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Abstract
We prove that every right-angled Artin group occurs as a
finite-index subgroup of the outer automorphism group
of another right-angled Artin group. We furthermore
show that the latter group can be chosen in such a way
that the quotient is isomorphic to (ℤ∕2ℤ)𝑁 for some 𝑁.
For these, we give explicit constructions using the group
of pure symmetric outer automorphisms. Moreover, we
need two conditions by Day–Wade and Wade–Brück
about when this group is a right-angled Artin group and
when it has finite index.
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1 INTRODUCTION

Right-angled Artin groups are defined by a presentation using a graph Γ and denoted by𝐴Γ. They
were first introduced by Andreas Baudisch in his paper [2] under the name of ‘semi-free groups’.
In recent years, they have been used, among other things, for combinatorial approaches to geo-
metric and topological problems; see, for example, [1, 3]. Right-angled Artin groups can be seen as
interpolating between free groups and free abelian groups. Similarly, their outer automorphism
groups Out(𝐴Γ) may be viewed as interpolating between GL𝑛(ℤ) and Out(𝐹𝑛). For examples of
how this has been used, one can consider [4, 6, 9, 10, 11].
Our aim is to study a topic introduced by Matthew B. Day and Richard D. Wade in [8], which is

themainmotivation for this paper.Wewant to understand finite-index subgroups ofOut(𝐴Γ) that
are right-angled Artin groups. Day–Wade ask when the group Out(𝐴Γ) contains a right-angled
Artin group as finite-index subgroup; see [8, Question 1.1]. To partially answer this question,
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946 WIEDMER

Day–Wade consider the subgroup of so-called pure symmetric outer automorphisms, denoted by
PSO(𝐴Γ) ⩽ Out(𝐴Γ). They give a condition on when it is a right-angled Artin group and describe
explicitly which one it is in case this condition is satisfied.
We look at the question by Day–Wade from another perspective. Day–Wade fix the graph Γ and

ask if Out(𝐴Γ) has another right-angled Artin group 𝐴Λ as finite-index subgroup. In contrast, we
fix the graph Λ and obtain the following main result.

Theorem A. For any graph Λ, the right-angled Artin group 𝐴Λ is a finite-index subgroup of the
outer automorphism group of some other right-angled Artin group 𝐴Γ.

This theorem is later stated in more detail as Theorem 3.1. The question for which graphsΛwe
can find such a graph Γ is already mentioned in [15, Question 3.4]. In that paper, Richard D.Wade
and Benjamin Brück study a different topic related to the outer automorphism group of right-
angled Artin groups. In particular, they give a condition for when the group of pure symmetric
outer automorphisms has finite index in the group of outer automorphisms.We use this condition
by Wade–Brück and the one by Day–Wade mentioned above to develop Theorem A.
To prove this theorem, in Section 2, we introduce the background needed for our main result:

Among other things, we discuss a set of generators forAut(𝐴Γ), the subgroup PSO(𝐴Γ) ⩽ Out(𝐴Γ)
and the two conditions byWade–Brück and Day–Wadementioned above.We then show themain
result in Section 3. For a given graph Λ, we construct a graph Γ such that 𝐴Λ is a finite-index
subgroup of Out(𝐴Γ). More precisely, we show that 𝐴Λ ≅ PSO(𝐴Γ) and that PSO(𝐴Γ) has finite
index in Out(𝐴Γ) using the conditions by Day–Wade and Wade–Brück. Later, in that section, we
impose an additional condition on the graph Γ. Namely, it should have no non-trivial graph auto-
morphisms. We show that Theorem A still holds with this additional condition by developing
the construction further. This leads to an interesting corollary about the structure of the quo-
tient Out(𝐴Γ)∕ PSO(𝐴Γ) and lets us determine the index of 𝐴Λ in Out(𝐴Γ). Finally, we conclude
this paper by discussing further questions that could be interesting to study in Section 4. In the
Appendix, we cover some special cases of small graphs for which the constructions of Section 3
do not work.
This paper is a shortened version of the author’s Master Thesis at ETH Zurich, which can be

found as [17]. I would like to express my sincere thanks to the supervisor of this thesis, Prof. Dr.
Alessandra Iozzi, for making it possible and to the co-supervisor, Dr. Benjamin Brück, for sug-
gesting this topic and for all his support during this project. He always helped me when I had
trouble, answered all questions that came up and was open for many helpful discussions, during
the thesis but also while changing it into this paper. Furthermore, I wish to thank the anonymous
reviewer for the thorough reading of this text as well as his helpful comments and suggestions for
the improvement of it.

2 PRELIMINARIES

2.1 Graphs

Let Γ be a graph. We write 𝑉(Γ) for the set of vertices of Γ and 𝐸(Γ) for the set of edges of Γ,
which is a set of unordered pairs of different vertices. In particular, all the graphs we consider are
undirected and do not contain loops or multiple edges. Moreover, we only consider finite graphs,
that is, 𝑉(Γ) is always a finite set. We write 𝑣 ∼ 𝑤 if 𝑣 is adjacent to 𝑤. For 𝑆 ⊆ 𝑉(Γ), we use the
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RIGHT-ANGLED ARTIN GROUPS AS FINITE-INDEX SUBGROUPS OF THEIR OUTER AUTOMORPHISM GROUPS 947

notation Γ − 𝑆 for the induced subgraph with vertex set 𝑉(Γ) ⧵ 𝑆. When we talk of a component
of a graph, we always mean a connected component. Furthermore, we use lk(𝑣) for the set of
neighbours of 𝑣 and st(𝑣) for the union of lk(𝑣) with 𝑣 itself.

2.2 Right-angled Artin groups

Definition 2.1. For a given non-empty graph Γ, the right-angledArtin group𝐴Γ has the following
presentation:

𝐴Γ ∶= ⟨𝑉(Γ)|[𝑣, 𝑤] = 1 for {𝑣, 𝑤} ∈ 𝐸(Γ)⟩.

