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Abstract

Structure and function in nanoscale atomistic assemblies are tightly coupled, and

every atom with its specific position and even every electron will have a decisive

effect on the electronic structure, and hence, on the molecular properties. Molec-

ular simulations of nanoscopic atomistic structures therefore require accurately

resolved three-dimensional input structures. If extracted from experiment, these

structures often suffer from severe uncertainties, of which the lack of information

on hydrogen atoms is a prominent example. Hence, experimental structures

require careful review and curation, which is a time-consuming and error-prone

process. Here, we present a fast and robust protocol for the automated structure

analysis and pH-consistent protonation, in short, ASAP. For biomolecules as a

target, the ASAP protocol integrates sequence analysis and error assessment of a

given input structure. ASAP allows for pKa prediction from reference data through

Gaussian process regression including uncertainty estimation and connects to

system-focused atomistic modeling described in Brunken and Reiher (J. Chem. Theory

Comput. 16, 2020, 1646). Although focused on biomolecules, ASAP can be extended

to other nanoscopic objects, because most of its design elements rely on a general

graph-based foundation guaranteeing transferability. The modular character of

the underlying pipeline supports different degrees of automation, which allows for

(i) efficient feedback loops for human-machine interaction with a low entrance barrier

and for (ii) integration into autonomous procedures such as automated force field

parametrizations. This facilitates fast switching of the pH-state through on-the-fly

system-focused reparametrization during a molecular simulation at virtually no extra

computational cost.
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1 | INTRODUCTION

The generation of a high-fidelity initial structure of a nanoscopic

chemical system for atomistic modeling is an important, but nontrivial

task. Especially for functional biopolymers, for which extensive experi-

mental structural databases exist, minimal structural rearrangements

within an active site or through allosteric effects can change, drive, or

even impede chemical processes such as enzyme catalysis.1,2

Of special usefulness and need is a protein-oriented framework

that enables control and building of structural models in a fast, repro-

ducible, robust, physically realistic, standardized, and automated man-

ner, making it possible to process structures with minimal and

unbiased human intervention. Only by such frameworks, computa-

tional studies of large structures (for instance, relying on molecular

quantum mechanics (QM), molecular mechanics (MM), QM/MM

hybrid simulations, or molecular dynamics (MD)) can be efficiently car-

ried out in a comprehensive and reproducible way.3 While efforts

have been made to predict structures from sequence information

alone,4–6 most simulations rely on experimentally curated input struc-

tures taken from X-ray crystallography or NMR spectroscopy, which

are collected in the protein data bank (PDB).7

Leveraging experimental data for simulations is appealing and

provides dense molecular information such as coordinates, atom

types, residue and chain information, connectivity, conformers, and

more. However, these structures often suffer from significant uncer-

tainties in the atomic coordinates and other structural errors. For

instance, incompletely resolved residues, unreasonable connectivities,

and atomic clashes can occur. These mismatches must be detected

and corrected, which can be handled in an automated fashion for

most of the above-mentioned structural issues through implementa-

tion of simple chemical rules. Chemical valences of an atom may, for

example, be evaluated by deriving connectivity information from sim-

ple distance-based rules, at least for organic and main-group chemical

compounds, which make up for a large part of many nanoscopic

bio-macromolecules.

Even accurately resolved experimental data that are not plagued by

these mismatches require careful processing. For instance, multiple con-

formers or ensembles of molecular models (determined by NMR experi-

ments) of the same structure can be condensed into a single PDB file

depending on the time resolution of the underlying measurements. For

enzymes, the conformers that reflect chemically relevant structural inter-

mediates of a catalytic cycle might be only a small portion of the

recorded structures in the file. Moreover, proteins may be subjected to

modifications (such as mutations) to facilitate the crystallization process,8

which might require correction for simulations of generic parent systems.

The multitude of the above-mentioned structural uncertainties

and mismatches are challenging to detect but propagate into the

property prediction in a simulation, because every single atom and its

position will have a decisive effect on the electronic structure of the

compound. Therefore, it is vital to review carefully every molecular

structure prior to simulation.

Apart from automated mismatch detection, the second challenge

of structure evaluation is that X-ray diffraction usually lacks resolution

of hydrogen atoms (which often can only be recovered by more

advanced techniques such as neutron scattering), and the many

vacant valences need to be occupied in a chemically consistent way,

reflecting also chemical constraints such as pH value and solvation.

Whereas the overall pH-stability of a nanoscopic system is primarily

determined by the global pKa value of the macromolecule, specific res-

idues adopt site-specific pKa values based on their local environment,

guiding the protonation state of this site. However, the assignment of

meaningful discrete protonation configurations in a protein is by no

means trivial, because the many close and long-range electrostatic

interactions that affect the protonation state of one specific site must

be accurately captured by the model that is employed to predict

the negative logarithm of the acid dissociation constant, the pKa.

Although the protonated configuration of highest probability could, in

principle, be found by extensive search in the space of protonated

configurations, this will rapidly become unfeasible because of the

combinatorial growth of their number with the number of protonation

sites and the number of protons to be added.

In this work, we present a physically meaningful and robust

pipeline for automated structure analysis and pH-consistent

protonation (denoted ASAP) based on quantum chemical reference

data. Our pipeline combines sequence analysis of a protein,

mismatch detection, addition of hydrogen atoms, solvation, and

pKa prediction from a quantum reference. It has been implemented as

part of our open-source software project SWOOSE
9 within the SCINE

10

infrastructure. While there are multiple computer programs that

can complete individual steps of the structure preparation pipeline,

only few unify many of the ASAP features, for instance, the protein

preparation wizard11 and the PDBFIXER of OpenMM.12 Compared

to them, our ASAP pipeline offers additional features as described in

the following.

