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Abstract

In this project, we extend the application of two typical closed-loop identification methods,
namely the dual-Youla parameterization and the two-stage identification, from identifying LTI
SISO systems to MIMO systems while considering the predefined sparsity structure in the sys-
tem. Both extended methods result in a quadratic program that consists of 1) a quadratic cost
function that minimizes the model fitting error, and 2) a group of linear equality constraints
that ensure the estimated system has the desired sparsity structure. These two methods are
applicable in distinct scenarios. In particular, the dual-Youla method requires the knowledge of
the controller and guarantees the estimated plant is stabilized by the known controller, whereas
the two-stage method does not rely on the controller’s knowledge. Both methods are proven to
admit a consistent estimate of the plant theoretically. Finally, to showcase the practical effi-
cacy of the proposed method, we apply our approach to identifying an inherently unstable and
sparse irrigation networked system directly using closed-loop noisy data. Given the inherent
instability of the irrigation network, we exclusively employ the extended dual-Youla method, as
it guarantees stabilizability.
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Chapter 1

Introduction

System identification, the methodology employed for constructing reliable system models based
on empirical data, has found extensive application in engineering[1], as it forms an essential step
in facilitating model-based control design[2], minimum variance control design[3], robust control
design[4], and so on. Nonetheless, conventional approaches in system identification typically
center around the estimation of individual parameters, without effectively capturing the a-priori
knowledge about the system’s underlying architecture. The problem gains increased relevance
within the context of contemporary cyber-physical systems (CPS), which can exhibit large-scale
sparse architectures, where both the system and the controller can only access localized in-
formation. These systems are common in many fields, such as integrated propulsion systems,
power grids, vehicle platoons, and irrigation networks[5][6], usually faced with the difficulty
in generating a representative model for controller synthesis, owing to factors like heterogene-
ity, concurrency, or susceptibility to temporal intricacies[7]. Moreover, large-scale systems may
demonstrate undesired dynamics; for instance, power grids with continuously increasing demand
may rely on intensive usage of the existing networks, incurring smaller stability margins and even
instability under poorly damped dynamics[8]. This indicates that these systems almost always
operate in closed-loop configurations, thereby rendering exclusively closed-loop data available
for identification purposes. Consequently, it becomes imperative to develop novel techniques
that are tailored for closed-loop identification of the CPS that make effective use of sparsity
knowledge to further improve the identification of the system.

It is widely recognized that a main challenge in closed-loop identification stems from the cor-
relation between the unobservable noise and the control input, which employs the noisy output
as feedback. Such problems have raised great interest in the literature. By convention, ap-
proaches for closed-loop identification are referred to as indirect methods, as opposed to the
direct methods that address open-loop identification problems. Thus, this project primarily
centers around extending two traditional indirect methods: the dual-Youla parameterization[9]
and the two-stage identification[10]. These frameworks are the focal points of our investigation
and are adaptable to distinct scenarios. At the same time, both can be tailored to facilitate the
identification of large-scale systems with certain sparsity architectures.

The dual-Youla method parameterizes a set of systems stabilized by a known controller, indi-
cating every resultant estimate via the dual-Youla method is guaranteed to be stabilized by
the controller. Such stabilizability relies on the coprime factorization of the controller, which
is particularly beneficial when the original system is unstable or possesses a limited stability
margin. The procedure of this method involves filtering the raw input and output data using
these coprime factors to generate a new signal pair, interpreted as the virtual input and virtual
output. Notably, the virtual input becomes uncorrelated with noise, making the problem solv-
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able by an open-loop identification framework.

In contrast, in situations where exact controller knowledge is absent or determining the co-
prime factors of the controller is challenging, an alternative indirect method called the two-stage
method becomes attractive. In the first stage, this method estimates the sensitivity function
from the reference signal to the control input. This estimated sensitivity function is then used
to filter the reference signal, resembling the noise-free part of the control input. Subsequently,
this noise-free control input, along with the raw output, is employed to identify the plant as an
open-loop identification problem, since noise-free input is uncorrelated by noise. Implementing
the two-stage method is simple due to its lack of reliance on coprime factorization or exact
controller knowledge. However, this simplicity comes with a price: the identified plant is not
guaranteed to be stabilized by the controller, rendering it less desirable for identifying unstable
plants.

While these two approaches are inherently suited for different scenarios, it is worth noting that
they share the capacity to be customized for large-scale sparse systems, provided knowledge
of the sparsity architectures is available. As this specific adaptation has not been extensively
explored in the existing literature, the potential of incorporating sparsity conditions into the
identification framework emerges as a valuable investigation. With this purpose, the utilization
of the sparsity structure knowledge is realized through the so-called Sparsity Invariance The-
orem[11], which was initially applied in controller synthesis. The theorem introduces a group
of linear constraints, namely the sparsity constraints, on the factors of a transfer matrix to
indirectly ensure the transfer matrix showcases the desired sparsity configuration so that the
optimization problem remains convex.

As motivated by the theories and concepts above, the main contribution of this project is
introducing an innovative concept that integrates the Sparsity Invariance Theorem into the
conventional system identification frameworks mentioned previously. The extended methods
ultimately result in an efficiently solvable quadratic program, allow for a closed-form solution,
and guarantee the estimated plant has exactly the desired sparsity architecture. Consistency
proof is also provided, followed by the implementation. Finally, simulations demonstrate that
a consistent output prediction and a commendable model approximation are achievable and
increasingly efficient compared to the traditional identification method that ignores the sparsity
knowledge.

The structure of this report is organized as follows. Chapter 2 provides a general overview of
the essential mathematical preliminaries, which outlines the system identification framework
before introducing the notations and theorems that will be extensively referenced throughout
the report. In Chapter 3 and Chapter 4, the extended dual-Youla method and two-stage method
are elaborated, respectively, by introducing the fundamental principles of these two conventional
identification frameworks and adapting their methodologies to the Sparsity Invariance Theorem,
before converting the identification problem into a quadratic program. Moving to Chapter 5, an
instance of applying our proposed method to a real-world scenario is illustrated by identifying an
inherently unstable and sparse irrigation network directly through closed-loop data, followed by
a discussion about several directions that could potentially improve the estimate in the future.
Finally, in Chapter 6, a summary of the findings is presented, and the overall conclusions are
drawn.
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Chapter 2

Preliminaries

This chapter serves as a foundation for the subsequent discussions in this report. In this chap-
ter, we present an overview of the mathematical tools and concepts that will be frequently
used throughout the report. We begin by introducing the problem statement regarding the
general framework of systems involved in this report, followed by a summary of the notations
employed in various chapters and summarized in Section 2.1 and 2.2, respectively. Additionally,
in Section 2.3, we delve into essential theorems from the literature and develop certain new
concepts that assist in building the mathematical model. These theorems lay the groundwork
for understanding the convexification of several tricky constraints and formulating optimization
problems.

2.1 Problem Statement
We consider a general linear time-invariant (LTI) multi-input multi-output (MIMO) system with
a positive feedback controller in discrete time with a block diagram displayed in Fig.2.1,

y(k) = G(z)u(k) + H(z)e(k)
u(k) = K(z)y(k) + F(z)r(k)

(2.1)

Figure 2.1: Block diagram of an LTI feedback control system incorporating error and excitation.

The dynamics consist of vectors of measured outputs y(k) ∈ Rny , measurement noises e(k) ∈
Rne , control inputs u(k) ∈ Rnu , and external excitation r(k) ∈ Rnr . The matrices of transfer
functions G(z) ∈ Rny×nu

c , H(z) ∈ Rny×ne
c , K(z) ∈ Rnu×ny

c and F(z) ∈ Rnu×nr
c represent the

input-output (IO) plant, the noise dynamics, the positive feedback controller and the excitation
pre-filter, respectively. The notation Rm×n

c represents the field of m×n causal transfer matrices.
Specifically, the MIMO plant G(z) demonstrates the structure below,

G(z) =


G11(z) G12(z) · · · G1nu(z)
G21(z) G22(z) · · · G2nu(z)

...
... . . . ...

Gny1(z) Gny2(z) · · · Gnynu(z)

 (2.2)
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Each Gij ∈ Rc represents a rational transfer function. Besides, we consider the following
fundamental assumptions:

1). r(k) is persistently exciting.

2). e(k) is unobservable, independent and identically distributed (i.i.d.), and statistically in-
dependent of r(k).

3). The plant is identifiable; the network structure is exactly known, or it is also identifi-
able[12].

Which together ensure the identification problem is generally solvable. The problems we consider
in this report are identical to conventional ones in the literature, which aims at estimating all
the parameters of each IO channel Gij(z), by utilizing the pre-selected excitation, control input
and the noise-corrupted output. Additionally, the extended dual-Youla method described in
Chapter 3 requires the knowledge of the controller K(z).

2.2 Nomenclatures

To ensure uniformity in notation and facilitate readers in promptly grasping the symbols, we
provide a condensed compilation of the symbols and operators in the table below.

Table 2.1: Nomenclature

Symbol Representation Remark
R Fields of real numbers Rm×n = m × n real matrix
C Fields of complex numbers
{0, 1}m×n Fields of m × n binary matrices
Rc Fields of causal transfer functions Rm×n

c = m × n transfer matrix
RH∞ Fields of stable and causal transfer functions
Fτ Fields of FIR transfer functions with order τ

A(s) Transfer function in continuous-time Bold symbols w. (s)
A or A(z) Transfer function in discrete-time Bold symbols w. or w/o. (z)
Ak a real matrix equal to k-th tap of A Superscripts
Aij(z) a transfer function equal to (i, j)-entry of A Subscripts
ak

ij (i, j)-entry of the k-th tap of A Super- and subscripts
In Identity matrix with dimension n

0 Zero matrix with proper size based on context
1m×n An m × n matrix with all elements equal to 1
A⊤ Transpose of A

A† Pseudo-inverse of A

A
⊗

B Kronecker product of two matrices A and B

z−1 Shift operator in discrete-time z−1 · y(k) = y(k − 1)
exp(τ) Natural exponentiation of τ , i.e. eτ

vec(B) Vectorization operator Detailed definition below
toep(B, ν) Toeplitz operator with ν rows Detailed definition below
Sparse(S) Sparsity subspace w.r.t. binary S Detailed definition below
Struct(B) Sparsity structure of B Detailed definition below
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The vectorization operator is defined by stacking every column of a matrix to form another long
vector. Suppose we are given a matrix B ∈ Rm×n such that,

B =


b11 b12 · · · b1n

b21 b22 · · · b2n
...

... . . . ...
bm1 bm2 · · · bmn

 =
[

b1 b2 · · · bn

]
(2.3)

Hence,

vec(B) =


b1
b2
...

bn

 ∈ Rmn (2.4)

The Toeplitz operator in this report is exclusively defined for an FIR transfer matrix. Suppose
we are given a transfer matrix B(z) ∈ Fm×n

τ such that,

A(z) = A0 + A1 · z−1 + · · · + Aν−1 · z−(ν−1)

B(z) = B0 + B1 · z−1 + · · · + Bτ−1 · z−(τ−1) (2.5)

Further, suppose we are given another FIR transfer matrix A(z) ∈ Fν with proper dimensions
and we want to perform the convolution A(z) · B(z). We first define toep(B, ν) as,

toep(B, ν) =


B0 B1 · · · Bτ−1 0 · · · 0
0 B0 · · · Bτ−2 Bτ−1 · · · 0
...

... . . . ...
... . . . ...