Recall that [𝑣, 𝑤] ∶= 𝑣𝑤𝑣−1𝑤−1 is a notation for the commutator of 𝑣 and𝑤. So, the generators
of 𝐴Γ correspond to the vertices of Γ and two generators commute if there is an edge between the
two corresponding vertices in the graph Γ.
Next, we give a set of generators for the automorphism group of a right-angled Artin group

𝐴Γ. This is based on [14, subsection 2.5]. We refer the reader to this source for more details. For a
proof of the statement, one can look at [13] and [12], which are the original sources of this theorem.
Servatius conjectured it and proved it for some special cases and Laurence gave a proof for general
graphs. Note that the terminology in [13] and [12] is slightly different to the one we use here.
For simplicity, we assume that the graph Γ consists of vertices 𝑣1, … , 𝑣𝑛. There are four types of

automorphisms that together generate Aut(𝐴Γ).

∙ Γ -legal transvections: For vertices 𝑣𝑖 and 𝑣𝑗 that satisfy the condition lk(𝑣𝑖) ⊆ st(𝑣𝑗), we define
the automorphism 𝑇𝑙

𝑖,𝑗
of 𝐴Γ by mapping the generators as follows: 𝑣𝑖 ↦ 𝑣𝑗𝑣𝑖 and 𝑣𝑘 ↦ 𝑣𝑘 for

𝑘 ≠ 𝑖. These are calledΓ-legal (left) transvections. Analogously, again, for 𝑣𝑖 and 𝑣𝑗 with lk(𝑣𝑖) ⊆
st(𝑣𝑗), one can define the Γ-legal right transvection 𝑇𝑟𝑖,𝑗 by mapping 𝑣𝑖 ↦ 𝑣𝑖𝑣𝑗 and 𝑣𝑘 ↦ 𝑣𝑘 for
𝑘 ≠ 𝑖.

∙ Partial conjugations: Another type of generators are the so-called (Γ-legal) partial conjugations.
Here, we often omit the term Γ-legal as we do not introduce other partial conjugations. For
a vertex 𝑣𝑗 ∈ 𝑉(Γ) and a component 𝐴 of Γ − st(𝑣𝑗), we define the partial conjugation 𝑃𝐴𝑗 by
𝑣𝑖 ↦ 𝑣𝑗𝑣𝑖𝑣

−1
𝑗

for 𝑣𝑖 ∈ 𝐴 and 𝑣𝑘 ↦ 𝑣𝑘 for 𝑣𝑘 ∉ 𝐴.
∙ Γ -legal permutations: In order to get another automorphism of 𝐴Γ, we can permute the gen-
erators. However, not all permutations give automorphisms, but only those that correspond to
automorphisms of the graph Γ. We call these Γ-legal permutations. Due to the fact that these
automorphisms of 𝐴Γ are related to graph automorphisms of Γ, Γ-legal permutations are often
also called ‘graph automorphisms’.

∙ Inversions: For 𝑗 ∈ {1, … , 𝑛}, we define the inversion 𝐼𝑗 as follows: 𝑣𝑗 ↦ 𝑣−1
𝑗

and 𝑣𝑘 ↦ 𝑣𝑘 for
𝑘 ≠ 𝑗.

Remark. In a general setting, we write 𝑇𝑙𝑣𝑖 ,𝑣𝑗 instead of 𝑇
𝑙
𝑖,𝑗
. The same applies to the notation for

the other types of generators.

We use the notation from above also for the images of the generators in Out(𝐴Γ). These
elements then generate Out(𝐴Γ).
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948 WIEDMER

2.3 Pure symmetric outer automorphisms

The following is based on [8, Section 2.2]. An automorphismof𝐴Γ is called pure symmetric if every
generator 𝑣𝑖 is mapped to a conjugate of itself. Note that the conjugating element may depend on
𝑣𝑖 . The set of such elements forms a subgroup ofAut(𝐴Γ) as the composition of two pure symmet-
ric automorphisms is again pure symmetric. This subgroup is called the group of pure symmetric
automorphisms and denoted by PSA(𝐴Γ). A generating set for it is the set of partial conjugations;
see [8, Theorem 2.5]. We define PSO(𝐴Γ), the group of pure symmetric outer automorphisms, as
the image of PSA(𝐴Γ) in Out(𝐴Γ).
Our goal is to first describe conditions for when PSO(𝐴Γ) has finite-index in Out(𝐴Γ) and for

when it is a right-angled Artin group. Then, we show in Section 3 that every right-angled Artin
group 𝐴Λ occurs as PSO(𝐴Γ) for some graph Γ for which PSO(𝐴Γ) has finite index in Out(𝐴Γ).

2.3.1 Finite-index condition for PSO(𝐴Γ)

The following theorem is based on [15, Appendix A].

Theorem 2.2. Let Γ be a graph. Then the condition

∀𝑣,𝑤 ∈ 𝑉(Γ) ∶ lk(𝑣) ⊆ st(𝑤) ⟹ 𝑣 = 𝑤 (1)

is equivalent to the group PSO(𝐴Γ) having finite index in Out(𝐴Γ).

Note that condition (1) is equivalent to the group 𝐴Γ having no Γ-legal transvections. The idea
for the proof that condition (1) implies finite index is to show that

Out(𝐴Γ)∕ PSO(𝐴Γ) ≅ Inv⋊Per,

where Inv and Per denote the subgroups of Out(𝐴Γ) generated by the inversions, respectively,
by the Γ-legal permutations. For the other direction, one can show that the existence of a Γ-legal
transvection implies that the quotient has infinitely many elements.

2.3.2 Condition for when PSO(𝐴Γ) is a right-angled Artin group

In this subsection, we state a condition about when PSO(𝐴Γ) is a right-angled Artin group. This
condition was developed and proved by Day and Wade in [8]. This is also the source for this
subsection, in particular, [8, Chapters 2 and 5]. We first need the following two definitions.

Definition 2.3. Let Γ be a graph and 𝑣 ≠ 𝑤 ∈ 𝑉(Γ). The pair (𝑣, 𝑤) is called a separating intersec-
tion of links if 𝑣 is not adjacent to𝑤, that is, {𝑣, 𝑤} ∉ 𝐸(Γ), andΓ − (lk(𝑣) ∩ lk(𝑤))has a component
that contains neither 𝑣 nor 𝑤.