We accomplish error detection through a graph-isomorphism

ansatz that extracts faulty occurrences of structural building blocks

within a large structure. We derive protonation probabilities through

a machine learning approach. In particular, a regression ansatz based

on a Gaussian process is trained on experimental pKa values and cor-

responding quantum chemical reference data. As any physicochemical

property model should be equipped with confidence intervals,13,14 we

provide uncertainty estimates for predicted pKa values directly deliv-

ered by the Gaussian process, such that special consideration is given

to residues whose pKa values are close to the system pH because they

are more prone to be misclassified. This delivers pKa values from the

deprotonation free energy in solution, which can be obtained with a

quantum chemical method.

Our workflow is seamlessly integrated into our pipeline for auto-

mated construction of quantum classical hybrid models.15 This implies

that the system-focused atomistic model16 (SFAM) for the given

structure can be generated, and the corresponding quantum region

can be selected in an automated fashion.15 The design of ASAP also

enables automated, on-the-fly (re)-parametrization of the SFAM force

field for a specific protonation state configuration, which we will

discuss in detail in future work. Although our approach is optimized

for biomolecular systems, it can be extended to other nanoscopic
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architectures due to its graph-based and first-principles foundations,

both being agnostic to the specific atomic composition.

This work is organized as follows: In Section 2, we discuss how

machine learning protonation probabilities can be derived from quan-

tum chemical reference data and corresponding confidence intervals

from Gaussian processes, followed by an overview of the computa-

tional methodology applied. In Section 3, we present the conceptual

design and all components of the ASAP pipeline. In Section 4, we

demonstrate the structure preparation protocol for chain A of the

peptide hormone insulin and subsequently study our approach for a

set of protein structures extracted from the PDB. Then, we illustrate

that pKa values in solution can be derived from a linear regression

ansatz, for which the isolated amino acids represent an ideal test case

as their pKa values are well known from experiment. Finally, we derive

protonation probabilities for selected sites in chain A of insulin.

2 | GENERAL CONSIDERATIONS AND
COMPUTATIONAL METHODOLOGY

2.1 | Protonation probabilities from a quantum
reference

The pKa value is a quantitative measure of the propensity of an acidic

molecule AH to dissociate into a proton (Hþ) and the corresponding

base (A�) in aqueous solution, measuring the protonation probability

at a given pH. It is defined as the negative base-10 logarithm of the

acidity constant Ka, which is the ratio of the concentrations of proton

Hþ and base A� and the acid AH in solution:

pKa ¼�log10ðKaÞ¼�log10
½A��½Hþ�
½AH� : ð1Þ

Note that Equation (1) is only valid at low proton concentrations. In

cases of high proton concentrations, the pKa value should be

expressed as a function of activities and activity coefficients of the

respective species instead of concentrations. The acidity constant

relates to the Gibbs free energy ΔGa of AH deprotonation in solution:

Ka ¼ exp �ΔGa

RT

� �
: ð2Þ

ΔGa in solution is given by:17

ΔGa ¼GaqðA�ÞþGaqðHþÞ�GaqðAHÞ¼ΔGaq
0 þGaqðHþÞ ð3Þ

with GaqðHþÞ, GaqðA�Þ, and GaqðAHÞ being the free energy of a proton,

a base A�, and the corresponding acid ðAHÞ in aqueous solution. The

difference of the latter two is denoted ΔGaq
0 . Insertion of Equation (2)

into Equation (1) yields17

pKa ¼ ΔGa

RT lnð10Þ : ð4Þ

For a reliable prediction of pKa values, the energy contributions in

Equation (3) must be calculated with sufficient accuracy, because an

error of� 1.36 kcal mol�1 in ΔGa translates into one pKa unit of error

on the logarithmic scale at T¼293:15 K. This accuracy is hard to

achieve for standard quantum chemical methods such as density func-

tional theory (DFT). Moreover, it is difficult to model the free energy

of a proton in solution reliably (last term in Equation (3)). Most studies

rely on the indirect calculation of ΔGa from a thermodynamic cycle

(see, for instance, References 18–21). Alternatively, this quantity can

be measured in experiments, which, however, can result in a mismatch

with the theoretical model chosen for the calculation of the other free

energy contributions.

Methods for pKa prediction can roughly be grouped into micro-

scopic, macroscopic, and empirical techniques. Macroscopic tech-

niques are rooted in grid-based continuum electrostatic schemes22,23

solving the Poisson–Boltzmann equation. Limitations of the Poisson–

Boltzmann ansatz are the neglect of specific protein-ion interactions

and that properties are usually calculated for a single structure, which

will only be valid if this structure is representative of protonated and

deprotonated states. Moreover, solvation effects described by a

dielectric continuum in an implicit solvation model will lack the explicit

description of hydrogen bonding between solute and solvent,

although they can be crucial.24 Microscopic methods, by contrast,

derive the pKa value from quantum chemical calculations,20,25–29

all-atom molecular dynamics simulations,30–33 or quantum classical

hybrid models.34,35 For these methods, the different routes to

pKa prediction build on the calculation of acidity in the gas or solution

phase, either with a dielectric continuum or with an explicit solvent

model.36 Empirical pKa prediction is mostly based on adding an empiri-

cal correction to a baseline model-pKa value.
37–40 This approach is

valuable because of its unmatched readiness, allowing for pKa prediction

in nanoscale structures within seconds, but it lacks a rigorous physical

foundation. Various pipelines implement different routes towards

pKa prediction (see, for example, PYPKA,41 PDB2PQR,42,43 and DELPHI
23

for Poisson–Boltzmann-based pKa prediction, the empirical approaches

Hþþ44 and PROPKA,45 and JAGUAR,46 which is DFT-based).

