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ABSTRACT
We investigate three aspects ofweak∗ convergence of the n-step dis-
tributions of random walks on finite volume homogeneous spaces
G/� of semisimple real Lie groups. First, we look into the obvious
obstruction to the upgrade from Cesàro to non-averaged conver-
gence: periodicity. We give examples where it occurs and conditions
under which it does not. In a second part, we prove convergence
towards Haar measure with exponential speed from almost every
starting point. Finally, we establish a strong uniformity property for
the Cesàro convergence towards Haar measure for uniquely ergodic
randomwalks.
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1. Introduction

Let G be a real Lie group and � a lattice inG, that is, a discrete subgroup of G such that the
homogeneous space X = G/� admits a G-invariant Borel probability measure mX . This
measure mX is unique and we refer to it as the (normalized) Haar measure on X. A good
example to have in mind is G = SLd(R) and � = SLd(Z).

The objects of study in this paper are random walks on X, given by probability measures
μ on G: A step corresponds to randomly choosing a group element g ∈ G according to μ
and thenmoving from the current locationX � x to gx. Starting at x0 ∈ X, the distribution
of the location after n steps is given by the convolution

μ∗n ∗ δx0 , (1)

which is the push-forward of the productmeasureμ⊗n ⊗ δx0 under themultiplicationmap
Gn × X � (gn, . . . , g1, x) �→ gn · · · g1x ∈ X.

The broader context in which the study of these random walks originated is that of
subgroup actions on homogeneous spaces. After Ratner’s treatment of the rigidity and
asymptotic properties of unipotent actions in her celebrated series of articles [21–24], a
new approach was needed to understand the dynamics of non-unipotent actions. Passing
from a deterministic to a probabilistic point of view turned out to be a particularly fruit-
ful angle. Still, understanding the long-term behaviour of random walks on homogeneous
spaces and the limiting behaviour of the n-step distributions (1) is a notoriously difficult
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problem. Major contributions to this line of study were made e.g. by Eskin–Margulis in
their work on non-divergence [15], and by Benoist–Quint in their breakthrough series of
articles [4,6–8].We reproduce one of themain results of [8] as motivating example. For the
statement, recall that a probability measure ν on X is called homogeneous if there exists a
closed subgroup H of G and a point x ∈ X such that supp(ν) = Hx is a closed orbit and ν

is H-invariant.

Theorem 1.1 (Benoist–Quint [8]): Let μ be a compactly supported probability measure on
G. Denote by S and G the closed subsemigroup and subgroup of G generated by supp(μ),
respectively, and suppose that the Zariski closure of Ad(G) in Aut(g) is Zariski connected,
semisimple, and has no compact factors. Then for every x0 ∈ X there is a homogeneous
probability measure νx0 on X with supp(νx0) = Sx0 = Gx0 and such that

1
n

n−1∑
k=0

μ∗k ∗ δx0 −→ νx0 (2)

as n→∞ in the weak∗ topology.

Here the weak∗ convergence (2) more explicitly means that for every compactly sup-
ported continuous function f ∈ Cc(X) we have

1
n

n−1∑
k=0

∫
X
f d(μ∗k ∗ δx0) =

1
n

n−1∑
k=0

∫
Gk

f (gk · · · g1x0) dμ⊗k(g1, . . . , gk) −→
∫
X
f dνx0

as n→∞. Recently, it was shown by Bénard–de Saxcé [3] that the compact support
assumption on μ in Theorem 1.1 can be relaxed to a finite first moment assumption; see
Remark 2.7. Another recent generalization of the theorem above in joint work of the author
with Sert and Shi [19] replaces the algebraic assumption on the support of μ by a certain
expansion condition, which allows for cases in which μ is e.g. supported on a parabolic
subgroup of a semisimple group.

Some questions left open by Theorem 1.1 are listed by Benoist–Quint at the end of their
survey [5]. A major one is the following.

Question 1.2: In the setting of Theorem 1.1, is it also true that

μ∗n ∗ δx0 −→ νx0 (3)

as n→∞?

Answers are available only in special cases: Breuillard [11] established (3) for certain
measures μ supported on unipotent subgroups, Buenger [12] proved it for some sparse
solvable measures, and in previous work the author dealt with the case of spread out mea-
sures [18]. Very recently, Bénard [2] observed that (3) holds for aperiodicmeasures μ under
the assumption that μ has two convolution powers which are not mutually singular.
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The purpose of this article is to discuss three (largely independent) aspects of random
walk convergence related to Theorem 1.1 andQuestion 1.2,mainly having inmind the case
that G is a semisimple real Lie group. We are going to use the following terminology.

Definition 1.3: Let ν be a probability measure on X and x0 ∈ X. We say that the random
walk onX given by μ converges to ν on average (resp. converges to ν) from the starting point
x0 if 1

n
∑n−1

k=0 μ∗k ∗ δx0 → ν (resp. μ∗n ∗ δx0 → ν) as n→∞ in the weak∗ topology.

Convergence on average is also commonly referred to asCesàro convergence. We use the
two terms interchangeably.

The article is organized as follows.
In Section 2, we look into the obvious obstruction to the upgrade from Cesàro conver-

gence to (non-averaged) convergence: periodicity. We show in Example 2.1 how (3) can
fail when x0 has finite orbit under S . Using a product construction, we can also produce a
counterexample in which the orbit closure Sx0 has positive dimension (Example 2.2). In
both cases, the periodic behaviour occurs at the level of the connected components of the
orbit closure. As it turns out, this is no coincidence: If, in the setting of Theorem 1.1, the
orbit closureSx0 is connected, there can be no periodicity (Theorem 2.5) and we can show
that the Cesàro convergence (2) also holds along arithmetic progressions (Corollary 2.8).

In Section 3, we establish effective convergence of randomwalks to the normalizedHaar
measure mX for typical starting points x0: When supp(μ) generates a Zariski dense sub-
group of a semisimple real Lie group G without compact factors, for any fixed L2-function
f on X the convergence ∫

X
f d(μ∗n ∗ δx0)

n→∞−→
∫
X
f dmX

not only holds but is in fact exponentially fast for mX-almost every x0 ∈ X (Theorem 3.2,
Proposition 3.4). The proof relies on an L2-spectral gap of the convolution operator

π(μ) : f �→
(
x �→

∫
G
f (gx) dμ(g)

)

acting on measurable functions on X. Taking into account regularity of the function f, the
above can be further strengthened to the statement that almost every x ∈ X is exponen-
tially generic (Definition 3.12): Up to a constant factor depending on derivatives of f, the
exponential speed of convergence holds uniformly over all compactly supported smooth
functions (Theorem 3.13). Key to this upgrade are the definition of suitable Sobolev norms
and a functional analytic argument involving relative traces, first exploited in a dynamical
context by Einsiedler–Margulis–Venkatesh [13].

Finally, in Section 4 we prove that convergence on average to mX happens locally uni-
formly in x0 in a strong way when the random walk is uniquely ergodic and admits a
Lyapunov function (Theorem 4.13). For example, this is the case when G is a connected
semisimple real algebraic group and supp(μ) generates a non-discrete Zariski dense sub-
group, and also in the setup of Simmons–Weiss [27], which has connections toDiophantine
approximation problems on fractals. To this end, we introduce the new concept of (Kn)n-
uniform recurrence (Definition 4.10), which refines recurrence properties of randomwalks
previously studied in [6,15].
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1.1. Standing assumptions & notation

Asmany of our arguments work in greater generality, in the remainder of the article we will
relax the assumptions stated at the beginning of this introduction. The following setup shall
be in place whenever nothing else is specified:G is a locally compact σ -compactmetrizable
group acting ergodically on a locally compactσ -compactmetrizable spaceX endowedwith
a G-invariant probability measuremX ; and μ is a Borel probability measure on G.

