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Abstract	

The construction industry is a significant driver of carbon-related emissions and of cli-

mate change. In the field of structural engineering and design, this fact has led to a stricter 

focus on structural efficiency with respect to material choice, deployment and design uti-

lization. For steel structures in particular, recent years have seen a push towards the use 

of high-strength and other high-performance steel grades, which potentially allow for sig-

nificant savings in steel tonnages and thus in overall emissions and grey energy caused 

during the fabrication of structures and its components. However, traditional structural 

analysis and design methods and codes have not fully kept pace with these developments 

and are known to leave important margins of unexploited utilization. There is thus a need 

for more accurate analysis and design methods in order to fully exploit the material ben-

efits of modern steels as a structural material. 

As steel structures are typically relatively thin-walled and slender, instabilities in the elas-

tic and plastic range play a particularly large role in the description of their their load-

carrying capacity and, ultimately, of their non-linear load-deformation behaviour. Contin-

uous advances in numerical simulation of metallic structures has opened the door to ever 

more precise, simulation-based design methods for steel structures. Recent research 

work thus focused on various aspects of the optimization and the inclusion of numerical 

analysis methods in the design tasks and methods for steel members and sections prone 

to instabilities. A project carried out by current members of the steel and composite struc-

tures research group at ETH Zurich, the RFCS-funded project Hollosstab (2016-’19), also 

formed the basis and defined the scope for the work carried out in this thesis: overcoming 

code related shortcomings in the design of hollow	 sections	 and	 structures	 composed	

thereof, made of mild and high-strength steel. However, significantly broadening the am-

bitions and methodological scope of Hollosstab, this thesis set out to exploit the potential 

of data‐driven,	machine‐learning	techniques in the analysis and design of steel structures 

of this type.  

Accordingly, the present thesis is concerned with the development and establishment of 

a novel,	computer‐aided,	data‐driven	approach	 for	 the	analysis	and	design	of	 large‐scale	

steel	structures capable of predicting the entire non‐linear	deformation	path, i.e., the pre- 

and post-buckling range, using beam	finite	elements	that	mimic	the	behaviour	of	advanced	
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shell	 finite	element	models	of	closed	RHS/SHS	steel	profiles. The approach proposed and 

developed in this thesis, which is referred to as DNN-DSM, uses Deep Neural Networks 

(DNN) to predict the non‐linear	stiffness	matrix	terms in a beam	element	formulation suit-

able for implementing within the Direct Stiffness Method (DSM). The approach is intended 

to allow developers of structural analysis software to combine the accuracy and precision 

of shell element analysis with the computational efficiency of beam element analysis, 

while allowing local, slenderness-dependent instability phenomena to be considered di-

rectly in the analysis.  

Within the thesis, the methodology is conceptualized and developed to a degree of ma-

turity that allowed to demonstrate its feasibility. It thereby applies a restricted scope, i.e. 

for individual load cases and the simpler case of hollow sections loaded in bending about 

a single axis. It pursues its objectives in a manner that is reflected in the thesis structure:  

i. Firstly, it reviews the traditional and advanced methods in structural steel design, 

and the use of machine learning in the engineering sciences, identifying their po-

tential and shortcomings.   

ii. Subsequently, it makes use of physically validated, non-linear (GMNIA) simula-

tions of the local buckling performance of hollow sections as key component of the 

data development for DNN training.  

iii. It then carries out the necessary steps to “train” DNNs for the prediction of stiff-

nesses and strength values in a beam finite element formulation.  

iv. It formulates the “deep neural network direct stiffness method” (DNN-DSM), by 

creating a bespoke simulation tool and using the programming language python.  

v. Finally, it validates the DNN-DSM method with more sophisticated benchmark 

shell finite element models that explicitly capture local buckling, as well as with 

conventional, code-based steel design and further experimental results from liter-

ature.  

The thesis is wrapped up by an outlook on further steps and a widening of scope that will 

be needed to advance the method from the feasibility demonstration stage to industrial 

implementation for a wide range of steel structure applications.  

 



 

 

Kurzfassung vi 

Kurzfassung	

Die Baubranche ist ein bedeutender Verursacher von klimaverändernden Emissionen. Im 

Bereich der Tragwerksplanung und des Konstruktiven Ingenieurbaus hat diese Tatsache 

zu einer stärkeren Konzentration auf die strukturelle Effizienz in Bezug auf die Material-

auswahl sowie den Einsatz und die Ausnutzungsgrade geführt. Insbesondere bei Stahl-

konstruktionen wurde in den letzten Jahren die Verwendung von hochfesten und anderen 

Hochleistungsstählen vorangetrieben, die erhebliche Einsparungen bei den Stahltonna-

gen und damit bei den Gesamtemissionen und der grauen Energie ermöglichen, die bei 

der Herstellung von Bauwerken und ihren Komponenten entstehen. Die herkömmlichen 

Methoden und Vorschriften für die Strukturanalyse und -auslegung haben jedoch mit die-

sen Entwicklungen nicht ganz Schritt gehalten und lassen bekanntermaßen erhebliche 

Nutzungsspielräume ungenutzt. Es besteht daher Bedarf an genaueren Bemessungsme-

thoden, um die Vorteile moderner Stähle als Bauwerkstoff voll ausschöpfen zu können.  

Da Stahlkonstruktionen typischerweise relativ dünnwandig und schlank sind, spielen In-

stabilitäten im elastischen und plastischen Bereich eine besonders große Rolle bei der 

Beschreibung ihrer Tragfähigkeit und letztlich ihres nichtlinearen Last-Verformungsver-

haltens. Stetige Fortschritte in der numerischen Simulation metallischer Strukturen ha-

ben die Tür zu immer präziseren, simulationsgestützten Bemessungsmethoden für Stahl-

konstruktionen geöffnet. Jüngste Forschungsarbeiten konzentrierten sich daher auf ver-

schiedene Aspekte der Optimierung und der Einbeziehung numerischer Analysemetho-

den in die Bemessungsaufgaben und -methoden für instabilitätsanfällige Stahlbauteile 

und -sektionen. Das vom RFCS finanzierte Projekt Hollosstab (2016-'19), welches von ak-

tuellen Mitgliedern der Professur für Stahl- und Verbundbau der ETH Zürich durchge-

führt wurde, bildete auch die Grundlage und definierte den Rahmen für die Arbeiten in 

dieser Dissertation: die Überwindung von codebezogenen Unzulänglichkeiten bei der Be-

messung von Hohlprofilstrukturen. Die vorliegende Arbeit erweitert jedoch die Ziele und 

den methodischen Rahmen von Hollosstab erheblich, indem sie das Potenzial datenge-

steuerter, maschineller Lernverfahren für die Analyse und den Entwurf von Stahlkon-

struktionen dieser Art auszuschöpfen versucht.  

Dementsprechend befasst sich die vorliegende Arbeit mit der Entwicklung und Etablie-

rung eines neuartigen, computergestützten, datengesteuerten Ansatzes zur Analyse und 
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Bemessung derartiger Strukturen, der in der Lage ist, den gesamten nichtlinearen Verfor-

mungspfad, d.h. den Vor- und Nachbeulbereich, unter Verwendung von Balken-Finite-Ele-

menten vorherzusagen, wobei diese das Verhalten von weiterentwickelten Schalen-Fi-

nite-Elemente-Modellen von geschlossenen RHS/SHS-Stahlprofilen nachahmen. Der in 

dieser Arbeit vorgeschlagene und entwickelte Ansatz, der als DNN-DSM bezeichnet wird, 

verwendet Deep Neural Networks (DNN) zur Vorhersage der nichtlinearen Steifigkeits-

matrixterme in einer Balkenelementformulierung, die sich für die Implementierung in die 

direkte Steifigkeitsmethode (DSM) eignet. Der Ansatz soll Entwicklern von Baustatik-

Software ermöglichen, die Genauigkeit und Präzision der Schalenelementanalyse mit der 

Recheneffizienz der Balkenelementanalyse zu kombinieren und gleichzeitig lokale, 

schlankheitsabhängige Instabilitätsphänomene direkt in der Analyse zu berücksichtigen.  

Im Rahmen dieser Arbeit wurde die Methodik soweit konzipiert und entwickelt, dass ihre 

Durchführbarkeit nachgewiesen werden konnte. Sie gilt dabei für einen eingeschränkten 

Anwendungsbereich, d. h. für einzelne Lastfälle und den einfacheren Fall von Hohlprofi-

len, die auf Biegung um eine einzige Achse beansprucht werden. Sie verfolgt ihre Ziele auf 

eine Weise, die sich in der Struktur der Arbeit widerspiegelt:  

i. Zunächst wird ein Überblick über die traditionellen und fortschrittlichen Methoden 

der Stahlbauplanung und den Einsatz des maschinellen Lernens in den Ingenieur-

wissenschaften gegeben und ihr Potenzial und ihre Schwachstellen aufgezeigt.  

ii.  Anschließend werden physikalisch validierte, nichtlineare (GMNIA) Simulationen 

des lokalen Beulverhaltens von Hohlprofilen als Schlüsselkomponente der Daten-

entwicklung für das DNN-Training verwendet.  

iii. Dann werden DNNs für die Vorhersage von Steifigkeits- und Festigkeitswerten in 

einer Balken-Finite-Elemente-Formulierung "trainiert".  

iv. Sie formuliert die "Deep Neural Network Direct Stiffness Method" (DNN-DSM), und 

erstellt ein hierfür ein eigenes Simulationswerkzeug mit Python.  

v. Schließlich wird die DNN-DSM-Methode mit weiteren FEM-Schalenmodellen, mit 

Normberechnungen und mit experimentellen Ergebnissen validiert.  

Die Arbeit schließt mit einem Ausblick auf weitere Schritte und eine Erweiterung des An-

wendungsbereichs, die erforderlich sind, um die Methode von der Phase der Machbar-

keitsdemonstration bis zur industriellen Umsetzung für ein breites Spektrum von Stahl-

bauanwendungen voranzutreiben. 
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Introduction

Motivation, Scope and Limitations 

 

Outline	of	the	chapter:	

This chapter discusses the motivation of the thesis and presents the starting point and 

initial ideas behind the data driven analysis and design method proposed therein. It also 

illustrates a set of objectives, the scope and the general organization of this thesis.  
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1.1 Starting	point	

The construction industry is one of the largest contributors to carbon dioxide (CO2) 

emissions, accounting for nearly 40% of global industry-related emissions [1]. Thus, re-

ducing CO2 emissions in the Architecture, Engineering and Construction (AEC) industry 

has become a top priority throughout research and industry. In order to mitigate the 

impact on the environment, future tasks in the AEC industry must focus on implement-

ing sustainable and energy-efficient practices. This involves using renewable materials, 

optimizing building design, promoting a circular economy (reuse) and adopting carbon-

neutral fabrication technologies.  

In the research field of steel and steel-based composite structures, the optimization of 

structural shapes and plate thicknesses, and thus the reduction of steel deployment, is a 

straightforward and particularly effective mechanism for a reduction of the carbon foot-

print and economic cost of structures. Much of the research work in the research field of 

steel and composite structures is dedicated to such optimization tasks. In particular, pre-

vious research work of the research group at ETH Zurich focused on various aspects of 

the optimization of design tasks and methods for steel members and sections prone to 

instabilities. As such, the overarching motivation, as well as the starting-point from the 

point of view of data, for the work carried out in this thesis goes back to the European 

research project Hollosstab. This project was carried out from 2017 to 2019 and funded 

by the Research Fund of Coal and Steel (RFCS) and was coordinated by the supervisor of 

this thesis, with its author participating in its research work.  

The objective of Hollosstab was to overcome code related shortcomings in the design of 

standard and bespoke-shaped hollow sections made of mild and high-strength steel; e.g., 

conservative assumptions related to the cross-section classification with respect to their 

proneness to local buckling, lack of consideration of material nonlinearity for different 

steel grades and fabrication routes, conservative local buckling checks based on the ef-

fective width method and plate-wise classification - and thus neglect of beneficial inter-

action effects between mutual plates. The key result of this project was the development 

of the so-called “generalized slenderness-based resistance method” (GSRM), which was 

developed and derived as described by Toffolon in [2] for flat-faced (RHS/SHS) hollow 
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sections. This approach is part of the group recently-developed design methods, such as 

the direct strength method (DSM), the continuous strength method (CSM) or the overall 

interaction concept (OIC), which make use of overall slenderness formulations to formu-

late corresponding buckling know-down factors and thus account for local and global, 

as well as coupled, instabilities.  

While the development of these methods has led to noticeable increases in the predic-

tion of the strength of steel sections, and have provided a blue-print for the development 

of equivalent proposals and methods for arbitrary shapes of sections and materials, con-

servatism and scatter has not been reduced by orders of magnitude when compared to 

more traditional methods. Furthermore, deformation capacities and non-linear load-

displacement paths are not generally part of these methods’ predictions.  

In order to explore some avenues for further improvements of strength predictions for 

high-strength steel hollow sections, in the “outlook” section of the Hollosstab-related 

dissertation [2], a data-driven approach using a deep neural network model (DNN) was 

included to predict the cross-section-dependent bearing capacity. This led to much 

higher prediction accuracy compared to the derived GSRM approach. These encouraging 

results, further worked on in [3], served as the initial starting point for the development 

of the approach presented in this thesis. However, the present thesis aims at taking the 

possibilities of DNN-based predictions of structural performance further, adding the di-

mensions of stiffness respectively deformation capacity to the already-promising 

strength predictions. 

Accordingly, the present thesis is concerned with the development and establishment of 

a novel,	computer‐aided,	data‐driven	approach	for	the	analysis	and	design	of	large‐scale	

steel	structures capable of predicting the entire non‐linear	deformation	path, i.e., the pre- 

and post-buckling range, using beam	 finite	 elements	 that	mimic	 the	 behaviour	 of	 ad‐

vanced	shell	finite	element	models	of	closed	RHS/SHS	steel	profiles.  

The technical motivation for this development comes from the following observations: 

i. Beam finite element analysis is commonly used in structural engineering for var-

ious materials, such as steel or timber, to determine the internal distribution of 
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forces, moments and stresses, as well as associated deformation within systems. 

The general implementation is based on the Direct Stiffness Method (DSM), 

where each element is represented through a local stiffness matrix Kloc, respond-

ing to external actions and imposed deformations for each component. These 

analyses are computationally efficient but fail to capture non-linear effects and 

redistributions within the structure due to plasticity, in particular local instabil-

ity.  

ii. To capture the mentioned nonlinearities stemming from localized instabilities, 

which are very typical for thin-walled steel structural elements, over conserva-

tive assumptions are included in code provisions, such as e.g. the mentioned clas-

sification of sections in four “classes”. Alternatively, more advanced (shell-type) 

finite element method (FEM) models could be utilized for the entire structure, 

but this approach is computationally expensive and might be prone to input re-

lated errors by the engineer, always dependent on the problem related 

knowledge base. Moreover, it is primarily limited to research and not suitable for 

designing large structures due to computational inefficiencies and the complexity 

of modeling.  

The proposed approach, hereafter referred to as DNN-DSM, uses Deep Neural Networks 

(DNN) techniques to predict the non-linear stiffness matrix terms in a beam element 

formulation suitable for implementing within the Direct Stiffness Method (DSM), further 

introduced in Section 7. The approach is intended to allow developers of structural anal-

ysis software to combine the accuracy and precision of shell element analysis with the 

computational efficiency of beam element analysis, while allowing local, slenderness-

dependent instability phenomena to be considered directly in the analysis. 

The basic conceptual framework of the method is illustrated, in schematic form, in Fig-

ure 1-1. The overall method derivation is basically separated in three parts:  

i. the finite element simulation and development of appropriate data sets, based on 

local shell-element simulations, covering for instabilities at the cross-sectional 

level, 

ii. the development of deep neural networks, suitable to predict the individual tan-

gent stiffnesses,  
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iii. the implementation into the direct stiffness method. 

 

Figure 1-1: Schematic outline of the DNN-DSM approach, subdivided into three main parts 
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1.2 Objectives		

In order to reach the overarching goal of the development and tentative, demonstrative 

implementation of the proposed DNN-DSM approach, a number of individual objectives 

will be tackled in the thesis, organized as follows:  

i. Review the traditional and advanced methods in structural steel design with the 

identification of shortcoming. Introduction to new design approaches and corre-

sponding application examples based on data driven methods from machine and 

deep learning.  

ii. Give a brief introduction to deep learning and the design of neural networks with 

the aim of giving the reader a better understanding of the subject without the use 

of additional literature.  

iii. Starting from the finite element modelling techniques developed during the RFCS 

funded project Hollosstab and based on the tests carried out therein, as well as 

further tests in literature, verify and validate FEM models for the data develop-

ment to be used in DNN training. Thereby, special attention needs to be given to 

effects of local buckling, plasticity, and buckling lengths.  

iv. Carry out the necessary steps for the data development and exploration of deep 

neural networks for the prediction of stiffnesses with a beam finite element for-

mulation, linked to general assumptions and recommendations for feature engi-

neering.  

v. Incorporate the “deep neural network direct stiffness method” (DNN-DSM) into 

the format of the direct stiffness method (DSM), thereby creating a bespoke sim-

ulation tool and using the programming language python.  

vi. Compare the results obtained using the DNN-DSM method with more sophisti-

cated benchmark shell finite element models that explicitly capture local buck-

ling, as well as with conventional, code-based steel design and further experi-

mental results from literature.  

vii. Provide an outlook on the next steps in the development and generalization of 

the method.  
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1.3 Scope	

Although this method is seen within a wider application range in future structural steel 

design, the proposed methodology is in a preliminary development stage, where differ-

ent application boundaries need to be first tested and the general feasibility, strengths 

and weaknesses of the approach need to be assessed. Therefore, the scope of the pre-

sented thesis is bound by the following limitations: 

i. As was the case for the project Hollosstab, during which the experimental core of 

this thesis was elaborated, the considered structural shapes are limited to hot-

rolled and cold-formed square (SHS) and rectangular (RHS) hollow sections. All 

profile shapes are based on European standard provisions in EN10210-2 [4] and 

EN10219-2 [5]. 

ii. Out-of-plane global instability problems are neglected, by assuming appropriate 

bracing.  

iii. The data development is based on parametrized short shell finite element models 

to simulate local buckling only. The load cases are limited to pure compression or 

pure bending only.  

iv. The data development simulations are limited to steel grades S355, S460 (for 

cold- and hot-formed sections) and S700 (cold-formed) resp. S690 (hot-rolled). 

Material models are limited to a simplified bi-linear behaviour with a perfect plat-

eau (hot-rolled and cold-formed) and advanced material models for hot-rolled 

[6] and cold-formed steel [7]. Three local imperfection amplitudes are used, with 

shapes generally based on local buckling eigenmodes.  

v. Connections are assumed as rigid in all simulations. 

vi. Rotations within beam elements are assumed equal at each end of the short mem-

bers.  
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1.4 Organization	

In the following, a summarized overview of the main content of each chapter of this the-

sis given.  

Chapter	2 provides a general description of state of the art topics related to inelastic 

design and its consideration and implementation in design methods. First, background 

information on classical topics from inelastic design are presented to provide a general 

overview on the current design implementation of code provisions. Nowadays, fre-

quently used numerical analysis methods are further presented and briefly described. 

In additional, advanced inelastic analysis methods are presented, including the “direct 

strength method” (DSM), the “continues strain method” (CSM), the “advanced analysis 

continues strength method” (AA-CSM) and the “generalized slenderness based re-

sistance method” GSRM. 

Chapter	3 maps out the overall research gaps of this thesis. Therefore, topics from Chap-

ter 2 are addressed and discussed critically, pointing out their advantages and disad-

vantages with respect to current trends and developments in structural engineering. 

Further, the idea of machine learning methods in civil engineering applications is intro-

duced as a new data driven approach for solving otherwise computationally expensive 

or analytically inaccurate solutions. With this in mind, the main research gaps are for-

mulated. 

Chapter	4 presents a brief introduction to machine learning, particularly to selected 

topics from deep learning, which are used throughout this thesis.  

Chapter	5 provides background information on the models used in the finite element 

simulations in this thesis. Thus, the main aspects of the Hollosstab project are presented 

briefly, presenting the experimental campaign and the idea behind the validation and 

calibration of the finite element models. Based on imperfection evaluation results from 

the Hollosstab project, as well as corresponding finite element models using the real ge-

ometry of the specimens, investigations on buckling half-wavelengths are performed 
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and compared with assumptions from the AA-CSM approach from Chapter 2. Subse-

quently, the developed finite element model assumptions and the parameters used for 

the development of the data sets are presented. 

Chapter	6 forms the basis of the developed DNN models for the “DNN-DSM” approach 

proposed in this thesis. First, the data development, extraction and data structure are 

explained. A major focus is set on feature engineering, i.e., exploration, interpretation 

and modification of the available data to obtain better prediction results. The methods 

presented in this chapter are not only suited for the derived DNN-DSM approach, but are 

generally applicable to many problems concerning data structures and their interpreta-

bility towards analytical formulations. 

Chapter	7 is dedicated to the implementation of the DNN-DSM approach. Starting with 

basic background information on the direct stiffness method (DSM), this chapter extends 

it further by incorporating the derived DNN models. The implementation of truss and 

beam elements is described. The corresponding modelling approaches are then pre-

sented, which are further used in the method evaluation in Chapter 8. 

Chapter	8 describes the evaluation of the DNN-DSM method. The core part of the chap-

ter is dedicated to a validation of the DNN-DSM method against existing experimental 

and numerical results from the literature and from the author’s own work.  

Chapter	9 wraps up this thesis by providing a summary of the main steps towards the 

development of the presented DNN-DSM approach, followed by a set of conclusion re-

garding the made choices and obtained results. Shortcomings and subsequent optimiza-

tions are presented, together with a discussion of needed next steps towards a more 

robust and more widely-applicable approach.  

 

 



 

 

  
 
 
 

State of Technology

Analysis and Design of Steel Structures 

 

Outline	of	the	chapter:	

This chapter is dedicated to a thorough review of the historical development of inelastic 

design methods in steel structures and of how they are used in current design codes and 

methods, as well as to the presentation of several methods for the analysis and verifica-

tion of slender steel structures that have been developed by the steel structures research 

community over the course of the last two decades and make use of numerical analysis 

at various degrees. 
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2.1 Background	on	the	Inelastic	Design	of	Structures	

2.1.1 Introduction	to	plastic	design	

The possibility of considering plastic distribution of stresses along the depth of a cross-

section was first proposed by Ewing [8] in 1899, but remained only a theoretical ap-

proach since no physical tests were performed to demonstrate it. During this period, 

structures were mainly designed limiting the stresses to the elastic limit, i.e., to the range 

where there is a proportional response between stress and strain according to Hooke's 

law. This basic conceptual design approach does not allow for any redistributions within 

the structure, as the maximum achievable load of the structural assembly is assumed to 

be equal to the load at which first yielding occurs ([9], [10]). This consideration was ap-

propriate for a time with limited computational possibilities, considering its simplicity 

and inherent conservatism. 

 
Figure 2-1: Experimental test of a gable frame at the Lehigh University around 1958 [11]		
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Research from the early 20th century to the late 1970s focused on exploring the ad-

vantages of plastic design, e.g. through extensive experimental campaigns, the theoreti-

cal derivation of plastic resistance for rectangular and H-shaped sections, the introduc-

tion of an elastic-perfect plastic material model, and the extension of plastic analysis to 

complete structures, thus recognizing the potential of plastic redistribution in statically 

indeterminate systems ([12]–[26]). Figure 2-1 shows an experimental test on a full-scale 

gable frame conducted at Lehigh University around 1958 [11]. A detailed historical over-

view can be found in [9], [27] and [28], to which the reader is referred for additional 

information. 

 

Figure 2-2: Elastic-plastic strain hardening material behaviour for a hot-rolled and cold-formed cross-

section 

The plastic design method allows for a far-better utilization of cross-sections and stati-

cally indeterminate systems, theoretically allowing for yielding through the entire depth 

of a section and at multiple points in a structure (if statically indeterminate). Figure 2-2 

shows an example of the influence of a fully plastic stress distribution, as well as the 

additional positive effect of strain hardening, using a hot-rolled or cold-formed section 
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in pure bending; this explanatory illustration is inspired by one found in Wilkinson [27]. 

With increasing curvature, i.e. increasing maximum strain at the outermost point of the 

section, the stress distribution remains linear until the yield stress is reached (first yield-

ing). This behaviour applies to hot-rolled carbon steel and was assumed to be a critical 

design failure criterion before the fundamentals of plastic theory were explored. While 

the strain continues to increase, the stress remains the same due to the pronounced yield 

plateau, resulting in an increased activation of the cross-section for bending resistances 

(“elastic-plastic” stage in the figure). At high values of curvature and strain, the elastic-

plastic-strain-hardened material cross-section yields almost completely (“fully plastic”). 

When the entire cross-section has reached its yield point, the corresponding plastic mo-

ment is defined as Mpl. In addition, strain hardening may occur and the stress may exceed 

the yield strength (“strain hardening” in the figure). 

In contrast, there is no plastic plateau in cold-formed steel and a strongly non-linear 

stress-strain response even at low strains ε	<	0.2% (“yielding behaviour”). Immediately 

after yielding, strain hardening occurs and stresses in the cross-section increase beyond 

the plastic moment (“further strain hardening”). 

When a cross section (theoretically) yields across its depth and the plastic moment Mpl 

is reached, a so-called “plastic hinge” is formed at a certain point along the beam. At this 

point, a large rotation (proportional to a large curvature) occurs, while the plastic mo-

ment remains theoretically constant. In the case of a statically indeterminate structure, 

such a scenario allows for some redistribution of moments, i.e., transfer of load due to 

larger deformations to parts of the structure that have not yet reached the plastic re-

sistance. The limit up to which the “plastic hinge” can be rotated before it loses strength 

when compared to the plastic moment resistance is referred to in the literature as “ro-

tational capacity” Rcap. Strain hardening, as well as sufficiently low proneness to local 

buckling and sufficient lateral stabilization, are required elements to achieve a function-

ing “plastic hinge”.  

These fundamental considerations are behind the idea of plastic design and lead to sev-

eral advantages over elastic design, such as the use of slimmer cross-sections, resulting 

in savings in material and thus costs, and a more economical assessment of profile-de-
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pendent strength. It also allows the development of systematic failure behaviour to ac-

count for redistributions in statically indeterminate structures. Thus, failure need not 

occur when the plastic moment is reached at a particular point in the structure, but ra-

ther when a collapse mechanism has already formed (reaching a sufficient number of 

plastic hinges).  

A commonly used strategy to account for maximum plastic redistributions is the virtual 

work method, which equates external and internal work during the stepwise formation 

of the collapse mechanism. This well-known analytical method, typically taught in basic 

structural analysis courses [29], is mostly well-suited for manual calculations, but it is 

not necessarily applicable to complex structures and also involves many additional as-

sumptions in its procedure:  

i. Local and global instability problems are neglected.  

ii. The plastic hinge is reduced to one point, where the curvature is assumed to be 

infinite. 

iii. Strain hardening is neglected, thus, the plastic moment is not exceeded through-

out the calculation process and the plastic hinge rotates without flexural re-

sistance. Based on Neal [30] this assumption is safe sided.  

iv. The plastic resistance is not linked to a possible interaction with normal forces or 

concentrated stresses indicated through point loads. 

v. Second order effects are not taken into account, therefore, initial geometric im-

perfections (e.g. sway mode affine imperfections in frame structures) are ig-

nored. 

Nowadays, plastic design methods (e.g. plastic hinge or plastic zone analysis) are used, 

to some extent, in many fields of structural engineering. However, for the consideration 

of moment redistribution, the estimation of the cross-sectional rotational capacity is of 

great importance, and its accuracy may decide design safety and economy. Therefore, a 

short overview of the theoretical background, the influencing factors and the current 

design proposals is given in the following section.  
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2.1.2 Rotation	capacity	

For the application of plastic or, more generally, inelastic analysis methods, components 

must have a certain degree of ductility to undergo deformation after exceeding the initial 

yield strength in parts of the cross-section without significant loss of strength and stiff-

ness due to material damage or, more crucially for steel sections, instabilities. The spe-

cific ductility measure used for beams and beam-columns is referred to as "rotational 

capacity”, with the notation R, Rdem or Rcap used in the literature. The importance of the 

rotation capacity in design and its influence on practice was recognized in early investi-

gations, see the preceding section. As a result, considerable efforts have been made over 

decades to investigate and propose influencing factors, parameters, and analytical mod-

els that describe the cross-section and load- and material-dependent inelastic rotational 

capacities.  

Early considerations on the formation of plastic hinges were mentioned by Kazinczy [13] 

in 1914, who tested H-shaped beams under uniform load while they were fixed at both 

ends (the fixed condition was ensured by embedding the ends in concrete) and con-

cluded that three plastic hinges were required to achieve the ultimate capacity. This was 

followed by studies of moment-deflection behaviour of beams under various loading 

conditions conducted at Lehigh University between 1940 and 1960. Driscoll Jr [31] sum-

marized the status of rotational capacity studies in 1957. At that time, it was already 

known that residual stresses resulting from cooling, welding, or cold bending had an 

effect on the yield strength of a steel component. In addition, these factors were already 

known to further influence the magnitude of the plastic hinge moment, although they 

had little effect on a component's ability to absorb plastic rotations. Other, crucial known 

factors that reduce plastic hinge moment and rotational capacity include brittle fracture, 

local buckling, and lateral (torsional) buckling. Driscoll Jr. presented methods for calcu-

lating the rotational capacity required to form a mechanism and provided results for 

some specific cases of three-field continuous beams. In his 1958 dissertation, Driscoll Jr. 

[32] extended his method from three-field beams to the analysis of frames. The method 

applied to frames assumed that the length of the yield zones at each plastic hinge is zero 

when a structure reaches its ultimate capacity and forms a failure mechanism. These 
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simplifications allowed the calculation of rotational slopes and deflections in static sys-

tems using elasticity theory methods, where the plastic hinge was simply accounted for 

by changing the boundary conditions to allow the necessary rotational freedom.  

In 1968, Galambos [33] collected the state of the art in inelastic deformability and energy 

absorption capacity of steel beams and steel structures with the aim of giving designers 

an overview of how much a steel structure can deform, but also to inform researchers in 

which area more work is needed. This collection contains one of the first formulas to 

calculate the rotation capacity of beams as a function of the slenderness constant, deter-

mined theoretically and under the condition that local and lateral buckling occur simul-

taneously, see Equation (2-1). It was additionally tested using experiments from [34], 

[35] and [36] and gave what were deemed to be good results [33].  

 
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(2-1) 

where: 

s	=	σu	/	σy		 is the ratio of the strain-hardening strain to the yield strain, also

often addressed as the over-strength factor. 

h	=	EST	/	E	 is the ratio between the elastic modulus E and the strain hardening

modulus Est of the used material. 

εy	=	σy	/	E	 is the yield strain of the used material 

K is the effective length factor which depends on whether the adja-

cent span is elastic (K	=	0.54) or yielding (K	=	0.80); see the follow-

ing Figure.  
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Figure 2-3: Effective length factor, Figure partially adapted from Galambos [33] 

L/ry is the unbraced slenderness ration 

ry is the least radius of gyration of the wide-flange shape 

LBR is the unbraced length 

In addition, Galambos [33] and Yura et al. [37] found that a rotation capacity limit Rcap	=	3 

is needed that covers most practical situations. In [37] and [38], a rotation capacity of 

was proposed after considering different systems and parameters of I-shaped profiles. 

A rotation capacity of Rcap	=	4 was proposed by Korol and Hudoba [39] for hollow sec-

tions and adapted in [40] and [41] to determine a suitable plastic slenderness for the 

Australian Standard AS 4100. Continuous beams have been studied by Kuhlmann [42] 

and Stranghoner et al. [43], resulting in a proposed value of Rcap	=	2 for I-shaped sections 

(also confirmed by Neal [30]) and Rcap	=	3 for hollow sections, respectively. In this con-

text, it was found that a rotation demand between 3 and 4 is suitable for most common 

structures and has therefore been adapted in the current standards for the derivation of 

slab slenderness limits. 

Considerable efforts have been made to define the parameters that affect rotation capac-

ity. Saloumi [28] has recently compiled an informative review of the quantification and 

sensitization factors for rotation capacity. Some of these parameters are summarized 

below. For additional information, the reader is referred to the original sources within 

the enumeration. 



Part I 2: State of the Art

 

 

 

19 

i. Identification of a strength reserve after local bucking – see experimental tests in 

[44] 

ii. Identification of three governing parameters for the rotation capacity – flange 

slenderness as a key parameter, the web stiffness and the steepness of the mo-

ment gradient [42].  

iii. Investigations in [42], [43] and [45] led to the conclusion that the degree of strain 

hardening significantly influences the rotation capacity.  

iv. A significant influence of initial imperfections on the moment-rotation curve, the 

plastic hinge formation and the post-buckling behaviour in the decreasing part 

was observed in [46]. 

v. The behaviour of RHS profiles was studied by Wilkinson [27], also using numeri-

cal (finite element) methods to suggest a new design limit. Especially the magni-

tude of imperfections was found to have a significant impact on the rotation ca-

pacity of stockier sections. As higher the initial imperfections were chosen, as 

lower the rotation capacity was.  

vi. A summary of experimental results done by different authors and provided by 

Kemp [47] has shown that not only the slenderness ration for local buckling of 

web and flange are decisive to determine the inelastic rotation capacity, rather 

mostly the slenderness ratio for lateral buckling. Therefore, the available rotation 

capacities in the tests were set in relation with local flange and web buckling and 

lateral-torsional buckling.  

The general representation of rotation capacity Rcap most commonly used today is de-

fined by Equation (2-2). It is a measure of how far the plastic hinge can rotate before its 

carrying moment falls below the notational value of the plastic moment, which is deter-

mined using yield stress blocks. Thereby, φ represents the beam end sections’ rotation 

and its limit values φpl, φu, φpl,2,	 see Figure 2-4.  

,2 ,2 1pl pl pl
cap

pl pl

R
  

 
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Figure 2-4: a) cross-section class dependent definition of allowable rotations according to EN 1993-1-1; 
b) definition of the rotation capacity 

The achievable rotation is thus defined as the angle of rotation φpl,2 in a deformation-

driven test or analysis where the moment falls below the theoretical value of Mpl. This 

convention is per se a simplification and demonstrates that the classic plastic analysis is 

necessarily only an approximation of a structure’s true behaviour, with the main aim of 

estimating its failure load, yet without any attempt at reflecting load-deformation paths 

with great accuracy. 

When looking at current design codes, it is noticeable that Eurocode 3 [48] and other 

international codes do not	explicitly mention any limit or minimum values on rotation 

capacities, but implicitly impose requirements	on	rotation	Rcap	as	a	function	of	cross‐sec‐

tion	classifications. In order to account for plasticity and prevent local buckling, slender-

ness limits have been established for plate elements in structural members, and cross 

sections are considered to be composed of individual apartment plate elements. By this 

definition, Class 2 cross sections can achieve their plastic moment but not the rotation 

capacity of 3. Class 1 cross sections meet this requirement by achieving a rotation capac-

ity greater than 3; see Figure 2-4 a). Class 3 and 4 cross-sections are limited to their 

elastic cross-sectional capacities or must even be considered for local buckling. Further 

details on the codified classification procedures are given in Section 2.1.4. 
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2.1.3 Elastic	and	Elastic‐Plastic	Plate	Buckling	

As described previously, local (plate) buckling is a key limiting and influence factor on 

the more global load-displacement or moment-rotation behaviour of a steel component, 

which is almost exclusively composed of rather thin-walled sections. Accordingly, it is 

important to review the historical background and state of knowledge in the field of local 

plate buckling of steel structures.  

Early investigations on the plate buckling problem go back to the work of Bryan [49] in 

1888. He derived the following differential equation for a rectangular plate subjected to 

uniform compression on one of the edges.  

 
3 4 4 4 2

4 2 2 4 22
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E t d w d w d w d w
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dx dx dy dy dx



 
     

   
 (2-3) 

where: 

E	 is the modulus of elasticity 

t	 is the plate thickness 

v	 is the Poisson`s ratio, e.g. 0.3 for steel 

w	 is the lateral deflection of the plate 

σxt is the edge compression load, as load per unit length 

For hinged boundary conditions along all four edges, the solution of the differential 

equation from above is obtained with an approach assuming the deflection w  to be rep-

resented by a trigonometric series, see Equation (2-4).  

min
1,2,3... 1,2,3...

sin sin
m n

m x n y
w w

a a

 
 

        
   

   (2-4) 



Part I 2: State of the Art

 

 

 

22 

Using this to solve the differential equation leads, after further steps, to the well-known 

solution of the elastic (critical) plate buckling stress σcr: 

 
22

212 1
cr

E t
k

b



        

 
(2-5) 

where: 

kσ is the buckling coefficient for different stress distributions

ψ	=	σmin/σmax and boundary conditions, see Table 2-1. 

Table 2-1: Buckling coefficient for different stress distributions according to [50] 

 Cross-section parts supported on both sides Cross-section parts supported on both sides 

  1 -1 

k  4 23.9 

Current design approaches for the verification of thin-walled plates in compression 

make use of local buckling knockdown factors, which are formulated as functions of the 

relative plate slenderness. This quantity, using Eurocode 3-type notations, is given by 

Equation (2-6). In (2-6), the relation between this slenderness and the width-to-thick-

ness ration b/t is also inversed, as this will be useful in relating deformation capacities 

to certain slenderness values. 
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(2-6) 

The right side of Equation (2-6) can be further simplified using the modulus of elasticity 

of steel with the value of E	=	210000N/mm2, the Poisson`s ratio with ν	=	0.3, and a factor 

ε used to normalize the yield strength by its value for steel grade S235 (𝜀 ൌ ඥ235/𝑓௬) 

leading to: 
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28.419 28.419p p

y

b b
k k

t f t           
 

(2-7) 

This equation can be used, in conjunction with the European plate buckling curve (Win-

ter curve) from EN 1993-1-5 [50], to determine the normative (Eurocode 3) b/t limit 

value for the transition between Class 3 and Class 4 sections for plates supported on 

both sides and loaded by pure compression (ψ	=	1 →kσ	=	4.0), leading to a value of this 

limit slenderness of 𝜆̅௣=0.673.  

Table 2-2: Buckling coefficients kσ for internal and outstand plates with simply supported boundary con-
ditions along connected edges according to EN 1993-1-5 [50] 

Stress distribution 2 1    Buckling coefficient 

Internal plates (SS-SS) 

 

1  4k   

1 0   
8.2

1.05
k





 

 

0  7.81k   

0 1    29.78 6.29 7.81k        

1  23.9k   

Outstand plates (SS-free) 

 

1  0.43k   

0  0.57k   

1  0.85k   

1 3    20.07 0.21 0.57k        

 

1  0.43k   

1 0   
0.578

0.34
k





 

0  1.70k   

 

0 1    217.1 5 1.7k        

1  23.9k   

Note: Compression taken as positive 
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This limit corresponds to the plateau length of the “Winter curve”, see Equation (2-8). 

The origin of this formula is based on studies by Winter [51] in the 1940s on cold-formed 

channel sections. In [52], a detailed background and justification of its adaptation in DIN 

18800-3 is given, by checking the application of the ”Winter curves” against experi-

mental results of stiffened and unstiffened plates. 

  
2

0.055 3p

p

 




  
  (2-8) 

Using the slenderness limit and applying it to the analytical solution from Equation (2-7), 

a limit value for the b/t ratio can be back calculated.  

28.419 4 0.673 38.25
b

t
      

 
(2-9) 

2.1.4 Cross‐section	classification	

The concept of cross-sectional classification goes back mainly to [10], [53]–[55], [44], 

[56]–[58], [42] and is closely related to the studies that led to the development of plastic 

design of steel structures, presented in Section 2.1.1, and of the required rotation capac-

ity, described in Section 2.1.2. An additional historical overview of the background of 

cross-section classification is given in [27], [59] as well as [28] and is thus referred to for 

further explanations.  

The general concept of cross-section verification is one of the most crucial and deciding 

parameters in the design of steel members, with some practical advantages yet also 

many implications that affect the design’s accuracy and interpretability. It is neverthe-

less widely used throughout many code provisions, like the EN 1993-1-1 [48] or the AISC 

[60] (additional reference is made in Table 2-2 including different terminologies within 

capacity limits) and determines the method of verification, in particular the cross-sec-

tion utilizations, associated to cross-section capacities and local buckling instabilities. 

Using the designation from EN 1993-1-1 [48], four cross-section classes are specified to 

facilitate the design process in the following, see also Table 2-3 below. The classification 
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of a cross-section is typically carried out upon the most slender plate element. This fol-

lows the pragmatic assumption that every structural section is split into individual 

plates. Thus, an SHS profile is divided into four web plates, each supported through 

hinges at both ends and referred to as internal elements [48]. An I-section on the other 

hand, is composed from a web plate, which is supported at both ends (referred to as an 

internal element), and two flange plates divided into two additional plates supported at 

one end (referred to as an external element), see Table 2-3. 

Table 2-3: Subdivision in cross-section classes within different code specifications, partially adapted 
from Wilkinson [27] 

Code reference Categorical Subdivision 

EN 1993-1-1: 2010 
[61] 

Class 1 Class 2 Class 3 Class 4 

EN 1993-1-1:2020 [48] Class 1 Class 2 Class 3 Class 4 

AISC [60] Compact Non-Compact Slender 

DIN 18800 Part 1 [62] P-P E-P E-E 

BS 5950 [63] Plastic Compact Semi-compact Slender 

CSA S16.1 [64] 
Plastic 

or Class 1 

Compact 

or Class 2 

Non-Compact 

or Class 3 

Slender 

or Class 4 

AS 4100 [65] Compact Non-Compact Slender 

For the practically most relevant case of members in bending, the following classification 

definitions apply: 

i. Class 1 cross-sections can reach their plastic moment capacity Mpl and have suf-

ficient rotation capacity for the safe application of plastic design methods, includ-

ing methods based on plastic hinges and redistribution of internal moments in 

statically indeterminate structures once these notional hinges have formed 

(method “P-P” in Eurocode terminology). Sections categorized as Class 1 are also 

referred to as plastic sections.  

ii. Class 2 cross-sections can develop the full plastic moment capacity Mpl but fail to 

reach rotation capacities deemed to be required for plastic design approaches. 

Therefore, structures compound of Class 2 cross-sections must be analysed elas-

tically and verified plastically (E-P), since no plastic hinge formations can be ac-

counted for. To distinguish between Class 1 and 2 cross-sections it is therefore 

not only necessary to evaluate the pre-buckling range, until the point of reaching 
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the maximum moment bearing capacity, but also the post-buckling behaviour, 

since the rotation capacity requires the knowledge of the full deformation path. 

Class 2 cross-section are also referred to as compact sections in [63]. 

iii. The bending resistance of Class 3 cross-sections is limited to their yield moment 

Mel and cannot reach the plastic moment Mpl, due to local instability problems, i.e. 

local buckling, assumed to occur and affect the sectional stiffness and load-bear-

ing capacity before the notional plastic moment is reached. Further used desig-

nations are semi-compact [63] or non-compact [64].  

iv. Class 4 cross-sections cannot reach their elastic moment Mel due to an earlier on-

set of local buckling. Effective section properties need to be calculated for indi-

vidual elements using the effective with method, considering all elements sub-

jected to compression [48]. Beneficial interaction effects between mutual plates 

are not considered. Throughout code provision these kind of sections are also 

designated as slender. 

Table 2-4: Cross-section class dependent c/t values according to EN 1993-1-1 [48] 

Cross-section elements supported on both edges Cross-section elements supported on one edge 

 

 
 

Class Pure compression Pure bending Pure compression 

1  28c t    72c t    9c t    

2  34c t    83c t    10c t    

3  38c t    121c t    14c t    

The cross-section classification in design codes is typically based on c/t limits, described 

through the length c of a separated plate element and its thickness t. An extract of perti-

nent regulations in Eurocode 3 (EN 1993-1-1: 2020 [48]) is summarized in Table 2-4. 

The general distinction is made between elements supported on one edge and on both 
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edges, loaded in pure compression, pure bending or a combined case of those and there-

fore presented independently.  

The transition limit between class 1 and 2 is mainly based on experimental investiga-

tions and numerical simulations, since no clear differentiation can be drawn by only 

looking at the maximum reached bending moment, nor the maximum normal force in 

compression. Cross-section of both classes can reach their full plastic capacity. In addi-

tion, the rotation capacity must be examined throughout further analytical considera-

tions and physical measurements.  

The transition limit between class 2 and 3 cross-sections (reaching the elastic-plastic 

cross-section resistance) are based on experimental test and additional simulation re-

sults. Those are in general performed by three and four point bending tests, additional 

stub column tests or mono- and bi-axial eccentric compression tests [66].  

The limit slenderness between class 3 to 4 cross-sections, i.e. the limit between profiles 

reaching the elastic capacity and those which fail to reach it due to local buckling, is de-

termined by the theoretical consideration of the differential equation for elastic local 

buckling of a plate. Equation (2-3) shows the general differential equation with in plane 

stress σx for any type of edge restraints [49].  

2.1.5 Design	of	structural	systems	

2.1.5.1 Analysis	and	verification		

The design of steel structures has traditionally been a two-step process. First, a struc-

tural analysis is performed to determine the internal forces and moments within each 

member of the structure. Then, design checks are performed, in general consisting of (at 

least) cross-section checks to verify the local capacity and additional member stability 

checks of the most relevant members. Geometric and material nonlinearities are primar-

ily responsible for instability and redistribution effects within a structural system. Geo-

metrical nonlinearity is caused through the presence of second order moments and 

forces, indicated through the deformed state of the structure. This effect is initiated 
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through applied geometric local and global imperfections or first-order loading causing 

eccentricities of the centroid line with respect to the direction of axial loading.  

