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Abstract

Both industrial- and consumer-oriented automation systems
are pervasively deployed. Although automation is not new,
current trends are causing clear security concerns. Buzzwords
such as IoT, smart, connected, and Industry 4.0 have two things in
common: they rely heavily on connectivity, and they introduce
significant new system complexity. The latter, in turn, has shown
to lead to clear increases in system vulnerability. In addition,
automation systems directly interact with the physical world, so
compromised devices can directly cause physical harm.

Based on the above, we identify connectivity and access to
the physical environment as two key risk inducers for automa-
tion systems, and we study both in this thesis. First, we discuss
how fine-grained access control over sensors and actuators can
isolate computational resources from their physical surround-
ings. Doing so significantly reduces the potential impact of a
compromised automation system. Second, we present network
segmentation methods that provide a high level of control over
who can access which network resource. Doing so allows for
access to connectivity to be tightly regulated, reducing the risk of
devices being compromised in the first place.

Part I — Sensors and Actuators Today, device-level protection
mechanisms for sensors and actuators are the norm, relying on
the trustworthiness of automation devices themselves. However,
this approach fails if devices are compromised. To mitigate the
effects of device compromise, our first contribution is SA4P:
Sensing and Actuation as a Privilege, a framework to decouple
automation infrastructure from its physical environment. When
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SA4P is deployed, even a device’s own software runtime must be
duly authorized each time it wants to sense or actuate. This de-
coupling is achieved by the inclusion of an on-board component
that physically guards sensors and actuators. Besides providing
strong privacy and safety guarantees, our approach motivates
developers to consider sensing and actuation as high-value re-
sources.

Our second contribution considers devices with always-
standby event-triggered sensors. Most significantly, smart speak-
ers and other voice assistants. Although such devices are becom-
ing increasingly ubiquitous, their always-standby nature con-
tinues to prompt significant privacy concerns. To address these,
we propose Kimya, a hardening framework that allows device
vendors to provide strong data-privacy guarantees. Concretely,
Kimya guarantees that sensor data can only be used for local
processing, and is immediately discarded unless a user-auditable
notification is generated. Kimya thus makes devices accountable
for their data-retention behavior.

Part II — Automation Networks We observe that the fundamen-
tal assumptions on which current network-based automation
defenses are based, are rapidly being invalidated by reality. We
present an analysis of both historical and new trends to sub-
stantiate this claim, and then introduce Tableau, a new zoning
architecture for operational technology (OT) networks. Tableau

increases network flexibility by flattening network structures
and by allowing the seamless integration of information tech-
nology (IT), OT, and cloud networks. Simultaneously, Tableau

facilitates modern security practices and is IEC 62443 compatible,
ensuring the continued secure operation of OT infrastructure.

Then, to provide protections beyond those of perimeter-based
network security, we present Hopper, an industrial automa-
tion security protocol that places each network host in its own
access-controlled nano segment, thus further minimizing the at-
tack surface introduced by connecting devices. Because Hopper

enforces nano segmentation in-fabric, it does not require routing
modifications. Especially when combined with Tableau, Hop-
per significantly reduces the exposure of automation devices.



Zusammenfassung

Sowohl industrielle als auch verbraucherorientierte Automa-
tisierungssysteme sind weit verbreitet. Obwohl die Automa-
tisierung nicht neu ist, geben die aktuellen Trends Anlass zu
deutlichen Sicherheitsbedenken. Schlagworte wie IoT, smart,
connected und Industrie 4.0 haben zwei Dinge gemeinsam: Sie
beruhen in hohem Masse auf Konnektivität, und sie führen
zu einer erheblichen neuen Systemkomplexität. Letzteres, hat
wiederum gezeigt, dass sie die Anfälligkeit von Systemen deut-
lich erhöht. Darüber hinaus interagieren Automatisierungssys-
teme direkt mit der physischen Welt, sodass kompromittierte
Geräte direkt physischen Schaden anrichten können.

Auf der Grundlage der obigen Ausführungen identifizieren
wir die Konnektivität und den Zugang zur physischen Umge-
bung als zwei zentrale Risikofaktoren für Automatisierungssys-
teme, welche wir beide in dieser Arbeit untersuchen. Zuerst
erörtern wir, wie eine fein abgestufte Zugriffskontrolle für Sen-
soren und Aktoren, die Rechenressourcen von ihrer physis-
chen Umgebung isolieren kann. Auf diese Weise werden die
potenziellen Auswirkungen eines kompromittierten Automa-
tisierungssystems erheblich reduziert. Danach stellen wir mod-
erne Netzwerksegmentierungsmethoden vor, die ein hohes Mass
an Kontrolle darüber bieten, wer auf welche Netzwerkressourcen
zugreifen kann. Auf diese Weise kann die Konnektivität streng
reguliert werden, was das Risiko einer Kompromittierung von
Geräten im Vorhinein verringert.

Teil I — Sensoren und Aktoren Heutzutage sind Schutzmech-
anismen, die sich auf die Vertrauenswürdigkeit der Automa-
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tisierungsgeräte selbst verlassen, auf Geräteebene für Sensoren
und Aktoren die Norm. Dieser Ansatz versagt jedoch, wenn
die Geräte kompromittiert werden. Um die Auswirkungen
einer Gerätekompromittierung zu mildern, haben wir in un-
serm ersten Beitrag SA4P (Sensing and Actuation as a Privilege)
entwickelt. SA4P ist ein Framework zur Entkopplung der Au-
tomatisierungsinfrastruktur von ihrer physischen Umgebung.
Wenn SA4P eingesetzt wird, muss sogar die eigene CPU eines
Geräts jedes Mal ordnungsgemäss autorisiert werden, wenn er
etwas messen oder steuern möchte. Diese Entkopplung wird
durch eine integrierte Komponente erreicht, die die Sensoren
und Aktoren physisch schützt. Unser Ansatz bietet nicht nur
starke Datenschutz- und Sicherheitsgarantien, sondern mo-
tiviert Entwickler auch dazu, Messungen und Ansteuerungen als
hochwertige Ressourcen zu betrachten.

Unser zweiter Beitrag befasst sich mit Geräten, dessen Sen-
soren ereignisgesteuert und immer in Bereitschaft sind. Dazu
gehören vor allem intelligente Lautsprecher und andere Sprachas-
sistenten. Obwohl solche Geräte zunehmend allgegenwärtig
sind, gibt ihr ständiger Bereitschaftszustand weiterhin Anlass
zu erheblichen Bedenken hinsichtlich des Datenschutzes. Um
diese zu beseitigen, schlagen wir Kimya vor, ein Härtungs-
Framework, das es Geräteherstellern ermöglicht, starke Daten-
schutzgarantien zu geben. Konkret garantiert Kimya, dass
Sensordaten nur für die lokale Verarbeitung verwendet wer-
den können und sofort verworfen werden, ausser es wird eine
vom Benutzer überprüfbare Benachrichtigung erzeugt. Kimya

gewährleistet somit, dass die Geräte für ihr Datenaufbewahrungsver-
halten Rechenschaft ablegen müssen.

Teil II — Automatisierungsnetzwerke Wir stellen fest, dass die
grundlegenden Annahmen, auf denen die derzeitigen netzw-
erkbasierten Automatisierungsverteidigungen beruhen, durch
die wandelnde Realität eingeholt werden. Wir präsentieren eine
Analyse sowohl historischer als auch neuer Trends, um diese Be-
hauptung zu untermauern, und stellen dann Tableau vor, eine
neue Zonierungsarchitektur für OT Netzwerke. Tableau erhöht
die Flexibilität von Netzwerken, indem es die Netzwerkstruk-
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turen abflacht und eine nahtlose Integration von IT-, OT- und
Cloud-Netzwerken ermöglicht. Zugleich erleichtert Tableau

moderne Sicherheitspraktiken und ist mit IEC 62443 kompati-
bel, sodass der sichere Betrieb von Betrieb der OT-Infrastruktur
gewährleistet ist.

Um einen Schutz zu bieten, der über den der Perimeter-
basierten Netzwerksicherheit hinausgeht, stellen wir Hopper

vor, ein Sicherheitsprotokoll für die Industrieautomation, das
jeden Netzwerk-Host in sein eigenes zugangskontrolliertes
nano segment platziert und so die Angriffsfläche, die durch
Verbindungsgeräte entsteht, weiter minimiert. Da Hopper

die Nanosegmentierung homogen in der Netzwerk-Fabric im-
plementiert, sind keine Änderungen an der Weiterleitung von
Paketen erforderlich. Insbesondere in Kombination mit Tableau

reduziert Hopper die Anfälligkeit von Automatisierungsgeräten
erheblich.
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To my parents.





1
Introduction

Automation plays a key role in modern society. In fact, as far
back as the steam age, automation has been an indispensable
component of technological development. Consider, for exam-
ple, the centrifugal governor shown in Fig. 1.1. This device can
automatically vary an engine’s throttle to keep it operating at
near-constant rotational speed.1 Without governors, steam en- 1 The governor was first

invented to regulate the
distance and pressure
between millstones in
windmills [72].

gines would not have been able to operate without permanent
human supervision.

Figure 1.1: A centrifugal
governor. As the rotational
speed increases, the balls
swing further outward,
causing the throttle valve
to be closed. The result is a
proportional control loop.

We have come a long way since those early days of automa-
tion. The steam engine has long been replaced by increasingly
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sophisticated motors. The same goes for the basic governor,
which has been superseded by electronic loop controllers which
can have hundreds, if not thousands, of parameters. Moreover,
relay logic and later programmable logic controllers (PLCs) al-
lowed complex logical operations to be fully automated.

Simultaneously, automation has left the factory and started
to enter our day-to-day lives. This too, started with rudimentary
devices (e.g., the washing machine), but has grown to highly
complex systems such as robot vacuums and voice assistants.

Both in and out of the factory, automation systems originated as
individual, fully isolated systems. Over time, these systems have
clustered together slowly and organically. Initially, clusters were
small and local, but today more and more systems are being con-
nected to the global Internet. In fact, we have reached a point
where systems are not only connected to the Internet, but often
critically rely on remote services to perform their functionality.
The latter is especially pronounced in consumer-oriented prod-
ucts, such as smart speakers or other home automation systems.
In such systems, a cloud-centric design typically offers lower
development costs, and a shorter time to market.

Combining the ever-increasing connectivity of automation
products with the general vulnerability of computer systems,
results in a myriad of security risks. These are further exac-
erbated by an automation system’s inherent ability to interact
with the physical environment; whereas a compromised desktop
computer might result in financial or reputational losses, a com-
promised control system can potentially lead to direct physical
harm.

The number of networked automation systems is ever increasing.
Moreover, such systems are often critical in nature, e.g., because
they are deployed in a critical infrastructure, or even simply
because of their pervasive nature. Therefore, robust security
mechanisms for automation systems are continually gaining im-
portance. On the surface, it might seem that modern automation
systems are best secured using the same methods used to secure
general purpose computation systems. However, such techniques
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not only run the risk of being mismatched to the problem, they
can also overlook defense opportunities that are unique to the
automation world. Therefore, this thesis focuses on defenses
specifically tailored to automation systems.

With this approach in mind, we make two observations. First,
the principal difference between automation systems and gen-
eral purpose computers, is the former’s ability to interact with
the physical world. Although this capacity is required for au-
tomation devices to perform their tasks, it also poses significant
danger if a device is compromised. Ideally, devices would only
be able to access the physical world to execute their legitimate
tasks. Second, although automation devices are not new, secu-
rity breaches related to them have witnessed a significant rise
in recent years, mainly due to enhanced device connectivity.
Thus, reducing an adversaries ability to abuse connectivity is a
promising defense avenue.

Having identified (i) access to the physical world, and (ii) net-
work connectivity as critical risk inducers above, we dedicate one
part of this thesis to each topic.

In Part I, we present mechanisms that regulate the access an au-
tomation device has to the physical world. In today’s systems,
automation devices are typically able to access their sensors
and actuators at will. That is, no policies to limit their ability
to interact with their physical environment are (or can be) en-
forced. Instead, access control is typically performed at the de-
vice (Fig. 1.2, 1 ) or platform (Fig. 1.2, 2 ) level, However, this
means that if a device is compromised, the physical environment
is unavoidably at risk. That is, the compromised device may
violate the physical world’s integrity (by performing malicious
actuation), or confidentiality (by using sensors to spy).

App. A App. B

Cloud platform

IoT Device

CPU

Sensor Actuator

3

1

2

Figure 1.2: Typical IoT access
control enforcement levels.

In this thesis, we present an alternative approach: we place ac-
cess control mechanisms between the computational elements of
automation devices and their sensors and actuators (Fig. 1.2, 3 ).
Doing so isolates the computational elements from the physical
world. Given the typical usage patterns of consumer automation
products, this approach most naturally fits the consumer setting.
Therefore, we focus Part I on consumer devices.
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To practically achieve isolation between the computational
and the physical worlds, Chapter 3 introduces the Sensing and
Actuation as a Privilege (SA4P) framework, the key compo-
nent of which is the Peripheral Guard or PEG. The PEG is a
small-footprint component that functions as an on-device policy
enforcement point, allowing a remote entity to determine when
a device can access its sensors or actuators. Besides providing
strong privacy and safety guarantees, this approach motivates
designers to consider sensing and actuation as high-value re-
sources rather than as readily available commodities.

Chapter 4 further extends this approach by considering
always-standby, event-triggered devices, e.g., smart speakers.
For such devices, a natural paradox arises: they should not be
able to spy on the environment, but should also always be sens-
ing for events. Put in the more-relatable terms of smart speakers:
they should not be able to listen to our conversations, but should
also always be listening to hear if they are addressed (e.g., “Hey
Alexa!”). Here, gate-like methods—where resource access is ei-
ther granted or restricted—fall short: for the device to function,
sensor access should continuously be granted, and hence, covert
snooping cannot be prevented.

To address the smart speaker paradox, Chapter 4 proposes
Kimya, a hardware-assisted containerization mechanism. On a
Kimya-enabled device, application code does not, by default,
have access to any protected sensing or actuation resources.
However, the application can run arbitrary routines in an isolated
and amnestic container. These routines have full access to the
protected resources, but can neither exfiltrate this data (isolated),
nor store it for longer than a predefined duration (amnestic);
unless they generate an auditable notification. This notifica-
tion can take multiple forms. Possible options include a visual
indicator (e.g., a LED), or a cryptographically protected machine-
to-machine message. In the latter case, the Kimya enforcement
mechanism can simultaneously function as a PEG, allowing
external access control policies to be enforced on top of the prop-
erties Kimya provides.

The second line of work covered in this thesis focuses on net-
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work connectivity. As discussed above, ever-increasing connec-
tivity is the primary catalyst for the security incidents involving
automation products. Therefore, managing connectivity is a
promising avenue to mitigate vulnerabilities in automation sys-
tems, and we dedicate Part II of this thesis to such efforts.

Whereas Part I focuses on consumer settings, network-based
solutions are most suitable in industrial settings. The reason
for this is threefold: (i) industrial networks are more complex,
providing more opportunities for network-based defenses; (ii) in-
dustrial networks are managed by trained personal, requiring
less focus on auto-configuration; and (iii) industrial control loops
function at very small timescales and typically run continuously
for significant portions of the day, reducing the relevance of iso-
lating industrial controllers from the physical world. Therefore,
Part II focuses on industrial settings.

Concretely, in Chapter 5 we present an overview of how cur-
rent automation networks are structured. We then discuss how
new and ongoing trends are challenging today’s practices. Par-
ticularly, we argue how these trends are gradually invalidating
the fundamental assumptions on which the security properties
of today’s automation networks are based, thereby leading to an
erosion of these security properties.

To address this, Chapter 6 explores how networks can be
restructured based on updated assumptions and modern tech-
nologies. We do so by proposing Tableau, a flat zoning archi-
tecture for automation networks, which not only facilitates more
flexible zoning than current solutions, but also aims to simplify
network management and increase security. Tableau allows
for the seamless integration of plant, edge, corporate, and cloud
networks, while simultaneously facilitating modern security
practices.

Being a zoning architecture, Tableau provides its protec-
tions at the network or zone boundaries. To extend these pro-
tections to intra-zone traffic, Chapter 7 introduces the concept
of per-device nano-segmentation, along with Hopper, a practical
nano-segmentation protocol. As the name implies, in a nano-
segmented network, each individual device is placed in its own
virtual nano segment. Contrary to classical zoning mechanisms,



20 piet de vaere

Hopper enforces segmentation in-fabric, and therefore does
not require modifications to packet routing. This allows Hop-
per to be deployed without introducing network bottleneck or
single points of failure. Hopper achieves segmentation by allow-
ing each network node to verify that each packet it processes is
part of a desired flow and was generated by an authorized host.
Packets that fail any of these checks are dropped en route.

Although Parts I and II focus on consumer and industrial
settings, respectively, all contributions presented in this thesis
can fundamentally be applied to both settings. Moreover, SA4P,
Kimya, Tableau, and Hopper are composable and can be
deployed simultaneously on a shared set of devices.

1.1 Related Publications and Contributors

This thesis is the synopsis of a multi-year effort and is based
on multiple academic publications. Various collaborators have
contributed to its content over the years. My advisor, Prof. Dr.
Adrian Perrig has continuously provided his expertise and in-
sight along the way. He deserves partial credit for the entire
body of this thesis. Thank you, Adrian.

Chapter 3 is based on a paper (under submission) that is
co-authored by Prof. Dr. Gene Tsudik and Felix Stöger. Gene’s
insights and expertise contributed significantly to the protocol
and Peripheral Guard designs. Felix provided the system imple-
mentation and performed the benchmarks. He also contributed
extensively to the early design and exploratory phases of the
work.

Chapter 4 is based on a publication at the upcoming 2023

USENIX Security Symposium [47]. [47] Hey Kimya, Is My Smart
Speaker Spying on Me?
Taking Control of Sensor
Privacy Through Isolation
and Amnesia, De Vaere and
Perrig (2023)

Both Chapters 5 and 6 are based on the Tableau paper pub-
lished at the 2021 CRITIS conference [46]. Franco Monti’s ex-

[46] Tableau: Future-Proof
Zoning for OT Networks,
De Vaere et al. (2021)

tensive experience with real-world industrial automation net-
works was indispensable for the analysis presented in Chapter 5.
Claude Hähni’s intricate knowledge of the Mondrian zoning
system [92] proved highly valuable to shape the Tableau archi-

[92] Mondrian: Comprehensive
Inter-domain Network Zoning
Architecture, Kwon et al.
(2021)

tecture described in Chapter 6.
Chapter 7 is based on the Hopper paper published at ASIA-
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CCS 2022 [49]. As part of his master thesis, Andrea Tulimiero [49] Hopper: Per-Device Nano
Segmentation for the Industrial
IoT, De Vaere, Tulimiero, and
Perrig (2022)

provided the embedded Hopper implementation and designed
and performed the embedded benchmarks. His efficiency at
these tasks was unparalleled.





2
Background

2.1 Safety and Security in Automation Networks

In automation systems, a distinction is made between system
safety and security. As automation systems interact with the
physical world, a misbehaving system can lead to direct phys-
ical damage or even harm. For example, two system compo-
nents could collide with each other, chemicals could be mixed
in explosive combinations, or an operator could suffer physical
harm. The study of such misbehavior, its origins, and its conse-
quences is known as functional safety, operational safety, or simply
safety [62]. Many different aspects can affect safety, including, [62] Cybersecurity of Industrial

Systems, Flaus (2019)but not limited to, equipment failure, operator error, natural
disasters, and sabotage.

Contrary to functional safety, the study of security explic-
itly considers the involvement of a malicious actor know as the
adversary or attacker. The adversary actively attempts to com-
promise the system under consideration. In principle, any entity,
both internal and external, can act as an adversary. An adversary
can have the following goals:

Affecting confidentiality, e.g., by exfiltrating sensitive system
parameters or user data;

Affecting availability, e.g., by shutting down the system; and

Affecting integrity, e.g., by introducing artificial latency into
the automation loop thereby reducing product quality, or by
enrolling a device into a botnet.



24 piet de vaere

Depending on the adversary’s goals and actions, a security
incident might result in a safety incident, e.g., if the adversary
circumvents safety systems to create an unsafe situation. In this
thesis, we will primarily consider information security, i.e., the
security of information systems. Whereas in traditional infor-
mation systems the properties of the CIA triad are typically
prioritized as they appear (i.e., first confidentiality, then integrity,
and then availability), this prioritization is not equally clear in
automation systems. In fact, in industrial automation settings the
priorities are usually reversed: availability first, then integrity,
and confidentiality last. However, for consumer settings this
does not always hold. Consider, for example, a camera-equipped
smart vacuum cleaner. Most home owners would likely prefer
the vacuum cleaner malfunctioning over the camera stream’s
confidentiality being compromised.

2.2 TrustZone on Cortex-M

TrustZone on Cortex-M introduces two new processor security
states: secure and non-secure [16]. These states are orthogonal [16] ARM v8-M Security

Extensions: Requirements on
Development Tools, ARM Ltd.
(2019)

to traditional processor states such as thread vs. handler mode
and privileged vs. non-privileged mode. The active security
state is determined by the instruction pointer and a security map
which partitions executable addresses into secure and non-secure
regions.

Beyond executable memory, other microcontroller unit (MCU)
resources are assigned a security attribute. Resources marked as
secure are only accessible to code running in the secure state. Re-
sources marked as non-secure are accessible to all code. Because
of this separation, the security states are also referred to as the
secure and non-secure worlds.

There are two principal ways to configure which resources
are placed in which world. First, the Cortex-M core is extended
with a secure attribution unit (SAU). The SAU is functionally
similar to a memory protection unit (MPU) and can be used
to configure specific memory regions as secure or non-secure.
Second, in order to extend the concept of security states beyond
the core, the data bus is extended to carry the security state of
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each transaction. Individual peripherals can either be made
TrustZone-aware, or must be protected by a security gate, as
shown in Fig. 2.1 [16]. Other bus masters (i.e., direct memory [16] ARM v8-M Security

Extensions: Requirements on
Development Tools, ARM Ltd.
(2019)

access (DMA) controllers) must also indicate the security state
of their bus requests. Further relevant for our work is that the
MPU is duplicated, with one instance being active when the
core is in the secure state, and the other one when the core is in
the non-secure state [19]. Both instances can be independently [19] Introduction to the

ARMv8-M architecture, ARM
Ltd. (2017)

configured.

Cortex-M

MPU SAU DMA Slave

DMA Master
GPIO

è TZ Gate

SRAM

è TZ Gate

I2C

TZ-aware

Not TZ-aware

Bus master

Bus slave

Data bus

TZ security state

Figure 2.1: A high level
overview showing how
TrustZone (TZ) on Cortex-
M extends beyond the
processor core.

Contrary to TrustZone for Cortex-A, there is no secure moni-
tor in the Cortex-M architecture. Transitions from the non-secure
world to the secure world are facilitated through jumps to
developer-defined secure gateway (SG) instructions, which pro-
vide a limited set of entry points into the secure world. Secure
functions can also make calls to the non-secure world. After
the non-secure function returns, control is then automatically
returned to the secure world. To speed up transitions between
the secure and non-secure worlds, some processor registers are
banked.

2.3 Mondrian Network Zoning

Mondrian [92] is a recent zoning architecture for enterprise net- [92] Mondrian: Comprehensive
Inter-domain Network Zoning
Architecture, Kwon et al.
(2021)

works that was motivated by the need for modern network mod-
els which is arising in cloud and hybrid-cloud deployments.
These new deployment scenarios are posing additional demands
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on IT security in large corporate networks. Traditionally, infor-
mation was processed within a single domain. Today, IT infras-
tructures are distributed across several heterogeneous systems
that all need to communicate with each other. This has lead to
increased complexity in the structure of IT networks, with a
myriad of systems and policies that need to be managed, kept
synchronized, and kept consistent. This is similar to what we
are currently experiencing in OT networks. Mondrian offers a
secure, flexible, and scalable network zoning architecture that
alleviates these issues. One notable property of Mondrian is its
capability to securely bridge geographically distributed, het-
erogeneous networks over untrusted infrastructure. As a result,
Mondrian opens the door for many interesting deployment
scenarios in which a highly secure and easy to manage zoning
architecture is required.

2.3.1 Mondrian Overview

Z3

Z2

Z1

TP Z3TP

WAN

Z1

Main Data Center Branch Site

Controller

Figure 2.2: Mondrian archi-
tecture overview.

Network Zoning with Mondrian In contrast to the current, often
highly-complex organization of network zones, Mondrian parti-
tions the network into a collection of flat zones. As illustrated in
Fig. 2.2, each of these zones is connected to a designated security
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gateway called the transition point (TP). Placing zones adja-
cent to each other, only separated by the TP, simplifies today’s
network architectures in which traffic often needs to traverse
multiple layers to reach its destination. A logically centralized
controller provides a comprehensive management interface for
operators to orchestrate the network. Common tasks, such as
zone migration and zone initialization become much easier, as
the network configuration is centralized on a single system. TPs
ensure source authentication, zone access authorization, and
ingress/egress filtering for all connected network zones. Using
the concept of an inter-domain transit zone, Mondrian enables
network zoning across the boundaries of local networks. This is
particularly useful for enterprises that operate geographically
distributed branch sites or leverage the cloud as part of their
infrastructure.

Flexibility and Scalability The core of Mondrian is the logically
centralized controller, presenting a single interface through
which network operators manage their network. Sites, zones
and transition policies can all be centrally managed through this
interface. The controller then takes care of distributing these
policies to the TPs, which enforce the policies at the individual
premises.

Supporting fine-grained zone transition policies offers great
flexibility for operators to cover a diverse set of use cases. The
centralized interface simplifies today’s complex infrastructure
with potentially many systems and their respective configura-
tions that need to be updated for every change to the network.
As a result, Mondrian is less susceptible to configuration errors
and makes policy reviews more efficient. In concert, these prop-
erties significantly enhance management scalability.

Deployability Mondrian supports multiple deployment methods
that can be used in conjunction with each other. The primary
method uses TPs in the form of all-in-one gateways which per-
form routing, packet authorization, and tunneling, all without
requiring any changes to end hosts. This method reduces the
number of security middleboxes that need to be maintained in
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Figure 2.3: On the left: a
network topology using
dedicated links to connect
each pair of zones. On the
right: The same network
organized in a hub-spoke
configuration using a transit
zone as central element.

networks. When using this method, Mondrian can also assume
a supportive role in which traffic is prefiltered before it gets han-
dled by security middleboxes.

Alternatively, Mondrian can be deployed purely in software
on commodity computing devices. Similar to a VPN, this allows
individuals to remotely access network assets from their per-
sonal devices in a secure and authenticated manner. When using
this method, a TP runs as virtual gateway on a computer and
tunnels packets from the device to a remote TP in the enterprise.
In contrast to a traditional VPN, a software TP is part of the reg-
ular Mondrian deployment and seamlessly integrates with the
rest of the architecture.

2.3.2 Mondrian in Detail

Inter-domain transit zone One of the main building blocks that
allows Mondrian to achieve the properties introduced above, is
the concept of the inter-domain transit zone. Transit zones are
commonly used within local networks to facilitate zone tran-
sitions. Concretely, they are special zones that do not contain
any end hosts, but merely exist to interconnect other zones. Put
differently, a transit zone is the hub in a hub-spoke network
topology, providing connectivity between all the other zones.
Hub-spoke configurations allow physically separated network
zones to access shared services without the need for dedicated
links between each pair of zones (see Fig. 2.3). Mondrian scales
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transit zones to inter-domain networks. The inter-domain transit
zone spans across a wide area network (WAN), connecting the
branch sites of enterprises. At every site, local zones are directly
attached to the inter-domain transit zone, thus creating a collec-
tion of disjoint, parallel network zones. Such a network requires
packets to traverse fewer security middleboxes as all zone transi-
tions can be checked already at the border of the inter-domain
transit zone. Inside the transit zone, the Mondrian protocol
is used to transport zone information across the inter-domain
transit zone, allowing remote destinations to easily verify zone
transitions, even if the the underlying network is untrusted.
Additionally, the Mondrian protocol is independent from the
internal protocols used at each site, which means it is able to
bridge networks that operate on otherwise incompatible internal
protocols.

Transition points & controller At each network site, Mondrian
deploys a dedicated security gateway, called the transition
point (TP). Network zones (subnets) at every branch site are
directly connected to the TP, creating a flat network structure
(see Fig. 2.2). This means that all inter-zone traffic needs to pass
at least one TP. Together, TPs span the inter-domain transit zone.
The main task of a TP is twofold: (i) it ensures that traffic does
not violate the zone transition policy. For that, TPs check all zone
transitions against a policy they receive from a logically central-
ized controller. On an abstract level, this transition policy is a
matrix which defines for each ordered pair of zones (A, B) which
traffic is allowed to flow from zone A to zone B. The controller
has the full view over the entire distributed network and makes
sure that all sites operate with the latest security policy. (ii) For
zone transitions that cross the inter-domain transit zone, the
second task of TPs is to attach cryptographically secured zone
information to each packet before encrypting and forwarding
the packet over the WAN. This way, Mondrian achieves integrity
and confidentiality of information being sent over a potentially
untrusted network. Because the complete original packet, includ-
ing headers, is encrypted, internal addresses are prevented from
leaking. Upon receiving a packet, the remote TP can verify the
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the Mondrian encapsulation.
For packets traversing the
inter-domain transit zone, a
Mondrian header including
a zone authenticator is
attached to the encrypted
original IP packet (EIP).
Finally, the Mondrian packet
is wrapped in an outer
Layer-3 header.

zone information, decrypt the packet and, if all checks succeed,
forward the packet into the local network. The latency overhead
introduced by each TP is less than 5 µs [92]. [92] Mondrian: Comprehensive

Inter-domain Network Zoning
Architecture, Kwon et al.
(2021)Packet life-cycle The life-cycle of a packet in a Mondrian network

is as follows.

1. An end host in a source zone ZS sends an IP packet towards
an end host in a destination zone ZD by creating a regular IP
packet with the usual source and destination addresses.

(a) If ZS = ZD, the packet is delivered directly by the Layer-2
protocol.

(b) Otherwise, the packet needs to be forwarded via a Mon-
drian TP.

2. The TP analyzes the packet, retrieving ZS and ZD based on
the source and destination address of the packet, ensuring
that the zone transition ZS to ZD is allowed.

(a) If not, the packet is dropped.

(b) If yes, the packet is forwarded towards the destination.

3. Next, based on the destination address, the TP evaluates if the
packet is destined for an end host in the same branch site.

(a) If yes, the TP forwards the packet towards the destination
in the internal network.

(b) In case the destination is in a different network across the
inter-domain transit zone, the TP looks up the remote TP,
creates a cryptographic authenticator, encrypts the original
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IP packet, and encapsulates the encrypted packet together
with the Mondrian header in an outer Layer 3 header (see
Fig. 2.4). The exact outer layer depends on the protocol
used within the inter-domain transit zone. This packet is
then forwarded to the remote TP.

4. Finally, the receiving TP decapsulates the payload, verifies the
authenticator and, if all checks succeed, decrypts the payload
back into the original IP packet which it then forwards to the
destination inside the internal network.





Part I

Sensors & Actuators





3
SA4P:
Sensing and Actuation as a Privilege

3.1 Introduction

Specialized embedded devices of various types and uses have
made their way into almost every aspect of our lives. Commonly,
these devices are referred to as Internet of Things (IoT) devices,
and they differ from general-purpose computers (e.g., servers,
desktops, laptops, tablets, and smartphones) in that their pri-
mary purpose is to interact with their physical environment.
This can mean either sampling data from the physical world (i.e.,
sensing), or actively influencing that world (i.e., actuation).

With some IoT devices we interact directly (e.g., home au-
tomation), others are hidden to most of the population (e.g.,
factory automation). In either case, many of today’s smart de-
vices are an evolution of devices without (or with highly limited)
computational or communication abilities. Practical examples of
devices with historic, dumb, counterparts include light switches,
garage doors, and locks, but also PLCs, motor drives, and irriga-
tion pivots.

Regardless of their type, history, or purpose, IoT devices are
well known to pose privacy risks, e.g., through the leakage of
sensed data or actuation commands. Less well known are the po-
tential safety risks that can arise when sensing or actuation data
is spoofed or corrupted. Both type of risks are not imagined or
exaggerated; they are in fact very real, as demonstrated by nu-
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merous examples in the real world. In 2010 the Stuxnet malware
targeting the Iranian nuclear program was discovered [95]. In [95] Stuxnet: Dissecting

a Cyberwarfare Weapon,
Langner (2011)

2015 the Ukrainian power grid came under attack [191]. In 2016

[191] Inside the Cunning, Un-
precedented Hack of Ukraine’s
Power Grid, Zetter (2016)

the Mirai botnet targeted consumer devices at an unprecedented
scale [9]. There are also examples more directly relevant to con-

[9] Understanding the Mirai
Botnet, Antonakakis et al.
(2017)

sumers. For example, it has been shown that smart door locks
can be bypassed [13], and loose privacy policies for vacuum

[13] Nuki Smart Lock Vulnera-
bilities Allow Hackers to Open
Doors, Arghire (2022)

cleaners have lead to intimate pictures being leaked [68].

[68] Roomba testers feel misled
after intimate images ended up
on Facebook, Guo (2023)

Moreover, past work has shown that IoT attacks have the
potential to extend beyond what we are used to from attacks
on classical IT systems. Ronen et al. have shown that IoT at-
tacks have the potential to propagate without relying on clas-
sical network infrastructure, circumventing network-based de-
fenses [141]. Additionally, even seemingly innocent data leaks [141] IoT Goes Nuclear:

Creating a ZigBee Chain
Reaction, Ronen et al. (2017)

have the potential to pose serious privacy risks. For example, a
compromised humidity sensor can leak information about room
occupancy [70], and a compromised gyroscope signal can expose [70] Don’t Sweat Your Privacy:

Using Humidity to Detect
Human Presence, Han et al.
(2007)

a user’s location [116].

[116] Inferring User Routes
and Locations Using Zero-
Permission Mobile Sensors,
Narain et al. (2016)

The key characteristic of an IoT device is its ability to interact
with the physical world. These interactions take place through
the device’s sensing and actuation hardware peripherals. Today,
access control to those peripherals is typically enforced at the
device or platform level. That is, from an access control perspec-
tive, the entire device is considered to be a single, trusted, entity.
Access control enforcement and decision-making are then per-
formed either by the application code on the device itself, or by a
higher-level entity (e.g., a control hub or cloud platform). These
approaches work well as long as the device is not compromised
or otherwise malicious. However, if the device itself is infected,
device-, and platform-level approaches become ineffective; if the
adversary has a presence inside of the device, it is free to sense
and actuate at will, leaving the higher-level control mechanisms
powerless.