2. Periodicity

In this section, we start with two simple counterexamples to (3), which illustrate ways in
which a randomwalkmay exhibit periodic behaviour (Section 2.1). Analysing these exam-
ples for their common feature, we are led to a simple condition ensuring aperiodicity, stated
and proved in Section 2.2.

2.1. Examples

The first example with periodicity is on finite periodic orbits. In the following, for d ≥ 2
we denote by 1d the d× d-identity matrix.

Example 2.1: Consider the principal congruence lattice

� = �(2) = {g ∈ SL2(Z) | g ≡ 12 mod 2}

in G = SL2(R). Being the kernel of the reduction homomorphism from SL2(Z) to
SL2(Z/2Z), we recognize �(2) as a finite-index normal subgroup of SL2(Z). In particular,
�(2) is a lattice in G. Let μ = 1

2 (δh1 + δh2) with

h1 =
(
1 1
0 1

)
, h2 =

(
1 0
1 1

)
.

Then the closed subgroup G generated by supp(μ) = {h1, h2} is G = SL2(Z), which is
Zariski dense in G. The G-orbit of x0 = 12� ∈ G/� is

O = {x0, h1x0, h2x0, h2h1x0 = ( 1 1
1 2
)
x0, h1h2x0 =

( 2 1
1 1
)
x0,

h1h2h1x0 = h2h1h2x0 =
( 2 −1
1 0

)
x0
}
,

with transitions as shown in the following diagram:
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Consequently, we see that the random walk with starting point x0 alternates between
the two sets

O1 = {x0, h1h2x0, h2h1x0} and O2 = {h1x0, h2x0, h1h2h1x0}.

The 2-step randomwalks on these sets constitute irreducible, aperiodic, finite stateMarkov
chains, so that

μ∗2n ∗ δx0 −→
1
3

∑
p∈O1

δp,

μ∗(2n+1) ∗ δx0 −→
1
3

∑
p∈O2

δp,

as n→∞ in the weak∗ topology.

In the example above, the support of μ generates a Zariski dense subgroup of G and the
lattice � in G is irreducible. (Recall that, loosely speaking, ‘irreducibility’ of � means that
it does not arise from a product construction, cf. [20, Definition 5.20]). By the work of
Benoist–Quint [8, Corollary 1.8], these properties force any orbit closure Sx0 to be either
finite or all of X. As soon as intermediate orbit closures are possible, however, one can also
construct examples with periodic behaviour on non-discrete orbit closures.

Example 2.2: Let G, �, X = G/�, h1, h2, x0 and G be as in Example 2.1 and choose a
diagonalmatrix a ∈ SL2(R) such that the diagonal entries of a2 are irrational.We are going
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to consider the random walk on the product space

X × X = (G× G)/(� × �)

given by the probability measure μ = 1
4
∑4

i=1 δgi on G× G with

g1 = (h1, ah1a−1), g2 = (h1, 12),

g3 = (h2, ah2a−1), g4 = (h2, 12).

The (closed) subgroup generated by the support of thismeasure μ is given byG × aGa−1 =
SL2(Z)× a SL2(Z)a−1. Indeed, the correct entry in the second copy of G can be arranged
using a finite product of g±11 , g±13 , and then the entry in the first copy can be corrected
using g±12 , g±14 . By Theorem 1.1 we thus know that for the starting point (x0, x0) ∈ X × X
we have the weak∗ convergence

1
n

n−1∑
k=0

μ∗k ∗ δ(x0,x0) −→ ν(x0,x0)

as n→∞, where ν(x0,x0) is the homogeneous probability measure on the closure of the
G × aGa−1-orbit of (x0, x0). (Recall that it makes no difference for the closure whether
one considers the orbit under the generated subgroup or subsemigroup.)

Let us identify this orbit closure. In the first copy of X, we recognize the finite orbit O
from Example 2.1. In the second copy, we see the action of irrational conjugates of h1, h2.
As the acting group has product structure, the orbit closure in question is the product of
these two orbit closures in the components:

(G × aGa−1)(x0, x0) = O × aGa−1x0.

Since the orbit aGa−1x0 is infinite by our choice of the matrix a, it follows from
[8, Corollary 1.8] that aGa−1x0 = X, so that

(G × aGa−1)(x0, x0) = O × X and ν(x0,x0) = mO ⊗mX

for the normalized counting measure mO on O and the normalized Haar measure mX
on X. However, in analogy to Example 2.1, the random walk is found to alternate between
the sets

O1 × X andO2 × X,

in the sense that supp(μ∗2n ∗ δ(x0,x0)) ⊂ O1 × X and supp(μ∗(2n+1) ∗ δ(x0,x0)) ⊂ O2 × X
for all n ∈ N. Hence, we conclude that the random walk starting from (x0, x0) does not
converge to ν(x0,x0).

Remark 2.3: The same behaviour as in the previous example can be arranged inside a
homogeneous space X′ = G′/�′ that is the quotient of a semisimple real Lie group G′ by
an irreducible lattice �′. Indeed, this is only a matter of choosing suitable embeddings
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G× G ↪→ G′ and X × X ↪→ X′, whereG and X are as in Example 2.2. Concretely, one can
e.g. consider the 4× 4-congruence lattice

�′ = �(2) = {g ∈ SL4(Z) | g ≡ 14 mod 2}
in G′ = SL4(R) and the diagonal embeddings

G× G ↪→ G′, X × X ↪→ X′,

(g, h) �→
(
g

h

)
, (g�, h�) �→

(
g

h

)
�′.

We therefore see that Example 2.2, i.e. periodic behaviour on a non-discrete orbit closure,
can be realized inside X′ = G′/�′. Of course, after applying this embedding, the subgroup
generated by the support of μ will no longer be Zariski dense in G′.

2.2. An aperiodicity criterion

Inspecting the examples above, one may notice that their common salient feature is that
the orbit closure Sx0 is disconnected. This naturally raises the question whether periodic
behaviour can also occur when this orbit closure is connected. In what follows, we answer
this question in the negative. We shall use the following formalization of periodicity.

Definition 2.4: Assume that the random walk on X given by μ converges on average to
a probability measure ν on X from the starting point x0 ∈ X. We say that this conver-
gence is periodic if there exists an integer d ≥ 2 and pairwise disjoint measurable subsets
D0, . . . ,Dd−1 ⊂ X with ν(∂Di) = 0 for 0 ≤ i < d and such that (μ∗n ∗ δx0)(Dnmod d) = 1
for every n ∈ N. Otherwise, we call the convergence aperiodic.

