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Abstract

A comprehensive understanding of fracturing in rock formations requires a deep knowl-
edge of the intrinsic mechanical characteristics of rock-type materials. While conventional
isotropy-based models can be easily implemented from mathematical and numerical per-
spectives, the unique arrangement found in many rocks, characterized by a preferred ori-
entation of constituent minerals and micro-cracks, sets them apart from isotropic solids.
This distinctiveness aligns them more closely with transversely isotropic materials. The
introduction of directional dependency in mechanical properties adds a layer of complex-
ity to the fracturing problem, transforming the trajectory of fracture formation into an
enigmatic puzzle. No longer readily predictable or a priori, this directional dependency
poses a new challenge that calls for advanced theories and modeling techniques to ensure
accurate fracture analysis in anisotropic rock formations.

While predicting fracture initiation and propagation in anisotropic rock-type materials
is still a challenging task, the complexity further intensifies with the introduction of
complex mixed-mode I/II loading regimes within the subsurface. This inevitable com-
plication underscores the need for a robust approach. This thesis strives to address both
these challenges in fracture mechanics by offering modified theories and implementing
advanced models capable of effectively capturing fracture behavior in anisotropic solids.
Leveraging the availability of experimental data sets, this research evaluates the robust-
ness of the proposed theories. Moreover, it adopts an integrated validation strategy to
endorse the presented results and establish their reliability in cases where no experimen-
tal data is available. By combining theoretical advancements, numerical simulations, and
reliable validation, this thesis seeks to deepen our understanding of fracture mechanics in
anisotropic rock-type materials and provide valuable insights for practical applications.

This thesis presents valuable experimental data sets of Grimsel Granite samples under-
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going mixed-mode loading through a modified SCB test. It unveils a competition be-
tween the material anisotropy and loading. The competition between material anisotropy
and loading, not understood by classical energy-based fracture growth criteria, is better
captured using the Maximum Tangential Stress theory. Modifications to energy-based
theories address this oversight, as the modified versions allow tensile crack propagation
only under opening displacement while distinguish between shearing and opening contri-
butions. Additionally, the thesis explores the robustness of phase-field modeling in repro-
ducing experimental data. Surprisingly, despite assuming direction-independent fracture
toughness, the phase-field model tracks the fracture trajectory with relative accuracy.
This phase-field model, however, is unable to precisely reproduce the ultimate loading at
the onset of fracture, which leads to an underestimation in the predicted effective fracture
toughness.

To understand hydraulic fracture initiation within anisotropic rock formations, this thesis
adopts the theory of finite fracture mechanics, and extends its scope to the behavior
of an edge crack in an infinite anisotropic formation interacting with a pressurized hole.
Through this investigation, the intricate interplay between material and stress anisotropy,
coupled with the size effect, emerges as a key determinant of initiation parameters. To
address this complex problem, in the first attempt, a combination of analytical relations
and a specific numerical scheme named DDM (Displacement Discontinuity Method) is
employed. In the absence of experimental data, finite element modeling is utilized to
validate and reproduce the obtained results. Notably, the final observations confirm the
significant influence of the interplay between Loading- and Material - dominance regimes
on determining hydraulic fracture initiation parameters in an anisotropic formation.

The thesis ends with a comprehensive discussion of the main findings and observations,
aimed at unveiling the underlying physics governing fracture initiation and propagation
in anisotropic solids. It delineates the similarities and differences in various fracture
mechanisms, shedding light on their distinct characteristics. Moreover, the thesis paves
the way for future investigations into fracturing in anisotropic solids under more complex
conditions, offering promising avenues for further exploration in this field.



Abstract

Ein umfassendes Verständnis von Brüchen in Gesteinsformationen erfordert eine tiefge-
hende Kenntnis der intrinsischen mechanischen Eigenschaften von Gesteinsmaterialien.
Während konventionelle Isotropie-basierte Modelle aus mathematischer und numerischer
Sicht leicht umsetzbar sind, unterscheidet sich die einzigartige Anordnung vieler Gesteine,
die durch eine bevorzugte Ausrichtung der Bestandteile von Mineralien und Mikroris-
sen gekennzeichnet ist, von isotropen Feststoffen. Diese Besonderheit bringt sie näher
an transversal isotrope Materialien heran. Die Einführung von richtungsabhängigen
mechanischen Eigenschaften fügt dem Bruchproblem eine Schicht Komplexität hinzu und
verwandelt die Frakturbildung in eine rätselhafte Herausforderung. Diese Richtungsab-
hängigkeit ist nicht mehr leicht vorhersagbar oder a priori, was eine neue Herausforderung
darstellt, die fortschrittliche Theorien und Modellierungstechniken erfordert, um eine
genaue Bruchanalyse in anisotropen Gesteinsformationen sicherzustellen.

Die Vorhersage von Bruchinitiierung und -ausbreitung in anisotropen Gesteinsmateri-
alien ist immer noch eine anspruchsvolle Aufgabe. Die Komplexität intensiviert sich
weiter durch die Einführung von komplexen gemischten I/II-Belastungsregimen im Unter-
grund. Diese unvermeidliche Komplikation unterstreicht die Notwendigkeit eines robusten
Ansatzes. Diese Dissertation versucht, beide Herausforderungen in der Bruchmechanik
anzugehen, indem sie modifizierte Theorien präsentiert und fortschrittliche Modelle im-
plementiert, die in der Lage sind, das Bruchverhalten in anisotropen Feststoffen effektiv
zu erfassen. Unter Nutzung von vorhandenen experimentellen Datensätzen bewertet diese
Forschung die Robustheit der vorgeschlagenen Theorien. Darüber hinaus wird eine integri-
erte Validierungsstrategie angenommen, um die präsentierten Ergebnisse zu unterstützen
und deren Zuverlässigkeit in Fällen zu etablieren, in denen keine experimentellen Daten
verfügbar sind. Durch die Kombination von theoretischen Fortschritten, numerischen
Simulationen und zuverlässiger Validierung versucht diese Dissertation, unser Verständ-
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nis von Bruchmechanik in anisotropen Gesteinsmaterialien zu vertiefen und wertvolle
Erkenntnisse für praktische Anwendungen zu liefern.

Diese Dissertation präsentiert wertvolle experimentelle Datensätze von Grimsel-Granitproben,
die einer gemischten Belastung im Rahmen eines modifizierten SCB-Tests ausgesetzt sind.
Sie enthüllt einen Wettbewerb zwischen Materialanisotropie und Belastung. Der Wettbe-
werb zwischen Materialanisotropie und Belastung, der von klassischen energiebasierten
Bruchwachstumskriterien nicht verstanden wird, wird besser durch die Theorie der max-
imalen Tangentialspannung erfasst. Modifikationen an energiebasierten Theorien be-
heben diesen Fehler, da die modifizierten Versionen Rissausbreitung unter Zugöffnung
ermöglichen und zwischen Scher- und Öffnungsbeiträgen unterscheiden. Darüber hinaus
erforscht die Dissertation die Robustheit der Phasenfeldmodellierung bei der Reproduk-
tion experimenteller Daten. Überraschenderweise verfolgt das Phasenfeldmodell trotz An-
nahme einer richtungsunabhängigen Bruchzähigkeit die Bruchbahn relativ genau. Dieses
Phasenfeldmodell kann jedoch die ultimative Belastung zu Beginn des Bruchs nicht genau
reproduzieren, was zu einer Unterschätzung der vorhergesagten effektiven Bruchzähigkeit
führt.

Um das Entstehen hydraulischer Rissbildungen in anisotropen Gesteinsformationen
zu verstehen, greift diese Dissertation auf die Theorie der endlichen Rissmechanik zurück
und erweitert ihren Anwendungsbereich auf das Verhalten eines Kantenrisses in einer
unendlichen anisotropen Formation, der mit einem unter Druck stehenden Loch inter-
agiert. Durch diese Untersuchung wird das komplexe Zusammenspiel zwischen Material-
und Spannungsanisotropie in Verbindung mit dem Größeneffekt als entscheidender Fak-
tor für die Initiierungsparameter deutlich. Um dieses komplexe Problem anzugehen, wird
im ersten Versuch eine Kombination aus analytischen Beziehungen und einer speziellen
numerischen Methode namens DDM (Displacement Discontinuity Method) verwendet. In
Ermangelung experimenteller Daten wird die Methode der Finite-Elemente-Modellierung
genutzt, um die erhaltenen Ergebnisse zu validieren und zu reproduzieren. Bemerkenswert
ist, dass die abschließenden Beobachtungen die signifikante Rolle des Zusammenspiels
zwischen den Regimen der Belastungsdominanz und Materialdominanz bei der Bestim-



mung der Initiierungsparameter hydraulischer Rissbildungen in einer anisotropen Forma-
tion bestätigen.

Die Dissertation endet mit einer umfassenden Diskussion der wichtigsten Erkenntnisse
und Beobachtungen, die darauf abzielen, die zugrunde liegende Physik bei der Initiierung
und Ausbreitung von Brüchen in anisotropen Feststoffen aufzudecken. Sie grenzt die
Ähnlichkeiten und Unterschiede bei verschiedenen Bruchmechanismen ab und wirft Licht
auf ihre charakteristischen Eigenschaften. Darüber hinaus ebnet die Dissertation den Weg
für zukünftige Untersuchungen von Brüchen in anisotropen Feststoffen unter komplexeren
Bedingungen und bietet vielversprechende Ansätze für weitere Erkundungen in diesem
Bereich.
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Chapter 1

Introduction

1.1 Brittle fracture in rocks

Brittle or ductile fracturing is often associated with the failure of a material, signaling
the end of a component’s lifetime and sounding the alarm for potential hazards [Kiener
and Han, 2022]. However, over the past 100 years since Griffith’s theory on brittle frac-
ture [Griffith, 1921], brittle fracturing has evolved into a functional tool in various geo-
engineering applications such as shale oil and gas extraction, mining operations, enhanced
geothermal systems (EGS), carbon sequestration projects, wastewater injection plans, and
a range of other endeavors.

One such example is in enhanced geothermal systems, where brittle fracture in quasi-
brittle rock formations can be utilized to enhance the permeability of the reservoir [Mc-
Clure and Horne, 2014]. In cases where the hot rock lacks appreciable permeability neces-
sary for effective convective heat transport and economically thermal energy harvesting,
pressurized fluid is injected into the reservoir to either create new cracks or expand pre-
existing fractures [Krietsch et al., 2020b; Stober and Bucher, 2021; Fink et al., 2022].
This hydraulic stimulation generally proceeds in a stable manner, however, it can induce
seismic activity by altering the stress field in the reservoir [Cuenot et al., 2011; Randolph
and Saar, 2011]. To address this concern and mitigate unwelcome induced seismicity,
a comprehensive understanding of fracture behavior in quasi-brittle rock formations is
indispensable. Such knowledge will enable us to understand and, importantly control
fracturing mechanisms within the subsurface by optimizing the design and operation of
similar geo-engineering applications in a reliable and risk-minimized manner.

The first step towards gaining this knowledge is to understand brittle fracturing in
rock formations, particularly when the rock behaves as a quasi-brittle material. Unlike
brittle materials, where the inelastic region is negligible (i.e. in order of micrometers
[Bažant et al., 2022]) compared to the elastic asymptotic stress field, in quasi-brittle and
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ductile materials, the inelastic region usually develops significantly ahead of the crack
tip [Elices et al., 2002; Bažant et al., 2022] (see Figure 1.1). While ductile materials
follow a strain hardening regime in the inelastic region, quasi-brittle materials (e.g. rocks,
concrete, ceramics, and wood) undergo a strain softening process after reaching the peak
stress. This distinction originates from how energy is dissipated within the inelastic
region. In ductile materials, energy is dissipated through plastic deformations, whereas in
quasi-brittle materials, the progressive softening regime occurs due to a micro-damaging
dissipation process within the so-called fracture process zone [Romanowicz and Seweryn,
2008; Mohammadnejad and Andrade, 2016; Manafi Farid and Fakoor, 2019; Nejati et al.,
2020b; Bažant et al., 2022; Xi et al., 2022]. To model the softening behavior in the fracture
process zone, a cohesive zone model pioneered by Hillerborg et al. [1976] can be utilized
[Elices et al., 2002; Lecampion, 2012; Xi et al., 2022].

Although some argue that employing traction-separation laws is the only way to fully
capture the physics of fracturing in quasi-brittle materials [Mohammadnejad and An-
drade, 2016; Mehraban et al., 2023], our focus in the next two subsections remains on
effective methods to address fracture initiation and propagation in rock-type quasi-brittle
materials, while still accurately representing the fracturing behavior.

(a) (b) (c)

Figure 1.1: Comparing the size of nonlinear hardening and softening regions ahead of the
crack tip in (a) brittle materials, (b) quasi-brittle materials, and (c) ductile materials.
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1.2 Fracture initiation, finite fracture mechanics

From a physical perspective, fracture initiation in a crack-free solid can be understood
as the point at which the stress distribution exceeds the tensile strength of the material,
resulting in the formation of a starter crack. This concept has been widely used in nu-
merous studies to capture fracture initiation and provide a rough estimate of the tensile
loading required to overcome the material’s strength [Hubbert and Willis, 1957; Haimson
and Fairhurst, 1967; Ito, 2008; Zhang et al., 2017a; Gehne, 2018; Jolfaei and Lakirouhani,
2023]. However, depending on the material and structure size, this estimation may signifi-
cantly underestimate the actual loading value [Lecampion, 2012]. In reality, the process is
more akin to a sudden transition from a defect-free state to a cracked state with a certain
length, rather than a smooth and continuous process [Cornetti et al., 2006]. The absence
of length consideration in the purely strength-based criterion is the primary reason for
this underestimation.

One approach to address the lack of consideration for crack length in the purely
strength-based criterion is to assume an arbitrary crack length and apply the criterion
to the modified configuration. However, unlike the crack-free state where robustness is
well-defined, the presence of a notch creates a singularity that results in infinite stress at
the crack tip. Consequently, this criterion predicts failure at a null loading [Leguillon,
2002; Cornetti et al., 2006; Lecampion, 2012], indicating that the purely strength-based
criterion is inadequate for accurately describing fracture initiation. In such cases, one
may opt for a purely Linear Elastic Fracture Mechanics (LEFM) approach to address
fracture initiation [Atkinson and Thiercelin, 1993]. However, this approach often results
in an unrealistically low failure load prediction for large defects and lacks the ability to
account for size effects [Lecampion, 2012]. It should be noted that this arbitrary length is
often associated with the Irwin’s material lengthscale [Lecampion, 2012; Ito and Hayashi,
1991].

When the purely strength-based approach fails to capture initiation, the energy crite-
rion can be invoked, which states that initiation occurs when the crack energy release rate
exceeds a critical value. In the case of a crack-free material, the energy release approach
predicts an infinite failure load due to the zero stress intensity factor [Leguillon, 2002;
Cornetti et al., 2006; Lecampion, 2012; Sapora et al., 2023]. While the energy approach
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provides good predictions for solids with sufficiently large cracks, the purely strength-
based criterion is suitable for crack-free bodies. These two ideas represent the extremes
of a spectrum.

In general, fracture initiation is not adequately described by either the purely strength-
based or the energy criterion alone. The intermediate case is better described when both
conditions are applied [Leguillon, 2002; Cornetti et al., 2006; Lecampion, 2012; Cornetti
et al., 2022; Sapora et al., 2023]. The stress field surrounding the yet-to-be-initiated
crack must satisfy the strength condition, while the energy released between the cracked
and crack-free states must exceed the critical energy. As a result, the potential crack
instantaneously forms instead of gradually propagating, conceptualizing the formation
of a finite fracture. Within the framework of finite fracture mechanics, not only the
material’s lengthscale but also the dimensions of the structure can influence the fracturing
process [Sapora et al., 2015; Torabi et al., 2017; Doitrand and Sapora, 2020]. Lecampion
[2012] illustrated that the experimental data presented by Carter et al. [1992] for hydraulic
fracture initiation from different types of rock can be well reproduced by both the cohesive
zone model and the mixed energy-stress criterion. This finding confirms the applicability
of finite fracture mechanics to accurately capture fracture initiation in rock-type quasi-
brittle materials.

1.3 Fracture propagation, LEFM and T-stress

Numerous studies in the literature have highlighted the lack of consistency among existing
fracture growth criteria, especially when dealing with mixed-mode loading that drives
the fracture [Gao and Chiu, 1992; Sakha et al., 2022, 2023]. However, researchers have
observed that incorporating the first non-singular term in the stress-strain field, commonly
referred to as the T-stress, can significantly resolve this inconsistency and enhance the
predictive accuracy of fracture growth criteria [Williams and Ewing, 1984; Smith et al.,
2001; Akbardoost and Ayatollahi, 2014; Ayatollahi et al., 2015; Hou et al., 2019].

To understand how the non-singular term surpasses the dominance of the singular
term, it is crucial to consider the presence of a softening/hardening region preceding the
crack tip in most materials. Assuming that the fracture process can still be effectively
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described within the framework of Linear Elastic Fracture Mechanics (LEFM), the onset
of fracture growth takes place at a critical distance from the crack tip [Smith et al., 2001;
Romanowicz and Seweryn, 2008; Hou et al., 2019; Bahrami et al., 2020]. This critical
distance in many rock-type materials is substantial enough to diminish the dominance
of the singular term, allowing the non-singular term to exert its influence [Nejati et al.,
2020b].

In the case of quasi-brittle materials like rocks, this critical distance corresponds to the
size of the fracture process zone [Ayatollahi and Aliha, 2006, 2008; Hou et al., 2019; Nejati
et al., 2020a]. Fracture process zone, commonly known as FPZ, is an inelastic region ahead
of the crack tip, where the softening regime develops in form of micro-cracking, frictional
micro-slips, and grain interlock [Bažant et al., 2022]. Depending on the material type and
the structure geometry, this region is a particular fraction of the material’s lengthscale,
connecting two essential material properties: fracture toughness and material strength
[Akbardoost and Ayatollahi, 2014; Dutler et al., 2018; Bažant et al., 2022]. The size
of the FPZ, however, may exhibit directional dependency in anisotropic rocks, where a
higher concentration of micro-cracks is often observed along the foliation and bedding
planes [Dutler et al., 2018; Nejati et al., 2020b]. Undoubtedly, a precise understanding
of the fracture process zone (FPZ) is essential for accurately modeling fracture growth,
especially when fractures develop in a curvilinear fashion due to the influence of loading
and material complexity. Therefore, both theoretical studies [Schmidt, 1980; Bazant and
Kazemi, 1990; Akbardoost and Ayatollahi, 2014] and experimental data [Chengyong et al.,
1990; Zhi Kai Guo et al., 1993; Dutler et al., 2018] regarding the determination of FPZ
dimensions under various configurations for different materials hold great significance
within the existing literature.



1. Introduction 6

1.4 Fracture modelling

The growing demand for effective fracturing in subsurface applications necessitates ad-
vanced mathematical modeling of fracture propagation in rock formations. Of particular
interest in geo-engineering research is fluid-driven fracture. In addition to the complexi-
ties arising from the interaction of fluid pressure and fractures, our focus here is solely on
numerical schemes capable of addressing crack discontinuities in a rock-type continuum.

The Discrete Element Method (DEM) is a widely employed numerical scheme for
studying micro-fracturing in granular materials, concrete, and rocks [Fakhimi et al., 2002;
Zhao and Paul Young, 2011; Yoon et al., 2014; Nejati, 2015; Yoon et al., 2015b,a]. This
method considers the formation as a discontinuous medium in the micro-scale, compris-
ing discrete particles bonded at contacts. When an individual particle moves relative
to its neighbors, the contact between them is updated. In this framework, fracture
growth occurs when the stress applied to the particles exceeds the strength of bonds,
causing the bonds to break [Tan et al., 2009]. Despite its usefulness, the method is highly
time-consuming and lacks the ability to provide detailed information about the fracture
geometry.

The boundary element method (BEM) is another numerical scheme which requires
the elasticity problem to be discretized only along the two fracture faces. Therefore,
BEM can significantly reduce the dimensionality of the problem [Lecampion et al., 2018].
The displacement discontinuity method (DDM) is a BE-based approach which treats the
two sides of a crack as a segment and describes the dislocation in the segment with the
displacement discontinuity Di [Shen et al., 2014]. The contributions of all the segments
along the crack must be superposed to construct the elasticity equation of the crack. In
hydraulic fracture modelling, the elasticity equation is coupled with the lubrication flow
which is often descritized by either a finite element or finite volume scheme [Lecampion
et al., 2018]. The efficiency of the BE-based schemes in representing hydraulic fracture
propagation is well demonstrated in Siebrits and Peirce [2002]; Ke et al. [2009]; Shen and
Shi [2016]; Kumar and Ghassemi [2016]; Moukhtari et al. [2019].

The finite element method (FEM) is an efficient numerical scheme when the addi-
tional coupling effects are also introduced into the conventional HM modeling (e.g. the
THM simulation). The simulation of fracture propagation in the framework of the finite
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element method is also suitable when the domain shape is irregular, or any material het-
erogeneity and non-linearities are involved in the system [Lecampion et al., 2018]. The
finite element scheme treats a fractured medium as a continuum. This scheme, however,
can be subdivided into three conceptual models to model fractures: strong discontinuous,
weak discontinuous, and continuous method. Here, these three conceptual models are
distinguished.

• The strong discontinuous methods treat a fractured solid as a dislocated body and
incorporate the fracture aperture to describe the jump discontinuity in the dis-
placement field. Therefore, the geometry of the evolving fractures can be explic-
itly captured via two main discontinuum approaches: adaptive re-meshing, and
extended/generalized finite element method (XFEM). In the adaptive re-meshing
approach, the finite element mesh must fit with the fracture faces, and thus the mesh
pattern is always updated during fracture growth [Eftekhari et al., 2015; Lecampion
et al., 2018]. This method is computationally very demanding. A local re-meshing
approach is, therefore, suggested to reduce the computation cost [Lecampion et al.,
2018]. In this methodology, re-meshing is constrained to a local zone which sur-
rounds the fracture tip and the rest of mesh is kept intact [Profit et al., 2015].
Unlike the adaptive re-meshing technique, XFEM does not require the finite ele-
ment mesh to intersect the fracture surfaces at the element nodes. Instead, XFEM
locally enriches the classical finite element interpolation on the elements intersected
by the fracture boundary Richardson et al. [2009]. The XFEM scheme is only ap-
plicable for modeling of multiple hydraulic fractures where the fracture density is
relatively low [Zeng et al., 2018].

• The weak discontinuity methods combine the strong discontiuum and continuum
approaches to develop a methodology which is able to simulate sparse cracking
[de Borst et al., 2004]. This behavior is strongly promoted in heterogeneous mate-
rials, such as concrete. To get a better insight into the weak discontinuous scheme,
the difference between the cohesive zone models and the strong discrete schemes is
first elaborated. In the strong discontinous methods, it is assumed that the frac-
ture surfaces remain traction-free behind the physical crack tip. This approach
consolidates the influence of fracturing on inelastic deformation by encapsulating
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it within a discrete discontinuity [Jirasek and Zimmermann, 1998]. In the cohesive
zone models, however, the discontinuity develops ahead of the physical crack tip
and the crack opening is therefore distributed in the fracture process zone [Moës
and Belytschko, 2002]. Contrary to the traditional discrete methods, the cohesive
traction is still transmitted across the discontinuum as a nonlinear function of the
crack opening [Jirasek and Zimmermann, 1998]. The nonlinear fracture processes
in the cohesive segment can be represented as the localized strain field if the crack
opening is smeared over a band of width H. The localization band can arise at
arbitrary locations, even far away from the main notch. Hence, the method is suit-
able to model hydraulic fracturing when the cracking pattern includes branching,
bifurcation, and sparse cracking.

• The continuous methods assume that no dislocation exists in a continuum and
thus the jump discontinuity across the fracture is smoothly smeared out within the
damage zone. Particularly in the phase-field method, a continuous scalar variable
(e.g. 0 ≤ s ≤ 1) is introduced to form the failure region and describe the smooth
transition from the fully broken zone (i.e. s = 0) to the intact region (i.e. s = 1)
[Lecampion et al., 2018]. Indeed, the energy released over the failure region is
translated to the deterioration of the material stiffness [Wu et al., 2020a]. This
approach cannot explicitly track the fracture aperture, and thus estimating the
fracture aperture remains a challenge in the HM modeling [Bourdin et al., 2012;
Lecampion et al., 2018]. Nevertheless, this method can fully determine the fracture
path through a fixed mesh, even if fracturing entails complex behaviors such as
bifurcation, branching, and kinking. Hence, the phase-field method has become
increasingly popular in modeling of hydraulic fracturing in recent decades [Bourdin
et al., 2012; Chukwudozie et al., 2013; Wheeler et al., 2014; Chukwudozie et al.,
2019].
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1.5 Fracturing within subsurface

Unlike many engineering applications where fracture is primarily driven by in-situ ten-
sile loading, subsurface fracture mechanisms are predominantly controlled by compressive
stresses in the far-field. This inconsistency has led to controversy not only in the defi-
nition of the convention of positive stresses but also in the necessity to decompose the
contribution of different modes of fracturing.

One well-known example in the field of geo-engineering involves an inclined central
crack subjected to increasing uniaxial compressive loading [Ingraffea and Heuze, 1980;
Shen and Stephansson, 1994; Zhang et al., 2017b]. This particular example holds signifi-
cant importance, not only due to its high likelihood within subsurface environments but
also because the propagation of natural pre-existing fractures under compressive in-situ
loading can lead to unstable sliding fracturing [Ingraffea and Heuze, 1980; Zhang et al.,
2017b].

Under such loading conditions, a distinct pattern of fracturing emerges. Initially, a
tensile fracture, or so-called a wing crack, develops along a direction approximately 90◦

away from the original inclined crack. This wing crack gradually, yet stably, reorients
itself towards the direction of maximum compressive loading. In rock-like materials, the
fracturing process is further characterized by the occurrence of a secondary fracture that
grows parallel to the original inclined fracture. This secondary fracture involves the sliding
of the in-contact surfaces against each other, resembling a shearing failure [Ingraffea and
Heuze, 1980; Shen and Stephansson, 1994; Bobet and Einstein, 1998; Wong and Einstein,
2009; Zhang et al., 2017b; Wu et al., 2020a]. Hence, it is of special importance to establish
a comprehensive fracture propagation model, capable to effectively capture this initial
stable tensile fracture followed by the subsequent relatively-unstable shearing fracture.

Even in phase-field modeling, which is often considered a robust fracture modeling
technique capable of handling complex loading conditions without any additional crite-
rion, studies focusing on rock fracture under far-field compressive loading have demon-
strated that the phase-field method can capture the formation of wing cracks followed
by secondary cracks, provided that the elastic energy density can effectively distinguish
between shearing and tensile fracturing [Zhang et al., 2017b; Bryant and Sun, 2018]. How-
ever, this approach may not be supported from a variational perspective [Zhuang et al.,
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2022], as the decomposition of shearing and opening is applicable only to the strong form
of governing equations and cannot be extended to the energy functional governing the
fracturing process. Hence, the capability of well-known phase-field fracture models to
accurately describe fracturing under compression should be further investigated.

Compressive in-situ stresses within the subsurface often exhibit stress anisotropy,
meaning that the horizontal compressive stresses may not be equal to the vertical in-
situ stress. This deviation, or stress anisotropy, significantly influences the fracturing
mechanisms in the subsurface [Fu et al., 2013; Valliappan et al., 2019; Dong and Tang,
2019]. For instance, stress anisotropy can enhance failure in cases of shear-reactivation.

