy search (PES) [HHG14]. These methods use the negative differential entropy of the
posterior probability distribution as a measure of information about the global maximum
and select the point that maximizes the expected reduction in this quantity. Formally,
they can be written as:

αES
t (x) = H[p(x∗

t |x1:t−1)]− E[H[p(x∗
t |x1:t−1,x)]] (2.22)

where H[·] denotes the differential entropy Eq. (2.13) and the expectation is taken with
respect to the posterior predictive distribution of y given xt. The acquisition function for
these approaches can be difficult to evaluate directly. Hence, ES uses approximations while
PES reformulates the acquisition function in terms of the mutual information between
the global maximum and the predicted output, resulting in an acquisition function based
on the entropies of predictive distributions.

Max-value Entropy Search (MES; [WJ17]) is another approach to deal with the scal-
ability in high-dimensional problems: instead of looking at the entropy of a variable
x∗ ∈ X ⊂ Rd, the authors propose to look at a max-value point y∗ = f(x∗) ∈ R. Formally,
let x∗ and y∗ denote the true optimizer and optimum in a noiseless setting, respectively,

x∗ = argmax
x∈X

f(x), y∗ = f(x∗).

MES quantifies the informativeness of a point x using the gain in mutual information
between the minimum y∗ and the pair {x, y} with the evaluation y = f(x). Since the
mutual information I(·, ·) is symmetrical, we can write by two equivalent formulations:

I({x, y}; y∗|Dt) = H[p(y∗|Dt)]− Ey(H[p(y∗|Dt ∪ {x, y}))] = (2.23)
I(y∗; {x, y}|Dt) = H[p(y|Dt,x)]− Ey∗ [H[p(y|Dt,x, y

∗)]]. (2.24)

The expectation in (2.23) and (2.24) are taken over p(y|Dt,x) and p(y∗|Dt) respectively.
Eq. (2.23) has an intuitive interpretation: the utility of a candidate x is equal to the
expected reduction in entropy obtained by querying y = f(x) for the distribution over
the optimum y∗. Though Eq. (2.23) is more intuitive, MES uses the equivalent definition
in Eq. (2.24) as it has an effective approximation. The expectation over p(y∗|Dt) is
approximated with a Monte Carlo estimate by sampling M function optima y∗

E
[
H[p(y|Dt,x, y

∗)]
]
≈ 1

M

∑
y∗

H[p(y|Dt,x, y
∗)].

Thus, the first term H[p(y|Dt,x)] of Eq. (2.24) can be computed in a closed form for
the entropy of a Gaussian univariate variable. For the second term, note that p(y|Dt,x, y

∗)

is distributed as a truncated Gaussian since y ≤ y∗. Thus, it can be computed in a closed
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form, leading to the following approximation:

αMES(x) ≈ 1

M

∑
y∗

[
γy∗(x)ψ(γy∗(x))

2Ψ(γy∗(x))
+ log(Ψ(γy∗(x))

]
, (2.25)

where ψ and Ψ indicate the probability density function and the cumulative density function
of the standard Gaussian distribution respectively, and γy∗(x) = y∗−µt(x)

σt(x)
. Finally, the ap-

proximation Eq. (2.25) requires sampling the optima y∗ and there are two alternative meth-
ods: (1) using the Gumbel distribution [Fis30] and (2) using Thompson sampling ([Tho33]).

Sampling-based acquisition

Finally, Thompson sampling (TS) [Tho33; Tho35] is an acquisition function that involves
sampling an input with probability proportional to the likelihood that this input is the
optimal solution for the objective function. Particularly, TS samples a function f̃t from
the predictive posterior distribution p(f |Dt) and then selects the point that maximizes
this sampled function, i.e.:

αTS
t (x) = f̃t(x). (2.26)

2.5.3 Performance metrics

The convergence of the sequential optimization is assessed by the two metrics cumulative
regret and simple regret. The notion of regret comes from multi-armed bandit literature.

Cumulative regret: Let x∗ be an optimizer of the unknown function, i.e., x∗ ∈
argmaxx∈X f(x). Then cumulative regret over a time horizon T is given as the to-
tal loss in the value of the objective function f at a sequence of observation points x1:T

compared to the global maximum:

RT =
T∑
t=1

[
f(x∗)− f(xt)

]
. (2.27)

Simple regret: The simple regret of an algorithm at any stopping time T is a measure
of how far the value of the reported solution x̂T is from the true optimal solution f(x∗).
In general, the reported point might differ from the point xT acquired at the iteration T .
Formally, the simple regret is defined as

rT = f(x̂T )− f(x∗). (2.28)

Intuitively, the simple regret measures how good the algorithm predicts the optimum at the
iteration T . This metric is useful for problems in which the learner seeks to simultaneously
minimize the number of expensive function evaluations T while still finding a solution
that is close to the optimal one. Namely, for a given accuracy ϵ ≥ 0, we often wish to
report a single "good" point x̂T ∈ X after a total of T rounds, that satisfies the following
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inequality:
f(x̂T ) ≥ f(x∗)− ϵ. (2.29)

Both metrics, i.e. cumulative regret and simple regret, are important for choosing
solutions, and which one is preferred depends on the application at hand. For example,
cumulative regret RT might be of greater interest in online recommendation systems while
reporting a single point with a high function value might be more suitable when tuning
machine learning hyperparameters. We consider both metrics in the thesis.
The desired asymptotic behavior of a BO algorithm is a sublinear growth of RT with T ,
also called no regret that implies vanishing average regret

lim
T→∞

RT

T
= 0.

Intuitively, this implies the existence of some t such that f(xt) is arbitrarily close to the
optimal value f(x∗). The regret analysis of BO algorithms typically consists of two main
components: (1) confidence bound for random processes and (2) bound on the maximum
information gain.

2.5.4 Review of some theoretical results

In the dissertation, particularly the methods proposed in Chapter 3 and Chapter 5,
enjoy convergence guarantees under some regularity assumptions. The well-known upper
confidence bound strategy with Gaussian processes is known to have regret guarantees
in different settings [Sri+10; Abb12; CG17]. We provide one of the main regret results
for the Bayesian setting from [Sri+10] below:

Theorem 1 ([Sri+10], Theorem 1). Let the objective f ∼ GP(0, κ) and X be finite. Pick
δ ∈ (0, 1) and let βt be defined as in Lemma 1. When running GP-UCB Eq. (2.19) with
the prior GP(0, κ) and known noise model, the following holds with probability at least
1− δ for any T ≥ 1:

RT ≤
√
C1TβTγT , (2.30)

where C1 = 8/ log(1 + σ−2).

In the case of Thomson sampling, the frequentist regret guarantees for multi-armed
bandits are known in the linear case [AL+17] (Theorem 1) and for RKHS function [CG17].

2.5.5 In the context of sequential decision-making research

To this point, we have considered the Bayesian formalism being used for Bayesian opti-
mization, i.e., optimizing the unknown function of interest f : X → R. Here we talk about
closely-related setups of sequential decision-making, namely multi-armed bandits and
reinforcement learning, and discuss BO within their context. The motivation to introduce
those comes from the rich cross-connections between the setups and, thus, the methods
to approach them. Consequently, the related literature is frequently cited and discussed
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throughout the dissertation. Many successful BO approaches such as kernelized methods
[Sri+10; CG17] are inspired by seminal works in the bandits literature, e.g., [LR85a; AL+17;
AG13]. Some of the BO methods in this dissertation are also inspired by theoretically
justified approaches from bandits literature. We do not delve into much detail about the
setups here, and for a more in-depth treatment, refer to, for example, [SB18; LS20; Sli19].

Reinforcement learning (RL) deals with the problem of teaching an agent to make a
sequence of decisions in an environment in order to maximize a reward. The agent learns
through trial and error, receiving positive or negative feedback in the form of rewards or
penalties for its actions. The mathematical formulation of reinforcement learning can be
given via the (e.g., discrete-time) Markov decision process – a stochastic process consisting
of a set of states S, actions A, and transition probabilities between states p : S ×S ×A →
[0, 1], together with a reward r : S × A → R and a discount factor γ ∈ (0, 1) that
determines the importance of future rewards in relation to current rewards. The goal is
to maximize the expected cumulative return, i.e., the total discounted reward accumulated
over the interactions. To this end, it employs a control policy π : S → A that assigns a
probability of taking a particular action in some state. Obviously, different policies yield
different state trajectories and, therefore, different rewards. To maximize the expected
cumulative reward, the agents should balance the exploration-exploitation trade-off.

The multi-armed bandit (MAB) problem is a classic problem that involves an agent
trying to maximize its reward by choosing between multiple options, so-called arms, each
of which has an associated probability distribution of rewards. The multi-armed bandit
problem can be viewed as a simple reinforcement learning problem, in which there is no
variable state, i.e., |S| = 1, while in general RL, the action choice can influence transitions
between the states. In this case, the reward function is the expected reward for each arm,
and the agent’s policy is the probability of selecting each arm.

In Bayesian optimization, like in the multi-armed bandit problem, there is no state
transition, i.e., |S| = 1. Compared to BO, however, the classical MAB formulation assumes
no correlation between the arms, i.e., sampling one arm says nothing about the other.
For example, this shared information in BO is treated by the Gaussian process’s kernel
that encodes the correlation between the arms. Similarly to RL and MAB, we seek the
exploration-exploitation trade-off that naturally requires proper uncertainty quantification
to decide on action. The latter is performed via acquisition policy, designated by the
acquisition function in the case of Bayesian optimization. In contrast to RL, where the
ultimate goal is maximizing cumulative (discounted) reward, BO also addresses problems
where not only cumulative performance matters but a single solution must be provided by
the end of the optimization, as discussed in Section 2.5.3. Finally, Bayesian optimization
is powerful in small-data regimes where we do not have at least millions of data points
but tens; that might not always be the case for the general RL framework.

Conclusion

In conclusion, this chapter has provided the necessary mathematical background and
literature review relevant to the thesis. The first part of the chapter introduced Bayesian
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inference and types of uncertainties, Gaussian processes, reproducing kernel Hilbert spaces,
and information capacity. The second part of the chapter focused on Bayesian optimization
and described the main building blocks and performance metrics, along with existing
theoretical results and open challenges. This overview sets the foundation for addressing
the global optimization problems that we consider in the following chapters of the thesis.
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CHAPTER3
Risk-averse decision-making

Many black-box optimization tasks arising in high-stakes applications require risk-
averse decisions. Bayesian optimization is a powerful framework for optimizing costly
black-box functions from noisy zeroth-order evaluations. Classical BO approaches are
typically risk-neutral as they seek to optimize the expected function value only. However,
optimization without taking input noise input noise can lead to catastrophic decisions
when subjected to input noise at the implementation stage. For example, when designing
a new drug, we might prefer compounds that would perform well not only on average
over the population but would minimize the variance of the worse results. Similarly, when
selecting hyperparameters of a machine learning algorithm, we might prefer configurations
that lead to slightly higher test errors but at the same time lead to smaller variance.

In the chapter, we study attempts to make Bayesian optimization risk-aware and
risk-averse. On the methodological side, we generalize BO to trade off mean and input-
dependent noise variance when sequentially querying points and outputting final solutions.
We introduce a practical setting where both the black-box objective and input-dependent
noise variance are unknown a priori, and the learner needs to estimate them on the
fly. We propose a novel optimistic risk-averse algorithm that makes sequential decisions
by simultaneously balancing between exploration (learning about uncertain actions),
exploitation (choosing actions that lead to high gains), and risk (avoiding unreliable
actions). This chapter is based on our paper "Risk-averse Heteroscedastic Bayesian
Optimization" [Mak+21b].

29



(a) Unknown objective f (b) Unknown variance ρ2

0.0 0.5 1.0 1.5
Variance 2(x0, x1)

Em
pi

ric
al 

fre
qu

en
cy

C B A

RAHBO = 1
GP-UCB
RAHBO-US = 1

(c) Histogram of variance

Figure 3.1: When there is a choice between identical optima with different noise levels, standard BO
tends to query points corresponding to higher noise. (a) The unknown objective with 3 global maxima
marked as (A, B, C); (b) Heteroscedastic noise variance over the same domain: the noise level at (A,
B, C) varies according to the sigmoid function; (c) Empirical variance distribution at all points acquired
during BO procedure (over 9 experiments with different seeds). The three bumps correspond to the three
global optima with different noise variances. RAHBO dominates in choosing the risk-averse optimum,
consequently yielding lower risk-averse regret in Figure 3.5a.

3.1 Risk-aversion in sequential decision-making

While the focus of standard BO approaches is mainly on trading-off exploration vs. ex-
ploitation and optimizing for the expected performance, in this work, we additionally
focus on the risk that is involved when working with noisy objectives, as illustrated
in Figure 3.1. Several works have recently considered robust and risk-averse aspects
in BO. Their central focus is on designing robust strategies and protecting against the
change/shift in uncontrollable covariates. They study various notions including worst-case
robustness [Bog+18], distributional robustness [Kir+20; Ngu+20a], robust mixed strate-
gies [Ses+20] and other notions of risk-aversion [IIT21; Cak+20; Ngu+21b], and while
some of them report robust regret guarantees, their focus is primarily on the robustness in
the homoscedastic GP setting. Instead, in our setting, we account for the risk that comes
from the realization of random noise with unknown distribution. Rather than optimizing
the expected performance, in our risk-averse setting, we prefer inputs with lower variance.
To this end, we incorporate the learning of the noise distribution into the optimization
procedure via a mean-variance objective. The closest to our setting is risk-aversion with
respect to noise in multi-armed bandits [SLM12]. Their approach, however, fails to exploit
correlation in rewards among similar arms.

The robust decision-making in BO is developing rapidly bringing new methods such as
Bayesian optimization of risk measures [Ngu+21a] or multi-objective BO method that is
robust to input noise [Dau+22]. The awareness of risk has been the focus of the research in
general sequential-decision making problems beyond BO, such as in multi-armed bandits
[VZ16; SLM12; GST13], and in RL [MT11; MA12]. The mean-variance approach in MDPs
[MT11] formalizes risk-aware reinforcement learning as a multi-objective RL. In [MA12],
the authors proceed by considering an exponential utility function, that (when rewritten
as Taylor expansion) covers all the moments of the desired utility function (e.g., mean and
variance). Fei, Yang, Chen, Wang, and Xie [Fei+20] demonstrate the first regret analysis
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of the method that implements risk-sensitive optimism in the face of uncertainty for the
exponential utility function in RL.

Objective Probabilistic model
(noise assumptions)

max
x∈X

f(x) homoscedastic sub-Gaussian

BO of risk measures [Cak+20; IIT21]:
max
x∈X

CVaRαf(x, c)

max
x∈X

VaRαf(x, c)

Distributionally robust BO [Kir+20; Ngu+20b]: heavy-tailed [RG19b]
max
x∈X

max
Q∈U

Ec∈Q[f(x, c)]

Worst-case robust BO [Bog+18; Ngu+20b]:
max
x∈X

min
c∈∆

f(x, c)

Aversness to noise [Mak+21b]: heteroscedastic sub-Gaussian
max
x∈X

[f(x)− αρ2(x)] [KK18; BGL18]

Table 3.1: Research directions in risk-aware Bayesian optimization.

Our Contributions. We propose a novel algorithm that generalizes BO to trade mean
and input-dependent variance of the objective, both of which we assume to be unknown
a priori. In particular, we introduce risk-averse heteroscedastic Bayesian optimization
algorithm (RAHBO) that aims to identify a solution with high return and low noise
variance, while learning the noise distribution on the fly. To this end, we model both
expectation and variance as (unknown) RKHS functions and propose a novel risk-aware
acquisition function. The core idea of our approach is to combine the classical optimistic
principle and careful estimation of the confidence intervals to trade off the expectation
and uncertainty of the mean-variance objective function.

In our theoretical analysis, we establish rigorous sublinear regret guarantees for our
algorithm (Theorem 1). These results also provide a non-trivial trade-off between the
sample complexity and a better estimation of the noise model. We also provide a robust
reporting rule and the number of samples required to output a single near-optimal
risk-averse solution (Corollary 1). In Section 3.4, we demonstrate the effectiveness of
RAHBO on synthetic benchmarks, as well as on hyperparameter tuning tasks for the
Swiss free-electron laser and a machine learning model.

3.2 Problem Formulation

Let X be a given compact set of inputs (X ⊂ Rd for some d ∈ N). We consider a problem
of sequentially interacting with a fixed and unknown objective f : X → R. At every round
of this procedure, the learner selects an action xt ∈ X , and obtains a noisy observation

yt = f(xt) + ξ(xt), (3.1)
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where ξ(xt) is zero-mean noise independent across different time steps t. In this work, we
consider sub-Gaussian heteroscedastic noise that depends on the query location.

Optimization objective. Unlike the previous works that mostly focus on sequential
optimization of f in the homoscedastic noise case, in this work, we consider the trade-off
between risk and return in the heteroscedastic case. While there exist a number of
risk-averse objectives, we consider the simple and frequently used mean-variance objective
(MV) [SLM12]. Here, the objective value at x ∈ X is a trade-off between the (mean)
return f(x) and the risk expressed by its variance-proxy ρ2(x):

MV(x) = f(x)− αρ2(x), (3.2)

where α ≥ 0 is a so-called coefficient of absolute risk tolerance. In this work, we assume
α is fixed and known to the learner. In the case of α = 0, maximizing MV(x) coincides
with the standard BO objective.

Performance metrics. We aim to construct a sequence of input evaluations xt that
eventually maximizes the risk-averse objective MV(x). To assess this convergence, we
consider two metrics. The first metric corresponds to the notion of cumulative regret
similar to the one used in standard BO and bandits Eq. (2.27). Here, the learner’s goal
is to maximize its risk-averse cumulative reward over a time horizon T , or equivalently
minimize its risk-averse cumulative regret :

RT =
T∑
t=1

[
MV(x∗)−MV(xt)

]
, (3.3)

where x∗ ∈ argmaxx∈X MV(x).
The second metric is used when the learner seeks to simultaneously minimize the

number of expensive function evaluations T . Namely, for a given accuracy ϵ ≥ 0, we
report a single "good" risk-averse point x̂T ∈ X after a total of T rounds, that satisfies:

MV(x̂T ) ≥ MV(x∗)− ϵ. (3.4)

Regularity assumptions. We consider standard smoothness assumptions [Sri+10;
Bog+18] when it comes to the unknown function f : X → R. In particular, we assume that
f(·) belongs to a reproducing kernel Hilbert space (RKHS) Hκ, i.e., f ∈ Hκ, induced by a
kernel function κ(·, ·). We also assume that κ(x,x′) ≤ 1 for every x,x′ ∈ X . Moreover,
the RKHS norm of f(·) is assumed to be bounded ∥f∥κ ≤ Bf for some fixed constant
Bf > 0. We assume that the noise ξ(x) is ρ(x)–sub-Gaussian with variance-proxy ρ2(x)
uniformly bounded ρ(x) ∈ [ϱ, ϱ̄] for some constant values ϱ̄ ≥ ϱ > 0.

3.3 The RAHBO Algorithm

We first recall the Gaussian process (GP) based framework for sequential learning of RKHS
functions from observations with heteroscedastic noise. Then, in Section 3.3.2, we consider
a simple risk-averse Bayesian optimization problem with known variance-proxy, and later
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on in Section 3.3.3, we focus on our main problem setting in which the variance-proxy
is unknown.

3.3.1 Bayesian optimization with heteroscedastic noise

Before addressing the risk-averse objective, we briefly recall the standard GP-UCB al-
gorithm ([Sri+10]) in the setting of heteroscedastic sub-Gaussian noise. The regularity
assumptions permit the construction of confidence bounds via GP model. Particularly,
to decide which point to query at every round, GP-UCB uses the posterior GP mean
and variance denoted by µt(·) and σ2

t (·), respectively. They are computed based on the
previous measurements y1:t = [y1, . . . , yt]

⊤ and the given kernel κ(·, ·) :

µt(x) = κt(x)
T (Kt + λΣt)

−1y1:t, (3.5)

σ2
t (x) =

1

λ

(
κ(x,x)− κt(x)⊤(Kt + λΣt)

−1κt(x)
)
, (3.6)

where Σt := diag(ρ2(x1), . . . , ρ
2(xt)), (Kt)i,j = κ(xi, xj), κt(x)

T = [κ(x1,x), . . . , κ(xt,x)]
T ,

λ > 0 and prior modelling assumptions are ξ(·) ∼ N (0, ρ2(·)) and f ∼ GP (0, λ−1κ).
At time t, GP-UCB maximizes the upper confidence bound of f(·), i.e.,

xt ∈ argmaxx∈X µt−1(x) + βtσt−1(x)︸ ︷︷ ︸
=:ucbft (x)

. (3.7)

If the noise ξt(xt) is heteroscedastic and ρ(xt)-sub-Gaussian, the following confidence
bounds hold:

Lemma 3 (Lemma 7 in [KK18]). Let f ∈ Hκ, and µt(·) and σ2
t (·) be defined as in (3.5)

and (3.6) with λ > 0. Assume that the observations (xt, yt)t≥1 satisfy Eq. (3.1). Then the
following holds for all t ≥ 1 and x ∈ X with probability at least 1− δ:

|µt−1(x)− f(x)| ≤
(√

2 ln

(
det(λΣt +Kt)1/2

δ det(λΣt)1/2

)
+
√
λ∥f∥κ

)
︸ ︷︷ ︸

:=βt

σt−1(x). (3.8)

Here, βt stands for the parameter that balances between exploration vs. exploitation
and ensures the validity of confidence bounds. The analogous concentration inequalities
in case of homoscedastic noise were considered in [Abb12; CG17; Sri+10].

Failure of GP-UCB in the risk-averse setting. GP-UCB is guaranteed to
achieve sublinear cumulative regret with high probability in the risk-neutral (homoscedas-
tic/heteroscedastic) BO setting [Sri+10; CG17]. However, for the risk-averse setting in
Eq. (3.2), the maximizers x∗ ∈ argmaxx∈X MV(x) and x∗f ∈ argmaxx∈X f(x) might not
coincide, and consequently, MV(x∗) can be significantly larger than MV(x∗

f ). This is illus-
trated in Figure 3.1, where GP-UCB most frequently chooses optimum A of the highest risk.
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3.3.2 Warm up: Known variance-proxy

We remedy the previous issue with GP-UCB by proposing a natural Risk-averse Het-
eroscedastic BO (RAHBO) in case of the known variance-proxy ρ2(·). At each round t,
RAHBO chooses the action:

xt ∈ argmaxx∈X µt−1(x) + βtσt−1(x)− αρ2(x), (3.9)

where βt is from Lemma 3 and α is from Eq. (3.2). In the next section, we further relax
the assumption of the variance-proxy and consider a more practical setting when ρ2(·) is
unknown to the learner. For the current setting, the performance of RAHBO is formally
captured in the following proposition.

Proposition 1. Consider any f ∈ Hκ with ∥f∥κ ≤ Bf and sampling model from Eq. (3.1)
with known variance-proxy ρ2(x). Let {βt}Tt=1 be set as in Lemma 3 with λ = 1. Then,
with probability at least 1 − δ, RAHBO attains cumulative risk-averse regret RT =

O
(
βT
√
TγT (ϱ̄2 + 1)

)
.

Here, γT denotes the maximum information gain [Sri+10] at time T defined in Eq. (2.16)
via mutual information I(y1:T , f1:T ) between evaluations y1:T and f1:T = [f(x1), . . . , f(xt)]

⊤

at points A ⊂ X . In case of heteroscedastic noise, the maximum information gain can
be written as follows:

γT := max
A⊂X , |A|=T

I(y1:T , f1:T ), (3.10)

where I(y1:T , f1:T ) =
1

2

T∑
t=1

ln
(
1 +

σ2
t−1(xt)

ρ2(xt)

)
(3.11)

We provide the derivation in Section B.1.1. The upper bounds on γT are provided in
[Sri+10] widely used kernels. These upper bounds typically scale sublinearly in T ; for lin-
ear kernel γT = O(d log T ), and in case of squared exponential kernel γT = O(d(log T )d+1).
While these bounds are derived assuming the homoscedastic GP setting with some
fixed constant noise variance, we show (in Section B.1.3) that the same rates (up to a
multiplicative constant factor) apply in the heteroscedastic case.

3.3.3 RAHBO for unknown variance-proxy

In the case of unknown variance-proxy, the confidence bounds for the unknown f(x)

in Lemma 3 can not be readily used, and we construct new ones on the combined
mean-variance objective. To learn about the unknown ρ2(x), we make some further
assumptions.

Assumption 1. The variance-proxy ρ2(x) belongs to an RKHS induced by some kernel
κvar, i.e., ρ2 ∈ Hκvar , and its RKHS norm is bounded ∥ρ2∥κvar ≤ Bvar for some finite
Bvar > 0. Moreover, the noise ξ(x) in Eq. (3.1) is strictly ρ(x)–sub-Gaussian, i.e.,
Var[ξ(x)] = ρ2(x) for every x ∈ X .

34



Algorithm 2 Risk-averse Heteroscedastic Bayesian Optimization (RAHBO)

Require: Parameters α, {βt, βvar
t }t≥1, λ, k, Prior µf

0 = µvar
0 = 0, Kernel functions κ, κvar

1: for t = 1, 2, . . . do
2: Construct confidence bounds ucbvart (·) and lcbvart (·) as in (3.14) and (3.15)
3: Construct ucbft (·) as in Eq. (3.7)
4: Select xt ∈ argmaxx∈X ucbft (x)− α lcbvart (x)
5: Observe k samples: yi(xt) = f(xt) + ξi(xt) for every i ∈ [k]
6: Use samples {yi(xt)}ki=1 to compute sample mean m̂k(xt) and variance ŝ2k(xt) as in Eq. (5.2)

7: Use xt, ŝ
2
k(xt) to update posterior µvar

t (·) and σvar
t (·) as in (B.15) and (B.16)

8: Use ucbvart (·) to compute Σ̂t as in Eq. (3.16)
9: Use xt, m̂k(xt) and Σ̂t to update posterior µt(·) and σt(·) as in (3.5) and (3.6)

10: end for

As a consequence of our previous assumption, we can now focus on estimating the
variance since Var[ξ(·)] and ρ2(·) coincide. In particular, to estimate Var[ξ(·)] we consider
a repeated experiment setting, where for each xt we collect k > 1 evaluations {yi(xt)}ki=1,
yi(xt) = f(xt) + ξi(xt). Then, the sample mean and variance of ξ(xt) are given as:

m̂k(xt) =
1

k

k∑
i=1

yi(xt) and ŝ2k(xt) =
1

k − 1

k∑
i=1

(
yi(xt)− m̂k(xt)

)2
. (3.12)

The key idea is that for strictly sub-Gaussian noise ξ(x), ŝ21:t = [ŝ2k(x1), . . . , ŝ
2
k(xt)]

⊤

yields unbiased, but noisy evaluations of the unknown variance-proxy ρ21:t = [ρ2(x1), . . . , ρ
2(xt)]

⊤,
i.e.,

ŝ2k(xt) = ρ2(xt) + η(xt) (3.13)

with zero-mean noise η(xt). In order to efficiently estimate ρ2(·), we need an additional
assumption.

Assumption 2. The noise η(x) in Eq. (3.13) is ρη(x)–sub-Gaussian with known ρ2η(x)

and the realizations {η(xt)}t≥1 are independent between t.

We note that a similar assumption is made in [SLM12] in the multi-armed bandit
setting. The fact that ρ2η(·) is known is rather mild as Assumption 1 allows controlling
its value. For example, in case of strictly sub-Gaussian η(x) we show (in Section B.2)
that Var[η(·)] = ρ2η(·) ≤ 2ρ4(·)/(k − 1). Then, given that ρ2(·) ≤ ϱ̄2, we can utilize the
following (rather conservative) bound as a variance-proxy, i.e., ρ2η(x) = 2ϱ̄4/(k − 1).

RAHBO algorithm. We present our Risk-averse Heteroscedastic BO approach for
unknown variance-proxy in Algorithm 2. Our method relies on building the following two
GP models.

Firstly, we use sample variance evaluations ŝ21:t to construct a GP model for ρ2(·). The
corresponding µvar

t−1(·) and σvar
t−1(·) are computed as in (3.5) and (3.6) by using kernel κvar,

variance-proxy ρ2η(·) and noisy observations ŝ21:t. Consequently, we build the upper and
lower confidence bounds ucbvar

t (·) and lcbvar
t (·) of the variance-proxy ρ2(·) and we set βvar

t
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according to Lemma 3:

ucbvar
t (x) := µvar

t−1(x) + βvar
t σvar

t−1(x), (3.14)
lcbvar

t (x) := µvar
t−1(x)− βvar

t σvar
t−1(x). (3.15)

Secondly, we use sample mean evaluations m̂1:t = [m̂k(x1), . . . , m̂k(xt)]
⊤ to construct

a GP model for f(·). The mean µt(·) and variance σ2
t (·) in (3.6) and (3.5), however, rely

on the unknown variance-proxy ρ2(·) in Σt, an we thus use its upper confidence bound
ucbvar

t (·) truncated with ϱ̄2:

Σ̂t :=
1
k
diag

(
min{ucbvar

t (x1), ϱ̄
2}, . . . ,min{ucbvar

t (xt), ϱ̄
2}
)
, (3.16)

where Σ̂t is corrected by k since every evaluation in m̂1:t is an average over k samples.
This substitution of the unknown variance-proxy by its conservative estimate guarantees
that the confidence bounds ucbf

t (x) := µt−1(x) + βtσt−1(x) on f also hold with high
probability (conditioning on the confidence bounds for ρ(·) holding true; see Section B.3
for more details).

Finally, we define the acquisition function as ucbMV
t (x) := ucbf

t (x)− αlcbvar
t (x), i.e.,

selecting xt ∈ argmaxx∈X ucbMV
t (x) at each round t.

The proposed algorithm leads to new maximum information gains γ̂T = maxA I(m̂1:T , f1:T )

and ΓT = maxA I(ŝ
2
1:T , ρ

2
1:T ) for sample mean m̂1:T and sample variance ŝ21:T evaluations.

The corresponding mutual information in γ̂T and ΓT is computed according to Eq. (3.11)
for heteroscedastic noise with variance-proxy ϱ̄2/k and ρ2η, respectively (see Section B.4).
The performance of RAHBO is captured in the following theorem.

Theorem 1. Consider any f ∈ Hκ with ∥f∥κ ≤ Bf and sampling model in Eq. (3.1) with
unknown variance-proxy ρ2(x) that satisfies Assumptions 1 and 2. Let {xt}Tt=1 denote
the set of actions chosen by RAHBO (Algorithm 2) over T rounds. Set {βt}Tt=1 and
{βvar

t }Tt=1 according to Lemma 3 with λ = 1, R2 = maxx∈X ρ
2
η(xt) and ρ(·) ∈ [ϱ, ϱ̄]. Then,

the risk-averse cumulative regret RT of RAHBO is bounded as follows:

Pr

{
RT ≤ βTk

√
2T γ̂T

ln(1 + k/ϱ̄2)
+ αβvar

T k

√
2TΓT

ln(1 +R−2)
, ∀T ≥ 1

}
≥ 1− δ. (3.17)

The risk-averse cumulative regret of RAHBO depends sublinearly on T for most of
the popularly used kernels. This follows from the implicit sublinear dependence on T in
βT , β

var
T and γ̂T ,ΓT (the bounds in case of heteroscedastic noise replicate the ones used

in Proposition 1 as shown in Sections B.1.2 and B.1.3). Finally, the result of Theorem 1
provides a non-trivial trade-off for the number of repetitions k where larger k increases
sample complexity but also leads to better estimation of the noise model. Furthermore, we
obtain the bound for the number of rounds T required for identifying an ϵ-optimal point:

Corollary 1. Consider the setup of Theorem 1. Let A = {xt}Tt=1 denote actions selected
by RAHBO over T rounds. Then, with probability at least 1 − δ, the reported point
x̂T := argmaxxt∈A lcbMV

t (xt), where lcbMV
t (xt) = lcbf

t (x) − α ucbvar
t (x), achieves ϵ-
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accuracy, i.e., MV(x∗) − MV(x̂T ) ≤ ϵ, after T ≥ 4β2
T γ̂T / ln(1+k/ϱ̄2)+4α(βvar

t )2ΓT / ln(1+R−2)

ϵ2

rounds.

The previous result demonstrates the sample complexity rates when a single risk-averse
reported solution is required. We note that both Theorem 1 and Corollary 1 provide
guarantees for choosing risk-averse solutions, and depending on application at hand, we
might consider either one of the proposed performance metrics. We demonstrate use-cases
for both in the following section.

3.4 Experiments

In this section, we experimentally validate RAHBO on two synthetic examples and two
real hyperparameter tuning tasks, and compare it with the baselines. We provide an
open-source implementation of our method.1

Baselines. We compare against two baselines: As the first baseline, we use GP-UCB
with heteroscedastic noise as a standard risk-neutral algorithm that optimizes the unknown
f(x). As the second one, we consider a risk-averse baseline that uniformly learns variance-
proxy ρ2(x) before the optimization procedure, in contrast to RAHBO which learns the
variance-proxy on the fly. We call it RAHBO-US, standing for RAHBO with uncertainty
sampling. It consists of two stages: (i) uniformly learning ρ2(x) via uncertainty sampling,
(ii) GP-UCB applied to the mean-variance objective, in which instead of the unknown
ρ2(x) we use the mean of the learned model. Note that RAHBO-US is the closest to the
contextual BO setting [IIT21], where the context distribution is assumed to be known.

