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Abstract

The left-corner transformation (Rosenkrantz
and Lewis, 1970) is used to remove left recur-
sion from context-free grammars, which is an
important step towards making the grammar
parsable top-down with simple techniques.
This paper generalizes prior left-corner transfor-
mations to support semiring-weighted produc-
tion rules and to provide finer-grained control
over which left corners may be moved. Our
generalized left-corner transformation (GLCT)
arose from unifying the left-corner transforma-
tion and speculation transformation (Eisner and
Blatz, 2007), originally for logic programming.
Our new transformation and speculation define
equivalent weighted languages. Yet, their
derivation trees are structurally different in an
important way: GLCT replaces left recursion
with right recursion, and speculation does
not. We also provide several technical results
regarding the formal relationships between the
outputs of GLCT, speculation, and the original
grammar. Lastly, we empirically investigate
the efficiency of GLCT for left-recursion
elimination from grammars of nine languages.

https://github.com/rycolab/
left-corner

1 Introduction

Grammar transformations are functions that map
one context-free grammar to another. The formal
language theory literature contains numerous ex-
amples of such transformations, including nullary
rule removal, rule binarization, and conversion to
normal forms, e.g., those of Chomsky (1959) and
Greibach (1965). In this work, we study and gener-
alize the left-corner transformation (Rosenkrantz
and Lewis, 1970). Qualitatively, this transforma-
tion maps the derivation trees of an original gram-
mar into isomorphic trees in the transformed gram-
mar. The trees of the transformed grammar will
be such that the base subtree of a left-recursive
chain (the left corner) is hoisted up in a derivation
tree while replacing the left-recursive path to the
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ÑP

My sister

S/NP

’s S/PossP

NN

diploma

S/NP

VP

arrived

S/S

ε

Figure 1: Left: An example derivation containing left-
recursive rules. Right: The corresponding derivation
after our left-corner transformation. Observe that (i) the
lower NP subtree has been hoisted up the tree, (ii) the
left recursion from NP to NP has been replaced with
right recursion from S/NP to S/NP.

left corner with a right-recursive path to an empty
constituent. Fig. 1 provides an example.

A common use case of the left-corner transfor-
mation is to remove left recursion from a grammar,
which is necessary for converting the grammar to
Greibach normal form and for several top-down
parsing algorithms (Aho and Ullman, 1972). As
an additional effect, it reduces the stack depth of
top-down parsing (Johnson, 1998), which makes
it an interesting method for psycholinguistic appli-
cations (Roark et al., 2009; Charniak, 2010). The
closely related left-corner parsing strategy has been
argued to be more cognitively plausible than alter-
natives due to its constant memory load across both
left- and right-branching structures and low degree
of local ambiguity for several languages (Johnson-
Laird, 1983; Abney and Johnson, 1991; Resnik,
1992); indeed, empirical evidence has shown that
certain left-corner parsing steps correlate with brain
activity (Brennan and Pylkkänen, 2017; Nelson
et al., 2017) and reading times (Oh et al., 2022).1

This paper uncovers an interesting connec-
tion between the left-corner transformation and

1Moreover, statistical left-corner parsers have proven them-
selves empirically effective for several grammar formalisms
(Roark and Johnson, 1999; Roark, 2001; Díaz et al., 2002;
Noji and Miyao, 2014; Noji et al., 2016; Shain et al., 2016;
Stanojević and Stabler, 2018; Kitaev and Klein, 2020).
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the speculation transformation (Eisner and Blatz,
2007).2 We show that speculation also hoists sub-
trees up the derivation tree, as in the left-corner
transformation. However, in contrast, it does not
remove left recursion. In uncovering the similarity
to speculation, we discover that speculation has
been formulated with more specificity than prior
left-corner transformations: it has parameters that
allow it to control which types of subtrees are per-
mitted to be hoisted and which paths they may
be hoisted along. We bring this flexibility to the
left-corner transformation with a novel generalized
left-corner transformation (GLCT).3 It turns out
that the latter functionality is provided by the selec-
tive left-corner transformation (Johnson and Roark,
2000); however, the former is new.

We provide several new technical results:4

(i) We prove that GLCT preserves the weighted lan-
guages and that an isomorphism between derivation
trees exists (Theorem 1). (ii) We provide explicit
methods for mapping back and forth between the
derivation trees (Algs. 1 and 2). (iii) We prove that
the set of derivation trees for speculation and GLCT
are isomorphic (Theorem 2). (iv) We prove that
our GLCT-based left-recursion elimination strategy
removes left recursion (Theorem 4). Additionally,
we empirically investigate the efficiency of GLCT
for left-recursion elimination from grammars of
nine different languages in §4.1.

2 Preliminaries

This section provides the necessary background
on the concepts pertaining to semiring-weighted
context-free grammars that this paper requires.

Definition 1. A semiring is a tuple ⟨W,⊕,⊗, 0, 1⟩
where W is a set and the following hold:
• ⊕ is an associative and commutative binary op-

erator with an identity element 0 ∈W
• ⊗ is an associative binary operator with an iden-

tity element 1 ∈W
• Distributivity: ∀a, b, c ∈W, (a⊕ b)⊗ c=(a⊗
c)⊕ (b⊗ c) and c⊗ (a⊕ b)=(c⊗ a)⊕ (c⊗ b)

• Annihilation: ∀a ∈W, a⊗ 0=0⊗ a=0
2Speculation was originally a transformation for weighted

logic programs, which we have adapted to CFGs.
3We note that generalized left-corner parsers also exist

(Demers, 1977; Nederhof, 1993). However, they are general-
ized differently to our transformation.

4These technical results fill some important gaps in the
literature, as prior work (Rosenkrantz and Lewis, 1970; John-
son, 1998; Johnson and Roark, 2000; Moore, 2000; Eisner and
Blatz, 2007) did not provide formal proofs.

The semiring is commutative if ⊗ is commutative.

We highlight a few commutative semirings and
their use cases: • boolean ⟨{⊥,⊤},∨,∧,⊥,⊤⟩:
string membership in a language, • nonnegative
real ⟨R≥0∪{∞},+, ·, 0, 1⟩: the total probability
of a string, • viterbi ⟨[0, 1],max, ·, 1, 0⟩: the weight
of the most likely derivation of a string. For fur-
ther reading on semirings in NLP, we recommend
Goodman (1999) and Huang (2008).

Our work studies weighted context-free gram-
mars (WCFGs), which define a tractable family of
weighted languages—called weighted context-free
languages—that is frequently used in NLP applica-
tions (see, e.g., Jurafsky and Martin, 2020).

Definition 2. A weighted context-free grammar is
a tuple G=⟨N ,V,S,R⟩ where

• N is a set of nonterminal symbols
• V is a set of terminal symbols, V ∩ N = ∅
• S ∈ N is the start symbol
• R is a bag (multiset) of weighted production

rules. Each rule r ∈ R is of the form X
w−→ α

where X ∈ N , α ∈ (V ∪ N )∗, and w ∈W. We
assume that W is commutative semiring.

We will use the following notational conventions:
• X,Y,Z ∈ N for nonterminals • a, b, c ∈ V for
terminals • x,y, z ∈ V∗ for a sequence of terminals
• α, β, γ ∈ (V∪N ) for a terminal or nonterminal
symbol • α,β,γ ∈ (V ∪ N )∗ for a sequence of
nonterminals or terminals • G=⟨N ,V,S,R⟩ and
G′= ⟨N ′,V ′,S ′,R′⟩ for WCFGs. We write w(r)
to access the weight of a rule r.

When describing a grammar and its rules, we
may use the following terms: The size of a gram-
mar is

∑
(X−→α)∈R(1+ |α|). The arity of a rule

X −→ α is equal to |α|; thus, a rule is nullary if
|α| = 0, unary if |α| = 1, and so on. For tech-
nical reasons, it is often convenient to eliminate
nullary rules from the grammar.5

A derivation is a rooted, (N ∪ V)-labeled, or-
dered tree where each internal node must connect
to its children by a production rule.6 To access the
root label of a derivation δ , we write ℓ(δ). The
set of all derivations of G is the smallest set D

5Opedal et al. (2023, §F) provides an efficient method to
remove nullary rules from semiring-weighted CFGs, which
we make use of in our experiments (§4.1).

6Note a derivation may be built by a rule with an empty
right-hand side; thus, the leaves may be elements of N . When
rendering such a derivation, childlessness is marked with ε.
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satisfying

D = V ∪ (1)



X

α1
··· αK

∣∣∣∣∣∣∣∣∣

(X→ α1 ··· αK) ∈ R,
α1 ∈D, ... , αK ∈D





The yield σ(δ) ∈ V∗ of a derivation δ is

• if δ ∈ V : σ(δ) def
= ℓ(δ) = a (2)

• else: σ




X

α1
··· αK




def
=σ

(
α1

)
◦ ··· ◦ σ

(
αK

)

where ◦ denotes concatenation.The weight ω(δ) ∈
W of a derivation δ is

• if δ ∈ V : ω(δ)
def
= 1 (3)

• else: ω




X

α1
··· αK




def
=
w(X→ α1 ··· αK)⊗
ω

(
α1

)
⊗···⊗ω

(
αK

)

The weighted language of α ∈ (V ∪ N ) is a func-
tion Gα : V∗ →W defined as follows:

Gα(x)
def
=

⊕

δ∈Dα(x)

ω(δ) (4)

where Dα
def
= {δ ∈ D : ℓ(δ) = α} denotes the sub-

set of D containing trees labeled α, and Dα(x)
def
=

{δ ∈ Dα : σ(δ) = x} denotes those with yield x.
In words, the value of a string x ∈ V∗ in the
weighted language Gα is the ⊕-sum of the weights
of all trees in Dα with x as its yield. The weighted
language of the grammar G is G(x)

def
= GS(x).

Given a set of symbols X , we write DX as short-
hand for

⋃
α∈X Dα. Lastly, let JδK denote the

weighted language generated by the tree δ .7

We define the following operations on weighted
languages G and G′, for x ∈ V ∪ V ′:
• Union: [G⊕G′] (x) def

=G(x)⊕G′(x)

• Concatenation: [G ◦G′] (x) def
=
⊕

y◦z=x

G(y) ◦G′(z)

Note that these operations form a (noncommuta-
tive) semiring over weighted languages where 0 is
the language that assigns weight zero to all strings

7Formally, JδK (x) def
= ω(δ) if x=σ(δ) else 0.

and 1 is the language that assigns one to the empty
string and zero to other strings.

The weighted language of G may also be ex-
pressed as a certain solution8 to the following sys-
tem of equations:

Ga = 1a ∀a ∈ V (5a)

GX =
⊕

(X
w−→β1 ···βK)∈R

w ◦Gβ1 ◦ ··· ◦GβK
∀X ∈ N (5b)

where 1a is the weighted language that assigns 1 to
the string a and 0 to other strings.

We say that α is useless if there does not exist
a derivation δ ∈ DS that has a subderivation δ′

with ℓ
(
δ′
)
=α. We define trimming TRIM(G) as

removing each useless nonterminal and any rule
in which they participate. It is easy to see that
trimming does not change the weighted language
of the grammar because no useless nonterminals
participate in a derivation rooted at S. We can
trim useless rules in linear time using well-known
algorithms (Hopcroft and Ullman, 1979).