When it comes to hydraulic fracture initiation, higher deviatoric stress can make ini-
tiation more dependent on the material’s lengthscale, structure size, particularly when
Irwin’s material lengthscale is significantly larger than the structure lengthscale [Lecam-
pion, 2012]. In the context of fracture propagation in initially perforated wellbores, it has
been observed that the degree of reorientation of hydraulic fractures, known as tortuosity,
is strongly influenced by stress anisotropy [Dong and Tang, 2019; Xi et al., 2022]. How-
ever, it is worth noting that most studies have been conducted under the assumption of
isotropic behavior of the rock mass, and further research is needed to understand the in-
fluence of stress anisotropy on fracture initiation and propagation, especially in scenarios
where other factors, such as material anisotropy are present.

1.6 Thesis outline

The primary objective of this thesis is to investigate the influence of material anisotropy
on fracture initiation and propagation in rock formations within the subsurface. In doing
so, we undertake three key steps in order to establish reliable theories and models that
can accurately predict the behavior of hydraulic fracture initiation and propagation in
anisotropic rock formations.

Firstly, we focus on developing theories and models capable of capturing the kinking
behavior observed in anisotropic materials, where the fracture path is not a priori assump-
tion. An accurate theory can effectively capture fracture propagation regardless of the
complexity of the loading conditions ahead of the initial crack. This entails the model’s
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ability to identify complex compressive loading zones ahead of the crack, preventing the
crack from being driven solely by compression, thereby avoiding crack kinking toward
such regions. Additionally, the model may need to distinguish between the contributions
of tensile and shearing forces along the direction of the fracture path, as the dominance
of the tensile force driving the fracture may diminish under complex loading conditions,
giving rise to shearing forces that do not drive tensile fractures.

Secondly, we strive to apply a model suitable for hydraulic fracture initiation in an
initially notch-free wellbore, that can understand fracture initiation as an instantaneous
process, where a finite crack forms suddenly rather than gradually grows. This model
must encompass the influences of material anisotropy, in-situ stress anisotropy, and the
size of the material and structure to capture hydraulic fracture initiation as it occurs in
reality.

Lastly, by integrating these models, we can comprehensively understand how material
anisotropy interacts with other contributing factors to propagate and initiate fractures
within the subsurface. In this study, we exclusively assume rock anisotropy as a trans-
versely isotropic material, wherein the ratio of two principal Young’s moduli, along with
the orientation of the isotropy plane relative to the fracture orientation, are the key aspects
of the rock’s anisotropic behavior. By targeting each of these two characteristics, we aim
to investigate their influence on fracture behavior and provide insights into the complex
mechanics governing fracture propagation and initiation in anisotropic rock formations.

The structure of this thesis is as follows: In Chapter 2, we evaluate the accuracy of
most notable fracture growth criteria in predicting crack paths in anisotropic rocks under
mixed-mode I/II loading. This evaluation is accomplished by comparing the theories
with a set of reliable experimental data. We demonstrate that the classical formulation of
energy-based criteria results in inaccurate predictions of fracture trajectory. To address
this inaccuracy, we propose a modification to the energy-based criteria and compare the
performance with the experimental data. Through reassessment with the experimental
data, we observe a good agreement between the results, indicating the significance of
modifying energy-based theories when complex loading regimes exist ahead of the crack in
many rock-type materials with moderate to high disparities in mode I and mode II fracture
toughnesses. In Chapter 3, we employ a mixed criterion to investigate hydraulic fracture
initiation in anisotropic rocks, considering the influence of both material and loading
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anisotropy on the geometry of the starter crack and the initiation pressure. Analytical
relations of the corrective stresses and the kernel matrix, along with the displacement
discontinuity method are implemented in this chapter. Due to a lack of experimental
tests for validation purposes, we utilize finite element modeling to reproduce the initiation
parameters observed in Chapter 3. Therefore, C.1 complements Chapter 3 by employing
a different approach for studying hydraulic fracture initiation in anisotropic rocks.

In Chapter 4, we employ the phase-field model to predict fracture trajectories in
anisotropic rocks, as experimentally tested in the first step of this thesis. Given the
likelihood of interpenetration due to compression, we apply a decomposition technique
from the existing literature to the model. We assess the reliability of its implementation
and the robustness of the decomposition through comparison with numerical studies in
the literature and experimental tests, respectively. Finally, Chapter 5 concludes the thesis
by providing the main findings and discussing potential areas for future research work.
Additionally, the thesis includes three appendices that present the analytical relations
used in this study, providing additional reference for the readers.
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On the validation of mixed-mode I/II
crack growth theories for anisotropic
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2.1 Abstract

We evaluate the accuracy of three well-known fracture growth theories to predict crack
trajectories in anisotropic rocks through comparison with new experimental data. The
results of 99 fracture toughness tests on the metamorphic Grimsel Granite under four
different ratios of mixed-mode I/II loadings are reported. For each ratio, the influence of
the anisotropy orientation on the direction of fracture growth is also analyzed. Our results
show that for certain loading configurations, the anisotropy offsets the loading influence in
determining the direction of crack growth, whereas in other configurations, these factors
reinforce each other. To evaluate the accuracy of the fracture growth theories, we compare
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the experiment results for the kink angle and the effective fracture toughness with the
predictions of the maximum tangential stress (MTS), the maximum energy release rate
(MERR), and the maximum strain energy density (MSED) criteria. The criteria are
first assessed in their classical forms employed in the literature. It is demonstrated that
the energy-based criteria in their classical formulation cannot yield good predictions. We
then present modified forms of the ERR and SED functions in which the tensile and shear
components are decomposed. These modified forms give significantly better predictions
of fracture growth paths. The evaluation of the three criteria illustrates that the modified
MSED criterion is the least accurate model even in the modified form, while the results
predicted by MTS and modified MERR are well matched with the experimental results.

2.2 Introduction

As an intrinsic property of geomaterials, anisotropy plays an important role in governing
the mechanics of fracture growth in rocks, relevant for applications in geomechanics and
geophysics. Rock anisotropy is known to be the result of the preferred orientation of micro-
cracks and anisotropic constituent minerals. For example, mechanically weak, platy mica
grains are dominantly oriented along foliation in metamorphic rocks, or clay minerals are
aligned with bedding planes in sedimentary rocks. The analysis of fracture growth in
these types of rocks has direct applications in many industries such as oil and gas shale,
carbon sequestration, enhanced geothermal systems, tunneling and mining. For example,
hydraulic fracturing is employed in enhanced geothermal systems in order to increase
permeability in the host rock, which often consists of anisotropic metagranite or gneiss.
The stress perturbation due to the injection of pressurized fluid can cause the creation of
new fractures, the growth of pre-existing fractures, and/or the shear-activation of faults
and fractures with associated earthquakes, which raises concerns regarding the safety of
these processes [Amann et al., 2018; Berryman, 2016]. In-situ experiments conducted in
the deep underground laboratory at the Grimsel test site in Switzerland have recently
demonstrated that the anisotropy of the rock mass should be taken into account when
analyzing fracture growth patterns [Gischig et al., 2018].

Figure 2.1a schematically shows how anisotropy can influence the mechanics of hy-
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draulic fracturing near a borehole in a reservoir. In addition to the creation of new
fractures, the injected fluid can induce growth in pre-existing fractures and/or result in
their shear activation (hydro-shearing). Although large-scale hydraulic fractures tend to
propagate normal to the direction of minimum in-situ stress (i.e. a pure mode I crack
growth), their propagation in the vicinity of a borehole is often associated with a mixed-
mode I/II/III loading condition. We note that, based on the geo-mechanics convention,
the in-situ stresses are taken as positive values here. For example, when the borehole
is situated obliquely with respect to the principal stresses, the presence of the complex
stress regime near the borehole may lead to the formation and/or growth of mixed-mode
fractures. Even in boreholes that align with one principal in-situ stress direction, strength
anisotropy can cause the hydraulic-fractures to initiate and grow in an oblique direction
with respect to the principal stresses, hence inducing mixed-mode fracture growth. Such
fractures then turn and twist in complex geometrical patterns to eventually be oriented
in a direction that is normal to the minimum in-situ stress at larger scales [Moukhtari
et al., 2020].

Generally, the angle of fracture growth depends on geometry, loading, and material
anisotropy. Assuming a fixed geometry, loading and anisotropy remain the major influ-
ences on the fracture growth trajectory in an anisotropic solid. While, in some configu-
rations, loading and anisotropy reinforce each other in driving the fracture growth in a
certain direction, in other configurations they may compete with each other in determin-
ing the direction of crack growth. This concept is schematically shown in Figure 2.1b,
where the mode-mixity parameter, defined as λ = KII/(K

2
I +K2

II)
1/2, and the anisotropy

direction, β, characterize how loading and anisotropy interact. Here, KI and KII are re-
spectively mode I and mode II stress intensity factors. The material is also assumed to
have higher tensile strength along direction 1, meaning that the material is more resis-
tant to failure along direction 2. We assume that the principal directions 1 aligns with
the material’s isotropy plane (bedding or foliation). In the case of λ < 0, loading and
anisotropy reinforce each other, both promoting positive kink angles (θ0 > 0). In the
case of λ > 0, however, while anisotropy facilitates growth along θ0 > 0, due to the lower
tensile strength, the loading promotes kinks with θ0 < 0. In this case, anisotropy and
loading compete to determine the direction of fracture growth. We note that this interac-
tion of loading and anisotropy is significant only in materials that have low to moderate
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Figure 2.1: (a) Schematic view of hydraulic fracturing around boreholes in the presence of
mixed-mode I/II loading; The parallel lines show the isotropy plane (bedding or foliation)
in transversely isotropic rocks. Here, a compressive stress is represented with a positive
value. (b) Schematic illustration of the interaction of loading and anisotropy based on
the sign of the mode-mixity parameter λ = KII/(K
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1/2. The principal axes 1 and 2
respectively denote the strong and weak directions of the material.

anisotropy ratios such as many rocks. In highly anisotropic materials such as wood and
some engineering composites, the effect of anisotropy is much stronger than that of load-
ing, thereby causing the crack extension to almost always occur along the weakest planes
of the material, i.e. the fibers [Jernkvist, 2001; Cahill et al., 2014].

In order to predict the fracture growth trajectory in anisotropic solids, an accurate
fracture growth criterion must be employed to describe failure at the crack tip based on the
state of stress and deformation. Sih et al. [1965] first introduced the solution of crack tip
fields in anisotropic media. Thereafter, the most notable isotropic fracture growth criteria
were extended to those applicable to anisotropic solids. These include the maximum
tangential stress (MTS, Saouma et al. [1987]; Buczek and Herakovich [1985]; Lim et al.
[2001]; Carloni and Nobile [2005]), maximum energy release rate (MERR, Obata et al.
[1989]; Gao and Chiu [1992]; Azhdari and Nemat-Nasser [1996]; Yang and Yuan [2000];
Argatov and Nazarov [2002]), and maximum (minimum in isotropic materials) strain
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energy density (MSED, Zhang et al. [1989]; Ye and Ayari [1994]; Carloni and Nobile
[2002]; Manafi Farid and Fakoor [2019]). These studies merely focused on the formulation
and characteristics of different theoretical models, and, importantly, lack evaluations of
the accuracy of models using experimental data. Inconsistencies between the results
of different theoretical models on crack path geometries, highlighted by Gao and Chiu
[1992]; Azhdari and Nemat-Nasser [1996, 1998], also add to the uncertainties regarding
the accuracy of these theoretical predictions.

A literature survey reveals several studies that compared the results of different the-
oretical models with experimental data (Table 2.1). Some of these studies included the
effects of the first non-singular term, T-stress, while others only considered the singular
terms. We point out here that in highly anisotropic materials, such as wood and en-
gineering composites, cracks tend to grow along the fiber direction [Cahill et al., 2014;
Romanowicz, 2019; Manafi Farid and Fakoor, 2019; Fakoor and Khezri, 2020]. In such
cases, the fracture path is often an a priori assumption, used in the growth criteria. In
materials with a moderate anisotropy ratio such as rocks, however, the fracture path is
unknown and must be estimated along with the critical fracture load. Thus, the per-
formance of a theoretical model must be evaluated based on its predictions in moderate
anisotropic solids, where the crack growth direction is the outcome of the interaction of
both loading and anisotropy. In this framework, it is evident that most of these research
articles focused on only one growth criterion, and lack a comparison of the performance
of different models. This highlights the limited knowledge regarding the performance and
accuracy of different growth criteria in anisotropic solids, and, in particular, in rock-type
materials. To the best of our knowledge, the literature lacks a rigorous validation study
that compares the performance of all three criteria using one comprehensive experimental
data set.
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Loading Material Employed criteria References
Mode I Composite MTS, MERR Judt et al. [2019]
Mode I Rock MTS (T-stress inclusion), MERR, MSED Nejati et al. [2020a]
Mixed-mode I/II Rock MTS Chen et al. [1998]
Mixed-mode I/II Crystal MTS, MERR Azhdari and Nemat-Nasser [1998]
Mixed-mode I/II Composite MTS Motamedi and Mohammadi [2010]
Mixed-mode I/II Composite MTS Cahill et al. [2014]
Mixed-mode I/II Rock MTS (T-stress inclusion) Mohtarami et al. [2017]
Mixed-mode I/II Wood MTS (T-stress inclusion) Romanowicz [2019]
Mixed-mode I/II Wood MSED (T-stress inclusion) Manafi Farid and Fakoor [2019]
Mixed-mode I/II Wood MSED Fakoor and Khezri [2020]
Mixed-mode I/II Rock MTS Wang et al. [2020]
Mixed-mode I/II/III Foam MTS Arakere et al. [2008]

Table 2.1: A list of studies that evaluated three well-know fracture growth criteria in
anisotropic materials using experimental data.

According to Table 2.1, MTS is by far the most widely used criterion for predicting
fracture growth in anisotropic solids. This is perhaps due to the mathematical simplicity
of the criterion, and also its accurate predictions for the kink angle. Most studies reported
that MTS predictions match experimental data well. In contrast, limited studies on the
MERR criterion show inconsistent conclusions. For example, while Judt et al. [2019]
observed a good agreement between the experimental data and the MERR predictions,
Azhdari and Nemat-Nasser [1998] reported inconsistencies between the MERR predictions
and the observed crack deflections. Based on test results on a crystal, Azhdari and
Nemat-Nasser [1998] concluded that the MTS yields better predictions on fracture path
geometries than the MERR criterion. Similarly, the evaluation of the MSED criterion also
revealed some inconsistencies. While Nejati et al. [2020a] concluded that the MSED fails
to provide good predictions on fracture path geometry, Manafi Farid and Fakoor [2019]
reported good agreements between the MSED predictions and the experimental data.
One, however, should note that Manafi Farid and Fakoor [2019] used a priori assumptions
on kink angle (along the wood fiber), and did not employ the MSED criterion to predict
the crack path direction. In conclusion, while most studies indicate good predictions of
the MTS criterion, the reports on the MERR and MSED criteria are rather inconsistent.

In order to quantitatively assess mixed-mode I/II fracture growth criteria in rocks,
a comprehensive set of experimental data is required. To obtain such a data set, (1)
controlled experiments must be designed and conducted at different mode-mixity param-
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eters, −1 < λ < 1. Such a setup must also be able to keep the mode-mixity ratio, λ,
constant while the anisotropy orientation varies. To achieve this, we employ an asym-
metrical semi-circular bend (SCB) test, proposed by Nejati et al. [2019a] and used in
Nejati et al. [2020a] for pure mode I tests. This test setup allows us to use the exact
same sample geometry to conduct different sets of tests, each with a fixed λ but different
anisotropy orientations. (2) A well-characterized rock must be used for the tests, as the
material parameters, such as elastic constants, fracture toughness, and the size of the
fracture process zone, are directly employed in the formulation of the growth criteria to
predict the fracture growth trajectory. We conduct tests on anisotropic Grimsel Granite
samples, a rock that has been extensively studied in terms elastic constants [Nejati et al.,
2019b; Dambly et al., 2019], fracture toughness variation [Nejati et al., 2020b, 2021a], and
the size of the fracture process zone [Dutler et al., 2018; Nejati et al., 2021a]. Using such
well-characterized rocks significantly reduces uncertainties in parameters that are directly
implemented in the formulations for fracture growth.

In this paper, we present the results of four sets of fracture growth tests on the
anisotropic Grimsel Granite under four different ratios of mixed mode I/II loadings:
λ = −0.37, 0.37,−0.71,

0.71. Keeping λ constant in each set allows the evaluation of the influence of the anisotropy
direction, β, on the fracture path. We then evaluate the accuracy of the three major frac-
ture growth criteria proposed for brittle materials, namely the MTS, MERR, and the
MSED. In doing so, the fracture growth criteria are first formulated based on the classical
forms available in the literature. The comparison between the theoretical predictions and
the experimental data reveals that the energy-based criteria (i.e. MERR and MSED)
are unable to properly describe the fracture growth behavior. We therefore introduce
modified versions of the energy-based theories and re-assess their predictions with the
experiments. The improvement in the results shows that the proposed modifications to
the energy-based criteria are essential to yield reasonable predictions. According to the
comparison of the theoretical predictions with experimental data, we can conclude that:

• The suggested modified version of MERR predicts the experimental data much
better compared to the classical version that is commonly used in the literature.

• The MSED criterion, even in its modified form, is the least accurate criterion to
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predict the fracture growth trajectory.

• Both MTS and the modified version of the MERR give equally accurate predictions
for the kink angle and effective fracture toughness.

This paper is structured as follows: Section 2 discusses the experimental setup for
collecting mixed-mode I/II fracture growth data. Section 3 describes the formulations of
the three criteria as they are currently presented in the literature. Section 4 compares the
results of these theoretical models with the experimental data, concluding that the energy-
based criteria do not perform well in the prediction of growth path. Section 5 presents
modified versions of the energy-based criteria, and shows that these modifications yield
significantly more accurate predictions. Finally, Section 6 presents a discussion of each of
the growth theories, and Section 7 presents the concluding remarks.

2.3 Experimental setup

2.3.1 Material

Samples of Grimsel Granite were used in this research in order to conduct mixed-mode
I/II fracturing tests. These samples were obtained from one drill core extracted from
the injection boreholes used in the In-situ Stimulation and Circulation (ISC) experiment
conducted in the Grimsel Test Site (GTS) in the central Alps of Switzerland (see Amann
et al. [2018]; Gischig et al. [2018] for details). This underground laboratory is located
in the granitic formations of the Aare massif at a depth of about 450 m underneath the
Juchlistock [Gischig et al., 2020]. The Grimsel Granite was metamorphosed during the
Alpine deformation, causing a reorientation of sheet silicates and forming a pervasive foli-
ation that is clearly visible in the samples. Dambly et al. [2019] showed that the Grimsel
Granite exhibits transversely isotropic behavior, with the isotropy plane coinciding with
the foliation plane. Therefore, the foliation plane (direction 1) and the plane normal to it
(direction 2) represent two principal material directions. Table 2.2 lists the elastic proper-
ties of the Grimsel Granite, obtained from Brazilian disk tests [Dutler et al., 2018]. These
values are comparable to the ones obtained from uniaxial compression tests [Nejati et al.,
2019b]. E and E ′ are the Young’s moduli along (direction 1) and normal (direction 2) to
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the foliation plane, ν and ν ′ are the Poisson’s ratios within and normal to the foliation
plane, respectively, and G′ is the transverse shear modulus. The parameters ξ, η, κ1, κ2, κ3
are related to the elastic constants through the definition given in A.1.

Elastic properties Fracture toughness properties
E E′ ν ν ′ G′ ξ η κ1 κ2 κ3 KIc,1 KIc,2 KIIc,1 KIIc,2 Lc

36 18 0.3 0.15 10 2 1 0.91 0.96 1.3 0.78 1.35 1.90 2.88 10

Table 2.2: The elastic properties and fracture toughness values measured for Grimsel
Granite. κ1, κ2, κ3 are reported for plane-strain conditions. The elastic moduli and frac-
ture toughness are given in GPa and MPa

√
m, respectively, and the FPZ length is given

in mm.

As important parameters, the principal values of the fracture toughness of Grimsel
Granite are also listed in Table 2.2. The details of the measurement procedure of these
parameters are given in Nejati et al. [2021a]. KIc,1 and KIc,2 are, respectively, the mode I

fracture toughness values in the principal directions 1 (along the foliation) and 2 (normal
to the foliation) (see Figure 2.2a). Nejati et al. [2020b] showed via experimental data
that KIc(ϕ) follows a sinusoidal fit of the principal values (see Figure 2.2c). Here, ϕ is
the direction of fracture growth with respect to the principal direction 1. In addition to
KIc, which represents the resistance of a material against tensile fracturing, the shearing
fracture toughness, also referred to as the true mode II fracture toughness (KIIc), is of
significant importance in rock fracturing [Bahrami et al., 2020]. KIIc represents the mate-
rial resistance against a co-planar extension of a mode II crack, as shown in Figure 2.2b.
Table 2.2 presents the values of KIIc,1 and KIIc,2 that are, respectively, the principal values
of true mode II fracture toughness along principal directions 1 and 2 (see Figure 2.2b).
Similar to mode I, an experimental study by Nejati et al. [2021a] showed that KIIc(ϕ) also
follows a sinusoidal variation between the two principal planes (see Figure 2.2c). Lastly,
Table 2.2 presents the length of the fracture process zone, Lc, in the SCB samples of the
Grimsel Granite. This value was obtained in an independent study using the digital image
correlation technique [Dutler et al., 2018]. Nejati et al. [2021a] showed that the length of
the fracture process zone during the true mode II fracturing mechanism is similar to the
one during mode I fracturing.
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Figure 2.2: Schematic illustration of the principal values of (a) mode I and (b) true mode
II fracture toughness and their variations with direction in an anisotropic material; (c)
variations of the fracture toughness associated with mode I and true mode II in Grimsel
Granite.

When using the MERR or MSED criteria, one needs knowledge of the direction de-
pendency of the critical mode I and true mode II energy release rates, also referred to
as fracture energy, (i.e. GIc(ϕ) and GIIc(ϕ)), and the critical strain energy density, SIc(ϕ).
Direction-dependent fracture energy is also an important input parameter used for phase-
field modeling of fracture growth [Rezaei et al., 2021]. The MERR criterion considers the
energy release rate as the driving force that overcomes the critical energy release rate, Gc,
at the onset of crack growth [Hussain et al., 1974]. In MSED, the strain energy density acts
as the diving force and triggers fracturing once it reaches the critical strain energy density,
Sc/r [Sih, 1973]. Irrespective of the mode of failure, all these measures are determined
for a crack that propagates in a co-planar manner. Using linear elasticity theory, Nejati
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et al. [2020b, 2021a] introduced simple functions that govern the directional dependencies
of GIc, GIIc, and SIc in anisotropic solids (see Table 2.3). When deriving these functions,
the parameter η, defined in Eq. (A.1.4), is assumed to be equal to unity, denoting that the
transverse shear modulus follows the Saint-Venant relation. Nejati et al. [2019a] showed
that this is a good approximation for many anisotropic rock types. The above summa-
rized comprehensive experimental and theoretical characterizations make Grimsel Granite
probably the currently best-characterized material to assess the performance of fracture
growth criteria in anisotropic rocks.

Measure of Fracture Toughness Variation against ϕ

Tensile-based failure

Critical SIF-KIc KIc(ϕ) = KIc,1 cos
2 ϕ+KIc,2 sin

2 ϕ

Critical ERR-GIc GIc(ϕ) =
K2

Ic(ϕ)

2E

(
κ2
(
ξ +

√
ξ
)
cos2 ϕ+ κ1

(√
ξ + 1

)
sin2 ϕ

)
Critical SED-SIc SIc(ϕ) =

K2
Ic(ϕ)

4πE

(
ξ cos2 ϕ+ sin2 ϕ+

ξ(κ1 + κ2 − 1− 2κ3ν
′√ξ)

cos2 ϕ+ ξ sin2 ϕ

)

Shear-based failure

Critical SIF-KIIc KIIc(ϕ) = KIIc,1 cos
2 ϕ+KIIc,2 sin

2 ϕ

Critical ERR-GIIc GIIc(ϕ) =
K2

IIc(ϕ)

2E

(
κ1
(√

ξ + 1
)
cos2 ϕ+ κ2

(
ξ +

√
ξ
)
sin2 ϕ

)

Table 2.3: The directional dependence of the different measures of fracture toughness in
tensile- and shear-based failure mechanisms, adopted from Nejati et al. [2020b, 2021a].
Here, ξ = E/E ′ is the anisotropy ratio of Young’s modulus, κ1 = κ2 = κ3 = 1 for the
plane-stress condition and κ1 = 1 − ν2, κ2 = 1 − ξν ′2, κ3 = 1 + ν for the plane-strain
condition.

2.3.2 Tests

The asymmetrical semi-circular bend (SCB) test configuration in Figure 2.3 was employed
in this study to conduct mixed-mode fracturing tests. This test configuration enables
obtaining different combinations of mixed-mode I/II loading simply by varying the span
ratio, S2/S1. This test was proposed by Ayatollahi et al. [2011] for mixed-mode fracturing
tests of isotropic rocks. Nejati et al. [2019a] later employed this test to configure a pure
mode I fracturing test for anisotropic rocks. The asymmetrical SCB test enables obtaining
both positive and negative values of mode-mixity parameter, λ, by adopting different span
ratios, S2/S1. While fixing S1/R = 0.8, the ratio S2/S1 was calculated, via finite element
analyses in ABAQUS, in such a way that the mode-mixity of interest (λ) is achieved. For
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a fixed λ, the span ratio, S2/S1, depends on ξ, η, and β. More details can be found in
Nejati et al. [2019a].

a
R

S
1
=0.8RS

2

C

C

a
R

S
1
=0.8R S

2

C

C

R

B

P/B

Section CC

(a) (b) (c)

S
2
=0.26S

1

S
1

S
2

0

Figure 2.3: Schematics of the SCB test setup for (a) λ < 0 and (b) λ > 0; (c) a tested
sample of Grimsel Granite with the configuration λ = +0.71 and β = 75◦.

We conducted four sets of tests on Grimsel Granite samples that were prepared via
sub-coring in the direction of the foliation plane. Each set of tests contains samples
with seven different foliation angles (direction 1) with the original notch planes (β =

0◦, 15◦, 30◦, 45◦, 60◦, 75◦, 90◦) subjected to a load with a fixed mode-mixity parameter, λ =

KII/Keff , where the effective stress intensity factor Keff is defined as Keff = (K2
I +K

2
II)

1/2.
Table 2.4 lists the geometry and loading details in all sets of experiments. We tested
the samples at a displacement rate of 0.1 mm/min, using a Zwick/Roell 1474 RetroLine
universal testing machine with a load capacity of 100 kN, and a load resolution of 10 N.
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Set Name Number of Tests B/2R a/R β (◦) KII/KI λ

Set I 18 0.39-0.45 0.40-0.44 0, 15, 30, 45, 60, 75, 90 -0.4 -0.37

Set II 19 0.35-0.47 " " 0.4 0.37

Set III 30 0.38-0.44 " " -1 -0.71

Set IV 32 0.37-0.46 " " 1 0.71

Table 2.4: Geometry and loading details of the SCB tests for different experiment sets
conducted on Grimsel Granite (R = 47.5 mm).