Experimental setup. At each iteration t, an algorithm queries a point xt and observes
sample mean and sample variance of k observations {yi(xt)}ki=1. We use a heteroscedastic
GP for modelling f(x) and a homoscedastic GP for ρ2(x). We set λ = 1 and βt = 2,
which is commonly used in practice to improve performance over the theoretical results.
Before the BO procedure, we determine the GP hyperparameters maximizing the marginal
likelihood. To this end, we use initial points that are same for all the baselines and are
chosen via Sobol sequence that generates low discrepancy quasi-random samples. We
repeat each experiment several times, generating new initial points for every repetition.
We use two metrics: (a) risk-averse cumulative regret Rt computed for the acquired inputs;
(b) simple regret MV(x∗)−MV(x̂T ) computed for inputs as reported via Corollary 1. For
each metric, we report its mean ± two standard errors over the repetitions.

3.4.1 Synthetic experiments

Example function We first illustrate the methods performance on a sine function
depicted in Figure 3.2a. This function has two global optimizers. We induce a het-
eroscedastic zero-mean Gaussian noise on the measurements. We use a sigmoid function
for the noise variance, as depicted in Figure 3.2a, that induces small noise on [0, 1] and
higher noise on (1, 2]. We initialize the algorithms by selecting 10 inputs x at random and

1https://github.com/Avidereta/risk-averse-hetero-bo
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(a) Illustration of the sine function (left) and noise variance (right)
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Figure 3.2: (a) Unknown true objective along with noisy evaluations with varying noise level (left) and
unknown true noise variance and its evaluations (right). (b) Cumulative regret. (c) Simple MV regret for
reporting rule x̂T = argmaxxt

lcbT (xt). (c) Simple regret f(x∗)− f(x̂T ) for the unknown function at
the reported point x̂T from (d). RAHBO not only leads to strong results in terms of MV but also in
terms of the mean objective f(x).

Figure 3.3: GP models fitted for GP-UCB (left) and RAHBO (right) for sine function. After
initialization with the same sampled points, GP-UCB concentrates on the high-noise region whereas
RAHBO prefers small variance. Additional plots are presented in Chapter C.

keep these points the same for all the algorithms. We use k = 10 samples at each chosen
xt. The number of acquisition rounds is T = 60. We repeat the experiment 30 times for
each method and show their average performances in Figure 3.2.

Branin benchmark Next, we evaluate the methods on the (negated) Branin bench-
mark function in Figure 3.1a, achieving its optimum value
f ∗ = −0.4 at (−π, 12.3), (π, 2.3), (9.4, 2.5). The heteroscedastic variance function illus-
trated in Figure 3.1b defines different noise variances for the three optima. We initialize all
algorithms by selecting 10 inputs. We use k = 10 samples to estimate the noise variance.
The number of acquisition rounds is T = 150. We repeat BO 25 times and show the results
in Figures 3.5a and 3.1c. Figure 3.1c provides more intuition behind the observed regret:
UCB exploits the noisiest maxima the most, while RAHBO prefers smaller variance.
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3.4.2 Tuning Swiss free-electron laser

In this experiment, we tune the parameters of Swiss X-ray free-electron laser (SwissFEL),
an important scientific instrument that generates very short pulses of X-ray light and
enables researchers to observe extremely fast processes. The main objective is to maximize
the pulse energy measured by a gas detector, that is a time-consuming and repetitive task
during the SwissFEL operation. Such (re-)tuning takes place while user experiments on
SwissFEL are running, and thus cumulative regret is the metric of high importance in
this application.

We use real SwissFEL measurements collected in [Kir+19] to train a neural network
surrogate model, and use it to simulate the SwissFEL objective f(x) for new parameter
settings x. We similarly fit a model of the heteroscedastic variance by regressing the
squared residuals via a GP model. Here, we focus on the calibration of the four most
sensitive parameters.

We report our comparison in Figure 3.4 where we also assess the effect of varying the
coefficient of absolute risk tolerance α. We use 30 points to initialize the baselines and then
perform 200 acquisition rounds. We repeat each experiment 15 times. In Figure 3.4a we
plot the empirical frequency of the true (unknown to the methods) values f(xt) and ρ2(xt)

at the inputs xt acquired by the methods. The empirical frequency for ρ2(x) illustrates
the tendency of risk-neutral GP-UCB to query points with higher noise, while risk-averse
achieves substantially reduced variance and minimal reduction in mean performance.
Sometimes, risk-neutral GP-UCB also fails to succeed in querying points with the highest
f -value. That tendency results in lower cumulative regret for RAHBO in Figures 3.4c
and 3.4d. We also compare the performance of the reporting rule from Corollary 1 in
Figure 3.4b, where we plot error bars with standard deviation both for f(x̂T ) and ρ2(x̂T )

at the reported point x̂T . As before, RAHBO drastically reduces the variance compared
to GP-UCB, while having only slightly lower mean performance. Additional results are
presented in Figure C.5 in the Appendix (see Chapter B).

3.4.3 Random Forest tuning

BO is widely used by cloud services for tuning machine learning hyperparameters and
the resulting models might be then used in high-stakes applications such as credit scoring
or fraud detection. In k-fold cross-validation, the average metric over the validation sets
is optimized – a canonical example of the repeated experiment setting that we consider
in the paper. High across-folds variance is a practical problem [Mak+21a] where the
mean-variance approach might be beneficial.

In our experiment, we tune hyperparameters of a random forest classifier (RF) on a
dataset of fraudulent credit card transactions [LB21].2 It consists of 285k transactions
with 29 features (processed due to confidentiality issues) that are distributed over time,
and only 0.2% are fraud examples (see Appendix, Section C.2, for more details). The
search space for the RF hyperparameters is also provided in Section C.2. We use the
balanced accuracy score and 5 validation folds, i.e., k = 5, and each validation fold is

2https://www.kaggle.com/mlg-ulb/creditcardfraud
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(a) Empirical distribution of true f(x) (left) and ρ2(x) (right) for SwissFEL
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Figure 3.4: Experimental results for SwissFEL: (a) Distributions of f(x) and ρ2(x) for all points
queried during the optimization. GP-UCB queries points with higher noise (but not necessarily high
return f) in contrast to the risk-averse methods. (b) Mean f(x̂T ) and variance ρ2(x̂T ) at the reported
x̂T = argmaxxt

lcbT (xt): for each method, we repeat BO experiment 15 times (separate points) and plot
corresponding standard deviation error bars. RAHBO reports solutions with reasonable mean-variance
tradeoff, while GP-UCB produces solutions with high mean value but also high noise variance. (c-d)
Cum. regret for α = 0.5 and α = 1 (see more in Section C.3).
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shifted in time with respect to the training data. We seek not only high performance on
average but also low variance across the validation folds that have different time shifts
with respect to the training data.

We initialize the algorithms by selecting 10 hyperparameter settings and keep these
points the same for all algorithms. We use Matérn 5/2 kernels with Automatic Relevance
Discovery (ARD) and normalize the input features to the unit cube. The number of
acquisition rounds in one experiment is 50 and we repeat each experiment 15 times. We
demonstrate our results in Figures 3.5b and 3.5c where we plot mean ± 2 standard errors.
While both RAHBO and GP-UCB perform comparably in terms of the mean error, its
standard deviation for RAHBO is smaller.

(a) Branin benchmark
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Figure 3.5: Branin: (a) Cumulative regret. Random Forest: (b-c) Simple regret for the reported
x̂T = argmaxxt

MV (xt) for (b) α = 20 and (c) α = 100. While both methods have comparable mean,
RAHBO has consistently lower variance.

3.5 Conclusion

In this chapter, we generalize Bayesian optimization to the risk-averse setting and propose
RAHBO algorithm aiming to find an input with both large expected return and small
input-dependent noise variance. Both the mean objective and the variance are assumed
to be unknown a priori and hence are estimated online. RAHBO is equipped with
theoretical guarantees showing (under reasonable assumptions) sublinear dependence on
the number of evaluation rounds T both for cumulative risk-averse regret and ϵ-accurate
mean-variance metric. The empirical evaluation of the algorithm on synthetic benchmarks
and hyperparameter tuning tasks demonstrate promising examples of heteroscedastic use
cases benefiting from RAHBO.
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CHAPTER4
Computationally-effective

Bayesian optimization

Bayesian optimization is particularly useful for expensive-to-evaluate functions. Improving
the computational efficiency of BO is important in a wide range of applications because
it allows us to optimize more complex functions or optimize them more quickly, which
can lead to better solutions or faster turnaround times for optimization tasks. In this
chapter, we explore two approaches that make BO more efficient in practice. First, we
aim at saving computational resources by avoiding unnecessary evaluations and propose
an automatically determining when to stop BO in Section 4.1. Second, we study the
incorporation of multiple sources of information with different costs and accuracies
and propose an information-theoretic method for multi-fidelity BO in Section 4.2. The
methodological contributions of this chapter are particularly driven by the application
needs arising in hyperparameter optimization of ML models and calibrating complex multi-
agent transport systems simulators. We demonstrate the effectiveness of the proposed
approaches through empirical examination in these specific contexts.

4.1 Automatic Termination of Bayesian optimization

While the performance of machine learning algorithms crucially depends on their
hyperparameters, setting them correctly is typically a tedious and expensive task. Hy-
perparameter optimization (HPO) emerged as a new sub-field in machine learning that
tries to automatically determine how to configure a machine learning model. One of the
most successful strategies for HPO is Bayesian optimization which sequentially optimizes
the predictive performance of a model configured with certain hyperparameters. BO
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iteratively searches for better predictive performance via (i) training a probabilistic model
on the evaluations of the models performance and (ii) selecting the most promising next
hyperparameter candidate.

In practice, the quality of the solution found by BO heavily depends on a pre-defined
budget, such as the number of BO iterations or wall-clock time. If this budget is too small,
BO might result into hyperparameters of poor predictive performance. If the budget is
too large, compute resources will be wasted. The latter can be especially fragile in HPO
when one cannot fully reduce the discrepancy between the validation and test errors,
thus resulting in overfitting as we show in our experiments. A naive approach suggests
terminating BO if the best-found solution remains unchanged for some subsequent BO
iterations. Though the idea is sensible, it might be challenging to define a suitable number,
since it is a fixed, predetermined choice, that does not take the observed data into account.
Another approach is to track the probability of improvement ([Lor+16]) or the expected
improvement ([Ngu+17]), and stop the optimization process once it falls below a given
threshold. However, determining this threshold may in practice be less intuitive than
setting the number of iterations or the wall clock time. Instead of stopping BO completely,
in [MRO18], it is proposed to switch to local optimization when the global regret is
smaller than a pre-defined target. This condition can also be used to terminate BO early,
but it comes with additional complexity such as identifying a (convex) region for local
optimization and again a predefined budget.

Automatically terminating the sequential procedure of BO is a rather under-explored
topic, in contrast to the more widely considered orthogonal direction of speeding up HPO
via stopping the model training. A seminal idea there is to avoid the computation of
low-performing hyperparameters, e.g., by learning curves ([SSA14]), multi-fidelity ap-
proach Hyperband ([Li+17]), its combination ([Kle+17]), and further modifications like
Hyperband BOHB ([FKH18]), asynchronous Hyperband ([Li+20]) and its model based
version ([Kle+20]). The profound distinction of our method with this line of works is
in the problem setup: instead of stopping the training, our method aims to terminate
the whole HPO process. This orthogonality allows for a combination of both ways of to
achieve overall larger speed-ups.

Our contributions. In this work, we propose a simple and interpretable automatic
termination criterion for BO. The criterion consists of two main ingredients: (i) high-
probability confidence bound on the regret (i.e., the difference of our current solution
to the global optimum) and (ii) the termination threshold. The first already allows a
user to specify a desired tolerance that defines how accurate should the final solution
be compared to the global optimum. For the case when cross-validation is used, we
recommend a threshold based on the statistical properties of the cross-validation estimator.
This threshold takes into account the irreducible discrepancy between the actual HPO
objective (i.e., performance on new data) and the target function optimized via BO (i.e.,
the validation error). Our extensive empirical evaluation on a variety of HPO and neural
architecture search (NAS) benchmarks suggests that our method is more robust and
effective in maintaining the final solution quality than common baselines. We also surface
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overfitting effects in HPO on both small and large datasets, arguably an overlooked problem,
and demonstrate that our termination criterion helps to mitigate it. This section is based
on our paper "Automatic Termination for Hyperparameter Optimization" [Mak+21a].

4.1.1 Problem Formulation

In this work, we consider the objective f : X → R that we optimize in an iterative manner.
At every step t, we select an input xt ∈ X and observe a noisy output

yt ≜ f(xt) + ξt.

where ξt is assumed to be i.i.d. (sub)-Gaussian noise with some variance σ2
ξ . Here, we focus

on the GP-based probabilistic model f ∼ GP (µ, κ). As observations y1:t = [y1, . . . , yt]
⊤

for the selected inputs Dt = {x1, . . . ,xt} are being collected, they are used to update
the posterior belief of the model defined by the posterior mean µt(x) and variance σ2

t (x)

defined in (2.8) and (2.9). The convergence of BO can be quantified via (simple) regret:

rt := f(x∗
t )− f(x∗), (4.1)

where x∗ is the global optimizer of f and x∗
t = argminx∈Dt

f(x). Specifying adequate
tolerance that defines how small the regret should be to terminate BO is of high importance
as it determines both the quality and the cost of the solution. However, this criterion cannot
be directly evaluated in practice, as the input x∗ and the optimum f(x∗) are not known.

Hyperparameter optimization (HPO) is a classical application for BO. Consider a
supervised learning problem that requires training a machine learning model (e.g., a neural
network)M on some feature-response data points D = {(xi, yi)}ni=1 sampled i.i.d. from
some unknown data distribution P . The model is obtained by running a training algorithm
(e.g., optimizing the weights of the neural network via SGD) on D, both of which depend
on hyperparameters x (e.g., learning rates used, batch size, etc.). We use the notation
Mx(x;D) to refer to the prediction that the model produced byM makes for an input
x, when trained with hyperparameters x on data D. Given some loss function ℓ(·, ·),
the population risk of the model on unseen data points is given by the expected loss
EP [ℓ(y,Mx(x,D))]. The main objective of HPO is to identify hyperparameters x, such
that the resulting model minimizes the population risk:

f(x) = E(x,y)∼P

[
ℓ
(
y,Mx(x,D)

)]
, x∗ = argmin

x∈X
f(x). (4.2)

In practice, however, the population risk cannot be evaluated since P are unknown. Thus,
typically, it is estimated on a separate finite validation set DV drawn from the same
distribution P . Practical HPO focuses on minimizing the empirical estimator f̂(x) of the
expected loss f(x) leading to the optimizer x∗

D:

f̂(x) =
1

|DV |
∑

(xi,yi)∈DV

ℓ
(
yi,Mx(xi,D)

)
, x∗

D = argmin
x∈X

f̂(x). (4.3)
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At its core, BO-based HPO sequentially evaluates the empirical estimator f̂(xt) for
promising hyperparameters xt and terminates after some specified number of BO rounds,
reporting the solution x∗

t = argmin
x∈Dt

f̂(x), where Dt = {x1, . . . ,xt} are the solutions

considered so far. We can define the simple regret for the reported solution w.r.t. the
validation loss by

r̂t := f̂(x∗
t )− f̂(x∗

D). (4.4)

Inconsistency in the optimization objective. Importantly, the true HPO objec-
tive f(x) in Eq. (4.2) and the empirical surrogate f̂(x) in Eq. (4.3) used for tuning by
BO generally do not coincide. Therefore, existing BO approaches may yield sub-optimal
solutions to the population risk minimization, even if they succeed in globally optimizing
f̂(x). This issue, however, is typically neglected in practical HPO, as well as a potential
overfitting to the validation error. In contrast, we propose a termination condition for
BO motivated by the discrepancy in the objectives.

4.1.2 Termination criterion for Hyperparameter Optimization

This subsection firstly motivates why early termination of HPO can be beneficial and then
addresses the following two questions: (1) How to estimate the unknown simple regret
and (2) What threshold of the simple regret can be used to stop HPO.

Motivation for the termination criterion

We start by analysing the effect of optimizing f̂ in lieu of f . We observe that challenges
in optimizing f are both due to the statistical error of the empirical BO objective f̂(x)
and the sub-optimality of the BO candidates, encoded in the simple regret r̂t. The key
insight of the following proposition is that iteratively reducing r̂t to 0 may not bring any
benefits if the statistical error dominates.

Proposition 1. Consider the expected loss f and its estimator f̂ defined, respectively,
in (4.2) and (4.3), and assume the statistical error of the estimator is bounded as ||f̂ −
f ||∞ ≤ ϵst for some ϵst ≥ 0. Let x∗ and x∗

D be their optimizers: x∗ = argminx∈x f(x)

and x∗
D = argminx∈X f̂(x). Let x∗

t be some candidate solution to minx∈X f̂(x) with
sub-optimality in function value r̂t := f̂(x∗

t ) − f̂(x∗
D). Then the gap in generalization

performance f(x∗
t )− f(x∗) can be bounded as follows:

f(x∗
t )− f(x∗) = f(x∗

t )− f̂(x∗
t )︸ ︷︷ ︸

≤ϵst

+ f̂(x∗
t )− f̂(x∗

D)︸ ︷︷ ︸
=r̂t

+ f̂(x∗
D)− f̂(x∗)︸ ︷︷ ︸

≤0

+ f̂(x∗)− f(x∗)︸ ︷︷ ︸
≤ϵst

(4.5)

≤ 2ϵst + r̂t. (4.6)

Moreover, without further restrictions on f , f̂ , x∗
t and x∗, the upper bound is tight.

Proof: The equality in Eq. (4.5) is due to adding and subtracting the same values.
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The inequality in Eq. (4.6) results from the following bounds:

(1) f(x∗
t )− f̂(x∗

t ) ≤ |f(x∗
t )− f̂(x∗

t )| ≤ max
x∈X
|f(x)− f̂(x)| = ||f̂ − f ||∞ ≤ ϵst,

(2) x∗
D = argminx∈X f̂(x) ⇒ ∀x ∈ X : f̂(x∗

D)− f̂(x) ≤ 0 ⇒ f̂(x∗
D)− f̂(x∗) ≤ 0.

■

The proposition bounds the sub-optimality of the target objective f in terms of the
statistical error ϵst and the simple regret r̂t. This naturally suggests terminating HPO at a
candidate x∗

t for which the simple regret r̂t is of the same magnitude as the statistical error
ϵst, since further reduction in r̂t may not improve notably the true objective. However,
neither of the quantities ϵst and r̂t are known.

Below, we propose a termination criterion that relies on estimates of both quantities.
Firstly, we show how to use confidence bounds on f̂(x) to obtain high probability upper
bounds on the simple regret r̂t ([Sri+10; Ha+19]). Secondly, we estimate the statistical
error ϵst in the case of cross-validation ([Sto74; Gei75]) where the model performance is
defined as an average over several training-validation runs. To this end, we rely on the
statistical characteristics (i.e., variance or bias) of such cross-validation-based estimator
that are theoretically studied by [NB03] and [Bay+20].

Building blocks of the termination criterion

Upper bound for the simple regret r̂t. The key idea behind bounding r̂t is that, as
long as the GP-based approximation of f̂(·) is well-calibrated, we can use it to construct
high-probability confidence bounds for f̂(·). In particular, [Sri+10] show that, as long as f̂
has a bounded norm in the reproducing kernel Hilbert space (RKHS) associated with the
covariance function κ used in the GP, f̂(x) is bounded (with high probability) by lower
and upper confidence bounds lcbt(x) = µt(x)−

√
βtσt(x) and ucbt(x) = µt(x)+

√
βtσt(x).

Hereby, βt is a parameter that ensures validity of the confidence bounds (see Section 4.2.3
for practical discussion and ablation study).

Consequently, we can bound the unknown f̂(x∗
t ) and f̂(x∗

D) that define the sub-
optimality r̂t:

r̂t = f̂(x∗
t )− f̂(x∗

D) ≤ min
x∈Dt

ucbt(x)−min
x∈X

lcbt(x) =: r̄t, (4.7)

where the inequality for f̂(x∗
t ) is due to the definition of the reporting rule x∗

t =

argminx∈Dt
f̂(x) over the evaluated points Dt = {x1, . . . ,xt}. We illustrate the idea

with an example in Figure 4.2.
Termination threshold. We showed how to control the optimization error via the

(computable) regret upper bound r̄t above. We now explain when to stop BO, i.e., how
to choose some threshold ϵBO and an iteration T : r̄T ≤ ϵBO. Following Proposition
1, we suggest setting ϵBO to be of similar magnitude as the statistical error ϵst of the
empirical estimator (since smaller regret r̂t is not beneficial when ϵst dominates). In case
of cross-validation being used for HPO, one can estimate this statistical error ϵst and we
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Figure 4.2: Left: Visualization of the upper bound for r̂t. The gap between green and orange lines
is the estimate of the upper bound for r̂t. Right: Illustration of automated BO termination when tuning
MLP on the naval dataset from HPO-Bench ([KH19]) with the BORE optimizer ([Tia+21]).

further discuss how it can be done.
Cross-validation is the standard approach to compute an estimator f̂(x) of the popula-

tion risk. The data D is partitioned into k equal-sized sets D1, . . . ,Dk used for (a) training
the model Mx(·; D−i), where D−i = ∪j ̸=iDi (i.e., training on all but the i-th fold), and
(b) validatingMx(·; Di) on the i-th fold of the data. These two steps are repeated in a
loop k times, and then the average over k validation results is computed.

The statistical error ϵst of an estimator can be characterized in terms of its variance
Varf̂(x) = E[(f̂(x) − Ef̂(x))2] and bias B(x) = E[f̂(x)] − f(x), where the latter can
be neglected in case of cross-validation ([Bay+20]). Though the variance Varf̂(x) of the
cross-validation estimate is generally unknown, [NB03] propose an unbiased estimate for
it. Specifically, for the sample variance (denoted as s2cv) of k-fold cross-validation, a simple
post-correction technique to estimate the variance Varf̂(x) is

Varf̂(x) ≈
(
1

k
+
|Di|
|D−i|

)
s2cv(x), (4.8)

where |Di|, |D−i| are the set sizes. For example, in the case of 10-fold cross-validation we
have Varf̂(x) ≈ 0.21s2cv(x). We are now ready to propose our termination condition in
the following.

Termination condition for BO. Consider the setup of Proposition 1 where f̂(·) is a
cross-validation-based estimator being iteratively minimized by BO. Let x∗

t the solution
reported in round t, and r̄t defined in Eq. (4.7) be the simple regret bound computed at each
iteration t. Let the variance Varf̂(x∗

t ) of the estimator f̂(·) be approximated according to
Eq. (4.8). Then, BO is terminated once:

r̄t <

√
Varf̂(x∗

t ). (4.9)

Intuitively, the termination is triggered once the maximum plausible improvement
becomes less than the standard deviation of the estimate. This variance-based termination
condition adapts to different algorithms or datasets and its computation comes with
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negligible computational cost on top of cross-validation. The pseudo-code for the criterion
is summarised in Algorithm 5. If cross-validation cannot be used or is computationally
prohibitive, the user can define the right-hand side of the termination condition. In this
case, the upper bound on the left-hand side still has an intuitive interpretation: the user
can set the threshold based on their desired solution accuracy. This case is demonstrated
in Figure 4.2, with an example of automatic termination for tuning an MLP.

4.1.3 Experiments

The main challenge of any termination criterion for HPO is to balance between reducing
runtime and performance degradation. We thus study in experiments how the speed-up
gained from different termination criteria affects the final test performance. To this end,
we define two new metrics that account for the trade-off between resources saved and
performance drop and provide a list of reasonable baselines. The code to reproduce the
experimental results is publicly available.1

Baselines. Since automatic BO terminating is a rather under-explored topic, we
consider the following baselines that are, to the best of our knowledge, the only ones
directly related to our method:

• Näive convergence test controlled by a parameter i (referred as Conv-i): stopping BO
if the best observed validation metric remains unchanged for i consecutive iterations.
It is challenging to define a suitable i suitable across different benchmarks since i is
a fixed, predetermined choice that does not consider the observed data (in contrast
to our method that refines the regret estimation). We consider common in practice
values i = {10, 30, 50} and study other values in Appendix, see Section D.2.

• Threshold for Expected improvement (EI; [Ngu+17]): stopping BO once EI drops
below a pre-defined threshold. Choosing a threshold crucially depends on the problem
at hand, e.g., values studied by the original paper result in too aggressive stopping
across a range of our experiments. We thus extend it with a finer-grained grid
resulting in {10−9, 10−13, 10−17}.

• Threshold for Probability of improvement (PI, [Lor+16]): stopping BO once PI
drops below a pre-defined threshold. Similar to EI baseline, we tune the threshold
and use {10−5, 10−9, 10−13}.

Metrics. We measure the effectiveness of a termination criterion via two metrics
quantifying (i) the change in test error on a held-out dataset and (ii) the time saved.
Given a T BO iterations budget, we compare the test error yT after T iterations to the
test error yes after early stopping is triggered. For each experiment, we compute the
relative test error change RYC as

RYC =
yT − yes

max(yT , yes)
. (4.10)

1https://github.com/avidereta/automatic-termination-in-Bayesian-optimization
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This allows us to aggregate the results over different algorithms and datasets, as RYC
∈ [−1, 1] and can be interpreted as follows: A positive RYC represents an improvement in
the test error when applying early stopping, while a negative RYC indicates the opposite.
Similarly, let the total training time for a predefined budget T be tT and the total training
time when early stopping is triggered be tes. Then the relative time change RTC is defined
as

RTC =
tT − tes
tT

(4.11)

indicates a reduction in total training time, RTC ∈ [0, 1]. While reducing training time
is desirable, it should be noted that this can be achieved through any simple stopping
criterion (e.g., consider interrupting HPO with a fixed probability after every iteration).
In other words, the RTC is not a meaningful metric when decoupled from the RYC, and,
thus, both need to be considered in tandem.

Selecting the data for the bound estimate. Since we are only interested in
the upper bound of the simple regret, we conjecture that using only the top-performing
hyperparameter evaluations may improve the estimation quality. To validate this, we
use results of BORE ([Tia+21]) on the naval dataset from HPO-Bench ([KH19]) where
we can quantify the true regret (see subsection 4.1.3). We compute the upper bound by
Eq. (4.7) using three options: 100%, top 50% or top 20% of the hyperparameters evaluated
so far and measure the distance to the true regret (see Figure 4.3). From Figure 4.3,
fitting a surrogate model with all the hyperparameter evaluations poses a challenge for
estimating the upper bound of the regret, which is aligned with recent findings on more
efficient BO with the local probabilistic model, especially for high-dimensional problems
([Eri+19]). Using the top 20% evaluations gives the best upper bound estimation quality
in the median, at the cost of the most under-estimations of the true regret (2553). Our
method would stop too early due to the under-estimation, thus negatively impacting the
RYC score, as shown in Figure 4.3. As a result, we use the top 50% hyperparameters
evaluations for the upper bound estimation throughout this paper.

BO for hyperparameter tuning with cross-validation

We tune XGBoost (XGB; 9 hyperparameters) and Random Forest (RF; 3 hyperparameters)
on 19 small tabular datasets, where we optimize the error rate for classification and root
mean square error for regression, computed via 10-fold cross-validation.

Methods setup. We use a Matérn 5/2 kernel for the GP, and its hyperparameters are
found based on type II maximum likelihood estimation (see Section D.1 for more details).
The termination is triggered only after the first 20 iterations to ensure a robust fit of
GP. We use Eq. (4.8) to compute our stopping threshold, i.e., Varf̂(γ) ≈ 0.21s2cv(γ). We
additionally use empirical scaling 0.5s2cv(γ) to study the effect of varying the magnitude.

Results. We present the RYC-RTC results aggregated across the datasets in Figure 4.4,
Table 4.3 and Figures 4.4 and 4.3 (Appendix Section D.1). The main takeaway from
Figure 4.4 is as follows: more aggressive early stopping might indeed speed up, but it leads
to worse test performance in terms of average and standard deviation over the datasets.
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Figure 4.3: The upper bound estimation quality is affected by the set of hyperparameters evaluations used
in the surrogate model training. Left: Bound quality for using all, top 50% and top 20% hyperparameter
evaluations, measured by the difference between upper bound and true regret. The solid line represents
the median over 50 replicates, the dashed is 20’th quantiles, and the dotted line is 80’th quantiles. The
legend also shows the number of negative differences (the upper bound is smaller than the true regret).
Right: Box plots of RYC scores when using the top 50% and top 20% hyperparameter evaluations under
common thresholds.

In contrast, the desired behavior is the trade-off between RYC and RTC, where lower
RYC error bars are prioritized over lower RTC error bars. In other words, the methods
that adaptively stop BO, i.e., stops when necessary and does not stop when not, are
preferable. Figure 4.4 indicates that our method successfully maintains a high solution
quality across a wide range of scenarios (lower RYC variance) via adapting the termination
to the particular problem (higher variance RTC). The results also show an anticipated
RYC-RTC trade-off for i in Conv-i and thresholds in EI and PI baselines, where the
solution quality improves as the thresholds increase and, consequently, the speed-up drops.
The average RYC results in Table 4.3, however, are dominated by our method.
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Figure 4.4: The mean and standard deviation of RYC and RTC scores for the compared automatic
termination methods when using cross-validation in the hyperparameter evaluation when tuning XGB
(left) and RF (right). The mean value is shown as the large dot, and the standard deviation is shown as
an error bar in both dimensions.
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Neural Hyperparameter and Architecture Search

In these experiments, we study out termination criterion beyond the BO scope, showing
its main advantage of being applicable to any iterative HPO method. In addition, here
we also show how to use our method if cross-validation is unavailable. To demonstrate
this, we apply it to several state-of-the-art methods: TPE ([Ber+11a]), BORE ([Tia+21]),
GP-BO ([SLA12b]) as well as random search (RS) ([BB12]).

Benchmarks. We consider two popular tabular benchmark suites: NAS-HPO-Bench
([KH19]), which mimics the hyperparameter and neural architecture search of multi-layer
perceptrons on tabular regression datasets, and NAS-Bench-201 ([DY20]) for neural archi-
tecture search on image classification datasets. Notice that for NAS-Bench-201, we used
validation metrics to compute RYC instead of test metrics; thus, no positive RYC scores
are observed. We refer to the original paper for a detailed description of these benchmarks.

Methods setup. We consider the following thresholds on the final regret
{0.0001, 0.001, 0.01}, corresponding to a loss of performance of 0.01%, 0.1% and 1%,
respectively. Note that it is easier to set the threshold for our method because it is
a threshold on the regret in the metric space that users aim to optimize, and it gives
more explicit control of this trade-off, thus making it more interpretable. We perform 50
independent runs with a different seed for each method and dataset.

Results. Figure 4.5 and Figure 4.6 show results for BORE, and the rest can be found in
the Appendix, Chapter D. While no method Pareto dominates the others, our termination
criterion shows a similar trend as in Section 4.1.3 by prioritizing accuracy over speed. Users
choose the threshold based on their preference regarding the speed-accuracy trade-off, i.e.,
a higher threshold saves more wall-clock time but potentially leads to a higher drop in
performance.We further show the distribution of true regrets at the stopping iteration
triggered by our method with the considered thresholds on HPO-Bench in Figure 4.6.

From Figure 4.6, with a high threshold of 0.01, all the experiments (4 datasets with 50
replicates) are early stopped by our method, and 41 (20%) experiments end up with true
regret being higher than the threshold. With a low threshold of 0.0001, 112 experiments
are stopped, and 12 (10.7%) experiments end up with true regret above the threshold.
In short, our method achieves 80% to 90% success rate where the true regret is within
the user-defined tolerance.

For every method, we aggregated the scores over datasets with other HPO optimizers
in Figure D.1 (see Section D.2). We can see that the speed up of the convergence check
baseline is affected very mildly by the optimizers while the RYC scores largely depend on
the optimizer: RYC scores with the random search are worse than with BORE. In contrast,
the RYC scores for our termination criterion are similar across optimizers, especially for
smaller thresholds. On the other hand, the speed up for a given threshold tends to vary.
This can be explained by the difference in the optimizer’s performance for example random
search is not as efficient as BORE, and hence the regret is mostly above the stopping
threshold. In summary, while convergence check baselines are by design robust in terms
of time saved, our method is more robust in maintaining the solution quality.
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Figure 4.5: Mean (large dot) and standard deviation (error bar) of RYC and RTC scores for all methods
for HPO-Bench datasets.

Overfitting in BO for Hyperparameter Optimization

Proposition 1 emphasizes an important problem of BO-based HPO: while focusing (and
minimizing) the validation error, we cannot fully reduce the discrepancy between the
validation and test errors. Empirically, we show this might happen when the correlation
between the test and validation errors is low, thus, improvement in validation performance
does not lead to better test results. A particular example of such low correlation in the
small error region is presented in Figure 4.5 (Section D.2) when tuning XGB and Random
Forest on tst-census dataset.

A positive RYC score indicates overfitting in our experiments, showing that the test
error at the terminated iteration is lower than in the final round. We observe positive RYC
scores in both Figure 4.4 and Figure 4.5, one with cross-validation on small datasets and
one with medium-sized datasets. Hence, we would like to raise attention to the possible
overfitting issue that occurs in HPO, for which our method can be used as a plugin to
mitigate overfitting.

