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Abstract

Markov games offer a formal mathematical framework for modeling multi-agent
reinforcement learning problems. Markov Potential Games (MPGs) represent a
subclass of mixed cooperative and competitive Markov games for which finding
Nash equilibria is tractable. The recently introduced class of constrained Markov
Potential Games (CMPGs) generalizes MPGs to model the case where the agents’
reward maximization is subject to global constraints. Existing methods for learning
Nash equilibria (NE) in MPGs can be categorized into centralized and independent
learning algorithms. Notably, for learning ε-approximate NE, the best-known sample
complexity achieved by centralized algorithms is significantly lower than for indepen-
dent learning (O(ε−3) vs. O(ε−5)). Moreover, no converging independent learning
algorithm is known for CMPGs. Nevertheless, whether these gaps are inherent is
unknown, i.e., no provable separation between centralized and independent learning
has been shown. Continuing on this quest, our contributions are twofold: (a) We
propose a new playerwise policy gradient (PG) algorithm that requires coordination
among players, however, improves on iteration and sample complexity regarding the
dependence on the number of players m. The proposed method also improves over
the m-dependence in the complexity of previously known centralized algorithms. (b)
In the constrained case, we make progress on closing the gap between centralized
and independent learning by providing an independent policy gradient algorithm
for learning approximate constrained Nash equilibria in CMPGs. Inspired by contem-
porary optimization literature, our algorithm performs proximal-point-like updates
augmented with a regularized constraint set. Each proximal step is solved inexactly
using a stochastic switching gradient algorithm. Under some technical constraint
qualification conditions, we establish convergence guarantees towards constrained
approximate Nash equilibria. We perform simulations to illustrate our results in two
real-world applications of NE-learning in CMPGs.
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Chapter 1

Introduction

In multi-agent reinforcement learning (MARL), several agents interact within a shared
dynamic and uncertain environment evolving over time depending on the agents’ indi-
vidual strategic decisions. Each agent aims to maximize their own individual reward,
which may, however, depend on all players’1 decisions. The framework of stochastic
games, a.k.a. Markov games, initiated by Shapley [Sha53] is certainly the most widely
adopted mathematical framework for studying MARL.

This thesis studies Nash equilibrium learning in Markov games. More specifically, we
will be concerned with three major aspects that can be seen as orthogonal additions
to the Markov game setting: (a) requiring a potential structure leading to the notion
of Markov Potential Games; (b) considering a centralized vs. an independent learning
information structure; and (c) incorporating constraints into the game. The remainder of
this section motivates and introduces each of these aspects informally.

Beyond the fully competitive Markov game setting that has been investigated compara-
tively more in the literature, the cooperative setting has been studied less. However, the
ability to cooperate between learning agents is crucial to improve their joint welfare and
achieve social welfare for artificial intelligence (see [DHB+20, DBH+21] for an extensive
discussion of the need to promote cooperative AI). Markov Potential Games (MPGs)
form a particular class of structured Markov games that has been actively investigated in
recent years [MZZ18, LOPP22, FMOP22, ZRL22, SMB22, DWZJ22, ZMD+22, MWPS22,
ZCLW23]. Interestingly, MPGs represent a class of mixed cooperative/competitive
Markov games including, as a particular case, pure identical interest Markov games in
which all the agents’ reward and cost functions are identical. Moreover, while intractabil-
ity results were very recently developed for general stochastic games [DGZ23], [JMS22],
computing Nash equilibria for MPGs turns out to be tractable thanks to the potential
structure of the game. Further, we shall mention that MPGs can be seen as a generaliza-
tion of potential games, a particular class of strategic normal-form games studied in game
theory. The latter class of games coincides with one-state MPGs. From this viewpoint,
MPGs incorporate a dynamic stateful aspect into static potential games, which have been
extensively studied since their introduction in [MS96], and which already have numerous
applications, for instance, in wireless networks. Applications of MPGs include real-world
problems such as routing games (transportation networks), wireless communications,
congestion games, smart grids, traffic network systems with self-driving vehicles, and
cloud computing.

Besides reward maximization, agents may also contend with satisfying constraints that are
often dictated by multi-agent RL applications. Prominent such real-world applications

1We will use player and agent interchangeably.
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include multi-robot control on cooperative tasks [GGC+23] as well as autonomous
driving [SSSS16, LKT+23] where physical system constraints and safety considerations
such as collision avoidance are of primary importance. In other applications, agents
may be subject to soft constraints such as average users’ total latency thresholds in
wireless networks or average power constraints in signal transmission. Each agent seeks
to maximize their reward while accounting for constraints that are coupled among
agents. Constrained Markov games (CMGs) [AS00] offer a mathematical framework to
model multi-agent RL problems incorporating coupled constraints. Analogous to the
unconstrained case of MGs and MPGs, requiring a potential structure yields the recently
introduced class of constrained Markov Potential Games (CMPGs) [ARHK23] for which
computing (constrained) Nash equilibria is tractable.

Independent learning has recently attracted increasing attention thanks to its versatility
as a learning protocol. We refer the reader to a recent nice survey on the topic [OSZ21]. In
this protocol, agents can only observe the realized state and their own reward and action
in each stage to individually optimize their return. In particular, each agent does not
observe actions or policies from any other agent. This protocol offers several advantages
including the following aspects: (a) Scaling: independent learning dynamics do not scale
exponentially with the number of players in the game (also known as the curse of multi-
agents); (b) Privacy protection: agents may avoid sharing their local data and information
to protect their privacy and autonomy; (c) Communication cost: a central node that can
bidirectionally communicate with all agents may not exist or may be too expensive to
afford. Therefore, this protocol is particularly appealing in several applications where
agents must make decisions independently in a decentralized manner. For example, dy-
namic load balancing, which consists of evenly assigning clients to servers in distributed
computing, demands learning algorithms that minimize communication overhead to
enable low-latency response times and scalability across large data centers. This task has
been modeled as an MPG [YD22]. In other applications, such as the pollution tax model
and the distributed energy marketplace detailed in Section 4.3, coordination is inherently
ruled out due to the competitive nature of the players’ interactions. Independent learning
algorithms have been proposed for unconstrained multi-agent RL problems such as
zero-sum Markov games [DFG20, SZL+21, CZM+23] as well as for unconstrained MPGs
in a recent line of works [LOPP22, ZMD+22, ZRL22, DWZJ22, MWPS22].

In the case of MPGs, current results exhibit a gap between guarantees achievable by
centralized (i.e., allowing for coordination/communication via a central entity, enabling,
e.g., sharing of individual players’ policies or turn-based updates) vs. independent
learning algorithms. In particular, this gap can be observed in the following two ways:

1. The best known independent algorithm for learning ε-Nash equilibria in MPGs
achieves an O(ε−4.5) sample complexity via a variance-reduced version [MYZB22]
of independent policy gradient ascent [LOPP22, DWZJ22]. In contrast, the central-
ized, turn-based Nash-CA algorithm [SMB22] has sample complexity O(ε−3).

2. In the case of CMPGs, a centralized adaptation of Nash-CA has been proposed.
However, the more challenging problem of independently learning constrained
Nash equilibria has not been settled so far.

As central themes of this thesis, we pose the following two questions:

1. Can centralization be leveraged to improve over the iteration and sample
complexity of independent learning algorithms for MPGs?

2. Can we design an independent learning algorithm for constrained MPGs
with non-asymptotic global convergence guarantees?

2



1.1. Organization and Contributions

1.1 Organization and Contributions

The remainder of this thesis is structured as follows. In Section 1.2, we discuss related
work. Chapter 2 formally introduces (constrained) Markov Potential Games, defines the
respective notions of Nash equilibria, and clarifies the game’s information structure. In
Chapters 3 and 4, we establish our contributions which can be summarized as follows:

• Chapter 3 addresses Nash equilibrium learning in unconstrained MPGs with a
particular focus on the role of centralization vs. independence. We begin by de-
scribing and comparing existing methods. Then, we propose a centralized learning
algorithm that combines ideas from coordinate ascent and policy gradient ascent.
Our analysis shows that in an exact gradients setting, this new method achieves
an iteration complexity that, unlike for existing algorithms, does not depend on
the number of players involved in the game. Furthermore, we investigate a simul-
taneous best-response update and, as a partial negative result, show that naively
performing such independent updates cannot guarantee global convergence.

• As our main contribution, in Chapter 4, we design an algorithm for independent
learning of constrained ε-approximate Nash equilibria (NE) in CMPGs. Inspired
by recent works in nonconvex optimization under nonconvex constraints, our
algorithm implements an inexact proximal-point update augmented with a regu-
larized constraint set. In particular, the inexact proximal step is computed using a
stochastic gradient switching algorithm for solving the resulting subproblem where
both the objective and the constraint functions are strongly convex. In particular,
the different agents can run the algorithm independently without taking turns.
Moreover, we analyze the proposed algorithm and establish its sample complexity
to converge to an ε-approximate NE of the CMPG with polynomial dependence
on problem parameters. Our analysis requires new technical developments that
do not rely on results from the CMDP literature. In addition, we illustrate the
performance of our algorithm on two simple CMPG applications: a pollution tax
model and a marketplace for distributed energy resources.

Finally, we conclude the thesis in Chapter 5 by pointing out some limitations of our
current results and by highlighting promising directions for future work. Proofs of all
our results are deferred to Appendix A for Chapter 3 and to Appendix B for Chapter 4.

1.2 Related Work

We next discuss some closely related work. We first cover results regarding unconstrained
and constrained MPGs. Then, we review related approaches for stateless, possibly
constrained, potential games. Finally, we discuss the use of inexact proximal-point
methods in recent optimization literature, which serves as inspiration for our independent
NE-learning algorithm for CMPGs.

Markov Potential Games (MPGs). MPGs have been introduced as a natural extension of
normal form potential games [MS96] to the dynamic setting starting with state-based po-
tential games [Mar12] and later Markov games [MZZ18]. [LOPP22] introduced a variant
of MPGs and proposed independent stochastic policy gradient methods with an O(ε−6)
sample complexity to reach an ε-approximate NE. Similar results were shown in [ZRL22]
with model-based algorithms. This result was later improved to an O(ε−5) sample
complexity for large state-action spaces with linear function approximation [DWZJ22]
and further to O(ε−4.5) by reducing the variance of the agent-wise stochastic policy
gradients [MYZB22]. [ZMD+22] explored using the softmax policy parametrization
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1.2. Related Work

instead of the direct parametrization. In particular, they established an O(ε−2) iteration
complexity in the deterministic setting and showed the benefits of using regularization
to improve the convergence rate. [MWPS22] proposed a fully independent and decentral-
ized two-timescale algorithm for MPGs with asymptotic guarantees where players may
not even know the existence of other players. [NLKS22] provided verifiable structural
assumptions under which a Markov game is an MPG and further provided several
algorithms for solving MPGs in the deterministic setting. [SMB22] proposed an O(ε−3)
sample complexity coordinate ascent algorithm (Nash-CA), which requires coordination
among players. [GLM+23] recently introduced the class of α-MPGs which relaxes the
definition of MPGs by allowing α-deviations with respect to (w.r.t.) the potential func-
tion. More recently, [ZCLW23] introduced a class of networked MPGs for which they
proposed a localized actor-critic algorithm with linear function approximation. All the
aforementioned works focused on the unconstrained setting.

Constrained Markov Potential Games (CMPGs). There has been a vast array of works
in multi-agent RL with safety constraints in practice, see, e.g., [EABA+21, GGC+23] and
the references therein. [AS00] defined constrained Markov games and provided sufficient
conditions for the existence of stationary constrained NE. Non-asymptotic theoretical
convergence guarantees to game-theoretic solution concepts for constrained multi-agent
RL are relatively scarce in the literature. [CMZ22] introduced a notion of correlated
equilibria for general constrained Markov games and provided a primal-dual algorithm
for learning those equilibria. Unlike ours, their setting exhibits strong duality, enabling
the use of primal-dual algorithms. [DWY+23] established regret guarantees for episodic
two-player zero-sum constrained Markov games. [ARHK23] introduced the class of
constrained MPGs. Inspired by Nash-CA [SMB22], they proposed a constrained variant
of the algorithm which enjoys an O(ε−5) sample complexity. Crucially, this algorithm
requires coordination between agents and cannot be implemented independently by the
agents.

(Constrained) Potential Games. While unconstrained potential games have been stud-
ied extensively in the game theory literature [MS96, BR20, CCC22, CMS06, SMK18], only
few results exist on their constrained counterpart. [Zhu08] studies structural properties
of constrained potential games with coupled constraints, i.e., a stateless version of a
setting that is otherwise similar to ours. Through a Lagrangian approach, it is observed
that the solution to the respective constrained maximization problem with respect to
the potential function constitutes a constrained Nash equilibrium — an observation
that we, as well as [ARHK23], also build on when motivating our approach. However,
our further insights significantly differ from [Zhu08] since we cannot hope to reach
an optimal solution to the constrained potential maximization problem in our stateful
nonconvex setting. Instead, we need to leverage the specific structure of CMPGs to argue
that satisfying local approximate KKT conditions also suffices for attaining approximate
constrained Nash equilibria. In particular, [Zhu08] also does not study independent
learning and generally does not provide convergence guarantees on algorithms for
reaching approximate equilibria.

Inexact Proximal-Point Methods. The idea of using inexact proximal-point meth-
ods to solve nonconvex problems has been fruitfully exploited in the literature for a
couple of decades (see, e.g., [HS09, DG19]). A recent line of works ([BDL23, MLY20];
and also [JG23]) extended this idea in order to solve nonconvex optimization prob-
lems with nonconvex functional constraints. The initial nonconvex problem is trans-
formed into a sequence of convex problems by adding quadratic regularization terms
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1.2. Related Work

to both the objective and constraints. These works also established convergence rates
to Karush–Kuhn–Tucker (KKT) points under constraint qualification conditions. Our
present work is inspired by this recent line of research. We point out, though, that we
deal with a multi-agent RL problem and provide convergence guarantees to approximate
constrained NE. In these regards, our independent algorithm design and our analysis
require several new technical developments. Alternatives to inexact proximal methods
for handling nonconvex constraints include second-order approaches [NW06, CGT15]
and penalty methods [WMY17, FKLS21].
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Chapter 2

Preliminaries

In this preliminary chapter, we formally introduce the mathematical framework of
Markov Potential Games and constrained Markov Potential Games and related concepts
such as Nash equilibria used throughout the rest of the thesis. We also clarify the infor-
mation structures considered, that is, the difference between centralized and independent
learning.

Notation. Throughout the thesis, ∥ · ∥ denotes the standard Euclidean norm ∥ · ∥2.
Furthermore, given a set X, a totally ordered set Y, and a function f : X → Y, we use the
definition arg minx∈X f (x) := {x ∈ X | ∀x′ ∈ X : f (x) ≤ f (x′)} ⊂ X, and analogously
define arg maxx∈X f (x).

2.1 Markov Games

This first section defines our reinforcement learning setup in the context of (constrained)
Markov games.

Markov game. An m-player Markov game is a tuple G = (S ,N , {Ai, ri}i∈N , µ, P, κ)
with:

• A finite shared state space S of cardinality S := |S|.

• A finite set of m agents N := {1, . . . , m}.

• A finite set of actions Ai of cardinality Ai := |Ai| for all i ∈ N with Amax :=
maxi∈N Ai. The joint action space is denoted by A := ∏i∈N Ai .

• A reward function ri : S ×A → [0, 1] for each agent i ∈ N .

• A distribution µ over states from which the game’s initial state is drawn.

• A probability transition kernel P: For any state s ∈ S and any joint action a ∈ A,
the game transitions from state s to a state s′ ∈ S with probability P(s′|s, a) and the
game terminates with probability κs,a > 0. We further define κ := mins∈S ,a∈A κs,a
and γ := 1 − κ .

At each time step t ≥ 0 of a given episode of the game, all the agents observe a shared
state st ∈ S and choose a joint action at ∈ A. Then, each agent i ∈ N receives a
reward ri(st, at). The game either stops at time t with probability κst,at or proceeds by
transitioning to a state st+1 drawn from the distribution P(·|st, at) . We denote by Te the
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2.1. Markov Games

random stopping time when the episode terminates.1 For a similar setting, see [DFG20,
GLMVG22].

Below, we extend Markov games to incorporate constraints by introducing an additional
cost function.

Constrained Markov game. An m-player constrained Markov game is a tuple G =
(S ,N , {Ai, ri, ci}i∈N , α, µ, P, κ) where S,N , Ai, ri, µ, P, and κ are defined as for Markov
games above, and additionally, we have:

• A cost function ci : S ×A → [0, 1] for each agent i ∈ N . Throughout this thesis,
we will assume that all cost functions are identical across the agents and equal to a
single cost function c. The case of multiple such common costs can be addressed
with our approach with minor modifications. The case where cost functions may
differ between players is more challenging and left for future work.

• A constraint threshold α ∈ R that is used to define the set of feasible policies (see
definition in paragraph on policies and value functions below).

The game interaction is analogous to the unconstrained case, except that after choosing
a joint action at ∈ A, each agent i ∈ N , in addition to the reward ri(st, at), incurs a
cost c(st, at).

In the rest of this thesis, we aim to minimize both rewards and costs to align with con-
ventions from the (constrained) optimization literature. The equivalence to the common
RL reward maximization formulation follows from considering reward functions 1 − ri
instead of ri for each i ∈ N .

Next, we introduce players’ individual and joint policies. Moreover, we define value
functions on joint policies in terms of both rewards and cost.

