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Abstract

Biological organisms experience a world of multiple modalities through a variety of sensory
systems. For example, they may perceive physical or chemical stimuli through the senses
of sight, smell, taste, touch, and hearing. Across species, the nervous system integrates het-
erogeneous sensory stimuli and forms multimodal representations that capture information
shared between modalities. Analogously, machines can perceive their environment through
different types of sensors, such as cameras and microphones. Yet, it is not sufficiently well
understood how multimodal representations can be formed in silico, i.e., via computer
simulation. In this thesis, we study how to leverage statistical dependencies between
modalities to form multimodal representations computationally using machine learning.

We start from the premise that real-world data is generated from a few factors of variation.
Given a set of observations, representation learning seeks to infer these latent variables,
which is fundamentally impossible without further assumptions. However, when we have
corresponding observations of different modalities, statistical dependencies between them
can carry meaningful information about the latent structure of the underlying process.
Motivated by this idea, we study multimodal learning under weak supervision, which means
that we consider corresponding observations of multiple modalities without labels for what
is shared between them. For this challenging setup, we design machine learning algorithms
that transform observations into representations of shared and modality-specific information
without explicit supervision by labels. Thus, we develop methods that infer latent structure
from low-level observations using weak supervision in the form of multiple modalities.

We develop techniques for multimodal representation learning using two approaches—
generative and discriminative learning. First, we focus on generative learning with varia-
tional autoencoders (VAEs) and propose a principled and scalable method for variational
inference and density estimation on sets of modalities. Our method enhances the encoding
and disentanglement of shared and modality-specific information and consequently improves
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the generative performance compared to relevant baselines. Motivated by these results,
we consider an explicit partitioning of the latent space into shared and modality-specific
subspaces. We explore the benefits and pitfalls of partitioning and develop a model that
promotes the desired disentanglement for the respective subspaces. Thereby, it further
improves the generative performance compared to models with a joint latent space. On the
other hand, we also establish fundamental limitations for generative learning with multi-
modal VAEs. We show that the sub-sampling of modalities enforces an undesirable bound
on the approximation of the joint distribution. This limits the generative performance of
mixture-based multimodal VAEs and constrains their application to settings where relevant
information can be predicted in expectation across modalities on the level of observations.

To address these issues, we shift to discriminative approaches and focus on contrastive
learning. We show that contrastive learning can be used to identify shared latent factors that
are invariant across modalities up to a block-wise indeterminacy, even in the presence of non-
trivial statistical and causal dependencies between latent variables. Finally, we demonstrate
how the representations produced by contrastive learning can be used to transcend the
limitations of multimodal VAEs, which yields a hybrid approach for multimodal generative
learning and the disentanglement of shared and modality-specific information. Thus, we
establish a theoretical basis for multimodal representation learning and explain in which
settings generative and discriminative approaches can be effective in practice.
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Zusammenfassung

Biologische Organismen erleben die Welt durch eine Vielzahl und Vielfalt an Sinnessyste-
men auf unterschiedliche Art und Weise, das heisst in Form von verschiedenen Modalitäten.
Zum Beispiel können sie physikalische oder chemische Reize über mehrere verschiedene
Sinnesmodalitäten—wie Sehen, Riechen, Schmecken, Tasten und Hören—wahrnehmen.
Artenübergreifend verarbeitet das Nervensystem heterogene sensorische Reize und bildet
multimodale Repräsentationen, welche zugrunde liegende Informationen erfassen, die zwis-
chen den unterschiedlichen Modalitäten geteilt werden. Gleichermassen können auch
Maschinen ihre Umgebung über verschiedene Arten von Sensoren, wie Kameras und Mikro-
fone, wahrnehmen. Es ist jedoch nicht ausreichend geklärt, wie multimodale Repräsen-
tationen in silico, also durch computergestütze Rechenprozesse, erlernt werden können.
In dieser Arbeit untersuchen wir, wie statistische Abhängigkeiten zwischen Modalitäten
genutzt werden können, um multimodale Repräsentationen mit Hilfe von maschinellem
Lernen zu erschliessen.

Wir nehmen an, dass die komplexen Daten, welche wir in vielen Anwendungen beobachten,
prinzipiell auf wenige zugrunde liegende latente Faktoren zurückzuführen sind. Das Ziel
beim Repräsentationslernen ist es, von einem Datensatz ausgehend, auf diese latenten
Faktoren zu schliessen, was im Allgemeinen, ohne weitere Annahmen, unmöglich ist. Wenn
wir jedoch mehrere Beobachtungen unterschiedlicher Modalitäten betrachten, können ihre
statistischen Abhängigkeiten aufschlussreiche Informationen über die latenten Faktoren oder
die Struktur des zugrunde liegenden generativen Prozesses enthalten. Auf Grundlage dieser
Idee beschäftigen wir uns mit dem multimodalen maschinellen Lernen unter schwacher
Überwachung. Das bedeutet, wir betrachten sinngemäss korrespondierende Beobachtungen
mehrerer Modalitäten ohne zusätzliche Informationen darüber was zwischen ihnen geteilt
wird. Für diese Problemstellung entwickeln wir Lernalgorithmen, welche die komplexen
Beobachtungen in gemeinsame und modalitätsspezifische Faktoren zerlegen. Damit nutzen
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wir die schwache Überwachung in Form von mehreren Modalitäten, um aus komplexen
Daten die zugrunde liegende latente Struktur abzuleiten.

Wir entwickeln Methoden für das multimodale Repräsentationslernen basierend auf zwei
Ansätzen—dem generativen und diskriminativen Lernen. Zunächst konzentrieren wir uns
auf das generative Lernen mit dem Variational Autoencoder (VAE) und entwickeln eine
skalierbare Methode für die approximative Inferenz und Dichteschätzung für Mengen von
Modalitäten. Unsere Methode ermöglicht die Kodierung und Zerlegung gemeinsamer und
modalitätsspezifischer Informationen und verbessert die generative Leistung im Vergleich zu
den relevanten Grundmodellen. Darüber hinaus betrachten wir eine explizite Partitionierung
des latenten Raums in gemeinsame und modalitätsspezifische Unterräume. Wir untersuchen
die Vor- und Nachteile der Partitionierung und entwickeln ein Modell, das die gewünschte
Zerlegung der Informationen für die jeweiligen Unterräume fördert. Dadurch erreicht
das Modell eine weitere Verbesserung der generativen Leistung im Vergleich zu Modellen
mit einem gemeinsamen latenten Raum. Andererseits stellen wir auch grundlegende
Einschränkungen für das generative Lernen mit multimodalen VAEs fest. Wir zeigen, dass
das Sub-Sampling der Modalitäten eine unerwünschte Schranke für die Approximation
der gemeinsamen Verteilung impliziert. Dies beschränkt die generative Leistung von
mischungsbasierten multimodalen VAEs. Zudem begrenzt es ihre Anwendbarkeit auf
Probleme bei denen relevante Informationen im Erwartungswert über Modalitäten hinweg
auf der Ebene von Beobachtungen vorhergesagt werden können.

Zusätzlich betrachten wir einen diskriminativen Ansätz, nämlich das kontrastive Lernen.
Wir zeigen, dass damit geteilte latente Faktoren bis zu einer blockweisen Unbestimmtheit
identifiziert werden können, wenn die geteilten Faktoren über Modalitäten hinweg invariant
sind. Für das Resultat betrachten wir zusätzliche, nicht-triviale statistische und kausale
Abhängigkeiten zwischen den latenten Variablen. Schliesslich zeigen wir, wie kontrastives
Lernen genutzt werden kann, um die Einschränkungen multimodaler VAEs zu überwinden.
Dafür entwickeln wir einen hybriden Ansatz für das multimodale generative Lernen und für
die Zerlegung gemeinsamer und modalitätsspezifischer Informationen. Übergreifend schafft
unsere Arbeit eine theoretische Grundlage für multimodales Repräsentationslernen und
erklärt unter welchen Bedingungen generative und diskriminative Ansätze in der Praxis
effektiv sein können.
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Notation and Terminology

x,y, z Random vectors.

p(x) Probability distribution of x; either probability mass function (p.m.f.) or proba-
bility density function (p.d.f.).

p(y | x) Conditional probability distribution (p.m.f. or p.d.f.) of y given x.

{x(n)}Nn=1
i.i.d.∼ p(x) An independent and identically distributed (i.i.d.) sample of size N .

E[x] Expected value of x.

x⊥⊥y Independence between x and y.

x⊥⊥y | z Conditional independence between x and y given z.

x[d] The d-th component of the vector x.

x[A] Vector of components (x[d])d∈A, where A ⊆ {1, . . . , D} is an ordered set of integers.

I(x; y) Mutual information between x and y.

H(x) Entropy of x.

H(y | x) Conditional entropy of y given x.

DKL(p(x) || p(y)) Kullback-Leibler divergence of a distribution p(x) from another distribution p(y).

N (µ, σ2) Normal distribution with mean µ and variance σ2.

P(D) Powerset of the set of consecutive integers {1, . . . , D}; excluding the empty set.

1{·} Indicator function that maps to one if condition {·} is fulfilled and to zero otherwise.

exp(·) Exponential function.

sim(·, ·) Similarity function (e.g., negative Euclidean distance, cosine similarity, etc.).

ELBO Evidence lower bound.

VAE Variational autoencoder.

ICA Independent component analysis.

NCE Noise contrastive estimation.

PoE Product of experts.

MoE Mixture of experts.

MoPoE Mixture of products of experts.
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1
Introduction

By definition, a subject (e.g., an object or event) is multimodal if it exhibits different
modes of occurrence or activity [c.f., OED]. Intuitively, it means that the subject appears
diversely. However, the definition also entails a permanence of the subject despite its
diverse appearance. This is not a contradiction.

To resolve the paradox and to illustrate the concept of multimodality, consider the following
examples. The first describes a situation from everyday life; the second draws a connection
to the related concept of multimodal distributions from statistics.

Example 1 (Multimodal perception). Imagine any tangible object that can be examined
with multiple senses. First, using our eyes, we might observe it at some distance and from
different angles. Then, with our hands, we could explore its shape and material. Finally,
after sufficient exploration, we might notice that our perception of the object is multimodal
in that the same object manifests in various forms (multiple perspectives, sensation of the
left and right hand) and distinct formats (visual and tactile information).

Example 2 (Multimodal probability distribution). Consider a multimodal distribution,
i.e., any probability distribution with two or more (local) maxima. The distribution describes
the probability of occurrence for different possible outcomes of an experiment. By definition,
the outcomes can be diverse, yet they still relate to the same experiment.

Equipped with an intuitive understanding of the central concept of this thesis, let us
proceed with the research topic, which we denote as multimodal representation learning.
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Chapter 1. Introduction

In representation learning, we start from the premise that observations are generated from
a few latent factors of variation that can be inferred from data [BCV13; Sch+21]. The
word “latent” means that these factors or variables are not directly observed; however, it is
assumed that they are useful, and therefore we seek to infer them. For instance, the latent
variables can be thought of as categories or abstract concepts that provide a meaningful
description of the data.

The holy grail of representation learning is to infer the latent factors using only low-level
observations (e.g., raw image data). Since this is known to be theoretically impossible
without further assumptions [HP99], we instead consider the setup of weak supervision in the
form of multiple modalities. Concretely, we consider corresponding observations of different
modalities (e.g., image and text data) without labels for what is shared between them.
Our goal is to design machine learning algorithms that leverage statistical dependencies
between modalities to learn representations—i.e., data transformations—that encode the
latent factors effectively and ideally recover them up to acceptable ambiguities.

1.1 Broad Context

Before we flesh out the concrete topic and research goal, let us illustrate the idea and
significance of multimodal representation learning in the broader context of neuroscience,
cognitive science, and computation.

Multisensory perception The formation of multimodal percepts or representations
has a rich history in neuroscience and cognitive science [Ste12], where modalities stand
for the stimuli perceived by distinct sensory systems. For example, consider the human
visual and auditory systems, our eyes and ears, and how they respond to different forms of
energy. The visual system detects light particles on the retina, perceiving visible light as
electromagnetic waves within a certain frequency band. In contrast, the auditory system
detects mechanical waves, i.e., the movement of molecules, as changes in air pressure.
In this manner, information about a distal object is received by sensory receptors and
transduced into electrical and chemical signals, which permeate throughout the nervous
system and converge on individual neurons that produce multisensory responses [SM93].

Multisensory integration is observed at the level of individual, multisensory neurons [Mer02;
SS08; SSR14] and even in low-level cortical areas [GS06; MS09a; MS09b], which suggests
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1.1. Broad Context

that the integration occurs at multiple levels of the neuraxis. In addition, neuroimaging
studies and cognitive experiments indicate that the human brain forms an abstract,
modality-agnostic representation of the environment [EB04; Qui+05; Qui+09; Yil14], if not
a unified perceptual experience, as suggested by some philosophers [Tye03; Bay12]. Despite
the dawning interpretation that perception is richly multimodal [O12], there remains a
gap between the understanding of the low-level neurophysiological mechanisms and the
formation of higher-level multimodal percepts.

While we draw inspiration from neuroscience, in this thesis, we focus on machine learning.
Analogous to animals, machines can perceive the world through different types of sensors of
different modalities (e.g., cameras, microphones, tactile sensors [Eve95; SNS11]). From the
perspective of an individual organism or agent, each sensory modality serves as a unique
window of perception to the outside world [Uex92; Yon22] as it enables the sensation of
novel, complementary, or redundant aspects of the environment. But besides the obvious
advantage that is provided by experiencing the world through multiple sensory systems,
there are theoretical aspects that justify learning from multimodal data.

Multimodal learning Multimodal learning describes the algorithmic process of learning
from data to improve the performance on a set of tasks by using information from multiple
modalities. From a computational perspective, crossmodal associations—such as statistical,
structural, and semantic correspondences [Spe11]—can be used to integrate information
across modalities to improve the performance on relevant tasks. For instance, the nervous
system combines information from different sensory modalities to detect external objects
faster and more accurately [Mil91; Hug+94], and to reduce uncertainty in conditions where
an individual sense becomes unreliable [EB04; DC04; SMB05; NK10]. Moreover, statistical
dependencies between modalities indicate the presence of common causes [Rei56; Kör+07],
which can be thought of as latent factors of variation shared between modalities.1 Thus,
information that is shared between modalities provides a learning signal that can be used
to enhance the perception of external stimuli and to guide adaptive behavior.

1The interpretation of perception as statistical inference of external causes from sensory cues can be
traced back to Hermann von Helmholtz [von67, Part III]. More recently, models of the neural processing
of sensory information have been developed under the umbrella of the Bayesian brain [KP04; Doy+07].
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Chapter 1. Introduction

1.2 Research Goal

Based on the idea that statistical dependencies between modalities can carry meaningful
information about the latent structure of the underlying process, we study multimodal
learning under weak supervision, which means that we consider corresponding observations
of multiple modalities without labels for what is shared between them.

Specifically, we consider the following setup and goal:

Given a dataset of corresponding observations of different modalities but no labels for what
is shared between them, we investigate whether machine learning algorithms can draw
inferences about the latent factors, particularly those shared between observations.

Therefore, we seek to address the following research questions:

Question 1. How can we identify latent factors of variation shared between modalities?

The first question describes our primary goal, which is to develop models that recover the
latent factors shared between modalities. Therefore, we investigate whether the considered
models encode mutually shared information effectively and whether the latent factors can
be identified up to acceptable ambiguities.

Question 2. How can we disentangle shared and modality-specific information?

Based on the second question, our goal is to disentangle shared and modality-specific
information, which poses an additional challenge because it requires that a model encodes
modality-specific information in a form that separates it from shared information.

Question 3. How can we learn generative models to draw inferences across modalities?

For the third question, we investigate whether generative models can approximate the
distribution of multimodal data in a way that allows models to draw inferences across
modalities on the level of observations, specifically, to generate or impute missing modalities
based on the learned representations.

In answering the above questions, we aim to establish a theoretical basis for multimodal
representation learning and contribute to the overarching goal of discovering latent structure
from low-level observations, which echoes through the field of machine learning.
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1.3. Topic and Scope

Multimodal Machine Learning

Supervised Weakly supervised

Generative Discriminative

Unsupervised

Figure 1.1: Overview of the subject area. Gray nodes denote the topics addressed in this
thesis. The degree of supervision describes the relation between modalities (c.f., Example 3).

1.3 Topic and Scope

In Figure 1.1, we present a high-level overview of the subject area with the topics addressed
in this thesis highlighted in gray. Broadly, we locate our research in the area of multimodal
machine learning. More specifically, we focus on the setup of weak supervision and employ
methods from generative and discriminative learning.

Weak supervision In multimodal learning, we can use the degree of supervision to
describe the relation between modalities [WG18]. As in classic machine learning [Bis06],
we distinguish between supervised and unsupervised learning, but in addition, we consider
the setup of weak supervision, which lies in the middle of the two extremes.

The notion of weak supervision is formally introduced in Chapter 2, but intuitively, we
describe it in terms of corresponding observations of different modalities without labels
for what is shared between them. To clarify its relation to supervised and unsupervised
learning in the context of multimodal data, consider the following example:

Example 3 (Degrees of supervision). Let p(x1,x2,y) be a joint distribution for two
modalities x1,x2 and labels y that describe what is shared between x1 and x2. We observe
both modalities and labels in the supervised setup; i.e., (x1,x2,y) ∼ p(x1,x2,y) drawn from
the joint distribution. Under weak supervision, we observe pairs (x1,x2) ∼ p(x1,x2) drawn
from the joint distribution without labels. Finally, in the unsupervised setup, we observe
unpaired examples x1 ∼ p(x1) and x2 ∼ p(x2) drawn from the marginal distributions.

Note that in the given example, the distinction between the supervised and weakly
supervised setup is expressed in terms of the presence or absence of labels, which is an
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overly narrow characterization for the degree of supervision. In Chapter 2, we define the
setup more generally in terms of latent variables and functional dependencies.

Considered methods Further, we make a classic distinction between discriminative
and generative models [Jeb04]. In this thesis, we consider both types of methods because
they provide complementary approaches for representation learning [Liu+23]. From the
array of generative models, we employ the variational autoencoder [KW14; RMW14], and
as a discriminative approach, we use contrastive learning [GH10; OLV18]. We introduce
these methods in Chapter 3, but we already mention them here because the distinction
provides a valuable perspective on our contributions, which we discuss next.

1.4 Contributions

As a last stop before we dive into the topic, let us summarize the contributions of our work
and sketch out the structure of the thesis. First, we foreshadow the contributions of the
individual chapters and relate them to the research questions. Then, we provide a list of
our relevant publications and describe the structure of the manuscript.

Multimodal generative learning First, we focus on generative learning with varia-
tional autoencoders (VAEs). In Chapter 5, we introduce the mixture of products of experts
multimodal variational autoencoder (MoPoE-VAE), a principled and scalable method for
variational inference and density estimation on sets of modalities. The MoPoE-VAE learns
a generative model for the joint distribution of multimodal data in a way that enables
scalable inference across modalities. In its theoretical formulation, the model generalizes
two existing, widely-used methods which only use specific subsets of modalities for the
posterior approximation. Instead, our model considers all subsets of modalities in a scalable
way using the mixture of products of experts. Empirically, the model enhances the encoding
and disentanglement of shared and modality-specific information and the generation of
missing modalities compared to relevant baselines from previous work.

In Chapter 6, we model shared and modality-specific information explicitly by partitioning
the latent space of multimodal VAEs into respective subspaces. We explore the benefits and
pitfalls of partitioning and develop the MMVAE+ as a method that promotes the desired
disentanglement for the respective subspaces. Consequently, the model further improves
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the generative performance compared to models with a joint latent space, especially for
generating missing modalities.

On the contrary, in Chapter 7, we also establish fundamental limitations for generative
learning with multimodal VAEs. We show that the sub-sampling of modalities enforces
an undesirable bound for the approximation of the joint distribution, which limits the
generative performance of mixture-based multimodal VAEs. In particular, we find that it
restricts their utility to settings where shared information can be predicted in expectation
across modalities on the level of observations.

Multimodal contrastive learning In the second part of the thesis, we transition to
discriminative approaches and focus on contrastive learning as a particular method. In
Chapter 8, we show that multimodal contrastive learning can be used to identify shared
latent factors that are invariant across modalities up to block-wise ambiguities—even in
the presence of non-trivial statistical and causal dependencies between latent variables. We
empirically verify the theoretical result with numerical simulations and corroborate our
findings on a complex multimodal dataset of image-text pairs.

Finally, in Chapter 9, we develop a hybrid approach that combines contrastive and
generative learning to address the limitations of multimodal VAEs. We propose the
DMVAE, which is designed to infer shared factors using contrastive learning and to
disentangle modality-specific information using VAEs with a regularization technique that
suppresses the encoding of shared information. We demonstrate promising results for
multimodal generative learning and showcase the disentanglement capabilities of the model.

Research questions To address the research questions, we design several methods for
multimodal representation learning and characterize their limitations and tradeoffs. We use
multimodal VAEs (Chapters 5–7) to encode and disentangle shared and modality-specific
information effectively (Questions 1 and 2) and to infer missing modalities (Question 3).
However, we also show that mixture-based multimodal VAEs are restricted to settings
where shared information can be predicted in expectation across modalities on the level of
observations. To address the issue, we use contrastive learning (Chapters 8–9) to encode
and, in some cases, provably recover shared latent factors even when shared information
cannot be predicted across modalities on the level of observations. Consequently, compared
to multimodal VAEs, we find that multimodal contrastive learning is more universally
applicable for the inference of shared latent factors (Question 1) but not for the encoding
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of modality-specific information. Finally, we demonstrate how contrastive learning can be
combined with VAEs to disentangle shared and modality-specific information (Question 2)
and to infer missing modalities (Question 3).

Thus, we develop techniques for multimodal representation learning based on generative and
discriminative approaches and explain in which settings they can be effective in practice.

Relevant publications In Table 1.1, we list the publications on which this thesis is
based. The first part of the table shows the publications that are directly integrated into
individual chapters; the second part references publications and technical reports that,
while not integrated directly, have influenced the work presented here.

Structure of the thesis Chapter 2 formalizes our problem setup and goal. Chapter 3
covers relevant background and introduces the methods we build upon. The rest of the
thesis is structured according to the methods used. We start with multimodal generative
models in Chapters 5–7. Then, we transition to contrastive learning as a discriminative
approach in Chapter 8 and use it to develop a hybrid model in Chapter 9. Finally, in
Chapter 10, we summarize our findings and discuss the limitations of our work as well as
opportunities for future research.
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2
Problem Formulation

In the previous chapter, we introduced the setup of multimodal learning under weak
supervision and motivated the goal of learning representations that recover latent factors of
variation. In this chapter, we formalize the problem setup in terms of a generative process
comprised of ground truth latent variables, which can be shared between observations of
different modalities, and modality-specific mechanisms that produce the observations.

First, we provide a general definition of the generative process (Section 2.1) before we
introduce additional assumptions on the relation between modalities (Section 2.2). Then,
we consider a causal perspective and use the relational assumptions to connect our setup
to the idea of common causes shared between modalities and to the so-called content-style
separation (Section 2.3). We also relate our formulation to the concept of weak supervision
and show that it encompasses our setup as a special case (Section 2.4). Finally, we introduce
the evaluation metrics used in this thesis (Section 2.5).

2.1 Multimodal Generative Process

Let M be the number of observed modalities and let i ∈ {1, . . . ,M} denote the index of a
modality. When it is clear from context, we simply use the index i to refer to a modality
directly; for example, we typically write “modality i” instead of “the i-th modality”.
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Chapter 2. Problem Formulation

We start from the assumption that the observations are generated by an unknown process
that we want to learn about. Throughout this thesis, we assume the generative process given
by Definition 1, for which the notion of independent mechanisms is specified in Section 2.3.

Definition 1 (Multimodal Generative Process). Let z be a random vector that takes values
in the latent space Z. Further, let (x1, . . . ,xM ) be a an ordered set of random vectors, each
of which takes values in the ambient space Xi of modality i ∈ {1, . . . ,M} respectively.

The data generating process that produces the observations (x1, . . . ,xM) is defined as

z ∼ p(z) , (x1, . . . ,xM) ∼ p(x1, . . . ,xM) , xi = fi(z), i ∈ {1, . . . ,M} , (2.1)

where each function fi : Z → Xi represents an independent mechanism.

In this context, we assume that the functions f1, . . . , fM as well as the latent variables
(i.e., the components of z) are unknown and that we only observe the functions’ outputs.
Specifically, we assume a dataset D = {(x(n)

1 , . . . ,x(n)
M )}Nn=1 of size N , where each element

is an M -tuple of corresponding observations sampled from a joint distribution of multiple
modalities, i.e., (x1, . . . ,xM ) ∼ p(x1, . . . ,xM ). Throughout this thesis, we usually drop the
superscript “(n)” to simplify the notation when it is clear from context that we refer to a
single observation.

Moreover, we typically assume that the space of observations is significantly more complex
and of higher dimensionality than the latent space. For example, if we consider monochro-
matic images of size 64× 64, where each pixel is an integer between 0 and 255, there are
2564096 possible combinations of values in “pixel space”. In contrast, latent variables—i.e.,
the underlying factors of variation—can take values in a lower-dimensional space. For
instance, they can represent class labels or attributes that provide a concise description of
the contents of an image.

2.2 Relational Assumptions

While Definition 1 describes the algorithmic process that generates the data, it does not
make further assumptions about the relation between modalities, i.e., their dependence
structure. Throughout this thesis, we consider the following set of relational assumptions
(Assumptions 1–3) and sometimes only a subset thereof.
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First, we assume a statistical dependence between pairs of modalities (Assumption 1);
otherwise, multimodal learning would have little benefit and (independent) modalities
could be considered separately. Second, we assume distinct mechanisms (Assumption 2) to
model the heterogeneity of multimodal data, which follows naturally when observations
are produced by different types of sensors [BAM19]. Third, we assume content invariance
(Assumption 3) to ensure that a subset of latent variables cij, which take values on a
subspace Cij ⊆ Z, can be fully recovered from each modality k ∈ {i, j}.2 Though, we do
not assume conditional independence (xi⊥⊥xj) | cij to allow for latent variables that are
stochastically shared between modalities but are not strictly invariant.

Assumptions 1–3 (Relation between modalities). Let M be the number of modalities and
let i, j ∈ {1, . . . ,M} index a pair of modalities. For each pair, i 6= j, we assume

(1) xi 6⊥⊥xj (statistical dependence)

(2) fi 6= fj (distinct mechanisms)

(3) ∃ z[d], d ∈ {1, . . . , D}, s.t. fi and fj are invertible in z[d] (content invariance)

where z[d] denotes the d-th component of the latent vector z with D components. We denote
the latent variables that satisfy Assumption (3) with the original order maintained as the
vector cij, which stands for “content” variables shared between the pair of modalities i, j.

For example, based on Definition 1 and Assumptions 1–3, we might observe a dataset of
image-text pairs with the following properties. Based on Assumption 1, there would be
some overlap between the contents of the images and corresponding texts—even though they
were recorded with different devices (i.e., different generative mechanisms; Assumption 2).
Following Assumption 3, each image-text pair would contain a certain feature that is shared
between modalities. For instance, think of a class label that categorizes an object that is
depicted in the image and described by the text.

Multimodal or multi-view? While these terms are sometimes used interchangeably
in the literature, we distinguish between them and consider the multimodal setup to be
more general. In the case of multiple modalities, we assume observations of different

2In other words, content invariance requires that there is no information loss with respect to cij when
generating xk = fk(cij , ·) for each k ∈ {i, j}.
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types or formats (e.g., image and audio data) produced by various types of devices (e.g.,
cameras and microphones), each of which represents a distinct generative mechanism
(c.f., Assumption 2). In contrast, we regard the multi-view setup as a special case, where
identical mechanisms (e.g., multiple cameras) produce observations of the same type and
format (e.g., images from different perspectives). This distinction is essential, because in
the multimodal setup the relation between observations can differ on the level of latent
variables and generating functions, whereas in the multi-view setup it differs only with
respect to the latent variables.

2.3 Causal Perspective

Next, we take a causal perspective on the considered setup to move beyond statistical
dependencies and to provide more context with respect to ideas from existing literature.

In Section 2.3.1, we introduce two assumptions from the literature on causal inference—
namely, the common cause principle and the independent mechanisms principle—and
invoke them to derive the following implications for our setup. First, in Section 2.3.2, we
show that given statistically dependent modalities (Assumption 1), the latent vector can be
viewed as containing a set of common causes [Rei56; Kör+07]. Second, in Section 2.3.3, we
show that content invariance (Assumption 3) implies a partition of the latent vector into
subsets of invariant and changing variables, motivating the so-called problem of content-
style separation, which stems from factor models [TF96; TF00; EL04; Vir+12; Kla+14]
and appears in different flavors in the context of disentanglement, domain adaptation, and
style transfer (e.g., [GEB16; ZZC18; Hua+18; BTN18; Pre+19]).

2.3.1 Common Causes and Independent Mechanisms

First, to establish a connection between statistical and causal dependencies, we consider
Reichenbach’s common cause principle [Rei56], which states that for any pair of statistically
dependent variables there exists a third variable that causally influences both variables in
the pair.

Principle 1 (Common cause principle, [Rei56; PJS17]). If two random variables x and y
are statistically dependent (x 6⊥⊥y), then there exists a third variable z that causally influ-
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ences both (as a special case, z may coincide with either x or y). Furthermore, z screens x
and y from each other in the sense that given z, they become independent, x⊥⊥y | z.

Second, we consider the principle of (physically) independent mechanisms [PJS17], which
states that the individual functions or mechanisms in a generative process do not inform or
influence each other. For our setup, the principle is helpful to reason about interventions,
invariances, and conditional independence structures.

Principle 2 (Independent mechanisms, [PJS17]). The causal generative process of a
system’s variables is composed of autonomous modules that do not inform or influence each
other. In the probabilistic case, this means that the conditional distribution of each variable
given its causes (i.e., its mechanism) does not inform or influence the other conditional
distributions. In case we have only two variables, this reduces to an independence between
the cause distribution and the mechanism producing the effect distribution.

Generally, these principles are widely used assumptions in the literature on causal inference.
Nevertheless, we would like to point out that there are also arguments why they should
not be taken for granted (e.g., see Section 1.3 in [PJS17]).

2.3.2 From Statistical Dependencies to Common Causes

Based on the assumption of statistically dependent modalities (Assumption 1), it is easy
to show that the common cause principle implies that the latent vector contains a set of
common causes shared between modalities.

Proposition 1 (Common causes between modalities). Consider the multimodal generative
process (Definition 1) with dependent modalities (Assumption 1) and assume that none of
the components of the latent vector z is observed directly. Then, for each pair of modalities
i, j ∈ {1, . . . ,M}, the following causal structure holds:

xi ← z→ xj , (2.2)

where z contains a set of common causes shared between the pair of modalities i, j.

Proof. Equation (2.2) follows from the common cause principle, since there is a statistical
dependence between modalities i, j (Assumption 1) and both functions, fi and fj, depend
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on the latent vector z (Equation 2.1). Moreover, we can exclude direct causal effects
xi → xj (or xi ← xj) because we assume that latent variables are not observed directly.

The assumption that latent variables are not observed directly corresponds to the perspective
of indirect realism, i.e., the materialist view that distal objects are not perceived directly but
only indirectly through some physical process or as an internal representation (e.g., [CF21]).
A direct causal effect between modalities requires that at least one modality provides
immediate access to a subset of latent variables—akin to the idea of direct perceptual
experience of external objects, which would correspond to the position of direct realism in
the philosophy of perception.

2.3.3 Content-style Separation of the Latent Space

Next, let us additionally consider the assumption of content invariance (Assumption 3).
We find that the latent vector can be partitioned into a set of invariant components and a
set changing components, which we refer to as content and style respectively.

Proposition 2 formalizes the content-style separation for the multimodal setup using an
information-theoretic characterization of invariance. In the following, H(·) is the entropy
of a random variable and I(· ; ·) is the mutual information between two random variables.
In this chapter, we assume discrete random variables and thus use the Shannon entropy.3

Proposition 2 (Content-style separation). Consider the multimodal generative process
(Definition 1) with dependent modalities (Assumption 1) and assume that none of the com-
ponents of the latent vector z is observed directly. Further, assume that there exists a set of
invariant latent factors (Assumption 3). Then, for each pair of modalities i, j ∈ {1, . . . ,M},
the following causal structure holds:

xi ← (cij, sij)→ xj (2.3)

where (cij, sij) is a unique partitioning of the latent vector z, such that the following
inequality relations hold:

(i) I(cij; xk) = H(cij) for each k ∈ {i, j}, and

3Definitions of information-theoretic quantities are provided in Chapter 3, Section 3.3.4.1.
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(ii) I(sij; xl) < H(sij) for some l ∈ {i, j}.

Consequently, we call the partitioning from Equation (2.3) the content-style separation of z
for the pair of modalities i, j.

Proof. Assumption (3) states that the functions fi and fj are invertible with respect to cij ,
which denotes a subset of components of the latent vector z. Since cij takes values in
Cij ⊆ Z, i.e., a subspace of Z, the invertibility of fi and fj with respect to cij implies that
for each point z ∈ Z the information content of its components cij is preserved throughout
the functions fi and fj. Hence, it follows that I(xi; cij) = H(cij) and I(xj; cij) = H(cij).

On the contrary, at least one function, fi or fj, is not invertible with respect to the
remaining components sij, since otherwise these components would be considered part of
the partition cij by definition. Hence, it follows that there are points z ∈ Z for which some
information content of its components sij is not preserved throughout at least one of the
functions fi or fj. Consequently, we have I(xl; sij) < H(sij) for some l ∈ {i, j}.

Thus, we made a connection to the existing problem of content-style separation, applied
to the multimodal setup and based on the assumption of content invariance. We revisit
the idea of content-style separation in Chapter 8, where we investigate how shared latent
factors that are invariant across modalities can be identified up to acceptable ambiguities.

In summary, in this subsection we considered a causal perspective on the problem setup.
We invoked the common cause principle to view the latent vector as containing a set of
common causes shared between modalities. Further, we saw that if we additionally assume
content invariance, the latent vector can be partitioned into a set of invariant and a set of
changing components, akin to the idea of content-style separation.

2.4 Weak Supervision

Next, we draw a connection to the concept of weak supervision. Specifically, we show that
the considered generative process can be viewed as a special case of weak supervision.

In supervised learning, we consider pairs (x,y) of corresponding observations x ∈ X
and labels y ∈ Y from which we want to learn a function g : X → Y to model the
conditional distribution p(y |x) and to make predictions on new, unlabeled data. In weakly
supervised learning, we might be interested in learning the same relation, but instead of
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x y

ỹ

(a) Weak supervision

x1 z

x2

(b) Multimodal setup

Figure 2.1: Comparison of the dependence structure underlying weak supervision (Fig-
ure 2.1a) and the multimodal setup with two modalities (Figure 2.1b). In Figure 2.1a, the
edge from x to ỹ is optional and the undirected edge between x and y represents a Markov
equivalence class of causal DAGs

the ground truth labels, we are given corrupted or incomplete labels—hence the idea of
weak supervision [HGIL16; Zho17], which, unfortunately, is an overloaded term [Sug+22].

To the best of our knowledge, there is no universal definition for weak supervision. In fact,
the concept carries substantially different meaning across sub-disciplines. For example,
Sugiyama et al. [Sug+22] point out that the term is used to denote incomplete supervision,
inexact supervision, inaccurate supervision, and the use of heuristic labeling functions. For
the purpose of our investigation, we see most overlap with the topic of learning from noisy or
corrupted labels [Nat+13; RW17] and with weakly supervised disentangled representation
learning [BTN18; Loc+20b; Shu+20; CB20; Bre+22].

We propose the following working definition, for which we take a causal perspective and
assume that the weak labels are derived from the ground truth labels and that they can
additionally depend on the observations.

Definition 2 (Weak supervision). Let x and y be random vectors that describe observations
and labels respectively. We call ỹ a weak label if it depends causally on y and, optionally,
also on x. Then, we say that ỹ provides weak supervision w.r.t. p(y | x).

The data generating process for weak labels is described by the Markov chain shown in
Figure 2.1a, where the edge from x to ỹ is optional and the undirected edge between x
and y represents a Markov equivalence class of causal DAGs, meaning that it permits both
causal directions between observations and labels, i.e., x→ y and x← y.

2.4.1 Weak Supervision Encompasses the Multimodal Setup

Based on Figure 2.1, it is easy to see that the multimodal setup represents a special case
of weak supervision. First, consider the generative process from Definition 1 with two
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statistically dependent modalities, x1 and x2, for which, by Proposition 1, we get the
dependence structure shown in Figure 2.1b. To see the connection to weak supervision,
compare the dependence structure to the one in Figure 2.1a. Since the Markov equivalence
class of the relation x y includes the causal direction x← y and the dependence from
x to ỹ is optional, we can equate

y = z , (2.4)

x = x1 , (2.5)

ỹ = x2 . (2.6)

Hence, for the case of two modalities, we expressed the multimodal setup as a special case
of weak supervision. Beyond two modalities, the same reasoning can be applied to any pair
of subsets of modalities, assuming statistical dependence between at least two modalities
(i.e., one from each subset) or between each pair of modalities (c.f., Assumption 1).

In summary, this section established a link between the considered setup and the topic of
weak supervision by showing that weak supervision encompasses the multimodal setup as
a special case.

2.5 Evaluation Metrics

In this section, we introduce the evaluation metrics that are used throughout this thesis.
We describe the metrics used to assess the learned representations (Section 2.5.1) and to
evaluate the generative performance of multimodal generative models (Section 2.5.2).