4.1.4 Conclusion

Despite the usefulness of hyperparameter optimizations (HPO), setting a budget in ad-
vance remains a challenging problem. In this work, we propose an automatic termination
criterion that can be plugged into many common HPO methods. The criterion uses
an intuitive and interpretable upper bound of simple regret, allowing users explicitly
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Figure 4.6: First three figures from the left show the mean and standard deviation of RYC and RTC
scores for all methods on NAS-Bench-201. Since validation metrics are used in these experiments, no
positive RYC scores are observed. The mean value is shown in the big dot, and the standard deviation is
shown as an error bar in both dimensions. The Figure on the right shows a distribution of true regrets at
the stopping iteration triggered by our method with different thresholds for HPO-Bench.

control the accuracy loss. In addition, when cross-validation is used in the evaluations
of hyperparameters, we propose to use an analytical threshold rooted in the variance of
cross-validation results. The experimental results suggest that our method can be robustly
used across many HPO optimizers. Depending on the user-defined thresholds, with 80%
to 90% chance, our method achieves true regret within that threshold, saving unnecessary
computation and reducing energy consumption. We also observe that overfitting exists
in HPO even when cross-validation is used. We hope our work will draw the attention
of the HPO community to the practical questions of how to set a budget in advance and
mitigate overfitting when tuning hyperparameters in machine learning.

4.1.5 Discussion

The termination criterion we introduce in this work demonstrates promising results in
practice, and we explore principled ways to enhance it. Specifically, (i) we first briefly
discuss its potential beyond HPO, in more general BO applications, and (ii) we examine
ways to improve the statistical characteristics and computational efficiency of the threshold
in the termination criterion.

(i) Applicability of the termination criterion beyond the HPO problem
The automatic termination concept based on Eq. (4.7) can also be applied beyond
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HPO, in cases where BO point evaluations are impaired not only by random noise but also
by some adversarial corruptions ([BKS20]). In the case of HPO, such an adversarial cor-
ruption is characterized by the discrepancy between the true objective and the computable
target that leads to the Eq. (4.6). Similarly, in a general case, such an adversarially-
corrupted setup relies on the objective f , its estimator f̂ , and the bounded statistical
error of the estimator ∥f − f̂∥ ≤ ϵst for some ϵst ≥ 0. The only HPO-specific part is the
well-studied estimation of ϵst for cross-validation, and the estimation of ϵst for a particular
BO application would make the proposed termination condition applicable beyond HPO.

(ii) Statistical characteristics and the cost of the threshold

Why termination does not guarantee to converge to an optimal solution. This work,
and particularly [Mak+21a], addresses the challenge of estimating the statistical error
ϵst by using the variance (a component of the statistical error) in Eq. (4.8) and further
using this variance at the best-observed point x∗

t for the termination. The latter decision
to choose the variance values at x∗

t is empirically motivated and demonstrates promising
practical results. That, however, relies on the two noisy values: (i) The variance Varf̂(x∗

t )

is computed from a single cross-validation-based sample variance s2cv(x∗
t ) that is noisy; (ii)

The best-observed point x∗
t = argmin

xi∈{x1,...,xt}
yi is chosen based on the realization of the noisy

evaluation yi. As a result, once the termination criterion is triggered, it does not guarantee
to converge to the optimal solution. For example, consider an iteration t and assume
that the observed variance of interest Varf̂(x∗

t ) is large (due to noise) and consequently

triggered the termination criterion, i.e., r̄t <
√

Varf̂(x∗
t ). However, at the next iteration,

it might happen that r̄t+1 >
√

Varf̂(x∗
t+1), leading to the precipitate termination.

Ways to get a better variance estimation. One way to obtain a more reliable estimation
of the variance Varf̂(x∗

t ) is a repeated experiment setup, that is collecting several noisy
evaluations {yi(x)}Ni=1 with yi(x) = f̂(x) + εi by training and testing an ML model N
times, i.e., N cross-validation rounds. In practice, it might be too expensive, and instead,
one can use the sample variance evaluations collected during BO to get a better estimation
under the assumptions homoscedasticity or heteroscedasticity of noise:

Idea 1: Under homoscedastic variance assumption, when all observations yt come
from a distribution with the same (unknown) variance ρ2, sample variance evaluations
s2cv(x1), · · · , s2cv(xt) can be used to estimate ρ2. Confidence intervals can then be con-
structed for ρ2, and the post-correction technique in Eq. (4.8) can be applied to obtain
a threshold variance, as discussed in Section 5.1.

Idea 2: Under heteroscedastic variance assumption, when the variance of the observa-
tions yt depends on the input x, the unknown function ρ2(x) represents this dependency.
Empirical studies support this assumption for tuning ML models such as [Cow+21]. In
the context of risk-averse BO, some hyperparameters result in noisier output than others,
as discussed in Chapter 3. Similarly to the homoscedastic case, sample variance evalu-
ations {s2cv(x1), · · · , s2cv(xt)} can be used to estimate ρ2(x) and assuming ρ2(x) belongs
to some RKHS, GP-based confidence intervals can be constructed and the post-correction
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technique in Eq. (4.8) can be applied to obtain the threshold variance. This approach
is an avenue for future research.

Adaptation of the BO objective. The proposed automatic termination criterion in
the BO-based automated machine learning (AutoML) is a workaround for the inher-
ent discrepancy between the two objectives: the true generalization performance of a
model and its empirical estimator. By terminating optimization when further progress
is inefficient in terms of computational resources, we acknowledge the fundamental gap
between these two objectives. BO setups, where an adversary can additively perturb the
observed rewards and corruption-robust strategies, were considered in [BK21; BKS20]. As
an alternative to optimizing the empirical estimator, we can optimize the generalization
performance directly by properly constructing confidence bounds for it. To this end, we
can use Proposition 1 and the variance model (Idea 2) to build a conservative estimate
of the generalization error and use it to guide the Bayesian optimization process instead
of the validation error. This approach, which involves modeling both the validation error
function f̂(x) and the validation variance ρ(x), has been used to choose a risk-averse
solution in Bayesian optimization [Mak+21b] and Chapter 3. In Section 5.1, we study
improving the reliability of variance estimation.

Budget-adaptive variance estimation. In the case of cross-validation being unaffordable
during the whole run of BO, one can make the variance estimate budget-adaptive by
determining the number of cross-validation folds on the fly of BO. That is in the spirit
of multi-fidelity Bayesian optimization studied in more detail in Section 4.2.2. At each
BO iteration, we can choose the fidelity, e.g., ten folds with higher accuracy or cheaper
three folds with lower accuracy, that might provide a cost-accuracy balance. Note that
this approach would also require the homoscedasticity or heteroscedasticity assumptions
on the noise variance discussed above.

By this, we conclude the first part of this chapter and follow with the second part
focusing on the multi-fidelity approach.

4.2 Multi-fidelity Bayesian optimization

In the standard setting of Bayesian optimization, the objective function is assumed
to be expensive to evaluate. This motivates for incorporation of cheaper albeit less
accurate objective approximations into the optimization process, so-called multi-fidelity
optimization. Such approximations are available for a wide range of BO applications
where one can control the scale of the evaluation experiment. For example, trading off
simulations and physical experiments in RL [Mar+17], controlling the number of iterations
in ML models training in hyperparameter optimization (considered in Section 4.1), or
trading off the number of repetitive evaluations in drug design or in other risk-averse setup
studied in Chapter 3. In this section, we consider a particular application example for
multi-fidelity optimization – calibrating transport system simulators. On the one hand, it
involves a complex, iterative, and stochastic nature of the multi-agent simulation process,
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on the other hand, allows for multiple fidelities via adjusting the number of agents or
iterations. The methodological contribution of this section is thus driven and examined
on this specific domain that we introduce along with our approach.

Application example Transport system simulators have become popular tools for study-
ing large urban transport networks and analyzing the complex interactions between
travelers ([Chi+11]). These interactions are modeled as a competition among agents for
limited network resources to satisfy travel needs. Accurate representation of demand
(e.g., route choice behavior), supply (e.g., link capacities), and their interaction is crucial
for these models to function effectively. This representation involves a large number of
parameters that need to be carefully calibrated to represent real-world traffic scenarios
in a meaningful way. Joint calibration techniques are becoming increasingly important
for accurately representing real-world traffic scenarios due to their ability to capture the
correlation between demand and supply parameters ([ABK07; BBK07]). Calibrating a
transport system simulator involves minimizing the mismatch between the simulator’s out-
put and real-world measurements. This optimization problem is challenging due to the high
computational cost of running a transport system simulation, and the complex, iterative,
and stochastic nature of the simulation process. Therefore, we cannot derive the gradient
or Hessian of the objective function analytically with respect to the simulator’s parameters.

Bayesian optimization (BO) is a suitable method for this task because of its ability to
handle black-box functions, global search capabilities, and sample efficiency (see Figure 4.7).
However, standard BO is inherently sequential, meaning it must wait for the current
evaluation to be completed before choosing a new set of parameters to query. This can be
wasteful with modern parallel computing infrastructures. Batch Bayesian Optimization
(BBO) ([Gon+16; DKB14]) addresses this issue by allowing for parallel evaluations.
Moreover, standard BO assumes that we can only query directly the target function.
However, for example, in transport system simulations we have easy access to cheaper albeit
less accurate function evaluation, e.g., for a low number of iterations or with a reduced
population. Multi-Fidelity Bayesian Optimization (MFBO) ([Mar+17; Kan+17]) studies
how to incorporate these different sources of information with different costs and different
accuracies to quickly rule out search parameter configurations that are not promising.

Our Contributions. In this work, we present Multi-Fidelity Batch Min-value Entropy
Search (MF-BMES), a novel algorithm that brings together ideas from batch Bayesian opti-
mization and multi-fidelity Bayesian optimization for the efficient joint calibration of trans-
port system simulations. Similarly to [DKB14], it encourages diversity within a batch of
parameters to query in parallel by adding temporary observations to the data set for the pa-
rameters already chosen for the current batch. Inspired by [Mar+17], it learns the mismatch
in accuracy between different fidelity levels and chooses parameter configurations to query
based on information gained per unit of cost criterion. Finally, in order to make the com-
putation more efficient and robust in this multi-fidelity context, it substitutes the entropy
search criterion of [HS12] used by [Mar+17] with the max-value entropy search of [WJ17].
We show the effectiveness of our method on both small-scale and larger-scale scenarios used
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Figure 4.7: This figure illustrates the iterative calibration procedure for a transport system simulation
using Bayesian optimization.

in transport planning. Importantly, MF-BMES is the first Bayesian optimization method
that has been applied to traffic simulator calibration, and its complementarity to previous
work in the field motivates it for being widely applied to this class of problems. For exam-
ple, a practitioner can set a great number of parameters using gradient-based calibration
methods and fine-tune the critical ones with BO. We release the code2 of our algorithm
that provides a flexible interface for calibrating different transport system simulations.

The section is organized as follows. We define the calibration as an optimization prob-
lem in Section 4.2.1. Section 4.2.2 provides background for batch BO and multi-fidelity
BO that are key for our method. In Section 4.2.3 we present our MF-BMES algorithm.
The main application of our method is the calibration of transport systems simulators: we
discuss the relevant methods in Section 4.2.4, and in Section 4.2.5 we empirically compare
MF-MES with them.

4.2.1 Problem Formulation

In this section, we formally introduce the calibration problem for transport system
simulators. Moreover, we analyze the characteristics of the problem that make many of
the commonly used optimization methods unsuitable for finding a solution.

Let r ∈ R denote observations of aggregate traffic measures for a traffic network. For
example, daily traffic counts at some measurement stations, hourly travel time distribu-
tions across the population, daily travel transport mode shares, and others. A simulator g
maps input parameters of demand and supply to a list of atomic traffic events representing
agent activities during a simulated period. Let h map a list of atomic traffic events to an
aggregate traffic statistic. Finally, the mapping from input parameters to the aggregate
traffic measure is q = h ◦ g : X → R. We aim to minimize the distance between the
outcome of the simulation and the available observations, i.e., given a distance metric

2https://gitlab.ethz.ch/ivt-vpl/oc-matsim

58

https://gitlab.ethz.ch/ivt-vpl/oc-matsim


dR : R×R → R+ we want to fins a minimizer of the expected distance value:

f(x) ≜ EgdR(r, q(x)) x∗ = argmin
x∈X

f(x). (4.12)

This optimization problem is difficult to solve because the mapping g results from a complex
iterative procedure involving expensive network loading algorithms as subroutines and does
not have an analytical form. Moreover, the evaluation is computationally demanding as it
usually requires multiple simulations of whole-day activities for every agent in the network
until some notion of network equilibrium is achieved. This prevents us from using standard
first or second-order gradient-based methods and optimization methods that require many
function evaluations. Therefore, data-demanding optimization methods such as random
or grid search, direct search methods ([KLT03]), simulated annealing ([KGV83]), genetic
algorithms ([Whi94]) or algorithms aiming at estimating gradients, such as SPSA ([Lu+15]),
might not be well-suited for such problems. Calibrating transport system simulators is
a possibly non-convex optimization problem with unavailable derivative information and
expensive function evaluations. That motivates for application of Bayesian optimization.

4.2.2 Background

To address the problem, we again rely on the Bayesian inference (see Section 2.1) and
use Gaussian Processes (GPs, see Section 2.2.1) as a flexible non-parametric model to
describe probability distributions in function spaces. In contrast to previous chapters of
this dissertation, here we actively rely on the parallel evaluation of the objective. Moreover,
we incorporate cheaper but less accurate evaluations of the objective into the optimization
process. To this end, we use batch Bayesian optimization and multi-fidelity Bayesian
optimization, which we formally introduce below.

We assume f ∼ GP(0, κ), and given the data Dt = {(xi, yi)}ti=1, where yi = f(xi) + ξi,
with noise ξi

i.i.d∼ N (0, σ2
ξ ), the posterior distribution over the function value at x ∈ X

is a Gaussian distribution with posterior mean µt(x), variance σ2
t (x) and covariance

κt(x,x
′) defined in (2.8) and (2.9). The common acquisition functions are discussed in

Section 2.5.2 and include approaches such as improvement-based (PI and EI), optimism-
based (GP-UCB), and information-theoretic (entropy search, predictive entropy search,
and max-value entropy search). The works [Mar+17; Kle+16; MOR17] use predictive
entropy search and argue that information-based acquisition functions are suitable for
taking into account the cost of evaluations because the information gained per unit of
cost is an intuitive quantity to optimize. Max-value entropy search (MES) introduced
later in ([WJ17]) is easier to compute than other information-based methods and leads
to equal or better optimization results. In this work, we focus on MES, which in case of
minimization problem Eq. (4.12) can be computed as follows:

αMES(x) ≈ 1

M

∑
y∗

[
γy∗(x)ψ(γy∗(x))

2
(
1−Ψ(γy∗(x))

) + log(1−Ψ(γy∗(x))

]
, (4.13)

where ψ and Ψ indicate the probability density function and the cumulative density
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function of the standard Gaussian distribution respectively, and γy∗(x) = y∗−µt(x)
σt(x)

.

Batch Bayesian optimization

The Bayesian optimization algorithm, referred to as Algorithm 1, is inherently a sequential
process that relies on the evaluation of the objective function at each iteration to determine
the next step. This is because the new evaluation is necessary to update the posterior
belief and determine the optimizer of the acquisition function. When the evaluation
of the objective function is expensive, the sequential process can become a bottleneck.
Batch Bayesian optimization aims to address this issue by identifying batches of points to
query in parallel, with the goal of reducing the impact of the evaluation time. However,
this requires modifying the acquisition function to take into account inputs that are
already part of the current batch but for which function evaluations are not yet available.
Figure 4.8 illustrates the differences between sequential and batch BO. In batch BO, the
goal at each time step t is to select a batch of B points

{
xt,k

}B
k=1

based on the data Dt−1

observed prior to the time step t, i.e.,

Dt−1 =
{
(x1,1, y1,1), . . . . . . (xt−1,B, yt−1,B)

}
.

Figure 4.8: Scheme of sequential BO (left) and Batch BO (right)

Algorithm 3 Batch BO by [DKB14]
Input: Domain X , Kernel κ : X × X → R, Acquisition function α : X → R, Batch size B
Initialize data D0 ← ∅
for t = 1, . . . , T do
D̃t,0 ← Dt

for k = 1, 2 . . . , B do
xt,k ← argmax

x∈X
α
(
x; p(f |D̃t,k−1)

)
D̃t,k ← D̃t,k−1 ∪ {(xt,k, µt−1(xt,k))}

end for
Dt+1 ← Dt

⋃B
k=1{(xt,k, f(xt,k) + ξt,k)}

end for

Our goal is to select the B points that constitute the tth batch. While it is straightfor-
ward to choose the first point, xt,1, by maximizing any of the acquisition functions intro-
duced in Section 4.1.1, the same is not possible for the remaining B−1 points. Particularly,
failing to update our posterior belief about the objective with new observations will result
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in the maximizer of the acquisition function remaining constant for the entire batch. Many
solutions have been proposed to address this issue, such as [AFF10; Gon+16; DKB14]. In
this work, we focus on the approach suggested by [DKB14] as it has fewer hyperparameters
and is more intuitive. This method relies on the fact that the posterior covariance over the
objective only depends on the input x and not on the value f(x), as can be seen in Eq. (2.9).
Therefore, once a point has been chosen for the current batch, we can update the posterior
covariance and leave the mean unchanged. When we maximize the acquisition function
based on this updated covariance, the maximizer will be different, ensuring diversity within
the batch. Obtaining an observation equal to µt(x) at input x updates the posterior belief,
leaving the mean unchanged and modifying the covariance according to Eq. (2.10). To
encourage diversity within a batch, [DKB14] propose temporarily inserting a fictitious ob-
servation with a value equal to the posterior mean into the data set. Within a batch, the kth

input is chosen by maximizing the acquisition function based on a fictitious data set, D̃t,k−1:

D̃t,k−1 = Dt−1 ∪ {(xt,1, µt−1(xt,1)), · · · (xt,k−1, µt−1(xt,k−1))}. (4.14)

While this fictitious data set is created temporarily to encourage diversity within a
batch, we update the true data set with the values that we actually obtain from function
evaluations once they become available, and we drop the fictitious observations. The
algorithm using a generic acquisition function is summarized in Algorithm 3. In the
work of [DKB14] the acquisition function is GP-UCB and, thus, their algorithm is called
Gaussian Process Batch Bayesian optimization with UCB (GP-BUCB). However, the
principle they introduce to find batches of points to query in parallel can be applied to
other acquisition functions as well (albeit without the same theoretical guarantees).

Multi-fidelity Bayesian optimization

In this section, we show how the standard BO framework can be adapted using multiple
cheaper but noisier approximations of the objective function. The goal is to use the
cheaper approximations to quickly eliminate sub-optimal regions of the search space, and
gradually increase the accuracy of the approximations as the search progresses to identify
a high-quality solution. More formally, we assume we have access to approximations
f (0)(x), . . . , f (L−1)(x) of the objective f(x). These approximations are ordered by their
accuracy or, in other words, fidelity, with f (0)(x) being the least accurate and with
f (L−1)(x) being the most accurate. We denote the objective f(x) with f (L)(x) ≜ f(x)

and refer to it as the full fidelity. Each approximation f (l)(x) has its evaluation cost
c(l)(x), e.g., evaluation time or storage space, that is assumed to be known and ordered
according to c(0)(x) ≤ c(1)(x) · · · ≤ cL(x) for all x ∈ X . The evaluations are perturbed
by some noise y(l)(x) = f (l)(x) + ξ(l) with ξ(l) i.i.d∼ N (0, σ2

ξ ). We aim to trade off the cost
and information gain of the evaluation to do fewer evaluations on the expensive objective
when it is not crucial. While in the standard BO, we only select the input x ∈ X for the
next evaluation, in multi-fidelity BO, we also choose the function f (l)(x), l ∈ [m]. For
a graphical intuition of the multi-fidelity setting see Figure 4.9.

Multi-fidelity extension of BO has been widely studied. For example, extensions to
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Figure 4.9: Schematic illustration of the objective f(x), its approximations f (0)(x), f1(x) and the
multi-fidelity optimization procedure. Cheaper evaluations the funcitons f (0)(x) and f (1)(x) at inputs
x1,x2,x3 guide the convergence to the optimum y∗ = minx∈X f(x). At each step, we pick both the input
x ∈ X and fidelity l = [0, 1, 2] to evaluate at x. To balance the cost and the information gain, we model
the functions b(l)(x) representing the bias between fidelity levels.

the standard EI were proposed in [Pic+13]. The EI acquisition function, as discussed
in Section 5.2.3 is rather myopic, and other solutions to use the cheaper approximations
in GP-UCB ([Sri+10]) have been proposed in [Kan+16; Kan+17]. Information-based
acquisition function has been also studied in the multi-fidelity setting, such as ES-based
[Kle+20] and PES-based [MOR17]. The advantage of these methods is that they can
directly measure the utility of the evaluation for the global optimizer, but they are com-
putationally expensive which makes them impractical in high-dimensional spaces. A more
practical method that transforms the tedious computation into a one-dimensional problem
is max-value entropy search (MES, see Eq. (2.25)). Therefore, in this work, we propose
an MES-based multi-fidelity approach. Independently to this work, another multi-fidelity
MES was proposed in [Tak+20].

The correlation between different approximations adds an extra decision variable
to incorporate into the statistical model and the acquisition function, which we imple-
ment as follows. Assume the lowest-fidelity function is a GP sample, i.e. f (0)(x) ∼
GP
(
µ(0)(x), κ(0)(x,x′)

)
. We consider the difference between consecutive fidelity levels,

denoted as b(l)(x) ≜ f (l)(x)− f (l−1)(x), l ∈ [L]+, and assume them being GP samples too,
i.e., b(l)(x) ∼ GP

(
µ(l)(x), κ(l)(x,x′)

)
. It implies that every function f (l), l ∈ [L], is also

a GP sample. Moreover, the function f̃ : X × {0, · · · , L} → R such that f̃(x, l) = f (l)(x),
i.e., extended to the domain of the fidelity level, also follows f̃ ∼ GP(µ̃, κ̃) that we define
below. Let µ̃(x, 0) ≜ µ(0)(x) and then ∀l ∈ [L]+ the mean is defined as:

µ̃(x, l) = µ(0)(x) +
l∑

i=1

µ(i)(x). (4.15)

The kernel should capture both how the function values co-vary across the domain X and
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fidelities. Let δ(l) ∈ [0, 1]L+1 be a binary vector with ith component defined as:

δ
(l)
i =

{
1 if i ≤ l

0 otherwise.
(4.16)

Then we define the kernel κ̃ that models the objective or higher fidelity functions as being
partly explained via the lower fidelity approximations plus some bias terms as follows:

κ̃
(
(x, l), (x, l′)

)
= κ(0)(x,x′) +

∑
i∈[L]+

κδ(δ
(l)
i , δ

(l′)
i ) · κ(l)(x,x′), (4.17)

where the kernel κδ(δ
(l)
i , δ

(l′)
i ) = δ

(l)
i δ

(l′)
i . Intuitively, the kernel κ̃ encodes that two evalua-

tions f (l)(x) and f (l)(x′) of the same fidelity covary strongly as δ(l)i δ
l
i = 1. Contrariwise, if

δ
(l)
i δ

(l′)
i = 0 and l < l′, the only covariance between the two values of f (l)(x) and f (l′)(x′)

is captured by the kernel corresponding to the lower fidelity function. In the remainder of
the work, we refer to the standard BO setting where no approximations of f are available
as single-fidelity BO.

4.2.3 MF-BMES Algorithm

In this section, we present Multi-Fidelity Batch Min-value Entropy Search (MF-BMES),
the multi-fidelity batch Bayesian optimization algorithm, and we start with its single-
fidelity simplification, batch min-value entropy search (BMES).

Single-fidelity batch BO BMES is an extension of the standard min-value entropy search
(MES) algorithm to the batch setting using the idea of temporary fictitious data sets as in
Eq. (4.14) from [DKB14]. Specifically, BMES uses MES acquisition function in the batch
framework from Algorithm 3 to select the next point xt,k in the batch. In BMES the
computation of the acquisition function is approximated according to Eq. (2.25). BMES
is a simplified version of MF-BMES that is suitable for simple calibration problems where
the overhead for estimating the gap between different fidelities outweighs the benefits of
having access to multiple sources of information.

Multi-fidelity batch BO MF-BMES algorithm, i.e., the multi-fidelity batch min-value
entropy search, extends the BMES approach incorporating available objective approxi-
mations and their evaluation costs {f (l), c(l)}l∈[L] into the acquisition function. To this
end, we define the acquisition function jointly over the parameter space X and the set of
possible fidelities l ∈ [L]:

xt = argmax
x∈X , l∈[L]

α(x, l).

The goal is to maximize the gain in mutual information between the true noiseless optimum
y∗ = min

x∈X
f (L)(x) and the candidate x and its evaluation at lth fidelity y(l)(x). Taking the
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evaluation cost into account results in the information gain per unit of cost as follows:

α(x, l) =
I
(
{x, y(l)}; y∗

)
c(l)

=
H
[
p(y(l)|x)

]
− E

[
H
[
p(y(l)|x, y∗)

]]
c(l)

, (4.18)

with the expectation over p(y∗|D). At the start of the optimization process, even in-
accurate fidelities have a relatively high information gain. Therefore, crude but cheap
approximations are favored in this phase. As the optimization continues, we get more
data from inaccurate approximations and their information gain reduces while their costs
stay the same. This causes the algorithm to progressively favor more accurate fidelities
as we refine our knowledge about the objective.

Furthermore, at each iteration, we want to choose a batch of inputs to evaluate. To this
end, we adapt the notation as follows: each bias function b(l)(x) captures the difference
between consecutive fidelity levels f (l)(x) and f (l−1)(x) is modeled as a GP :

b(l)(x) ∼ GP
(
µ
(l)
0 (x), κ

(l)
0 (x,x′)

)
, l ∈ [L]+. (4.19)

Following the batch notation in Algorithm 3, the upper subscript denotes the fidelity level
and the lower – iteration and batch. Thus, the kth component has the posterior µ(l)

t,k(x)

and κ(l)t,k(x,x
′):

b(l)(x) ∼ GP
(
µ
(l)
t,k(x), κ

(l)
t,k(x,x

′)
)
, l ∈ [L]+, k ∈ [B]. (4.20)

Given this statistical model, we want to compute Eq. (4.18) for each fidelity. The
first term in this equation is the entropy of a Gaussian distribution p(y(l)|x), which can
be computed in a closed form. The second term is the entropy of a more complicated
distribution p(y(l)|x, y∗) that cannot be computed in a closed form. Particularly, condi-
tioned on the given minimum y∗, y(l) is a random variable that results from the algebraic
sum of a random variable y(l−1), distributed as a truncated Gaussian, p(y(l−1)|x, y∗) and
a bias variable distributed as p(−b(l′)|x, y∗), l′ ∈ {L,L − 1, · · · , l + 1}. For instance,
p(y(l−1)|x, y∗) = p(y(l) − b(l)|x, y∗). We approximate this distribution with a truncated
Gaussian, i.e., y(l)(x) ≥ y∗, which can be computed in the closed form given the mean and
standard deviation of the non-truncated distribution in (4.15) and (4.17) and the trun-
cation interval [y∗,∞]. Finally, Eq. (4.18) is approximated using Monte Carlo estimation
by sampling a set of M function minima y∗:

αt,k(x, l) ≈
1

c(l)
1

M

∑
y∗

[
γ
(l)
y∗ (x)ψ(γ

(l)
y∗ (x))

2
(
1−Ψ(γ

(l)
y∗ (x))

) + log
(
1−Ψ(γ

(l)
y∗ (x))

)]
, (4.21)

where the notation repeats Eq. (4.13) with a correction that γ(l)y∗ (x) =
y∗−µ̃t,k(x,l)

σ̃t,k(x,l)
is a

standard Gaussian distribution defined for each fidelity l ∈ [L]. Here, µ̃t,k(x, l) and
σ̃t,k(x, l) are the mean and standard deviation of the corresponding function f (l)(x). The
minima y∗ are sampled following the strategy from [WJ17] (see Eq. (2.25)). Algorithm 4
summarizes MF-BMES approach.
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Algorithm 4 Multi-fidelity Batch Min-value Entropy Search (MF-BMES)

1: Input: Batch size B, Prior µ
(0)
0 (x) = · · · = µ

(L)
0 (x) = 0, Kernel κ, Costs {c(l)}l∈[L]

2: Initialize the fictitious dataset D0 ← ∅
3: for t = 1, 2 . . . , T do
4: D̃t,0 ← Dt

5: for k = 1, 2 . . . , B do
6: Compute µ̃t,k(x, l) and σ̃t,k(x, l) of the posterior p(f (l)|D̃t,k−1) as in (2.8) and (2.9)
7: Select (xt,k, lt,k) ∈ argmax

x∈X , l∈[L]
αt,k(x, l) computed via Eq. (4.21)

8: Update the fictitious dataset D̃t,k ← D̃t,k−1 ∪ {(xt,k, µ̃t,k(xt,k, lt,k))}
9: end for

10: Evaluate yt,k = f (lt,k)(xt,k) + ξt,k, ∀k ∈ [B]+
11: Update the true dataset Dt+1 ← Dt ∪ {(xt,k, yt,k)}Bk=1

12: end for

Scaling BO to high dimensional problems BO relies on acquisition function optimiza-
tion which can be difficult to optimize over high-dimensional domains. In order to make it
tractable, a line BO suggested by [Kir+19] is successfully used in practice. The idea is to
solve one-dimensional BO by choosing iteratively the line in the optimization space and
fixing the rest of the high-dimensional calibrating vector. Though the method is simple
and intuitive, the algorithm enjoys convergence guarantees while obtaining competitive
performance. Analogously to [Kir+19], to perform BO, we iteratively choose a tractable
subspace of the domain instead of a line, and thus we call it subdomain BO. In our
high-dimensional experiments, we use the block coordinate descent method to define the
sub-problems. While this allows us to calibrate more parameters, BO methods are still
not able to handle problems with hundreds of thousands of parameters.

4.2.4 BO in the context of transport systems calibration

Calibration methods for transport system simulations have traditionally relied on opti-
mization techniques such as Simultaneous Perturbation Stochastic optimization (SPSA;
[Spa98a; Spa98b]). SPSA and its modern modifications are gradient-based methods, which
can get stuck in local minima and require multiple evaluations of the simulator to accurately
estimate gradients. Moreover, estimating the gradient accurately from noisy measurements
can be challenging and require multiple evaluations of the simulator around the same input,
which can be computationally expensive. For a more in-depth discussion of the advantages
and shortcomings of SPSA-based methods, see the works in [Dju14; Ant+15; TKJ15;
Tym18]. Recently, the Opdyts algorithm [Flö17] was introduced to exploit the iterative
structure of transport simulations to improve the efficiency of the optimization procedure.
At its core, Opdyts manages the computational resources by cutting the simulation time
of sub-optimal parameter configurations. However, Opdyts does not really focus on how
to choose the next candidates to evaluate. Exploiting the domain experts’ knowledge
to propose new candidates is studied in [OB13; Oso19]. The idea is to substitute the
simulator with a cheap-to-evaluate analytical model designed by domain experts.

These methods form two orthogonal families of calibrating approaches: adaptive config-
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uration evaluation, e.g., Opdyts, and adaptive configuration selection, e.g., SPSA or work
by [OB13] and its adherents. The methods with smart configuration evaluation allocate
resources to examine orders-of-magnitude more configurations than needed for evaluating
the objective to completion, and then gradually eliminate poor launches. Though these
methods were shown to be flexible and scalable to higher dimensional spaces, they do not
learn generally from configurations previously sampled.

BO is a smart configuration selection method that, in contrast to the methods above,
incorporates prior knowledge and proposes parameters based on the probabilistic model
capturing the density of good configurations. This can be beneficial in two cases: (1)
when the resources are limited, BO can avoid launching poor configurations, and (2)
when the tuning problem is solved repeatedly, the BO probabilistic model can be used
for transfer learning, i.e., reused as an informative prior in a new setting. For example,
once calibrated for a particular city, the probabilistic model can be used for speeding
up the calibration for other cities. However, BO is not as effective for high-dimensional
problems and is the best fit for small-scale problems or when tuning key parameters in
large models. Examples of transport model applications that require calibrating a small
number of parameters can be found in [18; ZKN19; BCA15]. Finally, the two calibration
families, i.e., adaptive configuration evaluation and selection, are not mutually exclusive
and the successful use cases are different. The idea of combining them was successfully
applied to tuning machine learning models ([FKH18]).

4.2.5 Experiments

In this section, we empirically examine the methods for calibrating MATSim – the agent-
and activity-based transport simulation framework. We first introduce the simulation, the
input data, and two calibration problems. Second, we compare the proposed BO-based
methods and baselines tuning the key MATSim parameters. Finally, we show how BO
adapts to higher dimensions.

Transport systems simulator: a closer look

We use eqasim3, an extension to the transport simulation framework MATSim ([HNA16]).
Eqasim combines the queue-based network simulation component of MATSim with discrete
mode choice models ([HBA19c]). In comparison with the evolutionary choice-making
algorithm of standard MATSim, eqasim has smoother simulation dynamics from iteration
to iteration that is beneficial for calibration algorithms that rely on iterative structure,
e.g., [Flö17].

In the simulation, a large number of agents have daily plans consisting of multiple
activities to be done at certain locations in a capacitated road network. The activities are
connected by trips taken using certain modes of transport (private car, public transport,
biking, and walking). The plans are simulated in a queue-based network that allows for
spillback effects to occur. The output of the simulation includes all realized travel plans
of the agents, including congestion, and measures travel times on each road network link.

3http://www.eqasim.org
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These travel times are then fed back into the discrete mode choice model provided by
eqasim, which makes transport mode decisions for each agent based on the traffic conditions
of the previous network simulation. By running this loop between the network simulation
and choice models, the system dynamics eventually stabilize, with small fluctuations in
mode decisions but generally stable mode share when observed on a population average.