Policies and Value Functions. Each agent i ∈ N chooses their actions according to
a randomized stationary policy denoted by πi ∈ Πi := ∆ (Ai)

S where ∆ (Ai) is the
probability simplex over the finite action space Ai. The set of joint policies π = (πi)i∈N is
denoted by Π := ∏i∈N Πi and we further use the notation π−i =

(
πj
)

j∈N\{i} ∈ Π−i :=

∏j∈N\{i} Πj for joint policies of all agents other than i. For any u ∈ {ri | i ∈ N} ∪ {c}
and any joint policy π ∈ Π, we define the value function Vu(π) for every state s ∈
S by Vu,s(π) := E[∑Te

t=0 u(st, at)|s0 = s]. The shorthand notation Vu(π) will stand
for Vu,µ(π) := Es∼µ[Vu,s(π)] . For any policy π ∈ Π and s, s′ ∈ S , the state visita-
tion distribution is defined by dπ

s (s′) := E[∑Te
t=0 1{st=s′}|s0 = s] where 1 is the indicator

function and we write dπ
µ (s′) = Es∼µ[dπ

s (s′)]. For constrained MGs, we additionally
define the set of feasible policies as Πc := {π ∈ Π | Vc(π) ≤ α}. Moreover, the set of
feasible policies for agent i ∈ N when the policy of the other agents is fixed to π−i ∈ Π−i

is denoted by Πi
c(π−i) :=

{
πi ∈ Πi | (πi, π−i) ∈ Πc

}
.

As a solution concept, we will be studying convergence to the well-known game-theoretic
concept of a Nash equilibrium — a state where no player can individually improve by
deviating to a different strategy (i.e., policy). A similar equilibrium notion can also be
defined for constrained games.

Nash Equilibria. For any ε ≥ 0, a joint policy π∗ ∈ Π is called an ε-approximate con-
strained NE if for every i ∈ N and any policy π′

i ∈ Πi, we have Vri(π
∗)−Vri(π

′
i , π∗

−i) ≤ ε.
When ε = 0, such a policy π∗ is called an NE policy, and no agent has an incentive to

1The discounted infinite horizon setting can also be addressed with minor adaptations.
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2.2. Information Structure

unilaterally deviate from an NE policy π∗. A natural way of generalizing the concept of
Nash equilibrium in an MG to the constrained setting is to restrict the i-th players allowed
deviations to feasible policies, i.e., to Πi

c(π−i). Therefore, we define π = (πi, π−i) ∈ Πc
to be a constrained ε-Nash equilibrium (constrained ε-NE) if for every i ∈ N and any
policy π′

i ∈ Πi
c(π

∗
−i), we have Vri(π

∗)− Vri(π
′
i , π∗

−i) ≤ ε. We refer the reader to [AS00]
for the existence of stationary constrained NE.

Under common assumptions in complexity theory (Exponential Time Hypothesis for
PPAD), finding Nash equilibria in general games, even approximately, requires an
exponential number of game interactions [Das13, Rub16]. In the following, we introduce
a potential structure leading to the definition of MPGs and CMPGs as tractable subclasses
of MGs and constrained MGs, respectively.

Potential Structure and (C)MPGs. In an MPG ([MZZ18, LOPP22]), for each state s ∈ S ,
there exists a so-called potential function Φs : Π → R such that for all i ∈ N , it holds
that

Vri ,s(πi, π−i)− Vri ,s(π
′
i , π−i) = Φs(πi, π−i)− Φs(π

′
i , π−i) (2.1)

for any policies (πi, π−i) ∈ Π, and π′
i ∈ Πi . We will also use the notation Φ(π) :=

Es∼µ[Φs(π)]. Notice that the fully cooperative setting, when all the reward functions of
the players are identical, is a particular instance of an MPG. Note also that the potential
function is typically unknown for the players interacting in the game. A constrained
Markov Potential Game (CMPG), see also [ARHK23], is a constrained MG such that for
all i ∈ N , π = (πi, π−i) ∈ Π, π′

i ∈ Πi, and s ∈ S , there exists a potential Φs : Π → R

such that equation (2.1) holds.

2.2 Information Structure

For multi-agent RL environments, it is important to clarify to what extent information
exchange may happen among agents. In this thesis, we will consider the following two
common information structures; see also [ZYB21] for a survey on various such settings.

Independent Setting. Suppose all players interact with the game by executing their
policies for a fixed number of episodes. Notably, during the learning procedure, each
player executes their policy at each episode of the game to sample a trajectory and
exclusively observes their own trajectory (st, ai,t, ri(st, at), c(st, at))0≤t≤Te . In particular, in
independent learning, a player does not have access to the policies of other players or
their chosen actions, and there is no communication among players outside the game
interaction. Such a protocol was previously considered, for instance, in two-player
zero-sum Markov games [DFG20, CZM+23] as well as for unconstrained MPGs [LOPP22,
DWZJ22, MWPS22].

Centralized Setting. In the centralized setting, game interaction happens as in the
independent setting. However, we additionally assume the existence of a central con-
troller that can aggregate information from the agents (such as their individual policies
or obtained rewards) and, for instance, coordinate agents to update their policies in a
turn-based manner. This setting is assumed, e.g., for learning Nash equilibria in MPGs
via Nash-CA in [SMB22].

8



Chapter 3

Centralized vs. Independent Learning in
Markov Potential Games

This chapter addresses Nash equilibrium learning in unconstrained Markov Potential
Games, with a focus on the role of centralization in the form of coordination among
agents. We proceed by first introducing the two main approaches present in the literature
leading to independent (Section 3.1, PGA), and turn-based (Section 3.2, Nash-CA)
algorithms, respectively. Building on these existing results, we then explore two new
directions: (a) In Section 3.3, by allowing for coordination during playerwise policy
gradient updates, we obtain a centralized algorithm that does not have an m-dependence
in its iteration complexity and may hence be more suitable than existing methods for
learning in MPGs with a large number of players m. (b) In Section 3.4, we discuss ideas
towards a decentralized version of Nash-CA and give a negative result for an approach
via simultaneous best-response updates. We refer to Table 3.1 for a schematic illustration
of the methods considered in this chapter.

centralized independent

policy gradient
centralized PGA

Section 3.3
O(ε−2)

independent PGA
[LOPP22],[ZRL22],[DWZJ22]

O(mε−2)

best-response
Nash-CA
[SMB22]
O(mε−1)

simultaneous best-response
Section 3.4

no global convergence

Table 3.1: Overview of existing and proposed methods with iteration complexities in a deterministic setting,
i.e., with access to exact gradients and value functions. O(·) hides polynomial dependencies in S, Amax, D, γ,
and Φmax (which may depend on m in the worst case) where the distribution mismatch coefficient D :=
maxπ∈Π ∥dπ

µ /µ∥∞ is assumed to be finite. ‘Centralized’ and ‘independent’ refer to the information structures
introduced in Section 2.2.

3.1 Independent Policy Gradient Ascent

In this section, we describe ideas for proving convergence of independent policy gra-
dient ascent1 (PGA) as initially developed in [LOPP22]. Our centralized PGA method,
introduced in the next section, will build on these insights. Starting with some initial

1To be consistent with common RL algorithm naming, we stick to calling the algorithm PG ascent
instead of descent, even though due to our reward minimization convention introduced in Chapter 2 we
perform a descent.
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3.2. A Turn-Based Best-Response Algorithm

policy π(0) ∈ Π, and choosing step size η > 0, suppose each player i ∈ N independently
performs the update

π
(t+1)
i = PΠi

(
π
(t)
i − η∇πi Vri(π

(t))
)

(3.1)

where PΠi(·) is the projection onto player i’s policy space. Then, due to the separability
of the projection operator and the crucial fact that for any π ∈ Π, ∇πi Vri(π) = ∇πi Φ(π),
above update is equivalent to running a full PGA step on the potential function, i.e.,

π(t+1) = PΠ

(
π(t) − η∇πΦ(π(t))

)
.

Even though Φ is not known to the players, together with 2mγAmax
(1−γ)3 -smoothness of Φ

(see Lemma 4.4 of [LOPP22]), we can leverage this equivalence to analyze independent
PGA by invoking known results for convergence to stationary points from nonconvex
optimization. Using a playerwise version of gradient dominance, [LOPP22] show that if
π ∈ Π is ε-stationary, i.e., if

max
(π1+δ1,...,πm+δm)∈Π,∑i∈N ∥δi∥2≤1

∑
i∈N

δ⊤i ∇πi Φ(π) ≤ ε,

then π is a
√

SDε
1−γ -NE. For completeness, we restate their iteration complexity result for

the deterministic case with access to exact value function gradients.

Theorem 3.1 (Theorem 4.5, [LOPP22]) Let ε > 0, and suppose the distribution mismatch
coefficient D := maxπ∈Π ∥dπ

µ /µ∥∞ is finite. Then, starting with an arbitrary initial policy

π(0) ∈ Π and after running T = 16mγD2SAmaxΦmax

(1−γ)5ε2 iterations of independent PGA as in (3.1)

with step size η = (1−γ)3

2mγAmax
, there exists t ∈ [T] such that π(t) is an ε-NE.

In particular, we point out that smaller step sizes are required for MPGs with a larger
number of players, introducing an m-dependence into the iteration complexity.

3.2 A Turn-Based Best-Response Algorithm

Next, we describe a different approach for learning Nash equilibria in MPGs introduced
by [SMB22] that uses coordination to let players improve their policies in a turn-based
manner. The key observation is that while π−i remains fixed for some i ∈ N , π−i ∈ Π−i,
the problem for player i to find a best-response policy, i.e. a policy in

BRi(π−i) := arg min
π′

i∈Πi
Vri(π

′
i , π−i) ⊂ Πi,

reduces to solving a single-agent MDP. Observe that due to the potential structure, for
MPGs, it also holds that BRi(π−i) = arg minπ′

i∈Πi Φ(π′
i , π−i). Therefore, as long as π(t)

is not an ε-NE, there exists i ∈ N and π′
i ∈ BRi(π

(t)
−i ) such that

Vri(π
(t))− Vri(π

′
i , π

(t)
−i ) = Φ(π(t))− Φ(π′

i , π
(t)
−i ) > ε. (3.2)

Due to boundedness of Φ, this coordinate descent terminates after at most T = O(Φmax/ε)
update steps, if we can ensure (3.2) to hold for all 0 ≤ t ≤ T − 1 (see also proof of The-
orem 7, [SMB22]). This can be done by finding playerwise best-response policies in
a turn-based manner and comparing the respective value function improvements, as
detailed by Algorithm 1.
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3.3. Centralized Policy Gradient Ascent

Algorithm 1 Nash-CA ([SMB22])

1: initialization: π(0) ∈ Π arbitrary
2: for t = 0, . . . , T − 1 do
3: for i ∈ N do
4: find π̃

(t)
i ∈ BRi(π

(t)
−i ) and evaluate Vri(π̃

(t)
i )

5: ε
(t)
i = Vri(π

(t))− Vri(π̃
(t)
i , π

(t)
−i )

6: if maxi∈N ε
(t)
i > ε then

7: π(t+1) = (π̃
(t)
it

, π
(t)
−it

) for some it ∈ arg maxi∈N ε
(t)
i

8: else
9: return π(t)

Line 4 requires solving an MDP. In a stochastic setting, this can be implemented, e.g., via
a confidence bound version of value iteration, resulting in an overall sample complexity
of O(m/ε3) where O(·) hides polynomial dependencies in S, Amax, Φmax, and γ. If
we instead assume access to exact value function evaluation, standard value or policy
iteration algorithms as subroutines yield an overall O(m/ε) iteration complexity.

3.3 Centralized Policy Gradient Ascent

An undesirable property of both independent PGA and Nash-CA is that the iteration
complexity scales with the number of players m. In this section, we propose a centralized
version of a playerwise PGA that does not have any m-dependence in the iteration
complexity, i.e., that may be more suitable than existing methods for MPGs with a large
number of players.

For independent PGA, see Theorem 3.1, the m-dependence originates from the smooth-
ness parameter of Φ. We further observe that for any i ∈ N and π−i ∈ Π−i, the function
Φ(·, π−i) is 2γAi

(1−γ)3 -smooth. This motivates the use of coordination for selecting only one
player per iteration to update its policy. In the context of large-scale optimization, see
e.g. [Nes12], similar methods have been proposed under the name coordinate descent to
avoid full gradient computations in high-dimensional spaces. The update direction is
then usually selected randomly. In our setting, however, partial gradients are computed
simultaneously at each player; hence, we can afford to determine an optimal descent
direction. Algorithm 2 outlines our approach in detail. Note that to select it in Line 6,
the ∆(t)

i ’s need to be communicated among agents.

Algorithm 2 Centralized PGA (exact gradients setting)

1: initialization: π(0) ∈ Π arbitrary and η = (1−γ)3

2γAmax
for i ∈ N

2: for t = 0, . . . , T − 1 do
3: for i ∈ N simultaneously do
4: π̃

(t+1)
i = PΠi

(
π
(t)
i − η∇πi Vi(π

(t))
)

5: ∆(t)
i = ∥π̃

(t+1)
i − π

(t)
i ∥

6: π(t+1) = (π̃
(t+1)
it

, π
(t)
−it

) where it ∈ arg maxi∈N ∆(t)
i

Note that unlike in Nash-CA, Algorithm 1, a player’s turn consists of doing only a
single gradient step instead of finding a best-response policy. Since gradients, unlike best
responses, can be determined simultaneously, we save an m-factor in the inner loop.
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3.4. Towards Simultaneous Best-Response Algorithms

Next, we state and prove our iteration complexity result for centralized PGA as in
Algorithm 2.

Theorem 3.2 Let ε > 0, suppose the distribution mismatch coefficient D := maxπ∈Π ∥dπ
µ /µ∥∞

is finite, and choose step size η = (1−γ)3

2γAmax
. Then, starting with an arbitrary initial policy π(0) ∈ Π,

after running centralized PGA as in Algorithm 2 for T = 16γD2SAmaxΦmax
(1−γ)5ε2 iterations, there exists

t ∈ [T] such that π(t) is an ε-NE.

The proof of Theorem 3.2 is provided in Appendix A. Note that using techniques
analogous to, e.g., [LOPP22, DWZJ22, ZRL22] or what we present in Chapter 4, the
above insights carry over to the stochastic finite sample setting. We do not elaborate on
such results here, as all required ideas are already present in existing literature.

3.4 Towards Simultaneous Best-Response Algorithms

3.4.1 Challenges and Counterexample

A natural idea towards improving the sample complexity of independent Nash equi-
librium learning is to remove coordination from Nash-CA, e.g., by performing si-
multaneous instead of turn-based best-response updates. Formally, for π ∈ Π, let
BR(π) := (BR1(π−1), . . . , BRm(π−m)) ∈ Π. Then the simultaneous best-response update
is given by choosing π(t+1) ∈ BR(π(t)).

However, Proposition 3.3 points out a fundamental problem when naively performing
such simultaneous updates: We construct a two-player single-state Markov cooperative
game (MCG), i.e., an MPG where r1 = · · · = rm, and a policy π ∈ Π, such that all
players i ∈ N , if π−i remains fixed, may improve everyone’s value by updating πi to
BRi(π−i), but if a simultaneous best-response update is performed, the value worsens.

Proposition 3.3 There exists an MCG and a policy π ∈ Π such that for two players i ̸= j ∈ N ,
it holds that V(BRi(πi), π−i) < V(π) and V(BRj(πj), π−j) < V(π), but V(BR(π)) ≥ V(π),
where we may use the notation V = Vr1 = . . . = Vrm due to the MCG property.

Proof Consider a two-player single-state game that, with probability 1, terminates after
one step, i.e. γ = 0. Let S = {s} and A1 = A2 = {x, y}. Denote r := r1 = r2 and choose
for a1 ∈ A1, a2 ∈ A2,

r (s, (a1, a2)) =

{
0 if a1 = a2

1 else.

Let π ∈ Π be the policy such that π1(x | s) = 1, π2(y | s) = 1, and let π′ ∈ Π be the
policy such that π′

1(y | s) = 1, π′
2(x | s) = 1. Note that BR1(π2) = π′

1 and BR2(π1) = π′
2.

Then we have

V(BR1(π2), π2) = 0 < 1 = V(π) and
V(π1, BR2(π1)) = 0 < 1 = V(π) .

Moreover, it holds that

V(BR(π)) = V(BR1(π2), BR2(π1)) = 1 ≥ V(π). □

In the example of Proposition 3.3, one can further observe that BR(BR(π)) = π. We
conclude that simultaneous best-response updates do not converge for all MCGs (and

12



3.4. Towards Simultaneous Best-Response Algorithms

hence MPGs) and all initial policies. However, this oscillating behavior observed here for
such full simultaneous best-response updates may be due to “overshooting” equilibrium
policies. Simultaneously taking small steps towards BR(π) may still yield a converging
independent algorithm.

3.4.2 Related Ideas from Game Theory and Questions for Future Work

In game theory, it is common to study strategic normal-form games from a dynamical
systems perspective by considering the continuous-time dynamics of a game under a
certain strategy as a solution to a differential equation, see e.g. [CM14, Hop99, Mat92].
For instance, the best-response dynamics in potential games have been investigated
in [SMK18] and is given by the dynamical system

d
dt

π(t) ∈ BR(π(t))− π(t). (3.3)

By definition, Nash equilibria of the game coincide with equilibrium points of these
dynamics, i.e., with policies π such that π ∈ BR(π).