The requirement on the boundaries of the sets Di is needed to ensure that the cyclic
behaviour is witnessed by the limit measure ν. Without a condition of this sort, one could
try to artificially defineDi as the set of all points in X that can be reached from x0 precisely
in n ≡ imod d steps. Indeed, this construction is possible for example when μ is finitely
supported with the property that its support freely generates a discrete subsemigroup S
of G and the starting point x0 ∈ X has a free S-orbit. The latter is the case e.g. for X =
SL2(R)/ SL2(Z),μ = 1

2 (δh1 + δh2)with h1 = ( 1 2
0 1 ) and h2 = ( 1 0

2 1 ), and x0 = a SL2(Z) for
a diagonal matrix a ∈ SL2(R) such that the diagonal entries of a2 are irrational.

We are now ready to state the announced aperiodicity theorem.

Theorem 2.5: Retain the notation and assumptions from Theorem 1.1 and let x0 ∈ X be
such that the orbit closureSx0 is connected. Then the Cesàro convergence to νx0 of the random
walk on X given by μ starting from x0 is aperiodic.

For the proof we need the following simple lemma.

Lemma 2.6: Let H be a Zariski connected real algebraic group and S a subset of H gen-
erating a Zariski dense subsemigroup. Then for every d ∈ N, also the d-fold product set
Sd = {gd · · · g1 | g1, . . . , gd ∈ S} generates a Zariski dense subsemigroup of H. In particular,
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if supp(μ) generates a Zariski dense subsemigroup for some probability measure μ on H, the
same is true for supp(μ∗d).

Proof: Let U ⊂ H be a non-empty Zariski open subset and consider the map φ : H→
H, g �→ gd. Sinceφ is Zariski continuous,φ−1(U) is Zariski open.Moreover, this preimage
is non-empty becauseU is dense in the Lie group topology and φ is a diffeomorphism near
the identity. By the assumption that S generates a Zariski dense subsemigroup, we can thus
find an element g ∈ φ−1(U) that is the product of finitely many elements of S. It follows
that φ(g) = gd lies in the intersection of U with the subsemigroup generated by Sd.

The second claim involving μ immediately follows from the above together with the
inclusion supp(μ∗d) ⊃ supp(μ)d. �

Proof of Theorem 2.5: Suppose d ∈ N is an integer such that there are pairwise dis-
joint D0, . . . ,Dd−1 ⊂ X with νx0(∂Di) = 0 for all 0 ≤ i < d and such that (μ∗n ∗
δx0)(Dnmod d) = 1 for all n ∈ N as in the definition of periodicity. We have to show that
d = 1.

First note that from Theorem 1.1 and the properties of the sets Di it follows that

νx0(D0) = lim
n→∞

1
n

n−1∑
k=0

(μ∗k ∗ δx0)(D0) = 1
d
, (4)

where the application of weak∗ convergence to the set D0 is justified since it has negligible
boundary with respect to the limit measure νx0 . In view of Lemma 2.6, Theorem 1.1 also
applies to the d-step random walk given by μ∗d. Assuming for the moment that the limit
measure for this d-step random walk starting from x0 coincides with νx0 , we deduce that

νx0(D0) = lim
n→∞

1
n

n−1∑
k=0

(μ∗dk ∗ δx0)(D0) = 1. (5)

Together, (4) and (5) imply d = 1, the desired conclusion.
It thus remains to show that the d-step random walk starting from x0 does indeed have

the same limit measure as the 1-step random walk. Denoting by S and Sd the closed
subsemigroups of G generated by supp(μ) and supp(μ∗d), respectively, this statement is
equivalent to the equality Sx0 = Sdx0 of orbit closures. To prove this, let g ∈ supp(μ) be
arbitrary. We claim that

Sx0 =
d−1⋃
k=0

g−kSdx0.

Indeed, since Sx0 is homogeneous, it is invariant under the group generated by S .
As Sx0 clearly contains Sdx0, the inclusion ‘⊃’ follows. For the reverse inclusion let
gn, . . . , g1 ∈ supp(μ) for some n ∈ N. Choose 0 ≤ k < d such that n+ k ≡ 0mod d. Then
gkgn · · · g1x0 ∈ Sdx0 and hence gn · · · g1x0 ∈ g−kSdx0, giving the claim.

We already noted that Theorem 1.1 applies to μ∗d. In particular, the orbit closure Sdx0
and its translates by g−k, 0 ≤ k < d, are submanifolds of Sx0. Necessarily, all these trans-
lates have the same dimension, and since together they make up Sx0 by the claim above,
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their shared dimension coincides with that of Sx0. This implies that Sdx0 is open in Sx0.
However, it is also closed, so that the assumed connectedness of Sx0 forces Sx0 = Sdx0.
This completes the proof. �

Remark 2.7: It was recently shown by Bénard–de Saxcé [3] that the compact support
assumption on μ in Theorem 1.1 can be relaxed. Indeed, their [3, Theorem C] establishes
the same conclusion under the substantially weaker assumption that μ has a finite first
moment, meaning that ∫

G
log‖Ad(g)‖ dμ(g) <∞.

Relying on this stronger result, also our Theorem 2.5 above and Corollary 2.8 below are
seen to hold under a finite first moment assumption on μ, instead of requiring compact
support as in Theorem 1.1.

We end this section by recording a corollary of the proof above.

Corollary 2.8: Retain the notation and assumptions from Theorem 1.1 and suppose that
Sx0 is connected. Let d ∈ N and denote by Sd the closed subsemigroup of G generated by
supp(μ∗d). ThenSx0 = Sdx0, and for the homogeneous probabilitymeasure νx0 on this orbit
closure we have for arbitrary r ∈ N0 that

1
n

n−1∑
k=0

μ∗(dk+r) ∗ δx0 −→ νx0 (6)

as n→∞ in the weak∗ topology.

Proof: The statement about orbit closures was established as part of the proof of
Theorem 2.5. From Theorem 1.1 we thus get the weak∗ convergence

1
n

n−1∑
k=0

μ∗dk ∗ δx0
n→∞−→ νx0 , (7)

which is (6) for r = 0. Given f ∈ Cc(X), the general case follows by applying (7) to the
compactly supported continuous function fr defined by

fr(x) :=
∫
G
f (gx) dμ∗r(g) =

∫
Gr

f (gr · · · g1x) dμ⊗r(g1, . . . , gr)

for x ∈ X. �

This corollary sharpens the convergence statement in Theorem 1.1 in the case of a
connected orbit closure: The Cesàro convergence to νx0 holds along arbitrary arithmetic
progressions. Although this does not provide an answer to Question 1.2, it at least allows
the following conclusion to be drawn: If (ni)i is a sequence of indices such that μ∗ni ∗ δx0
converges to a weak∗ limit different from νx0 as i→∞, then (ni)i cannot contain a density
1 subset of an infinite arithmetic progression.



252 R. PROHASKA

3. Spectral gap

In this section, we will explain how a spectral gap of the convolution operator π(μ) associ-
ated to a random walk entails the convergence of μ∗n ∗ δx towards mX for mX-a.e. x ∈ X.
In its simplest form, the involved argument works in great generality and also produces an
exponential rate of convergence from almost every starting point when the test function
f is fixed. This is done in Section 3.1. The following Sections 3.2–3.4 are dedicated to a
substantial refinement of this spectral gap argument for random walks on homogeneous
spaces of real Lie groups, making the exponentially fast convergence uniform over smooth
test functions.