We often use the formulation ‘(𝑣, 𝑤) is an SIL-pair’ for a pair (𝑣, 𝑤) that is a separating
intersection of links.
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RIGHT-ANGLED ARTIN GROUPS AS FINITE-INDEX SUBGROUPS OF THEIR OUTER AUTOMORPHISM GROUPS 949

Definition 2.4. Let Γ be a graph and 𝑣 ∈ 𝑉(Γ) be a vertex of Γ. We define the support graph 𝑆Γ𝑣
as follows. For every component 𝐶 of Γ − st(𝑣), there is a vertex in 𝑆Γ𝑣 . Two vertices 𝐴 and 𝐵 in 𝑆Γ𝑣
are connected by an edge if there is a vertex 𝑏 ∈ 𝐵 such that 𝐴 is also a component of Γ − st(𝑏).

Remark. Note that the definition above is not symmetric. That is, for two components 𝐴 and
𝐵 of Γ − st(𝑣), the fact that there is a 𝑏 ∈ 𝐵 such that 𝐴 is also a component of Γ − st(𝑏) is not
equivalent to the fact that there is an 𝑎 ∈ 𝐴 such that 𝐵 is also a component of Γ − st(𝑎). There is
an edge between 𝐴 and 𝐵 in the support graph if any of these two conditions holds.

Remark. As in Definition 2.4, we often use the same symbol for the vertices in the support graph
𝑆Γ𝑣 and the components of Γ − st(𝑣), even though these are not the same.

For 𝑏 ∈ Γ − st(𝑣), we often write the component of Γ − st(𝑣) that contains 𝑏 as [𝑏]𝑣. So, equiv-
alently, there is an edge between two vertices 𝐴 and 𝐵 in the support graph 𝑆Γ𝑣 if there is a
𝑏 ∈ Γ − st(𝑣) such that 𝐵 = [𝑏]𝑣 and 𝐴 is also a component of Γ − st(𝑏).
We now define the following graph Θ (depending on Γ). This graph has two types of vertices.

We call them vertices of types I and II. More precisely, for every vertex 𝑣 ∈ 𝑉(Γ), we have the
following vertices.

∙ Vertices of type I: For every edge 𝑒 in 𝑆Γ𝑣 , we have a vertex 𝛼
𝑣
𝑒 .

∙ Vertices of type II: We also have a vertex for every component of 𝑆Γ𝑣 except one, that is, we
have vertices 𝛽𝑣

1
, … , 𝛽𝑣

min(𝑁(𝑣)−1,0)
, where𝑁(𝑣) is the number of components of 𝑆Γ𝑣 . We take the

minimum with 0 to avoid the special case 𝑁(𝑣) = 0. This happens if Γ − st(𝑣) has no vertices
and thus also 𝑆Γ𝑣 has no vertices.

Concerning the edges, vertices of type II are connected to all other vertices and vertices 𝛼𝑣𝑒 and 𝛼
𝑤
𝑓

of type I are connected exceptwhen (𝑣, 𝑤) is an SIL-pair and the edges are of the form 𝑒 = {[𝑤]𝑣, 𝐿}
and 𝑓 = {[𝑣]𝑤, 𝐿}, where 𝐿 is a component of both Γ − st(𝑣) and Γ − st(𝑤).
We now state the theorem about when PSO(𝐴Γ) is a right-angled Artin group.

Theorem 2.5 [8, Theorem 5.12]. Let Γ be a graph. Then PSO(𝐴Γ) is a right-angled Artin group if
and only if all support graphs of Γ are forests. In this case, PSO(𝐴Γ) ≅ 𝐴Θ for Θ as defined above.

Remark. Note that in this theorem, in contrast to Definition 2.1, we also treat the group {id} =
𝐴∅ as a right-angled Artin group, where ∅ denotes the graph with no vertices. Namely, Θ is the
empty graph if all support graphs have at most one vertex. This happens, for example, when Γ is a
complete graph. Note that it makes sense that PSO(𝐴Γ) is the trivial group in this case since when
Γ is complete, then 𝐴Γ is ℤ|𝑉(Γ)|. Thus, conjugation by any element does nothing, so there are no
pure symmetric outer automorphisms except the identity.

In [8, Chapter 5], one can find an explicit construction of the isomorphism between the right-
angled Artin group 𝐴Θ and the group PSO(𝐴Γ) in case all support graphs of Γ are forests. They
define the vertices of type II more precisely in [8, Definition 5.4], describe the needed generators
of PSO(𝐴Γ) in [8, Section 5.1] and give the correspondence between the generators of 𝐴Θ and the
generators of PSO(𝐴Γ) in [8, Proposition 5.5].
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950 WIEDMER

F IGURE 1 Construction of Γ.

3 RIGHT-ANGLED ARTIN GROUPS AS FINITE-INDEX
SUBGROUPS OF 𝐎𝐮𝐭(𝑨𝚪)

In this section, we use Theorems 2.2 and 2.5 to show that every right-angled Artin group is a finite-
index subgroup of the outer automorphism group of some other right-angled Artin group. This is
Theorem A, which we here restate as Theorem 3.1.

Theorem 3.1. For any graph Λ, there is a graph Γ = Γ(Λ) such that

1. 𝐴Λ ≅ PSO(𝐴Γ) and
2. PSO(𝐴Γ) has finite index in Out(𝐴Γ).

Remark. We first want to comment on how this theorem and also Theorem 3.4 below were devel-
oped. We used computer programs that can be found on [16]. Using these, we found out that
for any graph with at most four vertices, the corresponding right-angled Artin group occurs as
PSO(𝐴Γ) for some graph Γ. We then generalised these examples step by step until we arrived at the
constructions given below. These computer programs are based on and contain parts of programs
written by Benjamin Brück, which can be found on [5] and were used for [15].

