
Diss. ETH No. 20593

Improving Tracking Performance by Learning

from Past Data

A dissertation submitted to

ETH ZURICH

for the degree of

Doctor of Sciences

presented by

ANGELA P. SCHOELLIG

Diplom-Ingenieurin (Technische Kybernetik), Universität Stuttgart

MSc in Engineering Science and Mechanics, Georgia Institute of Technology, Atlanta

born July 17, 1983

citizen of Germany

accepted on the recommendation of

Prof. Dr. Raffaello D’Andrea, examiner

Prof. Dr. Andrew Alleyne, co-examiner

2012

Institute for Dynamic Systems and Control

ETH Zurich

Switzerland

c© 2012 Angela P. Schoellig. All rights reserved.

Abstract

The main theme of this thesis is the development of machine learning algorithms for high-

performance trajectory tracking. We consider dynamic systems that are required to precisely

follow predefined trajectories. The goal of this research is to explore how past data (for ex-

ample measurements from previous executions) can be used to improve a system’s tracking

performance.

A typical means of imposing a desired behavior on a dynamic system is feedback control.

In such a setup, the motion of the system is guided by an external reference signal and the

influence of noise and unexpected disturbances is reduced by feeding back the measured system

output. The design of feedback control systems is often based on a mathematical model of the

underlying system. The performance of such control schemes is limited by the accuracy of the

dynamics model and the causality of the control action that is compensating for disturbances

only as they occur.

We address these limitations by proposing a data-based control approach that is able to store

and interpret information from past experiments, and infer the correct control actions for future

performances. This research is motivated by recent computational advances, which provide

enormous possibilities for storing, processing and evaluating large amounts of data. We aim to

exploit these new possibilities with three main contributions:

First, we present an algorithm that exploits data from a repeated operation in order to learn

to precisely follow a predefined trajectory. We adapt the feed-forward reference signal to the

system with the goal of achieving high tracking performance – even under the presence of

model errors and other recurring disturbances. The approach is based on a coarse model of the

system dynamics and uses measurements from past executions to optimize the tracking per-

formance. We combine traditional optimal filtering methods with state-of-the-art optimization

techniques in order to obtain an effective and computationally efficient learning strategy. The

proposed approach falls into the area of iterative learning control. Novel features of our ap-

proach are the direct treatment of input and state constraints when updating the feed-forward

reference, an identification routine that extracts the required system model from a numerical

simulation, and a termination condition that stops an execution early if the deviation from the

nominal trajectory exceeds a given bound. The latter allows for a safe learning that gradually

extends the time horizon of the trajectory. These new features are particularly relevant when

we apply the algorithm to highly maneuverable quadrotor vehicles in the ETH Flying Machine

Arena. We aim to exploit their full dynamic potential and to improve on time-optimized trajec-

tories. The learning scheme has proven to be effective both when directly learning the thrust

and rotational rate inputs sent to the quadrocopter, and when building the learning scheme on

i

Abstract

top of a quadrocopter system that is guided by a trajectory following controller. The numerical

identification routine was used in the latter case to avoid extensive analytical modeling.

For the second project, we consider iterative learning control in a multi-agent framework,

wherein a group of agents simultaneously and repeatedly perform the same task. Assuming sim-

ilarity between the agents, we investigate whether exchanging information between the agents

improves an individual’s learning performance. That is, does an individual agent benefit from

the experience of the other agents? We derive analytical bounds on the performance improve-

ment due to joint learning.

The third project uses learning in a different context. Here, we aim to precisely track pe-

riodic trajectories with a quadrocopter. We develop a learning scheme that determines feed-

forward correction parameters for a large class of periodic motions from a small set of iden-

tification experiments. This research is motivated by our vision of designing and executing

multi-vehicle flight that is coordinated to music.

In addition to these three main results, we studied the dynamic limits of quadrotor vehicles

and developed algorithms for both generating feasible trajectories, and checking the feasibility

of a given trajectory. The first is important for the iterative learning project, where the goal is

to perform and improve on highly agile motions. We must therefore design trajectories that are

dynamically challenging but still feasible. The latter is important for the design of rhythmic

performances, where we wish to check the feasibility of a choreography prior to actual flight.

Aerial robots and, in particular, quadrocopters are a great platform for showcasing the algo-

rithms we have developed to both scientific and non-scientific audiences. Several demonstra-

tions were developed with the goal of visually communicating the key concepts of this work to

a large audience.

ii

Zusammenfassung

Im Mittelpunkt dieser Dissertation steht die Entwicklung von Algorithmen für maschinelles

Lernen. Das Ziel der Algorithmen ist es, hochgenaue Trajektorienfolge zu erreichen. Wir be-

trachten dynamische Systeme, die präzise einer vorgegebenen Trajektorie folgen sollen, und

untersuchen, inwiefern Daten aus vorherigen Experimenten (zum Beispiel Messwerte von frü-

heren Durchführungen eines Experiments) verwendet werden können, um die Folgegenauigkeit

eines Systems zu verbessern.

Eine klassische Methode, um ein gewünschtes Systemverhalten zu erreichen, ist die Re-

gelung mit Hilfe einer Ausgangsrückführung. Dabei wird das dynamische Verhalten eines Sy-

stems durch ein externes Stellsignal gesteuert. Der Einfluss von Rauschen und unerwarteten

Störungen wird durch die Rückführung des Systemausgangs reduziert. Dieser Regelkreis wird

oftmals basierend auf einem mathematischen Modell des zugrunde liegenden Systems entwor-

fen. Die Güte einer solchen Regelstrategie ist beschränkt durch die Genauigkeit des dynami-

schen Modells und durch die Kausalität des Regelvorgangs, der auf Störungen erst reagiert,

sobald sie auftreten.

Wir stellen einen datenbasierten Regelansatz vor, der die genannten Probleme aufgreift

und löst. Informationen von vorhergegangenen Experimenten werden gespeichert und gedeutet.

Aus diesen Daten werden die richtigen Regelstrategien für zukünftige Experimente abgeleitet.

Jüngste technologische Fortschritte, die es ermöglicht haben, große Datenmengen zu speichern,

zu verarbeiten und auszuwerten, machen einen solchen Ansatz möglich. Unser Ziel ist es, diese

neuen technologischen Möglichkeiten auszuschöpfen. In dieser Dissertation machen wir dazu

drei wesentliche Beiträge:

Das erste Ergebnis ist ein Lernalgorithmus, der Messdaten von dem wiederholten Durch-

führen eines Experiments nutzt, um zu lernen präzise einer vorgegebenen Trajektorie zu fol-

gen. Nach jedem Durchgang wird das Steuersignal (das heißt, das externe Stellsignal; auch

Führungsgröße genannt) angepasst, mit dem Ziel hohe Folgegenauigkeit trotz Modellfehlern

und anderen wiederkehrenden Störungen zu erreichen. Der Ansatz basiert auf einem einfa-

chen mathematischen Modell des dynamischen Systems und verwendet Messdaten von früher-

en Durchgängen, um die Folgegenauigkeit zu verbessern. Der Algorithmus verbindet klassi-

sche Methoden der optimalen Filterung mit modernsten Optimierungsverfahren. Das Ergebnis

ist eine effektive und recheneffiziente Lernstrategie. Der entwickelte Lernalgorithmus fällt in

die Kategorie der Iterativ-Lernenden-Regelung (engl.: Iterative Learning Control). Wesentli-

che Neuerungen unseres Ansatzes sind die direkte Berücksichtigung von Eingangs- und Zu-

standsgrößen-Beschränkungen bei der Berechnung des neuen Steuersignals, eine Identifikati-

onsroutine, die das benötigte Systemmodell aus einer numerischen Simulation ableitet, und

iii

Zusammenfassung

eine Abbruchbedingung, die einen Durchgang frühzeitig stoppt, falls die Abweichung von der

nominellen Trajektorie eine gegebene Grenze übersteigt. Letzteres ermöglicht ein gefahrloses

Lernen, bei dem der Zeithorizont der Trajektorie schrittweise verlängert wird. Die Besonder-

heiten des neuen Algorithmus spielen insbesondere für unsere Anwendung eine wichtige Rolle.

Wir evaluieren den Ansatz auf kleinen, wendigen Quadrokoptern in der ETH Flying Machine

Arena. Unser Ziel ist dabei das dynamische Potenzial der Quadrokopter auszunutzen und zeit-

optimierte Trajektorien zu lernen. Das Lernverfahren hat sich als erfolgreich erwiesen, sowohl

wenn die Eingangsgrößen des Quadrokopters (Gesamt-Schub und Drehraten) direkt gelernt

werden, als auch wenn der Lernalgorithmus auf ein Quadrokopter-System angewendet wird,

das von einem Trajektorien-Folgeregler gesteuert wird. Für Letzteres wurde die erwähnte nu-

merische Identifikationsroutine verwendet, um das aufwändige Herleiten eines analytischen

Modells zu umgehen.

Das zweite Projekt beschäftigt sich mit der Iterativ-Lernenden-Regelung für Multiagenten-

Systeme. Genauer gesagt betrachten wir eine Gruppe von Agenten, die gleichzeitig und wie-

derholt die gleiche Aufgabe ausführen. Unter der Annahme, dass eine Ähnlichkeit zwischen

den Agenten besteht, untersuchen wir, ob der Austausch von Information zwischen den Agen-

ten den Lernerfolg eines einzelnen Agenten erhöht. Das heißt: Profitiert ein einzelner Agent

von den Erfahrungen der anderen Agenten? Wir leiten eine analytische Schranke her, die die

Verbesserung des Lernerfolgs durch ein gemeinschaftliches Lernen nach oben beschränkt.

Das dritte Projekt betrachtet Lernen in einem anderen Zusammenhang. Das Ziel ist hier,

dass Quadrokopter periodischen Trajektorien präzise folgen. Wir entwickeln einen Lernalgo-

rithmus, der Steuersignal-Korrekturparameter für eine große Klasse periodischer Bewegungen

mithilfe einer sehr begrenzten Anzahl von Identifikationsexperimenten bestimmt. Motivation

für diese Arbeit ist unsere Vision, Flugdarbietungen für mehrere Quadrokopter abgestimmt zur

Musik zu entwerfen und auszuführen.

Neben diesen drei Hauptresultaten, haben wir insbesondere die dynamischen Grenzen von

Quadrokoptern untersucht und Algorithmen entwickelt, die (für Quadrokopter) ausführbare

Trajektorien generieren und die die Ausführbarkeit einer gegebenen Trajektorie testen. Ersteres

ist wichtig für das iterative Lernen. Hier ist unser Ziel außerordentlich schnelle Bewegungen

zu lernen. Wir müssen daher Trajektorien generieren, die dynamisch anspruchsvoll, aber den-

noch ausführbar sind. Letzteres is wichtig für das Design von rhythmischen Flug-Darbietungen.

Hier ist es entscheidend, die Ausführbarkeit einer Choreographie vor dem eigentlichen Flug zu

testen.

Flugroboter und insbesondere Quadrokopter sind eine großartige Plattform, um die Algo-

rithmen, die wir entwickelt haben, sowohl einem wissenschaftlichen Publikum als auch der

breiten Öffentlichkeit zu präsentieren. Verschiedene Vorführungen wurden entwickelt, mit dem

Ziel visuell die grundlegenden Konzepte dieser Arbeit einem großen Publikum zu vermitteln.

iv

Acknowledgements

My deepest gratitude goes to my advisor, Raffaello D’Andrea. His thinking was inspiring, his

trust encouraging, his strive for excellence challenging, his excitement contagious, his feedback

motivating, and his support invaluable. He created a phenomenal research environment with

outstanding people and truly unique opportunities. Over the past four years I have learned so

much from him.

I would like to extend my gratitude to Andrew Alleyne not only for being my co-examiner

but also for providing strong support beyond my PhD.

My PhD has been an exciting journey, where every day was different, where there were

always more ideas than time, and which was shaped by incredible people. I owe much to

Sebastian Trimpe for being a great friend, colleague and office mate; I enjoyed his honest

and thoughtful comments, his humor, his reliability, and his organizational skills – especially

when working together as teaching assistants. I am thankful for having worked closely with

Sergei Lupashin: his intuitive and straight-forward approach to problems and his unconven-

tional views on things taught me a lot. I thank Philipp Reist for his enthusiasm, the organization

of many team events, and his great help with understanding the ETH system and the Swiss in

general. I learned a great deal by performing experiments in the Flying Machine Arena and

working together with an amazing team of people: Markus Hehn, Mark Mueller, Robin Ritz

and Federico Augugliaro. It has always been a great pleasure to work with them. I would like to

thank Markus Waibel for his advice and his support with disseminating our research results. I

am grateful for inspiring discussions and many unforgettable moments with my lab mates, Ray-

mond Oung, Mohanarajah Gajamohan, Nico Hübel, Max Kriegleder, and past group members,

Geo Robson, Michael Sherback, Guillaume Ducard, Felix Althaus and Frédéric Bourgault.

I am greatly indebted to the students who worked with me and contributed to the re-

sults of this thesis; in particular, I would like to thank Federico Augugliaro, Fabian Mueller,

Javier Alonso-Mora and Clemens Wiltsche who continued their research beyond their thesis or

semester project and co-authored papers with me.

Many thanks also to the technical staff, Igor Thommen, Marc-Andre Corzillius, Hans Ulrich

Honegger, and Matthew Donovan, and the communication and design experts, Hallie Siegel and

Carolina Flores. Their contributions greatly improved the quality and extended the outreach of

my research results. I thank the office team, Katharina Munz, Aleksandra Vukovic, Annina

Fattor, Claudia Wittwer and Brigitte Rohrbach, for making the institute’s administration as

simple as possible for us.

ETH is an exceptional place for doing research. My special thanks go to Profs. Lino

Guzzella, Roland Siegwart, Manfred Morari, John Lygeros and Robert Riener. Their courses

v

Acknowledgements

and the interactions with their teams have been a great extension to my research experience.

I have had the great opportunity to spend four weeks at Lund University during the focus

period “Adaptation and Learning in Autonomous Systems”. I would like to thank Prof. Rantzer

for the organization and financial support. Special thanks go to Leif Andersson from Lund

University who provided the basic LATEX template for this thesis.

I would not be where I am now without the continuous support and trust of my former

advisors and academic colleagues, Prof. Frank Allgöwer, Prof. Magnus Egerstedt, Dr. Peter

Gath, Prof. Laurence J. Jacobs and Prof. Bozenna Pasik-Duncan.

My sincerest gratitude goes to my family: to my parents for supporting me as much as

possible and for encouraging me to go my own way, my brother and sister for always being

there, and my big family clan for inspiring me in many different ways.

And finally, I thank my partner Christian Menkens for his unconditional support. He has

been my rock throughout this amazing, and at times crazy journey.

Zurich, Summer 2012 Angela Schoellig

Financial Support

Grateful acknowledgements go to the Swiss National Science Foundation (SNSF), which

funded this research in part under the grant “High-performance maneuvers and trajectory gen-

eration for quadrotor flying vehicles”, under the equipment grant “Optical motion capture sys-

tem for robot experiments in real world environments”, and through the National Centre of

Competence in Research Robotics.

vi

Contents

Abstract . i

Zusammenfassung . iii

Acknowledgements . v

Preface . 1

1. Introduction . 3

1.1 Goal and Motivation . 3

1.2 Scope of Research Work . 7

2. Contributions . 9

2.1 Part A. Iterative Learning . 9

2.2 Part B. Rhythmic Flight Performances 12

2.3 List of Publications . 15

2.4 List of Videos . 16

2.5 List of Students Advised . 17

3. The Flying Machine Arena . 19

4. Future Directions . 23

4.1 Part A. Iterative Learning . 23

4.2 Part B. Rhythmic Flight Performances 24

References . 27

A. ITERATIVE LEARNING . 29

Paper I. Optimization-Based Iterative Learning for Precise Quadrocopter Trajec-

tory Tracking . 31

1. Introduction . 32

2. The Learning Algorithm . 35

3. Quadrocopter Dynamics and Constraints 47

4. Trajectory Generation for Quadrocopters 50

5. Experimental Setup . 53

6. Results . 55

7. Advantages & Limitations . 65

8. Conclusions . 69

vii

Contents

A. Appendix . 71

Acknowledgements . 72

References . 72

Paper II. Iterative Learning of Feed-Forward Corrections for High-Performance

Tracking . 77

1. Introduction . 78

2. Iterative Learning . 78

3. System Identification . 82

4. Experimental Setup . 83

5. Results . 85

6. Computational Complexity . 86

7. Advantages & Limitations . 87

8. Conclusions . 87

References . 88

Paper III. Limited Benefit of Joint Estimation in Multi-Agent Iterative Learning . 91

1. Introduction . 92

2. Problem Statement . 93

3. Result . 96

4. Numerical Examples . 100

5. Conclusions . 103

A. Appendix . 104

References . 106

Paper IV. Sensitivity of Joint Estimation in Multi-Agent Iterative Learning Control 109

1. Introduction . 110

2. Problem Statement . 111

3. Estimation Problem . 113

4. Sensitivity Analysis . 116

5. Numerical Examples . 124

6. Conclusions . 124

A. Appendix . 125

Acknowledgements . 126

References . 127

B. RHYTHMIC FLIGHT PERFORMANCES 129

Paper V. Synchronizing the Motion of a Quadrocopter to Music 131

1. Introduction . 132

2. System Representation . 133

3. Controller Design . 134

4. Synchronization . 136

5. Results . 138

6. Conclusions . 141

Acknowledgements . 142

References . 142

viii

Paper VI. A Platform for Dance Performances with Multiple Quadrocopters . . . 147

1. Introduction . 148

2. Experimental Setup . 150

3. The Synchronization Problem . 152

4. A Dance Performance . 155

5. Current Status . 158

6. Conclusions . 160

Acknowledgements . 161

References . 161

Paper VII. Feed-Forward Parameter Identification for Precise Periodic Quadro-

copter Motions . 165

1. Introduction . 166

2. Periodic Motions . 167

3. Quadrocopter Dynamics . 168

4. Quadrocopter Control . 169

5. Online Correction . 171

6. Offline Identification . 176

7. Conclusions . 177

References . 178

Paper VIII. Feasibility of Motion Primitives for Choreographed Quadrocopter

Flight . 181

1. Introduction . 182

2. Motion Primitives . 182

3. Quadrocopter Dynamics and Constraints 184

4. Feasibility of Motion Primitives . 187

5. Examples . 189

6. Preliminary Experimental Results . 194

7. Conclusions . 194

References . 195

Curriculum Vitae . 199

ix

Preface

This section provides a brief overview of the thesis structure. The thesis consists of four in-

troductory chapters followed by eight self-contained publications. The introductory chapters

highlight the ideas and concepts that stand behind this thesis. We put the introductory chapters

at the beginning of the thesis to establish a connection between the individual papers and to

summarize their main results.

Chapter 1 sketches the potential of learning-based control and serves as motivation of this

work. It also defines the scope of this research in terms of the type of problems we consider

and the kind of learning approach we take. We focus on feed-forward adaptation schemes for

improving the performance of control systems. Two different projects were conducted as part of

this thesis: iterative learning for precise trajectory tracking (Part A), and rhythmic multi-vehicle

flight performances based on periodic motion primitives (Part B). Chapter 2 describes the key

contribution of both projects and explains the relationship between the individual results. We

also refer to related papers that are not included in this thesis, and to videos illustrating the

experimental results. The algorithms developed in this thesis are demonstrated on small flying

robots, so-called quadrocopters, operated in the ETH Flying Machine Arena (FMA), an indoor

flight test facility. Chapter 3 contains a short description of the experimental setup. In Chapter 4

we reflect on potential future directions of the presented research.

Subsequent to the preliminary chapters, the individual papers are included. They are sorted

by project. The papers are peer-reviewed, published conference and journal contributions.

1

1

Introduction

A computer program is said to learn from experience E with respect to some class

of tasks T and performance measure P, if its performance at tasks in T, as measured

by P, improves with experience E.

– Definition of ‘Machine Learning’ from [1].

This thesis presents machine learning algorithms for high-performance, high-precision trajec-

tory tracking. Driven by recent computational advances for storing, processing and evaluating

large amounts of data, the goal of this research is to improve the tracking performance of dy-

namic systems based on measurements collected during previous experiments.

Specifically, we consider dynamic systems that precisely follow predefined trajectories, and

present a computer program that is capable of controlling one or more of these systems. We

find that experience (in the form of measurements of the systems’ actual motion) obtained

from performing one trajectory may be used to improve this specific trajectory, or to improve

an entire set of trajectories. We also find that the performance measure is usually related to the

deviation of the actual motion from the desired trajectories.

Below we state the research objectives in more detail and define the scope of the work in

terms of the problems we consider, the approach we use, and the results we aim for in this

work.

1.1 Goal and Motivation

To impose a desired behavior on a dynamic system, a feedback-control setup such as the one

shown in Fig. 1.1 is typically implemented. A controller manipulates the system input to obtain

the desired effect on the system output. The actions of the controller are based on the measured

system output and an external reference signal. Feeding back the measured output enables the

control system to correct for noise and unexpected disturbances. The behavior of the closed-

loop system can be influenced by (i) designing an appropriate controller and/or (ii) choosing

a suitable reference signal. The controller design is often based on a mathematical model of

the underlying system dynamics, and the reference signal may be found by an (approximate)

inversion of the closed-loop dynamics model. The performance of such closed-loop systems

is thus limited by the accuracy of the dynamics model and by the causality of the control

action that is compensating for disturbances only as they occur. Unfavorable effects of these

limitations are observed especially in regimes where feedback is not able to react in time and

3

Chapter 1. Introduction

Figure 1.1 Schematics of a typical control system in black. Past experience (depicted in dark

blue) can be incorporated by adapting the controller and/or the reference input as shown by the

green arrows.

where the dynamic behavior is difficult to identify or understand.

To achieve high performance in such cases, we propose a data-based control approach that

is able to store and interpret information from past executions, and to infer the correct actions

or control laws for future experiments. Information from past experiments can be used to (i)

adapt the feedback controller of the system, or to (ii) change the feed-forward reference signal,

see Fig. 1.1. In (i), the system learns rules on how to ‘react’ better, while in (ii), the system

learns how to ‘act’ in the first place. These two approaches may also be combined.

In this thesis, we focus on case (ii) and develop algorithms that adapt the feed-forward

reference signal based on past data. Such an approach outperforms pure feedback control,

since it is not limited to a causal action. Instead, recurring disturbances are anticipated and

proactively compensated for before they occur. Recurring disturbances are often caused by

modeling errors or nonidealities in the system dynamics. That is, such an adaptation scheme is

particularly beneficial when the nominal model differs from the actual dynamic behavior of the

system.

Looking at the problem from a different perspective, the goal is to develop algorithms that

enable autonomous systems (for example, robots) to get better at a given task through practice.

A useful analogy for understanding this approach is an orchestral performance. Musicians

would never go on stage without first practicing the piece of music that is to be performed.

Over many iterations, they learn the selected piece of music, repeating difficult passages to

refine the movement of their fingers or tongues; they learn how to perform. If a priori practice

benefits musicians, would it not stand to reason that practice might benefit robots as well?

In this thesis, two different research projects were carried out, each demonstrating the bene-

fits of a priori practice: iterative learning for precise trajectory tracking (Part A), and rhythmic

flight performances based on periodic motion primitives (Part B). Both research projects led

to theoretic and experimental contributions. The resulting algorithms were demonstrated on

quadrotor vehicles operated in the Flying Machine Arena (FMA), an indoor flight test facility

(see Sec. 3 for more information). Below we briefly introduce both projects and highlight the

benefits of a feed-forward learning scheme.

4

1.1 Goal and Motivation

Figure 1.2 General iterative learning framework.

Part A. Iterative Learning

In this project, we focus on learning a specific trajectory from iterative experiments. The track-

ing performance is improved from trial to trial by exploiting the experience gained from pre-

vious repetitions. As illustrated in Fig. 1.2, the information of past executions is used to iden-

tify recurring disturbances. To compensate for the identified disturbances, we adapt the feed-

forward reference input after each trial. The proposed learning scheme is based on a rough

dynamics model of the system and, thus, applies to any system for which a nominal model is

available.

In the context of the definition provided at the beginning of this chapter, the class of tasks

T we improve on contains only one particular trajectory. We gain experience in the form of

measurements taken while executing this specific motion. Different (nonlinear) performance

objectives influencing the overall learning behavior can be specified. The result of the learning

is an optimized reference input, which is a discrete-time signal of finite length.

We applied this learning algorithm to quadrotor vehicles with the goal of performing ag-

gressive, (near) time-optimal maneuvers. Quadrotor vehicles offer exceptional agility in the

translational and rotational degrees of freedom. When operating these vehicles at high speeds,

complex dynamic effects such as aerodynamics, battery behavior, and motor dynamics have

a significant impact on the vehicle behavior. These effects are difficult to model but can be

compensated for through iterative execution. Since the correcting action is executed only after

a complete run of the trajectory, the approach is not restricted by slow feedback rates or system

latencies. Such a feed-forward adaptation scheme is thus particularly suited for fast motions.

Motivated by the fleet of quadrocopters in the FMA, we began to investigate iterative learn-

ing in a multi-agent framework.While most of the previous work in multi-agent iterative learn-

ing is on cooperative or coordinated learning schemes [2–5], we study a novel question: Is

the learning curve of an individual agent steeper when taking into account the experience of

the other agents? Is there a benefit to exchanging information between the agents? We focus

on the potential for individual agents to improve their performance when conducting a task

alongside a group of similar agents conducting the same task. We derive theoretic results that

show that information exchange between agents engaged in learning the same task provides

only very limited benefit for an individual’s learning performance. In this analysis, we as-

5

Chapter 1. Introduction

Figure 1.3 High-level control architecture used for implementing rhythmic flight perfor-

mances. Key components are the offline trajectory planning and the online trajectory adap-

tation. (Position, velocity and acceleration refer to the translational coordinates and heading

corresponds to the vehicle yaw.)

sumed that agents are similar but not identical. This assumption was strongly motivated by our

quadrocopters, which differ slightly in their parameters.

Part B. Rhythmic Flight Performances

The second project is driven by the vision of creating a novel visual musical experience: a

dance performance featuring multiple flying vehicles that move in synchrony with the music,

and perform flips, eights, circles and other aggressive maneuvers timed with the beat of the

music. Connecting vehicle motion to music is key to a rhythmic flight performance, as it is this

link that transforms movement into dance. Periodic motion primitives are the basic building

blocks of such choreographies, and their synchronization to the music beat is essential for a

convincing dance performance. We develop a control strategy that builds upon the same basic

trajectory-tracking controller for periodic motions at all frequencies, but adapts the parameters

of the actual input to the controller in order to guarantee precise tracking and synchronization,

see Fig. 1.3 for an illustration. These parameters are identified prior to the flight performance to

effectively reduce transient time and tracking errors. One experiment per translational direction

and music frequency is enough to identify the feed-forward correction parameters valid for all

periodic motions (with varying amplitudes) in this direction at this given frequency. Parameters

are–for each translational direction–an amplitude amplification factor and a phase shift. That

is, given the music’s frequency, we perform and learn from one periodic motion at the given

frequency for all other periodic movements at this frequency.

In the context of the definition provided above, experience is collected by performing one

(arbitrary) three-dimensional periodic motion at frequencies chosen from a set of relevant mu-

sic frequencies. The class of tasks we improve on is the class of all periodic motion primitives at

these frequencies, where the performance objective is defined in terms of phase lag and ampli-

tude amplification between quadrocopter motion and the desired nominal periodic motion. The

result of the learning is an optimized set of motion parameters, which shape the feed-forward

input sent to the vehicle controller.

When recalling the objective and the inherent requirements of the project, the benefits of

adapting the feed-forward reference signal (instead of the vehicle controller) become obvious.

During a performance, we expect the quadrocopter to accurately track the selected sequence

6

1.2 Scope of Research Work

of periodic motions, without incurring large transients at the beginning of each motion. When

applying pure feedback control, precise temporal and spatial tracking (for motions of varying

angular frequencies) are only achievable when changing the controller depending on the mo-

tion to be performed. For choreographies in which motions are changed in quick succession,

designing separate controllers for different motions is impractical. Switching between different

controllers may even cause instability. Moreover, the causality of the control action, imperfect

initial conditions and model errors effect an initial transient phase, in which the tracking er-

rors are typically substantial. A feed-forward scheme allows for smooth transitions between

periodic motions, reduces transients, and guarantees stability.

1.2 Scope of Research Work

This section describes the main focus and some key aspects of the proposed approach.

Model-based learning Fundamental to the learning approach taken herein is to incorporate

prior knowledge about the system into the learning scheme. The algorithms are based on

a dynamics model that captures the key behavior of the underlying system. The model

may be derived from first principles or may be obtained from a numerical simulation

of the system behavior. We use the model to tell us how to correct for errors, while

the collected data allows us to estimate the unknown effects resulting from unmodeled

dynamics and disturbances. Note that the model is used for both interpreting the col-

lected data and for updating the feed-forward reference signal. By leveraging the a priori

knowledge about the system’s dominating dynamics, we are able to increase the effi-

ciency of the learning and the speed of convergence. In Part A, we rely on a nominal

model that describes the mapping from input deviations to output deviations. In Part B,

the algorithm builds upon the assumption that the quadrocopter’s closed-loop dynamics

can be approximated by three directionally decoupled linear systems.

Feed-forward adaptation We incorporate information gained from past experiments by

adapting the feed-forward reference signal of the system. As highlighted in Sec. 1.1, this

approach has several advantages over pure feedback control for the problems considered

in this thesis.

Task-based learning objective The developed learning schemes are aimed at improving the

tracking performance of selected tasks. Generalizing this knowledge and making it ap-

plicable to new tasks is not considered.

Experience through a repeated operation In Part A, a selected task is performed repeatedly

and thus recurring disturbances are iteratively identified. In Part B, we perform a selected

periodic motion over a longer time horizon to obtain the steady-state parameter correction

values.

Motion feasibility In this work, the intrinsic motivation for applying learning schemes is the

desire to perform highly agile motions that exploit the full dynamic potential of a given

system. In order to design trajectories that are dynamically challenging but still feasi-

ble, we study the dynamic limits of the systems under consideration (in particular, of

7

Chapter 1. Introduction

quadrotor vehicles) and develop algorithms for both generating feasible trajectories, and

checking the feasibility of given trajectories.

Computationally tractable algorithms We aim for learning algorithms that run on normal

desktop PCs and that require not more than a few minutes to compute a learning update.

Nevertheless, we leverage computational advances and, for example, build upon state-of-

the-art optimization techniques.

Experimental validation As part of this research project, algorithms are tested on small aerial

vehicles, commonly referred to as quadrocopters, see Sec. 3. These vehicles not only

serve as demonstrator for the developed control and learning algorithms but also provide

insight into the characteristics of these algorithms and, more important, provide ideas for

further investigations and improvements.

Outreach Aerial robots and, in particular, quadrocopters are a great platform for showcasing

the algorithms that we have developed to both scientific and non-scientific audiences.

They are a means to ‘visually’ communicate key concepts of controls and learning to

a larger audience. The FMA hosts hundreds of visitors a year, and the work has been

featured at two large exhibitions and in numerous science TV shows. It has also been ex-

tensively covered in radio, print, and online media (e.g., the Youtube channel of www.

FlyingMachineArena.org has received more than 4’500’000 views). These public

events and appearances are a great motivation for developing demonstrations that op-

erate reliably and are comprehensible to the general public. A list of demonstrations that

were created in the context of this work is found in Sec. 2.4.

Theoretical analysis Experimental validation is complemented by theoretical analysis to de-

rive analytical performance bounds of systems and algorithms. We obtained, for exam-

ple, an upper bound for an individual’s performance improvement when sharing infor-

mation with peers during the learning process. This bound told us that there is not a

significant benefit of having multiple agents learn the same task together.

8

www.FlyingMachineArena.org
www.FlyingMachineArena.org

2

Contributions

This chapter briefly summarizes the key contributions of the papers. We explain the relationship

between the individual results and refer to related video contributions. It should be emphasized

that the results were obtained in close collaboration with colleagues and master students, as

indicated below. At the end of this chapter, we provide a complete list of peer-reviewed publi-

cations and video contributions that resulted from the author’s PhD studies.

2.1 Part A. Iterative Learning

The papers listed below describe algorithms that fall in the area of iterative learning control

(ILC) [6]. The objective is to improve tracking performance through a repeated operation. We

consider single- and multi-vehicle learning problems, in theory and practice.

Paper I

[P1] Schoellig, A. P., F. L. Mueller, and R. D’Andrea (2012): “Optimization-based itera-

tive learning for precise quadrocopter trajectory tracking.” Autonomous Robots, 33:1,

pp. 103–127.

Context We developed a new ILC algorithm that solves–at its core–a constrained convex op-

timization problem [7]. The result of the optimization is an updated reference signal that is

applied during the next trial. This paper presents the details of the newly developed ILC al-

gorithm. It also contains the first experimental results of applying this algorithm to quadrotor

vehicles. In these first experiments, we do not close the loop on desired vehicle position and

attitude but instead adapt the inputs to the quadrocopter; specifically, three rotational rate com-

mands and the net force of the four rotors. In view of Fig. 2.1, the learning is directly applied

to the thrust and body rate commands, leaving out the trajectory following controller.

Contribution The contribution of this paper is an algorithm that structures the trajectory

learning problem around a disturbance estimation and input update step. We use a Kalman

filter for estimating the additive disturbance along the trajectory. This allows for a direct in-

corporation of process and measurement noise characteristics. By formulating the input update

step as a convex optimization problem, input and state constraints can be explicitly taken into

account–an important aspect when aiming to learn aggressive motions. Both steps rely on a

nominal model of the underlying system. We obtain an effective and computationally efficient

9

Chapter 2. Contributions

learning strategy that makes use of state-of-the-art optimization techniques and software. A

novel feature is the termination condition, which stops an execution early if the deviation from

the nominal trajectory exceeds a given bound. This allows for a safe learning that gradually

extends the time horizon of the trajectory.

We apply this algorithm to quadrotor vehicles and learn (near) time-optimal maneuvers in

the vertical plane. As a preliminary step, an algorithm for generating feasible flight trajectories

was developed. The theoretic approach, as well as the application of the algorithm to real

quadrotor vehicles, makes this work an original contribution to the field.

Related Publications and Videos The core algorithm was previously published in:

[R1] Schoellig, A. P. and R. D’Andrea (2009): “Optimization-based iterative learning control

for trajectory tracking.” In Proceedings of the European Control Conference (ECC),

pp. 1505–1510.

In this paper, the algorithm was applied to the benchmark problem of swinging up a pendulum

using open-loop control only.

Videos that demonstrate the learning of both the pendulum up-swing and the quadrocopter

maneuvers can be found in:

[V1] Schoellig, A. P., F. L. Mueller, and R. D’Andrea (2009): “Swing it up! Iterative learning

control on a cart-pendulum system.” At www.tiny.cc/LearnSwingUp.

[V2] Schoellig, A. P., F. L. Mueller, and R. D’Andrea (2011): “Learning to follow a trajectory

– quadrocopters improve over time.” At www.tiny.cc/QuadroLearnsTrajectory.

Paper II

[P2] Mueller, F. L., A. P. Schoellig, and R. D’Andrea (2012): “Iterative learning of feed-

forward corrections for high-performance tracking.” In Proceedings of the IEEE/RSJ

International Conference on Intelligent Robots and Systems (IROS), pp. 3276–3281.

Context This paper represents a continuation of the work in Paper I. The difference is that

we apply the learning algorithm to a quadrotor vehicle that is guided by a trajectory-following

controller; that is, we learn reference positions, see Fig. 2.1. The behavior of the closed-

loop quadrocopter system is more repeatable than the setup in Paper I. The real-time feedback

component reduces the influence of non-repetitive noise while the ILC adjusts to the repetitive

disturbance. Due to the higher repeatability, we obtain tracking errors (after learning) that lie

in the range of a few centimeters.

Contribution The novelty of this work is a system identification routine that uses a numerical

simulation of the system dynamics to extract the required model information. Using the iden-

tification routine allows the learning algorithm to be applied to any dynamic system for which

a dynamics simulation is available (including systems with underlying feedback loops). The

result is a conceptually simple learning routine.

The experimental evaluation of the identification routine combined with the learning algo-

rithm shows fast convergence, typically in less than 10 iterations. The time for identifying the

10

www.tiny.cc/LearnSwingUp
www.tiny.cc/QuadroLearnsTrajectory

2.1 Part A. Iterative Learning

Figure 2.1 The iterative learning scheme is applied to a quadrocopter that is controlled by a

trajectory-following controller. Setup as considered in Paper II.

model via the numerical simulation is in the range of minutes and depends on the length of the

trajectory.

Related Publications and Videos The capabilities of the learning algorithm combined with

the trajectory generation are demonstrated in the following video:

[V3] Schoellig, A. P., F. L. Mueller, and R. D’Andrea (2012): “Quadrocopter Slalom Learn-

ing.” At www.tiny.cc/SlalomLearning.

Slalom poles are arbitrarily placed in the space and a time-optimized trajectory around the

sticks is calculated. The quadrocopter executes its learning iterations above the poles. Once

the vehicle is guaranteed to pass between the slalom poles, the height of the quadrocopter

is lowered and the slalom is performed. In the video, we also show the slalom performance

without learning.

Paper III

[P3] Schoellig, A. P., J. Alonso-Mora, and R. D’Andrea (2012): “Limited benefit of joint

estimation in multi-agent iterative learning.” Asian Journal of Control, 14:3, pp. 613–

623.

Context Motivated by the fleet of quadrocopters in our lab, we began to study iterative learn-

ing in a multi-agent framework. We were particularly interested in improving the learning

performance of an individual agent when learning a task together with a group of other agents.

One question that arose was: does an individual agent benefit from the experience of the other

agents when all agents learn the same task simultaneously? Driven by first experimental results,

we derived analytical bounds on the improvement due to joint learning.

Contribution Novel to this paper is the type of question we ask, and consequently also the

answers we get. The theoretical results derived in this paper are again based on the idea of

dividing the learning into an estimation and update step. Thus the question becomes: to what

11

www.tiny.cc/SlalomLearning

Chapter 2. Contributions

degree can the disturbance estimate of an individual agent be improved by taking into account

the measurements of the other agents? We show that in the ideal case of identical agents and

no process noise, instead of one agent performing a task N times, N agents performing the task

once results in the same accuracy for the disturbance estimate. However, in a realistic scenario,

where agents are similar but not identical and process noise is present, the benefits are minor.

Related Publications and Videos A first, condensed version of the results was published in:

[R2] Schoellig, A. P., J. Alonso-Mora, and R. D’Andrea (2010): “Independent vs. joint esti-

mation in multi-agent iterative learning control.” In Proceedings of the IEEE Conference

on Decision and Control (CDC), pp. 6949–6954.

Paper IV

[P4] Schoellig, A. P. and R. D’Andrea (2012): ‘Sensitivity of joint estimation in multi-

agent iterative learning control.” In Proceedings of the IFAC (International Federation

of Automatic Control) World Congress, pp. 1204–1212.

Context We continued the work of Paper III, and investigated a more realistic scenario, where

the degree of similarity between the agents is not precisely known.

Contribution The theoretical derivations in this paper underline the fact that the proposed

joint learning approach is not robust to nonidealities in the system setup. If, for example, the

similarity of agents is overestimated, joint learning performs worse than individual learning.

2.2 Part B. Rhythmic Flight Performances

The papers of this part are motivated by the objective of designing and executing multi-vehicle

flight that is coordinated to music. The papers each address different aspects of the problem:

motion-music synchronization, periodic motion primitives and their feasibility, and overall sys-

tem setup.

Paper V

[P5] Schoellig, A. P., F. Augugliaro, and R. D’Andrea (2010): “Synchronizing the motion of a

quadrocopter to music.” In Proceedings of the IEEE International Conference on Robotics

and Automation (ICRA), pp. 3355–3360.

Context The first step towards a rhythmic quadrocopter performance was to investigate the

feasibility of synchronizing the motion of a quadrocopter to music.

Contribution The result of the paper is a proof-of-concept, in which we demonstrate that it is

possible to precisely synchronize a periodic side-to-side motion of a quadrocopter to a music

beat using concepts from phase-locked loops. When observing that, without additional syn-

chronization and adaptation schemes, the quadrocopter had a constant time shift and amplitude

amplification, the idea was born to identify these parameters prior to flight performance. This

paper was a very first step towards dancing aerial robots.

12

2.2 Part B. Rhythmic Flight Performances

Related Publications and Videos The following videos demonstrate the side-to-side motion

in action. The music is pre-processed and the desired swing motion is planned based on the

beat times obtained.

[V4] Schoellig, A. P., F. Augugliaro, and R. D’Andrea (2009): “Synchronizing motion with

music – a dancing quadrocopter.” At www.tiny.cc/FirstDance.

[V5] Schoellig, A. P., F. Augugliaro, and R. D’Andrea (2009): “Synchronizing the motion of

a quadrocopter to music – ICRA 2010.” At www.tiny.cc/DanceICRA2010.

Paper VI

[P6] Schoellig, A. P., F. Augugliaro, and R. D’Andrea (2010): “A platform for dance

performances with multiple quadrocopters.” In Proceedings of the IEEE/RSJ International

Conference on Intelligent Robots and Systems (IROS) – Workshop on Robots and

Musical Expressions, pp. 1–8.

Context Based on the results of Paper V, we began to think about the important building

blocks that would need to be developed for a rhythmic multi-vehicle performance. At the

workshop on robots and musical expression, we presented our idea of a rhythmic aerial dance

to a community of roboticists who mainly work with humanoid robots or on automatic music

feature extraction.

Contribution Our contribution to this workshop was the description of a platform for multi-

vehicle quadrocopter dancing. The paper states the results to-date, and highlights prospective

features of the platform, related challenges and future steps.

Related Publications and Videos A comprehensive summary of the current capabilities of

the platform and of its user interface is given in:

[R3] Augugliaro, F., A.P. Schoellig, and R. D’Andrea (2013): “Dance of the Flying Machines.”

IEEE Robotics and Automation Magazine, to appear.

The first video below shows the swing motion performed by three vehicles at a time. as

well as some of our software tools used for development. The latter videos link to our first two

full-song-long multi-vehicle dance performances. The swing motion is a recurring element.

Other motions are manually implemented.

[V6] Schoellig, A. P., F. Augugliaro, and R. D’Andrea (2010): “Towards musical performances

with multiple quadrocopters – IROS 2010.” At www.tiny.cc/DanceIROS2010.

[V7] Schoellig, A. P., F. Augugliaro, S. Lupashin, and R. D’Andrea (2010): “Dance together!

(Pirates of the Caribbean)” At www.tiny.cc/Dance2gether.

[V8] Schoellig, A. P., F. Augugliaro, and R. D’Andrea (2010): “Dance with three (Rise Up).”

At www.tiny.cc/DanceWith3.

13

www.tiny.cc/FirstDance
www.tiny.cc/DanceICRA2010
www.tiny.cc/DanceIROS2010
www.tiny.cc/Dance2gether
www.tiny.cc/DanceWith3

Chapter 2. Contributions

Paper VII

[P7] Schoellig, A. P., C. Wiltsche, and R. D’Andrea (2012): “Feed-forward parameter

identification for precise periodic quadrocopter motions.” In Proceedings of the American

Control Conference (ACC), pp. 4313–4318.

Context This paper generalizes the results of Paper V. We consider three-dimensional pe-

riodic motions and use learning (prior to the actual performance) to achieve high spatial and

temporal tracking performance.

Contribution The main contribution of this paper is an identification scheme that tunes pa-

rameters for a large class of periodic motions, and requires only a small number of identification

experiments prior to flight. This reduced identification is based on analysis and experiments

showing that the quadrocopters’ closed-loop dynamics can be approximated by three direction-

ally decoupled linear systems. Experiments were performed to validate the reduced identifica-

tion.

Related Publications and Videos This video shows a dance performance of five vehicles,

including various periodic motion primitives.

[V9] Augugliaro, F., R. D’Andrea, A. P. Schoellig, and S. Lupashin (2011): “Dance of the

quadrocopters (Armageddon).” At www.tiny.cc/Armageddon.

Paper VIII

[P8] Schoellig, A. P., M. Hehn, S. Lupashin, and R. D’Andrea (2011): “Feasibility of motion

primitives for choreographed quadrocopter flight.” In Proceedings of the American

Control Conference (ACC), pp. 3843–3849.

Context Like humans, whose range of motion and speed of movement is limited, not all

motions are feasible for a quadrocopter. This is obvious when considering the horizontal side-

to-side motion (see Paper V); a combination of large motion amplitude and large frequency

may exceed the capabilities of a quadrocopter. Aiming for an intuitive choreographic design

process, we looked for a means of checking the feasibility prior to flight.

Contribution The result of this paper is a validation tool that determines the feasibility of tra-

jectories based on first principles models, and that ensures that desired trajectories respect both

vehicle dynamics and motor thrust limits. The predicted feasibility constraints are compared

against experimental results from quadrocopters in the FMA.

Related Publications and Videos The feasibility results of Paper VIII were adapted in the

following paper on collision-free trajectory generation in order to check the feasibility of the

trajectories obtained from the sequential convex programming routine:

[R4] Augugliaro, F., A. P. Schoellig, and R. D’Andrea (2012): “Generation of collision-free

trajectories for a quadrocopter fleet: A sequential convex programming approach.” In

Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems

(IROS), pp. 1917–1922.

14

www.tiny.cc/Armageddon

2.3 List of Publications

2.3 List of Publications

Below, we provide a concise list of publications that are featured in this thesis, as well as a list

of the author’s related papers.

Publications included in this thesis

[P1] Schoellig, A. P., F. L. Mueller, and R. D’Andrea (2012): “Optimization-based itera-

tive learning for precise quadrocopter trajectory tracking.” Autonomous Robots, 33:1,

pp. 103–127.

[P2] Mueller, F. L., A. P. Schoellig, and R. D’Andrea (2012): “Iterative learning of feed-

forward corrections for high-performance tracking.” In Proceedings of the IEEE/RSJ

International Conference on Intelligent Robots and Systems (IROS), pp. 3276–3281.

[P3] Schoellig, A. P., J. Alonso-Mora, and R. D’Andrea (2012): “Limited benefit of joint

estimation in multi-agent iterative learning.” Asian Journal of Control, 14:3, pp. 613–

623.

[P4] Schoellig, A. P. and R. D’Andrea (2012): ‘Sensitivity of joint estimation in multi-

agent iterative learning control.” In Proceedings of the IFAC (International Federation

of Automatic Control) World Congress, pp. 1204–1212.

[P5] Schoellig, A. P., F. Augugliaro, and R. D’Andrea (2009): “Synchronizing the motion of a

quadrocopter to music.” In Proceedings of the IEEE International Conference on Robotics

and Automation (ICRA), pp. 3355–3360.

[P6] Schoellig, A. P., F. Augugliaro, and R. D’Andrea (2010): “A platform for dance

performances with multiple quadrocopters.” In Proceedings of the IEEE/RSJ International

Conference on Intelligent Robots and Systems (IROS)–Workshop on Robots and Musical

Expressions, pp. 1–8.

[P7] Schoellig, A. P., C. Wiltsche, and R. D’Andrea (2012): “Feed-forward parameter

identification for precise periodic quadrocopter motions.” In Proceedings of the American

Control Conference (ACC), pp. 3843–3849.

[P8] Schoellig, A. P., M. Hehn, S. Lupashin, and R. D’Andrea (2011): “Feasibility of motion

primitives for choreographed quadrocopter flight.” In Proceedings of the American

Control Conference (ACC), pp. 3843–3849.

Related publications

[R1] Schoellig, A. P. and R. D’Andrea (2009): “Optimization-based iterative learning control

for trajectory tracking.” In Proceedings of the European Control Conference (ECC),

pp. 1505–1510.

[R2] Schoellig, A. P., J. Alonso-Mora, and R. D’Andrea (2010): “Independent vs. joint esti-

mation in multi-agent iterative learning control.” In Proceedings of the IEEE Conference

on Decision and Control (CDC), pp. 6949–6954.

[R3] Augugliaro, F., A.P. Schoellig, and R. D’Andrea (2013): “Dance of the Flying Machines.”

IEEE Robotics and Automation Magazine, to appear.

15

Chapter 2. Contributions

[R4] Augugliaro, F., A. P. Schoellig, and R. D’Andrea (2012): “Generation of collision-free

trajectories for a quadrocopter fleet: A sequential convex programming approach.” In

Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems

(IROS), pp. 1917–1922.

[R5] Lupashin, S., A. P. Schoellig, M. Sherback, and R. D’Andrea (2010): “A simple

learning strategy for high-speed quadrocopter multi-flips.” In Proceedings of the IEEE

International Conference on Robotics and Automation (ICRA), pp. 1642–1648.

[R6] Lupashin, S., A. P. Schoellig, M. Hehn, and R. D’Andrea (2010): “The Flying Machine

Arena as of 2010.” In Proceedings of the IEEE International Conference on Robotics and

Automation (ICRA)–Video Submission, pp. 2970–2971.

2.4 List of Videos

Several videos of this work were published online. Below is a complete list of video contribu-

tions.

[V1] Schoellig, A. P., F. L. Mueller, and R. D’Andrea (2009): “Swing it up! Iterative learning

control on a cart-pendulum system.” At www.tiny.cc/LearnSwingUp.

[V2] Schoellig, A. P., F. L. Mueller, and R. D’Andrea (2011): “Learning to follow a trajectory

– quadrocopters improve over time.” At www.tiny.cc/QuadroLearnsTrajectory.

[V3] Schoellig, A. P., F. L. Mueller, and R. D’Andrea (2012): “Quadrocopter Slalom

Learning.” At www.tiny.cc/SlalomLearning.

[V4] Schoellig, A. P., F. Augugliaro, and R. D’Andrea (2009): “Synchronizing motion with

music – a dancing quadrocopter.” At www.tiny.cc/FirstDance.

[V5] Schoellig, A. P., F. Augugliaro, and R. D’Andrea (2009): “Synchronizing the motion of

a quadrocopter to music – ICRA 2010.” At www.tiny.cc/DanceICRA2010.

[V6] Schoellig, A. P., F. Augugliaro, and R. D’Andrea (2010): “Towards musical perfor-

mances with multiple quadrocopters – IROS 2010.” At www.tiny.cc/DanceIROS2010.

[V7] Schoellig, A. P., F. Augugliaro, S. Lupashin, and R. D’Andrea (2010): “Dance together!

(Pirates of the Caribbean)” At www.tiny.cc/Dance2gether.

[V8] Schoellig, A. P., F. Augugliaro, and R. D’Andrea (2010): “Dance with three (Rise Up).”

At www.tiny.cc/DanceWith3.

[V9] Augugliaro, F., R. D’Andrea, A. P. Schoellig, and S. Lupashin (2011): “Dance of the

quadrocopters (Armageddon).” At www.tiny.cc/Armageddon.

[V10] Augugliaro, F., A. P. Schoellig, and R. D’Andrea (2011): “Fast Transi-

tions of a Quadrocopter Fleet Using Convex Optimization.” At www.tiny.cc/

QuadroFleetTransition.

[V11] Lupashin, S., A. P. Schoellig, M. Sherback, and R. D’Andrea (2009): “FMA – Triple

Adaptive Flips – ICRA2010 submission.” At www.tiny.cc/TripleFlip.

16

www.tiny.cc/LearnSwingUp
www.tiny.cc/QuadroLearnsTrajectory
www.tiny.cc/SlalomLearning
www.tiny.cc/FirstDance
www.tiny.cc/DanceICRA2010
www.tiny.cc/DanceIROS2010
www.tiny.cc/Dance2gether
www.tiny.cc/DanceWith3
www.tiny.cc/Armageddon
www.tiny.cc/QuadroFleetTransition
www.tiny.cc/QuadroFleetTransition
www.tiny.cc/TripleFlip

2.5 List of Students Advised

[V12] Schoellig, A. P. and S. Lupashin (2009): “ETH FMA Quadrotors @ Nacht der

Forschung, Zurich, Oct 25 2009.” At www.tiny.cc/FMANDF2009.

[V13] Lupashin, S., M. Hehn, A. P. Schoellig, and R. D’Andrea (2010): “Echo in Concert (A

Happy Quadrotor New Year!).” At www.tiny.cc/FMAChristmas2010.

[V14] Lupashin, S., A. P. Schoellig, M. Hehn, and R. D’Andrea (2011): “The Flying Machine

Arena as of 2010 (Final Version).” At www.tiny.cc/FMA2010.