We say that grammars G and G′ are equal
(G = G′) if they have the same tuple represen-
tation after trimming. We say they are equiva-
lent (G ≡ G′) if they define the same weighted
language.9 We say that they are X -bijectively
equivalent (G ≡X G′) if a structure-preserving
bijection of type ϕ : DX → D′

X exists. The map-
ping ϕ is structure-preserving if (∀δ ∈ DX ) it is
(i) label-preserving (ℓ(δ) = ℓ(ϕ(δ))), (ii) yield-
preserving (σ(δ) = σ(ϕ(δ))), and (iii) weight-
preserving (ω(δ)=ω(ϕ(δ))). Suppose G ≡X G′,
S ∈ X and S=S ′, then G≡G′, but not conversely.
A benefit of this stronger notion of equivalence is
that derivations in G and G′ are interconvertible:
we can parse in G and convert to a parse in G′ and
vice versa, assuming S=S ′ and S ∈ X .10

3 Transformations

This section specifies our novel generalized left-
corner transformation, its correctness guarantees,

8Note that the system of equations does not necessarily
have a unique solution. In the case of an ω-continuous semir-
ing, (4) coincides with the smallest solution to (5) under the
natural ordering (Droste and Kuich, 2009).

9I.e., (G≡G′) ⇐⇒ ∀x ∈ (V∪V ′)∗ : GS(x) = G′
S′(x).

10Under these conditions, our X -bijective equivalence no-
tion becomes a weighted extension of what Gray and Harrison
(1969) call complete covers and Nijholt (1980) calls proper
covers. However, their definitions assume traditional string-
rewriting derivations instead of tree-structured derivations.
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and its connections to prior left-corner transforma-
tions. We also describe the speculation transfor-
mation (Eisner and Blatz, 2007) and discuss the
connections between the speculation transforma-
tion and our generalized left-corner transformation.

3.1 Generalized Left-Corner Transformation
This section introduces the generalized left-corner
transformation (GLCT).11 This transformation ex-
tends prior left-corner transformations by providing
additional parameters that control which subtrees
can be hoisted.

Definition 3. The generalized left-corner transfor-
mation GLCT(G,R, C) takes as input
• a grammar G=⟨N ,V,S,R⟩
• a subset of (non-nullary) rules R ⊆ R (called

left-corner recognition rules)
• a subset of symbols C ⊆ (V ∪ N ) (called left-

corner recognition symbols)
and outputs a grammar G′=⟨N ′,V ′,S ′,R′⟩ with
• a superset of nonterminals (N ′ ⊇ N )12

• the same set of terminals (V ′=V)
• the same start symbol (S ′=S)
• the weighted production rules (R′):

X
1−→ X̃ : X ∈ N \C (6a)

X
1−→ α̃ X/α : X ∈ N , α ∈ C (6b)

X/X
1−→ ε : X ∈ V ∪ N (6c)

Y/α
w−→ β Y/X : X

w−→ αβ ∈ R,Y ∈ N (6d)

X̃
w−→ α : X

w−→ α ∈ R\R (6e)

X̃
w−→ α̃β : X

w−→ αβ ∈ R, α /∈ C (6f)

The transformation creates two kinds of new non-
terminals using α̃ and X/α.13

In Def. 3, we see that GLCT introduces new non-
terminals of two varieties: slashed nonterminals
(denoted Y/α) and frozen14 nonterminals (denoted

11A generalized right-corner transformation can be defined
analogously—applications of such a transformation are given
in Schuler et al. (2010) and Amini and Cotterell (2022).

12N ′=N ∪ {X̃ | X ∈ N} ∪ {α/β | α, β ∈ (N ∪ V)}
13This notation works as follows: we associate a unique

identifier id with the transformation instance. Then, α̃ def
=

⟨id , α⟩ if α ∈ N else α and X/α
def
= ⟨id ,X, α⟩. This ensures

that the symbols produced cannot conflict with those on N
(i.e., ∀α ∈ N ∪ V , X ∈ N : α̃,X/α /∈ N ).

14Our notion of frozen nonterminals is borrowed directly
from the speculation transformation (Eisner and Blatz, 2007),
where they are called other.

X̃). The frozen and slashed nonterminals are each
defined recursively.
• Slashed nonterminals are built by a base case (6c)

and a recursive case (6d).
• Frozen nonterminals are built by a base case (6e)

and a recursive case (6f).
We see in (6a) and (6b) that GLCT replaces the
rules defining the original nonterminals (N ) with
rules that use GLCT’s new nonterminals; the only
way to build a nonterminal from N is using one of
these two rules. We refer to these as recovery rules
because they recover the original symbols from the
new frozen and slashed symbols. We also see that
(6d) is responsible for converting left recursion into
right recursion because the slashed nonterminal on
its right-hand side is moved to the right of β. We
will return to this when we discuss speculation in
§3.2. Fig. 2 illustrates how GLCT transforms trees.

Left corner and spine. To better understand the
parameters C and R, we define the spine and left
corner of a derivation δ ∈ D of the original gram-
mar. Suppose δ has the following general form:

γ(K)

γ(K−1)

γ(2)

γ(1) β(1)

β(K−2)

β(K−1)

···

Then, we define the spine ζ(δ) as
the maximum-length sequence of rules
(γ(K) → γ(K−1) β(K−1)) ··· (γ(2) → γ(1) β(1))
along the left edges of δ where each rule is in
R. The left corner λ(δ) of a tree δ ∈ D is the
bottommost subtree δ1 of δ with ℓ(δ1) ∈ C that
is reachable starting at the root ℓ(δ) along the left
edges of δ where each edge comes from a rule in
R. If no such subtree exists, we say that δ has no
left corner and write λ(δ)=⊥. We write δ/λ(δ)
to denote the δ with λ(δ) replaced by the empty
subtree; we define δ/⊥ def

= δ . Lastly, we define
D/α

def
= {δ/λ(δ) | δ ∈ D, ℓ(λ(δ)) = α} where

D is a set of derivations and α ∈ N ∪ V ∪ {⊥}.
To illustrate, let δ be the derivation on the left in

Fig. 1. The right-hand side derivation results from
applying GLCT with C = {NP} and R= {S −→
NPVP,NP → PossPNN,PossP → NP ’s}.
The spine of δ , then, is the sequence of rules inR
(in the same order), and its left corner is the lower
NP-subtree. Note how the left corner is the subtree

13396



hoisted by the transformation.

Interpretation. The symbol X/α represents the
weighted language of X where we have replaced its
left corner subtrees labeled α (if one exists) with ε.
We can see that the recovery rule (6b) uses these
slashed nonterminals to reconstruct X by each of
its left-corner types (found in C). We also have a
recovery rule (6a) that uses a frozen nonterminal
X̃, which represents the other ways to build X (i.e.,
those that do not have a left corner in C). Thus, the
weighted language of X decomposes as a certain
sum of slashed nonterminals and its frozen version
(formalized below).

Proposition 1 (Decomposition). Suppose G′ =
GLCT(G,R, C). Then, for any X ∈ N :

GX = G′
X̃
⊕
⊕

α∈C
G′

α̃ ◦G′
X/α (7)

See Appendix A for proof. Next, we describe the
weighted languages of the slashed and frozen non-
terminals in relation to the derivations in the orig-
inal grammar. Proposition 2 establishes that the
weighted language of α̃ is the total weight of α
derivations without a left corner, and X/α is the to-
tal weight of all X derivations with an α left corner
that has been replaced by ε.

Proposition 2 (Weighted language relationship).
Suppose G′=GLCT(G, C,R). Then, for any X ∈
N and α ∈ N ∪ V:

G′
α̃ =

⊕

δ∈Dα/⊥
JδK and G′

X/α =
⊕

δ∈DX/α

JδK

See Appendix B for proof.

Special cases. We now discuss how our trans-
formation relates to prior left-corner transforma-
tions. The basic left-corner transformation
(Rosenkrantz and Lewis, 1970; Johnson, 1998)
is LCT(G) = GLCT(G,R,N ∪ V), i.e., we set
R = R and C = N ∪ V .15 This forces the left-
most leaf symbol of the tree to be the left cor-
ner, which is either a terminal or the left-hand
side of a nullary rule. The selective left-corner
transformation (SLCT; Johnson and Roark, 2000)
SLCT(G,R)= GLCT(G,R,N ∪ V) supports left-
corner recognition rules R, but it does not allow

15That is, the output grammars are equal post trimming.
The only useful rules are instances of (6b), (6c), and (6d).
Furthermore, the (6b) rules will be useless unless α̃ is a termi-
nal. With these observations, verifying that GLCT matches
Johnson’s (1998) presentation of LCT is straightforward.

control over the left-corner recognition symbols,
as C is required to be N ∪ V .16 Thus, SLCT takes
any subtree at the bottom of the spine to be its left
corner. Frozen nonterminals enable us to restrict
the left corners to those labeled C.

Formal guarantees. We now discuss the formal
guarantees related to our transformation in the form
of an equivalence theorem (Theorem 1) and an
asymptotic bound on the number of rules in the
output grammar (Proposition 3). Theorem 1 es-
tablishes that the GLCT’s output grammar is N -
bijectively equivalent to its input grammar.

Theorem 1 (N -bijective equivalence). Sup-
pose G = ⟨N ,V,S,R⟩ is a WCFG and
G′ = GLCT(G,R, C) where R ⊆ R and
C ⊆ V ∪ N . Then, G ≡N G′.

We prove this theorem in Appendix C. To our
knowledge, this is the only formal correctness
proof for any left-corner transformation.17 In ad-
dition, Appendix C provides pseudocode for the
derivation mapping ϕ : DN → D′

N and its inverse
ϕ−1, in Algs. 1 and 2, respectively.

We can bound the number of rules in the output
grammar as a function of the input grammar and
the transformation’s parameters C andR.

Proposition 3. The number of rules in G′ =
GLCT(G,R, C) is no more than

|R|+ |N | (1 + |C|+ |R|) + |N \ C|+ |V|

Proof. We bound the maximum number of rules in
each rule category of Def. 3:

|(6a)| ≤ |N \ C| |(6b)| ≤ |N | |C|
|(6c)| ≤ |N |+ |V| |(6d)| ≤ |R| |N |
|(6e)| ≤ |R\R| |(6f)| ≤ |R|

Each of these bounds can be derived straightfor-
wardly from Def. 3. Summing them, followed by
algebraic simplification, proves Proposition 3. ■

The bound in Proposition 3 is often loose in prac-
tice, as many of the rules created by the transfor-
mation are useless. In §4, we describe how to use
GLCT to eliminate left recursion, and we investi-
gate the growth of the transformed grammar for
nine natural language grammars in §4.1.

16More precisely, we are using the SLCT with top-down
factoring (Johnson and Roark, 2000, §2.5).