Klicic et al. have shown that errors in the computation of terms

required in Equation (4) are systematic25 (see also References

17,24,47), which can be exploited to leverage pKa prediction through

a linear regression ansatz. In such an ansatz, the pKa value of a given

site can be derived from free energies of acid and base only (con-

densed in ΔGaq
0 on the right-hand side of Equation (3)). These quanti-

ties can be calculated with standard electronic structure methods,

whereas the fitting parameters absorb both, the value of GðHþÞ and

(ideally) all other deficiencies of the QM method employed:

pKa ¼ sΔGaq
0

RT lnð10Þþ
sGaqðHþÞ
RT lnð10Þ¼ kΔGaq

0 þC: ð5Þ

The scaling factor s corresponds to an error correction for some given

computational method.48 An appropriate training set is then needed

to derive the regression parameters k and C. Not only does the

approach then circumvent the need to calculate all quantities in
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the thermodynamic cycle, but it also delivers an estimate for the free

energy of a proton for the applied method:

GaqðHþÞ¼C
k
: ð6Þ

We apply Gaussian process (GP) regression to the regression

problem in Equation (5) to derive confidence intervals for a given pre-

diction. The data points comprise the ΔGaq
0 values and the corre-

sponding experimental pKa values. GP regression is a probabilistic

Bayesian machine learning technique that predicts continuous quantities

from a given prior data set. An important advantage of GP models is that

they deliver an estimate for the prediction uncertainty,13,14,49–53 which

can be leveraged for physicochemical models provided that suitable mea-

sures for molecular similarity can be found (cf., References 54–57). For a

theoretical introduction to GPs, we refer to Section S1 in the Supporting

Information. Although a linear relationship is known for our case, the

application of GPs instead of ordinary linear regression provides several

advantages here. First of all, the homoscedasticity assumption, namely

that the residual terms in ordinary linear regression have the same stan-

dard deviation, is insufficient for the present problem. If our data point

requires extrapolation from the range of training data, the uncertainty of

the predictive mean will be high, resulting in an overall heteroscedastic

error distribution. Second, GPs offer an easy way to learn

(or incorporate) the uncertainty in both our variables x (precisely, the

accuracy of the employed QM method to calculate ΔGaq
0 ) and our func-

tion values y (the accuracy of the experimentally measured pKa value).

The latter is defined by the hyperparameter σ2y (for details, see Section

S1 in the Supporting Information). Note that Bayesian linear regres-

sion and bootstrapped linear least-squares regression50 are alterna-

tives for the present regression problem.

2.2 | Computational methodology

For all DFT calculations with the ORCA program package, version

4.2.0.,58,59 we applied the Perdew–Becke–Ernzerhof (PBE) pure60 and

the corresponding hybrid PBE0 hybrid61,62 density functionals with an

Ahlrich's def2-TZVP basis set.63 The resolution-of-the-identity

density-fitting technique was selected to accelerate all PBE calcula-

tions.64,65 Grimme's D3 dispersion correction with Becke–Johnson

damping was turned on in all DFT calculations.66,67 We applied the

implicit solvation model SMD68 with water as solvent. The dielectric

constant was chosen to be 80.4 and the solvent probe radius was set

to 1.3 Å. Thermodynamic quantities at 298.15 K were obtained by

application of the standard gas-phase model of statistical thermody-

namics; that is, by approximating the translational, rotational, and

vibrational degrees of freedom by the ideal gas, rigid rotor, and har-

monic oscillator models, respectively. We applied our MOLASSEMBLER

library69,70 for all graph-theoretical algorithms. As part of this work,

GP regression has been made freely available within our open-source

SCINE
10 UTILITIES library.71 All timings were measured on a computer

equipped with two Intel Xeon E5-2670 CPU with 2.60 GHz base

frequency on one single thread. Structures were visualized using

PYMOL 2.5.2.72

3 | AUTOMATED STRUCTURE
PREPARATION PIPELINE ASAP

The ASAP pipeline generates accurate structural models from some

given structural input data (with the preferred file format being the

PDB format). The preparation is implemented as a sequence of three

consecutive steps: In step 1, sequence analysis and error detection

are carried out through a subgraph isomorphism ansatz that sorts out

potentially faulty parts of the overall structure. In step 2, automated

protonation is performed. In step 3, the protonated structure is sol-

vated and the corresponding topology information for subsequent

MM parametrization step is generated.

As part of SCINE SWOOSE,9 we provide both, a fully automated and

a semi-automated variant of the ASAP pipeline, which offers high flex-

ibility with regard to the degree of interference between operator and

software. In the semi-automated supervised variant, the result of each

step is provided as temporary structural output data. These data can

be viewed, corrected, and fed back into the pipeline for subsequent

steps. The workflow is shown in Figure 1.

The building blocks for which the nanoscopic structure is

searched must be sorted such that the largest building block

is searched for first (to avoid false detection of occurrences in cases

where smaller building blocks are elements of larger building blocks,

that is, glycine is a substructure of almost all other amino acids). We

discuss the individual steps of ASAP in the following sections. For a

detailed step-by-step description, we refer to the SCINE SWOOSE manual

on GitHub.

3.1 | Graph-based automated structure analysis

In step 1 of the ASAP pipeline, a raw molecular structure is subjected

to error detection. The principle idea of our structure analysis

algorithm relies on the assumption that large parts of a nanoscopic

structure often consist of recurring building blocks. Examples are

proteinogenic amino acids in proteins, nucleotides in nucleic acids,

triglycerides in lipid double layers, monosaccharides in oligosugar

molecules.

We start by automatically converting the molecular input struc-

ture to a graph employing the MOLASSEMBLER
73 library. Furthermore, all

building blocks of a nanoscopic structure must be encoded as molecu-

lar graphs. Then, occurrences can be efficiently detected by applica-

tion of graph-isomorphism techniques, that is, by querying the

molecular graph of the overall structure for occurrences of each build-

ing block, which has been successfully demonstrated for related prob-

lems.74,75 For the graph construction, we apply flexible edge (element

type) and vertex (topography; in our case: distance-based connectiv-

ity) matching criteria, and do not evaluate three-dimensional features

of the building blocks (stereochemistry, conformers, and so forth).

764 CSIZI AND REIHER
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Note that we define a chemical bond based on the sum of the

relevant van der Waals radii (including an additional threshold of

0.4 Å). We provide the graph information of each building block as

string representations of the corresponding molecular graph.

