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Abstract
By utilizing the quantum-mechanical nature of information, quantum com-
puters can execute algorithms that have no equivalent in classical computing.
Most known quantum algorithms with useful applications that provide an
advantage over classical ones are expected require billions of quantum op-
erations. Due to a typical error rate of ∼ 10−3 per operation in current
state-of-the-art quantum processors, computations at this scale are currently
unattainable. Methods of quantum error correction (QEC) have been devel-
oped, which allow to reduce the error probabilities by orders of magnitude
by encoding the information in multiple qubits.

In this work, we demonstrate QEC using a surface code implemented as
superconducting circuits. First, we present two preliminary experiments,
demonstrating the building blocks of the surface code. We stabilize an
entangled state of two qubits by repeatedly measuring the X̂X̂ and ẐẐ
operators, called stabilizers, using an auxiliary qubit, and by applying
conditional feedforward operations based on the measurement outcomes. In
a quantum error detection experiment, we employ similar repeated stabilizer
measurements to detect errors in a four-qubit state. We also demonstrate the
preparation of protected quantum states by using stabilizer measurements
and fault-tolerant measurement of the protected state.

We combine these building blocks in a 17-qubit QEC experiment, where
a protected quantum state is preserved over several cycles of stabilizer mea-
surements. While the probability of errors in the protected state is slightly
higher than without using the QEC protocol, this experiment constitutes
the first demonstration of repeated QEC using a surface code. We discuss
in detail some of the technical challenges that we overcame to make the
experiment work with high fidelity. This includes the device architecture,
pulse shapes for two-qubit gates, drive crosstalk mitigation, interactions
with spurious defects in the device, and intermodulation distortion in a
traveling-wave parametric amplifier. We also explain how correlations in the
stabilizer flips can be used to infer device error probabilities and to compute
the parameters of the minimum-weight perfect-matching decoder used to
determine the effect of the errors on the protected state.

This work constitutes a milestone in the field of QEC using supercon-
ducting circuits, and it paves the way for larger-scale demonstrations of
error-corrected qubit operation.
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Zusammenfassung

Durch die Nutzung der quantenmechanischen Eigenschaften von Information
können Quantencomputer Algorithmen ausführen, die in der klassischen In-
formatik kein Äquivalent haben. Die meisten solcher anwendungsbezogenen
Quantenalgorithmen, die einen Vorteil gegenüber klassischen Algorithmen
liefern, erfordern voraussichtlich Milliarden von Quantenoperationen. Auf-
grund einer typischen Fehlerrate von ∼ 10−3 pro Operation in modernsten
Quantenprozessoren sind Berechnungen in diesem Maßstab derzeit nicht
möglich. Um die Fehlerwahrscheinlichkeiten um Größenordnungen zu re-
duzieren, wurden Methoden der Quantenfehlerkorrektur (QEC) entwickelt,
bei denen die Informationen in mehreren Qubits kodiert werden.

In dieser Arbeit demonstrieren wir QEC in der Form des Surface Codes,
implementiert in supraleitenden Schaltkreisen. Zunächst stellen wir zwei vo-
rausgehende Experimente vor, die die Bausteine des Surface Codes darstellen.
Wir stabilisieren einen verschränkten Zustand zweier Qubits, indem wir
die Operatoren X̂X̂ und ẐẐ, sogenannte Stabilisatoren, wiederholt messen,
unter Verwendung eines Hilfs-Qubits und Feedforward-Operationen basierend
auf dem Messergebnis. In einem Experiment zur Quantenfehlererkennung
verwenden wir ähnliche wiederholte Stabilisatormessungen, um Fehler in
einem Vier-Qubit-Zustand zu erkennen. Zudem demonstrieren wir die Ini-
tialisierung des geschützten Quantenzustands mithilfe von Stabilisatormes-
sungen und fehlertoleranter Messung des geschützten Zustands.

Diese Bausteine kombinieren wir in einem 17-Qubit-QEC-Experiment,
bei dem ein geschützter Quantenzustand über mehrere Zyklen von Sta-
bilisatormessungen erhalten bleibt. Obwohl die Fehlerwahrscheinlichkeit
im geschützten Zustand etwas höher ist als ohne Verwendung des QEC-
Protokolls, stellt dieses Experiment die erste Realisierung wiederholter Quan-
tenfehlerkorrektur unter Verwendung des Surface Codes dar. Wir erörtern
ausführlich einige der technischen Herausforderungen, die wir bewältigt
haben, um das Experiment mit hoher Qualität durchzuführen. Dazu gehören
die Gerätearchitektur, Pulsformen für Zwei-Qubit-Gatter, die Reduktion von
ungewollter Signalkopplungen zwischen Kontrollschaltkreisen auf dem Gerät,
Wechselwirkungen mit Stördefekten im Gerät und Intermodulationsverzer-
rungen in einem parametrischer Wanderwellen-Verstärker. Ebenfalls erklären
wir, wie Korrelationen in Veränderungen der Stabilisatoren verwendet werden
können, um Gerätefehlerwahrscheinlichkeiten abzuleiten und die Parame-
ter des kostenminimalen, perfekte-Matching Dekodierers zu berechnen, der
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zur Bestimmung der Auswirkung der Fehler auf den geschützten Zustand
verwendet wird.

Diese Arbeit stellt einen Meilenstein auf dem Gebiet der QEC mit supralei-
tenden Schaltkreisen dar und ebnet den Weg für Operationen von fehlerkor-
rigierter Qubits im größeren Maßstab.
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1
Fault-Tolerant Quantum Information Processing

The invention of the semiconductor transistor in 1947, the essential build-
ing block of modern classical computers, set off an incredible advancement of
human civilization. Ever since then, the number of transistors per integrated
device has doubled roughly every two years, known as Moore’s law [Moore65].
The resulting digital technologies have affected all aspects of the modern
society. However, there exists an even more powerful model for computation
than the well-known classical digital computation. At a microscopic level the
universe behaves according to the rules of quantum mechanics, which differ
fundamentally from the classical physics we experience in our daily lives. By
making use of interference between quantum probability amplitudes, certain
problems, which are practically unsolvable by classical computers, become
tractable using quantum computers [Feynman82].

Quantum information can not, however, be copied, like classical infor-
mation can, due to the no-cloning theorem [Wootters82]. A significant
implication of this is that any interaction with the environment, which could
lead to transfer of information, will lead to decoherence of the quantum
system. Therefore, any system used for quantum computation needs to
be perfectly isolated from its environment. A conflicting requirement is
that we need to maintain control over the system to execute the quantum
algorithms. For executing algorithms at the scale needed for many practical
algorithms, these requirements exclude using individual physical systems as
quantum bits, or qubits, as they interact too strongly with the environment.
Quantum error correction (QEC), however, allows to exponentially reduce
the error probabilities in the quantum system at a polynomial overhead in
the number of qubits and circuit depth. The surface codes, which are the
topic of study of this thesis, are one of the most promising QEC schemes.
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Chapter 1. Fault-Tolerant Quantum Information Processing

1.1. Utility of a Quantum Computer

Why build a quantum computer? There are currently no known classical
algorithms that can efficiently simulate the evolution of arbitrary quantum
systems. It is, however, unproven that no such classical algorithm can
exist [Harrow17]. This means that statements about the advantage of a
quantum computer over a classical one can easily change over time, as better
classical algorithms are developed [Arute19, Pan22]. On the other hand,
more efficient quantum algorithms could also be developed. In this section,
we give an brief overview of the currently known problems, where quantum
algorithms could be faster compared to classical ones.

The most natural problem for a quantum computer to solve is to simulate
the evolution of quantum systems [Feynman82, Georgescu14]. This can be
done by either designing the quantum computer to implement the target
Hamiltonian directly, called analog quantum simulation, or by executing
a sequence of gates to approximate the evolution of the desired quantum
system on a general-purpose quantum computer, called digital quantum
simulation. For accurate results on system sizes that are intractable to
classical algorithms, these algorithms require ∼ 100 qubits and circuit
depths of ∼ 105 [Kassal08].

A large class of quantum algorithms in which a speedup over classical ones
is expected are based on the quantum Fourier transform [Nielsen10]. The
applications of the quantum Fourier transform include finding factors of large
integers [Shor94], calculating discrete logarithms [Shor97], and finding the
eigenvalues of unitary operators using the phase estimation algorithm [Ki-
taev95]. The first two applications have direct uses in code-breaking, as
common cryptography methods assume that integer factorization [Rivest78]
and discrete logarithm calculation [Moody23] are exponentially hard prob-
lems. However, an estimate of the quantum resources needed for solving
a factorization problem that would be infeasible for a classical computer
is ∼ 103 qubits and a circuit depth of ∼ 109 [Beauregard03]. Practical
application of the discrete logarithm problem has a similar resource require-
ment [Roetteler17]. The phase estimation algorithm has applications in
preparing the ground state of a given Hamiltonian and calculating its energy.
However, also in this case, for practical applications around ∼ 102 qubits
and a circuit depth of ∼ 1011 are required [Wecker14, Poulin15].

There also exists an algorithm to invert sparse matrices, but current
resource estimates for a quantum computer to provide an advantage over a
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1.2. Quantum Error Correction Protocols

classical one are similarly pessimistic [Harrow09, Scherer17].
While the physical qubit counts on the largest existing quantum processors

are of the order 100 [Kim23], approaching the number required for the
practical applications, the lowest gate errors reported are on the order
of ∼ 10−3 [Kjaergaard20b, Marxer23, Ding23], which are still two-to-eight
orders of magnitude higher than what would be required to execute the
105 or 1011 two-qubit gates of the mentioned practical applications with a
reasonable probability of success.

The algorithms mentioned above, where a quantum advantage over a
classical algorithm is theoretically expected, are therefore still out out reach,
investigations into what can be done on current, noisy intermediate-scale
quantum (NISQ) quantum processors [Preskill18, Bharti22] are ongoing.
Some of the most prominent algorithms suitable for NISQ devices are
hybrid quantum-classical variational quantum algorithms for optimization
problems, including variational quantum eigensolver [Peruzzo14, McClean16]
and quantum approximate optimization algorithm [Farhi14, Lacroix20]. The
resource requirements for those algorithms are attainable, but it is yet to
be proven whether any speedup compared to known classical algorithms is
to be expected [Barak22]. Another example of an algorithm suitable for
NISQ devices is finding the ground state of a Hamiltonian using quantum
annealing [Finnila94]. While quantum annealing seems to demonstrate
favorable scaling with respect to classical algorithms [King23], the noise
in the quantum algorithm still limits it from outperforming the classical
counterpart [Perdomo-Ortiz19]. An advantage of a noisy quantum computer
over a classical one has been demonstrated for simulating the dynamics
of random quantum circuits in cross-entropy benchmarking [Arute19] and
Gaussian boson sampling [Zhong20]. However, these algorithms do not
currently have known practical applications.

1.2. Quantum Error Correction Protocols

To unlock the proven practical applications of quantum computers, that
are, finding the ground state energies of molecules, simulating quantum
dynamics, and factoring large numbers, the error rate per operation needs
to be reduced by several orders of magnitude. While the physical error rates
of quantum operations have been significantly reduced over the years due
to improved system design and material engineering [Kjaergaard20a], we
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Chapter 1. Fault-Tolerant Quantum Information Processing

might not reach low enough error rates by optimizing individual qubits only.
Fortunately, QEC protocols [Shor95, Knill97] have been developed, which
can protect logical quantum information from decoherence by encoding it in
a larger protected Hilbert space. Similar error correction ideas are widely
used for classical information transmission [IEEE22] and storage [Reed60].

The general necessary and sufficient requirements for a QEC protocol to
be successful were derived by Knill and Laflamme [Knill97]. Let E(ρ̂) =∑︁

i Êiρ̂Ê
†
i be a physical error channel that we want to protect against, with

Êi the Kraus operators, and ρ̂ the density matrix, both acting on a large
physical Hilbert space [Nielsen10]. The logical information is encoded into
a subspace of the larger Hilbert space, and is characterized by the projector
Π̂L. The Knill-Laflamme condition states, that the effect of the error channel
E can be successfully corrected if and only if the condition

Π̂LÊ
†
i ÊjΠ̂L = λijΠ̂L (1.1)

is satisfied, where λij are scalar coefficients. To understand what the Knill-
Laflamme condition implies, we multiply Eq. (1.1) by two states picked
from any orthogonal basis of the logical subspace, ⟨ψk| and |ψl⟩, to find
that

(︂
⟨ψk| Ê†i

)︂(︂
Êj |ψl⟩

)︂
= λijδkl. For the case k ̸= l the right-hand side is

zero and we see that the error channel E takes orthogonal logical states to
orthogonal Hilbert spaces. This means that at least the basis states can
be uniquely restored by a suitable operation. Furthermore, for k = l we
find that the error probability is independent of the logical states, meaning
that the error does not involve a partial measurement of the logical state
by the environment. The Knill-Laflamme condition provides a useful tool
for analyzing, which physical errors a particular logical-qubit encoding can
protect against.

Most of the proposed QEC protocols belong to one of two classes, contin-
uous variable QEC codes [Joshi21] or qubit-based stabilizer codes [Gottes-
man97, Terhal15], which we will discuss below.

In continuous variable QEC, also called bosonic QEC, the logical qubit
is encoded in the Hilbert space of a harmonic oscillator. Various encoding
schemes have been proposed, including cat codes utilizing superpositions of
coherent states [Cochrane99, Mirrahimi14, Puri17, Grimm20, Réglade23],
binomial codes that make use of only a finite number of photon num-
ber states [Michael16, Hu19, Ni23], and Gottesman-Kitaev-Preskill codes,
which utilize a superposition of squeezed coherent states on a grid [Gottes-

4



1.2. Quantum Error Correction Protocols

man01, Flühmann19, Sivak23]. These continuous variable codes have several
common properties. First, to protect against a larger number of simulta-
neous photon loss or dephasing errors or to improve the accuracy of the
correction, the logical subspace needs to span more photon states of the
harmonic oscillator [Albert18]. And second, the harmonic oscillator needs to
be coupled to a nonlinear system, typically a superconducting circuit qubit,
for active or passive control, which introduces additional error channels.
The fact that error suppression can be increased by utilizing a larger part of
the Hilbert space of the harmonic oscillator without adding more hardware
to the system is very appealing for scaling to lower error rates. However,
accurately controlling the large-photon-number states without introducing
additional errors remains a challenge.

Stabilizer codes [Gottesman97], on the other hand, use the Hilbert space
of n physical qubits to encode k logical qubits. The logical subspace, or
code-space, is specified as the mutual +1 eigenspace of n− k independent
stabilizer generators Ŝi, or stabilizers for short, each of which is a product
of Pauli operators of the physical qubits. The stabilizer generators must
commute with each other for them to have mutual eigenstates. Because the
stabilizers, being products of Pauli operators, have eigenvalues ±1, fixing
each of the n − k eigenvalues to +1 reduces the dimension of the Hilbert
space, which is initially 2n, by a factor of two, down to a dimension of 2k,
which corresponds to k logical qubits. To specify a basis for the logical qubits,
k logical Pauli ẐL and X̂L operators should be specified, that commute with
all the stabilizers and satisfy the usual commutation relations between each
other

[Ŝi, Ŝj ] = 0, [ẐLp, ẐLq] = 0, (1.2ad)
[Ŝi, ẐLp] = 0, [X̂Lp, X̂Lq] = 0, (1.2be)
[Ŝi, X̂Lp] = 0, [ẐLp, X̂Lq] = 0 for p ̸= q, (1.2cf)

{ẐLp, X̂Lp} = 0. (1.2g)

Here, the indices i and j go over the n− k stabilizers, and p and q over the
k logical qubits. Note that, because the stabilizers commute with all the
other stabilizers and logical operators, multiplying any stabilizer or logical
operator by another stabilizer gives an equivalent specification of the same
stabilizer code. Sometimes, it is useful to provide a complete basis for the
Pauli operators, which can be done by providing destabilizers D̂i for each
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Chapter 1. Fault-Tolerant Quantum Information Processing

stabilizer, which anti-commutes with its own stabilizer, but commutes with
all other stabilizers and logical operators, see for example Appendix A. The
effect of applying a destabilizer D̂i is to flip the value of a single stabilizer
Ŝi, leaving the other stabilizers and logical operators unchanged.

The operation of a stabilizer code involves repeatedly measuring the
stabilizer operators. Let’s say an error Ê, which is a product of Pauli
operators, occurs. Because all multi-qubit Pauli operators either commute
or anticommute, the error will flip the value of all the stabilizers with which
it does not commute. The set of stabilizer value flips σi from one cycle
of stabilizer measurements is called the syndrome of the error. There are
usually many errors that have the same syndrome, some of which also flip
logical operators and some do not. Decoding the error syndrome then
involves deciding, whether a flip of a logical operator value was more likely
than no flip.

How good a given code is against correcting Pauli errors can be charac-
terized in terms of its distance d. The distance is the minimum Hamming
weight, that is, the number of nonidentity single-qubit Pauli operators of
an error that flips one of the logical operators but does not affect any of
the stabilizers. In other words, if we consider different equivalent logical
operators that can be obtained by multiplying them by the stabilizers, the
distance of the code is the minimum weight of those logical operators. This
means that any error that has a weight of d− 1 or less can be detected by
the stabilizer code. To see, which errors can be corrected, not just detected,
let’s consider some Pauli error Ê with weight w. The error L̂Ê, where L̂ is
any logical operator with weight d, has the same syndrome, but a different
effect on the logical subspace. A logical error in the decoding can happen if
both L̂Ê and Ê are part of the possible set of errors, or in other words L̂Ê
has a lower or equal weight compared to Ê. The weight of L̂Ê must be at
least d−w, which occurs when Ê cancels w single-qubit Pauli operators of L̂.
Therefore, a logical error can happen only if d− w ≤ w. The lowest-weight
physical error that can cause a logical error is therefore of weight ⌈d/2⌉,
and all errors of weight ⌊(d− 1)/2⌋ or lower can be corrected. A quantum
code that encodes k logical qubits in n physical qubits with a distance d is
denoted as Jn, k, dK.

Let’s consider, as an example, the smallest stabilizer code that can correct
any single-qubit Pauli error, called the J5, 1, 3K five-qubit code [Laflamme96,
Gottesman97]. The stabilizers and logical operators of the code are given in
Table 1.1. Writing down all the syndromes for possible single-qubit errors,
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1.2. Quantum Error Correction Protocols

Table 1.1: Five-qubit code. The stabilizers and logical operators of the
five-qubit code.

Qubit
Q1 Q2 Q3 Q4 Q5

Stabilizer
Ŝ1 X̂ Ẑ Ẑ X̂ Î

Ŝ2 Î X̂ Ẑ Ẑ X̂

Ŝ3 X̂ Î X̂ Ẑ Ẑ

Ŝ4 Ẑ X̂ Î X̂ Ẑ

Logical op.
X̂L X̂ X̂ X̂ X̂ X̂

ẐL Ẑ Ẑ Ẑ Ẑ Ẑ

see Table 1.2, we see that all of them are unique, allowing us to always
correct the effect of the error on the logical operators.

We list an overview of various error correction protocols that have been
demonstrated using superconducting circuits, which is the platform used
in this thesis, in Table 1.3. Some of the listed codes denoted as [n, k, d]
protect against errors on only one logical operator, which then corresponds
to encoding k classical bits in n qubits with distance d.

While a simple error correction code like the five-qubit code can in theory
correct all single-qubit errors, its effective practical application suffers from
two main problems. First, if the probability that a single-qubit error occurs
between two syndrome measurement rounds is p, then there is still a finite
probability ∼ p2 that two such errors happen, leading to a logical error.
Fortunately, it has been shown that concatenating the same distance d code
for r levels by using lower-level encoded logical qubits as the constituent
qubits for the higher levels of error correction reduces the logical error rate
as p⌊(d+1)/2⌋r , as long as the initial error probability p is smaller than some
threshold value p < pc [Aharonov97, Knill98, Preskill98]. Some classes of
error correction codes, like the Jd2, 1, dK surface code, can be scaled up to
arbitrary distance d, which also exponentially suppresses the logical error
rate as p⌊(d+1)/2⌋ [Bravyi98, Fowler12b]. The second challenge is how to
implement the stabilizer measurements with a low error probability. Typical
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Chapter 1. Fault-Tolerant Quantum Information Processing

Table 1.2: Five-qubit code syndromes. The syndromes σ1σ2σ3σ4 for
all possible single-qubit errors in the five-qubit code.

Error

Qubit X̂ Ŷ Ẑ

Q1 0001 1011 1010
Q2 1000 1101 0101
Q3 1100 1110 0010
Q4 0110 1111 1001
Q5 0011 0111 0100

Correction ẐL X̂LẐL X̂L

implementations of the stabilizer measurement use an auxiliary qubit onto
which the stabilizer is mapped and which is then read out. To make the
stabilizer measurement fault-tolerant when scaling to larger code sizes, one
needs to either apply QEC techniques also to the auxiliary qubit [Preskill98]
or consider syndrome elements over multiple rounds when decoding the
logical errors [Dennis02].

With currently known QEC protocols and current physical device error
rates, the overhead of QEC is still very large, meaning that it is not realistic
to see any advantage over classical algorithms if the quantum algorithm
provides only a quadratic speedup [Babbush21]. For the algorithms of
quantum dynamics simulation, number factorization, and calculation of
the system’s energy spectrum, mentioned in Section 1.1, the estimated
resource requirements for relevant problem sizes are ∼ 107 physical qubits
and a runtime of up to a month [Beverland22]. New QEC codes have
been invented, in particular from the quantum low-density parity check
(QLDPC) class [Gottesman14, Bravyi23], where the encoding rate r, that
is, the ratio of number of encoded logical qubits k to the physical qubits
n, can be much higher than for the surface codes r = 1/d2 [Bravyi23].
Recently, Jn,Θ(n),Θ(n)K codes with a constant encoding rate have been
proposed [Dinur23]. Here, Θ(n) indicates that for asymptotically large n, the
value is proportional to n. Practical implementations of these codes remain
to be demonstrated and many challenges related to scaling remain to be
solved. In particular, nonlocal stabilizer measurements are a necessary com-
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1.2. Quantum Error Correction Protocols

Table 1.3: QEC experiments with superconducting qubits. Adapted
and extended from Ref. [Acharya23].
Reference Year Code name Code size Qb. Cycles
[Reed12] 2011 Repetition code [3, 1, 3] 3 1
[Ristè15] 2014 Repetition code [3, 1, 3] 5 1
[Kelly15] 2014 Repetition code [3–5, 1, 3–5] 5–9 1–8
[Córcoles15] 2015 Bell state J2, 0, ·K 4 1
[Takita17] 2017 Toric code J4, 2, 2K 5 1
[Wootton18] 2017 Repetition code [3–8, 1, 3–8] 15 1
[Andersen19]1 2019 Bell state J2, 0, ·K 3 1–12
[Bultink20] 2019 Bell state J2, 0, ·K 3 1–26
[Gong22] 2019 Five-qubit code J5, 1, 3K 5 1
[Andersen20]1 2019 Surface code J4, 1, 2K 7 1–11
[Wootton20] 2020 Repetition code [3–22, 1, 3–22] 5–43 1
[Chen21] 2021 Repetition code [3–11, 1, 3–11] 5–21 1–50
[Chen21] 2021 Surface code J4, 1, 2K 7 1–15
[Marques22] 2021 Surface code J4, 1, 2K 7 1–15
[Krinner22]1 2021 Surface code J9, 1, 3K 17 1–16
[Zhao22b] 2021 Surface code J9, 1, 3K 17 1–11
[Sundaresan23] 2022 Subsystem code J9, 1, 3K 23 1–10
[Acharya23] 2022 Repetition code [3–25, 1, 3–25] 5–49 50
[Acharya23] 2022 Surface code J9–25, 1, 3–5K 17–49 1–25
[Ye23] 2023 Surface code J9, 1, 3K 17 1–9
[Gupta23] 2023 Toric code J4, 2, 2K 7 1

1This thesis includes contributions to these works.
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Chapter 1. Fault-Tolerant Quantum Information Processing

ponent of those codes due to the Bravyi-Poulin-Terhal bound, which states
that kd2/(D−1) = O(n) for Jn, k, dK codes that are local in D-dimensional
space [Bravyi10]. Here, O(n) indicates that for asymptotically large n, the
value is proportional to n or infinitely smaller than it.

1.3. Surface Codes
In this work we implement surface codes. Surface codes are stabilizer codes,
but also two-dimensional topological codes [Kitaev03]. The topological
nature of the codes means that the stabilizers of the codes are local, involving
only nearest neighbors on the two-dimensional lattice. The logical operators,
however, span across the entire surface. Furthermore, it is one of the codes
that can tolerate the highest amount of per-operation errors, with a threshold
of approximately 1% when considering circuit-level uniform depolarizing
noise [Raussendorf07, Fowler09].

A surface code consists of a d× d square lattice of data qubits, see red
circles in Fig. 1.1, that encode a protected quantum state. Assuming that
the data qubits are at the vertices of a square lattice, stabilizers are then
the products of Pauli operators of the data qubits surrounding each face
of the lattice. The stabilizers alternate between products of Ẑ and X̂, see
green and blue circles in Fig. 1.1,

ŜXi =
∏︂

Dj∈N(Xi)
X̂Dj and ŜZi =

∏︂
Dj∈N(Zi)

ẐDj , (1.3)

where N(Ai) denotes the set of four or two qubits surrounding the auxiliary
qubit Ai which is used to measure the stabilizer ŜAi, see the gray lines in
Fig. 1.1. In addition to the weight-four stabilizers in the bulk, there are
weight-two stabilizers at every second edge on the boundary of the lattice,
with two opposing sides having X-type stabilizers and the remaining two
sides Z-type. Hence, there are (d − 1)2 total stabilizers in the bulk and
2(d−1) on the boundaries of the lattice, adding up to d2 −1 total stabilizers,
meaning that the logical subspace corresponds to k = 1 qubit. A possible
pair of minimal-weight logical operators is

ẐL =
∏︂

Dj∈row
ẐDj and X̂L =

∏︂
Dj∈column

X̂Dj , (1.4)

where any row and column can be used equivalently, see the black lines
in Fig. 1.1. It is easy to verify that all the stabilizers commute with each
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ẐL
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Figure 1.1: Surface code lattice. The lattice of a d = 5 surface code
with data qubits in red and X- and Z-type auxiliary qubits in blue and
green, respectively. The logical operators are indicated as black lines. Gray
lines between qubits indicate couplers that allow two-qubit gates to be
implemented.

other and with the logical operators by noticing that two multi-qubit Pauli
operators anticommute only if they overlap with different Pauli operators
on an odd number of qubits.

The surface codes are Calderbank-Shor-Steane [Calderbank96, Steane96]
codes, meaning that their stabilizers and logical operators consist of only
Pauli X̂ or only Pauli Ẑ operators. This allows separate decoding of X- and
Z-type errors, simplifying the process. Furthermore, the codes are completely
symmetrical with respect to swapping the X- and Z-type stabilizers and
logical operators and rotating the lattice by π/2.

If we now consider only X̂ errors, which flip the Z-type stabilizers and
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Chapter 1. Fault-Tolerant Quantum Information Processing

ẐL

X̂L

(a)

(b)

(c)

(d)

(e)

Figure 1.2: Surface code error chains. Examples of bit flip error
(black crosses) chains as black lines. Chain (a) has two, (b) one and (c,d,e)
zero open ends and correspondingly flip as many stabilizers (black dots).
Chain (c) is equivalent to the X̂L operator, while chains (d) and (e) are
equivalent to stabilizers and have no effect on the logical subspace.

the ẐL logical operator, we see another manifestation of the surface codes’
topological nature, see Fig. 1.2. A chain of errors on neighboring data qubits
(connected by a common auxiliary qubit) leads to syndrome element flips
only at the endpoints of the chain, as the stabilizers at the middle of the
chain are flipped twice and remain in their original state, see examples
(a) and (b). Furthermore, the effect of an error chain on the logical state
depends only on its endpoints, and not the path. To see that, consider
the total effect of applying both the inverse of the original error as well as
another error that has the same endpoints. Because Pauli operators are
their own inverses, this leads to a circular error chain, see for example (d)
and (e). We see that a circular chain X̂ of errors is equal to the product of
the X-type stabilizers inside the loop, the application of which has no effect
on the logical subspace. For an error chain that does not flip any stabilizers
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to cause a logical error, it needs to span from one boundary of the surface
to the opposite boundary, see example (c).

To use the logical qubits protected by a surface code in an algorithm,
one needs to be able to implement a universal set of gates. While the
logical X̂L and ẐL gates can be implemented by applying the corresponding
single-qubit gates, or by reinterpreting the measurement outcomes, other
gates are more difficult to implement. Furthermore, the Eastin-Knill the-
orem [Eastin09] states that there can not exist a universal gate set for
a logically-encoded qubit that can be implemented transversally, that is,
by applying a constant-depth sequence of physical operations on the data
qubits. So, to implement two-qubit gates between two surface-code logical
qubits, two techniques have been proposed. First, by removing one of the
stabilizers at the middle of the lattice, a defect is created. This defect adds
another logical qubit to the code, but also reduces the distance of the code.
The defects can be moved around on the surface code lattice, and by braid-
ing one defect around another, a CNOT gate is implemented [Fowler12b].
Another strategy is to merge and split neighboring surface code lattice
patches, called lattice surgery [Horsman12]. The lattice surgery architecture
is thought to have a smaller resource requirement than the defect braiding
architecture [Fowler18]. Merging two logical qubits implements either a
ẐL ⊗ ẐL or a X̂L ⊗ X̂L measurement, depending on the type of boundary
that is merged. A split that creates two boundaries with X-type stabilizers,
however, implements the |00⟩L⟨0|L + |11⟩L⟨1|L operation. Similarly, a split
along Z-type boundaries implements the |++⟩L⟨+|L + |−−⟩L⟨−|L operation.
A CNOT operation between two logical qubits can be implemented using
a sequence of split and merge operations and an auxiliary logical qubit.
Both the split and the merge are naturally described in the language of
ZX-calculus [deBeaudrap20].

However, the logical single-qubit π rotations and CNOT gates are still
not sufficient to implement any algorithm that provides a speedup over a
classical algorithm, as they belong to the Clifford group. This is apparent
from the Gottesman-Knill theorem [Gottesman99a], which states that any
Clifford circuit can be efficiently simulated on a classical computer. To
make the gate set complete, we also need to be able to execute the

√
X

gate and the Z1/4 gate, also known as the T gate. While the Hadamard H
gate can be implemented by shifting the surface code by one lattice unit,
any single-qubit Z1/2r gate or X1/2r gate can be implemented, with the
help of special magic states and Z1/2r−1 or X1/2r−1 rotations, using gate
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(a)

Z

Z2/2r|ψ〉

|MZ
r 〉

Ẑ1/2r |ψ〉
(c)

π/2r mπ

(e)

π/2r

mπ

(g)

(−1)mπ/2r

(b)

X

X2/2r|ψ〉

|MX
r 〉

X̂1/2r |ψ〉
(d)

π/2r mπ

(f)

π/2r

mπ

(h)

(−1)mπ/2r

Figure 1.3: Single-qubit gate teleportation. Circuit for (a) Z1/2r

gate and (b) X1/2r gate implementation using CNOT gates and magic states.
(c,d) The ZX-calculus diagrams equivalent to the circuits (a) and (b), without
the feedback operation. The measurement outcome is m = 0 or 1. The
single-armed green circles with angle α represent preparation of Zα/π |+⟩ or
projection onto it. The two-armed green circles represent the Zα/π rotations,
and three-armed green circles represent the projection |0⟩⟨00| + |1⟩⟨11|. The
blue circles represent equivalent operations with 0, 1, and Z replaced with
+, −, and X, respectively. (e,f) ZX-calculus diagrams that are equivalent to
the ones shown in (c) and (d), and also depict merging the qubit with an
auxiliary qubit in the magic state using lattice surgery. Here m depicts the
outcome of the parity measurement between the two logical qubits. (g,h) The
diagrams equivalent to (e) and (f) show that the circuits implement Z±1/2r

and X±1/2r operations, respectively.
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teleportation [Gottesman99b]. To see how to implement the Z1/2r gate, we
prepare the |MZ

r ⟩ = Z1/2r |+⟩ magic state on an auxiliary logical qubit. This
can be done fault-tolerantly by magic state distillation [Knill04, Bravyi05].
We then do a CNOT gate with the logical state |ψ⟩ as a control and the
magic state |MZ

r ⟩ as the target, and measure the qubit that was initially in
the magic state in the ẐL basis. If the measurement outcome is +1, then
the circuit implements the target unitary Z1/2r , while if the measurement
outcome is −1, then it implements Z−1/2r , which can be corrected by
conditionally applying the Z2/2r gate, see Fig. 1.3(a). The primitive two-
qubit gate operations of lattice surgery are the split and merge operations,
not the CNOT gate. Using ZX-calculus, it is easy to see that the circuit
simplifies to a single merge operation with the magic state, see Fig. 1.3(c,e,g).
The X1/2r is implemented analogously, see Fig. 1.3(b,d,f,h).