 

Figure 2-5: a) P‐δ out-of-straightness effect on the member level; b) P‐∆ out-of-plumbness effect and first 
order horizontal force; adapted from [67] 

On the structural level, initial out-of-straightness P‐δ and initial out-of-plumbness P‐∆ 

imperfections are usually accounted for in the second order analysis. P‐δ effects are re-

lated to members, where the midspan deflection 0e  is defined with respect to the per-

fectly straight member, see Figure 2-5 a). With ascending compression force P, the de-

flection e0 increases proportionally within a linear elastic response by the value of δ. This 

ration changes with respect to the used material model. P‐∆ effects, on the other hand, 

are associated with sway deformations of the structural system, see Figure 2-5 b). An 

initial out-of-plumbness imperfection ψ0 is introduced to create a horizontal defor-

mation shift. A similar result is achieved through a first-order horizontal load H, see Fig-

ure 2-5 b). Bothe approaches result in a deformation ∆	under increasing load P, which 

lead to second-order moments in the structure. In practical applications initial imper-

fections are either directly modelled in the analysis or, as stated above, included by add-

ing equivalent horizontal forces to the frame structure. In some cases the directions of 

the applied imperfection may has a stabilizing effect on the structural behaviour. It is 

therefore always necessary to check the sensitivity against imperfection orientations 

throughout several calculation to cover also the unfavorable cases.  
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In Eurocode 3, the sensitivity of a structure to second-order effects is assessed using the 

critical load factor αcr, which is defined as the ratio of the elastic critical buckling load Fcr 

and the applied design load FEd, see Equation (2-10).  

cr
cr

Ed

F

F
 

 
(2-10) 

αcr is used to assess, weather global imperfections on the member or system level need 

to be applied. Limit values are provided by EN 1993-1-1:2020 [48] for members prone 

to flexural buckling and frames affected by instability caused through sway effects, i.e. 

second-order P‐∆ effects need to be accounted for. A limit value of αcr	≥	25 has to be 

fulfilled in order to ignore global instability corresponding to flexural buckling. This limit 

value is equivalent to the plateau value of European flexural buckling curves for mem-

bers. Instability effects are either accounted for through buckling checks or cross-section 

checks based on second-order forces.  

Frame structures need to meet the condition of αcr	≥	10 in order to be able to neglect 

sway effects. Based on the calculated critical load factors (on member and frame level) 

and the applied modelling effort EN 1993-1-1: 2020 [48] provides a flow chart describ-

ing various possibilities to assess the structural stability of frames. The presented meth-

ods are termed as M0 to M5 and EM. A description of each method is stated below.  

i. M0 represents a structure where member instability and sway effects are too 

small and no stability checks are necessary due to its construction driven bound-

ary conditions. Flexural buckling, as well as lateral torsional buckling verifica-

tions can be neglected. The verification of the cross-section resistance may then 

be checked by first order internal forces and moments. This constellation can oc-

cur for tension rods and beams with rotational/lateral restraints. 

ii. M1	refers to first order analysis without the application of global imperfections. 

The only difference to method M0 is that lateral torsional buckling (LTB) and out 

of plane instability effects need to be accounted for. 	

iii. M2	requires no application of sway mode imperfections, since the condition of 

10cr   is met. Nevertheless, flexural buckling need to be accounted for due the 
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condition of αcr,ns	<	25. Therefore, first order analysis is applied to verify flexural 

buckling instability. This is the case, for example, for all non-displaceable frames 

or steel structures that are attached to rigid concrete cores.	

iv. M3 requires a closer look at the determination of internal moments and forces as 

global sway effects (P‐∆) must be considered and should rely on second-order 

analysis (αcr	≤	10 for elastic or αcr	≤	15 for plastic calculation). For the calculation 

of the in-plane buckling resistance of a single member, the buckling length Lk,y can 

be taken as the system member length L between the system nodes. Out-of-plane 

stability checks are performed according to support conditions along the mem-

ber.  

v. M4 requires a system calculation according to elastic second-order theory includ-

ing all in-plane imperfections, i.e. P‐∆ and P‐δ. If the corresponding out-of-

straightness and out-of-plumbness imperfections are accounted for in the system 

calculation, no further in-plane stability checks need to be applied. Only the cross-

section capacity checks at the decisive locations with internal second-order 

forces are to be performed. Out of plane stability verification is assessed accord-

ing to M3. 

vi. M5 requires the largest modelling effort, since all in-plane and out-of-plane sec-

ond order effects, including torsional effects and global sway imperfections, and 

all in-plane and out-of-plane local bow imperfections are considered. The verifi-

cation of the buckling resistance of individual members may be omitted and is 

“quasi” replaced by the proof of cross-sectional resistance. The method is charac-

terized by considerable complexity and by the need for great modelling accuracy. 

This can only be mastered with high-level FEM programs, so that this method is 

currently only used in exceptional cases in practice. However, this method can be 

applied with conventional computational programs to spatial bar systems in 

which only torsionally stiff profiles (e.g. hollow profiles) are used, so that warping 

torsion effects and LTB are negligible. 

vii. An additional alternative Method EM “Equivalent Member Method” also known 

as “Effective Length Method” is implemented to the design checks as an alterna-

tive to M2. Although its legitimation has only a historical background, as design 

specifications [62] and [61] has relied on this method for many years, the limita-

tions of this approach have been highlighted in several studies [68]–[71].  
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2.1.5.2 Mechanical	nonlinearities	

The mechanical properties of steel, hot-rolled as well as cold-formed carbon steel, make 

it particularly suitable for the use in plastic design approaches [7]. Hot-rolled steel is 

characterized through a long yield plateau, high ultimate strains, a moderate over-

strength (strain hardening). Cold-formed steel, on the other hand, has no actual yield 

plateau and a more rounded stress-strain curve. The process of cold-working results in 

a material behaviour with an increased yield and ultimate strength but a reduction in 

the ductility. Typical stress-strain curves are shown in Figure 2-6.  

 

Figure 2-6: Typical stress-strain curves for a) hot-rolled steel; b) cold-formed steel 

Due to a high non-linear behaviour of both, hot-rolled and cold-formed steel, internal 

force and moment are capable of redistribution. This is of great importance mainly in 

bending dominated structures, composed of compact cross-sections to ensure plastic 

hinge development and a sufficient rotation capacity. 

2.1.6 Geometric	member	imperfections	

One crucial part of design in specifications for steel structures is related to instability 

topics and the treatment and judgement of imperfections. Those appear in general as 
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local, global or as an inherent initial condition of residual stresses. The choice of the ini-

tial imperfection magnitude depends on different factors. Those can be summarized as 

follows:  

i. The type of analysis according to the considered cross-section failure linked to 

the cross-section class.  

ii. The type of imperfection considered for further calculations i.e. geometric imper-

fections only (tolerances and residual stresses) or equivalent, buckling curve de-

pendent imperfections, specifying a bow imperfection amplitude (case of flexural 

buckling) to account for tolerances as well as residual stresses.  

iii. The benchmark resistance is separated through the concept of cross-section clas-

sification into an elastic or plastic calculation approach. This confinement speci-

fies the subsequent choice of an imperfection amplitude, dependent on a cross-

section-dependent imperfection factor α. This process corresponds to the global 

buckling concept of EN 1993-1-1:2010 [61], EN 1993-1-1:2020 [48] and prEN 

1993-1-14 [72].  

2.1.6.1 Local	imperfections	

According to EN 1993-1-5, Annex C [50] the magnitude of local imperfections for the 

analysis of plate buckling may be assumed with a value of B/200, where B is the smaller 

of the two corresponding dimensions of a rectangular hollow section.  

min ,
200 200 200

B H W   
 

 (2-11) 

Nevertheless, referring to the findings of Rusch and Lindner [73], as well as Toffolon and 

Taras [74] a determined amplitude of e0	=	B/400 was found to be more suitable to rep-

resent the design curve for local buckling (“Winter curve”) [50] based on results from 

non-linear numerical calculations.  

In the following, several GMNIA calculations were performed for a centrically loaded 

cold-formed and hot-rolled SHS200 profile with a varying thickness and a constant 

length of 800 mm to ensure local buckling exclusively. LBA simulations were performed 
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to calculate the slenderness and the eigenshape for subsequent GMNIA simulations. Cal-

culations were aborted as soon as the maximum of the cross-section was reached. The 

material model was chosen as bi-linear with a slight strain hardening slope of Esh	=	

E/1000. Three local imperfection amplitudes were chosen B/200, B/300	and B/400 for 

several GMNIA calculations summarized in Figure 2-7 for hot-rolled [4], as well as cold-

formed [5] SHS200 profiles. The shown simulations were also published in [75], [76].  

 

Figure 2-7: Comparison of GMNIA simulations with the resistance curve from EN 1993-1-5 [50] for an 
SHS200 profile; a) cold-formed; b) hot-rolled; adopted from [75] 

Calculations with the local imperfection amplitude of e0	=	B/200 tend to lie below the 

Winter curve throughout the whole slenderness range. Only in the stocky region strain 

hardening effects start to impact the cross-section resistance. Though, results closer to 

the local buckling curve are obtained with imperfection amplitudes of e0	=	B/400, show-

ing a better agreement and confirm the observations by [73] and [74].  

2.1.6.2 Global	member	imperfections	

According to EN 1993-1-1:2010 [61] and prEN1993-1-1:2020 [48] the equivalent bow 

imperfection amplitude 𝑒଴ for flexural buckling can be determined using two ap-

proaches, considering either a tabulated length-proportional value or a slenderness-

based formulation based on the elastic critical buckling load from analytical considera-

tions or numerical analysis. In both cases, those values represent equivalent imperfec-

tions based on the determination from a centrically loaded strut with an assumed initial 
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bow imperfection 𝑒଴ of a half sine wave. This bow imperfection is determined by intro-

ducing a moment M, calculated by second-order theory using an appropriate interaction 

formula; EN 1993-1-1: 2010, section 6.2.9.1, contains therefore various interaction for-

mulae for class 1 and 2 cross-sections. This consideration leads to the general represen-

tation within the following Equation (2-12): 

 2

0

1
Rk

Rk

M
e

N

  



  
   (2-12) 

where: 

𝜆̅ ൌ ඨ
𝑁௣௟
𝑁௖௥

 is the relative member slenderness 

χ is the reduction factor for flexural buckling 

ψ 
is the interaction factor for combined bending and axial force, e.g.

EN 1993-1-1:2012, Sec. 6.2.9.1 or EN 1993-1-1:2020, Sec. 8.2.9.1 

MRk is the characteristic moment resistance of the critical cross-section 

NRk is the characteristic axial resistance of the cross-section 

The equivalent imperfection representation is normalized by the member length 𝐿 in 

terms of a non-dimensional representation; see Equation (2-12).  

0,dej
L

  (2-13) 

Equation (2-12), combined with Equation (2-13), was evaluated for different interaction 

approaches and profiles and classified within fixed, non-dimensional limits depending 

on the buckling curves (a0, a, b, c, d) and the type of cross-section verification i.e. elastic 

or plastic cross-section verification. These values were implemented within EN 1993-1-

1:2010, Table 5.1 [61] and Table 2-5 of this work.  
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Table 2-5: Values of the initial imperfection amplitude e0,d/L for members according to EN 1993-1-
1:2010  

Buckling Curve Elastic cross-section verification  Plastic cross-section verification 

0a  1 350  1 300  

a  1 300  1 250  

b  1 250  1 200  

c  1 200  1 150  

d  1 150  1 100  

Since the values in Table 2-5 were exclusively derived on the basis of buckling curves 

used for the equivalent member method, meaning that the members are loaded by axial 

forces only without the combined influence of external bending moments My or Mz. How-

ever, as shown in [77] and [78] a combination can often lead to unfavorable values of 

initial equivalent imperfections. As a results of these and further investigations in [79], 

[80] a new formulation was developed and is introduced within the new code generation 

in the published version of EN 1993-1-1:2020 [48], where Table 2-5 in combination with 

Equation (2-13) will be replaced by Equation (2-14) in connection with Table 2-6.  

0,dej
L

 



 
 

(2-14) 

where: 

α is the imperfection factor dependent on the flexural buckling curve

ε is the material parameter considering the steel grade 

β is the reference bow imperfection 

L is the member length 

Table 2-6: Reference relative bow imperfection β according to EN 1993-1-1:2020 [48] 
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Buckling about axis Elastic cross-section verification  Plastic cross-section verification 

y y  1 110  1 75  

z z  1 200  1 68  

An additional, modified length affine formulation is implemented in the current version 

of EN1993-1-14: 2020 [72]: 

0, 150 1000d

L L
e

 
   (2-15) 

It is based on the basic formulation from Equation (2-12) with the difference that the 

required equivalent bow imperfection is no longer a function of ε. The influence of ma-

terial yielding was captured directly in the analysis during the derivation of this expres-

sion [81]. The factor β from Equation (2-14) was additionally calibrated to a constant 

value of 1/150 from 646 beam FE simulations. Note that the use of this imperfection 

formulation requires a modified Young´s modulus of E	=	200000	N/mm2. For detailed 

information on the derivation of Equation (2-15) the reader is referred to the work of 

Walport [81].  

The back-calculation of slenderness-based equivalent bow imperfections, in both EN 

1993-1-1:2012 and prEN1993-1-1:2020, is provided by Equation (2-16).  

 0 0.2 Rk

Rk

M
e

N
     (2-16) 

Based on the calculations from [75], [82] a length proportional approach according to 

EN 1993-1-1:2010 [61] is sufficient and safe-sided when using the elastic design ap-

proach for the evaluation of imperfection amplitudes. The same can be stated for the 

new formulation of the imperfection amplitude (see Equation (2-14)) provided in 

prEN1993-1-1:2020. It should be noted that β, the reference bow imperfection (see Ta-

ble 2-6), is not only dependent on the design approach (i.e. elastic or plastic cross-sec-

tion verification) but also the buckling axis “y‐y” or “z‐z”. On the other hand, the modified 
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imperfection amplitude formulation from prEN 1993-1-14:2020 tend to lead to results 

that are rather optimistic compared to the European buckling curves for flexural buck-

ling, although the Young´s modulus was modified (E	=	200000	N/mm2) throughout the 

FE simulations.  

When using the slenderness affine imperfection amplitudes according to EN 1993-1-

1:2010 and prEN 1993-1-1:2020, it is recommended to use the plastic resistance. This 

approach requires that the magnitude of the relative slenderness is determined before-

hand. Additionally, the calculating of an imperfection amplitude for buckling around “y‐

y” or “z‐z” axis must consider the axis-related section modulus Wpl,y or Wpl,z. 

2.2 Categorization	of	Analysis	Methods	

Table 2-7: Methods of analysis for steel structures 

Analysis Type Geometric Behaviour Imperfections Material Behaviour 

Linear Analysis (LBA) linear No linear 

Linear Buckling Analysis (LBA) linear No linear 

Materially non-linear Analysis (MNA) linear No non-linear 

Geometrically non-linear Analysis 
(GNA) 

non-linear No linear 

Geometrically Materially non-linear 
Analysis (GMNA) 

non-linear No non-linear 

Geometrically non-linear Analysis with 
Imperfections (GNIA) 

non-linear Yes linear 

Geometrically and Materially non-linear 
Analysis with Imperfections (GMNIA) 

non-linear Yes non-linear 

As described in Section 2.1.5 and 2.1.6, the structural response of steel structures failing 

by local, global or interactive buckling is influenced mainly by two non-linear effects, 

driven by the material behaviour and geometric nonlinearity due to large strains and 

displacements. Particularly when employing numerical methods for the design of steel 

structures, it is important to make appropriate distinctions between the employed anal-

ysis methods, in order to have clarity on whether the above effects are taken into ac-

count, and to what extent. Accordingly, with the introduction of the Eurocodes, a com-
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mon terminology has emerged for the distinction of these methods. The following sum-

marizes presents the available methods of analysis according to EN 1993-1-6 [83] and 

Vayas et al. [84], which are subsequently described in a concise manner. 

2.2.1 Linear	analysis	

The linear analysis (LA) corresponds to the term of first-order elastic analysis and is 

potentially the simplest type of structural analysis. The assumed material behaviour is 

linear elastic, hence no actual information on deformation, structural stability or plastic 

redistribution is obtained. Since displacement and strains are assumed to be small, the 

analysis is performed based on the initial, undeformed geometry of the structure. In 

practical applications, linear analysis is explicitly use for the verification of serviceability 

limit states, where small deformation are expected and reasonable. Effects of stability 

and plasticity need to be covered by further design checks.  

2.2.2 Linear	buckling	analysis	(LBA)	

Under the assumption of small displacements, elastic material behaviour and no imper-

fection, this method provides buckling eigenvalues, buckling mode shapes and buckling 

loads. With a linear buckling analysis, the influence of geometric effects on the structural 

behaviour may be investigated and the provided, deformed structural shapes can be 

used as geometrical imperfections. The buckling load for the 𝑖th buckling mode is deter-

mined from: 

, ,
 

crit i cr i Ed
F F  (2-17) 

Buckling eigenvalues are found such that αcr,i < αcr,i+1. The buckling length coefficient of 

a column for the relevant buckling mode is calculated with: 

2

2

1

2 ( )

EI

L




   (2-18) 

by combining the formula before and the Euler’s Formula to:  
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2 2

, 2 2( )crit i

cr

EI EI
N

L L

 


   (2-19) 

Where αcr,i is the eigenvalue of the relevant buckling mode, 𝐿 is the length of the system 

and Lcr is the buckling length.  

2.2.3 Materially	non‐linear	analysis	(MNA)	

This analysis approach is known as 1st order plastic analysis. If geometric effects and 

imperfections are ignored, the method can be used for design. The analysis is performed 

on the basis of the initial, undeformed geometry but the effects of non-elastic irreversi-

ble strains must be taken into account, since displacements are small and strains large. 

The analysis procedure is differentiated in rigid plastic analysis, plastic hinge analysis 

and plastic zone analysis. The collapse load is found directly by applying the theory of 

plasticity with static and kinematic theorem. 

2.2.4 Geometrically	non‐linear	elastic	analysis	(GNA)	

The GNA is used to investigate the stability of frame structures up to the buckling load 

under moderate displacement and limited rotation for elastic material behaviour. Also 

known as elastic analysis according to second-order theory when applied to frame struc-

tures with small displacements, the equilibrium is defined in the deformed state. The 

kinetic relation for the curvature is then typically linear or non-linear – in the latter case, 

the literature also speaks of 3rd order or large-displacement theory, which may be ap-

propriate to investigate the structural response deep into the post-buckling region of 

plated or shell structures.  

2.2.5 Geometrically	and	materially	non‐linear	analysis	(GMNA)	

The GNMA is a combination of the MNA and GNA, also called 2nd order plastic analysis 

when linear, small-displacement kinematics are considered. It might be rigid plastic, 

plastic hinge or plastic zone analysis for framed structures. Both, geometric and material 
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non-linear behaviour are considered. The method provides directly ultimate limit loads 

for a structure or structural elements. 

2.2.6 Geometrically	non‐linear	elastic	analysis	with	imperfections	(GNIA)	

The GNIA is equivalent to a GNA method that additionally takes into account initial im-

perfections. Usually, the analysis is made with equivalent geometrical imperfections in 

which the influence of structural imperfections is accounted for in the geometrical im-

perfections. The shape and value of imperfections are provided by the Codes and may 

follow the fundamental buckling mode with an appropriate scale. Since imperfections 

and geometric effects are already implemented, design is basically made on the cross-

section level. 

2.2.7 Geometrically	and	materially	non‐linear	analysis	with	imperfections	

(GMNIA)	

This method is appropriate for analysis and design, helping to find the true limit load. 

Furthermore, all relevant non-linear effects and imperfections are considered. This anal-

ysis approach will be used extensively throughout the remainder of the thesis and its 

application will thus be explained in more detail in appropriate chapters.  

2.3 Direct	Strength	Method	(DSM)	

In the following sections, various methods of analysis and design of instability-governed 

slender steel structures are presented, which go beyond the previously described, codi-

fied design methods and account for instabilities by making use of more advanced con-

cepts, be it in terms of analysis using FEM for the determination of buckling modes or 

slenderness values, or more complex non-linear material models. 

The first such method to be described is the Direct Strength Method (DSM). The devel-

opment of the DSM is based on the research presented in [85]–[87] by B.W. Schafer's 

group at John Hopkins University. The method focuses mainly on slender open sections 

and members, i.e. channel sections and Z-shaped sections made of cold-formed steel. It 
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departs from the traditional assumption, as used e.g. throughout the Eurocodes, that the 

classification of a section should be performed on the basis of individual plate slender-

ness values and does not rely on the effective width method; it rather provides a "direct" 

calculation of strength as function of overall, cross-section level slenderness values. The 

DSM defines strength curves (also referred to as base curves) for the total load-bearing 

capacity of the profile for global (G) ( flexural or lateral torsional buckling), distortional 

(D) and local (L) buckling as follows, with the various coefficients i representing buck-

ling knockdown factors, with respect to first-yield resistances, for global (G), distortional 

(D) and local (L) buckling. 

2

2

0.877
0.658 1.5; 1.5G

G GG G

G

for for   

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      

 
 (2-22) 

The formulations from Equation (2-20)-(2-22) thus require the calculation of three slen-

derness values according to the above strength curves:  

i. Local buckling (L): significant distortion of the cross-section, including only rota-

tions without translation at the corners of the cross-section/member.  

ii. Distortional buckling (D): significant of the cross-section, including rotation and 

translation. 

iii. Global buckling (G): significant translation (flexure) and/or rotation (torsion) of 

the entire cross-section. Modes for columns: flexural, torsional, and torsional-

flexural; for beams: lateral-torsional.  

The usual way to do this in the context of DSM is to use computational tools such as the 

CUFSM (Constrained and Unconstrained Finite Strip Method) [88], [89] or GBTUL (Gen-

eralised Beam Theory of the University of Lisbon) [90] to calculate the elastic critical 

buckling stresses for these modes, accounting for the stiffness distribution within the 
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section. Such tools allow for an explicit decomposition of the half-wavelength dependent 

eigenmodes from LBA simulations, resulting in so-called "signature curves" or "master 

curves", as follows: 

 

Figure 2-8: a) signature curve of a C-shaped and Z-shaped cross-section in pure bending and pure com-
pression, respectively; b) strength curves for global, distortional and local buckling 

Figure 2-8 a) shows numerical results obtained with the CUFSM software. The results of 

these calculations are the signature curves for individual load cases. Here, pure bending 

is applied to a C-shaped cross-section and pure compression to a Z-shaped cross-section. 

The x-axis represents each half-wavelength of the corresponding numerical model. The 

y-axis represents the critical buckling load normalized to the elastic section resistance, 

giving a load factor. Each point on the signature curve defines a slenderness associated 

with a corresponding buckling failure mode at the low points of the curve. The slender-

ness is then associated with the strength curves from Figure 2-8 b) and Equations (2-20) 

to (2-22). The relative slenderness is defined as: 

,
y

dsm N
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The DSM strength curves are generally unable to distinguish between cross-sections or 

support conditions and therefore provide three individual curves, see Figure 2-9. These 

curves are based on experimental studies of column tests with cold-formed steel, includ-

ing failure in local, distortional and global flexural or flexural-torsional buckling [91], 

[92], [85]. Figure 2-9 a) compares 267 column tests with the DSM strength curves for 

local and distortional buckling. Figure 2-9 b) additionally shows the experimental re-

sults for beams from 569 test results from [93], [94], [85], [95] . 

 

Figure 2-9: a) Comparison of DSM strength curves with test results for columns; b) comparison of DSM 
strength curves for beams 

2.4 Continuous	Strength	Method	(CSM)	

2.4.1 Introduction	and	background	information	

The development of the continuous strength method (CSM) was motivated by several 

shortcomings associated to traditional methods used in hot-rolled steel design when ap-

plied to structural stainless steel. These are in general the use of a simplified material 

model i.e. an elastic, perfectly plastic material behaviour coupled to the concept of cross-

section classification, leading to oversimplifications and inaccuracies in the prediction 

of the cross-section capacity. While these simplifications lead to tolerable over conserv-

atism in the design of hot-rolled carbon steel [61], their effect is less appropriate in the 

context of structural stainless steel [96]. This is mainly explained by the differences 
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within their material models. On one hand, hot-rolled, normal-strength (up to S460) car-

bon steel has a linear elastic behaviour until the point of reaching the yield strength yf , 

followed by a distinct yielding plateau and a strain hardening range until reaching the 

maximum strength uf . Stainless steel, on the other hand, features a more rounded stress-

strain curve without a pronounced yielding point, as well as a higher strain hardening 

range and ultimate – to – yield strength ratio (Rm/Rp0,2) . This makes the concept of cross-

section classification less suited for stainless steel profiles, leading to overly conserva-

tive results, especially in the range of stocky sections [97]. This well-known fact was 

confirmed during the extensive experimental studies carried out during the develop-

ment of the CSM method. Those results are presented within the following Figure 2-10 

(initially published in [98]), drawing the attention on the mentioned class-section inher-

ent problematic.  

 

Figure 2-10: a) Comparison of 81 stub column test results with EN 1993-1-4; b) Comparison of 65 beam 
test results with EN 1993-1-4; diagrams partially adopted from [98] 

Therefore, the goal of the CSM method is to overcome the mentioned shortcoming by 

using two fundamental features: 

i. A more realistic material models that takes into account strain hardening. 

ii. A so called “base curve”, which eliminates the concept of cross-section classifica-

tion through a continuous local slenderness representation linked to the profile 

dependent deformation capacity.  
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It was initially introduced by Gardner in [96] and is based on several preliminary inves-

tigations conducted at the Imperial College London [99]–[105], as well as further devel-

opments over the years [98], [106]–[112] resulting in a mature design method. It has 

been successfully implemented in the AICS Design Guide 27 for Structural Stainless Steel 

[113] and in the SCI design manual for structural stainless steel [114]. The latest, topic 

related publications by Fieber [67] and Walport [81] deal with the development of a 

framework, where geometrically and materially non-linear analysis with imperfection 

(GMNIA) are performed using beam finite elements and CSM derived strain limits to 

mimic the local buckling effects.  

2.4.2 Derivation	of	the	CSM	base	curve	

At the core of the CSM method lies the so-called “base curve”. It is defined as the cross-

section deformation (or normalized strain) capacity εcsm/εy as a function the non-dimen-

sional relative local slenderness λp. The peak compressive strain εcsm is the notional 

strain at the point of reaching the peak load prior to failure. The yield strain εy is defined 

as the yield stress fy	=	σ0.2% divided by the Young’s modulus E. The base curve is a purely 

experimental based and calibrated curve, taking implicitly into account geometric im-

perfections as well as residual stresses (a similarity could be drawn to the flexural buck-

ling curves from EN 1993-1-1 or the Winter curve from EN 1993-1-5 for local buckling). 

The experimental evaluation in the case of stocky stub column tests (λp	≤	0.68) was done 

according to Equation (2-25) and Figure 2-11 a) top. The measured end deformation δu 

was divided by the initial length L of the specimen and then normalized by its yield strain 

εy.  

, 0.68csm u u
pu test y

y y y

L
for F f A and

   
  

    
 

(2-25) 

Equation (2-26) and Figure 2-11 a) bottom explain the case of bending, again for stocky 

cross-sections and the local slenderness limit of λp	≤	0.68. The measured curvature κu, at 

the point of reaching Mu,test was normalized by the elastic curvature defined as κy	=	Mel/EI.  



Part I 2: State of the Art

 

 

 

46 
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   
  

    
 

(2-26) 

Slender sections that fail before reaching their yield strength fy need to be considered in 

a modified manner within the calibration of the base curve, deviating from Equaiton 

(2-25) and (2-26). It was found [115], [109] that it is more suited to use Equation (2-27) 

and (2-28), by taking into account the observed cross-section capacity for compression 

Fu,test	=	fu,test∙A and bending Mu,test	=	fu,test∙Wel, respectively. In summary, the problem can 

be reduced to two effects linked to slender cross-section, i.e. the early loss of stiffness 

and therefore bigger deformations due to elastic buckling [67].  
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Figure 2-11: Background information on the derivation of the base curve a) evaluation of strains from 
experimental investigations; b) calibration of the CSM base curve with a continuous relation between the 
cross-section dependent local slenderness and the normalized deformation capacity based on experi-
mental results from ([101], [116]–[128]).  
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The calibrated CSM base curve is devided into two main parts, i.e. seperating the stocky 

(λp	 ≤	0.68) from the slender cross-sections (λp	>	0.68), see Figure 2-11 b). The strain 

ration εcsm/εy for stocky cross-section is described by Equation (2-29), while for slender 

cross-sections, prone to local buckling instability, the stain ratio is given by Equation 

(2-30). It should be noted at this point, that one single base curve was derived for differ-

ent stainless steel grades (and later: other steel grades) and load cases, i.e. compression 

and bending.  

1
3.6

0.25
min , 0.68csm u

p

y yp

C
but for

  
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(2-30) 

where: 

𝜆̅௣ ൌ ඨ
𝑓௬
𝜎௖௥

 
is the relative cross-section dependent local slenderness ranging 

between the CSM boundaries of 0 ≤ 𝜆̅௣ ≤ 1.4. 

 

is the first upper limit for the cross-section deformation capacity. 

It is a project specific design parameter that defines the maximum 

level of acceptable plastic deformation within a cross-section. A 

default value of	𝛺	=	15	is recommended to prevent excessive de-

formations and fulfil the code based ductility requirements of EN 

1993-1-1 [48]. 

𝐶ଵ ∙ 𝜀௨
𝜀௬

 

is the second upper limit for the cross-section deformation capac-

ity. It is used to prevent over-predictions of the material strength 

when using the simplified resistance functions [129], [130] for the 

quad-linear material model [6]. 
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2.4.3 Non‐linear	material	models	

 

Figure 2-12: a) typical engineering stress-strain curve for hot-rolled steel; b) elastic, perfectly plastic 
model; c) elastic, linear hardening model; d) tri-linear model 

In addition to the base curves, which define the limiting (compressive) strain as a func-

tion of a cross-sectional slenderness, the CSM relies on notional stress-strain curves to 

calculate the internal stress distribution at the state of limit straining, and from this cal-

culate the resulting internal forces at failure at this stage. The following non-linear ma-

terial models for carbon steel, stainless or cold-formed steel were proposed by Yun and 

Gardner [6], [7] and are briefly described within this section. Their implementation is 

motivated and linked to the development of the CSM approach, yet - apart from the CSM 



Part I 2: State of the Art

 

 

 

49 

framework itself - the material models presented can be of great interest in the context 

of non-linear FE modelling approaches such as GMNIA (geometrically materially non-

linear analysis with imperfections, as these models already demonstrated their suitabil-

ity for design-oriented simulations during the development of the CSM. In the following, 

material models for hot-rolled carbon steel and cold-formed steel are presented, which 

have also been incorporated into own investigations in this work. 

2.4.3.1 Hot‐rolled	carbon	steel	

A typical stress-strain curve for hot-rolled carbon steel is approximately described by 

three regions, exemplary shown in Figure 2-12. The elastic range, where the slope is lin-

ear and defined by the Young’s modulus (e.g. E	=	210000N/mm2 according to EN 1993-

1-1 [48]), limited by the yield stress fy and the strain εy. The elastic range is followed by 

a region of plastic yielding (constant stress) until the point of reaching the strain hard-

ening strain εsh, where strain hardening is initiated. From this point, the stress increases 

non-linear at a reducing rate up to the ultimate tensile stress fu and the corresponding 

tensile strain εu. 

Figure 2-12 shows additional simplified models that have been proposed to represent 

the material behaviour of hot-rolled steel. Those are approximated by sectional linear 

regions and grouped as follows: 

i. Elastic, perfectly plastic, see Figure 2-12 b). This model forms the basis of the 

current design methods in EN 1993-1-1 [48]. 

ii. Elastic, linear hardening model, see Figure 2-12 c). Offering the simplest consid-

eration of strain hardening, where shE  is the strain hardening modulus. It is in-

cluded in EN 1993-1-5 [131] and formed the basis for the derivation of the CSM 

for different structural metallic elements (structural carbon steel [96], [108], 

[116], aluminium [132], [133], stainless-steel [98], [100]). 

iii. Tri-linear model, considering the yield plateau and strain hardening, see Figure 

2-12 d).  
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The calibrated analytical formulations for hot-rolled carbon steel are based on over 500 

experimental stress-strain curves from 34 individual sources collected by Yun and Gard-

ner (s Table 1 in [6]) and go beyond the limited and partially complex formulations of 

proposed stress-strain curves [134]–[136] (find also additional information in [137], 

[138]). Figure 2-13 shows the two derived material models, i.e. a quad-linear material 

model linked to the capacity formulations of the CSM and a bilinear plus non-linear hard-

ening material model for scientific use.  

 

Figure 2-13: a) Proposed quad-linear material model; b) proposed bilinear plus non-linear hardening 
model, application partially adopted from [6] 

The stress-strain curve of the quad-linear material model is characterized by three com-

monly available parameters (mostly available to engineers in material standards), such 

as the modulus of elasticity E, the yield stress fy and the ultimate stress fu.  
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where: 

Esh	 is the strain hardening modulus defined by Equation (2-32) 

εsh is the strain hardening strain defined by Equation (2-33). The 

boundaries 0.0015	≤	εsh	≤	0.03 are valid for hot-rolled steel 

εu is the ultimate strain defined by Equation (2-34) 

𝑓஼భ∙ఌೠ is the stress corresponding to the intersection of the third and

fourth segments, see Figure 2-13 a) 

C1,	C2 are the experimentally calibrated parameters defined through εsh

and εu, see Equation (2-35) and (2-36) 
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The bilinear plus non-linear hardening material model is defined by Equation (2-37). It 

captures the non-linear rounded strain hardening response and therefore suitable for 

advanced numerical simulations.  
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(2-37) 

where: 

K1‐4 
are the calibrated material coefficient based on tensile coupon tests

(K1=0.4,	K2=2,	K3=400,	K4=5) 

2.4.3.2 Cold‐formed	steel	

 

Figure 2-14: Typical stress-strain curve representation of cold-formed steel a) main material model pa-
rameters; b) representative comparison between stress-strain curves obtained experimentally and 
through the proposed two-stage Ramberg-Osgood material model 
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Cold-formed steel has, compared to hot-rolled steel, a different stress-strain response 

resulting in a much more rounded curve, with no sharp definition of the yield stress. 

Further, cold-work results in an increased yield and ultimate strength, yet, a reduced 

ductility. Due to the varying level of cold-work along the cross-section circumference, 

i.e. low plastic deformation on the cross-section faces and high plastic deformations in 

the corners, a non-uniformity of material properties is more common. In general, cold-

formed steel, stainless steel or aluminium are often represented by the expression pro-

posed by Ramberg and Osgood [139], which were later modified by Hill, follows by a 

number of studies on the material modelling of stainless steel ([140]–[142]). 

Based on data from 700 experimental stress strain curves collected from literature a 

two-stage Ramberg and Osgood model was proposed by Yun and Gardner [7], to exploit 

the non-linear behaviour and strain hardening range for advanced numerical simula-

tions. The proposed material model builds up on investigations on stainless steel by 

Mirambell and Real [143]. Comparable models for stainless steel were also proposed by 

Rasmussen [140] and Gardner and Nethercot [101], yet, were found to be partially un-

suited for the adoption to the less ductile stress-strain properties of cold-formed steel.  

The two-stage Ramberg-Osgood model is summarized in Equation (2-38) below. 
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(2-38) 

where: 

n	 is the first strain hardening exponent defined by Equation (2-39)

according to [142]. 
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m is the second strain hardening exponent defined by Equation (2-40)

or calculated according to [144]. The latter requires the knowledge

of the measured 1% proof stress.  

E0.2 is the tangent modulus of the stress-strain curve at the yield

strength (0.2% proof stress) defined by Equation (2-41). 
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(2-41) 

The strain εu may be determined from Equation (2-42). The corresponding ultimate ten-

sile strength fu may be obtained from the expression in Equation (2-43).  
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 

u

y y

f

f f
  (2-43) 

Further, strength enhancements in corner regions are modelled according to the pro-

posals made by Rossi et al [145]. Those will be not further taken into account in the 

framework of this thesis.  
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2.4.4 Determination	of	the	relative	local	slenderness	

The relative slenderness 𝜆̅௣ is a dimensionless parameter, which can be derived depend-

ing on the local cross-section or the global member geometry, always connected to a 

normalized reduction factor capturing instability phenomena. Yet, different methods ex-

ist to calculate the local cross-section dependent slenderness 𝜆̅௣. Their level of accuracy, 

taking into account the full cross-section or only separated elements, can thereby differ 

significantly from each other. The most accurate technique requires the use of numerical 

methods i.e. finite element models which explicitly represent the whole cross-section 

geometry to account for interactive effects between connected plate elements. This ap-

proach is usually performed by using commercially available finite element software like 

ABAQUS [146], which in terms is more frequently used within research applications 

than the civil engineering practice (although, a change is clearly visible for slender struc-

tures requiring pronounced knowledge of local instabilities and instability effects). 

Therefore, free software applications such as the Constrained and Unconstrained Finite 

Strip Method “CUFSM” ([88], [89]) (provided by the John Hopkins Whiting School of En-

gineering, originally developed by Ben Shafer in 1997: https://www.ce.jhu.edu/cufsm/, 

see Section 2.3: Direct Strength Method) or the Generalized Beam Theory “GBT” ([90], 

[147]) (provided by the Instituto Superior Técnico, University of Lisbon, Portugal: 

http://www.civil.ist.utl.pt/gbt/) provide a practical and contemporary way to account 

for the whole cross-section bifurcation stresses. In addition, analytical formulations 

were derived by Seif and Schafer [148], [149] to account for full cross-section plate in-

teraction. A modified buckling coefficient k was developed for standard steel profiles 

subjected to pure compression and pure bending, exclusively. In practice, this restriction 

is not well suited since combined load cases are the general norm. Therefore, as a pro-

gression in the framework of the CSM method Fieber [67], [150], [151] developed prac-

tical closed-form expressions. Those enable the prediction of the local buckling stresses 

for full cross-sections subjected to compression, bending and combined loading. Euro-

code 3, Part 1-5 [131] provides the well-known formulations for the critical buckling 

load of isolated plates supported at both ends and one end, respectively. According to 

[152] the Eurocode 3 approach is considered to be conservative, leading to higher slen-

derness values calculated from separated plated elements. The most slender element is 

considered to be the leading element in the determination of the cross-section capacity.  
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In the described cases and throughout literature the relative local slenderness is formu-

lated as follows: 

y
p

cr

f



  (2-44) 

2.4.5 Cross‐section	capacity	based	on	CSM	strain	limits	

2.4.5.1 Compression	Resistance	

The design value for the cross-section resistance in the case of pure compression is cal-

culated by using Equation (2-45).  

,
0

csm
csm Rd

M

A f
N




  (2-45) 

where: 

A	 is the cross section area 

fcsm	 is the CSM limiting stress   

γM0	 is the partial safety factor according to EN 1993-1-1 

The reached stress fcsm is based on the slenderness dependent CSM strain limit εcsm/εy, 

calculated from Equation (2-29) and (2-30) and implemented into (2-46).  

1csm
csm y sh y

y

f f E



 
      

 
 (2-46) 

The beneficial effects of strain hardening (assuming the quad linear material model from 

Section 2.4.3) for sections with a limiting strain csm sh   are therefore accounted, while 

exceeding the EN 1993-1-1 design resistance Nc,Rd	=	A∙fy [48].  
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2.4.5.2 Bending	resistance	

The bending resistance for slender cross-sections made from carbon steel can be di-

rectly computed using Equation (2-47). It is the product of the CSM limiting stress csmf  

and the elastic section modulus elW .  

,
0 0

csm el csm csm el
csm Rd csm y

M y M

f W f W
M for

  
  
 

   
 

(2-47) 

For CSM strains between εy (strain when reaching the yield strength) and εsh (strain in-

dicating the end of the yield plateau and thus the beginning of strain hardening). Equa-

tion (2-48) and (2-49) can directly be used to calculate the elastic-plastic resistance of a 

hot-rolled I-section subjected to pure bending around the major and minor axis, respec-

tively. Those equations were derived on the basic assumptions that plane sections re-

main plane and normal to the neutral axis in bending; further, that the cross-section 

shape does not change significantly before the strain at the extreme outer-fibre εcsm is 

reached [129]. Assuming a strain ration of εcsm/εy, the bending capacity is calculated 

equal to the elastic moment Mel. With an increase of the strain ration, i.e. the use of stock-

ier cross-sections, the bending capacity Mcsm asymptotically approaching the plastic mo-

ment Mpl. As soon as the strain ration of εsh/εy is reached, beneficial effects of strain-

hardening, arising from the CSM material models for hot-rolled or cold-formed carbon 

steel, can be exploited.  

, ,
, ,

,0
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    
                  

(2-48) 

, ,
, ,

,0

1 1 ,pl z y el z csm
z csm Rd y csm sh

pl z yM
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(2-49) 
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where: 

Wpl is the plastic section modulus 

Wel is the elastic section modulus 

y,	z refer to major and minor axis, respectively 

α is a dimensionless coefficient that depends on the type of cross-sec-

tion and axis of bending (see Table 2-8) 

For even stockier cross-sections the CSM strain εcsm exceeds the yield plateau limit value 

εsh, entering the strain hardening regime in the outer fibres of the profile. The calculated 

moment resistance achieves the point of Mcsm	>	Mpl. The bending capacity of a cross-sec-

tion can be described by Equation (2-48), (2-49) and (2-50). The full derivation of the 

resistance functions for I-sections and SHS/RHS can be found in [129], [152], [153]. 

*( )csm y pl y w w csm yM f W f W W f f       (2-50) 

  csm
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

 
    

 
 (2-51) 

*

*

*
, ( )

Y

W y Y
A

W g y ydA 
 

(2-52) 

where: 

WW  is the portion of the elastic-plastic stress block that is missing from

the theoretical plastic section modulus 

*
WW  

is the additional section modulus associated with the reached strain

hardening range 
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g(y)		 is the function which represents the triangular stress distribution

normalized by (fcsm	‐	fy)  

For more complex material models, such as the quad-linear material model, the derived 

explicit functions to calculate the bending resistance start to get impractical quickly. 

Therefore, simplified in expression were derived in [129] for a practice oriented design. 

Based on a regression analysis of the geometric properties of available I-sections, as well 

as RHS/SHS sections a simpler expression of 𝑊ௐ
∗  was proposed as follows:  

* csm sh
W pl

y

W W
  


 

    
   

(2-53) 

where: 

  is a dimensionless coefficient, presented as a function of the type of

cross-section and axis of bending (see Table 2-8) 

This leads to the simplified expressions for the bending resistance 𝑀௖௦௠ around the 

major and minor axis, as shown in Equation (2-54) and (2-55).  
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(2-55) 
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Table 2-8: CSM coefficients α and β used in the bending resistance functions, adapted from [129] 

     

 Axis of bending Axis of bending 

 Major Minor Major Minor 

I-section 2 1.2 0.1 0.05 

SHS/RHS 2 2 0.1 0.1 

2.4.5.3 Combined	Load	Case	Resistance	

The case of combined loading was investigated by Liew and Gardner [108]. The derived 

expressions for the combined load case of compression and bending about the major 

and minor axis, respectively, as well as the case for biaxial bending with compression is 

given by Equation (2-56), (2-57) and (2-58).  
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(2-58) 

The values for the powers ay, by, az, bz, αcsm, βcsm are defined in Table 2-9. The tabulated 

powers were determined through a non-linear least squares fitting procedure and are 

based on the ration of the cross-section web area to gross area a	=	Aw/A and the ratio of 

the plastic section moduli for buckling around the major and minor axis Wr	=	Wpl,y/Wpl,z.  
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Table 2-9: CSM resistance coefficients for combined load cases, adapted from [108] 

 3 5csm

y




   5 15csm

y




   5 15csm

y




   

 I-sections Box sections 

ya  1.2a   

yb  0.8  

za  2  8 1.2a   1.2a   

zb  1  0.8 0.5a  0.8  

csm  2 1.5 1n   1.52 0.15 5 1.3rW n     21.75 2 0.15 1.7r rW n W   

csm  2.20.8 5 4n     2.20.8 15 8rW n      21.6 3.5 1.5 3.7r rW n W     

It was shown that the methodology within the framework of the CSM design can be ex-

tended to cross-sections subjected to combined loading. Based on the concept of a ro-

tated planar strain surface, interaction curves were developed to enable a practical ap-

plication. Those were shown to be in good agreement with first numerical results [108] 

and further parametric studies [112], where CSM capacity predictions for hot-rolled sec-

tions were compared to results from numerical investigations as well as current predic-

tions from EN 1993-1-1 [61].  

2.5 Advanced	Analysis	+	CSM	Approach	(AA+CSM)	

2.5.1 Introduction	

In the more recent past, the CSM was further developed by Fieber [67] during his PhD 

Thesis “Structural Steel Design using Advanced Analysis with Strain Limits” investigat-

ing members and frames made from hot-rolled steel and closed (RHS/SHS) as well as 

open cross-sections (I-shaped). This work was additionally published in several journal 

publications in [154]–[156]. Recent evaluations and expansions of this same concept to 

stainless steel were made in the PhD thesis of Walport [81] “Design of Steel and Stainless 

Steel Structures by Advanced Inelastic Analysis”. The proposed advanced analysis with 

strain limits addresses members and frame structures, using FE-beam GMNIA simula-
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tions to predict the strain- and slenderness-based profile dependent load bearing capac-

ity. This method is further termed as AA+CSM, as an acronym for advanced analysis with 

continuous strength method based strain limits.  

The developed procedure is generally motivated by the same shortcomings that lead to 

the establishment of the direct strength method (DSM) from Section 2.3 or the continu-

ous strength method (CSM) from Section 2.4, which are present traditional code based 

design approaches, i.e. EN 1993-1-1 [48] and AICS 360-16 [60]. Yet, it goes beyond the 

CSM approach, expanding it to global structures by the incorporation of beam finite ele-

ment analysis to advanced problems including local buckling phenomena. In its general 

motivation and in some aspects of its implementation, this concept is connected to the 

work in the present thesis; most noticeably, the work in this thesis and the AA+CSM ap-

proach both attempt to include local buckling phenomena in a standard (6 D.O.F.) beam 

element formulation. 