One approach to handle such situations, is to quarantine in-
fected devices, rendering them unable to communicate with
the external adversary. Approaches to detect infections include
network monitoring and remote attestation. Network moni-
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toring techniques aim to identify suspicious traffic patterns or
packet signatures. However, detection is usually not instanta-
neous, meaning that malicious peripheral use can have already
occurred. Moreover, network-based detection techniques are
probabilistic in nature, so an infected device could shape its traf-
fic to delay detection. Remote attestation schemes require close
integration with the device and its specific software version, are
typically resource intensive, and will only report compromised
devices after the fact. Moreover, all quarantine-based approaches
assume that an adversary relies on classical network infrastruc-
ture. When attacks are infrastructure-independent (i.e., because
the malicious code is self-contained, or because the attack uses
infrastructure-free communication [141]), quarantine is ineffec- [141] IoT Goes Nuclear:

Creating a ZigBee Chain
Reaction, Ronen et al. (2017)

tive.
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Figure 3.1: Conceptual SA4P
architecture. ´ indicates an
untrusted component.

Given the limitations of quarantine-based approaches, this
thesis introduces the use of peripheral-level access enforcement.
We present SA4P: Sensing and Actuation as a Privilege, an IoT
security architecture working at the sub-device level. As illus-
trated in Fig. 3.1, SA4P’s key feature is the placement of a Pe-

ripheral Guard (PEG) between a device’s software Runtime and
its sensing and actuating peripherals, thereby decoupling the
Runtime from the physical environment. The PEG is operated
centrally, by a deployment manager, a trusted entity that makes
all access control decisions for an IoT deployment. The deploy-
ment manager can run on a remote or a local server, e.g., a home
router. Together with the PEGs, the deployment manager effec-
tively constitutes a distributed reference monitor wherein a cen-
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tralized entity (the deployment manager) controls all physical-
world interactions occurring across an entire IoT deployment.

By default, the PEG disallows all sensor and actuator access.
Each time the code running on the device Runtime wants to in-
teract with the physical environment, it must first send a request
to the deployment manager. The main benefit of this approach
is its preventative nature: data that is not sampled cannot be
leaked, and attempted (yet not performed) actuation causes no
harm. In addition to allowing the deployment manager to make
fine-grained access control decisions, SA4P enables centralized
logging and auditing of all interactions with the physical world.

This centralized activity overview enables additional se-
curity mechanisms which are currently limited to individual
devices, to be utilized on a deployment-wide scale. For exam-
ple, 6thsense [153], which monitors sensor access patterns to [153] 6thSense: A Context-

aware Sensor-based Attack
Detector for Smart Devices,
Sikder, Aksu, and Uluagac
(2017)

detect adversarial activity, could be extended to observe cross-
deployment sensor access information. SA4P also supports work
on automated IoT privacy assistants [45], by providing a robust

[45] Personalized Privacy
Assistants for the Internet of
Things: Providing Users with
Notice and Choice, Das et al.
(2018)

and efficient mechanism to both collect sensor activity informa-
tion, and enforce user privacy policies.

In order for SA4P to be deployable in as many device classes
as possible, the PEG is designed to be lightweight and modular.
The former ensures compatibility with constrained environ-
ments, while the latter allows the PEG to be efficiently adapted
to individual deployment settings. Moreover, both the PEG’s
lightweight structure and its modularity facilitate formal verifica-
tion.

On devices with trusted execution environment (TEE) support
(e.g., those with ARM TrustZone), a PEG can be instantiated
with no additional hardware requirements. On simpler devices,
a stand-alone PEG component can be added. We provide imple-
mentations for both device types. Furthermore, because SA4P
is orthogonal to both RA and traffic monitoring systems, these
techniques can be combined with SA4P to achieve even higher
levels of security.
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3.2 Preliminaries

Devices The term “IoT” refers to a wide variety of devices,
ranging from tiny sensors and actuators to powerful indus-
trial controllers. In this chapter, we only consider devices that
interact with the physical environment. We exclude purely com-
putational or general-purpose devices, e.g., smartphones. Also,
although we aim for compatibility with as many device classes
as possible, some are simply too constrained for our purposes.
We use RFC 7228 [28] to define a set of minimum requirements [28] Terminology for

Constrained-Node Networks,
Bormann, Ersue, and Kerä-
nen (2014)

for targeted devices.
RFC 7228 lists six types of constraints for IoT devices:

• code complexity (i.e., flash memory size),
• size of state (i.e., size of RAM),
• processing power,
• user interfaces,
• connectivity, and
• available electrical energy.

In this work, we consider all devices that can:

• execute a simple state machine;
• store tens of bytes of persistent state;
• perform basic cryptographic operations;
• capture a user’s indication of intent (e.g., through a button

press);
• communicate with a central entity on a regular basis; and
• have enough energy to support the demands listed above.

The period of communication can range from days to tenths of
seconds, depending on the required security properties. Because
industrial applications tend to have a much stronger focus on
network security (rather than device security) than consumer de-
vices, we focus our design on consumer hardware. Nonetheless,
our approach is also applicable to industrial settings and de-
vices. Targeted device examples include: smart speakers, motion
sensors, CO2 sensors, door locks, and appliances.

Deployment context Although IoT devices are deployed in many
diverse settings, we focus on private or semi-private ones, such
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as:

1. private homes,
2. office spaces, and
3. hotel rooms and short-term private rentals (e.g., AirBnB).

In each such space, people have expectations of personal safety
and privacy. For example, a homeowner might want to be as-
sured that security cameras are disabled when they are home, or
that an adversary cannot turn on the stove when they are sleep-
ing. Similarly, participants of a sensitive meeting in a hotel room
want to ensure that the audio system is not snooping.

Deployment manager We assume that each deployment has a
trusted deployment manager. The deployment manager is a logical
entity that runs on a local or remote server, e.g., on an existing
home gateway. It acts on behalf of the primary user of the de-
ployment space (e.g., home owner, renter or hotel guest). The
precise implementation of the deployment manager is orthogo-
nal to this paper and is out of scope. We refer to prior work on
IoT policy management [137] and privacy assistants [94, 45].

[137] A Survey on Access
Control in the Age of Internet
of Things, Qiu et al. (2020)

[94] A Privacy Awareness Sys-
tem for Ubiquitous Computing
Environments, Langheinrich
(2002)

[45] Personalized Privacy
Assistants for the Internet of
Things: Providing Users with
Notice and Choice, Das et al.
(2018)

3.3 Adversary and Trust Model

Considering the deployment settings above, our adversary’s goal
is to access a sensor or an actuator without the user’s permis-
sion.

The SA4P trust model considers IoT device manufacturers to
be trusted, while the code running on IoT devices is untrusted.
We refer to this code—which comprises both application(s) and
OS/hypervisor—as the software runtime or just Runtime. Its un-
trusted status is motivated by (i) a myriad of vulnerabilities seen
in IoT devices [44, 139], and (ii) widespread use of third-party [44] A Large-Scale Analysis

of the Security of Embedded
Firmwares, Costin et al.
(2014)

[139] An Experimental Secu-
rity Analysis of an Industrial
Robot Controller, Quarta et al.
(2017)

software components [194]. Nonetheless, we assume that the

[194] One Bad Apple Spoils
the Barrel: Understanding the
Security Risks Introduced by
Third-Party Components in IoT
Firmware, Zhao et al. (2022)

manufacturer can add a (small) trusted component to the device,
either in the form of additional hardware, or take advantage of a
TEE already present on the device, e.g., ARM TrustZone. Given
its limited footprint, the code running inside this component is
trusted.
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We consider two types of adversaries:

The base adversary controls all network traffic to/from a device,
on all of its interfaces. It may be local, remote, or both. It can
arbitrary record, drop (including jam), modify, and insert
packets. Moreover, it has control over the device’s application
code, obtained either through an exploit, or through infection
at production or deployment/provisioning time. However, it
does not have physical access to the device.

The non-invasive physical adversary has all capabilities of the base
adversary. Additionally, it has physical access to the device.
It can use the device’s standard interfaces, e.g., press buttons,
read any external markings, and use any wired (e.g., USB)
interfaces. It can also physically remove the device. This ad-
versary models malicious visitors to the private space. We do
not consider physically invasive adversaries, as they could
simply install their own malicious sensors or actuators in the
private space.

Attacks against the TEEs (if present) or the code running therein
are out of scope. We also do not consider attacks against the
deployment manager, since, we expect it to be secure and not
resource-constrained.

Our high-level security goals are:

SA4P-1 A base adversary cannot access device sensing/actua-
tion peripherals, unless when permitted by the deployment
manager.

SA4P-2 A non-invasive physical adversary cannot access device
sensing/actuation peripherals without its presence being
detected.

3.4 SA4P Overview

A SA4P deployment consists of one or more IoT devices and a
trusted deployment manager. When a device enrolls in a deploy-
ment, its Runtime is decoupled from the physical environment.
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That is, by default, SA4P-enabled devices cannot access their
sensors or actuators. Upon request, the deployment manager
may grant a device temporary access to its sensing or actuation
peripherals. The manager keeps a log of all granted and de-
nied access requests. For conciseness, we refer to sensors and
actuators collectively as interaction peripherals, or, depending on
context, simply as peripherals.

The key enabler of SA4P is the Peripheral Guard or PEG, an
architectural component that enables the deployment man-
ager to enforce peripheral access policies within a device, even
if that device is compromised. Concretely, the PEG, trusted
and lightweight, is placed between interaction peripherals and
Runtime, as Fig. 3.2 depicts.

?

Sensor or
actuator

è

PEG
>

Runtime

´

IoT Device

°

Deployment
manager´

Figure 3.2: Conceptual SA4P
architecture (single device).
´ indicates an untrusted
component.

The PEG responds to commands from the manager, allowing
the latter to enforce access control policies. Although SA4P does
not require synchronized clocks, the PEG needs to have a notion
of elapsed time.

To make SA4P widely applicable, the PEG design must be
inclusive, i.e., compatible with as many device classes as possi-
ble. This is especially important for highly constrained devices.
SA4P achieves inclusiveness by applying two design strategies:
complexity reduction and functional modularization.

Complexity reduction Throughout the design process, we aim
to minimize complexity of the PEG. This allows it to operate
even in highly challenging environments and on constrained
hardware platforms, Also, its trusted computing base (TCB)
size is small. Furthermore, lower complexity simplifies formal
verification and security audits. This is especially important as
IoT devices, once deployed, might never experience a firmware
update.
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Functional modularization Given the large variety of IoT devices,
no single PEG design can cover all use-cases. Therefore, we
identify four core PEG system functions. By specifying the inter-
face between these functions, we can implement them in separate
and independent modules. These four functional modules can
then be individually tailored to the requirements of a specific
deployment scenario.

3.5 PEG Design

We now overview the four PEG modules, their functionalities,
and interactions. We then discuss them in more detail and pro-
vide concrete designs. Fig. 3.3 illustrates the high-level architec-
ture of a PEG-enabled device, and the functionality of the four
PEG modules.

IoT
Device

?

Resource

è

PERI -
GUARD >

Runtime

PERS

AUTH

PAIR

°

Deploym.
manager

PERS

AUTH

PAIR

ENF

Figure 3.3: An overview of
the PEG architecture.

First, we need a mechanism to associate a PEG (and its host
device) with the deployment manager. This mechanism is imple-
mented by the pairing module (PAIR, Section 3.5.1), which sets
up an association in the form of shared cryptographic keying
material.

The manager can then receive access requests from the PEG-
enabled device, and return access grants based on its policies.
The format and behavior of access requests and access grants
are defined by the authorization module (AUTH, Section 3.5.2).
As shown in Fig. 3.3, communication between the PEG and de-
ployment manager is proxied by the Runtime, reducing PEG
complexity and TCB size. However, since PEG traffic is exposed
to both the (untrusted) Runtime and the network, it must be
cryptographically protected to provide integrity and origin au-
thenticity. AUTH relies on the keys established by PAIR to do



44 piet de vaere

so.
The access grants inform the PEG about when it should pro-

vide access to the protected peripherals. It is then the enforcement
module’s (ENF, Section 3.5.3) responsibility to provide the actual,
signal-level, enforcement of this policy.

Finally, the persistence module (PERS, Section 3.5.4) ensures
that devices cannot be stealthily removed from SA4P deploy-
ment. As discussed in Section 3.5.4, PERS is especially important
with respect to physical adversaries.

3.5.1 Pairing Module

PAIR is responsible for establishing shared keying material be-
tween a PEG and its manager.

Because of the wide variety of IoT devices, no single pairing
scheme can satisfy the requirements of each deployment setting.
Nonetheless, for the sake of completeness, we design and imple-
ment semi-identified, PSK-aided authentication (SIPA), a 3-message
pairing protocol inspired by the Noise framework [131]. Since [131] The Noise Protocol

Framework, Perrin (2018)SIPA is applicable to even highly constrained settings, it satisfies
the requirements of most deployment scenarios. We present SIPA
below, and assume its use for the remainder of this paper.

SIPA is illustrated in Fig. 3.4. In order to participate in a SIPA
pairing, each PEG must be provisioned with (i) a static public-
private key-pair, and (ii) a pre-shared key (PSK) at the time of
manufacturing. These keys must be stored in non-volatile, read-
only memory (ROM). Each device containing a PEG, must have
both the public and pre-shared keys of its PEG printed or etched
on the outside of the device, e.g., using a 2D barcode. Addition-
ally, each device must have a button or similar interface that can
be used to instruct the PEG to enter the pairing mode.

A SIPA handshake is executed as follows:

1. The user, acting on behalf of the deployment manager, scans
the public and pre-shared keys on the device.

2. The user pushes the PEG button of the device. This enables
the PEG pairing mode.

3. The PEG and deployment manager perform a Noise protocol-
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Figure 3.4: The SIPA hand-
shake.

inspired handshake as follows:

4.(a) Both the PEG and manager generate ephemeral key-
pairs and exchange public keys.

(b) A Diffie–Hellman key exchange is performed based on
each of the two-key pairs (static and ephemeral) of the
PEG, and the ephemeral keys of the manager.

(c) The result of the two Diffie-Hellmann operations and
the PSK, are fed into a HKDF function, which yields
two uni-directional session keys.

5. If successful, the PEG erases all old pairing information and
adopts the new keys. It then sends a key confirmation mes-
sage to the manager.

6. Upon receipt of the key confirmation message, the manager
adopts the new keys.

A SIPA pairing module provides the following properties:

PAIR-1: PEG authentication Whenever a manager believes to
have established a session key with a PEG G, the PEG G
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established the same session key. Hence, the PEG is authen-
ticated to the manager, and by extension to the user. This
ensures, even while pairing over wireless interfaces, that the
PEG that performed the pairing is, in fact, the PEG embedded
in the scanned device.

PAIR-2: Weak manager authentication Whenever a PEG G es-
tablishes a key with a manager M, M (or its delegate) must
have scanned the data inscribed on the device in which G is
embedded. This is accomplished by mixing the PSK in the
handshake, thereby verifying that the party performing the
pairing had, at some point in the past, physical access to the
device.

PAIR-3: Key secrecy Whenever a manager establishes a key with
an uncompromised PEG, that key is not known to the adver-
sary.

PAIR-4: Verification of intent No new keys can be established
without a time-adjacent physical interaction. This verifies that
an entity with current physical device access intends to pair
the device.

As its name suggests, SIPA does not fully authenticate both
parties involved in the pairing process: while the PEG is strongly
authenticated using its long-term private key, the deployment
manager is only weakly authenticated using the PSK. The mo-
tivation behind this asymmetry is twofold. First, there is the
practical information limit on the PEG: given its restricted user
interfaces, providing the PEG with the identity of the deploy-
ment manager is cumbersome and unnecessary. Second, there is
no need for stronger authentication: At the end of a SIPA hand-
shake, the deployment manager, acting on behalf of the user, is
assured about the identity of PEG. Since the PEG adopts the
newly established keying material before sending out the key con-
firmation message, it has already established a session with the
deployment manager. This one-sided knowledge is sufficient to
satisfy the required high-level security properties.
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3.5.2 Authorization Module

After shared keying material has been established by the pairing
module, the PEG must be able to receive instructions from its
manager on when to allow or restrict access to the protected
peripheral. This functionality is provided by the authorization
module.

The PEG instantiation uses a two-message challenge-response
based protocol illustrated in Fig. 3.5. When access to a protected
peripheral is requested by the Runtime, the PEG generates an
authenticated challenge consisting of a counter, an access type,
and a MAC using the session key over the first two fields. The
counter achieves replay protection, while the access type allows
one PEG to protect multiple peripherals. This challenge is then
sent to the Runtime, which forwards it to the manager.

è PEG ° Manager

W CPU initiates access
Chal←

{
‘Auth_chal’, cntg, type

}{
Chal, MACkg→m (Chal)

}
Access request

cntg ← cntg + 1 cntg
?
> cntm

cntm ← cntg

Resp←
{

‘Resp_chal’, nonce, MACkg→m (Chal)
}

{
Resp, MACkm→g (Resp)

}
Access grant

Figure 3.5: The authorization
protocol flow.

Upon receipt of the challenge, the manager checks the counter
value against previous values, evaluates the request against
its policy, and, if access is granted, returns an authenticated
response. The latter consists of a random nonce, the original
authentication tag of the challenge, and a new MAC using the
session key over the first two fields. The nonce prevents the
manager from being used as a MAC oracle.

When the PEG receives a valid response within a fixed time
Tchal, it grants access to the protected peripheral for Tauth. Both
Tchal and Tauth are design parameters. Tchal can be different for
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each protected peripheral. Potentially, multiple access types can
refer to the same peripheral, but with different associated values
of Tauth.

The authorization module described above provides the fol-
lowing properties:

AUTH-1: Bounded-window authorization It is guaranteed that
access to a protected peripheral is only granted within well-
defined time windows. Each time window starts at the mo-
ment that the manager transmits a grant and ends at most
Tchal + Tauth time units later.

AUTH-2: Bounded-duration authorization The protected peripheral
can be accessed for at most Tauth time units per grant issued
by the manager.

3.5.3 Enforcement Module

The enforcement module implements the low-level access con-
trol to the peripherals. Because of the large variety of peripheral
interfaces, different authorization modules must be used for dif-
ferent types of interfaces. We provide implementation examples
for three types of interfaces.

Open collector (Fig. 3.6) Communication over open collector-
based interfaces can be interrupted by pulling the signal lines
to ground potential using transistors. The PEG forces all sig-
nal lines to ground, unless when peripheral access is granted.

>

Runtime
?

Resource

SDA

SCL

PEG è

Figure 3.6: Example enforce-
ment module implementa-
tion for open collector (e.g.,
I2C) communication.

Push-Pull (Fig. 3.7) Contrary to open collector type interfaces,
forcing the signal lines of push-pull-based interfaces to ground



fine-grained access control for sensors, actuators & automation networks

49

may create physical damage. Instead, tri-state digital buffer el-
ements can be used to decouple the signal lines on both sides
of the interface.

>

Runtime
?

Resource

Tx

Rx

PEG è

Figure 3.7: Example enforce-
ment module implemen-
tation for push-pull (e.g.,
UART) communication.

Analog (Fig. 3.8) Digital buffers cannot be used for analog inter-
faces. However, similar functionality can be achieved using
an operational amplifier in a non-inverting configuration. A
transistor in the feedback circuit can be used to clamp the
analog output to the positive supply bus voltage, inhibiting
communication.

>

Runtime −

+ ?

Sensor

R

PEG è

Figure 3.8: Example enforce-
ment module implementa-
tion for analog signals.

Regardless of its implementation, an enforcement module should
provide the following property:

ENF-1: Peripheral isolation The enforcement module ensures
that the PEG can isolate the protected peripheral from the
Runtime. In more concrete terms: the enforcement module
can prevent the Runtime from interacting with the protected
peripheral.
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3.5.4 Persistence Module

Although the pairing module described above provides guar-
antees about the pairing state of the PEG at the time of the
pairing handshake, it does not prevent the PEG from being
re-associated1 with another manager at a later point in time. 1 We use the term re-

associated in favor of repaired
for clarity.

Nevertheless, when combined with the pairing module’s verifi-
cation of intent (i.e., the requirement for a button to be pressed),
this suffices to meet our security goals for the base adversary
(SA4P-1).

However, when considering the non-invasive physical at-
tacker, additional guarantees are needed. Indeed, the non-
invasive physical attacker could press the pairing button on
the device, and re-associate the device to a malicious manager.
The owner would not be informed of this, leading to a potential
violation of security goal SA4P-2.

The persistence module mitigates this attack by providing
guarantees about the continued pairing state of a PEG. Different
mechanisms can be used to achieve this. For example, the per-
sistence module could require the current manager’s approval
before a PEG can be unpaired. Doing so would ensure that the
manager, and by extension the user, would always be informed
when a device leaves the SA4P deployment. Although this might
be a desirable strategy in some cases, it also introduces a sig-
nificant availability risk: if a PEG can no longer communicate
with its manager, (e.g., because the manager’s keying material
was lost), it can no longer be un- or re-associated, and the de-
vice in which this PEG is embedded effectively becomes a paper
weight.

Instead we propose a persistence module based on liveness.
Concretely we propose the design illustrated in Fig. 3.9. In
this design, the manager periodically sends an authenticated
nonce to the PEG, which re-authenticates and echoes back the
nonce last received from the manager. Although this protocol is
depicted as stand-alone in Fig. 3.9, its messages can be piggy-
backed onto the messages of the authentication protocol.

The persistence protocol provides the following properties:

PERS-1: Retroactive proof of pairing state Whenever the man-
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è PEG ° Manager

noncei ∈R N
{

noncei , MACkm→g (noncei)
}

Persistence challenge{
noncei , MACkg→m (noncei)

}
Persistence reponse

Figure 3.9: The persistence
protocol flow.

ager M receives back a nonce N from a PEG G, it is confirmed
that the PEG G was paired to the manager M at the point that
the nonce N was transmitted by the manager M.

This protocol thus provides retroactive confirmation of pairing
state. Moreover, when this protocol is repeated with period P, an
absence of responses from the PEG indicates that an unpairing
event has occurred, meaning that devices that leave the SA4P
deployment will be detected within a bounded amount of time.
Further, when the PEG disallows unpairing for a period P ′ > P
after each received persistance challenge, even stronger proper-
ties are attained, albeit at the cost of reduced useability.

3.6 Security Analysis

Key to any SA4P deployment is high trust in the access enforce-
ment mechanism. To this end, we leverage a combination of
formal and circuit analysis methods to analyze the security of
the PEG modules we introduced above. The formal methods are
used to analyze the protocol-based modules, and circuit analysis
is used to evaluate the various proposed enforcement modules.

Thanks to the PEG’s modular design, each module can be
analyzed independently: the properties provided by the au-
thentication and persistence modules are only dependent on the
session keys being correctly established by the pairing module.
The enforcement module has no dependencies. Therefore, when
individual modules are updated or replaced, only those modules
need to be re-verified.
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3.6.1 Pairing Module

We analyze the pairing module using the Tamarin protocol
prover [107]. Our model assumes that all long-term public keys [107] The TAMARIN Prover

for the Symbolic Analysis of
Security Protocols, Meier et al.
(2013)

are registered at, and can be retrieved from a public key server.
We model the scanning of the public and pre-shared keys in-
scribed on the device using two rules: the Scan_device rule,
which generates a fact representing a manager’s knowledge of
the inscribed keys, and the Scan_device_adversary rule, which
adds the inscribed keys to the adversaries knowledge. Addi-
tionally, a rule that leaks a PEG’s internal long-term secrets is
included in the model.

Further, the model does not limit the number of PEGs or
managers in a trace and supports re-associating after a com-
pleted handshake. The model also allows for an ongoing pairing
operation to be aborted when a new pairing operation is started.
Moreover, for each of these operations, the internal key manage-
ment of the PEG is modeled.

Using the model described above, we verify the validity of the
properties PAIR-1 through to PAIR-4. We find that all of them
hold.

3.6.2 Authorization Module

We model the authorization protocol using Tamarin. Our model
accounts for re-association events, key disclosure, counter re-
veals, timer expirations, and guard reboots.

Because Tamarin’s discrete time system only models order,
but not elapsed time, the properties AUTH-1 and AUTH-2, can-
not be proven directly. Instead, we apply a hybrid approach, in
which we prove base statements using Tamarin, from which we
then derive the properties AUTH-1 and AUTH-2 using conven-
tional logic.

To this end, we instrument the model with action facts that
indicate when the Tchal and Tauth timers are started or when
they expire. We then prove the following properties, referring to
Table 3.1 for notation.

T-1 A Tauth timer cannot start after its associated Tchal timer has
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Symbol Description

Tx The name of a timer or duration
tx The time point at which event x occurs

tstart
x , texpire

x The time point at which timer x is started or expires, respectively
Sx, Ex The static and ephemeral key pairs of entity x, respectively
SPub

x , EPub
x The static and ephemeral public key of entity x, respectively

Table 3.1: An overview of
symbolic notation.

expired: tstart
auth < texpire

chal .

T-2 A Tchal timer must be started before the manager can issue a
corresponding grant: tstart

chal < tgrant.

T-3 A Tauth timer can only start after the manager has issued the
corresponding grant: tstart

auth > tgrant.

T-4 A peripheral interaction can only occur between the start
and expiry of a Tauth timer: tstart

auth < tinteraction < texpire
auth .

T-5 At most one Tauth timer can be started per grant issued by
the manager.

From these properties, we can then prove AUTH-1 as follows.
From T-1 we know

tstart
auth < texpire

chal = tstart
chal + Tchal

Therefore,

tend
auth = tstart

auth + Tauth < tstart
chal + Tchal + Tauth

Combined with T-2 this yields

tend
auth < tgrant + Tchal + Tauth

Or, in words, the Tauth timer expires at most Tchal + Tauth after
the manager issued the corresponding grant.

Similarly, T-3 states that the Tauth timer must be started af-
ter the manager’s grant. Combining these two results with T-4
proves property AUTH-1. □

We prove AUTH-2 by combining T-5 and T-4, which leads
directly to AUTH-2. □
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3.6.3 Enforcement Module

Unlike the other three modules, the enforcement module is not
protocol-based. Therefore, we cannot use the Tamarin prover to
perform our security analyses. Instead, ENF-1 is verified using
circuit analysis.

Open Collector (Fig. 3.10) When the PEG pulls the data lines
to ground, the drain source resistance Rds of the MOSFETs in
Fig. 3.6 will induce a small voltage drop across each MOSFET.
Assuming a common 2N7000 MOSFET [125] with Rds = 6.0 Ω, [125] 2N7000G: Small Signal

MOSFET 200 mApms, 60
Volts, ON Semiconductor
(2011)

a system voltage Vcc = 3.3 V, and a data pull-up resistor value
Rbus = 2 kΩ, the resulting voltage on the data lines will be

6 Ω
2 kΩ+6 Ω · 3.3 V ≈ 10 mV. Assuming the line driver to have perfect
switching capabilities, it could thus toggle the data lines between
0 and 10 mV.2 When connected to a digital input, both values 2 Most components will

not do this. E.g., standard-
complying I2C implementa-
tions will interpret the low
bus voltage as an ongoing
transmission and refrain
from sending [122].

will be read as low, so no communication is possible. However,
care must be taken to ensure that no other, more sensitive sam-
pling hardware can be connected to the bus, e.g., be reassigning
the data pins to an analog-to-digital converter (ADC).

>

Runtime
?

Resource

SDA

SCL

Rds Rds

Rbus Rbus

Figure 3.10: Circuit analysis
of the enforcement circuit for
open collector communica-
tion shown in Fig. 3.6.

Push-Pull (Fig. 3.11) Digital buffers provide much better isola-
tion than the circuit in Fig. 3.6. For example, the MC74VHC541

buffer [126] lists a maximum tri-state leakage current of 0.25 µA. [126] MC74VHC541: Octal
Bus Buffer, ON Semiconduc-
tor (2014)

This makes it extremely unlikely that signal could be recovered
using IoT device hardware.

Analog (Fig. 3.12) When the PEG disables the signal, the feed-
back factor of the opamp is b = Rds

Rds+R . Again assuming the
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>

Runtime
?

Resource

Tx

Rx
Figure 3.11: Circuit analysis
of the enforcement circuit for
push-pull communication
shown in Fig. 3.7.

2N7000 MOSFET [125], and R = 10 kΩ this results in b ≈ 6 · 10−4. [125] 2N7000G: Small Signal
MOSFET 200 mApms, 60
Volts, ON Semiconductor
(2011)

Assuming a LMV358 opamp [166] with a large-signal differ-

[166] LMV3xx Low-Voltage
Rail-to-Rail Output Op-
erational Amplifier, Texas
Instruments (1999)

ential voltage gain Avd = 104 the closed loop gain becomes

A = b−1 ·
(

1 + (Avd · b)−1
)−1

≈ 1429 [84]. Assuming 0 V and

[84] Application Report:
Understanding Operational
Amplifier Specifications, Karki
(2021)

3.3 V supply rails, this means that any input signal above 2.3 mV
would be clamped to the 3.3 V rail, rendering the output mean-
ingless.

>

Runtime −

+ ?

Sensor

R

Rds

Figure 3.12: Circuit analysis
of the enforcement circuit
for analog signals shown in
Fig. 3.8.

3.6.4 Persistence Module

We model the persistence protocol using the Tamarin protocol
prover. Our model covers repairing events, key disclosure, multi-
ple PEG transmissions with the same nonce, and a loss of nonce
state on the guard (for example, caused by a reboot). We find
that property PERS-1 holds.

3.6.5 Reference Monitor Properties

We show that SA4P satisfies the three defining properties of a
reference monitor: (1) non-bypassability, (2) tamper proofness,
and (3) verifiability. Non-bypassability prevents unauthenticated
peripheral access, tamper proofness prevents manual or progra-
matic modifications to the reference monitor, and verifiability
prescribes a sufficiently small TCB that can be analyzed and
proven correct. We focus this analysis on the PEG.
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Non-Bypassability Peripheral access is restricted by the enforce-
ment module, unless permitted by the authorization module
(ENF-1). Access is only permitted by the authorization module
for Tauth seconds in response to a fresh and authentic grant from
the manager. Freshness is ensured by the request’s counter and
the Tchal window, while authenticity is ensured by the MAC tag.
The deployment manager only grants access to fresh and au-
thentic requests permitted by its policy. Thus, the authorization
module only allows peripheral access if it shortly before (at most
Tchal + Tauth seconds) created a corresponding request that was
granted by the manager.

Tamper proofness The trusted PEG is implemented either in-
side ARM TrustZone on the Runtime’s CPU, or on a physically
separate MCU. We only consider software and non-invasive
physical tampering, invasive physical tampering is not consid-
ered under our adversary model. TrustZone, like the physically
separate MCU, provide strong isolation between the secure PEG
and the untrusted Runtime. By connecting any physical inter-
face directly to pins controlled by the TrustZone secure world,
or directly to the separate MCU, physical interactions cannot
be tampered with by the Runtime. PERS-1 ensures attempts to
re-associate a device are detected.

Verifiability All four PEG modules are formally verified, and
can be implemented using simple primitives. The deployment
manager is more complex as it implements the access-control
policy. When deployment managers are implemented, it is im-
portant to integrate verifiability in the design and implementa-
tion process.

3.7 Implementation

To assess SA4P’s practicality, we implement two PEG variants.
The first uses a dedicated MCU to implement a stand-alone PEG
and the second uses a TrustZone-enabled Cortex-M MCU as
the Runtime, placing the PEG logic in the secure TrustZone
partition of the same MCU.
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We instantiate both variants on the ultra-low-power STM32L552ZE
MCU. For the stand-alone PEG, we fully disable TrustZone. The
STM32L552ZE runs at 110 MHz, has 256 kB of SRAM, and
512 kB of flash memory. We set Tchal = 20 ms and Tauth = 10 s.

3.7.1 Stand-alone Peripheral Guard

The stand-alone PEG is implemented on a dedicated MCU.
Although it would be possible to independently connect this
PEG to the network, we refrain from doing so, and opt to proxy
all commands over the Runtime using a UART connection.
This has two advantages: (i) it removes the need for a (complex)
networking stack on the PEG, significantly reducing its TCB
size; and (ii) it makes it easier for the Runtime to stay in sync
with the PEG. Although this design allows the Runtime to
perform a denial-of-service (DoS) attack against the PEG, this
would be strictly against its own interests.

Message Format To facilitate communication over the serial
link, we implement a serial message format to carry the protocol
messages from Figs. 3.4, 3.5 and 3.9. For the serial transmission,
a 3 B header consisting of a 1 B type field and a 2 B length field
is added to each message. To reduce the number of messages, we
combine authorization and persistence protocol messages.

Cryptography Asymmetric key exchanges are realized using the
compact25519 library [93] on Curve25519. All symmetric keys [93] compact25519: A compact

portable X25519 + Ed25519
implementation, Landman
(2022)

are 256 bit in size, MACs are implemented using HMAC with
SHA256. HMAC operations and randomness generation are
hardware-supported.

Counters and Persistent Memory The authorization protocol uses
a monotonic counter to prevent message replays. It can either be
implemented using persistent memory or a secure clock. Since
the latter requires complex hardware support, and because per-
sistent memory is already required to store the session keys, we
opt for the former. However, counter update events are expected
to be frequent (unlike re-association events). Thus, care must
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be taken not to wear out the MCU’s memory prematurely by
generating excessive writes. For example, the flash memory of
the STM32L552ZE MCU is specified as being able to withstand
at least 10 000 writecycles. This number is unlikely to ever by
reached via re-association events. However, only five counter
updates per day suffices to reach this number in 5 years.

To avoid memory wear, we use a hybrid 8 B counter consist-
ing of two 4 B subcounters: upper and lower, referred to as the
reboot and request counters, respectively. The latter functions
as expected, incrementing each time a challenge is generated.
However, instead of being stored in persistent memory, it is
stored in RAM and initialized to zero at each device boot. Mean-
while, the reboot counter is stored in persistent memory, and
incremented each time the device boots. Hence, the combined
counter remains strictly incremental, and it only requires a write
to persistent memory once per device boot cycle, thus solving
the memory constraints. To ensure the integrity of the reboot
counter in case of boot interruptions, it is replicated three times
in memory. A corrupted value can thus always be recovered us-
ing majority voting. Alternatively, we could use a specialized
memory, e.g., ferroelectric RAM (FRAM), for counter storage,
though such memory types are significantly less common.