1.4. Overview of the Thesis and Contributions

In this thesis, we present the work done toward demonstrating a single
distance d = 3 surface code logical qubit, its operation, and some of the
technical challenges encountered.

The platform we use to implement surface codes is superconducting
transmon qubits that are coupled to resonators for readout and two-qubit
interactions. In Chapter 2 we review the requirements for implementing
a scalable platform for quantum information processing and how these
are satisfied in our case. In brief, the requirements are a physical system
for storing the qubit, an implementation of single- and two-qubit gate
operations, and state preparation and readout. In particular, we focus on
the two-qubit gate implementation using novel net-zero flux pulse shapes,
which is novel work done by the author of this thesis (A.R.) together with
Michael Kershbaum and not based on prior work.

In Chapter 3, we describe two preliminary experiments, that demonstrate
the building blocks required for QEC at a smaller scale. In the first exper-
iment, we stabilize an entangled state on two data qubits by repeatedly
measuring stabilizers using an auxiliary qubit, thereby demonstrating the
essential building block of the surface code [Andersen19]. In the second
experiment, we demonstrate logical state preservation using quantum error
detection on a distance d = 2 surface code, consisting of four data qubits
and three auxiliary qubits [Andersen20]. For this work, we prepare highly
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entangled logical states and implement logical-qubit readout. For the en-
tanglement stabilization experiment, A.R. conceptualized the experiment
together with Christian Kraglund Andersen (C.K.A.), Sebastian Krinner
(S.K.), and Johannes Heinsoo (J.H.); A.R. fabricated the quantum device
together with S.K., Jean-Claude Besse, and Mihai Gabureac (M.G.); A.R.
set up the measurement electronics and wrote the experimental control
software together with C.K.A., Stefania Lazăr (S.L.), S.K. and J.H.; and
A.R. carried out the experiment, analyzed the data and produced the figures
together with C.K.A., and S.L. For the quantum error detection experiment,
A.R. fabricated the device together with S.K., G.J.N., and M.G.; A.R. set
up the measurement electronics together with C.K.A., S.K., and Nathan
Lacroix (N.L.); A.R. wrote the experimental control software together with
S.L. and N.L.; and A.R. characterized and calibrated the device and the
experimental setup together with C.K.A. and S.L. Andreas Wallraff (A.W.),
and Christopher Eichler (C.E.) supervised both projects.

In Chapter 4 we present an experiment that demonstrates QEC in a
distance d = 3 surface code. The device consists of nine data qubits and
eight auxiliary qubits. Numerous technical challenges had to be overcome to
demonstrate QEC with a reasonable fidelity. In this thesis, I present some of
the topics which I worked more closely on, including the novel architecture of
the device, drive crosstalk cancellation, and the characterization of parasitic
two-level systems (TLSs) to which the qubits couple strongly. A.R. planned
the experiments together with S.K. and N.L.; A.R. designed the device
parameters together with C.K.A.; A.R. fabricated the device together with
S.K. and G.J.N.; A.R. developed the control and calibration software routines
with Christoph Hellings (C.H.), N.L., S.K. and S.L.; A.R. designed, built, and
maintained the experimental control electronics and cabling together with
C.H., Johannes Herrmann, S.K., C.H., S.L., N.L., and François Swiadek; and
A.R. characterized and calibrated the quantum device and the electronics
setup together with S.K., N.L., C.H., S.L., and C.K.A. The project was
supervised by A.W. and C.E..

In QEC experiments, the syndrome of the code needs to be decoded to
find the effect of physical errors on the logical operators, which is not a
trivial task. In Chapter 5, I describe, how the decoding of the experimental
data that was presented in Chapter 4 was done using a minimum-weight
perfect matching (MWPM) decoder. We extract the weights of the MWPM
decoder based on the correlations in the syndrome elements. Furthermore,
we found a new analytical formula for calculating the per-cycle probabilities
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of physical errors based on the syndrome correlations, which we used to
analyze the errors in the distance d = 3 surface code implementation. A.R.
came up with the new analytical formula, took the experimental data, and
analyzed the details of the MWPM decoder. The initial decoding script was
developed by S.K. and C.K.A. The quantum device, together with its design,
fabrication, characterization and calibration are the same as in Chapter 4.

Finally, in Chapter 6, we go into detail with the analysis of one technical
issue, intermodulation distortion in the traveling-wave parametric amplifier
(TWPA), which was uncovered during the implementation of the work
presented in Chapter 4. The intermodulation distortion leads to spurious
tones at the output spectrum of the TWPA at integer multiples of the
input tones. We characterize the frequencies and the amplitudes of these
intermodulation products and show that significant crosstalk can arise when
their frequencies coincide with the readout tones. For this investigation,
A.R. conceptualized the work, carried out the measurements and analysis.
The issue was initially discovered by A.R. together with N.L. and C.H. The
quantum device, together with its design, fabrication, characterization and
calibration are the same as in Chapter 4.
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2
Circuit QED with Transmon Qubits

To implement any quantum error correction protocol, a physical quantum
processor is needed, the creation of which is by itself a very complex technical
challenge. For the processor to be useful for any quantum information
processing, it needs to satisfy a set of requirements [DiVincenzo00].

First, a well-defined physical platform, in which the quantum information
is stored, is needed. The system, called a qudit, should have a small set of
physical states, in which the quantum state is encoded. For qubits, which
we will consider in the following, the number of states is two. Scaling can
then be achieved by producing a system with many qubits. Second, it
should be possible to prepare the system in a known initial state with high
purity, and to measure the state of the system or of a subset of qubits.
Furthermore, to be able to implement all possible quantum operations, a
universal gate set is needed. A gate set is universal, if any unitary operation
can be decomposed, up to some arbitrary error, as a sequence of operations
from the gate set. Various gate sets have been proven to be universal. For
example, the CNOT gate together with arbitrary single-qubit rotations is
universal [Nielsen10]. It can be shown, that restricting to the finite the set of
{CNOT,

√
X, Z1/4} is also sufficient [Nielsen10]. Finally, the coherence time

of the qubits should be long enough compared to the gate durations, such
that there is a significant probability of having no errors after executing the
target circuit. In the context of quantum error correction (QEC), the error
probabilities of individual operations should be below the threshold pc, such
that increasing the code distance will reduce the logical error probability.

Various architectures that can satisfy all or some of these requirements
have been proposed. A natural choice for the physical system to define a
qubit would be two energy eigenstates of a single atom. This was pursued
in early experiments which utilized rubidium atoms in Rydberg states flying
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through microwave cavities [Brune96, Raimond01]. Later experiments have
also focused on holding the Rydberg atoms in optical traps [Saffman10, Blu-
vstein22]. Alternatively, instead of neutral atoms, ions can be trapped
in radio frequency traps for manipulation with lasers and microwave sig-
nals [Leibfried03]. In addition to the quantum states of matter particles,
the states of photons can also be used as qubits. This includes flying qubits
encoded in two spatial, polarization, or time-bin modes [Kok07], and sta-
tionary qubits encoded in the state of a microwave cavity [Joshi21]. In lieu
of using naturally occurring systems like atomic particles and photons, one
can also isolate the states of a qubit from a larger solid-state system. For
example, individual charge carriers can be confined in a quantum dot, and
the spin [Burkard23] or charge [vanderWiel02] degrees of freedom can be
used to define a qubit.

A very promising platform for implementing quantum processors, which
we utilize in this thesis, is circuit quantum electrodynamics (QED) with
superconducting circuits [Blais21]. The circuits to implement the desired
Hamiltonians can be flexibly designed using electronic design automation
software, and manufactured using optical and electron-beam lithography.
Furthermore, the supercurrent provides a lossless medium for the qubit.
Many circuits to implement a qubit have been proposed, including the charge
qubit, the flux qubit, and many others [Kjaergaard20a]. In this work, we
use the transmon qubit, which consists of a Josephson junction shunted by
a large capacitance [Koch07, Blais21]. The advantages of transmon qubits
include insensitivity to both electric field (charge) and magnetic field (flux)
noise, and the simplicity with which it can be interfaced with other circuit
elements for readout and gates.

We start this chapter by introducing the basic building blocks of circuit
QED: the coplanar capacitor, the coplanar waveguide, and the Josephson
junction, see Section 2.1. We then show how these elements can be combined
in a circuit to define a transmon qubit in Section 2.2. We proceed by ex-
plaining the implementation of readout (Section 2.3) and gates (Section 2.4),
with extra focus on various pulse shapes that can be used for the two-qubit
gates. Finally, we discuss how to interface the quantum device with the
classical control electronics to run the experiments in Section 2.5.
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2.1. Superconducting Circuit Elements

To facilitate the manufacturing of nano- and micrometer-scale circuits,
optical and electron-beam lithography techniques are used to fabricate the
quantum devices. These well-developed fabrication techniques have the
additional advantage that the material composition, both in bulk and at
the interfaces, can be accurately controlled. The fabricated devices consist
of a bulk dielectric substrate and thin layers of metals on top. It is crucial
to avoid losses in the electrical circuits used to implement the qubits, as
loss would lead to energy relaxation and decoherence. Therefore, a low-
loss dielectric and a lossless conductor (superconductor) are needed. The
lithographic fabrication techniques require that the circuit elements are
implemented in a planar geometry. In Fig. 2.1, a capacitor, a transmission
line and a Josephson junction, implemented in planar geometry, are shown.
All the electrical circuits used in this work can be accurately modeled using
these three circuit elements, so we will discuss them in more detail.

In our architecture, capacitors are used for coupling qubits and resonators
on the chip to each other, see Fig. 2.1(a). The coupling is mediated by the
electric field between the two pads. In addition to the capacitance between
the pads, it is also important to consider the capacitance of the pads to the
ground, the self-consistent simulation of which we discuss in Section C.2.
While an interdigital geometry is often used for coplanar capacitors [Si-
mons01], we use designs without fingers to reduce the sensitivity of the
capacitance to fabrication inaccuracies. We routinely fabricate capacitors
with pad-to-pad capacitances between 0.1 fF and 100 fF, which enables great
flexibility in the design.

We use transmission lines to connect various elements in the circuit to
each other and to form resonators. The planar geometry prompts us to use
coplanar waveguides (CPWs), consisting of a center conductor separated
by a gap from the ground plane on either side, see Fig. 2.1(b). In addition
to the CPW mode, for which the two ground planes on either side have
equal potential, the CPW geometry also supports the slotline mode, for
which there is a potential difference between the two planes [Simons01]. We
suppress the undesired slotline modes by placing airbridges across the CPW
which connect the two ground planes. Furthermore, we use the airbridges
to cross one CPWs over another. To implement a CPW resonator, we
terminate each end of the waveguide either by a short or by an open. A
waveguide of length ℓ supports modes at frequencies ω = nπvp/2ℓ, where
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(b)

20 µm

(a)

200 µm

(c)
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Figure 2.1: Superconducting circuit elements. (a) Optical micro-
graph of a coplanar capacitor and a T-junction. (b) Tilted-angle scanning
electron microscope (SEM) image of a coplanar waveguide and an airbridge.
Image by Dante Colao Zanuz. (c) SEM image of an Josephson junction
fabricated using the shadow evaporation technique. The first and the sec-
ond aluminum layers are colored green and yellow, respectively. Image by
Sebastian Krinner.

vp is the phase velocity and n is an even or odd integer, depending on
whether the terminations are of the same or different kind, respectively.
The wavelength λ of the lowest-frequency modes in open-short-terminated
resonators and open-open-terminated resonators is 4ℓ and 2ℓ, respectively,
which leads to their names λ/4 resonator and λ/2 resonator, respectively.
The characteristic impedance of the CPW resonator is set by the ratio of
the gap width and center conductor width. Controlling the characteristic
impedance allows us to tune the ratio of zero-point fluctuations of the
electric and the magnetic fields, thereby tuning the capacitive and inductive
coupling strength of the resonator to other elements.

Combining linear capacitors and transmission lines, one can only create
circuits that behave as a set of harmonic oscillators in the quantum regime.
A quantum harmonic oscillator has a constant difference in energy between
neighboring eigenstates, making it hard to isolate a Hilbert space of exactly
two states. Therefore, when driving the transition between Fock states |0⟩
and |1⟩, the transitions between |1⟩ and |2⟩, and |2⟩ and |3⟩ are also driven,
as the transition frequency is the same. To break the uniform energy spacing
of the oscillator, we need a nonlinear circuit element, which also needs to
be lossless to avoid decoherence. The most commonly used such element is
the Josephson junction. The Josephson junction consists of two pieces of
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superconductor, separated by a thin barrier of insulator or normal metal, see
Fig. 2.1(c). The dynamics of such a junction are described by the Josephson
equations

I(t) = IJ sin
(︃

2π∆Φ(t)
Φ0

)︃
, Φi(t) =

∫︂ t

−∞
dτ Vi(τ), (2.1)

where I(t) is the current through the junction, IJ the junction critical current,
∆Φ the difference of generalized fluxes Φi on either side of the junction,
Vi the voltage at either side of the junction, Φ0 = h/2e the magnetic flux
quantum, h the Planck constant, and e the elementary charge. The energy
stored in the junction is given by the integral

E =
∫︂

dt V (t)I(t) = −EJ cos
(︃

2π∆Φ(t)
Φ0

)︃
, (2.2)

where V = V1 − V2 is the voltage across the junction and EJ = IJΦ0/2π
is called the Josephson energy of the junction. Expanding Eq. (2.2) up to
quadratic terms in the generalized flux difference ∆Φ, and comparing to
the energy of an inductor E = ∆Φ2/2L with inductance L, we see that the
Josephson junction behaves like an inductor with inductance LJ = Φ0/2πIJ
in the small current limit. However, due to the cosine term, the effective
inductance will depend on the current I, leading to the nonlinearity that
we can exploit to implement an oscillator with an unevenly-spaced energy
spectrum.

2.2. Transmon Qubit
By replacing the inductor of a parallel LC circuit with a Josephson junction,
we obtain the Cooper pair box circuit, which is the basis for a transmon
qubit. The circuit consists of an island (yellow) isolated from ground (black)
by a capacitor with capacitance C and a junction with critical current IJ, see
Fig. 2.2(a,b). In practice, we want to have dynamic control over the system,
so we introduce two additional control lines. The charge control line (pink)
is capacitively coupled to the island with capacitance Ce and can be used
to control the offset charge Qe = CeVe of the island, by applying a voltage
Ve to it. To provide control over the Josephson energy of the junction, it is
split into two smaller junctions with critical currents IJ1 and IJ2, forming a
small loop. The circuit is called the superconducting quantum interference
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Figure 2.2: Transmon qubit. (a) A false-color optical micrograph of a
transmon qubit with the island in yellow, charge control line in pink and
flux control line in green. (b) The equivalent electrical circuit of a transmon
qubit. (c) Qubit frequency ωQ and the anharmonicity α as a function of the
Josephson energy EJ for a charging energy of EC/h = 165 MHz, calculated
analytically according to Eq. (2.6) (dashed thin lines) and numerically by
diagonalizing Eq. (2.4c) (solid thick lines).

device (SQUID), because the effective critical current of the split junction
is determined by the interference of the currents flowing in two junctions,
which depends on the magnetic flux penetrating the loop Φe

IJ(Φe) =
√︄
I2

JΣ cos2
(︃
π

Φe
Φ0

)︃
+ I2

J∆ sin2
(︃
π

Φe
Φ0

)︃
, (2.3)

with IJΣ = IJ1 + IJ2 and IJ∆ = IJ1 − IJ2. While a larger asymmetry of
the junction sizes IJ1/IJ2 at a fixed maximum critical current IJΣ reduces
the tunability range of the critical current, it also reduces its sensitivity to
external flux noise. When flux-biased to its maximal or minimal value, the
critical current becomes first-order insensitive to fluctuations of the external
flux. A flux control line (green) is inductively coupled to the SQUID loop
with mutual inductance M , allowing to control the external flux Φe = MIe
by applying a current Ie to it.

By doing a canonical quantization of the system [Dirac58], we find that
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the Hamiltonian is

Ĥ = 1
2(C + Ce)

(Q̂−Qe)2 − Φ0
2π IJ(Φe) cos

(︄
2π Φ̂

Φ0

)︄
, (2.4a)

where the island charge Q̂ and generalized flux Φ̂ are conjugate variables with
the commutator [Φ̂, Q̂] = iℏ. The Hamiltonian (2.4a) is frequently written
in terms of the unitless number of Cooper pairs n̂ = Q̂/2e, the charging
energy EC = e2/2(C + Ce), and the reduced generalized flux ϕ̂ = 2πΦ̂/Φ0,
satisfying the commutation relation [ϕ̂, n̂] = i,

Ĥ = 4EC(n̂− ne)2 − EJ(ϕe) cos(ϕ̂) (2.4b)

= 4EC(n̂− ne)2 − 1
2EJ(ϕe)

∞∑︂
n=−∞

(|n⟩⟨n+1| + |n+1⟩⟨n|). (2.4c)

In Eq. (2.4c) we expressed ϕ̂ in the charge number basis by using the identity
eiϕ̂ = ∑︁∞

n=−∞ |n−1⟩⟨n| [Langford13].
Initial implementations of the Hamiltonian (2.4) [Nakamura99, Wallraff04]

had the intrinsic junction capacitance dominate the capacitance C and were
in the regime EC ∼ EJ, for which the eigenenergies depend strongly on
the offset charge number ne. This dependence of the qubit frequency on
the offset charge, called charge dispersion, leads to low coherence times of
any qubit system due to dephasing by ubiquitous charge noise [Ithier05]. A
major improvement to qubit coherence times came by increasing the shunt
capacitance of the qubit into the regime EC ≪ EJ [Koch07, Schreier08]. In
this so-called transmon regime the eigenstates are spread over many charge
states and the eigenenergies become insensitive to static offset charge. In
the large EJ/EC limit, the variation of the transition frequencies of the
transmon qubit with the charge offset is suppressed as e−

√
8EJ/EC [Koch07].

In the large EJ/EC limit, the energy spectrum of the transmon qubit
is approximately that of a Kerr-nonlinear resonator, corresponding to the
Hamiltonian

Ĥ = ℏωQb̂
†b̂+ ℏ

α

2 b̂
†b̂†b̂b̂, (2.5)

where b̂ = (EJ/32EC)1/4ϕ̂ + i(2EC/EJ)1/4n̂ is the excitation annihila-
tion operator [Koch07]. The charge number operator is given as n̂ =
−i(EJ/8EC)1/4(b̂− b̂†)/

√
2. The qubit frequency ωQ and anharmonicity α

determine the frequency of the first transition and the differences of the
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Chapter 2. Circuit QED with Transmon Qubits

frequencies of the subsequent transitions, respectively, and are given by the
asymptotic approximations [Koch07]

ωQ =
(︂√︁

8EJEC − EC
)︂
/ℏ, α = −EC/ℏ. (2.6)

In Fig. 2.2(c), we compare these frequently used asymptotic formulas to
exact diagonalization of the Hamiltonian in the charge basis, see Eq. (2.4c).
We used 31 charge basis states for the diagonalization, which is well above
the maximal charge fluctuation nrms = 2.7 for the states and parameter
values shown [Koch07]. For a typical charging energy of EC/h = 165 MHz,
targeted for the qubits in the device presented in Chapter 4 and shown
in Fig. 2.2(a), we see that the asymptotic formula is very accurate for the
qubit frequency ωQ. However, the absolute value of the anharmonicity is
underestimated by the asymptotic formula by up to 20 MHz, amounting
to about 10%. Variations at this level are important to account for, when
estimating inter-qubit residual couplings and swap errors during two-qubit
gates in the low-anharmonicity architectures as we will discuss in Section 4.2
and Appendix B.

2.3. Readout
Having defined the subspace of the two lowest-lying energy states of the
transmon qubit as the Hilbert space that we use to encode a physical qubit,
we proceed with discussing, how to read out the qubit state. We use the
dispersive readout technique [Blais04, Wallraff05], in which we capacitively
couple the transmon to a λ/4 CPW resonator, which is far-detuned from
the qubit, see in red in Fig. 2.3(a,b). The Hamiltonian, describing the joint
transmon-resonator system is given by

Ĥ = 4ECn̂
2 − EJ cos(ϕ̂) + ℏωRâ

†â+ ℏgnn̂(â+ â†), (2.7)

with ωR the readout resonator frequency and â its annihilation opera-
tor [Koch07]. The coupling rate between the transmon charge and resonator
field is given by gn = 2eCQRV

0
rms/ℏCΣ, where CQR is the capacitance be-

tween the transmon and the resonator, CΣ is the total capacitance of the
transmon, and V 0

rms is the zero-point fluctuation of the voltage of the res-
onator at the coupling point to the qubit. In our case we have a λ/4
resonator with characteristic impedance Z0, coupled at the open end, for
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2.3. Readout

which the zero-point voltage fluctuation is V 0
rms = ωR

√
hZ0/π [Pechal16],

yielding

gn = 4eωR
CQR
CΣ

√︄
Z0
h
. (2.8)

To see, how the resonator can be used for qubit readout, we again go
to the EC ≪ EJ limit, where the transmon is described by a nonlinear
oscillator, as in Eq. (2.5). By including the resonator and applying the
rotating wave approximation, we obtain the Hamiltonian of a Kerr-nonlinear
resonator coupled to a linear resonator

Ĥ = ℏωQb̂
†b̂+ ℏ

α

2 b̂
†b̂†b̂b̂+ ℏωRâ

†â+ ℏg(âb̂† + â†b̂). (2.9)

The coupling rate is given by g = gn(EJ/32EC)1/4 [Koch07]. By considering
the interaction term as a second-order perturbation, we can calculate how
much the energy Ek,n of the dressed eigenstate with k and n excitations in
the transmon and resonator, respectively, is shifted relative to the energy of
the bare states of the transmon and the resonator E(0)

k,n

(Ek,n − E
(0)
k,n)/ℏ ≈ g2

(︄
k(n+ 1)

∆QR + (k − 1)α − (k + 1)n
∆QR + kα

)︄
, (2.10)

with ∆QR = ωQ − ωR. We see that these eigenenergies correspond to the
Hamiltonian

Ĥ/ℏ = ωQb̂
†b̂+ α

2 b̂
†b̂†b̂b̂+ωRâ

†â+
∞∑︂

k=0

(︂
χk + (χk − χk+1)â†â

)︂
|k⟩⟨k| , (2.11)

with χk = kg2/(∆QR + (k − 1)α) being the dispersive shift of the k-th
transmon level. In particular, the resonator frequency is shifted by −χ1 or
χ1 − χ2, if the transmon is in the ground state or first excited state, respec-
tively. Furthermore, the transmon first transition frequency is shifted by
χ1 +n(2χ1 −χ2) for n photons in the resonator. Therefore, by restricting the
Hamiltonian (2.11) to the qubit subspace, we get the effective Hamiltonian

Ĥ = − (ωQ + χ1) Ẑ2 +
(︃
ωR + χ1 − χ2

2

)︃
â†â−

(︃
χ1 − χ2

2

)︃
â†âẐ

= − ω′Q
Ẑ

2 + ω′Râ
†â− χâ†âẐ, (2.12)
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Chapter 2. Circuit QED with Transmon Qubits

with the first transition dispersive shift χ given by

χ = χ1 − χ2
2 = g2α

∆QR(∆QR + α) = −g2
n

16

√
8EJEC

∆QR(ℏ∆QR − EC) . (2.13)

To probe the resonator for qubit readout, we must couple it to the
outside environment. Coupling the λ/4 resonator at its open end via
a capacitor with capacitance Cκ to the external environment with an
impedance of ZE gives the resonator a linewidth (inverse decay time) of
κR = 4ω3

RC
2
κω

3
RZ0ZE/π [Göppl08, Pechal16]. This coupling, however, also

leads to energy relaxation of the qubit mode at a rate [Blais04, Houck08]

γR = κR
g2

∆2
QR

. (2.14)

This interplay between the qubit decay rate and the cavity is called the
Purcell effect [Purcell46]. The inverse of the resonator linewidth 1/κR sets a
lower bound on the readout duration as the resonator can not be populated
more quickly, and the inverse decay rate sets an upper bound to the qubit
energy relaxation time T1 < 1/γR. These constraints make it challenging to
achieve fast readout with a high qubit coherence time. Fortunately, the qubit
decay rate can be suppressed by filtering the readout circuit to reduce the
transmission at the qubit frequency [Reed10, Sete15]. This can be done for
example by engineering a band-block filter at the qubit frequency or a band-
pass filter at the resonator frequency. We take the approach of using another
resonator, which is designed to be resonant with the readout resonator, as a
band-pass filter. Using a resonator with a large external coupling κP and
an inter-resonator coupling of JPR as the so-called Purcell filter, we get an
effective linewidth of the readout resonator of κR′ = 4J2

PR/κP, and a qubit
energy relaxation rate of [Sete15]

γR′ = κP
J2

PRg
2

∆4
QR

= κR′
g2κ2

P
4∆4

QR
. (2.15)

The decay rate is suppressed by a factor of κ2
P/4∆2

QR at a fixed readout
resonator effective linewidth. In the actual devices presented in the following
chapters, we use the Purcell filters in the regime where κP ∼ JPR, in
which case there are two distinct resonator eigenmodes which can be used
for readout. The transmission spectra and an expression for the effective
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Figure 2.3: Transmon with readout circuit. (a) False-color optical
micrograph of a transmon qubit (yellow) that is connected to its readout
circuit. The readout resonator is colored red, the Purcell filter blue and the
readout feedline purple. The qubit is additionally connected to neighboring
qubits using the capacitively coupled CPW sections in cyan. (b) The
equivalent circuit corresponding to the micrograph shown in (a). (c) Feedline
transmission spectrum for a qubit in the |0⟩ and |1⟩ states in blue and orange,
respectively. The dashed transmission spectrum corresponds to a Purcell
filter that is not coupled to a readout resonator. The vertical colored and
dashed lines indicate the resonance frequencies of the readout resonator and
Purcell filter, respectively. (d) The dispersive shift χ, calculated analytically
based on Eq. (2.13) (thin dashed lines), and by numerical diagonalization of
the Hamiltonian (2.7) (thick solid lines). The green and red data correspond
to charge coupling rates of gn/2π = 110 MHz and 220 MHz, respectively.
The charging energy is EC/h = 165 MHz.
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resonator linewidth for this case are derived in Ref. [Heinsoo18] and the
readout performance is further analyzed in Ref. [Swiadek23].

We can see this shift of the resonator frequency predicted by Eq. (2.12)
when measuring the transmission spectrum |S21| through the feedline of the
chip for the two qubit states, see Fig. 2.3(c) for the spectra and (b) for the
port labels. For each qubit state, we observe a double-dip structure corre-
sponding to the readout resonator and Purcell filter, which are capacitively
coupled to the feedline. We employ a capacitor at the input port of the
feedline to direct the radiation emitted from the resonator predominantly
toward the output port. However, its presence does not change the spectrum
qualitatively, see Section C.1 for a discussion of the analytical model for the
transmission spectrum. Therefore, by probing the resonator transmission
at a frequency ωr at which it strongly depends on the qubit state, we can
infer the qubit state. The interaction term between the qubit and the
resonator χâ†âẐ commutes with the qubit Hamiltonian, and therefore the
measurement is quantum nondemolition and does not introduce additional
state transitions beyond projecting on to the state that corresponds to
the measurement outcome [Braginsky80]. We typically couple the read-
out circuits of multiple readout resonators to the same feedline to reduce
the number of readout lines needed [Heinsoo18]. We refer the reader to
Refs. [Remm17, Heinsoo19] for a more detailed discussion about our readout
implementation.

When determining the qubit capacitance to the readout resonator to
target a specific dispersive shift χ, one should remember that Eq. (2.13) is
only valid in the regime EC ≪ EJ and g ≪ ∆QR. Comparing the values of
Eq. (2.13) to the dispersive shifts found by the numerical diagonalization of
Hamiltonian (2.7), see Fig. 2.3(d), we find a mismatch of up-to a factor two.
It is therefore important numerically diagonalize the Hamiltonian in case
accurate targeting of the dispersive shift is required.

2.4. Gate Operations

To implement any quantum circuit on the quantum processor, we need to
be able to apply single- and two-qubit gate operations. In our architecture,
we can implement single-qubit rotations by any angle around a combination
of X̂ and Ŷ operators and arbitrary rotations around the Ẑ operator. For
two-qubit operations, we implement the conditional phase gate CZ. These
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2.4. Gate Operations

gates, the details of which we discuss in this section, form a universal set,
allowing us to implement any quantum operation.

2.4.1. Single-Qubit Operations

We start by introducing notation for the single-qubit gates and the unitaries
which they implement. That includes π and π/2 rotations around the three
cardinal axes of the qubit, associated with the X̂, Ŷ and Ẑ Pauli operators

X = e−iπX̂/2 = −i
(︄ ⟨0| ⟨1|

|0⟩ 0 1
|1⟩ 1 0

)︄
,

√
X = e−iπX̂/4 = 1√

2

(︄ ⟨0| ⟨1|

|0⟩ 1 −i
|1⟩ −i 1

)︄
,

(2.16ab)

Y = e−iπŶ /2 = −i
(︄ ⟨0| ⟨1|

|0⟩ 0 −i
|1⟩ i 0

)︄
,

√
Y = e−iπŶ /4 = 1√

2

(︄ ⟨0| ⟨1|

|0⟩ 1 −1
|1⟩ 1 1

)︄
,

(2.16cd)

Z = e−iπẐ/2 = −i
(︄ ⟨0| ⟨1|

|0⟩ 1 0
|1⟩ 0 −1

)︄
,

√
Z = e−iπẐ/4 = 1√

2

(︄ ⟨0| ⟨1|

|0⟩ 1 − i 0
|1⟩ 0 1 + i

)︄
,

(2.16ef)

and arbitrary-angle rotations around the three axes

Xθ/π = e−iθX̂/2, Yθ/π = e−iθŶ /2, Zθ/π = e−iθẐ/2. (2.16ghi)

We implement rotations by an arbitrary angle around any axis in the
X-Y plane by using physical microwave pulses. To see, how this can be
implemented, we look back at the Hamiltonian (2.4). Although in the
transmon limit the energy spectrum is independent of the static offset charge
number ne, we can still use it to couple to the qubit by applying microwave
pulses resonant with the qubit transition frequency. Expanding the quadratic
4EC(n̂ − ne)2 term, we obtain the interaction term of the Hamiltonian
−8ECnen̂ = −2e(Ce/CΣ)Ven̂. Considering the transmon limit EC ≪ EJ,
restricting the Hamiltonian to the qubit subspace, and applying the rotating
wave approximation for a voltage pulse Ve(t) = Re{V0(t) exp(−iωQt)} with
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Chapter 2. Circuit QED with Transmon Qubits

a slowly varying envelope V0(t), we get the driven Hamiltonian

Ĥ = −ℏωQ
Ẑ

2 + ℏ
(︂
Ω(t)e−iωQtσ̂+ + Ω∗(t)eiωQtσ̂−

)︂
/2, (2.17)

with Ω(t) = 2e(Ce/CΣ)(EJ/32EC)1/4V0(t) being the complex instantaneous
Rabi frequency and σ̂± = (X̂ ∓ iŶ )/2 the qubit excitation creation and an-
nihilation operators. In the frame rotating with the qubit, this Hamiltonian
reduces to ℏRe{Ω(t)}X̂/2 + ℏ Im{Ω(t)}Ŷ /2, which corresponds exactly to
rotations around the X and Y axes.

Because our two-qubit gate of choice, the CZ gate, commutes with the
Zθ/π rotations, and we measure the qubit in the Ẑ basis, we can implement
the Zθ/π rotations virtually, without applying any pulses [McKay17]. We
do that by commuting all Zθ/π rotations of the circuit to the subsequent
measurement operation. The effect of commuting a Zθ/π through a Xξ/π

pulse is a change of the rotation axis of the Xξ/π gate by θ, as

e−iξX̂/2e−iθẐ/2 = e−iθẐ/2e−iξ(cos(θ)X̂−sin(θ)Ŷ )/2. (2.18)

In summary, we can implement any single-qubit unitary rotation with at-
most one microwave pulse by decomposing the gate as Zα/πXβ/πZγ/π and
by choosing the angles α, β, and γ accordingly [Nielsen10].