The transport mode choice is modeled by a multinomial logit ([Tra09]) that is used
to predict the probability of choosing a mode m given the expected utility um gained by
choosing mode m, i.e.:

P (m) =
exp(um)∑
m′ exp(um′)

. (4.22)

The idea is that each mode has a certain utility that is calculated using a linear
combination of mode-specific attributes. For example, the utility function for a public
transport trip can be written as a linear combination of attributes such as the number of
transfers required, the time spent in the vehicle, and the cost of the trip:

upt(z) = βASC,pt + βnmbOfTransfersznmbOfTransfers (4.23)

+ βinVehicleTimezinVehicleTime + βcost

(
zcrowflyDistance

θaverageDistance

)λ

zcost,pt + . . . , (4.24)

where β denotes sensitivities to attributes of trips and travelers or alternative-specific
constants (ASCs). The fixed model constants are denoted as θ and z are attributes
measured and derived from the simulation. The mode choice model is used within the
context of a tour-based approach, which means that the choice set is constrained by
additional conditions such as the need to bring a private vehicle back home. For more
details about the mode choice, please refer to [HBA19c].

Calibrated parameters: Zurich case study

We apply BO for calibrating the MATSim parameters for the canton of Zurich ([Hör+19]).
The model is based on detailed census data and the Swiss nationwide household travel
survey ([Fed17]), and has been used in studies on topics such as automated vehicles
([HBA19b; Hör+19; HBA19a]), car-sharing ([Bal+19]), and Urban Air Mobility ([Bal+18;
BRH19]). We use the eqasim extension to simulate transport mode decisions in the model.

The true values of the model parameters are obtained from a survey conducted in
Zurich. In practice, such surveys and corresponding models may not be available when
setting up MATSim. Alternatively, we can impose an existing discrete choice model
structure and use an algorithm to calibrate the parameters so that certain metrics are
replicated in the simulation. In this work, we focus on two settings for calibration: first,
we calibrate only the alternative specific constants in Eq. (4.24), and second, we calibrate
both the alternative specific constants and the value of time per mode. Specifically, we aim
to recover the true values of parameters such as βASC,car, βASC,pt, βASC,bike and βASC,walk

while keeping other parameters fixed at their true values. For consistency with the rest
of the dissertation, we denote β with as x, and x = (xcar, xpt, xbike).
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Data aggregation

We calibrate the simulator according to two metrics: (1) mode share distribution by the
number of trips, and (2) travel time distribution for car trips. We construct the mode
share distribution by the percentage of trips with this mode to all performed trips:

qm =
nm∑

m′∈M
nm′

, ∀m ∈M = {car, pt, bike,walk} , (4.25)

Similarly, for travel time distribution, we focus on trips taken using the car mode and
record their travel time t. We use reference data to determine the upper boundaries of
four travel time bins B, with the 20th, 40th, 60th, and 80th percentiles serving as the
quantiles. Any travel times greater than 80% are placed in an additional bin, resulting
in a total of five bins. For each bin B, we count the number of simulation nB and divide
it by the total number of trips to calculate the distribution:

qB =
nB∑

B′∈{1,...5}
nB′

, ∀B ∈ {1, ..., 5} . (4.26)

Objective functions

It is important to carefully choose a suitable objective function because the quality of the
calibration process depends on it. The objective function should accurately reflect the
desired level of agreement between the simulation and real-world data.

Given the parameters x, a simulation outputs measurements Q(x) = {qi(x)} repre-
senting modes’ share distributions or travel time distributions. The true observations are
denoted as R = {ri} binned in the same way as Q(x). Here, the true distributions are
obtained from a full-fidelity with 40 MATSim iterations and the ground truth parameters
as presented in subsection 4.2.5. We consider two types of objectives below.

L2 Error for mode share distribution In our experiments, the mode share distribution
Q(x) is represented by four bins for the modes {car, pt, bike, walk}. The L2 error is
defined as follows:

f(x) = ∥Q(x)−R∥2 =
√∑

m

(qm(x)− rm)2. (4.27)

Hellinger Distance for travel time distribution The Hellinger distance is a measure
of similarity between two probability distributions that is often used in statistics. It is
defined as the Euclidean norm of the difference between the square roots of the elements
in the vectors representing the distributions. This metric is popular due to its ability to
capture the difference between the distributions while still being invariant to monotonic
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transformations.

f(x) =
1√
2

√√√√ n∑
i=1

(
√
qi(x)−

√
ri)2. (4.28)

Fidelity levels

Our multi-fidelity optimization framework involves approximations of the objective function
at different levels of fidelity, which are defined based on the number of iterations or
population fraction of a MATSim simulation. These approximations allow us to balance the
computational cost of evaluating the objective function with the accuracy of the simulation
results. We define the low-fidelity approximations {f l(x)}L−1

l=0 for the objective functions
f(x) from (4.27) and (4.28) based on the mismatch between the reference observations R
and the output of a low-fidelity simulation with parameters x, Ql(x). In particular, Ql(x)

contains the aggregate measurements from a MATSim simulation for a lower number of
iterations nl ∈ {n0, . . . nL−1} or smaller population fraction sl ∈ {s0, . . . sL−1}:

f l(x) = f(Ql(x), R), ∀l ∈ {0, . . . , L− 1}, (4.29)
f(x) = f(Q(x), R). (4.30)

This choice of approximations is motivated by the numerical experiments shown in
Figures 4.10 and 4.11. Figure 4.10 depicts how the simulation run time changes when
altering population fraction and number of iterations. Figure 4.11 presents a high
correlation in behavior between the evaluations of the objective and its approximations
both for a simple objective such as the mode share distribution and a more complex
objective such as the travel time distribution.

Figure 4.10: Mean timing for one MATSim iteration for different population fractions in a simulation
with 32 threads with 100G memory. One can notice that acquiring a full-fidelity (40 iterations) evaluation
for 10% population takes more than 3 hours.

Model selection for GPs

In practice, one needs to specify the form of the function prior and its parameters,
also known as model hyperparameters. In this work, we use a constant mean function:
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(a) Car share value for different samples (b) Number of trips with a travel time bin
[5, 10)

Figure 4.11: Examples of correlation between objective function evaluations (in red) and its approxima-
tions for Matsim. The full-fidelity (red) is taken such that the population fraction equals to 1.0 and the
number of iterations equals 40. Blue lines represent the output for a lower number of iterations such that
the population fraction equals to 1.0 and the number of iterations equals 20. Violet lines represent the
output for a smaller population fraction such that the population fraction equals 0.1 and the number
of iterations equals to 40. Each sample represents one evaluated parameter setting: they come from a
uniform three-dimensional grid over the domain of variables xcar ∈ [−1, 1], xbike ∈ [−1, 1], xwalk ∈ [0, 2]
that contains 9 points per dimension. One can notice seesaw behavior caused by the fact that every 9
points same value of the xcar is evaluated while changing the values for the xbike and xwalk.

µ(x) = m that we treat as a hyperparameter of our model. The covariance function
expresses our belief about how function values for different inputs covary with each other
and, thus, it encodes our belief about the smoothness of the function f . In Figure 4.12 we
show which kind of functions are likely under different priors by plotting four samples from
four different GPs with covariance functions expressing different degrees of smoothness
and µ(x) = 0. In particular, in our experiments, we use Matern kernel 3/2 for the lower
fidelities and Matern kernel 5/2 for modeling the bias function which represents the most
realistic assumptions on the smoothness of our function f . These kernels are defined as
follows:

κ5/2(x,x
′) = η20

(
1 +

√
5r2(x,x′) +

5

3
r2(x,x′)

)
exp

{
−
√
5r2(x,x′)

}
, (4.31)

κ3/2(x,x
′) = η20

(
1 +

√
3r2(x,x′)

)
exp

{
−
√
3r2(x,x′)

}
, (4.32)

r2(x,x′) =
D∑

d=1

(xd − x′d)/η2d, x = (x1, . . . , xD), (4.33)

and are parametrized by a vector of kernel hyperparameters ηk = {η0, η1, . . . , ηD}, where
η0 stands for standard deviation of f and ηd is characteristic lengthscales for each dimen-
sion d. Intuitively, the characteristic lengthscales define how far apart the input values xi

and xj can be for the corresponding evaluations yi and yj to become uncorrelated. These
lengthscales {ηd}Dd=1 can be equal for all the dimensions d = {1, . . . , D} or, as it is done in
our experiments, can be separately defined by automatic relevance determination, ARD
([Nea96]), that implicitly defines the “relevance” of each dimension.

Once the form of the prior is fixed, we have to determine the hyperparameters
η = (m,σε,ηk) based on the observed data. The most commonly advocated approach for
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Figure 4.12: Visualization of different kernel functions and their effect on sample functions. The top
row shows functions likely under a prior with zero mean and Squared Exponential kernel, while the
bottom row shows functions likely under a prior with zero mean and three variations of the Matern
kernel (5/2, 3/2, and 1/2). The sample functions with the Squared Exponential kernel appear to be
overly smooth, while those with the Matern kernel appear to be excessively noisy.

choosing the unknown parameters η is to use a point estimate of η. Particularly, η is
chosen such that it maximizes either the likelihood (ML) or the posterior (MAP) of the
observed data:

ηML = argmax
η

log
(
p(y| {xi}ti=1,η)

)
, (4.34)

ηMAP = argmax
η

log
(
p(y| {xi}ti=1,η)p(η)

)
, (4.35)

where y = {y1, . . . , yt} are observed evaluations at points {xi}ti=1 respectively.
In our experiments, we use MAP estimates proved to be good in practice. One should
notice that MAP estimate requires setting a prior p(η) over the learning parameters,
which we set to be an independent log-normal distribution (Lizotte [Liz08]).

Online and Offline learning

There are two approaches to choosing the hyperparameters in our framework: offline
learning and online learning. In the offline learning approach, we first collect a fixed
number of function evaluations at random points in the domain, and then use these eval-
uations to compute the maximum a posteriori (MAP) estimate for the hyperparameters.
This MAP estimate is then fixed throughout the optimization process. In contrast, the
online learning approach starts the optimization with a smaller number of samples and
continuously updates the MAP estimate based on the observations obtained from the
optimization queries. Generally, offline learning provides a better prior for the objective
function before the optimization starts, leading to a faster convergence rate. However, the
time and cost overhead of collecting the necessary function evaluations beforehand can
be significant, especially in the multi-fidelity setting which requires estimating additional
hyperparameters for the different fidelity levels. An example of this overhead is shown
in Figure 4.13, where online learning requires twice less data than offline learning.
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(a) MF-BMES for Mode share
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(b) MF-BMES for Travel Time

Figure 4.13: Comparison of computation times for offline and online learning approaches for MF-BMES.
The high-fidelity function consists of 40 MATSim iterations and the low-fidelity function consists of 10
MATSim iterations. The results are averaged over 5 runs for the 0.1% Zurich scenario, with (a) mode
share output and L2 error as the objective function and (b) travel time distribution output and Hellinger
distance as the objective function. Each point on the lines represents one BO evaluation, with the x-axis
representing the cost of the evaluation in terms of the number of internal MATSim iterations. The
light sections of the curves represent model selection, while the dark sections represent actual Bayesian
optimization. For offline learning in (a), 16 evaluations of high-fidelity and 16 evaluations of low-fidelity are
performed on the same input points. For online learning in (a), half of the evaluations are randomly chosen
to be performed at high-fidelity, with corresponding evaluations at low-fidelity. In (b), 32 evaluations of
high-fidelity and 32 evaluations of low-fidelity are performed on the same input points for offline learning,
while half of the evaluations are randomly chosen to be performed at high-fidelity for online learning.

Results

We present the results for three different scenarios: (1) calibrating the alternative specific
constants for 0.1% of the population, (2) calibrating the alternative specific constants for
10% of the population and greater box constraints, and, finally, (3) calibrating not only
alternative specific constants but also the value of time per mode and others.

We calibrate MATSim for the Zurich scenario with 0.1% population size. The full-
fidelity corresponds to 40 MATSim iterations and the low-fidelity is 10 iterations. The
ground truth parameter values to recover are xcar = 0.827, xpt = 0.0, xbike = 0.344, and
xwalk = 1.3. The reference data is obtained from simulations with true parameters and
full-fidelity. We compare BO-based methods to three approaches: random walk, CMA-ES
algorithm ([Han06]) and Opdyts ([Flö17]) described below.

Random walk. The candidate points are chosen uniformly at random over the box-
constrained domain using plausible ranges: xcar ∈ [−1, 1], xbike ∈ [−1, 1], xwalk ∈ [0, 2].
We run 4 parallel candidates which is a practical limit for the computing infrastructure
at hand. Each evaluation is run for 40 iterations which correspond to high fidelity.

CMA-ES. For CMA-ES4 we use a candidate set size of 4 parallel evaluations and an
initial step size of 0.3. The MATSim simulations run for 40 iterations.

Opdyts. Opdyts is a method that uses the iterative structure of an objective function
to find good configurations of parameters. It works by examining the intermediate steps of

4We use a commonly used implementation from https://en.wikipedia.org/wiki/CMA-ES, version 29 July 2019.
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(a) Mode Share: Sequential cost
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(b) Mode share: Parallel cost
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(c) Travel time: Sequential cost
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(d) Travel time: Parallel cost

Figure 4.14: Comparison between the baselines Random, CMA-ES and Opdyts. Each thin line of the
corresponding color represents a run of an algorithm with a different random seed. In bold, we report the
mean of these runs. In the left (a,c) plots, we present the flattened-out number of MATSim iterations
used by the algorithms as if all evaluations of the algorithms were made sequentially. In the plots on
the right (b,d), we take into account the ability of the methods to perform parallel evaluations. This
means, for example, that for a random walk the cost in the parallel mode will be 4 times smaller than
for sequential. The number of parallel evaluations is set to 4 which is defined by the real capacities for
model calibrations. For CMA-ES, we run a batch of 4 parallel MATSim simulations with 40 iterations
each, which also shrinks the cost for parallel run by 4 as for random walk. However, in Opdyts only one
MATSim simulation at a time is pushed forward for a number of iterations while all others are idle. Only
the first transition for each simulation run (which amounts to five MATSim iterations) can be run in
parallel. The following transitions are counted as serial.

a simulation (called transitions), and deciding which set of parameters to pursue further.
In these experiments, we use a candidate set of size 4, with 5 iterations of the simulation
per transition and 5 total transitions per chain (totaling 40 iterations). The candidates are
initially sampled from a Gaussian distribution with a standard deviation of 0.1, centered
at the intervals of xcar ∈ [−1, 1], xbike ∈ [−1, 1], xwalk ∈ [0, 2]. Opdyts uses an adaptation
weight of 0.9 as defined in ([Flö17]), and samples new candidates from a similar Gaussian
distribution, with means based on the best parameters found so far.

Note that ([Flö17]) does not focus on generating new promising candidates to evaluate
by Opdyts, but rather speeds up the optimization by detecting unpromising candidates
early on. The performance of Opdyts depends on the size of the candidate set and we
study this dependence in the MATSim case for the sizes 4, 8, 16, 32 in Figure 4.15. The
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Figure 4.15: Convergence of Opdyts with the different candidate set sizes. The cost corresponds to
the simulation cost if the experiments were launched sequentially and it is shown for shown Figure 4.17.
Improved convergence is observed with larger candidate set sizes, which can be exploited if greater resource
capacities are available. Differences between Opdyts and BO, including the smart use of resources in
Opdyts and the smart choice of points for evaluation in BO, are discussed in Section 4.2.4 and Section 4.2.6.

inclusion of Opdyts in our comparison is therefore indicative as even larger candidate sets
and different candidate proposal strategies may drastically change the obtained results.
Rather, we want to demonstrate that Opdyts can be used in a calibration framework
along with Bayesian optimization. In fact, BO for candidates proposals and Opdyts for
efficient evaluation can be jointly used in practice. While the BO loop would be able to
globally find parameters that are interesting to evaluate, Opdyts would speed up those
evaluations by not further evolving candidates that are clearly sub-optimal.

Baselines. In the experiments presented in Figure 4.14, we repeat calibration 4
times for each algorithm with different random seeds and report the mean and standard
deviation of the best value of the objective found by each of the methods as a function
of the number of MATSim iterations. We also examine the ability of the methods to
perform parallel evaluations and depict the results in terms of the number of parallel
internal MATSim iterations. It can be seen that for the mode share distribution, the
algorithms require fewer MATSim iterations to converge than for travel time distributions.
We observe the same ranges of convergence time for other experiments that confirm the
assumption of mode share problem being easier than travel time distribution.

Empirical comparison. First, we compare proposed MF-BMES with BO baselines
algorithms: B-MES and GP-BUCB described in Section 4.2.3 and Section 4.2.2. As
before, we take the full-fidelity to be 40 iterations and lower-fidelity to be 10 iterations
with a fixed 0.1% sample of the population. The optimization domain is defined by the
box constrains xcar ∈ [−1, 1], xbike ∈ [−1, 1], xwalk ∈ [0, 2]. The results in Figure 4.16
show the comparison in terms of the objective function and number of required internal
MATSim iterations. In can be seen that MFB-MES outperforms B-MES and GP-BUCB
as it uses cheaper evaluations at the beginning to explore the domain and then, based
on the obtained information, acquires high-fidelity evaluations.

Second, we compare MF-BMES to the baselines Opdyts, CMA-ES, and Random
walk in Figure 4.17. For the baselines, we report the means and standard deviations
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(b) Travel Time Distribution

Figure 4.16: Comparing the performance of GP-BUCB, B-MES, and MF-BMES in the Zurich scenario
with 0.1% population size. Results are shown for the mean and standard deviation over 4 runs with
different random seeds. Each point on the curves represents one function evaluation. For model selection,
shown in thin, all algorithms use the same number of high-fidelity evaluations, resulting in overlap at
the beginning of the learning curves. MFB-MES also uses low-fidelity evaluations for model selection,
leading to a longer stagnation period at the start. For the mode share 8 high-fidelity and 8 low-fidelity
evaluations were used, while for the travel time objective, 10 of each were used. Low-fidelity evaluations
do not improve the objective function and therefore MFB-MES’s learning curve stagnates while exploring
the domain and acquiring cheaper evaluations.

obtained in Figure 4.14. For a fair comparison, we consider the model selection part in
MFB-MES as being a part of the optimizations process, thus making the MFB-MES
curves in Figure 4.17(a, c) identical to curves in Figure 4.16(a, b) respectively. For the
parallel setting in Figure 4.17(b, d), we take into account a batch size of 4 for MFB-MES
which is equal to the number of parallel runs of other algorithms.

Mode share is an easier problem and in Figure 4.17 the baselines start to converge
faster from the very beginning, while MFB-MES still performs model selection. However,
once the model is selected, MFB-MES converges rapidly and achieves the state-of-the-
art result. From the plot for travel time distribution, one can conclude that when the
calibration problem is hard enough, i.e., not an easy problem as mode share, even with
overhead produced by model training, MFB-MES has an advantage over the competing
methods. The ability of MFB-MES to be parallelized gains additional profit in performance,
especially in comparison with Opdyts.

We visualize intermediate optimization results, such as mode share and travel time
distributions and their correspondences to the objective value, in Figure 4.19 for MFB-
MES, Opdyts, and CMA-ES. Note that different parameter configurations may lead to
similar mode shares/travel time distributions and thus error in the parameter space is not
a representative of the quality of the solution to the calibration procedure.

MF-BMES for 10% population of Zurich scenario

In this experiment with 10% population fraction, we explore the behavior of the proposed
MF-BMES method on more difficult setting that a practitioner would have in reality: 1)
twice bigger box-constrained domain for ACS being [−2, 2] for each mode, 2) the reference
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(a) Mode Share: Sequential
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(b) Mode Share: Parallel
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(c) Travel times: Sequential
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(d) Travel times: Parallel

Figure 4.17: Comparison between MFMES, CMA-ES, and Opdyts for the 0.1% population Zurich
scenario. We report mean and standard deviations based on 4 runs of the algorithms with different
random seeds. In the right plots, we take into account the ability of the methods to perform parallel
evaluations. For MFB-MES this means dividing the computational time by the batch size. For the
baselines, the curves for the parallel version repeat ones in Figure 4.14.

data corresponds to simulation with 25% of the population that reflects the true real data
the most. Acquiring each full-fidelity evaluation takes more than 3 hours while low-fidelity
evaluation is 4 times cheaper. The results presented in Figure 4.18 (b) depict mean and
variance over 4 runs. As before, the value for the objective is updated when a better value
for high-fidelity point is acquired. One can see from the plot, that this problem is indeed
more difficult and requires more evaluations.

Subdomain MF-BMES for higher dimension problems

In this experiment, we show the behavior of MF-BMES and its subdomain modification
described in Section 4.2.3 on 10 parameters. Here, we consider alternative specific constants
and the values of time per mode. For the ASC we define a twice bigger box-constrained
domain being [−2, 2] and for others, we set the plausible ranges to be [−1, 1]. The reference
data corresponds to the simulation with 25% of the population.

For the subdomain BO, as an oracle, we use block coordinate descent proposed in
[Kir+19], so the sub-problems are defined by the coordinate-aligned directions. We choose
the size of the subdomain to be 3, i.e., in each iteration we fix all other parameters to
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the best-known values so far while optimizing these three. We use 8 low-fidelity and 8
high-fidelity initial points to define the model and then use online learning as described
before. The results presented in Figure 4.18 (a) depict mean and variance over 4 runs.

(a) 10 dimensional (b) 10% population

Figure 4.18: Results for the higher scale experiments: (a) for calibrating 10 parameters (Section 4.2.5)
and (b) for calibrating on a greater box-constrained domain and 10% population (Section 4.2.5). Both
plots depict results for mode share problem; bold curves and shaded areas represent the mean and
standard deviation obtained from the thin curves of corresponding colors. Though each experiment uses
a batch size of 4 for parallel runs, in the plot we show sequential cost as defined in Figure 4.17, thus in
practice, this timing is reduced by 4 times.
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(a) Opdyts: Mode share
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(b) CMA-ES: Mode share

Figure 4.19: Convergence comparison of MFB-MES, Opdyts, and CMA-ES. The curves are obtained for
the best results from Figures 4.14 and 4.16. In each set of two plots, the upper plots show the convergence
of the objective function (L2 error and Hellinger distance), which is identical to the corresponding curves
in Figure 4.14. The lower plots show the actual convergence of the distributions produced by the calibrated
model to target distributions. For mode share (a, b, c), in the lower plot, dashed lines represent the values
of target shares and solid lines represent the corresponding changing shares produced by MATSim during
the model calibration. For travel time (d, e, f), the lower plot visualizes the cumulative distribution
functions (CDF) of target travel time distributions (dashed lines) and CDF of distributions produced
by MATSim during the model calibration (solid lines). The different curves in CDF Visualization are
obtained after the number of corresponding MATSim iterations (specified in the legend) was used.
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4.2.6 Discussion

These results give the first evidence that Bayesian Optimization is suitable for calibrating
transport system simulators. One main practical advantage is the automated nature of
the process, where the whole calibration routine is treated as a black box and where both
the simulator parameters and the hyperparameters of the optimizers are tuned from data
without requiring any expertise in these domains from the practitioners.

In order to make MF-MES method useful in practice, one needs to know both its
strengths and its weaknesses. In particular, BO becomes problematic when applied in high-
dimensional domains due to two reasons: (i) the optimization of the acquisition function
becomes itself a hard optimization problem; (ii) performing global exploration requires
prohibitively many evaluations since the volume of the search space grows exponentially
with the dimensionality of the domain. In the experiments, we show that the adjustment
proposed in [Kir+19] covers all the parameters in MATSim and can be used in practice.
While the adoption of these techniques allows for calibrating more parameters, BO-based
methods are still unable to tackle problems with hundreds of thousands of parameters.
Therefore, MF-MES and the existing gradient-based methods are not mutually exclusive
rather they should be applied in different circumstances. In particular, whenever the num-
ber of calibration variables is small our BO-based methods should be preferred over other
black-box optimization methods studied in the transport simulators calibration literature
due to their sample efficiency and the global nature of its search. On the other hand,
when the number of calibration variables is high, existing gradient-based methods should
be preferred as they improve the calibration objective more quickly since they do not
make exploratory evaluations. In conclusion, BO-based methods should be used to tune
a few, critical parameters that have the largest impact on the calibration procedure while
standard, gradient-based methods should be used to tune a large amount of parameters
whose individual contribution toward calibration accuracy is low to moderate.

Also, it should be pointed out that the relatively long calibration times, as they are
presented in this work, are not given for a specified convergence criterion. As can be seen,
the objective values become rather small after a few iterations. Defining adequate stopping
criteria is subject to future work. While the paper at hand establishes the theoretical
and methodological foundation for applying Bayesian Optimization to the calibration of
a transport system simulator it will be up to the transport planning community to decide
when the calibration process reaches the desired fit.

To that end, the framework has been published as open source for the community to
be tested. A major part of future work will be to streamline the implementation and to
make the approach accessible to a larger variety of simulators and calibration objectives,
which may include count calibration, calibration of modes shares by distance, and others.

Moreover, we highlight the fact that, while the approximation to the second term of the
MF-BMES acquisition function introduced in this work performs well in practice, in future
research it would be interesting to investigate the impact of different approximations for
such a term.

Furthermore, it remains to show that the approach is applicable to real-world planning
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scenarios, which often are one magnitude larger than the examples presented in this work.
For instance, in [SBF18], the authors calibrate a full-fidelity scenario for Switzerland with
around 8 million agents. While the manual calibration has taken several months to finish,
it will be interesting to assess how well the BO framework is able to support calibration
endeavors of such scale.

Another point that needs to be emphasized is that transport problems do not only
rely on one specific objective ([SBF18]). Rather, there are multiple criteria such as the
total passenger distance traveled or the number of passengers per station that need to
be calibrated jointly as is in the case in the mentioned Switzerland scenario. Therefore,
in future work, we intend to apply multi-objective Bayesian optimization in combination
with the existing multi-fidelity batch BO presented here.

Finally, we would like to mention that an interesting direction for future research is to
investigate how some of the advancements that were recently proposed in the calibration
domain for other optimizers could benefit BO-based methods. In particular, we think
that the use of prior knowledge suggested by [OB13] and the smart resource management
suggested by [Flö17] could be readily applied to BO-based methods and greatly improve
their efficiency.

4.2.7 Conclusion

In this chapter, we propose an automatic low-dimensional calibration procedure for
transport system simulators based on batch multi-fidelity Bayesian optimization. The
calibration problem is formulated as an optimization problem where the mismatch between
data obtained from the simulation and real data is minimized with respect to the simulator
parameters being calibrated. To tackle this non-convex optimization problem that has
no analytic form and computationally expensive evaluations of its objective function, we
introduce the algorithms Multi-Fidelity Batch Min-value Entropy Search (MF-BMES)
and Batch Min-value Entropy Search (B-MES).

We show the effectiveness of MF-BMES and BMES methods for mode share and
travel time distributions as calibration targets on the Zurich scenario that is used in
transport planning. While the experiments were set up for a specific transport system
simulator, the proposed framework can be used to calibrate any (agent-based) transport
simulator that has long turnover times for the simulation runs, but has the possibility to
use cheaper approximations of the full simulation. We show how to adapt MF-BMES to
higher dimensional problems and propose a way to combine them with existing calibration
routines. Therefore, as part of our contribution, we release an open-source implementation
of our method. The work shows the first, in our knowledge, evidence that Bayesian
optimization is suitable for the calibration of transport system simulators.
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CHAPTER5
Bayesian optimization

over structured domains

Encoding the inductive biases, such as the problem’s structure, into the probabilistic
models allows for more efficient algorithms. Most of the existing Bayesian optimization
literature focuses on objectives that have purely continuous domains, such as those
arising in the tuning of continuous hyperparameters of machine learning algorithms,
recommendation systems, and preference learning [Sha+16]. More recently, problems with
purely discrete domains, such as food safety control and model-sparsification in multi-
component systems [BP18] have been considered. However, many real-world optimization
problems in science and engineering are of mixed-variable nature, involving both continuous
and discrete input variables, and exhibit complex constraints. For example, tuning the
hyperparameters of a convolutional neural network involves both continuous variables,
e.g., learning rate and momentum, and discrete ones, e.g., kernel size, stride, and padding.
Also, these hyperparameters impose validity constraints, as some combinations of kernel
size, stride and padding define invalid networks. Further examples of mixed-variable,
potentially constrained optimization problems include sensor placement [KSG08], drug
discovery [NFP11], optimizer configuration [HHL11], to name a few. Nonetheless, only a
few BO methods can address the unconstrained version of such a problem, and no existing
method can handle the constrained one. This work introduces the first algorithm that can
efficiently optimize mixed-variable functions subject to known constraints with provable
convergence guarantees.

In the chapter, we introduce MiVaBo, a novel BO algorithm for the efficient optimiza-
tion of mixed-variable functions combining a linear surrogate model based on expressive
feature representations with Thompson sampling. We propose an effective method to op-
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timize its acquisition function, a challenging problem for mixed-variable domains, making
MiVaBo the first BO method that can handle complex constraints over discrete variables.
Moreover, we provide the first convergence analysis of a mixed-variable BO algorithm.
Finally, we show that MiVaBo is significantly more sample efficient than state-of-the-art
mixed-variable BO algorithms on several hyperparameter tuning tasks, including the
tuning of deep generative models. This chapter is based on our paper "Mixed-Variable
Bayesian Optimization" [Dax+20].

Our Contributions. We introduce MiVaBo, the first BO algorithm for efficiently opti-
mizing mixed-variable functions subject to known linear and quadratic integer constraints,
encompassing many of the constraints present in real-world domains (e.g. cardinality,
budget and hierarchical constraints). It relies on a linear surrogate model that decouples
the continuous, discrete and mixed components of the function using an expressive feature
expansion (Sec. 5.2.1). We exploit the ability of this model to efficiently draw samples from
the posterior over the objective (Sec. 5.2.2) by combining it with Thompson sampling, and
show how to optimize the resulting constrained acquisition function (Sec. 5.2.3). While
in continuous BO, optimizing the acquisition function is difficult but has well-established
solutions, this is not true for mixed-variable spaces and doing this efficiently and accurately
is a key challenge that hugely impacts the algorithm’s performance. We also provide the
first convergence analysis of a mixed-variable BO algorithm (Sec. 5.2.5). Finally, we demon-
strate the effectiveness of MiVaBo on a set of complex hyperparameter tuning tasks, where
it outperforms state-of-the-art methods and is competitive with human experts (Sec. 5.3).

Related Work. Extending continuous BO methods [Sha+16] to mixed inputs requires
ad-hoc relaxation methods to map the problem to a fully continuous one and rounding
methods to map the solution back. This ignores the original domain structure, makes the
solution quality dependent on the relaxation and rounding methods, and makes it hard to
handle discrete constraints. Extending discrete BO methods [BP18; Oh+19] to mixed
inputs requires a discretization of the continuous domain part, the granularity of which
is crucial: If it is too small, the domain becomes prohibitively large; if it is too large,
the domain may only contain poorly performing values of the continuous inputs. Few
BO methods address the mixed-variable setting. SMAC [HHL11] uses a random forest
surrogate model. However, its frequentist uncertainty estimates may be too inaccurate
to steer the sampling. TPE [Ber+11b] uses kernel density estimation to find inputs
that will likely improve upon and unlikely perform worse than the incumbent solution.
While SMAC and TPE can handle hierarchical constraints, they cannot handle more
general constraints over the discrete variables, e.g., cardinality constraints. They also
lack convergence guarantees. Hyperband (HB) [Li+18] uses cheap but less accurate
approximations of the objective to dynamically allocate resources for function evaluations.
BOHB [FKH18] is the model-based counterpart of HB, based on TPE. They thus extend
existing mixed-variable methods to the multi-fidelity setting rather than proposing new
ones, which is complementary to our approach, rather than in competition with it.
Surrogate modeling over a mixed-variable domain is addressed in [BH10]; however, the
authors omit acquisition function optimization, which is a challenging problem, especially
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in mixed-variable domains. Moreover, the authors leave the important part of choosing
the model features to its user. [GH18] propose a Gaussian process kernel to model discrete
inputs without rounding bias. Their method lacks guarantees and cannot handle discrete
constraints. We instead use discrete optimizers for the acquisition function, which avoid
bias by only making integer evaluations. Finally, while [Her+15; Gar+14; Sui+15] extend
continuous BO methods to handle unknown constraints, no method can handle known
discrete constraints in a mixed-variable domain.

5.1 Problem Formulation

We consider the problem of optimizing an unknown, costly-to-evaluate function defined
over a mixed-variable domain, accessible through noisy evaluations and subject to known
linear and quadratic constraints. Formally, we aim to solve

min
x∈X

f(x) (5.1)

subject to gc(x) ≥ 0, (5.2)
gd(x) ≥ 0, (5.3)

where X ⊆ X c × X d with continuous subspace X c and discrete subspace X d. Both
constraints gc(x) ≥ 0 over X c and gd(x) ≥ 0 over X d are known, and specifically gd(x) are
linear or quadratic. We assume that the domain of the continuous inputs is box-constrained
and can thus, w.l.o.g., be scaled to the unit hypercube, X c = [0, 1]Dc . We further assume,
w.l.o.g., that the discrete inputs are binary, i.e., vectors xd ∈ X d = {0, 1}Dd are vertices of
the unit hypercube. This representation can effectively capture the domain of any discrete
function. For example, a vector xd = [xdi ]

Dd
i=1 ∈ X d can encode a subset A of a ground

set of Dd elements, such that xdi = 1 ⇔ ai ∈ A and xdi = 0 ⇔ ai /∈ A, yielding a set
function. Alternatively, xd ∈ X d can be a binary encoding of integer variables, yielding a
function defined over integers. We sequentially interact with the unknown objective and
observe noise-perturbed evaluations yt ≜ f(xt) + ε with ε

iid∼ N (0, β−1), β > 0. To this
end, at each iteration, we optimize the acquisition function that provides the next input
to evaluate. However, in our case, this optimization problem involves mixed variables and
exhibits linear and quadratic constraints and is thus still challenging. We now present
MiVaBo, an algorithm to efficiently solve the optimization problem in Eq. (5.1).