In the AA+CSM design method proposed by Fieber [67], strain limits from the CSM base 

curve (see Section 2.4.2) are obtained beforehand with a corresponding calculated slen-

derness value and applied to represent the effects of local buckling within beam finite 

element calculations. This approach enables the design of members with various profiles 

and any cross-sectional class using beam finite elements for advanced analysis purposes. 

This bypasses the need for shell based FE simulations, which indeed are able to capture 

local instability effects due to an explicit modelling of the whole cross-section, yet are 

not very practical and error prone, requiring a more detailed problem knowledge.  

In the context of the CSM, the cross-section capacity is based on determined strain limits, 

which are directly linked to the cross-section and load case dependent slenderness, by 

integrating the stress distribution over the depth of the profile, see therefore Section 

2.4.5. In combination with the standardized material models from Section 2.4.3, the CSM 

directly controls the spread of plasticity through the depth of a cross-section. This ena-

bles the consideration of positive effects from strain-hardening and eliminates the effec-

tive section property calculation (effective width method from EN 1993-1-5 [131]) for 

class 4 section in the design work-flow. Further, global member instability effects, i.e. Th. 

2. Ord. effects indicated through sway modes in frame structures, are directly captured 

in the beam FE analysis through explicit modelling. The advanced analysis simulations 
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were performed in the commercial finite element software Abaqus [146]. The used 

Abaqus beam elements are denoted as B31OS and B31 for open and closed cross-sec-

tions, respectively, taking into account shear deformation, i.e. Timoshenko beam ele-

ments.  

The following sections summarize the main topics that form the progressive character 

of this method according to [67]. Among them are topics such as the strain averaging 

approach, advanced analytical formulation for the determination of the elastic buckling 

stresses for whole cross-sections and the determination of local buckling half-wave-

lengths derived from numerical simulations using the finite strip method (CUFSM)[88]. 

In sum results from 2328 cross-sections were obtained, including European and Ameri-

can SHS/RHS, I-, C-, T- and L-shaped structural steel profiles. Note that only the results 

for SHS/RHS and I-shaped profiles were used to develop the analytical formulations for 

the local buckling half-wavelengths [67].  

2.5.2 Strain	averaging	approach		

The standard CSM base curve was calibrated against experimental results on cross-sec-

tions subjected to pure compression and uniform bending, i.e. from stub column tests 

and four point bending tests, respectively. Those load cases represent uniform strain 

distributions along the length of the member. In practice, combined load situation are 

the usual cases, where a strain gradient along the member length enhances the local sta-

bility of cross-sections. As shown e.g. by Kuhlmann [42], moment gradients have in gen-

eral a beneficial effect on the plastic hinge formation and thus the rotation capacity. To 

account for the beneficial effect of local moment gradients, the CSM strain limit is aver-

aged over a characteristic length Lb,cs, further described as the full cross-section half-

wavelength (s. Section 2.5.3.2), rather than simply to a peak strain at the maximum mo-

ment along the member length. A similar approach was stated by Lay and Galambos 

throughout [157], [158]. There, the formation of plastic hinges for Class 1 cross-sections 

was investigated, resulting the observation that inelastic buckling occurs when the com-

pression flange has yielded along the length of the inelastic local buckling half-wave-

length (in the case of uniform bending).  
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The strain averaging approach is applied as follows. The investigated member is discre-

tized in n element (beam elements). The element size should be smaller or at least equal 

to Lb,cs (estimated buckling half-wavelength). After discretization and load application 

the system is calculated stepwise. The region with the highest bending moment Mmax 

indicates the formation of a plastic hinge and consequently the location of the strain av-

eraging length. The stepwise calculated strains – assuming first order beam finite ele-

ments with a single integration point at the centre of the element – are averaged over 

the number of elements (εEd,Lb) within the buckling half-wavelength Lb,cs. The member 

capacity is then calculated from the condition εEd,Lb ≤ εcsm and Equation (2-59).  

,

,
1

1.0

1
1

Ed Lb

csm

n

Ed Lb i and n
n




 



 
 (2-59) 

2.5.3 Definition	of	cross‐section	elastic	buckling	stress	and	local	buckling	

half‐wavelength	

The conceptual background for the calculation of the cross-section level elastic buckling 

stresses and local buckling half-wavelengths is derived from the consideration of plates 

with simply-supported and fixed boundary conditions. Assuming this leads to a lower 

and upper bound of elastic buckling stresses from individual plates of a cross-section; 

where the lower bound is provided by the minimum buckling stress of the flange or the 

web of a cross-section with simply-supported boundary conditions, i.e. 𝜎௖௥,௙
ௌௌ  or 𝜎௖௥,௪

ௌௌ , as 

well as the upper bound provided by the minimum buckling stress of the flange or the 

web with fixed boundary conditions, i.e. 𝜎௖௥,௙
ி  or 𝜎௖௥,௪

ி . The level of element interaction 

depend in general on constituent plate proportions, calibrated to analytical expressions 

derived from simulations. The full cross-section dependent elastic critical buckling 

stress is 𝜎௖௥.௖௦ is expressed in the general formulation given by Equation (2-60).  

 , , , , 0 1         SS F SS
cr cs cr p cr p cr p where

 (2-60) 
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The same conceptual principle was applied to the calculation of the buckling half-wave-

length 𝐿௕.௖௦, assuming that the full half-wavelength lies between the half-wavelengths of 

isolated plates with simply supported 𝐿௕,௣
ௌௌ  and fixed 𝐿௕,௣

ி  boundary conditions along ad-

joined edges, see Equation (2-61).  

 , , , , 0 1     SS SS F
b cs b p b p b pL L L L where

 (2-61) 

2.5.3.1 Determination	of	local	buckling	stresses		

In the following, expression for the determination of the local buckling elastic stresses 

𝜎௖௥.௖௦ are briefly presented for SHS and RHS profiles. A detailed presentation on a wider 

set of profiles as well as the derivation of the analytical formulations is based on inves-

tigations from Fieber [67]. Those investigations were additionally published in con-

densed representation throughout journal publications in [150], [151].  

 , , ,min ,      SS SS SS
cr p f cr f w cr w  (2-62) 

 , , ,min ,      F F F
cr p f cr f w cr w  

(2-63) 

where: 

,f w   are steering parameter to recognise buckling affected cross-section

parts, in each case, defined as ratios of the maximum applied com-

pressive stresses σmax,cs, described by Equation (2-64) and (2-65)

subjected to the following condition: 

Condition: if	βf	>	1	then	βw	=	1	or	if	βw	>	1	then	βf	=	1 

Additionally, the maximum applied stress 𝜎௠௔௫.௖௦ is defined through Equation (2-66) as 

the maximum compressive stress in the flange 𝜎௠௔௫.௙ f or the web 𝜎௠௔௫.௪. 
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max,

max,
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


 cs

f
f  

(2-64) 

max,

max,





 cs

w
w  

(2-65) 

The consideration from Equation (2-64) and (2-65) can be simplified to be equal to 1, 

since in the most common load situation (compression and/or major axis bending) for 

I-shaped sections and in all load combinations for SHS/RHS the compressive stresses 

along the centerline of flange and web plates is equal 𝜎௠௔௫.௪ ൌ 𝜎௠௔௫.௙. 

 max, max, max,max ,  cs w f  (2-66) 

Table 2-10: Interaction coefficient ζ for square (SHS) and rectangular (RHS) hollow sections, adopted 
from Fieber [67] 

Load case Flange critical  1   Web critical  1   

Compression and major axis 
bending 
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 
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The functions for the interaction coefficient ζ are determined by Equation (2-67), devel-

oped on results from finite strip analysis, where the full cross-section elastic local buck-

ling stress σcr,cs was obtained for a wider range of cross-sections. The functions for ζ are 

summarized in Table 2-10. 

, ,

, ,

0 1
 

 
 


  



SS
cr cs cr p

F SS
cr p cr p

but
 

(2-67) 

Note that for hot-rolled SHS/RHS with tf	=	tw and welded SHS/RHS with tf	≥	tw, the flange 

is never critical under compression and minor axis bending.  

Table 2-11 introduces the factor ϕ, which defines the relative susceptibility of flange and 

web to local buckling at the simply-supported lower bound. It is described as follows 

through Equation (2-68), yet, as explained before, can be simplified to Equation (2-69) 

for common load cases, i.e. βf	=	βw	=	1. 

, , max,

, , max,

   


   
  

           

SS SS
f cr f cr f w

SS SS
w cr w cr w f  

(2-68) 

,
max, max,

,


  


 

SS
cr f

f wSS
cr w

if
 

(2-69) 

2.5.3.2 Determination	of	local	buckling	half‐wavelengths	

An analytical approach by Fieber [67] to calculate the local buckling half-wavelength 

was calibrated against finite strip calculations with the software CUFSM ([88], [89]). The 

concept requires the knowledge of the buckling half-wavelength of the isolated cross-

section plates with simply-supported and fixed boundary conditions. The local buckling 

half-wavelength can be defined from Equation (2-70): 
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,  b p Lb pL k b  (2-70) 

where: 

kLb is a coefficient to account for the boundary condition and applied

stress distribution. Within the advanced CSM framework this factor

is analogous to kσ from Table 2-2, used to predict the local buckling

stress σcr,p of a plate, see additionally EN 1993-1-5 [50]. 

bp is the width of an isolated plate 

Table 2-11: Buckling half-wavelength coefficient kLb for internal and outstand plates with simply-sup-
ported and fixed edge conditions, adopted from Fieber [67] 

Stress distribution 2 1    Simply-supported edges Fixed edges 

Internal plates (SS-SS) 

 

1 0.25   1Lbk   0.66Lbk   

 

0.25 1    2
1 0.21 0.25Lbk      2

0.66 0.12 0.25Lbk     

1  0.67Lbk   0.47Lbk   

Outstand plates (SS-SS) 

 

1 1    Lbk member length  1.65Lbk   

 

1 0   Lbk member length  1.65Lbk   

 

0 1    
0.818

0.221Lbk 



 

0.68

0.41Lbk 



 

1  0.67Lbk   0.48Lbk   

1 3     20.06 0.39 1Lbk      20.04 0.29 0.73Lbk      

Note: Compression taken as positive  
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A summary of the calibrated expressions for the half-wavelength coefficient kLb is pre-

sented in Table 2-11. The basis those expression was formed by a series of finite strip 

analysis performed on rectangular plates with different boundary and loading condi-

tions. A detailed explanation on the calibration process is presented further in [67].  

Using Equation (2-70) in combination with the half-wavelength coefficients kLb from Ta-

ble 2-11 leads to the half-wavelengths of the isolated web (𝐿௕,௪
ௌௌ  and 𝐿௕,௪

ி ) and flange (𝐿௕,௙
ௌௌ  

and 𝐿௕,௙
ி ) with simply supported and fixed boundary conditions. Along with this infor-

mation, as well as the load case dependent value for η from Table 2-12 and the factor   

from Equation (2-68) or (2-69), the lower and upper bound for the half-wavelength of 

the full cross-section (𝐿௕,௣
ௌௌ  and 𝐿௕,௣

ி ) can be determined as follows:  

 , , , 1SS SS SS
b p b w b fL L L     (2-71) 

 , , , 1F F F
b p b w b fL L L     (2-72) 

Subsequently, the calculation of the interaction factor ζ (see Table 2-10), provides the 

evaluation of the full half-wavelength 𝐿௕,௖௦ using Equation (2-61).  

Table 2-12: Expression for the transition function η for SHS/RHS and I-shaped profiles subjected to com-
pression and major or minor axis bending, adopted from Fieber [67] 

Profile 
Load case 

yN M  zN M  

SHS/RHS 3

1
1

1



 


 

I-section  3

1
1 0

0.5 1



  

 
  3

1

1
1 0

0.5 1a



  

 
 

1 2 1 0.6fwhere a       
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2.6 Generalized	 Slenderness	 based	 Resistance	Method	 (GSRM)	 for	

RHS/SHS	profiles	

The Generalised Slenderness based Resistance Method (GSRM) is yet another method 

developed over the course of the last few years to address the shortcomings of tradi-

tional design rules. It is closely related to the work carried out in the context of this thesis 

for two reasons: on one hand, it was developed by this thesis’s supervisor and other in-

ternational research partners in the context of RFCS (Research Fund for Coal and Steel) 

funded project HOLLOSTTAB, which stands for "Overall-Slenderness Based Direct De-

sign for Strength and Stability of Innovative Hollow Sections". On the other hand, the 

project dealt with the design of high-strength or otherwise custom-made steel hollow 

sections, and is thus thematically directly connected with this thesis; its experimental 

campaign and its FEM model development and validation form the core basis and start-

ing point for this thesis work, see Chapter 1. 

Thus, the GSRM is a method which focuses on the development of design rules, similarly 

to other proposed methods such as the direct strength method (DSM, see Section 2.3), 

continuous strength method (CSM, see Section 2.4) and the overall interaction method 

(OIC [159], [160], also denoted as the overall concept throughout literature. The descrip-

tion of the method when applied to square	and	rectangular	hollow	sections,	i.e. the same 

type of sections considered in this thesis, is mainly based on investigations documented 

in the PhD thesis of Toffolon [2] on RHS/SHS profiles.  

Similarly to the DSM and CSM, the GSR-method makes use of an overall definition of the 

slenderness 𝜆̅ on the cross-sectional, as well as the member level and a corresponding 

reduction factor χ. It is generalized to account for combined load situations and takes 

advantage of interactive effects between mutual parts/plates of closed RHS/SHS cross-

sections. In the method the local stability case (𝜆̅௅, 𝜒௅) and the global stability case (𝜆̅ீ , 

𝜒ீ) are treated separately. All resistances are defined as load amplification factors and 

thus termed R. The generalized slenderness and the ultimate resistance are defined in 

Equation (2-73) and (2-74), respectively. The buckling coefficient χ is a function of the 

slenderness 𝜆̅, dependent on the definition of the reference resistance Rref. 
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  ref

cr

R

R
 (2-73) 

 b refR R  (2-74) 

Three definitions for Rref were investigated along the conduction of the Hollosstab pro-

ject [161]: 

i. Rel: Load amplification factor to reach the yield strength at an outer fiber of the 

cross-section 

ii. Rpl: Load amplification factor to reach the plastic resistance of the cross-section 

(yielding at all fibres, no strain-hardening) [162] 

iii. Rlin‐pl: Load amplification factor to reach the resistance surface given by the plane 

interaction surface 
, ,

, ,

1  y Ed z EdEd

pl y pl z pl

M MN

N M M
 

Of these, the definition based on Rel was finally demonstrated to be most advantageous, 

which is justified considering that the majority of gains in the design approach were 

achieved in the slender range of sections (class 3 and class 4). 

The general idea of the GSRM approach to calculate the cross-sectional member re-

sistance is described through Figure 2-15 a) and b). The proposed design workflow re-

quires two steps of resistance evaluations, i.e. consideration of the cross-section re-

sistance and the member resistance. Similarly to EN 1993-1-5 [131] and EN 1993-1-1 

[48], the GSRM introduces these steps using the Winter and Ayrton-Perry formulation, 

respectively. The steps for the determination of the resistance Rb,L on a cross-sectional 

level may be applied in combination with Figure 2-15 a) as follows.  

i. Calculation of the cross-section resistance Rref in the n‐m plane, according to the 

load combination and the applied resistance definition, see Figure 2-15 b). In this 

representation Ω is the applied load amplitude and φ the angle in the n‐m plane.  

ii. Calculation of the critical local buckling load Rcr,L with the same load combination. 

The values for Rcr,L may be obtained from simply supported members with a very 

short length through available analytical formulations or numerical simulations. 
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Therefore, free software tool like CUFSM [88] and GBT [90] or commercially 

available software like ABAQUS [146] can be used. 

iii. Calculation of the local slenderness using Equation (2-73). 

iv. Calculation of the reduced cross-section resistance Rb,L, see Equation (2-74), us-

ing derived formulations for the resistance curve from Equation (2-80) to (2-82). 

The final design value is obtained by Ω∙Rb,L according to Figure 2-15 b).  

 

Figure 2-15: a) Design steps of the GSRM; b) n-m interaction curves for different resistance formulations, 
adopted from [2] 

The formulation of the local buckling reduction factor χL is proposed as follows for two 

possible ranges, i.e. an elastic and plastic range, separated by a calculated load distribu-

tion dependent slenderness value (see Equation (2-75)). This procedure is similar to EN 

1993-1-5 [131] where the local buckling curve (Winter curve) is separated into two 

parts. 

,

ref
L

cr L

R

R
   (2-75) 

0 0.5 0.25 A     (2-76) 
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   
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
    

1
2

1
2

1
A 0.2 0.02 for hot finished sections

2
1

A 0.225 0.025 for cold formed sections
2

 (2-77) 

1 max ;

     
 
     
 
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2 min ;

     
 
     
 

y z y z

y z y z

N M M N M M
A W W A W W

N M M N M M
A W W A W W

 (2-79) 

where: 

A is a calibration factor depending on the fabrication process of hot-

rolling or cold-forming, see Equation (2-77).  

ψ1,	ψ2 is the maximum and the minimum factor for the stress distribution

according to Equation (2-78) and (2-79), respectively. 

For the elastic range 𝜆̅௅ > 𝜆̅଴, the buckling reduction factor 𝜒௅ is proposed as follows: 

2 2
0

1
1  

 

 
    
 

LL B B
L L

A
for

 
(2-80) 

An additional separation is made for hot-rolled and cold-formed sections in the plastic 

range 𝜆̅௅ < 𝜆̅଴. The buckling reduction factor 𝜒௅ is then calculated by Equation (2-81) and 

(2-82). This condition is based on the different strain hardening potential according to 

the fabrication procedure and the corresponding steel grade. This difference is made 

through the factor αpl, calculated by Equation (2-83).  
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   0 L
L 0L pl pl

0

1 1 min ;1.5 for and hot rolled sections
0.3

     



      

  
(2-81) 

   0 L
L 0L pl pl

0

1 1 min ;1.5 for and cold formed sec tions
0.25

     



      

  
(2-82) 

  pl
pl

el

R

R  
(2-83) 

The above equations cover the design of the cross-section at the local level. In addition, 

the method is also able to capture the global (member) buckling phenomenon, which in 

the case of standard hollow sections is generally governed by a flexural buckling mode.  

i. Calculation of the global critical elastic buckling load factor ,cr GR . For SHS/RHS 

profiles it is the flexural buckling load factor and uniform compression. 

ii. Calculation of the global member slenderness G , according to Equation (2-84). 

iii. Calculation of the resistance reduction factor G  using appropriate existing EC3 

column strength curve. Equation (2-85) provides the resistance factor ,b GR .  

,

,

  b L
G

cr G

R

R
 

(2-84) 

,    b G G L refR R  (2-85) 

For the specific set of sections and material grades considered in Hollosstab, the GSRM 

was proven to lead to far more accurate, yet mechanically consistent and explicable de-

sign results. Some demonstrations of the improved accuracy when compared to Euro-

code 3 regulations are shown through the following figures, taken from [2]. Figure 2-16 

a) shows the results obtained with the GSRM approach for biaxial bending and cold-
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formed and hot-rolled hollow sections. The predictions are normalized with the numer-

ical results from GMNIA simulations, considered as the ground truth. The x-axis repre-

sents the local relative slenderness. The comparison with Eurocode 3 cross-section re-

sistance predictions is made in Figure 2-16 b), plotted in the same manner as before. It 

is noticeable that the prediction scatter for class 4 cross-sections strongly decreases 

when using the GSRM, leading to results which are still save sided but more economic 

compared with EC3 predictions. This conclusion can be further applied to rest of the 

cross-section classes, since in almost all cases the GSRM design value is lower than the 

GMNIA results.  

Figure 2-16: Comparison of GSRM with EC3 code provisions [48] 



 

 

  
 
 
 

Research Gaps

Identification and Discussion 

 

Outline	of	the	chapter:	

This chapter is subdivided in three parts: 

i. The first part summarizes the finding of the previous two chapters, in particular 

the introductory statement of the thesis motivation in Chapter 1 and the detailed 

description of the state of technology in the field of the design of steel members 

against instabilities in Chapter 2, and expands on the shortcomings of present 

design methods by means of demonstrations and calculations.  

ii. The second part describes the proposed, alternative approach, named “DNN-

DSM”, and motivates its use and the potential expected from its development and 

application. This forms the working hypothesis of the thesis, which was tackled 

in subsequent parts. 

iii. Finally, the third part of this chapter formulates a series of Research Gaps, i.e. 

more basic scientific and engineering questions that needed to be tackled in the 

process of implementing the proposed new methodology. 
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3.1 Limitations	of	Traditional	and	Advanced	Design	Approaches	

3.1.1 Cross‐section	classification	

The concept of cross-section classification presented in Section 2.1.4 has a major influ-

ence on the common view on and procedures for structural design and verification of 

steel structures, starting with the choice of the used steel sections and extending to the 

assumed overall structural behaviour. Due to its inherent simplicity and the inherently 

“artificial” and “clear-cut” division into 4 classes, the actual load bearing capacity is often 

underestimated in slender ranges, for materials with pronounced strain-hardening ca-

pacities, and for structures that may require only limited plastic deformations to achieve 

significant redistribution effects. An accurate description of shortcomings is summa-

rized and described by Wilkinson [27], Nseir [59], Soulumi [28] and many more 

throughout literature. In the following some of the shortcomings connected to the clas-

sification system are summarized:  

iv. The mutual interaction between individual plates of the cross-section is typically 

neglected. This leads (particularly in bending-dominated cases) to an unwar-

ranted, high slenderness estimation and therefore an unfavorable classification. 

Furthermore, local strength checks are based on the most stressed plate of the 

cross-section. The positive effect of a local stress gradient from bending in adja-

cent plates is neglected although experiments [42], [163]–[166] show higher ca-

pacities due to this effect. 

v. The unrealistic, “sudden” resistance drop between class 2 (Mpl) and class 3  

(Mel) cross-sections due to a “hard” geometric limit without transitions. Such a 

discontinuity has no physical background and arises only for reasons of a simpli-

fied capacity representation. This regulation remains in the revised version of EN 

1993-1-1:2022 for general-shaped sections. For doubly-symmetric sections, 

Lechner [167] and Kettler [66] proposed a method developed in the RFCS project 

SEMI-COMP which reduces this discrepancy, by introducing a linear transition 

between Class 2 and Class 3 capacities; this method is introduced in the 2022 

version of EN 1993-1-1 in a separate Annex B.  
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vi. The fabrication process, i.e. hot-rolled or cold-formed, and therefore the strong 

difference in the material behaviour is not taken into account. Only the geomet-

rical aspect in the corner regions differs in the definition of the plate width due 

to different radii (hot-rolled with b–3t and cold-formed with b–5t). 

vii. Depending on the load case combination, individual plates of a cross-section can 

be assigned to different classes. In addition, parts classified as Class 4 undergo an 

iterative calculation process where the effective width method is used [131]. 

3.1.2 Non‐linear	material	behaviour	

The cross-section classification system is additionally bound by several simplifications, 

inconsistencies and shortcomings. One of the biggest simplification within this method 

is based on the assumption of a simple, bilinear material behaviour in the determination 

of plastic capacities. While this simplification is justified for hand calculations, it is clear 

that it is not able to accurately reflect the behaviour of various steel grades at higher 

levels of straining, and in particular is not accurate in light of the increased use of highly 

non-linear material such as aluminum, stainless steel or high strength steel. In these 

cases, the framework of cross-section classification will not generally be very accurate, 

underestimating the full material potential.  

In the following, as a means to demonstrate the above statements, two simulation sets 

and their results are presented within Figure 3-1. The simulations serve to underline the 

crucial influence between simplified and more refined material models for hot-rolled 

carbon steel, especially in the range of stocky cross-sections. The profile considered 

herein was a hot-rolled SHS300 section, of varying wall thickness. The material proper-

ties for the simulations in Figure 3-1 a) were chosen according to Eurocode 3, in order 

to fulfill the requirements for plastic design: 𝑓௨ 𝑓௬⁄ ൒ 1.1, 𝜀௙ ൒ 15%, 𝜀௨ 𝜀௬⁄ ൒ 15, 𝜀௬ ൌ

𝑓௬ 𝐸⁄ , where 𝜀௙ is the percentage strain after failure across the fracture surface, 𝜀௨ is the 

strain at the ultimate tensile strength 𝑓௨ and 𝜀௬ is the strain at yield tensile strength 𝑓௬. 

Figure 3-1 b) shows the simulated results for the same profile (hot-rolled SHS 300) using 

a quad linear material model, originally derived by Yun and Gardner [6] and adopted for 

the new Eurocode generation within prEN1993-1-14: Design by finite element analysis. 

The steel grade S355 was used in these simulations. Both diagrams and axes make used 
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of normalized variables. The x-axis is shows the rotation normalized by the plastic rota-

tion φ/φpl. The y-axis describes the reached moment at every simulation step, normal-

ized by the plastic profile dependent moment M/Mpl. The chosen colors represent the 

four cross-section classes into which the profiles would have been classified, i.e. red = 

class 4, yellow = class 3, green = class 2 and blue = class 1. The material model does only 

have a minor influence on class 4 and class 3 cross-section. Its influence is more pro-

nounced within class 2 and class 1 sections, attributed as stocky. It can directly be seen 

that profiles originally classified as class 2, using the bi-linear material model (Figure 

3-1 a)), could be classified as class 1, using a quad-linear material model (Figure 3-1 b)). 

By taking strain hardening to a higher extent into account, compared to current Euro-

code provisions, the actual material behaviour is exploited much better leading to more 

economical approaches. The simulations shown in Figure 3-1 are based on shell finite 

element models for SHS cross-sections. It has to be remarked that the beneficial interac-

tion between individual faces of the cross-section is taken into account in this consider-

ation, thus avoiding the unfavorable assumption of individual plates. The figure demon-

strates the fact that material models and plate slenderness have a significant influence 

on achievable rotations and strength values, something classification is only partially 

and inaccurately able to capture. 

 

Figure 3-1: Non-linear shell FE Abaqus simulations and their results using different material models for 
hot-rolled steel, a) bilinear material model based on [131]; b) quad-linear material model based on [6] 
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3.1.3 Limitations	of	more	advanced	analysis	and	design	methods	

The presented, advanced design approaches, i.e. the DSM, CSM and GSRM have the main 

motivation to overcome code inherent disadvantages. The main advantage of all those 

methods is overcoming the need to determine cross-section classes. Those strictly set 

boundaries are replaced through a continuous definition of buckling strength as function 

of (cross-sectional, overall) slenderness. The local cross-section slenderness is a result 

of a previously performed elastic buckling analysis, which can be achieved by means of 

computer software. Freely available tools such as CUFSM or GBT are named and referred 

to in Section 2.4.4. Additional, commercially available software such as Abaqus provided 

also the option to perform LBA calculations. The major advantage is that the entire cross-

section is now considered as a whole and not just approximated through individual 

cross-section plates as before. The main focus is therefore shifted towards the modelling 

approach of the cross-section and the correct determination of the elastic buckling load 

rather than the determination of effective widths. The role of the local slenderness is 

therefore discussed in Section 3.1.4.  

The resistance of a cross-section, on the other hand, is a generalized function using the 

calculated local slenderness. The DSM uses different strength curves, comparable to the 

idea of the flexural buckling curve from EN 1993-1-1:2020 [48], to assess the need for 

local, distortional or lateral torsional buckling, see Section 2.3. It has additionally the 

advantage to be used as an optimization tool for cold-formed cross-sections, since one 

of the outputs are so called “signature-curves” which allow to asses different instability 

cases (local, distortional or later torsional buckling) dependent on the used profile and 

the buckling half-wavelength.  

The CSM uses a strain based definition, dependent on a continuous slenderness defini-

tion, to determine cross-sectional deformation limits, which are used within resistance 

formulations and a corresponding material law. The workflow of the CSM method ena-

bles to account for strain hardening to an extent traditional approaches are not capable 

of. The determination of slenderness based strains allow to account for an accurate, ma-

terial law dependent determination of the resistances in cold-formed and hot-rolled 

structural sections within a practice oriented and applicable manner. In addition, the 
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derived material models by Yun and Gardner ([6], [7]) are well suited within more ad-

vanced geometrically materially non-linear finite element simulations, explicitly ac-

counting for instability effects. The GSRM approach is especially favorable in slender re-

gions, leading to less conservative results compared to EN 1993-1-5 [50]. Its formulation 

is mostly based on the Winter curve for local buckling, incorporated in EN 1993-1-5, 

taking into account the whole stress distribution of the cross-section.  

In spite of clear advantages of those methods when compared to traditional approaches, 

new problems are introduced with their formulation, inherent to the new workflow. A 

list of disadvantages related to DSM and CSM was listed by Nseir [59]. Among them, the 

use of a continuous slenderness leads to possible new sources of inaccuracy in their cal-

culation. In addition, the use of a unique definition of cross-sectional slenderness as the 

square root of the ratio of the yielding load vs. the critical buckling load, irrespective of 

precise loading case, does not necessarily lend itself to an increased accuracy of the final 

definition of the buckling knockdown factors χ, as these will depend on such factors as 

the stress distribution. This is something that e.g. the DSM and the GSRM needed to 

tackle through the definition of a series of χ-curves.  

The most important drawback of the mentioned methods (DSM, CSM, GSRM and OIC) is 

however given by the lack of system-level redistributions; the methods are generally fo-

cused on strength, not on deformations. Among the described methods, only the AA-

CSM-approach is focused on system-level analysis; its main limitation may be given by 

the complexity of its application and interpretability, as several analysis steps are re-

quired before the system analysis can be assumed to be validated, including local buck-

ling analyses of all sections, determination of buckling wavelengths, calculation of limit-

ing strains. In addition, the method is generally also not suitable for inelastic system 

analysis, and is most closely comparable to an augmented, improved elastic-plastic (E-

P) system analysis. 

3.1.4 Role	of	the	slenderness		

The role of the slenderness, and therefore the modelling approach for its determination, 

is explained exemplary through an open I-shaped cross-section. Different model choices 

are shown in Figure 3-2. Similar investigations were performed as part of an industrial 
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project. FE model approaches and further references on model verification shall be 

taken from [82] and [168]. The general discussion of the importance of the slenderness 

is made here by looking at the CSM approach, presented in Section 2.4. 

 

a) 

 

b) 

 

c) 

Figure 3-2: Common model approaches for I- and H-shaped profiles a) Solid-model; b) Shell-beam-model; 
c) Shell-model; published in [82] 

Three common models for I- and H-shaped profiles are summarized in Figure 3-2, in-

cluding a) solid-model; b) shell-beam model; c) shell-model. Solid models (see Figure 

3-2 a)) can lead to a realistic geometry approximation, including the influence of the fil-

lets between the web and the flanges. Nevertheless, requiring the implementation of the 

whole cross-section geometry, the calculation process can become computationally time 

consuming, leading to necessary simplifications within the models.  

A more simplified model is shown in Figure 3-2 b), where the flanges and the web are 

modeled with shell elements, without a surface interception but with additional beam 

elements as square hollow sections of variable depth and wall thickness at the top and 

the bottom of the web. The beam elements are designed in such a way that they have the 

same area A and torsional moment of inertia IT as the missing fillets between the web 

and flanges. This model approach was also used and verified in [168].  

One further approach is the use of a shell-model with three plates representing the web 

and the flanges, which are intercepting in the centerline, see Figure 3-2 c). Therefore, the 

fillets are not modelled explicitly but are approximated by the overlap between the web 

and the flanges. Following this model assumption not all cross-section values can be 

taken into account precisely for hot-rolled I-shaped sections; welded profiles are mostly 
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excluded from this. In some cases, especially the torsional moment of inertia IT can de-

viate, depending on the selected profile series, around 30% [169]. This can lead, in ac-

cordance to the observed problem, to lower capacity values e.g. in the case of lateral 

torsional buckling (LTB). However, for local instability problems, which were investi-

gated throughout this report, members of shorter span are primarily not prone to LTB 

effects and therefore the above-mentioned modelling shortfall is negligible. For this rea-

son, model c offers several strategical and numerical advantages e.g. higher computa-

tional efficiency and higher model homogeneity as applicable for both hot-rolled and 

welded I-shaped profiles.  

Table 3-1: Used parameters for non-linear material model 

Steel 
grade 

𝐸 

ሾ𝑁/𝑚𝑚ଶሿ 

𝑓௬ 

ሾ𝑁/𝑚𝑚ଶሿ 

𝑓௨ 

ሾ𝑁/𝑚𝑚ଶሿ 

𝜀௬ 

ሾ%ሿ 

𝜀௦௛ 

ሾ%ሿ 

𝜀௨ 

ሾ%ሿ 

𝜀௦௛/𝜀௬ 

 

𝐸௦௛ 

ሾ𝑁/𝑚𝑚ଶሿ 

𝐶ଵ 

 

S355 210000 355 490 0.17 1.74 16.53 10.3 2283 0.38 

In order to discuss the difference between the models, an HEA300 profile with a length 

of 800 mm and the steel grade S355 was selected and loaded with a normal force acting 

in the center of gravity or a constant moment. The material model for hot-rolled steel 

was chosen according to explanations in Section 2.4.3.1. Used parameters are summa-

rized in Table 3-1. In a first step, a linear bifurcation analysis (LBA) was performed in 

ABAQUS for model a, b, and c. Table 3-2 displays the results of the obtained first eigen-

value for compression and bending, as well as calculated strain limits and corresponding 

maximum forces and moments according to CSM. The lowest eigenvalue occurs for 

model c for compression or bending, followed by model a and b.  

The CSM results of the cross-section capacity for pure compression do not differ, alt-

hough experiencing a slightly different CSM strain limit 𝜀௖௦௠/𝜀௬. This can be explained 

through the possible reached strain according to the CSM base curve, which lies for all 

models within the plateau region of the material model 𝜀௬ ൑ 𝜀 ൑ 𝜀௦௛. Figure 3-3 gives a 

clearer picture to this outcome. Figure 3-3 a) shows the CSM base curve and the areas, 

where the three models come to lie according to their slenderness. Figure 3-3 b) shows 

a strength dependent representation, where the x-axis is the CSM strain and the y-axis 

the back-calculated resistance corresponding to the material model. Since the resistance 
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of the profile comes to lie in the plateau region, no difference was identified. Neverthe-

less, the effect could be more significant for slender (transition between elastic range 

and plateau) or for very stocky profiles, where strain hardening could be misinterpreted.  

 

Figure 3-3: FE model influence for an HEA300, S355; a) CSM base curve, load case for compression; b) 
CSM based strength determination, load case for compression; c) CSM base curve, load case bending; d) 
CSM based strength determination, load case for compression 

However, the latter would not be particularly noticeable here, since the incorporation of 

overstrength is a benefit per se and a clear advantage compared to EN 1993-1-1:2020 

[48]. Further, the differences in the resistance calculation are not great, since the strain 

hardening gradient is significantly lower compared to the elastic range. 
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In the case of the moment resistance similar calculations were performed. The outputs 

regarding the CSM are summarized in Table 3-2. Figure 3-3 c) and d) shows the outcome 

in similar manner than for pure compression before. The difference in the reached mo-

ment resistance is more visible here, since the calculated CSM strain has a direct influ-

ence on the plasticized area over the heights of the cross-section. The biggest difference 

in the reached resistance, with respect to the different model approaches, would appear 

in the elastic range. Differences in the stocky range, especially the strain-hardening re-

gion, appear to be present but not significant for the overall method. Nevertheless, this 

effect can increase with a more non-linear material model as applied for cold-formed 

steel.  

Table 3-2: Summary of simulation results for different model approaches  

 Model a) Model b) Model c) 

Eigenvalue [kN] compression 12876.80 13981.50 10505.00 

Slenderness for compression 0.558 0.536 0.618 

CSM strain limit for compression 2.042 2.360 1.414 

Npl,csm	 3993.75 3993.75 3993.75 

Npl,GMNIA	 4017.00 4019.00 3814.40 

Eigenvalue [kNm] bending 1842.03 1927.52 1479.28 

Slenderness for bending 0.489 0.481 0.550 

CSM strain limit for bending 3.284 3.485 2.151 

Mpl,csm,bending	 487.00 483.36 481.53 

Mpl,GMNIA,bending	 491.70 492.60 467.20 

Within a practical application for design, the method appears to be robust according to 

the comparison of the FE models studied here. Even if the user chooses a slightly unfa-

vorable model for his design, this will not matter too much within the method itself. The 

differences in the load case for bending are around 1% for the considered profile. How-

ever, the differences may vary with the choice of other profiles, especially more slender 

ones. This circumstance should be investigated in further studies. Within academic com-

parisons, however, there may be larger differences between GMNIA shell calculations 

and CSM based comparisons. GMNIA results are additionally presented in Table 3-2. 

Hence, the CSM method considers different FE models of one selected profile indirectly 

by a prior slenderness calculation only. This is usually done by using additional free or 
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commercially available software. The subsequent calculated resistance will therefore al-

ways correspond to the models or experiments for which the CSM base curve was de-

rived.  

3.1.5 Conclusions	

The purpose of Section 3.1 is to summarize, as a first step, selected and relevant draw-

backs of the traditional and recent, more advanced design approaches presented in 

Chapter 2. In particular, Section 3.1.4 reflects the recent trend toward simulation-based 

solution approaches combined with advanced analysis methods. It highlights the im-

portance of the chosen FE models in the wake of advanced analysis methods, not only 

for CSM, which serves as an illustrative example here, but more generally for "design by 

analysis" approaches in general. Although the differences are not critical to the design 

for the example shown, there can be significant variations depending on the local section 

slenderness, the profile geometry, and the material model used. 

As the general trend is towards FE simulations, the focus of future tasks will be to select 

the "right" FE model and to be clear about the verification of these models using bench-

mark applications. In steel construction, this urgent requirement is addressed and in-

cluded in a completely new EC3 part, the EN 1993-1-14 [72], Design assisted by finite 

element analysis. The treatment of topics, for strongly simulation-based approaches, 

such as FE modeling, validation and verification, or analysis are not only crucial, but also 

necessary within a generally applicable set of standards.  

At this point, however, the question arises of whether this makes the method easier and 

more practical to use, despite precise model specifications. Specifications in themselves 

do not necessarily make modeling easier, but in engineering practice they can be more 

challenging in finding appropriate model validations and debugging. The logical conclu-

sion is that software companies will have to adapt to these specifications in the near 

future. One possibility would be component-based modeling, as already practiced by the 

software company Idea StatiCa, especially with the newly introduced Idea StatiCa Mem-

ber module. This means that the desired cross-section is only selected by the user and 

the higher-level modeling is taken from a software-inherent template, with any setting 

adjustments still to be made afterwards, i.e. boundary conditions, material parameters, 
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and FE discretization. In this way, a potential source of error is eliminated in the initial 

stages of modeling, simpler problem reconstruction with less scatter in the results is 

enabled, and thus time is saved at the simulation level. Nevertheless, these methods are 

still computationally intensive and so far limited to single components or parts. In order 

to apply such methods to entire structures, faster computational algorithms or advanced 

approaches are needed to speed up or partially replace the generally time-consuming 

modelling requirements and solution process, without losing accuracy and, ideally, even 

leading to accuracy gains. The following Section 3.2 gives a brief overview of possible 

data‐driven	methods	from	the	field	of	machine	learning as a viable path forward to over-

come the mentioned shortcomings, and shows examples of already implemented appli-

cations in civil engineering. 

3.2 New	Approach:	Machine	and	Deep	Learning	(ML/DL)	in	Structural	

Engineering	

An alternative to analytical and semi-analytical design proposals are data‐driven	meth‐

ods, predicated on machine-learning (ML) techniques, as they offer the possibility of cre-

ating "shortcuts" to a solution without an underlying, fully-developed analytical ap-

proach or, alternatively, a computationally intensive numerical simulation. These mod-

els typically require a certain amount of data to make reasonable predictions. This data 

is not easy to obtain, especially in the construction industry, and covers a wide spectrum 

as application areas, construction types, requirements and individual ideas vary. At the 

end of each project, there is always a unique product that is difficult to capture as a dig-

ital dataset due to the complex processes and numerous stakeholders involved. How-

ever, a paradigm shift can be observed due to advancing digitalization, which is not is 

characterized by a significantly more digital data generation. Topics such as Building In-

formation Modeling (BIM), Design by Analysis (DbA) and the broader acceptance of nu-

merical methods are clearly in the foreground of developments in the structural engi-

neering sciences, both at universities and in design and engineering software companies. 

This shows that it is already possible to digitally capture a large part of the design and 

construction process, generate usable data, and use it in a broader context. Data-driven 
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models are becoming increasingly important, enabling entirely new approaches and dif-

ferent ways of looking at problems. Over the past decade, a wide range of applications 

in the construction industry have been tested and found to work well. Current trends 

and thus additional examples are highlighted in this section. 

3.2.1 Current	trends	in	machine	and	deep	learning	

A variety of different Machine Learning (ML) models, here especially Deep Learning (DL) 

models, are available and used in all scientific and industrial fields. The most well-known 

applications in the public domain relate to machine vision for the development of auton-

omous driving and image generation or to text-based dialog systems, i.e., chatbots that 

generate text output depending on the input request. The current trends in machine 

learning and deep learning for civil engineering applications can be divided into several 

application areas, including the use of deep neural networks (DNN), convolutional neu-

ral networks (CNN) [170]–[173], support vector machine (SVM) [174]–[178], boosting 

algorithms (BA) [179]–[186] or random forest (RF) [187], and decision trees (DT). The 

main application areas relate to structural capacity prediction, fire resistance prediction, 

damage detection and monitoring, failure analysis and monitoring, structural analysis of 

truss structures, and mechanical property prediction. A particularly detailed summary 

of the current state of the art in machine learning for civil engineering, with about 580 

references, was recently published by Thai [188]. It includes a general introduction to a 

wide range of topics related to ML as well as links to available datasets from civil engi-

neering. Therefore, the reader is referred to [188] for a general overview of the topics 

and further information. 

With respect to artificial neural networks (ANN), the following variants with corre-

sponding model philosophies have gained increasing attention in recent years.  

i. DNN: Classical feed forward networks are used for the direct prediction of classes 

or float values as a target condition, using a set of input values/features from a 

space of available parameters. This prediction method is currently one of the 

most common strategies related to Deep Neural Network (DNN) applications. In 

its classical implementation, it is suitable for predicting problems by minimizing 
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a cost or loss function, usually using the mean square error (MSE) or cross en-

tropy loss function for regression and multiclass classification problems, respec-

tively. 

ii. CNN: Convolutional neural networks are of great interest for image based classi-

fication problems. The image is used as an input to generate the features for a 

fully connected classification network. The feature extraction is usually done 

with alternate layers of convolution and pooling.  

iii. cVAE: Conditional Variational Autoencoder are gaining popularity in generative 

design applications, providing additional advantages compared to normal DNN 

applications. The main reason for its use is the model architecture itself, provid-

ing a forward performance predictor for given design features (conceptually 

comparable to feed forward DNN models), as well as an inverse design features 

predictor conditioned on sets of performance requests. This optional solution 

method is particularly suitable in design tasks to exploit possible solution spaces 

for given problems.  

iv. PINNs: Physics-Informed Neural Networks use the DNN architecture incorporat-

ing physical laws by including partial differential equations together with a cor-

responding set of boundary and initial conditions as penalty terms in the loss 

function [189]. The idea behind PINNs is to use the neural network to approxi-

mate the solution to a partial differential equation (PDE) or a system of PDEs that 

describes a physical system. The network is trained using data from the physical 

system, and the loss function includes both a data-fitting term and a physics-

based regularization term. The advantage of PINNs over traditional methods for 

solving PDEs is that they do not require explicit discretization of the PDE, which 

can be computationally expensive and difficult for complex systems. Instead, 

PINNs learn the solution implicitly by training the neural network using data 

from the physical system. Background references are provided in [190]–[193]. 

3.2.2 Selected	application	examples	in	the	field	of	steel	structures	

A number of observations using different ML models throughout all fields of structural 

engineering has been performed within the last decades, testing its limits and opportu-

nities. Some selected examples from structural steel design is referred to below. 
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In [194], DNNs were used to estimate the available rotation capacity of cold-formed rec-

tangular and square hollow section steel beams. The used database for RHS and SHS 

profiles was collected from available experimental results from literature [27], [128], 

[195], [196]. In [197] and [198] DNNs were used to predict the flexural overstrength 

factor for I-shaped, as well as RHS and SHS steel beams; used datasets were collected 

from [44], [46], [47], [196], [199]–[207]. Further the overstrength factor for steel thin-

walled circular hollow section beams was predicted using genetic programming (GP) 

and neural networks [198]. Available data was collected from experimental investiga-

tions published in [208]–[216]. It was shown that models based on DNN approaches 

could predict the flexural overstrength factor, as well as the rotation capacity with high 

accuracy. 

Fonseca, in [217]–[219], developed and trained NN models to predict and obtain new 

data for the patch load behaviour, using different modelling and feature engineering ap-

proaches. In [220] an additional neuro fuzzy system was implemented to consider the 

difference in the beam structural collapse behaviour (web and flange yielding, web buck-

ling and web crippling) in the form of a pre-set classifier, leading to more accurate re-

sults compared to existing code provision.  

Predictions of the axial compression strength of steel members were investigated in 

[221]–[224] exploring the possibilities of artificial neural networks (ANN), boosting 

(XGBoost) and random forest algorithms, as well as support vector machine (SVM). The 

prediction performance for the buckling strength of steel members, corresponding to 

different instability cases for local [225]–[235], distortional [236]–[240], global [241]–

[244] and lateral torsional buckling [245]–[247], was investigated using mainly ANN 

models. Application cases, where the flexural and torsional strengths of members was 

predicted is referred to in [198], [248]–[261]. Again, in most cases ANN models were 

used, dominating this field of applications.  

3.3 Research	Gaps	

Building on the previous chapters, the above review of shortcomings of traditional meth-

ods and the possibilities presented by data-driven, machine-learning based approaches, 



Part I 3: Research Gap

 

 

 

91 

specific research	gaps can be identified, which describe the currently missing knowledge 

that is i.) required to achieve the desired technological objective and/or ii.) may result 

as complementary insights from this thesis work.  