We assume without loss of generality that 𝑉(Λ) = {𝑣1, … , 𝑣𝑛}. We also assume 𝑛 ⩾ 3. The other
cases are covered in the Appendix. For a given graph Λ, we define the graph Γ = Γ(Λ) as follows.
We obtain Γ from Λ by adding vertices 𝑎1, 𝑎2, 𝑏1, 𝑏2, 𝑐1, … , 𝑐𝑛, 𝑑1 and 𝑑2 and the edges depicted
in Figure 1: The vertex 𝑑1 is connected to 𝑏1, to all vertices 𝑐𝑖 and to the vertex 𝑣1, but not to the
vertices 𝑣𝑗 for 𝑗 > 1. The vertex 𝑑2 is connected to 𝑏2, all 𝑐𝑖 and all 𝑣𝑗 except 𝑣1. The vertices 𝑐𝑖
are connected to 𝑑1, 𝑑2 and the vertices 𝑣𝑖 and 𝑣𝑖+1, where 𝑣𝑛+1 ∶= 𝑣1. In addition to the already
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RIGHT-ANGLED ARTIN GROUPS AS FINITE-INDEX SUBGROUPS OF THEIR OUTER AUTOMORPHISM GROUPS 951

F IGURE 2 Γ − st(𝑤) for some important vertices 𝑤 ∈ 𝑉(Γ).

defined edges, the vertices 𝑣𝑗 are connected to 𝑏1 and 𝑏2. Furthermore, we have the edges {𝑏1, 𝑎1},
{𝑏2, 𝑎2} and {𝑎1, 𝑎2}. Finally, if there are edges in Λ, these are also present in Γ. But as we work
with an arbitrary graph Λ, we did not draw them in Figure 1.
We want to prove the following two lemmas, which together imply Theorem 3.1.

Lemma 3.2. For this graph Γ = Γ(Λ), we have that PSO(𝐴Γ) is isomorphic to 𝐴Λ.

Lemma 3.3. For this graph Γ = Γ(Λ), PSO(𝐴Γ) has finite index in Out(𝐴Γ).

Proof of Lemma 3.2. We want to use Theorem 2.5. So, we first need to show that every support
graph is a forest. To compute the support graphs, we need to consider Γ − st(𝑤) for all vertices
𝑤 of Γ. Some of these are shown in Figure 2. The vertex 𝑤 is coloured in red, the rest of st(𝑤) is
coloured in light red and all other deleted edges are coloured in grey. Note that for Figure 2c, it
might be that also some of the vertices {𝑣2, … , 𝑣𝑛} should be coloured light red, namely all vertices
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952 WIEDMER

in stΛ(𝑣1). For the vertices that we did not consider in Figure 2, Γ − st(𝑤) is analogous to one of
the vertices we considered there.
We can see that for all vertices𝑤 that are not inΛ, Γ − st(𝑤) is connected, and thus, the support

graph 𝑆Γ𝑤 consists of one vertex. Here, we used that 𝑛 ⩾ 3, otherwise Γ − st(𝑐1), respectively, Γ −
st(𝑐2) have two components as 𝑐2, respectively, 𝑐1 become isolated. For the vertices 𝑣𝑖 , the graph
Γ − st(𝑣𝑖) has two components, one of which is {𝑎1, 𝑎2}. The second component contains all other
vertices that are not in the star of 𝑣𝑖 . Using the definition of the support graph, this means that
𝑆Γ𝑣𝑖

has two vertices. Whether there is an edge between them depends on whether 𝑉(Λ) ⧵ stΛ(𝑣𝑖)
is empty or not. If 𝑉(Λ) ⧵ stΛ(𝑣𝑖) ≠ ∅, then there is a 𝑣𝑗 ∈ 𝑉(Λ) ⧵ stΛ(𝑣𝑖) and {𝑎1, 𝑎2} is also a
component of Γ − st(𝑣𝑗). Thus, by Definition 2.4, in this case, there is an edge in the support
graph. However, if 𝑉(Λ) ⧵ stΛ(𝑣𝑖) = ∅, we cannot satisfy the condition of Definition 2.4, so the
support graph has no edge.
In summary,we see that all support graphs are forests, and thus,PSO(𝐴Γ) is a right-angledArtin

group by Theorem 2.5. As in this theorem, we call the underlying graph for this right-angled Artin
groupΘ. Furthermore, we know from the structure of the support graphs that there is exactly one
vertex 𝑢𝑖 in the graphΘ for every vertex 𝑣𝑖 in the graph Γ. Depending onwhether𝑉(Λ) ⧵ stΛ(𝑣𝑖) =
∅ or not, it is a vertex of type II or I. If 𝑉(Λ) ⧵ stΛ(𝑣𝑖) = ∅, then

𝑢𝑖 ∶= 𝛽
𝑣𝑖
1
.

If 𝑉(Λ) ⧵ stΛ(𝑣𝑖) ≠ ∅, then
𝑢𝑖 ∶= 𝛼

𝑣𝑖
𝑒𝑖
,

where 𝑒𝑖 is the edge in the support graph 𝑆Γ𝑣𝑖 .
We claim that we have 𝑣𝑖 ∼ 𝑣𝑗 if and only if 𝑢𝑖 ∼ 𝑢𝑗 , which shows that Λ is isomorphic toΘ. In

order to show this claim, we distinguish whether 𝑣𝑖 is adjacent to 𝑣𝑗 or not.

𝑣𝑖 ∼ 𝑣𝑗: If 𝑉(Λ) ⧵ stΛ(𝑣𝑖) = ∅ or 𝑉(Λ) ⧵ stΛ(𝑣𝑗) = ∅, then 𝑢𝑖 ∼ 𝑢𝑗 as 𝑢𝑖 , respectively, 𝑢𝑗 is of type
II and thus connected to all other vertices. Otherwise, both are of type I, but (𝑣𝑖, 𝑣𝑗) is
not an SIL-pair as they are connected. Thus, we have 𝑢𝑖 ∼ 𝑢𝑗 as well.

𝑣𝑖 ≁ 𝑣𝑗: Here, both 𝑉(Λ) ⧵ stΛ(𝑣𝑖) and 𝑉(Λ) ⧵ stΛ(𝑣𝑗) are non-empty. Thus, both 𝑢𝑖 and 𝑢𝑗 are of
type I. More precisely,

𝑢𝑖 = 𝛼
𝑣𝑖
𝑒𝑖
and 𝑢𝑗 = 𝛼

𝑣𝑗
𝑒𝑗
,

where 𝑒𝑖 and 𝑒𝑗 are again the corresponding edges in the support graphs 𝑆Γ𝑣𝑖 and
𝑆Γ𝑣𝑗

, respectively.
Also, Γ − (lk(𝑣𝑖) ∩ lk(𝑣𝑗)) has {𝑎1, 𝑎2} as a component because both 𝑏1 and 𝑏2 are in

lk(𝑣𝑖) ∩ lk(𝑣𝑗). As 𝑣𝑖 ≁ 𝑣𝑗 , we get that (𝑣𝑖, 𝑣𝑗) is an SIL-pair. Furthermore, the edges in the
support graphs of 𝑣𝑖 and 𝑣𝑗 are of the form ([𝑣𝑗]𝑣𝑖

, {𝑎1, 𝑎2}) and ([𝑣𝑖]𝑣𝑗 , {𝑎1, 𝑎2}). Hence,
there is no edge between 𝑢𝑖 and 𝑢𝑗 .