Timeouts Because the state of the Tchal timer only needs to be
checked when processing an incoming message, it is imple-
mented using system ticks. Conversely, the Tauth uses a dedi-
cated hardware timer that triggers an interrupt when it expires.
This ensures that access to the protected peripheral is always
promptly removed.

Enforcement Module Our PEG implementation writes a binary
signal representing the current peripheral enforcement state to a
General Purpose Input/Output (GPIO) output pin. An external
enforcement circuit (e.g., one of the circuits in Section 3.5.3) can
be connected to this pin.
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3.7.2 TrustZone Peripheral Guard

Unlike the dedicated PEG, the TrustZone variant shares process-
ing hardware with the the Runtime. Concretely, one TrustZone
enabled Cortex-M MCU is flashed with two binaries: secure and
non-secure. We use the former for the PEG functionality, and
the latter for Runtime code. Isolation of the PEG is provided by
TrustZone.

Implementing the PEG using TrustZone has the primary ad-
vantage of not requiring additional hardware. Also, TrustZone-
based PEGs might be applicable to existing products with
TrustZone-capable MCUs.3 3 No general statements can

be made about the feasibility
of this approach, since it
is largely dependent on
the design of individual
products.

API A further advantage of a TrustZone-based PEG is that no
(slow) communication bus between the PEG and Runtime is
needed. Instead, the TrustZone PEG exposes a narrow API to
the Runtime, consisting of one call per incoming message type.
Messages are passed as function arguments and return values.

Enforcement Module Contrary to the dedicated PEG, the TrustZone-
based PEG does not need external enforcement circuitry. In-
stead, the enforcement module can dynamically modify the
MCU’s TrustZone configuration to provide or revoke the Runtime’s
access to the interface to which the protected peripheral is con-
nected [158]. [158] Embedded Systems

Security and TrustZone,
Slamaris (2022)

Preventing Interference Having the Runtime and PEG share a
computation platform increases the risk of interference by the
Runtime into PEG operations. Although default TrustZone be-
havior suffices to protect the PEG’s secrets (i.e., keying material),
additional care must be taken so that the untrusted Runtime

code cannot interfere with the PEG’s time base. Most signifi-
cantly, the PRIS bit in the Application Interrupt and Reset Con-
trol Register (AIRCR) must be set to ensure that the code run-
ning in the non-secure TrustZone partition (i.e., the Runtime)
cannot prevent the PEG code in the secure partition from execut-
ing by masking it’s interrupt service routines [14]. [14] ARM Cortex-M33 Devices

Generic User Guide, ARM
Ltd. (2020)



60 piet de vaere

3.8 Evaluation

To evaluate our PEG implementations, we first perform a macro
benchmark which focuses on the overall system performance
of a PEG-enabled device. To gain further insights, a series of
micro benchmarks that evaluate the performance of the PEGs in
isolation is performed as well. We also report on binary sizes.

3.8.1 Macro Evaluation

Modifying devices to adopt the SA4P philosophy will inevitably
have an impact on system operations. Concretely, the require-
ment to obtain permission ahead of peripheral interactions intro-
duces both bandwidth overhead and access latency. Given that
pairing events are expected to be rare, we focus this evaluation
on access requests and grants.

Bandwidth overhead, access event The communication overhead
in terms of message sizes can be determined directly from the
protocol specification (Sections 3.5.1, 3.5.2 and 3.5.4) and the
serial message format (Section 3.7.1). The resulting message sizes
are shown in Table 3.2.

Message Generated by Size [B]

Pairing
Key exchange I PEG 67
Key exchange II Manager 67
Key confirmation PEG 35

Authorization & persistence
Access initialization Runtime 3
Access request PEG 61
Access grant Manager 51
Access confirmation PEG 6

Table 3.2: Sizes of messages
exchanged between the PEG
and Runtime, including
the 3 B serial encapsulation
header.

3.8.2 Macro Evaluation

Latency overhead, access event To quantify latency overhead, we
performed end-to-end system measurements using the setup
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shown in Fig. 3.13. The setup consists of a proof-of-concept PEG-
enabled device that communicates with a dummy deployment
manager over a standard Ethernet network. The PEG-enabled
device consists of a button functioning as a rudimentary sen-
sor, a STM32 as dedicated PEG, and a second, identical, MCU
functioning as the Runtime. Communication between the PEG
and the Runtime uses a UART bus running at 921 kbaud. The
Runtime is connected to the Ethernet network using a WIZnet
W7500S2E-R1 UART to Ethernet bridge, running at 461 kbaud.
The dummy manager simply grants every request. It is imple-
mented in Golang and runs on a commodity laptop.

?

Button

è

PEG
>

Runtime

UART - Eth
Bridge

IoT Device

°

Manager

Netw.

Logic
analyzer33

Logic

UART

Ethernet

Figure 3.13: Schematic
overview of the macro
evaluation setup.

To extract timing information, both the PEG and Runtime are
connected to the same logic analyzer sampling at 16 MHz, each
using a 3-bit logic bus. The code running on both platforms is
instrumented to write code points to the bus, providing insight
into internal operations and timing.

We use the setup described above to measure the overall sys-
tem performance of an access request (including the piggy-
backed persistence exchange). The results are shown in Fig. 3.14.

Time [ms]
0 1 2 3 4 5 6

PEG Request generation (39 µs) Grant validation (49 µs)

Serial

82 µs

614 µs 692 µs

83 µsRuntime

Init. (3 µs)

Request encapsulation (15 µs) Grant decapsulation (16 µs)

Off-device Network (4.32 ms) + Deployment Manager (0.241 ms)†

Figure 3.14: Timeline of an
access requests to a dedi-
cated PEG. Averaged val-
ues, N = 468. †Deployment
manager processing times
were measured during a
separate experiment with
N = 100 and an independent
time base.

As can be seen in Fig. 3.14, it takes, on average, 6.16 ms from
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the point where the Runtime initiates an access request to the
point at which the Runtime is informed that peripheral access
has been provided by the PEG. This duration is primarily dom-
inated by serial (1.47 ms) and network4 (4.32 ms) delays, which

4 Network delays include
serial transmissions to the
UART to Ethernet bridge.

sum up to 5.79 ms. We attribute the majority of the network
delays to the relatively slow WIZnet module.

Processing times on the protocol endpoints (PEG and de-
ployment manager) are an order of magnitude shorter, with a
combined processing time of 0.09 ms measured on the PEG, and
0.24 ms measured on the deployment manager. The latter being
higher due to the use of a general purpose operating system
on the deployment manager. The forwarding overhead on the
Runtime was measured to sum up to 0.03 ms, which we consider
to be negligible.

Pairing events The sizes of pairing messages are shown in Ta-
ble 3.2. We informally measured a pairing event to take around
9 s. More detailed measurements are given in the following sec-
tion on micro evaluation.

3.8.3 Micro Evaluation

To gain further insight into PEG performance, we continue
with a set of micro benchmarks. Similar to the macro evalua-
tion setup, we connect the PEG to a logic analyzer using a 3-bit
bus, and instrument the PEG code to write code points to this
bus at significant points in its program.

Dedicated PEG, access event timing We start by taking a more
detailed measurement of the processing times required to gener-
ate an access request and validate a grant on the dedicated PEG.
The results of this measurement are shown in Table 3.3. As can
be seen from the table, the processing times are highly determin-
istic, with low spread. The small discrepancy between the values
in Fig. 3.14 and Table 3.3 can be attributed to slight differences in
code instrumentation and compile-time optimization.
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Mean Std. Dev. Min Max

Dedicated PEG (N=288)
Request generation 40.34 0.11 40.25 41.25
Grant validation 50.28 0.18 50.17 51.17

TrustZone PEG (N=324)
Request generation 33.52 0.34 32.62 34.63
Grant validation 49.98 0.54 48.63 52.87

Table 3.3: Processing times
for access events. Values in
µs.

Dedicated PEG, access event load profile To further break down
the numbers shown in Table 3.3, Fig. 3.15 shows relative load
profiles for the PEG. We see that for both messages, the work-
load is dominated by the cryptographic tag verification, which is
to be expected.

Req gen.

Grant val.

0 10 20 30 40 50

Req gen.

Grant val.

Cumulative execution time [µs]

Crypto State mgmt. Buffer mgmt. TrustZone

TrustZone PEG (N=324)

Dedicated PEG (N=288)

Figure 3.15: PEG load
profiles for access-event
messages.

TrustZone PEG, access event timing Next, we compare the per-
formance of the dedicated PEG to the TrustZone-based PEG. Ta-
ble 3.3 and Fig. 3.15 show the execution times of get_challenge()
and put_response() PEG API calls as observed by the Runtime

code. These calls respectively initiate an access request, or sup-
ply the PEG with a response from the manager. We see that the
latencies of the two implementations are similar. However, the
TrustZone numbers already include the PEG to Runtime com-
munication, whereas the dedicated PEG relies on time-intensive
serial communication. Therefore, the system performance of the
TrustZone PEG is superior. That said, as is shown in Table 3.3,
the response times of the TrustZone PEG are less stable than
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those of the dedicated PEG. This is to be expected, as the Trust-
Zone implementation shares a processor core with the Runtime.

Dedicated PEG, pairing event timing Although pairing events
are expected to be rare, we performed measurements to get an
understanding of their performance. Table 3.4 shows the time
required to process the pairing messages on the PEG. Table 3.5
lists the measured duration of individual cryptographic opera-
tions, providing more insight in the composition of the delays
shown in Table 3.4. We see that (as expected) the processing
times are dominated by the cryptographic operations. We note
that two Diffie-Hellmann operations take place for each key
confirmation message.

Outgoing message Mean Std. Dev. N

Key exchange I 2891 0.30 281
Key confirmation 5737 0.92 155

Table 3.4: Dedicated PEG
processing times for pairing
message processing and
generation. Values in ms.

Operation Mean Std. Dev. N

Ephemeral key pair generation 2891 0.30 281
Diffie-Hellmann derivation 2868 0.46 155
HKDF computation 0.08 < 0.01 155

Table 3.5: Dedicated PEG
processing times for pairing-
related cryptographic
operations. Values in ms.

3.8.4 Memory Footprint

We measure the memory footprint of both PEG implementa-
tions. The dedicated PEG has a binary size of 14.97 kB and a
RAM footprint of 3.18 kB. The TrustZone-based PEG has a bi-
nary size of 6.62 kB and a RAM footprint of 1.9 kB.

3.9 Discussion

3.9.1 Peripheral Access Latency

The results from Section 3.8 confirm the feasibility of the SA4P
approach. Although the newly introduced peripheral access la-
tency (≤ 6 ms) is non-negligible, it is not of a prohibitive nature
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for the applications we envision; system response times below
100 ms are generally perceived as instantaneous by users [118]. [118] Usability Engineering,

Nielsen (1993)Moreover, significant performance improvements are still achiev-
able. Concretely, we expect that when a TrustZone-based PEG is
used, and our proof-of-concept networking setup is replaced by
a networking stack running directly on the Runtime, an access
latency below 1 ms is attainable. Additionally, PEG operations
have shown to be both fast and deterministic, which facilitates
access request scheduling.

3.9.2 Tchal, Tauth, and Network Overhead

The timer durations Tchal and Tauth should be set based on the
characteristics of the deployment: Tchal should be set to sum
of the largest expected round trip time (RTT) from the PEG to
the deployment manager, and the highest expected deployment
manager response time. In most deployments this value will be
on the order of milliseconds or less.

Setting Tauth is more complicated, as it requires a trade-off
between control and network overhead: setting Tauth high re-
sults in coarse access control and low overhead, whereas a low
Tauth provides fine-grained control at the cost of higher network
overhead. To quantify this overhead, consider a deployment with
Tauth = 10 s, and in which access requests are sent with a 100 ms
overlap to ensure access continuity. Assuming our SA4P instan-
tiation, the resulting network overhead during peripheral access
events would average 1

10−0.1 req/s × (61 + 51)B/req = 90 bps.
Although we expect this data rate to be acceptable in most appli-
cation settings, this might not hold for some highly constrained
scenarios. Strategies to reduce the network overhead include:

• Increasing Tauth. In some deployment scenarios significantly
longer values of Tauth can be considered. For example, in
wireless sensor networks where the primary goal of SA4P de-
ployment is to remove peripheral access when the deployment
is compromised, values of Tauth up to multiple hours may be
appropriate.

• The length of the various protocol fields can be reduced, albeit
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at the cost of weakened cryptographic properties.

• Multiple access types associated with the same peripheral, but
with different associated Tauth values, can be used.

3.9.3 High-Level Context

Although the low-level nature of the PEG makes the design
inclusive and robust, it limits the amount of high-level contextual
information that is inherently available to base access decisions
on. This means that the deployment manager must actively
collect such information from across the deployment. How this
collection should be implement is beyond the scope of this paper.
Additionally, the SA4P design philosophy is not intended to
replace existing high-level access control mechanism, but rather
to complement them.

Example: combination with attestation mechanisms One type of
high-level context that could be gathered, is the attestation
state of the PEG-enabled devices. By requiring the Runtime

to present an attestation proof together with each access request,
the deployment manager can ensure that peripheral access is
rapidly removed after a device has been compromised. Doing
so would remove significant adversarial utility from compro-
mised devices, effectively rendering them to be generic network-
connected computational nodes.

3.9.4 Non-Binary Enforcement Modules

In Section 3.6.3 we only considered binary enforcement modules,
i.e., enforcement modules that either allow for full peripheral
access or none at all. However, it is also possible to design non-
binary enforcement modules, e.g., by integrating a low-pass filter
into their design. Doing so would allow the PEG to provide
more fine-grained access control. For example, it has been shown
that the high frequency components in a humidity signal can
reveal information about human presence [70]. A low-pass filter [70] Don’t Sweat Your Privacy:

Using Humidity to Detect
Human Presence, Han et al.
(2007)

enabled PEG could selective provide access to the average room
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humidity while filtering out sensitive room occupancy informa-
tion.

3.9.5 Protecting Complex Actuators

For simple actuators, our PEG design is directly applicable. In
fact, as part of this research project we have created a demo that
uses our PEG design to control access to an electric strike plate,
giving the deployment manager control over when a door can be
opened.

For other actuators (e.g., lights), a designer might opt to place
a latch or a flip flop behind the PEG, so that an access permis-
sion is only required to toggle the actuator. More generally, a
setpoint-based control loop could be used, thus only requiring
manager authorization for setpoint adjustments. Such an archi-
tecture is depicted in Fig. 3.16. The primary challenge associated
with this approach is that all components placed behind the
PEG must be trusted.

Ô

Process
)

Controller
Σ

×

Setpoint latch
è

PEG
>

Runtime

´

Classical control loop
+

–

Figure 3.16: A SA4P design
only requiring authorization
for setpoint adjustments.
´ indicates untrusted
components.

3.9.6 Information Leakage

The PEG design does not encrypt network traffic, since, unlike
data authenticity, data secrecy is not required for our security
goals. However, this means that passive network adversaries can
observe access requests in cleartext, including the access type
field. This exposure can be addressed by creating an encrypted
tunnel between the Runtime and the deployment manager. How-
ever, encryption offers limited protection: previous work has
shown that even encrypted IoT traffic leaks significant private
information [12, 174, 2].

[12] Spying on the Smart
Home: Privacy Attacks and
Defenses on Encrypted IoT
Traffic, Apthorpe et al. (2017)

[174] IoTAthena: Unveiling
IoT Device Activities From
Network Traffic, Wan et al.
(2022)

[2] Peek-a-boo: I see your
smart home activities, even
encrypted!, Acar et al. (2020)
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3.10 Summary

As IoT devices are becoming increasingly ubiquitous and in-
tertwined with many aspects of everyday life, they are being
plagued by vulnerabilities, creating a security and privacy night-
mare. The proposed SA4P framework helps address this ongo-
ing challenge: by controlling a device’s ability to interact with
the physical environment, SA4P can significantly reduce the
risks of rogue IoT devices. We demonstrate, via actual imple-
mentations, that SA4P is technically feasible and practical, thus
making it a promising approach for securing certain common
types of IoT devices.



4
Kimya:
Securing Event-Triggered Sensors
Through Isolation and Amnesia

4.1 Introduction

Over the past five years, we have witnessed a massive rise in the
popularity of voice assistants such as Apple’s Siri, Amazon’s
Alexa, or Google Assistant. In fact, in January 2021, more than
one in three adults living in the U.S. owned a smart speaker [173]. [173] Voicebot Research

(2021)Moreover, voice assistants are increasingly being integrated into
everything from headphones to glasses and cars, and recent
technologies such as ARM Helium promise to facilitate voice
assistants even on the smallest devices [188]. [188] Yiu (2020)

Despite their success, the “always on” nature of voice assis-
tants has given rise to significant concerns about the privacy and
societal implications of these devices [102]. In particular, a sig- [102] Lynskey (2019)

nificant fraction of people, including voice assistant users, are
worried about voice assistants being hacked [90, 30], or that they [90] Kumar et al. (2018)

[30] Bräunlein and Frerichs
(2019)

are covertly recording and being used to spy on them [96, 104,
108]. This fear has been further amplified by reports that voice

[96] Lau, Zimmerman, and
Schaub (2018)

[104] Manikonda, Deotale,
and Kambhampati (2018)

[108] Meng, Keküllüoğlu,
and Vaniea (2021)

assistant interactions—including false positives—are recorded
and reviewed by humans [23]. Moreover, current hardware ca-

[23] BBC News (2019)

pabilities and attacks go well beyond speech recognition [155].

[155] Sikder et al. (2021)

For example, smart-speaker hardware is sufficiently precise to
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perform sonar ranging and thereby detect movements as small as
a heartbeat [175]. [175] Using smart speakers

to contactlessly monitor heart
rhythms, Wang et al. (2021)

Today, voice assistant vendors are addressing these privacy
issues by allowing users to mute device microphones, and by
adding status indicators which show when devices are actively
recording audio. Although these methods can provide some
level of protection, they also have significant shortcomings. Con-
cretely, (i) muting a voice assistant removes almost all of its
(useful) functionality, and (ii) both microphone muting and sta-
tus indicator mechanisms are typically implemented as opaque
features, making it unclear how strong the privacy guarantees
they aim to provide really are. To illustrate the latter, while
Amazon requires devices to “implement (...) a hardware-based
microphone on/off control” [4], it only requires “a dedicated [4] Alexa Voice Service (AVS)

Security Requirements, Ama-
zon.com (2022)

microphone status indicator” [4], without any further security
requirements. If such a status indicator is controlled by standard
software, it can potentially be disabled by a remote adversary.

On a more general level, the proliferation of sensors in our
daily lives is making it increasingly more difficult for individuals
to know when they are (not) being monitored. We consider this
trend to be undesirable, and believe that people deserve the
assurance that they are not being unknowingly observed when
they are in a private space [129]. [129] Nineteen Eighty-Four,

Orwell (1949)Focusing on voice assistants, this leads us to the following
research question: How can we ensure that voice assistants only
record when spoken to, even when they have been compro-
mised? However, voice assistants are just one instantiation of a
more general class of devices: those with always-standby, event-
triggered sensors. That is, devices that contain sensors that are
continuously on standby (i.e., processing the sensor data for event
detection), but only rarely triggered. Although voice assistants
are currently the dominant device in this class, others, such as
“always-on” cameras for smartphones, are already on the hori-
zon [138]. When considering this more general device class, [138] Snapdragon 8 Gen 1

Mobile Platform, Qualcomm
Technologies (2021)

our research question generalizes to: How can we ensure that
always-standby devices only record when triggered, even when
they have been compromised?

Answering this question requires us to unify the apparently
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conflicting requirements of a device that is always sampling its
sensor, but should only record when triggered. By itself, the
SA4P framework (see Chapter 3) does not provide a satisfactory
solution: at any point in time, it either blocks all access to a
sensor, which is not compatible with always-standby behavior;
or it allows all access to a sensor, and therefore cannot prevent
snooping.

Similarly, past work on sensor privacy under adversarial set-
tings has either focused on restricting all access to sensors [29,
98], or on generating a notification for any sensor sampling ac- [29] Regulating ARM Trust-

Zone Devices in Restricted
Spaces, Brasser et al. (2016)

[98] SeCloak: ARM trustzone-
based mobile peripheral control,
Lentz et al. (2018)

tivities [112, 111]. However, such approaches can also not dif-

[112] Viola: Trustworthy
Sensor Notifications for
Enhanced Privacy on Mobile
Systems, Mirzamohammadi
and Sani (2018)

[111] Ditio: Trustworthy
Auditing of Sensor Activities
in Mobile & IoT Devices,
Mirzamohammadi et al.
(2017)

ferentiate between an always-standby device in standby mode
(i.e., waiting for its trigger event), or in triggered mode (i.e., ac-
tively processing sensor data), and therefore do not address our
research question.

To move forward, we make the following observation: the
key challenge is to guarantee that always-standby devices only
locally process sensor data, and, if no event has occurred, im-
mediately discard the sampled data. If this guarantee is met, the
device cannot eavesdrop and its privacy implications are mini-
mal. Applied to voice assistants, they must immediately discard
sampled audio if no wake word is detected.

To enable vendors to guarantee this property, we propose
Kimya

1, a hardening framework that restricts direct access to 1 Swahilli for “silence”.

sensor data, but provides an isolated, amnestic execution con-
tainer, inside of which applications can execute event-detection
routines. When using Kimya, application code maintains access
to all sensor data, but can neither store nor transmit it without
generating a user-auditable notification.

By using user-auditable notifications, Kimya can allow appli-
cation code to self declare when an event has occurred. This is
necessary, as generally no ground truth data about event occur-
rences is available. After all, if such data were available, no event
detection would have to be performed in the first place. Yet, the
device user will often intuitively know when an event has oc-
curred. Hence, Kimya’s notifications make a device accountable
for its detection behavior.

When a user notices that notifications are generated when no
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trigger event has occurred, this strongly indicates that a device
either (i) has been compromised and is being used to eavesdrop,
or (ii) generates excessive false positives and is therefore not
privacy-preserving. Based on this information, users can then
decide to mend or, when this is not possible, to stop using the
device.

Kimya runs on commodity MCUs. It achieves isolation by
partitioning memory-mapped resources into multiple regions,
and restricts access to these regions based on execution phases.
Amnesia is achieved by routinely erasing memory regions that
store sensor data or derivatives thereof. We design Kimya’s era-
sure schedule to not affect the continuity of event-detection algo-
rithms. Kimya can run together with existing application code
on the same MCU and does not require additional hardware.

Kimya allows for arbitrary code to be executed inside the
event-detection container and is not dependent on cryptography.
This is possible because Kimya’s security properties are based
on isolation and amnesia rather than software attestation. More-
over, it ensures that Kimya does not inhibit device vendors from
updating their event-detection algorithms once devices are in the
field. It also ensures that Kimya is lightweight and applicable to
constrained hardware. This is important because (i) it has been
shown that applications such as wake-word detection are already
possible on such hardware [192], and (ii) industry is actively [192] Hello Edge: Keyword

Spotting on Microcontrollers,
Zhang et al. (2018)

working to further facilitate digital signal processing (DSP) and
machine learning applications on constrained devices [188]. [188] White Paper: Introduc-

tion to the ARM Cortex-M55
Processor, Yiu (2020)

Further, Kimya’s lightweight design translates itself into a
small TCB size when implemented. Combined with the strong
properties Kimya provides, this allows security audits to focus
on a small, reusable, module with clearly defined functionality,
which in turn facilitates the work of independent certification
centers, such as the new Swiss National Test Institute for Cy-
bersecurity (NTC). Kimya can either be used as an independent
system, or it can be integrated into a SA4P deployment. In the
later case, the SA4P authorization module can function as a noti-
fication mechanism. We describe SA4P integration in more detail
in Section 4.8.4.

We demonstrate Kimya’s practicality by implementing it on
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an ultra-low-power Cortex-M33 MCU with ARM TrustZone. We
design our implementation to be minimally intrusive, allowing
it to coexist with existing application code on the same device.
Further, we demonstrate Kimya’s applicability by applying
it to a wake-word detection engine running on a Cortex-M33

processor.

4.2 Adversary Model & Security Setting

We consider a setting in which a user has equipped a private
space, such as a home or workspace, with an Internet-connected
device that has an always-standby sensor. The goal of the adver-
sary is to access data from the always-standby sensor when no
trigger event has occurred, and to do so with stealth, i.e., without
generating a notification and without leaving an auditable trace.

The Kimya trust model is similar to the SA4P trust model,
but is reformulated to better match the Kimya application set-
ting. Concretely, the Kimya trust model distinguishes between
the platform vendor and application vendor of a device. The
platform vendor constitutes the entity that produces the hard-
ware platform and provides the Kimya firmware. The applica-
tion vendor implements the device functionality. It is possible for
the platform and application vendor to be the same entity, but
they can also be different entities within the same company, or
different entities in different companies.

Kimya requires the platform vendor to be trusted, as it pro-
vides the TCB upon which Kimya’s features are based. However,
the application vendor can be untrusted. As the application ven-
dor does not contribute to the TCB, companies providing both
platform and application can focus their security resources on a
smaller entity and a minimal code base. Platform vendors can
obtain a trusted status through reputation or auditing.

We consider an adversary with full control over the device’s
network connectivity who can view, inject, and drop packets.
Moreover, the adversary can exploit device vulnerabilities and
can execute code on the device. The adversary might have al-
ready infected the device at the time of production. However,
we explicitly do not consider attacks against trusted execution
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environments [38] or the platform code therein [101]. We also [38] SoK: Understanding the
Prevailing Security Vulnera-
bilities in TrustZone-assisted
TEE Systems, Cerdeira et al.
(2020)
[101] On Security of
TrustZone-M-Based IoT
Systems, Luo et al. (2022)

do not consider physical attacks, as adversaries with physical
access could install their own covert sensors in the private space,
significantly reducing the relevance of defenses against such
adversaries.

4.3 Design

4.3.1 Design Goals

Kimya’s primary goal is to facilitate the privacy-preserving use
of always-standby sensors. More concretely, this goal can be
broken down into the following two subgoals.

KIMYA-1, Availability: Sensor data must be made available to an
event-detection algorithm.

KIMYA-2, Isolation: It must be ensured that only sensor data
related to an event can be used for purposes other than event
detection. This is a high-level goal and will be refined in Sec-
tion 4.3.3.

Additionally, we have the following secondary goals.

KIMYA-3, Lightweight: Kimya should be lightweight and de-
ployable on microcontrollers. Its TCB should be small.

KIMYA-4, Low-cost: Kimya should not require designs to in-
clude additional hardware.

KIMYA-5, Non-restrictive: Kimya should not restrict which
event-detection algorithms can be used.

KIMYA-6, Agile: Kimya should not prevent application vendors
from pushing updates to their devices, in particular, updates
to the event-detection logic.

4.3.2 Straw-man Proposals

Because our solution should be lightweight (KIMYA-3), we do
not consider mechanisms that rely on dynamic code analysis.
Additionally, both because of the lightweightness goal KIMYA-3,
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and to avoid the complexity of traditional attestation mecha-
nisms, we refrain from using software attestation. Combining
this restriction with the requirement for devices to be easily up-
datable (KIMYA-6), this means that we must consider all appli-
cation code, including the event-detection code, to be untrusted.

Therefore, we focus on approaches whose properties are in-
dependent of the executed code, and instead are based solely
on the properties of the environment in which code is executed.
Concretely, we focus on approaches that directly restrict access
to the always-standby sensor. Figs. 4.1 and 4.2 displays two such
approaches which serve as straw men for our final design.

?

Sensor
è

Gateway
Ô Û

Application with event detection

´ Figure 4.1: Straw-man
defense using a sensor
gateway. ´ indicates an
untrusted component.

The first design (Fig. 4.1) places a gateway between the
always-standby sensor and the application which also contains
the event-detection logic. A SA4P PEG could be used as a gate-
way instantiation. This approach is most similar to previous
designs for peripheral access control, e.g., SeCloak [98]. How- [98] SeCloak: ARM trustzone-

based mobile peripheral control,
Lentz et al. (2018)

ever, once the gateway provides sensor access to the application
(as required by KIMYA-1), it can no longer control what purpose
the sensor data is being used for, thus violating the isolation goal
KIMYA-2.

?

Sensor
Ô

Event detection

´
è

Gateway
Ô Û

Application

´ Figure 4.2: Straw-man
defense using a sensor
gateway and an isolated
container. ´ indicates an
untrusted component.

The second design (Fig. 4.2) attempts to addresses this issue
by separating event-detection functionality from the rest of the
application. Event detection is then performed in an isolated
environment that has direct access to the sensor. Doing so pro-
vides the event-detection code with continuous access to the
sensor, while still allowing the gateway to restrict access for the
other application code. Once the containerized code declares
that a sensor event was detected, a notification is generated by
the gateway and the application code is granted access to the
event-detection container and sensor data.
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Although this design represents a significant improvement
over the design in Fig. 4.1, it does not provide control over the
state stored in the event-detection container. This means that it
cannot yet fully satisfy the isolation goal KIMYA-2. Concretely,
the (untrusted) code running in the event-detection container
could continuously eavesdrop, store captured information in the
container, and exfiltrate this data to the application as soon as an
event is detected.

4.3.3 Event-Detection Timeline

The shortcomings in the straw-man designs show that a more
precise definition of the isolation goal KIMYA-2 is needed.
Specifically, it must be defined which information may be made
available to the main application once an event is detected.

To this end, we introduce the notion of a sensor interaction.
Each sensor interaction corresponds to a time window during
which data relevant for the device’s legitimate operation is sam-
pled by the always-standby sensor. For example, for the voice
assistant interaction “Hey Kimya, what time is it”, the time win-
dow would correspond to the period during which the user is
uttering this sentence. For event-triggered sensors, interactions
are initiated by an event. In the case of our example, the event is
the utterance of "Hey Kimya".

Ideally, Kimya would only grant unrestricted access to data
sampled during the interaction period. However, doing so is im-
practical. As is illustrated in Fig. 4.3, an event can generally not
be detected right at the start of an interaction (e.g., the utterance
“Hey Kimya” can only be detected once it has been fully articu-
lated). Similarly, immediately after the trigger event, it is unclear
how long an interaction will last.

Event detected +
Notification

W I

Spontaneous
notification

I time

Tlifetime
TTRIGGERED

TTRIGGERED

Figure 4.3: The interaction
timeline. indicates an
interaction.
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Therefore, we introduce the durations Tlifetime and TTRIGGERED,
as illustrated in Fig. 4.3. Tlifetime specifies how much data from
before a trigger event can be released. In the case of a voice assis-
tant, it should be set based on the expected maximum duration
of the trigger phrase, plus any required pre-roll2. We discuss this 2 Pre-roll data refers to

data captured just before a
trigger-event occurred. It is
often used to calibrate noise
levels.

in more detail in Section 4.8.1. Similarly, TTRIGGERED defines the
duration for which data can be freely accessed after an event.
Because interactions might last longer than TTRIGGERED, a time
extension mechanism must be foreseen. This can be achieved
by allowing applications to generate spontaneous notifications,
each of which resets TTRIGGERED. Doing so effectively visualizes
sensor-access behavior with a temporal granularity of TTRIGGERED.
Moreover, it facilitates interaction models where user input is
expected at the end of a prompt.

Based on this model, we extend the straw-man design of
Fig. 4.2 by additionally rendering the event detection container
amnestic. That is, by ensuring that no data older than Tlifetime can
be present in the container.

A naive approach to implement amnesia could be to periodi-
cally zero out the event-detection container’s memory. However,
doing so risks trigger events being segmented by a wipe. To il-
lustrate this, consider again a wake-word detection engine that
listens for the phrase “Hey Kimya”. If a wipe event were to oc-
cur after a user has said “Hey”, but before they said “Kimya”, no
trigger event would be detected. This would be a violation of the
non-restrictiveness goal KIMYA-5.

In order to ensure data continuity while simultaneously lim-
iting data age, Kimya instead uses multiple buffers that are
routinely wiped, and enforces an unidirectional information flow
between these buffers. We present this design in more detail in
the following section.

4.3.4 Kimya Design

Kimya provides two key features. First, it provides an isolated
execution environment that has direct access to data from an
always-standby sensor. Second, it ensures that this container is
amnestic, i.e., it provides strong guarantees on the maximum age



78 piet de vaere

of sensor data (or information derived thereof).
In order to achieve these features, Kimya segments its host

MCU into five memory regions, and introduces four execution
phases. Because on modern MCUs most peripherals are memory-
mapped, these memory regions can also be considered to be
resource regions. Concretely, the five memory regions, as depicted
in Fig. 4.4, are:

> MCU

?

Sensor

Buf. A

Buf. B
Scratch

K IMYA container

All other memory

Figure 4.4: The Kimya

container memory regions.

Sensor: A region containing the always-standby sensor to which
access should be restricted.

Buffer A and Buffer B: Two memory regions forming a pair of
alternating buffers to store sensor data.

Scratch: A memory region that can be used to store state for the
event-detection algorithm.

All other memory: All memory-mapped resources not included
in the other four regions. This includes GPIO, timers, and
communication peripherals.

Kimya’s four execution phases are listed below. Execution starts
in the IDLE phase, and phase transitions are requested by the
application code.

IDLE: As long as no trigger event has been detected, all applica-
tion code that is not related to event detection is executed in
the IDLE phase.

ACQUIRE: Used to acquire sensor data, to perform data pre-
processing, and to store the result in the alternating buffer
formed by the Buffer A and Buffer B memory regions.

PROCESS: After acquiring fresh sensor data, the event-detection is
performed in the PROCESS phase. Event-detection state can be
stored in the Scratch region.

TRIGGERED: When a trigger event has occurred, the applica-
tion code is executed in the TRIGGERED phase (instead of
in the IDLE phase) for a preset duration TTRIGGERED. Before
the TRIGGERED phase can be entered, a notification (see Sec-
tion 4.3.5) must be generated. Regenerating this notification
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while the TRIGGERED phase is active extends the duration of
this phase to TTRIGGERED after the notification was generated.

MCU memory region

K IMYA phase Sensor Buf. A Buf. B Scratch All other mem.

IDLE - - - - 4 v

ACQUIRE (A) 4 4 v - - -
ACQUIRE (B) 4 - 4 v - -
PROCESS - 4 4 4 v -
TRIGGERED 4 v 4 v 4 v 4 v 4 v

Table 4.1: Memory access
rights in the four Kimya

execution phases. ‘4’
indicates read access, ‘v’
indicates write access.