The graph-based approach offers the advantage of a flexible

redefinition of the “building block”, because any molecular structure

can be converted to a molecular graph. In this work, our set of build-

ing blocks consists of the 20 proteinogenic amino acids, complemen-

ted by their selenium-containing analogs of methionine and cysteine

(selenomethionine, selenocysteine), and of pyrrolysine.

We fragment the input structure into a container for building

blocks and into a container for all substructures that either consist of

non–motif structures (containing non-amino-acid structures or amino

acids with incorrect connectivity or missing atoms). We denote the

resulting containers “regular module container” (RMC) and “nonregu-
lar module container” (NRMC), respectively. If applied to a protein

structure, the RMC containers will collect all amino acids that form

one or many polypeptide chains and the NRMC container will collect

all non-amino acid structure subunits. This search algorithm efficiently

characterizes the great majority of the input structure, while only a

small remainder (the NRMC) is to be carefully checked for errors by

the operator. This transfers the needle-in-a-haystack search, which

comprises an exhaustive manual enumeration of the nanoscopic struc-

ture, to a tailored, system-specific and local evaluation of erroneous

and nonstandard sites that are buried within a large structure.

For instance, amino acids with missing atoms will be transferred to

the NRMC, and can be corrected by the operator. This procedure

is currently favored over automatic procedures in order to ensure

a high fidelity of the structures. After finalization of step 1, a tem-

porary output is generated, where the substructures are stored in

separated files.

Although currently optimized for protein-type nanoscopic sys-

tems, our software can in principle easily be extended towards other

building blocks. For instance, a DNA strand can be searched for occur-

rences of the nucleobases by storing string representations of ade-

nine, cytosine, guanine, and thymine. Another example would be the

treatment of membrane proteins with ASAP, where our algorithms

can be extended by incorporating string representations of lipid build-

ing blocks into ASAP, which are then automatically checked for in the

large structure through the subgraph-isomorphism ansatz.

Moreover, we implemented two additional features into the pipe-

line: First, if the input structure is given in PDB format, multiple states

can be separated from one another if identified through a marker in

the file (for instance, different conformers or snapshots that are con-

densed in a single file). With this information at hand, one can either

process all input structures separately or pick one or a few of them

for further preprocessing. Note that we recommend discarding most

or all solvent molecules in this step (except those that might

Analyze the structure 

Operator feedback

Add hydrogen atoms

Operator feedback

Read in full
nanoscopic system

Assemble and solvate

au
to

m
at

e

Generate graphs with
MOLASSEMBLER

Bring building blocks 
into hierachy

Graph of building block
matches graph of full system?

Add to RMC. Add to NRMC.

Yes No

{ ALA ARG ASN ASP CYS GLN ... SER THR TRP TYR VAL }

element, position, index, atom type

Success.

F IGURE 1 Schematic workflow of the ASAP pipeline (left) and the graph-based structure analysis step 1 (right) as implemented in SCINE

SWOOSE (see text for further explanation). The preparation steps are highlighted in green.

CSIZI AND REIHER 765

 1096987x, 2024, 11, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/jcc.27276 by E

T
H

 Z
urich, W

iley O
nline L

ibrary on [02/05/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



contribute to chemical reactivity because they are in the vicinity of

the active site), and reinsert them in step 3 through a more systematic

explicit cluster-solvation approach (such as the one developed by us

in Reference 76).

Second, we apply a recursive bond search strategy in which we

iteratively transfer all correct building blocks that are covalently

bound to at least one non-regular module atom (for instance, a metal

center) also to the NRMC. This can be illustrated with a simple exam-

ple: Structure processing of plastocyanin (PDB-ID: 1AG677) separates

the overall structure into 737 atoms in the regular-module polypep-

tide chain and one single Cu2þ atom stored in NRMC. After recursive

bond search, the amino acids Cys84, His37, and His87 are transferred

to NRMC, as shown in Figure 2. The inclusion of the direct coordina-

tion environment around the metal site into NRMC facilitates the

assignment of charges and spin states, which is required to generate

the SFAM model from QM reference data after structure preparation.

3.2 | Addition of hydrogen atoms

In step 2 of ASAP, hydrogen atoms (which are usually not resolved in

crystallography) are added to both substructures in RMC and NRMC

separately. For this purpose, we exploit the redundancy of the recur-

ring building-block structure motifs, which were fully characterized

through the graph analysis in the previous step. In an amino acid, the

residue name and the atom type of each atom together form a unique

key from which the protonation pattern can be extracted. We apply

the IUPAC-IUB rules for atom typing in amino acids,78 which is the

default format in PDB files. In this format, atoms are labelled accord-

ing to their distance from the carboxylate carbon atom; for example,

the directly bound C atom is denoted “CA”. In phenylalanine (PHE),

for instance, atom “CG” is a phenylic carbon atom, whereas in lysine

(LYS), it is an aliphatic carbon atom, so that the protonation pattern

for this atom type is only well-defined in combination with the respec-

tive amino acid. With this information at hand, all atoms in the struc-

ture can be grouped according to how many hydrogen atoms must be

added and in which geometric arrangement they should be placed (for

the above example, PHE-CG is tetrahedrally coordinated, whereas

LYS-CG is trigonal planar). This is schematically shown for a peptide

chain as an example in Figure 3. For the 23 amino acids, the above cri-

teria define tetrahedral groups (with one to three hydrogen atoms to

be added), bent groups (with one hydrogen atom added), trigonal pla-

nar groups (with one hydrogen atom added) and pseudo-tetrahedral

groups (with one or two hydrogen atoms added and at least one poly-

hedral corner remains vacant). Assigning atoms into one of the above

groups is trivial at first glance, but it can become complicated if the

protonation state of a site depends on the chemical environment (that

is, the pH value and the solvent).

The NRMC substructures are protonated by the external

library OPENBABEL.79 We emphasize that OPENBABEL fills open

valences with hydrogen atoms based on a hybridization assign-

ment according to bond lengths and angles, so the result must be

inspected with care. For this purpose, this step generates tempo-

rary output holding the protonated substructures in a human-

readable format.