It is shown in [SMK18] that in potential games, the best-response (BR) dynamics (3.3)
converge to a Nash equilibrium for all initial policies (and, in fact, to a pure-strategy
NE for almost all initial policies). Moreover, it is proven that the BR dynamics converge
at an exponential rate, however, only locally for initial policies in a region around an
equilibrium point. Whether similar techniques can be used to show global convergence is
an interesting direction for future work. Moreover, this brings up the following questions:

• Can results for continuous time best-response dynamics be discretized, e.g., by
using a step size or some form of regularization (see also smoothed fictitious
play, [SP19]) to prevent the issue with the naive discrete simultaneous best-response
update presented in Proposition 3.3?

• How can agents compute a simultaneous best-response update in an MPG inde-
pendently, i.e., without taking turns as in Nash-CA? Recent work (see [MWPS22])
makes progress in this direction. However, such current results only show asymp-
totic convergence.

13



Chapter 4

Learning in Constrained
Markov Potential Games

In this chapter, we focus on learning in constrained Markov Potential Games, where
agents, besides reward maximization, have to contend with satisfying global constraints
that may depend on the joint behavior of all agents. While we have seen independent
learning algorithms for unconstrained MPGs in the previous chapter, for CMPGs, existing
algorithms with convergence guarantees require coordination among players. Indeed,
inspired by [SMB22], [ARHK23] recently proposed a coordinate ascent algorithm for
CMPGs in which each agent updates their policy in turn. At each time step, other
agents’ policies are fixed while the updating agent faces a constrained Markov Decision
Process (CMDP) to solve. When this coordination is not possible, as in the independent
learning protocol, the problem becomes more challenging as the environment is no
longer stationary from the viewpoint of each agent and the problem does not reduce
to solving a CMDP at each time step. This motivates the following question, which we
answer affirmatively in this chapter:

Can we design an independent learning algorithm for constrained MPGs with
non-asymptotic global convergence guarantees?

Moreover, we refer the reader to Table 4.1 for a schematic positioning of our work in the
recent literature.

centralized independent

MPG
Nash-CA
[SMB22]

independent PGA
[LOPP22]
[ZRL22]

[DWZJ22]

CMPG
CA-CMPG
[ARHK23]

Algorithm 3
this work

Table 4.1: Positioning of our work in the literature; ‘centralized’ means that the algorithm requires coordination
between players who take turns in updating their policy; for ‘independent’ learning, see Chapter 2.

4.1 An Independent Algorithm for Constrained MPGs

This first section presents our independent iProxCMPG algorithm for learning constrained
NE in CMPGs.
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4.1. An Independent Algorithm for Constrained MPGs

4.1.1 Motivation and Challenges

Before describing our approach, we discuss an alternative, natural but unsuccessful,
approach to motivate our algorithm design. This will allow us to highlight the challenges
arising from the combination of (a) the presence of coupled constraints, (b) the multi-
player setting, and (c) the independent learning protocol.

Our starting point is the known result that any maximizer of the potential function is an
NE of the game. This result was initially proved by [MS96] for normal form potential
games and later generalized to MPGs by [LOPP22] and to constrained MPGs more
recently ([ARHK23]). Therefore, in order to find an (approximate) constrained NE for
our CMPG1, we will consider solving the following constrained optimization problem:

min
π∈Πc

Φ(π) , (4.1)

where Φ is the potential function for our CMPG using the notations introduced in
Chapter 2. This problem involves a nonconvex objective with a nonconvex constraint
since the value function is a nonconvex function of the policy in general (see, e.g.,
Lemma 1 in [AKLM21]). However, although nonconvex optimization problems with
nonconvex constraints are notoriously hard, it turns out that problem (4.1) is still tractable
in the single agent setting. In this case, the problem boils down to a CMDP problem.
Despite its nonconvexity, the problem can be recast as a linear program in the space
of occupancy measures, which is a convex set (see Chapter 3 in [Alt99]). Then, strong
duality permits the design of primal-dual policy gradient algorithms to solve the problem
with convergence guarantees (see, e.g., [PCCFR19]).

Given those positive results for single-agent CMDPs, a natural approach is to derive a
primal-dual algorithm for our multi-agent problem (4.1) as it was proposed by [DDJB20].
In the latter work, a primal-dual policy gradient algorithm was proposed using the
Lagrangian function L(π, λ) := Φ(π) + λ(Vc(π) − α) where λ ≥ 0 is a Lagrange
multiplier. This algorithm can then be run independently by the different agents using
existing independent learning algorithms for the unconstrained setting ([LOPP22, ZRL22,
DWZJ22]). Unfortunately, it has been recently shown by [ARHK23] that strong duality
does not hold in general for the CMPG problem. Consequently, it is unclear how to
obtain guarantees for convergence to constrained NE using this duality approach. This is
due to the multi-agent nature of our problem. In particular, since the constraint couples
the agents’ individual policies, the set of state-action occupancy measures induced by
the joint policies of the players cannot be obviously split into several convex problems
involving the occupancy measures induced by each of the players’ policies. The well-
known challenge onon-stationarityity of the environment in multi-agent RL makes the
design of independent learning algorithms difficult. As a remedy, [ARHK23] resort to
coordination among players and propose a coordinate ascent algorithm for CMDPs. At
each time step and for every player i, by fixing the policy of other players but player i to
π−i, player i can learn a “best-response” policy by solving a CMDP since the environment
now becomes stationary from agent i’s viewpoint.

4.1.2 Proximal-policy Update with Regularized Constraint

We now describe our approach, which takes a different route. Our algorithm is inspired
by recent work in nonconvex optimization under nonconvex constraints ([BDL23, MLY20,
JG23]). Following their ideas, we consider the following proximal update with penalized

1Approximate KKT points of this problem will be related to approximate constrained NE of our CMPG.
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4.1. An Independent Algorithm for Constrained MPGs

constraints:
π(t+1) = arg min

π∈Π

{
Φ (π) +

1
2η

∥∥∥π − π(t)
∥∥∥2 ∣∣∣

Vc(π) +
1

2η

∥∥∥π − π(t)
∥∥∥2

+ β ≤ α
} (4.2)

where π(0) is a given initial joint policy, η > 0 is a step size and β > 0 an additional
slack. Observe that Vc(π(t+1)) + β − α ≤ −∥π(t+1) − π(t)∥2/2η . Hence, the policy π(t) is
feasible with slack β, i.e., Vc(π(t)) + β ≤ α, for every t ≥ 0. We introduce two additional
notations for convenience. Define for any joint policies π, π′ ∈ Π, and η > 0,

Φη,π′(π) := Φ(π) +
1

2η

∥∥π − π′∥∥2 ,

Vc
η,π′(π) := Vc(π) +

1
2η

∥∥π − π′∥∥2 ,

Πc
η,π′ :=

{
π ∈ Π | Vc

η,π′(π) + β ≤ α
}

.

Our update rule in (4.2) can then be rewritten as:

π(t+1) = arg min
π∈Πc

η,π(t)

Φη,π(t)(π) . (4.3)

We immediately observe that the above update rule is well-defined since Φη,π(t) and Vc
η,π(t)

are strongly convex for every t ≥ 0 for a suitable step size η. This is in contrast with the
original problem where both the potential function Φ and the constraint function Vc are
smooth but nonconvex. We also remark that if π(t) converges, then the regularization
term

∥∥∥π(t+1) − π(t)
∥∥∥ becomes small and the surrogate feasible region Πc

η,π(t) approaches
the original constraint set Πc up to the additional slack β.

Now, we discuss how to solve the proximal problem in (4.3) defining our main update
rule. To solve this strongly convex problem with strongly convex constraint, we adopt
a gradient switching algorithm proposed in [LZ20]. At each iteration k, our algorithm
performs a projected gradient descent step along either the gradient of the (regularized)
objective or the gradient of the constraint function depending on whether an estimate
of the constraint function satisfies the relaxed constraint Vc(π(t,k)) + β − α ≤ δk where
(δk) is a decreasing sequence converging to zero and hence progressively enforcing
the constraint. However, it is not immediate from the above procedure how to obtain
an independent learning algorithm specifying an update rule for each player without
coordination between the players. Recall, for instance that the potential function Φ is
unknown to the players in general, and full gradients of both the potential and constraint
functions w.r.t. the joint policy cannot be available to each agent since we exclude
coordination and centralization. To obtain our independent iProxCMPG, we propose
to use agent-wise updates where each agent runs the gradient switching algorithm
independently using only partial gradients of the potential and constraint functions
w.r.t. their individual policy. Notice that our subroutine algorithm deviates from the one
proposed in [LZ20] in that we use the estimate of the constraint function Vc instead of the
regularized constraint function Vη,π(t) . This is because the regularized constraint function
involves the joint policy in the regularization while the constraint value function can be
estimated independently.
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4.2. Convergence Analysis and Sample Complexity

4.1.3 Full Algorithm and Stochastic Setting

Below, we state the full iProxCMPG algorithm in the exact gradients case. Subsequently,
we describe how gradients and constraint function values can be estimated from trajectory
sampled in the stochastic setting.

Algorithm 3 iProxCMPG: independent Proximal-policy algorithm for CMPGs

1: initialization: π(0) ∈ Πξ s.t. Vc(π(0)) < α and suitably chosen
η, β, T, K, {(νk, δk, ρk)}0≤k≤K

2: for t = 0, . . . , T − 1 do
3: π

(t,0)
i = π

(t)
i for i ∈ N

4: for k = 0, . . . , K − 1 and i ∈ N simultaneously do

5: π
(t,k+1)
i =

PΠi,ξ

[
π
(t,k)
i − νk∇̂πi V

ri
η,π(t)(π

(t,k))
]

if V̂c(π(t,k)) + β − α ≤ δk

PΠi,ξ

[
π
(t,k)
i − νk∇̂πi V

c
η,π(t)(π

(t,k))
]

otherwise

6: B(t) = {⌊K/2⌋ ≤ k ≤ K | V̂c(π(t,k)) ≤ δk}

7: π
(t+1)
i = π

(t,k̂)
i where k̂ =

{
1 if B(t) = ∅
P(k̂ = k) =

(
∑k∈B(t) ρk

)−1
ρk else

8: output: π
(T)
i for i ∈ N

Remark 4.1 For our analysis, the index k̂ sampled in line 7 of Algorithm 3 is supposed to be
picked the same by all the players.

Stochastic setting. When exact gradients and value functions are not available, we
estimate them using sampled trajectories. For each joint policy π(t,k), every player i
samples a trajectory τi := (s(t,k)j , a(t,k)i,j , r(t,k)i,j , c(t,k)j )0≤j≤Te of length Te + 1 by executing their

own policy π
(t,k)
i . Here, s(t,k)0 ∼ µ and r(t,k)i,j , c(t,k)j respectively refer to the reward and cost

incurred by the i-th player at the j-th step. The gradients ∇πi Vri(π
(t,k)) and ∇πi Vc(π(t,k))

are replaced by their sample estimates

∇̂Vri
πi(π

(t,k)) := R(Te,t,k)
i ψTe

π
(t,k)
i

,

∇̂Vc
πi
(π(t,k)) := C(Te,t,k) ψTe

π
(t,k)
i

,
(4.4)

where R(Te,t,k)
i := ∑Te

j=0 r(t,k)i,j , C(Te,t,k) := ∑Te
j=0 c(t,k)j and

ψTe

π
(t,k)
i

:=
Te

∑
j=0

∇πi log π
(t,k)
i

(
a(t,k)i,j | s(t,k)j

)
.

Each agent estimates Vc(π(t,k)) by V̂c(π(t,k)) := C(Te,t,k) independently, using the cost
feedback information they receive.

4.2 Convergence Analysis and Sample Complexity

In this section, we establish the iteration complexity of Algorithm 3 in the deterministic
setting before stating its sample complexity in the stochastic setting. We first introduce
our assumptions. The first one guarantees the existence of a strictly feasible policy that
is available to the agents for initialization.
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4.2. Convergence Analysis and Sample Complexity

Assumption 4.2 The initial policy π(0) satisfies Vc(π(0)) < α .

A few remarks are in order regarding this assumption:

• Similar assumptions have been made in the related constrained optimization litera-
ture when dealing with nonconvex constraints ([BDL23, MLY20, JG23]). Otherwise,
satisfying a constraint may require finding a global minimizer which is computa-
tionally intractable in a general nonconvex setting. In our case, this corresponds
to finding the global minimizer of a potential function in a fully cooperative un-
constrained MPG. While this can be achieved in a single agent setting thanks
to the gradient dominance property ([AKLM21, Xia22]), such a global optimality
result is not available in the literature for our multi-agent setting to the best of our
knowledge.

• While finding a strictly feasible policy is involved in general, it may be possible
to find such a policy in some special cases, such as when the state space can
be factored, the probability transitions are independent across agents, and the
constraint cost functions are separable (see examples 1 and 2 in [ARHK23] for more
details).

In addition to initial feasibility, we require that Slater’s condition holds for each subprob-
lem given by a proximal-point update. This is ensured by the following uniform Slater’s
condition.

Assumption 4.3 Let η = 1
2LΦ

where LΦ is the smoothness parameter of Φ. Then, there exists
ζ > 0 such that for any strictly feasible π′ ∈ Π, i.e., Vc(π′) < α, there exists π ∈ Π
with Vc

η,π′(π) ≤ α − ζ.

We make the following comments:

• First, we point out that a strictly feasible π′ satisfies Vc
η,π′(π′) = Vc(π′) < α, i.e.,

the existence of a strictly feasible policy for the regularized constraint function Vc
η,π′

is trivially given. Assumption 4.3 additionally ensures that strict feasibility holds
with slack ζ where ζ is independent of π′.

• Similar constraint qualification conditions have been widely used in the noncon-
vex constrained optimization literature, see [BDL22], Table 1 for an overview. In
particular, Assumption 4.3 is similar to the uniform Slater’s condition of [MLY20].
Assumption 3 in [BDL23] is a strong feasibility assumption which implies Assump-
tion 4.3, and hence could also replace it here. Strong feasibility assumes existence of
a policy π such that Vc(π) ≤ α − diam(Π)2

η where diam(Π) := maxπ,π′∈Π ∥π − π′∥.

• A uniform strict feasibility assumption similar to Assumption 4.3 was used for
centralized NE-learning, see [ARHK23], Assumption 2.

4.2.1 Exact Gradients Case

In the noiseless setting with access to exact gradients, we achieve the following iteration
complexity result.

Theorem 4.4 Let Assumptions 4.2 and 4.3 hold and let the distribution mismatch coefficient
D := maxπ∈Π

∥∥∥dπ
µ /µ

∥∥∥
∞

be finite. For any ε > 0, after running iProxCMPG, Algorithm 3,

for ξ = 0, suitably chosen η, β, T, K, and {(νk, δk, ρk)}0≤k≤K, there exists t ∈ [T], such that
π(t) is a constrained ε-NE. The total iteration complexity is given by O(ε−4) where O(·) hides
polynomial dependencies in m, S, Amax, D, 1 − γ, and ζ.
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4.2. Convergence Analysis and Sample Complexity

The full proof of Theorem 4.4 is deferred to Appendix B.2.1. We briefly outline the key
steps below.

Proof (Idea) First, we show that K = O(ε−2) iterations of the inner loop yield a policy
that is feasible and achieves potential value sufficiently close to the exact proximal update
(4.3). For T = O(ε−2), standard arguments then imply existence of t ∈ [T] such that
∥π(t+1)−π(t)∥ = O(ε). It can further be shown that such π(t+1) satisfies a particular form
of approximate CMPG-specific KKT conditions for the original constrained optimization
problem (4.1). We then leverage the multi-agent structure to argue that for all i ∈ N , sim-
ilar KKT conditions also hold w.r.t. the playerwise problem min

πi∈Πi
c(π

(t+1)
−i )

Vri(πi, π
(t+1)
−i )

where π
(t+1)
−i is fixed. Finally, using playerwise gradient dominance (see e.g., Lemma D.3

in [LOPP22] or Lemma 2 in [GLMVG22]), one can bound the duality gap of player i’s
constrained problem for all i ∈ N which implies that π(t+1) is a constrained ε-NE. The
total iteration complexity is given by T · K = O(ε−4). □

4.2.2 Finite Sample Case

In the stochastic setting, when exact gradients are not available, the variance of the
stochastic policy gradients in (4.4) can be unbounded if the policies get closer to the
boundaries of the simplex (see, e.g., Eq. (13) in [GLMVG22]). Therefore, we consider
exploratory ξ-greedy policies to address this issue as in prior work ([DFG20, LOPP22,
DWZJ22, GLMVG22]). Define for any ξ ≥ 0, i ∈ N the subset of ξ-greedy policies

Πi,ξ := {π ∈ Π | ∀s ∈ S : πi (· | s) ≥ ξ/Ai} ,

which is used in Algorithm 3. We are now ready to state our sample complexity result.

Theorem 4.5 Let Assumptions 4.2 and 4.3 hold, and let D (as in Theorem 4.4) be finite. Then,
for any ε > 0, after running iProxCMPG based on finite sample estimates (see Algorithm 4)
for suitably chosen η, β, ξ, T, K, B, and {(νk, δk, ρk)}0≤k≤K, there exists t ∈ [T], such that in
expectation, π(t) is a constrained ε-NE. The total sample complexity is given by Õ(ε−7) where
Õ(·) hides polynomial dependencies in m, S, Amax, D, 1 − γ, and ζ, as well as logarithmic
dependencies in 1/ε.

We refer the reader to Appendix B.2.2 for the proof of Theorem 4.5. Below, we briefly
explain how we obtain our sample complexity result.