0 0 · · · B0 B1 · · · Bτ−1

 ∈ Rm·ν×N ·(τ+ν−1) (2.6)

Therefore, the Toeplitz operator converts the convolution into the following equivalent matrix
multiplication,

A(z) · B(z) is computed via[
A0 A1 · · · Aν−1

]
∗

[
B0 B1 · · · Bτ−1

]
=

[
A0 A1 · · · Aν−1

]
· toep(B, ν)

(2.7)

Finally, Sparse(·) and Struct(·) are defined in the same way as those in [11]. Given a binary
matrix S ∈ {0, 1}m×n,

Sparse(S) =
{
B ∈ Rm×n

c | Bij(z) ∀ z ∈ C and ∀ i, j s.t. Sij = 0
}

(2.8)

On the other hand, given a causal transfer matrix B ∈ Rm×n
c , the binary matrix S = Struct(B)

is defined as,

Sij =
{

0 if Bij(z) = 0 ∀ z ∈ C
1 otherwise

(2.9)

2.3 Related Theorems
This section describes all relevant theorems used to construct the identification algorithm. In
particular, these theorems manage to convexify several non-convex constraints in general, so
our proposed method can solve the problem efficiently. Details are explained in the following
subsections.
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2.3.1 Sparsity Invariance Theorem

The Sparsity Invariance (SI) theorem[11] was initially introduced and utilized to convexify the
design of a controller to optimize the system’s closed-loop behavior, subject to some specific
sparsity constraints on the fractional structure of the controller. More specifically, the author
suggests designing sparsity patterns for transfer matrices D(z) and N(z) such that the controller
K = D(z)−1N(z) demonstrates the desired sparsity architecture. This novel idea, however, is
not restricted to controller design; as motivated by the duality of identification and control, we
can also apply it to constrain the sparsity structure of the estimated system.

The main contribution of the SI concept can be summarized as an algorithm and a theorem.
Given any binary matrix S ∈ {0, 1}ny×nu , a binary matrix R∗

S can be uniquely generated via
Algorithm 1 with a complexity of O(nu · n2

y).

Algorithm 1 Generation of R∗
S

Input S ∈ {0, 1}ny×nu

Initialize R∗
S = 1ny×ny

for i = 1 : nu and j = 1 : ny do
if S(j, i) == 0 then

for k = 1 : ny do
if S(k, i) == 1 then

R∗
S(j, k) = 0

end if
end for

end if
end for
Return R∗

S

Theorem 1. Sparsity Invariance Theorem[11]
Let S ∈ {0, 1}ny×nu be any binary matrix and R = R∗

S ∈ {0, 1}ny×ny generated by Algorithm 1.
Then,

• ∀ A ∈ Sparse(R), A invertible and B ∈ Sparse(S), A−1B ∈ Sparse(S)

• ∃ A and B where Struct(A) = R , A invertible and Struct(B) = S s.t. Struct(A−1B) = S

Therefore, for all system identification problems involving fractional representation G = A−1B,
the SI theorem replaces the generally non-convex constraint G ∈ Sparse(S) with convex con-
straints A ∈ Sparse(R) and B ∈ Sparse(S), and further proves that the resultant estimate of
G is guaranteed to have the desired sparsity structure. The theorem is used to generate the
sparsity constraints during optimization, as discussed in the next chapter.

2.3.2 Gershgorin Circle Theorem

The Gershgorin circle theorem[13] has been frequently used to analyze the spectrum of a square
complex matrix, and the theorem is given below.

Theorem 2. Gershgorin Circle Theorem[13]
For any square complex matrix A ∈ Cn×n with each (i, j)-entry aij ∈ C,

Spec(A) ⊂
⋃

i=1,··· ,n

z ∈ C | ∥z − aii∥C ⩽
n∑

j=1,j ̸=i

|aij |
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This theorem indicates if the main diagonals dominate the norm of a matrix, the eigenvalues
of the matrix are located in the proximity of the main diagonals. A typical application of
Theorem 2 is to sufficiently ensure the invertibility of a matrix using a group of linear inequality
constraints as given in the following corollary.

Corollary 1. Suppose a square complex matrix A ∈ Cn×n has (i, j)-entries aij ∈ C, then

|aii| >
n∑

j=1,j ̸=i

|aij | ⇒ A is invertible.

This corollary is helpful and will be further discussed in Section 3.2.2 to ensure the stable
invertibility of a transfer matrix. We will also provide a relaxation of these constraints in case
they are too conservative.
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Chapter 3

The Dual-Youla Parameterization

In this Chapter, we will focus on the dual-Youla identification method, which relies on the
fractional representation[9] of the plant and has been extensively applied in system modeling
and control synthesis[14]. The main advantage of the dual-Youla method is that the estimated
plant is guaranteed to be stabilized by the given controller, which is crucial if the true plant is
unstable. In this case, a good approximation of the closed-loop behavior is obviously more of
interest than the open-loop behavior, especially when the estimate is intended for model-based
controllers[15]. Considering the fact that large-scale systems can usually suffer from instability,
the dual-Youla parameterization outperforms its competitors in identifying intrinsically unstable
systems and is worth investigating.

In Section 3.1, we first explain how the original dual-Youla method identifies a general plant,
followed by Section 3.2, which introduces the extended dual-Youla method equipped with spar-
sity constraints. Finally, Section 3.3 describes the extended method’s implementation and the
closed-form solutions’ calculation.

3.1 Fundamentals of Dual-Youla Method

The dual-Youla method considers a simplified system model as follows,

y(k) = G(z)u(k) + H(z)e(k)
u(k) = K(z)y(k) + r(k)

(3.1)

The excitation signal r(k) provides a reference for the control input u(k). The noise e(k) is
defined as a sequence of correlated output errors and has the same dimension as y(k). In this
case, the noise dynamics H is assumed to be square, invertible, and exhibit a moving average
(MA) structure.

The underlying idea of the conventional dual-Youla method is providing a parameterization of
all plants G stabilized by a fixed positive feedback controller K. Suppose the controller admits
coprime factorization[16] such that K = D−1

K NK where DK and NK form a pair of stable and
causal left coprime factors (no common unstable zeros). Further let GX = D−1

X NX be any
coprime-factorizable plant stabilized by K. Then, the following set

G =
{

G(z, θ) := (DX(z) + Q(z, θ)NK(z))−1 (NX(z) + Q(z, θ)DK(z)) | Q(z, θ) ∈ RH∞
}

includes all systems stabilized by K as a function of the so-called Youla parameter Q(θ), which
is stable, causal, and parameterized by a set of parameters θ. The true Youla parameter Q0 can
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be uniquely determined in terms of the true plant G0 as follows,

Q0 = (DXG0 − NX) · (DK − NKG0)−1 (3.2)

We can then rewrite the input-output dynamics as follows,

y(k) = Gu(k) + He(k) = (DX + QNK)−1 (NX + QDK) u(k) + He(k)
⇒ (DX + QNK) y(k) = (NX + QDK) u(k) + (DX + QNK) He(k)
⇒ (DXy(k) − NXu(k)) = Q (DKu(k) − NKy(k)) + (DX + QNK) He(k)
⇒ β(k) = Qα(k) + Le(k)

(3.3)

Here, the filtered signal α(k) = DKu(k) − NKy(k) = DKr(k) only relates to the excitation
r(k) thus independent of both β(k) and e(k). This means the original closed-loop system is
equivalent to another open-loop system with β(k) and α(k) being its output and input signals.
Hence, the dual-Youla method suggests computing an estimate of a stable and causal Q̂ of Q0
in an open-loop setup, instead of identifying G0 using the closed-loop data. Eventually, the
estimate Ĝ of the true plant G0 is given by

Ĝ =
(
DX + Q̂NK

)−1 (
NX + Q̂DK

)
(3.4)

And the stabilizability of Ĝ can be easily proved by computing the closed-loop transfer functions,
i.e.

(
I − ĜK0

)−1
and

(
I − ĜK0

)−1
Ĝ.

3.2 Methodologies
This section starts with elaborating on the extension of the conventional dual-Youla method with
the Sparsity Invariance Theorem[11]. Subsequently, we define the Stable Invertibility Theorem,
which we propose and prove with the purpose of ensuring the modified expression of the plant
estimate Ĝ consists of two coprime factors, thus guaranteeing the known controller stabilizes it.

3.2.1 Extended Dual-Youla Method

This section will introduce how to adapt the sparsity constraints to the original dual-Youla
method. Suppose we want to estimate G0 ∈ Sparse(S) and already obtain the binary matrix
R w.r.t. S via Algorithm 1. Given an arbitrary guess of the plant GX and an exactly known
controller K0, we consider several extra assumptions in addition to the general assumptions
defined in Section 2.1 ensure the functionality of our proposed method:

1). Both GX and G0 are stabilizable and detectable, and in particular, stabilized by K0.

2). G0, GX and K0 are coprime factorizable.

3). There exist FIR coprime factors (DX , NX) for GX , (DK , NK) for K0, and additionally
DX ∈ Sparse(R), NX ∈ Sparse(S).

4). There exists a pair of coprime factors (AQ,0, BQ,0) s.t.

i). Q0 = A−1
Q,0BQ,0

ii). AQ,0 is stably invertible
iii). Struct (AQ,0DX + BQ,0NK) = R

iv). Struct (AQ,0NX + BQ,0DK) = S

9



Where the true Youla parameter Q0 has been defined in Eq.3.2. Assumptions 1). and 2).
guarantee the estimate Ĝ is stabilized by K0. Assumption 3). indicates GX has the same or
sparser structure than G0, and the factors have FIR representations with a common1 FIR length
of τ . Eq.3.5 shows an example of an FIR factor.

DX(z) = D0
X + D1

X · z−1 + · · · + Dτ−1
X · z−(τ−1) (3.5)

Please note the index k is different in Dk
X and z−k; Dk

X is a real matrix and stands for the k-th
tap of DX , while z−k means the k-th power of the shift operator z−1 ∀k = 0, · · · , τ − 1. We can
also define the FIR representations for NX , DK and NK similar to Eq.3.5, which are then used
to generate sparsity constraints as discussed in the next paragraph. With these three additional
assumptions, we can already construct the following constrained optimization problem,

min
Q∈RH∞

∥β(k) − Qα(k)∥

s.t. DX + QNK ∈ Sparse(R)
NX + QDK ∈ Sparse(S)

(3.6)

By parameterizing Q with FIR. Problem 3.6 then consists of a quadratic cost function that
minimizes the model fitting error as explained in section, and a group of sparsity constraints
that ensure Ĝ ∈ Sparse(S), according to the SI theorem[11]. These sparsity constraints, under
Assumption 3)., are defined as follows,

DX + QNK ∈ Sparse(R)
⇓

Struct(D0
X + Q0·N0

K) = R

Struct(D1
X + Q0·N1

K + Q1 · N0
K) = R

Struct(D2
X + Q0·N2

K + Q1 · N1
K + Q2 · N0

K) = R

...