3.1. Generic points

Recall that π(μ) : L∞(X,mX)→ L∞(X,mX) is defined by

π(μ)f (x) :=
∫
X
f d(μ ∗ δx) =

∫
G
f (gx) dμ(g)

for f ∈ L∞(X,mX) and x ∈ X, and that it extends to a continuous contraction on each
Lp-space (see [9, Corollary 2.2]). We shall study its behaviour on L2(X,mX). By ergodic-
ity, the G-fixed functions are the constant functions, so we restrict our attention to their
orthogonal complement L20(X,mX) of L2-functions with mean 0.

Definition 3.1: We say that μ has a spectral gap onX if the associated convolution operator
π(μ) restricted to L20(X,mX) has spectral radius strictly less than 1.

We are going to use the notation ρ(T) to denote the spectral radius of an operator T.
Then by the spectral radius formula, μ having a spectral gap on X can be reformulated as
the requirement that

ρ
(
π(μ)|L20

)
= lim

n→∞
n
√
‖π(μ)|nL20‖op < 1.

Given the existence of a spectral gap, we obtain an almost everywhere convergence result
in a quite general setup.

Theorem 3.2: Suppose that μ has a spectral gap on X. Then mX-a.e. x ∈ X is generic for the
random walk on X given by μ, meaning that

μ∗n ∗ δx −→ mX

as n→∞ in the weak∗ topology. This convergence is exponentially fast in the sense that for
every fixed f ∈ L2(X,mX) we have

lim sup
n→∞

∣∣∣∣
∫
X
f d(μ∗n ∗ δx)−

∫
f dmX

∣∣∣∣
1/n
≤ ρ

(
π(μ)|L20

)
(8)

for mX-a.e. x ∈ X.
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Proof: By separability of Cc(X), for the statement about weak∗ convergence it suffices to
provemX-a.s. convergence for one fixed function f ∈ Cc(X). Consequently, it is enough to
prove the second assertion of the theorem. To this end, fix a function f ∈ L2(X,mX) and
a rational number ρ(π(μ)|L20) < α < 1, and consider the L20-function f0 = f − ∫ f dmX .
Then in view of the spectral radius formula we have

‖π(μ)nf −
∫

f dmX‖L2 = ‖π(μ)nf0‖L2 ≤ ‖π(μ)|nL20‖op‖f0‖L2 ≤ αn‖f0‖L2

for sufficiently large n ∈ N.
Fix in addition a rational number ε ∈ (0, 1). By Chebyshev’s inequality, the above

implies that for large n we have

mX

({
x ∈ X

∣∣∣∣ ∣∣∣π(μ)nf (x)−
∫

f dmX

∣∣∣ ≥ αn(1−ε)‖f0‖L2
})

≤ ‖π(μ)nf − ∫ f dmX‖2L2
α2n(1−ε)‖f0‖2L2

≤ α2εn.

By Borel–Cantelli it follows that for all x in a full measure set Aα,ε , the inequality

|π(μ)nf (x)−
∫

f dmX| ≥ αn(1−ε)‖f0‖L2

holds only for finitely many n ∈ N. Since π(μ)nf (x) = ∫ f d(μ∗n ∗ δx), we conclude
that (8) holds for all x in a countable intersection of the sets Aα,ε over rational numbers α

approaching ρ(π(μ)|L20) and ε approaching 0 from above. �

Remark 3.3: In the second conclusion of Theorem 3.2, how long it takes for the expo-
nential rate of convergence to kick in depends on the point x. However, the measure
of sets on which one has to wait for a long time can be controlled as follows: Given
ρ(π(μ)|L20) < α < 1, choose N ∈ N such that ‖π(μ)|nL20‖op ≤ αn for all n ≥ N. Then if
we additionally take ε ∈ (0, 1) and denote

Bα,ε,n,f =
{
x ∈ X

∣∣∣∣ ∣∣∣π(μ)n
′
f (x)−

∫
f dmX

∣∣∣ ≥ αn′(1−ε)‖f0‖L2 for some n′ ≥ n
}
,

the proof above gives the bound

mX(Bα,ε,n,f ) ≤ α2εn

1− α2ε

for everyn ≥ N. In particular, themeasure of the set onwhich the exponential convergence
does not start during the first n steps decays exponentially in n.

We now demonstrate that the previous result covers the case announced in Section 1.

Proposition 3.4: Let G be a connected semisimple real Lie group without compact factors
and with finite centre, � ⊂ G a lattice, and X the homogeneous space G/� endowed with the
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Haar measure mX. Suppose that the closed subsemigroup S generated by supp(μ) has the
property that Ad(S) is Zariski dense in Ad(G). Then μ has a spectral gap on X.

Proof: Consider the regular representation of G on L20(X,mX). By Bekka [1, Lemma 3] it
doesn’t weakly contain the trivial representation. From this, in view of [25, Theorem C],
the result follows if we can argue that the projection of μ to any simple factor ofG is not sup-
ported on a closed amenable subgroup. However, since amenability passes to the Zariski
closure (see e.g. [28, Theorem 4.1.15]) the latter would imply that one of the simple fac-
tors of Ad(G) is amenable, hence compact by a classical result of Furstenberg (see e.g. [28,
Proposition 4.1.8]). �

3.2. Good height functions

Inspecting the proof of Theorem 3.2, one observes that every step is effective, with explicit
bounds and good control over the measure of exceptional sets, except for the very first
one: separability of the space Cc(X) of compactly supported continuous functions. In the
remainder of this section, we aim to also make effective this step, the goal being expo-
nentially fast convergence μ∗n ∗ δx → mX from almost every starting point, uniformly
over functions f on X. As merely continuous functions can behave arbitrarily badly (with
respect to the convergence problem at hand), there is no hope of achieving this feat for all
f ∈ Cc(X). We shall therefore restrict our attention to smooth functions of compact sup-
port, and take into account their regularity by considering not just their L2, but also certain
Sobolev norms. Built into the definition of these norms will be what we call a good height
function, the concept of which is introduced in this subsection.

Our setup is as follows: Let G be a real Lie group with Lie algebra g. We endow g with
a scalar product, which we use to define a right-invariant metric dG on G. Given a lattice
� ⊂ G, this metric descends to a metric dX on X = G/� such that the projection G→ X
is locally an isometry. Moreover, we fix an orthonormal basis of g, using which we will
identify g with Rdimg. Here is the crucial definition.

Definition 3.5: We call a measurable function ht : X→ (0,∞) a good height function if
there exists 0 < R ≤ 1 and a function r : X→ (0,R] with the following properties:

(i) The restriction of the exponential map exp : (−R,R)dimg→ G is a diffeomorphism
onto its image andwe have exp((−r/2, r/2)dimg) ⊂ BGr (e) for all r ≤ R, whereBGr (e)
denotes the open ball of radius r around the identity e ∈ Gwith respect to themetric
dG on G.

(ii) For all x ∈ X, the projection G ⊃ BGr(x)(e)→ X, g �→ gx is injective.
(iii) There exist constants c, κ > 0 such that r(x) ≥ c ht(x)−κ for all x ∈ X.
(iv) There exists a constant σ > 1 such that ht(x) ≤ σ ht(gx) for all x ∈ X and all g ∈

BGr(x)(e).

The definition suggests to think of a good height function as reciprocal of the injectivity
radius. And indeed, this viewpoint allows their construction on any homogeneous space
X = G/�.
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Proposition 3.6: Let G be a real Lie group and � a lattice in G. Then X = G/� admits a
good height function.