3.3 | Assembly and solvation

The third and last step in ASAP reassembles the final atomistic struc-

ture from the protonated RMC and NRMC substructures. Once

merged, the substructure boundaries are cleaned up, because super-

fluous hydrogen atoms might have been added as an artifact of the

fragmentation. Then, charge information are generated for the full

structure. For the RMC, this is realized through application of simple

chemical rules that derive atomic charges from the coordination envi-

ronment of an atom. Charges and corresponding spin states for the

NRMC need to be provided by the operator. Also, topological infor-

mation about the system's connectivity are generated, and the final

structure is solvated by application of a systematic microsolvation

approach developed in our group.76 As a success criterion, we evalu-

ate with SWOOSE whether the SFAM MM model16 can be generated

for the resulting structure: During SFAM model parametrization, the

atomistic structure is fragmented, and for each fragment, basic validity

checks are carried out (e.g., it is analyzed whether the assigned charge

and multiplicity form a fitting pair).

F IGURE 2 The recursive bond search algorithm implemented in the analysis step of the structure preparation pipeline.
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While the RMC is handled automatically by ASAP and always

delivers chemically correct structures (i.e., valences, charges, and mul-

tiplicities are reasonable and valid), errors in the assembled full system

can only be introduced by the operator in the NRMC; for instance, by

assigning incorrect charge-multiplicity pairs. For that reason, inspec-

tion and manipulation of the NRMC must be carried out carefully. Any

introduced errors will later be detected during the parametrization of

SFAM through aforementioned validity checks.

3.4 | Machine learning pKa prediction from a
quantum reference

The assignment of a discrete protonation state for specific sites buried

in a large structure as a function of environmental conditions (pH, sol-

vent) is a long-standing problem. As discussed above, the pKa can be

predicted from quantities calculated with electronic structure

methods, that is the free energy of deprotonation in solution. The

unfavorable scaling of these methods with the number of electrons,

however, hampers pKa prediction through Equation (4) for nanoscopic

structures.

ASAP implements a parallelizable and physically consistent

(i.e., derived from quantum mechanical calculations, typically DFT,

instead of empirical rules) pKa prediction protocol that is feasible for

nanoscale structures by virtue of a divide-and-conquer strategy. This

is achieved by coupling the linear regression procedure reviewed in

section 2.1 to the fragmentation scheme developed in the context of

the SFAM model parametrization.16 The fragmentation scheme allows

for the automated generation of spherical fragments around some

central atom, which, in the present context, is a pH-sensitive atom.

The radius of the sphere defining the size of the generated fragment

should be chosen by two criteria: First, the QM reference calculations

for the generated fragment must be computationally affordable. Sec-

ond, the size of the fragment sets a cut-off radius that determines to

what extent long-range electrostatic interactions, which affect the

protonation state, are explicitly evaluated. Every interaction beyond

this cut-off radius will be disregarded, as it is not part of the fragment

structure. For each site, both a protonated (AH, acidic) and a corre-

sponding deprotonated (A, basic) fragment are automatically con-

structed, as is shown for one cysteine residue in chain A of insulin in

Figure 4.

The two fragments are subjected to structure optimizations and

subsequent Hessian calculations. These reference calculations are car-

ried out during the MM model parametrization step and controlled by

the SCINE database module.80 This procedure offers several advan-

tages: First, it exploits the efficient parallelization of the MM model

parametrization at negligible additional cost. For example, to generate

reference data for the SFAM model of insulin chain A, which consists

of 328 atoms, 328 structure optimizations, and 328 subsequent

Hessian calculations need to be performed, because a fragment is

generated around each atom (the resulting redundancy can be

exploited for internal consistency checks). The peptide chain contains

only six pH-sensitive sites, that is, 12 additional reference calculations

need to be performed for the corresponding second state of the site.

Also, the force constants required for MM parametrization can be

extracted from these reference calculations for both species. Informa-

tion about them enables a change of the pH-value during a molecular

simulation with fast reparametrization of SFAM without the need to

F IGURE 3 Hydrogen atom addition algorithm for atom typing and grouping applied to a peptide chain of proline, cysteine, tryptophane,
aspartic acid, lysine, and threonine as an example.
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generate additional reference data for a different protonation state. In

transferable force fields, the parameters can easily be adjusted as the

atom type changes upon addition or removal of a proton. In the con-

text of system-focused atomistic models, however, the force field

parameters have been optimized for a specific molecular configura-

tion, so that an efficient strategy for parameter re-optimization will be

needed if minimal structural rearrangements occur.

4 | RESULTS AND DISCUSSION

4.1 | Automated structure processing at the
example of insulin chain A

We selected chain A of the peptide hormone insulin as an example to

demonstrate the capabilities of ASAP. The overall workflow, the result-

ing structures, and the generated output information are compiled in

Figure 5. The starting structure was a hexameric hormone that featured

10 conformers resolved in the experimental PDB file and was taken

from PDB-ID 1AI0.81 The zinc active site (Zn2þ) coordinates three his-

tidine ligands and one water ligand in a tetrahedral configuration.

We applied step 1 of ASAP to separate the overall structure into

its 10 conformers, all being candidates for further preprocessing. In all

conformers, only two solvent molecules were resolved in the structure

close to the active site, and they were therefore kept. After separation

of the 10 candidates, we selected candidate 4 for further preproces-

sing. In all other candidates, at least two of the three histidine ligands

were coordinated to the metal site at a distance of at least 2.4 Å, which

clearly exceeds both the tight range of 1.95-2.10 Å for this type of

bonds known from experiment82 and our definition of a chemical bond

derived from van der Waals radii (see above). Note that none of the

10 candidate structures exhibited interatomic distances that fit either

one of the two criteria for all Zn-coordinating ligands.