As set out in Chapter 1, this thesis aims at developing an alternative method for the 

beam-element design of steel structures, which is able to capture buckling- and plastic-

ity-induced nonlinearities, and, crucially, to accurately determine the structures’ “real” 

plastic redistribution mechanisms and deformation capabilities. Thereby, Machine 

Learning techniques such as DNNs are to be used to augment the stiffness matrices of 

the traditional beam-element FEM implementation (Direct Stiffness Method – DSM) and 

include non-linear terms that account for the above inelastic effects. This method is 

termed “DNN-DSM” in this work and its development and successful implementation 

forms the working hypothesis of this doctoral dissertation.  

The achievement of this goal brings forward a number of significant research	gaps,	which 

need to be addressed in the dedicated chapters of this thesis. The following, main re-

search gaps were thereby identified. 

Research	Gap	1:	data	development	from	FEM	simulations	

The DNN-DSM method to be developed requires a thoroughly trained and validated ar-

tificial neural network for the prediction of non-linear stiffness terms at every loading 

step in structural components. The basis for this development is the availability of the 

corresponding training data, which must consist of many thousands, if not millions, of 

results for such stiffness terms, for various types of considered cross-section shapes, 

materials, load cases and load stages. Due to the cost and complexity of physical tests in 

structural engineering, it is impossible to develop this data purely experimentally. One 

working hypothesis in this thesis is thus that the corresponding data can be retrieved 

from localized numerical simulations, using shell elements. In a complex data develop-

ment procedure, the thesis will thus need to address the validation of the FEM simula-

tions against physical tests and explore the needed quality and quantity of data. The pre-

vious experimental findings of the project Hollosstab, during which over 140 full-scale 

physical tests on various types of structural hollow sections were performed, are used 

as the main starting point for this data development.  
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Research	Gap	2:	representation	of	the	inelastic	buckling	behaviour	of	thin‐walled	

steel	members	through	beam‐element	stiffness	matrices	

Artificial Neural Networks have been used to predict various features and performance 

criteria in structural engineering, as described in Section 3.2.2. Some applications in-

clude the augmentation of stiffness matrices, mostly in the field of shell elements for 

composite structures. However, to the author’s best knowledge, the present implemen-

tation, where the overall non-linear behaviour of structures is determined from DNN-

predicted beam stiffness terms through “traditional” non-linear FEM matrix solution al-

gorithms, has not been attempted in this form before. The approach presents several 

challenges in need of research, among them the analysis of required features of the 

DNNs, the need for subdivisions of the problem into various subsets and solution 

branches, and generally its implementation. The path from the training of the DNNs to 

the implementation in a bespoke stiffness matrix formulation and, finally, the validation 

against tests will allow to tackle this overarching research gap.  

Research	Gap	3:	secondary	knowledge	gain	on	the	behaviour	of	steel	members:	

Feature engineering of the produced dataset, as basis for ML-based predictions of the 

behaviour of such elements trained on a large synthetic dataset, can provide insights 

both for the method itself and for the wider topic of structural stability, as it allows to 

identify correlations and relationships between variables that have not previously been 

recorded or could not be exploited.  

 



 

 

 
 

 

 

 

 

 



 

 

  
 
 
 

Deep Learning

Introduction, Overview and Concepts 

 

Chapter 4 serves to provide a brief insight into machine learning as used in the context 

of this thesis. Note that this chapter is not a general introduction to this topic, but rather 

deals, with a depth deemed appropriate to understand the research methodology and 

output used in the context of the thesis. The interested reader is referred to the relevant 

scientific and formative literature for further information.  
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4.1 Terminology	–	Machine	Learning	in	a	Nutshell	

4.1.1 Artificial	Intelligence	and	Machine	Learning	

Learning in a general manner (in the explanation space of an “average human”) is asso-

ciated with the acquirement of knowledge or skills, the memorization of information by 

repetition (intentional or incidental), coming along with a change in experience and be-

haviour based on individual experience in or with the environment.  

In the context of machine learning, learning refers to the process by which a machine 

learning model improves its performance based on the given data. The core idea of 

“learning” in machine learning is that a chosen model learn from the available data ra-

ther than being explicitly programmed. In other words, the process of learning is an op-

timization process which tries to find the minimum in a given feature space by automat-

ically identifying patterns, relationships and structures in the data. The most common 

learning types are presented in the following section.  

 

Figure 4-1: a) Classification of ML groups and independent pattern recognition; b) Conceptual ML work-

flow 

Machine learning (ML) is a subfield of artificial intelligence (AI), but also a tool for other 

fields such as data mining [262], [263]. The term AI describes the ability of a machine or 

algorithm to mimic intellectual abilities such as problem solving, learning, and pattern 
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recognition. It includes all systems that act based on perceptions from the environment 

in a way that increases the probability of achieving a successful goal [3], [264]. 

Machine learning, as seen in Figure 4-1 a), is about computer systems learning to inde-

pendently recognize patterns and relationships based on given data and to improve 

themselves without the need for additional programming. Parts of the program code are 

created by the computer itself. In doing so, machine learning uses mathematical meth-

ods, especially from statistics, to create code parts and models. Using the learned data 

and the resulting models, machine learning can be applied to new, unknown data sets to 

make predictions, decisions or inferences, and optimize processes [265].  

A general workflow that applies to most models in the framework of supervised learning 

is presented in Figure 4-1 b). The starting point is a problem that leaks of an analytical 

solution, is computationally expensive or leaks of a general understanding. One main 

aspect of a successful ML application is existing data which the model is trained on. For 

this, the data is usually separated into a training and testing data set. Note, only the train-

ing data set is used for model optimization. The test data is exclusively used to validate 

the trained model. In term of supervised learning the data set consists of problem related 

features (input values) and known target values (output). After trained procedure the 

model is assessed with independent test and even new (unseen) data.  

4.1.2 Structured	and	unstructured	data	

In general, the available data in the field of machine learning is commonly divided in two 

different types, i.e., structured and unstructured data.  

Structured data is usually organized and ordered in a predefined manner, following a 

specific scheme in the format of tables or spreadsheets. This data form has fixed set of 

columns and rows. Each column represents a so called attribute or feature and each row 

a specific value of the feature. Therefore, a possible feature can be the thickness, repre-

senting many different cross-sections or the sensor data from an experiment recorded 

over a specific period of time. 
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On the other hand, unstructured data has refers to data that does not have a predefined 

format or organization. This data comes typically in the form of text, audio or pictures 

(as well as videos). In the case of a picture the relevant information is extracted by a 

decomposition of the picture using the information from each pixel, i.e., the RGB space. 

In convolutional neural networks this information is further processed by manipulating 

the data through convolutions, pooling functions and subsequently flattening into a fea-

ture space. 

4.1.3 Subgroups	of	learning	algorithms	

Machine learning algorithms can be divided into three groups, i.e., supervised, unsuper-

vised and reinforcement learning, all of which are ultimately concerned with forming or 

learning the mathematical function 𝑓:𝑋 → 𝑌, see Figure 4-1 a). The following three 

groups differ only in the quantities 𝑋 and 𝑌 and the appearance of the data needed to 

learn the function. A brief description is given as follows: 

i. Supervised	 learning is a type of machine learning algorithm in which an AI 

model is trained on a labeled data set, i.e., the data set contains input data along 

with the corresponding correct output data. The goal of supervised learning is for 

the AI model to learn the underlying patterns and relationships between the in-

put and output data so that it can accurately predict the output for new input data 

that it does not yet know. During the training phase, the AI model receives input 

data and the correct output data for reference. The model learns to recognize pat-

terns and relationships within the data and adjusts its internal parameters to op-

timize its predictions based on the differences between the actual and predicted 

outputs. In supervised learning, there are two main types of problems that can be 

addressed, i.e., classification and regression. Classification is a type of problem 

where the goal is to predict a categorical label or class based on input features. 

The output layer is multidimensional and the target set 𝑌 is discrete [263]. During 

training, the model learns to identify patterns and relationships between the fea-

tures and the labels, and to predict the correct label for new input data. In regres-

sion, continuous numerical values are expected as output. The output layer usu-

ally one-dimensional and the target set 𝑌 is continuous.  
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ii. Unsupervised	learning is a type of machine learning algorithm in which an AI 

model is trained on an unlabeled dataset, i.e., the dataset does not contain prede-

termined correct output values. The goal of unsupervised learning is to identify 

underlying patterns and relationships in the data without knowing in advance 

what the output should be. In unsupervised learning, the AI model is tasked with 

recognizing the inherent structure of the input data by identifying patterns and 

similarities between data points and clustering them based on those patterns.  

iii. Reinforcement	learning is a type of machine learning algorithm that allows an 

AI model to learn through a process of trial and error. It interacts with an envi-

ronment in a sequence of actions and observations. The model receives a reward 

or punishment based on the actions it performs and the results of those actions. 

The goal of the model is to learn to perform actions that lead to the highest cumu-

lative reward over time by learning the best course of action through trial and 

error. 

4.1.4 Overview	of	machine	learning	algorithms	

According to the described learning subgroups above, different machine learning algo-

rithms has been developed over the years and are present in the literature. Some of the 

most popular algorithms, associated with (deep) neural networks only, were partially 

described in Section 3.2.1 in the context of the research gap of this thesis. Apart from 

deep neural networks, plenty other algorithms exist in the framework of machine learn-

ing. An overview is presented in Figure 4-2. The most common techniques, which are 

currently used in civil engineering applications are linked to supervised learning and 

problem definitions corresponding to regression (prediction of float values) or classifi-

cation (prediction of probabilities).  

A clear overview of machine learning models and trends in civil engineering applications 

is provided in [188]. It contains a bibliometric study on the current literature related to 

ML methods for structural engineering applications, including results from 485 relevant 

publications since 1989 – the first relevant article was published by Adeli and Yeh on 

perceptron learning in engineering design [266]. The survey identifies that in 56% of all 
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applications (here always in the context of civil engineering application) neural net-

works are the most commonly used. This trend is followed by the family of boosting al-

gorithms with 11% of all accounted application, with XGBoost as the most prominent 

representative. With respect to the applications, 38% are connected to structural mem-

bers, 29% to material properties, 18% to damage detection and SHM (structural health 

monitoring via damage detection and condition assessment), 11% to analysis and design 

and 4% to fire design.  

 

Figure 4-2: Machine learning algorithms from literature, partially based on [188] 

4.2 Conceptual	Introduction	to	Deep	Neural	Networks	(Deep	Learn‐

ing)	

4.2.1 Brief	background	information	

In general, the idea of neural networks is not new and has its beginnings already in the 

1940s through the work of McCulloch and Pitts [267] on "neurological networks". The 
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motivation for such methods lies in the logical description of the transmission of “im-

pulses” between individual neurons within a larger nervous system, where each neuron 

simplistically consists of a soma and an axon. Pulse transmission occurs between the 

axon of one neuron and the soma of another neuron, which are connected by synapses 

that transmit (or fail to transmit) a signal depending on a threshold value. Later work by 

D. Hebb [268] led to the so-called "Hebb's learning formula", which can be described by 

the phrase "neurons that fire together wire together", meaning that the connection be-

tween neurons is strengthened when signals are transmitted together, which is con-

sistent with the general rule of learning by repetition. After further developments, a pa-

per by Marvin Minsky and Seymour Papert [269] was published in 1969, providing a 

detailed mathematical analysis of the perceptron, an early type of neural network for 

binary classification without hidden layers. The basic message of this work is that com-

plex problems require more complex neural network architectures and thus more com-

putational effort. This led to some disillusionment and, as a sum of further shortcomings, 

to the first, so-called "AI winter" in the late 1970s. After further ups and downs and ad-

vanced developments such as the multilayer perceptron (MLP) in the last decades, ma-

chine learning (ML) and especially deep neural networks (DNN) are now widely used in 

all technical application areas. This increasing popularity is fueled by access to large 

amounts of data, the availability of graphics processing units (GPUs), the development 

of algorithms, and easier access to the machine learning field - than decades ago - 

through the development of high-level libraries/APIs.  

4.2.2 General	representation	of	a	neural	network	

4.2.2.1 General	representation	

A common representation of an artificial neuron (perceptron) is shown in Figure 4-3 a) 

and can be written as follows: 

  ( ) n ny x a W x b     (4-1) 
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It consists of three main components, the weights, the bias and an activation function. 

The input parameters (features) are multiplied with randomly initialized weights, which 

are updated over a certain number of epochs during the training of the DNN model and 

are an indicator of the strength of a connection within a network. Parameters which do 

not affect the overall prediction are set over the training period to small values. The bias 

is an additional trainable value (zero or non-zero) which is added to the summation of 

the weighted inputs in a neuron. The neuron is mathematically represented through a 

single vector, which is passed to an activation function with an inherent predefined 

threshold. This concept can be further expanded to a more complex systems with more 

neurons and layers to increase the amount of trainable parameters for more non-linear 

problems, see Figure 4-3 b). All necessary components (weights, biases, activation func-

tions) are presented in the following sections. 

 

Figure 4-3: General representation of a) single-layer perceptron; b) multi-layer perceptron 

4.2.2.2 Weights	and	biases	

The weights of a deep neural network refer to the collection of numerical values as-

signed to the connections between the nodes (neurons) of the network, see Figure 4-3 

b). These values determine how much the signals received by one neuron affect the sig-

nals sent to the next neuron. It is valid that the higher the absolute value of the weight 

of a neuron, the greater the influence of that neuron on the overall result. The weights 
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are updated (optimized) through a process called backpropagation, in which the net-

work is trained with a set of labeled data (supervised learning). The optimization goal is 

to minimize the difference between the predictions and correct outputs.  

The bias is an additional input value added to each neuron. It is represented as a constant 

value, often initialized to 1 or 0 in cases where it is to be neglected, and is not affected 

by the input data or weight. The bias is typically used to shift the neuron's activation 

function left or right to allow the network to learn more complex patterns in the data. In 

addition to the weights, the bias value is also adjusted by backpropagation during the 

optimization process.  

4.2.2.3 Activation	functions	

The activation function is a mathematical function that converts the output of each neu-

ron. It determines whether a neuron should "fire" and forward a signal to the next layer 

of the network based on the input it receives. Its purpose is to introduce nonlinearity 

into the network, allowing it to learn more complex relationships from the input data. 

Without an activation function only a linear transformation of input data is passed. The 

activation function should be differentiable, as this requirement is advantageous in 

weight optimization.  

A number of activation functions are known in the literature [263]. Below are some ac-

tivation functions that are frequently used.  

i. Sigmoid: A sigmoid function is an S-shaped curve that maps each input value to a 

value between 0 and 1. It is often used in binary classification problems. Unlike a 

pure step function, which can only represent false = 0 or true = 1, the sigmoid 

function also gives values in between, see Equation (4-2) and (4-3).  

0, 0
( )

1, 0

x
f x

x

 
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Figure 4-4: Common activation functions and influence of the bias 

ii. ReLU (Rectified Linear Unit): A ReLU (see Equation (4-4)) function returns the 

input value if it is positive and zero otherwise. It is often used in Deep Learning 

because it is computationally efficient and has been shown to be effective in many 

types of neural networks. 

0, 0
( ) max

, 0

x
f x

x x

 
   

 
(4-4) 

iii. Tanh (Hyperbolic Tangent): A Tanh function (see Equation(4-5)) is similar to a 

sigmoid function, but maps the input values to a range between -1 and 1.  
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(4-5) 

4.3 Optimization	Procedure	in	Deep	Neural	Networks	

4.3.1 Loss	functions	and	performance	evaluation		

The chosen loss function plays a central role in updating the weights w and biases b of 

the a NN. It helps to determine the loss or error L after a training run. A deviation is 

calculated between an arbitrary true result yi from the data set and the corresponding 

predicted result of the DNN ŷi, which is a measure of how far the output of the NN is from 

the desired response. An appropriate, problem dependent loss function is crucial for the 

optimization behaviour and steers the overall learning success. However, in terms of re-

gression problems two very common error metrics are used as loss definitions, i.e., the 

mean squared error (MSE: Equation (4-6)) and the mean absolute error (MAE: Equation 

(4-7)).  

   22

1 1

1 1
:

N N

i i i
i i

MSE L y y
N N


 

     (4-6) 


1 1

1 1
:

N N

i i i
i i

MAE L y y
N N


 

     (4-7) 

The accuracy of regression based problems are generally measured with the R-squared 

(r2) metric, also known as the coefficient of determination and provides information on 

how well the models fits to the compared data. In the context of deep neural networks, 

R-squared is calculated by comparing the predicted outputs of the DNN model ŷi with 

the actual true values yi. It measures the proportion of the variance in the target variable 

that can be explained by the model. The R-squared value ranges from 0 to 1, with a 

higher value indicating a better fit and capturing the variability in the data. The calcula-

tion is represented through Equation (4-8). First the total sum of squares (TSS) is calcu-

lated, representing the total variability in the target variable. Then the residual sum of 
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squares (RSS) is evaluated, measuring the variability that remains unexplained by the 

DNN model. 2r  

 
 

2

2 1

2

1

1 1

n

i i
i
n

i i
i

y y
RSS

r
TSS y y






   






 

(4-8) 

where: 

𝑦௜ , 𝑦ො௜ , 𝑦ത௜ 
is the actual output, the predicted output and the standard devia-

tion of the actual output 

4.3.2 Gradient	descent	and	backpropagation	

The general learning/optimizing process in such a feed forward network is performed 

by using backpropagation as a technique to update the weights within a training period. 

Therefore, the Nabla-Operator and the chain rule are used to calculate the gradients of 

all nodes within a network (see Equation (4-9) and (4-10)).  
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(4-9) 
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(4-10) 

In order to “push” the calculation in the direction of the steepest descent a gradient 

method is used as follows: 
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      1j j jx x f x   
 

(4-11) 

where: 

 1jx   is the updated value, i.e. the weights and biases 

 	
is the parameter or learning rate between 0 and 1, giving more sta-

bility to the used optimization method 

f  is the Nabla-Operator for partial derivative 

While updating all weights and biases within a network a cost or loss function is used, 

which is minimized throughout the training and therefore calculated as the error be-

tween a predicted value 𝑦ො  of the DNN model and the true value 𝑦. 

4.3.3 Influence	of	the	amount	of	neurons	

There is a correlation between the number of neurons and the chosen activation func-

tion. In the following, an example of this relation can be seen in Figure 4-5. The goal of 

the neural network is to learn the behaviour of the black non-linear curve. With a single 

neuron and the ReLU activation function, the neural network model cannot represent a 

polynomial behaviour with a sufficient accuracy (see Figure 4-5 a) red curve). The sim-

ple model lacks the flexibility to replicate the nonlinearity of the polynomial, represent-

ing just the ReLU activation function. When more neurons are added to the NN (see Fig-

ure 4-5 b), c), d)), multiple ReLU functions are superimposed to map the problem behav-

iour. With 8 neurons, the right-hand side of the polynomial is already very well repre-

sented. With 12 neurons in the NN model, the whole non-linear behaviour can be repro-

duced well within the area of interest. This means in this context, that with each addi-

tional neuron, the model gets closer to the desired target values. 
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Figure 4-5: Influence of the amount of neurons on the prediction accuracy, ReLU activation function 

4.3.4 Feature	transformation	

The overall estimated accuracy of a neural network is highly dependent on the quality 

and distribution of the input parameters. In many cases it is therefore necessary to trans-

form or scale these values, using different methods like normalization (see Equation 

(4-12)) or standardization (see Equation (4-13)) as follows. This necessary procedure is 

often described throughout literature such as in [263]. 


( ) ( )( )

min
( ) ( )
max min

i ii

i i

x x
x

x x


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  
(4-12) 
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
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(4-13) 

where: 

( )ix  is the xth value of an input feature 

( )i
x  is the mean value of an input feature 

  is the standard deviation of an input feature 

Data transformation eliminates the major problem of multiple features having different 

magnitudes, ranges and units by scaling them down to preset boundaries. Therefore, 

data normalization is used to scale the magnitudes of available features between the val-

ues of 0 and 1 (or -1 and 1), corresponding to the lowest and highest values. Standardiz-

ing the date means rescaling it, while the mean value is set to 0 and the standard devia-

tion to 1. In a lot of engineering applications data standardization shows better perfor-

mance evaluations, since outliers are taken better into account.  

 



 

 

  
 
 
 

Finite Element Models

Investigations on Buckling Half-wavelengths, 

FE Assumptions and Simulations 

 

Outline	of	the	chapter:	

This chapter provides background information on the verification and validation of fi-

nite element models from experimental investigations based on the Hollosstab project, 

which were subsequently used as the main source of data for the training of deep neural 

networks for the DNN-DSM method.  
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5.1 Experimental	campaign	in	the	project	HOLLOSSTAB	

The generalized slenderness based resistance method (GSRM), presented in Section 2.6, 

is strongly linked to the investigations carried out in the RFCS (Research Fund for Coal 

and Steel) funded project Hollosstab (2016-’19). The finite element models developed 

and employed in Hollosstab were validated on a large series of experimental tests. These 

models, and thus this validation work, form the basis for the FEM models employed in 

the present thesis, which are used herein for large-scale data generation on hollow sec-

tion non-linear behaviour in Chapter 6 of the thesis. Thus, this chapter of the thesis pro-

vides background information on some key facts of the project, conducted experimental 

investigations (here only related to RHS/SHS profiles), auxiliary tests and subsequently 

the finite element modelling assumptions made for validation and calibration aspects in 

the framework of the HOLLSSTAB project.  

 

Figure 5-1: Used cross-sections within WP4 of the Hollosstab project, a) squared hollow section with stiff-
eners (SHS-S); b) squared hollow section with stiffeners and T-shape; c) rectangular hollow section (RHS); 
d) squared hollow sections (SHS); e) hexagonal hollow sections (Hex), adopted from [270] 

The HOLLSSTAB project produced a high number of experimental test results, i.e. results 

from stub column tests loaded with different N-M interactions, as well as results from 
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auxiliary tests to characterize the mechanical properties of used steel grades. Apart from 

classical experimental investigations additional 3D surface scans of whole specimens 

were taken and coupled with detailed evaluations of geometrical imperfections. The pro-

cess of those investigations was documented and explained throughout several publica-

tions [2], [74], [162], [270]–[272] and project intern deliverables. A full overview of all 

work packages, their final outcomes and subsequent design proposals is provided within 

a final report [161] of the whole project.  

5.1.1 Full	scale	tests	

The full experimental campaign of the Hollosstab project was conducted at the labora-

tories of Bundeswehr University Munich (UniBW, Prof. Taras), Imperial College London 

(ICL, Prof. Gardner) and Istitute Superior Técnico in Lisbon (IST, Prof. SIlvetsre) and in-

cluded investigations on cylindrical (CHS), rectangular (RHS), squared (SHS), hexagonal 

and lip-stiffened hollow sections, with different steel grades ranging from S355 to S890, 

as well as lengths. The specimens were made in accordance to EN 10219 [5] (cold-

formed cross-sections) and EN 10210 [4] (hot-finished cross-sections), see Figure 5-1 

(also published in[270] and [2]).  

The specimens were short or medium-length members subjected to pure compression, 

mono-axial bending and bi-axial bending (in a few cases). The used profiles for the full 

scale tests had varying thicknesses, load eccentricities, lengths and material properties. 

A summarizing overview is provided by Table 5-1. In the following, however, reference 

will only be made to the experiments conducted at the UniBW. This is mainly because 

the author personally participated in these experiments and the validation of the FE 

models used here is based on the same.  

Table 5-1: Summary of varied parameters within experimental tests conducted at UniBW, ICL and IST, 
adapted from [161] 

Parameter Min Max 

Test eccentricity 0 mm 460 mm 

Length 150 mm 800 mm 

Steel grade S355 S770 

W or H length 50 mm 300 mm 

Thickness 4 mm 8 mm 
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Figure 5-2 provides an overview of the test setup at UniBW for short members loaded 

eccentrically (see Figure 5-2 a)); the figure includes sketches of eccentricity application 

levels for applied N-M interactions (see Figure 5-2 b)) and a corresponding test setup 

representation for N-M-interactions (see Figure 5-2 d)).  

 

Figure 5-2: a) setup for the stub-column test; b) eccentricity level; c) tensional field induced by N-M-inter-
action; d) scheme of N-M-interaction test setup [161] 

Table 5-2: Summary of tested cross-sections (WP4) at UniBW, adapted from [270] 

Cross-section size Steel grade Class Standard 

SHS 140×140×4 S355 3 EN10219 

SHS 200×200×5 S355 4 EN10219 

SHS 200×200×8 S355 1 EN10219 

SHS 200×200×4 S500 4 EN10219 

SHS 200×200×5 S500 4 EN10219 

RHS 300×150×6 S355 1-4 EN10219 

RHS 300×150×8 S355 1-4 EN10219 

SHS-S 140×140×2.5 S350GD - - 

SHS-S 140×140×3.5 S350GD - - 

SHS-T 140×140×2.5 HX460 - - 

SHS-S 140×140×4.0 HX460 - - 

HEX250×8.5 S355 - EN10210 
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Full scale tests were sampled into 5 categories, depending on the load case and length of 

the used profiles, i.e. T1, T2, T3, T4 and T5. Test from T1 to T4 provide an increasing 

eccentricity with an equal profile length of 800 mm to induce N-M interaction. The ec-

centricities of T5 tests are in general equivalent to T3 tests, yet using a higher length of 

2000 mm to display a global + local phenomena in the test procedure. Interactive behav-

iour was investigated this way. An overview of different eccentricities and lengths is pro-

vided by Table 5-3.  

Table 5-3: Summary of test categories and specimen lengths (WP4) at UniBW, adapted from [270] 

Test category Top eccentricity in [mm] Bottom eccentricity in [mm] Specimen length in [mm] 

T1 0 0 800 

T2 9 – 64 0 800 

T3 57 – 196 57 – 196 800 

T4 232 – 457 232 – 457 800 

T5 57 – 196 57 – 196 2000 

5.1.2 Evaluation	of	 local	 imperfections:	Reverse	engineering	of	specimen	

geometry	

5.1.2.1 Set‐up	used	for	the	measurements	

The influence of local and global imperfections was already discussed in Section 2.1.6, 

pointing out the effects on the ultimate load bearing capacity, as well as the post-buck-

ling behaviour and plastic hinge formation. The aim of investigating these influences was 

necessary and was approached as described in the following.  

In order to measure the distribution of local geometric imperfections of entire speci-

mens, a 3D laser-scanning technique was applied. The use of scanners lead to a non-

contact, precise and relatively easy recording method of imperfections resulting in full 

scale 3D-surface scans containing a huge amount of measured points. To scan and record 

the spatial point clouds, a Zeiss 3D scanner was used. The data was initially processed in 

the software “Colin3D” [273], by Carl Zeiss Optotechnik GmbH, to make first refinements 

within the point quality, i.e. removing unnecessary points or filling holes. This prelimi-
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nary step was later on replaced and performed directly in the software “Geomagic De-

sign X” [274]. In all considered cases, the full-scale specimens were first 3D-scanned to 

later on reproduce the real geometry in numerical simulations. This procedure is com-

monly used to digitize an arbitrary geometry and optimize features within this geometry 

for further fabrication or production tasks (3D printing) and is in general termed as “re-

verse engineering”. The reverse engineering process used for the Hollosstab project is 

presented in the following section. 

5.1.2.2 Derived	reverse	engineering	work	flow	

The reverse engineering workflow can be split in two main procedures, dependent on 

the desired results. The direct “3D-Scan to FE-Modelling”, as the first procedure, re-

quires a scanned surface in a point cloud format obtained from the test specimen, sym-

bolizing the generated raw data. In order to use the scanned point cloud shape for the 

finite element model geometry an intermediate step is necessary, where a spline surface 

is generated. This step can be achieved by appropriate commercial software like Ge-

omagic Design X [274], CloudCompare [275]. The real specimen geometry can subse-

quently be implemented into a FE based program in order to evaluate the laboratory test 

and assess the imperfections. This approach was already tested and performed success-

fully in [2], [276], [277][9], [10] and [11] using the commercially available FE Software 

ABAQUS [146].  

The second reverse engineering procedure is labeled as “3D-Scan to Imperfection Anal-

ysis”, where the effective imperfections of the real specimen geometry are determined 

by using the scanned-surface data and comparing it with a CAD-Model of nominal or 

perfect geometry. This step symbolizes the initial imperfection analysis and gives an 

overview of the imperfections along the specimen (see Figure 5-3). Yet, at this analysis 

level, it is rather inaccurate to discuss the isolated magnitude of local imperfections, 

since effects like sagging and ovalization are inherently present. This particular problem 

is less of a problem in SHS and RHS profiles then in CHS profiles. To eliminate these par-

ticular effects or even being able to pick different “imperfection modes” out of the whole 

imperfection spectrum, it is necessary to make additional steps that commercial soft-

ware does not necessarily provide. This strategy is further presented in Section 5.3 of 

this thesis.  
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Figure 5-3: Applied reverse engineering workflows for the use in FE element simulations and imperfection 
evaluations 
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The procedure from above was performed to validate simulations from FE models 

against experimental results. Additionally, statistical evaluations of the 3D scan data, 

compared with shape deviations and tolerances from the nominal geometry (e.g. accord-

ing to [4] and [5]), were carried out. The output of those comparisons was generated 

with the software “Geomagic Control X”. Such an output example is provided by Figure 

5-3. The same representation was used within the Annex of Hollosstab deliverable D4.2 

[270], which was initially evaluated and provided by the author of this thesis, and later 

on adapted by Toffolon [2] within the derivation of GSRM (see Section 2.6).  

This relatively new method was already applied successfully in different projects e.g. 

[278], [279][7], [8] as part of an EU RFCS project “Combitube” for the evaluation of im-

perfections of spiral-welded steel tubes but also by [276], [277] in the outline of two 

industrial projects, conducted at the UniBW Munich, in the timeline between 2017 and 

2019.  

5.2 HOLLOSSTAB:	Finite	element	modelling,	validation	and	calibra‐

tion	

The overarching motivation for the conducted experiments and investigations from 

above served in general two main aspects, which are explained throughout this section. 

Those aspects follow two hierarchical steps of FE-model complexity. Models, used for 

the validation against experimental test are more complex, including a non-linear mate-

rial model from tensile coupon tests and the real (scanned) 3D geometry. Further, mod-

els which were used for additional parametric studies were derived with simplified ap-

proximations, i.e. a perfect geometry with LBA based imperfections and generalized 

non-linear material models.  
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5.2.1 Validation	against	experimental	tests	

 

Figure 5-4: Validation of GMNIA-Meas models against experimental results, partially adopted from [2] 

This step is performed to obtain the highest possible accuracy between GMNIA and cor-

responding test results. This step made use of the reverse engineering process from Sec-

tion 5.1.2, to replicate the experimental test by using the measured geometrical shape 

(3D spline surface) of the cross-section and a real-stress strain relation. This type of 

GMNIA simulation is denoted as “GMNIA-MEAS” in the following explanations. For the 

numerical investigation the commercial software Abaqus [146] was applied. The shell 

based finite element models made use of linear isotropic shell elements with reduced 

integration formulation (S4R). The true, experimentally derived, stress-strain curve was 

used to validate each full-scale test. Note that the results of the coupon tests are usually 

expressed through engineering stress-strain relations and need to be converted to true 

stress-strain functions, see Equation (5-1) and (5-2) as follows: 

 1true eng eng      (5-1) 

 ln 1true eng     (5-2) 
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Data from digital image correlation (DIC) was used to compare the measured defor-

mations (shortening) as well as the buckling induced local failure between numerical 

simulations and experimental data. This consideration eliminates the influence of the 

test machine (elastic stiffness) as well as the test set up (slip). Using an appropriate dis-

cretization of the FE-model, as well as suitable boundary conditions, can lead to very 

small deviations of the ultimate load (<3%) obtained from simulations and experimental 

investigations. It was found that an even greater improvement on the accuracy of the 

models was provided by using the real imperfections (3D scanned surfaces), as well as 

the real material model (provided through tensile coupon tests). A representation of 

such comparisons is exemplary shown in Figure 5-4.  

As a result of those investigations a minimum element amount of 60 elements in circum-

ferential direction and 200 elements in longitudinal direction was found to be appropri-

ate, leading to converging results of high accuracy. A statistical summary of those results 

is shown in Table 5-4.  

Table 5-4: Summary of validated results from [2] 

Tests GMNIA MEAS TestF F    

12 stub-column tests (pure axial 
compression) 0.99 3.2% 

48 stub-column and short beam-
column tests 

0.99 4.2% 

5.2.2 Calibration	of	GMNIA	parameters	

The validation between GMNIA-MEAS and experimental test results enabled the calibra-

tion of simplified FE-models, which were used for parametric studies within the devel-

opment of the GSRM approach. The simplified FEM models, denoted as GMNIA within 

the framework of the calibration process, made use of imperfection shapes extracted 

from linear buckling analysis (LBA) using the shape of the first eigenmode. The corre-

sponding imperfection amplitude was scaled by a multiplying factor. Further use was 

made of material models based on derived models by Yun and Gardner for hot-rolled [6] 

and cold-formed [7] steel, respectively. Those material models were already described 

within Section 2.4.3, in the context of the CSM approach. Further, no residual stresses 

were taken into account, since the stress-strain formulation derived by Yun and Gardner 
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([6] and [7]) was calibrated against a large pool of experimental results and inherently 

accounts for those effects.  

 

Figure 5-5: Calibration of the imperfection amplitude for a) SHS200×5, S355 (T1); b) SHS200×8, S355 (T2) 

As mentioned, a necessary simplification of GMNIA-MEAS models was the transition 

from a scanned (real) geometry to imperfection shapes based on LBA simulations. Since 

the GSRM approach relies on the Winter [51] (in cases of local buckling) and Ayrton-

Perry [280] (in cases of global buckling) formulation, a determining parameter is the 

shape and amplitude of the used imperfections. Therefore, the imperfection amplitudes 

required an approach on the local, as well as global level within the calibration process.  

According to EN 1993-1-5, Annex C [11] the magnitude of local imperfections for the 

analysis of plate buckling may be assumed with a value of e0	=	B/200, where B is the 

smaller of the two corresponding dimensions of a rectangular hollow section. Neverthe-

less, referring to the findings of Rusch and Lindner [12], as well as the outcomes of the 

calibration of the FE-models, a determined amplitude of B/400 was found to be more 

suitable to represent the design curve for local buckling (“Winter curve”) [131] in nu-

merical calculations, see Equation (2-75).  

0, 400
L
B

e
 

(5-3) 
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This conclusion was also made by the authors own investigations in [281], partially pre-

sented in Section 2.1.6.1. Global imperfection in cases of member buckling affect second 

order bending moments and influence the behaviour of global buckling. It was found 

that the global imperfection amplitude was suited according to Equation (5-4), where L 

is the length of the member. This value can be found throughout literature[282], [283] 

for column buckling. Further details on the calibration are provided by [2], [161], [270], 

[272], [284]. 

0, 1000
G

L
e

 
(5-4) 

5.3 Investigations	on	Buckling	Half‐Wavelengths	

One main assumption within the current derivation strategy of the proposed DNN-DSM 

(Deep Neural Network Direct Stiffness Method) is a fixed, profile dependent local buck-

ling length, which indicates the length of one corresponding finite beam element. This 

assumption is based on the plastic zone/area that is formed within the deformation pro-

cess in a member subjected to arbitrary load conditions. It indicates its behaviour, in the 

pre- and post-buckling range and therefore describes its deformation potential e.g. ro-

tation capacity. Since the models derived so far intend to represent a member behaviour 

(L	 ≥	 800mm), additional investigations must be carried out with regard to the local 

lengths. Thus, this section focuses on the general assumptions for buckling half-wave-

lengths within the proposed shell finite element (FE) model from Section 5.2, serving as 

the starting point for the overall data generation, further data extraction and additional 

evaluation, i.e. in general terms feature engineering in Chapter 6.  

The following buckling length considerations, which subsequently lead to the conclu-

sions for the chosen FE model in Section 5.4, can be separated into several observation 

steps:  

i. Evaluation of half-wavelengths from experimental results of the Hollosstab pro-

ject combined with 3D surface scan imperfection evaluations based on Fourier 
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series expansion and corresponding FE simulations. Assumptions and results are 

presented within Section 5.3.1. 

ii. Calculation of local half-wavelengths from analytical formulations derived by 

Fieber [67], [150], see Section 2.5.3.2. Additional GMNIA-Meas simulations on the 

basis of 3D scan surfaces from the Hollosstab project are performed to assess its 

impact on simulation results, see Section 5.3.2. 

iii. Subsequent conclusions for the plastic hinge length are proposed in Section 5.3.3.  

Numerical simulations presented herein are based fully on investigations from the Hol-

losstab project, addressed briefly in in the framework of the GSRM approach in Section 

2.6 and presented in Section 5.1. The investigations carried out consisted of non-de-

structive methods, where 3D surface scans of all specimens were made, and the actual 

experimental tests, in which the specimens were loaded until failure occurred. Numeri-

cal models derived from those surface scans (GMNIA-Meas) served for validation pur-

poses against experimental test results, as well as generalized assumptions for the sim-

plified FE-shell models. This procedure is described within Section 5.1.2.2. Additional 

project related information is provided in [270] along with conference papers and jour-

nal publications [285]. The correctness of these investigations is assumed, whereby the 

comparison between numerical simulations and experimental results is made here at 

individual points. It has to be noted that in all cases the results of the DIC (Digital Image 

Correlation) evaluations, representative for the performed full-scale tests, are used, al-

lowing to directly neglect the machine stiffness of the test set-up for a better comparison 

with FE simulation results. 
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5.3.1 Preliminary	investigations	on	buckling	lengths	

5.3.1.1 Background	 information	on	 surface	 reconstruction	based	on	Fou‐

rier	series	expansion	

 

 

 

Figure 5-6: Calculated Fourier coefficients ka  and kb  for a RHS 300×150×6 profile, published in [286] 

The reverse engineering steps described in Section 5.1.2 lead to an overall imperfection 

evaluation giving the deviation between the scanned and the perfect surface as an out-

put. This “prepared” data is used as an input file for a python script, which was initially 

developed at UniBW Munich for investigations on CHS profiles [276] and then further 

evolved at ETH Zurich, Institute of Structural Engineering (IBK) Steel- and Composite 

Structures for investigations on RHS/SHS profiles [286].  
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The imperfection data of the considered specimen is first transformed or mapped to a 

flat surface by “unfolding” the hollow section along the circumference (see Figure 5-6 

top). In this row form the scanned points, which form the surface of the specimen, are 

unevenly distributed. This has two main disadvantages for further FE simulations within 

the discretization process, as well as the calculation time of the non-linear problem, 

since there is no control over either the mesh size or the mesh orientation. This problem 

can be sufficiently solved by ordering the scanned points into a mesh-like structure, at 

best equal to the later FE discretization. Within the derived python script this interpola-

tion was done by using the scipy library and there the griddata command to form a uni-

formly-spaced x (Height) – y (Circumference) grid. Furthermore, the scanned surface 

imperfections can be used for conclusions only to a limited extent, since many different 

imperfection shapes are superimposed at the same time, e.g. local imperfections com-

bined with sagging and ovalization along the circumference. This circumstance was al-

ready shown within several publications [279], as well as own investigations in [277].  

In order to distinguish between such forms within real scanned geometries a 1D full 

wave Fourier series expansion was implemented within the script. The general 1D Fou-

rier series expansion expression is described by Equation (5-5). The additional Fourier 

coefficients a0, ak and bk are expressed through Equation (5-6) and (5-7), taking into ac-

count an initial function 𝑓ሺ௫ሻ, describing the slope between two scanned points along the 

surface. Hereby, it is accurate enough to assume a linear course between those points, 

which is approximated here by a straight line resulting in Equation (5-8).  

Subsequently, by applying Equation (5-5) and calculating an arbitrary number of har-

monic numbers for the Fourier coefficients, an imperfection spectrum for the given spec-

imen is obtained (see Figure 5-6 bottom). Low harmonic numbers between 0 and 3 are 

usually related to global sagging and ovalization, whereas higher harmonic numbers are 

used to reconstruct local imperfections ([279], [277]).  
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5.3.1.2 Performed	investigations	and	results	

Figure 5-7 a) to f) show the reconstructed surfaces using the Fourier coefficients from 0 

to 5, one by one separately. Figure 5-7 g) and h) displays the sum of the reconstructed 

surfaces for the Fourier coefficients from 0 to 5 and from 0 to 40, leading to an increas-

ingly precise surface, approximating the original scanned surface.  

Calculating the coefficient of variation (cov) between the reconstructed and the scanned 

surface for rising harmonic numbers leads to an increasing accuracy with respect to sur-

face similarity; covk0‐k0	=	1.24%,	covk0‐k1	=	0.92,	covk0‐k2		=	0.70,	covk0‐k3		=	0.53,	covk0‐k4		=	

0.41,	covk0‐k5		=	0.32,	covk0‐k10		=	0.14,	covk0‐k40		=	0.63∙10‐2. The harmonic number 0 gives, 

due to its mathematical formulation, an average of the imperfections over the height of 

the specimen, therefore remaining constant along the height.  
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Figure 5-7: Compilation of reconstructed surfaces for different harmonic numbers 
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Figure 5-8: GMNIA results for ascending Fourier coefficients in comparison with GMNIA-Meas results 

Figure 5-8 shows some results from GMNIA simulations taking different sets of ascend-

ing Fourier coefficients from k	=	0 to k	=	40 into account. Thus the dependence on the 

reconstruction accuracy can be shown for different load cases. In the case of a centric 

normal force only a low number of coefficients is needed to reproduce the behaviour 

from GMNIA-Meas simulations, i.e. the first four coefficients are sufficient enough, see 

Figure 5-8 a).  

In Figure 5-8 b), where the load is introduced with an eccentricity of e	=	300mm, the 

amount of necessary Fourier coefficients increases, showing the need for wave-lengths 

with a higher frequency, i.e. a higher harmonic number. In the case of the centric and 

eccentric load application the accuracy, regarding the force-displacement and moment-

rotation-relation, respectively, increased with higher values of the harmonic number 

combinations, i.e., with lower half-wavelengths. However, sufficient results regarding 

the resistance and deformation could generally be achieved in a lower range between k	

=	0 and k	=	10. 

5.3.1.3 Assessment	of	combined	harmonic	numbers		

This first results lead to further investigations on buckling forms with respect to har-

monic numbers and the behaviour in the  pre- and post-buckling range of hollow sec-

tions. Those outcomes were presented in [286] and [285] and are described as follows. 
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The calculations were performed by using the harmonic numbers from k = 0 to 5 sepa-

rately to reconstruct, in each case, an imperfect surface based on just one individual har-

monic number. Finally, dominant imperfection forms were identified for an RHS profile 

loaded by two different load cases, a centric and eccentric load application. To illustrate 

the influence of the eccentricity on the harmonic response spectrum an RHS profile was 

loaded with a higher eccentricity, leading to a shift towards higher amplitudes of the 

governing harmonic numbers.  

 

Figure 5-9: Comparison between individual harmonic numbers for an a) RHS 300×150×6 profile loaded 
in centric compression; b) RHS 300×150×6 profile loaded with an eccentricity of -300 mm in compression; 
c) RHS 300×150×6 profile loaded with an eccentricity of +300 mm in compression; d) SHS 200×8 profile 
loaded with an eccentricity of +457 mm 
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Figure 5-9 a) illustrates the results for different harmonic numbers from 0 to 5, i.e. dif-

ferent reconstructed surfaces, for the load case of centric compression. It is evident that, 

apart from slight differences in the maximum load, the resultant load deformation 

curves do not significantly differ. This applies to both, the pre-buckling as well as the 

post-buckling behaviour for the considered specimen. The difference in the maximum 

load is mainly caused by the different imperfection amplitudes of the used harmonic 

numbers. Nevertheless, it seems that the frequency of the buckling half-wavelength is 

only of minor importance in the case of pure compression. More crucial is the necessary 

member length that should be greater or equal to the buckling length to form the local 

failure mechanism.  

 

Figure 5-10: Comparison between different member lengths and their influence on a) LBA simulations; b) 
GMNIA simulations 

This can be exemplary illustrated as follows by using the results of LBA and GMNIA sim-

ulations for a member with varying lengths. An SHS300×6.3 profile was used with as-

cending member lengths from 150mm to 1000mm in 50mm steps. Figure 5-10 a) shows 

the corresponding LBA results. A normalized representation was chosen to explain the 

results. The x-axis shows the length L, normalized by the critical buckling length from 

Lcr. The critical buckling length was calculated with the analytical approach form the AA-

CSM from Section 2.5.3.2. The y-axis shows the results for the critical buckling load Fcr, 

normalized by the critical buckling load Fcr,Lcr, which was read out for the model with the 
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critical buckling length Lcr. Note, the critical buckling length for an SHS300×6.3 was cal-

culated to Lcr	=	250mm. The critical buckling load appears to be the lowest near a local 

length of 250	mm to 300	mm or one of its multiples. Deviations between the minimum 

and maximum values start to decrease with an increasing length.  

In addition, Figure 5-10 b) shows the GMNIA results from according simulations, where 

the first eigenshape from the LBA was used as a local imperfection form with a constant 

imperfection amplitude of B/200 according to EN 1993-1-5 [131] throughout all calcu-

lations. The maximum load bearing capacity from GMNIA results follows a similar logic, 

where the lowest capacity values are calculated with lengths between 200mm and 

300mm or their multiples. Nevertheless, the differences within the reached maximum 

loads are not crucial and tend to decrease with bigger member lengths, comparable to 

the results from LBA calculations.  

Figure 5-9 b), c) and d) illustrate moment rotation diagrams using different individual 

harmonic numbers for the reconstruction of the imperfect surfaces of the FE models. A 

cold-formed RHS300×150×6 (Figure 5-9 b), c)) and SHS200×8 (Figure 5-9 d)) profile 

are used to illustrate the shift towards “higher” harmonic numbers with increasing ec-

centricity. The eccentricity was set to ±300	mm and 457	mm for the RHS and SHS profile, 

respectively. Overall, the shown moment-rotation curves appear more inconsistent and 

separated compared to the case of pure centric compression. In most cases the exclusive 

use of single individual harmonic numbers lead to large deviations within the moment-

rotation behaviour, compared to GMNIA-Meas results (representing experimental test 

results).  