(3.7)

As Qi · N j
K represents the (i + j)-th tap of the matrix polynomial that is computed via the

convolution of Q and NK , and similar for NX + QDK ∈ Sparse(S). These linear equality
constraints are implementable and still preserve the convexity of the optimization problem. We
are now able to obtain an estimate Q̂N via Problem 3.6 before computing ĜN via Eq.3.4,
provided a sequence of data with length N . However, a necessary condition of consistent ĜN is
that the sparsity constraints are true for Q0, i.e.,

lim
N→∞

ĜN → G0 only if
DX + Q0NK ∈ Sparse(R)
NX + Q0DK ∈ Sparse(S)

(3.8)

Which are generally impossible since Struct(Q0) ⩾ Struct(G0) = S and Struct(DK) ⩾ Inu .
Therefore, we introduce a so-called Sparsity Filter AQ,0 and define BQ,0 = AQ,0 · Q0. Clearly,
AQ,0 does not influence the resultant estimate since,

(AQ,0DX + BQ,0NK)−1 (AQ,0NX + BQ,0DK)
= (DX + Q0NK)−1 A−1

Q,0AQ,0(NX + Q0DK)
= (DX + Q0NK)−1 (NX + Q0DK) = G0

(3.9)

1In real case, DX , NX , DK and NK do not necessarily have a common FIR length; we can consider augmenting
them with transfer matrices of zeros as if they have the same length.
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If AQ,0 is stably invertible2. It means AQ,0 has a stable and causal inverse, which a series of
linear constraints can guarantee according to the Stable Invertibility Theorem in Section 3.2.2.
Correspondingly, we introduce Assumption 4)., which indicates an equivalent ARX representa-
tion of Q0 and ensures G0 lies in the candidate set of estimates, as a necessary condition of
unbiasedness and consistency. The idea behind the ARX representation is that AQ,0 projects
the coprime factors in Eq.3.8 onto Sparse(R) and Sparse(S) respectively, so that the second
statement of the Sparsity Invariance Theorem is effective. Note that AQ,0 is not unique; we can
always multiply AQ,0 with another stably invertible transfer matrix without violating Eq.3.9.
Therefore, the identification problem is now equivalent to solving the following optimization
problem,

min
AQ, BQ∈RH∞

∥AQβ(k) − BQα(k)∥

s.t. AQDX + BQNK ∈ Sparse(R)
AQNX + BQDK ∈ Sparse(S)
AQ is stably invertible

(3.10)

Which will be reformulated into a standard quadratic program in terms of vector variables in
Section 3.3.

3.2.2 Stable Invertibility Theorem

The proposed Stable Invertibility is to figure out a set of conditions to ensure the stable in-
vertibility of a square transfer matrix A(z) ∈ Fτ . Stable invertibility can be critical in both
theory and implementation. As will be discussed in Chapter 3, where we introduce the extended
dual-Youla method, two coprime factors multiplying a stably invertible filter are still coprime,
which is a necessary condition for the stabilizability of the estimated plant. However, in general,
the sufficient and necessary conditions on stably invertible A(z) are non-convex and thus inef-
ficient to be implemented in the algorithm. In this report, we instead propose a set of convex
constraints on A(z) so that stable invertibility is sufficiently guaranteed. These constraints,
however, are expected to conservatively restrict the optimal solution of A(z). Relaxation of the
constraints and quantification of shrinkage of the feasible region are of interest, but out of the
scope of this report.

Theorem 3. Stable Invertibility Theorem
Suppose a square FIR transfer matrix A(z) ∈ Fn×n

τ has the following representation,

A(z) = A0 + A1 · z−1 + · · · + Aτ−1 · z−(τ−1) (3.11)

Where Ak ∈ Rn×n stands for the k-th tap of A(z) ∀k = 0, · · · , τ − 1.
Then, given any arbitrary constant c0 ∈ R+, A(z) has a stable and causal inverse if the following
conditions are satisfied ∀ i = 1, · · · , n,

A0
ii ⩾ c0 (3.12)

τ−1∑
k=1

∣∣∣Ak
ii

∣∣∣ +
τ−1∑
k=0

n∑
j=1,j ̸=i

∣∣∣Ak
ij

∣∣∣ < c0 (3.13)

With Ak
ij representing the (i, j)-entry of Ak.

We first prove these constraints guarantee the existence of a stable and causal inverse of A(z), by
showing A(z) has only asymptotically stable transmission zeros, i.e., having full rank ∀ |z| ⩾ 1.

2Any invertible AQ,0 suffices Eq.3.9; we additionally need stable invertibility to ensure new factors are coprime.
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Proof. Suppose A(z) ∈ Fn×n
τ has the following form,

A(z) =


A11(z) A12(z) · · · A1n(z)
A21(z) A22(z) · · · A2n(z)

...
... . . . ...

An1(z) An2(z) · · · Ann(z)

 = A0 + A1 · z−1 + · · · + Aτ−1 · z−(τ−1) (3.14)

Where Aij(z) ∈ Fτ is defined as,

Aij(z) = a0
ij + a1

ij · z−1 + · · · + aτ−1
ij · z−(τ−1), ak

ij ∈ R ∀ k = 0, · · · , τ − 1 (3.15)

And Ak is identical to the definition in Eq.3.11. By Gershgorin Circle theorem, the complex
square matrix A(z) has full rank if the following conditions hold:

|Aii(z)| >
n∑

j=1,j ̸=i

|Aij(z)| ∀ row i (3.16)

Then, expanding all the main diagonals of A(z) gives,

|Aii(z)| =
∣∣∣a0

ii + a1
iiz

−1 + · · · + aτ−1
ii z−(τ−1)

∣∣∣
⩾

∣∣∣a0
ii

∣∣∣ −
∣∣∣a1

iiz
−1

∣∣∣ − · · · −
∣∣∣aτ−1

ii z−(τ−1)
∣∣∣

⩾ c0 −
∣∣∣a1

ii

∣∣∣ ·
∣∣∣z−1

∣∣∣ − · · · −
∣∣∣aτ−1

ii

∣∣∣ ·
∣∣∣z−(τ−1)

∣∣∣
⩾ c0 −

∣∣∣a1
ii

∣∣∣ − · · · −
∣∣∣aτ−1

ii

∣∣∣ ∀ |z| ⩾ 1

= c0 −
τ−1∑
k=1

∣∣∣ak
ii

∣∣∣
(3.17)

Similarly, expanding all the off-diagonal terms leads to,

|Aij(z)| =
∣∣∣a0

ij + a1
ijz−1 + · · · + aτ−1

ij z−(τ−1)
∣∣∣

⩽
∣∣∣a0

ij

∣∣∣ +
∣∣∣a1

ijz−1
∣∣∣ + · · · +

∣∣∣aτ−1
ij z−(τ−1)

∣∣∣
⩽

∣∣∣a0
ij

∣∣∣ +
∣∣∣a1

ij

∣∣∣ ·
∣∣∣z−1

∣∣∣ + · · · +
∣∣∣aτ−1

ij

∣∣∣ ·
∣∣∣z−(τ−1)

∣∣∣
⩽

∣∣∣a0
ij

∣∣∣ +
∣∣∣a1

ij

∣∣∣ + · · · +
∣∣∣aτ−1

ij

∣∣∣ ∀ |z| ⩾ 1

=
τ−1∑
k=0

∣∣∣ak
ij

∣∣∣
(3.18)

Therefore, Eq.3.16 can be implied by

|Aii(z)| ⩾ c0 −
τ−1∑
k=1

∣∣∣ak
ii

∣∣∣ >
n∑

j=1,j ̸=i

τ−1∑
k=0

∣∣∣ak
ij

∣∣∣ ⩾ τ−1∑
k=0

n∑
j=1,j ̸=i

∣∣∣ak
ij

∣∣∣ ∀ i (3.19)

In other words, Eq.3.12 and Eq.3.13 together imply Eq.3.16. Hence, by Gershgorin Circle
Theorem, the spectrum of A(z) does not include the origin of the complex plane for all |z| ⩾ 1,
implying A(z) has all zeros located on the open unit disk. Since A(z) is a causal square
transfer matrix by construction, its number of poles equals the number of zeros and zeros of
A(z) are identical to the poles of A(z)−1. Moreover, the DC tap A0 is implicitly guaranteed
to be invertible since A(z) → A0 as |z| → ∞, which correspondingly guarantees causal A(z)−1.
Based on these properties, we conclude the solution of A(z) satisfying these constraints admits
a stable and cause inverse.
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3.3 Implementation

This section explains how to efficiently solve Problem 3.10 and compute closed-form solutions of
AQ and BQ, by reformulating the cost function and constraints into quadratic and linear forms
respectively. Specifically, we will first consider solving the problem via least squares (LS) before
sequentially adding the sparsity constraints and stability invertibility conditions. In the last
subsection, the instrumental variables (IV) method is also introduced in case the LS estimate is
inconsistent.

3.3.1 Unconstrained Least Squares

We first consider the following FIR parameterizations with the time length τ ∈ R as a hyperpa-
rameter3,

AQ(z) = Iny + A1
Q · z−1 + · · · + Aτ−1

Q · z−(τ−1) = Iny + z−1 · A∗
Q(z)

BQ(z) = B0
Q + B1

Q · z−1 + · · · + Bτ−1
Q · z−(τ−1) (3.20)

Where the real matrices Ak
Q ∈ Rny×ny ∀k = 1, · · · , τ − 1 and Bk

Q ∈ Rny×nu ∀k = 0, · · · , τ − 1
are matrix variables to be determined. Correspondingly, the model fitting error ϵ(k) ∈ Rny is
expressed as,

ϵ(k) = AQβ(k) − BQα(k)
= β(k) + A∗

Q · z−1β(k) + BQα(k)

= β(k) −
(
−A∗

Qβ(k − 1) + BQα(k)
)

= β(k) − Φ(k)⊤ · θ

(3.21)

Where the the vectorized variables θ and the regressor Φ(k) are defined as,

θ =
[

θA

θB

]
=

 vec
([

A1
Q A2

Q · · · Aτ−1
Q

]⊤
)

vec
([

B0
Q B1

Q · · · Bτ−1
Q

]⊤
)

 ∈ Rnθ (3.22)

Φ(k) =



−Iny

⊗


β(k − 1)
β(k − 2)

...
β(k − τ + 1)



Iny

⊗


α(k)
α(k − 1)

...
α(k − τ + 1)




∈ Rnθ×ny (3.23)

With nθ = (τ − 1) · n2
y + τ · nynu representing the total number of variables to be estimated. By

stacking β(k) and Φ(k)⊤ ∀k = 0, · · · , N − 1,

β =


β(0)
β(1)

...
β(N − 1)

 ∈ RN ·ny Φ =


Φ(0)⊤

Φ(1)⊤

...
Φ(N − 1)⊤

 ∈ R(N ·ny)×nθ (3.24)

3The FIR length of AQ and BQ can be chosen differently based on the a-priori knowledge of the order of G0.
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We can compute the (unconstrained) Least Squares (LS) solution,

θ̂LS
N = argmin

θ
∥β − Φθ∥2 =

(
Φ⊤Φ

)−1
Φ⊤β (3.25)

Which provides a rough estimate QLS without utilizing the knowledge of sparsity structures.

3.3.2 Constrained Least Squares

Moving on, we can expand the sparsity constraints AQDX + BQNK ∈ Sparse(R) as below,

[
Iny A1

Q · · · Aτ−1
Q

]


D0
X D1

X · · · Dτ−1
X 0 · · · 0

0 D0
X · · · Dτ−2

X Dτ−1
X · · · 0

...
... . . . ...

... . . . ...
0 0 · · · D0

X D1
X · · · Dτ−1

X



+
[

B0
Q B1

Q · · · Bτ−1
Q

]


N0
K N1

K · · · N τ−1
K 0 · · · 0

0 N0
K · · · N τ−2

K N τ−1
K · · · 0

...
... . . . ...