Thus, we indeed have that Λ ≅ Θ. We can conclude that

𝐴Λ ≅ 𝐴Θ ≅ PSO(𝐴Γ),

which is what we wanted to show. □
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RIGHT-ANGLED ARTIN GROUPS AS FINITE-INDEX SUBGROUPS OF THEIR OUTER AUTOMORPHISM GROUPS 953

TABLE 1 Determining when lk(𝑢) is a subset of st(𝑤).

𝐬𝐭(𝒂𝟏) 𝐬𝐭(𝒂𝟐) 𝐬𝐭(𝒃𝟏) 𝐬𝐭(𝒃𝟐) 𝐬𝐭(𝒗𝟏) 𝐬𝐭(𝒗𝒍) 𝐬𝐭(𝒄𝒋) 𝐬𝐭(𝒅𝟏) 𝐬𝐭(𝒅𝟐)

lk(𝑎1) ✓ 𝑏1 𝑎2 𝑏1 𝑎2 𝑎2 𝑎2 𝑎2 𝑎2

lk(𝑎2) 𝑏2 ✓ 𝑏2 𝑎1 𝑎1 𝑎1 𝑎1 𝑎1 𝑎1

lk(𝑏1) 𝑑1 𝑑1 ✓ 𝑑1 𝑎1 𝑎1 𝑎1 𝑎1 𝑎1

lk(𝑏2) 𝑑2 𝑑2 𝑑2 ✓ 𝑎2 𝑎2 𝑎2 𝑎2 𝑎2

lk(𝑣1) 𝑏2 𝑏1 𝑏2 𝑏1 ✓ 𝑑1 𝑏1 𝑏2 𝑏1

lk(𝑣𝑘) 𝑏2 𝑏1 𝑏2 𝑏1 𝑑2 ∗ 𝑏1 𝑏2 𝑏1

lk(𝑐𝑖) 𝑑1 𝑑1 𝑑2 𝑑1 𝑑2 𝑑1 ∗ 𝑑2 𝑑1

lk(𝑑1) 𝑐1 𝑐1 𝑐1 𝑐1 𝑐2 ∗ 𝑏1 ✓ 𝑣1

lk(𝑑2) 𝑐1 𝑐1 𝑐1 𝑐1 𝑐2 ∗ 𝑏2 𝑣2 ✓

We now prove the second lemma, which states that for this Γ = Γ(Λ), we have that PSO(𝐴Γ)
has finite index in Out(𝐴Γ).

Proof of Lemma 3.3. In order to prove this, we want to use Theorem 2.2, so we need to show that
lk(𝑢) ⊆ st(𝑤) implies 𝑢 = 𝑤.
We do this with Table 1, which lists all pairs (lk(𝑢), st(𝑤)). If lk(𝑢) ⊆ st(𝑤), we write a ‘✓’; oth-

erwise, we provide an element in lk(𝑢) ⧵ st(𝑤). Regarding the indices, 𝑖 and 𝑗 go from 1 to 𝑛 and
𝑘 and 𝑙 go from 2 to 𝑛. For the parts denoted with ‘∗’, we need to distinguish what the indices are,
which we do in the following. All these special cases need the assumption 𝑛 ⩾ 3. The problem
with 𝑛 = 2 is that we only have two vertices 𝑐𝑖 and both of them are connected to all vertices of Λ.
We also need this assumption in the table, namely that 𝑐2 ≠ 𝑐𝑛 and thus, 𝑐2 ∉ st(𝑣1).

∙ lk(𝑣𝑘) ⊆ st(𝑣𝑙) is only true if 𝑘 = 𝑙, otherwise there is a vertex of {𝑐1, … , 𝑐𝑛} that is in lk(𝑣𝑘) ⧵
st(𝑣𝑙).

∙ lk(𝑐𝑖) ⊆ st(𝑐𝑗) holds only if 𝑖 = 𝑗, otherwise a vertex of {𝑣1, … , 𝑣𝑛} is in lk(𝑐𝑖) ⧵ st(𝑐𝑗).
∙ lk(𝑑1) ⊈ st(𝑣𝑙) as 𝑐1 or 𝑐𝑛 is not in st(𝑣𝑙) since 𝑙 > 1.
∙ lk(𝑑2) ⊈ st(𝑣𝑙) by the same reasoning as for lk(𝑑1) ⊈ st(𝑣𝑙).

With the table and the special cases, we conclude that lk(𝑢) ⊆ st(𝑤) implies 𝑢 = 𝑤. As discussed
in the beginning, this concludes the proof. □

Next, we provide a better construction to strengthen Theorem 3.1.

Theorem 3.4. For any graph Λ, there is a graph Γ′ = Γ′(Λ) such that

1. 𝐴Λ ≅ PSO(𝐴Γ′),
2. PSO(𝐴Γ′) has finite index in Out(𝐴Γ′) and
3. Γ′ has no non-trivial graph automorphisms.