Proof (Idea) As in the exact gradients case, we require T = O(ε−2) iterations of the
outer loop. In the stochastic setting, our independent implementation of the CSA al-
gorithm ([LZ20]) still converges at a O(1/K)-rate due to strong convexity, but requires
sampling a batch of size B = O(ε−2) for estimating constraint function values at each iter-
ation. To counteract the variance of ξ-greedy gradient estimates (which in our case grows
as O(ε−1)), we need to set K = O(ε−3). All in all, we end up with sample complexity
T · K · B = O(ε−7) for proving existence of t ∈ [T] such that E

[∥∥∥π(t) − π(t+1)
∥∥∥] = O(ε).

Using similar arguments as for Theorem 4.4, this implies that π(t+1) is a constrained
ε-NE in expectation. □

Remark 4.6 Comparing our result to the state-of-the-art in the unconstrained case (O(ε−5),
[DWZJ22]), accounting for constraints comes at a cost, increasing the sample complexity by
a O(ε−2)-factor. In the centralized setting, a similar gap can be observed between best-known
results for unconstrained (O(ε−3), [SMB22]) vs. constrained (O(ε−5), [ARHK23]) NE-learning.
Whether this O(ε−2)-gap can be narrowed is an interesting open question for both centralized
and independent learning.
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4.3 Real-World Applications and Simulations

We test our iProxCMPG algorithm in two simple applications that can be modeled as
CMPGs and for which coordination among players is unrealistic. Both examples are
inspired by unconstrained variants presented in [NLKS22] who study MPGs.

4.3.1 Pollution Tax Model

Consider a simple environment with m agents representing, e.g., factories, two states,
pollution-free and polluted, and two actions, clean and dirty, corresponding to low and high
production volume. Starting in the pollution-free state, in each round, the environment
transitions to the polluted state if and only if at least one agent chooses dirty. Each agent’s
reward is the sum of its profit minus a pollution tax. In either state, the profit is Pc when
choosing clean and Pd when choosing dirty. The pollution tax is zero in the pollution-free,
and Tp in the polluted state. As pointed out by [NLKS22], due to rewards being separable
in the sense that ri(s, ai, a−i) = r′i(s) + r′′i (ai, a−i) and state transition probabilities being
state independent, the pollution tax model satisfies a sufficient condition under which
a Markov game is an MPG. For our simulations, we set Pc = 2, Pd = 4, and Tp = 4.
Due to the lack of incentives for agents to cooperate when promoting environmental
sustainability, requiring coordination is unrealistic in this example. Moreover, note that
the purpose of the pollution tax is to counteract pollution by penalizing dirty actions.
However, in practice, there may be additional global requirements on the minimum total
production volume. To model this as a CMPG, we charge a cost C per agent that chooses
clean and impose the constraint Vc(π) ≤ αC for appropriately chosen αC.

We run iProxCMPG on the resulting m-agent CMPG for m ∈ {2, 4, 8} and with C = 1, αC =
12. Fig. 4.1 shows mean and standard deviation (shaded region) across independent runs
of per-iteration potential and constraint values. We observe convergence to a constrained
NE under which the minimum production requirements are approximately satisfied.
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Figure 4.1: Potential (left, scaled to [0, 1]) and constraint (right) values of iProxCMPG for the m-agent pollution
tax model.

4.3.2 Marketplace for Distributed Energy Resources

As more and more small-scale electricity producers enter the electrical grids, a market-
place emerges. Each participant needs to decide how much energy to sell, given the cur-
rent supply and demand. The competitive nature of such marketplaces motivates study-
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S : energy demand

ai : energy contribution ri(s, a) : profit

c(s, a) : grid capacity

Figure 4.2: Schematic illustration of a distributed energy marketplace modeled as a CMPG.

ing the convergence of independent algorithms to NEs under the constraints imposed by
market rules. The CMPG we consider has states S = {0, . . . , S − 1} indicating the grid’s
current energy demand from high at 0 to low at S − 1. Action ai ∈ Ai = {0, . . . , Ai − 1}
represents the units of energy agent i contributes, for which it is rewarded with profit
ri(s, ai, a−i) = c0a2

i − c1a2
i ∑i∈N ai − aics

2 where c0, c1, c2 are model parameters. State transi-
tions are modeled by first sampling w ∼ U ({0, 1, . . . , W}) which models uncertainty due
to e.g. weather, and then setting s′ = max{0, min{S − 1, ∑i∈N ai − w}} with probability
0.9 and s′ = w otherwise. For our simulations, we set S = A = W = 5, c0 = 2, c1 = 0.25,
and c2 = 1.25. [NLKS22] show that the described game is indeed an MPG with Φ(π) =

Eπ,s0∼µ[∑Te
t=0 φst(at)] and φs(ai, a−i) = c0 ∑i∈N ai − c1 ∑i∈N a2

i − c1 ∑1≤i<j≤m aiaj − mcs
2.
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Figure 4.3: Potential (left) and constraint (right) values of iProxCMPG for the m-agent energy marketplace.

We extend this game into a CMPG by having the system incur a cost per unit of energy
provided to the grid, i.e., by defining c(s, a) = ∑i∈N ai for all s ∈ S , and requiring
Vc(π) ≤ αe where we set αe = 16. Fig. 4.3 shows convergence to a constrained NE where
players satisfy the energy provision bound on average.
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Chapter 5

Conclusion, Limitations, and Future Work

In this thesis, we studied Nash equilibrium learning in possibly constrained Markov
Potential Games with a focus on centralized vs. independent algorithms. In the un-
constrained case, we proposed a new centralized policy gradient-based algorithm that
leverages ideas from coordinate descent as previously used in large-scale optimization.
Our algorithm eliminates the m-dependence (number of players) present in the iteration
and sample complexity of existing centralized and independent methods and may there-
fore improve convergence for MPGs with a large number of players. We further give
partial negative results for a seemingly promising simultaneous (and thus independent)
best-response algorithm. As our main contribution, in the constrained case, we proposed
and analyzed the first independent learning algorithm with provable convergence to
Nash equilibria and illustrated its practical applicability in two simulations of real-world
environments.

Even though learning in MPGs has by now been studied in numerous works, general
answers to fundamental questions on the role of centralization vs. independence remain
elusive. So far, to the best of our knowledge, no meaningful separation between the
two information settings could be shown. While learning in constrained MPGs seemed
challenging without centralization, our independent iProxCMPG algorithm eliminates
this candidate for showing such separation. On the unconstrained side, however, our
improved centralized algorithm emerges as a new candidate for a complexity bound that
could potentially only be achieved via coordination.

More concretely, in the unconstrained setting, we list the following directions for future
work:

• By introducing coordination into an initially independent playerwise policy gra-
dient method, we decrease its complexity by an m-factor. Does this improvement
critically depend on centralization? Or is there also an independent NE-learning
algorithm for MPGs whose iteration/sample complexity does not depend on the
number of players m?

• Can the iteration/sample complexity gap between centralized and independent
learning (O(ε−1) vs. O(ε−2) for centralized, O(ε−3) vs. O(ε−5) for independent)
be narrowed? In particular, can the O(ε−3) sample complexity of Nash-CA be
matched by independent learning, and are there lower bounds improving over the
best known O(ε−2) (even for the centralized case)?

• Regarding the above two points: Can one prove lower bounds that specifically
capture the difficulty of independent learning?
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Our result on independent learning in constrained MPGs additionally raises the following
questions:

• Can the O(ε−6) sample complexity of iProxCMPG be improved to match (a) the
best known unconstrained rate of O(ε−4.5), or (b) the best known centralized
constrained rate of O(ε−5) (which itself may leave room for improvement)?

• Our algorithm and theoretical guarantees require the agents to run the same
algorithm: This may be seen as implicit coordination between agents. Can one
design fully independent learning dynamics for our constrained setting, where the
players may not even be aware of the existence of other players?1

• Can one go beyond the class of CMPGs for learning constrained Nash equilibria?

• Can function approximation be used to scale to large state-action spaces beyond
the tabular setting?

1Approaches (with asymptotic convergence results) in this direction have been made for unconstrained
MPGs in [MWPS22].
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Appendix A

Proofs for Chapter 3

In this part of the appendix, we provide the proof of our centralized policy gradient
algorithm presented in Chapter 3. First, we restate Theorem 3.2.

Theorem 3.2 Let ε > 0, suppose the distribution mismatch coefficient D := maxπ∈Π ∥dπ
µ /µ∥∞

is finite, and choose step size η = (1−γ)3

2γAmax
. Then, starting with an arbitrary initial policy

π(0) ∈ Π, after running coordinated PGA as in Algorithm 2 for T = 16γD2SAmaxΦmax
(1−γ)5ε2

iterations, there exists t ∈ [T] such that π(t) is an ε-NE. □

Proof First, it follows from Lemma B.9 that the function Φ(·, π−i) is 2γAmax
(1−γ)3 -smooth for

any i ∈ N and π−i ∈ Π−i. Using the definition of it in Algorithm 2, and a standard
descent lemma (Lemma 3.6, [Bub15]) together with our choice of η, for any t ≥ 0, it
holds that

Φ
(

π(t)
)
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= Φ
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, π
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∥∥∥π(t+1) − π(t)
∥∥∥2

where we point out that π
(t)
−it

= π
(t+1)
−it

. The last equality is due to the fact that only the
it-th player’s policy is updated in iteration t. Summing this inequality over all iterations
yields
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which implies that

1
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(1 − γ)3T
.

Therefore, with our choice of T = 16γD2SAmaxΦmax
(1−γ)5ε2 , there exists 0 ≤ t ≤ T − 1 such

that
∥∥∥π(t+1) − π(t)

∥∥∥ ≤ ε(1−γ)

2D
√

S
. Moreover, due to our choice of it, we know that for all

j ∈ N \ {it}, it holds that
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. Using Lemma D.2
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of [LOPP22], it follows that for all i ∈ N , π(t+1) is a ε(1−γ)

2D
√

S
-stationary point for Vri , i.e.,

that for all i ∈ N ,

max
π′

i∈Πi

〈
π
(t+1)
i − π′

i , ∇πi Vri(π
(t+1))

〉
≤ ε(1 − γ)

2D
.

Finally, suppose player i ∈ N deviates to some π∗
i and let π∗ = (π∗

i , π
(t+1)
−i ). Then,

applying the definition of the potential function and playerwise gradient dominance
(see [LOPP22], Lemma 4.3), we get

Vri(π
(t+1))− Vri(π

∗) = Φ(π(t+1))− Φ(π∗)

≤ 1
1 − γ

∥∥∥∥∥dπ∗
µ

µ

∥∥∥∥∥
∞

max
π′=(π′

i ,π
(t+1)
−i )

〈
π(t+1) − π′, ∇πi Φ(π(t+1))

〉
≤ ε

which completes the proof. □
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Appendix B

Proofs and Details for Chapter 4

B.1 iProxCMPG: Full Stochastic Algorithm

In this section, for the convenience of the reader, we report the full pseudo-code of
Algorithm 3 in the stochastic setting where exact gradients are not available. See
Algorithm 4.

Algorithm 4 iProxCMPG: independent proximal-policy algorithm for CMPGs

1: initialization: π(0) ∈ Πξ s.t. Vc(π(0)) < α and suitably chosen
η, β, ξ, T, K, {(νk, δk, ρk)}0≤k≤K

2: for t = 0, . . . , T − 1 do
3: π

(t,0)
i = π

(t)
i

4: for k = 0, . . . , K − 1 and i ∈ N simultaneously do

5: sample B trajectories {{(a(b)i,j , s(b)j , r(b)i,j , c(b)j )}T̂(b)
e

j=0}B
b=1 by following π

(t,k)
i

6: set V̂ri(π
(t,k)) = 1

B ∑B
b=1 ∑T̂(b)

e
j=0 r(b)i,j and V̂c(π(t,k)) = 1

B ∑B
b=1 ∑T̂(b)

e
j=0 c(b)j

7: ∇̂Vri
πi(π

(t,k)) = V̂ri(π
(t,k)) · 1

B ∑B
b=1 ∑T̂(b)

e
j=1 ∇ log πi(a(b)i,j | s(b)j )

8: ∇̂Vc
πi
(π(t,k)) = V̂c(π(t,k)) · 1

B ∑B
b=1 ∑T̂(b)

e
j=1 ∇ log πi(a(b)i,j | s(b)j )

9: π
(t,k+1)
i =

PΠi,ξ

[
π
(t,k)
i − νk∇̂πi Vri(π

(t,k))− νk
η (π

(t,k)
i − π

(t)
i )
]

if V̂c(π(t,k)) + β − α ≤ δk

PΠi,ξ

[
π
(t,k)
i − νk∇̂πi Vc(π(t,k))− νk

η (π
(t,k)
i − π

(t)
i )
]

otherwise

10: B(t) = {⌊K/2⌋ ≤ k ≤ K | V̂c(π(t,k)) ≤ δk}
11: π

(t+1)
i = π

(t,k̂)
i where k̂ = 1 if B(t) = ∅ and else sampled s.t. for k ∈ B(t),

P(k̂ = k) =
(
∑k∈B(t) ρk

)−1
ρk

12: output: π
(T)
i for i ∈ N

Remark B.1 For our analysis, the index k̂ sampled in line 11 of Algorithm 4 is supposed to be
picked the same by all the players.

B.2 Proofs for Section 4.2

Notation. For any integer n ≥ 1, we use the notation [n] := {1, . . . , n} throughout the
proofs.
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B.2. Proofs for Section 4.2

In this section, we provide complete proofs of our main results. We begin with the exact
gradients case before addressing the more involved finite sample case.

B.2.1 Proof of Theorem 4.4 – Exact Gradients Case

First, we restate Theorem 4.4.

Theorem 4.4 Let Assumptions 4.2 and 4.3 hold and let the distribution mismatch co-
efficient D := maxπ∈Π

∥∥∥dπ
µ /µ

∥∥∥
∞

be finite. For any ε > 0, after running iProxCMPG,

Algorithm 3, with ξ = 0, suitably chosen η, β, T, K, and {(νk, δk, ρk)}0≤k≤K, there exists
t ∈ [T], such that π(t) is a constrained ε-NE in expectation1. The total iteration complexity
is given by O

(
ε−4) where O(·) hides polynomial dependencies in m, S, Amax, D, 1 − γ,

and ζ. □

Before analyzing the outer loop of Algorithm 3, we begin by focusing on the proximal-
point update step. We first introduce some useful notation. Then, we explain how we
can use the switching gradient algorithm in Appendix B.3 for approximately solving the
proximal-point update step independently. We proceed by establishing guarantees that
will be important in the analysis of the outer loop of Algorithm 3.

Notation. Recall that for any policies π, π′ ∈ Π and any η > 0,

Φη,π′(π) = Φ(π) +
1

2η

∥∥π − π′∥∥2 ,

Vc
η,π′(π) = Vc(π) +

1
2η

∥∥π − π′∥∥2

Πc
η,π′ =

{
π ∈ Π | Vc

η,π′(π) ≤ α − β
}

.

Moreover, recall the following constrained optimization problem:

min
π∈Πc

η,π′
Φη,π′(π) . (ProxPb(η, π′))

In the following “≲” denotes inequality up to numerical constants. Moreover, let LΦ be
the smoothness constant of the functions Φ and Vc (see Lemma B.9) and let Φmax be an
upper bound2 on Φ. Recall that under Assumption 4.2, the initial policy π(0) is strictly
feasible. We denote the respective slack by ζ̄0 > 0, i.e., ζ̄0 := α − Vc(π(0)).

Next, we state and prove the guarantees provided by our proximal-point update subrou-
tine.

Lemma B.2 Let Assumption 4.2 hold and let 0 < ε̄ ≤ ζ̄0. Set β = ε̄, η = 1
2LΦ

, and ξ = 0.
Denote by π̃(t+1) the unique optimal solution to (ProxPb(η, π(t))). There exist K = O

(
ε̄−2) and

suitable choices of {(νk, δk, ρk)}0≤k≤K, such that lines 4-6 of Algorithm 3 guarantee that for any
t ∈ [T − 1],

E
[
Φη,π(t)(π(t+1))− Φη,π(t)(π̃(t+1))

]
≤ ε̄2,

E
[
Vc(π

(t+1))
]
≤ α ,

(B.1)

where the expectation is with respect to the randomness induced by the sampling of k̂ in line 11 of
Algorithm 4.

1Notice that here we take the expectation w.r.t. the randomness which is induced by the sampling of k̂
in line 11 of Algorithm 4.

2Such a bound is always trivially available.
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B.2. Proofs for Section 4.2

Proof We divide the proof into two steps.

• Step 1: Equivalent centralized update rule for our algorithm. First, we argue
that independently running the subroutine given by the inner loop of Algorithm 3,
i.e., lines 4-6, is equivalent to a centralized execution of the stochastic switching
subgradient algorithm (see Algorithm 5) applied to our proximal-point update
problem. Crucially, as observed by [LOPP22], Proposition B.1, for any i ∈ N and
π ∈ Π, it holds that ∇πi Φ(π) = ∇πi Vri(π). We can extend this observation to our
regularized potential and value functions, namely for any π′ ∈ Π,

∇πi Φη,π′(π) = ∇πi Φ(π) +
1
η

(
πi − π′

i
)

= ∇πi Vri(π) +
1
η

(
πi − π′

i
)

,

which is an expression that can be evaluated independently by player i, since access
to the joint policy π is not required. Together with separability of the projection
operator PΠξ , see e.g. [LOPP22], Lemma D.1, we have(

PΠi,ξ

[
π
(t,k)
i − νk∇πi V

ri
η,π(t,k)(π

(t,k))
])

i∈N
= PΠξ

[
π(t,k) − νk∇πΦη,π(t,k)(π(t,k))

]
,

and similarly, for the constraint value function,(
PΠi,ξ

[
π
(t,k)
i − νk∇πi V

c
η,π(t,k)(π

(t,k))
])

i∈N
= PΠξ

[
π(t,k) − νk∇πVc

η,π(t,k)(π
(t,k))

]
.