Depending on the active execution phase, Kimya restricts ac-
cess to the various memory regions according to the permissions
shown in Table 4.1. In the IDLE phase, no memory regions re-
lated to the always-standby sensor and event detection are acces-
sible. During the ACQUIRE phase, sensor data can be sampled and
written to one of the alternating buffers, but no other memory
can be accessed. During the PROCESS phase, there is read-only
access to both buffers and full access to the Scratch memory. Fi-
nally, during the TRIGGERED phase, all memory is fully accessible.

Enforcing the Table 4.1 access map has two desirable effects.
First, the ACQUIRE and PROCESS phase form an isolated container
in which event detection can be performed. Second, a unidirec-
tional data path, as illustrated in Fig. 4.5 is created.

?

Buf. A

Buf. B
Scratch

K IMYA container

Figure 4.5: The Kimya

container data flow.

In order to guarantee amnesia, Kimya must enforce strong
limits on the maximum age of the data inside the Kimya con-
tainer, that is, in the Buffer A, Buffer B, and Scratch memory
regions.3 To this end, the following buffer management sched- 3 Data in the Sensor region is

always fresh.ule is executed every Tlifetime/2 seconds: (i) zero out the Buffer
A or B that is not currently accessible from the ACQUIRE phase;
(ii) zero out the Scratch memory region; and (iii) alternate Buffer
A and Buffer B.

Tlifetime is a static value representing the permissible lifetime
of sensor data. For most applications, this value will be on the
order of seconds or less. Because Buffer A and B are not simulta-
neously erased, data continuity is provided.

Combining this buffer management schedule with the unidi-
rectional data path, ensures that at any point in time, the data
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inside the Kimya container cannot be older than Tlifetime, unless
a notification is generated. Intuitively, this is the case because
both the Scratch region and the alternating buffers are erased
at least every Tlifetime, and the unidirectional data path ensures
that no data can be transferred between Buffer A and Buffer B
to circumvent the erasure schedule. A proof of this property is
provided in Section 4.5.1.

4.3.5 Notification Design

Kimya has no event-detection logic built-in. Therefore, Kimya

cannot rely on ground truth information to regulate access to
the TRIGGERED phase. Instead, Kimya places control over the
active execution phase with the application itself. Concretely,
execution starts in the IDLE phase, from which the application
can request specific functions to be executed in the ACQUIRE or
PROCESS phases. Upon returning, these functions indicate if they
want to return the MCU to the IDLE phase, or, they can request a
transition to the TRIGGERED phase. In the latter case Kimya will
generate a user-auditable notification before returning control
back to the application code.

We do not prescribe a specific notification mechanism in this
work. Instead, Kimya provides a flexible platform upon which
different notification mechanisms can be build. The design of an
effective privacy notification mechanisms is orthogonal to our
work, and has been studied before [145, 146]. [145] Designing Effective

Privacy Notices and Controls,
Schaub, Balebako, and
Cranor (2017)

[146] A Design Space for
Effective Privacy Notices,
Schaub et al. (2015)

To illustrate the flexibility Kimya provides, we briefly discuss
three types of notification below.

LED indicators. Similar to current smart-speaker products, a LED
can be used to indicate when the device is in the TRIGGERED

phase. Kimya then provides strong guarantees that this in-
dicator LED cannot be circumvented. Note that when using
a visual indicator, a careful design is needed to ensure its
effectiveness [103, 136]. [103] Understanding Sen-

sor Notifications on Mobile
Devices, Ma, Mirzamoham-
madi, and Sani (2017)

[136] Somebody’s Watching
Me?: Assessing the Effec-
tiveness of Webcam Indicator
Lights, Portnoff et al. (2015)

Bluetooth beacons. Devices could broadcast Bluetooth beacons
containing information about the sensor that is being ac-
cessed. Other devices receiving these beacons could then
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visualize which information is being sampled from their sur-
roundings.

Centralized logging. Kimya could require a central server to be
contacted before granting access to sensor data. This server
can log all sensor activity and make it available for later audit-
ing. When integrating a Kimya-enabled device into a SA4P
deployment, the PEG and deployment manager can be com-
bined with the Kimya gateway and central server, respec-
tively. We explore this application setting in more detail in
Section 4.8.4.

In order to guarantee the availability and integrity of the no-
tification mechanism, it should be protected. This protection can
be achieved through isolation or by using cryptographic tech-
niques, depending on the notification mechanism that is in use.
For example, an LED indicator can be efficiently protected by
isolating the control over the GPIO pin to which it is connected.
Conversely, a centralized logging scheme is best protected by es-
tablishing a cryptographic channel between the Kimya gateway
and logging server.

When notifications are generated in a machine-readable for-
mat (e.g., Bluetooth beacons or logs on a central server), a privacy
assistant [45, 94] can be used to aid the user with the auditing of [45] Personalized Privacy

Assistants for the Internet of
Things: Providing Users with
Notice and Choice, Das et al.
(2018)

[94] A Privacy Awareness Sys-
tem for Ubiquitous Computing
Environments, Langheinrich
(2002)

notifications.

4.4 Implementation on Cortex-M

We leverage TrustZone to implement Kimya on a Cortex-M33

MCU. Specifically, we prototype our implementation on an STM
NUCLEO-L552ZE-Q development board with an ultra-low-
power STM32L552ZE MCU running at 110 MHz with MPU and
a floating-point unit (FPU) [163]. [163] Ultra-low-power ARM

Cortex-M33 32-bit MCU with
TrustZone, STMicroelectron-
ics (2020)

We implement Kimya as a gateway running in the secure
world. All application code (including event detection) runs
in the non-secure world and interacts with the secure-world
gateway to request Kimya phase transitions. We illustrate the
basic Kimya control flow in Fig. 4.6.
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Application
IDLE or TRIGGERED

K IMYA

Gateway
Application
ACQUIRE

Application
PROCESS

app_logic();
ACQUIRE(&f1, t);

prepare_ACQUIRE();
container_exec(&f1);

void f1(void){
sample_sensor();
preprocess_data();
return;

}

prepare_IDLE();
return;

s = PROCESS(&f2, t);

prepare_PROCESS();
r = container_exec(&f2);

kimya_state_t f2(void){
if (event_detection())
return TRIGGERED;

else
return IDLE;

}

if (r == TRIGGERED){
send_notification();
prepare_TRIGGERED();
return TRIGGERED;

} else {
prepare_IDLE();
return IDLE;

}

app_logic();

Non-secure world

Non-secure world
Containerized

Secure world

Figure 4.6: Simplified Kimya

execution flow. The pa-
rameter t is introduced in
Section 4.4.4. The notifica-
tion process is executed in
the secure world.
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In order to transition to the ACQUIRE and PROCESS phases,
the application makes a call to the gateway, passing a function
pointer. The gateway function then transitions the MCU to the
desired phase and executes the specified function in the non-
secure world. When a function call to the ACQUIRE phase returns,
the gateway transitions the MCU back to the IDLE phase and
returns control to the non-secure world. Functions executing in
the PROCESS phase can specify if the MCU should be transitioned
to the IDLE or TRIGGERED phase before control is returned to
the application. In the latter case the gateway will generate a
notification (by calling send_notification(), Fig. 4.6) before
executing the phase transition. In either case the non-secure
world is informed about the currently active phase when control
is returned to it.

4.4.1 Enforcing the Kimya Access Map

The core of our Kimya implementation is the enforcement of the
access map in Table 4.1. We leverage a combination of the MPU,
the TrustZone configuration of peripherals, and the TrustZone
security gates (see Section 2.2) for this purpose. Concretely,
during the IDLE phase, all Kimya container-related memory
regions are marked as secure in the TrustZone configuration,
preventing the non-secure application from accessing them.
Therefore, full MPU control can be granted to the application,
ensuring compatibility with existing OSs.

When the application makes a call to the ACQUIRE or PROCESS
phases, the Kimya gateway calls prepare_ACQUIRE() or prepare_PROCESS()
(Fig. 4.6) to take control of the MPU for the duration of that call.
The required container resources are temporarily marked as
non-secure, making them accessible to the application code. The
MPU is then configured according to Table 4.1 to enforce the
necessary access restrictions.

Before control is returned to the main application code, the
gateway either transitions the MCU back to the IDLE configura-
tion described above (by calling prepare_IDLE(), Fig. 4.6), or to
the TRIGGERED configuration. In the latter case, the prepare_TRIGGERED()

call marks all container-related memory regions as non-secure,
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and grants MPU control to the application. The application now
has direct access to all resources needed to process the trigger
event.

4.4.2 Enforcing Amnesia

In order to guarantee the amnestic property of the Kimya con-
tainer, the Buffers A/B and Scratch memory must be periodically
erased and the one-way dataflow illustrated in Fig. 4.5 guaran-
teed. While the former could be achieved using a secure-world,
timer-driven, interrupt, our implementation instead checks if
buffer maintenance is needed each time before entering the
ACQUIRE, PROCESS, or TRIGGERED phase. This ensures that all
data older than Tlifetime is erased before it can be accessed, while
avoiding long interrupt routines.

We further extend the Kimya API for the non-secure world
with a maintain_buffers(t) call. This call prepones buffer
maintenance by up to t time units. This allows the non-secure
application to schedule buffer maintenance ahead of time,
thereby eliminating the need for buffer maintenance to com-
plete before the Kimya container can be accessed and thereby
reducing timing jitter.

4.4.3 Non-Secure Calls

Although we can rely on standard toolchain behavior to secure
calls to the secure gateway (i.e., the application’s ACQUIRE() and
PROCESS() calls in Fig. 4.6), this is not the case for the gateway’s
calls into the non-secure world (i.e., the container_exec() calls
in Fig. 4.6). The reason for this is twofold. First, upon entering
the ACQUIRE or PROCESS phases, the MPU will be in a highly re-
strictive state. Because the main application’s stack will not be
accessible, a new stack must be set up for the containerized func-
tion. Second, the official toolchain requirements for TrustZone on
Cortex-M [16] are designed to provide isolation between the se- [16] ARM v8-M Security

Extensions: Requirements on
Development Tools, ARM Ltd.
(2019)

cure and non-secure worlds, but do not isolate non-secure func-
tion calls made by the secure world from the main non-secure
application thread. Concretely, standard toolchain behavior does
not clear all non-secure world registers before and after non-
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secure function calls, and would thus allow for communication
from the Kimya container to the main application.

To address these issues, we implement container_exec() as
an assembly function that performs the following tasks.

1. Push all general-purpose, special, and floating-point processor
registers to the secure stack. In the case of banked registers,
the non-secure register is pushed.

2. Clear all registers saved on the stack.

3. Move the non-secure stack pointer to a memory region that
will be writable in the container. When transitioning to the
ACQUIRE phase, the stack pointer is moved to the top of the
currently active Buffer A/B. For the PROCESS phase the top of
the Scratch region is used.

4. Branch and link to the containerized function in the non-
secure world.

5. Once the containerized function has returned, erase and re-
store all saved registers. This includes the non-secure stack
pointer.

4.4.4 Ensuring Container Isolation

Beyond the core aspects described above, a number of other
measures must be taken to ensure no data can be leaked from a
Kimya container. We discuss these practical measures here and
present a more theoretical discussion in Section 4.5.2.

Container execution time Using a timer, real-time clock (RTC),
or similar peripheral, it is possible for the main application to
measure the execution time of a Kimya container. When no
special care is taken, the event-detection code running in the
Kimya container could modulate its execution time to establish a
uni-directional communication channel out of the container. This
channel could have a capacity of up to log2 ( fc pu) bps, where
fc pu is the core frequency in Hz.

In order to prevent this source of information leakage, we re-
quire the application to specify a desired execution time for each



86 piet de vaere

call to the ACQUIRE or PROCESS phases. The called function must
return before the specified duration has passed. The gateway
will then wait for the remainder of that duration before control
is returned to the application. A read-only timer is made avail-
able in the container to allow the event-detection code to know
how much execution time is left. This timer can also be used as a
relative time base for event-detection tasks.

TRIGGERED execution time When an event has been detected
and a notification generated, the MCU is transitioned to the
TRIGGERED phase. By default the MCU can stay in this phase for
up to TTRIGGERED seconds. TTRIGGERED is an implementation defined
value. Before this duration has passed, the application must
either (i) yield back to the IDLE phase, or (ii) request another
notification to be generated, extending the yield deadline to
TTRIGGERED seconds beyond that request. This deadline is enforced
using an interrupt triggered by a secure-world timer. Setting the
PRIS bit in the Application Interrupt and Reset Control Register
(AIRCR) ensures that the non-secure application cannot mask
this interrupt [14]. [14] ARM Cortex-M33 Devices

Generic User Guide, ARM
Ltd. (2020)

Caches The STM32L552ZE MCU used for our implementation
has a built-in instruction cache [163]. In order to prevent cache- [163] Ultra-low-power ARM

Cortex-M33 32-bit MCU with
TrustZone, STMicroelectron-
ics (2020)

timing attacks, the Kimya gateway clears this cache whenever
leaving the ACQUIRE or PROCESS phases. There are no other caches
present on the STM32L552ZE.

DMA As shown in Fig. 4.7, the MPU is part of the Cortex-M33

core, and therefore does not affect the operation of the DMA
controller. Because Kimya container resources are marked as
non-secure during the ACQUIRE and PROCESS phases, this means
that the application could preprogram the DMA controller to
steal sensitive information while the MCU is in one of those
phases. We propose two mechanisms to prevent this attack.
First, the gateway can disable the DMA controller before moving
container resources to the non-secure world. Second, the DMA
controller can be moved to the secure world, removing the non-
secure application’s ability to program it directly. A thin secure-
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world DMA configuration shim can then verify that no DMA
operations affect the Kimya container memory regions. Our
implementation uses the former strategy.

Cortex-M

MPU SAU DMA Slave

DMA Master
GPIO

è TZ Gate

SRAM

è TZ Gate

I2C

TZ-aware

Not TZ-aware

Bus master

Bus slave

Data bus

TZ security state

Figure 4.7: A high-level
architecture overview of a
TrustZone-enabled MCU.

Peripheral use In some cases, peripherals must be accessible
in the Kimya container. For example, our wake-word detec-
tion prototype (see Section 4.6) requires the cyclic redundancy
check (CRC) peripheral to be available for intellectual property
management.4 In such cases, it must be ensured that (i) con- 4 The proprietary STM X-

CUBE-AI neural network
library uses the CRC pe-
ripheral to verify that it is
running on STM hardware.

tainer isolation cannot be violated by using peripherals as com-
munication channels with the main application, and (ii) that
container amnesia cannot be violated by storing information in
peripheral registers during memory wipe events. This can be
achieved by setting all writable peripheral memory locations to
a well-known value after the function call from the ACQUIRE or
PROCESS phase returns. In the case of our prototype, this is done
by resetting the CRC peripheral.

Handling policy violations Whenever event-detection or main
application code violates a Kimya policy (e.g., a container ex-
ecuting longer than was requested by the main application), a
notification is generated. This ensures that misbehaving applica-
tions are detected and can be mended.



88 piet de vaere

4.5 Security Analysis

Kimya’s security guarantees are derived from the two main
properties it provides: amnesia and isolation. We provide a
theoretical proof of Kimya’s amnesia property in Section 4.5.1.
Isolation is discussed in Section 4.5.2.

4.5.1 Amnesia

In Section 4.3.4 we claimed that no data in the Kimya container
can be older than Tlifetime. We will now prove this property.

Proof model In order to facilitate the proof, we introduce the
variables tsensor, tbuffer A, tbuffer B, tscratch, which keep track of
the genesis time of the oldest data that can be present in each
memory region inside the Kimya container. Because only the
latest sample can be read of the sensor, we assume tsensor = t at
all times t. At t = 0, all buffers are zeroed out, so we initialize
the other variables as tbuffer A = tbuffer B = tscratch = 0.

Whenever

t = n · Tlifetime
2

, n ∈N ,

buffer maintenance is performed. This is modeled using the
following sequential operations:

t′buffer B = tbuffer A ,

and

t′buffer A = tscratch = t ,

where we model the alternating buffer using a renaming opera-
tion to simplify notation. Additionally, at any point in time, the
following two operations may be performed arbitrarily often:

t′buffer A = min(tbuffer A, tsensor) , (α)

and

t′scratch = min(tbuffer A, tbuffer B, tscratch) . (β)

α and β model the ACQUIRE and PROCESS phase, respectively.
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Proof We now prove that at any time t, it holds that

tmin = min(tsensor, tbuffer A, tbuffer B, tscratch) ≥ t− Tlifetime .

To this end, we first proof that neither operation α nor β can
change tmin. This holds because both operations assign the min-
imum value from a subset of variables considered for tmin to a
variable from that same set, thus not changing tmin.

Next, we show that neither α nor β can change the variables
tbuffer A and tbuffer B. For β this holds trivially, as it does not
write to either of those variables. α writes only to tbuffer A, so
cannot affect tbuffer B. Moreover, because time is monotonically
increasing, we know that tbuffer A ≤ t, so

t′buffer A = min(tbuffer A, tsensor)

= min(tbuffer A, t)

= tbuffer A .

We know that

tmin ≥ t− Tlifetime
2

at t = 0

because all variables are initialized at 0. Now assume that

tmin ≥ t− Tlifetime
2

at t = k · Tlifetime
2

, k ∈N ,

then at t = (k + 1) · Tlifetime
2 , after performing buffer maintenance

it holds that

tsensor = t (by assumption) ,

tbuffer A = tscratch = t (because of the wipe event) ,

and

tbuffer B = tbuffer A

∣∣∣∣
t=k·Tlifetime/2

= k · Tlifetime
2

because tbuffer A was set at t = k · tlifetime
2 and cannot have changed

since then (see above). Thus, it holds that

tmin ≥ t− Tlifetime
2

at t = (k + 1) · Tlifetime
2

, k ∈N .
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Therefore, by induction it holds that

∀n ∈N : tmin ≥ t− Tlifetime
2

at t = n · Tlifetime
2

.

Finally, because neither operations α nor β can change tmin,
and because buffer maintenance is performed at least every
Tlifetime

2 , it must hold that tmin ≥ t− Tlifetime at any time t. □

4.5.2 Isolation

In order for Kimya’s isolation (and by extension amnesia) prop-
erty to hold, it must be ensured that no covert channels exist.
This section presents an overview of the considerations made
during the design of Kimya. As motivated in Section 4.2, we do
not consider adversaries with physical access.

4.5.2.1 Storage Channels

Under storage channels we consider channels that transmit data
by explicitly writing it to a storage location from which it can
later be read back. Two types of storage are available on our
target MCU: memory-mapped and register storage.

Memory-mapped storage Memory-mapped storage comprises all
storage locations that have a memory address and are accessed
over the data bus using load or store instructions. As described
in Section 4.4, our Kimya implementation dynamically manages
the MPU, TrustZone configuration, and the DMA controllers,
and combines this with (re)setting memory location to well-
known values to ensure that no communication is possible using
these resources.

Processor registers Some storage locations on the Cortex-M33

core are not memory-mapped, but can be directly accessed using
dedicated instructions. To prevent covert channels that leverage
these registers, we analyze the Cortex-M33 ISA to identify all
writable registers. As discussed in Section 4.4.3, we constructed
the container_exec() function to ensure that all these registers
are set to a well-known value after the containerized call returns.
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4.5.2.2 Other Channels

Beside channels that directly write data to storage locations,
other, indirect, channels must be considered as well. We inspect
the architecture [17] and reference manual [162] of our target [17] Armv8-M Architecture

Reference Manual, ARM Ltd.
(2021)
[162] Reference man-
ual: STM32L552xx and
STM32L562xx advanced
ARM-based 32-bit MCUs,
STMicroelectronics (2020)

MCU to identify potential covert channel and present tailored
defences below.

Timing channels A containerized call could leak information by
modulating its execution time. As discussed in Section 4.4.4, the
application must therefore specify an exact execution time for
each containerized function call.

Caches Our target MCU has an instruction cache. Timing anal-
ysis on this cache could be used to establish a covert channel. As
specified in Section 4.4.4 we flush the cache after every container-
ized call to prevent this.

Counters Our target MCU has multiple debug and performance
counters, e.g., a cache-miss counters. The containerized code
could attempt to actively influence these counters. We ensure
that these counters are not readable by the non-secure world
application.

Physical channels Channels communicating using physical prop-
erties could be established. For example, the event-detection
code could attempt to influence the temperature of the MCU
package, which could then be measured using the MCU’s built-
in temperature sensor. We did not explicitly consider such chan-
nels, but if deemed necessary, they could be avoided by restrict-
ing non-secure access to specific resources, such as, the on-board
temperature sensor.
Although the relative simplicity of our target MCU compared
to high-end processors facilitates a covert-channel analysis, we
consider strong claims about the total covert-channel capacity
to be beyond the scope of this work. However, we do note that
Kimya’s amnesia property strictly limits the attacker’s window
to exfiltrate information from the Kimya container. This signif-
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icantly reduces the utility of low-capacity covert channels, as
any information not exfiltrated within at most Tlifetime from its
genesis is lost to the attacker.

4.6 Prototype Application

In order to demonstrate Kimya’s practicality, we implement
a proof-of-concept keyword-spotting pipeline on an ultra-low-
power STM32L552ZE MCU, simulating the wake-word detection
functionality of a voice assistant. We train the pipeline using
recordings of the author of this thesis speaking the same words
as used in the Google Speech Commands dataset [177]. The [177] Speech Commands: A

Dataset for Limited-Vocabulary
Speech Recognition, Warden
(2018)

word “cat” is used as keyword. We then apply Kimya to this
detection engine.

4.6.1 Keyword-Spotting Pipeline

A typical keyword-spotting pipeline first extracts high-level
speech features from the audio signal and then feeds these fea-
tures to a neural network classifier [192]. Running inferences on [192] Hello Edge: Keyword

Spotting on Microcontrollers,
Zhang et al. (2018)

speech features instead of raw audio considerably reduces the in-
put dimensions of the classifier, thereby significantly simplifying
the classifier’s network and training process.

A commonly used feature set for speech processing are mel-
frequency cepstral coefficients (MFCCs) making up the mel-
frequency cepstrum [58]. Given the constrained nature of our [58] Speech Processing for

Machine Learning: Filter
banks, Mel-Frequency Cepstral
Coefficients (MFCCs) and
What’s In-Between, Fayek
(2016)

target platform, we instead use the mel spectrum, a less pro-
cessed version of the cepstrum. In order to obtain a mel spec-
trum of an audio segment, the following steps must be taken.
First, the audio segment is segmented into shorter chunks to
which a fast Fourier transform (FFT) is applied. The resulting
coefficients represent the Fourier spectrum of each chunk. Plot-
ting these spectra against time results in the spectrogram of the
audio segment. This spectrogram shows how the frequency
components in the segment change over time. The frequency
coefficients in each chunk’s Fourier spectrum are then binned
using the mel scale [160], a scale based on the sensitivity of the [160] A Scale for the Mea-

surement of the Psychological
Magnitude Pitch, Stevens,
Volkmann, and Newman
(1937)

human ear. The end result is a mel spectrogram, showing how
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the human-perceived spectrum of the audio segment changes
over time.

We implement the keyword spotting pipeline shown in
Fig. 4.8. The input to the pipeline is 16-bit mono audio sam-
pled at 16 kHz from a SPH0645LM4H microphone with digital
Inter-IC Sound (I2S) output. The audio is processed in chunks of
1024 samples or 64 ms. These chunks are non-overlapping and
a rectangular sampling window is used. Because the spectrum
of each chunk is independent, each audio chunk must be pro-
cessed only once, and the result can be appended to the previous
mel spectrogram from which the oldest chunk is simultaneously
dropped. From each chunk, a 13-coefficient mel spectrum is
extracted. 15 such spectrums form the mel spectrogram that is
used as input for the classifier network.

16-bit audio
1 s @ 16 kHz

Mel spectrogram
15 x 13 bins

¥

or

q

Detection
result

Mel
spectrum
extraction

Keyword
spotting

with CNN

Figure 4.8: The keyword-
spotting pipeline.

We use the convolutional neural network (CNN) shown in
Fig. 4.9 to perform the keyword spotting task on the 15x13 mel
spectrograms. The network contains two convolutional layers
and one dense layer, totaling 10, 454 trainable parameters.

Input

15x13x1

Mel
spectogram

Convolution (3x3)
ReLu

13x11x24

Convolution (3x3)
ReLu

4x3x36

Maxpool (2x2)

Dense
ReLu

32x1x1

Maxpool (2x2)

Output
SoftMax
2x1x1

Figure 4.9: The CNN used
for keyword spotting on the
MCU.

The feature extraction is performed with the ARM CMSIS-
DSP software library [18] using single precision floats. The neu- [18] CMSIS DSP Software

Library, ARM Ltd. (2021)ral network is executed in the STM X-CUBE-AI runtime [161],
[161] DB3788: X-CUBE-AI
Databrief, STMicroelectronics
(2021)
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again using single precision floats.

4.6.2 Kimya Integration

We implement the keyword-spotting pipeline with Kimya as
shown in Fig. 4.10. Mel-spectrum coefficients are calculated
in the ACQUIRE phase and CNN inference is performed in the
PROCESS phase.

16-bit audio
1 s @ 16 kHz

Sensor

Mel spectrogram
15 x 13 bins

Buffer A/B

¥

or

q

Detection
result

Mel
spectrum
extraction

ACQUIRE

Keyword
spotting

with CNN

PROCESS Figure 4.10: The keyword-
spotting pipeline with
Kimya integration.

In order to minimize the required number of Kimya phase
changes, we use the secure world to implement a virtual sen-
sor. As the microphone is sampled at 16 kHz, and the MCU’s
I2S peripheral only has an 8-frame FIFO buffer, the event-
detection code would have to read out this buffer at least every

8
16 kHz = 500 µs. As each access of the I2S peripheral require
a transition to the ACQUIRE phase, this would be inefficient. In-
stead, we permanently configure the I2S peripheral as a secure-
world resource, and set up a secure-world DMA stream from the
I2S FIFO buffer to an alternating 1024-frame (= 64 ms) memory
buffer. This memory buffer is then treated as a virtual sensor,
taking the place of the I2S peripheral in the Table 4.1 access map.
Additionally, a check_for_new_data() API call is provided for
the application to check if a new buffer frame is available.

The control flow of the keyword-spotting application follows
the typical Kimya flow illustrated in Fig. 4.6. If the application is
in the IDLE phase, it checks if a new microphone frame is avail-
able. If so, it calls into the ACQUIRE phase, performs the feature
extraction on the microphone data and stores the result in the al-
ternating Buffer A/B. Performing this task in the ACQUIRE phase,
ensures that it does not need to be repeated when the buffers are
alternated and the Scratch memory is erased. Next, a call to the
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PROCESS phase is made. This call copies and orders the required
data from the Buffers A/B to the Scratch memory to assemble
the mel spectrogram for the most recent audio data and runs the
neural network inference on it. If the keyword was detected, the
MCU is transitioned to the TRIGGERED phase, and the main appli-
cation thread starts streaming microphone data to a serial port.
This simulates a voice assistant streaming microphone data to a
cloud service for further processing.

The non-secure application must ensure that no interrupts
that violate the Kimya access map (Table 4.1) occur while the
core is in the ACQUIRE or PROCESS phase. Therefore, non-secure
interrupts are masked by setting the fault mask for the duration
of the container calls. Further, all functions using the Buffer
A, Buffer B, and Scratch memory regions must be aware that
these memory regions can be erased between calls. To this end,
a canary value is placed in each buffer. When this value reads
as zero, the function knows the memory was emptied and re-
initializes all necessary data structures.

Configuration values We set Tlifetime = 2 s and TTRIGGERED = 5 s.
Buffer A, Buffer B, and the Scratch memory are each 16 KiB. Two
proof-of-concept notification mechanism are used simultane-
ously: a LED that is continuously lit when the TRIGGERED phase
is active, and a LED that flashes upon entering the TRIGGERED

phase or extending the TTRIGGERED deadline. We protect the no-
tification mechanisms by limiting access to the GPIO pins that
controls the LEDs to the secure world.

4.7 Evaluation

A basic evaluation of the on-MCU pipeline shows a precision of
100 % and a recall of 89 %. This evaluation was performed using
100 utterances of the keyword, and 100 utterances of uniformly
sampled other words in the dataset. Because evaluating the
performance of keyword-spotting systems is a complex task
with many variables, and because we consider it to be beyond
the scope of our proof of concept, we did not perform a more
detailed performance analysis of the pipeline. Instead, we focus
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on the performance differences between the pipeline running
with and without Kimya.

We use the setup shown in Fig. 4.11 to evaluate our Kimya

implementation. We use two identical STM NUCLEO-L552ZE-Q
development boards. One board has TrustZone activated and is
running the keyword-spotting pipeline inside a Kimya container.
The other board functions as a reference and has TrustZone dis-
abled. The reference is thus running the entire keyword-spotting
pipeline in the non-secure world, without Kimya. Functional-
ity that is needed for Kimya compatibility (i.e., to reinitialize
data structures or to copy and reorder data from the alternating
Buffer A/B) is removed.

I2S
Microphone

Shared
I2S bus

Logic
Analyzer

Figure 4.11: The evaluation
setup. The reference is on
the left and the Kimya

prototype on the right.

To facilitate an accurate comparison of the two boards, they
are both connected to the same I2S microphone. The microphone
is configured as an audio source, the MCUs as sinks. Only the
Kimya board generates a clock. This setup ensures that both
boards receive identical microphone data.

Functional evaluation As a preliminary evaluation, we verified
that it is not possible to access microphone data without gener-
ating a notification: doing so results in a hard fault, stalling the
MCU. We also logged the status of a button to the serial port,
demonstrating that Kimya does not prevent the transfer of data
that did not originate in the Kimya container.
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4.7.1 Macro Benchmarks

We evaluate Kimya using four macro benchmarks: output corre-
lation with the reference implementation, pipeline latency, MCU
duty cycle, and binary size.

4.7.1.1 Evaluation Setup

Each board updates the mel spectrogram and runs the neural
network inference process each time a new chunk of 1024 micro-
phone samples is available. This corresponds to one inference
per 64 ms or 15.6 inferences per second. Each board exposes a
keyword_detected signal on a GPIO pin which we sample at
16 MSamples/s using a logic analyzer. We stimulate the micro-
phone using recordings of the keyword to generate 300 detection
events per evaluation setting. This results in 600 measurable
transitions of the keyword_detected signal. The boards also ex-
pose a signal indicating if the pipeline is running or if the MCU
core is idle. We sample this signal to calculate the MCU duty
cycle.

We run the macro benchmarks in three software settings.
In the first setting, the application fully relies on the Kimya

gateway to perform buffer management. In the second setting,
the application proactively makes calls to maintain_buffers()

(see Section 4.4.2) to ensure that no buffer maintenance must
be performed when running the pipeline. In the third setting,
the application additionally proactively reinitializes the neural
network after the Scratch memory was erased by executing a
dedicated network initialization function in the PROCESS phase.
All code was compiled using GCC and optimized for binary size
(-Osize).

4.7.1.2 Results

Output correlation When compensating for the additional delay
introduced by Kimya, both keyword_detected signals have a cor-
relation coefficient of 1 in all settings. That is, they are identical.
We confirm this in an additional experiment in which we allow
both keyword-spotting pipelines to print their prediction and
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confidence score to a serial port. These values are also identical.
This is expected and confirms that Kimya does not introduce
data loss and does not affect computational results.

Latency Because voice commands do not have well-defined
boundaries, the absolute latency of a keyword-spotting pipeline
is ambiguous. Instead, we measure the relative latency of the
Kimya-enabled pipeline compared to the reference implementa-
tion. The results are shown in Fig. 4.12. We see that in the basic
setting, a median 1.43 ms of additional delay is incurred because
of the Kimya containerization. In about 5 % of cases an addi-
tional 0.5 ms of delay is incurred on top of that. This corresponds
to the pipeline runs where the gateway performs buffer main-
tenance before either call to the Kimya container. In the setting
where the application performs buffer maintenance proactively,
this tail is not present. Finally, we see that when the application
proactively reinitializes the neural network, the median delay
is reduced to 1.19 ms. This improvement can be seen uniformly
across all detection event runs, because when the application
specifies a duration for a Kimya container call, it must always
assume a worst-case execution time. Thus, if the state of the neu-
ral network is unknown, the application must budget time for
reinitialization during every PROCESS call.

1.961.431.19
0

0.5

1

Buffer wipe

with
proactive
initialization

with
proactive
buffer maintenance

without
proactive

maintenance

Detection ∆ [ms]

E
C

D
F

Figure 4.12: Detection delay
of the Kimya-enabled board
compared to the reference
implementation.

MCU duty cycle The reference implementation runs at a duty
cycle of 24.5 %. The Kimya implementation without proactive
buffer management has a duty cycle of 26.8 %. Proactively call-
ing maintain_buffers() did not meaningfully change the duty
cycle. However, when combined with proactive reinitializations,
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the duty cycle was slightly reduced to 26.5 %. This improvement
stems from the fact that in the latter case, time to initialize the
neural network must only be budgeted in the dedicated reinitial-
ization calls, and not in all calls to the PROCESS phase.

Binary size Table 4.2 shows the binary sizes of the Kimya and
reference implementations. There were no meaningful differ-
ences between the three Kimya settings. We see that using
Kimya does not measurably increase the binary of the non-
secure application. In fact, the reference binary is larger than the
Kimya-enabled application binary. We attribute the difference
in the ROM sections to variations in compiler optimizations.
The reference RAM region is larger because it includes statically
allocated variables that are dynamically allocated in the Buffer
A/B or Scratch regions in the Kimya implementation. The small
secure-world binary size shows that the Kimya gateway has a
small binary footprint.

Secure (Gw.) Non-secure (App.)

ROM RAM ROM RAM

With K IMYA 17.01 2.19 156.46 1.95
Reference – – 162.61 28.53

Table 4.2: Sizes of ROM
and RAM sections of the
benchmark binaries in KiB.

4.7.2 Micro Benchmarks

To better understand the origin of the additional delay observed
in the macro benchmarks, we perform micro benchmarks to
measure the cost of individual Kimya operations. These bench-
marks use the proactive reinitialization setting.

4.7.2.1 Container Operations

Container entry and exit We instrument the code on the Kimya-
enabled board to write well-known values to a GPIO port at
key points in the execution flow. This creates an 8-bit parallel
signal that can be used to profile both the secure and non-secure
worlds.
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As shown in Fig. 4.13, entering the Kimya container takes
between 11 and 14 µs. Leaving the container to the IDLE phase
takes around 5 µs. Due to the additional overhead required (i.e.,
buffer management, setting up the TTRIGGERED timer), leaving from
PROCESS to the TRIGGERED phase takes around 8 µs. These times
exclude any time spent waiting to reach the specified container
execution time (see Section 4.4.4).