It has been found that combinations of individual harmonic numbers are more appro-

priate to simulate the overall behaviour. In the case of the RHS profile (Figure 5-9 b) and 

c)) and an eccentricity of e	=	±300	mm for the load introduction – eccentricity was set 

along the profile height, so that the width (smaller profile dimension) is fully under com-

pression – a combination between the second and the third harmonic number lead to 

GMNIA-Fourier results very close to the benchmark GMNIA-Meas curve. For the SHS 

profile (Figure 5-9 d)), a combination between the third, fourth and fifth harmonic num-

ber was appropriate to recreate the GMNIA-Meas moment-rotation behaviour.  
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Generally speaking, the impression arises that with increasing eccentricities the need 

for smaller half-wavelengths arises, i.e., higher harmonic numbers within the imperfec-

tion spectrum, to increase the accuracy compared to GMNIA-Meas calculations. In the 

case of bending, it means that a more complex local imperfection shape is needed to du-

plicate the “real” behaviour. These local half-wavelengths are in the geometric range of 

the cross-section dimensions. The lowest harmonic number in almost all investigated 

cases was k	=	2, which is approximately corresponding to the bigger value of the width 

or the height of the cross-section. Sadowski [279] described that the critical terms in the 

harmonic analysis are usually not those with the largest amplitudes (typically low har-

monics), but those with wavelengths close to that of the critical buckling mode (typically 

a high harmonic).  

A comparable conclusion can be drawn from investigations made by Fieber [67] within 

the development of the CSM approach for members and frame systems, see Section 2.5. 

To account for redistributions and plastic hinge formations in a defined area, a so called 

“strain averaging” approach (see Section 2.5.2) was implemented. The length Lb of the 

plastic hinge is assumed to be the local buckling half-wavelength, being dependent on 

the profile geometry and the used load case. Those lengths can either be directly calcu-

lated by using the CUSFM software – resulting in so called signature curves (see Section 

2.3) – or the analytical approach by Fieber [67], presented throughout Section 2.5.3.2. 

Using this approach exemplary within Figure 5-10 for the SHS300×6.3 profile, the calcu-

lated local critical buckling length is equal to Lb	=	250mm, for the load case of pure com-

pression, leading to a similar required minimum length resulting from Figure 5-10.  

5.3.2 Buckling	lengths	from	experimental	investigations	

Based on the investigations from above, an additional consideration of local buckling 

lengths with experimental tests and their evaluation regarding the geometry of the plas-

tic hinge area can be made.  

In particular, the geometries of the scanned profiles were used here, which were rec-

orded and tested at UniBW in the framework of the Hollosstab project. The test program 

and the validation of the FE models have already been discussed in Section 5.1.  
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Figure 5-11: Simulated GMNIA-Meas buckling lengths for an SHS 200×5; a) T1; b) T2; c) T3; d) T4 

Due to the close correlation between the experimental tests and the FE simulations – 

here denominated as GMNIA-Meas – using the real/scanned geometries for the model-

ing, the simulated results are used here for comparison purposes to determine the buck-

ling lengths. The full scale tests were originally sampled into 5 categories, which depend 

on the load case and length of the used profiles, see therefore Section 5.1.1 and Table 
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5-3. Test with the denomination from T1 to T4 provide an increasing eccentricity with 

an equal profile length of 800	mm to induce N-M interaction. The eccentricities of test 

category T5 are in general equivalent to T3 tests, but using a length of 2000	mm to dis-

play a global + local phenomena. 

In the following, the actual buckling lengths from GMNIA-Meas simulations are com-

pared with theoretical buckling half-wavelengths, derived with analytical approxima-

tions from Fieber [67]. This comparison enables conclusions regarding the used member 

lengths within own FE models. The buckling lengths from GMNIA-Meas simulations 

were measured, therefore, the values for Lexp are not exact and describe more a tendency 

towards the dimensions of the plastic hinge area in a heuristic manner. Figure 5-11 

shows this procedure for different eccentricities. The used profiles with the correspond-

ing test eccentricities and measured (Lexp) buckling lengths, as well as calculated buck-

ling half-wavelengths (Lb) are summarized in Table 5-5.  

First, it should be noted that the measured buckling lengths Lexp from GMNIA-Meas sim-

ulations – note that those models are based on the scanned geometries – correspond in 

all cases to the larger profile dimension (max(H,W)) of the used SHS/RHS. With increas-

ing eccentricities, i.e. introduction of a planned N-M interaction, a certain decrease of the 

measured buckling length is observed. However, this effect is not significantly pro-

nounced and could be neglected. Comparatively, the results according to the analytical 

formulations by Fieber [67] (see also Section 2.5.3.2) lead to buckling half-wavelengths 

that are in general smaller than the profile dimensions. Depending on the load case (N-

M Interaction) the geometric deviations lie between 15% (compression) and 40% 

(bending dominated) compared to the biggest cross-section dimension (width or height 

of the profile). On the other hand, buckling lengths derived from GMNIA-Meas simula-

tions are consistently closer to the bigger cross-section dimension with deviations be-

tween 0% and 20%.  
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Table 5-5: Comparison between local buckling lengths from experimental investigations (HOLLSSTAB) 
and critical buckling half-wavelengths [67] 

Profile Test eccentricity [ ]T mm  exp [ ]L mm  [ ]bL mm  

RHS 300×150×6, S355 T1 = 0 295 254.47 

RHS 300×150×6, S355 T2 = 17.9 274 254.47 

RHS 300×150×6, S355 T3 = 57 250 254.40 

RHS 300×150×6, S355 T4 = 297 250 224.57 

RHS 300×150×6, S355 T5 = 57 270 254.40 

RHS 300×150×8, S355 T1 = 0 305 254.47 

RHS 300×150×8, S355 T2 = 17.4 280 254.47 

RHS 300×150×8, S355 T3 = 57 253 254.40 

RHS 300×150×8, S355 T4 = 232 250 228.70 

SHS 140×4, S355 T2 = 14.6 152 116.2 

SHS 140×4, S355 T3 = 137 121 110.36 

SHS 140×4, S355 T4 = 312 120 103.07 

SHS 200×5, S355 T1 = 0 182 166.00 

SHS 200×5, S355 T2 = 20.9 179 166.00 

SHS 200×5, S355 T3 = 107 170 162.91 

SHS 200×5, S355 T4 = 457 170 146.74 

SHS 200×8, S355 T1 = 0 197 166.00 

SHS 200×8, S355 T2 = 20.9 193 166.00 

SHS 200×8, S355 T3 = 107 193 162.45 

SHS 200×8, S355 T4 = 457 193 146.74 

SHS 200×4, S550 T1 = 0 195 166.00 

SHS 200×4, S550 T2 = 63.0 190 166.00 

SHS 200×4, S550 T3 = 107 190 162.53 

SHS 200×4, S550 T4 = 457 200 146.74 

SHS 200×4, S550 T5 = 107 200 162.45 

SHS 200×5, S550 T1 = 0 200 166.00 

SHS 200×5, S550 T2 = 63.9 190 166.00 

SHS 200×5, S550 T3 = 107 190 162.76 

SHS 200×5, S550 T4 = 457 190 146.74 

SHS 200×5, S550 T5 = 107 190 162.06 
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5.3.3 Conclusions	and	assumptions	for	the	plastic	hinge	lengths	from	own	

work	

From the above investigations, general conclusions can then be drawn on the required 

local lengths of the corresponding FE models for the following simulation and subse-

quent data development: 

i. Using the mathematical approach of Fourier series expansion to recreate scanned 

surfaces, it was shown that only a limited number of harmonic numbers, corre-

sponding to imperfection shapes from a sum of sine and cosine waves, is needed 

to recreate the overall behaviour of the FE model (GMNIA-Meas) based on the 

fully scanned geometry. In addition, a shift towards higher harmonic numbers, 

i.e. imperfection forms with higher frequencies (lower half-wavelengths), is ob-

tained with an increasing moment.  

ii. The length of the member is a crucial factor within the determination of the crit-

ical elastic buckling load (LBA), as well as the maximum force from GMNIA simu-

lations. Member lengths below the maximum dimension of the cross-section 

height or width can lead to results far above the critical bifurcation load and the 

actual load bearing capacity. Related own investigations on the choice of 

eigenmode shapes and their combinations for I-shaped and closed SHS/RHS pro-

files show a similar trend. Those results were published in [76] and related in-

dustrial projects in [75], [82].  

iii. Further, the investigated profile thickness range, as well as the steel grade do not 

significantly influence the buckling length within GMNIA-Meas simulations. 

Therefore, this parameters are neglected in further considerations of method de-

velopment.  

iv. Plastic hinge lengths are not equal to buckling half-wavelengths from LBA simu-

lations (CUFSM) or equivalent analytical solutions. In all investigated cases from 

Table 5-5, the necessary lengths Lexp to form a plastic hinge are bigger than the 

critical half-wave lengths Lb. The use of the latter can lead to GMNIA results that 

overestimate the actual local capacity.  

As a conclusion to the results mentioned above, the local buckling length and therefore 

also the member length within the FE models are set equal to the larger dimension of 
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the height or the width (max(H,	W) of the considered profile in each case for compres-

sion and bending. A description of the FE models is presented in Section 5.4.  

5.4 Developed	Finite	Element	Model	

5.4.1 General	description		

The developed FEM models, as used throughout the remainder of this thesis, for data 

generation and subsequent DNN model training can be described as follows. All assump-

tions, except the local length of the models, are mainly based on the previous work from 

the Hollosstab project, as described throughout Section 5.2.  

i. The FE models make use of isoparametric shell elements with reduced integra-

tion of type S4R, with a mesh density of around 60 elements in circumferential 

and (depending on the total member length) 50 – 100 elements per meter in lon-

gitudinal direction.  

ii. The geometry of the profiles is based on code provisions of (EN 10210-2:2006 

[4], EN 10219-2:2006 [5]) with a local length L (longitudinal direction) set as the 

bigger value of ether the width W or the height H of the cross-section.  

iii. The loads and deformations are applied through defined reference points (RF-

Points) which are located at the upper and lower edge of the cross-section (see 

Figure 5-12). These are connected through multiple point constraints (MPC-Pin 

formulation) to associated node sets along the upper and lower profile outer edge 

shown exemplary for the quarter range of the cross-section. This definition im-

plies a pinned connection between the nodes at the extremity with regards to 

deformations and rotations, and a reference node at the centroid of the respective 

sections.  

iv. Non-linear material models for hot-rolled (bilinear + non-linear model) and cold-

formed steel (two-stage Ramberg Osgood model) were implemented according 

to Yun and Gardner ([6], [7]), as well as Section 2.4.3, under consideration of 

Equation (5-1) and (5-2) for true stress-strain representations.  
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Figure 5-12: Exemplary illustration of FE models of an RHS section in compression and bending and their 
corresponding deformations; a), b) LBA compression; b), c) GMNIA compression; d), e) GMNIA bending 
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v. Residual stresses were not explicitly considered in the Abaqus models. The over-

all validation of the Abaqus model is based on the described investigations from 

Section 5.2. 

The basic process for the generation of the FEM-based training data sets is always per-

formed in two steps.  

i. In a first step an LBA analysis is carried out in order to identify the elastic critical 

buckling resistance of the cross-section and the eigenshape as the critical imper-

fection form. The eigenshape is derived exclusively from the load case of centric 

compression and used in all further load cased as the initial imperfection form.  

ii. In a second step a GMNIA simulation is performed to determine an elasto-plastic 

buckling load – the realistic buckling resistance that considers both material and 

geometric nonlinearities – of the cross-section as well as the courses of the pre- 

and post-buckling range. The non-linear calculations in Abaqus were performed 

using the static general stress analysis.  

5.4.2 Considered	parameters	and	load	cases	

Table 5-6: Used profiles and parameters 

Used Profiles Number of Sections Dimension Range c/t 

SHS hot-rolled 106 8.0 – 47.62 

SHS cold-formed 142 8.0 – 47.62 

RHS hot-rolled 113 9.52 – 56.25 

RHS cold-formed 165 12.5 – 55.55 

Used Parameters Number of Parameters Values 

Steel grade yf  3 S355, S460, S700/S690 

Material model (hot-rolled) 2 Bilinear + non-linear hardening model [6]

Material model (cold-formed) 2 Two Stage Ramberg Osgood [7] 

Imperfection amplitude 0e  3 B/200, B/300, B/400 

Abaqus Simulations 

LBA Compression  526 

GMNIA Compression  9468 

GMNIA Bending  9468 
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Within this thesis, serving as a preliminary step into the development of a novel data 

driven solution method for structural design, exclusively closed square (SHS) and rec-

tangular (RHS) hollow sections are considered. This simplification is indeed needed 

throughout this development stage to prevent out of plane effects, i.e. lateral torsional 

buckling or distortional buckling effects, which occur mostly in open cross-sections (I-

shaped or cold-formed open profiles). Therefore, the member behaviour in the 2D plane 

is evaluated. The required data for the evaluation of the DNN predictive models is based 

on European profiles from EN 10210-2 2006 [4] and EN 10219-2 2006 [5] for hot-rolled 

and cold-formed steel.  

An overview of the used profiles is summarized in Table 5-6. In sum 526 profiles are 

evaluated, whereby, 219 are assigned to hot-rolled and 307 to cold-formed SHS and RHS 

profiles. Additional parameters were selected, such as three different steel grades (S355, 

S460 and S700/690), two material models in each case for hot-rolled and cold-formed 

consideration as well as three different equivalent local imperfection amplitudes 

(B/200, B/300 and B/400), which are scaled to the local buckling shape from LBA sim-

ulations. In total 18936 profiles with individual parameters are generated. This param-

eters form the basis for further LBA (linear buckling analysis) and GMNIA (geometrically 

and materially non-linear analysis with imperfections) simulations conducted in 

Abaqus. The subsequent data extraction and corresponding feature engineering steps 

are discussed and presented in Section 6.  

Table 5-7: Used material properties according to EN 1993-1-1 [48], EN 1993-1-3 [287] and EN 1993-1-
12 [288] 

fy	[N/mm2] fu	[N/mm2] E	[N/mm2] 

	 Hot-rolled steel	 	

355 490 210000 

460 550 210000 

690 770 210000 

Cold-formed steel 

355 510 205000 

460 550 205000 

700 750 205000 
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The used material parameters for all Abaqus simulations are shown in Table 5-7. The 

advanced non-linear material models are based on investigations collected from litera-

ture and subsequently proposed as analytical formulations by Yun and Gardner ([6], 

[7]). The implemented models, i.e. a “bilinear plus non-linear hardening material model” 

for hot-rolled steel and a “two stage Ramberg Osgood material model” for cold-formed 

steel, are presented in Section 2.4.3 with additional background information and main 

parameter derivation. Their purpose within the proposed advanced non-linear simula-

tion approach is primarily to match the experimental results (from both, literature and 

own investigations), used for comparison and validation of the DNN-DSM throughout 

Chapter 8.  

 

Figure 5-13: Considered load cases, a) pure compression; b) pure (constant) bending 
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Figure 5-13 a) shows a hypothetical 3D space of possible deformation scenarios, i.e. all 

possible combinations of longitudinal and transverse deformations (ux,	 vz) and addi-

tional rotations (φy) at a node of a beam element of a defined length loaded in plane 

(three degrees of freedom at each node). In the framework of this thesis, which is in-

tended as a demonstration of the general feasibility of the DNN-DSM approach, longitu-

dinal deformations ux and end node rotations φy (see Figure 5-13 b) and c)) are consid-

ered. Beyond serving as a proof of concept, this simplification has also the decisive ad-

vantage that many general problems regarding data structure, density and post pro-

cessing (feature engineering) can be tested on a much smaller scale with less computa-

tional effort.  

 

 



 

 

  
 
 
 

Data Development

Data Basis and Feature Engineering 

 

Outline	of	the	chapter:	

This chapter provides background information on all required steps from shell based FE 

simulations towards data sets, which are used for the training and testing of all pre-

sented DNN models. This models form the basis for the proposed DNN-DSM approach 

herein.  
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6.1 Data	pre‐processing	

6.1.1 Data	generation	workflow	and	used	software	

 

Figure 6-1: Data generation workflow and used software 
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The applied workflow for the generation of the data and its subsequent implementation 

to a DNN model is presented in Figure 6-1. All considered profiles (hot-rolled and cold-

formed SHS/RHS profiles), additional variable parameters (in particular imperfection 

amplitudes and material grades), as well as the used material models were collected 

within two excel files “Profile_list_Par_Study.xlsx” and “Material_Model.xlsx”. A python 

code “Python_to_Abaqus.py” was written for an automated generation of ABAQUS .inp 

files for LBA and GMNIA simulations, using the information from the excel files. The 

ABAQUS simulations are initialized through a batch file (.bat) for an automated simula-

tion process. An additional written python code “Python_to_Data.py” uses the .dat files 

from ABAQUS simulations to read out the results, i.e. incremental end deformations, in-

cremental end rotations, as well as corresponding values for the force and the moment. 

The “Python_to_Data.py” code is coupled to “Profile_list_Par_Study.xlsx” in order to cre-

ate a full data set with all contemplated features. The gathered information is summed 

up in .csv files. A third python code “DNN_Prediction_Model.py” is used to implement 

and train deep neural networks with the goal to accurately predict the incremental tan-

gent stiffness KT of the whole load-displacement or moment-rotation paths. In the course 

of the investigations, it was also necessary to make accurate predictions for the maxi-

mum force Fmax and the maximum moment Mmax achieved.  

6.1.2 Data	extraction	

The generated data basis from Abaqus LBA and GMNIA simulations is used for the ex-

traction of the input and output values. The LBA output is used to extract the cross-sec-

tion dependent elastic critical buckling eigenvalue Fcr, corresponding only to pure com-

pression in this thesis. In addition, the first local eigenshape is used as an initial imper-

fection shape. The GMNIA analysis results are used to extract the absolute and incre-

mental deformation steps un and ∆un and the corresponding differential force ∆Fn. This 

process of data extraction is exemplary shown by using a load-deformation representa-

tion from a GMNIA simulation, displayed within Figure 6-2 a). The simulated values de-

termined this way are subsequently used to calculate the incremental tangent stiffness 

KNT,n for the whole cross-section dependent pre- and post-buckling range, see Equation 

(6-1). The same procedure was applied to all extracted moment-rotations outputs for 

the calculation of the tangent stiffness KMT,n, see Equation (6-2). Figure 6-2 b) sum up the 
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extracted features used to develop the data sets. Overall, the features contain profile spe-

cific geometric and mechanical properties such as the profile height, width, thickness, 

moment of inertia, elastic stiffness etc., as well as the output value of the incremental 

tangent stiffness. Note that not all extracted features are necessary for a successful DNN 

model training. A feature importance evaluation is thus discussed in Section 6.2.5. Infor-

mation on feature importance, data structure, distribution, as well as their effect on DNN 

model behaviour and accuracy are presented within Section 6.2.  

,
N n
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Figure 6-2: Data extraction from non-linear Abaqus simulations; a) force-displacement relation for pure 
compression; b) potential features for pure compression; c) moment-rotation relation for pure ´bending; 
d) potential features for pure bending 

 



Part II 6: Data Development

 

 

 

145 

6.1.3 Data	structure	

Below is a selection of the extracted data for longitudinal deformation and constant 

bending. The first 12 columns represent possible geometric and material features of the 

hollow section. These features are constant values for each record (record = the course 

of the numerical simulation of a single cross-section in Abaqus) in the data set. The fea-

tures marked in orange, i.e. the longitudinal deformation u  (compression) and the rota-

tion   (equal rotation at both ends), are changed within a record, typically with increas-

ing values. The column marked in green shows the target variable (desired output/pre-

diction), i.e. the incremental tangent stiffness for each calculation step.  

Table 6-1: Used profiles and parameters 

Compression 

H  W  t  L  A  yI  ,y elW
 ,y plW

 e  yf  eK  crF  
u  TK  

40 40 2.6 40 3.82 8.8 4.4 5.31 0.2 355 2∙106 1.2∙106 -0.001 2∙106 

40 40 2.6 40 3.82 8.8 4.4 5.31 0.2 355 2∙106 1.2∙106 -0.002 1.6∙106

40 40 2.6 40 3.82 8.8 4.4 5.31 0.2 355 2∙106 1.2∙106 -0.003 1.2∙106

Bending 

H  W  t  L  A  yI  ,y elW
 ,y plW

 e  yf  eK  crF    TK  

40 40 2.6 40 3.82 8.8 4.4 5.31 0.2 355 2∙106 1.2∙106 -0.01 2∙106 

40 40 2.6 40 3.82 8.8 4.4 5.31 0.2 355 2∙106 1.2∙106 -0.02 1.6∙106

40 40 2.6 40 3.82 8.8 4.4 5.31 0.2 355 2∙106 1.2∙106 -0.03 1.2∙106

where: 

H	[mm] is the cross-section height 

W	[mm]  is the cross-section width 

t	[mm]  is the cross-section thickness 

L	[mm]  is the cross-section length 

A	[cm2]  is the cross-section area 

Iy	[cm4]  is the moment of inertia  
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Wy,el [cm3] is the elastic moment of resistance 

Wy,pl	[cm3]  is the plastic moment of resistance 

e	[mm]  is the local imperfection amplitude  

fy	[N/mm2]		 is the steel grade 

Ke,truss	[N/mm]	

Ke,beam	[Nmm/rad]  
is the elastic truss and beam stiffness  

Fcr	[N]  is the critical buckling load from LBA simulation 

u,	θ is the applied deformation and rotation  

 

Figure 6-3: Exemplary representation of the data distribution for hot-rolled RHS profiles in the pre-buck-
ling range 
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Figure 6-3 shows an example of the data distribution for hot-rolled RHS profiles in the 

pre-buckling range. Each feature is displayed individually.  

The currently used data volume is shown in Table 6-2. Each individual number within 

the whole data set represent an entry, containing all possible features from Table 6-1. 

The whole data is split into pre- and post-buckling data sets, subdividing the predictions 

made later on in the different ranges. The cross-section capacity for each profile is rep-

resented in an extra data set, containing less data, since not the whole load-defor-

mation/moment-rotation course is needed, but only the data at the point of the maxi-

mum reached load. The decision to split the data is made upon performed investigations 

from Section 6.2 in the following.  

Table 6-2: Row entries in individual data sets 

Profiles Pre-buckling Post-buckling Cross-section capacity 

Load Case: Compression (N) 

SHS Hot-rolled 315672 344282 954 

RHS Hot-rolled 331982 424743 1008 

SHS Cold-formed 308770 450012 1278 

RHS Cold-formed 271554 490301 1485 

Load Case: Bending (M) 

SHS Hot-rolled 251244 353110 954 

RHS Hot-rolled 314352 205093 1008 

SHS Cold-formed 212508 254254 1278 

RHS Cold-formed 305676 384246 1485 

6.2 Feature	Engineering	and	Governing	Results	

The data quantity, its structure and density, appropriate feature sets or the data trans-

formation strategy affect highly the accuracy of the output predictions of DNNs. The 

principle applies that poor	 data	 quality	will	 lead	 to	 inferior	 results, in general inde-

pendently of the computational level of the used method. However, of the methodology 

used in this thesis is the use of fully simulated data, leading to a very low scatter and the 

possibility of data reproduction and augmented extension.  
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Before choosing an appropriate DNN architecture, it was necessary to first investigate 

the data structure. This procedure is widely known under the term of “feature engineer-

ing” and includes different methods, starting with investigations on data quality and dis-

tribution, followed by necessary considerations of data normalization in the input and 

output layers, as well as investigations on feature importance, i.e. which input parame-

ters has an impact on the optimization of DNN model. Thus, by using unsupervised meth-

ods like principle component analysis (PCA), to reduce the feature dimensionality, or the 

evaluation of the feature importance with decision tree based algorithms tendencies to-

wards individual parameters are obtained.  

The process of data analysis and interpretation is not structurally defined and does not 

necessarily follow a fixed sequence of operations. Since this process is highly iterative 

and many parameters are constantly changed, no clear hierarchy can be named within 

the individual modifications. Therefore, according to the principle of an ascending com-

plexity, the most important adjustments are pointed out and summarized in the follow-

ing subsections.  

6.2.1 Preface	to	presented	investigations	

No direct reference information from previous research on parameters and their influ-

ence on the learning or prediction behaviour of DNN models in connection with load-

deformation or moment-rotation data was available. For this reason, the considered pa-

rameters were chosen in order to minimize uncertainties, save computational time and 

primarily reduce their overall number. It shall be noted that the goal of this investiga-

tions was to verify the feasibility and performance of the proposed methodology, as op-

posed to fully verifying its accuracy and reliability. These investigations and their out-

comes were previously published in [289]–[292] and form the basis for the studies pre-

sented here, with further research being carried out on the basis of the parameters from 

Section 5.4.2, i.e., the full set of hot-rolled and cold-formed RHS and SHS profiles from 

[4] and [5], as well as a non-linear material behaviour as proposed in [6] and [7]. 
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6.2.2 Data	set	density		

6.2.2.1 Data	expansion	

 

Figure 6-4: Comparison between simulated Abaqus GMNIA results and DNN model predictions for a dif-
ferent data density in the elastic range; a) DNN prediction for an SHS 40×2.6, S355, based on data set 
without data expansion; b) Histogram describing the tangent stiffness KT based on data set without data 
expansion; c) DNN prediction for an SHS 40×2.6, S355, based on data set with data expansion; d) Histo-
gram describing the tangent stiffness KT based on data set without data expansion 

 

Based on own investigations carried out to analyze the data density, structure and its 

influence on the performance on different DNN models, a clear outcome is obtained and 
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presented in Figure 6-4. The left side shows two load-displacement diagrams and the 

right side an associated frequency distribution of the tangent stiffness. The Abaqus 

GMNIA simulation is described by the black dotted curve and is considered here as the 

benchmark resistance. Each dot represents one increment of the numerical simulation. 

For the purpose of a better representation, the points were connected through interpo-

lated lines. The red dotted line from Figure 6-4 a) symbolizes the predicted resistance, 

calculated with one DNN model by using the raw data set. This means that the displace-

ment u had the same incremental distribution as provided by the Abaqus simulations. A 

profound difference between the black and the red curve can be obtained, especially in 

areas of small displacement in the pre-buckling range, i.e. high tangent stiffness. Due to 

this premature softening behaviour, the maximum load is predicted very inaccurately 

though. On the other hand, the course obtained in the post-buckling range is more pre-

cise, although the overall resistance is predicted too low. Figure 6-4 b) shows the fre-

quency distribution of the tangent stiffness of the whole data set, including all investi-

gated cross-sections.  

The highest frequency is clearly reached around the value of zero. This range is at-

tributed to the area near the maximum force of the load-displacement diagram, see Fig-

ure 6-4 a). The peak can be explained by the smaller increments chosen within the 

Abaqus simulation to achieve equilibrium in non-linear areas. On the other hand, rela-

tively large incremental steps are made in the elastic range at the beginning of the cal-

culation. Therefore, the different incremental step sizes along the load-displacement 

curve lead to an uneven distribution of data, resulting in predictions that are more accu-

rate for regions with higher density. For this reason, high values of the tangent stiffness 

KT	≈	Ke, extracted from the start of every Abaqus simulation, are seen as outliers by the 

DNN models and are therefore difficult to predict precisely. Figure 6-4 c) shows an up-

dated prediction, which is more accurate in representing the resistance within the pre-

buckling range. A data enlargement was carried out by interpolating linear between the 

increments in the elastic range, i.e. the very first increments. Thus, leading to an artifi-

cially increased data density for the tangent stiffness of KT	>>	0, as shown in the histo-

gram of Figure 6-4 d). Overall, the expanded data set was increased by around 40 %.  
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Although this approach increases the prediction accuracy of the DNN models, the basic 

assumption to reduce the amount of calculated steps in Abaqus itself has a crucial draw-

back that becomes visible on a more global member scale within the DNN-DSM imple-

mentation. The following representations give an outlook on the prediction within the 

DNN-DSM approach, addressing the pre- and post-buckling behaviour dependent on dif-

ferent model assumptions to illustrate the effect, coming from the simplifications stated 

above. 

 

Figure 6-5: Comparison between GMNIA shell simulations and DNN-DSM prediction for a hot-rolled 
SHS300×6.3, S690 members, a) large solver steps, L	=	600mm; b) large solver steps, L	=	900mm; c)  
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Figure 6-5 shows an SHS300×6.3, S690 profile with the length of 600	mm (see Figure 6-5 

a)), 900	mm (see Figure 6-5 b)), 1200	mm (see Figure 6-5 c)) and 1500	mm see Figure 

6-5 d), loaded by pure compression. The x-axis describes the compression in axial direc-

tion and the y-axis the applied normal force. Curves in blue represent the FE-shell based 

GMNIA simulation. The red curves show the DNN-DSM recalculation. According to the 

current DNN-DSM approach the models are build up from local elements (beam ele-

ments), where the element length corresponds to the bigger value of the height or the 

width. The observations from Figure 6-5 mainly show that the overall non-linear load-

deformation behaviour can be recalculated compared to the Abaqus GMNIA simulations 

in the pre- and post-buckling range. However, it is noticeable that with increasing mem-

ber length, the maximum loads are well predicted, but the associated deformations are 

not accurately reproduced. This finding was only discovered during the course of imple-

mentation and comparative calculation, but has its origin in the assumptions made here, 

i.e., Abaqus solver settings resulting in a big step time.  

6.2.2.2 Conclusions	

As described in Section 6.2.2.1, assumptions were made within the solver step time, 

which lead to a computational reduction and fast results with the disadvantage of accu-

racy loss. This is illustrated through the load-displacement curves in Figure 6-6. Differ-

ent solver setting were used for GMNIA (1) to GMNIA (3) simulations with increasingly 

smaller solver steps, i.e. an initial first step, a minimum step and a maximum step.  

The minimum step was set constant to a very small value of 1e‐20, in order to make shore 

that the GMNIA calculation runs smoothly even for very slender cross-sections. The max-

imum step time was varied from 0.1 to 0.001. The accuracy increases with decreasing 

steps and results in a more rounded non-linear curve behaviour. Further, a shift in the 

load bearing capacity towards higher deformations is visible. A maximum of around 

15%, here exemplary shown for a hot-rolled SHS300×6.3 profile (s Figure 6-6 a)), is 

achieved by comparing GMNIA model (1) and (3). This difference potentially decreases 

with smaller step sizes. Comparing GMNIA model (2) and (3) only a difference of <1% is 

obtained.  
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Figure 6-6: Load-displacement curves for different Abaqus solver step time setting 

Therefore, to be numerically accurate and yet computationally time efficient, GMNIA 

model (2) solver settings are set to default to be used throughout data-set generation. 

To simplify the problem a similar behaviour is assumed for all other profiles and load 

cases, although, the effect of the capacity shift and the non-linear response was not visi-

ble for the case of a constant moment, see Figure 6-6 b) and c). In addition Figure 6-7 a), 

b), c), d) show the results with the adopted step time settings. The results show the same 

results in the pre- and post-buckling regains with an increasing accuracy towards the 

point of reaching the maximum force and corresponding deformation.  
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Figure 6-7: Comparison between GMNIA shell simulations and DNN-DSM prediction for a hot-rolled 
SHS300×6.3, S690 members, a) L	=	600mm; b) L	=	900mm	
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6.2.3 Data	set	splitting	

Table 6-3: Split data sets according to profile, fabrication and the pre- and post-buckling range 

Load Case: Compression (N) 

Prediction of the incremental tangent stiffness KT 

Profiles SHS RHS 

Fabrication hot-rolled cold-formed hot-rolled cold-formed 

Data sets 
pre-buckling (1) 

post-buckling (2) 

pre-buckling (1) 

post-buckling (2) 

pre-buckling (1) 

post-buckling (2) 

pre-buckling (1) 

post-buckling (2) 

Prediction of the maximum force Nmax 

Data sets 
load bearing  
capacity (3) 

load bearing  
capacity (3) 

load bearing  
capacity (3) 

load bearing  
capacity (3) 

Load Case: Bending (M) 

Prediction of the incremental tangent stiffness KT 

Profiles SHS RHS 

Fabrication hot-rolled cold-formed hot-rolled cold-formed 

Data sets 
pre-buckling (1) 

post-buckling (2) 

pre-buckling (1) 

post-buckling (2) 

pre-buckling (1) 

post-buckling (2) 

pre-buckling (1) 

post-buckling (2) 

maximum Moment Mmax 

Data sets load bearing  
capacity (3) 

load bearing  
capacity (3) 

load bearing  
capacity (3) 

load bearing  
capacity (3) 

Based on the outcomes of DNN model performance evaluations, additional adjustments 

were made with regard to the data structure. It was obtained that a splitting between 

hot-rolled and cold-formed SHS and RHS profiles and the pre- and post-buckling range 

led to a significantly better performance. The r2	(r-squared) value (see Equation (4-8)) 

could be raised considerably up to r2	=	0.999. Especially the prediction of the cross-sec-

tion dependent maximum load Fmax or moment Mmax was met with a very high accuracy. 

The prediction output is further presented in Section 6.2.4 in the context of data trans-

formation. The split data sets are shown in Table 6-3, below. The general split was nec-

essary to improve the performance of the DNN-models, yet has a disadvantage in the 

prediction process of the whole non-linear response, disregarding the applied load case. 

Since the pre- and post-buckling range are no longer predicted by one neural network, 

the need for a third DNN model arises, which indicates the switch between this areas. 
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The third DNN-model predicts only the load bearing capacity as a condition in the calcu-

lation procedure within the DNN-DSM approach. Its methodology and implementation 

are presented in Chapter 7.  

6.2.4 Data	transformation	

6.2.4.1 Transformation	of	input	features	

Figure 6-8 shows the difference between the performances of several DNN models based 

on normalized (see Equation (4-12)) and standardized (see Equation (4-13)) inputs. In 

each case, six randomly chosen feature combinations were taken into account. These 

will not be commented on further, as they serve for demonstration purpose only. The x-

axis represents the number of epochs. These are in a general sense the number of repe-

titions in the training procedure. The y-axis describes the network accuracy using the 

measure r-squared (see Equation (4-8)), a statistical measure of the unexplained and the 

total variation.  

 

Figure 6-8: Training results for using a) standardized features; b) normalized features 

The performance of DNN models with standardized feature combinations are summa-

rized in Figure 6-8a). First, it can be noted that the r2 value increases steeply straight 

from the beginning of the optimization process. Already after less than 50 epochs the 

value of r2	=	0.90 is exceeded. After approximately 200 epochs, even the value of r2	=	0.95 
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is passed for most feature combinations. On the other hand, Figure 6-8 b) shows the DNN 

model performance using normalized data sets. A direct comparison shows that the 

overall model accuracy is lower. Due to a flatter course between the first 200 epochs 

from the beginning, an r2	=	0.95 can only be reached by the end of the optimization pro-

cess around 1500 epochs. This difference underlines the choice of data standardization 

within further investigations and results presented in the following.  

6.2.4.2 Prediction	of	the	tangent	stiffness	 TK 	

 

Figure 6-9: Output distribution for the subset of SHS hot-rolled profiles a) raw values of the tangent stiff-
ness KT; b) transformed values of the tangent stiffness divided by the elastic stiffness KT/Ke 
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An additional influence on the model performance is attributed to the chosen format of 

the predicted value within the output layer. Depending on its distribution within the 

data set, the accuracy can vary greatly within the predictions. The frequency distribution 

of the raw values of the tangent stiffness KT, for hot-rolled SHS profiles in the pre-buck-

ling range, is shown in Figure 6-9 a).  

Values concentrated around zero represent the tangent stiffness (KT	<<	Ke) near the max-

imum reached resistance. However, all other values can be a combination of KT	≈	Ke or 

KT	<	Ke, attributed to the elastic initial range or an intermediate range with a propagating 

non-linear behaviour. This mixed tangent stiffnesses on the one side and the big differ-

ence in its magnitude (ranging between 0 and 1e7) on the other side for the direct pre-

diction of KT (see Figure 6-9 a)), significantly affect the optimization process of the DNN 

model. Thus, in the investigations carried out, an r2	=	0.95 was reached after approxi-

mately 1000 epochs and an r2	=	0.98 after approximately 6000 epochs. Figure 6-9 b) 

shows the frequency histogram of the tangent stiffness KT divided by the elastic stiffness 

Ke. The resulting distribution in this case is completely different from before, being clus-

tered in mainly three parts due to the transformation. Values around zero are still at-

tributed to the area near the maximum resistance. However, the cross-section depend-

ent tangent stiffness in the elastic range (KT	≈	Ke) is now located close to the value of one. 

All other values of KT	<	Ke are in between these boundary ranges and are assigned to an 

increasing non-linear local behaviour. The prediction accuracy in this case is signifi-

cantly higher. Thus an r2	=	0.99 is already reached after approximately 200 epochs using 

the same DNN model architecture. Although the difference between the estimated accu-

racies is less than 2%, a higher scatter is obtained within the predicted stiffnesses using 

the raw output data in Figure 6-9 a). It must also be pointed out that the optimization 

process, measured in terms of the required epochs and the estimated associated model 

accuracy, was slower compared to the performance of DNN models based on the trans-

formed data from Figure 6-9 b).  
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6.2.4.3 Prediction	of	cross‐section	resistance	

A similar procedure applies for the prediction of the cross-section resistance, i.e. the 

peaks in the load-displacement curves. In general, it makes sense to start from a physi-

cally well-understood value, which is either the maximum reached peak load Fmax or the 

calculated local buckling reduction factor χ	=	Fmax	/	Fpl. When considering these two data 

series, it makes sense to first look at their distribution. Therefore, Figure 6-10 a) and b) 

shows the frequency for the maximum load and the buckling reduction factor, respec-

tively. From this, the following points can be specifically identified. It can be seen from 

Figure 6-10 a) that the maximum peak load for the majority of the profiles is highly dis-

tributed in the lower force range with an overall mean value of 2,851 kN. Additionally, 

the lowest and highest cross-section related peak load is equal to 93 kN and 20,5 kN, 

respectively. On the one hand, the distribution of the loads indicates that high values 

could partly be seen as outliers by the DNN, on the other hand, the big difference of the 

minimum and maximum values are a disadvantage, since this gap must be correctly cov-

ered by the weights and biases within the network. Therefore, it can make sense to ra-

ther normalize the prediction, which is done here by using the plastic cross-section ca-

pacity Fpl	=	A∙fy and calculate the buckling reduction factor χ. This consideration auto-

matically minimizes the range between the values and changes the data distribution, see 

Figure 6-10 b). All values near the plastic resistance Fpl are therefore located around 1, 

which leads to a more meaningful representation; values below 1 can be addresses to 

more slender cross-sections, values around and above 1 to stocky cross-sections.  

The consideration of both output parameters is shown within Figure 6-10 c) and d), re-

spectively, to confirm the above stated arguments. Both figures represent the precision 

of the predictions reached after 1,000 epochs, made with the same neural network (pre-

sented in more detail within Sec. 4) and using the r-squared measure from Equation 

(4-8). A difference in the predictions can be obtained, although in both cases the r-

squared valued are relatively high and could already be interpreted as sufficient enough. 

However, this is not least to the fact that we are dealing here with simulated values with-

out a significant scatter. Yet, this problem is transferable and shows higher deviations 

obtained by using directly Fmax as the predicted value, see Figure 6-10 c), rather than the 
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local reduction factor χ, see Figure 6-10 d). This subsequently underlines the before 

mentioned points.  

 

Figure 6-10: Frequency plots of the output values in different formats, a) raw output of Fmax; b) normalized 
output of χ	=	Fmax/Fpl and true vs. predicted maximum; c) raw output of Fmax; d) normalized output of χ	=	
Fmax/Fpl 
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6.2.5 Feature	assessment	

6.2.5.1 Feature	interpretation	

 

Figure 6-11: Correlation matrix for hot-rolled RHS profiles and the load case of compression, a) pre-buck-
ling range; b) post-buckling range 

A correlation matrix provides information on the coefficients of correlation between dif-

ferent features (input parameters) in a given data set and allows for an assessment of 

those. This step can help to reduce the dimensionality of the input parameters, or at least 

gain some insight into them within the pre-processing pipeline. Figure 6-11 shows such 

an output for the pre- and post-buckling data set for hot-rolled RHS profiles, loaded in 

compression. The matrix has the same number of rows and columns and corresponds to 

the chosen attributes. Here, 13 parameters, i.e. the profile height H, width W, thickness 

t, length L, cross-section area A, moment of inertia Iy, elastic moment of resistance Wel, 

plastic moment of resistance Wpl, imperfection amplitude e, steel grade fy, elastic stiff-

ness Ke, deformation u corresponding to centric compression, critical elastic buckling 

load Fcr, were selected. Values close to 1 (or -1) has a strong relationship and therefore 

correlate with each other, i.e., those values can be reduced since no additional infor-
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mation is added to the solution. On the other hand, values closer to 0 has a weak rela-

tionship. In addition, negative values has a negative relationship leading to indirect pro-

portional correlation.  

 

Figure 6-12: PCA for the data-set of hot-rolled SHS profiles; a) pre-buckling range; b) post-buckling range 

Figure 6-11 a) and b) provide a similar information. Features highly correlating with 

each other describe the cross-section geometry (H,	W,	t,	L) and additional cross-section 

values (Iy,	Wpl,	Wel). Features with a low correlation are attributed to mechanical prop-

erties like the steel grade fy, the critical elastic buckling load Fcr and the deformation 
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(crushing) of the cross-section. These explorations provide good insight about the de-

pendencies and serve to confirm the investigations conducted regarding feature im-

portance.  

An upstream principle component analysis (PCA) can provide information on the 

amount of parameters, by finding linear patterns between individual parameters. This 

method belongs to unsupervised learning techniques and is described in more detail in 

the following. Note, this step is not mandatory in the context of this thesis, but gives a 

better imagination for the present parameters and their interdependency, in order to 

assess the results from decision tree bases feature importance outputs. It assesses the 

possible potential to reduce the data due to dependencies. 

Figure 6-12 shows the output of a PCA. Since the result between cold-formed and hot-

rolled SHS and RHS profile is similar, in the following only the output for the set of hot-

rolled SHS profiles is shown. The x-axis describes the amount of principal components, 

which number is equal to the selected features within the data set. Principle components 

can be described best as new variables, which are built as linear combinations of the 

initial variables. The initial 13-dimensional data is “squeezed” down to approximately 6 

remaining components, see Figure 6-12 a) and b). The y-axis shows the normalized ei-

genvariance in percentage, calculated from the eigenvector of the covariance matrix. The 

covariance matrix aims to serve information on the relation between the variables of the 

input data with respect to their mean value.  

Both diagrams within Figure 6-12 show similar results, but, and this point is more im-

portant, a high potential to reduce the number of dimensions (features). This infor-

mation is used to draw the conclusion that several of the possible features are obsolete. 

Nevertheless, a PCA projects the original data onto the selected principal components to 

obtain the reduced-dimensional representation. This transformation preserves the most 

important patterns in the data while discarding less important information. The new 

output values differ from the physical variables and are not suitable at this level of 

method implementation. However, in the further development progress this step can 

make sense, in order to accelerate the method numerically.  
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In order to obtain information from the present data and make the machine learning 

model more easily interpretable, several strategies are provided. A common way of in-

terpretation is the SHAP analysis, which allows to understand the contribution of each 

feature toward the impact on the prediction according to the value of the instance.  

The SHAP output has the same dimensions as the data set used originally for the training 

of the model, i.e., the same amount of rows and columns, however, containing now the 

calculated SHAP values. The ML prediction for each instance f(x) can be reproduced as 

the sum of the SHAP values plus a fixed base value, which is the mean value μ of the 

predicted output (normalized tangent stiffness or normalized cross-section capacity).  

  ( )f x SHAP values   (6-3) 

The global interpretation of the data set is explained in the followings with the help of 

beeswarm plots. This plots can be interpreted as more traditional feature importance 

bar plots as done in Section 6.2.5.2, but provide more information on the actual relation-

ship to the predicted outcome. Figure 6-13 shows this output in a bar plot type with 

additional information on the value based model prediction, corresponding to each fea-

ture. All individual predictions are represented through a point along the bar for each 

feature. If several predictions have the same SHAP value impact, they are stacked on top 

of each other. This leads to areas with a larger accumulation of points.  

The highest influence on the predicted outcome in the pre-buckling range (see Figure 

6-13 a)), here the normalized incremental tangent stiffness KT/Ke, is caused by the de-

formation u, the cross-section height H, the steel grade fy and some additional cross-sec-

tion values. The deformation u has a positive SHAP value prediction impact for very 

small values. This is a logical output, since the tangent stiffness KT is the highest directly 

at the beginning of the deformation. With bigger deformation values, this impact starts 

to get negative in order to minimize the predicted outcome. It is noticeable, that the data 

density increases with higher deformations, i.e., the beeswarm plot for an individual fea-

ture is thicker (many predictions for an individual value) or thinner (less predictions for 

an individual value). This is basically the result of the step time regulation in Abaqus, 
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leading to smaller time increments in more non-linear load-deformation areas. A big im-

pacts can also be obtained from the height of the cross-section, which is clearly a geo-

metrical delimitation between the learned predictions.  

 

Figure 6-13: SHAP values for the load case compression and hot-rolled; a) SHS profiles in the pre-buckling 
range; b) SHS profiles in the post-buckling range; c) RHS profiles in the pre-buckling range; d) RHS profiles 
in the post-buckling range 

Bigger cross-section dimensions lead consequently to higher stiffness values and vice 

versa. This behaviour is well captured by the model. The same logic applies to the steel 

grade or the imperfection amplitude. Surprisingly, the post-buckling behaviour is 

stronger affected by the cross-section height H and the critical elastic buckling load Fcr. 
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Nevertheless, the deformation has still a high influence on the tangent stiffness in the 

post-buckling range. Looking at the local imperfection amplitude e, the influence in the 

pre-buckling range is present but much less in comparison to the post-buckling range. 

This effect was also obtained throughout investigations on the post-buckling behaviour 

of RHS/SHS profiles in [285]. 