Moreover, since Vc(π(t,k)) can be estimated equally by each player due to the
cooperative nature of our constraint, we can conclude that Algorithm 3 is equivalent
to a centralized version where the independent, simultaneous update in line 5 is
replaced by the following centralized version:

π(t,k+1) =

PΠξ

[
π(t,k) − νk∇̂πΦη,π(t,k)(π(t,k))

]
if V̂c(π(t,k)) + β − α ≤ δk,

PΠξ

[
π(t,k) − νk∇̂πVc

η,π(t,k)(π
(t,k))

]
otherwise.

• Step 2: Induction on t. Next, to prove the claimed guarantee for all t ∈ [T − 1], we
proceed by induction on t. We will invoke results on the stochastic switching gradi-
ent algorithm (see CSA, Algorithm 5) that are separately presented in Appendix B.3
in the context of constrained optimization. By Assumption 4.2, since ε̄ ≤ ζ̄0 and
β = ε̄, we have Vc(π(0)) ≤ α − β. That is, for t = 0, the initial feasibility condition
of our CSA result, Theorem B.18 in Appendix B.3, holds for π(t). Note further that
in our deterministic case, Assumption B.14 (which is required for Theorem B.18)
holds, since by Lemma B.9 we have a bound on objective and constraint gradient
norms.

Hence, we can apply Theorem B.18 in the deterministic setting, i.e., with batch size
J = 1 and access to exact gradients and constraint function values, to Φη,π(t) and
Vc

η,π(t) with µ = LΦ and

M2 ≲ max
{

M2
G + µ2

G∆4, M2
F + µ2

F∆4
}
≲ M2

c + L2
Φdiam(Π)4 ,

in the notation of Theorem B.18. After plugging in the bounds on Mc, LΦ, and
diam(Π) from Lemma B.9, and choosing K as in the statement of this lemma,
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B.2. Proofs for Section 4.2

Theorem B.18 implies the desired bounds on constraint violation and optimality
gap w.r.t. π̃(t+1) in (B.1). This concludes the base case of the induction.

As induction hypothesis, suppose now that (B.1) holds for some t ∈ [T − 1]. Then,
due to β ≥ ε̄, Vc(π(t+1)) + β ≤ α + ε̄ implies that the initial feasibility condition of
Theorem B.18 is satisfied and hence with the same argument as above regarding
Assumption B.14, we can apply Theorem B.18 to conclude that at the end of iteration
t + 1 of Algorithm 3, the inner loop guarantees that

E
[
Φη,π(t+2)(π(t+2))− Φη,π(t+2)(π̃(t+2))

]
≤ ε̄2,

E
[
Vc(π

(t+2))
]
≤ α,

i.e., the inductive hypothesis also holds for t + 1. □

We next determine the number of iterations of the outer loop of Algorithm 3 required for
convergence in the following sense.

Lemma B.3 Let ε > 0 and set η = 1
2LΦ

. Suppose K is chosen such that the guarantee from

Lemma B.2 holds for ε̄2 = ε2

4η . Then, after T = 4ηΦmax
ε2 iterations of the outer loop of Algorithm 3

where Φmax is an upper bound of the potential function (i.e., ∀π ∈ Π, Φ(π) ≤ Φmax), there
exists 0 ≤ t ≤ T − 1 such that ∥π(t+1) − π(t)∥ ≤ ε.

Proof Let Ft denote the σ-field generated by the random variables given by the iterates
π(t) up to iteration t. Notice that this randomness is induced by the sampling of k̂ in
line 11 of Algorithm 4. By Lemma B.2, the inner loop of Algorithm 3 guarantees that for
any 0 ≤ t ≤ T − 1,

E

[
Φ(π(t+1)) +

1
2η

∥π(t+1) − π(t)∥2 | Ft

]
= E

[
Φη,π(t)(π(t+1)) | Ft

]
≤ E

[
Φη,π(t)(π̃(t+1)) | Ft

]
+ ε̄2

≤ Φη,π(t)(π(t)) + ε̄2

= Φ(π(t)) + ε̄2

where the second inequality is due to E
[
Vc

η,π(t)(π
(t)) | Ft

]
= E

[
Vc(π(t))

]
≤ α. Taking

total expectation in the above inequality, we obtain

E
[
∥π(t+1) − π(t)∥2

]
≤ 2η

(
E
[
Φ(π(t))

]
− E

[
Φ(π(t+1))

])
.

Summing the above inequality over 0 ≤ t ≤ T − 1, using the upper bound Φmax on the
potential function and plugging in our choices of η, T, and ε̄, we obtain

1
T

T−1

∑
t=0

E
[
∥π(t+1) − π(t)∥2

]
≤ 2η

(
ε̄2 +

1
T

T−1

∑
t=0

E
[
Φ(π(t))

]
− E

[
Φ(π(t+1))

])

≤ 2ηΦmax

T
+ 2ηε̄2

≤ ε2.

Using Jensen’s inequality, we conclude that there exists t ∈ [T − 1] such that

E
[
∥π(t+1) − π(t)∥

]
≤ ε. □
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B.2. Proofs for Section 4.2

Next, we aim to prove that the event ∥π(t+1) − π(t)∥ ≤ ε implies Nash-gap(π(t+1)) =
O(ε) where the constrained Nash-gap is defined as

Nash-gap(π∗) := max
i∈N

max
π′

i∈Πi
c(π

∗
−i)

Vri(π
∗)− Vri(π

′
i , π∗

−i) . (B.2)

We can then argue that E[∥π(t+1) − π(t)∥] ≤ ε implies E[Nash-gap(π(t+1))] = O(ε), i.e.,
that the policy π(t+1) is a constrained O(ε)-NE in expectation.

Towards this goal, we first show that a policy π(t+1) satisfying ∥π(t+1) − π(t)∥ = O(ε)

(as in the previous lemma) is a O(ε)-K̃KT policy for our initial constrained minimization
problem. The ε-K̃KT conditions are a slight modification of the standard ε-KKT condi-
tions adapted to our specific requirements (see Definition B.19 and Definition B.20 in
Appendix B.4). In the following lemma, we will be referring to (in-)exact solutions as
well as KKT and K̃KT conditions for different problems. Therefore, we first introduce
additional useful notation for clarity.

Notation. We refer to the following constrained optimization problem as (InitPb):

min
π∈Π

Φ(π) . (InitPb)

For the previously introduced (ProxPb(η, π(t))), we distinguish between the inexact solu-
tion resulting from the update which we denote by π(t+1), and the exact solution which
will be denoted by π̃(t+1) in the proof below. Furthermore, we define the Lagrangians
for the two problems as

L(π, λ) = Φ(π) + λ (Vc(π)− α) , (InitPb–L)

Lη,π′(π, λ) = Φη,π′(π) + λ
(

Vc
η,π′(π)− α + β

)
. (ProxPb(η, π′)–L)

Using Lemma B.2 and Lemma B.3, the following lemma shows that Algorithm 3 is
guaranteed to generate an O(ε)-K̃KT policy. Parts of the proof have appeared in a
similar form in the optimization literature (see Lemma 3.5 and Theorem 3.2 in [JG23],
and Theorem 5 in [BDL23]). The lemma below differs from these results since we
are in a smooth setting and prove convergence w.r.t. our notion of K̃KT conditions
rather than towards a point that is near an ε-KKT point. Moreover, our guarantee for the
proximal update subroutine is somewhat weaker due to the relaxed constraint satisfaction
condition that we use to switch between update types in the inner loop, see Lemma B.2.
Additionally, in order to achieve exact primal feasibility (instead of ε-approximate), we
employ a feasibility margin β.

Lemma B.4 Let Assumptions 4.2 and 4.3 hold. Let ε > 0 and choose ε̄, K, β as in Lemma B.2
and B.3. If π(t+1) is a policy such that ∥π(t+1) − π(t)∥ ≤ ε for some t ∈ [T − 1], then π(t+1) is a
(CKKT ε)-K̃KT policy of (InitPb) where CKKT is a positive constant such that CKKT ≲ m2.5 A1.5

maxS
(1−γ)4.5

√
ζ
.

Proof First, note that (ProxPb(η, π(t))) is a strongly convex optimization problem with
strongly convex constraints, which is sufficient for the existence of a unique optimum
π̃(t+1). Since by Assumption 4.3, Slater’s condition holds for (ProxPb(η, π′)) for any π′ ∈
Π, strong duality is given for (ProxPb(η, π(t))) and hence there exists a finite dual variable
λ̃(t+1) ≥ 0 forming a KKT pair with π̃(t+1). We first claim that ∥π̃(t+1) − π(t+1)∥ ≤ ε.
This can be seen as follows: By optimality of (π̃(t+1), λ̃(t+1)) for (ProxPb(η, π(t))), we have

λ̃(t+1)
(

Vc
η,π(t)(π̃

(t+1))− α + β
)
= 0 , (B.3)〈

∇πLη,π(t)(π̃(t+1), λ̃(t+1)), π(t+1) − π̃(t+1)
〉
≥ 0. (B.4)
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B.2. Proofs for Section 4.2

From Lemma B.9, we know that Lη,π(t)(·, λ̃(t+1)) is LΦ(1 + λ̃(t))-strongly convex. There-
fore, after rearranging the standard strong convexity lower bound, we get

LΦ

2

(
1 + λ̃(t+1)

)
∥π̃(t+1) − π(t+1)∥2

≤ Lη,π(t)(π(t+1), λ̃(t+1))−Lη,π(t)(π̃(t+1), λ̃(t+1))

−
〈
∇πLη,π(t)(π̃(t+1), λ̃(t+1)), π(t+1) − π̃(t+1)

〉
(a)
≤ Φη,π(t)(π(t+1))− Φη,π(t)(π̃(t+1))︸ ︷︷ ︸

≤ε̄2

+λ̃(t+1)
(

Vc(π
(t+1))− α − β

)
︸ ︷︷ ︸

≤0

(b)
≤ ε̄2 ,

where step (a) follows by applying (B.3) and (B.4), and step (b) by Lemma B.2, i.e. the
guarantee for π(t+1) provided by the algorithm’s inner loop. Then, it follows from the
previous inequality that

∥π̃(t+1) − π(t+1)∥ ≤

√
2ε̄2

LΦ
≤ ε√

2
≤ ε. (B.5)

Using the fact that (π̃(t+1), λ̃(t+1)) is a KKT pair for (ProxPb(η, π(t))), we now argue that
(π(t+1), λ̃(t+1)) is a (CKKT ε)-K̃KT pair for (InitPb) (see Definition B.20 in Appendix B.4).
We check each one of the requirements of the definition in what follows.

• Exact primal feasibility: By Lemma B.2, we know that Vc(π(t+1)) ≤ α for any
0 ≤ t ≤ T − 1.

• Dual feasibility: This immediately holds by dual feasibility of (π̃(t+1), λ̃(t+1)) for
(ProxPb(η, π(t))).

• Complementary slackness: In the case of λ̃(t+1) = 0, we clearly have

|λ̃(t+1)
(

Vc(π
(t+1))− α

)
| = 0 ≤ ε.

Otherwise, we have

Vc(π
(t+1))

(a)
≥ Vc(π̃

(t+1))− Mcε

(b)
= α − β − 1

2η
∥π̃(t+1) − π(t)∥2 − Mcε

(c)
≥ α − ε2

η
−
(

Mc +
1

2
√

η

)
ε ,

(B.6)

where (a) follows from Mc Lipschitz continuity of Vc (see Lemma B.9-item (1))
and Eq. (B.5), (b) stems from complementary slackness of (π̃(t+1), λ̃(t+1)) for
(ProxPb(η, π(t))) which states that Vc

η,π(t)(π̃
(t+1))− α + β = 0. To obtain inequal-

ity (c), observe that using the bound from (B.5), our assumption on ∥π(t+1) − π(t)∥,
and the triangle inequality, we have

∥π̃(t+1) − π(t)∥ ≤ ∥π̃(t+1) − π(t+1)∥+ ∥π(t+1) − π(t)∥ ≤ 2ε.
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B.2. Proofs for Section 4.2

Combining (B.6) with the upper bound Vc(π(t+1)) ≤ α from primal feasibility, we
get ∣∣∣λ̃(t+1)

(
Vc(π

(t+1))− α
)∣∣∣ ≤ λ̃(t+1)

(
ε2

η
+ Mcε +

ε

2
√

η

)
. (B.7)

We now show that the dual variable λ̃(t+1) is bounded by a constant depending on
ζ using Assumption 4.3 and strong duality. Indeed, we have

λ̃(t+1) ≤

∥∥∥∇πΦ(π̃(t+1))
∥∥∥+ η−1

∥∥∥π̃(t+1) − π(t)
∥∥∥√

ζη−1
≤ Mc + 4εη−1√

ζη−1
, (B.8)

where the first inequality follows from the proof of Lemma 1 in [MLY20], whereas
the second inequality uses Lipschitzness of the potential function (see Lemma B.9)
and the fact that

∥∥∥π̃(t+1) − π(t)
∥∥∥ ≤ 2ε. Combining (B.7) and (B.8), and using the

bounds on Mc and LΦ from Lemma B.9, we obtain the desired CKKTε-complementary
slackness.

• Variational Lagrangian stationarity: Suppose by contradiction that the Lagrangian

stationarity condition that comes with the 2ε(1+λ̃(t+1))
η -KKT conditions does not hold

for π̃(t+1) and (InitPb). Then there exists ν ∈ NΠ(π̃
(t+1), λ̃(t+1)) (normal cone to

the convex set of policies Π) such that

∇πLη,π(t)(π̃(t+1), λ̃(t+1)) + ν = 0 and∥∥∥∇πL(π̃(t+1), λ̃(t+1)) + ν
∥∥∥ >

2ε(1 + λ̃(t+1))

η

where the equality is by Lagrangian stationarity of π̃(t+1) for (ProxPb(η, π(t))) and
the inequality is due to the above-assumed lack of Lagrangian stationarity of π̃(t+1)

for (InitPb). Plugging in the definition of Lη,π(t)(π̃(t+1), λ̃(t+1)) and combining the
equality and inequality above, one can conclude that

2ε(1 + λ̃(t+1))

η
<
∥∥∥∇πL(π̃(t+1), λ̃(t+1)) + ν

∥∥∥ =
1 + λ̃(t+1)

η

∥∥∥π̃(t+1) − π(t)
∥∥∥ ,

which contradicts the inequality
∥∥∥π̃(t+1) − π(t)

∥∥∥ ≤ 2ε. Hence using the bound

on λ̃(t+1) from (B.8), the policy π̃(t+1) is a C̃ε-KKT policy for (InitPb) with C̃ =

2
η

(
1 + Mc+2εη−1√

ζη−1

)
.

By Lemma B.21, this implies that

max
π′∈Π

〈
π̃(t+1) − π′,∇πL(π̃(t+1), λ̃(t+1))

〉
≤ diam(Π)C̃ε. (B.9)

Then, in view of showing the variational Lagrangian stationarity for the pair (π(t+1), λ̃(t+1))
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for (InitPb), we can write

max
π′∈Π

〈
π(t+1) − π′,∇πL(π(t+1), λ̃(t+1))

〉
= max

π′∈Π

〈
π̃(t+1) − π′,∇πL(π(t+1), λ̃(t+1))

〉
(B.10)

+
〈

π(t+1) − π̃(t+1),∇πL(π(t+1), λ̃(t+1))
〉

≤ max
π′∈Π

〈
π̃(t+1) − π′,∇πL(π(t+1), λ̃(t+1))

〉
(B.11)

+
∥∥∥π(t+1) − π̃(t+1)

∥∥∥ · ∥∥∥∇πL(π(t+1), λ̃(t+1))
∥∥∥

≤ max
π′∈Π

〈
π̃(t+1) − π′,∇πL(π(t+1), λ̃(t+1))

〉
+ ε(1 + λ̃(t+1))Mc . (B.12)

We now bound the first term in the above inequality by using 2LΦ(1 + λ̃(t+1))-
smoothness of ∇πL(·, λ̃(t+1)) and (B.9). Using the fact that

max
π∈Π

(A(π) + B(π)) ≤ max
π∈Π

A(π) + max
π∈Π

B(π)

for any functions A(π), B(π), we have

max
π′∈Π

〈
π̃(t+1) − π′,∇πL(π(t+1), λ̃(t+1))

〉
≤ max

π′∈Π

〈
π̃(t+1) − π′,∇πL(π(t+1), λ̃(t+1))−∇πL(π̃(t+1), λ̃(t+1))

〉
+ max

π′∈Π

〈
π̃(t+1) − π′,∇πL(π̃(t+1), λ̃(t+1))

〉
≤ max

π′∈Π

∥∥∥π̃(t+1) − π′
∥∥∥ · 2LΦ(1 + λ̃(t+1))

∥∥∥π̃(t+1) − π(t+1)
∥∥∥+ diam(Π)C̃ε

≤
(

2diam(Π)LΦ(1 + λ̃(t+1)) + diam(Π)C̃
)

ε .