4 6 8 10 12 14

Entry

Exit N=4724
[µs]

ACQUIRE

4 6 8 10 12 14

Entry

Exit (IDLE)

Exit (TRIGGERED) N=4724
[µs]

PROCESS

Figure 4.13: Boxplot show-
ing the overhead of entering
and exiting the Kimya con-
tainer. Exit timing excludes
time spent waiting to reach
the specified container exe-
cution time. Whiskers drawn
at percentiles 1 and 99.

Figure 4.14 decomposes the operations shown in Fig. 4.13 into
three suboperations: (i) switching from the non-secure world to
the secure gateway, (ii) executing the gateway logic, and (iii) re-
turning from the gateway to the non-secure world. We see a base
cost of 1 to 2 µs to switch between the secure and non-secure
worlds. Kimya-specific logic (i.e., MPU configuration, buffer
checks, timer management) adds around 10 µs per container
call. Results for the PROCESS phase are similar and therefore not
shown.

Buffer management The timing values shown in Figs. 4.13

and 4.14 include buffer management logic, but because the appli-
cation performs proactive buffer maintenance, it does not include
buffer erasure overhead. We separately measure buffer erasure
to take 261 µs per 16 KiB memory region, resulting in an average
0.06 % core load for buffer erasure.
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Figure 4.14: Boxplot show-
ing Kimya gateway over-
head. Broken down into
time required to enter the
secure-world gateway, time
spent in the gateway, and
time required to return
to the non-secure world.
Gateway time excludes time
spent waiting to reach the
specified container execution
time. Whiskers drawn at
percentiles 1 and 99.

4.7.2.2 Comparison to Macro Benchmarks

Summing up the median container entry and exit times with a
median 33 µs spent waiting for the specified container execu-
tion time to be reached (not shown in Fig. 4.13), results in an
overhead of 70 µs per pipeline run. This number is significantly
lower than the 1.19 ms measured during the macro benchmark-
ing. To understand the origin of this discrepancy, we perform
further benchmarking on the application and container code.
We observe that the inference call to the (precompiled) neural
network library takes 15.50 ms in the Kimya container instead
of 14.46 ms in the reference implementation. This difference of
1.04 ms makes up the majority of the 1.12 ms of unapportioned
overhead. We attribute this performance gap to the different
memory access pattern in the Kimya implementation, leading to
more bus contention.

4.8 Discussion

4.8.1 Limitations

Data lifetime Although Kimya provides strong guarantees that
no sensor data can be stored beyond Tlifetime, it requires Tlifetime

to be configured at twice the actual useful data lifetime. For
example, our prototype implementation uses Tlifetime = 2 s,
although only 1 s of data is fed into the CNN.

This is a direct consequence of using two buffers to form the
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alternating buffer A/B. Extending the alternating buffer to a ring
buffer composed of n buffer elements, would allow Tlifetime to be
reduced to 1 + 1

n−1 times the true data lifetime. Limiting factors
are (i) the size of the chunks in which data is preprocessed, and
(ii) the requirement to wipe the entire scratch region each time
an element of the ring buffer is wiped.

Imperfect auditing Kimya relies on device users to perform
notification auditing. Past work has shown that the design of no-
tification mechanisms is critical to ensure the audit quality [136]. [136] Somebody’s Watching

Me?: Assessing the Effec-
tiveness of Webcam Indicator
Lights, Portnoff et al. (2015)

However, even with an optimal notification mechanism it is pos-
sible that a user would miss some false-trigger events. When
designing a notification mechanism, it is important to ensure that
systematic misbehavior will eventually be noticed by the user. If
this is not the case, an adversary could simply keep the Kimya

device in the TRIGGERED phase at all times. Care must also be
taken to ensure that other factors (e.g., the location of the device)
do not hinder the notification mechanism (e.g., placing a device
with a light-based notification mechanism in a closed closet).

Instead of generating a false-trigger event, an adversary could
also artificially extend the the time during which the device stays
in the TRIGGERED phase after detecting a true-trigger event. If
kept within limits, we expect users to be more likely to attribute
such behavior to non-malicious technical limitations. As an
example, we consider an adversary that extends each trigger
by 10 s. Assuming 18 smart-speaker interactions per day [25], [25] Understanding the Long-

Term Use of Smart Speaker
Assistants, Bentley et al.
(2018)

this would allow an adversary to maliciously capture up to 3 min
of superfluous audio a day without raising suspicion.

Alternative event detection Kimya does not place restrictions on
which type of events the application code can detect. Therefore,
the Kimya mechanism by itself does not provide any privacy
guarantees. Instead, the core Kimya mechanism needs to be
used together with suitable notification and auditing mecha-
nisms.

For example, consider the case where an adversary writes
code that detects specific information (e.g., by triggering on the
keyword “password”). The attacker could then potentially export
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this data by generating only a small amount of low-frequency
false-positive notifications. Depending on the notification and
auditing mechanisms used, these notifications may go unnoticed.

The use of software attestation mechanisms to limit which
code can be executing inside the Kimya container could mitigate
this attack, although at the cost of reduced system agility. Alter-
natively, the quality of the notifications and notification auditing
could be improved, for example, through the use of privacy as-
sistants [45, 94]. [45] Personalized Privacy

Assistants for the Internet of
Things: Providing Users with
Notice and Choice, Das et al.
(2018)

[94] A Privacy Awareness Sys-
tem for Ubiquitous Computing
Environments, Langheinrich
(2002)

Multi-stage pipelines For efficiency and accuracy reasons, event-
detection pipelines often use multiple stages with decreasing
false-positive rates and lazy evaluation [157, 91]. In such cases,

[157] Hey Siri: An On-device
DNN-powered Voice Trigger for
Apple’s Personal Assistant, Siri
Team (2017)

[91] Building a Robust Word-
Level Wakeword Verification
Network, Kumar et al. (2020)

our Kimya implementation requires container execution time for
all pipeline stages to be budgeted during each call. Modifications
that allow the container execution time to be dependent on the
result of the pipeline stages could be made, but would create
a (narrow) information channel out of the container. Logging
when the container execution time was extended could deter
adversaries from abusing this channel. Alternatively, this channel
can be eliminated by decoupling the Kimya execution time from
that of the main application, for example, by executing Kimya

on a dedicated core.
Some vendors offer cloud-based wake word verification ser-

vices, intended to be used as the last stage of a keyword-spotting
pipeline [83]. Kimya requires a notification to be generated [83] Cloud-Based Wake Word

Verification Improves “Alexa”
Wake Word Accuracy on Your
AVS Products, Karczewski
(2017)

each time data is sent to such a service. If the on-device pipeline
stages have a high false-positive rate, this can dilute the value
of Kimya notifications. However, there is an ongoing trend to
move voice assistant functionality from the cloud to end-user
devices [10, 31]. Therefore, we anticipate that cloud-based wake- [10] Apple advances its privacy

leadership with iOS 15, iPadOS
15, macOS Monterey, and
watchOS 8, Apple (2021)

[31] Bringing you the next-
generation Google Assistant,
Bronstein (2019)

word detection will disappear over time.

Reduced scheduling flexibility Calls to the ACQUIRE and PROCESS

phases are fixed-duration and non-preemtable. This results in a
reduced scheduling flexibility, and in certain cases, might lead
to a performance degradation. However, as embedded systems
are designed assuming worst-case execution times, a Kimya-
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enabled system should be able to meet the same deadlines as an
equivalent non-Kimya system.

TCB bloating In our Kimya implementation, all code running
in the secure world has the same security level, and is thus able
to affect Kimya’s properties. Therefore, all secure world code
is part of Kimya’s TCB. If additional functionalities are imple-
mented using TrustZone, this has the potential to bloat the TCB
size. A secure-world OS could be used to limit the access per-
missions of secure-world code. TCB bloat affects all platforms of
which the hardware provides a single-world secure environment.

4.8.2 Multiple Sensors

This work focuses on regulating access to a single event-triggered
sensor. However, many devices have multiple sensors. In such
cases the following Kimya deployment models are possible:

Independent The access permissions for each sensor are consid-
ered individually. Multiple sensors can be protected by creating
multiple, independent, Kimya containers.

Cross-sensor The permissions for multiple sensors can be linked
together, enabling opportunities for cross-sensor activations.
Consider, for example, a smart display with both a camera and
a microphone. In this setting, Kimya could be configured to
link access permissions for the camera to events detected on
the microphone. This way, Kimya can ensure that camera data
cannot be accessed unless the user speaks an activation phrase,
e.g., “Hey Kimya, turn on the camera”.

Virtual sensors The trigger output of a Kimya enabled sensor
can be used as a virtual sensor input for sensor access manage-
ment or attack detection systems (e.g., 6thSense [154]). [154] A Context-Aware

Framework for Detecting
Sensor-Based Threats on Smart
Devices, Sikder, Aksu, and
Uluagac (2020)

4.8.3 Deployability

MCU requirements Implementing Kimya requires a mechanism
that allows protected gateway code to restrict the resource ac-
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cess of application code. Our implementation on ARM Cortex-M
uses a combination of TrustZone and the MPU for this purpose.
Many modern, embedded, architectures provide similarly suit-
able mechanisms. These include: (i) TrustZone on ARM Cortex-
A [134] in combination with a MPU or memory management [134] Demystifying Arm

TrustZone: A Comprehensive
Survey, Pinto and Santos
(2019)

unit (MMU); (ii) Physical Memory Protection (PMP) and ma-
chine mode on RISC-V [178]; and (iii) LX secure mode (XLS) on

[178] The RISC-V Instruction
Set Manual: Volume II:
Privileged Architecture,
Waterman, Asanović, and
Hauser (2021)

Xtensa LX [33] in combination with an MPU or MMU. In the

[33] Xtensa Instruction Set
Architecture (ISA) Summary,
Cadence Design Systems
(2022)

absence of suitable hardware security extensions, Kimya could
be implemented as an OS service, although this would result in
increased TCB size and significantly reduced robustness.

Additionally, Kimya requires one timer, and a mechanism to
ensure that control is periodically returned to the gateway. The
latter can be established using interrupts generated by the timer,
or through a gateway-controlled watchdog timer.

Hardware and software design For Kimya to be effective, the
hardware design of Kimya enabled products must ensure that
the Kimya gateway can restrict the application access to the
event-triggered sensor. We expect this to be the case in most
existing designs. Designers must implement base Kimya func-
tionality for their target platform analog to Kimya for Cortex-M
as described in Section 4.4. Additionally, a covert-channel analy-
sis must be performed and countermeasures similar to those in
Section 4.4.4 must be implemented.

To dimension the size of the Buffer A/B and Scratch memory
regions, one must consider the amount of intermediary state
that the ACQUIRE process will generate, and the required amount
of temporary state used for signal processing. In our demo ap-
plication, Buffer A and B each require 11 KiB of RAM. Of those
11 KiB, around 800 B is used to store the mel spectrograms, the
remainder is used as temporary storage for signal processing.
Similarly, our demo application requires a 8 KiB Scratch region,
all of which is used as temporary storage for the CNN. If orig-
inal sensor data is to be stored for reprocessing after a trigger
event, sufficient space must be allocated for it in the Buffer A/B
regions. For our demo application, this would correspond to
32 KiB per buffer.
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Finally, a notification mechanism must be designed and im-
plemented as discussed in Section 4.3.5. If cryptographically
protected notifications are used, a key-establishment mechanism
must also be implemented.

In-field retrofitting If an existing hardware designs make it pos-
sible to isolate the sensor that is to be protected, Kimya can—in
principle—be retrofitted to these devices using a vendor-issued
software update. However, depending on the existing product
configuration (i.e., TrustZone setup, MCU fuses, and exposed in-
terfaces), the complexity of the update process can vary greatly.
Some devices could be retrofitted using an over-the-air software
update, others might require physical contact, and yet others
could be impossible to retrofit.

4.8.3.1 Compatibility with Popular Voice Assistants

We explore the compatibility of three popular devices with
Kimya: (i) the Amazon Echo Dot (3rd generation), (ii) the
Google Nest Home Mini, and (iii) the Apple HomePod. We
base this analysis on publicly available data.

Amazon Echo Dot 3rd generation This device has four micro-
phones, connected to two ADCs. The ADCs are connected
to the CPU using both an I2C bus (for configuration) and an
I2S bus (for audio data) [52]. The ADCs are Texas Instruments [52] Echo Dot 3rd Gen Digging

Deeper, Dorey (2019)TLV320ADC3101 chips. The CPU is a Mediatek MT8516. Given
that the MT8516 supports TrustZone for Cortex-A [63], imple- [63] Amazon echo dot or the

reverberating secrets of IoT
devices, Giese and Noubir
(2021)

menting Kimya should be possible. However, special care must
be taken because the ADCs feature a miniDSP [167] which has

[167] TLV320ADC3101
Low-Power Stereo ADC
With Embedded miniDSP for
Wireless Handsets and Portable
Audio, Texas Instruments
(2015)

access to the microphone stream and has (limited) storage ca-
pabilities. Hence, the miniDSP could be abused to break Kimya

isolation. Further research to determine the maximum storage
duration on the ADCs, or to determine if the memory on the
ADCs can efficiently be flushed would be needed. Alternatively,
it could be ensured that only signed code can be loaded onto the
ADC. Given that the Echo Dot already uses trusted boot [63],
and that we expect the ADC configuration to be static, this is a
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plausible strategy.

Google Nest Home Mini Not much information is available about
this device, only that it runs on a Synaptics AS370 SoC (ARM
Cortex-A52) [171]. No explicit information about TrustZone [171] Google Nest Mini (H2C),

Various Authors (2022)support could be found, but we find it likely for support to be
available. The device has 3 on-board microphones [32], but it is [32] Construction photos of

EUT H2C, Bureau Veritas
(2019)

unclear how the audio signal is digitized. Based on the presence
of a recent Cortex-A based CPU, we expect that Kimya support
would be possible on this device. Care must be taken to ensure
that the SoC and ADC architectures do not break Kimya isola-
tion.

Apple HomePod Apple’s HomePod speaker runs on a custom
Apple-designed APL1011 SoC [179]. The HomePod uses seven [179] Apple HomePod Tear-

down and Cost Comparison,
Wegner, Yang, and Water-
man (2018)

MEMS microphones which are digitized by a Conexant CX20810

ADC [179]. This ADC does not have an on-board DSP, and is
therefore unproblematic. However, we were unable to find any
documentation indicating that the APL1011 silicon features the
hardware security features required to support Kimya.

4.8.4 SA4P Integration

It is possible to merge the functionality of the Kimya gateway
and SA4P PEG. Doing so results in a device that (i) can perform
always-standby event monitoring, and (ii) requires permission
from a deployment manager before full sensor access is granted,
i.e., before the TRIGGERED phase can be entered.

An integrated Kimya and SA4P execution flow is shown
in Fig. 4.15. Instead of immediately returning the CPU in the
TRIGGERED phase upon event detection, the Kimya gateway
returns a ticket, consisting of a SA4P access request. The ap-
plication (in IDLE) presents this ticket to the SA4P deployment
manager, and receives an access grant. This grant is forwarded to
the Kimya gateway, upon which access to the protected, always
standby sensor is provided. The Kimya gateway thus acts as the
SA4P PEG.

Care must be taken to preserve Kimya’s properties when
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using the merged Kimya and SA4P. For example, in the system
shown in Fig. 4.15, the application learns about the declaration of
a trigger event before the SA4P manger. If the application drops
the SA4P ticket instead of forwarding it, a covert channel can
be established by encoding data in the presence or absence of a
SA4P ticket. Given the phase-change overhead of about 20 µs
per PROCESS call,5 the capacity of the resulting channel would 5 As measured in Section 4.7.

have an upper bound of 50 kbps.
Methods to reduce the channel capacity include:

Limiting the number of calls to PROCESS. For example, the keyword-
spotting pipeline discussed in Section 4.6 requires only one
PROCESS call each 64 ms. Extending the gateway to only
this amount of calls would reduce the channel capacity to
1 bit/call · 1

64 call/ms = 15 bps.

Always providing a SA4P ticket. Instead of not returning a ticket
when no event was detected, the gateway could return a ticket
that is authenticated using an alternative key. The application
would not be able to tell the difference, and would need to
send the ticket to the deployment manager and only learns if
access is granted or not.

Using local notifications. In addition to the SA4P request, an
additional local notification could be generated6 whenever a 6 E.g., using a led indicator.

trigger event occurs, regardless of the deployment manager’s
approval for sensor access.

4.9 Summary

Despite their high popularity, voice assistants continue to prompt
significant privacy concerns. These concerns often focus on the
always-standby nature of such assistants, and a perceived lack of
transparency in how they operate.

Kimya demonstrates that it is possible to unify the functional-
ity of always-standby sensors with strong, low-level, guarantees
on privacy. Moreover, our implementation for Cortex-M demon-
strates that Kimya introduces low overhead and is applicable to
constrained environments.



fine-grained access control for sensors, actuators & automation networks

109

Application
IDLE or TRIGGERED

K IMYA

Gateway
Application
ACQUIRE

Application
PROCESS

app_logic();
ACQUIRE(&f1, t);

prepare_ACQUIRE();
container_exec(&f1);

void f1(void){...}

prepare_IDLE();
return;

ticket = PROCESS(&f2, t);

prepare_PROCESS();
r = container_exec(&f2);

kimya_state_t f2(void){
if (event_detection())
return TRIGGERED;

else
return IDLE;

}

if (r == TRIGGERED) {
t = prepare_sa4p_request();

} else {
t = null;

}
prepare_IDLE();
return IDLE;

if (ticket != null) {
grant = get_sa4p_grant(ticket);
s = TRIGGERED(grant);

}

°

SA4 P
Manager

if (grant_valid(grant)){
prepare_TRIGGERED();
return TRIGGERED;

} else {
prepare_IDLE();
return t;

}

app_logic();

Non-secure world

Non-secure world
Containerized

Secure world

Figure 4.15: Combined
Kimya and SA4P execution
flow.
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Although we have implemented Kimya for Cortex-M, its de-
sign is not platform specific, and can be implemented on other
architectures (e.g., Cortex-A, RISC-V, Xtensa LX, ...) as well.
Moreover, as Kimya does not require hardware modifications,
it can be retrofitted to existing systems. This reduces time to
market, and makes it possible to bring significant privacy en-
hancements to millions of devices already deployed in people’s
homes.
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5
Current Automation Networks
and their Challenges

5.1 Introduction

Since the introduction of computerized control systems, au-
tomation, or operational technology (OT), networks have had
a strong hierarchical structure, as commonly illustrated by the
automation pyramid (see Section 5.2). For over two decades, OT
network designers have successfully followed this approach.

However, in recent years, the relevance of the hierarchical
model is increasingly being questioned, as the model is strug-
gling to adapt to new realities in the automation space [67, 71,
87, 110, 113, 172], and because of the increasing convergence [67] Is the Purdue Model Still

Relevant?, Greenfield (2020)

[71] S4x19 Panel Discus-
sion: Is The Purdue Model
Dead?, Hegrat, Langill, and
Peterson (2019)

[87] The Purdue Reference
Model outdated or up-to-date?,
Koelemij (2020)

[110] IIoT Will Change Our
View of CIM; The Purdue
Model Is Becoming Dated,
Miklovic (2015)

[113] Is the Purdue Model
Relevant in a World of Indus-
trial Internet of Things (IIoT)
and Cloud Services?, Mission
Secure (2021)
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between IT and OT systems. In most networks, network design-
ers already had to give up the strict air gap between IT and OT
infrastructure in order to support remote management of au-
tomation systems, and new trends are further challenging the
hierarchical model. Concretely, these trends can be classified as
changes (i) to the network, (ii) to the the automation infrastruc-
ture, (iii) to information flows, (iv) to threat models, and (v) to
operation models. For example, cloud-based predictive main-
tenance requires raw information to flow directly from sensors
on the lowest levels of the network to the cloud, crossing all tra-
ditional network levels. This contradicts the hierarchical design
principle that individual network flows should not cross more
than one network level at once. We further discuss the chal-
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lenges created by new OT trends in Section 5.3. To address these
challenges, Chapter 6 presents Tableau, an alternative way to
structure industrial networks, that moves away from the hier-
archical model and relies on modern base assumptions. Then,
Chapter 7 presents Hopper, a nano-segmentation protocol that
extends the isolation properties typically only provided at the
edge of network zones uniformly across the network fabric.

5.2 Current OT Networks

Industrial automation networks are often modeled using the
automation pyramid [144]. This model, shown in Fig. 5.1, is used [144] The Evolution of Factory

and Building Automation,
Sauter et al. (2011)

to capture the hierarchical structure found in a broad range of
industries.

Layer System

Sensors & ActuatorsField

PLCs & DCSsControl

SCADASupervision

MESPlanning

ERPManagement

Technology

Fieldbus
networks

IP-based
networks

OT

IT

Timescale

µs

Months

Figure 5.1: The automation
pyramid.

The hierarchical structure of industrial networks has histori-
cally developed because of mainly two reasons. First, industrial
processes and organizations tend to exhibit natural hierarchy.
This notion was first captured in the early 1990s by Williams in
the Purdue Reference Model [181], an information model for [181] A Reference Model for

Computer Integrated Manu-
facturing (CIM), Williams
(1989)

decision making and control in enterprises. Because control sys-
tems are usually placed close to the processes they control, it
is logical for them to inherit the hierarchical structure of these
processes. Second, using a hierarchical structure allows network
designers to place security checkpoints between network lev-
els, incrementally increasing the security level as the hierarchy
descends. Because of these reasons, many OT network designs,
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including Cisco’s Ethernet-to-the-Factory architecture [42], have [42] Ethernet-to-the-Factory
1.2 Design and Implementation
Guide, Cisco Systems and
Rockwell Automation (2008)

adopted hierarchical structures. In fact, such architectures are
widely considered to be the gold standard for designing and se-
curing OT networks; especially in critical infrastructures such as
utilities.

Inspecting the automation pyramid, we see that its lowest
level contains the systems that directly interact with the physical
processes that are controlled, i.e., sensors and actuators. Travers-
ing the pyramid upwards, each consecutive level adds a layer of
abstraction and aggregation until finally the top level, contain-
ing the organization’s management, is reached. Two common
observations can be made throughout the pyramid. First, pro-
cess feedback always flows upwards between the levels, while
commands flow downwards; there is no direct lateral informa-
tion flow. Second, the closer the distance from the process, the
smaller the decision timescales become: where management de-
cisions are taken on the scale of months or even years, field and
control levels must operate at sub-second precision. Because of
the high demands these short timescales place on the network,
the lower levels of the automation pyramid use specialized field-
bus networks rather than standard Ethernet/IP. For historical
reasons, many different fieldbuses are in use today, with com-
mon examples including Modbus, PROFIBUS, and EtherCAT.

Because they run on different protocol stacks, the lower levels
of the automation pyramid are usually strongly decoupled from
the top levels of the pyramid. This practice is referred to as the
separation of information technology (IT) and operational tech-
nology (OT) systems. The IT partition of an organization consists
of the systems used for business operations such as enterprise
resource planning (ERP) or email. Conversely, the OT partition
consists of the systems that control physical processes and infras-
tructure.

In practical networks, the hierarchical structure of the au-
tomation pyramid is translated to what is informally referred
to as a Purdue network, referencing the origin on the automa-
tion pyramid. We illustrate such a Purdue network in Fig. 5.2,
which shows a network as would typically be found in critical
infrastructure. In a Purdue network, network zones are orga-
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nized in hierarchical Purdue levels. Further, zones are organized
in such a way that all communication between zones on the same
level must traverse a zone of a higher level, and firewalls enforce
security policies at each zone transition. As discussed above,
communication on the lowest Purdue layers usually uses spe-
cialized fieldbus networks, further segregating devices deployed
in the field from higher layers. Traditionally, the lower levels of
the automation pyramid are considered to be part of the OT net-
work, and the top part of the IT network, but, as we discuss in
Section 5.3, this line is blurring.
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Process Process
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Figure 5.2: A typical Purdue
network, as could be found
in a critical infrastructure.From a security perspective, the principal theory behind a

Purdue network is that an adversary enters the hierarchy at the
top, and needs to make its way down the levels to reach the
organization’s most critical assets, i.e., obtain control over the
physical processes. As each level transition requires passing
through a security enforcement point (e.g., a firewall), the lowest
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levels of the hierarchy achieve the highest level of security. In
order for this property to hold, it is important to design network
flows to cross as few zone boundaries as possible. After all, each
permitted network flow can be used as a conduit for an attack.
Thus, if a single flow crosses multiple security boundaries at
once, an attacker can use this flow to bypass Purdue levels.

5.3 Challenges to OT Networks

The Purdue-based network design discussed in Section 5.2 has
successfully served OT operators for over two decades. However,
with the advent of the Industrial Internet of Things (IIoT), the
“fourth industrial revolution”, and the general integration of OT
and IT system (IT/OT convergence), the requirements placed
on the network are rapidly changing, putting pressure on the
Purdue design. We discuss the most significant drivers for these
changes in this section.

Changes to the network In the last decade, software-defined net-
working (SDN) has transformed how IT networks are being
operated. So far this change has not yet significantly affected
OT networks, but the ongoing convergence of IT and OT sys-
tems [41] suggests that it is only a matter of time before this will [41] IT/OT Convergence,

CISCO (2018)change. Moreover, recent work from the IEEE Time-Sensitive
Networking (TSN) working group [76], including the specifica- [76] Time-Sensitive Network-

ing (TSN) Task Group, IEEE
802.1 (2020)

tion of a TSN profile for industrial automation [77], will allow

[77] IEC/IEEE 60802 TSN
Profile for Industrial Automa-
tion (Draft D1.2), IEEE 802.1
and IEC SC65C/WG18

(2020)

even the lowest levels of automation networks to use standard
Ethernet [100, 185]. This will likely lead to a replacement of the

[100] A Perspective on IEEE
Time-Sensitive Networking for
Industrial Communication and
Automation Systems, Lo Bello
and Steiner (2019)

[185] The Future of Industrial
Communication: Automation
Networks in the Era of the
Internet of Things and Industry
4.0, Wollschlaeger, Sauter,
and Jasperneite (2017)

current fieldbus protocols, and will more closely integrate field
devices with higher levels of the automation system, in turn
making it harder to maintain the strict separation of Purdue lev-
els and easier for an attacker to cross from the higher levels to
secondary technologies deployed in the lower levels.

Further, new intra-domain networking technologies, such as
TSN and SDN, are increasingly centrally managed, which de-
creases both the relevance and robustness of distributed security
enforcement. For example, when an SDN controller is com-
promised, an adversary may potentially redefine the network
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fabric to route packets around firewalls, effectively disabling
them [147]. [147] A Survey of Security in

Software Defined Networks,
Scott-Hayward, Natarajan,
and Sezer (2016)

Simultaneously, new inter-domain networking technologies,
such as the SCION Internet architecture [40] are making it in-

[40] The Complete Guide to
SCION. From Design Prin-
ciples to Formal Verification,
Chuat et al. (2022)

creasingly feasible to send traffic from lower layers of the au-
tomation pyramid across autonomous system boundaries. The
current hierarchical network design is not well suited to handle
such flows.

Evolution of the automation infrastructure It is common that as
the technological capabilities of a system start to exceed the re-
quirements placed on that system by its users, more and more
components of that system are replaced by general-purpose
components. We have clearly witnessed this in the data center
industry with the advent of virtualization technologies (both for
end-hosts and for network functions), and also IT/OT conver-
gence is a manifestation of this phenomenon.

Another manifestation of this phenomenon is the rise of vir-
tualized automation functions, such as soft-PLC, soft-Supervisory
control and data acquisition (SCADA), and soft-human-machine
interface (HMI) systems. Contrary to their physical counter-
parts, virtualized automation functions do not need to be placed
physically close to the processes they control. New network tech-
nologies (such as TSN) facilitate this further. Concretely, these
virtualized computation resources can be placed at the edge (for
functions in lower levels of the automation pyramid), or even
in the cloud (for functions in the middle to higher levels of the
pyramid). This is problematic as the hierarchy of current indus-
trial networks tends to follow physical structures. Hence, current
industrial networks are not designed to place physically distant
devices logically nearby in the network.

Changes to information flows In traditional automation networks,
information does not travel across more than one level of the
automation pyramid without being proxied or aggregated. How-
ever, the advent of cloud-based big-data analytics for applica-
tions such as predictive maintenance has disrupted this. In order
to obtain the most accurate predictions, as much raw data from
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the lower levels of the automation pyramid as possible is now
being collected and directly uploaded to the cloud.1 Supporting 1 Examples of industry-

oriented cloud platforms
include ABB’s Ability Smart
Sensor and Siemens’s Mind-
Sphere.

such data flows in current networks leads to high management
overhead and violates the security principles of Purdue net-
works.

Changes to threat models The security of a Purdue network is
primarily based on the assumption that attackers enter the
network at the top levels of the model, and have to work their
way down into the lower levels with higher security. However,
(i) the increased number of network flows that cross multiple
Purdue levels at once, (ii) the increased complexity—and thus
vulnerability—of automation devices, and (iii) the increased use
of wireless and portable technologies are making it increasingly
more likely for an attacker to enter the network directly at a
lower Purdue level. This breaks the assumption that the security
level of the network increases as one descends through the levels
of a Purdue network.

Changes in the industrial target operation model Cost pressure and
operational efficiency are leading to the regional cluster model,
in which several geographically dispersed plants are remotely
managed from a single regional node plant. This allows com-
panies to reduce the personnel required to run plants, and to
increase remote operations, sometimes even cross-border. How-
ever, such a topology of plants, besides building on an increased
level of digitalization, adds complexity into the overall configu-
ration when a Purdue-based configuration is maintained. More-
over, traffic flows between a regional node plant and its cluster
plants might traverse public networks. This exposes the traffic to
man-in-the-middle and spoofing attacks, which in turn can lead
to a loss of control over the remotely managed plants. Hence,
additional measures need to be taken to assure the integrity and
availability of industrial traffic flows.





6
Tableau:
Future-Proof Zoning for OT Networks

6.1 Introduction

The trends introduced in Section 5.2 render the current industrial
network model increasingly impractical. Even worse, they incre-
mentally erode the security properties of hierarchical network
designs. Therefore, it is time to reconsider how we organize OT
networks by introducing modern network management tech-
niques to the OT environment. This will allow us to satisfy the
contemporary demands placed on our networks, while achieving
a high level of security.

To that end, this paper introduces Tableau, a modern zon-
ing model for OT networks. Tableau builds on Mondrian [92], [92] Mondrian: Comprehensive

Inter-domain Network Zoning
Architecture, Kwon et al.
(2021)

a recently developed zoning architecture for IT networks (see
Section 2.3), and makes it suitable for operation on OT networks
by defining a new Mondrian deployment model. By doing so,
Tableau enables highly flexible network management in OT
settings. Particularly, Tableau facilitates the seamless and se-
cure integration of networked resources on the plant floor, at the
edge, in the corporate network, and even in the cloud. Moreover,
Tableau makes supplier access to OT infrastructures such as
PLC, SCADA or HMI systems easier to configure, and reduces
the impact of supply chain attacks by facilitating the creation of
more, and smaller, network zones. In addition, Tableau accom-
plishes all of this while remaining compatible with IEC 62443,
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the leading standard for security in industrial networks [81]. [81] IEC 62443-3-2:2020 Secu-
rity for industrial automation
and control systems - Part 3-2:
Security risk assessment for
system design, International
Electrotechnical Commission
(2020)

Because of the large number of legacy systems typically
present in OT networks, Tableau was designed to be brownfield-
compatible 1. Concretely, Tableau provides the following two

1 Able to operate in the
presence of legacy systems.

backward compatibility properties. First, Tableau can be incre-
mentally deployed on subsections of the network while main-
taining full network functionality. Second, it is possible to instan-
tiate a hierarchical network structure on top of a Tableau net-
work. Doing so enables network operators to gradually transi-
tion their network policies from the hierarchical to the Tableau

model. We present the Tableau zoning architecture in Sec-
tion 6.2, and we illustrate its features using examples based on a
typical critical infrastructure network.

Tableau represents a significant break from the established,
hierarchy-based security mindset in OT networks. We discuss
the implications of this change in Section 6.3. Concretely, we
argue that (i) by leveraging modern security mechanisms, and
(ii) considering the changes that have occurred to OT networks
since the hierarchical security models were established, Tableau

not only provides much more flexibility to network administra-
tors, but also increases the security of the networks in which it is
deployed.

6.2 A Flat Zoning Architecture for OT Networks

We now introduce Tableau, a zoning architecture for OT net-
works that leverages Mondrian (see Section 2.3) in order to
achieve flexible, future-proof network management.

Because Mondrian was originally designed for enterprise (i.e.,
IT) networks, we need to modify its deployment model before
it can be used in an OT setting. In Section 6.2.1, we present this
modified deployment model together with the remainder of the
Tableau architecture using an example deployment. Then, we
discuss additional Tableau features in Sections 6.2.2 to 6.2.4.
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6.2.1 A Tableau Production Plant

In a standard Mondrian deployment, all the network zones at
each site are connected to the same transition point (TP), which
in turn is directly connected to the WAN (Fig. 6.1). Doing so
results in a flat zone structure, which is one of Mondrian’s key
features. In order to preserve this feature when using Mondrian
in OT settings, it is necessary to map the inherently hierarchical
structure of industrial processes to a flat layout. Further, the use
of a single transition point per site is not a well-suited approach
for OT networks. The reason for this is twofold. First, using a
central transition point introduces a single point of failure to the
data plane. Second, the physical structure of OT networks and
the spatial separation between network zones make connecting
each zone to the same transition point impractical.

Z3

Z2

Z1

TP Z3TP

WAN

Z1

Main Data Center Branch Site

Controller

Figure 6.1: A typical Mon-
drian setup. See Section 2.3
for more information.

In order to flatten the structure of OT networks, we split the
network into multiple host zones and a transit network that
spans across all traditional network levels, as illustrated in
Fig. 6.2. The separation between zones can either be physical
(i.e., a zone takes the form of a dedicated physical network), or
virtual (e.g., a zone consists of one or more VLANs). In either
case, the introduction of a transit network ensures that no transit
traffic flows through the host zones.