Proof: Choose R>0 such that condition (i) of the definition is satisfied and set r(x) =
min{R, rinj(x)}, where rinj(x) is the injectivity radius at x ∈ X, i.e. the maximal radius such
that (ii) holds at x. Define

ht(x) = r(x)−1.

Then the only thing that needs to be verified is the validity of (iv). We claim that it holds
with σ = 2. This will follow if we can show that

rinj(gx) ≤ 2rinj(x) (9)

whenever g ∈ BGr(x)(e). To this end, let r > rinj(x). Then by definition, there are distinct
g1, g2 ∈ BGr (e) such that g1x = g2x. As g ∈ BGr(x)(e), right-invariance of the metric implies

dG(gig−1, e) = dG(gi, g) ≤ dG(gi, e)+ dG(g, e) < r + r(x) < 2r

for i = 1, 2, and we also have (g1g−1)gx = (g2g−1)gx. This shows that rinj(gx) ≤ 2r, and
as r > rinj(x) was arbitrary, we see that (9) holds. �

Often, however, one might want to work with different, naturally occurring height
functions. The flexibility in our definition of a good height function accommodates this
possibility.

In the examples below, we denote by λ1(�) the length of a shortest non-zero vector in
a lattice � ⊂ Rd.

Example 3.7: Let G = SLd(R) and � = SLd(Z). Then X = G/� can be identified with
the space of lattices in Rd with covolume 1 via

X � g SLd(Z)←→ gZd ⊂ Rd.

Then the function ht = λ−11 , defined on X via the above identification, is a good height
function. Indeed, one can first choose R>0 such that (i) is satisfied, and then set r(x) =
min{R, rinj(x)} as in the proof of Proposition 3.6. Then (ii) is automatically satisfied, and
(iv) is valid for a suitable choice of σ due to the inequality λ1(gx) ≤ ‖g‖λ1(x) for g ∈ G
and x ∈ X, where ‖·‖ denotes any matrix norm. To see that also (iii) holds, let x = g�
and suppose that hx = x for some h ∈ G with h �= e. Then for all γ ∈ SLd(Z), the matrix
(gγ )−1h(gγ ) fixes the lattice Zd but is not the identity, so that

‖gγ ‖κ1‖h− e‖ ≥ ‖(gγ )−1(h− e)(gγ )‖ = ‖(gγ )−1h(gγ )− e‖ ≥ c1

for some constants c1, κ1 > 0. For a basis change γ ∈ SLd(Z) such that gγ consists of a
reduced basis of the lattice x we have ‖gγ ‖ ≤ c2λ1(x)−κ2 for some c2, κ2 > 0 (cf. e.g. [26,
Chapter III]). With this choice, the above inequality implies

‖h− e‖ ≥ cλ1(x)κ

for c = c1/c2 and κ = κ1κ2. Since near the identity, the metric dG on G is Lipschitz-
equivalent to the distance induced by ‖·‖, this establishes (iii).



256 R. PROHASKA

A similar construction is possible in a more general context.

Example 3.8 ([13]): Let G = G(R) be the group of real points of a semisimple Q-group
G and � an arithmetic lattice in G. Choose a rational Ad(�)-stable lattice gZ ⊂ g. Then,
using similar reasoning as in the previous example, the function ht on X = G/� defined
by

ht(x) = λ1(Ad(g)gZ)−1

for x = g� ∈ X is seen to be a good height function (cf. [13, Section 3.6]).

3.3. Sobolev norms

Given a good height function ht on X, the associated Sobolev norm of degree � ≥ 0 of a
compactly supported smooth function f ∈ C∞c (X) is defined by

S�(f )2 =
∑

degD≤�

‖ht(·)�Df ‖2L2 ,

where the sum runs over differential operatorsD given by monomials of degree at most �
in elements of the fixed orthonormal basis of g in the universal enveloping algebra.

In other words, the differential operators D appearing above are ∂v1 · · · ∂vk for any k-
tuple (v1, . . . , vk) of elements of the fixed basis of g, 0 ≤ k ≤ �, where ∂v for v ∈ g is defined
by

∂vf (x) = lim
t→0

f (exp(tv)x)− f (x)
t

for f ∈ C∞c (X) and x ∈ X.
Here are two immediate observations.

Lemma 3.9: Let ht be a good height function on X and S� the associated Sobolev norms.

(i) The norms S� are induced by inner products 〈·, ·〉� on C∞c (X).
(ii) Given 0 ≤ �0 ≤ �1, there exists a constant c̃ > 0 such that S�0 ≤ c̃S�1 .

Proof: Part (i) is clear. Part (ii) is also immediate from the definition of the Sobolev norms,
once we know that a good height function must be bounded away from 0. The latter, how-
ever, follows directly from property (iii) in the definition of a good height function, as the
function r appearing there is assumed to be bounded. �

The proof of our convergence result in Section 3.4 will depend on the following
proposition.

Proposition 3.10 ([13]): For the Sobolev norms associated to a good height function on
X, there exists a non-negative integer �0 ≥ 0 and a constant C>0 with the following
properties:

(i) (Sobolev embedding estimate [13, (3.9)]) For every f ∈ C∞c (X) it holds that ‖f ‖∞ ≤
CS�0(f ).
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(ii) (Finite relative traces [13, (3.10)]) For all integers � ≥ 0 the relative traceTr(S2
� |S2

�+�0
)

is finite, meaning that for any orthogonal basis (e(k))k in the completion of C∞c (X)with
respect to S�+�0

Tr(S2
� |S2

�+�0
) :=

∑
k

S�(e(k))2

S�+�0(e(k))2
<∞.

We refer to Bernstein–Reznikov [10] for a systematic treatment of relative traces. In
particular, it is proved in this reference that the above expression is independent of the
choice of orthogonal basis.

The proofs in [13] of the statements in the above proposition are given for the height
function from Example 3.8. However, the only properties used are those in our definition
of a good height function. In fact, the arguments only depend on validity of the second
statement in [13, Lemma 5.1], which holds in our context, as we demonstrate below.

Lemma 3.11: Let ht be a good height function on X. Then there exists a non-negative integer
�0 ≥ 0 and a constant C>0 such that for every non-negative integer � ≥ 0 and every differ-
ential operatorD given by a monomial of degree at most � in elements of the fixed basis of g
we have

|ht(x)�Df (x)| ≤ CS�+�0(f )

for every f ∈ C∞c (X) and x ∈ X.

Proof: We inspect the function F = Df in a chart around x given by the exponential map:
We set ε = r(x)/2, where r : X→ (0,R] is the function from the definition of a good height
function, d = dim g, and consider

F̃ : (−ε, ε)d → R, v �→ F(exp(v)x).

Then by the first statement of [13, Lemma 5.1], which is simply a Sobolev embedding
estimate on Rd, we know

|F(x)| = |F̃(0)| ≤ C12dr(x)−dSd,ε(F̃), (10)

whereC1 > 0 is a constant depending only on the dimension d of g andSd,ε is the standard
degree d Sobolev norm on the open subset (−ε, ε)d of Rd, i.e.