The crack tip parameters, including KI and KII and T-stress were calculated using
the finite element method. The SCB specimen was modeled in the finite element software
ABAQUS, where KI and KII were determined using the domain integral method for the
test configurations given in Table 2.4. In addition, the values of T-stress were determined
using the finite element over-deterministic (FEOD) method [Ayatollahi et al., 2020]. In
fracture growth criteria, T-stress appears in a dimensionless form of T̄ = T

√
2πLc/Keff .

Table 2.5 provides the values calculated for T̄ in all the test configurations. After conduct-
ing the tests, the kink angles on both sides of the samples were determined by measuring
the angle between the crack path within the process zone and the notch plane. The av-
erage of the kink angles at the two sides of each sample is reported as the kink angle,
θ0. The effective fracture toughness is also calculated by inserting the stress intensity
factors at peak load in Kc

eff = (K2
If +K2

IIf)
1/2, where KIf and KIIf respectively represent

the critical values of stress intensity factors at the onset of fracturing.



2. Crack growth criteria 26

β (◦)

0 15 30 45 60 75 90

Set I -0.89 -1.01 -1.02 -0.96 -0.87 -0.78 -0.71

Set II -0.90 -0.76 -0.64 -0.59 -0.60 -0.65 -0.72

Set III -1.99 -2.13 -2.00 -1.88 -1.73 -1.59 -1.54

Set IV -2.05 -1.85 -1.70 -1.58 -1.51 -1.51 -1.49

Table 2.5: Calculated values of the dimensionless T-stress, T̄ , for the four sets of experi-
ments at different angles of β.

2.4 Fracture growth criteria

Three main criteria have been suggested to predict the direction of fracture growth in gen-
eral solids: maximum tangential stress (MTS), maximum energy release rate (MERR),
and maximum strain energy density (MSED). Although these criteria yield similar pre-
dictions in isotropic materials, they tend to give contradictory predictions in anisotropic
solids (see for example the discussions in Gao and Chiu [1992]; Azhdari and Nemat-Nasser
[1998]; Nejati et al. [2020a]). This section reviews the mathematical formulation of these
three criteria in an anisotropic plane subjected to mixed-mode I/II loading, as they are
presented and used in the literature. In order to formulate these criteria, the first two
terms of the crack tip fields, i.e. the singular terms together with the T-stress term, are
considered. The full series representation of the crack tip fields in an anisotropic plane is
given in detail in Ghouli et al. [2020]; Nejati et al. [2021c], while a brief description of the
fields, containing the first two terms only, is given in A.1.

2.4.1 Maximum tangential stress (MTS)

Originally proposed by Erdogan and Sih [1963], the MTS criterion postulates that a
crack propagates in a radial direction at which the tangential stress reaches its critical
value which is associated with the tensile strength of the material. Williams and Ewing
[1984]; Smith et al. [2001] later showed that the T-stress inclusion in the MTS formulation
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improves its predictions. Saouma et al. [1987] extended the criterion to anisotropic solids
by adopting a direction-dependent tensile strength. According to Table 2.1, the MTS
criterion is the most widely used fracture growth criterion in anisotropic materials. This is
due to its simplicity and accurate predictions. The MTS criterion in anisotropic materials
is formulated as [Saouma et al., 1987; Nejati et al., 2020a]


dσ̂θ
dθ

= 0 ,
d2σ̂θ
dθ2

< 0 ,

(
σ̂θ =

σθ
σc
ϕ

)
,

σ̂θ = 1 ,

(2.1)

where σ̂θ is the tangential stress normalized by the direction-dependent tensile strength
of the material, known as σc

ϕ. The subscript ϕ is the angle between the crack growth
direction and the principal direction 1 (see Figure 2.4). The first statement in Eq. (2.1)
states that a crack propagates along a direction where the normalized tangential stress
reaches the maximum value (i.e. kinking along θ = θ0). The second statement postulates
that the tangential stress reaches the critical tensile strength at the onset of fracture
growth.

We use Eq. (A.1.6) to write the tangential component of stress at the crack tip under
mixed-mode I/II loading:

σθ =
Keff√
2πr

(
ℜ

[
−
(
λ± µ2

√
1− λ2

)
(µ1 sin θ + cos θ) 3/2 +

(
λ± µ1

√
1− λ2

)
(µ2 sin θ + cos θ) 3/2

(µ1 − µ2)

]

+
T
√
2πr

Keff

sin2 θ

)
.

(2.2)

Here, r and θ are the polar coordinates, µ1 and µ2 are the complex parameters defined
in Eq. (A.1.5), Keff = (K2

I +K2
II)

1/2 and λ = KII/Keff are respectively the effective stress
intensity factor and the mode-mixity parameter (defined in Eq. (A.1.7)), and T is the
T-term, a stress term acting parallel to the crack. λ = 0 and λ = ±1 respectively denote
pure mode I and pure mode II loading conditions, while the range −1 < λ < 1 corresponds
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to different mixed-mode I/II configurations where different contributions of each mode are
present. The ± sign in Eq. (2.2) represents the sign of the mode I stress intensity factor.
The sign + is used when KI > 0, whereas − is employed for cases where KI < 0 (closure
of initially-open cracks). A positive (tensile) T-stress enhances the tangential stress, σθ,
while a negative (compressive) one reduces it.

Due to the complexity of the stress field near the crack tip, σc
ϕ cannot be measured

directly. In order to circumvent this difficulty, σc
ϕ is often determined using the mode

I fracture toughness of the material as follows. Assume KIc(ϕ) is the mode I fracture
toughness for a co-planar fracture growth along a direction which forms the angle of ϕ
with the principal direction 1. Considering a linear elastic stress field near the crack tip,
one can determine the tensile strength from the stress along the crack bisector at a critical
distance, Lc, as

σc
θ =

KIc(ϕ)√
2πLc

, (2.3)

where Lc is often assumed to be the length of the fracture process zone (FPZ) at the
onset of crack propagation. By substituting r = Lc, Eqs. (2.2) and (2.3) into Eq. (2.1),
the normalized tangential stress is formulated as

σ̂θ =
Kc

eff

KIc(ϕ)

(
ℜ

[
−
(
λ± µ2

√
1− λ2

)
(µ1 sin θ + cos θ) 3/2 +

(
λ± µ1

√
1− λ2

)
(µ2 sin θ + cos θ) 3/2

(µ1 − µ2)

]

+
T
√
2πLc

Keff

sin2 θ

)
.

(2.4)

Eq. (2.4) is used together with Eq. (2.1) to obtain the kink angle, θ0, and the effective
stress intensity factor at the onset of fracture extension, Kc

eff . It is worth noting that there
is an important difference in the MTS formulation of anisotropic materials compared
to isotropic ones. The predicted kink angle in isotropic materials always occurs along
directions where the shear stress is zero. However, due to the variation of the tensile
strength, the kink angle, θ0, in anisotropic materials can be oriented along directions
where a considerable shear stress exists.
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Figure 2.4: Schematic representation of the existing fracture growth criteria when the
kinked crack is subjected to mixed tensile and shear stresses.

2.4.2 Maximum energy release rate (MERR)

The energy release rate (ERR) is defined as the rate at which the total potential energy
of a cracked body, Π, decreases with respect to an increase in fracture surface, A: G(θ) =
−dΠ/dA. According to the maximum energy release rate (MERR) criterion, a crack
extends in the direction θ0 at which the maximum energy is released for an increment
of crack extension. The fracture extends once the ERR reaches a critical value which is
a material property. One can therefore formulate the classical MERR criterion as [Judt
et al., 2015, 2019; Nejati et al., 2020a]


dĜ(θ)
dθ

= 0 ,
d2Ĝ(θ)
dθ2

< 0 ,

(
Ĝ(θ) = G(θ)

Gc(ϕ)

)
,

Ĝ(θ) = 1 .

(2.5)

Here, Gc(ϕ) is the critical energy release rate along the direction of a potential crack
extension, which forms an angle ϕ with the principal direction 1. In the classical form of
the MERR criterion, it is assumed that Gc(ϕ) embodies the energy released due to tensile
failure, so that Gc(ϕ) = GIc(ϕ). Note that ϕ depends on θ: ϕ = θ − β. The first term in
Eq. (2.5) states that the crack extends at an angle θ = θ0, where the normalized ERR,
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Ĝ(θ), reaches its maximum. The second term in Eq. (2.5) defines the critical driving force
at the onset of crack extension.

Generally, three approaches are available to determine the ERR due to crack extension:
1) Exact solution: Obata et al. [1989]; Azhdari and Nemat-Nasser [1996]; Yang and Yuan
[2000] applied this method to anisotropic materials subjected to in-plane loadings. When
employing this method, the function G(θ) is exactly determined by using the dislocation
technique, which formulates the post-kinking behavior. This formulation constructs a
system of integral equations which can be solved by using different numerical methods
(see Erdogan et al. [1973]). This method can model the crack kinking behavior even
when the kinked segment is large. 2) Approximate solution: By applying the modified
Irwin’s method, the function G(θ) can be computed for a virtual crack extension when
noncollinear crack growth takes place at an angle θ. Hussain et al. [1974] first suggested
the modified Irwin’s method for isotropic solids. The method was then extended to
anisotropic materials by Azhdari and Nemat-Nasser [1996]. Owing to the assumption of
an infinitesimally small kink in this method, the stress intensity factors at the kinked crack
can be directly derived by the elastic stress field around the main crack tip prior to crack
kinking [Li and Xu, 2007]. Therefore, this method, which provides an approximation for
the ERR function, has received considerable attention due to the simplicity of its closed-
form solution. 3) The J-integral formulation: The third formulation uses the J-vector to
determine the ERR function [Chang and Pu, 1996; Ma and Korsunsky, 2005; Judt et al.,
2015, 2019]. Note that the J-vector approach determines the energy release rate function
considering the state of crack fields before any kink formation. This is in contrast to
the dislocation technique and approximate solution, which characterize the ERR function
using the post-kinking state [Chang and Pu, 1996]. In this paper, we employ the exact
formulation to calculate the ERR. However, a comparison of the results from the exact
formulation with the ones from the approximate solution in A.2.3 indicates that the two
methods yield similar values for the cases investigated in this paper.

The energy release rate due to the kink formation at the angle θ is determined from
[Yang and Yuan, 2000]

G(θ) = 1

2
k(k)⊺Lk(k), (2.6)
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where L is a second-rank tensor related to the elasticity constants, and is defined in the
kink coordinate system (tn) as

L =
S̃11

E

(
cos θ sin θ

− sin θ cos θ

)(
ℑ(µ1 + µ2) ℑ(µ1µ2)

ℑ(µ1µ2) ℑ(µ1µ2(µ̄1 + µ̄2))

)(
cos θ sin θ

− sin θ cos θ

)⊺

= L11 L12

L21 L22

 ,

(2.7)

and k(k) is a vector containing mode I and II stress intensity factors at the kink:

 K
(k)
II

K
(k)
I

 = Keff

 C22 C21

C12 C11

 λ

±
√
1− λ2

+
T
√
r

Keff

(
b2

b1

) . (2.8)

Here, the coefficients Cij and bj are determined based on the technique chosen to obtain
the ERR function. Details regarding how to determine k(k), employing both exact and
approximate formulations are given in A.2. Once k(k) is obtained, one simply substitutes
the ERR function (Eq. 2.6) into Eq. (2.5) to formulate the MERR criterion based on the
maximum of the normalized ERR value.

2.4.3 Maximum strain energy density (MSED)

The MSED criterion predicts that the crack extends along the direction at which the
intensity of the local strain energy density, S(θ), becomes stationary [Ye and Ayari, 1994;
Nejati et al., 2020a]. For isotropic materials, this stationary point is a local minimum
[Sih, 1974], whereas for anisotropic materials, a local maximum of the normalized SED
determines the direction of crack growth [Zhang et al., 1989; Ye and Ayari, 1994; Nejati
et al., 2020a]. We highlight that the minimum of the SED function gives highly inaccurate
predictions for the angle of fracture growth [Zhang et al., 1989; Ye and Ayari, 1994; Nejati
et al., 2020a]. The classical MSED criterion for anisotropic materials can therefore be
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formulated as [Nejati et al., 2020a]


dŜ(θ)
dθ

= 0 ,
d2Ŝ(θ)
dθ2

< 0 ,

(
Ŝ(θ) = S(θ)

SIc(ϕ)

)
,

Ŝ(θ) = 1 .

(2.9)

The first statement of Eq. (2.9) determines the orientation of the crack extension, θ0,
while the effective fracture toughness is evaluated according to the second expression at
θ = θ0. Note that SIc(ϕ) is the intensity of the direction-dependent critical strain energy
density along ϕ, forming an angle ϕ = θ − β with respect to direction 1 (see Figure 2.4).
In general, the correlation between the strain energy intensity, S(θ), and the strain energy
density, Ũ , can be written in polar coordinates as

Ũ =
σrϵr + σθϵθ + τrθγrθ

2
=

S(θ)
r

. (2.10)

Employing the stress and strain relations given in Eqs. (A.1.6) and (A.1.11), the
intensity function of the SED , S(θ), is defined as

S(θ) = Keff
2

4πE


σ̃r(µk, θ, λ) +

T
√
2πr

Keff

cos2 θ

σ̃θ(µk, θ, λ) +
T
√
2πr

Keff

sin2 θ

τ̃rθ(µk, θ, λ)−
T
√
2πr

Keff

sin θ cos θ



⊺
ϵ̃r(S̃ij, µk, θ, λ) +

T
√
2πr

Keff

S̃r

ϵ̃θ(S̃ij, µk, θ, λ) +
T
√
2πr

Keff

S̃θ

γ̃rθ(S̃ij, µk, θ, λ) +
T
√
2πr

Keff

S̃rθ

 .

(2.11)

2.5 Experimental data versus theoretical predictions

Figure 2.5 illustrates the variations of the experimental data regarding the effective frac-
ture toughness, Kc

eff , and the kink angle, θ0, against β for the four sets of experiments.
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Recall that β is the angle between the main crack and the foliation plane (principal
direction 1). As noted previously, the direction of fracture growth in anisotropic mate-
rials depends on the interplay among three parameters: loading, geometry, and material
anisotropy. Having a fixed geometry for the tested samples, one can evaluate the interplay
between the mode-mixity, λ, and the anisotropy direction, β, in the experimental data
presented in Figure 2.5. Depending on the sign of the mode-mixity, λ, these two con-
tributors may either reinforce or weaken each other’s influence to determine the fracture
growth trajectory. The following remarks are noted regarding this interplay:

• The variations of the effective fracture toughness against β for each λ show that
the effective fracture toughness generally increases with the angle β. This behavior
is attributed to the effects of the compressive T-stress, which prevents large kink
angles and forces the main crack with the large angle β to extend in strong material
directions.

• Figure 2.5 shows that in Sets I and III (negative λ), the fracture kinks along positive
directions, while in Sets II and IV (positive λ) negative kink angles are observed.
To explain this behavior, we first point out that the tendency of anisotropy is to
drive the main crack to kink towards the weakest plane, i.e. towards direction 1 or
the foliation plane (θ0 = β). A negative mode-mixity parameter, λ < 0, assists the
tendency to kink towards direction 1, with the kink angles in the range θ0 > 0. On
the other hand, a positive mixed-mode parameter, λ > 0, opposes the tendency of
anisotropy, driving the main crack to kink at negative angles (θ0 < 0). For both
negative and positive λ, the extent of the kink angle significantly depends on the
value of the T-stress, where a compressive T-stress prevents the development of high
kink angles.

• Another observation in Figure 2.5 is that the scatter of data in Set IV (positive
λ) is more significant than the scatter in the data associated to Set III (negative
λ). The data scatter in rocks can be attributed to the micro-cracking mechanism
changing from the intergranular dominance to the transgranular dominance [Nejati
et al., 2021a]. In the case of the dominant intergranular mechanism, the crack
grows along the sheet silicates such as biotite and chlorite. In the transgranular
dominance, however, the crack passes through patches of stiffer quartz and feldspar
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minerals. In rocks such as Grimsel Granite, the grain size can reach about 1 cm,
which is quite large with respect to the specimen size. This means that the effect
of heterogeneity is more pronounced when the transgranular mechanism becomes
dominant, and thus the fracture toughness is more scattered. In the positive mode-
mixity (such as Set IV), the competition is in favor of loading, and a transgranular
mechanism with more data scatter is expected. On the other hand, in Set III with
negative mode-mixity, the material tendency and loading both derive the crack at
a small angle with respect to the foliation plane, where an intergranular failure and
small scatter in data is expected.
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Figure 2.5: Comparison of the experimental data on the kink angle, θ0, and the effective
fracture toughness, Kc

eff , and the predictions of the MTS, MERR, and MSED criteria in
their classical forms, i.e. Eqs. (2.1), (2.5), and (2.9), respectively.

Also shown in Figure 2.5 are the predictions of the three crack growth criteria: the
maximum tangential stress (MTS) (Eq. 2.1), the maximum energy release rate (MERR)
(Eq. 2.5 and assuming Gc(ϕ) = GIc(ϕ)), and the maximum strain energy density (MSED)
(Eq. 2.9). While a good agreement is observed between the experimental data and the
MTS predictions, the estimates made by the classical forms of the energy-based criteria
(i.e. MERR and MSED) are significantly inaccurate. The accurate MTS predictions
indicate that tensile failure is the dominant failure mode at the crack tip. We point out
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that any maximum in the the intensity function of the SED that is close to the main
notch is considered unacceptable and is therefore excluded. In conclusion, the classical
energy-based criteria may yield significantly inaccurate predictions for crack growth in
anisotropic rocks.

2.6 Revisiting energy-based growth criteria

The inconsistencies observed between the predictions of energy-based criteria and the
experimental data indicate that the classical forms of the MERR and MSED criteria may
not be accurate for rock-type materials. Therefore, modifications must be applied to
these classical forms in order to improve their predictions. In this section, we identify the
drawbacks of the classical forms of the ERR and SED intensity functions, and present
improved versions of these criteria.

2.6.1 Modification of the MERR criterion

The classical formulation of the MERR criterion, given in Eq. (2.5), appears to have
a significant problem when applied to quasi-brittle materials which have significantly
different tensile and shear strengths. In order to elaborate on this, we first decompose the
energy release rate in Eq. (2.6) into two components:

G(k) =
1

2
K

(k)
I (L21K

(k)
II + L22K

(k)
I )︸ ︷︷ ︸

G(k)
I

+
1

2
K

(k)
II (L11K

(k)
II + L12K

(k)
I )︸ ︷︷ ︸

G(k)
II

. (2.12)

Here, G(k)
I and G(k)

II represent the ERR contributions of tensile opening and shear sliding
of the kink, respectively, as schematically shown in Figure 2.6. In other words, G(k)

I is the
ERR due to the release of the tensile stress, σθ, upon kink formation, while G(k)

II (θ) is the
ERR contribution due to the release of the shear stress, τrθ. Note that Figure 2.6 depicts
the state of the stress before kinking occurs. Due to kinking, the stresses σθ and τrθ along
the kink are released to cause the displacement discontinuities ∆un (normal to the kink)
and ∆ut (along the kink).
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Figure 2.6: Schematic representation of the decomposition of the energy release rate into
tensile and shear components.

It now becomes apparent that an incompatibility exists between the numerator and
denominator in the definition of the normalized ERR function in Eq. (2.5). While G
includes the contributions of both tensile opening and shear sliding due to the kink for-
mation, Gc is the critical fracture energy related to either tensile failure or shear rupture.
When one uses the tensile fracture energy in the denominator of Ĝ, the term G(k)

II becomes
irrelevant. Similarly the use of the shear fracture energy in the denominator of Ĝ ren-
ders the term G(k)

I irrelevant. It is therefore essential to reformulate Eq. (2.5) in order to
make it more physically meaningful, particularly for quasi-brittle materials that exhibit
significantly different tensile and shear fracture energies.

Another important drawback of the formulation in Eq. (2.5) is that it does not enforce
any constraint on the angle at which a kink can form. The energy released due to tensile
opening, G(k)

I , only contributes to the total energy release rate if the formation of an open
kink is possible. This means that for G(k)

I to contribute to the total ERR, the following
condition must be satisfied for the opening displacement at the kink (see Figure 2.6):

∆un(θ) = L21K
(k)
II + L22K

(k)
I ≥ 0 . (2.13)

The component G(k)
I can not be released in an angle, where no opening is possible,
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i.e. ∆un < 0. For such an angle, adding G(k)
I indicates an energy release rate due to

the penetration of the kink surfaces into one another, which is physically impossible.
Therefore, the opening-based ERR function, G(k)

I (θ), must be constrained to an interval
of validity in which a potential kink can in fact open. We can define this interval of
validity as θ1 ≤ θ ≤ θ2, where θ1 and θ2 represent the lower and the upper bounds of
the interval of validity, respectively. We note that Gao and Chiu [1992]; Yang and Yuan
[2000] also emphasized the importance of constraining the ERR function to an interval
of validity. However, they did not consider any decomposition of the ERR function into
tensile and shear parts.

Note that from Eq. (2.8), the kink stress intensity factor, k(k), depends on the T-stress
value, T , of the main crack. This dependency indicates that the T-stress value can play
a crucial role in constraining the interval of validity. A compressive T-stress reduces the
kink stress intensity factors, thereby preventing an opening of the kink at certain angles.
A highly compressive T-stress can therefore shrink the interval of validity for the opening
mode ERR to a small interval near the notch bisector. In such cases, the main crack
deflects back toward the main straight path and thus the kink angle, θ0, is predicted to
be in the vicinity of the main crack bisector (see Gao and Chiu [1992]). On the other
hand, a significant tensile T-stress can expand the interval of validity back to the original
interval, −π ≤ θ ≤ π. Note that the contribution of G(k)

I (θ) to the total ERR must vanish
outside the interval of validity. In those regions, however, energy can still be released due
to shear sliding, G(k)

II (θ). By considering the interval of validity for G(k)
I (θ), we re-write

Eq. (2.12) as

G(k)(θ) = G(k)
I (θ) + G(k)

II (θ) ,

G(k)
I (θ) =


1

2
K

(k)
I (L21K

(k)
II + L22K

(k)
I ) θ1 ≤ θ ≤ θ2

0 otherwise

,

G(k)
II (θ) =

1

2
K

(k)
II (L11K

(k)
II + L12K

(k)
I ) − π ≤ θ ≤ π .

(2.14)

In order to re-write the MERR criterion in a physically more meaningful manner, we
suggest to decompose the total normalized ERR, Ĝ, into two components: The contribu-
tion ĜI = G(k)

I /GIc, constrained to an interval of validity, representing a tensile fracturing
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indicator, and the contribution ĜII = G(k)
II /GIIc, representing a shear failure indicator. Us-

ing the definition of the normalized ERR, we introduce a modified form of the MERR
criterion given as



dĜ(θ)
dθ

= 0 ,
d2Ĝ(θ)
dθ2

< 0 , Ĝ(θ) =



ĜI(θ)︷ ︸︸ ︷
G(k)
I (θ)

GIc(ϕ)
+

ĜII(θ)︷ ︸︸ ︷
G(k)
II (θ)

GIIc(ϕ)
θ1 ≤ θ ≤ θ2

G(k)
II (θ)

GIIc(ϕ)
otherwise

,

Ĝ(θ) = 1 .

(2.15)

In fact, the classical normalized ERR function, often reported in the literature, is
a special case of Eq. (2.15) which assumes GIIc = GIc with no assumption concerning
the interval of validity (see for example Azhdari and Nemat-Nasser [1998]; Nejati et al.
[2020b]; Judt et al. [2019]). The classical form may be accurate for materials that exhibit
comparable shear and tensile fracture toughness values, or for cases where the contribution
of the T-stress is insignificant. However, the classical form can result in highly inaccurate
predictions for quasi-brittle materials for which GIIc is significantly greater than GIc, or for
cases where significant T-stresses considerably confine the interval of validity. The ratio
of true mode II to mode I fracture toughness in rocks is normally KIIc/KIc ≥ 3, which
translates to a ratio of GIIc/GIc > 9 for fracture energy [Shen and Stephansson, 1994;
Bahrami et al., 2020; Nejati et al., 2021a]. This suggests that, assuming GIIc = GIc is a
very inaccurate assumption for many rock-type materials, and that applying the classical
form of the MERR criterion likely results in significant prediction errors.

We note that a simpler form of the modified MERR criterion (Eq. 2.15) was suggested
by Shen and Stephansson [1994] for isotropic materials and Shen and Shi [2016]; Shen
et al. [2014] for transversely isotropic rocks. Their formulations, however, ignore the
importance of defining an interval of validity for ĜI, and employ the first sub-function
of the piecewise ERR function introduced in Eq. (2.15) without applying any interval
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of validity. This is mainly the case, as they do not consider the T-stress in their crack
tip stress formulation. Nevertheless, numerical results by [Shen and Stephansson, 1994;
Zhang et al., 2017b] have demonstrated that their modified versions are able to accurately
predict crack growth patterns due to shear failure. We show in this paper that our modified
version of the MERR criterion in Eq. (2.15) is not only potentially helpful when predicting
shear failure, but additionally yields significantly better predictions for tensile-stress-based
crack growth in anisotropic rocks.

We note that the difficulty in measuring shear fracture toughness, KIIc, can limit the
use of our modified ERR function. However, due to the large ratio of GIIc/GIc, one can
ignore the term G(k)

II /GIIc in our modified formulation, and thus use the normalized form
Ĝ = G(k)

I /GIc within the interval of validity. In such cases, the MERR criterion can only
predict crack growth due to tensile failure. In addition, we expect that the modified
MERR criterion can be superior to the MTS criterion in the sense that it can predict
a potential failure due to shear stresses, whereas the MTS criterion fails in that regard.
Shear failure is the predominant mode of failure when high compressive confining stresses
are applied, e.g. under in-situ condition.

2.6.2 Modification of the MSED criterion

Similar to the MERR criterion, we can decompose the strain energy density, Ũ , into two
components, Ũ = ŨI + ŨII, where ŨI and ŨII represent the strain energy due to normal
stresses and shear stresses, respectively, in the polar coordinate system:

Ũ =
σrϵr + σθϵθ

2
+
τrθγrθ
2

= ŨI + ŨII . (2.16)

Accordingly, one can decompose the intensity of strain energy density into two com-
ponents: S = SI + SII, where SI and SII represent the strain energy intensities due to
normal stresses and shear stresses, respectively:
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Ũ =
S(θ)
r

=
SI(θ)

r
+

SII(θ)

r
. (2.17)

Employing the stress and strain relations given in Eqs. (A.1.6) and (A.1.11), the SED
intensity functions SI(θ) and SII(θ) are defined as

SI(θ) =
Keff

2

4πE

 σ̃r(µk, θ, λ) +
T
√
2πr

Keff

cos2 θ

σ̃θ(µk, θ, λ) +
T
√
2πr

Keff

sin2 θ


⊺ ϵ̃r(S̃ij, µk, θ, λ) +

T
√
2πr

Keff

S̃r

ϵ̃θ(S̃ij, µk, θ, λ) +
T
√
2πr

Keff

S̃θ
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SII(θ) =
Keff

2

4πE

(
τ̃rθ(µk, θ, λ)−

T
√
2πr

Keff

sin θ cos θ

)(
γ̃rθ(S̃ij, µk, θ, λ) +

T
√
2πr

Keff

S̃rθ

)
.