We again assume 𝑛 ⩾ 3; the other cases are covered in the Appendix. We get Γ′ = Γ′(Λ) from
Λ by adding the vertices 𝑎1, 𝑎2, 𝑎3, 𝑏1, 𝑏2, 𝑏3, 𝑐1, … , 𝑐𝑛, 𝑑1, 𝑑2 and 𝑑3 and the edges that are
shown in Figure 3: The vertices 𝑑𝑖 are connected to all vertices 𝑐𝑗 . Furthermore, 𝑑1 is con-
nected to 𝑣1 and 𝑏1, 𝑑2 to 𝑣2, 𝑑3 to 𝑣𝑘 for 𝑘 > 2 and to 𝑏3 and we have the edge {𝑑2, 𝑑3}.
Note that 𝑑2 is not connected to 𝑏2. As for the construction of Γ for Theorem 3.1, 𝑐𝑗 is con-
nected to 𝑣𝑗 and 𝑣𝑗+1 (𝑣𝑛+1 ∶= 𝑣1), the vertices 𝑣𝑘 are connected to 𝑏1, 𝑏2 and 𝑏3 and we have
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954 WIEDMER

F IGURE 3 Construction of Γ′.

all edges that are present in Λ also in Γ′. Finally, we have the edges {𝑏1, 𝑎1}, {𝑏2, 𝑎2}, {𝑏3, 𝑎3},
{𝑎1, 𝑎2}, {𝑎1, 𝑎3} and {𝑎2, 𝑎3}. The proof of the theorem now follows from the following three
lemmas.

Lemma 3.5. For this graph Γ′ = Γ′(Λ), we have that PSO(𝐴Γ′) is isomorphic to 𝐴Λ.

Lemma 3.6. For this graph Γ′ = Γ′(Λ), PSO(𝐴Γ′) has finite index in Out(𝐴Γ′).

Lemma 3.7. For this graph Γ′ = Γ′(Λ), Γ′ has no non-trival graph automorphisms.

Lemmas 3.5 and 3.6 can be shown as Lemmas 3.2 and 3.3 using Theorems 2.5 and 2.2. Thus, we
only comment on the proof of Lemma 3.7.

Proof sketch of Lemma 3.7. To show this, one uses the fact that a graph automorphism sends
adjacent vertices to adjacent vertices and, in particular, preserves the degree of every vertex. One
can first show that the levels of Γ′ are fixed, that is, the vertices 𝑎𝑖 aremapped to vertices 𝑎𝑗 by any
automorphism, and so on. This is done from bottom to top, that is, starting with the 𝑎𝑖 , then the
𝑏𝑗 , and so on. Next, one can show that this implies that the vertices also need be fixed pointwise
by any automorphism, which concludes the proof. □

We finish this section with a corollary about the structure of the quotient Out(𝐴Γ′)∕ PSO(𝐴Γ′)
and compute the index of PSO(𝐴Γ′) in Out(𝐴Γ′). We still assume 𝑛 ⩾ 3. One can prove a similar
version of this corollary for 𝑛 < 3 using the constructions in the Appendix.
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RIGHT-ANGLED ARTIN GROUPS AS FINITE-INDEX SUBGROUPS OF THEIR OUTER AUTOMORPHISM GROUPS 955

Corollary 3.8. For the graph Γ′ = Γ′(Λ) as described before,

Out(𝐴Γ′)∕ PSO(𝐴Γ′) ≅ (ℤ∕2ℤ)
𝑁,

and thus, the index of PSO(𝐴Γ′) inOut(𝐴Γ′) is 2𝑁 , where𝑁 = 2𝑛 + 9 is the number of vertices of Γ′.

Proof. Using the generators ofAut(𝐴Γ′) from Section 2.2, one can show that if PSO(𝐴Γ′) has finite
index in Out(𝐴Γ′), one has

Out(𝐴Γ′)∕ PSO(𝐴Γ′) ≅ Inv⋊Per .

Here, Inv is the subgroup of Out(𝐴Γ′) generated by inversions and Per is the subgroup generated
by Γ′-legal permutations. Since Γ′ has no non-trivial graph automorphisms, the group Per of Γ′-
legal permutations contains only the identity. Using that Inv ≅ (ℤ∕2ℤ)𝑁 for 𝑁 the number of
vertices of Γ′, we get that

Out(𝐴Γ′)∕ PSO(𝐴Γ′) ≅ Inv ≅ (ℤ∕2ℤ)
𝑁.

As |(ℤ∕2ℤ)𝑁| = 2𝑁 , we also get that the index of PSO(𝐴Γ′) in Out(𝐴Γ′) is 2𝑁 . To complete the
proof, it remains to argue why𝑁 satisfies the claimed equality. The graph Γ′ as constructed above
has 2𝑛 + 9 vertices because Λ has 𝑛 vertices and we add 𝑛 + 9 vertices. □

4 CONCLUSION AND OUTLOOK

We conclude this paper by summarising what we achieved and pointing out some possible direc-
tions for further research. In the paper [8], Day and Wade gave a condition for when PSO(𝐴Γ)
is a right-angled Artin group and which one it is. In this paper, we asked the question which
right-angled Artin groups occur as (finite-index) subgroups of Out(𝐴Γ) when we vary Γ. Using
the condition by Day–Wade and another condition byWade–Brück, we answered this question in
Theorem 3.1 by showing that every right-angled Artin group occurs as PSO(𝐴Γ) for some graph Γ
for which PSO(𝐴Γ) has finite index in Out(𝐴Γ).
A possible direction for further research is to simplify the construction or to impose further con-

ditions aswe did in Theorem 3.4, wherewe additionallywanted that the graphΓhas no non-trivial
graph automorphisms. The advantage of this compared to the theorem above is that it simplifies
the structure of the quotientOut(𝐴Γ)∕ PSO(𝐴Γ). For other simplifications, one could try to reduce
the number of vertices or to reduce the index of PSO(𝐴Γ) in Out(𝐴Γ).
Another interesting topic to think about is to go beyond the subgroup of pure symmetric outer

automorphisms and investigate for which graphs Γ a fixed right-angledArtin group𝐴Λ is a (finite-
index) subgroup of the outer automorphism group of𝐴Γ. As mentioned above, we showed in this
paper, using the subgroup of pure symmetric outer automorphisms, that every right-angled Artin
group 𝐴Λ occurs as a finite-index subgroup of Out(𝐴Γ) for some graph Γ. Also, for fixed Λ, one
can, using the condition of Day–Wade, answer the question when PSO(𝐴Γ) is isomorphic to 𝐴Λ.
Namely,𝐴Λ ≅ PSO(𝐴Γ) if and only if the graph Γ satisfies that all its support graphs are forests and
the graph described in Theorem 2.5 is isomorphic to Λ. It would be interesting to generalise this
to other examples that do not depend on the subgroup of pure symmetric outer automorphisms
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956 WIEDMER