Sd,ε(F̃)2 =
∑
|α|≤d
‖∂αF̃‖2L2((−ε,ε)d),

where the sum is over all multi-indices α of degree at most d and ∂αF̃ is the correspond-
ing standard partial derivative of F̃. Using property (iii) in the definition of a good height
function, (10) implies that

|ht(x)�F(x)| ≤ C2 ht(x)�+�0Sd,ε(F̃), (11)

where C2 > 0 is another constant and we used that ht is bounded away from 0 to replace
κd appearing in the exponent by �0 = max{�κd�, d}. Using properties (i) and (ii) in the
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definition of a good height function, we find C3 > 0 such that

Sd,ε(F̃) ≤ C3

√ ∑
degD′≤d

‖D′F|BXr(x)(x)‖
2
L2 . (12)

To see this, one needs to note two things: firstly, that by the chain rule the partial derivatives
of F̃ at a point v ∈ (−ε, ε)d in the chart can be expressed as linear combinations of deriva-
tives D′F appearing on the right-hand side in (12) evaluated at the corresponding point
x′ = exp(v)x, with fixed coefficient functions depending only on finitely many derivatives
of the exponential map on (−ε, ε)d; and secondly, that the Haar measure mX is a smooth
measure, meaning that it has a smooth and nowhere vanishing density w.r.t. Lebesgue
measure in the chart.

Combining (11), (12), condition (iv) in the definition of a good height function, and
plugging back in the definition of F, we finally arrive at

|ht(x)�Df (x)| ≤ C4

√ ∑
degD′≤d

‖ht(·)�+�0D′Df |BXr(x)(x)‖
2
L2 ≤ C4S�+�0(f ),

for yet another constant C4 > 0, which is the one appearing in the lemma. �

3.4. Exponentially generic points

Now we are ready to define the notion of effective genericity we wish to establish, and to
prove the main convergence result of this section.

Until the end of this section, we fix a good height function ht on X. Moreover, given a
bounded measurable function f on X and n ∈ N we will use the notation

Dn(f )(x) = π(μ)nf (x)−
∫

f dmX

for x ∈ X. We refer to Dn(f ) as the time n discrepancy for the function f.

Definition 3.12: We say that a point x ∈ X is (�,β)-exponentially generic if � ≥ 0 is a non-
negative integer and β a real number in (0, 1) satisfying

lim sup
n→∞

sup
f∈C∞c (X)\{0}

( |Dn(f )(x)|
S�(f )

)1/n
≤ β ,

where S� is the degree � Sobolev norm associated to ht.

With this terminology, we have the following result, which quantifies the dependence
on the function f in the effective part of Theorem 3.2.

Theorem 3.13: Let G be a real Lie group, � ⊂ G a lattice and X = G/� endowed with the
Haar measure mX. Suppose that μ has a spectral gap on X. Then there exists a non-negative
integer �1 ≥ 0 such that mX-almost every point x ∈ X is (�1, ρ(π(μ)|L20))-exponentially
generic.
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Our argument uses ideas from the proof of [13, Proposition 9.2]. Recall that 〈·, ·〉�
denotes the inner product associated to the Sobolev norm S�.

Proof: Set �1 = 2�0 with �0 from Proposition 3.10. We denote by H the completion of
C∞c (X) with respect to S�1 .

The first step of the proof is to argue that H admits an orthonormal basis (e(k))k with
respect to S�1 that is also orthogonal with respect to S�0 . To this end, let us endow H
with the scalar product 〈·, ·〉�1 associated to S�1 . This makes H into a Hilbert space. As a
consequence of Lemma 3.9(ii), 〈·, ·〉�0 defines a bounded positive definite Hermitian form
on (H, 〈·, ·〉�1). Using Riesz representation it follows that there is a bounded positive self-
adjoint operator T on (H, 〈·, ·〉�1) such that

〈v,w〉�0 = 〈Tv,w〉�1
for all v,w ∈ H. Finiteness of the relative trace Tr(S2

�0
|S2

�1
) from Proposition 3.10(ii)

then translates into the statement that T is a trace-class operator on (H, 〈·, ·〉�1) (cf. [14,
Proposition 6.44]); in particular, the operator T is compact (cf. [14, Proposition 6.42]).
By the spectral theorem, T is thus diagonalizable. Hence, an orthonormal basis (e(k))k of
(H, 〈·, ·〉�1) consisting of eigenvectors of T is a basis with the desired properties.

Next, fix rational numbers ρ(π(μ)|L20) < α < 1 and ε ∈ (0, 1). As in the proof of
Theorem 3.2, using Chebyshev’s inequality we find that for every k ≥ 0 and large enough
n we have

mX

({
x ∈ X

∣∣∣ |Dn(e(k))(x)| ≥ αn(1−ε)S�0(e
(k))
})

≤ ‖e
(k)
0 ‖2L2

S�0(e(k))2
α2εn ≤ ‖e

(k)‖2L2
S�0(e(k))2

α2εn, (13)

where e(k)0 = e(k) − ∫ e(k) dmX . Since the relative trace Tr(S2
0 |S2

�0
) is finite by Propo-

sition 3.10, the terms on the right-hand side of (13) are summable over k, n ≥ 0.
Borel–Cantelli thus implies that

lim sup
k,n≥0

{
x ∈ X

∣∣∣ |Dn(e(k))(x)| ≥ αn(1−ε)S�0(e
(k))
}

is a null set. Let Aα,ε be the complement of this null set. We claim that any x ∈ Aα,ε is
(�1,α1−ε)-exponentially generic. Fix such a point x. Then we know that there are only
finitely many pairs (k, n) with |Dn(e(k))(x)| ≥ αn(1−ε)S�0(e(k)). Thus, there exists n0 such
that for n ≥ n0 the inequality |Dn(e(k))(x)| < αn(1−ε)S�0(e(k)) holds for all k. Now let f ∈
C∞c (X) \ {0} be arbitrary and write f =∑k fk e

(k) for the expansion of f in terms of the
orthonormal basis (e(k))k. Then, using the triangle inequality, we can estimate the time n
discrepancy for f as follows:

|Dn(f )(x)| ≤
∑
k

|fk||Dn(e(k))(x)|. (14)

The exchange of integral and summation involved in the above estimate is justified by
part (i) of Proposition 3.10: It ensures that the functions e(k) are defined pointwise and
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the series expansion of f converges uniformly. Next, for n ≥ n0 an application of the
Cauchy–Schwarz inequality implies that the right-hand side of (14) is strictly less than

αn(1−ε)

(∑
k

|fk|2
)1/2 (∑

k

S�0(e
(k))2

)1/2

= αn(1−ε)S�1(f )Tr(S2
�0
|S2

�1
)1/2. (15)

Again by Proposition 3.10, the relative trace Tr(S2
�0
|S2

�1
) is finite. Hence, in view of our

definition of exponential genericity and the fact that n0 does not depend on f, combin-
ing (14) and (15) establishes the claim. It follows that all x in a countable intersection of
the sets Aα,ε over rational numbers α approaching ρ(π(μ)|L20) and ε approaching 0 from
above are (�1, ρ(π(μ)|L20))-exponentially generic, giving the theorem. �

Remark 3.14: In analogy to Remark 3.3, we can control the measure of the set of points
where exponentially generic behaviour is not observed for a given number of steps: If we
define

Bα,ε,n =
{
x ∈ X

∣∣∣ |Dn′(f )(x)| ≥ αn′(1−ε)S�1(f )Tr(S2
�0
|S2

�1
)1/2

for some n′ ≥ n, f ∈ C∞c (X)
}

for ρ(π(μ)|L20) < α < 1, ε ∈ (0, 1) and n ∈ N, and N ∈ N is chosen such that
‖π(μ)|nL20‖op ≤ αn for all n ≥ N, then for every n ≥ N it holds that

mX(Bα,ε,n) ≤ Tr(S2
0 |S2

�0
)

α2εn

1− α2ε .