2.4.2. Two-Qubit Operations

We choose the CZ gate as the native gate, the implementation of which we
discuss below, into which we decompose the circuits we want to implement.
We also encounter the iSWAP interaction in Section 4.5, which comes about
systems interact resonantly under a σ̂− ⊗ σ̂+ + c.t. interaction Hamiltonian.
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The unitaries for these two operations are given by

CZ = e−iπ(Ẑ−Î)⊗(Ẑ−Î)/4 =

⎛⎜⎜⎜⎜⎜⎝

⟨00| ⟨01| ⟨10| ⟨11|

|00⟩ 1 0 0 0
|01⟩ 0 1 0 0
|10⟩ 0 0 1 0
|11⟩ 0 0 0 −1

⎞⎟⎟⎟⎟⎟⎠, (2.19a)

iSWAP = eiπ(X̂⊗X̂+Ŷ⊗Ŷ )/4 =

⎛⎜⎜⎜⎜⎜⎝

⟨00| ⟨01| ⟨10| ⟨11|

|00⟩ 1 0 0 0
|01⟩ 0 0 i 0
|10⟩ 0 i 0 0
|11⟩ 0 0 0 1

⎞⎟⎟⎟⎟⎟⎠. (2.19b)

To mediate interactions between neighboring qubits, we add a capacitively
coupled section of CPW between them. This induces a n̂1 ⊗ n̂2 interaction
term in the Hamiltonian, which approximates to

V̂ /ℏ = JQQ(b̂1b̂
†
2 + b̂†1b̂2) (2.20)

in the transmon regime EJ ≫ EC under the rotating wave approximation
|∆11| ≪ ωQ1, ωQ2. Here, the operator subscripts 1 and 2 correspond to
the two transmons qubits, ∆kl = ωQ1 + (k − 1)α1 − ωQ2 − (l − 1)α2 is the
detuning between the k-th and l-th transition of the two transmons, and the
coupling rate JQQ depends both on the coupling capacitances, the length of
the CPW section, and the frequencies of the two qubits, see Section C.3 for
more details.

To be able to control the interaction dynamically, we design our chip
architecture such that, when not executing two-qubit gates, the neighboring
qubits are operated at a large detuning ∆11 ≫ JQQ. In this, dispersive
regime, using second order perturbation theory, we find that the dominant
effect of the interaction is a residual Ẑ ⊗ Ẑ interaction. That is, the k-th
transition of the qubit is shifted by ζ(k,l), when a neighboring qubit is in
the l-th state (compared to being in the ground state). The relevant shifts
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for our qubits, when considering the first two excited states, are given by

ζ(1,1) = 2J2
QQ

(︃ 1
∆12

− 1
∆21

)︃
, (2.21a)

ζ(2,1) = J2
QQ

(︃ 1
∆11

− 2
∆12

− 3
∆31

+ 4
∆22

)︃
, (2.21b)

ζ(1,2) = J2
QQ

(︃
− 1

∆11
+ 2

∆12
+ 3

∆13
− 4

∆22

)︃
. (2.21c)

On the other hand, if we bring the k-th and l-th transition into resonance
under the interaction Hamiltonian (2.20), then the transitions transfer
population at a rate 2

√
klJQQ. We make use of the resonant interaction

between the |11⟩ and the |20⟩ states, that is, the second and first transition
of the two qubits are resonant, to implement the CZ gate. We bring the
two states into resonance by using short sudden flux-bias pulses of duration
τ = π/J2, where we denote the relevant coupling rate as J2 =

√
2JQQ,

to induce a full population swap from the |11⟩ state to the |20⟩ state and
back [Strauch03, DiCarlo10]. If we account for the possibility that the
population recovered from the |20⟩ state p11 can be less than one, we obtain
the non-trace-preserving operation

Û =

⎛⎜⎜⎜⎝
⟨00| ⟨01| ⟨10| ⟨11|

|00⟩ 1 0 0 0
|01⟩ 0 e−iϕ1 0 0
|10⟩ 0 0 e−iϕ2 0
|11⟩ 0 0 0 √

p11e−i(ϕ1+ϕ2+ϕc)

⎞⎟⎟⎟⎠. (2.22)

In addition to inducing a conditional phase ϕc, the flux-bias pulse, which
can be applied to either or both of the qubits, induces single-qubit phase
rotations ϕ1 and ϕ2, which can be easily corrected for with virtual Zϕ/π

gates.
We qualitatively show the flux-bias pulse shape and the corresponding

qubit frequency trajectory in Fig. 2.4(a). This unipolar pulse shape was
used for the experiments presented in Sections 3.1 to 3.3. At the bottom of
the panel, we show how the conditional phase ϕc and population recovery
p11 depend on the two tuning parameters of such a gate, the detuning
δ = ωQ1 + α1 − ωQ2 during interaction, and the pulse length τ . We observe
a chevron landscape, with the target gate parameters being realized at
δ = 0 and τ = π/J2. While being simple to implement and fast to execute,
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Figure 2.4: Two-qubit gate pulse shapes. (a) Unipolar pulse. (b) Not-
phase-kick-controlled net-zero pulse. (c) Phase-kick-controlled net-zero pulse.
For each pulse type, the shape of the applied flux pulse Φe(t) is shown in
the first row, the trajectories of the qubit energy levels ω(t) in the second
row and a map of conditional phase ϕc (as colors) and population recovery
p11 (as lightness) as a function of pulse length τ and |20⟩-|11⟩ detuning δ in
the third row. ϕc = {0, π/2, π, 3π/2} are marked with dark contour lines in
orange, green, blue and pink, respectively. For population recovery, contour
lines are drawn at p11 = {1, 0.9, 0.5}. The red crosses mark the target point,
where ϕc = π and p11 = 1.
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this pulse shape has a few downsides. In particular, it is sensitive to low-
frequency flux noise, which can shift the idling flux-bias point. While the
flux noise does not have a detrimental effect when the qubit is biased at
its flux-insensitive frequency, a small flux offset ∆Φ leads to a proportional
conditional phase error. Furthermore, to generate the flux-bias pulse, an
arbitrary waveform generator (AWG) needs to be connected to the flux line,
which has significantly larger noise compared to a direct current source. To
mitigate dephasing of the qubit due to the low-frequency noise of the AWG,
we combine a static flux bias, generated by a low-noise current source, with
dynamic pulses, generated by the AWG, using a microwave bias tee. The
high-pass characteristic of the bias tee, while filtering the low-frequency
noise of the AWG, requires us to apply ever-larger outputs from the AWG
with every consecutive dc flux pulse.

To overcome these two issues we moved to a net-zero pulse shape for the
experiments presented in Sections 3.4 to 3.6, see top rows of Fig. 2.4(b).
The pulse consists of two square halves with equal amplitudes but opposite
signs. The net-zero pulse shape does not have a dc component, and therefore
the pulse distortions due to the bias tee do not accumulate over multiple
pulses. We find that the conditional phase ϕc and population recovery p11
landscape has changed, see the bottom row of Fig. 2.4(b). The landscape is
not symmetric with respect to the detuning δ, and the best gate fidelity is
achieved at pulse lengths τ > J2/π. The asymmetry is due to a phase kick
ϕ of the |20⟩ state with respect to the |11⟩ state due to the finite rise and
fall times of the pulse when transitioning from the first half of the pulse to
the second.

To take advantage of this phase kick as a control parameter, we introduce
a finite length τ ′ between the two halves of the net-zero pulse, which we
use to control the phase kick by tuning either the duration τ ′ or the pulse
amplitude during this time. By setting the phase kick to a suitable value, we
can recover the symmetric shape of the conditional phase ϕc and population
recovery p11 landscape, reducing the gate time and facilitating tuneup, see
Fig. 2.4(c). Similar pulse shapes were independently developed at the same
time in Ref. [Neĝırneac21].

We introduce a simple model to analyze how the phase-kick-controlled
net-zero gate works. The subspace of the two-qubit Hamiltonian (2.5) with
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the interaction term (2.20) relevant for the dynamics is given by

Ĥ(t)/ℏ =

⎛⎜⎜⎜⎜⎜⎝

⟨00| ⟨01| ⟨10| ⟨11| ⟨20|
|00⟩ 0 0 0 0 0
|01⟩ 0 ωQ1(t) JQQ 0 0
|10⟩ 0 JQQ ωQ2(t) 0 0
|11⟩ 0 0 0 ωQ1(t) + ωQ2(t) J2
|20⟩ 0 0 0 J2 2ωQ1(t) + α1

⎞⎟⎟⎟⎟⎟⎠ (2.23)

If the detuning between the qubit frequencies remains large during the
interaction JQQ/|∆11(t)| ≪ 1, then we can ignore the coupling in the single-
qubit subspace JQQ, which will only lead to additional conditional phase
due to the dispersive coupling strength ζ(1,1), see Eq. (2.21a). We analyze
the magnitude of the swap errors due to this coupling in Appendix B.
Furthermore, by transforming the Hamiltonian to a reference frame that
co-rotates with the single-qubit subspace using the unitary

Û = ei
∫︁ t

−∞ dt diag(0,ωQ1(t),ωQ2(t),ωQ1(t)+ωQ2(t),ωQ1(t)+ωQ2(t))
, (2.24)

with diag( · ) representing a matrix with the given values on the diagonal,
we are left with the effective Hamiltonian

Ĥ ′ = ÛĤÛ † + iℏ∂Û
∂t
Û † = ℏδ(t) |20⟩⟨20| + ℏJ2(|20⟩⟨11| + |11⟩⟨20|), (2.25)

with δ(t) = ωQ1(t) + α1 − ωQ2(t). By expressing the evolution operator for
the Hamiltonian (2.25) in the form of Eq. (2.22), we find that ϕc and p11
can be calculated as the negative of the argument and modulus squared of
the complex |11⟩ amplitude

c11 = ⟨11|e−iĤ′t/ℏ|11⟩ , ϕc = − arg(c11), p11 = |c11|2. (2.26)

Equations (2.25) and (2.26) provide us with a simple framework to calcu-
late the conditional phase for a given pulse shape. In the simplest case, for
a pulse of duration τ and constant detuning δ, the unitary for the evolution
is given by

Û(τ, δ) = e−iδτ/2
(︃
Î cos(J̃τ) + i

(︃
δ

2J̃
Ẑ − J2

J̃
X̂

)︃
sin(J̃τ)

)︃
, (2.27)
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Chapter 2. Circuit QED with Transmon Qubits

where we have defined the effective coupling rate J̃ =
√︂
J2

2 + δ2/4, and
the Pauli matrices act on the |11⟩-|20⟩ subspace, Ẑ = |11⟩⟨11| − |20⟩⟨20| and
X̂ = |11⟩⟨20| + |20⟩⟨11|. Therefore, for the unipolar pulse shape we have
c11 = e−iδτ/2(︁cos(J̃τ) + iδ sin(J̃τ)/2J̃

)︁
, the negative argument and modulus

squared of which are visualized in Fig. 2.4(a).
For the net-zero pulse shape, we need to account for the phase kick at the

middle of the pulse ϕ ≈
∫︁

dt δ(t), which can be modeled for sudden pulses as
an instantaneous phase change of the |20⟩ state Ûϕ = |11⟩⟨11| + e−iϕ |20⟩⟨20|.
We also consider that the detunings during the two pulse halves can be
different by an amount ∆, see Fig. 2.5(a,b). In this case, the probability
amplitude is given by

c11 = ⟨11| Û
(︃
τ

2 , δ̄ − ∆
2

)︃
ÛϕÛ

(︃
τ

2 , δ̄ + ∆
2

)︃
|11⟩

=
(︄

cos
(︄
J̃+τ

2 − i arcsinh 2δ̄ + ∆
4J2

)︄
cos
(︄
J̃−τ

2 − i arcsinh 2δ̄ − ∆
4J2

)︄

− e−iϕ sin
(︄
J̃+τ

2

)︄
sin
(︄
J̃−τ

2

)︄)︄
J2

2

J̃+J̃−
e−iδ̄τ/2, (2.28)

where J̃± =
√︂
J2

2 + (2δ̄ ± ∆)2/16 are the effective couplings during the
two halves of the pulse and arcsinh( · ) is the inverse of the hyperbolic sine
function. For ∆ = 0, ϕ = 0 this equation reduces to the one for the unipolar
pulse, shown also in Fig. 2.4(c).

We show the conditional phase ϕc and population recovery p11 of the
phase-kick-controlled net-zero gate as a function of the phase kick ϕ and
pulse duration τ for various detunings in Fig. 2.5(c-e). If the detunings
during the two pulse halves are accurately calibrated δ̄ = ∆ = 0, then the
optimization of the two gate parameters becomes orthogonal in the two
control parameters around the optimum, with ϕ controlling only ϕc and
τ controlling only p11 see panel (c). This allows for a fast tuneup of the
gate by the means of one-dimensional parameter sweeps. However, even if
the mean detuning δ̄, which is determined by the flux pulse amplitude, is
miscalibrated, an error-free CZ gate can be implemented, albeit at a slightly
longer gate duration, see panel (d). A change in the qubit’s flux-bias offset
will not lead to a change in the mean detuning δ̄, but in the difference of the
detunings ∆, which will lead to population loss, see Fig. 2.5(e). However,
population loss, given by 1 − p11 ≈ ∆2/4J2

2 for small ∆, is first order
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Figure 2.5: Phase-kick-controlled gate. (a) The applied flux pulse
shape. (b) Trajectory of the qubit energy levels ω(t). (c–e) Map of condi-
tional phase ϕc (as colors) and population recovery p11 (as lightness) as a
function of the phase kick ϕ and pulse length τ for various values of mean
detuning δ̄ and detuning difference ∆. ϕc = {0, π/2, π, 3π/2} are marked
with dark contour lines in orange, green, blue and pink, respectively. For
population recovery, contour lines are drawn at p11 = {1, 0.9, 0.5}. The red
crosses mark the highest-fidelity point, where ϕc = π and p11 = 1, 1, and
0.94 in panels (c), (d), and (e), respectively.
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Chapter 2. Circuit QED with Transmon Qubits

insensitive with respect to variations in ∆.
For experimental characterization of the phase-kick-controlled net-zero

gate, see Ref. [Kerschbaum20].

2.5. Measurement Setup
Finally, we discuss how we mount the quantum device for measurements
and how we send all the control signals to it. The device should be cooled
to temperatures low enough that the residual excitations do not lead to
excessive energy relaxation and dephasing of the qubit. Furthermore, the
temperature should be low enough for the circuit to be superconducting.
For example, a readout resonator’s thermal population, given by the Bose-
Einstein statistics n̄th = 1/(eℏωR/kBT − 1), leads to dephasing of the qubit
at a rate γϕ = n̄thκRχ

2/(κ2
R/4 + χ2), where ωR is the resonator frequency,

κR its linewidth, and χ the dispersive shift [Gambetta06]. For typical
parameters of ωR/2π = 7.5 GHz, κR/2π = 10 MHz, and χ/2π = 5 MHz, to
achieve dephasing times 1/γϕ > 1 ms, we need the resonator temperature to
be below T < 38 mK.

To achieve such low temperatures, we use a closed-cycle 3He/4He dilution
refrigerator, pre-cooled to 4 K using a pulse tube cryocooler. We mount the
superconducting quantum device at the base temperature stage of the dilu-
tion refrigerator, which achieves temperatures around 10 mK, see Fig. 2.6(a).
The device is enclosed in a copper package, which is a good thermal con-
ductor, allowing it to thermalize well with the cryostat. Furthermore, it
is enclosed in a set of magnetic shields to reduce external magnetic field
noise. The electronic control signals are routed to the device through coaxial
cables, which are filtered and attenuated at various temperature stages of
the cryostat to reduce room-temperature noise [Krinner19]. The output
signals are filtered and amplified using a traveling-wave parametric amplifier
(TWPA) and a high-electron-mobility transistor (HEMT) amplifier. The de-
tailed cabling diagrams for each of the experiments presented in Chapters 3
to 6 are presented in the corresponding publications [Andersen19, Ander-
sen20, Krinner22, Remm23b, Remm23a]. We use a carrier-circuit-board
inside the copper mount to route the signals to and from the coaxial cables
to the millimeter-sized superconducting quantum device, see Fig. 2.6(b).
The connection between the circuit board and the quantum chip is done
using aluminum bond wires, see Fig. 2.6(c).

40



2.5. Measurement Setup

(a) (b)

(c) 300 µm

Figure 2.6: Quantum device mounting. (a) The base-temperature
stage of a dilution refrigerator. Several sample holders with and without
magnetic shielding are attached, as well as the traveling-wave parametric
amplifiers with their related circuitry on the right. Photo by Octavian Lazăr.
(b) A 17-qubit device is mounted to the copper sample holder. The signals
are routed to the chip on a carrier circuit board with SMP connectors.
(c) Connections between the chip and the printed circuit board are made
using aluminum bond wires.
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3
Preliminary Surface Code Experiments

As discussed in Chapter 1, the central component for the operation of
a surface code is the stabilizer measurement. The individual stabilizer
measurements of the code, which are usually executed at the same time, can
be divided into two parts. First, the parity of neighboring data qubits is
mapped onto an auxiliary qubit using single-qubit gates and entangling two-
qubit gates. Then, the state of the auxiliary qubit is measured with minimal
disturbance to the data qubits. This chapter presents two experiments
that demonstrate these building blocks, although they do not yet reach the
scale required for quantum error correction. In the first experiment, see
Sections 3.1 to 3.3, we repeatedly measure the X̂D1X̂D2 and ẐD1ẐD2 parities
of two data qubits D1 and D2 using an auxiliary qubit A, which projects the
data qubits into a Bell state [Andersen19]. By applying single-qubit gates
conditioned on the measurement outcomes, we stabilize the data qubits in
the |Φ+⟩ Bell state. In the second experiment, see Sections 3.4 to 3.6, we
implement a distance d = 2 surface code using four data qubits D1 to D4
and three auxiliary qubits Z1, Z2, and X [Andersen20]. The small code
distance only allows for error detection, not for correction by identifying of
the effect on the logical opeators based on the syndrome. We conclude the
chapter with a discussion of the results and an outlook in Section 3.7.

3.1. Entanglement Stabilization: Concept
A pure state of two data qubits D1 and D2 can be written as a superposition
of the orthogonal Bell states |Φ+⟩, |Ψ+⟩, |Φ−⟩, and |Ψ−⟩. These states corre-
spond to the mutual (+1,+1), (+1,−1), (−1,+1), and (−1,−1) eigenstates
of the X̂D1X̂D2 and ẐD1ẐD2 operators, respectively, see Fig. 3.1(a). In this
experiment, we aim to stabilize the |Φ+⟩ state by repeatedly measuring
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Figure 3.1: Entanglement stabilization concept and circuit. (a) Di-
agram of the Bell states as the mutual eigenstates of the X̂D1X̂D2 and
ẐD1ẐD2 operators. The eigenvalues can be flipped using Z and X gates
on either of the data qubits, respectively, as indicated. (b) The circuit
diagram for repeated |Φ+⟩ state stabilization. The double circuit line indi-
cates classical feedback conditioned on the measurement outcome being |1⟩.
The repetition bars indicate that the stabilization circuit can be repeated
for multiple cycles, alternating between ẐD1ẐD2 (green background) and
X̂D1X̂D2 (blue and green backgrounds) stabilization.

the X̂D1X̂D2 and ẐD1ẐD2 operators using the auxiliary qubit A. If the
measurement outcome for X̂D1X̂D2 or ẐD1ẐD2 is −1, we apply a ẐD2 or
X̂D2 operation, respectively.

We initiate the experimental sequence, see Fig. 3.1(b), by preparing the
data qubits in their thermal ground state and then applying

√
Y† gates to

create an two-qubit equal superposition state |−−⟩. The |−−⟩ state is a +1
eigenstate of the X̂D1X̂D2 operator, but not an eigenstate of the ẐD1ẐD2
operator. Next, we perform a ẐD1ẐD2 measurement which projects the
qubits into either the |Φ+⟩ or the |Ψ+⟩ state depending on the outcome, +1
or −1, respectively. To implement the ẐD1ẐD2 measurement, we prepare
the auxiliary qubit in the |+⟩ state with a

√
Y gate and apply CZ gates

between A-D1 and A-D2. Each CZ gate flips the phase of the auxiliary qubit
if the corresponding data qubit is in the |1⟩ state. Finally, the auxiliary
qubit is rotated back to the original basis using a

√
Y† gate and measured. If

the data qubits were in the |00⟩ or |11⟩ state (ẐD1ẐD2 = +1), the auxiliary
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3.2. Entanglement Stabilization: Device

qubit is flipped zero or two times, respectively, leaving it in the |0⟩ state
for the readout. For the data qubit states |01⟩ and |10⟩ (ẐD1ẐD2 = −1),
the auxiliary qubit phase is flipped once, leaving it in the |1⟩ state for the
readout. In case the measurement outcome is |1⟩, indicating an odd parity
of the data qubits, we apply feedback X gates on A and D2 to reset the
auxiliary qubit back into its ground state and flip the parity of the data
qubits.

To measure and stabilize the X̂D1X̂D2 operator instead of ẐD1ẐD2, we
apply

√
Y† gates on the data qubits before the parity mapping circuit, which

converts X̂D1X̂D2 to ẐD1ẐD2. After the feedback operation, we rotate back
to the original basis using

√
Y gates. To stabilize the |Φ+⟩ state over multiple

cycles, we alternate between stabilizing the ẐD1ẐD2 operator during odd
cycles and the X̂D1X̂D2 operator during even cycles.

3.2. Entanglement Stabilization: Device

We implement the protocol on a four-transmon-qubit processor, shown
in Fig. 3.2, utilizing three qubits for our purposes. The device is fabri-
cated using a thin niobium film on a silicon substrate, with Josephson
junctions made of aluminum and aluminum oxide, as well as aluminum-
titanium-aluminum trilayer airbridges, following our standard recipe, see
Ref. [Andersen19] for details. Each of the qubits (highlighted in yellow) is
connected to its individual microwave drive (pink) and flux control (green)
lines, as well as individual readout resonators (red). Additionally, each
readout resonator is coupled to the common feedline (purple) through indi-
vidual Purcell filters (blue), which help suppress qubit decay via the readout
resonators and minimize data qubit dephasing due to auxiliary qubit read-
out [Heinsoo18]. Two-qubit interactions between neighboring qubits are
mediated by capacitively coupled resonators (cyan) with an impedance of
80 Ω at the ends to increase the coupling rate to the qubits, see Section C.3.
The rest of the coplanar waveguide elements on the device are designed with
an impedance of 50 Ω.

While A has a fixed frequency on this device due to a junction fabrication
defect, qubits D1 and D2 are flux-tunable with a junction size asymmetry of
1:8, and are biased to their maximum and minimum frequencies, respectively,
see Table 3.1 for the values. The qubits have a charging energy 242 MHz,
energy relaxation times between 13.7 µs and 23.4 µs, and echo decay times
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Figure 3.2: Entanglement stabilization device. (a) Full-view false-
color micrograph of the 14.3 mm × 6.6 mm device used for the entanglement
stabilization experiment. See main text for a description of the components.
(b) Zoom-in of the qubit D2.

between 11.2 µs and 12.5 µs. For single-qubit gates, we employ 50-ns-long
truncated Gaussian microwave pulses of width σ = 10 ns. These pulses
utilize the derivative removal by adiabatic gate (DRAG) technique [Mot-
zoi09, Gambetta11]. The average single-qubit gate error [Bowdrey02], as
characterized by randomized benchmarking, is ε1i = 0.31% [Magesan11, Ep-
stein14]. Two-qubit gates are implemented using unipolar flux pulses applied
to D1 and D2 to bring the |11⟩ state into resonance with the |20⟩ state
of the A-D system [Strauch03, DiCarlo10]. The length of the pulses is
approximately 100 ns, with 40-ns-long buffer times before and after the
pulse. To compensate for flux pulse distortion caused by the bias tee in
the flux line, we pre-distort the generated flux waveforms using the inverse
of an in-situ-measured step response. The average gate error [Bowdrey02]
for the two CZ gates, characterized by process tomography [Nielsen10], is
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3.2. Entanglement Stabilization: Device

Table 3.1: Entanglement stabilization device parameters. Single-
qubit parameters and qubit-pair parameters are given in the top and bottom
half of the table, respectively.

D1 A D2
Qubit frequency, ωQ/2π (GHz) 5.72 5.21 4.88
Energy relaxation time, T1 (µs) 19.7 13.7 23.4
Ramsey decay time, T ∗2 (µs) 12.5 11.7 11.2
Echo decay time, T e

2 (µs) 22.4 14.5 15.0
Dispersive shift, χ/2π (MHz) −3.9 −1.6 −1.8
Readout pulse frequency, ωr/2π (GHz) 6.89 7.09 6.69
Readout mode linewidth, κR′/2π (MHz) 3.0 2.1 1.7
Purcell filter linewidth, κP/2π (MHz) 27.2 34.7 10.7
Purcell-readout coupling, JPR/2π (MHz) 10.9 8.2 9.5
Purcell-readout detuning, ∆PR/2π (MHz) 29.5 27.5 19.4
Thermal population, pth. (%) 0.9 1.4 1.4
Individual readout error, εri (%) 0.8 1.3 0.9
Multiplexed readout error, εrm (%) 1.3 1.1 0.9
Individual single-qubit gate error, ε1i (%) 0.30 0.31 0.33
Coupling resonator frequency, ωC (GHz) 7.45 7.48
Resonant qb.-qb. coupl., JQQ/2π (MHz) 3.8 3.4
Individual CZ gate error, ε2i (%) 1.0 0.5
Dispersive qb.-qb. coupling, ζ/2π (MHz) −0.11 −0.37

ε2i = 0.7%.
The qubit state is read out using a 200-ns-long pulse and a 400-ns-long

integration time. For both individual and simultaneous readout of all qubits,
the average readout error is approximately 1%. Furthermore, we find that
the readout of the auxiliary qubit induces a stochastic phase flip in a data
qubit with a probability of less than 0.3%. However, we observe deterministic
phase shifts of 0.583 rad and 0.579 rad on qubits D1 and D2, respectively,
which we correct with virtual Zθ/π gates. We attribute these phase shifts to
frequency shifts of the data qubits caused by off-resonant drive by the readout
pulse that is mediated by the coupling resonators. The delay from the end
of the integration until the feedback pulse is applied is 600 ns, primarily
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due to classical signal processing and pulse generation delays. To mitigate
dephasing resulting from low-frequency noise, we employ a four-pulse Carr-
Purcell-Meiboom-Gill [Carr54, Meiboom58] dynamical decoupling sequence
on the data qubits during this waiting time. Considering the durations of
the single and two-qubit gates, measurement, and feedback delay, the total
cycle duration amounts to Tcyc. = 1.51 µs.

3.3. Entanglement Stabilization: Results

We verify the performance of a single stabilizer measurement operation,
starting with the parity map only. For this, we perform state tomography
on the three-qubit coherent state before the first readout of the auxiliary
qubit. The obtained readout-error-compensated state fidelity is F = 94.2%
relative to the target state

(︁
|0⟩A |Φ+⟩ D1,D2 + |1⟩A |Ψ+⟩ D1,D2

)︁
/
√

2. The full
three-qubit density matrix ρ̂ = ∑︁

P̂ ⟨P̂ ⟩P̂ /d is represented in Fig. 3.3(a) in
terms of the expectation values of the Pauli operators ⟨P̂ ⟩, with d = 23

being the dimension of the Hilbert space and the summation being over
all products P̂ of Pauli matrices (including the identity operator) on three
qubits. This high fidelity indicates that the circuit accurately maps the
ẐD1ẐD2 parity of the data qubits to the auxiliary qubit without destroying
the X̂D1X̂D2 coherence of the initial state. By appending the auxiliary
qubit readout to the parity map, we complete the stabilizer measurement
circuit. When postselecting for the auxiliary qubit outcome of |0⟩A, data
qubit state tomography yields a high fidelity of F = 93.8% to the target
state |Φ+⟩, see Fig. 3.3(b). Here, data qubit tomography was performed in
parallel with the auxiliary qubit readout. Similarly, when postselecting on
|1⟩A, the fidelity to the |Ψ+⟩ state is F = 92.9%, see Fig. 3.3(c). To make
the ẐD1ẐD2 = +1 stabilization deterministic, we introduce a feedback pulse
on D2 for the |1⟩A auxiliary qubit outcome. This reduces the fidelity of the
data qubit state to F = 86.7%, primarily due to decoherence during the
feedback delay time, see Fig. 3.3(d). Finally, we add a cycle of X̂D1X̂D2 = +1
stabilization after the ẐD1ẐD2 = +1 stabilization, which can correct for
phase flip errors in the stabilized Bell state. Since the data qubits are
initially prepared in the |−−⟩ state, the X̂D1X̂D2 value is already close to
+1 after one cycle of ẐD1ẐD2 = +1 stabilization. As a result of additional
decoherence, the fidelity is reduced to F = 74.5% after the additional
X̂D1X̂D2 = +1 stabilization cycle.
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ÎŶ
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Ẑ
Ẑ

X̂
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Ŷ
X̂
Î
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Ẑ
Î
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Ŷ
Ŷ
Ẑ
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Figure 3.3: Entanglement stabilization initialization. (a) Expecta-
tion values of Pauli operators of the three-qubit coherent state before the
first auxiliary qubit readout. (b) Expectation values of Pauli operators of
the data qubits conditioned on A in |0⟩ and (c) in |1⟩. (d) Deterministic ex-
pectation values of Pauli operators of the data qubits after a single round of
ẐD1ẐD2 stabilizer correction and (e) after ẐD1ẐD2 and X̂D1X̂D2 stabilizer
correction.
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Figure 3.4: Repeated entanglement stabilization. (a) The |Φ+⟩ Bell
state fidelity, (b) ẐD1ẐD2 expectation value, and (c) X̂D1X̂D2 expectation
value after N cycles of entanglement stabilization. The different traces
indicate whether only ẐD1ẐD2 is stabilized or both ẐD1ẐD2 and X̂D1X̂D2
are stabilized, alternating every cycle. Stabilization using active feedback
(f.b.) on D2 and Pauli frame updating (P.f.u.) are compared.

To be useful for quantum error correction, the stabilizer measurement
needs to maintain a low error rate over many cycles. To demonstrate that
in our implementation, we repeat the ẐD1ẐD2 = +1 and X̂D1X̂D2 = +1
stabilization for N cycles. After completing the stabilization cycles, we
conduct data qubit state tomography to determine the fidelity to the |Φ+⟩
state and to measure the ẐD1ẐD2 and X̂D1X̂D2 values. We observe that the
fidelity and the stabilizer values remain constant for up to N = 12 cycles,
which is the maximum number of cycles tested, see blue points in Fig. 3.4.
The stable and good performance over many cycles indicates that the circuit
is performing as intended, without significant accumulation of leakage or
errors on the data qubits. In contrast, when only stabilizing ẐD1ẐD2 = +1,
then the ẐD1ẐD2 expectation value remains constant, but the X̂D1X̂D2
value decays exponentially toward zero, leading to a decrease in the state
fidelity, see the green points.
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3.4. Quantum Error Detection: Concept

In large-scale quantum error correction experiments, it is not necessary to
correct the detected errors after every cycle. Instead, a strategy called Pauli
frame updating can be employed, where errors are tracked and measure-
ment outcomes are reinterpreted accordingly [Knill05]. We implement the
Pauli frame updating strategy for both ẐD1ẐD2 = +1 and X̂D1X̂D2 = +1
stabilization, see orange points in Fig. 3.9, as well as for ẐD1ẐD2 = +1
only stabilization, see purple points, while keeping the reset pulse on A.
In both cases the fidelity is reduced compared to the implementation with
active feedback, which we attribute to the asymmetry of the qubit relaxation
channel and readout errors. With Pauli frame updating, the auxiliary qubit
spends more time in the |1⟩A state compared to the feedback-based data
qubit state correction, and therefore suffers more bit flip errors. Furthermore,
when stabilizing only ẐD1ẐD2 = +1, we observe a decaying oscillation in
the X̂D1X̂D2 value, see Fig. 3.4(c). This behavior is expected due to an
accumulation of phase errors on the data qubits due to dispersive qubit-qubit
coupling, see Table 3.1. All experimental results are accurately reproduced
by master equation simulations that consider independently characterized
qubit relaxation and dephasing rates, dispersive qubit-qubit couplings, and
readout errors, see the lines in Fig. 3.4. This indicates that the contri-
butions of crosstalk and control errors are insignificant compared to the
accounted-for error mechanisms.