... . . . ...
0 0 · · · N0

K N1
K · · · N τ−1

K


=

[
Iny A1

Q · · · Aτ−1
Q

]
· toep(DX , τ) +

[
B0

Q B1
Q · · · Bτ−1

Q

]
· toep(NK , τ)

=
[

D0
X D1

X · · · Dτ−1
X 0 · · · 0

]#

+
[

A1
Q A2

Q · · · Aτ−1
Q

]
· toep(DX , τ − 1)

+
[

B0
Q B1

Q · · · Bτ−1
Q

]
· toep(NK , τ)

∈ Sparse
([

R R · · · R
])

(3.26)

With toep(A, ν) indicating the Toeplitz operation of an FIR transfer matrix A by repeating
ν times. Because of Assumption 3). such that DX ∈ Sparse(R), the expression # naturally
satisfies the sparsity constraints, thus removing it has no impact on the resultant estimate. We
then manage to rewrite the sparsity constraints into, We first construct a matrix ẼR by,

ẼR =
[
Iny

⊗
toep(DX , τ − 1)⊤, Iny

⊗
toep(NK , τ)⊤

]
(3.27)

Let us define R = [R, R, · · · , R], hence the sparsity constraints are equivalent to,

ẼR · θ ∈ Sparse
(
vec

(
R⊤

))
(3.28)

We next construct the equality constraint matrix ER associated with R, by removing the i-th
row of ẼR if the i-th element of vec

(
R⊤

)
equals 1. In MATLAB, this can be implemented as,

ER = ẼR

(
vec

(
R⊤

)
== 0

)
(3.29)

We now manage to rewrite the sparsity constraints AQDX +BQNK ∈ Sparse(R) into ER ·θ = 0.
Similarly, we can construct ES as follows,

ẼS =
[
Iny

⊗
toep(NX , τ − 1)⊤, Iny

⊗
toep(DK , τ)⊤

]
S =

[
S S · · · S

]
ES = ẼS

(
vec

(
S⊤

)
== 0

) (3.30)
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And finally, we have,

E =
[

ER

ES

]
⇒ Eθ = 0 represents all sparsity constraints. (3.31)

Thus, the corresponding Constrained Least Squares (CLS) problem is given by,

min
θ

∥β − Φθ∥2

s.t. Eθ = 0
(3.32)

The Lagrangian form of Problem 3.32 is then given by,[
Φ⊤Φ E⊤

E 0

] [
θ
µ

]
=

[
Φ⊤β

0

]
(3.33)

With µ the vector of Lagrangian multipliers associated with the sparsity constraints. Hence, we
can compute the CLS4 solution based on the Schur complement[17],

θ̂CLS
N =

[
P−1 − P−1E⊤

(
EP−1E⊤

)†
EP−1

]
Φ⊤β

= θ̂LS
N − P−1E⊤

(
EP−1E⊤

)†
E · θ̂LS

N

= LS Estimate + Sparsity Rejection

(3.34)

Where the Hessian matrix P = Φ⊤Φ is guaranteed to be invertible by the assumption of
persistently exciting input signals. An interpretation of Eq.3.34 is that the sparsity constraints
generate a rejection vector that is linear to θ̂LS

N and reject it into the sparsity space. Equivalently,
we can define the rejection matrix

Π = P−1E⊤
(
EP−1E⊤

)†
E (3.35)

So that θ̂CLS
N = (Inθ

−Π)θ̂LS
N . Suppose the expectation of the LS estimate is given by E[θ̂LS

N ] = θ̄.
When the sparsity constraints are true for θ̄, i.e. E · θ̄ = 0, we can prove θ̂CLS

N has exacly the
same expectation and converges to θ̄ more efficiently than θ̂LS

N , as shown below.

E
[
θ̂CLS

N

]
= E

[
θ̂LS

N

]
− P−1E⊤

(
EP−1E⊤

)† (
E · E

[
θ̂LS

N

])
= θ̄ − P−1E⊤

(
EP−1E⊤

)† (
E · θ̄

)
= θ̄

(3.36)

Meanwhile, the variance of θ̂CLS
N is,

Var
(
θ̂CLS

N

)
= E

[(
θ̂CLS

N − θ̄
) (

θ̂CLS
N − θ̄

)⊤
]

= (Inθ
− Π) · E

[(
θ̂LS

N − θ̄
) (

θ̂LS
N − θ̄

)⊤
]

· (Inθ
− Π)⊤

= Var
(
θ̂LS

N

)
+ Π · Var

(
θ̂LS

N

)
· Π⊤ − Π · Var

(
θ̂LS

N

)
− Var

(
θ̂LS

N

)
· Π⊤

(3.37)

4The solution involves pseudo-inverse since E
(
ΦT Φ

)−1 E⊤ is always singular, in accordance with the fact that
AQ and BQ are not unique.
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Given Var(θ̂LS
N ) = P−1, we have,

Π · Var
(
θ̂LS

N

)
· Π⊤ = P−1E⊤

(
EP−1E⊤

)†
E · P−1 · E⊤

(
EP−1E⊤

)†
EP−1

= P−1E⊤
(
EP−1E⊤

)†
E · P−1 · E⊤

(
E⊤

)† (
EP−1

)†
EP−1

= P−1E⊤
(
EP−1E⊤

)†
E · P−1

(3.38)

Therefore, combining Eq.3.37 and 3.38 results in,

Var
(
θ̂CLS

N

)
= Var

(
θ̂LS

N

)
− P−1E⊤

(
EP−1E⊤

)†
E · P−1 (3.39)

Clearly, P−1E⊤
(
EP−1E⊤

)†
E ·P−1 is positive semi-definite, thus θ̂CLS

N in general has a smaller
variance than θ̂LS

N .

3.3.3 Regularized Constrained Least Squares

The CLS estimate is useful when we are lucky enough to have a stably invertible ÂCLS
Q , since it

preserves the property of being coprime for the new factors, but this is not always true. Hence,
we need some additional constraints to enforce stable invertibility. By Theorem 3 explained in
Section 3.2.2, the stable invertibility of AQ is guaranteed if the following conditions based on
Eq.3.13 are satisfied,

τ−1∑
k=1

∣∣∣Ak
Q(i, i)

∣∣∣ +
τ−1∑
k=1

ny∑
j=1,j ̸=i

∣∣∣Ak
Q(i, j)

∣∣∣ =
τ−1∑
k=1

ny∑
j=1

∣∣∣Ak
Q(i, j)

∣∣∣ < 1 ∀i = 1, · · · , ny (3.40)

Note A0
Q = Iny hence Eq.3.12 (dominant main diagonals) is already fulfilled. Eq.3.40 can be

further manipulated into an ℓ1-norm constraint since,
τ−1∑
k=1

ny∑
i=1

ny∑
j=1

∣∣∣Ak
Q(i, j)

∣∣∣ ⩾ τ−1∑
k=1

ny∑
j=1

∣∣∣Ak
Q(i, j)

∣∣∣
⇓

τ−1∑
k=1

ny∑
i=1

ny∑
j=1

∣∣∣Ak
Q(i, j)

∣∣∣ = ∥θA∥1 < 1 ⇒
τ−1∑
k=1

ny∑
j=1

∣∣∣Ak
Q(i, j)

∣∣∣ < 1 ∀i = 1, · · · , ny

(3.41)

This implies, the stable invertibility of AQ can be ensured by simply constraining ∥θA∥1. Due
to the equivalence of vector norms, i.e., ∥θA∥1 ⩽

√
(τ − 1) · n2

y · ∥θA∥2, we can replace the
ℓ1-norm constraint with an ℓ2-norm constraint, which is more conservative but simpler to im-
plement. Furthermore, the theory of LASSO[18] implies the ℓ2-norm constraint can be further
replaced with ℓ2-norm regularization in the cost function without changing the optimal solu-
tion. Therefore, by considering the ℓ2-norm regularization, the Regularized Constrained Least
Squares (RCLS) problem is defined as,

θ̂RCLS
N (λ) = argmin

θ=[θ⊤
A ,θ⊤

B ]⊤

1
2N

∥β − Φθ∥2
2 + λ

2 ∥θA∥2
2

s.t. Eθ = 0
(3.42)

Where λ as a hyperparameter scales the penalty on ∥θA∥2. Similar to Eq.3.34, the RCLS solution
can be computed as,

θ̂RCLS
N =

[
P(λ)−1 − P(λ)−1E⊤

(
EP(λ)−1E⊤

)†
EP(λ)−1

]
Φ⊤β (3.43)
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With a slightly different Hessian matrix P(λ) defined as,

P(λ) = Φ⊤Φ + N · Λ(λ)

Λ(λ) =
[

λ · I(τ−1)·n2
y

0
0 0

]
(3.44)

The choice of λ influences the norm distribution of AQ: λ = 0 means there is no constraint at all,
while by increasing λ to infinity, we shall expect AQ approaches an identity matrix. The LASSO
theory guarantees that there always exists a critical penalty constant λcrit such that ∀λ ⩾ λcrit,
θ̂RCLS

N (λ) always satisfies the conditions in Eq.3.40 thus resulting in a stably invertible AQ.
Note that regularization always leads to additional bias, which might be undesired in system
identification. Hence, we suggest tuning λ from zero for the RCLS estimate, only if the CLS
estimate loses stable invertibility.

3.3.4 Constrained Instrumental Variables

Previously, we discussed how to estimate the Youla parameter Q using least squares as if it has
an ARX parameterization. In fact, the system dynamics involving output error is,

y(k) = Gu(k) + He(k) ⇒ AQ(θ)β(k) = BQ(θ)α(k) + LQ(η)e(k)
⇒ β(k) = Φ(k)⊤θ + v(k)

(3.45)

Where v(k) = LQe(k) = (AQDX + BQNK) He(k) allows for an FIR parameterization5 as well
by construction. Therefore, the dynamics on the right side of Eq.3.45 exhibits an ARMAX
structure, which means there exists a correlation between the regressor Φ(k) and noise e(k),
indicating the least squares method is not capable of an unbiased and consistent estimate[1].
Techniques tailored for an ARMAX model have been extensively investigated in the litera-
ture[19], yet the majority of these methods concentrate on SISO systems, making them not
directly applicable in the presence of sparsity constraints. For this reason, we utilize the idea
of instrumental variables[20] and introduce the Constrained Instrumental Variables (CIV) to
eliminate the correlation. The approximated noise-free regressor at time k, denoted as Z(k),
has the same dimension as Φ(k) and must be uncorrelated with v(k) but sufficiently correlated
with Φ(k). More specifically,

E
[
Z(k)Φ(k)⊤

]
is nonsingular

E
[
Z(k)⊤v(k)

]
= 0

(3.46)

A common choice of instrument is the approximation of the noise-free regressor, by filtering the
input signal (α(k) in this case) with a raw estimate of the system. Such a filter can be chosen
as the LS estimate, which is generally applicable for a MIMO system[21]. Hence, we compute
the instrument vector ζ(k) as an undisturbed approximation of β(k) using the LS estimate6,

ζ(k) =
(
ÂLS

Q

)−1
B̂LS

Q · β(k) (3.47)

5Eq.3.45 indicates LQ can be parameterized independently denoted by η, as H is independent of G.
6Sparsity constraints are not necessary for this step as we only need the filtered signal.
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Then construct the instrument matrix,

Z(k) =



−Iny

⊗


ζ(k − 1)
ζ(k − 2)

...
ζ(k − τ + 1)



Iny

⊗


α(k)
α(k − 1)

...
α(k − τ + 1)




(3.48)

Stacking Z(k) for all k = 0, · · · , N gives,

Z =


Z(0)⊤

Z(1)⊤

...
Z(N − 1)⊤

 (3.49)

We first compute the unconstrained solution θ̂IV
N as follows,

θ̂IV
N =

(
Z⊤Φ

)−1
Z⊤β (3.50)

It is unbiased and consistent w.r.t. the true parameter θ0 since Z(k) is only dependent on α
thus uncorrelated with v(k), hence E[θ̂IV

N ] = limN→∞ θ̂IV
N = θ0. We further define θ̂CIV

N as the
solution to the problem below,

Z⊤Φθ = Z⊤β

s.t. Eθ = 0
(3.51)

Which, as we propose, can be solved via the following Lagrangian form,[
Z⊤Φ E⊤

E 0

] [
θ
µ

]
=

[
Z⊤β

0

]
(3.52)

⇒ θ̂CIV
N =

[(
Z⊤Φ

)−1
−

(
Z⊤Φ

)−1
E⊤

(
E

(
Z⊤Φ

)−1
E⊤

)†
E

(
Z⊤Φ

)−1
]

Z⊤β

= θ̂IV
N −

(
Z⊤Φ

)−1
E⊤

(
E

(
Z⊤Φ

)−1
E⊤

)†
E · θ̂IV

N

(3.53)

We claim that θ̂CIV
N is also unbiased, consistent, and satisfies the sparsity constraints.