(2.18)

There are two remarks that should be taken into account: 1) Since the intensity of
the strain energy density is compared to its critical value during tensile-based failure, SIc,
only the tensile-based contribution of the intensity of the strain energy density, SI, should
be included as a driving force for the fracture growth. 2) The validity of the normalized
intensity of the strain energy density must be constrained to an angular interval in which
the tangential strain (given in Eq. A.1.11) is positive: ϵθ > 0. We therefore define an
interval of validity, θ1 ≤ θ ≤ θ2, for the SED intensity function. Any maximum occurring
outside this interval of validity must be ignored, as tensile-based crack growth along a
direction with negative tangential strain is physically impossible. By applying these two
remarks, a modified formulation of the MSED criterion is given by


dŜ(θ)
dθ

= 0 ,
d2Ŝ(θ)
dθ2

< 0,

(
Ŝ(θ) = SI(θ)

SIc(ϕ)
; if θ1 ≤ θ ≤ θ2

)
,

Ŝ(θ) = 1 .

(2.19)
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2.6.3 Re-assessment of the energy-based fracture criteria

Figure 2.7 re-assesses the MERR and the MSED theories by comparing the results of
their modified versions with experimental data. It is evident that the modified versions
are significantly more accurate than the classical formulations (Figure 2.5). According to
Figure 2.7, while a good agreement is seen between the experimental data and the MTS
and modified MERR predictions, the MSED, even in the modified form, yields somewhat
inaccurate predictions that are furthest away from the experimental data. Particularly
for sets III and IV, where higher levels of T-stresses exist (see Table 2.5), the MSED
estimates seem to deviate more significantly from the experimental results.

0.5

0.75

1

1.25

1.5

1.75

2

E
ff

ec
ti

v
e 

fr
ac

tu
re

 t
o

u
g

h
n

es
s 

K
e
ff

c
 (

M
P

a
 m

)

Experimental data

MTS: Eq. (1)

Modified MERR: Eq. (15)

Modified MSED: Eq. (19)

0 15 30 45 60 75 90

 (degrees)

-45

-30

-15

0

15

30

45

K
in

k
 a

n
g

le
 

0
 (

d
eg

re
es

)

Set ISet I

0 15 30 45 60 75 90

 (degrees)

Set IISet II

0 15 30 45 60 75 90

 (degrees)

Set IIISet III

0 15 30 45 60 75 90

 (degrees)

Set IVSet IV

Figure 2.7: Comparison of experimental data on kink angle, θ0, and the effective fracture
toughness, Kc

eff), with the predictions of the MTS (Eq. 2.1), modified MERR (Eq. 2.15),
and modified MSED (Eq. 2.19).

The accuracy of the MTS model and the modified energy-based criteria (i.e. MERR
and MSED) are compared in Table 2.6, where the error norms, eθ0 and eKc

eff
, are defined

as
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eθ0 =

√√√√√√
∑N

i=1

(
(θe0)i − (θp0)i

)2
∑N

i=1

(
(θe0)i − (θ̄e0)i

)2 , eKc
eff

=

√√√√√√
∑N

i=1

(
(Kc, e

eff )i − (Kc, p
eff )i

)2
∑N

i=1

(
(Kc, e

eff )i − (K̄c, e
eff )i

)2 . (2.20)

Here, (θe0)i and (Kc, e
eff )i are the ith experiment data on the kink angle and effective

fracture toughness, respectively, which are compared to the predictions of each individual
growth criterion for that test, (θp0)i and (Kc, p

eff )i. The denominator is the standard devi-
ation, which shows how different the experimental data are from the mean values (θ̄e0)i

and (K̄e
eff)i. The lowest value of the error is unity, which implies that the predictions

are exactly the same as the mean values of the experimental data. The higher the er-
ror values, the higher are the deviations of the predictions from the mean values. The
errors in Table 2.6 indicate that the MTS and the MERR are equally accurate in their
predictions, whereas the MSED results in predictions that are the furthest away from the
experimental data.

Error function Criterion Set I Set II Set III Set IV Average

eθ0

MTS 1.53 1.30 1.93 1.86 1.66
MERR 1.28 1.42 1.52 1.45 1.42
MSED 2.87 1.57 3.43 2.20 2.52

eKc
eff

MTS 1.40 2.65 1.16 1.36 1.64
MERR 1.28 2.37 1.55 1.29 1.62
MSED 2.54 4.69 3.81 2.79 3.46

Table 2.6: Comparison of the prediction errors for different fracture growth criteria. The
error norms are defined in Eq. (2.20).

2.7 Discussion

Among the three criteria, the MERR criterion is expected to be theoretically the most
accurate criterion since this model considers the energy release rate associated with both
opening and shearing deformations at the kink. Unlike the MTS criterion, which focuses
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only on tensile-based fracturing due to the tensile stress, the MERR criterion includes the
influence of shear stresses on the kink plane during the fracturing process, enabling the
prediction of shear-based failure. However, in materials with large differences between the
shearing and the opening fracture toughness, such as rocks in general, the modification
introduced in the normalized MERR function must be taken into account in order to
achieve acceptable predictions of fracture growth path. A similar modification must be
applied to the normalized intensity of the SED function to yield reasonable results. We
exclude the shear strain energy density from Eq. (2.19) since the effect of shearing is not
included in the critical SED intensity function, SIc(ϕ). We also emphasize that the associ-
ated normalized energy functions in the MERR and MSED criteria must be constrained to
their corresponding intervals of validity. Otherwise, the predictions of the energy-based
criteria are no longer reasonable in cases, where significant compressive T-stresses are
present. More discussions on the performance of each criterion are given next.

2.7.1 MTS criterion

Due to the mathematical simplicity and the accuracy of predictions, the MTS is the most
widely used criterion for predicting fracture growth path in rocks. However, the MTS
criterion has one intrinsic drawback, which is related to the assumption that tensile-based
failure always precedes shear-based failure. As long as tensile fracturing prevails, the
crack growth path is predicted accurately by MTS, even for dominant mode II loading
types as seen in the experimental sets III and IV. However, there is a possibility in
practical applications that shear-induced fracturing precedes tensile-induced fracturing,
as described in detail in Bahrami et al. [2020]. Consider the case, where the main crack
is aligned with the weak direction of the material and is subjected to a pure mode II

loading. Since crack kinking requires failure in the stronger direction of the material, the
failure may well occur along the weak direction due to shear stresses, provided that the
anisotropy is strong enough, or the T-stress is compressive enough to hinder tensile-based
crack kinking. In such cases, the MTS criterion fails to predict the kink angle, θ0 = 0◦,
since the tensile stress along the notch plane is zero. Hence, it is of great importance to
recognize that the MTS predictions are reliable only when the mechanism of fracturing is
mainly tension-based.
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2.7.2 MERR criterion

The use of the modified version of the MERR criterion is essential to accurately predict
crack growth in anisotropic rocks. Figure 2.8 compares the experimental data for θ0 and
Keff with the predictions of four different versions of the MERR criterion that incorporate
different assumptions into the normalized ERR function. These versions are defined as
follows. 1) The original modified version as formulated in Eq. (2.15); 2) A version of
Eq. (2.15) that is based on the exclusion of the energy released due to kink sliding:
G(k)
II (θ)/GIIc(ϕ) = 0. 3) A version of Eq. (2.15), where tensile- and shear-based fracture

energies are assumed to be equal: GIIc(ϕ) = GIc(ϕ). 4) A version of Eq. (2.15), where no
interval of validity is considered: −π ≤ θ0 ≤ π. Table 2.7 compares the errors eθ0 and eKeff

associated with these four versions. These results show the necessity of the modifications
introduced in this paper in order to obtain reasonable predictions of the MERR criterion.
We specifically note the following:

• Comparing versions 1 and 2 shows that the contribution of the shearing term,
G(k)
II (θ)/GIIc(ϕ), in the ERR function is insignificant. Therefore, if a measurement

for mode II fracture toughness is not available, assuming Ĝ(θ) = G(k)
I (θ)/GIc(ϕ)

can still provide excellent approximations of fracture growth paths with the MERR
criterion, as long as tensile fracturing prevails.

• Comparing versions 1 and 3 shows that the classical ERR formulation in Eq. (2.5),
which assumes GIIc(ϕ) = GIc(ϕ), fails to predict accurate kink angles and effective
fracture toughness values, particularly for high values of the mode-mixity ratio, λ.
This is because in rocks, the fracture energy during tensile-based failure is much
smaller than the fracture energy during shear-based failure. It is worth noting that
the peak of the second sub-function, given in Eq. (2.15), can exceed the maximum
of the first sub-function when GIIc(ϕ) = GIc(ϕ) is assumed for λ = 0.71 and β > 15◦.
This means that, according to version 3, failure may happen due to shearing at
higher values of loading, which is in contrast to our experimental observations.

• Comparing versions 1 and 4 shows that considering a correct interval of validity is
essential for accurate predictions of fracture growth path with the MERR criterion.
We point out that the maxima of the ERR function that fall outside the interval
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of validity for θ0 result in significant errors in kink angle predictions. One therefore
needs to consider the interval of validity for crack growth path predictions, especially
when large compressive T-stresses act on the crack.
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Figure 2.8: Comparison of experimental data on θ0 and Kc
eff with the predictions of the

MERR criterion with different assumptions.

Error function Assumptions applied to Eq. (2.15) Set I Set II Set III Set IV Average

eθ0

(1) No assumption 1.28 1.42 1.52 1.45 1.42
(2) G(k)

II (θ)/GIIc(ϕ) = 0 1.26 1.43 1.57 1.49 1.44
(3) GIIc(ϕ) = GIc(ϕ) 2.37 2.88 13.53 9.37 7.04
(4) θ1 = −π, θ2 = π 20.05 10.16 28.70 17.30 19.05

eKc
eff

(1) No assumption 1.28 2.37 1.55 1.29 1.62
(2) G(k)

II (θ)/GIIc(ϕ) = 0 1.28 2.35 1.56 1.30 1.62
(3) GIIc(ϕ) = GIc(ϕ) 1.29 2.65 3.15 3.04 2.53
(4) θ1 = −π, θ2 = π 1.43 2.26 5.42 4.43 3.39

Table 2.7: Comparison of the prediction errors for different formulations of the MERR
criterion. The error norms are defined in Eq. (2.20).

We note that our finding about the necessity of decomposing the strain energy release
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function into shearing and opening parts can also give insight to derive more physically-
meaningful phase-field formulations. Our results suggest that in order to build a phase-
field model that accurately simulates the underlying physics of fracturing in anisotropic
quasi-brittle materials, one needs to consider two directional-dependent fracture energy
functions. While it is becoming more common in phase-field to use a directional-dependent
fracture energy function [Rezaei et al., 2021], or to use separate tensile and shear energy
functions [Li et al., 2021; Zhang et al., 2017b], it is yet to be seen the combination of both
in the mathematical model which includes directional-dependent tensile and shear energy
functions.

2.7.3 MSED criterion

In order to illustrate the significance of the modifications of the MSED criterion suggested
in this paper, we compare in Table 2.8 the errors for different versions of the MSED cri-
terion with different assumptions. These versions are defined as follows: 1) The original
modified formula, given in Eq. (2.19); 2) The version of Eq. (2.19) that includes the inten-
sity of the shear strain energy density; 3) The version of Eq. (2.19), where no interval of
validity for θ0 is taken into account: −π < θ0 < π. As seen in Table 2.8, the modifications
suggested in this paper are essential to yield acceptable predictions for crack growth path.
We also note that the inclusion of the intensity of the shear strain energy density, SII in
Eq. (2.19), can lead to a maximum of the SED intensity function at the boundaries of the
interval of validity, whereas excluding SII enables obtaining maxima within the interval.
We also observe that the maximum value of SII(θ)/SIc(ϕ) always exceeds the maximum
value of S(θ)/SIc(ϕ) at the interval boundary, and therefore the second version of the
MSED criterion predicts material failure due to shearing only. We also note that only
maximum values (and not minima) of the SED functions, located within the interval of
validity, yield reasonable values for kink angles.
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Error function Assumptions applied to Eq. (2.19) Set I Set II Set III Set IV Average

eθ0

(1) No assumption 2.87 1.57 3.43 2.20 2.52
(2) SII(θ) ̸= 0 14.11 11.05 29.52 9.29 15.99
(3) θ1 = −π, θ2 = π 24.69 21.57 25.53 16.11 21.98

eKc
eff

(1) No assumption 2.54 4.69 3.81 2.79 3.46
(2) SII(θ) ̸= 0 2.04 5.37 5.53 4.78 4.43
(3) θ1 = −π, θ2 = π 2.84 5.51 5.70 4.85 4.73

Table 2.8: Comparison of the prediction errors for different formulations of the MSED
criterion. The error norms are defined in Eq. (2.20).

2.7.4 Effects of T-stress

The T-stress is the second term in the crack tip stress series solution, acting as a constant
stress parallel to the crack plane. The classical work of Cotterell and Rice [1980] on
the influence of T-stress on fracture path stability in an isotropic medium was extended
by Gao and Chiu [1992]; Goldstein and Shifrin [2012] to anisotropic media. Studies on
the influence of the T-stress on fracture growth of anisotropic solids have been mainly
theoretical [Gao and Chiu, 1992; Yang and Yuan, 2000; Shah et al., 2006], as only few
articles addressed this topic experimentally [Nejati et al., 2020a]. Figure 2.9 compares
the experimental data for θ0 and Kc

eff with the predictions of the MTS (Eq. 2.1), the
MERR (Eq. 2.15), and the MSED (Eq. 2.19), when the term containing the T-stress
is excluded from the formulation of these criteria. Comparing with Figure 2.7 shows
that neglecting the T-stress increases the error of predicted θ0 and Kc

eff values for all three
criteria. Note that the inaccuracy of the predictions is more pronounced in Sets III and IV
(λ = ±0.71), where larger values of compressive T-stress are present. This illustrates
the significant influence of the T-stress on the crack growth behavior in the tested rock
samples. In addition, the predictions obtained by the MSED criterion show unacceptable,
sharp variations in the kink angle. Recall that, contrary to Figure 2.9, a smooth trend of
the MSED crack growth path predictions was previously observed (Figure 2.7), when the
T-stress effect was taken into account.
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Figure 2.9: Comparison of the experimental data on θ0 and Kc
eff with the predictions of

the MTS, modified MERR, and modified MSED criteria when T-stress is ignored.

Lastly we highlight the fact that the adopted theoretical model, based on a homoge-
neous transversely isotropic material behaviour, deviates from the real-world rock material
in that neither homogeneity nor transverse isotropy can perfectly describe the material
response. Grimsel Granite is a heterogeneous material at the sample scale, with quartz
grain diameters as large as 1 cm, and the data scatter seen in Figure 2.5 is evidence for the
influence of material heterogeneity, as discussed in Section 2.5. All minerals composing
Grimsel Granite (quartz, two feldspars, mica, and accessories) are themselves materials
with very different degrees of anisotropy, in different orientations relative to complex ge-
ometric grain shapes. Adopting a homogeneous material model is therefore not ideal,
but avoids the need to accurately capture the heterogeneity that is specific to each sam-
ple. Previous results on Grimsel Granite suggest that the transverse isotropy assumption
provides a decent approximation to the material behaviour (see Dambly et al. [2019]).
Adopting a model with more material constants may lead to improved accuracy, but
at the expense of introducing additional complexity to the mathematical model as well
as requiring additional effort to measure a large number of potentially sample-specific
material parameters. We believe that the adopted mechanical model employed in this
paper provides a degree of efficiency and accuracy that is suitable for most engineering
applications.
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2.8 Conclusions

The main findings of this article are as follows.

• The presented experimental data clearly demonstrate how two factors, the mode-
mixity, λ, and the material anisotropy interact with each other to determine the
kink angle in crack growth paths in anisotropic rocks. For negative values of λ, the
loading effect reinforces the anisotropy to kink towards the weak plane (i.e. the
foliation plane in the Grimsel Granite). On the other hand, when λ is positive, the
loading counteracts the influence of strength anisotropy and thus the crack kinks
away from the plane of weakness.

• Comparing the experimental data with the predictions of the three investigated
criteria shows that the MTS and modified MERR results match well with the ex-
perimental data, whereas the MSED, even in its modified form, yields the least
accurate crack growth path predictions.

• The MTS is mathematically the simplest criterion, and gives accurate predictions for
both kink angle and effective fracture toughness. However, the criterion is expected
to be not practical in cases where there is a potential for crack extension due to
shear stresses.

• The MERR criterion in its classical form does not yield good predictions for fracture
growth path. However, its modified version, that is based on the decomposition of
the ERR into two components, yields highly accurate crack growth path predictions.
The MERR is superior to the MTS in the sense that it can also predict crack growth
due to shear failure.

• The MSED criterion, even in its modified form, gives highly inaccurate predictions
of crack growth. One therefore should avoid using the MSED to predict fracture
growth in anisotropic rocks and potentially other anisotropic solids. Note that, as
opposed to isotropic materials, for which the SED normally reaches a minimum at
the kink angle, in anisotropic materials only the angle of the maximum SED yields
reasonable crack kink predictions.
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• Unlike the MTS criterion for which no constraint is needed, the normalized tensile-
based ERR and SED energy functions must be confined to an interval of validity,
where a kink can potentially open: ∆un ≥ 0 or ϵθ ≥ 0. Outside this region, the
formation of a kink due to tensile stress is physically impossible.

• Inaccurate predictions of fracture growth paths when T-stress is excluded from
fracture growth formulation demonstrate the significant influence of T-stress on
fracture growth behavior.
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On the initiation of hydraulic fractures
in anisotropic rocks

M. Sakhaa, M. Nejatia, T. Driesnera

aDepartment of Earth Sciences, ETH Zurich, Switzerland

2023, Published in International Journal of Rock Mechanics and Mining Sciences, 169.

3.1 Abstract

This paper addresses hydraulic fracture initiation from an initially notch-free wellbore
situated in an anisotropic host rock, where the rock mass is subjected to an in-situ stress
state that is also anisotropic in nature. In such conditions, hydraulic fracture initiation
is fully characterized by three parameters, namely initiation pressure, initiation orienta-
tion, and initiation length. While a strength-based criterion captures only two of these
parameters, break-down pressure and orientation, the evaluation of initiation length re-
quires a mixed criterion approach in which both stress and energy conditions are met.
We extend the existing mixed criterion formulation for isotropic rocks to also include
anisotropic material behaviour. We then investigate how material anisotropy interacts
with stress anistropy to determine the break-down pressure as well as the size and ori-
entation of the starter crack. The results show that material anisotropy can overshadow
the stress anisotropy, in the sense that it can drive the crack towards the weakest plane.
It is demonstrated from a fracture energy perspective that the initiation length cannot

51
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extend as large as the fracture process zone length even when the wellbore size is unrealis-
tically large. The difference between initiation pressures predicted by the mixed criterion
and strength-based theory rises as the wellbore size decreases. Based on these observa-
tions, applying the mixed criterion is essential especially in relatively small wellbores.

3.2 Introduction

Hydraulic fracturing is the process of creating new fractures in a rock mass via injecting a
pressurized fluid. This process can be utilized in geotechnical applications to create highly
permeable pathways in shale oil and gas, mining, enhanced geothermal systems (EGS),
carbon sequestration projects, wastewater injection plans etc [Peirce, 2015; Doetsch et al.,
2018]. Generally, three different mechanisms can be activated by the fluid injection: ini-
tiation of new fractures, fracture propagation, and shear-reactivation of existing fractures
[Amann et al., 2018; Krietsch et al., 2020a]. This communication investigates fracture ini-
tiation in anisotropic rocks, with a focus on tensile opening from an unnotched borehole
with impermeable wall.

New fractures initiate once the fluid breaks down the formation, followed by the frac-
ture propagation phase, where the initiated crack propagates in a stable manner within
the medium [Shen et al., 2014]. Most studies have investigated fracture initiation from a
wellbore by assuming that stress concentrators such as notches created by perforation or
pre-existing natural fractures serve as the main initiation points of failure [Zhang et al.,
2011; Li et al., 2015; Liu et al., 2015; Zhu et al., 2015; Sesetty and Ghassemi, 2018;
Dong and Tang, 2019; Liu et al., 2020]. However, in practice, fractures may initiate from
an unnotched wellbore wall, which has only been investigated in few studies, and these
mostly focus on isotropic formations [Lecampion, 2012; Li et al., 2016; Li and Jia, 2018].
Rock anisotropy is often a significant characteristic of the formations where permeability
enhancement is planned for [Nejati et al., 2020b] and very little quantitative knowledge
about its role in fracture initiation from borehole walls is available.

A key aspect of modeling fracture initiation is that the initial breakdown is assumed to
result in the instantaneous opening of a crack of a certain length, i.e., the initiation length
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l0. Accurate knowledge of the initiation length is a pre-requisite for correct modeling of
the subsequent fracture propagation phase as strong gradients in the near-well stress field
will result in different crack paths depending on the starting point of propagation. Very
few studies have so far addressed this problem and most previous studies first assumed
an arbitrary length for the initial crack and then analyzed the effects of this arbitrary
size on the initiation pressure [Zhang et al., 2011; Li et al., 2015; Liu et al., 2015; Zhu
et al., 2015; Sesetty and Ghassemi, 2018; Dong and Tang, 2019]. Observations described
in Dong and Tang [2019] and Lecampion [2012] revealed that initiation from perforated
and intact wellbores ceases to give consistent results concerning the effect of wellbore size
in isotropic formations. According to Lecampion’s results, the smaller the size of the
wellbore, the higher the breakdown pressure. In contrast, Dong and Tang [2019] noted
that an initially cracked wellbore with the larger radius faces higher well resistance to
initiation, and thus a higher initiation pressure is required. While this inconsistency has
remained as a research question for isotropic formations, the literature barely contains
similar investigations in anisotropic formations.

Despite an important effect of wellbore size on the initiation pressure, the criteria for
crack nucleation from an unnotched wellbore often ignore such size effects [Bazant, 2000;
Carter et al., 1992; Carter, 1992; Lecampion, 2012]. In the framework of fracture initi-
ation, one of the most notable criteria is the maximum tensile stress, which postulates
that the onset of breakdown occurs when the maximum hoop stress reaches the mate-
rial’s tensile strength σT [Hubbert and Willis, 1957]. This strength-based criterion does
not give any information on the length of the initiated crack which instantaneously ap-
pears in a previously unnotched body. Assuming the sole strength-based criterion, there
is no condition to control that the tensile crack to what extent extends, and thus one
must provide an estimate for the initiation length. Such an estimate can, for example,
be based on linear elastic fracture mechanics (LEFM) theory, which would associate the
length of the starter crack to Irwin’s material lengthscale lm = K2

Ic/σ
2
T, where KIc and

σT respectively represent the material’s mode I fracture toughness and tensile strength
[Carter et al., 1992]. When a stress-based criterion is employed, the wellbore size effects
on breakdown pressure cannot be captured, and this leads to unrealistically low initiation
pressure predictions for large material lengthscales [Lecampion, 2012]. To reproduce the
size effect, Lecampion [2012] and Zhou et al. [2021] proposed mixed criteria by combining
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the strength-based criterion with an auxiliary condition, respectively, introduced by the
energy-based criterion and the toughness of the material. The proposed criteria, though
only in the isotropic formations, provide measures for the breakdown pressures and ini-
tiated crack lengths that is shown to match well with experimental results [Lecampion,
2012].

In this study, we extend the mixed criterion to anisotropic media, and derive the
formulation for a hydraulic fracture initiating from an intact wellbore in an anisotropic
formation. We analyze a wellbore that is oriented along the isotropy plane of a forma-
tion with transversely isotropic behavior. This configuration represents an endmember
case with the material anisotropy from the weakest to the strongest direction within the
plane perpendicular to the wellbore. Such geometry along with the assumption on the
stress configuration allows to consider a plane elasticity problem, with hydraulic fractures
initiating radially under a biaxial stress state. We seek to explore how the initiation
parameters, i.e. the dimensionless initiation pressure Πb0, the dimensionless initiation
length δ0 and the initiation angle θ0, are influenced by different configurations of material
anisotropy, stress anisotropy, and the wellbore size.

3.3 Problem description

We aim at analyzing the instantaneous, radial initiation of a tensile crack at the wall of an
unnotched wellbore into an anisotropic rock formation. In order to treat a case with max-
imum material anisotropy in the plane perpendicular to the well, we assume the wellbore
lies within the isotropy plane of a transversely isotropic rock formation and we assume
that both of material principal directions lie within the plane perpendicular to the well-
bore, as schematically shown in Figure 3.1. The stress state must favor radial initiation
while hampering formations of non-radial cracks. It should be noted that in some config-
urations such as the case of a wellbore aligned with the minimum in-situ stress, non-radial
mechanism prevails radial initiation (following the geomechanics convention, compressive
stresses are taken positive). For non-radial initiation to be suppressed, the stress config-
uration subjected to radial initiation condition must yield an initiation pressure less than
that predicted by the non-radial condition. Assuming the plane-stress condition near the
wellbore [Hubbert and Willis, 1957], the initiation of two symmetrically opposite radial
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Figure 3.1: A sketch of the configuration governing the initiation problem from an un-
notched wellbore wall. (a) the potential crack at the instant before initiation (b) the
instantaneous formation of the initial cracks when pressure reaches pb0. Note that the
parallel grey lines inclined at the angle β indicate the orientation of the isotropy planes
of the formation and the direction 2 is aligned with the symmetry axis of the material.

cracks is guaranteed, and no additional condition on the stress states is necessary (see
Figure 3.1).

To preclude the possibility of shear-reactivation, the stress states must be studied not
to favor any types of faulting. In the framework of Mohr diagrams, the stress ratios
whose Mohr’s circles touch the failure line, can provoke shearing in rock. Assuming the
Mohr-Coulomb envelop as the failure line, the first touch necessarily corresponds to the
(σ1, σ3) Mohr’s circle and thus only the ratio of σ1/σ3 needs to be taken care of. Once
the Mohr-Coulomb condition determines the greatest ratio of σ1/σ3, the condition can
also provide the extreme values of the intermediate stress σ2 since it can neither surpass
σ1 nor fall below σ3. Therefore, the stress anisotropy defined as λ = σ2/σ3 remains finite
within a range varying from unity to the greatest ratio of σ1/σ3.

Figure 3.1 schematically depicts the problem of initiation around an initially notch-
free cylindrical wellbore. The parallel lines inclined at the angle β indicate the orientation
of the isotropy planes of the formation. As shown in this figure, the hydraulic fracture
instantaneously initiates at a previously unnotched wellbore once the fluid is pressurized
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beyond the initiation pressure pb0. At the instant of initiation, the geometry of the
initiated fracture is characterized by the initiation length l0 as well as the initiation
orientation θ0. Therefore, in order to fully characterize hydraulic fracture initiation, the
initiation criterion must capture the initiation parameters, i.e., the fluid pressure, the
length and the orientation of the crack at initiation. It is important to bear in mind that
the analysis ignores the poroelastic effect by assuming the rock formation impermeable.

3.4 Initiation criteria

The analysis of initiation requires the prediction of the initiation length as well as the
initiation direction if anisotropy is present at the rock. We are therefore interested in a
robust criterion that is able to fully capture the initiation parameters in an anisotropic
medium.

3.4.1 Strength-based criterion

A purely strength-based model postulates that hydraulic fractures initiate once the well-
bore pressure overcomes the tensile strength of the host rock. This implies that the hoop
stress σθ 1 exceeds the material tensile strength σT along the initiation direction θ0. This
criterion was first introduced by Hubbert and Willis [1957] to predict longitudinal fracture
initiation in isotropic solids, and has widely been adopted thereafter. This criterion for
an anisotropic medium with direction-dependent tensile strength σT(ϕ), is formulated as
[Serajian and Ghassemi, 2011; Li and Weijermars, 2019]


dσ̂θ(pb, θ)

dθ
|(pb0,θ0) = 0,

d2σ̂θ(pb, θ)

dθ2
|(pb0,θ0) < 0,

(
σ̂θ(pb, θ) =

σθ(pb, θ)

σT(ϕ)

)
,

σ̂θ(pb0, θ0) = 1,

(3.1)

1Following the approach used by Lecampion [2012], the stress distribution components around the
wellbore is expressed with the convention of positive stresses in tension. It is important to keep in mind
that this differs from the geomechanical convention used to express in-situ compressive stresses.
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where ϕ is a function of θ as well as the material principal orientation β and will be
defined later in Section 3.5.