[V15] Lupashin, S., C. Fischer, A. P. Schoellig, and M. Waibel (2011): “Juliet’s Christmas

Tree (Quadrotor New Year 2!).” At www.tiny.cc/FMAChristmas2011.

2.5 List of Students Advised

Several students were supervised as part of the author’s doctoral studies. Below is a complete

list of student projects, sorted by the type of project performed.

MSc Thesis

The MSc Thesis corresponds to a 6 month, full-time research project.

[M1] Fabian L. Mueller (Spring 2011): “Implementation and evaluation of iterative learning

algorithms for precise quadrocopter trajectory tracking.”

[M2] Federico Augugliaro (Spring 2011): “Dancing quadrocopters: trajectory generation,

feasibility, and user interface.”

[M3] Philippe Goffin (Spring 2009): “Can we do better than humans do? Learning aerobatic

maneuvers from observation.”

MSc Semester Project

The MSc Semester Project describes a semester-long research project, equivalent to 6 weeks

full-time work.

[S1] Clemens Wiltsche (Spring 2011): “Precise synchronized periodic quadrocopter motion in

three dimensions based on feed-forward parameter identification.”

[S2] Raphael Wüest (Fall 2010): “New synchronized quadrocopter motions: bounce motions

in 2D.”

[S3] Federico Augugliaro (Spring 2010): “A platform for dance performances with multiple

quadrocopters: graphical user interface and demonstration.”

[S4] Javier Alonso-Mora (Spring 2009): “Extending iterative learning control to multi-agent

systems.”

[S5] Sonja Stüdli, (Spring 2009): “Fly! Iterative learning control for quadrocopters.”

17

www.tiny.cc/FMANDF2009
www.tiny.cc/FMAChristmas2010
www.tiny.cc/FMA2010
www.tiny.cc/FMAChristmas2011

Chapter 2. Contributions

BSc Thesis

The BSc Thesis corresponds to a 3 months, full-time research project.

[B1] Raphael Schottenhaml (Spring 2011): “Extensions to the rhythmic side-to-side motion.”

[B2] Benjamin Troxler (Spring 2009): “Generation of acrobatic trajectories for quadro-

copters.”

[B3] Fabian L. Mueller (Spring 2009): “An automated testing platform for learning algo-

rithms.”

[B4] Federico Augugliaro (Spring 2009): “Synchronizing motion and music beat–a dancing

quadrocopter.”

BSc Studies on Mechatronics

The BSc Studies on Mechatronics is a semester-long literature review, equivalent to 4 weeks

full-time work.

[L1] Timon Heinis (Spring 2011): “Exploring software tools for music analysis.”

[L2] Robert Stettler (Spring 2010): “Interaction and information sharing between multiple

systems.”

[L3] Benjamin Troxler (Spring 2009): “A quadrocopter learns acrobatic maneuvers – trajec-

tory generation and control methods.”

[L4] Fabian L. Mueller (Spring 2009): “Swing-up of a pendulum: a benchmark problem.”

[L5] Federico Augugliaro (Spring 2009): “Synchronizing motion and music beat.”

18

3

The Flying Machine Arena

The Flying Machine Arena (FMA) is an experimental platform used primarily for research

in aerial robotics and autonomous control. Physically, it features a 10 x 10 x 10 meter space

protected by nets and padding, with motion capture cameras for vehicle state observation, see

Fig. 3.1. In the following sections, we describe the system architecture, the type of vehicles we

use, and the vehicle control in more detail.

Many people were instrumental in creating the infrastructure for the FMA. In particular,

Sergei Lupashin, Markus Hehn, Michael Sherback and Guillaume Ducard made major contri-

butions. Felix Althaus, Christoph Wegmüller, Lorenz Meier, Thomas Kägi and Flavio Fontana

provided further useful features.

System Architecture

The overall organization of the FMA is similar to the MIT and GRASP testbeds [8,9]. Fig. 3.2

provides an overview on the overall architecture. The space is equipped with an 8-camera

motion capture system that, for any properly marked vehicle, provides millimeter-accurate po-

sition information and degree-precise attitude data at 200 Hz with a latency of about 10 ms. The

localization data is sent to a PC, which runs estimation and control algorithms–including the

learning and identification algorithms proposed in this thesis. These in turn deliver commands

Figure 3.1 Conceptual drawing (left) and recent photo (right) of the ETH Flying Machine

Arena (FMA). The object in the corner of the FMA photo is the 1.2m-wide ETH Balancing

Cube. Videos from the FMA can be found at www.FlyingMachineArena.org.

19

www.FlyingMachineArena.org

Chapter 3. The Flying Machine Arena

multicast UDP

2.4GHz
radios

2.4GHz
Wi-Fi

estimator

controller

loggerGUI

Motion Capture

bridge

quadrocopters

bridge

bridge

Figure 3.2 System architecture of the FMA testbed. Picture taken from [R6].

to the quadrocopters with an approximated latency of 20 ms. Communication with vehicles is

done via wireless channels as described below (see section ‘Vehicles’). The overall system time

delay, from sending a vehicle command to detecting the corresponding effects in the vehicle’s

pose data, varies between 10 ms and 40 ms with a mean value of 35 ms. We take into account

this mean value when estimating the vehicle pose and computing the control commands.

Data is sent via a multicast UDP (User Datagram Protocol) scheme, allowing for convenient

online visualization of all data sent over the network, and also for recording, playback, and ex-

port of arbitrary customized data series. A convenient side-effect of this setup is that estimation

and control components are binary-identical whether running in the real system or in simula-

tion. The wireless and Vicon data bridges are simply replaced by a simulator process, with all

of the other components remaining completely unaffected and unaware of any difference.

Vehicles

The vehicles of choice in the FMA are small quadrocopters, based on the Ascending Tech-

nologies Hummingbird platform described in [10]. Fig. 3.3 shows the current flying vehicle.

Measuring 53 cm in diameter, the vehicle’s total weight including the onboard battery is 460 g.

The operational flying time varies between 10 and 20 minutes depending on the aggressiveness

of the performed flight maneuvers. The vehicle is equipped with four brushless DC motors,

which together are able to produce a vertical acceleration of approximately 12.5 m/s2. The

vehicles have proven to be agile and robust platforms, that can sustain even a hard crash with

typically minor consequences.

Though the original propulsion system, the motor controllers and the frame of the standard

Hummingbird quadrocopter were preserved, the wireless communication, central electronics

and onboard sensors were replaced to obtain better control over the onboard algorithms, and

to have access to better-quality and higher-range rate gyro data. These changes allow for more

aggressive maneuvers, faster turn rates, and generally better flight performance. With the new

rate gyros, rotations of up to 2000 deg/s are possible around the body’s principal axes of inertia.

Detailed documentation of the changes are found in [11].

The quadrotor accepts three body angle rate commands and a collective thrust command at

50 Hz. An onboard 800 Hz feedback controller uses rate gyros to track the given commands.

No feedback is currently done on the thrust command. The exact onboard controller design

20

Figure 3.3 Schematic drawing of the quadrocopter introducing local and global coordinate

systems, propeller rotation directions, and motor numbering (left). The photo on the right shows

one of the FMA quadrocopters in hover. Pictures are taken from [12].

is presented in [11]. Each vehicle is equipped with two radio systems: a one-way 2.4 GHz

module used exclusively for controlling the vehicle (to constrain the amount of variable latency

in the system), and a bidirectional 2.4 GHz transceiver with a different modulation for non-time-

critical communication such as data feedback or onboard parameter reads/writes, see Fig. 3.2.

Control

The Flying Machine Arena relies on a strongly cascaded control scheme. As mentioned before,

minimal control is performed on board the vehicles: Only states that are directly measured on

board are controlled; that is, only rotational rates are controlled using feedback from the gyro-

scopic sensors. The four inputs to the vehicle are usually provided by off-board controllers. For

the experiments in this thesis, we usually use two different modes for controlling the vehicle.

In the first mode, the developed learning scheme provides the collective thrust command

and the three body angle rates commands directly. That is, no feedback from the cameras is

used during the execution of a trajectory. This control mode is partly used in Paper I.

In the second control mode, the developed learning schemes are built on top of an off-board

trajectory-following controller (see e.g. Fig. 2.1). The trajectory-following controller takes

desired vehicle positions as an input and closes the loop based on the camera information. The

off-board controller calculates all four vehicle commands and sends them to the vehicle. This

control mode is extensively use in Part B, but also in the iterative learning approach presented

in Paper II.

More details about the testbed are found at www.FlyingMachineArena.org.

21

www.FlyingMachineArena.org

4

Future Directions

This chapter provides a brief summary on the current status of both projects and comments on

potential future research directions.

4.1 Part A. Iterative Learning

The optimization-based learning algorithm developed in Paper I and the improvements made in

Paper II are a solid basis for further investigation. We have an effective and conceptually simple

algorithm at hand that takes a priori knowledge about the system dynamics into account, and

that is applicable to any dynamic system (including systems with underlying feedback loops)

for which a numerical dynamics simulation is available. Because of the acausal learning action,

which corrects for repetitive disturbances before they occur, the final tracking performance of

the proposed learning scheme outperforms pure feedback control. We have shown that the

algorithm is able to reliably learn arbitrary three-dimensional quadrocopter motions.

Future directions of this research may include:

Transferring knowledge between different tasks Traditionally, the focus of ILC has been

on improving the performance of systems that execute a single, repeated operation [6].

When modifying the desired task, the system starts from zero, without any knowledge

from the original maneuver. Since one can expect that the past experience contains useful

information for a next task, especially if tasks are similar, a potential area for further

research is to develop methods that allow us to propagate knowledge between different

tasks. Having successfully learned one task, one idea is to extract relevant information

from the collected data and incorporate it into the model to facilitate the learning of a

second task. The potential of such an approach was highlighted by a previous work in

the group, see [13]. Another idea is to learn a set of basic tasks, cf. [14]. By generating

trajectories based on these basic elements, prior experience may be reused.

Simultaneous system identification and learning More sophisticated methods may be able

to simultaneously identify system parameters and learn a desired task, improving the

speed of convergence in the learning by building upon an increasingly accurate model.

In particular, when applying a numerical identification routine as proposed in Paper II, an

option is to re-identify the system around the most recent trajectory after a few iterations.

Efficiency of trajectory generation In view of the interactive slalom demonstration that we

developed in Paper II (see Sec. 2.1), a trajectory-generation algorithm with a lower com-

23

Chapter 4. Future Directions

putation time would be a major improvement. It would allow for a more intensive user ex-

perience because of the lower waiting time. In addition, the current trajectory-generation

algorithm does not yet take all degrees of freedom into account in the optimization rou-

tine. This would clearly be desirable when aiming for computing trajectories that are as

fast as possible.

Learning in a multi-vehicle setup We have considered a particular multi-agent framework in

Paper III and Paper IV. First analytical results showed that there is only limited benefit

from exchanging information when multiple agents learn the same task simultaneously.

Different scenarios may be investigated, such as learning cooperative tasks where the

motion of the agents requires coordination, see e.g. [5].

4.2 Part B. Rhythmic Flight Performances

The current status of this project is nicely summarized by the software tool that we recently

developed. The software allows for computer-assisted choreography design via a graphical user

interface and includes the following features: a library of motion primitives containing periodic

and non-periodic, aerobatic motions; a scripting language that allows for easy parameterization

and concatenation of motion primitives; the computation of collision-free transition motions

from a set of initial quadrocopter states to a set of final states (a useful tool for connecting

different motion primitives); an automatic feasibility check of the planned choreography; the

possibility of simulating the performance prior to actual flight; and, an offline learning and

online adaptation scheme for precise trajectory following of periodic motions (based on the

results in Paper V and Paper VII).

Directions for future development may include:

Automated generation of a choreography based on human rating The idea is to create a

system that automatically combines motion primitives in a meaningful way given the

music structure. The decision process can be improved by exploiting human rating and

evaluation.

Interaction A possible new research direction is real-time interaction. A quadrocopter may,

for example, be told what to do by a human instructor in the space. This could possibly

mimic the human process of testing and learning a choreography.

Software improvements The software can be improved in various aspects, in particular with

respect to its usability. The scripting language may be replaced by graphical objects that

are concatenated via drag-and-drop. In addition, a static 3D visualization of the trajecto-

ries would facilitate the design process. Once the structure of the project is finalized and

most of the tools have been developed, the software design may be outsourced.

Automated music analysis In order to achieve a fully automated choreography generation,

the music structure must be provided automatically as well. A first literature and software

study was done. Now, relevant software must be tested and eventually included into

the existing software framework. A collaboration with the Music Information Retrieval

community may be sought.

24

4.2 Part B. Rhythmic Flight Performances

Improvements on motion control and feasibility algorithms Recently, a nonlinear attitude

controller was developed at our institute, which extends the envelope of flyable motions

of the trajectory-following controller and improves its tracking performance. It is a logi-

cal next step to re-configure our setup and use this controller component. This step is easy

to do thanks to the modular design of the project and software. In addition, the algorithm

for evaluating a choreography’s feasibility, as well as the feed-forward synchronization

scheme would benefit from an extensive experimental testing and validation. We ran only

preliminary tests that supported the theoretical analysis.

In brief, future work aims for further facilitating the choreography design and continuing the

efforts to improve the actual flight and tracking performance. An ultimate goal is an automated

choreography design, where flight performance is created fully automatically for any randomly

selected song.

25

References

[1] T. M. Mitchell, Machine Learning, 1st ed. McGraw-Hill Science/Engineering/Math,

1997.

[2] H. Ahn, Y. Chen, and K. Moore, “Multi-agent coordination by iterative learning control:

Centralized and decentralized strategies,” in Proceedings of the IEEE International

Symposium on Intelligent Control (ISIC), 2011, pp. 394–399.

[3] D. Meng and Y. Jia, “Iterative learning approaches to design finite-time consensus

protocols for multi-agent systems,” Systems & Control Letters, vol. 61, no. 1, pp. 187–

194, 2012.

[4] H.-S. Ahn, K. L. Moore, and Y. Chen, “Trajectory-keeping in satellite formation flying via

robust periodic learning control,” International Journal of Robust and Nonlinear Control,

vol. 20, no. 14, pp. 1655–1666, 2010.

[5] K. Barton, D. Hoelzle, A. Alleyne, and A. Johnson, “Cross-coupled iterative learning

control of systems with dissimilar dynamics: design and implementation,” International

Journal of Control, vol. 84, no. 7, pp. 1223–1233, 2011.

[6] D. Bristow, M. Tharayil, and A. Alleyne, “A survey of iterative learning control,” IEEE

Control Systems Magazine, vol. 26, no. 3, pp. 96–114, 2006.

[7] S. Boyd and L. Vandenberghe, Convex Optimization. Cambridge University Press, 2004.

[8] J. How, B. Bethke, A. Frank, D. Dale, and J. Vian, “Real-time indoor autonomous vehicle

test environment,” IEEE Control Systems Magazine, vol. 28, no. 2, pp. 51–64, 2008.

[9] N. Michael, D. Mellinger, Q. Lindsey, and V. Kumar, “The GRASP multiple micro-UAV

testbed,” IEEE Robotics and Automation Magazine, vol. 17, no. 3, pp. 56–65, 2010.

[10] D. Gurdan, J. Stumpf, M. Achtelik, K.-M. Doth, G. Hirzinger, and D. Rus, “Energy-

efficient autonomous four-rotor flying robot controlled at 1 kHz,” in Proceedings of the

IEEE International Conference on Robotics and Automation (ICRA), 2007, pp. 361–366.

[11] S. Lupashin, A. P. Schoellig, M. Sherback, and R. D’Andrea, “A simple learning strategy

for high-speed quadrocopter multi-flips,” in Proceedings of the IEEE International

Conference on Robotics and Automation (ICRA), 2010, pp. 1642–1648.

[12] S. Lupashin and R. D’Andrea, “Adaptive fast open-loop maneuvers for quadrocopters,”

Autonomous Robots, vol. 33, pp. 89–102, 2012.

27

References

[13] O. Purwin and R. D’Andrea, “Performing and extending aggressive maneuvers using

iterative learning control,” Robotics and Autonomous Systems, vol. 59, no. 1, pp. 1–11,

2011.

[14] D. J. Hoelzle, A. G. Alleyne, and A. J. W. Johnson, “Basis task approach to iterative

learning control with applications to micro-robotic deposition,” IEEE Transactions on

Control Systems Technology, vol. 19, pp. 1138–1148, 2011.

28

Part A

ITERATIVE LEARNING

Paper I

Optimization-Based Iterative Learning for Precise

Quadrocopter Trajectory Tracking

Angela P. Schoellig · Fabian L. Mueller · Raffaello D’Andrea

Abstract

Current control systems regulate the behavior of dynamic systems by reacting to noise

and unexpected disturbances as they occur. To improve the performance of such con-

trol systems, experience from iterative executions can be used to anticipate recurring dis-

turbances and proactively compensate for them. This paper presents an algorithm that

exploits data from previous repetitions in order to learn to precisely follow a predefined

trajectory. We adapt the feed-forward input signal to the system with the goal of achieving

high tracking performance – even under the presence of model errors and other recurring

disturbances. The approach is based on a dynamics model that captures the essential fea-

tures of the system and that explicitly takes system input and state constraints into account.

We combine traditional optimal filtering methods with state-of-the-art optimization tech-

niques in order to obtain an effective and computationally efficient learning strategy that

updates the feed-forward input signal according to a customizable learning objective. It

is possible to define a termination condition that stops an execution early if the deviation

from the nominal trajectory exceeds a given bound. This allows for a safe learning that

gradually extends the time horizon of the trajectory. We developed a framework for gen-

erating arbitrary flight trajectories and for applying the algorithm to highly maneuverable

autonomous quadrotor vehicles in the ETH Flying Machine Arena testbed. Experimental

results are discussed for selected trajectories and different learning algorithm parameters.

Published in Autonomous Robots, 2012. Submission includes multimedia attachment, also found at www.tiny.

cc/QuadroLearnsTrajectory. DOI: 10.1007/s10514-012-9283-2.

c©2012 Springer Science+Business Media, LLC. Final publication is available at www.springerlink.com/

content/h322p72885857vt3/.

31

www.tiny.cc/QuadroLearnsTrajectory
www.tiny.cc/QuadroLearnsTrajectory
www.springerlink.com/content/h322p72885857vt3/
www.springerlink.com/content/h322p72885857vt3/

Paper I. Optimization-Based Iterative Learning

d
 i

a

a
n

SYSTEM

DISTURBANCE

ESTIMATION

INPUT

UPDATE

Figure 1. The general iterative learning framework considered in this paper: A complete trial

u j(t), t ∈ [t0, t f] is performed. Based on the output error ỹ j(t), a new input u j+1(t) is calculated

and applied during the next trial.

1. Introduction

1.1 Goal & Motivation

Over the last century, controls of dynamic systems have expanded from mechanical and analog-

electronic controllers for limited subproblems (such as course stabilization of ships) to digital

control of fully autonomous systems (such as unmanned aerial vehicles). This trend has been

enabled by technical advancements in sensors, actuators, and digital computing components,

as well as by significant developments in the theoretical foundations of control. Like their

early counterparts, current control systems usually regulate the behavior of dynamic systems

by reacting to noise and unexpected disturbances in the measured system output. Typically,

they are based on a mathematical model of the system dynamics. The performance of this

approach is limited by the accuracy of the dynamics model and the causality of the control

action that is compensating only for disturbances as they occur. Unfavorable effects of these

limitations are observed especially in regimes where feedback is not able to react in time and

the dynamic behavior is difficult to identify or understand. To achieve high performance in such

cases, we propose data-based control approaches that are able to store and interpret information

from past executions, and infer the correct actions or control laws for future experiments.

The objective of this paper is to explore the field of data-based high performance control

by developing algorithms that enable systems to precisely track predefined trajectories. We

propose an iterative learning scheme with the goal of achieving high tracking performance –

even under the presence of model errors, parameter uncertainties, and other recurring distur-

bances. Fig. 1 depicts the general idea of the algorithm. Data is collected through a repeated

execution of the same task and the performance is improved from trial to trial by identifying

recurring disturbances and adapting the feed-forward input signal accordingly. We leverage a

model of the system’s key dynamics to increase the efficiency of the learning and the speed

of convergence. Thus, our approach applies to any underlying dynamic system for which a

nominal model is available. Since the correcting action is executed only after a complete run

32

1. Introduction

of the trajectory, the approach is not restricted by slow feedback rates or large system latencies.

Furthermore, it is not limited to a causal action, which reacts only to disturbances after they

occurred. Instead, recurring disturbances (mainly due to modeling errors) are anticipated and

proactively compensated for before they occur. This approach is thus suitable for performing

aggressive trajectories.

We apply the algorithm to quadrotor vehicles in the ETH Flying Machine Arena. Quadrotor

vehicles offer exceptional agility in the rotational and translational degrees of freedom due to

the large torques generated by the off-center mounted propellers and the high thrust-to-weight

ratio. When operating these vehicles at high speeds, complex dynamic effects such as aerody-

namics, battery behavior, and motor dynamics have a significant impact on the vehicle behavior.

These effects are difficult to model but can be compensated for by an iterative execution.

Due to recent technological advances in aerial robotics, interest in using micro aerial ve-

hicles for industrial applications, including exploration and surveillance, inspection and mon-

itoring, and transportation and entertainment has grown. As such, precise trajectory tracking

will become relevant for operations where the tracking performance of the system determines

the quality of the experimental result. Iterative learning will be applicable if repetition is inher-

ent to the required task. Examples include inspection of civil infrastructure (such as bridges,

highways and dams), environmental monitoring (of forest, rivers, lakes, etc.) or filming a scene

with a camera mounted on a robot. Common to all these examples is that ‘measurements’ must

be taken along pre-computed paths.

We have developed a framework for the generation and iterative learning of flight trajec-

tories for quadrocopters. Feasible flight trajectories are generated based on user input that

defines the shape of the desired flight path in the vertical plane. We restrict ourselves to two-

dimensional trajectories for the sake of simplicity (though all derivations generalize to 3D tra-

jectories). Trajectory feasibility is considered with respect to the corresponding first-principles

model of the vehicle and sensor/actuator constraints. Based on the same model, the proposed

learning scheme is derived, which iteratively improves the trajectory tracking performance by

adapting the feed-forward input signal. This adaptation does not change the underlying dynam-

ics of the vehicle, and thus has an advantage over stiff and switching controllers, which may

cause non-smooth motions and undesirable transients (especially in cases where the underlying

model of the system is inaccurate).

1.2 Related Work

Research in aggressive flying and trajectory tracking of autonomous quadrocopters has made

considerable progress over the last decade, and strategies for both generating reference trajec-

tories and for designing effective and robust control algorithms have improved. Since quadro-

tor vehicles are inherently unstable nonlinear systems, and because they exhibit exceedingly

complex behavior at high speeds, one approach is to extend classical control methods with

sophisticated adaptation and learning schemes designed to cope with the complicated system

dynamics, unavoidable model uncertainties and external disturbances.

Examples of classical control approaches used to track trajectories with quadrocopters are

PID schemes [1], backstepping control techniques [2–7] and feedback linearization [8,9]. Other

common strategies are trajectory linearization control [10], constrained finite-time optimal con-

trol [11], LQ optimal solutions [12] or Model Predictive Control [13]. Such control schemes

fall in the area of causal controllers. Applying one of these approaches and performing the

33

Paper I. Optimization-Based Iterative Learning

same trajectory over and over again, results in the same tracking error in each trial (on aver-

age). These schemes are not designed to exploit past experience in order to improve future

performances.

Other research on the control of flying vehicles has focused on learning schemes. In [14],

where altitude control of quadrocopters is studied, integral sliding mode control and reinforce-

ment learning techniques are compared. Neural networks and output feedback are used in [15]

to learn the complete dynamics of the vehicle online. Work in [16] and [17] utilizes adaptive

control to achieve both, adaption to unknown payloads and robustness to disturbances. While

most of these approaches are concerned with near-hover operations, the goal of our approach is

to track fast trajectories. As shown in Sec. 4, we generate reference trajectories that minimize

execution time.

Other learning strategies have been developed for fast quadrocopter aerobatics. A method

to learn high-speed quadrocopter multi-flips was introduced in [18], which uses a policy gra-

dient method to iteratively learn parameterized flip primitives. Similar approaches are used

in [19–21] to achieve various high-speed, high-performance maneuvers. When comparing

those approaches to the approach presented in this paper, the main difference is the level of

specificity of the desired reference trajectory. While we aim to follow a continuous trajectory,

work in [18–21] compares the actual and desired states only at specific key frames.

The approach presented in this paper can be characterized as an iterative learning control

(ILC) technique and is based on our previous work in [22]. ILC became a popular research topic

beginning with [23], and has since proven to be a very powerful method for high performance

reference tracking (a recent overview of ILC with an extensive bibliography is available in [24]

and [25]). Yet methods from optimal control theory have only recently been applied to the

design of ILC laws. Based on a so-called ‘lifted’ domain representation, cf. [26–28], LQG-type

solutions have been proposed by [25,29–32] for estimating the tracking error and minimizing a

quadratic cost function. Work in [24, 30, 33, 34] has shown that ILC can be applied to systems

with underlying feedback loops. The real-time feedback component is intended to reject non-

repetitive noise while the ILC adjusts to the repetitive disturbance.

In practice ILC has been applied to repetitive tasks performed by stationary systems, such

as wafer stages, chemical reactors, and industrial robots. Applications to autonomous vehicles

are more rare. There is one example where ILC was applied to quadrocopters: [35] introduce

a least-squares based learning rule to improve on horizontal point-to-point motions. The work

presented in this paper can be viewed as an extension of the results in [35], and addresses the

issues referred to as ‘open questions’ in [35]. We consider a larger class of motions – namely,

arbitrary trajectories in the vertical plane – and a generalized two-step learning framework,

which is discussed in more detail below. Input and state constraints of the system are explicitly

incorporated in our learning rule.

1.3 Contribution to the Field of Feed-forward Based Trajectory Learning

The contribution of this paper to the field of feed-forward based trajectory learning is twofold:

First, we develop an algorithm that structures the trajectory learning problem around a dis-

turbance estimation and input update step, see Fig. 1. Both steps rely on a nominal model of

the underlying system. Estimation and input update are clearly separated, which allows for a

flexible combination of different approaches for both steps. More important from a practical

point of view, the clear separation allows for an intuitive tuning of the overall learning scheme.

34

2. The Learning Algorithm

In the first step, we design a time-varying Kalman filter, which estimates the model error along

the trajectory. The estimated error serves as the input to the following control step. The Kalman

filter explicitly takes noise characteristics into account, which can be adjusted to improve the

convergence of the estimation and, thus, of the overall learning. In the second step, the control

objective is formulated as a convex optimization problem [36]. Here, in contrast to least-squares

approaches or LQG design [25, 29–32], input and state constraints can be explicitly incorpo-

rated. Different (nonlinear) performance objectives can be defined by choosing appropriate

vector norms and adequate scaling and weighting of the error vector. Moreover, derivatives of

the input can be included into the objective function to reduce jittering in the control inputs and,

consequently, improve the robustness of the learning. The definition of a termination condition

justifying the linearization of the system dynamics is unique in the area of ILC and results in a

learning process that better meets the need for safe and efficient operation.

Second, the derived learning scheme is thoroughly applied to quadrocopters to achieve fast

and accurate trajectory tracking. The paper presents an entire unified process, including the

generation of feasible reference trajectories, the application to real quadrotor vehicles, and a

detailed experimental study characterizing both the influence of different learning parameter

settings as well as features of the experimental setup and the quadrotor vehicles.

The theoretic approach, as well as the application of the algorithm to real quadrotor vehi-

cles, makes this work an original contribution to the field.

1.4 Outline

The paper is organized as follows:

In Sec. 2, we present the iterative learning algorithm in its general form. The learning

scheme is introduced as a two- step process of first estimating the unknown repetitive distur-

bance (Sec. 2.2) and later compensating for it (Sec. 2.3). The approach is based on a dynamic

model of the system (Sec. 2.1) and includes the unique feature of gradually increasing the trial

horizon (Sec. 2.4).

In the second part of the paper, Sec. 3-7, we apply the algorithm to quadrotor vehicles,

and develop a complete framework tailored towards generating and learning arbitrary flight

trajectories in the vertical plane. A model of the quadrocopter dynamics and constraints is

derived first, in Sec. 3, and a method for generating feasible reference trajectories is presented

in Sec. 4. The experimental setup and implementation details are illustrated in Sec. 5. Finally,

Sec. 6 presents the quadrocopter’s learning behavior in actual experiments.1 We conclude with

a discussion on the limitations of the proposed approach in Sec. 7 and summarize the presented

results in Sec. 8.

2. The Learning Algorithm

The basic idea of the proposed learning scheme is to use iterative experiments to teach a dy-

namic system how to precisely follow a trajectory. By exploiting the experience gained from

previous trials, the system learns to anticipate recurring disturbances (that are mainly due to

1The accompanying video is found at www.tiny.cc/QuadroLearnsTrajectory.

35

www.tiny.cc/QuadroLearnsTrajectory

Paper I. Optimization-Based Iterative Learning

modeling errors) and to compensate for them in a non-causal way. We execute a learning up-

date after each trial by combining a priori knowledge about the system’s dominating dynamics

with real measurements from experiments.

The basic procedure is depicted in Fig. 1 and is described as follows: We assume that we

can derive a model that captures the key dynamics of the underlying system. This model is used

to calculate the nominal input and state trajectories. Moreover, by linearizing the system about

the nominal trajectory and discretizing the resulting equations, we can derive a static map that

describes the system dynamics during one trial (Sec. 2.1). The learning algorithm builds upon

this lifted model when interpreting the data of one trial and updating the feed-forward input sig-

nal for the next trial. These two steps are clearly separated. We use a Kalman filter to interpret

the measurement of the last trial and to incorporate the measurement into the current estimate

of the disturbance (Sec. 2.2). The input update step takes the current disturbance estimate and

returns a more adequate input for the next trial by solving a constrained optimization problem

(Sec. 2.3). The input serves as a feed-forward reference signal to the underlying system. After

each iteration the system is reset to the initial state. Safe and gradual learning is ensured by

including a predefined termination condition that stops a trial whenever the actual trajectory

diverges from the desired one by an unacceptable amount (Sec. 2.4).

Key concepts including the system representation, disturbance estimation, input update, and

extending horizon learning are presented first. The main steps of the algorithm from an appli-

cation perspective are summarized in Sec. 2.5, where we also highlight important prerequisites

of the approach. Finally, in Sec. 2.6 we analyze the computational complexity of the approach.

2.1 Model of Dynamics and Lifted-domain Representation

We assume that we can derive a model that captures the key dynamics of the physical system

under consideration. In the general case, the system dynamics are modeled by a set of time-

varying nonlinear differential equations,

ẋ(t) = f(x(t),u(t), t)

y(t) = g(x(t), t),
(1)

where u(t) ∈ R
nu denotes the system input, x(t) ∈ R

nx the system state, and y(t) ∈ R
ny the

output. The vector fields f and g are assumed to be continuously differentiable in x and u.

Constraints on the state x(t), the input u(t), and respective time derivatives are represented by

Z q(t)≤ qmax, (2)

where

q(t) =

[
x(t), u(t), ẋ(t), u̇(t), . . . ,

dm

dtm
x(t),

dm

dtm
u(t)

]
(3)

and qmax ∈R
nq . The inequality is defined component-wise where nq is the total number of con-

straints, and Z is a constant matrix of appropriate dimensions. Eq. (2) allows the incorporation

of constraints on any linear combination of x(t), u(t), and their time derivatives, for example,

x(t)≤ qx,max and au(t)+b u̇(t)≤ qu,max, a,b ∈ R. (4)

36

2. The Learning Algorithm

The goal of our learning algorithm is to track an a priori determined output trajectory y∗(t)
over a finite-time interval t ∈ T =

[
t0, t f

]
, t f < ∞ . We assume that the desired trajectory

y∗(t), t ∈ T , is feasible with respect to the nominal model (1), (2). That is, there exists a triple

(u∗(t), x∗(t), y∗(t)) , t ∈ T , (5)

satisfying (1) and (2). For some applications, the desired output trajectory y∗(t) may be known

ahead of time. However, it may also be the result of an optimization problem as shown in

Sec. 4.

Below, we derive a system representation of (1)-(5) that facilitates the derivation and imple-

mentation of the learning algorithm. First we assume that the motion of the system stays close

to the generated reference trajectory (5) during the learning process. (Note that this can be

enforced by the extending horizon feature introduced in Sec. 2.4.) We linearize the dynamics

around the reference trajectory. Considering only small deviations (ũ(t), x̃(t), ỹ(t)) from the

desired trajectory (5),

ũ(t) = u(t)−u∗(t), x̃(t) = x(t)− x∗(t), ỹ(t) = y(t)− y∗(t), (6)

the system’s behavior (1) can be approximated by a first-order Taylor series expansion about

the reference trajectory (5) (cf. [29]) resulting in the following linear, time-varying system

˙̃x(t) = A(t)x̃(t)+B(t)ũ(t)

ỹ(t) =C(t)x̃(t) , t ∈ T ,
(7)

where the time-dependent matrices A(t), B(t),C(t) are the corresponding Jacobian matrices

of the nonlinear functions f and g with respect to x and u. The input-output relationship as

given by (7) is fundamental to the model-based learning scheme proposed subsequently. On

the real system, however, inputs are sent at discrete times, and measurements are available only

at fixed time intervals. To capture this fact, we derive a discrete-time representation of the plant

dynamics (7), cf. [24, 25, 37], and references therein. Converting (7) to a discrete-time system

results in the following linear, time-varying difference equations,

x̃(k+1) = AD(k)x̃(k)+BD(k)ũ(k)ỹ(k+1) =CD(k+1)x̃(k+1) , (8)

where k ∈ K = {0, 1, . . . , N −1} , N < ∞, denotes the discrete-time index and N is the trial

length in discrete-time steps, N = t f /∆t with ∆t being the sampling time and t f assumed to be

a multiple of ∆t. That is, the desired trajectory (5) is represented by an N-sample sequence

(u∗(k), x∗(k+1), y∗(k+1)), k ∈ sK, (9)

with given initial state x∗(0).
Other associated signals, e.g. (6), are discretized analogously. The constraints (2) are simi-

larly transformed,

Z q̃(t)≤ qmax −Z q∗(t) := qmax(t) (10)

37

Paper I. Optimization-Based Iterative Learning

where q̃(t) is the deviation of q(t) from the corresponding nominal values q∗(t) defined analo-

gously to (6). Discretizing the above equation results in

Z q̃(k)≤ qmax(k), (11)

where the derivative components in q̃(k) are replaced by a discrete approximation. For example,

∆ũ(k) = (ũ(k)− ũ(k− 1))/∆t may be used as an approximation for the input derivative. The

values of the vector qmax(k) ∈ R
nq depend on the discretization method.

Introducing the lifted vector representation, cf. [38],

u = [ũ(0), ũ(1), . . . , ũ(N −1)]T ∈ R
Nnu

x = [x̃(1), . . . , x̃(N)]T ∈ R
Nnx

y = [ỹ(1), . . . , ỹ(N)]T ∈ R
Nny ,

(12)

the dynamics (8) of a complete trial are captured by a static mapping

x = Fu+d0

y = Gx ,
(13)

where the lifted matrix F ∈R
Nnx×Nnu is composed of the matrices F(l,m) ∈R

nx×nu, 1≤ l,m≤N,

F =




F(1,1) · · · F(1,N)

...
. . .

...

F(N,1) · · · F(N,N)


 , (14)

with

F(l,m) =





AD(l−1) . . .AD(m)BD(m−1) if m < l

BD(m−1) if m = l

0 if m > l .

The matrix G is block-diagonal and analogously defined by

G(l,m) =

{
CD(l) if l = m

0 otherwise

where G(l,m) ∈ R
ny×nx . Vector d0 contains the free response of the system (8) to the initial

deviation x̃(0) = x̃0 ∈ R
nx ,

d0 =


(AD(0)x̃0)

T , (AD(1)AD(0)x̃0)
T , . . . ,

(
N−1

∏
i=0

AD(i) x̃0

)T



T

.

This lifting technique is well-suited for the analysis and synthesis of iterative learning schemes,

where the system is assumed to operate in a repetitive mode, cf. [26–28, 31]. The static linear

38

2. The Learning Algorithm

mapping (13) captures the complete time-domain dynamics of a single trial by mapping the

finite input time series ũ(k), k ∈K , onto the corresponding output time series ỹ(k+1), k ∈K .

The goal of the iterative learning scheme is to use data gathered during previous executions

to improve the systems performance from iteration to iteration by updating the feed-forward

signal u, cf. (12), after each trial. The dynamics of the learning, i.e., the dynamic behavior of a

sequence of consecutive trials, can be described in the lifted domain by introducing a subscript

j indicating the jth execution of the desired task, j ∈ {1, 2, . . .}.

The evolution of the system over several iterations is modeled by

x j = Fu j + d j + Nξ ξ j

y j = Gx j + Nυ υ j ,
(15)

with

d j = d j−1 +ω j−1 . (16)

Here, j denotes the jth trial. The signals ξ j and υ j account for process and measurement noise,

respectively. These noise signals vary from iteration to iteration and are assumed to be trial-

uncorrelated sequences of zero-mean Gaussian white noise. The vector d j can be interpreted

as a repetitive disturbance component that is subject only to slight changes from iteration to

iteration, cf. (16) with ω j being another trial-uncorrelated sequence of zero-mean Gaussian

white noise. The vector d j captures model errors along the trajectory, including repeating dis-

turbances [39], and repeated nonzero initial conditions [40], which were previously represented

by d0, cf. (13). The zero-mean noise component of the initial condition is part of the random

variable ξ j.

In the model (15)-(16), the state deviation x j from the reference trajectory x∗, x∗ =

[x∗(1), . . . , x∗(N)]T , is affected by two different noise sources: a trial-uncorrelated zero-mean

component ξ j, and a ‘random walk’ component d j. This versatile noise model includes the

stochasticity of the process noise ξ j and the repetitive nature of the modeling errors d j, which

can vary between trials due to the influence of ω j, see also [29,32,33]. In particular, the vector

d j captures all non zero-mean noise effects along the desired trajectory x∗. It may also be in-

terpreted as a vector representation of all unmodeled dynamics along the desired trajectory x∗.

As a result, d j may depend on the applied input u(t) = u∗(t)+ ũ(t), t ∈ T . The ultimate goal

of the subsequent derivations is to estimate and optimally compensate for the disturbance d j by

updating the input trajectory appropriately.

To complete the lifted representation (15)–(16), the constraints (11) are transformed appro-

priately. Note that all entries in q̃(k) can be expressed by linear combinations of the vectors x

and u defined in (12). Introducing q = [x, u]T and stacking the bounds qmax(k) in a vector as

qmax = [qmax(0), qmax(1), . . . , qmax(N)]T ∈ R
(N+1)nq, (17)

constraints (11) read as

Lq ≤ qmax, (18)

where L is a constant matrix of appropriate dimensions.

Subsequently, the representation of the model dynamics in the lifted domain by (15), (16),

and (18) allows for the derivation and the execution of operations in the trial-time domain.

39

Paper I. Optimization-Based Iterative Learning

2.2 Disturbance Estimation

We consider our learning algorithm to be a two-step update law, cf. Fig. 1. First, we estimate

the modeling error d j along the desired trajectory using optimal filtering techniques [41]. Then,

in order to optimally compensate for the estimated vector d̂ j, we provide a new feed-forward

input u j+1 ∈ R
Nnu .

We propose an iteration-domain Kalman filter that retains all available information from

previous trials (namely the output signals y1, y2, . . . , y j) in order to estimate the current error d j.

Combining (15) and (16), we obtain a discrete-time system that fits into the standard Kalman

filter approach, cf. [42]:

d j = d j−1 + ω j−1

y j = Gd j + GF u j +µ j ,
(19)

where, consistent with the previous definitions, the noise term µ j, µ j = GNξ ξ j +Nυ υ j, is

assumed to be zero-mean Gaussian white noise with covariance M j: µ j ∼ N (0,M j). The

noise characteristics of ω j are given by ω j ∼ N (0,Ω j). Both stochastic inputs, ω j and µ j, are

trial-uncorrelated and assumed to be independent; that is, for i, j ∈ {0, 1, 2, . . .},

E
[
ωiω

T
j

]
= E

[
µiµ

T
j

]
= 0 if i 6= j

E
[
ωiµ

T
j

]
= 0 ∀ i, j .

(20)

E [·] denotes the expected value.

For the above system (19)-(20), the Kalman filter returns an unbiased disturbance estimate

d̂ j for j ≥ 1 that minimizes the trace of the error covariance matrix

Pj = E[(d j − d̂ j)(d j − d̂ j)
T] (21)

of trial j taking measurements ym, 1 ≤ m ≤ j, into account.

Given initial values for d̂0 and P0, the Kalman filter update equations for the specific prob-

lem read as: 



S j = Pj−1 + Ω j−1

K j = S j GT
(
GS j GT + M j

)−1

Pj =
(
I −K jG

)
S j ,

(22)

where I ∈ R
Nnx×Nnx represents the identity matrix. Based on the optimal Kalman gain K j, and

taking into account the previous estimate d̂ j−1 and the actual measurement y j, the disturbance

estimate d̂ j is calculated by

d̂ j = d̂ j−1 +K j

(
y j −Gd̂ j−1 −GFu j

)
. (23)

Note that the matrices in (22) and, especially, the Kalman gains K j (necessary for an appropriate

online update of the error estimate d̂ j) can be calculated prior to the experiment as long as we

know the initial value P0.

40

2. The Learning Algorithm

Design parameters The performance of the estimation can be adjusted by four design param-

eters:

• The covariance matrix Ω j, ω j ∼N (0,Ω j), indicates the likely change of the disturbance

d j from iteration to iteration. The vector d j captures the effect of unmodeled dynamics

and, hence, may depend on u j. The input u j changes significantly during the first itera-

tions of the learning, but converges for an increasing number of trials. This may also be

true for d j.” To account for these changes, one possible definition of the covariance Ω j is

Ω j = ε jI , ε j > 0, (24)

where the scalar ε j is chosen to be larger during the first iterations to guarantee a fast

initial adaptation of the disturbance estimate d̂ j, and chosen to be smaller as j increases

in order to avoid adapting to outliers and non-repetitive noise.

• The covariance matrix M j, where µ j ∼ N (0,M j), combines the covariance of the pro-

cess and measurement noise. It is possible to obtain a value for the covariance by carrying

given sensor noise characteristics and the known process disturbances of the real system

from the original model description (1) through to the lifted domain representation (15).

However, modeling M j as

M j = η jI , η j > 0, (25)

is often sufficient. The ratio between ε j and η j determines how much we trust the mea-

surement vs. the process model, cf. (19). Often this ratio is varied by changing ε j only

and keeping η j constant; that is, η j = η for all j ∈ {1,2, . . .}. Experimental results

discussing the choice of η j and ε j are shown in Sec. 6.6.

• The initial value d̂0 is another design parameter. Most of the time, d̂0 = 0 is a reasonable

first guess.

• With the starting value P0 = E[(d0− d̂0)(d0− d̂0)
T], the initial error variance is specified.

Choosing P0 to be a diagonal matrix with large positive elements on the diagonal, results

in larger changes of d̂ j at the beginning of the learning.

Note that the entries of d j and y j, and consequently of ω j and µ j, represent different quan-

tities with different units (e.g. position, velocity, etc.), whose nominal values may differ by

orders of magnitude. To account for this, it may be beneficial to introduce scaling matrices SΩ

and SM, and define

Ω j = SΩ

(
ε jI
)

ST
Ω, M j = SM

(
η j I

)
ST

M. (26)

To summarize, the advantage of the above approach lies in its explicit incorporation of noise

characteristics and its model-based update rule (23), which provides an optimal estimate d̂ j in

the context of the a priori tunable parameters (namely the covariances of the disturbances ω j

and µ j, and the initial values P0 and d̂0). The algorithm for the disturbance estimation takes

all available information y1, y2, . . . , y j into account. In addition, the modeling error along the

desired trajectory d̂ j may lead to a better system understanding and may be re-used to update

the dynamic model (1) or when learning a different reference trajectory.

Based on the disturbance estimate d̂ j, the feed-forward input signal can be adapted in order

to compensate for the estimated disturbance, resulting in an improved performance in the next

trial.

41

Paper I. Optimization-Based Iterative Learning

2.3 Input Update

The learning algorithm is completed by the subsequent learning update. Making use of the

information provided by the estimator, cf. Sec. 2.2, we derive a nonlinear model-based update

rule, which calculates a new input sequence u j+1 ∈ R
Nnu in response to the estimated distur-

bance d̂ j.

The objective of the update step is to find an input u j+1, which optimally compensates for

the identified disturbance d̂ j. In the context of (15), this means finding an input u j+1 that min-

imizes the deviation from the nominal trajectory in the next trial. More precisely, we consider

the expected value of x j+1 given all past measurements,

E
[
x j+1

∣∣y1,y2, . . . ,y j

]
= Fu j+1 + d̂ j . (27)

The constraints (18) are explicitly taken into account when solving for the optimal u j+1. We

approximate the future state x j+1 in q j+1, cf. (18), by (27), resulting in a constraint inequality

that depends only on the decision variable u j+1.

The update rule can be expressed by the following optimization problem:





min
u j+1

∥∥∥S
(

Fu j+1 + d̂ j

)∥∥∥
ℓ
+ α

∥∥∥Du j+1

∥∥∥
ℓ

subject to Lopt u j+1 ≤ qmax ,

(28)

where α ≥ 0 weights an additional penalty term, which was included into the objective func-

tion as a means of directly penalizing the input. Via the matrix D, the input itself or discrete

approximations of its time derivatives can be penalized. This may be beneficial if one wants

to enforce smoothness of the optimal input. In Sec. 6.6, an appropriate choice of D and α is

discussed in the context of the quadrocopter example. Note that high α values may corrupt

or even destroy the learning performance since more emphasis is put on achieving a small (or

smooth) input than on minimizing the error along the trajectory.

The matrix S ∈ R
Nnx×Nnx in (28) allows the original error signal (27) to be scaled, and

serves several objectives: equalizing the magnitude of the different physical quantities in the

lifted domain, penalizing deviations of certain states more than others, or weighting specific

parts of a trajectory (e.g. the first part).

The vector norm ℓ, ℓ∈ {1, 2, ∞}, of the minimization (28) affects the convergence behavior

and the result of the learning algorithm. For a vector p =
(

p(1), p(2), . . . , p(np)
)
∈R

np , the one

norm (ℓ= 1), the Euclidean norm (ℓ= 2), and the maximum norm (ℓ= ∞), are defined as

‖p‖1 =
np

∑
i=1

|p(i)|, ‖p‖2 =
√

pT p, ‖p‖∞ = max
i∈

{1,2, ...,np}
|p(i)|.

The update law defined by (28) can be transformed into a standard convex optimization

problem. More precisely, we obtain a linear program for ℓ ∈ {1, ∞} and a quadratic program

for ℓ= 2, cf. [36]. Details on the transformation are provided in Sec. A.1.

Linear and quadratic programs can be solved very efficiently using existing software pack-

ages such as [43] (see also comments in Sec. 2.6). Further, if the optimization problem is

42

2. The Learning Algorithm

feasible (i.e. , if there exist u j+1 that satisfy the constraints), then there exists a local minimum

that is globally optimal. Furthermore, we formulated the update law as a convex optimization

problem so that we could incorporate the input and state constraints explicitly. Such constraints

are present in any existing real system and have a notable influence on the dynamic behavior

of the system. In particular, when learning high performance maneuvers, constraints often rep-

resent the limiting factor for further improvement and should, as such, be taken explicitly into

account. Relevant constraints of the quadrotor vehicles and their effects during the learning

experiments are illustrated in Sec. 3 and following sections.

Design parameters Four different design parameters allow for an adaptation of the optimiza-

tion problem (28):

• The norm ℓ defines the overall performance objective of the learning algorithm. While

ℓ = ∞ minimizes the maximum deviation from the desired trajectory, the one norm and

Euclidean norm minimize the “average error”; that is, they minimize the sum of the

deviations along the reference trajectory, where the Euclidean norm weights large errors

more than the one norm does. In Sec. 6.6, the learning performance of different norms is

experimentally evaluated for the quadrotor tracking problem.

• For an intuitive design, the scaling matrix S may be decomposed into three diagonal

matrices,

S = TW SW Sx, TW ,SW ,Sx ∈ R
Nnx×Nnx. (29)

First the state scaling matrix Sx scales the lifted state vector such that all entries of the

scaled vector representation xs, xs = Sxx, are within the same range of magnitude. The

state-weighting matrix SW puts emphasis on specific states of the original system (1) by

penalizing their deviations from the reference trajectory more than the deviations of the

other states. The matrices Sx and SW are usually defined via vectors sx and sW of length

nx, which are repeatedly placed along the corresponding matrix diagonal. Finally, the

matrix TW allows us to weight particular parts of the trajectory more than others, i.e. to

change the scaling along the trajectory.

• When aiming to penalize the input u directly, the matrix D is chosen as the identity ma-

trix, where the lifted vector u represents the deviation from the nominal input trajectory

(12). Another option is to consider the rate of change of u or its curvature by choosing

Du such that the kth component is given by

(Du)(k) =
ũ(k+1)− ũ(k)

∆t
or (30)

(Du)(k) =
ũ(k+2)−2ũ(k+1)+ ũ(k)

(∆t)2
, (31)

representing the discrete approximation of the first or second derivative of u, respectively.

• The scalar α balances the influence of the state deviation component and the input com-

ponent in the objective function (28). In Sec. 6.6 design criteria for α are discussed in

the context of the quadrocopter tracking experiment.

In brief, the above parameters enable us to enforce a specific learning behavior, and thus meet

individual performance criteria.

43

Paper I. Optimization-Based Iterative Learning

2.4 Extending Horizon

Now that we have familiarized the reader with the main ideas of the algorithm in question

(namely, the disturbance estimation and input update), we wish to introduce a means of grad-

ually extending its time horizon such that only small deviations from the desired trajectory are

guaranteed.

We earlier assumed that each trial u j, j ∈ {1, 2, . . .}, is performed over the full time horizon

T =
[

t0, t f

]
. However, all derivations in Sec. 2.2 and Sec. 2.3 build upon the lifted domain

representation, which was the result of a linearization of the system dynamics about the nominal

trajectory. The linearization can only be justified if the actual trajectory of the system stays

close to the desired one. From a different perspective, it is important that the lifted matrices F

and G are valid first-order approximations of the system dynamics as this guarantees a proper

interpretation of the measurement (estimation step) and a correct input adaptation (update step).

In this section, we introduce a termination condition that stops a learning trial whenever the

deviation between the real and the desired trajectory grows too large. This guarantees that

previous derivations are valid and lead to successful learning.

The general idea of the method is as follows: A new trial is started with an input u j ∈R
Nnu .

During the execution, the actual trajectory may begin to diverge from the reference trajectory;

if the deviation exceeds a certain boundary (as specified by the termination condition), the trial

is stopped. In this case the learning algorithm, cf. Sec. 2.2 and Sec. 2.3, considers only the first

part of the execution (until the premature ending at N j < N) and returns an updated input for

the first part of the trajectory. The updated input segment is then extended by the last values of

the reference input u∗(k), cf. (9), and a new trial (j+1) is executed. In general, the following

trial (j+ 1) performs better during the initial segment of the trajectory and is terminated at a

later stage N j+1 ≥ N j. That is, the time horizon of the learning algorithm is gradually extended.

The termination condition is defined on the system’s output deviation ỹ(k) ∈ R
ny , cf. (6),

h(ỹ(k))≥ γ(k), (32)

where h(·) maps the system output at time k to the relevant termination variables, whose critical

values are defined by γ(k) ∈ R
nγ . If condition (32) is satisfied for some k, the trial j is stopped

and N j := k.