17We note that Aho and Ullman (1972) prove correctness for
an alternative method to remove left recursion, which is used
as a first step when converting a grammar to Greibach normal
form. This method, however, might lead to an exponential
increase in grammar size (Moore, 2000).
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(a) Original derivation

γ(K)

γ(K−1)

γ(2)

γ(1) β(1)

β(K−2)

β(K−1)

···

(b) GLCT

γ(K)

γ̃(k̂)

γ̃(k̂−1)

γ̃(2)

γ̃(1)

β(0)

β(1)

β(k̂−2)

β(k̂−1)

γ(K)/γ(k̂)

β(k̂) γ(K)/γ(k̂+1)

β(k̂+1)

γ(K)/γ(K−2)

β(K−2) γ(K)/γ(K−1)

β(K−1) γ(K)/γ(K)

ε

······

(c) Frozen recovery

γ(K)

γ̃(K)

γ̃(K−1)

γ̃(2)

γ̃(1)

β(0)

β(1)

β(K−2)

β(K−1)

···

(d) Speculation

γ(K)

γ̃(k̂)

γ̃(k̂−1)

γ̃(2)

γ̃(1)

β(0)

β(1)

β(k̂−2)

β(k̂−1)

γ(K)/γ(k̂)

γ(K−1)/γ(k̂)

γ(k̂+2)/γ(k̂)

γ(k̂+1)/γ(k̂)

γ(k̂)/γ(k̂)

ε

β(k̂)

β(k̂+1)

β(K−2)

β(K−1)

···
···

Figure 2: This figure is a schematic characterization of the one-to-one correspondence of derivations of the original
grammar, speculation, and GLCT transformations. The diagram assumes that the rules exposed in the derivation
δ form its spine ζ(δ). However, (b) and (d) assume that γ(k̂) ∈ C is the left corner λ(δ), and (c) assumes that
λ(δ)=⊥. Note that the rules in the spine that are below the left corner are frozen. When the left corner is ⊥ (i.e.,
case (c)), the spines of the GLCT and speculation trees are transformed in the same manner. We note that in each
transformation case ((b), (c), or (d)), each β-labeled subtree is recursively transformed, and its root label is preserved.
We see that both speculation (d) and GLCT (b) hoist the same left-corner subtree (i.e., the γ(k̂) subtree in the
diagram) to attach at the top of the new derivation. However, the left recursion is transformed into a right-recursive
tree in GLCT. Lastly, we observe that the slashed nonterminals in GLCT have a common numerator (γ(K)), whereas,
in speculation, they have a common denominator (γ(k̂)).

Optimizations. We briefly describe two improve-
ments to our method’s practical efficiency.

Reducing the number of useless rules. For
efficiency, we may adapt two filtering strategies
from prior work that aim to reduce the number of
useless rules created by the transformation.18 We
provide equations for how to modifyR′ in GLCT
to account for these filters in Appendix G.

Fast nullary rule elimination. Nullary rule
elimination is often required as a preprocessing step
in parsing applications (Aho and Ullman, 1972).
When eliminating the nullary rules introduced by

18These strategies are provided in our implementation.

our transformations (i.e., the base case for slashed
rules), there turns out to be a special linear structure
that can be exploited for efficiency. We describe
the details of this speedup in Appendix H.

3.2 Speculation Transformation

In this section, we adapt Eisner and Blatz’s (2007;
§6.5) speculation transformation from weighted
logic programming to WCFGs.19 We will provide

19The translation was direct and required essentially no in-
vention on our behalf. However, we have made one aesthetic
change to their transformations that we wish to highlight: the
closest WCFG interpretation of Eisner and Blatz’s (2007)
speculation transformation restricts the slashed nonterminals
beyond (9c) and (9d); their version constrains the denomi-
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a new interpretation for speculation that does not
appear in the literature.20 In particular, we observe
that speculation, like the left-corner transformation,
is a subtree hoisting transformation.

Definition 4. The speculation transformation
SPEC(G,R, C) takes as input
• a grammar G=⟨N ,V,S,R⟩
• a subset of (non-nullary) rules R ⊆ R (called

the left-corner recognition rules)
• a subset of symbols C ⊆ (V ∪ N ) (called the

left-corner recognition symbols)
and outputs a grammar G′=⟨N ′,V ′,S ′,R′⟩ with
• a superset of nonterminals (N ′ ⊇ N )21

• the same set of terminals (V ′=V)
• the same start symbol (S ′=S)
• the weighted production rules (R′):

X
1−→ X̃ : X ∈ N \ C (9a)

X
1−→ α̃X/α : X ∈ N , α ∈ C (9b)

X/X
1−→ ε : X ∈ V ∪ N (9c)

X/Y
w−→ α/Yβ : X

w−→ αβ ∈ R,Y∈V ∪ N (9d)

X̃
w−→ α : X

w−→ α ∈ R\R (9e)

X̃
w−→ α̃β : X

w−→ αβ ∈ R, α /∈ C (9f)

Upon inspection, we see that the only difference
between speculation and GLCT is how they define
their slashed nonterminals, as the other rules are
identical. The slashed nonterminals have the same
base case (6c) and (9c). However, their recursive
cases (6d) and (9d) differ in an intriguing way:

Y/α
w−→ β Y/X : X

w−→ αβ ∈ R,Y ∈ N (6d)

X/Y
w−→ α/Yβ : X

w−→ αβ ∈ R,Y ∈ V ∪ N (9d)

This difference is why GLCT can eliminate left
recursion and speculation cannot: GLCT’s slashed
nonterminal appears to the right of β, and specu-
lation’s appears on the left. For GLCT, Y is passed
along the numerator of the slashed nonterminal,

nator to be ∈ C. This difference disappears after trimming
because useful slashed nonterminals must be consumed by
the recovery rule (9b), which imposes the C constraint one
level higher. We prefer our version as it enables Theorem 2,
which shows that GLCT and speculation produce X -bijective
equivalent grammars for all nonterminals. The pruned version
would result in a weaker theorem with X being a subset of the
nonterminals with a nuanced specification.

20Vieira’s (2023) dissertation, which appeared contempora-
neously with this paper, adopts our same interpretation.

21See footnote 12.

whereas, for speculation, Y is passed along the
denominator. Theorem 2 (below) establishes that
speculation and GLCT are bijectively equivalent
for their complete set of nonterminals.22

Theorem 2 (Speculation–GLCT bijective equiv-
alence). For any grammar G, and choice of C
and R, SPEC(G,R, C) and GLCT(G,R, C) are
X -bijectively equivalent where X is the complete
set of symbols (i.e., original, frozen, and slashed).

See Appendix D for the proof sketch. We also pro-
vide the first proof of equivalence for speculation.

Theorem 3. For any grammar G= ⟨N ,V,S,R⟩,
R ⊆ R, and C ⊆ V ∪ N : SPEC(G,R, C) ≡N G.

Proof. The theorem follows directly from Theo-
rem 1, Theorem 2, and the compositionality of
bijective functions. ■

4 Left-Recursion Elimination

Motivated by the desire for efficient top-down pars-
ing for which left-recursion poses challenges (§1),
we describe how GLCT may be used to transform a
possibly left-recursive grammar G into a bijectively
equivalent grammar G′ without left-recursion.23

The bijective equivalence (Theorem 1) ensures
that we can apply an inverse transformation to the
derivation tree of the transformed grammar into
its corresponding derivation tree in the original
grammar. This section provides an efficient and
(provably correct) recipe for left-recursion elimina-
tion using GLCT. We experiment with this recipe
on natural language grammars in §4.1.

Our left-recursion elimination recipe is based on
a single application of GLCT, which appropriately
chooses parameters C and R. We describe how
to determine these parameters by analyzing the
structure of the rules in G.

We define the left-recursion depth of a deriva-
tion tree d(δ) as the length of the path from the root
to the leftmost leaf node. The left-recursion depth
of a grammar is d(G)

def
= maxδ∈D d(δ). We say

that G is left-recursive iff d(G) is unbounded. To
analyze whether G is left-recursive, we can analyze
its left-recursion graph, which accurately charac-
terizes the left-recursive paths from the root of a
derivation to its leftmost leaf in the set of deriva-
tions D. The left-recursion graph of the grammar

22We note that the set of useful slashed and frozen nonter-
minals typically differs between GLCT and speculation.

23Note: when we say left recursion, we often mean un-
bounded left recursion.
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G is a labeled directed graph G = ⟨N,E⟩ with
nodes N=V ∪ N and edges E={(X r−→ α) | r ∈
R, r = (X −→ α ···)}. It should be clear that the
G is left-recursive iff G has a cyclic subgraph. We
classify a rule r as left-recursive if the edge labeled
r is an edge in any cyclic subgraph of G. To deter-
mine the set of left-recursive rules, we identify the
strongly connected components (SCCs) of G (e.g.,
using Tarjan’s (1972) algorithm). The SCC analy-
sis returns a function π that maps each ofG’s nodes
to the identity of its SCC. Then, a rule r is left-
recursive iff its corresponding edge α r−→ β satis-
fies π(α)=π(β).24 To ensure that left recursion is
eliminated,R must include all left-recursive rules.

We use the following set to provide a sufficient
condition on C to eliminate left recursion:

bottoms(R) def
= (10)

(V ∪ {X | (X r−→ α) ∈ E, r ∈ R \ R})
∩ {α | (X −→ α ··· ) ∈ R})

This set captures the set of nodes that may appear
at the bottom of a spine (for the givenR). This is
because the spine is defined as the longest sequence
of rules inR along the left of a derivation; thus, a
spine can end in one of two ways (1) it reaches a
terminal, or (2) it encounters a rule outside of R.
Thus, the bottom elements of the spine are the set
of terminals, and the set of nodes with at least one
(R \R)-labeled outgoing edge—which we refine
to nodes that might appear in the spine (i.e., those
in the leftmost position of the rules inR).

With these definitions in place, we can provide
sufficient conditions on the GLCT parameter sets
that will remove left recursion:
Theorem 4 (Left-recursion elimination). Suppose
that G′=TRIM(GLCT(G,R, C)) where
• G has no unary rules
• R ⊇ the left-recursive rules in G

• C ⊇ bottoms(R)
Then, G′ is not left-recursive. Moreover, d(G′) ≤
2 ·C where C is the number of SCCs in the left-
recursion graph for G.
See Appendix E for the proof.

Example. In Fig. 1, we made use of Theorem 4 to
remove the left-recursion from NP to NP, applying
GLCT with C = {NP} and R = {S −→ NPVP,
NP→ PossPNN,PossP→ NP ’s}.25

24Note that nullary rules cannot be left-recursive.
25Note that omitting S → NPVP from R would have also

eliminated left recursion in this example, but we would have

Our recipe. We takeR as the set of left-recursive
rules in G and C as bottoms(R).26 This minimizes
the upper bound given by Proposition 3 subject to
the constraints given in Theorem 4.

Special cases. Theorem 4 implies that the basic
left-corner transformation and the selective left-
corner transformations (withR⊇ the left-recursive
rules) will eliminate left recursion. Experimentally,
we found that our recipe produces a slightly smaller
grammar than the selective option (see §4.1).