2.5.1 Evaluation of Learned Representations

To evaluate the quality of the learned representations, we use predictive models to probe
the representations (i.e., the embeddings produced by the model) with respect to the
ground truth information. Specifically, we use linear and nonlinear prediction models
(i.e., linear and nonlinear probing [AB16]) to quantify how well the relevant information
can be extracted from the embeddings and whether it is encoded at all. In all cases, we
train predictive models on the embeddings of the training data and evaluate them on the
embeddings of holdout data to control for overfitting.
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Linear probing We use linear prediction models to evaluate whether the learned repre-
sentations encode information about the ground truth factors in a linear separable format.
Linear separability implies that the information can be read out using linear decoders
[HRR22] and it is a common heuristic for disentanglement (e.g., [Hig+18]). When the
target variable is continuous, we use linear regression and evaluate the R2 coefficient of
determination. When the target is discrete, we employ logistic regression and evaluate the
classification accuracy. Strictly speaking, logistic regression is a generalized linear model,
where the log-odds of the estimated probabilities are a linear function of the regression
parameters. Nevertheless, we still use the term “linear probing”, which became prevalent
in machine learning (e.g., [AB16]).

Nonlinear probing We also consider nonlinear prediction functions (e.g., kernel ma-
chines or neural networks) to quantify whether the learned representations encode informa-
tion about the ground truth factors in a more complex format than can be extracted by
linear predictors. As for linear models, we assess the R2 coefficient of determination if the
target variable is continuous and the classification accuracy if the target is discrete. With
nonlinear predictors, it is particularly important that we evaluate them on embeddings of
holdout data that were not used to train the models.

2.5.2 Evaluation of Multimodal Generative Models

Next, we introduce the metrics used to evaluate the generative performance of multimodal
generative models based on two criteria. On the one hand, we evaluate the generative quality
of a model, i.e., the quality of its generated samples. On the other hand, we also consider
the semantic coherence for the inference across modalities, through the generation of
missing modalities based on the learned representations (c.f., Question 3).

Generative quality Since we use likelihood-based approaches, we evaluate the log-
likelihood of the trained models on the test data. In addition, we also use the Fréchet
inception distance (FID; [Heu+17]), a standard metric for evaluating the quality of generated
images. The FID compares the distribution of generated images with the distribution of
real images (e.g., the test dataset) in the feature space of a pre-trained network, typically
using an Inception v3 network [Sze+15] trained on ImageNet [Den+09]. A lower FID
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indicates that the generated samples are more similar to the real data and a value of zero
means that the samples are indistinguishable in terms of their statistical features.

Hence, we employ two complementary metrics for generative quality. On the one hand,
the log-likelihood provides a modality-agnostic metric, but it can be hard to interpret and
does not always faithfully reflect the quality of samples [TOB16]. On the other hand, the
FID is specific to images, but it correlates strongly with the perceived quality of generated
samples as evaluated by humans [Heu+17]. Notably, both metrics are computed based
on observations and generated samples, so they can be used to assess generative quality
without ground truth labels.

Semantic coherence For models that can draw inferences across modalities, we estimate
the semantic coherence of generated samples on the level of observations. Specifically, we
evaluate the generative coherence [Shi+19], which measures whether generated samples
agree in their semantic content across modalities. Notably, the computation of generative
coherence requires ground truth labels that indicate what is shared between modalities as
well as a pre-trained classifier that evaluates the semantic content of the generated samples.

Let y be a discrete target variable (e.g., a class label), let x̂i be a generated example of
modality i, and let hϕ : xi 7→ y be a pre-trained classifier with parameters ϕ that predicts
a class label for a given observation. Then, generative coherence can be computed as

Coherence(y, x̂i; hϕ) = 1{hϕ(x̂i) = y} , (2.7)

where the right-hand side is an indicator function that evaluates to one if the predicted class
label for the generated example matches the ground truth value of the target variable.4

To assess the conditional generation, we compute the conditional coherence accuracy, for
which we average the coherence values over a set of N conditionally generated examples,
where N is typically the size of the test set. As a relevant special case, when x̂i is
conditionally generated given a subset of modalities A, such that A = {1, . . . ,M} \ i, we
call the metric leave-one-out conditional coherence accuracy, because the input consists of
all modalities except the one being generated. Another special case is the pairwise coherence
accuracy, for which we compute the average coherence across all pairs of distinct modalities.

4Here, we define coherence only for discrete factors, but the definition could easily be extended to
continuous variables. For example, we could define the mean squared error between a continuous target
and the output of a pre-trained regression model.
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Analogously, we can also compute the coherence using unconditionally generated examples
produced by a generative model (e.g., based on samples from a prior distribution). In this
case, we do not need ground truth labels and instead compare the predicted class labels
across all generated modalities. Only if all predicted class labels match, the unconditional
coherence accuracy evaluates to one, which makes the task more difficult if the number of
modalities is large.

When it is clear from context which type of coherence is used, we refer to the metric simply
as “generative coherence”. In each case, we describe the range as “coherence accuracy”
because it always represents an accuracy measure with values between 0 and 1.

2.6 Summary

In this chapter, we formalized the setup in terms of a multimodal generative process with
latent variables and modality-specific mechanisms and considered additional assumptions
for the relation between modalities. Furthermore, we provided a causal perspective on
the setup and drew a connection to the general concept of weak supervision. Finally, we
introduced the evaluation metrics we use to assess the quality of the learned representations
as well as the performance of multimodal generative models.

Next, we contextualize the problem formulation with respect to previous work and introduce
the methods that we build upon in the following chapters.
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Background

In the previous chapter, we presented our formulation for the considered setup of multimodal
learning under weak supervision. In this chapter, we cover relevant background on the
topic of representation learning and discuss related problem formulations from previous
work. Further, we introduce the methods that we build upon in the following chapters.

We start by contextualizing our formulation with respect to previous work in representation
learning (Section 3.1) and independent component analysis (Section 3.2). Then, we
introduce relevant background with respect to the used methods. First, we give a brief
introduction to the variational autoencoder (Section 3.3), which we use as a generative
approach for multimodal representation learning. Second, we introduce contrastive learning
(Section 3.4), which provides a discriminative approach. In both cases, we first introduce
the general method before we discuss existing multimodal extensions thereof.

3.1 Representation Learning

In this section, we provide relevant background on the topic of representation learning. We
first introduce some basic concepts (Section 3.1.1) before we discuss the historical context
and locate our work in the research landscape of representation learning (Section 3.1.2).
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3.1.1 Preliminaries

Broadly, the term “representation learning” is used to describe the process of learning
encoders or feature extractors that map high-dimensional observations onto another,
typically lower-dimensional space, which is referred to as the embedding or representation
space.5 The resulting embedding or representation can be thought of as a transformation
of the data that preserves useful properties (e.g., information relevant for a downstream
task) and filters out nuisance factors such as task-irrelevant information and random noise.
Ideally, a representation should be useful for many different tasks [BCV13], but in general
the usefulness of a representation depends on the application.

The encoder Based on the notation from Chapter 2, we denote the encoder for modality i
as a function gi : Xi → Ẑi and the random vector that describes the embeddings as
ẑi = gi(xi). Consequently, from the ground truth latents to the embeddings, we have the
following Markov chain:

z fi→ xi
gi→ ẑi , (3.1)

such that z⊥⊥ ẑi |xi without further assumptions on the training of the encoder. We
assume that the encoder is parameterized by a set of parameters φi specific to modality i
and denote the parameterization explicitly as gφi when it is not clear from context.

The decoder Analogously, we denote the decoder from embeddings of modality i to
observations of modality j as a function g̃i→j : Ẑi → Xj and the random vector that
describes the estimated observation as x̂i→j = g̃i→j(ẑi). We assume that the decoder is
parameterized by a set of modality-specific parameters θi→j and denote the parameterization
explicitly as g̃θi→j when it is not clear from context. In the special case of i = j, the
transformation g̃i→j ◦ gi forms the basis of an autoencoder (see Section 3.3) and the
estimated observation x̂i→j = g̃i→j(gi(xi)) is called a reconstruction of the input xi.

3.1.2 Relevant Context

In the following, we provide some context for the topic of representation learning and the
related idea of disentanglement. We touch upon the historical background and contextualize

5We often use the terms “representation”, “embedding”, and “encoding” synonymously.
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our study with respect to previous work in the relevant subfields. Essentially, we situate
our research in the neighborhood of multi-view and multimodal learning and in particular
among works that seek to learn representations that recover underlying factors of variation.

Historical backdrop With the advent of deep neural networks, representation learning
has become an increasingly popular research topic, as the field of machine learning shifted
from manual feature engineering to automated approaches for feature extraction. The term
“representation learning” became prevalent about a decade ago when a notable review by
Bengio, Courville, and Vincent [BCV13] popularized the term and sparked the interest of
the research community in the topic of disentangled representation learning.6 A central
theme of their review is the idea that certain representations of the data are better than
others and that a good representation would ideally disentangle the underlying explanatory
factors of variation. While the review provides a comprehensive, bird’s eye perspective on
the landscape and opportunities of the field at the time, it relies on intuitive but overly
simple notions of disentanglement (e.g., statistically independent factors) and ultimately
does not provide a formal definition of the concept. Following the idea, a myriad of
disentanglement methods were proposed, many of which are heuristic and lack a proper
theoretical foundation [c.f., HKM23]. In parallel, though at a slower pace, several theories
were developed to build up a principled understanding of disentangled representation
learning. Notably, there are approaches based on group theory [Hig+18; HRR22], causal
inference [Sch+21], and independent component analysis or ICA [HKM23]. Our work also
draws on concepts and ideas from causality and ICA, which we sketch out in the following
and discuss more formally in Section 3.2.

Unsupervised disentanglement The topic of disentanglement (i.e., disentangled rep-
resentation learning) became ubiquitous in the years following the review from Bengio,
Courville, and Vincent [BCV13]. Across the different formulations of disentanglement,
the holy grail represents what is sometimes called unsupervised disentanglement, which is
analogous to the idea of recovering the factors of variation from observations alone. While
the idea is compelling, the endeavor remains quixotic. In the general case, unsupervised
disentanglement is proven to be theoretically impossible [HP99; Loc+19] and unsupervised
model selection appears challenging in practice [Loc+19].

6In the same year, the International Conference on Learning Representations (ICLR) was initiated,
which consistently ranks among the most impactful venues in machine learning and beyond [Goo].
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Fortunately, there are more optimistic prospects for disentanglement, if we are willing
to make additional assumptions. For example, Locatello et al. [Loc+20a] show that
statistically independent factors can be disentangled successfully, when at least a few
ground truth labels are observed and used to guide training or model selection. Moreover,
a line of pioneering works establishes identifiability results—even in the challenging case of
a nonlinear generative process—under additional assumptions, such as temporal structure
[Har+03; SZW14; HM16; HM17], auxiliary variables [HST19; Khe+20], or weak supervision
in the form of multiple views [Gre+19; Loc+20b; Zim+21]. Similar to these lines of research,
our goal is to recover the latent factors up to acceptable ambiguities, but we focus on using
weak supervision in the form of multiple modalities.

Causal Representation Learning Causal inference provides a formal language to
ground the idea of discovering high-level causal variables given low-level observations—
similar to the idea of identifying ground truth latent variables, which is central to ICA.
However, causal representation learning goes beyond the classic setup of ICA and considers
causal dependencies between latent variables (see Section 3.2). Moreover, as highlighted in
an influential review from Schölkopf et al. [Sch+21], the causal perspective on disentangle-
ment permits a formal characterization of the quality of a representation in terms of its
robustness and out-of-distribution generalization performance. Therefore, causal inference
offers the concept of interventions [Pea00; Spi+00], i.e., changes to a value or distribution
of a variable in the underlying causal graph. In later chapters, we also draw on the tools of
causal inference to reason about identifiability beyond ICA theory.

In summary, our work is situated in the neighborhood of multi-view and multimodal
representation learning, specifically among studies that take a causal perspective on the
problem and seek to learn representations that recover the underlying factors of variation
up to acceptable ambiguities. Next, we formalize the relation to previous work through
the framework of independent components analysis and extensions thereof.

3.2 Independent Component Analysis

Independent component analysis (ICA) is a statistical technique to decompose a signal
into independent parts [HO00]. It was developed to address the problem of blind source
separation (BSS), which seeks to separate a mixture of signals into its individual source
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components, ideally using as few assumptions as possible [CJ10]. A classic example is
the cocktail party problem, where a listener or listening device tries to tease apart the
speech of one person from a cacophony of different sounds and speakers. Essentially, the
problem of blind source separation is similar to the idea of identifying a set of ground
truth latent variables, though BSS is more frequently encountered in signal processing,
specifically in settings with separable temporal signals. In general, the BSS problem is highly
underdetermined, but useful solutions exist under many realistic conditions (e.g., [CJ10]).
ICA offers a theoretical framework that presents a solution to the BSS problem by finding
transformations of the mixed signal that produce maximally uncorrelated or independent
signals in a statistical or information-theoretic sense.

In ICA, we consider the following generative process [c.f., HKM23]:

x = f(z), z ∼ p(z), p(z) =
∏D

d=1 p(zd) , (3.2)

where an observation x is generated from a mixing function f that is applied to a latent
vector z = (z1, . . . , zD) with independent components. The goal of ICA is to invert
the mixing function in order to recover the latent variables (i.e., the components of z).
Specifically, it seeks to learn the inverse function given a dataset of observations. Our
formulation from Chapter 2 resembles the setup of ICA, but in contrast to Equation (3.2),
we consider multiple modalities and do not assume independent latent variables.

Challenges and compromises In many settings of ICA, it is impossible to fully recover
the latent variables; specifically, when the observations are perturbed in such a way that
the mixing function cannot be inverted. But even with an invertible mixing function, the
latent variables might be non-identifiable without further assumptions.

While in many settings, full identifiability is impossible, certain ambiguities might be
acceptable, which provides a potential compromise for representation learning. For example,
identifiability might hold for a subset of components (i.e., partial identifiability), up to
element-wise transformations and a permutation of the dimensions (i.e., component-wise
indeterminacy), or up to groups of latent variables (i.e., block-wise indeterminacy).

Even in linear ICA, where f is a linear function, the latent vector can only be recovered
up to a component-wise indeterminacy, which is usually considered acceptable. In other
instances, such as independent subspace analysis [CW00; HH00; The06; Le+11], it can be
sufficient to recover groups of variables up to a block-wise indeterminacy. In nonlinear ICA,
where f is a nonlinear function, a landmark negative result establishes that the recovery of
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the latent variables given i.i.d. observations is fundamentally impossible [HP99]. However,
even in the challenging nonlinear case, identifiability is still feasible under additional
assumptions (e.g., see the review from [HKM23]); specifically, also in the case of multiple
views or modalities, as we discuss next.

3.2.1 Multi-view Nonlinear ICA

Among existing research in the field of ICA, our formulation (Chapter 2) is most similar
to the setup of multi-view nonlinear ICA [Gre+19] and related formulations. Intuitively,
a second view can resolve ambiguity introduced by the nonlinear mixing, if both views
contain a shared signal but are otherwise sufficiently distinct [Gre+19]. For the case of two
views, we can write the generative process as follows:

x1 = f1(z), x2 = f2(z), z ∼ p(z), p(z) =
∏D

d=1 p(zd) . (3.3)

Hence, in the multi-view setup, the latent vector, or a subset of its components, is shared
between pairs of observations (x1,x2) ∼ p(x1,x2), where the two views x1 and x2 are
generated by two nonlinear mixing functions, f1 and f2 respectively.

The generative process in Equation (3.3) is similar to our formulation from Chapter 2,
but we impose weaker assumptions on the mixing functions and dependencies between
latent variables. The majority of previous works consider mutually independent latent
variables [Son+14; Gre+19; Loc+20b] or independent groups of shared and view-specific
variables [LF20; Lyu+22]. Moreover, some formulations do not consider view-specific
mixing functions [e.g., Loc+20b; von+21]. Beyond the classic assumption of independent
components, von Kügelgen et al. [von+21] consider additional causal and statistical
dependencies between latent variables. Similarly, our formulation allows for more complex
dependencies and additionally considers modality-specific mixing functions.

To summarize, in this section we touched upon the problem of BSS and introduced the
framework of ICA, which offers a solution to the problem by decomposing a mixture of
signals into independent parts. This can, under suitable conditions, lead to the identification
of the latent variables up to acceptable ambiguities, which provides a theoretical basis
for representation learning. Finally, we positioned our problem formulation relative to
the setup studied in multi-view nonlinear ICA and related approaches. We return to the
question of identifiability for the considered generative process in Chapter 8.
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3.3 Variational Autoencoder

In this section, we introduce the variational autoencoder or VAE [KW14; RMW14], which
provides a generative approach to representation learning based on reconstructions [Liu+23].

First, we describe the basic idea of an autoencoder, as we take a tour from the deterministic
to the stochastic variant of the model (Section 3.3.1). Then, we turn to the VAE and focus
on its objective, the evidence lower bound (Section 3.3.2), for which we consider a Bayesian
and information-theoretic interpretation (Sections 3.3.3 and 3.3.4, respectively). Then, we
touch upon the conditional VAE (Section 3.3.5) before we transition to the multimodal
setup (Section 3.3.6), where the VAE is used to approximate a joint distribution of multiple
modalities. In the context of multimodal VAEs, we discuss the problem of missing modalities
and introduce two existing methods that are designed to tackle this problem and that we
build upon in the subsequent chapters.

3.3.1 From Deterministic to Stochastic Autoencoders

The VAE is a deep latent variable model that can be viewed as a probabilistic version of
the deterministic autoencoder (e.g., see [GBC16; Mur22]). In the following, we take a tour
from the deterministic to the stochastic autoencoder before we return to the VAE.

An autoencoder is a type of artificial neural network that consists of two parts—the encoder
and decoder networks. On a high level, an autoencoder is trained via reconstructions (c.f.,
Section 3.1.1). For a given observation, the encoder produces an embedding, which the
decoder takes as input to reconstruct the observation. The reconstruction loss, which is
typically averaged over a batch of examples, is then propagated back [Lin76; RHW86]
through the autoencoder using stochastic gradient descent [RM51; KW52] to update the
parameters of both networks in a single backwards pass.

Recall our notation from Section 3.1, where we denote the encoder for modality i as a
function gi : Xi → Ẑi and the decoder as another function g̃i : Ẑi → Xi.7 Further, we denote
the random vectors that describe the embeddings as ẑi = gi(xi) and the reconstructed
observation as x̂i = g̃(ẑi) respectively. The inference process (i.e., the forward pass) of the

7To simplify the notation, we now denote the decoder with the subscript “i” (instead of “i → j”)
because the decoder maps back to the same modality that the encoder takes as input.
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autoencoder satisfies the following Markov chain:

xi
gi
→ ẑi

g̃i
→ x̂i . (3.4)

We assume that the encoder and decoder are parameterized by sets of modality-specific
parameters φi and θi respectively, and denote the parameterization explicitly as gφi and
g̃θi when it is not clear from context.

Stochastic encoder In contrast to the deterministic autoencoder, the VAE uses a
stochastic encoder, which produces a non-deterministic embedding of a given observation.
A stochastic encoder provides more modeling flexibility, because it maps each observation
to a distribution, whereas a deterministic encoder only yields point estimates.

More concretely, a stochastic encoder estimates the parameters of a specific distribution—
the so-called variational posterior that is denoted by qφi(z | xi). Each sample z ∼ qφi(z | xi)
drawn from the variational posterior can be thought of as a stochastic embedding of the
given observation. For example, the encoder can be designed to output the mean and
variance of a normal distribution (µxi , σ

2
xi) = gi(xi), where µxi and σ2

xi are the estimated
parameters of the variational posterior for the given observation. This allows us to draw a
set of K samples {z(k)}Kk=1 ∼ N (µxi , σ

2
xi) for a given input. Moreover, the forward pass of

the VAE satisfies the same Markov chain as the deterministic autoencoder (Equation 3.4),
where the stochasticity induced by the sampling process can also be written explicitly by
introducing a stochastic node ε that affects the embedding, i.e., xi → ẑi ← ε.

Stochastic decoder Analogous to the encoder, the decoder of the VAE is typically
stochastic as well. The stochastic decoder estimates the parameters of a distribution
pθi(xi | z) that approximates the generative model of the observations with a neural
network parameterized by θi.8 For example, the output is often assumed to be a normally
distributed random variable with a constant variance parameter σ2. In this case, the
decoder takes as input a representation ẑi and outputs an estimated mean µẑi = g̃i(ẑi),
which is used to generate an observation x̂i ∼ N (µẑi , σ

2I). Notably, the decoder can be
used for conditional generation, if the representation is produced by the encoder for a
given observation or a corrupted version thereof. However, it can also be used for the
unconditional generation of new observations, if the representation is sampled from a prior
distribution (see Section 3.3.2).

8We further discuss the topic of generative modeling in Section 3.3.2.
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Now that we introduced the general idea behind the autoencoder and its stochastic
counterpart, we return to the VAE, which also uses a stochastic encoder and decoder.
However, the VAE optimizes a slightly modified objective—the so-called evidence lower
bound—that is anchored in a rich theoretical framework with connections to generative
modeling, Bayesian inference, and information theory, as we discuss next.

3.3.2 Evidence Lower Bound

In this subsection, we introduce the evidence lower bound (ELBO), i.e., the objective
optimized by the VAE. The ELBO represents an important theoretical concept in Bayesian
inference and probabilistic modeling [Mur22]. First, we provide a definition of the ELBO
before we formally derive it from a Bayesian and information-theoretic perspective in the
following subsections.

To approximate a distribution p(x), the VAE learns a generative model of the form
pθ(x | z)p(z), where pθ(x | z) is parameterized by a neural network and p(z) is a prior
distribution. For this purpose, it maximizes a lower bound on the log-evidence log p(x)—
hence, the term evidence lower bound.

Definition 3 (Evidence lower bound). Let x be random vector with distribution p(x). Let
qφ(z | x) be a stochastic encoder parameterized by φ, let pθ(x | z) be a stochastic decoder
parameterized by θ, and let p(z) be a prior distribution. The evidence lower bound (ELBO)
on the log-evidence log p(x) is defined as

LELBO(x;φ, θ) := Eqφ(z | x)[log pθ(x | z)]−DKL(qφ(z | x) || p(z)) , (3.5)

where DKL(· || ·) denotes the Kullback-Leibler divergence (Definition 4).

In practice, the VAE is trained by maximizing Equation (3.5) for a dataset of independent
and identically distributed observations {x(n)}Nn=1 ∼ p(x).

The first term in Equation (3.5) represents the log-likelihood, which measures how well
the model fits the observed data. Naturally, the log-likelihood is being maximized to
improve the fit of the data. Since the log-likelihood term can be viewed as a (negative)
reconstruction error [KW19], the VAE differs from the stochastic version of the autoencoder
only by the second term (i.e., the KL-divergence), which is being minimized to approximate
the prior. Thus, the second term can be viewed as a regularizer that penalizes the deviation
of the variational posterior qφ(z | x) from the prior distribution p(z).
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Finally, to complete the definition of the ELBO, let us also define the KL-divergence.

Definition 4 (Kullback-Leibler Divergence). Let p(x) and q(x) be two distributions defined
on the same sample space X . For discrete distributions, the Kullback-Leibler divergence
from the distribution p(x) to the reference distribution q(x) is defined as a sum

DKL(p(x) || q(x)) =
∑
x∈X

p(x) log p(x)
q(x) . (3.6)

For continuous distributions, it is defined as an integral

DKL(p(x) || q(x)) =
∫ ∞
−∞

p(x) log p(x)
q(x)dx . (3.7)

Notably, The KL-divergence has a closed-form solution for Gaussian distributions, which
are typically used in VAEs to model the variational posterior and prior distributions.

Thus, we specified the objective of the VAE—the so-called ELBO. Next, we provide
a Bayesian perspective on the objective to explain why the VAE provides a principled
approach for probabilistic modeling and Bayesian inference.

3.3.3 Bayesian Interpretation

From a probabilistic perspective, the VAE satisfies two complementary objectives. First, by
maximizing the ELBO (Equation 3.5), the VAE approximates the marginal likelihood or
evidence p(x) with a generative model of the form pθ(x, z) = pθ(x|z)p(z) with parameters θ.
A trained VAE yields a probabilistic generative model from which new observations can be
generated by sampling z ∼ p(z) and x ∼ pθ(x | z) from the prior and stochastic decoder
respectively. Second, the VAE provides a principled, variational approach to Bayesian
inference, because the encoder estimates the posterior

p(z | x) = p(x, z)
p(x) , (3.8)

which is typically intractable, because the evaluation of the denominator (i.e., the evidence)
requires the computation of an integral

p(x) =
∫
p(x, z) dz (3.9)

that is unavailable in closed form or requires exponential time to be computed exactly
for many models including neural networks [BKM17]. The VAE approximates the (true)
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posterior through amortized inference using a variational posterior qφ(z | x), which can be
grounded in the framework of variational Bayesian inference [KW14].

To clarify the twofold interpretation of the VAE in terms of variational inference and
generative modeling, we restate a known derivation of the objective as a lower bound on
the log-evidence (e.g., see [Mur23]).

Lemma 1. Objective LELBO(x;φ, θ) (Equation 3.5) forms a lower bound on log p(x), i.e.,

log p(x) ≥ LELBO(x;φ, θ) . (3.10)

Proof. We start from the target quantity, the log-evidence, and introduce the variational
posterior as follows:

log p(x) = Eqφ(z|x)
[

log p(x)
]

(3.11)

= Eqφ(z|x)

[
log pθ(x, z)

p(z | x)

]
(3.12)

= Eqφ(z|x)

[
log pθ(x, z)qφ(z | x)

qφ(z | x)p(z | x)

]
(3.13)

= Eqφ(z|x)

[
log pθ(x, z)

qφ(z | x)

]
︸ ︷︷ ︸

LELBO(x;φ, θ)

+Eqφ(z|x)

[
log qφ(z | x)

p(z | x)

]
︸ ︷︷ ︸
DKL(qφ(z | x) || p(z | x))

(3.14)

The first term in Equation (3.14) is the ELBO and the second term the KL-divergence
of the variational posterior from the true posterior. Since the KL-divergence is always
non-negative, it follows that the ELBO forms a lower bound on the log-evidence.

Notice that Equation (3.14) also contains the term DKL(qφ(z | x) || p(z | x)), which suggests
that the training of the VAE also determines the gap between the variational posterior
and the true posterior. This property forms the foundation for variational inference with
respect to the true posterior p(z | x), as described by Lemma 2.

Lemma 2. The maximization of the objective LELBO(x;φ, θ) (Equation 3.5) with respect
to the network parameters φ and θ is proportional to the minimization of the KL-divergence
of the variational posterior from the true posterior, i.e.,

arg max
φ, θ

LELBO(x;φ, θ) ∝ arg min
φ, θ

DKL(qφ(z | x) || p(z | x)) . (3.15)
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Proof. Re-write Equation (3.14) in terms of the ELBO

LELBO(x;φ, θ) = log p(x)−DKL(qφ(z | x) || p(z | x)) (3.16)

and consider the optimization with respect to the network parameters φ and θ:

(φ∗, θ∗) = arg max
φ, θ

LELBO(x;φ, θ) (3.17)

= arg max
φ, θ

log p(x)−DKL(qφ(z | x) || p(z | x)) (3.18)

∝ arg max
φ, θ

−DKL(qφ(z | x) || p(z | x)) . (3.19)

The last step (Equation 3.19) follows from the log-evidence being independent of the
network parameters, which means that it represents a constant for the optimization. Hence,
the maximization of the ELBO is proportional to the minimization of the KL-divergence
of the variational posterior from the true posterior.

In summary, we revisited the probabilistic perspective on the VAE, which justifies the
application of the model for Bayesian inference and generative modeling. First, we showed
that its objective forms a lower bound on the log-evidence (Lemma 1). Second, we
demonstrated that the training of the VAE implicitly minimizes the KL-divergence of the
variational from the true posterior distribution (Lemma 2).

3.3.4 Information-theoretic Interpretation

Next, we consider an information-theoretic perspective on the VAE. As before, we derive
the ELBO as a variational lower bound on the log-evidence. However, in addition, we
relate the ELBO to information-theoretic quantities, such as the entropy, conditional
entropy, and mutual information. Let us define these terms before we proceed with the
information-theoretic interpretation of the objective.

3.3.4.1 Information-theoretic Quantities

Let X , Y, and Z denote the sample spaces of three discrete random vectors x, y, and z
respectively, and let p(x), p(y), and p(z) denote their marginal distributions.

The entropy of x is defined as

H(x) = −
∑
x∈X

p(x) log p(x) . (3.20)
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The conditional entropy of x given y is defined as

H(x | y) = −
∑

x∈X ,y∈Y
p(x,y) log p(x | y) . (3.21)

The joint entropy of x and y is defined as

H(x,y) = −
∑

x∈X ,y∈Y
p(x,y) log p(x,y) . (3.22)

The cross-entropy of the discrete probability distribution q(x) from the discrete probability
distribution p(x) is defined as

CE(p(x), q(x)) = −
∑
x∈X

p(x) log q(x) (3.23)

assuming that both distributions are defined on the same sample space X .

The mutual information of x and y is defined as

I(x; y) = DKL(p(x,y) || p(x)p(y)) , (3.24)

where DKL(p(x,y) || p(x)p(y)) denotes the Kullback-Leibler divergence (Definition 4) from
the joint distribution to the product of marginals.

The conditional mutual information of x and y given z is defined as

I(x; y | z) =
∑
z∈Z

p(z)DKL(p(x,y | z) || p(x | z)p(y | z)) . (3.25)

For continuous random vectors, the sums can be replaced with integrals. When we consider
discrete random variables (e.g., pixel intensities, as in the case of RGB images), we can
safely assume that the entropy, conditional entropy and conditional mutual information
are non-negative. This is not generally true for continuous random variables [CT12].

3.3.4.2 Alternative Derivation of the ELBO

Next, we provide an alternative derivation of the ELBO based on an information-theoretic
perspective. In the following, we denote the joint distribution between the random vectors
z ∼ qφ(z | x) and x ∼ p(x) as

p(x, z) = p(x | z)p(z) (3.26)

= qφ(z | x)p(x) , (3.27)
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where qφ(z | x) is a stochastic encoder and p(z) denotes its marginal distribution.

To begin with, notice that the expected log-evidence is equal to the negative entropy

−H(x) = Ep(x)[log p(x)] . (3.28)

Given any random vector z, the entropy can be decomposed as a sum of conditional entropy
and mutual information terms:

H(x) = H(x | z) + I(x; z) . (3.29)

Using Equation (3.29), we can relate the expected log-evidence to the ELBO as follows:

Ep(x)[log p(x)] = −H(x | z)− I(x; z) (3.30)

≥ Ep(x)qφ(z | x)[log pθ(x | z)]− Ep(x)[DKL(qφ(z | x) || q(z))] (3.31)

= Ep(x)[LELBO(x;φ, θ)] , (3.32)

where the inequality follows from variational approximations of the respective terms.
Following Alemi et al. [Ale+17], we can use the following variational bounds:

First, for the conditional entropy, we have

−H(x | z) = Ep(x)qφ(z | x) [log p(x | z)] (3.33)

= Ep(x)qφ(z | x) [log pθ(x | z)] + Ep(z) [DKL(p(x | z) || pθ(x | z))] (3.34)

≥ Ep(x)qφ(z | x) [log pθ(x | z)] , (3.35)

where pθ(x | z) is a variational decoder parameterized by θ.

Second, for the mutual information, we have

−I(x; z) = −Ep(x) [DKL(qφ(z | x) || p(z))] (3.36)

= −Ep(x) [DKL(qφ(z | x) || q(z))] +DKL(p(z) || q(z)) (3.37)

≥ −Ep(x) [DKL(qφ(z | x) || q(z))] , (3.38)

where q(z) is a prior that does not necessarily equal the marginal distribution p(z).

Hence, the ELBO forms a variational lower bound on the expected log-evidence:

Ep(x)[log p(x)] = Ep(x)[LELBO(x;φ, θ) + ∆VA(x; θ)] (3.39)

≥ Ep(x)[LELBO(x;φ, θ)] , (3.40)
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where
∆VA(x; θ) = Ep(z) [DKL(p(x | z) || pθ(x | z))] +DKL(p(z) || q(z)) (3.41)

denotes the variational approximation gap, which is non-negative.

In summary, the information-theoretic perspective reveals an alternative derivation of the
ELBO, which allows us to interpret the individual terms of the objective as variational
estimators of the conditional entropy and mutual information respectively.

3.3.5 Conditional VAE

A widely-used extension of the variational autoencoder is the conditional VAE [SLY15],
which incorporates conditioning information into the generative process.

For each observation, we consider an additional variable c, i.e., we assume pairs of observa-
tions (x, c) ∼ p(x, c). For example, c can be a ground truth label associated with x.

The conditional VAE approximates log p(x | c), which is the log-evidence conditioned on c,
by maximizing the objective

LELBO(x|c;φ, θ) := Eqφ(z | x) [log pθ(x | z, c)]−DKL (qφ(z | x) || p(z | c)) . (3.42)

In contrast to the (unconditional) VAE, the decoder and prior in Equation (3.42) are
conditioned on the variable c, which can therefore be seen as a context vector that is
provided as an additional input to the decoder.

Formally, Equation (3.42) forms a variational lower bound on the conditional log-evidence
log p(x | c) as described by Lemma 3.

Lemma 3 (Conditional ELBO). Objective LELBO(x |c;φ, θ) (Equation 3.42) forms a lower
bound on log p(x | c), i.e.,

log p(x | c) ≥ LELBO(x | c;φ, θ) . (3.43)

Proof. We proceed analogously to the derivation of the ELBO in Lemma 1. Starting from
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the target quantity log p(x | c), we introduce the variational posterior as follows:

log p(x | c) = Eqφ(z | x)
[

log p(x | c)
]

(3.44)

= Eqφ(z | x)

[
log pθ(x, z | c)

p(z | x, c)

]
(3.45)

= Eqφ(z | x)

[
log pθ(x, z | c)qφ(z | x)

qφ(z | x)p(z | x, c)

]
(3.46)

= Eqφ(z | x)

[
log pθ(x, z | c)

qφ(z | x)

]
︸ ︷︷ ︸

LELBO(x | c;φ, θ)

+Eqφ(z | x)

[
log qφ(z | x)

p(z | x, c)

]
︸ ︷︷ ︸

DKL(qφ(z | x) || p(z | x, c))

(3.47)

The first term in Equation (3.47) forms a lower bound on log p(x | c), because the second
term, the KL-divergence, is always non-negative.

It is easy to see that the first term corresponds to the objective from Equation (3.42), if
we apply the chain rule pθ(x, z | c) = pθ(x | z, c)p(z | c) to decompose the first term from
Equation (3.47) as follows:

Eqφ(z | x)

[
log pθ(x, z | c)

qφ(z | x)

]
= Eqφ(z | x)[log pθ(x | z, c)]−DKL(qφ(z | x) || p(z | c)) . (3.48)

The right-hand side of Equation (3.48) is equal to the objective in Equation (3.42). Thus, the
objective LELBO(x | c;φ, θ) forms a lower bound on the conditional log-evidence log p(x | c).

In some formulations of the conditional VAE, the variational posterior (i.e., the encoder) is
also conditioned on c, which can be justified if we additionally assume that z⊥⊥ c | x.

In the context of this thesis, we revisit the conditional VAE in Chapter 9.

3.3.6 Multimodal VAEs

Next, we introduce multimodal variants of the variational autoencoder. Multimodal VAEs
are designed to approximate a joint distribution of multiple modalities in a way that enables
inference across modalities based on the learned representations, which motivates their use
in the context of this thesis (c.f., Question 3).

First, we start with the approximation of a joint distribution of a set of modalities, for which
we define a multimodal ELBO. Then, we consider the problem of missing modalities and
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discuss a naive solution that does not scale well as a function of the number of modalities.
Finally, we introduce two approaches that handle missing modalities efficiently by using
certain types of variational posteriors.

Multimodal ELBO In its basic formulation, the multimodal ELBO is a straightforward
extension of the unimodal ELBO (Definition 3). In fact, we can directly apply Definition 3, if
we define the observation as a set of multiple modalities. Specifically, let x̄ := {x1, . . . ,xM}
and let p(x̄) := p(x1, . . . ,xM ) denote the joint distribution, which we want to approximate
with a generative model by maximizing the multimodal ELBO.

Definition 5 (Multimodal ELBO). Let x̄ = {x1, . . . ,xM} be a set of random vectors that
describe M modalities and let p(x̄) be the joint distribution. Further, let qφ(z | x̄) be a
stochastic encoder parameterized by φ, let pθ(x̄ | z) be a stochastic decoder parameterized
by θ, and let p(z) be a prior distribution. The evidence lower bound on the log-evidence
log p(x̄) is defined as

LELBO(x̄;φ, θ) := Eqφ(z | x̄)[log pθ(x̄ | z)]−DKL(qφ(z | x̄) || p(z)) , (3.49)

where DKL(· || ·) denotes the Kullback-Leibler divergence (Definition 4).

In this formulation, the multimodal ELBO is equivalent to its unimodal counterpart. We
simply redefined the observation x̄ as a set of multiple modalities and adjusted the encoder
and decoder accordingly.

Missing modalities Suppose we observe only one modality, say x1. To compute its
embedding, it requires a modality-specific encoder for the (unimodal) variational poste-
rior qφ(z | x1). However, in Definition 5 we only defined the variational joint posterior
qφ(z | x1, . . . ,xM), i.e., an encoder that takes all modalities as input.

To handle missing modalities, we could define a distinct inference model for each possible
subset of modalities (e.g., [SNM16; Ved+18; HG18]). However, such an approach would
quickly become intractable as the number of inference networks required grows exponentially
with the number of modalities (c.f., [WG18]). Hence, it requires a more elaborate approach
to handle missing modalities efficiently.

Scalable multimodal VAEs Scalable multimodal VAEs are designed to approximate
the multimodal ELBO while handling missing modalities efficiently. Using onlyM inference
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networks (i.e., one for each modality), they enable efficient posterior inference for different
subsets of modalities. Consequently, they facilitate the inference across modalities based
on the learned representations.