5.2 MiVaBo Algorithm

We first introduce the linear model used to represent the objective in Section 5.2.1 and
describe how to do inference with it in Section 5.2.2. We then show how to use Thompson
sampling to query informative inputs in Section 5.2.3 and, finally, provide a bound on
the regret incurred by MiVaBo in Section 5.2.5.
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5.2.1 Model

We propose a surrogate model that accounts for both discrete and continuous variables
in a principled way, while balancing two conflicting goals: Model expressiveness versus
feasibility of Bayesian inference and of the constrained optimization of the mixed-variable
acquisition function. Linear models defined over non-linear feature mappings, f(x) =
ω⊤ϕ(x), are a class of flexible parametric models that strike a good trade-off between model
capacity, interpretability and ease of use through the definition of features ϕ : X → RM .
While the complexity of the model is controlled by the number of features, M , its capacity
depends on their definition. Therefore, to make the design of a set of expressive features
more intuitive, we treat separately the contribution to the objective f from the discrete
part of the domain, from the continuous part of the domain, and from the interaction of
the two,

f(x) =
∑

j∈{d,c,m} ω
j⊤ϕj(xj) (5.4)

where, for j ∈ {d, c,m}, ϕj(xj) = [ϕj
i (x

j)]
Mj

i=1 ∈ RMj and ωj ∈ RMj are the feature and
weight vector for the discrete, continuous and mixed function component, respectively.

In many real-world domains, a large set of features can be discarded a priori to simplify
the design space. It is common practice in high-dimensional BO to assume that only low-
order interactions between the variables contribute significantly to the objective, which was
shown for many practical problems [Rol+18; MK18], including deep neural network hyper-
parameter tuning [HKY17]. Similarly, we focus on features defined over small subsets of the
inputs. Formally, we consider ϕ(x) = [ϕk(xk)]

M
k=1, where xk is a subvector of x containing

exclusively continuous or discrete variables or a mix of both. Thus, the objective f(x) can
be decomposed into a sum of low-dimensional functions fk(xk) ≜ wkϕk(xk) defined over
subspaces Xk ⊆ X with dim(Xk) ≪ dim(X ). This defines a generalized additive model
[Rol+18; Has17], where the same variable can be included in multiple subvectors/features.
The complexity of this model is controlled by the effective dimensionality (ED) of the
subspaces, which is crucial under limited computational resources. In particular, let
D̄d ≜ maxk∈[M ] dim(X d

k ) denote the ED of the discrete component in Eq. (5.4), i.e. the
dimensionality of the largest subspace that exclusively contains discrete variables. Analo-
gously, D̄c and D̄m denote the EDs of the continuous and mixed component, respectively.
Intuitively, the ED corresponds to the maximum order of the variable interactions present
in f . Then, the number of features M ∈ O

(
DD̄d

d +DD̄c
c + (Dd +Dc)

D̄m
)

scales exponen-
tially in the EDs only (as modeling up to L-th order interactions of N inputs requires∑L

l=0

(
N
l

)
∈ O(NL) terms), which are usually small, even if the true dimensionality is large.

Discrete Features ϕd. We aim to define features ϕd that can effectively represent the
discrete component of Eq. (5.4) as a linear function, which should generally be able to
capture arbitrary interactions between the discrete variables. To this end, we consider
all subsets S of the discrete variables in X d (or, equivalently, all elements S of the
powerset 2Xd of Xd) and define a monomial

∏
j∈S x

d
j for each subset S (where for S = ∅,∏

j∈∅ x
d
j = 1). We then form a weighted sum of all monomials to yield the multi-linear

polynomial ωd⊤ϕd(xd) =
∑

S∈2Xd wS

∏
j∈S x

d
j . This functional representation corresponds

84



to the Fourier expansion of a pseudo-Boolean function (PBF) [BH02]. In practice, an
exponential number of features can be prohibitively expensive and may lead to high-
variance estimators as in BO one typically does not have access to enough data to robustly
fit a large model. Alternatively, [BP18; HKY17] empirically found that a second-order
polynomial in the Fourier basis provides a practical balance between expressiveness and
efficiency, even when the true function is of higher order. In our model, we also consider
quadratic PBFs, ωd⊤ϕd(xd) = w∅ +

∑n
i=1w{i}x

d
i +
∑

1≤i<j≤nw{i,j}x
d
ix

d
j , which induces the

discrete feature representation ϕd(xd) ≜ [1, {xdi }Dd
i=1, {xdixdj}1≤i<j≤Dd

]⊤ and reduces the
number of model weights to Md ∈ O(D2

d).

Continuous Features ϕc. In BO over continuous spaces, most approaches are based on
Gaussian process (GP) models [WR06] due to their flexibility and ability to capture large
classes of continuous functions. To fit our linear model formulation, we leverage GPs’
expressiveness by modeling the continuous part of our model in Eq. (5.4) using feature
expansions ϕc(xc) that result in a finite linear approximation of a GP. One simple, yet
theoretically sound, choice is the class of Random Fourier Features (RFFs) [RR08], which
use Monte Carlo integration for a randomized approximation of a GP. Alternatively, one
can use Quadrature Fourier Features [MK18], which instead use numerical integration for a
deterministic approximation, which is particularly effective for problems with low effective
dimensionality. Both feature classes were successfully used in BO [Jen+17; MK18]. In
our experiments, we use RFFs approximating a GP with a squared exponential kernel,
which we found to best trade off complexity vs. accuracy in practice.

Mixed Features ϕm. The mixed term should capture as rich and realistic interactions
between the discrete and continuous variables as possible while keeping model inference
and acquisition function optimization efficient. To this end, we stack products of all
pairwise combinations of features of the two variable types, i.e. ϕm(xd,xc) ≜ [ϕd

i (x
d) ·

ϕc
j(x

c)]⊤1≤i≤Md,1≤j≤Mc
. This formulation provides a good trade-off between modeling

accuracy and computational complexity. In particular, it allows us to reduce ϕm to the
discrete feature representation ϕd when conditioned on a fixed assignment of continuous
variables ϕc (and vice versa). This property is crucial for optimizing the acquisition
function, as it allows us to optimize the mixed term of our model by leveraging the tools
for optimizing the discrete and continuous parts individually. The proposed representation
contains MdMc features, resulting in a total of M =Md +Mc +MdMc. To reduce model
complexity, prior knowledge about the problem can be incorporated into the construction of
the mixed features. In particular, one may consider the following approaches. Firstly, one
can exploit a known interaction structure between variables, e.g., in form of a dependency
graph, and ignore the features that are known to be irrelevant. Secondly, one can start
by including all of the proposed pairwise feature combinations and progressively discard
not-promising ones. Finally, for high-dimensional problems, one can do the opposite and
progressively add pairwise feature combinations, starting from the empty set.
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5.2.2 Model Inference

Let X1:t ∈ Rt×D be the matrix whose ith row contains the input xi ∈ X queried at iteration
i, dimX = D, and let y1:t = [y1, . . . , yt]

⊤ ∈ Rt be the array of the corresponding noisy
function observations. Also, let Φ1:t ∈ Rt×M be the matrix whose ith row contains the
featurized input ϕ(xi) ∈ RM . The formulation of f in Eq. (5.4) and the noisy observation
model induce the Gaussian likelihood p(y1:t|X1:t, ω) = N (Φ1:tω, β

−1I). To reflect our a
priori belief about the weight vector ω and thus f , we specify a prior distribution over ω.
A natural choice for this is a zero-mean isotropic Gaussian prior p(ω|α) = N (0, α−1I), with
precision α > 0, which encourages ω to be uniformly small, so that the final predictor is a
sum of all features, each giving a small, non-zero contribution. Given the likelihood and
prior, we infer the posterior p(ω|X1:t,y1:t, α, β) ∝ p(y1:t|X1:t, ω, β)p(ω|α), which due to
conjugacy is Gaussian, p(ω|X1:t,y1:t) = N (m,S−1), with mean m = βS−1Φ⊤

1:ty1:t ∈ RM

and precision S = αI+ βΦ⊤
1:tΦ1:t ∈ RM×M [WR06]. This simple analytical treatment of

the posterior distribution over ω is a main benefit of this model, which can be viewed as
a GP with a linear kernel in feature space.

Sparse Prior. While the number and degree of the features used in the model is a
design choice, in practice it is typically unknown which variable interactions matter and
thus which features to choose. To discard irrelevant features, one may impose a sparsity-
encouraging prior over the weight vector ω [BP18]. However, due to non-conjugacy to the
Gaussian likelihood, exact Bayesian inference of the resulting posterior distribution is in
general intractable, imposing the need for approximate inference methods. One choice for
such a prior is the Laplace distribution, for which approximate inference techniques based
on expectation propagation [Min01] and variational inference [WJ+08] were developed in
[See08; SN08; SN11]. Alternatively, one can use a horseshoe prior and use Gibbs sampling
to sample from the posterior over weights [BP18]. However, this comes with a significantly
larger computational burden, which is a well-known issue for sampling based inference
techniques [Bis06]. Lastly, one may consider a spike-and-slab prior with expectation
propagation for approximate posterior inference [HHD13; HHS15].

5.2.3 Acquisition Function

We propose to use Thompson sampling (TS) [Tho33], which samples weights
ω̃ ∼ p(ω|X1:t,y1:t, α, β) from the posterior and chooses the next input by solving x̂ ∈
arg minx∈X ω̃

⊤ϕ(x). TS intuitively focuses on inputs that are plausibly optimal and has
previously been successfully applied in discrete and continuous domains [BP18; MK18].

TS requires solving x̂ ∈ arg minx∈X ω̃
⊤
t ϕ(x), which is a challenging mixed-variable

optimization problem. However, as ω̃⊤
t ϕ(x) decomposes as in Eq. (5.4), we can naturally

use an alternating optimization scheme which iterates between optimizing the discrete
variables xd conditioned on a particular setting of the continuous variables xc and
vice versa, until convergence to some local optimum. While this scheme provides no
theoretical guarantees, it is simple and thus widely and effectively applied in many
contexts where the objective is hard to optimize. In particular, we iteratively solve
x̂d ∈ arg minxd∈X d

(
ω̃d⊤ϕd(xd) + ω̃m⊤ϕm(xd,xc = x̂c)

)
, x̂c ∈ arg minxc∈X c

(
ω̃c⊤ϕc(xc) +
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ω̃m⊤ϕm(xd = x̂d,xc)
)
. Importantly, using the mixed features proposed in Sec. 5.2.1, these

problems can be optimized by purely discrete and continuous optimizers, respectively. This
also holds in the presence of mixed constraints gm(x) ≥ 0 if those decompose accordingly
into discrete and continuous constraints.

This scheme leverages independent subroutines for discrete and continuous optimization:
For the discrete part, we exploit the fact that optimizing a second-order pseudo-Boolean
function is equivalent to a binary integer quadratic program (IQP) [BH02], allowing us
to exploit commonly-used efficient and robust solvers such as Gurobi or CPLEX. While
solving general binary IQPs is NP-hard [BH02], these optimizers are in practice very
efficient for the dimensionalities we consider (i.e., Dd < 100). This approach allows us
to use any functionality offered by these tools, such as the ability to optimize objectives
subject to linear constraints Axd ≤ b, A ∈ RK×Dd ,b ∈ RK or quadratic constraints
xd⊤Qxd + q⊤xd ≤ b, Q ∈ RDd×Dd ,q ∈ RDd , b ∈ R. For the continuous part, one can
use optimizers commonly used in continuous BO, such as L-BFGS or DIRECT. In our
experiments, we use Gurobi as the discrete and L-BFGS as the continuous solver within
the alternating optimization scheme, which we always run until convergence.

5.2.4 Model Discussion

BO algorithms are comprised of three major design choices: the surrogate model to
estimate the objective, the acquisition function to measure informativeness of the inputs
and the acquisition function optimizer to select queries. Due to the widespread availability
of general-purpose optimizers for continuous functions, continuous BO is mostly concerned
with the first two design dimensions. However, this is different for mixed-variable con-
strained problems. We show in Sec. 5.3 that using a heuristic optimizer for the acquisition
function optimization leads to poor queries and, therefore, poor performance of the BO
algorithm. Therefore, the tractability of the acquisition function optimization influences
and couples the other design dimensions. In particular, the following considerations make
the choice of a linear model and TS the ideal combination of surrogate and acquisition
function for our problem. Firstly, the linear model is preferable to a GP with a mixed-
variable kernel as the latter would complicate the acquisition function optimization for
two reasons: (i) the posterior samples would be arbitrary nonlinear functions of the
discrete variables and (ii) it would be non-trivial to evaluate them at arbitrary points
in the domain. In contrast, our explicit feature expansion solves both problems, while
second order interactions provide a valid discrete function representation [BP18; HKY17]
and lead to tractable quadratic MIPs with capacity for complex discrete constraints.
Moreover, Random Fourier Features approximate common GP kernels arbitrarily well, and
inference in MiVaBo scales linearly with the number of data points, making it applicable
in cases where GP inference, which scales cubically with the number of data points, would
be prohibitive. Secondly, TS induces a simple relation between the surrogate and the
resulting optimization problem for the acquisition function, allowing to trade off model
expressiveness and optimization tractability, which is a key challenge in mixed-variable do-
mains. Finally, the combination of TS and the linear surrogate facilitates the convergence
analysis described in Sec. 5.2.5, making MiVaBo the first mixed-variable BO method
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with theoretical guarantees.
Optimization with theoretical guarantees. Alternatively, one can minimize

Eq. (5.4) using dual decomposition, which is a powerful approach based on Lagrangian
optimization and has been successfully used for many problems [KPT11; SGJ11; RC12]. Its
well-studied theoretical properties facilitate the convergence analysis of MiVaBo, making
it particularly useful for settings where optimization accuracy is of crucial importance. Due
to lack of space, we refer the reader to Section 7.4 for details on the dual decomposition
and its derivation for our problem.

5.2.5 Convergence Analysis

Using a linear model and Thompson sampling, we can leverage convergence analysis
from linearly parameterized multi-armed bandits, a well-studied class of methods for
solving structured decision making problems [AL+17]. These also assume the objective
to be linear in features ϕ(x) ∈ RM with a fixed but unknown weight vector ω ∈ RM , i.e.
E[f(x)|ϕ(x)] = ω⊤ϕ(x), and aim to minimize the total regret up to time T : R(T ) =∑T

t=1(f(x∗)− f(xt)). We obtain the following regret bound for MiVaBo:

Proposition 1. Consider the stochastic linear model y(x) = f(x) + ξ, i.e., f(x) = ω⊤x,
with a fixed but unknown parameter ω, perturbed by zero-mean sub-Gaussian noise ξ with
variance-proxy σ2. Let X ⊂ RM be a (finite or infinite) compact set and x∗ ∈ argmin

x∈X
f(x).

Let µt and Σt be the mean and variance, respectively, of the posterior distribution of ω
Eq. (2.3). Further assume running MiVaBo Eq. (2.26) with the following conditions
being maintained:

1. ω̃t∼N (µt, 24M lnT ln 1
δ
Σ−1

t ), i.e. with scaled variance.

2. xt = argminx ω̃t
⊤x is selected exactly.1

3. ∥ω̃t∥2 ≤ c, ∥xt∥2 ≤ c, ∥f(x∗)−f(xt)∥2 ≤ c , c ∈ R+.

Then, the following holds with probability at least 1− δ for any T ≥ 1:

R(T ) ≤ Õ
(
M3/2

√
T ln

1

δ

)
.

Prop. 1 follows from Theorem 1 in [AL+17] and works for infinite arms x ∈ X , |X | =∞.
In our setting, both the discrete and continuous Fourier features (and, thus, the mixed
features) satisfy the standard boundedness assumption, such that the proof indeed holds.
Prop. 1 implies no-regret, limT→∞R(T )/T = 0, i.e., convergence to the global minimum,
since the minimum found after T iterations is no further away from f(x∗) than the mean
regret R(T )/T . To our knowledge, MiVaBo is the first mixed-variable BO algorithm for
which such a guarantee is known to hold.

1To this end, one can use more expensive but theoretically backed optimization methods instead of the
alternating one, such as the powerful and popular dual decomposition [SGJ11].
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5.3 Experiments

We present experimental results on tuning the hyperparameters of two machine learning
algorithms, namely gradient boosting and a deep generative model, on multiple datasets.

1 10 20 30 40 50 60 70 80 90 100

# of sampled hyperparameter configurations

0.1

0.2

0.3

0.4

0.5

va
li

d
at

io
n

 e
rr

or

1 10 20 30 40 50 60 70 80 90 100
# of sampled hyperparameter configurations

0.00

0.05

0.10

0.15

0.20

0.25

Random

TPE

SMAC

GPyOpt

0.30

Figure 5.2: XGBoost hyperparameter tuning on monks-problem-1
(left) and steel- plates-fault (right). Mean ± one std. of the valida-
tion error over 16 random seeds. MiVaBo significantly outperforms the
baselines on the first dataset, and is competitive on the second.

Figure 5.3: Randomly
chosen MNIST test images
(left column) and their re-
constructions by the best
VAE models found by MiV-
aBo, random search, GPy-
Opt, TPE and SMAC (left to
right), thus ordered by NLL
values, which seem to cap-
ture visual quality.
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Figure 5.4: VAE hyperparameter tuning on MNIST (left) and
FashionMNIST (right). Mean ± one std. of the NLL in nats, estimated
using 32 importance samples, over 8 random seeds. Every model was
trained for 32 epochs. MiVaBo significantly outperforms the state-of-the-
art baselines, demonstrating its ability to handle the complex constrained
nature of the VAE’s parameter space.

Method Time NLL

SMAC 0.32s 99.09
TPE 0.12s 97.05
GPyOpt 0.65s 97.33
Random 0.01s 93.74
MiVaBo 7.39s 84.25

Figure 5.5: Mean wall-
clock time of one iteration
(excluding function evalua-
tion time) and mean nega-
tive log-likelihood (NLL) in
nats, estimated with 5000
importance samples, of the
best VAEs found after 32 BO
iterations (as in Figure 5.6),
when trained for 3280 epochs.
Human expert baseline for
even deeper models is 82-83
nats.

Experimental Setup. For MiVaBo2, we set the prior variance α, observation noise
variance β, and kernel bandwidth σ to 1.0, and scale the variance as stated in Prop. 1.
We compare against SMAC, TPE, random search, and the popular GPyOpt BO package.
GPyOpt uses a GP model with the upper confidence bound acquisition function [Sri+10],
and accounts for mixed variables by relaxing discrete variables to be continuous and later

2We provide a Python implementation of MiVaBo at https://github.com/edaxberger/mixed_variable_bo.
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Figure 5.6: (Left) XGBoost hyperparameter tuning results on the monks-problem-1 dataset. Mean
plus/minus one standard deviation of the validation error over 16 random initializations. MiVaBo
significantly outperforms the competing state-of-the-art methods. (Right) VAE hyperparameter tuning
results on the MNIST dataset. Mean plus/minus one standard deviation of the negative test log-likelihood
(NLL) in nats, estimated using 32 importance samples, over 8 random initializations. Every model
was trained for 32 epochs. MiVaBo significantly outperforms the competing state-of-the-art methods,
demonstrating its ability to handle the complex constrained nature of the VAE’s parameter space.

Table 5.1: For the best models found by each algo-
rithm in Figure 5.6 (left) after 32 BO iterations, we
report the negative log-likelihood (NLL), estimated
with 5000 importance samples, after training for
3280 epochs. We also report the NLL achieved
after 32 training epochs, as in Figure 5.6 (left)

Algorithm NLL (nats)
32 epochs 3280 ep.

SMAC 106.69± 1.51 99.09
TPE 103.28± 0.49 97.05
GPyOpt 103.25± 0.58 97.33
Random 102.04± 0.41 93.74
MiVaBo 91.29± 0.69 84.25

Table 5.2: Randomly chosen MNIST test images
(left column) and their reconstructions by the best
VAE models found by MiVaBo, random search,
GPyOpt, TPE and SMAC (from left to right), thus
ordered by NLL values, which seem to capture
quality of visual appearance.

rounding them to the nearest discrete neighbor. To separate the influence of model choice
and acquisition function optimization, we also consider the MiVaBo model optimized
by simulated annealing (SA) (MiVaBo-SA) and the GP approach optimized by SA
(GP-SA). We compare against the SA-based variants only in constrained settings, using
more principled methods in unconstrained ones. To handle constraints, SA assigns high
energy values to invalid inputs, making the probability of moving there negligible. We use
SMAC, TPE and GPyOpt and SA with their respective default settings.

We assess three different surrogate models for this setting:

1. An agnostic model which doesn’t know the feature representation of the true objective,
i.e., where we use the full discrete feature vector of size Md ∈ O(D2

d) and the full
mixed feature vector of size MdMc. We place a Gaussian prior over ω. This simulates
a realistic setting where the objective function is unknown.

2. The model as in 1., but with a Laplacian prior over ω. This is to assess the effect of
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imposing a sparse prior on the weights in a setting where the true objective actually
is sparse (due to the feature subsampling).

3. A model which knows the feature design, i.e., which uses the same features as the
underlying objective. We again place a Gaussian prior over ω. The goal of the
algorithm now is to recover the fixed (i.e., randomly sampled) but unknown weight
vector ω. This simulates the setting where we know that our model class captures
the true objective (which is e.g. also assumed for our regret bounds to hold).

5.3.1 Gradient Boosting Tuning

The OpenML database [Van+14] contains evaluations for various machine learning methods
trained on several datasets with many hyperparameter settings. We consider extreme
gradient boosting (XGBoost) [CG16], one of the most popular OpenML benchmarks, and
tune its ten hyperparameters – three are discrete and seven continuous – to minimize the
classification error on a held-out test set (without any constraints). We use two datasets,
each containing more than 45000 hyperparameter settings. To evaluate hyperparameter
settings for which no data is available, we use a surrogate modeling approach based on
nearest neighbor [Egg+15], meaning that the objective returns the error of the closest
(w.r.t. Euclidean distance) setting available in the dataset. Figure 5.2 shows that MiVaBo
achieves performance which is either significantly stronger than (left dataset) or competitive
with (right dataset) the state-of-the-art mixed-variable BO algorithms on this challenging
task. GPyOpt performs poorly, likely because it cannot account for discrete variables in a
principled way. As compared to TPE and SMAC, MiVaBo seems to benefit from more
sophisticated uncertainty estimation.

5.3.2 Deep Generative Model (DGM) Tuning

DGMs recently received considerable attention in the machine learning community. Despite
their popularity and importance, effectively tuning their hyperparameters is a major
challenge. We consider tuning the hyperparameters of a variational autoencoder (VAE)
[KW14] composed of a convolutional encoder and a deconvolutional decoder [SKW15]. The
VAEs are evaluated on stochastically binarized MNIST, as in [BGS16], and FashionMNIST.
They are trained on 60000 images for 32 epochs, using Adam with a mini-batch size of
128. We report the negative log-likelihood (NLL; in nats) achieved by the VAEs on a
held-out test set of 10000 images, as estimated via importance sampling using 32 samples
per test point. To our knowledge, no other BO paper considered DGM tuning.

VAE tuning is difficult due to the high-dimensional and structured nature of its
hyperparameter space, and, in particular, due to constraints arising from dependencies
between some of its parameters. We tune 25 discrete parameters defining the model
architecture, e.g. the number of convolutional layers, their stride, padding and filter size,
the number and width of fully-connected layers, and the latent space dimensionality. We
further tune three continuous parameters for the optimizer and regularization. Crucially,
mutual dependencies between the discrete parameters result in complex constraints,
as certain combinations of stride, padding and filter size lead to invalid architectures.
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Figure 5.7: Randomly chosen MNIST test images (left column) and their reconstructions by the best
VAE models found by MiVaBo, random search, GPyOpt, TPE and SMAC (left to right), thus ordered
by NLL values, which seem to capture visual appearance quality.

Particularly, for the encoder, the shapes of all layers must be integral, and for the decoder,
the output shape must match the input data shape, i.e., one channel of size 28× 28 for
{Fashion}MNIST. The latter constraint is especially challenging, as only a small number
of decoder configurations yield the required output shape. Thus, even for rather simple
datasets such as {Fashion}MNIST, tuning such a VAE is significantly more challenging
than, say, tuning a convolutional neural network for classification.

While MiVaBo can conveniently capture these restrictions via linear and quadratic
constraints, the competing methods cannot. To enable a comparison that is as fair as
possible, we thus use the following sensible heuristic to incorporate the knowledge about
the constraints into the baselines: If a method tries to evaluate an invalid parameter
configuration, we return a penalty error value, which will discourage a model-based method
to sample this (or a similar) setting again. However, for fairness, we only report valid
observations and ignore all configurations that violated a constraint. We set the penalty
value to 500 nats, which is the error incurred by a uniformly random generator. We
investigated the impact of the penalty value (e.g., we also tried 250 and 125 nats) and
found that it does not qualitatively affect the results.

Figure 5.6 shows that MiVaBo significantly outperforms the competing methods on
this task, both on MNIST (left) and FashionMNIST (right). This is because MiVaBo can
naturally encode the constraints and thus directly optimize over the feasible region in
parameter space, while TPE, SMAC and GPyOpt need to learn the constraints from
data. They fail to do so and get stuck in bad local optima early on. The model-
based approaches likely struggle due to sharp discontinuities in hyperparameter space
induced by the constraint violation penalties (i.e., as invalid configurations may lie
close to well-performing configurations). In contrast, random search is agnostic to these
discontinuities, and thus notably outperforms the model-based methods. Lastly, GP-SA
and MiVaBo-SA struggle as well, suggesting that while SA can avoid invalid inputs, the
effective optimization of complex constrained objectives crucially requires more principled
approaches for acquisition function optimization, such as the one we propose. This shows
that all model choices for MiVaBo (as discussed in Sec. 5.2.4) are necessary to achieve
such strong results. false

Although log-likelihood scores allow for a quantitative comparison, they are hard to
interpret for humans. Thus, for a qualitative comparison, Section 5.3.2 visualizes the
reconstruction quality achieved on MNIST by the best VAE configuration found by all
methods after 32 BO iterations. The VAEs were trained for 32 epochs each, as in Figure 5.6.
The likelihoods seem to correlate with the quality of appearance, and the model found by
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MiVaBo arguably produces the visually most appealing reconstructions among all models.
Note that while MiVaBo requires more time than the baselines (see Table 5.1), this is still
negligible compared to the cost of a function evaluation, which involves training a deep gen-
erative model. Finally, the best VAE found by MiVaBo achieves 84.25 nats on MNIST when
trained for 3280 epochs and using 5000 importance samples for log-likelihood estimation,
i.e. the setting used in [BGS16] (see Table 5.1). This is comparable to the performance
of 82-83 nats achieved by human expert tuned models, e.g. as reported in [SKW15]
(which use even more convolutional layers and a more sophisticated inference method),
highlighting MiVaBo’s effectiveness in tuning complex deep neural network architectures.

5.4 Conclusion

We propose MiVaBo, the first method for efficiently optimizing expensive mixed-variable
black-box functions subject to linear and quadratic discrete constraints. MiVaBo com-
bines a linear model of expressive features with Thompson sampling, making it simple yet
effective. Moreover, it is highly flexible due to the modularity of its components, i.e., the
mixed-variable features, and the optimization oracles for the acquisition procedure. This
allows practitioners to tailor MiVaBo to specific objectives, e.g. by incorporating prior
knowledge in the feature design or by leveraging optimizers handling specific types of con-
straints. We show that MiVaBo enjoys theoretical convergence guarantees that competing
methods lack. Finally, we empirically demonstrate that MiVaBo significantly improves
optimization performance as compared to state-of-the-art methods for mixed-variable
optimization on complex hyperparameter tuning tasks.

5.5 Discussion

Following the growing development of Bayesian optimization, a number of recent works
have considered ways of extending it into discrete [Bor+21; Oh+19] and mixed domains
[OGW21], non-Euclidean domains [Hut+21], and other structured assumptions such as
symmetry. Exploiting the structure of the underlying problem helps to improve both the
computational efficiency and the quality of the founds solutions. In this work, we first
consider all possible interactions between the variables up to the reasonable polynomial
order, and scaling to higher orders might not be feasible. In contrast, a known structural
(causal) graph allows reasoning about the effective dimensionality of the problem and
applying BO in cases where the standard approaches would scale exponentially with
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space dimensionality. We consider in [SMK23] a particular case of exploiting structural
knowledge in the form of a known causal graph (see Section 5.5).

In the future, it is interesting thus further investigate the challenging extension of
learning the dependency graph from data. In addition to the dependency, a problem of
finding the causal relationships (directed influence of one variable to another) might be a
part of the optimization process, e.g., maximizing the crop yield while learning the causal
dependence in soil fumigants and insects level. In particular, recent advances in casual
global optimization that aim at objective optimization when there is a casual structure over
the input variables [Agl+20; Agl+21; SMK23] open a promising direction and applying
Bayesian optimization to the problems that are out of the reach for the current approaches.
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CHAPTER6
Conclusion

In this thesis, we proposed and analyzed novel approaches to risk-averse, computationally-
effective, and problem-adaptive Bayesian optimization methods and showed their advan-
tages in various applications. In Chapter 3, we proposed a method that takes into account
the input-dependent aleatoric uncertainty and learns it together with the objective on
the fly of the optimization. The method is suitable for high-stakes applications requiring
risk-averse decision-making and enjoys sublinear convergence guarantees. In Chapter 4,
we contributed to the computational efficiency of Bayesian optimization from different
angles, such as the multi-fidelity approach and automated termination. Motivated by im-
pactful applications, such as the calibration of an agent-based transport system simulation
and automated machine learning, the proposed methods show competitive results and
provide new insights for future exciting advancements. In Chapter 5, we emphasized the
importance of exploiting the structure and interconnections within the decision domain
in Bayesian optimization and introduced the first method for mixed-variable optimization.
Importantly, the proposed method is both practically viable and theoretically studied.
Overall, this dissertation contributes to the field of sequential decision-making by introduc-
ing novel Bayesian optimization approaches that address real-world motivated challenges.
These methods provide a balance between theoretical soundness and practical applicability,
which, we believe, makes them a valuable resource for researchers and practitioners alike.

6.1 Future directions

Finally, we would like to discuss several exciting avenues for future work.

Multi-fidelity learning of the aleatoric uncertainty The aversion to risk clearly comes
with an extra evaluation price. As can be seen from the convergence guarantees in
Theorem 1 for RaHBO proposed in Chapter 3, the regret bound non-trivially depends
on the number of the experiment repetitions k: the larger k increases sample complexity
but also leads to better estimation of the noise model. There are several ways to improve
this computational complexity, for example, the multi-fidelity approach where the number
of the experiment repetitions k is a matter of choice at each evaluation step. Thus, it
would be interesting to connect methods developed Section 4.2.2 and Chapter 3 to allow
for better practical and theoretical results. Moreover, such multi-fidelity estimation of the
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heteroscedastic noise variance might be directly useful for the termination condition in BO
from Section 4.1 that would be in the same spirit of the approach under homoscedasticity
assumption in Section 5.1.

Risk-averse causal optimization Causal Bayesian optimization (CBO) tackles the
problem of optimal intervening on an unknown structural causal model to maximize a
downstream variable of interest. CBO has important applications in medicine, ecology,
and manufacturing that require decisions in high-stakes settings. Similar to the non-causal
BO considered in Chapter 3, two optimal interventions have the same mean value, but
different noise levels, i.e., heteroscedastic noise variances. Making risk-averse decisions
in such settings is a rather under-explored area, and it would exciting to explore how the
advances in causal decision-making can enrich the BO in high-stakes applications, and vice
versa. In particular, on the one hand, there are still open questions on how to measure
uncertainty in CBO [SMK23]. On the other hand, exploiting the structural dependency
within the decision domain can improve the convergence guarantees for such a risk-averse
optimization over the ones in Chapter 3. While in a general BO setup, we intervene on all
variables breaking the dependency structure in variables, in causal Bayesian optimization
[Agl+20] we can use do-calculus that allows predicting the effect of the intervention
without its direct evaluation. Thus, under the assumption of a known graph structure,
we could rely on the graph to infer aleatoric uncertainty with fewer evaluations.

Bayesian optimization under heavy-tailed noise variance On the one hand, the
sub-Gaussian tail assumption on the observation likelihood is quite rich covering many
distributions beyond the normal distribution. On the other hand, as we have seen in
Section 5.1, the observation likelihood for the noise variance might be heavy-tailed, thus
requiring more principled ways of dealing with it.
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APPENDIX A
Additional Background for Chapter 2

A.1 Preliminaries and definitions

I. Random variables and functions

Definition 3 (Sub-Gaussian). A zero-mean real-valued random variable ξ is ρ–sub-
Gaussian, if there exists variance-proxy ρ2 such that ∀λ ∈ R, E[eλξ] ≤ e

λ2ρ2

2 .