3.4. Quantum Error Detection: Concept
Having demonstrated that we can execute high-fidelity weight-two stabilizer
measurements over many cycles, we aim to assess the performance of the
stabilizer measurements on a larger system. For this, we implement the
smallest nontrivial surface code, a distance d = 2 code consisting of four
data qubits, D1 to D4, and three stabilizers

ŜZ1 = ẐD1ẐD3, ŜX = X̂D1X̂D2X̂D3X̂D4, ŜZ2 = ẐD2ẐD4. (3.1)

The layout of this code is depicted in Fig. 3.5(a). We define the logical Pauli
operators as

X̂L = X̂D1X̂D3 and ẐL = ẐD1ẐD2, (3.2)
which commute with all the stabilizers and anticommute with each other. It
is worth noting that equivalent choices of logical operators can be obtained by
multiplying the logical operators by any stabilizers, as the commutation and
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Figure 3.5: Error detection code layout and circuit. (a) Layout of
the data qubits (red) and X- (blue) and Z-type (green) auxiliary qubits, and
the physical couplings between them as thick gray lines. The support of
the logical operators is indicated as black lines. (b) Error detection circuit
that is repeated for N cycles. The parts of the circuit with the blue and
green background correspond to X-type and Z-type stabilizer parity maps,
respectively. The X-type auxiliary qubit readout is done during the Z-type
stabilizer parity map and vice versa. The angles θ of the initial Yθ/π gates
are chosen according to the target logical state. After N cycles of stabilizer
measurements, either state tomography of the data qubits is done or they
are measured in Ẑ or X̂ basis for ẐL or X̂L readout, respectively.
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3.4. Quantum Error Detection: Concept

anticommutation relations are maintained. For instance, X̂LŜX = X̂D2X̂D4
and ẐLŜZ1ŜZ2 = ẐD3ẐD4 are also valid choices.

The circuit used for the stabilizer measurements, see Fig. 3.5(b), follows a
structure similar to the entanglement stabilization experiment. To initialize
the |0⟩L, |1⟩L, |+⟩L, or |−⟩L logical state, the data qubits D1 to D4 are
prepared in the corresponding initial state |0000⟩, |0101⟩, |0−0−⟩, or |0−0+⟩,
respectively. This is achieved by applying single-qubit Yθ/π-rotations on
D2 and D4. Within the logical subspace, each of the initial separable data
qubit states has overlap only with the corresponding target logical state.
By measuring all the stabilizers and postselecting on their outcomes being
+1, we effectively implement the projection operator to the logical subspace,
given by

Π̂L = 1
8
(︂
Î + ŜZ1

)︂(︂
Î + ŜX

)︂(︂
Î + ŜZ2

)︂
, (3.3)

where Î is the identity operator on all data qubits. The probability of a
state |ψ⟩ being in the logical subspace is given by ⟨ψ| Π̂L |ψ⟩, which is ideally
1/2 when preparing |0⟩L and |1⟩L, and 1/4 when preparing |+⟩L and |−⟩L.
The stabilizer measurements are then repeated for N cycles. Because each
stabilizer of the code has a dedicated auxiliary qubit, we pipeline the Z-
and X-type stabilizer measurements. This means that we map the Z-type
parities to auxiliary qubits while the X-type auxiliary qubit readout is still
ongoing, and vice versa. This pipelined approach helps to reduce the number
of simultaneous two-qubit gates that have to be applied [Versluis17]. The
circuit can be concluded either by performing data qubit tomography to
fully characterize the quantum state or by reading out the data qubits in
the Ẑ or X̂ basis for ẐL or X̂L readout, respectively.

Any single-qubit Pauli error in the circuit that flips a logical operator value
will also change at least one of the stabilizer measurement outcomes. By
postselecting on all the measured stabilizer outcomes being +1, we therefore
discard most events where an error on the logical operator has occurred,
significantly reducing the logical error rate. To detect errors that happen
during the last stabilizer measurement cycle, the Z-type or X-type stabilizer
values can be calculated from the final readout when the data qubits are
read out in the Ẑ basis or X̂ basis, respectively. Multiple single-qubit errors
that in total flip all stabilizers an even number of times can still introduce
logical errors.

Due to the small distance d = 2 of the code, it is not possible to determine
whether the logical operator was flipped when we do detect an error. For
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Chapter 3. Preliminary Surface Code Experiments

example, if ŜX is found to be −1, it could be caused by a Ẑ error on any
of the data qubits, but only errors on D1 and D3 would flip the logical
operator, whereas errors on D2 and D4 would not. Because experimental
runs where an auxiliary qubit is measured in the |1⟩ state are postselected
out, we do not implement any feedback pulses on the data qubits or for
resetting auxiliary qubits.

3.5. Quantum Error Detection: Device

The seven-qubit device for the error detection experiment, see Fig. 3.6, was
implemented in the same overall architecture and with the same fabrication
methods as the one for entanglement stabilization. It consists of seven single-
island transmon qubits (yellow) with individual microwave drive (pink) and
flux control (green) lines, readout resonators (red), and Purcell filters (blue).
The readout circuits are distributed between two feedlines (purple), with
D1, D2, X, and Z2 on the top line and D3, D4, and Z1 on the bottom line.
The qubit-qubit couplers (cyan), which have an 84 Ω section at the middle,
are now shorter and better modeled as two series capacitances instead of a
resonator, see Section C.3 for more details. Regarding the qubit design, see
Fig. 3.6(b), there is no longer a ground strip between the qubit island and
the large capacitive couplers. Instead, the ground plane is closed around the
qubit by crossing under airbridges that are placed in line with the coplanar
waveguide of the coupled elements. This modification allows for an increased
fraction of the total capacitance of the qubit to come from the coupled
elements, leading to higher coupling rates [Koch07]. To reduce the number
of ports required on the device, we multiplex the microwave drive lines of
Z1 and Z2 with the top and bottom readout feedlines, respectively.

All the seven qubits have a charging energy of 264 MHz and are flux
tunable with a junction size asymmetry of 1:3. They are biased to their
maximum frequencies, which are designed in three bands. Data qubits D1
and D2 are in the upper band at around 5.6 GHz, the auxiliary qubits in the
middle band at 5.0 GHz, and data qubits D3 and D4 are in the lower band
at 4.2 GHz, see Table 3.2 for exact values. The energy relaxation times range
between 8.4 µs and 20.0 µs, while the echo decay times range from 15.7 µs
to 27.6 µs. The low-frequency band qubits, D3 and D4, have a relatively
large charge dispersion of around 200 kHz due to the small EJ/EC ratio of
around 34, which limits their effective Ramsey decay time to about 8.8 µs.
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Figure 3.6: Error detection device. (a) Full-view false-color micrograph
of the 14.3 mm × 6.6 mm device used for the error detection experiment. See
main text for a description of the components. (b) Zoom-in of the qubit X.

We implement single-qubit gates using 53.3-ns-long Gaussian microwave
pulses with a width of σ = 10 ns, utilizing DRAG. The mean single-qubit gate
error, characterized by randomized benchmarking [Magesan11, Epstein14],
is ε1i = 0.3%. For two-qubit CZ gates, we apply a diabatic net-zero pulse
to the higher-frequency qubit without explicitly tuning the phase kick
between the two halves of the pulse [Rol19], see Section 2.4. The net-zero
square flux pulse is smoothed with a 4 ns Gaussian filter and has a total
length between 91 ns and 147 ns, with buffer times of 32 ns before and after
the pulse. We correct for in-situ-measured flux pulse distortion in the
line by predistorting the waveforms. The average gate error for the CZ
gates is ε2i = 2.9% on average, as characterized by interleaved randomized
benchmarking [Magesan12, Barends14].

We read out the qubit state using a 200-ns-long pulse and a 300-ns-long
integration time. The average readout error is around 1.3% for individual
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Table 3.2: Error detection device parameters. Single-qubit parameters and qubit-pair parameters are
given in the top and bottom half of the table, respectively.

D1 D2 D3 D4 Z1 X Z2
Qubit frequency, ωQ/2π (GHz) 5.49 5.71 4.11 4.22 4.85 4.96 5.19
Energy relaxation time, T1 (µs) 10.3 8.4 20.0 16.9 12.9 10.3 17.2
Ramsey decay time, T ∗2 (µs) 17.5 14.6 8.5 9.0 14.7 18.5 26.0
Echo decay time, T e

2 (µs) 18.4 15.7 26.0 26.3 27.6 15.9 27.3
Dispersive shift, χ/2π (MHz) −2.5 −2.5 −0.8 −1.0 −1.2 −2.4 −2.0
Readout pulse frequency, ωr/2π (GHz) 6.61 6.84 5.83 6.06 6.26 6.04 6.30
Readout mode linewidth, κR′/2π (MHz) 7.5 10.6 6.0 7.2 17.3 10.9 11.0
Purcell filter linewidth, κP/2π (MHz) 47.6 46.4 13.6 49.2 56.3 68.1 46.4
Purcell-readout coupl., JPR/2π (MHz) 20.0 22.2 17.5 18.4 18.8 18.7 19.0
Purcell-readout det., ∆PR/2π (MHz) 33.8 25.7 19.4 32.3 11.3 25.6 20.6
Thermal population, pth. (%) 0.06 0.04 0.8 0.8 0.08 0.4 0.6
Individual readout error, εri (%) 0.6 0.8 2.2 1.8 1.3 1.2 1.2
Multiplexed readout error, εrm (%) 1.1 0.9 1.8 2.6 2.3 1.6 1.4
Measurement efficiency, η (%) 30 24 15 15 20 27 22
Individ. single-qubit gate err., ε1i (%) 0.18 0.37 0.25 0.26 0.34 0.20 0.52
Res. coupling to X, JQQ/2π (MHz) 5.4 3.0 3.8 4.0
Res. coupling to Z, JQQ/2π (MHz) 5.0 5.2 3.7 2.9
Individual CZ gate to X error, ε2i (%) 2.1 4.3 2.2 3.3
Individual CZ gate to Z error, ε2i (%) 2.1 2.2 3.4 3.8
Disp. coupling to X, ζ/2π (MHz) −0.14 −0.05 −0.03 −0.03
Disp. coupling to Z, ζ/2π (MHz) −0.08 −0.15 −0.04 −0.03
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3.6. Quantum Error Detection: Results

readout and 1.7% for simultaneous readout of all qubits. Additionally, we
find that the readout of the auxiliary qubit induces a phase flip of a data
qubit with a probability of less than 0.3%. To mitigate dephasing caused by
low-frequency noise, we apply Y pulses for dynamical decoupling on auxiliary
qubits at the middle of the parity map sequence and on data qubits between
each stabilizer cycle. Considering the readouts, single-qubit gates, and
two-qubit gates, the total cycle duration amounts to Tcyc. = 1.92 µs.

3.6. Quantum Error Detection: Results

In order to assess the performance of each stabilizer measurement separately,
we initialize the data qubits neighboring the auxiliary qubit of the corre-
sponding stabilizer in all possible product states that are also eigenstates of
the stabilizer operator. By executing the stabilizer measurement circuit and
analyzing the average outcome of the auxiliary qubit readout, we calculate
the mean stabilizer value ⟨Ŝ⟩ for each input state. For the three stabilizers
ŜZ1, ŜX, and ŜZ2, we find average probabilities of an error in the stabilizer
measurement εS = (1 − S⟨Ŝ⟩)/2, with S = ±1 denoting the expected stabi-
lizer value, of 4.9%, 16.4%, and 8.2%, respectively, see Fig. 3.7. The results
are in good agreement with master equation simulations that consider energy
relaxation, dephasing, and readout errors. The main source of errors is
data qubit energy relaxation, as evidenced by the higher error probabilities
observed for input states with a larger excitation number during the parity
map, such as |11⟩ and |−−−−⟩, the last of which is rotated to |1111⟩ by the√

Y† gates at the start of the X-type parity map.
To prepare the logical states, we start by preparing a separable data qubit

state that has overlap only with the target logical state within the logical
subspace and perform one cycle of stabilizer measurements as described in
Section 3.4. We perform state tomography of the data qubits for the runs
where all stabilizer measurements yield a +1 result to characterize the result-
ing states. As an example, let’s consider the case of preparing the |0⟩L state.
The resulting four-qubit density matrix ρ̂ is shown in Fig. 3.8(a,b). The prob-
ability that all stabilizers measurements yield +1 is 25.1%, compared to the
ideal error-free case of 50%. The state has a fidelity F = ⟨0|L ρ̂ |0⟩L = 70.3%
with respect to the target state. We observe that a significant portion of the
error is due to energy relaxation and dephasing. This is indicated by the
reduced amplitude of the |1111⟩ ⟨1111| term and the coherences. In addition,
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Figure 3.7: Error detection stabilizer fidelity. Average outcomes
of stabilizer measurements with (a) Z1, (b) X, and (c) Z2 for various
neighboring data qubit states as filled bars. The black boxes and gray
lines indicate the master equation simulation and target stabilizer value,
respectively. The average measured stabilizer error probability εS is indicated
for each stabilizer.

we observe a small coherent phase error indicated by the nonzero imaginary
parts of the coherences, corresponding to a phase error of 0.09 rad on any of
the data qubits. We note that the found state ρ̂ is not fully in the logical sub-
space, and many of the errors present in the state would be detected either in
consecutive stabilizer measurements or when calculating the stabilizer values
from the final readout. The probability of finding the prepared physical state
within the logical subspace is PL = Tr(Π̂Lρ̂) = 71.7%. Within the logical
subspace, the state is characterized by the density matrix ρ̂L = Π̂Lρ̂/PL,
which has a fidelity of FL = ⟨0|L ρ̂L |0⟩L = F/PL = 98.2% with respect to
the target state. When preparing |1⟩L, |+⟩L, and |−⟩L, we find fidelities
within the logical subspace of 97.3%, 94.2%, and 94.8%, respectively, see
Fig. 3.8(e-j). The lower fidelity observed for the logical superposition states
|+⟩L and |−⟩L compared to |0⟩L and |1⟩L can be explained by the presence
of single-qubit errors during the preparation circuit that flip the logical
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Figure 3.8: Error-detected logical state initialization. (a,b) Real
and imaginary part of the four-data-qubit density matrix ρ̂ as reconstructed
using state tomography after initializing the |0⟩L state. (c–j) Real and
imaginary parts of ρ̂L, the data qubit density matrix projected onto the
logical subspace with Π̂L, when preparing |0⟩L, |1⟩L, |+⟩L, and |−⟩L.
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operator but do not affect any of the stabilizers. These errors would be
detected by ŜX when initially preparing the data qubits in |++++⟩ and
|++−−⟩ instead, making the preparation fault-tolerant [Marques22].

Finally, we assess the performance of the stabilizer measurements when
repeating them over multiple cycles, and characterize the logical relaxation
and dephasing times. The experiment is started by preparing one of the
logical states |0⟩L, |1⟩L, |+⟩L, or |−⟩L, followed by consecutive stabilizer
measurements for up to N = 10 cycles. After the stabilizer measurements,
all data qubits are read out either in the X̂ or Ẑ basis. The experiment is
repeated for up to 3 · 105 times per preparation at N = 10 and progressively
fewer times at smaller N . We calculate the logical operator value X̂L
or ẐL from the final readout and average over all the experimental runs
where all the stabilizer measurements, including from the final data qubit
readout, yield +1, see Fig. 3.9(a,b). By fitting an exponential decay model
⟨ẐL⟩ = ⟨ẐL⟩t=0 exp(−t/TL

1 ) to the extracted data, we extract the decay
time of the ẐL operator TL

1 = 63(9) µs. The corresponding per-cycle logical
bit flip probability is εL

z = [1 − exp(−Tcyc./T
L
1 )]/2 = 1.5(2)%. Similarly, the

decay time of the X̂L operator is extracted TL
2 = 72(33) µs, corresponding to

a per-cycle error probability of εL
x = [1 − exp(−Tcyc./T

L
2 )]/2 = 1.3(6)%. The

reduced logical operator value already after the first cycle could be related to
the non-fault-tolerant preparation of the |+⟩L and |−⟩L states. Simulations
yield logical error probabilities of εL

z = 2.1% and εL
x = 1.6%, which align well

with the experimentally obtained values within the experimental uncertainty.
Notably, both logical decay times (TL

1 and TL
2 ) exceed the decoherence times

of the individual physical qubits of the device. This is evident from the
comparison with the decay of the longest-lived physical operators TD3

1 =
20.0 µs and T e

2
,Z1 = 27.6 µs, as shown by the dashed lines in Fig. 3.9(a,b).

Postselection on no detected errors is a crucial aspect of quantum error
detection codes, and it plays a significant role in improving the coherence
of the logical qubit compared to its physical constituents. In our imple-
mentation, we retain approximately 40% to 50% of the data in each cycle
due to the postselection criterion. This probability is slowly increasing over
the cycles, see Fig. 3.9(c). The apparent improvement of performance over
the cycles, which we do not observe when not postselecting on no detected
errors, could be caused by a change in the physical error probabilities dur-
ing the data collection. In that case, the relative fraction of runs with a
lower error probability increases over the cycles in the postselected dataset.
In simulation, we observe a constant probability of no detected errors at
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〈Ẑ

L
〉

(a)

|0〉L
|1〉L

0.0

0.2

0.4

0.6

S
im

u
lt

.
er

r.
p

ro
b

.,
p
k k =

(c)

0

2

1

3

0 2 4 6 8 10

Cycles, N

−1.0

−0.5

0.0

0.5

1.0

L
og

ic
al

op
.,
〈X̂

L
〉

(b)

|+〉L
|−〉L

0 2 4 6 8 10

Cycles, N

10−4

10−3

10−2

10−1

S
u

rv
iv

al
p

ro
b

.,
p
s

(d)

5 10 15 20
Time, t (µs)

1.0

0.0

−1.0

0.0

1.0

P
h
y
s.

P
a
u

li
o
p

.,
〈Ẑ
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Figure 3.9: Repeated error detection. (a,b) Evolution of the logical
operator expectation values ⟨ẐL⟩ and ⟨X̂L⟩ when postselecting on no de-
tected errors for the initial |0⟩L, |1⟩L, |+⟩L, and |−⟩L states. The measured
values are indicated as filled markers, master equation simulation as empty
markers, and exponential fits as solid and dotted lines, respectively. The
decay of the Ẑ and X̂ operators of the longest lived physical qubits is shown
as dashed lines on the right axis. (c) Probability of detecting k simultaneous
errors on cycle N conditioned on no detected errors on prior rounds. Markers
indicate the data while the dashed lines are guides for the eye. (d) The
cumulative survival probability ps from the experiment (filled dots) and
from the simulation (open circles). In all panels, the error bars indicate one
standard deviation uncertainty.
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50%. The probability pk of k simultaneous errors is roughly exponentially
suppressed as k increases. The constant per-cycle probability of passing
the postselection leads to an exponentially decaying cumulative survival
probability ps, see Fig. 3.9(d). After 10 cycles, we observe a cumulative
survival probability of about 10−4, which closely matches the simulated
value of 6 · 10−4.

3.7. Discussion

In our milestone experiments, we have successfully demonstrated the use of
repeated high-fidelity stabilizer measurements for stabilizing an entangled
two-qubit state and for improving the decoherence time of a qubit through
quantum error detection and postselection. The dominant source of errors
in both experiments was decoherence, emphasizing the importance of min-
imizing the overall cycle time. Having fast auxiliary qubit readout while
maintaining high fidelity and low crosstalk is essential for these demon-
strations, as readout constitutes the longest operation in both experiments,
apart from the feedback delay which we discuss in the next paragraph. While
our achieved readout integration and resonator reset times of 400 ns and
300 ns, respectively, compare favorably to other demonstrations of repeated
stabilizer measurements [Bultink20, Chen21, Zhao22b, Marques22, Sundare-
san23, Acharya23], they still fall short of the fastest high-fidelity readouts
reported in the literature [Walter17, Heinsoo18, Sunada22, Swiadek23].
Future improvements in readout speed and fidelity would contribute signifi-
cantly to reducing the overall error detection rate. In addition to readout,
the speed and fidelity of parity maps, which involve two-qubit CZ gates,
are crucial. In the entanglement stabilization experiment, the choice of a
unipolar flux pulse shape made the gates sensitive to long-time distortions
caused by a high-pass filter in the flux line. We improved on that in the
quantum error detection experiment by using a net-zero pulse shape, al-
though it was not specifically optimized for fast gates. Further optimization
of the pulse shape, making use of the phase-kick control parameter, can
lead to a faster gate, see Section 2.4. Moreover, to achieve faster gates
at the expense of increased dispersive couplings between qubits, it would
be beneficial to increase the qubit-qubit coupling rates, which range from
2.9 MHz to 5.4 MHz on these devices.

In the long term, the implementation of non-Clifford gates on logical
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qubits will require feedback based on decoded error syndromes [Fowler12a].
However, for quantum memories, using Pauli frame updating only can be a
viable approach. In our entanglement stabilization experiment, we observed
that Pauli frame updating resulted in lower fidelities compared to using active
feedback. In this case, we did not fully leverage the potential of the Pauli
frame updating for reducing the cycle time because we kept the feedback
pulses to reset the auxiliary qubits. A circuit without feedback could have
been 40% shorter, likely leading to an increase in the Bell state fidelity. The
decrease of fidelity when using Pauli frame updating rather implies that
the qubit-qubit dispersive couplings need to be suppressed further. This
can be achieved either by increasing the detuning between qubits, reducing
anharmonicity, or using better dynamical decoupling schemes.

Leakage of qubits outside the computational subspace to higher excited
states of the transmon is an important consideration for quantum error
correction, as a single leakage event can lead to many correlated errors.
It can occur during two-qubit gates, which involve second excited state of
one of the qubits [Strauch03, DiCarlo10], as well as due to readout-induced
state transitions [Sank16]. In both of the demonstrated experiments, the
auxiliary qubits were predominantly read out in their ground state which is
less susceptible to readout-induced leakage. The only exception to that is
the entanglement stabilization experiment with Pauli frame updating, in
which case the individual auxiliary qubit readout outcomes approach an
equal mixture of |0⟩ and |1⟩ after a few cycles. We do observe a reduction
of fidelity in the experimental data at larger cycle numbers N , which is not
present in the simulation, see the orange points and line in Fig. 3.4(a) This
trend suggests that leakage could be occurring in this particular scenario,
but further investigation is required to confirm this hypothesis. Further open
questions include how detrimental leakage errors would be when repeating
the stabilizer measurements for even longer, say hundreds of cycles, and
when scaling the code distance.

As the next step, we deploy the general architecture demonstrated in
those experiments to a distance d = 3 surface code, see Chapter 4. While
designing the parameters of the device, we keep in mind the lessons from
the small-scale experiments, that is, the necessity of fast and low-crosstalk
readout and two-qubit gates, and a low qubit-qubit dispersive coupling rate.
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4
Quantum Error Correction Experiment

Having demonstrated high-fidelity stabilizer measurements in the entan-
glement stabilization and the distance d = 2 error detection experiments,
see Chapter 3, our next objective is to demonstrate the operation of a single
quantum-error-corrected logical qubit using a distance d = 3 surface code.
This task poses several challenges that need to be addressed, some of which
were discussed in Section 3.7. Crucially, to maintain a low rate of errors per
stabilizer measurement cycle, the operations for the stabilizer measurements
need to be executed rapidly relative to the coherence times of the qubits,
while ensuring high fidelity and low crosstalk.

We start the chapter by presenting the concept of the d = 3 surface code
and the circuit that we have implemented for its operation, see Section 4.1.
Due to the large number of simultaneous two-qubit gates required by the
code, careful consideration is given to the frequency configuration of the
qubits to enable efficient parallel execution of these gates while minimizing
unwanted couplings between qubits. To address these issues, we present a
novel frequency configuration scheme in Section 4.2. We present the quantum
device and its parameters in Section 4.3, followed by the presentation of the
quantum error correction (QEC) experiment results in Section 4.4. Among
the many technical challenges that had to be overcome, we discuss the topics
of drive crosstalk cancellation and parasitic two-level defects in more detail
in Section 4.5.

4.1. Concept
The smallest variant of a distance d = 3 surface code comprises nine data
qubits, labeled D1 to D9 here, along with eight stabilizers, denoted ŜZ1 to
ŜZ4 and ŜX1 to ŜX4, which are the products of the Ẑ or X̂ operators of
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Figure 4.1: Quantum error correction concept. (a) Layout of the
data qubits (red) and X- (blue) and Z-type (green) auxiliary qubits, and
the physical couplings between them as thick gray lines. The support of the
logical operators is indicated as black lines. (b) The conceptual circuit for
an error correction measurement including initialization, repeated stabilizer
measurement with pipelined parity maps and auxiliary qubit readout, and
final data qubit measurement. See main text for more details. (c) The four
steps of simultaneous CZ gates for the ŜZ (green background) and ŜX (blue
background) parity maps are indicated with thick black lines.

the two or four neighboring data qubits [Horsman12]. The layout of such a
device, where we label the auxiliary qubits used to measure the stabilizers
as Z1 to Z4 and X1 to X4, correspondingly, is shown in Fig. 4.1(a). As
described in Section 1.3, we define the logical Pauli operators as products of
single-qubit Pauli operators in one row or column

ẐL = ẐD1ẐD2ẐD3 and X̂L = X̂D1X̂D4X̂D7. (4.1)

These operators commute with all the stabilizers and satisfy the usual
anticommutation relation ẐLX̂L = −X̂LẐL. See also Appendix A for a
potential set of destabilizers, which flip one stabilizer without disturbing
the logical operators, and can be used for efficient simulation of Clifford
operations on the code. Equivalent definitions for the logical operators can
be obtained by multiplying either operator with any of the stabilizers.
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To reduce the number of gates that need to be executed simultaneously,
we employ a pipelined circuit where parity maps for the ŜZ stabilizers are
executed while the auxiliary qubits for the ŜX stabilizers are read out, and
vice versa, see Fig. 4.1(b) [Versluis17]. Since our architecture utilizes the CZ
gate as the physical two-qubit gate, which maps the Ẑ parity of the data
qubits to the phase of the auxiliary qubit, we change the basis of the data
qubits for the ŜX measurements using

√
Y† and

√
Y rotations. To implement

the parity maps of either ŜZ or ŜX stabilizers, twelve CZ gates need to be
executed, distributed across at least four steps of gates that are executed
in parallel. An example of these four steps, where all gates in the same
intercardinal direction (NW, NE, SE, SW) are executed simultaneously, is
shown in Fig. 4.1(c). Note that each step involves two gates on neighboring
qubits which must be executed in parallel and therefore require careful
consideration to avoid unwanted interactions.

To initialize a specific logical state, we prepare the data qubits in a
separable state that is an eigenstate of the corresponding logical operator
and a +1 eigenstate of as many stabilizers as possible. By starting in an
eigenstate of a stabilizer, we can detect errors, signaled by a flip of the
stabilizer value, already during the first measurement of that stabilizer.
More specifically, we prepare |000000000⟩, |100100100⟩, |+++++++++⟩, or
|−−−++++++⟩ on qubits D1 to D9 to prepare the |0⟩L, |1⟩L, |+⟩L, or |−⟩L,
respectively. To measure the logical qubit state, we read out the data
qubits in either the Ẑ or X̂ basis, depending on the logical operator that is
measured. We calculate ẐL or X̂L along with a final set of stabilizer values
as the product of the corresponding data qubit readout outcomes.

4.2. Device Architecture

An important factor for achieving fast, high-fidelity, and low-crosstalk imple-
mentation of single-qubit gates, two-qubit gates, and readout is the choice of
qubit frequencies for idling and for two-qubit gate interactions. In this work,
we consider architectures with static, as opposed to tunable, couplings, which
results in devices that are simpler to fabricate and control due to a smaller
number of Josephson-junction-based flux-tunable elements [Collodo20]. A
scheme proposed in Ref. [Versluis17] addresses these considerations and is
scalable by repeating the same frequency configuration pattern by making
use of three distinct idling frequencies. In the proposed scheme, all qubits
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idle at their upper flux-insensitive point. For the auxiliary qubits this
corresponds to a middle frequency ωM, while data qubits are distributed
between high and low idling frequencies denoted ωH and ωL, respectively, see
Fig. 4.2(a,b). For the execution of a CZ gate between two qubits Q1 and Q2,
the qubit with the higher idling frequency Q1 is tuned down in frequency for
the interaction. Additionally, neighboring qubits in the frequency band of Q2
are also tuned down to ensure that they do not participate in the interaction.
These additional pulses prevent unwanted crossing of neighboring qubits
that should not interact, and allow the qubits to stay at their first-order
flux-insensitive positions for most of the QEC cycle. However, the extensive
use of flux-bias pulses on qubits that are neighboring, but not directly in-
volved in the CZ gates leads to some disadvantages. Biasing the qubits away
from their flux-insensitive frequencies leads to additional dephasing and
complicates the execution of single-qubit gates and readout simultaneously
with the two-qubit gate, as the qubit frequency will depend on whether the
nearby two-qubit gate is executed. Moreover, if a bias tee is employed in
the flux line, as is the case for our setup, then unipolar pulses can lead to
long-lasting flux distortions that are challenging to correct [Neill18, Rol20].

We propose a novel frequency configuration scheme for surface codes,
which facilitates the parallel execution of operations, thereby simplifying
the tune-up and operation of the device. In this scheme, all data qubits
idle at their lower flux-insensitive frequencies in a frequency band denoted
ωL, and auxiliary qubits idle at their upper flux-insensitive frequencies in
a frequency band denoted ωH, which are at the lower and upper limits of
the frequency band used for qubits. To enable CZ gates, the high-frequency
qubits are flux-biased down in frequency while the low-frequency qubits are
biased up, bringing them together at an intermediate interaction frequency.
This configuration eliminates the need for pulses on neighboring qubits that
are not involved in the gate, thereby reducing the associated dephasing and
easing the parallel execution of operations. During the implementation of the
CZ gate, the higher-frequency qubit will occupy the second excited state of
the transmon, which might lead to leakage errors. Leakage on the auxiliary
qubit is less detrimental than leakage on the data qubits, as the auxiliary
qubits are repeatedly read out, which facilitates the detection and correction
of the leakage events [Lacroix23]. Furthermore, having the data qubits at
lower frequencies can be advantageous for the performance of the QEC code.
This is because the logical error rate in a surface code is more sensitive to data
qubit errors than auxiliary qubit errors [Fowler12b], and transmon qubits
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Figure 4.2: Frequency configuration architectures. Frequencies of
a subset of qubits from a larger surface code grid (a) during idling and
(b) during simultaneous CZ gates between D1-Z1 and D2-Z2 pairs for the
three-idling-frequency configuration proposed in Ref. [Versluis17]. (c) Idling
and (d) gate frequencies for the newly-proposed two-idling-frequency con-
figuration. In all panels, thick, dashed and dotted lines indicate the first,
second and third transmon transition frequency, respectively. The color of
the lines matches the color on the qubit in the diagram below. The gray
wavy lines indicate undesired dispersive interactions between the transmons.
Wide arrows in panels (b) and (d) indicate the change of qubit frequency
during gates compared to idling, while the black double arrows indicate the
resonant |20⟩ ↔ |11⟩ interaction used for the CZ gates. The black dots in
the diagram below panel (b) indicate qubits that are not involved in the CZ
gates, but are biased away from their flux-insensitive point.
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typically have longer coherence times at lower frequencies due to weaker
coupling to the environment [Martinis05, Koch07]. If the readout resonators
have higher frequencies than the qubits, then the proposed frequency scheme
has another advantage. In such a setting, the auxiliary qubits, which
undergo repeated readouts during the operation of the code, have a small
detuning from their corresponding readout resonators. This facilitates the
implementation of fast and high-fidelity readout for the auxiliary qubits.