Unary rules. The reason Theorem 4 requires that
G is unary-free is that the left-corner transforma-
tion cannot remove unary cycles of this type.27 To
see why, note that β = ε for a unary rule (6d);
thus, the transformed rule will have a slashed non-
terminal in its leftmost position, so it may be left-
recursive. Fortunately, unary rule cycles can be
eliminated from WCFGs by standard preprocess-
ing methods (e.g., Stolcke (1995, §4.5) and Opedal
et al. (2023, §E)). However, we note that elimi-
nating such unary chain cycles does not produce
an N -bijectively equivalent grammar as infinitely
many derivations are mapped to a single one that
accounts for the total weight of all of them.

Nullary rules. We also note that the case where
the G may derive ε as its leftmost constituent also
poses a challenge for top-down parsers. For exam-
ple, that would be the case in Fig. 1 if PossP →
NP POS was replaced by PossP → X NP POS
and X → ε; this grammar is not left-recursive,
but the subgoal of recognizing an NP in top-down
parser will still, unfortunately, lead to infinite recur-
sion. Thus, a complete solution to transforming a
grammar into a top-down-parser-friendly grammar
should also treat these cases. To that end, we can
transform the original grammar into an equivalent
nullary-free version with standard methods (Opedal
et al., 2023, §F) before applying our GLCT-based
left-recursion elimination recipe. As with unary
rule elimination, nullary rule elimination does not
produce an N -bijectively equivalent grammar.

4.1 Experiments
In this section, we investigate how much the gram-
mar size grows in practice when our GLCT recipe
is used to eliminate left recursion. We compare our

obtained a different output tree in the figure.
26Our choice for R is consistent with the recommendation

for SLCT in Johnson and Roark (2000).
27Prior left-corner transformations (Johnson and Roark,

2000; Moore, 2000) are limited in the same manner.
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Language Method Raw +Trim −ε’s(size)

Basque SLCT 3,354,445 245,989 411,023
(73,173) GLCT 644,125 245,923 411,023

English SLCT 514,338 26,655 46,088
(21,272) GLCT 203,664 26,289 46,088

French SLCT 5,902,552 106,860 173,375
(105,896) GLCT 147,860 106,628 173,375

German SLCT 21,204,060 272,406 434,787
(100,346) GLCT 1,930,386 271,752 434,787

Hebrew SLCT 14,304,366 564,456 979,040
(84,648) GLCT 2,910,538 564,074 979,040

Hungarian SLCT 17,823,603 151,373 242,360
(134,461) GLCT 748,398 151,013 242,360

Korean SLCT 54,575,826 87,937 96,023
(59,557) GLCT 3,706,444 86,529 96,023

Polish SLCT 2,845,430 61,333 79,341
(41,957) GLCT 177,610 61,253 79,341

Swedish SLCT 20,483,899 1,894,346 3,551,917
(79,137) GLCT 6,896,791 1,871,789 3,551,917

Table 1: Results of applying GLCT and SLCT on the
ATIS and SPMRL grammars broken down by each of
the nine languages. We present the resulting size in
the raw output grammar (Raw), trimming (+Trim), and
binarization plus nullary removal (−ε’s).

results to SLCT with top-down factoring (§3.1) to
see whether the additional degree of freedom given
by C leads to any reduction in size. We apply both
transformations to nine grammars of different lan-
guages: Basque, English, French, German, Hebrew,
Hungarian, Korean, Polish, and Swedish. We use
the ATIS grammar (Dahl et al., 1994) as our En-
glish grammar.28 We derived the other grammars
from the SPMRL 2013/2014 shared tasks treebanks
(Seddah et al., 2013, 2014).29

Experimental setup. For GLCT, we set R and
C according to our recipe. For SLCT, we set R
according to Theorem 4’s conditions for removing
left-recursion. We compare the grammar size and
the number of rules of the raw output grammar
to those of the input grammar. However, the
raw output sizes can be reduced using useless
rule filters (discussed in §3.1 and Appendix G),

28We selected the (boolean-weighted) ATIS grammar be-
cause it was used in prior work (Moore, 2000). We note,
however, that—despite our best efforts—we were unable to
replicate Moore’s (2000) exact grammar size on it.

29Specifically, we load all trees from the SPMRL 5k training
dataset, delete the morphological annotations, collapse unary
chains like X → Y → Z → α into X → α, and create a
grammar from the remaining rules. The weights of the SPMRL
grammars are set using maximum-likelihood estimation. None
of the treebanks contained nullary rules.

so we additionally apply trimming to the output
grammars. When parsing, it is often practical to
first binarize the grammar and remove nullary rules,
so we perform those postprocessing steps as well.

As a sanity check, we verify that left recursion
is removed in all settings by checking that the left-
recursion graph of the output grammar is acyclic.
We present the results as evaluated on grammar size
in Table 1. Appendix F provides further results in
terms of the number of rules.

Discussion. Interestingly, the increase in size
compared to the input grammar varies a lot be-
tween languages. Previous work (Johnson and
Roark, 2000; Moore, 2000) only evaluated on En-
glish and thus appear to have underestimated the
blow-up caused by the left-corner transformation
when applied to natural language grammars. Com-
pare, for instance, the ratio between the trimmed
size and the original size in Table 1 of English (1.2)
to Basque (3.4), Hebrew (6.7), and Swedish (23.7).
By Proposition 3, the number of rules in the output
grammar scales with |R|, which by Theorem 4 is
set as the left-recursive rules.

The GLCT produces smaller grammars than the
SLCT for all languages before either of the post-
processing steps. This difference is (almost) elimi-
nated post-trimming, however, which is unsurpris-
ing given that SLCT is a special case of GLCT
(§3.1). The small difference in size after trimming
happens since two rules of the form X → X̃ X/X
(6b) and X/X → ε (6c) in SLCT are replaced by
one rule X → X̃ (6a) in GLCT. However, this
difference disappears after nullary removal.

5 Conclusion

This work generalized the left-corner transforma-
tion to operate not only on a subset of rules but also
on a subset of nonterminals. We achieve this by
adapting frozen nonterminals from the speculation
transformation. We exposed a tight connection
between generalized left-corner transformation and
speculation (Theorem 2). Finally, and importantly,
we proved the transformation’s correctness (The-
orem 1) and provided precise sufficient conditions
for when it eliminates left recursion (Theorem 4).

Limitations

Parsing runs in time proportional to the grammar
size. §4.1 shows that we obtain the same grammar
size after postprocessing from our method and the
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selective left-corner transformation, which gave us
no reason to provide an empirical comparison on
parsing runtime.

Moreover, it is thus of practical importance to
restrict the growth of the grammar constant. We
have discussed a theoretical bound for grammar
growth in Proposition 3, investigated it empirically
in §4.1, and provided further tricks to reduce it in
Appendix G. Orthogonally to the left-corner trans-
formation itself, it is possible to factor the grammar
so that the grammar size is minimally affected by
the transformation. Intuitively, reducing the num-
ber of left-recursive rules in R will also reduce
the number of rules that are required inR, which,
in turn, leads to fewer rules in the output gram-
mar. We did not present any such preprocessing
techniques here, but Moore (2000) provides a ref-
erence for two methods: left-factoring and non-
left-recursive grouping. Johnson and Roark (2000)
give a second factoring trick in addition to top-
down factoring (see footnote 16), which is similar
to Moore’s (2000) left-factoring. We also mention
that Vieira’s (2023) search-based technique for op-
timizing weighted logic programs could be directly
applied to grammars. In particular, the search over
sequences of define–unfold–fold transformations
can be used to find a smaller grammar that encodes
the same weighted language.

There appear to be connections between our no-
tion of slashed nonterminals and the left quotient
of formal languages that we did not explore in this
paper.30 For example, the simplest case of the left
quotient is the Brzozowski (1964) derivative. The
Brzozowski derivative of G with respect to a ∈ V
is equal to the weighted language of S/a in the out-
put grammar G′ produced by speculation or GLCT,
provided that the G is nullary-free, R = R, and
a ∈ C. We suspect that other interesting connec-
tions are worth formalizing and exploring further.

Finally, we note that we could extend our trans-
formation to deal with nullary rules directly rather
than eliminating them by preprocessing (as dis-
cussed in §4). The idea is to modify (6d) in GLCT
so that the slashed nonterminal on its right-hand
side is formed from the leftmost nonterminal that
derives something other than ε, rather than the left-
most symbol. For this extension to work out, we
require that the grammar is preprocessed such that

30The left quotient of a WCFG by a weighted regular lan-
guage can be represented as another WCFG using a modified
intersection construction (Bar-Hillel et al., 1961; Pasti et al.,
2023)—see Li et al. (2022) for details.

each nonterminal is replaced by two versions: one
that generates only ε, and one that generates any-
thing else. Preprocessing the grammar in this way
is also done in nullary rule elimination (see Opedal
et al. (2023, §F) for details).
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A Proof of Proposition 1 (Decomposition)

Proposition 1 (Decomposition). Suppose G′=GLCT(G,R, C). Then, for any X ∈ N :

GX = G′
X̃
⊕
⊕

α∈C
G′

α̃ ◦G′
X/α (7)

Proof.

GX = G′
X [by Theorem 1] (11)

=
⊕

(X
w−→β1 ···βK)∈R′

w ◦G′
β1
◦ ··· ◦G′

βK
[by Eq. 5] (12)

=
⊕

(X
1−→X̃)∈R′

1 ◦G′
X̃
⊕
⊕

(X
1−→α̃ X/α)∈R′

1 ◦G′
α̃ ◦G′

X/α [by Def. 3] (13)

= G′
X̃
⊕
⊕

α∈C
G′

α̃ ◦G′
X/α [by Def. 3 and algebra] (14)

Note that (13) specializes the sum to the only kinds of rules that can build X ∈ N : rules (6a) and (6b). ■
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B Proof of Proposition 2 (Weighted Language Relationship)

Lemma 1. ∀α ∈ N ∪ V , there exists a weight- and yield- preserving bijection between Dα/⊥ and D′
α̃.

Proof (Sketch). On the left, we have a prototypical derivation from Dα/⊥ with its spine exposed. Here
α = γ(K). By definition, the spine elements γ(1), ... γ(K) /∈ C. On the right, we have its corresponding
derivation in D′

α̃:
γ(K)

γ(K−1)

γ(2)

γ(1)

β(0)

β(1)

β(K−2)

β(K−1)

···

⇐⇒

γ̃(K)

γ̃(K−1)

γ̃(2)

γ̃(1)

ϕ



β(0)




ϕ



β(1)




ϕ



β(K−2)




ϕ



β(K−1)




···

where the function ϕ is Alg. 1. Call the function that maps the left tree to the right one ψ; all it does
is freeze the spine and then call ϕ on the β subtrees. Recall that Theorem 1 established that ϕ is a N -
structure-preserving bijection. Thus, it is straightforward to see that ψ is also weight- and yield-preserving
bijection, as its inverse ψ−1 undoes these steps and calls ϕ−1 on the subtrees. This proves Lemma 1. ■

Lemma 2. ∀X ∈ N , α ∈ N ∪ V , there exists a weight- and yield-preserving bijection between DX/α
and D′

X/α.

Proof (Sketch). On the left, we have a prototypical derivation from DX/α with its spine exposed. Recall
that these trees result from replacing the left corner, which is why there is an ε. Here X = γ(K) and
α = γ(k̂). On the right, we have its corresponding derivation in D′

X/α.