For a sub-Gaussian ξ, its variance Var[ξ] lower bounds any valid variance-proxy ρ, i.e.,
Var[ξ] ≤ ρ2 (this can be proved using Tailor expansion). In case Var[ξ] = ρ2 holds, ξ is
said to be strictly ρ–sub-Gaussian. Besides zero-mean Gaussian random variables, most
standard symmetric bounded random variables (e.g., Bernoulli, beta, uniform, binomial)
are strictly sub-Gaussian (see [AMN19, Proposition 1.1]). Throughout the paper, we
consider sub-Gaussian noise, and in Section 3.3.3, we specialize to the case of strictly
sub-Gaussian noise.

II. Optimization problem Throughout this thesis, we consider optimization problems
in the form

min
x∈X

f(x), (A.1)

where f is the objective function and X ∈ Rd is some closed convex set. In some chapters,
we particularly consider constrained optimization problems in the form of

min
x∈X

f(x) (A.2)

s.t. fi(x) ≤ 0, i = 1, . . . ,m

with m constraint functions and s.t. standing for subject to.

III. Lagrangian Duality The Lagrangian function L : X ×Rm → R for the optimization
problem Eq. (A.2) is defined as a weighted sum of the objective and the constraints, i.e.:

L(x, λ) = f(x) +
m∑
i=1

λifi(x), (A.3)
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The vector λ ∈ Rm is a vector of dual variable, also called Lagrange multipliers. The dual
function g : Rm → R is defined as a pointwise minimum of the Lagrangian, i.e.:

g(λ) = min
x∈X
L(x, λ). (A.4)

The dual problem is defined as the maximization of the concave dual function, i.e.:

max
λ∈Rm

+

g(λ). (A.5)

Let p∗ be the optimal value of the primal problem Eq. (A.2). Then the convex problem
Eq. (A.5) finds the tightest lower bound for p∗. Let d∗ be the optimal value for the dual
problem Eq. (A.5). The weak duality, i.e, when d∗ ≤ p∗, holds for convex and nonconvex
primal problems and can be used to find nontrivial lower bounds when primal is difficult.

IV. Function spaces A function space F is a space whose elements are functions, e.g.,
f : Rd → R. Throughout the thesis, we use the following notions important when talking
about function spaces:

Definition 4 (Inner product). Inner product ⟨·, ·⟩ : F ×F → R is a function that for any
f, g ∈ F and α ∈ R satisfies: (1) symmetry ⟨f, g⟩ = ⟨g, f⟩, (2) linearity ⟨αf, g⟩ = α⟨f, g⟩,
and (3) pd ⟨f, f⟩ ≥ 0∀f and ⟨f, f⟩ = 0 iff f = 0.

Definition 5 (Norm). Norm ∥ · ∥ : F → R is a function that for all f, g ∈ F and
α ∈ R satisfies: (1) positivity ∥f∥ ≥ 0 and ∥f∥ = 0 iff f = 0, (2) triangle inequality
∥f + g∥ ≤ ∥f∥+ ∥g∥, (3) linearity ∥αf∥ = α∥f∥.

Definition 6 (Hilbert space). A Hilbert space H is a complete, (possibly) infinite-
dimensional linear space endowed with an inner product.

Definition 7 (Reproducing kernel). A function κ : X × X → R is a reproducing kernel
of a Hilbert space H if ∀f ∈ H, f(x) = ⟨κ(x, ·, f(·)⟩.

Definition 8 (Positive semidefinite matrix). The matrix M is called positive-semidefinite
if M is symmetric and for any vector x ∈ X the following is satisfied:

x⊤Mx ≥ 0. (A.6)

Definition 9 (Positive semidefinite function). Function κ : X ×X → R is called positive
semidefinite function if for any x1, . . . , xn ∈ X and any a1, . . . , an ∈ R the following is
satisfied:

n∑
i=1

n∑
i=1

aiajκ(xi, xj) ≥ 0 (A.7)

There are two equivalent ways to define a reproducing kernel Hilbert space. The first
one is to define it as a Hilbert space of functions with all evaluation functionals bounded
and linear. Though this highlights continuity requirements on the pointwise evaluation
functionals, it might be unclear what a reproducing kernel Hilbert space induced by a
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kernel κ means. We, therefore, introduce another way to define it as a Hilbert space H
with a reproducing kernel whose span is dense in H.

Definition 10 (RKHS). Let κ : X × X → R be a positive semi-definite kernel function
and X is a compact set. The reproducing kernel Hilbert space Hk is the linear space
defined as the span

Hκ =

{
f(·) ≜

t∑
i=1

αiκ(xi, ·) : t ∈ N , αi ∈ R,xi ∈ X
}
, (A.8)

with the inner product ⟨f, g⟩ =∑i

∑
j αiβjκ(ui, vj) for f, g ∈ Hκ be f =

∑
i αiκ(ui, ·) and

g =
∑

i βiκ(vi, ·).

A.2 Recap on Hilbert spaces

Hilbert spaces. Let H be some separable Hilbert space, i.e., space with a countable
orthonormal basis. Hilbert spaces allow us to apply finite-dimensional linear algebra
for infinite-dimensional spaces of functions, e.g., completeness of the space guarantees
convergence of some algorithms. Assuming only Hilbert spaces is however not enough to
reason about the predictions of an unknown function because of whole domain. As an
example, consider a space of square-integrable functions L2[a, b] on an interval X = [a, b]

with the inner product defines as ⟨f, g⟩ =
∫ b

a
f(x)g(x)dx and norm induced by that inner

product. Then for any function f we can come up with a function g that would differ
from f at any finite number of points by an arbitrary real value but the norm would
coincide ∥f − g∥ = 0 (since it is an integral). Reproducing kernel Hilbert spaces (RKHS)
define a family of spaces that does not have such a problem.

Formal introduction of RKHS. An RKHSH is a Hilbert space with evaluation functional
Fx[f ] = f(x), Fx : H → R, being bounded, i.e., there exists M ̸= M(x) such that
|Fx[f ]| = |f(x)| ≤ M∥f∥H. This condition allows to evaluate the function of interest
f over the whole domain, i.e., ∀x ∈ X . Notably, this condition does not hold for the
square-integrable functions L2(X ) where functions can get arbitrary high values on some
finite set of inputs x.

RKHS and kernels. In RKHS H, for any x ∈ X , there exists a function κx ∈ H (the
representer of H) such that evaluating any f ∈ H at x corresponds to the inner product
with the representer, i.e., the evaluation functional Fx[f ] = ⟨κx, f⟩ = f(x). Thus an
RKHS defines a reproducing kernel, i.e. symmetric function κ : X × X → R such that
κx(x

′) = ⟨κx, κx′⟩ = κx′(x), and vice versa: a reproducing kernel defines a unique RKHS.
For most kernel used in the thesis, any continuous function on any compact X can be
approximated by functions from Hκ(X ). RKHS Hκ(X ) is a complete subspace of L2(X )
obeying the reproducing property.
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APPENDIX B
Proofs of Chapter 3

B.1 Details on Proposition 1

We first provide the proof of Proposition 1 for cumulative risk-averse regret Eq. (3.3)
with known variance-proxy ρ2(·) (see Definition 3) (Section B.1.1). We further provide
data-independent bounds for βT (Section B.1.2) and maximum information gain γT
(Section B.1.3) that together conclude the proof for sub-linear on T regret guarantees for
most of the popularly used kernels.

B.1.1 Proof Proposition 1

Proposition 1. Consider any f ∈ Hκ with ∥f∥κ ≤ Bf and sampling model from
Eq. (3.1) with known variance-proxy ρ2(x). Let {βt}Tt=1 be set as in Lemma 3 with
λ = 1. Then, with probability at least 1− δ, RAHBO attains cumulative risk-averse regret
RT = O

(
βT
√
TγT (ϱ̄2 + 1)

)
.

Proof. The main steps of the proof are as follows: In Step 1, we derive the upper and the
lower confidence bounds, ucbMV

t (xt) and lcbMV
t (xt), on MV(xt) at iteration t. In Step 2,

we bound the instantaneous risk-averse regret r(xt) := MV(x∗)−MV(xt). In Step 3, we
derive mutual information I(y1:T , f1:T ) in case of the heteroscedastic noise. In Step 4, we
bound the sum of variances

∑T
t=1 σt−1(xt) via mutual information I(y1:T , f1:T ). In Step 5,

we bound the cumulative regret RT =
∑T

t=1 r(xt) based on the previous steps.
Step 1 : On the confidence bounds for MV(x).

In case of known variance-proxy ρ2(x), the confidence bounds for MV(x) at iteration t

can be directly obtained based on the posterior µt(x) and σt(x) for f(x) defined in (3.5)
and (3.6). Particularly, for βt = βt(δ) defined in Eq. (3.8), Pr

{
lcbMV

t (x) ≤ MV(x) ≤
ucbMV

t (x) ∀x ∈ X , ∀t ≥ 0
}
≥ 1− δ with the confidence bounds:

lcbMV
t (x) := µt−1(x)− βtσt−1(x)− αρ2(x), (B.1)

ucbMV
t (x) := µt−1(x) + βtσt−1(x)− αρ2(x). (B.2)

Step 2 : On bounding the instantaneous risk-averse regret rt(x). We have

r(xt) = MV(x∗)−MV(xt)
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≤ ucbMV
t (x∗)− lcbMV

t (xt)

≤ ucbMV
t (xt)− lcbMV

t (xt) = 2βtσt−1(xt),

where the first inequality is due to the definition of confidence bounds, the second is due
to the acquisition strategy xt ∈ argmaxx∈X ucbMV

t (x); and the equality further expands
lcbMV

t (x) and ucbMV
t (x). Thus, the cumulative regret can be bounded as follows:

RT =
T∑
t=1

r(xt) ≤
T∑
t=1

2βtσt−1(xt) ≤ 2βT

T∑
t=1

σt−1(xt), (B.3)

where the last inequality holds since {βt}Tt=1 is a non-decreasing sequence.
Step 3 : On mutual information I(y1:T , f1:T ) and maximum information gain γT .

Mutual information I(y1:T , f1:T ) between the vector of evaluations y1:T ∈ RT at points
A = {xt}Tt=1 and f1:T = [f(x1), . . . , f(xT )]

⊤ is defined by

I(y1:T , f1:T ) = H(y1:T )−H(y1:T |f1:T ),

where H(·) denotes entropy. Under the modelling assumptions f1:T ∼ N (0, λ−1KT ) and
ξ1:T ∼ N (0,ΣT ) for the noise ξ1:T = [ξ(x1), . . . , ξ(xT )]

⊤, the measurements are distributed
as y1:T ∼ N (0, λ−1KT +ΣT ) and yt|y1:t−1 ∼ N (µt−1(xt), ρ

2(xt) + σ2
t−1(xt)), where σ2

t−1(·)
is defined in Eq. (3.6). Hence, the entropy of each new measurement yt conditioned on
the previous history y1:t−1 is:

H(yt|y1:t−1) =
1

2
ln
(
2πe

(
ρ2(xt) + σ2

t−1(xt)
))

=
1

2
ln

(
2πeρ2(xt)

(
1 +

σ2
t−1(xt)

ρ2(xt)

))
=

1

2
ln

(
2πeρ2(xt)

)
+

1

2
ln

(
1 +

σ2
t−1(xt)

ρ2(xt)

)
,

H(y1:T ) =
T∑
t=1

H(yt|y1:t−1) =
1

2

T∑
t=1

ln

(
2πeρ2(xt)

)
+

1

2

T∑
t=1

ln

(
1 +

σ2
t−1(xt)

ρ2(xt)

)
,

H(y1:T |f1:T ) =
T∑
t=1

H(yt|ft) =
1

2

T∑
t=1

ln(2πeρ2(xt)).

Therefore, the information gain for y1:T is:

I(y1:T , f1:T ) = H(y1:T )−H(y1:T |f1:T ) =
1

2

T∑
t=1

ln

(
1 +

σ2
t−1(xt)

ρ2(xt)

)
. (B.4)

Then, by definition of maximum information gain:

γT := max
A⊂X , |A|=T

I(y1:T , f1:T ) ≥
1

2

T∑
t=1

ln

(
1 +

σ2
t−1(xt)

ρ2(xt)

)
. (B.5)
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Step 4 : On bounding
∑T

t=1 σt−1(xt).

T∑
t=1

σt−1(xt) =
T∑
t=1

ρ(xt)

ρ(xt)
σt−1(xt) ≤

√√√√T

T∑
t=1

ρ2(xt)
σ2
t−1(xt)

ρ2(xt)

≤

√√√√T
T∑
t=1

1

ln(1 + ρ−2(xt))
ln

(
1 +

σ2
t−1(xt)

ρ2(xt)

)

≤

√√√√√√√
2T

ln(1 + ϱ̄−2)

1

2

T∑
t=1

ln

(
1 +

σ2
t−1(xt)

ρ2(xt)

)
︸ ︷︷ ︸
mutual information Eq. (B.4)

, (B.6)

where the first inequality follows from the Cauchy-Schwarz inequality. The second one is
due to the fact that for any s2 ∈ [0, ρ−2(xt)] we can bound s2 ≤ ρ−2(xt)

ln(1+ρ−2(xt))
ln(1+s2), that

also holds for s2 := ρ−2(xt)σ
2
t−1(xt) since ρ−2(xt)σ

2
t−1(xt) ≤ ρ−2(xt)λ

−1κ(xt, xt) ≤ ρ−2(xt)

for λ ≥ 1. The third inequality is due to ρ(x) ∈ [ϱ, ϱ̄].
Step 5 : Bounding risk-averse cumulative regret RT =

∑T
t=1 r(xt).

Combining the previous three steps together: Eq. (B.3), Eq. (B.5), and Eq. (B.6) we
finally obtain:

RT ≤
T∑
t=1

2βtσt−1(xt) ≤ 2βT

T∑
t=1

σt−1(xt) ≤ 2βT

√
2T

ln(1 + ϱ̄−2)
γT

Also, note that for any α ≥ 0 the bound ln(1+α) ≥ α
1+α

holds, thus 1
ln(1+ϱ̄−2)

≤ 1+ϱ̄−2

ϱ̄−2 = ϱ̄2+

1. Therefore, the cumulative regret can be also bounded as RT = O(βT
√
TγT (ϱ̄2 + 1)). ■

B.1.2 Bounds for βT

We provide the bounds for the data-dependent βT that appear in the regret bound (see
Eq. (3.8)). Following our modelling assumptions f1:T ∼ N (0, λ−1KT ) and ξ1:T ∼ N (0,ΣT ),
the information gain I(y1:T , f1:T ) = H(y1:T )−H(y1:T |f1:T ) is given as follows:

I(y1:T , f1:T ) =
1

2
ln
(
det(2πe(λ−1KT + ΣT ))

)
︸ ︷︷ ︸

H(y1:T )

− 1

2
ln
(
det(2πeΣT )

)
︸ ︷︷ ︸

H(y1:T |f1:T )

=
1

2
ln

(
det(KT + λΣT )

det(λΣT )

)
.

(B.7)

By definition then γT = max
A⊂X , |A|=T

I(y1:T , f1:T ) ≥ 1
2
ln
(

det(KT+λΣT )
det(λΣT )

)
. On the other

hand, βT defined in Lemma 1 can be expanded in a data-independent manner as follows:

βT :=

√
2 ln

(
det(λΣT +KT )1/2

δ det(λΣT )1/2

)
+
√
λ∥f∥κ
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=

√
2 ln

1

δ
+ ln

(
det(λΣT +KT )

det(λΣT )

)
+
√
λ∥f∥κ ≤

√
2 ln

1

δ
+ γT +

√
λBf . (B.8)

B.1.3 Bounds for γT

Here, we show the relation between the information gains under heteroscedastic and
homoscedastic noise. Note that for the latter the upper bounds are widely known, e.g.,
[Sri+10]. To distinguish between the maximum information gain for heteroscedastic noise
with variance-proxy ρ2(x) and the maximum information gain for homoscedastic noise
with fixed variance-proxy σ2, we denote them as γρxT and γσT respectively. Recall that
ϱ2(·) ∈ [ϱ2, ϱ̄2] for some constant values ϱ̄2 ≥ ϱ2 > 0.

Below, we show that γρxT ≤ γσT
ϱ̄2

ϱ2
with σ2 set to ϱ̄2, that only affects the constants but

not the main scaling (in terms of T ) of the known bound for the homoscedastic maximum
information gain.

γρxT
1
= max

A⊂X ,|A|=T

1

2

T∑
t=1

ln

(
1 +

σ2
t−1(xt|ρ2(xt))

ρ2(xt)

)
2

≤ max
A⊂X ,|A|=T

1

2

T∑
t=1

ln

(
1 +

σ2
t−1(xt|ϱ̄2)

ϱ2

)
(B.9)

3
= max

A⊂X ,|A|=T

1

2

T∑
t=1

ln

(
1 +

ϱ̄2

ϱ2
σ2
t−1(xt|ϱ̄2)

ϱ̄2

)
4

≤ max
A⊂X ,|A|=T

1

2

T∑
t=1

ϱ̄2

ϱ2
ln

(
1 +

σ2
t−1(xt|ϱ̄2)

ϱ̄2

)
(B.10)

5
= max

A⊂X ,|A|=T

ϱ̄2

ϱ2
1

2

T∑
t=1

ln

(
1 +

σ2
t−1(xt|σ2)

σ2

)
=
ϱ̄2

ϱ2
γσT , (B.11)

where 1 follows from Eq. (B.4). In 2 , we lower bound the denominator ρ2(xt) and
upper bound the numerator σ2

t−1(xt) (due to monotonicity w.r.t. noise variance, i.e.,
σ2
t−1(xt|Σt) ≤ σ2

t−1(xt|ϱ̄2It)). In 3 , we multiply by 1 = ϱ̄2/ϱ̄2. In 4 we use Bernoulli
inequality since ϱ̄2/ϱ2 ≥ 1. The obtained expression can be interpreted as a standard
information gain for homoscedastic noise and, particularly, with the variance-proxy σ2

set to ϱ̄2 due to 5 . Finally, the upper bounds on γσT typically scale sublinearly in T for
most of the popularly used kernels [Sri+10], e.g, for linear kernel γT = O(d log T ), and for
squared exponential kernel γT = O(d(log T )d+1).

γT = O(d(log T )d+1)

B.2 Tighter bounds for the variance-proxy.

Assumption 2 states that noise η(x) from Eq. (3.13) is ρ2η(x)-sub-Gaussian with variance-
proxy ρ2η(x) being known. In practice, ρ2η(x) might be unknown.

Here, we describe a way to estimate ρ2η(x) under the following two assumptions: the
evaluation noise ξ(x) is strictly sub-Gaussian (that is already reflected in the Assumption 1)
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and the noise η(x) of variance evaluation is also strictly sub-Gaussian, that is, Var[η(x)] =
ρ2η(x) and Var[ξ(x)] = ρ2(x).

(i) Reformulation of the sample variance. We first rewrite the sample variance defined
in Eq. (5.2) as the average over squared differences over all pairs {y1(x), . . . , yk(x)}:

ŝ2k(x)
1
=

1

2k(k − 1)

k∑
i=1

k∑
j=1

(yi(x)− yj(x))2
2
=

1

2k(k − 1)

k∑
i=1

k∑
j=1

(ξi(x)− ξj(x))2, (B.12)

where 2 is due to yi(x) = f(x) + ξi(x), and 1 is equivalent to the Eq. (5.2) due to the
following:

1

2k(k − 1)

k∑
i=1

k∑
j=1

(yi − yj)2 =
1

2k(k − 1)

k∑
i=1

k∑
j=1

(yi − m̂k + m̂k − yj)2 (B.13)

=
1

2k(k − 1)

k∑
i=1

k∑
j=1

[(
yi − m̂k

)2
+
(
yj − m̂k

)2 − 2
(
yi − m̂k

)(
yj − m̂k

)]
=

1

2k(k − 1)

k∑
i=1

k∑
j=1

[(
yi − m̂k

)2
+
(
yj − m̂k

)2]
=

1

k − 1

k∑
i=1

(yi − m̂k)
2. (B.14)

(ii) Variance of the sample variance Var[ŝ2k(x)]. In Eq. (B.12), we show that sample
variance can be written in terms of the noise ξ(x). In [Ben18] (see Eq. (37)), it is shown
that for i.i.d observations {ξ1(x), . . . , ξk(x)}, sampled from a distribution with the 2nd
and 4th central moments Var[ξ(x)] and µ4(x) = E[ξ4(x)], respectively, the variance of
the sample variance can be computed as follows:

Var[ŝ2k(x)] = E[
(
ŝ2k(x)

)2
]− E[ŝ2k(x)]2 =

µ4(x)

k
− (k − 3)Var2[ξ(x)]

k(k − 1)
.

Since ξ(x) is strictly ρ(x)–sub-Gaussian, the latter can be further adapted as

Var[ŝ2k(x)] =
µ4(x)

k
− (k − 3)ρ4(x)

k(k − 1)
.

(iii) Due to η(x) being strictly sub-Gaussian, i.e., ρ2η(x) = Var[η(x)] = Var[ŝ2k(x)],
the derivation above also holds for the variance-proxy ρ2η(x):

ρ2η(x) =
µ4(x)

k
− (k − 3)ρ4(x)

k(k − 1)
.

(iv) Bound 4th moment µ4(x). The 4th moment µ4(x) can expressed in terms of
the distribution kurtosis that is bounded under our assumptions. Particularly, kurtosis
Kurt[ξ] := E[(ξ−E[ξ])4]

Var2(ξ) is measure that identifies the tails behaviour of the distribution of ξ;
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Kurt(ξ) = 3 for normallly distribute ξ and Kurt(ξ) ≤ 3 for strictly sub-Gaussian random
variable ξ (see ([AMN19])). This implies

µ4(x) = Kurt
(
ξ(x)

)
ρ4(x) ≤ 3ρ4(x).

(v) Bound variance-proxy. There

ρ2η(x) ≤
3(k − 1)ρ4(x)− (k − 3)ρ4(x)

k(k − 1)
=

3k − 3− k + 3

k(k − 1)
ρ4(x) =

2ρ4(x)

k − 1
.

In case of the known bound ϱ̄2 ≥ ρ2(x), we bound the unknown ρ2η(x) as follows:

ρ2η(x) ≤
2ϱ̄4

k − 1
.

Then, we can show that ρ2η(x) = ρ(x)4∗Kurt(ξ(x))
k

− ρ4(x)(k−3)
k(k−1)

≤ 3(k−1)ρ4(x)−ρ4(x)(k−3)
k(k−1)

=

ρ4(x)3k−3−k+3
k(k−1)

= 2ρ4(x)
k−1

.

B.3 Method details: GP-estimator of variance-proxy ρ2

According to the Assumption 2, variance-proxy ρ2 ∈ Hκvar is smooth, and η(x) =

ŝ2k(x) − ρ2(x) is ρη(x)-sub-Gaussian with known variance-proxy ρ2η(x). In this case,
confidence bounds for ρ2(x) follow the ones derived in Lemma 3 with βvar

t based on Σvar
t .

Particularly, we collect noise variance evaluations {xt, ŝk(xt)}Tt=0. Then the estimates for
µvar
T (x) and σvar

T (x) for ρ2 follow the corresponding estimates for f(x). Particularly,

µvar
t (x) = κvart (x)T (Kvar

t + λΣvar
t )−1ŝ1:t, (B.15)

σvar
t (x)2 =

1

λ
(κvar(x, x)− κvart (x)⊤(Kvar

t + λΣvar
t )−1κvart (x)), (B.16)

where Σvar
t = diag[ρ2η(x1), . . . , ρ

2
η(xt)], κvart (x) = [κvar(x1, x), . . . , κ

var(xt, x)]
T and

(Kvar
t )i,j = κvar(xi, xj). The confidence bounds are then:

ucbvar
t (x) = µvar

t−1(x) + βvar
t σvar

t−1(x)

lcbvar
t (x) = µvar

t−1(x)− βvar
t σvar

t−1(x),

with {βvar
t }Tt=1 set according to Lemma 3.

B.4 Proof of Theorem 1

Theorem 1. Consider any f ∈ Hκ with ∥f∥κ ≤ Bf and sampling model in Eq. (3.1)
with unknown variance-proxy ρ2(x) that satisfies Assumptions 1 and 2. Let {xt}Tt=1 denote
the set of actions chosen by RAHBO (Algorithm 2) over T rounds. Set {βt}Tt=1 and
{βvar

t }Tt=1 according to Lemma 3 with λ = 1, R2 = maxx∈X ρ
2
η(xt) and ρ(·) ∈ [ϱ, ϱ̄]. Then,
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the risk-averse cumulative regret RT of RAHBO is bounded as follows:

Pr

{
RT ≤ βTk

√
2T γ̂T

ln(1 + k/ϱ̄2)
+ αβvar

T k

√
2TΓT

ln(1 +R−2)
, ∀T ≥ 1

}
≥ 1− δ. (B.17)

Proof. The main steps of our proof are as follows: In Step 1, we derive the upper and
the lower confidence bounds, ucbMV

t (xt) and lcbMV
t (xt), on MV(xt) at iteration t. In Step

2, we bound the instantaneous risk-averse regret r(xt) := MV(x∗) −MV(xt). In Step
3, we derive mutual information both for function and variance-proxy evaluations. In
Step 4, we bound the sum of variances via mutual information. In Step 5, we bound the
cumulative regret RT =

∑T
t=1 r(xt) based on the previous steps.

Step 1: On confidence bounds for MV(x).
(i) On confidence bounds for ρ2(x). According to Eq. (B.16), with probability 1− δ

the following confidence bounds hold with {βvar
t }Tt=1 set according to Lemma 3:

ucbvar
t (x) = µvar

t−1(x) + βvar
t σvar

t−1(x),

lcbvar
t (x) = µvar

t−1(x)− βvar
t σvar

t−1(x).

(ii) On confidence bounds for f(x). Here we adapt confidence bounds introduced in
Eq. (B.1)-(B.2) since Eq. (3.5) relies on the unknown variance-proxy ρ2(x) incorporated
into ΣT . Conditioning on the event that ρ2(x) is upper bounded by ucbvar

t (x) ≥ ρ(x)2

defined in (i), the confidence bounds for f with probability 1− δ are:

ucbf
t (x) = µt−1(x|Σ̂t−1) + βtσt−1(x|Σ̂t−1), (B.18)

lcbf
t (x) = µt−1(x|Σ̂t−1)− βtσt−1(x|Σ̂t−1), ∀x, t. (B.19)

(iii) On confidence bounds for MV(x). Finally, combining (i) and (ii) and using the
union bound, with probability 1− 2δ, we get lcbMV

t (x) ≤ MV(x) ≤ ucbMV
t (x) with

ucbMV
t (x) = ucbf

t (x)− αlcbvar
t (x), (B.20)

lcbMV
t (x) = lcbf

t (x)− αucbvar
t (x), ∀x, t. (B.21)

Step 2: On bounding the instantaneous regret.
First, we bound instantaneous regret of a single measurement at point xt, but with
unknown variance-proxy ρ2(x) as follows:

rt := MV(x∗)−MV(xt) ≤ ucbMV
t (x∗)− lcbMV

t (xt)

≤ ucbMV
t (xt)− lcbMV

t (xt)

= ucbf
t (xt)− lcbf

t (xt) + α(ucbvar
t (xt)− lcbvar

t (xt))

= 2βtσt−1(xt|Σ̂t−1) + 2αβvar
t σvar

t−1(xt). (B.22)

The second inequality is due to the acquisition algorithm. The last equality is due to the
fact that ucbf

t (x)− lcbf
t (x) = 2βtσt−1(xt) by definition, as well as ucbvar

t (x)− lcbvar
t (x) =
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2βvar
t σvar

t−1(xt).

Note that at each iteration t we take k measurements, hence the total number of
measurements is Tk. Thus, we can bound the cumulative regret by

RT =
T∑
t=1

kr(xt) ≤ k
T∑
t=1

2βtσt−1(xt|Σ̂t−1) + k
T∑
t=1

2αβvar
t σvar

t−1(xt)

≤ 2kβT

T∑
t=1

σt−1(xt|Σ̂t−1) + 2kαβvar
T

T∑
t=1

σvar
t−1(xt). (B.23)

Step 3: On bounding maximum information gain.
We follow the notion of information gain I(m̂1:T , f1:T ) computed assuming that m̂1:T =

[m̂k(x1), . . . , m̂k(xT )]
T with m̂k(xt) = 1

k

∑k
i=1 yi(xt) (Eq. (5.2)). Under the modelling

assumptions f1:T ∼ N (0, λ−1KT ), and m̂1:T ∼ N (f1:T , diag(ϱ̄2/k)) with variance-proxy
ϱ̄2/k, the information gain is:

I(m̂1:T , f1:T ) :=
T∑
t=1

1

2
ln

(
1 +

σ2
t−1(xt|diag(ϱ̄2/k))

ϱ̄2/k

)
. (B.24)

We define the corresponding maximum information gain γ̂T = maxA⊂X ,|A|=T I(m̂1:T , f1:T )

γ̂T := max
A⊂X ,|A|=T

T∑
t=1

1

2
ln

(
1 +

σ2
t−1(xt|diag(ϱ̄2/k))

ϱ̄2/k

)
. (B.25)

Analogously, for ρ(x) with the posterior N (µvar
t (x), (σvar

t (x))2), the information gain
is defined as:

I(ŝ21:T , ρ
2
1:T ) :=

1

2

T∑
t=1

ln

(
1 +

(σvar
t−1)

2(x)

ρ2η(xt)

)
. (B.26)

Then, the corresponding maximum information gain ΓT is as follows:

ΓT := max
A⊂X ,|A|=T

I(ŝ21:T , ρ
2
1:T ) = max

A⊂X ,|A|=T

1

2

T∑
t=1

ln

(
1 +

(σvar
t−1)

2(x)

ρ2η(xt)

)
, (B.27)

where A is again a set of size T with points {x1, . . . , xT} .
Step 4 : On bounding

∑T
t=1 σt−1(xt|Σ̂t−1) and

∑T
t=1 σ

var
t−1(xt)

We repeat the corresponding derivation for known ρ2(x), recalling that ρ2(x) ≤ ϱ̄2,∀x ∈ X :

T∑
t=1

σt−1(xt|Σ̂t−1) =
T∑
t=1

ϱ̄

ϱ̄
σt−1(xt|Σ̂t−1) ≤

√√√√T

T∑
t=1

ϱ̄2

k

σ2
t−1

(
xt|diag(ϱ̄2/k)

)
ϱ̄2/k

≤

√√√√T
ϱ̄2

k

k/ϱ̄2

ln(1 + k/ϱ̄2)

T∑
t=1

ln

(
1 +

σ2
t−1

(
xt|diag(ϱ̄2/k)

)
ϱ̄2/k

)
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≤

√√√√√√√
2T

ln(1 + k/ϱ̄2)

T∑
t=1

1

2
ln

(
1 +

σ2
t−1

(
xt|diag(ϱ̄2/k)

)
ϱ̄2/k

)
︸ ︷︷ ︸

mutual information Eq. (B.24)

. (B.28)

Here, the first inequality follows from Cauchy-Schwarz inequality and the fact that
σt(xt|Σ̂t) ≤ σt(xt|diag(ϱ̄2/k)). The latter holds by the definition of Σ̂t, particularly:

σ2
t (xt|Σ̂t) =

1

λ
(κ(x, x)− κt(x)⊤(Kt + λΣ̂t)

−1κt(x)),

σ2
t

(
xt|diag(ϱ̄2/k)

)
=

1

λ
(κ(x, x)− κt(x)⊤

(
Kt + λdiag(ϱ̄2/k)

)−1
κt(x)),

Σ̂t =
1
k
diag

(
min{ucbvar

t (x1), ϱ̄
2}, . . . ,min{ucbvar

t (xt), ϱ̄
2}
)
,

then Σ̂t ⪯ diag(ϱ̄2/k), and −(Kt + λΣ̂t)
−1 ⪯ −(Kt + λdiag(ϱ̄2/k))−1. That implies

σ2
t (xt|Σ̂t)− σ2

t

(
xt|diag(ϱ̄2/k)) = −κt(x)⊤

(
Kt + λΣ̂t)

−1κt(x)
)

+ κt(x)
⊤(Kt + λdiag(ϱ̄2/k))−1κt(x)

)
≤ 0.

The second inequality in Eq. (B.28) is due to the fact that for any s2 ∈ [0, k/ϱ̄2(xt)]

we can bound s2 ≤ k/ϱ̄2(xt)
ln(1+k/ϱ̄2(xt))

ln(1 + s2), that also holds for s2 :=
σ2
t−1

(
xt|diag(ϱ̄2/k)

)
ϱ̄2/k

since
for any λ ≥ 1

σ2
t−1

(
xt|diag(ϱ̄2/k)

)
ϱ̄2/k

≤ λ−1κ(xt, xt)

ϱ̄2/k
≤ k/ϱ̄2.

Similarly, we bound

T∑
t=1

σvar
t−1(xt) =

T∑
t=1

ρη(xt)

ρη(xt)
σvar
t−1(xt) ≤

√√√√T
T∑
t=1

ρ2η(xt)
(σvar

t−1)
2(xt)

ρ2η(xt)

≤

√√√√√√√
2T

ln(1 +R−2)

T∑
t=1

1

2
ln

(
1 +

(σvar
t−1)

2(xt)

ρ2η(xt)

)
︸ ︷︷ ︸

mututal information Eq. (B.26)

, (B.29)

in the above we define R2 := maxx∈A ρ
2
η(x), A = {x1, . . . , xT}.