Next, we change the traditional Mondrian deployment model,
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Figure 6.2: The Tableau

equivalent to the Purdue-
based network shown in
Fig. 5.2.

and instead of connecting each zone to a central transition point,
we place a transition point at the edge of each zone. Only when
practical, zones share a transition point (not shown in Fig. 2.3).
Each transition point is then directly connected to the transit
network. When traffic leaves a zone, the transition point encap-
sulates it in an encrypted and authenticated tunnel and forwards
the traffic over the transit network to the destination zone, where
it is decapsulated before being delivered to the final destination.

Many of the zones in Fig. 6.2 can be directly mapped to one
of the hierarchical zones in Fig. 5.2 (we indicated the traditional
Purdue level of each zone in Fig. 6.2), but there are a number of
notable exceptions. We discuss these, together with other notable
Tableau features, below.

Merging Purdue levels 0 and 1 In today’s industrial networks,
field devices (i.e., sensors and actuators at Purdue level 0) are
usually directly connected to their controllers (Purdue level 1)
using a physically separated fieldbus network. Although in
the future the functions of the fieldbuses might be taken over
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by a general-purpose network fabric, the close integration of
field devices and controllers will remain critical, both for per-
formance and safety reasons. Therefore, Tableau merges the
lowest two Purdue levels and places field devices and controllers
in the same zone. This captures both the traditional scenario
using dedicated fieldbuses (as depicted in Fig. 5.2), as well as
the future scenario where both field devices and controllers are
connected to a general purpose (TSN) network fabric.

Integration of IT zones Because Mondrian was originally de-
signed for enterprise IT networks, it can be used for the manage-
ment of both IT and OT networks, greatly simplifying the man-
agement of converged networks. We demonstrate this in Fig. 6.2
by incorporating an office zone in the network map. Having this
flexibility can be especially useful in highly automated or re-
motely operated plants, where the notion of a traditional control
room is fading.

Integration of remote zones As all data is securely encapsulated
during zone transit, the scope of a Tableau network does not
need to be limited to a single site or domain, and also zone tran-
sitions that use the public Internet are possible without the need
for additional tunneling mechanisms. In Fig. 6.2 we demon-
strate this with the use case of an external vendor that needs to
perform device management or security monitoring tasks on a
plant’s network. In a Purdue network (Fig. 5.2), a dedicated tun-
nel must be established and maintained between the network of
the vendor and the plant operator, and firewalls or jump hosts
throughout the Purdue levels must be configured to grant the
required access. Evidently, this leads to high management over-
head. In contrast, in a Tableau network (Fig. 6.2) the external
vendor’s network can be directly integrated in the networks zone
plan. We discuss further benefits of inter-domain zone bridging
in Section 6.2.2.

Open transit network By only allowing Mondrian encapsu-
lated traffic to flow between network zones, Tableau largely
eliminates the need for security enforcement within the transit
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network. We illustrate this in Fig. 6.2 by only placing classical
firewalls on the Internet uplinks. An open transit network not
only lowers the burden on the network administrators, but also
increases the agility of the network.

Protection of transit traffic Because of the hierarchical nature of
Purdue networks, zones in a Purdue network need to handle
both transit and local traffic. By mixing these two network func-
tions, transit traffic is exposed to tampering by malicious devices
in the network zones the traffic traverses. In contrast, Tableau

splits the network into device zones and a transit network, sep-
arating local from transit traffic. Moreover, all inter-zone traffic
is authenticated and encrypted while passing over the transit
network. Both of these factors reduce the exposure of network
traffic to tampering by malicious devices.

6.2.2 Inter-Domain Zone Bridging

We have already shown how Tableau facilitates vendor access
to OT networks. Not only can the same approach be used to
allow remote workers to connect to the company network by
running a local Mondrian instance on their laptop, but Tableau

takes this one step further by splicing network zones across
domains.

To make this more concrete, consider the network shown in
Fig. 6.3, the left side of which shows a plant network consisting
of four network zones. For economic reasons, the plant oper-
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ators use multiple cloud services to support the devices in the
plant. Concretely, they use a digital twin for each of the turbines,
a cloud HMI for remote management of the machine group,
and a cloud-based data historian for the plant. These services
span across all four network zones in the plant, so in order to
maintain zone isolation, the zone structure from the plant is mir-
rored to the cloud. In today’s networks, establishing connectivity
from the zones of the plant to those in the cloud would either
require bundling traffic from all zones together, or setting up
separate tunnels between each pair of zones. Because the former
approach breaks the isolation between zones and the later ap-
proach induces high management overhead, neither of them is
desirable.

In contrast, Tableau makes it possible to extend network
zones across domains, as is shown in Fig. 6.4. This means that
the physically distant zones pairs (Fig. 6.3), can be joined to form
different subnets of the same logical zone (Fig. 6.4), without cre-
ating additional management overhead. Moreover, because Mon-
drian uses different cryptographic keys for each zone, zone iso-
lation is maintained across the network. Further, this approach
is flexible and can be adapted to network operators’ needs. For
example, instead of extending the same logical zone across mul-
tiple domains, the subnets can also be made logically adjacent
while remaining in separate zones. This allows for smooth com-
munication to take place between the zones, while still allowing
limitations to be placed on which traffic can flow between them.
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6.2.3 Decoupling TP from Logical Zone Connectivity

In a Tableau network, the logical connectivity between zones
is decoupled from the underlying connectivity of the transition
points. Besides simplifying the logical network topology, this
also simplifies how redundancy and multihoming can be added
to the network. Further, when using the SCION Internet architec-
ture [40], the multi-path connectivity between transition points [40] The Complete Guide to

SCION. From Design Prin-
ciples to Formal Verification,
Chuat et al. (2022)

can be abstracted away.
For a concrete example, consider Fig. 6.5, which shows a mini-

mal Tableau network consisting of a plant and a remote control
room. In order to ensure availability, both the plant and control
room are multihomed. To highlight the separation of the logical
connectivity between zones and the underlying connectivity on
the transit network, we use Internet Protocol version 4 (IPv4)
addresses for the former, and Internet Protocol version 6 (IPv6)
addresses for the later.
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Figure 6.5: Example of a
Tableau deployment on
multihomed networks.

Because the devices inside of the Tableau zones are oblivious
to the existence of the transit network, multihoming a zone only
requires multihoming the zone’s transition points. This stands in
contrast to traditional multihoming, which directly affects each
host in the network [22, 105]. It also means that when the con- [22] Scalable Support for

Multi-homed Multi-provider
Connectivity, Bates and
Rekhter (1998)

[105] Problem Statement for
Default Address Selection in
Multi-Prefix Environments:
Operational Issues of RFC 3484
Default Rules, Matsumoto
et al. (2008)

nectivity between two zones breaks (e.g., because of link failure),
restoring connectivity between the zones (e.g., by falling back
a secondary link) only requires intervention on the transition
points, and is transparent to the hosts. Although similar proper-
ties can be achieved in a Purdue architecture using VPNs, VPNs
generate additional administrative overhead, whereas Tableau

provides these properties by default.
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6.2.4 Backwards Compatibility

In many cases, industrial networks are a brownfield environ-
ment. That is, any change to the network must be made while
maintaining compatibility with existing devices and structures.
To that end, Tableau offers two forms of backwards compatibil-
ity: partial deployment, and hierarchical overlay.

Partial deployment When it is not possible (or desirable) to con-
vert the full network to a Tableau architecture, Tableau can
be deployed on a subsection of the network instead. For exam-
ple, when only a single cell in a plant is being updated, it can be
desirable to deploy Tableau in this cell without changing the
other parts of the plant’s or organization’s network. We demon-
strate this scenario in Fig. 6.6, which shows the same network as
Fig. 5.2, but in which one cell is converted to a Tableau archi-
tecture.

Although only a partial deployment, many of Tableau’s
advantages are retained. Most significantly, there is still full flex-
ibility on how traffic can be routed across the Tableau zones.
Moreover, assuming that the upstream firewalls are configured
to allow Tableau traffic to pass through, inter-domain bridging
remains possible. We illustrate this in Fig. 6.6 by including the
external vendor in the Tableau deployment.

In order to facilitate direct communication between the
Tableau-enabled cell and the plant’s network, a dedicated en-
try zone is introduced. This zone acts as a gateway between the
Purdue and Tableau worlds, giving it a similar function as a
demilitarized zone (DMZ) in a Purdue network.

Hierarchical overlay A Tableau network provides full flexibil-
ity as to what traffic flows are permitted. This means that it is
also possible to implement a policy that overlays a hierarchical
network on top of Tableau. Doing so allows plants operators to
convert their network to a Tableau architecture, without having
to redraw all security and data-flow concepts at once. Instead,
they can initially overlay the same hierarchical policies the net-
work was operating on before, and gradually transition to new
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network policies and a new security concept from there.

6.3 Security Aspects

By stepping away from the nested zone model used in today’s
OT networks, Tableau challenges a widespread design pattern
in OT security. Next, we discuss the implications of this architec-
tural change.

Hierarchical network zoning is often motivated by referring
to the “defense in depth” security principle: the idea that by
layering multiple defense mechanisms behind each other, the
security of the system as whole is not compromised when in-
dividual defense mechanisms are found faulty. Although it is
true that hierarchical network zoning can serve as a form of de-
fense in depth, the true benefits from defense in depth cannot
be obtained by using the same defense technique (i.e., firewalls)
at multiple points within an organization. Instead, defense in
depth requires several independent security mechanisms to be
deployed throughout that organization (e.g., firewalls paired
with physical security, personnel training, proper patch manage-
ment, intrusion detection, etc.) [120]. In fact, past studies indicate [120] Defense in depth: A

practical strategy for achieving
Information Assurance in
today’s highly networked
environments, NSA (2012)

that having complex, hard-to-maintain firewall structures in a
network leads to poor policy management, and thus lowered
security [150].

[150] Modeling and Man-
agement of Firewall Policies,
Al-Shaer and Hamed (2004)

Moreover, as we discuss in Section 5.3, the threat model for
OT networks is changing. Concretely, it is becoming increasingly
more likely that attackers will not attack the network level-by-
level from the top, but instead will enter the network immedi-
ately at one of the lower levels, e.g., after entering the network
through a compromised software update [165]. Additionally, the [165] A ’Worst Nightmare’

Cyberattack: The Untold Story
Of The SolarWinds Hack,
Temple-Raston (2021)

centralized nature of new networking technologies (e.g., TSN
and SDN) is reducing the robustness of distributed security en-
forcement [147]. Both these changes are further reducing the effi- [147] A Survey of Security in

Software Defined Networks,
Scott-Hayward, Natarajan,
and Sezer (2016)

ciency of hierarchical zoning as a defense in depth measure, and,
in the medium to long term, will leave industry with a complex
and hard to maintain security system, the security properties of
which are based on assumptions that no longer hold.

In contrast, Tableau does not base its security properties on
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assumptions about the underlying system architecture, but in-
stead simplifies and centralizes security management in order to
facilitate the use of modern security tools. Concretely, by consoli-
dating the security policy of a network into a single specification,
Tableau facilitates policy simplification, fine-grained zoning,
and automated network policy verification. We discuss each of
these below.

Policy simplification Consolidating the network policy into a
single specification removes much of the complexity currently
encountered in firewall management. This makes policy admin-
istration less time-intensive and less error prone. Moreover, the
policy becomes easier to audit.

Fine-grained zoning As discussed in Section 5.3, an increas-
ing number of devices in the network can function as attacker
entry points. In order to limit the impact that a compromised
device has on the network, it is desirable to reduce the size of
each network zone, thus restricting the lateral movement of an
attacker [130]. Tableau facilitates fine-grained zoning by low- [130] 2020 Unit 42 IoT Threat

Report, Paloalto Networks
(2020)

ering the administrative burden required to create and manage
additional network zones.

Automated network verification Not only does Tableau make it
easier to manually audit network security policies, but aggregat-
ing the policy specification at the Mondrian controller also facil-
itates automated network verification [99]. Automated network [99] A Survey on Network

Verification and Testing With
Formal Methods: Approaches
and Challenges, Li et al. (2019)

verification refers to a set of techniques that make it possible to
specify high-level policy goals the network should satisfy, and
to automatically verify if a specific network policy satisfies these
goals [99]. By doing so, network verification can provide strong
guarantees on the correctness of the network policy. Moreover,
when performed periodically or at every configuration change,
automated network verification makes it possible to dynamically
modify the network policy while maintaining a high level of con-
fidence in the correctness of the network policies. This makes
it easier and safer to update the network policy as the plant’s
network evolves.
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We anticipate that in most networks, the advantages of trading
the hierarchical network model for the flexibility and simplified
policy management of a Tableau network will well outweigh
the disadvantages, resulting in an improved level of security
for the network. Nonetheless, in some environments the use of
consolidated network policy enforcement may be considered
undesirable. We address this issue by introducing structured
heterogeneity, an approach that adds diversity and redundancy
to a Tableau network, without interfering with Tableau’s core
features.

The principal idea behind structured heterogeneity is to stan-
dardize the interfaces between the various Mondrian compo-
nents (i.e., transition point, controller, and policy), and to then
add diversity to each of them. Concretely, diversity is added to
each component as follows:

Transition points: Different transition point implementations
(e.g., from different vendors) can be deployed in different
zones. This limits the consequences of an implementation bug
in a specific transition point implementation to the zones in
which this implementation is used.

Controller: Multiple controller implementations can be deployed
in parallel. Each of these controllers connects to the same TPs,
and uses the same policy specification. TPs are configured
to only permit a zone transition if a threshold number of
controllers approve it. This approach also improves network
availability, as zone transitions remain possible if one of the
controllers is unreachable.

Policy: In order not to increase policy administration overhead,
a single policy specification is kept. Instead, we add diversity
to the policy verification. By verifying the correctness of the
policy using multiple methods (e.g., manual inspection com-
bined with multiple automated network verifiers), this ensures
that even if an individual verification tool fails, policy goal
violations will be detected.
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6.4 Compatibility with IEC 62443

IEC 62443 [81] is the leading standard series for industrial OT [81] IEC 62443-3-2:2020 Secu-
rity for industrial automation
and control systems - Part 3-2:
Security risk assessment for
system design, International
Electrotechnical Commission
(2020)

security. Although industrial networks are often designed using
a hierarchical zone model (see Section 5.1), this approach is not
mandated by IEC 62443. In fact, IEC 62443 does prescribe any
specific zoning model. Instead, IEC 62443-3-2 [80], states “The

[80] IEC 62443 Standard
Series: Industrial communi-
cation networks - IT security
for networks and systems, In-
ternational Electrotechnical
Commission (2020)

organization shall group [control systems] and related assets
into zones or conduits as determined by risk.” (ZCR 3.1) and
“[Control system] assets shall be grouped into zones that are
logically or physically separated from business or enterprise
system assets.” (ZCR 3.2). Tableau provides a flexible tool tool
to implement these zones and conduits in modern networks.
Specifically, zones in a Tableau network map directly to zones
as intended by IEC 62443, and conduits are defined by the zone
transition policy.

6.5 Summary

The rise of the IIoT and the ongoing IT/OT convergence are
challenging the ways in which we defend OT networks. If we
ignore this reality, the security properties of our networks will
slowly erode while administrative overhead will grow. Instead,
we must reevaluate the security concepts used in the OT world,
and adapt them to reflect the current—and future—state of the
network.

In this chapter, we introduced the Mondrian-based Tableau

zoning architecture. Tableau provides the flexibility required
by contemporary industrial workloads, lowers administrative
overhead, is brownfield-compatible, and facilitates the use of
modern security practices. Moreover, because Mondrian has its
roots in IT networks, Tableau draws from the many years of
experience the IT world has with managing the technologies
that the IIoT and IT/OT convergence are introducing to our
industrial networks.



7
Hopper:
Per-Device Nano Segmentation
for the Industrial IoT

7.1 Introduction

Over the last decade, we have increasingly witnessed industrial
control systems becoming the target of sophisticated cyber at-
tacks. These incidents range from attacks attributed to nation
state adversaries, such as Stuxnet [95] and the attacks on the [95] Stuxnet: Dissecting

a Cyberwarfare Weapon,
Langner (2011)

Ukrainian power grid in 2015 [191], to criminal ransomware at-

[191] Inside the Cunning, Un-
precedented Hack of Ukraine’s
Power Grid, Zetter (2016)

tacks, such as EKANS [53] and TRISIS [54]1. Contrary to more

[53] EKANS Ransomware and
ICS Operations, Dragos (2020)

[54] TRISIS: Analyzing Safety
System Targeting Malware,
Dragos (2017)
1 Also known as “Snake”
and “TRITON”, respectively.

traditional ransomware, EKANS explicitly targets industrial con-
trol systems. TRISIS takes this approach even further by specifi-
cally targeting the industrial safety controllers which function as
a last resort to prevent catastrophic process failures.

Although not many details about these attacks are public, a
common trend is that they rely on lateral movement through
the victim’s network in order to reach the critical systems which
they target. This approach is often successful because today’s
industrial network design practices strongly rely on perimeter
protection, often having no to very little defenses in place once a
perimeter has been breached. Similarly, Tableau places security
enforcement points (i.e., transition point) only at the edge of
network zones.
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For many years this perimeter-based approach has served
industry well, but, as discussed in Chapter 5, new trends are
challenging this approach. For example, the increased deploy-
ment of IT systems in OT (i.e., factory automation) networks
is breaking down the strong boundary between the IT and OT
worlds. Moreover, trends such as (i) the increasing prevalence
of cloud-assisted devices, (ii) the increasing risk of supply-chain
attacks [165], and (iii) the increasing use of both long- and short- [165] A ’Worst Nightmare’

Cyberattack: The Untold Story
Of The SolarWinds Hack,
Temple-Raston (2021)

range wireless communication [141] are blurring the network

[141] IoT Goes Nuclear:
Creating a ZigBee Chain
Reaction, Ronen et al. (2017)

boundary further. That is, every device is becoming a potential
attacker entry point, rendering the sole reliance on perimeter-
based defenses impractical and prompting the need for stronger
defenses against lateral movement.

Currently, industry is responding to this trend by limiting the
movement of attackers by creating more—and thus smaller—
network segments, a practice referred to as micro segmenta-
tion [130]. However, traditional segmentation mechanisms (e.g., [130] 2020 Unit 42 IoT Threat

Report, Paloalto Networks
(2020)

VLANs) can only take one so far, do not scale well, and require
traffic to pass through a centralized router to move between
segments, thereby introducing a single point of failure in the
data plane. Although Tableau facilitates the creation of smaller
network zones, it still requires traffic to be routed over one or
two transition point, introducing practical scaling limits. Thus,
rather than enforcing traffic restrictions at specific points in the
network, an ideal defense must enforce that only permitted com-
munication can take place uniformly and throughout the network,
without reducing the network’s versatility.

In enterprise networks, a similar philosophy recently gained
traction under the name zero trust networking [64]. However, as [64] Zero Trust Networks,

Gilman and Barth (2017)zero trust networking techniques tend to leverage enterprise-
oriented security mechanisms, they are typically not suitable for
the (industrial) IoT. For example, the highly constrained nature
of many IoT devices renders the use of certificates challeng-
ing. Moreover, zero trust networking focuses on the protection
of resources at end-hosts, whereas in industrial networks, the
network fabric itself must be protected as well. For instance,
being able to generate cross-traffic on a network link carrying
a control signal with hard real-time requirements can increase
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congestion and latency, reducing the quality of the manufactured
product [89]. [89] CPS: Driving Cyber-

Physical Systems to Unsafe
Operating Conditions by
Timing DoS Attacks on Sensor
Signals, Krotofil et al. (2014)

To address these issues, we propose Hopper: a protocol that
combines two of the best properties of zero-trust networking
and classical network segmentation. Hopper is intended as an
extension to perimeter-based network segmentation (e.g., using
Tableau or VLANs), and provides segmentation uniformly
throughout the network fabric.

On a Hopper network, each flow must be explicitly autho-
rized, and restrictions are enforced both at end hosts, as well as
in-network. Our approach de facto results in a per-device nano
segmentation of the network, which is enforced in-fabric. That
is, in a Hopper network, the attack surface is minimized by re-
stricting the permitted communication to the minimum required
for the operation of the deployment. By enforcing this restriction
at each hop, Hopper effectively places each device in its own
nano segment.

More concretely, Hopper achieves nano segmentation by
allowing each network node to verify that each packet it pro-
cesses (i) is part of an explicitly whitelisted flow, and (ii) was
generated by an authorized host. Hopper is compatible with the
many constraints and networking technologies encountered in
industrial IoT networks, allowing it to be uniformly deployed
throughout a wide range of scenarios.

Recognizing the centrally managed nature of industrial net-
works, Hopper has a centralized control plane, but is fully dis-
tributed in the data plane. Specifically, Hopper constructs a
capability mechanism based on a hierarchical key space that is
used to uniquely bind each packet to an authorized flow. Once
distributed, authorized senders use their capability tokens to
generate authentication tags for each transmitted packet. By dis-
tributing part of the hierarchical key space to each node, Hop-
per ensures that these tags can be independently verified at ev-
ery network hop, while requiring only minimal local node state
and using only symmetric cryptography. Further, Hopper places
no assumptions on the structure of the underlying physical net-
work, and introduces no more per-packet bandwidth overhead
than a standard authentication tag. Leveraging additional com-
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mon IoT characteristics allows us to keep this approach scalable
while maintaining flexibility.

7.2 Constraints in Industrial IoT Networks

Whereas TSN will likely unify the wired communications in in-
dustrial environments, many industrial IoT products, especially
those designed for monitoring, are using wireless communi-
cation. Contrary to the situation with TSN, it is unlikely that
a universal wireless protocol will emerge in the near future.
Moreover, the requirement for long (e.g., 10-year) battery lives
introduces many (extreme) constraints for networks. In order to
support deployment throughout industrial networks, it is im-
portant for a protocol to be able to operate under any of these
constraints.

Providing a complete taxonomy of (industrial) IoT networks
and devices is out of scope for this work. Instead, we discuss the
diversity and possible limitations of the devices and networks
that we consider. We use RFC 7228 as a basis for this discus-
sion [28]. [28] Terminology for

Constrained-Node Networks,
Bormann, Ersue, and Kerä-
nen (2014)Devices Industrial IoT devices range from potent, mains-

powered industrial servers running standard operating systems
(e.g., HPE’s Edgeline “converged edge systems”) to miniature
“motes” with ten-year battery lives (e.g., National Control De-
vices’s mesh sensors). Throughout this range of devices, the
following constraints may be encountered:

C1: Limited state, for program code and temporary storage.

C2: Limited computation, due to low-end processors.

C3: Limited power, additionally limiting computation and severely
restricting wireless communication.

Networks Similar to IoT devices, networks in IoT deployments
span a wide range of technologies and constraints. At one ex-
treme, IoT devices can use gigabit-speed wired connections (e.g.,
KUKA’s KR C4 industrial robot controllers), while others use
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multi-hop mesh networks with sub-kbps data rates and highly
restricting duty cycling (e.g., Analog Devices’s SmartMesh or
Digi’s DigiMesh products). Throughout this range of network
technologies, the following constraints may be encountered:

C4: Low data rates, due to the power constraints of the underly-
ing devices.

C5: High and unstable latency, due to multi-hop networks and
energy-conservation policies of the devices.

C6: Reachability limits of duty-cycling or default-off devices.

C7: Lack of advanced network features such as multicast.

C8: Unusual routing such as the deliberate duplication of pack-
ets for redundancy reasons, or the broadcast-like nature of
flooding-based network architectures [61]. [61] Efficient network flooding

and time synchronization with
Glossy, Ferrari et al. (2011)C9: Unstable topologies caused, for example, by mobile nodes or

opportunistic routing.

7.3 Adversary Model & Security Goals

This chapter considers a network model in which networks con-
sist of (i) links, (ii) forwarding elements, (iii) hosts, and (iv) a
network controller, which are all managed by a network admin-
istrator. We use the generic term forwarding element to cover all
network elements that forward packets. Network nodes can si-
multaneously be hosts and forwarding elements, e.g., in mesh
networks.

Given this network model, we consider a network-based ad-
versary which may have compromised a subset of hosts, for-
warding elements, and network links. The attacker can have
used any method (including physical access) to compromise
these devices and links, and has full control over them. More-
over, the attacker can communicate out-of-band between the
points of attack. However, the network controller and adminis-
trator must remain uncompromised.
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The attacker’s goal is to increase the scope of its attack by ex-
ploiting the network. Possible attacker strategies include: (i) us-
ing the network to compromise additional devices, (ii) sending
spoofed packets to disrupt physical processes (e.g., imperson-
ating a sensor and sending false readings), and (iii) performing
denial- or reduction-of-service attacks against the network fabric
(e.g., generating traffic in order to increase network latency in
critical control loops or to reduce the lifetime of battery powered
IoT deployments).

Hopper aims to mitigate such attacks by placing each device
in its own access-controlled nano-segment, thus minimizing
both its network exposure and its network access. Concretely, we
define the following security goals:

HOPPER-1, Least privilege: Communication involving at least
one uncompromised host can only take place on the logical
flows explicitly whitelisted by the network administrator.

HOPPER-2, Isolation: An adversary that compromised a set of
network elements can only generate network traffic between
these elements, or towards the union of destinations these
elements interact with under normal network operation.

HOPPER-3, Authentication: Each packet is source authenticated
to its receiver. This prevents the adversary from spoofing
packets packets that simultaneously (i) appear to be generated
by a host that is not under its control, and (ii) are accepted by
a host that is not under its control.

We explicitly do not list confidentiality as a security goal,2

but we briefly discuss how it could be added to our design in
Section 7.5.6. 2 An attacker who can com-

promise packet integrity can
de facto take over control
over an industrial process,
which in turn leads to a
major safety risk. Because
this is not the case for com-
promised confidentially,
integrity is considered
a much more important
goal than confidentiality in
industrial settings.

7.4 Hopper Protocol

We demonstrate how nano segmentation can be achieved us-
ing the example network shown in Fig. 7.1, which is based on
a hydroelectric power plant. The primary section (i.e., the main
plant building) of the network is Ethernet-based. The hosts on
this part of the network constitute everything from servers and
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engineering workstations to turbine controllers and printers. Fur-
ther, this section contains the network controller and the main
Internet uplink. Connected to the primary network are a remote
network (e.g., an upstream sluice complex) and a mesh network
which contains low-power sensors mounted to the machinery
in the plant. The link between the primary and remote network
section may be virtual (e.g., a VPN tunnel) or physical (e.g., a
long-range Wi-Fi link).

Mesh network

¶>
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¶>
¶>

Primary network

¶

¶ ¶
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á
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Controller
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Figure 7.1: An example
industrial network. ¶
represents a forwarding
element; >, Ô, ¦, á,
and ø represent hosts;
and Õ Õrepresent a
remote link. Dashed links
are wireless.

Because the network in Fig. 7.1 covers a single plant, it is ad-
ministrated by a single entity (i.e., the plant’s network manage-
ment team). This is typical for industrial networks, and we refer
to it as ownership centrality. Even though the network administra-
tor might not be the most privileged user on all devices (e.g., in
the case of devices that are managed through a vendor-operated
cloud), they still set the policies each device should comply with,
and—in the worst case—can remove non-complying devices
from the network.

Further, although industrial facilities may rely on distributed
data flows, they are typically centrally orchestrated, which we
refer to as orchestration centrality. Orchestration centrality holds
for our power plant, but also, for example, for a smart factory,
which will be configured by its operators to execute a specific set
of tasks. Moreover, from the automation pyramid introduced in
Section 5.2, we know that these tasks are temporally stable and
change at most a couple of times a day.

The combination of ownership and orchestration centrality,
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together with a focus on a small number of temporally-stable,
cyber-physical workloads, is a defining characteristic for most
industrial networks. Moreover, this combination of properties
makes it possible for network administrators to both compile
an a priori whitelist of legitimate flows, and establish network
policies that only allows packets that are part of a legitimate flow
to use the network. When enforced at every hop, this effectively
creates a nano segment for each device on the network, while
still allowing packets to be routed on the shortest physical path
between their source and destination.

Further, industrial networks—similar to enterprise networks—
are strongly zone-oriented. In fact, network zoning is mandated
by IEC 62443 [81], the leading standard for security in industrial [81] IEC 62443-3-2:2020 Secu-

rity for industrial automation
and control systems - Part 3-2:
Security risk assessment for
system design, International
Electrotechnical Commission
(2020)

networks. However, contrary to zoning in the enterprise, zoning
in OT networks is typically done based on the automation pyra-
mid (see Section 5.2), and different zones may contain radically
different types of devices.3 For example, a SCADA zone may

3 Even though Tableau

steps away from a hierarchi-
cal network layout, we still
expect devices to be grouped
based on their position in
the automation pyramid.

contain standard workstations and servers, whereas a field zone
can consist of a mesh of low-power sensors.

Depending on the network zone, a different subset of the
constraints listed in Section 7.2 will be encountered, changing
the restrictions and requirements placed on (security) protocols.
In order to cope with this diversity, we design Hopper to be
fundamentally compatible with all of the listed constraints, and
simultaneously allow it to be adapted to specific deployment
environments through parameterization. This allows a single,
well-understood, security protocol to be deployed throughout
the network, rather than requiring a different protocol design for
each type of network zone.

As of yet, no protocols allow segmentation policies to be im-
plemented homogeneously throughout the network while being
compatible with the constraints of IoT and industrial networks.
In the following subsections, we explain how we fill this void
with the design of Hopper, thereby enabling the nano segmen-
tation throughout industrial IoT networks.
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7.4.1 High-Level Design

In order to meet the least privilege goal (HOPPER-1) described
in Section 7.3, Hopper must verify that each packet is part of a
whitelisted flow at at least one point in the network: either at the
receiving host or at a forwarding element. As in mesh networks
or in networks using a shared medium it is not guaranteed that
a flow traverses a forwarding element (C8), this check must be
performed on the receiving host. However, to meet the isolation
requirement (HOPPER-2), packets must be checked at each
forwarding element as well. Thus, every node in the network
must verify the permissions of every packet it processes.

The high availability requirements posed to industry require
that no single point of failure exists in the data plane. More-
over, when the network is partitioned by the failure of a link or
forwarding element, the individual partitions of the network
should remain operational. For example, if the remote link in
Fig. 7.1 fails, the remote network should remain in operation.
This means that packet checks must take place without the on-
line assistance from the centralized controller. Further, because
transceiving data in wireless (mesh) networks consumes mul-
tiple orders of magnitude more energy than performing (sym-
metric) cryptography [75, 152], nodes should be able to verify [75] Power Consumption

and Calculation Requirement
Analysis of AES for WSN IoT,
Hung and Hsu (2018)

[152] How low energy is
bluetooth low energy? Com-
parative measurements with
ZigBee/802.15.4, Siekkinen
et al. (2012)

packets using only static, node-local knowledge (C2, C3). This
requirement is further reinforced by the low data rates (C4), high
latency (C5), limits on reachability (C6), and lack of advanced
features (C7) common to low-power wireless networks.

There are two general methods that can be used to allow
nodes to verify if a packet is part of a whitelisted flow: (i) access
lists or (ii) capabilities. Because using access lists would involve
disseminating large amounts of information to each node of the
network—which is impractical in constrained networks (C1,
C3–C7)—Hopper follows a capability-based approach.

Past work on deny-by-default networking has used capabil-
ities in the form of authenticated source routes [36]. However, [36] SANE: A Protection

Architecture for Enterprise
Networks., Casado et al.
(2006)

two characteristics of industrial IoT products render such an ap-
proach unsuitable. First, roaming nodes (e.g., a sensor mounted
on an automated guided vehicle (AGV)), duty cycling nodes,
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and fading wireless links lead to dynamic and unpredictable
network paths (C9). Second, for reliability reasons, some proto-
cols (e.g., Ethernet TSN) include mechanisms to replicate packets
in-network and to send these packets over different paths (C8),
complicating source routing.

Instead, a capability scheme that allows each node in the net-
work to verify the permissions of each packet in the network
should be used. Moreover, cryptographically binding together
capability tokens with their packets allows Hopper’s authen-
tication goal (HOPPER-3) to be satisfied. However, limited
computational power severely restricts the use of asymmetric
cryptography (C2, C3).

Considering these requirements, we observe many similarities
with multicast-authentication, in which many listeners must
be able to verify that a packet was generated by an authorized
sender [34, 142], and we use past results from this space as a [34] Multicast security: a

taxonomy and some efficient
constructions, Canetti et al.
(1999)

[142] New results on multi-
receiver authentication codes,
Safavi-Naini and Wang
(1998)

basis for Hopper.
Based on the discussion above, we design Hopper to authen-

ticate each packet by adding a cryptographic tag to it. This tag
consists of a concatenation of multiple MACs, which are gen-
erated using keys from a hierarchical key space. By linking the
keys in this key space to the flow identifiers carried in the pack-
ets, a capability scheme is constructed.

In order to be able to verify that packets are part of an au-
thorized flow, each forwarding element is provided with the
state needed to partially verify any Hopper tag. Hiding which
forwarding element verifies which part of the tag forces the ad-
versary to consider each forwarding element to verify the entire
Hopper tag. Moreover, using a key space with multiple levels of
hierarchy allows receiving hosts to fully verify the Hopper tags
of all incoming packets.

Given the expected prevalence of UDP/IP at the lowest lev-
els of industrial networks, we focus our design of Hopper on
this protocol stack. Although TCP is a more popular transport
at higher levels off the automation pyramid, the trend in both
IoT and industrial standards is towards UDP in constrained en-
vironments. For example, whereas OPC UA uses TCP on higher
network levels, a UDP mapping was specified for OPC UA over
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TSN [127]. Nonetheless, Hopper’s design can be easily modi- [127] OPC UA Online Ref-
erence, Section 7.3.2: OPC
UA UDP, OPC Foundation
(2021)

fied for operation on different layers or protocol. For example,
in the evaluation (Section 7.7), we also implement and evaluate
Hopper for L2 Ethernet.

7.4.2 Constructing Capability Tokens
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Figure 7.2: Excerpt from a
Hopper key forest for three
hosts (a, b, and c) and two
ports (α and β).

The hierarchical key space is constructed as a forest consisting
of n trees, as shown in Fig. 7.2, and where n is a configuration
parameter. The keys in the i-th tree are used to generate and
verify the i-th MAC in the Hopper tag. The root of each tree i is
a random secret, denoted ki. The set of all roots

K = {ki | i ∈ [n]} with [n] := {1, . . . , n}

is called the root key set and is only fully known to the network
controller, with subsets being distributed to all forwarding ele-
ments. Further, for each receiver r, a receiver set

Kr =
{

kr
i = PRFki

(r)
∣∣ i ∈ [n]

}
of receiver keys is derived from K. PRFki

is a pseudorandom
function keyed with ki.4 The receivers store these keys locally
and use them to verify incoming packets. 4 In practice, a block cipher

encryption operation can be
used to implement the PRF.