Combining the above inequality with (B.10), we obtain

max
π′∈Π

〈
π(t+1) − π′,∇πL(π(t+1), λ̃(t+1))

〉
≤
(
(1 + λ̃(t+1))Mc + 2diam(Π)LΦ(1 + λ̃(t+1)) + diam(Π)C̃

)
ε.

Finally, we use the bound on λ̃(t+1) from (B.8), as well as bounds on diam(Π), LΦ, and
Mc from Lemma B.9, to conclude that π(t+1) is a CKKTε-K̃KT policy for (InitPb). □

To complete the analysis, it now remains to show that an O(ε)-K̃KT policy of (InitPb) is a
constrained O(ε)-NE. For this, we leverage the playerwise gradient domination property
satisfied by the potential function and the constraint value function. We first introduce
some notations.

Notation. For each player i ∈ N and each policy π−i ∈ Π−i, consider the playerwise
constrained optimization problem given by

min
πi∈Πi

c(π−i)
Vri (πi, π−i) . (PlayerPb(π−i))

The respective Lagrangian Lπ−i : Πi × R≥0 → R is defined for every πi ∈ Πi and
every λ ≥ 0 by

Lπ−i (πi, λ) = Φ(πi, π−i) + λ (Vc(πi, π−i)− α) . (PlayerPb(π−i)–L)
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Lemma B.5 Let π ∈ Π be an ε-K̃KT policy of (InitPb). Then π is a constrained CNE ε-NE
where CNE ≲ D

1−γ + 1.

Proof The proof of the lemma proceeds in two steps:

• Step 1. We show that if π is an O(ε)-K̃KT policy of (InitPb), then for all i ∈ N , πi

is an O(ε)-K̃KT policy of (PlayerPb(π−i)).

• Step 2. We conclude that each player cannot significantly improve its policy πi
while staying within Πi

c(π−i) which means π is a constrained O(ε)-NE.

We provide a proof of each one of the steps successively.

• Step 1: Let λ ≥ 0 be a dual variable such that (π, λ) is an ε-K̃KT pair of (InitPb),
and let i ∈ N be arbitrary. We show that (πi, λ) is an ε-K̃KT pair of (PlayerPb(π−i))
by checking that the respective K̃KT conditions hold. For dual and exact primal
feasibility, as well as complementary slackness, this is immediate since the condi-
tions are equivalent for (InitPb) and (PlayerPb(π−i)). For variational Lagrangian
stationarity, observe that

max
π′

i∈Πi

〈
πi − π′

i ,∇πiLπ−i(πi, λ)
〉
= max

π′
i∈Πi

〈
π − (π′

i , π−i),∇πL(π, λ)
〉

≤ max
π′∈Π

〈
π − π′,∇πL(π, λ)

〉
≤ ε ,

where the first equality is due to ∇πiL (π, λ) = ∇πiLπ−i (πi, λ) and the fact that
all terms except for πi − π′

i vanish in the first argument of the scalar product. The
second inequality is because (π′

i , π−i) ∈ Π, and the final step is by Lagrangian
stationarity of π for (InitPb).

• Step 2: Let i ∈ N and consider the MDP Mλ, λ ≥ 0, with state space S , action
space Ai, probability transition kernel Pλ, reward rλ, and initial distribution µ
where

Pλ(s′ | s, ai) := Ea−i∼π−i((ai ,·)|s)
[
P(s′ | s, (ai, a−i))

]
rλ(s, ai) := Ea−i∼π−i((ai ,·)|s) [ri(s, (ai, a−i)) + λ c(s, (ai, a−i))] .

Observe that Lπ−i (πi, λ) is the value function associated to the policy πi in the
MDP Mλ, and hence gradient domination holds [AKLM21], i.e., we have

Lπ−i(πi, λ)− min
π̃i∈Πi

Lπ−i(π̃i, λ) ≤ D
1 − γ

max
π′

i∈Πi

〈
πi − π′

i ,∇πiLπ−i(πi, λ)
〉

,

where D is the distribution mismatch coefficient, supposed to be finite. Using Propo-
sition B.22 in Appendix B.4 for C1 = 0, and using the definition of the playerwise
primal optimum, see (PlayerPb(π−i)), we then get

Vri(π)− min
π∗

i ∈Πci (π−i)
Vi(π

∗
i , π−i) ≤

(
D

1 − γ
+ 1
)

ε.

Since additionally we have exact primal feasibility of π for (InitPb), the result
follows by definition of the constrained ε-NE. □

Finally, we put together above lemmas to prove the main theorem.
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Proof (Proof of Theorem 4.4) Let ε̄2 = LΦε2

C2
KKTC2

NE
. Then with K = O

(
ε−2), and T =

O
(
ε−2), Lemma B.2 and Lemma B.3 imply that there exists 0 ≤ t ≤ T − 1 such that

E[∥π(t+1) − π(t)∥] ≤ ε
CKKTCNE

. We use Lemma B.4 to conclude that π(t+1) is a ε/CNE-K̃KT
policy of (InitPb). Then, by Lemma B.5, π(t+1) is a constrained ε-NE. The total iteration
complexity is bounded by T · K = O

(
ε−4). □

B.2.2 Proof of Theorem 4.5 – Finite Sample Case

Moving on to the stochastic setting, we first restate Theorem 4.5.

Theorem 4.5 Let Assumptions 4.2 and 4.3 hold, and let D (as in Theorem 4.4) be finite.
Then, for any ε > 0, after running iProxCMPG based on finite sample estimates (see
Algorithm 4) for suitably chosen η, β, ξ, T, K, B, and {(νk, δk, ρk)}0≤k≤K, there exists t ∈ [T],
such that in expectation, π(t) is a constrained ε-NE. The total sample complexity is given
by Õ

(
ε−7) where Õ(·) hides polynomial dependencies in m, S, Amax, D, 1 − γ, and ζ, as

well as logarithmic dependencies in 1/ε. □

Similar to the deterministic case, we begin by proving the guarantees provided by the
inner loop of Algorithm 4.

Lemma B.6 Let Assumption 4.2 hold, let ε̄ > 0 and set β = ε̄, η = 1
2LΦ

, ξ = ε̄
√

2η. Then, there
exist K = Õ

(
ε̄−3), B = Õ

(
ε̄−2), and suitable choices of {(νk, δk, ρk)}0≤k≤K, such that lines

4-11 of Algorithm 4 guarantee that for any t ∈ [T − 1],

E
[
Φη,π(t)(π(t+1))− Φη,π(t)(π̃(t+1))

]
≤ ε̄2,

E
[
Vc(π

(t+1))
]
≤ α ,

(B.13)

where π̃(t+1) denotes the unique optimal solution to (ProxPb(η, π(t))).

Proof The result follows similarly as for Lemma B.2 in the deterministic case. We hence
only point out differences. In order to ensure bounded norms of gradient estimates, we
use ξ-greedy policies. Then, according to Lemma B.11, the second moment of value and
constraint gradient estimates is bounded by O(1/ξ). The concentration result shown in
Lemma B.12 ensures that constraint value estimates follow a sub-exponential distribution.
Therefore, Assumption B.14, see Appendix B.3 on guarantees for our subroutine, is
satisfied. We can thus apply the respective Theorem B.18 for optimizing over Πξ , and
with µ = LΦ and M2 ≲ max

{
M2

G + µ2
G∆4, M2

F + µ2
F∆4} ≲ 24A2

max
ξ(1−γ)4 + L2

Φdiam(Π)4. After
plugging bounds on LΦ, and diam(Π) from Lemma B.9, and choosing K and B as stated,
Theorem B.18 implies the desired bounds via the same arguments as in the proof of
Lemma B.2. □

Next, we analyze the convergence of our main proximal-point method, Algorithm 4.
More concretely, we bound the required sample complexity for ensuring that for some
ε > 0, there exist iterates π(t), π(t+1) such that ∥π(t) − π(t+1)∥ = O(ε). In the following,
we will then prove that this implies convergence to a constrained O(ε)-NE.

Similarly to the deterministic case, we next determine the number of updates needed
until convergence in the following sense. The next lemma is analogous to its deterministic
counterpart Lemma B.3.

Lemma B.7 Let ε > 0 and set η = 1
2LΦ

. Suppose K is chosen such that the guarantee from

Lemma B.6 holds for ε̄2 = ε2

4η . Then after T = 4ηΦmax
ε2 iterations of the outer loop of Algorithm 4

where Φmax is an upper bound of the potential function (i.e., ∀π ∈ Π, Φ(π) ≤ Φmax), there
exists 0 ≤ t ≤ T − 1 such that E[∥π(t+1) − π(t)∥] ≤ ε.
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Proof The proof follows the same lines as the proof of Lemma B.3 upon replacing
Lemma B.2 by Lemma B.6. We do not reproduce it here for conciseness.

Next, we prove that the event ∥π(t+1) − π(t)∥ ≤ ε implies Nash-gap(π(t+1)) = O(ε), in
order to argue that E[∥π(t+1) − π(t)∥] ≤ ε implies E[Nash-gap(π(t+1))] = O(ε).

Recall that in Lemma B.4 we have already shown ∥π(t+1) − π(t)∥ ≤ ε to imply that π(t+1)

is a CKKTε-K̃KT policy of (InitPb) which equivalently holds in the stochastic ξ-greedy
setting. Arguing that a ε-K̃KT policy is a constrained O(ε)-NE, however, requires an
adapted proof, since here in each iteration we solve the subproblem over Πξ instead
of Π, i.e., the K̃KT conditions hold w.r.t. Πξ . The following lemma is an adjustment of
Lemma B.5 for this fact.

Lemma B.8 Let π ∈ Πξ be an ε-K̃KT policy of (InitPb) (where K̃KT are w.r.t. Πξ) and ξ = ε.
Then π is a constrained ĈNE ε-NE where ĈNE ≲ D

1−γ + m
√

SAmaxD
(1−γ)4.5 + 1.

Proof We divide the proof into two steps:

• Step 1: Analogously to step 1 of Lemma B.5, one can show that (πi, λ) is an ε-K̃KT
pair of (PlayerPb(π−i)).

• Step 2: Let i ∈ N and consider the MDP M̃λ (for λ ≥ 0) with state space S , action
space Ai, transition probability kernel P̃, reward r̃λ, discount factor γ, and initial
distribution µ where

P̃(s′ | s, ai) := Ea−i∼π−i(·|s)
[
P(s′ | s, (ai, a−i))

]
,

r̃λ(s, ai) := Ea−i∼π−i(·|s) [ri(s, (ai, a−i)) + λ c(s, (ai, a−i))] .

Observe that Lπ−i (πi, λ) is the value function associated to the policy πi for M̃λ,
and hence gradient domination holds [AKLM21]. In our particular case of π being
a ξ-greedy policy, we can also show a similar inequality, even w.r.t. the non-ξ-greedy
optimum. Let

π̂i ∈ arg max
π′

i∈Πi

〈
πi − π′

i ,∇πiLπ−i(πi, λ)
〉

,

π̂
ξ
i ∈ arg max

π′
i∈Πi,ξ

〈
πi − π′

i ,∇πiLπ−i(πi, λ)
〉

.

Then, we have

Lπ−i(πi, λ)− min
π∗

i ∈Πi
Lπ−i(π

∗
i , λ)

≤ 1
1 − γ

∥∥∥∥∥dπ∗
i ,π−i

µ

µ

∥∥∥∥∥
∞

〈
πi − π̂i∇πiLπ−i(πi, λ)

〉
=

1
1 − γ

∥∥∥∥∥dπ∗
i ,π−i

µ

µ

∥∥∥∥∥
∞

〈
πi − π̂

ξ
i ,∇πiLπ−i(πi, λ)

〉
+
〈

π̂
ξ
i − π̂i,∇πiLπ−i(πi, λ)

〉
.
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We further bound the last term above as follows〈
π̂

ξ
i − π̂i,∇πiLπ−i(πi, λ)

〉
= max

π
ξ
i ∈Πi,ξ

〈
π

ξ
i ,∇πiLπ−i(πi, λ)

〉
− max

πi∈Πi

〈
πi,∇πiLπ−i(πi, λ)

〉
(a)
≤ ξ

√
S
∥∥∇πiLπ−i(πi, λ)

∥∥
(b)
≤ ξ

√
S(1 + λ)Mc .

In the above inequalities, (a) follows from using Lemma B.10 to obtain

max
π

ξ
i ∈Πi,ξ

〈
π

ξ
i ,∇πiLπ−i(πi, λ)

〉
≤ max

πi∈Πi

〈
πi,∇πiLπ−i(πi, λ)

〉
+ ∑

ai ,s

ξ

Ai
[∇πiLπ−i(πi, λ)](ai | s) .

Using the fact that for any x ∈ Rd, ∥x∥1 ≤
√

d∥x∥2, we further get

∑
ai ,s

ξ

Ai
[∇πiLπ−i(πi, λ)](ai | s) =

ξ

Ai
∥∇πiLπ−i(πi, λ)∥1

≤ ξ

Ai

√
AiS ∥∇πiLπ−i(πi, λ)∥

≤ ζ
√

S ∥∇πiLπ−i(πi, λ)∥ .

The bound used in (b) follows from Lipschitz continuity, see Lemma B.9. We
conclude that

Lπ−i(πi, λ)− min
π∗

i ∈Πi
Lπ−i(π

∗
i , λ) (B.14)

≤ 1
1 − γ

∥∥∥∥∥dπ∗
i ,π−i

µ

µ

∥∥∥∥∥
∞

[〈
πi − π̂i∇πiLπ−i(πi, λ)

〉
+ ξ

√
S(1 + λ)Mc

]
. (B.15)

Applying Proposition B.22, see Appendix B.4.2, with ξ = ε, bounding the distribu-
tion mismatch coefficient by D, and using the definition of the playerwise primal
optimum, see (PlayerPb(π−i)), we then get

Vi(π)− min
π∗

i ∈Πci (π−i)
Vi(π

∗
i , π−i) ≤

(
D

1 − γ
+

(1 + λ)
√

SMcD
1 − γ

+ 1

)
ε

≤
(

D
1 − γ

+
m
√

SAmaxD
(1 − γ)4.5 + 1

)
ε.

where for the second inequality we use (B.8) and our bounds on Mc and LΦ from
Lemma B.9. Since additionally, we have exact primal feasibility of π for (InitPb) by
the K̃KT conditions, the result follows by definition of a constrained ε-NE. □

Finally, we put together the above lemmas to prove our main theorem in the stochastic
setting.

Proof (Proof of Theorem 4.5) Let ε̄2 = LΦε2

C2
KKTĈ2

NE
. Then with K = Õ

(
ε−3), B = Õ

(
ε−2),

and T = O
(
ε−2), Lemma B.2 and Lemma B.3 imply that there exists t ∈ [T − 1] such that

E[∥π(t+1) − π(t)∥] ≤ ε
CKKTĈNE

. We use Lemma B.4 to conclude that π(t+1) is a ε/ĈNE-K̃KT

policy of (InitPb) in expectation. Then, by Lemma B.5, π(t+1) is a constrained ε-NE in
expectation. The total sample complexity is bounded by T · K · B = Õ

(
ε−7). □
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B.2.3 Other Technical Lemmas

The next lemma collects standard regularity properties of the value and potential func-
tions.

Lemma B.9 The following statements hold true.

1. The functions Φ and Vc are Mc-Lipschitz continuous over Π with Mc =
√

mAmax
(1−γ)2 . This

immediately implies that ∥∇Φ(π)∥ ≤ Mc and ∥∇Vc(π)∥ ≤ Mc, for all π ∈ Π.

2. For any i ∈ N and any π−i ∈ Π−i, the function Vri (·, π−i) is Li-smooth with Li =
2γAi
(1−γ)3

and hence Li-weakly convex.

3. The functions Φ and Vc are LΦ-smooth with LΦ = m · maxi Li =
2mγAmax
(1−γ)3 and hence LΦ-

weakly convex.

4. For η = 1
2LΦ

and any π′ ∈ Π, the regularized function Φη,π′(π) = Φ(π)+ LΦ ∥π − π′∥2

is LΦ-strongly convex and the functions Φη,π′ , Vc
η,π′ are both 2LΦ-smooth.

5. For any λ ∈ R, π′ ∈ Π and η = 1
2LΦ

, L (·, λ) = Φ(·) + λVc(·) is LΦ(1 + λ)-smooth,
and Lη,π′ (·, λ) = Φη,π′(·) + λVc

η,π′(·) is 2LΦ(1 + λ)-smooth. Hence Lη,π′ (·, λ) is also
LΦ(1 + λ)-strongly convex.

Proof Item 2 has been proved in [AKLM21], Lemma D.3. Item 3 has been reported
in [LOPP22], Lemma D.4. Item 4 immediately follows from item 3. We now prove item 5
for L, the result for Lη,π′ follows similarly. Using the definition of the Lagrangian and
the triangle inequality, for any λ ∈ R and π, π′ ∈ Π,∥∥∇πL (π, λ)−∇πL

(
π′, λ

)∥∥ ≤
∥∥∇Φ(π)−∇Φ(π′)

∥∥+ λ
∥∥∇Vc(π)−∇Vc(π

′)
∥∥

≤ LΦ
∥∥π − π′∥∥+ λLΦ

∥∥π − π′∥∥
≤ LΦ(1 + λ)

∥∥π − π′∥∥ .