Step 5: On bounding cumulative regret RT =
∑T

t=1 kr(xt)

Combining the above three steps together, we obtain with probability 1− 2δ

RT ≤ βTk

√
2T γ̂T

ln(1 + k/ϱ̄2)
+ αβvar

T k

√
2TΓT

ln(1 +R−2)
. (B.30)
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B.5 Proof of Corollary 1

Corollary 1.1 Consider the setup of Theorem 1. Let A = {xt}Tt=1 denote actions
selected by RAHBO over T rounds. Then, with probability at least 1 − δ, the reported
point x̂T := argmaxxt∈A lcbMV

t (xt), where lcbMV
t (xt) = lcbf

t (x) − α ucbvar
t (x), achieves

ϵ-accuracy, i.e., MV(x∗) −MV(x̂T ) ≤ ϵ, after T ≥ 4β2
T γ̂T / ln(1+k/ϱ̄2)+4α(βvar

t )2ΓT / ln(1+R−2)

ϵ2

rounds.

Proof. We select the maximizer of lcbMV
t (xt) over the past points xt:

x̂T := xt∗ , where t∗ := argmax
t
{lcbMV

t (xt)} = argmin
t
{MV(x∗)− lcbMV

t (xt)},

since adding a constant does not change the solution. We denote r̂(xt) := MV(x∗) −
lcbMV

t (xt). Then we obtain the following bound

MV(x∗)−MV(xt∗) ≤ MV(x∗)− lcbMV
t∗ (xt∗) =

1

T

T∑
t=1

r̂(xt∗)

≤ 1

T

T∑
t=1

r̂(xt) =
1

T

T∑
t=1

(
MV(x∗)− lcbMV

t (xt)
)

≤ 1

T

T∑
t=1

(
ucbMV

t (x∗)− lcbMV
t (xt)

)
≤ 1

T

T∑
t=1

(
ucbMV

t (xt)− lcbMV
t (xt)

)
. (B.31)

In the above, the first inequality holds with high probability by definition lcbMV
t∗ (xt∗) ≤

MV(xt∗), the second inequality is due to t∗ := argmint r̂(xt) and therefore r̂(xt∗) ≤
r̂(xt) ∀t = 1, . . . , T. The third inequality holds since ucbMV

t (x) ≥ MV(x) with high
probability, and the fourth is due to ucbMV

t (xt) ≥ ucbMV
t (x) for every x, since xt is

selected via Algorithm 2.
Recalling Eq. (B.30), note that the following bounds hold:

RT =
T∑
t=1

kr(xt) ≤
T∑
t=1

k(ucbMV
t (xt)− lcbMV

t (xt)) ≤ βTk

√
2T γ̂T

ln(1 + k/ϱ̄2)
+ αβvar

T k

√
2TΓT

ln(1 +R−2)
.

(B.32)

Combining the above Eq. (B.32) with Eq. (B.31) we can get the following upper bound

MV(x∗)−MV(xt∗) ≤
βTk

√
2T γ̂T/ ln(1 + k/ϱ̄2) + αβvar

T k
√

2TΓT/ ln(1 +R−2)

kT

≤

√
4
(
kβ2

T γ̂T/ ln(1 + k/ϱ̄2) + αk(βvar
t )2ΓT/ ln(1 +R−2)

)
√
kT

.
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Therefore, for Tk samples with Tk ≥ 4(kβ2
T γ̂T / ln(1+k/ϱ̄2)+αk(βvar

t )2ΓT / ln(1+R−2))

ϵ2
we finally

obtain
MV(x∗)−MV(xt∗) ≤ ϵ.

■
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APPENDIX C
Experiments and settings of Chapter 3

Implementation and resources We implemented all our experiments using Python and
BoTorch [Bal+20].1 We ran our experiments on an Intel(R) Xeon(R) CPU E5-2699 v3
@ 2.30GHz machine.

C.1 Synthetic examples

C.1.1 Example function

We provide additional visualizations for the example sine function in Figure C.1. These
examples demonstrate that exploration-exploitation trade-off (as in GP-UCB) might not
be enough to prefer points with lower noise and GP-UCB might tend to acquire points
with higher variance. In contrast, RAHBO, initialized with the same point, prefers points
with lower risk inherited in noise.

C.1.2 Branin

We provide additional visualizations, experimental details and results. Firstly, we plot
the noise-perturbed objective function in Figure C.2 in addition to the visualization in
Figure 3.1c. In Figure C.3, we plot cumulative regret and simple mean-variance regrets
that extends the results in Figure 3.5a with RAHBO-US. The general setting is the same
as described for Figure 3.5a: we use 10 initial samples, repeat each evaluation k = 10

times, and RAHBO-US additionally uses 10 samples for learning the variance function
with uncertainty sampling. During the optimization, RAHBO-US updates the GP model
for variance function after every acquired point.

1https://botorch.org/
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Figure C.1: Additional examples for Section 3.4.1 (each row corresponds to one initialization). GP
models fitted for GP-UCB (left column) and RAHBO (right column) for sine function. After initialization
with the same sampled points, GP-UCB concentrates on the high-noise region whereas RAHBO prefers
small variance.

(a) Unknown objective (b) Unknown variance (c) Noise-perturbed evaluations

Figure C.2: Visualization of noise-perturbed function landscape:(a) Unknown objective with 3 global
maxima marked as (A, B, C). (b) Heteroscedastic noise variance over the same domain: the noise level at
(A, B, C) varies according to the sigmoid function. (c) Noise-perturbed evaluations: A is located in the
noisiest region.
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Figure C.3: Branin: (a) Cumulative regret. (b) Suboptimality w.r.t. MV
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C.2 Random Forest tuning

Experiment motivation: Consider the motivating example first: the optimized RF
model will be exploited under the data drift over time, e.g., detecting fraud during a week.
We are interested not only in high performance on average but also in low variance across
the results. Particularly, the first can be a realization of the decent result in the first days
and unacceptable result in the last days, and the latter ensures lower dispersion over the
days while keeping a reasonable mean. In this case, when training an over-parametrized
model that is prone to overfitting (to the training data), e.g., Random Forest (RF) with
deep trees, high variance in validation error might be observed. In contrast, a model that
is less prone to overfitting can result into a similar validation error with lower variance.

RF specifications: We use scikit-learn implementation of RF. The RF search spaces for
BO are listed in Table D.1 and other parameters are the default provided by scikit-learn.
2 During BO, we transform the parameter space to the unit-cube space.

Dataset: We tune RF on a dataset of fraudulent credit card transactions [LB21] originally
announced for Kaggle competition.3 It is a highly imbalanced dataset that consists of 285k
transactions and only 0.2% are fraud examples. The transactions occurred in two days
and each has a time feature that contains the seconds elapsed between each transaction
and the first transaction in the dataset. We use the time feature to split the data into
train and validation sets such that validation transactions happen later than the training
ones. The distribution of the fraud and non-fraud transactions in time is presented in
Figure C.4.

In BO, we collect evaluation in the following way: we fix the training data to be
the first half of the transactions, and the rest we split into 5 validation folds that are
consecutive in time. The RF model is then trained on the fixed training set, and evaluated
on the validations sets. We use a balanced accuracy score that takes the imbalance in the
data into account.

task hyperparameter search space

RandomForest
n_estimators [1, 100]
max_features [5, 28]

max_depth [1, 15]

Table C.1: Search space description for RF.

2https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.
html

3https://www.kaggle.com/mlg-ulb/creditcardfraud
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Figure C.4: Distribution of non-fraud (left) and fraud (right) transactions in the dataset

C.3 Tuning Swiss free-electron laser (SwissFEL)
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(a) Mean-variance tradeoff (SwissFEL)
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Figure C.5: (a) We plot standard deviation error bars for f(x) and ρ2(x) at the reported point by the
best observed value x(T ) = argmaxxt

yt(xt) after BO completion for SwissFEL. The mean and std of the
error bars are taken over the repeated BO experiments. The results demonstrate, that reporting based on
the best-observed value inherits high noise and as the result all methods perform similarly. Intuitively,
when noise variance is high, it is possible to observe higher values. That however also inherits observing
much lower value at this point, this leading to very non-robust solutions. (b-c) Cumulative regret for
α = 2 and α = 5.
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APPENDIX D
Experiments and settings for Chapter 4

D.1 Experiments setting

D.1.1 BO setting

We used an internal BO implementation where expected improvement (EI) together with
Mat‘ern-52 kernel in the GP are used. The hyperparameters of the GP include output noise,
a scalar mean value, bandwidths for every input dimension, 2 input warping parameters,
and a scalar covariance scale parameter. The closest open-source implementations are
GPyOpt using input warped GP 1 or AutoGluon BayesOpt searcher 2. We maximize type
II likelihood to learn the GP hyperparameters in our experiments.

D.1.2 Algorithm

We present the pseudo-code for the termination criterion in Algorithm 5.

D.1.3 Search spaces for cross-validation experiments

XGBoost (XGB) and RandomForest (RF) are based on scikit-learn implementations and
their search spaces are listed in Table D.1.

D.1.4 Datasets in cross-validation experiments

We list the datasets used in our experiments, as well as their characteristics and sources
in Table Table D.2. For each dataset, we first randomly draw 20% as a test set and for
the rest, we use 10-fold cross-validations for regression datasets and 10-fold stratified
cross-validation for classification datasets. The actual data splits depend on the seed
controlled in our experiments. For a given experiment, we use the same data splits for the
whole tuning problem. For the experiments without cross-validation, we use 20% dataset
as a validation set and the rest as a training set.

1https://github.com/SheffieldML/GPyOpt
2https://github.com/awslabs/autogluon
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Algorithm 5 BO for HPO with cross-validation and automatic termination
Require: Model Mx parametrized by x ∈ X , data {D1, . . . ,Dk} for k-fold cross-validation

each D = {(xi, yi}i,
acquisition function α(x)

1: Initialize y∗t = +∞ and Dt = {}
2: for t = 1, 2, . . . do
3: Sample xt ∈ argmaxx∈X α(x)
4: for i = 1, 2, . . . , k do
5: Fit the modelMxt(·; D−i), where D−i = ∪j ̸=iDi

6: Evaluate the fitted model yit =
1

|Di|
∑

xi,yi∈Di

ℓ(yi,Mxt(xi,D−i))

7: end for
8: Calculate the sample mean yt =

1
k

∑
k

yit,

9: if yt ≤ y∗t then
10: Update y∗t = yt and the current best x∗

t = xt

11: Calculate the sample variance s2cv = 1
k

∑
i(yt − yit)

2

12: Calculate the variance estimate Varf̂(x∗
t ) ≈

(
1
k + |Di|

|D−i|

)
s2cv from Eq. (4.8)

13: end if
14: Update Dt = Dt−1 ∪ xt and y1:t = y1:t−1 ∪ yt
15: Update σt, µt with (2.8) and (2.9)
16: Calculate upper bound r̄t := min

x∈Dt

ucbt(x)−min
x∈x

lcbt(x) for simple regret from Eq. (4.7)

17: if the condition r̄t ≤
√
Varf̂(x∗

t ) holds then
18: terminate BO loop
19: end if
20: end for
21: Output: x∗

t

D.2 Detailed results

Figure 4.3 demonstrates the results of threshold study EI and PI baselines for cross-
validation. Figure 4.4 shows results for extended set of parameter i for Conv-i baseline.

We also show the scatter plots of RTC and RYC scores for different automatic
termination methods on HPO-Bench-datasets in Figure D.1 and the results on NAS-
Bench-201 in Figure 4.2.

4.2.1 Detailed numbers of RYC and RTC scores

We report detailed RYC scores and RTC scores of different HPO automatic termination
methods for the experiments in the main text in Table 4.3, Table 4.4 and Table 4.5.

4.2.2 Correlation between validation and test metrics

In Figure 4.5, we show the correlation between validation and test metrics of hyperparam-
eters when tuning XGB and RF on tst-census dataset in Figure 4.5.
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tasks hyperparameter search space scale

XGBoost

n_estimators [2, 29] log
learning_rate [10−6, 1] log

gamma [10−6, 26] log
min_child_weight [10−6, 25] log

max_depth [2, 25] log
subsample [0.5, 1] linear

colsample_bytree [0.3, 1] linear
reg_lambda [10−6, 2] log

reg_alpha [10−6, 2] log

RandomForest
n_estimators [1, 28] log

min_samples_split [0.01, 0.5] log
max_depth [1, 5] log

Table D.1: Search spaces description for each algorithm.
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Figure 4.2: Fig. (a) - (d), the mean and standard deviation of RYC and RTC scores for considered
automatic termination methods on NAS-Bench-201 datasets using GP-based BO (GP-BO), Random
Search (RS), TPE and BORE optimizers. The mean value is shown in the big dot and the standard
deviation is shown as an error bar in both dimensions.

Figure D.1: Fig. (a) - (d), the mean and standard deviation of RYC and RTC scores for considered
automatic termination methods on HPO-Bench datasets using GP-based BO (GP-BO), Random Search
(RS), TPE and BORE optimizers. The mean value is shown in the big dot and the standard deviation is
shown as an error bar in both dimensions.

4.2.3 The choice of parameter βt

High-probability concentration inequalities (aka confidence bounds) are important to
reason about the unknown objective function and are used for theoretically grounded121



dataset problem_type n_rows n_cols n_classes source

openml14 classification 1999 76 10 openml
openml20 classification 1999 240 10 openml
tst-hate-crimes classification 2024 43 63 data.gov
openml-9910 classification 3751 1776 2 openml
farmads classification 4142 4 2 uci
openml-3892 classification 4229 1617 2 openml
sylvine classification 5124 21 2 openml
op100-9952 classification 5404 5 2 openml
openml28 classification 5619 64 10 openml
philippine classification 5832 309 2 data.gov
fabert classification 8237 801 2 openml
openml32 classification 10991 16 10 openml
openml34538 regression 1744 43 - openml
tst-census regression 2000 44 - data.gov
openml405 regression 4449 202 - openml
tmdb-movie-metadata regression 4809 22 - kaggle
openml503 regression 6573 14 - openml
openml558 regression 8191 32 - openml
openml308 regression 8191 32 - openml

Table D.2: Datasets used in our experiments including their characteristics and sources.
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Figure 4.3: Detailed threshold study for the EI (left) and PI (right) baselines. Mean and standard
deviation of RYC and RTC scores for EI and PI.

convergence guarantees in some (GP-UCB-based) BO methods ([Sri+10; Ha+19; Kir+20;
Mak+21b]). There, βt stands for the parameter that balances between exploration vs.
exploitation and ensures the validity of the confidence bounds. The choice of βt is then
guided by the assumptions made on the unknown objective, for example, the objective
being a sample from a GP or the objective having the bounded norm in RKHS (more
agnostic case used in Section 3).

In our experiments, we follow the common practice of scaling down βt which is
usually used to improve performance over the (conservative) theoretically grounded values
(see e.g., [Sri+10; Kir+20; Mak+21b]). Particularly, throughout this paper, we set
βt = 2 log(|X |t2π2/6δ) where δ = 0.1 and |X | is set to be the number of hyperparameters.
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Figure 4.4: Parameter i study for Conv-i baseline. The mean and standard deviation of RYC and
RTC scores for (first line) HPO tuning XGB (a) and RF (b) using cross-validation and (second line) for
HPO-Bench datasets (c-d). The Figure shows that even though there is an ideal for Conv-i, it changes
not only across tasks and methods but even across different repetitions of a single method. The latter
makes it particularly challenging to define a suitable i, since i is a fixed, predetermined choice, that does
not take the observed data into account (in contrast to our method that refines the regret estimation as
the data is being observed).
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Figure 4.5: We show validation error for training XGB (a) and RF (b) on tst-census dataset on the
x-axis and test error on the y-axis. In the low error region, the validation metrics are not well correlated
with the test metrics.

We then further scale it down by a factor of 5 as defined in the experiments in [Sri+10].
We provide an ablation study on the choice of βt in Figure 4.6.
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RTC RYC
algo RF XGB RF XGB

Conv_10 0.840 0.841 -0.031 -0.051
Conv_30 0.686 0.666 -0.022 -0.026
Conv_50 0.498 0.504 -0.015 -0.021
EI_1e-08 0.896 0.850 -0.057 -0.052
EI_1e-12 0.895 0.779 -0.055 -0.047
EI_1e-16 0.893 0.718 -0.052 -0.045
PI_1e-4 0.898 0.875 -0.059 -0.059
PI_1e-08 0.895 0.814 -0.055 -0.052
PI_1e-12 0.894 0.739 -0.055 -0.044
Ours_0.21 0.318 0.144 -0.004 -0.003
Ours_0.5 0.580 0.224 -0.013 -0.006

Table 4.3: RTC and RYC scores for early stopping methods in cross-validation benchmarks.

RTC RYC
dataset naval parkinsons protein slice naval parkinsons protein slice

Conv_10 0.943 0.947 0.946 0.942 -0.605 -0.582 -0.117 -0.432
Conv_30 0.826 0.837 0.837 0.840 -0.064 -0.235 -0.021 -0.119
Conv_50 0.748 0.729 0.734 0.747 -0.038 -0.107 -0.008 -0.058
Ours_0.0001 0.790 0.018 0.198 0.822 -0.041 -0.012 -0.005 -0.072
Ours_0.001 0.910 0.038 0.271 0.934 -0.220 -0.031 -0.018 -0.281
Ours_0.01 0.941 0.901 0.906 0.953 -0.498 -0.378 -0.071 -0.466

Table 4.4: RTC and RYC scores for early stopping methods in HPO-Bench.
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Figure 4.6: The differences between upper bound and true regret for every BO iteration when using
BORE to tune an MLP on the Naval dataset. The number of negative differences (the upper bound is
smaller than the true regret) is shown in the legend next to the two options for computing βt.
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RTC RYC
dataset ImageNet cifar10 cifar100 ImageNet cifar10 cifar100

Conv_10 0.880 0.889 0.888 -0.034 -0.098 -0.097
Conv_30 0.612 0.611 0.606 -0.010 -0.019 -0.036
Conv_50 0.372 0.361 0.372 -0.004 -0.006 -0.014
Ours_0.0001 0.274 0.311 0.519 -0.002 -0.008 -0.026
Ours_0.001 0.377 0.622 0.582 -0.005 -0.023 -0.033
Ours_0.01 0.837 0.902 0.879 -0.022 -0.106 -0.099

Table 4.5: RTC and RYC scores for early stopping methods in NAS-Bench-201.
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CHAPTER5
On improving the statistical characteristics of

the threshold

5.1 Stopping threshold under homoscedastic variance

In Section 4.1, we introduce a problem of Bayesian optimization-based hyperparameter
optimization: the irreducible discrepancy in the objectives, i.e., the available objective
being optimized (validation loss) and the true but unavailable objective (generalization
performance). This irreducible discrepancy is characterized in terms of the statistical error
of the cross-validation-based estimator. Consequently, a termination criterion for BO stops
the iterative reduction of the validation loss to 0 when it might not bring any benefits,
i.e., when the statistical error dominates. The termination criterion uses the connection
between the statistical error (or the variance) and sample variance obtained from cross-
validation evaluations ([Ben00]). Notably, the stopping condition relies on the variance
Eq. (4.8) at a particular hyperparameter, whiich is the best one found so far. Though this
empirical assumption demonstrates competitive practical results, it actually might not hold
uniformly over the whole domain. To this end, we show how to use a set of collected sample
variances to get confidence bounds for the unknown variance assumed to be homoscedastic.

Method

We follow the notation introduced in Section 4.1. There, f̂(x) denotes the point
estimator f(x), i.e., function or statistics used to estimate the unknown f(x), and
Varf̂(x) = E[(f̂(x) − Ef̂(x))2] is the estimator variance. Let us further denote the
evaluations obtained during the k-fold cross-validation by {yit}ki=1. Then, we can compute
the sample variance ŝ2t and sample mean yt, where the latter is a point estimate of f(xt),
i.e., observed numerical value:

yit =
1

|Di|
∑

xi,yi∈Di

ℓ(yi,Mxt(xi,D−i)), (5.1)

yt =
1

k

k∑
i=1

yit and ŝ2t =
1

k − 1

k∑
i=1

(
yit − yt

)2
. (5.2)
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The same notation is used in Chapter 3 for risk-averse BO with repeated experiment
setup.

The question we are interested in is: What type of uncertainty do we have when we
estimate the unknown functions f̂(xt) and f(xt)? Each evaluation yit inherits randomness
due to the training procedure: it is an epistemic uncertainty in the modelMxt(xi,D−i)

in Eq. (5.1) due to the scarcity of the data D−i, and aleatoric uncertainty due to the
stochasticity of the gradient-base optimization. Therefore, we assume that the true f̂(xt)

is perturbed by noise resulting in the following observation model:

yit = f̂(xt) + ξit, (5.3)

where ξit is a realization of some homoscedastic zero-mean Gaussian noise ξ ∼ N (0, σ2
ξ )

independent across different time steps t and data folds i. In the following proposition,
we show how to compute lower confidence bound for the noise variance σ2

ξ .
Proposition 2. Consider the expected loss f and its k-fold cross-validation estimator

f̂ defined in (4.2) and (4.3), and assume the estimator variance Varf̂(x) is homoscedastic,
i.e., Varf̂(x) = Varf̂(x′),∀x,x′ ∈ X . Let {ŝ2t}Tt=0 be the sample variance evaluations
defined in Eq. (5.2) and collected according to the observational model Eq. (5.3) with
Gaussian noise ξ ∼ N (0, σ2

ξ). Then, with probability 1 − δ/2, δ ∈ (0, 1), the unknown
noise variance is lower bounded as follows:

σ2
ξ ≥

k − 1

2γ̃−1
(
k
2
, 1−δ

2

) T∑
t=0

ŝ2t , (5.4)

where γ̃−1(·, ·) is the inverse of the normalized lower incomplete gamma function.

Proof. In short, the proposition can be proved in four steps as follows: (1) Show that
sample variance to noise variance (k−1)ŝ2t

σ2
ξ
∼ χ2

k−1 is chi-squared distributed. (2) Show

that the sample variance ŝ2t is gamma distributed ŝ2t ∼ Gamma
(

k−1
2
, k−1
2σ2

ξ

)
. (3) Show that

the mean over sample variances is distributed as 1
T

∑T
t ŝ

2
t ∼ Gamma

(
k−1
2
T, k−1

2σ2
ξ
T
)
. (4)

Finally, we can compute an δ-quantile for the obtained Gamma distribution, resulting
in the lower bound of interest. Each of the steps is presented below.

Step 1: Show that the sample variance divided by the noise variance (k−1)ŝ2t
σ2
ξ
∼ χ2

k−1

is chi-squared distributed.
The noise ξ is zero-mean Gaussian noise, i.e., ξ ∼ N (0, σ2

ξ ). Then, following the model
yit = f̂(xt) + ξit, from Eq. (5.3), each evaluation yit ∼ N (f̂(xt), σ

2
ξ ) with (unknown)

mean f̂(xt). Then, standardised zi :=
yit−f̂(xt)

σξ
is a random variable from standard normal

distribution zi ∼ N (0, 1). Let us then show, that the value of interest can be represented
as a sum of standard normal random variables, thus, resulting in a chi-squared distribution:

(k − 1)ŝ2t
σ2
ξ

1
=

∑k

i=1

(yit − yt)2

σ2
ξ

2
=

k∑
i=1

(yit − 1
k

∑
j y

j
t

σξ
− f̂(xt)− f̂(xt)

σξ

)2
(5.5)
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3
=

k∑
i=1

(yit − f̂(xt)

σξ
− 1

k

k∑
j=1

yjt − f̂(xt)

σξ

)2
(5.6)

4
=

k∑
i=1

(
zi − m̂z

)2 ∼ χ2
k−1, (5.7)

where 1 , 2 are due to the sample variance and mean definitions Eq. (5.2), and 3 , 4

are due to reorganizing the terms to get the standard normal variables with sample mean
m̂z =

1
k

∑k
j=1

yjt−f̂(xt)

σξ
. Thus, we have a sum of k terms (zi−m̂z)

2 that is distributed as χ2
k−1.

Step 2: Show that the sample variance ŝ2t is gamma distributed ŝ2t ∼ Gamma
(

k−1
2
, k−1
2σ2

ξ

)
.

Recap about gamma distribution. Let us denote gamma distribution with shape a and rate b
as Gamma(a, b). Then, the probabilistic density function is given by f(x; a, b) = xa−1e−bxba

Γ(a)

for x > 0 and a, b > 0. Note, that chi-squared distribution χ2
k is gamma distribution

with a = k/2 and b = 1/2, i.e., χ2
k = Gamma(k

2
, 1
2
). Moreover, chi-squared χ2

k scaled by
some constant c is gamma with parameters scaled as cχ2

k = Gamma(k
2
, 1
2c
). Finally, if T

evaluations are drawn from Gamma(a, b), their sum is distributed as Gamma(aT, b).

Let us first note that ŝ2t is distributed as scaled chi-squared ŝ2t ∼
σ2
ξ

k−1
χ2
k−1. Then,

scaling chi-squared distribution corresponds to gamma distribution with parameters scaled
respectively:

ŝ2t ∼
σ2
ξ

k − 1
χ2
k−1 = Gamma

(k − 1

2
,
k − 1

2σ2
ξ

)
. (5.8)

Step 3: Show that the mean over sample variances is distributed as 1
T

∑T
t ŝ

2
t ∼

Gamma
(
k−1
2
T, k−1

2σ2
ξ
T
)
.

Let the mean over sample variances ŝ2 := 1
T

∑T
t ŝ

2
t . If T evaluations {ŝ21 . . . ŝ2T} are

drawn from a gamma distribution with some shape a and rate b, i.e., ŝ2t ∼ Gamma(a, b),
then, their sample mean ŝ2 is gamma distributed ŝ2 ∼ Gamma(aT, bT ). Following
Eq. (5.8), where a = k−1

2
and b = k−1

2σ2
ξ
, we conclude that ŝ2 ∼ Gamma

(
k−1
2
T, k−1

2σ2
ξ
T
)
.

Step 4: Derive the confidence interval for unknown σ2
ξ .

We use ŝ2 := 1
T

∑T
t ŝ

2
t as an estimator for σξ, where ŝ2 has gamma distribution as

shown above.
Let Gp

ab denote a p-quantile of gamma distribution Gamma(a, b) such that P(ŝ2 ≥
Gp

ab) = p. Then, Gp
ab := Gab(p) =

γ̃−1(a,p)
b

, where Γ(·) is the gamma function and γ̃−1(·, ·) is
the inverse of the normalized lower incomplete gamma function γ̃(a, bx) = 1

Γ(a)

∫ bx

0
ta−1e−tdt

as follows:

F ab
X (x) =

1

Γ(a)

∫ bx

0

ta−1e−tdt =
γ(a, bx)

Γ(a)
, (5.9)

Gab(p) = F−1
X (x), (5.10)
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p =
γ(a, bx)

Γ(a)
:= γ̃(a, bx), (5.11)

x =
1

b
γ̃−1(a, p). (5.12)

Then, for some 0 ≤ δ ≤ 1, P(ŝ2 ≥ G
1−δ/2
ab ) = δ/2 and P(ŝ2 ≤ G

δ/2
ab ) = δ/2, leading to

P(Gδ/2
ab ≤ ŝ2 ≤ G

1−δ/2
ab ) = 1− δ.

P
[
γ̃−1
(
a,
δ

2

)
≤ bŝ2 ≤ γ̃−1

(
a, 1− δ

2

)]
= 1− δ, (5.13)

P
[T ŝ2(k − 1)

2γ̃−1
(
a, δ

2

) ≥ σ2
ξ ≥

T ŝ2(k − 1)

2γ̃−1
(
a, 1− δ

2

)] = 1− δ, (5.14)

That results into the lower confidence bound for σ2
ξ :

lcbσ2
ξ
=

T ŝ2(k − 1)

2γ̃−1
(
a, 1−δ

2

) . (5.15)

■

5.1.1 Visualizations

Here, we provide the visualization of the confidence bounds for σ2
ξ from Eq. (5.15) and

compare them with the value used in the termination condition Eq. (4.8).
First, we visualize the convergence of the confidence bounds in Eq. (5.14) as a function

of the number of BO iteration T , or, in other words, the number of samples in the sample
mean ŝ2 := 1

T

∑T
t ŝ

2
t . To this end, we assume ŝ2 = 1 and plot multiplications factors in

0 20 40 60 80 100
number of iterations T
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1.0

1.5

2.0
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va
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e

Convergence of multiplication factors

lcb
ucb
sample mean

Figure 5.1: Convergence of the confidence bounds lcb and ucb in Eq. (5.14) as a function of number of
iterations T . Here, we assume ŝ2 = 1 (plotted in green).
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Figure 5.2: Comparison of two stopping thresholds: the lower confidence bound-based from Eq. (5.15)
(red) and the variance of the best-found solution (blue) used in Section 4.1.
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CHAPTER6
Method details for Chapter 5

6.1 Sparse linear model via sparsity-encouraging prior

While the number and degree of the features used in the surrogate model (see Section 5.2.1)
is a design choice, in practice it is typically unknown which variable interactions matter
and thus which features to choose. To discard irrelevant features, one may impose a
sparsity-encouraging prior over the weight vector ω [BP18]. However, due to non-conjugacy
to the Gaussian likelihood, exact Bayesian inference of the resulting posterior distribution
is in general intractable, imposing the need for approximate inference methods. One choice
for such a prior is the Laplace distribution, i.e. p(ω|α) ∝ exp(−α−1∥ω∥1), with inverse
scale parameter α > 0, for which approximate inference techniques based on expectation
propagation [Min01] and variational inference [WJ+08] were developed in [See08; SN08;
SN11]. Alternatively, one can use a horseshoe prior and use Gibbs sampling to sample
from the posterior over weights [BP18]. However, this comes with a significantly larger
computational burden, which is a well-known issue for sampling based inference techniques
[Bis06]. Lastly, one may consider a spike-and-slab prior with expectation propagation for
approximate posterior inference [HHD13; HHS15].

6.2 Pseudocode for Thompson sampling

Algorithm 6 shows pseudocode for the Thompson sampling procedure within MiVaBo.

Algorithm 6 Thompson Sampling
Require: model features ϕ(x)
1: Set S = I, m = 0
2: for t = 1, 2, . . . , T do
3: Sample ω̃t ∼ N (m,S−1)
4: Select input x̂t ∈ argminx∈X ω̃⊤

t ϕ(x)
5: Query output yt = f(x̂t) + ε
6: Update S,m as described in Section 5.2.2.
7: end for
8: Output: x̂∗ ∈ argminx∈X m⊤ϕ(x)
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6.3 Derivation of dual decomposition

One interesting interpretation of our acquisition function optimization problem as defined
in Section 5.2.3 is as maximum a posteriori (MAP) inference in the undirected graphical
model, or Markov random field (MRF) [KFB09], induced by the dependency graph of
the involved variables (i.e. the graph in which vertices correspond to variables, and edges
appear between variables that interact in some way). We take this perspective and devise
a dual decomposition to tackle the MAP estimation problem induced by our particular
setting (i.e., interpreting our acquisition function as the energy function of the graphical
model), following the formulation of [SGJ11].1

Consider a graphical model on the vertex set V = Vd ∪ Vc, where the vertices Vd =

{1, . . . , Dd} and Vc = {Dd + 1, . . . , Dd +Dc} correspond to the discrete and continuous
variables xd ∈ X d and xc ∈ X c, respectively. Furthermore, consider a set F of subsets
of both discrete and continuous variables/vertices, i.e., ∀f ∈ F : f = (fd ∪ f c) ⊆ V, ∅ ≠
fd ⊆ Vd, ∅ ≠ f c ⊆ Vc, where each subset corresponds to the domain of one of the factors.

Now assume that we are given the following functions on these factors as well as on all
discrete/continuous variables:

• A factor θd(xd), θd : X d → R on all discrete variables

• A factor θc(xc), θc : X c → R on all continuous variables

• |F | mixed factors θmf (xd
f ,x

c
f ), θ

m
f : X d

f ×X c
f → R on subsets f ∈ F of both discrete

and continuous variables, where xd
f ∈ X d

f and xc
f ∈ X c

f respectively denote subvectors
of xd and xc from the (typically low-dimensional) subspaces X d

f ⊆ X d and X c
f ⊆ X c,

indexed by the vertices contained in f

The goal of our MAP problem is to find and assignment to all variables xd and xc which
maximizes the sum of the factors:

MAP(θ) = max
x

{
θd(xd) + θc(xc) +

∑
f∈F

θmf (x
d
f ,x

c
f )

}
(6.1)

We now slightly reformulate this problem by duplicating the variables xdi and xcj, once
for each mixed factor θmf (xd

f ,x
c
f ), and then enforce that these variables are equal to the

ones appearing in the factors θd(xd) and θc(xc), respectively. Let xdfi and xcfj respectively
denote the copy of xdi and xcj used by factor f . Moreover, denote by xdf

f = {xdfi }i∈fd and
xcf
f = {xcfj }j∈fc the set of variables used by factor f , and by xF = {xdf

f ,x
cf
f }f∈F the set

of all variable copies. We then get the equivalent (but now constrained) optimization
problem

max
x,xF

{
θd(xd) + θc(xc) +

∑
f∈F

θmf (x
df
f ,x

cf
f )

}
(6.2)

1In accordance with the notation in [SGJ11], we will here denote the factors by θ instead of f (i.e., in contrast
to the main text).
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s.t. xdfi = xdi , ∀f ∈ F, i ∈ fd

xcfj = xcj, ∀f ∈ F, j ∈ f c

To remove the coupling constraints, [SGJ11] now propose to use the technique of Lagrangian
relaxation and introduce a Lagrange multiplier / dual variable λfi(xi) for every choice of
f ∈ F , i ∈ f and xi (i.e. for every factor, for every variable in that factor, and for every
value of that variable). These multipliers may then be interpreted as the message that
factor f sends to variable i about its state xi.