The graph-based analysis in step 1 resulted in a separation into

2380 RMC atoms and 96 NRMC atoms, as depicted in the first gray

box in Figure 5. The NRMC container was filled with the metal-center

active site and the corresponding ligands. In the second step, hydro-

gen atoms were added to the RMC substructure by applying the clus-

tering strategy based on atom typing and amino acid categorization as

described above. All pH-sensitive sites were protonated such that the

site is uncharged, by default. After the addition of hydrogen atoms to

the NRMC substructure, we assigned a charge of þ2 to both zinc

atoms (central gray box in Figure 5). Ultimately, the final processing

step 3 assembled both substructures and corrected the boundaries

(because superfluous hydrogen atoms were added as a result of cut-

ting bonds at the substructure interface), and determined the topol-

ogy by a distance-based connectivity evaluation. All corresponding

information was stored in separate files. This yielded the final struc-

ture depicted in the right gray box in Figure 5.

4.2 | ASAP preparation benchmark and
performance evaluation

To investigate the overall efficiency and stability, we applied ASAP to

three different data sets: The RS126 data set,83 the CB396 data set84

F IGURE 4 Fragmentation protocol applied to chain A of insulin, shown at the example of the pH-sensitive site in residue CYS48. The
corresponding acid (HA) and base (A) fragments are generated. Atom coloring: carbon, gray; hydrogen, white; oxygen, red; nitrogen, blue; and
sulfur, yellow.
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and the EVA685 data set. The corresponding PDB identification codes

are compiled in Table S1 of the Supporting Information. We com-

bined these three data sets to one large test set, which consists of,

in total, 589 structures. After ASAP processing, we found that only

210 structures required no further preprocessing, which corre-

sponds to 35% of the data set. That is, they consisted exclusively of

amino-acid motifs that have a chemically correct composition and

connectivity. Overall, 153 structures have at least two conforma-

tions resolved. For 88 % of the test-set compounds (518 structures),

we found that the NRMC substructure accounted for less than 5 % in

terms of atom count of the full system. Hence, in most cases, only a

very small portion of the full structure requires manual inspection

and curation.

For completeness, we compared the results obtained with ASAP

for selected PDB-IDs to the PDBFIXER software provided by OpenMM.

PDBFIXER also realizes different degrees of automation and precise

control of every part of the process. The main difference to ASAP is

that the pH-specific protonation states are derived empirically, and

that it cannot be directly coupled to the parametrization of a system-

focused atomistic model.

Regarding performance, our focus in this discussion is primarily

on assessing the time required for the graph isomorphism step. This is

driven by two key factors. First, it is the most time-consuming step in

ASAP. Second, a majority of the structures in the test set is unsuitable

for fully automated processing because they contain multiple non-

standard atoms or residues, as illustrated in Figure 6. Therefore, an

analysis of the times of the fully automated preparation step would

not be representative of the philosophy of ASAP. The results are

summarized in Figures 6 and 7.

We emphasize that structure preparation is computationally

negligible compared to subsequent SFAM parametrization, which can

consume days to weeks for large systems. For the largest error-free

structure (i.e., a structure that can be processed in full automation), all

three steps were completed within few minutes.

F IGURE 5 Schematic representation of the ASAP pipeline applied to chain A of insulin.
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4.3 | Quality assessment of structures prepared
with ASAP

To assess the structural integrity and validity of structures generated

by ASAP, we subjected a subset of the dataset to short MD simula-

tions (0.3 ns pressure equilibration and 1 ns NPT production run), and

evaluated selected features from these molecular dynamics trajecto-

ries. We furthermore compared the standard deviation of the total

energy as a criterion for overall structural stability to results from

structures processed with PDBFIXER of OpenMM.12 Currently, our

system-focused atomistic model is not fully compatible with available

MD software. This is due to the fact that we generate system-focused

atom-types and force field parameters for every individual structure,

together with customized functional forms (see Reference 16), which

can not directly be interfaced to a standard MD engine. Therefore, we

only selected those structures in the dataset that solely consist of

RMC substructures (which are, in total, 243 structures of our dataset).

In this case, the ASAP-structures (provided as XYZ coordinates) can

be converted into PDB files that are compatible with transferable

force fields. For all MD calculations, we employed the OPENMM pro-

gram package and the ff14SB force field.86 The pressure was set to 1

bar, the temperature to 298.15 K, the time step to 2.0 fs, the friction

to 1.0 ps�1, and every 100th step being recorded. All respective struc-

tures have been processed by ASAP in a fully automated manner, that

is, no operator interference was required, but the basic ASAP sugges-

tions were applied.

As illustrated in Figure 8, all inspected ASAP-structures remain

stable over a simulation time of 1 ns, maintaining structural integrity.

Furthermore, density and temperature quickly converge, which is

indicative of effective calibration and high-quality structures. The

standard deviation of the total energy during the simulation is on par

or similar to the well-established PDBFIXER.

4.4 | Automated pKa prediction

4.4.1 | Construction of a suitable training set

To train the GP model, we assemble six small-molecule data sets

for each of the six different pH-sensitive functional groups that can

be found in amino acids (vide infra). These groups comprise thiol

groups (–SH), alcohol groups (–OH), phenol groups (Ph–OH), car-

boxylate groups (–COOH), imidazole groups (Im-H), and primary

amines (–NH2). Once ΔGaq
0 is calculated for all training-set molecules,

the GP must be trained only once for each combination of functional-

group class and electronic structure method. We selected candidate

molecules for the six training sets according to two criteria:

(i) Accurate experimentally measured pKa values should be available

for (ii) preferably small and rigid molecular structure. The second crite-

rion mitigates the computational cost for training data evaluation for

different conformers. The training-set molecules and corresponding

pKa values for phenol and alcohol groups were taken from Reference

28, for thiol groups from Reference 87, for imidazole groups from Ref-

erences 88 and 48, for amines from References 48 and 89, and for

carboxylate groups from Reference 90; see Figure 9. Their Carte-

sian coordinates are given in Tables S2–S7 in the Supporting

Information.