Assuming that N j ≥N j−1, the input update is performed for the subproblem, u j ∈R
N jnu and

y j ∈ R
N jny , such that only the effective length of execution is considered. A current estimate

of the modeling error d̂ j ∈R
N jnx is obtained from (22)-(23). In addition to the recent input and

output, u j and y j, the estimation takes advantage of the previous estimate d̂ j−1 ∈ R
N j−1nx and

covariance Pj−1 ∈ R
N j−1nx×N j−1nx . However, because of the extended time horizon N j, these

values must be extended for the current estimation using the initial conditions P0 and d̂0: with

l,m ∈
{

1,2, . . . ,N j

}
,

(c)P
(l,m)
j−1 =

{
P
(l,m)
j−1 for l,m ∈

{
1, . . . ,N j−1

}

P
(l,m)
0 otherwise,

(33)

where P(l,m) ∈ R
nx×nx represents the (l,m)th entry in P and (c)P denotes the adaptation to the

44

2. The Learning Algorithm

current length N j; similarly,

(c)d̂
(m)
j−1 =

{
d̂
(m)
j−1 for m ∈

{
1, . . . ,N j−1

}
,

d̂
(m)
0 for m ∈

{
(N j−1 +1), . . . ,N j

}
,

(34)

where d̂(m) ∈ R
nx . The matrices G, F, Ω j−1, and M j are adapted analogously. The resulting

estimate d̂ j from the estimation step is used in (28) to calculate the updated input (f)u j+1 ∈
R

N jnu for the first part (f) of the trajectory. This input is continued by the last entries of the

nominal input; that is,

u
(m)
j+1 =

{
(f)u

(m)
j+1 for m ∈

{
1, . . . ,N j

}
,

0 for m ∈
{

N j +1, . . . ,N
}
,

(35)

where u(m),0 ∈R
nu and 0 is a zero vector. The input is applied to the system during the follow-

ing trial. If the (j+ 1)th trial is stopped earlier again, the input u j+1 is cropped accordingly,

such that u j+1 ∈ R
N j+1nu . If N j+1 < N j, the algorithm falls back to time horizon N j+1 and all

variables are cropped correspondingly. Measurement information for times k larger than N j+1

(obtained from earlier iterations) is discarded.

This method of extending the horizon not only guarantees the validity of the linearization in

Sec. 2.1, but also responds to safety requirements during the learning process by guaranteeing

only small deviations from the desired trajectory.

Design parameters This part of the learning algorithm features the following design param-

eters:

• The termination function h(·) defines critical variables originating from either the non-

linearity of the system equations (1) or from the safety requirements. The choice of h(·)
is very specific to the problem under consideration. One example is to put constraints on

the states that introduce the nonlinearity to the system.

• The bound γ(k) may vary along the trajectory. Its size is crucial for the convergence

of the learning. When γ(k) is too small, the learning might never reach the final length

N, since the system is not able to achieve these small deviations everywhere along the

trajectory; if γ(k) is too large, it may lead the system into regions where the linearization

approximation is not accurate enough.

Even though most papers on ILC are based on a linear system representation, the issue of

staying in the region where the linearization is an acceptable approximation, has not been a

focus of consideration, see e.g. [32]. The idea of gradually extending the trial time is novel to

our approach.

Examples for reasonable termination conditions are given in Sec. 6.5 for the quadrocopter

experiments. Sec. 6.5 also shows an example where N j+1 < N j. Note, however, that the ma-

jority of experiments shown in Sec. 6 were performed without a termination condition and still

showed learning convergence.

45

Paper I. Optimization-Based Iterative Learning

2.5 Summary of the Algorithm

The proposed learning algorithm requires a dynamic model of the physical system under con-

sideration (see Fig. 1). This nominal model serves two main purposes: (i) given a desired

trajectory, it is used to obtain an initial guess of the feed-forward input, and (ii) it provides

the direction for feed-forward corrections in the input update step. Thus, the nominal model

needs to approximate the system dynamics (in the proximity of the desired trajectory) to first

order. Note that any physical system, including systems with underlying feedback control, can

be considered as long as a nominal model is available. Ideally, the desired trajectory is feasible

with respect to dynamics, input and state constraints of the physical system.

The learning algorithm consists of several preparation steps that are performed offline prior

to experiment, and an iterative correction step executed online after each run of the experiment.

We summarize the algorithm as follows:

Prerequisites Derive a dynamics model of the system such that it captures key dynamic ef-

fects and relevant input and state constraints.

Offline preparations

a) Define a desired trajectory and find the corresponding nominal input based on the dy-

namics model.

b) Linearize the model about the nominal trajectory, discretize, and build lifted system rep-

resentation.

c) Choose design parameters of the estimation and update step. Optional: define a termina-

tion condition.

d) Calculate the Kalman filter gains K j.

e) Set j = 1 and apply the nominal input, i.e. u1 = 0.

Online refinement through experiments.

a) Run experiment with u j. Check if termination condition is satisfied.

b) Stop if the termination condition is satisfied or if the task is completed.

c) Update the disturbance estimate d̂ j based on the measurement y j.

d) Solve the optimization problem using d̂ j and obtain the next input u j+1.

e) Set j = j+1, go to (a).

2.6 Computational Complexity

Each of the steps of the learning algorithm highlighted above are of different computational

complexity. Below, we provide a brief overview on the complexity of the key steps of the

algorithm. We distinguish between offline preparation steps and calculations that are performed

online after each iteration.

Recall that the length of the desired trajectory (number of discrete time steps) is denoted by

N, where N = t f /∆t increases when extending the duration of the trajectory or when reducing

the sampling time.

46

3. Quadrocopter Dynamics and Constraints

Offline preparations The offline cost is dominated by the computation of the Kalman fil-

ter gains K j according to (22) for j = 1, . . . , Jmax, where Jmax denotes the total number of

iterations. The computational complexity of calculating the Kalman filter gains is of order

O(JmaxN3(n3
x +n3

y)).

Online refinement The online cost comprises two steps: updating the disturbance estimate

according to (23) and solving the optimization problem (28). The disturbance estimate up-

date requires O(N2nxny) arithmetic operations. The optimization problem has the form of an

inequality-constrained linear or quadratic program, see Sec. 2.3. Problems of this type can be

solved by interior-point methods. The complexity is given by the total number of Newton steps

required for the solution of the optimization problem multiplied by the cost of one Newton step.

Under mild assumptions, [36] shows that the worst-case number of Newton steps is of order

O(Nc logNc) (and O(
√

Nc) for a particular choice of parameters), where Nc is the total number

of constraints. The cost of one Newton iteration is a polynomial function of the problem dimen-

sions. For (28), the total number of constraints is of order O(N(nc + nx + nu)) for the 1- and

∞−norm, and of order O(Nnc) for the 2-norm (see Sec. A.1), where nc denotes the number of

constrained quantities. For completeness, the number of decision variables in the optimization

problem is O(Nnu) for the 2- and ∞−norm and O(N(2nu + nx)) for the 1-norm. In practice,

convex optimization problems are tractable for a large number of decision variables and con-

straints. As an example, cf. [36], a linear program with “hundreds of variables and thousands of

constraints” can be solved “on a small desktop computer, in a matter of seconds.” In Sec. 6.7,

we provide specific computations times for the quadrocopter example.

3. Quadrocopter Dynamics and Constraints

We now apply the iterative learning algorithm to quadrotor vehicles, with the objective of pre-

cisely tracking trajectories that are defined in the vertical plane. Considering two-dimensional

trajectories only allows for the use of a more concise quadrocopter model (for both, trajectory

generation and learning), while the corresponding learning results still highlight the key char-

acteristics of the proposed algorithm, cf. Sec. 6. The subsequent derivations generalize to 3D

trajectories and are equally tractable for this class of problems, see Sec. 6.7.

A two-dimensional model of the quadrocopter dynamics is derived from first principles

under the assumption that the out-of-plane dynamics, including vehicle yaw, are stabilized

separately (Fig. 2). The equations of motion that define the evolution of horizontal position y,

the vertical position z and the quadrocopter’s roll angle φ are

z̈ = (fa + fb + fc + fd)cosφ −g (36)

ÿ = −(fa + fb + fc + fd)sinφ (37)

Ixxφ̈ = ml(fa − fc), (38)

where m denotes the mass of the vehicle, g represents the gravitational constant, l is the distance

from the center of mass of the vehicle to a propeller, Ixx is the moment of inertia about the out-

of-plane principal axis, and fa and fc are the thrust forces produced by the two in-plane rotors

47

Paper I. Optimization-Based Iterative Learning

fa

fc

fcoll

z

y

g

φ

ωx

Figure 2. Schematic drawing of a quadrocopter moving in the vertical yz-plane with relevant

coordinates (y, z, and φ) and control inputs (fcoll and ωx).

normalized by the mass of the vehicle (Fig. 3). The mass-normalized forces of the other two

rotors, fb and fd , are used to stabilize out-of-plane motion and are nominally set to the average

of fa and fc,

fb = fd = (fa + fc)/2. (39)

In the two-dimensional scenario, the inputs to the quadrocopter are the collective acceleration

produced by the four motors,

fcoll = fa + fb + fc + fd = 2(fa + fc), (40)

and the roll rate ωx, cf. Fig. 2. The resulting dynamics are

z̈ = fcoll cosφ −g

ÿ =− fcoll sinφ

φ̇ = ωx,

(41)

where x = (y, ẏ,z, ż,φ) and u = (fcoll,ωx) in the framework of (1). Consequently, the feed-

forward input corrections of the learning step are applied at the level of thrust and rate. In

(41), we assume that the roll rate φ̇ can be controlled directly. In reality, an underlying high-

bandwidth controller on board of the vehicle tracks the commanded rates using feedback from

gyroscopes, cf. Sec. 5.2. Because the quadrocopters can achieve exceptionally high angular

accelerations (typically on the order of several hundred rad/s2), and thus can respond very

quickly to changes in the desired rotational rate, this is a valid approximation for the learning

algorithm and trajectory generation. We also assume that the collective thrust can be changed

instantaneously. True thrust dynamics are as fast as the rotational dynamics, with propeller

spin-up being faster than spin-down. We can – directly or indirectly – measure all five states;

that is y = x in (1).

The mass-normalized single motor thrusts fa and fc are related to the input u by the follow-

ing equations:

fa =
1

4
fcoll +

Ixx

2ml
ω̇x, fc =

1

4
fcoll −

Ixx

2ml
ω̇x. (42)

48

3. Quadrocopter Dynamics and Constraints

ωx

ωy ωz

fcoll fdfa

fb fc

Figure 3. The control inputs of the quadrocopter are the body rates ωx, ωy, and ωz, and the

collective thrust fcoll . These inputs are converted by an onboard controller into motor forces

fi, i ∈ {a,b,c,d}.

The first-principles model presented above neglects numerous aerodynamic effects, such

as drag, blade flapping [44], or changes in the angle of attack of the propellers [45], which

may have a significant effect on the dynamic behavior of the quadrocopter, especially at high

speeds. These effects are difficult to model and are presumed to be compensated by the iterative

learning scheme.

The system is subject to several constraints that result from both limited actuator action and

limited range of sensor measurements. First, the thrust that each motor can provide is limited

by

fmin ≤ fi ≤ fmax, i ∈ {a,b,c,d} . (43)

Second, due to the motor dynamics, the rate of change of the thrust is also limited:

∣∣ ḟi

∣∣≤ ḟmax, i ∈ {a,b,c,d} . (44)

Equation (43) imposes a constraint on the maximum feasible angular acceleration via (38),

∣∣φ̈
∣∣≤ φ̈max. (45)

Furthermore, the onboard rate gyroscopes have a limited measurement range. Taking into ac-

count an additional safety margin for the onboard control, a sufficiently conservative constraint

on the angular velocity is derived as:

∣∣φ̇
∣∣≤ φ̇max. (46)

Note that the above constraints implicitly constrain the inputs (fcoll,ωx) via (42). Later, in the

input update of the learning algorithm, we consider upper and lower bounds on the input, its

derivatives, and on fa and fc. Note that this constraint definition contains some redundancy.

In practice, computation time (cf. Sec. 6.7) can be reduced by constraining only fa, fc and ωx.

Derivative constraints are usually satisfied because of the time discretization of the input signal.

49

Paper I. Optimization-Based Iterative Learning

0 0.5 1 1.5 2 2.5 3
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

Time [s]

M
o
ti

o
n
 p

ro
fi

le

λ

Initial λ profile

Final λ profile

Support points

Figure 4. Initial and optimized motion profiles. The support points are distributed equally

over time and their λ values are the optimization variables.

4. Trajectory Generation for Quadrocopters

The goal of this section is to plan feasible quadrocopter trajectories (with respect to the con-

straints introduced in Sec. 3) that track arbitrary user-defined shapes in the vertical plane.

As described in Sec. 2, a feasible state trajectory with its corresponding nominal input is

the starting point, and hence a prerequisite of the proposed learning scheme. In this section, we

describe an approach for generating feasible state trajectories starting with minimal information

on the geometry of the desired state evolution. Once the state trajectory is known as a function

of time, the corresponding input is computed from the quadrocopter model in Sec. 3.

This approach is similar to [46–48], where the trajectory generation problem is split into

two parts. First, the trajectory’s geometry is defined using a set of basis functions such as

splines or polynomials. The trajectory’s geometry or shape, (hereafter referred to as ‘path’)

does not contain any time information. In the second step, a motion profile is assigned to the

path. This profile is chosen such that the resulting time-parameterized trajectory satisfies the

feasibility constraints.

In the following, both the path and its motion profile are defined by splines (cf. [49–52]),

and the trajectory generation is posed as a constrained optimization problem with the objective

of minimizing the trajectory’s end time.

The trajectory generation algorithm for two-dimensional quadrocopter maneuvers com-

prises the following steps:

a) Define the shape of the trajectory, referred to as ‘path’, by specifying Np points in the

yz-plane,

{p(1), . . . , p(Np)} with p(i) ∈ R
2, i ∈ {1,2, . . . ,Np}. (47)

50

4. Trajectory Generation for Quadrocopters

b) Each point p(i) is assigned a chord-length parameter λ (i),

λ (i) =
i−1

Np −1
, i ∈ {1,2, . . . ,Np}, (48)

resulting in an ordered sequence (λ (i), p(i)), which defines the shape of a spline P . In

other words, a continuous path in the yz-plane is obtained as a mapping from λ , λ ∈ [0,1],
to points in R

2:

P : [0,1]→ R
2, (49)

where P(λ (i)) = p(i), i ∈ {1, . . . ,Np}. That is, the spline P passes through the pre-

viously defined points (47). The motion profile along the path is defined by λ (t), a

monotonically increasing function of time:

λ : [0, t f]→ [0,1], (50)

where t f represents the end time of the trajectory. The function λ (t) is itself a spline

defined by Nλ support points (t(k),σ (k)), such that

λ (t(k)) = σ (k), k ∈ {1, . . . ,Nλ}. (51)

The first and the last time point are fixed,

(t(1),σ (1)) = (0,0)

(t(Nλ),σ (Nλ)) = (t f ,1),
(52)

and the time instances t(k), k ∈ {1, . . . ,Nλ}, are equally distributed over [0, t f],

t(k) =
k−1

Nλ −1
t f . (53)

The (Nλ −2) interior support points,

Σ := {σ (i) | i = 2, . . . ,Nλ −1}, (54)

define the curvature of the λ profile and act as the decision variables in the optimization

problem described in the next step, see Fig. 4. We can write λ (t) = λ (t, t f ,Σ) to make

the dependency on the parameters t f and Σ explicit.

c) We find a feasible motion profile by solving the constrained minimization problem:





min
{t f ,Σ}

t f

subject to ∂
∂ t

λ (t, t f ,Σ) ≥ 0, t ∈ [0, t f] ,

P(λ) feasible.

(55)

51

Paper I. Optimization-Based Iterative Learning

The objective is to find interior support points Σ, see (54), such that the corresponding

motion profile increases monotonically and yields feasible state trajectories. Feasibil-

ity for the special case of the quadrocopter is discussed at the end of this section. An

important advantage of this approach is that the number of decision variables in the opti-

mization problem is relatively small. It is equal to the number of interior support points

of the motion profile λ plus the final time t f , i.e. in total, Nλ − 1. Moreover, the num-

ber of decision variables is independent of the number of path points Np. Generally,

the constraints in (55) are non-convex. Thus, the optimization problem lacks any useful

characteristics that would guarantee global optimality. Consequently, a solution of (55)

is only locally optimal and depends on the initial values of the decision variables {t f ,Σ}.

d) The solution of (55) yields a set of locally optimal interior support points Σ∗ and a locally

optimal end time t∗f . These values uniquely define the motion profile λ (t) = λ (t, t∗f ,Σ
∗),

which, in turn, determines the state trajectories P(t) = (y(t),z(t)), t ∈ [0, t∗f], cf. Fig. 4.

The nominal inputs are computed via an inversion of the system dynamics (41). Note that

time derivatives of y, z can be computed analytically since the nominal state trajectories

are given by splines; that is, by piece-wise polynomial functions.

In the remainder of this section, we derive constraints that guarantee the feasibility of the

trajectories P(λ). First, constraints result from the assumption that the quadrocopter starts and

ends in hover; that is, we derive conditions that ensure the continuity of the states and inputs

at the start and end of the trajectory. We then consider constraints on the input and its first

derivative.

a) Continuity of the states at the start and end point.

Hovering is characterized by

ẏ = ż = 0, ÿ = z̈ = 0, φ = φ̇ = φ̈ = 0. (56)

Conditions (56) are satisfied if

∂ i

∂ t i
λ (t)

∣∣∣∣
t∈{0, t f}

= 0, i ∈ {1,2,3,4}. (57)

b) Continuity of the inputs at the start and end point. The condition (57) implicitly guaran-

tees the continuity of the inputs at the start and end of a trajectory; that is, if (57) holds

so do the following input conditions:

fcoll(t)
∣∣
t∈{0, t f} = g, ωx(t)

∣∣
t∈{0, t f} = 0, (58)

where g denotes the gravitational constant.

c) Input constraints. Input constraints are taken into account directly in the form (43)-(46).

The numeric values of the parameters used in the trajectory generation process are summarized

in Tab. 1. In order to leave room for learning, we have chosen restrictive constraint bounds for

the trajectory generation.

52

5. Experimental Setup

Table 1. Quadrocopter parameters used for the trajectory generation and learning.

Trajectory Generation Learning

l 0.17 m 0.17 m

m 0.468 kg 0.468 kg

Ixx 0.0023 kg m2 0.0023 kg m2

fmax 4.5 m/s2 5.5 m/s2

fmin 0.4 m/s2 0.25 m/s2

ḟmax 27 m/s3 51 m/s3

φ̇max 22 rad/s 25 rad/s

φ̈max 150 rad/s2 200 rad/s2

Considering (43)–(46) again, we observe that single thrust input trajectories fa,c(t) must

be continuous, whereas their first derivatives ∂/∂ t fa,c(t) are allowed to have steps. According

to (42), fa,c(t) are functions of ∂/∂ t ωx(t), which in turn depends on the fourth derivative of

the desired trajectory, ∂ 4/∂ t4y(t) and ∂ 4/∂ t4z(t). This statement is supported by (41) and is

especially relevant in the inversion step of the previous algorithm. Thus, in order for fa,c(t) to

be continuous, the fourth derivatives of y(t) and z(t) (with respect to time) must be continuous.

This is guaranteed by describing the {y,z}-trajectories and the λ -profile by splines that are at

least quintic, i.e. of order 5. However, we chose the λ -spline to be of order 9; this leaves us

with 8 free parameters needed to satisfy the 8 constraints given by (57).

We implemented the algorithm in MATLAB, and solved the optimization problem with

MATLAB’s fmincon routine [53].

5. Experimental Setup

5.1 The Testbed

We have demonstrated the algorithm in question on custom quadrocopters operated in the ETH

Flying Machine Arena (FMA), a dedicated testbed for motion control research. The setup is

similar to [54,55]: The space is equipped with an 8-camera motion capture system that, for any

properly marked vehicle, provides millimeter-accurate position information and degree-precise

attitude data at 200 Hz. The localization data is sent to a PC, which runs the control algorithms

(including the iterative learning algorithm), and which in turn sends commands to the quadro-

copters. The flying vehicles are based on the Ascending Technologies Hummingbird platform

described in [56], with custom wireless communication and central onboard electronics. More

details about the test environment can be found in [18] and on the FMA webpage2.

2www.FlyingMachineArena.org

53

www.FlyingMachineArena.org

Paper I. Optimization-Based Iterative Learning

5.2 Quadrocopter Control

Each vehicle accepts four inputs: three angular rate commands (ωx,ωy,ωz), see Fig. 3, and a

mass-normalized collective thrust command fcoll . These inputs are usually provided by off-

board controllers.

For the experiments, we use two different modes for controlling the vehicle. The first mode,

referred to below as (C1), is used to stabilize the quadrocopter at the start and end position of

the trajectory. It is also used to return the quadrocopter to its initial position before starting a

new trial. In this mode, the off-board controller takes desired vehicle positions as an input and

closes the loop based on the camera information. The off-board controller calculates all four

commands and sends them to the vehicle.

To fly and learn the desired trajectory, we use a different control mode called (C2). In this

mode, the iterative learning scheme provides the collective thrust command fcoll and the roll

rate command ωx. The inputs ωy and ωz are used to stabilize the vehicle in the vertical plane.

These two inputs are computed by a separate off-board feedback controller that uses position

and attitude information of the vehicle.

An onboard controller does high-rate feedback control on the angular rates (ωx,ωy,ωz)
using rate gyro information. No feedback is done on the thrust command.

In summary, for (C2) the out-of-plane dynamics are stabilized using camera information;

the in-plane dynamics are driven by the feed-forward input signals of the iterative learning

scheme, fcoll and ωx. The onboard controller closes the loop on the roll rate input ωx to guar-

antee that the commanded value is actually achieved.

5.3 Implementation of Learning Algorithm

In order to test the proposed learning scheme on the real vehicles, we developed a software

framework that manages the learning process, and allows for efficient and reliable operation of

the quadrocopters. The program manages the operations of flying the quadrocopter to a defined

initial position, triggering the learning trajectory, and stabilizing the vehicle at the end of the

trajectory. At the core of this setup lies the learning algorithm of Sec. 2. This is implemented

in C++ using boost uBLAS libraries [57] for matrix operations and the CPLEX optimizer [43]

to solve the convex optimization problem.

We designed the overall program as a state machine consisting of two main states, the WAIT

and RUN mode, and a transition state called AUTOSTART, cf. Fig. 5. The general procedure is

as follows: first, the desired trajectory and the corresponding nominal input are loaded from a

mat file (generated by the algorithm presented in Sec. 4) and the settings and parameter values

of the learning algorithm are read from an XML file. Second, based on the nominal model

(Sec. 3), the lifted-domain representation and the Kalman gains are computed. After these

preliminary steps, the system enters the WAIT mode, where the quadrocopter hovers at a given

initial point with (C1), see Sec. 5.2. As soon as the user decides to start the experiment, the

AUTOSTART mode is activated. The system switches to a more aggressive controller of type

(C1) for more precise hover performance. The goal is to achieve accurate initial conditions for

the learning trajectory. As soon as the quadrocopter satisfies a set of predefined start conditions,

a new iteration is triggered. In the experiments presented herein, the start conditions are defined

on the translational velocity of the quadrocopter, its attitude, and the rate of change of the

54

6. Results

attitude:

|ẋ|, |ẏ|, |ż| < 0.01 m/s

|ψ|, |θ |, |φ | < 0.05 rad (59)

|ψ̇|, |θ̇ |, |φ̇ | < 0.2 rad/s,

where ψ,θ ,φ are the yaw, pitch and roll angles that entirely define the vehicle attitude (in

z-y-x Euler angle notation). The position is not considered because the quadrocopter motion

is invariant with respect to the initial position. The actual initial position is simply subtracted

from all following position measurements. Once the start conditions (59) are satisfied, the RUN

mode is activated and the desired trajectory is performed with (C2) using the most recent feed-

forward inputs of the learning algorithm, see Sec. 5.2. A trajectory is either fully completed

or is terminated prematurely if the termination condition of the extending horizon condition is

activated and satisfied. After an iteration, the system enters the WAIT mode, which performs

two tasks simultaneously: returning the quadrocopter to the initial position, and executing the

online update step of the learning algorithm (which computes a new input trajectory to be

applied in the next iteration).

The program allows the execution of an arbitrary number of iterations and stores all log

data.

6. Results

This section shows the experimental results of the proposed learning scheme applied to quadro-

tor vehicles. We consider two different trajectories: a diagonal trajectory and an S-shaped tra-

jectory. Both were generated by the method proposed in Sec. 4. With a set of default learning

parameters introduced in Sec. 6.1, the trajectories are learned after five to six iterations and

tracked with an accuracy as high as the stochastic noise level of the system allows (Sec. 6.3

and Sec. 6.4). In Sec. 6.5, we apply the extending horizon method to the diagonal trajectory

using two different termination conditions. The influence of different learning parameters is

shown in Sec. 6.6, where we evaluate the learning performance for different objective function

norms, as well as for different input penalty terms and varying noise model parameters. In

order to provide insight into the computational cost associated with the approach, we specify

the computation times of the different algorithmic steps in Sec. 6.7.

A video of the experiments presented herein is available online3, and as an electronic ap-

pendix to this article.

6.1 Default Learning Parameters

As highlighted in Sec. 2.2-2.4, the iterative learning scheme includes several design parameters.

The default parameter values used in the subsequent experiments are summarized in Tab. 2.

The applied state scaling factors sx are empirical values that map the deviations of x =
(y, ẏ,z, ż,φ) to similar magnitudes. Here, the position was scaled by a factor of 2 and the an-

gle by a factor of 5 as compared to the velocities. The state weighting sW in Tab. 2 penalizes

3The accompanying video is found at www.tiny.cc/QuadroLearnsTrajectory

55

www.tiny.cc/QuadroLearnsTrajectory

Paper I. Optimization-Based Iterative Learning

Load nominal

trajectories

XML file
Read XML

parameters

Preparations

while NOT(TERMINATE)

Number of Iteration ++

Ready!

Go back to

initial position

Briefly wait at

end position
Learning

User input

CPLEX

Separate thread

RUN Mode

Fly trajectory Check EH Log data

TERMINATE

WAIT Mode

"S" Key"T" Key

mat file

mat file

AUTOSTART

Figure 5. Flow diagram of the implemented learning procedure.

deviations of certain components in x more or less than others. We aim for a very precise po-

sition tracking. Achieving the desired velocities is less important, however, and angular errors

are completely neglected in the input update rule (28). It is reasonable to prioritize between

position and angular error. When an imprecise model is used in the trajectory generation, it

may be impossible to follow the position trajectories while also tracking the nominal angle

trajectory. We use the 2-norm as the default objective function norm. In the objective function,

we use a penalty on the input’s second derivative, according to (31), to obtain smooth inputs.

56

6. Results

Table 2. Default learning parameters for the quadrocopter experiments (in SI units).

Value Description

∆t 0.02 sampling time in seconds

ε j [0.5,0.3] process noise variance

η 0.05 measurement noise variance

d0 0 ∈ R
Nnx initial disturbance estimate

P0 I initial variance of disturbance

ℓ 2 norm of input update

sx [2,1,2,1,5] state scaling factors

sW [1,0.1,1,0.1,0] state weighting factors

TW I trajectory weighting matrix

α 0.08 1-norm input penalty factor

5e−5 2-norm input penalty factor

0.05 ∞-norm input penalty factor

As described in Sec. 2.2, we keep the measurement variance constant (η j = η). We choose

a larger process noise covariance ε j during the first iterations and choose a smaller noise co-

variance as the number of iterations increases. The default value for the first five iterations is

ε j = 0.5, j ∈ {1,2,3,4,5}. For all subsequent iterations, j > 5, ε j = 0.3 is used.

The choice of parameters is discussed in detail in Sec. 6.6, where experimental results are

shown for various parameter combinations.

6.2 Learning Performance Measure

In order to quantitatively evaluate and compare the learning performance of different iterations

and experiments, we introduce a weighted error function, which reflects the objective function

(28) of the learning algorithm (not considering the input penalty term):

ew, j =
∥∥Sy y j

∥∥
ℓ
, ℓ= {1,2,∞}, (60)

where y j denotes the lifted-domain output vector (12), whose entries are the measured devia-

tions from the reference output trajectory. The matrix Sy weights the output such that it best

reflects the defined learning objective (28). For this experiment, all states x = (y, ẏ,z, ż,φ) are

measured (cf. Sec. 3) and Sy = S is chosen, cf. (28). Note that y j denotes the lifted output

vector, while y is the horizontal position of the quadrocopter. The weighted error is obtained by

scaling and weighting the measured output error by the same scaling and weighting matrices

that were used in the objective function of the learning routine. In addition, the same norm ℓ as

in the input update (28) is used in (60), reflecting the main objective of the learning scheme. In

the following, we also refer to the weighted error (60) as ‘weighted state error’.

This type of performance measure, however, depends on the norm ℓ. In order to compare

the learning performance for different choices of ℓ (Sec. 6.6), we introduce another intuitive

57

Paper I. Optimization-Based Iterative Learning

0 0.5 1 1.5 2 2.5

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

It 1

It 2

It 3

It 4

y position [m]

z
p
o
si

ti
o
n
 [

m
]

Figure 6. Experiment 1: Learning a diagonal trajectory. The quadrocopter position in the yz-

plane is depicted for different iterations. The dashed black line shows the desired trajectory. The

trajectories of iterations 1-4 are drawn in black, iterations 5-10 are shown in grey color.

performance measure for the quadrocopter experiments. We use the average position error

along a trajectory:

epos, j =
1

N

N

∑
k=1

√
∆y(k)2 +∆z(k)2, (61)

where ∆y(k) ∈ R denotes the deviation of the quadrocopter’s horizontal position (from the

desired trajectory) at the discrete time k and, similarly, ∆z(k) ∈ R is the vertical deviation.

Since epos is independent of the objective function’s norm, it is used to compare the learning

performance of the algorithm for different objective function norms in Sec. 6.6.

6.3 Experiment 1: Diagonal Trajectory

The desired trajectory of the first experiment is a diagonal motion in the yz-plane, see dashed

black line in Fig. 6. Challenging for this and all subsequent motions is the coupling of the

inputs. Both inputs, fcoll and ωx, have an influence on both quadrocopter coordinates, the hori-

zontal and vertical position. Second, the quadrocopter is required to hover at the beginning and

the end of the trajectory. That is, the acceleration and de-acceleration phases at the beginning

and end of the trajectory must be learned precisely.

In the first iteration, we apply the nominal input (obtained from the method presented in

Sec. 4) to the quadrocopter. As depicted in Fig. 6, the resulting trajectory is far off. Despite

the large initial discrepancy, the vehicle learns to track the reference trajectory over the next

four iterations. Fig. 7 shows the corresponding evolution of the tracking error and Fig. 8 high-

lights the convergence of the feed-forward input corrections. Although the feed-forward input

converges, the corresponding trajectories in Fig. 6 vary around the desired trajectory, result-

ing in non-zero tracking errors (Fig. 7). These variations reflect an important characteristic

of feed-forward based learning approaches. The feed-forward input that is adapted during the

58

6. Results

1 2 3 4 5 6 7 8 9 10
0

50

100

150

200

250

Iteration

W
ei

g
h
te

d
 s

ta
te

 e
rr

o
r

Weighted state error

State error standard deviation

Figure 7. Experiment 1: Error convergence for the diagonal trajectory. The error is computed

according to (60). The dashed line illustrates the standard deviation of the tracking error when

applying the same diagonal-trajectory input to the vehicle and observing the variations in the

performed trajectories. It can be viewed as a measure of the noise level in the experimental

setup.

0 0.5 1 1.5 2
6

8

10

12

14

16

18

Time [s]

C
o
m

m
o
n
 t

h
ru

st
 [

m
/s

2
]

It 1

It 2

It 3

It 4−10

Figure 8. Experiment 1: The thrust input converges for an increasing number of executions of

the diagonal trajectory. The roll rate input converges similarly.

learning process (see Fig. 8) is only able to compensate for repetitive disturbances while any

non-repetitive noise directly affects the tracking performance. More precisely, the tracking

accuracy is lower-bounded by the level of stochastic (i.e. non-repetitive) noise that acts on the

system output.

In order to measure the non-repetitive noise level of our system, we repeatedly apply the

59

Paper I. Optimization-Based Iterative Learning

0 0.5 1 1.5 2 2.5

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

y position [m]

z
p
o
si

ti
o
n
 [

m
]

Nominal

Measured

Figure 9. Quadrocopter state trajectories for the same feed-forward input (applied repeatedly

to the vehicle). Note that the system output varies for identical inputs due to non-repetitive noise

acting on the system.

same diagonal-trajectory input and observe the variations in the output. Fig. 9 shows the cor-

responding state trajectories. We calculate the respective tracking errors and compute their

standard deviation. This value characterizes the system noise level and serves as a lower bound

for the achievable tracking error, illustrated in Fig. 8 by the dashed horizontal line.

The tracking error in Fig. 8 reaches magnitudes that are in the range of the non-repetitive

variability of the system. Consequently, the visible variations of the output trajectories (Fig. 6,

grey solid lines) are due to non-repetitive noise and are comparable in size to Fig. 9. We

conclude that the learning algorithm is able to effectively compensate for repetitive disturbances

and achieves the best possible tracking performance for the given overall system setup.

Moreover, this experiment proves the robustness of the proposed learning algorithm to mod-

eling errors (reflected by the large initial tracking error). Based on the simplified model of

Sec. 3, the algorithm is able to learn the desired trajectory in a few iterations.

Statistical information for the proposed learning scheme (including mean and variance of

the errors in Fig. 7) are presented in Sec. 6.6 and derived from performing the same learning

experiment several times. In Sec. 7, we discuss possibilities to decrease the system noise level

and consequently improve the tracking performance.

6.4 Experiment 2: S-shaped Trajectory

The proposed framework enables us to define and learn arbitrary trajectories in the vertical

plane. In the second experiment, we consider an S-shaped trajectory, cf. Fig. 10 dashed line.

The experimental results show the same system characteristics as discussed in Sec. 6.3 and

are summarized in Fig. 10-12: Starting from a poor initial performance, the tracking accuracy

improves quickly, but is bounded by the system’s inherent stochastic variability. Moreover,

despite the two outliers at iteration 5 and 10, the feed-forward corrections converge (Fig. 12)

to values that best compensates for the occurring repetitive disturbances. The Kalman filter,

60

6. Results

−1 −0.5 0 0.5 1

0

0.5

1

1.5

It 1

It 2

It 5
It 10

y position [m]

z
p
o
si

ti
o
n
 [

m
]

Figure 10. Experiment 2: Learning an S-shaped trajectory. The quadrocopter position in the

yz-plane is depicted for different iterations. The black dashed line shows the desired trajectory.

The trajectories of iterations 1,2,5,10 are drawn in black, iterations 3,4,6-9 are shown in grey

color.

which provides the disturbance estimate, handles outliers effectively by averaging them out

rather than over-adapting. The outliers may be caused by the more challenging motor actuation

required for the S-shaped trajectory, which implies larger changes and change rates in the single

motor thrusts. In brief, the experiment highlights the algorithm’s robustness to outliers caused

by non-repetitive noise.

6.5 Experiment 3: Extending Horizon

An additional component of the presented learning algorithm is the extending horizon fea-

ture. This feature terminates a trial as soon as a predefined termination condition is satisfied,

cf. Sec. 2.4, and is a means of guaranteeing that the actual motion stays close to the desired

trajectory. The following types of termination conditions (TC) are tested in experiments:

• TC1: Terminate the current trial if

|∆z| ≥ 0.1m. (62)

• TC2: Terminate the current trial if

√
(∆y)2 +(∆z)2 ≥ 0.2m. (63)

The same diagonal reference trajectory as in Sec. 6.3 is considered again. Fig. 13 and

Fig. 15 show learning results using (62) and (63), respectively. In both examples, the horizon

is gradually extended until, in iteration 5, the entire trajectory is flown within the prescribed

bound. Fig. 14 and Fig. 16 show the corresponding error trajectories. Note that in the second

61

Paper I. Optimization-Based Iterative Learning

1 2 3 4 5 6 7 8 9 10
0

50

100

150

200

250

Iteration

W
ei

g
h
te

d
 s

ta
te

 e
rr

o
r

Weighted state error

State error standard deviation

Figure 11. Experiment 2: Error convergence for the S-shaped trajectory. The error is com-

puted according to (60). The dashed line illustrates the standard deviation of the tracking error

when applying the same S-shaped trajectory input to the vehicle and observing the variations in

the performed trajectories. It can be viewed as a measure of the noise level in the experimental

setup.

0 0.5 1 1.5 2

4

6

8

10

12

14

16

Time [s]

C
o
m

m
o
n
 t

h
ru

st
 [

m
/s

2
]

It 1

It 2

It 3

It 4−10

Figure 12. Experiment 2: The input trajectories converge for an increasing number of execu-

tions of the S-shaped trajectory. The roll rate input converges similarly.

experiment (Fig. 15 and Fig. 16), the time horizon of iteration 3 is shorter than the one of it-

eration 2. In this case, the online learning update is performed only for the first part of the

trajectory, until the termination time of iteration 3, and all measurement information for larger

times (from earlier iterations) is discarded. For the particular bounds (62) and (63), extending

horizon learning takes a similar amount of iterations to converge as learning without a termina-

62

6. Results

0 0.5 1 1.5 2 2.26

−0.1
0

0.1

0.5

1

1.5

It 1

It 2

It 3

It 4 It 5

Time [s]

z
p
o
si

ti
o
n
 [

m
]

Figure 13. Experiment 3, TC1: Learning of the diagonal trajectory with extending horizon and

termination condition: |∆z| ≥ 0.1m. The learning horizon is gradually increased from iteration

to iteration. The black dashed line depicts the desired trajectory of the vertical quadrocopter

position over time, the shaded area represents the extending horizon bound, and the black dots

show the end of an executed trajectory.

tion condition, cf. Sec. 6.3. If smaller bounds are used, however, the learning may take many

more iterations or may not even converge. This is particularly the case if the bounds are smaller

than the noise level of the system, cf. Sec. 6.3.

6.6 Influence of Different Learning Parameters

We now discuss the influence of different parameter settings on the learning performance. We

use the diagonal trajectory as desired trajectory throughout this section, allowing us to com-

pare the subsequent experiments with previous results in Sec. 6.3 and 6.5. We also give more

insight into the typical characteristics of the proposed learning scheme, and attempt to justify

the choice of the default parameters (Tab. 2).

Unless otherwise stated, the parameter values given in Tab. 2 apply.

Choice of input penalty factor α When solving the optimization problem (28) with α = 0,

the feed-forward corrections we obtain are highly non-smooth and jitter within the allowed

bounds (43)-(46). This effect is observed even in noise-free simulations. One reason may be

the discretization that is inherent in the lifted model used in the optimization problem. Fig. 17

shows the input trajectories that are obtained in experiments after one execution of the learning

step with α = 0. Comparing Fig. 8 (α = 5e−5) to Fig. 17 illustrates the positive effect of

adding a penalty on the second derivative of the input (31). Smooth inputs are particularly

beneficial because they increase the repeatability of the experiment, and thus the effectiveness

of the learning. The system noise level is usually much higher when driving a system by fast

changing inputs.

For the 2-norm optimization problem, the smallest α value still yielding smooth inputs is

α = 5e−5 (cf. Tab. 2). For larger values, the learning performance may be corrupted as more

63

Paper I. Optimization-Based Iterative Learning

0 0.5 1 1.5 2 2.26

−0.02

0

0.02

0.04

0.06

0.08

0.1

It 1 It 2 It 3 It 4 It 5

Time [s]

z
p

o
si

ti
o

n
 e

rr
o

r
[m

]

Figure 14. Experiment 3, TC1: Learning of the diagonal trajectory with extending horizon

and termination condition: |∆z| ≥ 0.1m. The solid black lines illustrate the z-position error and

the black dots show the end of an iteration. The shaded area represents the termination condition

(62). The vertical dashed-dotted line marks the end of the desired trajectory.

emphasis is put on minimizing the input’s second derivative than on learning to track the de-

sired trajectory. Smaller values of α result in non-smooth inputs, which have a fatal effect on

the learning performance. Fig. 18 shows the statistic error convergence for different values of

α .

Choice of input penalty matrix D The matrix D is used to penalize either the input or its

approximate first or second derivative, cf. (28) and Sec. 2.3. When performing and learning

the diagonal trajectory with the quadrocopter, it is possible to obtain smooth inputs with either

of those choices. Interestingly, all three types of input penalty terms result in similar learning

performances, as illustrated in Fig. 19. It is, however, reasonable to penalize the input’s second

derivative since jittering corresponds to large absolute values of the second derivative.

Choice of input update norm For the objective function (28), three different norms ℓ ∈
{1,2,∞} can be chosen. The diagonal trajectory is learned successfully by all three input

update rules as illustrated in Fig. 20. In order to compare the learning performance of different

norms, we used the average position error of the quadrocopter defined by (61). All three norms

show fast error convergence.

Choice of noise covariances The performance of the disturbance estimation has a large in-

fluence on the learning behavior. Lying at the heart of the Kalman equations (22), the noise

model (19) is characterized mainly by the process variance ε j and the measurement variance

η , cf. (24) and (25). Both are assumed to be constant over iterations, i.e. ε j = ε . The ratio

ε/η expresses the belief in the Kalman filter measurement model versus the process model

(19). Since the Kalman filter uses a very simple process model and the motion capture system

64

7. Advantages & Limitations

0 0.5 1 1.5 2

0

0.5

1

1.5

It 1

It 2

It 3

It 4

It 5

y position [m]

z
p
o
si

ti
o
n
 [

m
]

Figure 15. Experiment 3, TC2: Learning of the diagonal trajectory with extending horizon

and termination condition:

√
(∆y)2 +(∆z)2 ≥ 0.2m. The black dashed line shows the desired

trajectory in the yz-plane, the shaded disks represent the extending horizon bound, and the black

dots show the end of an executed trajectory.

provides accurate measurement data, it is obvious to choose ε/η ≫ 1. The larger the ratio

ε/η , the more emphasis is placed on the measurements. Moreover, a large value of ε allows

the estimated disturbance to change rapidly. Therefore, a large ratio ε/η should result in a

fast convergence of the disturbance estimate and, as a consequence, of the tracking error. As

expected, the larger the ratio ε/η , the faster the error converges, cf. Fig. 21.

6.7 Computation Times

The objective of this section is to relate the theoretic complexity analysis (Sec. 2.6) to real

computation times and develop an intuition for the computational cost of the algorithm. As an

example, we use the diagonal trajectory of Sec. 6.3. The trajectory comprises N = 113 discrete

steps (t f = 2.26s and ∆t = 0.02s). We recall that the number of inputs is nu = 2, the number of

states is nx = 5, and the number of constrained quantities is nc = 6, where for each constrained

quantity an upper and lower bound is defined. We run the algorithm on a standard desktop PC

(Windows 7, 64-bit; quad-core processor with 2.8 GHz; 4 GB RAM) for Jmax = 10 iterations

and solve the optimization problem with CPLEX Version 11.2. As summarized in Tab. 3, the

computation times are in the range of seconds, even for solving the optimization problem with

hundreds of decision variables and thousands of constraints.

7. Advantages & Limitations

The experiments in the previous section demonstrated the effectiveness of the proposed learn-

ing. The tracking error was reduced to a level defined by the non-repetitive noise in the system,

65

Paper I. Optimization-Based Iterative Learning

0 0.5 1 1.5 2 2.26
0

0.05

0.1

0.15

0.2

It 1
It 2

It 3 It 4

It 5

Time [s]

D
is

ta
n
ce

 e
rr

o
r

[m
]

Figure 16. Experiment 3, TC2: Learning of the diagonal trajectory with extending horizon and

termination condition: :

√
(∆y)2 +(∆z)2 ≥ 0.2m. The black solid lines illustrate the distance

error evolution and the black dots show the end of an iteration. The shaded area represents

the termination condition (63). The vertical dashed-dotted line marks the end of the desired

trajectory.

Table 3. Computation times in seconds for the diagonal trajectory.

1-norm 2-norm ∞-norm

Offline preparation

Kalman gains 1.5 1.5 1.5

Online refinement

Estimate update 0.028 0.028 0.028

Input update / Optimization 1.34 0.17 0.87

Number of decision variables 1018 226 228

Number of constraints 2938 1356 2938

while any repetitive disturbances were compensated for by proper acausal input corrections.

The learning algorithm proved to be robust to the choice of learning parameters, cf. Sec. 6.6.

The separation of disturbance estimation and input update allowed for an intuitive interpretation

and tuning of the learning algorithm parameters.

Limitations of the approach are caused by: (i) the prerequisites that must be fulfilled for

applying the proposed learning approach, and (ii) the requested quality of the final tracking

performance. Prerequisites of the approach are a model of the system dynamics and a method

for generating feasible trajectories given the model and constraints. Refer to Sec. 2.5 for more

66

7. Advantages & Limitations

0 0.5 1 1.5 2
5

10

15

20

Time [s]

C
o

m
m

o
n

 t
h

ru
st

 [
m

/s
2
]

It 1

It 2

0 0.5 1 1.5 2
−5

0

5

10

Time [s]

R
o

ll
 a

n
g

le
 r

at
e

[r
ad

/s
]

It 1

It 2

Figure 17. Iteration 1: The nominal input trajectory. Iteration 2: Input trajectory obtained

from the input update (28) after the first iteration. No input penalty term was active, i.e. α = 0

in (28). The jittering in the inputs is significant.

1 2 3 4 5 6 7 8

0

100

200

300

400

500

600

700

800

Iteration

W
ei

g
h
te

d
 s

ta
te

 e
rr

o
r

α = 5e−2

α = 5e−5

α = 5e−7

α = 5e−9

Figure 18. Learning performance for different input penalty factors α . The error is computed

according to (60). The figure shows the average error and its standard deviation obtained from

five independent learning experiments. Using very small α values leads to jittering in the input

which corrupts the learning performance, see dotted line.

details.

The tracking performance that can be achieved with the proposed method depends on the

level of noise that corrupts the system output. Non-repetitive noise cannot be compensated for

by the proposed feed-forward learning strategy and directly affects the tracking performance. A

measure of the system noise level is the variance of the system output when repeatedly applying

67

Paper I. Optimization-Based Iterative Learning

1 2 3 4 5 6 7 8

0

100

200

300

400

500

600

700

Iteration

W
ei

g
h

te
d

 s
ta

te
 e

rr
o

r

2
nd

 deriv.

1
st
 deriv.

Input directly

Figure 19. Learning performance for different choices of input penalty matrices D in (28).

The error is computed according to (60). For each iteration, we show the average error and its

standard deviation obtained from five independent learning experiments. Penalizing the second

derivative of the input results in small average and standard deviation values.

the same input. In order to increase the repeatability of the system and decrease the effect of

non-repetitive noise, one may choose to introduce underlying feedback loops, cf. [24,30,33,34].

For the quadrocopter example, we defined the system inputs on the level of thrusts and

rates, which implied a high level of non-repetitive noise resulting mainly from imperfect initial

conditions, unpredictable motor dynamics, and environmental noise like wind gusts during

flight. Experiments in the FMA have shown that the measured trajectories of a quadrocopter

differ significantly, even if the same input is applied, cf. Fig. 9. The variability of the observed

trajectories increases towards the end of the trajectory, which is caused by the fact that the entire

trajectory is flown without feedback on position or attitude. Angle errors at the beginning of

the trajectory, for instance, influence all subsequent angle values and inevitably add up over

an iteration. Thus, achieving an accurate initial state is crucial. To this end, we introduced

start conditions (see AUTOSTART mode in Sec. 5.3), which allow the quadrocopter to start an

iteration only if the initial state lies in the bounds (59). These start conditions significantly

improve the repeatability of the system, cf. Fig. 22 and Fig. 23, and are essential for the

experimental investigations in Sec. 6.

The quadrocopter experiment can be viewed as a proof-of-concept example, where thrust

and roll rate serve as inputs for two reasons: (i) for the sake of simplicity (the nominal model

is straight-forward to derive), and (ii) to show the limiting case where no global measurements

from the cameras are used during a trajectory execution. To obtain a more versatile learning

scheme for the quadrocopters and to lower the effect of non-repetitive noise on the system

output, a next step may be to close feedback loops on position and attitude. The input and

corresponding feed-forward corrections may then be defined on the level of position and atti-

tude. Experiments in the FMA have shown that for this setup, the trajectory variations, when

repeatedly applying the same input, lie within one to two centimeters.

68

8. Conclusions

1 2 3 4 5 6 7 8

0

50

100

150

Iteration

P
o

si
ti

o
n

 e
rr

o
r

[m
]

1−norm

2−norm

∞−norm

Figure 20. Learning performance for different objective function norms ℓ. Shown is the po-

sition error as defined by (61). For each iteration, we show the average error and its standard

deviation obtained from ten independent learning experiments. All norms show reasonable con-

vergence behavior. We observe fast convergence and small standard deviations for the 1- and

2-norm with increasing number of iterations.

In practice, we expect the proposed learning scheme to be used for quadrotor vehicles that

have access to (possibly rare) position and/or attitude measurements (for example from GPS),

and that use this information for feedback. As mentioned in Sec. 1.1, feed-forward adaptation

is especially beneficial if feedback is available with low rate only. In this case, feedback is

not able to react fast enough to allow for precise tracking but can still be used as correcting

action in a feed-forward based approach. Such a setup may be used for practical applications

including the ones stated in Sec. 1.1.

8. Conclusions

This paper presents an optimization-based iterative learning approach for trajectory tracking.

Optimality is achieved in both the estimation of the recurring disturbance and the following

input update step, which optimally compensates for the disturbance with an updated feed-

forward input signal. While the first method is borrowed from classical control theory, the latter

originates from mathematical optimization theory and uses a computationally efficient state-of-

the art convex optimization solver. Input and state constraints are explicitly taken into account.

Depending on the problem under consideration, the overall learning behavior can be controlled

by changing the noise characteristics in the estimation step or the optimization objective, or by

assigning different weights on different states and different parts of the trajectory.

The approach was successfully applied to quadrotor vehicles. It has been shown that tra-

jectory tracking can be achieved by pure feed-forward adaptation of the input signal. The

accuracy of the tracking is limited by the level of non-repetitive noise. In future research, the

69

Paper I. Optimization-Based Iterative Learning

1 2 3 4 5 6 7 8

0

100

200

300

400

500

Iteration

W
ei

g
h

te
d

 s
ta

te
 e

rr
o

r

ε/η = 4

ε/η = 10

ε/η = 20

Figure 21. Learning performance for different noise settings. The values ε and η are constant

over iterations. The error is computed according to (60). For each iteration, we show the average

error and its standard deviation obtained from five independent learning experiments. The larger

the ratio ε/η , the faster the error convergence and the smaller the standard deviation.

−0.02 0 0.02 0.04 0.06
−0.02

0

0.02

0.04

0.06

y position [m]

z
p
o
si

ti
o
n
 [

m
]

Nominal

Measured

Figure 22. Measured quadrocopter position at the start of the diagonal trajectory when not

using an AUTOSTART mode, cf. Sec. 5.3. The entire trajectory is influenced by the initial state.

final tracking accuracy can be increased by incorporating feedback from position and/or attitude

measurements (refer to Sec. 7). Furthermore, the approach is equally feasible for trajectories in

three dimensions, especially when one considers that none of the calculations must be done in

real time. In the 3D case, the number of inputs and constrains doubles and the number of states

increases from five to nine.

70

A. Appendix

−0.02 0 0.02 0.04 0.06

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

y position [m]

z
p
o
si

ti
o
n
 [

m
]

Nominal

Measured

Figure 23. Measured quadrocopter position at the start of the diagonal trajectory for more

restrictive start tolerance values enforced by the AUTOSTART mode, cf. Fig. 5. This start

procedure increases the repeatability of the system.

A. Appendix

A.1 Input Update as Convex Optimization Problem

The update law defined in (28) can be transformed into a convex optimization problem of the

form:

min
z

(
1

2
zTV z+ vT z

)
subject to Wz ≤ w, (64)

where z represents the vector of decision variables and V is a symmetric positive semi-definite

matrix. The number of constraints is defined by the length of w. We call (64) a ‘linear program’

if V is zero and a ‘quadratic program’ otherwise, cf. [36].

For simplicity, we consider α = 0 in the following derivations. However, similar arguments

can be made for arbitrary α > 0. In case of norms ‖·‖ℓ , ℓ ∈ {1, ∞}, which are inherently

nonlinear, non-quadratic functions, (28) is re-formulated by extending the original vector of

decision variables u j+1 and adding additional inequality constraints. Thus, in case of the 1-

norm, the objective function in (28) is replaced by

min
u j+1, e

I
T e subject to − e ≤ S

(
Fu j+1 + d̂ j

)
≤ e , (65)

where e ∈ R
Nnx and I represent a vector of ones, I = [1, 1, 1, . . .]T ∈ R

Nnx . Similarly, for the

maximum norm, the extended equation reads as

min
u j+1, e

e subject to − e I ≤ S
(

Fu j+1 + d̂ j

)
≤ e I (66)

71

Paper I. Optimization-Based Iterative Learning

with e ∈ R. In both cases, the constraints in (28) must still be satisfied. The 2-norm results in

the following objective function:

min
u j+1

(
Fu j+1 + d̂ j

)T

ST S
(

Fu j+1 + d̂ j

)
. (67)

Acknowledgements

This research was funded in part by the Swiss National Science Foundation (SNSF). The au-

thors thank the anonymous reviewers for their thoughtful comments.