Next, we examine the dispersive qubit-qubit couplings for the two fre-
quency schemes in more detail. According to Eq. (2.21), the dominant
terms contributing the dispersive coupling are proportional to 2J2

QQ/∆21
if the qubits are in the computational subspace and 3J2

QQ/∆31 if the high-
frequency qubit can be in the |2⟩ state. Here, ∆ij represents the detuning
between the i-th transition of the high-frequency qubit and j-th transition
of the low-frequency qubit. With the three-idling-frequency scheme, to
ensure the detunings in the dominant terms are at least ∆min, we need
a separation between the highest and lowest frequency band of at least
ωH − ωL′ = 4∆min + 2|αH| + 2|αM|. Here, αH and αM are the anharmonic-
ities of the high- and medium-frequency band qubits, respectively. The
detunings that set this limit for ∆min are indicated as gray wavy lines in
Fig. 4.2(b). On the other hand, for the two-idling-frequency scheme, the
minimum separation is smaller ωH − ωL = 3∆min + 3|αH|, see Fig. 4.2(d)
and the gray wavy lines. This means that the overall error due to dispersive
qubit-qubit couplings during gates will be smaller for this scheme. The
situation is even more in favor of the two-idling-frequency scheme during
idling, see Fig. 4.2(a,c).

While the proposed frequency configuration scheme offers several advan-
tages, it does have some limitations when scaling to larger surface code
sizes. One drawback is the lack of a repeating frequency configuration
pattern at large scales. As an example, let’s consider the case of executing
two CZ gates in parallel on neighboring data-auxiliary qubit pairs, labeled
D1-Z1 and D2-Z2 as shown in Fig. 4.2(d). To avoid unwanted interactions
between the neighboring qubits Z1 and D2, the interaction frequency ωI1
of D1-Z1 needs to be higher than the interaction frequency ωI2 of D2-Z2.
When extending this requirement for a distance d surface code, where
k = (d + 1)/2 neighboring gates need to be executed in parallel, we find
that k distinct interaction frequencies need to fit between ωH and ωL with a
large detuning between them. By executing the parity maps in more than
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four steps, the simultaneous gates could be executed without neighboring
each other, rendering the frequency configuration scalable at the cost of a
longer cycle time. Another downside of the two-frequency-band scheme is
that it requires the qubits to maintain good coherence over a wide range of
frequencies to implement all the two-qubit gates. This can be particularly
complicated if parasitic strongly-coupled two-level systems are present in
the system [Simmonds04, Lisenfeld15, Müller19], as even crossing the qubit
over one of these defects can lead to significant population loss as we present
in Section 4.5.2.

4.3. Device Parameters

We design and fabricate a 17-qubit quantum processor to implement quantum
error correction protocol, see the optical micrograph in Fig. 4.3. The
device is fabricated using a thin niobium film on a silicon substrate, with
Josephson junctions made of aluminum and aluminum oxide, as well as
aluminum-titanium-aluminum trilayer airbridges, following our standard
recipe, see Ref. [Krinner22] for details. Each qubit (highlighted in yellow)
has an individual microwave drive (pink) and flux control (green) line, as
well as an individual readout resonator (red). The readout resonators are
coupled to one of the four frequency-multiplexed feedlines (purple) through
individual Purcell filters (blue), which help suppress qubit decay via the
readout resonators and minimize data qubit dephasing due to auxiliary qubit
readout [Heinsoo18]. Two-qubit interactions between neighboring qubits
are mediated by short capacitively coupled sections of coplanar waveguide
(cyan), see Section C.3.

To ensure a low charge dispersion of low-frequency qubits, and to re-
duce residual inter-qubit dispersive couplings, we target a low charging
energy of EC/h = 165 MHz for all the qubits, leading to anharmonicities
α/2π = −177(7) MHz. At this value, the charge dispersions of the first and
second transition of a qubit are low enough that it will not be the limiting
mechanism for dephasing [Koch07]. More specifically, in the worst case for
a qubit at 3.5 GHz the values are 1 kHz and 33 kHz, respectively. For the
qubit frequencies, we employ the two-idling-frequency-band configuration
presented in Section 4.2. The data qubit frequencies ωD/2π are between
3.7 GHz and 4.1 GHz, and auxiliary qubit frequencies ωX|Z/2π between
5.9 GHz and 6.3 GHz, see Fig. 4.4(a). To implement two-qubit gates, we
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Figure 4.3: Error correction device. (a) Full-view false-color micro-
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the components. (b) Zoom-in of the qubit X3.
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apply flux-bias pulses to both qubits such that the first transition of the
data qubit and second transition of the auxiliary qubit meet at a frequency
ωI/2π ranging between 4.3 GHz and 5.6 GHz. The readout resonator fre-
quencies ωR/2π are between 6.8 GHz and 7.6 GHz. To read out the data
qubits, we utilize unipolar flux-bias pulses that bring the data qubits to
approximately 5 GHz, reducing their detuning from the readout resonators
to reduce readout-induced state transitions and increase the dispersive
shift [Sank16, Khezri22, Swiadek23]. The combinations of Purcell filter
linewidths κP/2π = 29(5) MHz, readout resonator and Purcell filter cou-
plings JPR/2π = 29(2) MHz and the detunings between the Purcell filters and
the readout resonators ∆PR/2π = 9(14) MHz result in effective linewidths
of κR′/2π = 13(5) MHz and dispersive shifts of χ′/2π = −2.2(11) MHz for
the eigenmode of the readout resonator and Purcell filter system that is
used for readout. The energy relaxation times T1 of the qubits range from
12 µs to 66 µs with a median of 30 µs, whereas the echo-dephasing times T e

2

73



Chapter 4. Quantum Error Correction Experiment

range from 16 µs to 89 µs with a median of 49 µs, see Fig. 4.4(b) for the
distributions.

We read out the qubits with a 200-to-300-ns-long pulse and integrate the
response for 400 ns, achieving a median multiplexed qubit readout error of
εrm = 0.7%, see Fig. 4.4(c). When classifying also for the second excited
transmon state |2⟩, the median error is εr′m = 1.9%. The single-qubit
gates, implemented using 40-ns-long truncated Gaussian pulses of width σ =
10 ns and utilizing derivative removal by adiabatic gate (DRAG) [Motzoi09,
Gambetta11], achieve a median gate error of ε1i = 0.07% when individually
characterized using randomized benchmarking [Magesan11, Epstein14]. For
two-qubit gates, we apply distortion-corrected [Rol20] net-zero flux-bias
pulses on both interacting qubits, and optimize the conditional phase to π
by controlling the phase kick between the |20⟩ and |11⟩ states at the middle
of the pulses, see Section 2.4. The coupling rates between neighboring qubits
at their interaction points are approximately JQQ/2π ≈ 7 MHz, leading
to a worst-case swap angle of θ = 4 arctan |2JQQ/α| = 0.31 rad, which
corresponds to a gate error of ε2i = (5 − 4 cos θ/2 − cos θ)/10 = 1.0%, see
Appendix B. However, we expect that the actual swap errors are smaller
due to the finite rise and fall time of the flux-bias pulses of around 1 ns
and nonconstructive interference between the four edges of the net-zero
pulse. In practice, we find a median two-qubit gate error of ε2m = 1.2%
from interleaved randomized benchmarking [Magesan12, Barends14], when
simultaneously characterizing the sets of gates that are executed in parallel
during the surface code cycle.

4.4. Results

To verify the high-fidelity operation all gates and readouts, we first charac-
terize the eight stabilizers individually. For each stabilizer Ŝ, we prepare
the data qubits in product states that are also eigenstates of the stabilizer,
execute the parity map circuit, and read out the auxiliary qubit. The
average measurement outcomes, see Fig. 4.5, reveal a mean stabilizer error
ranging from εS = (1 − S⟨Ŝ⟩)/2 = 2.5% to 5.7% for weight-two stabilizers,
and from 5.9% to 11.8% for weight-four stabilizers, with S denoting the
expected stabilizer outcome. To further validate these results, we simulate
these experiments using Monte Carlo wave functions [Dalibard92, Dum92].
We find errors that are slightly lower than in experiment, between 2.0% and
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Figure 4.5: Error correction stabilizer fidelity. Average outcomes of
stabilizer measurements for (a–d) Z-type and (e–h) X-type stabilizers for
various neighboring data qubit states as filled bars. The gray lines and black
boxes indicate the target stabilizer value and master equation simulation
result, respectively. The average measured stabilizer error probability εS is
indicated for each stabilizer.
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4.4% for weight-two, and between 3.9% and 5.0% for weight-four stabilizers.
Additional details of the simulation can be found in Ref. [Krinner22]. Over-
all, the low error probabilities and good quantitative match between the
measured and simulated stabilizer errors indicate that individual stabilizer
measurements are working well and the error mechanisms are understood.

To analyze the fidelity of logical state preparation, let’s consider the
example of preparing the |0⟩L state. We prepare the data qubits in the
product state |0⟩⊗9 and measure one cycle of stabilizers, see Fig. 4.1(b)
for the conceptual circuit. The duration of this one cycle of stabilizer
measurements is Tcyc. = 1.1 µs. Runs where any of the read-out qubits
are classified as being in the |2⟩ state are discarded. Because the initially
prepared state is a +1 eigenstate of the Z-type stabilizers, their measurement
outcomes should ideally be +1. On the other hand, for each of the ŜXi

stabilizers, we expect a random outcome SXi = ±1 with equal probability
for each value. The measurement projects the state to a mutual eigenstate
of all the stabilizers, leaving the value of the logical operator ẐL unaffected.
The probability of the resulting state ρ̂ being in the logical subspace is
calculated as PL = Tr(Π̂Lρ̂), where the projector to the logical subspace is
given by

Π̂L =
4∏︂

i=1

(︄
Î − ŜZi

2

)︄ 4∏︂
i=1

(︄
Î − SXiŜXi

2

)︄
. (4.2)

Here, we adjust the sign of the X-type stabilizers to the stabilizer mea-
surement outcomes SXi in each run of the experiment. Furthermore, the
fidelity to the target state is calculated by additionally projecting onto the
ẐL = +1 subspace as F = Tr((Î + ẐL)Π̂Lρ̂)/2. Expanding the traces to
sums of multi-qubit Pauli operator expectation values, we calculate the
values PL = 54.2(1)% and F = 54.0(1)% as the weighted sum of 29 exper-
imentally measured terms [Nigg14]. As in Section 3.6, the fidelity of the
state within the logical subspace is calculated as FL = F/PL = 99.6(2)%.
This fidelity corresponds to one minus the probability of an error occurring
that is undetectable from the stabilizer measurements in the subsequent
cycles.

On the other hand, the overlap of the physical state with any state Ê |0⟩L,
where Ê is a correctable Pauli error, is given by

FL,C =
∑︂
Ê

Tr(Ê(Î + ẐL)Π̂LÊ
†ρ̂)/2 = 96.0(9)%. (4.3)
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Here, we consider an error Ê to be correctable if the class of errors with
the same syndrome and same effect on the ẐL operator, {P̂ Ê}, where P̂
is the product of any subset of stabilizers and ẐL, is more probable than
the class of errors with the same syndrome but different effect on the ẐL
operator, {X̂LP̂ Ê}. We assume that a higher-weight error is always less
probable than any set of lower-weight errors. If the weights of two errors
are the same, we randomly pick one of them to be more probable. See the
supplementary information of Ref. [Krinner22] for more details. The rest of
the eigenstates of ẐL and X̂L operators are prepared in a similar fashion,
preparing other initial data qubit states, see Section 4.1.

Finally, to assess the performance of our implementation of the code,
we repeat the stabilizer measurements for N cycles and extract the logical
coherence times and error probabilities per cycle. The logical state is
initialized during the first cycle using the sequence described above. Instead
of measuring the expectation values of the multi-qubit Pauli operators
after the first stabilizer measurement cycle, we now continue measuring
the stabilizers for N − 1 additional cycles. At the end, we read out the
data qubits either in the Ẑ or the X̂ basis, depending on whether we
prepared an eigenstate of ẐL or X̂L, respectively. Again, we discard all
runs where we identify any of the read-out qubits as being in the |2⟩ state,
which amounts to 7.9(3)% of the runs per stabilizer measurement cycle.
We calculate the raw logical operator value and a set of final stabilizer
values from the final readout. To decode the errors that occurred during
each run of the state preservation experiment and determine whether the
logical operator was flipped, we calculate the error syndrome based on all
the stabilizer measurement outcomes. We use a minimum-weight perfect
matching (MWPM) decoder for the decoding, see Chapter 5 for a detailed
description of the decoding process.

The evolution of the expectation values of the logical operators with the
decoded correction applied is shown in Fig. 4.6. We find that one minus the
error probability for the |0⟩L state after N = 1 stabilizer measurement cycle,
given by (1 + ⟨ẐL⟩)/2 = 95.3%, closely matches the fidelity of the prepared
state in the correctable subspace as given by Eq. (4.3). By simultaneously
fitting the corrected ẐL expectation values when preparing |0⟩L and |1⟩L to
an exponential model ⟨ẐL⟩ = ⟨ẐL⟩t=0 exp(−t/TL

1 ), we extract a decay time
of the ẐL operator of TL

1 = 16.4(5) µs. Similarly, we extract the decay time of
the X̂L operator of TL

2 = 18.2(3) µs from a fit to the corrected X̂L expectation
value after preparing |+⟩L and |−⟩L. Alternatively, we can express the
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Figure 4.6: Repeated error correction. Evolution of the logical op-
erator expectation values (a) ⟨ẐL⟩ and (b) ⟨X̂L⟩ for the initial |0⟩L, |1⟩L,
|+⟩L, and |−⟩L states. The measured and simulated values are indicated as
filled and empty markers, respectively. Solid and dotted lines indicate fits
to exponential models. The decay of the Ẑ and X̂ operators with a median
time-constant for the physical qubits is shown as dashed lines on the right
axis.

performance of the experiment in terms of the probability of logical error
happening each cycle, which we find to be εL

z = [1 − exp(−Tcyc./T
L
1 )]/2 =

3.23(10)% and εL
x = [1 − exp(−Tcyc./T

L
2 )]/2 = 2.93(4)% for errors flipping

ẐL and X̂L, respectively. From a simulation using Monte Carlo wave
functions, we extract the decay times TL

1 = 25.7(2) µs and TL
2 = 26.1(2) µs,

corresponding to error probabilities εL
z = 2.10(1)% and εL

x = 2.07(1)%, in
close agreement with the experimental data, see also open markers and
dotted lines in Fig. 4.6. Comparing the logical qubit performance to the
physical qubits, we find that the ẐL and X̂L decay times are slightly shorter
than the median physical qubit energy relaxation time T1 = 30 µs and echo
dephasing time T e

2 = 49 µs, see dashed lines in Fig. 4.6. Similarly, the
logical error probabilities are only slightly larger than the median physical
two-qubit gate error ε2m = 1.2%. Assuming a quadratic scaling between
the logical and physical error rates [Fowler12b], we expect that only a
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modest reduction of the physical error rates could lead to the logical qubit
performance surpassing physical qubit performance.

4.5. Technical Challenges

Several technical challenges had to be overcome to achieve the high-fidelity
operation of the device required for the logical error rate to approach break-
even with the physical error rate. These challenges encompassed drive-, flux-
and readout-crosstalk, flux-bias pulse distortion compensation, accurate
timing calibration of the pulses, and mitigating interactions with parasitic
two-level systems (TLSs) on the device. We discuss one particular readout
crosstalk mechanism, that is, intermodulation distortion in the traveling-
wave parametric amplifier (TWPA) that is used to amplify the readout
signals, in detail in Chapter 6. In this section, we discuss two specific
challenges: drive crosstalk and the interactions with parasitic TLSs.

4.5.1. Drive Crosstalk

To characterize the coupling rates between the drive lines and qubits of
the device, we use a cross-Rabi measurement. Specifically, we measure the
excited state population of a qubit Qj while sweeping the amplitude of
a 400-ns-long drive pulse with a Gaussian envelope (σ = 100 ns) that is
applied to drive line DLQi of Qi at the frequency of qubit Qj. We extract
the pulse amplitude aDLQi

Qj corresponding to a π-rotation from a cosine fit.
Analysis of the ratios of amplitudes for driving qubits Qj and Qi via drive
line DLQi of Qi reveals that the cross-talk is mostly effectively suppressed,
see Fig. 4.7(a).

A few qubit pairs, however, have larger-than-expected cross-couplings.
For example, the qubit and drive line pairs Z1-DLD4, D1-DLX2, X2-DLD5,
D9-DLX3, and Z4-DLD6 are as strongly coupled as the drive lines to their
targeted qubits. This cross-coupling is likely mediated by the strongly-
coupled qubit-qubit couplers, see Fig. 4.3. However, since these drive lines
address qubits in a different frequency band compared to the cross-coupled
qubits, the cross-driving will be far-detuned. Based on simulated evolution
under the detuned drive, the frequency shift of the cross-coupled qubit
when applying an X gate on the targeted qubit leads to average errors of
ε1m = 0.17% and 0.06% with respect to the identity operation for the two
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Figure 4.7: Drive crosstalk. (a) Logarithm of the ratio of pulse am-
plitudes needed to drive a π-rotation on qubits Qj and Qi via the drive
line DLQi of qubit Qi. The ratios less than 101.5 ≈ 32 are indicated with
numbers. The two drive line and qubit pairs for which we interferometrically
cancel the crosstalk are circled in red. (b) The circuit for the calibration of
crosstalk cancellation. The ? denotes the combined effect of the X pulse
on D5 and the cancellation pulse applied to drive line of D1. The angle θ of
the Zθ/π gate is swept to find the phase shift and contrast loss due to the
pulse on D5. (c) Phase shift ∆φ of D1 as a function of cancellation pulse
delay ∆t (circles) together with a fit (line) to an empirical Gaussian-filtered
piecewise linear function. The gray lines indicate the minimum, maximum
and symmetry point of the fitted model. (d) Phase shift ∆φ (black) and
contrast c (green) of D1 as a function of the relative phase ∆ϕ between
the pulses applied to drive lines of D1 and D5. The filled circles and open
squares indicate values when an X or Y gate is applied to D5, respectively.
The dotted lines connect the points as guides to the eye, and the gray
vertical line indicates the optimal relative phase ∆ϕ.
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worst pairs D1-DLX2 and D9-DLX3, respectively. The error is less than 0.01%
for any other auxiliary and data qubit pair. For all qubit pairs within the
same frequency band, we expect to find average errors due to drive crosstalk
below 0.11%, except for errors on D1 and D4 when applying π-rotations
on D5, which we calculate to be ε1m = 19.2% and 16.5%, respectively. The
large cross-coupling rate between the drive line DLD5 and qubits D1 and
D4 is likely due to a combination of capacitive coupling at points where the
drive line crosses over the qubit-qubit couplers between Z1-D1 and X2-D4,
see Fig. 4.3. Another cross-coupling mechanism could be inductive coupling
between the bond wires connecting the drive lines to the carrier circuit
board, see Section 2.5 and Ref. [Haegi23].

We mitigate the crosstalk from drive line DLD5 to the cross-coupled
qubits D1 and D4 by applying pulses to their respective drive lines which
interferometrically cancel with the cross-coupled drive. Achieving high-
fidelity cancellation requires an accurate calibration of the delay, phase, and
amplitude of the cancellation pulse relative to the effect of the cross-coupled
pulse sent to DLD5. To this end, we use a Ramsey sequence on the cross-
coupled qubit D1 or D4, where we apply an X or a Y gate on the target
qubit D5 at the middle of the circuit, see Fig. 4.7(b). Ideally, we want to
implement an X or a Y on the target qubit D5 and an identity on the cross-
coupled qubit D1 or D4. Because in our device the bandwidth of the pulse
on the target qubit is comparable to its detuning from the cross-coupled
qubit, the detuned drive can implement an arbitrary singe-qubit rotation of
the cross-coupled qubit.

To align the pulses in time, we sweep the relative delay of the cancellation
pulse and the cross-coupled pulse ∆t and measure the phase shift ∆φ of
the cross-coupled qubit using the Ramsey sequence, see Fig. 4.7(c). We
see a difference in ∆φ depending on the order of arrival of the cancellation
pulse and the cross-coupled pulse because the rotation axes are different
and therefore the operations do not commute. Due to the symmetry of the
pulse sequence, the cross-coupled pulse and cancellation pulse are aligned at
the symmetry point of the response, see the vertical gray line in Fig. 4.7(c).

We calibrate the relative phase ∆ϕ and amplitude of the cancellation pulse
with a similar Ramsey sequence, sweeping them and optimizing for a small
Ramsey phase shift ∆φ and a high contrast c, see Fig. 4.7(d). Although
the optimization landscape is complex due to the off-resonant drive with a
time-dependent pulse envelope, we find a set of parameters where ∆φ ≈ 0
and c ≈ 1 for both X and Y gates on D5. We note that, for the phase
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difference of the cancellation pulse and the cross-coupled pulse to remain
stable over long timescales, it is crucial to use the same microwave generator
as the local oscillator when up-converting the pulses from baseband to
microwave frequencies.

4.5.2. Parasitic Two-Level Systems

A major challenge in scaling superconducting-circuit-based quantum pro-
cessors to larger scales [Arute19, Klimov20] is the ubiquitous presence of
parasitic TLSs [Simmonds04, Müller19]. The exact microscopic nature of
the TLSs is not fully understood, but they have been observed in various
superconducting qubit architectures [Simmonds04, Barends13, Sun23], giv-
ing rise to fluctuations of qubit frequency and decay rates. While thermal
fluctuations of low-frequency TLSs can cause dephasing, high-frequency
TLSs can interact directly with the qubit, leading to energy relaxation.
On our device, we observe many such high-frequency parasitic modes with
an average density of 0.83(16)/GHz [Zanuz23] when counting defects with
coupling rates gTLS/2π > 0.5 MHz. An avoided crossing of the qubit D2
with one such strongly-coupled defect is visible in two-tone spectroscopy, see
Fig. 4.8(a), where the readout signal is shown as a function of qubit drive
frequency and flux bias. We extract a coupling rate of gTLS/2π = 31.5 MHz
from a fit to an avoided-crossing model, which is significantly larger than
the coupling rate between neighboring qubits JQQ/2π ≈ 7 MHz.

To verify that the parasitic mode is indeed a two-level system, and not
a spurious harmonic mode, we perform the following experiment. First,
we excite the defect by driving it via the drive line of D2 with a 400-ns-
long Gaussian pulse (σ = 100 ns) with a variable amplitude Ω0. We then
tune the qubit into resonance with the defect using a flux-bias pulse for a
duration τ , during which the systems undergo resonant population swaps,
see Fig. 4.8(b,c) for the resulting qubit populations and the circuit.

To compare the experimental results with simulations, we calculate the
state of the defect by evolving the ground state under the effect of the drive
Hamiltonian

Ĥd = Ω(t)e−i∆dtσ̂TLS
− + c.t., (4.4)

with the pulse envelope Ω(t) = Ω0e−t2/2σ2 and detuning ∆d. Here, σ̂TLS
−

is the annihilation operator of the parasitic TLS. The resonant interaction
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pulse amplitude is swept uniformly between zero (light purple) and the
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of 1, instead of a two-level system. (c) Circuit diagram for the experiment
in (b). Resonant interaction for τ implements the operation iSWAPθ/π with
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between the qubit and the defect is described by the Hamiltonian

Ĥ int = gTLSσ̂
TLS
− σ̂D2

+ + c.t., (4.5)

where σ̂D2
+ = (X̂D2 − iŶ D2)/2 is the creation operator of the qubit. The

experimental data shows good agreement with the described model, see the
solid lines in Fig. 4.8(b). The remaining differences between the experimental
data and simulation might be due to compression of the up-conversion
electronics when applying high-amplitude pulses needed to drive the defect
mode. In contrast, replacing the two-level defect annihilation operator σ̂TLS

−
in Eq. (4.5) with a harmonic oscillator annihilation operator âTLS yields the
time evolution indicated with a dashed line. The model corresponding to the
two-level defect matches the data much better than the one corresponding
to the spurious harmonic mode, indicating that the defect is indeed a TLS.
Employing the direct microwave drive of the TLSs and readout by swapping
into the qubit, we characterize the coherence times of five defects in time
domain. We find energy relaxation times T1 between 0.3 µs and 1.9 µs,
Ramsey dephasing times T ∗2 between 0.08 µs and 1.0 µs, and echo dephasing
times T e

2 between 0.2 µs and 1.5 µs, consistent with previously reported
values [Lisenfeld16].

To characterize the overall count and frequency-distribution of the two-
level systems, we employ the defect spectroscopy method [Shalibo10, Lisen-
feld15]. We first excite the qubit to the |1⟩ state, and then tune it to various
interaction frequencies ωQ for either τ = 100 ns or 1 µs using a square flux-
bias pulse. The final population p0 of the |0⟩ state indicates the excitation
loss at the frequency ωQ, see Fig. 4.8(d). We see a multitude of peaks in the
defect spectra, which we associate with individual TLSs coupled to the qubit
with various rates. Most of the observed defects have weak couplings to the
qubit and do not significantly affect the execution of the surface code proto-
col as long as the qubits are not resonant with the defect during idle periods
or two-qubit gates. However, we also observe a few very-strongly-coupled
defects, for which the population loss is significant p0 > 1% even when the
qubit only crosses the defect without staying resonant during the flat part of
the flux-bias pulse. These very-strongly-coupled defects usually exhibit an
oscillating tail in the defect spectrum when measured with a short flux pulse
(τ = 100 ns) due to interference between the coherent population swaps
when crossing in the two directions, see for example the defect at 4.8 GHz
coupled to D7 in Fig. 4.8(d). The oscillations are not visible with the longer
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flux pulse length of τ = 1 µs due to dephasing of the defect during that time.
We observe one or two of such defects per 17 qubits on average. To prevent
errors due to interactions with the very-strongly-coupled TLSs, we choose
gate interaction frequencies that avoid crossing these defects. However,
this constraint can limit the range of available interaction frequencies, and
thereby lead to increased dispersive qubit-qubit couplings during gates. In
the experimental results presented in Section 4.4, we reduced the interac-
tion frequency for the gate Z2-D7 to avoid crossing D7 with the strongly
coupled defect. Furthermore, we changed the gate order from that indicated
in Fig. 4.1(c) by swapping the time slots of gates Z3-D5 and Z3-D6 to avoid
interactions between Z2 and D5 when implementing the gates Z2-D7 and
Z3-D5 in parallel.

4.6. Discussion

We have presented the first demonstration of a repeated quantum error
correction of errors on both ẐL and X̂L operators in a superconducting circuit
architecture. The necessary technological components for this result include
high-fidelity and low-crosstalk frequency-multiplexed readout, and high-
fidelity two-qubit and single-qubit gates, as well as a high-yield fabrication
process. We achieve logical error probabilities that are close to, but slightly
higher than the native physical error probabilities, indicating that we are
approaching the break-even point. However, there are a few technical
challenges that were largely unaddressed in this work that need to be
overcome for future experiments of larger scale and higher fidelity, which we
discuss below.

Physical errors that lead to highly correlated error syndromes are detri-
mental for the performance of QEC [Aharonov06, Fowler13a]. In particular,
in this work, we mitigated the effect of leakage of the transmon qubits
outside the computational subspace, mostly caused by two-qubit gates and
readout, by discarding any runs where the auxiliary qubit was read out in
the |2⟩ state. By extrapolating the current per-cycle leakage probability
of 7.9% to a d = 5 code, we expect a per-round leakage probability of
21.9%, assuming the leakage probability for each auxiliary qubit stays the
same. At this leakage rate, the survival probability after N = 20 cycles of
stabilizer measurements will be just 0.7%. To overcome the challenge in a
scalable fashion, it will be crucial to actively bring the qubits back to the
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computational subspace, for which various techniques have been recently
demonstrated [Miao22, Marques23, Lacroix23], in addition to reducing the
leakage caused by individual operations.

Another major challenge for realizing the experiment were the strong
interactions between qubits and spurious TLSs. The few very-strongly-
coupled defects that we observed in each of the seven defect configurations
on this device severely limited the choice of interaction frequencies such that
executing all the gates without substantial population loss into the defects
was not possible. Only for the one defect configuration, see Fig. 4.8(d), and
by changing the gate order, were we able to implement all the stabilizer
measurements with high fidelity. While the defect configurations randomize
when warming up the device to room temperature, the probability of a usable
defect mode configuration becomes exponentially small with increasing qubit
numbers. Therefore, reducing the density of very-strongly-coupled defects
will be crucial for implementing a larger-scale surface code. One approach
to achieve this would be to reduce the junction size, as there is evidence
that the defect density scales with the dimensions of the junction [Mamin21,
Bilmes22, Zanuz23]. Alternatively, different junction fabrication techniques
and materials could be investigated [Oh06, Kim21]. It will also be useful
to employ flux pulse shapes that can cross defects or other qubits without
significant population exchange [Orekhov22], but the robustness of such
schemes against time-variation of defect properties is yet to be demonstrated.
It has also been demonstrated that the defect frequencies can be controlled
by changing the mechanical strain in the device, which might allow to avoid
collisions with the very-strongly-coupled defects [Lisenfeld16].

Overcoming the technical challenges identified in this study would open
up possibilities for the realization of several interesting experiments. To
demonstrate that QEC can be useful for exponentially suppressing the
logical error probability, experiments where the distance of the code is
increased are required. An experiment where a d = 5 surface code marginally
outperforms a d = 3 code has recently been demonstrated in Ref. [Acharya23].
Furthermore, the implementation of two-qubit gates [Horsman12, Fowler12b],
and the fault-tolerant preparation of magic states [Fowler12b] required for
logical non-Clifford gates are yet to be demonstrated. Because the gate
sequences of these operations are conditional on the outcomes of mid-circuit
logical measurements [Gottesman99b, Horsman12], real-time decoding of
the syndromes will be required to implement them without postselection.
In a recent experiment, high-fidelity but non-fault-tolerant preparation of
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arbitrary states in a surface code was demonstrated [Ye23].
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5
Decoding Error Syndromes

Typical errors in the quantum error correction (QEC) codes are accom-
panied by flips of the stabilizer values. These changes in the stabilizer
values, called syndrome elements, can then be used to infer whether the
logical operator was flipped, a process called decoding. While the main
challenge in implementing quantum error corrected devices remains the
production of large devices with low error rates, a topic of rising relevance is
how to efficiently decode large scale devices [Battistel23, iOlius23]. Accurate
decoding always relies on a good error model of the device. The topic of this
chapter, based on Ref. [Remm23b], is to describe how we implement the
minimum-weight perfect matching (MWPM) decoder for the experimental
results presented in Chapter 4, and how the correlations in the syndrome
data can be used to derive an error model of the device. This error model
can then be used to find optimal parameters for the decoder, but also to
diagnose issues in device performance such as crosstalk or leakage.

Different physical errors at various locations in the gate sequence lead to
specific stabilizers being flipped. We discuss how basic physical errors prop-
agate through the circuit and classify their corresponding signatures in Sec-
tion 5.1. We then explain how one of the most common decoding algorithms,
the MWPM decoder, was implemented for the results presented in Chapter 4
in Section 5.2. In previously published work, the decoding of experimental
quantum error correction data has relied on error models either numerically
optimized for maximal logical fidelity [Sundaresan23], analytically calcu-
lated from correlations between syndrome elements [Chen21, Krinner22], or
numerically optimized to match the higher-order correlations between syn-
drome elements [Chen22, Acharya23]. Here, we present an analytical method
to calculate the probability of any error event that can flip an arbitrary
number of syndrome elements, based on the higher-order correlations in the
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Chapter 5. Decoding Error Syndromes

syndrome data, see Section 5.3. The method allows for a characterization of
the full error model for any decoding algorithm using the same circuit as for
the final QEC experiment. In addition to using the error model for decoding,
it is also valuable for characterizing device performance. For example, we
find significant presence of errors that correlate with leakage of the data
qubits outside the computational subspace and have signatures that span
multiple syndrome elements over many cycles, which we discuss in detail in
Section 5.4.

5.1. From Errors to the Syndrome

Each stabilizer ŜAi of the surface code is repeatedly measured during the
operation of the code. In our implementation, without resetting the auxiliary
qubits, the effect of the stabilizer measurement circuit is to flip the state of
the corresponding auxiliary qubit Ai if the stabilizer value is SAi = −1, that
is, the parity of data qubits is odd. We can therefore infer the stabilizer value
S

(m)
Ai = M

(m−1)
Ai M

(m)
Ai = ±1 from the change of the measurement outcomes

M
(m)
Ai = ±1, with m being the index of the error correction cycle.
Because the stabilizers involving X̂ and Ẑ operators of each data qubit

are repeatedly measured, all physical single-qubit errors get projected to bit
and phase flips. These bit and phase flips of the physical qubits will cause
some stabilizers to flip and might also flip the logical operator values X̂L
and ẐL, depending on where the error occurred. Because the physical errors
are signaled not by specific stabilizer values, but by the changes in them, we
provide the syndrome elements σ(m)

Ai = (1 − S
(m−1)
Ai S

(m)
Ai )/2 = 0, 1 as inputs

to the decoding algorithm. The set of all syndromes elements generated from
one run of the QEC experiment is called the syndrome. Furthermore, we
call the set of syndrome elements that is flipped by an independent physical
error the signature of that error. Next we will discuss the signatures of the
most common errors.