Eq. 3.1 states that the crack initiates once the normalized hoop stress, σ̂θ, reaches
its maximum on the wellbore wall. In reality, however, a tensile crack with a finite
extent instantaneously appears in the previously notch-free body. This abrupt jump from
a crack-free to a cracked state as well as the corresponding crack length needs to be
captured within the framework of initiation formulation. In this context, the crack may
favor being extended to the full length of the fracture process zone (FPZ). However, the
correct initiation length depends also on other parameters such as the stress anisotropy
and the wellbore size [Lecampion, 2012]. As these are not included in the purely strength-
based theory, the latter cannot therefore provide the initiation length, and the length of
the potential crack at the instant of initiation remains unclear. To address this drawback,
an energy condition must also be met.

3.4.2 Mixed criterion: strength and energy

An energy-based criterion for crack initiation requires that the cohesion in the rock ma-
terial debonds once the energy release rate is large enough to create the starter crack
surfaces. Although the strength-based and energy-based criteria are each necessary con-
ditions for the problem, only the combination of these two allows to determine all param-
eters involved in the hydraulic fracture initiation. The mixed criterion therefore entails
the two following conditions if the hydraulic fracture is to initiate: 1) the hoop stress
at the tip of the yet to be initiated crack becomes maximum and exceeds the material
strength; and 2) the incremental energy release rate between the cracked and crack-free
states reaches the critical energy release rate (fracture energy) of the material GIc [Lecam-
pion, 2012]. One can therefore formulate the mixed criteria for the anisotropic formations
as



3. Hydrualic fracture initiation 58



dσ̂θ(pb, lc, θ)

dθ
|(pb0,l0,θ0) = 0,

d2σ̂θ(pb, lc, θ)

dθ2
|(pb0,l0,θ0) < 0,

(
σ̂θ(pb, lc, θ) =

σθ(pb, lc, θ)

σT(ϕ)

)
,

σ̂θ(pb0, l0, θ0) = 1,

Ginc(pb0, l0, θ0) = GIc(ϕ).

(3.2)

Again all the material properties incorporated in mixed criterion (i.e. the tensile strength
σT(ϕ) and the fracture energy GIc), are assumed to be direction-dependent. These three
conditions must be fulfilled simultaneously to obtain the three unknowns of breakdown
pressure pb0, initiation length l0, and initiation angle θ0. The methodology applied to
solve these coupled equations governing the mixed criterion, is described in Section 3.7.

3.5 Rock anisotropy

Anisotropy in mechanical properties is often introduced to the rock during the formation of
features such as bedding or foliation. As a result, pores, micro-cracks and the constituent
minerals are dominantly oriented along the foliation and bedding planes within which the
material behaves isotropic. Therefore, transverse isotropy is often an appropriate material
model to characterize the elasticity of many anisotropic rocks.

In this study, we adopt the following convention: the isotropy plane (direction 1) and
the plane normal to it (direction 2) form two principal material directions. Let us define
the direction-dependent mechanical properties as follows: I) E and E ′ are respectively
the Young’s moduli along direction 1 and direction 2; II) ν and ν ′ respectively denote the
Poisson’s ratios within and normal to the isotropy plane, while G′ is the shear modulus
within the plane; III) KIc,i is the mode I fracture toughness value along direction i = 1, 2;
IV) σT,i stands for the tensile strength along direction i = 1, 2. To describe the degree
of anisotropy, we also define the following ratios: I) ξ = E/E ′ is the anisotropy ratio of
Young’s modulus; II) γt = σT,2/σT,1 denote anisotropy in tensile strength; III) fracture
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toughness anisotropy read as γK = KIc,2/KIc,1. The ratios ξ, γt, γK are usually taken
greater than unity since in transversely isotropic rocks, the material is typically weaker
along the isotropy plane. For the sake of simplicity, in this study the anisotropy ratio
of apparent shear modulus defined as η = G′/G′

sv is taken as unity, where G′
sv is the

transverse shear modulus approximated from the Saint-Venant relation [Nejati et al.,
2019b]: 1/G′

sv = 1/E + (1 + 2ν ′)/E ′.

The mechanical properties of the rock material are assumed to be dependent on ϕ

which is the angle between the initiated fracture and the principal direction 1: ϕ =

θ0−β (see Figure 3.1). Table 3.1 lists the directional dependence of the failure properties
required for the mixed-criteria. Nejati et al. [2020b] showed through experimental data
that the mode I fracture toughness KIc values follow a sinusoidal curve between the
principal values KIc,1 and KIc,2. Similar to fracture toughness, the tensile strength σT(ϕ)
is also assumed to follow a sinusoidal variation between the two principal directions. To
fully characterize the material behavior, the direction dependence of the critical mode
I energy release rate, GIc, is also needed, which is presented in Table 3.1 Nejati et al.
[2020b].

Tension-based
material property

Variation against ϕ

Strength-σT σT(ϕ) = σT,1 cos
2 ϕ+ σT,2 sin

2 ϕ

Fracture toughness
-Critical SIF-KIc

KIc(ϕ) = KIc,1 cos
2 ϕ+KIc,2 sin

2 ϕ

Fracture toughness
-Critical ERR-GIc

GIc(ϕ) =
K2

Ic(ϕ)

2E

(
κ2
(
ξ +

√
ξ
)
cos2 ϕ+ κ1

(√
ξ + 1

)
sin2 ϕ

)

Table 3.1: The directional dependence of the material tensile strength and the different
measures of fracture toughness in tensile-based failure mechanisms, adopted from Nejati
et al. [2020b, 2021b]. Here, ξ = E/E ′ is the anisotropy ratio of Young’s modulus, κ1 =
κ2 = 1 for the plane-stress condition and κ1 = 1− ν2, κ2 = 1− ξν ′2, for the plane-strain
condition.

It should be noted that this study assumes that the material properties are stress inde-
pendent and taken as constants, however, many studies have shown that the mechanical
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properties of rocks can be strongly dependent on the stress level, particularly at lower
stress levels [Nejati et al., 2019b; David et al., 2012]. This is caused by the formation of
micro-cracks and voids during the unloading process when rock samples are extracted from
a well, unlike the in-situ conditions. At high stress levels, these micro-cracks and voids
close, leading to stabilization moduli and stress-independence. However, the stress level
in this current study is not high enough to make the elastic properties stress-independent,
but rather in a range where linear stress dependency is more expected [Nejati et al.,
2019b]. Additionally, the degree of rock anisotropy can be affected by higher confining
stress, meaning that at higher stress anisotropy, the material behaves more isotropically
[Thongprapha et al., 2022]. This study does not take into account such effects, which
should be acknowledged as limitations in terms of its applicability to real-world scenar-
ios.

3.6 Elasticity problem

We now turn our attention to describe the stress-deformation field in the vicinity of a
wellbore. As shown in Figure 3.2a, the following boundary conditions govern the initiation
of a potential crack driven by fluid pressure pb:

σ · n = −pbn, on Sb

σ · n = 0, on SRight
c & SLeft

c

u+ − u− =

(
u+
r − u−

r

u+
θ − u−

θ

)
=

(
ψ

ω

)

lim
r→∞

σ =

(
−σ2 0

0 −σ3

)
,

(3.3)
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Figure 3.2: Two symmetrical cracks radially emanating from a cylindrical wellbore sub-
jected to in-situ compressive stresses. (a) Implementation of Bueckner’s theorem based
on superposition of loaded intact body (b), and unloaded cracked body (c).

Here, Sb denotes the wellbore surface, while SRight
c and SLeft

c refer to the crack surfaces
formed on the right and left sides of the wellbore, respectively. On either side of the well-
bore, adjacent points along the crack line experience a sudden jump in the displacement
field u (see the point sets AA′ and BB′ in Figure 3.2a). The discontinuities arising along
and across the crack line are respectively associated with the tangential displacement ψ
and crack opening ω. Note that contrary to the geomechanics convention, Eq. 3.3 takes
the tensile stresses as positive values.

Application of the mixed criterion requires the assumption of the process zone length
to be traction-free. This clarifies why the cohesive force along the potential crack face is
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taken equal to zero in Eq. 3.3. Although this assumption is physically plausible in brittle
materials, in which the size of the fracture process zone (FPZ) is negligible, the cohesive
force cannot be neglected in quasi-brittle materials such as rocks. In rock materials, the
cohesive force along the FPZ can be described by different softening models limited to
the following extreme cases: I) the Dugdale cohesive zone model that assumes a constant
traction with no softening behavior; II) the mixed criterion that employs the traction-free
condition along the FPZ. Lecampion [2012] showed that initiation parameters predicted
by these two limiting cases are in a good agreement for a specific range of Irwin’s numbers.
Taking Irwin’s number as the ratio of the FPZ length to the wellbore size, Lecampion
[2012] revealed that applicability of the mixed criterion to quasi-brittle materials is for
Irwin’s numbers ranging between [0.1− 10]. In practice, this range is most likely to exist
for many real-world applications, and thus we must restrict the analysis of initiation in
rocks to this range.

To solve the crack problem, we now invoke the Bueckner’s theorem which requires the
superposition of the two following problems: 1) The stresses arising in the intact body (i.e.
σint and τ int along the crack line as shown in Figure 3.2b and given in detail in B.1); 2)
The stresses induced by the distribution of dislocations along the crack in the unloaded
body and described by opposite tractions −σintn and −τ intn to those produced by the
applied loading (see Figure 3.2c) [Hills et al., 1996]. In the following, we discuss how the
elasticity solution for the unloaded cracked body can be obtained.

At the moment of initiation, the pressurized fluid has not yet infiltrated in the starter
crack. Therefore, the traction-free crack face condition requires the superposition of the
loaded intact body together with an unknown distribution of dislocation in which the
induced tractions (sometimes also referred to as corrective tractions) yield the traction-
free condition along the crack [Hills et al., 1996]. Assuming unknown densities BX and
BY, respectively, for the glide and climb dislocations, the combination of unknown density
vectors must recover the crack geometry described by the shear displacement ψ and the
crack opening ω. For the unloaded body, one can read the elastic problem as
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σ · n = 0, on Sb

t =

{
tr = τrθn = −τ intn

tθ = σθn = −σintn
, on SRight

c & SLeft
c

u+ − u− =

(
u+
r − u−

r

u+
θ − u−

θ

)
=

(
ψ

ω

)

lim
r→∞

σ =

(
0 0

0 0

)
.

(3.4)

To determine the unknown distribution of dislocation, we make use of the boundary
integral equation which establishes the relationship between the corrective stresses and the
unknown density components. In doing so, we incorporate the relationship between the
geometry and dislocation components read as BX = −∂ψ/∂X01 and BY = −∂ω/∂X01.
The negative sign in this definition implies that insertion of positive dislocation densities
along the axis X decreases opening and shear displacements. Using the boundary integral
equation, we have [Hills et al., 1996]

−

(
τrθ(X)

σθ(X)

)
− E

π

∫ R+lc

R−lc

H(X,X01)

 − ∂ψ

∂X01

− ∂ω

∂X01

 dX01 = 0 . (3.5)

Here, the kernel matrix H(X,X01) denotes the stresses induced by a unit edge dis-
location vector located at the core (X01,X02 = 0). Nevertheless, due to the problem
symmetry, the effect of the symmetric dislocations can be considered on each crack wing
by introducing the matrix J(X,X01) as J(X,X01) = H(X,X01)−H(X,−X01). Using
integration by parts and applying the condition of zero opening and shearing at the crack
tip, Eq. 3.5 is re-written as

(
τrθ(X)

σθ(X)

)
+
E

π

∫ R+lc

R

∂J(X,X01)

∂X01

(
ψ

ω

)
dX01 = 0. (3.6)

where the definition of the matrix components Jij(z, z0) on the plane Y = 0 is given in
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detail in B.2. Adopting the stress distributions defined for the intact body in B.1, the
shear and opening displacements can be determined numerically using the displacement
discontinuity method (DDM) [Crouch and Starfield, 1983], and we are therefore able to
measure the elastic potential energy due to the stresses induced along the crack. Recalling
the relations given in Eq. 3.4, the elastic potential energy P̄ along one of the crack wings
in the unloaded body can be expressed as

P̄ = −1

2
W = −1

2

∫
S′
c,R

−t · (u+ − u−)dS = −
∫ R+lc

R

(σint(X)ω(X) + τ int(X)ψ(X))dX.

(3.7)

The total elastic potential energy P , however, is composed of P̄ plus the elastic poten-
tial energy of the intact body. Nevertheless, the identical elastic potential energies of the
intact body between the two states cancel each other in the calculation of the incremental
energy release rate Ginc. Excluding the contribution due to the release of the shear stress,
one can therefore formulate the incremental energy release rate Ginc as

Ginc(pb, lc, θ) =
1

2lc

∫ R+lc

R

σint(X)ω(X)dX (3.8)

3.7 Solution algorithm and non-dimensionalization

To ensure that our analysis does not represent a specific class of initiation problems, we
now re-present the equations discussed before in non-dimensional form. To do so, the
quantities are scaled as follows: 1) The lengthscales by the wellbore radius, L∗ = R; 2)
The stresses by the tensile strength of the material in principal direction 1, P ∗ = σT,1; 3)
The crack opening and shearing by the expression RσT,1/E. According to this non-
dimensionalization, the mixed criterion can be expressed as
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dσ̂θ(Πb, δ, θ)

dθ
|(Πb0,δ0,θ0) = 0,

d2σ̂θ(Πb, δ, θ)

dθ2
|(Πb0,δ0,θ0) < 0,

(
σ̂θ(Πb, δ, θ) =

σθ(Πb, δ, θ)

σT(ϕ)

)
,

σ̂θ(Πb0, δ0, θ0) = 1,

Ĝinc(Πb0, δ0, θ0) = If(ϕ).
(3.9)

Here, Πb0 and δ0 respectively denote the dimensionless initiation pressure and length,
and I stands for Irwin’s number defined by I = K2

Ic,1/(Rσ
2
T,1). Recalling the directional

dependence of KIc and GIc reported in Table 3.1, the function f(ϕ) is developed to the
following form:

f(ϕ) =
1

2

(
cos2 ϕ+ γK sin2 ϕ

)2 (
κ2(ξ +

√
ξ) cos2 ϕ+ κ1(1 +

√
ξ) sin2 ϕ

)
. (3.10)

Moreover, the incremental energy release rate given by Eq. 3.8 is non-dimensionalized
as

Ĝinc(Πb, δ, θ) =
1

2δ

∫ 1+δ

1

σ̃θ(χ1)Ω(χ1)dχ1, (3.11)

where the unknown geometry factors Ψ (: dimensionless shear displacement) and Ω (:
dimensionless crack opening) are simultaneously obtained by solving the boundary integral
equation non-dimensionalized as

(
τ̃rθ(χ1)

σ̃θ(χ1)

)
+

1

π

∫ 1+δ

1

J(χ1,χ01)

∂χ01

(
Ψ

Ω

)
dχ01 = 0. (3.12)

Note that in Eqs. 3.11 and 3.12, both the dimensionless stresses σ̃θ and τ̃rθ are defined
in the dimensionless coordinate system χ

1
χ

2, and normalized by the material tensile
strength along the weakest plane, or σT1.
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As mentioned in Section 3.4, the three conditions in 3.12 are coupled and must be
solved simultaneously. Owing to the inherent nonlinearity of the resulting system of
equations, a combination of the bisection method and the Newton–Raphson iterative
algorithm is implemented to find the root (i.e. Πb0, δ0, and θ0) in such a way that all
the above conditions are met. In doing so, we first confine the initial interval to the
bounds Πb1 and Πb2 (Πb1 < Πb2) at which two types of inequality for the third condition
are reached; while the lower bound reads the inequality as Ĝinc(Πb1, δ, θ) < If(ϕ), the
incremental energy release rate for the upper bound goes beyond the critical energy release
rate If(ϕ). This ensures that by repeatedly bisecting the pressure interval, we approach
the initiation pressure provided that other conditions are also met. Therefore, at each
pressure, we apply the Newton–Raphson iterative algorithm to the first two conditions in
order to obtain the corresponding initiation length and angle. To set the starting point
Πb1, one can choose the initiation pressure, predicted for a vanishingly small initiation
length, which is very close to the pressure obtained by applying solely the strength-
based criterion (i.e. the initiation pressure pb0 determined by Eq. 3.1 and known as
Πstrength = pb0/σT,1).

3.8 Results and discussion

To validate the correctness of the mixed criterion formulation in anisotropic formations,
we compare the results in the isotropic limit µj → i (j = 1, 2) to the results given by
Lecampion [2012] under the plane-strain condition. Figure 3.3 illustrates the variations
of the initiation pressure and initiation length as a function of Irwin’s number when the
stress anisotropy is absent (i.e. λ = 1). This figure includes two sets of results obtained
as follows. 1) Lecampion: here, it is assumed that the formation is isotropic, and thus
we adopt the stress field and the kernel function associated with the isotropic behaviour
as given in Lecampion [2012]; 2) Present study: we adopt the stress field and the kernel
matrix corresponding to the anisotropic case, where the isotropic case can be simply
reached as the conjugate complex roots approach i. Figure 3.3 demonstrates that the
stress-displacement field which governs fracture initiation in anisotropic solids approaches
the results of the isotropic material behaviour in the limiting case.

It is important to note that the validity of the mixed criterion formulation in the
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Figure 3.3: Comparison of the wellbore initiation pressure and length as a function of
Irwin’s number I estimated by the mixed criterion applied to the isotropic formation
under different values for the dimensionless far-field compressive mean stress; isotropy
is originally assumed by directly applying the isotropic relations [Lecampion, 2012] or
approached by taking limit of the relations corresponding to anisotropic solids.

anisotropic case cannot be solely determined through comparison with the results of the
isotropic case. This is because isotropic materials do not depend on β, and therefore,
such a comparison cannot ensure that the adopted kernel matrix can accurately describe
initiation at any level of material anisotropy. To address this, we have further strength-
ened the validation of the formulation by comparing the initiation parameters given in
Section 3.8.1 with those obtained through finite element analysis [Sakha et al., 2023].

3.8.1 Anisotropy effect on the initiation parameters

To understand how anistropy in the material and the stress state can affect the initiation
parameters (i.e. the initiation pressure, and the direction and the length of the initi-
ated crack), we define three sets of loading λ at a fixed geometry and vary the material
anisotropy ratios as well as the orientation β at each set. Adopting the perturbed stress
states from Dutler et al. [2020], the loading ratio λ ranges from unity to the greatest ratio
of σ1/σ3 = 2, as this meets the requirements of radial initiation and the Mohr-Coulomb
condition (see Section 3.3). In compliance with this limited range, we assume that a
wellbore with the constant radius of R = 8 cm is subjected to the three different sets of
loading: λ = 1, 1.5, 2 under the plane stress condition. Besides the stress anisotropy, the
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Loading state Material properties
Fracture toughness Strength Elastic modulus ×103

σ3 σ2 = σ3 σ2 = 1.5σ3 σ2 = σ1 = 2σ3 KIc,1 KIc,2 = γKKIc,1 σT,1 σT,2 = γtσT,1 E ′ E = ξE ′

6.5 6.5 9.75 13.1 1.56 [1.56 7.80] 5.619 [5.619 ≈28.10] 18 [18 90]

Table 3.2: The elastic modulus, strength, and fracture toughness values measured for
Grimsel Granite [Nejati et al., 2020b, 2021b]. The strength, stress, and elastic modulus
are given in MPa. This table reports size-independent values of fracture toughness in
MPa

√
m. The stress states is also taken from Dutler et al. [2020].

rock anisotropy influences the level of the pressure and the geometry of the crack at the
instant of initiation. In transversely isotropic media, the anisotropy ratios ξ, γt, and γK

along with the orientation of the isotropy plane, β, define the state of material anisotropy.
As in most rocks, the ratio of the elastic moduli ξ = E/E ′ falls in the range 1− 5 [Jaeger
et al., 2007], we restrict our analysis to this range of ξ values. For our analysis, we assume
that all the material anisotropy ratios can be taken equal, meaning that: ξ = γt = γK.

Figure 3.4 presents the variations of the initiation parameters as functions of the ma-
terial anisotropy orientation β for different degrees of material anisotropy. The figure
provides the results of the initiation parameters in three different sets of loading, starting
with the stress isotropy λ = 1 in Figure 3.4a, and followed by the anisotropy in stress
states in Figure 3.4b and Figure 3.4c. At each set of loading, the variations of the ini-
tiation parameters is plotted against the material anisotropy orientation β, and three
sets of plots are given: I) Figure 3.4, the top row, depicts the initiation direction θ0; II)
The middle row of Figure 3.4 shows the fluid pressure at the instant of initiation; III)
Figure 3.4, the bottom row, indicates the length of the initiated crack normalized by the
wellbore radius R. The variable β, measured as the orientation of the weakest plane in
a transversely isotropic material, reflects the material resistance against crack initiation
along the direction perpendicular to the minimum in-situ stress (i.e. θ0 = 0◦). Depend-
ing on the degree of material anisotropy ξ, either the material tendency or the loading
anisotropy can control the initiation angle. In the absence of stress anistropy (λ = 1),
however, the crack always initiates along the weakest plane (see the line θ0 = β in the top
plot of Figure 3.4a).
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Figure 3.4: Variations of wellbore initiation parameters as functions of the orientation β
for different material and stress anisotropy ratios. Here, Irwin’s number I is kept to a
constant value of 0.96. Note that the legend denoting the color code used for each material
anisotropy, applies to all subsequent plots. The marker star shows the highest deviation,
ϕ∗
0 at each material anisotropy when λ ≥ 1. In order to analyze the trend in the data, a

Gaussian smoothing technique was applied. This method effectively smoothed the trend
while preserving the overall shape of the original data.

Figure 3.4, the top row, illustrates how anistropy in the stress field and the material
anisotropy interact to determine the angle of crack initiation. While the anisotropy in
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material properties tends to drive the initial crack toward the weakest plane (direction
1), the stress anisotropy competes with this tendency in favor of crack formation per-
pendicular to the minimum in-situ stress. As a result, the initiation angle deviates from
the direction at which the crack would initiate in the absence of stress anisotropy, i.e.
θ0 = β (see the top plot of Figure 3.4a). The line θ0 = 0.5β, in Figure 3.4, the top row,
marks the transition from the Material -dominance to the Loading-dominance. Once the
deviation i.e., ϕ0 = |θ0−β|, exceeds 50% of the orientation β (i.e. θ < 0.5β), the θ0-curve
becomes concave downward, meaning that initiation direction tends to favor the loading
condition, and thus the highest deviation, ϕ∗

0, is reached at β = 90◦. The gray area
bounded by the line θ0 = 0.5β, encloses materials with the considerable deviation (i.e.
ϕ0 = |θ0 − β| ≥ 50%β at each set of loading). As shown in the top plot of Figure 3.4b,
the considerable deviation with the direction β is first observed only in materials with
low to moderate anisotropy ratios in which ξ < 3. Nevertheless, the rise in the stress
anisotropy can gradually overshadow greater material anisotropy ratios, and thus several
highly anisotropic cases are also incorporated in the gray area at λ = 2. Under such cir-
cumstances, the material with the least anisotropy ratio in the Material -dominance region
(i.e. ξ = 4), indicates the highest deviation ϕ∗

0 at the anisotropy orientation considerably
close to β = 90◦ (i.e. ϕ∗

0 = ϕ0 (θ0, β = 75◦)), meaning that small perturbations of β
from 90◦ have significant impact on the initiation angle. Such significant variability in the
initiation angle for small perturbations of the anisotropy orientations should be carefully
considered in practical applications as it may give rise to potential problems.

Figure 3.4, the top row, revealed that unlike the isotropic case, the initiation direction
in anisotropic rocks results from the interplay between the material anisotropy as well as
the loading condition. Considering this interplay, the observations on the variations of
the initiation pressure and length can be better understood. We now turn our attention
to the Material -dominance region in which the θ0-curve sustains the material tendency
over increase in the stress anisotropy. As long as the deviation is not considerable, the
function f given in Eq. 3.10, and consequently the apparent Irwin’s number, remain
roughly constant. In such cases, the rise in stress anisotropy assists initiation when θ0 is
nearly zero. For the nearly vertical initiation angle, however, the higher values of λ hinder
initiation, and thus the initiation pressure rises in response to increase in λ. Figure 3.4
illustrates that once a considerable deviation appears in the Material -dominance region,
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a longer starter crack can be foreseen. Indeed, the greater the deviation, the higher the
apparent Irwin’s number. This means that more energy is dissipated at the instant of
initiation, and clarifies why a longer crack is created for higher deviation values.

The increasing trend of δ0 is reversed once the material undergoes the transition be-
tween Material -dominance and Loading-dominance, where the highest deviation provokes
a surge in apparent Irwin’s number. Thereafter, initiation length and pressure follow
opposite trends with decrease in material anisotropy, meaning that the highest initiation
pressure and length at a constant stress anistropy is reached at the so-called transitional
material (e.g. the material anisotropy ξ = 2 at λ = 1.5). Indeed, low material anisotropy
counteracts the effects of higher deviation, and thus the function f remains unchanged.
On the other hand, due to the considerable deviation and penetration into the strong
material direction, the initiation faces a higher resistance. In such cases, shorter cracks
form and this explains why the increasing trend of δ stops as the transitional metrical
is reached. Any further deviation in response to the increase in stress anisotropy drives
initiation in a more tensile stress field region, and thus the initiation pressure decreases
as the crack is more horizontally inclined. The decrease in initiation pressure in response
to increasing stress anisotropy is also observed for isotropic formations with ξ = 1. In the
isotropic case, however, the material is no longer direction-dependent, meaning that the
initiation parameters versus the material anisotropy orientation β remain unchanged at
each set of loading. Comparing the initiation pressure for different stress anisotropy re-
veals that a higher stress anisotropy promotes initiation by reducing the pressure required
to break down an initially intact rock (see the top row of Figure 3.4). This conclusion can
be reached simply by adopting the Hubbert-Willis approach, where the crack necessarily
initiates along the intermediate stress σ2.

The interaction between material anisotropy and stress anisotropy is crucial in the
near-wellbore region, however, as the fracture propagates into the far-field, the impact of
material anisotropy on fracture propagation diminishes [Sakha et al., 2022]. Numerical
studies have demonstrated that oblique hydraulic fractures tend to reorient towards the
plane perpendicular to the minimum in-situ stress [Dong and Tang, 2019; Sesetty and
Ghassemi, 2018]. The degree of reorientation, or tortuosity, in the near-wellbore region
serves as an indicator of this reorientation and increases as the initial crack becomes
either shorter or more oblique relative to the plane perpendicular to the minimum in-situ
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stress [Dong and Tang, 2019]. Herein, the geometry of the initial crack is fully unknown,
and both the length and initiation angle play a role in determining the tortuosity of
propagation. As observed in Figure 3.4, in the Material -dominance region, the more
Material -dominant the initiation is, the more oblique and shorter the crack forms at
initiation, resulting in more tortuous crack propagation. This trend remains consistent
up to the transitional material at each stress anisotropy (e.g. the material anisotropy
ξ = 3 at λ = 2). However, as the material becomes more isotropic, the trend of increasing
initial length is reversed, and shorter initial cracks are expected; while shorter cracks
may increase tortuosity, in the Loading-dominance region, the initial crack forms almost
perpendicular to the minimum in-situ stress, resulting in least tortuous hydraulic fracture
propagation.