To show item 1, Lipschitz continuity of Φ and Vc, observe that for any i ∈ N , π ∈ Π and
π′

i ∈ Πi, by using Lemma 32 of [ZMD+22] in the second step, we have∣∣Φ(πi, π−i)− Φ(π′
i , π−i)

∣∣ = ∣∣Vri(πi, π−i)− Vri(π
′
i , π−i)

∣∣
≤ 1

(1 − γ)2 max
s∈S

∥∥πi(· | s)− π′
i(· | s)

∥∥
1

≤
√

Ai

(1 − γ)2 max
s∈S

∥∥πi(· | s)− π′
i(· | s)

∥∥
2

≤
√

Ai

(1 − γ)2

∥∥πi − π′
i
∥∥

2

where in the third step we use the fact that for any x ∈ Rd, ∥x∥1 ≤
√

d ∥x∥2. Then, the
following decomposition yields the result: For any π, π′ ∈ Π,

∣∣Φ(π)− Φ(π′)
∣∣ = ∣∣∣∣∣∑i∈N Φ(π′

1, . . . , π′
i−1, πi, πi+1, . . . , πm)− Φ(π′

1, . . . , π′
i−1, π′

i , πi+1, . . . , πm)

∣∣∣∣∣
≤ ∑

i∈N

∣∣Φ(π′
1, . . . , π′

i−1, πi, πi+1, . . . , πm)− Φ(π′
1, . . . , π′

i−1, π′
i , πi+1, . . . , πm)

∣∣
≤ 1

(1 − γ)2 ∑
i∈N

√
Ai
∥∥πi − π′

i
∥∥

≤
√

mAmax

(1 − γ)2

∥∥π − π′∥∥ ,
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where in the second inequality we apply the above result for playerwise deviations, and
the last step is again due to the fact that for any x ∈ Rd, ∥x∥1 ≤

√
d ∥x∥2. The result

follows similarly for Vc. □

The next lemma is an immediate result showing that any ξ-greedy playerwise policy
πi ∈ Πi,ξ (see definition in the main part p. 7 which defines this set as a set of lower
bounded policies away from zero) can be represented as a convex combination of a
uniform distribution over the action space Ai and a policy πi ∈ Πi.

Lemma B.10 For any ξ > 0, i ∈ N ,

Πi,ξ ⊆
{

πi ∈ Πi | ∃π′
i ∈ Πi, ∀ai ∈ Ai, ∀s ∈ S : πi(ai | s) = ξ/Ai + (1 − ξ)π′

i(ai | s)
}

.

Proof Let ξ > 0, i ∈ N and let π
ξ
i ∈ Πi,ξ . Then for all ai ∈ Ai and s ∈ S , set

πi(ai | s) :=
π

ξ
i (ai | s)− ξ/Ai

1 − ξ
.

Indeed πi ∈ Πi, since for all ai ∈ Ai and s ∈ S , we have πi(ai | s) ≥ 0 due to
π

ξ
i (ai | s) ≥ ξ and

∑
ai∈Ai

πi(ai | s) =
1

1 − ξ

(
∑

ai∈Ai

π
ξ
i (ai | s)︸ ︷︷ ︸
=1

− ∑
ai∈Ai

ξ/Ai︸ ︷︷ ︸
=ξ

)
= 1. □

The following lemma shows that the estimators we use for the playerwise policy gradients
are unbiased and enjoy a bounded variance.

Lemma B.11 ([DFG20, LOPP22]) For any ξ > 0 and π ∈ Πξ , we have

Eπ

[
∇̂Vri

πi(π)
]
= ∇πi Vri(π) = ∇πi Φ(π) ,

Eπ

[∥∥∇̂Vri
πi(π)

∥∥2
]
≤ 24A2

max
ξ(1 − γ)4 ,

Eπ

[
V̂c(π)2] ≤ 1

(1 − γ)2 .

The same holds for ∇̂Vc
πi
(π) w.r.t. ∇πi Vc(π) .

Finally, the following lemma shows that our constraint function estimates concentrate
around their mean.

Lemma B.12 For π ∈ Πξ , let V̂(1)
c , . . . , V̂(B)

c be independent copies of V̂c(π), and let V̂c :=
1
B ∑B

i=1 V̂(i)
c . Then there exists C > 0 such that for any λ ≥ 0,

P

(∣∣V̂c − Vc(π)
∣∣ > λ√

B

)
≤ 4 exp (−C(1 − γ)λ) + 2 exp

(
−C2(1 − γ)2λ2) .

Proof For i ∈ [B], we decompose V̂(i)
c = ĉ(i)0 + V̂(i)

c,≥1 where ĉ(i)0 is the cost incurred at

step 0, and let ĉ0 := 1
B ∑B

i=1 c(i)0 , V̂c,≥1 := 1
B ∑B

i=1 V̂(i)
c,≥1. Since 0 ≤ ĉ0 ≤ 1, by Hoeffding’s

inequality, there exists C0 > 0 such that for any λ ≥ 0,

P

(
|ĉ0 − E[ĉ0]| >

λ

2
√

B

)
≤ 2 exp

(
−C0λ2) . (B.16)
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Constraint

Moreover, note that since for all s ∈ S , a ∈ A, 0 ≤ c(s, a) ≤ 1, we have that for all i ∈ [B],
V(i)

c,≥1 ≤ T(i)
e where T(i)

e is the stopping time of the respective episode and an independent
copy of Te. Assuming κs,a = mins∈S ,a∈A κs,a = 1 − γ for all s ∈ S , a ∈ A, Te follows a
geometric distribution with parameter 1 − γ. By definition of the geometric distribution
and elementary computations, we get for any λ ≥ 0,

P(Te ≥ λ) ≤ γ⌈λ⌉ ≤ exp(⌈λ⌉ log γ) ≤ exp
(
−⌈λ⌉1 − γ

3

)
≤ exp (−(1 − γ)λ/3)

which by a standard characterization of sub-exponential random variables, see Propo-
sition 2.7.1 in [Ver18], implies that Te, and therefore also V(i)

c,≥1 for all i ∈ [B] are sub-
exponential. Moreover, by the so-called centering lemma for sub-exponential distribu-
tions, see Section 2.7 in [Ver18], for any random variable X that is sub-exponential with
parameter σ, there exists an absolute constant c such that X − E[X] is sub-exponential
with parameter cσ. Thus for all i ∈ [B], V(i)

c,≥1 − E[V̂(i)
c,≥1] is sub-exponential with parame-

ter in O(1/(1 − γ)). Then, we apply Bernstein’s inequality, see Theorem 2.8.1 in [Ver18],
to show that there exist C1, C2 > 0 such that for any λ ≥ 0,

P

(∣∣V̂c,≥1 − E[V̂c,≥1]
∣∣ > λ

2
√

B

)
≤ 2 exp (−C1(1 − γ)λ) + 2 exp

(
−C2

2(1 − γ)2λ2) .

(B.17)
Finally, using a union bound, we combine (B.16) and (B.17) to get the desired bound. □

B.2.4 Strong Feasibility Implies Uniform Slater’s Condition

As a remark on Assumption 4.3, we claimed that this uniform Slater’s condition is weaker
than the strong feasibility assumption introduced in [BDL23]. Here, we provide the
simple proof.

Proposition B.13 Let strong feasibility hold, i.e., suppose there exists π ∈ Π such that Vc(π) ≤
α − diam(Π)2

η . Then, the uniform Slater’s condition, see Assumption 4.3, holds.

Proof Clearly, for any π′ ∈ Π, we have ∥π − π′∥2 ≤ diam(Π)2. Therefore,

Vc
η,π′(π) = Vc(π) +

1
2η

∥∥π − π′∥∥2 ≤ α − diam(Π)2

η

and hence the uniform Slater’s condition holds with ζ = diam(Π)2

η > 0. □

B.3 Strongly Convex Stochastic Optimization with Strongly Con-
vex Expectation Constraint

In this section, we describe a stochastic gradient switching algorithm for stochastic
constrained optimization under expectation constraints. Up to the modification of using
a relaxed constraint (which is crucial for enabling its independent implementation),
our algorithm and analysis follow the Cooperative Stochastic Approximation (CSA)
algorithm presented in [LZ20] which is inspired by Polyak’s subgradient method [Pol67].
[LZ20] hint at the fact that a 1/K convergence rate of the CSA algorithm can be shown
in the case of strongly convex objective and under expectation constraints. Here we
explicitly carry out this analysis by deriving a result in expectation and under a somewhat
weaker assumption on the distribution of the constraint function estimates.
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Let X ⊆ Rd be a convex and compact set with diameter ∆ := maxx,x′∈X ∥x − x′∥ . Suppose
θ are random vectors supported on Θ ⊂ Rp, and let F : X × Θ → R, G : X × Θ → R be
functions such that F(·, θ) and G(·, θ) are µF and µG-weakly convex, respectively. For any
x′ ∈ X, we define Fµ,x′(x, θ) := F(x, θ) + µF∥x − x′∥2 and Gµ,x′(x, θ) := G(x, θ) + µG∥x −
x′∥2. Let f (x) := Eθ [F(x, θ)], g(x) := Eθ [G(x, θ)] (where expectations are supposed to be
well-defined and finite) and fµ,x′(x) := f (x)+µF∥x− x′∥2, gµ,x′(x) := g(x)+µG∥x− x′∥2

for every x ∈ X .

The problem we aim to solve3 is given by

min
x∈X

fµ,x′(x) := Eθ [Fµ,x′(x, θ)]

s.t. gµ,x′(x) := Eθ [Gµ,x′(x, θ)] ≤ 0.
(B.18)

Recall that such a problem needs to be solved at each time step in our iProxCMPG
algorithm. The point x′ is arbitrarily fixed throughout the rest of this section.

Suppose we are only given access to first-order information of fµ,x′ , gµ,x′ and zeroth-order
information of g via a stochastic oracle that outputs unbiased and bounded-variance
estimates.

Assumption B.14 For every x ∈ X, the estimators F′
µ,x′(x, θ), G′

µ,x′(x, θ) and G(x, θ) are

unbiased, i.e., Eθ

[
F′

µ,x′(x, θ)
]
= ∇ fµ,x′(x), Eθ

[
G′

µ,x′(x, θ)
]
= ∇gµ,x′(x) and Eθ [G(x, θ)] =

g(x) . Moreover, there exist MF, MG > 0 such that

Eθ

[∥∥F′(x, θ)
∥∥2
]
≤ M2

F ; Eθ

[∥∥G′(x, θ)
∥∥2
]
≤ M2

G .

Furthermore, we suppose to have access to independent unbiased estimators Ĝ(1), . . . , Ĝ(J) of
G(x, ·) for which there exists σ > 0 such that for any λ ≥ 0, it holds that

Pθ

(
|Ĝ − g(x)| > λ/

√
J
)
≤ 4 exp (−λ/σ) + 2 exp

(
−λ2/σ2) , (B.19)

where Ĝ := 1
J ∑J

j=1 Ĝ(j).

It can be easily seen that Assumption B.14 also implies existence of M̃F, M̃G such that

Eθ

[∥∥∥F′
µ,x′(x, θ)

∥∥∥2
]
≤ 2Eθ

[∥∥F′(x, θ)
∥∥2
]
+ 2µ2

F
∥∥x − x′

∥∥4 ≤ 2M2
F + 2µ2

F∆4 =: M̃2
F,

Eθ

[∥∥∥G′
µ,x′(x, θ)

∥∥∥2
]
≤ 2Eθ

[∥∥G′(x, θ)
∥∥2
]
+ 2µ2

G
∥∥x − x′

∥∥4 ≤ 2M2
G + 2µ2

G∆4 =: M̃2
G.

Remark B.15 Notice that the concentration requirement of (B.19) is relaxed compared to the
sub-Gaussian assumption made in [LZ20] which is too strong to hold in our case. We refer
the reader to Lemma B.12 where we prove that this weaker tail bound assumption holds for our
constraint function estimates.

B.3.1 A Primal Switching Gradient Algorithm

Algorithm 5 is designed as a primal algorithm that switches between taking a step along
the objective or constraint gradient, depending on whether the constraint is currently
(estimated to be) satisfied or not.

3Note that the final guarantees we will obtain are actually in terms of a relaxed constraint satisfaction
bound. This is due to our modification of the original CSA algorithm.

47



B.3. Strongly Convex Stochastic Optimization with Strongly Convex Expectation
Constraint

Algorithm 5 CSA (adapted from [LZ20])
1: initialization: x1 ∈ X s.t. g(x1) ≤ ε and {δk}k∈[N] , {νk}k∈[N] , {ρk}k∈[N] , s ∈ [N]
2: for k = 1, . . . , N − 1 do
3: sample Ĝ(1)

k , . . . , Ĝ(J)
k from G(xk, ·) and set Ĝk =

1
J ∑J

j=1 Ĝ(j)
k

4: xk+1 =

PX

[
xk − νkF′

µ,x′(xk, θk)
]

if Ĝk ≤ δk

PX

[
xk − νkG′

µ,x′(xk, θk)
]

else

5: let Bs := {s ≤ k ≤ N | Ĝk ≤ δk}
6: output: xk̂ where k̂ = 1 if Bs = ∅ and otherwise sampled s.t. for k ∈ Bs,
7: P(k̂ = k) =

(
∑k∈Bs

ρk
)−1

ρk

In the analysis, we will denote Ms := {s ≤ k ≤ N | k ̸∈ Bs} and B := B1, M := M1.

We point out the following differences between Algorithm 5 and the original CSA
algorithm, see [LZ20], Algorithm 1.

(a) We relax the switching condition in line 4 by using an estimate of g(xk) instead
of gµ,x′(xk) if we were to exactly use the algorithm proposed in [LZ20]. This
modification is crucial for our application as a subroutine of an independent learning
algorithm, as described in the proof of Lemma B.2, see Appendix B.2.1. As a result,
compared to [LZ20], we get a weaker guarantee in terms of constraint violation
which however is still sufficient for our purposes.

(b) Instead of constructing the output as a ρk-weighted average over iterates xk, we
sample an iterate from a ρk-weighted distribution, see line 6. This is because our
relaxed constraint function g is not necessarily convex (unlike gµ,x′) and hence we
cannot easily bound the constraint value at an average over iterates.

B.3.2 Convergence and Sample Complexity Guarantee

The following analysis uses the techniques presented in [LZ20] applied to the strongly
convex case with expectation constraint, under our modified Assumption B.14 and
Algorithm 5. The proofs follow along the same lines, we highlight differences when
appropriate.

First, we establish a basic recursion about CSA iterates that will be used repeatedly
throughout the rest of the analysis.

Proposition B.16 For any s ∈ [N], x ∈ X, and as as defined by (B.20), it holds that

∑
k∈Ms

ρk
(
Gµ,x′(xk, θk)− Gµ,x′(x, θk)

)
+ ∑

k∈Bs

ρk
(

Fµ,x′(xk, θk)− Fµ,x′(x, θk)
)

≤ (1 − as)∆2 +
1
2 ∑

k∈Bs

ρkνk

∥∥∥F′
µ,x′(xk, θk)

∥∥∥2
+

1
2 ∑

k∈Bs

ρkνk

∥∥∥G′
µ,x′(xk, θk)

∥∥∥2
.

Proof Let s ∈ [N] and k ∈ Bs. Then, by non-expansiveness of the projection PX and
strong convexity,

∥xk+1 − x∥2 ≤ ∥xk − x∥2 − νk

〈
F′

µ,x′(xk, θk), xk − x
〉
+

1
2

ν2
k

∥∥∥F′
µ,x′(xk, θk)

∥∥∥2

≤ ∥xk − x∥2 − νk

[
Fµ,x′(xk, θk)− Fµ,x′(x, θk) +

µF

2
∥xk − x∥2

]
+

1
2

ν2
k

∥∥∥F′
µ,x′(xk, θk)

∥∥∥2

≤
(

1 − νkµF

2

)
∥xk − x∥2 − νk

[
Fµ,x′(xk, θk)− Fµ,x′(x, θk)

]
+

1
2

ν2
k

∥∥∥F′
µ,x′(xk, θk)

∥∥∥2
.
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Similarly, if k ∈ Ms,

∥xk+1 − x∥2 ≤
(

1 − νkµG

2

)
∥xk − x∥2 − νk

[
Gµ,x′(xk, θk)− Gµ,x′(x, θk)

]
+

1
2

ν2
k

∥∥∥G′
µ,x′(xk, θk)

∥∥∥2
.

After defining

ak =

{
µFνk if k ∈ B
µGνk if k ∈ M

; Ak =

{
1 if k = 1
(1 − ak)Ak−1 if k ≥ 2

; ρk =
νk

Ak
; (B.20)

the result follows by application of Lemma 21, [LZ20]. □

The next lemma provides a condition on {νk, δk, ρk}s≤k≤N that guarantees either low
regret in terms of objective value or that a large number of iterates satisfy the constraint
with high probability.

Lemma B.17 Let x∗ be an optimal solution of (B.18). If for some s ∈ [N] and λ ≥ 0,

N − s + 1
2

min
k∈Ms

ρkδk > (1 − as)∆2 +
1
2 ∑

k∈Ms

ρkνk M̃2
G +

1
2 ∑

k∈Bs

ρkνk M̃2
F +

λ√
J ∑

k∈Ms

ρk,

(B.21)

then one of the following statements holds,

(a) Pθ(|Bs| ≥ (N − s + 1)/2) ≥ 1 − |Ms|
(
4 exp (−λ/σ) + 2 exp

(
−λ2/σ2)), or,

(b) ∑k∈Bs
ρk
(

fµ,x′(xk)− fµ,x′(x∗)
)
≤ 0.

Note that unlike in [LZ20], due to our modified choice of Algorithm 5’s output, well-
definedness of xk̂ does not require Bs ̸= ∅.