Let’s consider a bit flip (X̂) error on one of the data qubits, indicated by
the orange cross in Fig. 5.1(a). Note, that this error is equivalent to a phase
flip (Ẑ) before the preceding

√
Y gate on that qubit. Because a bit flip error

before a CZ gate creates a phase flip after the CZ gate on the other qubit,
the error propagates to the two auxiliary qubits that neighbor the data
qubit as phase flip errors. These phase flip errors will change the outcomes
of the following auxiliary qubit readouts. As the error on the data qubit
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Figure 5.1: Syndrome generation. (a) The circuit for two cycles of
syndrome measurement, with a data qubit as a red circle and auxiliary
qubits as split blue-green circles. The propagation of a bit flip error (orange
cross) and a phase flip error (purple cross) is indicated with orange (as
a bit flip) and purple (as a phase flip) lines. The measurement outcomes
that are flipped as a result of the bit flip error are marked with a orange
background. (b) The corresponding measurement outcome flips are indicated
as black (M = −1) and gray (M = +1) squares, stabilizer value flips as
green (S = −1) and gray (S = +1) diamonds, and syndrome element flips
as red (σ = 1) and gray (σ = 0) circles. The physical error locations are
indicated as orange and purple crosses and the two syndrome elements that
are flipped by each error are connected by a red line.

remains, the auxiliary qubits will be flipped again in every consecutive cycle
the same way. Converting the measurement outcome flip M

(m)
Ai to stabilizer

flip S
(m)
Ai and to syndrome elements σ(m)

Ai as illustrated in Fig. 5.1(b), we
see that two syndrome elements are created by this error. The events are
detected on neighboring auxiliary qubits during the same cycle. We group
all errors with such signatures together and label them SX|Z for errors with
space-separated signatures due to X̂ and Ẑ errors on data qubits.

Because the data qubits are rotated using
√

Y or
√

Y† gates between
each half-cycle of parity maps, all of which are implemented using the same
physical CZ gate, see also Fig. 4.1(b), both the X- and Z-type stabilizer
measurement circuits are sensitive to the same physical errors. Therefore,
these SX|Z errors appear on neighboring X- and Z-type auxiliary qubits in
the same fashion, as also indicated by the split color of the auxiliary qubits
in Fig. 5.1, and there is no connection between physical error type and the
stabilizer type. This is a general observation, also valid for the other error
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Chapter 5. Decoding Error Syndromes

classes described below.

Another common error is a phase flip error on an auxiliary qubit, see the
purple cross in Fig. 5.1(a), or equivalently a bit flip error just before, during,
or after measurement. In this case, the error flips all following measurement
outcomes M (m)

Ai on that auxiliary qubit, which is then interpreted as two
consecutive syndrome element flips on that auxiliary qubit, see Fig. 5.1(b).
We label all errors with such signatures as T for errors with time-separated
signatures.

A few additional error classes are shown in Fig. 5.2. If an X̂ error occurs
on a data qubit between the two CZ gates of one cycle, then the syndrome
elements are flipped on the neighboring auxiliary qubits on consecutive
cycles. We label such errors as STX for errors with a space-time separated
signature. If an X̂ error occurs on an auxiliary qubit that is used to measure
a weight-four Z-type stabilizer at the middle of the parity map, then this
error propagates as phase flip errors to two neighboring data qubits that
will do a gate with that auxiliary qubit next. Depending on the gate order
in the parity map, these phase flip errors will flip two or four neighboring
syndrome elements of X-type. We label such errors as HX for X̂-caused
hook errors. Bit flip errors on the auxiliary qubit at other times during the
parity map lead to a phase flip error on zero, one, three, or four neighboring
data qubits. Because the neighboring qubits are part of a Z-type stabilizer,
and the application of a stabilizer has no effect on the quantum state, the
error propagating to three or four neighboring qubits is equivalent to errors
on the complementary one or zero neighboring data qubits. Therefore, these
errors are indistinguishable from single phase flip errors on data qubits,
which belong to the SX|Z class. Again, the situation is the same for X̂ errors
on X-type auxiliary qubits, in which case Z-type syndrome elements are
flipped. Finally, also Ŷ errors can occur at the same locations as the SX|Z,
STX and HX errors, which have signatures flipping both Z- and X-type
syndrome elements. We label the corresponding error classes as SY, STY

and HY. Near the boundary of the surface code lattice, errors can have
signatures that include only a single syndrome element, which we will label
boundary errors B. Finally, we label measurement misclassification errors,
for which the auxiliary qubit state is incorrectly classified, but does not get
flipped, as T′ errors. These errors are equivalent to a correlated bit flip
just before and after a perfect measurement, and they flip two syndrome
elements on a single auxiliary qubit ∆m = 2 cycles apart.
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T′
B

1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6

Cycle, m

Figure 5.2: Error signature classes. Examples of error signatures
caused by single-qubit Pauli errors of various signature classes. Due to
the pipelined stabilizer measurement circuit, different types of stabilizer
measurements are separated by a half-cycle. Each signature includes the
syndrome elements flips (red circles) connected by red lines and polygons.
Pauli X̂ and Ẑ errors on a data qubit D1 have space-like (SX|Z) and space-
time-like (STX) signatures, while Pauli X̂ and Ẑ errors on auxiliary qubit
X can have time-like (T) and hook (HX) signatures, all of which flip a
pair of syndrome elements. Pauli Ŷ errors, however, lead to syndromes
that are detected on up-to-four auxiliary qubits and have space-like (SY),
space-time-like (STY), and hook (HY) signatures. Furthermore, errors
on the border of the lattice on D2 have a signature on a single auxiliary
qubit only (B) and readout misclassification errors on Z lead to time-like
signatures on syndrome elements two cycles apart (T′).

93



Chapter 5. Decoding Error Syndromes

We also consider correlated two-qubit Pauli errors, not shown in Fig. 5.2,
which might arise due to the two-qubit gates. We distinguish between the
MZZ class, corresponding to a correlated phase flip error Ẑ ⊗ Ẑ, and the
MXY class, corresponding to a correlated bit flip error X̂⊗X̂, X̂⊗ Ŷ , Ŷ ⊗X̂
or Ŷ ⊗ Ŷ . Other two-qubit Pauli errors are equivalent to a single-qubit Pauli
error on one of the qubits before or after the CZ gate. While we do not
expect to observe correlated bit flips, errors of the MZZ class could occur due
to residual interactions between the qubits [Krinner20] or a miscalibrated
conditional phase of the CZ gate.

5.2. Minimum-Weight Perfect Matching Decoder

There are various strategies for decoding the syndrome data. Most accurate
results can be achieved by maximum likelihood decoding, in which case all
possible combinations of physical errors that are consistent with the observed
syndrome data are considered. Each set of physical errors leads to some
correction of the logical qubit state, and the decoder picks the correction with
the largest total likelihood. Since the number of physical error combinations
is exponentially large in code size and number of executed cycles, maximum
likelihood decoding is prohibitively expensive for all but the very smallest
of codes [Iyer15]. Approximations of the likelihood calculation using tensor
networks can reduce the complexity [Bravyi14], but the complexity remains
high enough to not be considered scalable for realistic datasets [Acharya23].

When considering one type of stabilizers at a time, the signature of each
physical error has at most two syndrome element flips. Furthermore, a
chain of neighboring errors leads to flipped syndrome elements only at the
ends of the chain, since the syndrome element flips in the middle of the
chain cancel with each other, see Section 1.3. This property allows for a
much more efficient MWPM decoder to be used. In MWPM decoding, all
nonzero elements of the syndrome are matched in pairs. Because the logical
correction is independent of the exact path of the chain of physical errors,
a matching leads to a unique logical correction operator. By assigning a
weight to each potential pair of nonzero elements of the syndrome according
to the likelihood of its occurrence, the problem of finding the most likely
matching can be converted to finding the minimum-weight matching.

Compared to maximum likelihood decoding, this leads to two approxi-
mations. Foremost, by decoding the Z- and X-type stabilizers separately,
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5.2. Minimum-Weight Perfect Matching Decoder

we ignore the correlations between the syndrome types, which can contain
extra information in the presence of errors that lead to flipping of both
types of stabilizers. Second, we find the most likely matching, but ignore
that many matchings can lead to the same logical correction, and the most
likely logical correction might be different from the logical correction corre-
sponding to the most likely matching. For large surface codes, it might be
necessary to set the weights according to the likelihood of the most likely
error chain connecting the syndrome elements [Fowler13b, Higgott23b], not
the total likelihood of connecting the syndrome elements via any equivalent
path [Stace10, O’Brien17], since the former is more efficient to calculate,
which could lead to further errors.

Next, we will discuss the detailed steps for minimum-weight perfect
matching. The first step, which can be done offline before running the
surface code experiment, is to construct an auxiliary qubit graph (also
called a matching graph [Higgott22] or ancilla graph [O’Brien17]), where
each vertex k corresponds to a syndrome element σ

(m)
Ai and each edge

q = (k, k′) corresponds to an uncorrelated physical error process, which flips
the connected syndrome elements k and k′, see Fig. 5.3(a). In addition, there
are two boundary vertices, which are connected to the syndrome elements
near the two boundaries of the surface code lattice that can be flipped on
their own. Physically, there might be several independent errors that have
the same error signature, but in the context of the auxiliary qubit graph, we
consider them as a single process, as they can not be distinguished from the
syndrome data. In the analysis, we assume that the effect of those errors
on the logical operators is identical, which is the case unless correlated
physical errors on ⌊(d+ 1)/2⌋ data qubits exist. An error probability pq is
associated with each edge of the auxiliary qubit graph. The edges and their
probabilities amount to the effective error model of the device, which can
be constructed either from an independent physical error model, or based
on the correlations in the syndrome data [Spitz18], the latter of which is
the main topic of this work, see Section 5.3.

As the next step, for each run of the surface code experiment, a fully
connected syndrome graph is constructed, where the vertices correspond to
nonzero syndrome elements, see Fig. 5.3(b). A weight wq is associated with
each edge q, which is equal to the negative logarithm of the probability that
any chain of errors flipped the connected syndrome elements. Up to first
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Figure 5.3: Decoding graphs for MWPM. (a) The auxiliary qubit
graph for seven cycles of syndrome extraction. Vertices correspond to the
measured syndrome elements, while the edge thickness indicates probability
of an independent error that flips the connected syndrome elements. The
widths of the open edges pointing to top-left and bottom-right indicate
boundary error probabilities and their direction to which boundary the
syndrome element is connected. (b) The syndrome graph. Vertices are the
nonzero syndrome elements of the auxiliary qubit graph, and the thickness
and transparency of the edges indicate the weight of the edge for the MWPM
decoding. The best matching, which includes the edges between Z3 and Z4,
Z2 and the right boundary, and Z3 and the left boundary, is indicated in
red. Note that in the auxiliary qubit graph, thick lines indicate probable
errors, but in the syndrome graph, thin lines indicate probable error chains.

order in the error probabilities, it can be calculated as [O’Brien17]

wq ≈ − ln
(︄∑︂

R∈R

∏︂
r∈R

pr

)︄
, (5.1)

where R denotes the set of possible paths between the endpoints of q in the
auxiliary qubit graph that does not go through the boundaries, and r are
the edges in one of those paths R. For not-too-large code distances, these
weights can conveniently be precalculated as [O’Brien17]

w = − ln
(︂
(1 − A)−1 − 1

)︂
, (5.2)

where w is a matrix of weights between all the potential nodes of the
syndrome graph, A is the directed adjacency matrix of the auxiliary qubit
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graph with all probabilities going out from the boundary nodes set to zero,
1 is the identity matrix, and the logarithm is taken element-wise.

In practice, the error probabilities are not expected to change much from
cycle to cycle in the middle of the error correction experiment, and one can
calculate the weights as a function of only the cycle difference ∆m = m′−m
instead of cycles m and m′

p
(σ(m)

Ai ,σ
(m′)
Aj )

= p
(∆m)
Ai,Aj . (5.3)

Using this approximation for syndrome elements near logical state prepara-
tion and measurement will lead to slightly suboptimal fidelities for those
operations, as the error probabilities might be different at the two time-
boundaries.

For example, for X-type stabilizers in a d = 3 surface code data, see
Chapter 4, we can calculate the adjacency matrix for a maximum cycle
difference of ∆mmax = 2 as

A =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

A(0) A(1) A(2) 0 0 B

A(−1) A(0) A(1) A(2) 0 B

A(−2) A(−1) A(0) A(1) A(2) B

0 A(−2) A(−1) A(0) A(1) B

0 0 A(−2) A(−1) A(0) B
0 0 0 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (5.4)

with the cycle-shifted adjacency matrix(︂
A(0)

)︂
i,i

= 0 and
(︂
A(∆m)

)︂
i,j

= p
(∆m)
Xi,Xj , (5.5)

and the boundary adjacency matrix

B =

⎛⎜⎜⎜⎝
pX1,B1 0

0 pX2,B2
pX3,B1 0

0 pX4,B2

⎞⎟⎟⎟⎠. (5.6)

The time-span ∆mmax determines the maximum time-separation of error
chains that are considered in the matching problem. We have set some
of the elements of B to zero, since X1 and X3 connect only to the east
boundary (B1 via D3, D6, and D9), and X2 and X4 to the west boundary
(B2 via D1, D4, and D7), see Fig. 4.1(a),
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As the final step, we run a minimum-weight perfect matching algorithm
on the syndrome graph [Edmonds65, O’Brien17, Higgott22]. The space-
component of each matched edge corresponds to a set of data qubits, on
which an error has occurred, while the time-component, arising from the
space-time and auxiliary qubit errors, has no effect on the logical operator
value. When decoding the X-type syndrome, each overlap of a data qubit in
a matched edge with the logical X̂L operator corresponds to a X̂L flip to be
corrected. Correspondingly, flips of the ẐL operator can be inferred from
the Z-type syndrome data.

5.3. Syndrome Correlations to Error Probabilities

Knowing the error model of a device is of high importance for high fidelity
decoding independent of the exact decoding algorithm used. While many
error processes can be characterized using independent measurements, the
effective error rates might differ when running the actual error correction
experiment, for example, due to time-drift of parameters or unaccounted-for
error mechanisms, like crosstalk. Therefore, we ideally want to construct the
error model based on syndrome data produced by running the same circuit
as for a QEC experiment. In this section, we explain, based on experimental
data, how this can be done.

We acquire 16 cycles of stabilizer measurement data on the device pre-
sented in Chapter 4, preparing either the |0⟩L, |1⟩L, |+⟩L or |−⟩L logical
state. For each state, we repeat the experiment 500,000 times, and remove
the runs where any of the qubits are measured outside the computational
subspace, or the initial state is not the ground state, leaving us with about
54,000 runs per state. For calculating the syndrome elements for the first
and last cycles, we make use of the known initial state of the auxiliary qubits,
the initial parity of the data qubits, and the parity of the data qubits from
the final readout.

The average per-cycle probability of detecting a nonzero syndrome element
on weight-four and weight-two stabilizers is ⟨σ⟩ = 0.165(17) and 0.118(6),
respectively, where the uncertainty indicates the standard deviation among
different auxiliary qubits. To visualize the correlations between the syndrome
elements, characteristic of the various error classes discussed in Section 5.1,
we calculate the covariances C(∆m)

Ai,Aj between syndrome elements on auxiliary
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qubits Ai and Aj, ∆m cycles apart as

C
(∆m)
Ai,Aj =

⟨︂
σ

(m)
Ai σ

(m+∆m)
Aj

⟩︂
−
⟨︂
σ

(m)
Ai

⟩︂⟨︂
σ

(m+∆m)
Aj

⟩︂
, (5.7)

see Fig. 5.4(a). The averaging is done first over the experimental runs, and
then over the cycle index m. We omit data from the first and the last
cycle when calculating the correlations, since these syndrome elements are
measured differently and are not representative of the mean value during
the state preservation experiment.

For ∆m = 0, we observe the highest covariance between neighboring
auxiliary qubits (first off-diagonal), corresponding to correlated syndrome
element flips due to SX|Z and SY errors. The second off-diagonal, which has
significant but lower covariance, corresponds to correlated syndrome element
flips on next-nearest neighbors, caused by HX and some HY errors. As
expected for uncorrelated single-qubit errors, we find negligible covariance
between syndrome elements that are separated by more than two data qubits
(second off-diagonal). With the pipelined stabilizer measurement circuit
that we utilize, the covariance between syndrome elements of different kinds
of auxiliary qubits is detected at a cycle separation of ∆m = 0.5. The
nonzero covariances occur between neighboring auxiliary qubits and are
caused by SY errors. For ∆m = 1, the diagonal elements correspond to T
and HY errors. The high covariance on this diagonal hints at the errors
from the T class having high occurrence probabilities. Some covariances
on the first off-diagonal are also nonzero, corresponding to STX and STY

errors. There is almost no covariance for ∆m = 1.5, and only diagonal
elements for ∆m = 2. An expected source of errors leading to ∆m = 2
correlations is readout overlap errors T′, where the auxiliary qubit state is
misclassified without changing the state of the qubit. However, as we will
see in Section 5.4, most of these correlations are likely caused by undetected
leakage of the data qubits.

For calculating the weights for minimum-weight perfect matching decoding,
we have to convert those covariances into per-cycle error probabilities. An
analytical formula for this, assuming that every error flips at most two
syndrome elements, is presented in Ref. [Spitz18]. Here, we have generalized
those equations for processes flipping an arbitrary number of syndrome
elements. In the general case, the probability pi1,...,in , that an error that
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Figure 5.4: Error probabilities by class. (a) Average (over 16 cycles)
covariance between pairs of syndrome elements. The syndrome element
that is indicated by the column is detected ∆m cycles after the syndrome
element that is indicated by the row. The covarying qubit is indicated on
the top or bottom axis for Z-type and X-type auxiliary qubits, respectively.
(b) Total error probability p of the various error classes extracted from
the experimental (purple bar) and simulated (black wireframe) syndrome
correlations. The number above the bar indicates the number of different
signatures that were considered in that class. The error bars indicate the
standard deviation of the total error, calculated as the square root of the sum
of the squared deviations from the mean within that class. (c) Schematic
of the signatures that are considered in the C class. That is, any subset of
syndrome elements on one auxiliary over nine cycles or on multiple auxiliary
qubits neighboring one data qubit up to two cycles apart.
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flips n syndrome elements σi1 , . . . , σin occurs, can be calculated as

pi1,...,in = 1
2 − 1

2

∏︂
{j1,...,jq}⊆
{i1,...,in}

⟨︁
(1 − 2σj1) . . . (1 − 2σjq )

⟩︁(−1)q−12−(n−1)

∏︂
{j1,...,jq}⊃
{i1,...,in}

(︁
1 − 2pj1,...,jq

)︁ . (5.8)

Here, the indices i and j include both the auxiliary qubit and the cycle
number, where and when the syndrome element is measured. The product in
the numerator is taken over all the subsets of the set of syndrome elements
{i1, . . . , in}, including the set itself, whereas the product in the denominator
is taken over the supersets. For the number of supersets to not grow too
large, it is practical to limit the syndrome element sets {j1, . . . , jq} for
which the correlated error probability can be nonzero. For example, if we
assume that each independent error flips at most two syndrome elements
(pi1,...,in = 0 for n > nmax = 2), then we recover the equations derived in
Ref. [Spitz18]

pij = 1
2 −

√︄
1
4 − ⟨σiσj⟩ − ⟨σi⟩⟨σj⟩

1 − 2⟨σi⟩ − 2⟨σj⟩ + 4⟨σiσj⟩
, pi = 1

2 − 1 − 2⟨σi⟩
2∏︁j ̸=i(1 − 2pij) .

(5.9)
On the other hand, if we consider processes flipping up-to-four syndrome
elements nmax = 4, then we get the equations

pijkl = 1
2 − 1

2
8

√︄
⟨˜︁σi˜︁σj˜︁σk⟩⟨˜︁σi˜︁σj˜︁σl⟩⟨˜︁σi˜︁σk˜︁σl⟩⟨˜︁σj˜︁σk˜︁σl⟩⟨˜︁σi⟩⟨˜︁σj⟩⟨˜︁σk⟩⟨˜︁σl⟩
⟨˜︁σi˜︁σj˜︁σk˜︁σl⟩⟨˜︁σi˜︁σj⟩⟨˜︁σi˜︁σk⟩⟨˜︁σi˜︁σl⟩⟨˜︁σj˜︁σk⟩⟨˜︁σj˜︁σl⟩⟨˜︁σk˜︁σl⟩

, (5.10a)
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⟨˜︁σi˜︁σj⟩⟨˜︁σi˜︁σk⟩⟨˜︁σj˜︁σk⟩

∏︂
l /∈{i,j,k}

1
1 − 2pijkl

, (5.10b)

pij = 1
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⟨˜︁σi⟩⟨˜︁σj⟩
⟨˜︁σi˜︁σj⟩

∏︂
k /∈{i,j}

1
1 − 2pijk

∏︂
l /∈{i,j,k}

1
1 − 2pijkl

, (5.10c)

pi = 1
2 − 1

2⟨˜︁σi⟩
∏︂
j ̸=i

1
1 − 2pij

∏︂
k /∈{i,j}

1
1 − 2pijk

∏︂
l /∈{i,j,k}

1
1 − 2pijkl

, (5.10d)

where we have denoted ˜︁σi = 1 − 2σi for brevity. We derived Eq. (5.8) for
nmax = 6 analytically, and numerically verified its validity for correlated
errors on up-to nmax = 12 syndrome elements.
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Next, using Eq. (5.8), we calculate the probabilities of errors triggering
various error signatures in the same dataset as was used to calculate the
correlations shown in Fig. 5.4(a). Because each run of the N = 16-cycle-long
experiment produces (d2 − 1)(2N − 1)/2 = 124 syndrome elements, it is
unfeasible to calculate the error probability for all the 2124 signatures. We
therefore only consider error signatures that are caused by a single-qubit
Pauli error at any position in the circuit or a two-qubit Pauli error during a
two-qubit gate, as presented in Section 5.1. To not introduce a bias into
the extracted error probabilities by omitting the renormalization by pj1,...,jq

in the denominator in Eq. (5.8), we need to make sure that we include all
processes with highly correlated signatures that are present in the system.
To that end, we include two additional kinds of error signatures in the
analysis, which we label C, see Fig. 5.4(c). First, we consider any subset
of flipped syndrome elements on up to nine consecutive cycles on a single
auxiliary qubit, and second, we consider any subset of syndrome elements
on auxiliary qubits neighboring one data qubit, separated by up to two
cycles. The maximum cycle separation for both of these signature classes
is limited by the computational power, as the number of signatures grows
exponentially with the maximum cycle separation. The C error class could
be associated with undetected leakage of the data qubits to higher transmon
states, as we will discuss in Section 5.4. We average the probabilities of
errors with the same relative signature over the cycles to obtain the average
probabilities for the 116 error signatures that are associated with different
Pauli errors in the circuit and 4360 error signatures belonging to the C
class.

The total probability of an error from each of the twelve signature classes
is shown in Fig. 5.4(b). We observe, that T errors are most common,
amounting to a per-cycle probability of 15% over all the auxiliary qubits.
The high error probability might be due to the high readout error probability
compared to other errors, see Fig. 4.4(c), and the long time that the auxiliary
qubits spend in the superposition state for the parity maps, during which
phase flip errors lead to T signatures. The probability of errors from most
other error classes correlates with the number of different signatures in that
class. We analyze this correlation in more detail in Section 5.4. We find a
relatively low probability of two-qubit gate errors of the classes MZZ and
MXY, indicating that most two-qubit errors can be explained by single-qubit
energy relaxation and dephasing, and control and crosstalk errors are small.
The second-largest error source is the C error class, which we analyze in
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more detail in Section 5.4.
We compare the experimental results to a circuit-level Pauli-error simu-

lation, shown as black wireframes in Fig. 5.4(b). The simulation assumes
uniform error probabilities across the device, with the probability values
based on independent calibration measurements, see Ref. [Remm23b] for
details. We find a good match between the simulation and the experiment
in most error classes. The most notable difference is in the correlated bit
flips due to CZ gates, indicated by the MXY error class, which are included
in the depolarizing error model of the simulation, but are not significantly
present in the experimental data. In simulations with a depolarizing Pauli
noise model, two-qubit gate errors have been found to contribute the most
to the logical error probability [Fowler12b]. However, if correlated bit flip
errors are rare for a real implementation of the gate, as we observe in our
data, the effect of two-qubit gate errors on the logical error probability in
real systems might be more akin to single-qubit errors. Another difference
between the simulated and the experimental dataset is the absence of leakage
and readout overlap errors, which are not part of the simulation.

The in-situ error characterization method presented here is especially
useful for the stabilizer codes, since it yields the occurrence probabilities
of errors with a given signature, which is exactly the information needed
for decoding, without resorting to gate-based simulation of the circuit.
Furthermore, the method allows us to analyze spurious correlations between
the syndrome elements not caused by known Pauli errors, and to identify
whether they lead to highly correlated errors that are known to be especially
harmful quantum error correction [Aharonov06, Jouzdani14].

5.4. Device Diagnostics Using Error Probabilities

The error analysis method allows us to study the per-cycle probabilities
of specific errors with various signatures. First, we group the error signa-
tures according to the number ν of circuit location and an error operator
combinations that can trigger it. For the location-operator combinations,
we consider 15 two-qubit Pauli errors at 24 two-qubit gates of a single
stabilizer measurement cycle for a total of 360 combinations. If uniform
depolarizing noise at every two-qubit gate was the only error source, then
we would expect the error probability to be directly proportional to the
number of location-operator combinations that can trigger that signature.
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Figure 5.5: Standard error diagnostics. (a) The probability p of
triggering an error signature as a function of the number of circuit location
and error operator combinations ν that can cause the signature, extracted
from experimental (purple) and simulation (black) data. One two-qubit
Pauli error at one two-qubit gate constitutes a circuit location and error
operator combination, adding up to a total of 15 × 24 = 360 combinations.
The error bars indicate standard deviation over signatures with the same
ν, while circles indicate data points for values of ν which have a single
signature. (b) Comparison of error probabilities for signature pairs which
can only be caused by an X̂ and a Ŷ error at a specific circuit location.
Purple filled circles correspond to experimental data and black open circles
to simulation. Due to the symmetry of our physical operations with respect
to Ẑ rotations, we expect the two error probabilities to be identical, which
is indicated by the diagonal gray line.

We omit signatures from the T class in this analysis, since their probability
is significantly increased by measurement errors. Overall, we find a strong
correlation between the probability of an error syndrome and the number
of location-operator combinations, see Fig. 5.5(a). Because, in terms of
duration, the circuit consists mostly of two-qubit gates and readouts, this
circuit-location correlation explains most of the differences between the
probabilities of various signatures. The correlation is also reproduced by the
simulation with independently characterized parameters, see black markers
and line in Fig. 5.5(a).

Another useful application of the generalized error probability extraction
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5.4. Device Diagnostics Using Error Probabilities

method is the identification of crosstalk and control errors. For some circuit
locations, there are unique signatures for both X̂ and Ŷ errors. Since the
physical energy relaxation of transmon qubits is described by a channel
symmetric with respect to changing X̂ and Ŷ , we expect the corresponding
extracted error probabilities px and py to be equal. We find px ≈ py for all
error pairs in simulation and in experiment, see Fig. 5.5(b), except for errors
on D2 during the X-type parity map, for which px ≈ 2py. Such discrepancy
could be caused by control errors or crosstalk of microwave drive signals.

Next, we analyze the potential origins of the C signature class errors.
First, we consider the covariance between syndrome elements on a single
auxiliary qubit ∆m cycles apart, which we find decays exponentially as
0.89∆m, see Fig. 5.6(a). Ideally, we would expect the correlations for ∆m > 2
to be zero. The slow decay could be an indication of leakage of the data
qubits [McEwen21b] that is not removed by the data qubit leakage rejection
scheme based on the final readout of the data qubits. This is supported by
the observation that without including the C class error signatures in the
analysis, the error probability for T′ signatures is higher at the beginning of
the experiment when the data qubits have several cycles to seep [Wood18]
back to the computational subspace before the final readout at the end of
the experiment, remaining undetected by data qubit leakage rejection, see
blue filled dots in Fig. 5.6(b). If we do not reject any runs based on the
final data qubit readout, however, the error probability does not depend on
the cycle number and is comparable to the error probability with leakage
rejection close to the first cycle, see open blue circles in Fig. 5.6(b).

An alternative explanation could be a change of the underlying error
probabilities, either during one experimental run, or equivalently during
the collection of the full dataset where the correlations are analyzed. These
error probability drifts would be interpreted as correlated errors, as the
additional error events that are created during a period of increased error
probability appear correlated to each other. One source of error probability
drift could be related to of quasiparticle generation and tunneling, the rate of
which can vary, for example, due to impacts with cosmic rays [McEwen21a].
Since quasiparticle tunneling can also cause leakage [Serniak18], it would be
consistent with the suppression of errors when data qubit leakage rejection
is used. We suspect, however, that error probability drifts on their own
could not explain the large total probability of the C error class.

With the goal of taking into account the highly correlated errors in our
analysis, we include the C class signatures. Due to the renormalization term
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Figure 5.6: Correlated error diagnostics. (a) Covariance between
syndrome elements on a single auxiliary qubit ∆m cycles apart, averaged over
the eight auxiliary qubits. The error bars indicate one standard deviation
over the different auxiliary qubits. A fit to an exponential decay model
for ∆m > 2 is shown as a line. (b) Probability of an error triggering a T′
syndrome (∆m = 2) as a function of the number of cycles until the final data
qubit readout. The four data series correspond to using data qubit leakage
rejection or not and including leakage-related signatures in the analysis
or not. The data is averaged over the auxiliary qubits. (c) Average (over
cycles) T′ error probability of the eight auxiliary qubits as a function of the
independently characterized readout overlap error. The gray line indicates
the expected identity relation.

in the denominator of Eq. (5.8), accounting for these additional processes
gives us a more accurate value for the probability of a T′ error. With this
analysis, we find that the T′ error probability only weakly depends on the
cycle number and whether data qubit leakage rejection is used or not, see
filled and open orange diamonds in Fig. 5.6(b), respectively. Furthermore,
the error probabilities extracted using the improved analysis are consistent
with the separately characterized overlap error of auxiliary qubit readout,
which is the expected mechanism for T′ errors, see Fig. 5.6(c).
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5.5. Discussion

An accurate error model of the QEC circuit is a crucial component for any
high-accuracy decoder. In this work, we explained, how the syndrome is
generated under a Pauli noise model. Furthermore, we presented a novel
analytical method for calculating the error probabilities of errors with a
given signature from the correlations between the syndrome elements. These
error probabilities are used to calculate the weights of a MWPM decoder,
the nuances of which we also explained. The error model can also be used
to analyze the crosstalk, control, and leakage errors, measured in the same
circuit as is used for executing the QEC experiment. Here, we identified
control errors on D2, leading to an imbalance of X̂ and Ŷ errors, and we
identified errors with signatures spanning multiple syndrome extraction
cycles, which are consistent with undetected leakage on the data qubits.

While the in-situ error characterization based on syndrome data can be
a powerful tool, one needs to be aware of its limitations. First, since the
analytical formula allows to easily calculate the probability of error with
arbitrarily large signature, it might be tempting to fully characterize the
errors by calculating the probabilities for triggering all possible signatures.
However, because the number of signatures is exponential in the number of
syndrome elements, this is not feasible and one needs to choose the subset of
errors to consider. Therefore, some errors with nonstandard signatures might
be excluded from the model. Second, many samples need to be taken to
accurately estimate the syndrome element correlations used to calculate the
error probabilities. Because of the renormalization terms in the denominator
of Eq. (5.8), the more high-weight signatures are included in the model,
the more the uncertainties of errors with lower-weight signatures increase.
Furthermore, if the error model parameters drift during the time it takes to
gather the large amount of statistics, then phantom correlations can appear
in the data.