We evaluate the relationship between calculated ΔGaq
0 and exper-

imental reference pKa through comparison of ordinary linear regres-

sion and GP regression. As shown in Figure 10, the GP efficiently

learns the linear relationship from only six data points each. Compared

to linear regression, which assumes a homoscedastically distributed

error, we find that the uncertainty of the predicted pKa from the GP is

higher in regions where our training-set data are sparse (and grows

even larger outside the boundaries of the training set, which is omit-

ted in Figure 10). GP models work well for the given regression prob-

lem, because they can be trained on small training data sets. However,

the training data presented in this work may be extended to cover an

even broader pH region.

F IGURE 6 (i) Atom-count ratios between REC and NREC
substructures for the test sets.

F IGURE 7 Distribution of wall times for the preparation of the
CB396, RS126, and EVA6 datasets with PDBFIXER (purple) and ASAP

(blue). The ASAP data refer to the graph-based analysis step only.
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We investigated whether semiempirical methods are a viable alter-

native to conventional DFT, as they allow for very fast pKa prediction

even for large structures at moderate computational cost and have

therefore been widely applied to nanoscopic structures.91–93 The

overall findings indicate that the reliability of semiempirical methods

in predicting protonation probabilities should be carefully assessed.

For a detailed discussion, see Section S4 Figures S2 and S3 in the Sup-

porting Information.

4.4.2 | pKa Prediction for isolated amino acids in
aqueous solution

We applied our trained GP model to report pKa values of the isolated

amino acids glutamic acid (GLU), aspartic acid (ASP), lysine (LYS),

tyrosine (TYR), histidine (HIS) and cysteine (CYS) because there are

reference pKa values available for these amino acids at standard con-

ditions in aqueous solution. We calculated pKa values in two ways: 1)

free energy difference of acid and base in solution were evaluated

according to Equation (5), and 2) electronic energy differences, which

do not contain entropy and enthalpy contributions of the nuclear scaf-

fold in the condensed phase, were considered as an efficient approxi-

mation. The predicted pKa values are compiled in Table 1.

We found that the predicted pKa values for the six amino acids

are overall consistent with the experimental values, with an MAE of

0.22 pKa units for PBE-D3 and 0.36 pKa units for PBE0-D3. The

PBE0-D3 functional slightly overestimated the pKa values compared

to the PBE-D3 functional with a mean signed error of 0.19 pKa units

compared to 0.01 pKa units. Note that we found basis sets of at least

triple-zeta quality to be required for sufficiently reliable predictions. In

F IGURE 8 Total energy (top left), temperature (top right), and density (bottom left) as a function of simulation time for
selected structures from the test set. The gray line indicates the end of NPT equilibration and the start of the actual simulation. On
the bottom right, the standard deviation of total energy during the simulation (0.3 ns ≥ t ≥ 1.3 ns) of ASAP-structures compared to
PDBFIXER-structures is depicted. The respective structures and trajectories generated by ASAP and the PDBFIXER can be found in the
ASAPdata dataset on Zenodo.
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F IGURE 9 Training-set molecules with known experimental pKa values (given below the label for the molecule) that were employed in the
GP. The compounds are labeled according to their functional group: Alcohol groups: A1-A6, phenol groups: P1-P6, thiol groups: S1-S6, carboxylic
acid groups: C1-C6, imidazole groups: I1-I6, amines: N1-N6.
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addition, we found no significant improvement in predicted pKa values

when free energy differences were evaluated compared to electronic

energy differences (for a demonstration of quantitative agreement in

predicted pKa values see Table 1, and for the verification of a linear

relation between ΔG and the pKa see Section S3, Figure S1, in the Sup-

porting Information). Hence, in the following, we chose for pKa prediction

in nanoscopic structures electronic energy differences only.

4.4.3 | pKa prediction in nanoscopic structures

We demonstrate pKa prediction for nanoscale structures at the exam-

ple of chain A of the peptide hormone insulin. The initial structure

was taken from PDB-ID 1AI0.81 We calculated the pKa value of six

pH-sensitive sites in insulin chain A, namely GLU27, CYS48, TYR101,

GLU127, TYR147 and CYS153. The subscripts denote the index of the

F IGURE 10 GP regression (blue) and corresponding linear regression (green) of training data from Figure 9.

TABLE 1 Predicted pKa values of
side chains of different amino acids (AA)
obtained with GP regression based on
PBE-D3 and PBE0-D3 results compared
to model pKa

94,95 data at standard
conditions.

Predicted pKa value

AA Ref. pKa

PBE-D3 PBE0-D3

From ΔEaq0 From ΔGaq
0 From ΔEaq0 From ΔGaq

0

GLU 4.4 4.20 � 0.26 4.74 � 0.41 4.67 � 0.38 4.86 � 0.45

ASP 4.0 4.37 � 0.29 4.42 � 0.31 4.39 � 0.29 4.53 � 0.34

HIS 6.3 6.52 � 0.25 6.54 � 0.25 6.04 � 0.26 6.18 � 0.26

CYS 8.5 8.38 � 0.29 8.47 � 0.28 8.28 � 0.30 8.49 � 0.28

TYR 9.6 9.73 � 0.32 9.74 � 0.32 9.58 � 0.29 9.55 � 0.29

LYS 10.4 10.07 � 0.28 10.43 � 0.33 9.42 � 0.26 10.32 � 0.32

MAE 0.22 0.26 0.36 0.20

Note: Mean absolute errors (MAE) were calculated as the sum of the absolute errors between the

reference pKa values of the six amino acids, and ASAP's predictive mean, weighted equally. For each

density functional, the first column contains pKa values learned from electronic energy differences of acid

and base (ΔEaq
0 ), while the second column derives this property from Gibbs free energy differences

(ΔGaq
0 ). For an overview of pKa values of amino acids in proteins, we refer the interested reader to

Reference 95 and references therein.
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pH-sensitive atoms that were either protonated or deprotonated. As

structure optimizations are very costly for structures with more than

300 atoms, we generated different-sized fragments around the pH-

sensitive atoms and optimized the structures with PBE-D3/

def2-TZVP. The size of the fragment determined the degree to which

long-range electrostatic interactions were explicitly considered when

evaluating the pKa value. We report the sensitivity of predicted

pKa values with respect to system size in Figure 11.