Proof. Given the IV estimate θ̂IV
N is unbiased and consistent, and sparsity constraints are true

for θ0, the CIV estimate θ̂CIV
N has:

1). Unbiasedness.

E
[
θ̂CIV

N

]
= E

[
θ̂IV

N

]
−

(
Z⊤Φ

)−1
E⊤

(
E

(
Z⊤Φ

)−1
E⊤

)†
E · E

[
θ̂IV

N

]
= θ0 −

(
Z⊤Φ

)−1
E⊤

(
E

(
Z⊤Φ

)−1
E⊤

)†
E · θ0 = θ0

(3.54)
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2). Consistency.

lim
N→∞

θ̂CIV
N = lim

N→∞
θ̂IV

N −
(
Z⊤Φ

)−1
E⊤

(
E

(
Z⊤Φ

)−1
E⊤

)†
E · lim

N→∞
θ̂IV

N

= θ0 −
(
Z⊤Φ

)−1
E⊤

(
E

(
Z⊤Φ

)−1
E⊤

)†
E · θ0 = θ0

(3.55)

3). Sparsity constraints fulfilled.

Eθ̂CIV
N = Eθ̂IV

N − E
(
Z⊤Φ

)−1
E⊤

(
E

(
Z⊤Φ

)−1
E⊤

)†
Eθ̂IV

N

= Eθ̂IV
N − E

(
Z⊤Φ

)−1
E⊤

(
E

(
Z⊤Φ

)−1
E⊤

)†
E

(
Z⊤Φ

)−1
Z⊤β

= Eθ̂IV
N − E

(
Z⊤Φ

)−1
E⊤

(
E⊤

)†
(

E
(
Z⊤Φ

)−1
)†

E
(
Z⊤Φ

)−1
Z⊤β

= Eθ̂IV
N − E

(
Z⊤Φ

)−1
· I · I · Z⊤β = 0

(3.56)

Consequently, through the utilization of the IV method, we theoretically achieve an unbiased
and consistent θ̂CLS

N , resulting in an estimated plant ĜCLS
N that retains its unbiased and consis-

tent attributes while conforming to the pre-defined sparsity pattern. Generally, the IV estimate
becomes more desired when consistent estimation is of prime importance, though at the cost
of increased computational complexity. However, in practical scenarios, consistency might not
have priority; achieving an efficient approximation of the transfer function or output prediction
could hold more significance. Thus, the choice between LS and IV hinges on the primary ob-
jective of the estimation. In Chapter 5, where we simulate an example system for verification
purposes, we favor using the least-squares method. This preference is driven by the fact that
the LS estimate already decently approximates the plant. Looking forward, the integration of
the Sparsity Invariance Theorem into the IV method or other validated approaches tailored for
the ARMAX structure could pave the way for future advancements.

Furthermore, it is important to acknowledge that the final estimate from the extended dual-
Youla method might possess an unnecessarily high order. This occurs as a consequence of
constructing both the denominator and numerator using the convolution of multiple FIR transfer
matrices. Considering the expression of the true Youla parameter in Eq.3.2, we shall expect
Q0 = A−1

Q,0BQ,0 has a higher order than the true model G0 = D−1
0 N0. This implies, the

estimate of the plant’s factors,
D̂Q = ÂQDX + B̂QNK

N̂Q = ÂQNX + B̂QDK

(3.57)

Have orders no shorter than AQ,0 or BQ,0, as a necessary condition to achieve an unbiased and
consistent estimate Q̂ = Â−1

Q B̂Q. Thus, D̂Q generally has a larger order than D0 and same for
N̂Q, N0. Although established techniques for order reduction are available [22], it is crucial to
highlight that the dual-Youla method could potentially introduce additional variance owing to
this surplus order.
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Chapter 4

The Two-Stage Identification

In the previous chapter, we have addressed the dual-Youla method, which guarantees the known
controller always stabilizes the estimated plant. However, the dual-Youla estimate consists
of two coprime factors that generally have higher orders than necessary, which may lead to
additional errors due to overfitting. Therefore, we will consider another well-known indirect
identification method, namely the Two-Stage method[10]. This method decomposes the closed-
loop identification problem into two steps, each involving an open-loop problem. Opposed to
the dual-Youla method, the two-stage method does not require the controller’s knowledge, as
the controller’s information will be partially captured in the first stage and utilized to estimate
the plant in the second stage. Similar to the last chapter, this chapter consists of three sections
discussing the original method, the methodologies of our extended approach and eventually the
implementation.

4.1 Fundamentals of Two-Stage Method
The two-stage method considers a system framework identical to the setup of the dual-Youla
setup in Eq.3.1. This method starts by estimating the sensitivity function before identifying the
plant. These two stages are explained in detail as follows.

• Stage 1: Identification of the sensitivity function T0

The sensitivity function T0 is defined as the transfer function from r(k) to u(k), i.e.,

u(k) = T0r(k) + S0e(k) (4.1)

Assuming the closed-loop system is asymptotically stable, i.e. the true sensitivity function
T0 ∈ RH∞, the estimate T̂N can be computed by solving the following problem,

T̂N = argmin
T∈RH∞

∥u(k) − Tr(k)∥ (4.2)

Obviously, as r(k) and e(k) are independent, T̂N is a consistent estimate obtained by solv-
ing an equivalent open-loop identification problem, if certain conditions are satisfied[10].
Note the model order of T can be chosen arbitrarily since the plant model order will be
independently determined in the next stage. In [10], the author suggests parameterizing T
using an FIR representation. Note T0 is a rational transfer matrix; hence, FIR is merely
an approximation and leads to truncation error. However, the bias is quantifiable and can
be mitigated with a sufficiently large FIR order, as suggested by the author. Once the
bias is considered small enough and thus negligible compared to the magnitude of the true
parameters, we can claim the estimate is consistent and satisfactory.
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• Stage 2: Identification of the plant G0

In the second stage, we first approximate the noise-free input ur(k) by filtering the mea-
sured input u(k) with the estimated sensitivity T̂N from the first stage,

ur(k) = T̂N r(k) (4.3)

Then obtain the estimated plant ĜN as the transfer function from ur(k) to y(k), which is
equivalent to solving another open-loop problem,

y(k) = G0ur(k) + (H0 + G0S0)e(k) (4.4)

ĜN = argmin
G∈Rc

∥y(k) − Gur(k)∥ (4.5)

With ur(k) only dependent on r(k) thus uncorrelated with e(k) by construction. ĜN is
proved to be consistent, if the input is persistently exciting, the estimate T̂N is consistent,
and the model structure of G is defined appropriately. Typically, one can choose from the
framework of prediction error methods (such as least squares), or instrumental variables
in case the noise dynamics are challenging to model.

4.2 Methodologies
Again, we aim at estimating G0 ∈ Sparse(S) and pre-compute R via Algorithm 1. We further
assume,

1). The excitation r(k) is persistently exciting and statistically independent of the noise e(k).

2). G0 is stabilizable and detectable, and the closed-loop has asymptotically stable dynamics.

3). G0 can be factorized into a pair of FIR filters that satisfy the sparsity constraints, i.e.
∃A0, B0 ∈ Fτ s.t. A0 ∈ Sparse(R), B0 ∈ Sparse(S), and G0 = A−1

0 B0.

These essential assumptions ensure an invertible Hessian matrix in optimization, and the true
model G0 is an element of the candidate set. With Assumption 1)., we can come up with
the estimate of the sensitivity function T̂N . Suppose an FIR parameterization with order ν is
defined for T, then Problem 4.2 becomes,

T̂N = argmin
T∈Fν

∥u(k) − Tr(k)∥ (4.6)

This problem can be solved directly using prediction error methods, such as least squares. Hence,
filtering r(k) with T̂N based on Eq.4.3 gives an undisturbed input signal ur(k) that resembles
the noise-free part of u(k). Note in this stage, the sparsity constraints are not involved during
the optimization in Eq.4.6, as we assume no knowledge about the controller or its structure
either. Other reasons are the filtered signal ur(k) is already a decent approximation as long as
TN is consistent, while T0 is generally denser than G0 especially when the network is strongly
connected. However, suppose the sparsity structure of K0 or even T0 is exactly known. In
that case, we can use this information to restrict the number of variables, hence improving the
estimation efficiency. In the case that K0 has a known structure, the sparsity constraints on T0
can be defined by,

T0 = (Inu − K0G0)−1

⇒ T0 ∈ Sparse
(
(Inu + Struct(K0) · Struct(G0))−1

)
= Sparse(ST )

(4.7)
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Problem 4.6 is further modified into,

T̂N = argmin
T∈Fν

∥u(k) − Tr(k)∥

s.t. T ∈ Sparse(ST )
(4.8)

After obtaining ŜN and computing ur(k), the next step is to construct the estimate ĜN using
y(k) and ur(k). We consider using a fractional representation to parameterize G so that the
Sparsity Invariance Theorem is applicable. In other words, we suppose G0 = A−1

0 B0 which
leads to the open-loop dynamics as shown below,

A0y(k) = B0ur(k) + L0e(k), L0 = A0H0 + B0S0 (4.9)

Therefore, the sparsity-constrained two-stage identification yields the following optimization
problem,

ÂN , B̂N = argmin
A,B∈RH∞

∥Ay(k) − Bur(k)∥

s.t. A ∈ Sparse(R)
B ∈ Sparse(S)
A is invertible

(4.10)

And eventually ĜN = Â−1
N B̂N . Different from the sparsity filter AQ defined in the extended

dual-Youla method, the factor A is required to be invertible but not necessarily stably invertible.
When G0 is known to be stable, a stable invertibility constraint could be an option to avoid
introducing unstable poles. on the contrary, when there is no knowledge about the stability of
G0, A−1

0 is probably unstable; thus, a stable invertibility constraint will lead to bias.
We define the invertibility of a transfer matrix A as that A has a causal inverse. For a square
FIR transfer matrix, the causality of the inverse is implied by an invertible zeroth tap[23], i.e.,
A0 is invertible where

A(z) = A0 + A1 · z−1 + · · · + Aτ−1 · z−(τ−1) (4.11)

Therefore, the invertibility of A can be ensured by applying the Gershgorin Circle Theorem on
A0 in a fashion similar to Section 3.2.

4.3 Implementation

As mentioned previously, we will parameterize T with FIR representation with a sufficiently
large order ν. In the example provided in [10], the author chooses ν about three times larger
than the order of the true sensitivity function T0. Suppose T(ρ) is parameterized by a vector
of variables ρ, which correspondingly yields the following structure,

T(ρ, z) = T 0 + T 1 · z−1 + · · · + T ν · z−(ν−1)

⇒ ρ = vec
([

T 0 T 1 · · · T ν−1
]⊤

) (4.12)

Hence, the dynamics from r(k) to u(k) can be written as,
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u(k) =
[

T 0 T 1 · · · T ν−1
]

·


r(k)

r(k − 1)
...

r(k − ν + 1)

 + noise contribution

⇒ u(k) = Ψ(k)⊤ρ where Ψ(k) = Inu

⊗


r(k)
r(k − 1)

...
r(k − ν + 1)


(4.13)

Therefore, staking Ψ(k) and u(k) leads to an LS estimate ρ̂LS
N ,

Ψ =


Ψ(0)⊤

Ψ(1)⊤

...
Ψ(N − 1)⊤

 u =


u(0)
u(1)

...
u(N − 1)

 ⇒ ρ̂LS
N =

(
Ψ⊤Ψ

)
Ψ⊤u (4.14)

We are now able to construct T̂LS
N and ur(k) according to Eq.4.12 and Eq.4.3 respectively.