The main advantage of the error characterization method presented here
is that the error model is extracted using the same circuit as is used for the
QEC experiment. This means that error sources not present in individual
characterization, like crosstalk, can be identified. Furthermore, the fact
that the probability of errors with signatures of arbitrary weight can be
calculated is beneficial for deriving error models that include Ŷ errors, used
for decoders that account for correlations between X- and Z-type stabilizers.
This includes correlated MWPM [Fowler13b], belief matching [Higgott23a]
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or tensor-network-based decoders [Bravyi14]. As we have shown, the method
can also be used to characterize non-Pauli errors with high-weight signatures,
that could introduce a bias to the extracted standard error probabilities if
unaccounted for.
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6
Signal Mixing in a Parametric Amplifier

Amplification of weak microwave signals is essential for many applications,
including readout of superconducting qubits [Blais21, Kjaergaard20a, Wall-
raff05, Mallet09] and quantum dot devices [Petersson12, Zheng19, deJong21],
as well as for radio astronomy [Day03, Zobrist19]. State-of-the-art low-
noise amplifiers in the microwave domain [Yurke96, Castellanos-Beltran07,
Castellanos-Beltran08, Eichler14a, Macklin15, Ho Eom12] approach the quan-
tum limit in noise performance [Caves82] by operating at millikelvin tempera-
tures and using parametric pumping of a nonlinear circuit made of Josephson
junctions or high kinetic inductance elements. While parametric amplifiers
based on nonlinear resonators have typical bandwidths on the order of tens of
MHz limited by the gain and the resonator linewidth [Eichler14b, Planat19],
traveling-wave parametric amplifiers (TWPAs) [Yurke96, O’Brien14, Mack-
lin15, White15, Planat20, Esposito21, Ranadive22] can have much higher
bandwidths of up to several GHz. The high bandwidth enables a high
degree of frequency-multiplexing, for example for qubit readout [Hein-
soo18, deJong21] and single-photon detectors [Zobrist19]. Multiplexed
use of hardware resources [Chen12, Jerger12, Barends14, Schmitt14, Hein-
soo18, Arute19, Krinner22] is essential for the operation of large quantum
devices.

So far material losses and the generation of signal sidebands have been
identified as the main sources of excess noise in TWPAs above the quantum
limit [Macklin15, Esposito21, Peng22], characterized by the intrinsic quan-
tum efficiency. In addition to adding as little noise as possible at the signal
frequency, broadband amplifiers should not generate spurious tones due to
intermodulation of the inputs [Frattini18, Sivak19], in particular when they
are used in frequency-multiplexed applications. However, due to amplifier
nonlinearities, intermodulation distortion is unavoidable and constitutes a
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well-known phenomenon in classical amplifiers [Walker12]. Intermodulation
products can lead to crosstalk between the amplified signals if any of their
frequencies overlap with one of the signals. The probability of such colli-
sions increases with increasing degree of frequency multiplexing because the
number of intermodulation products increases.

In this chapter, which follows closely Ref. [Remm23a], we characterize
the intermodulation distortion of a resonantly phase-matched traveling
wave parametric amplifier (Section 6.1), produced by MIT Lincoln Labora-
tory [Macklin15], that is used for qubit readout in the work presented in
Chapter 4. We identify intermodulation products of order up to five in the
output spectrum and characterize their power and frequency dependence
on the input signals. We then show that the frequency collision of an inter-
modulation product with a readout signal can lead to significant crosstalk
and reduction of readout fidelity (Section 6.2). Finally, we discuss strategies
to mitigate these errors by the choice of pump and signal frequency and of
power levels (Section 6.3).

6.1. Characterization of Intermodulation Distortion

The TWPA investigated in this study is a nonlinear transmission line,
formed by a series of Josephson junctions and capacitors to ground, which
is shunted to ground by capacitively coupled LC-resonators at 8.1 GHz to
achieve phase matching [Macklin15], see Fig. 6.1(a). The nonlinearity of
the Josephson junctions allows for four-and-higher-wave mixing processes
between the tones traversing the TWPA. In the presence of a strong pump
tone, the mixing processes lead to the desired phase-insensitive amplification
of weak tones [ω1, ω2 in Fig. 6.1(b)] and the generation of corresponding
idler tones [2ωp −ω1 in Fig. 6.1(b) for ω1], but also to sideband generation by
absorbing or emitting pump photons [Peng22] and to the mixing of multiple
signals [Frattini18], known as intermodulation distortion. An example
of intermodulation distortion is the creation of a tone (intermodulation
product) at frequency ω2 + ωp − ω1 at the output of the TWPA, as shown
in Fig. 6.1(b). We expect that such intermodulation processes are not
unique to traveling wave amplifiers but also present in resonant amplifiers if
frequency multiplexing is used.

In our experimental setup the TWPA is mounted at the base temperature
stage of a dilution cryostat operated at 10 mK, see also Fig. 2.6(a). The
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Figure 6.1: Signal mixing in a TWPA. (a) The circuit of a resonantly
phase-matched TWPA. (b) Examples of tones propagating along the length
of the TWPA and their amplitudes (thickness of the lines, not to scale)
in the case of frequency-multiplexed readout at ω1 and ω2 with the pump
tone at ωp. In particular, a tone at ω2 + ωp − ω1 is created, which is an
example of an intermodulation product. (c) The measured gain G (black)
and signal-to-noise ratio improvement (purple) spectra of the device under
study. The pump frequency is ωp/2π = 7.92 GHz.

signals, generated at room temperature, are up-converted to microwave
frequencies using an in-phase and quadrature (IQ) mixer. The output of the
TWPA is amplified by a cryogenic high-electron-mobility transistor (HEMT)
amplifier and by room-temperature amplifiers. Finally, the signals are down-
converted using an IQ-mixer with a local oscillator at 6.9 GHz and digitized,
see Ref. [Remm23a] for a detailed setup diagram. The power −62 dBm
and frequency ωp/2π = 7.92 GHz of the pump tone are chosen to maximize
the signal-to-noise ratio of signals applied between 6.7 GHz and 7.6 GHz,
used for qubit readout. The power levels at the input of the TWPA are
calculated based on room-temperature measurements and the attenuation
of the components within the cryostat. The TWPA achieves a mean gain
of G = 18.4 dB and a signal-to-noise ratio rise of 13.0 dB relative to not
pumping the TWPA, in which case the noise performance is determined by
the HEMT amplifier and the losses in cabling before it and the insertion
loss in the TWPA, see Fig. 6.1(c).

To observe the intermodulation products that we want to characterize,
we apply signal tones at frequencies ω1 and ω2 to the input of the TWPA
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through a directional coupler which is also used for applying the pump tone.
The signal power level at the input of the TWPA is approximately −102 dBm.
We acquire 2.275-µs-long time traces and multiply them with a Blackman-
Harris window [Harris78], before taking the Fourier transform, to avoid
windowing effects. By fixing ω2/2π = 7.1924 GHz and sweeping ω1/2π
from 6.9 GHz to 7.8 GHz, we record the spectra shown in Fig. 6.2(a). In
addition to the signals at ω1 and ω2 (green lines), we observe intermodulation
products at frequencies ω = npωp +∑︁i=1,2 niωi with integer np and ni. We
can classify the intermodulation products according to their total order
Ot = |np| +∑︁

i |ni|. Four-wave mixing processes lead to products of total
order Ot = 3 while cascaded four-wave mixing processes and higher-order
mixing processes can lead to products with odd order Ot = 5 and higher.
Of the intermodulation products that lie within the acquisition band, we
observe all 17 products with total order Ot = 3 or 5 and several products
with Ot = 7 above the noise floor of −160 dBm (at the output of the TWPA).
Potential intermodulation products of even total order, which might arise
due to spurious asymmetry in phase potential of the Josephson junctions,
fall outside the acquisition bandwidth in our setup. The presence of all
the odd Ot intermodulation products implies that there are no selection
rules determining which intermodulation products can be created, other
than the parity of Ot. While the allowed total orders are determined by
the order of the mixing process, the power level of the intermodulation
product is mostly determined by the signal order Os = ∑︁

i |ni|, as we will see
below. The intermodulation products of Os = 1, 2, 3, and 4 and higher are
highlighted in Fig. 6.2(a) in green, red, blue, and yellow, respectively. Each
intermodulation product also appears mirrored around the local oscillator
frequency due to imperfections of the frequency down-conversion process.
While in conventional amplifiers the second order intermodulation products
are usually of little concern as they are created at twice the signal frequency,
in a four-wave mixing parametric amplifier, mixing with the pump tone can
up- or downconvert Os = 2 terms into the signal band.

Next, we investigate the power of the intermodulation products P . We fix
the frequency ω1/2π = 7.5551 GHz, as indicated by the linecut in Fig. 6.2(b),
and vary the input powers p1 and p2 = 0.5p1 of the two signals, chosen
such that the output powers are similar despite the frequency-dependence
of gain and attenuation. We record the power P of the intermodulation
products of Os ≤ 3, see Fig. 6.2(c), and find that they follow power laws
with the signal order Os as the exponent as long as the amplifier is not
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Figure 6.2: Intermodulation distortion. (a) Measured output power
spectra when sweeping the frequency of a single tone ω1 in the presence of
a second signal tone ω2. Various intermodulation products are highlighted
in color according to their signal order, see text for details. (b) Line cut of
the data in (a) at ω1 indicated by the dashed line. (c) Dependence of the
power of the intermodulation products P on the applied signal power p1.
The power of the two signal tones is swept together. The gray lines indicate
the mean power level for products of signal order Os = 1, 2, and 3 according
to Eq. (6.1), and the arrows indicate the 1 dB compression power p1dB and
the intermodulation intercept points pIP for Os = 2 and 3 tones.
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saturated. Comparing the powers of different Os = 3 products, we find that
they can be of similar magnitude even for different Ot values. The observed
power-laws together with the data from independent power sweeps of the
two tones [Remm23a] motivate an empirical model of the output power

P = GpIP
∏︂

i

(︃
pi

pIP

)︃|ni|
. (6.1)

The model is parametrized by the mean gain G and the intermodulation dis-
tortion intercept point pIP [Walker12], that is, the input power level at which
the extrapolated intermodulation product power equals the signal power. By
sweeping the phases of the input signals ϕi, we have also determined that the
phase of the intermodulation product is given by Φ = θ+∑︁i niϕi [Remm23a].
Using the average gain of the two signals G = 17.2(13) dB, we calculate pIP
for each intermodulation product according to Eq. (6.1). We find a mean
second order intercept point pIP2 = −91(3) dBm (for Os = 2) and a mean
third order intercept point pIP3 = −88(3) dBm (for Os = 3), see dashed
gray lines in Fig. 6.2(c) calculated according to Eq. (6.1) and the mean pIP
values. The uncertainties indicate one standard deviation of the spread over
different intermodulation products. The pIP values, visualized as the inter-
cepts of the gray dashed lines with the solid gray line (mean signal power) in
Fig. 6.2(c), are close to the 1 dB compression power p1dB = −96.7(23) dBm.
The power differences between intermodulation products of the same signal
order might be due to differences in the conversion rates or due to the
frequency-dependence of the gain.

In nonparametric amplifiers, a simple model can be used to describe the
relation between the 1 dB compression power p1dB and the third order inter-
modulation intercept power pIP3. In the lowest-order series expansion that
can explain four-wave mixing, we write the output voltage of the amplifier
as Vout =

√
GVin

(︁
1 − kV 2

in
)︁
, for input voltage Vin and a coefficient k which

determines both saturation and intermodulation properties of the amplifier.
From such model, we find pIP3/p1dB ≈ 9.6 dB [Walker12], similar to the
observed pIP3/p1dB = 9(4) dB. If a similar relation holds for parametric
amplifiers, as is hinted by our data, then the intermodulation distortion
intercept powers might increase if the 1 dB compression power of the am-
plifier is increased, providing a strategy for improving the intermodulation
distortion performance of the amplifiers.

In this section, we studied the classical properties of the intermodulation
products, that is, frequency and power. Because TWPAs can operate with
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efficiencies close to the quantum limit, the intermodulation products are
expected to have nonclassical properties, for example, multi-mode squeezing,
which would be interesting to investigate in the future.

6.2. Implications for Frequency-Multiplexed Readout
We assess the impact of intermodulation distortion on the performance of
frequency-multiplexed qutrit readout using the device presented Chapter 4.
Specifically, we study how frequency multiplexing affects the readout signal-
to-noise ratio, and how frequency collisions with intermodulation products
can lead to crosstalk and increased readout errors.

To investigate the noise performance of the TWPA in the presence of
multiple input tones, we use input frequencies from the set Ω = {ωi}, where
ωi/(2πGHz) ∈ {7.5551, 7.1924, 7.3725, 6.9790, 6.7608}, which could be used
for frequency-multiplexed readout of five qubits. We apply tones at the
frequencies of each of the 31 different nonempty subsets B = {b|b ⊂ Ω, b ̸= ∅}
of Ω. We set the power of each of the applied tones to p and record individual
time traces. The gain of the signal for a subset bj at frequency ωi is calculated
as Gi,j = |⟨Ai,j⟩|2/p and noise as Si,j =

⟨︁
|Ai,j |2

⟩︁
− |⟨Ai,j⟩|2, where Ai,j is

the integrated amplitude of the timetrace, down-converted from frequency
ωi, and the averaging is done over the 210 = 1024 acquired time traces.
To find the average normalized signal gain G/Gref and noise S/Sref for a
given degree of multiplexing N , we normalize each value with a low-power
single-tone reference value and average over all the frequency components
ωi and subsets bj , which contain N frequency components. That is,

X

Xref
= 1

|Ω|
∑︂

ωi∈Ω

1
|BN,i|

∑︂
bj∈BN,i

Xi,j

Xref,i
, (6.2)

with X denoting either the gain G or noise S, BN,i the set of subsets of Ω
that include ωi and have |BN,i| = N components. The reference value Xref,i
is measured with a single tone at the lowest used power p = −126 dBm.

Both the gain and the noise mainly depend on the total applied power
pΣ, and only weakly on the number of tones N , as seen in Fig. 6.3(a) by the
collapse of all curves for different N on a single one. This means that the
creation of the additional intermodulation products does not significantly
reduce the gain nor increase the noise at the signal frequencies as long as the
products do not overlap with the signals. The lack of dependence on N could
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Figure 6.3: Multi-tone noise characterization. (a) Change in the
signal gain G and noise power S as a function of the total applied power
pΣ and number of signal tones N , compared to the single-signal (N = 1),
low-power (pΣ = −126 dBm) values Gref and Sref . (b) Change in measure-
ment efficiency η relative to the single-signal, low-power value ηref . The
intersection points of the gray lines indicate the 1 dB gain loss in panel (a)
and 1 dB efficiency loss in panel (b).

be explained by the balance of the two following tendencies. When increasing
the number of input tones N , the number of distinct intermodulation
products, which have a frequency that is a linear combination of the input
frequencies, also increases. On the other hand, each input signal and
therefore also each intermodulation product has a lower power for fixed pΣ.
The total output power from the TWPA might therefore remain unchanged.
This hypothesis is supported by a calculation of the total output power in a
6 GHz bandwidth around the pump tone according to Eq. (6.1), which we
find to be approximately constant when varying the number of input tones
N for a fixed total input power pΣ.

We also analyze the saturation performance in terms of the amplifier
efficiency η = ηref(G/Gref)

/︁
(S/Sref), that is, the signal-to-noise ratio at its

output, relative to the standard quantum limit [Caves82], see Fig. 6.3(b).
From a separate characterization measurement [Bultink18], we find a single-
signal, low-power measurement efficiency of the total detection line of
ηref = 24(5)% (on a scale where an ideal phase-preserving amplifier would
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have η = 1). When operating the amplifier close to its saturation power,
we observe that the noise begins to rise at input powers about 10 dB lower
than the value at which the gain is significantly reduced. This is reflected by
a 1 dB reduction of efficiency already 6.5 dB before the 1 dB gain compression
point is reached. While the origin of the noise rise needs further investigation,
we conclude that it is not sufficient to consider only the gain and the 1 dB
compression power, but also the noise rise when operating a TWPA close to
saturation.

Beyond reducing efficiency, an intermodulation product can overlap with
a signal tone used for frequency-multiplexed readout of a transmon qubit.
To investigate this effect, we use qubits X2 and D5 from the device pre-
sented in Section 4.3. The qubit frequencies during readout are 5.89 GHz
and 5.15 GHz, and the readout frequencies are ω1/2π = 7.5551 GHz and
ω2/2π = 7.1924 GHz, as before, see Fig. 6.4(b) for the transmission spectrum
of the readout feedline.

First, we prepare Q1 in one of its three lowest-lying energy eigenstates,
labeled |0⟩, |1⟩, and |2⟩, and then read it out using a 200-ns-long Gaussian-
filtered (σ = 10 ns) square pulse, with mean power at the input of the
TWPA of p1 = −123 dBm. We integrate each acquired time trace with two
orthogonal weight vectors, leading to the values Q01 and Q01. The weight
vectors are chosen to maximize the distinguishability of the three qutrit
states on the Q01-Q01 plane [Krinner22]. We use a Gaussian-mixture model
to classify the outcome as one of the qutrit states, see Fig. 6.4(a).

We then read out Q2 simultaneously with Q1, preparing it in one of the
three qutrit states, in which case the intermodulation product ω2 + ωp − ω1
is created at ω1 + 2π × 2.2 MHz. The average power of the Q2 readout
tone at the input of the TWPA is p2 = −120 dBm. We observe that the
centers of the Gaussian distributions are shifted depending on the state
of Q2, as indicated in Fig. 6.4(a). Because the 2.2 MHz detuning of the
intermodulation product from the readout frequency is small compared
to the acquisition bandwidth of the 200 ns readout, the intermodulation
product will shift the integrated quadratures depending on its phase and
amplitude. Furthermore, the amplitude and phase of the intermodulation
product depend on the amplitudes and phases of both readout tones, and
thereby the state of both qutrits. A different shift of the integrated readout
response for each pair of qutrit states is therefore expected, which cannot
be corrected by a linear correction operation, and the crosstalk leads to a
reduction of readout fidelity.
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Figure 6.4: Intermodulation-induced readout errors. (a) Readout
histograms of Q1 when prepared in each of the three first transmon states
|0⟩, |1⟩, and |2⟩. The dash-dotted lines indicate the shift (×4 for improved
visibility) of the mean of the Gaussian distribution of measurement outcomes,
when Q2 is prepared in one of the qutrit states and read out in parallel. The
gray solid lines indicate classification thresholds. (b) Resonator spectrum of
the feedline under inspection. The intermodulation product ω2 + ωp − ω1
is 2.2 MHz detuned from the readout tone of Q1 at ω1. (c) Readout errors
of the two qutrits, 1 − F11 and 1 − F22, and the readout cross-fidelity F21,
as a function of the average readout power of Q2 at the TWPA input p2.
The shifts in panel (a) correspond to p2 = −120 dBm.
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We sweep the readout power of Q2 while reading out the two qutrits
in parallel, and measure the readout cross-fidelity matrix. The readout
cross-fidelity Fij , is the readout fidelity of qutrit Qi when only looking at
the classified outcome of Qj, normalized such that Fij = 0 for random
assignment [Heinsoo18]. It can be calculated as

Fij = 1
d− 1

⎛⎝∑︂
ξ∈Ξj

max
ζ∈Zi

Pr(ξ|ζ) − 1

⎞⎠, (6.3)

where d = 3 is the dimensionality of the qutrit, Ξj = {“0”, “1”, “2”} are
the classification outcomes of Qj, Zi = {|0⟩ , |1⟩ , |2⟩} are the prepared
states of Qi, and Pr is the probability distribution of classification results,
conditioned on the prepared state of the qutrit. This corresponds to the
strategy of labeling each shot as the most likely state ζ of Qi, given the
observed classification outcome ξ of Qj. For perfect readout, the off-diagonal
terms of the cross-fidelity matrix would be zero, while the diagonal terms
would be one. A nonzero off-diagonal term F21 means that we can get some
information about the state of Q2 from the readout of Q1, a clear indication
of crosstalk. We see in Fig. 6.4(c), that the readout error of Q2, 1 − F22,
decreases as we increase the readout power p2, but at the same time the
readout error of Q1, 1 − F11, increases as does the cross-fidelity F21. This
highlights the trade-off between high-fidelity and low-crosstalk readout.

The probability and impact of such frequency-collisions increases with
the speed of the readout, as the acquisition bandwidth needs to be wider
and the signal power levels higher, implying that the relative amplitude of
the intermodulation products is also higher according to Eq. (6.1).

6.3. Mitigation Strategies

We can categorize the methods to reduce the crosstalk and readout errors
from intermodulation in the TWPA into two broad classes. First, one
can accept that there will be frequency-collisions with the intermodulation
products and try to reduce the relative amplitudes of the spurs compared
to the signal. Second, one can try to avoid frequency-collisions with the
intermodulation products.

The most practical way to reduce amplitudes of intermodulation prod-
ucts is to increase the intercept powers pIP by increasing the saturation
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power [Eichler14b], as we discussed in Section 6.1. For example, similar
TWPAs are available with a nominal 1 dB compression power of p1dB =
−85 dBm [O’Brien14, Oliver18]. Alternatively, the power applied to the
amplifier could be reduced. This could be done for example by optimizing
the ratio of the dispersive shift and the resonator linewidth, or by interfer-
ometrically canceling the mean response of the system by displacing the
input field via the directional coupler that is used to add the pump tone to
the TWPA input [Remm23a].

Alternatively, many of the intermodulation products can be avoided by
choosing the frequencies of the signals and the pump carefully. To identify
at which frequencies the intermodulation products occur, we divide the inter-
modulation products arising from amplification of N frequency-multiplexed
signals into classes with bounded bandwidth according to how many signal
photons and which signs are involved in the process, see Fig. 6.5(a). The
width of the frequency band of each intermodulation product class is propor-
tional to its signal order Os. If all signal frequencies ωi are chosen between
ωmin and ωmax (the signal band), and the pump is detuned by more than
the width of the signal band

ωp > 2ωmax − ωmin, (6.4)

then none of the intermodulation frequency components of the form ωi ±
(ωp −ωj), where i, j ∈ {1..N}, can collide with the signals. This corresponds
to the pump frequency in Fig. 6.5(a) where the diagonal red bands do not
overlap with the green horizontal signal band. The main intermodulation
products that can cause significant crosstalk fall into these two classes as
they have signal order Os = 2 and have therefore the highest amplitudes
according to our measurements and Eq. (6.1). For typical widths of the
signal band of about 1 GHz, this implies signal-pump detunings of up to
2 GHz. In Fig. 6.1(c) we see that, while the gain of the TWPA is slightly
reduced at large detunings from the pump, it is still sufficient to overcome
the HEMT amplifier noise, as the signal-to-noise ratio remains constant
over several gigahertz. Using three-wave mixing amplifiers, for which the
pump frequency is about twice the signal frequency, could be beneficial for
avoiding frequency collisions, as all the Os = 2 intermodulation products are
far detuned from the signals in this case, see right side of Fig. 6.5(a). We also
see that overlap of the signal band with the Os = 3 band of intermodulation
products of the class ωi + ωj − ωk (blue horizontal band in Fig. 6.5(a))
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Figure 6.5: Intermodulation product avoidance. (a) Frequencies
ω of intermodulation product classes as a function of pump frequency ωp.
Applied readout tones ωi, ωj , and ωk have any frequency in the readout band
(green horizontal band) with center frequency ωr and width 0.145ωr. Green,
red, and blue colors of the bands indicate Os = 1, 2, and 3, respectively,
while higher order bands are light gray. The pump tone, signals, idlers,
and dominant mixing processes are labeled. (b) Probability pcoll. of an
intermodulation product with Os = 2 colliding with a readout tone within
a detuning ∆min as a function of the degree of multiplexing N . Readout
frequencies are sampled uniformly within a 1 GHz band. The pump is
detuned by 0.52 GHz from the edge of the signal band. (c) Same as (b), but
for Os = 3 and a pump detuning of 2.05 GHz.
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cannot be avoided and frequency collisions are likely for a high degree of
multiplexing.

To assess the difficulty of avoiding frequency collisions with intermod-
ulation products, we determine the probability of a collision for various
degrees of readout multiplexing N using numerical simulations. We sample
2000 signal frequency configurations from a uniform distribution between
6.4 GHz and 7.4 GHz with a minimal detuning of 20 MHz between any sig-
nals. If any intermodulation product has a smaller detuning from a signal
than ∆min/2π = {0.2, 0.5, 1.0, 2.0, 5.0, 10}MHz, we consider it as a collision.
These detunings correspond to the full-width half-maximum bandwidths
of square pulses of lengths {3, 1.2, 0.6, 0.3, 0.12, 0.06}µs. First, we consider
a pump frequency of ωp/2π = 7.92 GHz, in which case condition (6.4) is
not satisfied, and we calculate the probability of collision with Os = 2
intermodulation products, see Fig. 6.5(b). Second, we consider a pump
frequency of ωp/2π = 9.45 GHz, for which there are no collisions with Os = 2
intermodulation products and we calculate the collision probability with
Os = 3 terms, see Fig. 6.5(c).

By carefully choosing the readout frequencies, it is possible to avoid all
Os = 2 intermodulation products when multiplexing even a 120-ns-short
readout of up to N = 10 qubits even when the condition given by Eq. (6.4) is
not satisfied, as the collision probability is around 50% for random sampling
of readout frequencies [see ∆min/2π = 5 MHz line in Fig. 6.5(b)]. However, if
the difference of readout frequencies from their design values is on the order
of 10 MHz, for example, because of variations in the resonator fabrication,
avoiding collisions becomes almost impossible, independent of the readout
duration [see ∆min/2π = 10 MHz line in Fig. 6.5(b)]. On the other hand,
avoiding Os = 3 intermodulation products becomes practically impossible
for more than N = 6 qubits with ∆min/2π = 10 MHz. This means that for
fast high-fidelity readout with a large degree of multiplexing, it is critical to
make sure that the third order intercept power of the amplifier pIP3 is well
above the used signal power.

In practice, a combination of frequency avoidance and suppression of
intermodulation distortion will likely be required to achieve a high degree of
multiplexing for fast readout with low crosstalk.
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6.4. Discussion
In this chapter we characterized the intermodulation distortion of a traveling
wave parametric amplifier. We identified intermodulation products at fre-
quencies of all integer prefactor combinations of two signal tone frequencies
up to signal order Os = 3 and characterized their dependence on the input
power, which we found to be a power law with Os as the exponent if signal
powers are swept together. An interesting topic for future investigation
would be the dependence of the intermodulation products on the pump
power.

When operating the amplifier close to its saturation point with multiple
input signals, we found that neither the gain nor the signal-to-noise ratio
are much reduced compared to when using a single tone at the same total
input power. Intermodulation distortion can nonetheless lead to significant
readout errors and crosstalk for multiplexed readout if an intermodulation
product comes close to one of the signal frequencies.

Frequency collisions with intermodulation products of highest signal order
Os = 2 can be completely avoided if the pump frequency is designed to
be detuned from the signals by more than the total width of the signal
band. The relative amplitude of higher-order intermodulation products can
be suppressed by increasing the saturation power of the amplifier and by
increasing the power-efficiency of readout.

A high degree of frequency multiplexing for readout is very desirable for
scaling up general-purpose quantum processors to hundreds of qubits, for
example, for quantum error correction, which heavily relies on fast low-
crosstalk mid-circuit measurements. We found that careful consideration of
the intermodulation distortion and amplifier saturation is needed to achieve
the desired amplifier performance.
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7
Outlook

As the known quantum algorithms with practical applications, which have
a proven speedup over known classical algorithms, require millions if not
billions of operations, quantum error correction will be needed to achieve
error rates low enough for their implementation. In this work, we have
demonstrated, for the first time using superconducting circuits, repeated
quantum error correction of a single logical qubit. However, the physical
error rates were too high to observe a reduced logical error probability. In
this chapter we discuss some of the next steps that need to be taken toward
the goal of a useful error-corrected quantum processor.

Reducing Error Rates

Because we did not observe a significant advantage in using the error
correction scheme over just operating the physical qubit, the first crucial
step is to reduce the physical error rates before increasing the code distance
or scaling to more logical qubits. There are three main directions toward
reducing the physical error rate.

First, one can reduce the decoherence rate of the qubits. The main factor
limiting the coherence of current superconducting qubits is material losses.
By using tantalum instead of niobium as the base metalization layer, and
by increasing the qubit size to ∼ 1 mm, qubit coherence times above 200 µs
have been reproducibly demonstrated [Place21], which is almost an order of
magnitude improvement over the average lifetime presented in Chapter 4.
Furthermore, the density of spurious two-level system (TLS) defects that
couple strongly to the qubits needs to be reduced, for example by reducing
junction dimensions [Zanuz23], as they were the main limiting factor for
improving the fidelity of two-qubit gates so far. As the decoherence due
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to material losses is reduced, the requirements on couplings to external
control lines, such as the readout resonators, flux lines, and the charge drive
line, become also more stringent [Kono20]. To improve the coherence even
further, quantum circuits different from the transmon can be utilized. For
example, coherence times above 1 ms have been demonstrated with fluxonium
qubits, which have a very weak electrical coupling to the surrounding lossy
environment [Somoroff23]. A device with more than two coupled fluxonium
qubits, however, remains to be demonstrated.

Another option is to implement gates faster by increasing the relevant
coupling rates. By improving the tuneup procedure of our single-qubit gates,
we could reduce the gate duration from current 40 ns down to 20 ns, at which
duration the fidelity starts to be limited by leakage into the higher excited
states [Lazăr23]. For faster two-qubit gates, the inter-qubit coupling JQQ
could be increased, see Section C.3, at the cost of larger dispersive qubit-qubit
couplings. Most of the crosstalk due to the increased dispersive couplings
could be suppressed by a careful dynamical decoupling scheme, but effects
such as the shift of the second excited level of a qubit involved in a gate might
still lead to reduced gate fidelities and leakage [Krinner20]. The readout
speed can also be increased by at least a factor of two with known techniques
by increasing the relevant coupling rates [Heinsoo18, Walter17, Swiadek23].

Finally, reducing control errors will be needed, in particular those that lead
to qubit leakage outside the computational subspace. In our demonstration
of quantum error correction, we used postselection to remove the detrimental
effects of leakage, which caused the loss of about 8% of data for each stabilizer
measurement cycle. For a scalable solution against the residual leakage,
the leaked population should be actively driven back to the computational
subspace, as discussed in Section 4.6.

With sufficiently reduced error rates, an exponential suppression of logical
error rates with the distance of the code can be demonstrated. To reach a per-
cycle logical error rate of ∼ 10−12 with a physical error rate of 10−3, a surface
code of distance at least d = 11, consisting of n = 241 qubits, would be
needed [Fowler12b]. There are many cryogenic-, electrical-, and fabrication-
engineering challenges that need to be resolved to reliably produce and
operate such large devices.
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Demonstrating Logical Circuit Building Blocks

Demonstrations of quantum error correction (QEC) using surface codes have
so far implemented a single logical qubit and used offline decoding. The
building blocks of a logical error-corrected circuit remain to be demonstrated
in future experiments. These include moving logical qubits across the surface,
splitting and merging multiple logical qubits, and fault-tolerant preparation
of magic states for single-qubit π/2 and π/4 rotations.

While applying the logical corrections arising from the moving, splitting,
and merging operations can be deferred using Pauli frame updating [de-
Beaudrap20], the π/4 rotations are probabilistic in their nature and require
decoding in real time to be able to apply the correct feedback operation,
see also Section 1.3. Real-time decoding has been demonstrated for the
distance d = 3 color code in an ion-trap quantum processor with a cycle-time
of 200 ms, which is a factor 105 slower than in our implementation [Ryan-
Anderson21]. Decoders alternative to the minimum-weight perfect match-
ing (MWPM) decoder that we used here have been developed for surface
codes which are more easily parallelized and can keep up with the rate
of syndrome generation at the short stabilizer measurement cycle time
of ∼ 1 µs [Delfosse21, Liyanage23]

Preparation of magic states is considered to be one of the most resource-
intense requirements of large-scale logical circuits. Initial proposals for
preparing magic states for π/4 rotations involved preparing faulty copies
of the magic state and encoding them in a tailored error correcting code,
such that the original errors can be detected [Bravyi05, Meier13]. Doing the
encoding-fault tolerantly can, however, lead to a large overhead [Fowler18].
Recently, an efficient protocol to prepare magic states on surface code using
appropriately-sized surface code patches has been proposed [Litinski19].
But even with the new technique, the resource cost is rather high for
near-term demonstration. For example, demonstrating fault-tolerant magic
state preparation for a distance d = 3 logical qubit using the method from
Ref. [Litinski19] requires around 153 physical qubits. For an output error
probability corresponding to a distance d = 11 code, the number of required
physical qubits is 1609.
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Using Alternative Codes
As discussed in Section 1.3, surface codes have a large overhead, requiring ∼
107 qubits and runtimes of up-to a month for many practical applications.
Quantum low-density parity check (QLDPC) codes have been proposed, for
which the number of encoded logical qubits per physical qubit can be much
higher than for surface codes [Bravyi23, Dinur23].