3.8.2 Size effect on the initiation parameters

Figure 3.5 shows the variations of the initiation pressure and length against the wellbore
size for three different anisotropy orientations, when the formation is subjected to a con-
stant stress anisotropy λ = 1.5. Regardless of the degree of anisotropy, the variations of
the initiation parameters follow the same trend in response to the wellbore size. The ma-
terial with the anistropy ratio ξ = 2, however, exhibits a slightly different trend especially
when the anistoropy orientation is 75◦. As illustrated in Figure 3.4b, the top plot, the
material with the anisotropy ratio ξ = 2 can be considered as the transitional material for
the wellbore size R = 8 cm. This means that the sensitivity of anisotropic materials in
response to the size effect is similar to an isotropic formation provided that the anistropic
formation does not undergo the transition between the Material - and Loading-dominance
regions.

Figure 3.5 (the bottom plots) provides the results of the initiation length normalized by
two following different lengthscales. I) the left-hand y-axis, represented by lines, identifies
initiation length normalized by the wellbore radius R; II) the right-hand y-axis, indicated
by the purple markers, measures the initiation length scaled by Irwin’s material lengthscale
defined along the principal direction 1 (i.e. lm = K2

Ic,1/σ
2
T,1). Following the left-hand y-

axis, Figure 3.5 clearly illustrates that the initiation length l0 extends from 15 to 50

percent of the wellbore size for the different Irwin’s numbers. Such large values exceed
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the much shorter initial length assumed as small percentage of the wellbore radius [Zhang
et al., 2011; Sesetty and Ghassemi, 2018]. On the other hand, on the scale of the right-
hand y-axis, the initiation length does not exceed 40% of the material lengthscale even
when the wellbore size is unrealistically large (i.e. R = 16 cm which corresponds to
I ≈ 0.5). This also contradicts the assumption that the starter crack extends as large as
the material lengthscale.
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Figure 3.5: Variation of wellbore initiation parameters (pressure and length) with Ir-
win’s number for different material anisotropy ratios under a constant stress anisotropy
(λ = 1.5). Here, the results are provided for the following three different anisotropy ori-
entations: β = 0◦, 45◦, 75◦. Note that the legend denoting the color code used for each
material anisotropy, applies to all subsequent plots.

Figure 3.5 also provides us with insights for developing strategies to reduce tortuosity
in cases where the initial crack is highly oblique. As previously discussed, a highly oblique
initial crack forms when the initiation mechanism is more material-dominant (i.e. ξ ≥ 3

at λ = 1.5). As shown in Figure 3.5, in such cases, increasing the Irwin number (or



3. Hydrualic fracture initiation 74

decreasing the wellbore size) can result in a longer initial length δ0 at the same initiation
angle, leading to less tortuous crack propagation [Dong and Tang, 2019]. Therefore, the
findings of this study support use of a smaller wellbore as an effective method to reduce
tortuosity in hydraulic fracturing, particularly for relatively high material anisotropy in
Material -dominance region.

3.8.3 Comparison of strength-based and mixed criteria

Irwin’s number introduced by Lecampion [2012], characterizes two distinct failure mecha-
nisms at the instant of initiation: while initiation is mostly strength-driven for vanishingly
small FPZ, any increase in the fracture process size requires more energy to be dissipated
to create new crack surfaces, and thus the failure mechanism is dominated by fracture
energy for larger Irwin’s numbers. Lecampion [2012] captured the size effect by plotting
the initiation pressure with respect to Πstrength obtained by solely applying the strength-
based criterion given by Eq. 3.1. His observations indicated that the initiation pressure
Πb/Πstrength asymptotically approaches unity for I < 0.1, whereas for I > 10, the initia-
tion pressure is mainly governed by the energy requirements and increases nearly linearly
with Irwin’s number. Figure 3.6 confirms Lecampion’s observations in anisotropic case
in the sense that a higher Irwin’s number (or smaller wellbore size) evidently results in
a higher deviation of the initiation pressure from the Πstrength, and thus favors energy-
dominated failure. Nevertheless, in this case, the material anisotropy also plays a critical
role in characterizing the failure mechanism which dominates tensile initiation.

Figure 3.6 reveals that higher anisotropy ratios ξ tend to make initiation more strength-
dominated. On the other hand, as observed in Figure 3.4 for the same stress anisotropy
λ = 1.5, the deviation in materials with anisotropy ratios greater than 3 is attributed
to the Material -dominance region, where the material tendency is still decisive, and thus
the strength-based equation predominates over the fracture energy included in Eq. 3.2.
Therefore, the failure mechanism in materials with ξ ≥ 3 favors strength-dominated ini-
tiation. Once the material tendency is overcome, the Loading-dominance region emerges,
and thus the failure mechanism is mainly governed by the energy requirements. In this
context, more energy is required for initiation when the apparent Irwin’s number becomes
large. This clarifies why the highest deviation of the initiation pressure from the Πstrength
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is observed in the transitional material (i.e. ξ = 2 at λ = 1.5 at the maximum elongation).

We now turn our attention to the effect of the wellbore size on the sensitivity of the
failure mechanism in response to any small changes in either the anisotropy orientation β
or anisotropy ratio ξ. As illustrated in Figure 3.6, the variation of the initiation pressure
Πb/Πstrength in the set R = 8 cm is more gradual than that wellbore with the half radius.
Therefore, the failure mechanism described by Πb/Πstrength is more sensitive in response
to any uncertainties in either β or ξ values when the wellbore size is smaller.
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3.9 Conclusions

The main findings of this article are as follows.

• The mixed criterion incorporates the fracture energy perspective to fully character-
ize hydraulic fracture initiation from an unnotched wellbore. Among the existing
initiation criteria, the mixed criterion appears the most comprehensive as it also
includes the effect of the wellbore size on the initiation parameters.

• The results predicted by the mixed criterion confirm the strong interplay between
the stress and material anisotropy to determine the initiation angle in transversely
isotropic rocks; while the material tends to derive the fracture toward the weak plane
(θ0 → β), the loading condition favors initiation perpendicular to the minimum in-
situ stress (θ0 → 0). Depending on the initiation angle, initiation may be described
by either Material -dominance or Loading-dominance mechanisms.

• Depending on the loading anisotropy, the transition between Material -dominance
and Loading-dominance arises at a specific material anisotropy ratio which yields
the highest initiation pressure and length among other anisotropic materials.

• According to the mixed criterion predictions, neither LEFM nor assuming a fixed
δ0 := l0/R can accurately address hydraulic fracture initiation. The initiation length
strongly depends on the wellbore size.

• Excluding the fracture energy condition from the mixed criterion may lead to un-
derestimation in the initiation pressure predictions especially when the wellbores
are small. This can highlight the importance of the mixed criterion in the presence
of the small wellbores.
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4.1 Abstract

This study employs the phase-field model with the generalized spectral decomposition
proposed in the literature for orthotropic materials to predict the fracture trajectories in
transversely isotropic rocks under fixed mixed-mode loading ratios. While the model has
been primarily used for modelling an orthotropic plate under simple tensile and shearing
loading conditions, we extend its utility to assess its accuracy through comparison with
experimental data, where the notched semi-circular specimens of Grimsel Granite undergo
complex mixed-mode loading. Among the experimental data available in previous studies,
we focused on two mode-mixity ratios, which are small enough to avoid the need for a
more complex decomposition, but they may lead to interpenetration if a model allowing
physically impossible fracturing under compression is applied. Therefore, the adoption of
a generalized decomposition phase-field model is crucial. Despite the material exhibiting
transverse isotropy in terms of both elasticity and fracture toughness, it is shown that the

77
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model is able to capture the fracture trajectory quite accurately even when assuming a
direction-independent fracture toughness.

4.2 Introduction

The future of geo-engineered structures and hydraulic fracturing within geological appli-
cations is closely tied to our knowledge of fracturing in the rock formations [Shen and
Shi, 2016; Chertov, 2012; Fink et al., 2022]. While experimental studies have demon-
strated the presence of complexity both in material properties and loading conditions
within underground laboratories [Gischig et al., 2018; Shen and Shi, 2016], there remains
an imperative for the development of a cost-efficient, sophisticated numerical model able
to capture different fracturing mechanisms in rock formations.

To better describe the mechanism of fracturing is solids, numerical simulations play an
indispensable role. Many studies have so far employed various numerical techniques such
as discrete element method (DEM) [Fakhimi et al., 2002; Tan et al., 2009; Chong et al.,
2017], boundary element method (BEM) [Chen et al., 1998; Ke et al., 2009; Lecampion,
2012; Shen and Shi, 2016; Sakha et al., 2023] and finite element method (FEM/XFEM)
[Ingraffea and Heuze, 1980; Zi and Belytschko, 2003; Richardson et al., 2009; Nejati et al.,
2015a,b; Shi et al., 2017; Mehraban et al., 2023] to model fracturing process. Depend-
ing on the characteristics of the problem and advantages/disadvantages associated with
each technique, one or two of these methods are more favorable. Most of these tech-
niques, however, fail to capture fracturing in cases where more complex mechanisms such
as bifurcation, merging, kinking are expected [Lorenzis and Düster, 2020]. In such cases,
phase-field modelling is strongly recommended in the literature [Wu et al., 2020a]. This
technique, unlike other methods, has no need to any crack tracking algorithm or any ad-
ditional criteria to describe complex fracturing process [Ziaei-rad et al., 2023]. It simply
seeks a trajectory of the smeared crack on a continuum with a pre-defined mesh, which
minimizes the energy functional [Wu et al., 2020a]. That’s why the technique is currently
garnering significant attention in the field of subsurface fracturing, where a complex load-
ing regime along with material complexity can potentially yield intricate fracturing.

The main concept of the phase-field model can be attributed to the seminal develop-
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ment of Bourdin et al. [2008] who regularized the original energy functional of quasi-static
brittle fracture [Francfort and Marigo, 1998]. The method perceives the sharp crack dis-
continuity as a phase variable smoothly smeared across the fully damaged and undamaged
phases. The phase-field, representing the crack path, ultimately crawls along the direction
where the potential energy of the whole system reaches a minimum [Wu et al., 2020a].
In this regard, the formulation should distinguish between tension and compression in
fracturing, meaning that the contribution of the tensile loading has to be only consid-
ered in minimization of the potential energy [Lorenzis and Düster, 2020]. Depending on
the physics of the problem, the tension-compression asymmetry has been interpreted in
different ways in isotropic solids. In anisotropic material, however, these various inter-
pretations of the persistent compression and crack-driving tension need to be extended
in such a manner that preservers the orthogonality condition between the transformed
stress and strain spaces [Ziaei-rad et al., 2023].

This paper adopts the generalized spectral decomposition of the phase-field proposed
by Dijk et al. [2020] for orthotropic materials, to model fracturing in transversely isotropic
solids. For the validation purpose, we first reproduce the results observed by Ziaei-rad
et al. [2023] for the fracture propagation of an initial edge notch in a rectangular plate un-
der simple tensile and shear loading conditions. Once implementation of the formulation
is verified, we assess the robustness of the decomposition through comparison with exper-
imental data given by Sakha et al. [2022] on fracture trajectory and the effective fracture
toughness where the semi-circular specimens of Grimsel Granite are under fixed mixed-
mode loading ratios. As it is discussed in Sakha et al. [2022], there is a strong interplay
between the loading and material anisotropy in determining the angle at which the crack
propagates. Additionally, Sakha et al. [2022] employed a direction-dependent fit for the
fracture toughness, assuming a sinusoidal variation between the two principal directions
of the material. In contrast, the material in this study is assumed to have a direction-
independent resistance against fracturing, resulting in a constant fracture toughness value
for the entire domain surrounding the crack tip. By exclusively assuming anisotropy in
material elasticity, the actual effect of material anisotropy can be overshadowed. This
means that in this study, the effect of loading is somehow amplified in comparison with
the physical reality of the problem. Nevertheless, the robustness of the decomposition
enables us to capture the fracture behavior quite accurately, particularly in cases where
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the mixed-mode ratios are not significantly high.

4.3 Model Formulation: Phase-field

Assuming the domain Ω ⊂ Rd, represents a d-dimensional linear elastic body, the regular-
ized form of the energy functional of quasi-static brittle fracture reads as [Francfort and
Marigo, 1998; Bourdin et al., 2008; Lorenzis and Düster, 2020]:

E[u, α] =
∫
Ω

g(α)Ψ(ϵ(u)) dΩ +
Gc

cw

∫
Ω

(
w(α)

ℓ
+ ℓ |∇α|2

)
dΩ−

∫
ΓN

t̄n.u ds. (4.1)

Here, the traction t̄n is prescribed on the Neumann boundary ΓN. Under quasi-static load-
ing, the energy functional is minimized incrementally to track the evolution of the scalar
α and the displacement vector at each loading steps. In this regard, the kinematically ad-
missible displacement field u : Ω → Rd must satisfy the homogeneous/non-homogeneous
Dirichlet conditions prescribed on the boundary ΓD. The phase-field α : Ω → [0, 1] repre-
sents the smeared counterpart of the discontinuity across the crack Γc, taking α = 0 and
α = 1 for the undamaged and the fully broken material phases, respectively.

In Eq. 4.1, the term Ψ(ϵ(u)) denotes the strain energy density function stored in the
elastic body, which can be dissipated by the phase-field evolution provided that it can
overcome the fracture toughness of the material, Gc. The fracturing process, however,
is controlled by the interplay between the elastic energy degradation function g(α), the
function w(α).

In the literature, there exists a vast range of choices for the functions g(α) and w(α),
each supported by various arguments and discussions [Pham et al., 2011; Kuhn et al.,
2015]. Among these choices, the quadratic degradation function (i.e. g(α) = (1 − α)2)
and the linear function w(α) ( i.e. w(α) = α, known as AT-11) hold greater physical
meaning and are consequently more widely accepted. While the AT-1 model retains the
elastic stage in the absence of crack, the quadratic degradation function encapsulates the
essential features required for describing the evolution of the phase-field and its impacts

1AT is named after Ambrosio-Tortorelli [Ambrosio and Tortorelli, 1990]
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on the material stiffness [Kuhn et al., 2015]. By adopting these two functions, one can
achieve a comprehensive and physically meaningful model capable of capturing a wide
range of fracturing phenomena. In this framework, the normalization constant cw defined
as cw := 4

∫ 1

0

√
w(t) dt takes the value of 8

3
.

In Eq. 4.1, the strain energy density Ψ(ϵ(u)) is symmetric with respect to the compres-
sive and tensile principal strains (i.e. ⟨ϵ⟩− and ⟨ϵ⟩+ 2), lacking the ability to distinguish
between compression and tension. This means that a phase-field can evolve even if the
fracture surfaces are under compression, leading to interpenetration and unphysical crack
propagation. To address this issue, it is essential to decompose the contributions of ten-
sion and compression within the strain energy density, where the tensile and compressive
strain energy densities are respectively defined as Ψ+(ϵ(u)) and Ψ−(ϵ(u)). By doing so,
the contribution of the function Ψ+(ϵ(u)) can be solely degraded, ensuring realistic frac-
ture evolution against interpenetration of fracture surface. Figure 4.1 shows the evolution
of the phase-field when an isotropic square plate with an edge initial crack undergoing
shearing along the x direction. As shown in this figure, without applying any decompo-
sition to the phase-field model (or equivalently using a symmetric compression-tension
phase-field model), the crack fails to differentiate between the compressive and tensile re-
gions, resulting in a symmetrically bifurcated crack propagation. The propagation along
the compressive region is, however, effectively suppressed provided that a simple decom-
position model such as the volumetric-deviatoric decomposition (is independently laid out
by Amor et al. [2009] and Freddi and Royer-Carfagni [2009]) is employed. Note that while
the term anisotropic model is usually used in the literature to address such decomposition
[Wu et al., 2020b; Ziaei-rad et al., 2023], this article reserves the term "anisotropy" to
specifically refer to the directional dependency of the material’s mechanical properties.

2The angle brackets ⟨⟩ represents Macaulay or singularity functions. Therefore,

⟨x⟩+ =

{
x if x ≥ 0

0 if x < 0
⟨x⟩− =

{
0 if x > 0

x if x ≤ 0
(4.2)
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(a) (b)

Figure 4.1: Phase-field evolution of an initial edge crack within an isotropic square plate
subjected to shearing. (a) Symmetric bifurcated crack propagation using a symmetric
compression-tension phase-field model. (b) Singular crack kinking in the tensile region
using an asymmetric compression-tension phase-field modeling.

Minimization of the energy functional is a constrained problem that requires address-
ing the irreversibility condition α̇ ≥ 0. To enforce compliance with this condition, we
incorporate the history field, which guarantees irreversibility by taking the maximum ac-
cumulated value of Ψ+ in the loading history as the driving force. Therefore, the loading
history can be defined as [De Lorenzis and Gerasimov, 2020]:
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Hn(x) := max{Hn−1(x),Ψ+(ϵ(u))} H0(x) = 0. (4.3)

To solve a phase-field minimization problem, we opt for the staggered approach over
the monolithic solvers. As explained by De Lorenzis and Gerasimov [2020], in this ap-
proach, we alternate between minimizing the energy functional while freezing the dam-
age and subsequently freezing the displacement, all in a sequential manner, until the
convergence is attained. While monolithic solvers are typically more efficient [Agrawal
and Runnels, 2021], we have found that the staggered method is sufficiently robust and
straightforward to be implemented in phase-field modeling of anisotropic solids.

4.3.1 Miehe decomposition for isotropic materials

Spectral decomposition (also known as the Miehe technique) is a commonly used method
for separating the tensile and compressive components of the strain energy density. This
technique assigns Ψ+(ϵ(u)) to the tensile principal strains while preserving the compres-
sive principal strains for Ψ−(ϵ(u)). Assuming λ and µ represent the Lamé constants,
the strain energy density for the isotropic materials can be defined as [De Lorenzis and
Gerasimov, 2020; Dijk et al., 2020]:

Ψ =
1

2

(
λTr (ϵ)2 + 2µTr

(
ϵ2
))
. (4.4)

It can be easily shown that the terms Tr ϵ and Tr ϵ2 are invariants of the strain tensor,
meaning that they remain unchanged regardless of the coordinate system used to represent
the strain tensor. In this regard, while we represent the term Tr ϵ in the original coordinate
system xyz, the compact form of the term Tr ϵ2 is achieved when expressed in the principal
coordinate system (see Figure 4.2a). Therefore, we have:

Ψ =
1

2

(
λ (ϵxx + ϵyy + ϵzz)

2 + 2µ
(
ϵ21 + ϵ22 + ϵ23

))
. (4.5)
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(a) (b)

Figure 4.2: (a) The Mohr circle of ϵ showing the eigenvalues/vectors of the strain tensor.
(b) the Mohr circle of (√µϵ) showing the eigenvalues/vectors of the tensor Ψµ.

Eq. 4.5 can now be decomposed into the tensile and compressive components of the strain
energy density as [Dijk et al., 2020]:

Ψ± =
1

2

(
λ⟨ϵxx + ϵyy + ϵzz⟩±2 + 2µ⟨ϵ1⟩2± + 2µ⟨ϵ2⟩2± + 2µ⟨ϵ3⟩2±

)
. (4.6)

Within the finite element (FE) framework, the definition of the Cauchy stress tensor
σ and the tangent stiffness tensor C is essential. These tensors are employed in the FE
quantities fu

int,e and Ku
e , respectively representing the internal forces and stiffness of the

system at each element. Assuming the definition of the strain energy density function is
known, one can define the tensors σ and C as:

σ± =
dΨ±

dϵ
, C± =

d2Ψ±

dϵ2
. (4.7)

Following Miehe’s decomposition model in Eq. 4.6, the tensors σ and C for the isotropic
materials can be expressed as [Ambati, 2017]:

σ± = λ⟨Tr(ϵ)⟩±I + 2µ⟨ϵ⟩±,

C± = λHTr(⟨ϵ⟩±)I ⊗ I + 2µP±, HTr(ϵ)± =
⟨Tr(ϵ)⟩±
Tr(ϵ)

(4.8)
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By comparing Eq. 4.6 with Eq. 4.8, one can observe that that the projection tensor
P± is derived as the result of [Ambati, 2017]

P± =
1

2

3∑
a=1

∂2⟨ϵa⟩2±
∂ϵij∂ϵkl

=
3∑

a=1

∂

∂ϵij
(⟨ϵa⟩±

∂⟨ϵa⟩±
∂ϵkl

) =
3∑

a=1

∂⟨ϵa⟩±
∂ϵij

∂⟨ϵa⟩±
∂ϵkl

+ ⟨ϵa⟩±
∂2⟨ϵa⟩±
∂ϵij∂ϵkl

. (4.9)

The tensor P± is therefore defined as [Ambati, 2017]:

P± =
3∑

a=1

Hϵa±
Ha +

3∑
a=1

3∑
b̸=a

⟨ϵa⟩±
2(ϵa − ϵb)

(Gab +Gba), Hϵa±
=

⟨ϵa⟩±
ϵa

(4.10)
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(4.11)

Note that in derivation of the tensors σ and C, the orthogonality condition must
hold in such a way that C±ϵ.ϵ∓ = 0 [Dijk et al., 2020]. By considering the relation
σ± = C±ϵ = Cϵ±, it becomes evident that in isotropic materials, the σ± terms corre-
spond to the principal stresses that align with the principal strains. This observation is
particularly applicable to isotropic materials, where the material properties are symmetric
in all directions. In orthotropic materials, however, one needs to enforce the orthogonality
condition in a transformed strain-stress space, meaning that in such materials the tensile
and compressive portions of the strain energy density must be modified [Ziaei-rad et al.,
2023].

4.3.2 Generalized Miehe decomposition for orthotropic materials

Assuming the coordinate system x′y′ is oriented along the material principal axes of an
orthotropic material, the stiffness matrix following the Voigt notation is expressed as:
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C =



α11 λ12 λ31 0 0 0

λ12 α22 λ23 0 0 0

λ31 λ23 α33 0 0 0

0 0 0 µ12 0 0

0 0 0 0 µ23 0

0 0 0 0 0 µ31


, (4.12)

where µij are the shear moduli, and αii denote the constrained moduli (also known as
p-wave moduli). Here, using the components of the stiffness matrix, we introduce the
tensors Ψλ and Ψµ as [Dijk et al., 2020]:

Ψλ =


√
λ11ϵ11

√
λ12ϵ12

√
λ31ϵ31√

λ12ϵ12
√
λ22ϵ22

√
λ23ϵ23√

λ31ϵ31
√
λ23ϵ23

√
λ33ϵ33

 , Ψµ =


√
µ11ϵ11

√
µ12ϵ12

√
µ31ϵ31

√
µ12ϵ12

√
µ22ϵ22

√
µ23ϵ23

√
µ31ϵ31

√
µ23ϵ23

√
µ33ϵ33

 .

(4.13)

where considering no summation over the repeated indices, the components λii and µii are
defined as

λii =
λijλki
λjk

,

µii =
1

2
(αii − λii).

(4.14)

Given the definition of the tensors Ψλ and Ψµ, the applicability of the Miehe decom-
position can be extended to the orthotropic materials using the following relation for the
strain energy density function Dijk et al. [2020]:

Ψ± =
1

2
⟨ψλ,11 + ψλ,22 + ψλ,33⟩±2 + ⟨ψµ,1⟩2± + ⟨ψµ,2⟩2± + ⟨ψµ,3⟩2±. (4.15)

This relation preserves the orthogonality condition for C
1
2
±ϵ.C

1
2
∓ϵ = 0. Unlike Eq. 4.6,

where the contribution of shearing was determined solely based on the eigenvalues of the
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strain field, the current formulation incorporates the contribution of shearing based on
the eigenvalues of the tensor Ψµ. By considering the Mohr circle of (√µϵ) as an analogy
to the Mohr circle of ϵ, one can derive the Cauchy stress tensor σ and the tangent
stiffness tensor C using a similar approach as described in Eq. 4.8, provided that the
strain components ϵij is expressed in the material coordinate system (see Figure 4.2b).
We therefore have

σ± = ⟨Tr(Ψλ)⟩±Ī + 2⟨µϵ⟩±M̄±,

C± = Ī ⊗ Ī + 2P̄±, HTr(ϵ)± =
⟨Tr(ϵ)⟩±
Tr(ϵ)

(4.16)

where the tensors Ī and M̄± are given by:

Īij =
√
λklδklδij

M̄±
ij =

√
µklδkin

±
i δljn

±
j

(4.17)

and the orthotropic projection tensor P̄± is derived as:

P̄± =
1

2

3∑
a=1

∂2⟨(µϵ)a⟩2±
∂ϵij∂ϵkl

=
3∑

a=1

∂

∂ϵij
(⟨(µϵ)a⟩±

∂⟨(µϵ)a⟩±
∂ϵkl

) =
3∑

a=1

(
∂⟨(µϵ)a⟩±
∂ϵij

∂⟨(µϵ)a⟩±
∂ϵkl

+⟨(µϵ)a⟩±
∂2⟨(µϵ)a⟩±
∂ϵij∂ϵkl

)
.

(4.18)

Considering, the tensor P̄± is defined as,

P̄± =
3∑

a=1

H(µϵ)a±
H̄a

+
3∑

a=1

3∑
b ̸=a

⟨(µϵ)a⟩±
2((µϵ)a − (µϵ)b)

(Ḡab
+ Ḡba

), H(µϵ)a±
=

⟨(µϵ)a⟩±
(µϵ)a

(4.19)

with
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To obtain the tensors σ and C in the original coordinate system, transformation rules
need to be applied considering the Voigt notation. Assuming the material coordinate
system x′y′ results from rotating the original coordinate xy along the axis z by β, the
tensors σ and C in the original coordinate system are as follows [Ting, 1996]:

σoriginal = K−1
σ σ

Coriginal = K−1
σ CKϵ

Kσ =



c2 s2 0 2cs 0 0

s2 c2 0 −2cs 0 0

0 0 1 0 0 0

−cs cs 0 c2 − s2 0 0

0 0 0 0 c −s
0 0 0 0 s c


, Kϵ =



c2 s2 0 cs 0 0

s2 c2 0 −cs 0 0

0 0 1 0 0 0

−2cs 2cs 0 c2 − s2 0 0

0 0 0 0 c −s
0 0 0 0 s c


,

(4.21)

4.4 Results and discussions

The validity of the generalized Miehe decomposition and its implementation are assessed
in Section 4.4.1 through comparison of the fracture path, and the load-displacement rela-
tionships. The results simulated in the present study are compared with those reported
by Ziaei-rad et al. [2023] for the cracked square plate under tensile and shear loading.
Once the reliability of the model implementation is confirmed, Section 4.4.2 further in-
vestigates the model’s robustness by comparing experimental data with phase-field model
predictions for fracture trajectory and the effective fracture toughness of semi-circular
samples of Grimsel Granite under a fixed mode-mixity ratio. Sakha et al. [2022] showed
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that the stress distribution of the compressive loading ahead of the crack tip in these sam-
ples can counterbalance the tensile driving forces, provided that the compressive regions
are considered within the interval of validity. That’s why the authors are motivated to
investigate the robustness of the decomposition model by applying it to predict of the
kink cracks in the modified SCB tests.