 

Figure 6-14: SHAP values for the load case bending and hot-rolled; a) SHS profiles in the pre-buckling 
range; b) SHS profiles in the post-buckling range; c) RHS profiles in the pre-buckling range; d) RHS profiles 
in the post-buckling range 

Figure 6-14 shows the beeswarm plots for the load case of bending. Similar conclusions 

can be drawn for SHS profiles in the pre- and post-buckling range as for load case of pure 
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compression. On the other hand, the output for RHS profiles differs significant. The SHAP 

value impact linked to the rotation in the pre-buckling range is more separated, meaning 

that the scattered “line” is much thinner compared to the results for SHS profiles. This 

indicates that the general behaviour in the pre-buckling range is more diverse (non-lin-

ear). This applies in general to all features used in the SHAP value output for RHS pro-

files.  

6.2.5.2 Feature	importance	

 

Figure 6-15: Evaluation of feature importance and comparison between the Random Forest model and 
the XGBoost model for compression a) pre-buckling range of SHS profiles; b) post-buckling range of SHS 
profiles; c) pre-buckling range of RHS profiles; d) post-buckling range of RHS profiles  
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Figure 6-16: Evaluation of feature importance and comparison between the Random Forest model and 
the XGBoost model for bending a) pre-buckling range of SHS profiles; b) post-buckling range of SHS pro-
files; c) pre-buckling range of RHS profiles; d) post-buckling range of RHS profiles  

ML and DL methods offer several approaches to detect features that have the most in-

fluence on the learning process. Carrying out a dedicated feature analysis has the ad-

vantage that input parameters that have no significant impact on the predictions are 

eliminated from the prediction process. Therefore, the calculation effort is reduced 

while the optimization process depends on fewer parameters. The most common way to 

seek for these parameters is the application of tree based algorithms. Decision trees are 

based on the logical structure of a tree, predicting the values through a sum of individual 

choices. Starting with the input values in a so called root, the data is split within different 

possible decisions (categorical decision for classification and quantitative decisions for 

regression problems). Following this principle to the end nodes of the model, a condition 
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or value is proposed. This procedure is highly powerful but prone to problems con-

nected to data quality and tree complexity leading to an effect called overfitting. It occurs 

when the algorithm starts to capture noise, being too accurate on the training data due 

to a very deep tree structure. Therefore, the general approach goes lost, which leads to 

poor predictions on the base of unseen test data.  

Further, two methodologies (Random Forest Regressor [187] and XGBoost Regressor 

[183]) were used in the following, which proved to be successful in the case of present 

data sets. The random forest algorithm is based on the general idea of a decision tree 

with the main difference of using not only one big tree to represent the problem, but 

rather a high number of simpler trees which are more general and therefore not as much 

affected by overfitting. The whole dataset is first subsampled (bootstrap sampling), 

meaning that a random number of features and data rows is used to build smaller data 

sets. This leads to a higher variety and a different data density. In the following, individ-

ual trees are build parallel leading to a large number of different predictions, which are 

gathered and averaged (bootstrap aggregating). In contrast, the XGBoost algorithm 

builds the trees not parallel to each other but uses a boosting technique. Thus, the trees 

(weak learners) are built sequentially so that each new tree corrects the error of the 

previous one (boosting).  

Both algorithms were used to evaluate and plot the importance of the features of the SHS 

and RHS profiles in the pre- and post-buckling range, see Figure 6-15 (load case: com-

pression) and Figure 6-16 (load case: bending). The abbreviation RFR is attributed to 

the Random Forest algorithm, while XGB is attributed to the XGBoost algorithm. The 

output of the feature importance is exemplary explained by Figure 6-15 a), using the 

data set of the SHS profiles (hot-rolled and cold-formed) in the pre-buckling range. All 

features are sorted according to their importance and displayed on the vertical axis. The 

importance itself is shown along the horizontal axis with the mean decrease impurity 

(also known as Gini index) computed for the Random Forest (RFR) and XGBoost struc-

ture (XGB). It is calculated as the total reduction of the impurity within a split, made by 

one selected feature on average over all trees within the forest. Apart from their order, 

the three most important features are the same, represented by the displacement u, the 

steel grade fy and the height H or width W. In terms of SHS profiles the values for B, H 
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and L are identical. This also explains one main difference between these methods based 

on their structure. Since the Random Forest algorithm uses many individual trees, linear 

dependent features are not necessarily eliminated, as they are used independently 

within reduced data sets. For this reason, features B, H and L are listed with approxi-

mately the same importance (Figure 6-15 a) RFR). On the other hand, XGBoost (Figure 

6-15 a) XGB) uses one sequential build of trees, so that equal features are eliminated 

throughout the optimization process.  

Table 6-4: Estimated feature combinations for DNN models for the pre- and post-buckling range and the 
cross-section capacity 

Load Case: Compression 

Prediction of the incremental tangent stiffness KT 

 Pre-buckling range Post-buckling range 

SHS hot-rolled and cold-formed H,	A,	Iy,	Wel,	e,	fy,	u,	Fcr	 H,	t,	A,	Iy,	Wel,	e,	fy,	u,	Fcr	

RHS hot-rolled and cold-formed H,	W,	Iy,	Wel,	Wpl,	e,	fy,	u,	Fcr	 H,	W,	t,	A,	Iy,	Wel,	e,	fy,	u,	Ke,	Fcr	

Prediction of the maximum force Nmax 

SHS hot-rolled and cold-formed H,	t,	A,	Iy,	Wel,	Wpl,	e,	fy,	Fcr 

RHS hot-rolled and cold-formed H,	W,	t,	Iy,	Wel,	Wpl,	e,	fy,	Fcr 

Load Case: Bending 

Prediction of the incremental tangent stiffness KT 

SHS hot-rolled and cold-formed H,	Wpl,	e,	fy,	θ,	Fcr H,	Iy,	Wpl,	e,	fy,	θ,	Ke,	Fcr 

RHS hot-rolled and cold-formed H,	W,	A,	Iy,	Wpl,	e,	fy,	θ,	Fcr H,	W,	t,	A,	Iy,	Wel,	e,	fy,	θ,	Fcr 

Prediction of the maximum force Mmax 

SHS hot-rolled and cold-formed H,	t,	A,	Iy,	e,	Imp,	fy,,	Fc 

RHS hot-rolled and cold-formed H,	W,	t,	A,	Iy,	e,	fy,,	Fcr 

Subsequently, the procedure of feature engineering requires the use of different meth-

ods, since the output can vary strongly and only the sum of reasonable results lead to a 

general tendency for the choice of important features and their combination. Further-

more, additional combinations of the selected features within the DNN models should 

be tested to determine differences in the performance and overall accuracy. Table 6-4 

summarizes the chosen feature variations based on the outputs of Figure 6-15 and Fig-

ure 6-16. Subsequent model accuracy evaluation is presented in Chapter 8, in the context 

of method evaluation.  



Part II 6: Data Development

 

 

 

171 

6.3 Hyperparameter	tuning	

In general, two types of parameters are distinguished within a deep neural network 

(feed forward network). The trainable parameters, which are changed throughout the 

optimization process, including the weights and the biases, and the preset hyperparam-

eters, which do not change throughout the optimization process. This includes the gen-

eral model architecture (amount of neurons and hidden layer), the chosen optimizer, an 

associated learning rate and the activation functions within the hidden layer, the batch 

size and additional regularization techniques. Without appropriate information on the 

DNN model performance, the computational effort needed for the estimation of possible 

hyperparameters is immense. For this reason, the problem was considered systemati-

cally by first exploring the parameters in a coarse pattern to come up with possible, still 

rough ranges of values. Consequently, these values were adjusted in finer intervals until 

suitable values were found.  

Therefore, a total of 193 individual combination was tested within the framework of 

preliminary investigations using the Random Search Method. Random Search is in terms 

of ML one method to estimate decisive parameters, which can be suitable but do not 

necessary have to, since not all possible combinations are taken into account. The oppo-

site would be the Grid Search Method were each parameter combination is tested. How-

ever, as there is not only one specific solution but rather a potential solution space of 

possible combinations of hyperparameters, this workflow is suitable in order to detect 

the overall tendencies within the DNN architecture.  

Table 6-5: Initially considered parameters (Tuning 1) 

Hyperparameter Value Range Configurations 

Neurons per Hidden Layer min = 5; max = 185; step = 18 11 

Hidden Layer Combinations min = 3, max = 6 4 

Activation Function ReLu, Sigmoid, Tanh 3 

Dropout Rate 0.0, 0.1, 0.2, 0.5 4 

Optimizer Adam, Adamax, SGD 3 

Learning Rate 0.0001, 0.001, 0.005, 0.01 4 

Batch-Size min = 32, max = 256, step = 32 8 
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All calculations were performed on the basis of a train and test philosophy, meaning that 

a specific data amount was used for the training (80%) and an additional independent 

amount for the validation process (20%). This procedure is crucial to detects problems 

like overfitting and the interpretation of the overall behaviour, assessing transferability 

to “unseen” data. The whole procedure of the hyperparameter tuning workflow is de-

scribed next. 

In the first step, different parameters were set up and initially investigated in a try and 

error process. This would be equivalent to a random search method. Since there were 

no clues at first on appropriate parameters, this procedure made sense at a certain point. 

Additionally, all the information from the previously described feature engineering as-

sessments were not available at this moment and were investigated in parallel. All pa-

rameters initially considered are listed in Table 6-5. The biggest problem with a large 

number of parameters is logically the enormous time needed for the training of the net-

works and the uncertainty to find a suitable model by chance. If taking only the possible 

number of combinations, which results here purely from the number of hidden layers as 

well as the number of neurons, a total of 1,948,584 possible network structures is calcu-

lated. Nevertheless, the limitation of these parameters is suitable to develop a feedback 

for the behaviour of the models as well as for the actual problem.  

Table 6-6: Considered parameters (Tuning 2) 

Hyperparameter Value Range Configurations 

Neurons per Hidden Layer min = 9; max = 27; step = 9 3 

Hidden Layer Combinations min = 1, max = 4 4 

Activation Function ReLu 1 

Optimizer Adam 1 

Learning Rate 0.0001, 0.0005, 0.001, 0.002 4 

Epochs 1000 1 

Batch-Size 128 1 

Based on the philosophy that an unlimited number of suitable models may exist, param-

eters were eliminated in the next step which seemed to bring no or negative effect on 

the training behaviour and the neural network was reduced in size. A compact model 
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can on the one hand prevent overfitting problems, making dropout strategies unneces-

sary, and on the other hand speed up the training of the models. After each hidden layer 

the ReLu activation function was used.  

 

Figure 6-17: DNN model evolution and r-squared results  
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The optimizer was fixed to the Adam optimizer [293], as a results from the first hyperpa-

rameter evaluation. The goal of the second hyperparameter tuning was to get a conclu-

sion about the best learning rate and to detect a tendency concerning the number of 

hidden layers. To accelerate the evaluation process, the number of epochs was limited 

to 1000 for all DNN models. All considered parameters are summarized in Table 6-6.  

In sum, 127 randomly chosen combinations were tested. The evaluation process is pre-

sented in Figure 6-17, according to the different DNN model architectures, as well as 

different learning rates. It shows trends for the learning rates, but also for the number 

of hidden layers. The learning rate 0.0001 mostly provides the lowest results compared 

to the other 3 learning rates. For the learning rate 0.002, the results are significantly 

better and increase with the learning rate 0.0005 or 0.001. Looking at the 10 best com-

binations, 9 combinations have a learning rate of 0.0005 and only one combination has 

a learning rate of 0.001. In Figure 6-17 it can also be seen that from the models with one 

hidden layer, the lowest results for the averaged global 2r  are obtained. With 2 hidden 

layers, already higher results are obtained depending on the number of neurons in the 

hidden layers. The best results are obtained with 3 or 4 hidden layers. The hyperparam-

eters of the best three models and their results are shown in Table 6-7.  

Table 6-7: Best model summary from the hyperparameter evaluation (Tuning 2) 

Hyperparameter DNN Model 1 DNN Model 2 DNN Model 3 

Neurons Hidden-Layer 1 27 18 18 

Neurons Hidden-Layer 2 27 18 27 

Neurons Hidden-Layer 3 18 18 27 

Neurons Hidden-Layer 4 9 18 - 

Activation Function ReLu ReLu ReLu 

Optimizer Adam Adam Adam 

Learning-Rate 0.0005 0.0005 0.0005 

Epochs 1'000 1'000 1'000 

Batch-Size 128 128 128 

2r  0.9741 0.9725 0.9718 
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In an additional step, a third hyperparameter evaluation was done, using a reduced set 

of hyperparameters according to the outcomes from the second tuning progress. The 

learning rate was set to a constant value of 0.0005 and the hidden layer combination 

was set to a minimum of 3 and a maximum of 4 hidden-layer. The goal was to investigate 

the accuracy outcomes with the Adamax optimizer [294]. A summary of the used param-

eters is presented within Table 6-8. In sum, 74 combinations were tested. Figure 6-18 

describes the results by comparing the effect of different DNN model architecture (Fig-

ure 6-18 a)) and a comparison between the accuracy results calculated with the Adam 

and the Adamax optimizer (Figure 6-18 b)).  

Table 6-8: Estimated hyperparameters  

Hyperparameter Value Range Configurations 

Neurons per Hidden Layer min = 9; max = 27; step = 9 3 

Hidden Layer Combinations min = 3, max = 4 2 

Activation Function ReLu 1 

Optimizer Adamax 1 

Learning Rate 0.0005 1 

Epochs 1000 1 

Batch-Size 128 1 

 

Figure 6-18: DNN model evolution and r-squared results  
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Figure 6-18 a) shows a clear tendency that the models with 4 hidden-layers tend to give 

better results than the models with 3 hidden layers. An averaged r-squared value of r2	=	

0.9542 is reached for DNN models with 4 hidden-layers, being slightly higher compared 

to the DNN models with 3 hidden-layers.  

To compare the used optimizers, accuracy results from hyperparameter tuning-2 with 3 

and 4 hidden-layers, a learning rate of 0.0005 and the same DNN model architecture as 

those from hyperparameter tuning-3 were plotted in Figure 6-18 b). In total 22 DNN 

models could be compared. 11 models each have a mesh structure with 3 or 4 hidden-

layers. A clear tendency towards the Adam optimizer is obtained, with an average of 3% 

higher r2 values compared with the Adamax optimizer. In only one case the Adamax op-

timizer performed slightly better.  

The subsequent DNN model that is applied on all other data sets for compression and 

bending is summarized in Table 6-9. It is equivalent to DNN model 1 from Table 6-6 and 

sufficient enough to make predictions throughout all data sets. A model accuracy evalu-

ation is discussed in Section 8. 

Table 6-9: Hyperparameters for final DNN model 

Model Parameters Selection 

Hidden layer 1 27 

Hidden layer 2 27 

Hidden layer 3 18 

Hidden layer 4 9 

Activation function ReLU 

Optimizer Adam 

Learning rate 0.0005 

Epochs 6000 

Batch size 128 

6.4 Conclusions	

The overall prediction accuracy is strongly dependent on the data quality, the data 

amount and distribution, as well as the chosen machine learning model. Chapter 6 de-

scribes all necessary steps to receive accurate results with several deep neural network 
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feed forward models, to predict the non-linear local load-deformation/moment-rotation 

behaviour of RHS/SHS profiles made from mild and high strength steel.  

The question of data quality within own data sets plays only a minor role, since the whole 

data development is based on FE simulations, therefore underlies in general a very low 

scatter. This step is only possible because the models used were calibrated on test re-

sults from experimental investigations. The corresponding procedure is described 

throughout Chapter 5. In general, the question of appropriate data quality would have a 

higher importance when using raw data from experiments.  

A specifically high influence on the prediction accuracy was detected by three main data 

manipulation methods: 

i. The data density was obtained to be one important factor when prediction the 

pre-buckling range, especially of slender cross-sections. Since the data sets are 

based on GMNIA Abaqus simulations the solver step size varies while finding an 

equilibrium. A more linear behaviour is usually calculated with bigger steps, 

while a non-linear behaviour with much smaller increments in order to find a re-

siduum. This results in different data densities within the data sets, leading to less 

data in linear regions. A simple solution to overcome such problems is to decrease 

the size of the increment in the solver setting.  

ii. The splitting of the data sets into separate pre- and post-buckling ranges im-

proved the prediction accuracy for both. This modification step made sense for 

the current neural network architecture, since only positive or negative tangent 

stiffnesses need to be predicted by corresponding models.  

iii. A particular importance is set in the transformation of the data set input and out-

put features. The input features were standardized using Equation (4-13). This 

important step brings the input features into similar data ranges leading to an 

unbiased optimization procedure. The output parameters were additionally nor-

malized; the prediction of the tangent stiffness was improved by using a normal-

ized representation with KT/Ke; the prediction of maximum forces and moment 

by using the following expression χ	=	Fmax	/	Fpl and Mmax	/	Mpl, respectively.  

Apart from data manipulation, the question of appropriate feature combinations is an 

important task which is necessary to improve the overall performance and reduce the 

amount of features to accelerate the optimization process. Different methods were used 

to come up with combinations and assess the importance of features. A more general 
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feature interpretation can be found in Section 6.2.5.1, where different methods like PCA 

or SHAP analysis interpretation were used to obtain pattern in the data and the potential 

to reduce it. The PCA analysis showed a high potential to reduce the data due to linear 

dependencies between the features. The SHAP analysis output showed different pat-

terns within the features in the data sets. The driving parameter is logically the defor-

mation or rotation, depending on the considered load case. In addition the geometric 

parameter (Height H, Width W, Moment of inertia Iy) and the material parameters (yield 

strength fy) played for all cross-section an important role. The geometric local imperfec-

tion amplitude, on the other hand, was important in the load case for compression but 

less important for pure bending. Further, the critical buckling load Fcr (always extracted 

from Abaqus LBA simulations for pure compression) has almost no influence on the 

training performance in the pre-buckling range but a high influence in the post-buckling 

region.  

The overall assessment of the feature importance was done through random forest and 

XGBoost models. The feature importance can be taken as an output of those models (see 

Section 6.2.5.2) and is a very effective way to obtain the most influential features. Fea-

ture combinations were additionally tested throughout the hyperparameter tuning in 

different neural network models and are presented in Table 6-4.  

 



 

 

 
 

 

 

 



 

 

  
 
 
 

DNN-DSM Methodology 

Concept, Implementation and Limitations 
 

Outline	of	the	chapter:	

Chapter 7 presents the general idea behind the DNN-DSM methodology developed and 

studied in this thesis: it discusses its implementation within a code based explanation, 

as well as the limitations of the scope considered in this thesis. The DNN-DSM method 

consists of connecting and integrating two approaches for the prediction of the non-lin-

ear mechanical performance of steel structures as they approach the ultimate limit state: 

(i) a data driven machine learning approach based on deep neural networks (DNN), and 

(ii) an analytical or numerical, well-known methodology, i.e. the direct stiffness method 

(DSM). DNN models, its functionality and the background were already described in 

Chapter 6 of this thesis. Therefore, the present chapter takes a closer look on the general 

implementation of the DSM method. After this introduction, the link between DNN mod-

els and the DSM approach is presented and described in a more general manner.  
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7.1 Preface	to	the	Direct	Stiffness	Method	(DSM)	

7.1.1 Introduction	

 

Figure 7-1: General workflow of the direct stiffness method (DSM), shown for 2D elastic 1st order frame 
analysis. 

The Direct Stiffness Method (DSM) is one of the basic numerical implementation ap-

proaches in finite element method (FEM) applications. In general, FEM is a method for 

breaking down a complex problem/domain into smaller elements that are intercon-

nected and assembled to form an approximation to the original structure. The DSM ap-

proach was first introduced by Turner [295] in 1959. It was the starting point for the 

development of the finite element method, which is one of many other methods within 

CSSM (computational solid and structural mechanics) spatial discretization techniques.  

The DSM is a calculation method in which forces or deformations can be calculated via a 

matrix formulation, based on the stiffness properties of individual beam elements and 

their mutual interaction. The numerical calculation procedure is described as follows for 

the 2D in-plane case and a linear static analysis (Th.I.Ord.). It is partially based on the 

work flow described in [296].  
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iv. Divide structural system into elements. Define all nodes and add the connectivity 

information between the elements and their cross-section properties.  

v. Calculate for each element the local stiffness matrix. Here one can distinguish be-

tween truss and beam elements, subjected to normal forces only or a combination 

of normal forces and moment.  

,

1 0 1 0

0 0 0 0

1 0 1 0

0 0 0 0

e Truss
EA

K
L

 
 
  
 
 
   

(7-1) 

3 2 3 2

2 2

,

3 2 3 2

2 2

0 0 0 0

0 12 6 0 12 6

0 6 4 0 6 2

0 0 0 0

0 12 6 0 12 6

0 6 2 0 6 4

e Beam

EA EA

L L
EI EI EI EI

L L L L
EI EI EI EI

L L L LK
EA EA

L L
EI EI EI EI

L L L L
EI EI EI EI

L L L L

  
 
  
 
 
   
 
 
 

   
 
   

 (7-2) 

vi. Convert loads acting within the elements into equivalent nodal forces (element 

node vector) 

vii. Transform the local stiffness matrix of each element into a global stiffness matrix. 

Therefore, the local stiffness matrix needs to be rotated from the local to the 

global coordinate system first. This is done through Equation (7-3), with the ro-

tation matrix for truss (see Equation (7-4)) or beam elements (see Equation 

(7-5)).  

T
ee e eK R K R    (7-3) 
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,

cos( ) sin( ) 0 0

sin( ) cos( ) 0 0

0 0 cos( ) sin( )

0 0 sin( ) cos( )

e TrussR

 
 

 
 

 
  
 
  

 (7-4) 

,

cos( ) sin( ) 0 0 0 0

sin( ) cos( ) 0 0 0 0

0 0 1 0 0 0

0 0 0 cos( ) sin( ) 0

0 0 0 sin( ) cos( ) 0

0 0 0 0 0 1

e BeamR

 
 

 
 

 
  
 

  
 
 
 
 

 (7-5) 

viii. The global force vector is defined based on the acting loads from (iii). The bearing 

reactions are entered as unknowns in the force vector.  

ix. Account for geometric boundary conditions, i.e. end supports and restraints, in 

the global stiffness matrix as well as the global force vector. Columns and rows 

connected to a fixed support can be eliminated to reduce the global stiffness ma-

trix. Equation (7-6) shows the general system of equations. By taking the inverse 

of the global stiffness matrix the unknown system deformations can be calculated 

using Equation (7-7).  

, ,intsys sys sys ext sysK U F F    (7-6) 

 1
, ,intsys sys sys ext sysU K F F    (7-7) 

x. Calculate internal forces in the nodes for each element. The known nodal defor-

mations are rotated back to the local system and multiplied with the local element 

stiffness.  

xi. Calculate internal forces inside the elements using shape functions. 

For calculation according to 2nd order theory (Th.II.Ord.) the steps from 1st order theory 

(Th.I.Ord.) need to be performed first. Following this, the calculation is started again at 

point (ii), where additional geometric element stiffness matrices are calculated for the 
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element forces from point (vii) according to Th.I.Ord. 𝐺̅௕௘௔௠ from Equation (7-8) shows 

the general approximation of the terms by a Taylor series.  

0 0 0 0 0 0

6 1 6 1
0 0

5 10 5 10
1 2 1 1

0 0
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0 0 0 0 0 0

6 1 6 1
0 0
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0 0
10 30 10 15

Beam

N N
N N

L L

N N L N N L
G

N N
N N

L L

N N L N N L

 
 
     
 
 

       
 
 
 
       
 
 
         
   

(7-8) 

A global geometric stiffness matrix is formed according to point (iv) and summed up 

with the global stiffness matrix (see Equation (7-9)). Ksys represents the system stiffness 

from Th.I.Ord. and Gsys the additional part from Th.II.Ord.. According to point (vi) the un-

known system deformations are solved by Equation (7-10).  

sys sysK G  (7-9) 

   1

, ,intsys sys sys sys ext sysU K G F F


     (7-10) 

The eigenvalue problem is described through the homogeneous matrix equation below, 

see Equation (7-11). The eigenvalue is expressed by 𝛼௖௥ and the corresponding eigen-

vector by u.  

  0crK G u     (7-11) 
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7.1.2 Application	of	deformations	

If the applied action is not a nodal force but a nodal deformation within a system, the 

determination of the total deformation vector has to be done, e.g., by means of a so-called 

"penalty method". For this purpose, a fictitious penalty element is formed with the fol-

lowing global stiffness and force vector.  

i T
i i iK w v v    (7-12) 

i T
i i iF w v b    (7-13) 

where: 

wi is a weight with the property wi	>	0. In general cases this value is set

to a high number. In the framework of this work the weight is set to

wi	=	1e15. 

vi is a matrix with the column length equal to the number of restrained

degrees of freedom and the row length equal to the number of all

degrees of freedom. The matrix is filled with ones at the spots ac-

cording to the restrained degrees of freedom.  

bi is a vector equal to the length of the number of restrained degrees

of freedom, containing the acting node deformation. 

All further deformations, resulting from the acting nodal deformation, are then solved 

with the following Equation (7-14).  

1

1 1

m m
i i

penalty
i i

u K K F F


 

         
   

 
 

(7-14) 
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7.2 Deep	Neural	Network	Direct	Stiffness	Method	(DNN‐DSM)	

7.2.1 General	idea	

As described in detail in previous chapter, plasticity and (even more importantly) local 

(plate) 2nd-order effects and instabilities lead to a pronounced nonlinearity of the load-

deformation behaviour of steel elements as they approach the ultimate limit state. The 

DNN-DSM methodology makes use of machine learning techniques (deep neural net-

works – DNN) to predict the non-linear stiffness matrix terms in a beam-element formu-

lation suited for implementation in the standard Direct Stiffness Method (DSM). By do-

ing so, the accuracy and precision of elasto-plastic, geometrically non-linear shell ele-

ment analysis can be combined with the computational efficiency of beam element anal-

ysis, taking into account local slenderness dependent instability phenomena directly in 

the beam-element analysis process.  

In the method, DNN models are used to predict tangent stiffnesses, dependent on the 

local element end deformations or rotations. The training of this models is based on the 

results from finite element simulations, the features and validation of which are de-

scribed in Section 5.4 and presented in Section 6.1. The finite element shell models are 

designed in such a way that only local buckling is the driving instability phenomena for 

all investigated cross-sections. The underlying assumptions for the local length of the 

models was discussed in Section 5.3. The main goal of the finite element simulations was 

the calculation of the non-linear load-deformation and moment-rotation behaviour in 

the pre- and post-peak load range. Incremental tangent stiffnesses for each calculated 

step are extracted from these simulations and form the target values on which the DNN 

models were trained, to make predictions based on absolute local beam element defor-

mation and rotation. The predicted incremental tangent stiffnesses are implemented 

within a DSM based approach, presented and discussed in the following sections.  

7.2.2 Limitations	and	Assumptions	

The DNN-DSM approach presented herein is in a preliminary design phase and does not 

cover all profiles and load cases commonly used in civil engineering applications. Since 
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the derived work serves as a primarily a feasibility check, it is limited to the boundary 

conditions listed below.  

i. The used profiles are limited to closed rectangular RHS and square SHS hollow 

sections. This eliminates out of plane instability effects like lateral torsional buck-

ling (LTB) and reduces the problem to a 2D space.  

ii. The implemented elements are limited to 6 degrees of freedom (dofs), 3 at each 

end connected to a longitudinal and transverse deformation and an in plane ro-

tation.  

iii. The prediction of the tangent stiffness according to bending is simplified through 

the assumption of equal constant rotation at both ends of the element.  

iv. Predictions are associated to compression and bending only. An N-M interaction 

is assumed according to EN 1993-1-1 [48].  

v. Shape functions according to Euler-Bernoulli beam theory.  

7.2.3 Implementation	for	truss	elements	

The DNN-DSM makes use of the implementation from Section 7.1 to predict a local non-

linear tangent stiffness matrix KT,loc,pred according to a given nodal deformation 𝑢௟௢௖. The 

applied local deformation is an accumulation of incremental deformation steps ∆𝑢௟௢௖
௜ାଵ ൌ

𝑢௟௢௖
௜ାଵ െ 𝑢௟௢௖

௜  on the local element level. An exemplary procedure description with the two 

first calculation runs is shown within Figure 7-2.  

Equation (7-15) describes the calculation of an incremental force ∆𝐹௟௢௖,௣௥௘ௗ
௜ାଵ  according to 

an absolute deformation at a current time step 𝑢௟௢௖
௜ାଵ. In this consideration, f(X) is the pre-

diction done by the pre-trained DNN model. X is the 2D matrix describing the data set in 

an Euclidean ℝଶ space with 𝑋 ∈ ℝ௡ൈ௠, corresponding to the used model features as in-

dividual entries. The displacement vector 𝑢௟௢௖ ∈ 𝑋 is part of the entries within the used 

features space.  

  i 1 i 1 i 1
loc,pred loc e,loc locF f X u K u       (7-15) 
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  i 1 i 1
T ,loc loc e,locK f X u K  

 
(7-16) 

 

Figure 7-2: a) Deformed shape of an SHS FE shell model; b) Load-deformation curve and description of 
incremental deformation steps; c) Incremental deformation of an SHS FE shell model; d) Explanation of 
first two calculation steps 
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In more general terms, the calculated absolute force 𝐹௟௢௖ at any given local element dis-

placement 𝑢௟௢௖
௜ ∈ ሼ𝑖,𝑚ሽ can be described by the following equation. The process stops 

when a maximum preset input displacement is reached.  

m
i 1 i 1 i 1
loc T ,loc loc

i 0

F K u  



 
 

(7-17) 

The same procedure applies in the pre- and post-buckling deformation range. The ex-

pressions from above need to be reshaped into the DSM format, according to the descrip-

tion from Section 7.1.  

  
1 1

2 2

3 3

4 4

1 0 1 0

0 0 0 0

1 0 1 0

0 0 0 0

loc

F u

F uEA
f X u

F uL

F u

     
            
      
           

(7-18) 

 

Figure 7-3: Ranges of the three DNN-models used for prediction  
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To predict the entire load deformation path in the pre- and post-buckling range, three 

DNN-models are needed. The first model predicts only the tangent stiffness in the pre-

buckling range, the second model predicts the maximum force of the member under 

compression and is considered as a triggering predictor to introduce a stop condition. 

After reaching the threshold of the maximum force the third DNN-model is used to pre-

dict the tangent stiffness in the post-buckling range. The condition of the each local ele-

ment, i.e. weather the element is in the pre- or the post-buckling range, is stored in an 

identity matrix for each predicted step to be able to switch between the models. Figure 

7-3 describes the areas where the three models are active.  

7.2.4 Beam	implementation	

7.2.4.1 Implementation	

 

Figure 7-4: a) Deformed shape of an SHS FE shell model; b) Moment-rotation curve and description of 
incremental deformation steps; c) Incremental deformation of an SHS FE shell model; d) Explanation of 
first two calculation steps  

The implementation for in-plane bending cases and 2D beam elements follows a similar 

approach by modifying the local beam element stiffness matrix according to a given local 
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rotation φ. Note that the rotation is one main input feature for the DNN model predic-

tion. The corresponding definition of the rotation φ for an element is stated in Figure 7-4 

a). Within the framework of the presented method an equal constant rotation at both 

ends is always assumed. The resulting constant moment along the element length L is 

defined through Equation (7-19). This formulation is assumed only in the elastic range.  

loc loc

2EI
M

L
 

 
(7-19) 

The general notation for the elastic local beam element stiffness is represented by Equa-

tion (7-20). Further, the stiffness component for constant bending is factored out to be 

more in the line with the general implementation idea.  

2 2

e,beam

2 2

6 3 6 3

L L L L
3 3

2 1
2EI L LK

6 3 6 3L

L L L L
3 3

1 2
L L

  
 
  

  
   
 
 

 
   

(7-20) 

As was described for the truss elements, the nonlinearity of the load-deformation path 

is introduced by modifying the elastic stiffness matrix by a modification scalar f(X), 

which is a function of the current deformation state (vector “X”) and is predicted by the 

trained DNN in the model. It	shall	be	noted	that	the	assumption	of	a	proportional	modifi‐

cation	of	all	stiffness	terms	involved	with	bending	is	a	severe	one,	and	is	mechanically	only	

acceptable	for	short	elements	for	which	the	nonlinearity	is	not	affected	by	shear.	For	the	

methodology	and	 the	application	scope	as	used	 in	 this	 thesis,	 this	 limitation	 is	however	

acceptable.	 

For	in‐plane	bending, the predicted incremental force vector is thus written as follows, 

following the approach as used for truss elements in Equation (7-15). Note that 

𝜑௕௘௔௠,௠௘௔௡ is the mean (average) rotations at both ends of the beam, i.e. node A and B 
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from Figure 7-4. The mean rotation is back calculated from system element rotations 

based on a globally acting load case.  

  

2 2

beam( AB ) beam( AB )

beam( AB ) beam( AB )

beam,mean

beam( BA ) beam( BA )
2 2

beam( BA ) beam( BA )

6 3 6 3

L L L L
V v3 3

2 1M 2EI L Lf X
6 3 6 3LV v
L L L LM
3 3

1 2
L L






  
    
                      
         

 
   

(7-21) 

 

Figure 7-5: Ranges of the three DNN-models used for prediction 

Again, the prediction of the whole moment-rotation path, i.e. the pre- and post-buckling 

range, is based on the same basic approach as for the truss element: two DNN models 

are used to predict the tangent stiffness in the pre- and post-buckling range and a third 

one to predict the maximum cross-section dependent capacity 𝑀௠௔௫. It is used as a trig-

gering network to switch between the predictions in the ascending and descending path. 
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Figure 7-5 describes the areas where the three models are active, exemplary for an SHS 

50×5 profile, S460, loaded by constant bending.  

7.2.4.2 Prediction	Workflow	

To provide a general overview of the implemented prediction algorithm, Figure 7-6 

shows in a simplified manner the implemented workflow within the code. Following ex-

planations describe some steps of the procedure in more detail:  

i. Based on the DSM implementation, in a first step the system is initialized with 

cross-section dependent properties, the global system geometry and connectivity 

assignment, as well as a load case.  

ii. An elastic element stiffness is initialized and assembled to a global system stiff-

ness matrix to provide a starting condition.  

iii. According to the system stiffness, the applied incremental deformation ∆𝑢 is dis-

tributed along the system by using the penalty method from Section 5.1. The out-

put is a displacement vector for all active system dofs.  

iv. A mean rotation in every element is calculated from the moments acting along 

the system. The mean moment is simply calculated from the evaluated moments 

at both ends of the element, see Equation (7-22). The mean rotation is calculated 

with Equation (7-23).  

A B
mean

M M
M

2


  (7-22) 

  
i 1 mean mean
mean i

T ,predmean

M L M1

2 EI Kf X



 

  


 (7-23) 

v. The mean rotation is subsequently used to predict the updated local element tan-

gent stiffness. This is done for every element of the system. Equation (7-24) sum-

marizes this step.  
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  

2 2

i 1 i 1
T ,beam mean

2 2

6 3 6 3

L L L L
3 3

2 1
2EI L LK f X

6 3 6 3L

L L L L
3 3

1 2
L L

 

  
 
  

   
   
 
 

 
 

 (7-24) 

vi. The global tangent stiffness matrix is assembled and used in an update step to 

distribute the applied incremental displacement u  within the system. This loop 

is repeated until a pre-set threshold value is reached. Here, it is exclusively a mat-

ter of meeting the system stiffness as well as possible in order to distribute the 

corresponding deformations correctly within the system.  

vii. As described in Section 7.2.3, with the help of Figure 7-2, the load bearing capac-

ity needs to be checked for every incremental step to identify weather the tangent 

stiffness predictions need to be performed in the pre- or post-buckling range. The 

identity of each element, i.e. pre-buckling range is equal to 0 and post-buckling to 

1, is stored within a matrix for every calculated step. 

viii. Finally, the updated system properties are calculated and the next incremental 

deformation step ∆𝑢 is applied.  
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Figure 7-6: Implemented workflow for bending 
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7.2.5 Simplified	implementation	of	beam‐column	behaviour	

 

Figure 7-7: N-M interaction formulations according to Liew and Gardner [108] 

In this thesis, the interaction of compression and bending moments was not studied in 

detail by dedicated data creation and training. However, a simplified approach for the 

consideration of this interaction by considering the training for bending capacities to be 

“scalable” to a reduced bending resistance, and considering the interaction formulation 

for squared hollow sections according to EN 1993-1-1 [48] might be used as a “trigger” 

and “scaling” factor. Yet, other interaction formulations, such as the one presented in 

Section 2.4.5.3, Equation (2-56) [108], can also be applied to the prediction process.  

The main difference to the truss and beam implementation only, is the adjustment of the 

triggering forces, i.e. the load bearing capacity connected to compression and bending. 

This point is illustrated in Figure 7-3 and Figure 7-5, which separates the pre- and post-

buckling range predictive models. The prediction process is adjusted as follows. Accord-

ing to a calculated mean moment Mmean within the incremental prediction process, the 

triggering load bearing capacity for compression NDNN,max is modified with Equation 

(7-25). The formulation is adopted from Equation (2-56), yet the forces and moments 

are normalized by the predicted maximum capacities NDNN,max and MDNN,max. Figure 7-7 

shows N-M interaction relations according to [108].  
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y

y

b

* meana
DNN ,max DNN ,max

DNN ,max

M
N N 1

M

 
    

 
 (7-25) 

The required stiffness terms are formulated using the overall beam stiffness represen-

tation shown in Equation (7-2). Here, the DNN model predictions for compression XT and 

bending XB are multiplied with the corresponding stiffness terms, see Equation (7-26).  
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(7-26) 

7.2.6 Second	order	implementation	

In order to account for second order effects, the geometric stiffness matrix, as proposed 

in Section 7.1.1 and Equation (7-8), is added to the formulation from Equation (7-2), 

ending up in Equation (7-10). The bending terms are reduced with increasing normal 

forces leading to lower stiffnesses and higher deformations and rotations of the global 

system.  

cr
cr

Ed

F

F
 

 
(7-27) 

Global imperfections linked to out-of-straightness on the member level and out-of-

plumbness on the frame level can directly be applied by solving the eigenvalue problem 
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from Equation (7-11). The output leads automatically to an αcr, described by Equation 

(7-27), and an eigenvector providing the information of the eigenshape of the structure. 

This eigenshape is used as an initial imperfection applied to the perfect system and ac-

count for second order effects. The parameter αcr on the other hand is used to assess, 

weather global imperfections on the member or system level need to be applied. Limit 

values are provided by EN 1993-1-1 [48] for members prone to flexural buckling and 

frames affected by instability caused through sway effects, i.e. second-order P‐∆ effects 

need to included. For flexural buckling a limit value of αcr	≥	25 has to be fulfilled in order 

to ignore instability. This limit corresponds to the plateau value of European flexural 

buckling curves for members. According to EN 1993-1-1 [48], frames need to meet the 

condition of αcr	≥	10, if designed elastically, and αcr	≥	15 in terms of plastic design. A 

slightly higher limit value is defined to account for material yielding and the correspond-

ing loss of stiffness.  

To capture both effects, the P‐∆ and P‐δ (P‐∆‐δ), i.e. out-of-straightness and out-of-

plumbness, in one second-order analysis different options are available.  

i. The P‐∆ effect is generally accounted for in a geometrically non-linear analysis 

through sway-mode imperfections.  

ii. The incorporation of the P‐δ effect is performed by two commonly used proce-

dures. Member imperfections are accounted for through member buckling 

checks based on non-sway effective lengths; member imperfections are explicitly 

modelled. Stability effects are therefore directly captured in the calculation and 

do not require further stability checks. Instead, only cross-section verification is 

applied to the most heavily loaded section [69].  



 

 

  
 
 

Method Evaluation  

Verification and Validation 

 

Outline	of	the	chapter:	

This chapter is dedicated to the evaluation of the performance of the developed and 

trained DNN-DSM algorithm by means of demonstration examples. In a first verification 

step, the standard, 2D DSM implementation is verified by comparing its results against 

those given by a commercial, elastic beam analysis software. Subsequently, the model 

validation is carried out by comparing the non-linear DNN-DSM load-deformation pre-

dictions with numerical analyses using shell-element models, with otherwise similar as-

sumptions regarding (nominal) material and imperfection definitions. Finally, the DNN-

DSM predictions are compared physical test results from the literature or the Hollosstab 

test series, with the aim of assessing the capability of the method to make predictions in 

parameter ranges that are outside of the immediate training range. The considered tests 

include short columns and beam-columns as well as statically determinate and indeter-

minate beams. The results confirm the viability and potential of the DNN-DSM approach, 

while also highlighting the need for further developments before maturity of the method 

is reached.  
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8.1 Verification	in	the	elastic	range	

 

Figure 8-1: Schematic representation of verified models 

In a first step, the author’s standard DSM implementation using Python was verified by 

comparisons with predictions given by a commercial software, Cubus [297]. Different 

models of truss-and frame-type structures were thereby considered. The considered 

models and analysis methods are schematically shown in Figure 8-1. LA, LBA, GNA and 

GNIA calculations were performed. A general description of those analysis approaches 

was given in Section 2.2. The estimated differences between the author’s and CUBUS re-

sults were not significant (below 0.1%) for the models in part a) of the figure and are 

therefore not described in detail for all models. Only minimally larger differences were 

obtained for the frame models from Figure 8-1 b), in particular for the GNIA analysis, 

therefore this result is shown in more detail here. A pinned and hinged frame were 

thereby considered, with an SHS300 profile of 6.3 mm wall thickness and a steel grade 

with fy = 690 N/mm2. Figure 8-2 shows the results for the pinned model. The results for 

both models are summarized in Table 8-1. The estimated error [%] is shown for differ-

ent analysis approaches. Note that the LBA output (eigenvalue, eigenshape) is not ex-

plicitly shown, but rather implemented as an initial geometric imperfection in the GNIA.  

Considering the obtained results, the author’s own 2D DSM implementation was as-

sumed to be verified and correct.  
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Figure 8-2: Analysis comparison for a hinged frame between own DSM implementation and Cubus [297] 

Table 8-1: Verification results 

Used Models LA LBA GNA GNIA 

Error in [%] 

Frame Hinged 0.00 0.19 0.13 0.073 

Frame Clamped 0.00 0.34 0.15 0.11 
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Figure 8-3: Comparison between second order DSM results and theoretical second order moment in a 
linear cross-section interaction diagram 
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(8-1) 

Figure 8-3 represents the second order column resistance (GNIA) with the linear elastic 

and plastic cross-section failure criterion under axial load and second order moment ac-

cording to Equation (8-1). The comparison with own second order DSM calculations is 

within the scope of acceptance around an estimated error of around 1.0%.  

8.2 Cross‐section	verification	

The verification results on the cross-sectional level are shown and discussed in Section 

8.2.1 and Section 8.2.2. Section 8.2.1 shows the “direct” DNN model predictions of the 

cross-section resistance for bending or compression. Note, that this prediction proce-

dure does not need the general DNN-DSM implementation, described previously in 

Chapter 7. The predictions are done for every individual profile, resulting in one normal-

ized output value for each cross-section (normalized cross-section resistance), see Sec-

tion 6.2.4.3. This models are used in the DNN-DSM model as trigger values (thresholds) 
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to switch between the pre- and post-buckling range. However, they are excellent for de-

termining individual resistances due to their accuracy and efficiency, as described in the 

following.  

Section 8.2.2 shows results, which are still on the cross-sectional level, but, with the big 

difference to Section 8.2.1, not based on the prediction of only one resistance value. In-

stead the whole load-displacement/moment-rotation curve is described by predicting 

incremental tangent stiffnesses and stepwise back calculating the forces and moments 

for the whole range.  

8.2.1 Cross‐section	capacity	

The general DNN model architecture was presented in Section 6.3 and is used for all 

predictions done here. All necessary features are summarized in Table 6-4 of Section 

6.2.5.2, distinguishing between different profile geometries and fabrication routes. The 

overall prediction accuracy is very high, with an averaged r2 value of 0.99 resulting from 

the data sets used for training and testing of the models. A representation of GMNIA re-

sults and the predicted DNN model values are shown for some selected profile series, in 

compression or bending, in Figure 8-4.  

 

Figure 8-4: Comparison of DNN prediction and shell FE simulations for cross-section capacity in, a) bend-
ing, SHS hot-rolled; b) compression, RHS hot-rolled 
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Further, the made predictions are compared with FE shell results and the resistance 

curves from EN 1993-1-5 [131]. The results are summarized in Figure 8-6 and Figure 

8-7, using the normalized representation format for buckling, where the x-axis is the 

relative local slenderness and the y-axis the buckling knock down factor. Simulations 

and predictions are plotted on top of each other to showcase the accuracy achieved by 

such models.  

In addition, Figure 8-5 displays a comparison of GMNIA shell FE simulations and the re-

sults obtained with the AA-CSM by Fieber [67], collected for RHS and SHS cross-section 

in compression or bending. Regardless of the very good match, this diagram is intended 

to show the difference between a CSM based approach and DNN prediction from Figure 

8-6 and Figure 8-7 in the following. The AA-CSM follows the results from FE beam anal-

ysis. The termination criterion is the obtained CSM strain limit, individually for each 

cross-section by calculating a local slenderness. Local imperfections are indirectly taken 

into account by the CSM base curve. Since the curve is a calibrated best fit solution and 

includes both compression and bending, scatter from shell based GMNIA solutions can-

not be reproduced. For both cases, the results in Figure 8-5 follow a narrow prediction 

course, being in some cases slightly conservative or optimistic compared with shell FE.  

 

Figure 8-5: Cross-section capacity predicted by shell FE models, AA-CSM [67] with strain limits and EN 
1993-1-1 [48] for SHS/RHS profiles for, a) pure compression; b) pure bending; adopted from [67] 
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Figure 8-6: Prediction of the cross-section capacity for all investigated profiles, load case: compression 

The used DNN model is presented in Table 6-9, additional features for prediction in Ta-

ble 6-4. Figure 8-6 and Figure 8-7 show the results for hot-rolled and cold-formed RHS 

and SHS profiles. In regions, where the cross-section would be classified as class 1 or 2, 

strain hardening is clearly visible while showing its positive effects in a much higher load 

bearing capacity compared to EN 1993-1-5. In more slender regions the cross-section 

capacity follows the buckling curves for the load case of pure compression, see Figure 

8-6 a) to d). For the load case of pure bending the predicted values are always above the 

buckling curve in slender areas. This is mainly addressed to mutual effects of the cross-

section plates in bending, leading to higher capacities even for a higher relative slender-

ness, i.e., beyond the plastic plateau.  
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The three different steel grades for hot-rolled and cold-formed steel are clearly visible 

in the capacity prediction in the plastic region through a capacity separation into three 

branches. The higher branch is addressed to the steel grade of S355 and the lower 

branch to S690/S700. This makes sense, since the strain hardening ratio decreases for 

high strength steel compared to mild steel. Beyond the plateau no clear separation is 

visible between steel grades and imperfection amplitudes and the branches fall basically 

into one overall capacity prediction.  