and maybe for fixed Λ give conditions that a graph Γ needs to satisfy so that 𝐴Λ is a finite-index
subgroup of Out(𝐴Γ). Such results, even just for some graphs Λ, might give insights about how
right-angled Artin groups interact with their outer automorphism groups and help to find more
general results. However, a difficultywith this approach is that one cannot look at a fixed subgroup
of Out(𝐴Γ) but needs to consider all subgroups of Out(𝐴Γ) at the same time.
Another interesting path one could take is to change the point of view and return to the question

that Day and Wade asked; see [8, Question 1.1]. This is to not ask for fixed Λ when 𝐴Λ is a (finite-
index) subgroup of the outer automorphism group of another right-angled Artin group, but to ask
for fixed Γ which right-angled Artin groups occur as a (finite-index) subgroup of Out(𝐴Γ) and if
there are any at all. When restricted to the subgroup of pure symmetric outer automorphisms, this
is again answered by the condition of Day–Wade, but it would be interesting to generalise this to
arbitrary (finite-index) subgroups.
Finally, one could also try to find examples when the automorphism group Aut(𝐴Γ) has right-

angled Artin groups as (finite-index) subgroups. One could ask the same questions as the ones
asked by Day–Wade and in this paper. There is already a result known in this direction. Namely,
Charney–Ruane–Stambaugh–Vijayan prove in [7, Theorem 3.6] that the group PSA(𝐴Γ) is a right-
angledArtin group if the graphΓhas no separating intersection of links. ForPSA(𝐴Γ), one can still
use the condition for finite index as in Theorem 2.2 because PSO(𝐴Γ) has finite index inOut(𝐴Γ) if
and only if PSA(𝐴Γ) has finite index inAut(𝐴Γ). To show this, one needs that Inn(𝐴Γ) is a normal
subgroup of Aut(𝐴Γ) and that Inn(𝐴Γ) ⊆ PSA(𝐴Γ). Then, the natural map

(Aut(𝐴Γ)∕ Inn(𝐴Γ))∕(PSA(𝐴Γ)∕ Inn(𝐴Γ))⟶ Aut(𝐴Γ)∕ PSA(𝐴Γ)

is well defined and bijective. Thus, since

Out(𝐴Γ)∕ PSO(𝐴Γ) = (Aut(𝐴Γ)∕ Inn(𝐴Γ))∕(PSA(𝐴Γ)∕ Inn(𝐴Γ)),

the index of PSO(𝐴Γ) in Out(𝐴Γ) is the same as the index of PSA(𝐴Γ) in Aut(𝐴Γ). One could try
to use [7] and the finite-index condition from Theorem 2.2 to answer the question which right-
angled Artin groups occur as a (finite-index) subgroup of Aut(𝐴Γ) for some Γ. Similarly to this
paper, one could use computer programs to find examples and then try to generalise these.

APPENDIX: SMALL GRAPHS

In this appendix, we give examples for the graphs with less than three vertices to complete the
proofs of Theorems 3.1 and 3.4. For every such graphΛ, we give a graphΓ such thatPSO(𝐴Γ) ≅ 𝐴Λ,
PSO(𝐴Γ) has finite index inOut(𝐴Γ) and Γ has no non-trivial graph automorphisms. These graphs
were found using computer programs that can be found on [16]. This code can also be used to
check that they satisfy the conditions of Theorems 3.1 and 3.4. In this appendix, we only sketch
why the graph Θ as defined in Theorem 2.5 is indeed Λ.
Define Λ1 as the graph with one vertex, Λ2 as the graph with two vertices and no edge and Λ3

as the graph with two vertices and an edge. Then, one can show that the graphs Γ1, Γ2 and Γ3
as in Figures A1a, A1b and A1c satisfy the conditions stated above, that is, PSO(𝐴Γ𝑖 ) ≅ 𝐴Λ𝑖 (using
Theorem 2.5), PSO(𝐴Γ𝑖 ) has finite index inOut(𝐴Γ𝑖 ) (using Theorem 2.2) and Γ𝑖 has no non-trivial
graph automorphisms.
As mentioned above, we only sketch PSO(𝐴Γ𝑖 ) ≅ 𝐴Λ𝑖 ; for the complete arguments, the com-

puter programs from [16] can be used. For Γ1, 𝑣9 is the only vertex with a separating star. The

 14692120, 2024, 3, D
ow

nloaded from
 https://londm

athsoc.onlinelibrary.w
iley.com

/doi/10.1112/blm
s.12975 by E

T
H

 Z
urich, W

iley O
nline L

ibrary on [11/03/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



RIGHT-ANGLED ARTIN GROUPS AS FINITE-INDEX SUBGROUPS OF THEIR OUTER AUTOMORPHISM GROUPS 957

F IGURE A1 Proving Theorems 3.1 and 3.4 for the small graphs.

support graph consists of two vertices without an edge, and thus, we have only one vertex 𝛽𝑣9
1

in the graph Θ1 as defined in Theorem 2.5. For all other vertices 𝑣𝑖 , Γ1 − st(𝑣𝑖) is connected, and
hence, they do not define vertices inΘ1. Thus, we haveΘ1 ≅ Λ1. For Γ2, the vertices 𝑣6 and 𝑣7 are
the only ones with separating stars. Both their support graphs have two vertices and an edge, so
the graph Θ2 has two vertices 𝛼

𝑣6
𝑒6
and 𝛼𝑣7𝑒7 , where 𝑒6 and 𝑒7 are the edges in the support graphs of

𝑣6 and 𝑣7, respectively. These two vertices satisfy the condition for when there is no edge between
vertices of type I, and thus, the graph Θ2 has no edge. Thus, we have Θ2 ≅ Λ2. For Γ3, the ver-
tices 𝑣8 and 𝑣9 are the only vertices with separating stars and their support graphs have both two
vertices and no edge. Thus, in Θ3, we have two vertices 𝛽

𝑣8
1
and 𝛽𝑣9

1
and an edge. Hence, we have

Θ3 ≅ Λ3. Using Theorem 2.5, we get that PSO(𝐴Γ𝑖 ) ≅ 𝐴Λ𝑖 .