If the network controller wants to issue a capability token for
host s to communicate with host r on UDP port p, it generates
the flow set

Kr←s:p =
{

kr←s:p
i = PRFkr

i
(s∥p)

∣∣∣ i ∈ [n]
}

and provides it to host s. “∥” represents string concatenation.
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7.4.3 Sending and Verifying Packets

Once a host receives a flow set, it can send on the corresponding
flow. To send a packet, the host calculates a tag τ consisting of
one MAC over the packet payload for each key in the flow key
set, i.e.,

τ = MAC(kr←s:p
1 , payload)∥. . . ∥MAC(kr←s:p

n , payload)

and adds it to the packet. Because the cryptographic strength of
τ is dependent on its full length, the individual MACs can be
short [34]. [34] Multicast security: a

taxonomy and some efficient
constructions, Canetti et al.
(1999)

While the packet traverses the network, each forwarding el-
ement it encounters verifies the MACs for which it can derive
the flow key using the packet’s header info; i.e., the MACs at the
positions for which it has the root secrets. If any of these MACs
are incorrect, the packet is dropped and reported to the network
controller, signalizing the presence of an attacker. The receiver
always verifies the entire Hopper tag by deriving the flow key
set from its receiver key set using the information in the packet
header.

7.4.4 Distributing Root Keys

By provisioning forwarding elements with subsets of the root
key set, Hopper allows each forwarding element to partially
verify each Hopper tag without them being able to forge valid
tags. However, properly distributing the root keys is a complex
problem, as a good distribution scheme must satisfy two contra-
dicting goals: (i) as much of the Hopper tag as possible must be
verified as early in the network as possible, and (ii) when an at-
tacker compromises one or more forwarding elements, he should
not learn a sufficient number of root keys to forge Hopper tags.

The first of these goals ensures that packets are dropped early,
which minimizes their effect on the network. Intuitively this can
be achieved by provisioning each forwarding element with as
many keys as possible, thus ensuring that it can verify a large
part of the Hopper tag. Yet, this conflicts with the second goal,
as it makes it easier for an attacker to learn the full root key set.
In addition, a good key-distribution scheme should ensure that
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even when the attacker has compromised some keying material,
forged packets will still be dropped as close to the sender as
possible.

Inspired by multicast security, we propose three key distri-
bution schemes: cover-free families [142], random, and manual [142] New results on multi-

receiver authentication codes,
Safavi-Naini and Wang
(1998)

distribution.

Cover-free families are combinatorial constructs on sets: An
(m, n, t)-cover-free family is a family of m subsets on a ground
set of size n, so that none of the sets in the family is a subset of
the union of t other sets in the family. Considering a network
with m forwarding elements and a root key set of size n, we
can assign each forwarding element the keys from a set from a
(m, n, t)-cover-free family over the root key set. This guarantees
that even when t forwarding elements are compromised, each
forwarding element will still verify at least one MAC for which
the adversary did not obtain the key. Unfortunately construct-
ing cover-free families with large m and t is considered a hard
problem [142].

Random distribution of the root keys avoids the construction
problems of cover-free families. Consider again a root key set
of size n, of which each key is now assigned to each forwarding
element with probability p. This ensures that, in expectation,
each forwarding element verifies n · p MACs per packet. When
t nodes are compromised, the adversary will have obtained the
full root key set with

Pcompromise(t) =
(

1− (1− p)t
)n

.

The expected number of compromised keys is n ·
(

1− (1− p)t
)

.
For example, setting n = 10 and p = 0.2, results in each

forwarding element verifying 2 MACs on average. However,
even if the adversary compromises t = 5 forwarding elements,
it will have obtained the full root set with probability of only
Pcompromise(5) = 0.018 %, and is expected to know only 6.7 keys.
Fig. 7.3 shows how Pcompromise(t) varies for various values of
n, p, and t. Interestingly, for a given value of t, Pcompromise(t) is
independent of the total number of forwarding elements in the
deployment.
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Figure 7.3: Probability
that an attacker learns
the full root key set when
compromising t forwarding
elements, assuming random
root key distribution.

Manual distribution of the root keys can be useful for small
deployments. However, as it is hard to perform a systematic
evaluation of this strategy, this work focuses on random distribu-
tion.

Regardless of the key distribution scheme, a compromised for-
warding element will leak part of the root key set. Such leakage
reduces the effective strength of the Hopper tag, as the adver-
sary needs to guess fewer tag bits. Moreover, when random root
key distribution is used, the adversary might be able to compute
all MACs verified at a specific forwarding element. Nonetheless,
even when the attacker lacks a single root key, it is highly likely
that the adversary’s presence on the network will be detected.
This is because (i) the receiving host always verifies the full tag,
(ii) tags are different for each packet, and (iii) generating a single
bad tag will lead to the tag verification failing (either at a for-
warding element or at the receiver) and the network controller
being notified.

7.4.5 Security Equivalence & Network Dichotomy

Both cover-free families and random distribution schemes are
effective to make Hopper resistant against the compromise of
a small number of forwarding elements. However, IoT deploy-
ments can be highly homogeneous and can consist of thousands
of nodes. Moreover, in industrial networks the same type of sen-
sor or actuator is often reused throughout a network or facility.
In such settings it is likely that when one device is compromised,
many will be. This especially holds if the initial node was com-
promised using a network attack, as the marginal cost to com-
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promise additional nodes will be close to zero. After all, these
nodes are likely to run similar software in similar configurations.

While this may seem troublesome at first, we show how the
introduction of security equivalence classes can mitigate the neg-
ative effects that homogeneity has on Hopper’s resilience.
Moreover, we highlight how the dichotomy found in most
infrastructure-based networks further increases resilience.

Security equivalence Typically, the robustness of key distribu-
tion schemes is expressed in the number of devices that can be
compromised before security breaks. However, as discussed
above, in IoT deployments it is likely that if a single device is
compromised, many devices will be. We formalize this notion by
partitioning forwarding elements in security equivalence classes.
Concretely, we assume that either all devices in a security equiv-
alence class are compromised, or that none are. We observe that
under this assumption, there is no security benefit in provision-
ing the forwarding elements within one equivalence class with
different root keys. Specifically, when an equivalence class is
compromised, all the keys present in the class will be known to
the adversary regardless of how they are distributed. Similarly,
when the class is not compromised, provisioning all root keys
known to the class to each of its members ensures that as much
of the Hopper tag as possible is verified by each element.

Distributing root keys to security equivalence classes rather
than to individual devices significantly increases the scalability
of Hopper: instead of tolerating the compromise of t devices,
Hopper now tolerates the compromise of up to t device classes.
As for hybrid host-forwarding element devices there is no secu-
rity benefit in having devices share receiver keys, we only apply
this strategy to root keys. Doing so ensures that when a security
equivalence class would nonetheless be only partially compro-
mised, Hopper’s end-to-end properties still hold within that
class.

How to divide an IoT network into security equivalence
classes is an exercise that must be made individually for each
network. More broadly speaking, finding optimal partition
schemes for a given network opens up an interesting avenue for
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future research. For example, when defending against network-
based attacks, the primary device properties to consider are
the logical network layout, device types, and configurations.
Conversely, when physical attacks are the primary concern, all
devices in the same physical access zone can be combined in a
security equivalence class.

Network dichotomy Most infrastructure-based IoT networks,
much like traditional computer networks, display a clear split
between hosts, and forwarding elements. We refer to this as
network dichotomy. As in such networks the hosts do not for-
ward packets, they do not hold root keys. Hence, no number of
compromised hosts will lead to the exposure of the root keys.
Additionally, the forwarding elements, which do hold root keys,
will be fewer in numbers and are typically more hardened then
hosts connected to them.5 This further increases Hopper’s re- 5 For example WiFi access

points and backbone for-
warding elements are likely
to be more hardened than
the low-cost IoT devices
connected to them.

silience to node compromise. We note that a similar observation
was made in the multicast authentication setting by Canetti et
al. [34].

[34] Multicast security: a
taxonomy and some efficient
constructions, Canetti et al.
(1999)

7.5 Practical Considerations

7.5.1 Rekeying and Revocation

As part of standard security practices, Hopper networks should
be periodically rekeyed. Maintaining a symmetric key for each
controller-host pair allows the network controller to securely
communicate the updated Hopper keys with each network
device, meaning that rekeying can be automated. By using a
hierarchical key system similar to a tree in a Hopper forest, the
secure storage requirements on the network controller can be
minimized. In the case the network was compromised and part
of the root key set was exposed, a rekeying of the network is also
required.

Periodic rekeying also prevents hosts from accumulating
capabilities. That is, Hopper requires each node to discard ca-
pabilities (i.e., flow key sets) upon receiving a revocation notice.
Because uncompromised devices can generally be expected to
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behave as specified, in most circumstances this is sufficient. Still,
periodic rekeying ensures that also the network permissions
of (dormant) malicious hosts are periodically reset. By (i) us-
ing keys with overlapping validity periods, and (ii) performing
rekeying together with production reconfiguration events, the
impact of rekeying events on the physical process can be mini-
mized. Coinciding rekeying events with a production reconfigu-
ration further makes sense, as only during such events new flow
keys, the accumulation of which we wish to prevent, are issued.

7.5.2 Handling Network Diversity

Hopper has a number of parameters that can be adjusted de-
pending on the needs of the network or zone it is deployed in.
For example, when deployed in a mesh-like network, Hopper

tags should consist of possibly many (n is large), but short (l is
small) MACs. Conversely, when deployed on a network with
only a single forwarding element (e.g., a network with a single
gateway and a star topology), tags could consist of a single (n is
small), but long (l is large) tag. This flexibility allows a single,
well-understood, protocol (i.e., Hopper) to be used in a wide
range of settings rather than requiring the design of one-off pro-
tocols for each new setting.

Table 7.1 summarizes how different parameters influence
Hopper’s performance. We note that the number of forward-
ing elements in the network does not influence the data-path
overhead introduced by Hopper.

Besides modifying Hopper’s basic parameter, it is also pos-
sible to adapt Hopper for operation on different protocols or
layers. This is done by adapting Hopper’s key space, for exam-
ple by deriving Hopper keys based on Ethernet instead of IP
addresses. For other protocols the required changes can be more
significant. For instance, in multi-receiver protocols the flow keys
must be distributed between the receivers in a similar manner as
the root keys are distributed to forwarding elements.
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n Size of root key set ▲. ▲. – ▼ ▲ ▲.

m # forwarding elements – – – – – –
p Key sampling prob. – – ▲. ▼† ▼. –
l Individual MAC length – – – ▼ – ▲.

Triangles indicate the properties’ direction of change if the corresponding param-
eter increases. ▼/▲ indicates a desirable direction of change, ▼. /▲. a deteriora-
tion. †Forged tags more likely to be detected early in network.

Table 7.1: Effect of various
parameters on Hopper per-
formance, assuming random
root key distribution.

7.5.3 Connecting Networks

Hopper’s centralized control gives rise to a natural notion of
Hopper domains: regions of the network sharing a set of Hop-
per root keys and parameters. When packets cross the borders
of a Hopper domain, Hopper tags must be removed from,
or added to, the packet. This is done by Hopper gateways, an
extended version of the Hopper delegates introduced in Sec-
tion 7.5.5.

For outgoing traffic the gateway verifies the Hopper tag,
removes it from the packets, and transmits the packet over its
outgoing interface. For incoming traffic, the gateway functions
similarly to a firewall in drop-by-default mode: the gateway ver-
ifies if the traffic is part of a whitelisted flow, and if so attaches
the corresponding Hopper tag to the packet before forward-
ing it to the domain-internal destination. If the traffic is not
whitelisted, it is dropped. Gateways must have access to the flow
keys for each flow that traverses them. As gateways are typically
part of the network infrastructure and do not suffer from the
constraints listed in Section 7.2, this is a reasonable requirement.

7.5.4 Management Overhead

As Hopper was designed to require explicit whitelisting for ev-
ery flow, it naturally introduces administrator overhead to the
network. Specifically, overhead is created (i) when new devices
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are added to the network, and (ii) when a new workload is de-
ployed. We proceed to quantify the overhead introduced by each
of those events.

New devices When a new device is added to the network, it
must be provisioned with a minimum of keying material in or-
der to be able to start communicating. When a key provisioning
server and bootstrapping mechanism similar to the ones de-
scribed in Section 7.5.7 are used, each new device needs to be
provisioned with only a single set of flow keys. This creates an
administration overhead that is comparable to provisioning de-
vices with WPA-Enterprise credentials.

New workloads When a new workload is configured, flow keys
must be created and distributed for each required flow. Also the
overhead of this operation can be significantly reduced through
the use of a key provisioning server as described in Section 7.5.7.
Concretely, when using a key provisioning server, the adminis-
trator overhead required to authorize a new flow is comparable
to overhead in the (hypothetical) case were all devices must com-
municate through a centrally-managed, drop-by-default firewall.

Although the introduced overhead can appear high at first,
it is worth noting that beside the security aspects discussed be-
fore, Hopper’s whitelist-based approach also provides another
valuable property: transparency of network assets. From our
interactions with industry practitioners, we have learned that
a lack of insight into the devices and flows present in indus-
trial deployments is a real problem that is often encountered
when performing a security assessment of industrial networks.
Hopper alleviates this problem by having a security-by-design
approach that requires all devices and flows to be listed (and
therefore inventoried) before they can participate in the network.

Further, we observe that the set of flows that need to be
whitelisted is a direct function of the workload placed on an
industrial deployment. This opens opportunities to integrate
Hopper whitelist management into production management,
which could lead to a significant reduction of management over-
head.
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7.5.5 Legacy Compatibility

Industrial installations often have lifetimes that can reach in to
the tens of years, during which they are incrementally updated.
This means that it is important for new industrial systems and
protocols to be brownfield compatible, i.e., be able to operate
in coexistence with legacy systems. When naively deploying
Hopper alongside non-Hopper aware protocols and devices,
security issues may arise. For example, an adversary may be able
to mount a downgrade attack by removing the Hopper header
from a packet.

In this section, we discuss how Hopper can be securely de-
ployed alongside legacy systems. We split this discussion into
two orthogonal parts: interoperability with legacy networking
nodes (i.e., hosts and forwarding elements), and interoperability
with legacy networking protocols.

Legacy Nodes We propose three brownfield strategies that al-
low Hopper to be deployed on a network with legacy nodes:
(i) Hopper delegates, (ii) zone-based deployment, and (iii) an
overlay strategy.

As its name suggests, the first strategy introduces the con-
cept of a Hopper delegate, which is used to connect hosts that
are not Hopper-aware to the network. All traffic from/to the
Hopper-unaware host is routed over its delegate before enter-
ing/leaving the Hopper domain. The delegate holds the Hop-
per keys of the host and adds, checks and removes Hopper tags
on behalf of the host. By implementing delegatee functionality
in access switches, this can be accomplished with minimal man-
agement overhead and while maintaining all of Hopper’s core
properties.

When using the zone-based strategy, Hopper-aware network
nodes are deployed grouped in zones. These zones are then
connected to the non-Hopper aware parts of the network using
gateways which add and remove the Hopper headers as needed.
The concept of a Hopper gateway is discussed in more detail in
Section 7.5.3. While this strategy maintains Hopper’s properties
within individual zones, inter-zone traffic travels between its
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source and destination zones without Hopper’s protections.
The overlay strategy is similar to the zone-based strategy,

but rather than removing the Hopper headers at the edge of
a Hopper zone, traffic is tunneled between Hopper zones to
create virtual Hopper-aware links. This preserves the Hopper

headers and allows multiple zones to be operated as a single
Hopper domain, meaning that Hopper’s traffic properties are
maintained end-to-end. However, as the virtual Hopper links
may share their underlying physical links with legacy traffic,
they can be susceptible to denial-of-service attacks.

Regardless of the brownfield strategy, using the extension op-
tions provided by existing protocols (e.g., “next protocol” header
fields or extensions), allows Hopper to be implemented trans-
parently for Hopper-unaware forwarding elements. This results
in a network (zone) where Hopper-aware forwarding elements
verify the Hopper header, while Hopper-unaware forward-
ing elements simply forward the packets without checks. This
is similar to how VLAN-unaware routers are able to forward
VLAN-tagged traffic and should work out-of-the-box, reserving
interference caused by network middleboxes.

Legacy protocols Because traditional network protocols are de-
signed to make communicating as easy as possible, some of
these protocols are at odds with Hopper’s design principles.
Specifically, decentralized auto-configuration and auto-discovery
protocols, such as Address Resolution Protocol (ARP), do not
fit the deny-by-default paradigm. That is, these protocols (i) are
explicitly designed to facilitate unplanned communication, and
(ii) typically require broadcast communication, allowing each
node to contact each other node. This stands in contrasts to
Hopper’s design goals that limit network permissions to the
absolute minimum.

When deploying Hopper, a threat analysis of these legacy
protocols must be made. If the attack surface created by the
protocol is sufficiently small, no changes are needed. However, if
the protocol exposes a large attack surface, it must be eliminated.
This can either be accomplished by statically configuring the
normally auto-configured state (e.g., pre-populating ARP tables),
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or by replacing the decentralized protocol by a centralized one.
We provide an example of the latter approach in Section 7.5.7.

7.5.6 Encrypting Packets

Hopper is not designed to provide confidentiality. However, the
key distribution mechanism used by Hopper can be modified to
support per-flow, end-to-end encryption. An encryption key for
a flow can be established either by cryptographically combining
all flow keys into a single encryption key, or by adding a dedi-
cated encryption tree to the Hopper key forest. The receiver and
flow keys from this tree are distributed as normal, but the root
key is not distributed to any forwarding elements. Both methods
guarantee that only the sender and receiver of a flow (and the
network controller) can calculate the encryption key.

7.5.7 Bootstrapping and Provisioning

Hopper does not specify a specific bootstrapping or key pro-
visioning method. Nonetheless, in this section we explore how
a practical key distribution system can be accomplished. Con-
cretely, we do so by extending the functionality of the network
controller to distribute Hopper keys through the network.

As Hopper is a strict capability-based network architecture,
all hosts require a minimum of state before they can start com-
municating, even with the controller. Moreover, in order to se-
curely exchange keys between the controller and a host, a confi-
dential and authentic channel between them must be established.

The first requirement can be achieved by pre-provisioning
each device with flow keys for the flow from the device to the
controller. For example, through physical contact following a
resurrecting duckling model [159]. To meet the second require- [159] The resurrecting duck-

ling: Security issues for ad-hoc
wireless networks, Stajano and
Anderson (1999)

ment, we observe that at any point in time, only three entities
can generate all valid flow keys for a given flow: (i) the sender,
which owns the flow keys; (ii) the receiver, which can derive them
from his receiver keys; and (iii) the controller, which can derive
any key from the root keys.

Because during communication with the controller the re-
ceiver and the controller are the same entity, the controller can
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uniquely authenticate any device from the packet’s Hopper tag.
Thus, the flow keys can be used as shared keying material to
bootstrap an authenticated and encrypted channel between any
device and the controller. Once this channel is established the
device can send a key request to the controller, which verifies the
request against an internal policy file and sends the appropriate
receiver and flow keys to the device. At this point, the device
and controller can also agree on additional keying material to be
used to for network recovery when the root key set is compro-
mised.

In the case of hybrid host–forwarding element devices, the
controller can also supply the root keys for the forwarding ele-
ments in this manner. This allows the network to be cold-started
in a hop-by-hop fashion. Moreover, as the controller has a full
view of the network, it can also distribute otherwise dynamically
discovered information, such as link-layer addresses, together
with flow keys.

7.6 Security Analysis

As introduced in Section 7.3, a Hopper network consists of
four sets of elements: (i) network links, (ii) forwarding elements,
(iii) hosts, and (iv) the network controller. Motivated by owner-
ship and orchestration centrality, Hopper leverages the adminis-
trator, and by extension the network controller, as the trust root
of the system. Hence, the network controller is uncompromised
by assumption. This section analyses the consequences of attacks
against each remaining network element. Devices which both
act as host and forwarding element are susceptible to attacks
relating to both devices classes. Moreover, as both hosts and for-
warding elements have link access, link-related attacks are also
applicable to them.

Network links An adversary with access to a network link, either
wired or wireless, can observe, drop6, duplicate, replay, or inject 6 Or jam, in the case of

wireless links.packets on that link. We now discuss the effect of each of these
actions on the three security goals listed in Section 7.3.

Observing packets does not violate any of Hopper’s security
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goals. Moreover, as each Hopper MAC uses full-length keys,
key extraction—which would facilitate injection attacks—is not
feasible.

Dropping packets can be used to mount a DoS attack, but
only against the compromised link, therefore it does not violate
the isolation (HOPPER-2) or other security goals.

Duplicating or replaying packets can also be used to mount
DoS attacks, but can only create traffic towards the destination
hosts of flows that traverse a compromised link, and hence does
not violate the isolation (HOPPER-2) or other security goals.
Moreover, implementing in-network duplicate suppression can
further limit the scope of duplication attacks. Many IoT oriented
wireless protocols already include explicit replay protection
mechanisms (e.g., Bluetooth Mesh [26], the IETF’s IPv6 Routing [26] Mesh Profile Specification

1.0.1, Bluetooth Special
Interest Group (2019)

Protocol for Low-Power and Lossy Networks (RPL) [3], and

[3] RPL: IPv6 Routing Protocol
for Low-Power and Lossy
Networks, Alexander et al.
(2012)

IEEE 802.15.4 [143]), and the TSN task group has also specified

[143] Security Considerations
for IEEE 802.15.4 Networks,
Sastry and Wagner (2004)

duplicate elimination for Ethernet networks in IEEE 802.1CB-
2017 [79].7

[79] IEEE Standard for Lo-
cal and metropolitan area
networks–Frame Replication
and Elimination for Reliability,
IEEE Computer Society
(2017)
7 The duplicate frame elim-
ination specified IEEE
802.1CB-2017 is not explicitly
designed as a security mech-
anism, but rather as part of a
reliability mechanism.

If injecting forged packets on a link is possible, each forward-
ing element will detect and drop each forged packet with proba-
bility 1− 2−l|S|, where |l| is the length of each MAC in bits, and
|S| the number of root keys known to the forwarding element.
When using random distribution, E[|S|] = pn, with p the key
sampling probability, and n the size of the root key set. When us-
ing cover-free families, |S| is the size of sets in the family. After
injecting c packets, the in-network detection probability of the
adversary is

pdetection, network = 1− 2−l ∑c
i=1{|Si |}

where |Si| is the size of the union of keys known by the forward-
ing elements traversed by the i-th packet. When using random
distribution and traversing h elements,

E[|Si|] = n ·
(

1− (1− p)h
)

The probability pdetection, network quickly tends to 1. The isolation
(HOPPER-2) goals is thus probabilistically satisfied. Further,
forged packets will be detected with probability 1− 2−ln ≈ 1 by
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each end host. For c packets, the detection probability becomes

pdetection, host = 1− 2−lnc

which also quickly tends to 1, satisfying the least privilege
(HOPPER-1) and authentication (HOPPER-3) goals.

Forwarding elements When an adversary compromises one or
more forwarding elements, he learns part of the root key, leading
to the modified detection probabilities

p′detection, network = 1− 2−l ∑c
i=1{|S′i |}

and
p′detection, host = 1− 2−ln′c

where n′ is the number of uncompromised root keys. When
random root key distribution is used, the expected value of n′

can be calculated using the equations in Section 7.4.4. When
using a (m,n,t)-cover-free family, n′ ≥ 1 as long as less than t
forwarding elements have been compromised. |S′i | is the number
of uncompromised root keys known to any forwarding element
on the path of packet i. For random root key distribution

E[|S′i |] = n′ ·
(

1− (1− p)h
)

When using a cover-free family, |S′| ≥ 1 as long as less than t for-
warding elements have been compromised. As both p′detection, network
and p′detection, host tend to 1 as long as not all root keys are com-
promised, least privilege (HOPPER-1), isolation (HOPPER-2),
and authentication (HOPPER-3) remain probabilistically satis-
fied.

Hosts If an adversary compromises a host, he obtains access to
the receiver and flow keys stored on that device. The flow keys
can be used to send arbitrary packets towards their correspond-
ing receivers, but not towards other hosts, thus not violating the
least privilege (HOPPER-1) and isolation (HOPPER-2) goals.

When an adversary has compromised multiple hosts, and can
communicate between them, he can exchange the compromised
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receiver and flow keys between these hosts. The receiver keys al-
low the compromised hosts to generate and send traffic towards
each other. The flow keys allow each host to generate traffic on
the logical flows corresponding to the compromised flow keys,
and to send that traffic towards the receiver of these flows. Nei-
ther of these attacks violates the least privilege (HOPPER-1),
isolation (HOPPER-2), or authentication (HOPPER-3) goals.

7.6.1 Mitigation of Today’s Common IoT Threats

Deploying Hopper on a network can mitigate common threats
against IoT devices seen today. We discuss three examples.

Botnets Since the Mirai botnet demonstrated the destructive
power of large-scale IoT attacks, botnets have been a major IoT
security concern [130, 9]. Because IoT botnets are usually con- [130] 2020 Unit 42 IoT Threat

Report, Paloalto Networks
(2020)

[9] Understanding the Mirai
Botnet, Antonakakis et al.
(2017)

structed by finding inadvertently vulnerable devices through
network scans, Hopper’s whitelist-based approach provides a
strong defense against device compromise. Moreover, because
the number of destinations a Hopper-enabled host can send
traffic to is severely limited, Hopper devices are not attractive
botnet members.

Worms Whereas the focus of IoT attackers used to be on con-
structing botnets to perform DoS attacks, their focus has shifted
towards IoT worms, such as cryptolockers [130, 54, 53]. Because [130] 2020 Unit 42 IoT Threat

Report, Paloalto Networks
(2020)

[54] TRISIS: Analyzing Safety
System Targeting Malware,
Dragos (2017)

[53] EKANS Ransomware and
ICS Operations, Dragos (2020)

Hopper’s nano segmentation minimizes the number of potential
victims an infected host can reach, the spreading of worms is
severely restricted. This stands in contrast to to traditional seg-
mentation methods where worms can spread freely within each
segment.

Lateral movement In many attacks against IoT devices, the com-
promised devices are not the primary attack target, but are used
as entry points for further lateral movement in the network [130]. [130] 2020 Unit 42 IoT Threat

Report, Paloalto Networks
(2020)

Similarly to how Hopper defends against worms, Hopper’s
nano segmentation significantly reduces the number of new at-
tack vectors available to an attacker after compromising a device.
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7.7 Implementation and Evaluation

We split the evaluation of Hopper into four subsections. First,
we perform a scalability analysis of the protocol. Second, we
evaluate the performance of a Hopper-enabled end host. In
order to verify that Hopper is suitable for constrained envi-
ronments, we perform this evaluation on IoT-class hardware.
Third, we evaluate a Hopper forwarding element by implement-
ing Hopper forwarding logic on a low-end network appliance
and benchmarking this appliance by physically connecting it to
an emulated network. Finally, we briefly report on our imple-
mentation of a Hopper controller and confirm interoperability
between Hopper’s network elements.

7.7.1 Scalability

We evaluate the scalability of Hopper on the three active ele-
ments of a Hopper network: (i) hosts, (ii) forwarding elements,
and (iii) the network controller. We also discuss bandwidth over-
head.

Hosts Hosts need to store one set of receiving keys and one set
of flow keys for each outgoing flow. More formally, hosts need
to store n · ( f + 1) · |k| bytes, where n is the size of the root key
set, f the number of outgoing flows of that host, the constant “1”
represents the receiver key set, and |k| is the size of an individual
key. As shown in Table 7.1, n is not a function of the size of the
deployment, but rather of the number of compromised forward-
ing elements that can be tolerated. The computational overhead
per packet is constant in the size of the deployment: for each
incoming or outgoing packet n MACs must be calculated, and
for incoming packets an additional n key derivations must be
performed.

Forwarding elements Assuming random root key distribution,
forwarding elements need to store p · n · |k| bytes, where p is
the key sampling probability. Also here computational overhead
per packet is constant in the size of the deployment: each for-
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warded packet requires 2 · p · n key derivations and p · n MACs
calculations.

Network controller For each rekeying event, the network con-
troller must distribute new root keys to the forwarding elements,
receiver keys to the receiving hosts, and flow keys to the send-
ing hosts. However, rekeying events are rare and take place on
the control rather than data plane. Therefore the performance of
the network controller is not critical to Hopper’s overall perfor-
mance.

Bandwidth overhead Each packet must carry a tag of length n · l
bytes, where l is the length of an individual MAC. As discussed
in Section 7.5.2, n and l are constant in the size of the deploy-
ment.

7.7.2 End Host Performance

We evaluate Hopper’s end host performance using two ST
Nucleo-F439ZI development boards. These boards carry a
STM32F439ZI MCU which runs at 180 MHz, representing mid-
range IoT devices. The MCU provides hardware cryptography
acceleration, a common feature on IoT MCUs to support link-
layer encryption. The boards also have on-board 10/100 Mbps
Ethernet, facilitating evaluation in an isolated and reproducible
environment.

We implement two versions of Hopper: one for UDP/IP, as
described in Section 7.4, and one for Ethernet, where we use
the source address, destination address and L3 protocol as flow
identifier.

Both Hopper versions extend the open-source lwIP (light-
weight IP) protocol stack [55] to support Hopper tag generation [55] Design and Implementa-

tion of the lwIP TCP/IP Stack,
Dunkels (2001)

and verification. Our Hopper implementation for Ethernet
defines a new EtherType and places tags directly behind the
Ethernet header. The implementation for UDP/IP defines a new
IP protocol number and places tags between the IP and UDP
headers.

To perform the evaluation, the two boards are directly con-
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nected using an Ethernet cable. During each experiment one
board continuously generates UDP datagrams (or Ethernet
frames) with a dummy payload. The other board receives these
datagrams (or frames) and processes their headers. No higher
layer processing is performed.

We evaluate each Hopper implementation using both hardware-
accelerated and software crypto. In the hardware setting we use
AES128 as block cipher and SHA256 as hash algorithm. In the
software setting we use the Speck software cipher [24] with 64- [24] The SIMON and SPECK

Families of Lightweight Block
Ciphers, Beaulieu et al. (2013)

bit blocks, and use BLAKE3 [123] as hash algorithm. PRFs are

[123] BLAKE3: one function,
fast everywhere, O’Connor
et al. (2020)

implemented using the block cipher in ECB mode, keys are al-
ways 128 bits long.

The hardware ciphers were chosen because our evaluation
platform provides hardware acceleration for them. Different
software ciphers where selected for performance reasons: using
Speck instead of an AES software implementation [88] resulted [88] Tiny AES, kokke (2021)

in a throughput improvement of roughly 5 to 100 %, depending
on the setting. Similarly, using BLAKE3 instead of software
SHA256 [114] resulted in throughput gains of 35 to 100 %. [114] SHA-2 implementation,

Mosnier (2019)Further, we evaluate each Hopper implementation in each
cryptography setting in two tag composition settings. The first
tag setting uses tags consisting of ten 16-bit MACs calculated
using CBC-MAC over a hash of the packet payload.8 We note 8 We use CBC-MAC, as the

hash algorithms ensure
constant input sizes.

that hash-then-MAC is a provably secure construct [27]. The sec-

[27] A Graduate Course in
Applied Cryptography, Boneh
and Shoup (2020)

ond tag setting uses tags consisting of a single 128-bit MAC for
hardware crypto and a single 64-bit MAC9 for software crypto.

9
64 bits corresponds to

native Speck block size on
a 32-bit architecture. Brute
forcing a 64-bit MAC using
minimal Hopper packets
over a gigabit link would,
in expectation, take on the
order of 105 years.

Because the results for Hopper on Ethernet and on UDP/IP
are near identical, we only discuss the latter in this section. The
results for Ethernet can be found in the appendix of our ASI-
ACCS paper [49].

[49] Hopper: Per-Device Nano
Segmentation for the Industrial
IoT, De Vaere, Tulimiero, and
Perrig (2022)

Hardware cryptography We see in Fig. 7.4 that when using hard-
ware crypto and one MAC, Hopper packets can be generated
(Tx, 94 Mbps) and processed (Rx, 89 Mbps) at 99 % and 93 % the
rate of plain UDP/IP (96 Mbps), respectively. The header space
required by Hopper leads to a slight reduction in maximum
payload compared to plain UDP/IP. When using ten MACs, we
observe packet generation (67 Mbps) and processing (49 Mbps)
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rates of 70 % and 52 % the rate of plain UDP/IP, respectively.
As can be seen from the load profiles in Fig. 7.5, the discrepancy
between the results for incoming and outgoing packet is caused
by the flow-key derivations required on the receiving endpoint.
Key caching or probabilistic MAC evaluation could mitigate this
performance gap, though the latter would lead to a reduction
in security. Fig. 7.5 also shows that the majority of Hopper’s
workload consists of cryptographic operations. It is worth noting
that when using hardware crypto acceleration, these operations
are executed by the MCU’s cryptography peripheral, leaving the
core free to perform other tasks.
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Software cryptography As shown in Fig. 7.6, when using soft-
ware cryptography, throughputs between 28 Mbps and 19 Mbps
are achieved. This corresponds to 29 and 20 % the rate of plain
UDP/IP. The dip in performance at 1024 bytes is inherited from
BLAKE3. As shown in Fig. 7.7 the performance is dominated by
the hash function.

Given the low data-rates typically found in IoT and industrial
applications10, we find the obtained performance results to be 10 For example, the Ethernet

Advanced Physical Layer
(Ethernet-APL), a recently
developed physical layer for
Ethernet which is targeted
specifically at industrial
applications, operates at
only 10 Mbit/s [78].
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satisfactory. Although the use of software cryptography results
in a significant performance penalty, most MCUs targeted at IoT
applications already provide hardware cryptography accelera-
tion to support link-layer encryption. Hence, we expect software
cryptography to only be used in the most constrained settings,
which typically feature low throughput requirements.

Binary size The MCU binaries for the tests without Hopper,
with hardware crypto, and with software crypto were 75, 100,
and 113 kB in size respectively. These binaries were compiled for
optimal performance. When compiling for an optimized binary
footprint, the sizes reduce to 61, 78, and 89 kB, respectively. Do-
ing so results in a throughput reduction of 0 to 15 %, depending
on the setting.