 

Figure 8-7: Prediction of the cross-section capacity for all investigated profiles, load case: bending 



Part III 8: Method Evaluation

 

 

 

207 

 

Figure 8-8: Comparison between DNN model predictions and GMNIA simulations, load case: compression  

A more evident accuracy comparison can be drawn from Figure 8-8 and Figure 8-9 for 

compression and bending, respectively. Figure 8-8 a) and b) show a summarized repre-

sentation for all hot-rolled and cold-formed SHS and RHS profiles. The x-axis displays 

the relative local slenderness, the y-axis a direct comparison between the predicted re-

sults and the target values (non-linear Abaqus GMNIA simulations) resulting in a nor-

malized manner. The deviations for compression are in some individual cases around 

2%, in all other cases below. Additional frequency plots explain the distribution of the 

predictions according to their error, see Figure 8-8 b) and d). The same representation 

was chosen for the load case of pure bending in Figure 8-9, leading to overall similar 

results.  
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All statistical results are summarized in Table 8-2, leading to the overall conclusion of a 

very high model accuracy for the prediction of the cross-section capacity. Thus, the 95% 

confidence describes the level of certainty within a calculated prediction interval of 95%. 

Here the calculated interval values are close between 1.00, which would indicate a per-

fect result. This results applies to the load case of pure compression and pure bending 

to the same extent.  

 

Figure 8-9: Comparison between DNN model predictions and GMNIA simulations, load case: bending 

To conclude this evaluation a final remark is made towards the enormous time ad-

vantages. Each profile series (106 SHS hot-rolled profiles, 142 RHS hot-rolled profiles, 

113 SHS cold-formed profiles, 165 RHS cold-formed profiles) has three parameters for 

the steel grade and the local imperfection amplitude. The DNN	model	prediction takes 
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around 4	to	6	second to predict all	values of each profile list. Note, this procedure does 

not involve the DNN-DSM algorithm and is only based on the tensorflow implementa-

tion. This is far beyond the calculation velocity recorded for the Abaqus calculations. Ne-

glecting the modelling time, always two calculations need to be performed: LBA and 

GMNIA. The LBA takes around 5	to	10	seconds to estimate the first eigenmodes. The 

GMNIA around 20	to	40	seconds for each profile. To be fair, the DNN model used herein 

only predicts a discrete point (maximum force or moment) on the load-defor-

mation/moment-rotation curve and not the whole course.  

Table 8-2: Summary of the accuracy evaluation for cross-section capacity 

DNN Models: Compression 

Profiles μ	 σ2	 cv	 95%	confidence	

SHS hot-rolled and 
cold-formed 

1.00 1.24e-5 0.003 0.999-1.000 

RHS hot-rolled and 
cold-formed 

1.00 9.26e-6 0.003 1.000-1.001 

DNN Models: Bending 

SHS hot-rolled and 
cold-formed 

0.998 6.25e-6 0.0025 0.999-0.999 

RHS hot-rolled and 
cold-formed 

1.00 1.076e-6 0.001 1.000-1.001 

8.2.2 Cross‐section	behaviour		

The outputs of the used models are verified and discussed in the following. Estimated 

accuracies of the DNN models are presented within Figure 8-10 and Figure 8-11. The x-

axis is representing the simulated results from shell FE and the y-axis the predicted val-

ues from the DNN models. Figure 8-10 a) and c) and Figure 8-11 a) display exemplarily 

the overall prediction of the tangent stiffness KT for hot-rolled and cold-formed SHS, as 

well as RHS profiles in the pre-buckling range, subjected to compression or bending. 

Note, this values are used as initial inputs for the calculation of forces, accumulated over 

the deformation (see Equation (8-2)):  

1 ,n n T n nF F K u     (8-2) 
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Predictions in the pre-buckling range replicate in most cases the GMNIA results with a 

high accuracy, although a higher scatter for lower tangent stiffnesses is obtained. In gen-

eral, a low stiffness is present when reaching the maximum force or moment of a cross-

section. A high stiffness, on the other hand, is always present in the beginning of the de-

formation/rotation. Therefore, the network will recognize a prediction pattern in the 

beginning more easily, than for progressed deformations/rotations. Depending on the 

slenderness of the cross-section, the load bearing capacity is reached at very different 

states. Thus, predictions tend to be more diffuse in this regions.  

 

Figure 8-10: Comparison of simulated (KT‐GMNIA) and predicted (KT‐DNN) results of the incremental tangent 
stiffness for the load case compression and, a) hot-rolled SHS profiles in the pre-buckling range; b) hot-
rolled SHS profiles in the post-buckling range; c) hot-rolled RHS profiles in the pre-buckling range; d) hot-
rolled RHS profiles in the post-buckling range 
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Corresponding post-buckling prediction comparisons are shown in Figure 8-10 b) and 

d). The prediction scatter increases for the post-buckling range, resulting in slightly 

lower R-squared values. This is due to a clearly non-linear behaviour for the whole 

range, not following the same logic as in the pre-buckling range, with a high stiffness 

directly in the beginning and a decrease with higher deformation/rotations. Depending 

on the profile slenderness, the load-deformation/moment-rotation behaviour can vary 

strongly after reaching the peak load, by suddenly dropping in stiffness or being more 

ductile. 

 

Figure 8-11: Comparison of simulated (KT‐GMNIA) and predicted (KT‐DNN) results of the incremental tangent 
stiffness for bending of cold-formed SHS profiles; a) pre-buckling range; b) post-buckling range; c) and d) 
comparison of maximum loads calculated from stiffness predictions 
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Table 8-3: Summary of the accuracy evaluation for cross-section capacity 

DNN Models: Compression 

Profiles 𝑟௧௥௔௜௡
ଶ  𝑟௧௘௦௧ଶ  

SHS hot-rolled pre-buckling 0.987 0.981 

SHS hot-rolled post-buckling 0.991 0.990 

RHS hot-rolled pre-buckling 0.995 0.992 

RHS hot-rolled post-buckling 0.971 0.969 

SHS cold-formed pre-buckling 0.999 0.999 

SHS cold-formed post-buckling 0.993 0.993 

RHS cold-formed pre-buckling 0.999 0.999 

RHS cold-formed post-buckling 0.975 0.974 

DNN Models: Bending 

SHS hot-rolled pre-buckling 0.987 0.985 

SHS hot-rolled post-buckling 0.959 0.957 

RHS hot-rolled pre-buckling 0.992 0.992 

RHS hot-rolled post-buckling 0.978 0.973 

SHS cold-formed pre-buckling 0.998 0.998 

SHS cold-formed post-buckling 0.970 0.970 

RHS cold-formed pre-buckling 0.999 0.999 

RHS cold-formed post-buckling 0.983 0.984 

Despite the high R-squared values shown in Figure 8-11 a) and c), a certain scatter is 

present which might imply high inaccuracies in the calculation of the forces (see Equa-

tion (8-2)). Therefore, the load-displacement and moment-rotation curves of the consid-

ered hot-rolled and cold-formed SHS profiles are calculated in the pre-buckling range, 

by accumulating all forces/moment calculated with the predicted values of the tangent 

stiffness. Therefore, the trained DNN models were used for the prediction in the pre-

buckling range. Figure 8-11 c) and d) explains the comparison of these results by isolat-

ing only the maximum load Fmax. Thus, it was assumed that the overall error is most pre-

sent by the end of every cross-section dependent load-displacement curve. It can be seen 

that the outliers of the presented cases has a rather low influence on the estimated max-

imum force Fmax. The associated r2 value lies in both cases, for compression or bending, 

around 0.99 for training and testing data. This can be attributed to the fact that the pre-

dicted values of KT are based on the incremental distribution from Abaqus simulations. 
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This results in the fact that deviations within the tangent stiffness lead to small differ-

ences in the accumulated force.  

 

Figure 8-12: Comparison of load-displacement/moment-rotation curves between GMNIA and DNN pre-
diction for the pre- and post-buckling range in compression or bending; a) and b) comparison of hot-rolled 
SHS profiles loaded in compression; c) and d) comparison of cold-formed SHS profiles loaded in bending 

Figure 8-12 provides results from the overall prediction in the pre- and post-buckling 

range for some individual profiles. Figure 8-13 a) and b) shows the results obtained for 

hot-rolled SHS profiles loaded in compression. In general, the overall prediction is accu-

rate enough to replicate the non-linear load-displacement behaviour. More slender 

cross-sections, such as the shown SHS120×5 profile in Figure 8-12 b), are predicted 

mostly with a higher accuracy, since no plateau and strain hardening region needs to be 
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predicted. A general observation was that the DNN model tend to learn a straight or 

more rounded behaviour much better without intermediate kinks. Therefore, profiles 

from Figure 8-12 c) and d) showed a much closer match with the GMNIA curves.  

Figure 8-13 displays additionally the prediction of the full load-displacement range of 

954 hot-rolled SHS in compression and 1278 cold-formed SHS profiles in bending. A nor-

malized representation was chosen within the axes. This definition has the considerable 

advantage that all curves are displayed and compared in a scale independent manner. 

Therefore, the pre- and post-buckling range is plotted along its local slenderness, the 

predicted force/moment (NPred/Mpred) is divided by the plastic cross-section capacity 

Npl/Mpred and the corresponding displacement/rotation u/φ divided by upl/φpl, the theo-

retical plastic deformation. Figure 8-13 illustrates that the pre- and post-buckling range 

of various profiles of different slenderness, steel grade, manufacturing process and load 

case can be predicted with a good accuracy. This was in general demonstrated within 

the explanations and figures in this section. Subsequently, this three-dimensional infor-

mation forms the basis for the implementation of the DSM beam formulation.  

 

Figure 8-13: Predicted pre- and post-buckling range for a) hot-rolled SHS profiles in compression; b) cold-
formed SHS profiles in bending 
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8.2.3 Prediction	sensitivity	

8.2.3.1 Feature	scatter	

 

Figure 8-14: Comparison of predictions beyond the predefined data set boundaries for a hot-rolled 
SHS40x4 profile and the load case compression, varied parameters are a) yield strength; b) the critical 
elastic buckling load; c) the imperfection amplitude; d) the incremental step size 

Section 8.2.1 focuses on the presentation of the prediction accuracy made by the DNN 

model for the tangent stiffness KT. In addition, full load-deformation and moment-rota-

tion curves are calculated from those predictions to show the general comparison with 

GMNIA simulations. For that purpose, the predictions done by the DNN models were 
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generated by using exactly the input features that were also used to train and test the 

models, i.e., nominal values for the geometry and the material properties.  

In reality, the required input features can vary strongly from the nominal values. The 

steel grade can be obtained from tensile coupon test, the imperfection amplitude as well 

as the geometry measured directly from the real specimen, the critical buckling load can 

be obtained from a slightly different FE model. Therefore, the sensitivity towards a ro-

bust prediction procedure is tested in the following. The features fy, Fcr, e and u are 

changed to explore regions beyond the boundaries of the data sets and their influence 

on the DNN model predictions. This was done here exemplary for one profile, summa-

rized in Figure 8-14 for the load case of compression. The corresponding prediction are 

done on the cross-sectional level for one augmented bar element.  

Figure 8-14 a) displays the load-deformation curves for a hot-rolled SHS40x4 profile, for 

the steel grade S355, S460 and S690. Blue solid lines correspond to the GMNIA simula-

tion, green solid lines to the DNN model predictions and the red dashed lines to the 

changed parameters. Changing the yield strength beyond the trained boundaries, in this 

case below S355 or above S690, leads to reasonable results, following the logic of the 

load-deformation from the learned yield strength values.  

Figure 8-14 b) shows the differences when using the “wrong” critical elastic buckling 

load. Here, the wrong critical buckling load would be every value besides the one calcu-

lated in Abaqus for compression and the assumed FE model. Using any different soft-

ware with slightly different model assumptions would automatically lead to a difference. 

This problem can be avoided if the values are determined automatically within the pro-

gram without any user intervention. The results show that critical buckling values below 

the actual value (Fcr	=	4455	kN) do not strongly affect the behaviour. Taking as an input 

feature Fcr	=	100	kN, which is only 2.24% (44 times smaller) of the actual critical buck-

ling value, results in a small deviation of around 3%. On the other hand, taking higher 

critical buckling values result in significantly larger calculated forces. A nine times 

higher buckling load leads to 150% bigger values and an eleven times bigger critical 

buckling load to 200% bigger results. Although these values are very extreme, they de-

pend on the chosen unit load in the LBA. Thus, misinterpretations may well occur, which 

will have to be solved program-internally.  
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Figure 8-14 c) illustrates the predictions based on different imperfection amplitudes. 

Note, the imperfections amplitudes which were used for the training of the models are 

B/200, B/300 and B/400. Yet, changes beyond this values result in reasonable predic-

tions, following the course of the trained load-deformation curves in a logical manner, 

without overshooting over proportionally.  

Figure 8-14 d) describes predictions made with a different amount of total increments. 

It is important to understand, that the DNN models are exclusively trained on the incre-

ments, i.e. deformations or rotations, that were extracted from the shell FE Abaqus mod-

els. However, taking always exact the same increments for the predictions in the DNN-

DSM procedure is not possible, since the deformations are applied arbitrary and distrib-

uted stiffness dependent along the system. Using very small steps sizes (many incre-

ments) leads to a prediction close to the actual trained result, here demonstrated with 

1000 increments. Decreasing the number of increments is only logical to improve the 

efficiency of the DNN-DSM algorithm. This, however, leads to inaccurate results, since 

the predicted stiffness may partially miss the elastic stiffness range and result in too low 

capacities. An extreme example is shown here by using only ten increments, completely 

unable to describe the non-linear load-displacement curve. Since this effect is an essen-

tial part of the method, this aspect is further discussed in Section 8.2.3.2. 

8.2.3.2 Step	size	effect	

The incremental step size has a significant influence on the accumulated prediction ac-

curacy within the load-deformation path. This effect is independent of the used profile, 

material model, imperfection amplitude or load case. An exemplary explanation is given 

in the following, based on the load case of centric compression.  

The incremental step size, equivalent to the incremental nodal deformation, is discussed 

in Figure 8-15 regarding on its influence on the prediction with respect to the GMNIA 

simulation. The x-axis is always showing the nodal displacement, the y-axis the corre-

sponding force at each increment. The ground truth is given by the GMNIA simulation, 

here shown as a black line. The green line is the DNN model prediction in the pre-buck-

ling range, using exactly the same deformation steps as extracted from the Abaqus FE 

shell calculation, i.e., the data that the DNN model was trained on. The dotted grey lines 
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represent the DNN-DSM calculation, using a different amount of incremental defor-

mations until reaching a defined loading level. All diagrams show exclusively the pre-

buckling deformation range.  

 

Figure 8-15: Dynamic step size optimization 

A clear influence can be drawn from the size of the incremental deformation. With de-

creasing step size the accuracy of the prediction start to decrease. This is illustrated 

through Figure 8-16 a), b) and c), where the step size decreases from 20 to 4. This can 

be explained through the following steps. The prediction for 𝐾்
௜  is done by using an ab-

solute deformation at a current deformation of ui. Therefore, at points with stiffness 

jumps, i.e. a kink in the load-deformation curve (the same applies for the moment-rota-

tion relation), predictions with too large step sizes may lose stiffness too early.  

To avoid this problem, a step size optimizer can be introduced, in which the step size is 

dynamically adjusted dependent on an error definition from the residuum. Figure 8-15 
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explains briefly this procedure. Starting from an arbitrary point on the true load-defor-

mation curve (blue dotted line) at the location ui and Fi.  

 

Figure 8-16: Influence of the amount of steps on the prediction accuracy of the load deformation path; a) 
20 steps; b) 10 steps; c) 4 steps; d) dynamic step optimization 

The prediction of the tangent stiffness 𝐾ሺ଴ሻ
௜ାଵ is done with the updated absolute defor-

mation 𝑢௜ ൅ ∆𝑢ሺ଴ሻ
௜ାଵ, while ∆𝑢ሺ଴ሻ

௜ାଵ is assumed to be an arbitrary incremental deformation. 

The desired true force is represented through the red point on the blue dotted line and 

the predicted force through the green point at 𝑢௜ ൅ ∆𝑢ሺ଴ሻ
௜ାଵ. Corresponding to it, the grey 

point represents the force, which is calculated by assuming the tangent stiffness 𝐾்
௜  from 
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the previous step. The residuum is an error function and can be calculated with Equation 

(8-3), although other definitions are possible.  

i i i i 1
i 1

i i

( F F ) ( F F )
R thershold

( F F )


   
 

  
(8-3) 

If the calculated error is bigger than the defined threshold value, the incremental defor-

mation step ∆𝑢ሺ଴ሻ
௜ାଵ is minimized by ∆𝑢ሺ଴ሻ

௜ାଵ/𝑘, where k	=	2. The factor k is free to choose. 

The new tangent stiffness 𝐾ሺଵሻ
௜ାଵ is now calculated at a smaller deformation 𝑢௜ ൅ ∆𝑢ሺ଴ሻ

௜ାଵ/𝑘, 

leading to a smaller residuum compared to the previous step 𝑅ሺଵሻ
௜ାଵ ൏ 𝑅ሺ଴ሻ

௜ାଵ.  

In the context of Figure 8-16 d) the step size was halved (k = 2) if the calculated residuum 

is higher than a predefined threshold value. This automatically leads to an accumulation 

of calculations in areas with larger stiffness changes and thus an increase in computa-

tional effort. Nevertheless, this strategy enables a save computational propagation with 

a small number of steps in areas with a comparable stiffness and still a high prediction 

accuracy.  

8.3 Verification	of	Isolated	Members	

8.3.1 Isolated	members	in	compression	

Figure 8-17 and Figure 8-18 show GMNIA simulations and DNN-DSM recalculations of 

an SHS300×6.3, S690 profile with the length of 600	mm (see Figure 8-17 a)), 900	mm 

(see Figure 8-17 b)), 1200	mm (see Figure 8-18 a)) and 1500	mm (see Figure 8-18 b)) 

loaded in pure compression. The results are shown by a load-deformation relation. The 

blue curves always represent the results from the performed GMNIA simulations. The 

imperfection shapes were estimated from LBA simulations by assuming the first 

eigenmodes as the critical one. The imperfection amplitude was set to B/200 in all cases 

according to EN 1993-1-5 [131]. Above each diagram is a representation of the FE model 

and its buckling shape during failure. In addition, the assumed DNN-DSM models used 

for the recalculation are shown in order to identify model influences on the pre- and 

post-buckling behaviour.  
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Figure 8-17: Comparison between shell FE and DNN-DSM models of different lengths; a) L	=	600mm; b) L	
=	900mm 

In the FE shell-based GMNIA simulation, the case of the 600	mm long member (see Figure 

8-17 a)) shows constant buckling over the entire length, with two main local buckling 

fields forming. Thus, the deformation of the whole member is more pronounced in the 

post-buckling region due to the distribution of deformations over the entire length. A 

similar behaviour can be achieved with DNN-DSM model 1, with an equivalent imper-

fection amplitude of B/200 in all elements. In addition, model 2 uses two different im-

perfection amplitudes, B/200 and B/300, in order to achieve buckling in only one beam 

element. This leads, in particular, to a larger drop of the load-deformation curve within 

the post-buckling range. This behaviour is somehow logical, since the deformations are 

not distributed over the whole member length, but are concentrated in one field.  
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Figure 8-18: Comparison between shell FE and DNN-DSM models of different lengths; a) L	=	1200mm; b) 
L	=	1500mm 

A slightly different behaviour was observed for the member length of L	=	900	mm. Figure 

8-17 b) displays the results for the GMNIA simulation, where local buckling is clearly 

more concentrated in one area. This mainly affects the post-buckling behaviour, which 

appears more compressed with a greater reduction in stiffness. In comparison, DNN-

DSM model 2 (local buckling in one beam element) leads to more conservative results, 

with a sharper drop of resistance in the post-buckling. However, no differences in the 

pre-buckling range between DNN-DSM model 1 and model 2 were identified. A similar 

behaviour, as shown in Figure 8-17 a), was observed for the member length of L	=	1200	

mm and shown in Figure 8-18 a). Again, local buckling occurs over the whole length of 

the member, leading to a pronounced post-buckling behaviour. This behaviour is then 

best reproduced by DNN-DSM model 1, assuming equivalent imperfection amplitudes 

for in all beam element within the prediction. Figure 8-18 b) indicates the results for the 

member length of 1500	mm. Two buckles, at the top and the bottom occurred within the 
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GMNIA simulation. According to this, 3 different DNN-DSM models were implemented 

to observe the overall load-displacement prediction. DNN-DSM model 1 uses an equiva-

lent imperfection amplitude with B/200. DNN-DSM model 2 uses two imperfection am-

plitudes, B/200 and B/300 in order to force the model to buckle exclusively in one field. 

DNN-DSM model 3 uses the same imperfection approach as model 2, with the difference 

that buckling is introduced in the upper and lower element only.  

In all cases it was slightly more conservative to choose the model with only one local 

buckling field, i.e., buckling of one beam element. The pre-buckling behaviour remains 

the same compared to the other DNN-DSM models, but the post-buckling behaviour is 

less pronounced and more affected by a higher drop in the resistance within a smaller 

overall deformation. For this reason, all recalculations in Section 8.4.1 are performed 

exclusively on the basis of a DNN-DSM model with a local buckling formation in one ele-

ment along the whole member. 

 

Figure 8-19: a) Comparison of redistributions of strains; b) corresponding load-displacement curve of a 
hot-rolled SHS300x6.3 profile, S690, loaded in compression 

Figure 8-19 provides an interesting redistribution effect, which was obtained during the 

performed calculations on truss systems. The same SHS300x6.3 profile, as the one cho-

sen for model considerations in Figure 8-17 and Figure 8-18, was used here. The length 

of the member is equal to L	=	900	mm. Thus, three beam elements are used to build the 

DNN-DSM model. A corresponding shell FE model is shown in Figure 8-19 a). Figure 8-19 
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b) provides the load-displacement curves from GMNIA simulation and DNN-DSM pre-

dictions. Two regions are highlighted as “Region 1” and “Region 2”, indicating the peak 

load and some deformation stage in the post-buckling range. The GMNIA model is fully 

compressed, almost equally along the whole length, right before reaching Region 1. Right 

after, it starts to develop a local buckle, leading to a release of strains in the outer regions 

and to an over proportional increase of strains in the local buckling field. The same be-

haviour was obtained in own DNN-DSM predictions. By assuming the middle field with 

a slightly higher imperfections, one can force the model to buckle directly in the middle 

element. During the calculation the same behaviour is obtained, where the outer beam 

elements are released from strains and the middle beam element developing local buck-

ling and taking the whole applied deformations.  

8.3.2 Isolated	members	in	compression	with	global	second	order	effects	

The DNN-DSM approach as developed in this thesis is currently limited by several as-

sumptions, which were presented in Section 7.2.2. In particular, some of those limita-

tions need to be addressed first in order to clarify the DNN-DSM algorithm, modified for 

consideration of global (column-type) second order effects.  

The DNN models were not trained for combined load cases. Therefore, an N-M interac-

tion is not accounted for in the stiffness terms. Instead, the assumption is made on the 

cross-sectional resistance level, according to the N-M interaction formulation by Liew 

and Gardner [108] from Section 7.2.5, to scale the cross-section compression resistance 

to a corresponding moment value. A further assumption in the calculations here, is that 

only the elastic bending stiffness terms were chosen for the predictions. This comes 

mainly from the fact that the members are dominated by normal forces and nonlineari-

ties according to bending are not dominant. To conclude, the predictions presented in 

the following Figure 8-20, use a simplified	N‐M	interaction to scale the predicted cross-

section capacity and elastic	bending	stiffnesses. For this reason, the comparisons are 

mainly qualitatively, in order to show the already existing possibilities and advantages. 
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Figure 8-20: Comparison of FE shell simulations with DNN-DSM predictions with second order effects; a) 
hot-rolled SHS200×8 profile, S355; b) hot-rolled SHS200×5 profile, S355 

Figure 8-20 show comparisons between advanced shell FE simulations and DNN-DSM 

predictions with second order effects. The GMNIA shell models are based on the FE 

model assumptions from Section 5.4. Two eigenforms are combined, a local and a global 

buckling shape to account for local and flexural buckling. Note, the GMNIA results from 

Figure 8-20 were published in [75], [76] in a slightly different representation, but are 

well suited for comparisons made herein. However, in the context of the above men-

tioned publications, different imperfections amplitudes were chosen than proposed in 

EN 1993-1-1 [48]. The imperfection amplitude for local buckling was set to B/400 (see 

Equation (2-11)), and for flexural buckling to L/1000. In both diagrams the GMNIA re-

sults follow closely flexural buckling curve for hot-rolled SHS profiles.  

Figure 8-20 a) shows the results for a hot-rolled SHS200×8 profile with the steel grade 

S355. The local slenderness of the profile is equal to 𝜆̅	=	0.53, therefore still in the plateau 

region of the local buckling curve from EN 1993-1-5 [131] (𝜆̅	<	0.674), meaning that local 

buckling is not the dominant instability criterion. The results reflect this, as the full 

cross-section capacity is reached in the plateau region of the buckling curve for flexural 

buckling. Similar results can be replicated with the DNN-DSM, although slightly different 

imperfection amplitudes had to be used for flexural buckling with a value of L/250 in 

order to achieve similar results in more slender regions. Simulations presented in Figure 

8-20 b) follow the same considerations for a hot-rolled SHS200×5 profile. The local 

cross-section slenderness is equal to  𝜆̅	=	0.84	and beyond the local buckling plateau from 



Part III 8: Method Evaluation

 

 

 

226 

EN1993-1-5. Local buckling affects the overall cross-section capacity, which is also pre-

sent in the results, since the full cross-section capacity is not reached in the plateau re-

gion for flexural buckling. This effect is captured directly by the DNN-DSM, showing a 

big advantage in the design procedure in contrast to the GMNIA simulation. It is im-

portant to understand that this effect is often not necessarily captured by the GMNIA 

simulation. This is related to the simulation procedure within such advanced analysis 

methods, which are basically all based on LBA calculations for eigenvalue and eigenform 

extraction. Depending on member length and the local cross-section slenderness, the 

need for combined eigenforms might become relevant. However, this circumstance is 

not explicitly addressed in code provisions such as EN 1993-1-14 for FE design, and 

therefore always a potentially error prone task.  

Qualitatively, it can be said that the DNN-DSM is able to reproduce the results from 

GMNIA, despite the assumptions mentioned above. However, this step requires further 

evaluations and an actual interaction relationship between the stiffness terms.  
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8.3.3 Isolated	members	in	bending	

 

Figure 8-21: DNN-DSM Model approaches for a) truss models; b) beam models 

In the course of AA-CSM (see Fieber [67] and Section 2.5.2) a strain averaging approach 

was presented, which takes the mean strain within an estimated buckling length (half-

wavelength) to account for a more realistic behaviour in the plastic zone. It is therefore 

required that the discretized beam elements are equal or smaller than the buckling half-

wavelength. The difference within the DNN-DSM approach here, is that the assumed 

buckling length (discussed and presented throughout Section 5.3 and 5.4) is equal to the 

local FE shell model length from Abaqus and is automatically the length of an imple-

mented beam element (beam element length = buckling length) The strain averaging is 

not explicitly calculated but is rather directly accounted for in the DNN model prediction.  

Isolated members in bending are evaluated exemplary, comparing shell finite element 

GMNIA simulation results and equivalent DNN-DSM model calculations. Figure 8-22 

shows the results for three-point bending, Figure 8-23 for four point bending, comparing 

the estimated load-deformation curves from shell FE and DNN-DSM. The shell FE models 

are build up on the assumptions made in Section 5.4, i.e. shell element type, cross-section 

geometry, discretization, imperfection amplitudes. MPC beam constraints were first 

generated along the edges and coupled to reference points at each end of the member, 

to generate a relatively simple pin type boundary condition.  



Part III 8: Method Evaluation

 

 

 

228 

 

Figure 8-22: Comparison of load-deformation results between shell FE and DNN-DSM predictions for 
three point bending for a hot-rolled SHS200ൈ8 and an SHS200ൈ5 profile made from S355; a), b) deformed 
members at peak lead (scaled); c), d) comparison of load-deformation curves; e) 3D representation of 
local element rotations; f) 3D representation of global moments corresponding to the calculated step and 
plotted along the member length 

System deformations were introduced through reference points, which were coupled to 

several individual nodes on the upper flange of the cross-section. This procedure was 

chosen according to investigations in [28], to simulate a more realistic load introduction 
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and prevent failure to local crushing. Note that deformations were introduced in order 

to be able to calculate the post-buckling range. Member length was chosen to fit with the 

local beam element lengths, which are bound to the longer cross-section dimension. Two 

simulations were done for each model, first an LBA to estimate imperfection shapes, sec-

ond a fully non-linear GMNIA with local imperfections and a non-linear material behav-

iour with strain hardening. The material model corresponds exactly to the one used for 

the GMNIA calculation results used for DNN model training. 

Results for three-point bending are presented in Figure 8-22 for two profiles, SHS200x8 

and SHS200x5, hot-rolled with the steel grade S355. Figure 8-22 a) and b) show output 

deformations from Abaqus and the DNN-DSM predictions. Both Abaqus models form a 

local buckle around the load introduction area. The DNN-DSM replication uses only 8 

elements, at each node 2 dofs (vertical displacement and rotation), leading to a total of 

18 dofs for the whole system. Note that the Abaqus model uses 77298 dofs, in order to 

calculate the non-linear load-deformation curves from Figure 8-22 c) and d). A very close 

result can be recalculated with the DNN-DSM approach. The elements around load in-

troduction reach their maximum cross-section dependent capacity and go into post-

buckling, which leads to the overall drop of the loads. Deviations of maximum forces are 

below 3% for this particular case. Corresponding deformations deviate stronger from 

each other. In the case of the SHS200×5 profile the DNN-DSM approach lies 30% above 

the GMNIA shell FE results. This might be drawn back on effects not included in the DNN-

DSM, like local crushing in the load introduction area or a slightly smaller local hinge 

area that could affect the overall behaviour. Figure 8-22 e) shows in a 3D plot the local 

rotations for each beam element along the member length and the corresponding calcu-

lated step. The two middle elements, which are loaded to most, develop directly from 

the beginning the highest local rotations. Figure 8-22 f) shows the corresponding mo-

ment diagram according to the calculated steps.  

The overall system behaviour was replicated successfully with the DNN-DSM, predicting 

the pre- and post-buckling range in less computational time compared to the Abaqus 

simulations. The DNN-DSM algorithm was finished after approximately 150 sec, the 

Abaqus calculation after around 240 sec, for the case of three point bending. This time 
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includes only the actual calculation. Taking into account the modelling effort would lead 

to significantly bigger differences.  

 

Figure 8-23: Comparison of load-deformation results between shell FE and DNN-DSM predictions for four 
point bending for a cold-formed RHS300ൈ150ൈ8 and an RHS300ൈ150ൈ6 profile made from S355; a), b) 
deformed members at peak lead (scaled); c), d) comparison of load-deformation curves; e) 3D represen-
tation of local element rotations; f) 3D representation of global moments corresponding to the calculated 
step and plotted along the member length 
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Figure 8-23 shows the results of four point bending simulations in the same manner as 

for the three point bending comparison. GMNIA deformation plots are displayed against 

DNN-DSM deformations for two cold-formed profiles, RHS300x150x8 and 

RHS300x150x6 and the steel grade S355. The DNN-DSM replication uses 9 beam ele-

ments with a total of 18 dofs. The Abaqus model on the other hand contains 146358 dofs. 

In contrary to three point bending, where mostly the beam elements around the load 

introduction area were strongly deformed while reaching post-buckling, all element in 

between load introduction are affected by plastic deformation and reaching post-buck-

ling in the four-point bending simulation. Figure 8-23 c) and d) shows the comparison 

between the load-deformation paths from GMNIA shell FE simulations and DNN-DSM 

predictions. Again, a high accuracy is reached for the maximum capacity, as well as cor-

responding deformation. However, Figure 8-23 d) shows a slightly bigger difference of 

the reached loads, where the deviations lie between 4% to 5%. This is caused through 

the effect of a concentrated load introduction in the GMNIA analysis, as local buckling 

directly at the point of load application cannot be completely excluded for slender pro-

files. This effect cannot be captured with the DNN-DSM approach, leading to higher cal-

culated capacities. Nevertheless, a good agreement between GMNIA and DNN-DSM pre-

diction is given. The total runtime could be halved with own recalculations compared to 

the Abaqus simulations.  

8.4 Validation	against	Experimental	Results	

8.4.1 Stub	column	tests	

In the following subsections the DNN-DSM approach is compared with experimental re-

sults and GMNIA simulations from literature. Comparisons of stub column test are based 

on investigations by Gardner et al. [195] and Toffolon [2]. These are presented sepa-

rately in the following Section 8.4.1.1 and 8.4.1.2, designated as test series 1 and 2.  

The corresponding DNN-DSM model assumptions are shown in Figure 8-24. The speci-

men lengths in the test by Gardner et al. [195] are always four times the bigger cross-

section dimension (height or width). Thus, the DNN-DSM models could be built up from 

four beam elements of the chosen length and always matched the specimen length from 



Part III 8: Method Evaluation

 

 

 

232 

the tests, see Figure 8-24 a). On the other hand, specimens in the test series evaluated 

by Toffolon [2] has always the fixed length of 800	mm. Therefore, it is not always possible 

to match exactly the experimental lengths by the chosen length of DNN-DSM elements. 

In the chosen DNN-DSM implementation, a specimen with the cross-section dimensions 

of 200ൈ200 has a local beam element length of 200	mm. Four of those elements would 

thus exactly match the specimen length of 800	mm. However, a specimen with the cross-

section dimensions of 300ൈ150 has a beam element length of 300	mm. Three elements 

lead to a member length of 900	mm, which slightly exceed the actual specimen length of 

800	mm. For the purposes of the validation to be carried out here, this length difference 

was ignored, as the buckling deformations were considered to be located only within 

one buckling half sine wave length.  

Table 8-4: Considered profiles and properties from [2], [195] 

 Profile Test Set-Up 
2

,y nomf N mm    2
,expyf N mm  

 
 
 
 
 

TEST SERIES 1 
Gardner et al. [195] 

S355; SHS 40×40×4-HR Stub Column (SC) 355 496 

S235; SHS 40×40×4-CF SC 235 410 

S355; SHS 40×40×3-HR SC 355 504 

S235; SHS 40×40×3-CF SC 235 451 

S355; RHS 60×40×4-HR SC 355 468 

S235; RHS 60×40×4-CF SC 235 400 

S355; SHS 60×60×3-HR SC 355 449 

S235; SHS 60×60×3-CF SC 235 361 

S355; SHS 100×100×4-HR SC 355 488 

S235; SHS 100×100×4-CF SC 235 482 

 
 

TEST SERIES 2 
Toffolon [2] 

S355; SHS 140×140×4-CF SC 355 430 

S355; SHS 200×200×5-CF SC 355 401 

S355; SHS 200×200×8-CF SC 355 475 

S500; SHS 200×200×4-CF SC 500 563 

S500; SHS 200×200×5-CF SC 500 557 

S355; RHS 300×150×6-CF SC 355 429 

S355; RHS 300×150×8-CF SC 355 451 

In physical tests of stub columns, it is typical to observe a concentration of buckling de-

formations in a part of the element the length of which roughly matches the length of a 
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single buckling half-wave. In order to lead to such a concentration local buckling exclu-

sively in one DNN-DSM beam element, one such element along the modelled member 

was considered to have a higher initial imperfection amplitude than the rest of the beam 

elements. For the comparisons in this chapter, the failing element was modelled with an 

imperfection amplitude of B/200. The remaining beam elements were given the input of 

an imperfection amplitude of B/400. B was chosen according to Equation (2-10).  

 

Figure 8-24: DNN-DSM model discretization, a) model assumptions for comparisons in Section 8.4.1.1 
(test series 1); b) model assumptions for comparisons in Section 8.4.1.2 (test series 2) 

8.4.1.1 Test	series	1	

As a first test series for validation, stub column test results by Gardner et al. [195] were 

first compared against DNN-DSM predictions with the models trained on GMNIA speci-

mens. The global length of the DNN-DSM model was covered by four beam elements. 

This exactly corresponds to the specimen length from the tests. As stated above, it was 

assumed that local buckling is introduced only in one element along the length of the 

model. Figure 8-25 shows a comparison between the load-deformation curves from the 

tests and own DNN-DSM based recalculations for four selected specimens. The dashed 

and the continuous line both represent test results, as each test was repeated twice with 

specimens created from the same hollow section. The red dotted lines show the results 

of the DNN-DSM calculations. In all cases, two yield strength values were accounted for, 

i.e., the nominal value fy,nom and the experimentally derived yield strength fy,exp. The x-
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axis represents the displacement u in the longitudinal direction, normalized by the 

measured total member length Lexp. In order to exclude global effects throughout the 

tests, Lexp was chosen to be 4 times the bigger value of the cross-section height or width. 

The y-axis describes the reached normal forces, normalized by the plastic normal force 

Npl, calculated with the yield strength σy from tensile coupon test. This comparison al-

lows one to follow up on the analyses from Section 8.2.3 and assess prediction outside 

the data space.  

 

Figure 8-25: Comparison between stub column test results by Gardner et al. [163] and DNN-DSM recalcu-
lations 



Part III 8: Method Evaluation

 

 

 

235 

Table 8-5 shows the summarized results of all 10 stub column test for test series 1. In 

order to exclude gross outliers in the experimental campaign, two analyses were per-

formed on specimens of the same type, i.e., same geometry and material properties. 

However, this is not further considered, since the estimated deviations are too small to 

make a difference in the comparisons made here.  

Table 8-5: Considered profiles and properties from [195] 

Profile 

2
,

2
,exp

y nom

y

f N mm

f N mm

  
  

 
max,

max,exp

DNN DSMF

F
  max,

max,exp

DNN DSMu

u
  

S355; SHS 40×40×4-HR 
355 0.72 0.64 

496 0.94 0.03 

S235; SHS 40×40×4-CF 
235 0.74 0.17 

410 1.05 0.08 

S355; SHS 40×40×3-HR 
355 0.70 0.03 

504 0.81 0.05 

S235; SHS 40×40×3-CF 
235 0.61 0.21 

451 0.93 0.11 

S355; RHS 60×40×4-HR 
355 0.82 0.30 

468 0.96 0.07 

S235; RHS 60×40×4-CF 
235 0.64 1.13 

400 0.97 0.14 

S355; SHS 60×60×3-HR 
355 0.71 0.10 

449 0.95 0.12 

S235; SHS 60×60×3-CF 
235 0.79 0.55 

361 1.04 0.27 

S355; SHS 100×100×4-HR 
335 0.71 0.56 

488 0.99 0.69 

S235; SHS 100×100×4-CF 
235 0.61 1.24 

482 1.04 0.44 

Predictions made by using the nominal yield strength fy,nom lead in all cases to conserva-

tive results: as expected and must be the case, the load-deformation curves are far below 

the test results when the nominal yield stress is considered and the measured one far 

exceeds the nominal value. This is not surprising, since the experimentally estimated 

material properties from tensile coupon tests in [195] are significantly higher compared 
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to the nominal values, which were used to train the DNN models. Thus, adapting the ex-

perimental yield strength values in the prediction process leads to results closer to the 

tests, with a maximum deviation of the maximum forces of around 7% (see Table 8-5).  

Regarding the general shape of the load-displacement curve, it can be observed that the 

DNN-DSM prediction and the experimental curves are generally satisfactorily close in 

the elastic and non-linear range up to the first peak when the experimental value of the 

yield strength is considered, while in the post-buckling range the match is far less satis-

factory. This can be attributed to a variety of factors, among which is the great im-

portance of the exact distribution of imperfections in the physical specimen for the post-

buckling behaviour.  

The behaviour of DNN-DSM recalculations is less ductile with maximum loads reached 

earlier. However, the course in the pre-buckling range is very similar to the one obtained 

experimentally. The comparison of the course in the post-buckling range less accurate 

and strongly linked to the actually-present imperfections. This effect was investigated 

and discussed in [285] by the author. Good matches with the real load-displacement be-

haviour as observed in physical tests, particularly in the post-buckling range, are there-

fore very hard to capture and would require a better knowledge of the real geometry of 

the specimens, a detailed material model and an accurate representation of geometrical 

imperfections. Nevertheless, in some cases, see Figure 8-25 b) and d), the pre- and post-

buckling curves can be simulated well along the whole deformation. This is mostly at-

tributed to two effect, (i) strain hardening is not reached and the behaviour in the pre-

buckling range more elastic, plastic redistributions are not present; (ii) local buckling 

has formed in only one concentrated region. 

8.4.1.2 Test	series	2	

This section presents some of the experimental results from the Hollosstab project and 

compares them to DNN-DSM predictions, which were carried out as described in the 

previous sections. The project Hollosstab itself was presented in the course of the finite 

element assumptions in Sections 5.1 and 5.2. The comparisons made here build up on 
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the experimental investigations and evaluations by Toffolon [2]. In the project, stub col-

umn and short member tests were performed, the latter with different eccentricities. A 

summary of all test and parameters is presented in Table 5-1, Table 5-2 and Table 5-3. 

In the following, only the T1 test (pure compression, i.e. stub columns) are used for com-

parison purposes. All specimens have a total length of 800	mm, disregarding the cross-

section dimensions. This allowed the investigation of local buckling only, without global 

effects. In the DNN-DSM models, which in this section make use of elements of fixed 

length, it was attempted to approximate length of 800	mm. Some DNN-DSM model 

lengths were in some cases slightly longer than the 800	mm of the tests. Assumptions 

from Section 8.3.1 were used to cause local buckling in only one beam element of the 

whole model.  

Table 8-6: Considered profiles and properties from [2] – stub column test series 2 

Profile 

2
,

2
,exp

y nom

y

f N mm

f N mm

  
  

 
max,

max,exp

DNN DSMF

F
  max,

max,

DNN DSM

GMNIA

F

F
  max,

max,exp

DNN DSMu

u
  max,

max,

DNN DSM

GMNIA

u

u
  

S355; SHS 
140×140×4-CF 

355 0.76 0.72 0.60 0.55 

430 0.88 0.83 0.62 0.57 

S355; SHS 
200×200×5-CF 

355 0.81 0.76 0.57 0.58 

401 1.00 0.94 0.75 0.76 

S355; SHS 
200×200×8-CF 

355 0.73 0.70 0.44 0.45 

475 0.93 0.90 0.45 0.46 

S500; SHS 
200×200×4-CF 

500 0.80 0.77 0.67 0.95 

563 0.85 0.82 0.65 0.93 

S500; SHS 
200×200×5-CF 

500 0.73 0.71 0.55 0.77 

557 0.79 0.77 0.55 0.77 

S355; RHS 
300×150×6-CF 

355 0.92 0.89 0.68 1.27 

429 1.03 0.99 0.67 1.24 

S355; RHS 
300×150×8-CF 

355 0.72 0.72 0.71 0.77 

451 0.87 0.87 0.78 0.85 

Figure 8-26 shows the load-deformation curves of some selected profiles. In this case, 

for test series 2, the black solid lines represent the physical test results. Finite element 

shell based GMNIA simulations, using the 3D-scanned specimen geometry and the meas-

ured material stress-strain relationship (from coupon tests) are represented by the 

black dashed lines. The procedure to derive these GMNIA models within Hollosstab was 
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described in Section 5.1.2 and involves 3D full scale surface scans and reverse engineer-

ing procedures to derive finite element models. Both lines thus indicate the state on 

which the validation of FEM-models in the Hollosstab project is based on and was car-

ried out. It is therefore suitable for the present comparisons with the DNN-DSM predic-

tions, since the results of not self-performed GMNIA calculations are available and not 

subjected to a self-produced bias. The two red dotted lines in each diagram represent 

the DNN-DSM recalculations for two different yield strength values, i.e., the nominal fy,nom 

and experimentally fy,exp derived values.  

 

Figure 8-26: Comparison between stub column test results by [2] and DNN-DSM recalculations for test 
series 2 (from Hollosstab project) 
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Compared to the results of stub column test form Section 8.4.1.1, the presented compar-

ison in Figure 8-26 shows a better correlation with the load-deformation curves from 

tests in two of the four shown cases, see sub-figures b) and c). The comparison for these 

two cases shows that the behaviour in the pre- and post-buckling range is matched well, 

albeit differences remain in the reached maximum loads and corresponding defor-

mations. Again, as must be the case, deviations between the maximum reached load 

bearing capacities become smaller when using the yield strength fy,exp from tensile cou-

pon tests. The comparison between DNN-DSM calculations and GMNIA simulations 

(black dashed line) show a somewhat closer resemblance: like the DNN-DSM predic-

tions, the GMNIA simulation results show a slightly stiffer behaviour in the pre-buckling 

range and feature a steeper stiffness deterioration in the post-buckling range.  