We found that especially carboxylate groups (atom indices

27 and 127 in the full structure) were very stable over a broad

range of differently sized spheres, highlighting that all relevant

interactions were accurately modelled even within the smallest

sphere of 5.5 Å. Moreover, we found that one of the phenolic

pH-sensitive atoms (atom index 101) was insensitive toward frag-

ment size, and one (atom index 147) exhibited slightly increased

sensitivity. For thiol groups, we found the largest variation with

regard to system size and no convergence of the pKa value with

increasing fragment size. This observation suggests that the variations

in predicted acidity constants are not a consequence of lacking electro-

static interactions, but rather a deficiency of the method or the structure.

This issue may be mitigated by application of explicit solvent models,

more accurate basis sets, and the generation of multiple conformers.

In the current implementation of ASAP, we do neither distinguish

between the two protonation states of the two oxygen atoms in the

carboxylic group of ASP and GLU, nor between those of the two

nitrogen atoms in the imidazole group of HIS. This is because we

assess protonation probabilities only after structure optimization,

during which the R-C bond of R-COOH and R-Imidazole are not con-

strained, but in principle allowed to rotate, rendering the respective

sites indistinguishable in principle. We stress that this rotation can

very well be sterically constrained by the protein environment and

would therefore require 2n reference calculations for n potential

protonation sites. The same holds true for pH-sensitive sites of differ-

ent amino acids that are spatially close, and can couple (as, for

instance, GLU35 and ASP52 in HEWL33). These coupling of proton-

ation states is currently not supported by ASAP.

Furthermore, we compared the results obtained with ASAP to

those obtained with the software packages PYPKA and PROPKA for

pKa prediction. The results are summarized in Table 2.

We find that the ansatz developed by us predicts pKa values in the

same order of magnitude as the empirical approaches PYPKA and

PROPKA for all functional groups except for TYR147. Here, our model

estimates a pKa value of 7.90 � 0.43, whereas the other models pre-

dict pKa values close to the reference value of the isolated amino acid

tyrosine. The decrease of 3 pKa units predicted by our model is due to

a stabilization of the deprotonated state through a hydrogen bond

with a neighboring amino-group, which increases the acidity of

this site.

To further validate the quality of pKa prediction, we assess

the predictive performance of ASAP for selected active sites in

the Barnase structure (PDB-ID: 1A2P)96), for which experimentally

well-resolved pKa values are available in the literature. The results are

summarized in Table 3.

For the selected pH-sensitive sites in 1A2P, we find excellent agree-

ment between pKa values from experiment and predicted with ASAP.

For the two histidine residues, ASAP data correctly reflect that the

pKa of HIS18 is more than one magnitude larger than the one of

HIS102, whereas PROPKA predicts both values to be below 6.0

pKa units, and PYPKA predicts both values to be greater than 6.0,

respectively. Furthermore, the pKa of ASP8 in Barnase is

F IGURE 11 Calculated pKa values for pH-sensitive sites in insulin
chain A and the corresponding prediction uncertainty. Note that the
lines between the data points should only guide the eye. Carboxylate
groups are labelled in blue, phenol groups are labelled in green, thiol
groups are labelled in pink.

TABLE 2 pKa values in chain A of insulin predicted with different
available models.

Amino acid (AA) PYPKA
41 PROPKA

45 SCINE SWOOSE Isolated AA

GLU27 4.09 4.56 4.74 � 0.41 4.4

CYS48 – – 8.96 � 0.28 8.5

TYR101 10.16 10.05 9.85 � 0.37 9.6

GLU127 4.58 4.66 4.79 � 0.42 4.4

TYR147 10.63 10.22 7.90 � 0.43 9.6

CYS153 – – 8.68 � 0.27 8.5

Note: The results from our model refer to fragments with an initial radius

of 5.5 Å. Note that neither with PYPKA nor PROPKA delivered pKa values for

cysteine groups.

TABLE 3 pKa values of selected residues in PDB 1A2P compared
to experimental pKa values from References 97, 98 taken from the
PKAD database.99

Residue Experiment ASAP PROPKA PYPKA

ASP8 3.1 � 0.197 3.0 � 0.6 2.86 2.9

HIS18 7.8 � 0.0297 7.2 � 0.3 5.37 6.79

GLU73 2.1 � 0.198 2.0 � 1.7 5.18 2.73

HIS102 6.3 � 0.0598 6.2 � 0.3 5.87 6.11
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approximately one order of magnitude decreased compared to the iso-

lated amino acid, a property that is accurately predicted by ASAP. How-

ever, the predicted uncertainty for GLU73 is comparatively high, owing

to the fact that the considerably low pKa value of this site exceeds the

range covered by our suggested training set, which can, however, be

further extended.

5 | CONCLUSIONS

Molecular simulation of chemical reactions in nanoscopic environ-

ments requires accurate, atomistically resolved molecular structures,

because molecular function is tightly coupled to the electronic struc-

ture to which every individual atom and electron contribute deci-

sively. However, experimentally determined structures are often

subject to significant uncertainties. Hence, structures obtained by

experiment must be carefully analyzed and processed before being

considered as a starting point for computational modeling. However,

this cannot be done manually for routine and high-throughput appli-

cations. Our ASAP workflow for structure analysis and protonation

achieves automation to a high degree and has been optimized for

biomolecular environments. It generates an accurate structural

model from experimental structure information in a fast and efficient

manner. Moreover, it combines sequence analysis, error detection,

machine learning protonation and pKa prediction as well as solvation

in a single framework. The ASAP workflow seamlessly integrates with

our automated SFAM molecular mechanics and hybrid model con-

struction approach, where the corresponding system-focused force

field and a quantum region can be generated for the ASAP-prepared

structure, which offers a physically consistent protocol for QM/MM

modeling.
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