4.4.1 Validation with numerical studies

To apply the generalized Miehe decomposition to the phase-field model, a square plate
with dimensions of L×L×H is considered under tensile and shear loading conditions (see
Figure 4.3). In this case, the plate has a length L = 1 mm with a thickness H = 1 mm,
and contains an initial horizontal notch extending from [0, L/2] to [L/2, L/2], which is
modeled as a sharp notch. This implies that the elements on the two opposite sides of
the notch do not share nodes, and the nodes are duplicated for both sides of the notch.
While the plane-strain condition is assumed in these cases, it is necessary to know the
thickness of the material in order to measure the forces along the directions at which the
nodes are constrained. Considering the lowest mesh size of h = 4.7 × 10−4 mm for the
region close to the fracture trajectory, the specimen is discretized by 45K and 94K linear
quadrilateral elements for the tensile and shear tests, respectively.

Table 4.1 provides the mechanical properties of the cracked plate for an orthotropic
material, as given by Ziaei-rad et al. [2023]. In this analysis, it is assumed that the resis-
tance of the material against fracturing is direction-independent, resulting in a constant
fracture toughness value for each orientation. The bottom side of the plate is fixed, while
the top side is displaced in the y-direction for the tensile case and in the x-direction for
the shear case. In each case, contrary to the boundary conditions assumed by Hirshikesh
et al. [2021], we followed the assumptions proposed by Ziaei-rad et al. [2023]; Dijk et al.
[2020], wherein the top side of the plate is constrained along the transverse direction of
the applied displacement. This condition is crucial for the situations where the crack is
likely to kink from the initial path.
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(a) (b)

Figure 4.3: Schematics of the square plate with an initial edge crack under (a) the tensile
loading, and (b) the shear loading. The material coordinate system is rotated by the
angle β with respect to the original coordinate system xy.

Material properties Values Unit

ν21, ν13, ν12 0.17, 0.3, 0.51 -

E1, E2 E3 210, 70, 210 GPa

G23, G13 G12 46.02, 80.77, 46.02 GPa

Gc 2.7 N/mm

Table 4.1: Material properties for the orthotropic material studied for validation with
numerical results given by Ziaei-rad et al. [2023].

In the tensile case, a sufficiently small value for the characteristic length l = 0.01 mm

is considered. The displacement controlled loading is monotonically increased with a
constant displacement increment ∆ūy = 0.1̄ × 10−2 mm until the ultimate step at ūy =

0.1̄×10−1 mm. In the following, the results of the fracture path and the load-displacement
relationship are given for three sets of material orientation: β = 0,−π/4, π/2.
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(a)
(b) (c)

Figure 4.4: (a) Phase-field evolution, and comparison of (b) the fracture path, and (c) the
load-displacement relationship for the cracked square plate under tensile loading: present
study vs. Ziaei-rad et al. [2023].

As shown in Figure 4.4, the results simulated in our study illustrate a remarkable
agreement with the findings reported by Ziaei-rad et al. [2023]. Notably, when the fracture
deviates or kinks from the initial notch (i.e. at the material orientation β = −π/4), the
propagation follows the weaker direction of the material in terms of elasticity. However,
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an intriguingly different fracture pattern is observed when the top side is unconstrained
along the x-direction: in such cases, the propagation occurs on the strong direction of
the material in elasticity as (see Figure 4.5). This seemingly insignificant difference in
the boundary condition has a profound impact on the fracturing behavior, resulting in
distinct fracture patterns observed in Ziaei-rad et al. [2023]; Dijk et al. [2020]; Hirshikesh
et al. [2021].

(a) (b)

Figure 4.5: The effect of boundary conditions on the phase-field trajectory of a square
plate with a material orientation of β = −π/4. (a) the top side of the plate is constrained
along the x-direction, leading to the propagation on the weaker direction of the material
in elasticity [Dijk et al., 2020; Ziaei-rad et al., 2023]. (b) the top side is free to move
along the x-direction, leading to the propagation on the strong direction of the material
in elasticity [Hirshikesh et al., 2021].
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In the shearing, a sufficiently small value for the characteristic length l = 0.02 mm

is considered. The displacement controlled loading is monotonically increased with a
constant displacement increment ∆ūx = 0.4̄ × 10−3 mm until the last step at ūx =

0.2̄×10−1 mm. The results of the fracture path and the load-displacement relationship are
given for four sets of material orientation: β = 0,±π/4, π/2. While these two simulations
show good agreement in predicting the fracture path, there is a considerable discrepancy
in the load-displacement relationship between the two studies.
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(a)
(b) (c)

Figure 4.6: Phase-field evolution, and comparison of (b) the fracture path, and (c) the
load-displacement relationship for the cracked square plate under shear loading: present
study vs. Ziaei-rad et al. [2023].
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The discrepancy observed in the load-displacement relationship for the shearing case
can be attributed to the differences between the models and characteristic lengths em-
ployed in the simulations; while Ziaei-rad et al. [2023] employed AT-2 with a characteristic
length of l = 0.008 mm, the present study utilized the combination of AT-1 with a charac-
teristic length almost twice as large particularly for the shearing. We, therefore observer a
sharper drop in the loading of the AT-1 model upon reaching the onset of cracking, similar
to the findings in the homogeneous 1D problem studied by Kristensen et al. [2021]. Nev-
ertheless, this inconsistency between the models is expected to diminish gradually as the
characteristic length approaches zero, and a sharp crack emerges. Under such conditions,
both models converge towards the principles of linear elastic fracture mechanics with an
infinite material strength.

It is worth noting that in both cases, a region next to the top side of the plate tends
to exhibit phase-field evolution, which needs to be hindered. Indeed, the evolution of
the phase field near the boundaries precedes the development of cracks along the primary
notch. This phenomenon can be primarily attributed to the Dirichlet boundary conditions,
which constrain all the top nodes in the transverse direction of the applied displacement,
leading to singularities in the stress-strain fields. To counteract the undesired evolution
of the phase field near these boundaries, an additional Dirichlet boundary condition is
applied on the phase field, specifically setting α = 0 in this region. While this approach
effectively facilitates the intended propagation of fractures, it is necessary to investigate
how a decomposition model can independently address the singularity without applying
additional conditions on the model, necessitating subsequent modifications. However,
such analysis is beyond the scope of this study, as long as it does not affect the phase-field
evolution originating from the initial crack tip.

4.4.2 Validation with experimental data

To the best of our knowledge, the robustness of the proposed generalized Miehe decom-
position has not been thoroughly examined through direct comparison with experimental
results. Therefore, this study aims to adopt the model and investigate its performance in
simulating fracture propagating from an initial notch with a length of a in a semi-circular
specimen subjected to an asymmetrical bending setup, as described by Sakha et al. [2022].
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In the classical semi-cicular bend (SCB) test, the mode-mixity λ, defined as λ =

KII/(K
2
I +K2

II)
1/2, varies as the material orientation changes relative to the initial notch

(shown as β in Figure 4.7). Therefore, Nejati et al. [2019a] proposed the asymmetrical
SCB configuration for orthotropic materials, which allows us to control the mixed-mode
I/II loading at each material orientation, by simply varying the span ratios S2/S1 while
keeping the ratio S1/R = 0.8 constant (see Figure 4.7). Following this setup, the results
of 37 fracture toughness tests on the metamorphic Grimsel Granite, which exhibits trans-
versely isotropic behavior with the isotropy plane coinciding with its foliation plane, under
two different mixed-mode loading are compared with the generalized Miehe phase-field
simulations. By doing so, we can assess the model’s predictive capability and its ability to
capture the fracture behavior of orthotropic materials under complex mixed-mode loading
conditions.

Figure 4.7: Schematics of the SCB test setup for two types of mixed-mode loading (a)
KII/KI ≤ 0, and (b) KII/KI > 0.

In this analysis, two mode-mixity ratios, namely λ = ±0.37, are applied. Using
finite element analysis in ABAQUS, the corresponding span ratios required to achieve
the desired mode-mixity ratio at each material orientation can be calculated, as shown in
Figure 4.8. Following the calculated span ratios, the lower supports of the specimen are
constrained in the y-direction, while a specific support (marked in red in Figure 4.7) is also
constrained in the x-direction. As shown in this figure, the red support corresponds to the
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right lower support whenKII/KI > 0, and to the left lower support whenKII/KI ≤ 0. The
displacement controlled loading is applied downward to the sample, and monotonically
increased with a constant displacement increment ∆ū = −0.1̄0× 10−2 mm.

Figure 4.8: The variation of span ratios for different material orientations and mode-
mixity ratios.

To apply the modified SCB test condition to the phase-field model, the radius of the
semi-circular plate is taken as R = 43.45 mm with an initial vertical notch extending to
the length of a = 0.41R. Assuming the plate undergoes the plane-strain condition, the
thickness has no effect on the the critical stress intensity factors, KIf and KIIf , calculated
at the peak load Pcr as [Ayatollahi et al., 2006]

KIf = YI
Pcr

2Rt

√
πa

KIIf = YII
Pcr

2Rt

√
πa

(4.22)

where the coefficients YI and YII depend on both the geometrical factors and the material
anisotropy. In other words, due to the proportional relationship of the peak load and
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sample thickness, the effect of thickness is nullified in Eq. 4.22. Therefore, one can cal-
culate the effective fracture toughness Kc

eff , defined as Kc
eff = (K2

If +K2
IIf)

1/2, in a model
with a unity thickness. Considering these dimensions, the specimen is discretized by 40K
linear quadrilateral elements, with the smallest mesh size of h = 1.1 × 10−2 mm for the
region around the initial notch.

Table 4.2 provides the mechanical properties of Grimsel Granite, as given in Sakha
et al. [2022]. The experimental study on Grimsel Granite has shown that the mode I

fracture toughness KIc(ϕ) of this material follows a sinusoidal variation of the fracture
toughness values in the principal directions 1 (along the foliation) and 2 (normal to the
foliation) [Nejati et al., 2020b]. Assuming ϕ as the direction of fracture growth with
respect to the principal direction 1, the directional dependency of the fracture toughness
Gc(ϕ) is governed by the function defined in Table 4.3. Given the mechanical properties of
Grimsel Granite, the polar plot of its fracture toughness is shown in Figure 4.9. Despite the
considerable directional dependency of the fracture toughness Gc(ϕ) observed in this figure,
we only treat Grimsel Granite as a transversly isotropic material in terms of elasticity,
and thus the direction-independent circular polar plot in Figure 4.9 represents the fracture
toughness across all directions. This flaw unquestionably leads to inaccuracy in the model
predictions, and emphasizing the necessity of addressing it in future developments.

Material properties Values Unit

ν21, ν13, ν12 0.15, 0.3, 0.3 -

E1, E2 E3 36, 18, 36 GPa

G23, G13 G12 10, 13.85, 10 GPa

KIc,1, KIc,2 0.78, 1.35 MPa
√
m

Lc 10 mm

Table 4.2: Material properties for the Grimsel Granite taken from Sakha et al. [2022].
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Variation of fracture toughness

KIc(ϕ) = KIc,1 cos
2 ϕ+KIc,2 sin

2 ϕ

Gc(ϕ) =
K2

Ic(ϕ)

2E1

(
κ2
(
ξ +

√
ξ
)
cos2 ϕ+ κ1

(√
ξ + 1

)
sin2 ϕ

)
Table 4.3: The directional dependency of the different measures of fracture toughness
adopted from Nejati et al. [2020b, 2021a]. The parameters ξ, and κis are related to the
elastic constants through the definition given by Sakha et al. [2022].

Figure 4.9: Polar plot of the fracture toughness for Grimsel Granite (a) as a transversely
isotropic material under plane-strain condition, and (b) assumed as an isotropic solid.
The fracture toughness is given in N/mm

To accurately capture the phase-field evolution, a sufficiently small characteristic
length is employed in this study. Considering the dimension of the sample, the character-
istic length is chosen as 0.02R. The choice of a small characteristic length is motivated
by the significant size of the fracture process zone in Grimsel Granite compared to the
sample size. As indicated in Table 4.2, the ratio of Lc/R (fracture process zone length
to the sample radius) is approximately 0.23. This highlights the relatively large extent of
the fracture process zone in relation to the specimen dimensions. Indeed, using the actual
size of the fracture process zone as the characteristic length would lead to inaccuracies in
the phase-field evolution. It should be noted that the chosen small characteristic length
may result in underestimation of the load-displacement relationship in our modelling.
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In this study, it is observed that the phase-field may initially evolve in the vicinity
of the lower supports and the loading zone, again preceding the development of crack
along the primary notch. This preceding evolution, caused by the abrupt change of
constraints exclusively applied to a subset of nodes on the supports and loading zone,
as opposed to their freely constrained neighbors, should ideally have been controlled by
the decomposition model. However, the decomposition model used in our study was
apparently unable to address this issue. To suppress this undesired evolution in the
potential region, one can apply a Dirichlet condition to the phase-field variable, provided
that the ultimate phase-field evolution is not affected.

Figure 4.10 and 4.11 illustrate the results simulated by the generalized Miehe decompo-
sition phase-field model, depicting the effective fracture toughness Kc

eff and corresponding
kink angles θ0 for two mixed-mode loading ratios λ = ±0.37. The results are compared
alongside the scatter of the experimental data, as well as predictions from three differ-
ent fracture growth criteria utilized in Sakha et al. [2022]. Note that, in the phase-field
simulation, we measure the kink angle by considering the slope of the tangent line to the
fracture path within the region corresponding to the fracture process zone size of Grimsel
Granite, as given in Table 4.2. The subfigures labeled as (b) and (c) within these fig-
ures, respectively, indicate the displacement magnitude and the y-displacement associated
with a particular material orientation, reaffirming the positioning of the fixed and moving
supports in Figure 4.7 for each set of mixed-mode loading conditions.
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(a)

(b)

(c)

Figure 4.10: Comparison of the experimental data on the kink angle, θ0, and the effective
fracture toughness, Kc

eff , with the phase-field simulations and the predictions reported by
Sakha et al. [2022] based on the MTS, modified MERR, and modified MSED criteria for
the mode-mixity λ = −0.37. (a) Evolution of phase-field, (b) displacement magnitude (in
mm), and (c) y-displacement (in mm) for material orientation β = 75◦.
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(a)

(b)

(c)

Figure 4.11: Comparison of the experimental data on the kink angle, θ0, and the effective
fracture toughness, Kc

eff , with the phase-field simulations and the predictions reported by
Sakha et al. [2022] based on the MTS, modified MERR, and modified MSED criteria for
the mode-mixity λ = 0.37. (a) Evolution of phase-field, (b) displacement magnitude (in
mm), and (c) y-displacement (in mm) for material orientation β = 45◦.

Figure 4.10 and 4.11 reveal that how well the generalized Miehe decomposition model
was capable to capture the fracture behavior in all the samples of transversely isotropic
Grimsel Granite under mixed-mode loading conditions. It is noteworthy that the model
successfully achieved these acceptable predictions despite lacking any knowledge of the
material’s directional dependency on fracture toughness. Based on the observations re-
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ported in Sakha et al. [2022], in the two mixed-mode loading ratios, the compressive stress
distribution ahead the initial notch may dominate over the tensile driving forces when the
material orientation is at high values (i.e. when the β ≥ 45◦), resulting in propagation
within the compressive region if compression is allowed to drive fracture propagation. The
current decomposition model, however, tracks the fracture path in regions located away
from the compressive zones highlighted in Sakha et al. [2022].

Sakha et al. [2022] highlighted a drawback in the classical formulations of the energy-
based criteria, necessitating decomposition of shearing and opening contributions, es-
pecially under significantly high mode-mixity ratios. In response to this drawback, the
modified maximum energy release rate (MERR) and the modified maximum strain energy
density (MSED) were introduced to address this drawback, effectively enhancing the pre-
dictions of energy-based criteria. While this drawback can be tolerable for sets with low
mode-mixity ratios (λ = ±0.37) without compromising prediction accuracy, one need to
decompose the shearing and opening contributions in sets where the fracture kinks under
a high mixed-mode loading. In the framework of phase-field modeling, this decomposition
can be introduced only to the strong form of governing equations, resulting in a variation-
ally inconsistent approach for which a robust argument has yet to be established [Zhuang
et al., 2022]. The other obstacle to decomposing shearing and opening, particularly lies in
the definition of the Generalized Miehe driving force Ψ+, which cannot practically differ-
entiate the opening and shearing driving terms [Zhuang et al., 2022]. Hence, to improve
phase-field predictions and extend its applicability to scenarios with higher mode-mixity
ratios, these two limitations need to be understood in further studies.

Similar to the present study, Mehraban et al. [2023] utilized a non-local XFEM-based
method to reproduce the experimental data presented in Sakha et al. [2022]. Apart from
addressing the directional dependency of fracture toughness in Grimsel Granite, Mehraban
et al. [2023] incorporated rigid body models for the supports, which exerted hard contact
interactions while assuming frictionless conditions at the interfaces. This difference in the
modeling approaches reveals another source of inaccuracy in our modeling methodology.
Indeed, in our current approach, only one node is constrained at the interface, which may
not fully represent the complex conditions governing the experimental setup. Deformation
of the sample at the contact points can lead to interactions with more than one node at the
interface, which must be addressed in future enhancements of our modeling methodology.
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4.5 Conclusion

In this paper, we have adopted the generalized Miehe decomposition model to effectively
simulate fracturing in orthotropic solids. We validated the accuracy of our implementation
by comparing our results with existing numerical studies in the literature. Furthermore,
we have successfully demonstrated the reliability and robustness of the decomposition
model by reproducing experimental data pertaining to fracture trajectory and the effective
fracture toughness of transversely isotropic rock samples subjected to mixed-mode loading.

While the previous study illustrated the potential of interpenetration in cases where
no treatment is incorporated, our model is capable of accurately capturing the fracturing
phenomenon even in the presence of inherent flaws in the modeling process. One of the
significant limitations we have identified is the exclusion of the directional dependency
of fracture toughness. This omission can overshadow the impact of material tendency
interacting with the loading conditions, which ultimately determines the trajectory of the
fracture. Considering a material with a suppressed tendency, the applied loading can
exert a dominant influence and facilitate the propagation of the fracture, leading to an
underestimation of the effective fracture toughness.



Chapter 5

Conclusions and outlook

This thesis culminates with a comprehensive analysis of complex fracturing of anisotropic
rocks, encompassing its main discoveries and outlining future directions for further re-
search. Up to this point, the introduction focused on unraveling the fundamental phys-
ical concepts that underlie rock fracture mechanics. In addition, we identified existing
knowledge gaps, and proposed a coherent framework to unite these disparate aspects.
Throughout each chapter, we followed a structured methodology, using simplifying as-
sumptions to gain deeper insights into fracture mechanics. Consequently, every chapter
concluded with specific key findings tailored to its section. In this concluding chapter,
we will not repeat all individual findings but instead focus on elucidating the correla-
tions between these discoveries, creating a holistic view of the physics we have grasped.
Nonetheless, this meaningful picture forms only a portion of a broader puzzle, requiring
further development in subsequent stages. The outlook section of this thesis will offer a
roadmap for future research, identifying potential challenges and outlining strategies to
overcome them. In conclusion, while this thesis has made significant strides in establish-
ing reliable theories and models for capturing fracture in anisotropic rock under complex
loading, there remain untaken steps towards achieving a comprehensive rock fracture
modeling. Hence, the insightful findings presented here serve as a foundation for further
advancements in this field.

105



5. Conclusion 106

5.1 Unveiling the role of material anisotropy

Material anisotropy in fracture mechanics manifests itself in various mechanical aspects,
including elasticity, fracture toughness, and strength. Throughout this research, our focus
was on unveiling the influence of material anisotropy on fracture initiation and propaga-
tion, especially when the loading conditions are not in favor of the material’s natural
fracture tendency. We have now gained a clear understanding that in such cases, fracture
initiation and propagation are governed by a prevailing interplay between these factors.
The level of material anisotropy plays a crucial role, as lower anisotropy allows the loading
condition to dominate more easily. However, when the loading condition overcomes the
material’s inherent tendencies, rock heterogeneity comes into play, resulting in transgran-
ular dominance micro-cracking, which leads to scattered experimental observations.

Beyond loading conditions, the presence of material anisotropy may heighten the im-
portance of other factors in determining fracturing behavior. For example, the influence
of T-stress within the fracture process zone becomes more pronounced when material
anisotropy is in play. In Chapter 4, we have also discussed the impact of minor changes
in boundary conditions, especially when fractures kink due to material anisotropy. Inter-
estingly, the structure size effect in hydraulic fracture initiation could not be linked to the
degree of material anisotropy, as elaborated in Chapter 3.

By deciphering the strong impact of material anisotropy, we unlocked valuable in-
sights into fracturing within direction-dependent formations. These insights, however,
still fall short of fully capturing brittle fracturing in anisotropic rocks, given the uncer-
tainties associated with using deterministic homogeneous-based models. Addressing these
uncertainties is a prospect for future studies.
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5.2 Fracture path: not a priori assumption

The fracture path, during initiation and propagation, remains a complex unknown until
the fracture extends beyond the region where it is driven by either material’s tendency or
loading conditions. In contrast to many previous studies that make a priori assumption
about fracture paths, our research sought to investigate the degree of tortuosity near the
wellbore. This tortuosity is a unwanted outcome in hydraulic fracturing that requires
strategies to either mitigate the degree of fracture reorientation or confine it to a smaller
zone.

Through an analysis of hydraulic fracture initiation and propagation in anisotropic
rock formations, our findings underscore the critical importance of considering anisotropy
in rock formations. Neglecting this aspect can lead to a significant divergence between
our theoretical predictions of fracture paths and the reality of their behavior. The hazards
associated with wellbore region tortuosity can be effectively minimized through a compre-
hensive comprehension of the dynamic interplay between material properties and loading
conditions, leading to configurations that promote less winding fracture path. Now, one
can easily leverage from the data set we have provided for hydraulic fracture initiation,
come up with an optimized configuration for the initial conditions which enables the
hydraulic fracture to be driven in a less tortuous manner.

5.3 Toward a sophisticated fracture model

Throughout this research, we have tried to convey a crucial message: a comprehensive
model in fracture mechanics must have the capability to capture brittle fracturing, ac-
counting for size effects under complex loading and different degrees of material anisotropy.
Such a model should prevent fracturing under interpenetration while understanding the
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contributions of shearing and opening in driving brittle fractures in rock-type materials.
Irrespective of the fracture mechanism, materials with sufficiently large fracture process
zones should consider the effect of the material’s lengthscale, in addition to the sam-
ple’s lengthscale. We have learned that neglecting any of these physical concepts distorts
the real understanding of fracture behavior. Another key finding of this study is that
while numerous models have been suggested for quasi-brittle materials, one can still em-
ploy brittle fracture models with minor modifications, as long as certain requirements of
brittle fracturing are met. By enhancing the simplicity of brittle fracture models and
incorporating additional physical concepts, this paper extends the applicability of these
models to more complex materials, such as quasi-brittle anisotropic rocks under complex
loading conditions.

In addition to modifying fracturing models and theories, this thesis also encompasses
the developing of computational codes and finite element models, which is immensely
valuable for future research. Among these indispensable tools is the Generalized Miehe
Decomposition module (GMIEHE) developed for orthotropic materials, which has been
incorporated into the phase-field code known as GRIPHFiTH 1. This aspect of the thesis
marks a significant stride toward the establishment of a robust computational tool capable
of accurately simulating hydraulic fracture growth in anisotropic rock-type formations. By
incorporating direction-dependent fracture toughness into the GMIEHE module, we are
equipped with a powerful tool for comprehending the extent to which hydraulic fractures
can reorient around the wellbore. This advancement provides a practical framework for
addressing and mitigating the tortuosity of hydraulic fractures, offering novel solutions
for real-world geo-engineering applications.

1https://gitlab.ethz.ch/compmech/GRIPHFiTH

https://gitlab.ethz.ch/compmech/GRIPHFiTH
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5.4 Outlook

With all the necessary groundwork laid for the next steps, our focus now lies in outlining
future research towards a more comprehensive model for capturing fracture initiation and
propagation in rock-like materials. Let’s begin by addressing the flaws that need attention
in phase-field modeling. An initial attempt towards a more comprehensive phase-field
model involves incorporating direction-dependent fracture toughness and evaluating its
reliability in predicting fracture paths under higher mode-mixities. As seen in Chapter 2,
the model may encounter challenges when not decomposing the contribution of shearing
and opening, potentially leading to inaccuracies in fracturing predictions. Another area
of interest is studying whether the solely tension-compression decomposition suffices in
capturing the evolution of wing and secondary cracks when the central crack experiences
compressive loading. As per the conclusions drawn in Chapter 2, introducing an additional
decomposition in such loading scenarios might be necessary, making the development of
the phase-field model a prerequisite for further progress.

Shifting our attention to Chapter 3, substantial data has been presented on the initi-
ation parameters crucial for hydraulic fracture initiation. As highlighted earlier, precise
determination of these initiation parameters is essential, as arbitrary assumptions can sig-
nificantly influence the subsequent fracture growth trajectory, leading to deviation from
the actual fracture growth behavior. However, this thesis has yet to explore the potential
effects of realistic conditions that may deviate from the underlying assumptions made
in this study. Notably, during drilling, defects can be introduced around the wellbore,
contradicting our assumption of an initially notch-free wellbore. If the extent of these
defects proves significant in comparison to the initiation length, it could have a notable
impact. Furthermore, this thesis now prompts another question of whether transitioning
from the plane-stress to the plane-strain condition could indeed influence the initiation
parameters. Such inquiries must be addressed in future studies.

Once the initial condition of hydraulic fracture growth is well-established, the mod-
ified phase-field model, tailored for hydraulic fracturing, can be leveraged to track the
trajectory of hydraulic fracture propagation. However, up to this point, our primary
question revolving around understanding the tortuosity around the wellbore and how
it is influenced by the interplay of material and stress anisotropy remains unresolved.
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In addition to this question, we also have concerns about seismic hazards induced by
hydraulic fracturing, necessitating a clearer understanding of the stability of hydraulic
fracture propagation within the subsurface. The complexities arising from the material
and loading conditions within the subsurface introduce uncertainties that blur the long-
term certainty in geo-engineering applications. Addressing these challenges requires the
gradual development of a more sophisticated model through scientific research endeavors.
Only with such advancements we can hope to provide reliable answers to the complexities
and uncertainties in geo-engineering applications.
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Appendix A

ELASTICITY PROBLEM: KINKED
CRACK IN ANISOTROPIC SOLIDS

A.1 Theoretical background on anisotropic elasticity

Let us consider the coordinate system x′y′ in such a way that the axis x′ (principal direction
1) lies within the isotropy plane of a transversely isotropic material, while y′ (principal
direction 2) is oriented normal to the isotropy plane (see Figure A.1.1a). As shown in
Figure A.1.1, the global coordinate system xy results from rotating the coordinate system
x′y′ along the axis z′ by −β. By applying the transformation rules, the strain and stress
tensors can be generally represented in the global coordinate xy and thus, Hooke’s law
can be rewritten as [Nejati et al., 2020a]

 ϵx

ϵy

γxy

 =
1

E

 S̃11 S̃12 S̃16

S̃12 S̃22 S̃26

S̃16 S̃26 S̃66


 σx

σy

τxy

 , (A.1.1)

where the components S̃ij are given by Nejati et al. [2020a].