7.7.3 Forwarding Element Performance

We implement a Hopper forwarding element using a PC En-
gines APU2D4 system board. The APU2 is a popular platform
for low-end network appliances, and with a quad-core AMD
GX-412TC CPU running at 1 GHz and 4 GB DDR3-1333 memory,
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its performance is roughly comparable to a Raspberry Pi 4. The
board also has 3 Gigabit Ethernet interfaces.

We implement the Hopper forwarding logic for UDP/IP
using DPDK [168] and OpenSSL [128]. For each packet the for- [168] Data Plane Development

Kit, The Linux Foundation
(2021)
[128] OpenSSL, OpenSSL
Software Foundation (2021)

warding element receives, it verifies the Hopper tag using the
root keys with which it was provisioned. If successful, the packet
is forwarded without further processing. If the verification fails,
the packet is dropped. The forwarding element uses AES128 as
block cipher and SHA256 as hash algorithm. PRFs are imple-
mented using AES128 in ECB mode. We use Hopper tags with
10 MACs of 16 bits each.

Test traffic generation We create a gopacket [65] implementation [65] GoPacket, Google (2021)

of Hopper. For each experiment, we first generate a pool of
randomized 5-tuples. We then generate Hopper packets by
randomly sampling (with replacement) 5-tuples from this pool,
and adding a random payload. The generated packets are then
stored in a pcap file to be replayed using tcpreplay during the
experiment.

Throughput To measure the forwarding element’s through-
put, we physically connect it to two hosts that each emulate a
network, as illustrated in Fig. 7.8. We then let the source host
transmit 106 packets at line rate and measure the incoming traffic
volume at the receiver host. We repeat this experiment multiple
times varying the number of root keys the forwarding element
is provisioned with. We also perform a baseline measurement in
which the forwarding element immediately forwards all packets
without parsing them.

Emulated
source network

¶

¶

¶

á

á

á

Emulated
destination network

¶

¶

¶

á

á

á

HOPPER

forwarding
element

Figure 7.8: Measurement
setup used to benchmark
the Hopper forwarding ele-
ment. Bold arrows indicate
physical cables.
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We see in Fig. 7.9 that for small packets, or when verifying
only one MAC, using Hopper does not meaningfully reduce
the forwarding element’s throughput. When verifying 2 MACs,
performance is reduced by approximately 10 % to 890 Mbps.
Verifying all 10 MACs results in a throughput of 565 Mbps.
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Scalability In Section 7.7.1, we showed that scaling the size of
a Hopper deployment does not influence the performance of
the forwarding elements. We now verify this result by varying
the size of the 5-tuple pool (which effectively corresponds to
changing the size of the emulated network), and rerunning the
throughput experiments. For these experiments we configure the
forwarding element to verify 2 MACs per packet.

Fig. 7.10 shows that, somewhat counterintuitively, increas-
ing the number of network flows increases the throughput of the
forwarding element. This is a side effect of the hash-based re-
ceiver side scaling used by DPDK: the larger the set of flows, the
more uniformly the workload is spread across the four processor
cores. We verified this hypothesis by running the same exper-
iment using only a single processor core, and we observe that
doing so results in identical throughput regardless of the traffic
mix (not shown).

Latency We evaluate the latency added to the forwarding ele-
ment by the Hopper checks. We again use the test setup shown
in Fig. 7.8, but now emulate both the source and destination net-
work on the same host, using different host interfaces. In each
test setting, we transmit 103 packets, one at a time, and we cap-
ture the kernel-generated send and receive timestamps of each
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packet using tcpdump. We also measure two baselines: one us-
ing a loopback cable which bridges the source and destination
interface on the emulation host, and one in which we configured
DPDK to directly forward all packets without performing any
checks or parsing.

The results of the latency measurements are shown in Fig. 7.11.
We see that verifying two Hopper MACs per packet results
in a median latency increase of 20 to 40 µs, depending on the
packet size. The increase in latency overhead with increasing
packet sizes is a direct consequence of SHA256 hash that is cal-
culated over the packet payload. Verifying 10 MACs instead of 2,
adds an additional 20 µs to the median latency, regardless of the
packet size. Further, we observe only a minor effect of Hopper

on latency jitter, measuring an average standard deviation of 17,
17, 20, and 22 µs for the loopback, plain DPDK, 2 MACs, and
10 MACs settings, respectively.
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7.7.4 Controller Implementation

We implemented a proof of concept Hopper controller that
allows an administrator to specify which flows are whitelisted
using a policy file and dynamically distributes flow keys on
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request. We also extended our Hopper implementations to
automatically request missing flow keys from the controller and
performed a functional evaluation of interoperability and the
bootstrapping mechanism described in Section 7.5.7. Because
the speed of the initial key distribution is not critical, we did not
benchmark the controller.

7.8 Relationship with Tableau and IEC 62443

In Chapter 6, we introduced Tableau, a modern zoning ap-
proach for automation networks. Then, in Section 6.4, we dis-
cussed how Tableau can be used to divide networks into zones
and conduits in accordance with the IEC 62443 standard [80]. [80] IEC 62443 Standard

Series: Industrial communi-
cation networks - IT security
for networks and systems, In-
ternational Electrotechnical
Commission (2020)

Similar to Tableau, Hopper is a network segmentation pro-
tocol. However, whereas Tableau uses a perimeter-based ap-
proach, Hopper provides in-fabric and per-device segmentation.
These two approaches are complementary and are to be used
in tandem. Concretely, Tableau is used to group devices into
zones at a macro level, and to set macro-level flow policies be-
tween these groups. Each Tableau zone can simultaneously
be Hopper domain, providing low-level protection uniformly
across the zone’s network fabric. The Tableau transition points
serve simultaneously as Hopper gateways (see Section 7.5.3),
adding and removing hopper headers as packets enter or leave
a Tableau zone, respectively. From an IEC 62443 perspective,
Tableau is used to divide the networks into zones and conduits,
whereas Hopper assists towards increasing the security level
(SL) within each zone.

Combining Hopper with Tableau as described above has as
advantage that it decouples the multiple Hopper domains. This
means that (i) compromised keys in one domain do not affect
other domains; (ii) Hopper parameters (e.g., number of MACs)
can be set on a per-zone basis, and (iii) Hopper tags are always
fully verified before a packet leaves a network zone, ensuring
that even when the root key set of one zone is partially com-
promised, no forged packets can leave the local network zone.
Additionally, no number of compromised devices11 allow an ad- 11 excluding the Tableau

transition points or con-
troller

versary to send packets between zones that are not legitimately
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intended to interact.

7.9 Summary

New trends in industrial automation are challenging the ways in
which industrial networks are secured. In order to address these
challenges, this work presents Hopper, a nano segmentation
scheme for industrial IoT deployments. By deploying capability-
based and deny-by-default networking, Hopper extends the
protections typically only provided at the edge of the network to
the entire network fabric, realizing per-device network segmenta-
tion. Moreover, Hopper was designed to be compatible with the
diverse constraints encountered in IoT deployments, allowing
the same protocol to be deployed across a wide range of settings.

Contrary to the ossification seen in traditional networks, the
IoT networking stack is still in flux. This represents a unique,
but ephemeral, opportunity to embed security-by-design into the
core of the IoT stack. Hopper accomplishes this by extending
the broadly accepted principle of least privilege across the net-
work. Moreover, as the IoT’s momentum is ever increasing, the
need for the strong but flexible defenses that Hopper provides
has never been so critical.



8
Related Work

8.1 Sensors and Actuators

Remote attestation The use of remote attestation techniques to
secure IoT devices has been widely studied. In their most es-
sential form, attestation techniques provide integrity guarantees
about binaries. Such static techniques are not only widely used
in research (e.g., in the Sancus security architecture for IoT de-
vices [119]), but have also matured enough to see applications in [119] Noorman et al. (2017)

industry, most commonly in combination with secure boot [15,
7]. [15] ARM Ltd. (2009)

[7] Analog Devices (n.d.)However, static attestation cannot provide guarantees about
control-flow integrity. C-FLAT [1] and LO-FAT [50] address [1] Abera et al. (2016)

[50] Dessouky et al. (2017)this issue by designing IoT-compatible control-flow attestation
schemes. C-FLAT does so by relying on TrustZone for Cortex-A,
while LO-FAT introduces custom hardware. SIMPLE [6] con- [6] Ammar, Crispo, and

Tsudik (2020)tinues this line of work by proposing a software-only remote
attestation mechanism that implicitly guarantees control flow
integrity. In contrast, OAT [164] maintains a dependency on [164] Sun et al. (2020)

TrustZone, but adds data integrity guarantees.
Although all of these results provide strong guarantees about

the code being executed on an IoT device, they cannot prevent
a compromised device from accessing its interaction resources.
Therefore they provide only limited privacy guarantees. In sum-
mary, device attestation is an orthogonal research direction to
ours, and we discuss in Sections 3.9.3 and 4.8.1 how device attes-
tation, SA4P, and Kimya can complement each other.
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IoT recovery mechanisms A number of prior efforts studied how
IoT devices can be efficiently recovered after compromise. For
example, FIRE [149]) sends code update requests and black- [149] Seshadri et al. (2004)

lists devices when a successful recovery cannot be confirmed.
Cider [186] presents a mechanism that guarantees that updates [186] Xu et al. (2019)

are installed within a bounded time frame. Lazarus [74] provides [74] Huber et al. (2020)

similar properties as Cider, though it targets more constrained
devices and uses TrustZone on Cortex-M to eliminate some of
Cider’s hardware requirements. Verify&Revive [5] presents a [5] Ammar and Crispo

(2020)pure-software-based device healing scheme, albeit at the cost of
weaker availability guarantees.

These works are similar to SA4P in that they can be used to
prevent an adversary from sampling sensors after a breach has
been detected. However, they cannot be used to regulate sensor
access during normal deployment operations. Although these
works could be used to harden voice assistants, they would not
be able to protect against unknown vulnerabilities in the voice
assistant codebase.

Managing sensor access Brasser et al. use TrustZone on Cortex-
A and remote memory writes to restrict peripheral access [29]. [29] Brasser et al. (2016)

Unlike SA4P, it targets feature-rich devices (e.g., smartphones
or laptops) and does not provide fine-grained temporal control.
Instead, the peripheral access policy can only be updated dur-
ing check-in and check-out events. SeCloak [98] targets similar [98] Lentz et al. (2018)

devices as Brasser et al. and also relies on TrustZone. How-
ever, it is designed to provide on-device control, i.e., SeCloak
does not delegate access policy management to a remote server.
AWare [132] is targeted towards mobile devices, and provides [132] Petracca et al. (2017)

an operating-level service that binds user interactions with spe-
cific user interface elements to sensor access rights. EnTrust [133] [133] Petracca et al. (2019)

further generalizes this to other types of input events, and to co-
operating applications. Neither allows policy enforcement by a
remote entity.

Although they provide strong guarantees, none of these works
is designed to capture the semantics of always-standby sensors.
Therefore, sensor access must be permanently granted for event
detection to work. Moreover, these works were not designed for
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constrained environments.
Work on trusted I/O paths (e.g., SGXIO [180] and Wimpy ker- [180] Weiser and Werner

(2017)nels [195]) can be used to provide secure I/O access to TEEs. It is
[195] Zhou, Yu, and Gligor
(2014)conceivable, but not verified, that these works can facilitate TEE-

based PEG implementations. Although TEEs provide isolation,
they do no provide amnesia. It might be possible to implement
Kimya-like logic using multiple TEEs (e.g., multiple SGX en-
claves) and message passing channels, but future work would be
needed to confirm this.

VERSA [121] uses a modified MCU to ensure that only at- [121] Nunes et al. (2022)

tested and explicitly authorized routines can access sensors,
based on remotely-issued authorization tokens. Although
VERSA requires the remote verifier to issue a new token for
each invocation of the sampling routine, it does not provide the
same bounded-time guarantees as our work. Moreover, VERSA
requires custom hardware and its reliance on attestation requires
significantly closer integration between the remote verifier and
the VERSA-enabled device.

Auditing of sensor access Viola [112] provides guarantees that [112] Mirzamohammadi and
Sani (2018)sensor notifications (e.g., LED indicators) are active when (and

only when) a sensor is accessed. Ditio [111] securely logs sen- [111] Mirzamohammadi
et al. (2017)sor access for later auditing. Neither of these mechanisms is

designed for always-standby sensors, and will mark an always-
standby sensor as being continuously accessed. 6thSense [154] [154] Sikder, Aksu, and

Uluagac (2020)analyses sensor access patterns to detect malicious activity. How-
ever, it does not support always-standby sensors. Depending
on the concrete sensor type, 6thSense would mark an always-
standby sensor as always accessed, or assign it an access state
that is independent from the event detection. Kimya can be used
to augment 6thSense as discussed in Section 4.8.2. Neither Viola,
Ditio, nor 6thSense allows for remote policy enforcement.

Camera privacy Much research has focused on camera privacy,
typically by performing video anonymization by obfuscating
sensitive video regions [183]. Contributions in this area can

[183] Winkler and Rinner
(2014)

be categorized based on when the obfuscation is performed:
before [193, 135, 176], during [182]), or after [39, 184] capture

[193] Zhang et al. (2014)

[135] Pittaluga and Koppal
(2017)

[176] Wang et al. (2022)

[182] Winkler, Erdelyi, and
Rinner (2014)
[39] Chattopadhyay and
Boult (2007)

[184] Winkler and Rinner
(2010)



174 piet de vaere

time. The first two of these categories are of special interest,
as, similar to our work, they perform access regulation before
the CPU. Zhang et al. [193] and Pittaluga et al. [135] propose [193] Zhang et al. (2014)

[135] Pittaluga and Koppal
(2017)

to place dynamic, privacy-preserving optics in front of image
sensors. CamShield [176] takes a different approach by fully

[176] Wang et al. (2022)
obscuring the view of the main image sensor, and instead expose
it to a pre-anonymized digital video stream. TurstEYE.M4 [182] [182] Winkler, Erdelyi, and

Rinner (2014)proposes a sensor unit with an integrated privacy filter, resulting
in a pre-filtered video stream being received by the CPU.

Contrary to our work, all of these works focus on image pri-
vacy and none of them have provisions for remote policy en-
forcement or event detection. CamShield [176] does perform
region-of-interest detection, but requires all detection code to be
part of the TCB.

Node-level IoT access management Many results consider device-
level IoT access control. This includes both research papers
(e.g., [59, 124, 56, 48, 117, 85]) and industry standards (e.g., [148, [59] Fedrecheski et al. (2022)

[124] Oh, Kim, and Cho
(2019)

[56] Echeverria et al. (2019)

[48] De Vaere and Perrig
(2019)

[117] Neto et al. (2016)

[85] Kim et al. (2017)

43]). Unlike the present work, these techniques operate at the

[148] Seitz et al. (2022)

[43] Connectivity Standards
Alliance (2022)

device or agent level. However, some of them, e.g., AoT’s [117]

[117] Neto et al. (2016)

full-lifecycle key management mechanism, could be used to in-
stantiate a PEG pairing module.

Information flow tracking There is a large body of work on
information-flow or taint tracking for mobile devices [57, 66,
73, 20]. FlowFence [60] provides taint tracking for IoT cloud

[57] Enck et al. (2014)

[66] Gordon et al. (2015)

[73] Hornyack et al. (2011)

[20] Arzt et al. (2014)
[60] Fernandes et al. (2016)

platforms. These works rely either on static or dynamic code
analysis. In the former case, they must be combined with soft-
ware attestation or similar mechanisms. In the latter case, they
are challenging to apply to constrained environments. Moreover,
these mechanisms were not designed to support always-standby
semantics, meaning that they do not provide guarantees on
which historic data can be accessed when a trigger event occurs.

Skill behavior A number of works [189, 69, 151] analyze the [189] Young et al. (2022)

[69] Guo et al. (2020)

[151] Shezan et al. (2020)
behavior of third-party voice assistant skills. This is comparable
to analyzing the behavior of Android or smart-home apps, and
focuses on individual functionality add-ons, rather than on the
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underlying system. Therefore, we believe these works to be
synergetic to ours.

8.2 Automation Networks

Future-oriented network architectures and models The most visi-
ble proposal for a future-proof OT architecture is the NAMUR
Open Architecture (NOA) [115]. NOA places a secondary mon- [115] NAMUR (2020)

itoring and optimization network in parallel to the existing core
automation infrastructure. Data is fed from the core network
into the secondary network through data diodes, where it can be
analyzed. Control commands from the secondary network are
transferred back to the core network through a request verifica-
tion gateway. Although NOA has the advantage that it leaves the
existing automation network largely untouched, the functional-
ity of the secondary network stays limited to a supporting role.
This means that NOA does not address how to handle changes
to the core of the automation architecture, e.g., the introduction
of virtual automation functions or the increasing prevalence
of highly-autonomous remotely controlled facilities. In fact,
the NOA approach is largely complementary to Tableau, as
Tableau can be used to structure and secure the monitoring and
optimization network of NOA deployment.

Another prominent standardization effort is the Reference
Architectural Model for Industrie 4.0 (RAMI 4.0) [51], which was [51] Deutsches Institut für

Normung (2016)developed to support Industry 4.0 initiatives. However, RAMI 4.0
focuses on the representation and management of assets, and
does not discuss network topologies.

IoT gateways A common method to secure IoT networks is by
deploying a specialized IoT firewall, often called a gateway. Past
proposals include DeadBolt [86], IoT Sentinel [109], IoTSec [190], [86] Ko and Mickens (2018)

[109] Miettinen et al. (2017)
[190] Yu et al. (2015)

and a design by Simpson et al. [156]. Concretely, Simpson et

[156] Simpson, Roesner, and
Kohno (2017)

al. explore how to protect and isolate vulnerable devices and
how to securely apply patches; IoT Sentinel and IoTSec focus on
automated identification of compromised devices; and DeadBolt
aims to enforce the application of good security practices on IoT
devices while mediating traffic to non-complying devices.
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These proposals all consist of a security proxy that all network
traffic must be routed through. While IoTSec envisions security
proxies to be instantiated at various points in the network with
overlay routing forcing traffic through them, the others effec-
tively require a physical or overlay network with a star topology.

Apple recently started including a basic version of an IoT
firewall in their HomeKit platform [11]. The vendors of Home- [11] Apple (2020)

Kit devices must supply a manifest file stating which connec-
tions their product is supposed to establish, and by default all
other communication flows are blocked. Closely related to this,
RFC 8520 [97] standardizes the description of the expected net- [97] Lear, Droms, and

Romascanu (2019)work behavior of devices, facilitating deny-by-default policies
such as the one implemented by HomeKit.

While suitable in some environments, approaches as dis-
cussed above are not suitable for industrial networks. That is,
indirect routing introduces a single point of failure to the data
plane, increased latencies, and increased network overhead.
Moreover, aggregating and forcing network traffic along an
indirect path directly counteracts the properties achieved by
TSN. The proposals listed above also do not achieve the source-
authentication properties of Hopper.

Capability-based and Deny-by-Default networking Hopper deploys
capability-based networking in order to achieve per-device nano
segmentation. While our work is (to the best of our knowledge)
the first to apply this concept to the IoT setting, capability-based
networking, and more generally, deny-by-default networking,
have been considered in other settings.

Concretely, a first set of past work considers the use of capa-
bilities for DoS protection on the Internet. Proposals in this space
include a design by Anderson et al. [8], and SIFF [187]. As these [8] Anderson, Roscoe, and

Wetherall (2004)
[187] Yaar, Perrig, and Song
(2004)

proposals are designed to provide DoS protection, they only pre-
vent volumetric attacks, but still allow low volume traffic flows
to reach hosts. Hence, they do not prevent lateral movement.

Around the same time, Ballani et al. [21] proposed to propa- [21] Ballani et al. (2005)

gate whitelists through the Internet using a mechanism similar
to BGP, dropping all non-whitelisted traffic. While this scheme
does prevent all unwanted traffic from reaching an end host,
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it still assumes an inter-domain setting, which is inapplica-
ble to IoT networks. For example, it requires large amounts of
reachability information to be transferred between forwarding
elements.

A third set of work considers enterprise networks, most no-
tably SANE [36] and Ethane [35]. SANE uses capabilities in the [36] Casado et al. (2006)

[35] Casado et al. (2007)form of authenticated source routes, which are checked at each
switch. However, because routes in (wireless) IoT networks can
be non-predictable (see Section 7.2), it is not a suitable mecha-
nism for IoT settings. Ethane uses a complementary approach:
each switch stores a whitelist of permitted traffic. High control
overhead and strong assumptions on the network architecture
render this mechanism impractical in (constrained) IoT settings.
Further, neither SANE nor Ethane provide packet authentication.

Fieldbus authentication There are a number of proposals that add
authentication to industrial fieldbuses [140, 37, 169, 170]. How- [140] Radu and Garcia (2016)

[37] Castellanos et al. (2017)

[169] Tsang and Smith (2008)

[170] Van Herrewege,
Singelee, and Verbauwhede
(2011)

ever, these proposals do not provide least privilege (HOPPER-
1) or isolation (HOPPER-2) and requires device to be pre-
provisioned with per-flow keys.





9
Conclusion

9.1 Summary

Today, automation devices have largely unrestricted access
to their physical environment; they can actuate and sense at
will. Hence, when an adversary manages to compromise an au-
tomation device, they can also compromise the physical world.
To mitigate such attacks, we introduce SA4P, an architectural
framework to enforce access control policies between a device’s
software Runtime and its sensors and actuators. To achieve this,
we designed the PEG, a small, trusted, building block that phys-
ically guards sensing and actuation peripherals. The PEG is ex-
plicitly designed to have a small footprint. This ensures (i) com-
patibility with a large number of device classes, and (ii) that the
PEG design is easy to verify. Each PEG communicates with the
centralized deployment manager, which can leverage its system-
level view to make well-informed access decisions.

For cases in which the physical world must be continuously
monitored, we introduced Kimya. Similarly to SA4P, Kimya

places access enforcement between a device’s main software run-
time, and its sensor peripherals. However, rather than delegating
access decisions to a centralized entity, Kimya provides local ap-
plications with an isolated and amnestic execution environment
dedicated to always-standby event detection. Code running in-
side the Kimya container has full access to the protected sensor
at all times. Moreover, it is free to grant that same privilege to
the entire software runtime at any point in time. However, when-
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ever this happens, a user-auditable notification is generated,
thus making the device’s actions externally visible. Users, audit
these notifications, and the device can be held accountable for its
actions. Audits can be both formal or informal in character.

Comparing SA4P and Kimya, both regulate access to a de-
vice’s local sensors. Additionally, SA4P can also regulate access
to actuators. However, whereas SA4P allows a remote, trusted
entity to make access decisions, Kimya allows access decisions
to be made by a local, untrusted-but-audited entity. Moreover,
Kimya allows for sensor readings from the protected sensors to
be used as a basis for access decisions.

On the network front, we reviewed how current defenses
are coarse-grained and based on assumptions that are rapidly
being invalidated. To demonstrate the feasibility of alternative
approaches, we present Tableau. Concretely, Tableau shows
how the use of modern technologies such as Mondrian and auto-
mated network verification allows for networks to be secured in
a way that is more scalable than the current approaches without
sacrificing security.

Finally, we present Hopper, a nano-segmentation protocol for
industrial networks. Contrary to Tableau and other perimeter-
based approaches, Hopper applies its protections uniformly
throughout the network fabric. The result is that each device is
placed in its own virtual network segment, consisting of only
those network resources (forwarding elements and end-hosts)
that it is legitimately supposed to interact with. Hopper’s nano-
segments strictly limit both the exposure of individual devices,
and an attacker’s ability for lateral movement within network
zones after an initial device has been compromised.

SA4P and Kimya are primarily targeted towards consumer
devices; Tableau and Hopper were designed with an industrial
setting in mind. Nonetheless, all contributions in this work can
be applied to both the industrial and consumer settings. More-
over, all of the contributions of this thesis are composable: an
always-standby device can be hardened using Kimya and simul-
taneously be enrolled in a SA4P deployment. Its network can
use Tableau macro zoning with Hopper providing additional
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hardening within the zones.

9.2 Future Work

SA4P policies SA4P provides a distributed architecture for a
centralized deployment monitor to enforce access restrictions
between remote CPUs and their peripherals. However, this thesis
does not discuss how such policies would look like. Although
PEG messages contain little context for access requests, the
deployment manager’s centralized nature means that it can have
a rich, system-wide view of a SA4P deployment. However, how
the deployment manager should collect information from the
deployment, and how policies should be specified remains an
open question. We expect that adapting existing schemes for
different settings (e.g., ContextIot [82] and CPS [106]) will prove [82] ContexIoT: Towards

Providing Contextual Integrity
to Appified IoT Platforms, Jia
et al. (2017)
[106] CPS: Stateful Policy En-
forcement for Control System
Device Usage, McLaughlin
(2013)

to be efficient.

PEG enforcement modules We presented three basic PEG en-
forcement modules. We see opportunities for additional, purpose-
optimized designs. Advanced enforcement modules could
selectively reduce sensor resolution or limit access rates. Simi-
larly, additional work to explore how to best protect complex,
permanently-driven, actuators is needed.

Kimya on advanced architectures We have presented a Kimya

implementation for a single core ARM Cortex-M platform. We
see promise in running the Kimya container on a separate pro-
cessor core, thus decoupling the timing of the container from
that of the main application. We believe that such an architec-
ture would be more efficient for multi-stage detection pipelines.
Additionally, it should be explored if Kimya can be extended to
include distributed or cloud-supported event detection. Potential
research avenues include using secure multi-party computation
and using Intel SGX enclaves as an extension of the on-device
Kimya container.

Hopper policy generation & Tableau policy blueprints Hopper

requires each network flow to be explicitly whitelisted. To avoid
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high management overhead, systems to automatically synthesize
Hopper configurations should be developed. Ideally, such a sys-
tem would be integrated together with a Tableau configuration
tool. Further, for efficient Tableau policy configuration, a set of
policy blueprints and design patterns should be developed.

Tableau interaction with NOA The NAMUR Open Architec-
ture (NOA) is an alternative new architecture for industrial au-
tomation networks (see Section 8.2). We believe that NOA and
Tableau are complementary technologies, as Tableau can be
used to further segment both the NOA core and optimization
networks. However, further work is needed to define which form
interactions between the two NOA networks would take under
Tableau’s presence.

9.3 Closing Remarks

No matter whether we consider consumer IoT devices or in-
dustrial controllers, we observe that today’s automation designs
consider sensing, actuation, and (local) network access to be
commodities: cheap and readily available. Access control is a
nuisance and an afterthought. This work encourages designers to
more closely consider the implications of sensing, actuation, and
communication behavior; we emphasize that the mere ability to
perform a particular function does not justify its implementation.
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The RISC-V Instruction Set Manual: Volume II: Privileged
Architecture. 2021.

https://wikidevi.wi-cat.ru/Google_Nest_Mini_(H2C)
https://research.voicebot.ai/report-list/smart-speaker-consumer-adoption-report-2021/
https://research.voicebot.ai/report-list/smart-speaker-consumer-adoption-report-2021/
https://research.voicebot.ai/report-list/smart-speaker-consumer-adoption-report-2021/
https://doi.org/10.1109/twc.2021.3098608
https://doi.org/10.1038/s42003-021-01824-9
https://arxiv.org/abs/1804.03209
https://arxiv.org/abs/1804.03209


204 piet de vaere

[179] Stacy Wegner, Daniel Yang, and Kim Waterman. Apple
HomePod Teardown and Cost Comparison. TechInsights.
2018. url: https://www.techinsights.com/blog/apple-
homepod-teardown-and-cost-comparison.

[180] Samuel Weiser and Mario Werner. “SGXIO: Generic
Trusted I/O Path for Intel SGX”. In: Proceedings of the
ACM Conference on Data and Application Security and Pri-
vacy (CODASPY). 2017. doi: 10.1145/3029806.3029822.

[181] Theodore J. Williams. A Reference Model for Computer
Integrated Manufacturing (CIM). Instrument Society of
America, 1989. isbn: 1556172257.

[182] Thomas Winkler, Adam Erdelyi, and Bernhard Rinner.
“TrustEYE.M4: Protecting the sensor — Not the camera”.
In: Proceedings of the IEEE International Conference on Ad-
vanced Video and Signal Based Surveillance (AVSS). 2014.
doi: 10.1109/avss.2014.6918661.

[183] Thomas Winkler and Bernhard Rinner. “Security and
Privacy Protection in Visual Sensor Networks”. In: ACM
Computing Surveys (2014). doi: 10.1145/2545883.

[184] Thomas Winkler and Bernhard Rinner. “TrustCAM:
Security and Privacy-Protection for an Embedded Smart
Camera Based on Trusted Computing”. In: Proceedings
of the IEEE International Conference on Advanced Video and
Signal Based Surveillance (AVSS). 2010. doi: 10.1109/
avss.2010.38.

[185] M. Wollschlaeger, T. Sauter, and J. Jasperneite. “The
Future of Industrial Communication: Automation Net-
works in the Era of the Internet of Things and Industry
4.0”. In: IEEE Industrial Electronics Magazine (2017). doi:
10.1109/mie.2017.2649104.

[186] Meng Xu, Manuel Huber, Zhichuang Sun, Paul England,
Marcus Peinado, Sangho Lee, Andrey Marochko, Dennis
Mattoon, Rob Spiger, and Stefan Thom. “Dominance as
a New Trusted Computing Primitive for the Internet of
Things”. In: Proceedings of the IEEE Symposium on Security
and Privacy (S&P). 2019. doi: 10.1109/sp.2019.00084.

https://www.techinsights.com/blog/apple-homepod-teardown-and-cost-comparison
https://www.techinsights.com/blog/apple-homepod-teardown-and-cost-comparison
https://doi.org/10.1145/3029806.3029822
https://doi.org/10.1109/avss.2014.6918661
https://doi.org/10.1145/2545883
https://doi.org/10.1109/avss.2010.38
https://doi.org/10.1109/avss.2010.38
https://doi.org/10.1109/mie.2017.2649104
https://doi.org/10.1109/sp.2019.00084


fine-grained access control for sensors, actuators & automation networks

205

[187] A. Yaar, A. Perrig, and D. Song. “SIFF: a stateless internet
flow filter to mitigate DDoS flooding attacks”. In: Proceed-
ings of the IEEE Symposium on Security and Privacy (S&P).
2004. doi: 10.1109/secpri.2004.1301320.

[188] Joseph Yiu. White Paper: Introduction to the ARM Cortex-
M55 Processor. Feb. 2020.

[189] Jeffrey Young, Song Liao, Long Cheng, Hongxin Hu,
and Huixing Deng. “SkillDetective: Automated Policy-
Violation Detection of Voice Assistant Applications in the
Wild”. In: Proceedings of the USENIX Security Symposium
(USENIX Security). 2022.

[190] T. Yu, V. Sekar, S. Seshan, Y. Agarwal, and C. Xu. “Han-
dling a Trillion (Unfixable) Flaws on a Billion Devices:
Rethinking Network Security for the Internet-of-Things”.
In: Proceedings of the ACM Workshop on Hot Topics in Net-
works (HotNets). 2015. doi: 10.1145/2834050.2834095.

[191] Kim Zetter. Inside the Cunning, Unprecedented Hack of
Ukraine’s Power Grid. Wired. 2016. url: https://www.
wired.com/2016/03/inside-cunning-unprecedented-

hack-ukraines-power-grid/.

[192] Yundong Zhang, Naveen Suda, Liangzhen Lai, and Vikas
Chandra. Hello Edge: Keyword Spotting on Microcontrollers.
2018. arXiv: 1711.07128 [cs.SD].

[193] Yupeng Zhang, Yuheng Lu, Hajime Nagahara, and Rin-
ichiro Taniguchi. “Anonymous Camera for Privacy Pro-
tection”. In: Proceedings on the International Conference on
Pattern Recognition (ICPR). 2014. doi: 10.1109/icpr.
2014.715.

[194] Binbin Zhao, Shouling Ji, Jiacheng Xu, Yuan Tian, Qi-
uyang Wei, Qinying Wang, Chenyang Lyu, Xuhong
Zhang, Changting Lin, Jingzheng Wu, and Raheem
Beyah. One Bad Apple Spoils the Barrel: Understanding the
Security Risks Introduced by Third-Party Components in IoT
Firmware. 2022. arXiv: 2212.13716 [cs.CR].

https://doi.org/10.1109/secpri.2004.1301320
https://doi.org/10.1145/2834050.2834095
https://www.wired.com/2016/03/inside-cunning-unprecedented-hack-ukraines-power-grid/
https://www.wired.com/2016/03/inside-cunning-unprecedented-hack-ukraines-power-grid/
https://www.wired.com/2016/03/inside-cunning-unprecedented-hack-ukraines-power-grid/
https://arxiv.org/abs/1711.07128
https://doi.org/10.1109/icpr.2014.715
https://doi.org/10.1109/icpr.2014.715
https://arxiv.org/abs/2212.13716


206 piet de vaere

[195] Zongwei Zhou, Miao Yu, and Virgil D. Gligor. “Dancing
with Giants: Wimpy Kernels for On-Demand Isolated
I/O”. In: Proceedings of the IEEE Symposium on Security and
Privacy (S&P). 2014. doi: 10.1109/SP.2014.27.

https://doi.org/10.1109/SP.2014.27

	Introduction
	Related Publications and Contributors

	Background
	Safety and Security in Automation Networks
	TrustZone on Cortex-M
	Mondrian Network Zoning

	I Sensors & Actuators
	Sensing and Actuation as a Privilege
	Introduction
	Preliminaries
	Adversary and Trust Model
	SA4P Overview
	PEG Design
	Security Analysis
	Implementation
	Evaluation
	Discussion
	Summary

	Securing Event-Triggered Sensors
	Introduction
	Adversary Model & Security Setting
	Design
	Implementation on Cortex-M
	Security Analysis
	Prototype Application
	Evaluation
	Discussion
	Summary


	II Automation Networks
	Current Automation Networks
	Introduction
	Current OT Networks
	Challenges to OT Networks

	Future-Proof Zoning for OT Networks
	Introduction
	A Flat Zoning Architecture for OT Networks
	Security Aspects
	Compatibility with IEC 62443
	Summary

	Per-Device Nano Segmentation for the Industrial IoT
	Introduction
	Constraints in Industrial IoT Networks
	Adversary Model & Security Goals
	Hopper Protocol
	Practical Considerations
	Security Analysis
	Implementation and Evaluation
	Relationship with Tableau and IEC 62443
	Summary


	Related Work
	Sensors and Actuators
	Automation Networks

	Conclusion
	Summary
	Future Work
	Closing Remarks