References

[1] Q.-L. Zhou, Y. Zhang, Y.-H. Qu, and C.-A. Rabbath, “Dead reckoning and Kalman filter

design for trajectory tracking of a quadrotor UAV,” in Proceedings of the IEEE/ASME

International Conference on Mechatronics and Embedded Systems and Applications

(MESA), 2010, pp. 119–124.

[2] S. Bouabdallah and R. Siegwart, “Backstepping and sliding-mode techniques applied to

an indoor micro quadrotor,” in Proceedings of the IEEE International Conference on

Robotics and Automation (ICRA), 2005, pp. 2247–2252.

[3] A. Mokhtari and A. Benallegue, “Dynamic feedback controller of Euler angles and wind

parameters estimation for a quadrotor unmanned aerial vehicle,” in Proceedings of the

IEEE International Conference on Robotics and Automation (ICRA), vol. 3, 2004, pp.

2359–2366.

[4] Z. Zuo, “Trajectory tracking control design with command-filtered compensation for a

quadrotor,” IET Control Theory & Applications, vol. 4, no. 11, pp. 2343–2355, 2010.

[5] T. Madani and A. Benallegue, “Backstepping control for a quadrotor helicopter,” in

Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems

(IROS), 2006, pp. 3255–3260.

[6] D. Lee, T. Burg, D. Dawson, D. Shu, B. Xian, and E. Tatlicioglu, “Robust tracking control

of an underactuated quadrotor aerial-robot based on a parametric uncertain model,” in

Proceedings of the IEEE International Conference on Systems, Man and Cybernetics

(SMC), 2009, pp. 3187–3192.

[7] G. Raffo, M. Ortega, and F. Rubio, “Backstepping/nonlinear H∞ control for path tracking

of a quadrotor unmanned aerial vehicle,” in Proceedings of the American Control

Conference (ACC), 2008, pp. 3356–3361.

[8] Q.-L. Zhou, Y. Zhang, C.-A. Rabbath, and D. Theilliol, “Design of feedback linearization

control and reconfigurable control allocation with application to a quadrotor UAV,” in

Proceedings of the Conference on Fault-Tolerant Systems (SysTol), 2010, pp. 371–376.

72

References

[9] S. Al-Hiddabi, “Quadrotor control using feedback linearization with dynamic extension,”

in Proceedings of the International Symposium on Mechatronics and its Applications

(ISMA), 2009, pp. 1–3.

[10] B. Zhu and W. Huo, “Trajectory linearization control for a quadrotor helicopter,” in

Proceedings of the IEEE International Conference on Control and Automation (ICCA),

2010, pp. 34 –39.

[11] K. Alexis, G. Nikolakopoulos, and A. Tzes, “Constrained-control of a quadrotor heli-

copter for trajectory tracking under wind-gust disturbances,” in Proceedings of the IEEE

Mediterranean Electrotechnical Conference (MELECON), 2010, pp. 1411 –1416.

[12] P. Bauer, B. Kulcsar, and J. Bokor, “Discrete time minimax tracking control with

state and disturbance estimation II: Time-varying reference and disturbance signals,” in

Proceedings of the Mediterranean Conference Control and Automation (MED), 2009, pp.

486 –491.

[13] C. L. Castillo, W. Moreno, and K. P. Valavanis, “Unmanned helicopter waypoint trajectory

tracking using model predictive control,” in Proceedings of the Mediterranean Conference

on Control Automation, 2007, pp. 1–8.

[14] S. L. Waslander, G. M. Hoffmann, J. S. Jang, and C. Tomlin, “Multi-agent quadrotor

testbed control design: integral sliding mode vs. reinforcement learning,” in Proceedings

of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS),

2005, pp. 3712–3717.

[15] T. Dierks and S. Jagannathan, “Output feedback control of a quadrotor UAV using neural

networks,” IEEE Transactions on Neural Networks, vol. 21, no. 1, pp. 50–66, 2010.

[16] C. Nicol, C. J. B. Macnab, and A. Ramirez-Serrano, “Robust adaptive control of a

quadrotor helicopter,” Mechatronics, vol. 21, no. 6, pp. 927–938, 2011.

[17] C. Diao, B. Xian, Q. Yin, W. Zeng, H. Li, and Y. Yang, “A nonlinear adaptive control

approach for quadrotor UAVs,” in Proceedings of the Control Conference (ASCC), 2011,

pp. 223–228.

[18] S. Lupashin, A. P. Schoellig, M. Sherback, and R. D’Andrea, “A simple learning strategy

for high-speed quadrocopter multi-flips,” in Proceedings of the IEEE International

Conference on Robotics and Automation (ICRA), 2010, pp. 1642–1648.

[19] D. Mellinger, N. Michael, and V. Kumar, “Trajectory generation and control for precise

aggressive maneuvers with quadrotors,” in Proceedings of the International Symposium

on Experimental Robotics, 2010.

[20] S. Lupashin and R. D’Andrea, “Adaptive open-loop aerobatic maneuvers for quadro-

copters,” in Proceedings of the IFAC World Congress, vol. 18, no. 1, 2011, pp. 2600–2606.

[21] R. Ritz, M. Hehn, S. Lupashin, and R. D’Andrea, “Quadrotor performance benchmarking

using optimal control,” in Proceedings of the IEEE/RSJ International Conference on

Intelligent Robots and Systems (IROS), 2011, pp. 5179–5186.

73

Paper I. Optimization-Based Iterative Learning

[22] A. P. Schoellig and R. D’Andrea, “Optimization-based iterative learning control for

trajectory tracking,” in Proceedings of the European Control Conference (ECC), 2009,

pp. 1505–1510.

[23] S. Arimoto, S. Kawamura, and F. Miyazaki, “Bettering operation of robots by learning,”

Journal of Robotic Systems, vol. 1, no. 2, pp. 123–140, 1984.

[24] D. A. Bristow, M. Tharayil, and A. G. Alleyne, “A survey of iterative learning control,”

IEEE Control Systems Magazine, vol. 26, no. 3, pp. 96–114, 2006.

[25] H.-S. Ahn, K. L. Moore, and Y. Chen, Iterative Learning Control: Robustness and

Monotonic Convergence for Interval Systems (Communications and Control Engineer-

ing), 1st ed. Springer, 2007.

[26] M. Q. Phan and R. W. Longman, “A mathematical theory of learning control for

linear discrete multivariable systems,” in Proceedings of the AIAA/AAS Astrodynamics

Conference, 1988, pp. 740–746.

[27] K. L. Moore, “Multi-loop control approach to designing iterative learning controllers,” in

Proceedings of the IEEE Conference on Decision and Control (CDC), vol. 1, 1998, pp.

666–671.

[28] N. Amann, D. H. Owens, and E. Rogers, “Iterative learning control using optimal

feedback and feedforward actions,” International Journal of Control, vol. 65, no. 2, pp.

277–293, 1996.

[29] K. S. Lee, J. Lee, I. Chin, J. Choi, and J. H. Lee, “Control of wafer temperature uniformity

in rapid thermal processing using an optimal iterative learning control technique,”

Industrial and Engineering Chemistry Research, vol. 40, no. 7, pp. 1661–1672, 2001.

[30] M. Cho, Y. Lee, S. Joo, and K. S. Lee, “Semi-empirical model-based multivariable

iterative learning control of an RTP system,” IEEE Transactions on Semiconductor

Manufacturing, vol. 18, no. 3, pp. 430–439, 2005.

[31] R. Tousain, E. van der Meche, and O. Bosgra, “Design strategy for iterative learning

control based on optimal control,” in Proceedings of the IEEE Conference on Decision

and Control (CDC), vol. 5, 2001, pp. 4463–4468.

[32] J. K. Rice and M. Verhaegen, “A structured matrix approach to efficient calculation of

LQG repetitive learning controllers in the lifted setting,” International Journal of Control,

vol. 83, no. 6, pp. 1265–1276, 2010.

[33] I. Chin, S. J. Qin, K. S. Lee, and M. Cho, “A two-stage iterative learning control technique

combined with real-time feedback for independent disturbance rejection,” Automatica,

vol. 40, no. 11, pp. 1913–1922, 2004.

[34] K. Barton, S. Mishra, and E. Xargay, “Robust iterative learning control: L1 adaptive

feedback control in an ILC framework,” in Proceedings of the American Control

Conference (ACC), 2011, pp. 3663 –3668.

74

References

[35] O. Purwin and R. D’Andrea, “Performing aggressive maneuvers using iterative learning

control,” in Proceedings of the IEEE International Conference on Robotics and Automa-

tion (ICRA), 2009, pp. 1731–1736.

[36] S. Boyd and L. Vandenberghe, Convex Optimization. Cambridge University Press, 2004.

[37] Y. Chen and C. Wen, Iterative Learning Control: Convergence, Robustness and Applica-

tions (Lecture Notes in Control and Information Sciences), 1st ed. Springer, 1999.

[38] B. Bamieh, J. B. Pearson, B. A. Francis, and A. Tannenbaum, “A lifting technique for

linear periodic systems with applications to sampled-data control,” Systems & Control

Letters, vol. 17, no. 2, pp. 79–88, 1991.

[39] M. Norrloef and S. Gunnarsson, “Time and frequency domain convergence properties in

iterative learning control,” International Journal of Control, vol. 75, no. 14, pp. 1114–

1126, 2002.

[40] R. W. Longman, “Iterative learning control and repetitive control for engineering

practice,” International Journal of Control, vol. 73, no. 10, pp. 930–954, 2000.

[41] B. D. O. Anderson and J. B. Moore, Optimal Filtering (Dover Books on Engineering).

Dover Publications, 2005.

[42] C. K. Chui and G. Chen, Kalman Filtering: with Real-Time Applications (Springer Series

in Information Sciences). Springer, 1998.

[43] IBM ILOG CPLEX Optimizer, last accessed feb 08, 2012. [Online]. Available: http://

www-01.ibm.com/software/integration/optimization/cplex-optimizer/

[44] P. Pounds, R. Mahony, and P. Corke, “Modelling and control of a quad-rotor robot,” in

Proceedings of the Australasian Conference on Robotics and Automation, 2006.

[45] H. Huang, G. Hoffmann, S. Waslander, and C. Tomlin, “Aerodynamics and control of

autonomous quadrotor helicopters in aggressive maneuvering,” in Proceedings of the

IEEE International Conference on Robotics and Automation (ICRA), 2009, pp. 3277–

3282.

[46] G. Hoffmann, S. Waslander, and C. Tomlin, “Quadrotor helicopter trajectory tracking

control,” in Proceedings of the AIAA Guidance, Navigation and Control Conference and

Exhibit, 2008.

[47] I. Cowling, O. Yakimenko, J. Whidborne, and A. Cooke, “A prototype of an autonomous

controller for a quadrotor UAV,” in Proceedings of the European Control Conference

(ECC), 2007, pp. 1–8.

[48] Y. Bouktir, M. Haddad, and T. Chettibi, “Trajectory planning for a quadrotor helicopter,”

in Proceedings of the Mediterranean Conference on Control and Automation, 2008, pp.

1258–1263.

[49] Curve Fitting Toolbox Splines and MATLAB Splines, last accessed Feb 08, 2012.

[Online]. Available: http://www.mathworks.com/help/toolbox/curvefit/f2-10452.html

75

http://www-01.ibm.com/software/integration/optimization/cplex-optimizer/
http://www-01.ibm.com/software/integration/optimization/cplex-optimizer/
http://www.mathworks.com/help/toolbox/curvefit/f2-10452.html

Paper I. Optimization-Based Iterative Learning

[50] C. Zhang, N. Wang, and J. Chen, “Trajectory generation for aircraft based on differential

flatness and spline theory,” in Proceedings of the International Conference on Information

Networking and Automation (ICINA), vol. 1, 2010, pp. V1–110–V1–114.

[51] S.-H. Lin and F.-L. Lian, “Study of feasible trajectory generation algorithms for control of

planar mobile robots,” in Proceedings of the IEEE International Conference on Robotics

and Biomimetics (ROBIO), 2005, pp. 121–126.

[52] A. Piazzi and C. Guarino Lo Bianco, “Quintic G2-splines for trajectory planning of

autonomous vehicles,” in Proceedings of the IEEE Intelligent Vehicles Symposium, 2000,

pp. 198–203.

[53] The Mathworks Optimization Toolbox, last accessed Feb 08, 2012. [Online]. Available:

http://www.mathworks.com/help/toolbox/optim/ug/fmincon.html

[54] J. P. How, B. Bethke, A. Frank, D. Dale, and J. Vian, “Real-time indoor autonomous

vehicle test environment,” IEEE Control Systems Magazine, vol. 28, no. 2, pp. 51–64,

2008.

[55] N. Michael, D. Mellinger, Q. Lindsey, and V. Kumar, “The GRASP Multiple Micro UAV

Testbed,” IEEE Robotics and Automation Magazine, vol. 17, no. 3, pp. 56–65, 2010.

[56] D. Gurdan, J. Stumpf, M. Achtelik, K.-M. Doth, G. Hirzinger, and D. Rus, “Energy-

efficient autonomous four-rotor flying robot controlled at 1 kHz,” in Proceedings of the

IEEE International Conference on Robotics and Automation (ICRA), 2007, pp. 361–366.

[57] Boost–Basic Linear Algebra Library, last accessed at 08 Feb 2012. [Online]. Available:

http://www.boost.org/doc/libs/1 46 1/libs/numeric/ublas/doc/index.htm

76

http://www.mathworks.com/help/toolbox/optim/ug/fmincon.html
http://www.boost.org/doc/libs/1_46_1/libs/numeric/ublas/doc/index.htm

Paper II

Iterative Learning of Feed-Forward Corrections for

High-Performance Tracking

Fabian L. Mueller · Angela P. Schoellig · Raffaello D’Andrea

Abstract

We revisit a recently developed iterative learning algorithm that enables systems to

learn from a repeated operation with the goal of achieving high tracking performance of a

given trajectory. The learning scheme is based on a coarse dynamics model of the system

and uses past measurements to iteratively adapt the feed-forward input signal to the system.

The novelty of this work is an identification routine that uses a numerical simulation of

the system dynamics to extract the required model information. This allows the learning

algorithm to be applied to any dynamic system for which a dynamics simulation is available

(including systems with underlying feedback loops). The proposed learning algorithm is

applied to a quadrocopter system that is guided by a trajectory-following controller. With

the identification routine, we are able to extend our previous learning results to three-

dimensional quadrocopter motions and achieve significantly higher tracking accuracy due

to the underlying feedback control, which accounts for non-repetitive noise.

Published in Proc. of the 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS),

2012. DOI 10.1109/IROS.2012.6385647.

c©2012 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other

uses, in any current or future media, including reprinting/republishing this material for advertising or promotional

purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted

component of this work in other works.

77

Paper II. Iterative Learning of Feed-Forward Corrections

1. Introduction

Current control systems usually regulate the behavior of dynamic systems by reacting to noise

and unexpected disturbances. Typically, they are based on a mathematical model of the system

dynamics. The performance of this approach is limited by the accuracy of the dynamics model

and the causality of the control action that is compensating only for disturbances as they occur.

Unfavorable effects of these limitations are observed especially when operating systems in

regimes where feedback is not able to react in time and the dynamic behavior is difficult to

identify. To achieve high tracking performance in such cases, we propose data-based control

approaches that are able to store and interpret information from past executions, and infer the

correct actions for future experiments.

We build upon the iterative learning scheme previously presented [1, 2], which relies on a

coarse dynamics model of the system under consideration when interpreting past measurements

and updating the feed-forward input after each iteration. In contrast to [1, 2], where the system

model was derived analytically (e.g. from first principles), this work introduces a numerical

identification routine that extracts the required model information from a dynamics simulation.

The novel identification routine allows us to apply the learning algorithm to (complex) systems

where no analytical model is available, but where a numerical simulation is. This generalized

approach comes at a slightly higher computational cost due to the required numerical model

extraction. The resulting learning framework is conceptually simple and allows for an acausal

correction, which anticipates and compensates for recurring disturbances before they occur.

The latter distinguishes our approach from other iterative approaches, which iteratively update

the feedback law (cf. [3] and references therein) or adapt the reference input online [4].

The proposed learning algorithm is applied to quadrotor vehicles in the ETH Flying Ma-

chine Arena (FMA), cf. [5]. Quadrocopters offer exceptional agility, and complex effects such

as aero- and motor-dynamics have a significant impact on the vehicle behavior. These effects

are difficult to model but can be compensated for by iterative learning.

The approach presented in this paper can be characterized as an iterative learning control

(ILC) technique. ILC became a popular research topic beginning with [6], and has since proven

to be a powerful method for high-performance reference tracking. A recent overview of ILC is

available in [7] and [8]. Work in [7, 9–11] has shown that ILC can be applied to systems with

underlying feedback loops, and [12] first applied ILC to quadrocopter trajectory tracking.

Below we present the learning algorithm, which is introduced as a two-step process of

first estimating the unknown repetitive disturbance (Sec. 2.2) and later compensating for it

(Sec. 2.3). The numerical system identification routine is presented in Sec. 3. In Sec. 6,

we apply the derived learning framework to quadrocopters and present the learning perfor-

mance in actual experiments. A video of the quadrocopter results is found at www.tiny.cc/

SlalomLearning. We conclude with a discussion of the approach in Sec. 7 and summarize the

results in Sec. 8.

2. Iterative Learning

The goal of the proposed learning scheme is to use iterative experiments to teach a dynamic

system how to precisely follow a desired trajectory, which is defined by a sequence of output

78

www.tiny.cc/SlalomLearning
www.tiny.cc/SlalomLearning

2. Iterative Learning

k ∈ {0, . . . ,N-1}

ũ j+1(k)

ũ j(k)

ỹ j(k)

u j(k) = unom(k)+ ũ j(k) y j(k) = ynom(k)+ ỹ j(k)

k ∈ {1, . . . ,N}

Figure 1. The general iterative learning framework considered in this paper: A complete trial

u j(k),k ∈ {0,1, . . . ,N − 1} is performed at iteration j. Based on the output deviation ỹ j(k), a

new input u j+1(k) is calculated and applied during the next trial.

values y∗(k), k ∈ {1,2, . . . ,N}, with N < ∞ being the trial length in discrete time steps. To im-

prove the tracking performance over iterations, the learning algorithm adapts the feed-forward

input values after each experiment, where u j(k), k ∈ {0,1, . . . ,N −1}, denotes the input of the

jth experiment. Fig. 1 shows the basic setup. We use discrete-time representations of signals,

which may be obtained by sampling the corresponding continuous-time signals.

The learning algorithm requires knowledge of the system’s key dynamics around the desired

trajectory, cf. Sec. 2.1. The algorithm builds upon this knowledge when exploiting the data

from past trials and updating the feed-forward input signal for the next trial. A Kalman filter

interprets the measurement of the last trial and incorporates it into the current estimate of the

modeling error (Sec. 2.2). The input update step takes the current estimate and returns a more

adequate input for the next trial by solving an optimization problem (Sec. 2.3).

The proposed learning scheme can be applied to dynamic systems with underlying feedback

loops. In Sec. 4 we show that the tracking accuracy of a quadrocopter guided by a trajectory-

following controller can be improved through iterative experiments, cf. Fig. 3.

2.1 System Representation

Our learning scheme is a model-based approach in the sense that it incorporates knowledge

about the key dynamics of the physical system under consideration. In particular, we consider

a mapping D ,

D : U → (Y,C), (1)

that relates the input series u = (u(0), . . . ,u(N − 1)) ∈ U ⊂ R
Nnu to the output sequence y =

(y(1), . . . ,y(N)) ∈Y ⊂R
Nny and to the constrained sequence c = (c(1), . . . ,c(N)) ∈C ⊂R

Nnc .

The vector c(·) ∈ R
nc includes all quantities that are subject to constraints. The mapping (1)

is not required to reproduce the real system’s behavior in the minutest detail but is expected to

approximate the dominating dynamics to first order. In Sec. 4.3 we show that a first-principles

model of the quadrocopter dynamics is sufficient to derive the mapping (1).

The learning algorithm presupposes an initial guess for the input, hereafter referred to as

the nominal input unom ∈ U , yielding (ynom,cnom) = D(unom). We choose unom such that the

79

Paper II. Iterative Learning of Feed-Forward Corrections

resulting ynom is close to the desired output sequence y∗ = (y∗(1), . . . ,y∗(N)). This is not re-

quired but represents a good starting point for the learning process. Subsequently, we consider

deviations from the nominal trajectories,

ũ(k) = u(k)−unom(k) , ỹ(k) = y(k)−ynom(k)

c̃(k) = c(k)− cnom(k),
(2)

and introduce the lifted vector representation, cf. [13]:

u = [ũ(0), ũ(1), . . . , ũ(N −1)]T ∈ R
Nnu

y = [ỹ(1), . . . , ỹ(N)]T ∈ R
Nny

c = [c̃(1), . . . , c̃(N)]T ∈ R
Nnc .

(3)

Note that we use u, y, c (in contrast to u, y, c) to represent deviations from the nominal input,

output and constraint sequence (namely, unom, ynom and cnom).

The key assumption of the learning algorithm is that static linear mappings

y = F u , c = Lu , (4)

with F ∈ R
Nny×Nnu and L ∈ R

Nnc×Nnu can be derived from (1), which capture the main dy-

namics of the real system along the nominal trajectories (unom,ynom,cnom) by relating the input

deviation time series ũ(k), k ∈ {0,1, . . . ,N −1}, to the corresponding time series of output and

constrained quantities deviations, ỹ(k), c̃(k), k ∈ {1,2, . . . ,N}.

The mapping (4) is motivated by the fact that any nonlinear dynamics model of the form

ẋ(t) = f(x(t),u(t), t), y(t) = g(x(t), t), (5)

can be written as (4) when time-discretized and linearized around the nominal trajectory, cf.

[1]. In Sec. 3 we present an algorithm that identifies the matrices F and L from a dynamics

simulation of (1). That is, we extract (4) from a numerical simulation and do not require an

explicit analytical representation of (1).

The two steps of the proposed learning algorithm, the disturbance estimation and the input

update, fundamentally rely on (4) and are explained in the following.

2.2 Disturbance Estimation

The purpose of the estimation step is to estimate a correction vector d ∈ R
Nny that is added

to the first mapping in (4) with the goal of improving the mapping’s accuracy. That is, the

input-output relation in (4) now reads as

y = F u+d. (6)

The evolution of the learning over a sequence of consecutive trials is modeled by

d j+1 = d j +ω j

y j = F u j +d j +µ j ,
(7)

80

2. Iterative Learning

where the subscript j indicates the jth execution of the desired task, j ∈ {0,1, . . .}. The vector

d j can be interpreted as repetitive disturbance along the trajectory, which is primarily caused

by unmodeled dynamics. The disturbance vector is subject only to slight random changes

ω j from iteration to iteration. We account for process and measurement noise by adding the

random variable µ j. Both stochastic variables, ω j ∼ N (0,ε jI) and µ j ∼ N (0,η jI), are trial-

uncorrelated sequences of zero-mean Gaussian white noise and, moreover, assumed to be in-

dependent. The scalars µ j, η j represent the corresponding variances and I denotes the identity

matrix.

We use an iteration-domain Kalman filter, which retains all available information from pre-

vious trials (namely the measured output deviations {y0,y1, . . . ,y j}) and calculates an updated

estimate d̂ j+1 of the disturbance vector after each iteration based on the relationship (7). Given

initial values for the disturbance estimate and its covariance matrix, d̂0 and P0, respectively, the

disturbance estimate is updated according to

d̂ j+1 = d̂ j + K j

(
y j −F u j − d̂ j

)
, (8)

where K j is the optimal Kalman gain, cf. [1].

2.3 Input Update

The learning algorithm is completed by the subsequent input update step. Making use of the

information provided by the estimator, cf. Sec. 2.2, we derive a model-based update rule that

calculates a new input sequence u j+1 ∈R
Nnu in response to the estimated disturbance d̂ j+1. The

goal of the learning algorithm is to find an input deviation vector u j+1, such that the system

output of the next iteration y j+1 follows the desired trajectory y∗ as closely as possible. In the

context of (2) and (3), this is equivalent to finding input corrections u j+1 that minimize

‖ynom +y j+1 −y∗‖= ‖y̌+y j+1‖ , (9)

where y̌ is defined as y̌ = ynom −y∗. Since y j+1 is unknown, we use its expected value instead,

E
[
y j+1

∣∣y0,y1, . . . ,y j

]
= F u j+1 + d̂ j+1 . (10)

The complete optimization problem that constitutes the update step is given as:

min
u j+1

∥∥∥S
(

y̌+Fu j+1 + d̂ j+1

)∥∥∥
ℓ
+ α

∥∥∥Du j+1

∥∥∥
ℓ

s.t. Lu j+1 � cmax , (11)

where the first term accounts for (9) and α ≥ 0 weights an additional penalty term that was in-

cluded into the objective function as a means of directly penalizing the input deviation (D = I)
or, depending on the choice of D, approximations of its derivatives. The original error sig-

nal can be scaled and weighted via the diagonal matrix S ∈ R
Nny×Nny . The vector norm

ℓ, ℓ ∈ {1, 2, ∞}, in (11) affects the convergence behavior and the result of the learning al-

gorithm. Further, constraints are taken explicitly into account. The lifted vector cmax denotes

the maximum allowed deviations from nominal values cnom.

The update law (11) is a convex optimization problem, cf. [14], which can be solved very

efficiently by existing software tools such as [15]. Moreover, if the optimization problem is

feasible, then there exists a local minimum that is globally optimal.

81

Paper II. Iterative Learning of Feed-Forward Corrections

3. System Identification

Both the estimation step (Sec. 2.2) and the input update step (Sec. 2.3) rely on information

about the system dynamics provided by the mapping (4). The goal of the system identification

routine is to obtain the mapping matrices F and L from a numerical simulation of D , cf. (1).

Using the nominal input unom, the simulation provides (ynom,cnom) =D(unom). The idea of the

proposed routine is to identify F and L by running a sequence of simulations with inputs u that

differ from the nominal input in exactly one of their (scalar) elements, that is

u = unom +∆u · e, ∆u ≪ 1 , (12)

where e is a vector of the form (0,0, . . . ,1,0,0, . . .) containing exactly one non-zero element.

We denote the ith element of the lifted input vector by the superscript (i) and write u(i) ∈ R.

The identification routine is summarized in Algorithm 1. By observing the changes in y and

c caused by the change in the input according to (12), the matrices F and L are computed,

allowing us to use (4) for predictions. However, these predictions are valid only around the

nominal trajectory ynom. Thus, if ynom is far from y∗, it might be necessary to re-identify

the system after some iterations around the current trajectories (u j,y j,c j), j > 0, in order to

ensure accurate predictions. Note that the mapping D must be continuous in u to obtain useful

approximations for F and L.

Algorithm 1 Identification routine

Require: Nominal input unom and mapping D .

1: /∗∗∗ Preliminary Step ∗∗∗/

2: Compute (ynom,cnom) = D(unom).

3: /∗∗∗ Identification Loop ∗∗∗/

4: Allocate: F ∈ R
Nny×Nnu , L ∈ R

Nnc×Nnu

5: Choose input increment ∆u ≪ 1, ∆u ∈ R.

6: for i = 1 : Nnu do

7: Define simulation inputs: u1 = u2 = unom

8: Change ith element: u
(i)
1 = u

(i)
1 +∆u

9: Change ith element: u
(i)
2 = u

(i)
2 −∆u

10: Simulation i.1: apply u1, store (y1,c1) = D(u1)
11: Simulation i.2: apply u2, store (y2,c2) = D(u2)

12: Compute ith column of F and L:

F(:, i) = (y2 −y1)/(2∆u)

L(:, i) = (c2 − c1)/(2∆u)
(13)

13: end for

14: return Lifted-domain mapping matrices F and L.

82

4. Experimental Setup

4. Experimental Setup

The iterative learning algorithm is applied to quadrocopter vehicles with the objective of pre-

cisely tracking trajectories in the three-dimensional space. The quadrocopters are operated

in the ETH Flying Machine Arena (FMA), a dedicated testbed for motion control research.

Similar to [16, 17], a motion capture system is used that provides precise position and atti-

tude measurements of the vehicles. The localization data is sent to a PC that runs the control

algorithms (including the iterative learning algorithm) and sends commands back to the quadro-

copters. More details about the test environment can be found in [18] and on the FMA web

page, cf. [5].

4.1 Quadrocopter Control

The quadrotor vehicles are controlled by an onboard controller (OBC) and by a trajectory-

following controller (TFC) that runs off board. The OBC accepts four inputs, the commanded

collective thrust fcoll,cmd and rotational body rates (ωx,cmd,ωy,cmd,ωz,cmd), and computes de-

sired motor forces fi,cmd i ∈ {a,b,c,d} using feedback from rate gyros, cf. Fig. 2. The thrust

and body rate commands are provided by the TFC, which takes desired position and yaw angle

(and, optionally, corresponding derivatives) as an input, cf. Fig. 3. The TFC closes the loop us-

ing position and attitude measurements provided by the motion capture camera system. Refer

to [19] for a detailed description of the TFC design.

The TFC is commonly used for trajectory tracking in the FMA. Applications include stan-

dard routines such as take-off and landing, as well as research projects like the ‘Music in Mo-

tion’ project, which builds upon the TFC and creates multi-vehicle performances that are de-

signed and synchronized to music (see [5] for more information). We typically operate the

TFC in two different modes: (C1) using desired quadrocopter position and yaw angle as inputs

(later called no feed-forward), and (C2) additionally feeding velocity and acceleration values

as inputs (called with feed-forward).

ωx,cmd

ωy,cmd ωz,cmd

fcoll,cmd
fd,cmd

fa,cmd

fb,cmd fc,cmd

Figure 2. The control inputs of the quadrocopter are the body rates ωx,cmd, ωy,cmd, and ωz,cmd

and the collective thrust fcoll,cmd. These inputs are converted by an onboard controller into motor

forces fi,cmd, i ∈ {a,b,c,d}.

83

Paper II. Iterative Learning of Feed-Forward Corrections

Figure 3. We build the iterative learning scheme around a quadrocopter that is controlled by a

trajectory following controller.

4.2 Applying ILC to Quadrocopters

The iterative learning scheme of Sec. 2 is applied to the quadrocopter system on the level of

position and yaw angle input. That is, the input and output in the framework of (1) are

u = [xcmd,ycmd,zcmd,ψcmd]
T (14)

y = [x,y,z, ẋ, ẏ, ż,φ ,θ ,ψ]T , (15)

where the quadrocopter’s position and velocity are denoted by (x,y,z) and (ẋ, ẏ, ż), respectively,

and (φ ,θ ,ψ) are the vehicle’s roll, pitch and yaw angle.

The vehicles are subject to several constraints that result from both limited actuator action

and limited range of sensor measurements. First, the thrust that each motor can provide is

limited by fmin ≤ fi ≤ fmax, i ∈ {a,b,c,d}. Second, due to the motor dynamics, the rate of

change of the thrust is also limited:
∣∣ ḟi

∣∣ ≤ ḟmax, i ∈ {a,b,c,d}. Furthermore, the onboard

rate gyroscopes have a limited measurement range, |ωx| ,
∣∣ωy

∣∣ , |ωz| ≤ Ωmax. The constrained

quantities are summarized by c(k) = (f (k),∆ f (k),Ω(k)) with f (k) = (fa(k), . . . , fd(k)), ∆ f =
(∆ fa(k), . . . ,∆ fd(k)) and Ω(k) = (ωx(k),ωy(k),ωz(k)), where ∆ fi represents a numerical ap-

proximation of the time derivative of fi. The constraints are taken explicitly into account in the

optimization problem (11).

4.3 Quadrocopter Dynamics

The simulated quadrocopter dynamics that are at the heart of the identification routine (cf.

Sec. 3) neglect all aerodynamic effects, motor dynamics or battery behavior, and aim to repro-

duce the fundamental dynamic effects only.

The continuous-time equations governing the quadrocopter’s dynamics (first-principles

model) are described in [19], and the dynamic behavior of

Ω(t) = (ωx(t),ωy(t),ωz(t))

84

5. Results

is modeled as a first-order system. Given Ω and Ω̇ at each time step, the motor forces

(fa, fb, fc, fd) are obtained from the rotational quadrocopter dynamics by solving a linear sys-

tem of equations, see e.g. [18]. Parameters such as the vehicle mass are found in [2].

5. Results

This section presents experimental results of the proposed learning scheme applied to quadro-

copters. We focus on a particular S-shaped trajectory, for which we show that our learning

algorithm significantly improves the tracking performance. While demonstrating the key char-

acteristics of the approach for a single trajectory, the learning scheme has proven to be equally

effective for arbitrary 3D trajectories, see video at www.tiny.cc/SlalomLearning where var-

ious slalom trajectories are learned.

5.1 Performance of Trajectory Following Controller (TFC)

We first use the standard TFC described in Sec. 4.1 to track the desired S-shaped trajectory (see

dashed line in Fig. 4). The resulting tracking performance of the TFC is depicted in Fig. 4 for

both control modes, (C1) and (C2). The input to the TFC is the desired trajectory itself (and

corresponding derivatives). The TFC’s tracking performance is unsatisfactory for both modes.

When repeatedly executing the trajectory, we observe a large repetitive tracking error compo-

nent and small variations between subsequent executions due to non-repetitive disturbances.

Consequently, the overall system behavior, including quadrocopter and TFC, is highly repet-

itive: repeated executions with the same input result in almost identical output trajectories.

Iterative learning schemes are well-suited for such systems, since they are able to learn how

to compensate for repetitive error components and thus are able to significantly improve the

tracking accuracy. Note that we chose a particularly aggressive S-shaped motion (see velocity

values in Fig. 4) to highlight the limitations of pure feedback control.

5.2 Tracking Performance Using Iterative Learning

Fig. 10 shows the output trajectories when applying the proposed iterative learning algorithm.

After two learning steps, the quadrocopter follows the desired trajectory closely. The tracking

error convergence is depicted in Fig. 6, where we consider the weighted error

ew, j :=
∥∥S
(
y̌+y j

)∥∥
2

(16)

as a performance measure reflecting the learning objective in (11). Starting from an initial per-

formance determined by the TFC performance, the learning scheme successfully compensates

for repetitive errors along the trajectory and, in 5 to 6 iterations, reduces the tracking error (16)

to values in the range of the stochastic (i.e. non-repetitive) noise level. The dashed red line in

Fig. 6 depicts the standard deviation of the tracking error when applying the same input to the

system and observing the variations of the performed trajectories. It can be viewed as a mea-

sure of the noise level in the system and represents a lower bound of the achievable tracking

accuracy. For an intuitive interpretation, the average position tracking error along the trajectory

after successful learning is in the range of 2–3 cm. This is also the accuracy that we achieve

when hovering the vehicle at a given point.

85

www.tiny.cc/SlalomLearning

Paper II. Iterative Learning of Feed-Forward Corrections

−1 −0.5 0 0.5

0

0.5

1

1.5

y [m]

z
[m

]

Length: 2.0m
Time: 2.48s
Max y−vel: 1.03m/s
Max z−vel: 1.34m/s

Figure 4. Tracking an S-shaped trajectory with the trajectory following controller (TFC). The

quadrocopter position in the yz-plane is depicted for two different control modes: (C1) the TFC

uses the desired position and yaw angle as inputs (dark blue), and (C2) the TFC uses additional

velocity and acceleration feed-forward terms as inputs (light blue). The dashed black line shows

the desired trajectory. A repeated operation shows that a large proportion of the tracking error is

repetitive and only small non-repetitive effects are visible.

As discussed in Sec. 2, the learning scheme iteratively updates the reference input signal

sent to the system. Fig. 12 depicts the y-position input signals of the initial trial and of iteration

7–9. The input trajectories converge over iterations until their variability is in the range of the

stochastic noise level. The final input trajectories, together with the estimated disturbance vec-

tor, comprise the knowledge that we gain from the iterative learning process. Fig. 12 shows that

the learned reference signal commands the left/right motion sooner (compensating for the delay

in the system) and with larger amplitudes (counteracting the system’s inherent attenuation).

6. Computational Complexity

Identification Routine. The number of simulations required to identify the mappings (4) is

linear in N and nu. According to Algorithm 1, we need exactly 2Nnu simulations. Obviously,

the computation time of a single simulation depends on the complexity and implementation of

(1). The identification of the trajectory of Sec. 6 takes 93 s on a standard desktop PC (Windows

7, 64-bit; quad-core @ 2.8 GHz, 4 GB RAM).

Learning Algorithm. A detailed complexity analysis of the learning algorithm can be

found in [2]. The biggest computational cost is associated with the solution of (11), which

takes 30 s in the example presented.

86

7. Advantages & Limitations

−0.5 0 0.5

0

0.5

1

1.5

y [m]

z
[m

]

It 0

It 1 It 2

Figure 5. Learning an S-shaped trajectory. The quadrocopter position in the yz-plane is de-

picted for different iterations. The dashed black line shows the desired trajectory. The trajecto-

ries of iterations 0–2 are drawn in different colors, iterations 3–9 are shown in light blue color.

7. Advantages & Limitations

The experimental results presented in the previous section showed that the learning algorithm

significantly improves the system’s tracking performance. We achieve a high tracking accuracy

due to the fact that the learning scheme embraces the quadrocopter including underlying feed-

back, cf. Fig. 3. This setup results in a highly repetitive system, where the feedback controller

compensates for most of the non-repetitive noise. The remaining non-repetitive noise acting

on the overall closed-loop system defines a lower bound on the achievable tracking accuracy.

Compared to our previous work [2], this bound has been significantly reduced with this setup.

The tracking error convergence speed depends on the prediction quality of the mapping (6),

which is based on the identified system dynamics, cf. Sec. 3. However, experimental results

suggest that the learning algorithm is very robust to inaccurate mappings. Moreover, after

a few executions of the learning step, the system may be re-identified around (u j,x j,y j) for

some j > 0 in order to obtain a more accurate mapping (4). Further, an inaccurate constraint

mapping c = Lu, cf. (4), may corrupt the learning by either allowing infeasible values or being

too restrictive. This can be overcome by estimating an additive correction vector dc similar to

d in (6); that is, c = Lu+dc.

8. Conclusions

This paper provided a conceptually simple and computationally efficient learning framework

for trajectory tracking. The approach is a generalization of our previous work. No analyti-

cal system model is required; instead, the algorithm is applicable to any dynamic system, for

which a numerical dynamics simulation is available. Because of the acausal learning action

87

Paper II. Iterative Learning of Feed-Forward Corrections

0 1 2 3 4 5 6 7 8 9

10
−1

10
0

10
1

Iteration

W
ei

g
h

te
d

 2
−

n
o

rm
 s

ta
te

 e
rr

o
r

TFC no feed−forward

TFC with feed−forward

State error std

Figure 6. Error convergence for the S-shaped trajectory. The error is computed according to

(16). The 10 independent learning experiments were performed. The circles and bars show

the average error and standard deviation, respectively. The dashed blue and green lines show

the average tracking error of the trajectory following controller with and without feed-forward

terms. The dashed red line represents the standard deviation of the tracking error when applying

the same input repeatedly. It can be viewed as a measure of the noise level in the experimental

setup.

that corrects for repetitive disturbances before they occur, the final tracking performance of the

proposed learning scheme outperforms pure feedback control. By basing the learning approach

on a coarse dynamics model of the system, we achieve fast convergence, usually in around 5

iterations. The novelty of this paper is that the dynamics model was derived from a numeri-

cal simulation, and that this identification routine, combined with the learning algorithm, were

experimentally evaluated on quadrotor vehicles guided by an underlying trajectory-following

controller.

References

[1] A. P. Schoellig and R. D’Andrea, “Optimization-based iterative learning control for

trajectory tracking,” in Proceedings of the European Control Conference (ECC), 2009,

pp. 1505–1510.

[2] A. P. Schoellig, F. L. Mueller, and R. D’Andrea, “Optimization-based iterative learning

for precise quadrocopter trajectory tracking,” Autonomous Robots, vol. 33, pp. 103–127,

2012.

[3] E. Todorov and W. Li, “A generalized iterative LQG method for locally-optimal feedback

control of constrained nonlinear stochastic systems,” in Proceedings of the American

Control Conference (ACC), vol. 1, 2005, pp. 300–306.

88

References

0 0.5 1 1.5 2 2.5
−1

0

1

Time [s]
In

p
u
t

x
−

p
o
s.

 [
m

]

0 0.5 1 1.5 2 2.5
−1

0

1

Time [s]

In
p
u
t

y
−

p
o
s.

 [
m

]

0 0.5 1 1.5 2 2.5
0

1

2

Time [s]

In
p
u
t

z−
p
o
s.

 [
m

]

Figure 7. Learned y-position inputs for the S-shaped trajectory. The initial input corresponds

to the desired output trajectory and is drawn in dark blue. The converged learning inputs (itera-

tions 7–9) are shown in light blue color.

[4] M. Kawato, “Feedback-error-learning neural network for supervised motor learning,”

Advanced Neural Computers, vol. 6, no. 3, pp. 365–372, 1990.

[5] “The Flying Machine Arena,” www.flyingmachinearena.org, last accessed March 07,

2012.

[6] S. Arimoto, S. Kawamura, and F. Miyazaki, “Bettering operation of robots by learning,”

Journal of Robotic Systems, vol. 1, no. 2, pp. 123–140, 1984.

[7] D. A. Bristow, M. Tharayil, and A. G. Alleyne, “A survey of iterative learning control,”

IEEE Control Systems Magazine, vol. 26, no. 3, pp. 96–114, 2006.

[8] H.-S. Ahn, K. L. Moore, and Y. Chen, Iterative Learning Control: Robustness and

Monotonic Convergence for Interval Systems (Communications and Control Engineer-

ing), 1st ed. Springer, 2007.

[9] I. Chin, S. J. Qin, K. S. Lee, and M. Cho, “A two-stage iterative learning control technique

combined with real-time feedback for independent disturbance rejection,” Automatica,

vol. 40, no. 11, pp. 1913–1922, 2004.

89

www.flyingmachinearena.org

Paper II. Iterative Learning of Feed-Forward Corrections

[10] M. Cho, Y. Lee, S. Joo, and K. S. Lee, “Semi-empirical model-based multivariable

iterative learning control of an RTP system,” IEEE Transactions on Semiconductor

Manufacturing, vol. 18, no. 3, pp. 430–439, 2005.

[11] K. Barton, S. Mishra, and E. Xargay, “Robust iterative learning control: L1 adaptive

feedback control in an ILC framework,” in Proceedings of the American Control

Conference (ACC), 2011, pp. 3663–3668.

[12] O. Purwin and R. D’Andrea, “Performing aggressive maneuvers using iterative learning

control,” in Proceeding of the IEEE International Conference on Robotics and Automation

(ICRA), 2009, pp. 1731–1736.

[13] B. Bamieh, J. B. Pearson, B. A. Francis, and A. Tannenbaum, “A lifting technique for

linear periodic systems with applications to sampled-data control,” Systems & Control

Letters, vol. 17, no. 2, pp. 79–88, 1991.

[14] S. Boyd and L. Vandenberghe, Convex Optimization. Cambridge University Press, 2004.

[15] “IBM ILOG CPLEX Optimizer,” http://www-01.ibm.com/software/integration/

optimization/cplex-optimizer/, last accessed February 08, 2012.

[16] J. P. How, B. Bethke, A. Frank, D. Dale, and J. Vian, “Real-time indoor autonomous

vehicle test environment,” IEEE Control Systems Magazine, vol. 28, no. 2, pp. 51–64,

2008.

[17] N. Michael, D. Mellinger, Q. Lindsey, and V. Kumar, “The GRASP multiple micro UAV

testbed,” IEEE Robotics and Automation Magazine, vol. 17, no. 3, pp. 56–65, 2010.

[18] S. Lupashin and R. D’Andrea, “Adaptive fast open-loop maneuvers for quadrocopters,”

Autonomous Robots, vol. 33, pp. 89–102, 2012.

[19] A. P. Schoellig, C. Wiltsche, and R. D’Andrea, “Feed-forward parameter identification

for precise periodic quadrocopter motions,” in Proceedings of the American Control

Conference (ACC), 2012, pp. 4313–4318.

90

http://www-01.ibm.com/software/integration/optimization/cplex-optimizer/
http://www-01.ibm.com/software/integration/optimization/cplex-optimizer/

Paper III

Limited Benefit of Joint Estimation in Multi-Agent

Iterative Learning

Angela P. Schoellig · Javier Alonso-Mora · Raffaello D’Andrea

Abstract

This paper studies iterative learning in a multi-agent framework, wherein a group of

agents simultaneously and repeatedly perform the same task. Assuming similarity between

the agents, we investigate whether exchanging information between the agents improves

an individual’s learning performance. That is, does an individual agent benefit from the

experience of the other agents? We consider the multi-agent iterative learning problem as

a two-step process of: first, estimating the repetitive disturbance of each agent; and second,

correcting for it. We present a comparison of an agent’s disturbance estimate in the case

of (I) independent estimation, where each agent has access only to its own measurement,

and (II) joint estimation, where information of all agents is globally accessible. When

the agents are identical and noise comes from measurement only, joint estimation yields a

noticeable improvement in performance. However, when process noise is encountered or

when the agents have an individual disturbance component, the benefit of joint estimation

is negligible.

Published in Asian Journal of Control, 2012. DOI: 10.1002/asjc.398.

c©2011 John Wiley and Sons Asia Pte Ltd and Chinese Automatic Control Society. The final publication is

available at www.onlinelibrary.wiley.com/doi/10.1002/asjc.398/abstract.

91

www.onlinelibrary.wiley.com/doi/10.1002/asjc.398/abstract

Paper III. Joint Estimation in Multi-Agent Iterative Learning

1. Introduction

Exploiting previous experience when repeatedly executing the same task is a logical way to

improve future performance in the presence of repetitive, unmodeled disturbances. Iterative

learning control (ILC), as first proposed in [1], achieves precise tracking behavior by effec-

tively incorporating past control information (such as applied input signals and measured out-

puts) when calculating the feedforward control action used in the next iteration, cf. [2, 3]. One

way of viewing ILC is as a two-step process of estimation and control: first identifying the

unknown repetitive disturbance and later compensating for it [4–9]. LQG-type solutions have

been proposed in [10–13], which estimate the tracking error and, based on this result, calculate

a new input trajectory by minimizing a quadratic cost function.

While ILC has proven to be successful in a variety of industrial applications (including

chemical process control, rotary systems and robotics), we have yet to identify if – and how –

ILC schemes can be generalized when facing homogeneous groups of agents or assemblies of

similar units (for example, robot arms in an industrial environment, or a fleet of mobile robots

in a warehouse [14, 15]). In other words, how can we cope with uncertainties in a multi-agent

framework? Is there a benefit of exchanging information between the agents? What kind of

information sharing makes sense? Cooperative iterative learning schemes were previously pro-

posed in [16]. Recently, ILC was applied to multi-agent systems, cf. [17], with the goal of

achieving formation control. While it has been established that the joint performance of all

agents is fundamental to the formation problem, this paper focuses on the potential for individ-

ual agents to improve their performance when conducting a task alongside a group of similar

agents conducting the same task. Preliminary results were first published in [18]. Analogous

questions were previously studied in the context of reinforcement learning, see [19].

The results of our research show that the passing of information between agents has limited

benefit for a large class of problems. This conclusion is based upon a comparison of indepen-

dent learning with a cooperative scheme, where information of all agents is globally accessible

to every agent. Similarity between the agents is assured by assuming that they have the same

nominal dynamics and share a common iteration-independent disturbance; however, they differ

in an additional individual disturbance component that is also constant across iterations. We

introduce iteration-dependent noise terms that account for measurement and process noise, and

obtain results for two limit cases: (i) pure process noise, and (ii) pure measurement noise. The

benefits of information sharing are negligible in (i). For (ii), we observe a greater improvement

in performance when a high similarity between the agents is guaranteed. From this point, we

are able to deduce the properties of the general mixed-noise case. In short: Individual agents in

an ILC framework do not, in most cases, benefit significantly from information sharing when

simultaneously learning the same task.

The paper is organized as follows: Section 2 formalizes the multi-agent iterative learning

problem and reduces it to a comparison of independent versus joint estimation. Section 3

compares both scenarios and presents the core result of the paper in terms of an upper bound

on the performance improvement due to joint estimation. Several numerical examples are

presented in Section 4 visualizing the derived analytical results. The work is summarized in

Section 5, whereas proofs are partly presented in the appendix, Section A.

92

2. Problem Statement

2. Problem Statement

2.1 Motivation

We begin by considering a group of N agents that simultaneously and repeatedly perform the

same task. A common way of describing an agent’s dynamics during a single run is the so-

called lifted system representation [20–22]. For each agent i ∈ I = {1,2, . . . ,N}, the input-

state relationship is modeled by a static matrix equation,

xi = F iui +di , (1)

which maps a given discrete-time input signal ui =
[

ui(0), ui(1), . . . , ui(T)
]T ∈R

(T+1)nu to the

corresponding lifted states xi ∈ R
(T+1)nx . In this context, (T + 1) samples represent a single

iteration and nu and nx denote the dimension of the input and state, respectively. The vectors

xi and ui are defined as the deviation from the desired task trajectory and the corresponding

nominal input, see for example [9]. The vector di represents an exogenous disturbance con-

stant across iterations, which captures model errors along the trajectory as well as repeating

disturbances and nonzero initial conditions [3,23,24]. We include a non-repetitive noise signal

ξ i
j in model (1) to account for process noise, which varies from trial to trial. Introducing the

iteration index j ∈ {1,2, . . .}, the state in the jth trial is given by

xi
j = F iui

j +di +ξ i
j , (2)

where ξ i
j is assumed to be zero-mean Gaussian white noise. The vector di is viewed as an

agent-dependent, normally-distributed random signal.

The agents’ output yi
j is corrupted by measurement noise and similarly represented in the

lifted domain,

yi
j = Gixi

j +µ i
j , (3)

where µ i
j is zero-mean Gaussian white noise. Similar to xi

j and ui
j, the output yi

j is interpreted

as the deviation from the nominal output trajectory.

Note that (2) and (3) might be the result of linearizing the agent dynamics about a desired

task trajectory. Refer to [9, 25] for a more detailed derivation.

In the above context, the goal of the iterative learning algorithm is to make the state xi
j (that

is, the deviation from the desired task trajectory) small or, more precisely, to reduce xi
j with

an increasing number of iterations j. The performance of each individual agent is gradually

improved by taking into account all information on previous iterations when estimating the dis-

turbance vector di. As the accuracy of the disturbance estimate increases, a more appropriate

open-loop input is determined, thereby compensating for the deficiencies in the modeled dy-

namics represented by the matrix F i. From xi
j conclusions can be drawn as to the performance

of execution j.

We now consider a homogeneous fleet of agents with the same nominal dynamics:

F i = F, Gi = I, ∀ i ∈ I , (4)

93

Paper III. Joint Estimation in Multi-Agent Iterative Learning

where I denotes the identity matrix. That is, the state is assumed to be measured directly.

Differences between the agents are captured in the disturbance vector di, which is composed of

a common part d0 that is identical for all agents, and an individual part di,ind ,

di = d0 +di,ind, ∀ i ∈ I . (5)

In this context, the question arises: Does an individual agent benefit from sharing information

with its companions? To what degree can the disturbance estimate di be improved by taking

into account the measurements of the other agents?

2.2 Simplified Model

Our main objective and central problem is to identify the disturbance di for each agent i in

the presence of both process and measurement noise. Based on the disturbance estimate, it

is possible to find the correcting input ui
j that best compensates for the repetitive disturbance

using a problem-specific optimization criterion, see for example [9]. Importantly, the correcting

input ui
j applied in each iteration is known. Focusing on the estimation problem, we consider a

condensed form of the above multi-agent system representation (2)-(3),

xi
j = di +ξ i

j (6)

yi
j = xi

j +µ i
j , (7)

which features the key noise and disturbance characteristics, but omits the known part Fui
j

without loss of generality. Equations (6) and (7) are summarized by

yi
j = di +υ i

j , (8)

where υ i
j = ξ i

j +µ i
j captures both process and measurement noise.