According to Lekhnitskii’s formulation, the problem of two-dimensional anisotropic
elasticity can be represented by a fourth order partial differential equation in terms of the
Airy stress function [Lekhnitskii, 1968]. The general solution of this equation depends on
the complex roots derived by solving the following characteristic equation:

A-1
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Figure A.1.1: An anisotropic plane with two local coordinate systems x′y′ and nt which
coincide with the principal material directions and the direction of fracture growth, re-
spectively. The global coordinate system xy makes the angle −β with respect to x′y′.

S̃11µ
4 − 2S̃16µ

3 + (2S̃12 + S̃66)µ
2 − 2S̃26µ+ S̃22 = 0 . (A.1.2)

The roots of this characteristic equation are complex, and always occur in conjugate
pairs: µ1 = a1 + ib1, µ2 = a2 + ib2, µ3 = µ̄1, µ4 = µ̄2 [Lekhnitskii, 1968]. The simplest
form of the characteristic equation is obtained in the material coordinate system x′y′,
given as

µ′4 +

(
1 + ξ

κ1η
+ 2ξν ′

(1− κ3η)

κ1η

)
µ′2 +

κ2
κ1
ξ = 0 . (A.1.3)

Here, κ1 = κ2 = κ3 = 1 for the plane-stress condition and κ1 = 1 − ν2, κ2 =

1− ξν ′2, κ3 = 1 + ν for the plane-strain condition. The dimensionless parameters ξ and
η are defined as

ξ =
E

E ′ , η =
G′

G′
sv

, (A.1.4)
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where G′
sv is the transverse shear modulus approximated from the Saint-Venant relation:

1/G′
sv = 1/E + (1 + 2ν ′)/E ′. The reasons for employing ξ, η to formulate elasticity

equations are given in detail in Nejati et al. [2019b, 2020b].

The complex roots of Eq. A.1.3, µ′
1 and µ′

2, are practically functions of only ξ and η for
the plane-stress condition. This is because the influence of ν ′ on the roots of Eq. A.1.3 is
negligible [Nejati et al., 2019a]. However, for the plane-strain case, µ′

1 and µ′
2 depend also

on the parameters κ1, κ2 and κ3. Once the complex parameters µ′
1 and µ′

2 are evaluated
from Eq. A.1.3, the transformed complex parameters in the coordinate system xy are
readily computed from [Lekhnitskii, 1968]

µk =
µ′
k cos β + sin β

cos β − µ′
k sin β

, k = 1, 2. (A.1.5)

Let us now present the stress, strain, and displacement fields in the vicinity of the
crack tip. Assume that a crack is oriented along x-axis. Sih et al. [1965] first derived the
crack tip fields in an anisotropic plane, and presented the fields using only the singular
terms. Recently, the fields corresponding to the higher order terms have also been derived
[Ghouli et al., 2020; Nejati et al., 2021c]. We consider only the first two terms of the crack
tip asymptotic field, formulating the polar stress fields near to the crack tip under mixed-
mode I/II loading as

 σr

σθ

τrθ

 =
Keff√
2πr


 σ̃r(µk, θ, λ)

σ̃θ(µk, θ, λ)

τ̃rθ(µk, θ, λ)

+
T
√
2πr

Keff

 cos2 θ

sin2 θ

− sin θ cos θ


 ,

σ̃r = ℜ

[
1

(µ1 − µ2)

{(
λ± µ1

√
1− λ2

)
(sin θ − µ2 cos θ)

2

√
cos θ + µ2 sin θ

−
(
λ± µ2

√
1− λ2

)
(sin θ − µ1 cos θ)

2

√
cos θ + µ1 sin θ

}]
,

σ̃θ = ℜ
[

1

(µ1 − µ2)

{(
λ± µ1

√
1− λ2

)
(cos θ + µ2 sin θ)

3/2 −
(
λ± µ2

√
1− λ2
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(cos θ + µ1 sin θ)

3/2
}]

,

τ̃rθ = ℜ
[

1

(µ1 − µ2)

{(
λ± µ1

√
1− λ2

)
(sin θ − µ2 cos θ)

√
cos θ + µ2 sin θ

−
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(sin θ − µ1 cos θ)

√
cos θ + µ1 sin θ

}]
.

(A.1.6)
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In Eq. A.1.6, T is a constant stress acting parallel to the crack, known as the T-stress,
and r and θ are the polar coordinates. The mode-mixity parameter λ is defined as the
ratio of mode II stress intensity factor to the effective stress intensity factor, Keff , which
yields

λ =
KII

Keff

, Keff =
√
K2

I +K2
II. (A.1.7)

where KI and KII are modes I and II stress intensity factors. λ = 0 and λ = ±1 denote
pure modes I and II loadings, respectively, while −1 < λ < 1 represents a range of mixed-
mode loadings with different contributions of each mode. The ± sign in Eq. (A.1.6)
represents the sign of mode I stress intensity factor. Since KI > 0 in this study, the
positive sign is used in the formulations of this paper. which is assumed to be positive in
this study. The effective stress intensity factor also indicates the intensity of the stresses
in the mixed-mode I/II loading near the crack tip. Note that the complex parameters µ1,
µ2 must be obtained in the crack tip coordinate system xy. The strain and displacement
fields in the Cartesian coordinate are also given by [Nejati et al., 2020a, 2021c]

 ϵx

ϵy

γxy
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Keff

E
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2πr
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(A.1.8)

and
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(A.1.9)

where

pk = S̃11µ
2
k + S̃12 − S̃16µk ,

qk = S̃12µk + S̃22/µk − S̃26 , (k = 1, 2)

dk = S̃16µ
2
k + S̃26 − S̃66µk .

(A.1.10)
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One can transform Eq. (A.1.8) to obtain the strain field in the polar coordinate system
as

 ϵr
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γrθ

 =
Keff

E
√
2πr


 ϵ̃r(S̃ij, µk, θ, λ)

ϵ̃θ(S̃ij, µk, θ, λ)

γ̃rθ(S̃ij, µk, θ, λ)

+
T
√
2πr

Keff

 S̃r

S̃θ

S̃rθ


 ,

ϵ̃r = ℜ

[
1

(µ1 − µ2)

{(
λ± µ1

√
1− λ2

)
√
cos θ + µ2 sin θ

(
p2 cos

2 θ + µ2q2 sin
2 θ + d2 sin θ cos θ

)
−(

λ± µ2

√
1− λ2

)
√
cos θ + µ1 sin θ

(
p1 cos

2 θ + µ1q1 sin
2 θ + d1 sin θ cos θ

)}]
,

ϵ̃θ = ℜ

[
1

(µ1 − µ2)

{(
λ± µ1

√
1− λ2

)
√
cos θ + µ2 sin θ

(
p2 sin

2 θ + µ2q2 cos
2 θ − d2 sin θ cos θ

)
−(

λ± µ2

√
1− λ2

)
√
cos θ + µ1 sin θ

(
p1 sin

2 θ + µ1q1 cos
2 θ − d1 sin θ cos θ

)}]
,

γ̃rθ = ℜ

[
1

(µ1 − µ2)

{(
−
(p2 − µ2q2)

(
λ± µ1

√
1− λ2

)
√
cos θ + µ2 sin θ

+
(p1 − µ1q1)

(
λ± µ2

√
1− λ2

)
√
cos θ + µ1 sin θ

)
sin 2θ

+

(
d2
(
λ± µ1

√
1− λ2

)
√
cos θ + µ2 sin θ

−
d1
(
λ± µ2

√
1− λ2

)
√
cos θ + µ1 sin θ

)
cos 2θ

}]
,

(A.1.11)

where

S̃r = S̃11 cos
2 θ + S̃12 sin

2 θ + S̃16 sin θ cos θ,

S̃θ = S̃11 sin
2 θ + S̃12 cos

2 θ − S̃16 sin θ cos θ,

S̃rθ = (S̃12 − S̃11) sin 2θ + S̃16 cos 2θ.

(A.1.12)

A.2 Energy release rate (ERR) function

This section gives the details of the derivation of the energy release rate due to the
development of a kink at the tip of the main crack in an anisotropic plane. An exact
solution is derived from the dislocation theory, while a simpler approximate solution is
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obtained assuming an infinitesimal kink and the stress field near the main crack. In
the approximate solution, the assumption of an infinitesimally small kink allows us to
derive a closed-form approximation for the stress intensity factors at the kinked crack
tip. Contrary to the approximate solution, the dislocation technique is applicable to the
problems in which the kink segment is large, provided that the higher order terms in the
stress series expansion are included. Both methods are explained next.

A.2.1 Dislocation technique

The dislocation technique provides an exact formulation for the energy release rate func-
tion G(θ) in anisotropic materials. This technique is basically formulated based on the
Stroh formalism and singular integral equation approach [Yang and Yuan, 2000]. Imple-
mentation of the dislocation technique yields a system of integral equations governing the
kinked crack problem. According to Traction-free condition, this system is constructed
by the superposition of two solutions: a solution for a line dislocation in an infinite plane
without a crack, and a solution in the presence of a crack. The latter solution is subjected
to the opposite traction deduced by the line dislocation. The full details are given in Yang
and Yuan [2000]. The sum of the two solutions leads to the following integral equation:

∫ 1

−1

 I
γ − χ +

1

2

I
1 + χ+

√
(1 + χ)(1 + γ)

+
1

2

2∑
α=1

ℜ

B
〈

1

1 + χ+

√
(1 + χ)(1 + γ)

z̄α
z

〉
Y α


 q(γ)dγ

(1 + γ)s(1− γ)1/2
=

1√
π(1 + χ)

ℜ
[
B
〈√
z
〉
B−1

]
k −

√
rt sin θ , −1 ≤ χ ≤ 1

(A.2.1)

where
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〈√
z
〉
= diag[

√
cos θ + µ1 sin θ,

√
cos θ + µ2 sin θ],

〈
1

1 + χ+

√
(1 + χ)(1 + γ)

z̄α
z

〉
=

diag[
1

1 + χ+

√
(1 + χ)(1 + γ)

cos θ + µ̄α sin θ

cos θ + µ1 sin θ

,
1

1 + χ+

√
(1 + χ)(1 + γ)

cos θ + µ̄α sin θ

cos θ + µ2 sin θ

],

(A.2.2)

and

B =

(
−µ1 −µ2

1 1

)
,

Y α = B−1B̄I αB̄
−1
, I α=1 = diag[1, 0], I α=2 = diag[0, 1].

(A.2.3)

The unknown function q(γ) is bounded within −1 ≤ γ ≤ 1, and can be obtained by
using Chebychev polynomials when s = 1/2 and q(−1) = 0 are assumed. The detail
of the numerical techniques for solving integral equations is discussed in Erdogan et al.
[1973]. Due to the linearity of the integral equation with respect to the function q(γ),
the solution is divided into the sum of the solutions due to k-term and T-term. Thus, the
unknown function q(γ) can be expressed by

q(γ) = KIIq
(1)
2 (γ) +KIq

(1)
1 (γ) +

√
rTq(2)

1 (γ) , (A.2.4)

where the superscripts (i), i = 1, 2 stand for k-term and T-term, respectively. The
principle of superposition allows us to obtain q(1)

1 , q(1)
2 , and q(2)

1 by solving the following
integral equations:
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∫ 1

−1

 I
γ − χ +

1

2

I
1 + χ+

√
(1 + χ)(1 + γ)

+
1

2

2∑
α=1

ℜ

B
〈

1

1 + χ+

√
(1 + χ)(1 + γ)

z̄α
z

〉
Y α


 q(1)

1 (γ)dγ

(1 + γ)s(1− γ)1/2
=

1√
π(1 + χ)

ℜ
[
B
〈√
z
〉
B−1

]( 0

1

)
,

∫ 1

−1

 I
γ − χ +

1

2

I
1 + χ+

√
(1 + χ)(1 + γ)

+
1

2

2∑
α=1

ℜ

B
〈

1

1 + χ+

√
(1 + χ)(1 + γ)

z̄α
z

〉
Y α


 q(1)

2 (γ)dγ

(1 + γ)s(1− γ)1/2
=

1√
π(1 + χ)

ℜ
[
B
〈√
z
〉
B−1

]( 1

0

)
,

∫ 1

−1

 I
γ − χ +

1

2

I
1 + χ+

√
(1 + χ)(1 + γ)

+
1

2

2∑
α=1

ℜ

B
〈

1

1 + χ+

√
(1 + χ)(1 + γ)

z̄α
z

〉
Y α


 q(2)

1 (γ)dγ

(1 + γ)s(1− γ)1/2
=

− sin θ

(
0

1

)
.

(A.2.5)

By application of numerical techniques, Eq. (A.2.5) forms a system of linear algebraic
equations. The vectors q(1)

1 , q(1)
2 , and q(2)

1 can then determine the stress intensity factor
k(k) defined at the crack tip with the radial distance of r = Lc from the tip of the original
crack. Therefore for the exact solution, Eq. (2.8) has the following form

(
K

(k)
II

K
(k)
I

)
= Keff

π
√
π

2s

(
cos θ sin θ

− sin θ cos θ

)([
q(1)
2 ,q(1)

1

]( λ

±
√
1− λ2

)
+
T
√
Lc

Keff

q(2)
1

)
.

(A.2.6)

or
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(
K

(k)
II

K
(k)
I

)
=

Keff


[Cij]︷ ︸︸ ︷

π
√
π

2s

(
cos θ sin θ

− sin θ cos θ

)[
q(1)
2 ,q(1)

1

]( λ

±
√
1− λ2

)
+
T
√
Lc

Keff

[bj]︷ ︸︸ ︷
π
√
π

2s

(
cos θ sin θ

− sin θ cos θ

)
q(2)
1

 .

(A.2.7)

A.2.2 Approximate solution

Azhdari and Nemat-Nasser [1996] first applied the approximate solution based on modified
Irwin’s formula in terms of the stress intensity factors K(k)

I and K(k)
II , to obtain the energy

release rate function. This method was then verified by the fundamental definition of
the ERR function, i.e. the work required for closure of the kink gap and restore the
required normal and shear stresses defined before kinking. In the approximate solution,
G(θ) adjacent to the crack tip under the mixed-mode I/II loading condition is calculated
from Eq. (2.6) in terms of the vector k(k) =

{
K

(k)
II , K

(k)
I

}⊺
[Azhdari and Nemat-Nasser,

1996]. Let us now define the coefficients Cij and bj based on the closed-form relations
given by Li and Xu [2007]. According to Eq. (2.8), we arrive at

C11 = ℜ
[

1

µ1 − µ2

{
µ1 (cos θ + µ2 sin θ)

3/2 − µ2 (cos θ + µ1 sin θ)
3/2
}]

,

C12 = ℜ
[

1

µ1 − µ2

{
(cos θ + µ2 sin θ)

3/2 − (cos θ + µ1 sin θ)
3/2
}]

,

C21 = ℜ
[

1

µ1 − µ2

{
µ1 (sin θ − µ2 cos θ)

√
cos θ + µ2 sin θ − µ2 (sin θ − µ1 cos θ)

√
cos θ + µ1 sin θ

}]
,

C22 = ℜ
[

1

µ1 − µ2

{
(sin θ − µ2 cos θ)

√
cos θ + µ2 sin θ − (sin θ − µ1 cos θ)

√
cos θ + µ1 sin θ

}]
,

b1 =

√
8

π
sin2 θ ,

b2 = −
√

8

π
sin θ cos θ .

(A.2.8)
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Under the pure mode I loading, the expression given by Nejati et al. [2020a] can be
achieved by setting λ = 0 in the above relation.

A.2.3 Comparison of the approximate solution with dislocation

technique

In this section, we present the comparison between the results predicted by the MERR
criterion when the ERR function is determined based on the dislocation technique and
the approximate solution. According to Section 2.4.2, although the dislocation technique
provides the exact solution for the ERR function, the approximate solution can be con-
sidered as an alternative method with acceptable accuracy. Table A.2.1 lists the error
values associated with each of the techniques used for determining the ERR function.
As given in Table A.2.1, the errors calculated for both techniques are in the same order.
This implies that the approximate solution provides accurate results as compared to the
results of the dislocation technique. However, if the crack kinks at the higher values of
θ0 (e.g. when θ0 > 75◦), the error of the approximate solution might be enlarged [Li
and Xu, 2007]. Therefore, we can conclude that as long as the kink crack is small, the
approximate solution can be considered as a good candidate for determining the ERR
function in anisotropic materials.

Error function
Technique used to
derive the ERR function

Set I Set II Set III Set IV Average

eθ0
Dislocation technique 1.28 1.42 1.52 1.45 1.42
Approximate solution 1.25 1.44 1.50 1.46 1.41

eKc
eff

Dislocation technique 1.28 2.37 1.55 1.29 1.62
Approximate solution 1.28 2.37 1.54 1.29 1.62

Table A.2.1: Comparison of the prediction errors for different techniques used to determine
the ERR function. The error functions are defined in Eq. (2.20).



Appendix B

ELASTICITY PROBLEM:
ANISOTROPIC PLANE WITH A

HOLE

B.1 Infinite anisotropic plane with a circular hole

The stress field around an intact pressurized wellbore subjected to pre-existing remote
loading is derived based on the superposition principle of the problems described as fol-
lows. 1) stress-free hole with biaxial loading at remote boundaries (distinguished by the
superscript s). 2) uniform pressure acting on the hole and stress-free remote boundaries
(distinguished by the superscript p). The superposition of these two problems there-
fore gives the distributions of the stress components acting in the intact domain V :
σint = σθ(θ) = σ2σ̃

s
θ + pbσ̃

p
θ and τ int = τrθ(θ) = σ2τ̃

s
rθ + pbτ̃

p
rθ. For the sake of sim-

plicity, we express the stress field of each problem in the global coordinate system xyz,
and then apply the transformation rule to obtain the dimensionless hoop stresses (i.e. σ̃s

θ

and σ̃p
θ ) and shear stresses (i.e. τ̃ srθ and τ̃prθ). The stress field of an infinite anisotropic

plate with a stress-free circular hole around the boundary is given by [Amadei, 1983]:

B-1
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 σs
x

σs
y

τ sxy

 = σ2

 σ̃s
x

σ̃s
y

τ̃ sxy

 ,

σ̃s
x = −1−ℜ

[
2∑

j=1

µ2
j fj(µ1, µ2, λ)Fj(µ1, µ2,

zj
R
)

]
,

σ̃s
y = −1

λ
−ℜ

[
2∑

j+1

fj(µ1, µ2, λ)Fj(µ1, µ2,
zj
R
)

]
,

τ̃ sxy = ℜ

[
2∑

j=1

µjfj(µ1, µ2, λ)Fj(µ1, µ2,
zj
R
)

]
,

(B.1.1)

where


F1(µ1, µ2,

z1
R
) =

1

(µ1 − µ2) (±
√

( z1
R
)2 − µ2

1 − 1)
(
±
√
( z1
R
)2 − µ2

1 − 1 +
z1
R

)
F2(µ1, µ2,

z2
R
) =

−1

(µ1 − µ2) (±
√

( z2
R
)2 − µ2

2 − 1)
(
±
√
( z2
R
)2 − µ2

2 − 1 +
z2
R

) ,


f1(µ1, µ2, λ) = (1− iµ1)

(
−µ2

λ
+ i
)

f2(µ1, µ2, λ) = (1− iµ2)
(
−µ1

λ
+ i
) .

(B.1.2)

Here, µ1 and µ2 are the conjugate complex roots of a characteristic polynomial describ-
ing the dependency of the elasticity solution on the material constants for the plane
anisotropic body [Lekhnitskii, 1968]. Expressing the characteristic equation in the global
coordinate xy, we arrive at

S̃11µ
4 − 2S̃16µ

3 + (2S̃12 + S̃66)µ
2 − 2S̃26µ+ S̃22 = 0 , (B.1.3)

where the coefficients S̃ij represent the components of the material compliance matrix
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and given by [Nejati et al., 2020b]. In Eq. B.1.2, the ratios zj/R (j = 1, 2) are defined in
the domain V as zj/R = δ(cos θ + µ1 sin θ). Here, δ is defined as the ratio r/R, where r
denotes the radial distance between the crack tip and the wellbore center.

The second problem incorporates the contribution of the internal pressure pb applied
to the hole. Recalling the functions Fj(µ1, µ2,

zj
R
) given in Eq B.1.2, the components σ̃p

x ,
σ̃p
y , and τ̃pxy are defined as [Savin, 1961; Sadd, 2014]



σ̃p
x = ℜ

[∑2
j=1 µ

2
j gj(µ1, µ2)Fj

]
,

σ̃p
y = ℜ

[∑2
j=1 gj(µ1, µ2)Fj

]
,

τ̃pxy = −ℜ
[∑2

j=1 µjgj(µ1, µ2)Fj

]
,

where

(
g1(µ1, µ2) = (µ1 + i) (1 + iµ2)

g2(µ1, µ2) = (µ2 + i) (1 + iµ1)

)
. (B.1.4)

B.2 Infinite anisotropic plane with an inclusion

The simple Cauchy kernel is common to integral equations governing the crack problems
provided that the entire crack lies within the homogeneous part of the material [Hills
et al., 1996]. Any additional terms of the kernel components are introduced to the prob-
lem by the differences in the geometry and presence of inclusions. Many attempts have so
far been made to derive closed-form solutions to a variety of crack problems. Particularly,
the present problem entails knowledge on the stress field when the dislocation is inter-
acting with a circular hole embedded inside an infinite anisotropic plane. Fortunately,
Wu [1992] has derived the closed-form solution of a dislocation with an elliptic inclusion
in an anisotropic material. In this context, an infinitely soft inclusion with equal semi-
axes mimics the desired configuration for a cylindrical wellbore located in a transversely
isotropic formation [Wu, 1992]. Assuming zα = X + µ∗

αY and zα0 = X01 + µ∗
αX02, the

matrix components Jij(z, z0) on the plane Y = 0 can be expressed as
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J11(X,X01) = J11(z, z0)| Y=0,
X02=0

= ℜ
[
B11iJ 11,z(z, z0)| Y=0,

X02=0

]
+ ℜ

[
B12iJ 21,z(z,z0)| Y=0,

X02=0

]
+ ℑ

[
J ∗

11,z(z, z0)| Y=0,
X02=0

]
J12(X,X01) = J12(z, z0)| Y=0,

X02=0
= ℜ

[
B11iJ 12,z(z, z0)| Y=0,

X02=0

]
+ ℜ

[
B12iJ 22,z(z,z0)| Y=0,

X02=0

]
+ ℑ

[
J ∗

12,z(z, z0)| Y=0,
X02=0

]
J21(X,X01) = J21(z, z0)| Y=0,

X02=0
= ℜ

[
B21iJ 11,z(z, z0)| Y=0,

X02=0

]
+ ℜ

[
B22iJ 21,z(z,z0)| Y=0,

X02=0

]
+ ℑ

[
J ∗

21,z(z, z0)| Y=0,
X02=0

]
J22(X,X01) = J22(z, z0)| Y=0,

X02=0
= ℜ

[
B21iJ 12,z(z, z0)| Y=0,

X02=0

]
+ ℜ

[
B22iJ 22,z(z, z0)| Y=0,

X02=0

]
+ ℑ

[
J ∗

22,z(z, z0)| Y=0,
X02=0

]
.

(B.2.1)

where the Stroh Matrix B in Eq. B.2.1 is

B =

(
−k1µ∗

1 −k2µ∗
2

k1 k2

)
, (B.2.2)

and the matrices J (z, z0) and J ∗(z, z0) on the plane Y = 0 can be expressed as

J ∗(z, z0) = [B ⟨ln(z − z0)− ln(z + z0)⟩B⊺]

J (z, z0) =

[〈
ln(1− m

g(z)g(z0)
)− ln(1− m

g(z)g(−z0)
)

〉
B⊺ −G(z, z0)B̄

⊺

]
, where m =

1 + iµ∗

1− iµ∗ ,

g(z) =
z

R(1− iµ∗)
+

√
(

z

R(1− iµ∗)
)2 −m

G jk(z, z0) = (B−1B̄)jk(ln(1−
1

g(zj)ḡ(zk0)
)− ln(1− 1

g(zj)ḡ(−zk0)
))

(B.2.3)

In Eqs. B.2.2 and B.2.3, the complex parameters µ∗
k must be defined along the initiation

direction θ0, and thus the complex parameters µk obtained from Eq. B.1.3, are transformed
into the local coordinate system XY by [Lekhnitskii, 1968]

µ∗
k =

µk cos θ0 + sin θ0
cos θ0 − µk sin θ0

, k = 1, 2. (B.2.4)



Appendix C

MODELING HYDRAULIC
FRACTURE INITIATION

In Chapter 3, we applied the mixed criterion to study hydraulic fracture initiation from
a notch-free wellbore subjected to compressive in-situ stresses, situated in a transversely
isotropic rock formation. To address the requirement of the mixed criterion, we employed
the displacement discontinuity method to calculate the fracture energy, where a kernel
matrix tailored to the geometry in question is adopted. Particularly in our study, this
kernel must well describe the stress induced by a unit edge dislocation interacting with a
wellbore within a transversly isotropic formation. The mathematical complexity inherent
in this kernel demands a comprehensive assessment of the correctness of the mathematical
relationships. Despite the validation given in the preceding chapter, the reliability of the
results remained unconfirmed. This is due to this fact that isotropic material represents
a specific instance of anisotropy, and unlike the rock formation assumed in Chapter 3, it
is independent of material orientation.

C.1 Finite element modelling

To calculate the fracture energy through finite element modelling, we created two sepa-
rate 2D models for the crack-free and cracked states, where an infinite plane containing a
circular hole is taken as a transversely isotropic formation. While all the boundary condi-
tions between these two states is kept unchanged, the introduction of symmetrical cracks
to an initially notch-free wellbore yields a variation in elastic strain energy between the
two states. Following the elemental crack advancement approach, this variation serves as

C-1
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an indicator of the fracture energy. The ANSYS APDL scripts utilized to simulate these
two states are available online on GitHub1. However, to ensure the correctness of finite
element implementation, we first compare the finite element (FE) and analytical distri-
bution of the hoop stress surrounding the initially notch-free wellbore, where the fluid
is pressurized up to the initiation pressure and the formation is subjected to the stress
anisotropy of λ = 2. The distribution at the distance of 103 mm away from the wellbore
center is presented in Figure C.1.1, depicting two material anisotropy ratios (i.e. ξ = 3

and ξ = 4) with three different material anisotropy orientations. To extract the initiation
pressures corresponding to each variation, the readers are referred to the findings outlined
in Chapter 3.

(a) (b)

Figure C.1.1: The distribution of the hoop stress around the notch-free wellbore at ini-
tiation obtained by finite element (FE) modelling and analytical relations (see B.1) for
different material anisotropy ratios and orientations.

Once the finite element implementation is validated, we employed a python automation
script to loop over different initiation pressures in such a way that three conditions of the
mixed criterion are met. This script, responsible to automate ANSYS simulations, can also
be accessed on GitHub at the same repository1. In the context of a stress anisotropy of λ =

2, Figure C.1.2 compares the initiation parameters calculated through finite element (FE)
modelling and the displacement discontinuity method (DDM). As shown in Figure C.1.2,

1https://github.com/mahsasakha/FE_Crack_Anisotropic_Formation.git

https://github.com/mahsasakha/FE_Crack_Anisotropic_Formation.git
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the initiation parameters of two different approaches are in agreement for the case of
λ = 2, where the highest deviations of the initial crack from the isotropy plane are
observed. Therefore, this comparison can confirm the correctness of the kernel matrix
defined in Chapter 3.

Figure C.1.2: Comparing wellbore initiation parameters calculated through FEM and
DDM for various material anisotropy under stress anisotropy λ = 2.
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