Moving on, we choose the ARX model with order τ for both the denominator and numerator
as the fractional representation for G = A−1B, by defining the factors as follows,

A(z) = Iny + A1 · z−1 + · · · Aτ · z−(τ−1) = Iny + z−1 · A∗(z)
B(z) = B0 + B1 · z−1 + · · · Bτ · z−(τ−1) (4.15)

Correspondingly, by independently parameterizing A, B with θ and L with η, the open-loop
dynamics is rewritten into,

A(θ)y(k) = B(θ)ur(k) + L(η)e(k)
⇒ y(k) = −A∗(θ)y(k − 1) + B(θ)ur(k) + L(η)e(k)

(4.16)

Which results in another LS problem,

θ̂LS
N = argmin

θ
∥y − Φθ∥ =

(
Φ⊤Φ

)−1
Φ⊤y (4.17)

With the regressor matrices and label vectors defined as,

Φ(k) =



−Iny

⊗


y(k − 1)
y(k − 2)

...
y(k − τ + 1)



Iny

⊗


ur(k)
ur(k − 1)

...
ur(k − τ + 1)




, Φ =


Φ(0)⊤

Φ(1)⊤

...
Φ(N − 1)⊤

 , y =


y(0)
y(1)

...
y(N − 1)

 (4.18)

The sparsity constraints A ∈ Sparse(R) and B ∈ Sparse(S) are implemented similar to those in
the dual-Youla setup, but in a much simpler manner:

ẼR = I(τ−1)·n2
y

R =
[

R R · · · R
]

⇒ ER = ẼR

(
vec

(
R⊤

)
== 0

)
ẼS = Iτ ·ny ·nu S =

[
S S · · · S

]
⇒ ES = ẼS

(
vec

(
S⊤

)
== 0

)
⇒ E =

[
ER

ES

] (4.19)
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The sparsity-constrained least squares problem is then formulated as,

min
θ

∥y − Φθ∥

s.t. Eθ = 0
(4.20)

Leading to the constrained least squares solution with P = Φ⊤Φ identical to Eq.3.34,

θ̂CLS
N =

[
P−1 − P−1E⊤

(
EP−1E⊤

)†
EP−1

]
Φ⊤y

= θ̂LS
N − P−1E⊤

(
EP−1E⊤

)†
E · θ̂LS

N

(4.21)

Which minimizes the model fitting error and guarantees that ĜCLS
N satisfies the sparsity con-

straints. Similarly, the regularized constraint least squares solution considering a ℓ2 norm regu-
larization with a penalizing constant λ is given by,

θ̂RCLS
N =

[
P(λ)−1 − P(λ)−1E⊤

(
EP(λ)−1E⊤

)†
EP(λ)−1

]
Φ⊤y

where P(λ) = Φ⊤Φ + Λ(λ), Λ(λ) =
[

λ · I(τ−1)·n2
y

0
0 0

] (4.22)

As explained previously, the RCLS estimate θ̂RCLS
N is preferred when G0 is known to be stable

but θ̂CLS
N unfortunately results in an unstable inverse of ÂCLS

N . It is worth noting that the
framework of least squares estimates on the two-stage method can provide an unbiased and
consistent estimate only if the following is true with i.i.d. noise e(k),

A0y(k) = B0ur(k) + e(k) i.e. L0 = Iny in Eq.4.9 (4.23)

Which is almost impossible. Therefore, when a consistent estimate is required, we have to seek
help from other methods rather than merely using least squares. A possible alternative is again
the instrumental variables. The instruments ζ(k) can be generated by filtering the undisturbed
input ur(k) with the LS estimate of the plant,

θ̂LS
N by Eq.4.17 ⇒ ĜLS

N ⇒ ζ(k) = ĜLS
N ur(k) (4.24)

Before constructing the instrument matrix,

Z(k) =



−Iny

⊗


ζ(k − 1)
ζ(k − 2)

...
ζ(k − τ + 1)



Iny

⊗


ur(k)
ur(k − 1)

...
ur(k − τ + 1)




⇒ Z =


Z(0)⊤

Z(1)⊤

...
Z(N − 1)⊤

 (4.25)

Finally, reusing the definition of Φ, y in Eq.4.18 and E in Eq.4.19, the constrained instrumental
variables solution is expressed as,

θ̂CIV
N =

[(
Z⊤Φ

)−1
−

(
Z⊤Φ

)−1
E⊤

(
E

(
Z⊤Φ

)−1
E⊤

)†
E

(
Z⊤Φ

)−1
]

Z⊤y (4.26)

Which is now theoretically unbiased and consistent, while the resultant ĜCIV
B satisfies the

sparsity constraints as well. The proof is identical to Section 3.3.4, thus omitted here.
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Chapter 5

Results and Discussion

This chapter aims to illustrate the identification framework’s application in real-world problem-
solving as a means of verification. To achieve this, we have selected two networked systems
to represent distinct scenarios. We have simulated their behaviors using predefined excitation
signals, collected noisy data from closed-loop operations, and subsequently employed this data
to identify the underlying plant.

Specifically, the chosen system is a moderately scaled unstable irrigation network, as previously
studied in the work of [24]. In their research, the authors introduce a linear model to ap-
proximate the system dynamics and successfully figure out a functional controller for practical
application. Given that modeling irrigation networks is inherently complicated, as acknowledged
by the authors, pursuing an identification method that can provide an effective system approxi-
mation is of great importance. Note this irrigation network is intrinsically unstable; hence only
the extended dual-Youla method is applied, attributed to its stabilizability guarantee on the
identified plant.

To fully demonstrate our simulation results, this chapter consists of two sections. Section 5.1
provides a comprehensive overview of the example system and outlines the data generation to
facilitate the identification process. In Section 5.2, we apply the proposed method to the example
system and present the variation in estimates across different scenarios, which helps assess the
performance of the extended framework.

5.1 System Specification
Prior to data generation, it is essential to comprehend the system dynamics. Similar to the setup
in [24], we assume that the irrigation network consists of n individual pools in series. Each pool
i possesses its water level denoted as yi(t), subject to interference from an unobservable yet
identically and independently distributed (i.i.d.) disturbance di(t). The management of the
water level is governed by the flow over the pool gate, defined as the input ui(t), serving the
subsequent purpose:

• Reject disturbances and stabilizes yi(t);

• Regulate yi(t) to a given reference set-point ri(t) with zero steady-state error, i.e. the level
error ei(t) = ri(t) − yi(t) converges to 0 as t → ∞.

Apparently, employing a conventional Proportional plus Integral (PI) compensator can lead to
stabilization and zero-error regulation. As suggested in the original paper[24], the most straight-
forward configuration is the decentralized control, wherein each individual plant is equipped with
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Figure 5.1: Schematic representation of the irrigation system under decentralized control[24].

its local compensator denoted as Ci(s). The architecture of the decentralized control system is
given in Fig.5.1. The dynamics of the system can be expressed as,

yi(t) = exp(−κis)
αis

· ui(t) − 1
αis

· ui+1(t) + di(t)

ui(t) = Ci(s)ei(t) = γi(1 + ϕis)
s(1 + ρis) · (ri(t) − yi(t))

(5.1)

With κi the input delay and αi the pool surface area. Other constants γi, ϕi and ρi are con-
troller parameters to be tuned for each compensator. As the author suggests employing a Pade
approximation to replace the time-delay term exp(−κis), we consider the following expression
to describe the IO channel Pii(s) for each pool,

exp(−κis)
αis

≈ −κis + 2
αis(κis + 2) = Pii(s) (5.2)

This is valid since the system exhibits slow dynamics (pools have substantial surface areas) thus
low frequencies are of more interest. The choice of the parameters will be discussed in Section
5.1.1.

5.1.1 Plant and Controller

We first denote the entire interconnected plant as P(s) ∈ Rn×n
c , the output vector y(t) =

[y1(t), y2(t), · · · , yn(t)]⊤ ∈ Rn and same for u(t), r(t), e(t), d(t) ∈ Rn, then y(t) = P(s)u(t)+d(t).
Consequently,

P(s) =


P11(s) P12(s) 0 · · · 0

0 P22(s) P23(s) · · · 0
...

... . . . . . . ...
0 0 0 · · · P(n−1)n(s)
0 0 0 · · · Pnn(s)



=



exp(−κ1s)
α1s − 1

α1s 0 · · · 0
0 exp(−κ2s)

α2s − 1
α2s · · · 0

...
... . . . . . . ...

0 0 0 · · · − 1
αn−1s

0 0 0 · · · exp(−κns)
αns



(5.3)
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Figure 5.2: Compact block diagram of the MIMO irrigation system.

Eq.5.3 indicates the plant sparsity structure Sn = Struct (P(s)) is an upper bidiagonal binary
matrix with dimension n. For instance, if the irrigation network has n = 5 nodes, then

S5 =


1 1 0 0 0
0 1 1 0 0
0 0 1 1 0
0 0 0 1 1
0 0 0 0 1

 ⇒ R5 =


1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 1
0 0 0 0 1

 by Algorithm 1. (5.4)

The block diagram is displayed in Fig.5.2. Besides, we denote the MIMO controller as C(s) s.t.
u(t) = C(s)e(t). Hence,

C(s) =


C1(s) 0 · · · 0

0 C2(s) · · · 0
...

... . . . ...
0 0 · · · Cn(s)

 (5.5)

For simplicity, we consider all the pools identical, and we use the same compensators for each pool
to streamline the controller structure. Hence, Pii(s) = P (s), Cii(s) = C(s) and Pi(i+1)(s) = Q(s)
for all pools. This assumption does not compromise generality, as the scope of this report does
not encompass controller design, nor do we employ the knowledge of identical pools; hence, the
identification method works as if all individual plants are different. Moreover, we discretize the
plant using the first-order forward Euler given a sampling time Ts,

1
s

→ Ts

z − 1 (5.6)

Therefore, the channels obey the following discretization rules,

P (s) = −κs + 2
αs(κs + 2) → P (z) =

− κ
Ts

(z − 1) + 2
α
Ts

(z − 1)
(

κ
Ts

(z − 1) + 2
)

Q(s) = 1
αs

→ Q(z) = 1
α
Ts

(z − 1)

(5.7)

Motivated by the real examples examined in [24], we opt for values of α = 1 [ha] = 104 [m2],
κ = 2 [min], and the sampling time is chosen as Ts = 1 [min]. We consider n = 5 pools to
construct a moderately scaled plant. Consequently, the transfer functions P (z), Q(z) and the
stabilizing compensator C(s) are given by,

P (z) = − z − 2
z(z − 1) Q(z) = − 1

z − 1 C(z) = 0.15(z − 0.95)
(z − 1)(z − 0.1) (5.8)

Since both P (z) and Q(z) contain an integrator, the entire plant P(z)1 have unstable IO dy-
namics. As a remedy, the chosen MIMO controller C(z) managed to asymptotically stabilize the

1In the subsequent sections of this chapter, we no longer consider the continuous-time configuration. All bold
symbols with or without (z) represent discrete-time transfer matrices.
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plant while enforcing the output to perform error-free steady-state tracking. Hence, we define
the entire plant and controller in discrete-time as,

P(z) =


P (z) Q(z) 0 0 0

0 P (z) Q(z) 0 0
0 0 P (z) Q(z) 0
0 0 0 P (z) Q(z)
0 0 0 0 P (z)



C(z) =


C(z) 0 0 0 0

0 C(z) 0 0 0
0 0 C(z) 0 0
0 0 0 C(z) 0
0 0 0 0 C(z)



(5.9)

Followed by the MIMO dynamics,

y(k) = P(z)u(k) + d(k)
u(k) = C(z)e(k) = C(z) · (r(k) − y(k))

(5.10)

And we denote the true plant, the known controller, and the estimated plant is given data length
N as P0, C0 and P̂N , respectively.