The core idea behind scalable multimodal VAEs is to design a variational joint posterior
that can be decomposed in terms of the unimodal variational posteriors. Starting with the
seminal work from Wu and Goodman [WG18], the variational joint posterior was defined
as a product of unimodal posteriors, a so-called product of experts (PoE [Hin02])

qPoEφ (z | x1, . . . ,xM) =
M∏
i=1

qφi(z | xi) , (3.50)

which has a simple, closed-form solution in the case of Gaussian variational posteriors
[CF14; WG18]. In the follow-up work from Shi et al. [Shi+19], the variational joint posterior
was defined as a mixture of unimodal posteriors, i.e., a mixture of experts (MoE)

qMoE
φ (z | x1, . . . ,xM) = 1

M

M∑
i=1

qφi(z | xi) . (3.51)

Since both decompositions describe valid probability distributions, they can be used
to define the variational joint posterior in the multimodal ELBO. Consequently, the
resulting generative models approximate the joint distribution of multiple modalities with
a variational joint posterior that can be decomposed in terms of the unimodal variational
posterior distributions. In Chapter 5, we generalize the existing approaches by formulating
the variational joint posterior as a mixture of products of experts.

With this, we conclude our recap of VAEs. To summarize, in this section we introduced
autoencoders and VAEs and provided a probabilistic and information-theoretic perspective
on the ELBO. Then, we returned to the topic of multimodal learning and discussed the
problem of missing modalities, which is addressed by (scalable) multimodal VAEs. In the
following chapters, we build upon multimodal VAEs by generalizing existing formulations
(Chapter 5), modeling modality-specific information explicitly (Chapter 6), and formalizing
their limitations (Chapter 7).

3.4 Contrastive Learning

In this section, we introduce contrastive learning and explain why it provides a particularly
suitable method for multimodal learning under weak supervision. In contrast to the
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VAE and other types of generative models, which learn representations based on the
reconstruction or masked prediction error computed on the level of observations, contrastive
learning takes a more direct approach to representation learning. Specifically, contrastive
learning provides a discriminative approach that maximizes the similarity between different
embeddings and thus casts representation learning as a prediction problem in latent
space [Liu+23].

First, we review some basic ideas and developments underlying contrastive learning (Sec-
tion 3.4.1). Then, we define the widely used InfoNCE objective (Section 3.4.2), which is
the objective we adopt in this thesis. Next, we address two theoretical interpretations
of the InfoNCE objective (Section 3.4.3). Finally, we return to the setup of multimodal
learning and explain how contrastive learning can be used in this context (Section 3.4.4).

3.4.1 Preliminaries

Contrastive learning emerges from an extensive line of research, which dates back to the early
1990s [LHS20], i.e., long before the term “representation learning” became prevalent. The
review from Le-Khac, Healy, and Smeaton [LHS20] examines the history of the method,
discussing different formulations of the objective function and various interpretations
thereof, including mutual information maximization [BH92; OLV18; Hje+19], distance
metric learning [Bro+93; CHL05; HCL06; CW08; Che+10; Wan+14], and the estimation
of unnormalized statistical models [GH10; GH12].

Self-supervised learning More recently, contrastive learning became widely adopted in
applications of self-supervised learning [Wu+18; Che+20; He+20; Hén+20], where models
are trained to solve pretext tasks (e.g., denoising, masked prediction or transformation
prediction) for which labels or corresponding observations can be produced cheaply, e.g.,
by using data augmentations [SK19]. However, the effectiveness of contrastive learning is
determined by the design of suitable pretext tasks, which in turn depend on the downstream
applications [Tia+20; Mit+21]. Thus, it typically requires human expertise to design
suitable pretext tasks and significant fine-tuning to choose the relevant hyperparameters,
such as the composition and strength of augmentations used [Che+20].

Conveniently, in the setup of multimodal learning under weak supervision, a suitable pretext
task is inherent to the data: given corresponding observations of different modalities, the
pretext task can be defined as the prediction of the similarities between observations of
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different modalities. From the perspective of representation learning, the prediction of
similarities would ideally correspond to recovering the latent factors of variation shared
between modalities (c.f., Question 1).

Basic concepts At its core, contrastive learning uses weak supervision in the form of
corresponding observations to learn an encoder that maps similar inputs (i.e., positive pairs)
closer to each other and dissimilar inputs (negative pairs) further apart (see Section 3.4.2).
There exist many related algorithms in the context of multi-view representation learning
[Mur23], but even non-contrastive methods (e.g., [Gri+20; CH21; Zbo+21; Car+21; BPL22])
seek to maximize the similarity between positive pairs and merely differ with respect to the
strategy used to prevent a “collapsed” representation—i.e., a degenerate solution where the
encoder maps to a constant [Jin+22]. In contrastive learning, this is prevented by using
negative pairs in the objective.

In the context of this thesis, we consider contrastive learning based on the method of noise-
contrastive estimation [GH10] that inspired the widely-used InfoNCE objective [OLV18],
which we use throughout our experiments. Next, we introduce the InfoNCE objective and
then discuss its theoretical underpinnings as well as extensions to multimodal learning.

3.4.2 The InfoNCE Objective

Let x1 and x2 be random vectors that take values in the same space X and let p(x1,x2)
denote their joint distribution. As such, x1 and x2 represent different views of the same
modality; for example, think of two images or different augmentations of the same image.
Further, let gφ : X → Ẑ be an encoder that is parameterized by φ.

For a given sample {xk1 ,xk2}Kk=1
i.i.d.∼ p(x1,x2), the InfoNCE objective [OLV18] is defined as

LInfoNCE({xk1 ,xk2}Kk=1;φ) := −
K∑
k=1

log exp{sim(gφ(xk1),gφ(xk2))/τ}∑K
l=1 exp{sim(gφ(xk1),gφ(xl2))/τ}

, (3.52)

where τ is a temperature hyperparameter and sim(·, ·) is a similarity metric (e.g., the cosine
similarity). Each term in the outer sum can be viewed as (the logarithm of) a softmax
function that takes as input a vector of length K, comprised of the similarity between a
positive pair (i.e., the numerator) and the similarity between K − 1 negative pairs, all of
which are in the denominator of the softmax function.9

9To be precise, the denominator includes one positive pair and K − 1 negative pairs.
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In terms of the distribution p(x1,x2), we specify the objective as

E{xk1 ,xk2}Kk=1∼p(x1,x2)

[
LInfoNCE({xk1 ,xk2}Kk=1;φ)

]
, (3.53)

where the integer K becomes an additional hyperparameter that controls the number of
negative pairs used for contrasting. In practice, we sample data pairs from a finite dataset
D = {(x(n)

1 ,x(n)
2 )}Nn=1 of size N � K.

Intuitively, the minimization of Equation (3.53) with respect to the parameters φ trains
the encoder to learn a transformation that accentuates similarities between data points,
i.e., a space where positive pairs are closer to each other, while negative pairs are further
apart [WI20]. To formalize these properties, let us consider two theoretical interpretations
of the InfoNCE objective.

3.4.3 Theoretical Interpretations

We discuss two theoretical interpretations of contrastive learning with a special focus on
the InfoNCE objective. First, we consider an information-theoretic perspective; second, an
interpretation of the objective in terms of alignment and entropy regularization.

Mutual information estimation From an information-theoretic perspective, Equa-
tion (3.53) can be interpreted as a variational lower bound on the mutual information
I(x1; x2). Specifically, for any encoder gφ, it holds that

I(x1; x2) ≥ I(gφ(x1); gφ(x2)) (3.54)

≥ E{xk1 ,xk2}Kk=1∼p(x1,x2)

[
− LInfoNCE({xk1 ,xk2}Kk=1;φ)

]
+ logK , (3.55)

where the first bound follows from the data processing inequality and the second inequality is
based on the derivation of the InfoNCE objective as a variational lower bound of the mutual
information between two random variables [OLV18; Poo+19]. Thus, by minimizing the
InfoNCE objective (Equation 3.53), we maximize a lower bound on the mutual information
I(gφ(x1); gφ(x2)). Consequently, the encoder is trained to maximize the similarity between
the embeddings gφ(x1) and gφ(x2) in the sense of maximizing their mutual dependence.

It is worth noting that a fundamental limitation of the InfoNCE objective for estimating
the mutual information is that its estimate is upper-bound by log K, as can be seen in
Equation (3.55). In fact, as shown by McAllester and Stratos [MS20], any distribution-free
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high-confidence lower bound on mutual information cannot be larger than O(K), where K
is the size of the sample. Though, in practice, one can use relatively large K (e.g., a large
batch size) or compute the moving average over multiple batches of samples [He+20].

In the context of representation learning, Tschannen et al. [Tsc+20] demonstrate that
estimating tighter bounds on the mutual information can result in worse representations.
Consequently, they argue that the success of representation learning with InfoNCE cannot
be fully attributed to the property of it being a mutual information estimator and that the
quality of the learned representation with respect to several downstream tasks is influenced
by other factors such as the choice of the encoder architecture. Along the same lines, Tian
et al. [Tia+20] show that minimizing the mutual information between views, while keeping
task-relevant information intact, can improve the quality of the representation for the
respective tasks. Similar findings regarding the removal of task-irrelevant information were
reported in parallel studies [Fed+20; Tsa+21], which also consider an information-theoretic
perspective on the objective. Overall, these results are not entirely unexpected, because
the “quality” of a representation depends on the downstream task.

Alignment and uniformity Asymptotically, the InfoNCE objective (Equation 3.53)
can be interpreted as the alignment of positive pairs (numerator) with approximate entropy
regularization (denominator), which produces embeddings that are uniformly distributed
on a hypersphere [WI20]. Intuitively, maximizing uniformity prevents a degenerate solution
in which the encoder maps to a constant.

Formally, when instantiating the objective in Equation (3.53) with τ = 1 and sim(a, b) =
−(a− b)2, it asymptotically behaves like the objective

E(x1,x2)∼p(x1,x2) [‖gφ(x1)− gφ(x2)‖2]−H(gφ(x1)) (3.56)

when K → ∞ [von+21]. Thus, by minimizing Equation (3.56) with respect to the
parameters φ, the encoder is trained to align positive pairs while maximizing the entropy
(i.e., the uniformity) of the learned representation.

3.4.4 Multimodal Contrastive Learning

Thus far, we have described the InfoNCE objective as it is typically used for self-supervised
learning with multi-view data. However, when the data are comprised of heterogeneous
observations of different modalities (e.g., image and text data), the objective needs to
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be adapted accordingly. In the following, we describe how the InfoNCE objective can be
adapted for multimodal contrastive learning.

InfoNCE for multimodal data Let x1 and x2 be random vectors that take values in
distinct spaces, X1 and X2 respectively, and let p(x1,x2) be the joint distribution. In this
setup, it is natural to employ separate encoders gφ1 : X1 → Ẑ1 and gφ2 : X2 → Ẑ2, which
makes it easier to process inputs with different dimensionalities and to implement suitable
architectures (e.g., convolutional networks for images; recurrent networks for text).

Thus, for multimodal data, we express the InfoNCE objective from Equation (3.52) using
two encoders. For a given sample {xk1 ,xk2}Kk=1

i.i.d.∼ p(x1,x2), we define

LInfoNCE({xk1 ,xk2}Kk=1;φ1, φ2) := −
K∑
k=1

log exp{sim(gφ1(xk1),gφ2(xk2))/τ}∑K
l=1 exp{sim(gφ1(xk1),gφ2(xl2))/τ}

, (3.57)

where we specify a different encoder for each of the two modalities.

Further, it is intuitive to use a symmetrized version of the objective, which can be obtained
by computing the loss in both directions, i.e.,

1
2 LInfoNCE({xk1 ,xk2}Kk=1;φ1, φ2) + 1

2 LInfoNCE({xk2 ,xk1}Kk=1;φ2, φ1) , (3.58)

to balance the contributions of the individual modalities with respect to the overall loss
value. For instance, the symmetrized objective was used for representation learning with
image-text pairs in medical imaging [Zha+22] and contrastive pre-training on a large-scale
image-captions dataset [Rad+21]. We revisit this objective in Chapter 8, where we discuss
the application of multimodal contrastive learning for the identification of latent factors
shared between observations of different modalities.

3.5 Summary

In this chapter, we covered relevant background to contextualize our problem formulation
and methods. We introduced the topic of representation learning and positioned our
research in the neighborhood of multi-view and multimodal representation learning and
in particular among works that seek to learn “disentangled” representations that recover
the underlying factors of variation. We also discussed the related topic of ICA, which
provides a theoretical framework for representation learning in terms of the recovery of
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latent variables. In this context, we also touched upon the topic of causal representation
learning, which goes beyond the classic assumptions of ICA theory. Finally, we introduced
two methods—the variational autoencoder and contrastive learning—as two complementary
approaches for representation learning. In this thesis, we draw on both approaches to
design suitable methods for multimodal representation learning.
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4
Datasets

In this chapter, we describe the datasets used in this thesis. We include synthetic datasets,
designed to provide simple benchmarks and to address conceptual problems without
unnecessary complexity, as well as multiple real-world datasets for the evaluation of more
realistic use cases.

First, we introduce the PolyMNIST dataset (Section 4.1) as a simple benchmark for
multimodal generative models. It is complemented by the Translated-PolyMNIST dataset,
which provides a salient demonstration of the limitations of existing approaches. Then,
we describe two real-world datasets: the Bimodal-CelebA dataset (Section 4.2), which
comprises facial images and associated attributes in the form of textual descriptions, and
the CUB Image-Captions dataset (Section 4.3) that consists of natural images of birds with
corresponding captions. Finally, we introduce the Multimodal3DIdent dataset (Section 4.4),
which enables a principled assessment of the recovery of ground truth latent factors with a
controllable data generating process that produces image-text pairs.

4.1 PolyMNIST

The PolyMNIST dataset is based on the MNIST database [LCB98; LeC+98] that is
comprised of black and white images of handwritten digits. PolyMNIST combines the
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MNIST digits with different background images to generate five synthetic image modalities.
It is designed to be a conceptually simple yet exemplary dataset for multimodal learning.

Figure 4.1: Ten examples from the PolyMNIST
dataset. Each column depicts one training ex-
ample that consists of five image modalities that
share the same digit label.

Each example in the PolyMNIST dataset is
a set of five images with the same digit label
but different backgrounds and handwriting
styles. For instance, see Figure 4.1, where
each column shows one example and each row
represents a different modality, expressed
by a characteristic type of background. In
total, there are 60 000 training and 10 000
test examples. Notably, we used distinct sets
of MNIST images to construct the training
and test sets respectively.

Applications The PolyMNIST dataset is designed for our work presented in Chapter 5,
where we benchmark multimodal generative models in a controlled setup with more than
two modalities. In this context, the dataset allows to measure the aggregation of shared
information across multiple modalities and to assess the generative performance with
missing modalities. Further, it facilitates the comparison of different methods, as it removes
the need for modality-specific architectures and hyperparameters because the observations
of different modalities have similar characteristics (e.g., dimensionality and complexity) and
discernable features of shared and modality-specific information. Consequently, PolyMNIST
provides a testbed that enables a fair comparison across methods. For this purpose, the
dataset is used in Chapters 5 to 7. Additionally, in Chapter 6, we use it to assess how
much shared information (i.e., information about the digit label) is encoded in the shared
and modality-specific subspaces of models with a partitioned latent space.

4.1.1 Translated-PolyMNIST

As a simple extension of PolyMNIST, we introduce the Translated-PolyMNIST dataset,
which adds a simple transformation to each image—namely, a fixed downscaling and
random translation (i.e., spatial positioning) of digits—as illustrated in Figure 4.2. The
resulting dataset is conceptually similar to PolyMNIST in that a digit label is shared
between five synthetic modalities.

48



4.2. Bimodal-CelebA

Figure 4.2: Ten examples from the Translated-
PolyMNIST dataset. Each column depicts one
example that consists of five different “modali-
ties” that share the same digit label.

Technically, in the generation of the dataset,
we merely change the size and position of
each digit. So, instead of overlaying a full-
sized 28 × 28 MNIST digit on the respec-
tive background image, we scale down the
digit by a factor of 0.7 and place it at a ran-
dom (x, y)-coordinate before we combine it
with the background image. Conceptually,
these transformations leave shared informa-
tion (i.e., the digit label) unaffected but make
it more difficult to predict shared informa-
tion in expectation across modalities on the level of observations. Specifically, for unseen
examples, shared information cannot be predicted across modalities if the predictions are
evaluated using a pixel-wise reconstruction loss (e.g., mean squared error) between the
reconstructed and actual observations.

Applications In Chapter 7, we use the Translated-PolyMNIST to showcase the limita-
tions of multimodal VAEs. In Chapter 9, we revisit the dataset and demonstrate how the
limitations can be addressed using contrastive learning to estimate the shared information.

4.2 Bimodal-CelebA

Figure 4.3: Three examples from the Bimodal-
CelebA dataset, which is comprised of images
and corresponding textual descriptions.

The Bimodal-CelebA dataset [SDV20] pro-
vides a more realistic use case with image-text
pairs. It extends the CelebA dataset [Liu+15],
which is comprised of images depicting faces
of celebrities and labeled attributes that de-
scribe the properties of a person’s face. In the
Bimodal-CelebA dataset, textual descriptions
are constructed from the labeled attributes.

Each image is labeled according to 40 at-
tributes (e.g., male, blond, sunglasses, beard).
Based on these attributes, textual descriptions are constructed, as illustrated in the exam-
ples shown in Figure 4.3. The dataset has a highly imbalanced distribution of attributes,
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which poses additional challenges for machine learning models. Moreover, missing attributes
(e.g., no sunglasses) are not annotated and hence there is no fixed position for a specific
attribute in the text. This introduces additional variability in the data and makes the text
modality even more challenging. In total, the dataset is comprised of 202 600 examples,
split into 162 771 training, 19 961 validation, 19 868 test examples.

Applications We use the Bimodal-CelebA dataset in Chapter 5 to provide an experiment
with a realistic multimodal dataset.

4.3 CUB Image-Captions

The CUB Image-Captions dataset was introduced in [Shi+19] as an extension of the
Caltech-Birds dataset (CUB-200-2011 [Wah+11]). It provides a real-world dataset with two
modalities—images of birds of 200 different species with corresponding captions describing
the birds’ appearance, as illustrated in Figure 4.4.

Figure 4.4: Five examples from the CUB Image-
Captions dataset, which is comprised of natural
images of birds with corresponding captions.

Each image from the CUB-200-2011 dataset
is coupled with 10 crowdsourced descriptions
of the respective bird. In total, there are
11 788 images that are combined with the
text into distinct sets of 88 550 training and
29 330 test examples. It is important to
note that we use the CUB Image-Captions
dataset with real images instead of the sim-
plified version of the dataset used in previous
works [Shi+19; Shi+21], where images were
replaced by ResNet-features [He+16].

Applications The CUB Image-Captions dataset is used in Chapter 6 to provide a
realistic experiment. Additionally, in Chapter 7, we use it to showcase the limitations
of multimodal VAEs on a real-world dataset, for which shared information cannot be
predicted in expectation across modalities on the level of observations.
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4.4 Multimodal3DIdent

The Multimodal3DIdent dataset provides an identifiability benchmark with image-text
pairs. Both modalities are generated from controllable ground truth factors, some of which
are shared between image and text examples, as illustrated in Figure 4.5. Crucially, the
dataset provides full control over the data generating process, because we sample the
ground truth factors and render the observations of both modalities as functions thereof.

Figure 4.5: Three examples from the
Multimodal3DIdent dataset. Empha-
sized words indicate factors of variation
shared between image-text pairs.

Multimodal3DIdent provides an extension of the
Causal3DIdent dataset [von+21; Zim+21], which was
designed to render high-dimensional images based on
ground truth factors, which represent the parameters
of a complex generative process. We adapt the data
generation to a multimodal setup with image-text
pairs and therefore synthesize complex observations
of two modalities via distinct generating mechanisms.
The training, validation, and test sets contain 125 000,
10 000, and 10 000 image-text pairs and ground truth
factors, respectively. In the following, we describe the latent factors, the generative mecha-
nisms used to render image and text observations, and the dependencies between modalities.

Latent factors We define the ground truth latent variables used to generate image and
text observations according to Table 4.1. Each factor is sampled from a uniform distribution
defined on the specified set of values for the respective factor.

Image rendering We use the Blender rendering engine [Ble18] to create visually complex
images that depict a three-dimensional scene. Each image in the dataset shows a colored
object of a certain shape or class (i.e., teapot, hare, cow, armadillo, dragon, horse, or head).
Specifically, the object is positioned in front of a colored background and illuminated by a
differently colored spotlight that is focused on the object and located on a semicircle above
the scene. The resulting RGB images are of size 224× 224× 3.

Text generation We generate a sentence describing the respective scene. Each sentence
describes the object’s shape or class (e.g., teapot), position (e.g., bottom-left), and color.
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The color is represented in a human-readable form (e.g., “lawngreen”, “xkcd:bright aqua”)
based on the name of the color (from a given palette9) that is closest to a sampled color
value in RGB space. The sentence is constructed from one of five pre-configured phrases
with placeholders for the respective ground truth factors.

Relation between modalities Three latent factors are shared between image-text
pairs, namely the shape of the object and its position in the image (x- and y-coordinates).
Additionally, the object color also exhibits a dependence between modalities; however, it is
not a 1-to-1 correspondence because the color palette is sampled randomly from a set of
multiple palettes.9 Moreover, the color of the object is causally influenced by position of
the object. We split the range of hue values [0, 1] into three equally sized intervals, each
of which is associated with a fixed x-position of the object. For instance, if x-position is
“left”, we sample the hue value from the interval [0, 1/3]. Consequently, the color of the
object can be predicted to some degree from the position of the object.

Applications In Chapter 8, we study whether latent factors of variation can be identified
using contrastive learning. In that context use the Multimodal3DIdent dataset to provide
an experiment on a complex multimodal dataset of image-text pairs.

4.5 Summary

In this chapter, we introduced and described the datasets used in this thesis. We presented a
collection of synthetic and real-world multimodal datasets that are used for the experiments
in the following chapters.

For the novel methods we develop, we demonstrate their utility on both synthetic and
real-world datasets. For some of the existing methods we study, their practical utility has
already been established, so we evaluate them on synthetic datasets to investigate their
effectiveness in a controlled setup and to identify possible failure cases.

9 We use the following three color palettes from the matplotlib.colors API [Mat]: Tableau colors
(10 values), CSS4 colors (148 values), and XKCD colors (949 values).
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Modality Latent Factor Values Details

Image Object shape {0, 1, . . . , 6} Mapped to Blender shapes like “Teapot”, “Hare”, etc.
Image Object x-position {0, 1, 2} Mapped to {-3, 0, 3} for Blender
Image Object y-position {0, 1, 2} Mapped to {-3, 0, 3} for Blender
Image Object z-position {0} Constant
Image Object alpha-rotation [0, 1]-interval Linearly transformed to [-pi/2, pi/2] for Blender
Image Object beta-rotation [0, 1]-interval Linearly transformed to [-pi/2, pi/2] for Blender
Image Object gamma-rotation [0, 1]-interval Linearly transformed to [-pi/2, pi/2] for Blender
Image Object color [0, 1]-interval Hue value in HSV transformed to RGB for Blender
Image Spotlight position [0, 1]-interval Transformed to a unique position on a semicircle
Image Spotlight color [0, 1]-interval Hue value in HSV transformed to RGB for Blender
Image Background color [0, 1]-interval Hue value in HSV transformed to RGB for Blender
Text Object shape {0, 1, . . . , 6} Mapped to strings like “teapot”, “hare”, etc.
Text Object x-position {0, 1, 2} Mapped to strings “left”, “center”, “right”
Text Object y-position {0, 1, 2} Mapped to strings “top”, “mid”, “bottom”
Text Object color string values Color names from 3 different color palettes9

Text Text phrasing {0, 1, . . . , 4} Mapped to 5 different English sentences

Table 4.1: Description of the latent factors used to generate the Multimodal3DIdent
dataset. The first 11 factors represent the parameters of the generative process for the
image rendering and the remaining 5 factors represent the parameters used to generate
text observations. Under “details”, we describe the transformations used to adapt the
value range of a given factor for the generation of the respective modality.
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5
Generalized Multimodal ELBO

In this chapter, we propose a new multimodal generative model within the framework of
variational inference. We introduce the mixture of products of experts multimodal variational
autoencoder (MoPoE-VAE)—a principled and scalable method for approximate inference
and density estimation on sets of modalities. Our formulation of the model generalizes
two existing, widely-used approaches, namely the MVAE [WG18] and MMVAE [Shi+19],
which model the variational joint posterior as a product of experts (PoE) and mixture
of experts (MoE) respectively. Compared to these baselines, we demonstrate that the
MoPoE-VAE enhances the encoding and disentanglement of shared and modality-specific
information and consequently improves the generation of missing modalities.

First, we introduce relevant background (Section 5.1). Second, we describe the proposed
method and explain how it generalized existing approaches (Section 5.2). Finally, we
evaluate our method with experiments on synthetic and real-world data (Section 5.3).

5.1 Motivation and Background

Among the class of scalable multimodal VAEs, which was introduced in Section 3.3.6, the
two main approaches are the multimodal variational autoencoder [MVAE, WG18] and the
mixture of experts multimodal variational autoencoder [MMVAE, Shi+19]. We show that
these approaches differ merely in the form of the variational joint posterior and draw a
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theoretical connection between these models, showing that they can be subsumed under a
unified formulation as a mixture of products of experts (MoPoE).

This insight has practical implications, because the form of the variational posterior
influences the properties of a model. The MVAE is based on the product of experts (PoE),
which can aggregate information across multiple modalities. For the MVAE, we observe
a good approximation of the joint distribution but a lack of semantic coherence for the
generation of missing modalities. On the other hand, the MMVAE is based on the mixture
of experts (MoE), which can approximate a multimodal posterior (i.e., a distribution with
multiple local maxima) even if the individual experts are unimodal distributions. We find
that the MMVAE produces a good approximation of the unimodal and pairwise conditional
distributions but a worse approximation of the joint distribution compared to the MVAE.

We generalize these formulations and introduce the mixture of products of experts (MoPoE)
variational joint posterior and thus the MoPoE-VAE, which combines the benefits of the
MVAE and MMVAE without significant tradeoffs. In contrast to the existing baselines,
our method approximates the joint posterior for all subsets of modalities—a property
that improves the learned representations and the generation of missing modalities, as we
empirically demonstrate in Section 5.3.

Table 5.1 summarizes the properties of existing multimodal VAEs and highlights the
benefits of the proposed MoPoE-VAE, namely (i) the ability to aggregate information
across multiple modalities through the PoE; (ii) to approximate a multimodal posterior,
similar to the MMVAE but for all subsets of modalities; and (iii) to efficiently handle
missing modalities at test time, like the MVAE but without a heuristic extension of the
training procedure.10

5.2 Method: MoPoE-VAE

First, we introduce the mixture of products of experts (MoPoE) variational joint posterior,
designed to use all subsets of modalities for the posterior approximation (Section 5.2.1).
Second, we propose the MoPoE-VAE and show that it is a principled approach for approxi-
mate inference and density estimation on sets of modalities (Section 5.2.2). Finally, we

10To handle missing modalities, a version of the MVAE uses ELBO sub-sampling during training, which
is empirically motivated [WG18] but can produce an invalid bound on the joint log-evidence [WG19].
Throughout this thesis, we use the MVAE without ELBO sub-sampling, unless explicitly stated otherwise.

56



5.2. Method: MoPoE-VAE

Model Posterior form Aggregate
modalities

Multimodal
posterior

Missing
modalities

MVAE PoE 3 7 (3)
MMVAE MoE 7 3 3

MoPoE-VAE MoPoE 3 3 3

Table 5.1: Properties of existing multimodal VAEs and our proposed model, the MoPoE-
VAE. For the MVAE, we denote its ability to handle missing modalities in parentheses,
because in practice it requires an empirically-motivated extension of the objective.10

define the family of mixture-based multimodal VAEs and show that it provides a general
formulation that encompasses the MVAE, MMVAE, and MoPoE-VAE (Section 5.2.3).

5.2.1 Mixture of Products of Experts (MoPoE)

Let M be the number of modalities, let P(M) be the powerset of the set of consecutive
integers {1, . . . ,M} excluding the empty set and let |P(M)| denote its cardinality. Based
on the set P(M), which enumerates all subsets of modalities, we define the variational
joint posterior as a mixture of products of unimodal variational posteriors:

qMoPoE
φ (z | x1, . . . ,xM) = 1

|P(M)|
∑

A∈P(M)

∏
i∈A

qφi(z | xi) (5.1)

= 1
|P(M)|

∑
A∈P(M)

qPoEφA
(z | xA) . (5.2)

Thus, we define a mixture over all subsets of modalities and, for each subset A ∈ P(M), we
take a product of the unimodal posteriors of the modalities indexed by A. In Equation (5.2),
the set of parameters φA is fully determined by the parameters of the unimodal encoders,
i.e., φA = {φi | i ∈ A}.

Generalized formulation It is easy to see how the MoPoE posterior in Equation (5.1)
corresponds to either the PoE or MoE posterior when we consider only a specific subset
of P(M). If we consider only the complete set of modalities and thus replace P(M) with
{{1, . . . ,M}}, which is a set with cardinality one, then the sum in Equation (5.1) would
be reduced to a single term—a product of all unimodal posteriors—which corresponds
exactly to the PoE posterior (Equation 3.50).
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Conversely, if we consider only the unimodal subsets and therefore replace P(M) with
{{1}, . . . {M}}, which is a set with cardinalityM , then each product in the mixture would be
reduced to a single factor—a unimodal posterior. Hence, Equation (5.1) would be a mixture
over all unimodal posteriors, which corresponds to the MoE posterior (Equation 3.51).

Implications The MoPoE posterior (Equation 5.1) defines a mixture distribution over
all subsets of modalities based on the powerset P(M), whereas existing formulations only
consider certain subsets of modalities (see Section 5.2.3). This can have implications
for multimodal generative learning, since the form of the variational joint posterior can
influence the properties of the resulting model. For example, aggregation through the
PoE results in a sharp joint posterior [Hin02], but it can hinder the optimization of the
unimodal posteriors [WG18; KGS19]. In contrast, the formulation of the MoE defines
the joint posterior as a mixture of unimodal posteriors, which can jointly approximate a
multimodal distribution but cannot aggregate information across different modalities.

5.2.2 MoPoE-VAE: Scalable Inference with Missing Modalities

To develop a generative model that is scalable in the number of modalities—i.e., a model
that efficiently handles missing modalities—previous works decompose the variational
joint posterior qφ(z | x1, . . . ,xM) as product or mixture of unimodal posteriors (c.f., Sec-
tion 3.3.6). In the following, we define the objective of the MoPoE-VAE based on the
MoPoE decomposition from Equation (5.1), which considers all subsets of modalities and
can still be computed efficiently when modalities are missing.

To define the objective of the MoPoE-VAE, we start from the definition of the multimodal
ELBO (Equation 3.49) and simply replace the variational joint posterior qφ(z | x̄), where
x̄ = {x1, . . . ,xM}, with the MoPoE posterior from Equation (5.1):

LELBO(x̄;φ, θ) = EqMoPoE
φ

(z | x̄)[log pθ(x̄ | z)]−DKL(qMoPoE
φ (z | x̄) || p(z)) (5.3)

= E 1
|P(M)|

∑
A∈P(M) q

PoE
φA

(z | xA)[log pθ(x̄ | z)]−DKL(qMoPoE
φ (z | x̄) || p(z)). (5.4)

Then, using the linearity of expectation (c.f., [Shi+19, p. 5]), we rewrite Equation (5.4) by
taking the weighted sum outside the expectation to obtain

1
|P(M)|

∑
A∈P(M)

EqPoE
φA

(z | xA)[log pθ(x̄ | z)]−DKL(qMoPoE
φ (z | x̄) || p(z)) . (5.5)
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Since the above KL-divergence cannot be computed in closed form, we resort to a lower
bound of Equation (5.5). For this, we upper-bound the KL-divergence as follows:

DKL(qMoPoE
φ (z | x̄) || p(z)) = EqMoPoE

φ
(z | x̄)

[
log

qMoPoE
φ (z | x̄)
p(z)

]
(5.6)

= E 1
|P(M)|

∑
A∈P(M) q

PoE
φA

(z | xA)

[
log

qMoPoE
φ (z | x̄)
p(z)

]
(5.7)

= 1
|P(M)|

∑
A∈P(M)

EqPoE
φA

(z | xA)

[
log

qMoPoE
φ (z | x̄)
p(z)

]
(5.8)

≤ 1
|P(M)|

∑
A∈P(M)

EqPoE
φA

(z | xA)

[
log

qPoE
φA

(z | xA)
p(z)

]
(5.9)

= 1
|P(M)|

∑
A∈P(M)

DKL(qPoE
φA

(z | xA) || p(z)) . (5.10)

In Equation (5.9), we construct a variational upper bound for each term in the sum. In
particular, for each term, we approximate qMoPoE

φ (z | x̄) with qPoE
φA

(z | xA) as follows:

EqPoE
φA

(z | xA)

[
log

qMoPoE
φ (z | x̄)
p(z)

]
(5.11)

= EqPoE
φA

(z | xA)

[
log

qMoPoE
φ (z | x̄) qPoE

φA
(z | xA)

p(z) qPoE
φA

(z | xA)

]
(5.12)

= EqPoE
φA

(z | xA)

[
log

qPoE
φA

(z | xA)
p(z)

]
−DKL(qPoE

φA
(z | xA) || qMoPoE

φ (z | x̄)) (5.13)

≤ EqPoE
φA

(z | xA)

[
log

qPoE
φA

(z | xA)
p(z)

]
, (5.14)

where the inequality follows from the property that the KL-divergence is non-negative.

Hence, we can use the inequality from Equation (5.9) to lower-bound the multimodal
ELBO (i.e., Equation 5.5).

Objective of the MoPoE-VAE Consequently, following the steps described, we obtain
the objective of the MoPoE-VAE:

LMoPoE
ELBO (x̄;φ, θ) := 1

|P(M)|
∑

A∈P(M)

{
EqPoE

φA
(z | xA)[log pθ(x̄ | z)]−DKL(qPoE

φA
(z | xA) || p(z))

}
.

(5.15)
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Since Equation (5.15) lower-bounds the multimodal ELBO (Equation 5.5), it follows that
Equation (5.15) forms a lower bound on the log-evidence log p(x1, . . . ,xM), as desired
for a multimodal generative model. Moreover, if we use Gaussian unimodal variational
posteriors, the objective of the MoPoE-VAE can be computed efficiently for any subset
of modalities, as the PoE has a closed-form solution in that case [CF14; WG18]. Hence,
the MoPoE-VAE provides a principled and scalable method for approximate inference and
density estimation on sets of modalities.

5.2.3 The Family of Mixture-based Multimodal VAEs

In this subsection, we provide a generalized formulation of existing multimodal VAEs.
Specifically, we introduce the family of mixture-based multimodal VAEs and show that it
subsumes the MVAE, MMVAE, and the proposed MoPoE-VAE.

First, we define a mixture-based decomposition of the variational joint posterior that
generalizes the decompositions used by existing models. In the following, S denotes a set
of pairs (A, ωA), where A ⊆ {1, . . . ,M} is a subset of modalities and ωA ∈ [0, 1] is the
corresponding mixture coefficient for the subset A. To simplify the notation, we write
A ∈ S to abbreviate (A, ωA) ∈ S in Definition 6 and throughout this thesis.

Definition 6 (Mixture posterior over S). Let S be a given set of non-empty subsets of
modalities and corresponding mixture coefficients that satisfies

S ⊆
{

(A, ωA) | A ⊆ {1, . . . ,M}, A 6= ∅, ωA ∈ [0, 1]
}
and

∑
A∈S

ωA = 1. (5.16)

Then, we define the variational joint posterior as a mixture distribution over S, i.e.,

qSφ (z | x1, . . . ,xM) :=
∑
A∈S

ωA qφA(z | xA) , (5.17)

where φA = {φi | i ∈ A} for each A ∈ S.

It is easy to see how the above definition encompasses all formulations of the variational
joint posterior for the existing models. Concretely, we have

qSφ (z | x̄) =



qφ(z | x̄), if S =
{

({1, . . . ,M}, 1)
}

1
M

∑M

i=1 qφi(z | xi), if S =
{

({i}, 1
M

)
}M
i=1

1
|P(M)|

∑
A∈P(M) qφA(z | xA), if S =

{
(A, 1

|P(M)|)
}
A∈P(M)

(MVAE)

(MMVAE)

(MoPoE-VAE)
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where the MVAE and MoPoE-VAE further assume that qφ(z | x̄) and qφA(z |xA) factorize as
a product of experts (c.f., Equation 3.50). Hence, Definition 6 generalizes the formulation
of the variational joint posteriors used by the MVAE, MMVAE, and MoPoE-VAE.

Next, we define the family of mixture-based multimodal VAEs, for which we restrict the
class of models optimizing the multimodal ELBO to the subclass of models that use a
mixture variational joint posterior.

Definition 7 (Mixture-based multimodal VAEs). The family of mixture-based multimodal
VAEs comprises all models that maximize the multimodal ELBO using a mixture variational
joint posterior qSφ (z | x̄) consistent with Definition 6. That is, all models that maximize

LSELBO(x̄;φ, θ) =
∑
A∈S

ωA EqφA (z | xA)[log pθ(x̄ | z)]−DKL(qSφ (z | x̄) || p(z)) , (5.18)

or a lower bound thereof.

It is easy to see how the family of mixture-based multimodal VAEs subsumes the MVAE,
MMVAE, and MoPoE-VAE. For each model, we can plug in the model-specific set S
into Equation (5.18) and use uniform mixture coefficients ωA = 1

|S| for all A ∈ S. For
example, for the MoPoE-VAE, we can plug in S = {(A, 1

|P(M)|)}A∈P(M) into Equation (5.18)
to recover the objective from Equation (5.5). Alternatively, we can use the lower bound

LSELBO(x̄;φ, θ) ≥
∑
A∈S

ωA
{
EqφA (z | xA)[log pθ(x̄ | z)]−DKL (qφA(z | xA) || p(z))

}
(5.19)

to recover the objective from Equation (5.15). In both cases, it is further assumed that
qφA(z | xA) factorizes as a product of experts.