While this works well if all variables are discrete, in our model we also have continuous
variables xcj , and it is clearly not possible to have a Lagrange multiplier for every possible
value of xcj. To mitigate this issue, we follow [KPT11] and instead only introduce a
multiplier λfi for every choice of f ∈ F and i ∈ f , and model the interaction with the
variables as λfi(xi) = λfixi (i.e., the product of a multiplier λfi and variable xi). Observe
that since our goal is to relax the coupling constraints, it is sufficient to introduce one
multiplier per constraint. Since we have a constraint for every factor f ∈ F and every
discrete variable i ∈ fd and continuous variable j ∈ f c in that factor, our approach is
clearly viable.

Note that in contrast to [KPT11], that introduces a set of multipliers for every factor
/ subgraph, we only introduce multipliers for the mixed factors f ∈ F . This is because
in contrast to [KPT11], we do not introduce a full set of variable copies for every factor
and then couple them to another global set of "original" variables, but we instead only
introduce variable copies for the mixed factors and couple them to the variables appearing
in the discrete and continuous factors, which we assume to be the "original" variables
instead. This essentially is the same approach used in [SGJ11], with the difference that
[SGJ11] introduce a singleton factor for each variable (i.e., a factor which depends only
on a single variable), which they consider to be the "original" variable. They then simply
couple the variable copies appearing in the higher-order factors to the "original" variables
appearing in the singleton factors. In contrast, in our formulation we don’t introduce
singleton factors to model the "original" variables, but instead use the fully discrete and
continuous factors for this purpose, which clearly works equally well. Note that as a result
of this modeling choice, our optimization problem will be unconstrained, regardless of the
number of factors, similar as in [SGJ11]. In contrast, [KPT11] end up with constraints
enforcing that some of the dual variables sum to zero, since they are optimizing out the
global set of "original" variables from their objective, while we keep the set of "original"
variables within our discrete and continuous factors. For this reason, we will in contrast
to [KPT11] later not require a projection step within the subgradient method used to
optimize the dual; this is to be detailed further below.

For clarity, we treat discrete and continuous variables distinctly and for factor f ∈ F
denote λdfi and λcfj respectively for the Lagrange multipliers corresponding to its discrete
variables i ∈ fd (or rather, the constraints xdfi = xdi ) and its continuous variables j ∈ f c

(or rather, the constraints xcfj = xcj). For every factor f ∈ F , we furthermore aggregate
its multipliers into the vectors λd

f = {λdfi}i∈fd ∈ R|X d
f | and λc

f = {λcfj}j∈fc ∈ R|X c
f |. The

set of all Lagrange multipliers is thus λ = {λdfi : f ∈ F, i ∈ fd} ∪ {λcfj : f ∈ F, j ∈ f c} =
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{λd
f ,λ

c
f}f∈F . We then define the Lagrangian

L(λ,x,xF ) = θd(xd) + θc(xc) +
∑
f∈F

θmf (x
df
f ,x

cf
f )

+
∑
f∈F

∑
i∈fd

λdfi

(
xdi − xdfi

)
+
∑
f∈F

∑
j∈fc

λcfj

(
xcj − xcfj

)

=

θd(xd) +
∑
f∈F

∑
i∈fd

λdfix
d
i


+

(
θc(xc) +

∑
f∈F

∑
j∈fc

λcfjx
c
j

)

+
∑
f∈F

θmf (xdf
f ,x

cf
f )−

∑
i∈fd

λdfix
df
i −

∑
j∈fc

λcfjx
cf
j

 .

This results in the following optimization problem:

max
x,xF

L(λ,x,xF ) (6.3)

s.t. xdfi = xdi , ∀f ∈ F, i ∈ fd

xcfj = xcj, ∀f ∈ F, j ∈ f c

Note that the problem in Eq. (6.3) is still equivalent to our (hard) original problem in
Eq. (6.1) for any assignment of λ, since the Lagrange multipliers cancel out if all coupling
constraints are fulfilled.

To obtain a tractable problem, we thus simply omit the coupling constraints in Eq. (6.3)
and define the dual function L(λ) as

L(λ) = max
x,xF

L(λ,x,xF )

= max
xd

θd(xd) +
∑
f∈F

∑
i∈fd

λdfix
d
i


+max

xc

(
θc(xc) +

∑
f∈F

∑
j∈fc

λcfjx
c
j

)

+
∑
f∈F

max
xdf
f ,xcf

f

θmf (xdf
f ,x

cf
f )−

∑
i∈fd

λdfix
df
i −

∑
j∈fc

λcfjx
cf
j


Note that the maximizations are now fully independent, such that we can (without
introducing any ambiguity) simplify the notation for the variables involved in the mixed
terms to denote xd

f and xc
f instead of xdf

f and xcf
f , respectively2, resulting in the slightly

2I.e., we replace all variable copies xdf
f ,xcf

f in the mixed terms by the "original" variables xd
f ,x

c
f .
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simpler dual formulation

L(λ) = max
xd

θd(xd) +
∑
f∈F

∑
i∈fd

λdfix
d
i


+max

xc

(
θc(xc) +

∑
f∈F

∑
j∈fc

λcfjx
c
j

)

+
∑
f∈F

max
xd
f ,x

c
f

θmf (xd
f ,x

c
f )−

∑
i∈fd

λdfix
d
i −

∑
j∈fc

λcfjx
c
j


Let xd

|f ∈ X d
f and xc

|f ∈ X c
f respectively denote the subvectors of xd and xc containing

only the variables of factor f . The shorthands (or reparameterizations [SGJ11])

θ̄λd (x
d) = θd(xd) +

∑
f∈F

∑
i∈fd

λdfix
d
i

= θd(xd) +
∑
f∈F

λd
fx

d
|f (6.4)

θ̄λc (x
c) = θc(xc) +

∑
f∈F

∑
j∈fc

λcfjx
c
j

= θc(xc) +
∑
f∈F

λc
fx

c
|f (6.5)

θ̄λf (x
d
f ,x

c
f ) = θmf (x

d
f ,x

c
f )−

∑
i∈fd

λdfix
d
i −

∑
j∈fc

λcfjx
c
j

= θmf (x
d
f ,x

c
f )− λd

fx
d
f − λc

fx
c
f (6.6)

further simplify the dual function L(λ) to

L(λ) = max
xd

θ̄λd (x
d) + max

xc
θ̄λc (x

c) +
∑
f∈F

max
xd
f ,x

c
f

θ̄λf (x
d
f ,x

c
f ) . (6.7)

First, observe that since we maximize over x and xF , the dual function L(λ) is a function
of just the Lagrange multipliers λ. Note that since L(λ) maximizes over a larger space
(since instead of forcing that there must be one global assignment maximizing the objective,
we allow the discrete/continuous potentials to be maximized independently of the mixed
potentials, meaning that x may not coincide with xF ), we have for all λ that

MAP(θ) ≤ L(λ) . (6.8)

The dual problem now is to find the tightest upper bound by optimizing the Lagrange
multipliers, i.e.

min
λ
L(λ) (6.9)

We also call the dual problem in Eq. (6.9) the master problem, which coordinates the
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2 + |F | slave problems (i.e., one for each factor)

sd(λ) = max
xd

θ̄λd (x
d) (6.10a)

sc(λ) = max
xc

θ̄λc (x
c) (6.10b)

sf (λ) = max
xd
f ,x

c
f

θ̄λf (x
d
f ,x

c
f ), ∀f ∈ F . (6.10c)

where we refer to sd, sc and sf as the discrete slave, the continuous slave, and the mixed
slaves, respectively. Using the notation in Eqs. (6.10a)-(6.10c), the dual function further
simplifies to

L(λ) = sd(λ) + sc(λ) +
∑
f∈F

sf (λ) . (6.11)

Intuitively, the goal of Eq. (6.9) is as follows: The master problem wants the dis-
crete/continuous slaves to agree with the mixed slaves/factors in which the corresponding
discrete/continuous variables appear, and conversely, it wants the mixed slaves to agree
with the slaves/factors of the discrete/continuous variables in its scope. The master
problem will thus incentivize the discrete/continuous slaves and the mixed slaves to agree
with each other, which is done by updating the dual variables λ accordingly.

The key property of the function L(λ) is that it only involves maximization over local
assignments of xd,xc and xd

f ,x
c
f , which are tasks we assume to be tractable. The dual

thus decouples the original problem, resulting in a problem that can be optimized using
local operations. Algorithms that minimize the approximate objective L(λ) use local
updates where each iteration of the algorithms repeatedly finds a maximizing assignment
for the subproblems individually, using these to update the dual variables λ that glue the
subproblems together. There are two main classes of algorithms of this kind, one based
on a subgradient method and another based on block coordinate descent [SGJ11].
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CHAPTER7
Experiments for Chapter 5

7.0.1 Synthetic benchmark for unconstrained optimization
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Figure 7.1: Results on the synthetic benchmark, with the Gaussian (left) and Laplace prior (right).
Mean plus/minus one standard deviation of the normalized error over 16 random initializations. (Left)
MiVaBo outperforms its competitors. (Right) MiVaBo with a sparse prior outperforms its competitors,
including MiVaBo with a Gaussian prior

We assess the performance on an unconstrained synthetic linear benchmark function of
the form f(x) = ω⊤ϕ. We choose a fairly high-dimensional objective with Dd = 8 discrete
and Dc = 8 continuous variables, thus resulting in a total input space dimensionality of
D = Dd +Dc = 16. For the discrete model part, we choose the Md ∈ O(D2

d) features ϕd

proposed in Section 5.2.1. For the continuous features ϕc, we choose Mc = 16 dimensional
Random Fourier Features to approximate a GP with a squared exponential kernel with
bandwidth σ = 1.0. For the mixed representation, we construct a feature vector ϕm

by stacking all pairs of discrete and continuous features, as proposed in Section 5.2.1.
We consider two settings for the weight vector: Firstly, we sample it from a zero-mean
Gaussian, ω ∼ N (0, I) ∈ RM . Secondly, we sample it from a Laplace distribution, i.e.
ω ∼ p(ω|α) ∝ exp(−α−1∥ω∥1), with inverse scale parameter α = 0.1, and then prune all
weights smaller than 10 to zero to induce sparsity over the weight vector. For the second
setting, we also assess MiVaBo using a Laplace prior and the approximate inference
technique from [SN11] (see also Section 6.1)1. As we do not know the true optimum of the

1We use the MATLAB implementation provided in the glm-ie toolbox [Nic12] by the same authors.
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function and thus cannot compute the regret, we normalize all observed function values
to the interval [0, 1], resulting in a normalized error as the metric of comparison. We can
observe from our results shown in Figure 7.1 that MiVaBo outperforms the competing
methods in this setting, demonstrating the effectiveness of our approach when its modeling
assumptions are fulfilled.

7.0.2 Synthetic benchmark for constrained optimization

In another experiment, we demonstrate the capability of our algorithm to incorporate
linear constraints on the discrete variables. In particular, we want to enforce a solution
that is sparse in the discrete variables via adding a hard cardinality constraint of the
type

∑Dd

i=1 x
d
i ≤ k, which we can simply specify in the Gurobi optimizer. Cardinality

constraints of this type are very relevant in practice, as many real-world problems desire
sparse solutions (e.g., sparsification of ising models, contamination control, aero-structural
multi-component problems [BP18]). We consider the same functional form as before,
i.e. again with Dd = Dc = 8, and set k = 2, meaning that a solution should have at
most two of our binary variables set to one, while all others shall be set to zero. To
enable comparison with TPE, SMAC and random search, which provide no capability
of modeling these kinds of constraints, we assume the objective f to be unconstrained,
but instead return a large penalty value if a method acquires an evaluation of f at a
point that violates the constraint. Thus, the baseline algorithms are forced to learn the
constraint from observations, which is a challenging problem.

One can notice from Figure 7.2 that the ability to explicitly encode the cardinality
constraint into the discrete optimization oracle significantly increases performance.
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Figure 7.2: Results on the synthetic benchmark with cardinality constraints. The curves represent the
mean plus/minus one standard deviation of the normalized error over 16 random initializations. One can
observe that MiVaBo outperforms its competitors.
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7.1 More details on XGBoost hyperparameter tuning

Please refer to the corresponding websites for details on the OpenML XGBoost bench-
mark 2, on the underlying implementation 3, and on the steel-plates-fault 4 and
monks-problem-1 5 datasets. Finally, see Table 7.1 for a description of the hyperparame-
ters involved in XGBoost.

Name Type Domain

booster discr. [’gbtree’, ’gblinear’]
nrounds discr. [3, 5000]
alpha contin. [0.000985, 1009.209690]
lambda contin. [0.000978, 999.020893]
colsample_bylevel contin. [0.046776, 0.998424]
colsample_bytree contin. [0.062528, 0.999640]
eta contin. [0.000979, 0.995686]
max_depth discr. [1, 15]
min_child_weight contin. [1.012169, 127.041806]
subsample contin. [0.100215, 0.999830]

Table 7.1: Hyperparameters of the XGBoost algorithm. 10 parameters, 7 of which are continuous, and
3 of which are discrete.

7.2 More details on VAE hyperparameter tuning

7.2.1 Hyperparameters of VAE

We used the PyTorch library to implement the VAE used in the experiment. Table 7.2
describes the names, types and domains of the involved hyperparameters that we tune.
Whenever we refer to a "deconvolutional layer" (also called transposed convolution or
fractionally-strided convolution), we mean the functional mapping implemented by a
ConvTranspose2d layer in PyTorch6. Since our approach operates on a binary encoding
of the discrete parameters, we also display the number of bits required to encode each
discrete parameter. In total, we consider 25 discrete parameters (resulting in 50 when
binarized) as well as three continuous ones.

7.2.2 Description of constraints

We now describe the constraints arising from the mutual dependencies within the hyper-
parameter space of the deconvolutional VAE (as described in Section 7.2.1).

2https://www.openml.org/f/6767
3https://www.rdocumentation.org/packages/xgboost/versions/0.6-4
4https://www.openml.org/t/9967
5https://www.openml.org/t/146064
6See https://pytorch.org/docs/stable/nn.html#convtranspose2d for details.
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# Name Type Domain Bits

1 Number of conv. layers in encoder discrete [0,1,2] 2
Parameters of C1

2 Number of channels of C1 discrete [4,8,16,24] 2
3 Stride of C1 discrete [1,2] 1
4 Filter size of C1 discrete [3,5] 1
5 Padding of C1 discrete [0,1,2,3] 2

Parameters of C2
6 Number of channels of C2 discrete [8,16,32,48] 2
7 Stride of C2 discrete [1,2] 1
8 Filter size of C2 discrete [3,5] 1
9 Padding of C2 discrete [0,1,2,3] 2

10 Number of fc. layers in encoder discrete [0,1,2] 2
11 Number of units of F1 discrete [0. . . 960] 4
12 Dimensionality dz of z discrete [16. . . 64] 6
13 Number of fc. layers in decoder discrete [0,1,2] 2
14 Number of units of F4 discrete [0. . . 960] 4
15 Number of deconv. layers in decoder discrete [0,1,2] 2

Parameters of D1
16 Number of channels of D1 discrete [8,16,32,48] 2
17 Stride of D1 discrete [1,2] 1
18 Filter size of D1 discrete [3,5] 1
19 Padding of D1 discrete [0,1,2,3] 2
20 Output padding of D1 discrete [0,1,2,3] 2

Parameters of D2
21 Number of channels of D2 discrete [4,8,16,24] 2
22 Stride of D2 discrete [1,2] 1
23 Filter size of D2 discrete [3,5] 1
24 Padding of D2 discrete [0,1,2,3] 2
25 Output padding of D2 discrete [0,1,2,3] 2

26 Learning rate continuous [10−4, 10−2] -
27 Learning rate decay factor continuous [0.5, 1.0] -
28 Weight decay regularization continuous [10−6, 10−2] -

Total 50

Table 7.2: Hyperparameters of the VAE. The architecture of the VAE (if all layers are enabled)
is C1-C2-F1-F2-z-F3-F4-D1-D2, with C denoting a convolutional (conv.) layer, F a fully-connected
(fc.) layer, D a deconvolutional (deconv.) layer and z the latent space. Layers F2 and F3 have fixed
sizes of 2dz and dz units respectively, where dz denotes the dimensionality of the latent space z. The
domain of the number of units of the fc. layers F1 and F4 is discretized with a step size of 64, i.e.
[0, 64, 128, . . . , 832, 896, 960], denoted by [0 . . . 960] in the table for brevity. For dz, the domain [16 . . . 64]
refers to all integers within that interval.

Encoder constraints. For the convolutional layers (up to two in our case) of the encoder,
we need to ensure that the chosen combination of stride, padding and filter size transforms
the input image into an output image whose shape is integral (i.e., not fractional). More
precisely, denoting the input image size by Win (i.e., the input image is quadratic with
shape Win ×Win), the stride by S, the filter size by F , and the padding by P , we need to
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ensure that the output image size Wout is integral, i.e.

W e
out = (W e

in − F e + P e)/Se + 1 ∈ N (7.1)

where superscripts e are used to make clear that we are considering the encoder. Let
us illustrate this with an example7: For Win = 10, P = 0, S = 2 and F = 3, we
would get an invalid fractional output size of Wout = (10 − 3 + 0)/2 + 1 = 4.5. To
obtain a valid output size, one could, e.g., instead consider a padding of P = 1, yielding
Wout = (10 − 3 + 1)/2 + 1 = 5. Alternatively, one could also consider a stride of
S = 1 to obtain Wout = (10 − 3 + 0)/1 + 1 = 8, or a filter size of F = 4 to obtain
Wout = (10−4+0)/2+1 = 4 (though the latter is very uncommon and thus not allowed in
our setting; we only allow F ∈ {3, 5}, as described in Section 7.2.1). While this constraint
is not trivially fulfilled (which can be verified by manually trying different configurations
of Win, F, S, P ), it is also not too challenging to find valid configurations.

Note that this constraint is required to be fulfilled for every convolutional layer; we
thus obtain the following two constraints in our specific two-layer setting, where Win = 28

(as MNIST and FashionMNIST images are of shape 28× 28):

W e
out1 = (28− F e

1 + P e
1 )/S

e
1 + 1 ∈ N, (7.2)

W e
out2 = (W e

out1 − F e
2 + P e

2 )/S
e
2 + 1 ∈ N. (7.3)

where the subscripts in {1, 2} denote the index of the convolutional layer.
Finally, observe that the constraints in Eq. (7.2) and Eq. (7.3) are, respectively,

linear and quadratic in the discrete variables F e
1 , F

e
2 , P

e
1 , P

e
2 , S

e
1, S

e
2, and can thus be

readily incorporated into the integer programming solver (e.g. Gurobi [Opt14] or CPLEX
[IBM09]) we employ as a subroutine within our acquisition function optimization strategy.

Decoder constraints. While the constraints on the decoder architecture are similar in
nature to those for the encoder, they are significantly more difficult to fulfill, which we
will now illustrate.

In particular, we need to ensure that the decoder produces images of shape 28× 28.
By inverting the formula in Eq. (7.1), we see that for a deconvolutional layer (which
intuitively implements an inversion of the convolution operation), the output image size
Wout can be computed as

W d
out = (W d

in − 1)× Sd + F d − 2P d +Od (7.4)

where superscripts d are used to make clear that we are considering the decoder, and
where O is an additional output padding parameter which can be used to adjust the
shape of the output image8. Note that we now have a factor of 2P in Eq. (7.4) instead of

7This example is taken from http://cs231n.github.io/convolutional-networks/#conv (paragraph "Con-
straints on strides"), which also describes the constraints discussed here. Note that they define the padding P in
a slightly different way (i.e., they only consider symmetric padding, while we also allow for asymmetric padding)
and thus end up with a term of 2P instead of P in the formula.

8See e.g. https://pytorch.org/docs/stable/nn.html#convtranspose2d for a description of the output
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P (as for the encoder, i.e. in Eq. (7.1)), since we only consider symmetric padding for
the decoder, while we allow for asymmetric padding for the encoder (to make it easier
to fulfill the integrality constraints for the encoder due to an increased number of valid
configurations). The output padding parameter O is required since the mapping from W e

in
to W e

out in a convolutional layer (i.e. in the encoder) is not bijective: there are different
combinations of W e

in, F, S, P that result in the same W e
out (which can be easily verified).

Thus, given an output size W e
out (now serving as the input size W d

in of the deconvolutional
layer), there is no unique corresponding input size W e

in (now serving as the output size
W d

out of the deconvolutional layer). The output padding parameter O can thus be used to
disambiguate this relation. Note that W d

out in Eq. (7.4) is always integral, so there are no
integrality constraints involved here, in constrast to the encoder.

In the context of our decoder model, i.e. with up to two deconvolutional layers, and
with a required output image size of 28, we thus obtain the following constraints:

W d
out = (W d

in − 1)× Sd
1 + F d

1 − 2P d
1 +Od

1, (7.5)
28 = (W d

out − 1)× Sd
2 + F d

2 − 2P d
2 +Od

2, (7.6)

i.e. we need to choose the parameters F d
1 , F

d
2 , P

d
1 , P

d
2 , S

d
1 , S

d
2 , O

d
1, O

d
2 such that the output

size is 28, which is challenging, as only a small number of parameter configurations fulfill
this property. While this problem is already challenging when assuming a given fixed
input image shape W d

in, in our setting it is more difficult, as W d
in has to be of a suitable

size as well. Note that W d
in is determined by the size of the fully-connected layer preceding

the first deconvolutional layer, which yields an additional challenge: the size of the last
fully-connected layer has to be set such that it can be resized to an image of shape
Cd

1 ×W d
in ×W d

in (i.e., such that it can be fed into a deconvolutional layer), where Cd
1

denotes the number of channels of the first deconvolutional layer of the decoder. As the
resulting problem would be too challenging for any algorithm to produce a valid solution
in a reasonable amount of time, we simplify it slightly by only treating Cd

1 as a design
parameter (as described in Section 7.2.1), but keeping W d

in = 7 fixed. The value 7 is chosen
since 16× 7× 7 = 784, i.e., when setting Cd

1 = 16, the last fully-connected layer has the
correct output shape (since 28× 28 = 784 for an MNIST and FashionMNIST image). This
way, a valid decoder architecture can be achieved by deactivating all convolutional layers
and choosing Cd

1 = 16, constituting an alternative if fulfilling the decoder constraints in
Eq. (7.5) and Eq. (7.6) is too challenging for an algorithm.

Finally, the constraints in Eq. (7.5) and Eq. (7.6) are, respectively, linear and quadratic
in the discrete variables F d

1 , F
d
2 , P

d
1 , P

d
2 , S

d
1 , S

d
2 , O

d
1, O

d
2, which again allows us to incorporate

them into our optimization routine.

7.2.3 Effect of different constraint violation penalty values

We now analyze the effect of the constraint violation penalty value on the performance of
SMAC, TPE and GPyOpt. Note that random search and MiVaBo are not affected by the
penalty. We do this analysis to show that the choice of penalty does not qualitatively affect

padding in the context of the PyTorch library we use.
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the reported results. In addition to the penalty of 500 nats considered in the experiments
in the main paper, we assessed two smaller alternative penalties of 250 nats and 125 nats,
respectively. The results in Table 7.3 show that the performance of the methods improves
marginally with decreasing penalty values. This can be intuitively explained by the fact
that the smaller the penalty, the smaller the region in hyperparameter space that the
penalty discourages from searching. In fact, a large penalty may not only discourage
infeasible configurations, but also feasible configurations that lie "close" to the penalized
infeasible one (where closeness is defined by the specific surrogate model employed by the
method). However, even for the smallest penalty of 125 nats, SMAC, TPE and GPyOpt
still perform worse than random search, and thus still significantly worse than MiVaBo.
Imposing penalties that are significantly smaller than 125 is not sensible, as this will
encourage the model-based methods to violate the constraints, and in turn discourage
them from ever evaluating a valid configuration (as this would yield a worse score).

Finally, Table 7.4 shows the number of constraint violations by the different methods,
depending on the violation penalty.

Algorithm Penalty (nats)
500 250 125

SMAC 113.0± 1.8 112.1± 1.8 111.1± 1.6
TPE 108.8± 1.2 108.1± 1.3 108.1± 1.3
GPyOpt 108.5± 1.1 108.5± 0.6 106.5± 1.4

RS 106.3± 0.9
MiVaBo 94.4± 0.8

Table 7.3: Mean plus/minus one standard deviation of the negative test log-likelihood over 8 random
initializations, achieved by the best VAE configuration found by SMAC, TPE and GPyOpt after 16 BO
iterations, for constraint violation penalties of 500, 250 and 125 nats. Performance values of MiVaBo
and random search (which are not affected by the penalty) are included for reference.

Algorithm Penalty (nats)
500 250 125

SMAC 37± 21.7 36± 21.9 28± 11.6
TPE 67± 21.3 68± 22.2 68± 22.2
GPyOpt 36± 19.3 32± 18.0 27± 10.4
Random search 71± 25.5 71± 25.5 71± 25.5

Table 7.4: Mean plus/minus one standard deviation of the number of constraint violations by SMAC,
TPE, GPyOpt and random search within 16 BO iterations over 8 random initializations, for constraint
violation penalties of 500, 250 and 125 nats.

7.2.4 Visualization of reconstruction quality

While log-likelihood scores allow for a principled quantitative comparison between different
algorithms, they are typically hard to interpret for humans. We thus in Figure 7.3 visualize
the reconstruction quality achieved by the best VAE configuration found by the different
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methods after 32 BO iterations. The VAEs were trained for 32 epochs each (as in the
BO experiments). The log-likelihood scores seem to be correlated with quality of visual
appearance, and the model found by MiVaBo thus may be perceived to produce the
visually most appealing reconstructions among all models.

Figure 7.3: Visualization of the reconstruction quality of a random subset of (non-binarized) images
from the MNIST test set, as achieved by the best VAE model (trained for 32 epochs) found by each method.
From left to right: ground truth, MiVaBo, random search, GPyOpt, TPE and SMAC. The images are
thus ordered (from left to right) by increasing the negative test log-likelihood achieved by the VAEs used
for reconstruction. Interestingly, the log-likelihood seems to capture the quality of visual appearance, as
the reconstruction quality may be roughly perceived to decrease from left to right.
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7.3 Discussion and details on baselines in empirical evaluation

We decided to compare against SMAC [HHL11] and TPE [Ber+11b], as these are state-
of-the-art mixed-variable BO methods. We used their publicly available Python imple-
mentations under https://github.com/automl/SMAC3 (SMAC) and https://github.
com/hyperopt/hyperopt (TPE). We furthermore compare against the popular GPyOpt
BO Python package [Gon16] (https://github.com/SheffieldML/GPyOpt) as a reference
implementation of a state-of-the-art continuous BO method (which extends to the mixed-
variable setting via relaxation and rounding of the discrete variables). We use these Python
packages with their respective default settings. Moreover, to isolate the benefit of the
model choice from the acquisition function optimization procedure, we consider baselines
that, respectively, use the MiVaBo and GP models, and optimize the resulting acquisition
function using simulated annealing (SA) [KGV83]. For the baseline that combines a
GP with simulated annealing, we use the popular GPy Python package [GPy12] (which
also serves as the GP backend of GPyOpt) together with the simulated annealing imple-
mentation at https://github.com/perrygeo/simanneal. Finally, we compare against
random search (using a custom implementation due to its simplicity), which has been
shown to be an effective baseline for hyperparameter optimization [Ber+11b].

There are several other methods that address problem settings related to the (con-
strained) mixed-variable paradigm we consider. We here briefly clarify why we decided to
not compare against them in our empirical evaluation. Firstly, [BP18; Oh+19; Kim+19]
extend BO to tackle purely discrete/combinatorial problems; these approaches can thus
not straightforwardly handle the continuous variables present in mixed-variable problems.
[Ru+19] address BO problems with multiple continuous and categorical input variables
(i.e. unordered ones), whereas MiVaBo includes ordered discrete variables such as integer
variables. As pointed out in the introduction, Hyperband [Li+18] and BOHB [FKH18]
are complementary to MiVaBo in that they do not propose new mixed-variable methods,
but rather extend existing ones (such as random search and TPE) to the multi-fidelity
setting; they should thus not be perceived as competing methods. The work of [GH18]
extends GP-based BO to integer variables, but cannot handle discrete constraints. While
several works [Her+15; Gar+14; Sui+15] propose extensions of continuous BO methods to
handle unknown constraints, they can neither handle mixed-variable problems nor known
(discrete) constraints, and might thus again be viewed as complementary to our approach.

Finally, a recent line of work extends continuous BO methods to general highly
structured input spaces such as graphs or images (which also includes mixed discrete-
continuous problems), by first training a deep generative model such as a VAE on the
input data, and then using standard continuous BO methods in the continuous latent
space learned by the VAE [Góm+18]. This so-called latent space optimization approach
has recently been successfully applied to application domains including automatic chemical
design and automatic machine learning [Góm+18; KPH17; Ngu+16; Luo+18; Lu+18;
JBJ18; TDH20], and might thus be perceived to be a promising method for the mixed-
variable hyperparameter tuning tasks we consider in this paper. However, despite these
successes, the latent space optimization paradigm is at an early stage and current methods
still suffer from critical shortcomings. One of the most severe issues is that the BO
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procedure tends to progress into regions of the latent space that are too far away from the
regions corresponding to the training data, which often results in the BO method suggesting
meaningless or even invalid inputs to query (e.g. unreasonable/invalid hyperparameter
configurations). Despite recent efforts attempting to mitigate this issue [KPH17; GH20;
Dai+18; DH19; MH19], a robust and principled solution has yet to be found. This issue
also reveals that the latent space optimization paradigm makes it difficult to incorporate
(discrete) constraints, as the optimization is performed in a learned continuous latent
space rather than in the original input space (over which the constraints are defined). As
a result, we decided to not compare against latent space optimization methods at this
stage, although we point out that this would be an interesting direction for future work.

7.4 Acquisition function optimization with theoretical guarantees via dual
decomposition

As an alternative to the alternating optimization scheme proposed in Section 5.2.3, one
can also minimize the acquisition function in Eq. (5.4) via dual decomposition - a powerful
approach based on Lagrangian optimization, which has well-studied theoretical properties
and has been successfully used for many different problems [KPT11; SGJ11; RC12].
Despite its versatility, the core idea is simple: decompose the initial problem into smaller
solvable subproblems and then extract a solution by cleverly combining the solutions
from these subproblems [KPT11]. This requires the following two components: (1) A set
of subproblems which are defined such that their sum corresponds to the optimization
objective, and which can each be optimized globally, and (2) a so-called master problem
that coordinates the subproblems to find a solution to the original problem. One major
advantage of dual decomposition algorithms is that they have well-understood theoretical
properties9, in particular through connections to linear programming (LP) relaxations.
In fact, they enjoy the best theoretical guarantees in terms of convergence properties,
when compared to other algorithms solving this problem [KPT11]. These theoretical
properties further facilitate the convergence analysis of MiVaBo outlined in Section 5.2.5,
making dual decomposition algorithms particularly useful for settings where optimization
accuracy is of crucial importance.

We now describe how to devise a dual decomposition for our problem, by demonstrating
how it can be reformulated in terms of master- and sub-problems (see Section 6.3 for
a detailed derivation). For convenience, let us denote the discrete, continuous and
mixed parts of Eq. (5.4) by fd(xd) = ωd⊤ϕd(xd), f c(xc) = ωc⊤ϕc(xc) and fm(xd,xc) =

ωm⊤ϕm(xd,xc), respectively, thus resulting in the representation f(x) = fd(xd)+f c(xc)+

fm(xd,xc). First, we note that the discrete fd(xd) and continuous f c(xc) parts of
Eq. (5.4) already represent easy to solve subproblems (as we assume to have access
to an optimization oracle). It thus remains to discuss the mixed part fm(xd,xc). As
fm is generally difficult to optimize directly, we assume that it decomposes into a sum
fm(x) =

∑|F |
k=1 f

m
k (xd

k,x
c
k) of so-called factors fm

k : X d
k × X c

k → R, where xd
k ∈ X d

k

and xc
k ∈ X c

k respectively denote subvectors of xd and xc from the (typically low-

9For details, we refer the interested reader to [KPT11; SGJ11; RC12]
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dimensional) subspaces X d
k ⊆ X d and X c

k ⊆ X c. Here, F denotes a set of subsets
k ∈ F of the variables. Given this formulation, the initial problem then reduces to
the minimization of the dual function L(λ) w.r.t. Lagrange multipliers λ, i.e., the
master problem minλ L(λ), with dual function L(λ) = maxxd

{
fd(xd) +

∑
k∈F λd

kx
d
|k
}
+

maxxc

{
f c(xc) +

∑
k∈F λc

kx
c
|k
}
+
∑

k∈F maxxd
k,x

c
k
{fm

k (xd
k,x

c
k)− λd

kx
d
k − λc

kx
c
k}. Here, the

master problem coordinates the 2 + |F | maximization subproblems, where xd
|kand xc

|k
respectively denote the subvectors of xd and xc containing only the variables of factor
k ∈ F , λd

k and λc
k are their corresponding Lagrange multipliers. Intuitively, by updating

the dual variables λ, the master problem ensures agreement on the involved variables
between the discrete and continuous subproblems and the mixed factors. Importantly,
the dual function L(λ) only involves independent maximization over local assignments
of xd,xc and xd

k,x
c
k, which are assumed to be tractable. There are two main classes of

algorithms used for the maximization, namely subgradient methods and block coordinate
descent [SGJ11].
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