γ(K)

γ(K−1)

γ(k̂+1)

γ(k̂)

ε

β(k̂)

β(K−2)

β(K−1)

··· ⇐⇒

γ(K)/γ(k̂)

ϕ



β(k̂)




γ(K)/γ(k̂+1)

ϕ



β(k̂+1)




γ(K)/γ(K−2)

ϕ



β(K−2)




γ(K)/γ(K−1)

ϕ



β(K−1)




γ(K)/γ(K)

ε

···

where the function ϕ is Alg. 1. Call the mapping from left to right ψ; it is very straightforward. All it does
is (1) transpose, (2) relabel the spine, and (3) call ϕ on the β subtrees. Note that ϕ does not recurse to ψ
because it can already convert the β subtrees by Theorem 1. Thus, it is straightforward to see that ψ is
also weight- and yield-preserving bijection. This proves Lemma 2. ■

Proposition 2 (Weighted language relationship). Suppose G′=GLCT(G, C,R). Then, for any X ∈ N
and α ∈ N ∪ V:

G′
α̃ =

⊕

δ∈Dα/⊥
JδK and G′

X/α =
⊕

δ∈DX/α

JδK

Proof. The equations follow directly from Lemma 1 and Lemma 2. In each case, the left- and the
right-hand sides are sums of the derivations that are part of a weight- and yield-preserving bijection. ■
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C Proof of Theorem 1 (Bijective Equivalence)

Roadmap. We will show that G ≡N GLCT(G,R, C) for any choice of C andR. Our proof makes use
of two lemmas, Lemma 3 and Lemma 4, to establish that the derivation mapping ϕ (Alg. 1) and its inverse
ϕ−1 (Alg. 2) define a bijection of the necessary type. Lemma 3 shows that ϕ preserves label, weight, and
yield. Lemma 4 shows that ϕ is invertible and, thus, that a bijection exists.
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Algorithm 1 Derivation mapping for the generalized left-corner transformation GLCT(G,R, C)
1. def ϕ(δ):
2. if δ ∈ V : ▷Base case

3. return δ
4. else if δ is a sequence δ1 ··· δK : ▷Sequence case

5. return ϕ(δ1) ··· ϕ(δK)
6. else

7.




γ(K)

γ(K−1)

γ(2)

γ(1) β(1)

β(K−2)

β(K−1)

···




← δ
where (γ(K) → γ(K−1) β(K−1)) ··· (γ(2) → γ(1) β(1))
is ζ(δ) the spine of the δ

8. k̂ ← min
({
i | γ(i) ∈ C, i ∈ {1, ... K}

})
. ▷determine the left corner; take min(∅) = ∞

9. if k̂ =∞ :
10. return

γ(K)

γ̃(K)

γ̃(K−1)

γ̃(2)

γ̃(1)

ϕ



β(0)




ϕ



β(1)




ϕ



β(K−2)




ϕ



β(K−1)




···

11. else
12. return

γ(K)

γ̃(k̂)

γ̃(k̂−1)

γ̃(2)

γ̃(1)

ϕ



β(0)




ϕ



β(1)




ϕ



β(k̂−2)




ϕ



β(k̂−1)




γ(K)/γ(k̂)

ϕ



β(k̂)




γ(K)/γ(k̂+1)

ϕ



β(k̂+1)




γ(K)/γ(K−2)

ϕ



β(K−2)




γ(K)/γ(K−1)

ϕ



β(K−1)



γ(K)/γ(K)

ε

······
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Algorithm 2 Inverse derivation mapping for the generalized left-corner transformation GLCT(G,R, C)
1. def ϕ−1

(
δ′
)
:

2. if δ′ ∈ V : ▷Base case

3. return δ′

4. else if δ′ is a sequence δ′1 ··· δ′K : ▷Sequence case

5. return ϕ−1
(
δ′1
)
··· ϕ−1

(
δ′K
)

6. else if top rule of δ′ is an instance of (6b) : ▷Slashed recovery rule; δ′ must have the following form:

7.




γ(K)

γ̃(k̂)

γ̃(k̂−1)

γ̃(2)

γ̃(1)

β(0)

β(1)

β(k̂−2)

β(k̂−1)

γ(K)/γ(k̂)

β(k̂)γ
(K)/γ(k̂+1)

β(k̂+1)

γ(K)/γ(K−2)

β(K−2) γ(K)/γ(K−1)

β(K−1)γ
(K)/γ(K)

ε

······




←δ′; return

γ(K)

γ(K−1)

γ(k̂+1)

γ(k̂)

γ(k̂−1)

γ(2)

γ(1)

ϕ−1



β(0)




ϕ−1



β(1)




ϕ−1



β(k̂−2)




ϕ−1



β(k̂−1)




ϕ−1



β(k̂)




ϕ−1



β(K−2)




ϕ−1



β(K−1)




···

···

8. else ▷Frozen recovery rule; top rule of δ′ is an instance (6a) and δ′ must have the following form:

9.




γ(K)

γ̃(K)

γ̃(K−1)

γ̃(2)

γ̃(1)

β(0)

β(1)

β(K−2)

β(K−1)

···




←δ′; return

γ(K)

γ(K−1)

γ(2)

γ(1)

ϕ−1




β(0)




ϕ−1



β(1)




ϕ−1



β(K−2)




ϕ−1



β(K−1)




···
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Lemma 3. Let G= ⟨N ,V,S,R, w⟩ be a WCFG. Let G′ = GLCT(G,R, C) where C ⊆ (N ∪ V) and
R ⊆ R. Then, Alg. 1 defines a function ϕ that is

(i) type ϕ : D → D′

(ii) label-preserving

(iii) yield-preserving

(iv) weight-preserving

Proof. Let G′ = ⟨N ′,V ′,S ′,R′⟩. Note: by construction (Def. 3), N ′ ⊇ N , S ′ = S , and V ′ = V .

For notational convenience, we extend ω and σ to apply to a sequence of derivations α1 ··· αK ∈ D∗:

ω

(
α1 ··· αK

)
def
= ω

(
α1

)
⊗ ··· ⊗ ω

(
αK

)
and σ

(
α1 ··· αK

)
def
= σ

(
α1

)
◦ ··· ◦ σ

(
αK

)

It is straightforward to verify that ϕ satisfies properties (i–iv) for sequences of derivations; for brevity,
we will not do so.

Fix an arbitrary derivation tree δ ∈ D. Our proof will proceed by structural induction on the subtree
relation: δ1 ≺ δ ⇐⇒ δ1 is a (strict) subtree of δ . It is well-known that ≺ is well-founded ordering,
making it suitable for induction (e.g., Burstall, 1969).

Inductive hypothesis (IH): ∀δ1 ≺ δ : properties (i–iv) hold.

Base case (δ ∈ V): Here ϕ is the identity mapping. Thus, properties (i–iv) are clearly preserved.

Inductive case (δ /∈ V): Here δ must have the general form:

γ(K)

γ(K−1)

γ(2)

γ(1) β(1)

β(K−2)

β(K−1)

···

where K ≥ 1, ∀i ∈ {1, ... ,K} : β(i) ∈ (V ∪ N )∗, and
(γ(K) → γ(K−1) β(K−1)) ··· (γ(2) → γ(1) β(1)) is ζ(δ),
the spine of the δ .

Observation 1 : The subtree γ(1) is either a terminal or it is of the form

γ(1)

β(0)

with γ(1) → β(0) /∈ R.

Let k̂ be the index of the left corner (i.e., bottom-most element of C that occurs along the spine
of δ).31 More formally, let k̂ =min(

{
i | γ(i) ∈ C, i ∈ {1, ... K}

}
). If no such element exists, define

k̂=min(∅)=∞. The cases correspond to λ(δ) ̸= ⊥ and λ(δ) = ⊥, respectively.

We consider two cases: k̂ =∞ and k̂ <∞:
31We chose the notation k̂ because the ·̂ is visually similar to the “kink” in the transformed tree that is determined by k̂ in the

case where k̂ < ∞.
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Case (k̂ =∞): In this case, we observe 2 : ∀i ∈ {1, ... ,K} : γ(i) /∈ C, and line 10 of Alg. 1 returns:

ϕ(δ) =
γ(K)

γ̃(K)

γ̃(K−1)

γ̃(2)

γ̃(1)

ϕ



β(0)




ϕ



β(1)




ϕ



β(K−2)




ϕ



β(K−1)




···

We check each of the properties:

(i) ϕ : D → D′: In this case, we can check that ϕ(δ) ∈ D′ by verifying that each rule used in the
definition of ϕ appears in G′, and then invoking the inductive hypothesis on the subtrees.

It is straightforward to verify that the mapping ϕ(δ) preserves weight and that the tree exists in D′

by crosschecking each of the rules that appear in it with the GLCT construction (Def. 3):

• The top rule γ(K) → γ̃(K) is an instance of (6a). The side condition X ∈ N \ C is satisfied by
2 (∀i ∈ {1, ... ,K} : γ(i) /∈ C).

• Each middle rule γ̃(i) → γ̃(i−1) β(i−1) is an instance of (6f). The side condition
X

w−→ X1 β ∈ R,X1 /∈ C is satisfied in each case because spine guarantees inclusion in
R, and by 2 (∀i ∈ {1, ... ,K} : γ(i) /∈ C).

• The bottom rule γ̃(1) → β(0) is an instance of (6e). The side condition X
w−→ β /∈ R is satisfied

by 1 .32

Since we have verified that each of the rules in the construction of ϕ(δ) are in G′, and the subtrees
are in D′ by IH, then it follows that ϕ(δ) ∈ D′.

(ii) label-preserving: It is clear by inspection that δ and ϕ(δ) have the same root label.

(iii) yield-preserving:

σ(δ) = σ

(
β(0)

)
◦ ··· ◦ σ

(
β(K−1)

)
[definition]

= σ

(
ϕ

(
β(0)

))
◦ ··· ◦ σ

(
ϕ

(
β(K−1)

))
[IH]

= σ(ϕ(δ)) [definition]

(iv) weight-preserving:

32Recall that if γ(1) ∈ V , then γ̃(1) = γ(1).
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ω(δ) = w
(
γ(1) → β(0)

)

︸ ︷︷ ︸
⊗
(

K⊗

i=2

w
(
γ(i) −→ γ(i−1) β(i−1)

))

︸ ︷︷ ︸
⊗
(

K−1⊗

i=0

ω

(
β(i)

))

︸ ︷︷ ︸

= w
(
γ̃(1) → β(0)

)

⊗
(

K⊗

i=2

w

(
γ̃(i) −→ γ̃(i−1) β(i−1)

))

⊗ w
(
γ(K) → γ̃(K)

)
1

⊗
(

K−1⊗

i=0

ω

(
ϕ

(
β(i)

)))

= ω(ϕ(δ))

equal by constr.

equal by constr.

equal by IH

by constr.

We have used the specific weight settings in Def. 3, and that 1 is the ⊗-identity element.