Moreover, assuming independence of the single entries in the vectors di and υ i
j and identical

noise characteristics, the problem reduces to the scalar case,

yi
j = d0 +di,ind +υ i

j , (9)

where all variables are scalar-valued. The probability distributions are given by

d0 ∼ N (0, α)

di,ind ∼ N (0, β)

υ i
j ∼ N (0, 1) , α, β ≥ 0,

(10)

where all quantities, υ i
j, i∈I , j ∈ {1, 2, . . .}, di,ind, i∈I , and d0, are assumed to be mutually

independent. The notation N (0, α) represents a normal distribution with mean 0 and variance

α . Note that in (10), the variance of the individual disturbance di,ind is assumed to be identical

for all agents i ∈ I . Without loss of generality, the variances are normalized such that the

variance of υ i
j is 1. For the variances of the process and measurement noise, this results in

ξ i
j ∼ N (0, λ)

µ i
j ∼ N (0, 1−λ) , 0 ≤ λ ≤ 1,

(11)

94

2. Problem Statement

assuming independence between ξ i
j and µ i

j. A value λ = 1 represents the case of encountering

only process noise, whereas λ = 0 reflects the case where the noise is due to measurement only.

2.3 Independent vs. Joint Estimation

As the number of trials and measurements increases, more information about the system is col-

lected, allowing an increasingly accurate estimate of the agents’ constant noise terms di, i ∈I .

Two limiting approaches might be taken when solving the estimation problem: (I) independent

estimation, and (II) joint estimation.

In the case of independent estimation (I), each agent i individually estimates its disturbance

di taking only its own measurements yi
j, j ∈ {1, 2, . . .}, into account. That is, information on

the individually obtained measurements is not exchanged between the agents.

In the joint case (II), the acquired measurement data of each agent is made available to all

other agents; that is, every agent receives the information of all other agents’ measurements.

Based on this global knowledge, we can design a joint estimation scheme that exploits the mea-

surements of all agents and provides estimates di for every agent i ∈ I . A vector D, reflecting

the estimation objective in this case, is defined as: D = [d0, d1, . . . , dN]T ∈ R
(N+1). The mea-

surements of all agents in the jth trial are combined in Y j = [y1
j , y2

j , . . . , yN
j]

T and, analogously,

the noise vector V j = [υ1
j , υ2

j , . . . , υN
j]

T is introduced. Based on this representation, the joint

estimation problem can be formulated as a Kalman filter problem, cf. [26, 27]:

D j = D j−1 ∀ j ≥ 1,

Y j = H D j +V j ,
(12)

where H = [0, I] is a matrix with zeros in the first column concatenated with an identity matrix

of appropriate dimensions. The Kalman filter returns an unbiased state estimate D̂ j for j ≥ 1

that minimizes the error covariance matrix

Pj = E
[
(D j − D̂ j)(D j − D̂ j)

T
]
, (13)

of trial j, taking measurements Ym, 1 ≤ m ≤ j, into account. E [·] denotes the expected value.

The initial values are obtained from (10); in particular,

D̂0 = [0, 0, . . . , 0]T (14)

and the initial covariance matrix P0 = [p
(k,l)
0], k, l ∈ K = {0, 1, . . . , N} , is

P0 = E
[

D0DT
0

]
(15)

with

p
(k,l)
0 = E

[
dkdl

]
= E

[(
d0 +dk,ind

)(
d0 +dl,ind

)]
,

where d0,ind = 0. Recalling the mutual independence of d0 and di,ind for all i ∈ I , the initial

covariance is given by

p
(k,l)
0 =

{
α +β for k = l ≥ 1

α otherwise .
(16)

95

Paper III. Joint Estimation in Multi-Agent Iterative Learning

The variances α and β , which reflect the original noise characteristics (10), serve as a initial

values. Note that the above derivations do not place further assumptions or restrictions on how

information is shared between agents: the information yi
j of each agent is available to every

other agent. In other words, we are investigating the ideal case of centralized, joint estimation

within an optimal filtering context.

Equally important is that the independent estimation problem (I) is just a special case of the

cooperative framework (II) with N = 1.

In both cases, (I) and (II), the variance of an individual’s disturbance estimate at iteration j

is given by

E
[
(di − d̂ i

j)
2
]
= p

(i,i)
j = p

(1,1)
j , ∀ i ∈ I , (17)

where D̂ j = [d̂ i
j], i ∈ I , and Pj = [p

(k,l)
j], k, l ∈ K . The variance is identical for all agents,

since for each agent the same assumptions on the dynamics (9) and the initial noise character-

istics (10) are made. The variance of an individual’s disturbance (17) indicates the quality of

the disturbance estimate. In the general case, (2)-(3), this value influences the effectiveness of

the disturbance compensation, since the input update rule of the ILC algorithm is based on the

current estimate d̂ i
j; for example by a relation as follows, see [9]:

ui
j+1 = argmin

u

∥∥∥F iu+ d̂ i
j

∥∥∥ . (18)

Below, we distinguish between the individual disturbance variance p
(1,1)
j in case of joint and

independent estimation, where the latter is given when evaluating p
(1,1)
j for N = 1, i.e.

p
(1,1)
j

∣∣∣
N=1

. (19)

Thus, the initial question can be reformulated: To what degree does joint estimation benefit

the individual learning of an agent?

3. Result

We compared the learning performance based on (I) independent and (II) joint estimation, via

the variance of the state xi
j given all past measurements. This value indicates the accuracy of the

tracking behavior in each iteration j. We investigated the benefits of information sharing and

used, as our basis for the investigation, two limiting cases of (8): (i) encountering pure process

noise, and (ii) dealing with measurement noise only. From these benchmark examples, we were

able to deduce properties for the general mixed-noise case in Section 4 and draw conclusions

about the advantages of passing information in an ILC framework.

In order to compare the independent estimation result (I) with the joint estimation result

(II), we derived an analytical expression for p
(1,1)
j .

96

3. Result

PROPOSITION 1 The error variance of an agent’s disturbance p
(1,1)
j can be expressed in terms

of the initial variances α and β , the number of agents N, and the iteration j,

p
(1,1)
j =

α +β + jβ 2 + jNαβ

(1+ jβ)(1+ jβ + jNα)
. (20)

The result is obtained by solving the Kalman filter equations for (12) with initial conditions

(14) and (16).

A detailed proof is found in the appendix, Section A.

Next, we use the relation (20) to derive an upper bound on the performance improvement

due to joint estimation. Two limiting cases are considered: (i) pure process noise and (ii) pure

measurement noise.

3.1 Pure Process Noise

We assumed perfect measurements, i.e. µ i
j = 0 in (7) and λ = 1 in (11). The noise υ i

j is

interpreted as pure process noise, υ i
j = ξ i

j. The performance of independent (I) vs. joint (II)

estimation is analyzed through the variance of the state estimate. As mentioned in Section 2.1,

the goal of ILC is to reduce the value xi
j. This is achieved best if the variance in the estimate

of xi
j is small. That is, the variance of the state estimate can be used as a measure of learning

performance. Given (6) and (10), the best estimate of the state x̂i
j at iteration j is equal to the

current disturbance estimate d̂ i
j,

x̂i
j = d̂ i

j, (21)

since the noise ξ i
j has zero mean. Recalling the noise characteristics (10) and the previous

assumption of mutual independence between di and υ i
j, we obtain the variance of state estimate

from the sum of the variance of the estimate d̂ i
j and the variance of ξ i

j. That is, with (17) and

(11),

E
[
(xi

j − x̂i
j)

2
]
= E

[
(di +ξ i

j − d̂ i
j)

2
]
= p

(1,1)
j +λ , (22)

where λ = 1 in the pure process noise case. We introduce the performance index (for the pure

process noise case) as the ratio of the state variance in the independent case vs. the joint case,

Rproc =
p
(1,1)
j

∣∣
N=1

+1

p
(1,1)
j +1

, (23)

using the notation of (17).

The following theorem can be stated:

THEOREM 1 The bounds on the performance improvement due to joint estimation (vs. inde-

pendent estimation) are given by

1 ≤ Rproc ≤ 1+ j

j
, ∀α, β , N, j , (24)

97

Paper III. Joint Estimation in Multi-Agent Iterative Learning

where the best performance improvement occurs when N → ∞, α → ∞, and β = 0. In this

case, Rproc = (1+ j)/ j.

Interpretation of the result:

• The performance improvement due to joint estimation has an upper bound which is valid

for all possible combinations of α, β , N, and j.

• Joint estimation is most beneficial if the agents’ common disturbance component dom-

inates and the individual noise component is negligible compared to the process noise;

this corresponds to a large common noise variance α and a small individual component

β ≪ 1.

• The largest possible improvement in performance is a factor of 2, which is obtained only

in the first iteration. With more iterations, the performance index rapidly decays to 1. In

other words, the more often the agents perform a task, the less beneficial the exchange of

information.

• Intuitively, the result shows that if the agents are different, the measurements of the other

agents do not provide significant information for an individual’s performance improve-

ment. If the agents are almost identical, however, ‘averaging’ the measurements of the

agents via a joint estimation still has no ‘visible’ effect, since the process noise directly

corrupts the value of interest, xi
j, see (6).

Moreover, independent estimation and learning (I) is robust to uncertainties in the initial noise

assumptions (10). Note that the variance of an individual’s disturbance in the independent case

depends solely on the sum (α +β), cf. (20) with N = 1. In other words, the assumption on how

the disturbance di is decomposed in d0 and di,ind , does not enter the result. It does, however,

affect the joint estimation.

To conclude, there is little benefit of sharing information in the case of pure process noise.

Proof. Based on the closed-form representation in (20), Theorem 1 is proven by introducing

Rproc as a function of j, α, β , and N,

R
proc
j (α,β ,N) =

p
(1,1)
j (α,β ,1)+1

p
(1,1)
j (α,β ,N)+1

. (25)

Recalling the properties

α,β ≥ 0 and j,N ∈ {1, 2, . . .} , (26)

we note that p
(1,1)
j (α,β ,N) ≥ 0 for all possible arguments. By taking partial derivatives of

R
proc
j (α,β ,N), it can be shown that

∂R
proc
j (α,β ,N)

∂N
≥ 0 (27)

and R
proc
j (α,β ,N) is bounded by

R
proc
j (α,β ,∞) := lim

N→∞
R

proc
j (α,β ,N) (28)

98

3. Result

with

R
proc
j (α,β ,∞) =

1+ α+β
1+ j(α+β)

1+ β
1+ jβ

.

Secondly, it is shown that

∂R
proc
j (α,β ,∞)

∂α
≥ 0 (29)

with

R
proc
j (∞,β ,∞) := lim

α→∞
R

proc
j (α,β ,∞) =

1+ 1
j

1+ β
1+ jβ

,

that is R
proc
j (α,β ,N)≤ R

proc
j (∞,β ,∞). Finally, with

∂R
proc
j (∞,β ,∞)

∂β
≥ 0 , (30)

and

R
proc
j (∞,0,∞) = 1+

1

j
,

statement (24) is proven,

R
proc
j (α,β ,N)≤ R

proc
j (∞,0,∞)

for all α, β , N, j. The lower bound is obtained for N = 1, cf. (27). Matlab and Mathemat-

ica files for reproducing the results below are available at www.idsc.ethz.ch/Downloads/

multiagentILC.

3.2 Pure Measurement Noise

We studied the system properties under the assumption of zero process noise, i.e. ξ i
j = 0 in

(6) and λ = 0 in (11), and interpreted υ i
j as pure measurement noise, υ i

j = µ i
j. Following the

derivation (22), the ratio of the state variances (for the pure measurement noise case) is given

by

Rmeas =
p
(1,1)
j

∣∣
N=1

p
(1,1)
j

. (31)

The following theorem can be stated:

THEOREM 2 The bounds on the performance improvement due to joint estimation (vs. inde-

pendent estimation) are given by

1 ≤ Rmeas ≤ N , ∀α, β , N, j , (32)

where the best performance improvement occurs when α → ∞ and β = 0, for all N, j. In this

case, Rmeas = N.

Interpretation of the result:

99

www.idsc.ethz.ch/Downloads/multiagentILC
www.idsc.ethz.ch/Downloads/multiagentILC

Paper III. Joint Estimation in Multi-Agent Iterative Learning

• Again, an upper bound of the performance index is found which is valid for all possible

combinations of α, β , N, and j. However, the upper bound does not depend on the

number of iterations.

• Joint estimation is most beneficial if the agents’ common disturbance component dom-

inates and the individual noise component is negligible compared to the measurement

noise; this corresponds to a large common noise variance α and a negligible individual

component β ≪ 1.The largest possible improvement in performance is a factor of N.

• Intuitively, the result shows that if the agents are very similar (β ≪ 1), joint estimation

has a ‘visible’ effect. The measurement noise is ‘averaged out’ and, moreover, does not

corrupt the performance result, xi
j, directly, see (7). A significant improvement in the

individual’s performance can be achieved.

Joint estimation is beneficial when considering a large group of almost identical agents, where

the individual disturbance is small compared to the measurement noise.

Proof. The proof of Theorem 2 proceeds similarly as the proof in Section 3.1. With (20), the

performance index Rmeas is given as a function of j, α, β , and N,

Rmeas
j (α,β ,N) =

p
(1,1)
j (α,β ,1)

p
(1,1)
j (α,β ,N)

. (33)

Partial derivatives are directly computed, where

∂Rmeas

∂β
≤ 0 ,

∂Rmeas

∂α
≥ 0 ,

∂Rmeas

∂N
≥ 0 , (34)

with (26). In addition, the limiting property for β = 0 is

Rmeas
j (α,0,N) =

1+α jN

1+α j

and

lim
α→∞

Rmeas
j (α,0,N) = N , ∀ j, N .

The lower bound is obtained for N = 1, cf. (34). Matlab and Mathematica files for reproducing

the results are available at www.idsc.ethz.ch/Downloads/multiagentILC.

4. Numerical Examples

Characteristic features of the performance indices, Rproc and Rmeas, are highlighted by showing

selected numerical examples. In the subsequent considerations, the general mixed-noise case

100

www.idsc.ethz.ch/Downloads/multiagentILC

4. Numerical Examples

is included and put in context with the results for (i) pure process and (ii) pure measurement

noise.

The performance index for the mixed-noise case with 0 ≤ λ ≤ 1, cf. (11), is derived analo-

gously to (22) and (23):

Rmix =
p
(1,1)
j

∣∣
N=1

+λ

p
(1,1)
j +λ

. (35)

A comparison of the three performance indices, Rproc, Rmix, and Rmeas, shows that

Rproc ≤ Rmix ≤ Rmeas , ∀α, β , N, j , (36)

since λ ∈ [0,1] and from (20),

p
(1,1)
j ≤ p

(1,1)
j

∣∣
N=1

, ∀α, β , N, j . (37)

An intuitive explanation for (36) is that the process noise ξ i
j directly corrupts the value of

interest, state xi
j, which represents the deviation from the desired trajectory and is aimed to

be small. The measurement noise µ i
j acts on the output yi

j. In this case, multiple agents are

beneficial in order to average out the measurement noise.

In Fig. 1 to 3, the evolution of the performance indices, Rproc, Rmix, and Rmeas, is shown

for different pairs of α and β . A group of N = 10 agents is considered and λ = 0.1 is chosen

for the mixed-noise case. Even for this small value of λ , we observe a noticeable degradation

of the performance index Rmix (compared to Rmeas). Note that the scaling of the vertical axis

changes in the plots presented. The figures highlight the relationship (36). For the limiting case

j → ∞, β > 0, we observe

lim
j→∞

Rmix = 1. (38)

Note that the mixed-noise case includes the special cases of pure process and pure measurement

noise. In fact, if the number of iterations increases, the benefits of joint estimation become

negligible. This result can be derived analytically from (20) and (35). As stated in Theorem 2,

for the limiting case β = 0,

lim
j→∞

Rmeas = N. (39)

Thus, we observe that joint estimation yields a significant improvement in performance only if

the agents are identical, β = 0, and the system dynamics are not corrupted by process noise,

see Fig. 4.1(a). Moreover, Fig. 1 shows how the behavior of Rproc, Rmix, and Rmeas change, if

the individual disturbance component β is gradually increased from zero for a given common

disturbance α . The relation

∂Rmeas

∂ j
> 0 ⇔ β (β +αN)<

1

j2
, (40)

derived from (20) and (31), provides insight in the evolution of the performance index Rmeas.

Fig. 1 shows that the performance indices, which represent the performance improvement due

to joint estimation, decrease with larger values β . The relation,

∂Rmix

∂β
≤ 1 , (41)

101

Paper III. Joint Estimation in Multi-Agent Iterative Learning

Iteration j
P

er
fo

rm
an

ce
in

d
ex

1 10 20 30 40 50 60

2

4

6

8

10

(a) α = 1, β = 0

Iteration j

P
er

fo
rm

an
ce

in
d
ex

1 10 20 30 40 50 60

2

4

6

8

10

(b) α = 1, β = 0.01

Iteration j

P
er

fo
rm

an
ce

in
d
ex

1 10 20 30 40 50 60
1

1.1

1.2

1.3

(c) α = 1, β = 1

Figure 1. Evolution of the performance indices for N = 10 agents: pure measurement noise

Rmeas (solid line), mixed noise case Rmix with λ = 0.1 (dashed-dotted line), and pure process

noise Rproc (dashed line).

is derived from (20) and (35), where the mixed-noise case includes the special cases of pure

process and pure measurement noise. The variances of the common and individual disturbance

component, α and β , must be interpreted in relation to the variance of the noise υ i
j which is

normalized to 1, see (10). Fig. 4.1(c) shows the evolution of the performance indices if the

disturbance variances have the same value as the noise variance. If both disturbance variances,

α and β , are smaller than the noise variance, a behavior as shown in Fig. 4.2(a) is obtained.

Fig. 4.2(b) shows both disturbance variances being larger than the noise variance.

In Fig. 3, the two cases, α ≪ 1, β ≫ 1 and β ≪ 1, α ≫ 1, are depicted. Fig. 4.3(a)

underlines the fact that, in the general case,

lim
α→0

Rmix = 1 , lim
β→∞

Rmix = 1 . (42)

In contrast, information exchange and joint estimation is most beneficial when α → ∞ and

β = 0, cf. Theorem 1 and 2. Fig. 4.3(b) shows a corresponding setting.

102

5. Conclusions

Iteration j
P

er
fo

rm
an

ce
in

d
ex

1 10 20 30 40 50 60
1

1.1

1.2

1.3

(a) α = 0.1, β = 0.1

Iteration j

P
er

fo
rm

an
ce

in
d
ex

1 10 20 30 40 50 60

1

1.02

1.04

(b) α = 10, β = 10

Figure 2. Evolution of the performance indices for N = 10 agents: pure measurement noise

Rmeas (solid line), mixed noise case Rmix with λ = 0.1 (dashed-dotted line), and pure process

noise Rproc (dashed line).

Iteration j

P
er

fo
rm

an
ce

in
d
ex

1 10 20 30 40 50 60

1

1.02

1.04

(a) α = 0.01, β = 10

Iteration j

P
er

fo
rm

an
ce

in
d
ex

1 10 20 30 40 50 60

2

4

6

8

10

(b) α = 10, β = 0.01

Figure 3. Evolution of the performance indices for N = 10 agents: pure measurement noise

Rmeas (solid line), mixed noise case Rmix with λ = 0.1 (dashed-dotted line), and pure process

noise Rproc (dashed line).

5. Conclusions

In this paper we considered a group of agents which share the same dynamics and a common

iteration-independent disturbance, but differ in an additional individual error component. In the

103

Paper III. Joint Estimation in Multi-Agent Iterative Learning

context of having these agents learn to perform an identical task, we asked: How beneficial is

it to exchange experience in order to improve an individual agent’s learning performance? We

considered two cases: (I) independent learning without information exchange and (II) learning

based on full information exchange between agents. In the proposed framework, the question

can be reduced to the comparison of the disturbance estimate in case of independent estimation

(I) and when solving a global estimation problem for (II). An upper bound for the performance

improvement due to information exchange is derived analytically and reflects the limited benefit

of sharing information in the given setup. In the best case – where the noise is due to measure-

ment noise only, the agent’s common disturbance dominates, and the individual disturbance

component is small compared to the noise – joint estimation improves the performance by a

factor equal to the number of agents. That is, instead of one agent performing a task N times,

N agents performing the task once results in the same accuracy for the disturbance estimate.

For the general case and, in particular, in the presence of process noise or a large individual

disturbance component, the benefits are shown to be limited.

A. Appendix

We derive an explicit representation of the variance p
(1,1)
j that depends only on α, β , j, and N

as presented in Proposition 1. Matlab and Mathematica files for reproducing the results below

are available at www.idsc.ethz.ch/Downloads/multiagentILC.

Proof. A closed form of the covariance matrix Pj is derived, cf. (16) and (17). Since noise is

assumed to have the same characteristics for each agent, by symmetry,

p
(k,l)
j =





p
(0,0)
j if k = l = 0

p
(0,1)
j if kl = 0 and k 6= l

p
(1,1)
j if k = l 6= 0

p
(1,2)
j otherwise .

(43)

We obtain the previous values by solving the filter equations, cf. [26, 27],

Q j = HPj−1HT + I

K j = Pj−1HT Q−1
j

Pj = (I −K jH)Pj−1,

(44)

where Q j = [q
(k,l)
j], k, l ∈ I and K j = [k

(k,l)
j], k ∈ K , l ∈ I . With (43) and (44), the matrix

Q j and its inverse Q−1
j = [m

(k,l)
j] are directly computed,

q
(k,l)
j =

{
1+ p

(1,1)
j−1 if k = l

p
(1,2)
j−1 otherwise

m
(k,l)
j =

{
m
(1,1)
j if k = l

m
(1,2)
j otherwise ,

(45)

104

www.idsc.ethz.ch/Downloads/multiagentILC

A. Appendix

where

m
(1,1)
j =

1+ p
(1,1)
j−1 +

(
N −2

)
p
(1,2)
j−1

n1n2
, m

(1,2)
j =

−p
(1,2)
j−1

n1n2
, (46)

with

n1 =
(

1+ p
(1,1)
j−1 − p

(1,2)
j−1

)
, n2 =

(
1+ p

(1,1)
j−1 +

(
N −1

)
p
(1,2)
j−1

)
. (47)

With this, the filtering matrix K j is given by

k
(k,l)
j =





k
(0,1)
j if k = 0

k
(1,1)
j if k = l

k
(1,2)
j otherwise ,

(48)

where

k
(0,1)
j = p

(0,1)
j−1

(
m
(1,1)
j +

(
N −1

)
m
(1,2)
j

)

k
(1,1)
j = p

(1,1)
j−1 m

(1,1)
j +

(
N −1

)
p
(1,2)
j−1 m

(1,2)
j

k
(1,2)
j = p

(1,1)
j−1 m

(1,2)
j + p

(1,2)
j−1 m

(1,1)
j +

(
N −2

)
p
(1,2)
j−1 m

(1,2)
j .

(49)

From (44), the following values for Pj are found,

p
(k,l)
j =





p
(0,0)
j if k = l = 0

p
(0,1)
j if kl = 0 and l 6= k

p
(1,1)
j if k = l 6= 0

p
(1,2)
j otherwise

(50)

with

p
(0,0)
j = p

(0,0)
j−1 −N p

(0,1)
j−1 k

(0,1)
j

p
(0,1)
j = p

(0,1)
j−1 + p

(1,1)
j−1 k

(0,1)
j −

(
N −1

)
p
(1,2)
j−1 k

(0,1)
j

p
(1,1)
j =

(
1− k

(1,1)
j

)
p
(1,1)
j−1 −

(
N −1

)
p
(1,2)
j−1 k

(1,2)
j

p
(1,2)
j =

(
1− k

(1,1)
j

)
p
(1,2)
j−1 − k

(1,2)
j p

(1,1)
j−1 −

(
N −2

)
p
(1,2)
j−1 k

(1,2)
j .

We prove the desired symmetry and obtain the following values for (43) by induction, using

(50) with starting condition (16):

p
(0,0)
j =

(1+ jβ)α

1+ jβ + jNα
, p

(1,1)
j =

α +β + jβ 2 + jNαβ

(1+ jβ)(1+ jβ + jNα)
,

p
(0,1)
j =

α

1+ jβ + jNα
, p

(1,2)
j =

α

(1+ jβ)(1+ jβ + jNα)
.

(51)

105

Paper III. Joint Estimation in Multi-Agent Iterative Learning

The only value of interest is p
(1,1)
j .

References

[1] S. Arimoto, S. Kawamura, and F. Miyazaki, “Bettering operation of robots by learning,”

Journal of Robotic Systems, vol. 1, no. 2, pp. 123–140, 1984.

[2] Z. Bien and J. X. Xu, Iterative learning control: analysis, design, integration and

applications. Kluwer Academic Publishers Norwell, MA, USA, 1998.

[3] D. A. Bristow, M. Tharayil, and A. G. Alleyne, “A survey of iterative learning control,”

IEEE Control Systems Magazine, vol. 26, no. 3, pp. 96–114, 2006.

[4] K. L. Moore, “An iterative learning control algorithm for systems with measurement

noise,” in Proceedings of the IEEE Conference on Decision and Control (CDC), vol. 1,

1999, pp. 270–275.

[5] J. H. Lee, K. S. Lee, and W. C. Kim, “Model-based iterative learning control with a

quadratic criterion for time-varying linear systems,” Automatica, vol. 36, no. 5, pp. 641–

657, 2000.

[6] M. Phan and R. Longman, “Higher-order iterative learning control by pole placement and

noise filtering,” in Proceedings of the IFAC World Congress, 2002, pp. 1899–1904.

[7] M. Norrlöf, “An adaptive iterative learning control algorithm with experiments on an

industrial robot,” IEEE Transactions on Robotics and Automation, vol. 18, no. 2, pp.

245–251, 2002.

[8] ——, “Disturbance rejection using an ILC algorithm with iteration varying filters,” Asian

Journal of Control, vol. 6, pp. 432–438, 2004.

[9] A. Schöllig and R. D’Andrea, “Optimization-based iterative learning control for trajectory

tracking,” in Proceedings of the European Control Conference (ECC), 2009, pp. 1505–

1510.

[10] K. S. Lee, J. Lee, I. Chin, J. Choi, and J. H. Lee, “Control of wafer temperature uniformity

in rapid thermal processing using an optimal iterative learning control technique,”

Industrial and Engineering Chemistry Research, vol. 40, no. 7, pp. 1661–1672, 2001.

[11] I. Chin, S. J. Qin, K. S. Lee, and M. Cho, “A two-stage iterative learning control technique

combined with real-time feedback for independent disturbance rejection,” Automatica,

vol. 40, no. 11, pp. 1913–1922, 2004.

[12] M. Cho, Y. Lee, S. Joo, and K. S. Lee, “Semi-empirical model-based multivariable

iterative learning control of an RTP system,” IEEE Transactions on Semiconductor

Manufacturing, vol. 18, no. 3, pp. 430–439, 2005.

106

References

[13] J. K. Rice and M. Verhaegen, “A structured matrix approach to efficient calculation of

LQG repetitive learning controllers in the lifted setting,” International Journal of Control,

vol. 83, no. 6, pp. 1265–1276, 2010.

[14] E. Guizzo, “Three engineers, hundreds of robots, one warehouse,” IEEE Spectrum,

vol. 45, no. 7, pp. 22–29, 2008.

[15] P. Wurman, R. D’Andrea, and M. Mountz, “Coordinating hundreds of cooperative,

autonomous vehicles in warehouses,” AI Magazine, vol. 29, no. 1, pp. 9–19, 2008.

[16] H.-S. Ahn, K. L. Moore, and Y. Chen, Iterative Learning Control: Robustness and

Monotonic Convergence for Interval Systems (Communications and Control Engineer-

ing), 1st ed. Springer, 2007.

[17] H.-S. Ahn and Y. Chen, “Iterative learning control for multi-agent formation,” in

Proceedings of the International Joint Conference on Control, Automation, and Systems

of the Society of Instrument and Control Engineers and the Institute of Control, Robotics

and Systems (ICCAS-SICE), 2009, pp. 3111–3116.

[18] A. P. Schoellig, J. Alonso-Mora, and R. D’Andrea, “Independent vs. joint estimation

in multi-agent iterative learning control,” in Proceedings of the IEEE Conference on

Decision and Control (CDC), 2010, pp. 6949–6954.

[19] M. Tan, “Multi-agent reinforcement learning: Independent vs. cooperative agents,” in

Proceedings of the International Conference on Machine Learning, 1993, pp. 330–337.

[20] M. Q. Phan and R. W. Longman, “A mathematical theory of learning control for

linear discrete multivariable systems,” in Proceedings of the AIAA/AAS Astrodynamics

Conference, 1988, pp. 740–746.

[21] R. Tousain, E. van der Meche, and O. Bosgra, “Design strategy for iterative learning

control based on optimal control,” in Proceedings of the IEEE Conference on Decision

and Control, vol. 5, 2001, pp. 4463–4468.

[22] B. Bamieh, J. B. Pearson, B. A. Francis, and A. Tannenbaum, “A lifting technique for

linear periodic systems with applications to sampled-data control,” Systems & Control

Letters, vol. 17, no. 2, pp. 79–88, 1991.

[23] J. Hätönen, D. Owens, and K. Feng, “Basis functions and parameter optimisation in high-

order iterative learning control,” Automatica, vol. 42, no. 2, pp. 287–294, 2006.

[24] K. Barton and A. Alleyne, “A cross-coupled iterative learning control design for precision

motion control,” IEEE Transactions on Control Systems Technology, vol. 16, no. 6, pp.

1218–1231, 2008.

[25] M. Butcher, A. Karimi, and R. Longchamp, “Iterative learning control based on stochastic

approximation,” in Proceedings of the IFAC World Congress, 2008, pp. 1478–1483.

[26] C. K. Chui and G. Chen, Kalman Filtering: with Real-Time Applications (Springer Series

in Information Sciences). Springer, 1998.

[27] M. Verhaegen and V. Verdult, Filtering and System Identification: A Least Squares

Approach. Cambridge University Press, 2007.

107

Paper IV

Sensitivity of Joint Estimation in Multi-Agent

Iterative Learning Control

Angela P. Schoellig · Raffaello D’Andrea

Abstract

This paper studies iterative learning control (ILC) in a multi-agent framework, wherein

a group of agents We consider a group of agents that simultaneously learn the same task,

and revisit a previously developed algorithm, where agents share their information and

learn jointly. We have already shown that, as compared to an independent learning model

that disregards the information of the other agents, and when assuming similarity between

the agents, a joint algorithm improves the learning performance of an individual agent.

We now revisit the joint learning algorithm to determine its sensitivity to the underlying

assumption of similarity between agents. We note that an incorrect assumption about the

agents’ degree of similarity degrades the performance of the joint learning scheme. The

degradation is particularly acute if we assume that the agents are more similar than they

are in reality; in this case, a joint learning scheme can result in a poorer performance than

the independent learning algorithm. In the worst case (when we assume that the agents

are identical, but they are, in reality, not) the joint learning does not even converge to the

correct value. We conclude that, when applying the joint algorithm, it is crucial not to

overestimate the similarity of the agents; otherwise, a learning scheme that is independent

of the similarity assumption is preferable.

Published in Proc. of the 18th IFAC (International Federation of Automatic Control) World Congress, 2011.

DOI: 10.3182/20110828-6-IT-1002.03687.

c©2011 IFAC. NOTICE: this is the author’s version of a work that was accepted for publication in Proc. of the

18th IFAC World Congress, 2011. Changes resulting from the publishing process, such as peer review, editing,

corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. A

definitive version was subsequently published in Proc. of the 18th IFAC World Congress, 2011, Volume 18, Part

1, at http://www.ifac-papersonline.net/Detailed/47869.html.

109

http://www.ifac-papersonline.net/Detailed/47869.html

Paper IV. Sensitivity of Joint Estimation in Multi-Agent Iterative Learning

Agent 1 Agent N Agent 1 Agent NAgent 2

execute

LEARN

correct

es mate

execute

execute

LEARN

correct

es mate

execute

execute execute

Agent 2

es mate

LEARN

correct correct

execute execute

Figure 1. Independent (left) vs. joint (right) estimation and learning.

1. Introduction

In most cases, multi-agent learning aims towards improving the joint performance of a group of

agents that solve a complex or distributed task together. Through interaction and collaboration,

the agents are able to jointly approach the common task and learn to work together in order

to achieve the global objectives, cf. [1]. Reinforcement learning is a powerful tool to solve

such cooperative problems. Here, agents are generally categorized to be either homogeneous

or heterogeneous, see e.g. [2,3]. Though the robustness of such learning schemes to parameter

variations was suggested in recent publications (see [4, 5]), it has yet to be studied in detail.

In this paper, we focus on the potential for an individual agent to improve its performance

when conducting a task alongside a group of similar agents conducting the same task. We

extend the work in [6]1, where the learning performance of an individual agent is analyzed and

compared for two scenarios: (i) the agent learns independently, disregarding the information of

the other agents, and (ii) the agent has access to the knowledge of the other agents and optimally

takes this information into account when learning the desired task. An iterative learning control

(ILC) scheme was used to approach this problem (see [7, 8] for an introduction to ILC). ILC

has been viewed as a two-step process of first identifying the unknown repetitive disturbances

that corrupt the agent’s performance and later compensating for the disturbances by adapting

the input, cf. [9–11]. This scheme allowed us to reduce the previous question to an estimation

problem, and we were able to show that, when assuming similarity between the agents, a joint

estimation scheme that exploits the information of all agents is always beneficial.

The results in [6] were obtained under the assumption that we know the degree of similarity

between the agents; the goal of this work is to study the sensitivity of joint estimation to the

underlying similarity assumption. We analyze the effects of an assumption error on the joint

estimation result in order to determine whether it is possible that an incorrect assumption re-

garding the agents’ similarity cause the joint estimation scheme to perform more poorly than

1 Paper and additional material may be found on the project webpage: www.idsc.ethz.ch/Downloads/

multiagentILC.

110

www.idsc.ethz.ch/Downloads/multiagentILC
www.idsc.ethz.ch/Downloads/multiagentILC

2. Problem Statement

the independent estimation scheme.

The paper is organized as follows: Sec. 2 recalls the dynamic equations that define the

multi-agent iterative learning problem as previously derived in [6], and introduces the parame-

ter which defines the similarity between agents. Sec. 3 solves the estimation problem under the

assumption that the degree of similarity between the agents is not known precisely. Using the

results from Sec. 3 as a basis, the sensitivity of the joint estimation scheme to the assumption

errors is studied in Sec. 4. To help readers visualize the analytical results derived herein, we

present several numerical examples in Sec. 5. The work is summarized in Sec. 6. Proofs are

presented in Appendix A.1, with additional files available at www.idsc.ethz.ch/Downloads/

multiagentILC.

2. Problem Statement

We extend the work in [6], where we considered a group of N agents that simultaneously and

repeatedly perform the same task. The execution of the task is corrupted by an unknown, repet-

itive disturbance that is constant across iterations. In this context, we assume that the agents are

similar in the sense that they have the same nominal dynamics and share a common iteration-

independent, repetitive disturbance component. In addition, process noise acts on the agent’s

dynamics, and varies from trial to trial. Our goal is to improve the agents’ performance by

estimating the repetitive disturbance from past measurements; once the disturbance is known,

an adapted input trajectory can be created to compensate for it.

2.1 Agent Dynamics

The dynamics of an agent i ∈ I = {1,2, . . . ,N} during a single execution of the task are rep-

resented in the lifted domain, cf. [12–14]. A given discrete-time input signal

ui
j =
(
ui(0), ui(1), . . . , ui(T)

)
(1)

at iteration j ∈ {1,2, . . .} is mapped to the corresponding lifted states xi via a constant matrix

F , which represents the nominal dynamics of the agents,

xi
j = Fui

j +di +ξ i
j , (2)

In this context, (T + 1) samples represent a single run. The vector di represents the repetitive

disturbance and ξ i
j accounts for the trial-uncorrelated process noise. The vectors xi

j and ui are

defined as the deviation from the desired task trajectory and the corresponding nominal input,

see for example [11]. The agents’ output yi
j (also defined as the deviation from the nominal

output) is corrupted by measurement noise and similarly represented in the lifted domain,

yi
j = xi

j +µ i
j . (3)

Differences between the agents are captured in the disturbance vector di, which is composed of

a common part d0 identical for all agents, and an individual part di,ind ,

di = d0 +di,ind, ∀ i ∈ I . (4)

111

www.idsc.ethz.ch/Downloads/multiagentILC
www.idsc.ethz.ch/Downloads/multiagentILC

Paper IV. Sensitivity of Joint Estimation in Multi-Agent Iterative Learning

For a more detailed introduction to the lifted system representation refer to [8, 15–17]

In the above context, the goal of the iterative learning algorithm is to reduce xi
j (that is,

the deviation from the desired task trajectory) with an increasing number of iterations j. In

[6], we showed that the learning problem can be divided into two steps: (i) estimating the

disturbance vector di based on all measurements from previous iterations, and (ii) determining

an appropriate open-loop input for the next trial that compensates for the disturbance, see Fig. 1.

We saw that the characteristics of a joint learning scheme can be studied by focusing on the

estimation problem; compensating input for each agent is found by solving an optimization

problem for each agent once the disturbance estimate of di is updated, cf. Fig. 1.

2.2 Simplified Model

Focusing on the estimation problem, we consider a condensed form of the above multi-agent

system representation (2)-(3),

xi
j = di +ξ i

j (5)

yi
j = xi

j +µ i
j , (6)

which features the key noise and disturbance characteristics, but omits the known part Fui
j,

without loss of generality. Equations (5) and (6) are summarized by

yi
j = di +υ i

j , (7)

where υ i
j = ξ i

j +µ i
j captures both process and measurement noise.

Moreover, assuming both identical noise characteristics and independence of the single

entries in the vectors di and υ i
j, the problem reduces to the scalar case,

yi
j = d0 +di,ind +υ i

j , (8)

where all variables are scalar-valued. The probability distributions are given by

d0 ∼ N (0, α)

di,ind ∼ N (0, β)

υ i
j ∼ N (0, 1) , α, β ≥ 0 ,

(9)

where all quantities, υ i
j, i∈I , j ∈{1, 2, . . .}, di,ind, i∈I , and d0, are assumed to be mutually

independent. The notation N (0, α) represents a normal distribution with mean 0 and variance

α . Note that in (9), the variance of the individual disturbance di,ind is assumed to be identical

for all agents i ∈ I . Without loss of generality, the variances are normalized such that the

variance of υ i
j is 1. For the variances of the process and measurement noise, this means

ξ i
j ∼ N (0, λ)

µ i
j ∼ N (0, 1−λ) , 0 ≤ λ ≤ 1

(10)

assuming independence between ξ i
j and µ i

j. A value λ = 1 represents the case of encountering

only process noise, whereas λ = 0 reflects the case where the noise is due to measurement only.

112

3. Estimation Problem

2.3 Similarity Assumption

In our previous work [6], we assumed that the variances of the individual and common distur-

bance, α and β , are known. In reality, however, these values are difficult to determine. While

the sum (α +β) may be approximated with reasonable accuracy (it indicates the magnitude of

the agent’s disturbance di, or more precisely, the probability of having larger values for di), a

prior partitioning of the disturbance di into an individual and a common component is almost

impossible. In other words, when facing a real multi-agent learning problem, the determined

ratio between α and β , is subject to error.

For the subsequent analysis, we assume that the sum,

γ = α +β , (11)

is known precisely. With respect to the partitioning of di into the individual and common

disturbance component, we distinguish between the nominal values,

ᾱ = ε̄ γ and β̄ = (1− ε̄) γ, (12)

and the real variances α and β , defined analogously by ε , where 0 ≤ ε̄,ε ≤ 1. The nominal

values represent our assumption on the individual and common disturbance component. The

real ratio ε of the multi-agent system is unknown. The assumption error δ defines the difference

between the real disturbance ratio and our assumed partitioning,

δ = ε − ε̄ . (13)

Below we study the effects of the assumption error δ on the performance of the joint learn-

ing algorithm. Our goal is to determine the degree to which joint estimation is affected by

incorrect assumptions of similarity between agents.

3. Estimation Problem

Analogously to [6], we consider two limiting approaches when solving the estimation prob-

lem: (I) independent estimation, and (II) joint estimation, see Fig. 1. In the case of independent

estimation (I), each agent i individually estimates its disturbance di, taking only its own mea-

surements yi
j, j ∈ {1, 2, . . .}, into account.

In the joint case (II), every agent has access to the measurements of all other agents. Based

on this global knowledge, we can design a joint estimation scheme that exploits the measure-

ments of all agents and provides estimates di for every agent i ∈ I . A vector D, which reflects

the estimation objective in this case, is defined as: D = (d0, d1, . . . , dN) ∈ R
(N+1). The mea-

surements of all agents in the jth trial are combined in Y j = (y1
j , y2

j , . . . , yN
j), and analogously,

the noise vector is V j = (υ1
j , υ2

j , . . . , υN
j). Based on this representation, the joint estimation

problem can be formulated as a Kalman filter problem, cf. [18, 19]:

D j = D j−1 , ∀ j ≥ 1,

Y j = H D j +V j ,
(14)

113

Paper IV. Sensitivity of Joint Estimation in Multi-Agent Iterative Learning

where H = [0, I] is a matrix with zeros in the first column, concatenated with an identity matrix

of appropriate dimensions. The Kalman filter returns an unbiased state estimate D̂ j for j ≥ 1

that minimizes the error covariance matrix

S j = E
[
(D j − D̂ j)(D j − D̂ j)

T
]
, (15)

of trial j, taking measurements Ym, 1 ≤ m ≤ j, into account. E [·] denotes the expected value.

The recursive algorithm is based on the stochastic characteristics of the noise terms υ i
j, de-

fined by (9), and relies on a given initial covariance matrix S0, which reflects the characteristics

of the disturbances di. The initial disturbance estimate is obtained from (9),

D̂0 = (0, 0, . . . , 0) , (16)

and the initial covariance S0 = [s
(k,l)
0], k, l ∈ K = {0, 1, . . . , N} is given by

S0 = E
[

D0DT
0

]
(17)

and with (4),

s
(k,l)
0 = E

[
dkdl

]
= E

[(
d0 +dk,ind

)(
d0 +dl,ind

)]
, (18)

where d0,ind = 0.

When solving the filter equations, we distinguish between the real variance values of the

system denoted by α,β and the nominal values ᾱ, β̄ that represent our assumption on the

individual and common disturbance component, see Sec. 2.3. The Kalman filter derivation

below is based on the nominal values ᾱ , β̄ . The real values α,β are unknown and difficult

to identify a priori. Note that in [6], we derived the estimation problem under the assumption

α = ᾱ and β = β̄ .

The Kalman filter proceeds in two steps:

Step 1 The Kalman gains K j are calculated prior to the experiment based on the nominal values

ᾱ, β̄ by solving the filter equations

Q j = HS j−1HT + I

K j = S j−1HT Q−1
j

S j = (I −K jH)S j−1

(19)

with initial covariance S0, see (17) and (18). Recalling the mutual independence of d0

and di,ind for all i ∈ I , the initial covariance is given by

s
(k,l)
0 =

{
ᾱ + β̄ for k = l ≥ 1

ᾱ otherwise .
(20)

A closed-form representation of K j that depends only on ᾱ , β̄ , N and j was derived

in [6]. The values are explicitly stated in (66) and (67) (in terms of γ and ε̄) and are used

to derive the results in Sec. 4.

114

3. Estimation Problem

Step 2 The disturbance estimate is updated in each iteration j based on the measurement Y j,

D̂ j = D̂ j−1 +K j

(
Y j −HD̂ j−1

)
, (21)

where D̂0 is given by (16).

Important to note is that the independent estimation problem (I) is simply a special case of

the cooperative framework (II) with N = 1. We compare the performance of both estimation

schemes via the variance of the disturbance estimate.

3.1 Variance of Disturbance Estimate

We determine the variance of the disturbance estimate when applying the above Kalman filter

equations to the real system. The covariance matrix of the real system is denoted by Pj =

[p
(k,l)
j], k, l ∈ K . A recursive equation for calculating Pj is derived from (21),

Pj =
(
I −K jH

)
Pj−1

(
I −K jH

)T
+K jK

T
j (22)

where K j represent the Kalman gains calculated from the nominal covariance matrices S j, based

on the assumed variance values ᾱ , β̄ . The initial covariance matrix P0 is defined analogously

to S0, see (20), but is based on the unknown system variances α,β ,

p
(k,l)
0 =

{
α +β for k = l ≥ 1

α otherwise .
(23)

In brief, the estimation algorithm is run based on our assumed variance values ᾱ, β̄ and

yields the Kalman gain K j used in (21); to determine the variance of the estimate when run-

ning the estimation on the real system, we have to take the real variance parameters α,β into

account, via (23) and (21). This step is artificial, since the real values are not known; however,

it allows us to study the effects of incorrect variance assumptions on the estimation result, see

Sec. 4. In the ideal case when ᾱ = α and β̄ = β , S j = Pj for all j ∈ {1, 2, . . .}. This scenario

was studied in [6].

When we compare the performance of the independent (I) and the joint (II) estimation, we

use the variance of an individual’s disturbance estimate, which in both cases is given by

E
[
(di − d̂ i

j)
2
]
= p

(i,i)
j = p

(1,1)
j , ∀ i ∈ I , (24)

where D̂ j = [d̂ i
j], i ∈ I , and Pj = [p

(k,l)
j], k, l ∈ K . The variance is identical for all agents,

since the same assumptions on the dynamics (8) and the initial noise characteristics (9) hold for

every agent. The variance of an individual’s disturbance (24) is a measure for the effectiveness

of the disturbance compensation, since in the general ILC framework, cf. (2)-(3), the input

update rule is based on the current estimate d̂ i
j. See for example [11].

Below, we distinguish between the individual disturbance variance (24) in the cases of joint

and independent estimation, where the latter is given when evaluating the disturbance variance

for N = 1, i.e.

p
(1,1)
j

∣∣
N=1

. (25)

115

Paper IV. Sensitivity of Joint Estimation in Multi-Agent Iterative Learning

Thus, the initial question can be reformulated: To what degree does joint estimation benefit

the individual learning of an agent? How does an incorrect assumption on the initial variances

affect the learning performance?

3.2 Performance Index

The performance of independent (I) vs. joint (II) estimation is analyzed through the variance

of the state estimate. As mentioned in Section 2.1, the goal of ILC is to reduce the value xi
j,

cf. (5). This is best achieved if the variance in the estimate of xi
j is small; in other words, the

variance of the state estimate can be used as a measure of learning performance, see [6].

Given (5) and (9), the best estimate of the state x̂i
j at iteration j is equal to the current

disturbance estimate,

x̂i
j = d̂ i

j, (26)

since the noise ξ i
j has zero mean. Recalling the noise characteristics (9) and the previous

assumption of mutual independence between di and ξ i
j, we obtain the variance of state estimate

from the sum of the variance of the estimate d̂ i
j and the variance of ξ i

j. That is, with (24) and

(10),

E
[
(xi

j − x̂i
j)

2
]
= E

[
(di +ξ i

j − d̂ i
j)

2
]
= p

(1,1)
j +λ . (27)

We introduce the performance index as the ratio of the state variance in the independent case

vs. the joint case,

R =
p
(1,1)
j

∣∣
N=1

+λ

p
(1,1)
j +λ

, (28)

using the notation of (25). Given this definition, a value R> 1 indicates that the joint estimation

scheme is more beneficial than an independent estimation, while a value R < 1 means that the

independent estimation yields a better performance. The larger the value R, the more beneficial

the joint estimation algorithm.

In Sec. 4, we analyze the independent and joint estimation schemes for their sensitivity to

inaccurate disturbance assumptions, cf. (9). In this context, the performance index (28) allows

us to compare the performance of the two estimation schemes and to determine in which cases

a joint estimation is more beneficial.

4. Sensitivity Analysis

In our previous work [6], we studied independent and joint estimation under the assumption

that the variances of the individual and common disturbance, α and β , are known. These

values were used when solving for the Kalman gains K j. They also served as initial conditions

when calculating the variance of the disturbance estimate (23) in each iteration j.

Below, the effects of incorrect variance assumptions on the performance of the estimation

algorithm are studied for both independent and joint estimation, and compared with the result

derived in [6]. This analysis allows us to deduce rules on how to choose ᾱ and β̄ in order to

achieve robustness to assumption errors.

116

4. Sensitivity Analysis

4.1 Variance of Disturbance Estimate

We derive the individual’s disturbance variance p
(1,1)
j given the assumptions in Sec. 2.3. In

this context, we introduce the notation ∗(·) to represent a respective quantity assuming perfect

knowledge, i.e.

ε̄ := ε . (29)

The ideal value of the individual’s disturbance variance was derived in [6],

∗p
(1,1)
j =

α +β + jβ 2 + jNαβ

(1+ jβ)(1+ jβ + jNα)
, (30)

under the assumption that the disturbance characteristics of di,ind and d0 are known, i.e. δ = 0.

For the following sensitivity analysis, we express (30) in terms of the total disturbance variance

γ , see (11), and the disturbance ratio ε ,

∗p
(1,1)
j =

γ + jγ2 (1− ε) (1+ ε (N −1))

m j(γ,ε) n j(γ,ε,N)
, (31)

:= f j (γ,ε,N) (32)

where
m j(γ,ε) = 1+ jγ (1− ε)

n j(γ,ε,N) = 1+ jγ (1+ ε (N −1)) .
(33)

The variance ∗p
(1,1)
j serves as reference value for determining the robustness of the joint esti-

mation scheme to an incorrect similarity assumption, ε̄ 6= ε .

We derive an analytical expression for the variance of an agent’s disturbance estimate for

the general case, where ε is not assumed to be known.

PROPOSITION 1 The variance of an agent’s disturbance estimate can be expressed in terms of

the combined variance γ , the nominal disturbance ratio ε̄ , the assumption error δ , the number

of agents N, and the iteration j,

p
(1,1)
j = f j (γ, ε̄,N)−δ g j (γ, ε̄,N) , (34)

where

g j(γ, ε̄,N) =
jγ2ε̄ (N −1)(2+ jγ (2+ ε̄ (N −2)))

m j(γ, ε̄)2 n j(γ, ε̄,N)2
(35)

and f j (γ, ε̄,N) , m j(γ, ε̄), n j(γ, ε̄,N) are defined by (32) and (33). Recalling (13), the assump-

tion error is bounded by

− ε̄ ≤ δ ≤ 1− ε̄ . (36)

The result is obtained by first solving the Kalman filter equations (19) for the Kalman gain K j,

given the initial conditions (20). Finally, the recursive equation (22) yields the above result,

given the starting values (23). A more detailed proof is found in the Appendix A.1.

The goal of the following analysis is to compare a real scenario (where ε̄ 6= ε) to an ideal

case, where we have perfect system knowledge (ε̄ = ε).

117

Paper IV. Sensitivity of Joint Estimation in Multi-Agent Iterative Learning

Independent Estimation If every agent estimates its disturbance di independently, a parti-

tioning of di into a common part and an individual part, cf. (4), is not necessary. Consequently,

an incorrect assumption ε̄ 6= ε has no effect on the disturbance estimate; that is,

p
(1,1)
j

∣∣
N=1

= ∗p
(1,1)
j

∣∣
N=1

. (37)

This is also reflected by the equations (34)-(35) and (31)-(32), where

g j (γ, ε̄,1) = 0 (38)

and

f j (γ, ε̄,1) = f j (γ,ε,1) =
γ

1+ jγ
(39)

depends only on the sum γ , which is assumed to be known precisely, γ = α +β = ᾱ + β̄ , see

(11).

In the limit case when j → ∞, the variance of the disturbance estimate approaches zero

monotonically,

lim
j→∞

p
(1,1)
j

∣∣
N=1

= 0 with
∂ p

(1,1)
j

∣∣
N=1

∂ j
≤ 0 . (40)

Fig. 2 illustrates the evolution of the variance p
(1,1)
j

∣∣
N=1

for the example introduced in Sec. 5.

Joint Estimation If N agents jointly estimate their disturbance di, the assumption on the

disturbance partitioning is crucial to the estimation performance. We compare the variance

p
(1,1)
j with the ideal value by using the relation ε = ε̄ + δ in (31) and subtracting (31) from

(34). This yields
∗p

(1,1)
j < p

(1,1)
j , (41)

for N > 1 and ε̄ 6= ε . The performance of the joint estimation algorithm when assuming perfect

knowledge is better (i.e. results in a smaller variance) than in the realistic scenario, where the

disturbance partitioning is not accurately known.