However, these codes require long-distance nonlocal connectivity between
qubits. Gates using fixed-frequency couplers over 12 mm distance [Majer07]
and tunable couplers over 2 mm distance [Marxer23] have been demonstrated,
and over 20 mm distance proposed [Zhao22a]. For a typical qubit lattice
spacing of 0.8 mm, these lengths are sufficient to connect 25th nearest
neighbors, which is sufficient to connect any two qubits in the 24 × 12
qubit lattice of the J144, 12, 12K code proposed in [Bravyi23]. Couplings
over even larger distances could be achieved by emitting and absorbing
shaped microwave photons [Campagne-Ibarcq18, Kurpiers18] and doing
gates between the photons and qubits [Besse20].

How to implement logical gates in these novel highly efficient codes is,
however, currently an open question. Because the good QLDPC codes are
so recently invented, efficient gate schemes might still be developed. Even
without logical gates, these codes might function as a resource-efficient
logical memory, while gates are still implemented on surface codes. In any
case, demonstrating small-scale QLDPC codes remains an interesting next
step.
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A
Distance-Three Surface Code as a Stabilizer Code

In general, any Pauli operator Ê on the data qubits of a surface code can
be decomposed as Ê = L̂ŜD̂, where L̂ is any product of logical operators, Ŝ
is any product of stabilizers and D̂ is any product of the so-called destabilizer
generators, or destabilizers for short [Aaronson04]. The logical operator part
L̂ can flip the logical operators of the code, the stabilizer part Ŝ has no effect,
and the destabilizer part D̂ determines, which stabilizer values are flipped
by the operator Ê. The destabilizers, which come paired with the stabilizers,
should commute with all the logical operators, destabilizers, and stabilizers,
except the stabilizer corresponding to it, with which it anticommutes. We
present a possible set of minimal-weight destabilizers for the d = 3 surface
code in Table A.1. We can consider the stabilizers and ẐL operator as
virtual Pauli Z̃ operators, and the corresponding destabilizers and the X̂L
operator as the corresponding virtual Pauli X̃ operators, as they satisfy the
standard Pauli operator commutation relations

[X̃i, X̃j ] = 0, [Z̃i, Z̃j ] = 0, (A.1ab)
[X̃i, Z̃j ] = 0 for i ̸= j, {X̃i, Z̃i} = 0. (A.1cd)

Such a decomposition of the Pauli group is also useful for efficient sim-
ulation of Clifford circuits, which convert Pauli operators to other Pauli
operators [Gottesman99a, Aaronson04].
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Appendix A. Distance-Three Surface Code as a Stabilizer Code

Table A.1: Distance-three surface code. The stabilizers, destabilizers
and logical operators of the d = 3 surface code.

Label Stabilizer, Ŝ Destabilizer, D̂

Z1 ẐD1ẐD4 X̂D4X̂D7
Z2 ẐD4ẐD5ẐD7ẐD8 X̂D7
Z3 ẐD2ẐD3ẐD5ẐD6 X̂D5X̂D7
Z4 ẐD6ẐD9 X̂D9
X1 X̂D2X̂D3 ẐD3
X2 X̂D1X̂D2X̂D4X̂D5 ẐD2ẐD3
X3 X̂D5X̂D6X̂D8X̂D9 ẐD6
X4 X̂D7X̂D8 ẐD6ẐD8

Logical op., ẐL Logical op., X̂L

ẐD1ẐD2ẐD3 X̂D1X̂D4X̂D7
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B
Two-Qubit Gate Swap Errors

The combination of small anharmonicity α, large qubit-qubit coupling
JQQ, and diabatic dynamic flux pulse based two-qubit gates can lead to
significant swap errors for the gate. To see that, let’s first consider the case
of a CZ gate implemented with a diabatic unipolar pulse that brings the |20⟩
state into resonance with the |11⟩ state. During the interaction, the detuning
between the |10⟩ and |01⟩ states is the anharmonicity of the high-frequency
qubit α. The interaction within the single-excitation subspace can therefore
be described by the Hamiltonian

Ĥ = ℏ
α

2 Ẑ + ℏJQQX̂, (B.1)

with Ẑ = |01⟩⟨01| − |10⟩⟨10| and X̂ = |01⟩⟨10| + |10⟩⟨01|. Turning this
interaction on for a pulse duration of τ implements the unitary Û = Î cos J̃τ−
iĤ/(ℏJ̃) sin J̃τ , where J̃ =

√︂
J2

QQ + α2/4 is the effective coupling rate for a
detuning of α. The unitary implements a swap rotation by an angle

θ = 2 arcsin | ⟨10|Û |01⟩ | = 2 arcsin
⃓⃓⃓⃓
JQQ
J̃

sin Ωτ
⃓⃓⃓⃓

≤

2 arcsin

⃓⃓⃓⃓
⃓⃓ 2JQQ√︂

α2 + 4J2
QQ

⃓⃓⃓⃓
⃓⃓ = 2 arctan

⃓⃓⃓⃓2JQQ
α

⃓⃓⃓⃓
. (B.2)

For a gate implemented with a net-zero pulse, two such swap opera-
tions happen consecutively, leading to a worst-case rotation angle of θ =
4 arctan |2JQQ/α|. On the other hand, by controlling the phase gathered
between the two parts of the net-zero pulse, the two swap rotations can also
be made to cancel one-another.
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Appendix B. Two-Qubit Gate Swap Errors

Ignoring the single-qubit phase errors, which are corrected by virtual Zϕ/π

gates, we can write the unitary corresponding to a CZ gate with a swap
error by an angle θ as

Û θ =

⎛⎜⎜⎜⎝
⟨00| ⟨01| ⟨10| ⟨11|

|00⟩ 1 0 0 0
|01⟩ 0 cos θ/2 sin θ/2 0
|10⟩ 0 sin θ/2 cos θ/2 0
|11⟩ 0 0 0 −1

⎞⎟⎟⎟⎠. (B.3)

The average gate error for this process is given by

ε2i =
d2 −

⃓⃓⃓
Tr(Û †0Û θ)

⃓⃓⃓2
d(d+ 1) = 1

10

(︃
5 − 4 cos θ2 − cos θ

)︃
, (B.4)

with d = 4 the dimension of the Hilbert space and Û0 the target CZ gate
unitary with θ = 0.
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C
Device Design

In this appendix, we present three topics related to device design: modeling
the frequency-multiplexed readout circuits of our devices in Section C.1,
self-consistent simulation of coplanar capacitors in Section C.2, and finally
the design of a static two-qubit coupling element in Section C.3.

C.1. Extended Readout Circuit Fitting Model

In this section, we derive the transmission spectrum of a Purcell filter and a
readout resonator coupled to a feedline with an input capacitor, following
the general procedure outlined in Ref. [Heinsoo18]. There are two differences
in our derivation compared to the one in the Ref. [Heinsoo18]. First, we
use a sign convention that is standard in electrical engineering, where the
time-derivative of a monochromatic field a is given by ȧ = iωa. Second, we
consider a piece of transmission line of length ℓ between the input capacitor
and the Purcell filter, which affects the interference between the wave directly
emitted to the output port the one reflected from the input capacitor, see
also Fig. C.1.

The steady-state fields of the two resonators are described by the input-
output relations [Gardiner85]

iωaR = iωRaR − γR
2 aR − iJPRaP, (C.1a)

iωaP = iωP′aP − γP + κP′

2 aP − iJPRaR −
√
κP′b→, (C.1b)

b← = b→ + √
κP′aP, (C.1c)
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in,1

out,2

Cin,Γ

CPR, JPR

CP, κP′

`

`P, ωP′

`R, ωR

aR

aPb�c↑↓

d↑↓

e↑↓

f↑↓

Figure C.1: Readout circuit. The circuit of a Purcell filter and read-
out resonator coupled to the readout feedline with an input capacitor for
directionality.

the T-junction by the equations

b→ = −1
3b← + 2

3c↑ + 2
3d↓, (C.1d)

c↓ = 2
3b← − 1

3c↑ + 2
3d↓, (C.1e)

d↑ = 2
3b← + 2

3c↑ − 1
3d↓, (C.1f)

the transmission line by the equations

e↑ = e−iωℓ/vpd↑, (C.1g)
d↓ = e−iωℓ/vpe↓, (C.1h)

and the input capacitor by the equations

f↑ = (1 − Γ)e↑ + Γf↓, (C.1i)
e↓ = (1 − Γ)f↓ + Γe↑. (C.1j)

Here, aR and aP are the intra-resonator fields, b⇄, c↑↓, d↑↓, e↑↓, and f↑↓ the
traveling fields at different points in the circuit, see Fig. C.1, ωR and ωP′

the frequencies of the resonators, JPR the coupling rate between them, γP
and γR the intrinsic decay rates of the resonators, κP′ the external coupling
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C.1. Extended Readout Circuit Fitting Model

rate of the Purcell filter, vp the phase velocity of the transmission line, and
Γ = 1/(1 + 2iωZ0Cin) the reflection coefficient of the input capacitor with
capacitance Cin and transmission line characteristic impedance Z0.

Solving Eqs. (C.1) for S21 = c↓/f↓ with no input from the output side
c↑ = 0, we obtain the equation

S21 = (1 − Γ)e−iωℓ/vp

(︄
1 − ie−iϕ

2 cosϕ
κP∆R

J2
PR − ∆R∆P

)︄
, (C.2)

where we have written

1 + e−2iωℓ/vpΓ = re−iϕ (C.3)

in a polar form. The effective Purcell filter linewidth is given by κP =
κP′r cos(ϕ)/2, its frequency by ωP = ωP′ + κP′r sin(ϕ)/4, and the complex
detunings by ∆R = ω− ωR − iγR/2 and ∆P = ω− ωP − i(γP + κP)/2. Note,
that the Purcell filter frequency shift has an opposite sign compared to the
derivation in Ref. [Heinsoo18]. We have verified the validity of our result by
comparing to equivalent microwave circuit simulation.

For fitting the model Eq. (C.2) to experimental data, the quantities r and
ϕ can be considered independent of frequency, as they change very little
over the linewidth of the resonator for realistic parameters. It is also useful
to make the amplitude and electrical delay of the transmission line fitting
parameters, yielding the model

S21 = (A0 +Aωω)e−i(ϕ0+τω)
(︄

1 − ie−iϕ

2 cosϕ
κP∆R

J2
PR − ∆P∆R

)︄
, (C.4)

with electrical delay τ and linear overall gain A0 +Aωω.
To provide some intuition about the phase parameter ϕ, we point out

that in the small transmission limit Γ ≈ 1, we have ϕ ≈ ωℓ/vp, clipped
between ±π/2, see Fig. C.2(a). We see that ϕ ≈ 0 if we couple at integer
multiples of λP/2 = πvp/ωP′ . To understand, how a nonzero ϕ modifies the
transmission spectrum, and to verify the fitting model (C.4), we simulate the
transmission spectra using the transmission matrix formalism, also known
as ABCD-matrix formalism, for the circuit show in Fig. C.1 [Pozar12]. We
target |1 − Γ| = 0.16, ωP′/2π = ωR/2π = 7 GHz, JPR/2π = 10 MHz, and
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Figure C.2: Readout spectra. (a) The phase ϕ as a function of the
coupling position ℓ according to Eq. (C.3) for |1 − Γ| = 0.16, corresponding
to −16 dB power transmission. The bottom axis is given in the units of
wavelengths of the Purcell filter and the top axis corresponds to distance from
the input capacitor assuming ωP′/2π = 7 GHz and vp = 120 mm/ns. (b) The
reduction factor r cosϕ/2 of the Purcell filter linewidth. (c,d,e) Modulus of
the transmission spectrum |S21|. Thin lines are simulated using transmission
matrix formalism with Purcell filter coupled to the feedline at ℓ = 6 mm,
8.4 mm, and 10 mm, respectively. See main text for other simulation details.
Lighter thick lines are fits to the model (C.4). The fitted values for ϕ and
κP are indicated above the panels. (f,g,h) The simulated and fitted phase of
the transmission corresponding to panels (c,d,e) with the electrical delay
subtracted.
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C.2. Reference Planes for Lumped Element Modeling

κP′/2π = 60 MHz, by setting the circuit parameters as

Cin = |1 − Γ|
2ωP′Z0

√︁
1 − |1 − Γ|2

= 23 fF, (C.5a)

CP =
√︄

πκP′

4ω3
P′Z2

0
= 37 fF, (C.5b)

CPR = πJPR
2Z0ωP′ωR

= 1.0 fF, (C.5c)

ℓP = vp

(︃
π

2ωP′
− Z0(CP + CPR)

)︃
= 4.1 mm, (C.5d)

ℓR = vp

(︃
π

2ωR
− Z0CPR

)︃
= 4.3 mm, (C.5e)

where we have taken Z0 = 50 Ω and vp = 120 mm/ns. The approximate
analytical formulas are derived using methods presented in Ref. [Pechal16].
The simulated spectra and the fits with coupling points ℓ = 6 mm, 8.4 mm,
and 10 mm are shown in Fig. C.2(c–h). The excellent match between the
simulation and the fit, together with the match between the fitted parameter
and target values, verifies the validity of the fitting model.

A distinct feature of nonzero ϕ is the asymmetric shape of the Purcell
filter resonance. If the transmission is higher at frequencies below the
resonance, compared to the transmission at frequencies above the resonance,
then ϕ < 0, and the coupling length ℓ should be increased to achieve ϕ = 0,
see Fig. C.2(c,f). On the other hand, for ϕ > 0, the transmission is higher
at frequencies above the resonance, and the coupling distance should be
reduced, see Fig. C.2(e,h). We emphasize, that the phase parameter ϕ
should be minimized by adjusting the coupling points of the readout circuits
when designing a frequency-multiplexed readout feedline. This helps avoid
excessively large Purcell filter capacitors CP, which could lead to systematic
frequency shifts and additional reflections in the readout feedline.

C.2. Reference Planes for Lumped Element Modeling

When simulating a layout of a microwave circuit as a network of connected
lumped elements and transmission lines, it is important that the lengths
and capacitances of the lumped elements are consistent with the actual
laid out design. Usually, the capacitance of a given design is simulated
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(a)
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(c)

`

(e)

Cg′ Cg′CCe′ Ce′

C`e C`eCg CgCCe Ce

C`Ce Ce

(b)

(d)

(f)

Figure C.3: Layout reference planes. (a) Naive layout for simulating
capacitor capacitances without correctly accounting for boundary effects.
Black features indicate areas where the thin superconducting film has been
removed. (b) Equivalent circuit for the layout (a), where only the sum
of the capacitances Cg′ + Ce′ can be extracted. (c) Simulation layout of
the capacitor with extended CPW sections. The vertical dashed lines
indicate reference planes, up-to-which the length of the CPW should be
measured. (d) Circuit equivalent to the layout (c), where the capacitance
Cℓe is proportional to the length ℓe. (e) Simulation layout for determining
the per-length capacitance Cℓ/ℓ and the end capacitance Ce.

by solving the electrostatics problem using the finite element method with
software such as ANSYS Maxwell or Comsol Multiphysics. In this section,
we describe a self-consistent way, how to simulate these capacitances and set
the reference planes of the two-dimensional designs, up-to-which the lengths
of the transmission lines should be measured.

Naively, one can simulate the pad-to-pad capacitance C of the capacitor
using the layout and equivalent circuit shown in Fig. C.3(a,b). The simulation
tool can not, however distinguish between capacitance-to-ground of the pads
Cg′ and the extra capacitance due to the termination the short CPW section
Ce′ . Furthermore, the capacitances, as well as their sum, will depend on the
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C.3. Qubit-Qubit Coupler Design

length of the termination in a nontrivial way due to boundary effects.
To correctly account for the boundary effects of the CPW termination,

a section of CPW of length ℓe, which is much larger than the feature sizes
of the capacitor and the CPW, should be included in the simulation, see
Fig. C.3(c,d). This way, the extra capacitance due to the CPW termination
Ce is independent of the capacitor geometry, and can be self-consistently
subtracted. Also, the capacitance due to the CPW section Cℓe needs to
be subtracted from the total simulated capacitance to ground of the pad
Cg + Cℓe + Ce to obtain the capacitance to ground of the capacitor pad Cg.

The values of the CPW termination capacitance Ce and the capacitance
Cℓ per length ℓ can be found by simulating CPW sections of various lengths
ℓ and fitting the total capacitance to a linear model, see Fig. C.3(e,f).

We note, that, as long as the capacitor dimensions are significantly smaller
than the wavelength of the field, any self-inductance of the capacitor that is
not accounted-for by such modeling should have a negligible effect, as there
is no current flowing in the open end of the circuit. This means, that the
reference plane, up-to which the transmission line length is measured, can be
chosen arbitrarily, as indicated by the double-headed arrows in Fig. C.3(c),
as long as it is consistently kept the same in the simulations and when using
the element in a later layout. For layout convenience, to decouple the size
parameters of the capacitor from the length parameter of the connected
CPW, we suggest placing the reference planes at the coordinate origin of
the capacitor.

C.3. Qubit-Qubit Coupler Design

In this work we employed sections of capacitively coupled transmission lines
between the qubits to mediate the interactions needed to implement two-
qubit gates, If the transmission line section is short, then this coupling can
be modeled as a direct lumped capacitor between the two qubits [Barends14].
On the other hand, if the frequency of the λ/2 resonator, formed by the
coupling transmission line, is close to the qubit frequencies, then the system
can be modeled as three coupled oscillators [Majer07]. The device for the
entanglement stabilization experiment, see Section 3.2, was in this latter
regime, with the coupler frequencies at about 7.5 GHz. For quantum error
detection and correction experiments, however, we increased the resonator
frequency to avoid strong coupling of the readout tone of auxiliary qubits
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Figure C.4: Qubit-qubit coupling. (a) Coupling JQQ between qubits
at 5 GHz when connected using a CPW transmission line of length ℓ and
capacitance CC at each end. Analytical approximation for short lengths
according to Eq. (C.6) indicated as dashed contour lines. The phase velocity
is 120 nm/ns, the characteristic impedance of the CPW is 50 Ω, and the
charging energy of the qubits is EC/h = 165 MHz. The resonance frequency
of the λ/2 coupler ωC is indicated on the top axis. The parameters targeted
for the 17-qubit device presented in Chapter 4 are indicated with a black
cross. (b) The simulated equivalent circuit.

to their neighboring data qubits.
Here, we present the dependence of the inter-qubit coupling rate JQQ on

the length ℓ of the CPW coupler and its capacitance CC to the qubits. To
determine the coupling rate, we simulate the transmission spectrum through
a circuit of two identical LC-resonators connected via a capacitively coupled
transmission line using the transmission matrix formalism [Pozar12]. The
total capacitance of the qubits is CQ = 117 fF, corresponding to EC/h =
165 MHz, and their frequency is ωQ = 1/

√︁
CQLQ = 2π × 5 GHz. We

determine the coupling rate from the frequencies of two resonant peaks
that appear in the transmission spectrum and are separated by 2JQQ, see
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C.3. Qubit-Qubit Coupler Design

Fig. C.4 for the results.
In the short coupler limit, the coupling transmission line is well-modeled

as a shunt capacitance to ground with capacitance CCPW = ℓ/(vpZ0), where
vp is the transmission line phase velocity and Z0 its characteristic impedance.
In this case, the coupling rate is given by

JQQ = CCωQ
CQ

(︃
1 + CCPW

2CC

)︃−1
, (C.6)

see the dashed lines in Fig. C.4. For the intermediate lengths ℓ ≈ πvp/2ωQ,
the short coupler approximation breaks down and the coupling rate starts
increasing as the coupler length is increased. Finally, as ℓ ≈ πvp/ωQ the
qubits and the resonator are strongly hybridized and the coupling is of a
similar magnitude as for ℓ = 0.
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[Ristè15] D. Ristè, S. Poletto, M.-Z. Huang, A. Bruno, V. Vesterinen, O.-P.
Saira, and L. DiCarlo. “Detecting bit-flip errors in a logical qubit
using stabilizer measurements.” Nature Communications 6, 6983
(2015). Cited on page 9.

[Rivest78] R. L. Rivest, A. Shamir, and L. Adleman. “A method for obtain-
ing digital signatures and public-key cryptosystems.” Communi-
cations of the ACM 21, 120–126 (1978). Cited on page 2.

[Roetteler17] M. Roetteler, M. Naehrig, K. M. Svore, and K. Lauter. “Quan-
tum resource estimates for computing elliptic curve discrete loga-
rithms.” In Proceedings of ASIACRYPT 2017, the 23rd Annual
International Conference on the Theory and Application of Cryp-
tology and Information Security, 241–270. Springer International
Publishing (2017). Cited on page 2.

165

http://dx.doi.org/10.1137/0108018
http://dx.doi.org/10.1137/0108018
http://dx.doi.org/10.1063/1.3435463
http://dx.doi.org/10.1038/nature10786
http://dx.doi.org/10.1038/nature10786
https://arxiv.org/abs/2307.06617
http://dx.doi.org/10.1103/PhysRevApplied.20.034027
http://dx.doi.org/10.1103/PhysRevApplied.20.034027
http://dx.doi.org/10.1038/ncomms7983
http://dx.doi.org/10.1038/ncomms7983
http://dx.doi.org/10.1145/359340.359342
http://dx.doi.org/10.1145/359340.359342
http://dx.doi.org/10.1007/978-3-319-70697-9_9
http://dx.doi.org/10.1007/978-3-319-70697-9_9
http://dx.doi.org/10.1007/978-3-319-70697-9_9
http://dx.doi.org/10.1007/978-3-319-70697-9_9


Bibliography

[Rol19] M. A. Rol, F. Battistel, F. K. Malinowski, C. C. Bultink,
B. M. Tarasinski, R. Vollmer, N. Haider, N. Muthusubrama-
nian, A. Bruno, B. M. Terhal, and L. DiCarlo. “Fast, high-fidelity
conditional-phase gate exploiting leakage interference in weakly
anharmonic superconducting qubits.” Physical Review Letters
123, 120502 (2019). Cited on page 55.

[Rol20] M. A. Rol, L. Ciorciaro, F. K. Malinowski, B. M. Tarasinski,
R. E. Sagastizabal, C. C. Bultink, Y. Salathe, N. Haandbaek,
J. Sedivy, and L. DiCarlo. “Time-domain characterization and
correction of on-chip distortion of control pulses in a quantum
processor.” Applied Physics Letters 116, 054001 (2020). Cited
on pages 68 and 74.

[Ryan-Anderson21] C. Ryan-Anderson, J. G. Bohnet, K. Lee, D. Gresh, A. Hankin,
J. P. Gaebler, D. Francois, A. Chernoguzov, D. Lucchetti, N. C.
Brown, T. M. Gatterman, S. K. Halit, K. Gilmore, J. A. Gerber,
B. Neyenhuis, D. Hayes, and R. P. Stutz. “Realization of real-time
fault-tolerant quantum error correction.” Physical Review X 11,
041058 (2021). Cited on page 127.

[Saffman10] M. Saffman, T. G. Walker, and K. Mølmer. “Quantum informa-
tion with Rydberg atoms.” Reviews of Modern Physics 82, 2313
(2010). Cited on page 20.

[Sank16] D. Sank, Z. Chen, M. Khezri, J. Kelly, R. Barends, B. Camp-
bell, Y. Chen, B. Chiaro, A. Dunsworth, A. Fowler, and et al.
“Measurement-induced state transitions in a superconducting
qubit: beyond the rotating wave approximation.” Physical Review
Letters 117, 190503 (2016). Cited on pages 63 and 73.

[Scherer17] A. Scherer, B. Valiron, S.-C. Mau, S. Alexander, E. van den Berg,
and T. E. Chapuran. “Concrete resource analysis of the quantum
linear-system algorithm used to compute the electromagnetic
scattering cross section of a 2D target.” Quantum Information
Processing 16, 60 (2017). Cited on page 3.

[Schmitt14] V. Schmitt, X. Zhou, K. Juliusson, B. Royer, A. Blais, P. Bertet,
D. Vion, and D. Esteve. “Multiplexed readout of transmon qubits
with Josephson bifurcation amplifiers.” Physical Review A 90,
062333 (2014). Cited on page 109.

[Schreier08] J. A. Schreier, A. A. Houck, J. Koch, D. I. Schuster, B. R. Johnson,
J. M. Chow, J. M. Gambetta, J. Majer, L. Frunzio, M. H. Devoret,
S. M. Girvin, and R. J. Schoelkopf. “Suppressing charge noise
decoherence in superconducting charge qubits.” Physical Review
B 77, 180502 (2008). Cited on page 25.

[Serniak18] K. Serniak, M. Hays, G. de Lange, S. Diamond, S. Shankar,
L. D. Burkhart, L. Frunzio, M. Houzet, and M. H. Devoret.
“Hot nonequilibrium quasiparticles in transmon qubits.” Physical
Review Letters 121, 157701 (2018). Cited on page 105.

166

http://dx.doi.org/10.1103/PhysRevLett.123.120502
http://dx.doi.org/10.1103/PhysRevLett.123.120502
http://dx.doi.org/10.1063/1.5133894
http://dx.doi.org/10.1103/PhysRevX.11.041058
http://dx.doi.org/10.1103/PhysRevX.11.041058
http://dx.doi.org/10.1103/RevModPhys.82.2313
http://dx.doi.org/10.1103/RevModPhys.82.2313
http://dx.doi.org/10.1103/physrevlett.117.190503
http://dx.doi.org/10.1103/physrevlett.117.190503
http://dx.doi.org/10.1007/s11128-016-1495-5
http://dx.doi.org/10.1007/s11128-016-1495-5
http://dx.doi.org/10.1103/PhysRevA.90.062333
http://dx.doi.org/10.1103/PhysRevA.90.062333
http://dx.doi.org/10.1103/PhysRevB.77.180502
http://dx.doi.org/10.1103/PhysRevB.77.180502
http://dx.doi.org/10.1103/PhysRevLett.121.157701
http://dx.doi.org/10.1103/PhysRevLett.121.157701


[Sete15] E. A. Sete, J. M. Martinis, and A. N. Korotkov. “Quantum
theory of a bandpass Purcell filter for qubit readout.” Physical
Review A 92, 012325 (2015). Cited on page 28.

[Shalibo10] Y. Shalibo, Y. Rofe, D. Shwa, F. Zeides, M. Neeley, J. M. Martinis,
and N. Katz. “Lifetime and coherence of two-level defects in a
Josephson junction.” Physical Review Letters 105, 177001 (2010).
Cited on page 84.

[Shor94] P. W. Shor. “Algorithms for quantum computation: discrete
logarithms and factoring.” In Proceedings of the 35th Annual
Symposium on Foundations of Computer Science, 124–134. IEEE
Computer Society Press (1994). Cited on page 2.

[Shor95] P. W. Shor. “Scheme for reducing decoherence in quantum
computer memory.” Physical Review A 52, R2493 (1995). Cited
on page 4.

[Shor97] P. W. Shor. “Polynomial-time algorithms for prime factorization
and discrete logarithms on a quantum computer.” SIAM Journal
on Computing 26, 1484 (1997). Cited on page 2.

[Simmonds04] R. Simmonds, K. Lang, D. Hite, S. Nam, D. Pappas, and J. Mar-
tinis. “Decoherence in Josephson phase qubits from junction
resonators.” Physical Review Letters 93, 077003 (2004). Cited on
pages 71 and 82.

[Simons01] R. N. Simons. Coplanar Waveguide Circuits, Components and
Systems. John Wiley & Sons, Inc., New York, USA (2001). Cited
on page 21.

[Sivak19] V. V. Sivak, N. E. Frattini, V. R. Joshi, A. Lingenfelter,
S. Shankar, and M. H. Devoret. “Kerr-free three-wave mixing in
superconducting quantum circuits.” Physical Review Applied 11,
054060 (2019). Cited on page 109.

[Sivak23] V. V. Sivak, A. Eickbusch, B. Royer, S. Singh, I. Tsioutsios,
S. Ganjam, A. Miano, B. L. Brock, A. Z. Ding, L. Frunzio, S. M.
Girvin, R. J. Schoelkopf, and M. H. Devoret. “Real-time quantum
error correction beyond break-even.” Nature 616, 50–55 (2023).
Cited on page 5.

[Somoroff23] A. Somoroff, Q. Ficheux, R. A. Mencia, H. Xiong, R. Kuzmin, and
V. E. Manucharyan. “Millisecond coherence in a superconducting
qubit.” Physical Review Letters 130, 267001 (2023). Cited on
page 126.

[Spitz18] S. T. Spitz, B. Tarasinski, C. W. J. Beenakker, and T. E. O’Brien.
“Adaptive weight estimator for quantum error correction in a time-
dependent environment.” Advanced Quantum Technologies 1,
1800012 (2018). Cited on pages 95, 99 and 101.

[Stace10] T. M. Stace and S. D. Barrett. “Error correction and degeneracy
in surface codes suffering loss.” Physical Review A 81, 022317
(2010). Cited on page 95.

167

http://dx.doi.org/10.1103/PhysRevA.92.012325
http://dx.doi.org/10.1103/PhysRevA.92.012325
http://dx.doi.org/10.1103/PhysRevLett.105.177001
http://dx.doi.org/10.1109/SFCS.1994.365700
http://dx.doi.org/10.1109/SFCS.1994.365700
http://dx.doi.org/10.1109/SFCS.1994.365700
http://dx.doi.org/10.1103/PhysRevA.52.R2493
http://dx.doi.org/10.1137/S0097539795293172
http://dx.doi.org/10.1137/S0097539795293172
http://dx.doi.org/10.1103/physrevlett.93.077003
http://dx.doi.org/10.1103/PhysRevApplied.11.054060
http://dx.doi.org/10.1103/PhysRevApplied.11.054060
http://dx.doi.org/10.1038/s41586-023-05782-6
http://dx.doi.org/10.1103/PhysRevLett.130.267001
http://dx.doi.org/10.1002/qute.201800012
http://dx.doi.org/10.1002/qute.201800012
http://dx.doi.org/10.1103/physreva.81.022317
http://dx.doi.org/10.1103/physreva.81.022317


Bibliography

[Steane96] A. Steane. “Multiple-particle interference and quantum error
correction.” Proceedings of the Royal Society A 452, 2551 (1996).
Cited on page 11.

[Strauch03] F. W. Strauch, P. R. Johnson, A. J. Dragt, C. J. Lobb, J. R.
Anderson, and F. C. Wellstood. “Quantum logic gates for cou-
pled superconducting phase qubits.” Physical Review Letters 91,
167005 (2003). Cited on pages 34, 46 and 63.

[Sun23] H. Sun, F. Wu, H.-S. Ku, X. Ma, J. Qin, Z. Song, T. Wang,
G. Zhang, J. Zhou, Y. Shi, H.-H. Zhao, and C. Deng. “Char-
acterization of loss mechanisms in a fluxonium qubit.” Physical
Review Applied 20, 034016 (2023). Cited on page 82.

[Sunada22] Y. Sunada, S. Kono, J. Ilves, S. Tamate, T. Sugiyama, Y. Tabuchi,
and Y. Nakamura. “Fast readout and reset of a superconducting
qubit coupled to a resonator with an intrinsic Purcell filter.”
Physical Review Applied 17, 044016 (2022). Cited on page 62.

[Sundaresan23] N. Sundaresan, T. J. Yoder, Y. Kim, M. Li, E. H. Chen, G. Harper,
T. Thorbeck, A. W. Cross, A. D. Córcoles, and M. Takita.
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2. C. K. Andersen, A. Remm, S. Lazăr, S. Krinner, N. Lacroix, G. J. Nor-
ris, M. Gabureac, C. Eichler, and A. Wallraff, “Repeated quantum
error detection in a surface code,” Nature Physics 16, 875–880 (2020)

3. S. Krinner1, N. Lacroix1, A. Remm, A. Di Paolo, E. Genois, C. Ler-
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