Case (k̂ <∞): Here, δ has the form on the left and ϕ transforms into the form on the right:

γ(K)

γ(K−1)

γ(k̂+1)

γ(k̂)

γ(k̂−1)

γ(2)

γ(1)

β(0)

β(1)

β(k̂−2)

β(k̂−1)

β(k̂)

β(K−2)

β(K−1)

···

···

=⇒

γ(K)

γ̃(k̂)

γ̃(k̂−1)

γ̃(2)

γ̃(1)

ϕ



β(0)




ϕ



β(1)




ϕ



β(k̂−2)




ϕ



β(k̂−1)




γ(K)/γ(k̂)

ϕ



β(k̂)




γ(K)/γ(k̂+1)

ϕ



β(k̂+1)




γ(K)/γ(K−2)

ϕ



β(K−2)




γ(K)/γ(K−1)

ϕ



β(K−1)




γ(K)/γ(K)

ε

······

In this case, we observe 3 : ∀i ∈ {1, ... , k̂−1} : γ(i) /∈ C.

We check each of the properties:
(i) ϕ : D → D′: We verify that the rules in the derivation ϕ(δ) are in G′:

• The top rule γ(K) → γ̃(k̂) γ(K)/γ(k̂) is an instance of (6b). The side condition X ∈ N , α ∈ C
holds because the definition of k̂ ensures that γ(k̂) ∈ C.
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• The rules in the left subtree follow the same argument as the proof of the k̂ =∞ case.
• Each middle rule of the right subtree γ(K)/γ(i−1) → β(i−1) γ(K)/γ(i) (for i = k̂+1, ... ,K) is an

instance of (6d). The side condition X
w−→ X1 β ∈ R,Y ∈ N hold because γ(K) ∈ N , and each

of the γ(i) → γ(i−1) β(i−1) rules was part of the spine (thus, inR).
• The bottom rule of the right subtree γ(K)/γ(K) → ε is an instance of (6f).
Lastly, because each β(i) subtree is in D′ by IH, we have that ϕ(δ) ∈ D′.

(ii) root-preserving: It is clear by inspection that δ and ϕ(δ) have the same root label.
(iii) yield-preserving: The argument here is essentially the same as the k̂ =∞ case. The only difference

is that the empty string (ε) will be concatenated as the right-most element, which does not change
the yield as ε is the identity element of the string-concatenation operator.

(iv) weight-preserving: The argument is similar to the k̂ =∞ case

ω(δ) = w
(
γ(1) → β(0)

)

︸ ︷︷ ︸
⊗
(

K⊗

i=2

w
(
γ(i) −→ γ(i−1) β(i−1)

))

︸ ︷︷ ︸
⊗
(

K−1⊗

i=0

ω

(
β(i)

))

︸ ︷︷ ︸

= w
(
γ̃(1) → β(0)

)

⊗




k̂⊗

i=2

w

(
γ̃(i) → γ̃(i−1) β(i−1)

)


⊗ w
(
γ(K) → γ̃(k̂) γ(K)/γ(k̂)

)
1

⊗




K⊗

i=k̂+1

w
(
γ(K)/γ(i−1) → β(i−1) γ(K)/γ(i)

)



⊗ w(γ(K)/γ(K) → ε) 1

⊗
(

K−1⊗

i=0

ω

(
ϕ

(
β(i)

)))

= ω(ϕ(δ))

eq
ua

l b
y IH

equal by
constr.

equal by constr.

by constr.

by constr.

We have used the specific weight settings and the fact that 1 is the identity element of the⊗-operator.

Conclusion. We have successfully verified that the properties (i–iv) hold in each possible case; thus,
by the principle of induction, Lemma 3 is true. ■
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Lemma 4. Let G = ⟨N ,V,S,R⟩, G′ = GLCT(G,R, C) for any choice ofR and C. Then, the functions
ϕ and ϕ−1 defined by Alg. 1 and Alg. 2 (respectively) are inverses of each other. Thus, a bijection of type
DN → D′

N exists.

Proof. N.B. We first explain why only a bijection of type DN → D′
N rather than a bijection of type

D → D′. The reason is that the set D′ contains derivations rooted at the new slashed and frozen
nonterminals, which do not exist in G. However, all derivations with a root label in N are preserved in
the bijection; that is why we restricted the type of the bijection to have the range D′

N .

DN

D
D′

D′
N

ϕ

ϕ−1

Note that it would be sufficient to show a bijection between DS → D′
S , but we prove the stronger version

as it fits with our inductive proof strategy. We note that the derivations in D′ \ D′
N are each labeled by

either a frozen or slashed nonterminals symbol. The meanings of these frozen and slashed symbols do not
need to be preserved since they are undefined in G. What is important is that the derivations in D′

N that
use these derivations use them in a meaning-preserving manner.

Our proof will refer to the explicit functions ϕ and ϕ−1 (Alg. 1 and Alg. 2). We will prove that ϕ and ϕ−1

are inverses of each other in two parts:

• Part 1: We will show that ∀δ′ ∈ D′
N : ϕ

(
ϕ−1

(
δ′
))

= δ′.

• Part 2: We will show that ∀δ ∈ DN : ϕ−1(ϕ(δ)) = δ .

Proof of Part 1: Our proof will proceed by structural induction on the subtree relation (≺). Fix an
arbitrary derivation tree δ′ ∈ D′

N .

Inductive hypothesis (IH): For all subtrees δ′′ ≺ δ′ where ℓ
(
δ′′
)
∈ N : ϕ(ϕ−1(δ′′)) = δ′′.

Base case (δ′ ∈ V): ϕ and ϕ−1 are the identity function; thus, ϕ
(
ϕ−1

(
δ′
))

= δ′ as required.

Sequence case: Both ϕ and ϕ−1 apply pointwise to sequences; thus, ϕ
(
ϕ−1

(
δ′1 ··· δ′K

))
=

ϕ
(
ϕ−1

(
δ′1
)
··· ϕ−1

(
δ′K
))

= ϕ
(
ϕ−1

(
δ′1
))
··· ϕ

(
ϕ−1

(
δ′K
))

= δ′1 ··· δ′K as required.

Inductive case: There are two cases to consider: (1) the top rule is an instance of (6b) or (2) the top rule
is an instance of (6a). These cases are mutually exclusive, as a difference in the top rule ensures any pair
of derivations are unequal. We can see that these cases are exhaustive, as the only way to have a derivation
labeled N that in G′ is if the top rule of δ′ is an instance of (6b) or (6a).
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• Case (top rule is (6a)): In this case, δ′ must have the following form:

γ(K)

γ̃(K)

γ̃(K−1)

γ̃(2)

γ̃(1)

β(0)

β(1)

β(K−2)

β(K−1)

···

We note that the chain of rules exposed along the left
edge must have the following structure: we start with
an instance of (6a) followed by zero or more instances
of (6f) ending in an instance of (6e). None of the β(i)-
subtrees contain slashed or frozen symbols in their labels.
However, note that the subtrees of the β(i)-subtrees may
contain slashed or frozen symbols.

We verify that ϕ
(
ϕ−1

(
δ′
))

= δ′ below:

ϕ
(
ϕ−1

(
δ′
))

= ϕ




γ(K)

γ(K−1)

γ(2)

γ(1)

ϕ−1



β(0)




ϕ−1



β(1)




ϕ−1



β(K−2)




ϕ−1



β(K−1)




···




=

γ(K)

γ̃(K)

γ̃(K−1)

γ̃(2)

γ̃(1)

�ϕ


��ϕ−1



β(0)







�ϕ


��ϕ−1



β(1)







�ϕ


��ϕ−1



β(K−2)







�ϕ


��ϕ−1



β(K−1)







···

= δ′

The first step applies Alg. 2, and the second step applies Alg. 1. By induction, each recursive call in
this expression successfully inverts ϕ for their respective argument. It is also clear, by inspection, that
line 10 of Alg. 1 correctly inverts the transformation of the spine performed on line 9 of Alg. 2. Thus,
by induction, our definition of the inverse is correct for this case.
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• Case (top rule is (6b)): In this case, δ′ must have the following form:

γ(K)

γ̃(k̂)

γ̃(k̂−1)

γ̃(2)

γ̃(1)

β(0)

β(1)

β(k̂−2)

β(k̂−1)

γ(K)/γ(k̂)

β(k̂)γ(K)/γ(k̂+1)

β(k̂+1)

γ(K)/γ(K−2)

β(K−2) γ(K)/γ(K−1)

β(K−1) γ(K)/γ(K)

ε

······
Here, the top rule is an instance of (6b); thus, it combines
a derivation labeled by some frozen nonterminal γ(k̂) with
a derivation of some slashed nonterminal γ(K)/γ(k̂). No-
tice that the attached frozen nonterminals γ(k̂) must match
the slashed nonterminal’s denominator, and the slashed
nonterminal’s numerator must match the label ℓ

(
δ′
)
. The

left subtree exposes the chain of rules that built the frozen
nonterminal γ(k̂). This chain is a (possibly empty) se-
quence of (6f) followed by the base case (6e). The right
subtree exposes the chain of rules that built slashed nonter-
minal γ(K)/γ(k̂). These are a (possibly empty) sequence of
(6d) ending in an instance of the base case (6c). By con-
struction, none of the β(i)-subtrees may contain slashed
or frozen symbols in their root labels, as they must be
instances of one of the rules (6c), (6d), (6e), or (6f).

We verify that ϕ
(
ϕ−1

(
δ′
))

= δ′ by applying Alg. 2 and Alg. 1 in the equations below:

ϕ
(
ϕ−1

(
δ′
))

= ϕ




γ(K)

γ(K−1)

γ(k̂+1)

γ(k̂)

γ(k̂−1)

γ(2)

γ(1)

ϕ−1



β(0)




ϕ−1



β(1)




ϕ−1



β(k̂−2)




ϕ−1



β(k̂−1)




ϕ−1



β(k̂)




ϕ−1



β(K−2)




ϕ−1



β(K−1)




···

···




=

γ(K)

γ̃(k̂)

γ̃(k̂−1)

γ̃(2)

γ̃(1)

�ϕ


��ϕ−1



β(0)







�ϕ


��ϕ−1



β(1)







�ϕ


��ϕ−1



β(k̂−2)







�ϕ


��ϕ−1



β(k̂−1)







γ(K)/γ(k̂)

�ϕ


��ϕ−1




β(k̂)







γ(K)/γ(k̂+1)

�ϕ


��ϕ−1



β(k̂+1)





 γ(K)/γ(K−2)

�ϕ


��ϕ−1



β(K−2)





 γ(K)/γ(K−1)

�ϕ


��ϕ−1



β(K−1)







γ(K)/γ(K)

ε

······

= δ′
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By induction, each recursive call in this expression successfully inverts ϕ for its respective argument.
It is also clear, by inspection, that line 12 of Alg. 1 correctly inverts the transformation of the spine
performed on line 7 of Alg. 2. Thus, by induction, our definition of the inverse is correct for this case.

Conclusion (Part 1). We have verified the two cases of the inductive step; thus, by the principle of
induction, we have shown that Part 1 of Lemma 4 holds.

We now continue to Part 2 (next page).
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Proof of Part 2: Our proof will proceed by structural induction on the subtree relation (≺). Fix an
arbitrary derivation tree δ ∈ D.

Inductive hypothesis (IH): For all subtrees δ1 ≺ δ : ϕ−1(ϕ(δ1)) = δ1.