Regarding the sub-figures a) and d), it can be observed that the peak load is relatively 

strongly underestimated for both the 140x4 and 200x4 SHS section. In order to better 

understand this deviation, for these particular cases a second type of GMNIA calculation 

was performed, this type introducing imperfection shapes derived from LBA calcula-

tions and with amplitudes of B/200, as is assumed for the DNN-DSM models. The corre-

sponding results are plotted with dashed green lines (for the nominal and measured 

yield stress). As can be seen in the figures, these additional GMNIA calculations match 

the peak load of the DNN-DSM curves much more closely, while the deformations at this 

peak load are larger. The latter effect can be attributed to the fact that multiple buckling 

half-waves were assumed to have the same imperfection amplitude of B/200 in these 

additional GMNIA calculations, thus leading to a “softer” behaviour as the ULS load is 

approached. In summary, it can thus be stated that even the cases with larger differences 

in peak loads between DNN-DSM vs. physical and numerical test (with measured imper-

fections) is explicable: it can be assumed that the physical specimens in this case had far 

smaller and less inconvenient imperfection amplitudes than what would be assumed by 

introducing an LBA-based shape with amplitude B/200. Again, the results highlight the 

significance of imperfection amplitudes in capturing the local buckling behaviour of stub 

column tests. They additional confirm the viability of the DNN-DSM method.  

A summarized representation of the maximum forces and corresponding deformations 

for the entire test series is given in Table 8-6, thus showing the comparison of test results 
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and GMNIA simulations against DNN-DSM calculations. Again, the nominal yield 

strength fy,nom and the experimentally derived yield strength fy,exp were taken into ac-

count. Deviations of the maximum forces between tests and DNN-DSM calculations go 

up to 28% when using the nominal yield strength and 21% when using the experimental 

value for the yield strength. On average these are 22% and 9%, respectively. Thus, over-

all, the DNN-DSM results based on data from GMNIA models and simulations with im-

perfection amplitudes and shapes based on LBA buckling shapes can be stated to be al-

ways conservative for the results of this test series, based on their current training. A 

comparison with GMNIA results leads to slightly higher deviations, since the GMNIA val-

ues were slightly higher than the test results in all cases.  

8.4.2 Bending	tests	

 

Figure 8-27: Schematic representation of bending test set-ups, adopted from [163] 

The validation of the DNN-DSM approach against experimental results from three-point, 

four-point, and five-point bending tests is presented in Sections 8.4.2.1, 8.4.2.2 and 

8.4.2.3, respectively. All test results are based on publications by Gardner et al. and Wang 
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et al. [163], [195]. For detailed information on the test setup, material properties, and 

geometric measurements, the reader is referred to these references. A general test set-

up for all considered bending tests is provided by Figure 8-27. Furthermore, Table 8-7 

shows a summary of results for all considered cases. The cross-sections are labeled ac-

cording to their nominal steel grade, geometry, and fabrication (HR = hot-rolled; CF = 

cold- formed). The abbreviations for the test setup correspond to the three-point (3PB), 

four-point (4PB) and five-point (5PB-1) bending tests performed, which are summa-

rized in the following diagram (see Figure 8-27). Note that the experimental test series 

from [195] includes two five-point bending test set-ups, with a varying load introduction 

distribution. However, within the performed investigations only test set-up 1 was used.  

Table 8-7: Considered profiles and properties from [163], [195] 

 Profile Test Set-Up 
2

,y nomf N mm    2
,expyf N mm  

Gardner et al. [195] S355; SHS 40×40×3-HR 3PB; 5PB-1 355 504 

S235; SHS 40×40×3-CF 3PB; 5PB-1 235 451 

S355; SHS 40×40×4-HR 3PB; 5PB-1 355 496 

S235; SHS 40×40×4-CF 3PB; 5PB-1 235 410 

S355; RHS 60×40×4-HR 3PB; 5PB-1 355 468 

S235; RHS 60×40×4-CF 3PB; 5PB-1 235 400 

Wang et al. [163] S460; SHS 50×50×4-HR 3PB; 4PB 460 523 

S460; SHS 50×50×5-HR 3PB; 4PB 460 505 

S460; SHS 90×90×3.6-HR 3PB; 4PB 460 500 

S460; SHS 100×100×5-HR 3PB; 4PB 460 511 

S460; RHS 100×50×4.5-HR 3PB; 4PB 460 498 

S460; RHS 100×50×6.3-HR 3PB; 4PB 460 498 

S690; RHS 50×50×5-HR 3PB; 4PB 690 759 

S690; RHS 90×90×5.6-HR 3PB; 4PB 690 774 

S690; RHS 100×100×5.6-HR 3PB; 4PB 690 782 

S690; RHS 100×50×5.6-HR 3PB; 4PB 690 777 

S690; RHS 100×50×6.3-HR 3PB; 4PB 690 799 

Own investigations required a slight adjustment within the actual beam lengths, depend-

ing on the used profile. As described in Section 8.4.1, the local beam element lengths 

correspond to the larger cross-section dimension of the profile height or width, see also 
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Figure 8-24 b). Adjustments can be made by introducing short, elastic elements in re-

gions of low stress, or by ignoring minor total length differences.  

8.4.2.1 Three	point	bending	

The results and recalculations of the three-point bending tests are presented in the fol-

lowing. Firstly, a comparison between experimental results from [163], [195] and DNN-

DSM models is carried out. Secondly, a comparison between validated FE-shell models 

and experimental results, both from [163], against own DNN-DSM prediction is per-

formed.  

Figure 8-28 shows the results of the comparison between experimental results (black 

line) and DNN-DSM recalculations (red dashed line). The x-axis represents the normal-

ized rotation θ/θpl, where θ is the theoretical mid-span “rotation” or slope change, de-

fined as the sum of the two end rotations from the installed inclinometers in the experi-

mental campaign in [163]. In own recalculations, the rotation at the supports was ex-

tracted for every calculated step and summed up. θpl is the sum of the plastic rotation at 

the supports, back calculated from the theoretical value for Mpl (according to elastic the-

ory) at the mid-span. However, for the normalized representation along the x- and y-axis 

in Wang et al. [163], θpl was calculated from the measured geometry and material prop-

erties from tensile tests, and for the determined values of the plastic moment Mpl. Thus, 

these values were adopted directly from [163] and [195] for the comparisons made in 

Figure 8-28 and Figure 8-29. For each DNN-DSM prediction two yield stress values are 

used, i.e. the nominal yield stress fy,nom and the experimentally derived yield stress fy,exp 

from corresponding tensile coupon test. The main purpose is to investigate whether the 

trained DNN models are able to interpret yield stress values for which they were not 

trained, since the yield stress is one main feature of the DNN input parameters.  
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Figure 8-28: Comparison between test results from three-point bending by Wang et al. [163] and DNN-
DSM recalculations for RHS/SHS profiles made from steel grade S460 a), b) and S690 c), d 

Each prediction is represented in one of the diagrams of Figure 8-28. In most cases, the 

experimentally derived yield stress fy,exp, within the input features of the DNN model, 

leads to close prediction of the maximum moment capacity, whereby the nominal yield 

stress fy,nom to results far on the safe side. The moment-rotation curves from the DNN-

DSM recalculations have a reasonable shape and largely resemble the test results. Espe-

cially the stiffness in the elastic range and the shape of the curve in the non-linear range 

of the pre-buckling phase match - in individual cases - very close the experimental re-

sults (Figure 8-28 a) and b)). The curves in the post-buckling area are reasonable, but 

cannot be fully verified with the tests, since the required data is often missing due to an 
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early test termination. However, it is not always possible to match the experimental re-

sult. Figure 8-28 c) and d) shows relatively poor results in comparison, with deviations 

of around 20% in force. This can have in general many possible origins, such as effects 

from the test set-up, the actual non-linear material behaviour which is not part of the 

predictions or the local imperfection amplitudes, which in reality deviate from theoret-

ical eigenshapes. This effects were not further investigated but are part of ongoing eval-

uations.  

 

Figure 8-29: Comparison between test results from three-point bending by Gardner et al. [195] and DNN-
DSM recalculations for steel grade S460 a), b) and S690 c), d 

The same type of comparisons were made for the three-point bending experimental re-

sults collected from Gardner et al. [195], which comprised both hot-rolled and cold-
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formed RHS/SHS profiles, summarized in Table 8-8 and exemplary shown in Figure 

8-29. Following the same logical interpretation as before, similar conclusions can be 

drawn. Own recalculations with nominal yield strength values fy,nom are more conserva-

tive compared to experimentally derived properties for the yield strength fy,exp. The 

shapes of the moment-rotation curves are always comparable and in some cases very 

close to the experimentally derived curves, as shown for Figure 8-29 a) or b).  

Table 8-8: Comparison of the results from three-point bending tests by [163], [195] and DNN-DSM 

Profile 

2
,

2
,exp

y nom

y

f N mm

f N mm

  
  

 
max,

max,exp

DNN DSMM

M
  max,

max,exp

DNN DSM


  

S355; SHS 40×40×4-HR 
355 0.86 1.98 

496 0.99 0.79 

S235; SHS 40×40×4-CF 
235 0.70 1.12 

410 1.01 2.87 

S355; SHS 40×40×3-HR 
355 0.81 3.41 

504 0.99 2.80 

S235; SHS 40×40×3-CF 
235 0.65 0.90 

451 0.96 1.25 

S355; RHS 60×40×4-HR 
355 0.97 1.85 

468 1.06 1.45 

S235; RHS 60×40×4-CF 
235 0.60 0.31 

400 0.87 - 

S460; SHS 50×50×4-HR 
460 0.91 0.78 

523 1.00 1.00 

S460; SHS 100×100×5-HR 
460 0.78 0.31 

505 0.87 0.35 

S460; SHS 90×90×3.6-HR 
460 0.95 0.81 

500 1.05 0.86 

S460; SHS 100×50×4.5-HR 
460 0.79 0.89 

498 0.97 1.05 

S690; SHS 50×50×5-HR 
690 0.85 1.25 

759 0.92 1.30 

S690; SHS 100×100×5.6-HR 
690 0.74 0.77 

782 0.87 0.83 

S690; SHS 100×50×5.6-HR 
690 0.79 0.66 

777 0.87 0.55 
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Further, the maximum loads and corresponding rotations are compared with the exper-

imentally derived data. This comparisons are summarized in Table 8-8. Two discrete 

values along each moment rotation curve, the maximum moment and the corresponding 

rotation, are compared with each other.  

Deviations of the maximum forces between tests and DNN-DSM calculations lie between 

5% and 40%, when using the nominal yield strength. This deviations decreases when 

using the experimental value for the yield strength and lie between 1% and 13%, with 

only minimal deviations on the unconservative side even for the latter type of material 

model. A comparison of the corresponding rotations is subjected to a potentially greater 

scatter than the reached forces. The reached force is mainly influenced by the material 

model, the imperfection amplitude and the boundary conditions, assuming that the ide-

alized model geometry is close enough to the real geometry. On the other hand, the ro-

tations are much more influenced by additional factors, such as the buckling length, the 

imperfections shape and amplitude as well as the onset of material yielding. This effects 

were partially investigated throughout the numerical calibration process by Wilkinson 

in [27] and own simulations in in [285].  

Table 8-9: Comparison of the results from GMNIA simulations by Wang et al. [163] and DNN-DSM pre-
dictions 

Profile 

2
,

2
,exp

y nom

y

f N mm

f N mm

  
  

 
max,

max,

DNN DSM

GMNIA

M

M
  max,

max,

DNN DSM

GMNIA




  

S460; SHS 50×50×5-HR 
460 0.90 1.13 

505 0.99 1.19 

S460; SHS 100×50×6.3-HR 
460 0.97 0.77 

498 1.02 0.85 

S690; SHS 90×90×5.6-HR 
690 0.95 0.94 

774 1.08 1.52 

S690; SHS 100×50×6.3-HR 
690 0.96 0.94 

799 1.09 0.81 

In the next step, the results from tests and corresponding GMNIA simulations by Wang 

et al. [163] were compared against DNN-DSM predictions. The comparison shows that 

the results from DNN-DSM agree well with the GMNIA results. In particular, the stiffness 
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in the region prior to buckling is well satisfied, as is the load-carrying capacity in all pro-

files considered. The maximum moment obtained is always slightly lower when using 

the nominal yield strength fy,nom. On the other hand, using the yield strength derived from 

experiments fy,exp leads overall to uncertain results. The corresponding rotations are safe 

in most cases for the nominal yield strength. The post-buckling behaviour is too pro-

nounced compared to the GMNIA results, where the curves have a stronger drop after 

reaching the maximum moments. Table 8-9 shows additionally the comparison of 

reached maximum loads for both simulations, GMNIA and DNN-DSM, and corresponding 

rotations.  

 

Figure 8-30: Comparison between test results from three-point bending and FE GMNIA simulations by 
[163] and DNN-DSM recalculations for steel grade S460 a), b) and S690 c), d) 
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8.4.2.2 	Four	point	bending	

The comparisons between experimental test results and DNN-DSM based recalculations 

for the considered four-point bending tests are presented in Figure 8-31 and Figure 8-32 

for the steel grade S460 and S690, respectively.  

The pure comparison between experimental results and DNN-DSM recalculations shows 

a good agreement. In all cases considered (Figure 8-31, Figure 8-32), the rising branch 

in the elastic region is matched without significant deviations. With the onset of plastic-

ity and thus a significantly more non-linear behaviour, deviations occur, but within ac-

ceptable limits. The recalculations are mostly more conservative than the experimental 

results with basically lower maximum loads.  

Table 8-10: Comparison of the results from four-point bending tests by Wang et al. [163] and DNN-DSM 
predictions 

Profile 

2
,

2
,exp

y nom

y

f N mm

f N mm

  
  

 
max,

max,exp

DNN DSMM

M
  max,

max,exp

DNN DSM


  

S460; SHS 50×50×4-HR 
460 0.94 3.81 

523 1.15 3.67 

S460; SHS 90×90×3.6-HR 
460 1.03 1.00 

500 0.95 0.53 

S460; SHS 100×100×5-HR 
460 0.82 - 

505 0.90 - 

S460; RHS 100×50×4.5-HR 
460 0.99 - 

498 1.04 - 

S690; SHS 100×100×5.6-HR 
690 0.82 1.17 

782 0.91 1.13 

S690; RHS 100×50×5.6-HR 
690 0.86 1.32 

777 0.96 0.81 

S690; RHS 90×90×5.6-HR 
690 0.84 1.89 

774 0.93 4.06 
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Figure 8-31: Comparison between test results from four-point bending by Wang et al. [163] and DNN-DSM 
recalculations for steel grade S460 

 

Figure 8-32: Comparison between test results from four-point bending by Wang et al. [163] and DNN-DSM 
recalculations for steel grade S690 
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Figure 8-33: Comparison between test results from four-point bending and FE GMNIA simulations by 
Wang et al. [163] and DNN-DSM recalculations for steel grade S460 a), b) and S690 c), d) 

In addition, a comparison between experimental results and validated shell based 

GMNIA simulations from Wang et al. [163] was performed and illustrated in Figure 8-33. 

Once again, in each case, the DNN-DSM predictions were performed with the nominal 

and experimentally determined values for yield strength, fy,nom and fy,exp. Again, the DNN 

models were only trained on the nominal yield strength values and not the experimen-

tally derived ones. The focus here is on the GMNIA calculations, which were primarily 

developed to match the experiments as accurately as possible, for the purpose of subse-

quently performing parameter studies, in [163]. It can be seen that the results from the 

GMNIA simulations and the predictions of DNN-DSM are largely in agreement. In Figure 
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8-33 a), c), and d), the numerical and predicted simulations are almost on top of each 

other. In Figure 8-33 b), the course in the ascending branch agrees only partially, since 

the effect of strain hardening is not quite as pronounced as in the GMNIA calculation or 

in the experiment. In all cases, using the nominal yield strength value as an input feature 

leads to more conservative results than the actual yield strength value from experi-

ments.  

However, the DNN are once again able to capture the effect of the higher yield strength, 

resulting from the trained (nominal) input features and extrapolate it on the unseen (ex-

perimentally derived) values. 

Table 8-11: Comparison of the results from GMNIA simulations by Wang et al. [163] and DNN-DSM 

Profile 

2
,

2
,exp

y nom

y

f N mm

f N mm

  
  

 
max,

max,

DNN DSM

GMNIA

M

M
  max,

max,

DNN DSM

GMNIA




  

S460; SHS 50×50×5-HR 
460 0.93 - 

505 1.01 - 

S460; RHS 100×50×6.3-HR 
460 0.89 1.06 

498 0.95 1.22 

S690; SHS 50×50×5-HR 
690 0.89 1.04 

774 1.00 1.01 

S690; RHS 100×50×6.3-HR 
690 0.89 1.02 

799 1.00 0.89 

8.4.2.3 Five	point	bending	

The evaluation of the five point bending test from [195] follows the same procedure as 

for the three and four point bending test before. The general test set-up is presented in 

Figure 8-27 of Section 8.4.2. Figure 8-34 shows the comparison of the curves from test 

results and DNN-DSM predictions. The x-axis shows the member end-rotation in [rad]. 

For DNN-DSM based representations the calculated theoretical values was used. The y-

axis represents the applied force, normalized by the theoretical plastic collapse load Fcoll. 

The values for the collapse load were directly taken from [195] to normalize the DNN-

DSM results.  
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Figure 8-34: Comparison between test results from five-point bending tests by Gardner et al. [195] and 
DNN-DSM predictions for selected cross-sections 

All comparisons between test results and DNN-DSM predictions lead to similar conclu-

sions. The normalized load end-rotation curves lie almost on top of each other in the 

elastic range and shift apart with increasing nonlinearity, however, they are still compa-

rable in terms of their overall course. As in the case of three and four point bending tests 

described before, DNN predictions were made based on the nominal yield strength fy,nom 

and the experimental value fy,exp, being one of the DNN model features. In all considered 

cases, the nominal yield strength lead to a more conservative behaviour with lower ex-

pected forces. On the other hand, predictions based on the experimentally derived yield 

strength fy,exp lead to closer, but mostly slightly too optimistic results compared with 

tests, see Figure 8-34 a) and c). An evaluation of the post-buckling behaviour is in most 



Part III 8: Method Evaluation

 

 

 

253 

cases not directly possible, since the conducted test were terminated before reaching 

the post-buckling region or even the maxim force, see Figure 8-34 a). However, own 

DNN-DSM predictions tend to be too ductile, therefore overshoot in most cases the ac-

tual rotations. Table 8-12 shows the summarized results, comparing the maximum 

reached forces and corresponding member end-rotations between experimental results 

and DNN-DSM predictions.  

Table 8-12: Comparison of the results from GMNIA simulations by Gardner et al. [195] and DNN-DSM 

Profile 

2
,

2
,exp

y nom

y

f N mm

f N mm

  
  

 
max,

max,exp

DNN DSMF

F
  max,

max,exp

DNN DSM


  

S355; SHS 40×40×3-HR 
355 0.72 5.35 

504 0.87 3.70 

S235; SHS 40×40×3-CF 
235 0.68 1.42 

451 0.96 1.71 

S355; SHS 40×40×4-HR 
355 0.80 - 

496 1.09 - 

S235; SHS 40×40×4-CF 
235 0.77 1.78 

410 0.92 4.61 

S355; RHS 60×40×4-HR 
355 1.00 1.23 

468 1.12 0.84 

S235; RHS 60×40×4-CF 
235 0.63 0.31 

400 0.88 0.83 

As described for the comparison of the three point bending tests (see Section 0), the 

general match of the exact course of deformations/rotations is not easy to obtain and 

depends on many factors, such as the cross-section geometry, imperfection shape and 

amplitude, the material model and the boundary conditions. Some of the factors men-

tioned have already been incorporated into the FE model selection and cannot be 

changed at this level of comparison. However, in the following two DNN-DSM models are 

used to investigate the influence of the boundary conditions and to explain the associ-

ated collapse mechanism. The middle support is modelled in two ways, as a pin support, 

which causes buckling in the two adjacent elements simultaneously (B1); and as two pin 

supports at both ends of one element placed directly in the middle (B2). Thus, local buck-

ling is introduced in the middle element only.  
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Figure 8-35: Comparison of the collapse mechanism based on different boundary conditions B1 and B2, 
a) and b) normalized force-rotation behaviour; c) and d) normalized moment distribution according to 
the calculated DNN-DSM steps; e) and f) normalized element rotation according to the calculated DNN-
DSM steps 

In [195], the observed plastic hinge mechanism was documented and described as fol-

lows. The first plastic hinge formed in the area of the middle support. The second and 
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third hinge, theoretically caused simultaneously, are formed directly at the points at 

load/displacement introduction. Figure 8-35 describes the collapse mechanism, pre-

dicted by using the two described boundary conditions B1 and B2 above. Figure 8-35 a) 

and b) show the experimental test result for a hot-rolled RHS60x40x4 profile, the bound-

ary dependent DNN-DSM predictions and an additional independent GMNIA simulation, 

used by Fieber for his own model validation in [67]. The x-axis describes the member 

end rotation, the y-axis the forces normalized by the theoretical collapse load Fcall. Hori-

zontal lines show the points where the theoretical loads are reached during the for-

mation of the first hinge Fh1, as well as the formation of a kinematic system, i.e., reaching 

the collapse load Fcall. A slight difference can already be obtained from the boundary con-

ditions B1 and B2 in Figure 8-35 a) and b). 

 

Figure 8-36: Comparison of the local element rotations in the area of the plastic hinges for boundary con-
dition, a) and c) B1; b) and d) B2 
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The load-rotation curve shows a more ductile behaviour and reaches a lower maximum 

force in the case of boundary condition B1, compared to boundary condition B2. In both 

cases, the DNN-DSM predictions lie above the test result, as well as the corresponding 

GMNIA simulation. Figure 8-35 c) and d) illustrates the step dependent normalized mo-

ment distribution along the length of the member. Apparently, B2 behaves less ductile, 

with a stronger decrease of the moments after reaching the moment capacity. Figure 

8-35 e) and f) show the normalized local element rotations, according to the predicted 

DNN-DSM step over the total length of the member. 

It is evident that, for boundary condition B1, the first hinge formation occurs directly in 

the beam elements where the system deformations are initiated. Right after this load 

level, the two beam elements next to the middle support start to develop rotations above 

average values. A different behaviour is obtained for boundary condition B2. The first 

hinge forms in the middle beam element at the intermediate support, and only then the 

plastic hinges at the load application points. This load distribution behaviour is more in 

line with the observed mechanism from the experiments in [195].  

The different load-rotation behaviour for boundary condition B1 and B2 is explained as 

follows. The black filled points in Figure 8-35 e) and f) symbolise three dimensional rep-

resentation of the beam elements which are in post-buckling, according to a specific step 

in the progressive prediction process. The two beam elements in at the middle support 

(see Figure 8-35 e)) reach the moment, at which post-buckling occurs, slightly later than 

the elements in the area of load application. This is additionally illustrated in Figure 8-36 

a) for condition B1 and b) for condition B2, showing the normalized moment-rotation 

curves directly at the locations of the formed hinges. The green curve represent the local 

rotation at the intermediate support and the red curve the rotations in the area of load 

introduction. Potentially higher absolute strains are reached for the elements in the area 

of load application than in the elements at the intermediate support (B1). The opposite 

is obtained for condition B2 in Figure 8-36 b), where the first hinge forms in the beam 

element at the intermediate support. The absolute local rotations are in comparison sim-

ilar than for condition B1.  
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Figure 8-36 c) and d) is a broken down 2D side view representation of Figure 8-35 e) 

and f), showing the normalized strains corresponding to the calculated step in the ele-

ments that form the plastic hinges. This representation helps to understand the onset of 

post-buckling between the plastic hinges and their disproportional increase in rotations. 

For condition B1, the first two hinges appear at the load introduction, reaching after 54 

steps post-buckling, while increasing rapidly in local rotation. The two elements at the 

intermediate support reach post-buckling after 65 steps, whereby the increase of the 

rotations remains almost linear. The moderate increase is reflected by larger end-rota-

tions in the overall system behaviour. This assumption can be confirmed from the com-

parison with boundary condition B2, see Figure 8-36 d). The increase of the plastic hinge 

strains is similar in its shape, developing rapidly after reaching post-buckling at an ear-

lier step. Compared to B1, where four main elements formed the plastic mechanism, in 

B2 mainly three elements are affected. This less amount leads to a slightly sharper drop 

in the post-buckling region of B2, see Figure 8-35 b).  

8.5 Conclusions	

The overall feasibility of the DNN-DSM approach was investigated and confirmed 

throughout Chapter 8 through verifications on the cross-sectional, as well as the mem-

ber level. In a first step the overall DSM implementation was compared with the software 

Cubus, in order to confirm the structural behaviour in the elastic range. The verification 

of the cross-section capacity showed a high accuracy between the load bearing capaci-

ties resulted from Abaqus GMNIA simulations and DNN models. The overall prediction 

deviations lie around a maximum of 3%. Further, the comparison of the cross-section 

behaviour, i.e. the full load-deformation and moment-rotation curves from Abaqus 

GMNIA simulations with corresponding DNN-model predictions showed mainly a good 

agreement, although outliers were detected, where in some cases the overall behaviour 

was over-predicted by a maximum of around 15% leading to unsafe predictions. This 

uncertainties need to be investigated further and are part of ongoing investigations.  

Further, the DNN-DSM approach was tested against numerical simulations (GMNIA) on 

isolated members, i.e. members in compression, members in compression with global 

imperfections and members in bending. The comparison for members subjected to pure 
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compression had the goal to investigate different DNN-DSM model approaches with var-

ying imperfection amplitudes in the local beam elements along the member length. The 

general comparison of load-deformation curves showed a good agreement with corre-

sponding GMNIA simulations. It was found that the stiffness drop in the post-buckling 

behaviour is mainly dependent on the formation of local buckling regions along the 

member, more specifically on its amount. If members fail explicitly in one local buckling 

area, the stiffness drop in the post-buckling range is significantly higher, since all resid-

ual deformations are concentrated in this plastic field. This sharp drop can be controlled 

according to the amount of local buckling areas, i.e. by forcing a simultaneous failure in 

all local beam elements, the post-buckling curve becomes much more pronounced and 

smoothens out. The DNN-DSM approach is capable to reproduce this behaviour by an 

explicit selection of local imperfection amplitudes in individual beam elements.  

A comparison for members subjected to pure bending was done against three and four 

point bending considerations, using the results from shell based GMNIA simulations in 

Abaqus against recalculations from the DNN-DSM. Both approaches use the same non-

linear material models for hot-rolled and cold-formed steel. In the case of three point 

bending two profiles, an SHS200×8 and SHS200×5 with the steel grade S355 were mod-

elled with the same length of 1600mm in Abaqus and the DNN-DSM, using 77298 dofs 

and 18 dofs, respectively. On the other hand, models used for four point bending had a 

total length of 2700mm with a total amount of 146358 dofs in the Abaqus models and 

20 dofs in the DNN-DSM models. Two cold-formed profiles, an RHS300×150×8 and 

RHS300×150×6 with the steel grade S355 were used for the comparison. Both load sce-

narios showed a very high accuracy with maximum deviations around 4% to 5% in the 

region of the reached maximum moments. However, this particular deviation can be 

drawn back on a local crushing effect directly in the load introduction area of the Abaqus 

FE models. This local behaviour can not directly be covered through the DNN-DSM ap-

proach, leading to higher capacities. Overall, the calculation time was halved compared 

to Abaqus GMNIA simulations, and can further be accelerated by a more economic im-

plementation.  

Subsequently, a validation against experimental results showed the potential of this data 

driven approach, although the overall comparison was mixed. For the case of pure com-

pression, two test series from [195] and [2] were used. The recalculation with the DNN-

DSM lead in all cases to similar load-deformation curves. Bigger deviations, which ap-

peared mostly for the comparison with test series 2 [2] could be explained with own 
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shell based GMNIA simulations and are drawn back on differences in imperfection 

shapes and amplitudes; the real material model from experiments, which cannot be di-

rectly taken into account and therefore varies from the initially implemented material 

models. Further, only the yield strength appears as an input feature in the DNN models, 

currently without the possibility to adjust the ultimate strength. Additionally, a perfectly 

centric and equivalent load introduction along the specimen edges is assumed in the re-

calculation (in both, Abaqus GMNIA and DNN-DSM simulations) but cannot completely 

be fulfilled in the actual test. Similar conclusions were drawn for members in bending 

for three-, four- and five-point bending tests, to explain differences between recalcula-

tions and test results. However, comparisons of GMNIA simulations of four-point bend-

ing test from literature [163] with own DNN-DSM recalculations showed a very close 

match of the collected non-linear moment-rotation curves from tests and an even closed 

match with GMNIA simulations of the authors. One main shortcoming, that need to be 

tackled in further investigations, is the problem that redistributions are currently not 

captured correctly when beam elements are unloaded. The unloading path is exactly the 

same as for loading, meaning that plastic deformations are released or subtracted from 

the elements. This in particular leads to oscillating predictions in the post-buckling 

range, which occurred during the investigations on five-point bending tests.  
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Summary, Conclusions and Outlook 
 

Outline	of	the	chapter:	

This chapter wraps up this thesis by providing a summary of the main steps towards the 

development of the presented DNN-DSM approach, followed by a set of conclusion re-

garding the made choices and obtained results. Shortcomings and subsequent optimiza-

tions are presented, together with a discussion of needed next steps towards a more 

robust and more widely-applicable approach.  
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9.1 Review	of	Objectives	and	Significance	

Climate change and increasingly unreliable material procurement have refocused the 

efforts of structural engineering science on its core area: minimizing material consump-

tion while achieving a high level of accuracy and reliability in the performance predic-

tion of engineering structures, as used in buildings and civil infrastructures. Transform-

ative progress in this domain requires novel, computationally and data-driven ap-

proaches to overcome current over-conservatism in design and significantly increase 

the environmental and economic sustainability of the construction industry. 

With this in mind, the presented thesis set out to explore the potential of a new method 

for the simulation-based non-linear analysis and design of large-scale engineering struc-

tures, thereby focusing on lightweight steel structures as a particularly suitable applica-

tion case: the method, termed “DNN-DSM” for “Deep Neural Network – Direct Stiffness 

Method”, attempts to integrate predictions by trained artificial neural networks of the 

non-linear behaviour of slender steel components in the standard, beam-theory DSM 

analysis method.  

Whenever compressive stresses are present in thin-walled metallic components, local 

(cross-sectional) and global (member) instabilities determine the structural behaviour 

as the ultimate limit state is approached, thus leading to highly non-linear load-displace-

ment characteristics that depend on the proneness of the section to develop buckling 

deformations at either lower or larger compressive strains. This nonlinearity, of geomet-

ric nature, cannot be easily captured by straightforward mechanical models alone: it 

generally requires either a highly localized (shell FEM) modelling of the buckling phe-

nomenon, which typically is too onerous for a full-structure analysis, or significant sim-

plifications and conservatism in structural analysis by beam models, followed by code-

based verifications. The DNN-DSM approach thus aims at overcoming these difficulties 

by combining mechanics-based, beam-element type matrix-stiffness approaches (like 

the well-known and widely used Direct Stiffness Method – DSM for the analysis of bar-

type structures, and more generally the finite element method – FEM) with data-driven 

models that make use of machine learning methods (such as Deep Neural Networks, 
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DNN). The latter are to be trained on large datasets of “synthetic structural tests” to pre-

dict the non-linear, coupled stress-displacement fields of structural components. As a 

result, a hybrid structural simulation technique is developed, in which a highly efficient 

beam-theoretical FEM element is modified and augmented by machine predictions of its 

non-linear tangent stiffness and load-deformation/moment-rotation paths. This in turn 

helps hugely increasing the accuracy of structural designs for steel structures, avoiding 

the significant over-conservatism produced by traditional structural design methods, 

while maintaining a level of computational efficiency suitable for industrial practice. 

The present thesis is to be seen as an extended exploration of both the motivation and 

the feasibility of the described DNN-DSM approach. It takes the mechanically well-un-

derstood case of the local instability and non-linear behaviour of hollow section com-

pression members and beams as an application example and develops the method up to 

the level of a demonstrator for this case. It makes use of recent experimental results from 

literature and ETH’s Chair of Steel and Composite Structure’s own work as a basis for 

the development of numerical (GMNIA) models, which in turn are used as the main 

source of data for the DNN training of non-linear stiffness matrix terms. The trained DNN 

stiffness predictors were then integrated in a standard, 2D DSM formulation and used to 

carry out validation simulations: by applying the developed method in the recalculation 

of stub column and beam tests, the potential and general feasibility of the method could 

be demonstrated, while the remaining difficulties and significant remaining work to 

bring the method to greater maturity and reliability, as well as to advance it to further 

application cases, was also made clear.  

Further publications on current developments are on the way. All references, required 

data sets and python codes will be published at “SciML4StructEng_Repository” 

(https://sciml4structeng.github.io/Repository/), fostering the dissemination of data 

sets for structural engineering to allow the prototyping, development and benchmark 

testing of scientific machine and deep learning algorithms.  
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9.2 Main	contributions	and	conclusions	

This section summarizes the primary conclusions and contributions of the research car-

ried out in this thesis, thereby indicating the relevant chapters and sections.  

Overview	of	current	design	methods,	Chapter	2: An overview of traditional design 

approaches in structural engineering was given, pointing out the current advanced anal-

ysis methods with background information on their development. A special attention is 

set on the AA-CSM (advanced analysis continuous strength method described in Section 

2.5) developed by Fieber [67], generally an extension of the well-known CSM approach, 

making use of beam finite elements and CSM based strain limits. The method develop-

ment included calibrated analytical formulas for calculating buckling half-wavelengths, 

used to average strains over a critical local length, e.g. to better account for system re-

distributions. The analytical length formulations were used for investigations in Section 

5.3, for the assessment of local buckling lengths in own finite element shell based mod-

els.  

Limitation	of	current	design	methods	and	novel	approaches,	Section	3.1,	Section	

3.2:	An overview is given on the advantages and disadvantages of current advanced 

analysis methods. Apart from different method inherent limitations, all approaches have 

in common the use of overall strength/strain curves for the assessment of instability 

cases with buckling knock-down factors, which rely on the calculation of a relative slen-

derness linked to FE modelling and linear buckling analysis. The role of the slenderness 

determination is further evaluated exemplary, using three different finite element mod-

els to assess their impact on the CSM design procedure. This hypothetical example illus-

trates that the modelling approach can have a significant impact on the subsequent 

cross-section capacity, especially in slender regions. Despite current efforts to standard-

ize design by finite element analysis, i.e. to provide appropriate modelling assumptions 

for practice, the modelling of cross-sections and structures will remain a major error-

prone hurdle. Finally, machine learning and deep learning are introduced as a new ap-

proach in structural engineering. Some of the current trends in deep learning are pre-

sented and reference is made to related projects in the literature.  
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Formulation	of	the	main	research	gaps,	Section	3.3:	Data	development	form	FEM	sim‐

ulations: This point involves the core idea of using precise finite element models, which 

are calibrated against tests, and perform non-linear advanced analysis (GMNIA) for de-

sign purposes (design by analysis). Parametrized models are often used to make analyt-

ical inferences about the design formulation based on analytical expressions. However, 

the FE models herein are used in non-linear simulations to provide the necessary data 

sets for the training of DNN models, which forms the unique character of this data driven 

approach. Representation	of	the	inelastic	buckling	behaviour	of	thin‐walled	steel	members	

through	beam‐element	matrices: The idea to use beam finite elements in advanced anal-

ysis is not necessarily new, as shown by Fieber [67], but involved inherent strain limit 

calculations as a break criterion in the design analysis. Also, limited to the area in the 

pre-buckling range, this method does not account for redistributions due to the stiffness 

losses in post-buckling. The proposed method is completely independent of reached 

strain limits, taking into account the whole load-deformation/moment-rotation behav-

iour through the prediction of incremental tangent stiffnesses and its incorporations in 

a DSM workflow. Secondary	knowledge	gain	on	the	behaviour	of	steel	members: This re-

search gap tackles the idea to increase knowledge from present data with ML based 

method and expending those patterns to solution improvements.  

Fundamental	background	on	ML	topics,	Chapter	4: A brief introduction with selected 

theoretical background to machine and deep learning is presented. The main goal was 

to give the reader an overview some existing methods in the general content of machine 

learning. A gentle introduction to deep learning provides the necessary understanding 

for the methods used in Chapter 6 of this theses.  

Benchmark	modelling	 from	 the	Hollosstab	project,	Section	5.1	and	Section	5.2:	

This sections provide the evaluation of the finite element shell based models, used for 

the development of the data sets for Chapter 6. The experimental program, the per-

formed non-linear shell finite element simulations and the subsequent calibrations to-

wards parametrized numerical models were presented. This process provides the gen-

eral assessment of finite element model assumptions, i.e., assumed cross-section geom-

etry, FE model discretization, implementation of the non-linear material model.  
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Investigations	on	buckling	half‐wavelengths,	Section	5.3: Investigations based on 

actual 3D surface scans of the specimens from the Hollosstab project were used in pre-

developed procedures, to assess the FE model behaviour according to different imper-

fection shapes. This procedure involved Fourier series expansion, with the idea to de-

compose scanned imperfections by sine and cosine waves of different lengths and am-

plitudes, helping recognize the imperfections with the most influence on the buckling 

behaviour. Above all, a strong dependence of imperfections on the moment-rotation be-

haviour was obtained, although only a limited number of Fourier coefficients is needed 

to mimic the “real” behaviour. Additionally, use was made of 3D surface scans of speci-

mens from the Hollosstab project, to assess and compare the measured buckling lengths 

from GMNIA simulations with buckling half-wavelength formulations from [67]. As a 

conclusion, the local buckling lengths, which are equal to the member lengths in the FE 

models, were set equal to the larger dimension of the profile height or the width, in each 

case for compression and bending.  

Data	pre‐processing,	Section	6.1: The general procedure from the FE simulation to 

data extraction was presented, explaining the automated workflow through several py-

thon scripts. This step was crucial for the general method development regarding the 

time management. Reading out the data manually would have taken far too long, as the 

19462 Abaqus simulations, produces around 5.300.000 individual calculations steps, 

which had to be extracted. This procedure involved several attempts, since the parame-

ters were changes throughout the development, leading to revised simulations. 	

Data	post‐processing,	Section	6.2: A high focus was set on the topic of feature engi-

neering. Investigations on data structure showed that the data density (relative distance 

between calculated increments) had a major influence on the prediction accuracy. The 

split of the data sets into pre- and post-buckling regions showed a big positive impact on 

the predictions. Further potential toward dimensionality reduction performing PCA con-

siderations was identified. Important features, using Random Forest Regressor [187] 

and XGBoost Regressor [183], were identified and used for DNN model predictions. The 

overarching goal was to reduce the dimensionality and speed up the learning process. 	
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Investigations	on	DNN	model	optimization,	Section	6.3: Hyperparameter tuning was 

performed involving 193 different training runs with a set of changing parameters. Ulti-

mately, a DNN model was presented, being relatively small with only 4 hidden layers 

and the amount of required neurons in each layer between 9 and 27. The model accuracy 

for the prediction of load dependent tangent stiffnesses was estimated between r2 = 0.96 

and r2 = 0.99. The overall accuracy for the predicted cross-section accuracy was around 

r2 = 0.99.  

DNN‐DSM	implementation,	Chapter	7: First, background information on the general 

procedure of the DSM (direct stiffness method) is given. The DNN-DSM approach is fur-

ther implemented for the case of compression and bending separately, describing the 

incremental workflow throughout the predictions for the pre- and post-buckling range. 

At this stage of implementation, the two load cases are predicted independently and 

their mutual influence is accounted for in the sense of a DNN prediction. However, to 

simplify this limitation and still being able to account for interaction effects, an N-M in-

teraction formulation was implemented based on Liew and Gardner [108] To account 

for Th.2.Ord. effects, the geometrical stiffness term was added to the method using the 

Taylor series approximation.  

Method	validation	against	experimental	results	and	simulations,	Chapter	8: The 

general DSM implementation was first validated against existing software. The results 

showed a very good agreement with the software Cubus [297] with maximum deviations 

around 0.3%. Theory of second order effects were evaluated in the elastic range and 

show a good agreement with analytic considerations.  

Subsequently, the model validation is carried out by comparing the non-linear DNN-DSM 

load-deformation predictions with numerical analyses using shell-element models, with 

otherwise similar assumptions regarding (nominal) material and imperfection defini-

tions. Finally, the DNN-DSM predictions are compared against physical test results from 

the literature or the Hollosstab test series, with the aim of assessing the capability of the 

method to make predictions in parameter ranges that are outside of the immediate train-

ing range. The results confirm the viability and potential of the DNN-DSM approach, 

while also highlighting the need for further developments before maturity of the method 

is reached.  
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9.3 Outlook	on	Further	Research	Topics	

The presented thesis introduces a novel data driven method to account for non-linear 

effects in thin-walled structures, while using classic, 4 or 6 DOF beam element analysis. 

Its potential versus traditional and advanced FEM-based design methods was demon-

strated in this thesis, but will have to be developed in further studies. Areas of future 

research are presented in the followings. 

i. Exploration	of	 further	deep	 learning	models/architectures:	The proposed 

DNN models are capable of predicting the non-linear incremental tangent stiff-

ness with a high accuracy. However, the used feed forward network architecture 

has the disadvantage that the predictions are simply made on the absolute defor-

mation/rotation, without the information of previously predicted steps. This can 

lead to unreliable predictions in areas with very small incremental steps, typi-

cally around the areas of the maximum load bearing capacity and the post-buck-

ling region. During the evaluation process of Chapter 8, oscillation in the predic-

tions was observed in some cases. An example of such prediction is illustrated in 

see Figure 9-1 a). Such prediction inconsistencies could be solved by using recur-

rent neural network structures [298], ranging from Long Short Term Memory 

(LSTM) [299] to Gated Recurrent Unit (GRU) Networks [300]. This strategy is cur-

rently in the development and will be presented in future publications.  

ii. Prediction	sensitivity: Prediction sensitivity was evaluated exemplarily for one 

profile in Section 8.2.3, by varying different input parameters, which appeared to 

be suitable in the framework of this thesis. However, the same procedure should 

be repeated in a more parametrized manner, in order to evaluate the overall sen-

sitivity and therefore the safety of the predictions.  

iii. Solving	prediction	inconsistencies:	The above mentioned problem is also affil-

iated with a specific inconsistency in the prediction of the maximum forces/mo-

ment, shown in Figure 9-1 b) for one local element and equal rotation at both 

ends. The black dashed line shows the GMNIA simulation on which the DNN 

model was trained on, the red dotted line the corresponding prediction. The trig-
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gering models, which initiate the switch between pre- and post-buckling are ini-

tially trained on the actual GMNIA results (dashed line). While predicting the ro-

tation based tangent stiffness and back calculating the moment-rotation curve 

(red dotted line) it might happen, that the point is reached where post-buckling 

should start (green vertical line) but is not triggered because of moment being 

lower than the triggering threshold. Thus, the prediction are continued for the 

pre-buckling range until the limit value is reached (red vertical line). This might 

affect the overall behaviour, especially for compact cross-sections with pro-

nounced plastic plateaus. The onset of post-buckling might be too late, therefore 

lead to a wrong non-linear behaviour.  

 

Figure 9-1: Mismatch problematic, a) oscillation in peak load area; b) mismatch of the load bearing capac-
ity 

iv. Inclusion	of	different	section	shapes:	One of the limitations of scope of this the-

sis is the exclusion of out of plane stability effects, such as lateral flexural and 

torsional buckling. This led to the current choice of SHS/RHS profiles as a suitable 

first validation object. However, future developments of the approach should in-

corporate open profiles, such as I-shaped, C-shaped or Z-shaped sections. It is be-

lieved that the method could be attractive both for general design of standard 

sections, but perhaps even more so for manufacturers and designers of highly 

thin-walled structures, i.e., customized cold-formed cross-sections e.g. in high-
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bay warehouse structures, as customized analysis tools could be trained on spe-

cific, proprietary section types and design tools developed accordingly.	

v. N‐M	interaction	implementation:	For the purposes of load-displacement pre-

diction, the load cases investigated are currently limited to pure compression or 

pure bending only. All cases in between are not considered, therefore need to be 

interpolated through interaction formulations. In the next steps, the data set will 

be expanded to combined load cases with additional GMNIA simulations, so that 

an interaction can be accounted for directly in the prediction process.  

vi. Prediction	of	coupled	non‐linear	stiffness	terms:	The current limitation in the 

implementation of the DNN-DSM includes linear beam stiffness coupling terms. 

Ultimately, it is planned to make use of ML approaches such as Deep Neural Net-

works and its variants to predict the coupled, non-linear stiffness terms appear-

ing in stiffness matrices when geometric as well as material nonlinearities ap-

pear. This task is graphically illustrated in Figure 9-2. The corresponding data 

development and feature engineering to be able to train a DNN for this prediction 

task is a key part of the research work plan and will require a high degree of en-

gineering and computational effort. The results to be obtained from this task, spe-

cifically from the corresponding parameter sensitivity analysis and feature engi-

neering, extend beyond the training of DNN and are expected to give deeper in-

sight into the mechanics underlying elasto-plastic instabilities of steel sections.  

 

Figure 9-2: Illustration of the coupling terms for a beam element 
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vii. Software	development:	The current code implementation level of the DNN-DSM 

is still in a preliminary state at the end of this thesis work. It generally lacks of a 

dynamic object oriented code basis and needs to be revised in terms of a better 

and computationally more economical performance. In the course of further 

method development, it is planned to extend this method to global imperfections 

for in and out of plane cases, therefore, enabling a 3D implementation and assess-

ment. A possible schematic representation of a future software workflow is given 

in Figure 9-3.  

 

Figure 9-3: Schematic and simplified representation of the envisioned DNN-DSM Software workflow 
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viii. Validation	of	 the	DNN‐DSM	 approach	 through	numerical	 and	 large	 scale	

tests	of	a	sample	structure:	The implementation of the DNN-DSM is validated 

against test results from literature in this thesis.  In these tests, only single beams 

or members were considered. It is of interest to validate the performance of 

larger models of full-scale structures (e.g. frames or trusses) experimentally. For 

example, taking inspiration from well-documented tests by Wilkinson & Hancock 

[301], a simple frame as shown in Figure 9-4 could be a suitable object of valida-

tion for the developed method; thereby, a frame structure made of high-strength 

steel hollow sections and locally reinforced to avoid failure in connections or 

other points of discontinuity (not covered by the new method) should be tested, 

in a minimum of two repetitions, for a minimum of two loading scenarios.  

 

Figure 9-4: Schematic representation of a possible type of structure to be tested in full-scale validation 
tests, partially adopted from [301] 
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