Summary and implications To summarize, in this subsection we have introduced
the family of mixture-based multimodal VAEs as a generalization of existing approaches.
Compared to previous formulations of multimodal VAEs based on the mixture of experts
[Shi+19; SDV20], our formulation is more general in that it allows for arbitrary subsets of
modalities with non-uniform mixture coefficients. Specifically, our formulation subsumes
multiple existing models—namely, the MVAE, MMVAE, and our proposed MoPoE-VAE—
as well as possible extensions thereof.

From a computational perspective, an interesting characteristic of mixture-based multimodal
VAEs is the sub-sampling of modalities during training, which is a direct consequence of
defining the variational joint posterior as a mixture distribution over subsets of modalities
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(Equation 5.17). The only member of the family of mixture-based multimodal VAEs that
forgoes sub-sampling, defines a trivial mixture over a single subset—namely, the complete
set of modalities. In Chapter 7, we return to the family of mixture-based multimodal
VAEs and show that the sub-sampling of modalities enforces an undesirable bound for the
approximation of the joint distribution.

5.3 Experiments

Datasets Primarily, we evaluate the models in a controlled setup using PolyMNIST—a
dataset that features up to five semi-synthetic modalities. Additionally, we investigate a
more realistic setup using the Bimodal-CelebA dataset, which is a more complex multimodal
dataset comprised of image-text pairs. All datasets are described in Chapter 4.

Evaluation metrics Following previous work [WG18; Shi+19], we evaluate each model
in terms of the following three metrics. First, we assess the information content and
disentanglement of the embeddings using linear probing (i.e., logistic regression) with
respect to the shared latent factors. Second, we evaluate the generative coherence, for
which we assess whether the generated samples agree in their semantic content across
modalities using pre-trained classifiers. Third, we evaluate the approximation of the data
distribution using log-likelihoods computed on the test set. Further information about the
individual metrics is provided in Section 2.5.

Hypotheses We expect that both the MVAE and the proposed MoPoE-VAE learn a
joint representation that aggregates shared information from multiple modalities effectively
through the PoE, and thus benefit from additional modalities. For the MMVAE, we
anticipate that it approximates the unimodal and pairwise conditional distributions well,
but that it does not benefit from additional modalities. Further, we expect that the MVAE
achieves the best generative performance when all modalities are present, but that its
performance deteriorates with an increasing number of missing modalities. In contrast, the
MoPoE-VAE should perform well given any subset of modalities.

Implementation details For a fair comparison, we use the same architecture for all
models. For the MVAE, we use the objective with sub-sampling of unimodal ELBO terms,
which is a heuristic extension of the model that achieves better empirical results [WG18].
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Figure 5.1: Performance on PolyMNIST as a function of the number of input modalities.
For each point, we average the results over all subsets of modalities of the respective size.
The performance is measured in terms of three different metrics (in each case, larger is
better) shown in separate subplots. Markers denote the means and error bands the standard
deviations over five runs with different seeds. Figure 5.1a shows the classification accuracy
for logistic regression models trained to predict the digit label given the embeddings inferred
from the respective subset of modalities. In Figure 5.1b, evaluate the semantic coherence
for the generation of missing modalities. Figure 5.1c shows the joint log-likelihood values.

5.3.1 PolyMNIST

First, we use the PolyMNIST dataset to compare the performance across methods in a
controlled setup with up to five modalities. We simulate missing modalities at test time
and consider all subsets of modalities—from one modality (i.e., four inputs missing) up to
five modalities (none missing).

Performance with missing modalities Figure 5.1 presents our results on the PolyM-
NIST dataset, for which we simulate randomly missing modalities at test time. In each
subplot, we show a different metric and plot the performance as a function of the number of
input modalities. As expected, both the MVAE and MoPoE-VAE benefit from additional
inputs through the PoE aggregation, whereas the performance of the MMVAE remains
constant across all metrics. When all five input modalities are present, the log-likelihood
of the MoPoE-VAE is on par with the MVAE, but the former is clearly superior in the
case of missing modalities and also in terms of linear probing and generative coherence.
Conversely, with a single input modality, the MoPoE-VAE matches the performance of the
MMVAE, but it performs significantly better with two or more modalities present.
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Chapter 5. Generalized Multimodal ELBO

Overall, the results on the PolyMNIST dataset illustrate that the proposed MoPoE-VAE
does not only theoretically encompass the MVAE and MMVAE, but that it also exhibits
superior results in the case of missing modalities and even matches the performance in
special cases that favor the baselines.

Linear probing To assess how well shared information is encoded in the learned rep-
resentations, we use linear probing (i.e., logistic regression) to predict the digit label
from the embeddings. We train the classifiers separately for each model and evaluate
the classification accuracy on the embeddings of the test data. Figure 5.1a shows that
the shared information can be extracted relatively well from the embeddings using linear
probing. We find that the MVAE and MoPoE-VAE aggregate information across multiple
modalities effectively, as the performance improves with additional modalities.

Overall, the MoPoE-VAE exhibits a significantly better encoding of shared information
compared to the MVAE and MMVAE. Consequently, the results suggest that the informa-
tion is encoded in a linearly separable format, which indicates a better disentanglement of
shared and modality-specific information.

Generative performance To assess the generative performance, we follow previous
work [Shi+19; SDV20] and evaluate the generative coherence (Figure 5.1b) and joint
log-likelihood (Figure 5.1c) on the test set. We observe that the MoPoE-VAE exhibits a
significantly better tradeoff in terms of both metrics compared to the baselines. Hence,
the results suggest that the model approximates the joint distribution for all subsets of
modalities effectively and that it enhances the generation of missing modalities based on
the learned representations.

5.3.2 Bimodal-CelebA

Next, we consider the Bimodal-CelebA dataset to evaluate the models in a more realistic
multimodal setup with image-text pairs. The dataset is comprised of images depicting
faces of celebrities and textual descriptions of the properties of a person’s face. Similar
to previous work [SDV20], we use modality-specific latent spaces, which were found to
improve the generative quality of a model [HG18; SDV20; Dau+20].11

11We revisit the idea of using modality-specific latent spaces in Chapter 6, where we discuss the benefits
and disadvantages of partitioning the latent space into shared and modality-specific subspaces.
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Linear probing Generative coherence

Image Text Joint Image → Text Text → Image

MVAE 0.30 0.31 0.32 0.26 0.33
MMVAE 0.35 0.38 0.35 0.14 0.41
MoPoE-VAE 0.40 0.39 0.39 0.15 0.43

Table 5.2: Quantitative results on the Bimodal-CelebA dataset. We evaluate linear probing
and generative coherence in terms of the average precision to account for rare attributes.
Specifically, we compute the mean average precision over all attributes.

Quantitative evaluation Table 5.2 shows the results for linear probing and conditional
coherence in terms of the mean average precision over all attributes. We observe that all
models perform comparably well, but the MoPoE-VAE shows a slightly better tradeoff in
performance even though the data is comprised of two modalities, which is favorable for
the baselines. Additionally, in Figure 5.3, we present the results of an attribute-specific
evaluation for the MoPoE-VAE. Using linear probing, we find that salient attributes like
“gender” or “smiling” are encoded relatively well whereas subtle and infrequent attributes
are more difficult to recover from the embeddings.

Qualitative results Figure 5.2 presents the qualitative results for the MoPoE-VAE,
showing the conditional generation of images given textual descriptions. Overall, the
generated images are relatively coherent with respect to the given text. Again, we find
that salient attributes like “gender” and “smiling” are learned well as they manifest clearly
and consistently in the generated samples, whereas subtle and infrequent attributes appear
to be more difficult to generate consistently.

5.4 Summary

In this chapter, we introduced the MoPoE-VAE as a principled and scalable method
for multimodal generative learning within the framework of variational inference. We
showed that the MoPoE-VAE generalizes the MVAE and MMVAE and combines their
benefits without significant tradeoffs, as it considers all subsets of modalities for the
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Chapter 5. Generalized Multimodal ELBO

Figure 5.2: Qualitative results for the MoPoE-VAE on the Bimodal-CelebA dataset. The
images are conditionally generated given the text shown in respective column.
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Figure 5.3: Detailed evaluation of the learned representation of the MoPoE-VAE on the
Bimodal-CelebA dataset. We use linear probing with respect to each attribute and evaluate
the average precision to account for the skewed distribution of attributes in the data.

posterior approximation. Empirically, we demonstrated the advantages of the MoPoE-VAE
compared to the MVAE and MMVAE. Specifically, we showed that it improves the encoding
and disentanglement of shared and modality-specific information as well as the generative
performance, as validated on synthetic and real-world multimodal datasets.

With respect to the research questions, our results demonstrate how the MoPoE-VAE can
be used to encode and disentangle shared and modality-specific information effectively (c.f.,
Questions 1 and 2). Additionally, we presented promising results for the inference across
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modalities (Question 3), as showcased by the generation of missing modalities.

In the scope of this thesis, the MoPoE-VAE is the first method we propose. In the following
chapters, we include it as a baseline when we evaluate the performance of multimodal VAEs.
In the next chapter, we further investigate the perks and pitfalls of partitioning the latent
space into shared and modality-specific subspaces. Further, in Chapter 7, we analyze the
tradeoffs between the different models presented in this chapter and discuss their limitations.
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6
Partitioned Latent Spaces

The previous chapter focused on generative learning with multimodal VAEs that are
characterized by a joint latent space. While we demonstrated promising preliminary results
for the disentanglement of shared and modality-specific information, we noticed that a
joint latent space necessarily encodes both sources of information, since it is learned by
reconstructing the observations of all modalities. In this chapter, we consider an explicit
partitioning of the latent space into shared and modality-specific subspaces. Thus, we
present a targeted approach to improve the disentanglement of shared and modality-specific
information through partitioning.

First, in Section 6.1, we conceptualize the idea of a multimodal generative model with a
partitioned latent space. We introduce the notation for this chapter and illustrate how
partitioned models differ from models with a joint latent space.

Second, we present a motivating example to illustrate the idea as well as the challenges of
partitioning the latent space into shared and modality-specific subspaces. In Section 6.2,
we introduce a naive approach for partitioning the latent space that works in principle,
but in practice it exhibits a failure mode, which we describe in Section 6.2.3 as the
shortcut problem—a degenerate solution, where all information (i.e., both shared and
modality-specific) is encoded in the modality-specific subspaces and is not disentangled. As
a proof of concept, we demonstrate how a small number of labeled examples can be used
for selecting the hyperparameter values of the naive partitioning approach to disentangle
shared and modality-specific information effectively.
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Chapter 6. Partitioned Latent Spaces

Finally, in Section 6.3, we develop a technique for disentangling shared and modality-
specific information without additional labels. We propose the MMVAE+, which extends
the MMVAE with a partitioned latent space and disincentivizes shared information from
being encoded in the modality-specific subspaces with a suitable regularizer. Our method
mitigates the shortcut problem through regularization of the crossmodal-reconstruction
terms, for which we replace the modality-specific embeddings with samples from a prior
distribution with a learned variance parameter. We demonstrate that the MMVAE+
improves the disentanglement of shared and modality-specific information and enhances
the conditional generation of missing modalities, as validated through experiments on
synthetic and real-world datasets.

6.1 Preliminaries

In the previous chapter, we considered multimodal generative models with a joint latent
space that was denoted by z ∈ Z. In this chapter, we assume that the latent space can be
partitioned into M + 1 subspaces (c,m1, . . . ,mM ), where c ∈ C denotes a vector of shared
components and mi ∈ Mi represents a vector of modality-specific components for each
modality i ∈ {1, . . . ,M}. We define the partitioning of z as a dimension-wise permutation

z = ρ(c,m1, . . . ,mM) , (6.1)

where ρ denotes a dimension-wise rearrangement of the concatenated input vectors and
thus a bijection of C ×M1 × · · · ×MM onto itself. In the following, we assume, w.l.o.g.,
that ρ is the identity mapping and thus write z = (c,m1, . . . ,mM) when we define the
partitioning of the inferred latent space for a given model.

Generative model In Chapter 5, we assumed the conditional independence xi⊥⊥xj | z
for all pairs of modalities i, j ∈ {1, . . . ,M}, i 6= j. In this chapter, we consider the
conditional independence xi⊥⊥xj | c for i 6= j and design the generative model accordingly.

In Figure 6.1, we show the graphical models that describe multimodal VAEs with a joint
latent space (Figure 6.1a) and partitioned latent space (Figure 6.1b) respectively. With
the partitioning, we assume a generative model with the following factorization:

pθ(x̄, c,m1, . . . ,mM) = p(c)
M∏
i=1

pθi(xi | c,mi)p(mi) , (6.2)
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z

xi xj θjθi

φi

N

(a) Joint latent space

c

mi mj

xi xj θjθi

φci

φmi

N

(b) Partitioned latent space

Figure 6.1: Graphical models for multimodal VAEs with a joint and partitioned latent space.
Observations are denoted by filled nodes and latent variables by clear nodes. The plate
notation indicates amortized inference, i.e., the optimization of a shared set of parameters
given a dataset of size N . To simplify the illustration, we show only two modalities, since
we assume the same graphical model for each pair of modalities i, j ∈ {1, . . . ,M}, i 6= j,
and we only depict the inference network for modality i.

where θi are the parameters of a modality-specific decoder and θ = {θ1, . . . , θM} denotes
the set of all decoder parameters.

Inference networks As illustrated by dashed lines in Figure 6.1, the inference networks
are designed to mirror the generative process. We denote the variational joint posterior
as qφc(c | x̄) and the variational posterior specific to modality i as qφi(mi | xi) for each
i ∈ {1, . . . ,M}. By φ := {φc, φm1 , . . . , φmM

}, we denote the set of all encoder parameters.

In summary, in this section we conceptualized the idea of a multimodal generative model
with a partitioned latent space and clarified the distinction between models with a joint and
partitioned space. The described model already provides the blueprint for multimodal VAEs
with a partitioned latent space; in the following, we merely specify the objective function.
First, we describe a “naive” approach without further adjustments of the model (Section 6.2)
and, in the same breath, discuss its limitations (Section 6.2.3). Finally, we propose a more
sophisticated method (Section 6.3), for which we extend the model with a regularization
technique to incentivize the disentanglement of shared and modality-specific information.
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Chapter 6. Partitioned Latent Spaces

6.2 A Naive Approach

In this section, we introduce a naive approach for partitioning the latent space of a
multimodal VAE into shared and modality-specific subspaces. We describe it as “naive”,
because later, in Section 6.2.3, we discuss a failure mode that thwarts the disentanglement
of shared and modality-specific information for the given model. However, at the end
of this section, we also present a proof of concept that demonstrates the feasibility of
disentanglement in principle by using small number of labeled examples to guide model
selection.12 Ultimately, the supervised model selection only serves as a motivating example;
in Section 6.3 we introduce a more sophisticated method that does not depend on additional
labels to learn a disentangled representation.

To implement a partitioned multimodal VAE, the straightforward approach is to split the
latent space into shared and modality-specific subspaces without changing the objective
function, which corresponds to what we call the naive partitioning. In this section, we
describe specify the network architecture and objective function for the naive approach.

6.2.1 Model Architecture

As illustrated in Figure 6.1b, we partition the inferred latent space into a vector c
that is shared between the decoders of different modalities and M modality-specific
vectors m1, . . . ,mM . We specify individual networks to model the variational joint poste-
rior, modality-specific posteriors, and modality-specific decoders, respectively. Concretely,
we use separate networks to model the following distributions:

qφc(c | x1, . . . ,xM); (6.3)

qφmi
(mi | xi), for i ∈ {1, . . . ,M}; (6.4)

pθi(xi | c,mi), for i ∈ {1, . . . ,M}. (6.5)

To model the variational joint posterior (Equation 6.3), we use the decomposition of the
respective type of multimodal VAE for which we partition the latent space; for the MVAE,
we take the product of experts, whereas for the MMVAE, we use the mixture of experts.13

Each modality-specific variational posterior (Equation 6.4) is modeled by a separate
12Notably, the labels are only used for model selection but not during training.
13The decompositions are defined in Chapter 3, Section 3.3.6.
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inference network, i.e., a modality-specific encoder for each modality i ∈ {1, . . . ,M}. For
the generative part of the model (Equation 6.5), we use M decoder networks, each of
which is conditioned on both the shared and modality-specific embeddings; for example,
the decoder of modality i takes (c,mi) as input to generate xi ∼ pθi(xi | c,mi).

6.2.2 Objective Function

Despite the partitioning, the objective function does not change compared to previous
approaches that use a joint latent space. We can simply rewrite the multimodal ELBO
(Definition 5) by replacing the joint latent space with a partitioned space, i.e., z = (c, m̄),
where m̄ := (m1, . . . ,mM).

We start from the definition of the multimodal ELBO (Definition 5) and adjust the notation
by replacing the variational posterior qφ(z | x̄) with the partitioned variant qφ(c, m̄ | x̄), i.e.,

Eqφ(z | x̄)
[

log pθ(x̄ | z)
]
−DKL

(
qφ(z | x̄) || p(z)

)
(6.6)

= Eqφ(c,m̄ | x̄)
[

log pθ(x̄ | c, m̄)
]
−DKL

(
qφ(c, m̄ | x̄) || p(c, m̄)

)
. (6.7)

Then, we use the (conditional) independence assumptions from Equation (6.2) to rewrite
Equation (6.7) as follows:

Eqφ(c,m̄ | x̄)
[

log pθ(x̄ | c, m̄)
]
−DKL

(
qφ(c, m̄ | x̄) || p(c, m̄)

)
(6.8)

=
M∑
i=1

Eqφ(c,m̄ | x̄)
[

log pθi(xi | c,mi)
]
−DKL

(
qφ(c, m̄ | x̄) || p(c, m̄)

)
(6.9)

=
M∑
i=1

Eqφ(c,m̄ | x̄)
[

log pθi(xi | c,mi)
]
−DKL

(
qφ(c, m̄ | x̄) || p(c)

∏M

j=1 p(mj)
)
. (6.10)

More precisely, in the first step we use xi⊥⊥xj | c and xi⊥⊥mj for i 6= j, while the second
step follows from the independence of prior distributions, p(c, m̄) = p(c)∏M

j=1 p(mj).

For the inference network, we assume a mean-field factorization

qφ(c, m̄ | x̄) = qφc(c | x̄)
M∏
j=1

qφmj
(mj | xj) , (6.11)

hence, we sample c ∼ qφc(c | x̄) and mj ∼ qφmj
(mj | xj) independently but conditioned on

the same (subset of) observations.14

14To be more precise, we sample each dimension of these variational posteriors independently conditioned
on a given observation, similar to the sampling procedure of the (unimodal) VAE.
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We plug the right-hand side of Equation (6.11) into Equation (6.10) to obtain

M∑
i=1

E
qφc (c | x̄)

∏M

j=1 qφmj
(mj | xj)

[
log pθi(xi | c,mi)

]
−DKL

(
qφc(c | x̄)

∏M

j=1 qφmj
(mj | xj) || p(c)

∏M

j=1 p(mj)
)
,

(6.12)

where we can simplify

M∑
i=1

E
qφc (c | x̄)

∏M

j=1 qφmj
(mj | xj)

[
log pθi(xi | c,mi)

]
(6.13)

=
M∑
i=1

Eqφc (c | x̄)qφmi
(mi | xi)

[
log pθi(xi | c,mi)

]
(6.14)

and decompose

DKL
(
qφc(c | x̄)

∏M

j=1 qφmj
(mj | xj) || p(c)

∏M

j=1 p(mj)
)

(6.15)

= DKL
(
qφc(c | x̄) || p(c)

)
+

M∑
j=1

DKL
(
qφmj

(mj | xj) || p(mj)
)
, (6.16)

as described in more detail in Appendix A.1.

Hence, we reformulated the partitioned objective (Equation 6.12) as a sum of M likelihood
terms (Equation 6.14) and M + 1 KL-divergence terms (Equation 6.16), one for each
variational posterior. Finally, we combine the two sums and define the objective of the
partitioned multimodal VAE as follows:

LELBO-Part.(x̄;φ, θ) :=
M∑
i=1

{
Eqφc (c | x̄)qφmi

(mi | xi)
[

log pθi(xi | c,mi)
]

−DKL
(
qφmi

(mi | xi) || p(mi)
)}
−DKL

(
qφc(c | x̄) || p(c)

)
.

(6.17)

Crucially, the objective remains a valid multimodal ELBO, i.e., a lower bound on the
log-evidence log p(x̄), which justifies its use for training a generative model to approximate
the joint distribution p(x1, . . . ,xM).

Nevertheless, we refer to the objective in Equation (6.17) as a naive approach. This
is because, in principle, the described model could disentangle shared and modality-
specific information in the respective subspaces, but in practice it fails to achieve the
desired disentanglement because the optimization of Equation (6.17) permits a degenerate
solution—the so-called shortcut problem, which we discuss next.
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6.2.3 The Shortcut Problem

An Achilles’ heel of the naive approach is that the objective in Equation (6.17) can be
minimized without the desired disentanglement of shared and modality-specific information.
For example, suppose that all information (i.e., shared and modality-specific) is encoded
in the modality-specific embeddings while the shared latent space is ignored by the model.
In this case, the model learns to approximate the data distribution even if the encoder
fails to disentangle shared and modality-specific information in the respective subspaces.
Hence, the optimization of the objective in Equation (6.17) with respect to θ and φ has
no unique solution that coincides with the desired disentanglement. We call such an
undesired behavior a shortcut problem, because it thwarts the disentanglement of shared
and modality-specific information despite the suitable inductive bias of the partitioning.

Figure 6.2 illustrates the shortcut problem and how it manifests for a model that exhibits
the described shortcomings. In Figure 6.2a, we provide a graphical representation of the
figurative “shortcut”, which illustrates how the shared subspace is ignored by the model as
most information flows through the modality-specific subspaces. Additionally, we present
qualitative results showing how the problem typically manifests for a partitioned model
trained on the PolyMNIST dataset.15 While the model achieves high likelihood values and
therefore exhibits decent reconstructions (see Figure 6.2b), it encodes shared information
in the modality-specific embeddings (for the given example, we measure 65% classification
accuracy using linear probing) and consequently the model exhibits a lack of semantic
coherence for the conditional generation across modalities (see Figure 6.2c).

Supervised model selection On the bright side, we can demonstrate how the naive
partitioning can, in principle, disentangle shared and modality-specific information despite
the shortcut problem. In our experiments, we found that the dimensionality of the
modality-specific latent space is an important hyperparameter that can be used to control
the performance in a desirable manner. Based on this insight, we demonstrate how to
conduct model selection when we have access to a handful of ground truth labels for the
value of the shared latent variable. Notably, we do not use labels for training but only for
model selection.

15 Concretely, we use a partitioned MMVAE with an equal split of the latent space, which means that
we allocate the same number of dimensions to each subspace. The dataset is described in Chapter 4.

75



Chapter 6. Partitioned Latent Spaces

x1

x2

m1

m2

c
x̂1

x̂2

(a) Graphical illustration (b) Reconstruction (c) Conditional generation

Figure 6.2: Illustration of the shortcut problem. Figure 6.2a presents a graphical illustra-
tion, which depicts the flow of information from inputs xi of modality i ∈ {1, 2} to the
reconstructions x̂i through the partitioned latent space (c,mi). Despite the partitioning,
the model only passes information through the modality-specific subspaces m1 and m2

but not through the shared subspace c. If a model exhibits such an undesired behavior,
it typically shows decent reconstructions (Figure 6.2b) but a lack of semantic coherence
for the conditional generation across modalities (Figure 6.2c), as illustrated here using
a partitioned MMVAE trained on the PolyMNIST dataset.15 Figure 6.2b shows original
samples and reconstructions for each modality. Figure 6.2c presents qualitative results for
the generation across modalities; each column depicts ten conditionally generated images
of one modality given the respective image of another modality shown in the first row.

In Figure 6.3, we plot the results for the MVAE and MMVAE (both using a naive
partitioning) as a function of the dimensionality of the modality-specific latent space.
Figure 6.3a shows how much shared information can be extracted from the modality-
specific embeddings using linear probing. As we increase the dimensionality, we observe
that significantly more shared information can be extracted, which indicates a worse
disentanglement for the modality-specific embeddings. In terms of the conditional coherence
(Figure 6.3b), we also find that the performance decreases as a function of the modality-
specific dimensionality. Overall, these results suggest that we can constrain the capacity
of the modality-specific latent space to incentivize the disentanglement and consequently
improve the semantic coherence for the generation across modalities.
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Figure 6.3: Evaluation of models with a naive partitioning using the PolyMNIST dataset.
We plot the classification accuracy and conditional coherence as a function of the number
of modality-specific latent dimensions. Figure 6.3a shows the classification accuracy of a
logistic regression model trained to predict the shared information (i.e., the digit label)
from the modality-specific embeddings. Thereby, we estimate how well shared information
can be extracted from the modality-specific embeddings, and thus a lower value indicates a
better disentanglement. Figure 6.3b shows the conditional coherence accuracy averaged
over all pairs of distinct modalities. Higher values indicate a better semantic coherence for
the conditional generation across modalities.

6.3 Method: MMVAE+

In this section, we introduce the MMVAE+ as a partitioned variant of the mixture of experts
multimodal variational autoencoder or MMVAE. The model combines the partitioned
architecture with the mixure of experts variational joint posterior and a new regularization
technique to alleviate the shortcut problem resulting from the naive partitioning.

First, we define the partitioned MMVAE (Section 6.3.1), for which we take the naive ap-
proach and specify the variational joint posterior as a mixture of experts. Then, we propose
a regularization technique (Section 6.3.2), for which we decompose the objective of the
partitioned MMVAE into two types of reconstructions (self and crossmodal) and regularize
the crossmodal-reconstruction terms by sampling the modality-specific embeddings from a
prior distribution with a learned variance parameter.
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6.3.1 Partitioned MMVAE

The MMVAE defines the variational joint posterior as a mixture of experts (MoE), i.e., a
mixture distribution over unimodal variational posteriors (see Equation 3.51). Analogously,
for the partitioned MMVAE, we specify the variational joint posterior (i.e., Equation 6.3)
using the MoE-decomposition

qMoE
φc (c | x1, . . . ,xM) = 1

M

M∑
j=1

qφcj
(c | xj) , (6.18)

where the subscript j indicates the modality and the parameters of the respective encoder.

To derive the objective of the partitioned MMVAE, we apply the MoE-decomposition from
Equation 6.18 to the variational joint posterior in the objective of the naive approach (i.e.,
Equation 6.17). Thus, we have

M∑
i=1

{
E 1
M

∑M

j=1 qφcj
(c | xj)qφmi

(mi | xi)

[
log pθi(xi | c,mi)

]
−DKL

(
qφmi

(mi | xi) || p(mi)
)}
−DKL

(
1
M

∑M

j=1 qφcj
(c | xj) || p(c)

)
,

(6.19)

for which, using the linearity of expectation, we take the weighted sum from the variational
joint posterior out of the expectation (c.f., [Shi+19, p. 5]) to define the objective of the
partitioned MMVAE as follows:

LMMVAE
ELBO-Part.(x̄;φ, θ) := 1

M

M∑
i=1

M∑
j=1

{
Eqφcj

(c | xj)qφmi
(mi | xi)

[
log pθi(xi | c,mi)

]

−DKL
(
qφmi

(mi | xi) || p(mi)
)}

−DKL
(

1
M

∑M

j=1 qφcj
(c | xj) || p(c)

)
.

(6.20)

Notably, Equation (6.20) corresponds to the objective used in Section 6.2.3 to showcase
the shortcut problem resulting from the naive partitioning of the MMVAE.16

Next, we extend the above objective with a regularization technique to incentivize the
disentanglement of shared and modality-specific information.

16To be precise, the last term from Equation (6.20) is generally not available in closed form, but it can
be approximated by sampling uniformly at random from the set of unimodal posteriors [Shi+19].
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6.3.2 Regularization of Crossmodal-reconstructions

To derive the objective of the MMVAE+, we take the objective of the partitioned MMVAE
(Equation 6.20) and add a simple condition that changes some of the log-likelihood terms.
Specifically, we categorize the log-likelihood terms into two types—self- and crossmodal-
reconstructions—and regularize the latter by sampling the modality-specific embeddings
from an auxiliary prior instead of the modality-specific variational posterior.

Two types of reconstructions Each of the log-likelihood terms in Equation (6.20) can
represent either one of two types of reconstructions, as defined by the following cases:

Eqφcj
(c | xj)qφmi

(mi | xi)
[

log pθi(xi | c,mi)
]

=
{ self-reconstruction, if i = j;

crossmodal-reconstruction, if i 6= j.

In both cases, we evaluate pθi(xi | c,mi), i.e., the log-likelihood of a (target) observation xi
under our model, given the pair of embeddings (c,mi) ∼ qφcj

(c | xj)qφmi
(mi | xi). In the

former case (i.e., i = j), we describe the log-likelihood as a “self-reconstruction”, because
both qφcj

(c |xj) and qφmi
(mi |xi) are conditioned on the (target) observation, since xi = xj .

Conversely, when i 6= j, we describe it as a “crossmodal-reconstruction”, because qφcj
(c |xj)

is conditioned on an observation of a different modality, i.e., xi 6= xj.

Intuitively, for the partitioned MMVAE, the shortcut problem described in Section 6.2.3 is
reinforced through the optimization of crossmodal-reconstructions as part of the objective.
For self-reconstructions, both embeddings, c and mi, are conditioned on the (target)
observation xi and thus they can, in principle, both encode the complete information
about the given input. However, for crossmodal-reconstructions, only the modality-specific
embedding mi ∼ qφmi

(mi | xi) is conditioned on xi and thus it is more informative
than c ∼ qφcj

(c | xj) with respect to xi. Thus, through the optimization of crossmodal-
reconstructions, the model is incentivized to encode all information (i.e., both shared and
modality-specific) in the modality-specific embeddings. This corresponds to the failure
mode of the partitioned MMVAE that we illustrated in Figures 6.2 and 6.3.

Regularization of crossmodal-reconstructions To block the figurative “shortcut”
for crossmodal-reconstructions through the modality-specific encoder, our idea is to draw
the modality-specific embeddings from an auxiliary prior instead of the modality-specific
variational posterior. The resulting model is called the MMVAE+.
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For each crossmodal-reconstruction term in Equation (6.20), we replace the modality-
specific variational posterior qφmi

(mi | xi) with an auxiliary prior qψi(mi) parameterized
by ψi. Thus, during training, the MMVAE+ samples

mi ∼

qφmi
(mi | xi), if i = j;

qψi(mi), if i 6= j.
(6.21)

In this way, the MMVAE+ can be derived from the objective of the MMVAE with a naive
partitioning (Equation 6.20) if we apply the condition defined in Equation (6.21). In terms
of indicator functions, we define the objective of the MMVAE+ as follows:

LMMVAE+
ELBO-Part.(x̄;φ, θ, ψ) := 1

M

M∑
i=1

{
Eqφci

(c | xi)qφmi
(mi | xi)

[
log pθi(xi | c,mi)

]

+
M∑
j=1

1{i 6=j}Eqφcj
(c | xj)qψi (mi)

[
log pθi(xi | c,mi)

]
−DKL

(
qφmi

(mi | xi) || p(mi)
)}

−DKL
(

1
M

∑M

j=1 qφcj
(c | xj) || p(c)

)
,

(6.22)

where 1{i 6=j} is an indicator function, which evaluates to one if i 6= j and zero otherwise,
and ψ = {ψ1, . . . , ψM} are the parameters of the auxiliary priors.

Thus, we gave an intuitive explanation of how the MMVAE+ objective relates to the
objective of the MMVAE with a naive partitioning. More formally, to justify the application
of the model for multimodal generative learning, the objective can be derived as a lower
bound on log p(x̄), as described in Lemma 4.

Lemma 4. Objective LMMVAE+
ELBO-Part.(x̄;φ, θ, ψ) (Equation 6.22) forms a lower bound on

log p(x̄), i.e.,
log p(x̄) ≥ LMMVAE+

ELBO-Part.(x̄;φ, θ, ψ) . (6.23)

A proof of Lemma 4 is provided in Appendix A.2.

Design of the auxiliary prior The sampling procedure in Equation (6.21) already
yields a generic form of the MMVAE+ objective without further specification of the
auxiliary prior. However, it is vital to select a suitable distribution for the prior, because it
can affect the approximation of the log-evidence. A natural choice is to select an auxiliary
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prior that is compatible with the modality-specific prior p(mi), for which we use a standard
normal distribution. Analogously, we define the auxiliary prior as a normal distribution

qψi(mi) := N (0, σ2
i ) (6.24)

that is centered at zero and has a learned variance parameter (i.e., ψi = σ2
i ). Hence, by

design, the auxiliary prior has the same location as the modality-specific prior, but its
scale remains flexible for the modeling of crossmodal-reconstructions. At test time, the
MMVAE+ samples mi ∼ p(mi), but in the experiments, we also investigate the effects of
sampling from the auxiliary prior and of interpolating between the two distributions.

6.4 Experiments

Datasets For the experiments, we make use of two datasets. First, we use the PolyMNIST
dataset to evaluate the MMVAE+ in a controlled setup with five synthetic modalities
and compare its performance to previous multimodal VAEs. Second, we demonstrate the
utility of the proposed model on CUB Image-Captions, which is a challenging multimodal
dataset comprised of images of birds paired with matching textual descriptions of the birds
in natural language. While previous work [Shi+19; Shi+21; Joy+22] tackled a simplified
version of this dataset by using pre-trained ResNet-features, we train the models on actual
images. For more information on the datasets, see Chapter 4.

Evaluation metrics For the quantitative evaluation of the generated samples, we mainly
consider two metrics that capture different aspects of generative performance in a mul-
timodal setup, namely generative coherence and generative quality (c.f., Section 2.5).
Generative coherence measures if the generated samples agree in their semantic content
across modalities, which we evaluate using the conditional coherence accuracy (defined in
Section 2.5) averaged over all pairs of distinct modalities. Conversely, generative quality
measures how well the model approximates the data distribution. We use the Fréchet
inception distance [FID; Heu+17], a standard metric used to evaluate sample quality for
generative models in image domains. All quantitative results in this section are averaged
over three seeds and include standard deviations.
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(a) Conditional generation
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(b) Unconditional generation

Figure 6.4: Evaluation of generative quality and coherence on PolyMNIST. In Figure 6.4a,
we evaluate the conditional generation, for which we compute the average FID (horizon-
tal axis) or average coherence accuracy (vertical axis) over all pairs of distinct modalities.
In Figure 6.4a, we assess the unconditional generation performance, for which we plot
the FID (averaged over modalities) on the horizontal and the unconditional coherence
on the vertical axis. For each model, we include multiple β values (shown as individual
points).17 Standard deviations are shown as error bars around points, if the values are
sufficiently large. A capable model should exhibit high coherence and low FID; an optimal
performance would correspond to a point in the top-left corner of each scatterplot.

6.4.1 PolyMNIST

Quantitative results In Figure 6.4, we show the results of a quantitative evaluation
of the proposed MMVAE+ compared to the baseline approaches, namely the MMVAE
[Shi+19], MVAE [WG18], and MoPoE-VAE [SDV21]. In each scatterplot, we visualize
the generative coherence on the horizontal and generative quality on the vertical axis.
We observe that the MMVAE+ achieves a decent generative quality (i.e., low FID) and
high coherence for both conditional and unconditional generation (Figures 6.4a and 6.4b
respectively), while the baselines underperform in at least one of the two performance
criteria. Overall, the MMVAE+ exhibits a better and more consistent tradeoff, as the
described trend holds for a range of β values (shown as individual points).17

17The hyperparameter β weights the KL-divergence (or the sum of KL-divergence terms); thus, it can
be used to control the tradeoff between reconstruction and matching of the prior distribution [Hig+17].
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(a) MVAE (b) MMVAE (c) MoPoE-VAE (d) MMVAE+

Figure 6.5: Qualitative results for the conditional generation across modalities. Along each
column of a subfigure, we visualize the input image (first row) and the generated images
for each of the missing modalities (remaining rows). Specifically, we show four generated
images per modality, all of which were conditionally generated given the respective input
image shown in the first row. A performant model should produce semantically coherent
examples (i.e., consistent digits along each column) of sufficiently high diversity.

Qualitative results In Figure 6.5, we showcase examples for the conditional generation
across modalities. Consistent with the quantitative results, we observe that the MVAE
exhibits a lack of semantic coherence as the conditionally generated samples show incoherent
digits, whereas the MMVAE and MoPoE-VAE generate average-looking samples that
indicate a lack of sample diversity. In contrast, the MMVAE+ shows a significantly better
generative quality with an improved sample diversity and high semantic coherence. In direct
comparison to the MMVAE, the results validate that our approach yields an improved
generative model with a superior generative quality and semantic coherence.

Effectiveness of the regularization In Figure 6.6, we compare the MMVAE+ to
the MMVAE with a naive partitioning of the latent space (i.e., the model based on
Equation 6.20). The only difference between the two approaches is the regularization
of crossmodal-reconstructions using the auxiliary priors. In each subplot, we show the
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(c) Generative quality

Figure 6.6: Comparison of the MMVAE+ to the MMVAE with a naive partitioning. We
evaluate the performance in terms of three metrics, for each of which we plot the results as
a function of the modality-specific dimensionality.18 Figure 6.6a shows the classification
accuracy of a logistic regression model trained to predict the shared information (i.e., the
digit label) from the modality-specific embeddings; thus, a lower value indicates a better
disentanglement. Figure 6.6b evaluates the generation across modalities, for which we
compute the average coherence over all pairs of distinct modalities. Figure 6.6c assesses
the unconditional generation performance, for which we compute the average FID across
all modalities generated from prior samples. Ideally, a multimodal generative model should
exhibit high semantic coherence and generative quality, i.e., high coherence and low FID.

performance as a function of the number of modality-specific dimensions.18 We find that
the MMVAE+ exhibits a significantly better performance over most of the value range.
Only in terms of generative coherence (Figure 6.6b), the partitioned MMVAE performs
slightly better, but only when the modality-specific dimensionality is small and at the
expense of generative quality (see Figure 6.6c). Additionally, we use linear probing to assess
how much shared information is encoded in the modality-specific embeddings (Figure 6.6a).
We observe that significantly less shared information can be extracted from the modality-
specific embeddings produced by the MMVAE+ compared to those of the MMVAE with a
naive partitioning, which indicates that the regularization incentivizes the disentanglement
of shared and modality-specific information effectively.19

18For each approach, we use a shared latent space with 32 dimensions and only vary the number of
modality-specific latent dimensions. Specifically, we train separate models, each of which uses a different
dimensionality for the modality-specific subspaces.