Base case (δ ∈ V): ϕ and ϕ−1 are the identity function; thus, ϕ−1(ϕ(δ)) = δ as required.

Sequence case: Both ϕ and ϕ−1 apply pointwise to sequences; thus, ϕ−1(ϕ(δ1 ··· δK)) =
ϕ−1(ϕ(δ1) ··· ϕ(δK)) = ϕ−1(ϕ(δ1)) ··· ϕ−1(ϕ(δK)) = δ1 ··· δK as required.

Inductive case: Recall from the proof of the inductive case of Lemma 3, δ must have the general form:

γ(K)

γ(K−1)

γ(2)

γ(1)

β(0)

β(1)

β(K−2)

β(K−1)

···

where K ≥ 1, β(i) ∈ (V ∪ N )∗, ∀i{1, ... ,K}, and (γ(K) →
γ(K−1) β(K−1)) ··· (γ(2) → γ(1) β(1)) is its spine ζ(δ). (We
only show the cases for when γ(1) ∈ N . The case when γ(1) ∈
V follows the same argument.)

Now, let k̂ be the index of the left corner, or∞ if it does not
exist. We consider two cases: k̂ =∞ and k̂ <∞.

Case (k̂ = ∞): We seek to show that ϕ−1(ϕ(δ)) = δ for this case. The equations below depict how
spine transformations performed by Alg. 1 and Alg. 2 cancel each other out:

ϕ−1(ϕ(δ)) = ϕ−1




γ(K)

γ̃(K)

γ̃(K−1)

γ̃(2)

γ̃(1)

ϕ



β(0)




ϕ



β(1)




ϕ



β(K−2)




ϕ



β(K−1)




···




=

γ(K)

γ(K−1)

γ(2)

γ(1)

��ϕ−1


�ϕ




β(0)







��ϕ−1


�ϕ



β(1)







��ϕ−1


�ϕ



β(K−2)







��ϕ−1


�ϕ



β(K−1)







···

= δ

Thus, by induction, ϕ−1(ϕ(δ)) = δ for all derivations δ that fall into this case.
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Case (k̂ <∞): We seek to show that ϕ−1(ϕ(δ)) = δ for this case.

ϕ−1(ϕ(δ)) = ϕ−1




γ(K)

γ̃(k̂)

γ̃(k̂−1)

γ̃(2)

γ̃(1)

ϕ



β(0)




ϕ



β(1)




ϕ



β(k̂−2)




ϕ



β(k̂−1)




γ(K)/γ(k̂)

ϕ



β(k̂)




γ(K)/γ(k̂+1)

ϕ



β(k̂+1)




γ(K)/γ(K−2)

ϕ



β(K−2)




γ(K)/γ(K−1)

ϕ



β(K−1)




γ(K)/γ(K)

ε

······




=

γ(K)

γ(K−1)

γ(k̂+1)

γ(k̂)

γ(k̂−1)

γ(2)

γ(1)

��ϕ−1


�ϕ



β(0)







��ϕ−1


�ϕ



β(1)







��ϕ−1


�ϕ



β(k̂−2)







��ϕ−1


�ϕ



β(k̂−1)







��ϕ−1


�ϕ



β(k̂)







��ϕ−1


�ϕ



β(K−2)







��ϕ−1


�ϕ



β(K−1)







···

···

= δ

Thus, by induction, ϕ−1(ϕ(δ)) = δ for all derivations δ that fall into this case.

Conclusion (Part 2). Since we have shown that each of the possible cases (k̂ =∞ and k̂ <∞) satisfy
ϕ−1(ϕ(δ)) = δ , it follows that Part 2 of Lemma 4 is true.

Conclusion. We have proven Part 1 and Part 2; thus, Lemma 4 holds. ■
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Theorem 1 (N -bijective equivalence). Suppose G = ⟨N ,V,S,R⟩ is a WCFG and G′ = GLCT(G,R, C)
whereR ⊆ R and C ⊆ V ∪ N . Then, G ≡N G′.

Proof. Recall from §2 that N -bijective equivalence (G ≡N G′) requires the existence of a structure-
preserving bijective mapping of type DN → D′

N . Lemma 3 shows that ϕ in Alg. 1 is a mapping of type
D → D′ that preserves the desired structure (label, weight, and yield). Thus, ϕ is structure-preserving.
Lemma 4 shows that ϕ is a bijection of ϕ : DN → D′

N . Thus, we have verified the existence of a
structure-preserving bijection and, therefore, G ≡N G′. ■
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D Proof (Sketch) of Theorem 2 (Speculation–GLCT Bijective Equivalence)

Theorem 2 (Speculation–GLCT bijective equivalence). For any grammar G, and choice of C and R,
SPEC(G,R, C) and GLCT(G,R, C) are X -bijectively equivalent where X is the complete set of symbols
(i.e., original, frozen, and slashed).

Proof (Sketch). A straightforward inductive argument can be made to show that the derivations of specu-
lation and GLCT under the conditions of Theorem 2 will produce isomorphic trees.

We sketch the derivation mapping from speculation to GLCT. We do not only provide a sketch for the fact
that the mapping is a structure-preserving bijection. It is straightforward, albeit laborious, to extend our
proof sketch to a proof; such a proof would follow the same structure as our proof of Theorem 1.

Base case (terminals). This case is trivial, as terminals are identical between the transformations.

Inductive Case. We consider three cases for each kind of nonterminal: original, frozen, and slashed. In
the diagrams below, we show how the backbone of the derivation is changed. We note that the β-subtrees
of the tree are transformed recursively. In each of the diagrams below, the speculation derivation is on the
left, and its corresponding GLCT derivation is on the right.

Original nonterminals. This case was discussed in Fig. 2.

Frozen nonterminals. The rules defining the frozen nonterminals are identical between the transformations,
so the backbone is unchanged in this case.

γ̃(K)

γ̃(K−1)

γ̃(2)

γ̃(1)

β(0)

β(1)

β(K−2)

β(K−1)

···

⇐⇒

γ̃(K)

γ̃(K−1)

γ̃(2)

γ̃(1)

β(0)

β(1)

β(K−2)

β(K−1)

···

Slashed nonterminals. Recall from §3.2 that the difference between the slashed nonterminals in speculation
and GLCT is the recursive rule defining slashed nonterminals ((9d) vs. (6d)). The only effect of this
difference is that slashed nonterminals in speculation have left-branching derivations, and in GLCT, they
have right-branching derivations. The mapping below works for any slashed nonterminal:

γ(K)/γ(k̂)

γ(K−1)/γ(k̂)

γ(k̂+2)/γ(k̂)

γ(k̂+1)/γ(k̂)

γ(k̂)/γ(k̂)

ε

β(k̂)

β(k̂+1)

β(K−2)

β(K−1)

···

⇐⇒

γ(K)/γ(k̂)

β(k̂) γ(K)/γ(k̂+1)

β(k̂+1)

γ(K)/γ(K−2)

β(K−2) γ(K)/γ(K−1)

β(K−1) γ(K)/γ(K)

ε

···
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Structure-preservation and invertibility. In each of the cases above, it is straightforward to see that
mapping is
• label-preserving: the trees in the diagrams each have the same label.
• yield-preserving: the yield of each β-subtree is preserved (by induction hypothesis), and string concate-

nation is associative with identity element ε.
• weight-preserving: the weights of rule weights multiplied are equal (by construction), ⊗ is associative

and commutative (by assumption), and each subtree is equally weighted (by induction hypothesis).
• invertible: the mapping between the trees is invertible because the manipulation of its backbone (i.e., its

exposed structure) is invertible, and the mapping for each subtree is invertible (by induction hypothesis).

Conclusion. The above cases cover all possibilities. Each sketches the structure-preserving bijective
mapping between speculation and GLCT derivations for all their nonterminals (original, slashed, and
frozen). Therefore, we have sketched a proof of Theorem 2. ■
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E Proof of Theorem 4 (Left-Recursion Elimination)

Theorem 4 (Left-recursion elimination). Suppose that G′=TRIM(GLCT(G,R, C)) where

• G has no unary rules
• R ⊇ the left-recursive rules in G

• C ⊇ bottoms(R)
Then, G′ is not left-recursive. Moreover, d(G′) ≤ 2·C where C is the number of SCCs in the left-recursion
graph for G.

Proof. Recall from Theorem 1 that there exists a structure-preserving bijection between DN and D′
N .

Our proof shows how the mapping ϕ (Alg. 1) removes (unbounded) left recursion from G by analyzing
the structure of its transformed trees. Below, we show how ϕ takes any derivation δ ∈ D (left) and maps a
tree δ′ = ϕ(δ) where δ′ ∈ D′ (right).

γ
(1)
top

γ
(1)
bot

γ
(2)
top

γ
(2)
bot

γ
(K)
top

γ
(K)
bot

β
(K)
bot

β
(K)
top

β
(2)
bot

β
(2)
top

β
(1)
bot

β
(1)
top···

···

···

···

C(
1
)

sp
in

e

C(
2
)

sp
in

e

C(
K

)
sp

in
e

=⇒

γ
(1)
top

γ̃
(1)
bot

γ
(2)
top

γ̃
(2)
bot

γ
(K)
top

γ̃
(K)
bot

β
(K)
bot

γ
(K)
top

/γ(K)
bot

β
(K)
bot+1

γ
(K)
top

/γ(K)
top−1

β
(K)
top γ

(K)
top

/γ(K)
top

ε

β
(2)
bot

γ
(2)
top

/γ(2)
bot

β
(2)
bot+1

γ
(2)
top

/γ(2)
top−1

β
(2)
top γ

(2)
top

/γ(2)
top

ε

β
(1)
bot

γ
(1)
top

/γ(1)
bot

β
(1)
bot+1

γ
(1)
top

/γ(1)
top−1

β
(1)
top γ

(1)
top

/γ(1)
top

ε

···

···

···

···

where β
(K)
bot is a (possibly empty) sequence of terminals. We note that the △-subtrees on the right

are isomorphic to their counterparts on the left because ϕ has (implicitly) transformed them. Let
C(1), C(2), ... , C(K) denote the segmentation of the left edge of δ into a sequence of spines. The node
names indicate its top and bottom elements. Note that spines may contain a single node; γ(i)top =γ

(i)
bot in

these cases. We also note that the transitions between spines occur when a rule on the left is not inR.

Avoiding a subtle mistake. We may assume that each△-subtree is non-empty because the G is unary-
free by assumption. This unary-free assumption is important because it ensures that the form of δ′ will
not be left-recursive simply because some of its△-subtrees are empty.
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The accordion effect. Recall that ϕ (recursively) hoists each left-corner subtree along its respective
spine.33 The accordion effect is the result of repeatedly hoisting: Each spine is contracted into two nodes
on the left side of δ′ corresponding to their respective spine’s top and bottom elements. Each of the top
nonterminals has an unbounded chain of right-recursive rules corresponding to the extracted spine.