When analyzing (34), (35) with respect to the assumption error δ , we obtain

∂ p
(1,1)
j

∂δ
≤ 0 ,

∂ p
(1,1)
j

∂ ε
≤ 0 . (42)

For a given ratio ε̄ , the performance of the joint estimation scheme improves (i.e. smaller

variance) if the real ratio ε increases. In other words, no matter how wrong our assumption

on the disturbance partitioning ε̄ is, the joint estimation scheme becomes more effective if

the agents show an increasing similarity in reality (and as long as ε̄ 6= 0). However, if the

nominal ratio is chosen to be zero (ε̄ = 0, assuming the agents are completely different), the

joint variance (34) corresponds to the individual variance (39) and is not improved by the

agent’s actual similarity, see Fig. 2.

118

4. Sensitivity Analysis

An interesting next step is to study the limit behavior of the disturbance variance for j → ∞.

We first consider f j (γ, ε̄,N) in (34) and state

lim
j→∞

f j (γ, ε̄,N) = 0 with
∂ f j (γ, ε̄,N)

∂ j
≤ 0 . (43)

The function f j (γ,ε,N) also defines the perfect variance and its limit, cf. (30), and hence,

lim
j→∞

∗p
(1,1)
j = 0 with

∂ ∗p
(1,1)
j

∂ j
≤ 0 . (44)

This means that, in the perfect knowledge case, the disturbance is accurately estimated after

a large number of iterations. We keep this in mind when analyzing the limit behavior of the

variance p
(1,1)
j . Two cases are distinguished:

(1) If we assume that the agents are not perfectly identical, that is ε̄ 6= 1, the variance con-

verges to zero,

lim
j→∞

p
(1,1)
j = 0 . (45)

The joint estimation algorithm provides an increasingly accurate estimate of the distur-

bance with each additional iteration. Even if our assumption is wrong, and δ 6= 0, the

estimation algorithm provides us with the correct disturbance estimate in the limit case

when the number of iterations approaches infinity2.

(2) If we assume that the agents are identical, ε̄ = 1, the limit behavior for j → ∞ is

lim
j→∞

p
(1,1)
j =−δ γ

N −1

N
:= ℓ(γ,δ ,N) , (46)

where −1 ≤ δ ≤ 0, cf. (36). The variance of the disturbance estimate has a finite, non-

zero limit value (if δ 6= 0, which is equivalent to saying ε 6= 1). In other words, when we

assume the agents are identical and they are (in fact) not, the joint estimation scheme does

not provide an accurate estimate, even after a large number of iterations. The variance in

the limit j → ∞ depends on the total disturbance level γ , the number of agents N, and the

assumption error δ , where

∂ ℓ(γ,δ ,N)

∂ N
≥ 0,

∂ ℓ(γ,δ ,N)

∂ δ
≤ 0,

∂ ℓ(γ,δ ,N)

∂ γ
≥ 0 . (47)

The limiting variance grows with an increasing number of agents, an increasing differ-

ence |δ | between the assumed and real ratio (note that δ ≤ 0), and an increasing overall

disturbance level. When ε = 0 (meaning that the agents, in reality, have no common

disturbance component), the difference between the assumed and real ratio is largest,

δ =−1, and

lim
N→∞

ℓ(γ,−1,N) = γ . (48)

2 Mathematica files including the presented results are available at www.idsc.ethz.ch/Downloads/

multiagentILC.

119

www.idsc.ethz.ch/Downloads/multiagentILC
www.idsc.ethz.ch/Downloads/multiagentILC

Paper IV. Sensitivity of Joint Estimation in Multi-Agent Iterative Learning

Based on the above results, first conclusions can be drawn on how our assumption on the

agents’ similarity affects the joint estimate, and on how to choose the nominal ratio ε̄:

• Generally, an incorrect assumption about the agents’ similarity (ε̄ 6= ε) decreases the ac-

curacy of the disturbance estimate and increases the variance of the disturbance estimate,

cf. (41).

• In the worst case, the variance does not approach zero in the limit when the number

of iterations goes to infinity. This happens if we assume that the agents are perfectly

identical, ε̄ = 1, but they are, in fact, not. In this case, the limit value of the variance

for j → ∞ increases with the number of agents and with an increasing total disturbance.

The variance is worst if the agents share no common disturbance component in the real

scenario, ε = 0 or δ =−1. To assure that the variance converges to zero for any ratio ε ,

we must choose ε̄ 6= 1.

• As shown in (42), the joint estimation scheme is more beneficial if the agents are more

similar in reality. This is independent of the assumed value and holds for all ε̄ 6= 0.

Hence, if we want to benefit from this characteristic of the joint estimation scheme, and

if we expect a certain degree of similarity between the agents, the ratio ε̄ should not be

set to zero.

Fig. 2 summarizes the characteristics derived above: the perfect knowledge case results in the

smallest variance values and, in the limit case, variances approach zero except for the case

ε̄ = 1, where the limit value is obtained from (46), cf. Sec. 5.

Thus far we have compared the disturbance estimate p
(1,1)
j with the perfect value ∗p

(1,1)
j .

What remains is to compare the independent and joint estimation schemes given an insufficient

knowledge ε̄ 6= ε . In the following section, we attempt to determine whether, in light of our

new findings, the joint estimation continues to perform better than the independent estimation.

4.2 Performance Index

We introduced the performance index R as the ratio of the state variance in the independent

case vs. the joint case, see Sec. 3.2 and [6]. As shown in [6], in the nominal case, assuming

the real values α , β are known, joint estimation is always beneficial and yields a performance

index

1 ≤ ∗R =
∗p

(1,1)
j

∣∣
N=1

+λ

∗p
(1,1)
j +λ

. (49)

When the number of iterations increases, the performance index shows the following limit

behavior,

lim
j→∞

∗R =

{
N for ε = 1 and λ = 0 ,

1 otherwise.
(50)

If the agents are not identical (ε 6= 1), the performance index ∗R converges to one. The same

limit behavior is observed if process noise acts on the system, λ 6= 0. Only if (i) the agents are

identical, and (ii) noise is due to measurement only, is the limit value of the performance index

equal to N, see [6] for a detailed analysis.

120

4. Sensitivity Analysis

From Sec. 4.1 we know that a mismatch between the real disturbance characteristics and

the nominal values does not affect the independent estimate, see (37), but it does corrupt the

disturbance estimate when jointly estimating, see (41). In this context, it is interesting to ask:

Is it possible that the performance index becomes smaller than one, meaning that the individ-

ual estimation performs better than the joint estimation? Taking into account the disturbance

variances derived in Sec. 4.1, we answer this question below.

First, we compare the performance index in the ideal case, where ε̄ = ε , with the perfor-

mance index R of the realistic scenario, ε̄ 6= ε . Given the definition of the performance index in

(28) and the derived characteristics of the disturbance variance, cf. (37) and (41), we conclude

that

R < ∗R . (51)

The ideal performance index represents an upper bound to R and, recalling (49), is larger or

equal to one.

Second, before studying the evolution of R with j, we focus on the limiting behavior of

performance index R as j → ∞. Taking into account the limit values of the disturbance vari-

ance derived in Sec. 4.1 and explicitly stated in (40), (45) and (46), the following statement is

derived:

LEMMA 1 As j → ∞, the performance index R, defined by (28) and (34), shows two distinct

limiting behaviors:

(1) If ε̄ 6= 1, the performance index converges to one,

lim
j→∞

R = 1 (52)

for all possible values N, j > 1, γ ≥ 0, and ε,λ ∈ [0,1], where 0 ≤ ε̄ < 1.

(2) If ε̄ = 1, the limit behavior for j → ∞ is

lim
j→∞

R =
λN

λN −δγ (N −1)
:= ℓR (γ,N,δ ,λ) ≤ 1 , (53)

for all possible values N, j > 1, γ > 0, and λ ∈ [0,1], where −1 ≤ δ < 0.

Since
∂ ℓR

∂ N
≤ 0 and

∂ ℓR

∂ δ
≥ 0, (54)

the limit value ℓR reaches its minimum for δ =−1 ⇔ ε = 0, and N → ∞. In this case,

lim
N→∞

ℓR(γ,N,−1,λ) =
λ

λ + γ
. (55)

121

Paper IV. Sensitivity of Joint Estimation in Multi-Agent Iterative Learning

Interpretation of the result If we assume the agents are not identical, ε̄ 6= 1, the joint estima-

tion algorithm converges and provides us with an accurate disturbance estimate for j → ∞, cf.

(45) and (52). In other words, with respect to the convergence of the disturbance variance, the

joint estimation scheme is robust to assumption errors as long as ε̄ 6= 1. If we choose ε̄ = 1 and

δ 6= 0, however, we lose this property, cf. (46) and (55). That is, under the assumption that all

agents are identical, the joint estimation algorithm is highly sensitive to assumption errors. In

the case of pure measurement noise λ = 0, (53) is zero. Note that the case, λ = 0 and ε̄ = 1,

yields the best performance improvement in the ideal case, see (50), but is the most sensitive

to assumption errors. In brief, when building upon a joint estimation scheme, the disturbance

ratio ε̄ should not be set to one. Moreover, we have shown that the performance index can

be less than one (see statement (2) in Lemma 1). In these cases, an independent estimation is

preferable.

The above result guarantees that we eventually obtain a precise estimate of the disturbance,

but it does not provide insight into the transient performance of the joint estimation scheme as

compared to an independent algorithm.

As a last step, we perform a more detailed analysis and identify parameter combinations

that support an application of the joint estimation scheme (where R > 1). At an iteration j, the

joint estimation is beneficial, if the inequality R ≥ 1 is satisfied, which is equivalent to saying

f j (γ, ε̄,1) ≥ f j (γ, ε̄,N)−δ g j (γ, ε̄,N) (56)

for a given number of agents N, a known nominal disturbance ratio ε̄ , and an overall disturbance

γ , see (28) and (34). The functions f j and g j are non-negative for all possible values N, j ≥ 1,

γ ≥ 0, and ε̄ ∈ [0,1], cf. (32) and (35),

f j (γ, ε̄,N)≥ 0 and g j (γ, ε̄,N)≥ 0 , (57)

and
∂ f j (γ, ε̄,N)

∂ N
=

−ε̄2γ2 j

m j(γ,ε) n j(γ,ε,N)2
≤ 0 . (58)

Combining (56) with (57),(58) yields the following lemma:

LEMMA 2 A sufficient condition for the joint estimation to yield a better (or equal) learning

performance than the independent estimation is a disturbance ratio ε that is larger than (or equal

to) the assumed one. The following implication holds,

ε ≥ ε̄ ⇒ R ≥ 1 , (59)

for all possible values N, j ≥ 1, γ ≥ 0, and ε̄ ∈ [0,1].

Interpretation of the result If the agents are more similar in reality than assumed, it is bene-

ficial to jointly estimate the repetitive disturbances. We should avoid an overestimation of the

similarity between the agents, since in this case an independent scheme would actually be more

122

4. Sensitivity Analysis

beneficial. However, if we underestimate the similarity for a given situation defined by ε , we

increase the variance of the disturbance estimate, cf. (42). Moreover, from (28) and (34) with

δ = ε − ε̄ , we obtain

∂R

∂ ε̄
≥ 0 if ε ≥ ε̄ , (60)

which means that, if we underestimate the similarity of the agents (reducing ε̄), we reduce

the benefit of the joint estimation vs. the independent estimation.2 A design rule for ε̄ is

consequently: Given a priori knowledge about the multi-agent system, make ε̄ as large as

possible while, at the same time, ensuring that it is less than the real value ε . In this case,

applying the joint estimation guarantees a better learning performance than the independent

estimation scheme; however, the benefits of joint estimation remain marginal, as shown in [6].

Note that if δ ≥ 0 ⇔ ε ≤ ε̄ , there are also cases for which R ≥ 1, see Fig. 3. From (56)

with (13), we derive the necessary and sufficient condition2:

LEMMA 3 In the proposed multi-agent learning framework, joint estimation yields a better

(or equal) learning performance as the independent estimation if and only if the following

inequality is satisfied for given values N, j > 1, γ, ε̄ > 0 and ε:

ε ≥ ε̄
1+ γ j

(
2+ γ j

(
1+ ε̄2 (N −1)

))

(1+ γ j)(2+ γ j (2+ ε̄ (N −2)))
:= ε̄ h j(γ, ε̄,N) (61)

with h j(γ, ε̄,N)< 1. The inequality becomes less restrictive for an increasing number of agents,

∂h j/∂N < 0, and reduces to:

ε ≥ ε̄
ε̄γ j

1+ γ j
for N → ∞ , (62)

and, in the limit case for j → ∞, to:

ε ≥ ε̄2 for j,N → ∞ . (63)

Fig. 3 illustrates the previously derived characteristics for ε = 0.5 and the nominal values ε̄
ranging from 0 to 1. Note that for the case ε̄ = 0.75, the performance index crosses the R = 1

line and finally approaches one.

The previous analysis focused on identifying the cases for which the joint estimation is

beneficial despite an incorrect assumption ε̄ 6= ε and, in turn, defined the cases where an incor-

rect assumption ε̄ 6= ε corrupts the performance of the joint estimation to such an extent that

an independent estimation is more effective. The numerical examples below summarize the

results of this section and highlight the sensitivity of the joint estimation scheme to incorrect

noise assumptions.

123

Paper IV. Sensitivity of Joint Estimation in Multi-Agent Iterative Learning

1 20 40 60
0

0.02

0.04

0.06

0.08

0.1

Iteration j

V
ar

ia
n
ce

∗p
(1,1)
j

p
(1,1)
j |N=1

ε̄ = 0
ε̄ = 0.25
ε̄ = 0.5
ε̄ = 0.75
ε̄ = 1

Figure 2. The variance of an individual’s disturbance estimate for N = 10 agents, ε = 0.5,

γ = 0.1 and λ = 0 (pure measurement noise).

5. Numerical Examples

We consider a group of N = 10 agents with a similarity of ε = 0.5. The noise is due to measure-

ment only (λ = 0) and the overall disturbance γ is 0.1. Fig. 2 and Fig. 3 show the evolution of

the variance and the performance index for various nominal values ε̄ ranging from 0 to 1. Note

that different intervals of j are chosen in Fig. 2 and Fig. 3 to emphasize the main characteristics.

Both figures show that an incorrect similarity assumption results in a worse performance, i.e. in

a higher variance in Fig. 2 and a lower performance index in Fig. 3. The limiting behavior in

the case of ε̄ = 1, see (46) and (53), is for the given scenario

lim
j→∞

p
(1,1)
j = 0.5 ·0.1 · 9

10
= 0.045 and lim

j→∞
R = 0 .

In all other cases, the variance approaches 0 (see Fig. 2) and the performance index 1 (see

Fig. 3) as j → ∞. For the two cases where ε̄ > ε , the performance index is (partly) smaller than

one.

6. Conclusions

We analyzed the sensitivity of joint estimation to the underlying assumption of similarity be-

tween agents. The analysis was driven by our previous results, which showed that the learning

performance of an agent is improved by exchanging information with other agents that are

learning the same task.

While previous results assumed perfect knowledge about the degree of similarity between

the agents, this paper studied the effects of an incorrect similarity assumption. We found that an

incorrect assumption not only degrades the performance of the joint estimation scheme (when

124

A. Appendix

1 100 200
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Iteration j

P
er

fo
rm

an
ce

in
d
ex

∗R
ε̄ = 0
ε̄ = 0.25
ε̄ = 0.5
ε̄ = 0.75
ε̄ = 1

Figure 3. The performance index for N = 10 agents, ε = 0.5, γ = 0.1 and λ = 0 (pure mea-

surement noise).

compared to the case of perfect knowledge), but that, for some problems, the joint estimation

performs worse than an independent estimation scheme. This is particularly true if we overes-

timate the similarity between the agents. As a consequence, it is not advisable to assume that

agents are identical because, if agents are not identical in reality, the joint estimation does not

even converge to the correct disturbance value. However, note that from our previous analysis,

we know that the case of identical agents (and no process noise) provided the best performance

improvement of joint vs. independent estimation – an improvement of a factor equal to the

number of agents. In other words, the case with the highest performance improvement (due to

joint estimation) shows the highest sensitivity to assumption errors.

To conclude: in order to guarantee improved performance over an individual learning

scheme, a joint estimation scheme must not overestimate the similarity between the agents.

A. Appendix

A.1 Proof of Proposition 1

We derive an explicit representation of the variance p
(1,1)
j , as presented in Proposition 1, that

depends on the total variance γ , the nominal similarity factor ε̄ , the assumption error δ , the

iteration j, and the number of agents N.

The proof proceeds similarly to the derivation of the ideal variance (31) in [6]. Note that

in [6], we assumed that the real noise characteristics (9) were known precisely and

p
(1,1)
j simply denoted the ideal variance ∗p

(1,1)
j . (64)

125

Paper IV. Sensitivity of Joint Estimation in Multi-Agent Iterative Learning

Matlab and Mathematica files for reproducing the results below are available on the project

webpage3.

Proof. For the general case, we derive a closed form of the covariance matrix Pj, with the

assumptions in Sec. 2.3. Since the disturbance and noise characteristics are the same for each

agent, the covariance matrix is of the following symmetric structure,

p
(k,l)
j =





p
(0,0)
j if k = l = 0

p
(0,1)
j if kl = 0 and k 6= l

p
(1,1)
j if k = l 6= 0

p
(1,2)
j otherwise .

(65)

We derive a recursive relationship for the values in (65) based on (21) and the closed-form

representation of K j (derived in [6]). The Kalman gains K j are calculated based on the nominal

disturbance variances ᾱ = ε̄γ and β̄ = (1− ε̄)γ and are given by

k
(k,l)
j =





k
(0,1)
j if k = 0

k
(1,1)
j if k = l

k
(1,2)
j otherwise ,

(66)

where

k
(0,1)
j =

ε̄γ

n j(γ, ε̄,N)
, k

(1,2)
j =

ε̄γ

m j(γ, ε̄)n j(γ, ε̄,N)
, k

(1,1)
j = f j (γ, ε̄,N) . (67)

From (21) with (65) and (67), we obtain recursive equations for

p
(0,0)
j , p

(0,1)
j , p

(1,1)
j p

(1,1)
j , (68)

that depend only on the (j− 1)th values of (68), on the Kalman gains (67) and the number of

agents N. A proof by induction using the recursive equations for (68) with initial condition

(23) verifies the closed-form expression in (34). For the proof, the closed-form representations

of all values (68) were needed and derived. However, the only value of interest is p
(1,1)
j .

Mathematica files with the recursive equations for (68) and the closed-from representations

of all quantities (68) are available on the project webpage3.

Acknowledgements

The authors would like to thank Javier Alonso-Mora for many fruitful discussions.

3 Mathematica files including the presented results are available at www.idsc.ethz.ch/Downloads/

multiagentILC.

126

www.idsc.ethz.ch/Downloads/multiagentILC
www.idsc.ethz.ch/Downloads/multiagentILC

References

References

[1] L. Panait and S. Luke, “Cooperative multi-agent learning: The state of the art,”

Autonomous Agents and Multi-Agent Systems, vol. 11, no. 3, pp. 387–434, 2005.

[2] A. Schaerf, Y. Shoham, and M. Tennenholtz, “Adaptive load balancing: a study in multi-

agent learning,” Journal of Artificial Intelligence Research, vol. 2, no. 1, pp. 475–500,

1994.

[3] M. Matarić, “Reinforcement learning in the multi-robot domain,” Autonomous Robots,

vol. 4, pp. 73–83, 1997.

[4] S. Mannor and J. Shamma, “Multi-agent learning for engineers,” Artificial Intelligence,

vol. 171, no. 7, pp. 417–422, 2007.

[5] J. Morimoto and K. Doya, “Robust reinforcement learning,” Neural computation, vol. 17,

no. 2, pp. 335–359, 2005.

[6] A. Schöllig, J. Alonso-Mora, and R. D’Andrea, “Independent vs. joint estimation in multi-

agent iterative learning control,” in Proceedings of the 49th IEEE Conference on Decision

and Control, 2010, pp. 6949–6954.

[7] Z. Bien and J. Xu, Iterative learning control: analysis, design, integration and applica-

tions. Kluwer Academic Publishers Norwell, MA, USA, 1998.

[8] D. Bristow, M. Tharayil, and A. Alleyne, “A survey of iterative learning control,” IEEE

Control Systems Magazine, vol. 26, no. 3, pp. 96–114, 2006.

[9] M. Phan and R. Longman, “Higher-order iterative learning control by pole placement and

noise filtering,” in Proceedings of the IFAC World Congress, 2002, pp. 1899–1904.

[10] M. Norrlöf, “Disturbance rejection using an ILC algorithm with iteration varying filters,”

Asian Journal of Control, vol. 6, pp. 432–438, 2004.

[11] A. Schöllig and R. D’Andrea, “Optimization-based iterative learning control for trajectory

tracking,” in Proceedings of the European Control Conference, Budapest, Hungary, 2009,

pp. 1505–1510.

[12] M. Phan and R. Longman, “A mathematical theory of learning control for linear discrete

multivariable systems,” in Proceedings of the AIAA/AAS Astrodynamics Conference,

1988, pp. 740–746.

[13] R. Tousain, E. van der Meche, and O. Bosgra, “Design strategy for iterative learning

control based on optimal control,” in Proceedings of the 40th IEEE Conference on

Decision and Control, vol. 5, 2001, pp. 4463–4468.

[14] B. Bamieh, J. Pearson, B. Francis, and A. Tannenbaum, “A lifting technique for linear

periodic systems with applications to sampled-data control,” Systems & Control Letters,

vol. 17, no. 2, pp. 79–88, 1991.

[15] J. Hätönen, D. Owens, and K. Feng, “Basis functions and parameter optimisation in high-

order iterative learning control,” Automatica, vol. 42, no. 2, pp. 287–294, 2006.

127

Paper IV. Sensitivity of Joint Estimation in Multi-Agent Iterative Learning

[16] K. Barton and A. Alleyne, “A cross-coupled iterative learning control design for precision

motion control,” IEEE Transactions on Control Systems Technology, vol. 16, no. 6, pp.

1218–1231, 2008.

[17] M. Butcher, A. Karimi, and R. Longchamp, “Iterative learning control based on stochastic

approximation,” in Proceedings of the 17th IFAC World Congress, 2008, pp. 1478–1483.

[18] C. Chui and G. Chen, Kalman Filtering: with Real-Time Applications (Springer Series in

Information Sciences). Springer, 1998.

[19] M. Verhaegen and V. Verdult, Filtering and System Identification: A Least Squares

Approach. Cambridge University Press, 2007.

128

Part B

RHYTHMIC FLIGHT

PERFORMANCES

Paper V

Synchronizing the Motion of a Quadrocopter to

Music

Angela P. Schoellig · Federico Augugliaro · Sergei Lupashin ·
Raffaello D’Andrea

Abstract

This paper presents a quadrocopter flying in rhythm to music. The quadrocopter per-

forms a periodic side-to-side motion in time to a musical beat. Underlying controllers are

designed that stabilize the vehicle and produce a swinging motion. Synchronization is then

achieved by using concepts from phase-locked loops. A phase comparator combined with

a correction algorithm eliminate the phase error between the music reference and the actual

quadrocopter motion. Experimental results show fast and effective synchronization that is

robust to sudden changes in the reference amplitude and frequency. Changes in frequency

and amplitude are tracked precisely when adding an additional feedforward component,

based on an experimentally determined look-up table.

Published in Proc. of the 2010 IEEE International Conference on Robotics and Automation (ICRA), 2010. Submis-

sion includes multimedia attachment, also found at www.tiny.cc/QuadroDance. DOI: 10.1109/ROBOT.2010.

5509755.

c©2010 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other

uses, in any current or future media, including reprinting/republishing this material for advertising or promotional

purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted

component of this work in other works.

131

www.tiny.cc/QuadroDance

Paper V. Synchronizing the Motion of a Quadrocopter to Music

Figure 1. The desired side-to-side motion.

1. Introduction

Controls for the synchronization of movement are indispensable in any robotics application

where high performance, precision, and agility are required. Involving a coordination in time

between two or more systems or events, controls for synchronized behavior fall into two broad

categories: algorithms focused on coordinating internal signals (for example, from multiple

dynamic subsystems), and algorithms focused on coordinating with external inputs (from other

bodies or the environment).

Driven by the need to control the movement of complex industrial robots, early synchro-

nized control algorithms dealt with coordinating internal signals from multiple dynamic sub-

systems. Examples include multi-axis machine tools [1,2], parallel manipulators [3], and multi-

robot assembling machines [4]. More recently, motion synchronization has led, for example, to

the development of algorithms for spacecraft formation flying [5] and is used in mobile robots

to reduce the velocity errors between driving wheels [6].

Control algorithms for synchronizing robots with external inputs have been largely devel-

oped within the field of humanoid robotics, where researchers aim for a lively interaction be-

tween robots and their environment. Examples of motion synchronization with external inputs

have thus far dealt mostly with easily repeatable motion primitives like steps or up-and-down

arm movements, including robots that step and sing along to music [7–10] or drum in tempo

with an exogenous signal [11–13]. Periodic inputs and rhythmic robot movements are often

featured in these applications for their simplicity, repetitiveness, aesthetic pleasure, and enter-

tainment value.

The objective of this paper is to synchronize the motion of a quadrocopter to music. The

vehicle’s nonlinear and unstable dynamics present significant challenges in motion synchro-

nization. Stabilizing control is required just to keep the vehicle in the air, and modeling er-

rors, motor saturation, and communication delays have noticeable effects on the quadrocopter

dynamics. An appropriate synchronization algorithm is indispensable to time precisely the re-

sponse of the vehicle with the music reference. Note that this is not the case in most other

approaches dealing with synchronizing rhythmic movement. In digital animation the motion

of a character is not affected by mass inertia or system delay, but is directly dictated by the

developer, eliminating the need for a synchronization algorithm. Examples of virtual dancing

characters are found in [14, 15]. Other papers on dancing robots, as summarized in [16], do

not focus on synchronization either, since they deal with systems that are better understood,

less sensitive to disturbances, and, generally, easier to manage. The Keepon Robot [17] and Ms

132

2. System Representation

DanceR [18], which dance with humans, are two such examples.

In this paper, a simple motion primitive is chosen for studying the feasibility of our idea.

The quadrocopter undergoes a planar side-to-side motion as depicted in Fig. 1, where at beat

times the vehicle reaches the outermost points of the trajectory, either on the left or right. In a

preliminary step, the music is pre-processed and the beat times obtained are transformed into

a periodic signal which is used as a reference trajectory for the quadrocopter. Fig. 2 shows

the overall control system. Synchronized rhythmic behavior is achieved if the music reference

signal and the actual quadrocopter motion are in phase, cf. Fig. 3.

The general idea is borrowed from phase-locked loops (PLL). A phase-locked loop acts on

the frequency of a controlled oscillator and matches its output to a periodic reference signal

both in frequency and phase. PLLs are widely used in radio, telecommunications, comput-

ers, and many other electronic applications, cf. [19, 20]. Inspired by this concept, underlying

controllers are designed that turn the unstable quadrocopter dynamics into an oscillating sys-

tem behavior. A phase comparator detects the phase error between desired reference trajectory

and quadrocopter motion. After having determined the phase error, it is compensated for by

closing the loop on the phase error, similar to [9] and [12]. The efficacy of the proposed syn-

chronization algorithm is experimentally studied. The derived algorithm proves to be able to

accurately coordinate the movements of the flying vehicle with the desired music reference.

The accompanying video shows the ‘dancing’ quadrocopter.

In the following sections, the overall control system is presented. Section 2 explains how the

reference signal is generated from the music signal and introduces the quadrocopter dynamics.

Section 3 describes how the required oscillating system is realized by using controllers for the

side-to-side motion, while Section 4 presents the phase detection and correction step which

cause the desired synchronized behavior. Experimental results complete this work.

2. System Representation

This section introduces the desired quadrocopter motion as extracted from the music and

presents a two-dimensional model of the quadrocopter that is used for the controller design.

2.1 Periodic Motion

The goal of this work is to show a quadrocopter flying in rhythm to music, where the main

focus lies on solving the underlying synchronization problem. A simple motion primitive was

selected as reference trajectory for the vehicle with the goal of being able to visualize the exist-

ing phase error and successful phase locking. The quadrocopter performs a planar side-to-side

motion where beats occur at the outermost positions, see Fig. 1. The amplitude and frequency

of this lateral motion are modulated by the music’s melody and beat intervals, respectively.

For the derivations, a constant amplitude and constant beat interval are considered; that is,

music beats occur with a constant frequency. This is a reasonable assumption for many types

of music. The efficacy of the derived algorithm for more complicated scenarios is shown in

Section 5.3.

Analyzing a a piece of music yields a desired beat interval T and amplitude Ad . These

values define the reference trajectory that is fed to the quadrocopter. As depicted in Fig. 1, the

133

Paper V. Synchronizing the Motion of a Quadrocopter to Music

Feature
Extraction

MUSIC

REFERENCE

SIGNAL

PHASE

ERROR

CORRECTION

TERM

QUADROCOPTER
TRAJECTORY

Oscillating
Quadrocopter

Phase
Correction

Phase
Comparator

Figure 2. The overall control system transforming music into an appropriate quadrocopter

motion.

corresponding desired vehicle trajectory is a sinusoidal side-to-side motion in the xz−plane,

xd(t) = Ad cos(ωdt) , zd(t) = zd = constant, (1)

with ωd = π/T . Fig. 3 illustrates the beat-motion relation. Beats occur at the peaks of the

trajectory, i.e. two times per period. As an example, if the music tempo is 120beats per

minute, the desired frequency of the oscillating trajectory is ωd = 2π rad/s. The altitude of the

quadrocopter is stabilized at a given height zd .

2.2 Quadrocopter Model

The side-to-side motion (1) is defined in the xz−plane. In-plane and out-of-plane dynamics

are thus decoupled and additional degrees of freedom are separately stabilized. A simplified

two-dimensional model of the quadrocopter is depicted in Fig. 4. The equations governing the

dynamics of the system are given by

z̈(t) = f (t)cosθ(t)−g (2)

ẍ(t) = f (t)sinθ(t) (3)

θ̇(t) = u(t), (4)

where g is the gravitational constant and θ(t) is the pitch angle. The inputs to the system are

the normalized thrust f (t) in m/s2 and the pitch rate u(t) in rad/s.

3. Controller Design

The oscillating quadrocopter motion is achieved by a cascaded controller design: the z-direction

is stabilized first and, assuming a constant height, the trajectory-tracking controller for the x-

direction is designed.

134

3. Controller Design

Reference signal
Quadrocopter’s trajectory

Phase
 error φ

Time

Po
si

ti
o

n
0

0 T1 T2 T3 T4 T5

Figure 3. The desired rhythmic side-to-side motion of the quadrocopter. Vertical lines repre-

sent beat times.

Z

f

u

Xθ

Figure 4. Schematic of the 2D quadrocopter model.

3.1 Height Stabilization

In order to stabilize the quadrocopter at a desired altitude zd , the thrust input f (t) in (2) is

chosen such that a linear second-order system is obtained. With

f (t) =
1

cosθ(t)

(
g−2δzωz ż(t)−ω2

z (z(t)− zd)
)
, (5)

the closed-loop dynamics are given by

z̈(t)+2δzωz ż(t)+ω2
z z(t) = ω2

z zd. (6)

In most cases, a damping ratio δz between 0.7 (underdamped case) and 1 (critically damped

case) is a reasonable choice, see [21]. The only remaining design parameter is the natural

frequency ωz.

3.2 Trajectory Tracking

Building upon the above control scheme and assuming a constant height zd , the x-dynamics (3)

reduce to

ẍ(t) = g tanθ(t). (7)

135

Paper V. Synchronizing the Motion of a Quadrocopter to Music

In addition, the pitch angle θ(t) is assumed to be small. This is a good approximation for

reference trajectories with a small frequency ωd as compared to the desired amplitude Ad . To

first order, tanθ(t) = θ(t), resulting in a linear approximation for the sideways dynamics,

...
x (t) = g θ̇(t) = gu(t), (8)

relating the position x(t) directly to the angle rate input u(t).
With the aim of following the desired sinusoidal side-to-side motion (1), the input u(t) =

gu(t) is composed of a feedforward component,

u1(t) =
...
x d(t) = Adω3

d sin(ωdt), (9)

and an additional feedback term to correct for errors,

u2(t) = α
(
ẍd(t)− ẍ(t)

)
+β

(
ẋd(t)− ẋ(t)

)
+ γ

(
xd(t)− x(t)

)
, (10)

where the control parameters α, β , and γ are defined through

α = ωx(1+2δx), β = ω2
x (1+2δx), γ = ω3

x (11)

and act on the acceleration, velocity, and position errors, respectively. With the choice (11), the

characteristic polynomial of the closed-loop system is

(s+ωx)(s
2 +2δxωx s+ω2

x) = 0. (12)

The damping ratio δx is again chosen to be a value between 0.7 and 1, and wx remains the only

parameter to be chosen in order to achieve satisfactory tracking performance. Finally, the input

u(t) =
1

g

(
u1(t)+u2(t)

)
(13)

is applied to the quadrocopter.

4. Synchronization

When applying the input u(t) as defined in (13), a phase shift is noticed between the reference

trajectory of the sideways motion and the actual quadrocopter trajectory, illustrated in Fig.

3. (Corresponding experimental results are shown in Fig. 6 and Fig. 7.) This phenomenon

results mainly from unmodeled dynamics (for example communication delays and the propeller

dynamics), which were neglected in the controller design presented in Section 3. (We refer to

Section 5.1 for more details of the vehicle dynamics.)

136

4. Synchronization

4.1 Phase Comparator

The phase shift ϕ(t) between the quadrocopter trajectory and the desired motion (1) is deter-

mined by multiplying the quadrocopter output separately with two different sinusoidal refer-

ence signals and integrating the product. Define the reference signals,

rcos(t) = cos(ωdt) , rsin(t) = sin(ωdt) , (14)

where rcos(t) is the same frequency and phase as the desired motion (1). Under the assumption

that the vehicle dynamics are linear, the response of the controlled quadrocopter system (de-

rived in Section 3) to the periodic reference signal xd(t), see (1), is a sinusoidal signal with the

same frequency but possibly shifted phase and different amplitude,

x(t) = A cos(ωdt +ϕt) . (15)

Multiplying the signals (14) with the vehicle output (15) and using trigonometric identities lead

to

qcos(t) = x(t)rcos(t) =
A

2

[
cosϕ(t)+ cos

(
2ωdt +ϕ(t)

)]

qsin(t) = x(t)rsin(t) =
A

2

[
−sinϕ(t)+ sin

(
2ωdt +ϕ(t)

)]
.

Integrating these signals over one period Td = 2π/ωd and assuming a constant phase shift

during that time interval

ϕ(τ) = ϕt = constant, t −Td ≤ τ ≤ t, (16)

results in

η1(t) =
1

Td

∫ t

t−Td

qcos(t) dt =
A

2
cosϕt (17)

η2(t) =
1

Td

∫ t

t−Td

qsin(t) dt =−A

2
sinϕt . (18)

The value ϕt can be interpreted as the mean value of the phase shift ϕ(t) during the last period,

and when exciting a linear system with a periodic input, the phase shift is in fact constant (after

a transient phase). Therefore, (16) is a valid assumption in steady state. Finally, the phase shift

ϕt is obtained by

ϕt =−arctan

(
η2(t)

η1(t)

)
. (19)

Note that in steady state, integration over several periods improves the robustness of the esti-

mate of ϕt .

137

Paper V. Synchronizing the Motion of a Quadrocopter to Music

4.2 Phase Correction

The phase error ϕt is corrected by a feedback technique borrowed from PLL design [19]. The

reference signal xd(t) in (1) is shifted by a correction term e(t),

xs
d(t) = Ad cos

(
ωdt + e(t)

)
, (20)

which is defined as

e(t) =−k

∫ t

0
ϕt dt. (21)

Similarly, the derivatives of xd(t) are shifted in phase by e(t). Replacing the reference signal

xd(t) and its derivatives in the controller equations (9) and (10) by the shifted values,

xs
d(t), ẋs

d(t), ẍs
d(t), and

...
x s

d(t), (22)

produces a new input u(t), cf. (13), which compensates for the phase error. With the feedback

integrator term e(t), precise and robust phase locking is achieved. Convergence behavior is

controlled by tuning the gain factor k.

5. Results

The developed synchronization scheme is demonstrated on small quadrocopters of about 30cm

diameter operated in the ETH Flying Machine Arena, a 10×10×10m indoor flight-test facility.

5.1 Experimental Setup

The setup is similar to [22]: An 8-camera Vicon motion capture system provides pose data

for any vehicle in the space at 200Hz with a latency of about 25 ms. The localization data

is sent to a PC, which runs the control algorithm, and which in turn sends commands to the

quadrocopters, delivered with a latency between 30 to 60 ms. The flying vehicles are modified

commercially available quadrocoptor described in [23]. Each vehicle accepts a collective thrust

command and three angular rate commands at 50 Hz. An onboard 1 kHz feedback controller

uses rate gyros to track the given commands. More details about this test environment may be

found in [24] and [25].

For the experiments described below, two degrees of freedom (collective thrust and desired

pitch rate) were controlled by the algorithm, while the other two degrees of freedom were han-

dled by a linear controller described in [24]. The measurements x(t) and θ(t) are provided

directly by the Vicon system while velocity is obtained by approximately differentiating posi-

tion data. The acceleration in the x-direction used in the tracking controller (10) is obtained

from (2) and (3) by assuming the acceleration in the z-direction is negligible, and by using the

measured pitch angle θ(t). In the referenced video, the music was pre-processed and the beat

times were stored on the same PC that runs the control algorithm and sends the commands to

the vehicle.

138

5. Results

−10

0

10

P
h
a
s
e
 (

d
e
g
)

1 2 3 4 5 60.90.80.7

−2

0

2

4

6

Frequency (rad/s)

M
a
g
n
it
u
d
e
 (

d
B

)

Model

A
d
=0.4

A
d
=0.6

A
d
=0.8

A
d
=1

Figure 5. Experimentally determined Bode diagram for the closed-loop oscillating quadro-

copter system without phase correction. The dashed line shows the theoretically derived transfer

function taking communication delays and propeller dynamics into account.

5.2 System Characteristics

To begin with, the control laws (5) and (13) without synchronization are applied to the real

system, and the behavior of the resulting oscillating quadrocopter motion is studied. In this

case the desired amplitude Ad and frequency ωd , cf. (1), can be interpreted as the inputs to the

oscillating quadrocopter, Fig. 2, whereas the actual quadrocopter trajectory is the output. Since

(2)-(4) represent a simplified model of the actual vehicle dynamics that neglects aerodynamic

effects, delays in the system, the onboard controller, etc., the control laws (5) and (13) do not

achieve synchronized trajectory tracking.

The transfer function of the closed-loop oscillating quadrocopter system (without the phase

error compensation) was studied by varying the input frequency ωd and amplitude Ad . The

closed-loop response exhibits linear behavior with the frequency of the quadrocopter response

equal to the input frequency. However, the motion is shifted in time, and depending on the

frequency ωd the amplitude is attenuated or amplified. Fig. 5 depicts the experimentally deter-

mined Bode plot for the frequency range of interest. Note that the Bode plot is independent of

the amplitude Ad , as expected for a linear system.

The observed behavior can be explained by the non-idealities in the system. In particular,

the delayed information exchange affects the overall system behavior. In addition, the dynamics

of both the onboard controllers and the propeller motors are neglected in the system description

(2)-(4). A quadrocopter model including realistic latency values (45ms on sending commands

and of 25ms on receiving position data, see Section 5.1) and motor dynamics modeled as first-

139

Paper V. Synchronizing the Motion of a Quadrocopter to Music

order system,

θ̈(t) =
1

Tθ

(
u(t)− θ̇ (t)

)
, Tθ = 25ms, (23)

produces the dashed-line behavior in Fig. 5. For deriving the transfer function, the simple

relation (8) between the x-position and the pitch rate input was used. This approximate model

accounts for the general trend in the experimental data.

Besides providing a better understanding of the closed-loop oscillating system, the exper-

imental data can be incorporated as feedforward phase and amplitude compensation in the

proposed synchronization scheme. The results are shown in the subsequent section, supporting

the idea of an online identification of the values shown in Fig. 5 and constructing a look-up

table. The look-up table might be continuously adapted to changing conditions in the envi-

ronment (for example caused by worn out propellers). This allows a later implementation of

highly agile maneuvers and fast changes between different motion primitives, cf. Fig. 8 and

Fig. 9.

5.3 Synchronization Behavior

The proposed synchronization algorithm is applied to the quadrocopter and the resulting per-

formance of the vehicle is analyzed. A reference signal with a frequency ωd = 1.2π rad/s and

an amplitude Ad = 0.4m was chosen, cf. (1). Fig. 6 shows the quadrocopter response for three

cases: (i) no phase correction, i.e. k = 0 in (21), (ii) phase error compensation with k = 0.28,

and (iii) feedforward phase and amplitude correction based on the pre-determined values de-

picted in Fig. 3. After a short transient phase, the phase comparator (introduced in Section 4.1)

outputs a constant phase error in the case of no phase correction, see Fig. 7. Perfect phase-

locking is achieved when adding phase compensation through either a feedback or feedforward

component. Note that the proposed phase comparator needs at least one full period to converge

to the correct phase error. While the phase error between the reference trajectory and the actual

quadrocopter response is hardly noticeable in Fig. 6, small phase errors are very visible and

audible in actual experiments. In particular, humans expect zero vehicle velocity at beat times.

Correspondingly, Fig. 7 plots the velocity of the quadrocopter at beat times, i.e. when the ref-

erence trajectory reaches its maximum or minimum value. The sign of every second velocity

value is altered such that a constant positive phase delay is represented by positive velocity

values, cf. Fig 7.

While assuming a constant reference frequency and amplitude in the theoretic derivations,

frequency and amplitude changes are followed closely when compensating for phase and am-

plitude errors with a feedforward term, see Fig. 8 and Fig. 9. In fact, this better reflects the

properties of real music, where beat intervals Ti, cf. Fig. 3, might vary over time. For changing

frequencies, the reference is still given by a signal as depicted in Fig. 3, but corresponding to

the next beat interval Ti a different frequency ωd is used for each half period of the sinusoidal

signal (1).

A ‘dancing’ choreography was performed on the song Beat goes on from Dj Ross Vs

Dy. A video of the corresponding quadrocopter motion is available at www.tinyurl.com/

dancingquadro and also accompanying this paper. Throughout all experiments δz = δx = 1,

ωz = 1.25, and ωx = 2.5, although the results are not sensitive to changes in these parameters.

140

www.tinyurl.com/dancingquadro
www.tinyurl.com/dancingquadro

6. Conclusions

0 2 4 6 8 10

−0.5

0

0.5

Time (s)

N
O

 C
O

R
R

E
C

T
IO

N

P
o
s
it
io

n
 (

m
)

0 2 4 6 8 10

−0.5

0

0.5

Time (s)

W
IT

H
 C

O
R

R
E

C
T

IO
N

P
o
s
it
io

n
 (

m
)

0 2 4 6 8 10

−0.5

0

0.5

Time (s)

F
E

E
D

F
O

R
W

A
R

D

P
o
s
it
io

n
 (

m
)

Figure 6. Quadrocopter response to the dashed-lined input signal for the case of no phase

correction (top), phase error compensation (center), and feedforward phase and amplitude cor-

rection (bottom). The solid blue line represents the vehicle trajectory.

6. Conclusions

This paper presents a control and synchronization scheme that enables flying vehicles to per-

form rhythmic movements. The proposed algorithm synchronizes the side-to-side motion of

a quadrocopter with the beat from an arbitrary piece of music. A feedback scheme is used to

adjust the phase of the oscillating quadrocopter to the music reference signal that was deduced

from the music song in a pre-processing step. Based on prior experimental data, The derived

control and synchronization techniques generalize to any other periodic vehicle motion.

The presented results are a first step towards developing the algorithms capable of control-

ling multiple quadrocopters as they perform sophisticated aerobatic maneuvers timed to music.

An aerobatic dance performance of a group of quadrocopters is envisioned in the Flying Ma-

chine Arena, where the music’s features, like beat, volume, and melody, are reflected in the

141

Paper V. Synchronizing the Motion of a Quadrocopter to Music

0 2 4 6 8 10
−0.5

0

0.5

Time (s)

P
h

a
s
e

 E
rr

o
r

(r
a

d
)

No Correction
With Correction
Feedforward

0 2 4 6 8 10
−0.5

0

0.5

Time (s)

P
e

a
k
 V

e
lo

c
it
y
 (

m
/s

)

No Correction
With Correction
Feedforward

Figure 7. Top: Phase error of the vehicle trajectories shown in Fig. 6 (detected by the phase

comparator). Bottom: Vehicle velocity at the peak values of the corresponding reference signal

(using altered signs, see text for details).

movement of the quadrocopters.

Acknowledgements

This work would never have been possible without the prior work of Guillaume Ducard and

Felix Althaus. Their contributions are gratefully acknowledged.

References

[1] Y. Koren, “Cross-coupled biaxial computer control for manufacturing systems,” Journal

of Dynamic Systems, Measurement, and Control, vol. 102, no. 4, pp. 265–272, 1980.

[2] M. Tomizuka, J. S. Hu, T. C. Chiu, and T. Kamano, “Synchronization of two motion

control axes under adaptive feedforward control,” Journal of Dynamic Systems, Measure-

ment, and Control, vol. 114, no. 2, pp. 196–203, 1992.

[3] L. Ren, J. K. Mills, and D. Sun, “Trajectory tracking control for a 3-DOF planar parallel

manipulator using the convex synchronized control method,” IEEE Transactions on

Control Systems Technology, vol. 16, no. 4, pp. 613–623, 2008.

142

References

0 5 10 15 20 25 30 35

−0.5

0

0.5

Time (s)

P
o

s
it
io

n
 (

m
)

0 5 10 15 20 25 30 35
−0.2

−0.1

0

0.1

0.2

Time (s)

P
e

a
k
 V

e
lo

c
it
y
 (

m
/s

)

Figure 8. Top: Quadrocopter response (solid blue line) to an input sequence with changing

amplitudes (dashed line) using feedforward phase and amplitude correction. Bottom: Vehicle

velocity at peak values of the corresponding reference signal (using altered signs).

[4] D. Sun and J. K. Mills, “Adaptive synchronized control for coordination of multirobot

assembly tasks,” IEEE Transactions on Robotics and Automation, vol. 18, no. 4, pp. 498–

510, 2002.

[5] H.-T. Liu, J. Shan, and D. Sun, “Adaptive synchronization control of multiple spacecraft

formation flying,” Journal of Dynamic Systems, Measurement, and Control, vol. 129,

no. 3, pp. 337–342, 2007.

[6] L. Feng, Y. Koren, and J. Borenstein, “Cross-coupling motion controller for mobile

robots,” IEEE Control Systems Magazine, vol. 13, no. 6, pp. 35–43, 1993.

[7] K. Murata, K. Nakadai, K. Yoshii, R. Takeda, T. Torii, H. G. Okuno, Y. Hasegawa, and

H. Tsujino, “A robot uses its own microphone to synchronize its steps to musical beats

while scatting and singing,” in Proceedings of the IEEE/RSJ International Conference on

Intelligent Robots and Systems (IROS), 2008, pp. 2459–2464.

[8] ——, “A robot singer with music recognition based on real-time beat tracking,” in

Proceedings of the 9th International Conference on Music Information Retrieval (ISMIR),

2008, pp. 199–204.

[9] K. Yoshii, K. Nakadai, T. Torii, Y. Hasegawa, H. Tsujino, K. Komatani, T. Ogata, and

H. G. Okuno, “A biped robot that keeps steps in time with musical beats while listening

to music with its own ears,” in Proceedings of the IEEE/RSJ International Conference on

Intelligent Robots and Systems (IROS), 2007, pp. 1743–1750.

143

Paper V. Synchronizing the Motion of a Quadrocopter to Music

0 5 10 15 20 25 30 35
−0.5

0

0.5

Time (s)

P
o

s
it
io

n
 (

m
)

0 5 10 15 20 25 30 35
−0.2

−0.1

0

0.1

0.2

Time (s)

P
e

a
k
 V

e
lo

c
it
y
 (

m
/s

)

Figure 9. Top: Quadrocopter response (solid blue line) to an input sequence with changing

frequencies (dashed line) using feedforward phase and amplitude correction. Bottom: Vehicle

velocity at peak values of the corresponding reference signal (using altered signs).

[10] C. A. A. Calderon, M. R. Elara, C. Zhou, L. Hu, and B. Iniya, “Neural oscillator for

rhythmic motion control of biped robot,” in Proceedings of the International Conference

on Signal Processing, Communications and Networking (ICSCN), 2008, pp. 450–453.

[11] K. Shin’ya and S. Schaal, “Synchronized robot drumming by neural oscillator,” Journal

of the Robotics Society of Japan, vol. 19, pp. 116–123, 2001.

[12] D. Pongas, A. Billard, and S. Schaal, “Rapid synchronization and accurate phase-locking

of rhythmic motor primitives,” in Proceedings of the IEEE/RSJ International Conference

on Intelligent Robots and Systems (IROS), 2005, pp. 2911–2916.

[13] C. Crick, M. Munz, and B. Scassellati, “Synchronization in social tasks: Robotic

drumming,” in Proceedings of the 15th IEEE International Symposium on Robot and

Human Interactive Communication (ROMAN), 2006, pp. 97–102.

[14] G. Kim, Y. Wang, and H. Seo, “Motion control of a dancing character with music,”

in Proceedings of the 6th IEEE/ACIS International Conference on Computer and

Information Science (ICIS), 2007, pp. 930–936.

[15] T. Kim, S. I. Park, and S. Y. Shin, “Rhythmic-motion synthesis based on motion-beat

analysis,” ACM Transactions on Graphics (TOG), vol. 22, no. 3, pp. 392–401, 2003.

[16] J.-J. Aucouturier, “Cheek to chip: Dancing robots and AI’s future,” IEEE Intelligent

Systems, vol. 23, no. 2, pp. 74–84, 2008.

144

References

[17] M. P. Michalowski, S. Sabanovic, and H. Kozima, “A dancing robot for rhythmic social

interaction,” in Proceedings of the ACM/IEEE international Conference on Human-Robot

Interaction (HRI), 2007, pp. 89–96.

[18] K. Kosuge, T. Hayashi, Y. Hirata, and R. Tobiyama, “Dance partner robot – Ms DanceR,”

in Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and

Systems (IROS), vol. 4, 2003, pp. 3459–3464.

[19] W. F. Egan, Phase-Lock Basics, 2nd ed. Wiley-Interscience, 2008.

[20] G.-C. Hsieh and J. C. Hung, “Phase-locked loop techniques. A survey,” IEEE Transac-

tions on Industrial Electronics, vol. 43, no. 6, pp. 609–615, 1996.

[21] K. Ogata, Modern Control Engineering, 4th ed. Prentice Hall, 2002.

[22] J. P. How, B. Bethke, A. Frank, D. Dale, and J. Vian, “Real-time indoor autonomous

vehicle test environment,” IEEE Control Systems Magazine, vol. 28, no. 2, pp. 51–64,

2008.

[23] D. Gurdan, J. Stumpf, M. Achtelik, K.-M. Doth, G. Hirzinger, and D. Rus, “Energy-

efficient autonomous four-rotor flying robot controlled at 1 kHz,” in Proceedings of the

IEEE International Conference on Robotics and Automation (ICRA), 2007, pp. 361–366.

[24] G. Ducard and R. D’Andrea, “Autonomous quadrotor flight using a vision system

and accommodating frames misalignment,” in Proceedings of the IEEE International

Symposium on Industrial Embedded Systems (SIES), 2009, pp. 261–264.

[25] S. Lupashin, A. Schöllig, M. Sherback, and R. D’Andrea, “A simple learning strategy

for high-speed quadrocopter multi-flips,” in Proceedings of the IEEE International

Conference on Robotics and Automation (ICRA), 2010.