19Using linear probing, we verified that both the MMVAE+ and the partitioned MMVAE encode
shared information well in the shared subspace. Though, for the partitioned MMVAE, we found that the
classification accuracy drops significantly if the number of modality-specific dimensions is larger than 16.
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(a) α = 0.001 (b) α = 0.025 (c) α = 0.5 (d) α = 1 (e) α = 2

Figure 6.7: Varying the scale of the modality-specific prior at test time. In each subfigure, we
show the qualitative results for the conditional generation from one modality to another for
a specific value of α, which is used to draw the modality-specific embeddings mi ∼ N (0, α2).
Along each column, we visualize the input image (first row) and ten generated images
(remaining rows) using the MMVAE+ trained on PolyMNIST. For each generated image,
we draw a different sample from the modality-specific prior scaled by α.

Overall, the results support that the proposed regularization of crossmodal-reconstructions
addresses the shortcut problem, that it improves the disentanglement of shared and
modality-specific information, and consequently enhances the generative quality and
coherence compared to the partitioned MMVAE and the baselines with a joint latent space.

Varying the scale of the modality-specific prior We further investigate the effects
of the auxiliary prior with an analysis for which we vary the scale parameter of the prior
distribution at test time. For a trained model, we draw mi ∼ N (0, α2), where we set a
specific value for α to scale the prior distribution. A value of α = 0.01 approximates the
learned scale parameter of the auxiliary prior qψi(mi), which is concentrated around zero.
A value of α = 1.0 corresponds to the modality-specific prior p(mi).

In Figure 6.7, we show the qualitative results for the conditional generation with a fixed
model that was trained on PolyMNIST. Starting from α = 0.01, we increase the value
to interpolate between the two distributions and further increase the value up to α = 2.
For α = 0.01, we observe coherent samples but with a pronounced lack of diversity, like
previously observed for the MMVAE. As we increase α, we observe more diversity and less
coherence. Thus, the results suggest that the scale of the modality-specific prior can be
adapted at test time to fine-tune the generative performance of the MMVAE+.
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(a) MVAE (b) MoPoE-VAE (c) MMVAE (d) MMVAE+

Figure 6.8: Conditional image-to-caption generation on the CUB Image-Captions dataset.

6.4.2 CUB Image-Captions

Next, we evaluate the MMVAE+ on the CUB Image-Captions dataset [Shi+19], a mul-
timodal dataset comprised of natural images of birds with corresponding captions, i.e,
textual descriptions of the birds’ appearance.

Qualitative results For the conditional caption-to-image generation (Figure 6.8), we
again observe that the MMVAE and MoPoE-VAE tend to generate average-looking samples
with a lack of sample diversity, whereas the MVAE exhibits a decent generative quality but
a severe lack of semantic coherence with respect to the given caption. Similar results can be
observed for the conditional image-to-caption generation (Figure 6.9). In comparison, the
MMVAE+ shows significantly better results for both caption-to-image and image-to-caption
generation, as the model produces coherent samples with high sample diversity for both
modalities. Hence, the qualitative results demonstrate the effectiveness of our approach on
a complex real-world dataset with heterogeneous modalities.

Quantitative results Table 6.1 presents a quantitative evaluation of the caption-to-
image generation in terms of generative coherence and generative quality. To evaluate the
generative coherence, we use a proxy to determine the color of the bird (see Appendix A.4).
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(a) MVAE (b) MoPoE-VAE (c) MMVAE (d) MMVAE+

Figure 6.9: Conditional caption-to-image generation on the CUB Image-Captions dataset.
For each model, the shown caption is used as input to conditionally generate four images.

We find that the MMVAE+ performs favorably in terms of both generative coherence and
quality compared to the baselines, which corroborates our previous results.

Generative coherence Generative quality

MVAE 0.271 (±0.007) 172.21 (±39.6)

MMVAE 0.713 (±0.057) 232.20 (±2.14)

MoPoE-VAE 0.579 (±0.158) 265.55 (±4.01)

MMVAE+ 0.721 (±0.090) 164.94 (±1.50)

Table 6.1: Evaluation of generative coherence (higher is better) and generative quality (in
terms of FID; lower is better) for caption-to-image generation using CUB Image-Captions.

6.5 Summary

In this chapter, we designed multimodal VAEs with an explicit partitioning of the latent
space into shared and modality-specific subspaces. First, we introduced a naive approach
for partitioning the latent space and discussed its shortcomings. Specifically, we highlighted
the shortcut problem and illustrated the issue based on a concrete example. Yet, we
also presented empirical results suggesting that the naive partitioning can, in principle,
disentangle shared and modality-specific information in the respective subspaces, if we
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have access to a handful of labels to guide model selection. Finally, we proposed the
MMVAE+ and demonstrated that it effectively averts the shortcut problem and promotes
the disentanglement without additional labels. We presented experiments on synthetic and
real-world datasets, showing that the MMVAE+ achieves a superior tradeoff in terms of
generative coherence and generative quality compared to the baselines.

In the scope of the thesis, this chapter presented a method to promote the disentanglement
of shared and modality-specific information (c.f., Question 2) using multimodal VAEs.
Additionally, it also provided a foretaste of the challenges for representation learning with
multimodal VAEs. In the next chapter, we further investigate these limitations, before
we turn to viable alternatives with a discriminative approach (Chapter 8) and a hybrid
method (Chapter 9).
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7
Limitations of Multimodal VAEs

In the previous chapters, we developed novel models for multimodal generative learning
within the framework of variational inference. In this chapter, we pause to reflect on the
previous results and assess the limitations of multimodal VAEs, including some of the
models we proposed. Thereby, we seek to obtain a broader and more nuanced perspective
to gauge our progress with respect to the considered research questions.

First, in Section 7.1, we highlight a counterintuitive result we observed in previous experi-
ments, showing that some multimodal VAEs exhibit a worse generative quality compared
to unimodal VAEs despite the advantage of weak supervision in the multimodal setup.
In our attempt to explain this gap, we uncover a fundamental limitation that applies
to a large family of multimodal VAEs. We prove that the sub-sampling of modalities
used by mixture-based multimodal VAEs enforces an undesirable upper bound on the
multimodal ELBO and thereby limits the generative quality of the respective models (Sec-
tion 7.2). Empirically, we showcase the gap in generative quality on both synthetic and real
data and discuss the tradeoffs between different variants of multimodal VAEs (Section 7.3).
We find that none of the existing approaches fulfills all desired criteria of an effective
multimodal generative model when applied on more complex datasets than those used
in previous benchmarks—specifically, when shared information cannot be predicted in
expectation across modalities on the level of observations. More broadly, we identify,
formalize, and validate fundamental limitations of VAE-based approaches for modeling
weakly supervised data and discuss implications for real-world applications.
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(a) Unimodal VAEs, β = 1 (b) MVAE, β = 1 (c) MMVAE, β = 1 (d) MoPoE-VAE, β = 1

(e) Unimodal VAEs, β = 9 (f) MVAE, β = 9 (g) MMVAE, β = 9 (h) MoPoE-VAE, β = 9

Figure 7.1: Qualitative results for the unconditional generation using prior samples. For
models trained on the PolyMNIST dataset (Figures (a) to (d)), we show 20 samples for
each of the five modalities. For models trained on the CUB Image-Captions dataset, we
show 100 generated images respectively (Figures (e) to (h)). The results indicate that the
MVAE performs on par with unimodal VAEs in terms of generative quality, whereas the
MMVAE and MoPoE-VAE perform significantly worse in comparison.

7.1 Example and Overview

Multimodal VAEs have shown great potential as efficient generative models for weakly
supervised data, e.g., for pairs of images or paired images and captions. Previous studies
[WG18; Shi+19; SDV20; SDV21], including our own work from Chapter 5, demonstrate that
multimodal VAEs leverage weak supervision to learn generalizable representations useful
for downstream tasks, for example in biomedical applications [Dor+19; Min+21; LS21].
However, in our experiments with multimodal VAEs, we also noticed several shortcomings,
which we seek to formalize in this chapter.

One counterintuitive example of the observed limitations is shown in Figure 7.1, which
compares the generated samples from different types of multimodal VAEs to those generated
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by unimodal VAEs.20 These results illustrate that some multimodal VAEs underperform
in terms of generative quality compared to unimodal VAEs, despite the advantage of weak
supervision in the multimodal setup. A notable exception is the MVAE, which performs on
par with unimodal VAEs; however, it exhibits a lack of generative coherence, as discussed
in the previous chapters. This apparent tradeoff serves as a starting point for our analysis,
which aims to explain the observed lack of generative quality in terms of a fundamental
limitation that underlies the family of mixture-based multimodal VAEs.

Next, we recall the definition of the family of mixture-based multimodal VAEs and briefly
discuss the tradeoffs between different types of models.

7.1.1 Mixture-based Multimodal VAEs

As previously noted in Chapter 5, different types of multimodal VAEs use different
decompositions of the variational joint posterior in terms of the unimodal variational
posteriors. Specifically, they decompose it as a product, mixture, or mixture of products
of experts respectively. In Section 5.2.3, we showed that existing approaches can be
generalized and therefore defined the family of mixture-based multimodal VAEs, which
subsumes the MVAE [WG18], MMVAE [Shi+19], and the proposed MoPoE-VAE.

Recall our definition of the family of mixture-based multimodal VAEs (Definition 7), where

qSφ (z | x̄) =
∑
A∈S

ωA qφA(z | xA) (7.1)

defines the variational joint posterior as a mixture distribution over a given set S, which
is comprised of subsets of modalities A ⊆ {1, . . . ,M} and corresponding mixture coeffi-
cients ωA, such that

S ⊆ {(A, ωA) | A ⊆ {1, . . . ,M}, A 6= ∅, ωA ∈ [0, 1]}, and
∑

A∈S
ωA = 1. (7.2)

Based on the above formulation of the variational joint posterior, we defined the ELBO for
mixture-based multimodal VAEs in Definition 7 as the objective

LSELBO(x̄;φ, θ) =
∑
A∈S

ωA EqφA (z | xA)[log pθ(x̄ | z)]−DKL(qSφ (z | x̄) || p(z)) , (7.3)

20By “unimodal VAEs” we simply mean separate VAEs, each of which is trained independently of the
others on the observations of a single modality.
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Model properties Generative performance

Model Decomposition of qSφ (z | x̄) Modality sub-sampling Quality Coherence

MVAE [WG18]
∏M

i=1 qφi
(z | xi) No sub-sampling Good Poor

MMVAE [Shi+19] 1
M

∑M

i=1 qφi
(z | xi) Individual modalities Poor Good  

MoPoE-VAE [SDV21] 1
|P(M)|

∑
A∈P(M)

∏
i∈A qφi

(z |xi) All subsets of modalities Poor Good  

Table 7.1: Overview of multimodal VAEs. Entries for generative quality and generative
coherence are based on the observed empirical results. The lightning symbol ( ) denotes
previous findings for which this chapter presents contrary evidence. For the MVAE, we
consider the model without ELBO sub-sampling, as discussed in Chapter 5.

or any lower bound thereof. Given a specific choice of qSφ (z | x̄), we can plug it into Equa-
tion (7.3) to recover the objective of the MVAE, MMVAE, and MoPoE-VAE respectively,
as shown in Section 5.2.3 and summarized in Table 7.1.

Modality sub-sampling From a computational perspective, a characteristic of mixture-
based multimodal VAEs is the sub-sampling of modalities during training, which is a direct
consequence of defining the variational joint posterior as a mixture distribution over subsets
of modalities (Equation 7.1). In particular, the MMVAE sub-samples individual modalities
i ∈ {1, . . . ,M}, whereas the MoPoE-VAE considers all subsets of modalities, i.e., each
subset A ∈ P(M), where P(M) is the powerset of {1, . . . ,M}. The only member of the
family of mixture-based multimodal VAEs that forgoes sub-sampling is the MVAE, which
defines a trivial mixture over a single subset—namely, the complete set of modalities.

Tradeoffs between models Table 7.1 provides an overview of the different variants
of mixture-based multimodal VAEs and the empirical results for the respective models.
Notably, there appears to be a tradeoff between the generative quality (i.e., the fidelity
of generated samples) and generative coherence (i.e., the ability to generate semantically
related samples across modalities). While a lack of generative coherence for the MVAE was
already observed in previous works [e.g., Shi+19], the tradeoff between generative quality
and coherence was not yet established. Visually, a lack of generative quality or coherence
can be discerned from the qualitative results we presented previously (e.g., Figures 6.5
and 7.1) and from our previous quantitative evaluations (e.g., Figure 6.4).

In this chapter, we explain why the generative quality is worse for models that sub-sample
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modalities (Theorem 1) and show that a tighter approximation of the joint distribution can
be achieved without sub-sampling (Corollary 1). Through systematic ablations, we validate
the proposed theoretical limitations and showcase the tradeoff between generative quality
and generative coherence (Section 7.3.1). Our experiments also reveal that generative
coherence cannot be guaranteed in applications on more complex datasets than those used
in previous benchmarks (Section 7.3.2).

7.2 Theoretical Results

In this section, we present our theoretical results on the limitations of multimodal VAEs.
First, we introduce some preliminary notions (Section 7.2.1) and give an intuition about
the problem (Section 7.2.2). Then, we formalize the limitations with a theoretical result
(Section 7.2.3) and discuss its implications for individual models (Section 7.2.4).

7.2.1 Preliminaries

Let M be the number of modalities, let x̄ := {x1, . . . ,xM} be a set of discrete random
vectors that describe different modalities, and let p(x̄) denote their joint distribution. As
in the previous chapters, we denote subsets of modalities using subscripts; in particular,
we write xA to index a subset of modalities A ⊆ {1, . . . ,M}.

Throughout this chapter, we assume that the observations are described by discrete random
vectors (e.g., pixel intensities, as in the case of RGB images), so that we can safely
assume non-negative entropy and conditional entropy terms. Definitions for all required
information-theoretic quantities are provided in Section 3.3.4.1.

7.2.2 Intuition about the Problem

Before we delve into the details, let us illustrate how modality sub-sampling can affect
the likelihood estimation that is part of the multimodal ELBO and therefore influence the
approximation of the log-evidence.

Recall the definition of the ELBO for mixture-based multimodal VAEs (Equation 7.3) and
pay attention to the likelihood estimation, i.e., the term

EqφA (z | xA)[log pθ(x̄ | z)] , (7.4)
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where A ⊆ {1, . . . ,M} indexes a subset of modalities.

Crucially, in Equation (7.4) the variational posterior qφA(z | xA) is conditioned on a subset
of modalities. This can have a profound impact on the likelihood estimation, because the
precise estimation of log p(x̄ |z) might depend on information from all modalities. However,
the embedding z is sampled from qφA(z | xA) and thus it only contains information from a
subset of modalities.

Consequently, for the reconstruction of missing modalities, a model might be able to predict
information that is shared between observations of different modalities. However, it cannot
reliably predict modality-specific information, such as the background details in an image
given a concise verbal description of its content. Hence, the sub-sampling of modalities can
affect the likelihood estimation and thus the approximation of the log-evidence through
the maximization of the multimodal ELBO.

In the following, we formalize the above intuition by showing that, in the presence of
modality-specific variability, modality sub-sampling enforces an undesirable upper bound
on the multimodal ELBO and therefore prevents a tight approximation of the log-evidence.

7.2.3 Formalization of the Problem

Theorem 1 states our main theoretical result for this chapter. It describes a non-trivial
limitation of mixture-based multimodal VAEs because it shows that the sub-sampling
of modalities enforces an undesirable upper bound on the approximation of the joint
distribution (i.e., the expected log-evidence) when there is modality-specific variability in
the data. This limitation conflicts with the goal of modeling real-world multimodal data,
which typically exhibits a considerable degree of modality-specific variability.

Theorem 1. Any mixture-based multimodal VAE (Definition 7) approximates the expected
log-evidence up to an irreducible discrepancy ∆(x̄,S) that depends on the model-specific
mixture distribution S and on the amount of modality-specific information in the data. For
the maximization of LSELBO(x̄;φ, θ) and any value of φ and θ, the following inequality holds:

Ep(x̄)[log p(x̄)] ≥ Ep(x̄)[LSELBO(x̄;φ, θ)] + ∆(x̄,S) (7.5)

where
∆(x̄,S) =

∑
A∈S

ωAH(x{1,...,M}\A | xA) . (7.6)
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In particular, the discrepancy is always greater than or equal to zero and it is independent
of φ and θ and thus remains constant during the optimization.

Before we begin with the proof, recall that the multimodal ELBO forms a variational lower
bound on the log-evidence log p(x̄), and if we take the expectation over p(x̄), we get a
variational lower bound on the expected log-evidence, which is the target quantity we want
to approximate with a multimodal generative model.

For the family of mixture-based multimodal VAEs, we consider the objective from Equa-
tion (7.3), which also forms a lower bound on the expected log-evidence, namely

Ep(x̄)[log p(x̄)] ≥ Ep(x̄)[LSELBO(x̄;φ, θ)] (7.7)

= Ep(x̄)

[ ∑
A∈S

ωA EqφA (z | xA)[log pθ(x̄ | z)]−DKL(qSφ (z | x̄) || p(z))
]
. (7.8)

We can reformulate Equation (7.8) using the linearity of expectation to obtain∑
A∈S

ωA Ep(x̄)
[
EqφA (z | xA)[log pθ(x̄ | z)]

]
− Ep(x̄)

[
DKL(qSφ (z | x̄) || p(z))

]
, (7.9)

which is comprised of a sum of likelihood terms, one for each A ∈ S, and one KL-divergence.

Proof sketch In the following, we show that for any A ∈ S the respective likelihood
term from Equation (7.9) is upper-bound by an irreducible error that corresponds to the
uncertainty for the prediction of the complete set of observations given a subset thereof.
First, we notice that the embedding is a function of xA since it is sampled from the
variational posterior qφA(z | xA) that is conditioned on xA, which implies the conditional
independence zA⊥⊥x{1,...,M}\A | xA, where zA ∼ qφA(z | xA). Then, we draw a link to the
conditional entropy H(x̄ | zA) and use the conditional independence to decompose it into
a reducible and irreducible error. The latter corresponds to H(x{1,...,M}\A | xA), which is
non-negative and independent of the optimization with respect to φ and θ. Specifically,
we notice that the irreducible error remains even if we assume an optimal variational
approximation, i.e., qφA(z | xA) = p(z | xA) and pθ(x̄ | z) = p(x̄ | z) for z ∼ qφA(z | xA).
Finally, we extend the result to the weighted sum of likelihood terms in Equation (7.9).

Proof. Consider the objective in Equation (7.9). Take any subset A ∈ S and focus on the
likelihood estimation, i.e., the term

Ep(x̄)
[
EqφA (z | xA)[log pθ(x̄ | z)]

]
. (7.10)
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Notice that the variational posterior in Equation (7.10) is conditioned on the observations
of a subset of modalities A ⊆ {1, . . . ,M}. In particular, we sample z ∼ qφA(z | xA) and
thus the embedding is a function of xA, i.e.,

zA = gφA(xA, εxA) , (7.11)

where zA is the embedding produced by an encoder gφA : (xA, εxA) 7→ zA for which εxA is
an optional noise vector that can also be a function of the input xA.21 In Equation (7.11),
we denote the embedding zA with a subscript to indicate the functional dependence on xA
explicitly.

Let {1, . . . ,M} \ A be the complement of A and let x{1,...,M}\A be the set of unobserved
modalities as a complement of xA. The encoding process satisfies the Markov chain

zA ← xA −− x{1,...,M}\A (7.12)

because the embedding zA is a function of xA (i.e., the observed modalities) and it depends
on the remaining (i.e., unobserved) modalities only through xA. Therefore, we have the
conditional independence

zA⊥⊥x{1,...,M}\A | xA (7.13)

and consequently it holds that qφA(z | xA) = qφA(z | x̄), where x̄ = {x1, . . . ,xM}.

Next, we draw a connection to the conditional entropy. As in the information-theoretic
derivation of the ELBO, the log-likelihood term can be viewed as a variational lower bound
on the conditional entropy (c.f., Section 3.3.4). Specifically, we have

Ep(x̄)
[
EqφA (z | xA)[log pθ(x̄ | z)]

]
≤ −H(x̄ | zA) , (7.14)

where H(x̄ | zA) is the conditional entropy of x̄ given zA ∼ qφA(z | xA) with respect to the
joint distribution of the data and encoding, i.e., p(x̄, zA) = p(x̄)qφA(zA | xA), for which
qφA(zA | xA) = qφA(zA | x̄) due to the conditional independence in Equation (7.13).

Next, we decompose the conditional entropy as follows:

H(x̄ | zA) = H(xA,x{1,...,M}\A | zA) (7.15)

= H(x{1,...,M}\A | zA,xA) +H(xA | zA) (7.16)

= H(x{1,...,M}\A | xA)− I(x{1,...,M}\A; zA | xA) +H(xA | zA) (7.17)

= H(x{1,...,M}\A | xA) +H(xA | zA) . (7.18)

21For example, for the VAE with a Gaussian variational posterior, we have zA = µxA
+ εxA

with
εxA
∼ N (0, σ2

xA
), where µxA

and σ2
xA

are the estimated parameters of the variational posterior for the
given observation (e.g., see [Doe16]).
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In Equation (7.16), we apply a standard decomposition of the conditional entropy of two
random variables given a third (e.g., [CT12, p. 18]). Equation (7.17) can be derived from
the definition of the conditional mutual information.22 The last step follows from the
conditional independence in Equation (7.13), which implies I(x{1,...,M}\A; zA | xA) = 0.

Thus, the likelihood term from Equation (7.10) forms the following lower bound:

Ep(x̄)
[
EqφA (z | xA)[log pθ(x̄ | z)]

] (7.14)
≤ −H(x̄ | zA) (7.19)

(7.18)= −H(x{1,...,M}\A | xA)−H(xA | zA) . (7.20)

While the second term in Equation (7.20) can be minimized as a function of the data,
the first term remains independent of the optimization with respect to φ and θ as it
represents the aleatoric uncertainty with respect to the missing modalities. Specifically, for
the maximization of the log-likelihood, we have

max
φ,θ

Ep(x̄)
[
EqφA (z | xA)[log pθ(x̄ | z)]

]
≤ −H(x{1,...,M}\A | xA) , (7.21)

even if we assume infinite training data and an optimal variational approximation, i.e.,
qφA(z | xA) = p(z | xA) and pθ(x̄ | z) = p(x̄ | z) for z ∼ qφA(z | xA).

We can repeat the same argument for any A ∈ S. Consequently, it holds that

max
φ,θ

∑
A∈S

ωA Ep(x̄)
[
EqφA (z | xA)[log pθ(x̄ | z)]

]
≤ −

∑
A∈S

ωAH(x{1,...,M}\A | xA)︸ ︷︷ ︸
∆(x̄,S)

. (7.22)

Therefore, for the objective in Equation (7.9), we have

max
φ,θ

∑
A∈S

ωA Ep(x̄)
[
EqφA (z | xA)[log pθ(x̄ | z)]

]
− Ep(x̄)

[
DKL(qSφ (z | x̄) || p(z))

]
(7.23)

≤ −∆(x̄,S)− Ep(x̄)
[
DKL(qSφ (z | x̄) || p(z))

]
(7.24)

≤ −∆(x̄,S) , (7.25)

because the KL-divergence is always non-negative.

Thus, for the approximation of the expected log-evidence (Equation 7.7) through the
objective in Equation (7.9), it holds that

Ep(x̄)[log p(x̄)] ≥ Ep(x̄)[LSELBO(x̄;φ, θ)] + ∆(x̄,S) (7.26)

22In general, the conditional mutual information can be defined in terms of conditional entropies (e.g.,
see [CT12, p. 23]); specifically, I(x{1,...,M}\A; zA | xA) = H(x{1,...,M}\A | xA)−H(x{1,...,M}\A | zA,xA).
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for any value of φ and θ.

The exact value of ∆(x̄,S) depends on the subsets and weights in S as well as on the
amount of modality-specific variability in the data. In particular, ∆(x̄,S) > 0, if there is
any subset A ∈ S with ωA > 0 for which H(x{1,...,M}\A | xA) > 0.

Implications Theorem 1 formalizes the rationale that the prediction across modalities
cannot recover information that is specific to the target modalities that are unobserved
due to modality sub-sampling. The conditional entropy H(x{1,...,M}\A | xA) measures the
amount of information in one subset of random vectors x{1,...,M}\A that is not shared with
another subset xA. For the approximation of the joint distribution (i.e., the expected
log-evidence), the sub-sampling of modalities produces an irreducible error ∆(x̄,S) that is
a weighted average of conditional entropies H(x{1,...,M}\A |xA) of the unobserved modalities
x{1,...,M}\A given the observed modalities xA. Hence, ∆(x̄,S) describes the modality-specific
information that cannot be recovered by crossmodal prediction, averaged over all subsets
of modalities.

Theorem 1 applies to the MVAE, MMVAE, and MoPoE-VAE, since each of these models
belongs to the class of mixture-based multimodal VAEs (see Section 5.2.3). However, ∆(x̄,S)
can vary significantly between different models, depending on the mixture distribution
defined by the respective model and on the amount of modality-specific variability in the
data. Next, we discuss the implications for specific models before we corroborate our
results with experiments in Section 7.3.

7.2.4 Implications for Specific Models

First, we consider the case of no modality sub-sampling, for which it is easy to show that
the discrepancy ∆(x̄,S) vanishes.

Corollary 1. Without modality sub-sampling, ∆(x̄,S) = 0 .

Proof. Without modality sub-sampling, S is comprised of only one subset, the complete
set of modalities {1, . . . ,M}, and therefore xA = x̄ and x{1,...,M}\A = ∅. It follows that
∆(x̄,S) = H(x̄{1,...,M}\A | xA) = H(∅ | x̄) = 0, since the (conditional) entropy of the empty
set is zero.
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The result from Corollary 1 applies to the MVAE without ELBO sub-sampling and suggests
that this model achieves a tighter approximation of the log-evidence and hence a better
generative quality compared to mixture-based multimodal VAEs that sub-sample modalities.
Note that this does not imply that a model without modality sub-sampling is superior
to one that uses sub-sampling; for instance, there can be an inductive bias that favors
sub-sampling despite the approximation error it incurs. Specifically, Corollary 1 does not
imply that the variational approximation is tight for the MVAE; for instance, the model
can be underparameterized or simply misspecified due to simplifying assumptions, such as
the PoE-factorization [c.f., KGS19].

In Corollary 2, we analyze how an additional modality would affect the discrepancy ∆(x̄,S).
It shows that for the MMVAE and MoPoE-VAE the discrepancy increases if the new
modality is sufficiently diverse in the sense of Equation (7.28).

Corollary 2. Let xM+1 be a random vector that describes an additional modality and
let x̄+ := x̄ ∪ {xM+1} denote the extended set of modalities. Further, let S+ denote the
model-specific set of subsets of modalities and corresponding mixture coefficients for x̄+.

For the MMVAE and MoPoE-VAE, the discrepancy ∆(x̄,S) increases, i.e.,

∆(x̄+,S+) > ∆(x̄,S) , (7.27)

if xM+1 is sufficiently diverse in the following sense:( 1
|S+|

− 1
|S|

) ∑
A∈S

I(x{1,...,M}\A; xM+1 | xA) < 1
|S+||S|

∑
A∈S

H(xA | xM+1)

+ 1
|S+|

∑
A∈S

H(xM+1 | x̄) .
(7.28)

A proof is provided in Appendix A.3.

The result from Corollary 2 suggests an increased discrepancy (and hence, a decline of
generative quality) when we increase the number of modalities for the MMVAE and
MoPoE-VAE. Intuitively, a new modality is sufficiently diverse, if it does not add too
much redundant information with respect to the existing modalities. When there is a lot
of redundant information, ∆(x̄,S) can decrease given an additional modality, but it never
vanishes. Only if there is zero modality-specific information for each modality, we have
∆(x̄,S) = 0 for the MMVAE and MoPoE-VAE. This would require each pair of modalities
to be fully redundant, which is violated in most multimodal datasets as ∆(x̄,S) typically
represents a significant part of the total variability.
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(a) PolyMNIST
(5 modalities)

(b) Translated-PolyMNIST
(5 modalities)

(c) CUB Image-Captions
(2 modalities)

Figure 7.2: The three datasets considered in this chapter. The two PolyMNIST datasets
are conceptually similar in that a digit label is shared between the observations of different
modalities. The CUB Image-Captions dataset provides a more realistic application with
image-text pairs, i.e., natural images of birds and corresponding captions.

In summary, Theorem 1 formalizes how the family of mixture-based multimodal VAEs is
fundamentally limited for the task of approximating the joint distribution, and Corollaries 1
and 2 connect this result to specific models—namely the MVAE, MMVAE, and the proposed
MoPoE-VAE. We now turn to the experiments, where we present empirical support for
our theoretical results.

7.3 Experiments

Figure 7.2 presents the three considered datasets. PolyMNIST is comprised of sets of
images where a digit label is shared between five synthetic modalities. It is a conceptually
simple dataset that we use to conduct experiments in a controlled setup. Additionally,
we introduce the Translated-PolyMNIST dataset that adds a simple transformation—
namely, the downscaling and random translation (i.e., spatial positioning) of each digit—to
demonstrate the limitations of existing methods when shared information cannot be
predicted in expectation across modalities on the level of observations.23 Finally, we use
CUB Image-Captions to validate the limitations on a real-world dataset comprised of
image-caption pairs. Notably, we use CUB with real images and not the simplified version

23To be precise, we use Translated-PolyMNIST with a downscaling factor of 0.7. While we used a
downscaling factor of 0.5 for the results in our original publication [Dau+22], in this chapter, we reproduce
the results with a less severe downscaling to showcase the robustness of our findings.
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of the dataset based on precomputed ResNet-features that was used in previous works [e.g.,
Shi+19; Shi+21]. For a more detailed description of the considered datasets, see Chapter 4.

In Section 7.3.1, we showcase the gap in generative quality for mixture-based multimodal
VAEs in a large-scale empirical study. In Section 7.3.2, we demonstrate that generative
coherence cannot be guaranteed for more complex datasets where the information shared
between modalities cannot be predicted in expectation across modalities on the level of
observations. Finally, we evaluate the quality of the learned representation in Section 7.3.3.

Implementation details For all experiments in this chapter, we average the results
over three seeds and include standard deviations. We use the same implementation as for
our experiments in Chapter 5 with one notable difference, which is the network architecture.
In this chapter, we employ the ResNet architecture [He+16], because we found that the
previously used convolutional networks underperformed on the more complex datasets
considered in this chapter.24 In total, we trained more than 400 models using approximately
1.5 GPU years of compute on a single NVIDIA GeForce RTX 2080 Ti GPU.

All models were trained using the Adam optimizer [KB15] with learning rate 5e-4, batch size
256, and using 500, 1000, and 150 epochs on PolyMNIST, Translated-PolyMNIST, and CUB
Image-Captions respectively. Similar to previous work, we use Gaussian priors and a latent
space with 512 dimensions for PolyMNIST and 64 dimensions for CUB Image-Captions.
For a fair comparison, we reduce the latent dimensionality of unimodal VAEs proportionally
(w.r.t. the number of modalities) to control for capacity. For image modalities, we use
Laplace distributions to estimate the log-likelihood, and for captions, we employ one-hot
categorical distributions. For the β-ablations25, we use β ∈ {3e-4, 3e-3, 3e-1, 1, 3, 9} and,
in addition, 32 for CUB Image-Captions. Note that the MVAE could not be trained with
values of β > 3 on the PolyMNIST dataset due to numerical instabilities.

7.3.1 The Generative Quality Gap

First, we compare the generative quality of multimodal VAEs across different methods and
to unimodal VAEs. We measure the generative quality in terms of the Fréchet inception

24To ensure consistency, in this chapter we use ResNets for PolyMNIST as well. We verified that there
is no significant difference compared to our results from Chapter 5 when we use ResNets instead.

25The regularization coefficient β weights the KL-divergence term of the multimodal ELBO and is an
important hyperparameter for VAEs [Hig+17].
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distance (FID, [Heu+17], a standard metric used for evaluating the quality of generated
images (see Section 2.5.2). In addition, in Appendix A.5 we provide log-likelihood values,
as well as qualitative results for all modalities.

In the context of our theoretical results, we hypothesize that a higher discrepancy ∆(x̄,S)
is associated with a lower generative quality (i.e., higher FID) because it implies a larger
gap for the approximation of the expected log-evidence. For the interpretation, we assume
that the variational approximation26 is sufficiently good, such that the observed difference
in generative quality between models can be attributed to the discrepancy ∆(x̄,S).

In Figure 7.3, we evaluate the generative quality for each dataset and all considered methods
across a wide range of β values. Across different methods, we can compare models with
the lowest FID value respectively. We find that mixture-based approaches that sub-sample
modalities (MMVAE and MoPoE-VAE) exhibit a pronounced gap in generative quality
compared to unimodal VAEs. When we compare the best models, we observe a gap of
more than 60 points on both PolyMNIST and Translated-PolyMNIST, and about 30 points
on CUB.27 In contrast, the MVAE achieves a similar generative quality as unimodal VAEs.
Additionally, Figure 7.4 examines how the generative quality is affected when we vary the
number of modalities used for training. Notably, for the MMVAE and MoPoE-VAE, the
generative quality deteriorates continuously with the number of modalities, whereas the
performance of the MVAE remains stable.

7.3.2 Lack of Generative Coherence

Besides generative quality, another desired criterion for multimodal generative models is
generative coherence, i.e., the ability to generate semantically related examples across modal-
ities. Specifically, we measure the leave-one-out generative coherence (see Section 2.5.2),
which means that the input to each model consists of all modalities except the one that
is being conditionally generated. On CUB Image-Captions, we resort to a qualitative
evaluation of coherence because there are no ground truth labels that indicate what is
shared between modalities.

26In particular, we assume that p(z | xA) is approximated well by the variational posterior qφA
(z | xA)

and likewise for the approximation of p(x̄ | z) by pθ(x̄ | z) for z ∼ qφA
(z | xA).

27In Appendix A.5, we include qualitative results that verify that the gap in generative quality is clearly
visible in the generated samples and that it applies not only to images but also to generated captions.
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Figure 7.3: Generative quality for one modality over a range of β values. Lower FID values
indicate a better generative quality. Results for other modalities are shown in Figure A.1.
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Figure 7.4: Generative quality as a function of the number of modalities. For each model,
we show the results for the same modality and therefore all values are on the same scale. For
the unimodal VAE, which uses only a single modality, the average and standard deviation
are plotted as a constant. All models were trained using β = 1.

In terms of generative coherence, Figure 7.5 reveals that the promising results from previous
work do not necessarily apply to more complex datasets. As a baseline, for PolyMNIST
(Figure 7.5a) we replicate the coherence results from Chapter 5 for a range of β values.
Consistent with previous work [Shi+19; Shi+21] and our results from Chapter 5, we find
that the MMVAE and MoPoE-VAE exhibit a superior coherence compared to the MVAE.
Though, it was not apparent from previous work that MVAE’s coherence can improve
significantly with increasing β values, which can be of independent interest for future work.
On Translated-PolyMNIST (Figure 7.5b), the stark decline of the performance across all
models makes it evident that coherence cannot be guaranteed when shared information
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Figure 7.5: Evaluation of generative coherence. For PolyMNIST (Figures 7.5a and 7.5b),
we plot the average leave-one-out coherence. For CUB Image-Captions (Figure 7.5c), we
show qualitative results for the conditional generation of images given captions.

cannot be predicted in expectation across modalities on the level of observations. In
Appendix A.5, we include qualitative results showing that not a single multimodal VAE
generates coherent examples across modalities. We observe similar results on CUB Image-
Captions (Figure 7.5c), where the qualitative results for conditional generation verify that
none of the existing approaches generates images that are both of sufficiently high quality
and coherent with respect to the given caption. Overall, the negative results on Translated-
PolyMNIST and CUB Image-Captions showcase the limitations of existing approaches
when applied to more complex datasets than those used in previous benchmarks.

7.3.3 Quality of the Learned Representations

Like in the previous chapters, we use linear probing (c.f., Section 2.5) to assess the quality of
the learned representations and to estimate how well the encoded information decomposes
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Figure 7.6: Linear probing of the learned representations. For each model, logistic regression
models were trained to predict the shared information (i.e., the digit label) based on the
embeddings from 500 randomly sampled training examples.

into shared and modality-specific features.

In Figure 7.6, we show the results of linear probing with respect to the shared information
(i.e., the digit label). Similar to the decline in generative coherence (Section 7.3.2), we find
that also the quality of the learned representations deteriorates when we transition from
PolyMNIST to Translated-PolyMNIST. While a low classification accuracy does not imply
that there is no digit information encoded in the latent representation (after all, digits
show up in self-reconstructions), the results indicate that a linear classifier cannot extract
the digit information particularly well. Thus, shared and modality-specific information is
not encoded in a linearly separable format.