The accordion effect assumes that the bottommost node of the spine is always C-labeled and, thus, is
hoisted by ϕ as in the diagram. It is easy to see that our condition on C guarantees this because every node
that might end the spine is included in C (by eq. (10)). Furthermore, if C is a superset of bottoms(R),
then ϕ (by definition) will be unaffected because the bottommost elements of the spines (i.e., those that
are hoisted) are already included.34

For simplicity, the accordion diagram only illustrates the case where each spine C(i) is not a singleton
containing one element outside of C. We now address that case. Here, γ(i)top = γ

(i)
bot and the rule γ(i)top →

γ
(i+1)
top β

(i)
top cannot be inR. Like the case depicted, the spine contracts into two nodes on the right: γ(i)top

and γ̃(i)top. However, we now have an instance of (6a) instead of (6b) in the tree on the right; thus, there is
no slashed chain of nonterminals.

Bounding the left-recursion depth. The result of the accordion effect is that each spine on the left (of
unbounded length) is contracted into two nodes in the tree on the right. From here, we can see that δ′

has bounded left-recursive depth as long as there is a bounded number of spines. Recall that each spine
is the maximum-length sequence of rules along the left of the derivation starting at the root. Since R
includes all left-recursive rules, this means that each spine in the sequence C(1), C(2), ... , C(K) completes
at least one SCC—meaning its nodes cannot be visited later in the path. Thus, d(δ′) ≤ 2·C where C is
the number of SCCs in the left-recursion graph G for G.35

Conclusion. The above argument bounds d(ϕ(δ)) as a function of δ . We can bound d(G′) by
maxδ∈D d(ϕ(δ)) because δ and δ′ are in one-to-one correspondence and, thus, no trees in D′

N will
be overlooked. Note that G′ is trimmed so we can focus on N -derivations. Because our earlier bound,
d(ϕ(δ)) ≤ 2·C, is independent of δ , the maximization is trivial: d(G′) ≤ 2·C. Thus, the left-recursion
in G′ is bounded, and Theorem 4 holds. ■

33This interpretation is discussed throughout the paper: informally in Fig. 1 and §3.1, semi-formally in Fig. 2, and formally in
the proof of Theorem 1 (Appendix C).

34We note that other ways exist to set C that can break left-recursion cycles. For example, if C is a feedback node set (i.e.,
a subset of nodes such that removing them and their incoming and outgoing edges results in an acyclic graph). However, the
construction is messier, as there will be instances of (6f) along the left of δ′. This still eliminates left recursion, as those frozen
nonterminals will not be left recursive. Additionally, it is unclear whether there is any benefit in terms of grammar size or
left-recursion depth to these alternatives; thus, we only analyze the simpler case.

35This bound can be reduced by including more rules in R at the cost of increasing the size of G′. For example, if R=R, the
left-recursion depth is two, but G will likely be larger according to Proposition 3.
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F Additional Experimental Results

This section presents additional results of the experiments discussed in §4.1. Table 2 complements Table 1
with ratios comparing the size of the output grammars resulting from SLCT with those from GLCT.
Appendix F gives analogous results as evaluated on the number of rules. (We note that these results are
consistent with those presented in Table 1.)

Language Method Raw +Trim −ε’s Language Method Raw +Trim −ε’s(size) (size)

Basque SLCT 3,354,445 245,989 411,023 English SLCT 514,338 26,655 46,088
(73,173) GLCT 644,125 245,923 411,023 (21,272) GLCT 203,664 26,289 46,088

SLCT/GLCT 5.21 1 1 SLCT/GLCT 2.53 1.01 1

French SLCT 5,902,552 106,860 173,375 German SLCT 21,204,060 272,406 434,787
(105,896) GLCT 147,860 106,628 173,375 (100,346) GLCT 1,930,386 271,752 434,787

SLCT/GLCT 39.92 1 1 SLCT/GLCT 10.98 1 1

Hebrew SLCT 14,304,366 564,456 979,040 Hungarian SLCT 17,823,603 151,373 242,360
(84,648) GLCT 2,910,538 564,074 979,040 (134,461) GLCT 748,398 151,013 242,360

SLCT/GLCT 4.91 1 1 SLCT/GLCT 23.82 1 1

Korean SLCT 54,575,826 87,937 96,023 Polish SLCT 2,845,430 61,333 79,341
(59,557) GLCT 3,706,444 86,529 96,023 (41,957) GLCT 177,610 61,253 79,341

SLCT/GLCT 14.72 1.02 1 SLCT/GLCT 16.02 1 1

Swedish SLCT 20,483,899 1,894,346 3,551,917
(79,137) GLCT 6,896,791 1,871,789 3,551,917

SLCT/GLCT 2.97 1.01 1

Table 2: Same numbers as Table 1 but complemented with the additional SLCT/GLCT rows, which measures the
ratio of the SLCT size to the GLCT size.

Language Method Raw +Trim −ε’s Language Method Raw +Trim −ε’s(# of rules) (# of rules)

Basque SLCT 1,060,702 62,836 145,345 English SLCT 147,221 5,941 15,653
(28,178) GLCT 157,273 62,803 145,345 (4,592) GLCT 43,724 5,758 15,653

SLCT/GLCT 6.74 1 1 SLCT/GLCT 3.37 1.03 1

French SLCT 1,970,737 31,317 64,571 German SLCT 6,891,427 71,218 152,391
(30,963) GLCT 52,545 31,201 64,571 (31,156) GLCT 466,978 70,891 152,391

SLCT/GLCT 37.51 1 1 SLCT/GLCT 14.76 1 1

Hebrew SLCT 4,410,783 128,186 335,456 Hungarian SLCT 5,868,984 46,494 91,980
(31,587) GLCT 612,904 127,995 335,456 (43,344) GLCT 177,309 46,314 91,980

SLCT/GLCT 7.20 1 1 SLCT/GLCT 33.10 1 1

Korean SLCT 18,113,579 37,342 41,382 Polish SLCT 951,176 24,105 33,104
(28,132) GLCT 1,157,353 36,638 41,382 (20,109) GLCT 61,916 24,065 33,104

SLCT/GLCT 15.65 1.02 1 SLCT/GLCT 15.36 1 1

Swedish SLCT 5,801,173 355,783 1,191,574
(27,062) GLCT 1,272,201 351,552 1,191,574

SLCT/GLCT 4.56 1.01 1

Table 3: Same settings as in Table 2 but evaluated on the number of rules rather than grammar size.
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G Filtering Optimization for GLCT

This section shows how the filtering tricks mentioned in §3.1 can be incorporated into the left-corner
transformation to reduce the number of useless rules created by Def. 3.36

Our first filtering trick is based on Johnson’s (1998) strategy for reducing the number of useless rules.
It works as follows: the slashed nonterminal Y/X is useless if X is not reachable from Y in a left-recursion
graph for G which only includes the rule setR.

Our second filtering trick is based on Moore’s (2000) filtering strategy, which extends Johnson’s (1998)
with additional filtering based on retained nonterminals. The slashed nonterminal Y/X is useless if none of
the following hold: (i) Y=S, (ii) Y appears on the right-hand side of some rule inR in a position other
than the leftmost position, (iii) Y appears on the right-hand side of some rule inR\R. More formally, the
set of retained nonterminals is

R
def
= ({S} ∪ {βi | (X −→ αβ) ∈ R, βi ∈ β} ∪ {βi | (X −→ β) ∈ R \ R, βi ∈ β}) (15)

Let X⇝ α denote whether α is reachable from X in the left-recursion graph forR. Let X⇝ C denote
whether ∃α ∈ C : X⇝ α. Then, we use the following equations for the rulesR′:

X
1−→ X̃ : X ∈ R\C (16a)

X
1−→ α̃ X/α : X ∈ R,X⇝ α, α ∈ C (16b)

X/X
1−→ ε : X ∈ R,X⇝ C (16c)

Y/α
w−→ β Y/X : X

w−→ αβ ∈ R,Y ∈ R,Y ⇝ α, α⇝ C (16d)

X̃
w−→ α : X

w−→ α ∈ R\R (16e)

X̃
w−→ α̃β : X

w−→ αβ ∈ R, α /∈ C (16f)

Verifying that these filters can only drop useless rules is straightforward.

36Baars et al. (2010) adopt similar filtering techniques.
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H Fast Nullary Elimination

Opedal et al. (2023, §F) gives an approach for eliminating nullary rules from a grammar G that requires
computing the null weight GX(ε) of each nonterminal (X ∈ N ). These null weights are the (smallest)
solution to the system of polynomial equations given by (5) where we replace 1 with 0 in the base case
(5a). In general, this system can be solved numerically using fixed-point iteration or Newton’s method
(see, e.g., Esparza et al., 2007; Nederhof and Satta, 2008; Vieira, 2023). In our case, where G′ is the
output of GLCT, we can solve the system exactly and efficiently, assuming the original grammar G is
free of nullary rules.37 Specifically, this system of equations for G′ is linear and can be solved exactly in
O
(
|N |3

)
time by using an algorithm for the algebraic path problem (e.g., Lehmann, 1977; Tarjan, 1981)

instead of relying on numerical-approximation methods.

Proposition 4 (Fast null-weight computation). The null-weight equations for G′=GLCT(G,R, C) are
linear, provided G is nullary free.

Proof. First, we observe that only the nullary rules are those with slashed nonterminal on its left-hand
side, X/X→ ε (6c). We can see that rules created by (6d) and (6b) dictate that these slashed nonterminals
only occur on the right-corner position of other rules. It then follows that any derivation with an ε-yield
contains at most one nullary rule X/X→ ε as well as a (possibly zero) number of unary rules on the form
X/Y→ X/Z. This is the case because rules of the form X/Y→ β X/Z with |β| > 0 contribute a null weight
of 0 by the assumption that the original grammar has no nullary rules (i.e., each of the original symbols
has a null weight of zero, and because GLCT is N -bijectively equivalent, they continue to have a null
weight of zero).

The null-weight equations simplify to the following system:

G′
X/Y(ε) =

⊕

(X/Y
w−→β1 ···βK X/Z)∈R′

w ⊗����*
0

G′
β1
(ε)⊗ ··· ⊗�����:0

G′
βK

(ε)⊗G′
X/Z(ε) ⊕

⊕

(X/Y
w−→ε)∈R′

w (17)

=
⊕

(X/Y
w−→X/Z)∈R′

w ⊗G′
X/Z(ε) ⊕

⊕

(X/Y
w−→ε)∈R′

w (18)

We can represent this system as a linear equation. We define a matrix W ∈WN ′×N ′
and vector v ∈WN ′

.
For each X/Y,X/Z,X/X ∈ N ′:

WX/Y,X/Z =
⊕

(X/Y
w−→X/Z)∈R′

w and vX/X =
⊕

(X/X
w−→ε)∈R′

w (19)

Then, the null weight for each α ∈ N ′ is

G′
α(ε) = [W∗v]α (20)

where W∗ is the solution to W∗=I⊕WW∗. In the case of the real semiring W∗=(I−W)−1. For
other semirings, it may be computed in O

(
|N ∪ V|3

)
time using an algebraic path solver (e.g., Lehmann,

1977; Tarjan, 1981). ■

37Suppose G(ε) = w. If w ̸= 0, we require at least one nullary rule of the form S w−→ ε. This limited type of rule is
straightforward to accommodate in our approach, but we have omitted it from this discussion for simplicity.
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