Indeed, we have Bα,ε,n ⊂
⋃

n′≥n,k≥0
{
x ∈ X

∣∣∣ |Dn′(e(k))(x)| ≥ αn′(1−ε)S�0(e(k))
}
, as the

proof of Theorem 3.13 demonstrates. Thus, again, the measure of the set of ‘bad points’,
on which exponential genericity takes more than n steps to manifest, is itself exponentially
small in n.

4. Uniform Cesàro convergence

In this last section, we explore the situation where the only possible limit in Theorem 1.1 is
the normalizedHaarmeasuremX . In this setting, by analogywith the case of unique ergod-
icity in classical ergodic theory, it is reasonable to expect theCesàro convergence (2) to hold
(locally) uniformly in the starting point x0. We shall prove in Section 4.1 below that this
indeed holds true. In Section 4.2, we conclude the article by showing that inmany naturally
occurring situations something even stronger than locally uniform can be achieved.

Before continuing with the pertinent definitions, let us recall that even though the setup
of Theorem 1.1 is ourmotivation and useful to have inmind, formally we are working with
the assumptions stated at the end of Section 1: (X,mX) is merely required to be a space with
a G-action for whichmX is invariant and ergodic.

Definition 4.1: A probability measure ν on X is called μ-stationary ifμ ∗ ν = ν. The ran-
dom walk on X induced by μ is called uniquely ergodic if mX is the unique μ-stationary
probability measure on X.
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In particular, for a randomwalk to be uniquely ergodic, there must be no finite G-orbits
in X, where G denotes the closed subgroup of G generated by μ. In the case that X = G/�

for a lattice � in G, this happens if and only if G is not virtually contained in a conjugate
of �. (Recall that a subgroup H of G is said to be virtually contained in a subgroup L of
G if H ∩ L has finite index in H.) In fact, in many cases of interest, finite orbits are the
only obstruction to unique ergodicity: For example, this is true when G is a connected
semisimple Lie group without compact factors, � is an irreducible lattice, X = G/�, and
Ad(S) is Zariski dense in Ad(G) (see [8, Corollary 1.8]); and also in the setting of [27], a
special case of which is reproduced below as Example 4.8.

4.1. Locally uniform convergence

The notion of unique ergodicity introduced above coincides with the classical property
of unique ergodicity of the Markov operator π(μ). When the space X is compact, this is
enough to guarantee that the Cesàro convergence 1

n
∑n−1

k=0 μ∗k ∗ δx → mX as n→∞ is
uniform in x (see e.g. [16, Section 5.1]). Without compactness, we also need to assume a
form of recurrence.

Definition 4.2: We say that the randomwalk on X given by μ is locally uniformly recurrent
if for every compact subset K ⊂ X and ε > 0 there exists n0 ∈ N and a compact subset
M ⊂ X with

μ∗n ∗ δx(M) ≥ 1− ε

for all n ≥ n0 and x ∈ K. It is called locally uniformly recurrent on average if the above holds
with the Cesàro averages 1

n
∑n−1

k=0 μ∗k ∗ δx in place of μ∗n ∗ δx.

It is a simple exercise to check that locally uniform recurrence implies locally uni-
form recurrence on average. In concrete examples, recurrence properties such as these are
typically established by constructing a Lyapunov function; see Section 4.2 below.

The following well-known fact explains why these properties are referred to as ‘non-
escape of mass’.

Lemma 4.3: Let the sequence {xn}n of points in X be relatively compact and suppose that the
random walk on X is locally uniformly recurrent (resp. on average). Then every weak∗ limit
of the sequence (μ∗n ∗ δxn)n (resp. (

1
n
∑n−1

k=0 μ∗k ∗ δxn)n) is a probability measure. �

The proof is immediate and left to the reader.
We are now ready to state and prove our first result on locally uniform Cesàro conver-

gence.

Theorem 4.4: Suppose that the random walk on X induced by μ is uniquely ergodic and
locally uniformly recurrent on average. Then for every f ∈ Cc(X), every compact K ⊂ X,
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and every ε > 0, there exists n0 ∈ N such that for every n ≥ n0 and x ∈ K we have∣∣∣∣∣1n
n−1∑
k=0

∫
X
f d(μ∗k ∗ δx)−

∫
X
f dmX

∣∣∣∣∣ < ε.

Equivalently, considering the space of probability measures on X as endowed with the weak∗
topology, the sequence of functions

X � x �→ 1
n

n−1∑
k=0

μ∗k ∗ δx

converges to mX uniformly on compact subsets of X as n→∞.

Proof: The equivalence of the two formulations is due to the definition of neighbourhoods
in the weak∗ topology by finitely many test functions in Cc(X).

To prove the statement for individual functions, we proceed by contradiction. If the
conclusion is false, then for some f ∈ Cc(X), K ⊂ X compact and ε > 0 there exist indices
n(j)→∞ and xj ∈ K with∣∣∣∣∣∣

1
n(j)

n(j)−1∑
k=0

∫
X
f d(μ∗k ∗ δxj)−

∫
X
f dmX

∣∣∣∣∣∣ ≥ ε (16)

for all j ∈ N. Let ν be a weak∗ limit point of the sequence⎛
⎝ 1
n(j)

n(j)−1∑
k=0

μ∗k ∗ δxj

⎞
⎠

j

.

Then ν is μ-stationary, and a probability measure because of our recurrence assumption
and the fact that all xj lie in the fixed compact set K Lemma 4.3. But by unique ergodicity
this forces ν = mX , contradicting (16). �

4.2. Lyapunov functions & stronger uniformity

Loosely speaking, (Foster–)Lyapunov functions are functions enjoying certain contraction
properties with respect to the random walk, to the effect that (on average) its dynamics
are directed towards the ‘centre’ of the space, where the function takes values below some
threshold. They were introduced into the study of random walks on homogeneous spaces
by Eskin–Margulis [15], whose ideas were further developed by Benoist–Quint [6].

Definition 4.5: A measurable function V : X→ [0,∞] is called a Lyapunov function for
the random walk on X induced by μ if

(1) it is proper, in the sense that the sublevel sets V−1([0, L]) are relatively compact for
L ∈ [0,∞), and
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(2) there exist constants α < 1, β ≥ 0 such that π(μ)V ≤ αV + β , where π(μ) is the
convolution operator associated to μ introduced in Section 3.

The inequality in the second condition above is referred to as the contraction property
of V.

Allowing Lyapunov functions to take the value ∞ is conceptually important for the
proofs of results such as Theorem 1.1, in order to show that the random walk does not
accumulate near a lower-dimensional homogeneous subspace. Also, affording the possi-
bility of non-continuous Lyapunov functions is crucial in recent constructions given in the
literature [6,19]. For the purposes of the discussion in this section, however, it is no big
restriction to have in mind the case of a continuous Lyapunov function which is finite on
all of X.

Remark 4.6: Let us collect some immediate observations about Lyapunov functions.

(i) If V is a Lyapunov function, then so are cV and V + c for any constant c>0. In
particular, onemay impose an arbitrary lower bound onV, so that it is no restriction
to assume that a Lyapunov function takes values≥ 1, say.