5.1.2 Signal Processing

Within this section, our objective is to establish the excitation reference r(k) and the external
disturbance d(k), while defining several concepts that will be used to quantify the estimation
outcomes.

• Excitation reference
For identification purposes, the PRBS signal [25] emerges as a common preference for ex-
citing the system, due to its deterministic nature combined with statistical characteristics
similar to the truly random binary sequence. Therefore, we choose the PRBS signal as
the excitation to generate the data for identification purposes and name it the training
reference. We will assess the consistency of the identification method over a wide range
of excitation lengths N , and the quality of the estimation is expected to improve with
larger values of N . We define r0(k) = PRBS(N, n) as the nominal excitation signal with
a magnitude of 1, equivalent to 0 in [dB]. Statistically, E[r0(k)] = 0 and Var(r0(k)) = In,
which means the reference signals for distinct pools are independent.
Furthermore, a magnified excitation reference, such as r10(k), represents a PRBS signal
with a 10 [dB] amplification, achieved by multiplying the nominal excitation r0(k) by a
constant. These magnified excitation signals will be utilized to evaluate the identification
performance across various signal-to-noise ratios. We further choose the RBS signal or
white noise as the validation reference, which is denoted as rval(k) and used to construct
the validation output yval(k) by,

yval(k) = (In − P0C0)−1 P0C0 · rval(k) (5.11)

Later on, we will use rval(k) and yval(k) as validation data to examine P̂N .

• Signal-to-noise ratio
The signal-to-noise ratio (SNR) commonly serves as a standard depiction of the power
relationship between useful signals and the effect of noise. It is distinctly defined for every
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output yi(k) as the ratio of signal power to noise power. In a more detailed context, we
first decompose the output into two components in accordance with the linearity of the
system,

y(k) = W(z)r(k) + X(z)d(k) = yr(k) + yd(k) (5.12)

With x(z) the closed-loop transfer matrix from r(k) to y(k) and X(z) from d(k) to y(k).
Hence, for each individual pool, the SNR is computed by,

SNRi = Var (yr
i (k))

Var
(
yd

i (k)
) (5.13)

A larger SNR indicates more valuable information we can obtain from the signal and
theoretically results in a better estimate.

• External disturbance
Conventionally, the disturbance signal is chosen to obey the standard normal distribution
with a mean of zero and a variance of one, denoted as d0(k) ∼ N (0, In). Nevertheless,
owing to the interconnections among channels within the system, achieving a consistent
SNR across all outputs is generally impossible when employing identical disturbance levels.
Consequently, we must ascertain the disturbance magnitude for each distinct output i to
ensure they collectively exhibit a uniform SNR value. More specifically, we want to figure
out a diagonal weight matrix M ∈ Rn×n and let d(k) = M ·d0(k), so that SNR1 ≈ SNR2 ≈
· · · ≈ SNRn ≈ 1 when r0(k) is used to excite the system while d(k) is the disturbance.
The weight matrix is computed as follows. We first expand Eq.5.12,

y(k) = W(z)r(k) + X(z)d(k) = W(z)r(k) + X(z) · M · d0(k) (5.14)

Thus for each node i, suppose the standard r0(k) is used as the reference signal,

yi(k) = yr
i (k) + yd

i (k) =
n∑
j

Wij(z)r0
j (k) +

n∑
j

Xij(z)Mjd0
j (k)

=
n∑
j

yr0
ij (k) +

n∑
j

Mj · yd0
ij (k)

(5.15)

Where Mj stands for the j-th diagonal of M and yr0
ij (k) represents the contribution of

r0
j (k) to yi(k). The equation in Eq.5.15 can be rewritten into the following system of

equations,
Var

(
yd0

11(k)
)

· · · Var
(
yd0

1n(k)
)

... . . . ...
Var

(
yd0

n1(k)
)

· · · Var
(
yd0

nn(k)
)


 M1

...
Mn

 =


∑n

j=1 Var
(
yr0

1j (k)
)

...∑n
j=1 Var

(
yr0

nj(k)
)

 (5.16)

The data sequences yr0
ij (k) and yd0

ij (k) can be generated through simulating the system
using only r0

j (k) or d0
j (k), respectively. Typically, the matrix on the left-hand side of

Eq.5.16 is invertible due to the stronger correlation between yi(k) and di(k) compared to
that between yi(k) and dj(k) for i ̸= j. We now possess the capability to manipulate the
SNR by adjusting the reference level, while ensuring that all outputs maintain similar SNR
values using the weight above matrix M to obtain the scaled disturbance d(k).

• Root mean squared error
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Figure 5.3: The five-node identification sparsity plot.

Finally, we introduce the root mean squared error (RMSE) as a quantitative tool to assess
the accuracy of the estimated model. As discussed earlier, we can select a distinct valida-
tion reference rval(k), differing from r0(k), and simulate the system without disturbances
to derive yval(k). Additionally, after acquiring an estimation P̂N , we can formulate the
predicted output by employing the following expression:

ŷ(k) =
(
In − P̂N C0

)−1
P̂N C0 · rval(k) (5.17)

Then, we define the RMSE for the estimate as,

RMSE =

√√√√ 1
N ·n

∑N−1
k=0 ∥ŷ(k) − yval(k)∥2

2
1

N ·n
∑N−1

k=0 ∥yval(k)∥2
2

×100% (5.18)

As we progressively increase N or SNR to attain a new estimate P̂N , we expect a gradual
reduction in RMSE, which is indicative proof of a consistent and unbiased estimate.

5.2 Simulation
Within this section, we will present the results achieved through the identification of the plant
using the dual-Youla parameterization, by assuming a trivial initial guess GX = 0, owing to
its advantage of guarantee on the stabilizability of the estimated plant. Furthermore, we will
conduct a comparative analysis of these results and engage in subsequent discussions.

In the example, the control system used for simulations has n = 5 nodes characterized by transfer
functions specified in Equation 5.8, along with the architecture described in Equation 5.9. We
stimulate the system with a PRBS signal being the excitation reference while concurrently
corrupting the measured output with normally distributed disturbances, as elaborated in Section
5.1.2. As an example to provide a general figure regarding the identification performance, we
first demonstrate the CLS2 estimate with N = 1023, SNR = 0 [dB], model order τ = 8. Fig.5.3
is defined as the sparsity plot which visualizes the sparsity patterns3 of the nominal plant, the
estimated plant and the factors used to construct the estimate.
Please note the notations of these transfer matrices:

Q = A−1
Q BQ

DQ = AQDX + BQNK

NQ = AQNX + BQDK

G = D−1
Q NQ

(5.19)

2In this example, ÂCLS
Q is already stably invertible, hence the regularizer is unnecessary.

3Achieved by the command spy(·) in MATLAB.
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Figure 5.4: Magnitude response of the estimated plant with N = 1023, SNR = 0 [dB] and τ = 8,
compared with the true plant. An empty plot indicates no transfer functions defined (sparsity).

In particular, the first left subgraph of Figure 5.3 presents the nominal sparsity pattern S defined
in Eq.5.4 and denoted by blue circles. At the same time, the estimated plant has a sparsity
pattern depicted by red dots. Evidently, the estimated plant replicates the same sparsity pattern
as the nominal one, implying that Struct(Ĝ) = S. Subsequently, the second graph on the left
illustrates the compositions of the ARX factors of Q̂, which, even though not directly restricted
by the sparsity constraints, still manifest specific sparsity characteristics.

Moving to the right side, the two remaining graphs depict the configurations of the denominator
D̂Q and numerator N̂Q of Ĝ. Both transfer matrices conform to the intended sparsity subspaces
such that DQ ∈ Sparse(R) and NQ ∈ Sparse(S). As these conditions are met, we can confidently
assert that the algorithm triumphs in recovering the correct sparsity structure.
We continuously examine the properties of the estimation. The magnitude response plot of all
channels is presented in Figure 5.4 with the response of the nominal plant G0 in blue and that
of the estimate Ĝ in red. As illustrated by the sparsity plot in Figure 5.3, the identified plant
exhibits an upper bidiagonal sparsity pattern that aligns precisely with the nominal plant. This
alignment is evident by the absence of any magnitude response in regions where the channel
is zero within G0. Besides, it is obvious that, at lower frequencies, all channels exhibit decent
alignments between the nominal and the estimated plants. However, there is a noticeable devi-
ation at high frequencies, for which a plausible explanation is an excessively high model order
selection, possibly inducing overfitting in the high frequencies. Despite this, the estimation
generally demonstrates a propensity to converge towards the true magnitude response.
We will then keep exploring the variations in estimation performance by sequentially varying
the SNR from 0 to 40 [dB], the data length N over the range of 511 to 131071, adjusting the
model order from 3 to 16, and comparing the sparsity-constrained estimates with the free ones
(i.e., without sparsity constraints). As the sparsity plots for all estimates remain identical when
the sparsity constraints are active, they are omitted in the following subsections.

5.2.1 Varying Signal-to-Noise Ratio and Data Length

The following figure and table illustrate the variations in RMSE as a function of increasing N or
SNR. In the table on the right, the leftmost column corresponds to different values of N , while

31



the topmost row corresponds to different SNR levels in decibels. The main section of the table
contains the RMSE values represented in percentage.

Figure 5.5: RMSE [%] vs. N and SNR.

N\SNR 0 20 40 Inf
511 17.6 5.93 1.93 6.7E-04
1023 13.4 4.82 1.6 7.3E-04
2047 9.62 3.39 1.09 6.9E-04
4095 6.67 2.29 0.727 5.3E-04
8191 4.23 1.44 0.462 7.2E-04
16383 3.01 1.05 0.352 8.1E-04
32767 2.5 0.868 0.281 6.9E-04
65535 1.68 0.648 0.217 5.1E-04
131071 1.21 0.442 0.146 5.2E-04

Table 5.1: RMSE [%] vs. N and SNR.
Obviously, when operating under a finite SNR, all the estimates demonstrate an asymptotic
convergence of the root mean squared error (RMSE), with a decrease rate of O(N1/2). This
trend is rational since, conventionally, the covariance matrix of the estimate scales inversely
with the data length[2], as can be expressed as follows:

Var
(
Ĝ

)
∼ τ

N

Φd

Φr
u

(5.20)

Here, Φd signifies the power spectrum of the disturbance, and Φr
u represents the power of con-

trol inputs emerging from reference signals. Furthermore, as the SNR increases, the entire curve
shifts downwards, approaching the noise-free scenario where negligible numerical errors primarily
influence the RMSE. To provide a more comprehensive visualization of the impact of increasing
SNR and N , we present the Bode diagrams of the estimated channel Ĝ11 alongside the nominal
channel. These diagrams are showcased in Fig.5.6 for different SNR values and in Fig.5.7 for
different N values. Both figures clearly demonstrate that in extreme cases, such as when dealing
with high SNR or considerably large N values, the deviation between the estimated and nom-
inal channels becomes nearly invisible. This indicates the consistency of the proposed method
in generating output predictions, at least within the data length range from 102 to 105.

The outcomes remain notable despite the theoretical biases and inconsistencies associated with
the least-squares method, as discussed in Section 3.3.4. Through a relatively straightforward
algorithm that addresses a quadratic program, we achieve consistent output predictions and a
commendable model approximation. This is particularly evident when evaluating the RMSE at
N = 32767 and SNR = 20 dB, which already falls below 1%. Consequently, we are warranted
in concluding that the proposed method is both satisfactory and effective, if the model order is
chosen appropriately, as will be discussed in the following subsection.