JOURNAL INFORMATION
The Bulletin of the London Mathematical Society is wholly owned and managed by the London
Mathematical Society, a not-for-profit Charity registered with the UK Charity Commission.
All surplus income from its publishing programme is used to support mathematicians and
mathematics research in the form of research grants, conference grants, prizes, initiatives for
early career researchers and the promotion of mathematics.

REFERENCES
1. I. Agol, The virtual Haken conjecture, Doc. Math. 18 (2013), 1045–1087. With an appendix by Agol, Daniel

Groves, and Jason Manning. ISSN: 1431-0635.

 14692120, 2024, 3, D
ow

nloaded from
 https://londm

athsoc.onlinelibrary.w
iley.com

/doi/10.1112/blm
s.12975 by E

T
H

 Z
urich, W

iley O
nline L

ibrary on [11/03/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



958 WIEDMER

2. A. Baudisch, Kommutationsgleichungen in semifreien Gruppen, Acta Math. Acad. Sci. Hungar. 29 (1977), no.
3–4, 235–249. ISSN: 0001-5954. https://doi.org/10.1007/BF01895842

3. M. Bestvina and N. Brady, Morse theory and finiteness properties of groups, Invent. Math. 129 (1997), no. 3,
445–470. ISSN: 0020-9910. https://doi.org/10.1007/s002220050168

4. C. Bregman, R. Charney, and K. Vogtmann,Outer space for raags, 2020. https://doi.org/10.48550/ARXIV.2007.
09725

5. B. Brück, Computations for out(raags), 2021. Python code. URL: https://github.com/benjaminbrueck/
computations_for_roars

6. B. Brück, Between buildings and free factor complexes: a Cohen-Macaulay complex for Out(RAAGs), J. Lond.
Math. Soc. (2) 105 (2022), no. 1, 251–307. ISSN: 0024-6107. https://doi.org/10.1112/jlms.12511

7. R. Charney, K. Ruane, N. Stambaugh, and A. Vijayan, The automorphism group of a graph product with no SIL,
Illinois J. Math. 54 (2010), no. 1, 249–262. ISSN: 0019-2082. https://doi.org/10.1215/ijm/1299679748

8. M. B. Day and R. D. Wade, Subspace arrangements, BNS invariants, and pure symmetric outer automorphisms
of right-angled Artin groups, Groups Geom. Dyn. 12 (2018), no. 1, 173–206. ISSN: 1661-7207. https://doi.org/10.
4171/GGD/442

9. M. B. Day and R. D. Wade, Relative automorphism groups of right-angled Artin groups, J. Topol. 12 (2019), no.
3, 759–798. ISSN: 1753-8416. https://doi.org/10.1112/topo.12101

10. V. Guirardel and A. Sale, Vastness properties of automorphism groups of RAAGs, J. Topol. 11 (2018), no. 1, 30–64.
ISSN: 1753-8416. https://doi.org/10.1112/topo.12047

11. S. Hensel and D. Kielak, Nielsen realisation for untwisted automorphisms of right-angled Artin groups, Proc.
Lond. Math. Soc. (3) 117 (2018), no. 5, 901–950. ISSN: 0024-6115. https://doi.org/10.1112/plms.12150

12. M. R. Laurence,A generating set for the automorphism group of a graph group, J. Lond. Math. Soc. (2) 52 (1995),
no. 2, 318–334. ISSN: 0024-6107. https://doi.org/10.1112/jlms/52.2.318

13. H. Servatius, Automorphisms of graph groups, J. Algebra 126 (1989), no. 1, 34–60. ISSN: 0021-8693. https://doi.
org/10.1016/0021-8693(89)90319-0

14. K. Vogtmann, GL(𝑛, ℤ), Out(𝐹𝑛) and everything in between: automorphism groups of RAAGs, Groups St
Andrews 2013, London Math. Soc. Lecture Note Ser., vol. 422, Cambridge University Press, Cambridge, 2015,
pp. 105–127. https://doi.org/10.1017/CBO9781316227343.005

15. R. D. Wade and B. Brück, A note on virtual duality and automorphism groups of right-angled Artin groups,
Glasgow Math. J. 65 (2023), no. 3, 573–581. https://doi.org/10.1017/S0017089523000149

16. M. Wiedmer, Raags as subgroups of out(raags), 2022. Python code. URL: https://github.com/manuelwiedmer/
RAAGsas-subgroups-of-Out-RAAGs-

17. M. Wiedmer, Right-angled Artin groups as finite-index subgroups of their outer automorphism groups, Master’s
thesis, ETH Zurich, Zurich, 2022. https://doi.org/10.3929/ethz-b-000538688

SUPPORT ING INFORMATION
Additional supporting information can be found online in the Supporting Information section at
the end of this article.

 14692120, 2024, 3, D
ow

nloaded from
 https://londm

athsoc.onlinelibrary.w
iley.com

/doi/10.1112/blm
s.12975 by E

T
H

 Z
urich, W

iley O
nline L

ibrary on [11/03/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

https://doi.org/10.1007/BF01895842
https://doi.org/10.1007/s002220050168
https://doi.org/10.48550/ARXIV.2007.09725
https://doi.org/10.48550/ARXIV.2007.09725
https://github.com/benjaminbrueck/computations_for_roars
https://github.com/benjaminbrueck/computations_for_roars
https://doi.org/10.1112/jlms.12511
https://doi.org/10.1215/ijm/1299679748
https://doi.org/10.4171/GGD/442
https://doi.org/10.4171/GGD/442
https://doi.org/10.1112/topo.12101
https://doi.org/10.1112/topo.12047
https://doi.org/10.1112/plms.12150
https://doi.org/10.1112/jlms/52.2.318
https://doi.org/10.1016/0021-8693(89)90319-0
https://doi.org/10.1016/0021-8693(89)90319-0
https://doi.org/10.1017/CBO9781316227343.005
https://doi.org/10.1017/S0017089523000149
https://github.com/manuelwiedmer/RAAGsas-subgroups-of-Out-RAAGs-
https://github.com/manuelwiedmer/RAAGsas-subgroups-of-Out-RAAGs-
https://doi.org/10.3929/ethz-b-000538688