145

Paper VI

A Platform for Dance Performances with Multiple

Quadrocopters

Angela P. Schoellig · Federico Augugliaro · Raffaello D’Andrea

Abstract

This paper presents a platform for rhythmic flight with multiple quadrocopters. We en-

vision an expressive multi-media dance performance that is automatically composed and

controlled, given a random piece of music. Results in this paper prove the feasibility of

audio-motion synchronization when precisely timing the side-to-side motion of a quadro-

copter to the beat of the music. An illustration of the indoor flight space and the vehicles

shows the characteristics and capabilities of the experimental setup. Prospective features

of the platform are outlined and key challenges are emphasized. The paper concludes with

a proof-of-concept demonstration showing three vehicles synchronizing their side-to-side

motion to the music beat. Moreover, a dance performance to a remix of the sound track

‘Pirates of the Caribbean’ gives a first impression of the novel musical experience. Future

steps include an appropriate multiscale music analysis and the development of algorithms

for the automated generation of choreography based on a database of motion primitives.

Published in Proc. of the 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) -

Workshop on Robots and Musical Expressions, 2010. Submission includes multimedia attachment, also found at

www.tinyurl.com/DancePlatform.

147

www.tinyurl.com/DancePlatform

Paper VI. A Platform for Dance Performances with Multiple Quadrocopters

1. Introduction

The interface of music and robotics has become a prominent area of research, attracting the

attention of not only roboticists, but also musicians, artists, and the general public. When robot

technology is brought together with musical expression and rhythmic performance, it opens up

the space for a novel human-robot interplay and a unique musical experience that cannot be

achieved by traditional means.

During the past decade research on musical robots has, for the most part, been driven by

two distinct communities.

The first – consisting mostly of musicians, composers and music technologists – has gener-

ally sought to develop innovative forms of musical expression and sound production that over-

come the limitations of human music generation and traditional musical instruments. Early

robotic developments from this first community include the automation and mechanization

of instruments, such as the piano, percussion and woodwinds (see [1, 2] and, for a historical

overview, [3]); more recently, this group has been behind the development of perceptual music

robots [4], some of which facilitate music collaboration with human musicians [5–7].

The second community, working out of the fields of robotics and engineering, has sought

to use music to establish a new dimension of human-robot communication, interaction and

collaboration. Research from this second community has been largely focused on the devel-

opment of humanoid robots capable of imitating human musical behavior: robots that per-

form human-inspired rhythmic motions, such as dancing [8–13], drumming [14], stepping

and singing [15–17] along to music. Common to both communities is the desire to create

an audio-visual performance with both aesthetic and entertainment value; this merging of mu-

sical expression, robotic technology and entertainment has also been a fascinating playground

for artists [18, 19]. The goal of this work is to create a novel visual musical experience: Mul-

tiple quadrocopters fly in a rhythmic performance, expressing the character of the music as

they move in a coordinated and precisely-timed fashion through the three-dimensional space.

Prior to flight performance, a random piece of music is analyzed and its main features are ex-

tracted. These features are later used to guide the quadrocopters’ choreography. This approach

differs from most other research on musical robots, which typically aims for a real-time in-

teraction with the environment and which studies the problem of real-time music analysis, see

e.g. [5,17,20–23]. In contrast, the focus of this work is the design, control, and synchronization

of the rhythmic quadrocopter motion. Major challenges include:

Motion Design Given the body and dynamics of a quadrocopter, translating music into suit-

able motion patterns is a significant artistic challenge. Unlike humanoid dance robots,

which may imitate any human dance movement and produce an easily-recognized ex-

pressive gesture [8–13], quadrocopters do not move the way humans do. Choreography

of their movement is new, and requires creativity, aesthetic judgment and a deep under-

standing of the system’s dynamics and its limits.

Motion Control A quadrocopter’s nonlinear and unstable dynamics, cf. [24], demands sophis-

ticated controls in order to achieve precise trajectories and exact audio-motion synchro-

nization. Modeling errors and other nonidealities, such as motor saturation and com-

munication delays, have a noticeable effect on the quadrocopter performance. Note that

a stabilizing controller is required just to keep the vehicle in the air. Moreover, addi-

148

1. Introduction

tional underlying controllers impose a periodic oscillation corresponding to the music

frequency, presenting the basis for an overall rhythmic behavior.

Motion Synchronization To make the quadrocopters ‘dance to music’, it is essential to time

the vehicle movement with the music beat precisely. In the proposed setup, however, the

quadrocopters’ dynamics are highly non-linear and not fully identified. Furthermore, the

system’s time delays are variable. An appropriate synchronization algorithm is therefore

indispensable. Note that in most other approaches on musical robots, simple adjustments

(like a constant time shift of the reference signal) are sufficient for synchronization, since

they deal with systems that are better understood, less sensitive to disturbances, and,

generally, easier to manage, see [9,10,15,22,25]. Inspiring work that explicitly considers

synchronization is presented in [14, 16, 23, 26].

Motion Composition Given an arbitrary piece of music, music analysis extracts the associ-

ated sequence of music features with the corresponding timing information. The goal

is to automatically generate a dance performance with multiple quadrocopters, where

the quadrocopters’ motion not only reflects the character of the music but also takes into

account the physical limitations of the space and the vehicle. We plan to develop an auto-

mated tool that will compose a suitable multi-vehicle choreography based on a selection

of motion primitives (see Motion Design). Previous work on automatic music-driven

dance synthesis focused exclusively on human dance motions; music features were an-

alyzed and mapped manually to real human dance movements, cf. [27–29]. Algorithms

were visualized and tested solely in virtual environments.

The core components mentioned above build upon a prior music analysis that extracts im-

Figure 1. The Flying Machine Arena, an indoor flight space for multiple quadrocopters.

149

Paper VI. A Platform for Dance Performances with Multiple Quadrocopters

Figure 2. The quadrocopter, measuring 53 cm in diameter.

portant music features, such as beat, dynamic range, pitch, melody, etc., together with their

timing information. The success of this project depends heavily on the quality of the multiscale

music analysis. Various algorithms and software solutions (see [30, 31]) are available, espe-

cially for tempo and beat analysis, among others [32–36]. Moreover, every year researchers

present the latest music analysis solutions at the Music Information Retrieval Evaluation eX-

change (MIREX). In collaboration with those music experts, we would like to ask the following

questions: Which music features are critical to the development of a musical quadrocopter per-

formance? And which algorithms fit the proposed application?

This project aims to combine musical expertise, emotion, and aesthetic judgment with agile

aerobatic maneuvers and sophisticated control techniques. In this interdisciplinary context,

collaboration with a variety of experts is essential.

The objectives and prospective features of the proposed platform are presented in Section

4 together with a proof-of-concept demonstration in Section 5. The associated video, avail-

able also at www.tinyurl.com/DancePlatform , provides a first impression of the intended

quadrocopter flight dance. The experimental setup and the characteristics of the vehicles are

described in Section 2, and Section 3 explains the synchronization problem encountered when

working within the proposed environment.

2. Experimental Setup

It was the agility of the quadrocopters, the dimension of the flight space, and the reliability

of the communication and control infrastructure that laid the foundation for a musical dance

performance with multiple vehicles. In the following, we sketch the experimental setup in order

to convey an impression of the project’s starting conditions.

150

www.tinyurl.com/DancePlatform

2. Experimental Setup

2.1 The Flying Vehicle

Figure 2 shows the current flying vehicle. The quadrocopter is characterized by its small size,

light weight, and structural and electronic robustness, making it a versatile and easy-to-operate

experimental platform. The baseline platform is a X3D ‘Hummingbird’ quadrocopter designed

and manufactured by Ascending Technologies GmbH [37]. Measuring 53 cm in diameter, the

vehicle’s overall weight including the onboard battery is approximately 460 g. The operational

flying time varies between 10 and 20 minutes depending on the aggressiveness of the performed

flight maneuvers. The vehicle is equipped with four brushless DC motors, which together are

able to produce a vertical acceleration of around 12.5 m/s.

Though the original propulsion system, the motor controllers and the frame of the standard

X3D quadrocopter were preserved, cf. [38], the central electronics and onboard sensors were

replaced to obtain better control over the onboard algorithms and to have access to better-quality

and higher-range rate gyro data. These changes allow for more aggressive maneuvers, faster

turn rates, and generally better flight performance. With the new rate gyros, rotations of up to

2000 deg/s are possible around the body’s principal axes of inertia. Detailed documentation of

the changes are found in [39].

The quadrotor accepts three body angle rate commands and a collective thrust command

at 50 Hz. An onboard 800 Hz feedback controller uses rate gyros to track the given com-

mands. The exact onboard controller design is presented in [39]. Propeller wear trim factors

allow for precise balancing of the quadrocopter. Each vehicle is equipped with two radio sys-

tems: a one-way 2.4 GHz module used exclusively for controlling the vehicle (to constrain

the amount of variable latency in the system), and a bidirectional 2.4 GHz transceiver with a

different modulation for non-time-critical communication such as data feedback or onboard

parameter reads/writes.

Each quadrocopter is also equipped with three retro-reflective ball-shaped markers, which

enable unambiguous vehicle identification by the Vicon communication system (described in

Section 2.2 and 2.3) during flight.

Currently, six vehicles are ready to fly.

2.2 The Space

A 10 × 10 × 10m cube of indoor space, called the ETH Flying Machine Arena (FMA), is

reserved for testing and validating autonomous quadrocopter flight, see Fig. 1. For a safe op-

eration, the space is equipped with protective nets delimiting the space on three sides. A glass

front on the fourth side allows visitors an undisturbed view of the flying vehicles. To reduce

the occurrence of catastrophic crashes, 12 cm thick foam mattresses cover the ground. An

8-camera Vicon motion capture system [40] provides position and attitude data for all appro-

priately marked vehicles in the arena at 200 Hz with millimeter accuracy, and a latency of about

10 ms.

2.3 Control and Communication

The overall organization of the system is similar to [41]. The localization data provided by the

Vicon system is sent to off-the-shelf PCs, which then execute estimation and control algorithms.

These in turn deliver commands to the quadrocopters with an approximated latency of 20 ms.

The overall system time delay, from sending a vehicle command to detecting the corresponding

151

Paper VI. A Platform for Dance Performances with Multiple Quadrocopters

Figure 3. The desired side-to-side motion, a schematic of the two-dimensional quadrocopter

model.

effects in the vehicle’s Vicon pose data, varies between 10 ms and 40 ms with a mean value of

35 ms.

Data is sent via a multicast UDP scheme, allowing for convenient online visualization of all

data sent over the network, and also for recording, playback, and export of arbitrary customized

data series. A convenient side-effect of this setup is that estimation and control components are

binary-identical when running in the real system or in simulation. The wireless and Vicon data

bridges are simply replaced by a simulator process, with all of the other components remaining

completely unaffected and unaware of any difference.

During normal operation the vehicle’s translational degrees of freedom are controlled by

linear PID controllers designed for near-hover operation. Yaw is held at a constant angle via a

proportional controller. To achieve trajectory tracking, a sequence of reference points are fed

to the controller together with appropriate feedforward commands. More details about this test

environment may be found in [42] and [39].

3. The Synchronization Problem

Autonomous quadrocopters are fundamentally different in their dynamic behavior from other

existing musical robots. To prove the feasibility of the project, we must therefore ask: Is it

possible to precisely time a rhythmic quadrocopter movement with a music beat? In the fol-

lowing, a simple motion primitive is selected which highlights the quadrocopter’s characteristic

properties and for which a solution to the synchronization problem is sketched. The details of

the synchronization algorithm are found in [43].

3.1 A Side-To-Side Motion

A planar side-to-side motion as depicted in Fig. 3 is considered, where at beat times the vehicle

reaches the outer-most points of the trajectory. Given the music frequency fd (obtained from

an a priori music analysis), a corresponding desired sinusoidal vehicle trajectory can be defined

in the xz−plane,

xd(t) = Ad cos(ωdt) , zd(t) = zd = constant, (1)

with ωd = 2π fd assumed to be constant. Fig. 4 illustrates the beat-motion relation. The altitude

of the quadrocopter is stabilized at a given height zd .

152

3. The Synchronization Problem

3.2 The Quadrocopter Dynamics

The side-to-side motion (1) is defined in the xz−plane. In-plane and out-of-plane dynamics are

thus decoupled. Additional degrees of freedom are separately stabilized and do not affect the

rhythmic motion. The equations governing the dynamics of the system are then given by

z̈(t) = f (t)cosθ(t)−g (2)

ẍ(t) = f (t)sinθ(t) (3)

θ̇(t) = u(t), (4)

where g is the gravitational constant and θ(t) is the pitch angle, see Fig. 3. The inputs to the

system are the normalized thrust f (t) in m/s2 and the pitch rate u(t) in rad/s.

3.3 Control and Synchronization

Underlying controllers turn the unstable quadrocopter dynamics into an oscillating system. A

phase comparator detects the phase error between the desired reference trajectory and the actual

quadrocopter motion. After having determined the phase error, it is compensated for by closing

the loop, similar to [16] and [26].

The oscillating quadrocopter motion is achieved by using a cascading controller: the z-

direction is stabilized first and, assuming a constant height, the trajectory-tracking controller

for the x-direction is then designed. With

f (t) =
1

cosθ(t)

(
g−2δzωz ż(t)−ω2

z (z(t)− zd)
)
, (5)

and an appropriate choice of the parameter δz and ωz, the dynamics in z-direction are stabilized,

cf. [43]. Building upon the above control scheme (5) and assuming a resulting constant height

zd , the thrust f (t) is

f (t) =
g

cosθ(t)
. (6)

Figure 4. Reference trajectory in lateral direction (dashed line) with corresponding quadro-

copter motion (solid line). Vertical lines represent beat times.

153

Paper VI. A Platform for Dance Performances with Multiple Quadrocopters

With (6), to first order, the x-dynamics (3) reduce to

ẍ(t) = gθ(t) ⇔ ...
x (t) = gu(t), (7)

assuming small θ(t). With the aim of following the desired sinusoidal side-to-side motion (1),

the input

u(t) =
1

g

(
u1(t)+u2(t)

)
(8)

is composed of a feedforward component,

u1(t) =
...
x d(t) = Adω3

d sin(ωdt), (9)

and an additional feedback term to correct for errors,

u2(t) = α
(
ẍd(t)− ẍ(t)

)
+β

(
ẋd(t)− ẋ(t)

)
+ γ

(
xd(t)− x(t)

)
, (10)

with the tuning parameters α, β , and γ . When applying the input u(t) as defined in (8), a

phase shift is observed between the reference trajectory of the sideways motion and the actual

quadrocopter trajectory, illustrated in Fig. 4. (Corresponding experimental results are shown in

Fig. 5.) This phenomenon results mainly from unmodeled dynamics which were neglected in

the controller design, such as communication delays and propeller dynamics. This problem is

resolved in two stages. First, the phase shift ϕ(t) between the quadrocopter trajectory x(t) and

the desired motion (1) is determined by an integration over a full period Td = 1/ fd ,

η1(t) =
1

Td

∫ t

t−Td

x(t)cos(ωdt) dt =
A

2
cosϕt (11)

η2(t) =
1

Td

∫ t

t−Td

x(t)sin(ωdt) dt =−A

2
sinϕt , (12)

where
ϕt =−arctan

(
η2(t)

η1(t)

)
. (13)

In stage two, the phase error ϕt is corrected by a feedback technique borrowed from PLL

design [44] shifting the reference signal xd(t) in (1) by a correction term e(t),

xs
d(t) = Ad cos

(
ωdt + e(t)

)
, with e(t) =−k

∫ t

0
ϕt dt. (14)

Similarly, the derivatives of xd(t) in (8) are shifted in phase by e(t). With the feedback integra-

tor term e(t), precise and robust phase locking is achieved. Convergence behavior is controlled

by tuning the gain factor k.

Experimental results support the theoretical idea, see Fig. 5 and 6. Without phase correction

a constant, non-zero phase error remains, while with the proposed phase correction method,

the phase error converges to zero and perfect synchronization is achieved. Note that even when

the phase error between the reference trajectory and the actual quadrocopter response is hardly

noticeable in Fig. 5, actual experiments show that small phase errors remain visible and audible

to humans.

154

4. A Dance Performance

0 1 2 3 4 5

−0.5

0

0.5

Time (s)

N
O

 C
O

R
R

E
C

T
IO

N

P
o

s
it
io

n
 (

m
)

0 1 2 3 4 5

−0.5

0

0.5

Time (s)

W
IT

H
 C

O
R

R
E

C
T

IO
N

P
o

s
it
io

n
 (

m
)

Figure 5. Quadrocopter response to the dashed-lined input signal for the case of no phase

correction (top) and phase error compensation (bottom). The solid line represents the vehicle

trajectory.

0 1 2 3 4 5

−0.4

0

0.4

Time (s)

P
h

a
s
e

 E
rr

o
r

(r
a

d
)

No Correction
With Correction

Figure 6. Phase error of the vehicle trajectories shown in Fig. 5 (detected by the phase com-

parator).

4. A Dance Performance

In the previous section, the fundamental basis of the work was presented: a quadrocopter mo-

tion that is synchronized to music. This is the first successful step towards choreographing a

flying music show. Below, the overall concept and vision is outlined together with the corre-

sponding steps necessary to realize this idea.

4.1 Vision

We envision the Flying Machine Arena as a stage for a dance performance featuring multiple

quadrocopters, which move in rhythm to music and perform flips, eights, circles and other

aggressive maneuvers. Our goal is to be able to quickly process any arbitrary piece of music

and translate it into choreography that reflects the music’s character.

155

Paper VI. A Platform for Dance Performances with Multiple Quadrocopters

Figure 7. The proposed platform: combining music and quadrocopter motion into a multi-

vehicle dance performance.

To this end, the development of the musical platform can be divided into four main compo-

nents: music analysis, motion design, vehicle control, and, finally, motion choreography. The

different steps are illustrated in Fig. 7 and discussed next.

4.2 Music Analysis

Humans often tap their feet to the beat of music as a reflection of their rhythmic perception.

Music comprehension is not based solely on rhythm, however. Humans are able to perceive a

sophisticated ensemble of musical features - including melody, measure, pitch, dynamic range

and recurring themes - which help them to associate emotions with what they are listening to,

and to react with a corresponding range of emotive movements we refer to as ‘dance’.

Thus far, robotic perception of music has been largely limited to beat tracking. Early beat

tracking algorithms were developed as early as 1994 [45], and automated beat tracking is still an

active area of research. Recent work includes [30,31,34–36]. Given the current state of the art,

can we expect robots to perceive and respond to music in a manner sophisticated enough to call

‘dance’? Which music features are responsible for human musical perception? Is it possible to

extract these features from the music and correlate them with emotional expression?

A multiscale music analysis is fundamental to the creation of a meaningful choreography.

The music is digitized and divided into different sections that are categorized according to

rhythm, melody and character. The result is a vocabulary that describes the temporal develop-

ment of the music, which is in turn coupled with a variety of quadrocopter movements.

The proposed application aims to automate and accelerate this process. For now, however, a

semi-assisted system is a reasonable expectation: Software processes a piece of music and sug-

gests a categorization to a human user, who oversees and corrects the results. This information

is then forwarded to the choreography component, which will create a suitable composition of

motions for the quadrocopters, see Section 4.5.

4.3 Motion Design

As already mentioned in Section 1, defining suitable rhythmic motion primitives for quadro-

copters is a major challenge. When developing a dancing performance, two different types of

motion are distinguished:

Synchronized Motion Movements that aim to follow the rhythm of the music must be pre-

156

4. A Dance Performance

cisely synchronized to the beat (or multiple of it). Normally, these are swing motions,

consisting of sinusoids – which enable the ready measurement and correction of phase

error – to achieve perfect synchronization. The side-to-side motion described in Section

3 belongs to this type of motion primitives.

Triggered Motion Movements that are not strictly linked to the rhythm of the music, but start

at a beat time, are executed during a given time interval, and end again with a music

beat. These motion primitives are used to transition between two different synchronized

motions, or to reflect a particular section of the music. Aggressive trajectories, like flips,

eights, and circles, belong to this group of motion primitives.

Numerous motions can be created and cataloged according to the above categories. In this

way, a library of motion primitives is built, serving as an important resource for the creation of

new choreographies.

4.4 Vehicle Control

As emphasized in Section 1, sophisticated methods are required in order to control a quadro-

copter’s dynamics.

The synchronized and triggered motions introduced above have to be carried over into the

real world, and different control challenges are associated with each. Triggered motions are

complex and highly dynamic maneuvers requiring fast controllers and appropriate feedforward

terms, which may need to be acquired through (machine) learning. In contrast, synchronized

motions are less aggressive and easier to follow, but require special attention to maintain precise

timing.

According to [46], two notes are perceived as being simultaneous if they occur within less

than 30 ms. Accuracy with respect to beat times must therefore be in this range, too. To define

and measure the timing error, we introduced the concept of phase in Section 3. Indeed, the

music beat can be translated into a sinusoidal signal which builds the reference trajectory for

the synchronized motion. In this case, a timing error is reflected by a non-zero phase error

between the music reference and the actual vehicle trajectory. If trajectories are representable

by a sinusoidal, phase-dependent description (as e.g. eights or circles), the timing error can

always be obtained from the phase error. After having recognized the phase error, an approach

like the one described in Section 3 can be used to compensate for it, achieving a precisely

synchronized motion.

4.5 Motion Choreography

The previous steps result in a categorized piece of music (from the music analysis, see Section

4.2) and a library of motion primitives (from the motion design, see Section 4.3). The phys-

ical limits of the vehicles and the space are already known. Is it possible to combine all this

information in a meaningful way? How can multiple quadrocopters fly in a manner we can

recognize as ‘dance’?

Well-established and recognizable parameters for human dance have long been in use by

professional dancers, choreographers and dance teachers to build choreography with interest,

dynamics and aesthetic appeal. These parameters can provide us with a framework for mean-

ingful quadrocoptor choreography, and are described as follows:

157

Paper VI. A Platform for Dance Performances with Multiple Quadrocopters

Space Space refers to the area the dancer is performing in and also relates to how the dancer

moves through the area as characterized by the direction and path of a movement, its size,

level, and shape.

Time Time encompasses rhythm, tempo, duration, and phrasing of movements. Using time in

different combinations to music can create intricate visual effects. Ideas such as quick-

quick, slow or stop movements are examples.

Energy Energy relates to the quality of movement. This concept is recognizable when com-

paring ballet and tap dance. Some types of choreography are soft and smooth, while

others are sharp and energetic.

Structure Structure represents the organization of movement sequences into larger concepts:

the combination and variation of movements using recurring elements, contrast, and rep-

etition. Movements can even follow a specific story line to convey specific information

through a dance.

With these parameters in mind, the motion primitives described in Section 4.3 can eventu-

ally be combined into sequences, which can in turn be combined to create an overall choreo-

graphic performance. Endless permutations are possible, much the way individual words can

be combined into a variety of subtle and sophisticated stories. Finally, an expressive connection

of music sequences and motion primitives is established capable of visually conveying the mu-

sic’s emotions to the audience. As choreographing performances for human dancers, creativity

and aesthetic judgment is required to achieve artistic quality.

5. Current Status

So far, our research has been primarily focused on control and synchronization. As explained

in Section 3, a method was developed that is able to precisely synchronize a sinusoidal quadro-

copter motion to a given music reference signal. Currently, a horizontal swing motion in the

xz-plane and a similar motion in the yz-plane are implemented using the proposed algorithm.

This allows a dancing behavior both along the x- and y-axis. Using multiple vehicles, this

already leads to a wide range of combinations and patterns.

In addition to synchronized motions, aggressive trajectories are flown in the FMA with high

accuracy and an impressive smoothness. Our research group is pushing the limits of what can

be achieved with quadrocopters. For example, the quadrocopters learned to perform up to three

flips, cf. [39].

A variety of motion primitives are now available in our library, discussed in Section 4.3.

More complex motions of both types will be investigated in order to add variation to our quadro-

copter dance performances. As mentioned in Section 1, the motion design is not trivial and

requires further research. Specifically, a transition motion capable of taking the quadrocopters

from the final position of one rhythmic motion primitive to the starting position of the fol-

lowing motion must be implemented. The transition motion should be fast and guarantee a

collision-free position change.

We developed a software platform built on a collection of synchronized motion primitives

to guide the choreography of multiple quadrocopters flying together. A graphical user interface

158

5. Current Status

Figure 8. A three-vehicle swing motion synchronized to the music beat; screen shot of our

simulation environment.

(GUI) allows the user to assign desired motions to specific quadrocopters, set all the necessary

parameters, take off and fly the vehicles. This platform is especially important for testing new

motions. The results shown in Section 5.1 were developed using this software platform. The

dance motion presented in Section 5.2 is also incorporated into the graphical interface. The

platform is connected to a simulation environment that is part of the FMA’s infrastructure, see

Section 2. The simulation environment provides a 3D view of the FMA and allows to visually

determine the quality of a new motion or controller. As new motion primitives are created, they

can be immediately added to the software platform.

In order to create a dancing performance, as in Section 5.2, the beat times have to be ex-

tracted from the music. This process was done with the aid of Beatroot [31]. Beatroot analyzes

the music and provides beat times. An interface visualizes the beats, such that the user can

listen to the music and adjust the beat times if mismatches are noticed.

For designing the dance choreography, the extracted beat times give the underlying fre-

quency. The performance combines the synchronized motions and the triggered motions. After

having analyzed a piece of music, the setup of a new dancing performance is simple and can be

done in short time; however, this procedure is not yet automated. The assignment of different

motions to different sections of the music is done manually in order to reflect the character

of the musical piece. In an interdisciplinary exchange, we hope to learn more about methods

that are able to perform the multiscale analysis, as discussed in Section 4.2, and identify the

different parts of a musical piece.

Most of our work has focused on the control of the quadrocopters and their motions. We are

still looking for an automated method to retrieve information from music. Given this informa-

tion, the key challenge will be to develop an algorithm for automatic choreography and motion

159

Paper VI. A Platform for Dance Performances with Multiple Quadrocopters

planning. The results presented in this paper show the first steps towards a musical platform as

presented in Section 4.

The two examples presented below show the capabilities of the current platform.

5.1 Example: Three-Vehicle Swing Motion

One possibility offered by the platform is to manually assign synchronized motions to specific

quadrocopters. This can be done for testing purposes or simply to produce variation in the

performance. The example demonstrates how the platform integrates multiple quadrocopters

executing different motions: two vehicles perform a swing motion in the x-direction, while

another one crosses their trajectories with a swing motion in the y-direction, see Fig. 8. Using

the methods developed in [43], synchronization is achieved between the motion of the three

quadrocopters and the music beat. The method is robust to the differences between the vehicles

(e.g. due to the marker’s position on the vehicle). The experimental results are shown in the

attached video www.tinyurl.com/DancePlatform.

5.2 Example: Dancing Performance with Two Vehicles

We also developed a dancing performance for two vehicles based on a remix of the ‘Pirates

of the Caribbean’ sound track. First the music is analyzed and the beat times are extracted.

Then the different parts of the musical piece are identified and manually assigned to suitable

motions from the library. In this example, a circle trajectory is chosen while the quadrocopters

spin. Combinations with different speed and circle radii are shown in the associated video www.

tinyurl.com/DancePlatform. The dancing parts consist of the swing motion presented in

Section 3. The amplitude is varied to achieve different effects.

6. Conclusions

In this paper, a novel musical experience is proposed: flying vehicles that express the charac-

ter of the music by performing an aerial dance. A cubic indoor flight space forms the stage,

and small autonomous quadrocopters are the actors of this performance. Current features of

the platform include the control of the quadrocopters and an audio-motion synchronization. A

software infrastructure is built to be easily extendible with regard to the future objectives. One

prospective feature is an automated multiscale music analysis that is able to identify distinct

musical characteristics including beat, measure, dynamic range, melody and recurring themes.

Building upon this information, the project aims towards an automated generation of coordi-

nated musical multi-vehicle movements.

This project lies at the interface between robotics, control and music information retrieval,

and has thus far been focused on the control aspect. The project’s interdisciplinary nature

requires intensive exchange and close cooperation with researcher in other fields. To this end,

we are able to provide the experimental setup and control knowledge; we seek input concerning

musical information retrieval and interpretation of music features.

160

www.tinyurl.com/DancePlatform
www.tinyurl.com/DancePlatform
www.tinyurl.com/DancePlatform

Acknowledgements

Acknowledgements

This work would have not been possible without the prior work of Markus Hehn and Sergei

Lupashin. Their contributions are gratefully acknowledged.

References

[1] E. Singer, J. Feddersen, C. Redmon, and B. Bowen, “LEMUR’s musical robots,” in

Proceedings of the Conference on New Interfaces for Musical Expression (NIME), 2004,

pp. 181–184.

[2] R. B. Dannenberg, B. Brown, G. Zeglin, and R. Lupish, “McBlare: a robotic bagpipe

player,” in Proceedings of the International Conference on New Interface for Musical

Expression (NIME), 2005, pp. 80–84.

[3] A. Kapur, “A history of robotic musical instruments,” in Proceedings of the International

Computer Music Conference, 2005, pp. 21–28.

[4] N. A. Baginsky, “The three sirens: a self-learning robotic rock band,” Available online at

www.the-three-sirens.info (accessed June 23, 2010), 2004.

[5] G. Weinberg, S. Driscoll, and M. Parry, “Musical interactions with a perceptual robotic

percussionist,” in Proceedings of the IEEE International Workshop on Robot and Human

Interactive Communication (ROMAN), 2005, pp. 456–461.

[6] G. Weinberg and S. Driscoll, “The design of a perceptual and improvisational robotic

marimba player,” in Proceedings of the IEEE International Symposium on Robot and

Human Interactive Communication (ROMAN), 2007, pp. 769–774.

[7] G. Hoffman and G. Weinberg, “Gesture-based human-robot jazz improvisation,” in

Proceedings of the IEEE International Conference on Robotics and Automation (ICRA),

2010, pp. 582–587.

[8] J.-J. Aucouturier, “Cheek to chip: dancing robots and AI’s future,” IEEE Intelligent

Systems, vol. 23, no. 2, pp. 74–84, 2008.

[9] K. Shinozaki, A. Iwatani, and R. Nakatsu, “Construction and evaluation of a robot dance

system,” in Proceedings of the IEEE International Symposium on Robot and Human

Interactive Communication (ROMAN), 2008, pp. 366–370.

[10] D. Grunberg, R. Ellenberg, Y. Kim, and P. Oh, “Creating an autonomous dancing

robot,” in Proceedings of the International Conference on Hybrid Information Technology

(ICHIT), 2009, pp. 221–227.

[11] A. Nakazawa, S. Nakaoka, K. Ikeuchi, and K. Yokoi, “Imitating human dance motions

through motion structure analysis,” in Proceedings of the IEEE/RSJ International Confer-

ence on Intelligent Robots and Systems (IROS), 2002, pp. 2539–2544.

161

Paper VI. A Platform for Dance Performances with Multiple Quadrocopters

[12] J. Oliveira, F. Gouyon, and L. P. Reis, “Towards an interactive framework for robot

dancing applications,” in Proceedings of the International Conference on Digital Arts

(ARTECH), 2008.

[13] K. Kosuge, T. Hayashi, Y. Hirata, and R. Tobiyama, “Dance partner robot – Ms DanceR,”

in Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and

Systems (IROS), vol. 4, 2003, pp. 3459–3464.

[14] S. Kotosaka and S. Schaal, “Synchronized robot drumming by neural oscillator,” Journal

of the Robotics Society of Japan, vol. 19, pp. 116–123, 2001.

[15] K. Murata, K. Nakadai, K. Yoshii, R. Takeda, T. Torii, H. G. Okuno, Y. Hasegawa, and

H. Tsujino, “A robot uses its own microphone to synchronize its steps to musical beats

while scatting and singing,” in Proceedings of the IEEE/RSJ International Conference on

Intelligent Robots and Systems (IROS), 2008, pp. 2459–2464.

[16] K. Yoshii, K. Nakadai, T. Torii, Y. Hasegawa, H. Tsujino, K. Komatani, T. Ogata, and

H. G. Okuno, “A biped robot that keeps steps in time with musical beats while listening

to music with its own ears,” in Proceediings of the IEEE/RSJ International Conference on

Intelligent Robots and Systems (IROS), 2007, pp. 1743–1750.

[17] R. Takeda, K. Yoshii, K. Komatani, T. Ogata, and H. G. Okuno, “A robot listens to music

and counts its beats aloud by separating music from counting voice,” in Proceedings of

the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2008,

pp. 1538–1543.

[18] F. Thorn, “Felix’s machines,” Available online at www.felixsmachines.com (accessed

June 22, 2010), 2008.

[19] C. Southworth and L. Hasan, “Ensemble robot,” Online at www.ensemblerobot.com

(accessed June 22, 2010), 2004-2006.

[20] K. Murata, K. Nakadai, K. Yoshii, R. Takeda, T. Torii, H. G. Okuno, Y. Hasegawa, and

H. Tsujino, “A robot singer with music recognition based on real-time beat tracking,” in

Proceedings of the 9th International Conference on Music Information Retrieval (ISMIR),

2008, pp. 199–204.

[21] K. Murata, K. Nakadai, R. Takeda, H. G. Okuno, T. Torii, Y. Hasegawa, and H. Tsujino,

“A beat-tracking robot for human-robot interaction and its evaluation,” in Proceedings of

the IEEE/RAS International Conference on Humanoid Robots, 2008, pp. 79–84.

[22] M. P. Michalowski, S. Sabanovic, and H. Kozima, “A dancing robot for rhythmic social

interaction,” in Proceedings of the ACM/IEEE International Conference on Human-Robot

Interaction (HRI), 2007, pp. 89–96.

[23] C. Crick, M. Munz, and B. Scassellati, “Synchronization in social tasks: robotic

drumming,” in Proceedings of the IEEE International Symposium on Robot and Human

Interactive Communication (ROMAN), 2006, pp. 97–102.

[24] G. M. Hoffmann, H. Huang, S. L. Wasl, and C. J. Tomlin, “Quadrotor helicopter flight

dynamics and control: theory and experiment,” in Proceedings of the AIAA Guidance,

Navigation, and Control Conference, 2007.

162

References

[25] T. Takeda, K. Kosuge, and Y. Hirata, “HMM-based dance step estimation for dance

partner robot – Ms DanceR,” in Proceedings of the IEEE/RSJ International Conference

on Intelligent Robots and Systems (IROS), 2005, pp. 3245–3250.

[26] D. Pongas, A. Billard, and S. Schaal, “Rapid synchronization and accurate phase-locking

of rhythmic motor primitives,” in Proceedings of the IEEE/RSJ International Conference

on Intelligent Robots and Systems (IROS), 2005, pp. 2911–2916.

[27] K.-M. Chen, S.-T. Shen, and S. D. Prior, “Using music and motion analysis to construct

3D animations and visualisations,” Digital Creativity, vol. 19, no. 2, pp. 91–104, 2008.

[28] K. Takahashi and H. Ueda, “A dance synthesis system using motion capture data,”

Knowledge Acquisition: Approaches, Algorithms and Applications, pp. 208–217, 2009.

[29] F. Ofli, E. Erzin, Y. Yemez, and A. M. Tekalp, “Multi-modal analysis of dance

performances for music-driven choreography synthesis,” in Proceedings of the IEEE

International Conference on Acoustics, Speech, and Signal Processing (ICASSP), 2010.

[30] G. Tzanetakis, “Marsyas: music analysis, retrieval and synthesis for audio signals,”

Available online at www.marsyasweb.appspot.com/ (accessed June 26, 2010), 2009.

[31] S. Dixon, “Beatroot: an interactive beat tracking and visualisation system,” Available

online at www.elec.qmul.ac.uk/people/simond/beatroot/ (accessed June 26, 2010), 2006.

[32] M. S. Puckette, T. Apel, and D. D. Zicarelli, “Real-time audio analysis tools for Pd and

MSP,” in Proceedings of the International Computer Music Conference, 1998, pp. 109–

112.

[33] M. Goto, “An audio-based real-time beat tracking system for music with or without drum-

sounds,” Journal of New Music Research, vol. 30, no. 2, pp. 159–171, 2001.

[34] M. F. McKinney, D. Moelants, M. E. P. Davies, and A. Klapuri, “Evaluation of audio

beat tracking and music tempo extraction algorithms,” Journal of New Music Research,

vol. 36, no. 1, pp. 1–16, 2007.

[35] D. P. W. Ellis, “Beat tracking by dynamic programming,” Journal of New Music Research,

vol. 36, no. 1, pp. 51–60, 2007.

[36] Y. Shiu and C.-C. J. Kuo, “Musical beat tracking via Kalman filtering and noisy

measurements selection,” in Proceedings of the IEEE International Symposium on

Circuits and Systems (ISCAS), 2008, pp. 3250–3253.

[37] Ascending Technologies GmbH, “Multi-rotor air vehicles,” Available online at

www.asctec.de (accessed June 27, 2010), 2010.

[38] D. Gurdan, J. Stumpf, M. Achtelik, K.-M. Doth, G. Hirzinger, and D. Rus, “Energy-

efficient autonomous four-rotor flying robot controlled at 1 kHz,” in Proceedings of the

IEEE International Conference on Robotics and Automation (ICRA), 2007, pp. 361–366.

[39] S. Lupashin, A. Schöllig, M. Sherback, and R. D’Andrea, “A simple learning strategy

for high-speed quadrocopter multi-flips,” in Proceedings of the IEEE International

Conference on Robotics and Automation (ICRA), 2010, pp. 1642–1648.

163

Paper VI. A Platform for Dance Performances with Multiple Quadrocopters

[40] Vicon, “Motion capture systems,” Available online at www.vicon.com (accessed June 27,

2010), 2010.

[41] J. P. How, B. Bethke, A. Frank, D. Dale, and J. Vian, “Real-time indoor autonomous

vehicle test environment,” IEEE Control Systems Magazine, vol. 28, no. 2, pp. 51–64,

2008.

[42] G. Ducard and R. D’Andrea, “Autonomous quadrotor flight using a vision system

and accommodating frames misalignment,” in Proceedings of the IEEE International

Symposium on Industrial Embedded Systems (SIES), 2009, pp. 261–264.

[43] A. Schöllig, F. Augugliaro, S. Lupashin, and R. D’Andrea, “Synchronizing the motion

of a quadrocopter to music,” in Proceedings of the IEEE International Conference on

Robotics and Automation (ICRA), 2010, pp. 3355–3360.

[44] W. F. Egan, Phase-Lock Basics, 2nd ed. Wiley-Interscience, 2008.

[45] M. Goto and Y. Muraoka, “A beat tracking system for acoustic signals of music,” in

Proceedings of the ACM International Conference on Multimedia, 1994, pp. 365–372.

[46] R. A. Rasch, “The perception of simultaneous notes such as in polyphonic music,”

Acustica, vol. 40, no. 1, pp. 21–33, 1978.

164

Paper VII

Feed-Forward Parameter Identification for Precise

Periodic Quadrocopter Motions

Angela P. Schoellig · Clemens Wiltsche · Raffaello D’Andrea

Abstract

This paper presents an approach for precisely tracking periodic trajectories with a

quadrocopter. In order to improve temporal and spatial tracking performance, we propose

a feed-forward strategy that adapts the motion parameters sent to the vehicle controller.

The motion parameters are either adjusted on the fly or, in order to avoid initial transients,

identified prior to the flight performance. We outline an identification scheme that tunes

parameters for a large class of periodic motions, and requires only a small number of

identification experiments prior to flight. This reduced identification is based on analysis

and experiments showing that the quadrocopter’s closed-loop dynamics can be approxi-

mated by three directionally decoupled linear systems. We show the effectiveness of this

approach by performing a sequence of periodic motions on real quadrocopters using the

tuned parameters obtained by the reduced identification.

Published in Proc. of the 2012 American Control Conference (ACC), 2012.

c©2012 AACC.

165

Paper VII. Feed-Forward Parameter Identification for Periodic Motions

Figure 1. An example of a 3D periodic motion (with ωx,y
d = 2ωz

d = π rad/s, A
x,y
d = Az

d/2 =
0.4m, θ x

d = π/2).

1. Introduction

The objective of the research presented in this paper is to have a quadrocopter accurately track

three-dimensional periodic motions, without incurring large transients at the beginning of the

motion. This research is motivated by the ultimate goal of performing quadrocopter choreogra-

phies along to music. To achieve precise synchronization to a given periodic (music) reference

signal, and to achieve exact reference trajectory tracking, we concentrate on adapting the pa-

rameters of the feed-forward input signal sent to the vehicle controller. An example of the 3D

periodic motion considered in this paper is pictured in Fig. 1.

Trajectory tracking with quadrocopters is typically achieved using feedback control ap-

proaches. Methods range from classical PID control, backstepping techniques and nonlinear

control [1–4], to LQ optimal solutions and model predictive control, e.g. [5]. Such controllers,

however, are not usually able to achieve high-performance trajectory tracking with zero phase

lag for arbitrary periodic quadrocopter motions of varying angular frequencies. Perfect tem-

poral accuracy can only be achieved by using different controllers (or controller parameters)

for different motions and motion frequencies. Moreover, feedback control is inherently causal

because the control actions depend only on past measurements. Causality, imperfect initial

conditions and model errors effect an initial transient phase, in which the tracking errors are

substantial.

For choreographies in which motions are changed in quick succession, designing separate

controllers for different motions is impractical, and the transient behavior as described above

is highly undesirable. Switching between different controllers may even cause instability.

In this paper, we propose a control strategy that builds upon the same basic trajectory-

tracking controller for periodic motions at all frequencies, but adapts the parameters of the

actual input to the controller in order to guarantee precise tracking and synchronization. These

parameters can be identified prior to the flight performance to effectively reduce transient time

and tracking errors.

166

2. Periodic Motions

x

y

z
V

O

VxVz

Vy

Figure 2. The inertial coordinate system O and the vehicle coordinate system V defining the

vehicle attitude.

Other research on motion synchronization with external inputs has focused largely on real-

time interaction between robots and the environment. This research mostly deals with real-time

signal processing and synchronization schemes, and typically features humanoid robots that

perform rhythmic motions such as dancing, drumming and singing in tempo with an exogenous

signal [6–8]. In contrast, our work features aerial robots and a priori known reference signals.

The contribution of this paper is a feed-forward strategy that avoids the large transients,

preserves the shape of the periodic motion and maintains high temporal accuracy, even in the

first period of the motion. It is possible to adapt only the amplitude and phase of the motion,

which is done either online, or offline prior to the actual flight performance. We show that, for

directionally decoupled linear systems, the identification of offline parameters requires only a

small number of experiments that can be stored concisely in a table. The general idea is based

on first identifying the linear closed-loop transfer function and then using it to compensate for

the steady-state errors in advance [9]. This ‘black box’ approach allows the strategy presented

herein to be used for any (approximately) linear system with independent directions.

This feed-forward adaptation scheme was applied to quadrocopter music performances.

Videos are available at www.tiny.cc/MusicInMotion.

The 3D periodic motion primitives considered in this paper are presented in Sec. 2. The

quadrocopter dynamics and the trajectory-tracking controller are introduced in Sec. 3 and 4, re-

spectively. The quadrocopter response to the motion primitives is investigated in Sec. 5, where

an online parameter adaptation strategy is introduced and relevant system properties are de-

rived. The system properties are then used in Sec. 6 to develop an offline parameter adaptation

strategy. We show the effectiveness of the offline strategy by performing a sequence of motion

primitives with a quadrocopter. Experiments are conducted in the Flying Machine Arena, an

indoor test environment for quadrocopters. For a detailed description of the experimental setup,

refer to [10].

2. Periodic Motions

We present a framework for periodic motion primitives in three dimensions, generalizing from

the one-dimensional side-to-side motion in our previous work [11]. We specify motion primi-

tives on the vehicle’s position in the inertial coordinate system O, see Fig. 2. The heading of the

quadrocopter (that is, the yaw angle in Z-Y-X Euler attitude representation) is held at zero. The

remaining rotational degrees of freedom are defined by the quadrocopter dynamics, cf. [10]

167

www.tiny.cc/MusicInMotion

Paper VII. Feed-Forward Parameter Identification for Periodic Motions

and Sec. 3. The desired position of the quadrocopter at time t, sd(t) = (xd(t),yd(t),zd(t)) is

given by 


xd(t)

yd(t)

zd(t)


=




δ x
d

δ y
d

δ z
d


+




Ax
d cos(ωx

dt +θ x
d)

A
y
d cos(ωy

dt +θ y
d)

Az
d cos(ωz

dt +θ z
d)


 , (1)

where (δ x
d ,δ

y
d ,δ

z
d) is the desired center position of the motion primitive. The shape of the

primitive is adjustable by a set of nine motion parameters: in each direction i ∈ {x,y,z}, we

specify the desired amplitude Ai
d , frequency ω i

d and phase θ i
d . By varying the nine parameters,

a wide range of different motions can be expressed, such as side-to-side motions, bounces,

ellipses, eights and spirals, see for example Fig. 1.

Not all parameter values result in periodic motion primitives that can be followed by the

quadrocopter. If the amplitudes or frequencies are too high, the motion becomes infeasible due

to thrust limitations of the propellers and limited sensor range. This is investigated in [10]. The

motions considered in this paper are assumed to be feasible.

One of our goals is to synchronize the motion to an external reference signal (for example,

the beat of a music piece), which sets the motion frequencies ω i
d . Ultimately, motion primitives

can be arranged in a choreographic sequence and be timed to music [12].

3. Quadrocopter Dynamics

The translational motion of a quadrocopter in the inertial frame O is described by




ẍ(t)

ÿ(t)

z̈(t)


= R(t)




0

0

c(t)


−




0

0

g


 ⇔

ẍ = cbx

ÿ = cby

z̈ = cbz −g

, (2)

where R(t) is the rotation matrix from the body frame V to the inertial frame O, c(t) is the

collective thrust of the four propellers, and g is the acceleration due to gravity. The values

(bx, by, bz) correspond to the third column of the rotation matrix, namely (R13, R23, R33), and

represent the direction of the collective thrust in the inertial frame O.

The rotation matrix R evolves according to

Ṙ(t) = R(t)




0 −r(t) q(t)

r(t) 0 −p(t)

−q(t) p(t) 0


 , (3)

where (p,q,r) represent the quadrocopter angular body velocities around the body (Vx,Vy,Vz)
axes, see Fig. 2 and [13]. The quadrocopter is controlled by four inputs: a collective thrust

command cc, and commanded angular body velocities (pc,qc,rc), see Fig. 3 and Sec. 4.1.

The controller design introduced below is based on the above dynamics model. For a more

detailed quadrocopter model that includes rotational dynamics refer to [10].

168

4. Quadrocopter Control

Cameras

Periodic

Trajectory

Generation

Motion

Primitive

Trajectory

Following

Controller

Online

Parameter

Adaptation

EstimatorIdentified

Parameters

position,

attitude

Σ

Ai
c,ω

i
c,

θ i
c,δ

i
cAi

d,ω
i
d,

θ i
d,δ

i
d

sc, ṡc,

s̈c

pc,qc,

rc,cc

s, ṡ,R

s

Figure 3. The control configuration shows the online and offline motion parameter adaptation

(bold boxes), and the underlying trajectory-following controller.

4. Quadrocopter Control

The overall control configuration of our approach is outlined in Fig. 3. Below we describe

the trajectory-following controller (TFC) that is the basis of our approach, and analyze its

properties with particular regard to periodic motions as described in Sec. 2.

4.1 Approach

The TFC accepts position, velocity, and acceleration commands, denoted by sc(t), ṡc(t) and

s̈c(t) respectively, and attempts to maintain the quadrocopter on this specified trajectory. Con-

trol is based on the estimated quadrocopter position s = (x,y,z), velocity ṡ and attitude R, see

Fig. 3. The TFC outputs the commands cc and (pc,qc,rc) to the vehicle. The TFC consists of

three separate loops for altitude, horizontal position, and attitude, see Fig. 4. While the TFC op-

erates in discrete time, the controller design is based on the continuous-time system dynamics

representation.

The altitude control is designed such that it responds to altitude errors (z−zc) like a second-

order system with time constant τz and damping ratio ζz,

z̈ =−2ζz

τz
(ż− żc)−

1

τ2
z

(z− zc)+ z̈c. (4)

It uses the collective thrust to achieve this. With (2) and (4), we obtain

cc = (z̈+g)/bz. (5)

Similarly, the two horizontal position control loops are shaped based on (2) with cc from (5),

resulting in the commanded rotation matrix entries bx
c and b

y
c. The attitude control is shaped

such that the two rotation matrix entries bx,by react in the manner of a first-order system with

time constant τrp; that is, for x: ḃx
c = (bx − bx

c)/τrp. The values ḃx
c, ḃ

y
c are directly mapped to

the commanded angular body velocities (pc,qc) using (3) and the estimated attitude R,

[
pc

qc

]
=

1

R33

[
R21 −R11

R22 −R12

][
ḃx

c

ḃ
y
c

]
. (6)

169

Paper VII. Feed-Forward Parameter Identification for Periodic Motions

Attitude

Control

Position

Control

Altitude

Control

bx
c,b

y
c

bz

pc,qc,

rc

cc

z, ż

x, ẋ,y, ẏ

R

xc, ẋc, ẍc,
yc, ẏc, ÿc

zc, żc, z̈c

Figure 4. Cascaded control loops of the trajectory-following controller (TFC).

Vehicle yaw control can be considered separately, since rotations around the body Vz axis do

not affect the above dynamics. The yaw controller is a proportional controller and the resulting

yaw angle rate is mapped to rc using the kinematic relations of Euler angles. The innermost

loop, on board the quadrocopter, controls the angle rates (p,q,r) to the calculated set points

(pc,qc,rc).
The feedback loop closed by the TFC is responsible for maintaining the quadrocopter on a

trajectory, which is provided by the periodic trajectory generation (PTG). The PTG is based on

the motion primitives in Sec. 2 and implements (1) with motion parameters δ i
c,A

i
c,ω

i
c,θ

i
c, where

the subscript ‘c’ stands for ‘commanded’. The commanded parameters are one of the following:

simply the desired parameters (no adaptation); adapted online (see Sec. 5); or adapted both

online and offline (see Sec. 6). Fig. 3 illustrates the three options.

4.2 Analysis

To highlight the key characteristics of the above control architecture, we analyze the closed-

loop dynamics under the following simplifying assumptions: (i) the commanded collective

thrust can be changed instantaneously, that is, c(t) = cc(t); (ii) the estimated rotation matrix

entry bz corresponds to the actual one; and (iii) we have direct control over the other two

rotation matrix entries, namely bx(t) = bx
c(t) and by(t) = b

y
c(t). Then, (2) can be written as

ẍ = ux, with ux = fx(t,b
x
c) = c(t)bx

c(t),

ÿ = uy, with uy = fy(t,b
y
c) = c(t)by

c(t),

z̈ = uz, with uz = fz(t,cc) = ccbz(t)−g,

(7)

where ui, i ∈ {x,y,z}, represent the flat inputs resulting from a feedback linearization [14].

Such a transformation between the virtual inputs ui and bx
c,b

y
c,cc was applied in the previous

controller equations, cf. (5), allowing us to use techniques from liner feedback control design.

Eq. (7) decouples the three directions and shows linear system behavior in each direction. In

the ideal case where the quadrocopter dynamics correspond to the model (2), the combination

of feedback linearization with velocity and acceleration feed-forward (see żc, z̈c in (5)) results

in perfect trajectory tracking.

Assumptions (i) and (ii) are good approximations due to the fast motor dynamics (with

motor time constants more than six times faster than the controller time constants, cf. [15])

170

5. Online Correction

and due to precise attitude estimates that are based on high-accuracy camera measurements

and that include a prediction step to compensate for system latencies. Assumption (iii) is

true only if the system has zero rotational inertia (cf. [10]), which is not the case. In reality,

exceptionally high angular accelerations (cf. [15]) can be achieved and rotational inertia terms

are small. Thus, the overall closed-loop dynamics may still be expected to be approximately

linear. The approximate directional independence and linear dynamics behavior is exploited

in Sec. 5 and further investigated using experimental data, since additional effects of latencies,

time discretization, on-board dynamics, and modeling errors are difficult to predict.

4.3 Results

In a first attempt, the desired periodic trajectory is directly fed to the vehicle controller (TFC);

that is, sc(t) := sd(t). The quadrocopter response is a sinusoidal motion with a (after the tran-

sient phase) constant change in amplitude, phase and center position. Phase shift and amplitude

error are observed in each translational direction and are not necessarily equal in size. The fre-

quency of the quadrocopter motion corresponds to the commanded one. This suggests that the

quadrocopter controlled by the TFC can be regarded as a linear system, which explains the

phase offset and amplitude amplification.