7.4 Discussion

First, we assess our findings from the experiments in relation to the theoretical results
from Section 7.2. The experiments reveal a gap in generative quality for mixture-based
multimodal VAEs on both synthetic and real-world datasets (Section 7.3.1). Specifically,
the results from Figure 7.3 and Figure 7.4 showcase the gap in generative quality for the
MMVAE and MoPoE-VAE compared to unimodal VAEs. For the MVAE, we observe
no gap compared to unimodal VAEs, which is in line with Corollary 1. Moreover, the
gap increases disproportionally with each additional modality for both the MMVAE and
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MoPoE-VAE (c.f., Corollary 2). Thus, the experiments lend support to the theoretical
results presented in Section 7.2. Though, it should be noted that our experiments focused
on image data. For future work, it would be interesting to generate simulated data for
which the discrepancy from Theorem 1 can be measured exactly and where the variational
approximation is controlled for.

Beyond the theoretical results, our experiments also reveal that none of the existing method
(including those without modality sub-sampling) fulfills all desired criteria of an effective
multimodal generative model. This was demonstrated by the lack of generative coherence
(Section 7.3.2) and insufficient disentanglement of shared and modality-specific information
(Section 7.3.3). More broadly, our results showcase the limitations of VAE-based approaches
for modeling weakly supervised data in the presence of modality-specific information, and in
particular when shared information cannot be predicted in expectation across modalities on
the level of observations. The Translated-PolyMNIST dataset demonstrates this problem
in a controlled setup, while the results on CUB Image-Captions verify that similar issues
can be expected in real-world applications.

Model selection and generalization Our results raise fundamental questions regarding
model selection and generalization for multimodal VAEs. Since the results for generative
quality and generative coherence can differ, this raises the question which metric to use for
model selection. On the one hand, our experiments reveal that FIDs and log-likelihoods
do not reflect the problem of lacking coherence (e.g., consider the performance of the
MVAE). On the other hand, without access to ground truth labels for what is shared
between modalities, coherence cannot be evaluated. Consequently, it can be particularly
difficult to use coherence for model selection in applications with less interpretable types
of modalities, such as DNA sequences. Hence, for future work it could be interesting
to design alternative metrics for generative coherence that can be applied when shared
information is not annotated. Moreover, for future work it might be worthwhile to consider
model selection metrics for out-of-distribution generalization (e.g., [Mon+21]) in addition
to generative quality and coherence.

Limitations The limitations and tradeoffs presented in this chapter apply to a large
family of VAEs, but not necessarily to other types of generative models. For example,
implicit likelihood models (e.g., generative adversarial networks [Goo+14]) might not
be subject to the same limitations. Similar to previous work [WG18; Shi+19], we only
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considered models with simple priors, such as Gauss and Laplace distributions with
independent dimensions. Further, we have not included models with modality-specific
latent spaces that we discussed in Chapter 6. While modality-specific latent spaces can
significantly enhance the generative quality for each of the considered models, more work
is required to overcome the lack of coherence on datasets where shared information cannot
be predicted in expectation across modalities on the level of observations.

7.5 Summary

In this chapter, we have identified, formalized, and demonstrated several limitations of
multimodal VAEs. Our analysis revealed an irreducible gap in the approximation of
the joint distribution and empirically investigated the gap in generative quality between
unimodal and mixture-based multimodal VAEs across multiple datasets. We offered the
explanation that the sub-sampling of modalities enforces an undesirable upper bound on
the multimodal ELBO and therefore limits the generative quality of the respective models.
While the sub-sampling of modalities allows multimodal VAEs to learn the inference
networks for different subsets of modalities efficiently, it leads to a tradeoff in terms of
generative quality. Finally, we demonstrated an additional failure case, showing that all
models exhibit a lack of generative coherence when shared information cannot be predicted
in expectation across modalities on the level of observations.

In the scope of the thesis, this chapter discussed the limitations of multimodal VAEs,
including our own work presented in previous chapters. Specifically, it shows that the utility
of mixture-based multimodal VAEs is restricted to settings where shared information can be
predicted in expectation across modalities on the level of observations. With respect to the
research questions, the results of this and the previous two chapters suggest that multimodal
VAEs can be effective for the encoding of shared information (Question 1). However,
this chapter demonstrates that in applications on more complex multimodal datasets,
shared information might be encoded in a nonlinear format, which would imply a lack of
disentanglement of shared and modality-specific information (Question 2). Moreover, in
applications where shared information cannot be predicted in expectation across modalities,
we would expect a lack of coherence for the generation of missing modalities (Question 3).

To address these limitations, in the following two chapters we instead consider contrastive
learning as a discriminative approach for multimodal representation learning. In Chapter 8,
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we demonstrate that contrastive learning provides a viable alternative for the estimation of
information that is shared between modalities—even if the information cannot be predicted
in expectation across modalities on the level of observations. In Chapter 9, we develop a
hybrid method for the disentanglement of shared and modality-specific information and
present promising results on the Translated-PolyMNIST dataset.
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8
Multimodal Contrastive Learning

Thus far, we addressed the problem of multimodal representation learning with generative
models, specifically using multimodal VAEs. In the preceding chapter, we analyzed the
limitations of the generative capabilities of multimodal VAEs and discussed the ramifications
for the learned representations. In this chapter, we adopt a different strategy and focus on
contrastive learning as a discriminative approach to multimodal representation learning.
Specifically, we examine how contrastive learning can be used to identify latent factors of
variation shared between modalities up to acceptable ambiguities. In the following chapter,
we build on these results to demonstrate how contrastive learning can be used to address
some of the limitations of multimodal VAEs.

In Section 8.1, we motivate the use of contrastive learning for multimodal representation
learning and cover relevant background. In Section 8.2, we revisit our problem formulation
from Chapter 2 and consider additional assumptions to describe a realistic yet tractable
setup that can be analyzed theoretically. For this setup, we derive an identifiability result,
which shows that, asymptotically, contrastive learning can recover the shared latent factors
that are invariant across modalities up to a block-wise indeterminacy (Section 8.3). Then,
we verify the identifiability result with numerical simulations and corroborate our findings
on a complex dataset of image-text pairs (Section 8.4). Finally, we discuss potential
limitations and opportunities for future work (Section 8.5).
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8.1 Motivation and Background

Essentially, contrastive learning uses weak supervision in the form of corresponding ob-
servations of different views to learn an encoder that maps similar inputs closer to each
other and dissimilar inputs further apart (c.f., Section 3.4) Thus, it matches the setup of
multimodal learning under weak supervision, where we consider corresponding observations
of different modalities. In practice, contrastive learning has become a cornerstone in
multimodal learning, as for example witnessed by the contribution of CLIP [Rad+21] to
recent advancements in text-to-image generation [Ram+21; Ram+22; Rom+22; Sah+22].
However, despite its empirical success, the effectiveness of contrastive learning is not
sufficiently well understood in theory.

Following a line of recent work, we examine contrastive learning through the lens of
independent component analysis (ICA), which offers an explanation of the effectiveness
of contrastive learning in terms of the identification of latent variables shared between
views [Gre+19; Zim+21; von+21]. To provide a better understanding of the effectiveness
of contrastive learning for multimodal representation learning, we investigate under which
assumptions contrastive learning can be used to identify shared latent factors up to
acceptable ambiguities in the context of our problem formulation from Chapter 2.

Based on the formulation from Chapter 2, we consider a generative process with independent
mechanisms that produce heterogeneous observations of different modalities. However,
in this chapter, we consider additional assumptions to provide a formulation that can be
analyzed theoretically with respect to the identifiability of latent variables. Specifically, we
draw inspiration from previous work on multi-view nonlinear ICA [Gre+19] and consider
additional dependencies between latent variables [von+21] to describe a more realistic
setup beyond the classic assumptions of ICA.

Contributions Primarily, we show that contrastive learning can be used to identify
shared latent factors that are invariant across modalities up to a block-wise indeterminacy.
In the context of previous work, we generalize existing identifiability results [von+21;
Lyu+22] to model real-world multimodal data. Based on our results, we provide a better
understanding of the assumptions required to recover latent factors of variation in the
context of multimodal learning under weak supervision. Moreover, within the scope of this
thesis, we demonstrate that contrastive learning can transcend some of the limitations of
multimodal VAEs described in Chapter 7. Specifically, we present promising results in
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applications with a high degree of modality-specific variation where shared information
cannot be predicted in expectations across modalities on the level of observations.

In summary, in this chapter, we study identifiability in the context of multimodal represen-
tation learning and focus on contrastive learning as a particular algorithm for which we
derive an identifiability result. Next, we review relevant background on identifiability and
contrastive learning and contextualize related work. Then, we present our problem formu-
lation (Section 8.2) and identifiability result (Section 8.3). To verify the result, we conduct
numerical simulations and experiments on a dataset of image-text pairs (Section 8.4).
Finally, we discuss potential limitations and opportunities for future work (Section 8.5).

8.1.1 Identifiability of Latent Variables

Generally, identifiability poses the question whether specific parts of a generative process
can be estimated from observations. In statistics, a model is identifiable if given an infinite
number of observations it is theoretically possible to recover the underlying parameters of
the model or values of the latent variables [LC06]. Thus, the question of identifiability lies
at the heart of statistical inference and it applies to problems such as ICA, causal discovery,
and inverse problems, among others.

In the framework of ICA, we consider the relation x = f(z), where an observation x is
generated from a mixing function f that is applied to a latent vector z. The goal of ICA is
to invert the mixing function in order to recover the latent variables, i.e., the individual
components of the latent vector. In particular, ICA algorithms attempt to learn the inverse
function given a dataset of observations, ideally using as few assumptions as possible. In
the following, we focus on related work on the topic of multi-view nonlinear ICA, which
is most relevant to the problem we address in this chapter. For more information on the
general topic of ICA, see Section 3.2.

Multi-view nonlinear ICA Our problem formulation builds on the setup of multi-
view nonlinear ICA and related approaches that we discuss in Section 3.2.1. Crucially, a
setup with multiple views or modalities offers a solution to the challenging problem of
nonlinear ICA, where it is theoretically impossible to recover the latent variables without
further assumptions [HP99]. Intuitively, a second view can resolve ambiguity introduced
by a nonlinear mixing function if both views contain a shared signal but are otherwise
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sufficiently distinct [Gre+19]. This property can be leveraged to identify latent variables
shared between observations of different views or modalities.28

In the context of multi-view nonlinear ICA, previous work shows that the latent variables can
be identified up to a component-wise indeterminacy in a setting with mutually independent
variables [Gre+19; Loc+20b] or up to block-wise indeterminacies in the case of independent
groups of shared and view-specific variables [LF20; Lyu+22]. Beyond the strict assumption
of independent (groups of) variables, a related line of work considers shared variables that
are invariant across views or domains, showing that these variables can be identified up to
a block-wise indeterminacy even when there are additional dependencies between latent
variables [von+21; Kon+22].

We advance in the same direction but with a focus on multimodal learning. To describe
real-world multimodal data, we consider a generative process with heterogeneous modalities
and optional statistical and causal dependencies between latent variables. Therefore, we
combine formulations from previous works (specifically, from von Kügelgen et al. [von+21]
and Lyu et al. [Lyu+22]) and relax their assumptions to model the properties of real-world
multimodal data. Consequently, we generalize existing identifiability results and show that
shared latent factors that are invariant across modalities can be identified up to a block-wise
indeterminacy in a novel setting with modality-specific mixing functions, modality-specific
latent variables, and additional dependencies between latent variables.

8.1.2 Multimodal Contrastive Learning

We introduced contrastive learning in Section 3.4 and described the widely-used InfoNCE
objective [GH10; OLV18] in that context. In the following, we revisit the symmetrized
version of the objective that is used for all experiments in this chapter. Additionally, we
consider an asymptotic form of the objective [WI20; von+21], which we use to derive an
identifiability result in Section 8.3.

28While the terms “view” and “modality” have been used interchangeably in previous works, we
distinguish them to differentiate between the multi-view setting with one generative mechanism (e.g.,
multiple cameras of the same type) and the multimodal setting that is characterized by distinct mechanisms
(e.g., cameras and microphones). We address the distinction in Section 2.2, in the context of Assumption 2.
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Objective function Recall from Equation (3.57) that the InfoNCE objective is given by

LInfoNCE({xk1 ,xk2}Kk=1;φ1, φ2) = −
K∑
k=1

log exp{sim(gφ1(xk1),gφ2(xk2))/τ}∑K
l=1 exp{sim(gφ1(xk1),gφ2(xl2))/τ}

, (8.1)

where the set of observations {xk1 ,xk2}Kk=1 consists of data pairs sampled from the joint
distribution p(x1,x2), the functions gφ1 and gφ2 are encoders parameterized by φ1 and φ2,
and the hyperparameters are the temperature τ and similarity metric sim(·, ·).

For contrastive learning with multimodal data, a rational choice is to use distinct encoders
gφ1 6= gφ2 and a symmetrized version of the objective (c.f., Section 3.4.4). Following
the same principle, in this chapter, we consider the symmetrized InfoNCE objective
(Equation 3.58), which we specify in terms of the joint distribution p(x1,x2) as

E{xk1 ,xk2}Kk=1∼p(x1,x2)

[
1
2 LInfoNCE({xk1 ,xk2}Kk=1;φ1, φ2)+ 1

2 LInfoNCE({xk2 ,xk1}Kk=1;φ2, φ1)
]
, (8.2)

where the integer K becomes an additional hyperparameter that controls the number of
negative pairs used for contrasting. The encoders are trained by minimizing Equation (8.2)
with respect to the parameters φ1 and φ2. In practice, we sample data pairs from a finite
dataset D = {(x(n)

1 ,x(n)
2 )}Nn=1 of size N � K, but in numerical simulations we can draw

samples from p(x1,x2) directly.

Asymptotic behavior Asymptotically, the minimization of the InfoNCE objective
(Equation 8.1) with respect to φ1 and φ2 can be interpreted as the alignment of positive
pairs (numerator) with approximate entropy regularization (denominator), which produces
encoders that are aligned and map to a uniform distribution (c.f., Section 3.4.3). Formally,
when instantiating the symmetrized InfoNCE objective (Equation 8.2) with τ = 1 and
sim(a, b) = −(a− b)2, it asymptotically behaves like

E(x1,x2)∼p(x1,x2)
[
‖gφ1(x1)− gφ2(x2)‖2

]
− 1

2

(
H(gφ1(x1)) +H(gφ2(x2))

)
(8.3)

for K →∞ [von+21; WI20]. In this sense, the objective can be interpreted as the alignment
of positive pairs subject to the maximization of the entropy (i.e., the uniformity) of the
learned representation, if we minimize Equation (8.3) with respect to φ1 and φ2.

For the symmetrized InfoNCE objective, the approximation of the alignment term is
identical for both loss terms in Equation (8.2), since the similarity measure is symmetric.
Further, each entropy term is approximated via the denominator of the respective loss
term in Equation (8.2), which can be viewed as a nonparametric entropy estimator [WI20].
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For the experiments, we use the objective in Equation (8.2) with large K to approximately
match the form of Equation (8.3). For the theoretical analysis, we use the asymptotic form
(Equation 8.3) to derive an identifiability result.

8.2 Problem Formulation

In the following, we define the generative process (Section 8.2.1) and then specify our
technical assumptions on the relation between modalities (Section 8.2.2). Compared to
our problem formulation from Chapter 2, in this chapter, we focus on pairs of modalities.
Further, we introduce an alternative notion of content invariance in terms of conditional
distributions and consider additional dependencies between subsets of latent variables.
Given these additional assumptions, we derive an identifiability result in Section 8.3.

8.2.1 Multimodal Generative Process

Let z be a continuous random vector that takes values in Z ⊆ Rn with density p(z). In
this chapter, we assume that z can be uniquely partitioned as

z = (c, s,m1,m2) , (8.4)

which is comprised of

(i) an invariant part c, which is shared across modalities, and which we refer to as content;

(ii) a variable part s, which may change across modalities, and which we refer to as style;

(iii) two modality-specific parts, m1 and m2, each unique to the respective modality.

Let z1 and z2 be two random vectors that take values in Z1 ⊂ Z and Z2 ⊂ Z respectively
and let p(z1, z2) be their joint density. Further, let x1 and x2 be two random vectors that
represent different modalities that take values in X1 ⊆ Rd1 and X2 ⊆ Rd2 respectively. We
define the generative process in terms of the latent vectors z1 and z2 as follows:

z1 ∼ p(z1), z2 ∼ p(z2 | z1), x1 = f1(z1), x2 = f2(z2), (8.5)

where f1 : Z1 → X1 and f2 : Z2 → X2 are two smooth and invertible mixing functions
with smooth inverse (i.e., diffeomorphisms). Generally, we assume that observations from
different modalities are generated by distinct mechanisms f1 6= f2 (c.f., Assumption 2).
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x1

m1 s c

x2

s̃ m2

z1
z2

Figure 8.1: Illustration of the generative process. Latent variables are denoted by clear
nodes and observations by shaded nodes. We partition the latent space into z1 = (c, s,m1)
and z2 = (c̃, s̃,m2), where c̃ = c almost everywhere (Assumption 4) and hence we only
visualize c. Further, s̃ is a perturbed version of s (Assumption 5) and m1, m2 are modality-
specific variables. The observations x1 and x2 are generated by two distinct mixing
functions f1 6= f2, which are applied to the subsets of latent variables z1 and z2 respectively.

8.2.2 Relation between Modalities

Based on the partitioning in Equation (8.4), let z1 = (c, s,m1) and z2 = (c̃, s̃,m2), where
c̃ = c almost everywhere and s̃ is generated by perturbations that we specify in Section 8.2.2.
We assume that p(z1, z2) is a smooth density that factorizes as

p(z1, z2) = p(c)p(s | c)p(̃s | s)p(m1)p(m2) , (8.6)

as illustrated in Figure 8.1.

Unlike in the classic setting of ICA, we do not assume independent components. Instead,
we draw inspiration from previous work [von+21] and consider statistical dependencies
within blocks of variables (e.g., between components of c) as well as causal dependencies
from c to s. Following previous work, we assume that content is invariant, i.e., c̃ = c almost
everywhere (Assumption 4), and that s̃ is a perturbed version of s (Assumption 5). However,
our formulation considers modality-specific mixing functions f1 6= f2 and modality-specific
latent variables m1 and m2 in order to model real-world multimodal data (see Section 8.2.3).

Conditional distributions Next, we define the conditional distributions p(z2 | z1) and
p(̃s | s), which describe the dependence between modalities. First, we formalize the concept
of content invariance29 with respect to the conditional distribution p(z2 | z1):

29 In Chapter 2, we introduced a notion of content invariance in terms of functions that are invertible
with respect to a subset of their arguments (Assumption 3). Instead, in this chapter we define content
invariance with respect to the conditional distribution p(z2 | z1).
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Assumption 4 (Content invariance w.r.t. p(z2 | z1)). The conditional density p(z2 | z1)
over Z2 ×Z1 takes the form

p(z2 | z1) = δ(c̃− c)p(̃s | s)p(m2) (8.7)

for some continuous density p(̃s | s) on S × S, where δ(·) denotes the Dirac delta function
used to express the assumption that c̃ = c almost everywhere.

To fully specify p(z2 | z1), it remains to define the style changes, which are described by
the conditional distribution p(̃s | s):

Assumption 5 (Style changes). Let A be the powerset of style components {1, . . . , ns}
and let pA be a distribution on A. Then, the conditional density p(̃s | s) that specifies style
changes is obtained by conditioning on a set A:

p(̃s | s) =
∑
A∈A

pA(A)
(
δ(̃sAc − sAc)p(̃sA | sA)

)
(8.8)

where p(̃sA | sA) is a continuous density on SA × SA, SA ⊆ S denotes the subspace of
changing style variables specified by A, and Ac = {1, . . . , ns}\A denotes the complement
of A. Further, for any style variable l ∈ {1, . . . , ns}, there exists a set A ⊆ {1, . . . , ns} with
l ∈ A, s.t.

(i) pA(A) > 0,

(ii) p(̃sA | sA) is smooth w.r.t. both sA and s̃A, and

(iii) for any sA, p(̃sA | sA) > 0, in some open non-empty subset containing sA.

The rationale behind Assumption 5 is to describe a stochastic relation between s and s̃ in
general terms. For example, one could view s̃ to be a noisy version of s or as the result of
an intervention on s (e.g., data augmentation). Further, note that the asymmetry between
s and s̃ (or between z1 and z2 for that matter) is not strictly required. It merely simplifies
the notation and ensures consistency with previous work [von+21]. Instead, one could
model both z1 and z2 via perturbations of z, as described in Appendix A.7.

Intuitively, to generate s̃ ∼ p(̃s | s), we independently flip a biased coin for each component
in s to select a subset of style features, which are jointly perturbed to obtain s̃. Condition
(i) ensures that every style component has a positive probability to be perturbed,30 while (ii)
and (iii) are technical smoothness conditions that will be used for the proof of Theorem 2.

30If a style variable would be perturbed with zero probability, it would be a content variable.
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8.2.3 Interpretation of the Model

Our formulation is designed to capture the complexities of real-world multimodal data
with a generative process that describes not only invariances between modalities, but also
stochastic effects and modality-specific variability.

The content invariance (Assumption 4) describes a shared phenomenon that is not di-
rectly observed but manifests in the observations of different modalities. Style changes
(Assumption 5) represent shared influences that are not robust across modalities. For
example, style variables can describe spurious correlations between modalities induced by
the (non-deterministic) effects of an unobserved confounder between x1 and x2. Moreover,
the conditional distribution p(̃s | s) can represent non-invertible transformations, such as
data augmentation between different views (c.f., [von+21]). Modality-specific factors can be
viewed as variables that describe the heterogeneity or noise inherent to a specific modality,
e.g., the unique aspects of visual data compared to other types of signals.

With this, we conclude the problem formulation. In summary, we have specified the
generative process (Section 8.2.1) and formalized our assumptions on the relation between
modalities (Section 8.2.2). Next, we return to the topic of representation learning and
show that, for the specified generative process, contrastive learning can identify the content
factors up to a block-wise indeterminacy.

8.3 Identifiability Result

First, we need to define block-identifiability [von+21] for the multimodal setup, in which
we consider modality-specific mixing functions and encoders. In the following, nc denotes
the number of content variables (i.e., the components of c) and the subscript 1:nc indicates
the subset of content dimensions (indexed from 1 to nc w.l.o.g.).

Definition 8 (Block-identifiability of content). The true content partition c = f−1
1 (x1)1:nc =

f−1
2 (x2)1:nc is block-identified by a function gi : Xi → Zi, with i ∈ {1, 2}, if there exists an
invertible function hi : Rnc → Rnc, such that for the inferred content partition ĉi = gi(xi)1:nc

it holds that ĉi = hi(c).

Notably, block-identifiability does not require the identification of individual factors, as
required for some definitions of disentanglement [BCV13; Hig+18; Shu+20]. Instead, it
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is sufficient to isolate the group of invariant factors (i.e., the content partition) from the
remaining factors of variation in the data.

Next, we show that contrastive learning can block-identify the content variables for the
multimodal generative process described in Section 8.2. We formalize this in Theorem 2
based on the asymptotic form of the InfoNCE objective (Equation 8.3).

Theorem 2. Consider the data generating process described in Section 8.2, i.e., data pairs
(x1,x2) generated according to (8.5) with p(z2 | z1) as defined in Assumptions 4 and 5. Fur-
ther, assume that p(z1, z2) is a smooth and continuous density on Z1×Z2 with p(z1, z2) > 0
almost everywhere. Let g1 : X1 → (0, 1)nc and g2 : X2 → (0, 1)nc be smooth functions that
minimize the functional

E(x1,x2)∼p(x1,x2)
[
‖g1(x1)− g2(x2)‖2

]
− 1

2

(
H (g1 (x1)) +H (g2 (x2))

)
. (8.9)

Then, g1 and g2 block-identify the true content variables in the sense of Definition 8.

Proof. To prove Theorem 2, we follow the proof structure from von Kügelgen et al. [von+21,
Theorem 4.4] and divide the proof into three steps. First, we show that there exists a pair
of smooth functions g∗1,g∗2 that attain the global minimum of Equation (8.9). Further, in
Equations (8.16–8.18), we derive invariance conditions that must hold almost surely for
any pair of smooth functions g1,g2 attaining the global minimum of Equation (8.9). In
Step 2, we use the invariance conditions derived in Step 1 to show by contradiction that
any pair of smooth functions g1,g2 that attain the global minimum in Equation (8.9) can
only depend on content and not on style or modality-specific information. In the third
and final step, for h1 := g1 ◦ f1 and h2 := g2 ◦ f2, we show that both functions must be
bijections and hence that c is block-identified by g1 and g2 respectively.

Step 1. The global minimum of Equation (8.9) is reached when the first term is minimized
and the second term is maximized. The first term is minimized when the encoders g1 and g2

are perfectly aligned, i.e., when g1(x1) = g2(x2) holds for all pairs (x1,x2) ∼ p(x1,x2).
The second term attains its maximum when g1 and g2 map to a uniformly distributed
random variable on (0, 1)nc respectively.31

31We define the range of g1 and g2 on (0, 1)nc merely to simplify the notation. Generally, the uniform
distribution U(a, b) is the maximum entropy distribution on the interval [a, b].
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To show that there exists a pair of functions that minimize Equation (8.9), let

g∗1 := d1 ◦ f−1
1,1:nc , (8.10)

g∗2 := d2 ◦ f−1
2,1:nc , (8.11)

where the subscript 1:nc indicates the subset of content components w.l.o.g. and where d1

and d2 will be defined using the Darmois construction [Dar51; HP99].

First, recall that f−1
1 (x1)1:nc = c and that f−1

2 (x2)1:nc = c̃ by definition. Second, for i ∈
{1, 2}, let us define di : C 7→ (0, 1)nc using the Darmois construction, such that di maps c
and c̃ to a uniform random variable respectively. It follows that g∗1,g∗2 are smooth functions,
because any function di obtained via the Darmois construction is smooth and f−1

1 , f−1
2 are

smooth as well (each being the inverse of a smooth function).

Next, we show that the pair of functions g∗1,g∗2, as defined in Equations (8.10) and (8.11),
attains the global minimum of the functional in Equation (8.9), i.e.,

E(x1,x2)∼p(x1,x2) [‖g∗1(x1)− g∗2(x2)‖2]− 1
2 (H(g∗1(x1)) +H(g∗2(x2))) (8.12)

= E(x1,x2)∼p(x1,x2) [‖d1(c)− d2(c̃)‖2]− 1
2 (H(d1(c)) +H(d2(c̃))) (8.13)

= 0 . (8.14)

Concretely, by Assumption 4, c = c̃ almost surely, which implies that the first term in
Equation (8.13) is zero almost surely. Further, di maps c, c̃ to uniformly distributed random
variables on (0, 1)nc , which implies that the differential entropy of d1(c) and d2(c̃) is zero
as well. Consequently, there exists a pair of functions g∗1,g∗2 that minimizes Equation (8.9).

Next, let g1 : X1 7→ (0, 1)nc and g2 : X2 7→ (0, 1)nc be any pair of smooth functions that
attains the global minimum of Equation (8.9), i.e.,

E(x1,x2)∼p(x1,x2) [‖g1(x1)− g2(x2)‖2]− 1
2 (H(g1(x1)) +H(g2(x2))) = 0 . (8.15)

Let h1 := g1 ◦ f1 and h2 := g2 ◦ f2. Notice that both are smooth functions since all involved
functions are smooth by definition. Since Equation (8.15) is a global minimum, it implies
the following invariance conditions for the individual terms:

E(x1,x2)∼p(x1,x2) [‖h1(z1)− h2(z2)‖2] = 0 , (8.16)

H(h1(z1)) = 0 , (8.17)

H(h2(z2)) = 0 . (8.18)

Therefore, h1(z1) = h2(z2) must hold almost surely w.r.t. p(x1,x2). Additionally, Equa-
tion (8.17) implies that ĉ1 = h1(z1) must be uniform on (0, 1)nc . Likewise, for Equa-
tion (8.18) and ĉ2 = h2(z2).
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Step 2. Next, we show that any pair of functions that minimize Equation (8.9) depends
only on content information. Since style is independent of m1 and m2, we first show that
h1(z1) does not depend on m1 and, likewise, that h2(z2) does not depend on m2. We then
show that h1 and h2 also cannot depend on style, based on a result from previous work.

First note that we can exclude all degenerate solutions where g1 maps a component of m1

to a constant, since g1 would not be invertible anymore and such a solution would violate
the invariance in Equation (8.17).

To prove a contradiction, suppose that, w.l.o.g., h1(c, s,m1)1:nc := h1(z1)1:nc depends on
some component in m1 in the sense that the partial derivative of h1(z1)1:nc w.r.t. some
modality-specific variable m1,l is non-zero for some point (c∗, s∗,m∗1) ∈ Z1. Specifically, it
implies that the partial derivative is positive, i.e.,

∂h1(z1)1:nc
∂m1,l

> 0 (8.19)

in a neighborhood around (c∗, s∗,m∗1), which is a non-empty open set, since h1 is smooth.
On the other hand, due to the independence of z2 and m1, the fact that h2(z2)1:nc cannot
depend on m1, and that p(z1, z2) > 0 almost everywhere, we come to a contradiction.
That is, there exists an open set of points with positive measure, namely the neighborhood
around (c∗, s∗,m∗1), on which

| (h1(z1)1:nc − h2(z2)1:nc) | > 0 (8.20)

almost surely, which contradicts the invariance in Equation (8.16). The statement does
not change, if we add further dependencies for h1 on components of m1, or for h2 on
components of m2, because m1 and z2 are independent, and m2 and z1 are independent
as well. Hence, we show that any encoder that minimizes the objective in Equation (8.9)
cannot depend on modality-specific information.

Having established that neither h1(z1)1:nc , nor h2(z2)1:nc can depend on modality-specific
information, it remains to show that style information is also not encoded. Leveraging
Assumption 5, we can show that the strict inequality in Equation (8.20) holds with
probability greater than zero if h1(z1)1:nc or h2(z2)1:nc were dependent on a component
in s or s̃ respectively. This would again lead to a violation of the invariance derived in
Equation (8.16), as shown in von Kügelgen et al. [von+21, Proof of Theorem 4.2].

Step 3. It remains to show that h1,h2 are bijections. We know that C and (0, 1)nc are
simply connected and oriented C1 manifolds, and we have established in Step 1 that h1
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and h2 are smooth and hence differentiable functions. Since p(c) is a regular density, the
uniform distributions w.r.t. the pushthrough functions h1 and h2 are regular densities.
Thus, h1 and h2 are bijections [Zim+21, Proposition 5].

Step 3 concludes the proof. We have shown that for any pair of smooth functions g1,g2 that
attain the global minimum of Equation (8.9), we have that c is block-identified (Definition 8)
by g1 and g2.

Limitations While Theorem 2 suggests that contrastive learning can identify the content
variables up to a block-wise indeterminacy, the result rests on two key assumptions. First,
it is based on the asymptotic form of the InfoNCE objective (Equation 8.3). Second, it
assumes that the number of content variables is known or that it can be estimated.

To address these limitations, we verify the result with suitable experiments. Using the
symmetrized InfoNCE objective (Equation 8.2), we conduct numerical simulations (Sec-
tion 8.4.1) as well as experiments on a dataset of image-text pairs (Section 8.4.2). As part
of these experiments, we vary the encoding size and explore whether we can estimate the
number of content variables. In Section 8.5, we continue the discussion of the assumptions
in the context of the experimental results.

8.4 Experiments

The goal of our experiments is to test whether contrastive learning can block-identify
content in the multimodal setting, as described by Theorem 2. First, we verify identifiability
in a fully controlled experiment with numerical simulations (Section 8.4.1). Second, we
corroborate our findings on a complex multimodal dataset of image-text pairs (Section 8.4.2).

8.4.1 Numerical Simulations

The numerical simulation is designed to assess identifiability with full control over the
generative process. We extend the numerical simulation from von Kügelgen et al. [von+21]
and implement the multimodal generative process described in Section 8.2 using modality-
specific mixing functions (f1 6= f2) and modality-specific latent variables m1 and m2.
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Generative process R2 (nonlinear)

p(chg.) Stat. Cau. Content c Style s

1.0 7 7 1.00 (±0.00) 0.00 (±0.00)

0.75 7 7 0.99 (±0.01) 0.00 (±0.00)

0.75 3 7 0.99 (±0.00) 0.52 (±0.09)

0.75 7 3 1.00 (±0.00) 0.79 (±0.04)

0.75 3 3 0.99 (±0.01) 0.81 (±0.04)

(a) Multi-view setting

Generative process R2 (nonlinear)

p(chg.) Stat. Cau. Content c Style s Modality mi

1.0 7 7 0.99 (±0.00) 0.00 (±0.00) 0.00 (±0.00)

0.75 7 7 1.00 (±0.00) 0.00 (±0.00) 0.00 (±0.00)

0.75 3 7 0.95 (±0.01) 0.56 (±0.23) 0.00 (±0.00)

0.75 7 3 0.98 (±0.00) 0.87 (±0.04) 0.00 (±0.00)

0.75 3 3 0.95 (±0.03) 0.89 (±0.07) 0.00 (±0.00)

(b) Multimodal setting

Table 8.1: Results of the numerical simulations. We compare the multi-view setting (f1 = f2,
left table) with the multimodal setting (f1 6= f2, right table). Only the multimodal setting
includes modality-specific latent variables. Each row presents the results of a different
setup with varying style-change probability p(chg.) and possible statistical (Stat.) and/or
causal (Caus.) dependencies. Each value represents the R2 coefficient of determination
(averaged across 3 seeds) for a nonlinear regression model that predicts the respective
ground truth factor (c, s, or mi) from the embeddings produced by the encoder.

Implementation For the data generation, we sample c ∼ N (0,Σc), mi ∼ N (0,Σmi
),

and s ∼ N (a +Bc,Σs). Statistical dependencies within blocks (e.g., among components
of c) are induced by non-zero off-diagonal entries in the corresponding covariance matrix
(e.g., in Σc). To induce a causal dependence from content to style, we set ai, Bij ∼ N (0, 1);
otherwise, we set ai, Bij = 0. For style changes, Gaussian noise is added with probability π
independently for each style component, i.e., s̃i = si + ε, where ε ∼ N (0,Σε) with
probability π. We generate the observations x1 = f1(c, s,m1) and x2 = f2(c, s̃,m2) using
two distinct nonlinear mixing functions; specifically, for each i ∈ {1, 2}, fi : Rd → Rd

is a separate, invertible 3-layer MLP with LeakyReLU activations. The invertible MLP
is constructed similar to previous work [HM16; HM17; Zim+21; von+21] by resampling
square weight matrices until their condition number surpasses a threshold value.

We train the encoders for 300 000 iterations using the symmetrized InfoNCE objective (Equa-
tion 8.2) and the hyperparameters listed in Table A.2a. We evaluate block-identifiability
using nonlinear probing (c.f. Section 2.5.1), i.e., by predicting the ground truth factors
from the embeddings produced by the model. Specifically, we use kernel ridge regression
and report the R2 coefficient of determination on holdout data. In Table A.2a, we specify
the main hyperparameters for the numerical simulation.
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Results We compare the multi-view setting (f1 = f2, Table 8.1a) with the multimodal
setting (f1 6= f2, Table 8.1b) and find that content can be block-identified in both settings,
as the R2 score is close to one for the prediction of content and close to chance-level for
the prediction of style and modality-specific information. Consistent with previous work,
we observe that some style information can be predicted when there are statistical and/or
causal dependencies; this is expected because statistical dependencies decrease the effective
dimensionality of content, while the causal dependence from c to s makes style partially
predictable from the encoded content information. In Appendix A.6, we include a more
rigorous empirical evaluation using interventions, which provides further support for the
block-identifiability of content even in the case of causal dependencies.

Overall, the results of the numerical simulations are consistent with our theoretical result
from Theorem 2, showing that contrastive learning based on the InfoNCE objective can
block-identify content, if the generative process satisfies the assumptions from Section 8.2.

8.4.2 Multimodal3DIdent

Next, we test whether block-identifiability holds in a more realistic setting, for which we use
a dataset of image-text pairs. Specifically, we use the Multimodal3DIdent dataset, which
provides an identifiability benchmark with image-text pairs generated from controllable
ground truth factors, some of which are shared between image and text modalities, as
illustrated in Figure 8.2. For each pair, there are three content factors that are invariant
across modalities: object position (x- and y-coordinates) and object shape. As a style
factor, we have the object color, which is shared between modalities but not invariant.
Furthermore, the object color depends causally on the position of the object. The remaining
factors are modality-specific. For more information about the dataset, see Section 4.4.

Figure 8.2: Examples of image-text pairs.

Implementation We train the encoders for
100 000 iterations using the symmetrized In-
foNCE objective (Equation 8.2) and the hy-
perparameters listed in Table A.2b. For the
image encoder we use a ResNet-18 architecture
[He+16] and for the text we use a convolutional
network. As for the numerical simulation, we
evaluate block-identifiability using nonlinear
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Figure 8.3: Results on the Multimodal3DIdent dataset as a function of the encoding size
of the model. Using nonlinear probing, we assess the prediction of ground truth image
factors (Figure 8.3a) and text factors (Figure 8.3b) to quantify how well the embeddings
encode the respective information. Along the x-axis, we vary the encoding size, i.e., the
output dimensionality of the model. We measure the prediction performance in terms of
the R2 coefficient of determination for continuous factors and classification accuracy for
discrete factors respectively. Each point denotes the average across three seeds and bands
show one standard deviation. In each figure legend, content factors are denoted in bold
and style factors in italic.

probing, i.e., by predicting the ground truth factors from the embeddings produced by
the encoders. For continuous factors, we use kernel ridge regression and report the R2

coefficient of determination; for discrete factors, we report the classification accuracy of
a shallow MLP. We train the predictors on training embeddings and evaluate them on
embeddings of holdout data.

Results Figure 8.3 presents the results on the Multimodal3DIdent dataset with a di-
mensionality ablation, where we vary the size of the encoding. We observe that content
factors (object position and shape) are always encoded well, unless the encoding size
is too small (i.e., smaller than 3-4 dimensions). When there is sufficient capacity, style
information (object color) is also encoded, partly because there is a causal dependence from
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content to style and partly because of the excess capacity.32 Image-specific information
(object rotation, spotlight position, background color) is mostly discarded, independent of
the encoding size. Text-specific information (phrasing) is encoded to a moderate degree
(48–80% accuracy), which we attribute to the fact that phrasing is a discrete factor that
violates the assumption of continuous latent variables. This hints at possible limitations in
the presence of discrete latent factors, which we further discuss in Section 8.5.