5.2.2 Varying Model Order

The model order τ as a hyperparameter can significantly influence the performance of the esti-
mator. Striking a balance is crucial since setting τ excessively high could burden computational
complexity, while opting for an aggressively small τ might exclude the true model from the
candidate set, thereby introducing bias. Typically, the choice of τ depends on the a-prior knowl-
edge of the system architecture or can be tuned via cross-validation or other mature equivalent
methods. To demonstrate the effect of choosing the model order, the following graph and table
display the variation in RMSE w.r.t. both N and τ .
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(a) SNR = 0 [dB] (b) SNR = 20 [dB]

(c) SNR = 40 [dB] (d) SNR = ∞ (noise-free)

Figure 5.6: Bode diagram Ĝ11 under different values of SNR and identical N = 1023.

(a) N = 1023 (b) N = 4095

(c) N = 16383 (d) N = 65535

Figure 5.7: Bode diagram of Ĝ11 under different values of N and identical SNR = 0 [dB].
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Figure 5.8: RMSE [%] vs. N and τ .

N \ τ 3 4 8 16
511 13.3 13.4 17.6 26
1023 8.33 9.06 13.4 19
2047 7.3 6.94 9.62 13.4
4095 6.48 5.22 6.67 9.58
8191 5.08 3.15 4.23 5.99
16383 4.35 2.17 3.01 4.2
32767 4.28 1.89 2.5 3.27
65535 4.06 1.29 1.68 2.33
131071 3.9 0.904 1.21 1.58

Table 5.2: RMSE [%] vs. N and τ .

Clearly, τ = 4 serves as a threshold for achieving an adequate order, ensuring the true model
remains within the candidate set. The graphical representation illustrates that the estimate
demonstrates consistency for τ = 4, as the RMSE continuously decreases with increasing N .
However, at τ = 3, the RMSE converges to approximately 4% without further reduction. This
observation indicates that τ = 3 is insufficient to describe the model, thus leading to extra bias
adequately. It is important to note that the model order τ is established for the Youla parameter
Q, which involves the closed-loop dynamics, thus generally possessing an order larger than that
of G. Furthermore, as the value of τ is raised, the RMSE curve shifts upward, even though it
retains its asymptotic convergence concerning N . This phenomenon is likely attributed to an
excessive model order resulting in overfitting the noise, subsequently increasing the estimate’s
variance. Notably, if we double the value of τ , the RMSE rises by approximately a factor of

√
2,

which again coincides with Eq.5.20.

5.2.3 Estimates without Sparsity Constraints

As indicated by Eq.3.39, the variance associated with the constrained least-squares estimate is
assuredly lower compared to the unconstrained estimate, provided the validity of the sparsity
conditions. This variance reduction is regarded as an elevation in estimation efficiency, as the
constrained estimate attains diminished variance or errors while requiring a smaller dataset. To
visually illustrate this effect, we depict the Bode diagram of the estimated plant via uncon-
strained least-squares in Fig.5.9. Clearly, in the absence of sparsity constraints, the algorithm
estimates the plant as one with a dense structure and allocates values to all channels, even
those supposed to be zero. These arrangements result in an unnecessary estimate of the sparse
channels, consequently worsening the non-sparse channels.

On the other hand, Fig.5.10 illustrates the variation in RMSE for the estimate without sparsity
constraints, compared to that of the estimate with sparsity constraints. While the unconstrained
RMSE showcases a consistent decrease with increasing data length, it always remains higher than
the constrained counterpart under an identical experiment setup. Consequently, the constrained
estimate outperforms the unconstrained one, thus worth consideration during optimization.
Therefore, through simulations, we have empirically verified that our proposed method is ca-
pable of achieving a decent estimate, by selecting an appropriate model order that is suitably
larger than necessary rather than being excessively small. More importantly, applying the cor-
rect knowledge of sparsity conditions can help improve the sample efficiency as it significantly
decreases the variance of the estimate. Still, it is possible to offer suggestions for improving the
proposed method as part of future developments or reinforcing its theoretical underpinnings.
These recommendations will be detailed in the conclusion chapter.
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Figure 5.9: Magnitude response of the estimate without sparsity constraints, Given N = 1023,
SNR = 0 [dB] and τ = 8.

Figure 5.10: RMSE comparison between estimates with or without sparsity constraints.
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Chapter 6

Conclusion and Future Works

We thereby summarize the report before providing several recommendations for fu-
ture works. This project is motivated by increasingly extensive applications of modern cyber-
physical systems (CPS), which may exhibit large-scale sparse architectures, unstable open-loop
dynamics, and difficulty in building a representative model for controller synthesis. However,
conventional closed-loop identification methods do not extensively deal with systems with spar-
sity structures, meaning the estimate can be relatively inefficient with slowly decreasing variance,
or require a large number of redundant variables and data to develop a useful estimate. It thus
becomes imperative to develop new techniques tailored for closed-loop identification of the CPS
that effectively use sparsity knowledge and efficiently solve the large-scale identification problem.

With such purposes, we propose a novel idea that implements the Sparsity Invariance Theorem
into system identification problems to make full use of the knowledge about the system’s sparsity
architecture to improve the estimate, compared with the original methods that do not utilize
such a sparsity knowledge. We start with reviewing the Sparsity Invariance Theorem, which
converts the inherently non-convex constraint on the sparsity structure of a factorizable trans-
fer matrix into a pair of convex and sufficient conditions on its two factors. These conditions
are named the Sparsity Constraints. Subsequently, we provide the derivation of the Stability
Invertibility Theorem, according to which we can use a couple of linear constraints to ensure a
transfer matrix has a stable and causal inverse without introducing extra unstable poles after
inversion. However, these constraints can be further modified into a properly chosen regularizer,
simplifying the problem while equivalently guaranteeing stable invertibility. These theorems lay
the groundwork for understanding the convexification of several tricky constraints and ensuring
the involved optimization problems are efficiently solvable.

Moving to the methodologies, we extend the theory of two typical closed-loop identification
methods, namely the dual-Youla parameterization and the two-stage identification, from identi-
fying linear time-invariant (LTI) single-input single-output (SISO) systems to multi-input multi-
output (MIMO) systems, by adapting the sparsity constraints to utilize the information about
the sparsity structure in the system. Both extended methods eventually result in a quadratic
program that consists of a quadratic cost function that minimizes the model fitting error, and
a group of linear equality constraints that ensure the estimated system has the desired sparsity
structure. Such a program can be solved via either least-squares or instrumental variables and
admit closed-form solutions. Considering the least-squares solution is much more efficient but
biased, while the instrumental variables provide an unbiased and consistent estimate with in-
creased computational complexity, it becomes a trade-off, and the selection between them should
depend on the objective of the estimation.
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Subsequently, we present an illustrative example of applying the identification framework to a
real-world problem. An unstable and sparse irrigation network from the literature is chosen,
which can be modeled as a large-scale LTI feedback control system, and stimulated by a se-
quence of pre-defined excitation reference signals, named training references. By collecting the
resulting noisy data, from closed-loop operation, we subsequently employ these data to identify
the underlying plant considering the sparsity architecture via the least squares estimate. Verifi-
cation of the estimation is performed by exciting both the nominal and estimated systems with
a sequence of validation references, which is statistically independent of the training references,
collecting the validation outputs from the nominal system and predicted outputs from the es-
timated system, before computing the relative root mean squared error (RMSE) between these
outputs. To further examine the properties of the identification framework, we run the algorithm
in different scenarios, by varying the signal-to-noise ratio (SNR), the input data length, or the
model order. Results indicated that RMSE gradually decreases to a relatively small level as we
keep increasing the data length within a specific range. Raising the SNR also helps reduce the
RMSE, with the reduction rate coinciding with the theories from the literature. In addition,
the Bode diagrams visually show that the deviation between the estimated and nominal plants
becomes nearly negligible as data length grows over 106 given an SNR of 0 decibels, resulting
in an RMSE of merely about 1%. Despite the biases due to the least-squares method, we still
achieve consistent output predictions and a commendable model approximation. Consequently,
an appropriately chosen model order affects the estimate as well. We empirically show that
an aggressively small model order can lead to obvious biases as the actual model is probably
excluded from the candidate set. In contrast, an unnecessarily large model order will raise the
estimate variance, hence increasing the prediction error. Conversely, if the model order is se-
lected correctly, we are confident in concluding that the proposed method is verified and enabled
to provide both satisfactory and efficient estimates.

Considering these facts, we would propose the following suggestions. As highlighted
earlier in Section 3.3.4, the LS estimate is subject to bias and inconsistency when applied to
estimating an ARMAX model as if it possesses an equation error structure. Despite these limita-
tions, we continue to employ the LS estimate owing to its simple implementation and our initial
objective of obtaining a representative approximation of the plant dynamics, rather than striv-
ing for consistent estimates of parameters. However, a desire exists to quantitatively determine
the bias associated with the LS estimate, and explore potential strategies to mitigate this bias
mathematically. Such quantification and mitigation are possible, as already addressed in [26],
and this pursuit aims to enhance the accuracy of the estimation process. On the other hand,
the ARMAX model can be consistently estimated by applying instrumental variables. Although
a theoretical derivation has been provided in Section 3.3.4, we have not yet incorporated the
IV estimate into our proposed method. Therefore, it is advisable to consider integrating the IV
estimate in future work, enabling a comparison with the LS estimate in terms of consistency.

Beyond the choice of the estimator, the improvement of identification performance can also
be pursued by strategically refining the experimental setup, as using PRBS signals is common
but not necessarily optimal. PRBS signals possess uniform power spectral density across all fre-
quencies, yet the irrigation system under consideration exhibits relatively slow dynamics, making
high-frequency responses less valuable. In such cases, employing excitation signals specifically
tailored for low frequencies could yield higher efficiency. Fortunately, alternatives have been
proposed in [27] for identifying networked systems using prediction error methods; tailoring the
excitation signals to the characteristics of the system dynamics makes achieving more efficient
identification outcomes possible.
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Last but not least, the approach taken in parameterizing the system can also be considered for
improved estimation. The integration of the Sparsity Invariance Theorem can be extended to
other parameterization methods that can make use of fractional representations. For instance,
the system-level synthesis (SLS) technique[28] has proven to be a potent tool in controller design
as it provides a reasonable parameterization of all stabilizing controllers and manages to con-
vexify sparsity and communication constraints on the controller. Absolutely, the concept of SLS
can be extended to closed-loop identification, which is denoted as the dual System-Level Param-
eterization as introduced in [29]. The author suggests that applying the dual-SLS framework to
large-scale networks could be a promising direction for future research. Given this, incorporat-
ing the Sparsity Invariance Theorem into the dual-SLS parameterization for the identification
of large-scale sparse networked systems appears to be worth investigating.

Meanwhile, another viable alternative is the Input-Output Parameterization (IOP) [30]. The
IOP directly parametrizes the closed-loop transfer functions from external signals to control
inputs and measured outputs, exploiting their affine relationship. This transformation enables
the conversion of constraints on the closed-loop transfer functions into a convex formulation.
Although, to our knowledge, the IOP concept has not been applied to system identification, the
equivalence established among the Youla parameterization, system-level synthesis, and input-
output parameterization[31] reveals the possibility that a similar framework can be developed
for large-scale system identification using IOP.

In summary, these suggestions for future development together contribute to the improvement
of the proposed method. By quantifying bias, exploring alternative estimation approaches,
optimizing experimental setups, and refining parameterization techniques. Theoretically and
practically, these recommendations can collectively improve the proposed technique, and the
potential of achieving a more efficient and enhanced identification of large-scale sparse systems
can be anticipated.
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