Fig. 5 (top figure) shows the result for a planar side-to-side motion. The amplitude error

of the quadrocopter response (black solid line) is obvious, whereas the phase error between

the reference trajectory and the actual quadrocopter response is hardly noticeable. In actual

experiments, however, small phase errors are visible and audible when, for example, quadro-

copter choreography is timed to music, as a phase shift causes a misalignment between the

flight trajectory and the music beat. For the side-to-side motion, music beats may occur at the

outermost points of the trajectory. In this case, humans are particularly sensitive to non-zero

vehicle velocity at beat times. Correspondingly, the bottom plot of Fig. 5 illustrates the velocity

of the quadrocopter at beat times, i.e. when the reference trajectory reaches its maximum or

minimum value. Note that if different directions exhibit different a phase shift or amplitude

error, the shape of the motion primitive can even be changed, see Fig. 6.

In the following section, we correct for the amplitude error and phase shift, and investigate

the closed-loop behavior in more detail by analyzing the steady-state correction terms. Because

the commanded amplitude is often amplified by the closed-loop system (rendering feasible

commanded trajectories into infeasible quadrocopter motions), the correction is done first.

5. Online Correction

5.1 Approach

The goal is to accurately track the desired trajectory sd(t) by minimizing the deviation from the

estimated trajectory s(t). To this end, the motion parameters in the commanded trajectory sc(t)
are adjusted by directionally decoupled integral controllers, see Fig. 3. The approach is based

on our previous work, see [11].

For notational convenience, we drop the superscripts i ∈ {x,y,z} indicating the direction

171

Paper VII. Feed-Forward Parameter Identification for Periodic Motions

0 1 2 3 4 5 6

−0.6

0

0.6
x

[m
]

0 1 2 3 4 5 6
0

0.5

1

1.5

p
ea

k
ve

l.
[m

/s
]

time [s]

Figure 5. Side-to-side motion (with ωx
d = 3.25rad/s, Ax

d = 0.6m): no motion parameter adap-

tation. Top: quadrocopter response (solid) for a desired oscillation in the x direction (dashed).

Bottom: corresponding peak velocities, i.e. absolute value of vehicle velocity at the peaks of

the desired trajectory. High peak velocities imply a large phase error.

−0.6 −0.4 −0.2 0 0.2 0.4 0.6

2.5

3

3.5

x-position [m]

z
-p

o
si

ti
o
n

[m
]

Figure 6. Vertical bounce motion (with ωx,y
d = ωz

d/2 = 1.56rad/s, A
x,y
d = Az

d/2 = 0.6m): no

motion parameter adaptation. The vehicle’s response (solid) can differ in shape from the desired

trajectory (dashed).

throughout this section. The motion parameters of the commanded trajectory are set to

θc(t) = θd +θon(t), Ac(t) = Ad +Aon(t), δc(t) = δd +δon(t),

where the subscript ‘on’ indicates the online correction terms. They are updated in real time,

during the flight.

We first determine the additive error in amplitude At , phase θt and position δt of the quadro-

copter response at time t. We multiply the position estimate s(t) and with the two reference

signals, rcos(t) = cos(ωdt +θd) and rsin(t) = sin(ωdt +θd), and integrate the result over N pe-

riods, that is T = (2πN)/ωd . We assume that the errors stay constant over the interval [t−T, t].

172

5. Online Correction

0 2 4 6 8 10 12 14 16 18 20

−0.6

0

0.6
x

[m
]

0 2 4 6 8 10 12 14 16 18 20

−0.6

0

0.6

time [s]

x
[m

]

Figure 7. Side-to-side motion. Top: online motion parameter adaptation only, quadrocopter

response (solid) for a desired oscillation in the x direction (dashed). Bottom: offline motion

parameter adaptation, with online motion parameter adaptation turned on after 2 periods.

This yields

η1(t) =
1

T

∫ t

t−T
s(t)rcos(t)dt =

At +Ad

2
cos(θt)

η2(t) =
1

T

∫ t

t−T
s(t)rsin(t)dt =

At +Ad

2
sin(θt),

(8)

and finally

At = 2

√
η1(t)2 +η2(t)2 −Ad, θt =−arctan(η2(t)/η1(t)) . (9)

The position error of the sinusoidal response is δt =
∫ t

t−T (δd − s(t))dt. Since an insufficient

number of measurements is available at the beginning of a motion, the integrals deliver reliable

values only after several periods of the motion primitive. The online correction terms are

calculated by integrating the errors according to

Aon(t) = kA

∫ t

0
Aτ dτ, θon(t) = kθ

∫ t

0
θτ dτ, (10)

and similarly for δon(t). The gains kθ , kA, kδ are chosen to ensure converge of the online

correction terms to the steady-state values θon,∞, Aon,∞ and δon,∞, respectively. Note again that

the above online parameter adaptation strategy is implemented for each direction separately.

5.2 Results

Using the proposed online parameter adaptation strategy, the errors in amplitude, phase and

center position are effectively regulated to zero, see Fig. 7. We observe a substantial transient

phase before the online correction terms attain steady state, see Fig. 8. This is mainly due to

173

Paper VII. Feed-Forward Parameter Identification for Periodic Motions

0 5 10 15 20 25 30

−0.2

−0.1

0

0.1
x

[m
]
/

θ
[r
ad

]

time [s]

θx

on

Ax

on

δx

on

Figure 8. Side-to-side motion: convergence of the online correction terms.

the fact that the error identification scheme (8)-(9) only provides reliable values after several

periods.

To draw further conclusions, we consider the steady-state values in the following form: the

amplitude-normalized amplification factor,

α i
on,∞ = (Ai

d +Ai
on,∞)/Ai

d , i ∈ {x,y,z} , (11)

and the steady-state phase and offset, θ i
on,∞ and δ i

on,∞, as before.

We found that, when executing the same motion primitive multiple times, the standard

deviations of the corresponding steady-state values are small. We call this the intra-class vari-

ability, which is a measure of the repeatability of the experiments. We then investigated the

inter-class variability: the standard deviation of the steady-state values α i
on,∞,θ

i
on,∞, and δ i

on,∞

is evaluated for different motion primitives. We found that the inter-class variability of the ob-

tained steady-state values for a given translational direction at a given directional frequency is

of the same order of magnitude as the intra-class variability. Supported by the considerations

in Sec. 4.2 and by experiments shown below, this leads to the following conclusions:

Decoupled directions The steady-state values α i
on,∞,θ

i
on,∞ in each direction are independent

of the motion’s components in the other directions. Moreover, as expected from the

quadrocopter’s symmetry, the x and y directions exhibit the same behavior.

Linear behavior Considering the motion component in one direction i, the steady-state values

depend only on the motion’s frequency in this direction ω i
d .

Fig. 9 depicts the amplification factor α l
on,∞ and steady-state phase θ i

on,∞ against the motion’s

directional frequency ω i
d for the two directions i ∈ {x,y}. Plots are shown for ten different

periodic motion primitives in 1D, 2D and 3D of various amplitudes up to 0.6m and different

relative phase shifts. The standard deviation of the steady-state terms is indicated by the ver-

tical labels. In particular, the variability of the amplification factors translates, for the largest

amplitude, to a residual deviation of ±1.5cm, which lies within the TFC hover accuracy of

±2cm. The variability of the phase translates to a residual time shift of ±25ms (at maximum),

which is within the human audiovisual synchrony perception limits [16], and therefore likewise

negligible.

174

5. Online Correction

0.7 0.8 0.9 1 2 3
0.5

0.6

0.7

0.8

0.9

1

1.1

0
.0

1
4

0
.0

1
4

0
.0

1
2

0
.0

1
2

0
.0

1
0

0
.0

1
0

0
.0

0
9

0
.0

1
2

0
.0

1
3

0
.0

1
7

0
.0

2
5

α
x
,y on

,∞
[-
]

x-direction

y-direction

mean

standard deviation

0.7 0.8 0.9 1 2 3

−0.3

−0.2

−0.1

0

0.1

0
.0

1
5

0
.0

1
4

0
.0

1
2

0
.0

1
1

0
.0

1
1

0
.0

0
8

0
.0

1
0

0
.0

1
2

0
.0

1
5

0
.0

1
5

0
.0

3
0

ω [rad/s]

θ
x
,y on

,∞
[r
ad

]

x-direction

y-direction

mean

standard deviation

Figure 9. Steady-state correction values in x and y for ten different motions primitives in 1D,

2D and 3D. Here, ω = ωx
d = ωy

d . The vertical labels provide the standard deviation for the

samples. Top: steady-state amplification factor αx,y
on,∞. Bottom: steady-state phase θ x,y

on,∞.

These results affirm the linearity and directional independence property. Note that when

performing the identification run with the same motion primitives several times, the variability

is of the same order of magnitude. Consequently, we do not lose accuracy when identifying

θ i
on,∞, Ai

on,∞ for one motion primitive and later using it for another one as described in the next

section.

175

Paper VII. Feed-Forward Parameter Identification for Periodic Motions

The steady-state correction terms for the center position δ i
on,∞ lie within the hover accuracy

with a variability of the same magnitude. Thus, the value δ i
on,∞ cannot be called repeatable and

may either be neglected because of its small average size or identified each time when flying.

6. Offline Identification

6.1 Approach

The previous section showed that the steady-state values obtained from the online correction are

repeatable. Consequently, relevant steady-state values can be extracted once, and later applied

to improve the transient performance. We employ offline identified parameters in addition to

the online adaptation. Again, we drop the superscripts indicating the direction. The parameters

of the commanded trajectory are set to

Ac(t) = αoffAd +Aon(t), δc(t) = δd +δon(t), θc(t) = θd +θoff +θon(t),

where the subscript ‘off’ indicates the offline motion parameters identified prior to the experi-

ment. Note that there is no offline parameter for the center point δc, because the errors are small

in size and less repeatable and, thus, more efficiently handled by the online adaptation strategy.

The offline parameters are selected at the start of a motion on the basis of the desired motion

primitive and stay constant for the duration of the executed motion. For a given motion, the

offline correction terms are set to the steady-state values obtained from the online correction,

see Sec. 5.2:

αoff = αon,∞, θoff = θon,∞.

We make use of the directional independence and linearity property derived above to ef-

ficiently identify the offline correction terms for all periodic motions that can be expressed in

our framework (1). We perform a single identification run with fixed amplitudes Ai
d , phases θ i

d

and center point δ i
d and vary only the frequency ω i

d = ω . Moreover, since the x and y direction

exhibit the same dynamics, an identification run with a 2D motion primitive in x or y, and z is

sufficient to completely identify all necessary feed-forward parameters.

Conceptually, the offline identification strategy results in a pair of maps

Γxy : ωx,y
d 7→ (αx,y

off ,θ
x,y
off), Γz : ωz

d 7→ (αz
off,θ

z
off),

where the superscript x,y indicates that this map is used for both, the x and y direction. The

values are stored in a table with rows [ωx,y
d ωz

d θ x,y
off θ z

off αx,y
off αz

off]. We use linear interpolation

between the offline parameters, which are only obtained at a discrete set of frequencies.

6.2 Results

As compared to using only online parameter adaptation, the proposed offline identification

substantially decreases the transient phase, see Fig. 7. The offline parameters are effective from

176

7. Conclusions

0 5 10 15 20 25 30 35

0

1

2

n
or

m
.

p
ea

k
ve

l.
[-
]

time [s]

without corrections
with corrections

0 5 10 15 20 25 30 35

−0.8
−0.4

0
0.4
0.8
1.2

er
ro

r
in

x
[m

]

time [s]

without corrections
with corrections

Figure 10. Sequence of motions (comprising a circular motion in 3D, a swing motion in 3D

and a horizontal circle): with and without feed-forward corrections. Offline correction terms

were obtained from a reduced identification. Top: absolute value of velocities at the peaks

of the desired trajectory normalized by dividing by Ax
dωx

d . Bottom: errors between desired

trajectory and vehicle response (sd(t)− s(t)) are plotted.

the start of the motion primitive. When combining online and offline correction, the former is

used only after several periods.

In order to show the effectiveness of the reduced identification scheme, we perform a se-

quence of periodic 3D motions with offline parameters obtained from an oscillatory motion in

2D (Ax
d = Az

d = 0.4m, ωx
d = ωz

d = ω). Fig. 10 shows that the quadrocopter’s deviation from the

desired trajectory is clearly reduced when using the offline parameter adaptation strategy. As

a consequence, the corresponding peak velocities (cf. Fig. 5) are also small indicating that the

phase error is reduced. Note that the transient performance can be further improved by starting

the vehicle with the appropriate velocity and acceleration.

The videos at www.tiny.cc/MusicInMotion show examples of quadrocopter choreogra-

phies timed to music.

7. Conclusions

In this paper we studied a feed-forward parameter tuning strategy that improves the tracking

performance of periodic motion primitives, as compared to pure feedback control, especially

during transients. With pre-identified correction terms, the tracking converges to a level virtu-

ally imperceptible to a human observer within a single period. The parameter correction terms

depend only on the motion’s 3D directional frequencies. The translational directions are inde-

177

www.tiny.cc/MusicInMotion

Paper VII. Feed-Forward Parameter Identification for Periodic Motions

pendent, allowing for an efficient offline identification of correction values. Due to the direc-

tional independence, the approach presented in this paper can be applied even to non-periodic

3D motions that are composed of periodic motions in each translational direction.

References

[1] S. Bouabdallah and R. Siegwart, “Backstepping and sliding-mode techniques applied to

an indoor micro quadrotor,” in Proceedings of the IEEE International Conference on

Robotics and Automation (ICRA), 2005, pp. 2247–2252.

[2] S. Al-Hiddabi, “Quadrotor control using feedback linearization with dynamic extension,”

in Proceedings of the International Symposium on Mechatronics and its Applications

(ISMA), 2009, pp. 1–3.

[3] T. Lee, M. Leoky, and N. McClamroch, “Geometric tracking control of a quadrotor UAV

on SE(3),” in Proceedings of the IEEE Conference on Decision and Control (CDC), 2010,

pp. 5420–5425.

[4] D. Mellinger and V. Kumar, “Minimum snap trajectory generation and control for

quadrotors,” in Proceedings of the IEEE International Conference on Robotics and

Automation (ICRA), 2011, pp. 2520–2525.

[5] C. Castillo, W. Moreno, and K. Valavanis, “Unmanned helicopter waypoint trajectory

tracking using model predictive control,” in Proceedings of the Mediterranean Conference

on Control Automation, 2007, pp. 1–8.

[6] K. Murata, K. Nakadai, K. Yoshii, R. Takeda, T. Torii, H. G. Okuno, Y. Hasegawa, and

H. Tsujino, “A robot uses its own microphone to synchronize its steps to musical beats

while scatting and singing,” in Proceedings of the IEEE/RSJ International Conference on

Intelligent Robots and Systems (IROS), 2008, pp. 2459–2464.

[7] J.-J. Aucouturier, “Cheek to chip: dancing robots and AI’s future,” IEEE Intelligent

Systems, vol. 23, no. 2, pp. 74–84, 2008.

[8] D. Grunberg, R. Ellenberg, I. H. Kim, J. H. Oh, P. Y. Oh, and Y. E. Kim, “Development of

an autonomous dancing robot,” International Journal of Hybrid Information Technology,

vol. 3, no. 2, 2010.

[9] P. Allen, “Feed-forward compensated high switching speed digital phase-locked loop

frequency synthesizer,” Proceedings of the IEEE International Symposium on Circuits

and Systems, vol. 4, pp. 371–374, 1999.

[10] A. P. Schoellig, M. Hehn, S. Lupashin, and R. D’Andrea, “Feasibility of motion

primitives for choreographed quadrocopter flight,” in Proceedings of the American

Control Conference (ACC), 2011, pp. 3843–3849.

[11] A. P. Schoellig, F. Augugliaro, S. Lupashin, and R. D’Andrea, “Synchronizing the motion

of a quadrocopter to music,” in Proceedings of the IEEE International Conference on

Robotics and Automation (ICRA), 2010, pp. 3355–3360.

178

References

[12] A. P. Schoellig, F. Augugliaro, and R. D’Andrea, “A platform for dance performances

with multiple quadrocopters,” in Proceedings of the IEEE/RSJ International Conference

on Intelligent Robots and Systems (IROS) - Workshop on Robots and Musical Expressions,

2010, pp. 1–8.

[13] P. C. Hughes, Spacecraft Attitude Dynamics. John Wiley & Sons, 1986.

[14] A. Isidori, Nonlinear control systems. Springer Verlag, 1995.

[15] M. Hehn and R. D’Andrea, “Quadrocopter trajectory generation and control,” in IFAC

World Congress, vol. 18, 2011, pp. 1485–1491.

[16] R. Arrighi, D. Alais, and D. Burr, “Perceptual synchrony of audiovisual streams for

natural and artificial motion sequences.” Journal of Vision, vol. 6, no. 3, pp. 260–268,

2006.

179

Paper VIII

Feasibility of Motion Primitives for Choreographed

Quadrocopter Flight

Angela P. Schoellig · Markus Hehn · Sergei Lupashin · Raffaello D’Andrea

Abstract

This paper describes a method for checking the feasibility of quadrocopter motions.

The approach, meant as a validation tool for preprogrammed quadrocopter performances,

is based on first principles models and ensures that a desired trajectory respects both vehicle

dynamics and motor thrust limits. We apply this method towards the eventual goal of

using parameterized motion primitives for expressive quadrocopter choreographies. First,

we show how a large class of motion primitives can be formulated as truncated Fourier

series. We then show how the feasibility check can be applied to such motions by deriving

explicit parameter constraints for two particular parameterized primitives. The predicted

feasibility constraints are compared against experimental results from quadrocopters in the

ETH Flying Machine Arena.

Published in Proc. of the 2011 American Control Conference (ACC), 2011.

c©2011 AACC.

181

Paper VIII. Feasibility of Motion Primitives for Choreographed Flight

1. Introduction

Our goal is to derive motion primitives for quadrocopter flight choreography, where we define

‘choreography’ as the design and arrangement of expressive sequences of movements.

Motion primitives are short and fairly simple basic motion elements; when concatenated,

they can describe complex behavior and are often used to represent repetitive movements such

as, for example, human hand-writing [1] or human body gestures [2]. Motion primitives are

also used as a tool for simplifying complex problems, including motion planning [3–5], the

control of humanoid robots [6–8], object recognition in video [9] or motion extraction from

large data sets [10]. In particular, dance movement is often described by motion primitives

because of its repetitive and rhythmic form [11–14].

In this paper, we introduce motion primitives as basis elements for choreographed dance-

like quadrocopter movements. The design of these primitives is guided by the four key variables

of dance as described by professional dancers and choreographers: time, space, energy, and

structure. We present motion primitives that are adjustable in their temporal characteristics

as well as in their spatial features. A wide spectrum of movements and motion segments are

included in the library of motion primitives, ranging from sharp and energetic movements to

soft and smooth ones. With this library, we aim at providing a choreographer with degrees of

freedom for creating an expressive choreography comparable to a human dance performance.

Like humans, whose range of motion and speed of movement is limited, not all motions are

feasible for a quadrocopter. Thus, a large part of the analysis below is devoted to determining

the set of parameters that represents motion sequences that can be realized with a quadrocopter.

The resulting library of feasible motion primitives allows for multifaceted choreographies that

could eventually be synchronized to music, in order to create a novel visual musical experience

as described in [15].

This paper is organized as follows: Sec. 2 introduces a general description for motion

primitives that define the translational dynamics of the quadrocopter and can be related to

the four key elements of dance. In Sec. 3, the equations governing the dynamic behavior and

constraints of the quadrocopter are stated. This allows us to derive inequalities for determining

the feasibility of trajectories in Sec. 4. To illustrate the effectiveness of this procedure, feasible

parameter sets are explicitly calculated for two motion primitives and validated by experimental

data (Sec. 5). We conclude the paper with a summary in Sec. 7.

2. Motion Primitives

Our goal is to develop basic motion elements that, when combined into sequences, allow for

a multifaceted, meaningful quadrocopter choreography. We specify motion primitives on the

quadrocopter’s translational position s(t) = (x(t), y(t), z(t)) measured in the inertial coordinate

system O, see Fig. 2. The remaining degrees of freedom, namely the vehicle’s attitude V,

are not considered in the description of the motion primitive, but are partly defined by the

quadrocopter’s dynamics, see Sec. 3. Motion primitives are introduced as

sd(t) = sd(p, t), (1)

182

2. Motion Primitives

Figure 1. An example of a periodic motion primitive studied in this paper.

over a finite time interval t ∈
[
t0, t f

]
⊂R, t f < ∞, where p denotes the set of adjustable motion

parameters. Parameterized motion primitives allow for variety and expressiveness in the chore-

ography design and provide choreographers with intuitive tools for the design of performances.

Our objective is to offer a similar range of motions as is used in human dance composition.

In this context, we ask: Which choices does a professional dance choreographer have when

creating a performance? How can we provide the tools and degrees of freedom necessary for

implementing an expressive performance on the quadrocopter?

Four fundamental choreographic elements – time, space, energy, and structure – are com-

monly used by professional dancers, choreographers and dance teachers to build choreography

with interest, dynamics and aestethic appeal, cf. [16, 17]. These parameters provide a frame-

work for meaningful quadrocopter choreography, and are described as follows:

Space refers to the area the dancer is performing in. It also relates to how the dancer moves

through the area, as characterized by the direction and path of a movement, as well as its

size, level, and shape.

Time encompasses rhythm, tempo, duration, and phrasing of movements. Using time in dif-

ferent combinations can create intricate visual effects. Ideas such as quick-quick, slow

or stop movements are examples.

Energy relates to the quality of movement. This concept is recognizable when comparing

ballet and tap dance. Some types of choreography are soft and smooth, while others are

sharp and energetic.

Structure represents the organization of movement sequences into larger concepts: the com-

bination and variation of movements using recurring elements, contrast, and repetition.

Movements can even follow a specific story line to convey certain information through a

183

Paper VIII. Feasibility of Motion Primitives for Choreographed Flight

dance.

Examples illustrating the four elements of dance are found in [16, 17].

One way of introducing parameterized motion primitives that capture a wide range of dif-

ferent movements is as a Fourier series [18],

sd(t) = a0 +
N

∑
k=1

ak cos(k Ωt)+bk sin(k Ωt) , (2)

where Ω = 2π/T represents the fundamental angular frequency corresponding to a period of T .

Additional design parameters are the constant vectors a0,ak,bk ∈ R
3, k ∈ K = {1,2, . . . ,N} ,

and N ≥ 1; that is, p = {Ω,N,a0,ak,bk |k ∈ K }. The parameters p allow us to express the key

choreographic elements:

Space The parameters a0 and ak,bk, k ∈ K define the amplitudes of the periodic motion and,

thus, the spacial dimension of the movement. These vectors also specify the direction of

the motion and the overall three-dimensional shape of the curve.

Time The underlying rhythm is given by the frequency Ω. When the choreography is set

to music, the frequency Ω can be related to the music’s tempo. Different tempos are

combined when choosing N > 1. The overall duration of the motion can be adjusted via

t f .

Energy The higher the value of N, the more energetic and sharp are the possible motions,

cf. [18].

Structure The motion primitives described in (2) can be combined into sequences, which can

in turn be combined to create an overall choreographic performance. Endless permu-

tations are possible, much the way individual words can be combined into a variety of

sophisticated stories.

In short, the general motion description (2) reflects the fundamental choregraphic elements

and allows for a multi-dimensional choreography. Out of the variety of motions captured by

(2), Fig. 1 illustrates the one with N = 3, T = 10, a0 = (0,0,3) , a1 = (0,0,1) , a2 = (1,0,0) ,

b3 = (0,1,0) and a3,b1,b2 being zero. A Matlab file for generating arbitrary motion primitives

of the proposed type are available online at www.idsc.ethz.ch/Downloads/QuadDance.

In order to make (1) and (2) a useful tool for choreographers, we need to specify which

motion primitives can be realized on the vehicle. The dynamics and physical limits of the

quadrocopter define the feasible sets of parameters p.

3. Quadrocopter Dynamics and Constraints

The quadrocopter dynamics and constraints are derived from first principles models:

184

www.idsc.ethz.ch/Downloads/QuadDance

3. Quadrocopter Dynamics and Constraints

x

y

z

V

O

VxVz

Vy

Figure 2. The inertial coordinate system O and the vehicle coordinate system V.

3.1 Dynamics

The quadrocopter is described by six degrees of freedom: The translational position s = (x,y,z)
is measured in the inertial coordinate system O as shown in Fig. 2. The vehicle attitude is

defined by the body-fixed frame V and represented by the Euler angles yaw, pitch and roll,

(α,β ,γ). The rotation matrix O
V R(α,β ,γ) for transforming coordinates from V to O is

O
V R(α,β ,γ) = Rz (α)Ry (β)Rx (γ) , (3)

where

Rx (γ) =




1 0 0

0 cosγ −sinγ

0 sinγ cosγ


 , Ry (β) =




cosβ 0 sinβ

0 1 0

−sinβ 0 cosβ


 , (4)

Rz (α) =




cosα −sinα 0

sinα cosα 0

0 0 1


 . (5)

The vector s describes the center of mass of the vehicle in the inertial coordinate system O.

The translational acceleration of the vehicle is dictated by the attitude of the vehicle and the

total thrust produced by the four propellers. The translational dynamics in the inertial frame

are given by

s̈ = O
V R(α,β ,γ)




0

0

f


−




0

0

g


 , (6)

where g is the acceleration due to gravity and f is the sum of the rotor forces Fi normalized by

the vehicle mass m,

f =
4

∑
i=1

fi with fi = Fi/m. (7)

185

Paper VIII. Feasibility of Motion Primitives for Choreographed Flight

ωx

ωy ωz

f
f1f2

f3 f4

Figure 3. The control inputs of the quadrocopter are the body rates ωx, ωy, and ωz and the

collective thrust f . These inputs are converted by an onboard controller into motor forces fi, i ∈
{1,2,3,4}.

The control inputs to the vehicle are the mass-normalized collective thrust f and the desired

rotational rates about the vehicle body axes, ω = (ωx,ωy,ωz), see Fig. 3.

The relationship between the body-fixed angular velocity vector ω and the rate of change

of the Euler angles is

ω =




cosβ cosγ −sinγ 0

cosβ sinγ cosγ 0

−sinβ 0 1







γ̇

β̇

α̇


 . (8)

Each rotor of the quadrocopter produces not only a force Fi, i ∈ I = {1,2,3,4}, in the

positive Vz direction, but also a reaction torque Mi perpendicular to the plane of rotation of the

blade, see Fig. 3, where

Mi = kFi , k = const, (9)

describes the relationship between the motor force Fi and the associated reaction torque Mi.

The parameter k is given by the motor characteristics, see [19] for details. Rotors 1 and 3 rotate

in the negative Vz direction, producing a moment that acts in the positive Vz direction; while

rotors 2 and 4 rotate in the opposite direction resulting in reaction torques in the negative Vz

direction. Given the inertia matrix I with respect to the center of mass and the vehicle frame V,

the rotational dynamics of the body-fixed frame are given by

Iω̇ =




L(F2 −F4)

L(F3 −F1)

k(F1 −F2 +F3 −F4)


−ω × Iω, (10)

where L is the distance from each motor to the center of the quadrocopter. The vehicle’s

principal axes coincide with the vehicle frame axes, resulting in a diagonal inertia matrix with

entries (Ix, Iy, Iz), where Ix = Iy because of symmetry.

186

4. Feasibility of Motion Primitives

3.2 Constraints

The agility of the quadrocopter is constrained by the minimum and maximum force of a single

motor,

fi,min ≤ fi ≤ fi,max, i ∈ {1,2,3,4} , (11)

where we use the mass-normalized representation of the forces. The forces are always positive,

fi,min ≥ 0, since the motors can spin only in one direction. Assuming identical motors, the

collective thrust is bounded by

fmin ≤ f ≤ fmax with fmin = 4 fi,min , fmax = 4 fi,max. (12)

In the following feasibility analysis, we study the nominal dynamics of the vehicle under

the assumption that we can control the vehicle body rates directly, and ignore rotational accel-

eration dynamics. We also assume that the collective thrust can be changed instantaneously.

We justify the above assumption based on experimental results that show a fast response

time to changes in the desired rotational rates (time constants are on the order of 20 ms). A high-

bandwidth controller on the vehicle tracks the desired rates using feedback from gyroscopes.

Because the quadrocopter has very low rotational inertia and can produce high torques due to

the outwards mounting of the propellers, see Tab. 1, high rotational accelerations in the order

of 200 rad/s2 are achievable. The true thrust dynamics are as fast as the rotational dynamics,

with propeller spin-up being faster than spin-down.

This allows us to calculate the motor forces fi(t) for a desired motion primitive from the

nominal inputs, ωd(t) and fd(t), using equations (7) and (10).

4. Feasibility of Motion Primitives

For the subsequent feasibility analysis, we assume that motion primitives, cf. (1), are twice-

differentiable in time. Feasibility is formulated in terms of the motor limits c = { fi,min, fi,max}
and the motion parameters p. The objective is to derive a set of inequalities that specify feasible

parameter sets p given the limits c,

h(p,c, t)≤ 0 ∀ t ∈
[
t0, t f

]
. (13)

In other words, given the vehicle limits c, a parameter set p is feasible if (13) is satisfied over

the whole time interval t ∈
[
t0, t f

]
.

The vehicle is constrained by the minimum and maximum force of a single rotor, cf. (11),

which in turn results in a minimum and maximum collective thrust (12). Each of the afore-

mentioned constraints must be satisfied in order to guarantee the feasibility of a given motion

primitive,

h(p,c, t) =




h(p,c, t)

h1(p,c, t)

h2(p,c, t)

h3(p,c, t)

h4(p,c, t)



≤ 0, ∀ t ∈

[
t0, t f

]
, (14)

187

Paper VIII. Feasibility of Motion Primitives for Choreographed Flight

where h(p,c, t) represents the constraint on the collective thrust (12) and hi(p,c, t), i ∈ I the

motor limits (11). The above inequality is defined componentwise. Note that the inequalities

on the single motors hi(p,c, t), i ∈I , alone would be sufficient for investigating the feasibility

of a motion primitive. However, we keep h(p,c, t), since this inequality can be can be derived

directly from (6) and checked easily, as shown below.

4.1 Collective Thrust Limit

To derive h(p,c, t) for a desired motion primitive sd , we re-write (6),

O
V R(α,β ,γ) n fd = s̈d +ng , (15)

where n = [0,0,1] and fd is the nominal thrust input associated with sd . Taking the 2-norm,

we can solve for fd , fd ≥ 0,

∥∥∥O
V R(α,β ,γ) n fd

∥∥∥= ‖s̈d +ng‖ ⇔ fd = ‖s̈d +ng‖ . (16)

Recalling that sd = sd(p, t) and (12), the constraint guaranteeing the maximum and minimum

bound of the collective thrust, is

h(p,c, t) =

[‖s̈d(p, t)+ng‖− fmax

fmin −‖s̈d(p, t)+ng‖

]
≤ 0 . (17)

This feasibility requirement can be checked for any given desired motion primitive sd(p, t)
by calculating its second time derivative. No further calculations are necessary. In particular,

the nominal input associated with sd(p, t) need not be determined in advance. The constraint

(17) on the collective thrust guarantees that the translational dynamics (6) are satisfied. Most

importantly, it excludes the majority of infeasible parameters p. For a more detailed discussion

on this topic see Sec. 4.3 and the examples in Sec. 5.

4.2 Motor Saturation

In order to evaluate the motor constraints (11), we must determine the (nominal) rotational

inputs ωd(t) of the given motion primitive sd(t). Given ωd(t), we can, for the motor forces

fi,d(t), i ∈I , solve a linear system of equations, (7) and (10), and check their feasibility based

on (11). Note that in specifying a trajectory by its translational degrees of freedom, we are free

to choose the rotational rate ωz(t). For the general case (1), the rotational inputs ωx,d(t) and

ωy,d(t) are obtained by numerically integrating the dynamic equations (6), (8) and (10), and

using the result (16). Below, we propose problem-specific analytic solutions for two simple

examples and state hi(p,c, t) explicitly.

4.3 Discussion

The collective thrust constraint h(c, p, t) and the motor constraints hi(c, p, t) differ in the com-

putational effort necessary for evaluating the corresponding inequalities as well as in the in-

formation they provide. The collective constraint h(c, p, t) can be explicitly stated, see (17), is

easy to evaluate, and provides quick insight into the dynamic behavior of the quadrocopter by

188

5. Examples

excluding the majority of infeasible parameter sets. In contrast, for the motor constraints, we

first need to calculate the nominal inputs ωx,d(t) and ωy,d(t). An explicit equation for ωx,d(t)
and ωy,d(t) can be derived only in simple cases; in the general case, the rotational inputs are

found numerically. The effects of both types of constraints are evident in the following two

examples.

5. Examples

We consider two simple periodic motions that fall into the framework introduced in (2): a

side-to-side motion and a circular motion in the horizontal plane. For the side-to-side motion,

experimental results are shown in Sec. 6.

5.1 Side-to-Side Motion

The desired motion is a planar side-to-side movement,

sd(t) =




xd(t)

yd(t)

zd(t)


=




Acos(Ωt)

0

0


 . (18)

The objective is to determine feasible combinations of amplitudes A and frequencies Ω. The

side-to-side motion is a special case of the general motion primitive description (2), where

N = 1, a1 = (A,0,0) and a0,b1 = (0,0,0) .

Calculating the second derivative of (18) and inserting it into (17), gives us the inequalities

resulting from the collective thrust limit,

h(p,c, t) =

[√
A2Ω4 cos2 Ωt +g2 − fmax

fmin −
√

A2Ω4 cos2 Ωt +g2

]
≤ 0 . (19)

Given a pair (A,Ω), these inequalities must be satisfied for all t ∈ [0,T]. Therefore, it is enough

to consider

max
t∈[0,T]

h(p,c, t)≤ 0 , (20)

which in the above case is simply

AΩ2 ≤
√

f 2
max −g2 . (21)

The second inequality is fmin ≤ g and must be satisfied in order for a quadrocopter to land. In

brief, all parameter pairs (A,Ω) satisfying the inequality (21) represent side-to-side motions

that stay within the collective thrust limits (12).

However, to guarantee feasibility of the trajectory, the required motor forces must satisfy

(11). In order to evaluate the motor constraints hi(p,c, t), i ∈ I , we solve the dynamic equa-

tions. Note that in the following calculations, the subscript (·)d is dropped to simplify notation.

189

Paper VIII. Feasibility of Motion Primitives for Choreographed Flight

For the side-to-side motion, the roll angle is zero, γ(t) = 0, for all t ∈ [0,T]. In order to

fully determine the trajectory (cf. comments in Sec. 4.2), we set the rotational rate wz(t) to

zero, resulting in α̇(t) = 0, see (8). The initial yaw angle is set to zero and, thus, α(t) = 0 for

all t ∈ [0,T]. With this, the translational dynamics (6) reduce to

ẍ = f sinβ (22)

z̈ = f cosβ −g . (23)

Recalling the above results, the nominal rotational inputs (8) are ω = [0, β̇ ,0]. The rotational

rate ωy(t) and the fourth input, the collective thrust f , are obtained from (22), (23) and (18),

where the latter implies z̈ = 0. From (23),

f =
g

cosβ
, (24)

and with (22) and the second derivative of xd(t),

ẍ = g tanβ ⇔ β (t) = tan−1

(
−AΩ2

g
cos(Ωt)

)
. (25)

Equations (24) and (25) yield the inputs ωy(t) = β̈ and f (t). Once the nominal inputs are

determined, the nominal motor forces are a direct consequence of (7) and (10),




0 1 0 −1

1 −1 1 −1

−1 0 1 0

1 1 1 1







f1

f2

f3

f4


=

1

ml




0

0

Iyβ̈

f l


 , (26)

where the right vector is obtained from the previous analysis and the matrix is invertible. Solv-

ing this linear system of equations results in

f1 =
1

2

(
f

2
+

Iy

ml
β̈

)
, f3 =

1

2

(
f

2
− Iy

ml
β̈

)
, f2 = f4 = f/4 . (27)

The collective thrust constraint (21) guarantees the feasibility of f2 and f4, while the motor

constraints (11) of f1 and f3 narrow down the set of feasible pairs (A,Ω) compared to the

collective thrust inequality (21).

For the vehicle parameters in Tab. 1, Fig. 4 illustrates the feasible set of side-to-side trajec-

tories (A,Ω) for both cases. The dark gray region contains parameter sets that are infeasible

due to the collective thrust limit, cf. (21). The light gray area represents the additional infea-

sible parameter sets obtained by taking into account the limits on the motors. Matlab files for

creating the plots are available at www.idsc.ethz.ch/Downloads/QuadDance.

190

www.idsc.ethz.ch/Downloads/QuadDance

5. Examples

0 5 10 15
0

0.5

1

1.5

Frequency (rad/s)

A
m

p
li

tu
d
e

(m
)

INFEASIBLE

FEASIBLE

Figure 4. Feasible parameter sets for the side-to-side motion primitive. The dark gray region

denotes parameter sets that are infeasible due to collective thrust limits; light gray denotes sets

that are infeasible due to additional single motor constraints.

5.2 Circular Motion

As a second periodic motion primitive, we require a quadrocopter to fly a circle in the horizontal

plane at a constant rotational rate Ω with radius A,

sd(t) =




xd(t)

yd(t)

zd(t)


=




Acos(Ωt)

Asin(Ωt)

0


 . (28)

The circle is represented by the general motion primitive description (2) with N = 1 , a0 =
(0,0,0) , a1 = (A,0,0) and b1 = (0,A,0). We study the feasibility of the circle primitive de-

pending on the parameters (A,Ω) and follow the same procedure as for the side-to-side motion

in Sec. 5.1.

First, the collective thrust constraint (17) is evaluated. For the circle, the nominal collective

thrust is constant, cf. (16),

fd =
√

A2Ω4 +g2 , (29)

resulting in the inequalities

AΩ2 ≤
√

f 2
max −g2 . (30)

and f 2
min−g2 ≤A2Ω4. The latter is true for fmin < g, see Sec. 5.1. Note that the same inequality,

cf. (21), describes the collective thrust limit of the side-to-side primitive.

Second, we study the feasibility with respect to the motor force limits (11). For deriving the

nominal rotational inputs, we transform the equations of motion into different coordinate sys-

tems, such that the flight dynamics can be described in a time-invariant manner. The subscript

(·)d is omitted in order to simplify notation. To describe the vehicle position, we introduce the

following coordinate system C with (u,v,w) describing the quadrotor position in C:




x

y

z


 := Rz (Ωt)




u

v

w


=




cosΩt −sinΩt 0

sinΩt cosΩt 0

0 0 1







u

v

w


 . (31)

191

Paper VIII. Feasibility of Motion Primitives for Choreographed Flight

0 5 10 15
0

0.5

1

1.5

Frequency (rad/s)

A
m

p
li

tu
d
e

(m
)

INFEASIBLE

FEASIBLE

Figure 5. Feasible parameter sets for the circular motion primitive. The dark gray region

denotes parameter sets that are infeasible due to collective thrust limits; light gray denotes sets

that are infeasible due to additional single motor constraints.

0 5 10 15
0

0.5

1

1.5

Frequency (rad/s)

A
m

p
li

tu
d
e

(m
)

INFEASIBLE

FEASIBLE

Figure 6. Feasible parameter sets for the circular motion primitive when yaw control needs no

additional control effort (k = ∞). The dark gray region denotes parameter sets that are infeasible

due to collective thrust limits; light gray denotes sets that are infeasible due to single motor

constraints.

The attitude of the vehicle is represented by a second set of Euler angles (η ,µ,ν), describing

the ‘virtual vehicle attitude’ W:

O
W R(η ,µ,ν) = Rz (η)Ry (µ)Rx (ν) , (32)

where

O
V R(α,β ,γ)




0

0

1


= O

W R(η ,µ,ν)




0

0

1


 . (33)

As every column of a rotation matrix has a unit norm, this equation defines only two of the

angles (η ,µ,ν). With (31), the derivatives of (31) and (33), the quadrotor’s equations of motion

192

5. Examples

(6) simplify to




ü

v̈

ẅ


=




f sin µ cosν +Ω2u+2Ωv̇

− f sinν −2Ωu̇+Ω2v

f cos µ cosν −g


 , (34)

when setting the free parameter η to η = Ωt. The circular trajectory is described by u = A and

v = 0. Again, we have an additional design parameter to choose, see Sec. 4.3. For the circle,

the vehicle rotation around its vertical axis is set to zero, i.e. ẇ = 0. Using these values and the

nominal thrust (29), the Euler angles µ and ν can be calculated from (34):

µ = arctan

(
−AΩ2

g

)
, ν = 0. (35)

Knowing the values for (η ,µ,ν), we solve for (α,β ,γ) using (33). We choose α = 0, simpli-

fying (33) to




sinβ cosγ

−sinγ

cosβ cosγ


=




cosΩt sin µ cosν + sinΩt sinν

sinΩt sin µ cosν − cosΩt sinν

cos µ cosν


 , (36)

which can be solved for β and γ . To calculate the rotational rate inputs in (8), we take the first

derivative of (36). It can be shown that

β̇ =
AΩ3 cos−1γ (tanβ tanγ cos(Ωt)+ cos−1β sin(Ωt))√

g2 +A2Ω4
(37)

γ̇ =
AΩ3 cos−1γ cos(Ωt)√

g2 +A2Ω4
. (38)

Combining this result with the results from (8) and (10), one can solve for the nominal control

inputs (ωx,ωy,ωz), similar to the side-to-side motion in the previous section, Sec. 5.1. The

equations for the motor forces are not explicitly stated here, however Matlab files showing the

relevant equations and creating the corresponding plots, see Fig. 5 and 6, are available at www.

idsc.ethz.ch/Downloads/QuadDance.

Fig. 5 illustrates the feasible set of circle trajectories (A,Ω) for the vehicle parameters in

Tab. 1. The collective thrust limit, cf. (30), is identical to the side-to-side motion. However,

the boundary that takes into account the single rotor limits is lower. One reason is that, for

the circle motion, additional rotor force is needed to keep the yaw angle at zero. Choosing the

motor constant k = ∞, meaning that no force is required for rotational accelerations around the

vertical axis of the vehicle, cf. (10), the feasible set of parameters increases, see Fig. 6. In

other words, the control effort for yaw (for the given quadrocopter, see Tab. 1) is large and has

a noticeable effect when studying the feasibility of trajectories.

193

www.idsc.ethz.ch/Downloads/QuadDance
www.idsc.ethz.ch/Downloads/QuadDance

Paper VIII. Feasibility of Motion Primitives for Choreographed Flight

6. Preliminary Experimental Results

We now compare the predicted feasible region of the side-to-side motion with experimental

results. Experiments were conducted in the ETH Flying Machine Arena on our customized

quadrocopters. The Flying Machine Arena is an indoor research space built specifically for the

study of autonomous systems and aerial robotics. Details on the testbed, the vehicles, and the

communication and control infrastructure are found in [15, 20].

The side-to-side motion was performed for various frequencies Ω. The amplitude was in-

creased in small steps of 1 to 2cm starting from 0m. We monitored the commands to the

motors and determined the percentage of saturated motor commands per period, hitting either

the lower or upper limit of the motor, fi,min or fi,max, respectively. Fig. 7 shows the experimen-

tally obtained feasibility limits with the corresponding predicted feasibility bounds, calculated

as above with the vehicle parameters in Tab. 1. The vehicle parameters of our quadrocopter

were determined experimentally and used before in [20, 21].

The feasibility bounds found experimentally support the predicted parameter limits. In our

experiments, saturation occurs earlier than predicted. This can be explained by the fact that a

simplified model was used when deriving the analytical bounds, see Sec. 3.1. Motor dynamics,

effects caused by sampling of the inputs, slew rate limits on the motor commands etc. are not

considered in our analytic derivations. Moreover, additional thrust is required to stabilize the

vehicle.

7. Conclusions

In this paper we studied the feasibility of quadrocopter motions based on first principles models

of the vehicle dynamics. We derived equations that ensure the feasibility of a desired trajectory

(assumed to be twice-differentiable in time) with regard to the vehicle’s collective thrust limits

and the motor thrust limits. In particular, we considered motion primitives that are adjustable in

their parameters. Such parameterized motion primitives will form the basis for a choreographed

Table 1. Vehicle Parameter

Definition Value

m mass of vehicle 0.468 kg

L vehicle arm length 0.17 m

Ix inertia around vehicle Vx-axis 0.0023 kgm2

Iy inertia around vehicle Vy-axis 0.0023 kgm2

Iz inertia around vehicle Vz-axis 0.0046 kgm2

k motor constant 0.016 m

fi,min normalized min. rotor force 0.17 m/s2

fi,max normalized max. rotor force 6.0 m/s2

194

References

0 5 10 15
0

0.2

0.4

0.6

0.8

1

Frequency (rad/s)

A
m

p
li

tu
d
e

(m
)

INFEASIBLE

FEASIBLE

Figure 7. Experimentally determined feasibility limits for the side-to-side motion. The blue

boxes mark amplitudes where motor commands are saturated 1% of the time. The predicted

feasibility regions are shown in gray.

flight performance with quadrocopters. By adjusting the motion parameters, these primitives

can capture fast/slow, smooth/sharp, and big/small motions. The goal of the feasibility analysis

was to identify feasible parameter sets for these parameterized motion primitives a priori to

flight experiments.

The first feasibility test used the collective thrust limit to effectively exclude most infeasible

parameter combinations at little computational cost. A second feasibility test considered the

thrust limits of each motor to obtain a more realistic approximation of the feasible set of tra-

jectories. For determining the feasibility with respect to the single motors, the quadrocopter’s

dynamic equations must be solved for the corresponding nominal inputs. This was done for two

simple examples, and the feasible parameter sets obtained from the first and second approach

were compared. Our experiments validated the predicted feasibility bounds.

Ultimately, a library of these adjustable motion elements – together with their associated

sets of feasible parameters – will serve as a basis for building a multifaceted choreography that

is able to express different shapes, with different rhythms, in different spatial dimensions. First

steps towards performing these choreographies in synchrony with music are shown in [15, 22]

and accompanying videos.

References

[1] B. Williams, M. Toussaint, and A. Storkey, “Extracting motion primitives from natural

handwriting data,” in Proceedings of the International Conference on Artificial Neural

Networks (ICANN), 2006, pp. 634–643.

[2] L. Reng, T. B. Moeslund, and E. Granum, Finding Motion Primitives in Human Body

Gestures. Springer, 2006, pp. 133–144.

[3] S. M. LaValle, Planning Algorithms. Cambridge University Press, 2006.

195

Paper VIII. Feasibility of Motion Primitives for Choreographed Flight

[4] E. Frazzoli, M. A. Dahleh, and E. Feron, “Maneuver-based motion planning for nonlinear

systems with symmetries,” IEEE Transactions on Robotics, vol. 21, no. 6, pp. 1077–1091,

2005.

[5] E. Frazzoli, “Maneuver-based motion planning and coordination for multiple UAVs,” in

Proceedings of the Digital Avionics Systems Conference, vol. 2, 2002, pp. 8D3–1 – 8D3–

12.

[6] D. Kulic, D. Lee, C. Ott, and Y. Nakamura, “Incremental learning of full body

motion primitives for humanoid robots,” in Proceedings of the IEEE-RAS International

Conference on Humanoid Robots, 2008, pp. 326–332.

[7] S. Calinon, F. Guenter, and A. Billard, “On learning, representing, and generalizing a

task in a humanoid robot.” IEEE Transactions on Systems, Man, and Cybernetics, Part B:

Cybernetics, vol. 37, no. 2, pp. 286–98, 2007.

[8] B. Hemes, D. Fehr, and N. Papanikolopoulos, “Motion primitives for a tumbling robot,”

Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems

(IROS), pp. 1471–1476, 2008.

[9] R. Cutler and L. Davis, “Robust real-time periodic motion detection, analysis, and

applications,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 22,

no. 8, pp. 781–796, 2000.

[10] L. Kovar and M. Gleicher, “Automated extraction and parameterization of motions in

large data sets,” in Proceedings of the International Conference on Computer Graphics

and Interactive Techniques (SIGRAPH), 2004, pp. 559–568.

[11] R. Groten, J. Hoelldampf, M. Di Luca, M. Ernst, and M. Buss, “Motion Primitives of

Dancing,” Journal of Neuroscience, pp. 838–843, 2008.

[12] T. Shiratori, A. Nakazawa, and K. Ikeuchi, “Detecting dance motion structure through

music analysis,” in Proceedings of the IEEE International Conference on Automatic Face

and Gesture Recognition, 2004, pp. 857–862.

[13] S. Nakaoka, A. Nakazawa, K. Yokoi, and K. Ikeuchi, “Leg motion primitives for a dancing

humanoid robot,” in Proceedings of the IEEE International Conference on Robotics and

Automation (ICRA), 2004, pp. 610–615.

[14] T. Shiratori, A. Nakazawa, and K. Ikeuchi, “Rhythmic motion analysis using motion

capture and musical information,” in Proceedings of IEEE International Conference on

Multisensor Fusion and Integration for Intelligent Systems (MFI), 2003, pp. 89–94.

[15] A. Schöllig, F. Augugliaro, and R. D’Andrea, “A platform for dance performances with

multiple quadrocopters,” in Proceedings of the IEEE/RSJ International Conference on

Intelligent Robots and Systems (IROS) - Workshop on Robots and Musical Expressions,

2010, pp. 1–8.

[16] P. Sofras, Dance composition basics: capturing the choreographer’s craft. Human

Kinetics, 2006.

196

References

[17] S. C. Minton, Choreography: a basic approach using improvisation, 3rd ed. Human

Kinetics, 2007.

[18] G. P. Tolstov and R. A. Silverman, Fourier series. Courier Dover Publications, 1962.

[19] N. Michael, D. Mellinger, Q. Lindsey, and V. Kumar, “The GRASP multiple micro UAV

testbed,” IEEE Robotics and Automation Magazine, 2010.

[20] S. Lupashin, A. Schöllig, M. Sherback, and R. D’Andrea, “A simple learning strategy

for high-speed quadrocopter multi-flips,” in Proceedings of the IEEE International

Conference on Robotics and Automation (ICRA), 2010, pp. 1642–1648.

[21] M. Hehn and R. D’Andrea, “A flying inverted pendulum,” in Proceedings of the IEEE

International Conference on Robotics and Automation (ICRA), 2011, to appear.

[22] A. Schöllig, F. Augugliaro, S. Lupashin, and R. D’Andrea, “Synchronizing the motion

of a quadrocopter to music,” in Proceedings of the IEEE International Conference on

Robotics and Automation (ICRA), 2010, pp. 3355–3360.

197

Curriculum Vitae

Angela P. Schoellig

born July 17th, 1983 in Miltenberg, Germany

2008 – 2012 ETH Zurich, Switzerland

Doctoral studies in the group of Prof. Raffaello D’Andrea at the Institute

for Dynamic Systems and Control, Department of Mechanical and Process

Engineering; graduated with Dr. sc. ETH Zurich.

2002 – 2008 University of Stuttgart, Germany

Undergraduate and graduate studies; graduated with Dipl.-Ing. (equivalent

to M.Sc.) in Engineering Cybernetics.

2007 EADS Astrium GmbH (European Aeronautic Defense and Space Company),

Friedrichshafen, Germany

Internship in the group “Future Programmes & Missions, Science Missions

& Systems.”

2006 – 2007 Georgia Institute of Technology, Atlanta, USA

Graduate studies; graduated with M.Sc. in Engineering Science and Me-

chanics.

2002 Dürr Systems GmbH, Bietigheim-Bissingen, Germany

Internship in the group working on optimizing the use of robots for the serial

painting of car and airplane bodies.

1993 – 2002 Max-Born Gymnasium Backnang, Germany

High-school education; graduated with Abitur (high school diploma for ad-

mission to higher education).

199

	Abstract
	Zusammenfassung
	Acknowledgements
	Table of Contents
	Preface
	Introduction
	Contributions
	The Flying Machine Arena
	Future Directions
	References
	A. ITERATIVE LEARNING
	Paper I. Optimization-Based Iterative Learning for Precise Quadrocopter Trajectory Tracking
	Paper II. Iterative Learning of Feed-Forward Corrections for High-Performance Tracking
	Paper III. Limited Benefit of Joint Estimation in Multi-Agent Iterative Learning
	Paper IV. Sensitivity of Joint Estimation in Multi-Agent Iterative Learning Control
	B. RHYTHMIC FLIGHT PERFORMANCES
	Paper V. Synchronizing the Motion of a Quadrocopter to Music
	Paper VI. A Platform for Dance Performances with Multiple Quadrocopters
	Paper VII. Feed-Forward Parameter Identification for Precise Periodic Quadrocopter Motions
	Paper VIII. Feasibility of Motion Primitives for Choreographed Quadrocopter Flight
	Curriculum Vitae