Overall, the results indicate that contrastive learning can be used to block-identify content
factors in a complex multimodal setting with image-text pairs.

8.4.3 Estimating the Number of Content Factors

The estimation of the number of content factors is an important aspect, because Theorem 2
assumes that the number of content factors is known or that it can be estimated. In
practice, the number of content factors can be viewed as a single hyperparameter that can
be tuned with respect to a suitable model selection metric (e.g. [Loc+20b]). For example,
the validation loss would be a convenient metric, because it only requires a holdout dataset
and no additional labels. In the following, we explore the idea of using the validation loss
to select the number of content factors.

In Figure 8.4, we plot the validation loss (averaged over 2000 validation samples) as
a function of the encoding size for both experiments used in this chapter. Results for
the numerical simulation are shown in Figure 8.4a and for the image-text experiment
in Figure 8.4b. For both datasets, we observe that the validation loss increases most
significantly in the neighborhood of the true number of content factors. For the numerical
simulation, the results show a clear “elbow” [Jam+13] at the correct value of 5, which
corresponds to the true number of content factors. The results are less clear for the
image-text experiment, where the elbow method might suggest the range of 2-4 content
factors, whereas the true value is 3.

32In Appendix A.6, we provide additional results on a version of the dataset with mutually independent
factors, for which the encoding of content factors over style factors can be observed more clearly.
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Figure 8.4: Estimation of the number of content factors using the validation loss. The
validation loss corresponds to the value of the objective in Equation (8.2) computed on a
holdout dataset. Since we are interested in estimating the true number of content factors
to select the encoding size appropriately, we plot the validation loss as a function of the
encoding size. We show the validation loss for the numerical simulation with independent
factors (Figure 8.4a) and for the Multimodal3DIdent dataset (Figure 8.4b) respectively.

8.5 Discussion

Implications and scope We investigated whether contrastive learning can block-identify
content factors—i.e., shared latent variables that are invariant across modalities—under the
assumptions described in Section 8.2. Therefore, in Theorem 2, we derived an identifiability
result based on the asymptotic form of the InfoNCE objective. We used numerical simula-
tions (Section 8.4.1) to verify the theoretical result in a controlled setup, demonstrating
that contrastive learning can identify content factors up to a block-wise indeterminacy
(Definition 8) when the size of the encoding matches the number of content factors. With
experiments on a dataset of image-text pairs, we corroborated the results in a more re-
alistic setting and even under some violations of the assumptions underlying Theorem 2.
Specifically, we investigated the mismatch between the encoding size and the number of
content factors and included experiments with discrete factors. Overall, we observed that
contrastive learning encodes the content factors effectively across all considered settings.
When there is sufficient capacity, stochastically shared information (i.e., style) is also
encoded to a moderate degree, but seemingly without affecting the encoding of content
factors, which could still be recovered using nonlinear probing in all considered settings.
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For practical applications, our results suggest that contrastive learning without capacity
constraints can encode any shared factor, regardless of whether the factor is truly invariant
across modalities or whether its effect on the observations is stochastic. This is in line with
the theoretical interpretation that the optimization of the InfoNCE objective maximizes
the mutual information between representations (see Section 3.4.3). As a measure of
mutual dependence, the mutual information quantifies any amount of information that is
shared between two random variables, regardless of the invariance. Yet, our results also
demonstrate that the size of the encoding can be reduced to learn a representation that
encodes only the invariant factors. In practice, this can be leveraged for representation
learning in settings of content-preserving distribution shifts, where information relevant for
a downstream task remains unchanged across domains [Roj+18; Mit+21; FTF21].

Limitations and outlook A potential limitation of our results is the assumption of
content invariance, which might not be satisfied in real-world settings. For example, there
could be pairs of observations for which the invariance is inadvertently violated, e.g., due to
measurement errors, occlusions, or other inaccuracies in the data. On the one hand, such a
violation can be viewed as a mere artifact of the data collection, which could be addressed
through interventions on the data generating process. On the other hand, violations of
content invariance blur the line between content and style factors, which suggests a possible
generalization of the problem formulation in terms of only stochastically shared factors as
an opportunity for future work.

Another possible limitation is that Theorem 2 assumes the number of content factors
is known or that it can be estimated. In Section 8.4.3, we explored this idea based on
the validation loss, but more work is required to verify these results on real-world data.
We believe that the estimation of the number of latent factors and the design of suitable
heuristics are interesting directions for future research.

Moreover, Theorem 2 assumes that all latent factors are continuous. While this assumption
prevails in related work [HP99; HM16; HST19; Gre+19; Loc+19; Loc+20b; Zim+21;
von+21; Kli+21], our results in Figure 8.3b indicate that in the presence of discrete content
factors, some style or modality-specific information can be encoded. In Appendix A.6, we
include additional results based on numerical simulations that support these findings.

Finally, our problem formulation could be extended to more than two modalities—a setting
for which there are intriguing identifiability results [Gre+19; Sch+16] as well as suitable
learning objectives [TKI20; Lyu+22].
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8.6 Summary

In this chapter, we focused on contrastive learning as a discriminative approach for
multimodal representation learning. Specifically, we investigated whether contrastive
learning can be used to identify latent factors of variation shared between modalities up to
acceptable ambiguities.

First, we theoretically showed that, asymptotically, contrastive learning can identify shared
latent factors that are invariant across modalities up to a block-wise indeterminacy. While
the theoretical result is based on an asymptotic form of the InfoNCE objective and requires
that the number of content factors is known or that it can be estimated, our empirical
findings suggest that the desired results can be achieved in practice even when some of
the assumptions are violated. Specifically, we used numerical simulations to verify the
identifiability result and corroborated our findings on a dataset of image-text pairs. Thus,
we provided a better understanding of the assumptions required to recover latent factors of
variation in the context of multimodal learning under weak supervision.

In the scope of the thesis, this chapter analyzed contrastive learning as a discriminative
approach to address Question 1, i.e., to identify latent factors of variation shared between
modalities up to acceptable ambiguities. As part of the experiments, we demonstrated
promising results even in settings where shared information cannot be predicted in expec-
tation across modalities on the level of observations. In the following chapter, we build on
insights from this and the previous chapters to develop a hybrid approach for multimodal
generative learning that combines contrastive learning and VAEs.
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A Hybrid Approach

In the previous chapter, we showed that contrastive learning can be used to identify latent
factors shared between modalities. In this chapter, we leverage this property and introduce
a hybrid approach that combines contrastive learning with VAEs. We combine insights and
techniques from the previous chapters to develop a generative model that approximates
the joint distribution of multiple modalities and disentangles shared and modality-specific
information effectively. As an outlook, we demonstrate how the model can address some of
the limitations of multimodal VAEs that we covered in Chapter 7.

In Section 9.2, we propose the disentangling multimodal variational autoencoder (DMVAE),
which learns a multimodal generative model with an inference network that disentangles
shared and modality-specific information. The model consists of two parts that are trained
in separate stages. First, to infer shared information, we use contrastive learning and
extend the InfoNCE objective with a mixture of product of experts to model the variational
joint posterior in a way that enables efficient inference given any subset of modalities.
Second, to infer modality-specific information, we use VAEs conditioned on the embeddings
produced by the variational joint posterior and a regularization technique to suppress the
encoding of shared information for the VAEs. In Section 9.3, we evaluate the DMVAE on
the Translated-PolyMNIST dataset, for which we present promising results beyond the
capabilities of existing multimodal VAEs. Specifically, we find that the DMVAE reduces the
gap in generative quality between unimodal and multimodal VAEs and achieves substantial
improvements for the generation of missing modalities.
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9.1 Motivation and Background

Multimodal VAEs are designed to approximate a joint distribution of multiple modalities
in a way that enables inference across modalities based on the learned representations
(c.f., Sections 3.3.6 and 5.1). While multimodal VAEs have demonstrated promising results
in real-world applications [Dor+19; LS21; Min+21; GZP21], we showed that they exhibit
severe limitations in settings where shared information cannot be predicted in expectation
across modalities on the level of observations (Chapter 7).

In this chapter, we seek to address this limitation and design a method that decouples the
inference of shared information from generative modeling. Therefore, we build on ideas
from the previous chapters; specifically, the design of a variational joint posterior using
a mixture of products of experts (Chapter 5), the partitioning of the latent space into
shared and modality-specific subspaces (Chapter 6), and the inference of shared latent
factors using contrastive learning (Chapter 8). With the DMVAE, we propose a method
that combines these ideas and yields a hybrid approach for multimodal generative learning
with an inference network that disentangles shared and modality-specific information.

9.2 Method: DMVAE

The DMVAE is comprised of two parts that are trained in separate stages. First, to infer
information that is shared between modalities, we model the variational joint posterior with
a shared inference network trained using contrastive learning (Section 9.2.2). Second, to infer
modality-specific information, for each modality we train a conditional VAE (Section 9.2.3)
with a regularizer that suppresses the encoding of shared information (Section 9.2.4).
Jointly, these components yield a multimodal generative model that disentangles shared
and modality-specific information and that can be used to generate missing modalities.
After we introduce the individual components of the model, we describe the training
procedure for the DMVAE (Section 9.2.5).

9.2.1 Preliminaries

Let M be the number of modalities, let x̄ := {x1, . . . ,xM} be a set of random vectors
that describe different modalities, and let p(x̄) denote their joint distribution. As in the
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previous chapters, we denote subsets of modalities using subscripts; specifically, we write
xA to index a subset of modalities A ⊆ {1, . . . ,M}.

9.2.2 Part 1: Multimodal Contrastive Learning

The first part of the DMVAE is an inference network trained using contrastive learning to
infer the information shared between observations of different modalities. In the following,
we build on our idea from Chapter 5 and define the variational joint posterior as a mixture of
product of experts (MoPoE) to aggregate information across different subsets of modalities
efficiently.

Variational joint posterior Let qψi(c|xi) denote the variational posterior for modality i
with parameters ψi and let the complete set of parameters be denoted by ψ := {ψ1, . . . , ψM}.
Let P(M) be the powerset of the set of consecutive integers {1, . . . ,M} excluding the
empty set and let |P(M)| denote its cardinality.

To aggregate information across all subset of modalities efficiently, we define the variational
joint posterior as a mixture of products of unimodal posterior—a so-called mixture of
product of experts (MoPoE; see Chapter 5):

qMoPoE
ψ (c | x̄) = 1

|P(M)|
∑

A∈P(M)

∏
i∈A

qψi(c | xi) (9.1)

= 1
|P(M)|

∑
A∈P(M)

qPoEψA
(c | xA) , (9.2)

where the set of parameters ψA is fully determined by the parameters of the unimodal
encoders, i.e., ψA = {ψi | i ∈ A} for each A ∈ P(M), and where “PoE” stands for product
of experts [Hin02].

To sample from qMoPoE
ψ (c | x̄), we draw a set A uniformly at random from P(M) and then

sample c ∼ qPoEψA
(c | xA). Following previous work [WG18], we use Gaussian unimodal

posteriors, so that qPoEψA
(c | xA) is also Gaussian and can be computed efficiently in closed

form for any subset of modalities.

InfoNCE with the MoPoE posterior To train the shared inference network using
contrastive learning, we need to extend the InfoNCE objective from Equation (3.53), which
is only defined for two views or modalities.
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Based on the MoPoE variational joint posterior (Equation 9.1), we define the objective as

LMoPoE
InfoNCE({x̄k}Kk=1;ψ) = −

K∑
k=1

log exp{sim(ckA, ck)/τ}∑K
l=1 exp{sim(ckA, cl)/τ}

, (9.3)

where ckA ∼ qPoEψA
(c | xkA) and ck ∼ qPoEψ (c | x̄k). For each training example, we draw A

uniformly at random from P(M). Thus, the embedding ckA is computed based on a random
subset of modalities, whereas ck is based on the complete set. Since the objective combines
the sub-sampling of modalities with the PoE-aggregation, it can be viewed as a mixture of
products of experts (c.f., Chapter 5).

Intuitively, the objective in Equation (9.3) contrasts between a positive pair of embeddings
(ckA, ck) drawn from corresponding examples and K − 1 negative pairs {(ckA, cl)} drawn
from different examples k 6= l. Through the minimization of the objective with respect to
ψ, the shared inference network is trained to learn a representation where positive pairs
are closer to each other while negative pairs are further apart (c.f., Section 3.4).

9.2.3 Part 2: Conditional VAEs with Coupled Decoders

The second part of the DMVAE is a multimodal generative model comprised of a set of
conditional VAEs. For each modality, we train a separate VAE, but the decoders are coupled
across modalities because we condition each decoder on a context vector that is shared
between modalities. In this subsection, we define the objective of the conditional VAE
before we extend the objective with an additional regularizer to incentivize the desired
disentanglement of shared and modality-specific information in Section 9.2.4.

Broadly, our idea is to train a conditional VAE for each modality i ∈ {1, . . . ,M} to learn
a generative model pθi(xi | c,mi), where c is a context vector that is shared between
modalities, mi is a modality-specific latent vector, and θi denotes the parameters of the
decoder for modality i. Since c is shared between modalities, the decoders are coupled and
thus we implicitly train a multimodal generative model pθ(x̄ | c), where θ = {θ1, . . . , θM}.
In general, we assume that c is not known and instead use the embeddings produced by
the shared inference network we introduced in Section 9.2.2

Conditional VAE With a conditional VAE for modality i, we approximate log p(xi | c),
i.e., the log-evidence conditioned on a context vector c. For each modality i ∈ {1, . . . ,M},
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we train a conditional VAE by maximizing the objective

LELBO(xi|c;φi, θi) := Eqφi (mi | xi) [log pθi(xi |mi, c)]−DKL (qφi(mi | xi) || p(mi)) , (9.4)

where φi denotes the parameters of the encoder for modality i. Compared to the standard
objective of the conditional VAE (Equation 3.42), we merely replace the notation for
the observation (i.e., xi instead of x) as well as for the latent vector (mi instead of z),
and additionally assume that p(mi | c) = p(mi) to remove the conditioning for the prior
distribution.33 Consequently, Equation (9.4) forms a variational lower bound on the
conditional log-evidence log p(xi | c).

To summarize, we train a conditional VAE independently for each modality i ∈ {1, . . . ,M}
using the objective in Equation (9.4) with an additional regularizer that we introduce in
Section 9.2.4. While each VAE is trained independently, all decoders are conditioned on
the same context vector c, which provides a coupling between the decoders of different
modalities. Thus, we can independently train M conditional VAEs—each with a separate,
modality-specific latent space—and still associate the generative models of different modal-
ities through the conditioning on the shared context vector. Consequently, the DMVAE
can generate observations of different modalities conditioned on the same context vector
(e.g., to generate missing modalities).

9.2.4 Disentanglement by Mutual Information Minimization

In Chapter 6, we discussed the benefits and pitfalls of partitioning the latent space of
multimodal VAEs into shared and modality-specific subspaces. Specifically, we showed
that partitioning without additional constraints does not suffice to achieve the desired
disentanglement of shared and modality-specific information. Similarly, for the DMVAE, we
found that the model tends to encode not only modality-specific but also shared information
in the modality-specific embeddings mi ∼ qφi(mi | xi) if we train the VAEs using the
objective in Equation (9.4) without additional regularization.

To incentivize the disentanglement of shared and modality-specific information, we add
a regularization term to the objective in Equation (9.4). Specifically, we introduce a
regularization technique that suppresses the encoding of shared information for the VAEs
through the minimization of the mutual information between the context vector and the

33We introduce the latter assumption because we use the model to infer modality-specific information
which, by definition, is independent of information shared between modalities.
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modality-specific embeddings, but only with respect to the latter. In this subsection, we
describe the mutual information estimator, which we use to define the regularized training
objective of the conditional VAE in Section 9.2.5.

Mutual information estimation Let c and mi be two random vectors for which we
want to estimate the mutual information. The mutual information is given by the KL-
divergence between their joint distribution and the product of marginals; thus, it can be
expressed as a ratio of two densities

I(c; mi) = DKL(q(c,mi) || q(c)q(mi)) (9.5)

= Eq(c,mi)

[
log q(c,mi)

q(c)q(mi)

]
. (9.6)

For estimating the density ratio in Equation (9.6), we use a common technique for which
a discriminator or classifier is trained to distinguish between samples drawn from these
distributions [NWJ10; SSK12; KM18].

For each modality i ∈ {1, . . . ,M}, we define a discriminator Di : (c,mi) 7→ [0, 1], which
estimates the probability that a given pair of embeddings (c,mi) is sampled from the joint
distribution q(c,mi) as opposed to the product of marginals q(c)q(mi). The discriminator
is trained to minimize the binary cross-entropy loss

−Eq(c,mi) [logDi(c,mi)]− Eq(c)q(mi) [log(1−Di(c,mi))] (9.7)

based on a finite sample from the two distributions.

Following Kim and Mnih [KM18], we define the mutual information estimator as

Î(c; mi) := Eq(c,mi)

[
log Di(c,mi)

1−Di(c,mi)

]
, (9.8)

with the difference that the estimator in Equation (9.8) does not estimate the total correla-
tion34 between all components of a latent vector, but the mutual information between two
vectors c and mi that represent a specific partitioning of the latent space.

Mutual information minimization Concurrent to the training of the DMVAE, we
train the discriminator for each modality i based on samples (c,mi) ∼ qMoPoE

ψ (c|x̄)qφi(mi|xi)

34In the case of two random variables, total correlation is equivalent to mutual information [e.g., CT12].
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and use batch-wise permutations to create samples from the marginal distributions. In the
optimization of the DMVAE, we use the estimated mutual information to minimize the
statistical dependence between the shared and modality-specific embeddings, but only with
respect to the parameters φi of the modality-specific encoder. Thus, while the discriminator
is trained to estimate the mutual information, its estimates affect only the parameters φi
of the modality-specific encoder in order to suppress the encoding of shared information
for the respective VAE. Next, we specify the complete training procedure of the DMVAE
and describe the optimization in more detail.

9.2.5 Training Procedure

To recapitulate, the DMVAE is comprised of two parts: it has a shared inference network
that infers the information shared between modalities using contrastive learning and, for
each modality, it uses a conditional VAE to infer modality-specific information.

The DMVAE is trained in two stages, using the following objectives35:

min
ψ

E{x̄k}K
k=1∼p(x̄)

[
LMoPoE
InfoNCE({x̄k}Kk=1;ψ)

]
, (Stage 1)

max
φi,θi

Ep(x̄)qMoPoE
ψ

(c | x̄)

[
LELBO(xi|c;φi, θi)

]
− δiÎ(c; mi) , for i ∈ {1, . . . ,M} . (Stage 2)

In the first stage, we only train the shared inference network using the objective in Equa-
tion (9.3). In the second stage, we train a conditional VAE independently for each modality,
optimizing a Lagrangian function where the ELBO of the conditional VAE (Equation 9.4) is
maximized subject to the disentanglement regularization (Equation 9.8), which is weighted
by a Lagrange multiplier δi ≥ 0.36 We update the discriminator parameters once after
every training step of the VAE, but in principle other update schedules would be possible.
Notably, the parameters ψ of the shared inference network remain fixed during the second
stage of training; thus, the regularization only affects the parameters {φ1, . . . , φM} of the
modality-specific encoders to suppress the encoding of shared information.

35In theory, we define the objectives in terms of expectations over the joint distribution p(x̄). In practice,
we sample observations from a finite dataset D = {(x̄(n))}Nn=1 of size N .

36Notably, δi = 0 corresponds to training a conditional VAE without additional regularization. We
investigate the effect of δi in the experiments (Section 9.3.2).

135



Chapter 9. A Hybrid Approach

9.3 Experiments

Next, we evaluate the DMVAE as a multimodal generative model in comparison to
multimodal VAEs. Specifically, we include the MVAE [WG18], MMVAE [Shi+19], as
well as the MoPoE-VAE and MMVAE+ that we introduced in the previous chapters
(Chapters 5 and 6, respectively). We conduct experiments on the Translated-PolyMNIST
dataset (described in Section 4.1.1), for which shared information cannot be predicted in
expectation across modalities on the level of observations. Thus, with the DMVAE, we
seek to address limitations of existing multimodal VAEs that we discussed in Chapter 7.

To analyze the robustness of the model, we evaluate the DMVAE in multiple configurations.
In Section 9.3.1, we vary the number of modality-specific dimensions, which we previously
found to be an important hyperparameter for multimodal VAEs with partitioned latent
spaces (Chapter 6). Moreover, in Section 9.3.2, we include an ablation study for the hyper-
parameter δi that controls the disentanglement of shared and modality-specific information.

Evaluation metrics As in the previous chapters, we evaluate the encoding of shared
information, the disentanglement of shared and modality-specific information, and the
generative performance of the model. To evaluate the encoding of shared information, we
use linear probing with logistic regression to measure how well the shared information (i.e.,
the digit label) is encoded in the learned representation. For models with a partitioned latent
space (i.e., the MMVAE+ and DMVAE), we evaluate the embeddings of the variational joint
posterior that describes the shared latent space. As before, we interpret the classification
accuracy of linear probing as a proxy for disentanglement in the sense of linear separability.
Additionally, to assess the disentanglement, we use nonlinear probing with MLPs to
measure how much shared information is encoded in the modality-specific embeddings.
To assess the generative performance, we consider both generative quality (measured in
terms of FID) and semantic coherence for the conditional generation (measured in terms
of generative coherence) to discern potential tradeoffs between these performance criteria
(c.f., Section 7.1.1). For more information on the evaluation metrics, see Section 2.5.

Implementation details For the baselines, we employ the same configurations as in the
previous chapters. For the MVAE, MMVAE, and MoPoE-VAE, we use the configurations
described in Chapter 7, and for the MMVAE+, we use the same configuration as in
Chapter 6. We employ ResNets [He+16] for the encoders and decoders of all models. The
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DMVAE is trained for 1000 epochs in each training stage. In the first stage, we use a batch
size of K = 1024 for contrastive learning; in the second stage, we set δi = 400 for each
modality i ∈ {1, . . . ,M}, based on the ablation study in Section 9.3.2.

For unconditional generation with the DMVAE, one needs to define a prior distribution for
the variational joint posterior. In principle, we could include a prior distribution in the
formulation. However, we found it to be more convenient to fit a Gaussian mixture model
(GMM) on the embeddings of the training data and use the resulting model as a prior
distribution (c.f., [Gho+20]). Specifically, we used a GMM with 100 mixture components,
though we found that even a single component would suffice to achieve similar results.

9.3.1 Translated-PolyMNIST

In the following, we present the results on the Translated-PolyMNIST dataset. First, we
describe the quantitative results for all models and present the qualitative results for the
DMVAE. For the baselines, we reference the qualitative results from the previous chapters.

Quantitative results Table 9.1 presents the quantitative evaluation for all models. In
terms of linear probing, the DMVAE shows a significantly better performance compared to
the baselines. In fact, we find that a logistic regression can predict the shared information
(i.e., the digit label) perfectly from the embeddings produced by the model. Even more
strikingly, we observe a marked improvement in generative coherence, as the DMVAE
exhibits a coherence accuracy between 63–69% for the conditional generation of missing
modalities. In contrast, the other models perform close to the chance-level of 10% on
the Translated-PolyMNIST dataset, as previously highlighted in Chapter 7. Finally, we
observe that the DMVAE’s generative quality for unconditional generation is on par with
the performance of the MVAE and thus it approaches the feasible limit of what can be
achieved by unimodal VAEs. To recognize this, we can directly compare the FID values
(for which lower is better) to the results in Figure A.1.

Overall, in both configurations of the DMVAE, the model exhibits a favorable tradeoff
in terms of generative quality and coherence compared to the baselines. Nevertheless,
we also notice a tradeoff for the DMVAE when we increase the dimensionality of the
modality-specific latent space from 32 to 64 dimensions. We find that the generative quality
slightly improves while the coherence decreases by about 6–9 percentage points.
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Linear probing Generative coherence Generative quality

MVAE 0.828 (±0.007) 0.146 (±0.007) 54.600 (±0.764)

MMVAE 0.388 (±0.010) 0.114 (±0.001) 168.887 (±2.099)

MoPoE-VAE 0.837 (±0.009) 0.123 (±0.001) 107.320 (±0.871)

MMVAE+ 0.171 (±0.010) 0.111 (±0.001) 91.497 (±3.563)

DMVAE (dim=32) 1.000 (±0.000) 0.692 (±0.007) 57.721 (±1.447)

DMVAE (dim=64) 1.000 (±0.000) 0.630 (±0.020) 57.220 (±1.273)

Table 9.1: Evaluations on the Translated-PolyMNIST dataset. For linear probing, we
evaluate the classification accuracy of a logistic regression model trained to predict the
shared information (i.e., the digit label) from the learned embeddings sampled from the
variational joint posterior conditioned on the full set of modalities. For the generative
coherence, we compute the leave-one-out conditional coherence accuracy averaged across
all modalities. Only for the MMVAE and MMVAE+, we report the pairwise conditional
coherence accuracy, because they cannot aggregate information across multiple modalities.
To assess generative quality, we compute the average FID (lower is better) across all
modalities generated from prior samples. For the DMVAE, we include two configurations,
where “dim” denotes the dimensionality of the modality-specific space. For each model, the
results are averaged over three seeds and in parentheses we show the standard deviation.

Qualitative results To supplement the quantitative results, in Figure 9.1 we examine
the generated samples produced by the DMVAE. Figure 9.1a shows the unconditionally
generated samples, for which we observe a decent quality and diversity, significantly better
than for the MMVAE and MoPoE-VAE and on par with the MVAE and unimodal VAEs
(e.g., compare to the results in Figure A.3, subplots (e) to (h)).

Figure 9.1b shows the conditionally generated samples, specifically the leave-one-out
conditional generation of missing modalities. Notably, the DMVAE generates coherent
samples across modalities, while the baselines fail to accomplish this task on the Translated-
PolyMNIST dataset (e.g., see Figure A.4, subplots (d) to (f)). Specifically, the DMVAE
generates coherent samples with respect to both the inferred shared information (i.e.,
consistent digits along each column) and the inferred modality-specific information. The
latter manifests in terms of a coherent “style” in the generated images, as witnessed by the
consistent background and digit appearance (e.g., the location, slope and thickness of the
digits) along each row of Figure 9.1b.
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(a) Unconditional generation (b) Conditional generation

Figure 9.1: Qualitative results for the DMVAE trained on the Translated-PolyMNIST
dataset. In Figure 9.1a, we showcase the unconditional generation with 20 samples for each
of the five modalities, generated using modality-specific embeddings drawn from the prior
distribution and shared embeddings drawn from a GMM trained on the embeddings of
the training dataset. In Figure 9.1b, we present qualitative results for the (leave-one-out)
conditional generation, showing 20 samples for each modality. Along each column, we
keep the shared embedding fixed to demonstrate the coherence with respect to the inferred
shared information; likewise, for each row, we keep the modality-specific embedding fixed
to demonstrate the coherence with respect to the inferred modality-specific information.

9.3.2 Ablation Study

In this subsection, we investigate the effects of the hyperparameter δi that controls the
regularization of the DMVAE (see Stage 2). Recall that the parameter weights the estimate
of the mutual information between the inferred shared and modality-specific information
independently for each modality i ∈ {1, . . . ,M}. Thus, its purpose is to incentivize the
disentanglement of shared and modality-specific information by suppressing the encoding
of shared information for the VAEs.

For the ablation study, we explore a large range of values, δi ∈ [0, 1600], where δi = 0
corresponds to training a conditional VAE without additional regularization. Ideally,
the value of δi should be selected based on a metric that does not require labels that
indicate what is shared between modalities, since we generally assume that this information
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Figure 9.2: Ablation study for the DMVAE with respect to the hyperparameter δi that
weights the regularization term. Figure 9.2a shows the generative quality for the uncondi-
tional generation in terms of FID (lower is better). Figure 9.2b shows the log-likelihood
values of the models on holdout data (higher is better). Each point represents a different
model trained with the respective value of δi. On the horizontal axis, we use a linear scale
for the range [0, 50] and a logarithmic scale for values larger than 50.

is not available in the considered setup. Therefore, we first assess two “unsupervised”
metrics (FID and log-likelihood) before we evaluate metrics that require ground truth
labels (latent probing and semantic coherence).

FID and log-likelihood In Figure 9.2, we present the results of the ablation study in
terms of “unsupervised” metrics, which estimate how well the generative model approxi-
mates the data distribution. First, we assess the generative quality of the unconditional
generation in terms of FID (Figure 9.2a). We find that the performance of the model in
terms of FID remains relatively stable up to a value of δi = 400, beyond which it starts
to diverge for some modalities. In Figure 9.2b, we observe a similar trend in terms of the
log-likelihood, which remains relatively stable up to the same value of δi = 400, beyond
which it deteriorates for individual modalities. It is a promising sign to observe a common
trend across the two metrics, because the FID correlates well to the perceived quality of
generated images [Heu+17], whereas the log-likelihood is modality-agnostic but does not
always faithfully reflect the quality of samples [TOB16].
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(b) Nonlinear probing
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(c) Generative coherence

Figure 9.3: Ablation study for the DMVAE with respect to the hyperparameter δi that
weights the regularization term. In contrast to Figure 9.2, the evaluation metrics shown
here require ground truth labels. In Figures 9.3a and 9.3b, we assess how much shared
information is encoded in the modality-specific embeddings using linear and nonlinear
probing and evaluate the classification accuracy respectively. Notably, lower values indicate
a better disentanglement. We show the results for linear probing using logistic regression
(Figure 9.3a) and nonlinear probing using MLP classifiers (Figure 9.3b). In Figure 9.3c, we
evaluate the semantic coherence for the generation of missing modalities in terms of the
leave-one-out conditional coherence accuracy (higher is better). Each point represents a
different model trained with the respective value of δi. On the horizontal axis, we use a
linear scale for the range [0, 50] and a logarithmic scale for values larger than 50.

Latent probing and semantic coherence In Figure 9.3, we show the results of the
ablation study in terms of metrics that, to be computed, require ground truth labels that
indicate what is shared between modalities. First, we assess the disentanglement using
linear and nonlinear probing to predict the shared information (i.e., the digit label) from
the modality-specific embeddings. Thereby, we estimate how well shared information can
be extracted from the modality-specific embeddings and thus a lower value indicates a
better disentanglement. Second, we evaluate the semantic coherence for the conditional
generation of missing modalities in terms of the leave-one-out generative coherence.

We show the results for linear probing using logistic regression (Figure 9.3a) as well as
nonlinear probing using MLP classifiers (Figure 9.3b). Generally, we find that with values
of δi > 0, the encoding of shared information is suppressed effectively. Even with δ = 10,
significantly less shared information can be recovered from the modality-specific embeddings
compared to the model without regularization (i.e., δ = 0). Nevertheless, when we use
nonlinear probing, we notice that the modality-specific embeddings still encode shared
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information to a small but measurable extent (≤ 30% classification accuracy). In terms
of the generative coherence (Figure 9.3c), which estimates the semantic coherence for the
conditional generation across modalities, we observe that the performance improves up to
a value of δi = 400, beyond which it decreases for individual modalities—consistent with
the results of the FID and log-likelihood evaluation.

Overall, for the ablation study, the consistency of the results across all considered metrics
is a promising sign, suggesting that model selection with respect to δi might be feasible
without ground truth labels that indicate what is shared between modalities.

9.4 Summary

In this chapter, we presented a hybrid approach for multimodal learning that combines
generative and discriminative approaches. We proposed the DMVAE as a multimodal
generative model that approximates the joint distribution of multiple modalities and
disentangles shared and modality-specific information effectively.

The proposed model integrates the ideas and insights from the previous chapters. First, the
model leverages the effectiveness of contrastive learning to infer information that is shared
between modalities, which builds on our results from Chapter 8. Second, it overcomes
some of the limitations of multimodal VAEs that we discussed in Chapter 7. Specifically,
it reduces the gap in generative quality between unimodal and multimodal VAEs, while
improving the conditional generation of missing modalities—even in the challenging setup
where shared information cannot be predicted in expectation across modalities on the
level of observations, as showcased by our results on the Translated-PolyMNIST dataset.
Nevertheless, more work is required to assess the effectiveness in real-world applications.

In the scope of the thesis, this chapter touches on each of the considered research questions.
It provides a model that leverages weak supervision to infer latent factors of variation shared
between modalities (Question 1), to disentangle shared and modality-specific information
(Question 2), and to generate missing modalities based on the learned representations
(Question 3). Thereby, this chapter provides a demonstration and outlook for how multi-
modal representation learning can benefit from a hybrid approach. In the following chapter,
we conclude this thesis with a discussion of the results and limitations of our work.

142



10
Discussion and Conclusion

In this final chapter, we take a bird’s eye perspective as we revisit the core aspects of the
thesis, reflect on the significance of our results, and highlight potential research directions.
First, we summarize our contributions and key insights in the context of our research goals
(Section 10.1). Second, we do not only consolidate the contributions made but also discuss
the limitations of our work and identify opportunities for future research (Section 10.2).
Finally, we close the discussion and conclude the thesis (Section 10.3).

10.1 Summary of Contributions

We considered the problem of multimodal learning under weak supervision—a challenging
setup, where we are given a dataset comprised of corresponding observations of different
modalities without labels for what is shared between them. For this setup, we designed
machine learning methods to improve the performance on a set of tasks by leveraging
information from multiple modalities. Specifically, we developed techniques to encode and
identify latent factors shared between modalities (Question 1), to disentangle shared and
modality-specific information (Question 2), and to learn generative models of multimodal
data in a way that enables inference across modalities (Question 3). By formalizing
the problem setup, exploring and designing suitable methods, and conducting extensive
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empirical evaluations, we contributed meaningful insights to representation learning with
multiple modalities. In the following, we summarize the main contributions.

10.1.1 Encoding and Identification of Shared Factors

First, we made several contributions to the encoding and identification of latent factors
shared between modalities. This corresponds to our goal specified in Question 1.

Throughout this thesis, we evaluated the learned representations of different models by
using auxiliary classification or regression tasks with respect to the ground truth factors.
Specifically, we used the prediction performance (i.e., classification accuracy for discrete
and the coefficient of determination for continuous factors) to measure how well the learned
representation encodes shared information (c.f., Section 2.5).

First, we tackled the problem using generative models. In Chapter 5, we proposed a
multimodal VAE for variational inference and density estimation on sets of modalities.
We found that by using all subsets of modalities for the posterior approximation our
model produces a better encoding of shared information compared to state-of-the-art
approaches and consequently improves the generation of missing modalities based on the
learned representations. On the contrary, in Chapter 7, we observed that multimodal VAEs
fail to encode shared information in a linearly separable format if we consider a more
challenging setup where shared information cannot be predicted in expectation across
modalities on the level of observations.

To address the issue, in Chapters 8 and 9 we demonstrated that discriminative approaches
provide a viable alternative to infer shared information even in the challenging setup that
restricts multimodal VAEs. We formally showed that contrastive learning can recover
shared factors that are invariant across modalities up to a block-wise indeterminacy and
corroborated our findings with numerical simulations and complex multimodal datasets.

Thus, we have addressed Question 1 theoretically and empirically, demonstrating how
different approaches can be used to encode and, in some cases, provably recover latent
factors of variation shared between modalities. Thereby, our work provides a stepping
stone for multimodal integration and techniques for learning an abstract, modality-agnostic
representation of the environment using machine learning.
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10.1.2 Disentanglement of Shared and Modality-specific Factors

We also made several contributions with respect to the second goal (Question 2), i.e., the
disentanglement of shared and modality-specific information. The disentanglement poses
an additional challenge because it requires that a model infers modality-specific information
in a form that separates it from shared information.

As for the encoding of shared information, we evaluated the learned representations by
using auxiliary classification or regression tasks with respect to the ground truth factors
to measure disentanglement. Primarily, we used linear probing (i.e., linear regression or
logistic classification), for which a high prediction performance implies that the respective
information is encoded in a linearly separable format (c.f., Section 2.5). Additionally,
for models with a partitioned latent space, we used separate predictors for the shared
and modality-specific subspaces to assess whether each subspace encodes the relevant
information. For some experiments, modality-specific information was not annotated.
In these cases, we used qualitative and quantitative evaluations to assess the disentan-
glement, specifically through the generation of missing modalities based on the learned
representations.

For generative learning with multimodal VAEs, we developed models that outperform
existing baselines in terms of linear probing and the generation of missing modalities. In
Chapter 5, we found that using all subsets of modalities for the posterior approximation
can improve these performance criteria compared to baseline approaches that use only
certain subsets of modalities. In Chapter 6, we devised a model with a partitioned latent
space, for which linear probing showed that shared information was encoded primarily in
the shared and not in the modality-specific subspaces. Consequently, the disentanglement
through partitioning also improved the generative performance compared to models with a
joint latent space. Finally, in Chapter 9, we developed a hybrid model that infers shared
information using contrastive learning and modality-specific information using VAEs and
thereby demonstrated further improvements in terms of linear probing and the generation of
missing modalities. Notably, even with nonlinear probing, scarcely any shared information
could be extracted from the modality-specific embeddings produced by the model.

Hence, to address Question 2, we presented generative and discriminative models that
leverage weak supervision to encode shared and modality-specific information in a disentan-
gled format. Thereby, we made progress towards the inference of modality-specific factors
of variation, i.e., not only factors that are shared between modalities.
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10.1.3 Contributions to Multimodal Generative Models

The last key aspect was the development of generative models that can draw inferences
across modalities (Question 3). In this respect, we made the following contributions.

To assess the generative performance of multimodal generative models, we used two
types of metrics. To assess the generative quality, we evaluated the log-likelihood of the
models and additionally computed the Fréchet inception distance (FID) for the conditional
and unconditional generation. To measure the semantic coherence across modalities, we
evaluated the generative coherence (c.f., Section 2.5) with classifiers that were trained using
ground truth labels.