(ii) Given a Lyapunov function V ′ : X→ [0,∞] for the n0-step random walk (induced
by the convolution power μ∗n0 ), one can construct a Lyapunov function V for the
random walk given by μ itself by setting

V =
n0−1∑
k=0

α
n0−1−k

n0 π(μ)kV ′.

(iii) By enlarging α and using properness, the contraction property in the definition of a
Lyapunov function V may be replaced by

π(μ)V ≤ αV + β1K

for some compact K ⊂ X, where 1K denotes the indicator function of K (cf. [17,
Lemma 15.2.8]).

Two examples in which a Lyapunov function exists are the following.

Example 4.7 ([15]): Identify X = SL2(R)/ SL2(Z) with the space of unimodular lattices
inR2 as in Example 3.7 and recall that we denote by λ1(x) the length of a shortest non-zero
vector in x ∈ X. Then for every compactly supported probability measure μ on G whose
support generates a Zariski dense subgroup there exist ε, δ > 0 such thatV ′ = 1+ ελ−δ

1 is
a finite continuous Lyapunov function for the n0-step random walk on X induced by μ∗n0
for some n0 ∈ N. This construction can be generalized to higher dimensions by taking
into account the higher successive minima λ2, . . . , λd of lattices in Rd. A more advanced
construction also ensures existence of Lyapunov functions for Zariski dense probability
measures with finite exponential moments when G = G(R) is the group of real points
of a Zariski connected semisimple algebraic group G defined over R such that G has no
compact factors.
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Example 4.8 ([27]): Let G = SLd+1(R), � = SLd+1(Z) and X = G/�. For 0 ≤ i ≤ m let
ci > 1 be positive real numbers, yi ∈ Rd vectors such that y0 = 0 and y1, . . . , ym span Rd,
Oi ∈ SOd(R) and set

gi =
(
ciOi yi
0 c−di

)
∈ G.

Then for any choice of p0, . . . , pm > 0 with
∑m

i=0 pi = 1, the measure μ =∑m
i=0 piδgi

defines a uniquely ergodic random walk on X admitting a finite continuous Lyapunov
function.

It is well known that existence of a Lyapunov function implies recurrence properties of
the random walk.

Lemma 4.9 ([15, Lemma 3.1]): Suppose the random walk on X given by μ admits a finite
continuous Lyapunov function V. Then this random walk is locally uniformly recurrent.

The intuitive reason for this behaviour is simple: The contraction property means
that after a step of the random walk, the value of the Lyapunov function V on aver-
age gets smaller by a constant factor, at least when starting outside some compact set K
(cf. Remark 4.6(iii) above), which one can think of as the ‘centre’ of the space. The set K
can be chosen as (closure of) a sublevel set ofV. By the contraction property, the number of
steps required to reach it is uniform over starting points x in any given sublevel set of V, or
in any given compact subset of X in the case that V is finite and continuous. This suggests
that wemight even let the starting points diverge, as long as this divergence is outcompeted
by the geometric rate of contraction of V. We are led to the following notion of recurrence.

Definition 4.10: Let (Kn)n be a sequence of subsets of X. We say that the random walk
on X given by μ is (Kn)n-uniformly recurrent if for every ε > 0 there exists n0 ∈ N and a
compact subsetM ⊂ X with

μ∗n ∗ δx(M) ≥ 1− ε

for all n ≥ n0 and x ∈ Kn. It is called (Kn)n-uniformly recurrent on average if the above
holds with the Cesàro averages 1

n
∑n−1

k=0 μ∗k ∗ δx in place of μ∗n ∗ δx.

Remark 4.11: We point out that contrary to the locally uniform situation, for the two ver-
sions of this property (with/without average) it is generally not clear whether one implies
the other.

We are now going to establish such recurrence properties for certain families (Kn)n of
sublevel sets of Lyapunov functions, which can be chosen to be increasing and to exhaust
the part of X where the Lyapunov function is finite. Recall that the Lyapunov exponent of a
function ϕ : N→ [1,∞) is the exponential growth rate

λ(ϕ) = lim sup
n→∞

1
n logϕ(n).

If λ(ϕ) = 0, we say that ϕ has sub-exponential growth.
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Proposition 4.12: Let ϕ : N→ [1,∞) be a function. Suppose that the random walk on X
induced by μ admits a Lyapunov function V with contraction factor α < 1 and set Kn =
V−1([0,ϕ(n)]).

(i) If ϕ has Lyapunov exponent λ(ϕ) < log(α−1), then the random walk on X given
by μ is (Kn)n-uniformly recurrent. The number n0 in the definition can be chosen
independently of ε.

(ii) If ϕ has sub-exponential growth, then the random walk on X given by μ is (Kn)n-
uniformly recurrent on average.

The proof is a refinement of the methods in [6,15].

Proof: Let α,β be the constants from the contraction property of V and define B = β
1−α

.
We are going to use the same set M for both parts of the proposition, namely M =
V−1([0, 2B/ε]), which is compact since V is proper. Then for n ∈ N and x ∈ Kn we find,
by repeatedly using the contraction property of V,

μ∗n ∗ δx(Mc) ≤ ε

2B
π(μ)nV(x) ≤ ε

2B
(αnV(x)+ B) ≤ ε

2B
αnϕ(n)+ ε

2
.

When the exponential growth rate of ϕ is less than log(α−1), for some n0 ∈ N we have
αnϕ(n) ≤ B for all n ≥ n0. This proves (i).

In order to prove (ii) we use a similar estimate, but have to ensure that the values μ∗k ∗
δx(Mc) are small for a sufficiently large proportion of 0 ≤ k < n. For x ∈ Kn we find, as
above,

μ∗k ∗ δx(Mc) ≤ ε

2B
αkϕ(n)+ ε

2
. (17)

Using straightforward manipulations, we further see

αkϕ(n) ≤ B/2 ⇐⇒ k
n
≥ log(α−1)−1

(
1
n
logϕ(n)− 1

n
log(B/2)

)
,

the right-hand side of which tends to 0 as n→∞ by sub-exponential growth of ϕ. Hence,
with k(n) = �εn/4�, we may choose n0 large enough to ensure the above inequality holds
for all k ≥ k(n) for n ≥ n0. For such n we conclude, using (17),

1
n

n−1∑
k=0

μ∗k ∗ δx(Mc) = 1
n

k(n)−1∑
k=0

μ∗k ∗ δx(Mc)+ 1
n

n−1∑
k=k(n)

μ∗k ∗ δx(Mc)

≤ k(n)
n
+ 3ε

4
≤ ε,

which ends the proof of (ii). �

Theorem 4.4 can now be strengthened in the following way.

Theorem 4.13: In addition to the assumptions of Theorem 4.4, suppose that the ran-
dom walk on X induced by μ admits a Lyapunov function V. Let ϕ : N→ [1,∞) have
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sub-exponential growth. Then for every f ∈ Cc(X) we have

lim
n→∞ sup

V(x)≤ϕ(n)

∣∣∣∣∣1n
n−1∑
k=0

∫
X
f d(μ∗k ∗ δx)−

∫
X
f dmX

∣∣∣∣∣ = 0.

Proof: Using (Kn)n-uniform recurrence on average for Kn = V−1([0,ϕ(n)]) from Propo-
sition 4.12(ii), the proof of Theorem 4.4 goes through with the obvious modifications. �
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