Proof In Proposition B.16, set x = x∗, take expectation w.r.t. θ on both sides, and apply

Eθ

∥∥∥F′
µ,x′(x, θ)

∥∥∥2
≤ M̃2

F, Eθ

∥∥∥G′
µ,x′(x, θ)

∥∥∥2
≤ M̃2

G. Then,

∑
k∈Ms

ρk
(

gµ,x′(xk)− gµ,x′(x∗)
)
+ ∑

k∈Bs

ρk
(

fµ,x′(xk)− fµ,x′(x∗)
)

≤ (1 − as)∆2 +
1
2 ∑

k∈Ms

ρkνk M̃2
G +

1
2 ∑

k∈Bs

ρkνk M̃2
F.

(B.22)

If ∑k∈Bs
ρk
(

fµ,x′(xk)− fµ,x′(x∗)
)
≤ 0, then (b) holds. Otherwise, we make three observa-

tions. First, we have that gµ,x′(x∗) ≤ 0. Second, it holds that g(xk) ≤ gµ,x′(xk). Third, for
k ∈ Ms, by Assumption B.14 and due to Ĝk > δk, we get

Pθ

(
g(xk) < δk −

λ√
J

)
≤ 4 exp (−λ/σ) + 2 exp

(
−λ2/σ2) . (B.23)

By a union bound this inequality holds for all k ∈ Ms with probability at most
|Ms|

(
4 exp (−λ/σ) + 2 exp

(
−λ2/σ2)). Combining these three observations with (B.22)

yields that with probability at least 1 − |Ms|
(
4 exp (−λ/σ) + 2 exp

(
−λ2/σ2)), it holds

that

∑
k∈Ms

ρkδk ≤ (1 − as)∆2 +
1
2 ∑

k∈Ms

ρkνk M̃2
G +

1
2 ∑

k∈Bs

ρkνk M̃2
F +

λ√
J
.

Above inequality then implies (a) because if |Bs| < (N − s + 1)/2, i.e., |Ms| ≥ (N − s +
1)/2, then condition (B.21) implies that

∑
k∈Ms

ρkδk ≥
N − s + 1

2
min
k∈Ms

ρkδk > (1 − as)∆2 +
1
2 ∑

k∈Ms

ρkνk M̃2
G +

1
2 ∑

k∈Bs

ρkνk M̃2
F +

λ√
J ∑

k∈Ms

ρk,

which is a contradiction. □
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Next, we state and prove the main guarantees provided by Algorithm 5.

Theorem B.18 Under Assumption B.14, let ε > 0, suppose x1 is such that g(x1) ≤ ε, and let
fmax > 0 such that for all x ∈ X, 0 ≤ f (x) ≤ fmax. Choose s = N/2,λ = σ2 log(N2/(4 fmax)),
set M = max{M̃G, M̃F}, µ = min{µG, µF}, and

νk =

{
2

µF(k+1) if k ∈ B
2

µG(k+1) if k ∈ M
; δk =

λ√
J
+

1
2k

(
4∆2

k
+

16M2

µ2

)
·
{

µF if k ∈ B
µG if k ∈ M

;

ak =

{
µFνk if k ∈ B
µGνk if k ∈ M

; Ak =

{
1 if k = 1
(1 − ak)Ak−1 if k ≥ 2

; ρk =
νk

Ak

N = max

{
64µF M2

µ2ε2 ,

√
32∆2µF

ε
,

32σµF

µε2

}
; J = max

{
9λ2

ε2 ,
32σµF

µε2

}
.

Then Algorithm 5 guarantees that

E
[

fµ,x′(xk̂)− fµ,x′(x∗)
]
≤ ε2, (B.24)

E
[
g(xk̂)

]
≤ ε. (B.25)

Proof First, we observe that for any k ∈ Ms,

E
[√

J (g(xk)− δk)
]
=
∫ ∞

0

(
1 − P

(√
J (g(xk)− δk) ≤ z

))
dz

−
∫ 0

−∞
P
(√

J (g(xk)− δk) ≤ z
)

dz

≥ −
∫ 0

−∞
4 exp (z/σ) + 2 exp

(
z2/σ2) dz

≥ −6σ

(B.26)

where the first inequality is by (B.23). Therefore, we have E[g(xk)] ≥ δk − 6σ√
J . Moreover,

by an argument similar to our derivation in Lemma B.12 but with Bernstein’s inequality
applied to the sum

(
∑k∈Ms

ρk
)−1

∑k∈Ms
ρkĜk,

P

(
∑

k∈Ms

ρk
(
Ĝk − g(xk)

)
>

λ√
J|Ms|

∑
k∈Ms

ρk

)
≤ 4 exp (−λ/σ) + 2 exp

(
−λ2/σ2) .

Therefore, following (B.26), we get

E

[
∑

k∈Ms

ρkg(xk)

]
≥ ∑

k∈Ms

ρkδk −
6σ√
J|Ms|

∑
k∈Ms

ρk. (B.27)

Next, we derive (B.24). Note that (B.21) holds for our choices of s, νk, δk, ρk. Then, if part
(b) of Lemma B.17 holds, we have

E
[

f (xk̂)− f (x∗)
]
= Ek̂

[
E
[

f (xk)− f (x∗) | k̂ = k
]]

≤
(

∑
k∈Bs

ρk

)−1

∑
k∈Bs

ρkE [ f (xk)− f (x∗)]

≤ 0.
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Otherwise, if part (a) holds, then using the above bound on E[g(xk)] together with the
convexity of fµ,x′ , (B.22) and (B.27), it follows that

∑
k∈Ms

ρkδk −
6σ√
J|Ms|

∑
k∈Ms

ρk + ∑
k∈Bs

ρkE
[

fµ,x′(xk̂)− fµ,x′(x∗)
]

≤ ∑
k∈Ms

ρkE [g(xk)] + ∑
k∈Bs

ρkE
[

fµ,x′(xk̂)− fµ,x′(x∗)
]

≤ ∑
k∈Ms

ρkE [g(xk)] + ∑
k∈Bs

ρkE
[

fµ,x′(xk)− fµ,x′(x∗)
]

≤ (1 − as)∆2 +
1
2 ∑

k∈Ms

ρkνk M̃2
G +

1
2 ∑

k∈Bs

ρkνk M̃2
F.

Denote by EBs the event that |Bs| ≥ (N − s + 1)/2. Then, using the law of total ex-
pectation, our choice of λ = σ2 log(N2/(4 fmax)), ρkδk ≥ 0, and above inequality, we
have

E
[

f (xk̂)− f (x∗)
]

≤ E
[

f (xk̂)− f (x∗) | EBs

]
· P (EBs)︸ ︷︷ ︸

≤1

+ E
[

f (xk̂)− f (x∗) | EBs

]
· P

(
EBs

)︸ ︷︷ ︸
≤|Ms|(4 exp(−λ/σ)+2 exp(−λ2/σ2))

≤
(

∑
k∈Bs

ρk

)−1(
(1 − as)∆2 +

1
2 ∑

k∈Ms

ρkνk M̃2
G +

1
2 ∑

k∈Bs

ρkνk M̃2
F +

6σ√
J|Ms|

∑
k∈Ms

ρk

)
+

1
N

≤
(

N − s + 1
2

min
k∈Bs

ρk

)−1
(
(1 − as)∆2 +

1
2 ∑

k∈Ms

ρkνk M̃2
G +

1
2 ∑

k∈Bs

ρkνk M̃2
F +

6σ√
J|Ms|

∑
k∈Ms

ρk

)
+

1
N

.

In order to show the constraint violation bound, note that by a similar argument as (B.26),
for any k ∈ Bs, E[g(xk)] ≤ δk +

6σ√
J , and therefore

E
[
g(xk̂)

]
= Ek̂

[
E
[

g(xk) | k = k̂
]]

≤ Ek̂

[
δk̂

]
+

6σ√
J
=

∑k∈Bs
ρkδk

∑k∈Bs
ρk

+
6σ√

J
.

In order to derive the guarantees (B.24) and (B.25), we plug in the choices of νk, δk, ak, ρk, N,
and J stated in Theorem B.18. Observing that for any s ≤ k ≤ N, we have Ak =

2
k(k+1) ,

that for any k ∈ B, we have ρk = 2k
µF

as well as ρkνk = 4
µ2

F
, and for any k ∈ M,

ρk =
2k
µG

, ρkνk =
4

µ2
G

.

E
[

f (xk̂)− f (x∗)
]
≤

∆2 + 2Nµ−2
F M̃2

F + 2Nµ−2
G M̃2

G + 2σ√
J N3/2µ−1

G

N2/4 · µ−1
F

≤
∆2 + 4Nµ−2M2 + 2σ√

J N3/2µ−1

N2/4 · µ−1
F

+
1
N

≤ 4µF∆2

N2 +
16µFµ−2M2

N
+

8σµ−1µF√
JN

+
1
N

≤ ε2/4 + ε2/4 + ε2/4 + ε2/4.
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Moreover, for the constraint bound, it holds that

E
[
g(xk̂)

]
≤ ∑k∈Bs

(
4∆2/k + 16M2/µ2)
∑k∈Bs

2k/µF
+

6σ√
J

≤ 8∆2µF

N2 +
16M2µF

µ2N
+

6σ√
J

≤ ε. □

B.4 Background in Constrained Optimization and a Novel Tech-
nical Lemma

Notation. For any non-empty subset Y ⊂ Rd and any vector x ∈ Rd, the distance
from x to the set Y is defined as dist(x, Y) := infy∈Y ∥x − y∥ where ∥ · ∥ is the standard
2-norm of the Euclidean space Rd.

In this section, we recall some useful definitions for constrained optimization. In
particular, we recall the definition of an approximate Karush-Kuhn-Tucker (KKT) point
and a variation thereof. Then we prove a new technical result that will be useful in our
analysis.

B.4.1 Approximate KKT Points in Constrained Optimization

Let X ⊂ Rd be a closed convex set. Consider the following constrained optimization
problem:

P∗ = min
x∈X

f (x)

s.t. fc(x) ≤ 0 ,
(ConstrOpt)

where f , fc : X → R are differentiable (possibly nonconvex) functions.

The associated Lagrangian function L : X × R≥0 → R is defined for any x ∈ X, λ ≥ 0 by
L (x, λ) = f (x) + λ fc(x) . The primal and dual problems can be written as

P∗ = inf
x∈X

sup
λ≥0

L (x, λ) ,

D∗ = sup
λ≥0

inf
x∈X

L (x, λ)︸ ︷︷ ︸
=:d(λ)

.

By weak duality, we know that P∗ ≥ D∗.

For any x ∈ Rd, the normal cone to the set X at x is defined by:

NX(x) :=
{

g ∈ Rd | ∀y ∈ X, ⟨g, y − x⟩ ≤ 0
}

.

Definition B.19 Let ε ≥ 0. A point x ∈ X is an ε-KKT point of (ConstrOpt) if there exists a
real λ such that the following conditions hold:

fc (x) ≤ ε , (primal feasibility)
λ ≥ 0 , (dual feasibility)

|λ fc (x)| ≤ ε , (complementary slackness)
dist (∇xL(x, λ),−NX(x)) ≤ ε . (Lagrangian stationarity)

We also call (x, λ) an ε-KKT pair. The point x is simply a KKT point of (ConstrOpt) if
moreover ε = 0 .
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B.4. Background in Constrained Optimization and a Novel Technical Lemma

We additionally define a slight modification of the above standard KKT conditions which
turns out to be useful in our analysis. More precisely, the definition replaces approximate
Lagrangian stationarity by a variational form thereof. Moreover, primal feasibility is now
supposed to be exact. Other conditions remain unchanged.

Definition B.20 Let ε ≥ 0 . A point x̃ ∈ X is an ε-K̃KT point of (ConstrOpt) if there exists a
real λ̃ such that the following conditions hold:

fc (x̃) ≤ 0 , (exact primal feasibility)

λ̃ ≥ 0 , (dual feasibility)∣∣λ̃ fc (x̃)
∣∣ ≤ ε , (complementary slackness)

max
x′∈X

〈
x̃ − x′,∇xL(x̃, λ̃)

〉
≤ ε . (variational Lagrangian stationarity)

In particular, the point x̃ is said to be a K̃KT point of (ConstrOpt) when ε = 0.

The next lemma connects the first stationarity condition with a variational form thereof.
In particular, this result allows us to connect the two definitions of approximate KKT
points above.

Lemma B.21 Let X ⊆ Rd be a convex and compact set. Let ε > 0 and let x, g ∈ Rd .
If dist (g,−NX(x)) ≤ ε, then maxx′∈X ⟨x − x′, g⟩ ≤ ∆ε , where ∆ := maxx,x′∈X ∥x − x′∥ is
the diameter of the set X .

Proof Let y0 ∈ −NX(x) . For any x′ ∈ X, we have

⟨x − x′, g⟩ = ⟨x − x′, g − y0⟩+ ⟨−y0, x′ − x⟩ ,
≤ ⟨x′ − x, g − y0⟩ ,
≤ ∥x′ − x∥ · ∥g − y0∥ ,

where the first inequality follows from the fact that y0 ∈ −NX(x), the second in-
equality stems from the Cauchy-Schwarz inequality. Taking the infimum with re-
spect to y0 in the last inequality gives the desired inequality since dist (g,−NX(x)) =
infy∈−NX(x) ∥g − y∥ ≤ ε . □

B.4.2 A Novel Technical Lemma for Approximate Optimality Under Gradient
Dominance

We now state our technical lemma. This result shows that an approximate KKT point
of (ConstrOpt) at which a gradient domination inequality holds for the Lagrangian
function is approximately optimal for the objective function to be minimized.

Proposition B.22 Let ε > 0 and let x̃ ∈ X be an ε-K̃KT point of (ConstrOpt). Suppose there
exist constants C0, C1 ≥ 0 such that the Lagrangian function associated to (ConstrOpt) satisfies
for all λ ≥ 0 and for all x ∈ X,

L (x, λ)−L (x∗λ, λ) ≤ C0 max
x′∈X

〈
x − x′,∇xL(x̃, λ̃)

〉
+ C1ε , (B.28)

where x∗λ is a minimizer of L (·, λ) . Then, we have

f (x̃)− P∗ ≤ (C0 + C1 + 1)ε.
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Proof Let (x̃, λ̃) be an ε-K̃KT pair. Then, we have

D∗ (a)
= max

λ≥0
d(λ) ≥ d(λ̃)

(b)
= min

x∈X
L(x, λ̃)

(c)
≥ L(x̃, λ̃)− (C0 + C1)ε

= f (x̃) + λ̃ fc(x̃)− (C0 + C1)ε

(d)
≥ f (x̃)− (C0 + C1 + 1)ε

where (a) and (b) are by definition, and (d) is due to complementary slackness. To see
(c), observe that by Lagrangian stationarity and (B.28),

ε ≥ max
x′∈X

〈
x̃ − x′,∇xL(x̃, λ̃)

〉
≥ 1

C0

(
L(x̃, λ̃)−L(x∗

λ̃
, λ̃)− C1ε

)
,

which implies that4

L(x̃, λ̃)−L(x∗
λ̃
, λ̃) ≤ (C0 + C1)ε.

Finally, we use weak duality, i.e. P∗ ≥ D∗, to conclude that

f (x̃)− P∗ = f (x̃)− D∗︸ ︷︷ ︸
≤(C0+C1+1)ε

+ D∗ − P∗︸ ︷︷ ︸
≤0

≤ (C0 + C1 + 1)ε. □

B.5 Additional Details About Simulations

We provide additional details regarding the implementation of our iProxCMPG (Algo-
rithm 4) in practice:

(a) In our experiments, each episode terminates after a fixed number of steps Te = 10
corresponding to a discount factor γ = 0.9 .

(b) In order to reduce the variance and enable the usage of larger step sizes, all
constraint and value (gradient) estimates are obtained by sampling a batch of
B trajectories.

(c) For the subroutine, i.e. as a solution to the proximal-point update, we do not
consider a ρk-weighted average over iterates but simply use the last iterate π(t,K).

(d) We choose δk = 0 for all k ∈ N.

Notation. As used in the main part, U ({1, · · · , W}) refers to the uniform distribution
over the finite set {1, · · · , W} where W ≥ 2 is an integer.

Hyperparameters. We report hyperparameter choices for our simulations in Table B.1.
Note that to ensure convergence, as indicated by our theoretical results, a larger number
of players m requires smaller step sizes and larger sample batches.

4If C0 = 0, the same inequality immediately holds from (B.28).
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Hyperparameters Number of players m Pollution tax Energy marketplace
Step size η (outer loop) - 0.1 0.1

Step size νk (inner loop)
2 0.005 0.002
4 0.002 0.001
8 0.0007 0.0003

Sample batch size B
2 1000 100
4 1000 150
8 2500 200

K (#iterations inner loop) - 20 20
T (#iterations outer loop) - 20 60

Discount factor γ - 0.9 0.9
Episode length Te - 10 10

Table B.1: Overview of hyperparameters used in our simulations.

Error Bars and Reproducibility. The plots in Figs. 4.1 and 4.3 show the means of esti-
mated potential values across 10 independent runs, and the corresponding shaded region
displays the respective standard deviation. Obtaining results for all presented experi-
ments thus requires simulating 60 runs in total. All experiments are fully reproducible
using the provided code and specified seeds.

Computing Infrastructure. In order to reduce computation time by executing all runs
in parallel, we conducted the simulations within less than 4 hours on a cluster of 15
4-core Intel(R) Xeon(R) CPU E3-1284L v4 clocked at 2.90GHz and equipped with 8Gbs of
memory.
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