Based on the framework of the variational autoencoder, we introduced several new types
of multimodal VAEs. In Chapter 5, we developed the MoPoE-VAE, which generalizes two
existing, widely-used approaches and found that it improved the conditional generation
of missing modalities compared to these baselines. Second, in Chapter 6, we designed
multimodal VAEs with a partitioned latent space and discussed the benefits and pitfalls of
partitioning. Based on these insights, we developed the MMVAE+, which promotes the
disentanglement for the respective subspaces and consequently improves the generative
performance compared to models with a joint latent space.

On the flip side, in Chapter 7, we found that the sub-sampling of modalities enforces
an undesirable bound for the approximation of the joint distribution, which limits the
generative performance of mixture-based multimodal VAEs and constrains their application
to settings where shared information can be predicted in expectation across modalities. In
this context, we highlighted the tradeoffs between existing models in terms of generative
quality and generative coherence with an empirical study comprising multiple datasets.

Finally, in Chapter 7, we developed the DMVAE as a hybrid approach that combines
contrastive learning with conditional VAEs. In a proof of concept, we demonstrated
promising results in comparison to multimodal VAEs in a setting where shared information
cannot be predicted across modalities on the level of observations. Specifically, we found
that the model reduces the gap in generative quality compared to unimodal VAEs and
shows substantial improvements for the generation of missing modalities.

Thus, to address Question 3, we developed several techniques for multimodal generative
learning that can draw inferences across modalities based on the learned representations.
Yet, we also established fundamental limitations and tradeoffs for the proposed models.
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10.2 Limitations and Future Directions

In this section, we discuss the limitations of our results and developed methods. By
thoroughly examining the limitations, we aim to promote a comprehensive understanding
of the scope of our research and to identify fruitful directions for future work.

Real-world applications While we used various datasets to evaluate the developed
models and theoretical results, there is more work required to identify practical use cases
and to develop impactful real-world applications.

Throughout this thesis, we mainly used synthetic datasets and numerical simulations,
though we also included common machine learning datasets, such as CelebA and CUB,
to showcase more realistic use cases. However, in many real-world applications with
multimodal data, we encounter significantly more complex datasets. For example, in
robotics applications, we might face continuous streams of data from multiple modalities
(e.g., cameras, microphones, and tactile sensors). Thus, to draw definitive conclusions
about the utility of our results and methods for real-world applications, more dedicated
effort and research in the particular application domain is required.

Nevertheless, we can offer a perspective on the potential impact of our results. For
example, multimodal VAEs have been successfully used in biomedical applications [Dor+19;
LS21; Min+21; GZP21]. In these or similar applications, we would expect to see further
improvements based on our methods and insights. Additionally, our contributions with
respect to the limitations of multimodal VAEs can help practitioners identify suitable
applications for the existing approaches. Finally, we also presented new results to better
understand the effectiveness of existing methods, such as contrastive learning, which are
already widely adopted in many applications (e.g., [Rad+21]).

As a concrete example for future work, we envision applications in medicine and healthcare.
Medical examinations often produce multiple types of measurements of different modalities
(e.g., vital signs, blood tests, medical images). Notably, these measurements offer a natural
source of weak supervision when they belong to the same patient. Our methods and
insights could be used to develop tools that use information from multiple modalities to
learn meaningful representations that assess the health status of a patient. Even without
labels that describe the medical condition, our methods and insights can be applied to
infer disease characteristics that are expressed in different modalities.
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Methodological constraints To address the research questions, we provided theoretical
justifications and conducted a wide range of experiments. Yet, there are still possible
methodological limitations that we identified in our research.

In the context of generative learning with multimodal VAEs, we discussed the limitations
in a dedicated chapter (Chapter 7), but further points need to be addressed. To evaluate
the learned representations, we mainly used linear probing and measures of generative
quality and coherence. However, we did not formally analyze the identifiability of the latent
variables and only provided empirical results to assess the quality of learned representations.

Conversely, in Chapter 7, we did not establish theoretical limitations for the learned
representations but merely for the generative capabilities of multimodal VAEs. For future
work, it would be interesting to formally analyze the (non-)identifiability of latent variables
for multimodal VAEs. Moreover, it might be worthwhile to examine whether the limitations
we have established also apply to other types of generative models. Specifically, in light of
the promising developments in conditional generative learning with transformers [Vas+17]
and diffusion models [Soh+15; SE19; HJA20; Son+21] that led to remarkable improvements
in image-to-text generation (e.g., [Ram+21; Ram+22; Rom+22]). Thus, it might be worth
investigating whether different types of generative models could be combined or substituted.

In the context of contrastive learning, our theoretical results from Chapter 8 rest on some
non-trivial but justifiable assumptions that we discuss in Section 8.5. Specifically, we would
like to highlight that our results only consider the case of two modalities. While it might
be sufficient to use pairs of modalities in many applications, it would be interesting to
investigate whether the theoretical results could be extended beyond pairs of modalities.
Additionally, our results assumed content invariance (Assumption 4), which might not be
satisfied in real-world settings, e.g., due to measurement errors or other inaccuracies in
the data collection. For future work, it might be interesting to consider relaxations of the
assumption; e.g., in the setup of sequential decision making, as described in Appendix A.8.

Overall, despite the potential limitations regarding real-world applications and the method-
ological constraints of our work, we can reasonably infer that our methods and findings
address the research questions posed in Section 1.2. Thus, we believe that our work pro-
vides a contribution to the overarching goal of discovering latent structure from low-level
observations by leveraging weak supervision in the form of multiple modalities.
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10.3 Conclusion

In this thesis, we investigated the topic of multimodal representation learning in the setup
of weak supervision. We developed machine learning methods that leverage statistical
dependencies between observations of different modalities to draw inferences about the
latent factors of variation, particularly those shared between modalities. Employing both
generative and discriminative approaches, we analyzed existing and proposed novel methods
that transform observations into meaningful representations of shared and modality-specific
information without explicit supervision by labels. Specifically, we devised methods that
can encode and disentangle shared and modality-specific information and in some cases
provably recover latent factors up to acceptable ambiguities. Throughout this work, we
demonstrated that learned representations satisfying these properties can improve the
performance on downstream tasks, as showcased by the generation of missing modalities
based on the learned representations.

Thus, we established a theoretical basis for multimodal representation learning and explained
in which settings generative and discriminative approaches can be effective in practice.
More broadly, we contributed to the discovery of latent structure from low-level observations
by leveraging weak supervision in the form of multiple modalities.
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A.1. Derivation of Equation (6.16)

A.1 Derivation of Equation (6.16)

In the following, we explain the individual steps used to derive Equation (6.16).

We start from Equation (6.15), to which we first apply the definition of the KL-divergence
and then use the product rule for logarithms to group the corresponding terms as follows:

DKL
(
qφc(c | x̄)

∏M

j=1 qφmj
(mj | xj) || p(c)

∏M

j=1 p(mj)
)

(A.1)

= E
qφc (c | x̄)

∏M

j=1 qφmj
(mj | xj)

log
qφc(c | x̄)∏M

j=1 qφmj
(mj | xj)

p(c)∏M
j=1 p(mj)

 (A.2)

= E
qφc (c | x̄)

∏M

j=1 qφmj
(mj | xj)

log qφc(c | x̄)
p(c) +

M∑
j=1

log
qφmj

(mj | xj)
p(mj)

 . (A.3)

Then, we use the linearity of expectation and simplify the individual terms as follows:

For the first term, we have

E
qφc (c | x̄)

∏M

j=1 qφmj
(mj | xj)

[
log qφc(c | x̄)

p(c)

]
(A.4)

=
∫ ∫

· · ·
∫
qφc(c | x̄)

∏M

j=1 qφmj
(mj | xj) log qφc(c | x̄)

p(c) dc dm1 · · · dmM (A.5)

=
∫
qφc(c | x̄) log qφc(c | x̄)

p(c)

∫
· · ·

∫ ∏M

j=1 qφmj
(mj | xj) dm1 · · · dmM︸ ︷︷ ︸

=1

dc (A.6)

= Eqφc (c | x̄)

[
log qφc(c | x̄)

p(c)

]
. (A.7)

Analogously, we apply the same procedure for each of the remaining terms, so that

E
qφc (c | x̄)

∏M

j=1 qφmj
(mj | xj)

[
log

qφmj
(mj | xj)
p(mj)

]
= Eqφmj

(mj | xj)

[
log

qφmj
(mj | xj)
p(mj)

]
(A.8)

for each j ∈ {1, . . . ,M}.

Thus, Equation (A.3) can be expressed as sum of KL-divergences, i.e.,

Eqφc (c | x̄)

[
log qφc(c | x̄)

p(c)

]
+

M∑
j=1

Eqφmj
(mj | xj)

[
log

qφmj
(mj | xj)
p(mj)

]
(A.9)

= DKL
(
qφc(c | x̄) || p(c)

)
+

M∑
j=1

DKL
(
qφmj

(mj | xj) || p(mj)
)
, (A.10)

which completes the derivation of Equation (6.16).
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Lemma 4. Objective LMMVAE+
ELBO-Part.(x̄;φ, θ, ψ) (Equation 6.22) forms a lower bound on

log p(x̄), i.e.,
log p(x̄) ≥ LMMVAE+

ELBO-Part.(x̄;φ, θ, ψ) . (6.23)

Proof. We start from the definition of the ELBO for the multimodal VAE with a joint
latent space (Definition 5), i.e., the inequality

log p(x) ≥ Eqφ(z | x̄)
[

log pθ(x̄ | z)
]
−DKL

(
qφ(z | x̄) || p(z)

)
(A.11)

and first adapt the notation to describe a model with a partitioned latent space. Based
on the similarity of the graphical models in terms of their conditional independence
assumptions (see Figures 6.1a and 6.1b), we rename the latent variable z to c and the
encoder parameters φi to φci . Thus, the right-hand side of Equation (A.11) equals

Eqφc (c | x̄)
[

log pθ(x̄ | c)
]
−DKL

(
qφc(c | x̄) || p(c)

)
. (A.12)

Then, we use the conditional independence assumption xi⊥⊥xj | c to rewrite the first term
from Equation (A.12) as a sum of likelihood terms. Thus, we have

M∑
i=1

Eqφc (c | x̄)
[

log pθi(xi | c)
]
−DKL

(
qφc(c | x̄) || p(c)

)
. (A.13)

We plug in the mixture of experts (MoE) decomposition of the variational joint posterior
(i.e., Equation 6.18) into Equation (A.13) to obtain

M∑
i=1

E 1
M

∑M

j=1 qφcj
(c | xj)

[
log pθi(xi | c)

]
−DKL

(
1
M

∑M

j=1 qφcj
(c | xj) || p(c)

)
, (A.14)

which is equal to the objective of the MMVAE [Shi+19] using a slightly different notation.

Next, we use the linearity of expectation to take the weighted sum from the variational
joint posterior out of the expectation. Thus, we have

1
M

M∑
i=1

M∑
j=1

Eqφcj
(c | xj)

[
log pθi(xi | c)

]
−DKL

(
1
M

∑M

j=1 qφcj
(c | xj) || p(c)

)
, (A.15)

for which we again notice the grouping of likelihood terms into self- and crossmodal-
reconstructions, as described in Section 6.3.2.
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For self-reconstructions (i.e, likelihood terms for which i = j), we use the lower-bound

Eqφci
(c | xi)

[
log pθi(xi | c)

]
(A.16)

≥ Eqφci
(c | xi)

[
Eqφmi

(mi | xi)
[

log pθi(xi | c)
]
−DKL

(
qφmi

(mi | xi) || p(mi | c)
)]

(A.17)

= Eqφci
(c | xi)qφmi

(mi | xi)
[

log pθi(xi | c)
]
−DKL

(
qφmi

(mi | xi) || p(mi)
)
. (A.18)

Concretely, in Equation (A.17), we use a variational approximation, for which we intro-
duce the variational posterior qφi(mi | xi). Equation (A.18) follows from the assumed
independence of shared and modality-specific information (c.f., Figure 6.1), whereby
p(mi | c) = p(mi); consequently, the second term is constant with respect to c.

For cross-reconstructions (i.e., likelihood terms for which i 6= j), we instead use the following
approximation, for which we introduce the auxiliary prior qψi(mi):

Eqφcj
(c | xj)

[
log pθi(xi | c)

]
= Eqφcj

(c | xj)
[

logEqψi (mi)[pθi(xi | c)]
]

(A.19)

≥ Eqφcj
(c | xj)qψi (mi)

[
log pθi(xi | c)

]
, (A.20)

where the lower bound follows from Jensen’s inequality because the logarithm is a concave
function. Notably, the first equation holds for any distribution qψi(mi) for which xi⊥⊥ m̃i |c,
where m̃i ∼ qψi(mi) and c ∼ qφcj

(c | xj).

Finally, we apply the approximations from Equations (A.18) and (A.20) to the respective
likelihood terms in Equation (A.15) and thus obtain

1
M

M∑
i=1

{
Eqφci

(c | xi)qφmi
(mi | xi)

[
log pθi(xi | c,mi)

]

+
M∑
j=1

1{i 6=j}Eqφcj
(c | xj)qψi (mi)

[
log pθi(xi | c,mi)

]
−DKL

(
qφmi

(mi | xi) || p(mi)
)}

−DKL
(

1
M

∑M

j=1 qφcj
(c | xj) || p(c)

)
,

(A.21)

which corresponds to the MMVAE+ objective from Equation (6.22).

Since Equation (A.15) is a lower-bound on the log-evidence log p(x̄) and the used approxi-
mations (Equations A.18 and A.20) are also lower bounds, it follows that the MMVAE+
objective is a lower bound on the log-evidence, which concludes the proof.
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Corollary 2. Let xM+1 be a random vector that describes an additional modality and
let x̄+ := x̄ ∪ {xM+1} denote the extended set of modalities. Further, let S+ denote the
model-specific set of subsets of modalities and corresponding mixture coefficients for x̄+.

For the MMVAE and MoPoE-VAE, the discrepancy ∆(x̄,S) increases, i.e.,

∆(x̄+,S+) > ∆(x̄,S) , (7.27)

if xM+1 is sufficiently diverse in the following sense:( 1
|S+|

− 1
|S|

) ∑
A∈S

I(x{1,...,M}\A; xM+1 | xA) < 1
|S+||S|

∑
A∈S

H(xA | xM+1)

+ 1
|S+|

∑
A∈S

H(xM+1 | x̄) .
(7.28)

Proof. First, note that all subsets from S are still contained in S+ but that S+ contains
new subsets in addition to those in S. Further, due to the re-weighting of mixture
coefficients, S+ can have different mixture coefficients for the subsets it shares with S. Let
S− := {(A, ω+

A) ∈ S+ : A 6∈ S}. In the following, ω+
A denotes the new mixture coefficients,

for which typically ωA 6= ω+
A due to the re-weighting.

We are interested in the change of the discrepancy when we add modality M + 1, i.e.,

∆(x̄+,S+)−∆(x̄,S) (A.22)

=
∑
B∈S+

ω+
B H(x{1,...,M+1}\B | xB)−

∑
A∈S

ωAH(x{1,...,M}\A | xA) . (A.23)

Rewrite the right-hand side in terms of subsets that are contained in both S and S+ and
subsets that are only contained in S+. For this, we decompose the first term as follows:

∑
B∈S+

ω+
B H(x{1,...,M+1}\B | xB) (A.24)

=
∑
A∈S

ω+
A H(x{1,...,M+1}\A | xA) +

∑
B∈S−

ω+
B H(x{1,...,M+1}\B | xB) (A.25)

=
∑
A∈S

ω+
A H(x{1,...,M}\A | xA) +

∑
A∈S

ω+
A H(xM+1 | x̄)

+
∑
B∈S−

ω+
B H(x{1,...,M+1}\B | xB) ,

(A.26)
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where the last equation follows from

H(x{1,...,M+1}\A | xA) = H(x{1,...,M}\A | xA) +H(xM+1 | xA,x{1,...,M}\A) (A.27)

= H(x{1,...,M}\A | xA) +H(xM+1 | x̄) . (A.28)

We can use the decomposition from Equation (A.26) to rewrite the right-hand side of
Equation (A.23) by collecting the corresponding terms for H(x{1,...,M}\A | xA):∑

A∈S
(ω+

A − ωA)H(x{1,...,M}\A | xA) +
∑
A∈S

ω+
A H(xM+1 | x̄)

+
∑
B∈S−

ω+
B H(x{1,...,M+1}\B | xB) .

(A.29)

Notice that in Equation (A.29) only the first term can be negative, due to the re-weighting of
mixture coefficients for terms that do not contain xM+1. Hence, the generative discrepancy
can only decrease if the mixture coefficients change in such a way that the first term in
Equation (A.29) dominates the other two terms.

For the relevant special case of uniform mixture weights, which applies to both the MMVAE
and MoPoE-VAE, we can further decompose Equation (A.29) into (i) information shared
between x̄ and xM+1, and (ii) information that is specific to x̄ or xM+1.

Using uniform mixture coefficients ωA = 1
|S| and ω

+
A = 1

|S+| for all subsets, we can factor
out the coefficients and rewrite Equation (A.29) as follows:( 1

|S+|
− 1
|S|

) ∑
A∈S

H(x{1,...,M}\A | xA) + 1
|S+|

∑
A∈S

H(xM+1 | x̄)

+ 1
|S+|

∑
B∈S−

H(x{1,...,M+1}\B | xB) ,
(A.30)

where the second term already denotes information that is specific to xM+1. Hence, we
decompose the first and last terms corresponding to the criteria (i) and (ii).

For the first term from Equation (A.30), we have( 1
|S+|

− 1
|S|

) ∑
A∈S

H(x{1,...,M}\A | xA) (A.31)

=
( 1
|S+|

− 1
|S|

) ∑
A∈S

{
H(x{1,...,M}\A | xA,xM+1) + I(x{1,...,M}\A; xM+1 | xA)

}
. (A.32)

For the last term from Equation (A.30), we have
1
|S+|

∑
B∈S−

H(x{1,...,M+1}\B | xB) (A.33)

= 1
|S+|

{
H(x̄ | xM+1) +

∑
A∈S

1{(A∪{M+1})∈S−}H(x{1,...,M}\A | xA,xM+1)
}
, (A.34)
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where we can further decompose
1
|S+|

H(x̄ | xM+1) = 1
|S+|

{
H(x̄ | xA,xM+1) + I(x̄; xA | xM+1)

}
(A.35)

= 1
|S+|

{
H(x̄ | xA,xM+1) +H(xA | xM+1)

}
(A.36)

= 1
|S+||S|

∑
A∈S

{
H(x{1,...,M}\A | xA,xM+1) +H(xA | xM+1)

}
. (A.37)

Collecting all corresponding terms from Equations (A.32), (A.34) and (A.37), we can
rewrite Equation (A.30) as follows:( 1

|S+|
− 1
|S|

+ 1
|S+||S|

) ∑
A∈S

H(x{1,...,M}\A | xA,xM+1) + (A.38)( 1
|S+|

− 1
|S|

) ∑
A∈S

I(x{1,...,M}\A; xM+1 | xA) + (A.39)

1
|S+|

∑
A∈S

1{(A∪{M+1})∈S−}H(x{1,...,M}\A | xA,xM+1) + (A.40)

1
|S+||S|

∑
A∈S

H(xA | xM+1) + (A.41)

1
|S+|

∑
A∈S

H(xM+1 | x̄) . (A.42)

For both the MMVAE and MoPoE, the first and last terms cancel out, which can see by
plugging in the respective definitions of S into the above equation. Recall that for the
MMVAE, S is comprised of the set of unimodal subsets {{1}, . . . , {M}} and thus S+ is
comprised of {{1}, . . . , {M + 1}}. For the MoPoE-VAE, S is comprised of the powerset
P(M) and thus S+ is comprised of the powerset P(M + 1).

Hence, for the MMVAE and MoPoE-VAE, we have shown that ∆(x̄+,S+) −∆(x̄,S) is
equal to the following expression:( 1

|S+|
− 1
|S|

) ∑
A∈S

I(x{1,...,M}\A; xM+1 | xA) + (A.43)

1
|S+||S|

∑
A∈S

H(xA | xM+1) + 1
|S+|

∑
A∈S

H(xM+1 | x̄) (A.44)

where the information is decomposed into (i) information shared between x and xM+1

(Equation A.43) and (ii) information that is specific to x or xM+1 (the first and second
terms in Equation (A.44), respectively), where only (i) can be negative since |S+| > |S|.

This concludes the proof of Corollary 2, showing that ∆(x̄+,S+)−∆(x̄,S) > 0, if xM+1 is
sufficiently diverse in the sense that (ii) > (i).
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A.4. Coherence Estimation for CUB Image-Captions

white yellow blue red green gray brown black
[0, 0, 120] [25, 50, 70] [90, 50, 70] [0, 50, 70] [159, 50, 70] [36, 50, 70] [0, 0, 50] [24, 255, 255] [0, 0, 0]

[180, 18, 255] [35, 255, 255] [158, 255, 255] [15, 255, 255] [180, 255, 255] [89, 255, 255] [180, 18, 120] [16, 50, 70] [180, 255, 50]

Table A.1: HSV color ranges used to assign pixels to color classes. For each color, we report
the lower and upper limits. To include all tonalities of red, we consider two distinct ranges.

A.4 Coherence Estimation for CUB Image-Captions

To estimate the semantic coherence for the CUB Image-Captions dataset, we use a proxy
to evaluate the coherence for caption-to-image generation. We construct eight captions
of the form “this bird is completely [color]”, where [color] takes values in the set {white,
yellow, red, blue, green, grey, brown, black}. We divide the HSV color range according to
these eight color classes (see Table A.1). For each of the constructed captions, we generate
ten images and count how many pixels belong to each color class. We label an image as
coherent if the color for the given caption is among the two classes with the highest pixel
count. We consider two color classes because the highest count for some images might
be the background color rather than the color of the bird. Finally, the ratio of coherent
images over the total number of generated images is our coherence metric.

A.5 Additional Results for Chapter 7

Log-likelihoods and qualitative results Figure A.2 shows the generative quality in
terms of joint log-likelihoods. We observe a similar ranking of models as with FID, but
we notice that the gap between MVAE and MoPoE-VAE appears less pronounced. The
reason for this discrepancy is that, to be consistent with Chapter 5, we estimate joint
log-likelihoods given all modalities—a procedure that resembles reconstruction more than it
does unconditional generation. It can be of independent interest that log-likelihoods might
overestimate the generative quality for unconditional generation for certain types of models.
Qualitative results for unconditional generation (Figure A.3) support the hypothesis that
the presented log-likelihoods do not reflect the visible lack of generative quality for the
MoPoE-VAE. Further, qualitative results for conditional generation (Figure A.4) indicate
a lack of diversity for both the MMVAE and MoPoE-VAE—even though we draw different
samples from the posterior, the respective conditionally generated images (i.e., the ten
images along each column) show little diversity in terms of backgrounds or writing styles.
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(a) Modality 1
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(d) Modality 4
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Figure A.1: FID values for each of the five modalities. The top row shows the FIDs for
PolyMNIST and the bottom row for Translated-PolyMNIST respectively. Points denote
the FID averaged over three seeds and bands show one standard deviation respectively.
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(b) Translated-PolyMNIST

10−3 10−2 10−1 100 101

β

−5000

−4750

−4500

−4250

−4000

−3750

L
og

-l
ik

el
ih

oo
d

MVAE

MMVAE

MoPoE-VAE

Unimodal VAE

(c) CUB Image-Captions

Figure A.2: Joint log-likelihoods over a range of β values. Each point denotes the joint
log-likelihood of the respective model on the test set as an average over three seeds and
the bands show one standard deviation respectively.

160



A.5. Additional Results for Chapter 7

(a) Unimodal VAEs, β = 1 (b) MVAE, β = 1 (c) MMVAE, β = 1 (d) MoPoE-VAE, β = 1

(e) Unimodal VAEs, β = 1 (f) MVAE, β = 1 (g) MMVAE, β = 1 (h) MoPoE-VAE, β = 1

(i) Unimodal VAEs, β = 9 (j) MVAE, β = 9 (k) MMVAE, β = 9 (l) MoPoE-VAE, β = 9

(m) Unimodal VAEs, β = 9 (n) MVAE, β = 9 (o) MMVAE, β = 9 (p) MoPoE-VAE, β = 9

Figure A.3: Qualitative results for the unconditional generation using prior samples. For
PolyMNIST (Figures (a) to (d)) and Translated-PolyMNIST (Figures (e) to (h)), we show
20 samples for each modality. For CUB Image-Captions, we show 100 generated images
(Figures (i) to (l)) and 100 generated captions (Figures (m) to (p)) respectively.
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(a) MVAE, β = 1 (b) MMVAE, β = 1 (c) MoPoE-VAE, β = 1

(d) MVAE, β = 1 (e) MMVAE, β = 1 (f) MoPoE-VAE, β = 1

(g) MVAE, β = 9.0 (h) MMVAE, β = 9.0 (i) MoPoE-VAE, β = 9.0

(j) MVAE, β = 9.0 (k) MMVAE, β = 9.0 (l) MoPoE-VAE, β = 9.0

Figure A.4: Qualitative results for the conditional generation of missing modalities. For
PolyMNIST (Figures (a) to (c)) and Translated-PolyMNIST (Figures (d) to (f)), we show
10 conditionally generated samples of the first modality given the second modality. Inputs
are shown in the first row of the respective subfigure. For CUB Image-Captions, we show
the generation of images given captions (Figures (g) to (i)) as well as the generation of
captions given images (Figures (j) to (l)).
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A.6 Additional Results for Chapter 8

Parameter Value

Generating function 3-layer MLP
Encoder 7-layer MLP
Optimizer Adam
Cond. threshold ratio 1e-3
Dimensionality d 15
Batch size 6144
Learning rate 1e-4
Temperature τ 1.0
# Seeds 3
# Iterations 300 000
Similarity metric Euclidean
Gradient clipping 2-norm; max value 2

(a) Numerical simulation

Parameter Value

Generating function Image and text rendering
Image encoder ResNet-18
Text encoder 4-layer ConvNet
Optimizer Adam
Batch size 256
Learning rate 1e-5
Temperature τ 1.0
# Seeds 3
# Iterations 100 000
# Samples (train / val / test) 125 000 / 10 000 / 10 000
Similarity metric Cosine similarity
Gradient clipping 2-norm; max value 2

(b) Multimodal3DIdent

Table A.2: Hyperparameter values used for the two experiments in Chapter 8.

Numerical simulation with discrete latent factors Extending the numerical simula-
tion from Section 8.4.1, we test block-identifiability of content information when observations
are generated from a mixture of continuous and discrete latent variables, thus violating one
of the assumptions from Theorem 2. In this setting, content, style and modality-specific in-
formation are random vectors with 5 components sampled from either a continuous normal
distribution or a discrete multinomial distribution with k classes, for which we experiment
with different k ∈ {3, 4, . . . , 10}. For all settings, we train an encoder with the InfoNCE
objective and set the encoding size to 5 dimensions. The other hyperparameters used in
this set of experiments are detailed in Table A.2a. To ensure convergence of the models,
we extended the number of training iterations to 600 000 and 3 000 000 for experiments
with discrete style/modality-specific and discrete content variables respectively.

With discrete style or modality-specific variables and continuous content (Figures A.5a
and A.5b), the results suggest that content is block-identified, since the prediction of style
and modality-specific information is at chance level (i.e., accuracy = 1/k) while content
is consistently fully recovered (R2 ≥ 0.99). In the opposite setting, with continuous style
and modality-specific variables and discrete content (Figure A.5c), the number of content
classes appears to be a critical factor for block-identifiability of content: while content is
always encoded well, style information is also encoded to a significant extent when the
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(c) Only c is discrete

Figure A.5: Numerical simulations with discrete latent factors. The results show three
settings in each of which one group of latent variables is discrete while the remaining groups
are continuous. Continuous variables are normally distributed, whereas discrete variables are
sampled from a multinomial distribution with k distinct classes. We evaluate the prediction
performance using nonlinear probing and measure the R2 coefficient of determination for
continuous factors and classification accuracy for discrete factors respectively. Each point
denotes the average across three seeds and error bars show the standard deviation.

number of content classes is small but significantly less style information can be recovered
when the number of content classes increases.

Through this set of experiments, we challenge the assumption that all generative factors
should be continuous (c.f., Section 8.2) and show that block-identifiability of content can
still be satisfied when content is continuous while style or modality-specific variables are
discrete. On the other hand, style is encoded to a significant extent when content is discrete,
which might explain our observation for the Multimodal3DIdent dataset (Section 8.4.2),
where we saw that, in the presence of discrete content factors, some style information can
be encoded. However, the additional experiments do not explain our observation that
modality-specific information was encoded as well.

Evaluation with test-time interventions In Chapter 8, we observed that style infor-
mation can be predicted to some degree when there are causal dependencies from content
to style (Table 8.1), which can be attributed to style information being partially predictable
from the encoded content information in the causal setup. To verify that the encoders only
depend on content information (i.e., that content is block-identified), we assess the trained
models using a novel, more rigorous empirical evaluation for the numerical simulation.
We test the effect of interventions c → c′, which perturb the content information at
test time via batch-wise permutations of content, before generating x′1 = f1(c′, s,m1) and
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A.6. Additional Results for Chapter 8

x′1

m1 s c c′

x′2

s̃ m2

   Generative process R2 (nonlinear)

p(chg.) Stat. Cau. Content c Content c′ Style s Modality mi

1.0 7 7 0.00 (±0.00) 1.00 (±0.00) 0.00 (±0.00) 0.00 (±0.00)

0.75 7 7 0.00 (±0.00) 1.00 (±0.00) 0.00 (±0.00) 0.00 (±0.00)

0.75 3 7 0.00 (±0.00) 1.00 (±0.00) 0.50 (±0.19) 0.00 (±0.00)

0.75 7 3 0.01 (±0.00) 0.98 (±0.00) 0.03 (±0.01) 0.00 (±0.00)

0.75 3 3 0.28 (±0.14) 0.91 (±0.03) 0.39 (±0.20) 0.00 (±0.00)

Figure A.6: Evaluation with test-time interventions. We use the interventional setup
that is illustrated on the left, i.e., perturbed samples x′1,x′2 that are generated from the
intervened content c′, which is a copy of the original content c with an intervention, i.e., a
batch-wise permutation ( ) that makes c′ independent of s. Each row presents the results
of a different setup with varying style-change probability p(chg.) and possible statistical
(Stat.) and/or causal (Caus.) dependencies. Each value denotes the R2 coefficient of
determination (averaged across 3 seeds) for a nonlinear regression model that predicts the
respective ground truth factor (c, c′, s, or mi) from the learned representation.

x′2 = f1(c′, s̃,m1). Hence, we break the causal dependence between content and style (see
illustration in Figure A.6), which allows us to better assess whether the trained encoders
depend on content or style information. Specifically, we train the encoders for 3 000 000
iterations to ensure convergence and then use nonlinear probing to predict both the original
and the intervened content variables from the learned representations.

Figure A.6 presents our results using the interventional setup, showing that in most
cases only content information can be recovered. We observe an exception (underlined
values) in the two cases with statistical dependencies, where some style information can
be recovered, which is expected because statistical dependencies reduce the effective
dimensionality of content [von+21]. Analogously, in the case of statistical and causal
dependencies, some of the original content information can be recovered via the encoded
style information. In summary, the evaluation with interventions provides a more rigorous
assessment of block-identifiability in the causal setup, showing that neither style nor
modality-specific information can be recovered when the encoding size matches the true
number of content factors.

Multimodal3DIdent with mutually independent factors For the results of the
experiments in Section 8.4.2, we used the Multimodal3DIdent dataset, which was designed
such that object color is causally dependent on the x-position of the object to impose a
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Figure A.7: Result on the Multimodal3DIdent dataset with mutually independent factors.
As a function of the encoding size of the model, show the results for nonlinear probing with
respect to the ground truth image factors (Figure A.7a) and text factors (Figure A.7b) to
quantify how well the embeddings encode the respective information. Content factors are
denoted in bold and style factors in italic. Along the x-axis, we vary the encoding size, i.e.,
the output dimensionality of the model. We measure the prediction performance in terms
of the R2 coefficient of determination for continuous factors and classification accuracy for
discrete factors respectively. Each point denotes the average across three seeds and bands
show one standard deviation.

causal dependence of style on content. In Figure A.7, we provide a similar analysis using
a version of the dataset without the causal dependence, i.e., with mutually independent
factors. For both modalities, we observe that object color can only be recovered when the
encoding size is larger than four, i.e., when there is excess capacity beyond the capacity
needed to encode all content factors. Hence, the results in Figure A.7 corroborate that
contrastive learning can block-identify content factors in the Multimodal3DIdent dataset.
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A.7. Outlook: Symmetric Generative Process

A.7 Outlook: Symmetric Generative Process

In Chapter 8, we described an asymmetric generative process, where z2 is a perturbed
version of z1. In this section, we sketch out how our model and results can be adapted to a
symmetric setting, where z1 and z2 are generated as perturbations of z.

Concretely, we would need to make small adjustments to Assumptions 4 and 5 as follows.
We start with the content invariance in Assumption 4 to specify how z1 = (c̃1, s̃1, m̃1) and
z2 = (c̃2, s̃2, m̃2) are generated.

Let i ∈ {1, 2}. The conditional density p(zi | z) over Zi ×Z takes the form

p(zi | z) = δ(c̃i − c)δ(m̃i −mi)p(̃si | s) , (A.45)

where δ(·) is the Dirac delta function, used to specify that c̃i = c almost everywhere as
well as m̃i = mi almost everywhere. Since c̃1 = c a.e. and c = c̃2 a.e., it follows that
c̃1 = c̃2 almost everywhere, which is a property that is needed in Step 1 of the proof of
Theorem 2. In addition, it still holds that m̃i⊥⊥ zj, for i, j ∈ {1, 2} and i 6= j, which is
needed in Step 2 of the proof to show that modality-specific information is not encoded.

Additionally, we need to revisit Assumption 5, for which both s̃1 and s̃2 would be generated
through perturbations of s via the conditional distribution p(̃si | s) on S × S, as described
in Assumption 5, for each i ∈ {1, 2} individually. As a technical nuance, we would need to
specify the conditional generation of the perturbed style variables s̃1 and s̃2 such that they
are not perturbed in an identical manner w.r.t. s. To ensure this, one could for example
constrain pA appropriately to exclude the degenerate case where dimensions in s̃1 and s̃2

are perfectly aligned. This would be necessary for Step 2 of the proof of Theorem 2.

A.8 Outlook: Sequential Decision Making

In this section, we describe an extension of our formulation of the multimodal generative
process from Chapter 2 to a setup with sequential decision making, i.e., a dynamical system
where an agent interacts with its environment. Instead of a fixed dataset, we consider a
time series of observations and subsequent actions that affect the generative process on
the level of latent variables or hidden states, as they are typically called in the context of
partially observable Markov decision processes (POMDPs).
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A.8.1 Motivation

For illustration, consider the following example from everyday life. Imagine that you intend
to cross a busy street and suddenly hear a car approaching. As you turn your head into the
perceived direction of sound, your visual experience matches your auditory perception—you
see the car approaching. Hence, the car, which is initially perceived only through the
auditory sensory system, comes into visual perception given a suitable course of actions.
Analogously, machines can learn to seek sensory inputs that carry shared information about
external objects by minimizing the prediction error across modalities through enhanced
perception and adaptive behavior.

In this thesis, we have only investigated the former mechanism (i.e., enhanced perception)
by learning representations that encode shared information in a suitable format. We believe
that adaptive behavior, which represents the flipside of active inference [e.g., PPF22], offers
rich opportunities for future work on multimodal representation learning. In the following,
we sketch out how adaptive behavior in the form of sequential decision making can be
combined with our framework.

A.8.2 Formulation

Consider a policy, i.e., a function πη : Ẑ → A that maps from the representation space Ẑ to
a set of possible actions A and that is parameterized by η. Let a(t) = π(ẑ(t)) be an action
at time t that feeds back into a generative process that evolves over time. Specifically,
consider a partially observable Markov decision process (POMDP), for which the hidden
states at time t+ 1 depend on the previous states and actions, i.e.,

z(t+1) = fz(z(t), a(t)) , (A.46)

where fz is an unknown function. The observations at time t+ 1 are generated as before
(i.e., following Definition 1) but with an additional temporal dependence,

x(t+1)
i = fi(z(t+1)), for each modality i ∈ {1, . . . ,M} . (A.47)

Within the framework of sequential decision making, one could reason about a set of invariant
factors given a suitable course of actions and therefore consider a joint optimization with
respect to the parameters of the encoder and policy network.
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A.8. Outlook: Sequential Decision Making

The goal of sequential decision making is to find an optimal behavior subject to some
optimality criterion. Often, the objective is to choose actions at each time step to maximize
the expected future discounted reward (or to minimize the cost, respectively), i.e.,

max
η

E
[ ∞∑
t=0

γtrt

]
, (A.48)

where rt is the reward at time t and γ ∈ [0, 1) is a discount factor. In the context of multi-
modal representation learning, we could for example use the InfoNCE loss (Equation 3.58)
as a cost function and formulate the objective as a joint optimization over the space of
actions and encoder parameters, namely

min
φ1,φ2,η

E
[ ∞∑
t=0

γt LInfoNCE
(
{x(k,t)

1 ,x(k,t)
2 }Kk=1;φ1, φ2

)]
. (A.49)

Crucially, the setup of sequential decision making can allow for relaxations of content
invariance (e.g., Assumption 3 or 4). For instance, when the assumption is violated initially
at time t = 0, there can still be set of actions {a(1), . . . , a(T )}, such that content invariance
is satisfied at time T > 0. This is analogous to our previous example of the approaching
car, for which it takes some time to turn our head in the right direction to confirm with
our eyes what we initially perceive only with our ears.

In Chapter 8, we have shown that contrastive learning tends to encode the invariant factors
over modality-specific and shared but variable factors when content invariance is satisfied.
We conjecture that similar results could be obtained in the described setup of sequential
decision making, even under violations of content invariance.
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